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The Particle-in-Cell method is a procedure to be used on high-speed
computer for studies of the dynamics of compressible fluids undergoing
large distortions. The technique is described in detail for calculation
of the dynamics of two fluids confined to move in a two-dimensional rec-
tangular box, and techniques are discussed for the extension to numerous
other types of problems. Discussion is slso given of many properties,
limitations and uses of the method, which have been learned through the

application to & wide variety of problems.

LEGAL NOTICE i
This ropert was projmred ne an socoumt of Goversment sponsored wark. Nelther the Unitrd
Staten, nor the Commisaion, nar say perens wiieg o bl of the Conminslon:

A. Makns sy snreanty or repressstation, expresied or implied, with reapeet in the weaa-

3l sny information, spperatus, method, er procvis disciosed is this roport may sot infringe
privmialy swned righte; or

B, Asgumens any laldities with roapeet o e wea of, or for demages resaiting from te
ssw of wny information, spperaius, metbhed, of process disciosed in this repert,

An uwed in the above, “perse scting oo buhalf of the Commdasion' inclndes any em-
vloyes of of the or of wuch costracinr, o e it Ut

il ar af Owr or smplayes of evoh conirvoler promres.
s etminaben, ar provides scoess b, any Blermaticn pursewt o bis caploymest or owtract
with the i, o7 i weith cush




DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



]

THE PARTICLE IN-CELL METHOD
FOR NUMERICAL SOLUTION OF PROBLEMS IN FLUID DYNAMICS

% Francis H. Harlow

The University of California, los Alamos Scientific Laboratory
Los Alamos, New Mexico

I. INTRODUCTION

In respdnse to several needs at the Los Alamos Scientific Labora-
tory, the Particle-in-Cell method, abbreviated PIC method, was developed
for the numerical solution of probléms involving the dynamics of compres-
sible fluids. At the time that the need became apparent there already
vere in existence several numerical metﬁods, and in many cases the results
from them had.beeh spectacular, especially for one-dimensional problems.
For calculation in two space dimensions, however, the applicability of -
existing methods was more limited, as explained below.

in most numerical techniques for solving fluid dynamics problems
the fluid is imagined to be subdivided into a number of small zones or
cells. Partial differential equations are then written in finite dif-
ference form as an approximatioﬁ procedure. Tﬁare are two basic view-
points that maf be adopted in the writing of the equatiéns; these are
termed lagrangian and Eulerian., In the Lagrahgzan viewpoinf, the co-
ordinate system is fixed in the fluid. The finite difference analogy
thereto has the zones following the fluid as it moves. Associated
with each corner in the mesh is a certein fixed mass and a velocity

which varies with time. The center of each cell has associated with it
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pressure, density, and energy which likewise vary with time. The Lagrangian

approach has proved particularly useful for treating systems involving several

fluids because each mesh point retains identity with its initial portion of

"the fluid. The internal fluid boundaries are therefore clearly delineated.

A large number of strikingly successful calculations have been performed by

several groups of workers. The lagrangian methods are usually limited, how-

ever, to systems in which no ;arge distortions of the fluid occur. Rather
serious doubt is cast upon the accuracy of representing the true solution
when, for example, a system whose equations are based on an orthogonal mesh
becomes distorted significently away from orthogonality. Problems involving
oblique collision of two free surfaces are likewise difficult to solve by
the lagrangian method. -

In the Eulerian viewpoint, the coordinate system is fixed relative

" to the laboratory and the fluid moves through the mesh of cells. In the

strict application of this approach, each cell of the mesh is characterized

by uniform density, pressure, velocity and material kind. Eulerian methods

‘have the tremendous advantage of applicability to problemslwith arbitrary

distortians or slippages of the fluid. They also, however, suffer from
several disadvantages. One of these is the introduction of a false dif-
fusion, especlally noticeable with material boundaries. This arises from
the fact that each cell is forced to be homogenous. When material enters
a cell, its properties are uniformly mixed with those of all the other ma-
terials_in the cell. Also, in Eulerian methods, it is difficult to resolve
very fine structures which move with the fluid. In this last respect the

lagrangian viewpoint has an advantage. Many fine zones can be constructed
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across the small structure,and as it moves with the fluid the fine zoning

follows along. Finally, an Eulerian calculation is not invariant to uni-
form translation.
Numerous special procedures have been invented to overcome the dif-

ficulties of the lagrangian and the Eulerisn methods. In some cases,:\___ )
features of the methods can be combined and some of the disadvantages thereby
eliminated. The Particle-In-Cell method that we shall discués here is the
result of one particular type of combination. The two features especially
desired during the development of the PIC method were thoéq of allowing
large distortions to occur in the fluid without reducing the calculations
to nonsense, and of being able to calculate the history of each element of
the fluid, particularly when several fluids are present.

