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Abstract

In this work, the characterization of methylammonium lead iodide (MAPI) layers, which

were fabricated from PbI2 and PbCl2 via a sequential (2step) closed space sublimation

(CSS) route under high vacuum, is presented. The characterization was carried out

by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), UV/VIS ab-

sorption spectroscopy, photoluminescence (PL) spectroscopy and in vacuo photoelectron

spectroscopy (PES). In addition, the 2step CSS MAPI layers were incorporated into pla-

nar solar cells which were subsequently analyzed. For the transformation of the lead

salt layers in the CSS, four substrate temperatures (75 °C, 90 °C, 130 °C, 150 °C) were

chosen. The crucible temperatures and transformation times were adjusted to obtain

most complete transformations. A high phase purity for the 2step CSS MAPI fabricated

from PbI2 and from PbCl2 can be derived from the XRD measurements in the whole

substrate temperature range. The SEM measurements show that the morphology of the

MAPI layers undergoes significant changes which become more pronounced with increas-

ing substrate temperature and can be separated into three distinct processes taking place

simultaneously: the formation of the perovskite by incorporation of MAI into the lead salt

grains, the recrystallization of the perovskite grains and an Ostwald ripening like growth

of the recrystallized grains [1]. From UV/VIS spectroscopy experiments a band gap of

MAPI around 1.58 eV could be derived. The in vacuo PES experiments show the Fermi

level pinned to the conduction band minimum. The UV/VIS and PE spectroscopy results

appear to be independent on the substrate temperature. Combining the UV/VIS and the

PES results, band energy diagrams for PbI2, PbCl2, MAI and MAPI could be created. Those

band energy diagrams highlight the importance of a complete reaction of the lead salt on

one hand and the avoidance of a MAI capping layer on top of the MAPI absorber, on the

other hand. Working solar cells incorporating MAPI layers derived form PbI2 and from

PbCl2 could be fabricated for all examined substrate temperatures. However, the effi-

ciencies of the fabricated solar cells were mostly limited to the range of 2-3 %, with few

solar cells exceeding 4 %. The reason for this is probably the combination of a hindered

charge extraction due to a thin PbI2 interface layer between the MAPI absorber and the

FTO/TiO2 electrode with the recombination of photoexcited charge carriers in the MAPI

layers. Nevertheless, the relatively large size and the narrow efficiency distribution of the

solar cells on one substrate indicate the potential of the 2step CSS process to fabricate so-

lar cells with active areas in the square centimeter regime. Thereby, the unique property

of the CSS, the combination of high processing temperatures and a high vacuum environ-

ment, is expected to open promising opportunities, especially for research on inorganic

perovskite absorber materials.
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Zusammenfassung

Das Thema dieser Arbeit ist die Charakterisierung von Methylammonium Bleiiodid

(MAPI) Dünnschichten, welche mittels sequentieller Closed Space Sublimation (CSS)

aus PbI2 und PbCl2 Schichten unter Hochvakuumbedingungen hergestellt wurden. Die

so hergestellten Schichten wurden mittels Rasterelektronenmikroskopie (REM), Rönt-

genbeugungsexperimenten (XRD), UV/VIS Absorptionsspektroskopie, Photolumineszenz-

spektroskopie (PL) und in vacuo Photoelektronenspektroskopie (PES) untersucht. Zu-

dem wurden Dünnschichtsolarzellen mit den CSS MAPI Schichten als Absorbermaterial

hergestellt. Für die Umwandlung der Bleisalzschichten in der CSS wurden Substrattem-

peraturen von 75 °C, 90 °C, 130 °C und 150 °C gewählt. Die Tiegeltemperatur und die

Umwandlungszeit wurden so angepasst, dass sie eine möglichst vollständige Umwand-

lung der Bleisalzschichten gewährleisten. Die durchgeführten XRD Experimente zeigen,

dass bei allen untersuchten Substrattemperaturen MAPI Schichten mit einer hohen

Phasenreinheit hergestellt werden können. Der Vergleich der REM Bilder zeigt, dass sich

die Morphologie der Schichten im Zuge der Umwandlung vom Bleisalz zum Perowskiten

deutlich verändert und diese Veränderung durch eine höhere Substrattemperatur begün-

stigt wird. Dabei kann die Entwicklung der Morphologie der Perowskitschicht in drei

simultan ablaufende Prozesse unterteilt werden: Die Bildung des Perowskiten durch Ein-

lagerung von MAI in die Bleisalze, eine Rekristallisation der Perowskitkörner und ein

Kornwachstum der rekristallisierten Perowskitkörner in einem einer Ostwaldreifung ähn-

lichen Prozess. Aus UV/VIS Absorptionsexperimenten kann eine Bandlücke im Bereich

von 1.58 eV für MAPI abgeleitet werden. In vacuo PES Experimente zeigen, dass das Fer-

miniveau für alle untersuchten Proben am Leitungsbandminimum liegt. Durch die Kom-

bination der UV/VIS und der PE Spektroskopie Ergebnisse konnten Banddiagramme für

PbI2, PbCl2, MAI und MAPI erstellt werden, welche die Notwendigkeit einer vollständigen

Umwandlung der Bleisalzschicht zum Perowskiten bei gleichzeitiger Vermeidung einer

MAI Schicht auf der MAPI Schicht hervorheben. Aus den von PbI2 und PbCl2 abgeleiteten

MAPI Schichten konnten für alle untersuchten Substrattemperaturen funktionierende So-

larzellen hergestellt werden. Allerdings blieb die Effizienz dieser Solarzellen meistens auf

den Bereich von 2-3 % limitiert. Nur wenige Solarzellen erreichten Effizienzen welche

größer als 4 % waren. Der Grund für die niedrigen Effizienzen ist vermutlich die Kombi-

nation aus einer dünnen PbI2 Schicht, welche die Ladungsträgerextraktion aus dem MAPI

Absorber in die FTO/TiO2 Elektrode behindert, und der Rekombination der photogener-

ierten Ladungsträger in der Perowskitschicht. Nichtsdestotrotz, weisen die relativ große

aktive Fläche der einzelnen Solarzellen und die enge Verteilung der Effizienzen der So-

larzellen auf einem Substrat auf das Potential der sequentiellen CSS hin, Solarzellen mit

aktiven Flächen im Quadratzentimeterbereich herzustellen. Dabei erscheint die einzigar-

tige Eigenschaft des CSS Prozesses, die Kombination aus hohen Prozesstemperaturen und

einer Hochvakuumumgebung, besonders vielversprechende Möglichkeiten für die Her-

stellung von anorganischen Perowskitabsorbern zu eröffnen.
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1 Important abbreviations

AM air mass
ASF atomic sensitivity factor
BE binding energy
CBM/ECBM conduction band maximum
(2step) CSS (sequential) closed space sublimation
CVD chemical vapor deposition
d thickness or distance which is specified by a subscript
DAISY-SOL DArmstadt Integrated SYstem for SOlar cell research
EF Fermi level
Eg band gap
Eph photon energy
ETL electron transport layer
Evac vacuum level
FWHM full width half maximum
FTO fluorine doped tin oxide
FF fill factor
HOMO highest occupied molecular orbital
HTL hole transport layer
I current
IMPP current at maximum power point
Ip ionization potential
Isc short circuit current
ITO indium tin oxide
IV general indication for measures related to current-voltage charac-

teristics
J current density
JMPP current density at maximum power point
Jsc short circuit current density
LUMO lowest unoccupied molecular orbital
MACl methylammonium chloride
MAI methylammonium iodide
MA+ methylammonium ion
MAPI methylammonium lead iodide
MAPIPbI2 methylammonium lead iodide derived from lead iodide
MAPIPbCl2 methylammonium lead iodide derived from lead chloride
MASI methylammonium tin iodide
MPP maximum power point
n/n denotes a contact between two n-type semiconductors
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Pel electrical power
PCE power conversion efficiency
PES photoelectron spectroscopy
PL photoluminescence
p/i/n denotes a contact between a p-type, an intrinsic and an n-type

semiconductor
p/n denotes a contact between a p-type and an n-type semiconductor
PVD physical vapor deposition (used for a deposition process involving

an open sublimation of the precursor material, in contrast to a
CSS process)

Prad radiation power
Rhν photon energy dependent directed reflection
Rp parallel resistance
Rs series resistance
SCR space charge region
SE secondary electron
SEE/ESEE secondary electron edge
SEM scanning electron microscopy
Spiro-MeOTAD 2,2’,7,7’-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9’-

spirobifluorene
ta annealing time
Tc crucible temperature
TCO transparent conductive oxide
Thν photon energy dependent transmission
Ts substrate temperature
tt transformation time
UPS ultraviolet photoelectron spectroscopy
UV/VIS denotes absorption experiments with radiation in the ultraviolet

and the visible regime
VBM/EVBM valence band maximum
VMPP voltage at maximum power point
Voc open circuit voltage
XPS X-ray photoelectron spectroscopy
XRD X-ray diffraction
αhν photon energy dependent absorption coefficient
χ electron affinity
∆ECBM conduction band offset
∆EVBM valence band offset
φ work function
ΦB equilibrium barrier height
η power conversion efficiency of a solar cell
λ wavelength
θ diffraction angle
ψb band bending
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2 Introduction
One of the most severe challenges of today’s society is global warming. Compared to the

pre-industrial level, the current global warming caused by humanity is about 1 °C and

still increasing [2]. Thereby, the effects of a further temperature increase are dependent

on the global region and range from extreme heat, missing rain and drought to down-

pour [2]. In addition, the oceans are likely to warm up and the sea level to rise [2].

All those effects will occur for a global temperature increase of 2 °C and even of 1.5 °C,

compared to the pre-industrial level [2]. However, most of them will be less severe if the

global warming can be limited to 1.5 °C [2]. To achieve this goal, the global CO2 emissions

have to be reduced for 45 % compared to 2010 till 2030 and the net CO2 emission has

to be zero till 2050 [2]. One way to reduce the global CO2 emissions is the substitution

of the energy production based on fossil fuels by renewable energies. In 2017, 36.2 % of

electric energy consumed in Germany were produced by renewable energies, and 18.3 %

of those by solar cells [3]. Concerning, the solar cell technology, on a global scale, wafer

based silicon technologies, monocrystalline or multicrystalline, are dominant compared

to thin film technologies like CdTe or CIGS [4].1 However, with laboratory efficiencies of

up to 22.9 % for CIGS and 21.0 % for CdTe compared to 26.7 % for mono-Si and 22.3 %

for poly-Si, the thin film technologies play in the same league as the wafer based Si tech-

nologies [4]. Even more, when the recent module efficiencies of 17 % for common silicon

solar cells (21 % for Super-mono cells) and 16.6 % for CdTe solar cells are compared [4].

In addition, compared to wafer based Si solar cells, thin film technologies possess sev-

eral advantages. For example, their module price per Watt peak is lower and the energy

payback time is smaller compared to wafer based Si technologies [4]. Thereby, CdTe

solar cells have an energy payback time of about 1.1 years in Germany and 0.6 years in

Sicily [4]. However, with energy payback times of about 3.2 years in northern Europe and

about 1.75 years on Sicily, even monocrystalline silicon solar cells can provide a multiple

of the energy needed for their production [4]. Besides their fast energy payback time and

lower production costs, thin film solar cells possess other advantages like the possibility to

use large area and high throughput production techniques [5]. In addition, the size and

shape of a module is not limited to the the size and shape of a Si wafer. Some years ago,

a new type of solar cell absorber entered the stage: organic-inorganic hybrid perovskites.

Although, research on those hybrid perovskites was carried out already in the late 1990s,

the first solar cells were reported by Kojima et al. in 2009 [6,7]. Organic-inorganic hybrid

perovskite absorbers are materials with the chemical composition ABX3 and a perovskite

1 The therm thin film solar cells refers to the thickness of the solar cell absorber which is typically in the
range of 200 µm for silicon solar cells but only in the range of several hundredth nanometers to few
micrometers for thin film technologies [4,5].
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crystal structure. Thereby, a central A cation is surrounded by eight octahedra including

the B cations and X anions. Since organic molecules are often used on the A position while

the ions in the octahedra are inorganic, the description as organic-inorganic hybrid ma-

terial is derived. One of the first reported perovskite solar cell absorber, and till now the

most investigated one, was methylammonium lead iodide CH3NH3PbI3 [7]. This absorber

material is also subject to this work and will be referred to as MAPI in the following. At

first, the perovskite absorbers were implemented in dye-sensitized solar cells [7]. How-

ever, the stability of those cells was limited due to degradation of the perovskite dye by the

liquid electrolyte [8,9]. With the use of solid electrolytes, the stability of the perovskite so-

lar cells became reasonable and the field of research on perovskite solar cells was launched

and is still emerging rapidly [8, 9]. In the dye sensitized solar cells, the perovskite was

incorporated in a mesoporous metal oxide scaffold (for example Al2O3 or TiO2) [7, 10].

The scaffold is supposed to provide the separation of photoinduced charge carriers and

the charge carrier transport. With emerging development, it became apparent that both,

charge separation and charge transport, are possible in a sufficient manner in the per-

ovskite absorber itself and the scaffold layers became thinner. Nowadays, state of the art

solar cells, still possess the scaffold layers. However, they are rather thin and covered by

a dense perovskite capping layer [11]. Furthermore, high efficient solar cells without any

scaffold layer and even without metal oxide layers are presented in literature [12, 13].

Hence, perovskite solar cells can be considered as thin film technology. With laboratory

efficiencies above 22 % for solar cells incorporating the mesoporous scaffold and still over

20 % for planar configurations, the perovskite solar cells are in the same efficiency range

as the other thin film technologies and even close to wafer based silicon solar cells, after

only 9 years of intensive research [12, 14, 15]. Besides their high PCE, perovskite solar

cells possess several other advantages. Some important ones are described in the fol-

lowing. In the perovskite itself, only abundant, inexpensive elements are incorporated.

However, often at least one organic charge transport layer is used in perovskite solar cells

which can be quite expensive. Hence, the replacement of expensive organic charge trans-

port materials by more cost effective alternatives is topic to current research [16,17]. The

fabrication of perovskite layers does not require high temperatures. Accordingly, a broad

range of suited substrates, including polymer foils, is available [17, 18]. Last but not

least, perovskite absorbers possess a band gap which can easily be varied, for example by

halide or cation substitution, from around 1.6 eV to above 2 eV, making them interesting

for single junction and for tandem solar cells [11, 14, 19–25]. However, in spite of their

advantages, perovskite solar cells possess also some drawbacks. Their stability, to heat,

oxygen and moisture is poor without encapsulation, in the range of tenth to hundredth

of hours compared to ten thousands of hours estimated as the life time of a solar mod-

ule [25]. However, the stability of perovskites could be drastically improved during the

last years and with proper encapsulation operating times of thousands of hours can be

achieved [25]. Besides the stability issues, another problem is the toxicity of lead. Most

of the highly efficient perovskite absorbers include Pb2+ ions on their B site. In spite

12



of intensive research, no lead free perovskite could be found with a photovoltaic perfor-

mance comparable to those of its lead containing counterpart [26, 27]. Still, promising

efficiencies around 9 % are reported in literature for FASnI3 [26, 27]. The proposed lead

replacements, for example tin or germanium, are significantly more sensitive to oxidation

and their processing is difficult [26,27]. Accordingly, an oxygen free fabrication environ-

ment appears to be crucial for research on lead free perovskites for solar cell applications.

One of the most common fabrication techniques for perovskite solar cells, is spin coat-

ing [11, 14, 28]. However, spin coating does not belong to the upscalable fabrication

techniques [28]. Therefore, several upscalable fabrication techniques are currently exam-

ined in literature, for example blade coating, ink jet printing, spray coating, physical and

chemical vapor deposition techniques, to name just a few [28]. However, with increasing

size, the efficiency of perovskite solar modules decreases dramatically to around 12 % for

a 703 cm2 module, highlighting the need for further research in that direction [4,14,28].

Thereby, the vapor deposition methods provide several advantages, for example good

process control, uniform large area films and precise control of the layer thickness and

layer properties [13, 28–38]. Furthermore, multilayer stacks can feasibly be fabricated

since vapor based deposition methods are not restricted to orthogonal solvents and are

applicable to a wide range of substrates [28, 32]. Among the gas phase deposition tech-

niques, the vacuum deposition processes possess the advantage that even oxygen sensitive

materials can be used [1, 39]. As mentioned above, this feature may become important

for the research on lead free perovskites, using oxygen sensitive compounds like SnI2,

or for research on purely inorganic perovskites with moisture sensitive precursors like

CsBr. Furthermore, vacuum deposition processes provide the possibility of in line pro-

duction of all layers needed in a thin film solar cell, ease the fabrication of tandem solar

cells and allow the tuning of the interface properties by the deposition of thin interface

layers [1, 13, 21, 33, 38]. Vacuum fabrication techniques for perovskite absorbers can be

divided into two groups, the co-evaporation and the sequential processes. Sequential

processes decouple the deposition parameters of the metal salt from those of the organic

halide, leading to additional possibilities to tune the properties of the perovskite, like the

band gap [33, 34]. Furthermore, if the sequential depositions are carried out in separate

chambers, cross-contaminations between the evaporated species can be reduced [30]. A

subgroup of the sequential vacuum processes are those, which work in confined reac-

tion spaces with small distances between the predeposited metal halide layer and the

organic halide precursor. Those processes have the advantage of a simplified design and

the reduction of the material consumption during the process and have already shown

promising results [1,34,36,40].

In this work, a sequential closed space sublimation (2step CSS) under high vacuum con-

ditions is used for the fabrication of the MAPI layers. Thereby, lead halide layers are

deposited in a conventional PVD process under high vacuum conditions in a first step and

transformed to MAPI layers by exposure to methylammonium iodide (MAI) vapor in the

second, closed space sublimation, step. The sequential nature of the process allows to fea-
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sibly vary the used lead salts. In addition, since the process is carried out in a high vacuum

environment, it is also suited for water or oxygen sensitive materials. The unique feature

of the CSS transformation step is that the reaction volume is limited to the CSS crucible.

Thus, although the CSS chamber is kept at high vacuum, high methylammonium partial

pressures can be established in the CSS crucible, allowing high substrate temperatures

and an extended fabrication window for the perovskite layers. From a surface scientific

point of view, the feature that the sequential CSS is carried out in a high vacuum envi-

ronment is interesting since it allows to perform photoemission spectroscopy experiments

directly after the the perovskite layer fabrication, without breaking the vacuum condi-

tions. Thus, surface contaminations will be reduced and the electronic structure of the

perovskite layers, at least at the surface, can be decently probed. Knowing this structure,

suited materials for the charge transport layers can be found for the different photoac-

tive perovskites, possibly even alternatives to cost intensive materials which are currently

used. Last but not least, vapor deposition processes in general and also specifically CSS

type processes are already established fabrication routes for other thin film systems like

CdTe and have already proved their upscalability [28, 41]. Besides those general proper-

ties, the CSS might provide some specific advantages for the transformation of lead halide

layers to MAPI. Methylammonium iodide has a low sticking coefficient, especially at el-

evated temperatures, and deposits rather from a background pressure than in a directed

deposition [42]. Accordingly, the small reaction volume of the CSS crucible combined

with the high deposition pressure might be advantageous for the transformation of lead

salts to MAPI, possibly making the process more effective [42].

Based on those promising features of the CSS transformation step, the aim of this work is

to apply and evaluate a closed space sublimation process under high vacuum conditions

for the transformation of lead halide layers to perovskite absorbers. Thereby, the unique

features of the CSS, the high substrate temperatures for a high vacuum environment

process, and their effect on the properties of the resulting perovskite will be the main

subject of this work. To work on this subject, CH3NH3PbI3 (MAPI) was used, which is the

archetype of the perovskite solar cell absorbers and can be considered as a model system

for the organic-inorganic hybrid perovskites [7, 43–45]. The transformation of PbI2 and

PbCl2 to MAPI with a systematic variation of the substrate temperature during the CSS

process form 75 °C to 150 °C was examined. The source materials, lead iodide, lead chlo-

ride and methylammonium iodide, were used as powders. The fabricated MAPI layers

were characterized with scanning electron microscopy (SEM), X-ray diffraction (XRD),

UV/VIS spectroscopy, photoluminescence spectroscopy and in vacuo photoelectron spec-

troscopy. Furthermore, IV measurements on solar cells in a planar configuration were

carried out.

In the following chapters, the basic informations relevant for this work will be discussed

first, followed by a description of the experimental procedures. Thereafter, the properties

of MAPI derived from PbI2 with the 2step CSS will be presented in dependence on the

substrate temperature during the CSS step and compared to those of MAPI derived from
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PbCl2. Based on the analytical results, the photoactivity of the fabricated MAPI layers and

the performance of the fabricated solar cells will be discussed. Finally the obtained in-

sights will be summarized and commented in form of a conclusion, leading to an outlook

on the future perspectives for the use of a 2step CSS process as fabrication technique for

perovskite solar cells.
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3 Basic informations
The following chapter provides the theoretical background for this work. Summaries of

the information considered most important are given.

3.1 Semiconductors

This section is based on the book “Festkörperphysik” by S. Hunklinger which is recom-

mended for further reading [46].

Numerous important electrical and optical properties of a solid, like the conductivity or

the radiation absorption are determined by the band structure of the solid. In inorganic

solids, a band is the broadening of an atomic state (atomic orbital) due to interatomic

interactions (overlapping of atomic orbitals). Hence, for a solid consisting of N atoms,

every atomic state which contributes to the interatomic interactions will form a band con-

sisting of N energy states. Taking an s orbital as example: Under consideration of the

Pauli principle, which says that every energy state can only be occupied by two electrons

(spin up and down), an s band can be occupied by 2N electrons. In dependence on the

amount of electrons occupying a band, it is possible to differentiate between metals on

one hand and semiconductors and insulators on the other. Charge transport is only pos-

sible in partially filled bands. Neither completely full nor completely empty bands can

contribute to the charge transport. Metals provide partially filled bands and accordingly

show a good conductivity. Intrinsic semiconductors and insulators have only completely

filled and completely empty bands. Hence, no charge transport is possible at 0 K. The

highest occupied band is called the valence band, its band edge the valence band max-

imum VBM. The lowest unoccupied band is called the conduction band, its band edge

the conduction band minimum CBM. However, in dependence on the energetic difference

between the VBM and the CBM (the band gap Eg), at temperatures above 0 K, charge

carriers will be thermally excited from the valence band to the conduction band. Hence,

both bands are partially filled and charge transport is possible. If an electron is excited

from the valence band to the conduction band, its vacancy can be described as positively

charged particle, as hole. The dependence of the amount of thermally excited charge car-

riers on the band gap can be used as a differentiation between a semiconductor and an

insulator. Materials showing a not too large band gap are considered as semiconductors,

materials with a large band gap as insulators. Figure 3.1 illustrates the differentiation

between a metal, a semiconductor and an insulator.
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Figure 3.1.: Schematic depiction of the band edge region of a metal, a semiconductor and
an insulator.

As mentioned above, a band consists of N energy states, available for electrons, but not

all of them are occupied. The superposition of all available states provided by the differ-

ent energy bands, independent on whether they are occupied or not is described by the

density of states (DOS). The probability that an energetic state is occupied is given by the

Fermi-Dirac distribution in equation 3.1.

f (E) =
1

e
E−µ
kBT + 1

(3.1)

In equation 3.1, f(E) is the probability that a state at the energy E is occupied, kB is Boltz-

mann´s constant and µ is the chemical potential of the electrons. At 0 K, f(E) is 1 for

E<µ, 1/2 for E=µ and 0 for E>µ. In addition, at 0 K, µ matches EF. EF is the Fermi

energy which is the energy below which all energy states are occupied at 0 K. At tempera-

tures higher the 0 K, EF is only approximately equal to µ. Nevertheless, EF will serve as a

measure for the chemical potential of the electrons and holes. Since electrons and holes

are charged particles, they are influenced by electric fields. To account for that, the Fermi

level will be used as measure for the electrochemical potential of the electrons and holes.

As mentioned above, at temperatures >0 K electrons will be excited from the valence

band to the conduction band and the Fermi-Dirac distribution will not be a step function

anymore, reflecting that the probability that an energy state above EF (µ) is occupied

and that energy states below EF are unoccupied is >0. The Fermi-Dirac distribution is

schematically shown in figure 3.2 b.
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Figure 3.2.: Schematic depiction of the electron affinity χ , the work function φ, the ion-
ization potential Ip, the band gap Eg and the Fermi level EF of a semiconductor (a). Fermi-
Dirac distribution for T=0 K and T>0 K (b).

Besides the Fermi level and the band gap, other measures are commonly used for the

description of a semiconductor. The vacuum level Evac is the energy level at which an

electron is considered free from the influence of the solid it originates from. Accordingly,

the electron affinity χ is the energy which is released if a free electron occupies the lowest

unoccupied state (the conduction band minimum at 0 K), the ionization potential Ip is the

energy needed to release an electron from the highest occupied state of the solid (the

valence band maximum at 0 K) and the work function is the energetic difference between

the Fermi level and the vacuum level and thus the minimum energy necessary to release

an electron from a solid. The electron affinity, the work function and the ionization po-

tential are illustrated in figure 3.2 a.

Bands are described by the dispersion relation of the energy E in dependence on the wave

vector ~k [47]. This description allows to categorize semiconductors in direct and indirect

semiconductors. Direct semiconductors are those with the valence band maximum and

the conduction band minimum at the same wave vector ~k. Here, electrons can be ex-

cited directly from the valence band maximum to the conduction band minimum by the

absorption of a photon. Indirect semiconductors have the VBM and the CBM at different

wave vectors ~k and need phonons and a photon for the excitation of an electron from the

VBM to the CBM.
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3.2 Solar cells

A thin film solar cell usually consists of at least five different layers, two electrodes, two

charge transport layers and the absorber layer. These five layers form Schottky contacts

between the (metal) electrodes and the semiconducting charge transport layers and semi-

conductor hetero contacts between the absorber and the charge transport layers (see

figure 3.3).

Figure 3.3.: Schematic illustration of a thin film solar cell consisting of a transparent front
contact an electron transport layer, an absorber, a hole transport layer and a metallic back
contact.

The radiation absorption and photoexcitation of charge carriers in the thin film solar cell

shown in figure 3.3 takes place in the absorber layer. Accordingly, the absorber layer

needs a high radiation absorption coefficient corresponding to the solar spectrum and a

band gap which considers the trade off between the number of photoexcited charge car-

riers and their energy. This trade off is described by Schockley and Queisser and will be

discussed below [48]. Besides the absorption coefficient and the band gap, the charge

transport properties of the absorber layer are important. The mean free path and the life

time of photoexcited electrons and holes need to be sufficiently large to let them reach

the charge transport layers. Accordingly, the thickness of the absorber layer is determined

by the trade off between being thick enough for a sufficient radiation absorption and thin

enough to let the photoexcited charge carriers reach the HTL and the ETL, respectively.

The hole (electron) transport layers shown in figure 3.3 have two requirements, they need

to be hole (electron) conducting but they need also to form an electron (hole) blocking

contact with the absorber. From the charge transport layers, the separated charges are

transferred to the contact layers. Since the solar cell is illuminated through the front con-

tact, the front contact needs to be transparent but also conductive. Those requirements

are fulfilled by transparent conductive oxides (TCOs) like fluorine doped tin oxide (FTO)

which is used in this work. The back contact does not need to be transparent. Hence, thin

metal layers can be used.
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The IV characteristics of a thin film solar cell are dominated by the contact properties be-

tween the different solar cell layers. Accordingly, the different contacts will be discussed

briefly in the following and an equivalent circuit, used to describe the solar cells presented

in this work, will be derived. This following section is based on the book Physics of Semi-

conductor Devices by S. M. Sze and Kwok K. Ng [47].

3.2.1 The p/n-contact

The p/n-contact is important for the minority charge carrier separation in a solar cell.

A p/n-contact can be formed between the same semiconductor with different doping or

different semiconductors. If the same semiconductor is used, the contact is called a homo

junction, if different semiconductors are used, it is called a hetero junction. Since the

homo junction is the simpler system, its IV characteristics will be discussed first and later

developed to a hetero junction. The charge distribution, electric field, potential and band

bending of a homo junction are presented in figure 3.4. Here, the case of an abrupt

junction is used. In figure 3.4, ρ is the charge density, F the electric field and ψ the

potential. NA and ND describe the donor and acceptor densities. WDn is the depletion re-

gion in the n-type semiconductor. All electrons from this region, induced by the n-doping,

have recombined with the holes (induced by the p-doping) from the depletion region in

the p-type semiconductor, WDp. Without electrons in the n-type and holes in the p-type

semiconductor, only the ionized donor and acceptor atoms remain as charges in the deple-

tion regions. The ionized donors are positively charged, the ionized acceptors negatively.

Since only the space charges remain in the depletion regions, both regions together can

be called the space charge region (SCR). The relation between charge, electric field and

potential is given by the Poisson equation in (equation 3.2). To solve the Poisson equa-

tion, the following assumptions are made: (1) Both semiconductors are non-degenerate.

(2) The depletion approximation is valid. All acceptors in the p-type semiconductor and

all donors in the n-type semiconductor are ionized. (3) The semiconductor junction is in

thermal equilibrium, no net current flows, the electric field outside the depletion region is

zero and the positive and negative charges in the depletion region compensate each other.

With those assumptions the Poisson equation can be solved resulting in the distributions

shown in figure 3.4. Here, the electric field F describes the slope of the potential ψ and

the charge density ρ the slope of the electric field. In addition, in equation 3.2, εs is the

permittivity of the semiconductor. Accordingly, a constant charge distribution leads to a

linear electric field and a quadratic potential distribution. From the potential distribution,

the band energy diagram can be derived. Figure 3.4 shows that a depleted n-type semi-

conductor will show an upward band bending, while a depleted p-type semiconductor

will show an downward band bending. The total band bending (the sum of the potentials

in the n-type and p-type semiconductor) is called the built in potential ψbi.
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Figure 3.4.: Schematic depiction of the charge density (a), the electric field (b), the poten-
tial distribution (c) and the band energy diagram (d) of an abrupt p/n-homo junction. Ei
denotes the intrinsic Fermi level of the semiconductor. [drawn after [47]]

−
d2ψbi

dx2
=

dF
dx
=
ρ(x)
εs

(3.2)

Across the p/n-junction, formally a diffusion current and a drift current flowing in op-

posite directions can be defined. Electrons will diffuse from the n-type to the p-type

semiconductor. But, they will drift to the positive charged donor ions on the n-side. For

the holes it is vice versa. Since an electric field is only present in the space charge region

(see figure 3.4) the drift current is also confined to the space charge region. In addition,

the drift current is limited by the amount of minority charge carriers in the space charge

region. The diffusion current is driven by the concentration gradient of the charge carriers

but is hindered by the potential barrier caused by the band bending. If no external poten-

tial is applied, both currents are equal and no net current exists (thermal equilibrium). If

a potential is applied, it can reduce or enhance the potential barrier between the n-type

and the p-type semiconductor and accordingly enhance or reduce the diffusion current

through the space charge region. Accordingly, a diode can be operated in forward and

reverse bias. In forward bias, the p side is on a positive potential compared to the n side,

in reverse bias, the n side is on a positive potential compared to the p-side (see top row

in figure 3.5).
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Figure 3.5.: Schematic depiction of the band energy diagram and the charge carrier den-
sities for a p/n-homo junction under forward (left) and reverse bias (right). [drawn af-
ter [47]]

Under forward bias, the electron diffusion current in the space charge region from the

n-side to the p-side and the hole diffusion current from the p-side to the n-side are en-

hanced. Since the generation of minority charge carriers in the space charge region is

independent on the applied voltage, the drift current is, in a first approximation, unaf-

fected by an applied voltage. This imbalance of the currents in the space charge region

leads to minority charge carrier concentrations at the edges of the space charge region

(pn and np) which are higher than the equilibrium minority charge carrier concentrations

np0 and pn0 (middle row in figure 3.5). This increased minority charge carrier concen-

trations cause a minority charge carrier current away from the space charge region till

the minority charge carriers have recombined with the majority charge carriers (or are

extracted from the diode) and pn and np equal pn0 and np0. In reverse bias, the diffu-

sion currents are reduced and the space charge region (and the region close to its edges)

is depleted of minority charge carriers. Under both bias conditions the minority charge

carrier concentrations differ from their equilibrium values and can not be described with

one Fermi level anymore. The use of quasi Fermi levels for the description of the dis-

equilibrium concentrations of holes and electrons EFp and EFn solves the problem. The

overall current through the diode is the sum of the electron current and the hole cur-

rent. The electron current however is dominated by the electron current in the p-type

semiconductor, the hole current by the hole current in the n-type semiconductor (bottom
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row in figure 3.5). Accordingly, the total current through a p/n-junction is dominated by

the minority charge carrier currents. The total current density is given by the Schockley

equation in equation 3.3.

J = Jp + Jn = J0

�

e
qV

kBT − 1
�

(3.3)

In equation 3.3, J0 is the saturation current density, q the charge, kB is Boltzmann´s con-

stant and V the applied voltage. The Schockley equation describes an ideal p/n-diode.

The respective IV curves can be seen in figure 3.6 in linear and semilogarithmic scale.

Figure 3.6.: Schematic IV characteristic of an ideal p/n-diode in linear (a) and semilogarith-
mic scale (b)

In a real diode, several effects can alter the shape of the IV curves as indicated in fig-

ure 3.7. Effects that can alter the shape of the IV curve are for example generation and

recombination of charge carriers in the space charge region, pronounced charge carrier

injection and the influence of series resistances. In addition, if a sufficiently high reverse

bias is applied, the diode will break down [47]. For the reverse bias, two effects are

shown in figure 3.7, the influence of finite parallel resistance Rp and the diode break

down. The finite Rp describes a leakage current through the diode, which superimposes

the diode current with its ohmic IV characteristics visible as a steady current increase with

increasing reverse bias. The diode break down, however, can be caused for example by

thermal instability of the diode, tunneling or avalanche multiplication [47]. As described

above, the current of the ideal p/n-diode is the diffusion current. Hence, the diffusion

regime in figure 3.7 could also be named the ideal regime. At small positive voltages,

the diffusion current is superimposed by a recombination current of holes and electrons

in the space charge region. This recombination current in the space charge region is a

competing current to the diffusion current outside of the space charge region. Since it is

also dependent on the minority charge carrier concentrations in the space charge region,

it also shows an IV behavior of the type of equation 3.7, but with an additional factor of

1/2 in the exponential exponent. This factor 1/2 can be seen in the reduced steepness

of the forward curve in figure 3.7 in the recombination region. If a resistance is in series

with the diode, the current through the resistance and the current through the diode have
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to be equal. Thus, for high positive voltages, the current through the resistance will limit

the total current and flatten the IV characteristics in figure 3.7. The last effect shown in

figure 3.7 is the high injection of minority charge carriers in such a way, that the minority

charge carrier density is comparable to the majority charge carrier density. In this case,

not only the diffusion current, but also the drift current have to be considered [47].

Figure 3.7.: Schematic IV characteristic of a real p/n-diode in semilogarithmic scale. Effects
taken into account are a leakage current due to finite Rp and the diode break down for
the reverse scan. For the forward scan, recombination of electrons and holes in the space
charge region, the pronounced injection of minority charge carriers and the influence of
a resistance in series to the diode are considered. The picture is drawn after [47].

In silicon solar cells, the photogenerated charges are separated over a p/n-homo junction.

But for the thin film solar cells examined in this work, both semiconductor/semiconductor

contacts (TiO2/MAPI and MAPI/Spiro-MeOTAD) are hetero junctions. Thereby, the hetero

junctions are separated into two groups, isotype junctions and anisotype junctions. Iso-

type junctions describe a hetero junction between two n- or two p-type semiconductors.

Anisotype hetero junctions describe the contact between a p-type and an n-type semi-

conductor. Accordingly, the TiO2/MAPI interface is an isotype hetero junction, as will

be shown later experimentally, while the MAPI/Spiro-MeOTAD interface is an anisotype

hetero junction [49]. A schematic anisotype hetero junction between an n-type semicon-

ductor with a smaller band gap and a p-type semiconductor with a wider band gap (for

example the MAPI/doped Spiro-MeOTAD) is shown in figure 3.8. In figure 3.8, Evac de-

notes the vacuum level, χ the electron affinity, φ the work function and Ip the ionization

potential of the semiconductors. EVBM is the valence band maximum, ECBM the conduc-

tion band minimum, Eg the band gap and EF the Fermi level. The conduction band offset

∆ECBM is the difference of the electron affinities and the valence band offset ∆EVBM the

differences of the ionization potentials. ∆ECBM and ∆EVBM are independent on the dop-

ing as long as Eg and χ are independent on the doping. The band bendings ψb however

are caused by the alignment of the Fermi levels and hence are dependent on the doping

levels of the semiconductors. More specifically: the fraction of the band bending in a
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semiconductor from the complete band bending at the junction (φ2 −φ1) and the width

of the depletion region in the semiconductor are reversely proportional to the doping con-

centration in the semiconductor. The current density over the contact can be described by

equation 3.4.

Figure 3.8.: Schematic drawing of an anisotype p/n-junction before (a) and after (b) the
thermal equilibrium is established. [drawn after [47]]

J = Jn + Jp =

�

qDn2n2
i2

Ln2NA2
+

qDp1n2
i1

Lp1ND1

�

·
h

e
qV
kT − 1

i

(3.4)

In equation 3.4, q is the charge, D is the diffusion coefficient, ni is the equilibrium charge

carrier concentration, L is the diffusion length, NA is the acceptor concentration in the p-

type semiconductor and ND is the donor concentration in the n-type semiconductor. The

subscript 1 denotes the n-type semiconductor, 2 the p-type semiconductor. The subscripts

n and p denote values for electrons and holes, respectively. Since Jn and Jp in equation 3.4

are dominated by the minority charge carrier diffusion, equation 3.4 has the same form as

equation 3.3. Only the J0 is different, taking into account the different semiconductors. If

the same semiconductor was used on both sides of the diode, equation 3.4 would reduce

to equation 3.3.

In contrast to the MAPI/Spiro-MeOTAD anisotype junction, the TiO2/MAPI junction is an

isotype junction. A schematic band energy diagram for the isotype junction is shown in

figure 3.9. The current over the contact can again be described in the form of equation

3.3. But, the J0 differs significantly from the J0 of the p/n-junction. This is because the

current through the junction is dominated by the thermionic emission of majority charge

carriers and not by the diffusion of minority charge carriers.
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Figure 3.9.: Schematic drawing of an isotype n/n-junction before (a) and after (b) the
thermal equilibrium is established. [drawn after [47]]

3.2.2 The Schottky contact

In addition to the semiconductor junctions, each solar cell contains metal/semiconductor

junctions, so called Schottky junctions. In the solar cell layer stack used for this work, the

FTO/TiO2 junction is a junction between a degenerate semiconductor to be approximated

by metal and an n-type semiconductor, the Spiro-MeOTAD/Au junction is a junction be-

tween a p-type semiconductor and a metal. If a potential is applied on a Schottky contact,

the barrier height for the current from the metal to the semiconductor will not be altered.

