DETERMINATIONS OF THE CRYSTAL STRUCTURES OF

 BIS-INDENYLRUTHENIUM AND OF TWO SO-CALLED γ-BRASS TYPE COMPOUNDS
1. BIS-INDENY LRUTHENIUM

II. $" \mathrm{Ni}_{5} \mathrm{Cd}_{21}$ "
III. ${ } \mathrm{Ni}_{5} \mathrm{Zn}_{21}$ "

Thesis by
Ned Conder Webb

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

California Institute of Technology

Pasadena, California

ACKNOWLEDGEMENTS

I thank Dr. Richard E. Marsh for his help and guidance throughout my graduate career. I thank Dr. Sten Samson for his help and guidance on the alloy studies reported in Parts II and III. During the past four years both of these gentlemen have contributed generously of their time to educate me.

I express my gratitude to the United States Rubber Company, the National Science Foundation, and the California Institute of Technology for financial assistance.

I am thankful for the privilege of working under Professor Jurg Waser as a teaching assistant.

At various times I have used computer programs made available to me by several authors; for different programs I am grateful to Dr. Albert Hybl, Mr. Noel D. Jones, Mr. David J. Duchamp, and Mr. David L. Barker.

1 am very grateful to many friends and associates who have taken time to answer questions and to give their assistance on many probleans; to Mr. Noel D. Jones, Dr. Albert Hybl, and Dr. B. D. Sharmal am especially grateful. I thank Mr. David J. Duchamp and Mr. Harris J. Silverstone'for proofreading.

ABSTRACT

1. The crystal and molecular structure of bis-indenylruthenium was determined by X-ray crystallographic methods. Crystals of bis-indenylruthenium are monoclinic with four molecules per unit cell in space group $P_{1 / a}$. The indenyl groups are in the eclipsed configuration, and the ruthenium atom is midway between the two five-membered rings. Within experimental error, the molecule has mm symmetry, and the planar indenyl groups are parallel. The average $\mathrm{Ru}-\mathrm{C}$ bond distance is $2.193 \AA$, but the ruthenium atom is slightly displaced toward the carbon atoms in position 2.

II and III. The procedures as well as the results of the investigation of the crystal structures of " $\mathrm{Ni}_{5} \mathrm{Cd}_{21}$ " and " $\mathrm{Ni}_{5} \mathrm{Zn}_{21}$ " are described. These compounds have been believed to have crystal structures very closely related to that of γ brass. This investigation has shown that the actual atomic arrangements in these compounds are considerably more complicated than was generally assumed. The structures were found to differ drastically from that of γ brass.

TABLE OF CONTENTS

PART

I BIS-INDENYLRUTHENIUM 0
Introduction 1
Experimental 2
i) Finding crystals and collecting intensity data 2
ii) Lattice constants and density 6
Determination and refinement of the structure 9
i) Derivation of the trial structure 9
ii) Refinement 9
iii) Behavior of unobserved reflections 18
iv) Possible sources of error 30
a) Absorption and extinction 30
b) Scattering curve of ruthenium 30
Discussion of results 31
i) Molecular structure 31
a) Bond distances and angles 31
b) General features 37
c) Prediction of bond distances 38
d) Temperature factors 50
ii) Packing of the molecules in the unit cell 50
iii) Accuracy of the molecular geometry 55
Disordered bis-indenylruthenium 58
II $\quad \mathrm{Ni}_{5} \mathrm{Cd}_{21}{ }^{1}$ 62
Introduction 63
Experimental 65
i) Preparation of single crystals 65
ii) Intensity clata 66
The derivation of the structure 67
i) General considerations 67
ii) Samson's method to clerive trial structures of complex cubic intermetallic compounds 68
iii) Definitions 78
a) Centers 78
b) Polyhedra, positions, and complexes 78

TABLE OF CONTENTS (continued)

PART

PAGE
iv) Least-squares calculations . . . 80
v) The γ-brass type trial structure . . 80
vi) Other trial structures 81
vii) A working model 83
viii) Ordered structures 92

Discussion of the structure 101
Future experimental work 105
Future least-squares refinements 109
Summary 113

III ${ }^{\prime N} \mathrm{Ni}_{5} \mathrm{Zn}_{21}{ }^{\prime \prime}$. 116
Introduction 117
Experimental work 119
The trial structure 119
i) Space group 119
ii) The derivation of the structure . . . 120

Discussion of the structure 121
The diffuse reflections 127
Structure-factor calculations for the
disordered structure 128
References 131
PROPOSITIONS 135

PARTI

BIS-INDENYLRUTHENIUM

INTRODUCTION

Professor J. H. Richards and his research group have conducted a series of investigations on the chemistry of sandwich compounds (1-5), and, in one of these, Hall (5) prepared and isolated bis-indenylruthenium, $\mathrm{Ru}\left(\mathrm{C}_{9} \mathrm{H}_{7}\right)_{2}$. There was speculation as to whether the six-membered rings are cis(I), trans (II), or gauche (III) in the preferred orientation; Trotter (t) had found the six-membered

1

II

III
rings in bis-indenylir on to be gauche. To discover the general features of the molecular geometry and to accurately define the geometry of the carbon framework were the primary objectives in investigating the crystal structure of bis-indenylruthenium. We were especially interested in the bond distances in the six-memberedring because Trotter had reported that the $C_{5}-C_{6}$ bonds in bis-indenyliron are essentially double bonds.
i) Finding crystals and collecting intensity data.

A sample of bis-indenylruthenium was supplied by Mr. David Hall of this Institute, and the investigation was started with a crystal selected directly from the sample bottle while a portion was being recrystallized from n-hexane. A study of Weissenberg photographs taken about the c axis indicated the space group to be P_{1} / a; from rotation and Weissenberg photographs the approximate lattice constants were determined to be $a=11.1 \AA, b=9.3 \AA, c=6.2 \AA$, and $\beta \cong 90^{\circ}$. The photographs had a rather disconcerting feature, some of the spots being accompanied by diffuse satellite spots. To us, this indicated disorder in the crystal, but we will discuss this later.

The recrystallization from n-hexane yielded crystals of the same space group as before, but with a unit cell twice as large; the lattice constants were approxdmately $a=14.5 \AA, b=14.0 \AA \quad c=6.2 \AA$, and $\beta=94.3^{\circ}$. The crystals were long and rod-like with a truncatedrectangular cross section. One large crystal was selected and cut into pieces varying in length from about 0.1 mm to about 4 mm . Two pieces were then used in collecting all of the $X-r a y$ data used in this investigation. One piece was mounted with the needle axis, arbitrarily designated c, parallel to the rotation axis. The second fragment was mounted with the b axis parallel to the rotation axis. The dimensions
of both crystals were approximately 0.1 mm along a by 0.07 mm along b. The third dimension of the crystal mounted for oscillation around b was approximately 0.14 mm , and the length along c for the other crystal was 3 or 4 mm . For collecting intensities from this long crystal, only the tip was placed in the X-ray beam.

Multiple-film equi-inclination Weissenberg photographs were taken with CuK α radiation for layer lines 0 through 7 about c and for layer lines 0 through 12 about b. The intensities were estimated visually by comparison with intensity strips prepared from the same two crystals. Empirical film factors were obtained for each pair of adjacent films in all sets and were corrected to normal incidence of the X-ray beam. The weighted average of these factors gave a film factor for normal incidence of 3.75 (Eastman Kodak Medical X-ray Film, No Screen). This factor, appropriately modified for the angle of incidence of any layer line set, was then used to relate the intensities on all films within the set to the first film of the set.

The intensities were corrected for Lorentz and polarization effects and compared with values obtained about the other axis to obtain correlation factors for the various exposures. Finally, F^{2} values were obtained on an arbitrary scale by taking subjectivelyweighted averages of the values observed about the two axes. Altogether, about 2710 reflections were covered, of which about 670 were too weak to be observed. The observed extinctions, h0L when h is odd
and $0 k 0$ when k is odd, indicate the space group $P 2_{1} / a$.
The crystal used in collecting the data about the c axis was slightly twinned, giving rise to a large number of weak satellite reflections. On the first and second layers the satellite reflections appeared at positions corresponding to indices $h+, k, 1$ and $h+\frac{2}{3}, k, 2$. and, consequently, did not affect the intensities of the primary reflections; on the third layer, however, the satellite reflections were exactly superimposed on the primary reflections. A study of these weak reflections showed that the twinning occurs in the (100) plane. as illustrated in figure 1, and that the reciprocal lattice points of the two lattices coincide every third layer in \&. This coincidence does not affect intensities on the zero layer since hk0 and hk0 are spacegroup equivalent; however, the observed intensities (I_{0}) on the third layer were not the desired primary intensities (p_{p}). An examination of the h03 reflections, which must have zero intensity for the primary reflections when h is odd because of space-group extinction, indicated the twin to be approximately one-twentieth as large as the primary crystal, and the following equations were used to deduce the values of If for the hk3 data:

$$
\begin{aligned}
& I_{0}(h k 3)=I_{p}(h k 3)+.05 I_{p}(\overline{h+1 k 3}) \\
& I_{0}(\overline{h+1} k 3)=I_{p}(\overline{h+1 k 3})+.05 I_{p}(h k 3)
\end{aligned}
$$

Figure 1. Illustration of twinning.

Lattice constants and density.
A Straumanis-type Weissenberg camera, which has a radius of $180 / \pi \mathrm{mm}$ and a film travel of approximately 23 mm per 180° of rotation, was used to collect data $(\lambda=1.54051 \AA)$ for a precise determination of the lattice constants. Two different photographs were taken about the b axis to yield measurement of the diffraction angle of hol reflections, from one, and of hol reflections from the other, and one photograph was taken about the c axis for hk0 reflections. The radiation was $C u K \alpha_{1}$. The lattice parameters were determined by a least-squares fit to

$$
a^{* 2} h^{2}+b^{* 2} k^{2}+c^{* 2} \ell^{2}+0 h \ell+E \varepsilon=4 / \lambda^{2} \sin ^{2} \theta,
$$

which can be written
$\frac{h^{2}}{a^{2} \sin ^{2} \beta}+\frac{k^{2}}{b^{2}}+\frac{\ell^{2}}{c^{2} \sin ^{2} \beta}-\frac{2 h \ell \cos \beta}{a c \sin ^{2} \beta}+E \sin ^{2} 2 \theta\left(\frac{1}{\theta}+\frac{1}{\sin \theta}\right)=\frac{4}{\lambda^{2}} \sin ^{2} \theta$ where the absorption correction ε is taken from Nelson and Riley (7). We assumed that any error due to eccentricity was negligible. The observational equations were weighted with $w=1 / \sin 2^{\circ}$, and no reflections at less than 30° in θ were included, in accord with the suggestion of Nelson and Riley.

The results of this least-squares determination of the lattice constants are summarized in table 1 ; the estimated standard deviations are those given by the least-squares treatment. The averages were obtained by weighting the individual results inversely as the square of the standard deviations.

Table 1. Lattice constants.

Data	hOR	h०0	hko	Average
N*	12	12	8	
a	14.5196	14.5147	14.5094	$14.514 \AA$
σ_{a}	. 0012	. 0005	. 0009	. $005 \AA$
b	-	-	14.0522	$14.052 \AA$
σ_{b}	-	-	. 0001	. $005 \AA$
c	6.2293	6.2256	-	$6.229 \AA$
σ_{c}	. 0003	. 0008	-	. $004 \AA$
β	94.113	94.098	-	94.10 A
σ_{B}	. 203	. 078	-	. 2°
$E\left(x 10^{5}\right)$	13.9	13.0	-0.4	
$\sigma_{E}\left(\times 10^{5}\right)$	4.0	3.1	2.0	

* N is the number of reflections in the least-squares determination. The standard deviations given for the average values are subjective estimates.

The twin condition, mentioned above, demands that $\mathrm{a}^{* 2} / \mathrm{D}$ equal the integer 3 because the $\overline{h+1 k} 3$ reflection from the twin and the hk3 reflection from the parent appear to be exactly superimposed. From the lattice parameters in table 1 we calculate

$$
\frac{a^{* 2}}{D}=\frac{-a^{* 2}}{2 a^{*} c^{*} \cos \beta}=\frac{-a^{*}}{2 c^{*} \cos \beta}=\frac{-c}{2 a \cos \beta}=3.001
$$

which is, within experimental error, equal to the integer 3 .
The density of the crystal which was mounted about the c axis was measured by the flotation method. The crystal was broken off the mounting well above the adhesive and placed in a zinc chloride solution whose density was greater than that of the crystal. The solution was gradually diluted until the crystal remained suspended after stirring; twelve hours later the crystal was suspended about halfway between the surface and the bottom of the beaker ($125 \mathrm{ml}, 3 / 4$ full).

The volume of a 2 ml pycnometer was calibrated by filling with distilled water and weighing; the pycnometer was rinsed twice with the zinc chloride solution in which the crystal was suspended, filled with that same solution, and then weighed. The density thus obtained is $1.723 \mathrm{~g} / \mathrm{cc}$; the density based on the unit cell dimensions and four molecules per unit cell is $1.737 \mathrm{~g} / \mathrm{cc}$. The difference may be due to small air pockets on the surface of the crystal. Bef ore the density was measured, the crystal was examined under the microscope, and its faces appeared to be slightly etched.

Determination and Refinement of the Structure

i) Derivation of the trial structure.

The positions of the ruthenium atoms in the unit cell were readily determined from (001) and (010) Patterson projections. The observed hk0 and h0\& structure factors were then given the signs of the corresponding ruthenium contributions and used in the preparation of electron density projections onto (001) and (010), but the carbon positions could not be deduced. Accordingly, a three-dimensional Fourier synthesis was calculated, again with signs assigned to the structure factors on the basis of the ruthenium position. The carbon positions were now immediately apparent; the compound was indeed a sandwich molecule with the ruthenium atom bonded to the fivemembered rings.
ii) Refinement.

The atomic positional parameters as determined from the three-dimensional electron-density map were refined through several structure-factor least-squares cycles on the Burroughs 220 computer; the complete set of data was used. In all structure-factor calculations, the atomic scattering curve for carbon was taken as an average of the curves given by Berghuis et al. (8) and Hoerni-Ibers (9). The atomic scattering curve for ruthenium was taken from Thomas and Umeda (10);
the Δf^{\prime} correction for dispersion (Dauben and Templeton, 11) was included after a few least-squares cycles. Hydrogen atoms were ignored in the early stages of refinement, but when they were included in the later calculations, the scattering curve of McWeeny (12) was used. Estimated isotropic temperature factors of the ruthenium and carbon atoms were included in the first set of calculated structure factors, which led to an R factor of 0.185 . (The R factor is given by $R=\frac{\Sigma\|F o|-| F c\|}{\Sigma \mid F o!}$, the sums being over the observed reflections; the quantity minimized in the least-squares calculations is $\Sigma w\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}$.) After the first cycle the weighting function was changed from function I to function II, table 2. Refinement was continued through the fourth cycle with the agreement between the Fo's and Fc's improving with each cycle.

For the fifth cycle two changes were made: anisotropic temperature factors were assigned to the ruthenium atoms, and the form factor curve for ruthenium was partially corrected for dispersion (11) by subtracting 0.5 electrons butignoring the $\Delta f^{\prime \prime}$ correction. By the end of the seventh cycle, the R factor was down to 0.094 ; at this point we converted isotropic temperature factors of the carbon atoms to anisotropic ones and proceeded with the refinement. The resulting shifts led to negative temperature factors for some of the carbon atoms, and at the eleventh cycle the refinement was diverging rather than converging.

Table 2. Weighting functions for least-squares.
(The quantity minimized is

$$
\left.\sum_{h k e} \omega\left(E o^{2}-E c^{2}\right)^{2} .\right)
$$

$$
\omega=\omega_{i} \omega_{i}
$$

ω is a subjective external weight based on the quality of an observation. The usual ${ }^{\ominus}$ e is 1.00 . If there was only one observation, $\sqrt{w} e$ was taken as 0.7. If there were two observations, $\sqrt{\omega}$ e ranged from 0.5 , for poor agreement between the two, to 1.1 , for very good agreement, unless there was reason for thinking the observation should not be included at all--in which case, we $=0$.

I

$$
\omega_{i}=1 / f^{2}
$$

W. Cochran (13) has shown that the weighting function $\omega=1 / f$ will make the least-squares minimization of $\Sigma \omega(F \circ-F C)^{2}$ to determine atomic coordinates equivalent to determination by Fourier synthesis. The weakness in this function, just as in Fourier synthesis, is that there is no dependence on the quality of observation of $F O$.

II

This expression can be used to construct a function which reflects the experimentally observed pattern of reliability of $E \circ$ (14). In this work R was set equal to 0 , and the function was used to vary the dependence on Eo. As refinement proceeded, more dependence was placedion $F \circ$ by increasing the ratio of Q to F.

III

$$
\begin{aligned}
& \omega_{\mathbf{i}}=\frac{1}{F_{0}^{2}} \quad \text { for } F \circ>4 F_{\text {minimum }} \\
& { }_{i}=\frac{1}{4 F \circ F_{\min }} \text { for } F \circ<4 F_{\text {minimum }}
\end{aligned}
$$

This is the square root of weighting function IV. This, of course, gives more weight to large Fo's than IV. This very closely approximates the Hughes (15) scheme for minimization of $\Sigma \omega(F \circ-F C)^{2}$.

Table 2. (continued)

IV

$$
\begin{aligned}
& \omega_{i}=\frac{1}{F_{0}{ }^{4}} \quad \text { for } F O>4 F_{\min } \\
& \omega_{i}=\frac{1}{16 F_{0}^{2} F_{\min }^{2}} \text { for } F O<4 F_{\min }
\end{aligned}
$$

Hughes (15) used a weighting function based on $\sigma(\mathrm{F} 0)=\mathrm{F}$ ○ for EO $>4 F_{\text {min }}$, where $F_{\text {min }}$ is the smallest $F O$ which can be estimated, and ${ }^{\prime \prime}(F O)=4 F \mathrm{~min}$ for $F 0<4 F$ in minimizing
 should be based on $E O^{2}$, and we have $\sigma\left(F O^{2}\right)=2 F \circ \sigma(F C)$ Therefore, the converted Mughes weighting scheme is based on $\sigma\left(\mathrm{FO}^{2}\right)=2 \mathrm{FO}$ for $F O>4 \mathrm{~F}$ min and $\sigma\left(\mathrm{FO}^{2}\right)=8 \mathrm{~F} \circ \mathrm{~F}$ min . We remove the factor of 2 and ming the weighting function min° listed.

To halt this divergence, we restored the isotropic temperature factors for the carbon atoms as given by the seventh cycle and took the atomic coordinates as given by the tenth cycle. Refinement was continued, and after two cycles the complete list of observed and calculated structure factors was examined for serious discrepancies. In the course of examining 2710 reflections, 37 were found to be weighted improperly; all these were reflections which were covered on only one set of films and which should have been weighted as being less than some estimable minimum, in which case they enter the least-squares process only if $\mathrm{Fc}>$ Fo. Their effect on the refinement must have been small because the agreement was generally good and because they entered the refinement with $\int_{w}=0.7$. There were two errors due to scaling the intensities to the wrong film in a set, and, hence, the Fo's were small by a factor of approximately 2 . The two worst errors were in the reflections (9 101). $\mathrm{Fo} / \mathrm{Fc}=16 / 52$, and ($\overline{13} 112$), $\mathrm{FO} / \mathrm{FC}=54 / 13$. Errors in transcription were found, and the Fo's were corrected to 54 and 20.

Further refinement led to convergence at the sixteenth cycle with the result depicted by part A of figure 2; the R factor was 0.085 . The weighting function was changed to function III, table 2 ; after three least-squares cycles the structure had converged to that illustrated in partB of figure 2 , with $R=0.087$.

Figure 2. The molecular structure at four stages in the refinement (see text).

We were not, however, satisfied with the carbon framework given by either refinement and decided to calculate a differenceFourier synthesis with coefficients Fo- $_{\text {Ru }}$ in hope of getting a more satisfactory structure. The result of the difference-Fourier synthesis is given in figure 3. The points of maximum electron density were determined by least-squares, assuming the distribution of density in the neighborhood of the maximum is given by (16)
$\log (\rho)=p+a x^{2}+b y^{2}+c z^{2}+d x+e y+f z+g x y+h y z+i x z$.

The least-squares fit for each point was to a $3 \times 3 \times 3$ grid centered as closely as possible to the point of apparent maximum density. The resulting structure is given in part C of figure 2 . In the threedimensional plot of the electron density the carbon atoms were clearly defined even in the presence of the heavy atom. The definition of the carbon atoms suggested that the hydrogen atoms might be resolvable and that their contributions might be significant in the structure-factor calculations. No attempt was made to locate the hydrogen atoms by a difference-Fourier synthesis, but we did calculate their positions and included their contributions in the ensuing structure-factor calculations but not in the least-squares refinement. A hydrogen atom was placed $1.06 \AA$ from each carbon atom, except C_{8} and C_{9}, on line with that atom and the center of the ring. The temperature factor of a hydrogen

$$
\frac{t}{1 / 2}
$$

atom was taken as one unit greater than that of its attached carbon atom. Both the temperature factors and the coordinates of the hydrogen atoms were duly changed in parallel with the carbon atoms as the refinement proceeded.

Least-squares refinement was continued, starting with the atomic coordinates given by the difference-Fourier synthesis, with the temperature factors as given by the last least-squares cycle, and with weighting function I of table 2 ; however, some of the shifts seemed to be in the wrong direction. (At this point we felt that we knew approximately how the structure should change, for elthough we did not know what the bond distances should be, we felt that the molecule ahould have mm symmetry.) We also discovered and corrected a serious error, the'EO of reflection (912) being changed from 13.9 to 81.9 $(E C=64.3)$. This error, which had been made in converting intensities to structure factors, was simply overlooked in the previous checks.

We changed to weighting function III of table 2 and again started the refinement with the coordinates from the difference-Fourier synthesis. The R factor of the first cycle was 0.071 -a significant improvement from 0.085 , the R factor before the difference-Fourier. After four more cycles (numbers 21-24), the refinement had converged $(R=0.064)$ to structure D. figure 2. This structure, however, did not approach mm symmetry as closely as that given by the difference-

Fourier synthesis; for that reason we changed to weighting function IV of table 2 and continued refinement.

After five more least-squares cycles all shifts were below about 10% of the standard deviations, and we stopped refinement with $R=0.0596$. The final atomic coordinates and temperature factors and their standard deviations are given in the last two columns of table 3, which is a summary of the cour se of refinement. The bond distances and bond angles calculated from these atomic coordinates are shown in figure 4.

It seems that there are four places where we could have stopped refinement; each possible stopping point is represented by a structure in figure 2. We felt at each of the first three stages, however, that the actual structure was slightly different from the one at hand, and we acted accordingly.
iii) Behavior of unobserved reflections.

Of about 670 reflections which were too weak to be observed, 74 calculated larger than the observable minimum, F min. All the unobserved reflections are included in the list of observed and calculated structure factors in table 4. The largest observed structure factor is for the (111) reflection, 196 electrons out of 663 in the unit cell; the average value of $\mathrm{F} \min$ is 7.24 electrons with a maximum of 11.30 and a minimum of 3.07 . The average ΔF for these 74 reflections is 1.11 electrons, and the largest ΔF is 3.82 electrons. The average $\triangle F / F \circ$ ratio is 0.18 , and the largest is $0.80(2.95 / 3.69)$.

Table 3. Summary of refinement.

Cycle	EFo	$\Sigma \mathrm{Fc}$	R	इwEo ${ }^{\text {a }}$	WEC	R^{\prime}	N**	$\left(w_{e} / w\right)^{\frac{1}{2} * * *}$
6	69778	68777	. 094	2341	2362	. 056	2185	2.0+.05 Fo
12	66788	67446	. 090	1964	2242	. 065	2174	1.8+.05 Fo
16	68678	67135	. 085	2217	2214	. 039	2136	$1.8+.05 \mathrm{EO}$
19	68821	66995	. 087	2941	2902	. 049	2132	Fo
24	68453	67344	. 064	290%	2894	. 020	2122	Fo
29	66385	65926	. 060	1320	1324	. 025	2111	FO^{2}

* WFO ${ }^{4}$ and $E_{W F c}{ }^{4}$ are on the same arbitrary scale for cycles 6 , 12. and 16, on the absolute scale for times 10^{3} for 19 and 24 , and on the absolute scale for the final cycle (29).
** The number of reflections in the least-squares refinement.
*** The weighting function remained constant between the designated cycles.

$$
R^{\prime}=S_{w}\left(E o^{2}-E c^{2}\right)^{2} /-{ }_{w F o^{4}}
$$

In the remainder of the table the parameters given are those produced by the designated cycle. The decimal points in the fractional coordinates are omitted except in the final coordinates and the standard deviations. The coordinates in the cycle column labelled S were obtained from the first three-dimensional Eourier synthesis, and in the column labelled $D E$, from the difference-Fourier synthesis. The isotro गic temperature factors, B, are in \AA^{-2} units, and the anisotropic temperature factors, in the form

$$
\left.T=\exp -\Gamma \alpha h^{2}+\beta k^{2}+\gamma \ell^{2}+\delta h k+\epsilon h \ell+\pi k \ell\right],
$$

of the ruthenium atom are dimensionless and multiplied by 10^{5}. Atoms which would be equivalent if the molecule has mm symmetry are grouped together.

The primed positions are in ring II, the unprimed in ring I.

Table 3 (continued - 2)
$\begin{array}{lllllllll}\mathrm{S} & 6 & 12 & 16 & 19 & \mathrm{DE} & 24 & \text { Final } & \sigma\end{array}$
Ru

x	166	1651	1651	1652	1652		1652	.16520	.00003
y	036	0348	0346	0346	0346	same	0346	.03459	.00003
z	252	2638	2636	2637	2637	as	2636	.26366	.00008
α		231	258	256	261	19	236	242.7	2.7
β		275	269	264	255		271	279.0	3.2
y		1420	1550	1590	1634	1667	1796.2	16.7	
δ		9.4	14.2	7.5	4.7	8.5	10.0	4.1	
β	116	109	129	147	60	55.9	8.2		
η		0.7	-35	-27	-20	-16	-9.0	9.3	

$C(2)$
$\times \quad 084085408540850086109050882 \quad .09037 \quad .00060$
$\begin{array}{lllllllllllll}y & 148 & 1511 & 1514 & 1524 & 1529 & 1541 & 1541 & .15444 & .00061\end{array}$
$\begin{array}{llllllllll}z & 421 & 3863 & 3838 & 3830 & 3824 & 3840 & 3840 & .38416 & .00135\end{array}$
B 3.00
3.08
3. 24
3.71
3.59
3.59
4.12
3.677
.222
$C(2){ }^{\prime}$

x	078	0807	0799	0818	0861	0834	0797	.08117	.00064
y	-094	-0944	-0941	-0936	-0940	-0925	-0918	-.09186	.00071
z	248	2128	2063	2058	2110	2060	2000	.20492	.00146
B	3.00	3.16	3.68	4.71	4.86	4.86	4.22	4.232	.251

Table 3 (continued - 3)
$\begin{array}{lllllllll}5 & 6 & 12 & 16 & 19 & D F & 24 & \text { Final } & \sigma\end{array}$ $C(1)$
$\begin{array}{llllllllll}\times & 127 & 1216 & 1217 & 1221 & 1237 & 1277 & 1246 & .12619 & .00062\end{array}$
$\begin{array}{lllllllllll}\text { y } & 175 & 1813 & 1817 & 1811 & 1808 & 1809 & 1815 & .18084 & .00066\end{array}$
$\begin{array}{lllllllllll}\text { z } & 209 & 1873 & 1871 & 1874 & 1876 & 1896 & 1885 & .18817 & .00142\end{array}$
B 3.00
$3.17 \quad 3.55$
3.81
3.72
3.72
4.04
4. 006
. 236
$C(1)^{\prime}$
$\begin{array}{lllllllllll}\times & 121 & 1210 & 1189 & 1178 & 1204 & 1192 & 1159 & .11735 & .00063\end{array}$
y -067-0649-0645-0641-0641-0645-0646 -. 06414 .00064
$z \quad 035013001050083012400870067 \quad .00952 \quad .00144$
B 3.00
3.073 .40
4.15
4.53
4.53
3.59
3.899
.245
$C(3)$
$\begin{array}{lllllllllll}x & 163 & 1617 & 1613 & 1609 & 1614 & 1640 & 1628 & .16338 & .00055\end{array}$
$\begin{array}{llllllllll}y & 130 & 1314 & 1314 & 1315 & 1309 & 1312 & 1316 & .13054 & .00055\end{array}$
$\begin{array}{lllllllllll}\text { z } & 529 & 5354 & 5382 & 5384 & 5382 & 5362 & 5386 & .53986 & .00126\end{array}$
B 3.00
2.93
$2.73 \quad 2.56$
2.61
2.613 .09
3.282
. 203
$C(3){ }^{\prime}$
$\begin{array}{lllllllllll}\times & 157 & 1595 & 1590 & 1605 & 1621 & 1572 & 1553 & .15601 & .00052\end{array}$
$y-112-1170-1179-1163-1158-1140-1148-.11442$. 00057
$\begin{array}{lllllllllll}z & 355 & 3703 & 3729 & 3734 & 3751 & 3643 & 3616 & .36053 & .00124\end{array}$
B 3.00
2.89
2.62
2.46
2.61
2.61
2.47
3.213
. 202

Table 3 (continued - 4)

	S	6	12	16	19	DF	24	Final	σ
C(8)									
x	232	2254	2236	2233	2235	2237	2216	.22317	.00052
y	170	1770	1791	1782	1776	1768	1783	.17820	.00056
z	211	2175	2195	2193	2199	2208	2190	.21882	.00119
B	3.00	2.94	2.69	2.13	2.19	2.19	2.49	3.091	.192
C(8)'									
x	226	2133	2138	2125	2120	2138	2139	.21512	.00054
y	-072	-0734	-0732	-0727	-0724	-0709	-0713	-.07173	.00056
z	037	0313	0331	0309	0305	0377	0336	.03456	.00124
B	3.00	2.93	2.77	1.95	1.87	1.87	2.12	3.155	.206
C(9)									
x	253	2535	2525	2517	2524	2483	2485	.24844	.00049
y	143	1477	1481	1470	1468	1460	1460	.14645	.00049
z	437	4446	4449	4434	4435	4353	4366	.43607	.00108
B	3.00	3.05	3.10	2.61	2.51	2.51	2.42	2.589	.181
C(9)'									
x	247	2333	2351	2367	2368	2387	2413	.24044	.00049
y	-098	-1032	-1018	-1018	-1021	-1017	-1024	0.10267	.00054
z	263	2511	2478	2490	2479	2523	2536	.25117	.00113
B	3.00	2.81	1.96	1.12	1.41	1.41	1.67	2.846	.182

Table 3 (continued - 5)
$\begin{array}{lllllllllll}5 & 6 & 12 & 16 & 19 & D F & 24 & \text { Final } & \sigma\end{array}$ C(7)
$\begin{array}{llllllllllll}\text { x } & 302 & 2936 & 2931 & 2931 & 2925 & 2951 & 2957 & .29553 & .00058\end{array}$
$\begin{array}{llllllllll}\text { y } & 197 & 1989 & 1989 & 1994 & 1990 & 1954 & 1984 & .19810 & .00057\end{array}$
$\begin{array}{llllllllll}\text { z } & 059 & 0686 & 0685 & 0681 & 0683 & 0760 & 0749 & .07593\end{array}$
B 3.00
$3.00 \quad 3.00 \quad 3.01 \quad 3.24$
3.24
3. 45
3.688
.228
$C(7)^{\prime}$

* $296 \quad 2935 \quad 2933 \quad 2928 \quad 2928 \quad 2885 \quad 2883 \quad .28715 \quad .00052$
y -045 -0542-0543-0544-0539-0533-0541 -. 05290 . 00056
$z-115-1039-1042-1060-1040-1038-1088$-. 10734 . 00119
$\begin{array}{llllllllll}B & 3.00 & 2.93 & 2.62 & 2.07 & 2.19 & 2.19 & 2.81 & 3.472 & .192\end{array}$ C(4)
$\begin{array}{lllllllllll}\text { x } & 337 & 3497 & 3493 & 3493 & 3508 & 3434 & 3437 & .34365 & .00056\end{array}$
$\begin{array}{llllllllll}\text { y } & 132 & 1346 & 1349 & 1345 & 1346 & 1354 & 1349 & .13469 & .00057\end{array}$
$\begin{array}{llllllllllll}2 & 518 & 5178 & 5157 & 5140 & 5168 & 5061 & 5065 & .50834 & .00129\end{array}$
B 3.00
$3.17 \quad 3.58$
$4.19 \quad 4.30$
4.30
$3.37 \quad 3.343$
. 206
$C(4) \quad 1$
$\begin{array}{lllllllllll}\mathbf{x} & 331 & 3299 & 3302 & 3314 & 3307 & 3320 & 3349 & .33426 & .00059\end{array}$
$y-110-1165-1162-1167-1165-1157-1165-.11604 \quad .00061$
z $\begin{array}{llllllllll}344 & 3206 & 3193 & 3227 & 3212 & 3221 & 3256 & .32438 & .00140\end{array}$
$\begin{array}{llllllllll}\text { B } & 3.00 & 3.00 & 2.95 & 2.79 & 2.95 & 2.95 & 3.24 & 3.745 & .226\end{array}$

Table 3 (continued - 6)
$\begin{array}{lllllllll}\text { S } & 6 & 12 & 16 & 19 & \text { DF } & 24 & \text { Final } & \sigma\end{array}$ C(6)
$\begin{array}{lllllllll}\text { x } & 385 & 3831 & 3845 & 3849 & 3834 & 3845 & 3863 & .38546\end{array} .00065$
$\begin{array}{llllllllll}y & 179 & 1857 & 1856 & 1858 & 1852 & 1845 & 1855 & .18388 & .00070\end{array}$
$\begin{array}{llllllllll}z & 143 & 1441 & 1443 & 1449 & 1436 & 1479 & 1497 & .14991 & .00151\end{array}$
B
$3.00 \quad 3.14$
3.63
4.73
4.77
$4.77 \quad 4.95$
4.381
. 254
$C(6) '$
$\begin{array}{llllllllll}\boldsymbol{x} & 379 & 3826 & 3831 & 3830 & 3834 & 3771 & 3770 & .37615 & .00069\end{array}$
$y-063-0677-0668-0666-0662-0653-0662-.06477 \quad .00068$
z - 029 - 0165-0177-0212-0204-0282-0292 -.02994 . 00154
$\begin{array}{llllllllll}B & 3.00 & 3.05 & 3.06 & 3.29 & 3.39 & 3.28 & 3.84 & 4.323 & .268\end{array}$
C(5)
$\times 411411841254137413140874102 \quad .40774 \quad .00061$
$\begin{array}{llllllllll}y & 147 & 1518 & 1525 & 1531 & 1527 & 1515 & 1533 & .15253 & .00067\end{array}$
$\begin{array}{lllllllllll}\text { z } & 362 & 3656 & 3640 & 3648 & 3656 & 3647 & 3643 & .36423 & .00141\end{array}$
B 3.00
3.15
3.65
4.32
4.03
4. 03
4.48
3.921
. 235
$C(5) '$
x $405407140464024400140034002 \quad .39957 \quad .00065$
y -095 -0956-0956-0948-0954-0965-0941 -.09459 .00070
$\begin{array}{llllllllll}z & 188 & 1894 & 1834 & 1814 & 1904 & 1826 & 1789 & .18158 & .00151\end{array}$
B
3.00
3.21
3.89
$5.22 \quad 5.50$
5.50
4. 18
3.937 . 254

Figure 4. Final bond distances and angles.

