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ABSTRACT
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November 2022

Every day millions of photographs are captured with handheld mobile devices. Depending on

the capturing conditions, multiple images may be captured in order to obtain more information on

the scene in question. These multiple images are captured sequentially and called raw images.

As a result, depending on the scene dynamics and due to the camera shake (while shooting),

raw images will have pixel shifts. Because of that reason, during raw image capturing, images

may be slightly misaligned, resulting in ghosting artifacts in the fused image. Raw images need

to be aligned in order to achieve an effective fusion. Optical flow plays an important role in image

alignment as it can estimate any object motion in the scene while also capturing global camera

motion. It is a flow vector that determines how much each pixel of the reference frame is shifted in

the moving frame. Then, using that flow vector, the moving frame can be warped to the reference

frame to reduce misalignment between the reference and moving frames. The purpose of this

thesis is to evaluate the performance of optical flow algorithms to objectively analyze optical flow

accuracy and to assess the amount of ghosting artifacts in the fused image in raw Bayer domain.

Therefore, the input data is expected to be close to a raw image. However, publicly available

optical flow datasets are far from this requirement. For this reason, a new in-house raw image

containing dataset has been created.

In this thesis, both conventional and deep learning-based optical flow methods were explored.

The performance of the optical flow methods was evaluated on both the publicly available datasets

and the in-house dataset. Based on the results obtained, both deep learning-based and conven-

tional methods perform well when the motion between consecutive images is relatively small.

However, with the increasing amount of motion, the motion estimation is more error-prone and

does not perform as desired. Furthermore, the performance of optical flow algorithms was tested

on different levels of noise. It has been observed that noise has a negative effect on optical flow

performance. Moreover, the findings indicated that optical flow algorithms achieved remarkable

overall quality improvement after applying Black Level Correction (BLC), Lens Shading Correc-

tion (LSC), White Balance (WB), and Opto-Electronic Transfer Function (OETF) to images in raw

Bayer domain. Also, deep learning-based algorithms operate on RGB images. However, raw

Bayer images have four channels (RGGB). Therefore, two different demosaicing algorithms were

tried to reconstruct RGB images from Bayer patterns, the one green of two green channels skip-

ping mode and bilinear interpolation. The results have shown that the alignment of the RGB

images constructed by bilinear interpolation produced higher sub-pixel accuracy than the skipping

mode.

Keywords: raw image, raw Bayer domain, image alignment, optical flow, deep learning, ghosting

artifacts, image warping, in-House dataset, endpoint error
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1. INTRODUCTION

Mobile phone imaging has grown significantly in recent years. This has made the camera

the most important part of the phone and lots of research has been done to improve the

image quality.

Recently, the advancements in smartphone cameras have been concentrated on improv-

ing the low light performance to approach the level of professional photography in chal-

lenging lighting conditions. The fundamental issue in low light photography is the low

signal-to-noise ratio. While this can be addressed using more advanced hardware (i.e.,

imaging sensors), smartphone cameras pose size limitations. Therefore, there have been

efforts to increase the signal-to-noise ratio computationally. One of the ways to do so is to

capture raw Bayer image sequences in quick succession and fuse them computationally

in the raw Bayer domain.

The typical method of reconstructing the final image from raw Bayer images is to perform

a set of image processing algorithms in Image Signal Processor (ISP). A typical set of

image processing algorithms are Black Level Correction (BLC), Lens Shading Correction

(LSC), White Balancing (WB), demosaicing, color correction, gamma correction (mainly

called Opto-Electronic Transfer Function (OETF)), and tone mapping, as shown in Fig.

1.1.

Figure 1.1. A simplified example image signal processor pipeline. The order of the blocks

may vary depending on the design of the ISP.

As mobile phones are always handheld, raw images will have pixel shifts due to hand-

shaking and possible object(s) movement in the scene, which causes the images to be
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slightly misaligned. An example of misalignment between two consecutive processed raw

images is illustrated in Fig. 1.2a. The dominant motion in the regions indicated by the red

rectangles occurs due to the global camera motion (also known as camera shake or hand

tremor), while the dominant motion in the region indicated by the blue rectangle occurs

due to the object motion. That makes it difficult to fuse information from multiple images

effectively. Ghosting is the most common artifact encountered when fusing images that

are not perfectly aligned. An example of ghosting artifact is depicted in Fig. 1.2b.

(a) (b)

Figure 1.2. (a) Misalignment between two consecutive processed raw images due to

global camera motion (the regions indicated by the red rectangles) and object movement

(the region indicated by the blue rectangle) in the scene. (b) Ghosting artifacts due to the

pixel shift.

Raw images need to be aligned to avoid ghosting artifacts in the fused image as shown

in Fig. 1.3. There have been many methods to align images. They can be divided into

two categories: feature-based and pixel-based image alignment.

Feature-based image alignment relies on finding corresponding features in the reference

and target frames to create a global transformation matrix, called homography, and then

use this matrix to warp the target frame to the reference frame to be aligned. On the other

hand, pixel-based image alignment relies on computing optical flow to determine how

much each reference frame pixel is shifted in the target frame. The result of optical flow

is a vector and it is used to warp the target frame to the reference frame to be aligned.

Optical flow plays an important role in image alignment since it estimates the motion

between consecutive frames for each pixel globally and locally. The concept of optical

flow was first presented by Gibson [1]. The first novel framework of optical flow was

introduced by Horn and Schunck [2], which is based on variational theory [3] to compute

optical flow. Lucas-Kanade proposed a method for optical flow computation aiming to

minimize the cost function based on pixel difference [4]. Different traditional methods

were developed over time [5, 6, 7, 8]. On the other hand, optical flow estimation has
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recently received huge attention in deep learning. Convolutional Neural Network (CNN)

has been used firstly by Dosovitskiy et al. for the optical flow estimation [9]. Sun et al.

proposed another CNN-based optical flow estimation method, PWC-Net, which adopts a

warping layer to compute optical flow from coarser to fine level [10]. Bhat et al. [11] used

PWC-Net to estimate sub-pixel shifts between consecutive raw burst images to align them

to a reference frame. Jiang et al. [12] used the transformer architecture [13] for the first

time for the optical flow task to improve the motion estimation in occluded region in the

scene. Huang et al. [14] proposed a transformer based architecture to estimate optical

flow and achieved state-of-the-art (SOTA) performance on the Sintel dataset [15]

In this thesis, different optical flow algorithms were evaluated, deep learning-based and

traditional methods, to estimate pixel shifts between raw images. Furthermore, the po-

tential applicability of optical flow algorithms in raw Bayer domain was investigated. The

image alignment and fusion pipeline used in this thesis is illustrated in Fig. 1.3 and follows

the following steps in order.

1. The input of the image alignment and fusion pipeline is raw Bayer images with four

channels (RGGB). However, deep learning-based optical flow algorithms operate

on RGB images. Therefore, two different demosaicing algorithms were tried to

reconstruct RGB images from Bayer patterns, the one of the two green channels

skipping mode, where the one of the two green channels is discarded and bilinear

interpolation, where the missing color channels are interpolated [16].

2. Select the reference image among the raw images. For convenience, the middle

image is chosen as reference. Because it is equidistant from the other images, may

provide a more accurate result.

3. Select a target raw image to be aligned.

4. Compute the optical flow to determine how much each pixel in the reference image

is displaced in the target image so that the corresponding image content can be

perfectly aligned.

5. Warp the target image to the reference image using optical flow output to align

them.

6. Fuse aligned target image and reference image.

7. repeat 2nd, 3rd, 4th, and 5th steps for every target images to finally get a single

fused raw image to be further processed in ISP.
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Figure 1.3. Raw bayer domain image alignment and fusion pipeline.

This thesis organized as follows. The raw Bayer domain image processing is presented in

Chapter 2. Chapter 3 provides basic information about deep learning algorithms used in

optical flow estimation tasks. Chapter 4 covers the theoretical basics of motion estimation,

which the thesis is mostly built on. Chapter 5 explains image warping and fusion. Chapter

6 presents the datasets used for optical flow estimation tasks. Chapter 7 introduces the

evaluation metrics used to assess the quality of the optical flow and image fusion. The

results are provided and discussed in Chapter 8. Finally, Chapter 9 concludes the main

findings and possible further work.
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2. RAW BAYER DOMAIN IMAGE PROCESSING

This chapter introduces image processing in raw Bayer domain. Image Signal Processor

(ISP) pipeline shown in Fig. 2.1b is presented in Section 2.1 and the blocks of the image

alignment and fusion module illustrated in Fig. 2.1b is discussed in Section 2.2.

Live preview

Shutter

press

Raw frames
Black Level 

Correction (BLC)

Lens Shading

Correction (LSC)

White

Balance (WB)Demosaicing
Color 

Correction

Gamma

&

Tone Mapping

Final output in 

RGB format

(a)

Live preview

Shutter

press

Raw frames BLC & LSC BLC & LSC & WB

BLC & LSC & WB & GC

Motion Estimation,

Alignment, and Fusion
Further process

(b)

Figure 2.1. (a) A simplified example ISP pipeline. (b) Image alignment and fusion module

in ISP pipeline.

2.1 Image Signal Processor pipeline

Image Signal Processor (ISP) is a processor integrated into the camera to take care of

the specific tasks of a camera, such as white balancing, multi-frame alignment, and noise

reduction.

Raw Frames

Raw image is recorded in a raw-image format in which no image information is lost since

it is saved as it comes out of the sensor without compression. An example of raw Bayer

image is illustrated in Fig. 2.2 that shows the Bayer pattern clearly. On the other hand,

Fig. 2.3 shows how the image will look when no color processing is applied in addition

to Color Filter Array Interpolation (CFAI). As seen, the image is greenish because of the

combination of illumination Spectral Power Distribution (SPD) and the sensor spectral re-

sponse [17].
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Figure 2.2. Illustration of a raw Bayer image.

Figure 2.3. An example image with no color processing.

Black Level Correction

Raw image can have non-zero black level, and this black level needs to be removed if

linear signal is needed in processing, and hence it is usually removed early in ISP like

shown in Fig. 1.1 and 2.1. Fig. 2.4 depicts the effect of BLC.
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(a) Image as in Fig. 2.3 but Opto-Electronic Transfer

Function (OETF) applied.

(b) Image as in Fig. 2.3 but BLC and OETF applied

Figure 2.4. Impact of BLC

Lens Shading Correction

Lens shading correction is to solve the shadow around the lens. Shading can be subdi-

vided into luma shading and color shading. Due to the optical characteristics of the lens,

the edge area of the sensor image area receives less light than the center, resulting in

inconsistencies in the brightness of the center and all four corners called luma shading.

Color shading (sometimes called color uniformity) is usually defined as a color shift from

the center of the image towards the corners. Color shading characteristically occurs in

images taken with a smaller sensor camera. A flat-field image is used to measure the

lens shading. Correction information is estimated from these flat-field images to remove

the shade from the lens. Fig. 2.5 shows how Fig. 2.4b looks like after lens shading

correction. It can be seen that shading at the edge of Fig. 2.4b is removed after LSC

applied.

Figure 2.5. Image as in Fig. 2.3 but BLC, LSC, and OETF applied.
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White Balance

The white balance is considered one of the other important step in ISP pipeline to ob-

tain the real colors of a scene. Light sources produce different SPD that lead to different

camera responses to the same scene contents. Although the human eye can be auto-

matically adjusted to various light sources and color temperatures to detect the actual

color, the camera sensor alone cannot automatically detect the actual color. Therefore,

the image needs to be processed to reproduce the exact color. For this reason, white

balance is essential to adjust the tones of colors according to the current light conditions.

Fig. 2.6 illustrates the impact of WB.

Figure 2.6. Image as in Fig. 2.3 but BLC, LSC, WB, and OETF applied.

Demosaicing

Each pixel of the fused raw image contains a single color component. Demosaicing is

applied to reconstruct the other two color components. In this thesis, two different demo-

saicing algorithms were tried. The first one is the one of the two green channels skipping

mode, where the one of the two green channels is discarded. This causes the image

resolution to drop in half. In other words, 2x2 pixels Bayer quad is considered 1x1 pixel

in RGB domain as shown in Fig. 2.7a. In addition, it does not correct the 1 pixel shift in

the spatial location of each color component. In the 2x2 Bayer quad, the R, G, G, and

B pixels correspond to different spatial locations on the camera sensor. If this 2x2 pixel

Bayer quad is treated as RGB pixel by dropping one of the green channels, then this 1

pixel phase difference remains on top of halving the resolution. The second one is linear

interpolation, where the missing color components are interpolated for each pixel location

as shown in Fig. 2.7b. The resulting RGB image has the same resolution as the raw

bayer image.
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(a) Demosaicing with one of the two green channels

skipping mode

(b) Demosaicing with bilinear interpolation

Figure 2.7. Illustration of demosaicing for reconstructing the other two color components

Color Correction

Color Correction is an important part of ISP. It converts the RGB data from sensor RGB

color space into device independent target sRGB color space by multiplying each pixel

in the sensor RGB with a 3x3 matrix. Fig. 2.3 with BLC, LSC, WB, color correction, and

OETF is illustrated in Fig. 2.8.