Only the barrier height and hence the current over the barrier from the semiconductor to

the metal will be reduced in forward bias and enlarged in reverse bias, leading to a net

current from the semiconductor to the metal under forward bias and from the metal to

the semiconductor under reverse bias. The current through the Schottky junction is, in

contrast to the p/n-junction, a majority charge carrier current and can often be described

by the thermionic emission after Bethe. The respective dependence of the current density

on the voltage for a contact between a metal and an n-type semiconductor is given in

equation 3.5.

Jn =
h

A∗T 2e−
qΦBn

kT

ih

e
qV
kT − 1

i

(3.5)

In equation 3.5, A∗ is the effective Richardson constant and ΦBn the equilibrium barrier

height for electrons. The positive current direction goes from the semiconductor to the

metal. Among other boundary conditions for the description with the thermionic emis-

sion, an important one is that the charge carrier supply to the barrier in the semiconductor

is sufficient to make the thermionic emission over the barrier the limiting process for the

charge transport. This condition is given either by high charge carrier mobilities in the

semiconductor or by sufficiently thin semiconducting layers. The hole mobility in Spiro-

27



MeOTAD is, even if doped, in the range of ≈ 2 · 10−3cm2V−1s−1 [50]. With this value,

the current voltage characteristics of the Spiro-MeOTAD/Au contact can probably not be

described with the thermionic emission model alone. The charge carrier supply through

the depletion region can be taken into account by the diffusion theory by Schottky [47].

The thermionic emission diffusion theory by Crowell and Sze combines the thermionic

emission theory and the diffusion theory and results in equation 3.6.

J = A∗∗T 2e−
qΦBn

kT

h

e
qV
kT − 1

i

(3.6)

In equation 3.6, ΦBn is the equilibrium barrier height for electrons. The reduced effective

Richardson constant A∗∗ contains the information whether the emission over the barrier

is limited by the thermionic emission or by the diffusion processes. But, since no material

properties are derived from the saturation currents of the Schottky diodes in this work,

they are described by the generalized expression shown in equation 3.7.

J = J0

h

e
qV
kT − 1

i

(3.7)

In several semiconducting devices like solar cells, contacts between a metal and a semi-

conductor are unavoidable but their diode IV characteristics are not desired. The contacts

are desired to be ohmic. To reach this, two ways are possible. The first one is to keep

the barrier height is small as possible to ease thermionic emission over the barrier. The

second approach is to keep the barrier width as small as possible, for example due to

higher doping in the semiconductor or the implementation of highly doped interlayers, to

allow tunneling through the barrier or thermionic emission activated tunneling through

the barrier.
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3.2.3 The equivalent circuit in the dark

With the IV characteristics of the three different types of diodes present in the exam-

ined solar cells, an equivalent circuit for the solar cell can be derived. This is done in

figure 3.10.

Figure 3.10.: Schematic layer stack of the solar solar cells used in this work (a) and equiva-
lent circuits for a solar cell in the dark (b) and (c). In (c) the simplified equivalent circuit is
shown, possessing only a substitutional p/n-diode. SD denotes a Schottky diode.

Since the influences of the different diodes can not be separated for the IV measurements

performed in this work and all present diode types can be described by an equation in the

form of equation 3.3, a reduced equivalent circuit, with only one substitutional p/n-diode

will be used (figure 3.10 c). However, the presence of the other three junctions will con-

tribute to J0 and should always be kept in mind when evaluating the IV characteristics of

a solar cell. The series resistance Rs includes every resistance in series with the solar cell,

for example the resistance of the complete IV measurement setup and the resistances of

the gold, Spiro-MeOTAD, TiO2 and FTO layers. Due to imperfections of the layers, e.g. pin

holes or strong variations of the layer thickness, a fraction of the current running through

the solar cell will bypass the diode. This current is described by Rp. In addition, Rp ac-

counts for the loss of charge carriers due to certain recombination processes. In total, for

a good solar cell performance, a large Rp and a small Rs are desirable.

3.2.4 IV characteristics under light

For all of the descriptions above, the solar cell was in the dark. In the following section, the

effect of illumination on the solar cell will be described and the dark equivalent circuit

developed in figure 3.10 will be extended to the dark/light equivalent circuit in figure

3.11. Please note that for the description of the equivalent circuits not the current density

but the absolute current is used, for convenience.
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Figure 3.11.: Equivalent circuits for a solar cell in the dark (a) and operated under illumi-
nation (b). The photogenerated current is described by a ideal current source.

Figure 3.11 a shows the equivalent circuit in the dark, figure 3.11 b under illumination.

The difference between both circuits is the photocurrent, symbolized by an ideal current

source in figure 3.11 b. The direction of the photocurrent is opposite to the forward

current of the diode. Hence, the photogenerated electrons will move towards the n-type

semiconductor side and the photogenerated holes towards the p-type semiconductor side.

The IV characteristics of the illuminated solar cell are shown in equation 3.8.

Itot = Is = Icell =
Vs

Rs
=

Vp

Rp
+ Ip/n − Iph (3.8)

In equation 3.8, Is is the current through the series resistance and Icell the current through

the solar cell. Both currents have to be equal due to the serial arrangement. Hence, the

smaller current will dominate the IV characteristics of the total current Itot. The other

measures in equation 3.8 are the series resistance Rs, the voltage dropping over Rs, Vs

the resistance parallel to the solar cell Rp, the voltage dropping over Rp, Vp, the current

through the substitutional p/n-diode Ip/n and the photogenerated current Iph. Under the

condition that the series resistance Rs is sufficiently small to make Is sufficiently large, Itot

will be dominated by Icell and can be written as equation 3.9.

Itot = I0

�

e
q

kT ·(Vtot−Rs ·Itot) − 1
�

− Iph +
Vtot − Rs · Itot

Rp
(3.9)

30



Due to the parallel arrangement Vp has to be equal to Vsc and due to the serial arrange-

ment of Rs it can be derived that Vsc = Vp = Vtot − Rs · Itot. In the IV characteristics of a

solar cell, two points are special, the open circuit voltage, where Itot=0 A and the short

circuit current where Vtot=0 V. Figure 3.12 shows the equivalent circuit of a solar cell in

open circuit and short circuit conditions.

Figure 3.12.: Equivalent circuits for a solar cell operated under short circuit (left) and open
circuit (right) conditions. Those elements of the equivalent circuit which are excluded
by the respective condition are drawn in gray. Note that the total current will change
direction in short circuit conditions, due to the dominance of the photocurrent.

Under open circuit conditions, no total current flows through the circuit. Hence the term

Rs · Itot vanishes and equation 3.9 can be simplified to equation 3.10. Equation 3.10 shows

that, under open circuit conditions, the IV characteristics are not directly dependent on

Rs. Under open circuit conditions, Vtot is called open circuit voltage (Voc). The Voc de-

velops due to the accumulation of photogenerated charges at the contacts of a solar cell

and can be considered as the energetically splitting of the quasi Fermi levels, as a first

approximation.

0= I0

�

e
q

kT ·Vtot − 1
�

− Iph +
Vtot

Rp
(3.10)

In case that the solar cell is operated under short circuit conditions, Vtot=0 V, equation

3.9 can be simplified to equation 3.11.

Itot = −Iph + I0

�

e
q

kT ·(−Rs ·Itot) − 1
�

−
�

Rs

Rp
· Itot

�

(3.11)
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Similar to the open circuit voltage, the total current under short circuit conditions is called

the short circuit current Isc. For an ideal case, the short circuit current would be −Iph. The

current contributions from the diode and the parallel resistance describe the deviations of

a real solar cell from an ideal solar cell. Figure 3.13 shows the schematic IV characteristics

of a solar cell in the dark and under illumination. The comparison of equation 3.9 with

equation 3.3 shows that the IV characteristics of a solar cell in the dark correspond with

the ones of a p/n-diode. Hence all effects described in figure 3.7 are also valid for a solar

cell.

Figure 3.13.: Schematic IV curve of a solar cell in linear (a) and semilogarithmic (b) scale.
The IV curves measured in the dark are denoted in black, the ones measured under illumi-
nation are denoted in red. The |Itot| axis in b is given in log10 scale. Rp is determined on
the IV characteristics of the solar cell under illumination to include the recombination of
photogenerated charge carriers.

The IV curve of the illuminated solar cell however is less influenced by the effects de-

scribed in figure 3.7. The main deviation of the illuminated IV curve from an ideal diode

characteristic is the current limitation by the series resistance, as can be seen in figure

3.13 b. In addition to the solar cell parameters which are already discussed, figure 3.13

shows an additional one, the maximum power point MPP. This point describes the voltage

at which the solar cell produces the largest possible electrical power output. The fill fac-

tor describes the ratio between the actual maximum of the electrical power output (MPP)

and the product of Voc and Isc. Graphically, the fill factor is the ratio of the blue to the red

square in figure 3.13 (see also equation 3.12).

FF=
VMPP · IMPP

Voc · Isc
(3.12)
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The efficiency η of a solar cell is defined as the ratio of the maximum of the electrical

power output Pel and the radiation power input Prad and can be calculated with equation

3.13. Since Prad is usually given in Wm−2, the active area of the solar cell Acell is included

in equation 3.13.

η=
Pel

Prad
=

VMPP · IMPP

Prad · Acell
=

Voc · Isc · FF
Prad · Acell

(3.13)

3.2.5 Solar spectrum and Schockley-Queisser limit

The radiation spectrum emitted from the sun reaches from the infra red to the UV regime

and can be approximated with the radiation spectrum of a black body at 5800 K [51]. The

spectrum can be plotted as power density per photon wavelength and is shown in figure

3.14. The integral over all photon energies yields a power density of 1353 W/m2. This

power density is achieved outside of the earth´s atmosphere and is relevant for solar cells

in space applications (e.g. satellites). For planetary solar panels, the radiation absorption

in the atmosphere has to be considered. This is done by weighting the solar spectrum

with the air-mass coefficient dath which can be calculated with equation 3.14 [51].

Figure 3.14.: Solar spectrum just outside the earth´s atmosphere (AM0) and at the surface
for an angle of incidence around 48° (AM1.5). The spectrum of a black body at 5800 K
without atmospheric absorption is given for comparison. [Image taken from [52] and
modified, original image drawn according to [53].]

dath =
dath0

cos(γ)
(3.14)
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In equation 3.14, dath0 is the thickness of the atmosphere normal to the earth surface

and γ the angle of incidence with respect to the surface normal. The weighting with the

air-mass coefficient is denoted as AMx spectrum with x=0 for the spectrum just outside

the earth´s atmosphere and x=1 for direct incidence. For moderate climate regions (e.g.

northern Europe) the angle of incidence is around 48° which corresponds to an AM1.5

spectrum. This spectrum is used as the standard spectrum for solar cell efficiency deter-

mination and corresponds to an integrated power density of 1000 W/m2 [51].

A theoretical efficiency maximum of a single junction solar cell in dependence on the band

gap of the absorber material was published by Schockley and Queisser in 1961 [48] and

is schematically shown in figure 3.15. For a band gap around 1.6 eV, the detailed bal-

ance maximum (theoretical efficiency maximum) is close to 30 %, under the assumption

that the solar cell is irradiated from a complete hemisphere. To estimate the efficiency

maximum, Schockley and Queisser introduced a voltage factor, describing that the open

circuit voltage is smaller than the band gap of the absorber at temperatures above 0 K.

They also introduced an impedance matching factor which is referred to as fill factor in

the equations above. This fill factor takes into account, that IMPP and VMPP are always

smaller than Isc and Voc [48].

Figure 3.15.: Theoretical maximum efficiency of a single junction solar cell in dependence
on the absorber band gap according to the Schockley-Queisser limit under AM1.5G illumi-
nation. [drawn after [54]]
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3.3 Thin film deposition under high vacuum conditions

Thin film deposition by sublimation of precursors in powder form is the main fabrication

method used for this work. Hence, in the following, a short overview of the basic mecha-

nisms involved in thin film fabrication from the gas phase will be presented.

3.3.1 Adsorption on solid surfaces and layer growth

The first step of a thin film deposition is the adsorption of layer atoms or molecules from

the gas phase onto a solid (substrate) surface. Hence, general terminology describing ad-

sorption and film growth will be presented in the following. This section is based on the

books “Solid Surfaces, Interfaces and Thin Films” by H. Lüth and “Physikalische Chemie”

by P. W. Atkins and J. de Paula, which are recommended for further reading [55,56].

Adsorption can be separated into two processes, physisorption and chemisorption.

Physisorption describes the adhesion of an atom or a molecule onto a surface by Van

der Waals interactions. Those are long range interactions, but weak in strength. The

physisorption is schematically shown in figure 3.16 a. It is characterized by a shallow po-

tential well and a large equilibrium distance z0 between the potential well minimum and

the sample´s surface. In contrast to physisorption, chemisorption describes the adhesion

of atoms or molecules to a surface by chemical bonds, covalent or ionic. The chemical

bonds have a shorter range than the Van der Waals forces but the interactions are stronger

(figure 3.16 b). A special case of the chemisorption is the dissociative chemisorption

shown in figure 3.16 c. Here, a molecule is physisorbed at first non-dissociative. But, the

potential well minimum of the physisorption is only a local minimum. The global mini-

mum of the potential energy is reached in the potential well minimum of the chemisorp-

tion, which can be reached by the dissociation of the physisorbed molecule. To reach the

potential well of the chemisorption, the activation energy Eact has to be overcome.

After the description of the different adsorption mechanisms, the adsorptions kinetics will

be discussed below. The coverage of a solid surface by adsorbate molecules or atoms

is determined by the adsorption and the desorption of the adsorbate species. Neglect-

ing desorption for a moment, the evolution of the surface coverage can be described by

the number of adsorbate molecules which hit the surface (condense on the surface) per

unit area and time (dNcond/d t) and the probability that those molecules will stick to the

surface (equation 3.15). This probability is described by the sticking coefficient S.

Θ(t) =
1
Θ0
·
∫

S
dNcond

d t
d t =

1
Θ0
·
∫

S
p

p

2πMkBT
d t (3.15)
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In equation 3.15, Θ(t) is the relative coverage (occupied adsorption sites divided by avail-

able adsorption sites), Θ0 is the number of available adsorption sites, p is the pressure, M

the molecular weight of the adsorbing species, kB is Boltzmann´s constant and T is the

temperature.

Figure 3.16.: Schematic illustration of the potential energy Epot in dependence on the
distance z from the samples surface for physisorption a), non-dissociative chemisorption
b) and dissociative chemisorption c). The adhesion between the adsorbed species and
the surface is denoted with Eabs-ph for physisorption and Eabs-ch for chemisorption. Ediss
is the dissociation energy of the molecule during the dissociative chemisorption and Eact
the activation energy for the dissociation. z0 and z1 are the equilibrium distances of the
adsorbed species from the surface.

3.3.2 Temperature dependence of the sublimation pressure

The closed space sublimation posses some specific attributes compared to an open subli-

mation. Due to the closed crucible, the reaction volume is less influenced by the vacuum

pumps, allowing a higher pressure in the crucible compared to the surrounding cham-

ber. Since the crucible pressure can be higher than the chamber pressure, higher partial

pressures of the sublimed material can be achieved inside the CSS crucible compared to

an open sublimation. In addition, the distance between the precursor material and the

substrate is shorter compared to an open sublimation. Furthermore, since the crucible

and the substrate are both heated, the complete reaction volume is heated. Last but not

least, the cross section of the source equals approximately the size of the substrate with

the vector of the deposition parallel to the substrates normal, reducing directional effects

of the deposition and facilitating an homogenous deposition.

The sublimation pressure, the pressure at which the gaseous and the solid phase of a

substance are in equilibrium for a given temperature, can be described with the Clausius-

Clapeyron equation (equation 3.16) [56].

dln(ps)
dT

=
∆SH
RT 2

(3.16)
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In equation 3.16, ps is the sublimation pressure, T the temperature, R the ideal gas con-

stant and ∆SH the sublimation enthalpy. Under the condition, that ∆SH is independent

on the temperature, equation 3.16 can be integrated to equation 3.17 [56].

ps = p∗s · e
−ζ with ζ=

∆SH
R
·
�

1
T
−

1
T ∗

�

(3.17)

In equation 3.17, p∗ is the (known) sublimation pressure at the temperature T ∗. To

account for the escape of sublimed molecules from the CSS crucible into the vacuum

chamber, equation 3.17 is extended by the temperature dependent constant ploss(T ), re-

sulting in equation 3.18.

ps = p∗s · e
−∆SH

R ·
�

1
T −

1
T∗
�

− ploss(T ) (3.18)

The sublimation pressure is an upper limit of the actual partial pressure in the crucible.

In addition, the time needed to establish an equilibrium pressure might be temperature

dependent and needs to be considered in a quantitative description of the pressure evo-

lution. Nevertheless, equation 3.18 can serve for a qualitative approximation of the tem-

perature dependence of the pressure inside the crucible during a CSS process. With this,

equation 3.15 can be rewritten to equation 3.19 which approximately describes the sur-

face coverage during a CSS process in dependence on the transformation time tt
1, the

crucible temperature Tc and the substrate temperature Ts.

Θ(tt) =
1
Θ0
·
∫

S ·
p∗s · e

−∆SH
R ·

�

1
Tc
− 1

T∗
�

− ploss(Tc)
p

2πMkBTs

d tt (3.19)

3.3.3 Transformation - inward diffusion and reaction

The first step of the CSS process is the sublimation of MAI. Thereby, MAI is reported to

sublime dissociatively [42, 57]. While Juarez-Perez report the dissociation of MAI dur-

ing the sublimation mainly into CH3I and NH3, Bækbo et al. found CH3NH2 and HI as

dominant decomposition products for the sublimation of MAI under UHV conditions, in

the temperature regime up to 130 °C [42, 57]. However, for temperatures above 160 °C

Bækbo et al. also observe the presence of NH3 and CH3I which they relate to the further

decomposition of HI and CH3NH2 at elevated temperatures [42].

1 At this point, the transformation time tt is actually a deposition time. However, in order to comply with
the nomenclature used in the experimental and the results chapters with respect to the CSS process
step, it is introduced here already as transformation time.

37



The actual transformation of a lead salt layer to perovskite can be determined by three

processes, the adsorption of the MAI dissociation products on the layer, their inward dif-

fusion and the transformation of lead salt layer to MAPI. The adsorption process step is

already described above, the transformation step will be discussed in detail in the results

chapter. The inward diffusion of a diffusing species into a layer can be described by solving

Fick´s second law under consideration of certain boundary conditions. Fick´s second law

is shown in equation 3.20 for a case in which the diffusion is limited to one direction. The

assumption of an one-directional diffusion is considered reasonable for this work since

the inward diffusion of the gaseous species into the lead salts during the CSS process step

will be directed from the layer surface towards the substrate. The following description is

based on the book “Materials Science and Engineering” by Callister et al. [58].

∂ c(x , t)
∂ t

= D ·
∂ 2c(x , t)
∂ x2

(3.20)

In equation 3.20, c(x , t) is the time dependent concentration at the position x , t the time

and D the diffusion coefficient. As boundary condition for the solution of Fick´s second

law it is assumed that the diffusing species have a constant concentration at the position

x=0 and serve as a stationary constant source (non-steady-state diffusion). In addition,

it is assumed that the concentration of the diffusing species is 0 at t=0 in the whole layer.

The diffusion coefficient D is assumed to be independent on the concentration. Consider-

ing this boundary conditions, the solution of Fick´s second law can be described with the

error function in equation 3.21.

c(x , t) = c0 − c0 · erf
�

x

2
p

Dt

�

(3.21)

In equation 3.21, c0 is the constant concentration directly at the layer surface. The solu-

tion of Fick´s second law is taken from ref. [58]. Here, the additional boundary condition

of a semi-infinite solid 0 ≤ x ≤ ∞ is formulated. However, even if the x coordinate is

limited to 0≤ x ≤ d, with d the layer thickness, equation 3.21 is assumed to be suited to

qualitatively describe the inward diffusion of a diffusing species into a layer in this work.

The diffusion coefficient D is dependent on the temperature T . This dependence can be

described with equation 3.22.

D(T ) = D0 · e
− Eact

kBT (3.22)
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In equation 3.22, D(T ) is the diffusion coefficient at the temperature T , D0 a prefactor,

Eact is the activation energy of the diffusion process and kB is Boltzmann´s constant. As

soon as CH3I and NH3 start to diffuse into the lead salt layers, the chemical reactions have

to be considered. The velocity of the transformation can be diffusion controlled, in case

the reaction velocity is faster than the diffusion velocity, or reaction controlled, in case

the diffusion velocity is faster than the reaction velocity. The ratio of the reaction and the

diffusion velocity can be described by the Péclet number.

Equations 3.21 and 3.22 describe a rather simple case for the inward diffusion of an ad-

sorbed species and neglect the influence of different bulk diffusion mechanisms on one

hand and of grain boundary and pinhole diffusion on the other hand. Besides, the inward

diffusion of adsorbed species into the lead salt layer will be dependent on their properties,

for example their size. In addition, even if NH3 and CH3I or HI and CH3NH2, respectively,

are the main products of the dissociative sublimation of MAI, the mass spectrometry mea-

surements of Juarez-Perez et al. and Bækbo et al. indicate the presence of numerous

other dissociation products in the gas phase [42,57]. Furthermore, during the adsorption

on the layer surface, the adsorbed species might dissociate into their components. Hence,

the adsorption and desorption kinetics, the diffusion mechanisms and kinetics, and the

different sublimation pressures of a broad range of chemical species as well as the differ-

ent possible chemical reactions of the adsorbed molecules with the lead salt base layer

need to be considered to quantitatively describe the transformation of a lead salt to MAPI

in the CSS process, making such a description quite challenging.
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3.4 Analysis techniques

In this section, the working principle of the analysis techniques used in this work will be

summarized.

3.4.1 Photoelectron Spectroscopy

This summary is based on the chapter about photoelectron spectroscopy in the PhD The-

sis of Dr. Mirko Weidner which gives an in depth overview over the topic and is rec-

ommended for further reading [59], technical details are taken from the manual of the

ESCALAB 250XL PE spectrometer by Thermo Fisher Scientific [60].

During a photoelectron spectroscopy (PES) experiment, a sample is irradiated with elec-

tromagnetic radiation. Usually X-rays (XPS) or radiation with wavelengths in the UV

regime (UPS) are used. In the sample, the energy of the incident photons is transferred

to electrons of the sample atoms. If the energy of the incident photons is sufficiently high

to excite a photoelectron out of the sample, the kinetic energy of the photoelectron can

be measured and provides information about the atom and the orbital it originates from.

The photoemission process is often described with the three step model by Berglund and

Spicer. The first step is the photoionization of a sample atom. Here, an electron is excited

from an atomic orbital, leaving behind a hole and the atom in an excited state. Accord-

ingly, PES does not measure the energy of the atom in its ground state (initial state) but

the energetic difference between the atom in its ground and in its excited state (final

state). All effects taking place simultaneously to the photoionization process are called

intrinsic effects. After the photoexcitation, the electron needs to travel to the sample sur-

face (step 2) and escape from the sample (step 3). Effects influencing the photoelectron

(for example altering its kinetic energy) during step two and three are referred to as ex-

trinsic effects.

A schematic depiction of an ESCALAB 250XL PE spectrometer is shown in figure 3.17. The

whole system is pumped down to ultra high vacuum in order to avoid inelastic scattering

of the photoelectrons with atmospheric atoms or molecules. The sample is placed on a

sample stage, which is usually grounded during XPS measurements and put on a defined

potential during UPS measurements. In this work, the sample was either irradiated by

a monochromatized X-ray source (AlKα with 1486.6 eV) or a non-monochromatized UV

lamp (HeI with 21.22 eV). In addition to the photoelectron excitation sources, the sam-

ple can be irradiated with a white light lamp, with electron and ion sources for charge

compensation and the sample surface can be treated with an argon sputter gun. The

photoelectrons are collected and focused by a magnetic collection lens and further fo-

cused by two electrostatic lenses on the entrance slit of the hemispherical analyzer. At the

entrance slit, the photoelectrons are retarded by the retardation voltage VR to the pass en-

ergy Epass. The pass energy is defined by the potential of the analyzer hemispheres. Only

electrons with a kinetic energy inside the range Epass ±∆E (which is not the ∆E used for
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the calibration of the spectrometer) can pass through the analyzer and reach the chan-

neltrons. With decreasing Epass, ∆E also becomes smaller leading to improved resolution

on the cost of decreasing intensity. All measurements in this work were performed with

the spectrometer in constant analyzer energy mode, meaning that Epass is independent

on the kinetic energy of the photoelectrons. The value defining which binding energy is

probed is the retardation voltage VR. In figure 3.17, it can be seen that the photoelec-

trons enter the analyzer not parallel to the lens column but at an angle. Accordingly, their

path is not only defined by their kinetic energy but also by their entrance angle. Thereby,

every channeltron is reached by electrons with the energy Epass ±∆E. The arrangement

of the channeltrons accounts for the entrance angle of the photoelectrons and does not

reassemble the uncertainty of the pass energy ∆E. Further information about the techni-

cal realization of the PES measurements using the ESCALAB 250XL spectrometer can be

found in the ESCALAB 250XL manual [60].

Figure 3.17.: Schematic arrangement of a PES measurement setup. The dashed lines de-
note the outer boundaries of the path of the photoelectrons when the magnetic collection
lens is used. The dashed lines inside the hemispherical analyzer correspond to the paths of
those electrons which have exactly the energy Epass.
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During a PES measurement, the kinetic energy of the photoelectrons is measured. But,

the binding energy of the electrons is plotted. The binding energy is defined as the en-

ergy an electron needs to reach the Fermi level of a sample. Calibration measurements

are used to shift the PE spectra in a way that the Fermi level is at 0 eV. Those calibration

measurements are performed on clean metal samples and will be described in more detail

in the experimental section (section 4.3.1).

PE spectra consist of a background, caused by inelastically scattered electrons, the char-

acteristic emission lines and satellites of the emission lines. The emission lines have the

shape of a convolution of a Lorentzian and a Gaussian function. The Lorentzian contri-

bution originates from life time uncertainty of the photohole. The Gaussian contribution

results from the finite line width of the X-ray beam and the energy resolution of the spec-

trometer. The binding energy associated with a certain orbital of a certain element, and

hence a certain emission line, may be different in different samples. The reason for this

is the dependence of the binding energy on the electrostatic surrounding of the probed

atom. Prominent conditions are for example the oxidation state and the chemical envi-

ronment of the probed atom. Binding energy shifts caused by the oxidation state and the

chemical environment are referred to as chemical shifts.

Several effects can lead to a broadening of the characteristic emission lines or to satellite

lines. Two of the most important effects are the spin-orbit coupling and the shake up ef-

fect. The spin-orbit coupling is caused by the effect that when an electron is excited from

a fully occupied orbital (core orbital) it leaves a photohole with a spin of either +1/2 or

-1/2 behind. If the angular momentum l of the orbital is 6= 0 (all but s orbitals) the spin

momentum will couple with the angular momentum leading to a total angular momen-

tum of j = l ± 1/2. Since those two possible states will alter the energetic state of the

photoexcited atom (final state), two core emission lines corresponding to the two states

will occur in PE spectra with an intensity ratio according to the degeneracy of the states

(2 j+1). If the binding energy difference between the two states is large enough, two dis-

tinct emission lines will be observable, if the binding energy difference is small, the two

emissions will overlap. The shake up effect can be described as an energy transfer from a

photoelectron to an other electron which is excited into a continuum (e.g. an unoccupied

band in solids). Thereby, the amount of transferred energy is small compared to the ki-

netic energy of the photoelectron. For metallic samples, such kinetic energy losses lead to

an asymmetry of the core emission lines towards the higher binding energy side. In case

of a semiconducting (or insulating) sample, if the transferred energy is sufficient to excite

an electron over the band gap, an additional shake up line will occur with the energetic

difference of the band gap from the main emission line. The band gap energy constitutes

a minimum of the shake up energy for a semiconducting sample. Since unoccupied bands

above the conduction band minimum also form a continuum of energy levels, the shake

up satellite will show an asymmetric shape on the high binding energy side, similar to the

one described for metallic samples, while the main emission line will be symmetric.
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The background in PE spectra results mostly from inelastically scattered photoelectrons

and electrons which are excited due to inelastic scattering events of the primary pho-

toelectrons. Those electrons are referred to as secondary electrons. For the description

of the background of PE spectra, two procedures are widely used, the one proposed by

Shirley et al. and the one proposed by Tougaard et al. [61]. Shirley assumed that the

number of electrons which are scattered inelastically and add to the background signal

is proportional to the total number of excited photoelectrons [61–63]. Tougaard took

into consideration that the amount of photoelectrons which are scattered inelastically is

dependent on their kinetic energy [61, 62]. The background electrons do not contain

information over the specific elements present in a sample. However, from the distribu-

tion of electrons with low kinetic energy, the secondary electrons, inside the sample, only

those with a kinetic energy high enough to overcome the work function of the sample will

be detected during a PES experiment. Accordingly, PE spectra show a rather sharp edge

at the high binding energy side, the secondary electron edge (SEE), which can be used to

determine the work function of the sample according to equation 3.23.

φ = hν− ESEE (3.23)

An important feature of PES measurements is the information depth which is rather low

(in the order of magnitude of 10 nm). This is due to the requirement that only photo-

electrons which did not experience inelastic scattering events (primary photoelectrons)

can be used for analysis. This surface sensitivity is a two sided medal. On one hand, it

allows a precise examination of the sample surface, on the other hand the bulk proper-

ties of a sample can not be probed with PES. However, in case of a homogenous sample

some information about the bulk properties can be derived from the surface properties.

The information depth is dependent on the mean free path of the photoelectrons λp, the

distance they can travel in the sample without inelastic scattering. The mean free path

however is dependent on the kinetic energy of the photoelectrons. A rule of thumb is that

95 % of the detected electrons originate from a depth of three times their mean free path.

As mentioned above the binding energy of a photoelectron is characteristic for a certain

orbital belonging to an element with a certain atomic number Z. Accordingly, a quantita-

tive analysis of the element ratios at the sample surface is possible. Thereby, the number

of electrons emitted from a certain orbital is assumed to be proportional to the number

of those orbitals, and hence atoms, present in the sample. To obtain an elemental sur-

face composition from PES measurements, certain conditions, like the ionization cross

sections, the information depth and specific instrumental conditions have to be consid-

ered. The ionization cross sections describe the probability that an electron from a certain

orbital (of a certain element) is photoexcited. Atomic sensitivity factors (ASFs) summa-

rize many of the conditions important for a quantitative composition analysis and can be

used as weighting factors for the integrated intensities for samples which are thicker than
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3λp-max (see equation 3.24). Here, λp-max is the maximum mean free path of the different

probed core electrons. In equation 3.24, nx is the density of atoms and Ix is the emission

intensity (integral of the emission line).

na

nb
=

Ia · ASFb

Ib · ASFa
(3.24)

Common ASFs are those presented by Wagner et al. and common ionization cross sec-

tions are the ones presented by Scofield et al. [64,65]. Wagner provides a set of empirical

ASFs, based on the results obtained from 135 compounds based on 62 elements [64].

However, under certain conditions, the use of the plain ionization cross sections can be

more appropriate. Scofield et al. calculated atomic photoionization cross sections based

on the Hartree-Slater atomic model and normalized them to the C1s emission line [65].

The element ratios calculated from PES results need to be taken with care. Surface ef-

fects like segregations, or inhomogeneous element distributions might lead to over- or

underestimations of certain elements. In addition, the uncertainty of the determination

of the absolute composition can be around 10 % [62]. The relative surface composition

provides a better reproducibility [62]. Elements which are only present in low atomic

concentrations might not even be detected during PES measurements. A way to estimate

the detection threshold of homogeneously distributed elements is presented by Shard et

al. [66] and will be discussed in the experimental chapter.

3.4.2 X-ray diffraction

This whole section is based on the book “Moderne Röntgenbeugung” by Spieß et. al. [67],

which provides an in depth description of the information summarized in this chapter.

For a detailed discussion of crystal structures and crystal symmetry, the book “Kristallo-

graphie” by Borchardt-Ott and Sowa is recommended [68].

X-ray diffraction and Bragg-Brentano geometry

In this work, X-ray diffraction in Bragg-Brentano geometry is used and will be discussed

below. When a crystalline sample is irradiated with X-rays, the X-rays are diffracted on

the electron clouds of the lattice atoms. The diffraction of X-rays on a crystal lattice can

be described by Bragg’s law (equation 3.25).

n ·λ= 2dhkl · sin(θ ) (3.25)
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In equation 3.25, dhkl is the spacing between the lattice planes in the crystallographic

direction hkl, λ is the wavelength of the X-rays, θ the incidence angle of the X-rays

and n an integer number. To achieve constructive interference, the optical path differ-

ence (Gangunterschied) of parallel incident X-rays which are diffracted on parallel lattice

planes has to be an integer multiple (n) of the wavelength of the incident X-rays. The

graphical representation of equation 3.25 is depicted in figure 3.18.

Figure 3.18.: (a) Schematic representation of the X-ray diffraction on parallel lattice planes
according to Bragg´s law. The path difference in shown in red. (b) Schematic representa-
tion of a Bragg-Brentano setup.

Besides the graphical description of Bragg´s law, figure 3.18 also shows a schematic de-

scription of a XRD measurement in Bragg-Brentano geometry. Here the sample is irradi-

ated under the angle θ with respect to its surface. The geometry is defined by two circles,

the goniometer circle and the focusing circle. The goniometer circle has a fixed radius.

The X-ray source and the detector move on this circle. The focusing circle is defined by

the sample, the X-ray source and the detector. To be in focus, the sample surface has to be

exactly tangential to the focusing circle. With the X-ray source and the detector moving,

the radius of the focusing circle becomes smaller for higher θ . A special condition of the

measurements in Bragg-Brentano geometry is that only the X-rays diffracted on lattice

planes parallel to the sample surface are detected. Hence, to get a good statistic over the

crystal structure of the sample, many small crystallites are needed. Another measurement

characteristic which has to be taken into account is the divergence of the X-ray beam.

The divergence of the X-ray beam leads to an angle dependent area of the sample which

is irradiated. Under the condition that the X-ray source and the detector have an equal

divergence, the angles of the incident and the reflected X-rays add up to 2θ also at the

edges of the incident beam. Hence, the whole irradiated sample area contributes to the

intensity measured for an angle 2θ (see figure 3.18). Since the divergence of the incident

beam decreases with increasing θ , the probed sample area also decreases with θ . The

angle dependence of the probed area superimposes the intensity patterns of the sample

with an overestimation of reflections at small angels compared to those at high angles.

Besides the divergence of the X-rays, other effects have to be considered when evaluating
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measurements in the Bragg-Brentano geometry. Those are for example the angle depen-

dent penetration depth of the X-rays or that the sample surface might not be completely

tangential to the focusing circle in the whole illuminated area (for example, due to sam-

ple roughness, or sample adjustment). In general, the systematic measurement errors are

less severe at higher angles 2θ . Therefore, the reflections at high angles, are best suited

for the evaluation of XRD measurements, for example for the determination of the space

group of an examined material.

Rietveld refinement

The Rietveld refinement is based on the approach to match the intensities measured at all

measuring points n during a diffraction experiment (Inm) with intensities which are calcu-

lated based on known crystallographic parameters (Inc). When a sufficient match between

the measured and the calculated intensities can be achieved, the crystallographic param-

eters used for the calculated intensities are assumed to belong to the sample. Some

parameters which can be used for a refinement are shown in equation 3.26.

Inc = s
∑

K

|FK|
2 · LK ·HK · PK · AX · Sr · EX ·Φ(2θn − 2θK) + Inb (3.26)

In equation 3.26, s is a scaling factor, AX accounts for the absorption and EX for the ex-

tinction of the X-rays in the sample, Sr describes the influence of the surface roughness of

the sample and Inb is the background intensity at the measurement point n. The subscript

“K” denotes the hkl of a reflection. The structure factor FK is the Fourier transform of the

electron density in a solid and depends on the atomic number of the atoms present in the

solid and their position inside the unit cell. The reflection profile function Φ(2θn−2θK) de-

scribes the shape of a reflection with respect to its calculated reflection position 2θK. The

multiplicity of a reflection HK describes the number of different lattice planes contributing

to the intensity of the reflection. The polarization factor PK describes the angle and polar-

ization dependent attenuation of the intensity of the diffracted X-rays. The Lorentz factor

LK takes into account that in reality Bragg´s law is not only fulfilled by a sharp angle θ but

by a (geometry and θ dependent) regime ∆θ around that angle. All parameters shown

in equation 3.26 are refined simultaneously, for example under usage of the least squares

method. The background is fitted either with a phenomenological or a physical function

(for example polynomials of higher order) which itself can provide information over the

sample, for example over amorphous phase contributions. If more phases are present in

one sample, the parameters shown in equation 3.26 are simultaneously refined for each

phase. Besides the phase specific refinement parameters, shown in equation 3.26, global,

experiment specific parameters have to be considered in a Rietveld refinement. Those

are for example: the instrument characteristics, the wavelength of the used X-rays and
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sample adjustment. With sufficient information about every crystalline phase present in

the sample (e.g. space group, texture, chemical composition, atomic positions in the unit

cell), the Rietveld refinement can be used for a quantitative phase analysis. If amorphous

phases are present in the sample, they have to be considered explicitly during the phase

analysis.

3.4.3 Scanning electron spectroscopy

This section is based on the book “Solid Surfaces, Interfaces and Thin Films” by H. Lüth

[55]. In scanning electron microscopy (SEM), a sample is scanned with an electron beam

and the excited species are detected in dependence on the position of the electron beam.

The primary electrons are generated for example by a field emission gun (FEG) and fo-

cused into the first crossover point (see figure 3.19). The energy of the primary electrons

is in the range of 10 keV. Magnetic lenses reduce the lateral extension of the spot in a

way, that the spot size on the sample is significantly smaller compared to the spot size at

the first crossover point, down to 1-10 nm. The position of the spot on the sample can be

varied by two deflection coils between the magnetic lenses. During a SEM measurement,

usually four species are probed, back scattered electrons, secondary electrons, Auger elec-

trons and X-rays (see figure 3.19 b). Back scattered electrons are primary electrons which

are scattered elastically on the sample atoms. The amount of primary electrons which are

scattered elastically increases with the atomic number of the elements present in the sam-

ple. Hence, the detection of the BSE electrons gives an elemental contrast of the sample.

In addition, characteristic inelastic scattering events cause an energy loss of the primary

electrons, for example due to plasmon excitations, which yields further information about

the sample. Care needs to be taken when examining rough samples for which the topology

can superimpose the elemental contrast. Secondary electrons are electrons which have

undergone several inelastic scattering events on their way to the sample surface. After

they have overcome the work function of the sample (left the sample) they usually have

an energy in the range between 0-50 eV. Due the to various inelastic scattering events on

their way through the sample, they provide only very limited information on the elements

present in the sample but are sensitive to the topology of the sample surface. Auger elec-

trons and characteristic X-rays are both element specific but show significantly different

information depths and lateral resolutions. Auger electrons originate from a depth of 0.5-

2 nm and allow a spacial resolution in the range of the spot size of the incident electrons.

X-rays however originate from a depth of 0.1-10 µm and show, due to the pear shape of

the excited volume, reduced lateral resolution compared to the Auger electrons. Figure

3.19 gives a schematic overview over a SEM measurement setup 2.

2 Information depths for SE, BSE and characteristic X-rays in (b) according to the slides of the lecture
“Principles and Methods of Scanning Electron Microscopy” by Dr. P. Komissinsky, attended during
winter term 2017.