The general features of the PIC method can be described as follows:
There are two computing meshes; one is Eulerian, the other Lagrangian. The
domain through which the fluid is to move is divided into a finite number of
computational cells which are fixed relative to the observer. This is the
Eulerian mesh. In addition the fluid itself is represented by particles or
mass points which move through the.Eulerian mesh, representing the motion
of fluid., This is the Lagrangian mesh. Associated with the mesh points of
each system are certain variables whose history the calculation develops.
Thus for each Eulerian cell there is kept the velocity, th; internal energy,
and the total mass of each kind of material, For the Lagrangian mesh of
particles, individual masses and positions are kept.

To perform the calculations it is necessary to arrange the equa-

tions of motion in such a way as to be appropriate to this special represen-

. tstioﬁ of the fluid. A fairly general example of how this is done has been
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_...daries between fluids. The Legranglan disadvantage of breakdtwn during

given in Part II, while in Part III it is shownhow other situations can be.
handled by relatively simple extension. It is likely that the reader will
think of a variety of modifications to the techniques as prasenteﬁ, which
could be tried. Indeed the history of development of the PIC method is filled
with experimentation with alternatives. These are discussed in detail in
;everal Los Alamos Scientific Laboratory reports,1’2 which in turn contain
references to oléar reports, moétly not now available, Discussions of ear-
lier-used alternatives have also been given in several papers,j'k’s_which

in addition demonstrate some applications.

On the basis of this brief description it can already be seen in
what manner the PIC method will share the advanxagés or disadvantages of
the more strictly interpreted Lagrangian and Eulerian methods. Compared
with the lagrangian method, the PIC method shares the ability to follow the

detailed'history of every element of fluid, and to keep separated the boun=- _

large distortions is not shared by the PIC method. As in the Bulerian method,

large distortions are automatically taken care of. On the other hand, the PIC
method shares the disadvantage of the Eulerian method in the inability to re-
solve fine detail moving with the fluid, Also, since the properties of the
fluid are related to a coordinate system which is fixed relative to the obser-
ver, there results a fictitious difference between a fluid which is stagnated
and a fluid which 1s moving. The extent of this difficulty and procedures
which have been used to overcome it ‘are discussed in fart Iv.

Performance of a calculation by the PIC method resembles the perfor-
mance of an experiment. The finite;difference equations in suitable form,

together with the initial and boundary conditions for a specific situation,

I
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are given to an electronic computer which:in turn develops the solution

at a sequence of later times separated by small time increments. There

is no g priori assumption of a model for the flow configurations. The

a
development ofﬁshock, for example, occurs automatically where required.

The result is always an approximate solution, and the purpose of empiri-

cal and theoretical studies of the methodology is directed towards im-

proving the goodness of the approximation. In Part II of this paper,:,

we have shown how the method can be applied to a rather simple type of
situation, that is, to finding the motion of two fluids in a Cartesian
two-dimensional coordinate system, hounded by rigid walls. Par’t III
shows how the method can be used in various other coordinate systems
and for fluids in which viscosity, heat conduction and external forces
are important. Various other boundary cenditions are also discussed.
In Part IV are presented the results of some empirical and theoretical

studies which have shown the advantages and weaknesses of the method.

i\
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II. AN EXAMPLE OF THE METHOD

Most of the features of the PIC method can be demonstrated by show-
ing its application to a relatively simple probleﬁ. Consider the dynamics
of two materials which are confined to move in a two-dimensional rectangular
box whose walls are rigid and allow perfect slippage. The materials are
nonviscous and nonconducting of heat; each has an equation of state which re-
lates pressure, p, to demnsity, p, and specific internal energy, I. The ap-
pearance of the box at some instant of time can be imagined to be as in

Pig. 1.

Fig.

The box is oriented with one cormer at the origin and with the edges along
the x and y axes. It is subdivided into a number of equal rectangular cells
to which the finite-difference equations are to be related. The cells have
dimensions &x and By. O.r
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Each fluid is represented by a number of mass points called

"particles,” each witﬁ a constant mass. As shown in the figure, these
are represented by dots and x's; we shall call the materials "dot ma-
terial"” and "x material,"” £espect1vely. In this example, all dot par-
ticles have the same mass, m', and all the x particles have the same
mass, m . (Por calculations in cylindrical coordinates or for certain
situations in cartesiaﬁ coordinates, it 1s more convenient to have a
different mass for every particle.) For each particle there are stored
in the computing-machine memory its x and y coordinates. These are
changed in time, by the method described below, to give a representa-
tion of the motion of the fluids through the mesh of cells.

