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ABSTRACT 

The Partic1e-in-Cell method is a procedure to 'be \lsed on high-speed 

computer tor studies of the dynamics of compre$s ibl.e fl'l.tids undergoing 

large distortions. The technique is described in detail for calculation 

ot the dyn.amics of tvo fluids con.tined to move in a tvo-dimenaional rec-

tan.gul.ar box, and techniques a.re discussed tor the extension to o:umerous 

oth~r types ot problems. Discusaion is also given of many properties, 

liJllita.tions and uses ot the method, which have been learned through the 

application to a wide variety ot problems. 
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' 

Francis H. Harlow 

The University of California, Los Alamos Scientific Laboratory 
Los Alamos, New Mexico 

I. INTRODUCTION 

In response to several needs at the Los Alamos Scientific Labora-

tory, the Particle-in-Cell method, abbreviated PIC method, was developed 

for the numerical solution of problems involving the dynamics of compres-

sible fluids. At the time that the need became apparent there already 

were in existence several numerical methods, and in many cases the results 

from them had .been spectacular, especially for one-dimensional problems. 

For calculation in two space dimensions, however, t~e applicability of 

• 
existing methods wa.e more limited., as explained belowo 

In most numerical techniques for solving fluid dynamics problems 

the .fluid is imagined to be subdivided into a number of small zones or 

cells. Partial differential equatiGns are then written in finite dif-

ference form 'e.s an approximatio~ procedure. There are two basic view- . 

points that may be adopted in the writing of the equations; these are 

termed Lagrangian and Eulerian. In the Lagrangian viewpoint, the co-

ordinate system is fixed in the tluid. The finite difference analogy 

thereto has the zones following the fluid as it moves. Associated 

with each corner in the mesh is a certain fixed mass and a velocity 

which varies with time. The center of each cell has associated with it 
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pressure, density, and energy which likewise· vary with time. The Lagrangian 

appr~ch has proved particularly use:t'ul for treating systems involving several 

fluids because each mesh point retains identity with its initial portion of 

· the fluid. The internal fluid boUDdaries are therefore clearly delineated. 

A large number of strikir:igly successf'Ul calculations have been performed by 

several groups of workers. ·The Lagrangian methods are usually limited, hov-

ever, to systems in which no large distortions of the fluid occur. Rather 

serious doubt is cast upon the accuracy of representing the true solution 

when, for · example, a system whose equations are based on an orthogonal mesh 

becomes dis·torted significantly away from orthogonality. Problems involving 

obliqu~ collision of two free surfaces are likewise difficult to solve by 

the Lagrangian method. 

In the Eulerian viev:point, the coordinate sygtem is fixed relative 

to the laboratory and· the fluid moves through the mesh of cells. In the 

strict application of this approach, each cell of the mesh is characterized 

by uniform density, pressure, velocity and material kind. Eulerian methods 

have the tremendous advantage of applicability to problems w1 th arbitrary 

distortions or slippages of the fluid. They also, however, suffer from 

several disadvantages. One of these is the introduction of a false dif-

:fusion, especially noticeable vi.th material boundaries. 'l'his arises from 

the tact that each cell is forced to be homogenous. When material enters 

a cell, its preperties are uniformly mixed with those of all the. other ma­

terials in the cell. Also, in Eulerian methods, it is difficult to resolve 

very fine structur~s which move with the fluid. In this last respect the 

Lagrangian viewpoint has an advantage. Many fine zones can be constructed 
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across the small struct\ire, and as it moves with the fluia the tine zoning 

follows along. Fina~, an Eulerian calculation is not invariant to uni-

form translation. 

N\UDerous special procedures have been invented to overcome the dif'-
.... -. 

ficulties ot the Iagrangian and the Eulerian methods. In some cases, .. ,_ ... ... 

features ot the methods can be combined and some ot the disadvantages thereby 

ellminated. The Particle-In-Cell method that ve shall discuss here is the 

result of one particular type ot combination. The two features especia~ 

d,esired during the development of the PIC method were those. of allowing 

large distortions to occur in the fluid without reducing the calcu.lationa 

to nonsense, and of being able to cal.Cul.ate the history of each element of 

the fluid, particularly when several fluids are present. 

The general features of the PIC method can be described as follows: 

'l'here are two computing meshes; one is Eulerian, the other Iagrang:l.an. The 

domain . thr~ 'Which the fluii is to move is divided into a finite number ot 

computational cells 'Which are fixed relative to the observer. This is the 

Eu1erian mesh. In addition the fluid itsel1' is represented by particles or 

mass points which move through the .Eulerian mesh, representing the motion 

ot fluid. This is the Iagrangian mesh. Associated with the mesh points of 

each system are certain variables whose history the calculation develops. 

Thus for each Eulerian cell there is kept the velocity, the internal energy, 

and the total mass of each kind of material. For the Iagrangian mesh · of' 

particles, individual masses and positions are kept. 

To perf0nn the calculations it is neces~ary to arrange the equa­

tions of motion in such a way as to be appropriate to this special represen-

tation of the fluid. A fairly general example of how this is done has been 
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given in Pe.rt II, vhile in Part III it is sho,mhow other ·situations can be 

handled by relatively simple extension. It is likely that the reader will 

think of a VBJ;"iety of modifications to the techniques as presented, which 

could be ·tried. Indeed the history of development of the PIC method is .filled 

with experimentation with alternatives. These are discussed in detail in 

1 2 
several I.os Alamos Scientific Laboratory reports, ' which in turn centain 

refe~ences to older reports, mostly not now available. Discussions of ear­

lier-used alternatives have also been given in several papers, 3,4,5 which 

in addition demonstrate some applications. 