47



Figure 3.19.: Schematic depiction of a scanning electron microscope (a), the excitation
volumina of the different excited species (b) and a magnified depiction of the tilted sample
position used for the cross section experiments (c).

Figure 3.19 c shows the sample tilted by 75°. This position can be used to examine the

cross section of the sample. But, when quantitative measures are derived from the cross

section measurements, the angle between the sample cross section (c in figure 3.19 c)

and the horizontal measurement plane (a in figure 3.19) has to be considered. This can

be done with equation 3.27.

c =
a

sin(75°)
(3.27)

3.4.4 UV/VIS absorption spectroscopy

UV/VIS spectroscopy is based on the absorption of radiation with wavelengths in the vis-

ible and UV regime. The absorption of radiation in dependence on the penetration depth

dpen can be described by the Lambert-Beer law in equation 3.28 [56].

48



Ib(Eph, dpen) = Ib0(Eph) · e−αhν·dpen (3.28)

In equation 3.28, Ib(Eph, dpen) is the photon energy dependent intensity of the incident

beam after penetrating a medium at the thickness pen, αhν is the photon energy dependent

absorption coefficient and Ib0(Eph) the photon energy dependent intensity of the incident

beam. In this work, not the absorption but the transmission and the directed reflection

are measured in a measurement setup which is shown schematically in figure 3.20.

Figure 3.20.: Schematic depiction of the setup used for the UV/VIS measurements in this
work. The angle β is the angle between the sample normal and the incident beam.

The wavelength of the incident beam in figure 3.20 is defined by Bragg’s law, using two

crystal monochromators. The sample normal has to be slightly rotated with respect to the

incoming beam (angle β) to be able to measure the directed reflection under the angle

2β . The transmission is measured directly opposite to the entrance window of the inci-

dent beam. In this setup, only directed reflection and transmission of the incident beam

are measured, diffuse (scattered) reflection is not accounted for. To be able to compare

the UV/VIS spectra of different samples, the photon energy dependent absorption coef-

ficient αhν, which is normalized to the layer thickness, is used in this work and can be

calculated from the transmission Thν (in %), the directed reflection Rhν (in %) and the

effective layer thickness deff with equation 3.29.

αhν = −ln
�

Thν

100− Rhν

�

·
1

deff
(3.29)
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Equation 3.29 is derived from the Lambert-Beer law in equation 3.28 and is appropriate

for a thin film of strong absorbing material [69,70]. Due to the rotated sample, an effec-

tive layer thickness has to be taken into account, when measuring the transmission. The

effective layer thickness can be calculated by equation 3.30.

deff =
d

cos(β)
(3.30)

3.4.5 Photoluminescence spectroscopy

Photoluminescence spectroscopy can be used to probe the optical activity of a material

and to determine the energy of the photons emitted during the radiative recombination

processes. In photoluminescence spectroscopy experiments, the sample is irradiated with

monochromatized light with an energy well above the band gap energy of the sample

material. Thereby, electrons are excited to energy levels above the conduction band mini-

mum and consecutively recombine with their holes. If the the recombination process is ra-

diative, radiation of defined wavelengths will be emitted, which can be detected. Besides

radiative recombination, Shockley-Hall-Read and Auger recombination are important but

non-radiative recombination mechanisms. Thereby, Shockley-Hall-Read recombination

describes the recombination of an electron hole pair via an impurity or trap state with an

energetic level close to the middle of the band gap. In Auger recombination, an electron

hole pair recombines from band to band. But instead of emitting a photon, the energy is

transferred to a third charge carrier. More detailed information on recombination mecha-

nisms and PL measurements can be found in the book “Semiconductor material and device

characterization” by D. K. Schroder [70]. A schematic depiction of a PL setup is shown

in figure 3.21. When the incident beam emitted by the monochromatized light source in

figure 3.21 reaches the sample, the photoexcitation and radiative recombination leads to

an undirected emission. The emitted radiation passes through the emission filter into the

analyzer and finally reaches the detector. In this work, emission filters made from colored

glass have been used which have a sharp transmission onset and cut out all wavelengths

below a certain (filter specific) limit. The filter is used to protect the detector from the

directed reflection of the incident beam. However, integer multiples of the wavelength

of the incident beam (which also fulfill Bragg’s law and pass the excitation monochro-

mator) can pass through the emission filter. Superpositions of those integer multiples of

the wavelength of the incident beam with the PL emission can be reduced by rotating

the sample in a way that the directed reflection of the incident beam does not reach the

detector. The width of the incident beam and the accepted angular range of the emitted

radiation can be defined by the width of the excitation and the emission slit, respectively.

Thereby, a smaller slit causes a better resolution but on the cost of lower intensity. Dur-

ing a PL measurement, only radiative recombination can be probed. Hence, it is possible

50



to determine whether radiative or non-radiative recombination is dominant in a sample.

Furthermore, for every radiative recombination process, a PL emission, corresponding to

the energy of the photons emitted during the process can be detected. In an ideal case,

only one PL emission corresponding to the optical band gap will appear. If more emis-

sions occur, they might be related to trap states inside the band gap. Accordingly, the trap

density and energetic position in the band gap can be estimated. Advanced PL setups are

even able to measure time-resolved photoluminescence, which allows to determine, for

example, the lifetime of photo generated charge carriers.

Figure 3.21.: Schematic depiction of the setup used for the PL measurements in this work.
The measuring chamber is denoted in dark gray.
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4 Experimental
In the experimental chapter, the synthesis and the characterization of the samples used

in this work are described. Figure 4.1 gives a first, quick overview over the experimen-

tal procedure. After the substrate preparation in air, the samples are introduced into the

vacuum system and the perovskite is deposited. After the perovskite deposition, the sam-

ples are either directly examined with PES, XRD, PL spectroscopy, UV/VIS spectroscopy or

SEM or are processed further in the glove box for solar cell fabrication with consecutive

IV measurements. The detailed experimental procedure is described below. Some parts

of this chapter are taken from our publication [1].

Figure 4.1.: Flowchart of the sample preparation and characterization in this work. Blue
denotes fabrication steps in air, green fabrication steps in high vacuum and gray fabri-
cation steps in the glove box. The sample characterization steps are denoted in orange.
The PES measurements are carried out without breaking the vacuum conditions and are
therefore denoted in green and orange.

4.1 Materials

Materials
PbI2 (99.9985 % purity) was purchased from Alfa Aesar. CH3NH3I (MAI) was purchased

from Greatcell Solar (and Dyesol). Titanium diisopropoxide bis(acetylacetonate)(TIAA),

Fullerene-C60, 4-tert-Butylpyridine, Bis(trifluoromethane) sulfonimide lithium salt and

PbCl2 (99.999 % purity) were purchased from Sigma Aldrich and Spiro-MeOTAD (99.8 %

purity) from Borun New Material Technology. All materials were used without further

purification.
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4.2 Synthesis

4.2.1 Substrate preparation

Sample naming and FTO etching

Glass substrates covered with fluorine doped tin oxide (FTO) (Pilkington Tec15) were

used for all samples presented in this work. The substrates were labeled with a diamond

pen according to the scheme ABCD. Here, A is the day of fabrication, B the month, C are

the initials of the person who prepared the substrates (e.g. RD for Ralph Dachauer) and

D is a serial number (roman digits) to identify the substrates within one batch. After the

labeling, the FTO substrates were cleaned of glass dust with pressurized nitrogen. The

FTO layer was structured in order to prevent a short circuit of the FTO front contact and

the Spiro-MeOTAD back contact, in case the probing pins should penetrate through the

Au/Spiro-MeOTAD back contact during the IV measurements. To do so, the FTO front

electrode was covered with tape, leaving a 3 mm broad stripe of the FTO uncovered. This

uncovered FTO was removed by etching with zinc powder and 6M HCl. After the FTO

etching a compact TiO2 layer was deposited onto the substrates. The different substrate

fabrication steps are schematically shown in figure 4.2.

Figure 4.2.: Schematic depiction of the used substrates: as purchased, after the FTO etch-
ing and after the TiO2 spray pyrolysis.

Titanium dioxide spray coating

After the FTO etching, an about 30-50 nm thick compact TiO2 film was deposited onto the

substrates by spray pyrolysis. Before the spray pyrolysis, the substrates were mechanically

cleaned. To do so, the substrates were rinsed with isopropanol and VE water and cleaned

with detergent. In a last step, the substrates were rinsed with tap water and VE water

and dried with pressurized nitrogen. The substrates were packed in closed aluminum
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boxes to protect them from dust. For the spray pyrolysis, a solution of 500 µL Titanium

diisopropoxide bis(acetylacetonate)(TiAA) diluted in isopropanol and 18 mL ethanol was

prepared in an argon filled glove box. As final preparation step, the substrates were

cleaned with an oxygen plasma for 5 min to remove surface contaminations prior to the

spray pyrolysis. A plasma generator type “zepto” from Diener electronic was used. For

the oxygen plasma a gas flow of 1 normal liter per hour (20 °C, 1013mbar) and a main

power of the plasma generator of 0.5 W (at 40kHz) were used as parameters. Before the

spray pyrolysis started, the spraying gun was rinsed with isopropanol, to remove possible

contaminations. After the cleaning, the TiAA solution was filled in the pressure container

(see figure 4.3 a) and the substrates were placed under the gun according to figure 4.3 b.

During the spray pyrolysis process, the FTO area for the front contact was covered by a

mask to prevent the TiO2 film from being deposited there (see figure 4.2 and 4.3 b).

Figure 4.3.: Schematic depiction of the spray pyrolysis setup used for the deposition of
the compact TiO2 layers in this work (left). The oxygen supply is denoted in blue, the
pressurized air supply for the pressure container and the pneumatic spray valve in green.
Layout of the substrate arrangement during the spray pyrolysis (right).

During the spray coating program, the substrates were preheated to 450-500 °C during

25 min in order to establish a homogenous substrate temperature, needed for the pyrol-

ysis of the precursor solution. Afterward, the solution was sprayed onto the substrates

with one 10 s long spray. The spray duration was defined by a pneumatic valve (oper-

ated with pressurized air). Oxygen was used as spray gas. Finally, the TiO2 layers were

sintered at 450-500 °C for 30 min and cooled down to a temperature close to room tem-

perature. A more detailed description of the spray pyrolysis setup and the development

of the used parameter set can be found in the Advanced Research Lab report of M.Sc. Tim

Hellmann [71]. After the cooling period, the conductivity of the FTO front electrodes of

55



the substrates planned for solar cells was measured with a multimeter to control that no

TiO2 was deposited there. The samples were stored in air in separate plastic boxes till

they were used for perovskite deposition.

The fabrication scheme for the glass/FTO/TiO2 substrates presented above is valid for all

samples presented in sections 5.2 to 5.4 instead of some samples used in the PES experi-

ments. For those samples, the preparation of the TiO2 layers show some minor deviations.

The reason for this is the optimization of the deposition techniques and parameters for

the spray coated TiO2 layers in our group, taking place at the same time as the experi-

ments on the MAPI absorber, presented in this work. Nevertheless, all FTO substrates are

prepared in the same manner and all TiO2 layers are spray coated from a solution of TiAA

in isopropanol and ethanol.

4.2.2 Vacuum deposition

All vacuum depositions were carried out at the Darmstadt Integrated System for Solar Cell

research (DAISY-SOL). A schematic depiction of the DAISY-SOL can be found in figure

4.4. The integrated system combines several thin film deposition techniques with the

possibility to examine the fabricated layers with PES, without breaking the vacuum con-

ditions. For the PES measurements an ESCALAB 250XL photoelectron spectrometer from

Thermo Fisher Scientific is used. The vacuum in the deposition chambers is in the range

on 10−9 mbar to 10−6 mbar, in the dispenser, the transfer and the PES analysis chamber

in the range of 10−9 mbar.

Substrate mounting and preparation

Before the substrates were introduced into the vacuum system, they were mounted into

sample holders to allow the transfer from chamber to chamber in the vacuum system (see

figure 4.5). Thereby, a mask was used to prevent the perovskite from depositing on the

FTO front contact. The substrates were introduced into the vacuum system by an entry

lock (see figure 4.4). In the vacuum system, the substrates were treated with an oxygen

plasma in order to remove surface contaminations. The plasma treatment was carried out

in the sputter chamber for 10 min with 50 mA main power, an extraction voltage of -1 kV

and an ion energy of 0.5 kV. The oxygen flow was adjusted to yield a chamber pressure of

1 ·10−4 mbar. A Gen II plasma source and respective power and voltage supplies by tectra

were used. The treatment time was defined by a shutter.
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Figure 4.4.: Schematic sketch of the DAISY-SOL. Parts of the system used for this work
are labeled in black, the fabrication chambers encircled in red. The labels of the PVD
chamber and the CSS chamber used for all vacuum deposited MAPI layers in this work, are
underlined.

Figure 4.5.: Photograph of the different parts of a sample holder used for the vacuum
deposition steps in the DAISY-SOL (a). A substrate is placed on the bottom frame with the
FTO/TiO2 pointing upwards. The front contact mask and the top frame are placed on the
substrate and the top and bottom frame are connected with screws. A mounted sample
holder with a sample is shown in (b). In (b) the sample holder is placed on the PES sample
holder, the Cu and the Ag pad used for XPS calibration measurements are visible above
the sample holder. In front of the sample holder, an additional sample tray can be seen
which can be used to temporarily store a sample.
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Deposition of lead iodide and lead chloride layers by PVD

After the plasma treatment, the lead salts were deposited in a PVD process, using SFC-

40-10-385-WK-SHE effusion cells from CREATEC, EA-PS 3032-10 B power supplies from

EA Elektro-Automatik and a mini8 multiple loop process controller from Eurotherm, with

the respective iTools software. The schematic setup of the deposition chamber can be

found in figure 4.6. The abbreviation PVD is used for physical vapor deposition. In this

work, PVD describes the vapor deposition of the lead salt layers which are sublimed into

the vacuum chamber (see figure 4.6). Thus, the lead salt layer deposition is referred to

as an open sublimation, in contrast to the closed space sublimation. The base pressure

and the pressure during the lead salt deposition in the PVD chamber were in the range of

1−6 ·10−8 mbar. The distance dPVD between the sample and the evaporation sources was

about 15-20 cm.

Figure 4.6.: Schematic depiction of the PVD chamber used to deposit PbI2 and PbCl2 layers.
Double arrows indicate relevant moving directions.

In the effusion cell, the crucibles were heated resistively by a current flowing through tan-

talum wires, the substrates were heated with two halogen lamps (direct current). The de-

position rates of the lead salts were controlled with a gold coated quartz crystal (6MHz),

an INFICON 782-900-010 oscillator and an INFICON SQM-160 rate/thickness controller.

To measure the deposition rates, the sample stage was wind up to the top of the depo-

sition chamber and the quartz crystal was placed at the position of the substrate during

the deposition (see figure 4.6). The lead salt layers presented in the following chapters
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were always prepared in a similar manner: The crucibles were heated with 10 K/min to a

temperature 10 °C below the desired source temperature and with 1 K/min to the desired

source temperature. Afterward, the lead salt layers were deposited, followed by a cool

down phase of the sample and the sources. The deposition time was defined by automatic

source and sample shutters, controlled by the iTools software. If not denoted otherwise,

all PbI2 and PbCl2 layers presented in the following chapters are deposited at a substrate

temperature of about 50 °C. The PbI2 layers were deposited with a nominal deposition

rate of 0.5 Å/s (Tc around 242 °C), the PbCl2 layers were deposited with a nominal de-

position rate of 2 Å/s (Tc around 328 °C). The deposition rates were measured before

and/or after the depositions when applicable. The actual deposition rates may differ from

the nominal deposition rates. Those deviations are monitored by the quartz crystal mea-

surements and taken into account when evaluating the results. To match the deposition

rates, which are calculated from the quartz crystal oscillation modulation and displayed

by the SQM-160 controller, with the actual deposition rates, the material density, the z-

factor (empirical measure for the aging of the crystal) and the tooling factor have to be

adjusted. A z-factor of 1 is used for PbCl2 and PbI2. A density of 5.85 g/cm3 was used for

PbCl2 and of 6.16g/cm3 for PbI2. The tooling factor was obtained with equation 4.1 by

the comparison of desired layer thicknesses and the actual layer thicknesses taken from

SEM cross section measurements.

toolingnew = toolingold ·
dact

dnom
(4.1)

In equation 4.1, toolingnew is the corrected tooling factor, toolingold is the previous tool-

ing factor (1 for the first tooling) and dact is the actual layer thickness. The nominal

layer thickness dnom is calculated from the deposition rate, displayed by the SQM-160

controller and the deposition time. The tooling factor takes several characteristics of the

deposition (e.g. positions of the quartz crystal and the sample or different adsorption

kinetics on the quartz and the sample) into account. In the PVD chamber, two tooling

factors for each material were used. The overall tooling was performed for the deposition

of a PbCl2 layer and takes into account the geometric aspects. Secondly a material spe-

cific tooling factor was determined. The crucible temperatures were measured with type

C thermocouples inside the effusion cells. The substrate temperature was not measured

directly on the substrate but on the substrate holder plate. A calibration curve, connecting

the measured substrate holder plate temperature with the substrate surface temperature

was recorded and is shown in figure A.1 in the appendix. To prevent the effusion cells

and the substrate heating from overshooting the temperatures desired for the deposition,

the PID parameters (Proportional-Integral-Derivative parameters) for the Eurotherm con-

troller were calibrated using the autotune function of the Itools software.
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Both lead salts, PbI2 and PbCl2 were used till the crucibles were empty. When the crucibles

needed to be refilled they were removed from the deposition chamber and transported to

the glove box. There, left over material was removed from the crucible and fresh lead

salts loaded into the crucibles. The crucibles were reinstalled in the deposition chamber

and the chamber was pumped. Before the first deposition the crucibles were carefully

heated to a common deposition temperature with plateaus around 60 °C and 120 °C. This

was done in order to remove water and other volatile contaminations prior to the first

deposition. Each crucible was exclusively used for one material.

Transformation of the lead salts to MAPI by closed space sublimation of MAI

After the lead salt deposition, the substrates were transferred into the CSS chamber with-

out breaking the vacuum conditions. The base pressure in the CSS chamber was in the

range of 1−5 ·10−7 mbar. In the CSS chamber, the substrates were placed directly on the

crucible, the lead salt layer facing downward. Figure 4.7 a shows the CSS setup schemat-

ically.

Figure 4.7.: Schematic illustration of the CSS chamber used for the transformation of PbCl2
or PbI2 to MAPI by exposure to MAI vapor.
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To transform the lead salt layers to MAPI, a temperature program similar to the one used

for the PVD deposition was applied. In a typical deposition, the crucibles and the sub-

strate were heated to a temperature 10 °C below the desired temperature in 10 min and

to the desired crucible and substrate temperatures in additional 10 min. The deposition

time was controlled using a manual shutter. After the deposition, the substrates were left

on the crucible to cool down. Some early samples were prepared without the shutter but

with a molybdenum sample stage. They were exposed to the MAI vapor during the heat-

ing period additional to the transformation time period. After the transformation time

those samples were flipped around, the MAPI layer facing towards the chamber and not

the crucible anymore. In this work, only the sample used to obtain the PES results for

MAPI derived from PbCl2 with Ts = 130 °C was flipped. Some early samples presented

in section 5.1 are fabricated without shutter or flipping. Those samples will be specially

mentioned.

In the CSS chamber, the crucible and the sample were heated with halogen lamps oper-

ated with alternating current. The substrate temperature was controlled by a pyrometer,

looking on the sample through a ZnSe window. The crucible temperature was controlled

using two type K thermocouples placed in the wall and the bottom of the graphite crucible.

The power supply of the lamps was controlled by Eurotherm controllers with the respec-

tive Itools software. The calibration of the pyrometer was carried out by the comparison

of the substrate temperatures of a calibration sample measured with the pyrometer to

the temperatures measured with a thermocouple. The calibration curves can be found

in figure A.2 in the appendix. It has to be mentioned that both, the pyrometer and the

thermocouple, read the temperature on the back side of the substrate. The temperature at

the front side may differ from those temperatures but is not accessible for measurement

due to the closed CSS crucible.

The MAI powder in the crucible was used for several depositions. When the crucible was

refilled, the whole crucible heating unit was removed from the chamber and transferred

into a fume hood. The crucible was removed from the heating unit, the residual MAI was

removed from the crucible and the crucible was cleaned. The shutter was disassembled

and also cleaned. Afterward, the crucible was filled, reinstalled into the heating unit and

the position of all insulating ceramics checked before the reinstallation of the heating unit

into the chamber. The fresh MAI powder was stored in the glove box and only exposed

to air directly before the filling of the crucible. The function of the heating lamps was

checked with a multimeter before the chamber was pumped again. Thereby, one lamp

(including cables, etc.) has a resistance of about 20 Ω. Accordingly, the two side lamp

arrays should show a resistance of about 10 Ω (2 lamps parallel), the bottom array should

show about 7 Ω (3 lamps parallel). When the chamber was pumped down, the crucible

was carefully heated to a temperature above 100 °C to remove any water or volatile con-

taminations.
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Deposition of C60

In this work only few C60 layers were used, exclusively for solar cell fabrication. In those

cases, a 5-10 nm thick C60 layer was deposited by sublimation under vacuum conditions

and provided for further processing by Dr. C. Das. The C60 deposition was carried out

between the oxygen plasma and the lead salt deposition.

4.2.3 Solar cell finishing

If solar cells were fabricated from the vacuum deposited MAPI layers, the layout shown

in figure 4.8 was used. The HTL was always Spiro-MeOTAD which was deposited by spin

coating onto the MAPI layers in a LABstar glove box from MBRAUN after a heat treatment

in a tube furnace in air. Gold was sputtered onto the Spiro-MeOTAD as back contact. The

transfers between the vacuum system, the tube furnace and the glove box were all carried

out in air.

Figure 4.8.: Schematic cut (left top), top view (left bottom) and a typical photograph
(right) of the used solar cell structure.

Figure 4.8 shows that on each substrate four solar cells were fabricated. The active area

of each cell is defined by the gold back and the FTO front contact to a size of 3.25x10 mm.

The solar cell production steps are described in detail below.
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Heat treatment in the tube furnace

Between the vacuum deposition of the perovskite and the back contact deposition in the

glove box, the MAPI layers intended to be implemented into solar cells were heat treated

in air in a tube furnace. To do so, the tube furnace was preheated to 100 °C. After the

preheating phase the substrates were introduced into the tube furnace and heat treated

for 30 min. After a short cooling period, the substrates were introduced into the glove box

for the deposition of the Spiro-MeOTAD HTL.

Spin coating of Spiro-MeOTAD

As a first step for the back contact deposition, the Spiro-MeOTAD solution was prepared.

To do so, 40 mg Spiro-MeOTAD powder were dissolved in 500 µL chlorobenzene in a glass

vial. In addition, 14.26 µL of 4-tert-Butylpyridine and 8.76 µL of Bis(trifluoromethane)

sulfonimide lithium salt (LiTFSI) solution in acetonitril (71.75 mg in 0.5 mL acetonitril)

were added as dopands for the Spiro-MeOTAD. The glass vial was carefully shaken till

all powders were dissolved. To apply the Spiro-MeOTAD solution onto the MAPI layers,

each substrate was placed on a spin coater and 200 µL of the solution were pipetted onto

the substrate. After a delay of 20 s, the substrates were spun for 30 s at 23 rps. After

the spin coating, the substrates were moved from the glove box to a fume hood and the

Spiro-MeOTAD layer was removed from the FTO front contact using isopropanol and cot-

ton buds. As a last step, 60-100 nm of gold were deposited by sputter coating onto the

substrates to form the back contact electrodes and the FTO contact pad.

Removal of excess MAI

In addition to the conventional route for solar cell fabrication, described above, differ-

ent methods for the removal of excess MAI from the fabricated MAPI layers prior to the

Spiro-MeOTAD deposition have been tested. PES experiments on CSS fabricated MAPI

layers directly after the fabrication, after a heat treatment in the tube furnace and after

a heat treatment and a consecutive cleaning of the MAPI layers with isopropanol in the

glove box were carried out during the bachelor thesis of Christian Ondobo. The results

of those experiments indicate that a heat treatment in the tube furnace does not remove

excess MAI from the MAPI layers. However, the results also indicate that excess MAI on

top of the MAPI layers can be washed off with water free isopropanol in the glove box

prior to the Spiro-MeOTAD spin coating step. In addition, the in vacuo annealing steps,

used for the high temperature CSS parameter sets in this work, also reduce the amount

of MAI on top of the MAPI layers. Yet, the reduction of the amount of MAI by in vacuo

annealing appears to be a slow process even at high temperatures and possesses the risk

of a degradation of the MAPI layers. Furthermore, it remains unclear whether excess MAI
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re-sublimes from the MAPI layer surface or diffuses into the MAPI layers to complete the

transformation reaction. The removal of excess MAI by washing with isopropanol and by

a vacuum annealing treatment were tested for the solar cell production but did not yield

a significant increase of the solar cell performance and were therefore not applied to the

MAPI layers used for the solar cells presented in this work.
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4.3 Analysis

In the following sections, the experimental procedure of the characterization of the sam-

ples used in this work is described, starting with photoemission spectroscopy.

4.3.1 Photoemission spectroscopy (PES)

The XPS and UPS measurements were carried out with an ESCALAB 250XL photoelectron

spectrometer from Thermo Fisher Scientific. During all measurements, the chamber illu-

mination (KL 1500 LCD Halogen lamp from Schott) was switched on, as will be discussed

later. The XPS measurements were carried out with monochromatized AlKα radiation

with a wavelength of 1486.6 eV, the UPS measurements with non-monochromatized HeI

radiation with a wavelength of 21.22 eV. For the UPS measurements a bias of -4 V was

applied. The measured XP spectra were calibrated in binding energy and intensity scale

using one of two calibration data sets: The first set of calibration data was the Fermi

edge of silver together with the Ag3d5/2 and Cu2p3/2 core line emission. Both metals

were cleaned with an argon plasma in the measurement chamber, prior to the calibration

measurements. Alternatively, the data were calibrated using the Fermi edge of a freshly

prepared gold layer together with the Au4f7/2, Au4d5/2 and Au4p3/2 core line emissions.

The UPS spectra were referenced to the Fermi edge of Ag or Au. In general, the complete

calibration measurement set was carried out one time per measurement day with control

measurements of the Ag3d (Au4f) emission, between two samples and after the last mea-

surement. The complete calibration was repeated if those control measurements showed

deviations from the original calibration measurement. The evaluation of the measured

data was performed using IGOR Pro 6 software. The background in the XPS detail spectra

was corrected using a Shirley background function (line background for C1s during the

transformation of PbI2 to MAPI in figure A.7 in the appendix) as can be seen in figure 4.9.

Figure 4.9.: Exemplarily depiction of the background correction according to a Shirley func-
tion used in this work.
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The core line binding energy positions were obtained by determining the maximum

position of an emission line by fitting the line with a convolution of a Gaussian and

a Lorentzian function. The Fermi levels, the valence band maximum energy positions

and the secondary electron edges were determined graphically, according to the scheme

shown in figure 4.10.
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Figure 4.10.: Graphical determination of the Fermi level, the valence band maximum
energy position and the work function.

As can be seen in figure 4.10, the Fermi level position was determined by approximating

the intensity of the background (Iback) and of the emission plateau (Iplat) with horizontal

lines. From those approximations, the mean intensity was determined according to the

equation presented in figure 4.10 and the binding energy position corresponding to that

mean intensity was used as Fermi energy and set to 0 eV. To determine the valence band

maximum binding energy position, the intersection of a linear fit of the background with

a linear fit of the valence band edge was used. The secondary electron edge was deter-

mined similarly. The work functions were calculated by subtracting the position of the the

secondary electron edge, after Fermi energy calibration, from the energy of the incident

photons (21.22 eV for HeI measurements). The surface stoichiometry was obtained by

weighting the areas under the core emission lines after the background correction with

Scofield ionization cross sections [65].
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Measurement uncertainties

In photoemission experiments, the width of a core emission line is in the range of several

hundred meV. However, since the emission lines are fitted to obtain their maximum po-

sitions, considerably smaller binding energy shifts can be determined. The measurement

uncertainty for the core line positions obtained with XPS measurements is estimated to

be 50 meV.

The calibration of the measured spectra in intensity scale was carried out using either

the Ag3d5/2 emission or the Au4f7/2 emission after Shirley background corrections. The

change of the reference metals was caused by instrumental necessities. Accordingly, two

sets of XP spectra are used in this work which are self-consistent, those with a calibration

in intensity scale using Ag and those using Au. To connect both sets, the intensity of the

I3d5/2 and the Pb4f7/2 emission of stoichiometric MAPI samples fabricated at substrate

temperatures of 90 °C (intensity calibration with Au) and 130 °C (intensity calibration

with Ag) are assumed as equal after a Shirley background correction. The calibration of

the XP spectra in intensity scale is only relevant for the graphical presentation of the XP

spectra in this work. The calibration of the binding energy scale and the determination

of the relative surface stoichiometries are completely independent on this procedure. To

minimize the effect of measurement uncertainties on the determination of the surface sto-

ichiometry of the samples examined with XPS, relative compositions (for example I/Pb)

will be used in this work for the comparison of the stoichiometries of different samples.

However, an uncertainty in the range of 5-10 % for the relative compositions remains. Of

special interest is the detection limit of specific elements in a certain matrix, for example

of chlorine in a CH3NH3PbI3 matrix. A possibility to estimate such a detection limit with

equation 4.2 is presented by Shard et al. for binary compounds [66]. In equation 4.2, Xx

is the minimal detectable concentration of an element in a certain matrix, measured with

a certain spectrometer. Xref is the minimal detectable concentration of the element in the

respective matrix presented by Shard et al.. The term at the end of the equation is spec-

trometer related. It allows to modify the detection limits presented by Shard et al. when

the intensity (area) of the Ag3d5/2 emission line Ix and the spacing of the data points of

the measured spectrum εx are known for the used spectrometer. For the XPS measure-

ments presented in this work, εx=0.05 eV and Ix ≈ 5.5 · 104 cps for the Ag3d5/2 emission

are used. For the case of chlorine in a CH3NH3PbI3 matrix, Xref ≈ 1 is used, since Xref ≈ 1

is presented by Shard et al. for Cl in an iodine matrix and Cl in a lead matrix. With those

values, the minimal detectable concentration of chlorine in a CH3NH3PbI3 matrix, Xx, is

estimated to be around 1 atomic percent.

X x ≈ X re f ·
�

εx ·
106

Ix

�0.5

(4.2)
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Approximation of the valence band spectra

In chapter 5.3, section 5.3.3, the valence band spectra of a freshly prepared PbCl2 layer

and the spectra measured after consecutive transformation steps of the PbCl2 layer to

MAPI are presented. Those valence band spectra are approximated by the superposition

of reference spectra for PbCl2, PbI2 MAPI and MAI. The approximation was carried out

in IGOR Pro 6 according to the following procedure. Firstly, all spectra, were cut off

at a binding energy position as close as possible to 9 eV. Afterward, the starting point

of all spectra was set to 9 eV. Thereby the difference between the original and the new

starting position was 0.01 or 0.02 eV. Since that difference is below the measurement

uncertainty of the XPS measurements, it will be ignored for the evaluation of the fits.

Finally, the valence band waves were either cut off or extended with zeros to a total

length of 215 entries. This complete procedure was necessary to enable the superposi-

tion of the reference valence band spectra and the valence band spectra measured during

the transformation experiment. Finally, the approximations of the valence band spectra,

measured during the stepwise transformation of PbCl2 to MAPI were done according to

equation 4.3. In equation 4.3, Υ is the superposition of the reference spectra, ΨA is the

reference spectra of phase A, a the scaling factor used for the reference spectra ΨA, ΨB the

reference spectra of phase B and b the scaling factor for the reference spectra ΨB and so on.

Υ = ΨA · a+ΨB · b+ ... (4.3)

4.3.2 X-ray diffraction (XRD)

The XRD measurements and Rietveld refinements were conducted by the “Material Design

by Synthesis” group of Prof. Dr. O. Clemens. Thereby, a Bruker ASX D8 diffractometer in

Bragg-Brentano geometry with CuKα1,2 radiation was used. The samples were mounted

into sealed, air tight holders under argon atmosphere to prevent oxidation and degra-

dation during the measurements. As measurement parameters a step size of 0.007°, a

fixed divergence slit and an integration time of either 0.4 s (glass/FTO/TiO2 substrate,

MAPI derived from PbCl2 at Ts = 75 °C), 1.1 s (MAI) or 4.4 s (PbI2, PbCl2 and MAPI) per

step were used for the XRD experiments presented in sections 5.2 and 5.3. The counting

time was increased to 16 s per step for the high angle regime in order to obtain a highly

resolved pattern, which could indicate the symmetry of the formed perovskite phase.

Background subtraction on the shown diffraction patterns was carried out using EVA soft-

ware by Bruker. The Rietveld refinements were carried out with TOPAS V5 software from

Bruker [72]. Graphical depictions of the crystal structures were created using Diamond 4

software from Crystal Impact.
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4.3.3 Scanning electron spectroscopy (SEM)

SEM samples were prepared by attaching a fabricated sample to an aluminum sample

holder with a carbon pad and contacting it with silver conducting paint. If cross section

images were intended, in order to have a freshly prepared edge, the sample was broken

into two parts before one of the parts was attached to the aluminum sample holder. The

samples were stored in the glove box till the measurements were conducted. The SEM

measurements were carried out by K. Lakus-Wollny, using a XL30FEG Philips SEM in sec-

ondary electron mode. The cross sections were measured under an angle of 75° with

respect to the horizontal plane (see figure 3.19). This angle was taken into account when

calculating the layer thicknesses. Layer thicknesses were determined graphically on the

cross section images. To do so, the layer thickness was measured at several positions, dis-

tributed over the whole cross section. The mean value of those lengths was determined

and converted to the layer thickness in nm using the µ-bar of the images. The grain sizes

presented in this work are a semi quantitative measure. Grains considered to show typ-

ical grain sizes were chosen by eye and approximated with geometrical forms of known

area. The area of those geometrical approximations was then considered as a measure

of the actual grain sizes and transformed to grain sizes in µm2 by usage of the µ-bar.

The uncertainty of the optical determination is estimated to be ≤ 5 % for the mean layer

thickness and for the grain size using an error propagation approach. However, the mean

layer thicknesses are dependent on the position and the amount of measurement spots.

This dependence may cause an additional error for the mean layer thicknesses.

4.3.4 UV/VIS absorption spectroscopy

For the UV/VIS measurements a Cary 7000 Spectrometer by Agilent Technologies was

used. The samples were measured at room temperature in air. The sample normal was

rotated 6° (angle β in figure 3.20) with respect to the incoming beam. Directed reflection

and transmission spectra were measured with the detector at 12° and 180° with respect

to the incoming beam. Both measurements were carried out with 90° P polarization

and a fixed spectral band width of the incident beam of 4 nm. From the reflection and

transmission measurements and the layer thickness determined with SEM, the absorption

coefficients αhν were calculated according to equation 3.29 [69,70].
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4.3.5 Photoluminescence spectroscopy

Photoluminescence spectroscopy was carried out at room temperature in air using a Cary

Eclipse spectrometer from Varian. All measurements presented in this work were carried

out either with an emission and excitation slit width of 20 nm. To excite charge carriers in

the sample, radiation of either 450 nm (bare glass/FTO/TiO2 substrate and substrate with

PbI2, PbCl2, MAI and MAPI derived from PbCl2 at Ts = 75 °C during the CSS process) or

480 nm (all other MAPI samples) was used. Corresponding to the excitation wavelength,

an emission filter (from SCHOTT AG) cutting out radiation with a wavelength below

475 nm and 530 nm, respectively, was used.

4.3.6 IV measurements on solar cells

The IV measurements were carried out in air under simulated AM1.5G illumination us-

ing an Oriel Corporation 81150 solar simulator together with an Oriel 68811 arc lamp

power supply and a Keithley 2400 SourceMeter. The light intensity was calibrated using

a bolometer and an Ee-meter 202 controller from PRC Krochmann. The solar cells were

measured from -0.2 V to 1.2 V and back to -0.1 V with steps of 0.1 V and a holding time of

1 s at each step. Before each measurement, one voltage sweep from -1 V to 1.5 V without

illumination was applied to fill deep trap states and reduce hysteresis. To measure the

dark curves, all lights in the lab were switched off and the curtains closed (for measure-

ments at night). If dark measurements were carried out during day time, the measured

samples were covered, to protect them from illumination. The Jsc, Voc and maximum

power point (MPP) were determined iteratively over a time range of 30 s for the Jsc and

Voc and 180 s for the MPP. Thereby, to determine Jsc, the sample was kept at 0 V and the

current was measured. To determine Voc, a measured net current of 0 A was used as crite-

ria. To determine the MPP, a starting voltage of 0.6 V was used. During the determination

of the MPP, a ∆V is added to and subtracted from this voltage, the corresponding currents

are measured (delay time at each voltage = 10 s) and the output powers Pel calculated.

The maximization of the output power is used as criteria for the adjustment of the volt-

age steps. With increasing measurement time, ∆V decreases from 0.1 V to 0.001 V, till

VMPP and the corresponding JMPP are finally determined. From Jsc, Voc and the MPP the

fill factor is calculated. Current densities are calculated for a cell area of 3.25x10 mm,

efficiencies for an radiation power Prad of 1000 Wm−2.
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5 Results and discussion

5.1 Prerequisites

Before the results of this work are presented and discussed in detail, some terms need to

be specified and some measurement conditions to be defined. Furthermore, in this first

section of the results and discussion chapter, general aspects, basic to the following sec-

tions, will be described. Some parts of this section are taken from our publication [1].

5.1.1 The glass/FTO/titanium dioxide substrate

As described in the experimental section, the samples used during this work were fab-

ricated on glass/FTO substrates with a spray coated 30-50 nm thick TiO2 hole blocking

layer. Hence, it is reasonable to discuss the morphology and the PES properties of those

substrates. The XRD, UV/VIS and PL properties will be presented when needed in the

following sections.

Figure 5.1.: SEM images in SE contrast of a glass/FTO/TiO2 substrate in top view (left) and
tilted 75° with respect to the horizontal (right).

The top view SEM in figure 5.1 shows a fine grained morphology and homogenous grain

size distribution. No pinholes or other macroscopic defects are observable. The cross

section image in figure 5.1 shows a columnar grain growth of the FTO grains. The 30-

50 nm thin TiO2 layer is too thin to be seen in the SEM images. The XP survey spectra of

glass/FTO/TiO2 substrates are presented in figure 5.2. The high binding energy regime

of the survey spectra shows that minimal contaminations of Zn and Cu might be present
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in the samples. The Zn could be a residue from the FTO etching process, possible ori-

gins of the copper are unclear. Since there is no indication of tin in the survey spectra, it

can be confirmed that the compact TiO2 layers are dense and at least about 10 nm thick.