Such quantities as velocity, density, and pressure are kept in
the machine memory by cell,so.that, for example, the pressure of a
cell is meant to represent a certain average of the pressure throughout
the volume of fluid contained in the cell. (Further discussion of this
point is given by Bromberg in Appendix II of Ref. 1, where there is an
enlightening dlternative derivation of the PIC-method equations.) The
cells are labeled with index .J), with 1 and J increasing in the x and
y directions, respectively; the lower left cell in the figure is cell
number (I) Thus, for“example, the pressure for cell J is pi, while
the average pressure along the boundary between cells \i} and (1 ‘) is
pi+§' and analogous symbols are used for the o?her boundary pressures,

The nomenclnturelfor various cellwise quantities is shown in

Table 1.
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The Pressures. The two equations of state are given in the form

p= f.(D’I)

o= fx(pil)

vhere £ and fx are appropriate functiong for the dot and x materials, re-
: . %3

spectively. The density in a cell is defined to be the quotient of the

GE=Ime masses in the cell divided by its area. Thus, for a cell containing

only dot material or x material, the pressure equations become

J
M
J_p | el J
Py =T |exdy * L.d
T"J —
M
Jog | X g
Py = I, xBy ’ La

Various procedures are possible for the determination of total pres-
sure in a mixed cell. One of.these is based on the requirement of pressure
continuity across a material interface. Assuming that the fraction of a
cell occupied by dot material is o, one writes the two equations, from which

o is to be eliminated,

M I M

Jag |2l ,1d] -2 x &
Pi . |98xBy ’ .1 x [(T-o0)dxby * “xi

1

If the pressure is strictly proportional to the density for both materials,

then the result is the same as that from adding partial pressures:

J J
M M
J % | J xi J
i) 5xby ’ I. * fx 5xdy ’ Ia
afli
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If the eqpatioﬁs of state are complicated, it may be convenient, as

“well as sufficiently accurate, to still calculate the pressure in a mixed cell

by adding the partial pressures in this manner., In some cases, however, the re-
sult of this is far from reasonable and a different approach has been found
useful on several occasions. A value uo, is assumed for o and the pressure
is taken to be

MY MY

pJ--l- b 4 '1 IJ-I-f xi IJ
- . aosxay B | x (I-OOSBxﬁy |

The choice of
ao ¥ M‘E + Rng

has sometimes ylelded reasonable results, where R 1s the ratio of the initial

density of the dot material to that of the x matefial. In this case, the

value of uo is based on the assumption that the compression of each of the two

materials is in the same ratio as their initial compressions. Various itera-

-

tive procedures are also possible for solving for the mixed-cell pressure;

~ Often it is useful to add an "artificial viscosity" pressure, q, to
the equation of state pressure. Further discussion of this is given in Part 1IV.
We shall use P = p + q for the sum of the two pressures.

Phagse I of a Caleculation Cycle. In the computer memory there are stored

all the results of the previous-cycle calculations or else the initial conditions



for the problem. These are to be advanced in time according to a finite;

difference approximation to the differential equations

The first of these equations, that of mess conservation, is automati-
cally satisfied by the particle model. The momentum equations are treated
as follows: 1In Phase I, the contributions to the time derivatives which
arise from the terms involving pressure are calculated. The particles are
not moved at this step; thus the trensport terms are dropped, ﬁnd the equa-

tions, in finite space-difference form, become

AR - - s [ - 4

S ) RS L

Cell-boundary pressures are averaged from adjacent cells.

Experience has shown that the energy equation can best be treated by
considering the separate effects of p and q, The transport terms are again

dropped, and the differential form is rearranged to

G
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1 - p(g% kS g% + %EF + %%} -u g% -V %3 =0
which becomes, in difference form,
3 -
”i(ﬁ%)i ~ _1:é_5__1_i i

)3+ y3-%

(qu)h% - (qu) 4 . (av)y 72 - (av)§
Bx By

il gy, gl

Cell-boundary velocities are averaged from adjacent cells,

The reason for treating the p ﬁnd q terms in different fashion is
that whereas the equation-of-state pressure, p, is basically a cell-
centered ¢guantity, the viscous pressure, which will be shown to depend
upon velocity differences, is basically a Eell-boundary quantity. In
addition, thelform for the p terms is based upon the desirability of
their conserving entropy in difference form. The q terms in that form,
however, (with cell-centered q values obtained from boundary averages)
contribute to instability of the equations. Only in the form shown are
the q terms really erféctive for their purpose. IFurther discussion of
this matter is given in Part IV.

To compute the tentative new velocities for the end of a computa=
tionai cycle, in terms of those from the beginning of the cycle, we use

the lowest order terms of the expansion

=]11=
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Analogous treatment of the energy equation is made complicated by
two difficulties. The first is that the specific internal energy, Ii, is

not defined for a mixed cell. For this reason we write

J'BI); L] (M)J

"1(85 1 7 Bxdy \ot /i
where Qi is the total internal emergy of the cell. Division into the sep-
arate changes of internal energy for the various materials in the cell is '

thereby deferred to a later step in the calculation cycle. The second dif-

ficulty is that the use of only the first terms of the expansion
ai=qi+bt (?}'l’ e

does not result in rigorous energy conservation unless some careful adjust-
ment is mede in the calculation of 3Q/dt. It 1s assumed that the new veloci-
ties have already been calculated so that, for example, bot.h-u‘1 and.'li'J are

! i
available in memory for the internal energy calculation. Then, with

-12-
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the proper form is

G2 - - lloly - o) - ol - )]

- 8y ()] 14k " (q.u)i %-uf(qi+é qi_%)_

-&,

- e (@0 - (@0 T

He

- T .