Table 4. Observed and calculated structure factors. The columns are $h, 10 F_{0}$ and $10 F_{c}$, headed by k and ℓ.

 -

 2.

(avorctionckencmat

-

564

*

Rewervounconu

 -
\qquad "

[^0]

(1)
iv) Possible sources of error:
a) Absorption and extinction.

We have made no correction for absorption or extinction. Either absorption effects must be very small or compensation for absorption has been made by the temperature factors; we observe no systematic trends in the discrepancies between the Fo's and Fc's. Extinction is evident in two reflections, which are characterized as follow s:

reflection	Fo	Ec	F/EO	we $_{\text {e }}$
200	151.4	-187.7	.239	1.0
020	118.8	154.7	.294	0.6

Because of the weighting function employed in the last stages of refinement, $w \propto 1 / \mathrm{Fo}^{4}$, these reflections had a low weight compared to the average reflection (average $P O=32.6$), and their influence on the structure should be very small.
b) Scattering curve of ruthenium.

We compared the scattering curve of ruthenium used in our calculations (Thomas-Umeda, 10) with an empirical scattering curve which would fit our data. We did this by obtaining $\left.\right|_{\mathrm{Ru}_{\mathrm{u}}}{ }^{\text {and }}| | \mathrm{Fol}-\left|\mathrm{Fc}-\mathrm{F}_{\mathrm{Ru}}\right| 1$ for each reflection and collecting sums of both quantities as a function of $\sin ^{2} \theta$, where $\varepsilon_{R u}$ is the ruthenium contribution to $E c$ and $E c-F_{R u}$ is the sum of the carbon and hydrogen contribution to Fc. The two absolute quantities should be approximately equal and differences in their sums
should reflect systematic errors in the Fo's or errors in the theoretical scattering curve, or both. We compiled table 5 during the last leastsquares cycle and plotted the results in figure 5. We used the ThomasUmeda scattering curve as a base and employed the corrections indicated by table 5 and figure 5 to derive an empirical scattering curve and plotted the curve in figure 6. The curve looks unreasonable in the region from 0.60 to 0.75 in $\sin ^{2} n$ in this region the scattering power increases as $\sin ^{2} \theta$ increases. This may be experimental error since this is the region of $\sin ^{2} A$ where reflections began to be resolved into the α_{1} and α_{2} components.

Discussion of Results

i) Molecular structure:
a) Bond distances and angles.

The final bond distances and bond angles have been given in Eigure 4. Tables 6 and 7 list the distances and angles along with their averages for a molecule of mm symmetry; other information to be discussed below is also given in table 6. Much more will be said about the bond distances in the discussions that follov. These tables are presented at this time primarily for reference.

Two features of the molecular structure should be emphasized. First, the ruthenium atom is not on the axis joining the centers of the two five-me mbered rings but is displaced by a mall but significant

Table 5. Data for empirical scattering curve.

$\sin ^{2} \theta \mathrm{Cu}$	N	$\sum_{N}\left\|F_{R u}\right\|$	$\begin{aligned} & \sum \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \sum!F_{R u} \mid / \Sigma D \\ & N \end{aligned}$
0-0.1	89	5718.4	5825.5	1.020*
0.1-0.2	160	8011.8	7955.3	. 993
0.2-0.3	178	7405.7	7405.1	1.000
0.3-0.4	215	7750.4	7844.1	1.012
0.4-0.5	220	6970.1	7109.0	1.020
0.5-0.6	247	6685.1	6784.4	1.015
0.6-0.7	228	6001.3	5902.7	. 983
0.7-0.8	252	5969.3	5585.5	. 936
0.8-0.9	268	5344.0	5020.9	. 943
0.9-1.0	181	3148.0	3260.3	1.035

N is the number of observed reflections in that region of $\sin ^{2} \theta$.

$$
\Sigma D=\sum_{N}| | E O\left|-\left|E C-E_{R u}\right|\right|
$$

*If the (200) and (020) reflections are omitted, the ratio is 1.006 (see text).

Figure 5. A plot of the ratio of the theoretical to empirical scattering curves as a function of $\sin ^{2} \theta$.

Figure 6. Theoretical and empirical scattering curves for rutherium.

아

$$
{ }_{4}^{2}
$$

Table 6. Bond distances and bond numbers.

	Observed Distances (\AA)			Predicted	Bond Numbers	
$\mathrm{C}-\mathrm{C}$	I	II	Mean		Obs.	Pred.
1-2	1.414	1.410				
			$1.422 \pm .011$	1.441	1. 34	1. 24
2-3	1.438	1.424				
8-1	1.421	1.407				
			$1.433 \pm .018$	1. 457	1.28	1.18
3-9	1.453	1. 451				
8-9	1.440	1.447	$1.444 \pm .004$	1.461	1.23	1.16
9-4	1.417	1.432				
	1.441	1.452	$1.436 \pm .013$	1.441	1.27	1.24
4-5	1.379	1. 361				
			$1.366 \pm .009$	1. 365	1.71	1.71
6-7	1.356	1.367				
5-6	1. 401	1.421	$1.411+.010$	1.441	1.40	1. 24
Ru-C						
C_{2}	2.171	2.167	$2.169 \pm .002$	2. 197	. 51	. 46
C_{1}	2.180	2.174	$2.182+.005$	2. 159	. 48	. 53
C_{3}	2.186	2. 187				
C_{8}	2.223	2.212	2.217 + 005	2. 245	42	. 38
C_{9}	2.221	2.213				

The standard deviations given reflect only the internal consistency among chemically equivalent distances; they are calculated by $\left(\sum_{i}^{n}\left(m-x_{i}\right)^{2} / n\right)^{\frac{1}{2}}$. From the least-squares standard deviations of atomic coordinates, the standard deviation of a $C-C$ distance is $\pm .012 \AA$ and of a $\mathrm{Ru}-\mathrm{C}$ distance, $\pm .008 \AA$.

Table 7. Bond angles.

C-C-C	I	II	Mean
1-2-3	109.4	110.4	109.5 ± 0.5
2-3-9	106.3	106.0	$107.1+0.9$
2-1-8	108.3	107.6	
3-9-8	107.8	107.3	108.0 ± 0.5
1-8-9	108.2	108.6	
3-9-4	131.1	132.4	$132.2+0.7$
1-8-7	133.0	132.3	
8-9-4	121.1	120.3	119.8 ± 0.9
7-8-9	118.8	119.1	
9-4-5	116.9	117.5	$117.9+0.7$
6-7-8	118.3	118.7	
4-5-6	122.7	123.8	122.3 ± 1.2
5-6-7	122.1	120.6	
C-Ru-C			
1-R-2	37.9	37.9	38.1 ± 0.2
2-R-3	38.5	38.2	
3-R-9	38.5	38.5	38.0 ± 0.5
1-R-8	37.6	37.4	
8-R-9	37.8	38.2	38.0 ± 0.2

The standard deviations of the mean are taken equal to $(\sum_{i}^{n} \underbrace{m-x_{i}}_{n})^{2})^{\frac{2}{2}}$.
The least-squares standard deviations of atomic coordinates give a standard deviation of $\pm 0.7^{\circ}$ for a $C-C-C$ angle and of $\pm 0.5^{\circ}$ for a C-Ru-C angle.
amount (approximately . $03 \AA$) toward positions 2 (see figure 4). The agreement between the halves of the molecule and the estimated standard deviations, obtained as a by-product of the least-squares calculations and confirmed by the general agreement between structur ally equivalent bond distances, make the differences in Ru-C bond lengths significant. The second feature is the shortness of the $\mathrm{C}_{6}-\mathrm{C}_{7}$ and $C_{4}-C_{5}$ bonds (see figure 4 and table 8). Trotter found the iron atom in bis-indenyliron to be displaced toward positions 2, but he found the short bond to be $\mathrm{C}_{5}-\mathrm{C}_{6}$. Because Trotter worked with a disordered crystal, we feel our values of the molecular dimensions are more reliable. (He reports only the mean bond distances and gives no standard deviations.) In saying this, we imply that there is no reason for the indenyl groups to be difierent in the two compcunds.
b) General features.

Within experimental error, the carbon atoms constituting an indenyl group are coplanar, and the planar indenyl groups are parallel. The indenyl groups are in the eclipsed configuration, and, within experimental error, the molecule has mm symmetry as in ruthenocene (17). In bis-indenyliron and ferrocene (18), however, the carbon atoms in the five-membered rings are staggered. If one considers only local symmetry in molecules of this type, one can say that an iron atom prefers to occupy a center of symmetry while a ruthenium atom prefers to lie in a mirror plane.

The least-squares plane of each indenyl group was calculated by the method of Blow (19) using a program written for the Burroughs 220 by Mr. Noel D. Jones. The out-of-plane distance of each atom and the direction cosines of a normal vector to each plane are given in table 8; the angle between the two normals is about 0.8°.

To determine if there is any departure from the eclipsed configuration of the indenyl groups we calculated an average vector from the carbon atorns in one plane to the corresponding atoms in the other; direction cosines of this average inter-ring vector are given in table 8. The direction cosines of the two normal vectors were also averaged and normalized to define an average-normal vector; the angle between this average-normal vector and the average inter-ring vector is 0.2°, which means that the indenyl groups are eclipsed, certainly within experimental error.

In calculating an average inter-ring vector, we also calculated each individual distance and averaged these for an average inter-ring separation (see table 8). The average separation is $3.665 \AA$ compared to $3.68 \AA$ or ruthenocene. The average separations in bis-indenyliron and ferrocene are 3.43 and $3.32 \AA$.
c) Prediction of bond distances.

Let us employ a method used by Pauling (20a) to discuss the molecules of ruthenocene and ferrocene to predict a molecular structure

Table 8. Out-of-plane distances, inter-ring separation and direction cosines of a normal vector to each ring.

Out-of-plane distance

C	Ring I	Ring II	Separation
2	-.001	.002	3.636
1	-.020	-.010	3.617
3	-.010	-.015	3.618
8	.018	.013	3.694
9	.016	.009	3.684
3	.019	.008	3.706
4	.012	.019	3.704
6	-.015	-.008	3.669
5	-.018	-.018	3.653
Origin	2.817	0.812	3.665 (average)

All distances are in Angstrom units. The distance to the origin is the absolute distance. The out-of-plane distance is taken as negative if it is toward the ruthenium atom and as positive if it is out-of-plane away from the ruthenium atom, foward the outside of the molecule.

Direction Cosines*

	Ring I	Ring II	Normalized Average	Average Inter - ring (C-C)
$\cos \mathrm{x}$.01012	.02175	.015935	.011653
$\cos y$.95040	.95156	.951004	.951023
$\cos \mathrm{z}$.31085	.30667	.308768	.308902

In orthogonal systems whose axes are parallel to $\underline{a}, \underline{b}$, and c of the monoclinic cell.
for bis-indenylir on and bis-indenylruthenium. In doing so we will assume that the ir on and ruthenium atoms use all nine of their valence orbitals for bond formation or for occupancy by unshared electrons or electron pairs. Hence, we expect corresponding bonds in the two compounds to have identical bond numbers, and the only difference in the two molecules will be in the metal-to-carbon bond distances, reflecting different sizes of the metal atoms. After Pauling, we consider the 1287 structures represented in figure 7. The horizontal bars represent double bonds that are basically part of the fivemembered ring, and the vertical bars represent $R u-C$ bonds. The number below each diagram is the number of structures of that type. We can count the number of appearances of each canonical form, assuming equal weight; the counting is summarized in table 9.

In every canonical form each carbon-to-carbon bond is a single or a double bond. Therefore, to count the bond number we only have to count the number of times it appears as a double bond; we can also predict the Ru-C bond number by counting bonds. Both countings are summarized in table 10, and the comparison between predicted and observed C-C bond distances is also made there.

We see immediately that there is good agreement between the observed and predicted bond lengths for bis-indenylruthenium and that Pauling's treatment does indeed predict the shortness of the $C_{6}-C_{7}$ and

Figure 7. A representation of resonating-bond structures.

A 49
B 36
C 48
D 14

$\\|\\|\\|$	$-\\|+$	$-\\|+$	$-11+$
		$\begin{array}{r} :: R u \\ \ldots \end{array}\|\mid$: Ru \|
E 12	F 420	G 360	H 60

I 126

J 108
|III+
Ru_{u}
IIIII
K 18

Table 9. Counting canonical forms.

Symbol					
Ru-C bonds	1	3	5	2	4
Number oi forms	7	6	1	30	9
Number of times each appears in					

A	14		
B		12	
C	12	14	
D	2		14

E 212

$$
14
$$

G $\quad 60$

12
2
14
12
2
Totals
372

Subtotals	106	106	104	28	28	372
Number of forms	742	636	104	840	252	2574
Ru-C bonds	742	1908	520	1680	1008	5858
Double bonds	2968	1908	208	2520	504	8108

Table 10. Prediction of carbon to carbon bond distances and ruthenium to carbon bond numbers.

$$
C_{7}-C_{8}
$$

$C_{3}-C_{9}$
$C_{2}-C_{3}$
$\mathrm{C}_{6}-\mathrm{C}_{7}$
$\mathrm{C}_{9}-\mathrm{C}_{4}$

Double bonds in $C_{8}-C_{1}$
$C_{1}-C_{2}$
$C_{9}-C_{8}$
$C_{4}-C_{5}$
$\mathrm{C}_{5}-\mathrm{C}_{6}$
Type* Weight*

1106	2	3	2	5	2
3106	1	1	1	5	1
5104				,	
228	5	7	3	18	9
428				6	2
Weighted totals	453	620	402	1836	626
Double bond character**	. 178	. 241	. 156	. 713	. 243
Predicted bond distances*** (\AA)	1.457	1.441	1.461	1.365	1.441

Observed:

bis-indenyl- ruthenium	1.433	1.422	1.444	1.366	1.428
bis-indenyl- iron	1.41	1.47	1.39	1.45	1.40

Table 10 (continued)

Ru-C bonds in	C_{9}	C_{8}	C_{1}	C_{3}	C_{2}
Type* Weight*					
1106	1	1	2	2	1
3106	3	3	4	4	4
5104	1	1	1	1	1
228	10	10	14	14	12
428	6	6	8	8	8
Weighted total ${ }^{\text {a }}$	976	976	1356	1356	1194
				(5858 total)	
Bond number	. 379	. 379	. 527	. 527	. 464

* See table 9. Type is the number of Ru-C bonds.
*) Fraction of total forms (2574) in which it appears as a double bond. ***See Pauling (20), tables 7-9.
$C_{4}-C_{5}$ bonds. That the $C_{6}-C_{7}$ and $C_{4}-C_{5}$ bonds are nearly double bonds (75%) is supported by Seus (21) who was able to hydrogenate bis-indenylruthenium to produce bis-4, 5, 6, 7-tetrahydroindenylruthenium. If, on the other hand, the double bond were in the $C_{5}-C_{6}$ position, as indicated by Trotter's work, one would expect hydrogenation to yield bis-5,6-dihydroindenylruthenium.

To predict the $R u-C$ bond distances in the same way that Pauling treated ferrocene and ruthenocene, we must first calculate the d character of the ruthenium bond orbitals. If we assume that the unshared pairs occupy 4d orbitals and that the bonding electrons are distributed equally among the $5 \mathrm{~s}, 5 p^{3}$ and unoccupied 4 d orbitals, then we calculate that the d character $1 \mathrm{~s} 41.6 \%$. We get the same d character for the iron atom in bis-indenyliron, except that we are referring to 3 d orbitals. This amount of d character leads to the single -bond radii for ruthenium and iron of 1.313 and $1.137 \AA$ (20b). An alternative is to use the single bond radii as given in Pauling's table of metallic radii (20 c); from this table we get single bond radii of 1.264 and $1.165 \AA$ for ruthenium andiron. Üsing a single bond radius of $0.770 \AA$ for carbon and correcting for electronegativity difference ($-0.056 \AA$ for $\mathrm{Fe}-\mathrm{C}$ and -0.024 for $\mathrm{Ru}-\mathrm{C}$), we calculate the following metal-to-carbon bond lengths (in \AA):

There is better agreement between the observed and calculated bond lengths if one chooses the metallic radii; hence, the single bond radii of iron and ruthenium will be taken as 1.165 and $1.246 \AA$ (the metallic radii) in all discussions that follow as well as in all tables and figures where it is necessary to use such radii.

In table 6 we have summarized the iniormation on bond distances and bond numbers; we have assumed mm symmetry. Figure 8 shows the average bis-indenylruthenium and bis-indenyliron molecules as observed and also the predicted molecules to facilitate comparison.

We should point out that the predicted and observed structures agree well except for the metal-to-carbon bonds. We have predicted correctly that the longest metal-to-carbon bond is that to C_{8} or C_{9}, but the relative lengths of the other bonds are not predicted correctly. The average metal-to-carbon bond distance, however, agrees well with the average of the observed distances.

From table 6 we can calculate the number of observed and predicted covalent bonds for each carbon atom, assuming the $\mathrm{C}-\mathrm{H}$ bond number to be 1.000 ; the covalent bonds are listed:

Ruthenocene Ferrocene

$$
\begin{array}{r}
143 \\
445
\end{array}
$$

$$
205
$$

$$
208
$$

	C_{2}	$C_{1.3}$	$C_{8,9}$	$C_{4.7}$	$C_{5.6}$
Observed	4.178	4.097	4.194	3.973	4.106
Predicted	3.946	3.946	3.956	3.956	3.956

We judge that we have observed more electrons than are available for bonds. (This was apparent earlier in table 6, where the expected bond numbers are less than those observed, which of course is a result of the observed distances being less than those predicted.) It may well be that some of our observed distances are shorter than those in the true structure because we have not attempted to correct for thermal motion of the atoms. But in our prediction of the bond numbers we have neglected any purely ionic molecules in which a negative charge would reside on the indenyl group or groups; this would increase the predicted bond numbers.

We can find no support for longer bond distances in the results of the three-dimensional difference-Fourier (see figure 2C and figure 3) or in an electron-density map drawn in the least-squares plane of each indenyl group (figure 9). If anything, these results indicate even shorter bond lengths than given by the least-squares refinement. We feel, however, that figure 9 may be a little misleading because the ruthenium may contribute to the electron density in the five-membered rings and by doing so displace the maxima toward the center of the ring; the ruthenium contribution has been removed in figure 3.

Figure 9. The electron density in the planes of the indenyl groups. Contours are drawn at intervals of 1 e. \AA^{-3} starting with the dashed line at 1 e. \AA^{-3}. The final positions are marked with an x.
d) Temperature factors.

We have said earlier that the final result as we present it is the "best" result that the investigation has yielded--because the agreement between the observed and calculated structure factors is the best and because this final molecule approaches mm symmetry more closely than any other. There is yet another reason for our feeling that the final result is the "best"; this reason is the pattern and agreement of temperature factors in the indenyl groups.

One can examine table 3 and see that in our final result the temperature factors of corresponding carbon atoms agree well and fit into the expected pattern of thermal motion better than in any other stage of refinement. Moreover, the range of temperature factors is smaller than at any other stage. The final temperature factors are. given again in table 11; as expected, the thermal motions of the atoms on the ends of the indenyl groups are the largest while the smallest motions are by the atoms common to the two rings.

The anisotropic motion of the ruthenium atom is described by its vibrational ellipsoid, which is defined in table 12. The motion is essentially isotropic.
ii) Packing of the molecules in the unit cell.

The packing of the molecules in the unit cell is illustrated in figures 10 and 11. There are only six non-bonded distances which are short enough to mention.

Table 11. Isotropic temperature factors (B).

	I	II	Mean
C_{2}	3.677	4.232	3.955
C_{1}	4.006	3.899	
C_{3}	3.284	3.213	3.601
C_{8}	3.091	3.155	
C_{9}	2.589	2.846	
C_{7}	3.688	3.472	
C_{4}	3.343	3.745	3.562
C_{6}			
C_{5}	3.381	3.921	

The standard deviations as given by the least-squares treatment are about $\pm 0.22 \AA^{-2}$, ranging from ± 0.18 to $\pm 0.27 \AA^{-2}$ (see table 3).

Table 12. Vibration ellipsoid of the ruthenium atom.

Direction cosines

axis 1	B_{i}	$\cos x$	$\cos y$	$\cos z$
1	2.787	-.1327	-.0363	.9905
2	2.212	.2075	.9762	.0636
3	2.023	.9692	-.2139	.1220

The direction cosines are relative to a Cartesian coordinate system which has two axes identical to a and b of the monoclinic cell of bis-indenylruthenium; the third axis is parallel to c. *

Figure 10. The structure viewed down c .

Figure 11. A representation of the structure viewed down a.

The ruthenium atom is approached by three hydrogen atoms. The ruthenium atom of molecule A, figure 11 , is $3.3 \AA$ from the hydrogen atom on $C(7)^{\prime}$ of molecule $B, 3.6 \AA$ from the hydrogen on $C(1)$ of molecule D, and $3.6 \AA$ from the hydrogen on $C(3)$ of the molecule displaced minus one unit along z (This molecule is not pictured; the relationship is the same as that between $R u_{B}$ and the hydrogen on $C(3)_{A}$. In this discussion, the primed positions are for that indenyl group (II) having the less fositive y coordinates.). This packing effect with the hydrogen atoms approaching the ruthenium atom is also observed in ruthenocene (17). The distances from $C(7)$ of molecule B to $C(8)^{\prime}$ and $C(9)^{\prime}$ of molecule C are 3.48 and $3.31 \AA$. The distance from the hydrogen atom on $C(7)$ of molecule B to $C(8)$ ' of molecule C is $2.7 \AA$.

A little more will be said about the packing in discussing a disordered crystal. We feel that the packing is adequately described in figures 10 and 11 and that words would not enlighten the reader.
iii) Accuracy of the molecular geometry.

The standard deviations in individual atomic coordinates obtained by inversion of the normal equation matrices lead to mean standard deviations of $.008 \AA$ for Ru-C bond lengths and of $.012 \AA$ for $C-C$ bonds. The root-mean-square (rms) deviations of chemically equivalent bonds agree with theae expected uncertainties. All three groups of chemically equivalent $R u-C$ bonds have a $r m s$ deviation of
less than $.006 \AA$. All six sets of $C-C$ bonds have a rms deviation of less than. 019 A, and only two sets have a rms deviation larger than the expected. $012 \AA$. There is no doubt that the $R u-C_{8}$ and Ru-C, bonds are significantly longer (. 03 A) than the other Ru-C bonds and that the $C_{6}-C_{7}$ and $C_{4}-C_{5}$ bonds are significantly longer than any other $C-C$ bonds. Bond distances and $r m s$ deviations are listed in table 6.

In a recent investigation of the crystal structure of the dimer of rhodium chloride 1,5-cyclooctadiene, Ibers and Snyder (22) attempted "to answer the question: How well can carbon ring geometry be defined in the presence of second-row transition metals, if intensity data collected at room temperature and estimated visually are used?" In that investigation they expressly took into account anisotropic thermal motions of the heavy atoms.

The molecular structure of the dimer of rhodium chloride 1,5-cyclooctadiene and of bis-indenylruthenium are suitable for comparison. Rhodium and ruthenium are adjacent, second-row transition elements, and the rhodium atoms are bonded to four carbon atoms and to two chlorine atoms while the ruthenium atom is bonded to ten carbon atoms. Furthermore, min symmetry can be logically assumed for both molecules, though this symmetry is not crystallographic.

Ibers and Snyder report. $03 \AA$ for the standard deviation of a $R h-C$ bond and. $.08 \AA$ for the standard deviation of a $C-C$ bond. In particular, let us compare the $C_{5}-C_{6}$ and $C_{1}-C_{2}$ bonds, the double bonds, of rhodium chloride 1,5 -cyclooctadiene with the $C_{1}-C_{8}$ and $\mathrm{C}_{3}-\mathrm{C}_{9}$ bonds (which is the most inconsistent set of four bonds within the molecule) of bis-indenylruthenium. The four bonds, which should be equal within each molecule, are (in A):

rhodium chloride 1.5 -cyclooctadiene	bis-indenylruthenium		
C-C	1.52	C-C	
$1-2$	1.42	$8-10$	1.42
$5-6$	1.36	$3-9$	1.45
$1^{\prime}-2^{\prime}$	1.44	$8^{\prime}-10^{\prime}$	1.41
$5^{\prime}-6^{\prime}$	1.44	$3^{\prime}-9^{\prime}$	1.45
Mean	.06		1.43
σ			.02

From the results of their investigation, Ibers and Snyder conclude "that the ring geometry is difficult to define even when anisotropic thermal motions of the heavy atoms are incorporated into the theoretical model." However, we feel that the ring geometry can be well defined, certainly to within $.02 \AA$ in the bonds within the ring.

Disordered Bis-indenylruthenium
As stated in the experimental part, the first crystal of bisindenylruthenium gave photographsindicating a unit cell only half as large as the one whose structure we determined and also suggesting disorder. The size of the unit cell indicates that there are only two molecules per unit cell and therefore, that the ruthenium atoms must occupy special positions (000) and ($\left.\frac{1}{2} \frac{7}{2} 0\right)$--that is, at the centers of symmetry of the molecule, indicating that the six-membered rings are trans.

Intensity data for the hk0 reflections were collected and corrected for Lorentz-polarization effects and then were used in generating the (001) Patterson projection. The Patter son map, however, did not show the ruthenium atoms to be in special positions; seemingly, there were four half ruthenium atoms in the unit cell. Trotter (6) encountered a similar problem in his investigation of the structure of bis-indenyliron.

In the same way that Trotter proposed a structure for disordered bis-indenyliron, we propose a disordered structure of bis-indenylruthenium. Around a special position there can be two orientations, equally probable, related by a center of symmetry so that the structure appears to have a center. This packing and unit cell of the disordered. structure are shown in relation to the packing and unit cell of the ordered structure in figure 12. One can mentally construct the average

Figure 12. Comparison of packing in the ordered and disordered structures. The ordered unit cell is given by the solid lines and the disordered by the dashed. Compare to figure 10.

disordered structure by putting half ruthenium atoms at (xyz, $\overline{x y z}$) and half carbon atoms, to complete the half-molecules, in two planes with the five and six-membered rings of one half-molecule occupying the general region of the six-and five-membered rings of the other halfmolecule, the two half-molecules being related by a center of symmetry. The positions of the ruthenium atom, obtained from the Patterson nap, were used to assign signs to the Fo's and an electron density projection onto (001) showed that the planar indenyl groups are almost perpendicular to the $x y$ plane. The x and y coordinates of the carbon atoms were guessed on the basis of the ordered structure, and the hk0 structure factors were calculated. The signs of these Fc's were then used to get an electron density projection onto (001); this electron density map is shown in figure 13.

Lattice constants calculated from Weissenberg photographs indicate that the packing of the ordered crystal is more efficient than the disordered; the ratio of ordered to disordered density is calculated to be 1.02. The c axes of these two forms are essentially the same, and the a axis and the b axis of the disordered crystal are such that the diagonal in the xy plane is essentially the same length as the a axis of the ordered crystal $\sqrt{a_{d}^{2}+b_{d}^{2}}=\sqrt{123+87}=14.5 \AA$. $a_{0}=14.5 \AA$), see figure 12.

In view of the disorder, no accurate structure determination seems possible and the work on this modification was abandoned.

Figure 13. Electron density projection onto (001) of the disordered modification of bis-indenylruthenium.

PARTII

$$
" \mathrm{Ni}_{5} \mathrm{Cd}_{21} "
$$

INTRODUCTION

In his examination of the nickel-cadmium system Voss (1) observed a binary intermetallic compound which he called NiCd_{4}. Twenty-three years later (in 1931) Ekman (2) observed the same phase but reported the composition to be $\mathrm{Ni}_{5} \mathrm{Cd}_{23.6}$. His powder photographsindicated a cubic structure with the edge of the unit cell equal to $a_{0}=9.761 \mathrm{kr}(9.781 \AA)$. Since the diffraction pattern was very similar to that of γ brass, he concluded that the structure was isotypic with that of this latter phase.

Prior to this work Ekman had discovered that the ratio between the number of valence electrons and the number of atoms, the socalled electron-to-atom ratio, in the two isostructural cornpounds $\mathrm{Cu}_{5} \mathrm{Zn}_{8}$ and $\mathrm{Cu}_{9} \mathrm{Al}_{4}$, is $21 / 13$, if copper is assigned the valence one, zinc the valence two, and aluminum the valence three. The same electron-to-atom ratio, he said, could be obtained for the nickelcadmium phase if it were assigned the composition $\mathrm{Ni}_{5} \mathrm{Cd}_{21}$ and if nickel were assumed to have zero valence.

In 1934 Swartz and Phillips (3) reported that in the nickelcadmium system the compound of highest cadmium content had the composition $\mathrm{NiCd}_{7}{ }^{\circ}$

The most recent report on nickel-cadmium alloys, which appeared in 1955, is that of Lihl and Buhl (4). These authors found the y phase to exist at about 18.5 at . $\% \mathrm{Ni}$, which corresponds to $\mathrm{Ni}_{5} \mathrm{Cd}_{22}$, but stated that their powder photographs could be indexed only on the basis of a face-centered cubic cell of edge $a_{0}=19.545 \AA$, which is twice the value reported by Ekman (loc. cit.). They believed that the structure of this phase is very closely related to that of γ brass, and again, referring to the electron-to-atom ratio 21/13, they assigned the "ideal" composition $\mathrm{Ni}_{5} \mathrm{Cd}_{21}$ to this phase.

The name " $\mathrm{Ni}_{5} \mathrm{Cd}_{21}$ " shall be retained provisionally until the actual composition is more firmly established.

The object of the present investigation is to find an explanation for the doubling of the cube edge and, furthermore, to test the validity of the assumption made by previous investigators. Another reason for our interest in this structure is that it may provide a basis for the formulation of structures of intermetallic compounds of very high complexity. Such structures have many interatomic distances which are functionally independent from one another, and, therefore, provide considerable information about interatomic distances.
i) Preparation of single crystals.

An alloy of composition 17.8 at. $\% \mathrm{Ni}$ and 82.2 at. $\% \mathrm{Cd}$ was prepared from Baker Analyzed reagent nickel of 99.5% purity and Mallinckrodt analytical reagent grade cadmium sticks of 99.94% purity. Nickel shot and pieces of cadmium were melted together in an alundum crucible by induction heating in argon gas at atmospheric pressure; the melt was allowed to solidify slowly. The ingot was found to contain a very large number of crystals, most of which seemed to be fragments of cubes and square prisms. Since the cubes were too large to yield intensity data unaffected by absorption, a small fragment with an approximately rectangular cross section was selected to be used for X-ray photography.

Laue photographs indicated O_{h} Laue symmetry. Rotation and Weissenberg photographs indicated a cubic face-centered lattice with $a_{0}=19.6 \AA$, in accord with the results of Lihl and Buhl (4). Each one of the observable reflections on the Weissenberg photographs had either all indices even or all indices odd with no systematic absences; the probable space groups are, accordingly, $\mathrm{O}^{3}, \mathrm{~T}_{\mathrm{d}}{ }^{2}$, and $\mathrm{O}_{\mathrm{h}}{ }^{5}$.
ii) Intensity data.

An almost complete three-dimensional set of intensity data was obtained from equi-inclination Weissenberg photographs taken with MoK K_{α} radiation. The [110] direction of cube was chosen as rotation axis. Since the identity period along this direction is only $a_{0} \sqrt{2}$, where a_{0} is the edge of the cubic unit cell, the complete sphere of reflection can be recorded with considerably fewer photographs than with a crystal rotated about [1007. This method, furthermore, yields cross correlations between even and odd layers, which is not possible with the latter method for cubic face-centered crystals.

