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ABSTRACT

The high-temperature superconductors have been known formore than three decades.
Nonetheless, the theoretical understanding of their microscopic properties remains
unclear, and there are substantial difficulties in linking the observed phenomena to
the material composition and structures. This thesis aims to establish a theoreti-
cal hierarchy (from lattice models to realistic materials) for faithful simulations of
high-temperature superconductivity.

We start with the lattice models of superconductors by using quantum embed-
ding theory, whose self-consistency allows magnetic and superconducting phases to
emerge. We extended the density matrix embedding theory (DMET) with improved
self-consistency algorithms and determined the ground-state phase diagrams for both
one-band [Chap. 3] and three-band Hubbard models [Chap. 4]. In particular, in the
three-band model, we explored the atomic-scale nature of the antiferromagnetic and
superconducting orders for different model parametrizations, and highlighted the
role of the oxygen degrees of freedom beyond the one-band picture.

To go beyond models, we extended the original theory [DMET and dynamical
mean-field theory (DMFT)] to realistic ab initio descriptions of solids [Chap. 5].
The methods, named full-cell quantum embeddings, are distinct from other embed-
ding schemes in the literature in three aspects: (i) all local orbitals in a unit cell
are included in the embedding problem whereas the bath orbitals are truncated ac-
cording to their atomic valence character; (ii) The embedding Hamiltonian is of the
full quartic fermionic form rather than a simplified Hubbard-like Hamiltonian; (iii)
Many-body quantum chemistry solvers such as coupled cluster (CC) are used to gen-
erate the embedding density matrix and Green’s functions. As demonstrated across
a variety of semiconducting and insulating materials, full-cell quantum embedding
provides accurate energies, equations of state, spin-spin correlation functions, and
excited-state band structures.

We then applied our ab initio quantum embedding methods to the parent state of a
series of cuprate superconductors [Chap. 6]. We uncovered microscopic trends in
the electron correlations and revealed the link between the material composition and
magnetic energy scales via a many-body picture of excitation processes involving
the buffer layers. We found a direct process involving competition between the
in-plane superexchange and the CuO2-buffer layer excitations, which explained the
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magnetic coupling difference among a series of superconducting materials.

Finally, we investigated the doped cuprates, where the superconducting orders appear
in the phase diagram [Chap. 7]. We generalized our ab initio framework to allow
for particle-number symmetry breaking states such that the superconducting orders
can spontaneously emerge during the self-consistency. We showed that the d -wave
superconducting magnitude increases with the pressure applied to the crystals and
the trendmimics that of the superexchange couplingJ . Furthermore, we also studied
the layer effect on superconductivity. Unlike the pressure effect, the layer effect
between different compounds is affected by more factors - both magnetic coupling
J and charge distribution matter. The work provides a starting point to study
the material-specific physics in the superconducting phases of high-temperature
superconductors.

The aforementioned applications relied on (i) the development and adaptation of
many-body solvers, including the CC singles and doubles (CCSD) method with a
Newton-Krylov solver for better numerical convergence, and active-space quantum
chemistry techniques using large-scale density matrix renormalization group cal-
culations. (ii) projection-based orbital localization techniques for metallic systems,
frozen core techniques, and symmetry adaptations. These contents are discussed in
Chap. 2 and Appendices, including their efficient implementation and paralleliza-
tion.

In the concluding remarks [Chap. 8], we summarize the current status and limitations
of the high-temperature superconductivity studies. In addition, we propose several
possible directions to address the challenges in electronic correlation and atomic
modeling of other exotic phases from an ab initio perspective.
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Chapter 1

INTRODUCTION

1.1 Challenge of high-temperature superconductivity
A high-temperature superconductor (HTSC), as the name suggests, is distinguished
from a conventional superconductor by its unusually high superconducting critical
temperatureTc. The discovery ofHTSC [1] is undoubtedly one of themost important
breakthroughs in physics in the second half of the twentieth century, which opens
up a new field for condensed matter physics and illuminates the path to underlying
applications of superconducting materials in real life [2, 3]. Currently, an HTSC
primarily falls within one of the two families of compounds, i.e. copper-based and
iron-based superconductors. The former, also known as cuprates, is the most typical
HTSC and holds the highest record of Tc up to date (133 K at ambient pressure in
mercury-based tri-layer compound HgBa2Ca2Cu3O8Cı [4]).

The crystal structure of cuprates typically contains alternating (multiple) CuO2
plane(s) with other kinds of metal atoms serving as interstitial ions, called buffer
layer. For instance, Fig. 1.1 (a) and (b) provide the basic structure of Nd2CuO4
and La2CuO4, where Cu and O atoms form the pure CuO2 plane and distorted
CuO6 octahedrons (CuO2 plane with additional apical oxygens) respectively. The
apical oxygen, Nd and La play the role of an interlayer charge reservoir. These
compounds without doping are known as parent compounds. When dopant ions
(e.g. Ce, Sr) are introduced, such cuprates become real superconducting materials at
low temperature. Concretely, substituting SrII for LaIII would effectively introduce a
hole in the CuO2 layer and the resulting material is thus called a hole-doped HTSC.
Similarly, by replacing NdIII with CeIV, an excess electron transfers to the CuO2
plane, leading to an electron-doped HTSC. In literature, the doping concentration x
is usually defined as the number of additional change carriers per CuO2 unit.

More interesting physics emerges at the electronic structure level, particularly in the
phase diagramof cuprates [5], see Fig. 1.1 (c). Despite the existence ofmany variants
of cuprates, there are actually several common features in the phase diagram: (i) The
parent state is an antiferromagnetic (AFM) insulator. (ii) The long-range AFM order
quickly drops and eventually disappears after doping. (iii) The superconducting (SC)
order emerges with some doping at low temperature, showing an SC dome in the
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Figure 1.1: Crystal structure of cuprates (parent compounds) and a typical electronic
phase diagram. (a) electron-doped Nd2CuO4 and (b) hole-doped La2CuO4; (c)
doping-temperature phase diagram, different phases are shown: antiferromagnetic
(AFM), superconducting (SC), pseudogap (PG) .

phase diagram. The doping concentration corresponding to the apex of the dome is
called the optimal doping and the region before (after) it is referred to as underdoped
(overdoped) region. (iv) There is significant particle-hole asymmetry along doping,
e.g., the AFM phase is more robust against electron doping, whereas the SC order
is usually more evident in the hole-doped case. (v) In the underdoped region of
the hole doped side of phase diagram, there is the so-called pseudogap (PG) phase,
where the system is partially gapped on the Fermi surface [6]. Usually, competing
orders [AFM, SC, stripe, density waves (DW) etc.] coexist in the PG region [7,
8]. The PG phase is typically not very evident in the electron-doped side. (vi)
By overdoping or increasing the temperature, the AFM and SC correlations finally
decay and the system becomes a paramagnetic (PM) metal and can be satisfactorily
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described by the Fermi liquid theory [9] (although there are regions, called strange
metal (SM) phase, showing significantly more correlated behaviors than the PM
metal phase [10]).

Although such a sophisticated phase diagram has been established by extensive ex-
perimental efforts (see Ref. [5, 11] and references therein), a universal theory that
explains all components of the phase diagram, has yet to emerge. Historically, the
microscopic superconducting mechanism of conventional superconductors was suc-
cessfully established by the Bardeen–Cooper–Schrieffer (BCS) theory [12], whose
key idea is the formation of electron pairs (Cooper pairs) due to the interactions of
the electrons with the vibrations of the atoms in the lattice (phonon). It was proven
that an arbitrarily small attraction between electrons can stabilize the electron pair
as a bound state against a non-interacting Fermi gas. Many experiments (especially
the isotope effect) have verified the electron-phonon interaction as the “glue” of the
electron pairing state. As a consequence, the Tc of a conventional superconduc-
tor can be qualitatively predicted by estimating the averaged phonon-frequency !0,
electron-phonon coupling parameter g and the electronic density of states around
the Fermi level NF,

Tc � !0 exp
�
�

1

gNF

�
: (1.1)

However, the phonon-mediated mechanism can not explain the high-Tc supercon-
ductivity because the phonon frequency as well as its coupling with electrons can
not be sufficiently large (the current highest Tc of conventional superconductors at
ambient pressure is about 40 K [13]). Unlike the conventional superconductors, the
role of isotope effect by replacing 16O by 18O, is not clear and in many cases it
does not change Tc significantly [14]. Therefore, a new type of glue needs to be
determined and its energy scale !0 should be larger than the typical lattice vibration.

Besides the mysterious superconducting mechanism, there are substantial differ-
ences in the electronic structure compared to the conventional superconductors.
The conventional superconductors are mostly simple sp metals, alloys or com-
pounds (e.g., Hg, Nb3Ge, MgB2). These materials are usually weakly correlated
(i.e., a single Slater determinant dominates the electron’s behavior) and are thus
well described by the density functional theory (DFT) with standard approximate
functionals [15, 16]. The HTSCs, on the other hand, are a typical class of strongly
correlated materials. From their chemical compositions, there exists fractionally
occupied d orbitals; or from a band structure perspective, there are narrow bands
(localized states) entangled with the itinerant electrons in the normal bands [17].
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As a result, the DFT with local or semi-local functionals fails to describe the mag-
netic properties of HTSC. Similarly, the low-order perturbation theory based on a
mean-field reference is not applicable, especially for the doped states. One should
note that the formation of the Cooper pair is intrinsically a many-body process and
makes the electron correlation even stronger and more long-range. A correct theory,
therefore, should be able to treat the strongly correlated electrons and in the mean-
while, scales to large enough systems to mimic the emergence of distinct phases -
this is often a dilemma for quantum chemistry or computational physics methods,
and some trade-off must be taken to balance the accuracy and efficiency.

Moreover, due to the mysterious superconducting mechanism and strong electron
correlation, most of the studies of HTSCs heavily rely on simplified model Hamil-
tonians, especially for the studies of exotic phases like superconducting and density-
wave orders. Since all details of materials are encoded in a few model parameters
(the effects of buffer layers are largely ignored), people have little understanding of
the relation between material compositions and corresponding properties, let alone
effectively predicting new materials with higher Tc. Overall, the high-temperature
superconductivity problem remains a great challenge for condensed matter physics
and quantum chemistry.

1.2 Roadmap to ab initio modelling of superconductivity
Given such a sufficiently complicated system and increasingly powerful computing
capabilities, one may naturally ask: Can we resort to numerical approaches and
provide a quantitative solution to the high Tc problem? From the perspective of
theoretical chemists, the ultimate goal of high Tc study is thus to

Ab initially determine the electronic structure of cuprates at both zero
and finite temperature, and understand the factors that influence the
strength of superconductivity.

There is unfortunately no one-stop solution to achieve such a goal due to the enor-
mous complexity of the problem. There is, however, a hierarchical roadmap to
gradually take the relevant degrees of freedom into account, see Fig. 1.2.

Hamiltonian. On the first dimension of the roadmap, one expects an effective lattice
model that captures the most essential static correlation effects. The procedure
of mapping a realistic material to an effective Hamiltonian is known as downfold-
ing [18–20]. As we have mentioned in Sec. 1.1, a common structural feature of
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Figure 1.2: A roadmap to the ab initio simulation of high-Tc superconductivity.
Three dimensions of complexity are shown: (i) Degrees of freedom in the Hamilto-
nianH increase from the simplest 1-band model to the 3-band model to the ab initio
Hamiltonian. More orbitals are incremented to represent the dynamical correlation
and buffer layers. (ii) Increasing system size allows for different types of symmetry
breaking and more complicated phases to emerge. (iii) The finite-temperature effect
can be in principle considered to study the phase transition in the real world.

cuprates is the existence of CuO2 plane. In addition, transport experiments show a
strong anisotropic conductance, where the superconducting current along the plane
direction is significantly more evident. One can therefore extract the CuO2 layer as
an effective model and regard the other parts of the material as a charge reservoir
that mediates the doping concentration. If we further consider only the minimal
relevant orbitals, namely Cu dx2�y2 and O px.y/ orbitals, the model becomes a
three-band model (per CuO2 unit cell) [21] as shown in the middle of Fig. 1.2. The
three-band model is, however, still very complicated and the degrees of freedom on
oxygen can be approximately integrated out, leading to a one-band model without
explicit atomic structures. This Hamiltonian is known as the two-dimensional (2D)
one-band Hubbard model [22, 23],

OH D
X
�ij

tij

�
a
�
i�aj� C H:c:

�
C U

X
i

ni˛niˇ ; (1.2)

where t is the hopping matrix and the ab initio Coulomb four-index integral is
replaced by an on-site Coulomb repulsion U , which is comparable to the bandwidth
in cuprates. In the large-U limit, themodel is a typical strongly correlated system, for
which the mean-field like method, e.g. Hartree-Fock (HF) approach, breaks down.
To solve the model, an expensive non-perturbative treatment is usually necessary.
Regardless of the simplicity, the one-band and three-band models already show
some general features in HTSCs, e.g., AFM, SC, DW and various inhomogeneous
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charge, spin and pairing orders (see Refs. [24, 25] and references therein). The
primary difficulties are two-fold: (i) the energy scale of different competing orders
generally falls in a very small energy window, meaning that a tiny change of the
parameter can drastically change the inherent physics. The realistic physical process
of materials are governed by the fine structure of the lattice. As an instance, there
are obvious discrepancies between the 1-band model prediction and experiments
in the wavelength of the stripe order [24]. (ii) More importantly, it is still largely
unknown how the buffer layer and geometry distortion influence the properties of the
HTSCs, e.g. through static electricity or one-body potential or many-body electron
correlation? The answers to these questions are unlikely to be lurking in these
simplified models and demand more ab initio insights. Hence, the last rung of the
first dimension is the ab initio Hamiltonian involving all orbitals in the lattice.

System size. The second dimension in the roadmap is the size of the system. Sincewe
are interested in the phase diagram of HTSCs, the system size, in principle, should
be at the thermodynamic limit (TDL), so that different orders spontaneously appear.
Noether’s theorem states that the symmetry of a quantum state corresponds to a
conserved physical quantity. For a finite-system Hamiltonian with conserved spin
SU(2) symmetry, the exact diagonalization can not generate an AFM ground state
that breaks the spin symmetry, whereas the symmetry break can happen if the system
is infinite (the energy gap between the ground and AFM state is infinitely small).
To simulate the symmetry-breaking phenomena, there are typically three ways: (i)
Estimating the order parameter through correlation functions of a non-symmetry-
breaking state. By definition, the correlation function measures the response of an
external perturbation. It is particularly useful when studying the long-range order,
corresponding to large eigenvalues (comparable to the system size) of many-body
density matrices. (ii) Adding a pinning field to the boundary of a finite system to
artificially break the symmetry. The order parameter should be read from the center
of the system where the direct influence of the boundary condition has vanished.
(iii) Simulating the symmetry breaking through a self-consistent field (SCF). It
is well-known that the mean-field like methods, e.g., DFT and HF are able to
stabilize different phases by allowing symmetry-breaking fields during the SCF. A
carefully chosen density functional (e.g., certain hybrid functional) could provide a
reasonable description of magnetic properties, but not for more complicated phases
such as superconductivity, where the electron correlation is crucial. One needs a
quantum embedding procedure to incorporate electron correlation and during its
SCF the symmetry breaking automatically happens. In other words, the quantum
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embedding is directly treating the system as TDL, and the final order parameters are
determined from some extrapolation procedure with respect to fragment sizes. The
size of fragments constrains the allowed types of orders and the increasing of the
supercell sizewill allowmore andmore inhomogeneous order (from the simplest PM
phase to DW phase etc in Fig. 1.2).We will mainly discuss how quantum embedding
can be used to study the high-Tc problem in the thesis.

The idea of embedding is rooted in the local nature of entanglement in the low-lying
states [26]. A large (infinite) system can thus be divided into small fragments and for
each fragment, the enormous number of environment states are effectively replaced
by a small amount of bath degrees of freedom. One can then perform a high-level
calculation on each small embedding problem and collect them together to improve
the overall description of the whole system until the procedure reaches a fixed point.
A famous realization of embedding is the dynamical mean-field theory (DMFT) [27,
28], which uses the Green’s function as its basic variable and utilizes the locality
of the impurity (fragment) self-energy †imp.!/ to construct the new lattice Green’s
function G latt.k; !/. The coupling between impurity and bath is described by the
so-called hybridization �.!/. DMFT is probably the first embedding theory that
works for strongly correlated electrons and has been successfully applied to various
lattice models [27]. However, DMFT suffers severely from the bath discretization
error1 and its large computational complexity due to the frequency dependence.
Because of its large computational cost, the impurity model is usually chosen as
Anderson impurity model [29] or a very small cluster.

Over the past few years, density matrix embedding theory (DMET) [30] has emerged
as a powerful cluster embedding method. The basic idea of DMET is similar to
that of (cellular) DMFT in the sense that they both map the infinite lattice to an
impurity model with the environment described by the bath degrees of freedom,
and attempt to self-consistently match the physical quantities between the mean-
field lattice solution and the correlated cluster (impurity) calculations. Compared
to the Green’s function based embedding methods, DMET is featured by its limited
number of bath orbitals (up to the number of impurity orbitals) and the frequency
independence, which enables DMET to utilize efficient wavefunction-based solvers
and to treat potentially larger clusters. With such appealing features, DMET has
been applied to lattice models [24, 30–33], ab initio chemical Hamiltonians [34–36]

1In principle, one can circumvent the bath discretization error by integrating out the bath degree
of freedom in continuous time quantum Monte Carlo (CT-QMC) solver. However, the CT-QMC
solver is costly and has severe sign problems at low temperature.
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and non-fermionic systems [37, 38], as well as excited states [39] and real-time
extensions [40]. For a detailed review of DMET, we refer the interested readers to
Ref [35]. It is noteworthy that DMET has successfully provided an accurate ground
state phase diagram of the one-band Hubbard model [32], even in the most difficult
underdoped region [24], which can be viewed as an elegant integration over the two
dimensions on the above roadmap (i.e., the simplest Hamiltonian but with a large
supercell size allowing DW-type stripe orders). It is therefore highly interesting
to move one step forward to examine its performance on the more complicated
three-band model and realistic ab initio Hamiltonians.

Temperature. In principle, all realistic physics is not at 0 K. And in Fig. 1.1(c),
many phases are measured at the finite temperature and undergo a phase transition
to the normal state after heating. In particular, the formation and transition of PG
and SM phases are still substantially controversial. Despite its importance, in this
thesis we will not focus on the third dimension, the finite temperature effect, but will
mention related concepts (such as finite-temperature smearing for gapless systems)
and estimate the influence of temperature from zero-temperature observables.

1.3 Structure of the thesis
In the remaining parts of the thesis, we present the theoretical developments of the
quantum embedding and how it can be applied to both lattice models and realistic
materials, including the high-Tc cuprates.

In Chap. 2, we present the theoretical formulation of quantum embedding, including
the basic idea of DMET and DMFT, their ab initio formulations, self-consistency
for symmetry breaking, generalized spin-orbital formulation for superconductiv-
ity, various impurity solvers adapted for the HTSCs problems and their efficient
implementation.

In Chap. 3, we discuss the DMET self-consistency algorithm and developed a
projection-based algorithm (p-DMET) to improve the numerical stability of the self-
consistency. The concept “global density matrix” introduced in this work has been
used in many recent literatures to improve the self-consistency or energy accuracy
of DMET. We studied the magnetic phase diagram of the one-band Hubbard model
using DMET and p-DMET.

In Chap. 4, we go beyond the one-band picture and studied the three-band Hub-
bard model, which, although still simplified, contains the atomic information of
the 2D CuO2 plane. Using the symmetry-broken DMET formalism, we explored
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the atomic-scale nature of the antiferromagnetic and superconducting orders, and
highlighted the role of the oxygen degrees of freedom beyond the one-band picture.
The influence of model parameters in the phase diagram is also discussed.

In Chap. 5, we extended the quantum embedding theory [DMET and DMFT] to ab
initio realistic solids. The methods, namely the full-cell quantum embedding, are
distinct from other embedding schemes in three aspects: (i) all local orbitals in a unit
cell are included in the embedding problem whereas the bath orbitals are truncated
according to the atomic valence characters; (ii) The embedding Hamiltonian is
of full quartic fermionic form rather simplified Hubbard like Hamiltonian; (iii)
Many-body quantum chemistry solvers such as coupled cluster (CC) are used to
generate embedding densitymatrix andGreen’s functions. As demonstrated across a
variety of semiconducting and insulatingmaterials, the full-cell quantum embedding
provides accurate energy, equation of state, spin-spin correlation functions, and
excited-state band structures.

In Chap. 6, we then applied our ab initio quantum embedding methods to the parent
state of a series of cuprate superconductors. We uncovered microscopic trends in
the electron correlations and revealed the link between the material composition and
magnetic energy scales via a many-body picture of excitation processes involving
the buffer layers. We found the competition between the in-plane superexchange and
the CuO2-buffer layer excitations, which explains the magnetic coupling difference
among a series of superconducting materials.

In Chap. 7, we applied our approach to the doped cuprates, where the superconduct-
ing orders enter into the phase diagram. We showed that thed -wave superconducting
magnitude increases with the pressure applied to crystals and the trend connects to
the exchange coupling J . Furthermore, we also studied the buffer layer effect on
superconductivity. Unlike the pressure effect, the layer effect between different
compounds is affected by more factors - both magnetic coupling J and charge dis-
tribution matter. This work provides a promising route to study the material-specific
physics of HTSCs.

In Chap. 8, we summarize the current status and limitations of the high-temperature
superconductivity study. We also propose several possible directions to address the
challenges in electronic correlation and atomic modeling of other exotic phases from
an ab initio perspective.
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Chapter 2

QUANTUM EMBEDDING THEORY

2.1 Introduction
The ab initio description of strongly correlated electrons in solids is a major chal-
lenge, limiting the quantitative understanding of interacting electronic phases, such
as the Mott [41] and high-temperature superconducting phases [17, 42, 43]. The
heart of the difficulty lies in the need to use computational methods that can treat
correlated electrons, which usually means a steep computational scaling with system
size, as well as treat the thermodynamic limit (TDL), in order to observe distinct
phases.

A formal route to extend high-level correlated electron methods to infinite systems
is provided by quantum embedding [44, 45]. While there are today a wide variety
of techniques termed embedding [45–48], we will be concerned with the type of
quantum embeddings in condensed phases that historically started with the treat-
ment of defects in solids via the Anderson impurity model, where the interacting
impurity site is surrounded by a set of bath orbitals that approximately represent
the environment [29]. This impurity idea can be generalized to translationally in-
variant systems, where the lattice is subdivided into multiple clusters (also termed
impurities or fragments) where each is embedded in a self-consistent environment
generated by the other impurities. In the embedding treatment, only the solution
of the embedded cluster (i.e. the cluster along with its quantum bath) is treated
by the high-level correlated method (the impurity solver), while interactions be-
tween clusters are treated at a lower level of theory, typically within a single-particle
framework such as mean-field.

Dynamical mean-field theory (DMFT) was the first quantum embedding algorithm
for periodic systems based on the above self-consistent quantum impurity idea [27,
49], and has since been extended in many different directions and settings [27, 28,
50–56]. DMFT is formulated in terms of the one-particle Green’s function, and
solving the embedded impurity problem yields a local self-energy that is then used
in the single-particle Green’s function description of the periodic lattice. More
recently, density matrix embedding theory (DMET) [30] has been proposed as a
computationally simpler quantum embedding algorithm, also for a self-consistent
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quantum impurity, but adopting the one-particle reduced density matrix as the
fundamental variable, in conjunction with a static mean-field description of the
periodic lattice [30–33, 57]. Because DMET only requires to compute frequency-
independent observables, it is less expensive than DMFT, and in practice, a wider
variety of correlated electron methods can be applied to the impurity problem. A
further kind of quantum embedding, density functional (or wavefunction-in-density
functional) embedding [58–66] is also of much current interest. However, this is not
usually applied to strongly correlated phases, and thus we do not consider it further
here.

In this chapter, wewill focus our attention on the formulation ofDMET andDMFT in
periodic solids, especially for their extension to ab initio system and the symmetry-
breaking generalization for superconductivity. In Sec. 2.2 and 2.3 we review the
basic formulation of DMET and DMFT. Sec. 2.4 extends the framework to ab
initio solid-state materials and the details of efficient implementation are discussed.
Sec. 2.5 introduces the formulation to superconducting states by using a generalized
spin orbitals formalism. Sec. 2.6 discusses the impurity solvers used in the following
works and how they can be seamlessly combined with the quantum embedding
framework.

2.2 Density matrix embedding theory
Exact embedding
DMET can be viewed as a wavefunction-in-wavefunction embedding scheme, where
a low-level treatment for the whole lattice is combined with multiple high-level
calculations on the embedded fragments, and a self-consistency condition naturally
connects the two levels of description. The base of its bath construction lies on the
Schmidt decomposition of quantum states [26, 67], which defines a set of rotated
basis that has entanglement with a pre-selected fragment.

Suppose we partition the whole lattice (with nlatt sites) into two parts, i.e. impurity
A and environment B , which contains nA and nB orbitals respectively and we
assume nA < nB , e.g. a 6-site lattice with periodic boundary condition (PBC) is
partitioned in Fig. 2.1(a). The wavefunction of whole system can be expanded on
the tensor-product basis of subsystem A and B ,

j‰i D
X
ij

‰ij jiiA jj iB ; (2.1)

where fjiiAg and fjj iBg are orthonormal basis of A and B with dimension 2nA
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(a) (b)
A BB

bath 1

bath 2

Figure 2.1: Lattice partition and DMET bath orbitals. (a) Illustration of lattice
partition, where A defines the impurity and B denotes the remaining environment.
(b) Two bath orbitals that coupled to the two-site impurity. Different colors denote
different phases of orbitals.

and 2nB respectively. By factorizing the coefficient tensor ‰ij with singular value
decomposition (SVD), we have

j‰i D
X
ij

min.2nA ;2nB /X
p

Uip†ppV
�
pj jiiA jj iB ;

D

2nAX
p

 X
i

Uip jiiA

!
†pp

0@X
j

V
�
pj jj iB

1A;
D

2nAX
p

†pp j˛ip jˇip ;

(2.2)

which is referred to as Schmidt decomposition of a general quantum state [67] and
the Schmidt bases

˚
jˇip

	
span a small subspace (with same size as the impurity) in

the environment and thus naturally define a set of bath states. Note that the size of
the Hilbert space has been reduced to 2nA regardless of the total lattice size. We are
then able to project the original lattice Hamiltonian to the embedding space,

OH emb
D OP OH latt OP (2.3)

with projector OP defined as,

OP D
X
pq

j˛ip jˇiq h˛jp hˇjq : (2.4)

It is easy to verify that the embedding Hamiltonian shares the same ground state as
the original one ( h‰j OP OH OP j‰i D h‰j OH j‰i D E0), and is therefore called exact
embedding.

Mean-field embedding
In practice, however, the exactwavefunction is unknown and the some approximation
is necessary. The idea is to iteratively build up the wavefunction in a self-improved
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manner. Specifically, when the low-level solution is chosen as a mean-field Slater
determinant, the bath states turn out to be a set of single-particle orbitals whose
overlap with the fragment is non-zero [35, 68]. The bath orbitals can be constructed
from either the molecular orbital (MO) coefficients or the corresponding one-body
reduced density matrix. The occupied block of the MO coefficients can be then
written in a bipartite form,

C occ D

"
M

N

#
; (2.5)

where M and N are of shape nA � nocc and shape nB � nocc respectively. In the
following, we assume nocc > nA and the row rank of M is nA. This is a weak
requirement if the number of basis per fragment is not extremely large (we will
discuss the special treatment if the condition is not fully satisfied in Sec. 2.4). One
can perform an SVD onM ,

M D U†V �; (2.6)

to find the orbitals which have non-zero overlap with A, where the singular value †
is exactly the overlap matrix (with shape nA � nocc), and V (with shape nocc � nocc)
defines the rotation matrix that transforms the MOs to embedding orbitals (EOs)
(rotation on the occupied space does not change the mean-field [69]),

NC occ D C occV D

"
U �†

N � V

#
D

"
P 0
Q E

#
; (2.7)

where the first nA columns

"
P

Q

#
are embedding orbitals whose overlap with A

is non-zero, whereas the remaining orbitals are pure environment orbitals. By
orthonormalizingQ, we get the bath orbitals B , which together with the unit matrix
of the impurity part, define the transformation matrix C AO;EO from atomic orbitals
(AOs, or site basis in a lattice) to the embedding space,

Na� D a�C AO;EO D a�

"
I 0
0 B

#
; (2.8)

where Na is the new fermion operator in the embedding space. We notice that the
columns of matrix P are orthogonal to each other, because U is unitary and the first
nA columns of † form a diagonal square matrix N†. And therefore the columns of
Q are also orthogonal and the following orthonormalization procedure is actually a
normalization, Q D BR, where R is a diagonal matrix (with shape nA � nA) that
scales the columns ofQ.
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On the other hand, one can find the bath orbitals from the reduced one-body density
matrix,


 D NC occ NC occ� D

"
PP � PQ�

QP � QQ� CEE�

#
: (2.9)

The off-diagonal block reads,

QP � D Q N†U �
D BR N†U � (2.10)

and therefore the bath orbital coefficientsB can be directly generated by the SVD of
the off-diagonal block of density matrix. Fig. 2.1 (b) shows an example of DMET
bath orbitals. We can easily find that the number of bath orbitals is the same as that
of impurity; and the bath orbitals have more weights on the sites near the fragment,
which reflects the local property of the correlation.