From the comparison of the “as is” and the plasma treated sample, the use of the oxy-

gen plasma to remove carbon contaminations from the substrate becomes apparent. The

plasma treated sample shows a little contamination of iodine (I3d lines visible at 624 eV

and 636 eV), which is, due to its high volatility, present everywhere in the integrated sys-

tem. For the fabrication of the MAPI layers, plasma treated glass/FTO/TiO2 substrates

were used and are marked with a thick line in the following PE spectra in this section.
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Figure 5.2.: Survey XP spectra of 30-50 nm TiO2 on a glass/FTO substrate measured with
XPS, “as is” (bottom) and after an oxygen plasma treatment (top). The plasma treated
condition, used as substrate for the MAPI layer fabrication, is marked with a thick line.

To get more detailed information about the influence of the plasma treatment on the PES

properties of the glass/FTO/TiO2 substrates, core emission and valence band spectra were

measured and are presented in figures 5.3 and 5.4 and table 5.1. The Ti2p lines in figure

5.3 have a symmetric shape, without pronounced shoulders, which is a good indication,

that all the titanium in the layers has the oxidation state Ti4+ [73, 74]. An incomplete

reaction would lead to the presence of a Ti3+ emission, originating from the presence of

Ti2O3 or defect states, which would become visible as lower binding energy shoulder on

the Ti2p emissions. [73, 74]. The O1s lines show a shoulder at higher binding energies.

Since there is no low BE shoulder on the Ti2p lines, the O1s shoulder is probably not

related to the presence of Ti2O3. The presence of the high binding energy shoulder on

the O1s line is also reported in literature for TiO2 and numerous other transition metal

oxides [75–77]. Yet, its origin is not completely understood. Possible explanations range

from final state effects to surface contaminations, including stoichiometric effects and the

presence of peroxides [75–78]. For the “as is” sample, surface contaminations are surely

contributing to the shoulder. But, since the shoulder does not disappear along with the

carbon line during the plasma treatment, surface contaminations can not be its only cause.
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Figure 5.3.: O1s and Ti2p core line XP spectra of 30-50 nm TiO2 on a glass/FTO substrate
measured with XPS, “as is” (bottom) and after an oxygen plasma treatment (top). The
plasma treated condition, used as substrate for the MAPI layer fabrication, is marked with
a thick line.

The core line spectra in figure 5.3 indicate that the plasma treatment shifts both, the

O1s and the Ti2p lines to lower binding energies. To get a more general impression on

the effect of the plasma treatment, the core line and valence band maximum positions

of several glass/FTO/TiO2 substrates in different conditions are presented in table 5.1.

The sample used in figures 5.2, 5.3 and 5.4 is 108RDV. Only samples with sufficiently low

surface contaminations after the plasma treatment are considered in table 5.1.

Table 5.1.: Core line and valence band maximum positions, work functions φ and elec-
tron affinities χ of several glass/FTO/TiO2 substrates measured “as is” and after an oxygen
plasma treatment. All binding energies are given in eV. The electron affinities are calcu-
lated from the work functions and the XPS valence band maximum positions. A band gap
of 3.25 eV was used and taken from literature [76].

condition sample O1s Ti2p3/2 VBM (XPS) VBM (UPS) φ χ

as is
108RDV 529.92 458.69 2.29 2.85 4.46 3.50
19RDII 530.13 458.88 2.56 x x x

O2 plasma

108RDV 529.66 458.42 2.29 2.24 5.47 4.51
108RDIV 529.75 458.47 2.39 x x x
1711RDI 530.13 458.89 3.04 x x x

The core line positions for a certain condition are quite consistent. Only, the plasma

treated sample 1711RDI shows shifted line positions compared to the other samples. The

reason for this might be that, compared to the other TiO2 layers, 1711RDI contains a

larger amount of the anatase TiO2 modification, as will be discussed below. The values for

1711RDI are written italic in tables 5.1 and 5.2 and are not included into the following

mean values. The mean values of the O1s binding energies in table 5.1 of the “as is”

samples are 530.03 eV (458.79 eV for Ti2p3/2) and 529.71 eV (458.45 eV) for the plasma

treated samples. The comparison of those values with literature data for rutile of 530.0 eV
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for O1s and 458.7 eV for Ti2p3/2 shows a good agreement for the “as is” samples [75]. The

shift of the core emission lines of about 0.3 eV to lower binding energies is in accordance

with a change from a reduced TiO2 surface to a stoichiometric or an oxidized TiO2 surface

during the oxygen plasma treatment and indicates a corresponding band bending at the

TiO2 layer surface [78]. The analysis of the XP valence band spectra in figure 5.4 a and

of the UP spectra in figure 5.4 b yields further information on the effect of the oxygen

plasma on the TiO2 layer surface.
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Figure 5.4.: Valence band spectra measured with XPS (a) and UP spectra (b) of 30-50 nm
TiO2 on a glass/FTO substrate, “as is” (bottom) and after an oxygen plasma treatment
(top). The UP spectra are normalized in intensity scale. The plasma treated condition,
used as substrate for the MAPI layer fabrication, is marked with a thick line.

A reasonable explanation for the observed band bending would be the replacement

of OH– adsorbates by O2
– adsorbates during the plasma treatment of the TiO2 layer

[79–83]. The OH– adsorbates can be formed by the dissociative adsorption of wa-

ter [79, 82, 84–86]. Since the TiO2 layers used in this work were fabricated and stored

in air and hence experience ambient humidity, the adsorption of water, molecular and

dissociative, can well be assumed. The presence of OH– adsorbates is further indicated

by the high binding energy shoulder of the O1s line of the “as is” sample in figure 5.3

a [87]. The OH– groups are reported to adsorb, however not exclusively, at oxygen va-

cancies [79, 82, 83]. Reckers proved the existence of oxygen vacancies even on in situ

cleaved anatase crystals [79]. However, in XPS experiments on those cleaved crystals no

Ti3+ line was determinable [79]. Hence, the absence of the Ti3+ line is no sufficient indi-

cation for the absence of oxygen vacancies and oxygen vacancies are likely to be present

also in the spray coated TiO2 layers examined in this work although no Ti3+ line could

be determined in Ti2p spectra in figure 5.3 b [78]. However, the use of oxygen as carrier

gas during the spray pyrolysis might reduce their density. The adsorbed OH– molecules

are reported to transfer an electron to the TiO2, causing an accumulation layer and a

respective downward band bending, or a reduction of the TiO2 work function, respec-

tively [79, 81–83]. Accordingly, such a downward band bending is also assumed for the

TiO2 layers presented in this work for the “as is” condition. Additionally, to the downward

band bending, the formation of a surface dipole due to the adsorption of molecular water
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on TiO2 is reported in the work of Reckers for the exposure of in situ cleaved anatase sur-

faces to air [79,82]. Such a dipole, more specifically the removal of such a dipole during

the plasma treatment, is also indicated for the TiO2 layers used in this work by the work

function change during the plasma treatment (see figure 5.4 b for comparison). In figure

5.4 a, both effects, the downward band bending and the surface dipole are implemented

into the band energy diagram of the TiO2 layer in the “as is” condition. During the oxygen

plasma, it is likely that the OH– adsorbates on the TiO2 layer are replaced by O2
– adsor-

bates [79, 80, 88]. The presence of those O2
– adsorbates will cause an accumulation of

holes at the TiO2 surface and hence an upward band bending [79, 80, 83]. The removal

of the downward band bending (removal of OH– adsorbates) and the development of the

upward band bending (O2
– adsorption) during the plasma treatment can not be sepa-

rated. Only the total band bending is assessable. Hence, to be able to draw the schematic

band energy diagrams in figure 5.5, the total band bending was separated in a band bend-

ing attributed to the presence of OH– adsorbates in the “as is” condition, Ψb-ai, and into

a band bending attributed to the presence of O2
– adsorbates after the plasma treatment,

Ψb-pl = 0.27 eV−Ψb-ai. Thereby, considering a reduced oxygen vacancy density on the “as

is” sample due to the use of oxygen during the spray pyrolysis, the larger part, 0.17 eV, is

attributed to the O2
– adsorbates. The energy levels for the flat band condition of the TiO2

layer in figure 5.5 are obtained by correcting the energy levels measured after the plasma

treatment with the assumed O2
– related band bending of 0.17 eV. This procedure yields

assumed bulk values of 2.46 eV for the VBM and of 5.30 eV for the work function. The

remaining band bending of 0.1 eV is attributed to the OH– adsorbates. The distribution of

the band bendings to OH– and O2
– adsorbates is in accordance with the band bendings

presented by Reckers, for the exposure of an in situ cleaved anatase crystal exposed to air

and a mild oxygen plasma, respectively [79]. The interface dipole layer in the “as is” sam-

ple is likely sufficiently thin to be tunneled by electrons and is neglected in the following

discussion. Considering only the conduction band offset between the TiO2 in the “as is”

condition and MAPI, the electron transfer from MAPI into TiO2 is likely to be unhindered.

However, for the n/n-isotype hetero junction, the band banding and hence the difference

for the work functions might become relevant, as will be discussed in section 5.2.3 in

chapter 5.2 by means of the role of PbI2 in a perovskite solar cell. Nevertheless, since

similar processed TiO2 layers yielded efficiencies above 10 % for solar cells with the MAPI

absorber fabricated by co-deposition of MAI and PbI2 by M.Sc. Maximilian Stöhr1 [89],

also the TiO2 layers fabricated in this work can be assumed to be suited for the fabrication

of solar cells. The plasma treatment removes the OH– adsorbates but leads to O2
– adsor-

bates on the TiO2 surface, causing an upward band bending at the surface of the plasma

treated TiO2 layer. This upward band bending alone will probably not significantly influ-

ence the electron transfer between MAPI and TiO2. However, the O2
– adsorbates might

react with any layer deposited onto the TiO2, forming an interface phase which can well

be detrimental for the electron transport.

1 With a C60 buffer layer
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Figure 5.5.: Anderson alignment of MAPI and TiO2 “as is” (a) and after an oxygen plasma
treatment (b). The VBM positions were derived form XPS experiments. For TiO2, a band
gap of 3.25 eV was used and taken from literature [76].

Accordingly, for the use in a solar cell, measures have to be taken to remove or pas-

sivate the O2
– adsorbates on the TiO2 layers. For both conditions, “as is” and plasma

treated, Reckers reports a pronounced influence of UV radiation and X-rays [79]. In the

“as is” condition both illuminations enhance the downward band bending, but the influ-

ence of the UV light is more pronounced than the one of the X-rays [79]. This effect is

well in accordance with the observation that the VBM position determined from UP spec-

tra, which were measured after the XP spectra, indicates a more pronounced downward

band bending than the VBM position derived from the XP spectra. For oxygen plasma

treated TiO2 layers, Reckers reports an annihilation of the upward band bending within

10 min of X-ray illumination and the development of a downward band bending dur-

ing 60 min of illumination with UV light [79]. However, Reckers used a mild oxygen

plasma. The TiO2 layers used in this work were treated with a strong oxygen plasma.

Hence, the illumination with UV light during the UPS measurements is assumed to be too

short to remove the O2
– adsorbates (same VBM position for XPS and UPS experiments)

and it can well be assumed that O2
– adsorbates persist after the PES measurements, but

their amount might be reduced. The effect of the X-ray and UV radiation is apparently

weaker for the plasma treated condition as for the “as is” condition, is also the reason,

why the measurements on the plasma treated sample were used to estimate the TiO2

bulk positions of the energy levels in figure 5.5. Furthermore, since the XPS measure-

ments were carried out before the UPS measurements and the influence of X-rays on

the band bending is weaker than the one of UV radiation, the VBM positions derived

from the XP spectra were used in figure 5.5. Considering that the number of the O2
–

adsorbates might be decreased during the PES measurements, their influence on inter-

face effects between the TiO2 and any deposited layer on top of the TiO2 will be even

more pronounced without the measurement, supporting the assumed need, to remove
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or passivate the O2
– adsorbates before the deposition of the solar cell absorber layer

onto the glass/FTO/TiO2 substrate. Besides the differences in the PE spectra of samples

in the “as is” and the plasma treated condition, similar processed samples from different

batches also show some deviations, as figure 5.6 indicates for two plasma treated samples.
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Figure 5.6.: Comparison of the valence band spectra of the plasma treated sample from
figure 5.4 (bottom) and a similar fabricated plasma treated sample (top). The core line
positions of the upper sample can be found in table 5.1 as 1711RDI.

The comparison of the valence band spectra of the two plasma treated samples in figure

5.6 indicates that the spray coated TiO2 layers appear to be neither pure rutile nor pure

anatase. Apparently, even the fractions of rutile and anatase can vary, leading to different

valence band structures and a different valence band onset (for example from 2.29 eV

compared to 3.04 eV for the samples presented in figure 5.6). Which crystal structure

appears to be dominant can be derived by the relative intensities of the feature around

5 eV to the one around 7 eV [73,90]. Here the sample with the lower valence band max-

imum position is more rutile dominated, while the sample with the higher valence band

maximum position is more anatase dominated. Valence band spectra of pure anatase and

pure rutile can be found in references [73] and [90]. In literature, measured valence band

maximum positions for TiO2 in different modifications and fabrication techniques range

from 2.21 eV to 3.28 eV [76,77]. Hence, considering the probable upward band bending

due to the oxygen plasma treatment, the valence band maximum positions of 3.04 eV for

the anatase dominated sample and of 2.3 - 2.5 eV for the rutile dominated samples fit well

to literature values. The varying crystallographic character of the layers is also indicated

by the binding energy differences between the Ti2p3/2 line, the O1s line and the valence

band maximum. The binding energy difference is about 0.3-0.5 eV larger for rutile than

for anatase [73,90]. All plasma treated samples but 1711RDI presented in tables 5.1 and

5.2 show a binding energy difference of about 456.1 eV for Ti2p3/2 to the VBM and about

527.4 eV for the O1s line to the VBM. Those binding energy differences are close to the

ones for polycrystalline rutile films reported by Pfeifer et al. (about 456.1-456.2 eV and

about 527.45-527.55 eV). On the other hand, with about 455.8 eV and 527.1 eV, the core
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line positions of 1711RDI are closer to the ones presented for polycrystalline anatase films

(about 455.85-456.05 eV and about 527.05-527.30 eV) [73, 90]. Hence, the comparison

of the binding energy differences in figure 5.6 and table 5.2 gives a further indication that

the phase contributions of rutile and anatase may vary for similar processed TiO2 layers,

originating form different batches.

Table 5.2.: Distances in eV between the core lines and the valence band maximum (all
measured with XPS) of several glass/FTO/TiO2 substrates measured “as is” and after an
oxygen plasma treatment.

condition sample O1s - VBM (XPS) Ti2p3/2 - VBM (XPS) O1s - Ti2p3/2

as is
108RDV 456.40 527.63 71.23
19RDII 456.32 527.57 71.25

O2 plasma

108RDV 456.13 527.37 71.24
108RDIV 456.08 527.36 71.28
1711RDI 455.85 527.09 71.24
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5.1.2 MAPI layer fabrication protocols

Close versus closed space sublimation

The terms close and closed space sublimation are often used in an equivalent meaning. In

this work close space sublimation means the use of a spacer between the CSS crucible and

the substrate which opens a slit of about 22 mm x 1 mm. The closed space sublimation

uses no spacer. The use of a spacer could be advantageous for the transformation of PbCl2
to MAPI in a CSS process, because it would allow gaseous reaction products like MACl

to leave the CSS crucible. But, it also lets a fraction of the sublimed MAI, or some of its

decomposition products, escape from the CSS crucible leading to a reduced MAI partial

pressure inside the CSS crucible. The effect of the reduced pressure on the transforma-

tion process of PbCl2 layers to MAPI is shown in figure 5.72. The comparison of the main

reflections for PbI2 and MAPI in figure 5.7 shows that for a certain substrate temperature

the PbI2 phase fraction is larger for the close space sublimation compared with the closed

space sublimation. Thereby, a large PbI2 content indicates an incomplete transformation

of the PbCl2 layer to the perovskite, as will be discussed in section 5.3.3. Accordingly, for

a certain crucible temperature, the closed space sublimation yields a complete or mostly

complete transformation of PbCl2 to MAPI at higher substrate temperatures compared to

the close space sublimation. Since one goal of this work was to increase the substrate

temperature in the Pb-salt/MAPI transformation process, in the following, only samples

fabricated with the closed space sublimation will be discussed. Accordingly, the abbrevia-

tion CSS will be used for closed space sublimation.

Optimization of CSS parameters

First optimizations
Figure 5.7 already indicates that there is a minimum temperature difference between

Tc and Ts for the closed space sublimation, needed to ensure a good transformation of

the lead salt to MAPI. To define that temperature difference, further experiments were

performed resulting in the observation that a crucible temperature roughly 30 °C higher

than the substrate temperature leads to a good transformation of Pb-salts to MAPI.

Fine tuning of the parameters
To determine the temperature window of the two step process presented in this work,

four defined substrate temperatures, 75 °C, 90 °C, 130 °C and 150 °C, will be used. The

crucible temperatures and the transformation times were fine tuned for those substrate

2 The XRD measurements shown in figure 5.7 are pre-experiments. For those measurements the parame-
ter sets for the XRD measurements are different form those described in section 4.3.2 but are consistent
for the measurement set.

79



Figure 5.7.: XRD patterns of MAPI fabricated from PbCl2 layers on glass/FTO/TiO2 sub-
strates at Tc = 120 °C during the CSS process, with (left) and without (right) a slit be-
tween the CSS crucible and the sample. This corresponds to close (left) and closed (right)
space sublimation. All samples were fabricated without shutter or flipping during the
CSS process step. The transparent bars mark the main reflections of PbI2 (dark blue) and
MAPI (red) and are guides to the eye. The ratios between the PbI2 and the MAPI main
reflections serve as a measure to asses how far the transformation of PbCl2 to MAPI is ad-
vanced. No background correction was performed for all samples. The diffraction patterns
are normalized in intensity scale.

temperatures to achieve a good transformation. The criterion chosen here to define the

best Tc/Ts/tt sets is a complete transformation of the lead salt layers to the CH3NH3PbI3

perovskite without lead salt residuals below or surplus CH3NH3I on top of the MAPI layer.

To determine the phase fractions of the lead salts in the MAPI layers, XRD was used. As

mentioned above, PbI2 constitutes an intermediate phase between PbCl2 and MAPI, as

will be discussed in detail in section 5.3.3. Furthermore, the intensity of the PbCl2 re-

flections is rather low compared to the ones of the PbI2 and MAPI main reflections (see

figure 5.44 for comparison). Hence, since the PbCl2 reflections are not observable also

for incomplete transformations of PbCl2 to MAPI, the main reflection of PbI2 is used to

asses the transformation of PbI2 and PbCl2 to MAPI. The crucible temperature is treated

as the coarse parameter for the optimization of the CSS transformation3 and was adjusted

in a first step (see figure 5.8). The transformation time tt is, as a first approximation, de-

pendent on the inward diffusion of the MAI dissociation products. It is the fine tuning

parameter for the transformation and was optimized in a second step (see figure 5.9). A

theoretic description of the physical processes contributing to the transformation of the

lead salts to MAPI is given in section 3.3. The PbI2 content in the layers shown in figures

5.8 and 5.9 is even less than suggested by comparison of relative intensities of the PbI2

reflection and the MAPI reflection, due to a pronounced texture of the PbI2, as will be

discussed in chapter 5.2.

3 Reference experiments, carried out with the CSS chamber, indicate an exponential increase of the
crucible pressure with increasing crucible temperature.
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Figure 5.8.: Crucible temperature Tc versus substrate temperature Ts during the CSS step
of the fabrication of MAPI layers from PbI2 and PbCl2. The best Tc/Ts sets are marked
green, insufficient Tc/Ts sets are marked red. A complete transformation without residual
PbI2 or PbCl2 and no surplus MAI is applied as criterion to determine the best Tc/Ts pairs.
Parameter sets used for the transformation of PbI2 to MAPI are denoted with a tilted star
(X), parameter sets used for the transformation of PbCl2 to MAPI are denoted with a ver-
tical star (+). The SEM and XRD results are shown exemplarily and are all taken from MAPI
samples fabricated from PbI2. The signal to noise ratio varies due to different integration
times during the XRD measurements. The transformation times were optimized in a sec-
ond step. The optimization of the transformation times is shown in figure 5.9 on the next
page.
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Figure 5.9.: Transformation times for the best Tc/Ts pairs found in figure 5.8 (same sam-
ples in both graphs). The criterion for the best parameter sets and all meanings of symbols
match the ones in figure 5.8. Only, the SEM and XRD results shown in the graph are from
the MAPI samples fabricated from PbCl2 instead of PbI2. The signal to noise ratio varies
due to different integration times during the XRD measurements.

The tendency of the earlier experiments, that a difference of roughly 30 °C between Tc

and Ts results in a good transformation of the lead salts to MAPI can be validated for the

transformation of PbCl2 as well as of PbI2 layers with the experiments shown in figure

5.8. Figure 5.9 shows that with increasing substrate and crucible temperatures, the trans-

formation times decreased drastically from 120 min for the Ts=75 °C samples to 20 min,

with additional 10 min annealing time, for the Ts=130 °C samples. The parameter sets

used for the optimization experiments are summarized in table 5.3.
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Table 5.3.: Transformation parameters and Pb-salt layer thicknesses (calculated from the
deposition rates) for all samples used in the optimization experiments presented in figures
5.8 and 5.9.

lead salt success Tc / °C Ts / °C tt / min ta / min dPb-salt / nm

PbI2

good

115 75 120 0 202
125 90 80 0 180
160 130 20 10 180
180 150 18 12 180

insufficient
105 75 120 0 238
110 75 120 0 202
120 90 120 0 150

PbCl2

good

110 75 120 0 136
125 90 120 0 104
160 130 20 10 107
180 150 20 10 107

insufficient
120 90 95 0 150
160 130 10 0 104
160 130 15 15 104

Table 5.3 shows that the PbCl2 layers are generally thinner than PbI2 layers. This differ-

ence is intentional. The reason for this is the different theoretical volume increase during

the transformation of PbI2 and PbCl2 to MAPI, combined with the aim to get MAPI layers

from PbI2 and PbCl2 with roughly the same thickness. For an intended MAPI layer thick-

ness of 300 nm, this results in a nominal layer thickness of 150 nm for PbI2 and 100 nm

for PbCl2. The layer thickness of 300 nm was intended for the MAPI layers to ensure that

life time and mean free path of the photoexcited charge carriers are sufficient to reach

the charge transport layers. Due to fluctuations in the rate monitoring during the Pb-salt

deposition, the actual film thicknesses are assumed to be 180-200 nm for PbI2 and about

110 nm for PbCl2. Only for the Ts=75° samples thicker lead salt layers were chosen to

apply transformation parameters found in earlier experiments.

In summary, during the optimization of the CSS parameters, for both lead salts and for

all four substrate temperatures, Tc/Ts/tt transformation parameter sets could be found

which were suited to achieve MAPI layers with a high (crystalline) phase purity.
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5.1.3 Relevant measurement effects

When working with MAPI layers, some specific measurement effects have to be taken into

account. The two most relevant for this work will be presented in the following.

Beam damage to MAPI layers during SEM measurements

In SEM measurements, the MAPI layers examined in this work appear to form cracks

along their grain boundaries. Those cracks are also reported in literature [91]. If the

cracks were a feature of the MAPI layers, they would be detrimental to the electrical per-

formance of solar cells fabricated from those layers. The reason is that the cracks lead

to short circuits between the front and back contact of a solar cell. Figure 5.10 shows

SEM measurements of a MAPI layer fabricated from PbCl2. A spot on the layer without

defects is chosen (figure 5.10 a). Then, the beam is zoomed in on the spot, increasing the

areal electron beam intensity by focusing on a smaller area (figure 5.10 b) and zoomed

out again (figure 5.10 c). Only after increased electron beam stress, the cracks in the

MAPI layer are observed. The most probable reason for the crack formation is heating

of the sample due to the energy input of the electron beam combined with insufficient

heat dissipation in the MAPI layer. Materials containing heavy elements like iodine or

lead are susceptible to degradation under electron beam radiation due to the large en-

ergy input [92]. The thermal conductivity of MAPI at room temperature is reported to be

0.5 W/(K ·m) for single crystals and 0.3 W/(K ·m) for polycrystals by Pisoni et al. and

about 1 W/(K ·m) by Kovalsky et al. and hence very low [93, 94]. This heating can lead

to several effects like thermal expansion of the grains, sublimation of a low sublimation

point phase at the grain boundaries or release of stresses in the layers induced by the lim-

ited possibility of the lead salt grains to expand during the transformation of the Pb-salts

to MAPI. All these effects could lead to the observed crack formation during the SEM mea-

surements. The sensibility of MAPI towards heating by the electron beam is also reported

in literature [95].

Influence of ambient illumination on PE spectra of MAPI layers

Since MAPI is a solar cell absorber, the effect of ambient illumination during photoemis-

sion measurements has to be taken into account, when evaluating the PE spectra. For

MAPI layers on PEDOT:PSS and MAPI single crystals, significant line shifting due to a

photovoltage is reported in literature [96]. Hence, the influence of illumination on the

PES features of the MAPI layers on the glass/FTO/TiO2 substrates used in this work needs

to be examined. To do so, a wet chemical prepared (by M.Sc. Claudiu Mortan) MAPI layer

on a glass/FTO/c-TiO2/m-TiO2
4 substrate was mounted to a special sample holder in a

4 m-TiO2 corresponds to mesoporous TiO2
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Figure 5.10.: Degradation of a MAPI layer due electron beam irradiation (before zooming
(a), zoomed image (b) and after the zooming (c)). The SEM images are in SE contrast. The
MAPI sample is made from PbCl2. The sample was fabricated without shutter or flipping
during the CSS process step and was heat treated in air for 30 min at 120 °C between the
CSS and the SEM measurement.

way, that the FTO electrode was grounded5. The MAPI layer was not contacted, mean-

ing the junction was used in open circuit conditions (see figure 5.11). If a photovoltage

occurs, it should be maximized by this setup. The sample was measured in the dark and

ambient light. In addition a Solar Raptor high intensity discharge lamp (color tempera-

ture 5000 K) was used to enlarge possible photoeffects. The corresponding core level and

valence band spectra are shown in figure 5.12. The wet chemical prepared sample was

used to ensure to have a photoactive MAPI layer. Figure 5.12 shows no significant effect of

the illumination on the half cell. The core line positions of iodine show a minimum value

619.48 eV (amb + 100 % lamp) and a maximum value of 619.56 eV (ch.ill). The core

line positions of lead showed a minimum of 138.49 eV and a maximum of 138.57 eV (at

similar conditions as iodine). If a photovoltage would develop in the MAPI layer it should

cause a shift of the line positions with increasing light intensity. But, also considering

the measurement inaccuracy of 0.05 eV, no such systematic shift can be determined. Fur-

thermore, for this measurement the MAPI layer was kept under open circuit conditions,

to enhance the effect of a possible photovoltage. In standard measurements, the MAPI

layers are grounded by the metal frame of the sample holder (see figure 4.5). Making the

development of a photovoltage even less likely. Hence, any illumination effects can be

neglected in the following.

The finding that illumination during the measurements does not influence the PES fea-

tures of the MAPI layers on glass/FTO/TiO2 substrates appears to be in contrast to the

results presented by Zu et al. for MAPI on PEDOT:PSS [96] but are in fact well in accor-

dance. The reason are the different substrates and cell configurations. PEDOT:PSS is a

hole conducting electrode while FTO/TiO2 is an electron conducting electrode. Accord-

ingly, if charge carriers are generated in the half cell, with PEDOT:PSS as substrate, the

electrons will move to the MAPI surface while with FTO/TiO2 as a substrate the holes

will move to the surface. Since Zu et al. explain the observed influence of white light

illumination during the measurement with the filling of surface trap states with electrons,

it is consistent that no such effect is observable when only holes reach the surface.

5 Experiments conducted together with M.Sc. Michael Wußler.
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Furthermore, the core line and valence band maximum positions presented in figure 5.12

are in accordance with the positions presented by Zu et al. for PES measurements in

the dark [96]. In addition, recent experiments in our group, by Wußler et al., show that

the presence of a hole conducting (in this case Spiro-MeOTAD) layer is crucial for the

development of a photovoltage in perovskite solar cells6. Since, no such layer is present

during the PES experiments presented in this work, the absence of a photovoltage is well

in accordance with those results.

Figure 5.11.: Sample holder used to evaluate the influence of light on the PES experiments
of a MAPI layer on a glass/FTO/c-TiO2/m-TiO2 substrate. The insulating holder is made
from PTFE. Only the FTO front contact is grounded by a copper probe which is connected
to the PE spectrometer sample stage.

6 unpublished work
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Figure 5.12.: XP spectra of a wet chemically prepared MAPI layer on a glass/FTO/c-TiO2/m-
TiO2 substrate under different illumination intensities. For the dark measurement, all
lamps inside the measurement chamber were switched off and the windows covered
with aluminum foil. The chamber illumination measurement (ch. ill.) was carried out
with the windows still covered but the chamber illumination, a KL 1500 LCD Halogen lamp
from Schott, switched on. Ambient means that the measurement chamber windows were
uncovered. Hence, ch. ill.+ amb means that the chamber lamp was on and the windows
uncovered. In addition, experiments were carried out with the chamber lamp off, the
windows uncovered and a Solar Raptor high intensity discharge lamp (color temperature
5000 K) used for additional light intensity. The intensity of the additional lamp was reg-
ulated by the use of gray filters to 12.5 %, 25 %, 50 % and 100 % of its irradiation power.
The results of the amb + 100 % lamp measurement were confirmed with a new sample
height adjustment (new AH). The measurement condition used in the following sections
(ch. ill. + amb.) is denoted by a thick line.
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5.1.4 Most important facts

• For the experiments presented in the following, closed space sublimation (CSS)

was used since it allows higher substrate temperatures compared to close space

sublimation.

• For the CSS process, four substrate temperatures (75 °C, 90 °C, 130 °C, 150 °C) were

chosen in order to extend the fabrication temperature window beyond that of an

open sublimation process under high vacuum conditions. The crucible temperature

and transformation time were adjusted to obtain most complete transformations.

• During SEM measurements, the MAPI layers crack along their grain boundaries,

most likely due to the heat input of the electron beam.

• PES measurements under white light with different intensities show that PES results

are independent on illumination for the junction FTO/TiO2/MAPI.

• For the ex situ prepared TiO2 layers used in this work, after the oxygen plasma

treatment a shift of the O1s and Ti2p core emission lines to lower binding energies

is observed. This shift is likely related to a change from OH– to O2
– surface ad-

sorbates during the plasma treatment, removing a surface dipole and changing the

band bending from downward in the “as is” condition to upward after the plasma

treatment.

• Due to a varying ratio between the rutile and the anatase modification in the spray

coated TiO2 layers, the line shape in the valence band region and the valence band

maximum position can vary between different batches of TiO2 layers even though

the same fabrication parameters were used for the batches.
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After the general terminology and measurement boundary conditions are now defined,

the aim of the next sections will be to present the MAPI fabricated with the two step CSS,

its properties and the mechanisms behind its formation. Therefore, the next sections will

start with the most intuitive process, the fabrication of MAPI from PbI2 by exposure to

MAI vapor. This will be followed by the fabrication of MAPI from PbCl2 and the compar-

ing discussion of the photoactivity of the obtained absorber materials. Some parts of this

section are taken from our publication [1].

5.2 MAPI fabricated from lead iodide

From all characteristics of the examined MAPI layers, the layer morphology showed the

most pronounced substrate temperature dependence and will be addressed first.

5.2.1 Morphology

When discussing the morphology of the MAPI layers, it is reasonable to start with the

morphology of the PbI2 layers to be able to determine its influence on the morphology of

the derived MAPI layers. Accordingly, the top view and the cross section SEM images of a

PVD fabricated PbI2 layer are shown in figure 5.13.

Figure 5.13.: SEM images in SE contrast of a PbI2 layer deposited by PVD on a
glass/FTO/TiO2 substrate in top view (left) and tilted 75° with respect to the horizontal
(right).

The PbI2 layer in figure 5.13 shows a rough surface, with randomly oriented flake like

grains of varying size. The grains show the distinct shape of a distorted hexagon. The

flake like morphology of the vapor deposited PbI2 layer is consistent with the morpholo-

gies reported for vacuum deposited PbI2 layers [97]. The rough, flake like morphology

of the PVD deposited PbI2 layers leads to the need of a recrystallization during the CSS
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transformation process to MAPI in order to obtain the smooth, pinhole free absorber lay-

ers, required for solar cell applications. The comparison of the PbI2 morphology presented

in figure 5.13 with the MAPI layers in figure 5.14 suggests that the transformation of PbI2

to MAPI is dominated by three processes, which take place at the same time. The first

one is the transformation of PbI2 to MAPI by incorporation of MAI into the PbI2 layer.

The transformation leads to a volume increase of the flake like grains visible in figure

5.14 for substrate temperatures of 75 °C and 90 °C. Beneath the flake like grains in figure

5.14 a recrystallized dense and small grained MAPI layer is visible already at Ts=75 °C

and 90 °C. Hence, the recrystallization of the MAPI layer from a flake like morphology to

a globular and dense morphology is identified as second process. It seems that during

this process the non-recrystallized flakes originate from large, freestanding former PbI2

flakes. Those flakes would be the last to recrystallize, stick out and hence appear to be

on top of the recrystallized layer. It is interesting to mention that the top views of the

Ts=75 °C and 90 °C samples clearly show the flake like grains while the cross sections ap-

pear to be smoother. A possible explanation is that the angle between the flakes and the

sample surface is small, leading to the impression that the flakes are smooth grains. But,

a close inspection reveals that the flakes also exist in the cross sections. With increasing

substrate temperature, the recrystallization of the MAPI layers becomes more pronounced

reducing the fraction of the flake like morphology successively until it is nearly vanish-

ing at Ts=130 °C, forming a dense and smooth MAPI layer. The size of the recrystallized

grains increases with increasing substrate temperature. While for Ts=75 °C a typical size

of a recrystallized grain is around 0.1 µm2, at a substrate temperature of 90 °C it is about

0.2 µm2. For Ts=130 °C the grain growth continues to a typical grain size around 0.3 µm2

and to around 1.5 µm2 for Ts=150 °C. Therefore an Ostwald ripening like grain growth is

identified as the third process determining the morphology of the MAPI layers. The MAPI

layer fabricated at Ts=150 °C shows the largest grains but appears to be rougher than the

layer fabricated at Ts=130 °C. Considering this increased layer roughness at Ts=150 °C,

a substrate temperature of 130 °C was chosen as the best compromise between grain size

and layer roughness. At this substrate temperature, smooth, dense and homogenous MAPI

layers with reasonably large grains can be fabricated, making them promising for solar

cell applications. The typical grain sizes were estimated from medium sized recrystallized

grains (not for the flakes) for every Ts and are a guide to access the grain growth. There

are smaller and bigger grains in every layer. The layer thicknesses were determined to be

≈ 400nm for Ts=75 °C, ≈ 430 nm for Ts=90 °C, ≈ 320nm for Ts=130 °C and ≈ 330 nm

for Ts=150 °C.
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Figure 5.14.: SEM images in SE contrast of MAPI layers fabricated at a Ts of 75 °C (tt = 120 min), 90 °C
(tt = 80 min), 130 °C (tt = 20min, ta = 20min) and 150 °C (tt = 18min, ta = 12min) during the CSS process
from PVD deposited PbI2 layers on glass/FTO/TiO2 substrates in top view (left) and cross section (tilted 75°)
(right). (© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, used with permission)
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5.2.2 Crystal structure

With increasing substrate temperature, the morphology of the MAPI layers changes sig-

nificantly. Whether the composition or crystal structure of the formed layers is also de-

pendent on the substrate temperature during the transformation process was investigated

with X-ray diffraction (XRD). Figure 5.15 shows the survey diffraction patterns of MAPI

samples fabricated from PbI2 on glass/FTO/TiO2 substrates at substrate temperatures of

75 °C, 90 °C, 130 °C and 150 °C. For comparison XRD patterns of the bare glass/FTO/TiO2

substrate and PbI2 and MAI layers on glass/FTO/TiO2 substrates are given.The phase

compositions are determined using Rietveld refinements. According to the Rietveld re-

finements, MAPI perovskite, mainly in its orthorhombic modification, is the dominant

crystallographic phase in the diffraction patterns for all substrate temperatures in figure

5.15. In addition, small amounts of residual PbI2 and FTO can be identified. The TiO2

layer between the FTO and the perovskite is too thin to be detected in XRD.

Figure 5.15.: XRD patterns of MAPI layers fabricated from PbI2 on glass/FTO/TiO2 sub-
strates at substrate temperatures of 75 °C, 90 °C, 130 °C and 150 °C during the CSS pro-
cess. The transparent bars are guides to the eye. For comparison, XRD patterns of the
glass/FTO/TiO2 substrate and the substrate with PbI2 and MAI are given. The annotation
“+ sub” denotes that reflections of the FTO/TiO2 electrode are visible in every XRD pat-
tern in addition to the reflections of the respective layer. For all samples a background
correction was performed. The hump at 5° is an artifact of that correction but does not
overlap with relevant features of the XRD pattern. The XRD patterns are normalized to
the substrate reflection at 37.9°.
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There is no indication for a thick MAI capping layer. However, a thin MAI layer would not

be detectable in the XRD pattern. If PbI2 can be observed in the XRD patterns, a rough

quantification shows that the PbI2 content of all samples is below 1 %.

In addition to the composition of the crystallographic phases, the crystal structure and

the lattice constants of the examined PbI2 and MAPI were derived from the Rietveld re-

finements and will be discussed in the following. Figure 5.16 exemplarily shows the fits

obtained by Rietveld refinement for a PbI2 sample.
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Figure 5.16.: XRD pattern of a PbI2 layer deposited by PVD on a glass/FTO/TiO2 substrate.
The measured curve is denoted in red, the background in light gray, the Rietveld refine-
ment of the FTO/TiO2 electrode in dark gray and the Rietveld refinement of the PbI2 layer
in dark blue. The difference between the measured curve and the superposition of the
PbI2, the background and the FTO/TiO2 fits is denoted in black with “as meas. - Σ fit”.

For the Rietveld refinement in figure 5.16, the FTO/TiO2 electrode can sufficiently be fit-

ted with a refinement for SnO2. After the background correction, the PbI2 layer can be

identified to be polycrystalline with a trigonal crystal structure (space group P3̄m1) and

single crystalline texture (only 00l reflections are observable). The pronounced texture of

the PbI2 is in accordance with literature [97–100] and explains the impression that the

intensity of the PbI2 reflections in the MAPI samples in figure 5.15 and 5.18 at 12.65°

appears to be too high for a phase content below 1 %. The trigonal crystal structure can

be described in the hexagonal crystal system. Both crystal structures can be described by

the lattice vectors a=b 6=c and α = 120°, β = 90° [68]. The only difference is that the

base area of the trigonal crystal structure is only a third of the base plane of the hexag-

onal crystal structure [68]. Hence, the hexagonal flake like habitus of the PbI2 grains

found in the SEM pictures in figure 5.13 fits well to the trigonal crystal structure. The

crystallographic data obtained for PbI2 by the Rietveld refinement were used to create the

depiction of the PbI2 crystal structure in figure 5.17. The illustrations in figure 5.17 are

intended as a guide to visually access the general aspects of the crystal structure of PbI2

and might differ from the real material when it comes to a detailed description.
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Figure 5.17.: Illustration of the crystal structure of PVD fabricated PbI2. The viewing direc-
tions are a) along the [001] and b) along the [010] axis.