The intensities were estimated visually by comparing the diffraction spots with those on a calibrated scale. The multiple-film technique was used, and the films were interleaved with nickel foil . 001 inches thick. Corrections were made for Lorentz and polarization effects but not for absorption or extinction. Absorption corrections were not necessary because of the very small size of the crystal, which was $.060 \times .023 \times .017 \mathrm{~mm}^{3}$. The maximum $\mu \mathrm{R}$ was of the order 0.8.

For this investigation 623 symmetry independent reflections were used, 340 of which were either too weak to be observed or too weak to be estimated with reasonable accuracy. These 340 reflections were treated as being weaker than an estimated maximum value.

Data were obtained from the equator and from layer lines two through six, the rotation axis being the [110]; the first layer was ornitted by accident. Because of this omission, 13 reflections were not covered. The observed structure factors are listed in table 5 at the end of this part.

The Derivation of the Structure

i) General considerations.

The smallest unit cube is of edge $a_{0}=19.6 A$ and contains approsimately 400 atoms, of which roughly one-fifth are nickel and four-fifths are cadmium. The probable space groups are $O^{3}, T_{d}{ }^{2}$ and $O_{h}{ }^{5}$.

Since the total number of distance vectors in the unit of structure is approximately proportional to the square of the number of atoms, the application of Patterson maps to the solution of the structure seemed hopeless. The stochastic method as defined by Pauling (5) seemed to be the only one that offered promise for a successful attack.

Of the three probable space groups given above, $\mathrm{T}_{\mathrm{d}}{ }^{2}$ is the only one that has the symmetry elements necessary to describe an atomic arrangement similar to that of γ brass. This space group, therefore, was the one that had to be considered in the first place, at
least to test the correctness of the assumptions made by Ekman (2) and independently by Lihl and Buhl (4).

The procedure developed by Samson (6) was used to explore this space group. A fairly detailed description of his method is given below.
ii) Samson's method to derive trial structures of complex cubic intermetallic compounds.

Practically all of this section is quoted from an early draft of a paper to be submitted for publication by Dr. Samson. The figures included here were prepared for that paper; I have supplied the legends for them. These will be referred to in later discussions.

Introduction

Mnnminn
Cubic crystals of metals and intermetallic compounds have always been observed to incorporate atoms in special positions. This feature probably arises from the difficulty or perhaps impossibility to achieve a cubic space-filling structure by utilizing general positions alone. One may profitably begin with the hypothesis that a special position is alavas needed to define the center of a coordination shell described solely or partially by a general position. Hence, if in a cubic crystal the configuration of atoms is known around each point that can be defined by a special position, the atomic arrangement of the crystal is completely determined.

In the subsequent discussion it is understood that the origin of coordinates of the cube is placed in accordance with the Space Group Tables given in the International Tables (7). The (100) plane and the (110) plane referred to below are always those passing through the origin of the cube.

In each one of the space groups $T^{2}, T^{4}, T_{h}{ }^{4}, T_{h}{ }^{6}, O^{3}, T_{d}{ }^{2}$. and T_{d}^{5}, every special position places at least one point on the (110) plane. To determine a structure having one of these space groups it is necessary only to determine the coordination shell around each single atom or available site that is located on the (110) plane.

A similar rule applies to structures of the space groups 0^{4}, $\mathrm{O}^{6}, 0^{7}, \mathrm{O}_{\mathrm{h}}{ }^{7}, \mathrm{O}_{\mathrm{h}}^{8}$ except that the special positions of the kind $\frac{1}{8}, X, \frac{1}{4} \pm X$, etc., eventually may have to receive special treatment. These positions are of such a nature, however, that they most likely will represent vertices of coordination shells around single atoms or available sites on the (110) plane, as will be seen in the following chapter.

For most of the remaining cubic space groups it will be necessary to determine the coordination shells around single atoms on both the (100) plane and the (110) plane. In some rare cases it may be necessary to investigate one specially chosen additional plane.

The symmetry chart

A means of recognizing the possible configurations of atoms around single atoms on a plane is the symmetry chart, an example of
which is shown in figure 1. This chart has been drawn for the (110) plane of a crystal of space group $O_{h}{ }^{7}$ and cube edge $a_{0}=30.6 \AA$. scale $1 \AA=1 \mathrm{~cm}$. The points a and b are defined by the two 8 -fold positions, 000 etc., and $00 \frac{2}{2}$, etc., respectively; c and d are points of the two 16 -fold positions $\frac{1}{8} \frac{1}{8} \frac{1}{8}$, etc. . and $\frac{1}{8} \frac{1}{8} \frac{5}{8}$, etc., respectively, which are centers of symmetry. The letters correspond to the notations used for this space group in the International Tables (7), page 340. The same notations are referred to below.

If each point were replaced by a rigid sphere of a radius $r=1.40 \AA$ equal to one-half the average interatomic distance assumed In the crystal, then the centers of such spheres on the (110) plane are confined as indicated in figure 1. The lines e and f are the loci of points of one degree of freedom, XXX etc. and 00X etc., positions e and f. The points with two degrees of freedom, XXZ etc., position g, are confined within the areas limited by solid lines. The indentation t is a result of the center of symmetry at c. If a point XXZ is at G, its surrounding sphere of radius $r=1.40 \mathrm{~cm}$ is then in contact with two other equivalent contiguous spheres, one above ($Z \times X$) and one below (XZX) the point $\pm G$, since e is a 3 -fold axis of symmetry. The point G is accordingly at a distance $\frac{1}{\sqrt{3}} r$ and the point $\pm G$ at a distance $\frac{1}{2 \sqrt{3}} x$ from the line e. Points of the kind $\pm G$, representing the projection of the centers of two spheres, one above and one below the

Figure 2. Symmetry chart of the (110) plane, space group $T_{d}{ }^{2}$, see text.

Figure 1. Symmetry chart of the (110) plane, space group $\mathrm{O}_{\mathrm{h}}{ }^{7}$,

(110) plane are referred to as "plus-minus" points. The broken and dotted lines are accordingly loci of "plus-minus" points of contiguous spheres and are referred to as "plus-minus" lines.

The areas limited by the dotted lines i and i ' and the solid line g are "plus-minus" fields for the general position 192i. The isosceles triangle of the sides i^{\prime} is forbidden for this position as a result of the center of symmetry at point c.

Position $96 \mathrm{~h}\left(\frac{1}{8}, \mathrm{X}, \frac{1}{4}-\mathrm{X}\right.$, etc.) describes plus-minus points located on the broken lines h. These points are at the vertices of a hesagon around c, the size of which is determined by X.

Figure 2 represents a symmetry chart of the (110) plane of a cube of edge $a_{0}=25.8 \AA$, space group $T_{d}^{2}, r=1.25 \AA$ (smallest assumed distance). Figure $3 a$ shows the (110) plane and figure $3 b$ the (100) plane of the same cube but for space group $O_{h}{ }^{5}$.

The representation of coordination polyhedra
A few examples of how coordination polyhedra may be represented for their immediate recognition on the symmetry chart are given below.

A very frequently observed coordination polyhedron is the truncated tetrahedron bounded by four hexagons and four triangles, figure $4 a$. A section through the (110) plane is shown in figure $4 b$ and c. The packing of atoms around such a polyhedron is explored by describing

Figure 3. Symmetry charts for a cube of edge $a_{0}=25.8 \AA$, space group $\mathrm{O}_{\mathrm{h}}{ }^{5}$, with a smallest assumed distance of 1.25 A .

3a) (110) plane

3b) (100) plane

Figures 4, 5 and 6. For explanation, consult text.

π
around each vertex a sphere of a radius equal to the distance d between the vertex and the center of its assumed nearest neighbor outside the polyhedron. A (110) section through such an arrangement of spheres is shown in figure 4d. The center of any circle of $r=d$ is allowed to lie upon the circumference of any other circle but not inside it, while the center of any "plus-minus" circle representing two "contiguous" atorns is allowed to be as close as $r=\frac{1}{2} d \sqrt{3}$ to the center of a circle of $r=d$.

Figure 5 shows a cubo-octahedron which is represented according to the same principles. Figure 6 demonstrates how the icosahedron can be derived through deformation of a cubo-octahedron. The three mutually perpendicular squares in figure $5 b$ have been substituted by rectangles, figure $6 b$, the sides of which are a and $b=1.62 \mathrm{a}$, where b is also the diameter of a pentagon of side a . This representation of the icosahedron was found to be the most perspicuous one with regard to symmetry charts so far explored. An example of the usefulness of this representation can also be found in an earlier paper (Samson, 8) which, however, does not show the symmetry chart.

It is seen that the circles around the vertices of the polyhedron shown in figure $4 d$ leave a free area around the center, while in figure $5 d$ the circles inter sect at the center and in figure $6 d$ overlap at the
center. This feature demonstrates the metrical nature of these polyhedra. With twelve contiguous spheres of equal size at the vertices of the truncated tetrahedron, it is possible to accommodate a sphere 34.5% larger in radius at the center, since $\frac{r_{\text {cent }}}{r_{\text {vert }}}=\frac{\sqrt{ } 11}{\sqrt{2}}-1=1.345$, figure 4 d , while for the icosahedron the central sphere is nearly 10% smaller.

Packing of coordination polyhedra

Figure 7 represents the same symmetry chart as figure 2 . Transparent templates of polyhedra such as are shown in figures 4 and 5 are held in position with pins.

The discs around e_{1} and $\pm e_{1}$, figure 7 , represent a positive tetrahedron, which is surrounded by a negative tetrahedron (e_{2} and $\pm \mathrm{e}_{2}$). The disc at f_{1} is at the vertex of an octahedron. If more atoms are added at the points $h_{1}, \pm h_{2}$ and $\pm h_{3}$, as is indicated with arrows, the arrangement of points around f_{1} is similar to that shown in figure $6 d$, i.e., f_{1} is at the center of an icosahedron.

It is obvious that transparent templates of sections through large atom complexes commonly observed in complex metal structures may appreciably facilitate the search for a reasonable structural motif. Such a template, which represents an atom complex characteristic for γ-brass type structures is placed at point d, figure 7.

Figure 7. An illustration of the use of templates for representing polyhedra and atom complexes.

A symmetry chart that has been filled with circles representing sections through spheres to show the packing of atoms, as well as the structural motif, shall hereafter be referred to as a packing chart.
iii) Definitions
a) Centers

Space group $\mathrm{T}_{\mathrm{d}}{ }^{2}$ is non-centrosymmetric. The word center shall be used to refer to the points a, c, b and d in figure 2. These points are defined by the special positions $4 \mathrm{a}, 4 \mathrm{c}, 4 \mathrm{~b}$, and 4 d , respectively, in accord with the space group tables given in the International Tables, Vol. I (7); they correspond accordingly to 000, etc. $\frac{1}{4} \frac{1}{4} \frac{1}{4}$, etc., $\frac{2}{2} \frac{1}{ㄹ} \frac{1}{2}$, etc., and $\frac{3}{4} \frac{3}{3} \frac{3}{4}$, etc. The syrametry elementa around each such point are $\overline{4} 3 \mathrm{~m}$.

There are consequently four independent centers, each one of which may be chosen as the origin of the cube, the translations being
 the magnitude of calculated structure factors, $F_{c}=A^{2}+B^{2}$. but they affect the values of A and B for certain classes of reflections and consequently also the phese angles.
b) Polyhedra, positions, and complexes.

The structure is conveniently described and discuased in terms of four polyhedra: the octahedron, the tetrahedron, the cubo-octahedron, and the icosahedron. The position of X00 etc., describes a regular
octahedron. The points defined by position e, XXX, etc., are at the vertices of a regular tetrahedron. The cubo-octahedron just referred to is bounded by two sets of four equilateral triangles each and six 4 -sided faces. This polyhedron is described by position h, $X X Z$, etc. If the parameter Z is chosen to be exactly $0, \frac{1}{4}$, $\frac{1}{2}$, or $\frac{3}{4}$, the cubo-octahedr on will be bounded by eight equilateral triangles of equal size and six squares, such as is shown in figure 5 . In this structure, however, the cubo-octahedron has a shape such as is shown in figure 10. A regular icosahedron is shown in figure 6. In space group T_{d}^{2} this polyhedron has to be described with the use of several point positions. The four polyhedra are also shown in part in figure 7.

More complicated arrangements of atoms will be referred to as complexes. The arrangement of atoms shown in figure 7 shall be called the γ-complex, because it is observed in all the γ-brass type structures that so far have been established. It consists of two tetrahedra, one of which is negative with respect to the other, one octahedron, and one cubo-octahedron. Each atom complex arranged about a point a, b, c or d shall be called according to this point--for instance, a-complex, b-complex, etc. The outermost shell of any such complex is always a cubo-octahedron of T_{d} symmetry, i.e., it has two sets of four equilateral triangles.
iv) Least-squares calculations.

In the least-squares refinement, the quantity $\sum \omega\left(E o^{2}-E c^{2}\right)^{2}$ was minimized. The shifts in atomic positional parameters were calculated from the diagonal matrix elements of the normal equations. Refinement of the temperature factors and the scale factor was based on a set of complete normal equations which took into account the coupling between each possible pair of temperature factors, and between each temperature factor and the scale factor.

The scattering curves for nickel and cadmium were used as given by Thomas and Umeda (9) in all of the structure-factor calculations.
v) The γ-brass type trial structure.

The overall diffraction pattern of $\mathrm{Ni}_{5} \mathrm{Cd}_{21}$ has great similarity with that observed for $\mathrm{Ag}_{5} \mathrm{Zn}_{8}$, which has a γ-brass type structure (10); therefore, it seemed likely that the atomic arrangement is similar to that in γ brass, $\mathrm{Cu}_{5} \mathrm{Zn}_{8}$ (11). Accordingly, a symmetry chart representing the (110) plane passing through the origin of the cube was explored with the aid of templates representing atom complexes such as observed in γ brass (see fig. 7). It was quickly recognized that eight subcells of a γ-brass type structure could be accommodated in the unit cell, and the approximate atomic coordinates could be obtained from the packing chart. The initial assumption was made that the
doubling of the cube edge was due to variations in the occupancy of the subcella. This assumption arose from the observation that the diffraction pattern indicates pseudo-body-centering. The reflections $h k \ell$ with $h+k+\ell=2 n+1$ were, in general, much weaker than the reflections with $h+k+\ell=2 n$.

The structure-factor least-squares calculations based on several variations of this atomic arrangement indicated that doubling is due to a more complicated phenomenon than a change in population. We were gradually forced to assume that the arrangements of atoms around some of the centers were not γ-complexes.
vi) Other trial structures.

With the use of the symmetry chart we explored several other structural motifs. Our second idea was to investigate the possibility of combining two γ-complexes, one at 000 and the other at $\frac{1}{2} \frac{1}{2} \frac{1}{2}$, with another kind of complex at the remaining two centers. A reasonable arrangement of atoms was obtained by placing Friauf polyhedra at $\frac{1}{4} \frac{1}{4} \frac{1}{4}$ and $\frac{1}{4} \frac{1}{4} \frac{3}{4}$; a Friauf polyhedron is a 17 -atom complex consisting of an atom, in this case at $\frac{1}{\frac{1}{8}} \frac{1}{8} \frac{1}{8}$ and at $\frac{3}{3} \frac{3}{4} \frac{3}{4}$, surrounded by 4 atoms at the vertices of a tetrahedron and by 12 atoms at the vertices of a truncated tetrahedron. The regular tetrahedra which form an integral part of the Friauf polyhedron are related to the tetrahedra around a and b by translations of $\frac{1}{4} \frac{1}{4} \frac{1}{4}$. In carrying out calculations on this trial structure, we obtained our second clue to
the structure, the first being the γ-brass type arrangement. The very high values of some of the temperature factors resulting from the least-squares shifts suggested that the truncated tetrahedra of the Friauf polyhedra had to be omitted. The temperature factors for the atoms of the regular tetrahedra were normal, thus indicating that these were actually part of the structure.

Another idea was to fit γ-complexes together with closepacked arrangements. These can be obtained by placing atoms at the vertices of a regular octahedron. The equilateral triangles form the first two layers A and B. The third layer, C, is then provided by a cubo-octahedron as the next outer shell. This idea led to the third clue to the structure: one octahedron in the structure is a small one.

I cannot give full details of this investigation. Many structures were designed on paper with the aid of the symmetry chart. A few of these included the 96 -fold position. Several were combinations of γ-complexes, Friauf polyhedra, and other more or less regular coordination shells. The space group, O_{h}^{5} was also explored. When this search led to a well-packed atomic arrangement with pseudo-bodycentering, structure-factor and least-squares calculations were used to test the trial structure.
vii) A working model.

The attempt to derive a structure which seemed to demand one small octahedron, tetrahedra, and γ-complexes led to a trial structure based on three γ-complexes and one 2.-atom complex which we call an o-complex. This latter one consists of six atoms at the vertices of an octahedron, which is surrounded by four atoms at the vertices of a tetrahedron, the next outer shell being a cubo-octahedron. This trial structure we call o $\gamma \gamma \gamma$.

A series of least-squares cycles led us to believe that the structure is of the type oyoy, with o-complexes at the points a and b and with γ-complexes at the points c and d. The proposed oyov structure is described by 14 cxystallographically different positions. The overall agreement between observed and calculated structure factors was reasonably good. After a few least-squares cycles, the agreement index dropped from $R=0.40$ to $R=0.26$ for 157 reflections with \sin less than 0.33. An electron-density map of the (110) plane calculated on the basis of these reflections suggested that an atom had to be placed at $\frac{3}{4} \frac{3}{2} \frac{3}{4}$ inside the tetrahedra of a γ-complex and, further more, that some of the sites were occupied by a different kind of metal atom than we initially assumed. Some minor changes of the atomic coordinates also had to be made. Subsequent to these changes, four additional refinement cycles were carried out. These improved the
agreement to $R=0.16$. A few changes based on another electron density map and a few more least-squares cycles reduced the agreement index to $R \cong 0.13$.

The structure had by then changed considerably from our initial postulate. The first electron-density map had indicated an atom at $\frac{3}{4} \frac{3}{6} \frac{3}{6}$ inside a γ-complex; the positive and negative tetrahedra of this γ-complex had become almost equal in size to form a distorted cube. The atomic arrangement around $\frac{3}{4} \frac{3}{4} \frac{3}{4}$ had gradually come to resemble a body-centered cube. After examining the structure by means of the symmetry chart, Dr. Samson had suggested that an atom be placed at point b, since the octahedron around that point had become large enough to accommodate an atom. Moreover, the second electrondensity map had indicated that the position c is occupied 30 percent of the time and that for the other 70 percent of the time point c is surrounded by a tetrahedron. Refinement calculations based on such a disordered structure led to no improvement in the agreement index; only the reflections with $\sin \theta$ less than 0.36 were used in these calculations.

At this point we decided to use the full set of three-dimensional data. We started refinement using the weighting function
V() $\alpha \frac{\sqrt{\omega} \mathrm{e}}{1000+0.1 \mathrm{Fo}}$
cell, the asymmetric unit. The minimum observable $F O, E$ min , is
such that the weighting function is approximately that of Hughes (12) (refer to table 2 in part I). From time to time we changed the weighting function to $S_{\omega} \alpha$, but used the one above for most

$$
\frac{\sqrt{(\infty)}}{100+E 0}
$$

of the refinement. Changes of the weighting function seemed to have very little effect on the results.

The firstrefinement cycle based on the full set of data was disappointing. The agreement index at the beginning was $R=0.22$. A few cycles reduced it to $R=0.195$.

A difference map of the (110) plane was calculated; it is shown in figure 8. This map indicates disorder around all four centers. The positions $a, f_{1}{ }^{\prime}, f_{2}{ }^{\prime}, e_{6}{ }^{\prime}, f_{1}, f_{2}$, and e_{6}, in addition to e_{5} and c, appear to be partially occupied. In order to fully describe this kind of disorder, 21 crystallographic positions are needed. Subsequent least-squares refinement cycles of this structure yielded $R=0.155$; the atomic parameters at this stage of the refinement are listed in tables 1 and 2. The refinement was still converging, and the shifts in temperature and population factors indicated that the occupancy of some of the sites was far from being determined.

Refinement of this disordered structure was interrupted because of insufficient information regarding the magnitude of the offdiagonal matrix elements. It seems possible that in a situation like this the omission of the off-diagonal matrix elements may keep the

86
Figure 8. Difference Fourier of the (110) plane. Solid contours at $4,8,12$ and 16 e. \AA^{-3}. Da shed lines $\equiv-4$. \AA^{-3}, dotted line $\equiv-8$ e。 \AA^{-3}.

Table 1

Comparison of trial structures for " $\mathrm{Ni}_{5} \mathrm{Cd}$. ." Atomic parameters and standard deviations. If a position is partially occupied, the percent occupancy is given beside the atomic symbol. Pairs of positions such as e_{6} and e_{6} are used to describe disorder.

Position		$\frac{\text { Ordered }}{16 \text { positions }}$	Disordered		
		17 positions	21 positions		
${ }^{e} 1$	x		-. $0908 \pm .0011$	-. $0897 \pm .0019$	-. $0910 \pm .0011$
	B	$\underset{\mathrm{Ni}}{0.04} \pm 0.4$	$\begin{gathered} 0.96 \\ \mathrm{Ni} \end{gathered} \pm 0.8$	$\underset{\mathrm{Ni}}{0.86} \pm-0.4$	
${ }^{e} 2$	x	$.1658 \pm .0013$	$.1659 \pm .0012$	$.1646 \pm .0014$	
	B	$\underset{\mathrm{Ni}}{0.84} \pm 0.4$	3.90 ∓ 0.4 Cd	$\frac{1.23}{\mathrm{Ni}} \pm 0.4$	
e_{3}	x	$.4063 \pm .0016$	$.4071 \pm .0017$	$.4065 \pm .0015$	
	B	$\underset{\mathrm{Ni}}{2.21} \ddagger 0.6$	$\underset{\mathrm{Ni}}{1.73} \pm 0.6$	$\underset{\mathrm{Ni}}{2.45} \pm 0.5$	
e_{4}	x	. $6706 \pm .0008$	$.6704 \pm .0009$	$.6704 \pm .0008$	
	B	$\underset{\mathrm{Cd}}{1.41} \mp 0.3$	$\underset{\mathrm{cd}}{0.96} \mp 0.2$	$\underset{\mathrm{Cd}}{2.09} \pm 0.3$	
e_{5}	x	$.3115 \pm .0022$	$.3129 \pm .0024$	$.3100 \pm .0021$	
	B	$\underset{\mathrm{Ni}}{3.85} \pm 0.9$	$\underset{\mathrm{Ni}}{1.32} \mp 0.9$	$\begin{gathered} 1.96 \pm 0.8 \\ \mathrm{Ni}, 70 \% \end{gathered}$	
e_{6}	x	$.8260 \pm .0012$	$.8260 \pm .0012$	$.8267 \pm .0010$	
	B	$\frac{3.30}{\mathrm{Cd}} \pm 0.4$	$\underset{\mathrm{cd}}{3.08} \pm 0.4$	$\begin{gathered} 2.44 \\ \mathrm{Cd}, \frac{90}{90} \% \end{gathered}$	
e_{6}	\times			. 8050 ** $\pm .0156$	
	B			$\begin{aligned} & \text { 2. } 00 * \mp 5.3 \\ & \mathrm{Ni}, 10 \% \end{aligned}$	
${ }_{1} 1$	x	$.1138 \pm .0007$	$.1116 \pm .0008$	$.1135 \pm .0007$	
	B	$\underset{\mathrm{Cd}}{2.03} \pm 0.2$	$\underset{\mathrm{Cd}}{1.93 \pm 0.3}$	$\begin{gathered} 1.70 \mp 0.2 \\ \mathrm{Cd}, 88 \% \end{gathered}$	
\sum_{1}	x			$.1672 \pm .0051$	
				$2.00 * \pm 1.7$	
\hat{E}_{2}	\times	$.4206 \pm .0010$	$.4210 \pm .0011$	$.4210 \pm 0.0009$	
	B	4.37 ± 0.4	4.43 ± 0.4	4.46 ± 0.3	
		Cd	Cd	Cd	

Table 1 (continued)

Position	Ordered	Disor	
	16 positions	17 positions	21 positions
f_{3}	$\begin{aligned} & .6479 \pm .0016 \\ & 2.88 \pm 0.6 \\ & \mathrm{Ni} \end{aligned}$	$\begin{aligned} & .6495 \pm .0017 \\ & 2.60 \pm 0.6 \\ & \mathrm{Ni} \end{aligned}$	$\begin{aligned} & .6513 \pm .0014 \\ & 1.86 \pm 0.5 \\ & \mathrm{Ni}, 90 \% \end{aligned}$
$\mathcal{E}_{3}{ }^{\prime}$			$\begin{gathered} .6244 \pm .0065 \\ 2.00 * \pm 2.2 \\ C \mathrm{~d}, 10 \% \end{gathered}$
$\stackrel{5}{4}_{4}$	$\begin{aligned} & .9347 \pm .0010 \\ & 4.32 \pm 0.3 \\ & \mathrm{Cd} \end{aligned}$	$\begin{aligned} & .9343 \pm .0011 \\ & 4.15 \pm 0.4 \\ & C d \end{aligned}$	$\begin{aligned} & .9339 \pm .0009 \\ & 4.56 \pm 0.3 \\ & C d \end{aligned}$
h_{1}	$\begin{aligned} & .1475 \pm .0006 \\ & .0264 \pm .0006 \\ & 2.74 \pm 0.2 \\ & C d \end{aligned}$	$\begin{aligned} & .1472 \pm .0006 \\ & .0261 \pm .0006 \\ & 2.36 \pm 0.2 \\ & \mathrm{Cd} \end{aligned}$	$\begin{aligned} & .1475 \pm .0006 \\ & .0261 \pm .0005 \\ & 2.85 \pm 0.2 \\ & C d \end{aligned}$
h_{2}	$\begin{aligned} & .4059 \pm .0006 \\ & .2731 \pm .0007 \\ & 4.69 \pm 0.3 \\ & C d \end{aligned}$	$\begin{aligned} & .4058 \pm .0007 \\ & .2734 \pm .0007 \\ & 4.00 \pm 0.3 \\ & \mathrm{Cd} \end{aligned}$	$\begin{aligned} & .4059 \pm .0005 \\ & .2732 \pm .0006 \\ & 4.45 \pm 0.3 \\ & C d \end{aligned}$
h_{3}	$\begin{aligned} & .6487 \pm .0005 \\ & .5230 \pm .0005 \\ & 2.05 \pm 0.2 \\ & C d \end{aligned}$	$\begin{aligned} & .6482 \pm .0005 \\ & .5235 \pm .0005 \\ & 1.73 \pm 0.2 \\ & . d \end{aligned}$	$\begin{aligned} & .6483 \pm .0005 \\ & .5233 \pm .0004 \\ & 2.14 \pm 0.1 \\ & C d \end{aligned}$
h_{4}	$\begin{aligned} & .9252 \pm .0005 \\ & .7696 \pm .0005 \\ & 2.94 \pm 0.2 \\ & .9 d \end{aligned}$	$\begin{aligned} & .9254 \pm .0005 \\ & .7693 \pm .0006 \\ & 2.76 \pm 0.2 \end{aligned}$	$\begin{aligned} & .9251 \pm .0004 \\ & .7693 \pm .0005 \\ & 2.84 \pm 0.2 \\ & C d \end{aligned}$
a			$\begin{aligned} & 0,0,0 \\ & 13.3+18.0 \\ & \mathrm{Ni}, 6 \% \end{aligned}$
c		$\begin{aligned} & \frac{1}{2} \cdot \frac{1}{2}, \frac{1}{3} \\ & 1.77 \pm 2.9 \\ & \mathrm{Ni} .30, \mathrm{e}_{5} \end{aligned}$	$\begin{aligned} & \frac{1}{8} \cdot \frac{1}{4}, \frac{1}{7} \\ & 2.38 \pm 2.0 \\ & \mathrm{Cd}, 30 \% \end{aligned}$
b	$\begin{aligned} & \text { ⿻ㅏㄹ, 娄, 훌 } \\ & 10.9 \pm 3.8 \\ & \mathrm{Ni} \end{aligned}$	$\begin{aligned} & \frac{1}{1}, \frac{1}{2}, \frac{1}{2} \\ & 8.92 \pm 3.8 \\ & \mathrm{Ni} \end{aligned}$	$\begin{aligned} & \frac{3}{3}, \frac{1}{2}, \frac{1}{2} \\ & 3.97 \pm 1.8 \\ & \mathrm{Ni}, 80 \% \end{aligned}$

Table 1 (continued)

Position	Ordered	Disordered	
	16 positions	17 positions	21 positions
d	3, $\frac{3}{4}$, $\frac{3}{4}$	$\frac{3}{4}, \frac{3}{4}, \frac{3}{4}$	$\frac{3}{3}, \frac{3}{4}, \frac{3}{4}$
	$\underset{\mathrm{Ni}}{4.65} \pm 2.1$	$\begin{gathered} 4.14 \pm 2.0 \\ \mathrm{Ni} \end{gathered}$	$\begin{gathered} 2.99 \pm 1.6 \\ \mathrm{Ni}, 90 \% \end{gathered}$
Atomic \% Ni	24.5	19.7	23.1
El Fol	50045	53033	49134
$\Sigma \mid \mathrm{Ec}{ }^{\prime}$	49766	53196	47933
N	3234	332	324
R	. 164	. 176	. 155
$\mathrm{\Sigma} \omega \mathrm{EO}_{4}^{\text {¢ }}$ (\%*	145	153	142
	178	198	159
R^{\prime}	. 13	. 17	. 10

N is the number of reflections, of 623 total, in the sums and in least-squares cycle.
$R^{\prime}=\sum u\left(E o^{2}-E c^{2}\right)^{2} / \Sigma \omega o^{2}$

* Shifts led to negative B.
** Shifts made bond distances within tetrahedron less than $2.2 \AA$.
*** On an arbitrary scale.
4 Does not include 18 reflections which have an index greater than 25.

Table 2. Comparison of trial structures and of similar positions.

Table 2 (continued)

Position		Ordered	Disordered	
		16 positions	17 positions	21 positions
f_{4}	x- $\frac{9}{4}$B	. 1847	. 1843	. 1839
		4.32	4.15	4.56
		Cd	Cd	Cd
h_{1}	XzB	. 1475	. 1472	. 1475
		. 0264	. 0261	. 0261
		2.74	2.36	2.85
		Cd	Cd	Cd
h_{2}	$\begin{aligned} & x-\frac{1}{4} \\ & z-\frac{1}{4} \\ & B \end{aligned}$. 1559	. 1558	. 1559
		. 0231	. 0234	. 0232
		4.69	4.00	4.45
		Cd	Cd	Cd
h_{3}	$\begin{aligned} & x-\frac{1}{2} \\ & z-\frac{1}{2} \\ & B \end{aligned}$.1487	. 1482	. 1483
		. 0230	. 0235	. 0233
		2.05	1.73	2. 14
		Cd	Cd	Cd
h_{4}	$\begin{aligned} & \mathrm{x}-\frac{3}{4} \\ & \mathrm{z}-\frac{3}{4} \\ & \mathrm{~B} \end{aligned}$. 1752	. 1754	. 1751
		. 0196	. 0193	. 0193
		2.94	2. 76	2.84
		Cd	Cd	Cd

* Shifts led to negative B.
** Shifts made bond distances in tetrahedron less than $2.2 \AA$.
refinement calculations from converging. With our present computer program we do not have the means of estimating the magnitudes of the off-diagonal terms. Further refinement, therefore, has been postponed to await an adequate program for the IBM 7090 computer which will allow us to carry out full-matrix calculations. Furthermore, we feel that we should be very cautious in interpreting the difference-Fourier map. The small isolated peaks may be due to disorder, but we are rather hesitant in assigning significance to them and will discuss our reasons for this in another section after we have presented pertinent information.

Several atternpts were made to escape the acceptance of a disordered structure through systematic consideration of various kinds of ordered arrangements. The only reasonable trial structures other than those that correspond very closely to the γ-brass type structures were the ones discussed below.
viii) Ordered structures.

The initial structure may be describedin terms of the atom complexes arranged about the four independent centers a, c, b, and d. At center a is a complex of 22 atoms which we have called a σ complex; around center c is a complex of 26 atoms which we have called a γ-complex. The arrangement around b is very much like that around a except that the octahedron is large enough to accommodate
an atom at b such as to produce a complex of 23 atoms. The arrangement around d resembles a body-centered cube and is a 27 atom complex. These four complexes with the cubo-octahedra omitted are shown in figures 11, 12, 13, and 15. A cubo-octahedron is shown in figure 10.

A series of refinement cycles led to convergence with $R \cong 0.175$ and to a structure defined by the parameters listed in tables 1 and 2. The electron-density map calculated on the basis of these parameters is shown in figure 9. This electron-density map and the temperature factors of the nickel atoms at positions e_{1} and e_{2} indicate that the scattering power is the same as for most of the positions to which we have assigned cadmium atoms. The electron-density map also indicates scattering matter at point c and near position $£_{1}$, and rather broad regions of scattering at positions \mathfrak{f}_{2} and \mathfrak{f}_{3}.

We assumed that the occupancy at position e_{2} is cadmium rather than nickel. In view of the relatively short nearest-neighbor distances around position e_{1}, it seemed likely that this position was occupied by nickel atoms, which have a metallic radius about 17 percent smaller than cadmium atoms. This assumption is not in accord with the electron-density map but, on the other hand, the structure is not sufficiently well refined to permit the actual scattering power to be truly represented on the electron-density map. In order to test if the

Figure 9. Electron-density map of the (110) plane. Contours at intervals of 20 e. \AA^{-3}, beginning with 0 e. \AA^{-3}.