Once we have the transformation in Eq. (2.8), we can project the lattice Hamiltonian

OH D
X
ij

hija
�
i a
�
j C

X
ijkl

Vijkla
�
i a
�

k
alaj (2.11)

to the embedding space (similar to the AO to MO transformation, except that the
space is truncated via C � C AO;EO). We obtain the expression for the one-body
embedding Hamiltonian,

hembpq D
X
ij

C
�
pihijCjq (2.12)

and the two-body electron repulsion integral (ERI) in chemists’ notation,

V embpqrs D

X
ijkl

C
�
piC

�

rk
VijklCjqCls: (2.13)

Note that in this expression, all terms in lattice Hamiltonian are transformed and
in general the two-electron interactions between bath orbitals are non-zero. These
transformations are therefore called interacting bath formalism [34, 35]. On the
other hand, there is a simpler formalism where the bath orbitals remain non-
interacting and the two-body integral with bath index is effectively simulated by
a one-body correlation potential u. Within this non-interacting bath formalism
[30], the embedding Hamiltonian is very similar to that in DMFT (see Sec. 2.3).

It is worth to mention several properties of such embedding process: The number of
electrons in the embedding Hamiltonian is exactly the number of impurity orbitals
(i.e., the problem is half-filled). This can be seen from the shape of E in Eq.
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(2.7): the number of core orbitals is
�
nocc � nimp

�
, and the number of electrons in

the embedding space is thus nimp. This is a unique feature of DMET compared
to other embedding schemes, such as some variants of DFT embedding or DMFT,
where the number of electrons in the embedding problem may not be an integer
and some adjustment of chemical potential is required. The embedding is exact
in several limits, (i) isolated atom limit (no off-diagonal terms between different
impurities), where no bath is needed; (ii) non-interacting limit (V D 0); (iii) HF-
in-HF embedding (i.e., both lattice and impurity are solved by HF). In this case, the
Hamiltonian is very similar to that in a complete active space calculation, where
an HF-form core potential should be include in hemb (This is usually used in the ab
initio formulation, see Sec. 2.4).

The embedding Hamiltonian can then be solved by any correlated method (called
impurity solver) as long as it is able to provide the density matrix. After solving the
embedding problem, we can measure the expectation values of the system. For local
properties (i.e., within the impurities), we can directly evaluate them by the density
matrices from the solver. For non-local properties (i.e., across different impurities),
one can use the so-called democratic partitioning [35], e.g.D

a
�
i aj

E
D
1

2

� ˝
‰I
ˇ̌
a
�
i aj

ˇ̌
‰I
˛
C
˝
‰J
ˇ̌
a
�
i aj

ˇ̌
‰J
˛�
; (2.14)

where index i belongs to I th cluster, j belongs to J th cluster, and the result is
therefore an average between I th and J th embedding problems.

Self-consistency and symmetry breaking
Once we have the high-level solution from the impurity solver, we can improve
the low-level theory through self-consistency. This is usually achieved by using a
correlation potential u that minimize the density matrix difference between the two
levels of the theories. Mathematically, this can be done from a least-square (LS)
minimization,

min
u

X
ij

jj
ij .u/ � 

target
ij jj

2; (2.15)

where 
 target is from the impurity solver and keeps fixed during the minimization
and the fitted density matrix 
 is generated from the diagonalization of the modified
lattice mean-field Hamiltonian F ,

.F C u/C D CE;


.u/ D C occC occ�:
(2.16)
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Note that ij can run over a subset of the impurity indices (e.g., Cu 3d orbitals)
to reduce the cost and improve numerical stability. The specific form of u also
determines the possible way of breaking symmetry. A generic form of u reads as,

u D
X
ij�

v�ija
�
i�aj� C

X
ij

�
˛ˇ
ij a

�
i˛a

�

jˇ
C H:c:; (2.17)

where the first term v is spin unrestricted (� D ˛ or ˇ) and can generate SU(2)
symmetry breaking magnetic orders, while the second and third terms � break the
particle number symmetry and allow for the SC pairing orders. We will discuss
the SC order in more details in Sec. 2.5. This DMET self-consistency procedure is
repeated until the 
 (or u) is unchanged.

2.3 Dynamical mean-field theory
Green’s function embedding
DMFT is a quantum embedding scheme using Green’s function (GF) as the basic
variable, which connects the large lattice and the impurity problem. Specifically,
DMFT self-consistency requires the match between local GF (of the lattice) and
impurity GF,

G.R D 0; !/ D G imp.!/; (2.18)

whereR D 0 denotes the reference cell. Such condition is achieved by adding a self-
energy, called hybridization �.!/, to the impurity problem. The �.!/ therefore
measures the missing information from the environment,

�.!/ D
�
! � himp �†imp.!/

�
� ŒG.R D 0; !/��1: (2.19)

Once the hybridization is given, the impurity problem is determined by some non-
interacting bath orbitals that mimic the behavior of �. We can then solve the
impurity problem by a more accurate impurity solver, which generates impurity
GF G imp and impurity self-energy †imp. To get the self-energy of the total system,
the DMFT approximation [70] is introduced, i.e. the self-energy of the whole
system is by diagonally tiling the impurity self-energy and ignoring the inter-cluster
self-energy,

†.!/ D

2664†
imp

: : :

†imp

3775 : (2.20)

From such self-energy, one can obtain the new local GF,

G.R D 0; !/ D
1

Nk

X
k

�
! � h.k/ �†imp.!/

��1
; (2.21)
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which, combined withG imp defines the new hybridization from Eq. (2.19) and starts
a new iteration. The whole DMFT loop can be summarized as,

�.!/
solver
���! G imp.!/

Dyson eq:
�����! †imp.!/

Eq:(2.21)
�����! G.R D 0; !/

Eq:(2.19)
�����! �.!/:

(2.22)

Bath discretization
In bath-based DMFT, the hybridization�.!/ is represented by a finite set of discrete
bath sites and couplings. Here, we choose to approximate �.!/ along the real
frequency axis [71–74] so that dynamical quantities (e.g. spectral functions) can
be computed more accurately than when fitting along the imaginary frequency
axis [75–77]. We consider �.!/ as the Hilbert transform [78]

�.!/ D

Z
d�
J.�/

! � �
(2.23)

with the spectral density

J.�/ D �
1

�
Im�.� C i�/; (2.24)

where � is a broadening parameter. The Hilbert transform integral can be approxi-
mated by a numerical quadrature (e.g., Gauss-Legendre quadrature) along the real
axis

�.!/ D

N!X
nD1

wn
J.�n/

! � �n
; (2.25)

where wn and �n are the weights and positions of the N! quadrature grid points.
To derive the couplings between the impurity and bath sites, we diagonalize the
spectral density

J.�n/ D U
.n/�.n/U .n/�: (2.26)

Eq. (2.25) then becomes:

�ij .!/ D

N!X
nD1

NCX
kD1

V
.n/

ik
V
.n/

jk

! � �n
; (2.27)

with
V
.n/

ik
D w

1
2
nU

.n/

ik
.�
.n/

kk
/

1
2 : (2.28)

Thus, V .n/
ik
and �n can be interpreted as the impurity-bath couplings and energy

levels of bath orbitals. With this bath discretization, we can define the DMFT
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embedding Hamiltonian

OH emb
D h

imp
ij a

�
i aj C V

impa
�
i a
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(2.29)

where himp and V imp are similar to Eq. (2.12) and (2.13), but with only the impurity
part of the Hamiltonian.

Comparison between DMET and DMFT
DMET shares many common features as DMET, e.g., using bath to represent the
environment, self-consistently generating phases, and having similar exact limits
(except that DMFT is also exact in the infinite dimension limit [27]). The physical
quantities have some correspondence,


 $ G.!/;

u$ �.!/:
(2.30)

The main difference roots in the frequency-dependent nature of G and �, which
makesDMFT intrinsically an excited state theory. One of the basic quantity extracted
from the GF is the local spectral function,

A.R D 0; !/ D �
1

�
ImG.R D 0; ! C i0C/; (2.31)

which can be directly compared to experiments, e.g., x-ray photoemission spec-
troscopy and bremsstrahlung-isochromat spectroscopy. DMET, on the other hand,
is a static theory using density matrices as the basic variable (density matrix can
be viewed as a equal-time GF or a frequency integrated GF). Therefore, DMET is
more appropriate for ground-state problems.

Another difference between DMET and DMFT is the number of bath orbitals. The
nbath in DMET is at most nimp, whereas the nbath in DMFT is in principle infinite and
there is correspondingly the bath discretization error. This feature makes DMET
has a significantly lower cost compared to DMFT.

2.4 Ab initio quantum embedding
Periodic quantum chemistry formalism
Periodic Gaussian bases. In simulations of realistic materials, we use a quan-
tum chemistry formalism based on crystalline Gaussian bases, i.e., translational-
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symmetry-adapted linear combinations of Gaussian atomic orbitals (AO) [79],

�k
p.r/ D

X
T

eik�T�p.r � T/; (2.32)

where T denotes a lattice vector and k is a crystal momentum vector in the first
Brillouin zone (FBZ). We will frequently use the Fourier transform between the
R space and k space. The relevant formulas are summarized in Appendix A. To
formulate the ab initio calculation, it is necessary to express the Hamiltonian matrix
elements (integrals) in this basis. The one-electron integrals, namely the overlap S ,
kinetic T and electron-nuclear interaction integrals V N-el are [80, 81],
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where N is the number of k-points and the divergent part (G D 0) in the electron-
nuclear interaction vN-el.r/ is removed. This guarantees that the integral is not
divergent for charge-doped systems, seeChap. 7. The total one-electronHamiltonian
integral (core Hamiltonian matrix element) is then,

hcore;kpq D T k
pq C V

N-el;k
pq : (2.36)

We also define the matrix elements of the 2-electron Coulomb interaction. This
leads to electron repulsion integrals (ERI) involving 4 crystalline Gaussian AOs (4
“centers”),
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�kr�
r .r2/�ks

s .r2/: (2.37)

Note that crystal momentum conservation means that the ERI vanishes unless kpC
kr �kq �ks D nb, where nb is an integer multiple of the reciprocal lattice vectors.

With all the matrix elements evaluated, standard molecular quantum chemistry
techniques can be applied in the periodic setting. This lays the foundation for the
efficient ab initio implementation of quantum embedding theories below.

Density fitting. There are a large number of ERIs in the above formulation. To
reduce the cost of evaluating them, we employ density fitting (DF) which factorizes
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the 4-center ERI into a product of 3-center ERIs and a metric matrix. Using the
Coulomb metric [81, 82] and for auxiliary basis functions labelled fP;Q; � � � g, we
obtain

V
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X
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P
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J �1PQ.Qjrkrsks/; (2.38)

with the 3-center ERI,�
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(2.39)
and the Coulomb metric,

JPQ D
Z
dr1dr2 ��P .r1/

1

r12
�Q.r2/: (2.40)

It is computationally convenient to absorb the Coulomb metric symmetrically into
the definition of the 3-center integrals,
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where the symmetrical decomposition can be carried out using the eigenvalue de-
composition ofJ and linear dependence is handled by discarding small eigenvalues.
In the following, we use the symmetric DF form and use L to label auxiliary basis
functions. We choose the auxiliary basis to be also a crystalline Gaussian basis,
thus the above formulae correspond to (crystalline) Gaussian density fitting (GDF).

The 3-center integralW obeys several useful relations, which we use later to derive
some of formulae. Similar to the 4-center integral, there is momentum conservation,

kL D kp � kq C nb: (2.42)

From Eq. (2.39) and Eq. (2.40), one can also verify the following complex
conjugation relation,

W
kqkp�

Lqp D W
kpkq

Lpq : (2.43)

Local orbitals
The infrastructure of ab initio mean-field theory uses crystal (Bloch) orbitals and
k-point quantities, while quantum embedding is naturally formulated in terms of



21

local orbitals and real-space quantities. Thus, we first define a translation from the
mean-field computational basis to one appropriate for embedding.

To do so, we construct atom-centered orthogonal local orbitals (LO) fwi.r/g that
define the lattice Hilbert space, which can be cleanly partitioned into a product of
impurity Hilbert spaces. Here, we will assume that the mean-field computational
basis is a set of crystal atomic orbitals (AOs)

˚
�k
�.r/

	
(which constitutes a non-

orthogonal basis, with an AO index � and a k-point index in the first Brillouin
zone). It is convenient to first define an intermediate set of local crystal orbitals,

wk
i .r/ D

X
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�k
�.r/C

k;AO;LO
�i ; (2.44)

where the notation C X;Y denotes the transformation from basis X to basis Y. The
real-space LOs in any cell can then be obtained by a Wannier summation over the
local crystal orbitals, for example, the LOs at the lattice origin (R D 0) are given by

wRD0
i .r/ D

1
p
Nk

X
k

wk
i .r/: (2.45)

Expressed in the LOs, the ab initio periodic system is isomorphic to a periodic
lattice problem, with reciprocal lattice vectors k. We choose a subset of fwi.r/g to
define the impurity. It is natural to choose the impurity to be spanned by LOs in a
single unit cell or a supercell, and for definiteness, we choose the cell or supercell
at the lattice origin as the impurity.

The next computational task is to specify the coefficients in Eq. (2.44) that define
the LOs in terms of the crystal AOs. There are two strategies to construct orthog-
onal local orbitals: a top-down strategy [transforming from canonical mean-field
molecular orbitals (MOs) to LOs] and a bottom-up strategy (transforming from
the AO computational basis to LOs). The first strategy finds a unitary transfor-
mation of the MOs to optimize a metric (such as

˝
r2
˛
� hri2) that measures the

spatial locality of the LOs. Examples of such approaches are the Boys[83], Pipek-
Mezey (PM)[84] and Edmiston-Ruedenberg (ER)[85] methods in molecules, and
the maximally localized Wannier function (MLWF)[86, 87] and Pipek-Mezey Wan-
nier function (PMWF)[88] methods in solids. The top-down scheme can yield more
localized orbitals than bottom-up schemes. We have an implementation of MLWF
by interfacing wannier90 program with PySCF and the relevant matrix elements
are summarized in Appendix C.1 (see also the DMET work by Pham et al. [89]).
However, due to the need to carry out an optimization, the disadvantages are also
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apparent: (i) the procedure can be numerically expensive and one can easily get
stuck in a local minimum of the cost function, particularly when constructing a
large number of local virtual orbitals; (ii) with periodic boundary conditions, en-
tangled bands [90, 91] often exist among the high-energy virtual MOs, and special
techniques are required; (iii) a false minimum or discontinuity in k-space can lead
to non-real orbitals after the Wannier summation in Eq. (2.45), giving a Hamilto-
nian with complex coefficients in the LO basis, which is incompatible with many
impurity solver implementations.

In the bottom-up strategy, one avoids optimization and relies only on linear algebra
to construct the LOs. Examples of LOs of this type are the Löwdin andmeta-Löwdin
orbitals [92, 93], natural atomic orbitals (NAO) [94] and intrinsic atomic orbitals
(IAO) [95]. Bottom-up methods avoid the difficulties of the top-down strategy: (i)
the construction is usually cheap (i.e. suited to producing large numbers of local
orbitals); (ii) there is no initial guess dependence or local minimum problem; (iii)
the LOs are guaranteed to be real as long as the phases of crystal AOs and other
k-space orbitals in the formalism (e.g. the reference crystal AOs used to construct
the IAOs) are smooth in k-space. Since we aim to carry out calculations beyond a
minimal basis, and thus with many virtual orbitals, we have chosen the bottom-up
strategy to avoid difficulties in optimization and non-real Hamiltonian coefficients.
In particular, we have adapted the molecular IAO routine to crystal MOs with k-
point sampling (see Appendix C.2) to generate the set of crystal IAOs. The crystal
IAOs are valence orbitals that exactly span the occupied space of the mean-field
calculation. Note that the number of IAOs is the same as the size of the minimal
basis only. To obtain a complete set of LOs that span the same space as the original
AO basis (thus making a square rotation matrix C k;AO;LO in Eq. (2.44)) we need to
further augment the IAOs with LOs that live purely in the virtual space. Here we
choose these additional orbitals to be the projected atomic orbitals (PAO) for non-
valence orbitals [96], orthogonalized with Löwdin orthogonalization, as originally
proposed for local correlation calculations[96]. The IAOs + PAOs then together
span the complete space of AOs and constitute a complete LO basis. A related
scheme has previously been used in the molecular DMET calculations[35, 97]. We
summarize the formulations of IAO and PAO in Appendix C.

In the following, we transform the Gaussian AOs into periodic IAOs and PAOs, and
use these as our local orbitals. These orbitals can be viewed as a series of atom-
centered projected Wannier functions, and therefore, no numerical optimization
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is required during their construction. In particular, the periodic IAOs are based
on the projection to a set of predefined valence AO orbitals (the so-called IAO
reference functions), whose number is smaller than the computational AO basis
and do not include polarization or diffuse components. See Refs. [95, 98] for their
construction. In this work, we use atomic spherically averagedHartree-Fock orbitals
as the IAO reference functions, because the segmented Gaussian basis functions that
we use (such as def2-SVP or cc-pVDZ) do not individually possess meaningful AO
character. The IAOs represent the valence space (occupied + virtuals of valence
character) of the materials, while the PAOs represent the remaining virtual space,ˇ̌
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1 �
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i
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�AO;kp

˛
: (2.46)

The union of the two sets spans the full orbital space. The coefficient matrix
C LO defines the transformation from the computational AO basis to the LO basis.
For practical calculations, especially with all-electron basis, it is necessary to use
the frozen-core approximation to freeze the low-energy bands (like 1s orbitals).
Depending on the mean-field methods (HF or hybrid DFT), the effective potential
from the core bands can be evaluated from Coulomb J and (scaled) exchange K
matrices (see Appendix B.1), as well as the DFT Kohn-Sham potential vxc. After
the freezing the core bands, the LOs need to be defined accordingly. In Appendix
C.2, we show how IAOs can be defined with non-core bands (with core bands being
projected out). We also show how the IAOs can be extend for metallic systems
whose orbital occupations are not integers. These advances lay the foundation for
large-scale quantum embedding simulation of doped materials.

Bath truncation
DMET bath truncation.

The DMET embedded Hilbert space consists of the impurity LOs and a set of bath
orbitals; these together are the embedding orbitals (EOs). We define the bath orbitals
in DMET by using the SVD of the valence (IAO, not PAO) part of the one-particle
density matrix. We assume below that the impurity corresponds to a reference cell
R D 0, thus the bath orbitals live in the cells R ¤ 0. The off-diagonal block of the
density matrix of the whole crystal (“lattice”) is computed directly from the Fourier
transform of the k-space density matrix obtained in the mean-field calculation [98,
99],
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Constraining i , j to be IAO (i.e., valence) indices, the valence bath is obtained from
an SVD of the off-diagonal block,
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where ƒ measures the entanglement between the bath and impurity orbitals and B
is the coefficient matrix of the (orthogonalized) bath orbitals,ˇ̌
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The overall embedding orbital (EO) space is spanned by impurity orbitals (in the
reference cell R D 0) and the above bath orbitals,
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: (2.50)

For subsequent integral transformations (see below), it is more convenient to Fourier
transform the embedding orbitals to the k-space,
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ij D

X
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e�ik�RC EO;Rij : (2.51)

Although the DMET bath is formally of the same size as the number of impurity
orbitals, the mean-field wavefunction only contains appreciable entanglement be-
tween partially occupied LOs on the impurity and corresponding bath orbitals. Very
low-lying core and high-energy virtual impurity orbitals thus are not entangled with
any bath orbitals. In practice, this manifests as very small singular values ƒQiQi and
the corresponding singular vectors (bath orbitals) can vary between different DMET
iterations [35] leading to difficulties in converging the DMET self-consistency pro-
cedure. To eliminate this instability, we use the procedure previously recommended
in molecular DMET calculations [35]. We first partition the impurity orbitals into
core, valence and virtual orbitals, and only carry out the SVD for the impurity va-
lence columns of the off-diagonal density matrix to construct corresponding valence
bath orbitals [35], i.e. the index j in Eq. (2.48) can be constrained to the valence or-
bitals only. Note that when frozen-core approximation or pseudopotentials are used
in the calculation, there is no core subspace, and thus no core bath orbitals appear.
With this construction, the number of embedding orbitals is reduced from 2nimp to
nimp C nval, where nval is the number of valence orbitals, which is smaller than the
number of impurity orbitals nimp, and we recover smooth DMET convergence.
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DMFT bath truncation. It is known that bath discretization introduces discretization
errors into DMFT, thus many bath orbitals per impurity site are required to minimize
this error. In our case, the number of bath orbitals is formally Nb D N!NC , which
can easily be as many as a few hundred, as NC includes all orbitals in the unit cell.
To reduce the bath size and thus computational cost, we employ several strategies
to truncate the bath degrees of freedom, while minimizing the error introduced.
First, we only couple bath orbitals to the IAOs (valence orbitals). Note that PAOs
(non-valence virtuals) are still included in the embedding problem and interact with
the IAOs. With this choice, the number of bath orbitals is reduced toNb D N!NIAO.
Second, we remove the bath orbitals which are very weakly coupled to the impurity.
As seen in Eq. (2.28), the scale of the bath coupling is set by the eigenvalues �.n/

kk
.

By dropping the bath orbitals with eigenvalues below a threshold, we can further
decrease the bath dimension as necessary.

Integral transformation
The construction of the embedding Hamiltonian is equivalent to a set of integral
transformations using the coefficient matrix C of the embedding basis [98, 100].

The one-body part of the embedding Hamiltonian can be directly evaluated using
the projection,
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where we have included in the definition �, a chemical potential that adjusts the
electron density on the fragment such that each cell has the correct number of
electrons. veff;locij is the effective potential in the embedding space originating from
the density matrix of the embedded space,
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where V emb is the embedding two-body hamiltonian (see below for its construction)
and � is a spin label. Note that in our current scheme, the veff always contain
Coulomb J and full exchange K regardless of the types of mean-field theory (HF
or DFT).

The two-body part of the embedding hamiltonian must be constructed appropriately
to minimize computational cost. With density fitting, ERIs in the embedding space
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can be evaluated from 3-center integrals in the reference cell,
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where 0 indicates the summation is over momentum conserving crystal momenta
kL D kp�kqCnb. The cost of this step scales asO.n2kn4bas/. The final embedding
ERI is a contraction which scales as O.nkn

5
bas/,
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Note that time reversal symmetry of the integrals and coefficients can be used
to reduce the computational cost. For example, time reversal symmetry over kL
effectively reduces costs by about a factor of 2, as we only need consider the non-
negative kL.

For each pair (kp, kq), there will be another pair Nkq D �kq and Nkp D �kp that are
related,
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(2.56)

where we have used the relation C k D C
Nk�. This relation further gives a factor of

2 cost reduction in the transformation.

Finally, we note that after the summation over k, the resulting embedding 3-center
integrals and the final embedding 4-center integrals have permutation symmetry
over the orbital indices. In fact, the embedding ERI is real and has 8-fold symmetry:
V emb
ijkl
D V emb

j ikl
D V emb

ijlk
D V emb

klij
D � � � . This relation gives another factor of 4 during

the contraction step.

There are many choices of auxiliary basis and here we will mainly use Gaussian
density fitting (GDF), where L is a set of chargeless Gaussian crystal orbitals, with
the divergent part of the Coulomb term treated in Fourier space [81]. (We discuss
plane-wave density fitting (FFTDF) in Appendix of Ref. [98]).

An alternative choice of embedding Hamiltonian is the DMET (and DMFT) non-
interacting bath formalism [35]. In this case, the two-particle interactions are
restricted to the impurity orbitals, and interactions on the bath are mimicked by
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adding the correlation potential to the bath. For further details, we refer to Ref. [35].
We primarily use the interacting bath formalism for ab initio DMET, and only
consider the non-interacting bath formalism for DMFT and in themodel calculations
of DMET.

DMET and charge self-consistency
Akey component in the DMET description of phases and order parameters is the im-
position of self-consistency between the “high-level” (HL) embedded wavefunction
and the “low-level” (LL) mean-field description. We matched the correlated one-
particle density matrix 
 from the impurity solver and the mean-field one-particle
density matrix by minimizing their Frobenius norm difference with respect to the
correlation potential u,

min
u

selected indicesX
ij

�

LLij .u/ � 


HL
ij

�2
; (2.57)

where the indices i; j loop over selected orbitals and the high-level density matrix

HLij is kept fixed during the correlation potential fitting. Other choices of cost
function are also possible, e.g. only matching the impurity [34, 35] or diagonal
part [31] of the density matrix. The correlation potential u is a local quantity
(i.e. independent of the impurity cell k). With large basis sets, the number of
parameters in u can be very large. To reduce the degrees of freedom in the numerical
optimization, we can add u only to a subset of orbitals, e.g. the valence orbitals.
With a small set of parameters, the optimization problem can be easily solved, e.g.
by a conjugate gradient algorithm. It should be noted that the minimization of
the cost function is not a convex problem, thus in principle there can be multiple
local minima; for example in an AFM system, there may be multiple solutions
corresponding to different spin polarization patterns. We typically use conjugate
gradient (CG) or Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm to solve LS
fitting problem (see Appendix D for the analytic gradient of the cost function at both
zero and finite temperatures).


LL can be solved in the global lattice space, called global fitting, which is more
stable in the metallic case and we will use it in the doped HTSCs. Alternatively, 
LL

can be solved in the embedding space and only small Fock matrix F emb needs to be
diagonalized. This fitting scheme is called local fitting [101] and is computationally
cheaper than the global fitting. One can prove that the self-consistent solutions of
DMET using the local fitting procedure are equivalent to those of the DMET with
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global fitting [102].

In an ab initioDMET calculation, an additional layer of self-consistency appears as-
sociatedwith the non-linear ab initio latticemean-field calculation [this is sometimes
referred to as charge self-consistency (CSC) in DMFT calculations [103–106]]. In
our implementation, the AO-based Fock matrix F k;AO is updated at the beginning
of each DMET cycle, using the improved DMET mean-field density matrix from
the previous iteration, which reflects the response of the mean-field density (matrix)
to the DMET local correction.

We finally note that the LOs, in principle, can be redefined based on the new mean-
field MOs at each DMET iteration. However, we do not consider such an update
in the current work. Instead, we only determine the LOs at the beginning of the
calculation and keep the LOs fixed in the following DMET self-consistency loops.
This choice introduces a small dependence on the initial orbitals (e.g. using HF- or
DFT-MOs to define the LOs). However, it is usually reasonable to assume that the
LOs do not change significantly during the embedding self-consistency.

We illustrate the periodic ab initio DMET algorithm, with both DMET correlation
potential and charge self-consistency, in Fig. 2.2.

mf	in	k-AO

mf	in	k-LO

Hemb

CAO,	LO

bath	construction
integral	transform

Solver
with
μ	fit

u	converged?

CSC?

Compute	E,
m,	⟨Si	·	Sj⟩	...

u	fit

add	u

Yes

No

No

Yes

add	u	&	update	Fock

Figure 2.2: The ab initio DMET self-consistency procedure, where “mf” is used to
denote the relevant mean-field physical quantities, e.g. the Fock matrix F , density
matrix 
 ; � and u are used to denote the chemical potential and correlation potential
respectively. “CSC” denotes charge self-consistency and is an optional step in the
algorithm. The flowchart starts at the blue block and ends at the green block when
self-consistency is reached.
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Multi-fragment extension
The above ab initio DMET formulation assumes we are embedding a full crystal
cell (which may be a supercell of primitive cells) in the environment of other cells.
However, for complicated crystal structures, e.g., in the multi-layer compounds,
or for inhomogeneous systems and defect calculations, the full cell calculation
is prohibitively expensive. New techniques are thus required to further reduce the
impurity size. Here we have developed and implemented amulti-fragment extension
of the ab initio DMET. This allows a further decomposition of the full cell impurity
into fragments while retaining the periodicity among different cells.

In this scheme, the reference impurity cell is divided into fragments which are each
embedded in the bath of the other fragments and other cells. For example, for the
double-layer compound Hg-1212, the cell is sliced into 3 fragments, the first one
involving the bottom layer of the CuO2 plane and the corresponding apical oxygen;
the second, the upper layer of copper and oxygen; and the third fragment, the other
buffer-layer atoms, i.e., Hg, Ba and Ca [see Fig. 2.3 (a)].
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Figure 2.3: (a) Illustration of the multi-fragmentation scheme in the multi-layer
cuprate Hg-1212. The system is divided into 3 pieces: the fragments 1 and 2
involve the two Cu-O layers and fragment 3 contains all other ions in the cell. (b)
MPI efficiency of the multi-fragment implementation of a h-BN crystal.