On the basis of this brief description it can already be s~en in 

what manner the PIC method will share the advantages or disadvantages of 

the more strictly interpreted Lagrangian and Eul.erian methods. Compared 

with the Lagrangian method, the PIC method shares the ability to tol.l.Dw the 

detailed .history of e:very element of fluid, and to keep separated the boun-
,., .. '· 

dari~s between fluids. The Lagrangian disadvantage of bree.1¢own during .·- ·· · · .... . - .-.. .... .. ... ... . . . . . . . 
-.----

large distortions -is not shared by the PIC method. As in the Eulerian method, 

large distortions are automatically taken care ot. On the other hand, the PIC 

method shares the disadvantage of the Eulerian method in the inability to re­

solve fine detail moving with the f'luid. Al.so, since the properties of the 

fluid are related to a coordinate system which is tixed relative to the obser-

ver, there results a fictitious difference between a fluid which is stagnated 

and a fluid which is moving. The extent of this difficulty and procedures 

which l11lve been used to overcome 1t ·are discussed in Part IV. 

Pertormance of a calculation by the PIC method resembles the perfor­

mance ot an experiment. The f'inite-ditference equations in su'itable form, 

together with the initial and boundary conditions for a specific situation, 

-4-
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are givm to an electronic computer which:: :l:n turn develops toe solution 

at a sequence ot later times separated by small time increments. There 

is no ! priori assumption of a model for the flDw conf'1.gurat1ons. The 

-a 
development of,..shock, for example, occurs automatically where required. 

The result is always an approximate solution, and the purpose of empiri­

cal and theoretical studies of the methodology 1 s directed tovards 1.m-

proving the goodness ,of the approximation. In Part II of this paper, :· .. 

we have shown how the method can be applied to a rather simple type of 

situation, that is, to finding the motion of two fluids in a Cartesian 

two-dimensional coordinate system, bounded by rigid walls. Part III 

sh<»ts how the method can be used in various other coordinate systems 

and for fluids in which viscosity, heat conduction and external forces 

are ilnporte.nt. Various other boundary cenditions are also discussed. 

In Part IV are presented the results of some empirical and theoretical 

studies which have shown the advantages and weaknesses of the method • 

.. · 
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II. AN EXAMPLE OF THE Mm'HOD 

Most ot the features of the PIC method can be demonstrated by show­

ing its application to a relatively simple problem. Consider the dynamics 

of two materials which are confined to move in e. two-dimensional rectangular 

box whose walls are rig:ld and allow perfect slippage. The materials are 

nonviscous and noncgnduct1ng of heat; each has an equation of state which re­

lates pressure, p, to density, p, and specific internal energy~ I. The e.p-

pears.nee of the box at some instant of time can be imagined to be as in 

Fig. 1 • 

Fig. 1 

The box is oriented with one corner at the origin and with the edges along 

the x and y axes. It is subdivided into a number of equal rectangular cells 

to which the finite-difference equations are to be related. The cells have 

dimensions ox and oy. 
01 
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Each fluid is represented by a number of mass points called 

"particles," each with a constant masa. As shown in the figure, these 

are represented by dots and x's; we shall call the materials "dot ma­

terial" and "x material," respectively. In this example, all dot par-

ticles have the same mass, m , and all the x particles have the same 
• 

mass, mx. (For calculations in cylindrical coordinates or for certain 

situations in cartesian coordinates, it is more convenient to have a 

different mass for every particle.) For each particle there are stored 

in the computing--machine memory its x and y coordinates. These are 

changed in time, by the method described below, to give a represent&-

tion of the motion of the fluids through the mesh of cells. 

Such quantities as velocity, density, and pressure are kept in 

the machine memory by cell,so,that, for example, the pressure of a 

cell is meant to reprusent a certain average of the pressure throughout 

the volume of fluid contained in the cell. {Further discussion of this 

point is given by Bromberg in Appendix II of Ref'. 1, where there is an 

enJ.ightening alternative derivation of the PIC-method equations.) The 

cells are labeled with index (t), with 1 and J increasing in the x and 

y directions, respectively; the lower lett cell in the figure is cell 

) 
' \ 

number C . Thus, for''example, the pressure for cell ( ~) is p~, while 

~ (J \ 
the average pressure along the boundary between cells (i) and \J.+l) is 

pi+i' and anal.ogou~ symbols are used for the other boundary pressures. 

The nomenclature for various cellwise quantities 1s shown in 

Table 1. 