The total energy in a cell is _
: 2 2
Ei = Qi + %-Mg[(ui) . (vi) }

With this and the equations of change, it is possible to show that Ei 1

can be expressed as a pair of cell-boundary differences, so that in a summa-
tion of the energy changes over the whole mesh of cells, all internal con-
tributions cancel in pairs, ieaving'only boundary fluxes from the edges of
the-computing region, It is by this procedure that finite-difference forms
of osmon BounSary conditions axe Serived Dh et TTT,

From the result for aqg, the values of I and f J are to be deter-

4
mined. For an unmixed cell with, say, dot material only,

bQJ
¥ J_ I J
o ;’E
If the cell is mixed, then various procedures for distributing inter-
nal energy changes to the several materials may be used.
(1) The materials could be heated as though each had been compressed

or expanded adiabatically through the same pfessure_change.

a3 1w 1



(2) Bach could be given the same change in total internal energy.

(3) Each could be given the same change in specific internal energy.

The first and gecond of these procedures have proved satisfactory in
geveral trials, while the third inhibited the flow of energy across an inter-

face in a test problem.

* Phase II, The Transport of Material. By the end of Phase I, tﬂere'are ;
stored in memory ten quantities for every cell. Table 2 shows these, tolgether
with the quantities which replace them during the sequence of Phase II calcula-
tions,

Step 1. The results of the Phase I calculations are transformed into

total cellwise energies and momenta:

B a7 s Y52 52)]
B anfT, . 1.7 )
X = (u+n) @
¥ om(u eu)?

 Step 2. The particles are moved., The coordinates of each mass point

change according to

[ .
x X + uerfbt

y'_ =y +.veff8t

In some calculations (see, for example , Ref. 5), the values of u, and Ys

"4 q
were simply the values of U and v of the cell containing the particle, no

£

wlla
149 15



matter where in the cell the particle originated its motion for the cycle.
The results can almost aluayé be improved, however, by using the time-
consuming process called "velocity weighting;" indeed, tests have indi-
cated that the increase in accuracy thereby realized could not be achieved
by that increase in mesh fineness which would consume equal extra computer
time,

In the velocity weighting procedure, a rectangle of cell size is
imagined to be located about each particle, the particle being at the cen-
ter. Such a rectangle then overlaps four adjacent cells, and the effective
velocity for moviné_the ﬁarticle is taken as a weighted average of the four
cellwise tilde velocities, the weightings being proportional to the overlap
areas, If the surrounding rectangle lies partly in an empty cell, then
that cell may be assumed td‘have the same velocity as Goes the cell with the
particle., If the surrounding rectangle lies partly outside the walls of
the computation region (these being assumed rigid), then the fictitious out-
side cells may be given elther reflected velocities or the same veiocities
as in the adjacent interior cells. In the former case, it can.be shown that
for properly-small values of 8t, no particle will be lost from the syatém.
The procedure is less désiraﬁle, however, as it can lead to the "boundary
catastrophe" discussed in Ref. 1, page 17. In the latter case, it is nec-
cessary to reflect the particle back in; the particle then carries a change
in momentum as though entering from a cell with reflected velocity, and the
boundary catastrophe is avoided.

When a particle is thus moved, it may be found to remain in the same

cell from which it started. In this case, there is no modification to any



of the cellwise quantities. Some of the part;icles, however, will end up in

new cells; in these cagses, cellwise changes are necessary. From the cell

which was left, the particle mass, momentum, and energy are subtracted and
these are added to the new cell. Thus, through step 2, the cellwise values
-of mass, momentum, and energy cumulate to their final values for the cycle,

Step 3. The final velocities for the cycle are computed

]
'“I'
M +Mx

.

u' =

,H‘_——-—_T
¥ M! +Mx

vhere M' and M;t are the new masses for the cell.
Step 4. The final specific internal energies for the cycle are com-

puted
E! : 3
I' = E:' - %[(u')e + (v')a_

L y
I;: = ﬁ:-'s - %{-(u')e + (V')z
X 2

Phase III, Functionals of Motion. The final arrangement of storage

after the sequence of calculations is such as to allow immediate re-entry
into %se I of the next cycle. Ordinarily, however, before proceeding to
the.next cycle, it 1s useful to compute various functionals of the motion
such as total kinetic and internal energy for each material, components of
total momentum, positions of centers of mass, entropy, and numerous other
quantities. In some ca.ses,‘ it 1s possible to compare changes of these quan-

titiea with the changes calculated by sul:‘ming boundary fluxes. Thus, 1h the

-16- :
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example at hand, the total energy of the system should be rigorously con-
served. (Actually, machine roundoff will introduce some change in total
energy, but the relﬁtiv‘a change pez;éycle should be bounded by a number
which is predictable from a knowledge of the number of significant figures
retained by the calculation.) Likewise, changes in the momentum components |
should be exactly predictable in terms of the sum of the boundary forces.
Computed by machine, such checks serve to indicate machine or coding errors

and have proved extremely valuable on many occasions.