The total energy is defined as the sum of all fragment energies, E D
P
x E

x.
Implementing the DMET democratic partitioning formula (which defines how to
reassemble expectation values from each fragment) , each fragment energy is the
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expectation value of a scaled Hamiltonian,
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(2.58)
where QH and QV are scaled Hamiltonians, and 
 and� are 1-body and 2-body density
matrices respectively. QH is defined as,
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Note the 1
2
factor in the Coulomb energy. The scaling weight is defined by the

fraction of indices in the local orbitals of fragment x,
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(2.60)

Similarly, the 2-body part of the Hamiltonian,

QVijkl D wijklV
emb
ijkl ; (2.61)

includes a weight factor wijkl to correctly account for the number of fragment
indices.

veff in Eq. (2.59) is re-evaluated using the DMET global density matrix 
 glob [107],


 glob;R D
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C C 0
 embC R��; (2.62)

where C R is the coefficient of the embedding basis of the Rth unit cell. This ensures
a consistent Fock potential is used in all fragments.

The multi-fragment calculations in DMET are easily parallelized e.g., using MPI.
The evaluation of the bath orbitals, construction of the embedding Hamiltonian,
high-level solver calculations, energy computation and correlation potential fitting
are all independent of each other. The communication only happens when (1)
determining the chemical potential [communication costO.1/]; (2) constructing the
global density matrix [cost O.N /], where N is the number of embedding orbitals;
(3) combining subblocks of the correlation potential [cost O.N /]. We illustrate the
MPI efficiency in Fig. 2.3 (b), in which the fragments are pairs of atoms (i.e., of
equal size) in a 2D boron nitride crystal. The speedup is very close to ideal.
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2.5 Generalized spin orbital formalism for superconductivity
Mean-field theory for superconductivity
The central idea of BCS theory is the formation of the Cooper pair, a quasipar-
ticle of two binding electrons. There are significant fluctuations of creation and
annihilation of electron pairs in the system, corresponding to non-zero expectation
values of

˝
a�a�

˛
and haai. In other words, the particle-number is not conserved in

a superconducting system 1.

The BCS theory is based on a one-band picture and simplified two-electron Hamil-
tonian,

OH simplified
D

X
k�

."k � �/a
�
k�ak� �

X
kk0

Vkk0a
�
k˛a

�

�kˇa�k0ˇak0˛: (2.63)

Comparing to the generic quantum chemistryHamiltonian, there are three noticeable
differences: (i) There is no orbital indices since the BCS theory starts with the free-
fermion sea (and k is enough to label the quantum states). (ii) There only two k
labels (not three in the full Hamiltonian). This is an approximation with only pair
interactions. (iii) There is a negative sign before the two-electron terms, meaning
the electron-electron interaction is effectively attractive.

Now we discuss the mean-field treatment of such Hamiltonian. The two-electron
part of the Hamiltonian can be factorized asD

a
�
k˛a

�

�kˇa�k0ˇak0˛

E
�

D
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�
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E D
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E D
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E
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�
k˛a
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�kˇ

E ˝
a�k0ˇak0˛

˛
;

(2.64)

where the first two terms are normal Coulomb and exchange expectation values and
their effect can be absorbed into the "k, whereas the last term is the key ingredient of
the BCS theory, i.e., the pair-pair interaction (this channel is forbidden for particle-
number conserved calculations). We can then formulate a mean-field description
by approximating the two-body interactions as

a
�
k˛a

�

�kˇa�k0ˇak0˛ �

D
a
�
k˛a
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�kˇ

E
a�k0ˇak0˛ C a

�
k˛a

�

�kˇ
˝
a�k0ˇak0˛

˛
C

D
a
�
k˛a

�

�kˇ

E ˝
a�k0ˇak0˛

˛
:

(2.65)

1One can understand the breaking of particle-number symmetry by considering the Cooper
pair condensation at the TDL. There are macroscopic number of condensed Cooper pairs serving
as the reservoir that compensates the deviation of the particle number. In this sense, the particle-
number symmetry breaking is only a mathematical trick that ignores the contribution of the charge
background.
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By defining the superconducting order parameter

�k D
X

k0

�Vkk0

˝
a�k0ˇak0˛

˛
: (2.66)

we can write the mean-field Hamiltonian for superconductivity,

OHBCS
D

X
k

"X
�

."k � �/a
�
k�ak� C

�
�ka

�
k˛a

�

�kˇ C H:c:
�#
C const:: (2.67)

This Hamiltonian can be diagonalized by the Bogoliubov transformation [108, 109],"
ak˛

a
�

�kˇ

#
D

"
uk vk

�vk uk

#"
pk

q
�
k

#
: (2.68)

The new quasiparticles (p and q) are the mixing of particles and holes, and u and v
are coefficients determined by the diagonalization and normalization conditions. In
the new quasiparticle basis, the Hamiltonian is diagonalized,

OHBCS
D

X
k

Ek.p
�
kpk C q

�
kqk/C

X
k

."k � � �Ek/C const:; (2.69)

where
Ek D

q
."k � �/

2
C�2k: (2.70)

The form is reminiscent of quantum harmonic oscillators. The order parameter �k

is the also gap function of elementary excitations sinceEk D j�kj at the Fermi level
(" D �). The non-zero pairing also makes the ground-state energy lower than the
free fermion sea, and this proves the statement of Cooper that an arbitrarily small
attraction between electrons (e.g., through electron-phonon coupling) can cause a
binding state of electron pairs.

An alternative way to diagonalize the superconducting Hamiltonian in Eq. (2.67) is
to redefine the vacuum such that the particle-number breaking terms become normal
ones. We define the partial particle-hole (p-h) transformation T ,
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#
:

(2.71)

This form is called Nambu representation[110, 111], which effectively defines the
following partial p-h transformation T ,

c
�
k˛ D Ta

�
k˛T

�1;

c�kˇ D Ta
�

�kˇT
�1;

(2.72)
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and the transformation makes the Hamiltonian in the normal ordering form. The
new vacuum of ˇ particles is a ferromagnetic state where all the k states are
occupied by spin-down electrons, such that any further creation of ˇ electrons will
destroy the state. In the Nambu representation, the particle-number symmetry (c�c)
comes conserved at the expense of spin symmetry Sz breaking. Diagonalizing
the quadratic Hamiltonian gives exactly the Bogoliubov coefficients in Eq. (2.68).
In a more quantum chemistry view, the Hamiltonian has a spin-coupling block �
which mixes two flavors of spin. Therefore, we call this formulation a generalized
spin orbital (GSO) formalism, which connects the superconducting problem to the
generalized quantum chemistry approaches. We will derive the formulation for ab
initio quantum embedding using the GSO formalism in the next section.

We note that we have assumed the singlet pairing, i.e. the electron pair is composed
of different spins

˝
a˛aˇ

˛
. It is also possible to have triplet pairing, where ha˛a˛i is

not zero. In that case, the Nambu representation is still applicable, but the resulting
Hamiltonian does not have simple interpretation of generalized spin mixing (e.g.,
see the discussion in the literature of Hartree-Fock-Bogoliubov (HFB) theory [112,
113]). We will only consider the singlet pairing in this thesis.

Finally, we discuss the pairing symmetry. If no spin-orbital coupling exists, a
two-electron wavefunction can be decomposed as spatial and spin components,

‰.r1; �1; r2; �2/ D �.R; r/�.�1; �2/; (2.73)

whereR D r1Cr2 is the center of mass and r D r1�r2 is the relative coordination.
When the singlet pairing is assumed, the spin component �.�1; �2/ D ��.�2; �1/
is anti-symmetric. Since the overall wavefunction is anti-symmetric, the spatial part
� must be symmetric. If we assume the Hamiltonian is spatially rotation invariant,
we can classify the � by the angular momentum l . The symmetric � then has
even integer numbers of l , such as s (l D 0), d (l D 2). The corresponding
superconductors are called s-wave and d -wave respectively. For realistic materials,
there is no continuous rotation invariance, but only point group rotation invariance.
One can, however, still classify the pairing symmetry using l by considering the
small region around an atom, e.g., the Cu atom in cuprates. It has been measured
that the conventional superconductors belong to the s-wave superconductors, while
most of the evidence supports the d -wave character in the HTSCs. We will compute
the order parameters in the three-band model and ab initio cuprates later.
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Ab initio superconducting Hamiltonian
In this section, we discuss how to construct the ab initio lattice and embedding
Hamiltonian using the partial p-h transformation T ,

c
�
i˛ D Ta

�
i˛T

�1;

cjˇ D Ta
�

jˇ
T �1:

(2.74)

One can verify the transformed quasiparticle operators obey the fermionic anti-
commutation relations, n

c
�
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o
D 0;˚

ci� ; cj�
	
D 0;n

ci� ; c
�
j�

o
D ıij ı�� D ı.i�/;.j�/:

(2.75)

We then focus on how to construct the integrals in the new quasiparticle represen-
tation, where we use calligraphic letters (H, D etc) to denote the quantities.

� One-particle Hamiltonian

The partial p-h transform of a one-particle Hamiltonian,H k
1 ,

H k
1 D

h
h˛k; hˇk; �˛ˇk

i
! Hk

1 �

"
h˛k �˛ˇk

�˛ˇk� �hˇk

#
CH0; (2.76)

where the energy constantH0 D
P

k Tr
�
hˇkSk;�1�.

� Overlap matrix and orbital coefficients

The partial p-h transform of the overlap matrix S or orbital coefficients C ,

Sk
! Sk

�
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0 Sk

#
; (2.77)
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#
: (2.78)

� One-particle density matrix

The partial p-h transformation of a one-particle reduced density matrix 
k
1 ,


k
1 D

h

˛k; 
ˇk; �˛ˇk

i
! Dk

1 �

"

˛k �˛ˇk

�˛ˇk� Sk;�1 � 
ˇk

#
: (2.79)

D1 will serve as the generalized density matrix for constructing the bath
orbitals C of DMET.
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� Local two-particle Hamiltonian

The partial p-h transform of a local electron repulsion integral (ERI), V loc2 ,

V loc2 ! V2 �
"
V �V

�V � V

#
C V1 C V0; (2.80)

where

V1 D
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#
(2.81)
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S�1qp Vpqrs; (2.82)
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S�1qr Vpqrs; (2.83)

and
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.vJ � vK/S

�1
�
: (2.84)

� Vacuum terms from density fitting

The construction of V1 using density fitting (using W
kpkq

Lpq to represent the
3-centered AO integral),

Vk
1 D
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vJk 0

0 vKk � vJk

#
(2.85)

with vJk is computed as
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Similarly, vKk is evaluated through
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v
Kkp

ps D
1

Nk

X
kqLq

W
kqkp�

Lqp X
kqkp

Lqs : (2.89)

Constant term reads,
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� Embedding ERI

The construction of the embedding ERI using density fitting and the partial
p-h transform,

Vembijkl D
1
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Lkl

�
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(2.91)

where the reference cell 3-centered embedding integral W is calculated as,
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Lpq C
�kq
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where C � is the coefficients of embedding orbitals with spin � D f˛; ˇg
and the 0 limits the summation through the momentum conservation kL D
kp � kq C nb.

� Coulomb and exchange potential

This Coulomb J and exchangeK potential in the quasiparticle representation
formally should be evaluated via the contractions between V2 and D1,
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By substituting Eq. (2.79) and (2.80), we have
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Note the difference between the direct transform of J , the additional term will
be cancelled out in the generalized Fock matrix F when adding with V1.

K˛ps D
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Note the difference between the direct transform of K, the additional term
will be cancelled out in the generalized Fock matrix F when adding with V1.
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D
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(2.99)

Note this term does not appear in the normal state unrestricted Hartree-Fock
(UHF) potential.

� frozen-core approximation and DFT as low-level theory The frozen-core po-
tential can be calculated using Dcore and the above functions. In a density
functional theory (DFT) Kohn-Sham Hamiltonian, the K matrix should be
ignored for pure functionals, or be scaled with the hybrid parameter of hybrid
functionals (e.g., xhyb D 0:25 in the PBE0 functional). So far, we do not in-
clude DFT vxc in the embedding Hamiltonian because it requires some proper
treatment of double-counting.
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DMET algorithms for superconducting states
In this section, we discuss how to perform a DMET calculation of a doped cuprate.
The following algorithm is implemented in libDMET [98, 114].

1. Set up the cell and the lattice. The doping need to modify the total number of
electrons of the cell.

2. Mean-field calculation of the doped system (e.g., from unrestricted PBE0).

3. Local (core, valence and virtual) orbitals are constructed,C AO;core,C AO;non-core.

4. Partial p-h transform: Construct CAO;core, CAO;non-core, S,H1,H0, V1, V0,Dcore,
J core, Kcore, E core.

The resulting lattice Hamiltonian (all in the LO basis without core, k-point
labels are omitted for clarity) is

E D Enuc C E core CH0 C V0: (2.100)

H D H1 C V1 C J core � xhybKcore: (2.101)

Note that here V1 and V0 will also include a factor xhyb if DFT is used.

The generalized Fock matrix comes from a direct transform of the mean-field
unrestricted Fock matrices,

F D
"
F ˛ 0

0 �F ˇ

#
: (2.102)

To make the expectation value of physical particle number correct, an addi-
tional chemical potential should be included inH and F ,"

�S 0

0 ��S

#
: (2.103)

5. Set up the correlation potential.

ucorr D

"
0 �˛ˇ

�˛ˇ� 0

#
: (2.104)

The particle-number non-conserving part is from the correlation potential and
will be determined self-consistently through DMET. We also constrain the
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form of� to be a subset of local orbitals (e.g., 3-band orbitals and Cu-4s) and
the point group symmetry is applied. The initial guess is a d -wave potential
among the Cu-3dx2�y2 orbitals. In principle, we can include the diagonal part
in ucorr such that the magnetic order is also determined self-consistently. We
do not consider such degrees of freedom here.

6. DMET @ DFT main loop.

a) Diagonalize the generalized lattice Fock matrix F C ucorr to get the
generalized densitymatrixD and determine the lattice chemical potential
� that ensures the correct particle number. Note that the smearing should
be used to treat the doped states.

b) Construct the bath orbitals C from D using SVD.

c) Construct the embedding Hamiltonian from C and integrals. Specif-
ically, the embedding V2 is calculated using Eq. (2.91). Note that
the DFT vxc does not enter into the embedding Hamiltonian, only the
HF-form embedding-core interaction is considered.

d) Solve the embedding problem with generalized solvers (e.g., GCCSD).
We need to solve a chemical potential of the embedding problem �emb

such that the physical particle number is the same as the projection from
the lattice,

N phys;emb D PN phys;lattP: (2.105)

This is due to the non-exactness of embedding, especially when DFT is
used as the low-level theory. Currently, �emb is determined using the
constrained HF.

e) Collect Demb, transform it back to the original electron representation,
and analyze the magnetic and pairing orders.

f) Fit ucorr in the lattice problem by diagonalizingFCucorr and least-square
fitting. We only fit the Bogoliubov part of the density matrix subblocks
(3-band and Cu-4s subblocks of D˛ˇ ).

g) Extrapolate D and go back to (a) until the change jjDiC1 � Di jj is
sufficiently small.
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2.6 Ab initio many-body impurity solver
Full configuration interaction
The configuration interaction (CI)method is a linear variational approachwith Slater
determinant (or configuration state function, CSF) as its many-electron basis [115,
116]. Full CI (FCI) results (at a sufficiently large one-electron basis) have long been
regarded as the exact solutions for small molecules. Not only for the benchmarking
purpose, FCI is crucial in CASSCF calculation [117] or other quantum embedding
methods [34]. Although conceptually simple, CI, especially FCI, has the drawback
of exponential scaling towards the size of system, and requires large storage as well.
To overcome the large memory requirement, direct CI [118] is developed to avoid
the explicit storage of CI matrix. Furthermore, the use of Slater determinants as
bases rather than CSFs leads to a highly efficient scheme for the evaluation of the
matrix element in CI calculation [119].

In CI references [69, 116, 119], the many-electron Hamiltonian is often represented
by replacement operators (Epq D a�paq),

OH D
X
pq

hpqEpq C
1

2

X
pqrs

gpqrs.EpqErs � ırqEps/

D

X
pq

kpqEpq C
1

2

X
pqrs

gpqrsEpqErs;

(2.106)

where k is the effective 1-e integral in MO basis,

kpq D hpq �
1

2

X
gprrq: (2.107)

In direct CI, one does not save the whole CI matrix H , but instead calculates the
sigma vector,

� D H � C; (2.108)

where C is the CI vector. Once we have a function to efficiently calculate the sigma
vector, we can simply use the Davidson algorithm [120] to find the lowest energy
and the corresponding CI vector.

The FCI method is also known as the exact diagonalization. The exponentially
increasing configurations limit the FCImethod to problemswithin about 16 electrons
in 16 orbitals (if no further symmetry is utilized).
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Density matrix renormalization group
The ab initio density matrix renormalization group (DMRG) [121–123] uses a
matrix product state (MPS) defined on a 1-dimensional ordering of the orbitals,

j‰i D
X

n1;��� ;nL

An1An2 � � �AnL jn1n2 � � �nLi ; (2.109)

where L is the number of orbitals, n is the occupation number of an orbital and
the A’s are M � M matrices. The accuracy of DMRG is controlled by the so-
called bond-dimension M and as M ! 1, DMRG becomes exact. In the large
bond dimension regime, the energy has a linear relation with respect to the DMRG
discarded weight ı [124–126], which allows for stable extrapolation to the exact
limit.

To carry out ab initio DMRG calculations using our embedding Hamiltonian, we
follow the strategy described in Ref. [127]. We first define an orthogonal local basis
as the orbitals in DMRG. In particular, we use split localized unrestricted Møller-
Plesset second order perturbation (MP2) natural orbitals, where orbitals of occupied
and virtual character are separately localized by the Edmiston-Ruedenberg (ER)
method [85]. Using local natural orbitals improves the convergence of the DMRG
with respect to bond dimension.

Coupled cluster theory
The main solver we use in our works is coupled cluster singles and doubles (CCSD)
[128], which can be easily applied to ab initio Hamiltonians with hundreds of
correlated orbitals. It is based on a wavefunction ansatz of the form

j‰i D e OT1C OT2 jˆi ; (2.110)

where jˆi is a reference Slater determinant and the cluster excitation operators read,

OT1 D
X
ia

tai a
�
aai ; (2.111)

OT2 D
X
ijab

tabij a
�
aa
�

b
ajai : (2.112)

CC approximations have a number of important properties. First, they are exact for
all products of correlations involving a finite number of particles. For example, the
CCSD approximation is exact for any product of two-particle correlations, which
allows for the accurate description of correlated singlet-like physics. Second, they
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are extensive, which means that the approximation does not deteriorate simply from
increasing system size. Third, they are in principle systematically improvable, by
increasing the excitation level (although the cost also increases exponentially with
excitation level). Finally, they are especially accurate for gapped and ordered states.
This describes the AFM parent state and magnetic configurations considered in this
work. In ordered states, one chooses the reference jˆi to break the appropriate sym-
metry. Here, we break S2 symmetry and choose an unrestricted (spin-polarized)
Hartree-Fock determinant as our reference state, solving the unrestricted CC equa-
tions (UCCSD). Note that Hartree-Fock is truly a mean-field theory of the bare
Coulomb interaction. Thus, all fluctuations observed in this work are due to the CC
correlations.

The DMET energy expression requires the reduced density matrices. The CC
density matrices are obtained from the CC ƒ equations [129].

Because CCSD is an approximate method, it is always important to benchmark
its accuracy for the phenomenon of interest. In molecular quantum chemistry,
CCSD(T) (coupled cluster singles and doubles with perturbative triples) is often
regarded as the “gold standard” because it achieves high accuracy for ordered or
gapped reference states (so-called “single reference” states). In this work, we
do not extensively use the triples correction because our implementation of the ƒ
equations is efficient only at the singles and doubles level. However, we can verify the
accuracy of the unrestricted CCSD solver against unrestricted CCSD(T) in a smaller
subset of examples. We also benchmark against the ab initio DMRG solver. Since
DMRG works well away from ordered states (i.e., for multi-reference correlations),
this test allows us to verify the basic assumption underlying the accuracy of CC
approximations in these systems. We describe these benchmarks further below.

Since DMET involves a self-consistency loop and a search over the chemical po-
tential, it is necessary to solve the quantum impurity problem many times. To do
this efficiently, the solver can be approximately restarted from the previous solution
by matching the embedding basis. Say C1 and C2 are the embedding bases in the
first and the second cycles of a DMET calculation. The bases can be approximately
matched using the orbital overlap matrix and an SVD,

C
�
1SC2 D U†V

�; (2.113)

where S is the overlap matrix in the computational basis (here this is the AO overlap



43

matrix), and
QC1 D C1R D C1UV

� (2.114)

defines the closest orbitals to C2 in the Frobenius norm sense and R D UV �

is a unitary rotation matrix. The wavefunction from the first cycle can then be
transformed with the rotation matrix, i.e., the one- and two-body amplitudes in the
CCSD equations are rotated as,

Qtck D
X
ia

R�cat
a
i Rik; (2.115)

Qtcdkl D
X
ijab

R�caR
�

db
tabij RikRjl : (2.116)

This restart scheme greatly reduces the total cost spent in the many-body solver.
Typically, the CCSD amplitude equations converge in< 5 iterations after the second
DMET iteration.

When the system is gapless, the gap of the embedding problem is also small. This
creates difficulties for the impurity solver. Here, we discuss how CC solver may be
tuned to solve metallic problem. The CCSD equation requires the projection [129],

r D
D
ˆabij

ˇ̌̌
HeT

ˇ̌̌
ˆ
E
D 0: (2.117)

This is a non-linear root-finding problem and the standard way to solve it is by a
Jacobian iteration with direct inversion of iterative space (DIIS) [130]. The Jacobian
means the preconditioner is chosen as the diagonal of the matrix,

P D
1

�i � �a
/

1

gap
; (2.118)

and thus does not work for metal.

The failure of preconditions, however, does not mean that CC cannot be applied
to metals. From a numerical analysis perspective, it means the system is more
ill-conditioned (so that the convergence is harder). Several ideas are possible to
enhance the convergence, e.g., through a regularized preconditioner,

P D
1

�i � �a C ı
or

1

�i � �a

h
1 � e��.�i��a/

i
: (2.119)

Recently, there is trial to solve the projection equation by Newton-Krylov method,
which approximates the inverse of Jacobian J�1 in a subspace and solves the root
by an inexact Newton way,

tkC1 D tk � J�1 r
h
tk
i
: (2.120)
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This is potentially more reliable for systems with orbital degeneracy than the tradi-
tional DIIS method [131, 132]. We implemented the GSO version of the Newton-
Krylov CCSD inMPI4PySCF with efficient MPI parallelism [133].

2.7 Analysis methods
Charge and spin population analysis

Since we allow S2 symmetry breaking in our calculations, charge and spin order can
be analyzed using the spin-resolved one-particle reduced density matrix (� D ˛; ˇ),


�ij D
D
a
�
j�ai�

E
: (2.121)

In particular, the charge of orbital i reads,

ni D 

˛
ii C 


ˇ
ii ; (2.122)

and the local magnetic moment of orbital i reads,

mi D 

˛
ii � 


ˇ
ii : (2.123)

In principle, the charge (spin) populations depend on the choice of atom-centered
local orbitals f�ig. This typically has a strong basis set dependence if the population
analysis is carried out using the computational AO basis. However, the basis
dependence can be largely removed by measuring the population in the IAO basis
[95], which is what we do here.

Bonding analysis

To analyze bonding in the system in a straightforward way, we can use the atom-
centered local orbitals, i.e., the IAOs + PAOs used in the population analysis above,
and evaluate bond orders, which measure the off-diagonal density matrix element
between two local orbitals. In this work, we use the 2-center Mayer bond order
[134] which, for atoms A and B (or two subsets of orbitals) is defined as,

bAB D
X
�

b�AB D 2
X
�

X
i2A

X
j2B

.
�S/j i.

�S/ij ; (2.124)

where 
� is the one-particle density matrix with spin � and S is the overlapmatrix of
the local basis. Since we use IAOs + PAOs as our basis, S is the identity matrix. For
non-polarized covalent bonds, the Mayer bond order typically agrees very well with
chemical intuition (e.g., H2 andN2 roughly have bond orders 1 and 3 in calculations).
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For strong polarized covalent bonds or even ionic bonds, the Mayer bond order is
generally qualitatively reasonable.

As an alternative to the bond order, we also use the electron density �.r/ and electron
localization function ELF�.r/ [135, 136] as real space indicators of the bonding.
ELF was originally proposed to measure the localization of electrons and helps
reveal atomic shell structure, bonding, and lone electron pairs. ELF values lie in
Œ0; 1�. When ELF D 1, the electron is completely localized while ELF D 1

2
suggests

that the electron behaves like it does in the electron gas of the given density at that
position. Since ELF is defined in real space it is less sensitive to the choice of basis
set. Typically, large ELF values indicate a core region, a lone pair of electrons, and
covalent bonding. Thus, the ELF is a useful tool to distinguish between covalent
and non-covalent (such as ionic) bonding.

A third way to understand the bonding is to examine the individual localized orbitals
in the occupied and virtual spaces, which reveals the bonds and antibonds of the
system. Here, we localized the occupied and virtual embedding orbitals via Pipek-
Mezey (PM) localization [84], which maximizes the population charges on the
atoms,

U D argmax
U

w.U / D argmax
U

atomsX
I

X
i

jqIi j
2; (2.125)

and qIi is the charge of the i
th orbital of atom I (IAOs + PAOs are used as the

population method, in order to reduce the basis set dependence). The resulting
unitary rotation U defines a set of localized orbitals,ˇ̌

�PMi
˛
D

X
m

j miUmi : (2.126)

Note that PM localization preserves the separation between � and � orbitals.

Spin-spin correlation function

The (Sz component) spin-spin correlation function hSz.0/Sz.r/i reflects the spin-
spin correlation between metal center (e.g., Cu) in the reference cell (0) and another
metal atom at position (r). If the correlation function does not decay to 0 at large r ,
the system has long-range order.

Using the spin operator of local orbital i

OSzi D
1

2

�
a
�
i˛ai˛ � a

�

iˇ
aiˇ

�
; (2.127)
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we express the correlation function as a contraction of the reduced 1-particle 
�ij and

2-particle ���
ijkl
�

D
a
�
i�a

�

k�
al�aj�

E
density matrices,

hSz.0/Sz.r/i D
X
i2Cu.0/

X
j2Cu.r/

D
OSzi
OSzj

E
D
1

4

X
i2Cu.0/

X
j2Cu.r/

�

˛ij ıij C �

˛˛
iijj � �

˛ˇ
iijj � �

˛ˇ
jji i C 


ˇ
ij ıij C �

ˇˇ
iijj

�
:

(2.128)

where the summation is constrained to the local orbitals of Cu. Note that we do not
consider the oxygen contribution to the correlation function.

Natural orbital analysis

Spin-traced natural orbitals can be obtained by diagonalizing the (spin-traced) den-
sity matrix 
 ,


k
qpC

k
pi D C

k
qiƒ

k
i ; (2.129)

where ƒp is a natural occupation number (between 0 to 2) and Cpi are the natural
orbital coefficients. If the density matrix originates from a pure state with S D
0, then the further the natural occupation is away from 0 or 2 (a single Slater
determinant), the more correlated an orbital is. We can define the half-filling index
to summarize the contribution of local orbitals fpg, to half-filled natural orbitals,

f halfp D
1

NkNp

X
ik

jC k
pi j

2min.ƒk
i ; 2 �ƒ

k
i /; (2.130)

where Np is the number of orbitals in an orbital group (e.g., Cu 3dx2�y2;O 2p).
The situation is a bit more subtle for a state with S ¤ 0 or a symmetry-broken
state. In a symmetry-broken state, the degree of half-filling measures both the
fluctuations as well as the degree of spatial symmetry breaking. For example, in
a symmetry-broken Slater determinant with overall low-spin (Sz D 0) (which has
no fluctuations), ƒp ! 1 means that there are spin-orbitals of opposite spin with
no spatial overlap. Nonetheless, since it is important to include spin fluctuations
between such spin orbitals, the half-filling index remains a useful indicator of the
most important local orbitals to include in a minimal atomic model.

The spin-resolved natural orbitals can be obtained by diagonalizing the spin-resolved
density matrix 
� . Now ƒp ranges from 0 to 1. In a symmetry broken state, it is
the deviation of the spin-resolved occupancies ƒp from their extremal values that
measures the importance of dynamical fluctuations. If all spin-resolved occupancies
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are 0 or 1, then the state is exactly of mean-field character and all single-particle
lifetimes are infinite (no dynamical effects). Deviation from this occupancy pattern
indicates correlation, and very strong deviation indicates strong correlation [e.g.,
in a system far from a Fermi liquid where the quasiparticle picture breaks down
such as a Luttinger liquid, the occupancy (or momentum distribution function) no
longer shows a jump between values close to 0 and values close to 1]. In this work,
we estimate if there are strong dynamical effects by examining if all the natural
occupancies are close to 0 or 1.