-1-
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The Pressures. The two equations of state are given in the form 

p = t (p,I) 
• 

p = f (p,I) 
x 

where t and 1' are appropriate functiona for the dot and x materials, re-
• x 

specti vely. The density in a cell is defined to be the quotient of the 

d Ii• massa in the cell divided by its area. Thus, for a cell containing 

only dot material or x material, the pressure equations become 

Various procedures are possible for the determination of total pres-

sure in a mixed cell. ·one of .these is based on the requirement of pressure 

continuity across a material interface. Assuming that the ~tion of a 

cell occupied by dot material is a, one writes the two equations, from which 

a is to be eliminated, 

J f IM.~ I ~ 
~i • ·~~x6y' ·~ 

= t x 

If the pressure is strictly p~oportional to the density for both materials, 

then tne re&ult is the same as that from adding partial pressures: 

~
J 

xi 
xoy ' I~ 
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If the equations of state are complicated, it may be convenient, as 

well as sui"ficiently accurate, to still calculate the pressure in a mixed cell 

by adding the partial pressures in this manner. In some cases, however, the re-

sult of this is far 1'rom reasonable and a different approach has been found 

usef\ll on several occasions. A value a
0

, is assumed for a and the pressure 

is taken to be 

The choice ·of 
M j 
.i . 

a "'-------
0 M j + RM j 

,i xi 

has so111etimes yielded reasonable results, where R is the ratio of the initial 

density of the dot material to that of the x material. In this case, the 

value of a is based on the assumption that the compression of each of the two 
0 

· materials is in the same ratio as their initial compressions. Various itera-

tive prqcedures are also possible for solving for the mixed-cell pressure~ 

O:f"ten it is usef'ul to add an "artificial viscosity" pressure, q, to 

th& equation of state pressure. Further discussion of this is given in Part IV. 

We shall use P = p + q for the sum of the two pressures. 

Phase I of a Calculation Cycle. In the computer memory there are stored 

all the results of the previous-cycle calculations or else the initial conditions 

-9-
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for the problem. These are to be advanced in time according to a f'intte-

difference approximation to the differential equations 

~ + u * + v ~ + ~~ + ~) = 0 

au 0u 0u oP 
Pat+pucrx+pvey+o,c=O 

The first of these equations, that of mass conservation, is automati-

caJ..4r satisfi.ed by the particle mo~el. The momentum equatiom> are treated 

as follows: In Phase I, the contributj.ons to the time derivatives which 

arise from the terms involving pressure are calculated. The particles are 

not moved at this step; thus the transport terms are dropped, and the equa-

tions, in finite space-difference form, become 

.... 

·pf (~)1 = - ~x [Pi+1 - ~-iJ 

Cell-boundary pressures are averaged from adjacent cells. 

Experience has shovn that the energy equation can best be treated. by 

considering the separate effects of p and q. The transport terms are again 

dropped, and the differential form is rearranged to 

11 
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which becomes, in difference form, 

(qu)~+! - {qu)~-i _ (qv)~+~ - (qv)f-! 

8x oy 

Cell-boundary velocities are averaged from adjacent cellso 

The reason for treating the p and q terms in different fashion is 

that whereas the equation-of-state pressure, p, is basically a cell-

centered quantity, the viscous pressure, which will be shown to depend 

upon velocity differences, is basically a cell-boundary quantityo In 

addition, the form for the p terms is based upon the desirability of 

their conserving entropy in difference form. The q terms in that form, 

however, {with cell-centered q values obtained from boundary averages) 

contribute to instability of the equations. Only in the form shown are 

the q terms really effective for their purpose. Further discussion of 

this matter is given in Part IV. 

To compute the tentative nev velocities for the end of a computa-

tional cycle, in terms of those from the beginning of the cycle, we use 

the lowest order terms of the expansion 

_,,_ 
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~~ = v~ + 8t(~~ + ••• 

-j _ j 5x8t [pJ+! _j·!J 
vi - vi - 7 i - PI 

i 

Analogous treatment of the energy equation is ma.de complicated by 

two difficul.tieso The first is that the specific internal energy,· it, is 

not defined for a mixed cell. For this reason we write 

where Qi is the total internal energy of the cell. Division into the sep­

arate changes of internal energy for the various materials in the cell is 

thereby deferred to a later step in the calculation cycle. The second dif-

ficulty is that the use of only the first terms of the expansion 

does not result in rigorous energy conservation unless some caretul adjust­

ment is -made in the .calculation of oQ/ot.- It is as~umed that the new veloci­

ties hav~ already been calculated so that, for e.xampl~, both.ut and .ut are 

available in memory for the internal energy calculation. Then, with 

-12-
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u a i{u + u) 

v Bl Mv + v) 

the proper form is 

···--· ·-···· ·-·--·----.... .. 

The total energy in a cell is 

. -J J 
With this and the equations ot change, it is possible to show that E1 - E1 

can be expressed as a pair of cell-boundary differences, so that in a summa-

tion of the energy changes over the whole mesh of cells, all internal con-

tributions cancel in pairs, leaving· only boundary fluxes from the edges of 

the computing region. It is by this procedure that finite-difference forms 

of common boWldary conditions are derived in Part III. 

From the result for 8~, the values of' i.t ~Dd Ixt are to be deter­

mined. For an unmixed cell with, say, dot material only, 

. 

J 
.... J j f>Qi. 

I.1 = 1.1 + ;-3' 
.i 

If the· cell is mixed, then various procedures for distributing inter-

nal energy changes to the several materials may be used. 

(1) The materials could be hea"ted as though each bad been compressed 

or expanded adiabatically through the same preesure change. 

149 14 
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(2) Each could be given the same change in total internal ene~gy. 

(3) Each could be given the same change in specific internal energy. 

The first and second of these procedures have proved satisfactory in 

~everal trial.s, while the third inhibited the f'low ot energy across an inter-

face in a test problem. 