Figure 10. A representation of atoms arranged about the vertices of a distorted cubo-octahedron. The atom complexes shown in figures 11, 12, 13, and 15 fit inside this polyhedron.

Figure 11. The atomic arrangement around the points 000 , etc. , defined by position 4a. This 10 -atom complex consists of a tetrahedron and an octahedron.

Figure 12. Atom complexes around the points $\frac{1}{4} \frac{1}{4} \frac{1}{4}$, etc., defined by position 4c. This arrangement of atoms at the vertices of two tetrahedra and one octahedron is also observed in the structure of γ brass.

Figure 13. Arrangement of atoms around the points $\frac{1}{2} \frac{1}{2} \frac{1}{2}$, etc., defined by position 4b. Atoms at the vertices of a tetrahedron and an octahedron surround the atom at point b.

Figure 14. The packing around $\frac{1}{2} \frac{1}{2} \frac{1}{2}$ in more detail.

Figure 15. The arrangement of atoms around $\frac{3}{4} \frac{3}{4} \frac{3}{4}$, etc., resembling a bodycentered cube.

disorder between positions c and e_{5} is real, we assumed a fraction x of a nickel atom at point c and a fraction $1-x$ at position e_{5}. Refinement calculations based on this assumption did not lead to improved agreement. The parameters obtained are given in tables 1 and 2. The atom complexes around the four independent centers are similar to one another. The positions of the atoms of each complex relative to its center can be compared with the aid of table 2 .

There may be intimate coupling between the parameters for positions related to each other by translations of approximately $\frac{1}{4} \frac{1}{4} \frac{1}{4}$, 츨 旁交 or $\frac{3}{4} \frac{3}{4} \frac{3}{4}$. It is possible that our neglect of an eventual coupling may have prevented a proper refinement. The phase angles may accordingly be incorrect by amounts large enough to cause false maxima on the Fourier maps. The peak near position $\hat{\delta}_{7}$ in figure 9 gives the impression that the positions $£_{2}, f_{3}$ and $£_{4}$ have been superimposed on position f_{1}.

Discussion of the Structure

Because of the as yet questionable validity of the maxima that indicate disorder, the structure will provisionally be discussed as if it were ordered. A more detailed discussion will have to await the results of very extensive calculations based on complete matrices.

The assumed ordered atructure is described by the sixteen crystallographically different positions listed in table b The positional
parameters are also included in this table. The interatomic distances calculated on the basis of these parameters are listed in table 3. The distribution of the nickel and cadmium atoms over the occupied positions, as given in table 3, was provisionally assumed on the basis of nearest-neighbor distances. Although the scattering power of the atoms in positions f_{3} and b as indicated by the Fourier map and by the least-squares calculations corresponds at present to nickel, the nearestneighbor distances correspond to cadmium atoms, which have a metallic radius about 20% larger than that of nickel. The short nearestneighbor distances around position e_{1} indicate nickel atoms at that position, whereas the electron-density maps indicate cadmium atome. The assignment of cadmium atoms to position e_{2} is compatible with the electron-density maps. Nearest-neighbor distances indicate the same occupancy for each of the other positions as indicated by the electron-density maps and by the least-squares refinernent. The nearest-neighbor distances may not be reliable indicators of the occupancy reported in metal structures since extremely short bonds, as well as vacancies, have been reported in metal structures. Further more, the uncertainty in the distances is of the order 0.1 or $0.2 \AA$.

The composition of this idealized crystal structure corresponds to $\mathrm{Ni}_{13} \mathrm{Cd}_{85}$ or, roughly, $\mathrm{NiCd}_{6.5}$, and the idealized unit cell contains 392 atoms. The calculated density is $9.12 \mathrm{~g} / \mathrm{cro}^{3}$; the density of nickel

Table 3. Approximate interatomic distances for the assumed ordered structure. Cube edge $=19.6 \AA$. For ligancy 12 the expected distances are $2.49 \AA$ for $\mathrm{Ni}-\mathrm{Ni}, 2.75 \AA$ for $\mathrm{Cd}-\mathrm{Ni}$, and $3.02 \AA$ for $\mathrm{Cd}-\mathrm{Cd}$ (13).

Position Kind of Ligancy Distance Position Kind of Ligancy Distance

Table 3 (continued)

is $8.90 \mathrm{~g} / \mathrm{cm}^{3}$ and of cadmium, $8.65 \mathrm{~g} / \mathrm{cm}^{3}$. Figure 16 is a packing chart drawn for the ordered structure according to table 1. Figure 17 represents the structure and may be easier to follow than figure 16 .

The atoms in the four positions $\varepsilon_{2}, e_{4}, f_{4}$, and h_{4} have ligancy 13; the type of coordination shell around these four positions is illustrated in figure 18a. The atoms in the five positions $£_{1}, h_{1}, e_{2}, h_{2}$, and h_{3} have ligancy 12; the coordination polyhedra around these positions are irregular. However, the atoms at position e_{2} are surrounded by atoms at the vertices of a nearly regular icosahedron. The atoms in the three positions f_{3}, e_{3}, and e_{6} have ligancy 11 , and their coordination shells are illustrated in figures 18 b and 18 c . Around the three positions e_{1}, e_{5}, and b are 10 ligands, and around point d are 8 ligands.

Future Experimental Work
The determination of an accurate value of the cube edge was postponed until all the intensity data had been measured. In the meantime, the crystal deteriorated either due to corrosion or due to a phase transformation. A number of other crystals which had been mounted earlier had undergone the same deterioration.

Supplementary investigations to determine the homogeneity range of this phase and to determine how the cube edge and density vary with composition will soon be started. At the time the above

Figure 16. Packing chart of the (110) plane defining all 16 positions.

Figure 17. A schematic representation of the atom complexes and of the packing in the asymmetric unit. A circle represents an atom on the (110) plane. The end of a straight line or the intersection of two lines not encircled represents two atoms, one above and one below the (110) plane. A tetrahedron is outlined by a triangle, an octahedron by a rhombus, and a cubo-octahedron by straight lines.

Figure 18. Some illustrations of irregular coordination polyhedra.

18a) For ligancy 13.
The coordination shell around f_{2}, f_{4}, e_{4}, and h_{4}. Ideally, one atom spreads apart two atoms of an icosahedron to become bonded to the central atom.

18b) For ligancy 11.
The coordination shell around f_{3}. Ideally, one atom has replaced two atoms of an icosahedron.

18c) For ligancy 11.
The coordination shell around e_{3} and e_{6}.

investigations were done, facilities to carry out this kind of work were not available. A laboratory has now been set up which will enable us to conduct adequate experimental work.

Future Least-Squares Refinements
Refinement of the structure was postponed because of inadequate computing facilities. An adequate program has to allow a solution of the complete set of normal equations. Such a program is being written for the IBM 7090 computer and is expected to be available in a few months.

During the present work we have solved for the temperatureand population-factor shifts in three different ways. The first method took into account the coupling of each temperature factor with the scale factor and with all the other temperature factors, and treated the population factors as being completely independent. The second method took into account coupling between the temperature factor and the population factor of the same atom only; the shifts were based on a 2×2 matrix. The third method was like the second one with the scale factor added to couple with all temperature factors but not with any population factors. Usually the first and second methods gave popula -tion-factor shifts in the same direction, but the temperature-factor shifts were often in opposite directions. At times, both shifts from the third method had signs opposite to those of the shifts from one of the other two methods.

Erom this we can infer that some of the off-diagonal terms representing coupling between atomic coordinates may be large. All along we have been especially concerned about coupling between atoms separated by translations of $\frac{2}{4} \frac{1}{4} \frac{2}{4}$ or $\frac{1}{2} \frac{1}{2} \frac{2}{2}$ or $\frac{9}{4} \frac{3}{4} \frac{3}{4}$. In table 4 we have given the geometrical part of the structure expressions for an atom with coordinates $x_{i}, 00$ and for atoms related by translations of $\frac{1}{4} \frac{1}{4} \frac{\pi}{4}$, $\frac{1}{2} \frac{1}{2} \frac{1}{2}$, and $\frac{a}{4} \frac{a}{4} \frac{3}{4}$; in this table we have also indicated $\frac{\partial A_{i}}{\partial x_{i}}$. The derivative with respect to the temperature factor is the structurefactor expression multiplied by $\frac{-\sin ^{2} \theta}{\lambda^{2}}$.

From table 4 we can see that for the reflections with
$h+k+\ell=4 n$ it makes no difference if an atom is at $x 00$ or if it has been translated. Likewise, in a Fourier synthesis the structure would appear as a composite of the structures around the origin and around all the other centers. Reflections of the type $h+k+\ell=4 n+2$ can differ entiate atoms that are separated by a translation of $\frac{7}{4} \frac{1}{4} \frac{1}{6}$ or $\frac{3}{4} \frac{3}{4} \frac{3}{4}$, but not by $\frac{1}{2} \frac{1}{2} \frac{1}{c}$. Both types of reflections $h+k+\ell=4 n+1$ and $h+k+2=4 n+3$ are sensitive to all of the translations, but taken together as the type $h+k+2=2 n+1$, they can differentiate atoms that are separated by a translation of $\frac{1}{3} \frac{1}{⿱ 宀} \frac{1}{8}$. The off-diagonal terms representing coupling between atomic coordinates have the same form as the off-diagonal terms that are important in the refinement of the temperature factors; therefore, they have to be important for the refinement of atomic coordinates. On a purely statistical basis,

Table 4. Geometrical structure factors and derivatives with respect to x for atoms at $\times 00+\left(000, \frac{1}{4} \frac{1}{4} \frac{1}{4}, \frac{1}{2} \frac{1}{2} \frac{1}{d}\right.$, $\left.\frac{3}{4} \frac{3}{4} \frac{3}{4}\right)$ 。

Let $C=8(\cos 2 \pi h x+\cos 2 \pi k x+\cos 2 \pi \ell x)$, $S=8(\sin 2 \pi h x+\sin 2 \pi k x+\sin 2 \pi \ell x)$. $S^{\prime}=16 \pi(h \sin 2 \pi h x+k \sin 2 \pi k x+\ell \sin 2 \pi \ell x)$, and $C^{\prime}=16 \pi(h \cos 2 \pi h x+k \cos 2 \pi k x+\ell \cos 2 \pi \ell x)$.

Geornetrical structure factors.

Class of
reflections

$h+k+\ell$	000		$\frac{1}{4} \frac{1}{4} \frac{1}{4}$	$\frac{1}{3} \frac{1}{2} \frac{1}{2}$	$\frac{3}{4} \frac{3}{4} \frac{3}{4}$
$4 n$	C	C	C	C	
$4 n+1$	C	S	$-C$	$-S$	
$4 n+2$	C	$-C$	C	$-C$	
$4 n+3$	C	$-S$	$-C$	S	

Derivatives with respect to x .

$h+k+\ell$	000	$\frac{\frac{1}{4}}{} \frac{\frac{1}{4}}{} \frac{3}{4}^{x 00+}$	$\frac{1}{2} \frac{1}{2} \frac{1}{2}$	$\frac{3}{4} \frac{3}{4} \frac{3}{4}$
$4 n$	$-S^{\prime}$	$-S^{\prime}$	$-S^{\prime}$	$-S^{\prime}$
$4 n+1$	$-S^{\prime}$	C^{\prime}	S^{\prime}	$-C^{\prime}$
$4 n+2$	$-S^{\prime}$	S^{\prime}	$-S^{\prime}$	S^{\prime}
$4 n+3$	$-S^{\prime}$	$-C^{\prime}$	S^{\prime}	C^{\prime}

however, the terms correlating the different atoms are expected to be zero; there should be no coupling. We anticipate that the awaited prograrn which will calculate off-diagonal matrix elements will enable us to analyze the interactions between parameters in more critical detail.

If one class of reflections happens to include systematic errors or if itis assigned a higher weight in the least-squares refinement than another class, then one may expect false peaks to occur in the electron-density maps. We are, therefore, very hesitant to accept di sorder.

During the refinement of the assumed ordered structure we collected $\Sigma!$ Fol, $5!\mathrm{Fc} \mid$, and $\Sigma \mid \Delta \mathrm{F}!$ as a function of sin 0 . In general, we found that the best agreement was within the range of $\sin \theta=0.2$ to 0.3 . The ratio EOL/E'FC! as well as the agreement indices, gradually increased with $\sin \theta$. This seemed to indicate that the temperature factors and the scale factor were too large, but the least-squares process tended to increase them still more. Invoking disorder by splitting a position to give two positions approximately $0.5 \AA$ apart should improve the agreement of the high order reflections without significantly affecting the low order region. To split the positions should reduce the temperature factor 3 which will be reflected in larger Ec's of the high order reflections and should also enable the least-squares process to adjust these positions to give even higher Fc's.

113

Summary
We have found that the crystal structure of " $\mathrm{Ni}_{5} \mathrm{Cd}_{21}$ " is very complex. The structure is certainly not of the γ-brass type as reported by other investigators.

The investigation is far from complete, but the general atomic arrangement seems to be essentially correct.

Table 5. Observed structure factors. The column headings are

k, l, and $F_{0} ; F_{0}$ is scaled for approximately one -

fourth of the unit cell. Asterisks indicate

less-than reflections.

Table 5.(2)

1416	0082*	0606	0255	1115	0075*	1115	0082*		0090
1418	0087*	C5 08	0114	1117	0067*	1117	0069*	1218	0072*
1420	0090*	0510	0242	1119	0068*	1119	0072*	1220	0087*
1424	0082*	0512	0562	1121	0075*	1121	0075*	1222	0090
1616	0105	0514	0087	1123	0075*	1123	0077*	1414	0080
1518	0072*	0515	0200	1313	0205	1313	0085	1416	0073*
1520	0075*	0618	0062*	1315	0105	1315	0067*	1418	0075*
1522	0079*	0620	0092	1317	0070*	1317	0083*	1420	0078*
1624	0092*	0522	0107	1319	0072*	1319	0074*	1422	0083*
1818	0087*	0524	C070*	1323	0080*	1321	0075*	1616	c093
2020	0107	$06 \cdot 26$	0073*	1325	0082*	1323	0082*	1618	0077*
2222	0082*	0623	0077*	1515	0069*	1515	0072*	1818	0135
H 05		08.08	0357	1517	0072*	1517	0075*	1820	0083*
0505	0285	0810	0143	1519	0073*	1519	0077*	H 13	
0507	0050*	0512	0167	1521	0077*	1521	0078*	1313	0090
0509	0047*	0814	0152	1717	0075*	1717	0069*	1315	0082*
0511	0158	0816	0072*	1719	0077*	1719	0080*	1317	0085*
0513	0157	0818	0063*	1919	0077*	1721	0080*	1319	0082
0515	0175	0820	0067*	H 08		1919	0075*	1321	0105
0517	0098	1010	0069	$08 \mathrm{C8}$	0772	H 10		1515	0084*
0519	0115	1012	0062*	0810	0210	1010	0165	1519	0079*
0521	0065*	1014	0064*	0812	0140	1012	0057*	1719	0082*
0523	0069*	1016	0302	0814	0057*	1014	0062*	1919	0085*
0525	0070*	1018	0082*	0816	0184	1016	0168	H 14	
0707	0185	1020	0070*	0818	0193	1018	0069*	1414	0117
0709	0058*	1022	0094*	0820	0075	1020	0090*	1415	0085*
0711	0114	1212	0132	0822	0097	1022	0092*	1418	0089*
0713	0087	1214	0135	0824	0114	1212	0148	1420	0247
0715	0105*	1216	0092	0826	0120	1214	0127	1616	0072*
0717	0060*	1218	0245	0828	0079*	1216	0095	1818	0077*
0719	0113	1220	0114*	1010	0130	1218	0087*	H 15	
0721	0067*	1222	0187	1012	0092	1220	0075*	1515	0085*
0723	0072*	1224	0079*	1014	0062*	1222	0115*	1517	0085*
0909	0162	1414	0055*	1016	0142	1414	0069*	1519	0085*
0911	0075	1416	0097*	1018	0180	1416	0087*	1521	0085*
0913	0062*	1418	0115	1020	0070*	1418	0094*	1717	0085*
0915	0093	1420	0090*	1022	0117*	1420	0115	1719	0085*
0917	0055*	1424	0083*	1212	0065*	1422	0080*	H 16	
0919	0070*	1615	0077*	1214	0105	1515	0075*	1616	0128*
0921	0072*	1618	0110	1216	0112	1618	0077*	1s 18	0077*
0923	0077*	1620	0077*	1218	0107	1620	0079*	1620	0079*
1111	0135	1622	0140	1220	0072*	1522	0115*	1s 22	0082*
1113	0092	1818	0140	1222	0095*	1818	0090*	1524	0118*
1115	0065*	1820	0112*	12.24	0125*	2020	0079*	1818	0099*
1117	0064*	1822	0082*	1414	0322	H 11		2020	0082*
1119	0084*	1824	0147	1416	C075*	1111	0098	H 20	
1121	0090	2020	0075*	1418	0097	1113	0060*	2020	0202
1123	0075*	H 07		1420	0075*	1115	0075		
1313	0165*	0707	0357	1422	0112*	1117	0067*		
1315	0070*	0709	0045*	1424	0083*	1119	0095		
1317	0070*	0711	0107	1616	0164	1121	0075*		
1319	0075*	0713	C052*	1618	0107	1123	0077*		
1323	0080*	0715	0057*	1620	0109*	1313	0062		
1325	0082*	0717	0080	1818	0112	1317	0075*		
1515	0065*	0719	0127	1820	0115	1319	0075*		
1517	0075*	0721	0080	2020	0150	1321	0080*		
1519	0090*	C7 23	0069*	H 09		1323	0082*		
1521	0077*	0909	0203	0909	0094*	1515	0069*		
1717	0059*	0911	0055*	0911	0057*	1517	0082*		
1719	0075*	0913	0057*	0913	0063*	1519	0099*		
1721	0079*	0915	0087*	0915	0075*	1521	0087*		
1723	0082*	0917	0098	0917	0075*	1717	0075*		
1725	0085*	0919	C067*	0919	0070*	1919	0075*		
1919	0075*	0921	0070*	0921	0072*	H 12			
2121	0078*	1111	0060*	1111	0067	1212	0404		
H 06		1113	0095	1113	0062*	1214	0100		

FART III
" $\mathrm{Ni}_{5} \mathrm{Zn}_{21}{ }^{\mathrm{H}}$

Introduction

The intermetallic compounds $\mathrm{Fe}_{3} \mathrm{Zn}_{10} 0^{\mathrm{Ni}_{3} \mathrm{Zn}_{10}}$, and $\mathrm{Mn}_{3} \mathrm{Zn}_{10}$, commonly referred to as the Γ phases, are reported in the literature to be cubic with a cell edge of approximately $a_{0}=8.8 \AA$ and space group $O_{h}{ }^{9}$. The structure proposed by Osawa and Ogawa (1) has been generally accepted and is described in handbooks such as Fearson, Handbook of Lattice Spacings and Structures of Metals (2); it has been assigned the type number 108_{1}. Hume-Rothery (3) and Ekman (4) assumed that these compounds represented so-called electron-concentration shases with an electron-to-atom ratio of $21 / 13$ and that, accordingly, the actual compositions were $E e_{5} \mathrm{Zn}_{21}$, $\mathrm{Ni}_{5} \mathrm{Zn}_{21}$, and $\mathrm{Mn}_{5} \mathrm{Zn}_{21}$, the transition metals being as signed the valency zero. Although the correctness of these assumptions has not been established through accurate experiments, the names $\mathrm{Fe}_{5} \mathrm{Zn} 21, \mathrm{Ni}_{5} \mathrm{Zn}_{21}$, and $\mathrm{Mn}_{5} \mathrm{Zn}_{21}$ shall be provisionally retained. Dr. Samson felt that the structure proposed by O sava and Ogawa (1) was not in accord with the fundamental structural principles that should apply in these three compounds. He, therefore, started a reinvestigation.

It proved to be extremely difficult to prepare iron-zinc and manganese-zinc compounds, whereas nickel-zinc phases were easy to obtain. The fir st compound to be investigated was, therefore, $\mathrm{Ni}_{5} \mathrm{Zn}_{21}$.

Dr. Samson and his assistant, Dr. K. Lautsch, obtained a complete three-dimensional set of intensity data from an almost spherical single-crystal fragment of about 10 microns in diameter. Because of the very small size, copper radiation was used. Absorption correction was not necessary. The cube edge as determined from the diffraction maxima of this crystal was $a_{0}=8.897 \AA$. These maxima had been recorded on a film placed in the asymmetric position in a precision Weissenberg camera of 10 cm diameter.

Since I was very much interested in this compound, Dr. Samson left to me the further prosecution of this work.

Experimental Work

The intensity data as supplied by Dr. Samson and Dr. K.
Lautsch were processed by me. Lorentz and polarization corrections were applied and the data obtained from various sets of Weissenberg films were correlated with one another. The data for those reflections that had been recorded on n layers were given an external weight of ${ }^{\prime \prime} e^{\prime}=1.0+0.5(n-1)$. However, depending on a subjective evaluation of the quality of the data, " e ' e was modified to give an overall external weight we The evaluation was based mainly on the resolution of the α_{1}, α_{2} doublet and on the agreement between different observations of the same reflection. The weights used in the least-squares refinements were $n \propto \frac{{ }^{\omega} \mathrm{e}}{40+F_{0}}$.

The Trial Structure
i) Space group.

The single-crystal X-ray diffraction patterns obtained from $\mathrm{Ni}_{5} \mathrm{Zn}_{21}$ were very similar to those of $\mathrm{Ag}_{5} \mathrm{Zn} 8$, the structure of which was found to be the same as that of γ brass, which is body-centered cubic, space group Td^{3}. The structure of $\mathrm{Ag}_{5} \mathrm{Zn}_{8}$ was refined by Dr. Marsh in 1954 (5). He very kindly made his photographs available to me for comparison.

The Weissenberg photographs of $\mathrm{Ni}_{5} \mathrm{Zn}_{21}$ showed, however, in addition to the reflections of the kind $h+k+\mathscr{L}=2 n$, three diffuse spots corresponding to the reflections 014, 122, and 113. The nature of these reflections,which correspond to a primitive lattice, has not been established. These reflections appear to have their origin in very small domains of primitive unit cells in the crystal.

If the diffuse reflections are ignored, the space groups which most likely apply to $\mathrm{Ni}_{5} \mathrm{Zn}_{21}$ are $\mathrm{T}_{\mathrm{d}}{ }^{3}$ and $\mathrm{O}_{\mathrm{h}}{ }^{9}$.
ii) The derivation of the structure.

The atomic arrangement proposed by Osawa and Ogawa (1) was, as expected, quickly disproved by structure-factor and leastsquares calculations. Symmetry charts of the (110) plane for the space groups $O_{h}{ }^{9}$ and $T_{d}{ }^{3}$ were then extensively explored. No reasonable structural motif could be found by assuming space group $\mathrm{O}_{\mathrm{h}}{ }^{9}$.

The next step was to start out with an atomic arrangement that corresponded closely to that of. γ brass (space group Td^{3}).

A few least-squares refinement cycles based on such an arrangement led to convergence with an agreement index of $R=0.28$. An electron-density map of the (110) plane, calculated on the basis of the structure given by the least-squares process, indicated that the vertices of the small tetrahedron, position e_{2}, around the origin of the cube, were occupied only about 60 percent of the time and that
there was an atom at the origin, position a, the remaining 40 percent of the time (see figure 1). Structure-factor and least-squares calculations carried out for such a disordered atomic arrangement resulted in a drastic improvement of the agreement index which dropped to $R=0.136$; the atomic parameters at this stage of the refinement are given in table 1. The complete list of observed and calculated structure factors is given in table 2.

Additional refinement cycles were carried out with the application of various types of weighting functions, but did not lead to any significant shifts in the parameters nor to an improved agreement. In all of these calculations the sum of the fractional occupancies of the two positions, a and e was kept equal to unity. Electron-density maps calculated in the course of these refinements differed only insignificantly from one another. However, they always indicated that the sum of the fractional occupancies of the positions a and e_{2} was larger than unity.

Discussion of the Structure
The bond distances are given in table 3. The bond numbers were calculated with the use of the equation (6)

$$
D_{n}=D_{1}-0.6 \log n
$$

where D_{1} has been taken as $2.31 \AA$ for a $N i-N i$ bond, $2.37 \AA$ for a $\mathrm{Ni}-\mathrm{Zn}$ bond, and $2.43 \AA$ for a $\mathrm{Zn}-\mathrm{Zn}$ bond (6).

Table 1

Refined atomic coordinates, temperature factors, and population factors

Kind of atom	Position	Cccupancy	Coordinates	Temperatur factor
Zn	2a, 000, 글출	43\%	---	0.07 ± 1.09
Ni	$8 e_{2}, \mathrm{XXX}, \mathrm{etc}$.	57\%	$x_{e_{2}}=.1021 \pm .0035$	0.57 ± 0.44
Ni	$8 e_{1}, \mathrm{XXX}, \mathrm{etc}$.	100\%	$x_{e_{1}}=.3332 \pm .0028$	3.27 ± 0.50
Zn	$12 f_{1}, \times 00$, etc.	100\%	$x_{f_{1}}=.3462 \pm .0017$	2.98 ± 0.30
Zn	24h1, XXZ, etc.	100\%	$\begin{aligned} & x_{h_{1}}=.3035 \pm .0010 \\ & z_{h_{1}}=.0471 \pm .0010 \end{aligned}$	2.40 ± 0.17

Table 2

Observed and calculated structure factors. The column headings are k, ℓ, Fo and Fc.

$h=0$				$h=1$			
0	0	-	1362	1	2	30	43
0	4	91	99	1	4	274	331
0	6	213	249	1	6	57	44
0	8	91	101	1	8	35	24
0	10	87	91	1	10	72	50
1	1	28	12	2	3	62	79
1	3	72	92	2	5	59	53
1	5	75	75	2	7	151	152
1	7	59	49	2	9	40	45
1	9	62	59	2	11	41	36
1	11	52	41	3	4	50	50
2	2	19	29	3	6	121	129
2	4	27	19	3	8	37	29
2	6	63	50	3	10	28	30
2	8	106	32	4	5	43	40
2	10	59	52	4	7	140	131
3	3	334	586	4	9	56	40
3	5	60	60	5	6	67	67
3	7	80	74	5	8	42	39
3	9	73	40	5	10	60	79
3	11	28	29	6	7	<32	31
4	4	78	76	6	9	32	31
4	6	77	74	7	8	43	53
4	8	38	24				
4	10	19	9	h			
5	5	174	172				
5	7	32	20	2	2	149	186
5	9	35	35	2	4	102	113
6	6	157	150	2	6	61	65
6	8	<32	0	2	8	69	73
7	7	16	5	2	10	97	93
7	9	<10	16	3	3	121	151
8	8	79	98	3	5	61	51
				3	7	80	75
				3	9	59	52
				4	4	123	124
				4	6	63	64
				4	8	<37	22

Table 2 (continued)

$\mathrm{h}=2$ (continued)				$h=5$			
4	10	50	31	5	6	<27	15
5	5	71	78	5	8	17	17
5	9	38	30	6	7	40	33
6	6	114	118				
6	8	33	21	$h=6$			
7	7	37	12				
8	8	<9	5	6	6	108	102
$h=3$							
3	4	87	85				
3	6	194	193				
3	8	69	54				
3	10	< 44	28				
4	5	65	50				
4	7	48	40				
4	9	31	31				
5	6	58	46				
5	8	106	88				
6	7	<32	7				
6	9	69	77				
7	8	<19	17				
$\mathrm{h}=4$							
4	4	323	291				
4	6	65	56				
4	8	51	43				
4	10	<9	29				
5	5	55	41				
5	7	56	45				
5	9	45	50				
6	6	41	40				
6	8	26	21				
7	7	103	97				

Table 3

Bond distances and bond numbers in $\mathrm{Ni}_{5} \mathrm{Zn}_{21}$.

Position	Ligand	Bond distance (\AA)	Total bond number ${ }^{3}$
Znfa)	$4 \mathrm{Ni}\left(\mathrm{e}_{1}\right)$	2.57	1.87
	$6 \mathrm{Zn} \mathrm{ff}_{1}$)	3.08	. 50
	10		2.37
$\left.\mathrm{Ni}+\mathrm{C}_{2}\right)$		2.57	1.11
	$3 \mathrm{Nife} \text {) }$	2.53	1.29
	$3 \mathrm{Zn}\left(\mathrm{f}_{1}^{1}\right)$	2.52	1.69
	$3 \mathrm{Zn}_{n}+\mathrm{h}_{1}$)	2.58	1.34
	12		5.43
Nife ${ }_{1}$)	\{ 17 n (a)	2.57	. 46
	(or 3Nife,	2.53	1.29
	$3 Z n\left(-i^{2}\right)$	2.57	1.38
	$3 Z n\left(h_{1}^{1}\right)$	2.57	1.38
	$3 Z n\left(-h_{1}^{1}\right)$	2.57	1.38
	10 or 13		4.60 or 5.43
$2 \mathrm{n}\left(\mathrm{f}_{1}\right)$	$\{12 n+a)$	3.08	. 08
	lor 2Nife,	2.52	1.12
	$\left.2 \mathrm{Ni}+\mathrm{e}_{1}^{2}\right)$	2.57	. 92
	$42 \mathrm{n}\left(\mathrm{h}_{1}^{1}\right)$	2. 76	1.13
	$2 \mathrm{Zn}\left(\mathrm{h} \frac{1}{1}\right.$)	3.05	. 18
	$22 n+h)$	2.65	. 86
	$1 \mathrm{Zn}\left(\mathrm{S}_{1}\right)$	2.74	. 30
	12 or 13		3.47 or 4.51

$\mathrm{Zn}\left(\mathrm{~h}_{1}\right)$	$\left\{\begin{aligned} & \text { nothing } \\ \text { or } & \left.1 \text { Nife }_{2}\right) \\ & 1 \text { Nife } \\ & 1 \text { Nife } \end{aligned}\right)$	$\begin{aligned} & 2.58 \\ & 2.57 \\ & 2.57 \\ & 2.76 \\ & 2.65 \\ & 3.05 \\ & 2.72 \end{aligned}$	$\begin{array}{r}.45 \\ .46 \\ .46 \\ .56 \\ .43 \\ .09 \\ 1.05 \\ \hline .05\end{array}$
	11		3.05

One may describe this disorder as if it were actually due to the presence of three kinds of unit cells in the crystal. One kind of cell may contain an atomic arrangement identical to that of γ brass. A second kind may be described as a modified γ brass structure in which the small tetrahedra around 000 and 흘 흉 $\frac{1}{6}$ have been replaced by an atom at 000 and $\frac{1}{2} \frac{1}{2} \frac{3}{3}$. The third kind may also be described as a modified γ brass structure in which the small tetrahedron around
 unit cells are body centered, and we call these γ, γ and 0,0 . The third kind of unit cell is primitive and is called $0 . \gamma$.

We cannot describe the actual distribution of these three kinds of unit cells within our crystal. However, the diffuse spots referred to earlier and corresponding to reflections from a primitive cell may be due to small domains of adjacent primitive cells just described. The diffuseness indicates that these domains are less than 100 unitcube edges in length. A quantitative evaluation of this phenomenon may be made later.

The Diffuse Reflections

We calculated, but only very roughly, which reflections should be observed from the domains of primitive cells. We assumed that the primitive cell is body centered with the exception of 4 atoms at the vertices of the small tetrahedron around 000 and an atom at $\frac{1}{3} \frac{1}{2} \frac{1}{3}$.

Structure factors were calculated on this basis for reflections of the type $h+k+\boldsymbol{l}=2 n+1$. We only point out that the three observed diffuse reflections are among the nine reflections having the largest calculated structure factors (see table 4).

Structure-factor calculations for the disordered structure
For the sake of simplicity, let positions a and e_{2} each have 50 percent occupancy. Furthermore, let the crystal be a twin of two crystals of equal size and shape having exactly the same orientation. Let one of the twins be a γ, γ type and the other an 0,0 type, which we have defined above.

The structure factor expression which we have used for our disordered, or composite, crystal is

$$
E_{c}=\sqrt{\left(A_{s}+A_{e_{2}}+A_{a}\right)^{2}+\left(B_{s}+B_{e_{2}}\right)^{2}}
$$

where A_{s} and B_{g} signify the contributions of positions e_{1}, f_{1} and h_{1}. Let A_{s}, B_{s}, and $B_{e_{2}}$ be equal to zero. We consider two
cases:

$$
\text { 1) } A_{a}=A_{e_{2}} \text { and 2) } A_{a}=-A_{2} \text {. }
$$

In the first case we would calculate for a composite crystal

$$
F c=\sqrt{\left(A_{a}+A_{e_{2}}\right)^{2}}=\sqrt{\left(2 A_{a}\right)^{2}}=2 A_{a}
$$

and for the twin crystal, where position a is fully occupied in one half of the crystal and position e_{2} in the other half,

Table 4

Diffuse reflections. The nine reflections most likely to be observed and their structure factors calculated on the basis of a greatly simplified model.