Figure 2.8. image as in Fig. 2.3 but BLC, LSC, WB, color correction, and OETF applied.

Gamma Correction and Tone Mapping

Gamma correction is mainly called Opto-Electronic Transfer Function (OETF), which is

the transfer function from camera sensor color space to the device independent target

color space. Display processing has its own transfer functions to map the data from
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device independent color space to the displays own color space, so that the color look

correct. On the other hand, tone mapping is the process to increase the dynamic range

and also map it into the range of observing media.

2.2 Image Alignment and Fusion Pipeline in ISP

In ISP pipeline, raw images are aligned and fused after applying BLC. It is observed

that most of the optical flow algorithms can not achieve the desired performance when

motion is estimated after applying BLC. However, the findings have showed that optical

flow algorithms achieve a remarkable overall quality improvement after applying LSC, WB,

and OETF to images, in addition to BLC. After all, the optical flow is computed as shown

in Fig. 2.1b.
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3. DEEP LEARNING

Deep learning is a set of methodologies that allows predicting the outputs upon giving

complex input data. The input data usually consists of images, text, or audio. Deep learn-

ing is inspired from the way the human brain process information. One purpose of deep

learning is to simulate human-like decision making. Neurons in the brain transmit signals

to perform actions. Similarly, artificial neurons are connected to a neural network to per-

form clustering, classification, or regression tasks. Deep learning is used in healthcare,

advertising, the autonomous industry, translation, and chatbots [18, 19, 20, 21, 22]. The

main advantage of deep learning is that the architecture is flexible enough to easily adapt

to new problems, while the main disadvantages of deep learning are that it is quite expen-

sive to build a deep learning architecture to train due to the data complexity, and massive

amount of data is required to deliver the best results.

A simple architecture of the neural network is shown in Fig. 3.1. A simple network in-

cludes three layers: input layer, hidden layers, and output (target) layer. Layers are

connected via nodes. Data is first fed into the neural network via the input layer. The

node multiplies the inputs with appropriate weights. Input-weighted products are then

summed, and bias added. Finally, the sum is passed through the activation function to

decide whether its input to the network is important or not, which affects the final output.

X1

X2

Xn

Input 1

Input 2

Input n

Step 1

Bias

W1

W2

Wn

Step 2

Transfer Function Activation Function

Output

Figure 3.1. Simple architecture of neural network.
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This chapter provides basic information about deep learning algorithms, which are used

in optical flow estimation tasks. Section 3.1 presents the most commonly used deep

learning algorithm Convolutional Neural Network (CNN) and its architectures. Then, Re-

current Neural Network (RNN) is described in Section 3.2. Finally, Section 3.3 explains

Transformer-based network.

3.1 Convolutional Neural Network

Convolutional Neural Network (CNN) or ConvNets is a deep learning model that is often

applied to analyze visual imagery that can take images as input and assign weights and

biases to different patterns in the input to distinguish one from the other. CNN can be

applied to Natural Language Processing (NLP), audio, and image processing [23, 24,

25]. There are three types of layers that CNN architectures usually built on: convolutional

layer, pooling layer, and fully connected layer as shown in Fig. 3.2.

Figure 3.2. Typical CNN architecture obtained from [26].

Convolutional layers are used in CNN to perform feature extraction from input, and it is

where the majority of the computations occur. A convolution layer includes filter that per-

form the convolution operation.

The pooling layer takes care of reducing the size of the feature maps. By using pooling,

the best features are selected and transmitted. Pooling layers are divided into two parts

depending on their purpose, which are maximum pooling and average pooling. Maximum

pooling selects the highest signal in the feature map, and it is generally used in image

classification problem statements, while average pooling averages all the signals in the

feature map and is commonly used in image reconstruction or segmentation.

The fully connected layer is the last layer of CNN, where the classification and identifi-

cation tasks are performed based on extracted features through the convolutional neural

network.

Different types of CNN architectures were developed in recent years to solve real-world

problems. The first CNN architecture LeNet[27] was introduced by Yann LeCun in 1998 to
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recognize handwritten digits in images. Alexnet[28] architecture was developed in 2012,

which significantly increased the classification accuracy of the ImageNet [29] and pio-

neered faster training of CNNs. VGGNet [30] architecture was presented by Visual Ge-

ometry Group Lab (VGG) of Oxford University in 2014. The high kernel sizes used in the

AlexNet architecture have been reduced, and fixed its kernel dimensions which are not

fixed in AlexNet. Autoencoders [31, p. 499-501] architecture consists of two parts: en-

coder and decoder. The dimensionality of the input data is reduced by the encoder, while

the decoder is responsible for reconstructing the input data to the original size. U-Net

[32] architecture is used in many pixel-to-pixel mapping, mimicking the processing using

image-scales. The network has an encoder and a decoder part.

The comparison of the CNN architectures by the number of parameters, where M refers

to million, number of layers, and architecture description is given in the Table 3.1

Table 3.1. The comparison of CNN architectures. Conv refers to convolutional layer, and

fc refers to the fully connected layer

Architecture Number of layers Architecture description

parameters (M)

LeNet 0.06 7 5 conv + 2 fc layers

AlexNet 61 8 5 conv + 3 fc layers

VGGNet16 138 16 13 conv + 3 fc layers

VGGNet19 144 19 16 conv + 3 fc layers

3.2 Recurrent Neural Network

Recurrent Neural Network (RNN) is a type of artificial neural network that specializes

in processing sequential data or time series [33]. The most important feature that dis-

tinguishes RNNs from other deep learning techniques is that RNNs can remember all

information about what has been computed up to time step t as shown in Fig. 3.3. In

other words, RNNs always have the information of the time step or the previous times in

the time transition. RNNs are widely used in image processing and language processing

[34, 35]. The main advantage of RNN, as mentioned, is that they can remember each in-

formation over time, while one of disadvantage is the problems of vanishing and exploding

gradient [36].
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Figure 3.3. Unfolded RNN architecture at time t obtained from [37]. The horizontal arrows

connect the previous hidden layer to the current hidden layer.

3.3 Transformer-Based Network

Transformer-Based Network (TBN) is a family of deep learning models that have been

using the basic building block of NLP architectures in recent years [13]. It is a simple

network architecture based on attention mechanisms. It aims to selectively focus on par-

ticular parts of the inputs and thus learn faster and more effectively.

The encoder architecture is shown on the left of Fig. 3.4, and the decoder architecture

is on the right. They consist of modules that can be interconnected multiple times, as

explained by Nx in Fig. 3.4. The modules mainly consist of Multi-Head Attention (MHA)

and Position-wise Feed-Forward Network (FFN) layers. TBNs are used in machine trans-

lation tasks, sequence analysis and optical flow estimation [12, 14, 38, 39]. One of the

advantage of the TBN is that it relies on an attention mechanism that enables AI models

to selectively focus on certain parts of their input, thus learning more effectively. One of

the disadvantage of the TBN is that it is computationally expensive due to the need for

performing attention operations which have second-order time and space complexity with

respect to the context size [40].
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Figure 3.4. The architecture of Transformer obtained from [13].
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4. MOTION ESTIMATION

This chapter describes the theoretical basics of motion estimation on which the thesis

is mostly built. Section 4.1 introduces projective transformation. Then, Section 4.2 and

Section 4.3 describe motion estimation methods: feature-based and pixel-based motion

estimation, respectively.

4.1 Projective Transformation

Projective transformation is sometimes called perspective transformation or homography.

This transformation works in homogeneous coordinates and preserves straight lines. A

3x3 arbitrary matrix can express this transformation in homogeneous coordinates p and

p′,

p′ = Hp (4.1)

where H is 3x3 arbitrary matrix.

Projective transformation supports the other 2D (planar) transformations: translation, Eu-

clidean, similarity, and affine. Graphical representation of 2D transformations is shown

in Fig. 4.1. It shows how the current image looks like after applying the transformation

compared to the reference image.

Figure 4.1. Graphical representation of 2D (planar) transformations.
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4.2 Feature-Based Motion Estimation

Feature-based motion estimation relies on finding corresponding features in two different

images. It aims to match these features to build a global correspondence. Then, the

geometric transformation between these two images is estimated. Steps followed in this

thesis for feature-based motion estimation is shown in Fig. 4.2.

Keypoint Detection Local Invariant
Descriptor Keypoint Matching Homography

Figure 4.2. Steps followed in this thesis for feature-based motion estimation.

Section 4.2.1 presents keypoint detection methods. Then, Local Invariant Descriptor (LID)

is explained in Section 4.2.2. Next, Section 4.2.3 explains keypoint matching. Finally,

Section 4.2.4 describes homography and motion model estimation.

4.2.1 Keypoint Detection

Keypoint detectors are used to detect the distinctive features such as corners, edges, and

line intersections. Harris corner detection and Scale Invariant Feature Transform (SIFT)

are methods used for keypoint detection.

4.2.1.a Harris Corner Detection

Harris corner detection [41] uses a second-moment matrix to detect corners. The second

moment matrix is defined as MI = MI(p) on a selected point (p) on image plane.

The second moment matrix is

MI = ∇I∇IT =

⎡

⎣

Ix

Iy

⎤

⎦

[︂

Ix Iy

]︂

=

⎡

⎣

I2
x IxIy

IxIy I2
y

⎤

⎦ (4.2)

where ∇I is the image gradient including the derivative of the image with respect x and y

directions (Ix and Iy).

There are three conditions of the eigenvalues of the second-moment matrix to define a

point as flat, corner, and edge, depending on the gradient values in the region as shown

in Fig. 4.3. If both eigenvalues λ1 and λ2 of the matrix M are large, then it can be said

that point p is a corner. If λ1 is large and λ2 is close to zero, then point p lies on edge. If

both eigenvalues are zero or close to zero, then point p is located in a flat area. Fig. 4.6a

shows an example of Harris corner detector.
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Figure 4.3. Distribution of Ix and Iy in flat, edge, and corner regions obtained from [42].

4.2.1.b Scale Invariant Feature Transform for Keypoint Detection

Scale Invariant Feature Transform (SIFT) is another method to detect the keypoints [43].

The biggest advantage of SIFT on Harris detector is that it is scale and rotation invari-

ant detector, which means that SIFT can perform well if the image is scaled differently.

However, Harris detector can not perform well. Graphical representation of SIFT keypoint

detection algorithm with six Gaussian image layers is illustrated in Fig. 4.4. The first thing

here is to create a stack of images, where the source image is blurred at each scale.

Then, keypoints of SIFT can be found by using Difference-of-Gaussian (DoG) functions

given in equation 4.3.

D(x,σ) = [Lkσ(x) − Lσ(x)] I(x) = [Lkσ − Lσ] I = Ikσ − Iσ (4.3)

Where Lσ represents a 2D Gaussian kernel, Iσ a Lσ -blurred grayscale image, and k is a

constant.

Keypoints are the maximums and minimums of D(x,σ) across both image location and

scale. The keypoints lying on edges are removed by filtering these candidate locations.

The extremum values are computed by

z = −
∂2D−1

∂x2

∂D

∂x
(4.4)

Where D is the difference-of-gaussian computed in equation 4.3. The value of r is com-

puted to remove the keypoints lying on edges. If the threshold value is lower than the

value of r, then that point is excluded. Fig. 4.6b shows an example of detected keypoints

by SIFT where the circle size directly indicates the strength of the keypoints.
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Figure 4.4. Graphical representation of SIFT keypoint detection algorithm with six Gaus-

sian image layers obtained from [44].

4.2.2 Local Invariant Descriptors

Local Invariant Descriptors (LIDs) are usually used for quantifying the region surrounding

each keypoint. The commonly used descriptors are SIFT, Speeded Up Robust Features

(SURF), [45], and Oriented FAST and Rotated BRIEF (ORB) [46]. In this thesis, SIFT

is used as a descriptor. According to [43], SIFT creates region by taking 16x16 neigh-

borhood around the keypoint for 233 by 189 pixel image as shown on the left of the Fig.