• Phase II, The Trans,J?Ort of Material. By the end of' Phase I, there' are 

stored in memory ten quantities for every cell. Table 2 shows these; together 

with the quantities which replace them during the sequence ot Phase II calcula· 

tions. 

Step 1. The resul.ts of the Phase I calculations are transformed into 

total cellwise energies and momenta: 

Step 2.. The particles are moved. The coordinates of each mass point 

change according to 

In some calculations (see, for example / Ref. 5) / the values of u tt and v tt 
· e ·e - ;... were simply the values of u and v of the cell containing the particle, no 

-14-
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matter where in the cell the particle originated its motion for the cycle. 

The results can almost alvays be improved, however, by using the time-

consuming process called "velocity weighting;" indeed, tests have indi-

cated that the increase in accuracy thereby realized could not be achieved 

by that increase in mesh fineness which would consUJDe equal extra computer 

time. 

In the velocity weighting procedure, a rectangle of cell size is 

imagined to be located about each particle, the particle being at the cen-

ter. SUch a rectangle then overlaps four adjacent cells, and the effective 

velocity for moving .the particle is ta.ken as a weighted average of the four 

cellwise tilde velocities, the weightings being proportional to the overlap 

areas. If. the surrounding rectangle lies partly in an empty cell, then 

that cell may be assumed tc» have the same velocity as does the cell with the 

particle. If the surrounding rectangle lies partly outside the walls of' 

the computation ~gion (these being assumed rigid)' then the fictitious out-

side cells may be given either reflected velocities or the same velocities 

as in the adjacent int~rior cells. In the former case, it caD be shown that 

for proper~-small values of ot, no particle will be lost from the system. 

-
The procedure is less desirable, however, e.s it can lead to the '~oundary 

catastrophe" discussed in Ref. 1, page 17. In .the latter case, it is nee-

cessary to reflect the particle back in; the particle then carries a change 

in momentum as though entering from a cell with reflected velocity, and the 

boundary catastrophe is avoided. 

When a particle is thus moved, it may be found to remain in the same 

cell from which it started. In this case, there is no modification to ~ 

-15-
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of the cellWise quantit,ies. Some ·or the particles, however., will end up in 

new cells; in these cases, cellwise changes are necessary. From the cell 

which was le:f't, the particle mass,' momentum, a.ud energy are subtracted and 

these are added to the new cell. Thus, through step 2, the cellWise values 

·of mass, momentum, and energy climulate to their final val.ues for the oycle. 

Step 3. The final velocities tor the cycle are computed 

X' 
u' = M' + M' •. x 

Y' 
VI aM -"!"', -+~M~j 

~ x 

where M' and M' are the new masses for the cell. 
• x 

Step 4. The final specific internal energies for the cycle are com-

puted 

E' 1r J 
I' = M; - "h,<u•)2 + (v')2 

• 

E' [ J I'=~_..!. (u•)
2 

+ (v 1 )
2 

x M' 2 
x 

Phase III, Functionals of Motion. The final arrangement o~ storage 

af'ter the sequence of calculations is such a.s to al.low immediate re-entry 

into Phase I of the next cycle. Ordinari~, however, before proceeding to 

the next cycle, it is uaeful to compute various functionals of the motion 

such as total kinetic and internal energy for each material, components ot 

total momentum, positions of centers ot mass, entropy, and numerous other 

quantities. In some cases, it is possible to compare changes of these quan-

tities with the cha,nges calculated by summing boundary fluxes. Thus, in the 

·-
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example at band, the tota.l energy ot the system should be rigorously con­

serv'ed. (Actually, ma.chine roundoff will introduce some change .in total 

energy, but the relati v·e change pel(c;ycle should be bounded by a number 

which is predictable f'rom a lawwledge of the number ot significant figures 

retained by the calculation.) I.1.kewise, changes in the momentum components 

should be exactly predictable in terms of the sum of the boundary forces. 

Computed by machine, such checks serve to indicate machine or coding errors 

and have proved extremely valuable on many occasions. 

Ill. BOUNDARY CONDITIONS AND GENERALIZATIONS 

The relatively simple procedure discussed in Part II is easily ex-

tended to more camplicated problems involving a. variety ot other boundary 

conditions or coordinate systems. In addition, extensio.ns can be made to 

problems involving viscosity, heat conduction, or external forces. As a 

basis tor discussing the generalization to more complicated boundal"J' cond1-

tions, we here examine the conservative properties of the equations. No 

discussion is required concerning the conservation of mass; the model of 

the particles insures that mass is rigorously conserved. Conservation of 

momentum is easily d~nstrated as follows: We refer to the finite ditter-

ence momentum equations presented in Part II 

These equations represent the Phase I change in momentum of a cell. Changes 

· which occur in Phase II are automatically conservative of momentum. To show 
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that this is likewise true in Pbase I it is mere~ necessary to sum the equa-

tions given above over aJ.l the cells of the system. In the summation the 

pressures caiicel 1n pairs; . that is, for example,· Pf_! for cell number 1 is 

the same as Pj
1 1 for cell number 1 - 1 and these two pressures cancel from 
+2 

two successive terms in the sUimDation. Thus all that is le:f't are the boun-

dary pressures, showing that changes in momentum of the system arise only 

through forces which appear on the surface. This also shows that the pres-

sure must vanish on the boundary between a cell with material and one which 

is empty. 