$\frac{\mathrm{hk} \mathrm{\ell}}{005}$	$\frac{\mathrm{Fc}}{75}$	Eo
014	64	--
223	61	23
115	53	-
001	49	-
003	49	-
122	46	9
113	45	15
016	-	-
next largest		
227		

$F c=\sqrt{\frac{1}{3} F_{0,0}^{2}+\frac{1}{2} F_{Y, \gamma}^{2}}=\sqrt{\frac{3}{2}\left(2 A_{a}\right)^{2}+\frac{1}{3}\left(2 A_{e_{2}}\right)^{2}}=2 A_{a}$
The two results are the same. However, for the second case where $A_{a}=-A_{e_{2}}$, we would calculate for a composite crystal

$$
F c=\sqrt{\left(A_{a}+A_{e_{2}}\right)^{2}}=\sqrt{\left(A_{a}-A_{e_{2}}\right)^{2}}=0
$$

but for the twin crystal,

$$
E c=\sqrt{\frac{2}{2}\left(2 A_{a}\right)^{2}+3\left(-2 A_{a}\right)^{2}}=2 A_{a}
$$

If our crystal contains small crystallites or domains of a significant size, it is obvious that our agreement is bound to be poor and that we cannot expect our electron-density maps to be correct.

References (PartI)

1. J. H. Richards and E. A. Hill, J. Am. Chem. Soc. 81, 3484 (1959).
2. E. A. Hill and J. H. Richards, J. Am. Chem. Soc., 83, 3840-3846 (1961).
3. E. A. Hill and J. H. Richards, J. Am. Chem. Soc., 83, 4216-4221 (1961).
4. R. E. Carter, Fh. D. Thesis, California Institute of Technology (1962).
5. D. Hall, Fh, D. Thesis, California Institute of Technology (1963).
6. J. A. Trotter, Acta Cryst., 11, 355-360 (1958).
7. J. B. Nelson and D. P. Riley, Proc. Phys. Soc., 57, 160177 (1945).
8. J. Berghuis, I. J. Haanappel, M. Potters, B. O. Loopstra, C. H. MacGillavry and A. L. Veenendall, Acta Cryst., 8, 478-483 (1955).
9. J. A. Hoerni and J. A. Ibers, Acta Cryst., 7, 744-746 (1954).
10. L. H. Thomas and K. Umeda, J. Chem. Phys., 24, 293-305 (1957).
11. C. H. Dauben and D. H. Templeton, Acta Cryst. , 3, 841 (1955).
12. R. McWeeny, Acta Cryst., 4, 513-519 (1951).
13. W. Cochran, Acta Cryst., 1, 138-142 (1948).
14. A. Hybl, Ph. D. Thesis, California Institute of Technology (1961).
15. E. W. Hughes, J. Arn. Chern. Soc., 63, 1737-1752 (1941).
16. B. D. Sharma, private communication.
17. G. L. Hardgrove and D. H. Templeton, Acta Cryst. , 12, 28-32 (1959).
18. J. D. Dunitz, L. E. Orgel, and A. Rich, Acta Cryst. , 9, 373-375 (1956).
19.

D. M. Blow, Acta Cryst. , 13, 168 (1960).
20. L. Pauling, The Nature of the Chemical Bond, (1960), 3rd ed.

Ithaca: Cornell University Press.
a) pp. 385-388
b) pp . 417-421
c) p. 403, table 11-1
21. D. Seus, Ph. D. Thesis, Inorganic Institute of the Technical University of Munich (1955).
22. J. A. Ibers and R. G. Snyder, Acta Cryst., 15, 923-930 (1962).

References (Part II)

1. G. Voss, Z. anorg. Chem. 57, 69-70 (1908).
2. W. Ekman, Z. physik. Chem., B12, 57-77 (1931).
3. C. E. Swartz and A. J. Fhillips, Trans. AIME, 111, 333-336 (1934).
4. F. Lihl and E. Buhl, Z. Metalliunde, 35, 151-152 (1943).
5. L. Pauling, American Scientist, 43, 285 (1955).
6. S. Samson, private communication of work to be published.
7. International Tables for X-ray Crystallography, Vol. I (1952). Birmingham: Kynoch Press.
8. S. Samson, Acta Chem. Scand. , 3, 809-834 (1949).
9. L. H. Thomas and K. Umeda, J. Chem. एhys., 26, 293-305 (1957).
10. R. E. Marsh, Acta Cryst. . 7, 379 (1954).
11. A. J. Bradley and C. H. Gregory, Phil. Mag. 12, 143-162 (1931).
12. E. W. Hughes, J. Arn. Chem. Soc., 63, 1737-1752 (1941).
13. I. Fauling, The Nature of the Chemical Bond, (1960), 3rd ed.

Ithaca: Cornell University Fress. p. 403, table 11-1,

References (Part III)

1. A. Osawa and Y. Ogawa, Z. Krist. , 68, 177-188 (1928).
2. W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, (1958). New Xork Fergamon Fress.
3. W. Hume-Rothery and G. V. Raynor, The Structure of Metals and Alloys, (1956), London: The Institute of Metals.
4. W. Ekman, Z. physik. Chem. B12, 57-77 (1931).
5. R. E. Marsh, Acta Cryst. , 7. 379 (1954).
6. L. Pauling, The Nature of the Chemical Bond, (1960), 3rd ed.. Ithaca: Cornell University Press. pp. 400-403.
7. I propose that the inherent symmetry of the bond orbitals of the metal atom in a sandwich compound is a significant factor in determining the symmetry of the sandwich compound and that the metal-ring bonding itself is more important than van der Waals' forces between the rings in imposing stereospecifity on the rotational configuration.

Authors of review articles $(1,2)$ have not considered the symmetry of the metal orbitals as playing any role in determining the molecular symmetry of sandwich compounds. I quote P. L. Pauson (la):

Perrocene crystallizes in the monoclinic spacegroup P2 $/ \mathrm{C}$ with two molecules in the unit cell. Hence the metal atom lies at a center of symmetry both within the unit cell and within the molecule. The chromium atom in the cubic crystals of bis-benzenechromium must also constitute a molecular center of symmetry. This leads to the opposed conformation of the rings in the latter and to the staggered conformation in ferrocene, but the analogous dicyclopentadienylruthenium and dicyclopentadienylosmium have the opposed conformation in their orthorhombic crystals. One reason for this difference from ferrocene may be the larger size of ruthenium and osmium which reduces the repulsion between hydrogen atoms attached to different rings.

And I quote Cotton and Wilkinson (2a):
It is interesting to note that in contrast to ferrocene, which has the staggered conformation in the crystal, ruthenocene is eclipsed. This difference is due to differences in the lattice forces and/or to

> smaller van der Waals' forces when the rings are farther apart. It may be noted that in di(π-indenyl)iron, the benzene rings are in the gauche position, this form again being stabilized in the crystal by crystal forces or by weak van der Waals' forces between the atoms of the six-membered rings ($3.43 \&$ apart). As with the other π-cyclopentadienyl compounds, in solution or in the vapor, the rings are probably freely rotating in the indenyl compounds, or nearly so.

And further on (2b):
It is therefore significant that ruthenocene has recently been found to exist in the eclipsed ($D_{5 h}$) configuration; dibenzenechromium also exists in an eclipsed configuration in the crystal. This seems to indicate (1) that the configuration is determined mainly by lattice forces or (2) that the configuration in $\left(-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}$ is determined by small van der Waals ${ }^{\text {forces }}$ which become insignificant when the rings are further apart as they are in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ru}$ or (3) a combination of these factors. What thése results would appear to contradict clearly is the idea that the metal-ring bonding itself, presumably the same in essential features in both compounds, imposes any stereospecificity on the rotational configuration.

My proposal is in direct conflict with the last sentence quoted.

The data pertinent to the discussion that follows are presented
in table 1. I shall use Pauson's nomenclature.

In both reviews the authors have implied that ferrocene is staggered because of repulsion between the atoms in different rings. I assert that this repulsion is secondary to some other phenomenon; my assertion rests on the observation that bis-benzenechromium exists in the eclipsed configuration. In both reviews, the eclipsed configuration of bis-benzenechromium is merely noted.

Table 1
Comparison of bond distances and ring-to-ring distances in some sandwich compounds

Eclipsed configuration	Mean distances in Angstroms		
	$\mathrm{M}-\mathrm{C}$	$\mathrm{C}-\mathrm{C}$	ring-to -ring
bis-benzenechromium (3)	2. $135 \pm .010$	$1.439 \pm .014$	$3.226 \pm .014$
	$2.132 \pm .010$	$1.353 \pm .014$	
ruthenocene (4)	$2.21 \pm .02$	$1.43 \pm .02$	$3.68 \pm .02$
bis-indenylruthenium (5)	2.19	1. 43	3.67
osmocene (6)	2.22		3.71

Staggered configuration
ferrocene (7)
ferrocene (8)
$2.05+.03$
$1.41+.03$
3.32*
$2.064 \pm .013$
$1.440 \pm .029$
$3.32 \pm .06$
bis-indenyliron (9)
2. 10

1. 43
3.43
nickelocene (10)
2. $20 \pm .02$
$1.44 \pm .02$
3.66*
nickelocene (11)
2.18
1.43
3.62*
*Calculated from mean $M-C$ and $C-C$ distances.

Even though the six-membered rings of bis-benzenechromium are closer to each other than the five-membered rings of ferrocene, bis-benzenechromium is eclipsed and ferrocene is staggered. The ring separation is $3.23 \AA$ in bis-benzenechromium (3) and $3.32 \AA$ in ferrocene $(7,8)$. If repulsion between atorns of different rings were the cause of the staggered configuration of ferrocene, bis-benzenechromium would also be staggered. Note that dicyclopentadienyl chromium is staggered (2).

Cotion and Wilkinson's argument that the configuration is determined mainly by lattice forces is harder to refute since "lattice forces" is not defined and its implications are rather vague. I will assume that lattice forces are sensitive to, or are function of, the overall shape and size of a molecule and the way in which the molecules pack together. I believe there are two observations which indicate that lattice forces, whatever they may be, are not responsible for the molecular symmetry of ferrocene and ruthenocene in the crystalline state.

First, bis-indenyliron has the staggered configuration (9), just as ferrocene, and bis-indenylruthenium has the eclipsed configuration (5), just as ruthenocene. The differences in lattice forces that would make ferrocene and ruthenocene have different symmetries should be smaller between bis-indenyliron and bis-indenylruthenium.

The lattice forces making bis-indenylruthenium eclipsed (cis) will also tend to make bis-indenyliron eclipsed rather than staggered (gauche, in this case). The probability that the same symmetrical derivatives of ferrocene and ruthenocene will have the same configuration will increase as the size of the molecule increases. Obviously, the change from cyclopentadienyl groups to indenyl groups is not enough. Furthermore, both bis-indenyliron and bis-indenylruthenium crystallize in disordered modifications in which, scemingly at random, molecules throughout the crystal are rotated 180° about an axis which is perpendicular to the indenyl groups and which passes through the geometrical center of the molecule. This indicates that the lattice forces are not very selective.

Second, the molecules of nickelocene and ruthenocene are essentially the same size, yet nickelocene is staggered and ruthenocene is eclipsed. (Please refer to table 1.)

	M-C	C-C	ring-ring
Nickelocene	2. 20 A	1. $44 \AA^{\circ}$	$3.64 \AA$
Ruthenocene	2.218	1. 43 A	3. $68 \AA$

From this I infer that the different symmetries of nickelocene and ruthenocene are not due to lattice forces. Here are two sandwich compounds which differ only in the kind of metal atom inside the sandwich--and in their rotational configuration.

From these examples I deduce that ferrocene and ruthenocene have different rotational configurations because of different metal atorns and not because of van der Waals' forces between rings or because of lattice forces. I propose that the bond orbitals of the ir on and ruthenium atoms have inherently different symmetries in these dicyclopentadienyl compounds and in their derivatives. The difference in symmetries may be linked to the availability of f-orbitals to the ruthenium atom for the formation of hybrid bond orbitals. I propose that molecules of ferrocene pack together in the crystalline state in such a way as to preserve the preferred symmetry of the iron-ring bonding. The symmetry determines the packing, not the packing the symmetry.

From ferrocene, bis-indenyliron, ruthenocene, and bisindenylruthenium we can see that the iron atom occupies a center of symmetry (with respect to the Ee-C bonds) and that the ruthenium atom lies in a mirror plane. These two symmetries are also observed in the elemental structures where every iron atom is at a center of symmetry in its cubic closest packed form and where every ruthenium atom lies in a mirror plane, ruthenium being hexagonal closest packed. Likewise, osmocene is eclipsed (6) and osmium is hexagonal closest packed. The dicyclopentadienyl compounds of nickel, cobalt, chromiurn, and vanadium are staggered (2); nickel is cubic closest packed, cobalt has both hexagonal and cubic closest packed modifications, and chromium and vanadium are body centered cubic.

If lattice forces are in any case important in determining the rotational configuration in symmetrical metal-ring compounds, they should be most important when the attached groups are very large. For example, in a crystal of 1,1 -didodecylferrocene the five-membered rings might be eclipsed or staggered, depending on the way the long chains wanted to pack. And van der Waals'forces could come into play enough to alter symmetry. For example,bis-hexamethyl benzene chromium may well be staggered rather than eclipsed; if it is eclipsed it will illustrate that the symmetry of the metal-ring bonding is much more important than anyone has so far suspected.

However, in the fairly simple sandwich compounds that have been studied so far, it seems that the nature of the metal-ring bonding determines the symmetry.

References

1. H. Zeiss, Organometallic Chemistry, (1960), New York: Reinhold Publishing Corporation. Chapter 7. P. L. Pauson. a) p. 346 .
2. G. Wilkinson and F. A. Cotton, Progress in Inorganic Chemistry, (1959). New York; Interscience Publishers, Inc.
a) p. 19
b) p. 82
3. F. Jellinek, Nature. 187. 871-872 (1960).
4. G. L. Hardgrove and D. H. Templeton, Acta Cryst. , 12. 28-32 (1959).
5. This thesis, PartI.
6. F. Jellinek, Z. Naturforsch. 14b, 737-738 (1959).
7. J. D. Dunitz, L. E. Orgel, and A. Rich, Acta Cryst. , 9, 373-375 (1956).
8. A. Berndt, Ph. D. Thesis, California Institute of Technology, p. 36 (1957).
9. J. A. Trotter, Acta Cryst. , 11, 355-360 (1958).
10. L. Pauling, The Nature of the Chemical Bond. (1960), 3rd ed., Ithaca: Cornell University Press. p. 388, unpublished work of K. Hedberg.
11. L. Hedberg and K. Hedberg, Yearly Report of the Division of Chemistry and Chemical Engineering at the California Institute of Technology, Report for 1954-1955, p. 49.
12. I propose that the arsenic atom in the arsenic(V)-catechol complex, $\mathrm{AsO}_{\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OH}\right)_{3} \text {, is Eive-coordinated and that the five oxygen }}$ ligands are arranged at the vertices of a nearly regular trigonal bipyramid. It is commonly believed $(1,2)$ that an octahedral complex is formed by the reaction of aqueous solutions of catechol and arsenic acid.

The free acid of the arsenic(V)-catechol complex was first prepared by Weinland and Heinzler (3) by the addition of catechol to a boiling aqueous solution of arsenic acid. Upon cooling, colorless crystals separated which had a composition corresponding to $\mathrm{HAs}_{\mathrm{s}}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{3}^{5 \mathrm{H}_{2} \mathrm{O} \text {, to which they assigned the "structure" }}$ $\mathrm{H}_{3}\left[\mathrm{O}-\mathrm{As}-\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{O}\right)_{3}\right] \cdot \mathrm{AH}_{2} \mathrm{O}$. Simple salts of this acid were prepared, and the cormpound behaved as a monobasic acid in all cases.

Subsequently, other investigators $(4,5,6)$ have found:

1) The parent acid behaves as a monobasic acid with a value of 2.75 for the pKa (4).
2) The anion exists in optically active forms (4,5).
3) Dehydration can remove only four molecules of water from tho pentahydrate $(4,5,6)$; this extra water of hydration is coordinated to the arsenic atom $(4,6)$.

Two different structures for the complex have been proposed; they are illustrated in figure 1. Structure II, which was proposed by

Roaenheirn and Plato (5), is inadequate in that it cannot account for the observed acidity or for the water of hydration. Structure I, which was proposed by Craddock and Jones (4), can account For all of the properties listed above. However, I feel that the atructure presented below can explain the properties of the colaplex in a more clear-cut fashion and that it is moxe condistent with the known chemistry of arsenic and of the group V A elemente in general.

I propose that there are only five As-C bonds and that the oxygen atoms are arranged at the vertices of a nearly regular trigonal bipyramid; one isomer, one of an enantiomeric paix, based on such an arrangement is illustrated in figure $2(a)$. A inve-fold coordination of the arsenic atom may also give rise to a number of enantiomeric pairs of molecules which owe their asymmetry to steric hindrance.

If we assume a nearly regular trigonal bipyramid, an As-O
bond distance of 1.8 A (in arsenates the As-O bond distance ia about $1.75 \AA(1))$, and an $A \leq-C-C$ angle oi 115°, we cen get an idea of non-bonded distances with a few simple calculations. Figure 2(b) shows the short oxygen to hydrogen distance that would result from rotation of one of the equatorially bonded catechol groups about the As-0 bond. Figure 2(c) shows the distances to be expected ii the catechol groups lie in the equatorial plane; the drawing is in the equatorial plane, viewed down As-O bond. The short non-bonded

Figure 1. Structures that have been proposed for the aresenic(v)catechol complox.

I

II

Figure 2. Ioformation on structure in which the arsenic atom is five-coorcinated (sec text).
distances can be relieved by expanding the As-O-C angles or by twisting the catechol groups out of the plane. Figure 2(d) gives the expected geometry of the chelating catechol group. It seems that the O-As-O angle of 103° will result in a distorted trigonal bipyramid in which one of the oxygen atoms of the chelating group is at an apex and the other is at the equator. Expansion of the angle to 120° would demand As-O bond distances of $1.63 \AA$.

At this point I must object to the statement by Wells (la): "An exceptional compound, in which As exhibits a covalency of 6 , is the catechol derivative, the resolution of which into its optical antimers confirms the octahedral configuration of the six arsenic bonds. " The resolution into optical antimers confirms that octahedral coordination is a possibility and no more proves an octahedral configuration than failure to resolve would disprove it. Furthermore, one can explain the optical activity on the basis of a tetrahedrally coordinated arsenic atom with the catechol groups arranged like a propellor; but such a structure cannot account for the acidity.

The observed acidity of this complex and the "coordinated water" are readily under btood on the basis of the molecular structure as proposed here, which we can write as

First, the "coordinated water" is not; the extra oxygen atom belongs to a hydroxyl group and is covalently bonded to the arsenic atom. The measured value of the pKa for the free acid is 2.75 (4), which is very close to 2.22 , the value of the pKa of arsenic acid (7); this is expected since the acid hydrogen comes from As-OH groups in both. To me, this is a better explanation for the acidity than the remark by Craddock and Jones (4), ". . . a value of 2.75 was found for the pKa. This is somewhat greater than would be expected for a species containing an already formed $\mathrm{H}_{3} \mathrm{O}^{+}$ion but is not inconsistent with the ionization of hydrogen from a molecule of water which is coordinated to the arsenic.' Admittedly, one can explain any value of the pKa by invoking the requisite degree of coordination; very tightly coordinated water molecules would be expected to be very acidic, and so on.

A complex having a trigonal bipyramidal structure is consistent with known structures of PCl_{5} and SbCl_{5} (1); although the structure has not been determined, AsF_{5} is known and probably is based on a trigonal bipyramidal arrangement. Moreover, Bertil (8) was able to make HOAs $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}$ but could not isolate a pure compound with three glycol
groups. Presumably, in $\mathrm{HOAs}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}$ the arsenic atom is fivecoordinated.

I have grown crystals of the arsenic(V)-catechol complex and have collected enough X-ray data to state that the complex crystallizes in space group $P_{\text {bca }}$ with 24 molecules per unit cell. All three axes are essentially the same length, $23.5 \AA \pm 0.2 \AA$.

References

1. A. F. Wells, Structural Inorganic Chemistry, (1962), 3rd ed. Oxford: The Clarendon Press.
a) p. 664 .
2. F. Basolo and R. G. Pearson, Mechanisms of Inorganic Reactions, (1958). New York: John Wiley and Sons, Inc.
3. R. F. Weinland and J. Heinzler, Ber., 52, 1316-1329 (1919).
4. J. H. Craddock and M. M. Jones, J. Am. Chem. Soc. , 83. 2839-2843 (1961).
5. A. Rosenheim and W. Plato, Ber.. 58, 2000-2011 (1925).
6. H. Reihlen, A. Sapper and G. A. Kall, Z. anorg. Chem. 144, 218-226 (1925).
7. W. J. Blaedel and V. W. Meloche, Elementary Quantitative Analysis, (1957). Evanston: Row, Peterson and Company.
8. E. J. Bertil. J. prakt. Chem., 120, 179-184 (1928).
III. I propose that the following manuscripts entitled 'Structurefactor and Least-Squares Calculation for Tetragonal, Trigonal, and Hexagonal Systems with Ani sotropic Vibrations' and 'Structure-factor and Least-Squares Calculation for Cubic Systems with Isotropic Vibrations" be submitted to Acta Crystallographica for publication.

Development of high-speed digital computers has relieved the crystallogapher of laborious calculations by hand and has enabled him to tackle complex problems with hopes of solution in a reasonable time. However, this development has brought with it the problem of programming computers and of the crystallographer's desire to make use of the speed at his disposal to determine accurately the atomic parameters by including, among other factors, anisotropic thermal vibrations of the atoms in his analysis. These two problems together require a formulation of the structure-factor expressions that is readily adapted to computer coding; such a formulation exists for the monoclinic space groups (Rollett and Davis, 1955) and for the orthorhombic space groups (Hybl and Marsh, 1961). Moreover, the rapid changes in computers are forcing the crystallographer to spend much of his time learning and programming new computers. He can be relieved of this task if he can present his problem to a professional programmer in such a form that it is a coding problem rather than a crystallographic one. The formulations below and those of Rollett and Davis and of Hybl and Marsh are certainly a step toward the coding problem.

It is now practical, almost demanding, to program computers to carry out structure-factor least-squares calculations for any space groups designated by the program user. To program in this way requires a common form of the structure factor expressions, at least within a system. With the formulations presented below, which cover 156 space groups, the trigonometric part of any structure factor in 215 of the 230 space groups (all but triclinic and monoclinic) is now in the form of triple products of sines and cosines, e.g.

$$
[\cos (2 \pi h x) \sin (2 \pi k y) \cos (2 \pi \ell z)] .
$$

The International Tables (1952) gives all of the structure-factor expressions, but in several different forms, and, as far as I know, no one has attempted to explicitly formulate structure-factor expressions with anisotropic scattering factors for the tetragonal, trigonal, and hexagonal space groups.
(The formulations presented in the proposed paper on the cubic system are one result of writing a structure-factor least-squares program for the Burroughs 220.)

Structure-Factor and Least-Squares Calculation for Tetragonal, Trigonal, and Hexagonal Systems with Anisotropic Vibrations

Rollett and Davis (1955) and Hybl and Marsh (1961), hereafter HM, have derived sets of expressions that can be used to calculate structure factors and least-squares coefficients for any monoclinic space group and for any or thorhombic space group. In like manner, we present sets of analogous expressions for tetragonal, trigonal, and hexagonal symmetries. In developing these expressions we make use of the formulations of Trueblood (1956) and the International Tables (1952).

To simplify all discussion we present the case of one crystallographic atom in a general position. For a number of atoms, one must sum over all the atoms for the complete structure factor and take into account the lower multiplicity of atoms in special positions in the usual way.

Tetragonal systern
We start with the expression for the scattering factor for a vibrating atorn:

$$
f_{1}=\text { fo } \exp -\left(B_{11} h^{2}+B_{22^{k}} k^{2}+B_{33^{2}} \ell^{2}+B_{12} h k+B_{13} h\left(B_{23} k \ell\right)\right.
$$

where fo is the scattering factor for an atom at rest. The tetragonal symmetry gives rise, in general, to seven additional orientations of the vibrational ellipsoid; applying the transformations given by Trueblood, we write the corresponding scattering factors:

$$
\begin{aligned}
& f_{4}=f 0 \exp -\left(B_{11} h^{2}+B_{22} k^{2}+B_{33^{2}} \ell^{2}-B_{12} h k-B_{13} h \ell+B_{23^{k l}}\right) \\
& f_{5}=\left\{0 \exp -\left(B_{11} k^{2}+B_{22^{h}} h^{2}+B_{33^{2}} \ell^{2}-B_{12} h k+B_{13} k \ell-B_{23} h l\right)\right. \\
& f_{6}=\left\{0 \exp -\left(B_{11} k^{2}+B_{22^{h}} h^{2}+B_{33^{\ell}} \ell^{2}-B_{12} h k-B_{13} k \ell+B_{23} h \ell\right)\right. \\
& f_{7}=f_{0} \exp -\left(B_{11^{k}} k^{2}+B_{22^{\prime}} h^{2}+B_{33^{2}} \ell^{2}+B_{12} h k-B_{13} k \ell-B_{23} h \ell\right) \\
& \varepsilon_{8}=\text { fo } \exp -\left(B_{11} k^{2}+B_{22^{\prime}} h^{2}+B_{33^{\prime}} \ell^{2}+B_{12} h k+B_{13} k \ell+B_{23} h l\right)
\end{aligned}
$$

In table 1 (all tables are given at the end of the discussion), we define the 16 triple products of sines and cosines which are sufficient for expressing the trigonometric part of any structure factor in the tetragonal system; the 8 products in terms of $h x, k y$, and ℓz are the T_{i} 's defined by $H \mathrm{M}$. We have chosen to express the structure factors and their derivatives in a minimum number of simple, common terms in order to facilitate bookkeeping and to x educe computational time. The 16 expressions which we have chosen are presented in table 2; only the first 8 are needed for the space groups of Laue
symmetry $4 / \mathrm{m}$. The derivatives of these basic expressions are given in table 3.

The real and imaginary parts of the structure factor, A and $B\left(F C^{2}=\rho_{C}^{2}\left(A^{2}+B^{2}\right)\right.$, for any class of reflection in the tetragonal system are listed in table 4 in terms which are defined in table 2; the space-group multiplicity is reflected in ρ_{C}. For acentric primitive space groups, ρ_{c} is one; a center of symmetry contributes a factor of two, as does a body-centered lattice.

An exampleis presented to illustrate the use of the tables. We assume space group $141 / a$ and a renlection characterized by $h+k+\ell=4 n+2, h=2 n$ and $k=2 n$.

$$
F c / 4=A c / 4=(1-5), \quad(B=0)
$$

where the factor of 4 is from ρ_{c} and 1 and 5 are expressions defined in table 2 . We refer to table 2 and write
$F C=4\left[\left(f_{1}+f_{2}\right)\left(c_{1}-e_{1}\right)-\left(f_{1}-\hat{f}_{2}\right)\left(i_{1}+g_{1}\right)-\left(f_{5}-\hat{f}_{6}\right)\left(d_{1}+f_{1}\right)-\left(f_{5}-f_{6}\right)\left(j_{1}-h_{1}\right)\right]$
where f_{1}, f_{2}, f_{5} and. f_{6} are scattering factors defined in the text and $c_{1}, e_{1}, i_{1}, g_{1}, d_{1}, f_{1} \prime, j_{1}$, and h_{1} are triple products defined in table 1. From table 3, we see that some derivatives of Fc are:

$$
\begin{aligned}
& \frac{\partial F c}{\partial x}=4\left\{-2 h\left[\left(f_{1}+f_{2}\right)\left(m_{1}+o_{1}\right)+\left(\varepsilon_{1}-f_{2}\right)\left(q_{1}-k_{1}\right)\right]\right. \\
&\left.-2 \pi k\left[\left(f_{5}+f_{6}\right)\left(n_{1}-p_{1}\right)-\left(f_{5}-f_{6}\right)\left(x_{1}+\ell_{1}\right)\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial F c}{\partial z}=4[2 \pi \ell(-3)+2 \pi \ell(7)] \\
& \frac{\partial F c}{\partial B_{11}}=4\left[-h^{2}(1)+k^{2}(5)\right] \\
& \frac{\partial F c}{\partial B_{13}}=4[h \ell(2)+k \ell(6)]
\end{aligned}
$$

In our formulation there is no single term which gives the structure factor expression for an isotropic atom as does expression $E_{1}=f_{1}+f_{2}+f_{3}+f_{4}$ formulated by HM. Such a formulation for the tetragonal system is impractical as it would require splitting the system into the two Laue groups $4 / \mathrm{m}$ and $4 / \mathrm{m} \mathrm{mm}$, and even then, a larger number of more cumbersome expressions would have to be defined.

To illustrate this, consider space group P_{2} where the combinations $(1-5)$ and $1+5$) are given for A for the two parity conditions. Expressed in the form of HM, $(1-5)$ becomes

$$
\begin{aligned}
& \text { 曾 }\left[\left(f_{1}+f_{2}+f_{5}+f_{6}\right)\left(c_{1}-e_{1}-d_{1}-f_{1}{ }^{\prime}\right)+\left(f_{1}+\hat{f}_{2}-f_{5}-f_{6}\right)\left(c_{1}-e_{1}+d_{1}+f_{1}\right)\right. \\
& \left.-\left(f_{1}-f_{2}+f_{5}-f_{6}\right)\left(i_{1}+g_{1}+j_{1}-h_{1}\right)-\left(f_{1}-f_{2}-f_{5}+f_{6}\right)\left(i_{1}+g_{1}-j_{1}+h_{1}\right)\right] \\
& =\frac{1}{2}\left[E_{1} T_{1}+E_{2} T_{2}-E_{3} T_{3}-E_{4} T_{4}\right]
\end{aligned}
$$

(the E's and T's not related to those defined by HM) and ($1+5$) becomes

$$
\left.{ }^{\frac{1}{2}} E_{1} T_{2}+E_{2} T_{1}-E_{3} T_{4}-E_{4} T_{3}\right]
$$

To formulate in these terms requires 8 products between 8 terms; in our formulation, 4 products between 8 simpler terms are required. Furthermore, the derivatives become quite complicated; take $\mathrm{E}_{1} \mathrm{~T}_{1}$ in the case just discussed,

$$
\frac{\partial E_{1} T_{1}}{\partial B_{11}}=\frac{\partial\left(f_{1}+f_{2}+f_{5}+f_{6}\right) T_{1}}{\partial B_{11}}=\left[-h^{2}\left(f_{1}+f_{2}\right)-k^{2}\left(f_{5}+f_{6}\right)\right] T_{1}
$$

If we did formulate our expressions in this way, we would be forced to handle the derivatives by the simpler expressions presented in table 2. Thus we would add to our computational time and our bookkeeping headaches by formulating the structure factors in terms like $\left(f_{i} \pm f_{j} \pm f_{k} \pm f_{l}\right)$ as HM did for the or thorhombic system, where such a formulation is convenient and efficient.

The isotropic case will have to be handled in a special way. As the terms are written in table 2, the right hand side of each expression, which contains $\left(f_{i}-\hat{L}_{j}\right)$, is zero for an isotropic atom. It should be simple to program in such a way that within the computer the 16 expressions are split into 32 expressions; the $\left(f_{i}-f_{j}\right)$ terms colud then be disregarded for an isotropic atom. (Expressions 9 through 16 should be disregarded for space groups of Laue symmetry $4 / \mathrm{m}$.)

For the general case, for an isotropic atom i all the f's are equal to fo $\exp \left(-B^{\prime} \frac{\sin ^{2} \theta}{\lambda^{2}}\right)$ and

$$
\frac{\partial F c^{2}}{\partial B_{i}^{1}}=2 A \frac{\partial A_{i}}{\partial B_{i}^{\prime}}+2 B \frac{\partial B_{i}}{\partial B_{i}^{\prime}}=-\frac{\sin ^{2} \theta}{\lambda^{2}}\left[2 A_{i}+2 B B_{i}\right]
$$

Table 1. Definition of triple products. $C=\cos 2 \pi, S=\sin 2 \pi$.

$$
\begin{aligned}
& \text { hy kx } \quad \ell z \\
& \mathrm{~d}_{1} \equiv \text { Chy } \cdot \mathrm{Ckx} \cdot \mathrm{Clz} \\
& \mathrm{f}_{1}^{\prime}=\text { Shy } \cdot \text { Skx } \cdot \mathrm{Clz} \\
& h_{1} \equiv \text { Chy } \cdot \mathrm{Skx} \cdot \mathrm{Slz} \\
& \mathrm{j}_{1} \equiv \text { Shy } \cdot \mathrm{Ckx} \cdot \mathrm{Sl} \mathrm{z} \\
& \mathbf{L}_{1} \equiv \text { Shy } \cdot \text { Skx } \cdot S_{\text {l }} \\
& { }^{n_{1}} \equiv \text { Shy } \cdot C k x \cdot C l z \\
& \mathrm{P}_{1} \text { \# Chy - Skx } \cdot \mathrm{Clz} \\
& r_{1} \text { Chy } \cdot \text { Ckx } \cdot \mathrm{Slz}
\end{aligned}
$$

Table 2. Definitions of combinations of triple products and scattering factors for the tetragonal system.

$$
\begin{aligned}
& \left(f_{1}+f_{2}\right)\left(c_{1}-e_{1}\right)-\left(f_{1}-f_{2}\right)\left(i_{1}+g_{1}\right) \equiv 1 \\
& \left(f_{1}+f_{2}\right)\left(i_{1}+g_{1}\right)-\left(f_{1}-f_{2}\right)\left(c_{1}-e_{1}\right) \equiv 2 \\
& \left(f_{1}+f_{2}\right)\left(q_{1}-k_{1}\right)+\left(f_{1}-f_{2}\right)\left(m_{1}+o_{1}\right) \equiv 3 \\
& \left(f_{1}+f_{2}\right)\left(m_{1}+o_{1}\right)+\left(f_{1}-f_{2}\right)\left(q_{1}-k_{1}\right) \equiv 4 \\
& \left(f_{5}+f_{6}\right)\left(d_{1}+f_{1}\right)+\left(f_{5}-f_{6}\right)\left(j_{1}-h_{1}\right)=5 \\
& \left(f_{5}+f_{6}\right)\left(j_{1}-h_{1}\right)+\left(f_{5}-f_{6}\right)\left(d_{1}+f_{1}\right) \equiv 6 \\
& \left(f_{5}+f_{6}\right)\left(r_{1}+l_{1}\right)-\left(f_{5}-f_{6}\right)\left(n_{1}-p_{1}\right) \equiv 7 \\
& \left(f_{5}+f_{6}\right)\left(n_{1}-p_{1}\right)-\left(f_{5}-f_{6}\right)\left(r_{1}+l_{1}\right) \equiv 8
\end{aligned}
$$

$$
\left.\left(f_{3}+f_{4}\right)\left(c_{1}+e_{1}\right)-\left(f_{3}-f_{4}\right) i_{1}-g_{1}\right)=9
$$

$$
\left(f_{3}+f_{4}\right)\left(i_{1}-g_{1}\right)-\left(c_{3}-f_{4}\right)\left(c_{1}+e_{1}\right) \equiv 10
$$

$$
\left(f_{3}+f_{4}\right)\left(q_{1}+k_{1}\right)+\left(f_{3}-f_{4}\right)\left(m_{1}-o_{1}\right) \equiv 11
$$

$$
\left(f_{3}+f_{4}\right)\left(m_{1}-o_{1}\right)+\left(f_{3}-f_{4}\right)\left(q_{1}+k_{1}\right) \equiv 12
$$

$$
\left(f_{7}+f_{8}\right)\left(d_{1}-f_{1}\right)+\left(f_{7}-f_{8}\right)\left(j_{1}+h_{1}\right) \equiv 13
$$

$$
\left(f_{7}+f_{8}\right)\left(j_{1}+h_{1}\right)+\left(f_{7}-f_{8}\right)\left(d_{1}-f_{1}{ }^{\prime}\right) \equiv 14
$$

$$
\left(f_{7}+f_{8}\right)\left(r_{1}-\ell_{1}\right)-\left(f_{7}-f_{8}\right)\left(n_{1}+p_{1}\right)=15
$$

$$
\left(f_{7}+\varepsilon_{8}\right)\left(n_{1}+p_{1}\right)-\left(\varepsilon_{7}-f_{8}\right)\left(r_{1}-\ell_{1}\right) \equiv 16
$$

Table 3. Derivatives of the expressions defined in Table 2 for the tetragonal sy stem.