Also, although DMET does not provide direct access to the single-particle energy
spectrum, we can use the occupancies of the spin-resolved natural orbitals as proxies
for proximity to the top edge of the valence band/bottom edge of the conduction
band. In particular, the highest occupied natural orbital (occupancy > 1=2 but
furthest from 1) is a pseudo-valence-band maximum; while the lowest occupied
natural orbital (occupancy < 1=2 but furthest from 0) is a pseudo-conduction band
minimum.

Pairing analysis

To characterize the doping dependence of the superconducting ground-state, we
define the averaged SC order parameters.

For the three-band Hubbard models the SC order parameter here is evaluated as the
average of the Cu-Cu and O-O d -wave pairing components,

mSC D
X
hi i 0i

1
p
2
�SCi i 0
�˝
di˛di 0ˇ

˛
C
˝
di 0˛diˇ

˛�
C

X
hhjj 0ii

1
p
2
�SCjj 0

�˝
pj˛pj 0ˇ

˛
C
˝
pj 0˛pjˇ

˛�
;

(2.131)

where h� � �i limits the summation such that only the pairing between nearest Cu-d
orbitals is taken into account, and similarly hh� � �ii involves only the next-nearest
coupling between O-p orbitals. The d -wave superconducting structure factor �SC

is defined as,

�SCi i 0 D

(
C 1; if Ri � Ri 0 D ˙ex;

� 1; if Ri � Ri 0 D ˙ey :
(2.132)

For the s-wave pairing, one simply let � D 1 for all terms. For the one-bandHubbard
model, the oxygen part should be omitted.
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For ab initio materials. There more orbitals f�g in each atom, one can define the
total atomic pairing coupling,

mSC D
X
hi i 0i

1
p
2
�SCi i 0
�˝
�i˛�i 0ˇ

˛
C
˝
�i 0˛�iˇ

˛�
; (2.133)

where i (i 0) loops all of the local orbitals of atom I (I 0) and phase factor � is the
same as before.

As we do not perform real finite-temperature simulations, we use the above zero-
temperature local pairing orders as a proxy for the Tc in the phase diagram. This is an
approximation, but it has been shown in the BCS theory� / Tc [12]. Therefore, we
expect that the materials trend of Tc can be reflected in the pairing order parameter
m, at least to the leading order.
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Chapter 3

PROJECTED DENSITY MATRIX EMBEDDING THEORY AND
ONE-BAND HUBBARD MODEL

Based on the work published in J. Chem. Phys. 151, 064108 (2019). Copyright
2019, American Institute of Physics. [107]

3.1 Introduction
This chapter focuses on a possible way to improve numerical algorithms to achieve
self-consistency in the context of DMET. In many systems, using the bath orbitals
generated from the HF Slater determinant yields energies and physical observables
from DMET that already significantly improve on those from HF theory alone.
Such calculations will be referred to as “single-shot” DMET calculations [35]. On
the other hand, as mentioned in Sec. 2.2, when the physical system undergoes a
phase transition not predicted by mean-field theory, we expect that a mean-field
theory will produce the wrong order parameter, and the resulting bath orbitals will
be very poor. In such a scenario, it is necessary to perform DMET self-consistently
to improve the bath orbitals. The self-consistency condition is usually defined such
that the 1-RDMs obtained from the low-level and high-level theories match each
other according to some criterion. Self-consistency can be achieved by optimizing
a single-body potential, termed the correlation potential, in the low-level theory.
Each optimization step requires diagonalizing a matrix, similar to in a SCF iteration
step in the solution of the HF equations.

Nonetheless, there are two outstanding numerical issues associated with the opti-
mization of the correlation potential. First, the optimization procedure may require
a large number of iterations to converge. It is not uncommon for the number of iter-
ations to be 100 - 1000 especially for systems that are not translationally invariant.
Hence when the system size becomes moderately large (a few hundred sites), the
cost of the correlation potential optimization may exceed the cost of the impurity
solver for small impurities. Second, the bath construction procedure of DMET
requires the 1-RDM to be an idempotent matrix, and the corresponding low-level
Hamiltonian should have a finite HOMO-LUMO gap. However, even if the strongly
correlated global system is gapped, it is often the case that the low-level Hamiltonian
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associated with a given correlation potential in the optimization procedure becomes
gapless. The derivative of the bath orbitals with respect to the correlation potential
will then become infinite, and the optimization cannot properly proceed. This work
aims at addressing the first problem, namely the cost associated with the correlation
potential optimization. The second problem should be addressed by properly con-
sidering the zero temperature limit of a finite temperature generalization of DMET.
We have applied the finite-temperature smearing in both lattice mean-field and the
fitting procedure, see other chapters for details.

In this chapter, we will introduce an alternate procedure to self-consistently deter-
mine the bath orbitals, which completely avoids the need to optimize the correlation
potential. In the standard DMET, the bath orbitals are uniquely determined by the
corresponding idempotent 1-RDM obtained from a low-level theory, denoted DLL.
The goal of the self-consistent DMET can then be formulated, in an abstract way,
as finding the solution of the following fixed point problem

DLL D F
�
DŒDLL�

�
: (3.1)

Here the mapping DŒ�� takes the idempotent 1-RDM as input, generates the cor-
responding bath orbitals, and solves all impurity problems to obtain the 1-RDM
evaluated from the high-level theory. The mappingF takes the high-level correlated
1-RDM, denoted by DHL WD DŒDLL� as input, and generates another idempotent
1-RDM. The correlation potential optimization can be viewed as oneway of achiev-
ing self-consistency as required by Eq. (3.1). To see this, we only need to define the
mapping F to be the minimization procedure in the standard DMET, which uses a
correlation potential to minimize the discrepancy between DLL and DHL evaluated
on the impurity problems.

The perspective from the fixed point equation Eq. (3.1) suggests that other forms of
F are possible which map DHL to DLL more efficiently. We propose that DLL can
be obtained by directly projecting DHL onto the set of idempotent matrices with a
given rank. The modified method is therefore called the projected density matrix
embedding theory (p-DMET). The solution of p-DMET will not be identical to that
of DMET, since they are defined using different mappings F . In particular, unlike
DMET, which can be defined to only use information from DHL on the fragments
during self-consistency, p-DMET requires the construction of DHL on the global
domain in order to define the projection operation.

Using the two-dimensional one-band Hubbard model and restricting to magnetic
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and non-magnetic self-consistent solutions, we demonstrate that the results of p-
DMET and DMET at self-consistency are very similar within the AFM and the
PM phases. The discrepancy between the two methods is largest near the phase
boundary, and for larger on-site interactions. We show that p-DMET significantly
lowers the computational cost to achieve self-consistency for large lattices without
translational invariance. For example, even for a moderately sized lattice with 128
sites and using 4-site impurities (without translational invariance), the correlation
potential fitting procedure in standard DMET requires about 20000 s of CPU time,
which is reduced to about 1 s in the p-DMET approach.

The rest of the chapter is organized as follows. We then discuss p-DMET and
the associated numerical issues in Sec. 3.2. We demonstrate the performance
of p-DMET for the two-dimensional Hubbard model in Sec. 3.3, before deriving
conclusions in Sec. 3.4.

3.2 Projected density matrix embedding theory
Motivated by the fixed point formulation of self-consistency Eq. (3.1), we propose
the following procedure to obtainDLL:

DLL D F ŒDHL� WD arg min
DDD�;D2DD;
tr.D/DNe

k.D �DHL/ˇW k2F : (3.2)

Compared to Eq. (2.16), the main simplification of Eq. (3.2) comes from the fact that
the admissible set is now the set of idempotent density matrices with Ne electrons
without further constraints. To further simplify the method we let each entry of W
be 1, i.e. Wpq � 1. In other words, we measure the discrepancy of all entries of the
density matrix on the same footing, and solve

DLL D arg min
DDD�;D2DD;
tr.D/DNe

kD �DHLk2F : (3.3)

Eq. (3.3) has a simple analytic solution. Let ‰LL be the eigenvectors corresponding
to the largest Ne eigenvalues of DHL, i.e. ‰LL consists of the leading Ne natural
orbitals. Then the solution to Eq. (3.3) is

DLL D ‰LL.‰LL/�: (3.4)

If DHL is fixed, this is the closest projection operator to DHL measured by the
Frobenius norm. Informally, ‰LL is the single determinant that best captures the
information contained in all the density matrices of the fragments. Once DLL is
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obtained, we may compute the bath orbitals according to Eq. (2.10), and proceed
to solve for the ground-state of the impurity problems as in the standard DMET
procedure. Hence we refer to this method as projected density matrix embedding
theory (p-DMET). Again to make this procedure well defined, we require that there
is a positive gap between the Ne-th and .Ne C 1/-th eigenvalue of the correlated
density matrix DHL. p-DMET assumes the high-level 1-RDM DHL of the global
system has been computed. As mentioned above, such a global 1-RDM can be
constructed from the high-level 1-RDM’s in each impurity using the democratic
partitioning Eq. (2.14).

Let Cx be the collection of fragment and bath orbitals of the impurity x. Then we
define "

D.x/

�

#
D eD.x/C �x ; (3.5)

where eD.x/ is the 1-RDMof the impurity problemwith size .2LA/�.2LA/. eD.x/C
�
x

is a matrix of size .2LA/ � L. D.x/ is obtained by extracting the first LA rows ofeD.x/C
�
x , which is a block row of the density matrix corresponding to the fragment

part of the impurity x. Since the fragments collectively form a non-overlapping
partitioning of the global system, the global 1-RDM can be formed as

DHL D

266664
D.1/

D.2/

:::

D.Nf /

377775 : (3.6)

Fig. 3.1 illustrates the procedure of constructing DHL for a one-dimensional model
with 12 sites partitioned into 6 fragments.

Since each block row ofDHL is obtained from the corresponding impurity problem
independently, in generalDHL is not a Hermitian matrix. Therefore, after Eq. (3.6),
we symmetrize the 1-RDM as

DHL  
DHL C .DHL/�

2
: (3.7)

This symmetrization procedure corresponds to the choice of “democratic parti-
tioning” for constructing the 1-RDM (and its contribution to the total energy) in
DMET [35]. In general, DHL will not be an idempotent matrix. Hence there is a
non-zero discrepancy betweenDHL andDLL.
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Frag #1 Frag #5 Frag #6Frag #2 Frag #3 Frag #4

Off-diagonal blocks of global 

RDM complemented by RDM 

in bath of each fragment

Diagonal blocks of global 

RDM formed by RDM in 

each fragment

...

Figure 3.1: Construction of global density matrix. Each fragment contributes a
rectangular block row of the global density matrix. Each block row has the same
length as the global density matrix.

In order to solve the fixed point problem Eq. (3.1) in p-DMET, an extrapolation, or
mixing scheme is usually beneficial to accelerate the convergence. In p-DMET we
choose DHL as the mixing variable. Let DHL;.k/ be the correlated 1-RDM at the
beginning of the k-th iteration. Then we first compute the low-level density matrix
D
LL
D F

�
DHL;.k/

�
through the projection Eq. (3.4), construct the corresponding

bath orbitals, and solve the impurity problem. From this we obtain an output
correlated density matrixDHL WD DŒDLL�. Define the residual as

R.k/ WD DHL;.k/ �D
HL
: (3.8)

The simplest scheme to obtainDHL;.kC1/ is the simple mixing

DHL;.kC1/ D DHL;.k/ � ˛R.k/: (3.9)

Here 0 < ˛ 6 1 is amixing parameter. The simplemixingmethod usually converges
when ˛ is set to be sufficiently small, but the convergence rate can be very slow. In
order to accelerate the convergence, we can use the direct inversion in the iterative
subspace (DIIS) method [130]. In DIIS,DHL;.kC1/ is obtained by extrapolating the
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1-RDM’s from the previous `C 1 steps as

DHL;.kC1/ D

kX
jDk�`

˛jD
HL;.j /: (3.10)

In order to obtain the mixing coefficient f˛j gkjDk�`, we also record the residual
fR.j /gk

jDk�`
as in Eq. (3.8), and solve the following minimization problem

f˛j g D arg
f˛j g

min








kX

jDk�`

˛jR
.j /








F

; s.t.
kX

jDk�`

˛j D 1: (3.11)

A pseudocode implementation for the p-DMET and DMET algorithm is provided
in Algorithm 1.

Algorithm 1 A unified pseudocode for the projected density matrix embedding
theory (p-DMET) and density matrix embedding theory (DMET).
Input: Initial guess of the correlated 1-RDMDHL;.0/ and chemical potential �.0/.
Output: Converged correlated 1-RDMDHL and ground state energy E.
1: for k D 0; : : : ; do
2: for � D �.k/; : : :, do
3: for each impurity x do
4: Compute fragment orbitals (Cf ), and bath orbitals (Cb)
5: Formulate the impurity Hamiltonian, OH .x/

emb F Eq. (2.12) and (2.13)
6: Solve the impurity problem with � F via solvers such as FCI or DMRG
7: end for
8: Compute the total number of electrons, tr

�
DHL

�
9: if convergence is not reached, update � by Newton’s iterations
10: end for
11: �.kC1/  �

12: Construct the correlated 1-RDMD
HL

F Eq. (3.6) followed by symmetrization
13: Compute energy E.k/ fromDHL as well as the related 2-RDM F Eq. (2.58)
14: If convergence is reached, exit the loop
15: if embedding method is p-DMET then
16: Perform mixing scheme to obtainDHL;.kC1/

17: Compute low-level density matrixDLL F Eq. (3.4)
18: else if embedding method is DMET then
19: Solve the minimization problem F Eq. (2.15)
20: Perform mixing scheme to obtain a new correlation potential u.kC1/
21: end if
22: end for
23: SetDHL  DHL;.k/, E  E.k/

In principle, one could also choose the mean field density matrixDLL as the mixing
variable. However, there arises a practical question related to this choice, namely
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that the linear combination of a few (or even two) idempotent matrices is generally
not an idempotent matrix. Note that the same problem already arises in the context
of HF calculations. Some of us have recently developed the projected commutator
DIIS (PC-DIIS) method [137], which accelerates HF calculations within a large
basis set (such as planewaves). The idea of PC-DIIS is to apply the idempotent
density matrix DLL to a gauge-fixing matrix ˆref as ˆ D DLLˆref. It is clear that
the information inDLL andˆ is equivalent. In particular,DLL can be reconstructed
from ˆ (Löwdin orthogonalization) as

DLL D ˆ.ˆ�ˆ/�1ˆ�: (3.12)

Thus PC-DIIS uses ˆ as the mixing variable, and reconstructs the idempotent
density matrix using Eq. (3.12).

Following the PC-DIIS method, we can then choose ˆ as the mixing variable in
the self-consistent p-DMET. The gauge-fixing matrix ˆref can be chosen to be, for
instance, the HF occupied orbital coefficient matrix. We refer to this method as
the projected density matrix embedding theory with a fixed gauge (p-DMET-f).
Note that from the perspective of Eq. (3.1), p-DMET-f solves the same fixed point
problem as p-DMET. The only difference is the choice of the mixing variable.

For translational invariant systems, note thatDhl constructed from democratic parti-
tioning does not break the translational symmetry among fragments. Therefore, the
Dhl can be represented in k-space, denoted by Dhl.k/. The corresponding ‰ll.k/
is generated per k sector. The extrapolation over Dhl.k/ also conserves the crystal
momentum k. Finally, we note that p-DMET-f can be formulated in a similar way
by introducing a gauge-fixing matrix per k sector.

3.3 Numerical experiments
In this section, we investigate the performance of p-DMET and p-DMET-f for a 2D
Hubbard model with periodic boundary conditions. Themean-field theory is chosen
to be the unrestricted HF (UHF) theory, and the impurity Hamiltonian in DMET and
p-DMET is defined within the interacting bath formulation. The impurity ground-
states were computed using the FCI method implemented in the PySCF [138]
package and the density matrix renormalization group (DMRG) method [121, 122],
as implemented in the block program [125, 139–141], using a bond dimension of
M D 1000, the split-localized orbital strategy described in [32], and the genetic
algorithm for orbital ordering [127]. The fragments were chosen to be 2�2 clusters,
treated without translational invariance, to allow a comparison between p-DMET
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and DMET in a general setting, except in the case of the cluster size convergence
tests, where fragments of up to 4�4 (16 sites) were used, and translational invariance
was assumed. We used a convergence criterion on the energy difference between
two consecutive iterations of less than 10�8 for the 2 � 2 clusters and 10�5 for the
larger clusters. All energies are reported in units of hopping (t ).

Accuracy
To investigate the accuracy of p-DMET, we plot the phase diagram of a 2D Hubbard
model with 40 � 40 sites with periodic boundary conditions. This system has
been studied in [32] using a translationally-invariant implementation of DMET. The
initial 1-RDM is produced by a converged UHF calculation. Fig. 3.2 compares the
phase diagrams generated by UHF, DMET, and p-DMET respectively, evaluated on
a 21�21 grid with respect to the on-site interaction strength U , as well as the filling
factor n.

The phase diagram is divided into two regions distinguished by their spin polariza-
tion, i.e. the anti-ferromagnetic (AFM) phase and the paramagnetic (PM) phase.
The phase diagrams obtained from p-DMET and DMET are qualitatively similar.
The two diagrams agree well with each other when U 6 4:0, and larger discrep-
ancies between p-DMET and DMET are observed in the region U > 4:0 and
0:6 6 n 6 0:8. We also observe that the phase boundary obtained from p-DMET
is slightly softer, i.e. the decay of the spin polarization from the AFM phase to the
PM phase is slower than that in DMET.

A quantitative comparison of the total energy per site can be found in Table 3.1.
Overall, the discrepancy between p-DMET and DMET is much smaller than that
between UHF and DMET. The energies of p-DMET and DMET agree very well (the
difference is less than 10�3) inside the AFM / PM phases. The largest discrepancy
occurs at U D 6:0; n D 0:750, again near the phase boundary, where the difference
of the energy is 0:022. We remark that neither p-DMET nor DMET is variational,
so we cannot determine from this single calculation which is better.

Convergence
We observe in Fig. 3.2 that the softer phase boundary in p-DMET coincides with
the region where UHF and DMET predict different phases. Since the UHF solution
only enters p-DMET as an initial guess, we may wonder whether the fixed-point of
p-DMET depends on the initial guess. Below we demonstrate that the converged p-
DMET/p-DMET-f solution can indeed depend on the initial guess, at least in certain
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Figure 3.2: Phase diagrams of the 2D Hubbard model from UHF, DMET and p-
DMET. The color represents the spin polarization (m D 1

2
jn" � n#j), where n" and

n# are spin up and spin down densities respectively.

Table 3.1: Energy per site of the 2D Hubbard model by UHF, p-DMET and DMET
as a function of U and doping (n). The self-consistent p-DMET and DMET
calculations use the converged UHF solution as the initial guess.

n D 1:000 n D 0:875 n D 0:750
U UHF p-DMET DMET UHF p-DMET DMET UHF p-DMET DMET
2:0 -1.13886 -1.17999 -1.17985 -1.22470 -1.27817 -1.27799 -1.27655 -1.32270 -1.32275
4:0 -0.79703 -0.86792 -0.86856 -0.88440 -1.03002 -1.03450 -0.99530 -1.16862 -1.16707
6:0 -0.59270 -0.66099 -0.66188 -0.66592 -0.87265 -0.87395 -0.75936 -1.04709 -1.06860
8:0 -0.46588 -0.52262 -0.52393 -0.52665 -0.77299 -0.77149 -0.60439 -0.97734 -0.98954

parts of the phase diagram. We consider a 2D Hubbard system with 6 � 6 sites
with periodic boundary conditions. The onsite interaction U is set to 4:0, and we
consider two fillings: n D 1:0 (half filling,Ne D 36), and n D 0:722 (Ne D 26). In
both cases, the energy gap at the mean-field level is positive, and the self-consistent
procedure for all methods are well defined without any finite temperature smearing.

In the first example (n D 1:0), DMET suggests that at convergence the system is in
theAFMphase. Therefore, we start from the PMphase, and break the spin symmetry
of the initial density by alternately adding/subtracting a small number (10�3) on
odd/even sites to create slightly polarized spin-up and spin-down densities. Starting
from this initial density, UHF converges within 20 steps using DIIS. We input the
initial 1-RDM for p-DMET/p-DMET-f after performing 1; 5; 10; 20UHF iterations,
respectively. For p-DMET-f, the gauge-fixing matrix is also obtained from the same
1-RDM. The convergence of the energies is reported in Fig. 3.3. We find that the
convergence curves of p-DMET and p-DMET-f are very similar and almost coincide
with each other in all cases. Both the converged energy and the spin polarization from
p-DMET/p-DMET-f depend on the initial guess of the 1-RDM. Table 3.2 suggests
that at convergence, UHF predicts an over-polarized spin configuration. However,



58

starting from a significantly under-polarized 1-RDM obtained from one iteration
of UHF, the converged solution of p-DMET underestimates the spin polarization
(by 0:022 relative to the converged DMET result). With initial guesses obtained
from an increased number of UHF iterations, both the energy and spin polarization
obtained from p-DMET approach the results from DMET. After 5-steps of UHF
for the initial guess, p-DMET provides converged results in terms of energy and
spin polarization. Remarkably, the solution of DMET is very robust with respect to
the choice of the initial guess, even though neither DMET nor p-DMET/p-DMET-f
guarantees a unique solution to the nonlinear fixed point problem a priori.

Table 3.2: Spin polarization for the 6 � 6 Hubbard model at U D 4:0, n D 1:0

obtained from converged UHF, DMET and p-DMET calculations. #UHF stands for
the number of UHF steps to obtain the initial 1-RDM for the DMET calculation.

initial UHF DMET
(#UHF=1)

DMET
(#UHF=5)

DMET
(#UHF=20)

m 0.001 0.34876 0.30812 0.30812 0.30812
p-DMET
(#UHF=1)

p-DMET
(#UHF=5)

p-DMET
(#UHF=20)

m 0.28578 0.30851 0.31000
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Figure 3.3: The convergence of the energy per site for p-DMET-f, p-DMET and
DMET with different initial guesses. The system is a 6 � 6 Hubbard model at
U D 4:0, n D 1:0.

In the second example, we set n D 0:722 (Ne D 26). We start from an initial
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guess that exhibits AFM order, where the spin up component of the density is set to
be 0:1444 and 0:5778 on alternate sites, and the spin down component is arranged
alternately in the opposite way with the same values. The convergence of the energy
(Fig. 3.4) is similar to that in the case of half-filling. For a spin-polarized initial
1-RDM obtained from one step of the UHF iteration, the converged solution of
p-DMET remembers the initial guess and predicts an AFM phase with a small
spin-polarization 0:04. Both the energy and spin polarization improve quickly as
the number of UHF iterations used to define the initial guess increases. Eventually
p-DMET also predicts a PM phase. Again, no initial guess dependence is observed
in DMET.

Table 3.3: Spin polarization for the 6 � 6 Hubbard model at U D 4:0, n D 0:278

obtained from converged UHF, DMET and p-DMET calculations. #UHF stands
for the number of UHF steps used to obtain the initial 1-RDM for the DMET and
p-DMET calculations.

initial UHF DMET
(#UHF=1)

DMET
(#UHF=5)

DMET
(#UHF=20)

m 0.2167 2:166 � 10�11 4:961 � 10�8 1:365 � 10�7 5:440 � 10�8

p-DMET
(#UHF=1)

p-DMET
(#UHF=5)

p-DMET
(#UHF=20)

m 4:175 � 10�2 2:719 � 10�2 4:865 � 10�9
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Figure 3.4: The convergence of the energy per site for p-DMET-f, p-DMET, and
DMET with different initial guesses. 6� 6 Hubbard model at U D 4:0, n D 0:722.
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In both examples above, UHF and DMET predict the same phase of matter. We
find that self-consistent p-DMET can significantly reduce the error of physical
observables starting from converged or unconverged UHF solutions, but there is
some initial guess dependence. Therefore, when UHF and DMET predict different
phases, p-DMET can reduce but not eliminate the (presumed) error from UHF.
Hence the phase diagram in Fig. 3.2 is similar to that of DMET, but softer near the
boundary region.

Effect of fragment size
To understand the fragment size dependence of the physical observables in DMET
and p-DMET, we carried out a number of 2DHubbardmodel calculations (of 40�40
sites) at half-filling for different interaction strengths (U D 2, 4, 6 and 8) and with
different fragment sizes (2� 2, 2� 4 and 4� 4) using translational invariance. The
same cluster sizes were previously considered in Ref. [32] where translationally
invariant DMET is in the non-interacting bath (NIB) formulation only. We use the
data from Ref. [32] as reference. DMET in the interacting bath formulation, as used
everywhere else in this work, is here denoted DMET (IB). Given a set of 2D clusters
with LA sites, the DMET energy can be extrapolated to the thermodynamic limit
(TDL) as a power series in L�

1
2

A [33],

E.L/ D E.1/C a0L
� 1

2

A C b0

�
L
� 1

2

A

�2
C : : : (3.13)

We use the average of linear regression and a quadratic fit as the extrapolated result,
and the error bar is defined to be the difference of the two fits.

Fig. 3.5 presents the calculated energy of three methods (p-DMET, DMET (IB),
and DMET (NIB)) and the corresponding extrapolations. All three methods give
reasonable extrapolated energy values, compared to the benchmark data (grey shaded
region). For p-DMET, the largest error is about 5�10�3 atU D 8, while for DMET
(IB), the largest error is about 3 � 10�3 at U D 4. The behavior of DMET and
p-DMET as a function of L�

1
2

A is relatively similar, while that of DMET (NIB) is
quite different. This reflects the energy influence of the different choice of impurity
Hamiltonian. In fact, extrapolations using DMET (NIB) have smaller error bars in
general, and they are slightly more accurate than those of DMET (IB) and p-DMET.
The results also indicate that after extrapolation, the performance of DMET and
p-DMET is comparable reliable.
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Figure 3.5: Energy extrapolation as a function of cluster size LA for p-DMET,
DMET(IB) and DMET(NIB), where IB and NIB denote the interacting- and non-
interacting bath formulations respectively. The fitting curve is an average of linear
regression and quadratic fitting. The error bar is chosen to be the difference between
the linear and quadratic extrapolated values. The shaded area is generated from the
AFQMC, DMRG, DMET and DCA-DMET benchmark numbers in Ref. [142] and
Ref. [33].
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Efficiency
To demonstrate the efficiency of p-DMET and p-DMET-f, we analyze two factors
that affect the overall computational cost, i.e. the total number of iterations for
self-consistent convergence and the (average) time cost per iteration.

We first consider the number of iterations required for convergence. We extracted
the number of iterations from the calculations for the preceding phase diagram
(Fig. 3.2) and plot the distribution of the number of iterations in Fig. 3.6. As shown
in the figure, all three methods (p-DMET, p-DMET-f and DMET) a similar average
convergence rate, with an average iteration number of 12 required to achieve an
energy accuracy of 10�6. In most cases, the iteration number is less than 20. We
also remark that at least for systems studied in this work, the distribution in the case
of p-DMET is slightly narrower with fewer outliers, and hence the self-consistent
iteration is more stable.
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Figure 3.6: Distribution of the number of self-consistent iterations of p-DMET, p-
DMET-f and DMET required to reach 10�6 in the energy across the phase diagram
in Fig. 3.2. All calculations used DIIS.

Acquiring the similar average number of self-consistent iterations in p-DMET and
DMET, we now discuss the total computational time. We performed a series of tests
on lattices of size 2 � N (N is the number of sites in the y direction ranging from
8 to 64). We set U D 2:0 and n D 1:0 (half filling). We chose this quasi one-
dimensional structure to ensure that the mean-field problem always has a positive
energy gap, which is not the case for arbitrary 2D lattices. All the tests are performed
on 36 Intel Broadwell vCPUs of the Google Cloud Platform (GCP).
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We measured the CPU time of DMET, p-DMET and p-DMET-f spent on single-
particle type computations and to solve the impurity problems (many-body com-
putations). When the fragment size is fixed, the cost to construct and solve the
impurity problems (high-level computations) always scales linearly with respect to
the global system size. In DMET, the single-particle type computations (low-level
computations) include the diagonalization of the mean-field Hamiltonian, and op-
timization of the correlation potential; in p-DMET, the cost of the single-particle
computations is mainly due to the diagonalization to obtain the projected 1-RDM.

In DMET, the single-particle computational cost significantly increases with N
(Fig. 3.7). In each step of DMET, the correlation potential optimization typically
requires more than 100 iterations to converge, and the number of iterations also
grows with respect to the system size. When the system becomes moderately large
(number of sites larger than 64), the cost at the mean-field level is much more
expensive than solving the 2 � 2 impurity problems. When the number of sites
is 128, the single particle computations in DMET take in total � 20000 s. On
the other hand, the main single-particle cost in p-DMET is only the eigenvalue
decomposition to obtain DLL. Similarly, p-DMET-f only needs to perform single-
particle type matrix multiplications and inversions. For the system with 128 sites,
the computational cost at the mean-field level of p-DMET is reduced to only � 1
s. This demonstrates that p-DMET/p-DMET-f provide a significant reduction in
computational cost relative to DMET for large, heterogeneous, systems.