The unit cell of the PVD fabricated PbI2 in figure 5.17 shows that PbI2 already possesses

the lead iodine octahedra, which will form the inorganic lattice of MAPI. But in contrast

to the corner sharing PbI3 octahedra of MAPI, the PbI2 octahedra of PbI2 are edge sharing.

In addition, the PbI2 octahedra form a layered structure, well in accordance with the flake

like hexagonal PbI2 crystals observed in the SEM images in figure 5.13. Now, the volume

increase due to the incorporation of MAI, mentioned above as process one, can be readily

explained by the reordering of the octahedra from flat, edge sharing layers to the corner

sharing inorganic perovskite network with embedded MA+ cations.

The Rietveld refinements for MAPI fabricated at a substrate temperature of 75 °C and

130 °C are shown in figure 5.18. To fit the PbI2 phase, the refinement for the PbI2 sample

shown in figure 5.16 was used as starting point. The comparison of the Rietveld refine-

ments for MAPI in figure 5.18 leads to an interesting observation. For both substrate

temperatures, 75 °C and 130 °C, the orthorhombic modification is dominant, but espe-

cially for the Ts=75 °C sample, also a contribution of the cubic perovskite modification

can be observed as additional reflections, overlapping with the orthorhombic reflections

around 28.6 and 32.0° (encircled reflections in figure 5.18). The cubic contribution is

small for Ts=75 °C sample and appears to decrease further with increasing substrate tem-

perature, till it nearly vanishes at Ts=130 °C. The orthorhombic crystal structure with the

space group Pnma is derived from the reflection splitting, especially at high 2θ angles.

Figure 5.19 shows the corresponding XRD patterns of the high 2θ regime which were

measured with an enlarged integration time of 16 s. In figure 5.19, only the Rietveld

analysis for MAPI fabricated from PbI2 at a substrate temperature of 130 °C is shown.

The plots of Ts=90 °C, 130 °C and 150 °C are given in the appendix. The comparison of

the detailed XRD patterns in figure 5.19 b shows that the orthorhombic crystal structure

is found for all four substrate temperatures. Besides the orthorhombic crystal structure

and the space group, a small degree of texture of the orthorhombic perovskite phase was

further indicated by the reflection splitting.
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Figure 5.18.: XRD patterns of MAPI layers fabricated from PVD deposited PbI2 on
glass/FTO/TiO2 substrates at substrate temperatures of 75 °C (a) and 130 °C (b) during
the CSS process. The measured curves are red, the background is light gray, the Rietveld
refinement of the FTO/TiO2 electrode is dark gray and the one of PbI2 is dark blue. The
Rietveld refinements of the perovskite phases are black for the orthorhombic and green
for the cubic phase. The difference between the measured curve and the superposition
of the perovskite, the PbI2, the background and the FTO/TiO2 electrode fits is denoted in
black with “as meas. - Σ fit”. The reflections at 28.6° and 32.0°, showing the cubic phase
in the most clear manner, are encircled.
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Figure 5.19.: Detailed XRD pattern of a MAPI layer fabricated from PbI2 on a
glass/FTO/TiO2 substrate at Ts=130 °C during the CSS process with Rietveld refinements
for cubic and orthorhombic perovskite crystal structures (a). The measured curve is red
and the background is light gray. The Rietveld refinements of the perovskite phases are
black for the orthorhombic and green for the cubic phase. The difference between the
measured curve and the superposition of the perovskite refinements and the background
is denoted in black with “as meas. - Σ fit”. Detailed XRD patterns of MAPI layers fabri-
cated at substrate temperatures of 75 °C, 90 °C, 130 °C and 150 °C during the CSS process
(b). The diffraction patterns in (b) are normalized in intensity scale.

The found Pnma crystal structure is unusual for MAPI at room temperature but re-

ported as the low temperature phase of MAPI (phase transition reported around -112 °C)

[92, 101–105]. The most reported room temperature modification of MAPI is tetragonal

I4/mcm [92, 101, 104]. However, the orthorhombic Pnma phase is consistent with the
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hierarchical development of the lower symmetry perovskite crystal structures from the

archetype perovskite phase, cubic Pm3̄m [92, 106]. The deviations from the archetype,

resulting in the tetragonal and orthorhombic crystal structures, are discussed to be related

to the tilting/rotation of the PbI6 octahedra, which reduce the symmetry of the crystal lat-

tice [92, 104–107]. Thus, the phase transitions from cubic to orthorhombic have the

character of an order-disorder transition, consistent with an entropy change associated

with the phase transitions [92, 101, 104, 105, 107, 108]. While Kawamura et al. identify

the rotation of the PbI6 octahedra itself as ordering parameter, Deretzis et al. and Baikie

et al. name the ordering of the MA+ ion as the cause of the ordering phase transitions.

The positive charge of the MA+ ion is located at the NH3
+ part. This charge forms ionic

bondings with 3 iodine ions, to restore the iodine coordination of 3 which is the most

favorable for iodine and is lost during the flipping of the PbI6 octahedron during the PbI2

to MAPI transformation [104, 107]. Accordingly, the iodine atoms leave their ideal po-

sitions to come closer to the positive charge causing the tilting of the octahedra [107].

In the most symmetrical cubic phase, the MA+ ions are oriented randomly, canceling out

the lattice distortions macroscopically [101,104,107,108]. Compared to the cubic phase,

the degrees of freedom for MA+ orientation are reduced in the tetragonal phase and even

more in the orthorhombic phase [92, 101, 104, 105, 108]. Baikie et al. even report the

MA+ ion to be completely ordered in the orthorhombic phase [92]. Hence, the phase

transition from cubic to tetragonal to orthorhombic coincide with an ordering of the MA+

ion. An illustration of the unit cell of 2step CSS MAPI fabricated at Ts=90 °C from PbI2

using the atomic positions, space group and unit cell dimensions obtained from the Ri-

etveld refinement is shown in figure 5.20. It has to be pointed out that the illustration is

intended as an aid to visualize the crystal structure of MAPI. The orientation of the MA+

cation is chosen randomly during the refinement and does not contain any information

about the MA+ orientation in the real perovskite. Furthermore, the actual tilting, the ro-

tation and the distortion of the PbI3 octahedra in the real perovskite may be different to

the one shown in figure 5.20. However, figure 5.20 corresponds to the general structure

of the unit cell of the fabricated MAPI layers and is in agreement with illustrations of

orthogonal MAPI presented in literature [92].

With the Rietveld refinements, the dimensions of the unit cells of the PbI2 sample and the

MAPI samples fabricated at different substrate temperatures can be determined and are

presented in table 5.4. The comparison with literature shows that the lengths of the a axis

of the PVD fabricated PbI2 are well in accordance with literature (4.558(3) Å calculated

versus 4.59 Å from literature) [98]. However, the c axis of the PVD fabricated layer ap-

pears to be longer then reported in literature (6.989(3) Å calculated versus 6.78 Å from

literature), leading to a larger unit cell volume of the PVD fabricated PbI2 (145.212 Å
3
)

compared to literature values (123.7 Å
3
) [98,109].
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Figure 5.20.: Illustration of crystal structure of MAPI. The viewing directions are along
a) [010], b) [001]. This illustration is an aid to visualize the crystal structure of MAPI.
The orientation of the MA+ cation is not representative for the orientation in the real
perovskite.

For MAPI in its tetragonal room temperature phase the following lattice constants can be

found: Deretzis et al. found a=b=8.86 Å and c=12.67 Å (RT (assumed); layer) [107];

Kawamura et al. found a=b=8.80 Å and c=12.69 Å (220 K; single crystal) [104] and

Baikie et al. found a=b=8.85 Å and c=12.44 Å (25 °C; powder diffraction experi-

ments) [92]. The comparison of the unit cell parameters of the MAPI samples with

these literature values shows that two axis fit well into the length regime presented in

literature. Only one axis of the basal plane appears to be slightly elongated, separating

the orthorhombic from the tetragonal crystal structure.

Table 5.4.: Unit cell dimensions in the directions a, b and c (see figures 5.17 and 5.20
for comparison) of MAPI samples fabricated from PbI2 on glass/FTO/TiO2 substrates at
substrate temperatures during the CSS process of 75 °C, 90 °C, 130 °C and 150 °C. The unit
cell dimensions of a PVD fabricated PbI2 layer on a glass/FTO/TiO2 substrate is given for
comparison. The volumes are calculated with a · b · c.

Ts/ °C a / Å b / Å c / Å V / Å
3

75 8.836(3) 12.546(3) 8.915(3) 988.482
90 8.827(3) 12.532(3) 8.902(3) 984.896
130 8.826(3) 12.542(3) 8.902(3) 985.590
150 8.825(3) 12.544(3) 8.901(3) 985.536

PbI2 4.558(3) 4.558(3) 6.989(3) 145.212
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5.2.3 Optoelectronic structure

Besides the morphology and the crystal structure, their optical and electronic properties

are key requirements for solar cell absorbers. To probe those properties UV/VIS and PE

spectroscopy were performed for MAPI, PbI2 and MAI samples. All examined layers were

prepared under vacuum conditions and the PES was performed without breaking the vac-

uum conditions. The obtained results will be presented and discussed in the following,

starting with the absorption coefficients. In figure 5.21, the absorption coefficients αhν

of four MAPI samples and a PbI2 reference sample (all on glass/FTO/TiO2 substrates)

are plotted against the photon energy Eph. The unit of the absorption coefficient is 1/cm

which corresponds to 1/(cm layer thickness) for this work. The general shape of the

αhν over Eph curves and the absorption edge are in good agreement with what has been

reported in literature for CH3NH3PbI3 prepared with different wet chemical and vapor

phase methods [33,40,43,110–112]. The marked positions are obtained by the intersec-

tion of the absorption edge with the regime where no excitation over the band gap occurs.

This position is assumed to be the onset of the fundamental absorption and accordingly

serves as a measure of the optical band gap.

Figure 5.21.: (a) Absorption coefficientαhν of PbI2 and MAPI on glass/FTO/TiO2 substrates
plotted against the photon energy Eph. An offset of 50000 1/cm is used for each MAPI
spectra. Only between 75 °C and 90 °C substrate temperature an offset of 70000 1/cm
is used. The fabrication parameters of the MAPI layers are given in the way: crucible
temperature / substrate temperature / transformation time + annealing time. In (b) the
photon energy regime around the fundamental absorption edge of MAPI is enlarged.
The absorption coefficient of PbI2 is not shown. Again, an offset of 50000 1/cm is used
between the spectra. The spectra are labeled with the substrate temperature during the
CSS process step.
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With 1.57 - 1.58 eV for MAPI and 2.35 eV for PbI2 the determined optical band gaps fit

well to literature values [109,113–115]. Furthermore, the optical band gaps derived from

the spectra in figure 5.21 fit to the band gaps around 1.7 eV measured with a combination

of photoemission spectroscopy and inverse photoemission spectroscopy, presented in lit-

erature [116–118]. All of the spectra in figure 5.21 have two characteristics in common.

The first one is that the adsorption coefficient does not drop to zero for photon energies

below the onset of the fundamental absorption but shows a plateau of approximately con-

stant values. The second characteristic is that the onset of the fundamental absorption is

not perfectly sharp. In fact, the comparison with the SEM images in figure 5.14 indicates

that the onset of the fundamental absorption of the MAPI layers in figure 5.21 becomes

more diffuse with increasing surface roughness. UV/VIS measurements on the the bare

glass/FTO/TiO2 substrate (not shown) identify the absorption in the substrate as cause

of the plateau of the absorption coefficients at photon energies below the fundamental

absorption. In addition, results by Shirayama et al. indicate that effect of surface rough-

ness on the optical spectra might also contribute to the observation of the plateau of the

absorption coefficients at photon energies below the fundamental absorption [119]. The

reason for this is surface light scattering, which is not detected during the reflection and

transmission measurements, is mistaken for absorption [119]. To obtain their results,

Shirayama et al. prepared ultrasmooth MAPI layers by laser evaporation and used spec-

troscopic ellipsometry to determine the optical constants of MAPI [119]. Based on these

constants, they calculated the influence of layer roughness on the curse of the absorption

coefficient over the photon energy [119]. Concerning the second common characteristic

of the αhν spectra in figure 5.21, the dependence of the sharpness of the onset of the

fundamental absorption on the surface roughness, a diffuse onset of the fundamental ab-

sorption of MAPI is in agreement with the results of Shirayama et al. for rough MAPI

layers [119]. However, in their calculations, the sharpness of the onset appears not to

vary with varying surface roughness [119]. Still, since the calculations by Shirayama et

al. indicate that the diffuse onset of the fundamental absorption is generally related to

the surface roughness, its scaling with varying surface roughness is plausible. Besides the

surface roughness, an additional effect needs some consideration. MAPI is reported to

form shallow defect states either close to the VBM or close to the CBM [120–122]. Such

defect states might well contribute to the diffuse onset of the absorption edge.

In conclusion, the plateau of the absorption coefficients in figure 5.21 at photon energies

below the onset of the fundamental absorption is mainly caused by the absorption in the

glass/FTO/TiO2 substrate, possibly enhanced by the effect of surface light scattering due

to surface roughness. The effect of a varying surface roughness might also explain the

varying sharpness of the onset of the fundamental absorption of the αhν over Eph curves

in figure 5.21 [119]. However, the spectra in figure 5.21 show a dependence of the sharp-

ness of the onset of the fundamental absorption on the roughness. In contrast, no such

dependence can be determined in the work of Shirayama et al. [119]. Considering this

discrepancy, the influence of other effects, especially the presence of defects needs to be
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considered. The results obtained from the UV/VIS absorption data will be compared with

the results from the PL spectroscopy experiments in section 5.4. There, the presence and

influence of defects will be discussed in further detail.

The electronic properties of the MAPI layer surface were probed with PES. Since the core

level positions and elemental surface compositions do not vary significantly for different

substrate temperatures, only the MAPI spectra for Ts=90 °C are shown in the following.

The PES spectra for the other substrate temperatures can be found in the appendix. Fig-

ure 5.22 shows representative survey spectra for MAPI, MAI and PbI2.
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Figure 5.22.: Survey spectra of MAPI (red), PbI2 (dark blue) and MAI (green) measured
with XPS directly after the layer fabrication, without breaking the vacuum conditions. The
offset between the MAPI and MAI is given as a guide to the eye for the intensity. Only the
most prominent lines are labeled.

The survey spectra in figure 5.22 show no lead in MAI and no organic contaminations in

PbI2. Furthermore, no other contaminations can be determined for the samples shown

in figure 5.22. Only, the Ts=150 °C sample shown in the appendix shows a tin contam-

ination, which can be associated with the presence of MASI [123]. The cause of the tin

contamination is most likely the parallel work on MAPI and MASI in the CSS chamber of

our lab. Since the TiO2 layers have been proven to be dense in section 5.1, it can be ex-

cluded that the Sn contaminations originate from the FTO substrate. Another interesting

observation is that the survey spectra in figure 5.22 already show that the intensity of the

Pb emissions decreases with respect to the intensities of the iodine emissions of MAPI com-

pared to PbI2, well in accordance with the element ratios presented in table 5.6. The core

line positions, valence band maximum positions and work functions of MAPI, fabricated at

substrate temperatures of 75 °C, 90 °C, 130 °C and 150 °C during the CSS process step, as

well as for PbI2 and MAI are shown in table 5.5. Due to the contaminations, only the core

level positions, but no valence band maximum positions are presented in table 5.5 for the

Ts=150 °C MAPI sample. The measured core level and valence band maximum positions

and work functions are in accordance with literature values for MAPI prepared with wet

chemical methods and by evaporation under vacuum conditions [96,113,116,124–130].

The surface ratios for the MAPI samples in table 5.6 are sufficiently close to stoichiometric
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ratios (I/N/Pb = 3/1/1) to assume a clean MAPI surface. This indicates that no surplus

MAI is on top of the MAPI layers and that unreacted PbI2, which is indicated by the XRD

patterns in figure 5.15, is most likely located deep inside the bulk material not influenc-

ing the PES results of the MAPI layers [126]. The element ratios at the surface of the

Ts=150 °C sample get significantly closer to stoichiometric ones when considering Sn and

Pb together (I/(Pb+Sn)=3.0 and N/(Pb+Sn)=0.9).

Table 5.5.: Core level positions, valence band maximum positions and work functions for
PbI2, MAI and MAPI fabricated from PbI2 at Ts of 75 °C, 90 °C, 130 °C and 150 °C during
the CSS process. Ts is given in °C and all binding energies are given in eV.

Ts I3d5/2 N1s C1s Pb4f7/2 VBM (XPS) VBM (UPS) φ

75 619.50 402.59 286.55 138.54 1.65 x x
90 619.47 402.62 286.58 138.57 1.65 1.61 4.38

130 619.50 402.60 286.40 138.57 1.65 x x
150 619.51 402.56 286.54 138.52 x x x

PbI2 619.60 x x 138.67 1.76 1.86 5.08
MAI 619.11 402.05 286.52 x 2.14 2.22 4.21

Table 5.6.: Element ratios at the sample surface of MAPI derived from PbI2, of PbI2 and of
MAI samples obtained from XPS measurements with Scofield ionization cross sections.

Ts / °C I/Pb N/Pb I/N
75 3.1 0.9 3.4
90 3.1 1.0 3.1

130 3.0 0.9 3.5
150 3.7 1.1 3.4

including Sn 3.0 0.9 3.4
ideal MAPI 3 1 3

PbI2 2.0 x x
MAI x x 1.1

The valence band spectra measured with XPS and UPS as well as the SEE measured with

UPS are presented in figure 5.23. The valence band maximum positions of CH3NH3PbI3

and CH3NH3PbI3 – xClx perovskites are reported to vary between a slight (nearly intrinsic)

and a pronounced (EF pinned to the conduction band) n-type character. Also for the work

functions a broad range from 3.85 eV to 4.95 eV for wet chemical prepared MAPI layers

and from 4.19 eV to 4.86 eV for MAPI layers fabricated by evaporation under vacuum con-

ditions is reported [113,116,124–128]. Evidently, the work function and the valence band

maximum position are dependent on several factors, for example, the substrate material,

the fabrication technique used for the MAPI layers, and illumination conditions during the

measurement [96, 113, 116, 124–129, 131]. However, stoichiometric samples fabricated

with the most common fabrication methods as examined with photoemission spectroscopy

in literature show (at least slight) n-type behavior [113,116,124–128]. A p-type character
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is reported for MAPI single crystals or requires intentional modifications of the fabrication

process of the MAPI layers, for example by modifying the stoichiometry or controlling the

kind and the density of defects in the MAPI layers [121,132–135]. Accordingly, the n-type

behavior of the MAPI layers examined in this work is well in accordance with stoichio-

metric MAPI, and not a specific feature of the 2step CSS. Furthermore, the valence band

maximum positions of MAPI layers fabricated from PbI2 show no or only small variations,

even if the processing temperatures are varied (see table 5.5). This indicates that even the

high temperature sets of 160 °C/130 °C and 180 °C/150 °C do not alter the doping density

of the MAPI layers significantly. For solar cells fabricated on an n-type substrate a strong

n-type characteristic of the MAPI yields several advantages for the electron selective con-

tact (here to the FTO/TiO2 electrode), constituting good electron transfer from MAPI to

the ETL and only small losses for the Voc in a solar cell [113, 129]. Only interface effects

might hinder the electron extraction [113, 129]. Since the n-type character of the MAPI

will be fully developed after the deposition of the n-type substrate, the HTL needs to be

selected appropriate to minimize the extraction barrier for holes, to keep the Voc loss as

small as possible and provide sufficient charge carrier separation at the same time.
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Figure 5.23.: Valence band (XPS and UPS) and survey UP spectra of MAPI (red), PbI2 (dark
blue) and MAI (green) measured directly after the layer fabrication, without breaking the
vacuum conditions. The offset between MAPI and MAI in the XPS spectra is given as a
guide to the eye for the intensity. The UP spectra are normalized in intensity scale.
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The band gap measured with UV/VIS is smaller than the energetic difference between

the valence band and the Fermi level measured with PES. This would mean that MAPI is

degenerately n-type and should behave more like a metal than like a semiconductor. But,

this is not the case. In IV measurements, MAPI layers behave like semiconductors. For

this observation, different explanations are conceivable. For example, the formation of

excitons in addition to free charge carriers during the UV/VIS experiments could explain

that the band gap appears to be smaller than the energetic difference between EF and

the VBM. Concerning the excitation of excitons compared to the excitation of free charge

carriers, different opinions can be found in literature [102, 136–139]. Shi et al. propose

the excitation of two types of excitons at room temperature, in addition to the band-band

excitation. The first exciton type has a binding energy of 17 meV and is accordingly dis-

sociated at room temperature [136]. In addition to that first exciton, Shi et al. propose a

bound exciton with an binding energy of 67 meV [136]. They report that the presence of

both excitons shifts the onset of the absorption edge from 1.645 eV to about 1.53 eV [136].

Thereby, the excitation of the dissociated exciton species leads to a shift of the optical gap

to approximately 1.56 eV and the excitation of the non-dissociated exciton species to a

further shift to approximately 1.53 eV [136]. The presence of an exciton species with

a binding energy in the range of kBT at room temperature is in agreement with other

literature sources [102, 138, 140]. Nevertheless, even when the excitation of excitons is

considered, MAPI is reported to be dominated by a non-excitonic behavior in several liter-

ature sources [102,137–139]. For the MAPI samples presented in this work, no evidence

for the bound excitons reported by Shi et al. can be found. Furthermore, the observed

onset of the absorption over the energy gap is at higher photon energies (1.57-1.58 eV)

compared to the onset which would be expected in case of a significant contribution of

the excitation of the low binding energy excitons and is in accordance with optical band

gaps reported in literature [109,113–115]. However, since the observed absorption edge

is close to the one which would be expected in case of the excitation of the dissociated

excitons reported by Shi et al., the excitation of those excitons still appears to be possible.

Hence, a certain influence of the formation of excitons on the optical absorption proper-

ties of the perovskites, for example on the onset of the absorption edge might be present.

Another influence which can cause an underestimation of the optical band gap derived

from optical spectra is the surface roughness of the MAPI layers [119]. Furthermore,

since the presence of defects can additionally influence the onset of the fundamental ab-

sorption, they may also affect the determination of the optical band gap. Hence, besides

the possible influence of excitons, the underestimation of the optical gap due to surface

roughness and the influence of defects may add to the impression that the optical gap

is smaller than the energetic distance between EF and the VBM. However, as mentioned

above, the band gaps determined from the optical spectra in figure 5.21 fit well to liter-

ature values [109, 113–115]. In addition, the energetic difference between the VBM and

the band gap is in the range of the measurement errors for the determination of those

values. Hence, it is not possible to unambiguously determine the exact energetic differ-
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ence and to decide on its actual origin. The results for the band gap, the valence band

maximum position and the work function of PbI2, MAPI and MAI are summarized in the

band energy diagrams in figure 5.24.

Figure 5.24.: Band energy diagrams of PbI2, MAPI and MAI derived from the PES data
presented in table 5.5 and UV/VIS data from figure 5.21. The vacuum levels are aligned.
The LUMO of MAI is drawn at 3.5 eV above the HOMO. This was done because the used
glass/FTO/TiO2 substrates show an absorption edge between 3.5 eV and 4 eV. Since no
absorption edge for MAI could be determined up to these photon energies, the band gap
of MAI is at assumed to be larger than 3.5 eV.

Even though the phase contents derived from XRD and the surface stoichiometries derived

from XPS, indicate no MAI on top of the examined MAPI layers and a low PbI2 content

in the examined MAPI layers, it is reasonable to assume that those phases may occur

within the absorber layers for some depositions. Hence, the possible energetic alignment

of MAPI, CH3NH3I and PbI2 should be discussed next. The Anderson alignment in figure

5.24 shows that the valence band offset between MAPI and PbI2 is ∆EVBM = 0.81eV and

the conduction band offset is∆ECBM = 0.04eV. Since an offset of 0.04 eV is below the PES

measurement uncertainty, the conduction band offset of PbI2 and MAPI is treated as zero.

The Anderson alignment of MAPI and MAI shows a ∆EVBM of 0.32 eV. Following the An-

derson rule and treating ∆EVBM and ∆ECBM as the barrier heights, the MAPI/MAI contact

would hinder the hole extraction from MAPI into Spiro-MeOTAD. The PbI2/MAPI contact

would be hole blocking but not electron blocking. However, the PbI2/MAPI contact is a

semiconductor isotype hetero junction. In that case, the charge transport over the barrier
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can be described in terms of thermionic emission of majority charge carriers, similar to a

Schottky contact [47]. With that, not only the conduction band offset will influence the

electron extraction from MAPI into PbI2, but also the band bending, which constitutes a

potential barrier for the charge transport through the PbI2/MAPI interface [47]. A graphic

depiction of a possible contact between PbI2 and MAPI, considering the band bending, is

shown in figure 5.25. A first approximation of the distribution of the total band bend-

ing between PbI2 and MAPI could be derived from the charge distribution in the space

charge regions under application of the Poisson equation (equation 3.4). However, since

the PbI2/MAPI contact is an isotype hetero junction, the combination of the knowledge

about the doping concentrations in PbI2 and MAPI (assessable by the distance between

Fermi level and CBM) and the depletion approximation is not sufficient to approximate

the charge distribution, as is would be for a p/n-junction. The knowledge of the width

of the space charge regions in PbI2 and MAPI is crucial in order to estimate whether the

main part of the band bending takes place in MAPI or in PbI2. Unfortunately, only an

interface experiment between MAPI and PbI2 would yield the needed information about

the widths of the space charge regions. Hence, the band bending distribution in figure

5.25 is hypothetical, assuming a wider space charge region in PbI2 compared to MAPI and

accordingly the larger part of the band bending in PbI2.

Figure 5.25.: Schematic depiction of the band bending at PbI2/MAPI junction in the dark.

The considerations on the PbI2/MAPI contact described till now treat the contact in the

dark. Illumination further complicates the case. Here, the band bending of MAPI will be

superimposed by the electrical field caused by photoexcited charge carriers. Under open

circuit conditions, the photoexcited holes will accumulate in the Spiro-MeOTAD/gold elec-

trode and the photoexcited electrons in the FTO/TiO2 electrode. The resulting electric

field will reduce the influence of the band bending on the electron extraction. However,

since the MAPI/PbI2 contact is probably not the photoactive contact of the solar cell,

the potential barrier caused by the band bending will not be fully annihilated also un-

der illumination and the electron transfer from MAPI into the FTO/TiO2 electrode will
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remain to be hindered by the PbI2/MAPI contact. Furthermore, with a DC conductivity

of 5 − 10 · 10−9 S/m [141] (compared to an electrical conductivity around 500 S/m for

MAPI [115]), PbI2 is quite insulating. Thus, in conclusion, thin, dense layers of PbI2 will

increase the serial resistance of a solar cell and need to be avoided, on one hand because

of the contact between PbI2 and MAPI and on the other hand because of the insulating

properties of PbI2. A more dedicated discussion on the incorporating the 2step CSS fabri-

cated MAPI layers in planar solar cells will be given in section 5.4.2.
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Figure 5.26.: I3d and Pb4f detail spectra of MAPI (red), PbI2 (dark blue) and MAI (green)
measured with XPS directly after the layer fabrication, without breaking the vacuum con-
ditions. The offset between MAPI and MAI is given as a guide to the eye for the intensity.
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Figure 5.27.: N1s and C1s detail spectra of MAPI (red) and MAI (green) measured with
XPS directly after the layer fabrication, without breaking the vacuum conditions. The
offset between MAPI and MAI is given as a guide to the eye for the intensity. There is no
PbI2 curve since PbI2 does not contain any nitrogen or carbon. In the C1s spectrum, the
main emission, belonging to MAPI is denoted with “a”, the low binding energy emission
with “b” and the high binding energy shoulder of the MAPI emission with “c”.
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The shapes of the I3d, Pb4f and N1s emissions in figures 5.26 and 5.27 indicate that only

one species of iodine, lead and nitrogen is present in the MAPI samples. In contrast, the

C1s emission of MAPI shows a second emission on the lower binding energy side (b) and

possibly also a third one on the higher binding energy side (c) of the C1s central emis-

sion (a) in figure 5.27. However, due to the low signal to noise ratio, the presence of

the shoulder on the higher binding energy side can not be determined unambiguously.

The comparison with literature identifies the central C1s line as the one belonging to the

CH3NH3
+ cation of MAPI [126]. The lower binding energy shoulder is associated with

CH3I, CH3NH2 or carbon contaminations [125, 126, 129]. Due to the in vacuuo nature

of our experiments, we rule out carbon contaminations in such significant concentration.

This leaves the other possibilities to be discussed. The most probable explanation appears

to be a CH3I excess in the layers [126]. Stepwise transformation experiments from PbI2

to MAPI, performed by Liu et al. show that the lower binding energy component ap-

pears prior the main MAPI component [126]. This observations could not be repeated in

our lab, where the C1s main component of MAPI appeared directly during the stepwise

transformation of PbI2 to MAPI (see figure A.7 in the appendix). However, it still appears

plausible that the low BE component is related to CH3I. Juarez-Perez et al. [57] have

shown, that MAI will most likely not sublime as MAI but as CH3I and NH3. The compar-

ison of the vapor pressures of CH3I and NH3 shows that it is likely that CH3I will adsorb

onto the substrate while the NH3 stays in the gas phase [142]. Accordingly, it appears

plausible that CH3I is incorporated into the MAPI layers prior to NH3 and that more CH3I

than NH3 is incorporated into the MAPI layer. However, since the I3d emissions in figure

5.26 do not show any shoulder line, the identification of CH3I as origin of the C1s low

BE shoulder is not completely unambiguous. Furthermore, if the shoulder would belong

to a nitrogen containing compound like CH3NH2, there should be a shoulder in the N1s

spectra as well. In addition, CH3 or CH3
+ are assumed to be too reactive to stay in signif-

icant amounts in the MAPI layer. Another explanation for the C1s low BE shoulder could

be the replacement of a fraction of the MA+ cations by C2H6
+. A possible reaction for the

formation of the C2H6
+ cation is proposed below.

0) CH3NH3I −−→ CH3I + NH3

1) CH3I + PbI2 −−→ CH3
+ + PbI3

–

2a) CH3
+ + NH3 −−→ CH3NH3

+

2b) 2 CH3
+ + 2 CH3I −−→ 2 C2H6

+ + I2(g)
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Reaction 0 describes the dissociation of MAI which takes place already during the sub-

limation of MAI [57]. Reaction 1 describes, the reordering of the octahedra from edge

sharing to corner sharing (see also section 5.2.2). During the reorientation, an additional

I is implemented into the inorganic lattice, leaving a CH3
+ ion. This ion will react. Two

possibilities are shown in reaction 2a and 2b. Reaction 2a yields the standard organic

cation of MAPI. Reaction 2b describes the reaction of a CH3
+ ion with surplus CH3I to

C2H6
+ under the emission of I2 gas. Since the ethan ion would only contain carbon

and hydrogen atoms, its presence would be in agreement with the observation, that only

the C1s emission did show shoulder lines in the PES experiments. Yet, this explanation

remains mostly speculative. An alternative dissociation of MAI during the sublimation

process, the dissociation into HI and CH3NH2 was indicated by results of Nenon et al. in

2016 [143]. Recently, Bækbo et al. published results that indicate a combination of the

two dissociation mechanisms [42]. They observe that MAI evaporated mainly as HI and

CH3NH2 in the temperature regime up to 130 °C under ultra high vacuum conditions [42].

For temperatures above 160 °C they observe the presence of NH3 and CH3I and suggest

those molecules as products of further dissociation of HI and CH3NH2 [42]. However,

Juarez-Perez et al. do not observe the presence of HI and CH3NH2 [42, 57]. Thus, in

conclusion, the reaction mechanism proposed above is valid at least for the two high

temperature parameter sets (130 °C/160 °C and 150 °C/180 °C). For the lower tempera-

ture sets, the presence of HI and CH3NH2 in the gas phase in addition to NH3 and CH3I

needs to be kept in mind. However, since the low BE emission of the C1s emission ap-

pears to be independent on the process temperature regime and can hardly be explained

based on the presence of HI and CH3NH2, the dissociation of MAI into NH3 and CH3I

is considered as dominant dissociation path of MAI for the examined CSS process. With

respect to the adsorption mechanisms described in section 3.3, the adsorption of CH3I

appears to be a dissociative chemisorption while the adsorption of NH3 is expected to be

a non-dissociative chemisorption. The high BE shoulder of the C1s emission is difficult to

identify. Since the core lines of the other elements do not show any shoulder, the C1s high

BE shoulder probably does not belong to any compound of carbon with iodine, nitrogen

or lead.

The comparison of the MAPI spectra with the PbI2 spectra in figure 5.26 shows that it

is difficult to distinguish the materials by the positions of their I3d or Pb4f emissions or

by their binding energy differences (see table 5.5). However, the measured PbI2 and

MAPI spectra show a different line shape in the valence band region, which may be used

to differentiate between PbI2 and MAPI. In addition, the surface stoichiometry and the

occurrence of C and N can be used to differentiate between PbI2 and MAPI in PES ex-

periments. The determination of the absolute core line positions of iodine, nitrogen and

carbon in MAI is not trivial. MAI is an insulating organic material. Hence, for thick layers,

charging can be expected during XPS measurements. On the other hand, for very thin

films (thickness below 20 nm) charging is unlikely, but the core line positions might be af-

fected by the substrate or the interface to the substrate. To solve the problem a MAI layer
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was deposited onto a glass/FTO/TiO2 substrate and a layer thickness was chosen that no

substrate signal (Sn, Ti or O) was detected anymore. On the other hand, the layer was

sufficiently thin that no distinct XRD signal of the MAI layer was observable (diffraction

pattern not shown). The line positions and element ratios for this sample are shown in

figures 5.23 to 5.27 and tables 5.5 and 5.6. Thereby, the comparison of MAI and MAPI

shows that both materials can be readily distinguished not only by the layer stoichiometry

but also by the binding energy positions of I3d, N1s, C1s and the valence band maximum

position.
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5.2.4 The titanium dioxide/lead iodide interface

When the preparation of a perovskite absorber layer with a two step process is discussed,

it is important to start with the PbI2 deposition step. In contrast to the co-evaporation

processes, the PbI2 deposition step will define the interface between the glass/FTO/TiO2

substrate and the absorber layer. Possible chemical reactions, dipole formations and other

interface effects will happen during this first step and strongly influence the interface char-

acteristics also after the conversion of the PbI2 to MAPI in the CSS. Furthermore, since no

organic molecules are involved in the interface formation during the lead salt deposition

of a two step process, the observed effects might be different between a co-evaporation

and a sequential deposition process of MAPI. Accordingly, the TiO2/PbI2 interface will

be discussed in the following, starting with the survey XP spectra in figure 5.28. The

spectra shown in figure 5.28 are measured on the oxygen plasma treated glass/FTO/TiO2

substrate (0 s) and between consecutive PbI2 deposition steps. The deposition times are

given cumulative, e.g. 5 s =1 s +4 s.
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Figure 5.28.: XP survey spectra measured on the bare glass/FTO/TiO2 substrate and be-
tween consecutive PbI2 depositions without breaking the vacuum conditions. The shown
deposition times are cumulative deposition times. The offset between the 0 s and 1 s mea-
surements is given as a guide to the eye for the intensity. Only the most prominent lines
are labeled.

The survey spectra of the glass/FTO/TiO2 substrate in figure 5.28 shows no significant

contaminations. Only a minor amount of zinc might be present in the spectra of the bare

glass/FTO/TiO2 substrate. The deposition of the PbI2 layer can be seen in the decreas-

ing intensity of the O1s and the Ti2p lines while the intensity of the I3d and Pb4f lines

increases constantly till no indication of the substrate remains after 3060 s of PbI2 depo-

sition. It has to be mentioned that the PbI2 source apparently was contaminated with tin

visible from the Sn3d emissions in figure 5.29 (for comparison see also figure A.5 and A.6

in the appendix). The comparison of the tin content with the lead content in the PbI2

layer shows that tin is more than a contamination for the first 4 deposition steps. From

the fifth deposition step onward the ratio of Sn to Pb is sufficiently low to treat Sn as
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contamination till no Sn emission is observed anymore after 3060 s of PbI2 deposition.

In addition, in accordance with a reasonable stoichiometric I/Pb ratio of 1.9, the PbI2

valence band maximum position obtained after 3060 s is not compromised by Sn5s states,

which would lead to a significant lower valence band onset [144]. Since neither the pris-

tine substrate nor the thick PbI2 layer show any indications of tin, both flat band valence

band maximum positions are assumed to be independent on the tin contamination and

are in agreement with previous results (see figure 5.29 and 5.4 and tables 5.5 and 5.1).

In addition, lead will most likely not react with tin, and is used to follow the energy level

shift of the PbI2 layer.
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Figure 5.29.: Sn3d XP detail spectra measured on the bare glass/FTO/TiO2 substrate and
between consecutive PbI2 depositions without breaking the vacuum conditions. The
shown deposition times are cumulative deposition times. No background correction was
performed for the spectra in this figure.

An interesting observation is the evolution of the I3d line in figure 5.30. Even on the

pristine substrate, a minor I3d5/2 emission around 624.2 eV (marked with an arrow in

figure 5.30) can be observed. This emission is clearly distinguishable from the PbI2 I3d5/2

emission at 619.4 eV and vanishes after 45 s of PbI2 deposition. The binding energy po-

sition of the I3d emissions directly rules out, that it belongs to PbI2 or SnI2 where it

would be in its I– state [87]. Also the presence of iodine in I2 does not fit to the binding

energy [87]. A chemical reaction between the substrate and the iodine appears to be a

good explanation for the second iodine line. Olthof et al. describe the catalytic activity of

metal oxides during the co-deposition of MAPI [129]. They describe the formation of an

about 3 nm thick interface layer containing mostly C, N and I species on ITO and MoO3.