Table 4. A tabulation of the tetragonal space groups according to index parities.

Space Group	ρ_{c}	Planes	A	B
$75-P 4$	1 A	All planes	$1+5$	$3+7$
76-P4 ${ }_{1}$	1	$\ell=4 n$	$1+5$	$3+7$
		$\ell=4 n+1$	$-2+8$	$4+6$
		$\boldsymbol{l}=4 \mathrm{n}+2$	1-5	3-7
		$\ell=4 n+3$	-2-8	4-6
$77-\mathrm{P}^{4}$	1	$2=2 \mathrm{n}$	$1+5$	$3+7$
		$\boldsymbol{L}=2 \mathrm{n}+1$	1-5	3-7
$78-\mathrm{P}_{4}$	1	$2=4 n$	$1+5$	$3+7$
		$\ell=4 n+1$	-2-8	4-6
		$\boldsymbol{\ell}=4 n+2$	1-5	3-7
		$2=4 n+3$	$-2+8$	$4+6$
79-14	2	$h+k+1=2 n$	$1+5$	$3+7$
$80-141$	$2 \mathrm{~h}+\mathrm{k}+\ell=2 \mathrm{n}$	$2 \mathrm{k}+\boldsymbol{\ell}=4 \mathrm{n}$	$1+5$	$3+7$
		$2 \mathrm{k}+\boldsymbol{\ell}=4 \mathrm{n}+1$	1-7	$3+5$
		$2 \mathrm{k}+\boldsymbol{l}=4 \mathrm{n}+2$	1-5	3-7
		$2 \mathrm{k}+\boldsymbol{\ell}=4 \mathrm{n}+2$	$1+7$	3-5
81-P4	1	All planes	$1+5$	3-7
82-17	2	$h+k+\ell=2 n$	$1+5$	3-7
$83-\mathrm{P} 4 / \mathrm{m}$	2	All planes	$1+5$	
$84-12 / \mathrm{m}$	2	$\ell=2 n$	$1+5$	
		$\ell=2 n+1$	$1-5$	
$85-\mathrm{P} 4 / \mathrm{n}$	2	h , k		
		$\overline{2} n \quad \overline{2} n$	$1+5$	
		$2 \mathrm{n} \quad 2 \mathrm{n}+1$	$-2+6$	
		$2 \mathrm{n}+1 \quad 2 \mathrm{n}$	$-2-6$	
		$2 \mathrm{n}+1 \quad 2 \mathrm{n}+1$	1-5	

Table 4. (continued) (2)

Space Group	${ }^{\circ}{ }_{c}$		Planes		A	B
$86-\mathrm{P} 42 / \mathrm{n}$	2		$\underline{h}+\mathrm{k}$	$\underline{k}+2$	$1+5$	
			2 n	2 n	$1+5$	
			2 n	$2 n+1$	1-5	
			$2 n+1$	2 n	$-2+6$	
			$2 n+1$	$2 n+1$	$-2+6$	
$87-14 / \mathrm{m}$	4		$h+k+$	$=2 \mathrm{n}$	$1+5$	
88-1 41/a	4	$\underline{h+k+e}$	\underline{h}	k		
		$4 n$	2 n	$\overline{2}$	$1+5$	
		4 n	2 n	$2 n+1$	$-2+5$	
		4 n	$2 n+1$	2 n	1-6	
		4 n	$2 \mathrm{n}+1$	$2 n+1$	-2-6	
		$4 \mathrm{n}+2$	2 n	2 n	1-5	
		$4 \mathrm{n}+2$	2 n	$2 n+1$	$-2-5$	
		$4 n+2$	$2 n+1$	2 n	$1+6$	
		$4 n+2$	$2 n+1$	$2 \mathrm{n}+1$	$-2+6$	

89-P422 $\quad 1$
$90-P 421^{2} \quad 1$
$91-P_{4} 22 \quad 1$
$92-P_{1} 1_{1}^{2} \quad 1$
$93-P 42^{22} \quad 1$
$94-P_{4}^{4} 2^{2} 1^{2} \quad 1$
1

1

1

All planes

$$
\begin{array}{lll}
h+k=2 n & 1+5+9+13 & 3+7-11-15 \\
h+k=2 n+1 & 1-5-9+13 & 3-7+11-15
\end{array}
$$

Table 4. (continued) (3)

Space Group	${ }_{\text {c }}$	Planes	A	B
$95-\mathrm{P}_{4}{ }_{3} 22$	1	$\ell=4 n$	$1+5+9+13$	3+7-11-15
		$l=4 n+1$	-2-8-10-16	4-6-12-14
		$\ell=4 n+2$	1-5+9-13	3-7-11+15
		$\ell=4 n+3$	$-2+8-10+16$	4+6-12-14
$96-\mathrm{P}_{4} 3^{2} 1^{2}$	1	$\begin{aligned} 2 h+2 k+1 & =4 n \\ & =4 n+ \\ & =4 n+ \\ & =4 n+\end{aligned}$	$1+5+9+13$	3+7-11-15
			$-2-8-12+14$	$4-6+10+16$
			$1-5-9+13$	$3-7+11-15$
			$-2+8+12+14$	$4+6-10+16$
97-1422	2	$h+k+2=2 n$	$1+5+9+13$	$3+7-11-15$
98-14 ${ }_{1} 22$	2	$2 k+2=4 n$	$1+5+9+13$	3+7-11-15
		$2 \mathrm{k}+\boldsymbol{L}=4 \mathrm{n}+1$	$1-7+11+13$	$3+5+9-15$
		$2 k+\boldsymbol{L}=4 n+2$	$1-5-9+13$	$3-7+11-15$
		$2 \mathrm{k}+2=4 \mathrm{n}+3$	1+7-11+13	3-5-9-15
$99 . \mathrm{P} 4 \mathrm{~mm}$	1	All planes	$1+5+9+13$	$3+7+11+15$
100-F 4brn	1	$h+\mathrm{k}=2 \mathrm{n}$	$1+5+9+13$	$3+7+11+15$
		$h+k=2 n+1$	$1+5-9-13$	$3+7-11-15$
$101-\mathrm{P}_{4} \mathrm{~cm}$	1	$\ell=2 n$	$1+5+9+13$	$3+7+11+15$
		$2=2 n+1$	$1-5-9+13$	3-7-11+15
$102-\mathrm{P}_{2} \mathrm{~nm}$	1	$h+\mathrm{k}+\mathrm{L}=2 \mathrm{n}$	$1+5+9+13$	$3+7+11+15$
		$h+k+\ell=2 n+1$	$1-5-9+13$	3-7-11+15
103-P4cc	1	$2=2 n$	$1+5+9+13$	$3+7+11+15$
		$\ell=2 n+1$	$1+5-9-13$	$3+7-11-15$
104-P4nc	1	$\mathrm{h}+\mathrm{k}+\boldsymbol{\ell}=2 \mathrm{n}$	$1+5+9+13$	$3+7+11+15$
		$h+k+\ell=2 n+1$	1+5-9-13	$3+7-11-15$
$105-\mathrm{P} 4_{2} \mathrm{mc}$	1	$\ell=2 n$	$1+5+9+13$	$3+7+11+15$
		$\ell=2 n+1$	$1-5+9-13$	$3-7+11-15$

Table 4. (continued) (4)

Space Group	σ_{c}	Planes	A	B
$106-\mathrm{P}_{2} \mathrm{bc}$	1	$\underline{\mathrm{h}+\mathrm{k}} \quad \frac{2}{2}$		
		2 n 2n	$1+5+9+13$	$3+7+11+15$
		$2 \mathrm{n} \quad 2 \mathrm{n}+1$	$1-5+9-13$	3-7+11-15
		$2 \mathrm{n}+1 \quad 2 \mathrm{n}$	1+5-9-13	$3+7-11-15$
		$2 \mathrm{n}+1 \quad 2 \mathrm{n}+1$	$1-5-9+13$	3-7-11+15
107-14mm	2	$\mathrm{h}+\mathrm{k}+\boldsymbol{l}=2 \mathrm{n}$	$1+5+9+13$	$3+7+11+15$
$108-14 \mathrm{~cm}$	2	$\ell=2 \mathrm{n}$	$1+5+9+13$	$3+7+11+15$
		$\ell=2 n+1$	1+5-9-13	$3+7-11-15$
$\mathrm{109-14}_{1} \mathrm{md}$	2	$2 \mathrm{k}+\ell=4 \mathrm{n}$	$1+5+9+13$	$3+7+11+15$
		$2 \mathrm{k}+\ell=4 \mathrm{n}+1$	1-7+9-15	$3+5+11+13$
		$2 \mathrm{k}+\mathrm{l}=4 \mathrm{n}+2$	1-5+9-13	$3-7+11-15$
		$2 k+\ell=4 n+3$	$1+7+9+15$	$3-5+11-13$
$110-14_{1} \mathrm{~cd}$	2	$2 \mathrm{k}+\ell=4 \mathrm{n}$	$1+5+9+13$	$3+7+11+15$
		$2 \mathrm{k}+2=4 \mathrm{n}+1$	$1-7-9+15$	$3+5-11-13$
		$2 \mathrm{k}+2=4 \mathrm{n}+2$	1-5+9-13	$3-7+11-15$
		$2 \mathrm{k}+\mathrm{L}=4 \mathrm{n}+3$	1+7-9-15	3-5-11+13
$111-\mathrm{P} 42 \mathrm{~m}$	1	All planes	$1+5+9+13$	$3-7-11+15$
112-P42c	1	$2=2 n$	$1+5+9+13$	3-7-11+15
		$t=2 n+1$	$1+5-9-13$	$3-7+11-15$
$113-\mathrm{P}_{4} \mathrm{I}_{1} \mathrm{~m}$	1	$h+k=2 n$	$1+5+9+13$	3-7-11+15
		$h+k=2 n+1$	1+5-9-13	$3-7+11-15$
$114-\mathrm{P} \mathrm{L}_{2} \mathrm{C}$	1	$\mathrm{h}+\mathrm{k}+\boldsymbol{\ell}=2 \mathrm{n}$	$1+5+9+13$	$3-7-11+15$
		$h+k+2=2 n+1$	1+5-9-13	$3-7+11-15$
$115-\mathrm{P} \mathrm{7}_{\mathrm{m}} \mathrm{m}$	1	All planes	$1+5+9+13$	$3-7+11-15$
$116-\mathrm{P} \mathrm{C}_{\mathrm{c} 2}$	1	$\ell=2 n$	$1+5+9+13$	3-7+11-15
		$\ell=2 n+1$	1+5-9-13	3-7-11+15
$117-\mathrm{P} 4 \mathrm{~b} 2$	1	$h+k=2 n$	$1+5+9+13$	$3-7+11-15$
		$h+k=2 n+1$	$1+5-9-13$	3-7-11+15

Table 4. (continued) (5)

$$
\begin{array}{ll}
h+k=2 n & 1+5+9+13 \\
h+k=2 n+1 & 1+5-9-13
\end{array}
$$

Table 4. (continued) (6)

Space Group	${ }^{\circ} \mathrm{c}$	Planes		A
$128-\mathrm{P} 4 / \mathrm{m} \mathrm{nc}$	2	$h+k+2=2 n$		$1+5+9+13$
		h $+\mathrm{k}+$	$=2 n+1$	1+5-9-13
$129-\mathrm{P} 4 / \mathrm{nmm}$	2		k	
		2n	$\overline{2}$	$1+5+9+13$
		2 n	$2 \mathrm{n}+1$	$-2+6+10-14$
		$2 n+1$	2 n	$-2-6-10-14$
		$2 n+1$	$2 \mathrm{n}+1$	$1-5-9+13$
$130-\mathrm{P} 4 / \mathrm{ncc}$	$2 \mathrm{~h}+\mathrm{k}$	$\underline{k}+2$	$\underline{1}$	
	2n	2n	$\overline{\mathrm{L}}$	$1+5+9+13$
	2 n	$2 \mathrm{n}+1$	2 n	$1-5-9+13$
	$2 \mathrm{n}+1$	2 n	2 n	-2-6-10-14
	$2 \mathrm{n}+1$	$2 \mathrm{n}+1$	2 n	$-2+6+10-14$
	2 n	2 n	$2 \mathrm{n}+1$	1-5+9-13
	2 n	$2 n+1$	$2 \mathrm{n}+1$	1+5-9-13
	$2 \mathrm{n}+1$	2 n	$2 \mathrm{n}+1$	$-2+6-10+14$
	$2 \mathrm{n}+1$	$2 n+1$	$2 \mathrm{n}+1$	$-2-6+10+14$
$131-\mathrm{P} 42 / \mathrm{mmc}$	2		$=2 \mathrm{n}$	$1+5+9+13$
			$=2 n+1$	$1-5+9-13$
$132-\mathrm{P} 42 / \mathrm{mcm}$	2		$=2 \mathrm{n}$	$1+5+9+13$
			$=2 n+1$	$1-5-9+13$
$133-\mathrm{P} 42 / \mathrm{n}$ bc	2 h	k	1	
	$\overline{2}$	2n	$\overline{2}$	$1+5+9+13$
	2 n	$2 \mathrm{n}+1$	2 n	$-2+6-10+14$
	$2 n+1$	2 n	2 n	$-2-6+10+14$
	$2 n+1$	$2 n+1$	2 n	1-5-9+13
	2 n	2n	$2 \mathrm{n}+1$	1-5+9-13
	2 n	$2 n+1$	$2 \mathrm{n}+1$	-2-6-10-14
	$2 n+1$	2 n	$2 n+1$	$-2+6+10-14$
	$2 \mathrm{n}+1$	$2 n+1$	$2 n+1$	1+5-9-13
$134-\mathrm{P} 42 / \mathrm{nmm}$	2	$\underline{\mathrm{h}+\mathrm{k}}$	$k+2$	
		2n	2n	$1+5+9+13$
		2 n	$2 \mathrm{n}+1$	$1-5-9+13$
		$2 \mathrm{n}+1$	2 n	$-2-6+10+14$
		$2 n+1$	$2 \mathrm{n}+1$	$-2+6-10+14$

Table 4. (continued) (7)

Space Group	${ }^{\circ} \mathrm{c}$	Planes		A
$135-\mathrm{P} 42 / \mathrm{mbc}$	2	$\underline{h+k}$	2	
		2n	2 n	$1+5+9+13$
		2 n	$2 \mathrm{n}+1$	1-5+9-13
		$2 n+1$	2 n	1+5-9-13
		$2 \mathrm{n}+1$	$2 \mathrm{n}+1$	$1-5-9+13$
$136-\mathrm{P} 42 / \mathrm{mnm}$	2	$\mathrm{h}+\mathrm{k}+\ell=2 \mathrm{n}$		$1+5+9+13$
		$\mathrm{h}+\mathrm{k}+\mathrm{L}=2 \mathrm{n}+1$		$1-5-9+13$
137-P42/n mc	2 h	k	ℓ	
	2n	2n	$\frac{1}{2}$	$1+5+9+13$
	2 n	$2 n+1$	2 n	$-2+6+10-14$
	$2 n+1$	2 n	2 n	-2-6-10-14
	$2 \mathrm{n}+1$	$2 \mathrm{n}+1$	2 n	$1-5-9+13$
	2 n	2 n	$2 \mathrm{n}+1$	1-5+9-13
	2 n	$2 n+1$	$2 \mathrm{n}+1$	$-2-6+10+14$
	$2 \mathrm{n}+1$	2 n	$2 \mathrm{n}+1$	$-2+6-10+14$
	$2 n+1$	$2 \mathrm{n}+1$	$2 \mathrm{n}+1$	1+5-9-13
$138-\mathrm{P} 42 / \mathrm{ncm}$	2	$\underline{h+2}$	$\mathrm{k}+\mathrm{\ell}$	
		$\underline{2 n}$	2 n	$1+5+9+13$
		2 n	$2 \mathrm{n}+1$	-2+6+10-14
		$2 \mathrm{n}+1$	2 n	-2-6-10-14
		$2 n+1$	$2 \mathrm{n}+1$	$1-5-9+13$
$139-14 / \mathrm{mmm}$	4	$\mathrm{h}+\mathrm{k}+$	$=2 n$	$1+5+9+13$
$140-14 / \mathrm{m} \mathrm{cm}$	4	h $+\mathrm{k}+$	$=2 n, 8=2 n$	$1+5+9+13$
		'	$\mathbf{L}=2 \mathrm{n}+1$	1+5-9-13

Table 4. (continued) (8)

Space Group	ρ_{C}		Planes	A
$141-141 / a \mathrm{md}$	4	$\frac{h+k+1}{4 n}$	$\frac{h}{2 n}$	$\frac{k}{2 n}$
	$4 n$	$2 n$	$2 n+1$	$-2-5+10-13$
	$4 n$	$2 n+1$	$2 n$	$1+6+9+14$
	$4 n$	$2 n+1$	$2 n+1$	$-2-6+10-14$
	$4 n+2$	$2 n$	$2 n$	$1-5+9-13$
	$4 n+2$	$2 n$	$2 n+1$	$-2+5+10+13$
	$4 n+2$	$2 n+1$	$2 n$	$1-6+9-14$
	$4 n+2$	$2 n+1$	$2 n+1$	$-2+6+10+14$

142-141/a cd 4

$\frac{h+k+l}{4 n}$		$\frac{h}{2 n}$		$\frac{k}{2 n}$
$4 n$		$1+5+9+13$		
$4 n$		$2 n+1$	$2 n+1$	$-2-5-10+13$
$4 n$		$2 n+1$	$2 n+1$	$-2-6+10-14$
$4 n+2$	$2 n$	$2 n$	$1-5+9-13$	
$4 n+2$	$2 n$	$2 n+1$	$-2+5-10-13$	
$4 n+2$	$2 n+1$	$2 n$	$1-6-9+14$	
$4 n+2$	$2 n+1$	$2 n+1$	$-2+6+10+14$	

Trigonal and hexagonal systems

We choose to tabulate our formulations for the two systems separately, but we will discuss them at the same time since they are directly related, yet sufficiently different to warrant a separation of tables. For both systems the formulations are based on the hexagonal coordinates and we have substituted $i=-(h+k)$ throughout.

We will again write the trigonometric part of the structure factor in the form of triple products of sines and cosines. In addition to the triple products defined in table 1 for the tetragonal system, we will need those defined in table 5.

Twelve orientations of the vibrational ellipsoid are found in the hexagonal system; the corresponding scattering factors are listed in table 6. Only nine of these scattering factors are needed in the trigonal system; the three that appear in the hexagonal system but not in the trigonal are f_{2}, f_{6} and f_{4}, and correspond to rotations of the reference vibrational ellipsoid of $60^{\circ}, 180^{\circ}$, and 300° about the $6-$ fold axis. The first six of the f's are related to each other by the 6 -fold rotation axis; the second six are related to the first six by a 2-fold axis parallel to a in the (001) plane.

Just as in the tetragonal system, consideration of bookkeeping and computational time has led us to use simple terms for expressing the structure factors. The 18 expressions chosen for the trigonal system are defined in table 7 and their derivatives are given in table 8.

The 24 expressions for the hexagonal system are defined in table 10; these hexagonal expressions are directly related to identically numbered trigonal expressions in table 7. The derivatives of the hexagonal expressions are listed in table 11.

Tables 9 and 12, in conjunction with the tables of definition, allow us to write the appropriate structure factor expression for any class of reflections in any trigonal or hexagonal space group.

We give three examples to illustrate the use of these tables. Consider the reflections with $\ell=3 n+1$ in space groups $P_{2} 12$. In table 9, where the trigonal space groups are tabulated, we find

$$
A=(1+13)-\frac{1}{8}(5+9+17+21)+\sqrt{3} / 2(7-11-19+23)
$$

and

$$
B=(3-15)-\frac{1}{2}(7+11-19-23)-\sqrt{3} / 2(5-9+17-21)
$$

where $\frac{1}{e}$ and $\sqrt{3} / 2$ have their usual meanings and the numbers in parentheses represent expressions defined in table 7. Consider any reflection in space group $R \overline{3}$. From table 9 and table 7, we write

$$
\begin{aligned}
E c=A=6\left\{f_{1} \Gamma\left(c_{1}-e_{1}\right)\right. & \left.-\left(i_{1}+g_{1}\right)\right]+f_{3}\left[\left(d_{3}-f_{3}\right)-\left(j_{3}+h_{3}\right)\right] \\
& \left.+f_{5}\left[\left(d_{2}-f_{2}\right)-\left(j_{2}-h_{2}\right)\right]\right\}
\end{aligned}
$$

where f_{1}, f_{3} and f_{5} are scattering factors defined in table $6, c_{1}, e_{1}$, i_{1} and g_{1} are triple products defined in table 1 , and $d_{3}, f_{3}, j_{3}, h_{3}$, $d_{2}, f_{2}{ }^{\prime}, j_{2}$ and h_{2} are triple products defined in table 5. To avoid confusion with the numbers that define expressions, we transfer the
factor of 6 to the left side of the equation and write some of the derivatives of Fc/6 by consulting table 8 .

$$
\begin{align*}
& \frac{1}{6} \frac{\partial F c}{\partial x}=2 \pi[-h(3)-k(7)-i(11)] \\
& \left.\left.=\quad-2 \pi h f_{1} r_{1}-k_{1}\right)+\left(m_{1}+o_{1}\right)\right]-2 \pi k f_{3}\left[\left(r_{3}-\ell_{3}\right)+\left(n_{3}+p_{3}\right)\right] \\
& + \\
& +2 \pi(h+k) f_{5}\left[\left(r_{2}-\ell_{2}\right)+\left(n_{2}+p_{2}\right)\right] \tag{9}\\
& \frac{1}{6} \frac{\partial F c}{\partial B_{11}}=-h^{2}(1)-k^{2}(5)-\left(h^{2}+k^{2}+2 h k\right)(9)
\end{align*}
$$

Consider the reflections $\ell=2 n+1$ in space group $P 63 / m$. Consulting table 12 and table 10 , we write

$$
\begin{aligned}
\frac{F c}{2}=\frac{A}{2}=(2+6+10)= & -\left(\tilde{f}_{1}+f_{2}\right)\left(i_{1}+g_{1}\right)+\left(f_{1}-f_{2}\right)\left(c_{1}-e_{1}\right) \\
& -\left(\hat{f}_{3}+\hat{f}_{4}\right)\left(j_{3}+h_{3}\right)+\left(f_{3}-f_{4}\right)\left(d_{3}-f_{3}{ }^{\prime}\right) \\
& -\left(f_{5}+f_{6}\right)\left(j_{2}+h_{2}\right)+\left(f_{5}-f_{6}\right)\left(d_{2}-f_{2}{ }^{\prime}\right)
\end{aligned}
$$

Referring to table 11, we write some of the derivatives

$$
\begin{aligned}
& \frac{\partial}{\frac{1}{2}} \frac{\partial E c}{\partial y}=[-k(3)+(h+k)(7)-h(11)] 2 \pi \\
& \frac{\lambda}{\text { 㗐 }} \frac{\partial F c}{\partial z}=-2 \pi l(4+8+12) \\
& \frac{\partial}{\frac{1}{2}} \frac{\partial \mathrm{Fc}}{\lambda \mathrm{~B}_{13}}=-\mathrm{h} \mathrm{\ell}(1)-\mathrm{k}(5)+(\mathrm{hl}+\mathrm{k} \mathrm{\ell})(9)
\end{aligned}
$$

For an isotropic atom in the trigonal system, the calculation is straightforward. All the scattering factors become equal to
fo $\exp \left(-B^{\prime} \frac{\sin ^{2} \theta}{\lambda^{2}}\right)$, and the necessary products of table 7 are formed without special considerations. For the hexagonal system, the isotropic case is worth special consideration when setting up a computer program; the right hand side of each expression in table 10 is zero, $\left(\hat{i}_{i}-\hat{i}_{j}\right)=0$ for an isotropic atom.

I thank Dr. Richard E. Marsh for helpful discussions and acknowledge the tenure of a United States Rubber Company fellowship.

Table 5. Definition of additional triple products needed for trigonal and hexagonal systems. $C=\cos 2 \pi, S=\sin 2 \pi, i=-h-k$.

$$
\begin{array}{r}
\mathrm{hx} \cdot \mathrm{iy} \cdot \mathrm{\ell z} \\
\mathrm{c}_{2}=\mathrm{Chx} \cdot \mathrm{Ciy} \cdot \mathrm{Clz} \\
\mathrm{e}_{2} \equiv \mathrm{Shx} \cdot \mathrm{Siy} \cdot \mathrm{Clz} \\
\mathrm{~g}_{2} \equiv \mathrm{Chx} \cdot \mathrm{Siy} \cdot \mathrm{Slz} \\
\mathrm{i}_{2} \equiv \mathrm{Shx} \cdot \mathrm{Ciy} \cdot \mathrm{Slz} \\
\mathrm{k}_{2} \equiv \mathrm{Shx} \cdot \mathrm{Siy} \cdot \mathrm{Stz} \\
\mathrm{~m}_{2} \equiv \mathrm{Shx} \cdot \mathrm{Ciy} \cdot \mathrm{Clz} \\
\mathrm{o}_{2}=\mathrm{Chx} \cdot \mathrm{Siy} \cdot \mathrm{Clz} \\
\mathrm{q}_{2}=\mathrm{Chx} \cdot \mathrm{Ciy} \cdot \mathrm{Slz}
\end{array}
$$

$$
\mathrm{d}_{2} \equiv \text { Thy } \cdot \mathrm{Cix} \cdot \mathrm{Clz}
$$

$$
f_{2}^{\prime} \equiv \text { Shy } \cdot \text { Six } \cdot \mathrm{Cl} z
$$

$$
\mathrm{h}_{2} \equiv \text { Thy } \cdot \text { Six } \cdot \mathrm{S} \mathrm{\ell} z
$$

$$
\mathrm{j}_{2} \equiv \text { Shy } \cdot \text { Six } \cdot \mathrm{S} \ell z
$$

$$
\ell_{2} \equiv \text { Shy } \cdot \operatorname{Six} \cdot \operatorname{Siz}
$$

$$
\mathrm{n}_{2} \equiv \text { Shy } \cdot \text { Cix } \cdot \mathrm{Clz}
$$

$$
P_{2} \equiv \text { Thy } \cdot \operatorname{Six} \cdot \mathrm{Clz}
$$

$$
r_{2} \equiv \text { Chy } \cdot C i x \cdot S \ell z
$$

$$
\begin{aligned}
& \mathrm{ix} \cdot \mathrm{ky} \cdot \mathrm{\ell z} \\
& \mathrm{c}_{3} \equiv \mathrm{Cix} \cdot \mathrm{Cky} \cdot \mathrm{Clz} \\
& \mathrm{e}_{3}=\mathrm{Six} \cdot \mathrm{Sky} \cdot \mathrm{Clz} \\
& \mathrm{~g}_{3} \equiv \mathrm{Cix} \cdot \mathrm{Sky} \cdot \mathrm{~S} \mathrm{\ell z} \\
& \mathrm{i}_{3} \equiv \mathrm{Six} \cdot \mathrm{Cky} \cdot \mathrm{~S} \mathrm{\ell z} \\
& \mathrm{~K}_{3} \equiv \mathrm{Six} \cdot \mathrm{Sky} \cdot \mathrm{~S} \mathrm{\ell z} \\
& \mathrm{~m}_{3} \equiv \mathrm{Six} \cdot \mathrm{Cky} \cdot \mathrm{Clz} \\
& \mathrm{O}_{3} \neq \mathrm{Cix} \cdot \mathrm{Sky} \cdot \mathrm{Clz} \\
& \mathrm{q}_{3}=\mathrm{Cix} \cdot \mathrm{Cky} \cdot \mathrm{Slz}
\end{aligned}
$$

$$
\begin{aligned}
& \text { fy } \mathrm{kx} \cdot \mathrm{lz} \\
& \mathrm{~d}_{3} \equiv \mathrm{Ciy} \cdot \mathrm{Ckx} \cdot \mathrm{Clz} \\
& \mathrm{f}_{3} \equiv \mathrm{Siy} \cdot \mathrm{Skx} \cdot \mathrm{Clz} \\
& \mathrm{~h}_{3} \equiv \mathrm{Ciy} \cdot \mathrm{Skx} \cdot \mathrm{~S} \mathrm{\ell z} \\
& \mathrm{j}_{3} \equiv \mathrm{Siy} \cdot \mathrm{Ckx} \cdot \mathrm{Slz} \\
& \mathrm{l}_{3} \equiv \mathrm{Siy} \cdot \mathrm{Skx} \cdot \mathrm{Stz} \\
& \mathrm{n}_{3} \equiv \mathrm{Siy} \cdot \mathrm{Ckx} \cdot \mathrm{Clz} \\
& \mathrm{P}_{3} \equiv \mathrm{Ciy} \cdot \mathrm{Skx} \cdot \mathrm{Clz} \\
& \mathrm{r}_{3} \equiv \mathrm{Ciy} \cdot \mathrm{Ckx} \cdot \mathrm{Slz}
\end{aligned}
$$

Table 6. Definition of scattering factors for trigonal and hexagonal systems (f_{2}, f_{4} and f_{6} do not occur in trigonal)
$f_{1}=f_{0} \exp -\left[B_{\left.11^{h^{2}}+B_{22^{k}}{ }^{2}+B_{33^{2}} \ell^{2}+B_{12} h k+B_{13} h \ell+B_{23} k \ell\right]}^{n}\right.$
$f_{2}=f_{0} \exp -\left[B_{11} h^{2}+B_{22^{k}} k^{2}+B_{33^{2}} \ell^{2}+B_{12} h k-B_{13} h \ell-B_{23} k \ell\right]$
$f_{3}=f_{0} \exp -\left[B_{11} k^{2}+B_{22}\left(h^{2}+k^{2}+2 h k\right)+B_{33^{2}} \ell^{2}-B_{12}\left(k^{2}+h k\right)\right.$
$\left.+\mathrm{B}_{13} \mathrm{k} \mathrm{\ell}-\mathrm{B}_{23}(\mathrm{~h} \mathrm{\ell}+\mathrm{k} \mathrm{\ell})\right]$
$f_{4}=f_{0} \exp -\Gamma_{1} B_{11} k^{2}+B_{22}\left(h^{2}+k^{2}+2 h k\right)+B_{33^{2}} \mathbf{L}^{2}-B_{12}\left(k^{2}+h k\right)$
$\left.-B_{13} k \ell+B_{23}(h \ell+k \ell)\right]$
$f_{5}=f_{0} \exp -\left[B_{11}\left(h^{2}+k^{2}+2 h k\right)+B_{22^{2}} h^{2}+B_{33^{2}} \ell^{2}-B_{12}\left(h^{2}+h k\right)\right.$

$$
\left.-B_{13}(h \ell+k \ell)+B_{23} h \ell\right]
$$

$f_{6}=f_{0} \exp -\left[B_{11}\left(h^{2}+k^{2}+2 h k\right)+B_{22^{2}} h^{2}+B_{33^{\prime}} \ell^{2}-B_{12}\left(h^{2}+h k\right)\right.$ $\left.+\mathrm{B}_{13}(\mathrm{hl}+\mathrm{kl})-\mathrm{B}_{23} \mathrm{hl}\right]$
$f_{7}=f_{0} \exp -\left[B_{11^{k}}{ }^{2}+B_{22^{\prime}} h^{2}+B_{33^{2}} \ell^{2}+B_{12} h k+B_{13} k \ell+B_{23^{h}} h\right]$
$\left.f_{8}=f_{0} \exp -\Gamma_{1 B_{1}} k^{2}+B_{22^{\prime}} h^{2}+B_{33^{2}}+B_{12} h k-B_{13} k \ell-B_{23} h \ell\right]$
$f_{9}=f_{0} \exp -\left[B_{11}\left(h^{2}+k^{2}+2 h k\right)+B_{22} k^{2}+B_{33} A^{2}-B_{12}\left(k^{2}+h k\right)\right.$
$\left.-\mathrm{B}_{13}(\mathrm{hl}+\mathrm{kl})+\mathrm{B}_{23} \mathrm{kl}\right]$
$f_{10}=f_{0} \exp -\left[B_{11}\left(h^{2}+k^{2}+2 h k\right)+B_{22} k^{2}+B_{33^{2}} R^{2}-B_{12}\left(k^{2}+h k\right)\right.$
$\left.+\mathrm{B}_{13}(\mathrm{~h} \mathrm{\ell}+\mathrm{k} \mathrm{\ell})-\mathrm{B}_{23} \mathrm{k} \mathrm{\ell}\right]$
$f_{11}=f_{0} \exp -\left[B_{11} h^{2}+B_{22}\left(h^{2}+k^{2}+2 h k\right)+B_{33^{2}} \ell^{2}-B_{12}\left(h^{2}+h k\right)\right.$
$\left.+B_{13} h l-B_{23}(h l+k l)\right]$
$f_{12}=f_{0} \exp -\left[B_{11} h^{2}+B_{22}\left(h^{2}+k^{2}+2 h k\right)+B_{33^{2}} f^{2}-B_{12}\left(h^{2}+h k\right)\right.$
$\left.-\mathrm{B}_{13} \mathrm{~h} \mathrm{\ell}+\mathrm{B}_{23}(\mathrm{hl}+\mathrm{k} \mathrm{\ell})\right]$

Table 7. Definition of combinations of triple-products and scattering factors for the trigonal system (see Tables 1, 5 and 6.).

$$
\begin{aligned}
& f_{1}\left[\left(c_{1}-e_{1}\right)-\left(i_{1}+g_{1}\right)\right] \equiv 1 \\
& f_{1}\left[\left(q_{1}-k_{1}\right)+\left(m_{1}+o_{1}\right)\right] \equiv 3 \\
& f_{3}\left[\left(d_{3}-f_{3}\right)-\left(j_{3}+h_{3}\right)\right] \equiv 5 \\
& f_{3}\left[\left(r_{3}-\ell_{3}\right)+\left(n_{3}+p_{3}\right)\right] \equiv 7 \\
& f_{5}\left[\left(d_{2}-f_{2}\right)-\left(j_{2}+h_{2}\right)\right] \equiv 9 \\
& f_{5}\left[\left(r_{2}-\ell_{2}\right)+\left(n_{2}+p_{2}\right)\right] \equiv 11 \\
& f_{7}\left[\left(d_{1}-i_{1}\right)-\left(j_{1}+h_{1}\right)\right] \equiv 13 \\
& \left.-f_{8}\left[j_{1}+h_{1}\right)+\left(d_{1}-f_{1}\right)\right] \equiv 14 \\
& f_{7}\left[\left(r_{1}-\ell_{1}\right)+\left(n_{1}-p_{1}\right)\right] \equiv 15 \\
& \hat{i}_{8}\left[\left(n_{1}+p_{1}\right)-\left(r_{1}-\ell_{1}\right)\right] \equiv 16 \\
& f_{9}\left[\left(c_{3}-e_{3}\right)-\left(i_{3}+g_{3}\right)\right] \equiv 17 \\
& -f_{10}\left[\left(i_{3}+g_{3}\right)+\left(c_{3}-e_{3}\right)\right] \equiv 18 \\
& f_{9}\left[\left(q_{3}-k_{3}\right)+\left(m_{3}+o_{3}\right)\right] \equiv 19 \\
& \left.f_{10}\left[m_{3}+o_{3}\right)-\left(q_{3}-k_{3}\right)\right] \equiv 20 \\
& f_{11}\left[\left(c_{2}-e_{2}\right)-\left(i_{2}+g_{2}\right)\right] \equiv 21 \\
& -f_{12}\left[\left(i_{2}+g_{2}\right)+\left(c_{2}-e_{2}\right)\right] \equiv 22 \\
& f_{11}\left[\left(q_{2}-k_{2}\right)+\left(m_{2}+o_{2}\right)\right] \equiv 23 \\
& f_{12}\left[\left(m_{2}+o_{2}\right)-\left(q_{2}-k_{2}\right)\right] \equiv 24
\end{aligned}
$$

Table 8. Derivatives of the expressions defined in Table 7 for the trigonal system.