3.4 Conclusions
An important computational bottleneck in DMET calculations for large systems is
the correlation potential optimization required to achieve self-consistency. In this
optimization, each evaluation of the cost function requires the diagonalization of
a mean-field Hamiltonian, and each derivative evaluation amounts to a response
calculation. Thus, for a moderately sized system, the correlation potential opti-
mization procedure can be expensive. In this work, we viewed the self-consistent
DMET as only one formulation of a more general fixed point problem to obtain the
high-level global density matrix DHL. From this general perspective, we proposed
the projected density matrix embedding method (p-DMET) as a simpler and more
efficient way to achieve self-consistency. We found that for the 2D Hubbard model,
compared to the unrestricted HF (UHF) solution, p-DMET significantly improved
the accuracy of the total energy and behaviour of the spin polarization across the
entire parameter space. The phase diagrams predicted by p-DMET and DMET qual-
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Figure 3.7: CPU time in DMET, p-DMET and p-DMET-f associated with (i) low-
level density matrix computations (ii) high-level impurity problem computations.

itatively agreed with each other, but the phase boundary obtained from p-DMET
was softer. Further investigation showed that this was because the self-consistent
solution of p-DMET retained a weak dependence on the initial guess. On the other
hand, the cost associated with achieving self-consistency in p-DMETwas negligible
compared to that needed to optimize the correlation potential in DMET.

There are a number of directions that should now be pursued. First, we would like to
identify the root of the initial guess dependency of p-DMET. Second, we plan to gen-
eralize p-DMET to superconducting systems, where the low-level theory requires the
solution of the Bogoliubov-de Gennes (BdG) equations. Third, a remaining numer-
ical issue in DMET associated with self-consistency is the appearance of vanishing
gaps in the DMET mean-field Hamiltonian during the optimization. This should
then be treated using a zero temperature limit of a finite temperature formulation of
DMET.
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Chapter 4

PHASE DIAGRAM OF THREE-BAND HUBBARD MODEL
FROM DENSITY MATRIX EMBEDDING THEORY

Based on the work published in Phys. Rev. Research 2, 043259 (2020). Copyright
2020, American Physical Society. [99]

4.1 Introduction
The three-band Hubbard model, also known as the Emery model [21], is generally
believed to contain the essential physics of the high-Tc cuprates that arises from the
interplay between the copper dx2�y2 and oxygen px.y/ orbitals in the CuO2 layers.
Given the complexity of the model, commonly, the three-band model is further
simplified and several simpler low-energy Hamiltonians have been proposed, such
as the one-band Hubbard model [22, 23], t -J model [23, 143], and two-band
model [144]. The first two are effective one-band models and are equivalent in the
strong-coupling limit. In particular, the two-dimensional (2D) one-band Hubbard
model has been extensively investigated using various numerical approaches (see
Refs. [24, 142] and the references therein). Much of the physics seen in high-Tc
materials, e.g. d -wave pairing, density waves, the pseudogap phase and stripe order,
has been observed in studies of the simpler one-band Hubbard model within certain
ranges of parameters [24].

However, despite the progress in understanding the one-band Hubbard model and its
variants, there are still important reasons to go beyond the one-band picture to study
the original three-band model directly. For instance, (a) some important physics
may be lost in the reduction to the one-band approximation (such as a role for
the oxygen degrees of freedom in the pseudogap phase [7]), (b) near degeneracies
of competing states seen in the one-band case [24] may in fact be resolved with
the additional degrees of freedom of the three-band model, and (c) the three-band
model retains the atomic structure of the CuO2 layer and thus has a direct link to
the structure of real materials as well as experimental measurements of orders at the
atomic scale. Previously, the three-band Hubbard model has been investigated with
several numerical methods, including direct simulations of finite lattices (by exact
diagonalization (ED) [145–151], quantum Monte Carlo (QMC) [25, 151–158],
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density matrix renormalization group (DMRG) [25, 159–161], and the random
phase approximation [162–164]) and via Green’s function based embedding theories
(such as dynamical mean-field theory (DMFT) and its cluster extensions [165–170],
and the variational cluster approximation (VCA) [171, 172]). However, due to the
complexity of the model, unlike in the one-band case, a consensus on much of the
physics has yet to be reached.

In earlier work, DMET successfully provided an accurate description of the ground-
state orders of the one-band Hubbard model [32], including in the difficult under-
doped region [24]. In this chapter, we therefore attempt to understand the more
complicated three-band Hubbard model using DMET. As we shall see, we can use
DMET to provide a detailed description of the ground-state phases and orders as a
function of doping, including the doping asymmetry and atomic-scale orders that
are new to the three-band case. Another complication of the three-band model is
the much larger parameter space than the one-band case. We use both existing
parametrizations that have been published in the literature, as well as explicitly
model the influence of different individual parameters on the orders. Our findings
provide insights into the detailed picture of magnetic and superconducting orders
that is provided by three-band models.

4.2 Models and methods
Model parametrization
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Figure 4.1: An illustration of the three-band Hubbard model: (a) the symmetric
cluster used in the DMET calculations, where the orange and red atoms denote
copper and oxygen respectively; (b) definition of the model parameters and the
phase convention.

As a minimal atomic model of the CuO2 layer in cuprates, the three-band model
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describes the on-site and nearest-neighbor interactions among the Cu dx2�y2 and O
px, py orbitals [see Fig. 4.1(a)]. In the hole representation, the Hamiltonian reads,

H D tpd
X
hij i�

�
d
�
i�pj� C H:c:

�
C tpp

X
hjj 0i�

�
p
�
j�pj 0� C H:c:

�
��pd
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i�

ndi� C Ud
X
i

ndi˛n
d
iˇ C Up

X
j

n
p
j˛n

p

jˇ

C Vpd
X
hij i�� 0

ndi�n
p
j� 0;

(4.1)

where h� � �i denotes nearest neighbors, d .�/i� and p
.�/
j� destroy (create) a hole with

spin � (2 f˛; ˇg) on the Cu d and O p orbitals respectively, ndi� and n
p
j� are the

corresponding hole particle-number operators, and the charge transfer gap �pd is
defined as the orbital energy difference, �p � �d . Similarly to in the one-band
Hubbard model, the hopping term and on-site Coulomb repulsion will be denoted t
and U , and the Coulomb interaction between nearest-neighbor p, d orbitals will be
denoted Vpd . Note that the hopping term involves a phase factor (˙1) introduced
by the choice of orbital orientation in the basis as shown in Fig. 4.1(b).

There has been much work to determine the parameters of the three-band model;
however, a consensus set does not exist [167, 173–176]. There has been particular
debate about the size of the charge transfer gap �pd [167, 177].

Table 4.1: Parameters of the three-band Hubbard model used in this work, in units
of eV. The parameters correspond to the hole representation.

Model tpd �pd Ud tpp Up Vpd
Hybertsena 1.3 3.6 10.5
Martinb 1.8 5.4 16.5
Hankec 1.5 4.5 12.0
Hanke fullc 1.5 4.5 12.0 0.75 5.25 0.75

a From Ref. [173]. b From Ref. [175]. c From Ref. [172].

In this work, we consider four sets of published model parameters, see Table 4.1, as
well as the sensitivity of orders to changing these parameters. Note that all parameter
sets are given in eV, thus all energies in this work are reported in units of eV unless
otherwise specified. The first three sets include only the most essential terms, i.e.,
tpd , Ud and �pd , and thus we refer to them as minimal parametrizations. When
normalized to units of tpd , the other parameters vary within a range of 10%. The
fourth set involves all terms in Eq. (4.1). We refer to this as a full parametrization. In
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the hole representation, the minimal parametrization is equivalent to the full model
with tpp, Up and Vpd set to zero.

Computational details
Framework

In this work, we are interested in both magnetic and superconducting phases. Con-
sequently, the correlation potential takes the form

u D
X
ij�

v�ija
�
i�aj� C

X
ij

�
˛ˇ
ij a

�
i˛a

�

jˇ
C H:c:; (4.2)

where optimizing over v� and �˛ˇ in the self-consistency procedure allows for
formation of spin polarized and singlet superconducting pairing (between two spin
channels ˛ and ˇ) order in the lattice and impurity problems. The non-interacting
latticeHamiltonian is then ofBogoliubov-deGennes form [178]. The corresponding
ground-state solution is a mean-field Bardeen-Cooper-Schrieffer (BCS) wavefunc-
tion, and a set of bath orbitals that describes the environment can be constructed
from the corresponding generalized density matrix in Eq. (2.79). These routines
have been implemented in libDMET [179, 180].

Impurity and lattice

We used a 2 � 2 impurity cluster of CuO2 primitive cells [172] which retains
the inversion and four-fold rotation symmetry of the lattice [see Fig 4.1(a)]. We
embedded the cluster in a 20�20 unit-cell (40�40 site-length) lattice. We performed
DMET calculations for dopings x ranging between -0.8 and 0.8 (negative denotes
electron doping and positive denotes hole doping). Unless otherwise specified, we
initialized u with an antiferromagnetic guess and a random pairing potential.

Impurity Hamiltonian and solver

The impurity model Hamiltonian was constructed using the non-interacting DMET
bath formalism [30, 32], and the ground state was determined using a density
matrix renormalization group (DMRG) solver [121, 122], allowing for particle
number symmetry breaking and spin polarization [32]. During the DMET self-
consistent cycle we used a maximum bond dimension M D 800. Subsequent
bond dimension convergence checks were performed using (up to)M D 2000. To
minimize entanglement and ensure a small bond dimensionM in the ground state,
we rotated the impurity Hamiltonian into a basis of split-localizedmolecular orbitals
(MOs) obtained from the self-consistent Hartree-Fock-Bogoliubov (HFB) method,
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where the occupied and virtual MOs were computed using the PySCF package [82,
138], and the occupied and virtual spaces were subsequently localized separately
using the Edmiston-Ruedenberg procedure that maximizes the Coulomb energy of
each orbital [85, 125]. The standard genetic algorithm implemented in the Block
program [125, 139–141] was used to order the orbitals for the DMRG calculation.
The tolerance of the DMRG sweep energy was set to 10�6. Convergence checks on
the accuracy of DMRG energies are described in Appendix E.1.

DMET self-consistency

We carried out DMET self-consistency using full impurity-bath fitting [32, 35],
where the cost function measures the least-squares difference between the corre-
lated one-particle density matrix 
 corr and the non-interacting lattice density matrix
projected to the full impurity problem 
mf ,

w.u/ D

impCbathX
kl

�

mfkl .u/ � 


corr
kl

�2
: (4.3)

We minimized w using a conjugate gradient (CG) minimizer with line search.
Since the gap of the non-interacting lattice model is often small (in the case of
doped systems), a finite inverse temperature ˇ D 1000 tpd was used to define the
non-interacting density matrix to ensure smooth convergence (see Appendix D for
further discussion and expressions for the analytic gradient of the cost function
at finite temperature). We matched the particle number on the impurity sites and
on the lattice exactly by separately fitting the chemical potential using quadratic
interpolation [101]. Direct inversion in the iterative subspace (DIIS) [130, 181]
was employed to accelerate the overall DMET convergence, using the difference of
u between two adjacent iterations as the error vector. We chose the convergence
threshold to be 10�4 in the correlation potential u (per site), which we observed to
translate to an energy convergence per site of better than 10�4. We further analyze
the numerical convergence and error estimates for the DMET self-consistency in
Appendix E.1.

4.3 The three-band phase diagram
Undoped state
Charge and magnetic moments

We present the order parameters for the undoped state from DMET and from ref-
erence calculations and experimental measurements in Table 4.2. As expected, the
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Table 4.2: Charge, spin distribution (magnetic moments) and energy gap of the
undoped three-band Hubbard model and reference data. Note that the experimental
gaps reported are all optical gaps.

Model �Cu �O mCu mO Eg [eV]
Hybertsen 1.238 1.881 0.363 0.000 2.5
Martin 1.219 1.891 0.375 0.001 4.4
Hanke 1.220 1.890 0.373 0.000 3.9
Hanke full 1.358 1.821 0.279 0.002 2.2
Others 1.23a 1.89a 0.29b, 0.31c 2.25b,
Cuprate 0:3˙ 0:025d 1.5-2.0e, 1.5-1.7f

a DMRG result from Ref. [161], using a similar model to Hanke full (with a different Up D 4:5,
Vpd D 1:5 and Vpp D 1:125).

b VCA result from Ref. [171], using basically the same model as Hanke full (with a different
Up D 4:5).

c VCA result from Ref. [172], using the same model as Hanke full.
d Experimental result for La2CuO4, from Ref. [182].
e Experimental result for La2CuO4, from Refs. [183–185].
f Experimental result for YBa2Cu3O6, from Refs. [184, 186].

d orbitals are roughly half-filled and the p orbitals are roughly doubly occupied,
with some charge transfer between the two due to hybridization. Comparing the
full and minimal parametrizations, in the full parametrization, the Cu site is more
strongly occupied by electrons, due to the tpp term which smears out the oxygen
charge and effectively transfers it to copper (while the effect of Up is very small,
see the discussion in Sec. 4.3). Unlike on the O site, the spin density on the Cu
site is polarized, with a large local magnetic moment, which compares well to the
experimental value 0:3 ˙ 0:025 �B (0:6 ˙ 0:05 �B) [182], as well as previously
computed theoretical moments of 0.29 [171] and 0.31 [171] from VCA. In addition,
the magnetic moment in the full parametrization is reduced relative to the mini-
mal parametrizations, because the increased electron density on copper dilutes the
polarized spin, while the additional holes on oxygen reduce the strength of the super-
exchange-based antiferromagnetic coupling. In fact, the local magnetic moments in
the minimal models appear to be too large, while that of the full model is similar
to experimental results. However, it is also known from one-band calculations, that
the magnetic moments are overestimated in 2 � 2 DMET clusters relative to the
thermodynamic limit (e.g., by about 25% at U D 6, see Fig. E.3 in Appendix E.2.
Assuming similar finite size errors, then the minimal parametrization may provide
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reasonable magnetic moments at half-filling in the thermodynamic limit (although
this is not necessarily the case under doping, see below).

Band gap

As a simple estimate of the single-particle gap, we also computed the energy gap
of the converged DMET non-interacting lattice Hamiltonian (DMET NI gap), i.e.
Eg D "CBM � "VBM, where C(V)BM denotes conduction (valence) band minimum
(maximum). Note that although the charge and spin densities in the different
parametrizations are generally similar, the DMET NI gap varies more significantly,
from 2.2 to 4.4 eV. The Hybertsen and Hanke parameter sets were derived from
calculations on La2CuO4 (LCO), where the optical energy gap is variously reported
as lying in the range 1.5 to 2.0 eV [183–185] (note that the optical gap is generally
smaller than the fundamental gap). The estimated DMET NI gap of 2.5 and 2.2 eV
for the Hybertsen and Hanke full parameter set respectively are thus in reasonable
agreement with the experimental gap. However, the minimal Hanke parametrization
seriously overestimates the gap. The Martin parameter set, obtained from calcu-
lations on finite-sized Cu-O clusters, are all systematically larger than in the other
sets, and thus give the largest DMET NI gap. However, since the ratio of parameters
in the Martin model remains similar to other parametrizations (and thus give rise to
similar charge and spin distributions) this suggests that all energy parameters in the
Martin model should simply be simultaneously rescaled downwards.
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Figure 4.2: Orbital-projected electronic band structure and density of states (PDOS)
of the undoped three-bandHubbardmodelwithHanke full parameters fromHF (left)
and DMET (right). The special k points [�: .0; 0/, X: .�; 0/, M: .�; �/] are in
the first Brillouin zone of the 2 � 2 supercell lattice. The valence band maximum
(VBM) is chosen as the energy zero.
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Orbital resolved band structure

Unlike in the one-band Hubbard model, where the insulating gap arises between
Hubbard bands, the gap in correlated insulators in the three-band model can arise
from both Hubbard and charge-transfer mechanisms. In Fig. 4.2, we plot the pro-
jected electronic band structure and density of states from theDMETnon-interacting
latticeHamiltonian, as converged for the fully parametrizedHankemodel. TheCBM
is mainly of Cu d character (upper Hubbard band), while the VBM shows mixed
character, dominated somewhat by O-p. The mixed orbital character of the valence
bands around the Fermi level is consistent with the Zhang-Rice singlet (ZRS) hy-
pothesis [143], in which hybridization between oxygen and copper orbitals induces
superexchange that leads to singlets of O and Cu holes. Further support for the
ZRS picture comes from the k-dependent orbital weights; that of Cu-d is greater
at the � point, while that of O-p is larger at the M point, consistent with earlier
model analysis of the ZRS state [187] and results from VCA [171]. In total, these
observations indicate that the undoped three-band model ground state is a charge
transfer insulator, with mainly a p-d type energy gap (see Ref. [5] for experimental
evidence of the charge-transfer nature of the band gap). The strong k-dependent
hybridization clearly poses challenges for numerical downfolding techniques to a
one-band picture.

Comparing the DMETNI band structure to the Hartree-Fock mean-field description
(also shown in Fig. 4.2), we find that the HF gap (� 4 eV) is significantly overesti-
mated, and the d -p hybridization is significantly weaker, resulting in a VBM with
dominant oxygen p character and very narrow dispersion. Thus the reduced gap
and d -p hybridization, both seen in experiment, are fluctuation driven phenomena,
whose average effect is being captured by the DMET correlation potential u.

Doped states
Hole doped phases with standard parametrizations

More interesting ground states, including those with superconducting order, appear
under doping. An important difference with the one-band case is the asymmetry
of the three-band model under doping. We first focus on the orders that appear
under hole-doping. Although our calculations are all at zero temperature, we can
loosely identify the magnitude of the order parameters with transition temperatures
in the phase diagram, thus allowing us to compare them to the experimental phase
diagram. In Fig. 4.3, we plot the AFM and d -wave SC order parameters of the
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Figure 4.3: Antiferromagnetic and d -wave superconducting order parameters of
the hole-doped three-band Hubbard model. The model settings are from the Hanke
minimal (left) and Hanke full (right) parameter sets. Note that in the “Hanke
full” case, we find two possible solutions between x D 0:2 and x D 0:4, marked
as solution “1” (from a weakly polarized AFM guess) and “2” (from a strongly
polarized AFM guess) in the figure. The curves are cubic-spline interpolated.

Hanke model as a function of hole doping (Hybertsen and Martin minimal model
results are very similar to those of the Hanke minimal model, as shown in Fig. E.4.
In the fully parametrized model, we find two different solutions of the DMET self-
consistency, labelled solution 1 (obtained from a weakly spin polarized AFM guess)
and solution 2 (obtained from a strongly polarized AFM guess).

For all parameter sets, we observe that the AFMorder parameter decreases as doping
increases, consistent with the general behavior of the cuprate phase diagram [5].
However, for the minimal models, the AFM order persists even up to large dopings
(e.g. � 0:15 at x D 0:3). In interpreting this discrepancy, one complication is that
computation is measuring atomic scale local order, while experimental measure-
ments are likely averages over various inhomogeneities (e.g. different orientations
of stripes in different layers) which would typically lead to reduced moments. Leav-
ing this aside, however, the overestimation of the computed moment could originate
either from the remaining finite size error in the DMET calculation, or from the
unphysical nature of the parametrization (e.g. the lack of doping dependence of the
parameters). From our earlier work on the one-band Hubbard model [32], we know
that DMET calculations using a 2�2 impurity (e.g. in the rangeU=t D 6�8) indeed
overmagnetize not only at half-filling but also in the doped regime (see Fig. E.3).
However, the one-band AFM order nonetheless vanishes at dopings larger than 0:25,
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more rapidly than what we observe in the minimal parametrized three-band model.
In addition, the full parametrization of the three-band model also predicts a more
realistic trend for the AFM order at large doping. Taken together, this suggests that
the observed persistent AFM order is likely due to the oversimplified minimal model
parameters. Although the AFM order in the full model does decrease to zero in
the observed doping range, it vanishes between x D 0:2 and 0:3 (more similar to
the one-band model). This is beyond the experimental boundary for the pure AFM
phase (x < 0:1), but close to the boundary of the pseudogap region [6, 43]. Like
in the one-band model, we would expect longer wavelength orders (such as striped
phases [24, 32]) to appear in this region with larger computational clusters.

From Fig. 4.3, we see that d -wave superconducting order (coexisting with antifer-
romagnetism) appears in the phase diagram of all parameter sets. (Discussion of
additional pairing orders, as well as comparisons to the one-bandmodel can be found
further below). In the minimal models, the d -wave pairing reaches a maximum at
around x D 0:15 � 0:20.

As a result of the overestimation of AFM order discussed above, the minimal models
show coexistence of AFM + SC order for all the studied dopings. However, in the
full parametrization, the two coexist in the range 0:1 to 0:4 (for solution 2), and 0:1 to
0:3 (for solution 1), with d -wave order reaching a maximum near x � 0:30� 0:35,
somewhat larger than seen in experiments (� 0:15 - 0:2) [182]. Solutions 1 and 2
coincide for x < 0:2 and x > 0:4 but are distinct in between, reflecting the known
competition between orders at intermediate doping [43]; solution 1 is slightly lower
in energy and displays significantly stronger superconducting order. Note that it is
also possible to converge a paramagnetic SC solution (by constraining the correlation
potential in Eq. (4.2) so that v˛ D vˇ and � D ��). In this case, the SC order is
already evident at x D 0:1, since the AFM order is artificially suppressed. However,
the energy of this paramagnetic state is much higher than the AFM + SC states we
have discussed, and is unstable if one releases the constraints on the potential.
We thus believe the coexistence of AFM and SC order to be a true feature of the
three-band model ground state, as has also been observed in VCA studies [171,
172].

Range of reasonable parameters

In view of the significant differences between the minimal and full parametriza-
tions, we now examine more deeply how individual parameters influence the phase
diagram. To do so, we change the individual parameters appearing in theHankemin-
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area) results are shown.
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Figure 4.5: Effects of Ud on the magnetic phase diagram of the three-band Hubbard
model. Ud ranges from 6.0 to 14.0 eV and the star marker labels the value used
in the Hanke model (12.0 eV). Both Hartree-Fock (dotted line) and DMET (shaded
area) results are shown.

imal model, and restrict ourselves to the magnetic order for simplicity. We compare
the magnetic phase diagram computed using both Hartree-Fock and DMET. While
the mean-field Hartree-Fock method overestimates the magnetic moments, and the
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Figure 4.7: Effects of tpp on the magnetic phase diagram of the three-band Hubbard
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resulting AFM domes always lie above the DMET ones in the plots, it should be
noted that parametrizations are often derived frommean-field calculations. Thus the
difference in sensitivity between DMET and HF to the model parameters gives some
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insight into the sizes of errors arising from mean-field parametrization schemes.

We first study the influence of �pd , whose value is uncertain in the literature [167,
177]; the magnetic phase diagram computed using both Hartree-Fock and DMET
is shown in Fig. 4.4. On the hole-doped side, when �pd > 4 eV, the HF magnetic
moment does not vanish even at a large doping of x � 0:8, while in contrast, DMET
always predicts a finite AFM region with a sharp peak at x D 0. The DMET
magnetic moment mAFM increases monotonically from 0.14 to 0.44 as we increase
�pd , which can be understood from second-order perturbation theory: The effective
d -d hopping tdd /

t2
pd

�pd
, thus a larger�pd gives a smaller tdd and thus enhances the

magnetic moment. Along with the larger moments, the critical doping point where
mAFM ! 0 shifts to larger doping as �pd increases. Given that, even accounting
for finite cluster errors (see above), the minimal model appears to overestimate the
magnetic moment under doping and the critical doping concentration, these results
suggest one should renormalize �pd to smaller values, around 2-3 eV. Finally, we
see that the asymmetry with respect to electron and hole doping becomes more
pronounced when�pd increases, and the magnetic moment is less sensitive to hole
doping rather than electron doping. Thus, the appropriate value of �pd should
neither be too small (as the AFM order as well as doping asymmetry will both be
too weak, see also Ref. [167] for a discussion of the unphysical behavior with small
�pd ) nor too large (mAFM order will be too strong to be suppressed by doping,
especially on the hole doped side). Ref. [169] suggests a range (1.2 - 2.6 eV) of�pd
for cuprates, which overlaps the range of our estimates.

We next check the effect of on-site Coulomb repulsion terms. The moment versus
Ud is shown in Fig. 4.5. Unlike�pd , the influence of Ud on the shape of the curves
is very small, e.g. the undoped DMETmAFM only increases from 0.35 to 0.38 when
Ud varies from 6 to 14 eV. The influence on the curve shape is more significant for
HF than it is for DMET. In the one-band Hubbard model, however, the situation
is very different, where mAFM increases substantially as U is increased [32]. This
observation supports viewing the three-band model as primarily a charge transfer
insulator (and thus less sensitive to the change in the on-site Coulomb Ud ), rather
than a Mott insulator, whose magnetic moment is directly mediated by U . The
situation for the on-site Coulomb repulsion Up (see Fig. 4.6) is very similar to that
for Ud : the undoped DMET mAFM only increases from 0.37 to 0.38 as Ud varies
from 0 to 8 eV, and the HF curves show a similarly weak sensitivity.

We finally study the effect of nearest neighbor oxygen hopping tpp (see Fig. 4.7).
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From the figure, we see that the AFM order is effectively frustrated by large tpp,
similar to the effect of t 0 in the one-band Hubbard model. It has been shown in
Ref. [167] that tpp can vary substantially for different cuprates (unlike tpd , which
is almost unchanged between materials). Our results here suggest that a reasonable
range for this parameter is around 0.5 - 1.0 eV; too large a tpp will suppress the AFM
order.

Overall, we find that the magnetic phase diagram is sensitive to �pd and tpp, but
not to Ud and Up. The improved results of the full model are thus likely due to the
introduction of tpp, rather than Up. In particular, if we wish to have a reasonable
description of the three-band Hubbard model within a minimal set of parameters,
�pd should be renormalized to a smaller value to take the effect of tpp into account.
The Hanke parametrization of the full model yields more physical results, and thus
we will only use this full model in the remainder of the discussion. However, we
note that it is still not optimal with respect to choosing values of �pd and tpp that
match experiment. This may in part be due to the mean-field derivation of some of
the parameters.

Electron doped phases in the full model

We now turn to the electron doped orders, which as mentioned above, are different
from the hole-doped orders, unlike in the one-band model [43, 161]. We show the
AFM and SC order versus both hole and electron doping in Fig. 4.8 (the hole doped
side corresponds to solution 1 in Fig. 4.3). As we dope with more electrons, the
AFM order diminishes. The critical doping xc that makesmAFM vanish (0.15 - 0.20)
is smaller than that on the hole doped side. This is quite different from what is
seen in experiment: the commonly accepted cuprate phase diagram typically shows
a sudden drop of AFM order on the hole doped side [5], with a larger region of
coexistence on the electron doped side. This likely reflects the fact that a single
parameter set does not describe the electron-doped and hole-dopedmaterials equally
well.

For the SC phase, the overall d -wave pairing magnitude is smaller in the electron
doped region, similar to the lower Tcs seen in experiment. Also, the SC phase
on the electron doped side has an interesting “M” shaped two-peak structure: The
d -wave SC order increases first with respect to the doping, but decays to a small
value around the AFM critical xc, before growing to another peak after the AFM
order vanishes. The first peak around x D 0:05 is very similar in shape to the
peak in DMET calculations of the one-band Hubbard model, where the SC order
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emerges immediately after doping (see the lower panel of Fig. 4.8). The second
peak, occurring after the disappearance of the AFM order, is similar to the hole
doped SC peak. The presence of two qualitatively different SC phases may be a hint
of the types of competing orders that can arise on the electron-doped side, which to
date have not been much investigated in numerical studies.
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Figure 4.8: Comparison of electron doped (x < 0) and hole doped (x > 0) orders.
Upper panel: AFM and SC order of the three-band Hubbard model (Hanke full
parameter set). Lower panel: AFM and SC order of the one-band Hubbard model
(2� 2 DMET cluster), with U fitted such that at x D 0,mAFM is the same as that of
the three-band model.