Only after this interface layer is completed, the formation of the MAPI layer begins. The

presence of organic buffer layers avoids the formation of the interface layer [129]. But,

since neither N nor C are available for the formation of the interface layer during the

lead salt deposition of a two step process, the formation of an inorganic interface layer

appears plausible. A possible reaction would be the one of iodine with O2
– adsorbates on

the TiO2 after the plasma treatment (see section 5.1.1). This reaction can form a number

of compounds like iodates and periodates [87, 142]. Thereby, the binding energies of
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623 eV to 624 eV, reported for periodates and similar compounds with iodine in its I5+

or I7+ state, correspond to the binding energies observed in figure 5.30 [87, 145]. The

formation of lead(II) iodate (Pb(IO3)2), which is a salt stable at room temperate [146],

appears to be a plausible reaction. Since Pb(IO3)2 includes not only iodine but also lead

and oxygen the PE spectra of those elements might also give some indication for the pres-

ence of Pb(IO3)2. However, the intensity of the I3d emissions belonging to Pb(IO3)2 is

low. Accordingly, also the O1s and Pb4f emissions related to Pb(IO3)2 will be weak in

intensity. In addition, in Pb(IO3)2 oxygen in its O2 – state. Hence, the O1s emission of

Pb(IO3)2 is likely superimposed by the O1s emission originating from the O2 – in TiO2 and

no O1s emission originating from the presence of Pb(IO3)2 can be determined in the O1s

detail spectra. The O1s detail spectra are shown in figure A.8 in the appendix. The Pb4f

detail spectra measured on the bare substrate and after 1 s, 5 s and 15 s of PbI2 deposition

are shown in figure 5.30 b. In figure 5.30 b, only the Pb emission associated with PbI2

can be determined. However, the lead in Pb(IO3)2 is in the same oxidation state as in

PbI2 (Pb2+) and the Pb4f emissions of the Pb(IO3)2 phase are probably superimposed by

the Pb4f emissions of PbI2. Only the I3d emissions of Pb(IO3)2 are clearly distinguishable

from the ones of PbI2 since iodine is in its I5+ state in Pb(IO3)2 compared to the I– 1 state

in PbI2. In addition, the deposition of an iodate or a periodate would explain the binding

energy position of the minor iodine emission on the pristine substrate which is at too high

binding energies for I2 contaminations [87]. The formation of Pb(IO3)2 is the most plau-

sible assumption based on the analysis of the XP spectra. However, we cannot exclude

numerous other compounds containing iodine, oxygen and lead which could form parallel

to or instead of Pb(IO3)2 and explain the iodine emission around 624.2 eV. A deposition

of iodine prior to the deposition of lead with a possible intercalation of iodine into the

TiO2 can be ruled out since the I3d emissions as well as the Pb4f emissions can both be

determined already after 1 s of PbI2 deposition.
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Figure 5.30.: I3d and Pb4f XP detail spectra for the bare glass/FTO/TiO2 substrate and
after cumulative PbI2 deposition times of 1 s, 5 s and 15 s. No background correction was
performed for the spectra in this figure. The I3d emission around 624.2 eV is marked with
an arrow.
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In order to illustrate the energy level shifting associated with the formation of the PbI2

layer, the core line spectra of Ti2p and Pb4f are shown in figure 5.31, exemplarily for the

glass/FTO/TiO2 substrate and the PbI2 layer. The detail spectra of I3d and O1s for all

deposition steps can be found in figure A.8 in the appendix.
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Figure 5.31.: Ti2p and Pb4f XP detail spectra measured on the bare glass/FTO/TiO2 sub-
strate and between consecutive PbI2 depositions without breaking the vacuum conditions.
The shown deposition times are the cumulative deposition times. The offsets are given as
a guide to the eye for the intensity.

The Ti2p3/2 line in figure 5.31 shows a steady shift towards higher binding energies which

is most pronounced between the bare substrate and the first PbI2 deposition. The Pb4f7/2

line, however, steadily shifts to lower binding energies up to 360 s, recovers partly during

the last deposition step towards higher binding energies but does not reach its initial

position again. To illustrate the energy level shift more clearly, the assumed shift of the

valence bands for substrate and layer are shown in figure 5.32. Since the valence band

spectra of the substrate and the layer superimpose each other for all deposition steps but

0 s and 3060 s, the valence band maximum positions can not be determined directly from

the measured spectra. But following the assumption that the energetic difference between

the valence band and the core lines is fixed, the intermediate valence band maximum

positions can be obtained by using the positions of the pristine substrate and the thick

PbI2 layer and applying the shifts of the core lines, as done in figure 5.32 a.

The VBM shifts derived from Ti and O are quite parallel. Hence, the band bending of

the substrate is well defined and corresponds to the one seen in the Ti2p detail spectra.

For the layer however, there is a discrepancy between the I and the Pb shift for deposi-

tion times from 15 s to 180 s. Probable reasons for the discrepancy between the iodide

and the lead shift in figure 5.32 a are related to the interface reaction described above.

Since lead is assumed to be less influenced by those effects, its shift is used to describe

the layer band bending. During an interface experiment the layer shift is superimposed

by the substrate shift and needs to be corrected. This correction is shown in figure 5.32

b as black curve. For the PbI2 layer the valence band maximum position directly at the

interface (which would correspond to a 0 s position) is assumed to be similar to the one
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Figure 5.32.: (a) Shift of the valence band maximum positions of Ti, O, I and Pb with
cumulative PbI2 deposition time. The bulk valence band maximum positions (0 s for Ti and
O and 3060 s for I and Pb) are used as references. The binding energy shift is then assumed
to be the one of O1s, Ti2p3/2, I3d5/2 and Pb4f7/2. (b) Shift of the Pb4f7/2 (red) and Ti2p3/2

(blue) core lines with respect to their position after a PbI2 deposition time of 3060 s for
Pb4f7/2 and 360 s for Ti2p3/2. From this plot, the band bending of the glass/FTO/TiO2
substrate and the PbI2 layer can be derived. For the band bending of the substrate, the
shift of the Ti2p3/2 line can be used directly. To obtain the band bending of the PbI2 layer,
the substrate energy level shift is subtracted from the layer shift, resulting in the black
curve which shows the PbI2 layer band bending. Shifts towards higher binding energies
are positive, shifts towards lower binding energies negative in both graphs.

measured after the first deposition step but has to be corrected for the substrate shift be-

tween 0s and 1s deposition time which is 0.26 eV. This procedure results in a total band

banding for the PbI2 layer of 0.73 eV. Figure 5.32 b shows that the band bendings of the

TiO2 layer of the substrate and the PbI2 layer point downward. Since band bendings are

caused by a charge transfer, it is unusual that substrate and layer show a band bending

in the same direction. Considering the observed formation of the Pb(IO3)2 phase during

the first deposition steps, a significant part of the downward band bending of the TiO2 is

probably caused by this reaction of lead and iodine with the O2
– adsorbates on the TiO2.

In this context, the formation of Pb(IO3)2 would remove the O2
– adsorbates and there-

fore the corresponding upward band bending, described in section 5.1.1. Accordingly, a

pronounced contribution of the downward band bending observed in this interface experi-

ment would not be an actual downward band bending but the removal of an upward band

bending. An observation which requires a comment is the VBM position of the TiO2 layer

examined in this experiment. In section 5.1.1, in figure 5.5, a VBM position of 2.46 eV

was proposed as flat band position for TiO2. In contrast, in the discussion above, a VBM

position of 2.46 eV was attributed to an upward band bending which is removed during

the PbI2 deposition. The solution for this apparent contradiction are the line shapes of the

valence band regions of the TiO2 layer examined in this section and the TiO2 layer used

to draw the band energy diagram in section 5.1.1. While the TiO2 layer in section 5.1.1

was more rutile dominated, the TiO2 layer used for the interface experiment appears to

be more anatase dominated and accordingly shows a generally larger energetic distance
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between the VBM and the Fermi level (see also section 5.1.1 for comparison). Hence,

a VBM of 2.46 eV for the plasma treated TiO2 layer used in this experiment with con-

secutive downward band bending due to the removal of O2
– adsorbates during the PbI2

deposition is in accordance with the results presented in section 5.1.1, especially consid-

ering that the TiO2 band bending might not be completely caused by the removal of the

O2
– adsorbates but partly also by an actual charge transfer during the interface formation

(φPbI2 < φTiO2). The valence band spectra of the bare glass/FTO/TiO2 substrate and the

finished PbI2 layer can be found in the appendix in figure A.8.

Due to the observed formation of the Pb(IO3)2 interface layer the electronic shift of the Pb

and I core levels might be superimposed by a chemical shift. Hence, the assumption that

the energetic difference between the valence band maximum and the core level positions

is constant might not be valid. The examination of the work functions, measured after

every deposition step, would allow to track the surface potential during the experiment

and to check whether the electronic shift of the Pb and I core levels is superimposed by

a chemical shift or not. Unfortunately, the work functions were only measured for the

clean glass/FTO/TiO2 substrate and the thick PbI2 layer. Accordingly, the work functions

are only drawn for the pristine substrate and thick layer in the schematic band energy

diagram of the TiO2/PbI2 interface in figure 5.33. In addition, since it was not possible

to differentiate between chemical and electronic core line shifts, the band bending of the

PbI2 layer is not drawn.

In conclusion, the presented results indicate that chemical reactions are involved in the

formation of the interface between TiO2 and PbI2. The corresponding interface layers

might persist even after the transformation of PbI2 to MAPI and influence the charge ex-

traction from the MAPI absorber to the FTO/TiO2 ETL. The interface layers might even

cause increased hysteresis due to voltage driven migration of ions and should be kept in

mind for the discussion of the IV characteristics of MAPI solar cells [129].

5.2.5 Most important facts

• SEM images show that MAPI layers have to be recrystallized during the transfor-

mation of PbI2 to MAPI in order to achieve a morphology suitable for solar cells.

The transformation of PbI2 to MAPI happens in three steps: Transformation of PbI2

to MAPI, recrystallization and grain growth. The best morphology is achieved at

Ts=130 °C.

• The CSS transformation yields MAPI with high perovskite phase purity for Ts=75 °C,

90 °C, 130 °C and 150 °C. The perovskite crystal structure is dominated by the or-

thorhombic modification, indicating a high degree of order of the MA+ cations.

For MAPI, the orthorhombic modification is uncommon at room temperature but is

reported as low temperature modification (below -112 °C).
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Figure 5.33.: Schematic band energy diagram of the TiO2/PbI2 interface. The band gap
for TiO2 was taken from [76].

• An optical absorption edge onset at about 1.58 eV could be determined with UV/VIS

spectroscopy, well in accordance with band gaps reported in literature.

• The XPS and UPS results of the 2step CSS MAPI are well in accordance with liter-

ature values for stoichiometric MAPI. The MAPI Fermi level is pinned to the con-

duction band. MAPI and MAI can be differentiated by their core line positions.

MAPI and PbI2 cannot be differentiated by the binding energy positions of their

core emission lines.

• For a two step process, the TiO2/PbI2 interface is important because it strongly

determines the TiO2/MAPI interface after the transformation. During an interface

experiment, a pronounced shift of the Ti2p and O1s emissions during the first trans-

formation steps is observed. This shift indicates, in combination with the occurrence

of an additional I3d5/2 emission around 624.2 eV, that a Pb(IO3)2 interface layer is

likely to form between TiO2 and PbI2.
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5.3 MAPI synthesized from lead chloride

The use of lead chloride instead of lead iodide, with its different crystal structure, a dif-

ferent thin film morphology and different electronic properties, may alter and possibly

improve the characteristics of the resulting perovskite. In addition, compared to the pure

iodine CH3NH3PbI3 perovskite, the presence of chlorine in a mixed halide perovskite is

reported to be advantageous for the solar cell performance, the light absorption of the

absorber material, the charge carrier life time, mobility and diffusion length in the per-

ovskite [43, 147, 148]. Accordingly, in addition to PbI2, PbCl2 was used as a base layer

for the perovskite fabrication. The perovskites derived from PbI2 and from PbCl2 are

compared in the following, starting with their electronic properties and followed by their

morphology and crystal structure. Finally, the evolution of MAPI from a PbCl2 layer will

be discussed in detail. To differentiate between MAPI derived from PbI2 and MAPI derived

from PbCl2 in the following, the former will be referred to as MAPIPbI2 and the latter as

MAPIPbCl2.

5.3.1 Optoelectronic structure

Since most of the advantages associated with the presence of chlorine in MAPI concern

the electronic properties of the MAPI layers, the characterization of these properties will

be presented first, starting with PES and UV/VIS spectroscopy. Similar to the PE spec-

tra of MAPI derived from PbI2, the detail spectra of MAPI fabricated from PbCl2 show

no systematic dependence on the substrate temperatures. Hence, only spectra for MAPI,

fabricated from PbCl2 at a substrate temperature of 130 °C during the CSS process, are

shown in the following and are compared to PVD fabricated PbCl2 and MAPI fabricated

from PbI2 at Ts=90 °C. These samples are considered to be representative for PbCl2 and

MAPI fabricated from PbCl2 and PbI2, respectively. The spectra for MAPI fabricated at sub-

strate temperatures of 90 °C and 150 °C are shown in figures A.9 and A.10 the appendix.

For Ts=75 °C, no spectra could be measured due to problems with the PE spectrometer.

All samples were freshly prepared by PVD (PbCl2) or sequential CSS (MAPI) and are mea-

sured directly after the fabrication without breaking the vacuum conditions. The survey

spectra of the representative samples are shown in figure 5.34 and show no contamina-

tions. However, it should be mentioned, that due to the work on MAPI and MASI within

different projects executed at the time in the vacuum chambers of our lab, the Ts=150 °C

sample was found to contain some Sn. This contamination appears not to affect the core

level positions of I, N, C and Pb, but alters the VBM position. The iodine and lead features

of the Ts=90 °C sample, shown in the appendix are slightly shifted towards lower binding

energies compared to the other samples. As this shift was observed for this sample only, it

is not considered as systematic effect. The evaluation of the PbCl2 survey spectrum shows

that the presence of chlorine can be determined by the Cl2p lines. Interestingly, those
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lines can not be found neither in the survey spectra of the MAPIPbCl2 sample in figure 5.34

nor in the Cl2p detail spectra of the MAPIPbCl2 sample in figure 5.35. The core line po-

sitions, valence band maximum positions and work functions of the examined MAPIPbCl2

samples and of a PbCl2 reference sample are shown in table 5.7 and the element ratios at

the sample surfaces in table 5.8.
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Figure 5.34.: Survey spectra of MAPI fabricated from PbCl2 (red), MAPI fabricated from
PbI2 (red) and PbCl2 (turquoise) measured with XPS directly after the layer fabrication,
without breaking the vacuum conditions. The offset between PbCl2 and MAPIPbI2 is given
as a guide to the eye for the intensity. Only the most prominent lines are labeled.

Table 5.7.: Core emission line binding energy positions, valence band maximum positions
and work functions of MAPI fabricated from PbCl2, MAPI fabricated from PbI2 (Ts=90 °C)
and of PbCl2. All energy values are given in eV.

sample I3d5/2 N1s C1s Pb4f7/2 VBM (XPS) VBM (UPS) φ

Ts=90 °C 619.26 402.62 286.60 138.42 1.61 1.37 4.46
Ts=130 °C 619.55 402.64 286.61 138.65 1.71 1.62 4.27
Ts=150 °C 619.53 402.64 286.55 138.62 x x x
MAPIP bI2 619.47 402.62 286.58 138.57 1.65 1.61 4.38

PbCl2 Cl2p3/2 at 198.18 138.93 2.43 2.28 4.92

Table 5.8.: Element ratios at the sample surface of MAPI derived from PbCl2, of MAPI
derived from PbI2 (Ts=90 °C) and of PbCl2 samples obtained from XPS measurements with
Scofield ionization cross sections.

sample I/Pb Cl/Pb N/Pb I/N
Ts=90 °C 3.1 x 1.1 2.9
Ts=130 °C 3.0 x 0.8 3.6
Ts=150 °C 3.1 x 0.9 3.3
MAPIP bI2 3.1 x 1.0 3.1

PbCl2 x 1.9 x x
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As for MAPIPbI2, the element ratios for MAPIPbCl2, obtained by the areas under the core

emission lines with Scofield ionization cross sections, are close enough to ideal ones to as-

sume a stoichiometric surface composition. Considering the estimated detection threshold

of chlorine in MAPI, the Cl content is assumed to be below 1 atomic percent (detailed esti-

mation of the detection threshold of Cl can be found in the experimental section) [66]. Ac-

cordingly, it appears not to be adequate to consider a mixed halide perovskite in case of the

CSS MAPI from PbCl2. It is more appropriate to relate it to a PbCl2 derived CH3NH3PbI3.

The detail spectra of iodine, chlorine and lead are shown in figures 5.35 and 5.36.
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Figure 5.35.: XP detail spectra of the I3d and Cl2p emissions of MAPI fabricated from
PbCl2 (red), MAPI fabricated from PbI2 (red) and of PbCl2 (turquoise). The spectra were
measured directly after the layer fabrication, without breaking the vacuum conditions.
The offset between PbCl2 and MAPIPbI2 is given as a guide to the eye for the intensity.
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Figure 5.36.: XP detail spectra of the Pb4f emissions of MAPI fabricated from PbCl2 (red),
MAPI fabricated from PbI2 (red) and of PbCl2 (turquoise). The spectra were measured
directly after the layer fabrication, without breaking the vacuum conditions. The offset
between PbCl2 and MAPIPbI2 is given as a guide to the eye for the intensity.
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Figures 5.35 and 5.36 and table 5.7 show that PbCl2 and MAPI can readily be distin-

guished not only by the presence of iodine or chlorine but also by the binding energy

position of the Pb4f lines. On the other hand it is impossible to distinguish between MAPI

fabricated from PbI2 and from PbCl2 by means of core emission line positions, binding en-

ergy differences or elemental composition (see figures 5.35, 5.36, 5.37 and tables 5.7 and

5.8). Accordingly, also a modified doping by chlorine is unlikely, since it should manifest

not only in a shift of the valence band maximum but also in a shift of the core lines.
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Figure 5.37.: XP detail spectra of the N1s and C1s emissions of MAPI fabricated from PbCl2
(red), MAPI fabricated from PbI2 (red) and of PbCl2 (turquoise). The spectra were mea-
sured directly after the layer fabrication, without breaking the vacuum conditions. The
offset between PbCl2 and MAPIPbI2 is given as a guide to the eye for the intensity.

The N1s and C1s emissions in figure 5.37 show the same shapes for MAPI from PbCl2
as for MAPI from PbI2. Accordingly, the lower binding energy emission as well as the

high binding energy shoulder appear to be independent on the base layer lead salt. This

finding is in accordance with the explanation given in section 5.2 for the evolution of the

C1s emission at lower binding energies. There, the low BE emission is explained by the

formation of C2H6
+ due to a surplus of CH3

+ and CH3I in the layer which is also plausible

in MAPIPbCl2. The valence band maximum positions and the work functions of samples

considered as representative for MAPI fabricated from PbCl2 and PbI2 show no significant

difference (see figure 5.38 and figure A.11 in the appendix). The work function is in both

cases around 4.3-4.4 eV and the valence band around 1.7 eV for XPS and at 1.6 eV for UPS

measurements.
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Figure 5.38.: Valence band spectra measured with XPS of MAPI fabricated from PbCl2
(red), MAPI fabricated from PbI2 (red) and of PbCl2 (turquoise). The spectra were mea-
sured directly after the layer fabrication, without breaking the vacuum conditions. The
offset between PbCl2 and MAPIPbI2 is given as a guide to the eye for the intensity.

The assumption that the 2step CSS MAPI derived from PbCl2 is CH3NH3PbI3 and not

a mixed halide perovskite is further supported by the UV/VIS experiments in figure

5.39. The band gap, as a material property, is independent on the use of PbI2 or

PbCl2 as lead salt layer. Furthermore, as for MAPIPbI2, the optical absorption edge on-

set of MAPIPbCl2 does not change with increasing substrate temperature and is with

1.59 eV well in accordance with literature values for the band gap of MAPI (see figure

5.40) [109,113–116, 149]. However, figure 5.39 b shows some differences in the optical

spectra of MAPIPbI2 and MAPIPbCl2. The directed reflection of the MAPIPbCl2 layer is two

times as high as the one of the MAPIPbI2 layer, indicating that the MAPIPbCl2 layers are less

rough compared to the MAPIPbI2 layers. This observation is supported by the comparison

of the curses of the absorption coefficients over the photon energy in figure 5.39 a [119].
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Figure 5.39.: Comparison of the absorption coefficients αhν (offset 50000 cm−1) (left) and
the directed reflection Rhν and the transmission Thν (right) of MAPI fabricated from
PbCl2 (red) and from PbI2 (dark blue) at a Ts of 90 °C during the CSS process step on
glass/FTO/TiO2 substrates.
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In contrast to MAPIPbI2, in figure 5.40 not only the energetic position but also the sharp-

ness of the onset of the fundamental absorption of MAPIPbCl2 appears to be similar for

all examined substrate temperatures. This observation indicates that the MAPIPbCl2 layers

are not just smoother than the MAPIPbI2 layers but that their layer roughness is also less

dependent on the substrate temperature, in accordance with SEM images of MAPIPbCl2, as

will be discussed below. As for MAPIPbI2, the results obtained from the UV/VIS absorption

data will be compared with the results from the photoluminescence spectroscopy experi-

ments in section 5.4.
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Figure 5.40.: Absorption coefficient αhν plotted against the photon energy for PbCl2 and
MAPI fabricated from PbCl2 at CSS substrate temperatures of 75 °C, 90 °C, 130 °C and
150 °C on glass/FTO/TiO2 substrates. An offset of 50000 1/cm is used for each MAPI
spectra.
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With the PES results, summarized in table 5.7 and the band gaps presented in figure 5.40

band energy diagrams for PbCl2 and MAPIPbCl2 can be drawn and are shown in figure

5.41. It was not possible to determine a significant difference between the absorption

spectra of the bare glass/FTO/TiO2 substrate and the substrate with a PbCl2 layer till the

transmission of the substrate drops near zero in the energy range between 3.5 eV and

4 eV. Hence, the band gap of PbCl2 is assumed to be larger than 4 eV in accordance with

literature [150]. The Anderson alignment in figure 5.41 shows that the conduction band

offset between PbCl2 and MAPI is 2.2 eV (assuming a band gap of 5 eV [150]) and the

valence band offset 1.2 eV. The PbCl2/MAPI contact will therefore be electron and hole

blocking. Thus, besides a PbI2 layer, also a thin, dense PbCl2 layer has to be avoided in a

solar cell.

Figure 5.41.: Band energy diagrams of PbCl2 and MAPIPbCl2 derived from the PES data
presented in figure 5.38 and table 5.7 and the UV/VIS data presented in figure 5.40. The
band gap around 5 eV for PbCl2 is taken from literature [150].
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5.3.2 Morphology and crystal structure

The UV/VIS measurements in figure 5.39 already indicated that the MAPIPbCl2 layers are

smoother than the MAPIPbI2 layers. To confirm this indication, MAPIPbCl2 layers fabricated

at substrate temperatures of 75 °C, 90 °C, 130 °C and 150 °C were examined with SEM. The

results will be presented in the following and will be compared to the results obtained for

MAPIPbI2. As for MAPIPbI2 it is reasonable to assume that the MAPIPbCl2 layer morphology

will to some extend be dependent on the PbCl2 layer morphology. Therefore, the SEM

images of an about 110 nm thick PbCl2 layer deposited by PVD onto a glass/FTO/TiO2

substrate at a substrate temperature of 50 °C are shown in figure 5.42.

Figure 5.42.: SEM images in SE contrast of an about 110 nm thick PbCl2 layer deposited by
PVD onto a glass/FTO/TiO2 substrate. Top view (left) and cross section (tilted 75°) (right).

Figure 5.42 shows that PbCl2 forms compact rather smooth layers with small, globu-

lar grains and only few defects (dark spots in the top view image in figure 5.42). The

smooth, globular appearance of the PbCl2 layer in the top view SEM images is in accor-

dance with literature [109] and differs significantly from the flake like PbI2 morphology.

The SEM images for MAPI layers fabricated from PbCl2 at substrate temperatures of 75 °C,

90 °C, 130 °C and 150 °C during the CSS process are shown in figure 5.43.
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Figure 5.43.: SEM images in SE contrast of MAPI layers fabricated from PbCl2 on
glass/FTO/TiO2 substrates at substrate temperatures of 75 °C, 90 °C, 130 °C and 150 °C
during the CSS process. Top view (left) and cross section (tilted 75°) (right).
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Figure 5.43 shows that a less pronounced recrystallization occurs during the transfor-

mation of PbCl2 to MAPI compared to the transformation of PbI2 to MAPI. The main

difference between the morphologies of the MAPI layer fabricated at Ts=75 °C and a

PbCl2 layer is the grain size, accompanied by a recrystallization from a globular to an

edgy grain shape. The transformation from PbCl2 to MAPI on one hand and the recrystal-

lization and the grain growth on the other hand appear to be separate processes, taking

place simultaneously, similar to the findings for MAPIPbI2. The cross section image of the

Ts=75 °C sample in figure 5.43 shows that beneath the large grains, there is a layer of

smaller grains. On the first impression, these grains could be assumed to be either PbCl2
or PbI2. But, the XRD patterns in figure 5.44 show no PbCl2 and a PbI2 content which is

too small to explain the small grained layer. Hence, the most probable explanation is that

the layer is small grained MAPI beneath recrystallized large grained MAPI. Accordingly,

the recrystallization front appears to move from the layer surface to the substrate. With

increasing substrate temperature, from Ts=75 °C to Ts=90 °C, the small grained phase

disappears, the edgy habitus of the grains becomes more pronounced and the size of the

edgy grains increases. At Ts=130 °C and Ts=150 °C a further increase of the grain size is

observed and the shape of the grains becomes more round again. This observations are in

agreement with the Ostwald ripening like grain growth process also described for the PbI2

to MAPI transformation. Accordingly, even if their appearance is different, the same three

processes, transformation, recrystallization and grain growth, can be determined for the

evolution of the morphology with increasing substrate temperature for MAPI derived from

PbI2 and for MAPI derived from PbCl2. The comparison of the SEM images in figures 5.14

and 5.43 shows that at all substrate temperatures the MAPI layers fabricated from PbCl2
show smaller grains than the ones from PbI2. On the other hand, the MAPI from PbCl2 is

smoother than MAPI from PbI2 at substrate temperatures of 75 °C and 90 °C. At Ts=130 °C

the roughness of MAPIPbCl2 and MAPIPbI2 appears to be similar and at 150 °C the MAPI

layers from both lead salts become rougher again. But, while the Ts=150 °C MAPI layers

from PbI2 show pinholes at the grain boundaries, the roughening is less pronounced for

MAPI from PbCl2 in a way that it can still be considered for the production of solar cells.

In conclusion, from a morphological point of view, MAPI from PbCl2 appears to be better

suited for solar cell fabrication than MAPI from PbI2 for low substrate temperatures of

75 °C and 90 °C because of the smoother surface with less pinholes and for Ts=150 °C

because the grains boundaries will less likely form weak diodes. At 130 °C however, MAPI

from PbI2 is more promising for solar cell applications due to its larger grains. The layer

thicknesses for the MAPIPbCl2 layers in figure 5.43 were determined to be about 240 nm

for Ts=75 °C, 270 nm for Ts=90 °C, 260 nm for Ts=130 °C and 220 nm for Ts=150 °C.

The different crystal structures of PbI2 and PbCl2 might influence the crystal structure of

the derived MAPI layers. To examine this influence, XRD experiments were carried out on

the MAPIPbCl2 layers and will be discussed and compared to the MAPIPbI2 XRD results in

the following, starting with the survey XRD patterns in figure 5.44.
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Figure 5.44.: XRD patterns of MAPI layers fabricated from PbCl2 on glass/FTO/TiO2 sub-
strates at substrate temperatures of 75 °C, 90 °C, 130 °C and 150 °C during the CSS process.
For comparison XRD patterns of the glass/FTO/TiO2 substrate and the glass/FTO/TiO2 sub-
strate with PbI2, MAI and PbCl2 are given. The annotation “+ sub” denotes that reflections
of the FTO/TiO2 electrode are visible in every XRD pattern in addition to the reflections of
the respective layer. For all samples a background correction was performed. The hump
at 5° is an artifact of that correction but does not overlap with relevant features of the
XRD pattern. The XRD patterns are normalized to the substrate reflection at 37.9°.

Similar to MAPIPbI2, figure 5.44 shows that it is possible to fabricate MAPI layers from

PbCl2 up to substrate temperatures of 150 °C with the orthorhombic MAPI modification

identified in section 5.2 as dominating phase. Additionally, reflections originating from

PbI2 and the FTO/TiO2 electrode are observable. No indication for the presences of MAI or

PbCl2 can be found in the MAPI diffraction patterns. The sample fabricated at a substrate

temperature of 75 °C appears to show a contribution of MAPI in the cubic modification,

also determined for the low Ts samples of MAPIPbI2. But, due to the low signal to noise

ratio of the sample, this phase contribution can not be determined unambiguously. Based

on the observation that no PbI2 reflections other than the (001) reflection can be deter-

mined for the MAPI samples in figure 5.44, the PbI2 in MAPIPbCl2 probably possesses the

same single crystalline texture as found in the MAPIPbI2 layers. Hence, the PbI2 contents

can once again be assumed to be below 1 %. The MAPIPbCl2 layers show the presence of

PbI2 but not of PbCl2. This observation is probably due to the formation of PbI2 as an

intermediate phase during the transformation of PbCl2 to MAPI and will be discussed in

detail below [148].
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The detailed XRD patterns for MAPI layers fabricated from PbCl2 at Ts = 90 °C and

Ts = 150 °C are shown in figure 5.45 a. The verification of the orthorhombic Pnma

crystal structure for MAPIPbCl2 by means of Rietveld refinement is shown in figure 5.45 b.
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Figure 5.45.: a) Detailed XRD patterns of MAPI layers fabricated from PbCl2 on
glass/FTO/TiO2 substrates at substrate temperatures of 90 °C and 150 °C during the CSS
process. The diffraction pattern of a MAPI layer fabricated from PbI2 at a substrate tem-
perature of 130 °C during the CSS process is given for comparison. The diffraction patterns
are normalized in intensity scale. b) Detailed XRD pattern of a MAPI layer fabricated from
PbCl2 at a substrate temperature of 150 °C during the CSS process (red). A Rietveld refine-
ment assuming an orthorhombic crystal structure of the MAPI is denoted in black. The
difference between the measured curve and the superposition of the background and the
Rietveld refinement is denoted in black with “as meas. - Σ fit”.

The comparison of the detailed XRD patterns of MAPI from PbI2 and from PbCl2 in figure

5.45 a shows that the orthorhombic Pnma crystal structure, which is possibly slightly tex-

tured, is consistent for the 2step CSS MAPI, independent on the substrate temperature or

the used lead salt. The lead salts themselves however show some differences concerning

their crystal structures, as the visualization of the crystal structures of PbI2 and PbCl2 in

figure 5.46 illustrates.

Figure 5.46.: Visualization of the crystal structures of PVD fabricated PbCl2 (a) PbI2 (b).
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The unit cell dimensions, space groups and atomic positions used for the illustra-

tions in figure 5.46 are taken from Rietveld refinements of PVD fabricated layers on

glass/FTO/TiO2 substrates for both materials. The trigonal PbI2 already possesses the

PbI6 octahedra, forming the inorganic lattice of MAPI. In contrast, the examined PbCl2
is found to have an orthorhombic crystal structure of the the space group Pnam where

the lead atoms are coordinated with nine chlorine atoms. This crystal structure is in

accordance with literature [151, 152]. Hence, in PbCl2 a more pronounced atomic reor-

ganization is needed to form MAPI compared to the reorientation of the PbI6 octahedra

in PbI2. In addition, figure 5.46 shows that while PbI2 forms a layered structure, PbCl2
does not. This observation is reflected in the SEM images in figures 5.13 and 5.42 where

PbI2 forms a flake like and PbCl2 a globular morphology. Again, as in the previous sec-

tion, figure 5.46 is intended as a guide to visually access the general aspects of the crystal

structures of PbI2 and PbCl2 and might differ from the real materials when it comes to a

detailed description.

The unit cell dimensions for PVD deposited PbCl2 and MAPI fabricated at substrate tem-

peratures during the CSS process of 90 °C and 150 °C are given in table 5.9. There is no

significant change in the lattice parameters of MAPI with changing substrate temperatures

and lead salts.

Table 5.9.: Unit cell dimensions of MAPI samples fabricated from PbCl2 on glass/FTO/TiO2
substrates at substrate temperatures during the CSS process of 75 °C, 90 °C, 130 °C and
150 °C. The unit cell dimensions of a PVD fabricated PbCl2 layer on a glass/FTO/TiO2 sub-
strate is given for comparison. The volumes are calculated with a · b · c.

Ts a / Å b / Å c / Å V / Å
3

90 8.821(3) 12.546(3) 8.896(3) 984.504
150 8.825(3) 12.546(3) 8.895(3) 984.841

PbCl2 7.628(3) 9.051(3) 4.537(3) 313.239

129



5.3.3 Evolution of MAPI from lead chloride

Both lead salts, PbI2 and PbCl2 yield MAPI with the same crystal structure and optoelec-

tronic properties yet with different layer morphologies. In addition, the XRD patterns in

figure 5.44 show PbI2 but no PbCl2, suggesting that PbI2 might be an intermediate phase

during the transformation of PbCl2 to MAPI, which would be in agreement with litera-

ture [148]. To verify this hypothesis for the examined 2step CSS process and to clarify

the mechanism of the transformation of PbCl2 to MAPI, the evolution of MAPIPbCl2 from

PbCl2 was examined with stepwise in vacuuo PES experiments. The understanding of

the formation of MAPI, the most simple organic-inorganic hybrid perovskite, will help to

modify the fabrication techniques for more complicated perovskites in order to tune their

properties, overcoming the limitations of the organic-inorganic hybrid perovskites but

conserving their strengths. The experiment was carried out with Ts=90 °C and Tc=125 °C,

a standard CSS parameter set. The used CSS temperature profile is shown in figure 5.47.
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Figure 5.47.: Temperature profile of the stepwise transformation of PbCl2 to MAPI using
the CSS. During the PES measurements the crucible was kept at 125 °C with the shutter
closed, the substrate heating was turned off. Before each transformation step the sub-
strate was heated to 90 °C within 10 min and the shutter opened for a defined transfor-
mation time.

In figure 5.47, it can be seen that the crucible is preheated before the first transformation

step and then kept at a temperature of 125 °C. The substrate however has to be heated up

for every deposition step. A fast heating step to a substrate temperature around 80 °C was

applied and a slow heating step to a substrate temperature of 90 °C. After each heating

step it was assured that the crucible temperature was 125 °C and the substrate temper-

ature 90 °C. During the experiment, transformation steps of 10 s, 50 s, 70 s, 170 s, 600 s

and 4500 s were applied, leading to the cumulative transformation times of (0 s =bare

PbCl2 layer), 10 s, 60 s, 130 s, 300 s, 900 s and 5400 s. After the last transformation step

the source shutter was left open and the sample cooled down over night. The last PES

measurements were then performed on the next morning. Every PES measurement was

carried out at different positions on the sample to minimize the effect of beam damage.
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However, some beam damage was observed on the sample after the last transformation

step. Accordingly, for the last measurement (5400 s) a position without observable beam

damage was chosen. For all other PES measurements, no beam damage was observed.

After that last measurement, the sample was removed from the vacuum system and bro-

ken into two parts. One part was prepared for SEM, the other for XRD measurements.

The results obtained during the experiment are shown in the following.
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Figure 5.48.: XP survey spectra measured on a freshly prepared PbCl2 layer and during
the stepwise transformation of the PbCl2 layer to MAPI, without breaking the vacuum
conditions. The shown transformation times are cumulative transformation times. The
offset between the spectra is given as a guide to the eye for the intensity. Only the most
prominent lines are labeled.

In the survey spectrum of the pristine PbCl2 layer (0 s in figure 5.48) no contaminations

can be observed. After about 10 s of transformation, a significant amount of iodine is

incorporated in the layer, accompanied by a pronounced reduction of the Cl2p and Cl2s

emission line intensities and of the lead emission line intensities. However, the N1s and

C1s emissions occur only after 300 s of transformation. To get further insight in the trans-

formation mechanisms, the detail spectra for the I3d, Cl2p, Pb4f, N1s and C1s emissions

are shown in the figures 5.49 to 5.51.
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Figure 5.49.: XP detail spectra of the I3d and Cl2p emissions measured on a freshly pre-
pared PbCl2 layer and during the stepwise transformation of the PbCl2 layer to MAPI,
without breaking the vacuum conditions. The shown transformation times are cumulative
transformation times. The offsets are given as a guide to the eye for the intensity.

The intensity of the Cl2p emission decreases steadily till it is not observable any more

after 130 s of transformation. In addition, the intensity of the I3d emission increases till

130 s and decreases afterward. The simultaneity of the increasing I3d intensity with the

decreasing Cl2p intensity indicates the replacement of Cl– ions with I– ions in PbX2. The

decreasing I3d intensity from 300 s till 5400 s however indicates the transformation of

PbI2 to MAPI (see figure 5.26 for comparison). The start of the transformation of the PbI2

to MAPI around 300 s is in accordance with the evolution of the N1s and C1s emissions

presented in figure 5.50.

in
te

n
si

ty

405 404 403 402 401 400
binding energy / eV

0 s

10 s

60 s

130 s

300 s

900 s

5400 s

N1s

~ 200 cps

in
te

n
si

ty

289 288 287 286 285 284 283
binding energy / eV

0 s

10 s

60 s

130 s

300 s

900 s

5400 s

C1s

~ 200 cps

Figure 5.50.: XP detail spectra of the N1s and C1s emissions measured on a freshly pre-
pared PbCl2 layer and during the stepwise transformation of the PbCl2 layer to MAPI,
without breaking the vacuum conditions. The shown transformation times are cumulative
transformation times. The offsets are given as a guide to the eye for the intensity.
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In figure 5.50, the N1s and C1s features belonging to MAPI appear after 300 s of trans-

formation. But, a low binding energy C1s emission is clearly observable in figure 5.50

already after 10 s of transformation. This is an indication for the inward diffusion of CH3I

prior to the inward diffusion of NH3 [126,148]. A reaction scheme for the transformation

of PbCl2 to MAPI is proposed below.

1) PbCl2 + 2 CH3I −−→ PbI2 + 2 CH3
+ + 2 Cl–

2a) 2 CH3
+ + 2 Cl– −−→ 2 CH3Cl(g)

2b-1) 2 CH3
+ + 2 CH3I + 2 Cl– −−→ 2 C2H6

+ + 2 I– + Cl2(g)

2b-2) PbCl2 + 2 I– −−→ PbI2 + 2 Cl–

3a) 2 Cl– + 2 CH3I −−→ 2 CH3Cl(g) + 2 I–

3b) 2 PbI2 + 2 CH3I + 2 Cl– −−→ 2 PbI3
– + 2 CH3Cl(g)

The only source of iodine available for the replacement of chlorine is CH3I, diffusing into

the layer and leaving CH3
+ ions after the replacement (reaction 1). The CH3

+ ions can

react with the Cl– ions and form CH3Cl which diffuses to the sample surface and sub-

limes (reaction 2a). The combination of reaction 1 with reaction 2a would be the most

intuitive way for the transformation of PbCl2 to PbI2. However, since the low binding en-

ergy component of the carbon 1s emission is clearly visible in figure 5.50 before the C1s

MAPI emission occurs, the transformation of PbCl2 to PbI2 appears to include a carbon

containing species which remains in the sample. Reactions 2b-1 to 3b show a corre-

sponding reaction mechanism which could take place simultaneously to reaction 2a. In

reaction 2b-1 the CH3
+ ion reacts with CH3I forming C2H6

+, which explains the observed

low binding energy component of the C1s emission. The assumption of the formation of

C2H6
+ is further supported by the binding energy position of the low binding energy C1s

emission, which is in the same range as the C1s emission associated with the presence of

C2H6
+ as described in section 5.2.3. In the reaction 2b-2 the I– ions formed in reaction

2b-1 are used for the transformation of PbCl2 to PbI2 leaving two Cl– ions on the product

side. Possible reactions for those chlorine ions are proposed in reactions 3a and 3b. In

reaction 3a, the chlorine ions react with CH3I resulting in CH3Cl, which is removed from

the sample, and two I– ions which can be reused in a new reaction 2b-2. On the other

hand, the C2H6
+ cation, formed in reaction 2b-1 needs to be charge compensated. Reac-

tion 3b shows the consumption of the Cl– ions from reaction 2b-2 during the formation

of PbI3
– , which charge compensates the C2H6

+ cation and possibly locally starts to form

the inorganic lattice of the later perovskite. Accordingly, the reaction of PbCl2 with CH3I

appears to include three reaction sets, possibly taking place at the same time. The first

one is the combination of reaction 1 and reaction 2a. The second one is the combination
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of reaction 2b-2 and reaction 3a, after reaction 2b-2 was initiated by reaction 2b-1. Last

but not least, each time reaction 2b-1 takes place, due to the requirement of charge neu-

trality, reaction 3b has also to happen (via reaction 2b-2). Since reaction combinations

one and two result in the formation of PbI2 but reaction combination 3 in the formation

of PbI3
– , both product species will be present during the reaction of PbCl2 with CH3I.