Table 9. A tabulation of the trigonal space groups according to index parities.

Space Group	$\rho_{\text {c }}$	Planes	A	B
143 -F 3	1	All planes	$1+5+9$	$3+7+11$
$144-\mathrm{P}_{1}$	1	$\begin{aligned} & \ell=3 n \\ & \ell=3 n \pm 1 \end{aligned}$	$\begin{aligned} & 1+5+9 \\ & 1-\frac{1}{2}(5+9) \mp \\ & \sqrt{3} / 2(7-11) \end{aligned}$	$\begin{aligned} & 3+7+11 \\ & 3-\frac{1}{2}(7+11) \pm \\ & \sqrt{3} / 2(5-9) \end{aligned}$
$145-\mathrm{P}_{2}$	1	$\begin{aligned} & \ell=3 n \\ & \ell=3 n \pm 1 \end{aligned}$	$\begin{aligned} & 1+5+9 \\ & 1-\quad \frac{1}{2}(5+9)+ \\ & \sqrt{3} / 2(7-11) \end{aligned}$	$\begin{aligned} & 3+7+11 \\ & 3-\frac{1}{2}(7+11) \mp \\ & \sqrt{3} / 2(5-9) \end{aligned}$
146-R3	3	$-h+k+2=3 n$	$1+5+9$	$3+7+11$
$147-\mathrm{P} 3$	2	All planes	$1+5+9$	---
148-R ${ }^{\text {\% }}$	6	All planes	$1+5+9$	---
149-P312	1	All planes	$1+5+9+13+17+21$	$3+7+11-15-19-23$
150-P321	1	All planes	$1+5+9-14-18-22$	$3+7+11+16+20+24$
$151-\mathrm{P}_{1} 12$	1	$\begin{aligned} & \ell=3 n \\ & \ell=3 n \pm 1 \end{aligned}$	$\begin{aligned} & 1+5+9+13+17+21 \\ & 1+13-\frac{1}{2}(5+9+17+21) \\ & \quad \mp \sqrt{3} / 2(7-11-19+23) \end{aligned}$	$\begin{aligned} & 3+7+11-15-19-23 \\ & 3-15-\frac{1}{2}(7+11-19-23) \\ & \quad \pm \sqrt{3} / 2(5-9+17-21) \end{aligned}$
$152-P 3121$	1	$\begin{aligned} & \boldsymbol{L}=3 n \\ & \boldsymbol{L}=3 n+1 \end{aligned}$	$\begin{aligned} & 1+5+9-14-18-22 \\ & 1-14-\frac{1}{2}(5+9-18-22) \\ & \quad 7 \sqrt{3} / 2(7-11+20-24) \end{aligned}$	$\begin{aligned} & 3+7+11+16+20+24 \\ & 3+16-\frac{1}{2}(7+11+20+24) \\ & +\sqrt{3} / 2(5-9-18+22) \end{aligned}$
$153-\mathrm{P}_{2}{ }^{12}$	1	$\begin{aligned} & \ell=3 n \\ & L=3 n \pm 1 \end{aligned}$	$\begin{gathered} \text { same as } \ell=3 n, \\ P 3_{1} 12 \\ \text { same as } \ell=3 n \mp 1, \\ P 3_{1} 12 \end{gathered}$	
$154-P 3{ }_{2} 21$	1	$\begin{aligned} & \ell=3 n \\ & 2=3 n \pm 1 \end{aligned}$	$\begin{gathered} \text { same as } \ell=3 n, \\ P^{3} 21 \\ \text { same as } \ell^{1}=3 n \mp 1, \\ P^{3} 1_{1} 21 \end{gathered}$	
$155-\mathrm{R} 32$	3	$-h+k+2=3 n$	1+5+9-14-18-22	$3+7+11+16+20+24$

Table 9. (continued) (2)

Space Group	p_{c}	Planes	A	B
$156-\mathrm{P} 3 \mathrm{ml}$	1	All planes	$1+5+9-14-18-22$	$3+7+11-16-20-24$
157-P31m	1	All planes	$1+5+9+13+17+21$	$3+7+11+15+19+23$
158-P3c1	1	$2=2 n$	$1+5+9-14-18-22$	$3+7+11-16-20-24$
		$l=2 n+1$	$1+5+9+14+18+22$	$3+7+11+16+20+24$
159-P31c	1	$L=2 n$	$1+5+9+13+17+21$	$3+7+11+15+19+23$
		$L=2 n+1$	$1+5+9-13-17-21$	$3+7+11-15-19-23$
160-R3m	3	$-\mathrm{h}+\mathrm{k}+\mathrm{L}=3 \mathrm{n}$	$1+5+9-14-18-22$	$3+7+11-16-20-24$
161 -R3c	3	$\begin{aligned} & -h+k+\ell=3 n \\ & \ell=2 n \end{aligned}$	$1+5+9-14-18-22$	$3+7+11-16-20-24$
		$\ell=2 n+1$	$1+5+9+14+18+22$	$3+7+11+16+20+24$
$162-\mathrm{P} 31 \mathrm{~m}$	2	All planes	$1+5+9+13+17+21$	---
$163-\mathrm{P} 3 \mathrm{l}$ c	2	$2=2 n$	$1+5+9+13+17+21$	---
		$\ell=2 n+1$	$1+5+9-13-17-21$	---
$164-\mathrm{P} 3 \mathrm{ml}$	2	All planes	$1+5+9-14-18-22$	---
$165-\mathrm{P} \boldsymbol{3} \mathrm{C} 1$	2	$\ell=2 n$	$1+5+9-14-18-22$	---
		$\ell=2 n+1$	$1+5+9+14+18+22$	---
166-R3m	6	All planes	$1+5+9-14-18-22$	---
$167-\mathrm{R} 3 \mathrm{C}$	6	$\begin{aligned} & -h+k+\ell=3 n \\ & \ell=2 n \end{aligned}$	$1+5+9-14-18-22$	---
		$\ell=2 n+1$	$1+5+9+14+18+22$	---

Table 10. Definition of combinations of triple products and scattering factors for the hexagonal system (see Tables 1, 5 and 6).

$$
\begin{aligned}
& \left(f_{1}+f_{2}\right)\left(c_{1}-e_{1}\right)-\left(f_{1}-\varepsilon_{2}\right)\left(i_{1}+g_{1}\right) \equiv 1 \\
& -\left(f_{1}+f_{2}\right)\left(i_{1}+g_{1}\right)+\left(f_{1}-f_{2}\right)\left(c_{1}-e_{1}\right) \equiv 2 \\
& \left(f_{1}+f_{2}\right)\left(q_{1}-k_{1}\right)+\left(f_{1}-f_{2}\right)\left(m_{1}+o_{1}\right) \equiv 3 \\
& \left(f_{1}+f_{2}\right)\left(m_{1}+o_{1}\right)+\left(f_{1}-f_{2}\right)\left(q_{1}-k_{1}\right) \equiv 4 \\
& \left(f_{3}+f_{4}\right)\left(d_{3}-f_{3}^{\prime}\right)-\left(f_{3}-f_{4}\right)\left(j_{3}+h_{3}\right) \Longrightarrow 5 \\
& -\left(f_{3}+f_{4}\right)\left(j_{3}+h_{3}\right)+\left(f_{3}-f_{4}\right)\left(d_{3}-f_{3}^{\prime}\right) \equiv 6 \\
& \left(f_{3}+f_{4}\right)\left(r_{3}-\ell_{3}\right)+\left(f_{3}-f_{4}\right)\left(n_{3}+p_{3}\right) \equiv 7 \\
& \left(\varepsilon_{3}+f_{4}\right)\left(n_{3}+p_{3}\right)+\left(f_{3}-f_{4}\right)\left(r_{3}-\ell_{3}\right) \equiv 8 \\
& \left(\tilde{f}_{5}+f_{6}\right)\left(d_{2}-f_{2}^{\prime}\right)-\left(f_{5}-f_{6}\right)\left(j_{2}+h_{2}\right) \equiv 9 \\
& -\left(f_{5}+f_{6}\right)\left(j_{2}+h_{2}\right)+\left(f_{5}-f_{6}\right)\left(d_{2}-f_{2}^{\prime}\right) \equiv 10 \\
& \left(f_{5}+f_{6}\right)\left(r_{2}-\ell_{2}\right)+\left(f_{5}-\varepsilon_{6}\right)\left(n_{2}+p_{2}\right)=11 \\
& \left(f_{5}+f_{6}\right)\left(n_{2}+p_{2}\right)+\left(f_{5}-f_{6}\right)\left(r_{2}-\varepsilon_{2}\right)=12 \\
& \left(f_{7}+f_{8}\right)\left(\alpha_{1}-f_{1}^{\prime}\right)-\left(f_{7}-f_{8}\right)\left(j_{1}+h_{1}\right)=13 \\
& -\left(f_{7}+f_{8}\right)\left(j_{1}+h_{1}\right)+\left(f_{7}-f_{8}\right)\left(d_{1}-f_{1}^{\prime}\right)=14 \\
& \left(f_{7}+f_{8}\right)\left(r_{1}-\ell_{1}\right)+\left(f_{7}-f_{8}\right)\left(n_{1}+p_{1}\right) \equiv 15 \\
& \left(f_{7}+f_{8}\right)\left(n_{1}+p_{1}\right)+\left(f_{7}-f_{8}\right)\left(r_{1}-\ell_{1}\right) \equiv 16 \\
& \left(f_{9}+f_{10}\right)\left(c_{3}-e_{3}\right)-\left(f_{9}-f_{10}\right)\left(i_{3}+g_{3}\right) \equiv 17 \\
& -\left(\varepsilon_{9}+f_{10}\right)\left(i_{3}+g_{3}\right)+\left(\varepsilon_{9}-f_{10}\right)\left(c_{3}-\dot{e}_{3}\right) \equiv 18 \\
& \left(\hat{f}_{9}+f_{10}\right)\left(q_{3}-k_{3}\right)+\left(f_{9}-f_{10}\right)\left(m_{3}+o_{3}\right)=19 \\
& \left(f_{9}+f_{10}\right)\left(m_{3}+o_{3}\right)+\left(i_{9}-f_{10}\right)\left(q_{3}-k_{3}\right) \equiv 20 \\
& \left(f_{11}+f_{12}\right)\left(c_{2}-e_{2}\right)-\left(f_{11}-f_{12}\right)\left(i_{2}+g_{2}\right)=21 \\
& -\left(f_{11}+f_{12}\right)\left(i_{2}+g_{2}\right)+\left(f_{11}-f_{12}\right)\left(c_{2}-e_{2}\right) \equiv 22 \\
& \left(\varepsilon_{11}+f_{12}\right)\left(q_{q}-k_{2}\right)+\left(f_{11}-f_{12}\right)\left(m_{2}+o_{2}\right) \equiv 23 \\
& \left(f_{11}+f_{12}\right)\left(\mathrm{m}_{2}+\mathrm{o}_{2}\right)+\left(\mathrm{f}_{11}-\mathrm{f}_{12}\right)\left(\mathrm{q}_{2}-\mathrm{k}_{2}\right) \equiv 24
\end{aligned}
$$

Table 11. Derivatives of the expressions defined in Table 9 for the hexagonal system.

	$\begin{aligned} & \frac{\partial}{2 \pi \partial x} \\ & \text { Mul } \\ & \text { cons } \\ & x \end{aligned}$	y	$\frac{\partial}{2 \pi \partial y}$ Term	$\frac{\partial}{2 \pi \ell \partial z}$	$\begin{aligned} & \frac{-\partial}{\partial B_{11}} \cdot \frac{-\partial}{\partial B} \\ & \text { Mult. con } \\ & B_{11} B_{22} \end{aligned}$	$\begin{gathered} \frac{\partial}{\frac{2}{22}} \cdot \bar{\partial} \\ \text { nstan } \\ B_{33} \end{gathered}$	$\begin{aligned} & \frac{-\partial}{\partial B_{33}}, \\ & n t \\ & B_{12} \end{aligned}$	$\begin{aligned} & \frac{-\partial}{\partial B_{12}} \\ & \text { Term } \end{aligned}$	$\begin{aligned} & \frac{-\partial}{\partial B_{1}} \\ & \text { Mult. } \\ & C_{\text {Cons }} \\ & \mathrm{B}_{13} \end{aligned}$	and tant B_{23}	$\begin{aligned} & \frac{-\partial}{\partial \mathrm{B}_{23}} \\ & \text { Term } \end{aligned}$
1	-h	-k	4	-3	$\mathrm{h}^{2} \mathrm{k}^{2}$	ℓ^{2}	hk	1	he	ke	2
2	-h	-k	3	-4	$\mathrm{h}^{2} \mathrm{k}^{2}$		hk	2	he	ke	1
3	h	k	2	1	$\mathrm{h}^{2} \mathrm{k}^{2}$	ℓ^{2}	hk	3	he	kl	4
4	h	k	1	2	$\mathrm{h}^{2} \mathrm{k}^{2}$	ℓ^{2}	hk	4	he	kl	3
5	-k	-i	8	-7	$\mathrm{k}^{2} \mathrm{~s}$	ℓ^{2}	-t	5	ke	-v	6
6	-k	-i	7	-8	$\mathrm{k}^{2} \mathrm{~s}$	ℓ^{2}	-t	6	k	-v	5
7	k	i	6	5	$\mathrm{k}^{2} \mathrm{~S}$	e^{2}	-t	7	k	-v	8
8	k	i	5	6	$\mathrm{k}^{2} \mathrm{~s}$	2^{2}	-t	8	k	-v	7
9	-i	-h	12	-11	S h^{2}	ε^{2}	-s	9	-v	he	10
10	-i	-h	11	-12	S $\quad h^{2}$	ℓ^{2}	-u	10	-v	he	9
11	i	h	10	- 9	S $\quad h^{2}$	ℓ^{2}	-u	11	-v	he	12
12	i	h	9	10	S h^{2}	ℓ^{2}	-u	12	-v	h\&	11
13	-k	-h	16	-15	$\mathrm{k}^{2} \mathrm{~h}^{2}$	e^{2}	hk	13	ke	he	14
14	-k	-h	15	-16	$\mathrm{k}^{2} \mathrm{~h}^{2}$	ℓ^{2}	hk	14	k\&	he	13
15	k	h	14	13	$\mathrm{k}^{2} \mathrm{~h}^{2}$	ℓ^{2}	hk	15	ke	h/	16
16	k	h	13	14	$\mathrm{k}^{2} \mathrm{~h}^{2}$	ℓ^{2}	hk	16	k	he	15
17	-i	-k	20	-19	S k^{2}	ℓ^{2}	-t	17	-v	k	18
18	-i	-k	19	-20	$\mathrm{s} \quad \mathrm{k}^{2}$	ℓ^{2}	-t	18	-v	k!	17
19	i	k	18	17	S k^{2}	ℓ^{2}	-t	19	-v	k\&	20
20	i	k	17	18	S k^{2}	e^{2}	-t	20	-v	k	19
21	-h	-i	24	-23	$\mathrm{h}^{2} \mathrm{~s}$	ℓ^{2}	-3	21	he	-v	22
22	-h	-i	23	-24	$\mathrm{h}^{2} \mathrm{~s}$	e^{2}	-u	22	he	-v	21
23	h	i	22	21	$\mathrm{h}^{2} \mathrm{~s}$	ℓ^{2}	-u	23	he	-v	24
24	h	i	21	22	$\mathrm{h}^{2} \mathrm{~S}$	ℓ^{2}	-u	24	ht	-v	23

Table 12. A tabulation of the hexagonal space groups according to index parities.

Table 12. (continued) (2)

Table 12. (continued) (3)

Space Group	ρ_{c}	Planes	A	B
$185-P 6_{3} \mathrm{~cm}$	1	$\begin{aligned} & \boldsymbol{t}=2 n \\ & \boldsymbol{t}=2 n+1 \end{aligned}$	$\begin{aligned} & 1+5+9+13+17+21 \\ & 2+6+10+14+18+22 \end{aligned}$	$\begin{aligned} & 3+7+11+15+19+23 \\ & 4+8+12+16+20+24 \end{aligned}$
$186-\mathrm{PG}_{3} \mathrm{mc}$	1	$\begin{aligned} & 2=2 n \\ & \ell=2 n+1 \end{aligned}$	$\begin{aligned} & 1+5+9+13+17+21 \\ & 2+6+10-14-18-22 \end{aligned}$	$\begin{aligned} & 3+7+11+15+19+23 \\ & 4+8+12-16-20-24 \end{aligned}$
$187-\mathrm{P} 6 \mathrm{~m} 2$	1	All planes	$1+5+9+13+17+21$	$4+8+12-16-20-24$
$188-\mathrm{P}$ 6 2	1	$\begin{aligned} & \boldsymbol{\ell}=2 n \\ & \boldsymbol{L}=2 n+1 \end{aligned}$	$\begin{aligned} & 1+5+9+13+17+21 \\ & 2+6+10+14+18+22 \end{aligned}$	$\begin{aligned} & 4+8+12-16-20-24 \\ & 3+7+11-15-19-23 \end{aligned}$
189-962m	1	All planes	$1+5+9+13+17+21$	$4+8+12+16+20+24$
190-p62c	1	$\begin{aligned} & \ell=2 n \\ & \ell=2 n+1 \end{aligned}$	$\begin{aligned} & 1+5+9+13+17+21 \\ & 2+6+10-14-18-22 \end{aligned}$	$\begin{aligned} & 4+8+12+16+20+24 \\ & 3+7+11-15-19-23 \end{aligned}$
$191-\mathrm{P} 6 / \mathrm{mmm}$	2	All planes	$1+5+9+13+17+21$	---
$192-\mathrm{P} 6 / \mathrm{mcc}$	2	$\begin{aligned} & 2=2 n \\ & 2=2 n+1 \end{aligned}$	$\begin{aligned} & 1+5+9+13+17+22 \\ & 1+5+9-13-17-21 \end{aligned}$	--
193-P63/m cm	2	$\begin{aligned} & \boldsymbol{\ell}=2 n \\ & \boldsymbol{\ell}=2 n+1 \end{aligned}$	$\begin{aligned} & 1+5+9+13+17+21 \\ & 2+6+10+14+18+22 \end{aligned}$	---
$194.263 / \mathrm{mmc}$	2	$\begin{aligned} & \ell=2 n \\ & \ell=2 n+1 \end{aligned}$	$\begin{aligned} & 1+5+9+13+17+21 \\ & 2+6+10-14-18-22 \end{aligned}$	

References

International Tables for X-Ray Crystallography (1952), Vol. I, Birmingham: Kynoch Press.

Hybl, A. and Marsh, R. E. (1961). Acta Cryst., 14, 1046. Rollett, J. S. and Davies, D. R. (1955). Acta Cryst. . 8, 125. Trueblood, K. N. (1956). Acta Cryst., 9, 359.

Structure-Factor and Least-Squares Calculation for Cubic Systems with Isotropic Vibrations

A set of expressions is presented for calculating structure factors and least-squares coefficients for cubic structures with isotropic temperature factors. The expressions will complement those presented by Hybl and Marsh (1961) for the orthorhombic system; however, we will not now carry their treatment of anisotropic temperature factors into the cubic system. Based on these expressions, the Burroughs 220 computer has been programmed to perform structurefactor least-squares calculations for any cubic space group; to direct the course of calculations for a particular space group, the computer must know only the space group number.

All of the geometrical structure factors for the cubic system have been reduced to sums of triple products of sines and cosines. A total of 48 different triple products are utilized; these triple products and the 16 sums of 3 triple products are defined in table 1. The triple products are divided into two groups, I and II. Space groups of symmetry T or T_{h} require expressions in group I only; further more, the derivatives with respect to the parameters x, y, and z (and, of course, B) of any triple product in group I (or II) are other triple products in group I(or II) multiplied by $\pm 2 \pi\left(\begin{array}{l}\mathbf{h} \\ \mathbf{k} \\ \boldsymbol{\ell}\end{array}\right)$.

The sums in group I are directly related to sums in group II: C transforms to D, E to E, G to H, I to J, ...etc., simply by interchanging h and k (see table 1). The derivatives of a sum can be written down immediately by inspection of table 2 when the derivatives of each rriple product are listed. For example, the derivative of C $\left(C=c_{1}+c_{2}+c_{3}\right)$ with respect to x is equal to $2 \pi\left(-h m{ }_{1}-\ell q_{2}-k o_{3}\right)$. The geometrical structure factors for each set of conditions on the indices for every cubic space group are presented in table 3 in terms of the sums of triple products defined in table 1. The presentation follows that of the International Tables (1952); in cases where the International Tables give a choice of origins, the origin is taken at a center. Corrections in O^{7} and $O_{h}{ }^{7}$ have been made as directed by the errata sheet.

For our program we have utilized the similarities in the structure factor expressions for different space groups. For example, the structure factor expressions for T^{1}, T^{2} and T^{3} are the same except for a different multiplicity factor; the same applies for space groups $T_{h}{ }^{1}, T_{h}{ }^{3}$ and $T_{h}{ }^{5}, O^{1}, O^{3}$ and $O^{5}, T_{d}{ }^{1}, T_{d}{ }^{2}$ and $T_{d}{ }^{3}$, and $O_{h}{ }^{1}$, $\mathrm{O}_{\mathrm{h}}{ }^{5}$, and $\mathrm{O}_{\mathrm{h}}{ }^{9}$. Some pairs of space groups whose similarities have been utilized are T^{4} and T^{5}, T_{h}^{2} and $T_{h}{ }^{4}, T_{h}^{4}$ and $O_{h}{ }^{7}, O^{6}$ and O^{7}. O^{8} and $\mathrm{T}_{\mathrm{d}}{ }^{6}, \mathrm{~T}_{\mathrm{d}}{ }^{6}$ and $\mathrm{O}_{\mathrm{h}}{ }^{10}, \mathrm{O}_{\mathrm{h}}{ }^{2}$ and $\mathrm{O}_{\mathrm{h}}{ }^{4}$, and $\mathrm{O}_{\mathrm{h}}{ }^{7}$ and $\mathrm{O}_{\mathrm{h}}{ }^{8}$. There are other similarities which we have utilized, and we are sure there are some which were not exploited. We give one example to illustrate
the use of the tables. Consider reflections $h+k=2 n+1, k+1=2 n+1$ in space group $T_{h}{ }^{2}$ (for one atom in a general position):

$$
\begin{aligned}
& F c=-8 I=-8\left(i_{1}+i_{2}+i_{3}\right) \\
& \begin{aligned}
\frac{\partial F c}{\partial x} & =-8(2 \pi)\left(h q_{1}+\ell m_{2}-k k_{3}\right) \\
= & -8(2 \pi)[h \cos (2 \pi h x) \cos (2 \pi k y) \sin (2 \pi \ell z) \\
& +\ell \sin (2 \pi h y) \cos (2 \pi k z) \cos (2 \pi \ell x) \\
& -k \sin (2 \pi h z) \sin (2 \pi k x) \sin (2 \pi \ell y)]
\end{aligned}
\end{aligned}
$$

We get Fc from table 3. I from table 1, and the derivatives from table 2.

I thank Drs. Richard E. Marsh and Sten Samson for helpful discussions and encouragement.

References

International Tables for X-Ray Crystallography (1952), Vol. 1. Birmingham: Kynoch Press.

Hybl, A. and Marsh, R. E. (1961). Acta Cryst. , 14, 1046.

Table 1. Definition of triple products and sums of triple products.

$$
C=\cos 2 \pi \quad S=\sin 2 \pi
$$

Group I hx ky $\quad \ell z$ hy kz ℓx hz kx ℓy

$$
\begin{aligned}
& C \equiv C h x \cdot C k y \cdot C \ell z+C h y \cdot C k z \cdot C \ell x+C h z \cdot C k x \cdot C \ell y \equiv C_{1}+C_{2}+C_{3} \\
& E \equiv S h x \cdot S k y \cdot C \ell z+S h y \cdot S k z \cdot C \ell x+S h z \cdot S k x \cdot C \ell y \equiv e_{1}+e_{2}+e_{3} \\
& G \equiv C h x \cdot S k y \cdot S \ell z+C h y \cdot S k z \cdot S \ell x+C h z \cdot S k x \cdot S \ell y \equiv g_{1}+g_{2}+g_{3} \\
& I \equiv S h x \cdot C k y \cdot S \ell z+S h y \cdot C k z \cdot S \ell x+S h z \cdot C k x \cdot S \ell y \equiv i_{1}+i_{2}+i_{3} \\
& K \equiv S h x \cdot S k y \cdot S \ell z+S h y \cdot S k z \cdot S \ell x+S h z \cdot S k x \cdot S \ell y \equiv k_{1}+k_{2}+k_{3} \\
& M \equiv S h x \cdot C k y \cdot C \ell z+S h y \cdot C k z \cdot C \ell x+S h z \cdot C k x \cdot C \ell y \equiv m_{1}+m_{2}+\mathrm{m}_{3} \\
& O \equiv C h x \cdot S k y \cdot C \ell z+C h y \cdot S k z \cdot C \ell x+C h z \cdot S k x \cdot C \ell y \equiv o_{1}+o_{2}+o_{3} \\
& Q \equiv C h x \cdot C k y \cdot S \ell z+C h y \cdot C k z \cdot S \ell x+C h z \cdot C k x \cdot S \ell y \equiv q_{1}+q_{2}+q_{3}
\end{aligned}
$$

Group II hy kx ℓz hz ky ℓx hx kz ℓy
$\mathrm{D} \equiv \mathrm{Chy} \cdot \mathrm{Ckx} \cdot \mathrm{C} \mathrm{\ell z}+\mathrm{Chz} \cdot \mathrm{Cky} \cdot \mathrm{C} \ell \mathrm{x}+\mathrm{Chx} \cdot \mathrm{Ckz} \cdot \mathrm{Cly} \equiv \mathrm{d}_{1}+\mathrm{d}_{2}+\mathrm{d}_{3}$ $F \equiv S h y \cdot S k x \cdot C \ell z+S h z \cdot S k y \cdot C \ell x+S h x \cdot S k z \cdot C \ell y \equiv f_{1}+f_{2}+f_{3}$
$H \equiv C h y \cdot S k x \cdot S \ell z+C h z \cdot S k y \cdot S \ell x+C h x \cdot S k z \cdot S \ell y \equiv h_{1}+h_{2}+h_{3}$
$J \equiv S h y \cdot C k x \cdot S \ell z+S h z \cdot C k y \cdot S \ell x+S h x \cdot C k z \cdot S \ell y \equiv j_{1}+j_{2}+j_{3}$
$L \equiv S h y \cdot \mathrm{Skx} \cdot \mathrm{S} \ell \mathrm{z}+\mathrm{Shz} \cdot \mathrm{Sky} \cdot \mathrm{S} \ell \mathrm{x}+\mathrm{Shx} \cdot \mathrm{Skz} \cdot \mathrm{S} \ell \mathrm{y} \equiv \ell_{1}+\ell_{2}+\ell_{3}$
$\mathrm{N} \equiv S h y \cdot C k x \cdot C \ell z+S h z \cdot C k y \cdot C \ell x+S h x \cdot C k z \cdot C \ell y \equiv n_{1}+n_{2}+n_{3}$
$\mathrm{P} \equiv \mathrm{Chy} \cdot \mathrm{Skx} \cdot \mathrm{Clz}+\mathrm{Chz} \cdot \mathrm{Sky} \cdot \mathrm{C} \ell \mathrm{x}+\mathrm{Chx} \cdot \mathrm{Skz} \cdot \mathrm{C} \ell \mathrm{y} \equiv \mathrm{p}_{1}+\mathrm{p}_{2}+\mathrm{p}_{3}$
$\mathrm{R} \equiv \mathrm{Chy} \cdot \mathrm{Ckx} \cdot \mathrm{S} \mathrm{\ell z}+\mathrm{Chz} \cdot \mathrm{Cky} \cdot \mathrm{S} \mathrm{\ell x}+\mathrm{Chx} \cdot \mathrm{Ckz} \cdot \mathrm{S} \mathrm{\ell y} \equiv \mathrm{r}_{1}+\mathrm{r}_{2}+\mathrm{r}_{3}$

Table 2. Derivatives of triple products. All derivatives to be multiplied by 2π. For example, read $\mathrm{hml} \equiv 2 \pi \mathrm{hml}$.