4.5, where the arrows indicate the magnitude of the gradient and direction of each image

sample point located in 16x16 block. This region is then divided into 16 blocks of 4x4

dimensions. An 8 bins orientation is generated for each sub-block as illustrated on the

right of the Fig. 4.5. So in total, 128 bin values (16 sub-blocks x 8 bins per-block) are

created as a vector to obtain the keypoint descriptors.

Figure 4.5. Keypoint descriptors with SIFT obtained from [47].



20

4.2.3 Keypoint Matching

Once features and descriptors are extracted from the images, the feature of an image

needs to be matched to feature of a target image. In other words, the idea is to deter-

mine a set of correspondences between descriptors in two images. Some of the well

known methods are brute-force matcher [48] and Fast Library for Approximate Nearest

Neighbors (FLANN) [49]. In this thesis, FLANN method is used to match the same phys-

ical points between two images. It includes a set of algorithms optimized for fast nearest

neighbor searches. Once the matches are found, then a set of inlier correspondence

needs to be found that will produce a highly accurate keypoint matching by using a thresh-

old to eliminate false or bad matching points. In N match pairs, sample sets with an error

range less than the given threshold are considered true match pairs, and the rest of the

matching pairs are considered outliers or called false match points. An example of key-

points matching of two images is shown in Fig. 4.6c

4.2.4 Homography and Motion Model Estimation

Having enough matching of keypoints, a transformation matrix is computed to estimate

the global motion between two images. This transformation matrix is called Homography

which relates to the transformation between two images.

As mentioned in section 4.1, homography is a 3x3 matrix as seen in equation 4.5.

H =

⎡

⎢

⎢

⎢

⎣

h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤

⎥

⎥

⎥

⎦

(4.5)

Homograpy function is defined to relate a point (x1, y1) in the first image and the same

physical point (x′1, y′

1) in the transformed version of the first image as seen in equation

4.6

⎡

⎢
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⎢
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1
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⎡
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1

⎤
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⎥

⎦

=
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⎤

⎥
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⎦

⎡
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⎣

x1

y1

1

⎤

⎥

⎥

⎥

⎦

(4.6)

As can be seen from equation 4.6, there is 9 unknown parameters that needs to be

estimated. The equation 4.6 can be written as linear equation
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Homography has 8 degrees of freedom. To solve this, the minimum of pairs of matching

point is 4, and the last parameter of homography (h33) is considered as 1. If all rows are

stacked corresponding to these 4 pairs of matching point, the homography parameters

then can be computed as given in equation 4.8.
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(a) (b)

(c)

Figure 4.6. (a) An example of corner detection by the Harris corner detector. Red points

denote the detected corners.(b) An example of detected keypoints by SIFT where the

circle size indicates the strength of the keypoint and line shows the orientation of the key

point.(c) Matching of keypoints between an image and transformed version of the same

image using FLANN method.
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4.3 Pixel-Based Motion Estimation

Section 4.3.1 describes and formulates the optical flow with the brightness constancy

assumption. Furthermore, it defines the dense optical flow. Then, Section 4.3.2 presents

the conventional and deep-learning-based methods to compute the dense optical flow in

this thesis.

4.3.1 Optical Flow

When the object moves in the 3D scene, the motion in the image is called optical flow.

Optical flow defines the direction and speed of motion in the image. Optical flow estima-

tion is used in object tracking [50, 51], action recognition [52], and other image processing

applications [53, 54, 55, 56]. The graphical representation of the optical flow is shown in

Fig. 4.7.

Figure 4.7. Pixel displacement across two consecutive frames.

Let us assume that a point is located at (x, y), and the image intensity at this point is

I(x,y, t) at time t. The same point moves to its new location (x+ δx, y+ δy) at t + δt

time as shown in Fig. 4.7. It is considered that the brightness of an image point remains

same over time. This means that the observed brightness of any object in the scene is

same over time in the previous and next image frames, which is called the brightness

constancy assumption.

The brightness constancy assumption is defined as

I(x,y, t) = I(x+ δx,y+ δy, t+ δt) (4.9)

The motion is assumed to be relatively small, and the image constraint at I(x,y, t) with

Taylor expansion is defined as

I(x+δx,y+δy, t+δt) = I(x,y, t)+
∂I

∂x
δx+

∂I

∂y
δy+

∂I

∂t
δt+ higher-order terms (4.10)
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Higher-order terms are negligible since the minimum temporal variation is assumed to be

dt → 0. Then it follows
∂I

∂x
δx+

∂I

∂y
δy+

∂I

∂t
δt = 0 (4.11)

By dividing δt, we get

∂I

∂x

δx

δt
+

∂I

∂y

δy

δt
+

∂I

∂t

δt

δt
= 0 (4.12)

After simplification we get

∂I

∂x
u+

∂I

∂y
v+

∂I

∂t
= 0 (4.13)

Where u is the optical flow vector at x-direction, v is the optical flow vector at y-direction,

and ∂I
∂x

, ∂I
∂y

and ∂I
∂t

are the gradients of the image. Pixel-based motion estimation relies on

computing the optical flow vectors (u, v) for each pixel in the image, and that is referred

to as the dense optical flow.

The values of the optical flow field are vectors that indicate the direction of movement of

pixels. In simple words, these values show where each pixel is in the next frame. As

shown in Fig. 4.8, a pseudo-color coding scheme is used to read the pixel shift between

consecutive image frames more easily. The saturation of the colors indicates the magni-

tudes of the vector, while the hue represents the direction of the motion vector.

Figure 4.8. Color-coded representation of vector field and optical flow.

As mentioned, the equation 4.9 is valid only for relatively small motions and fails for large

motions. Due to this limitation, coarse-to-fine approach has been developed to support
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large motions, separating the levels by reducing the image size to a coarser resolution.

The estimated optical flow at the lowest resolution is given as an input to the next level.

Next, the image is warped using the optical flow, then upsampled to the next resolution

until reaching the original image resolution, as shown in Fig. 4.9. In each scale the image

is warped. This is because a better approximation of image gradients is obtained through

warping [57].

Figure 4.9. Graphical representation of coarse-to-fine algorithm.

4.3.2 Dense Optical Flow Estimation Methods

As previously discussed, the optical flow equation is derived by using equation 4.13.

However, this equation can not be solved since two unknown variables (u, v) exist in one

equation. To solve this problem, some methods have been developed.

Section 4.3.2.a presents conventional dense optical flow methods and Section 4.3.2.b

presents deep-learning-based methods used to solve this problem in this thesis.

4.3.2.a Conventional Dense Optical Flow Estimation Methods

There are various implementations of conventional dense optical flow. The methods listed

below are the most widely used and publicly available for dense optical flow estimation

tasks.

• Lucas-Kanade (LK) method [4]

• Farneback method [6]

• Iterative Lucas-Kanade (ILK) method [7]

• TV-L1 method [8]
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• Dense Inverse Search (DIS) method [5]

Lucas-Kanade Method

Lucas-Kanade (LK) method [4] aims to minimize the cost function based on pixel dif-

ference. LK method is presented with some prerequisites. These are assumptions of

constant brightness and relatively slow motion.

A set equations is required to find the optical flow. LK method is a non-recursive method

that assumes a locally constant flow.

In a selected small size of window W x W where W > 1 as shown in Fig. 4.10, a set of

equations can be found, assuming that all pixels in the window have the same motion.

Image

W

Figure 4.10. An example of selected window for computing optical flow.

The following set of equations can be found

Ix (k1)u+ Iy (k1) v = −It (k1)

Ix (k2)u+ Iy (k2) v = −It (k2)

...

Ix (kn)u+ Iy (kn) v = −It (kn)

(4.14)

where k1, k2, ..., kn represent the pixels in the window W x W (e.g. n = 25 for a 5x5

window), Ix (ki), Iy (ki), It (ki) represent the partial derivatives of image I at point (x, y)

at time t, for pixel ki at the current time.

Equation 4.14 can be written in an easy-to-read form of Av = b matrix.
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A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ix (k1) Iy (k1)

Ix (k2) Iy (k2)

...
...

Ix (kn) Iy (kn)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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⎡

⎣

u

v

⎤

⎦ b =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−It (k1)

−It (k2)

...

−It (kn)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(4.15)

To solve the equations, Lucas and Kanade use the "least squares" method for optical flow

estimation.

ATAv⃗ = AT (−b) (4.16)

or,

v⃗ =
(︁

ATA
)︁−1

AT (−b) (4.17)

In matrix form;

⎡

⎣

u

v

⎤

⎦ =

⎡

⎣

∑︁
i Ix (ki)

2 ∑︁
i Ix (ki) Iy (ki)

∑︁
i Iy (ki) Ix (ki)

∑︁
i Iy (ki)

2

⎤

⎦

−1 ⎡

⎣

−
∑︁

i Ix (ki) It (ki)

−
∑︁

i Iy (ki) It (pki)

⎤

⎦

(4.18)

Where u and v are optical flow components along x and y directions.

Fig. 4.11d shows a color-coded example of optical flow estimated by Lucas-Kanade

method.

Farneback Method

The Farneback method [6] approximates each neighborhood of successive frames using

a polynomial expansion transform. This polynomial is a quadratic polynomial. The Lucas-

Kanade method is built on linear approximation (I = k⊤x + z) and uses only the first

order of Taylor expansion. In contrast, Farneback method uses polynomial approximation

(I(x) ∼= xTDx+kTx+z) to estimate flow fields from coefficients (D, k, and z). A weighted

least squares is used to estimate the coefficients in accordance with neighboring signal

values. D is a 2x2 symmetric matrix that gather information of the even part of the signal,

k is a 2x1 matrix that captures information of the odd part of the signal, while z is an

unknown scalar [58]. After a series of refinements, dense optical flow is computed. Fig.

4.11e shows a color-coded example of optical flow estimated by Farneback method.

Iterative Lucas-Kanade Method

Iterative Lucas-Kanade (ILK) method proposed a modified scheme of Iterative Warping

Scheme (IWS) with better performance since the usual IWS encounters the problems

of divergence [7]. IWS is divided into three part: First-order Displaced-Frame-Difference
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(DFD) residual approximation, optical flow refinement, and warping of image using optical

flow computed at each level [59]. Such an iterative process may be used in a coarse-to-

fine multi-resolution strategy as well as at each level of resolution. In [7], they focus on

iterative window-based optical flow estimation in case of large motion. Moreover, they

state that strict implementation of IWS causes inconsistencies in LK algorithm. So that,

they came up with a fast and convergent IWS by using nth levels B-spline separable

kernel interpolation [60]. ILK gives better results and lower cost compared to the LK

algorithm on artificially generated or real images. Fig. 4.11f shows a color-coded example

of optical flow estimated by ILK method.

TV-L1 Method

Zach et al. [61] introduced an optical flow estimation method based on the brightness

constancy assumption in 2007 and improved by Sanchez at al. in 2013 [8], aiming to

minimize the total variation of a function, including a data term and a regularization term

using L1 norm. Total Variation (TV) regularization term is adopted to penalize high vari-

ations in optical flow field to obtain smooth optical flow field [61]. The main benefit of

this formulation is that TV-L1 method offers more accurate and reliable results in noisy

environments than the classical approach of Horn and Schunck [2] while allowing discon-

tinuities in the flow field. TV-L1 method is separated into two modules. The first module

is called procedure and it computes the optical flow at a given scale. The second module

is the main algorithm that applies the pyramid scheme. The procedure module detects

the small motions. [8] claim that there is no need for a pyramid of images when the flow

field is below 1 pixel, and if it is larger than 1 pixel, a pyramid level should be used. In

other words, TV-L1 uses a pyramidal scheme to overcome large displacement. Fig. 4.11g

shows a color-coded example of optical flow estimated by TV-L1 method.

Dense Inverse Search Method

Kroeger et al. [5] came up with a solution for dense optical flow estimation to keep the

execution time low and the accuracy high. Dense Inverse Search (DIS) method includes

three main modules. The first module is the inverse search for patch correspondences,

where the best matching sub-window of WxW pixel in the second frame is found by using

gradient descent for a given template patch in the first frame at the location of a = (x0, y0)

with a size of WxW pixel. The idea is to find a warping vector w = (u, v) to minimize the

sum of squared differences (SSD) between the query location and the given template over

the sub-window. The second module is the dense displacement field creation through

patch aggregation along with multiple scales, where the intermediate dense flow field

is computed, and the displacements are smoothed by the dense flow field to provide

robustness. Each scale has five steps: criterion of a grid, initialization, inverse search,

densification, and variational refinement. The last module is the variational refinement,

where the flow field is refined from the coarser to fine level. Fig. 4.11h shows a color-

coded example of optical flow estimated by DIS method.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.11. Color-coded representation of estimated optical flow using conventional

methods. ((a), (b)) Consecutive frames from Sintel dataset [15]. (c) Ground truth optical

flow between given image pair. (d) Estimated optical flow by Lucas-Kanade Method. (e)

by Farneback Method. (f) by ILK Method. (g). by TV-L1 Method. (h) by DIS Method.