III. BOUNDARY CONDITIONS AND GENERALIZATIONS

The relatively simple procedure di_scusaed- in Part II is easily ex-
tended to more cemplicated problems involving a variety of other boundary
conditions or coordinate systems., In addition, extensions can be made to
problems involving viscosity, heat conduction, or external forces. As a
basis for discussing the generalization to more complicated boundary condi-
tions, we here examine the conservative properties of the equations. No
discussion is required concerning the conservation of mass; the model of
the particles insures that mass is rigorously conserved. Conservation of
momentum is easily demonstrated as follows: We refer to the finite differ-

ence momentum equations presented in Part II
it 3 g T
”1(“1 . “1) oIl mt("i& ) 1-9

. mg(??f . \ri) =2 a:a:n—.(pf“‘5 Ny pi"%>

~7

These equations represent the Phase I change in momentum of a cell, Changes

- which occur in Phase II are automatically conservative of momentum, To show

-17- 143 18



that this 1s likewise true in Phase I it is merely necessary to sum the equa-
tions given above over all the cells of the system. In the summation the
pressures cahcel in pairs;.thaﬁ is, for exnmple,-?i_% for cell number i is
the same as Pi+§ for cell number i - 1 and these two pressures cancel from
two successive terms in the summation. Thus all that is left are the boun-
dary pressures, showing that changes in momentum of the system arise only
through forges vhich appear on the surface. This also shows that the pres-
sure must vanish on the boundary between a cell with material and one which
is empty.

Some slight additional manipulation is required to show that the
energy equation is also conservative. If one adds the chnngé in kinetic
energy resulting from the momentum equation to the change in internal energy
resulting from the energy equation, then 1£ is again found that terms will

cancel in pairs in a sum over the entire system. The result shows that the

flux of energy across a boundary is typically given in the form

3. .y d S, 3=3 213
(Flux)1+% Ek?1+1 uj +pyuy, )+ (qu)1+%
Thus, for example, if this boundary is adjacent to an empty cell, which we
nurnbér
here consider to be i+1, then the properties of that empty cell for use in
computing with cell number i are determined by the requirement that the
flux vanish. This is reasonably accomplished in the following way.

. RN
Py Py

=J

u1+1

=J

g
q1+% 0
o -18-
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In contrast, if the boundary had been a perfectly rigid wall, then the ficti-
tious cell beyond the wall, number i+1, must possess the following properties

during computation for cell number i,

;.9
Piy1 =Py

ey R ..
Uy Yy

uii_%ao

These co;zditiona have the effect that the interpolated velocity of the ua.].‘l. is .
zero., Calculation of the boundary value of q_g *é uses the Iappropriately reflected
quantities — see Partag. Other types of boundaries and related modifications
are described as follows:

1. Periodic channel., The rectangular computatlun region can be con-

sidered to be one section of an infinite channel with walls parallel to say,
the x axis, It is assumed that ell properties of the entire flow field are
periodic along the channel, t1ie period being the width of the computation re-
glon. The cha.nge in computing procedure is slight. For example, along the
right-hand boundary the cells are ;reated Just like interior cells with their
right-hand neighbors being the cells along the left-hand boundary. Particles
leaving the system acréss the boundary re-enter from the left while those
which go out the left-hand boundary are inserted from the right. Such a sys-
tem is completely conservative of particles, energy and horizontﬁ.l momentum,

2. Prescribed -input. Along one or several of the boundaries a pre-

scribed input of fluid can be inserted. This could, for example, be used to
represent the flow conditions behind a shock which has entered across one of

the boundaries at the beginning of the problem. Consider the example of input

| 149 20
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" along the left boundary. The left-hand cells of the computation region can
be treated as interior cells with their left-hand neighbors being considered
to possess the prescribed conditions of the input flow. Particles are perio-
dically created for insertion across the left boundary. There is thus a slight
additional bookkeeping difficulty with regard to the storage of particle co-
ordinates because the number of particles is not constant;

3, Continuative output. Whenever the input condition is used, a pro-

vision for output at some other boundary is usually required. If the flow
out of that boundary is supersonic, then the exact manner by which it is
treated is. of little importance. We have always used a continuative boun-
dary treatment for such an output line., Accordingly, the boundary cells are
treated as interior, being bounded on the outside by cells with identically
the same properties at any instant as their adjacent interior neighbors. The
machine-memory locations forlatorage of the coordinates of lost particles can
tﬁen be made available for incoming particlés so that the total required ma-
chine storage is bounded and the calculation can be continued indefinitely.

| b, Moving Mesh. In all previous discussions the computation region
has been considered to be at ;est and the fluid streams by. Altern#tely, it
might be desirable to study some feature of the flow moving with fluid speed
or some other speed and this could be followed by a traveling region of com-
putation. Suppose, for example, one wished to follow the motion of a shock
wave during its passage down a channel in say, the x direction, -This could
be accomplished as follows. A zone of several cells would always be present
ahead of the shock, Whenever the shock ﬁad advanced a cell width, a new

column of cells would be created to their right with conditions reﬁresenting

149 21



the initial state ahead of the shock. At the same time a column ;t,’ cells down-
stream would be destroyed. Conditions ahead of the shock could be constant or
coul_d vary with space. Boundary conditions of the downstream boundary could be
continuative. No calculations have been performed using such a moving computa-
tion region,