Atomic scale orders in the full model

Beyond the bulk order parameters, the three-band model and the explicit inclusion
of both copper and oxygen atoms into the DMET impurity cluster allows for the
possibility of studying the magnetic and superconducting order at the atomic scale.
The explicit charge, spin, and pairing orders are shown in Fig. 4.9. We only present
representative results from the Hanke full model at x D 0:0, x D 0:3 (solution 1)
and x D �0:3 doping, since the results from other parametrizations and dopings are
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Figure 4.9: Charge, spin and pairing orders in the three-band Hubbard model. We
use yellow and red circles for Cu and O respectively. The area of the circle reflects
the corresponding local hole density, the length of the arrow denotes the magnitude
of the local magnetic moment, the width of the lines is proportional to the pairing
strength and different colors of the lines denote different coupling signs. The results
are calculated based on the fully parametrized model at x D 0:0 [(a)], x D 0:3

doping [solution 1, (b) - (d)] and x D �0:3 doping [(e) - (g)]. (b) and (e) show the
pairing strength between Cu and Cu; (c) and (f) show the pairing strength between
the next nearest neighbor O; (d) and (g) illustrate the couplings of both the nearest
Cu-O, and the nearest O-O.

qualitatively similar. (Further plots are presented in Figs. E.5 - E.10.) Comparing
Figs. 4.9(a) and 4.9(b), we see that on doping the holes mainly occupy the oxygen
sites and the hole density on copper only increases slightly. Combined with the fact
that doped electrons mainly reside on Cu [see Fig. 4.9(e), the hole density on Cu
is reduced], this reflects the particle-hole asymmetry of the three-band model [43,
161]. With respect to pairing order, we see dx2�y2-wave symmetry clearly between
neighboring Cu sites (i.e. it transforms according to the B-representation of the
C4 group and the sign of the pairing changes on rotating by 90ı), see Figs. 4.9(b)
and 4.9(e). The Cu-Cu pairing order is the largest pairing order between the atoms.
From Figs. 4.9(c) and 4.9(f), we also see d -wave order between the next-nearestO p
orbitals. Although the magnitude is slightly smaller than that of the Cu-Cu pairing,
it still contributes almost� 20%�40%of the bulk d -wave order in Eq. (2.131). We
note that the O-O pairing contribution is also asymmetric with respect to doping.
In particular, its contribution can be as large as � 40% in the hole doped side
but only 20-30% in the electron doped region. Finally, we consider the pairing
order between Cu-O and the nearest O-O atoms, see Figs. 4.9(d) and 4.9(g). We
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see that the coupling between the nearest O-O atoms has s-wave symmetry but is
quite weak, related to the incompatible orbital orientations. On the other hand, we
find the pairing between Cu-O to be relatively strong (in all parameter sets). The
local symmetry of Cu-O coupling has px.y/-wave [or dxy.yz/-wave] symmetry (the
pattern transforms according to the E-representation of the C4 group), which to
our knowledge has not previously been reported. We note that the superconducting
phase pattern between Cu and O is similar to the orbital current-current correlation
patterns in Ref. [149], although the current-current correlations were reported to be
extremely weak. The pattern is also similar to the asymmetry reported as a hidden
order in polarized elastic neutron diffraction experiments [7]. Further investigation
of these and other intriguing connections to intracell orders is left to future work.

4.4 Conclusions
In summary, we have used density matrix embedding theory to characterize the
ground-state phases of the three-band Hubbard model. We have calculated the
charge, local magnetic moments, projected energy bands and density of states of the
undoped three-band model, which support a charge-transfer insulating character at
zero doping.

We also studied the doping dependence of the ground-state (phase diagram) of the
model paying particular attention to the local AFM and SC orders. In a broad
range of model parameters we find a decrease in AFM order upon doping and a
SC dome. Unlike in the one-band picture, the models all predict a large region
of coexistence of AFM + SC orders, with the AFM order decreasing quite slowly.
Comparison to experimental data and earlier theoretical studies suggests that the
minimal parametrizedmodels overestimate the AFMorder and lead to poorer energy
gaps, relative to the full parametrizations, which also include oxygen and oxygen-
copper Coulomb repulsion, and oxygen-oxygen hopping. The magnetic moment is
particularly sensitive to the �pd and tpp parameters, and in the minimal model, the
charge transfer gap �pd should be renormalized downwards to better capture the
experimental phase diagram. Within the full model, there are qualitative differences
between the SC orders on the hole- and electron-doped side, with the electron-doped
side supporting two different SC domes, one of which appears more similar to the
one observed in the one-band model, and the other like the SC dome observed on
the hole-doped side.

The three-band model further allowed us to study order at the atomic scale. In the
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SC region, we observed strong d -wave pairing between Cu-Cu and the next-nearest
O-O, weak extended s-wave coupling between the nearest O-O atoms, and p- (or
dxz; dyz)-like symmetry pairing between Cu-O. The intriguing symmetry of the
latter order, similar to that seen in some experiments, illustrates the new physics that
emerges at atomic length-scales in the three-band model. Exploring such physics in
more detail will be the subject of future work.
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Chapter 5

EFFICIENT IMPLEMENTATION OF AB INITIO QUANTUM
EMBEDDING IN PERIODIC SYSTEMS

Based on the works published in J. Chem. Theory Comput. 16, 119 (2020) and
J. Chem. Theory Comput. 16, 141 (2020). Copyright 2020, American Chemical
Society. [98, 100]

5.1 Introduction
In this chapter, we will focus our attention on the ab initio implementation of DMET
and DMFT in periodic solids. Our quantum embedding framework is featured by
the impurities comprising the full unit cell or a supercell of atoms and for realistic
quantum chemical basis sets, and is thus termed as full-cell quantum embedding.
Their formulations have been summarized in Chap. 2.

In the DMET part, We apply DMET in the ab initio framework to a hexagonal boron
nitride monolayer, crystalline silicon, and nickel monoxide in the antiferromagnetic
phase, using large embedded clusters with up to 300 embedding orbitals. We
demonstrate our formulation of ab initio DMET in the computation of ground-
state properties such as the total energy, equation of state, magnetic moment and
correlation functions.

In the DMFT part, we show that we are able to handle embedded impurity problems
with several hundred orbitals. We apply our ab initio DMFT approach to study
a hexagonal boron nitride monolayer, crystalline silicon, and nickel oxide in the
antiferromagnetic phase, with up to 104 and 78 impurity orbitals in spin-restricted
and unrestricted cluster DMFT calculations and over 100 bath orbitals. We show
that our scheme produces accurate spectral functions compared to both benchmark
periodic coupled-cluster computations and experimental spectra.

5.2 DMET computational details
We consider three prototypical solids: a 2D hexagonal boron nitride monolayer (h-
BN), crystalline silicon (Si) and nickel monoxide (NiO). The lattice parameters were
taken from experiment: a D 2:50Å for the BNmonolayer[188] (with 20:0Åvacuum
to eliminate fictitious interactions between mirrors); a D 5:43053Å for Si [189],



84

and a D 4:17Å for NiO [190]. To target the AFM-II state, the minimal unit cell of
NiO was chosen as the rhombohedral cell that contains two formula units of NiO.
We used 28 Intel E5-2680@2.40GHz cores in all the calculations. We summarize
the computational parameters for DMET below. Mean-field calculations. All mean-
field calculationswere performed using the PySCF package [138] withHartree-Fock
or DFT [Perdew-Burke-Ernzerhof (PBE) functional [191]]. GTH pseudopotentials
[192, 193] were used to replace the sharp core electron density, with corresponding
GTH-DZVP (2s2p3s3p3d AOs for B and N, and 3s3p3d4s4p AOs for Si) and
GTH-DZVP-MOLOPT-SR (3s3p3d4s4p4d4f 5s AOs for Ni, and 2s2p3s3p3d
AOs for O) basis sets [194] used to represent the valence electrons. Gaussian
density fittingwas used to compute the two-electron integrals [81]. We used an even-
tempered Gaussian basis [195] as the density fitting auxiliary basis, i.e. Lnl.r/ /
r l exp

�
˛ˇnr2

�
, where we used the exponential factor ˇ D 2:3 for NiO and ˇ D 2:0

for all other systems. The number of fitting functions was chosen to ensure high
accuracy, and thus the size of the auxiliary basis is about 10 times as large as
the number of AOs. The GTH-SZV (h-BN and Si) and GTH-SZV-MOLOPT-SR
(NiO) basis functions were used as the reference free-atom AOs to construct the
IAOs. In the mean-field calculations used to derive the embedding Hamiltonian and
in the DMET self-consistency, we sampled the Brillouin zone with a � centered
mesh chosen so as to be able to fit unit multiples of the DMET impurity supercell.
These included a 6 � 6 � 1 mesh for BN, and a 4 � 4 � 4 mesh for Si and NiO.
Larger meshes were used in independent estimates of the mean-field TDL for BN
(up to 12 � 12 � 1) and Si (up to 8 � 8 � 8). All mean-field calculations were
converged to an accuracy of better than 10�10 a.u. per unit cell. In the case of
Hartree-Fock energies, all energies included the leading-order exchange finite-size
correction (probe-charge Ewald [196, 197], exxdiv=ewald in PySCF). Note that
the above correction applies to all DMET energies as these use the Hartree-Fock
expression for the mean-field energy even when density functional orbitals are used.

Impurity solver. We used coupled cluster singles and doubles (CCSD) [128] as an
impurity solver, as implemented inPySCF [138], which is able to treat a large number
of orbitals efficiently. In NiO where DMET self-consistency produced symmetry
breaking, we used unrestricted CCSD (UCCSD). The CC density matrices were
obtained from the CC ƒ equations [129]. The CC energies were converged to 10�8

a.u..
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DMET self-consistency. For BN and NiO, the correlation potential u was added
to only the valence orbitals and for Si, u was added to all impurity orbitals as
this gave smoother DMET convergence. We carried out CSC calculations for all
three systems, and included additional non-CSC results of NiO for comparison.
The convergence criterion on the DMET self-consistency was chosen such that the
maximal change of an element in uwas less than 5�10�5 a.u., which corresponded
roughly to an energy accuracy of better than 1 � 10�5 a.u..

5.3 DMET results
2D boron nitride
We first study the behavior of DMET on a 2D boron nitride monolayer. In a GTH-
DZVP basis, BN has a unit cell of 2 atoms, with 2s2p AOs on each atom giving 8
valence orbitals per cell, and 3s3p3d AOs on each atom providing 18 higher-energy
virtual orbitals per cell. We illustrate the valence IAOs of boron in BN in Fig. 5.1a.
As expected, the IAOs of boron are quite local, retaining their original AO character

2s 2px

2py 2pz

(a) (b)

Figure 5.1: Impurity orbitals and bath density of BN used in the DMET calculations.
The boron and nitrogen atoms are colored pink and blue respectively. (i) Impurity
valence orbitals associated with one boron atom (IAOs from boron). (ii) Bath orbital
density coupled to the first reference cell.

but with some slight polarization to reflect the mean-field solution in the crystal
environment. The bath orbital density is plotted in Fig. 5.1b (we only show the
total density summed over the bath orbitals here, since the embedded problem only
depends on the linear span of the bath). It is clear that the bath orbitals are localized
around the impurity cluster and give an effective representation of the remainder
of the boron nitride crystal. In particular, the bath orbitals serve to terminate the
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dangling bonds on the impurity boundary, thus turning the embedding problem
into a closed-shell one at the mean-field level. The impurity valence orbitals and
bath orbitals pictured here, together with the impurity virtual orbitals (not shown),
constitute the embedding orbitals.

We computed total energies (per cell) from DMET for different cluster sizes, 1� 1,
2� 2 and 3� 3. We compare these total energies to those from k-sampled periodic
CCSD (k-CCSD) extrapolated to the TDL (see Fig. 5.2) which has recently been
demonstrated to be a high accuracy method in a variety of different materials [80,
198, 199]. Note that, accounting fully for the k-point symmetry, k-CCSD has a
computational scaling of n6AOn4k. The reference TDL k-CCSD energy is the sum of
the extrapolated HF energy using a large k-mesh (up to 12 � 12 � 1, extrapolating
with the form n�1k after using the Ewald exchange divergence correction [196, 200])
and the extrapolated k-CCSD correlation energy using a smaller k-mesh (up to
6�6�1, extrapolating with the form n�1k ). Compared to the TDL reference energy,
even using the smallest (1 � 1) cluster, DMET gives an accurate total energy that
captures about 95% of the correlation energy. Extrapolating over the DMET cluster
size (using the surface to volume form N�1=2c , where Nc is the cluster size) further
improves the accuracy by about 1-2% in the correlation energy. The one-shot
DMET result (i.e. without DMET self-consistency) is less accurate than the self-
consistent one by � 8 mHartree (3% of the correlation energy), demonstrating the
contribution of self-consistent matching between the high-level calculation and the
low-level mean-field calculation. We note that self-consistency is generally not very
important in non-magnetic weakly-correlated systems, as there are no symmetry
broken phases to be generated by DMET, and only provides a modest quantitative
correction to the observables.

Compared to small N � N � 1 k-mesh CCSD energies, the DMET total energies
are more accurate for the 1 � 1 and 2 � 2 cluster sizes, but less accurate for the
3� 3 case. The finite size error in the total energy, arising from the finite k-mesh or
DMET cluster size, can be separated into two sources, (i) the finite size error in the
mean-field energy and (ii) the finite size error in the many-body correlation energy.
For embedding methods like DMET, the error from the first source is (largely)
eliminated. Thus, as shown in Fig. 5.2, the DMET total energy is good even for
a small cluster size. In the CCSD calculation, however, the error from (i) is large
for small clusters, and therefore, a potentially better recipe for the total energy is to
sum the HF energy from a larger cluster (or even extrapolated to the TDL) and the
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Figure 5.2: Upper panel: Total energy from DMET compared with k-sampled
CCSD. In the case of DMET with the interacting bath (IB), both one-shot and self-
consistent energies are reported. DMET with non-interacting bath (NIB) is also
shown for comparison. The extrapolated values of DMET is from an average of
linear regression and quadratic fitting. The error bar is the difference between the
linear and quadratic fitted values. We plot the energy of k-CCSD with small k-
mesh (one curve with HF energy at corresponding small k-mesh and the other with
HF energy at 6 � 6 k-mesh) and the extrapolated TDL results as reference. Lower
panel: Correlation energy ratio with respect to the extrapolated CCSD correlation
energy.

correlation energy from the small cluster calculation. In the upper panel, we show
the k-CCSD correlation energy added to the 6� 6 HF energy (corresponding to the
size of the DMET lattice), as well as to the extrapolated TDL HF energy. Together
with the data in the lower panel of Fig. 5.2, we see that the correlation energy Ecorr
of CCSD, which relies on the above error cancellation, is already very accurate for
the 2 � 2 cluster and is better than that of DMET for this cluster size. It is then
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worth analyzing the source of errors in the small cluster DMET correlation energy.
One source is the lack of embedding of the non-valence virtual orbitals, which
are localized to the reference cell with the periodicity of the large DMET mean-
field lattice, not the periodicity of the impurity (as in the k-CCSD calculation).
The advantages of DMET in the current implementation thus manifest when the
predominant correlation is within the valence space itself (which is fully embedded)
as is typical of strong correlations, rather than primarily involving excitations to
non-embedded, non-valence, virtual orbitals as in this system. One way to diminish
the boundary effect on the DMET non-valence virtuals is to evaluate the energy
from the central part of the supercell, for which the surrounding atoms effectively
provide a bath for the virtuals. We find then that the energy evaluated using the
central cell of the embedded cluster covers 103.8% of the correlation energy (using
the preceding 3�3 cluster calculation) or 100.1% (if no chemical potential fitting is
used), which is better than that obtained by direct energy evaluation using the entire
embedded cluster. It may be possible to further reduce this boundary error using
the dynamical cluster approximation formulation of DMET (DCA-DMET)[33] or
bootstrap embedding[201–203].

We finally consider DMET results obtained using the non-interacting bath (NIB), as
also shown in Fig. 5.2. We see that although the extrapolation is quite systematic,
the accuracy is worse than that of the interacting bath for all three cluster sizes. This
result is generally found in chemical systems with long-range Coulomb interactions,
as the interacting bath carries some information about the inter-cluster interactions.
However, the NIB formalism has the potential computational advantage that the
construction of the NIB embedded Hamiltonian is cheaper than the IB one, since
only the impurity part of the two-particle Hamiltonian is needed. In addition, the
correlation potential can be used to mimic the effect of the long-range Coulomb con-
tributions to the Fock matrix. This makes the NIB scheme an interesting possibility
in large systems.

Bulk silicon
We next test the ability of DMET to describe the structural properties of bulk Si. We
performed a series of calculations on different primitive cell volumes and fitted the
relative total energy E as a function of the volume V using the Birch-Murnaghan
(B-M) equation of state (EOS) [204, 205], from which the equilibrium volume and
bulk modulus can then be determined. To obtain accurate results for the TDL, we
considered three clusters of different shapes: a 1� 1� 1 primitive cell (2 Si atoms),
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a conventional diamond cubic cell (8 Si atoms) and a 2 � 2 � 2 supercell (16 Si
atoms). We performed the extrapolation with respect to cluster volume Vc using

E.Vc/ D E.1/C a0V
�1=3
c C � � � (5.1)

The total energy includes the correction from HF at the TDL. The equilibrium
volumes and bulk moduli are collected in Table 5.1.

Table 5.1: Equilibrium volume of the primitive cell V0 and bulk modulus B0 of
silicon from different approaches. The extrapolated values are from the linear fit of
1 � 1 � 1 and 2 � 2 � 2 results. The CCSD results are taken from Ref. [80] , which
uses the larger GTH-TZVP basis. The experimental V0 is from Ref. [189] and B0 is
from Ref. [206] with a zero-point correction.

Methods V0 [Å
3] B0 [GPa]

HF extrap. 40.30 107
DMET 1 � 1 � 1 42.83 87.9

cubic cell 41.90 88.5
2 � 2 � 2 41.26 91.1
extrap. 39.69 99.0

CCSD 3 � 3 � 3 39.21 103
Expt. 40.04 101

From the table, we see that the equilibriumvolumeofDMETusing the 1�1�1 cluster
deviates from the experimental value by 7%. The error from the smallest impurity
cluster is thus larger for Si than for BN. This is because Si has a much smaller band
gap and thus less local correlation involving the non-valence space. However, the
results improve rapidly when increasing the size of cluster. To illustrate this, we
show the EOS curves for different cluster sizes in Fig. 5.3. It is clear that the 1�1�1
curve is shifted to larger volume compared to experiment or CCSD. Increasing the
cluster size systematically shifts the curve back towards experiment and the k-CCSD
benchmark, resulting in a very small relative error (w.r.t. experiment) of 0.9% for V0
for the extrapolated curve. The extrapolated bulk modulus B0 also agrees well with
the experimental and k-CCSD benchmark values. Overall, the accuracy achieved
by extrapolated DMET appears comparable to that of the k-CCSD benchmark in a
full 3� 3� 3 periodic calculation, although we note that a different basis was used.

Nickel monoxide
We now demonstrate the ability of DMET to treat a more strongly correlated prob-
lem by considering a typical transition metal compound, NiO. Below the Néel
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Figure 5.3: Equation of state curves of Si from DMET and CCSD. For DMET, we
omit the cubic cell curve for clarity. CCSD data is taken from Ref. [80].

temperature, NiO displays an antiferromagnetic (AFM) phase with a staggered
magnetization along the [111] direction (the so-called AFM-II phase). Although
DFT (with PBE) and HF do predict spin-polarization, it is known that DFT often
underpolarizes while HF often overpolarizes antiferromagnetic states. To avoid
such biases in the DMET calculation, we embed the DMET calculation in an initial
unpolarized mean-field state. We constructed the unpolarized mean-field state by
using the orbitals obtained from the spin-averaged Fock matrix of an unrestricted
Hartree-Fock or DFT calculation. We use the spin-averaged Fock matrix for con-
venience because without finite-temperature smearing, the restricted calculations
either have difficulty converging due to the metallic nature (DFT) or exhibit an
unphysical symmetry breaking of the density between the symmetry-equivalent
nickel atoms (HF). The spin-averaged Fock matrix is similar to the restricted one
with smearing but exactly preserves the symmetry between the two nickel atoms.
We denote DMET calculations based on the spin-averaged mean-field orbitals by
DMET@ˆ�RHF (DMET@ˆ�RPBE), where “�” means the restricted orbitals are actu-
ally from the spin-averaged unrestricted Fock matrix rather than a real restricted
one.

The spectrum of such a spin-averaged Fock matrix is gapless. After adding an initial
DMET correlation potential, e.g. taken from the local part of the UHF polarized
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potential, the system becomes gapped and S2 symmetry is broken. Without CSC,
the final DMET mean-field gap is � 3 eV and with CSC, the DMET mean-field
gap is � 10 eV, closer to the Hartree-Fock mean-field gap (� 12 eV). (Note that the
experimental band gap of AFM NiO is � 4:3 eV [207]). It should be emphasized
that although the band gap from the DMET lattice mean-field reflects the insulating
nature of the system, its value does not correspond to the true fundamental gap of the
system. Even if the density from the impurity solver were exact and the matching
between density matrices were perfect, the mean-field gap is not exact due to the
derivative discontinuity contribution[208], similar to the Kohn-Sham gap obtained
from an optimized effective potential (OEP) calculation [209].

The ground state charges and local magnetic moments of NiO from DMET starting
from different initial mean-fields (spin-averaged HF and PBE) are summarized in
Table 5.2. Assignment of local observables to different atoms (population analysis)
was performed using the IAOs + PAOs and the density matrix from the CC impurity
solver. We also include unrestricted HF, PBE results for comparison.

Table 5.2: Local charge (in e) and magnetic moment (in �B) of NiO from different
methods. The values on Ni (O) are averaged from the two Ni (O) sites in the
primitive cell. We include the DMET results from different initial orbitals (ˆ�RHF
and ˆ�RPBE), with / without charge self-consistency (CSC). The experimental data is
taken from Refs. [190, 210, 211].

Methods �Ni mNi mO
HF 1.42 1.86 0.000
PBE 1.02 1.42 0.000
DMET@ˆ�RHF w/o CSC 1.32 1.77 0.018
DMET@ˆ�RPBE w/o CSC 1.27 1.74 0.017
DMET@ˆ�RHF w/ CSC 1.37 1.81 0.001
DMET@ˆ�RPBE w/ CSC 1.35 1.78 0.000
Expt. 1.70-1.90

First, we observe clear charge transfer from Ni to O in all methods. Among them,
HF gives the largest ionic character while PBE smears out the charge and predicts
the smallest charge transfer. The DMET results from different starting orbitals and
CSC conditions are between these two limits and are relatively close to each other.
The DMET results with CSC (starting from HF and PBE) are particularly close to
each other as the inter-cluster part of density matrix is updated using information
from the high-level embedded calculation. In fact, in the case of CSC, the only
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effect of the initial choice of orbitals in DMET on the final result comes from the
different definition of the local orbitals.

Compared to the experimental estimate of the magnetic moment, unrestricted
Hartree-Fock gives a Ni magnetic moment at the higher-end of the experimen-
tal range, while PBE severely underestimates the magnetic moment. DMET yields
results independent of the starting orbitals with a moment that agrees well with
experiment. To illustrate the AFM distribution in NiO, we plot the spin density
distribution in the (001) plane of NiO in Fig. 5.4. In the figure, the ˛- and ˇ-
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Figure 5.4: Spin density �˛ � �ˇ on the (001) plane of NiO from DMET@ˆ�RHF
with charge self-consistency.

spin planes alternately appear along the diagonal direction, showing a clear AFM
pattern. In particular, the spin density on Ni is in the shape of the dx2�y2 orbital,
indicating that its occupation is asymmetric with respect to the ˛ and ˇ electrons. In
fact, the t2g orbitals are almost fully occupied (� 5:97 e in our population analysis),
and the eg orbitals (dx2�y2 and dz2) are occupied only in one spin sector (� 1:99
e), and roughly empty in the other (� 0:19 e). The local magnetic moment on Ni
therefore mainly comes from the contribution of the eg electron density, as expected
from crystal field theory. The density on oxygen is in the shape of a p orbital and
is polarized according to its orientation relative to Ni. The average polarization
on oxygen should be close to zero due to symmetry. As shown in Table 5.2, the
magnetic moments on oxygen from DMET (especially with CSC) are indeed close
to zero.
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We now take a closer look at the spin-spin correlation in NiO. To this end, we
evaluate the spin-spin correlation function between the two nickels in the unit cell,X

i2Ni1;j2Ni2

˝
Si � Sj

˛
D

X
i2Ni1;j2Ni2

X
aDx;y;z

˝
Sai S

a
j

˛
; (5.2)

where i and j are the indices of LOs located on the first and second Ni respectively.
In the DMET@ˆ�RHF calculation with charge self-consistency, the expectation value
is �0:8147, where the minus sign arises from the AFM correlation between the
spins of two nickels. This value, however, is very close to the product hSzi hSzi D
�0:8149. In addition, the spin non-collinear contributions (hSxSxi and hSySyi)
are almost zero (note that the calculation spontaneously chooses a z magnetization
axis due to the initial unrestricted Hartree-Fock reference or form of the correlation
potential). All these features suggest that the ground-state of the AFM spin lattice
in NiO is close to that of a classical Ising model, rather than a quantum one. Our
results are consistent with experimental measurements on the critical behavior of
the magnetic phase transition in NiO [212–214], where the critical exponents are
found to be very close to those of the 3D Ising model.

In the above results, we found that the DMET order parameters are insensitive to
the initial mean-field orbitals, due to the DMET self-consistency. As discussed in
Sec. 2.4, this self-consistency contains two different contributions: self-consistency
of the DMET correlation potential (expressed along the cluster blocks of the mean-
field lattice Hamiltonian) and charge self-consistency of the mean-field Fock opera-
tor (for the off-diagonal blocks of the mean-field lattice Hamiltonian). To show the
robustness of the self-consistency with respect to the correlation potential guess and
the relative magnitude of these two contributions, we show the convergence of the
local magnetic moment of Ni with respect to the number of iterations in Fig. 5.5 (for
initial restricted orbitals from a spin-averaged Fock matrixˆ�RHF) with two different
initial guesses for the correlation potential: the strongly polarized UHF potential,
and a weakly polarized potential equal to the UHF potential scaled by a factor 0.1,
both with and without charge self-consistency. From the figure, we see that starting
from different initial guesses for the correlation potential, the magnetic moments
from non-self-consistent (i.e. one-shot) DMET (the 0th iteration in Fig. 5.5) can be
very different. However, after only 1 step, the magnetic moments are significantly
improved. Eventually, the magnetic moments from the two guesses converge to a
very similar value, showing that the DMET self-consistency effectively removes the
initial correlation potential guess dependence. The picture with and without charge
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Figure 5.5: The convergence of the magnetic moment on Ni from different initial
correlation potentials. Upper panel: DMET@ˆ�RHF without CSC using different
initial guesses: UHF potential (strongly polarized) or UHF potential scaled by 0.1
(weakly polarized). Lower panel: The same as the upper panel but with CSC.

self-consistency is very similar, showing that the DMET correlation potential is the
main factor controlling the local order parameter. Note that in Fig. 5.5, the LOs are
the same (based on Hartree-Fock) for all calculations and hence there is no initial
LO dependence. Finally, as a rough indicator of cost, each DMET iteration takes
about 1 hour (the computational setup is described in Sec. 5.2).

5.4 DMFT computational details
Coupled-cluster impurity solvers
In this work, we will use a coupled-cluster (CC) impurity solver to compute
Gimp.!/ from the embedding Hamiltonian in Eq. (2.29). We recently studied the
coupled-cluster Green’s function (CCGF) approximation as an impurity solver in
DMFT [215] (see also Ref. [216]) and showed that it performed well for small
impurity clusters in Hubbard models. Here, we further explore its capabilities in the
ab initio setting.

A detailed presentation of the CCGF formalism can be found in Refs. [215, 217–
221]. Here, we will only comment on a few points related to DMFT. First, we use the
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coupled-cluster singles and doubles Green’s function approximation (CCSD-GF) as
the impurity solver here. The cost of ground-state CCSD scales as O.N 6

emb/ and
CCSD-GF scales asO.N!NCN

5
emb/, whereNemb is the total number of orbitals (sites)

in the embedding problem andNC is the number of impurity orbitals. In practice, the
CCSD-GF calculation can be parallelized overN! andNC . This low cost compared
to ED allows us to treat around 200 embedding orbitals in DMFT. Second, the
CCSD-GF is computed directly on the real frequency axis with a broadening factor
�. We find that in ab initio calculations, when � is small (< 0.5 eV), causality issues
may exist where the imaginary part of the CCSD self-energy is not always negative.
We refer readers to Ref. [215] for a practical solution, where one computes the
impurity plus bath self-energy and then uses the impurity block of the self-energy
matrix, instead of directly computing the impurity self-energy matrix. This solution
increases the CCSD-GF cost scaling slightly toO.N!NembN 5

emb/. We use this more
expensive technique in the final calculation of spectra after DMFT convergence.

We applied the above DMFT scheme to study three realistic solids: weakly cor-
related 2D hexagonal boron nitride (h-BN) and crystalline silicon (Si), and a pro-
totypical “strongly correlated” problem, nickel oxide (NiO) in the AFM-II phase.
The experimental lattice constants were used for all calculations: 2.50Å for h-BN
monolayer [188], 5.417Å for Si [189] and 4.17Å for NiO [190]. For h-BN, we
used a vacuum spacing of 20Å along the z axis to avoid image interactions between
neighboring sheets. In h-BN and Si we used (super)cells of the primitive cell as the
impurity. In NiO, we used a supercell with two Ni and two O atoms along the [111]
direction to allow for AFM spin symmetry breaking within the cell.