4.3.2.b Deep-Learning Based Dense Optical Flow Estimation Methods

Section 4.3.2.b describes five papers written about optical flow estimation [10, 12, 62, 63,

64]. There are several reasons behind the choice of these papers as follows:

• Their script and pre-trained models are publicly available to test [65, 66, 67, 68, 69].

• MPI Sintel benchmark [70] presents the results and ranking on their website. The

top 100 are considered.

• PWC-Net[10] is purely based on CNN. PWC-Net is picked to compare with trans-
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former based methods[12, 64].

CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume

Sun et al. [10] introduced a CNN-based approach for dense optical flow estimation tasks,

which consists of three layers: pyramid layer, warping layer, and cost volume layer, as

seen in Fig. 4.12. A pyramid (P in the PWC) downsamples features using convolutional

filters in each level of the pyramid. The warping layer (W in the PWC) warps the second

frame features onto the first frame by using two times upsampled flow from the next

resolution in each pyramid level. The cost volume layer (C in PWC) can be defined as the

similarity between the warped and reference image features. In other words, this can be

called pixel-wise similarity loss. Fig. 4.17d shows a color-coded example of optical flow

estimated by PWC-Net method.

Figure 4.12. The architecture of PWC-Net obtained from [10].

Recurrent All Pairs Field Transforms

Teed et al. [62] proposed a deep learning method for dense optical flow estimation

task, combining CNN and RNN. The architecture of Recurrent All Pairs Field Transforms

(RAFT) is shown in Fig. 4.13. The network architecture consists of three modules: fea-

ture extractor module, correlation layer module, and update operator module. The feature

extractor module is used to extract significant features using a CNN. The input consists

of two successive frames. A CNN with six residual layers extracts the features of these

input frames. Correlation layer module is used to construct 4D (H x W x H x W) correla-

tion volume. Correlation volume aims to compute the similarity between a certain part of

the reference frame and each part of the next frame in brute force. The update operator

module is used to estimate a set of flow estimates (f1, ..., fs) from the initial starting point

f0 = 0. After each iteration, the update operator produces a new updated flow to make

the prediction more robust in each step by performing inferences iteratively. For instance,

if the iteration number is kept small, the computation time is short, and the accuracy is
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relatively low. If the iteration number is kept large, the computation time is long, and the

accuracy tends to be relatively high. The optical flow results in 1/8 resolution of the initial

frame after the iterative update stage. In [62], they used convex upsampling methods to

reach the ground truth resolution. The optical flow is upsampled until it reaches the origi-

nal resolution by taking the original resolution flow in every pixel as a convex combination

of limited kernel support of a 3x3 grid of coarse resolution neighbors. Fig. 4.17e shows a

color-coded example of optical flow estimated by RAFT method.

Figure 4.13. The architecture of RAFT obtained from [62].

Normalized Convolution Upsampling for Refined Optical Flow Estimation

As previously discussed, optical flow estimation tasks fail for large motions, and coarse-

to-fine approach was developed to support large motions. By filtering and resampling

images at a lower resolution, a pyramid of coarse to fine is created. Then the image is

warped and upsampled to the next resolution. This process is performed until reaching

the original resolution of the image. Bilinear interpolation is generally used to refine the

image while warping iteratively. As a result of the warping, fine details and some infor-

mation are usually lost during this process. To restore the fine details, post-processing

is needed. Eldesokey et al. [63] proposed an upsampling approach, Normalized Con-

volution Upsampler (NCUP), to produce the full resolution flow while optical flow CNNs

are being trained. Teed et al. [62] used convex upsampling methods to reach the ground

truth resolution. This upsampler is about 10% of the whole network with respect to the

number of parameters. Eldesokey et al. [63] replaced and tested their upsampler module

on RAFT architecture and achieved better results on the Sintel dataset [15] while having

400k fewer parameters than RAFT. The architecture of the RAFT-NCUP is shown in Fig.

4.14. Fig. 4.17f shows a color-coded example of optical flow estimated by RAFT-NCUP

method.



32

Figure 4.14. The architecture of RAFT NCUP obtained from [63].

Global Motion Aggregation

Jiang et al. [12] proposed a new approach to a major challenge: occlusions in optical flow

tasks. The problem of occlusions occurs in the images when points become untraceable

due to global and local motion inside the scene, which results in unreliable estimates

due to the discontinuity [71]. In [12], they claim that, in the case of two frames, the

motion in the occluded area can be better estimated by modeling the self-similarities of

the image. A transformer-based global motion aggregation module is introduced to find

large dependencies among pixels in the reference frame and perform global aggregation

on corresponding motion features. In [12], they have shown that the performance of

optical flow estimation can be significantly increased in occluded regions without reducing

optical flow performance in non-occluded regions. Global Motion Aggregation (GMA)

network uses the successful RAFT [62] architecture as a base. Detailed GMA architecture

is shown in Fig. 4.15. 2D context features pass through a query projector, and key

projector creates a query and a key feature map which is then used to model the self-

similarity appearance in the reference frame. Then these feature maps pass through dot

product and softmax block to obtain a 4D attention matrix that can capture long-distance

dependencies. Separately, 2D motion features pass through the value projector block,

which is used to project the 4D correlation volume. The 4D attention matrix is used to

collect the features of the value, which are latent representations of motions. Then those

features are concatenated to be sent to Gated Recurrent Unit (GRU) to decode the visual

context features into the residual flow. Fig. 4.17g shows a color-coded example of optical

flow estimated by GMA method.
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(a)

(b)

Figure 4.15. (a), The architecture used in GMA. (b). Details of the GMA module obtained

from [12] highlighted gray in (a).

Learning Optical Flow via Cross Strip Correlation (CSFlow)

Shi et al. [64] proposed a new approach for optical flow estimation in the field of au-

tonomous driving. This method consists of two modules. The first module as shown in

Fig. 4.16a, is the Cross Strip Correlation (CSC) module which uses a stripping process

across the target frame and reference frame to encode global context into correlation vol-

umes to capture large displacement while maintaining high efficiency. The second module

as depicted in Fig. 4.16b, is the Correlation Regression Initialization (CRI) module which

is used to make maximum use of the global context for initiating optical flow with no addi-

tional parameters. In [64], they state that due to the computationally expensive high-level

features. Capturing non-local scenes usually requires heavy networks such as Deep Lab

[72], and Resnet-101 [73], which are unpractical to use for optical flow estimation tasks.

They investigated that the self-attention mechanism can be used for capturing large dis-

placements. However, the calculation of high-level features is still expensive because of

the need to compute a relatively huge attention map [73] since the correlation volumes

are in the 4D (H x W x H x W) form. To overcome this issue, optical flow can be in-

herently decomposed into two 1D motion vectors that intersect horizontally and vertically.

The whole architecture of CSFlow network is illustrated in Fig. 4.16. The feature maps

(F1, F2) of two successive frames are obtained by the feature extraction stage. Two 1x1

convolutional layers are used to activate the feature map of the first frame and acquire

horizontal and vertical query matrices (Qv and Qh). Furthermore, two more 1x1 con-

volutional layers are used to activate the feature map of the second frame, then Kv
ˆ and

Kĥ are obtained by vertical and horizontal striping operations, which are the global key
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matrices. Then Qv and Qh are transposed and apply dot product with Kv
ˆ and Kĥ to

get vertical and Horizontal correlation volumes. Lastly, vertical and horizontal correlation

volumes are concatenated with the all-pair correlation volume to obtain an aggregated

correlation. In order to calculate the optical flow between It and It+1, the aggregated

volume Ĉ and initial optical flow provided by the CRI module then will be used as an input

of the update block to compute optical flow as shown in Fig. 4.16c. Fig. 4.17h depicts a

color-coded example of optical flow estimated by CSFlow method.

(a) Cross Strip Correlation (CSC) module

(b) Correlation Regression Initialization (CRI) mod-

ule

(c) Update Block

Figure 4.16. The architecture of CSFlow obtained from [64].
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.17. Color-coded representation of estimated optical flow using deep learning

methods. ((a), (b)) Consecutive frames from Sintel dataset [15]. (c) Ground truth optical

flow between given image pair. (d) Estimated optical flow by PWC-Net method. (e) by

RAFT method. (f) by RAFT-NCUP method. (g). by GMA method. (h) by CSFlow method.
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5. IMAGE WARPING AND FUSION

This chapter introduces two main processes on which image alignment and fusion pipeline

is built as shown in Fig. 1.3. Section 5.1 describes image warping. Then, Section 5.2

describes the image fusion.

5.1 Image Warping

Image warping is a common technique used in various image processing applications

such as image alignment and coarse-fine optical flow [10, 74]. This technique is defined

as a geometric transformation that maps all pixels of the destination image to the neces-

sary locations in a source image. A typical image warping process is illustrated in Fig.

5.1.

Figure 5.1. Block diagram of image warping

Consider two images that need to be aligned by image warping: source and destina-

tion images. Then, a transformation matrix is computed such as dense optical flow or

homography. Next, the inverse geometric transformation inverts the transformation ma-

trix to map pixels from the destination image to the source image. The transformation

matrix and/or its inverse can point to source image coordinates (x, y) with non-integer

values. Lastly, the warping algorithm uses various interpolation techniques to produce

the pixel intensity values at these integer pixel coordinates. Interpolation methods could

differ greatly in complexity and accuracy. However, bilinear and bicubic interpolation are

the most commonly used interpolation methods. The example given in Fig. 5.3 shows

how to interpolate the non-integer pixel coordinates. The intensity of the closest integer

points, red dots, is used to generate the intensity value of the shifted non-integer point,

blue dot.
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Figure 5.2. Determining the intensity value of a non-integer pixel (blue dot), using closest

points where the intensity values are known (red dots)

5.2 Image Fusion

Image fusion is the process of gathering important information from multi frames into a

single compound frame. The single output frame provides more information than the input

frames for visual perception and computer vision processing. Because of this advantage,

image fusion techniques are highly important in various applications based on multiple

images of the same scene. For example, in medical diagnosis, doctors diagnose the

disease of patients by examining multiple modalities of medical images for an accurate

diagnosis [75]. Another example of the image fusion is to expand depth of field or dynamic

range of a captured image. such as fusing of multi-focus images and multi-exposure

images [76, 77].

Fusion technique is used to merge raw image frames captured by the camera sensor to

create a single raw frame to be further processed in the ISP pipeline. In this study, a

simple fusion technique is performed by averaging the reference image and the warped

(aligned) target image. This process is performed for all images to obtain a single image.

A simple example of fusion is shown in Fig. 5.3. Fig. 5.3a shows fusion between the

reference and target images, while Fig. 5.3b illustrates fusion between the reference and

warped target images. It can be seen that fusing images without aligning may cause

some ghosting artifacts while ghosting artifacts are mostly removed by aligning target

images before fusing.
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(a) (b)

Figure 5.3. An example of image fusion between two consecutive processed raw images.

(a) Fusion without warping the target frame. (b) Fusion after warping the target frame.
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6. DATABASES

Datasets are important as they are used for both training and inferencing. The rule of

thumb is that the more data used in training, the more accurately trained models are

achieved. This chapter describes the datasets used for optical flow estimation tasks. Fig.

6.1 shows the realism of the datasets and the number of image pairs (size) each dataset

has.

10 200 600 1400 20000 Size

R
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13000

Flying ThingsVBOF

Figure 6.1. The realism of the datasets with respect to their size.

Section 6.1 presents the Sintel dataset. Then, the Flying Chairs dataset is described in

Section 6.2. Next, Section 6.3 explains the KITTI dataset. After that, Section 6.4 covers

the Various Brightness Optical Flow (VBOF) Dataset. Thereafter, Section 6.5 describes

the in-house dataset. Finally, the Flying Things dataset is presented in Section 6.6.

6.1 Sintel Dataset

The Sintel dataset [15] is the most commonly used dataset in optical flow tasks for both

training and evaluating the optical flow algorithms [9, 10, 62]. It is an open source dataset

that has been artificially generated with three different passes: albedo, clean, and final.