Some slight additional manipulation is required to show that the 

energy equation is also conservative. It one adds the change in kinetic 

energy resulting :f'rom the momentum equation to the change in internal energy 

resulting from the energy equation, then it is again found that terms will 

cancel in pairs 1n a sum over the entire system. The result shows that the 

flux of energy· across a boundary _is typica~ given in the form 

Thus, for example, if this boundary is adjacent to an empty cell, vhich we 
1 11.l r ~lo ~.-

here consider .to be~1+1 1 then the properties ot that empty cell for use in 

computing with cell number 1 are determined by the_ requirement that the 

flux vanish. This is reasonably accomplished in the following way. 

~:: · ~ .~: : ';. ~ ; · ... 
,. ~ · . 

. •, 
·, 

P j ,. - PJ 
i+l i 

-UJ "" -UJ 
1+1 1 

Q~ = 0 -i+t 

-18-
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In contrast, if the boundary had been a perfectly rigid wall, then the ficti-

tious cell beyond the wall, number 1+ 1 , must posse~ . s the following properties 

during computation for cell number i, 

p~+1 = p~ 

These conditions have the ettect that the interpolated velocity of the wall is 

zero. Calculation of the boundary value or '4...; uses the appropriately reflected 
m-

quant1ties - see Part"ll. other types of boundaries and rel.Bted modifications 

are described as fol.lows: 

1. Periodic channel. The ~ctangular computatiun region can be con­

sidered to be one section ot an infinite channel With walls parallel to say, 

the x a.xis. It is assumed that all properties ot the entire flow field are 

periodic along the channel, the period being the vidth .of the computation re-

gion. The change in computing procedure h slight. For example, a1ong the 

right-hand boundary the cells are treated just like interior cells Vi th their 

right-hand neighbors being the cells along the lef't-hand boundaryo Particles 

leaving the system across the boundary re-enter from the lef't while those 

which go out the left-hand bOUndary are inserted from the risht. Such a sys-

tem is completely conservative of particles, energy and horizontal momentum. 

2. Prescribed ·1!1p"!t. Along one or several of the boundaries a pre­

scribed input of fluid can be inserted. This could, for example, be used to 

represent the flow conditions behind a shock which has entered across one of 

the boundaries at the beginning of the problemo Consider the example of' input 
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· along the left boundary. . The lef't-hand cells of the computation region can 

be treated as interior cells with their lef't-hand neighbors being considered 

to possess the prescribed conditions of the input flow. Particles are perio­

dically created for insertion across the lef't boundary. There is thus a slight 

additional bookkeeping difficulty with regard to the storage of particle co­

ordinates because the number of particles is not constant. 

· ,3. Continuative output. Whenever the input condition is used, a pro-

vision for output at some other boundary is usu.a.Uy required. If the flow 

out of that boundary is supersonic, then the exact manner by which it is 

treated is:. of little importance. We have always used a continuative boun­

dary . treatment tor wch an out~ut line. Accordingly, the boundary cells are 

treated as interior, being bounded on the outside by cells with identically 

the same properties at any instant as their adjacent interior neighbors. Tbe 

machine-memory locations for .storage of the coordinates of lost particles can 

then be made available for 1ncomill8 particles so that the total required ma­

chine storage is bounded and the calculation can be continued indefinitely. 

4. MOVing Mesh. In all previous discussions the computation region 

has been considered to be at rest and the fluid streams by. Alternately, it 

might be desirable to study some feature of the flow moving vith fluid ·speed 

or some other speed and this could be followed by a traveling region of com­

putation. Suppose, for examp1e, one wished to follow the motion of a ·shock 

wave during its passage down a channel in say, the x direction. This could 

be accomplished as follows. A zone ot several cells would always be present 

ahead of the shock·. Whenever the shock had advanced a cell Width, a nev 

column of cells would be created to their right with conditions representing 
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the 1ni tia.l state ahead of the shock. At the same time a column of cells down-

stream would be destroyed. Conditions ahead ot the shock could ge constant or 

could vary with space. Boundary conditions of the dovnstream boundary could be 

continuative. No calculations ha.ve been performed using such a moving computa-

tion region • 

. 5. Rigid obstacles. A rigid obstacle can be placed within the computa-­

tion region. This is most easily accomplished if the boundaries of the obstacle 

follow cell boundaries. Then the treatment is exactly the same as at the rigid 

walls of the canputation region. Such a calculation was reported in Ret. 4. If 

the obstacle boundary is curved or oblique relative to the cell orientation, 

then the procedure is somewhat more complicated. Numerous partial cells are 

created. The finite difference equations for such cells can be derived fl'am 

the integral form of the equations of motion by a procedure like that used by 

1 I 

Bromberg for deriving the equations under ordinary circumstances. The re-

sults of calculations for flow past a. circular object, for example, were re-

ported in Ref. 5. 

Alternatively, the rigid obstacle can be represented by a material 

Whose density is very great. No modi.1'1cat1on to the computing procedure is re­

quired, provided that for the obstacle material an equation Of state is used 

which does not give too-high pressures. 