All mean-field calculations were performed and all integrals were generated us-
ing the PySCF quantum chemistry package [138]. Norm-conserving GTH-PADE
pseudopotentials [192, 193] were employed to replace the core electrons. The GTH-
DZVP basis set was used for h-BN and Si, while the GTH-DZVP-MOLOPT-SR
basis set [194] was used for NiO. This corresponds to 26, 26 and 78AOs in the impu-
rity unit cells of h-BN, Si and NiO, and 104 AOs in our largest impurity supercell of
Si. The minimal basis sets GTH-SZV (h-BN and Si) and GTH-SZV-MOLOPT-SR
(NiO) were used as the pre-defined AOs to construct the IAOs, leading to 8, 8 and
28 valence orbitals in each unit cell respectively. Even-tempered auxiliary Gaussian
basis sets were used to compute the GDF integrals. Uniform 6 � 6 � 1 (h-BN),
4 � 4 � 4 (Si) and 4 � 4 � 4 (NiO) k-point meshes were adopted for the mean-field
and DMFT calculations. All meshes were �-centered.
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Unless otherwise specified, we used HF as the initial lattice mean-field in the
DMFT embedding. The CCSD-GF method was implemented based on the CCSD
and EOM-CCSD routines from the PySCF package, and the DMFT algorithm was
implemented in the Potato module. A spin-restricted CCSD-GF (RCCSD-GF)
solver was used for h-BN and Si, while a spin-unrestricted CCSD-GF (UCCSD-
GF) solver within the spin-unrestricted DMFT formalism was employed for NiO.
A simplified and flexible variant of the GCROT method [GCROT(m; k)] [222] was
used to solve the CCSD-GF linear response equations. Gauss-Legendre quadrature
was used on frequency intervals of Œ�1:0C�; 1:0C�� a.u. (h-BN), Œ�0:6C�; 1:0C
�� a.u. (Si) and Œ�0:5C�; 0:5C�� a.u. (NiO) when discretizing the hybridization.
We used a broadening factor of � D 0:1 a.u. during the DMFT self-consistent
cycles and switched to a smaller � (depending on the required resolution) in the
final production runs to compute G.R D 0; !/. The DMFT self-consistency was
converged to jj�iC1.!/��i.!/jj < � D 10�4 a.u. between two DMFT iterations.

5.5 DMFT results
2D boron nitride
We first investigate the performance of our ab initio DMFT scheme for the 2D
h-BN monolayer. We chose the impurity to be an h-BN unit cell, including the
2s2p3s3p3d orbitals for both boron and nitrogen atoms (26 impurity orbitals in
total). The corresponding IAOs are projected 2s2p orbitals, giving 8 IAOs coupled
to the bath. To study the convergence of DMFT with respect to the number of
bath orbitals, we used a series of Gauss-Legendre quadratures to discretize the
hybridization: N! D 4; 8; 12; 16. This led to a total number ofNb D 32; 64; 96; 128
bath orbitals.

Table 5.3: Direct and indirect band gaps (in eV) of 2D h-BN.

Method K! K K! � � ! �

HF 11.31 10.70 13.14
PBE 4.61 5.90 7.37

DMFT(i26,b32) 5.69 6.85 10.10
DMFT(i26,b64) 7.23 7.76 9.63
DMFT(i26,b96) 7.61 8.00 9.75
DMFT(i26,b128) 7.73 8.08 9.76

EOM-CCSD (3 � 3 � 1) 9.50 9.36 11.44
EOM-CCSD (6 � 6 � 1) 7.48 7.78 9.78

The computed direct and indirect band gaps at special k points are presented in
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Table 5.3. In this work, we use the notation “DMFT(iX,bY)” to mean that there
are X impurity orbitals and Y bath orbitals to be treated by the CCSD-GF impurity
solver. The DMFT band gaps are calculated from the valence and conduction
peaks of k-resolved density of states (DOS). We compare our DMFT results to
HF, DFT/PBE [191] and EOM-CCSD [223] gaps computed using PySCF, all with
6 � 6 � 1 k-point meshes. EOM-CCSD with 3 � 3 � 1 k-point sampling is also
included for comparison. As shown in Table 5.3, 6 � 6 � 1 EOM-CCSD with the
GTH-DZVP basis predicts that 2D h-BN is a direct band-gap semiconductor, with
a gap of 7.48 eV at the K point. The indirect band gap from K to � has a slightly
larger value of 7.78 eV. These values are taken as the reference values. Compared
to 6 � 6 � 1 EOM-CCSD, HF overestimates the K ! K gap by 3.8 eV, while
PBE underestimates it by 2.9 eV. EOM-CCSD with a smaller 3 � 3 � 1 k mesh
also overestimates the band gaps by 1.6-2.0 eV, suggesting the importance of large
k-point meshes to approach the thermodynamic limit.

Even with a small number (32) of bath orbitals, our DMFT(i26,b32) result shows
significant improvement over mean-field methods, although the K! K gap is still
underestimated by 1.8 eV. As we increase the number of bath orbitals Nb to 64,
DMFT produces a better description of all three band gaps and the errors are all
within 0.3 eV, indicating the necessity of using a sufficient number of bath orbitals
to reduce the bath discretization error. Even with a 1�1�1 unit cell as the impurity,
the DMFT(i26,b64) result is superior to the EOM-CCSD (3 � 3 � 1) result due to
the larger amount of k-point sampling. By further increasing Nb to 128, we also
demonstrate that the DMFT band gaps are converged to around 0.1 eV at Nb D 96.
Thus, we believe our DMFT results for 2D h-BN to be well converged with respect
to the bath size. The DMFT(i26,b96) calculation takes 1.5 hours to converge on
2 nodes with 28 CPU cores per node. Further obtaining the Green’s function and
DOS at each frequency point takes about 4.5 minutes. This should be compared to
the computational cost of a full EOM-CCSD calculation with the 6 � 6 � 1 k-point
mesh, which takes about 40 hours to obtain 4 IP and EA roots at all k points.

We next show the local density of states (DOS) in Fig. 5.6, where the DOS is
computed from the spectral function: �.R D 0; !/ D TrA.R D 0; !/. Here we
compare DMFT with HF and 6�6�1 EOM-CCSD. Since we employ only a single
k-point mesh to minimize cost, we only obtain a finite set of excitation energies
from EOM-CCSD. Consequently, we have applied a Lorentzian broadening to the
IP- and EA-EOM-CCSD roots to generate the corresponding DOS spectrum, as an
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Figure 5.6: Local density of states of 2D h-BNmonolayer. DMFT spectral functions
are computed with a broadening factor � D 0:2 eV. EOM-CCSD (6 � 6 � 1) DOS
is generated using a Lorentzian broadening.

approximation to the true CCSD-GF DOS in the TDL. As can be seen in Fig. 5.6,
DMFT again significantly improves over HF. In addition to the much better band
gaps, the DMFT DOS also has a better structure than the HF DOS. In particular,
the DMFT conduction bands are almost identical to the EOM-CCSD ones, even
for the high-energy bands. This is a result of including the high-energy virtual
orbitals (PAOs) into the impurity problem. Comparing the DMFT(i26,b96) and
DMFT(i26,b128) DOS plots, we find that the DMFT spectral functions are already
well converged at Nb D 96.

On the other hand, the agreement between the DMFT DOS of the valence bands
and that of EOM-CCSD is less perfect. Compared to EOM-CCSD, several valence
peaks are broader in DMFT, such as the valence peak near the Fermi surface. To
understand this behavior, we plotted the DMFT band structure of h-BN using the
Nb D 96 data, as presented in Fig. 5.7. Compared to HF, we find that the point
group symmetry at certain k points is broken in the DMFT band structure plot.
For example, at the � point, there is a degeneracy in the highest valence band
observed in both HF and EOM-CCSD, but this degeneracy is slightly broken in
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Figure 5.7: Band structure of 2D h-BN from DMFT(i26,b96) calculation with a
broadening factor � D 0:1 eV (heat map). The blue dashed lines represent the HF
band structure and the black circles are EOM-CCSD (6 � 6 � 1) charged excitation
energies.

DMFT. This explains the broader DMFT valence bands in Fig. 5.6. We believe
such behavior is due to a mismatch between the diagonal and off-diagonal parts of
self-energy in DMFT: the diagonal part is computed from the impurity CCSD-GF,
while the off-diagonal part is from the lattice k-point HF self-energy. Aside from
the slight symmetry breaking, the DMFT band structure is in good agreement with
the EOM-CCSD result.

Overall, however, the data demonstrates that our DMFT scheme works well in 2D
h-BN. The DMFT procedure produces accurate band gaps and is also capable of
modeling bands far away from the Fermi surface, even with a small number of bath
orbitals (Nb D 64).

Bulk silicon
We next apply our DMFT implementation to the silicon crystal (Si). Silicon is a
small band-gap semiconductor with delocalized valence electrons. Such a system
presents a challenge to quantum embedding methods, including DMFT, as these
methods all start from a local correlation approximation. Here, we assess the effect
of impurity size on the description of spectral functions of bulk Si. Two different
impurity sizes were considered: a 1� 1� 1 unit cell and a 2� 2� 1 supercell. The
2 � 2 � 1 cell is the largest impurity size that can currently be handled using our
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CCSD-GF solver. In the 1 � 1 � 1 unit cell, there are 26 impurity orbitals, 8 of
which are IAOs. Two Gauss-Legendre quadratures of N! D 4; 20 (Nb D 32; 160)
were used to show the effect of bath size on spectral functions. In the 2 � 2 � 1
supercell impurity, there are 104 impurity orbitals. There we used a quadrature of
N! D 4 (Nb D 128). A 2 � 2 � 4 k-mesh was employed for the larger impurity to
generate a DMFT lattice 4� 4� 4 k-mesh. We note that DMFT(i104,b128) should
be directly compared to DMFT(i26,b32) to demonstrate the effect of impurity size,
as these calculations share the same bath quadrature (N! D 4) and similar bath
discretization error.

Figure 5.8: Local density of states of bulk Si. DMFT spectral functions are computed
with a broadening factor � D 0:1 eV. The EOM-CCSD DOS is generated using
3�3�3 k-point sampling and a Lorentzian broadening. The gap values correspond
to the indirect band gap of � ! X, and the EOM-CCSD gap is from a 4 � 4 � 4
k-mesh calculation.

The computed local DOS of bulk Si are presented in Fig. 5.8. HF and EOM-CCSD
results are included for comparison. A full 4�4�4 k-point EOM-CCSD calculation
for multiple IP/EA roots is very expensive, so we instead performed a 3 � 3 � 3
k-mesh calculation. All k points in the 4 � 4 � 4 k-mesh were sampled by shifting
the 3�3�3 k-mesh center. The final reference DOSwas then generated by applying
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a Lorentzian broadening. We also conducted a full 4 � 4 � 4 k-mesh EOM-CCSD
calculation to estimate the reference indirect � ! X band gap value, which we
found to be 1.27 eV, as noted in Fig. 5.8.

DMFT(i26,b32) produces a better � ! X gap of 1.90 eV than HF, which overes-
timates the gap by 2.8 eV. Using a larger bath size of Nb D 160 further improves
the DMFT gap to be 1.74 eV. However, the error of DMFT(i26,b160) is still around
0.5 eV, which is worse than the observed error of DMFT in 2D h-BN. In addition,
the shape of the spectrum for DMFT(i26,b160) is not very accurate. These results
support the observation that bulk Si is indeed a more difficult system for DMFT due
to the stronger effects of the non-local interactions in such small band-gap systems.
After increasing the impurity size, we find that DMFT gives better agreement with
the reference EOM-CCSD spectrum. The DMFT(i104,b128) calculation finds the
� ! X gap to be 1.78 eV, reducing the DMFT(i26,b32) error to 0.5 eV. This is also
better than the 2 � 2 � 1 k-point EOM-CCSD result, which estimates the � ! X
gap to be 0.59 eV (�0.7 eV error). DMFT(i104,b128) does not produce a better
band gap compared to DMFT(i26,b160) due to the insufficient bath size, suggest-
ing that minimizing the bath discretization error is also important. Nevertheless,
the DMFT(i104,b128) spectrum has an improved shape, especially in the valence
region, where the bands have similar peak positions to the EOM-CCSD ones. Thus,
bulk Si provides a good demonstration of the important role of impurity size in
capturing the non-local self-energy in delocalized systems. However, even with
the larger 2 � 2 � 1 impurity, the DMFT results are still not completely accurate,
indicating the need for both larger impurities and a better treatment of long-range
interactions than the HF self-energy.

Nickel monoxide
We finally turn to discuss the prototypical strongly-correlated system, NiO. NiO
has a type-II AFM phase below the Néel temperature (525 K), with ferromagnetic
planes stacked in the [111] direction. Due to the partially filled d orbitals in Ni,
spin-unpolarized DFT methods predict NiO to be a metal, and spin-polarized DFT
(LSDA/GGA) significantly underestimates the band gap and magnetic moment.
DFT+DMFT simulations with a single Ni 3d impurity have been shown to success-
fully reproduce features of the experimental spectral functions and band structure
of NiO in the paramagnetic (PM) phase [224–230].

In this study, we use a unit cell of two Ni and two O atoms as the impurity in DMFT,
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Figure 5.9: Representative IAOs and PAOs of NiO used in DMFT calculations
within a unit cell. Ni and O atoms are marked in blue and red.

corresponding to 78 impurity orbitals. Compared to earlier single site studies, we
can thus examine antiferromagnetic order within the cell, as well as the effect of all
the interactions in the crystal bands. Some representative IAOs and PAOs in the cell
are shown in Fig. 5.9. The IAOs include the projected 3s3p3d4s orbitals of Ni and
2s2p orbitals ofO, and the PAOs include the remaining 4p4d4f 5s orbitals ofNi and
3s3p3d orbitals of O. Since the 3s3p orbitals of Ni form very flat bands far below the
Fermi surface, we do not couple bath orbitals to them, to reduce the computational
cost. We also used the bath truncation technique described in Sec. 2.4 to remove
very weakly coupled bath orbitals, setting the eigenvalue threshold to � D 0:005

a.u. and � D 0:01 a.u. for Gauss-Legendre quadratures of N! D 4 and N! D 8

respectively. This led to a significant reduction in the number of bath orbitals, e.g.,
from Nb D 160 to Nb D 86 in the DMFT(i78,b86)@ˆUHF calculation.

To obtain an AFM solution in DMFT, we allowed spin symmetry to break by
allowing different self-energies (†�imp.!/) and hybridizations (��.!/) in different
spin channels (� D ˛; ˇ). The spin-unrestricted CCSD-GF (UCCSD-GF) impurity
solver was employed to compute †�imp.!/. We started from either spin-restricted
or spin-unrestricted mean-field wavefunctions to construct the embedding problem.
Spin-unrestricted HF (UHF) gives an AFM solution with a large band gap for NiO,
as shown in Fig. 5.10. Starting from UHF, spin symmetry breaking happens already
in the initial DMFT impurity Hamiltonian (Himp) and lattice HF self-energy. On the
other hand, spin-restricted HF (RHF) with finite temperature smearing predicts NiO
to be a metal (in PM phase), with no average local magnetic moment (Fig. 5.10). In
this case, spin symmetry breaking is introduced only during DMFT self-consistency,
which generates symmetry-broken †�imp.!/ and ��.!/.

In addition to starting from HF orbitals, we also explored the possibility of using
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Figure 5.10: Local density of states of NiO from UHF and RHF. A broadening
factor � D 0:4 eV is used.

DFT (LDA and PBE) orbitals to generate the DMFT impurity problem. We again
emphasize that only the DFT orbitals were used here and no DFT Hamiltonians
or self-energies enter into our DMFT calculations. That is to say, we still use the
Fock matrix as the one-particle effective Hamiltonian, and the only difference is that
the elements of the Fock matrix are evaluated using DFT orbitals. Since the local
Fock self-energy can be exactly subtracted, there are no double counting errors in
these DMFT calculations. One advantage of using DFT orbitals is that fully self-
consistent HF calculations can be avoided, which is very expensive in large systems
due to the quadratic scaling with respect to k points.

We present DMFT results on the band gap, magnetic moments and local charges of
NiO in Table 5.4. The band gap is computed from the halfmaxima of the first valence
and conduction bands of local DOS, as done in the XPS/BIS experiment [207].
Meanwhile, we also report the band gap values calculated from the valence and
conduction peaks of the k-resolved DOS. The magnetic moments and local charges
are calculated from the impurity UCCSD density matrix with atomic decomposition
in the IAO+PAO basis. As can be seen, DMFT(i78,b86)@ˆUHF improves the UHF
band gap by 2.6 eV and produces an accurate magnetic moment. However, the
band gap is still too large when compared to experiment (4.3 eV). This is likely
because the off-diagonal (inter-cell) part of the self-energy from the inaccurate
initial UHF solution has a large residual effect on the lattice Green’s function. In
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Table 5.4: Band gap (Eg), magnetic moment (mNi) and local charge (�Ni) of NiO in
the AFM phase. The first column of band gaps is computed from the half maxima
of the first valence and conduction bands of the local DOS, as done in Ref. [207].
The second column of band gaps (in brackets) is computed from the valence and
conduction peaks of the k-resolved DOS. The notation “@ˆHF=PBE=LDA” indicates
the underlying orbitals used to construct the Fock matrix in DMFT.

Method Eg (eV) mNi (�B) �Ni (e)
UHF - (11.6) 1.86 1.42
UPBE - (1.3) 1.42 1.02
ULDA - (0.6) 1.28 0.94

DMFT(i78,b50)@ˆUHF 9.6 (9.4) 1.80 1.35
DMFT(i78,b86)@ˆUHF 9.2 (9.0) 1.80 1.35
DMFT(i78,b52)@ˆUPBE 7.4 (7.1) 1.65 1.12
DMFT(i78,b90)@ˆUPBE 7.1 (6.5) 1.63 1.11
DMFT(i78,b52)@ˆULDA 6.5 (6.0) 1.63 1.10
DMFT(i78,b90)@ˆULDA 6.5 (5.8) 1.60 1.08
DMFT(i78,b56)@ˆRHF 3.5 (3.3) 1.67 1.22
DMFT(i78,b98)@ˆRHF 3.0 (3.1) 1.60 1.17

Exp 4.3 [207] (-) 1.77 [211],1.90 [190] -

particular, this inaccurate off-diagonal self-energy leads to too large an amount of
symmetry breaking in the initial impurity Hamiltonian, which cannot be completely
corrected by the DMFT local self-energy. In contrast, when using UPBE orbitals,
DMFT(i78,b90)@ˆUPBE gives a better k-resolved band gap of 6.5 eV, suggesting
that employing UPBE orbitals reduces the error in the off-diagonal HF self-energy.
Using ULDA orbitals further improves the k-resolved band gap to 5.8 eV, although
the error is still more than 1 eV. Overall, these results show that when starting from
a spin-symmetry broken solution, our DMFT scheme is sensitive to the choice of
underlying orbitals, which may lead to a variation of 3 eV in the predicted band
gap of NiO. This sensitivity may be alleviated if charge self-consistency is further
imposed outside of the DMFT loop [106, 231], which is absent in our current
implementation. However, the systematic overestimation of the band gap suggests
that besides charge self-consistency, non-local contributions to the self-energy need
to be treated more accurately [232–235].

When we switch to a spin-restricted HF reference, the DMFT results are more
accurate than the UHF-based DMFT results. DMFT(i78,b98)@ˆRHF predicts a
reasonable k-resolved band gap of 3.1 eV and magnetic moment of 1.60 �B. This
superior performance can be attributed to the fact that the initial incorrect symmetry
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breaking in the lattice HF self-energy and impurity Hamiltonian is avoided by using
a spin-restricted reference. As a result, the spin symmetry breaking is solely deter-
mined by the accurate DMFT self-energy obtained from the UCCSD-GF impurity
solver, leading to improved results, particularly for the spectral functions.

Figure 5.11: Local density of states of NiO in the AFM phase. The XPS/BIS exper-
imental DOS is from Ref. [207]. The DMFT DOS is computed with a broadening
factor � D 0:4 eV, and is shifted horizontally for an easier comparison to experiment.

We present the local DOS of NiO in Fig. 5.11. The upper panel shows that
DMFT(i78,b86)@ˆULDA gives a similar spectral shape to experiment, although
the band gap is larger and the first valence peak is broader. On the other hand,
DMFT(i78,b90)@ˆUHF spectrum has too wide a band gap. In the lower panel, the
DMFT(i78,b98)@ˆRHF result agrees well with experiment near the Fermi surface.
However, the main valence peak is separated into two peaks, where the highest
peak is around -3.5 eV and a shoulder peak appears around -1 eV. Such a two-peak
structure is not observed in experiment.

To understand the deviations from experiment and to further study the character of
the insulating gap, we plot the components of the NiODOS in Fig. 5.12. From Panel
1 of Fig. 5.12a, DMFT(i78,b90)@ˆULDA predicts that the insulating gap is from a
complicated charge transfer transition with mixed Mott character: the valence peak
is of O 2sp and Ni t2g and eg characters, and the conduction peak is mainly of an
eg character with a small O 2sp contribution. On the other hand, it can be seen
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(a) (b)

Figure 5.12: Components of NiO density of states from (a) DMFT(i78,b90)@ˆULDA
and (b) DMFT(i78,b98)@ˆRHF calculations. Panel 1 shows the local DOS, and
Panels 2 and 3 show k-resolved DOS at � and X points.

in Fig. 5.10 that UHF predicts the insulating gap of NiO to be from a pure charge
transfer transition from O 2p to Ni eg . This comparison indicates that DMFT
significantly corrects the positions of the Ni t2g and eg bands. Meanwhile, as shown
in Fig. 5.12b, DMFT(i78,b98)@ˆRHF also predicts mixed charge transfer and Mott
character for the insulating gap, although the first valence peak has almost no Ni t2g
contribution. This indicates that the artificial shoulder valence peak near the Fermi
surface arises because of a mismatch in the relative positions of the Ni t2g and O
2sp/Ni eg bands. Once again, these results lead us to conclude that to obtain both the
band gap and spectral shape accurately, we require either larger impurities or a more
sophisticated treatment of the inter-cluster interactions. We also plot the k-resolved
DOS in Panels 2 and 3 in Fig. 5.12. It can be seen that the O 2sp main valence peak
is shifted by 2 eV at the X point compared to the � point. Interestingly, we find that
the conduction band at the � point has a significant contribution from the Ni 4s and
O 2sp orbitals. This has not been reported in previous DFT+DMFT studies but has
also been found in quasiparticle self-consistent GW calculations [236].

5.6 Conclusions
In this chapter, we described ab initio quantum embedding schemes for density
matrix embedding and dynamical mean-field calculations in solids, focusing on
the practical implementation choices needed for an efficient computational scheme.
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Our tests on the BN, Si, and NiO systems, that span a range of electronic structure,
demonstrate that our implementation can handle both realistic unit cells and basis
sets. The strengths of DMET and DMFT are most visible in the simulations of
NiO, where the wide spread in magnetic behavior generated by different mean-field
approximations is almost entirely removed in the subsequent DMET calculation. In
more weakly correlated systems, more work is needed to improve the quantitative
accuracy of DMET and DMFT arising from the treatment of excitations to non-
valence orbitals and long-range screening effect, which are not fully embedded
in our scheme. Overall, however, our results lead us to be optimistic that this
computational framework provides a means to realize ab initio calculations on
interesting correlated solids using quantum embedding.
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Chapter 6

SYSTEMATIC ELECTRONIC STRUCTURE IN THE CUPRATE
PARENT STATE FROM QUANTUMMANY-BODY

SIMULATIONS

Based on the work published in Science 377, 1192 (2022). Copyright 2022, Amer-
ican Association for the Advancement of Science. [114]

6.1 Introduction
Currently, we have a qualitative theoretical understanding of many electronic phases
of matter. However, there remains a deficit in the quantitative understanding of
correlated electron materials [70, 237]. This limits our ability to connect the atomic
structure and composition to the electronic phenomena, as well to answer funda-
mental physical questions related to microscopic mechanisms. Here, we describe
and apply a strategy to precisely simulate properties of a prototypical family of
correlated electronic materials, the high-temperature superconducting cuprates, in
their undoped, parent, electronic state. We directly approximate the solution of the
ab initiomany-electron Schrödinger equation instead of solving a low-energy effec-
tive model, within an approach that is numerically improvable without adjustable
parameters. Using this strategy, we show that we can reveal the systematics of
the cuprate parent state across a family of layered cuprate materials, connecting
the observed low-energy physics to specific microscopic processes governed by the
atomic and structural composition.

Among correlated quantum materials, the high temperature (Tc) superconductors
remain a fertile source of new physics[17, 238–240]. We focus on the cuprates,
where one finds the highest superconducting Tc in the mercury-barium cuprate
family [4]. Although progress has been made in understanding the universal phase
diagram through numerical calculations on lattice models, the understanding of
properties of individual compounds remains largely empirical, with substantial
difficulties in linking the observed trends to model parameters.

In principle, a quantitative understanding is simply a matter of many-electron quan-
tummechanics, but solving the Schrödinger equation beyond lattice models involves
three challenges: the quantum many-body correlations, the thermodynamic limit
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(TDL), and the high-energy degrees of freedom / long-range interactions of real ma-
terials. We here adopt a pragmatic computational framework where the challenges
can be tackled simultaneously: ab initio solvers for the many-body problem beyond
models [215, 241]; self-consistent quantum embedding to develop phases in the
TDL [98, 100, 242]; and periodic quantum chemistry using local bases [81, 82] to
efficiently treat long-range interactions and high-energy degrees of freedom. Each
component has been individually tested in prior work, but the important feature of
our combined strategy is that the solution process bypasses models with uncon-
trolled parameters; the only remaining parameters are the size of the computational
cell, the basis size, and the level of the many-body solver. Thus, all aspects of the
calculation can in principle be controlled towards exactness.

In this chapter, we describe the full application of this strategy to the ab initio
simulation of a family of cuprates in their parent phase at zero temperature. Although
the parent phase is qualitatively simple, and elements of our framework have been
used to understand exotic physics in simplified models [24], obtaining quantitative
material systematics and functional relationships even in the parent phase is a major
challenge, which serves as a litmus test of the promise of our overall ab initio strategy.
As we shall describe, our detailed simulations bring a new level of resolution to
the electronic structure, with which we uncover direct links between the material
specific physics and composition.

6.2 Cuprates and the parent state
Structure. The main structural feature of the cuprates is the two-dimensional
CuO2 (formally [CuO2]

2– ) square lattice plane [Fig. 6.1 (a)]. In different cuprates,
the copper-oxygen plane is surrounded by other atoms and buffer layers in the
vertical direction. We consider three specific compounds, in addition to layer-stacked
idealized CuO2 planes (geometries in Table F.1). The first is infinite layer CaCuO2
(CCO) [Fig. 6.1 (d)], where calcium counterions intercalate between the CuO2
planes in an infinitely repeating structure. CCO does not itself superconduct, due
to difficulties in doping the material. However, high Tcs are observed in the related
mercury-barium cuprates (the Hg-Ba-Ca-Cu-O family). Here, the CuO2 plane is
decorated by apical oxygens, which connect to buffers of Hg and Ba ions. Unlike
in CCO, the buffer layers form large spacers between the copper-oxygen layers.
Different mercury-barium cuprates can be synthesized with different numbers of
CuO2 planes between each buffer layer, leading to single-layer, double-layer, etc.
cuprates. We consider two members in this family: HgBa2CuO4 (Hg-1201, single-
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Figure 6.1: Structures and computational strategy. (a) [CuO2]
2– plane(s)

in cuprates. (b) ! (c) ! (d): Relationship between single-layer Hg-
1201 (HgBa2CuO4), double-layer Hg-1212 (HgBa2CaCu2O6), infinite layer CCO
(CaCuO2); Ca layers replace the Hg-Ba-apical-O layers. (e) The ab initio density
matrix embedding framework. The Hg-1212 lattice is divided into an impurity (e.g.,
the 2�2 cell) with the environment replaced by a bath; the atoms are represented
by local valence and virtual orbitals, and the impurity problem is solved for the
many-body wavefunction‰corr. (f) Correlation and finite size effects in the nearest-
neighbor Heisenberg exchange coupling J1. We compare the exchange coupling
(y axis) from a full crystal CCSD calculation as a function of CCO crystal size
[plane side-length in units of Cu atoms, nCu (x axis)] in a small basis, to embedded
calculations with two impurity sizes and two solvers DMRG, CCSD. The embedded
2 � 2 impurity is already close to the TDL, while the DMRG and CCSD impurity
solvers agree well in the smallest impurity.

layer, Tc D 97 K) and HgBa2CaCu2O6 (Hg-1212, double-layer, Tc D 127 K). Hg-
1201 exhibits distorted octahedral Cu-O coordination [2 apical oxygens per Cu, Fig.
6.1 (b)], while each layer ofHg-1212 contains pyramidal Cu-O coordination [1 apical
oxygen per Cu, Fig. 6.1 (c)]. Hg-1201, Hg-1212, and CCO are compositionally
related by replacing Hg-Ba-apical O layers by Ca layers.