However, since PbI2 is formed by two reaction combinations and PbI3
– only by one, with

increasing transformation time, PbI2 will be more and more the dominant phase. In ad-

dition, since the intensity of the C1s low binding energy emission in figure 5.50 does not

scale with the transformation time, it might well be, that reactions 2 and 3 take place only

during the beginning of the transformation process and that the formation of PbI2 via the

combination of reaction 1 and 2a is the dominant process during the reaction of PbCl2
and CH3I. In that case, the assumption that PbI2 is the dominant product of the reaction

of PbCl2 and CH3I is supported further. When a sufficient amount of NH3 is present in

the layer, the formation of CH3NH3
+ cations and hence the evolution from PbI2 to the

MAPI perovskite, as described in section 5.2.3, occurs. Apparently this stage is reached

after 300 s during this experiment. The shift of the Pb4f emission in figure 5.51 shows the

complete transformation of PbCl2 to MAPI in one picture.
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Figure 5.51.: XP detail spectra of the Pb4f emissions measured on a freshly prepared PbCl2
layer and during the stepwise transformation of the PbCl2 layer to MAPI, without break-
ing the vacuum conditions. Both Pb4f emissions (left) and higher magnification on Pb4f7/2

emission (right). The turquoise arrow indicates a line position characteristic for PbCl2, the
dark blue and red arrows indicate line positions characteristic for PbI2 and MAPI, respec-
tively. The shown transformation times are cumulative transformation times. The offsets
are given as a guide to the eye for the intensity.

The arrows in figure 5.51 are drawn at 138.9 eV, 138.7 eV and 138.6 eV corresponding to

the maximum of the Pb4f7/2 emission in PbCl2, PbI2 and MAPI (see also tables 5.5 and

5.7). The shift of the Pb4f7/2 emission in figure 5.51 b corresponds well to the mechanism

proposed above. For the pristine substrate, the binding energy position is dominated by

PbCl2 (turquoise arrow), during the following steps, the Pb4f7/2 line shifts towards lower

binding energies around 138.7 eV, associated with PbI2 (dark blue arrow). Starting with
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the measurement after 300 s of transformation, the Pb4f7/2 emission shifts to a position

around 138.5-138.6 eV (red arrow), simultaneously with appearance of the N1s and C1s

main emission, indicating the presence of MAPI. The binding energy positions of the core

emission lines, the valence band maxima and the work functions measured during the

experiment are summarized in table 5.10. The element ratios of I/Pb and N/Pb provide

further information above the last deposition steps. After 900 s of transformation, the

ratio of I/Pb is 3.1, the ratio of N/Pb 1.0. Those ratios indicate a complete transformation

of PbCl2 to stoichiometric MAPI, at least in the PES information depth. After 5400 s of

transformation, the ratios change to 3.6 and 1.4 indicating a thin MAI capping layer (the

lead emission is still visible) on top of the MAPI which is deposited probably during the

cool down phase with open shutter.

Table 5.10.: Core emission line binding energy positions, valence band maximum positions
and work functions measured on a freshly prepared PbCl2 layer and during the stepwise
transformation of the PbCl2 layer to MAPI. All energy values are given in eV. The given
transformation times t are cumulative transformation times.

t / s I3d5/2 N1s C1s Cl2p3/2 Pb4f7/2 VBM VBM
φ

(XPS) (UPS)
0 x x x 198.18 138.93 2.43 2.28 4.92

10 619.55 x x 198.54 138.86 1.81 1.87 4.77
60 619.65 x x x 138.72 1.67 1.90 4.86

130 619.68 x x x 138.69 1.62 1.88 4.73
300 619.57 402.64 286.48 x 138.62 1.55 1.64 4.47
900 619.48 402.62 286.51 x 138.55 1.58 1.58 4.43
5400 619.52 402.65 286.68 x 138.57 1.67 1.64 4.30

The valence band spectra in figure 5.52 support the transformation mechanisms of PbCl2
to MAPI described above and provide further detail. For the freshly prepared PbCl2 layer,

the Cl3s and Cl3p features can be determined [87]. Already after 10 s of transforma-

tion, the Cl3s emission is not observable anymore and the valence band is dominated

by I5p contributions [124]. However, at this stage, the Cl3p contribution at 6 eV is still

clearly visible. For 60 s and 130 s the valence band spectra are dominated by PbI2 (see

also section 5.2.3 for comparison). The transformation of PbI2 to MAPI includes the re-

arrangement of the PbI6 octahedra from edge sharing to corner sharing. Furthermore,

Lindblad et al. associate the I5p feature of the valence band with bonding I5p orbitals

contributing to Pb-I-Pb bonds [124]. Considering this, the steadily decreasing intensity

of the 5 eV feature with ongoing transformation is related to the reordering of the PbI6

octahedra during the transformation of PbI2 to MAPI.
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Figure 5.52.: Valence band spectra measured with XPS (a) and UPS (b) on a freshly pre-
pared PbCl2 layer and during the stepwise transformation of the PbCl2 layer to MAPI,
without breaking the vacuum conditions. The turquoise arrows indicate emissions charac-
teristic for PbCl2, the dark blue and red arrows indicate features characteristic for PbI2 and
MAPI, respectively. The shown transformation times are cumulative transformation times.
The offsets are given as a guide to the eye for the intensity.

The valence band spectra measured with XPS and presented in figure 5.52 allow an inter-

esting procedure which may provide further detail on the transformation mechanism from

PbCl2 to MAPI, they can be approximated by a superposition of reference valence band

spectra. This is done in figure 5.53. The valence band spectra of the freshly prepared

PbCl2 film is used as reference spectra for PbCl2. For MAPI, PbI2 and MAI the valence

band spectra presented in figure 5.23 a are used. For the approximation, the intensities

of the reference spectra were scaled in a way that the total approximation yields the best

optically match with the measured curves. For further detail see section 4.3.1 in the ex-

perimental chapter.
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Figure 5.53.: Valence band spectra measured with XPS on a freshly prepared PbCl2 layer
and during the stepwise transformation of the PbCl2 layer to MAPI, without breaking
the vacuum conditions. The measured valence band spectra (red) are approximated by a
superposition of reference spectra for PbCl2 (turquoise), PbI2 (dark blue) and MAPI (gray).
For further details on the approximation procedure see section 4.3.1 in the experimental
chapter.
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The approximations of the valence band spectra fit well to the evolution of the trans-

formation of PbCl2 to MAPI described above. The freshly prepared PbCl2 layer and the

spectra obtained after 10 s of transformation clearly show the presence of PbCl2. How-

ever, after 10 s a pronounced contribution of PbI2 is visible. The spectra measured after

60 s and 130 s are dominated by PbI2. Nevertheless, a minor contribution of PbCl2 can be

determined in the 60 s spectra (encircled), which is difficult to identify in the spectra in

figure 5.52. Hence, the transformation of PbCl2 to PbI2 in the XPS information depth is

still incomplete after 60 s of transformation. However, after 130 s of transformation, the

transformation of PbCl2 to PbI2 is complete and the valence band spectra corresponds well

to the PbI2 reference spectra. The fits of the valence band spectra measured after 10 s and

60 s of transformation yield an interesting observation, they can not be fitted with PbCl2
and PbI2 alone. An additional phase is present, which shows a strong contribution in

the spectra measured after 10 s, a minor contribution in the spectra measured after 60 s

and is not observable in the spectra measured after 130 s. Since the contribution of the

additional phase appears to show high intensity at a binding energy position close to the

one of the I5p, emission it could be speculated that it belongs to an iodine containing

phase. First guesses would be MAI or MAPI. However, even when the reference spectra

of those materials are used, the spectra measured after 10 s of transformation can not be

approximated in a satisfying way. In addition, for MAPI and for MAI the presence of NH3

in the layer would be necessary. Yet, the core level spectra shown above and the derived

mechanism for the transformation of PbCl2 to MAPI give no indication for the presence of

NH3 at this early stage of the transformation process. It rather appears that the additional

phase might be an intermediate phase appearing during the transformation of PbCl2 to

PbI2.
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Figure 5.54.: Superposition of the Pb4f7/2 emissions measured on a freshly prepared PbCl2
layer and during the stepwise transformation of the PbCl2 layer to MAPI, without breaking
the vacuum conditions. The spectra are normalized in intensity scale and shifted in binding
energy scale in a way, that their maxima are at the same binding energy position.
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A further indication for the presence of an intermediate phase between PbCl2 and PbI2

might be the evaluation of the full width half maxima (FWHM) of the Pb4f emissions in

figure 5.54. Here, no broadening of the Pb4f emissions between the 0 s and the 10 s spec-

tra is observed. However, such a broadening would be expected in case the Pb4f emission

of PbCl2 and PbI2, which show a binding energy difference in the range of 0.26 eV, would

overlap. Hence, it could be speculated, that the Pb4f emission of the 10 s spectra does

not belong to an overlap of the Pb4f emissions of PbCl2 and PbI2 but to the intermediate

phase indicated by the valence band approximations in figure 5.53. Interestingly, the full

width half maxima of the 0 s and 10 s spectra are quite similar. Those spectra are at-

tributed to PbCl2 (0 s) or are considered to be dominated by the postulated intermediate

phase (10 s). On the other hand, the spectra from 130 s to 5400 s, which are considered

as dominated by PbI2 and MAPI, show a quite consistent FWHM as well. Only the Pb4f

emission in the spectrum recorded after 60 s of transformation shows a FWHM which is

in between the one for PbCl2 dominated spectra and the one for PbI2 or MAPI dominated

spectra. Here, a plausible explanation would be that the spectrum is already dominated

by PbI2 but with contributions of the intermediate phase or PbCl2. Such a phase compo-

sition would also be in accordance with the valence band fit in figure 5.53. Hence, two

emissions with different binding energies would overlap, leading to a line broadening on

the high binding energy side.

The valence band spectrum measured after 300 s of transformation is already dominated

by MAPI and the spectrum obtained after 900 s corresponds well with pure MAPI. Even

though the spectrum obtained after 5400 s appears to originate dominantly from MAPI,

the fit is not as good as for the 900 s spectrum. This observation is probably due to the

presence of the MAI capping layer, indicated by the surface stoichiometry. Considering

that the MAI capping layer is likely quite thin (the Pb4f emissions from MAPI are clearly

visible), the evolution of a space charge region, caused by the contact between MAPI and

MAI or other substrate effects might lead to a binding energy shift of the MAI capping

layer observed in this experiment compared to the MAI reference spectra. Thus, even

though the presence of MAI is the most probable explanation for the deviations of the

valence band spectrum measured after 5400 s of transformation from the MAPI reference

spectrum, the implementation of a MAI reference spectra did not yield a significant im-

provement of the fit and is not included in figure 5.53.

In conclusion, the PES data measured during the stepwise transformation of PbCl2 to

MAPI indicate a consistent transformation mechanism. In a first step PbCl2 is trans-

formed to PbI2 by the reaction of CH3I with PbCl2, possibly via an intermediate phase

and accompanied by the formation of C2H6
+ and PbI3

– . Thereby, the formation of C2H6
+

during the transformation of PbCl2 to PbI2 is a formation process of C2H6
+ in addition to

the formation of C2H6
+ during the transformation of PbI2 to MAPI described in section

5.2.3. Since no emission of chlorine could be determined after a transformation time of

130 s, the removal of the chlorine from the PbCl2 by outward diffusion and sublimation
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of CH3Cl and Cl2 is proposed. In a second step, the PbI2 is transformed to MAPI by the

incorporation of NH3 into the layer. From equation 3.19 it can be derived that, under the

condition of a constant crucible pressure, the surface coverage will be linearly dependent

on tt, in a first approximation. But, the evolution of the intensities of the I3d emissions in

figure 5.49 and of the Pb4f emissions in figure 5.51 indicates that the dependence of the

transformation process on tt is not linear. The transformation of PbCl2 (and probably also

of PbI2) to MAPI seems to be a diffusion controlled process, which might be described by

equation 3.21 with the temperature dependence according to equation 3.22. However,

since the temperature dependent adsorption, desorption, and diffusion behavior NH3 is

expected to be different from the other decomposition products of CH3NH3I, it must be

considered in all details.

Stepwise transformation experiments of PbCl2 to MAPI with an unheated substrate show

the formation of undesired phases like MACl or CH3Cl in the MAPI layer. This observation

proofs that a certain substrate temperature is needed to allow sufficient diffusion of the

species involved in the transformation process and to ensure a good transformation of

PbCl2 to MAPI. However, to get a more detailed insight into the kinetics of the transfor-

mation of lead salts to MAPI, further experiments are needed.

As mentioned above, the MAPI layer was examined with XRD and SEM after the stepwise

transformation was completed. The obtained X-ray diffraction pattern is shown in figure

5.55, the SEM images in figure A.13 in the appendix.The diffraction pattern shown in

figure 5.55 was measured under Ar atmosphere but the sample was transported in air.

Figure 5.55.: X-ray diffraction pattern of the MAPI sample after the stepwise transforma-
tion (cumulative transformation time of 5400 s). The transparent bars are given to ease
the identification of the crystalline phases present in the sample. Reflections belonging to
MAPI are marked red, those belonging to MAI green and those belonging to the FTO/TiO2
electrode gray. In addition five unidentified reflections are marked yellow. The low signal
to noise ratio is caused by the short integration time used for this measurement.
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In the XRD pattern in figure 5.55, reflections associated with MAPI and MAI can be iden-

tified. No residual PbI2 or PbCl2 can be determined. Hence, it can be assumed, in ac-

cordance with the PES results, that the final step was chosen too long, leading to a MAI

capping layer. Not all reflections associated with MAPI and MAI in figures 5.15 and 5.44,

can also be determined in figure 5.55. The reason for that is probably the low signal to

noise ratio in figure 5.55. In addition, it should be mentioned that while the PES results

indicate only a thin MAI capping layer, the visibility of MAI in the XRD pattern in figure

5.55 can only be explained by a rather thick MAI capping layer. Those findings appear

to contradict each other. However, the measurement point of the last PES measurements

was not on the sample half used for the XRD measurement. Hence, an inhomogeneous

thickness of the MAI capping layer can explain the observation that the MAI layer appears

to be thicker in the XRD measurement as in the PES measurements. The combination of

the surplus MAI with the transport in air might also explain the five unidentified reflec-

tions in figure 5.55 [153,154]. At least the reflection around 11.6° is associated with the

formation of lead halide complexes like ((CH3NH3)4PbI6 · 2H2O due to the presence of

humidity and excess MAI [153,154]. It appears plausible that also the other unidentified

reflections could belong to such a complex phase. The involvement of water is an im-

portant feature. Since it is not present in significant amounts in the vacuum system, the

complexes have most likely formed during the transport in air and do not influence the

PES results. However, degradation of the sample due to the repeated heating and irradia-

tion with X-rays as well as due to the extended exposure to the vacuum environment has

to be considered as measurement uncertainty for this experiment.
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5.3.4 Most important facts

• No Cl can be detected in PES measurements. Hence, the perovskite fabricated from

PbCl2 is considered rather a PbCl2 derived MAPI than a mixed halide perovskite.

Since the binding energy positions of the core lines are invariant towards the used

lead salt, also a chlorine doping modification appears unlikely. Also, the band gap

of MAPIPbCl2 corresponds to the one of MAPIPbI2.

• The layer morphology of PbCl2 differs from the morphology of PbI2 and the mor-

phology of MAPIPbCl2 differs from the one of MAPIPbI2. However, similar to MAPIPbI2,

the evolution of the layer morphology of MAPIPbCl2 is based on three mechanisms:

transformation of the PbCl2 to MAPI and the recrystallization and grain growth of

the MAPI grains. Also, the qualitative dependence of these three processes on the

substrate temperature appears to be similar for MAPIPbI2 and MAPIPbCl2.

• The stepwise transformation of PbCl2 to MAPI was examined with PES. The results

indicate that the transformation mechanism of PbCl2 to MAPI includes the formation

of PbI2 and possibly an additional intermediate phase between PbCl2 and PbI2. A

reaction scheme for the transformation of PbCl2 to MAPI is proposed.

• As for MAPIPbI2, an orthorhombic crystal structure of the space group Pnma was

found to be the dominant modification also for MAPIPbCl2. Accordingly, the or-

thorhombic modification of MAPI, which is uncommon at room temperature, ap-

pears to be a feature of MAPI layers fabricated with the 2step CSS process, indepen-

dent on whether PbI2 or PbCl2 is used as base layer.
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5.4 Photoactivity

In the first sections of this results and discussion chapter, the characterization of the op-

toelectronic, crystallographic and morphological properties of MAPI, fabricated with the

sequential CSS process were presented. In addition, the dependencies of those properties

on the substrate temperature during the CSS process and the used lead salt were dis-

cussed. Furthermore, the evolution of the perovskite from PbI2 and PbCl2 was described.

In this final results chapter, the photoactivity of the fabricated MAPI layers will be dis-

cussed by means of photoluminescence experiments and the implementation of the MAPI

layers in planar solar cells. Some parts of this section are taken from our publication [1].

5.4.1 Photoluminescence

The photoluminescence (PL) measurements of MAPI layers fabricated from PbI2 (a) and

(c) as well as from PbCl2 (b) and (d) at substrate temperatures of 75 °C, 90 °C, 130 °C

and 150 °C on glass/FTO/TiO2 substrates are shown in figure 5.57. The main PL emis-

sion of the spectra at 1.61 - 1.62 eV is assigned to the optical band gap of MAPI. Figure

5.56 shows the comparison of the PL spectra of the MAPI layer fabricated from PbI2 at a

substrate temperature of 75 °C during the CSS process, with a MAPI layer fabricated by

co-evaporation of PbI2 and MAI. The data for the co-evaporated sample were provided by

M.Sc. Maximilian Stöhr.
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Figure 5.56.: PL spectra of two MAPI layers fabricated from PbI2 on glass/FTO/TiO2 sub-
strates by 2step CSS (Ts=75 °C, same measurement as in figure 5.57) and by co-evaporation
of PbI2 and MAI. The data for the co-evaporated sample were provided by M.Sc. Maximil-
ian Stöhr.
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Figure 5.57.: Photoluminescence spectra of MAPIPbI2 samples, (a) and (c), and MAPIPbCl2
samples, (b) and (d), prepared on glass/FTO/TiO2 substrates at substrate temperatures
of 75 °C, 90 °C, 130 °C and 150 °C during the CSS process. The spectra in (c) and (d) are
normalized in intensity scale. The PL spectra of the bare glass/FTO/TiO2 substrate, PbCl2,
PbI2 and MAI show no emission in the presented photon energy range. All MAPI spectra
but MAPIPbCl2 with Ts=75 °C are measured with an incident beam wavelength of 480 nm, a
20 nm slit and an 530 nm emission filter. MAPIPbCl2 (Ts=75 °C) is measured with an incident
beam wavelength of 450 nm and a 475 nm emission filter.

The spectra in figure 5.57 show that the 2step CSS MAPI layers fabricated at a substrate

temperature of 75 °C have the highest PL intensities. The MAPI layers fabricated at the

other substrate temperatures show intensities which are significantly lower than for the

Ts=75 °C sample7. Furthermore, figure 5.56 shows that the PL intensity of the Ts=75 °C

2step CSS MAPI sample is considerably lower than the one of the co-evaporated sam-

ple. Taking into account, that the CSS MAPI spectrum used in figure 5.56 shows one of

the highest intensities achieved with the 2step CSS MAPI layers, the overall PL intensity

range of the 2step CSS MAPI layers appears to be low. The low PL intensities can be

both, a promising or a problematic indication concerning the quality of the MAPI layers.

On one hand, when discussing the PL intensity the conductive glass/FTO/TiO2 substrates

have to be considered which can quench the PL intensity. Van Franeker et al. even use

7 A more detailed examination of the dependence of the PL intensity on Ts would not be reasonable since
an unambiguous calibration of the spectra in intensity scale was not possible.
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the quenching of the PL signal of a 390 nm thick MAPI layer as criteria to describe the

charge transport properties and hence the quality of the MAPI layers and their suitability

as solar cell absorbers [111]. On the other hand, non-radiative recombination mecha-

nisms need to be considered. The dominant non-radiative recombination mechanisms

are reported to be defects at grain boundaries or interfaces for perovskite solar cells with

low efficiencies and Shockley-Hall-Read recombination via bulk defects for high efficiency

solar cells [155]8. Concerning the grain boundaries, not the volume fraction of the grain

boundaries appears to be most important but the type of grain boundaries and of the grain

boundary defects [155,156]. From the PL measurements, it is difficult to decide, whether

the quenching of the intensity is caused by the extraction of photogenerated charges into

the FTO/TiO2 electrode or by non-radiative recombination. But, the comparison of the PL

measurements with the IV measurements presented below will help to clarify the cause

of the low PL intensity. Since all layers were fabricated on glass/FTO/TiO2 substrates,

a possible substrate effect should be canceled out when comparing the PL intensities. It

is interesting that the PL intensities decrease with increasing substrate temperature for

MAPIPbI2 and for MAPIPbCl2. A possible explanation could be a temperature dependent

defect density. However, since the valence band maximum positions appeared to be in-

variant towards the process temperatures, at least for the densities of charged defects, no

pronounced substrate temperature dependence is expected. Interestingly, those samples

which show the highest PL intensities are fabricated at the same substrate temperatures,

75 °C and 90 °C, for which the presence of the cubic MAPI modification was indicated by

the XRD measurements, at least for MAPI derived from PbI2. Hence, a certain correla-

tion between the presence of MAPI in its cubic modification and the PL intensity could be

assumed. For the MAPI layers derived from PbCl2 this correlation is less well developed,

since all MAPI layers with Ts ≥ 90 °C do not show the cubic phase modification. Still, for

the Ts=75 °C layer, which shows the highest PL intensity, the indication for the presence

of the cubic phase modification is given. Although, the assumption of a correlation be-

tween the PL intensity and the cubic MAPI modification is speculative, it can be readily

explained. Recently, reports of a substantial contribution of the reorientation of the MA+

cations to the dielectric constant of MAPI and therefore to the screening of charged species

in MAPI can be found [101, 102]. In the cubic modification, the MA+ cations can rotate

freely while in the orthorhombic modification, the degree of orientational freedom of the

MA+ cations is limited [92,101,104,105,108]. This limited ability for reorientation leads

to a reduced dielectric constant and a reduced charge screening, resulting in reduced

life times and mean free paths of photoexcited charge carries [101, 102]. Considering

those effects, the influence of the non-radiative recombination mechanisms will be more

pronounced in the orthorhombic compared to the cubic MAPI modification. Hence, it is

plausible that the PL intensities are generally higher for the cubic perovskite modification

than for the orthorhombic modification and that the overall PL intensity for the 2step CSS

MAPI layers scales to some extend with the cubic phase fraction.

8 for mixed perovskite containing Cs, MA, FA, Pb, I and Br
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The slight variation between the band gaps determined with UV/VIS spectroscopy (1.58 -

1.60 eV) and PL spectroscopy (1.61 - 1.62 eV) is related to the determination procedures

used during the evaluation of the UV/VIS and PL spectra. In the PL measurements no

background subtraction was performed and in the UV/VIS experiments the onset of the

absorption over the band gap was considered as optical band gap. Hence, the possible

influences of defect states and surface roughness on the onset of the fundamental absorp-

tion, as discussed in section 5.2.3, might lead to an underestimation of the optical band

gap determined from the UV/VIS measurements and explain the discrepancy between the

optical band gaps derived from UV/VIS and from PL spectroscopy measurements. Fur-

thermore, the comparison of the PL and UV/VIS results identifies the surface roughness

as main cause of the varying sharpness of the onset of the fundamental absorption in the

UV/VIS experiments in figures 5.21 and 5.40. If defects were the dominating influence for

the sharpness of the fundamental absorption, there should be some correlation between

the intensity of the PL emission and the sharpness of the fundamental UV/VIS absorp-

tion onset. But, no such correlation can be determined by the comparison of the UV/VIS

spectra in figures 5.21 and 5.40 and the PL spectra in figure 5.57. Nevertheless, even

though defects do not appear to determine the sharpness of the onset of the fundamental

absorption in UV/VIS measurements, the low PL intensities still constitute an indication

for the general presence of defects in the MAPI layers. The assumption that the influence

of defects on the UV/VIS spectra is probably superimposed by the influence of the surface

roughness of the MAPI layers and the absorption of the glass/FTO/TiO2 substrate, even

though defects are present in the fabricated MAPI layers, is further supported by the com-

parison of the UV/VIS data measured during this work with spectra found in literature.

This comparison shows that the curse of the absorption coefficient over the photon energy

is well in accordance with literature spectra associated with MAPI layers which achieved

PCEs above 10 % in solar cells [33, 40, 110–112]. However, the solar cells prepared dur-

ing this work do not reach such efficiencies, likely, in part, due to the presence of defects,

as will be discussed below. In addition to surface roughness and defects, other physical

reasons like an anti-Stokes shift caused by the formation of polarons from photoexcited

charge carriers could be considered as contribution to the difference of the band gaps de-

termined with UV/VIS and PL spectroscopy [101,157]. Since the band gaps derived from

the PL measurements are also smaller than the energetic difference between EF and the

VBM of MAPIPbI2 and of MAPIPbCl2, the use of those band gaps instead of the ones derived

from UV/VIS measurements would not lead to any major change for the interpretation of

the band energy diagrams of MAPI in figures 5.5, 5.24 and 5.41.

Comparing the PL spectra of MAPIPbI2 and MAPIPbCl2, the qualitative dependence of the

PL intensity on the substrate temperature and the determined band gaps are similar. How-

ever, the PL spectra of MAPIPbI2 show a shoulder at higher photon energies compared to

the main emission, which is not present in the spectra taken from MAPIPbCl2. A shoulder

on the high binding energy side of the main emission directly rules out explanations like

defects in the band gap or relaxation effects known from organic semiconductors. Also,
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none of the crystallographic modifications of MAPI shows a band gap corresponding to

the energetic position of the shoulder [103]. Moreover, the band gap of MAPI is reported

to be rather invariant towards stoichiometric variations [128]. Imaginable causes for the

shoulder might be surface effects caused by the large surface fraction of the free standing

flakes or even an accelerated degradation of the MAPI flakes to a non-MAPI phase, com-

pared to the dense layer.

5.4.2 Solar cells incorporating MAPI derived from lead iodide

To test the performance of the fabricated MAPI layers as solar cell absorbers, they

were implemented into planar solar cells. Thereby, a simple stack consisting of FTO/c-

TiO2/MAPI/Spiro-MeOTAD/Au was used. For the solar cell fabrication the focus was set

on MAPI fabricated from PbI2 layers. Figure 5.58 shows the time stabilized values for

the open circuit voltages Voc, the short circuit current densities (Jsc), the fill factors (FF)

and the efficiencies (η) of planar solar cells incorporating the 2step CSS MAPI layers.

In figure 5.58, the effect of a C60 layer between the TiO2 layer and the MAPI layer and

of an additional heat treatment of the MAPI layers can be observed. The C60 layer and

the heat treatment in air are intended to improve the performance of the fabricated solar

cells by a reduction of the defect density and a modification of the TiO2/MAPI inter-

face [21, 111, 129, 155, 158–163]. In figure 5.58, the solar cells without a C60 layer or

a heat treatment show poor performance. Still, the IV curves of the solar cells show a

clear diode behavior. The incorporation of a C60 layer improves the Voc, the Jsc and the

efficiency of the solar cells presented in figure 5.58. Nevertheless, other solar cells fab-

ricated from PbI2 on FTO/c-TiO2 substrates with the 2step CSS process show that also

cells without a C60 layer can match the performance of the cells with a C60 layer and

even excel them. However, without the C60 layer, the solar cells on different substrates

show a broad variation in their performance. Therefore, it appears that the parameters

with the broadest variation are the photocurrent and, less pronounced, the open circuit

voltage. In section 5.2.4 it was proposed that an interface phase (Pb(IO3)2) is likely to

form between the O2
– adsorbates on the TiO2 layer and the lead salts during the PVD

fabrication step. The presence and the amount of such an interface phase will scale with

the concentration of the O2
– adsorbates on the TiO2. Hence, a varying concentration of

O2
– adsorbates on the TiO2 caused by unmonitored fluctuations during the spray pyrol-

ysis and the plasma treatment could explain the observed variation of the performance

of the solar cells without a C60 layer. A varying O2
– adsorbate concentration, with the

corresponding surface band bending, on the spray pyrolyzed and plasma treated TiO2 lay-

ers is further indicated by the varying PES results obtained from similar processed TiO2

layers in section 5.1.1. Unfortunately, no information about the band gap and the posi-

tion of the energy levels in Pb(IO3)2 is available. Nevertheless, insulating properties of

the Pb(IO3)2 phase or a detrimental influence on the contact formation between TiO2

and MAPI would hinder the extraction of electrons from the MAPI absorber into the ETL,
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resulting in an increased series resistance and in a decreased photocurrent. Hence, the

mayor role of the C60 layer is to prevent the formation of the Pb(IO3)2 interface phase.

The prevention of the formation of an interface phase and the beneficial effect of the

organic interface layer, due to reduced charge carrier recombination at the TiO2/MAPI in-

terface, on the solar cell performance are in accordance with literature [21,129,158,159].
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Figure 5.58.: Open circuit voltages (Voc), short circuit current densities (Jsc), fill factors (FF)
and efficiencies (η) of solar cells fabricated at Ts=90 °C during the CSS process. Shown are
solar cells without a C60 layer and without a heat treatment, with a C60 layer between
TiO2 and MAPI but without heat treatment and with a C60 layer and a heat treatment in
air at 100 °C for 30 min. For every condition the time stabilized values of four solar cells on
one substrate are shown, each solar cell with an area of 3.25 mm x 10 mm.

The heat treatment of the MAPI layers in air, prior to the Spiro-MeOTAD spin coating,

yields a further increase of the PCE of the fabricated solar cells. Thereby, the most im-

portant effect of the heat treatment is a pronounced increase of the photocurrent. For the

solar cells in figure 5.58, the photocurrent increase is accompanied by a small increase

of the open circuit voltage. SEM and XRD experiments on CSS fabricated MAPI layers

with and without a heat treatment in the tube furnace are presented in the master the-

sis of M.Sc. Christian Hoyer (see figures A.14 and A.15 in the appendix) [164]. The

SEM images show that the morphological changes of the MAPI layers are limited to a

reduction of the amount of the not recrystallized MAPI flakes (see also section 5.2.1 for

comparison). The morphology and the grain size of the recrystallized grains is mainly

unaffected. Furthermore, the heat treatment in the tube furnace appears to reduce the

phase fraction of the cubic perovskite modification (see figure A.15) [164]. Besides the

recrystallization of the flake like grains, other effects which are beneficial for the solar

cell performance are reported for a heat treatment of the perovskite layer in literature.

Especially Jsc, FF and η, but less pronounced also Voc, are reported to profit from a re-

duction of the amount of trap states, recombination centers and grain boundaries during
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a heat treatment [111,155,160,162,163]. In addition, results by Das et al. indicate that

a heat treatment in air will improve the performance of the fabricated solar cells by the

oxidation of metallic lead to lead oxide, in case metallic lead would form due to illumina-

tion during the vacuum fabrication steps [165]. It appears likely that a combination of all

these effects can explain the beneficial effect of the heat treatment on the performance of

the solar cells examined in this work.
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Figure 5.59.: Open circuit voltages (Voc), short circuit current densities (Jsc), fill factors
(FF) and efficiencies (η) of solar cells fabricated at substrate temperatures of 75 °C, 90 °C,
130 °C and 150 °C during the CSS process. The solar cells possess a C60 layer between the
TiO2 and the MAPI layer and were heat treated in air for 30 min at 100 °C. Plotted are the
time stabilized values of four solar cells (only one for Ts=150 °C) on one substrate, each cell
with an area of 3.25 mm x 10 mm.

The properties of the fabricated solar cells incorporating the 2step CSS MAPI absorber ap-

pear to be relatively invariant towards the substrate temperature during the CSS process,

as figure 5.59 shows. However, the open circuit voltages, short circuit current densities

and efficiencies of the solar cells incorporating the MAPI layers fabricated at substrate

temperatures of 90 °C and 130 °C during the CSS process are slightly improved compared

to the 75 °C and 150 °C samples, supporting the optimum substrate temperature window

for the 2step CSS process estimated from the comparison of the SEM images in figure

5.14. The achieved efficiencies in the range of 1-3 % are low compared to solar cells in-

corporating MAPI as absorber which is produced by evaporation under vacuum conditions

or ambient pressure CVD with varying contact materials [13, 21, 33, 37, 38, 40]. But, the

combination of a cell area of 3.25 mm x 10 mm and the observed narrow efficiency dis-

tribution, especially for the Ts=130 °C substrate, shows that also square centimeter cells

with that efficiency could be produced, indicating the potential of the CSS process to fabri-

cate homogenous large area thin films. The IV characteristics of a solar cell incorporating

a MAPI layer fabricated at Ts=130 °C are shown in figure 5.60.
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Figure 5.60.: IV characteristics in linear (a) and semilogarithmic (b) scale of a planar solar
cell fabricated at a substrate temperature of 130 °C during the CSS process with a C60 layer
between the TiO2 and the MAPI layer and a heat treatment in air for 30 min at 100 °C. The
dashed curves denote the IV measurements in the dark, the solid lines the measurements
under illumination. The red squares in a) denote the time stabilized values of Jsc, Voc and
the maximum power point.

The hysteresis, shown by the IV curves in figure 5.60, can be caused by several effects

or by a combination of those [121, 156, 159, 166]. In general, the origin of hystere-

sis for perovskite solar cells is still topic to lively discussion in the research community

[121, 156, 159, 166]. Based on current literature, it appears that the observed hysteresis

is caused by the redistribution of ions [121, 156, 159, 166]. Thereby, iodine interstitials

(Ii
– ) appear to be the most likely candidates for the ion movement [121, 156]. But, also

the movement of other ions like MA+ is topic to current discussion [121]. Besides the ion

migration, other effects can influence the hysteresis observed during IV measurements of

perovskite solar cells [121,159,166]. To name a few, the interfaces between MAPI and the

charge transport layers, the IV history of the solar cell, preconditioning of the solar cell

and the measurement conditions have been found to have a pronounced influence on the

hysteresis [121, 159, 166]. To exclude the effect of the hysteresis on the determination

of the Voc, Jsc and the maximum power point (MPP), their measures were determined

as time stabilized values and can be considered as independent on the hysteresis. The

experimental chapter gives detailed information about the respective measurement pro-

cedures.

Another interesting observation is that in figure 5.58 and in figure 5.59 the fill factor

evolves in the opposite direction as the open circuit voltage, the short circuit current den-

sity and the efficiency. A possible explanation is indicated in figure 5.61, exemplarily for

the solar cell also shown in figure 5.60.
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Figure 5.61.: Comparison of the shape of the dark IV curve and the curse of the time
stabilized values (Voc, Jsc, MPP) of a solar cell incorporating MAPI fabricated at Ts=130 °C
during the CSS process step. The solar cell possesses a C60 layer between the TiO2 and the
MAPI layer and was heat treated in air for 30 min at 100 °C. Shown are both curves in the
voltage range from -0.05 V to 0.95 volt. The right axis belongs to the dark curve, the left
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Figure 5.61 shows that for the examined solar cells the superposition approximation of

dark- and photocurrent is not valid, meaning that the IV curve measured under illumi-

nation, denoted by the time stabilized values for Voc, Jsc and the MPP in figure 5.61,

has not the same shape as the dark IV curve [167]. Such a behavior can be caused by

a voltage dependent photocurrent [54, 167]. The voltage dependence of the photocur-

rent may have different origins which strongly depend on the type of examined solar

cell. Unfortunately, the exact determination of the origin of the voltage dependence of

the photocurrent of the solar cells examined in this work is not possible. But, at least an

attempt for an explanation will be given. Usually MAPI is reported to show rather long

life times for both, electrons and holes [168]. However, the reduced charge screening

in the orthorhombic MAPI modification is reported to reduce the life times of photoex-

cited charge carriers [101, 102]. In addition, the PL measurements presented in figure

5.57 indicate an increased non-radiative recombination in the 2step CSS MAPI layers.

With that, the velocity with which the photogenerated charge carriers reach the charge

selective contacts becomes more important to ensure an effective separation of photogen-

erated charges. Since the photocurrent is a voltage dependent current, the probability

with which the charge carriers reach the electrodes depends on the potential difference

between the electrodes, in case of a p/i/n-solar cell or on the band bending in the SCR

in case of a p/n-solar cell. Either way, a potential applied in forward direction of the

diode will reduce the potential difference responsible for the separation of photogener-

ated charge carriers and therefore slow down the charge carriers leading to an increased

recombination and hence a reduced photocurrent with increasing voltage in forward di-

rection. The observation that the FF evolves in the opposite direction compared to Voc,

Jsc and η in figures 5.58 and 5.59 can now also be explained. With an increasing pho-
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tocurrent, its influence on the shape of the IV characteristics becomes more relevant. In

addition, the voltage dependence of the photocurrent causes a deviation of the measured

IV characteristics from ideal diode IV characteristics. Hence, while Voc, Jsc and η benefit

from an increased photocurrent, the fill factor of the solar cells examined in this work

decreases with increasing photocurrent due to an increasing deviation of the measured

IV characteristics from ideal diode IV characteristics caused by the voltage dependence of

the photocurrent.

As described above, the solar cell efficiencies achieved with the 2step CSS MAPI layers are

lower than the efficiencies reported for MAPI solar cells fabricated with other methods.

Literature values for MAPI solar cells (different layer stacks and fabrication methods) are

around 1 V for the open circuit voltage, for the short circuit current density around 200±
20 A/m2 and around 70 % for the fill factor [13,21,33,36–38,40,112,131,147,169–171].