5. Rigid obstacles. A rigid obstacle can be placed within the computa-
tion region, This 1is most easily accomplished if the boundaries of the obstacle
follow cell boundaries. Then the treatment 1s exactly the same as at the rigid
walls of the computation region. Such a calc'u.l.'ation was reported in Ref. 4., If
the obstacle boundary is curved or oblique relative to the cell orientation,
then the procedure is somewhat more complicated. Numerous partial cells are
created. The finite difference equa.tioné for such cells can be derived from
the integral form of the equations of motion by a procedure like that used by
Bromberg1 for deriv:l.x;.g the equations under ordinary circumstances. The re-
sults of calculations for flow past a circular object, for example, were re-
ported in Ref. 5.

Alternatively, the rigid obstacle can be represented by a material
whose density is very great. No modification to the computing procedure is re-
' quired, provided that for the obstacle maténal an equation o6f state 1s used

which does not give too-high pressures.

6. An externally applied pressure. We have often encountered probe-

lems in which the fluid is driven by an externally applied pressure prescribed
as a function of space and time. This can be accomplished by a variation of
the empty cell treatment, using flagged empty cells to signal the presence of
an applied pressure. The boundary of every fluid cell adjacent to a flagged

cell is given the appropriate applied pressure, and it is assumed that the
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velocity of that boundary is that of the fluid cell. The pressure within

a cell next to e flagged one is calculated using normal density in the
equation of state if the cell would otherwise have subnormal density. In
all other respects these edge cells are treated as ordinary interior cells,
This procedure has been used with success in a variety of calculations.

An mtez'pmfation of the applied pressure ba\mdary condition can be
given as follows. The empty applied-pressure cells behave as though they
were, fil;led with a gas whose density is very small compared to that of the
adjacent material but whose temperature is very high in such a way that the
pressure is finite, the prescribed value, As a result, the sound speed 1is
very high and the pressure remains homogeneous.

7. Three-dimensional Cartesian problems. It should be remarked

that the boundary conditions and method as discussed here are quite appli-
cable to three-dimensional situations with essentially no modification ex-
cept those which are obvious. The difficulty with three-dimensional probd-
lems is that the storage space available in present machines is so limited
as to restrict considerably the available resclution. Nevertheless we have
attempted some three dimensional calculations and found that no additional
difficulties existed, excepting pessmyme that of representation of the re-
sults, No simple print-out of results for three-dimensional problems has
yet been devised in such a way as to give eaéy visualization.

8. Thé addition of viscosity, heat conduction or body forces. We

have found that the effects of viscosity and heat conduction as well as of

body forces are easily added by a simple generalization of the equations.



The differencing follows in a very straightforward manner and while the equa-
tions are rather lengthy, there is no difficulty in applying them. They are
written out in full in Ref. 2 and are not repeated here.

9. Cylindrical coordinates. Problems with symmetry of motion about

a fixed axis are easily treated by the PIC method with almost no modification

of the procedure already outlined. The particles are now replaced by circles
about the axis and the cells are tbroids of revolution of the rectangles. In
such problems it has been found convenient to assign different masses to emch ¢uih
particle, the values being proportional to the oi’iglml radius of the particle
from the axis so that the particle density is initially proportional to the

true density. The difference equations for Phase I must be written in per-

fectly conservative form. The particle motion in Phase II is accomplished

by an areawise weighting to find the effective velocity.

10, Polar doordinates., We have not yet performed any calculations

in polar coordinates although at the presenht time some are in preparation.

It is expected that a varief.y of modifications will be necessary in order to
accomplish the calculations properly. The effects of centrifugal and Coriolis
accelerations must be properly taken care of and can be accomplished by a

careful modification of the Phase II procedure.

IV. PROPERTIES OF THE CQMPUTING METHOD

Through the running of numerous calculations, many chosen for compari-
sons with known solutions, it has been pos.si'ble to learn some of the proper-
ties of'the PIC method. It has also been possible to demonstrate analytically
the origin of many of them, and thereby to correct for some which were undesir-

able. In this section we discuss several of these.
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1. An example of application

Figure 2 shows a typical situation to which the PIC method has been
applied. A cylindfical object strikes a laminated plate, and the problem
is to find the strength of the transmitted shock, the amount of material
splashed away, the deformation of the projectile, and various other fea-
tures of the interaction. In (a) the downward-moving projectile is just
about to hit; in (b) is shown the configuration at an intermediate time;
(¢) shows it at a time twice as late as in (b). The Eulerian cells are
not shown; the particles only are present in the pictures; the grid of
lines is a reference coordinate system. Note how the transmitted shock
is shown by deflections of the particle lines. Comparisons of results of
some similar calculations with actual experiments have shown that for
problems of this type, the PIC method results are surprisingly accurate,

2. The demsity fluctuations

The feature of the method which at first seems most peculiaf 1§ the
stepwise representation of demsity. Typically, the numbegbf particles per
cell averages from four to sixteen. Thus the loss or gain of a particle
makes a relatively large Jjump in cell-wise density and pressure. Success
or fallure of the method was known from the st#rt to depend upon proper
behavior in some average sense, and only through considerable experimenta-.
tion was it discovered just how well the averaging takes place.