6. An extern.ally applied pres~. We have often encountered prob­

.lems in wbich the fluid is driven by an externally applied pressure prescribed 

as a t\lnction of space and time. This can be accomplished by a variation ot 

the empty cell treatment, using flagged empty cells to sigxia.1 the presence of 

an applied pressure. The boundary of eveey fluid cell adjacent to a flagged 

cell is given the appropriate applied pressure, e.nd it is assumed that the 
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velocity of that boundary is that of the :fluid cell. The pressure within 

a cell next to a flagged one is calculated using normal density in the 

equation of state if the cell would otherwise have subnormal. density. In 

all other respects these edge cells are treated as ordinary interior cells. 

This procedure has been used with success 1n a variety of calculations. 

An interpretation of the applied pressure boundary condition can be 

given as follows. The empty applied-presslire cells behave as though they 

were. tilled with a. gas whose density is very small compared to that of the 

adJacent material but whose temperature is very high in such a way that the 

pressure is finite, the prescribed value. As a result, the sound speed is 

very high and the pressure remains homogeneous. 

7. Three-dimensional Cartesian problems. It should be remarked 

that the bound.ar;y conditions and method as discussed here are quite appli­

cable to three-dimensional situations with essentia~ no modification ex­

cept those which are obvious. The di:f'f'iculty with three-dimensioDal. prob­

lems is that the storage space available in present machines is so limited 

as to restrict considerab~ the availabl.e resolution. Nevertheless we have 

attempted some three dimensional calculations and found that no additional 

ditticru.lties existed, excepting ;: · JV that of representation of the re­

su1ts. No simpJ.e print-out of results tor three-dimensional problems has 

;yet been devised in such a way as to give easy visualization. 

8. Th& addition of viscosity, heat conduction or body forces. We 

have found that the effects of viscosity and heat conduction as well as of 

body forces are eas1~ e.dded by a simple generalization of the equations. 

-Z?-
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The di:f'f erencins foll.ova in a veey straightforward manner and while the equa­

tions are rather lengtey, there is no ditticulty in applying them. They are 

written out 1n tu.ll in Ref. 2 and are not repeated here. 

9. CyllllCb:'ical coordinates. Problems with symmetey of motion about 

a f'1xed axis are easily treated by the PIC method with almost no modification 

of the procedure already outlined. The particles are now replaced by circl.es 

about the axis and the cells are toroids of revolution of the rectangles. In 

such problems it has been found convenient to assign dif':f'erent ma.sees to 8-* ~ H l \.. 

particle, the values being proportional to the original radius of the particle 

from the axis so that the particle density is initially proportional to the 

true density. The difference equations for Phase I must be written in per-

fectly conservative f()rm. The particle motion in Phase II is accomplished 

by an a.res.wise weighting to find the effective velocity. 

10. Polar doorclimtes. we have not yet performed any calculations 

in polar coordinates although at the present time some are in preparation. 

It is expected that a variety of modifications will be necessary in order to 

accomplish tne calculations properly. The effects of·centrifu8al a.nd Coriol.is 

accelerations must be properly taken ca.re of and can be accomplished by a 

careful. modification of the Phase II procedure. 

IV. PROPERTIES OF THE CCJ.fi'l1rING METHOD 

Through the ru.ruiing of numerous calculations, many chosen for compari­

sons with known solutions, it has been possible to leaJ"ll some of the proper­

ties of the PIO method. It has also been possible to demonstrate anal.Yticall.y 

the origin of many of them, and thereby to correct for some which were '1Ddes1r­

able. In this section we discuss several of these. 
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1. An eXample o"t application 

Figure 2 shows a typical situation to which the PIC method bas been 

applied. A cylindrical object stri~es a laminated plate, and the problem 

is to find the strength ot the transmitted shock, the amount ot material 

splashed away, the deformation of the projectile, and various other fea­

tures ot the interaction. In (a) the downward-movina projectile is just 

about to hit; in (b) is shown the configuration ~t an intemediate time; 

(c) shows it at a time twice as late as in (b)o The Eulerian cells are 

not shown; the particles only are present in the pictures; the grid ot 

lines is a reference coordinate system. Note how the transmitted shock 

is shown by deflections of the particle lines. Comparisons ot results of 

some similar calculations V1 th actual experiments have shown that for 

problems ot this type, the PIC method results are surprisingly accurate. 

2. The density fluctuations 

The feature of the method which at first seems most peculiar is the 

stepwise representation of density. Typically, the nwnbert>t particles per 
I 

cell averages from four to sixteen. Thus the loss or gain ot a particle 

makes a relatively large jump in cell-wise density and pressure. Success 

or failure of the method was known f'rom the start to depend upon proper 

behavior in some average sense, and only through considerable experiment&-. 

tion was it discovered Just hov well the averaging takes place. 

Actually, the fluctuation averagina i.s not completely automatic; it 

must be assisted in one respect. Consider, for example, a region ot space 

in which the fluid is supposed to be completely uniform at density p
0 

and 

specific internal energy I • (We here neglect fluctuations in the latter.) 
0 

The pressure in that region, as given by the eq,uation of state, shou·l.d then 

be p
0 

• f(p
0

,1
0

). In the PIC-method calculation, however, some of the 
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cells in the region will have density greater than p , vhile others Will 
0 

have less than p • Indeed, there will be some distribution function giv­
o 

ing the probability that a cell has N particles in a region vhere the mean 

number Qf particles per cell is N
0

• It can be seen tbat even tbQugh the 

mean number ot particles per cell is N , corresponding to the proper mean 
. 0 

density, the mean pressure ot such a region will not necessarily be p • 
0 

If, tor ex.ample, ~ > O, then the mean pressure of the region will be grea-

ter than p • This is because each .cell with N > N will have an increase 
0 0 . 

in pressure which is greater than the decrease for the corresponding cell 

for which N < N • If the distribution function for particle numbers is 
0 

known, then a correction can be added to the equation of state to give more 

nearly the true mean pressure. We have :found that such a correction is 

feasible to .lowest order; that 1t 1& usually small; and that ita use im-

proves results where comparisons could be made. 