The comparison of the literature values with the time stabilized Voc and Jsc values of 0.93 V

and 70.5 A/m2 and a fill factor of 38 % for the solar cell in figure 5.60 shows that all three

parameters are smaller than the literature values for the 2step CSS solar cells. However,

the open circuit voltage is in the range of the literature values. The main efficiency loss

is caused by the low current density and the low fill factor. The low current density and

the low fill factor can be caused by different effects. Losses of the fill factor can, for ex-

ample, be due to the voltage dependence of the photocurrent caused by recombination

of photogenerated charge carriers described above. Furthermore, a pronounced recombi-

nation of photogenerated charge carriers via defect states can also explain the observed

low current densities. Hence, the defect density in the 2step CSS MAPI layers needs to be

discussed at this point. The overall defect density in the bulk should be reduced by the

heat treatment [111, 160–163]. The role of grain boundaries in perovskite solar cells is

still topic to scientific discussion [155, 156, 172]. Considering the grain boundary phase

which was proposed as possible explanation for the crack formation during SEM measure-

ments, the grain boundaries could appear as possible origin for defect states. However,

the formation of cracks at grain boundaries is also reported for solar cells with active

areas in the square centimeter range and efficiencies overcoming 15 % [91]. Hence, in-

dependent on the reason for the cracks, which only occur under intensive electron beam

irradiation, they do not explain the observed PCEs. Furthermore, a dense morphology

of the MAPI layers, like the one shown by the SEM images in figure 5.14 for MAPIPbI2

and in figure 5.43 for MAPIPbCl2, is reported to reduce the amount of defects caused by

grain boundaries and hence the influence of the grain boundaries on the solar cell per-

formance [155, 156, 173]. However, especially for solar cells showing low efficiencies,

generally, the recombination of photogenerated charge carriers via grain boundary de-

fects needs to be considered [155]. The recombination via defects at the ETL and HTL

interfaces should be reduced due to the use of the C60 interlayer at the ETL side and

Spiro-MeOTAD as (organic) HTL [159]. In conclusion, even though the grain boundaries

do not appear to cause an exceptional high defect density in the 2step CSS MAPI layers

and measures were taken to reduce the defect density in the bulk of the layers and at
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the interfaces to the charge transport layers, it appears that the recombination via defects

is still an important performance limitation for solar cells incorporating 2step CSS MAPI

layers. An explanation which could add to this observation would be that the time of the

heat treatment was chosen too short and the beneficial effect of a reduction of the defect

density due to the heat treatment was not fully developed. Furthermore, as mentioned

in the PL section of this chapter, the limited ability of the MA+ cations to rotate and the

respective reduced screening of charged species might enhance the recombination of the

photogenerated charge carriers, via defects and band to band, in the orthorhombic MAPI

modification compared to tetragonal or cubic MAPI [101–103]. The observation that the

fabricated solar cells show rather low efficiencies for all examined substrate temperatures

is in accordance with the assumption, made above when discussing the PL spectra, that

the defect densities are independent on the substrate temperature during the CSS process.

Besides the influence of defect states and recombination, another effect appears to limit

performance of the solar cells prepared during this work. Since MAPI layers fabricated

at all examined substrate temperatures possess a dense and homogenous morphology, at

least beneath the flake like grains, it can be assumed that the influence of short circuits

and weak diodes through the absorber layers on the IV characteristics is sufficiently small.

The observation that the discrepancy between the measured solar cell parameters and the

literature values is larger for Jsc and FF than for Voc indicates that a high serial resis-

tance might be part of the explanation of the measured solar cell characteristics (see also

section 3.2.3). The reason for this is that the open circuit voltage is the only parameter

which is not directly influenced by the serial resistance because it is obtained when the

measurement circuit is current free [47]. Section 3.2.3 in the basics chapter gives a more

detailed description of the equivalent circuit of a solar cell with the layer sequence used

in this work. After the identification of the series resistance as probable cause of the low

photocurrent, the possible causes of the series resistance will be discussed in the follow-

ing. An insulating interface layer caused by a reaction of the O2
– adsorbates on the TiO2

and PbI2 during the PVD step can be ruled out as reason for the high series resistance due

to the use of the C60 layer. It rather appears that the most plausible cause of the high

serial resistance is a thin layer of remnant PbI2 between the FTO/TiO2 ETL and the MAPI

absorber. Concerning the role of remnant PbI2 in perovskite solar cells and its impact on

their performance, different opinions are reported in literature [112, 114, 174–177]. As

discussed in section 5.2.3 and shown in figures 5.24 and 5.25, it is likely that a poten-

tial barrier for electrons exists at the PbI2/MAPI contact. In addition, PbI2 shows a poor

conductivity [141]. Hence, if the PbI2 remnants, indicated by the XRD measurements

in figure 5.15, would be present as dense layers, they can hinder the electron transfer

between the MAPI absorber and the FTO/TiO2 electrode and explain an increased serial

resistance which limits the solar cell performance. The assumption that the remnant PbI2

is present at the MAPI/TiO2 interface is plausible considering that the MAI inward diffu-

sion front will emerge from the layer surface towards the TiO2 during the transformation

of PbI2 to MAPI (see section 5.3.3 for comparison). Accordingly, flat PbI2 grains located
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directly at the interface will be transformed last and are the most likely candidates for

unreacted PbI2. That the remnant PbI2 is not distributed randomly is in agreement with

the stoichiometric surface composition measured with PES. The stoichiometric surfaces

composition further indicates that no MAI capping layer is present on the examined MAPI

layers. Nevertheless, the influence of surplus MAI on top of the MAPI absorber layer needs

to be considered. Figure 5.24 shows that the ∆EVBM between MAPI and MAI is 0.32 eV.

The valence band maximum offset will not cause problems in case a sufficient contact be-

tween the MAPI layer and the Spiro-MeOTAD HTL is given. As thin, dense layer however,

the presence of MAI may hinder the extraction of holes from MAPI into the Spiro-MeOTAD

electrode. In conclusion, since dense layers of both, PbI2 and MAI, will hinder the charge

transport from the MAPI absorber into the electrodes, it is crucial in a sequential fabrica-

tion process that the Pb-salt layers are completely reacted (no remnant PbI2 interlayer)

and the formation of a MAI capping layer is avoided at the same time. Only then the se-

rial resistance is sufficiently low to provide a good charge extraction which is crucial for a

well working solar cell. Furthermore, the observation of the high serial resistances due to

thin interface layers supports the assumption made above that the observed low PL inten-

sities are not caused by a pronounced charge transport from the MAPI into the FTO/TiO2

electrode but by non-radiative recombination. However, since no C60 interlayer was used

for the PL samples a quenching of the PL intensity via recombination at interface defects

needs to be considered in addition to the non-radiative recombination in the MAPI layers.

In summary, the cause of the low PCEs of the fabricated solar cells is probably a hindered

charge carrier extraction caused by a thin PbI2 layer between the TiO2 layer and the MAPI

layer in combination with the recombination of photogenerated charge carriers, mainly

via defects and possibly enhanced by a reduced charge screening in the orthorhombic

perovskite modification.

Interestingly, while the PL measurements indicated a correlation of the PL intensity with

the presence of the cubic MAPI modification, the IV measurements show no such depen-

dence. Different reasons can explain this observation. On one hand, the XRD results

from the work of Hoyer, shown in figure A.15 in the appendix, indicate a reduction of the

amount of the cubic MAPI modification during the heat treatment. Thus it is not certain,

that the (heat treated) MAPI layers used for the solar cell fabrication still possess MAPI

in its cubic modification. On the other hand, assuming that the cubic modification is still

present in the MAPI layers after the heat treatment, the cubic phase would be embedded

into the orthorhombic matrix. Hence, the charge carriers would have to travel through

the orthorhombic matrix, independent on whether they are generated in the cubic or in

the orthorhombic phase fraction. Thus, the assumed higher yield of photoexcited charge

carriers in the cubic perovskite modification compared to the orthorhombic perovskite

modification would be quenched by the recombination of the photoexcited charge carri-

ers during their travel through the orthorhombic phase.
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The best performing solar cells, incorporating a 2step CSS fabricated MAPI layer derived

from PbI2, were fabricated by M.Sc. C. Hoyer in 2015 and were built without a C60 layer.

Solar cells incorporating a MAPI layer which was heat treated prior to the spin coating

of the Spiro-MeOTAD layer, reached efficiencies up to 4.6 % [164]. But, also without the

heat treatment, efficiencies in the range of 4.5 % were occasionally reached [164]. In

addition to the solar cells incorporating MAPI layers derived from PbI2, solar cells incor-

porating MAPI layers derived from PbCl2 were fabricated. All of those solar cells were

fabricated without a C60 layer between the TiO2 ETL and the MAPI absorber. Still, a solar

cell with an efficiency of 4.2 % could be fabricated and is considered as proof of principle

that the 2step CSS approach is suited to fabricate working solar cells from PbI2 and from

PbCl2 base layers. However, independent on the used lead salt, efficiencies above 3 %

could only be achieved rarely and not be intentionally reproduced.

5.4.3 Most important facts

• Solar cells with PCEs larger then 4 % could by fabricated incorporating MAPIPbI2

and MAPIPbCl2, serving as a proof of principle for the 2step CSS as fabrication route

for perovskite solar cell absorbers.

• For most of the fabricated solar cells, the overall PCE is in the range of 2-3 %, in-

dependent on the substrate temperature. The reason for this is probably the com-

bination of a thin PbI2 interface layer between the TiO2 layer and the MAPI layer

with the recombination of photoexcited charge carriers, mainly via defects, in the

MAPI layer. The recombination is possibly enhanced due to a reduced screening of

charged species, caused by the limited ability of the MA+ cations to reorientate in

the orthorhombic MAPI modification.

• The use of a C60 layer between the TiO2 and the MAPI layer enhances the repro-

ducibility of the solar cells due to interface passivation. The interface passivation

avoids the formation of unwanted interface phases like Pb(IO3)2 which would oth-

erwise be detrimental for the solar cell performance.

• A heat treatment of the 2step CSS fabricated MAPI layers increases the efficiency,

probably due to a reduction of the defect density

• The relatively large area and the narrow efficiency distribution of the solar cells

on one substrate incorporating MAPIPbI2, especially for Ts=90 °C and Ts=130 °C,

indicate the potential of the 2step CSS process to fabricate solar cells with active

areas in the cm2 regime.
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6 Summary and Conclusions
In the past chapters, the theoretical background, the experimental procedure and the re-

sults obtained during this work were presented. In this chapter, the most important results

will be summarized in form of a summary and conclusion.

During the work presented in this thesis, the fabrication of methylammonium lead iodide,

under application of a sequential closed space sublimation setup was evaluated. CSS was

used as deposition technology because of it providing large area deposition perspectives

as proven for CdTe. In addition, CSS is a technique which may be preferential for sub-

stituted halide perovskite absorbers e.g. with Sn substituting Pb. The fabricated MAPI

layers, as well as the used base materials were examined by means of SEM, XRD, UV/VIS

and PL spectroscopy and in vacuo PES. The characterization results were determined in

dependence on the substrate temperature during the CSS process step and on the used

lead salt, PbI2 or PbCl2. PbCl2 was used as base layer lead salt in addition to PbI2 since it is

reported to improve the optoelectronic properties of the fabricated perovskite layers and

the efficiency of solar cells using these layers [43,147,148]. In addition, the use of differ-

ent lead salts allows to asses to which extent the properties of the fabricated perovskite

layers depend on the base material and under which conditions the perovskite properties

become independent on the used lead salt. MAPI derived from PbI2 and MAPI derived

from PbCl2 could be fabricated with high phase purity, independent on the substrate tem-

perature. The MAPI layers derived from PbI2 and PbCl2 show very similar properties in

XRD, PES, UV/VIS spectroscopy and PL spectroscopy experiments and differ only in their

morphology. Besides the characterization of the properties of the finished MAPI layers, the

interface between the glass/FTO/TiO2 substrate and PbI2 was examined by an interface

experiment. Furthermore, mechanisms for the transformation of PbI2 and PbCl2 to MAPI

were proposed based on in vacuuo PES results obtained during stepwise transformation

of the lead salt layers to MAPI. Finally, the fabricated MAPI layers were implemented in

solar cells in planar configuration, without a mesoporous TiO2 scaffold, and their IV char-

acteristics were recorded. The proof of principle for working solar cells, for all examined

substrate temperatures and both lead salts could be achieved. Nevertheless, challenges

and distinctive features of a MAPI solar cell fabrication route incorporating a CSS step

became apparent. From those results, criteria and requirements for the implementation

of the closed space sublimation into the production of MAPI layers can be derived.

The potential of the 2step closed space sublimation as fabrication process for MAPI layers

becomes most apparent considering the wide range of accessible substrate temperatures

and the respective broad spectrum of morphologies, which even can be independent on

the morphology of the used lead salt. The large observed process temperature window of
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the CSS process, up to substrate temperatures of 150 °C, needs to be highlighted since, for

the fabrication of MAPI layers, the combination of a high vacuum environment and sub-

strate temperatures above 100 °C is a unique feature of the CSS process. Such substrate

temperatures are only possible in an environment with high partial pressures of the MAI

sublimation species [42]. A corresponding environment is provided in the CSS crucible.

Additionally, the small volume of the CSS crucible, compared to the volume of a vacuum

chamber, reduces the amount of MAI required to establish a certain pressure.

It could be shown that the evolution of the MAPI layer morphology can be separated

in three processes, the transformation of the lead salt to MAPI by incorporation of MAI

into the lead salt layers, a recrystallization of the MAPI grains, which is associated with

a change in the shape of the grains, and finally an Ostwald ripening like grain growth

process of the recrystallized grains. All three processes take place simultaneously during

the transformation of PbI2 and of PbCl2 to MAPI. Their process velocity appears to in-

crease with increasing substrate temperature. Since the layer morphologies of PbI2 and

PbCl2 differ significantly and the morphology of PbCl2 is more similar to the morphology

of recrystallized MAPI, the morphological changes are more pronounced for the transfor-

mation of PbI2 to MAPI than for the transformation of PbCl2 to MAPI. Concerning their

crystal structure, the MAPI layers fabricated with the 2step CSS were found to be domi-

nated by the orthorhombic MAPI modification of the space group Pnma, independent on

the used lead salt.

The optoelectronic properties of the fabricated MAPI layers, derived from PES, UV/VIS

spectroscopy and PL spectroscopy experiments, correspond to literature values. The band

gap of the examined MAPI layers is determined to be about 1.58 eV by UV/VIS spec-

troscopy, in accordance with PL experiments. Thereby, even though the presence of

defects in the fabricated MAPI layers is likely to affect the UV/VIS spectra, their influ-

ence is superimposed by the influence of the surface roughness of the MAPI layers and

by the absorption of the glass/FTO/TiO2 substrate. However, the examination of the PL

spectra indicates the presence of defects inside the MAPI layers and for the respective

non-radiative recombination. An interesting observation concerning the crystal structure

and the photoactivity of the fabricated MAPI layers is the appearance and the properties

of the cubic perovskite modification in the MAPI layers at low substrate temperatures.

The PL measurements indicate that the cubic modification might be more photoactive

than the orthorhombic modification, in accordance with the assumption of an enhanced

recombination of photogenerated charge carriers in the orthorhombic perovskite modifi-

cation [101–103].

The PE spectra obtained form the MAPI layers are independent on the substrate temper-

ature and are well in accordance with literature values for MAPI prepared with different

wet chemical and gas phase techniques. The observation of a shoulder on the C1s emis-

sion indicates that a second organic cation is present in the MAPI layers in addition to

CH3NH3
+. Since carbon in the only element where the shoulder could be observed, it is

assumed that the additional cation only contains carbon. A possible candidate would be

158



C2H6
+. A respective formation mechanism, based on the assumption of surplus CH3I in

the perovskite layers, is proposed in section 5.2.3. Furthermore, based on stepwise trans-

formation experiments, lead iodide could be identified as intermediate phase between

PbCl2 and MAPI. After the transformation of PbCl2 to MAPI, neither a Cl emission nor a

doping effect due to Cl ions could be determined in PES experiments on MAPIPbCl2 layers.

In spite of the promising analytical results, the PCE of the fabricated solar cells remained

limited to 2 to 3 %, with few solar cells exceeding 4 %. Thereby, the current density

and the fill factor show the most pronounced discrepancy to literature values while Voc

is smaller but at least in the range of the values reported for MAPI absorbers fabricated

with wet chemical and gas phase techniques, with varying electrode materials. As rea-

son for the efficiency limitation a thin PbI2 layer between the MAPI absorber and the

FTO/TiO2/C60 ETL in combination with defect mediated recombination of photogener-

ated charge carriers is proposed. Thereby, the orthorhombic crystal structure and the

respective reduced charge screening due to the reduced ability of the MA+ cations to re-

orientate may increase the recombination of photogenerated charge carriers.

Due to the significant effect of a thin layer of remnant PbI2 on the electron extraction on

one hand and the similar effect a MAI capping layer would have on the hole extraction

on the other hand, it has to be avoided that either too few or to much MAI is deposited

during the CSS process step. This condition requires a precise control over the amount of

MAI used for the transformation of a PbI2 layer, for example by deposition rate control or

by partial pressure control [1]. Such process control would also help to compensate fluc-

tuations in the MAI sublimation behavior. Among other reasons, these fluctuations can be

due to morphological changes of the MAI in the CSS crucible, for example a sintering of

the MAI powder1. Unfortunately, with the setup in use, such control mechanisms are not

applicable. The amount of MAI is controllable only indirectly via the crucible temperature

and the transformation time, making transformations in this closed environment suscep-

tible to the formation of unwanted PbI2, and possibly PbCl2 in case of MAPIPbCl2, or MAI

layers [1]. An alternative to the precise control over the amount of MAI used during the

transformation process step would be an intentional overreaction, resulting in a MAI cap-

ping layer, and the consecutive removal of the excess MAI by annealing processes or by

rinsing the fabricated layers with isopropanol (see also section 4.2.3). However, keeping

the aim of a fully vacuum processed perovskite solar cell in mind, the need of a wet chem-

ical removal of excess MAI is not desirable. The removal of excess MAI via an annealing

step under vacuum conditions requires to keep the MAPI layers at high temperatures for

several minutes and bears the risk of a degradation of the perovskite layer. In addition,

the removal of excess MAI did not lead to a pronounced increase of the solar cell perfor-

mance in test experiments. Thus, the precise control of the MAI partial pressure remains

the best option to fabricate perovskite layers with out residual lead salt or surplus MAI

with the 2step CSS process.

1 Occasionally but not always, the observation was made, when the CSS crucible was refilled, that the
MAI powder remaining in the CSS crucible was partly or completely sintered together.
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Methylammonium lead iodide is one of the most described photoactive perovskites and

is therefore well suited as model system for the assessment of fabrication techniques for

perovskite thin films [7, 43–45]. Yet, while the need to control the amount of the used

material is a general requirement of a 2step CSS process, the application of MAI in the

CSS for the transformation of lead salts to MAPI causes some specific difficulties. As dis-

cussed in section 5.2.3, it is likely that MAI will decompose during the sublimation in the

pressure/temperature regime preferential for the CSS process step [34, 42,57,143,178].

Possible decomposition reactions are:

CH3NH3I −−→ CH3I + NH3 [57]

CH3NH3I −−→ CH3NH2 + HI [42,143,178]

As discussed in section 5.2.3, the decomposition of MAI into CH3I and NH3 is considered

as more applicable for the description of the experiments in this work. However, the co-

existence of both dissociation product sets in the gas phase, with the respective different

transformation mechanisms, has to be considered for the crucible temperatures below

160 °C [42]. Due to the different molecular weights of the dissociation products, their

potentially different sublimation pressures and sticking coefficients and their different in-

ward diffusion rates, an overproportional loss of the more volatile species is likely to lead

to a nonstoichiometric gas phase in the CSS crucible. This nonstoichiometric gas phase

might even be an origin of defect states in the fabricated MAPI layers contributing to the

defect mediated recombination of photogenerated charge carriers identified in chapter

5.4 as one of the limitations of the performance of the fabricated solar cells. Hence, there

is a need to keep the reaction chamber tight. Therefore, an improved CSS setup must be

realized which on one hand allows control over the amount of MAI used for the transfor-

mation of a lead salt layer to MAPI. On the other hand, the setup must provide a constant

chemical activity of the reactants. Alternatively, the problem of the MAI dissociation could

be solved by the use of reaction couples which are stable for the needed reaction condi-

tions, e.g. CsI or CsBr, as precursors instead of MAI [1]. With those precursor materials

inorganic perovskites like CsPbI3 or CsPbIsBr could be fabricated. Considering those pos-

sible process modifications and the fact that working solar cells with an relatively large

active area of 3.25 mm x 10 mm and a narrow efficiency distribution (especially in the

substrate temperature window between 90 °C and 130 °C) could be fabricated from PbI2

and PbCl2 layers in this work, the potential of the CSS as upscalable fabrication process

for perovskite absorber layers is still apparent.
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7 Outlook
In the conclusion chapter, the most important results and arguments of this work were

presented and the potential and the advantages of the implementation of a closed space

sublimation step into a processing route for perovskite absorber layers was pointed out.

On the other hand, the challenges observed during this work were discussed. Some of

these challenges are related to the CSS process itself while others concern the use of MAI

in the CSS. Based on the presented results, possible routes to extend the research con-

cerning the fabrication of MAPI layers, using a closed space sublimation setup will be

presented in this outlook chapter.

Firstly, some direct modifications of the presented route for the fabrication of solar cells

incorporating MAPI as absorber material will be discussed. In this work, solar cells incor-

porating the C60 passivation layer were only fabricated with MAPIPbI2 as absorber layer.

Since the proof of principle of working solar cells could also be achieved for MAPI ab-

sorbers derived from PbCl2, those absorbers should be tested in a solar cell stack incor-

porating C60 as well. Furthermore, at the time the wet chemical removal of excess MAI,

caused by an intentional overreaction during the CSS process to avoid residual PbI2, was

evaluated, no C60 layer was used between the TiO2 and the MAPI layer in the fabricated

solar cells. Therefore, even though the combination of the slight overreaction in the CSS

process with the removal of excess MAI did not improve the solar cell efficiency when this

process modification was evaluated, the combination of the C60 passivation layer and the

intentional overreaction with consecutive MAI removal remains to be tested.

Since a heat treatment is reported to reduce the density of defects in MAPI, a further

improvement of the PCE of the solar cells fabricated from 2step CSS MAPI layers could

possibly be achieved by an optimization of the heat treatment conditions of the MAPI

layers [111, 155, 160, 162, 163]. Furthermore, in case a tightly closed reaction chamber

is realized in an improved CSS setup, it would allow to establish a suited atmosphere

and pressure for the heat treatment of the 2step CSS MAPI layers. In that case, the heat

treatment could be moved from the tube furnace to the reaction chamber, which would

constitute a further step towards fully vacuum fabricated perovskite solar cells.

The passivation of the TiO2/MAPI interface by a C60 layer turned out to be necessary to

achieve reproducible solar cell efficiencies. Considering that the C60 layer itself will be

hole blocking [131], an additional TiO2 layer appears not to be necessary for working

solar cells. This assumption is in accordance with literature, where highly efficient solar

cells using all organic ETL have been presented [13, 21, 33]. Thus, the testing of an or-

ganic ETL which can be deposited via sublimation under high vacuum conditions would

be a step further to the in line fabrication of all vacuum manufactured solar cells. In ad-
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dition, if a compact TiO2 layer is omitted, the spray pyrolysis process, including the high

temperature sintering step, can be avoided and a broader substrate range is accessible,

including flexible substrates and other solar cells [13, 17, 18, 21]. However, considering

the rough morphology of the used FTO substrates, the use of a thin C60 layer without

TiO2 layer might result in strong deviations of the MAPI layer thickness and hence in a

spatially inhomogeneous solar cells performance. ITO is smoother compared to FTO and

could solve the problem. Nevertheless, PbI2 forms a dense layer on ITO (see figure A.16

in the appendix), compared to the open, flake like structure on FTO, with low inward

diffusion coefficients of the MAI sublimation species during the CSS process step. Hence,

all process steps would need to be optimized again if glass/ITO substrates were used. A

faster approach for the fabrication of TiO2 free solar cells could be the use of PbCl2 instead

of PbI2. PbCl2 forms dense layers on FTO. Accordingly, the parameters for the transfor-

mation of a PbCl2 layer to a MAPI layer are already adjusted for the transformation of a

dense layer, possibly reducing the effort needed for the optimization of the transformation

of a PbCl2 layer on ITO.

No distinct influence of defect states in the MAPI layers on the optical absorption spectra

of the MAPI layers fabricated during this work could be determined due the superposition

of this influence by the influence of the surface roughness of the MAPI layers and the

absorption of the glass/FTO/TiO2 substrate. UV/VIS measurements on MAPI samples on

glass substrates or on fine ground MAPI powder could therefore be suited to evaluate the

influence of defect states on the UV/VIS spectra of MAPI more clearly and aid to identify

the nature of those defect states.

The dissociative sublimation of MAI combined with the overproportional leakage rate

of the smaller molecule out of the CSS crucible and the resulting nonstoichiometric gas

phase might lead to defect states in the MAPI layers and hence be problematic for the ex-

amined CSS process. TGA results presented by Petrov et al. indicate that formamidinium

iodide (FAI) will most likely show a similarly dissociative sublimation as MAI, even in a

similar temperature regime [179]. Thus, using FAI in a CSS process step will result in the

same problems observed for MAI and is hence not recommended. A similar behavior is

assumed for other FA derived materials like FABr. Accordingly, the CSS process step ap-

pears to be best suited for the sublimation of inorganic precursor materials which sublime

in a stoichiometric manner. Based on that requirement two research directions appear

to be promising: The modification of, for example co-evaporated, organic-inorganic hy-

brid perovskites and the research on fully inorganic perovskites. The partial replacement

of the organic cation or the halide ion of an organic-inorganic hybrid perovskite will be

favored by the high substrate temperature available during a CSS process and the corre-

sponding increased inward diffusion of the replacing ions into the hybrid perovskite. An

example for such a process would be the fabrication of Cs0.15FA0.85Pb(I0.3Br0.7)3 under

vacuum conditions, which is reported as wide band gap perovskite (Eg ≈ 2 eV) tandem

partner for MAPI in all perovskite solar cells as well as for silicon solar cells [21, 24].

In the publication of Forgacs et al. all layers of the perovskite/perovskite tandem solar
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cell are fabricated by vacuum deposition techniques, only the Cs0.15FA0.85Pb(I0.3Br0.7)3

perovskite has been solution processed [21]. Also, in the publication by McMeekin, the

Cs0.15FA0.85Pb(I0.3Br0.7)3 layer has been solution processed as tandem partner for a sil-

icon solar cell [24]. Accordingly, to find a route, to fabricate complicated perovskites

like Cs0.15FA0.85Pb(I0.3Br0.7)3 in a CSS process would ease the way towards industrial

scale all vacuum processed tandem solar cells incorporating perovskite layers. A possible

way for the fabrication of Cs0.15FA0.85Pb(I0.3Br0.7)3 under high vacuum conditions might

be the transformation of FAPbBr3, deposited by co-evaporation, by exposure to CsI va-

por in a CSS process. However, the applicable substrate temperatures will be limited by

the degeneration or re-sublimation of the hybrid perovskite base layer. Hence, whether

the substrate temperatures needed for a sufficient inward diffusion can be achieved and

whether the stoichiometry of the resulting perovskite can be adjusted with sufficient ac-

curacy remains to be determined with specifically adjusted experiments.

Besides the stoichiometric modification of predeposited hybrid perovskites, the fabrication

of fully inorganic perovskites is a second promising field of research where the advantages

of the CSS process could be used. In literature, reports of solar cells incorporating several

purely inorganic perovskites can be found with PCEs up to 10 % [180–183]. Moreover,

with a broad range of accessible band gaps, for example 1.73 eV for CsPbI3, 1.9 eV for BiOI

and 1.92 eV for CsPbI2Br, inorganic perovskites can also be considered as wide band gap

tandem partners [180,181,184]. In addition, the thermal stability of inorganic perovskites

is reported to be enhanced compared to MAPI [25]. The stability towards moisture of in-

organic perovskites is reported to be good, Li et al. report it to be improved compared to

pure MAPI [180, 185]. The mechanism of moisture affecting perovskite absorbers is re-

ported to be based on the inward diffusion of water molecules into the perovskite layers

and consecutive interactions of the water molecules and the organic perovskite cation,

resulting in the outdiffusion and the loss of the organic cation and the respective degra-

dation of the perovskite [25]. The interactions are reported to scale with the polarity

of the cation [25]. Accordingly, the symmetrical charge distribution of inorganic cations

should yield an improved stability compared to the polar organic cations [25]. On the

other hand, the best moisture stability is not shown by purely inorganic perovskites but

by FA-Cs mixed cation perovskites [25, 182]. Therefore, the stability against moisture

of the inorganic perovskites, for example CsPbI3 and CsPbI2Br, suffers mostly from the

facts that their photoactive modifications are often thermodynamically not stable at room

temperature and that the phase transition from their photoactive to their non-photoactive

modification appears to be enhanced by moisture [25, 182]. Thus, even though the field

of fully inorganic perovskites offers several opportunities, also challenges like the stabi-

lization of their photoactive modification under ambient conditions have to be overcome.

For this, the CSS allows to perform experiments in a broad temperature window which

can enhance the interdiffusion of the involved species and provides a broad window of

achievable morphologies. Furthermore, a base salt layer morphology can be used which is

favorable for interdiffusion but not for solar cells (porous morphology) with a consecutive

163



recrystallization during the CSS process to a dense morphology, well suited for solar cells.

Finally, also for inorganic perovskites, some of the precursors, like CsBr, are environmen-

tally sensitive. For the use of those materials, the high vacuum setup of the 2step CSS

posses the further advantage of an oxygen and water free process environment.

In addition to the “standard” photovoltaic perovskites with a monovalent halide ion, metal

chalcogenide perovskites like BaZrS3, CaZrS3 or SrTiS3 begin to shift into the focus of the

research community [186]. The chalcogenide perovskites are lead free, are expected

to show suitable band gaps for mono-junction solar cells and good environmental sta-

bility [186]. However, up to date, they can not be solution processed but have to be

fabricated via solid state reactions, requiring high temperatures [186]. Considering those

challenges with respect to the fabrication, the CSS, providing the combination of high

processing temperatures and a high vacuum environment, appears to be exceptionally

suited as fabrication techniques for these emerging purely inorganic metal chalcogenide

perovskite solar cell absorber materials.

A requirement, which appears to be crucial for every two step CSS process is that the

amount of material used for the transformation reaction can be defined. This requirement

can be fulfilled either by a self limiting process or by a strictly reproducible dependence

between crucible temperature, deposition time and the amount of material implemented

into the base layer. If those conditions are not given, as for the examined sublimation of

MAI in the CSS, a mechanism to control the amount of material used during the trans-

formation is needed. The technical implementation of such a control mechanism is not

trivial. One possibility would be to combine the shutter with a quartz crystal deposition

rate control. With calibration measurements, tooling and z-factors can be determined,

relating the integral thickness deposited on the quartz crystal with the material amount

implemented into the base layers. A sufficient control of the deposition rate via a quartz

crystal is not possible for the sublimation of MAI [42]. However, for lead salts the rate

control is quite reproducible. Hence, it might well be suited for a closed space sublimation

of inorganic materials. Thereby, it appears to be more practical to use the transformation

time as control parameter than the crucible temperature. Although, the power of the

heating lamps can be adjusted quite fast, the crucible temperature will need some time to

adjust and the crucible pressure to equilibrate. On the other hand, it is possible to autom-

atize the shutter to close, when a certain amount of material is deposited during a CSS

process. If needed, further in vacuo annealing steps can be applied to ensure a complete

transformation. A similar control mechanism for the deposition time would be possible

based on the measurement of the crucible pressure. Here, a constant pressure for a de-

fined transformation time should correlate with a certain amount of material deposited or

implemented into the base layer. However, since the deposition rate is significantly easier

to measure compared to the exact pressure in the crucible, the deposition control using a

quartz crystal appears to be the most promising one.
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When discussing approaches for future research on perovskite thin films using CSS, the

one step CSS should not be excluded. For the fabrication of MAPI a one step approach

is not very promising considering the strong difference in the sublimation temperatures

comparing lead salts and MAI. As a guide to asses the sublimation temperatures under

high vacuum conditions, the boiling points at ambient pressure of the most relevant ma-

terials are given in table 7.1. Of course, since the boiling points are determined for

ambient pressure and not for high vacuum they can only serves as a qualitative measure

to compare the different materials. In addition, MAI, PbI2 and PbCl2 were found to sub-

lime under high vacuum in this work and not to evaporate. A similar behavior is expected

for the other materials in table 7.1.

Table 7.1.: Boiling temperatures Tb of selected inorganic compounds in °C at ambient
pressure, taken from [142]. PbI2 is reported to decompose during the evaporation, de-
noted by (dec). The approximate temperature in °C of the begin of the mass loss during
TGA experiments on MAI at ambient pressure are given as comparison and are taken
from [57]. Since MAI is also subliming dissociatively, it is also denoted with dec.

compound Tb/ °C
MAI ≈ 230 (dec)

PbI2 872 (dec)
PbBr2 892
PbCl2 951
CsI 1280

CsCl 1297
CsBr ≈ 1300

The cesium containing compounds, CsI, CsCl and CsBr, have significantly higher sublima-

tion temperatures compared to the lead salts PbI2 PbCl2 and PbBr2. Thus, it is again not

certain if a one step CSS would be applicable. However, the differences in the sublima-

tion temperatures could possibly be compensated by the stoichiometry of the precursor

material for the one step CSS.

In summary, the implementation of a closed space sublimation step into the fabrication

route of perovskite absorber layers for solar cells is not at its end but at its beginning. For

precursor materials which sublime dissociatively, especially organic precursors, the CSS is

not suited. However, in the emerging fields of mixed cation, mixed halide perovskites and,

even more, purely inorganic perovskites, the prospects are promising for further research

projects, explicitly benefiting form the combination of the broad temperature processing

window of the CSS and the high vacuum environment.
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A Appendix

Experimental - Synthesis
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Figure A.1.: Calibration curve for the substrate temperature of the PVD chamber. The
temperature of the FTO/TiO2 side of the substrate is plotted in red, the temperature of
the sample holder plate in black.
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Figure A.2.: Calibration curve for the substrate temperature of the CSS chamber. The tem-
perature of the glass backside of the substrate measured with a thermo couple is plotted
in red, the temperature measured with the chamber pyrometer in black.
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MAPI fabricated from lead iodide

Figure A.3.: SEM image in SE contrast (top view) of a MAI layer deposited onto a
glass/FTO/TiO2 substrate by CSS. Through the holes in the MAI layer, the fine grained
substrate is visible.
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Figure A.4.: Detailed XRD patterns of MAPI layers fabricated form PbI2 on glass/FTO/TiO2
substrates at substrate temperatures of 75 °C, 90 °C, 150 °C during the CSS process (red
curves). The background is denoted in light gray. In addition, Rietveld refinements of the
perovskite phases are given: black for the orthorhombic and green for the cubic phase.
The difference between the measured curves and the superposition of the perovskite re-
finements and the background is denoted in black with “as meas. - Σ fit”.
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Figure A.5.: XP spectra of MAPI fabricated from PbI2 on glass/FTO/TiO2 substrates at sub-
strate temperatures of 75 °C, 90 °C, 130 °C and 150 °C during the CSS process. The spectra
were measured directly after the layer fabrication, without breaking the vacuum condi-
tions. The offset between the two bottom curves is given as a guide to the eye for the
intensity. In the survey spectrum, only the most prominent lines are labeled.
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Figure A.6.: XP spectra of MAPI fabricated from PbI2 on glass/FTO/TiO2 substrates at sub-
strate temperatures of 75 °C, 90 °C, 130 °C and 150 °C during the CSS process. The spectra
were measured directly after the layer fabrication, without breaking the vacuum condi-
tions. The offset between the two bottom curves is given as a guide to the eye for the
intensity.
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Figure A.7.: XP detail spectra of N1s and C1s emissions measured on a freshly prepared
PbI2 layer and during the stepwise transformation of the PbI2 layer to MAPI, without
breaking the vacuum conditions. To carry out the transformation experiment, a PbI2
layer was deposited onto a glass/FTO/TiO2 substrate by PVD. Afterward, the PbI2 layer
was transformed to MAPI in the CSS with a crucible temperature of 90 °C. The substrate
was not heated during the transformation. In addition to the measurements on the bare
substrate, PES measurements were carried out after each transformation step. The trans-
formation times shown in the figures are cumulative transformation times. The offsets are
given as a guide to the eye to access the intensity.
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The titanium dioxide/lead iodide interface
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Figure A.8.: XP spectra measured on the bare glass/FTO/TiO2 substrate and between con-
secutive PbI2 depositions without breaking the vacuum conditions. The I3d and O1s
emissions as well as the valence band spectra of the bare TiO2 substrate (0 s) and the
finished PbI2 layer (3060 s) are shown. The shown deposition times are cumulative depo-
sition times. The offset between the two bottom curves is given as a guide to the eye for
the intensity.
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MAPI fabricated from lead chloride
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Figure A.9.: XP spectra of MAPI fabricated from PbCl2 on glass/FTO/TiO2 substrates at
substrate temperatures of 75 °C, 90 °C, 130 °C and 150 °C during the CSS process. The
spectra were measured directly after the layer fabrication, without breaking the vacuum
conditions. The offset between the two bottom curves is given as a guide to the eye for
the intensity. In the survey spectrum, only the most prominent lines are labeled.
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Figure A.10.: XP and UP spectra of MAPI fabricated from PbCl2 on glass/FTO/TiO2 sub-
strates at substrate temperatures of 75 °C, 90 °C, 130 °C and 150 °C during the CSS process.
The spectra were measured directly after the layer fabrication, without breaking the vac-
uum conditions. The UP spectra are normalized in intensity scale. In the XP spectra, the
offset between the two bottom curves is given as a guide to the eye for the intensity.
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Figure A.11.: Valence band and survey UP spectra of MAPI fabricated from PbCl2 (red),
MAPI fabricated from PbI2 (red) and of PbCl2 (turquoise). The spectra are measured di-
rectly after the layer fabrication, without breaking the vacuum conditions. The spectra
are normalized in intensity scale.
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Figure A.13.: SEM images in SE contrast taken after the stepwise transformation of a PbCl2
layer to MAPI (cumulative transformation time 5400 s). Top view (left) and cross section
(tilted 75°) (right).
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Influence of a heat treatment, in a tube furnace in air, on the morphology and the
crystal structure of MAPI layers

Figure A.14.: SEM images in SE contrast of MAPI layers fabricated from PbI2 on
glass/FTO/TiO2 substrates without (left) and with (right) a heat treatment at 120 °C for
30 min in air. The presented images are part of the master thesis of M.Sc. Christian Hoyer
[164]. The parameters of the CSS process step were Tc=120 °C, Ts=75 °C and tt=30 min.
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Figure A.15.: XRD patterns of MAPI layers fabricated from PbI2 on glass/FTO/TiO2 sub-
strates without and with a heat treatment at 120 °C for 30 min in air. In (a), the patterns
are shown as measured. In (b), the reflections, showing the presence of the cubic modi-
fication of MAPI (black frame in a) are highlighted. To do so, the patterns are aligned in
2θ scale and normalized in intensity scale. The presented XRD patterns are part of the
master thesis of M.Sc. Christian Hoyer [164]. The parameters of the CSS process step were
Tc=120 °C, Ts=75 °C and tt=30 min.
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Lead iodide on ITO

Figure A.16.: SEM images in SE contrast of a PbI2 layer deposited by PVD on a
glass/ITO/TiO2 substrate. Top view (left) and cross section (tilted 75°) (right). The PbI2
layer was deposited with a rate of approximately 0.5 Å/s while the substrate was kept at a
substrate temperature of about 50 °C. The deposition parameters match those of the PbI2
layer shown in figure 5.13 on a glass/FTO/TiO2 substrate.
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