In albedo pass, images do not contain shading such as reflection and shadow. In clean

pass, images have shading but do not contain any image degradation such as motion blur

and noise. In final pass, images contain motion blur and atmospheric effects. The Sintel

dataset has 35 scenes for each pass, 23 scenes for training, and 12 scenes for testing.
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Scenes can differ according to their characteristic, such as large displacements, small

displacements, discontinuity, etc. Images are saved in 8-bit PNG format with a 1024 x

436 pixels resolution. A set of example and ground truth images can be seen in Fig. 6.2

Figure 6.2. Example images and color-coded flow field (ground truth) from the Sintel

dataset.

6.2 Flying Chairs Dataset

The Flying Chairs dataset was created by the authors of Flow-Net paper[9]. This ar-

tificially generated dataset contains 22872 image pairs out of a total of 45744 images.

The dataset was created by adding synthetic chairs to selected real-world backgrounds.

Image pairs may vary according to their content, such as small motion under daylight

conditions, large motion, small motion under low light conditions, occlusion, etc. A set of

example and ground-truth images from the Flying Chairs dataset can be seen in Fig. 6.3.

Figure 6.3. A set of images and color-coded flow field (ground truth) from Flying Chairs

dataset.
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6.3 KITTI Dataset

The KITTI dataset is a real-world dataset used for the purpose of autonomous driving

applications, object tracking, optical flow, and object detection. There are two versions

of the KITTI dataset: KITTI 2012 [78] and KITTI 2015 [79]. In addition to the KITTI

2012, the KITTI 2015 includes dynamic scenes, which makes it more challenging due

to massive motion, drastic illumination changes, and occlusions. The ground truth is

computed by Light Detection and Ranging (LIDAR). An example image and color-coded

flow field (ground truth) from the KITTI dataset can be seen in Fig. 6.4. The ground

truth of the KITTI dataset is only approximate due to measurement errors, something

intolerable for image alignment. So that, the KITTI dataset is not used in this thesis.

Figure 6.4. An example image and color-coded flow field (ground truth) from KITTI

dataset.

6.4 Various Brightness Optical Flow Dataset

Various Brightness Optical Flow (VBOF) dataset [80] contains low-light noisy raw images.

This dataset contains 598 raw image pairs with various brightness. This dataset was not

used in this thesis. However, it can be used as a training dataset in the future to improve

the performance of optical flow algorithms under low-light conditions. A set of example

and ground-truth images from the VBOF dataset can be seen in Fig. 6.5.
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Figure 6.5. A set of images and color-coded flow field (ground truth) from VBOF dataset.

6.5 In-House Dataset

In this thesis, the performance of optical flow methods in the raw Bayer domain is targeted.

Therefore, the input data is expected to be close to a raw image. However, all publicly

available datasets are far from this requirement. The ground truth of the KITTI dataset is

only approximate due to measurement errors, something intolerable for image alignment.

The Flying Chairs dataset contains the real-world background scene. However, chairs are

synthetic and images are fully processed JPEGs. In addition, images in the Sintel dataset

are completely synthetic. For these reasons, in-house dataset containing raw images is

created to evaluate the performance of optical flow algorithms. The criterion process of

the dataset is illustrated in Fig. 6.6.

Section 6.5.1 presents the process of scene capture. Then, Section 6.5.2 describes the

process of data simulation.

...

Denoise by

averaging

80 raw frames

BLC- LSC

Warp image

1  by motion

params 1

Random 

motion 

params 1

Warp image

2  by motion

params 2

Random 

motion 

params 2

Add motion

blur and

crop

Add motion

blur and

crop

Compute ground

truth optical

flow

Add LS, BL,

and noise

Add LS, BL,

and noise

Scene capture Data simulation

...

Figure 6.6. The work flow of scene capture and data simulation.
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6.5.1 Scene Capture

The scene content for the dataset is built on the assumption that the entire scene consists

of objects on the same plane. There is no moving object in this dataset. Ten bursts

of multi-frame raw image data dump are taken to reduce scene capture noise. Each

of the ten dumps in the burst constitutes eight multi-frame raw captures totaling eighty

raw frames. Capture noise is reduced by averaging eighty frames to achieve a nearly

noiseless scene shot. Then, the noise-reduced capture is further cleaned from the black

level and lens shading of the camera module.

6.5.2 Data Simulation

After each scene is cleaned from noise, black level corrected, and lens shading corrected,

it is used to create 10 image pairs. Each image pair is obtained from the clean scene im-

age by warping it with two random motions. The type of motion includes the x-axis, y-axis,

and z-axis translation and rotation around the z-axis. Once an image pair is created, the

relative motion parameters from the reference frame to the target frame are calculated.

These parameters are used to construct the ground-truth optical flow.

Then the motion blur is added to both the reference and target frames. For each image

pair, an exposure time is drawn from a random uniform distribution ranging between 1 ms

and 1/3 of the assumed interval between the simulated captures of the images in the pair.

The exposure time is divided equally into 20 time instants and for each time instant, an

image is warped from the reference image with motion which is a proportional fraction of

relative motion between the reference and the target images in the pair. Finally, twenty

differently warped frames are averaged to obtain a single motion-blurred version of the

reference and target frames.

Each image pair is degraded with lens shading, add black level, and noise. Then it is

saved in 16-bit PNG format. A set of images from in-house dataset is shown in Fig. 6.7.

Figure 6.7. A set of images from in-house dataset.
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6.6 Flying Things Dataset

Flying Things dataset contains 13033 image pairs out of a total of 26066 images which

consists of random objects flying along randomized 3D trajectories [81]. This dataset is

used in pre-trained models provided by [10, 12, 62, 63, 64]. Example images and ground

truth images from Flying Things dataset is shown in Fig. 6.8.

Figure 6.8. Example images from Flying Things dataset and ground truth images ob-

tained from [81].



45

7. EVALUATION METRICS

This chapter introduces the evaluation metrics used to assess the quality of the optical

flow estimation and image fusion. Section 7.1 presents the evaluation metrics used for the

optical flow evaluation. Then, the evaluation metrics used for image fusion assessment

are discussed in Section 7.2.

7.1 Evaluation Metrics for Optical Flow Estimation

Section 7.1 introduces the evaluation metrics used for the optical flow evaluation: End-

point Error (EPE), Angular Error (AE), and statistical error metrics.

7.1.1 Endpoint Error

Endpoint Error (EPE) is the most commonly used metric to assess the performance of

the optical flow by comparing the ground truth optical flow vector with an estimated optical

flow vector for each pixel in the image pair. EPE is computed using equation 7.1.

EPE =

N∑︂

i=1

√︂

(︁

ui − u
gt
i

)︁2
+
(︁

vi − v
gt
i

)︁2
(7.1)

Where u and v are the (x, y) pixel location in estimated optical flow, while ugt , vgt are

the (x, y) pixel location in ground truth optical flow.

7.1.2 Angular Error

Angular Error (AE) is another metric used to assess the performance of the optical flow

[82]. It is described as the angle between the ground truth optical flow vector field and the

estimated optical flow vector field as shown in Fig. 7.1. AE is computed using equation

7.2. AE suffers from the problem that would tolerate large pixel error for faster moving

parts of the scene. Thus it has not been used in this thesis.

AE =

N∑︂

i=1

arccos
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2,gt
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⎞

⎠ (7.2)
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Figure 7.1. Diagrammatic representation of EPE and AE.

7.1.3 Statistical Error Metrics

Categorizing by Speed

For example, a well-predicted optical flow with few large errors may have the same error

rate as an optical flow that is slightly but consistently inaccurate in all parts of the image.

To distinguish that, image pixels can be divided into different categories depending on the

speed of motion and the average number of EPEs associated with each category.

• s10: average EPE for all pixels with a small motion speed of less than 10 pixels per

frame.

• s10-40: average EPE for all pixels with medium motion speed between 10 and 40

pixels per frame.

• s40+: average EPE for all pixels with a large motion speed greater than 40 pixels

per frame.

where s is the speed of the motion between consecutive frames, and it can be computed

using equation 7.3, where u and v are the ground truth optical flow vectors.

s =
√︁

u(x,y)2 + v(x,y)2 (7.3)

Categorizing by Error

The metrics given above may be insufficient in measuring performance of the optical

flow. Especially algorithms like Multi-Frame Noise Reduction (MFNR) is very sensitive to

even the smallest misalignment. Therefore, a new metric is created to support algorithms

like MFNR and assesses the quality of the optical flow. Three categories are created

according to the EPE value, similar to the speed calculation.

• e0-1: percentage of pixel error with EPE <= 1 pixel.

• e1-5: percentage of pixel error between 1 and 5 pixels.
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• e5+: percentage of pixel error greater than 5 pixels.

Grayscale absolute error EPE image is given in Fig. 7.2 is computed by subtracting each

component (u,v) of ground truth optical flow and estimated optical flow and then stack

them in sequence depth wise. It ranges between [0, 1]. The white parts in the image

show the correctly predicted motion, while the black parts in the image indicate the parts

that were not predicted correctly.

Figure 7.2. Color coded directional error and grayscale absolute error.

7.2 Evaluation Metrics for Image Fusion

Section 7.2 describes the evaluation metrics used for assessing the quaility of fused im-

ages: Peak signal to Noise Ratio (PSNR) [83], Structural Similarity Index Measurement

(SSIM) [84], Spectral Angle Mapper (SAM) [85], Universal Quality Image Index (UQI) [86],

and Correlation Coefficient (CC) [87].

7.2.1 Peak Signal to Noise Ratio

Peak Signal to Noise Ratio (PSNR) is the most commonly used metric for measuring the

quality between the reference and fused images. The PSNR of the reference frame and

fused frame are compared. The PSNR criterion used for comparison is defined as in

Equation 7.4

PSNR = 10 log10

2552xHxW
∑︁H

i=1

∑︁W
j=1 (RFij − FFij)

2
(7.4)

where RF and FF are the pixel intensities of the reference and fused frames, H, W rep-

resent the height and the width of the frames, and 255 indicates the saturation point of

8-bits image. That value varies depending on bit depth.

The higher the value of PSNR indicates higher quality.
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7.2.2 Structural Similarity Index Measurement

Structural Similarity Index Measurement (SSIM) is used to compare the local patterns of

the pixels intensities between the reference and fused images. SSIM ranges between 0

and 1, where 1 indicates a perfect similarity. The SSIM is obtained by equation 7.5.

SSIM(RF, FF) =
(2µRFµFF + c1) (2σRFFF + c2)

(µ2
RF + µ2

FF + c1) (σ
2
RF + σ2

FF + c2)
(7.5)

where RF and FF are the pixel intensities of the reference and fused frames, µRF, µWF

are the average of pixel densities, σRF and σWF are the standard deviations, σ2
RF and σ2

FF

are the covariance of the reference and fused frames respectively.

7.2.3 Spectral Angle Mapper

Spectral Angle Mapper (SAM) calculates the pixel-wise spectral angle between the refer-

ence and fused images. Lower value of SAM denotes higher similarity. The best similarity

is obtained when the SAM value is zero, which indicates the absence of spectral distor-

tion. SAM value is computed by using equation 7.6

SAM(RF, FF) = cos−1

⎛

⎝

∑︁nb
i=1 FFiRFi

√︂∑︁nb
i=1 FF

2
i

√︂∑︁nb
i=1 RF

2
i

⎞

⎠ (7.6)

where RF and FF are the pixel intensities of the reference and fused frames, and nb is

the number of bins in the frames.

7.2.4 Universal Quality Image Index

Universal Quality Image Index (UQI) computes the amount of relevant data from reference

frame into fused frame. The value of UQI ranges between -1 and +1, where the value

of +1 represents the reference and fused frames are similar. The UQI is obtained by

equation 7.7

UQI =
4σRFFFµRFµFF

(σ2
RF + σ2

FF) [(µRF)
2 + (µFF)2]

(7.7)
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where µRF and µFF are the mean values, σ2
RF and σ2

FF are the variance of reference

frame and fused frame respectively.

7.2.5 Correlation Coefficient

Correlation Coefficient (CC) is used to evaluate the similarity of the spectral features of

the reference and fused frames. CC value of 1 is obtained when the reference and fused

frames are the same. CC value is computed by using equation 7.8

CC =
Σ [(RF− µRF) (FF− µFF)]

√︃

[︂

Σ (RF− µRF)
2
Σ (FF− µFF)

2
]︂

(7.8)

where µRF and µFF are the mean value of the reference and fused frames respectively.
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8. RESULTS

The quantitative and visual results of optical flow methods are presented in Section 8.1.

Then, Section 8.2 presents the quantitative and visual results with fused images.