Thus a knowledge of the particle-number distribution function is use-

1'ul. Experimentally, ve have determined the f'Unction tor regionG either at 

rest or in uniform translation relative to the Eulerian mesh. The distribu-

tion is, ot course, always sharper than the Poisson f\mction for random 
f 

particle placement, .but in a region ot perturbed stagnation the Poisson dis-

tribution is approached as the time interval per cycle is increased. A 

variety of small changes in the method have been tried tor sharpening the 

f'unction. Recently, aome success bas been obtained through a modification 

ot the energy calculation; the modified form has been given in this paper. 

In discussing the pressure-fluctuation example, the dependence ot pres-

sure on internal energy was neglected. Actually, 1n circumstances in which 
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the pressure depends quite weakly on the . internal energy (as in solids when 

the motions are slow compared with sound speed) the PIC method becomes ditti-

cult to apply. Fluctuations are particularly strong, with velocity devi.a­

tions ot the order of sound speed. We have toi.tnd that at least sometimes use-

tul results can be obtained by replacing the true equation o.f state by that 

tor a pol.ytrop1c gas with high specific heat ratio. 

}. The "Art1t'icial viscosity." 

Most finite difference computing methods for compressible flUid dynam-

ice have employe~ "artificial viscosity" of one sort or another, mainly tor 

the purpose ot allowing automatic shock calculation, but also for adding sta­

bility to the difference equations. Forms tor these added terms and discus-

6 
sions ~t their usefulness have been given by von Neumann and Richt~er, 

1 8 . 10 
I.andshott, l.Dngley, Goad, 9 Fromm, and others. The most coDBDOn method is 

to add to the equations terms which resemble those of true viscosity, with 

coefficients adjusted in such a vay as to smear any shocks over the width ot 

several finite-difference .zones. With proper choice of form for the terms 

(in particular they must ·not destroy the conservative properties of the 

method) the shock Jump conditions will still "be satisfied, and maey desir-

able functionals ot the motion will be accurately o'b'tained w1 thout aey addi-

tional special shock treatment. 

The fictitious viscosities may also serve a stabilizing purpose. The 

terms in the difference equations, which refer to values ot quantities sepa-

rated by finite intervals ot space and t1me, can be expanded in Taylor's 
\.. 

series about some particular space-time point. The result will be the origi­

nal differential equations plus i.te:nns which depend upon f>x, 8y and ot. (One 

requirement of any method is that the additional te:nns ~ to zero as the 
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values of 8x, 8y and 8t are made to vanish in an appropriate manner.) These 

extra terms beyond those ot the desired ditterential equations usually in­

volve higher derivatives, and may be positive or .negative. Usually some ot 

them introduce diffusive pr0perties, thus being ef'tectivel.y. like viscosities 

themselves, and if negative they tend to reduce the stability ot the equa• 

tions. The artificial viscosities, which likewise introduce d1f1'usive ef'tects, 

can therefore be constructed so as to tend to counteract the inherent nega­

tive dittusions otherwise present. 

More particularly for the PIC method, such expansions shov that the 

statistical effect of the lowest order terms in 8x and &y ~e such as to 

give for the momentum equation 

Pf+ p(t·v)u+"' - Vp + ~ [<!Plul&x) ~ 

+ ~ lc~pjvjey) iJ 
For the energy equation there is likewise introduced an artificial heat 

conduction. The derivations are straightforward -- details are presented 

in Reference 1. The effective viscosity is thus not isotropic; it does, 

however, usually have a beneficial effect· in the PIC method in that the 

dittusive effect is positive, hence stabiliZill8• Thus, PIC-method calcu­

lations would seem not to require additional artif~cial viscosity terms, 

and indeed many calculations Qe.ve been performed without their inclusion. 

In some cases, however, the effective viscosity has not been deGirable. 

An example is given in Ret. 5, in·wbich it is shown that in calculation 

of a gas moving away from a rigid wall, the adverse ef'fect came through 
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a spurious decrease of pressure in the rarefaction, resulting in cavitation 

where none should have occurred. Another situation in which the effective 

viscosity of the PIC method caused trouble was seen in an attempted calcula-

tion of spherical motion in cyllndrica+ coordinates. The radial component 

ot the viscous ettect yas very stTong near the axis and tended to destroy the 

spherical symmetry. Finally., when lul and lvl are small, these ditfusive 

effects are small and fluctuations in velocity produced by the stepwise pres-

sures are not damped sutticiently rapidly. 

Thus, we have experimented with. a double viscosity procedure, in which to 

the equation-of-state pressure, p, we may add both q
1 

and ~· The purpose ot 

q
1 

is to subtract the eftects ot the automatic viscosity, vhile that ot ~ is 

to add a more satisfactory form, such, tor ex.ample, as that proposed by 
. 6 

von Neumann and Richtmyer. In two dimensions, q
1 

must be ditterent for the 

two directions. (In cylindrical.geometry the motion of q
1 

1s purely symbolic J 

that is, the radial-direction treatment is not simply accomplished by a pres-

sure modification. Tbe equations themselves must be altered to remove the 

effects.) 