Actually, the fluctuation averaging is not completely automatic; it
must be assisted in one respect. Consider, for example, a region of space
in which the fluid is supposed to be completely uniform at density Po and
specific internal emergy I . (We here neglect fluctuations in the latter,)

The pressure in that region, es given by the equation of state, should then
be p, = f(p,,1 ). In the PIC-method calculation, however, some of the
o
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cells in the region will have density greater than Po? while others will
have less than Po® Indeed, there will be some distribut%on function giv-
ing the probabiliﬁy that a cell has N particles’in a region where tﬁe mean
munber of particles per cell is No. It c#n be seen that even though the
mean number of particles per cell is N, corresponding to the proper mean
density, the mean pressure of such a region will not necessarily be Po*

If, for example, %E'> 0, then the mean pressure of the region will be grea-
ter than This is because each cell with N > No will have an increase
in pressure which is greater than the decrease for the corresponding cell
for which N < No. If the distribution function for particle mumbers is
known, then a correction can be added to the equation of state to give more
nearly the true mean pressure. We have found that such a correction is
feasible to lowest order; that it 1s usually small; and that its use im-
proves results where comparisons could be made.

Thus a knowledge of the particle-number distribution function is use-
ful. Experimentally, we have determined the function for reglonc either at
rest or in uniform translation relative to the Eulerian mesh. The distribu-
tion is, of ?omrse, always sharper than the Poisson function for random
particle placement,'but in a region of perturbed stagnation the Poisson dis-
tribution is approached as the time interval per cycle is inereased. A
variety of small changes in the method have been tried for sharpening the
function. Recently, some success has been obtained through a modification
of the energy calculation; the modified form has been given in this paper.

' In discussing the pressure-fluctuation example, the dependence of pres-

sure on internal energy was neglected, Actually, in circumstances in which
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the pressure depends quite weakly on the internal enmergy (as in solids when

the motions are slow compared with sound speed) the PIC method becomes diffi-
cult to apply. Fluctuations are particularly strong, with velocity devia-
tions of the order of sound speed. We have found that at least sometime# use-
ful results can be obtained by replacing the true equation of state by that

for a polytropic gas with high specific heat ratio.

3. The "Artificial viscosity."

Most finite difference computing methods for compressible fluid dynam-
ics have employed "artificial viscosity" of one sort or another, mainly for
the purpose of allowing automatic shock calculation, but aléa for adding sta-
bility to the difference equations., Forms for these added terms and discus-
sions of tﬁeir usefulness have been given by von Neumann and Richtmyer,6
Landshoff,T Iongley,e Goad,9 Fromm,lo and others. The most common method is
to add to the equations tefms which resemble those of true viscosity, with
coefficients adjusted in such a way as to smear any shocks over the width of
severﬁl finite-difference. zones., With proper choice of form for the terms
(in particular they must not destroy the conservative properties of the
method) the shock Jjump conditioms will still be satisfied, and many desir-
able functionals of the motion will be accurately obtained without any addi-
tional special shock treatment.

The fictitious viscosities may also serve a stabilizing purpose. The
terms inlthe difference equations, which refer to values of quantities sepa-
rated by fiyite intervals of space and time, can be expanded in Taylor's
series about some particular space-time point. The result will be the origi-
nal differential equations plus terms which depend upon bx, By and 6t. (One

requirement of ahy method 1s that the additional terms go to zero as the
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values of 5x, By and 5t ere made to vanish in an appropriate manner.) These
extra terms beyond those of the deéired differential equations usually in-
volve higher derivatives, and may be positive or negative. Usually some of
them introduce diffusive properties, thus being effectively like viscosities
themselves, and if negative they tend to reduce the stability of the equa-
tions, The artificial viscosities, which likewise introduce diffusive effects,
can therefore be constructed so as to tend to counteract the inherent nega-
tive diffusions otherwise present.

| More particularly for the PIC method, such expansions show that the
statistical effect of tpe lowest order terms in bx and &y are such as to

give for the momentum equation

o &+ @O 75+ 2 | olulon) )

e delvien %éﬂ

For the energy equation there is likewlse introduced an artificial heat
conduction, The derivations are straightforward — details are presented
in Reference 1. The effective viscosity is thus not isotropic; it does,
however, usually have a beneficial effect in the PIC method in that the
diffusive effect is positive, hence stabilizing. Thus, PIC-method calcu-
lations would seem not to require additional artificial viscosity terms,
and indeed many calculations have been performed without their inelusion.
In some cases, however, the effective.viscoﬁity has not been desirable,

: An_exnmple is given in Ref. 5, in'which it is shown that in calculation

of a gas moving away from a rigid wall, the adverse effect came through
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a spurious decrease of pressure in the'rarefaction, resulting in cavitation
: vhere none should have occurred. Another situation in which the ;rfective
viscosity of the PIC method caused trouble was seen in an attempted calcula-
tion of spherical motion in cylindrical coordinates. The radial component

of the viscous effect yas very strong near the axis and tended to destroy the
spherical symmetry. Finally, when |u| and |v| are small, these diffusive
effects are small and fluctuations in velocity produced by the stepwise pres-
sures are not damped sufficiently rapidly.