Group I	x	y	z	Group II	\mathbf{x}	y	2
c 1	-hml	-kol	-2 q 1	dl	-kpl	-hn 1	-2 rl
c. 2	-2q2	-hm2	-ko2	d2	-2 2	-kp2	-hr 2
c 3	-ko3	-2 q3	-hm3	d3	-hn3	-2 53	-kp3
el	hol	kml	-2kl	f1	$t \mathrm{kn} 1$	hpl	-2\&1
e2	-2k2	ho2	km2	f2	-222	kn2	hp2
e3	+ km 3	-2k3	ho3	f3	hp3	-223	kn3
g 1	-hk 1	kq1	Lol	hl	kr 1	-hel	epl
g 2	102	-hk2	-kq2	h2	\&p2	kr 2	-h2 2
g3	kq3	103	-hk3	h3	-h2 3	2p3	kr 3
i1	hql	-kk1	2 ml	j1	-k\& 1	hr 1	$\ln 1$
12	$\ell \mathrm{m} 2$	hq 2	-kk2	j2	Ln2	-kl 2	hr 2
13	-kk3	$\ell \mathrm{m} 3$	hq3	j3	hr3	Ln3	-k\& 3
k1	hgl	kil	\&el	$\ell 1$	kj1	hhl	1f1
k2	\boldsymbol{e} e2	hg2	ki2	12	If2	kj2	hh 2
k3	ki3	2 e 3	hg3	13	hh3	2 f3	kj3
ml	hel	-kel	- 111	nl	-kfi	hdi	- L jl
m 2	- 12	hce 2	-ke2	n2	-2 22	-lkf2	hd2
m3	-ke3	-2i3	he3	n3	hd3	-2 ${ }^{\text {3 }}$	-kf 3
01	-hel	kel 1	-2 g1	$p 1$	kdl	-hfl	- 2 hl
02	-l g2	-he2	kc2	p2	-ih2	kd2	-hf 2
-3	kc3	-2 g3	-he3	p3	-hf3	-2h3	kd3
q1	-hil	-kg 1	\& cl	r 1	-kh 1	-hjl	+2 dl
q2	2 c 2	-hi2	-kg2	r2	2 d 2	-kh2	-hj2
q3	-kg3	LC3	-hi3	r3	-hj3	ℓ d3	-kh3

Note the cyclic relationship.

Table 3. A tabulation of the cubic space groups according to index parities.

A
$T_{h}{ }^{1}-P_{m 3} \quad 8^{\circ}$ All planes
C
$T_{h}{ }^{2}-P_{n} 3$
8

$$
\begin{array}{ll}
\frac{h+k}{2 n} & \frac{k+1}{2 n} \\
2 n & 2 n+1 \\
2 n+1 & 2 n \\
2 n+1 & 2 n+1
\end{array}
$$

$$
\begin{aligned}
& C \\
& -E \\
& -G \\
& -I
\end{aligned}
$$

$T_{h}{ }^{3}-\mathrm{Fm}_{\mathrm{m}} \quad 32 \mathrm{~h}, \mathrm{k}, 2$ all even or all odd
C

Table 3. (continued) (2)

Space Group	p_{c}	Planes			A
$\mathrm{T}_{\mathrm{h}}^{4}-\mathrm{Fd} 3$	16	$\frac{h+k}{4 n}$	$\frac{k+2}{4 n}$	$\frac{\ell+h}{4 n}$	2C
		4 n	$4 n+2$	$4 n+2$	-2E
		$4 n+2$	4n	$4 n+2$	-2G
		$4 n+2$	$4 \mathrm{n}+2$	4n	-2I
		4 n	4 n	$4 \mathrm{n}+2$	C-E-G+I
		4 n	$4 \mathrm{n}+2$	4 n	C-E+G-I
		$4 \mathrm{n}+2$	4n	4 n	C+E-G-I
		$4 n+2$	$4 n+2$	$4 \mathrm{n}+2$	-C-E-G-I
$T_{h}^{5}-\operatorname{Im} 3$	16		$\mathrm{h}+\mathrm{k}+$	$=2 \mathrm{n}$	C
$T_{h}^{6}-\mathrm{Pa} 3$	8		$\underline{\mathrm{h}+\mathrm{k}}$	$\underline{\mathrm{k}+2}$	
			2n	2n	C
			2n	$2 \mathrm{n}+1$	-G
			$2 \mathrm{n}+1$	2n	-I
			$2 \mathrm{n}+1$	$2 \mathrm{n}+1$	-E
$T_{h}^{7}-\mathrm{Ia} 3$	16	$h+k+\ell=$	$\frac{\mathrm{h}}{2}$	$\frac{\mathrm{k}}{2}$	
		2 n	$2 n$ $2 n$	$2 n$ $2 n+1$	-I
			$2 \mathrm{n}+1$	2 n	-E
			$2 \mathrm{n}+1$	$2 \mathrm{n}+1$	-G

$0^{1}-\mathrm{P} 432$	4	All planes		$C+D$	$-\mathrm{K}+\mathrm{L}$
$\mathrm{O}^{2}-\mathrm{P} 42^{32}$	4		$\begin{aligned} & k+\ell=2 n \\ & k+\ell=2 n+1 \end{aligned}$	$\begin{aligned} & C+D \\ & C-D \end{aligned}$	$\begin{aligned} & -\mathrm{K}+\mathrm{L} \\ & -\mathrm{K}-\mathrm{L} \end{aligned}$
$O^{3}-\mathrm{F} 432$	16	h, k, \& all even or all odd		$C+D$	$-\mathrm{K}+\mathrm{L}$
$\mathrm{O}^{4}-\mathrm{F}_{4}{ }_{1} 32$	16	$\frac{h, k, \ell}{\text { all } e \text { en }}$	$\frac{h+k+\ell}{4 n}$	C+D	$-\mathrm{K}+\mathrm{L}$
		all odd	$4 \mathrm{n}+1$	C-L	$-\mathrm{K}+\mathrm{D}$
		all even	$4 n+2$	C-D	-K-L
		all odd	$4 n+3$	C+L	-K-D

Table 3. (continued) (3)

Space Group	c Planes			A	B
$0^{5}-1432$	8	$\mathrm{h}+$	+ $2=2 \mathrm{n}$	$C+D$	-K+L
$0^{6}-P_{4} 32$	$4 \quad \frac{h}{2}$	\underline{k}	$\ell \quad \mathrm{h}+\mathrm{k}+\ell$		
	(1) $\overline{2} \mathrm{n}$	2n	$\frac{2}{} \mathrm{n} \quad 4 \mathrm{n}$	$C+D$	$-\mathrm{K}+\mathrm{L}$
	(2) $2 \mathrm{n}+1$	$2 \mathrm{n}+1$	$2 \mathrm{n}+1 \quad 4 \mathrm{n}+1$	C-L	$-\mathrm{K}+\mathrm{D}$
	(3) $2 n$	2 n	$2 \mathrm{n} \quad 4 \mathrm{n}+2$	C-D	-K-L
	(4) $2 \mathrm{n}+1$	$2 n+1$	$2 n+1 \quad 4 n+3$	C+L	-K-D
	(5) $2 \mathrm{n}+1$	$2 n+1$	2 n ($4 n$	-G-J	M-P
	(6) 2 n	2 n	$2 n+1 \quad 4 n+1$	$-G+P$	$\mathrm{M}-\mathrm{J}$
	(7) $2 n+1$	$2 \mathrm{n}+1$	$2 \mathrm{n} \quad 4 \mathrm{n}+2$	$-\mathrm{G}+\mathrm{J}$	$\mathrm{M}+\mathrm{P}$
	(8) 2 n .	2 n	$2 n+1 \quad 4 n+3$	-G-P	$\mathrm{M}+\mathrm{J}$
	(9) 2 n	$2 \mathrm{n}+1$	$2 n+1$ 4n	-I-E	O-R
	(10) $2 n+1$	2 n	$2 n \quad 4 n+1$	$-\mathrm{I}+\mathrm{R}$	$\mathrm{O}-\mathrm{F}$
	(11) 2 n	$2 \mathrm{n}+1$	$2 n+1 \quad 4 n+2$	$-\mathrm{I}+\mathrm{F}$	$\mathrm{O}+\mathrm{R}$
	(12) $2 \mathrm{n}+1$	2 n	2 n [$4 n+3$	-I-R	$\mathrm{O}+\mathrm{F}$
	(13) $2 n+1$	2 n	$2 n+1$ \&n	-E-H	$Q-N$
	(14) 2 n	$2 n+1$	2 n 4n+1	$-\mathrm{E}+\mathrm{N}$	Q-H
	(15) $2 n+1$	2 n	$2 n+1 \quad 4 n+2$	$-\mathrm{E}+\mathrm{H}$	$Q+N$
	(16) 2 n	$2 \mathrm{n}+1$	2 n 4n+3	-E-N	$\mathrm{Q}+\mathrm{H}$
$O^{7}-P 41^{32}$	4 See 0^{6},	rity	ndition		
			(1)	C+D	$-\mathrm{K}+\mathrm{L}$
			(2)	C+L	$-\mathrm{K}-\mathrm{D}$
			(3)	C-D	-K-L
		.	(4)	C-L	-K+D
			(5)	-G-J	$\mathrm{M}-\mathrm{P}$
			(6)	-G-P	$\mathrm{M}+\mathrm{J}$
			(7)	-G+J	$\mathrm{M}+\mathrm{P}$
			(8)	$-G+P$	$\mathrm{M}-\mathrm{J}$
			(9)	-I-F	O-R
			(10)	-I-R	$O+\mathrm{F}$
			(11)	$-\mathrm{I}+\mathrm{F}$	$\mathrm{O}+\mathrm{R}$
			(12)	$-\mathrm{I}+\mathrm{R}$	$\mathrm{O}-\mathrm{F}$
			(13)	-E-H	$Q-N$
			(14)	-E-N	$Q+\mathrm{H}$
			(15)	$-\mathrm{E}+\mathrm{H}$	$\mathrm{Q}+\mathrm{N}$
			(16)	$-\mathrm{E}+\mathrm{N}$	$Q-H$

Table 3. (continued) (4)

Space Group	ρ_{c}			A	B		
$0^{8}-14,32$	8	$\frac{h}{2 n}$	$\frac{k}{2 n}$	$\frac{1}{2 n}$	$\frac{h+k+1}{4 n}$		$C+D$
		$2 n$	$2 n+1$	$2 n+1$	$4 n$	$-1-F$	$-K+L$
	$2 n+1$	$2 n$	$2 n+1$	$4 n$	$-E-H$	$Q-R$	
	$2 n+1$	$2 n+1$	$2 n$	$4 n$	$-G-J$	$M-P$	
	$2 n$	$2 n$	$2 n$	$4 n+2$	$C-D$	$-K-L$	
	$2 n$	$2 n+1$	$2 n+1$	$4 n+2$	$-I+F$	$O+R$	
	$2 n+1$	$2 n$	$2 n+1$	$4 n+2$	$-E+H$	$Q+N$	
	$2 n+1$	$2 n+1$	$2 n$	$4 n+2$	$-G+J$	$M+P$	

$T_{d}^{1}-\mathrm{P} \overline{4} 3 \mathrm{~m} \quad$ All planes $\quad \mathrm{C}+\mathrm{D} \quad-\mathrm{K}-\mathrm{I}$
$\mathrm{T}_{\mathrm{d}}^{2}-\mathrm{F} \overline{4} 3 \mathrm{~m} \quad 16 \mathrm{~h}, \mathrm{k}, \&$ all even or all odd $\mathrm{C}+\mathrm{O} \quad-\mathrm{K}-\mathrm{L}$
$\mathrm{T}_{\mathrm{d}}^{3}-\mathrm{I} \overline{4} 3 \mathrm{~m} \quad 8 \quad \mathrm{~h}+\mathrm{k}+\mathrm{L}=2 \mathrm{n} \quad \mathrm{C}+\mathrm{D} \quad-\mathrm{K}-\mathrm{L}$

$\mathrm{T}_{\mathrm{d}}^{4}-\mathrm{P} \overline{4} 3 \mathrm{n}$	4	$\mathrm{~h}+\mathrm{k}+\ell=2 \mathrm{n}$	$\mathrm{C}+\mathrm{D}$
$\mathrm{h}+\mathrm{k}+\ell=2 \mathrm{l}+1$	$\mathrm{~K}-\mathrm{L}$		
		$C-D$	$-\mathrm{K}+\mathrm{L}$

$T_{d}^{5}-F \overline{4} 3 c$

$h, k, \&$ all even	$C+D$	$-K-L$
$h, k, \&$ all odd	$C-D$	$-K+L$

$T_{d}^{6}-I \overline{4} 3 d$
$8 \frac{h}{2 n} \quad \frac{k}{2 n} \quad \frac{1}{2 n} \quad \frac{h+k+1}{4 n} \quad C+D \quad-K-L$
$2 n \quad 2 n+1 \quad 2 n+1$ 4n $\quad-I-F \quad O+R$
$2 n+1 \quad 2 n \quad 2 n+1 \quad 4 n \quad-E-H \quad Q+N$
$2 n+1 \quad 2 n+1 \quad 2 n \quad 4 n \quad-G-J \quad M+P$
$2 n \quad 2 n \quad 2 n \quad 4 n+2 \quad C-D \quad-K+L$
$2 n \quad 2 n+1 \quad 2 n+1 \quad 4 n+2 \quad-I+F \quad O-R$
$2 n+1 \quad 2 n \quad 2 n+1 \quad 4 n+2 \quad-E+H \quad Q-N$ $2 n+1$ 2n+1 $2 n \quad 4 n+2 \quad-G+J \quad M-P$

$$
O_{h}^{\prime}-P m 3 m \quad 8 \quad \text { All planes }
$$

A
$C+D$

Table 3. (continued) (5)
Space Group $\quad \rho_{c}$ Planes A

$O_{h}{ }^{2}-P n 3 n$	8	$\frac{h}{2 n}$	$\frac{k}{2 n}$	$\frac{\ell}{2 n}$	$C+D$
$2 n$	$2 n+1$	$2 n+1$	$-G-H$		
	$2 n+1$	$2 n+1$	$2 n$	$-E-E$	
$2 n+1$	$2 n$	$2 n+1$	$-I-J$		
	$2 n+1$	$2 n+1$	$2 n+1$	$C-D$	
$2 n+1$	$2 n$	$2 n$	$-G+H$		
	$2 n$	$2 n$	$2 n+1$	$-E+E$	
	$2 n$	$2 n+1$	$2 n$	$-I+J$	

$O_{h}{ }^{3}-\operatorname{Prm} 3 n \quad 8$

$h+k+\ell=2 n$	$C+D$
$h+k+\ell=2 n+1$	$C-D$

$O_{h}^{4}-P n 3 m$
8
$\frac{h+k}{2 n} \quad \frac{k+2}{2 n}$
$2 n \quad 2 n+1$
$C+D$
$-E-E$
$2 n+1 \quad 2 n$
$2 n+1 \quad 2 n+1$
-G-H
$-\mathrm{I}-\mathrm{J}$
$\mathrm{O}_{\mathrm{h}}{ }^{5}-\mathrm{Fm} 3 \mathrm{~m} \quad 32$
$h, k, \&$ all even or all odd
$C+D$
$\mathrm{O}_{\mathrm{h}}{ }^{6}-\mathrm{Fm} 3 \mathrm{c} \quad 32$
$\mathrm{h}, \mathrm{k}, \mathcal{L}$ all even
$C+D$
h, k, \& all odd
$C-D$
$O_{h}{ }^{7}-F \mathrm{~d} 3 \mathrm{~m} \quad 16$

$\underline{h+k}$	$\underline{k+1}$	$2+\mathrm{h}$	
4 n	4 n	4 n	$2(C+D)$
4 n	$4 n+2$	$4 n+2$	$-2(E+F)$
$4 \mathrm{n}+2$	4 n	$4 \mathrm{n}+2$	$-2(\mathrm{G}+\mathrm{H})$
$4 \mathrm{n}+2$	$4 n+2$	4 n	-2(I+J)
4 n	4 n	$4 n+2$	$\begin{aligned} & (C-E-G+I \\ & \quad+D-E-H+J) \end{aligned}$
4 n	$4 n+2$	$4 n$	($\mathrm{C}-\mathrm{E}+\mathrm{G}-\mathrm{I}$
			+D $-\mathrm{F}+\mathrm{H}-\mathrm{J}$)
$4 n+2$	4n	4 n	$(C+E-G-I$
$4 \mathrm{n}+2$	$4 n+2$	$4 \mathrm{n}+2$	- $(\mathrm{C}+\mathrm{E}+\mathrm{G}+1$
			$+\mathrm{D}+\mathrm{F}+\mathrm{H}+\mathrm{J})$

Table 3. (continued) (6)

Space Group	ρ_{c}	Planes				A
$o_{h}^{8}-F d 3 c$	16		$\frac{\mathrm{h}+\mathrm{k}}{4 n}$	$\frac{\mathrm{k}+1}{1 \mathrm{l}}$	$\frac{\ell+h}{4 n}$	
			$4 n$ $4 n$	$4 n$ $4 n+2$	$4 n$ $4 n+2$	$2(C+D)$ $-2(E+F)$
			$4 \mathrm{n}+2$	4 n	$4 \mathrm{n}+2$	$-2(G+H)$
			$4 n+2$	$4 n+2$	4 n	-2(I+J)
			$4 n$	4 n	$4 n+2$	-(C-E+G-I
						$-\mathrm{D}+\mathrm{E}-\mathrm{H}+\mathrm{J}$)
			4 n	$4 n+2$	4 n	$-(C+E-G-1$
						$-\mathrm{D}-\mathrm{F}+\mathrm{H}+\mathrm{J})$
			$4 \mathrm{n}+2$	4 n	4 n	$-(C-E-G+I$
			$4 n+2$	$4 n+2$	$4 n+2$	$-(C+E+G+1$
						-D-E-H-J)
$\begin{aligned} & \mathrm{O}_{\mathrm{h}}^{9}-\mathrm{Im} 3 \mathrm{~m} \\ & \mathrm{O}_{\mathrm{h}}^{10}-\mathrm{Ia} 3 \mathrm{~d} \end{aligned}$	16		$h+k+2=2 n$			$C+D$
	16	h	k	ℓ	h+k+l	
		$\overline{2}$	$\overline{\mathrm{z}}$	$\overline{2}$	4 n	C+D
		2 n	$2 \mathrm{n}+1$	$2 \mathrm{n}+1$	4n	-I- F
		$2 \mathrm{n}+1$	2 n	$2 \mathrm{n}+1$	4 n	-E-H
		$2 n+1$	$2 \mathrm{n}+1$	2 n	4 n	-G-J
		2 n	2 n	2 n	$4 n+2$	C-D
		2 n	$2 \mathrm{n}+1$	$2 \mathrm{n}+1$	$4 n+2$	$-\mathrm{I}+\mathrm{F}$
		$2 \mathrm{n}+1$	2 n	$2 \mathrm{n}+1$	$4 \mathrm{n}+2$	$-\mathrm{E}+\mathrm{H}$
		$2 n+1$	$2 \mathrm{n}+1$	2 n	$4 \mathrm{n}+2$	-G+J

+ ρ_{c} is the factor by which A and B must be multiplied to give contribution of entire unit cell.

IV．I propose that the trial structure defined below be used as a starting point in a refinement of the crystal structure of the γ_{1}－phase compound of the nickel－cadmium system．

$$
\begin{aligned}
& \text { Space group } \\
& T_{d}^{1}-P^{4} 3 m \\
& \text { Atomic parameters } \\
& 1 \mathrm{Cd} \text { in 1(b) 2, } \frac{2}{2} \frac{2}{2} \\
& 4 \mathrm{Ni} \text { in } 4(\mathrm{e}) \mathrm{f}, \mathrm{f}, \mathrm{f} ; \ldots \mathrm{w} \text { with } \mathrm{f}=0.314 \\
& 6 \mathrm{Ni} \text { in 6(f) g, 刍交; with } \mathrm{g}=0.799 \\
& 1 \angle \mathrm{Cd} \text { in } 1 \angle(\mathrm{~h}) \mathrm{h}, \mathrm{~h}, \mathrm{i} ; \ldots \text { with } \mathrm{h}=0.796 \\
& \mathrm{i}=0.547
\end{aligned}
$$

$$
14 \mathrm{Ni} \text { and } 35 \mathrm{Cd}(28.6 \mathrm{at} . \% \mathrm{Ni})
$$

Lihl and Buhl（1）reported the γ_{1} phase of the nickel－cadmium system to be homogeneous between about 29 and 29.5 at．$\% \mathrm{Ni}$ with a γ－brass type structure．I propose that the structure is essentially defined by the trial structure given above；the trial structure is not a γ－brass type．

In an ingot whose overall composition was approximately 55 at. $\% \mathrm{Ni}, I$ found a cubic crystal with a cell edge of $a_{0} \cong 9.7 \AA$, which corresponds very closely to the value for a_{0} of $9.675 \AA$ reported by Lihl and Buhl for the γ_{1} phase. I have obtained an almost complete three-dimensional set of intensity data from equi-inclination Weissenberg photographs. The intensities were estimated with great haste, corrected for Lorentz and polarization effects, and correlated to obtain a list of structure factors on the same scale.

The first structure-factor least-squares refinement cycle on the basis of the proposed trial structure gave an agreement index of $R=0.29$; and a second cycle r educed this to $R=0.26$. An electrondensity map of the (110) plane was then calculated, and the map indicated no serious error in the trial structure. At a corresponding stage $(R=0.28)$ in the refinement of "Ni Zn_{21} " (2), an electrondensity map was calculated which immediately indicated the error in the trial structure.

I must admit that the observed structure factors used in these calculations are probably of poor quality because of the haste in which they were obtained. Furthermore, the trial structure that I have proposed may be based on an incorrect composition. The occupancy of possible positions was assigned to give an overall composition of approximately 29% as reported by Lihl and Buhl. An experimental
composition has not been obtained by me; however, these preliminary calculations indicate no change in the assigned occupancies.

In spite of this, I assert that the geometrical structure is essentially correct. As indicated above, the electron-density map contained no spurious peaks; furthermore, there was a negative peak at the position where one would expect a peak if the structure were a γ-brass structure as reported by Lihl and Buhl. A γ-brass type trial structure was constructed after the above calculations were carried out; a few least squares cycles have brought the agreernent index only to $R=0.40$.

References

1. F. Lihl and E. Buhl, Z. Metallkunde, 46, 787-791 (1955).
2. This thesis, Part III.
V. I propose that the crystal structure of " $\mathrm{Cu}_{9} \mathrm{Al}_{4}$ " be carefully investigated to determine its structure and to determine its ideal composition.

The crystal structure and composition of "Cug Al_{4} " are very important since " $\mathrm{Cu}_{9} \mathrm{Al}_{4}{ }^{11}$ and $\mathrm{Cu}_{5} \mathrm{Zn}_{8}, \gamma$ brass, seem to have given rise to the class of electron compounds known as the γ-brass type compounds. Ekman (1), using the powder method, found several alloys to be isotypic with γ brass. He assigned them ideal compositions which give the ratio of valence electrons to atoms a value of 21/13. He felt that this ratio of electrons to atoms was instrumental in determining a γ-brass type structure, since the only two γ-brass structures known at that time were " $\mathrm{Cu}_{9} \mathrm{Al}_{4}$ " and $\mathrm{Cu}_{5} \mathrm{Zn}_{8}$, which both exhibit an electron: atom ratio of $21: 13$ if copper is assumed to be univalent, zinc divalent, and aluminum trivalent. Since that time, many alloys have been reported as γ-brass types, and all have ideal compositions, which give electron atom ratios of 21:13. Hume-Rothery and Raynor (2) state: "Thus, the so-called ' γ-brass' structure occurs at an electron: atom ratio of 21:13." This sort of statement is commonly called a Hume-Rothery rule. They list 26 alloys with a γ-brass type structure. Because of the work reported in parts II and III of this thesis, " $\mathrm{Ni}_{5} \mathrm{Cd}_{21}$ " and " $\mathrm{Ni}_{5} \mathrm{Zn}_{4}$ " can be removed from that list. I have examined the literature, drawing analogies to " $\mathrm{Ni}_{5} \mathrm{Cd}_{21}$ " $^{\prime}$ and " $\mathrm{Ni}_{5} \mathrm{Zn}_{21}$ " where it
seemed appropriate, and I have concluded that there is sufficient evidence to remove 14 other alloys from that list, reducing the number from 26 to 10. I am willing to admit that five of these can occur with γ-brass type structures at electron:atom ratios of 21:13. It seems that the classification of γ-brass compounds will break down under careful scrutiny.

I assert that "Cu9 ${ }_{9} \mathrm{Al}_{4}$ " became such and has persisted as such on the basis of fallacious reasoning and in contradiction to known experimental facts. In doing so, I necessarily assert that the γ-brass classification was based on unsound logic from the very beginning. My reasons are pointed out in the following analysis of Bradley's determination (3) of the crystal structure of "Cug ${ }_{9} \mathrm{Al}_{4}$ ". All of the quotes are from his paper. At the time Bradley wrote this, the copper-aluminum phase with which he worked was called the δ-phase.

Bradley derived the crystal structure of "Cu ${ }_{9} \mathrm{Al}_{4}$ " in the following manner. Powder photographs of the 8-Cu-Al phase were similar to those of $\mathrm{Cu}_{5}-\mathrm{Zn}_{8}$. However, the differences in the photographs were sufficiently marked to indicate that "the structures are not quite the same in every respect." The relative intensities of the $\mathrm{Cu}_{5} \mathrm{Zn}_{8}$ photographs were not in every sense the same as those of corresponding lines of the $\delta-\mathrm{Cu}-\mathrm{Al}$ photographs. There were, moreover, additional lines on the $\delta-C u-A l$ photographs corresponding to reflections with $h+k+\ell=2 n+1$, indicating that the unit cube is
primitive and not body centered. He states, with his emphases, "intensity changes cannot be accounted for by supposing that the positions of the atoms have suffered a slight displacement, the effect of which would be to produce a slight change in the least deviated r eflections and a much larger change in the most deviated reflections. This is just the reverse of what one observes. It is therefore safe to conclude that the atoms, as a whole, occupy almost identical positions in the two alloys." I don't follow his reasoning in the first sentence, but I want to emphasize "slight" instead of "displacement." Here he makes his first fallacious assumption, that any displacement is a slight one; he does not consider that there may be major changes in a few of the positions.

He reasons further that the primitive cell can be based on 8 independent sets of atoms, constituting 52 atoms in the unit cube as in $\mathrm{Cu}_{5} \mathrm{Zn}_{8}$.

The 8 sets and their coordinates are:

$$
\begin{aligned}
& 4 e_{1} \text { at } a, a, a ; \text { etc., and } 4 e_{1}^{\prime} \text { at } \frac{1}{2}+a, \frac{1}{2}+a, \frac{1}{2}+a ; \text { etc. } a=0.10_{3} \\
& 4 e_{2} \text { at } b, b, b ; \text { etc. and } 4 e_{2}^{\prime} \text { at } \frac{1}{8}+b, \frac{1}{2}+b, \frac{1}{2}+b ; e t c ., b=0.16_{7} \\
& 6 f \text { at } c, 0, o \text { etc. . and } 6 f^{\prime} \text { at } \frac{1}{2}+c, \frac{1}{2}, \frac{1}{2} ; \text { etc. }
\end{aligned}
$$

12 h at $\mathrm{d}, \mathrm{d}, \mathrm{e}$; etc.. and $12 \mathrm{~h}^{\prime}$ at $\frac{t}{\mathrm{~h}}+\mathrm{d}, \frac{1}{2}+\mathrm{d}, \frac{1}{C}+\mathrm{e}$; etc., $\mathrm{d}=0.30_{5}$

As one can see, he has preserved the body-centering translation, as far as the geometry is concerned; we will soon see that he makes this
a primitive structure by assigning the aluminum atoms to two sets which are not related by the body-centering translation of 훌흘휼.

However, this is where he makes a second fallacious assumption, and a serious one. Any change in occupancy from a perfect body-centered cell will destroy the geometrical translation of $\frac{1}{2} \frac{1}{2} \frac{1}{2}$. Y et this highly idealized model is recorded as structure type $D 8_{3}$ and several alloys have been assigned the same structure (4). He is justified in making crude calculations on such a proposal, but he is not justified in distinguishing between small differences, which he does immediately. Bradley next turns to the problem of fitting the aluminum atoms into the eight possible sets of atoms. This is the crucial part, for this is where the ideal composition is fixed and where, hence, the electronatom ratio of 21:13 may have been conceived, though another investigator had to deliver it.

Because the composition of the alloys with which he worked varied from approximately 31-35.3 at. \% A1 (he later fixed the homogeneity range as 31.3-35.3 at. \% Al (5)), he assumed the ideal composition to correspond either to $\mathrm{Cu}_{9} \mathrm{Al}_{4}\left(30.8\right.$ at. \% Al) or to $\mathrm{Cu}_{17} \mathrm{Al}_{9}$ (34.6 at. \% Al). He lists the possible ways of building up the structure, using the 8 sets of atoms given above:

> a) for $\mathrm{Cu}_{9} \mathrm{Al}_{4}, C u_{36} \mathrm{Al}_{16}$
> (1) $4 \mathrm{e}_{1}, 4 e_{1}^{\prime}, 4 e_{2}, 4 e_{2}^{\prime}$
> (2) $12 \mathrm{~h}, 4 \mathrm{e}_{1}$
> (3) $12 \mathrm{~h}, 4 \mathrm{e}_{1}^{\prime}$
> (4) $12 \mathrm{~h}, 4 \mathrm{e}_{2}$
> (5) $12 \mathrm{~h}, 4 \mathrm{e}_{2}^{\prime}$
> (6) $6 \mathrm{f}, 6 \mathrm{f}^{\prime}, 4 \mathrm{e}_{1}$
> (7) $6 \mathrm{f}, 6 f^{\prime}, 4 \mathrm{e}_{2}$
b) for $\mathrm{Cu}_{17} \mathrm{Al}_{9}, \mathrm{Cu}_{34} \mathrm{Al}_{18}$
(8) $12 \mathrm{~h}, 6 f$
(9) $12 \mathrm{~h}, 6 \mathrm{f}^{\prime}$

For $\mathrm{Cu}_{34} \mathrm{Al}_{18}$, he has not considered the possibilities,
(10) $6 f, 4 e_{1}, 4 e_{1}, 4 e_{2}$
(11) $6 f, 4 e_{1}, 4 e_{1}^{\prime}, 4 e_{2}^{\prime}$
(12) $6 f, 4 e_{1}, 4 e_{2}, 4 e_{2}^{\prime}$
(13) 6f, $4 e_{1}{ }^{\prime}, 4 e_{2}, 4 e_{2}^{\prime}$.

This oversight marks his third fallacious assumption; he considers only 9 of the 13 possible arrangements.

He then eliminates all but (3) and (4) as possible solutions. He does this by calculating quantities proportional to the intensities for the
powder lines representing reflections from planes with $h+k+\ell=2 n+1$; he does this so that he has to consider only the differences in scattering between copper and aluminum. The basis for his rejection of (8) as a possible atomic arrangement is worth considering. I list the observed intensities for the 13 powder lines which he considered and the quantities proportional to the intensities, calculated on the basis of structures (3) and (8).

Σh^{2}	Observed Intensity	$\begin{gathered} \mathrm{Cu}_{2} \mathrm{Al}_{4} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Cu}_{1} 7^{\mathrm{Al}} 9 \\ \hline \end{gathered}$
3	-	2	8
5	m.	10	5
9	m.	23	39
11	-	-	3
13	-	0	1
17	-	1	-
19	-	4	4
21	-	1	8
25	-	-	1
27	w.	7	8
29	v.w.	4	1
33	v.w.	10	12
35	-	2	2

(I assume that m . is for medium, w. is for weak, v. w. is for very weak, and the dash (-) is for unobserved.)

I cannot see how one could reject (8) as a possibility, considering all the assumptions that were involved. Yet, on this very
calculation rests the determination of the second γ-brass type compound, " $\mathrm{Cu}_{9} \mathrm{Al}_{4}$." Furthermore, the homogeneity range was very carefully determined as extending from 31.3 to 35.3 at. \% A1 (5). The composition corresponding to $\mathrm{Cu}_{9} \mathrm{Al}_{4}$ is 30.8 at. \% Al and lies outside the homogeneity range, and the composition corresponding to $\mathrm{Cu}_{17} \mathrm{Al}_{9}$ is 34.6 at. $\% \mathrm{Al}$ and lies within the range. Yet as late as 1951, Bradley persisted in referring to the γ-brass type compound $" \mathrm{Cu}_{9} \mathrm{Al}_{4}$ " (6).

On the basis of the method that was used to derive the ideal formula $\mathrm{Cu}_{9} \mathrm{Al}_{4}$ and on the basis of the experimentally determined composition, I demand that " $\mathrm{Cu}_{9} \mathrm{Al}_{4}$ " be stricken from the lists of 21:13 compounds and propose that a very careful determination of its structure and composition be undertaken.

Bradley assumes that the differences in the atomic arrangements between $\mathrm{Cu}_{5} \mathrm{Zn}_{8}$ and "Cu${ }_{9} \mathrm{Al}_{4}$ " are very small and proposes a highly idealized structure for " $\mathrm{Cu}_{9} \mathrm{Al}_{4}$." He calculates intensities for a few powder lines for most of the possible atomic arrangements for this idealized structure and on the basis of the resulting small differences decides in favor of composition which is not in the range of homogeneity. To coin a phrase from Hybl and Marsh (7), "this cascade of errors culminates ${ }^{\prime \prime}$ in another Hume-Rothery rule.

References

1. W. Ekman, Z. physik. Chem. B12, 57-77 (1931).
2. W. Hume-Rothery and G. V. Raynor, The Structure of Metals and Alloys, (1956), London; The Institute of Metals. pp. 196-197.
3. A. J. Bradley, Phil. Mag., 6, 878-888 (1928).
4. W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, (1958), New York: Pergamon Press.
5. A. J. Bradley. H. J. Goldschmidt, and F. Lipson, J. Inst. Metals, 63, 149-161 (1938).
6.

A. J. Bradley, Nature, 168, 166 (1951).
7. A. Hybl and R. E. Marsh, Acta Cryst. , 14, 1046-1051 (1961).

[^0]:
 -

 ,