There is another approach to removing ·the first order diffusive effects 

of the difference equations in the PIC method. They a.rise from the manner of 

particle movement; :f'or example, when a particle goes trom one cell to another, 

it carries with it an amount of energy given by the product ot its ~ss and 

the specific energy of the cell it let't. Alternately it could carry energy 

derived from the interpolated specific energy analogous to tbe effective 

velocity vith which .it was moved. Thio would remove part ot the lowest order 

effective viscosity, but vould introduce a substitute difficulty in that it 
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· . .. 
then would become possible tor more energy to be removed trom a cell that 

it possessed. Tests ot this procedure did indeed show failure related to 

this explanation. 

Thus, the procedure tor .removing the effective viscosity must be selec­

tive and subJect to automatic appropriate modification. Fortunate~ 1 in . 

most situations it does little harm; where it is undesirable as in the rare­

faction, its removal can be limited to a specific region, or to a specific 

type of motion (i.e., expansive in this case). In most cases ve have simp~ 

le:f't it alone. 

4. Restrictions aDd appllcabili ty 

The PIC method has been applied with considerable success to a variety 

ot problems·. Its strongest advantage is applicability to tlovs with large 

distortions or in which voids may open or close. No special procedures are 

necessary tor such occurrences. Its disadvantages can be listed as toll.ows. 

1.- Lack of rotational and translational invariance - not a serious 

disadvantage in most cases. 

2. Lack of resolution of the fine detail of a large system. 

3. Relative~ great consumption ot computer storage space - both the 

Lagrangian and the Eulerian meshes require storage. 

4. Somewhat greater computing time - since computations must be made 

tor both meshes, the computing time is near~ double that required tor a 

Lagrangian or Eulerian mesh alone. 

5. Inappropriateness tor tar-subsonic flow - this disadvantage, 

shared with other methods of solution tor compressible flow problems, arises 

f'rom the necessity of having sound signals travel less than a cell width in 

one time cycle (the Courant condition). 
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It seems likely that whatever success the PIC method may enJoy is 

closely connected to the fact that mass, momentum and energy are rigor-

ously conserved by the method. It is probably always true that any 

method for numerical treatment of partial ditf'erent1al equations will 

most likely enJoy success if the approximation method preserves the 

physical features upon which the original equations were based. 

The overall results of considerable experimentation have been that 

the PIC method is most accuratel,.y applicable to problems in fluid dyna­

mios in which no peysica.lly interesting part ot the configuration 1s 

very small compared with the whole, in which tbe equation of state is 

not too internal-energy-insensitive, a.nd in vhicb the fluid speeds are 

comparable to the sound speeds, or greater. Several materials are 

easily handled, and large distortions cause no difficulties. The ex-

perimentation has also shown that in ma~ cases in which there are de-

viations b'om ideal circumstances the results can still be quite usef\1.1. 

Often only slight .changes in procedure have changed hopelessly nonsen-

sical results into calcu~tions which make sense. Anyone attempting to 

apply the method should keep that in mind, and not fear to experiment. 
-· - ·· ----------- - ·-· · -······· -- -- -- ·· --- .. 

The development Qf the PIC method has been ma.de possible through 
I . 

the ettorts ot a large number ot people. Eleazer Bromberg, Daniel Butler 
1 

Bart Dl;Uy, Donald Dic.kman, .David Harris, Robert Martin, and many others 

have .all made important contributions, but most especially valuable bas 

been the work ot Martha Evans and Billy Meixner. All work bas been per­

formed. under the auspices. ot the Uniteq States Atomic Energy Commission. 
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Fig. l: 

!Pig. 2: 

.. 

FIGURE CAPl'IONS 

Example of a configuration of particles in a coarse 

mesh of cells. 

Configuration of particles at several times represent­

ing a cylinder o·t . fluid striking a laminated plate. 

This shows a cross. section of the process. 

(a) The moment of impact 

(b) some time later 

(c) Twice as late as in (b) 
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TABLI 1 

•"l 

ui s x-direction component of velocity 

vi • y-direction component of velocity 

M j 111 mass ~t dot material 

Mj • mass of x material 

I j a specific intercal energy of dot material 

1,J a specific internal e~gy' of x materia.l 

p~ • pressure 

~ • the Phase I change in tot.al internal energy 

i j a total energy of dot material 

Bxi a total energy Of x material 

xi • total x-direction momentum 

'. Yt e total y•direction momentum 

(.) •result of Pbaae I calculation for ( ) 

( ) 'a result of Phase II calculation for ( ). 
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TABLE 2 

SIQU&Il:E OF S?ORAGI CHANGES Fe& CELL (~) DUBING PHASI II 

M Mx I Ix l lx - -u v u v 
i • . . 

step , ~ 

" " I Ix II 

" ! ! II 

" . . • 

M' M' E' I' ". II X' Y' .... , .. 
• x • x 

Step 2 > 

step 3 > 
• - 11 

" 
II II " " u' v' " " 

Step 4 > 
II 

,, 
I' I' II " II . " II II 

• x 
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• • 

.. 

·' 

!' .. 
•. 
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