Thus, we have experimented with a double viscosity procedure, in which to
the equation-of-state pressure, p, we may add both q and 9. The purpose of
q, 1s to subtract the effects of the automatic viscosity, while that of q, 1s
to add a more satisfactory form, such, for example, as that proposed by
von Neumann and Richtmyer.6 In two dimensions, 9 must be different for the
two directions. (In cylindrical geometry the motion of q, is purely symbolic;
that is, the radial-direction treatment is not simply accomplished by a pres-
sure modification., The equations themselves must be altered to remove the
effects.)

There is another approach to removing the first order diffusive effects
of the difference equations in the PIC method. They erise from the manner of
particle movement; for example, when e particle goes from one cell to another,
it carries with it an emount of energy given by the product of its mass and
the specific energy of the cell it left. Alternately it could carry energy
derived from the interpolated sﬁ?&ific energy analogous to the effective
velocity with which it was moved. Thio would remove part of the lowest order

effective viscosity, but would introduce a substitute difficulty in that it
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then would become possible for more energy to be removed from a cell that
1t possessed. Tests of this procedure did indeed show failure related to
this explanation,

Thus, the procedure for removing the effective viscosity must be selec-
tive and aub?ect to automatic appropriate modification. Fortunately, in
most situations it does little harm; where it is undesirable as in the rare-
faction, its removal can be limited to a specific region, or to a specif;c
type of motion (i.e., expansive in this case). In most cases we have simply
left it alone.

k. Restrictions and applicability

The PIC method has been applied with considerable success to a variety
of problems. Its strongest advantage i1s applicability to flowa with large
distortions or in which voids may open or close. No special procedures are
necessary for such occurrences., Its disadvantages can be listed as follows.

1. Ilack of rotational and translational invariance — not a serious
disadvantage in most cases.

2. lack of resolution of the fine detail of a large system.

3. Relatively great co;nsumption of computer storage space — both the
lagrangian and the Eulerian meshes require storage.

4, Somewhat greater computing time — since computations must be made
for both meshes, the computing time is nearly double that required for a
lagrangian or Eulerian mesh alone,

5. Inappropriateness for far-subsonic flow — this disadvaniage,
shared with other methods of solution for compressible flow problems, arises
from the necessity of having sound signals travel less than a cell width in

one time cycle (the Courant conditionm).
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It seems likely that whatever success the PIC method my enjoy 1is
. closely connected to the fact that mass, momentum and energy are rigor-
ously conserved by the method. It is probably always true that any
method for numerical treatment of partial differential equationﬁ will
most likely enjoy success if the approximation method preserves the
physical features upon which the original equations were based.

The overall results of considerable e:qperimenta.tion have been that
the PIC mwethod is most accurately applicable to problems in fluid d;ma.-
mi¢s in which no physically interesting part of the configuration is
very small compa::"ed with the whole, in which the equation of state is
not too internal-energy-insensitive, and in which the fluid speeds are
comparable to the sound speeds, or greater. Several materials are
easily handled, and large distortions cause no difficulties. The ex-
perimentation has also shown that in many cases in which there are de-
viations from ideal circumstances the x_'esults can still be quite useful.
Often only slight changes in procedure have changed hopelessly nonsen-
gical results into calculations which .nnke sense, Anyone a.ttempting to

apply t-he method should kee-p that in mind and not fear to experiment.

‘I‘he dmlopment of the PIC method has been made possible through

tha efforts of & large mmber of people. Eleazer Bromberg, Daniel Butler
F ]

Bart Daly, Donald Dickman, David Herris, Robert Martin, and many others

have all made important contributions » but most especially valuable has ..
been the work of Martha Evans and Billy Meixner. All work has been per-

formed under the ausp:l.cesl of the United States Atomic Energy Commission
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FIGURE CAPTIONS

Fig. 1: Example of a configuration of particles in a coarse

mesh of cells.

Fig. 2: Configuration of particles at several times represent-
ing & cylinder of fluid striking a laminated plate.

This shows a cross section of the process.

(a) The moment of impact
(b) Some time later

(¢) Twice as late as in (b)
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TABLE 1

mmornmmmsrmm(i’)

= x-direction component of velocity

l-"‘h

= y-direction component of velocity
= mass of dot material

.

e = mass of X material

o omnd o
I ) = specific internal energy of dot material
Ix'g = gpecific internal en?rgf of x material

pi & pressure

bqi @ the Phase I change in total internal energy
E J = total energy of dot material

Ex‘!., = total energy of x material

xi = total x-direction mntm.

Ig = total y-direction momentum

(*) = result of Phase I calculation for ( )

( )'= result of Phase II calculation for ( )
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