8.1 Quantitative and Visual Results of Optical Flow Estimation

Methods

In this thesis, ten optical flow methods are tested. These methods are as follows:

• Conventional Methods

± SIFT + FLANN

± Farneback [6]

± Iterative Lucas Kanade (ILK) [7]

± TV-L1 [8]

± Dense Inverse Search (DIS) [5]

• Deep Learning-Based Methods

± Pyramid, Warping, and Cost Volume Network (PWC-Net) [10]

± Recurrent All Pairs Field Transforms (RAFT) [62]

± RAFT method with Normalized Convolution UPsampling (RAFT-NCUP) [63]

± Global Motion Aggregation (GMA) [12]

± Cross Strip Correlation (CSFlow) [12]

Section 8.1.1 presents the training procedure of each deep learning-based method. Then,

Sections 8.1.2, 8.1.3, and 8.1.4 report the quantitative and visual results of optical flow

estimation on the Sintel [15], Flying Chairs [9], and in-house datasets, respectively.

8.1.1 The Training Procedure of Deep Learning Based Methods

The pre-trained model of each deep learning-based method is publicly available [65, 66,

67, 68, 69]. These pre-trained models are used to compare the results on different

datasets. The training procedures are provided in Table 8.1. For instance, The GMA
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network was first pre-trained on the Flying Chairs dataset for 120k iterations, where the

learning rate was 0.00025, the batch size was 8. Then, the model was pre-trained on

the Flying Things dataset for 120k iterations, where the learning rate was 0.000125, the

batch size was 6. The PWC-Net model was pre-trained on a mix of the Flying Chairs and

half resolution of the Flying Things dataset.

Results obtained in this thesis are based on two pre-trained models: C + T and C + Thalf.

C + T refers to the results pre-trained on the Flying chairs and Flying Things datasets,

while C + Thalf refers to the results pre-trained on the Flying Chairs and half resolution of

the Flying Things datasets. C + T pre-trained model is available for GMA, CSFlow, RAFT,

and RAFT NCUP, while C + Thalf pre-trained model is available only for PWC-Net.

Table 8.1. Training procedures of deep learning methods.

Method Flying Chairs Flying Things

Number of Learning Batch Number of Learning Batch

epoch rate size epoch rate size

GMA 120k 0.00025 8 120k 0.000125 6

CSFlow 150k 0.0004 10 150k 0.000125 6

RAFT − 0.0004 6 100k − 12

RAFT NCUP − 0.0004 6 100k − 12

8.1.2 Results on the Sintel Dataset

As mentioned in Section 6.1, the Sintel dataset consists of 35 scenes, 23 for training and

12 for testing. Furthermore, the Sintel dataset provides three different passes. Since

low light images usually suffer from motion blur, results are presented for the final pass,

which includes motion blur in the images. However, quantitative results for the blur-free

clean pass can be seen in the appendix section for both conventional and deep learning

methods. No experiment has been conducted on the albedo pass, as there are no image

degradations in this pass.

The percent of image pixels according to the speed classification is given in Table 8.2.

For example, in Alley_1, 95.6 % of the motion speed is smaller than 10 pixels. 4.2 % of

the motion speed is between 10 and 40 pixels, while only 0.02 % of the motion speed is

above 40 pixels.

The final pass results for conventional methods and deep learning-based methods are

shown in Fig. 8.1 and 8.2, respectively. These figures show the Average Endpoint Error

(AEPE) for each scene, AEPE for different speed categories, and error percentage for

different categories. The x-axes indicate the name of each scene, while the y-axis is the

magnitude of AEPE and is limited between 0-100 for each plot.
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The AEPE is computed for each scene using equation 8.1, where N is the number of

image pair in the scene.

AEPE =
1

N

N∑︂

i=1

√︂

(︁

ui − u
gt
i

)︁2
+
(︁

vi − v
gt
i

)︁2
(8.1)

For speed categories, firstly, ground truth optical flow data is used to compute per-pixel

shifts between the first and second images, which refers to the speed or displacement

between consecutive images. Then, EPE is computed for regions where the speed is

between 0-10, 10-40, and 40+ pixels. Additionally, the AEPE values were analyzed sepa-

rately for regions categorized according to the EPE falling between 0-1, 1-5, and greater

than 5 pixels. Lastly, Averaged Error refers to the average EPE of all scenes.

Image pairs, ground truth, and color-coded results of estimated optical flow for four image

pairs are illustrated in Fig. 8.3 and 8.4 for conventional and deep learning-based meth-

ods, respectively. From left-most to right-most, columns correspond to images for small,

medium, large motions, and scene with discontinuity, where the region indicated by the

red rectangle. This categorization done by calculating the average speed in the scene.

Image pairs, ground truth, and, grayscale absolute error results of estimated optical flow

for conventional methods and deep learning-based methods are illustrated in Fig. 8.5 and

8.6 respectively. Furthermore, quantitative results of the AEPE, AEPE in different speed

categories and percentage of error are given in Table 8.3 and 8.4 for conventional and

deep learning-based methods, respectively.
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Table 8.2. The percentage of image pixels according to the speed classification, where s

refers to the speed of the motion.

Scene Name s0-10 (%) s10-40 (%) s40+ (%)

Alley_1 95.60 4.20 0.02

Alley_2 78.00 21.60 0.04

Ambush_2 4.00 27.30 68.70

Ambush_4 29.60 47.10 23.30

Ambush_5 52.30 30.10 17.60

Ambush_6 5.00 58.20 36.80

Ambush_7 89.10 7.20 3.70

Bamboo_1 99.10 0.70 0.20

Bamboo_2 96.00 2.05 1.95

Bandage_1 89.00 10.00 1.00

Bandage_2 94.70 5.20 0.10

Cave_2 9.80 43.70 46.50

Cave_4 35.10 60.70 4.20

Market_2 89.90 9.30 0.80

Market_5 10.60 59.60 29.80

Market_6 34.60 55.70 9.70

Mountain_1 87.90 11.60 0.50

Shaman_2 99.80 0.19 0.01

Shaman_3 99.22 0.77 0.01

Sleeping_1 100.00 0.00 0.00

Sleeping_2 100.00 0.00 0.00

Temple_2 60.30 35.40 4.30

Temple_3 26.50 39.60 33.90
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Figure 8.1. The error plots for conventional optical flow methods.
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Figure 8.2. The error plots for deep learning-based optical flow methods.
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Figure 8.3. Color-coded results of optical flow estimated by conventional methods for

four different scenarios: small, medium, large motion, and discontinuity.
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Figure 8.4. Color-coded results of optical flow estimated by deep learning-based meth-

ods for four different scenarios: small, medium, large motion, and discontinuity.
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Figure 8.5. The results of the grayscale absolute error of optical flow estimated by con-

ventional methods for four different scenarios: small, medium, large motion, and disconti-

nuity. White regions indicate where the motion is correctly estimated, while black regions

refer to the motion is not correctly estimated. The grayscale images range between [0, 1].
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Figure 8.6. The results of the grayscale absolute error of optical flow estimated by deep

learning-based methods for four different scenarios: small, medium, large motion, and

discontinuity. White regions indicate where the motion is correctly estimated, while black

regions refer to the motion is not correctly estimated. The grayscale images range be-

tween [0, 1].
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Table 8.3. Quantitative results of the AEPE, AEPE in different speed categories, and

percentage of error for conventional methods. The values are obtained by averaging all

the scenes.

Method AEPE s0-10 s10-40 s40+ e1 e1-5 e5+

SIFT + FLANN 20.59 8.51 18.04 34.89 46.31 24.13 29.55

Farneback 11.35 2.71 10.27 27.50 50.81 17.95 31.23

ILK 10.41 5.03 10.11 22.94 61.63 14.25 24.12

TV-L1 8.12 2.76 6.72 22.44 63.52 15.07 21.41

DIS 5.82 2.93 6.18 16.51 73.09 13.01 13.90

Table 8.4. Quantitative results of the AEPE, AEPE in different speed categories, and per-

centage of error for deep learning-based methods. The values are obtained by averaging

all the scenes.

Method AEPE s0-10 s10-40 s40+ e1 e1-5 e5+

PWC-Net 3.70 2.17 3.95 10.68 79.72 11.23 9.04

RAFT 2.68 1.54 3.16 8.94 85.28 8.53 6.19

RAFT-NCUP 3.03 1.80 3.59 9.41 82.79 9.89 7.32

GMA 2.74 1.48 3.10 9.18 85.15 8.56 6.29

CSFlow 2.61 1.50 2.91 8.65 85.34 8.62 6.05

8.1.3 Results on the Flying Chairs Dataset

No experiment has been conducted on deep learning-based methods for the Flying Chairs

dataset, as the Flying Chairs dataset is used in pre-trained models. The results are ob-

tained only for conventional methods.

Image pairs, ground truth, and color-coded results of estimated optical flow for four image

pairs are depicted in Fig. 8.7. From left-most to right-most, columns show the images

for relatively small motion under daylight conditions, large motions, relatively small motion

under low light conditions, and scene with occlusion, where the region indicated by the red

rectangle. Image pairs, ground truth, and grayscale absolute error results are illustrated in

Fig. 8.8. Moreover, quantitative results of the AEPE, AEPE in different speed categories,

and percentage of error for the entire dataset are provided in Table 8.5.
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Figure 8.7. Color-coded results of optical flow estimated by conventional methods for four

different scenarios: small motion under daylight conditions, large motion, small motion

under low light conditions, and occlusion.
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Figure 8.8. The results of the grayscale absolute error of optical flow estimated by con-

ventional methods for four different scenarios: small motion under daylight conditions,

large motion, small motion under low light conditions, and occlusion. White regions indi-

cate where the motion is correctly estimated, while black regions refer to the motion is not

correctly estimated. The grayscale images range between [0, 1].
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Table 8.5. Quantitative results of the AEPE, AEPE in different speed categories, and

percentage of error.

Method AEPE s0-10 s10-40 s40+ e1 e1-5 e5+

SIFT + FLANN 7.92 4.54 15.70 45.56 64.35 12.91 22.73

Farneback 8.37 3.60 12.97 46.19 50.18 16.40 33.41

ILK 23.47 8.60 44.32 48.03 57.08 11.39 32.52

TV-L1 5.09 2.75 8.74 40.68 63.38 16.96 19.65

DIS 4.67 3.06 7.12 37.42 70.50 13.45 16.04

8.1.4 Results on the In-House Dataset

Section 8.1.4.a presents the visual results and quantitative results for different pre-processing

steps, while Section 8.1.4.b presents the visual results and quantitative results for differ-

ent levels of noise.

8.1.4.a Result on the In-House Dataset for Different Pre-processing

The performance of the optical flow methods is tested on the in-house dataset for differ-

ent pre-processing steps: raw images, raw images with Black Level Correction (BLC) and

Lens Shading Correction (LSC), raw images with BLC, LSC, and White Balance (WB),

and raw images with BLC, LSC, WB, and Opto-Electronic Transfer Function (OETF). Im-

age pair, ground truth, and color-coded results of optical flow estimation are illustrated in

Fig. 8.9 and 8.10 for conventional and deep learning-based methods, respectively. From

left-most to right-most, columns correspond to images for raw images, raw images with

BLC and LSC, raw images with BLC, LSC, and WB, and raw images with BLC, LSC,

WB, and OETF. Grayscale absolute error results of estimated optical flow by conventional

methods and deep learning-based methods are shown in Fig. 8.11 and 8.12, respectively.

Furthermore, quantitative results are presented in Table 8.6 and 8.7 for conventional and

deep learning-based methods, respectively.
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Figure 8.9. Color-coded results of optical flow estimated by conventional methods for

different pre-processing steps.
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Figure 8.10. Color-coded results of optical flow estimated by deep learning-based meth-

ods for different pre-processing steps.
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Figure 8.11. Grayscale absolute error results of optical flow estimated by conventional

methods for different pre-processing steps. White regions indicate where the motion is

correctly estimated, while black regions refer the motion is not correctly estimated. The

grayscale images range between [0, 1].
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Figure 8.12. Grayscale absolute error results of optical flow estimated by deep learning-

based methods for different pre-processing steps. White regions indicate where the mo-

tion is correctly estimated, while black regions refer the motion is not correctly estimated.

The grayscale images range between [0, 1].
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Table 8.6. Quantitative results of the AEPE, AEPE in different speed categories, and per-

centage of error for different pre-processing step on the in-house dataset for conventional

methods.

Scenario Method AEPE s0-10 s10-40 s40+ e1 e1-5 e5+

Raw images

without

pre-processing

SIFT + FLANN 17.09 2.39 6.00 18.25 67.23 9.17 23.54

Farneback 83.85 3.66 22.54 91.94 1.46 0.95 97.59

ILK 30.27 1.71 6.42 33.74 31.67 18.93 49.39

TV-L1 40.64 9.37 13.57 44.14 14.01 10.18 75.80

DIS 9.06 1.58 2.96 9.92 56.40 19.85 23.75

BLC-LSC

applied

raw images

SIFT + FLANN 5.48 0.78 1.64 5.80 83.45 7.85 8.70

Farneback 83.37 3.10 20.71 91.75 2.51 1.29 96.19

ILK 19.27 3.71 5.17 21.34 62.17 13.36 24.47

TV-L1 22.26 7.87 9.42 23.85 39.04 11.38 49.58

DIS 5.12 1.68 2.26 5.55 66.03 18.99 14.99

BLC-LSC-WB

applied

raw images

SIFT + FLANN 23.82 3.29 16.18 24.52 87.11 6.23 6.67

Farneback 83.12 2.85 19.73 91.65 3.16 1.45 95.40

ILK 18.80 3.31 5.41 20.79 63.51 13.63 22.86

TV-L1 18.23 6.54 7.82 19.55 45.36 11.62 43.02

DIS 4.99 1.48 2.05 5.41 67.10 18.41 14.49

BLC-LSC-WB-

OETF

applied

raw images

SIFT + FLANN 1.36 0.24 0.42 1.42 93.75 4.20 2.06

Farneback 82.34 2.19 16.91 91.25 4.57 1.90 93.53

ILK 17.17 2.82 4.94 19.02 66.16 14.14 19.70

TV-L1 12.82 4.02 4.84 13.82 55.03 11.33 33.64

DIS 4.72 1.44 1.88 5.14 68.74 17.35 13.90

Table 8.7. Quantitative results of the AEPE, AEPE in different speed categories, and

percentage of error for different pre-processing step on the in-house dataset for deep

learning-based methods.

Scenario Method AEPE s0-10 s10-40 s40+ e1 e1-5 e5+

Raw images

without

pre-processing

PWC-Net 22.03 3.38 5.28 23.60 45.22 16.36 38.41

RAFT 43.83 9.77 12.74 47.56 60.34 12.78 26.89

RAFT NCUP 9.67 1.62 2.58 10.53 75.32 10.87 13.80

GMA 12.66 4.79 6.15 13.22 53.74 34.77 11.49

CSFlow 3.74 1.32 2.07 3.94 83.21 9.15 7.64

BLC-LSC

applied

raw images

PWC-Net 21.27 5.08 7.24 22.60 46.36 17.70 35.93

RAFT 41.08 9.52 12.73 44.59 63.28 11.26 25.46

RAFT NCUP 7.39 2.12 2.52 8.02 77.96 10.63 11.41

GMA 10.41 3.66 5.07 10.97 59.32 29.84 10.84

CSFlow 2.33 1.03 1.53 2.42 85.86 8.68 5.46

BLC-LSC-WB

applied

raw images

PWC-Net 20, 35 3, 73 5, 90 21, 73 48, 49 16, 13 35, 37

RAFT 44.29 11.63 15.41 47.88 62.06 10.82 27.12

RAFT NCUP 8.19 2.46 3.33 8.86 77.02 10.84 12.14

GMA 10.59 4.01 5.75 11.14 64.32 24.14 11.54

CSFlow 2.84 1.64 1.84 2.91 85.59 8.72 5.69

BLC-LSC-WB-

OETF

applied

raw images

PWC-Net 21.99 5.36 7.63 23.36 45.04 18.60 36.35

RAFT 39.88 9.73 12.87 43.17 63.11 11.06 25.83

RAFT NCUP 7.27 2.26 2.83 7.83 78.20 10.60 11.19

GMA 9.22 3.62 4.66 9.73 69.83 19.16 11.01

CSFlow 2.40 1.78 1.92 2.34 86.35 8.59 5.06
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8.1.4.b Result on the In-House Dataset for Different Levels of Noise

The performance of optical flow methods is evaluated on the processed (BLC-LSC, WB,

OETF applied) in-house dataset for different levels of noise. Pre-calculated noise pa-

rameters at five different Analog Gain (AG) (AG 1, AG 4, AG 16, AG 32, AG 64) are

used to generate noise. Fig. 8.13 shows an image from the in-house dataset where the

AG is 1 and 64. Image pair, ground truth, and color-coded results are illustrated in Fig.

8.14 and 8.15 for conventional methods and deep learning-based methods, respectively.

Grayscale absolute error results of conventional methods and deep learning-based meth-

ods are shown in Fig. 8.16 and 8.17, respectively. Furthermore, quantitative results are

presented in Table 8.8 and 8.9 for conventional and deep learning-based methods, re-

spectively.

(a) AG 1 (b) AG 64

Figure 8.13. Same image at different levels of noise.
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Figure 8.14. Color-coded results of optical flow estimated by conventional methods for

five different levels of noise.
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Figure 8.15. Color-coded results of optical flow estimated by deep learning-based meth-

ods for five different levels of noise.
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Figure 8.16. Grayscale absolute error results of optical flow estimated by conventional

methods for five different levels of noise. White regions indicate where the motion is

correctly estimated, while black regions refer the motion is not correctly estimated. The

grayscale images range between [0, 1]
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Figure 8.17. Grayscale absolute error results of optical flow estimated by deep learning-

based methods for five different levels of noise.White regions indicate where the motion

is correctly estimated, while black regions refer the motion is not correctly estimated. The

grayscale images range between [0, 1].



74

Table 8.8. Quantitative results of the AEPE, AEPE in different speed categories, and

percentage of error at different AG for conventional methods.

AG (noise level) Method AEPE s0-10 s10-40 s40+ e1 e1-5 e5+

AG 1

SIFT + FLANN 1.78 0.20 0.57 1.94 93.41 4.44 2.14

Farneback 81.33 1.97 17.10 90.08 5.04 1.84 93.11

ILK 17.94 4.03 6.12 19.49 68.04 12.09 19.85

TV-L1 12.66 3.46 4.71 13.47 56.85 10.74 32.40

DIS 5.31 1.76 2.38 5.67 71.27 15.38 13.34

AG 4

SIFT + FLANN 1.72 0.21 0.54 1.89 93.56 4.14 2.29

Farneback 81.19 1.92 16.69 89.98 5.10 1.96 92.93

ILK 17.46 3.74 6.35 18.85 65.26 14.89 19.83

TV-L1 12.71 3.50 4.76 13.52 55.96 11.38 32.64

DIS 5.56 1.63 2.37 5.96 67.23 17.81 14.95

AG 16

SIFT + FLANN 2.18 0.40 0.77 2.38 91.20 5.91 2.87

Farneback 80.74 1.77 15.45 89.67 5.31 2.39 92.28

ILK 14.99 3.03 5.02 16.30 60.31 19.70 19.98

TV-L1 12.76 3.57 4.84 13.58 54.52 12.39 33.08

DIS 5.77 1.78 2.70 6.11 60.21 22.71 17.07

AG 32

SIFT + FLANN 2.31 0.56 0.87 2.46 89.36 8.09 2.53

Farneback 80.27 1.62 14.29 89.33 5.58 2.92 91.49

ILK 14.04 3.16 5.15 15.25 56.40 23.30 20.28

TV-L1 12.81 3.62 4.91 13.62 53.40 13.15 33.43

DIS 5.80 2.11 3.00 6.10 55.02 26.48 18.48

AG 64

SIFT + FLANN 7.05 5.38 4.99 7.51 83.07 12.27 4.52

Farneback 79.73 1.49 13.08 88.93 5.97 3.17 90.30

ILK 14.21 3.17 4.96 15.48 51.17 27.62 21.19

TV-L1 12.92 3.73 5.02 13.74 51.62 14.30 34.06

DIS 6.59 2.45 3.35 6.94 48.32 31.24 20.42
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Table 8.9. Quantitative results of the AEPE, AEPE in different speed categories, and

percentage of error at different AG for deep learning-based methods.

AG (noise level) Method AEPE s0-10 s10-40 s40+ e1 e1-5 e5+

AG 1

PWC-Net 19.54 5.09 5.94 20.53 50.54 17.01 32.44

RAFT 9.98 4.32 4.61 10.43 78.95 9.75 11.28

RAFT-NCUP 5.95 1.25 1.38 6.43 80.58 9.70 9.70

GMA 2.22 1.38 1.39 2.30 87.67 7.23 5.09

CSFlow 1.84 1.06 1.24 1.95 88.38 7.53 4.08

AG 4

PWC-Net 24.84 7.79 10.07 25.74 40.89 19.84 39.21

RAFT 14.68 7.62 8.43 14.97 73.31 11.79 14.89

RAFT-NCUP 9.01 3.83 4.05 9.36 76.30 11.10 12.58

GMA 3.37 1.92 2.23 3.48 84.29 8.75 6.94

CSFlow 2.45 1.23 1.63 2.58 84.67 9.38 5.39

AG 16

PWC-Net 30.57 10.28 13.49 31.77 28.42 22.30 40.26

RAFT 22.81 9.65 12.25 23.49 62.72 15.13 22.13

RAFT-NCUP 14.91 6.69 7.35 15.38 68.04 13.50 18.44

GMA 5.35 2.87 3.11 5.56 78.80 11.86 9.33

CSFlow 3.90 3.08 2.95 3.88 78.80 12.03 9.16

AG 32

PWC-Net 33.32 11.12 14.74 34.84 21.32 21.64 57.02

RAFT 25.56 10.13 13.51 26.43 55.37 17.63 26.98

RAFT-NCUP 15.97 5.62 6.75 16.70 61.94 15.56 22.49

GMA 6.58 3.37 3.60 6.89 73.99 14.13 11.87

CSFlow 5.12 2.91 4.20 5.16 74.32 14.59 11.08

AG 64

PWC-Net 37.90 11.22 16.42 39.85 13.89 18.64 67.45

RAFT 25.26 9.10 12.03 26.35 47.14 20.51 32.33

RAFT-NCUP 16.90 3.75 5.19 18.02 54.12 17.92 27.94

GMA 8.40 3.45 3.96 8.91 65.93 16.88 17.17

CSFlow 5.36 2.82 3.59 5.54 68.35 18.83 12.81

8.2 Results With Fused Images

The quantitative results of the conventional and deep learning-based optical flow estima-

tion are reported in Sections 8.1. Among the motion estimation methods, the three best

methods, CSFlow, DIS, and SIFT + FLANN, are selected to estimate pixel shifts between

consecutive raw images to align them in raw Bayer domain. Processed (BLC-LSC, WB,

OETF applied) raw images and delta images (difference between the reference and tar-

get images) before and after alignment are illustrated in Fig. 8.18. Images provided in

this section are taken by Xiaomi MI 11 pro smartphone [88].

The first column represents the target frames and the reference frame (4th frame). Delta

images before alignment are represented in the second column. The other columns, from

left to right, represent delta images after aligning the reference and target frames, where

pixel shifts are estimated by the CSFlow, DIS, and SIFT + FLANN methods. Five quality

assessment methods are used to evaluate the quality of the fused image: Structural

Similarity Index Measurement (SSIM), Peak Signal to Noise Ratio (PSNR), Spectral Angle

Mapper (SAM), Universal Quality Image Index (UQI), and Correlation Coefficient (CC).

The results are presented in Fig. 8.19. The red line represents the quality assessment

between the reference and unaligned target frames (i.e., RF - F1 refers to the quality
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assessment between the reference frame (RF) and first frame (F1), Fall refers to the

fusion of all frames). Blue, green, and orange lines represent the quality assessment

between the RF and aligned target frames where the pixel shifts are estimated using

CSFlow, (SIFT + FLANN), and DIS methods, respectively. Lastly, fusion of multi-frames

before and after alignment is depicted in Fig. 8.20.
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Figure 8.18. Processed raw image frames and delta images before and after alignment.

From left-most to right-most, columns refer to multi frames, delta images before alignment,

delta images after alignment, where pixel shifts are estimated by the CSFlow, DIS, and

SIFT + FLANN methods, respectively.
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Figure 8.19. Plot results of image fusion for different quality assessment method.
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(a) Fusion of processed eight raw frames before

alignment

(b) Fusion after alignment where the pixel shifts be-

tween the reference and each target frame are esti-

mated by CSFlow method

(c) Fusion after alignment where the pixel shifts be-

tween the reference and each target frame are esti-

mated by DIS method

(d) Fusion after alignment where the pixel shifts be-

tween the reference and each target frame are esti-

mated by SIFT + FLANN method

Figure 8.20. Fusion of eight processed raw frames before and after alignment

8.3 Results With Fused Images for Different Demosaicing

Algorithms

In this subsection, the effect of two different demosaicing algorithms on the quality of

image alignment is studied. The first method is bilinear interpolation, where the missing

color channels are interpolated, and the resulting image has the same resolution as the

Bayer image. The second method is one of the two green channels skipping mode, where

one of the two green channels is discarded, and this causes image resolution to drop in

half. It does not correct the 1 pixel shift in the spatial location of each color component.

In the 2x2 Bayer quad, the R, G, G, and B pixels correspond to different spatial locations

on the camera sensor. If this 2x2 pixel Bayer quad is treated as RGB pixel by dropping

one of the green channels, then this 1 pixel phase difference remains on top of halving

the resolution. The processed raw images used for this test are depicted in Fig. 8.21.

Delta images are illustrated in Fig. 8.22. All target frames are aligned using DIS and
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CSFlow methods. Then, the aligned target frame and the reference frame are fused.

Finally, a delta image is created by taking the difference between the fused image and the

reference image. As mentioned, the image resolution drops in half when omitting one of

the two green channels. As a result, estimated optical flow also has half resolution of the

Bayer image. Therefore, estimated optical flow is interpolated to Bayer image resolution

for comparison. Five quality assessment methods are used to evaluate the quality of the

fused image, and the results are presented in Table 8.10.
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Figure 8.21. Multi frames.
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Figure 8.22. Delta images of aligned multi-frame fusion.

Table 8.10. Quantitative results of image fusion of two different demosaicing algorithms

for different quality assessment method.

Method Bilinear interpolation skipping mode

DIS CSFlow DIS CSFlow

SSIM 0.95 0.94 0.94 0.93

PSNR 31.91 31.53 31.66 31.46

SAM 0.06 0.06 0.07 0.07

UQI 0.98 0.98 0.96 0.95

CC 0.99 0.99 0.99 0.99
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8.4 Discussion of the Results

Discussion on the Results of the Sintel Dataset

The final pass results of optical flow estimation are shown in Fig. 8.1 for conventional

methods and Fig. 8.2 for deep-learning-based methods. It is clear that the performance

of optical flow methods showed dependency on the amount of existing motion in the

scene. The larger motion in the scene causes higher errors, while the smaller motion in

the scene causes lower errors, as seen in Table 8.2. Furthermore, the results show that

the AEPEs of the deep learning-based methods have lower magnitude than conventional

methods. Which means that deep learning-based methods are more robust than conven-

tional methods in optical flow estimation.

As can be seen from Table 8.3 and Table 8.4, in general, deep learning-based methods

perform better than conventional methods. CSFlow method outperforms other methods.

SIFT + FLANN method produces the highest error among all methods. This is expected

because SIFT + FLANN algorithm can only predict global camera motion and fails in ob-

ject motion estimation. Among the conventional methods, the DIS method achieves the

best results as it aims to keep the execution time low and the accuracy high. Among the

deep learning methods, transformer-based methods, GMA and CSFlow, perform better

than CNN or CNN-RNN-based methods, PWC-Net, RAFT, and RATF-NCUP, as attention

mechanism in transformers is known to improve the performance of various networks in

image processing. CNN-based method, PWC-Net, has the highest error among deep-

learning methods. Furthermore, It is clear that optical flow methods do not perform as

desired in the presence of discontinuity as seen in Fig. 8.3 and 8.4

Discussion on the Results of the Flying Chairs Dataset

From Table 8.5, it can be observed that the DIS method produces the best results, while

ILK has the worst results. The performance of SIFT + FLANN is better than the result

in the Sintel dataset. The reason for this may be that the objects in the Flying Chairs

are small and take up small area in the whole image. In parallel, more area can be well

estimated globally by SIFT + FLANN method. Moreover, The findings indicate that low

light conditions affect the performance of optical flow methods in negative way, as can be

seen from Fig. 8.7 and Fig. 8.8

Discussion on the Results of the In-House Dataset for Different Pre-processing

Steps

Quantitative results are provided in the Table 8.6 for conventional methods and Table 8.7

for deep learning-based methods. The results show that optical flow algorithms generally

achieve remarkable overall performance after each pre-processing step, and the best

results are obtained after applying Black Level Correction (BLC), Lens Shading Correction

(LSC), White Balance (WB), and Opto-Electronic Transfer Function (OETF). It is clear

that SIFT + FLANN outperforms other methods after applying BLC, LSC, WB, and OETF.
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This is expected since the images in the In-House dataset contain only global camera

motion, that is, no object motion in the images. CSFlow method achieves the best results,

while the RAFT method has the highest error among deep-learning methods after each

pre-processing step. The farneback method has the highest error among all methods.

As seen from Fig. 8.14 and Fig. 8.15, the farneback method detects some distinctive

features of the stationary objects in the scene such as object edges and fails in global

camera motion estimation. This may be the reason why the farneback method performs

poorly. Deep learning-based algorithms were trained using RBG images. So algorithms

may be sensitive to color information. BLC-LSC-WB-OETF applied raw images are closer

to images used for training in terms of color information. This may be the reason why deep

learning based optical flow algorithms perform better on BLC-LSC-WB-OETF applied raw

images.

Discussion on the Results of the In-House Dataset for Different Levels of Noise

Based on the quantitative results given in Table 8.8 and Table 8.9, the noise affects the

performance of optical flow algorithms. In parallel with the increase in noise, the motion

estimation is more error-prone. SIFT + FLANN achieves the best results among conven-

tional methods, while the farneback method has the highest error in the noisy environment

due to the reason stated above. It can be seen that the TV-L1 method is not affected by

noise compared to the other algorithms since the TV-L1 method offers more accurate and

reliable results in noisy environments. The best motion estimation for all deep learning-

based methods is obtained where noise is lowest (AG1), and the worst estimation is

mostly obtained where noise is highest (AG64). The best results are obtained by CSFlow,

while PWC-Net produces the worst results among deep learning-based algorithms. In the

presence of noise, transformer-based methods, CSFlow and GMA, outperform CNN and

CNN-RNN-based PWC-Net, RAFT, and RAFT-NCUP methods. As it can be seen from

Fig. 8.14 and Fig. 8.15, the PWC-Net method detects the stationary objects as moving

objects (i.e., sign). This may be the reason why the PWC-Net method does not perform

well. An image captured under low light conditions, e.g., at night, has a Low Dynamic

Range (LDR) and the image includes noise that degrades the quality of the image. The

dark area of the image can be enhanced partially by increasing the Analog Gain (AG). As

the results shown that the performance of optical flow decreases when the AG increases.

Therefore, optical Flow algorithms may require a special denoising strategy for accurate

estimation in noisy image sequences.

Based on the quantitative results obtained from all datasets, deep learning-based and

conventional methods perform well when the motion between consecutive images is rel-

atively small. However, parallel to the increase in motion, the motion estimation is more

error-prone and does not perform as desired. For example, according to the results ob-

tained from Tables 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, and 8.9, the AEPE in the region where the

motion is smaller than 10 pixels (s0-10) is lower than s10-40, and s10-40 is lower than
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s40+.

Discussion on the Results of Image Alignment and Fusion in Raw Bayer Domain

As shown in Fig. 8.19, in most cases, fusing aligned frames gives better results than fus-

ing unaligned frames. Furthermore, reference and fused frames are most similar when

the pixel shifts are estimated by the DIS method, while reference and fused frames are

least similar when the pixel shifts are estimated by SIFT + FLANN method. The main

reason is that while the other two methods can predict motion globally and locally, SIFT +

FLANN only predicts motion globally and fails on object motions.

Fig. 8.20 shows the final output. It is clear that the DIS method produces a result very

close to the reference frame and has almost no ghosting artifacts. Furthermore, the CS-

Flow method causes slight ghosting artifacts on the moving object. On the other hand, the

SIFT + FLANN method significantly solves the misalignment problem caused by global

camera motion but fails for the object motion due to the reason given above.

Furthermore, two different methods were used to construct RGB image from raw Bayer

image. Delta images are presented in Fig. 8.22 and quantitative results given in Table

8.10. Based on the results obtained, aligning multi-frames based on the demosaicing

gives better results than aligning multi-frames based on the one green channel skipping

mode. Because in demosaicing, missing colors are interpolated for all pixel locations

in Bayer image. In skipping mode, the image resolution is halved because one green

channel is dropped. As the optical flow is computed for each pixel location, it provides

more accurate alignment compared to the skipping mode. As can be seen from figure 2,

misalignment of one green channel skipping mode is higher than misalignment of demo-

saicing.
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9. CONCLUSION AND FURTHER WORK

The misalignment problem arises between raw images due to global camera motion (cam-

era shake) and object movement in the scene. Fusing raw images without alignment

causes ghosting artifacts in the final image. To deal with this, the optical flow is computed

to determine how much each pixel of the reference image is displaced at the target image.

So that the related image content can be perfectly aligned to fuse information from those

images effectively.

In this thesis, conventional and deep learning-based optical flow methods were evalu-

ated to assess the amount of ghosting artifacts in fused image in raw Bayer domain.

Moreover, optical flow methods were compared. It was observed that the Dense Inverse

Search (DIS) method outperforms other optical flow algorithms, producing a result very

close to the reference frame, and almost no ghosting artifacts in fused aligned multiple

frames. The CS Flow method, which is the best deep learning-based optical flow algo-

rithm, causes slight ghosting artifacts on the moving object. On the other hand, the SIFT

+ FLANN method significantly solves the misalignment problem caused by global camera

movement but fails for object movement. The reason for this is that the SIFT + FLANN

algorithm is homography-based and homography is known as a 2D planar motion model.

In other words, homography can only predict 2D motions and can be said to fail at 3D

scene depth. Furthermore, since deep learning-based algorithms work on RBG images,

two different methods, demosaicing and skipping mode, were used to generate RGB im-

ages from raw Bayer images. The findings showed that aligning multiple frames based

on demosaicing gave better results than aligning multiple frames based on single green

channel skipping mode. Because in demosaicing, missing colors are interpolated for all

pixel positions in the Bayer image. In skip mode on the other hand, the image resolution

is halved as one green channel drops. Since optical flow is calculated for each pixel posi-

tion, it provides a more accurate alignment compared to skip mode.

In addition, the following factors were observed to affect the optical flow quality in a posi-

tive or negative way.

• Amplitude of motion.

• Discontinuity or occlusion.

• Low light conditions.
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• Pre-processing steps in raw Bayer domain

• Noise

Optical flow estimation can perform reliable estimation on small motions. The main rea-

son is that, as discussed previously, the optical flow constraint equation is valid for small

motion. Optical flow algorithms fail on large motions as the optical flow constraint equa-

tion for large motion becomes invalid. Current optical flow algorithms estimate the large

motion in a coarse-to-fine pyramid scheme by reducing image size at each level. Although

optical flow algorithms use pyramid level, they still fail in large motions. This problem can

be partially solved by increasing the pyramid level, allowing the algorithm to give bet-

ter results in larger motions. But this will slow down the optical flow algorithm. Optical

flow algorithms do not perform as desired when there is a discontinuity or occlusion in

the scene. Therefore, optical flow algorithms have difficulty estimating where the new

part of the object comes from in the frame. That results in unreliable estimates. How-

ever, Global Motion Aggregation (GMA) method aims to improve the motion estimation in

the occluded region in the scene. Compared with other methods, it was observed that

GMA provides better optical flow estimation in the presence of discontinuities and occlu-

sions.In raw Bayer domain, the performance of optical flow algorithms turns out to be

affected by some degradations originating from the image capture process: black level

offset, lens shading/vignetting, color imbalance, and poor contrast. It is observed that the

optical flow algorithms achieved remarkable overall quality improvement after applying

Black Level Correction (BLC), Lens Shading Correction (LSC), White Balance (WB), and

Opto-Electronic Transfer Function (OETF) to the images. Noise affects the performance

of the optical flow algorithms negatively. In parallel with the increase in noise, the motion

estimation is more error-prone and does not perform as desired.

For further development, the in-house dataset contains only global motion, that is, no

objects that move independently of camera movement. Locally moving objects might be

added to the in-house dataset. Deep-learning-based algorithms did not show the desired

performance on the in-house dataset compared to their performance on the synthetically

generated datasets. Furthermore, optical flow algorithms perform poorly under low light

conditions. As discussed in Section 6.4, the Various Brightness Optical Flow (VBOF)

dataset contains low-light noisy raw images. Optical flow algorithms may be trained on

both the object added version of the in-house dataset and the VBOF dataset to improve

the performance of optical flow on both real-world images and low light images. Moreover,

raw Bayer images have four channels (RGGB). However, deep learning-based optical flow

algorithms operate on RGB images. Therefore, deep learning-based algorithms may be

modified to operate on the raw Bayer images.
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