Parent state. Unlike conventional superconductors, the parent state of the cuprates
is an antiferromagnetic (AFM) insulator with long-range order, due to the strong Cu
d -d electron interaction. Typical Néel temperatures for the AFM state range from
about 250 K (in Nd2CuO4) to 450 K (in YBa2Cu3O6) [239], and only after doping
does the ground-state enter the superconducting phase. It is generally thought



111

that the antiferromagnetism is to first order approximated by 2D nearest-neighbor
(NN) Heisenberg-like physics. However, the 2D NN Heisenberg model does not
reproduce the dispersion of the experimental spin-wave spectrum and questions
remain as to the magnitude, sign, and material specific origin of corrections to the
nearest-neighbor picture.

There have been many attempts to correlate properties of the cuprates in the super-
conducting phase (such as Tc) with structure, composition, and band structure [169,
243–247]. However, without a direct ability to simulate the material Tc with dif-
ferent parameters it is difficult to distinguish correlation from causation. Although
there has been less focus on correlating properties of the parent state with physical
features, many proposals relate the high Néel temperatures and strong exchange cou-
pling in the parent state to the superconducting mechanism and other exotic physics
under doping. Below, we establish causal, quantitative relationships between the
magnetic features of the parent state and the atomic-scale structural and electronic
features of the materials.

6.3 Theoretical techniques
Strategy. Previous numerical work on cuprate electronic structure [with a few
exceptions e.g., [248, 249]] falls in two classes: (i) ab initio all electron simulations
with a modest treatment of electron correlation [145, 250, 251], often used to derive
low-energy effective models, and (ii) accurate many-body methods applied to low-
energy effective models, to obtain phase diagrams and more exotic orders [161, 167,
252–256].

Our strategy is to use families of methods associated with the model studies of
(ii), but technologically elevated to the fully ab initio Hamiltonians of (i). This
bypasses the ambiguities of intermediate downfolded models, while allowing cor-
related physics to emerge. The three numerical components are the quantum em-
bedding, the ab initio all-electron infrastructure, and the many-body solvers. Our
technical setup uses density matrix embedding theory (DMET) to self-consistently
embed a 2 � 2 supercell (impurity) of the cuprate material within an all-electron
description, and we solve the resulting embedded impurity with an ab initio many-
body approximation [coupled cluster (CC) theory]. To do so feasibly and reliably
relies on recent advances and new techniques specific to this work, such as a
sub-impurity formalism and improved DMET self-consistency algorithms for large
impurities; improved ab initiomatrix element generation; and careful solver bench-
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marking against a massively parallel ab initio density matrix renormalization group
(DMRG) implementation. Below we describe the quantum embedding and many
body solvers; the ab initio infrastructure is discussed in Sec. 2.4.

Quantum embedding. This provides a framework for phases that emerge due to
interactions [45], and includes dynamical mean-field theory and its relations [27,
28, 54], and the DMET [30, 35] used in this work. The material is separated into
an impurity region and a bath that describes fluctuations out of the impurity, and
their self-consistency yields emergent phases. The embedding becomes exact with
increasing impurity size.

In previous work on the 1-band and 3-band Hubbard models, DMET has been ex-
tensively benchmarked against other methods, and for example, accurately resolves
exotic order in the underdoped region [24, 33]. (The ability of DMET to capture
exotic physics in doped lattices shines a light on the path from the ab initio studies
of the parent state here to the physics of the doped materials). To move beyond
models to the ab initio physics, we start from our recently introduced all-electron,
full cell approach [98, 100, 242]. Here, the impurity is a supercell of the cuprate
containing all atoms and orbitals, with all quartic interactions between the orbitals.
In contrast to downfolded approaches with a handful of impurity orbitals and pos-
sibly simplified interactions [19, 28], our largest impurity (in Hg-1212) contains 48
atoms and close to 900 orbitals [Fig. 6.1(e)]. These orbitals include many “virtual”
bands, which capture quantitative electron correlation effects and screening. Part of
the reason why these large impurities are feasible is the DMET formulation itself,
which bypasses expensive frequency dependent quantities. The other critical factors
are the choice of solvers discussed below, and the periodic quantum chemistry in-
frastructure based on local atomic basis sets, which compactly discretize the virtual
bands for electron correlation.

Ab initio many-body solvers. The quantum impurity problem in the full-cell ap-
proach is a many-body problem with hundreds of orbitals. This can be solved
because many orbitals do not display strongly correlated physics. We use two im-
purity solvers in this work. The majority of the results are obtained using ab initio
coupled cluster singles and doubles (CCSD) [128] solvers. Although approximate,
they exactly treat clusters of (arbitrarily) strongly correlated particles, and have pre-
viously been shown to yield accurate results in various quantum impurity problems
[98, 100, 215, 216, 242], particularly in ordered phases. To verify the accuracy
of the CC approximation, we use a second solver, the quantum chemistry DMRG
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[241, 257] to benchmark a subset of problems [see Sec. F.2].

Computational setup. The 2 � 2 supercell impurities are shown in Fig. 6.1 for the
different mercury-barium cuprates. [In Sec. F.2, we also discuss a benchmark study
of lanthanum copper oxide]. Every atom is represented in a valence double-� with
polarization basis [def2-SVP [258]] e.g., each Cu is represented by [5s3p2d1f ]
shells and each O by [3s2p1d ] shells, and the embedding lattice is chosen to be an
8�8�2 lattice of the primitive cell. Large impurities (e.g., in Hg-1212) were further
fragmented into smaller sub-impurities with up to 364 orbitals (280 impurity orbitals
and 84 valence bath orbitals), and impurity solutions were obtained using CCSD or
DMRG. (Unless otherwise indicated, data is from the CCSD solver; DMRG data
is in Sec. F.2). The DMET equations were then solved with self-consistency and
valence-shell lattice-impurity density matrix fitting.

Benchmarks. Within the above strategy, the only sources of error are from the
finite size of the impurity (and embedding lattice), the approximate nature of the
impurity solver, and the finite size of the local atomic basis. We have carried out
extensive benchmarking to verify the specific approximations. In Fig. 6.1(f) we
compare results from finite impurities to the TDL (which can be estimated from a
full crystal calculation within a small local atomic basis) for the energy difference
between the ferromagnetic (FM) and the AFM state (/ the NN exchange coupling
J1). We also show the deviation between this energy difference estimate from the
ab initio DMRG and CCSD solvers in a small impurity where DMRG is tractable.
Both sets of data illustrate that the TDL and many-body character of the physics is
well-captured within the approximations in this work. Additional benchmarks (e.g.
basis set convergence) can be found in Sec. F.2.

6.4 Results
Multi-orbital electronic structure
We start with general electronic trends across the series Hg-1201, Hg-1212, CCO,
and [CuO2]

2– as a baseline to understand trends in the physics in later sections.

Order parameters and bonding. We first extract order parameters from the 2 � 2
computational supercell: charge, local moment, bond orders (from the off-diagonal
elements of 
ij D

D
a
�
jai

E
where i , j label local atomic orbitals in the cell); and the

spin correlation function hSz.0/Sz.r/i measured across the full crystal [Figs. 6.2
(a) - (e)].

The key features are: (i) The ground-state is AFM with long-range order, with the
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Figure 6.2: Charge, spin and bond orders. (a)-(d): Charge c, magnetic moment
m and bond order b of different cuprates. Cu: yellow; O: red; Hg: violet; Ba:
green; Ca: blue. Atomic sphere radius - number of electrons n (local charge
Z � n is labelled, Z: nuclear charge); arrow length - magnitude of local moment
m D n" � n#; bond width - bond order b. (e) Spin-spin correlation function
hSz.0/Sz.r/i in CCO. (f) Cu orbital-resolved bond orders. (g) Apical O orbital-
resolved bond orders. For more details, see Sec. F.3.

moment in the Cu half-filled 3dx2�y2 orbital. Cu 4s/4p occupancy reduces the total
moment by about 10%. The unit cell moment ranges from 0.71 in Hg-1201 to 0.55
in [CuO2]

2– . (ii) Charge is transferred from in-plane O orbitals to the other ions,
with the degree of transfer increasing across the series. There is significant charge
transfer to the Cu minority spin orbitals (as much as 0.3 electrons in [CuO2]

2– ).
(iii) Ca and Ba buffer atoms in CCO, Hg-1201, and Hg-1212 are ionic, with Hg
covalently bonded to the apical oxygen via the O 2pz-Hg 6s, 5dz2 bonds. Hg-1201
and Hg-1212 do not differ much with respect to the out-of-plane observables, but do
differ for their observables in the CuO2 plane. (iv) In-plane � -bonding [Fig. 6.2(f)]
is predominantly Cu 4p-O 2p and does not differ much across the compounds.
However, Cu 3d -O 2p bonding and out-of-plane � bonding increase across the
series, reflecting increasing in-plane 3d /4p hybridization. The change in bonding
is not (solely) due to the structural changes (e.g., CCO and [CuO2]

2– have the
same Cu-O bond-length but different bond orders) but instead reflects redistribution
of charge from the buffer layers. (v) The apical oxygen bond order [Fig. 6.2(g)]
decreases from Hg-1201 to Hg-1212, with the oxygen only weakly bound to Cu. Cu
4s and 4pz contribute to apical bonding, with little 3dz2 participation.
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Figure 6.3: Natural occupancy distribution (eigenvalues of the single-particle
density matrix) and quasiparticle character. (a) Occupancy of natural orbitals
around the Fermi level (dashed line), from the spin-traced density matrix (
˛ + 
ˇ )
in Hg-1201, Hg-1212 and CCO. Orbital character denoted by colors and labels.
(b) Half-filling index of the different local orbitals [Eq.(2.130)], measuring their
importance in the most correlated orbitals of the calculation. (c) Orbital component
analysis of the spin-resolved mean-field (HF) and correlated (DMET) top valence
(V) and bottom conduction (C) bands of CCO at different k points (averaged from
the 8 bands near the Fermi level), �: .0; 0/; X: .1
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2
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/.

Natural occupancy distributions and effects of correlation. We obtain additional
insight from the spin-resolved (
� ) and spin-traced (
 D

P
� 


� ) single-particle
density matrices (equal-time Green’s functions) evaluated in the full crystal. These
provide non-local and k-space information on correlations. We first discuss the spin-
traced single-particle density matrix. The eigenvalues (i.e., the natural occupancy
distribution, sometimes called the momentum distribution function) and eigenvec-
tors (natural orbitals) illustrate the degree of symmetry breaking and highlight the
important degrees of freedom near the Fermi level. The spin-traced natural occu-
pancy distribution together with the projected atomic character of the eigenvectors
is shown in Figs. 6.3(a), (b). We see that the most important orbitals near the Fermi
level are the classic 3-band orbitals - Cu 3dx2�y2 and O 2px, 2py . We also find no
single next most important orbital: Cu 4s, 4p, 3dz2 , as well as the apical oxygen
and Hg orbitals all contribute to a similar degree.

The spin-resolved natural occupancies and eigenvectors indirectly reflect the nature
of the quasiparticles and the importance of dynamical effects. The eigenvectors
with natural occupancies closest to the jump across the Fermi level can be viewed as
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“pseudo”-valence bandmaximum (VBM)/conduction bandminimum (CBM) states.
Defined in this way, from Fig. 6.3(c), we see that the pseudo-VBM is dominated
by O 2px.y/, while the pseudo-CBM is dominated by Cu 3dx2�y2 (and the apical
O and Hg bands in the Hg-Ba compounds). This classifies all the compounds as
charge-transfer insulators.

We can further untangle the effect of interactions frompure single-particle physics by
comparing the spin-resolved natural occupancies of the correlated calculation with
that of a spin-polarized Hartree-Fock (HF) reference. The correlated spin-resolved
natural occupancies are all quite close to 0 and 1 (Fig. F.14), i.e., the mean-field
values, thus dynamical effects are small. However, the orbital components of the
eigenvectors are very different between the mean-field and correlated distributions
[Fig. 6.3(c)], indicating strong static effects. It appears in the AFM state, the effect
of interactions on the quasiparticles is mainly static rather than dynamical, and
can be largely captured via static screening of the interactions, correlation driven
rehybridization of the orbitals, and renormalization of their energies.

Magnetic trends across the cuprates
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Figure 6.4: Spin wave dispersion of Hg-1201, Hg-1212 and CCO. (a) The 2D
magnetic Brillouin zone is sampled along �: (0, 0), X: (1

2
, 0), R: (1

4
, 1
4
), kz is fixed

at 0:46 to match the experimental conditions in CCO, and fixed at 0 for Hg-1201
and Hg-1212. NN Heisenberg (1J ) and multi-J model curves are shown. The
multi-J model includes a quantum renormalization factor of Zc D 1:219 [259].
Experimental RIXS data is extracted from [260], [261] for Hg-1201 and Hg-1212;
[262] for CCO. (b) Trends in the multi-J model parameters across the cuprate
family. Hybrid density functional (PBE0, HSE06, B3LYP) results for the first two
Hg compounds are also shown with symbols. For details, see Sec. F.4.

We next characterize the low-lyingmagnetic excitations across the series of cuprates.
To do so compactly, we introduce a magnetic model (not to solve for the electronic
structure, but for interpretation) and extract exchange couplings from our correlated
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calculations of different spin-configurations: the AFM state, the FM state, and
a spin-density wave state (Fig. F.2). From these we derive parameters for the
NN Heisenberg model (J ) and a multi-J Heisenberg model where the exchange
couplings J1, J2, J3 and Jc are related via the perturbation expansion of the 1-
band Hubbard model (with only 3 free parameters). [A 3J eff model where Jc is
renormalized into the J1, J2, J3 parameters can also be derived. In CCO, we also
derive an interlayer J? using two AFM layer configurations. For a full discussion of
all models and the spin-wave calculation see Sec. F.1]. The parameters are illustrated
in Fig. 6.4(b) and tabulated in Tables F.14-F.17. We display the corresponding spin-
wave spectrum from linear spin wave theory in Fig. 6.4 (a).

Spin-wave spectrum. In CCO the full experimental dispersion is available, while
for Hg-1201 and Hg-1212 only part of the dispersion near the � point has been
measured. As is well-known the NN Heisenberg model does not capture dispersion
away from the � point, but the derived NN J agrees well with that derived from
experiment by fitting near the � point; for example, in CCO, the NN J fit to DMET
data yields J D 155 meV, compared to J D 142; 158 meV (the two numbers are
from different experiments) [262, 263]. The multi-J model with ab initio parame-
ters yields improved agreement across the experimental dispersion, illustrating the
importance of long-range exchange. The discrepancies are largest near the X point
(1
4
; 1
4
), likely due to finite size effects in the embedding, although there are also

confounding factors from the experimental setting in Hg-1201, Hg-1212 [Sec. F.4].
Compared to CCO, theHg-Ba compounds display flatter dispersions, andwe capture
this in our derived spin-wave spectrum.

Magnetic parameters. Trends in themagnetic couplings of themulti-J Heisenberg
model among the four compounds are shown in Fig. 6.4 (b). Across the series Hg-
1201, Hg-1212, CCO, CuO 2–

2 , all couplings J1, J2, J3 and Jc increase significantly.
J1 roughly doubles and Jc increases by a factor of 5, illustrating (i) the importance
of the buffer layers in the long-range exchange coupling and (ii) the increasing
“delocalization” across the series of compounds. A recent resonant inelastic X-
ray scattering (RIXS) experiment [260] suggests that J1 increases significantly (by
about 20 % - 30 %) from the single-layer Hg-1201 to the double-layer Hg-1212,
similar to the increase in Tc. We find quantitative agreement with our correlated
calculations, where Hg-1212 shows an increase in J1 by about 18 %.

Effect of interactions. To understand the effect of interactions, we can compare
to the mean-field HF results. These give almost flat dispersion curves, since the
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J couplings are very small (e.g., J1 � 40 meV), while the magnon energy at the
� point is also lower than the experimental value. Thus, the observed magnetic
energy scales require a careful treatment of electron correlation. As suggested
in the last section, a large part of the effect of interactions can be captured by
a renormalization of the low-energy band structure and interaction. Choosing a
density functional treatment or Hubbard U parameter can mimic this, however, we
do not find a single choice of functional or Hubbard U consistently or accurately
reproduces the material trends. For example, moving from Hg-1201 to Hg-1212
should yield a significant increase in the exchange couplings, but from Fig. 6.4 (b)
(symbol data), one finds J1 decreases with the B3LYP functional, and increases
only marginally with HSE06 (5%) and PBE0 (6%). In addition, J1 is significantly
overestimated by all the above functionals.

Untangling layer effects
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Figure 6.5: Effects of buffer layers. Representative out-of-plane orbitals (isosur-
faces) in (a) Hg-1201 and in (b) CCO. (c) The effect of freezing fluctuations to
out-of-plane orbitals on the NN magnetic coupling J1 and cyclic exchange coupling
Jc. (d) Excitations relevant to exchange pathways in cuprates: super-exchange is
facilitated by excitations from in-plane oxygen orbitals to empty copper states (i); in
Hg-1201, substantial excitations from the copper-oxygen plane to the buffer layer (ii)
reduce super-exchange. The numbers (�T1, �T2) reflect the change in excitation
weight upon unfreezing the buffer orbitals. (e) Influence of apical Cu-O distance on
exchange coupling J1 and Jc at the mean-field (HF) and correlated (DMET) level.

We now connect the microscopic correlated electronic structure with the trends
in the magnetic physics observed above to derive mechanistic insights. As seen
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above, changing the buffer layer leads to large changes in the exchange couplings
(particularly for the non-local terms). However, this effect does not appear at the HF
mean-field level. To verify that it originates due to fluctuations (electron correlation)
with the buffer layers (and not simply via the effect of the electrostatic potential of
the buffer layer on electron correlation within the cuprate plane), we first devise a
procedure that allows us to switch electron correlation with the buffer layer orbitals
on and off. Todo so, we explicitly freeze excitations involving out-of-plane orbitals in
the correlated impurity solver calculations [i.e. the impurity wavefunction excludes
configurations with such excitations relative to the HF determinant, Sec. F.5]. Any
changes from freezing and unfreezing these fluctuations therefore directly reflect
the influence of electron correlation with the orbitals of the buffer plane.

Representative out-of-plane orbitals of Hg-1201 and CCO are shown in Fig. 6.5(a)
and (b). The out-of-plane impurity orbitals consist of empty outer valence shells
on Ca, Hg, and Ba, apical oxygen orbitals, and other orbitals that originate from the
adjacent copper-oxygen plane. The Ca and Ba centered localized orbitals (4s and
6s) are similar in CCO and Hg-1201.

The changes in the J1 and Jc from unfreezing the out-of-layer orbitals are shown in
Fig. 6.5(c). In both compounds, the exchange couplings are decreased by freezing,
but in CCO, the effect is stronger and Jc is especially strongly influenced by freezing,
decreasing by as much as 71% in CCO. To understand this, we analyze the corre-
lated impurity wavefunctions in CCO and Hg-1201. Shown in Fig. 6.5(d) are the
changes in the weights of single-particle excitations�T1 and connected two-particle
excitations �T2 upon unfreezing the buffer layer in the two compounds. Generally
speaking, when the buffer layer is unfrozen, the increased excitation manifold in-
creases screening and decreases the energetic penalty to excite from filled to empty
states, such as the empty Cu and buffer layer states. In CCO and Hg-1201, we find
that this increases the O! Cu excitation associated with superexchange [process
(i) in Fig. 6.5(d)], increasing the exchange couplings. However, in Hg-1201, we
see in addition a significant increase in excitations from in-plane Cu, O orbitals to
the empty Hg, apical O states [process (ii)]. This change in the copper-plane to
buffer excitation is more than twice as large in Hg-1201 than in CCO, and it de-
pletes the ground configuration associated with in-plane exchange and reduces the
effective non-local hopping by rehybridizing the Cu empty states [243], cancelling
the enhancement of in-plane O! Cu excitations, and yielding an aggregate small
change in exchange coupling upon unfreezing the buffer orbitals [Sec. F.5]. Note
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that this also explains why the exchange couplings of Hg-1212 lie in between those
of Hg-1201 and CCO, as the buffer suppression of in-plane super-exchange occurs
via a single buffer layer in Hg-1212 versus two on either side in Hg-1201. The
analysis also reveals (smaller) differences between the compounds in the connected
two-particle fluctuations involving the buffer [processes (iii), (iv)]; these are mate-
rial specific effects that cannot be folded into a static renormalization. Finally, in
Fig. 6.5(e) we show the effect on the exchange coupling of increasing the apical
oxygen distance in Hg-1201, both at the mean-field level and at the correlated level.
Consistent with the above mechanism, we find that increasing apical oxygen dis-
tance removes the buffer suppression effect in the correlated calculation (increasing
the exchange coupling), but makes little difference in the mean-field calculation, as
fluctuations must first renormalize the energies of the empty states for them to be
accessible.

6.5 Concluding remarks
Wehave demonstrated that through a numerical strategy combining quantum embed-
ding, ab initio quantum solvers, and periodic quantum chemistry, we can determine
at the many-body level, material specific correlated electron structure in the parent
state of the cuprates. This reveals trends in the multi-orbital bonding, correlation
effects in the Fermi distribution and quasiparticles, and gives a quantitative de-
scription of the low-energy magnetic excitations. Across a series of homologous
mercury-barium and calcium cuprates, the systematic trends in the nature of the
magnetic exchange can be explained through the analysis of the many-body state,
which uncovers a competition between super-exchange and plane-to-buffer excita-
tion processes.

A general observation is that while the interactions are strong, many of their effects
in the parent state can be renormalized into a static low-energy theory. This supports
the long-standing practice of interpreting physics in this region through simple band-
structures and static interaction parameters. However, we also find that empirical
approaches to determine this renormalization do not have the accuracy to capture
the trends amongst the materials, unlike the controlled many-body approaches used
here.

A strength of themany-body approach is that we can interrogate individual electronic
processes, and our ab initio formulation allows us to trace these processes beyond
models to the individual atomic orbital level. We use this capability to untangle the
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links between layer composition and magnetic exchange. In prescient work, it was
conjectured that the range of magnetic exchange is related to electronic processes
involving an effective apical conduction band, and that this further correlates with
the superconducting transition temperature [243]. We now have a direct picture of
the first part of this conjecture, with rich atomic-scale and many-body resolution.

Components of the numerical strategy in this work have previously been used to
describe exotic phases in models. The success of the current ab initio realization for
cuprate parent states thus extrapolates to the exciting prospect that a similar approach
may eventually yield a quantitative picture of more complex cuprate phases. If that
is the case, we may be able to answer the second part of the above and similar
conjectures about superconducting properties, through a direct ab initio simulation
of the superconducting orders and the energy scales of the cuprates in their doped
states.
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Chapter 7

SUPERCONDUCTING STATES IN DOPED CUPRATES FROM
AB INITIO QUANTUM EMBEDDING

This chapter presents work that has not been published before.

7.1 Introduction
We have shown that in both the one-band (Chap. 3) and the three-band model
(Chap. 4), quantum embedding can provide reasonable phase diagrams in either
magnetic or superconducting orders. In addition, we already see that the oxygen
degrees of freedom are heavily involved in the d -wave superconducting orders. It
is of great interest to see whether more degrees of freedom in the realistic crystal
structures can participate in the phase diagram. In the meantime, we have provided
an ab initio perspective on the magnetic trends in different cuprate parent states
(Chap. 6). Following the roadmap in Sec. 1.2, we now have all components of
the ab initio simulations of high-Tc superconductivity and attempt to predict the
material-specific physics in the doped cuprates.

In conventional superconductors, the isotope effect provides decisive evidence for
the electron-phonon coupling “glue” of the Cooper pair. In HTSCs, we also aim
to search the clue of their superconducting mechanism. There are two important
experimental observations that shed light on the possible superconducting mecha-
nisms. One is the pressure effect, i.e., how Tc changes with respect to the external
pressure the crystal. For most conventional superconductors, the pressure makes the
Tc lower. This can be understood from Eq. (1.1). Although the lattice stiffness will
increase and the density of states NF remains essentially unchanged, the electron-
phonon coupling g actually is weakened and therefore reduces the Tc. For HTSCs,
how these factors influence the Tc is still not clear. Although there is anisotropy
on three lattice vectors, most existing experiments suggest a positive dTc;max=dp in
the 2D-CuO2 plane directions [239]. For example, the tri-layer HgBa2Ca2Cu3O8Cı
(1223) compound also achieved a higher Tc of 164 K under 30 GPa pressure than
under the ambient pressure (133 K) [264]. Therefore, we will explore this effect
using the ab initio quantum embedding by changing the pressure.

The other important experimental fact is the layer effect. As we have shown in
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Chap. 6, cuprates with different layers of CuO2 and different buffer layers in a unit
cell, have different Tc. For instance, the Hg-based cuprates have an interesting trend
in Tc, from the single-layer compound Hg-1201 (97 K) to the double-layer Hg-1212
(127 K), to the tri-layer (133 K). However, the Tc will decrease if more than 4 layers
of CuO2 exist in a unit cell [244], possibly due to the imbalanced doping charges in
different layers. One may also wonder whether we can predict the superconducting
strength of the infinite-layer compound CCO and see if it can reach higher Tc.

Besides breaking the particle-number symmetry (see theGSO formalism inSec. 2.5),
one have to deal with the complexity of atomic modeling of the dopants since the
parent state does not show any superconductivity. We will discuss the modeling of
the doped cuprates in Sec. 7.2.

In this chapter, we focus on the application of the ab initio superconductivity
formalism to the doped cuprates. As we shall describe, the superconducting states
can spontaneously emerge not only in the model system but also in the realistic
materials with doping. We showed that the d -wave superconducting magnitude
increases with the pressure applied to crystals and the trend connects to the exchange
coupling J . Furthermore, we also explore the buffer layer effect in the single-layer
and infinite layer compounds.

7.2 Computational details
Atomic modeling of doping
The hole or electron doping of cuprates is generated by introducing substitution of
buffer layer cations or additional anions. One famous example is the hole doping of
La2CuO4 by replacing some of the La (III) ions using Sr (II), which effectively put a
hole to the system. Another example is the hole doping of Hg-based cuprates, which
introduces additional oxygen at the Hg-plane, such that some electrons of the CuO2
plane is removed. The ideal way to simulate such doping is to use the supercell that
explicitly includes the dopant atoms. Unfortunately, the supercell method is very
expensive in practice and only high concentration of doping is possible, especially
for methods beyond DFT.

To allow arbitrary doping concentration, the simplest way is the rigid band approx-
imation (RBA) that directly dopes the hole or electrons in the system. This has the
same spirit as doping in lattice models, since they both directly modify the number
of electrons in the system. The tricky part in the ab initio system is the treatment
of the Coulomb integral. Because of the additional charges, the electrically neu-
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tral condition of the crystal is violated. One has to remove the divergent part of
Eq. (2.35) by an additional neutralizing background charge.

Another method is the virtual crystal approximation (VCA) [265, 266], where the
nuclear attractive potential is a simple mixing of different site compositions, e.g. if
a lattice site has x probability being occupied by atom A, and .1 � x/ probability
by atom B, the VCA potential immediately follows,

NHVCA
nuc .r/ D xV Anuc.r/C .1 � x/V Bnuc.r/ (7.1)

This approximation is still very crude as one can imagine the potential generated
by a half-occupied oxygen (Z D 8) site is fundamentally different to the potential
from a Be atom (Z D 4). A rigorous way to study the disordered system can
be established by Green’s functions G. One representative method is the coherent
potential approximation (CPA) [267, 268], which introduces a single-site effective
potential N� that generates an effective medium Green’s function NG. The replacement
of the coherent potential N� by a real site energy �, on average, does not change the
effective Green’s function on a single site i ,

hGi ii D
D�
N�i � �i C NG

�1
i i

��1E
D NGi i (7.2)

For the current stage, we consider mainly the RBA and VCA in the chapter and
leave supercell method and CPA to future development. The total lattice is neutral
and the number of electrons is kept as an even integer (although the number of
electrons per cell is typically a fractional number). We use a 2 � 2 supercell to
allow superconducting orders. If we define the doping concentration as the number
of additional charge per Cu, then this allows a minimal doping concentration of
1=.4nk/, where 4 is the number of Cu per cell. For VCA calculations of CCO,
the VCA potential mixing happens at the Ca ion, whose nuclear charge is modified
according to the doping.

Mean-field settings
The single particle mean-field (SCF) calculations (HF, DFT) were conducted in
crystalline Gaussian bases using the PySCF package [82, 138], and were cross-
checked with plane wave basis calculations using the VASP package [269–273].

For CCO and Hg-based cuprates, we used correlation consistent double-� basis
GTH-cc-pVDZ (specially optimized for the solid-state calculations) and used the
GTH pseudopotential for the core electrons [192, 193]. The basis then consists of
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3s3p2d1f shells for Cu, 2s2p1d for O, 3s3p2d for Ca, 3s3p3d1f for Hg and
4s3p2d for Ba. GDF was used to compute the two-electron integrals. We used a
self-optimized Gaussian basis as the density fitting auxiliary basis of Cu, O and Ca;
and used def2-TZVP-RI basis for the auxiliary basis of Hg and Ba (naux � 5nAO).

For the plane wave basis calculations, a projector augmented wave (PAW) [273,
274] representation was used to treat the core electrons and we used a plane wave
kinetic energy cutoff of 500 eV.

We sampled the Brillouin zone with a �-centered k mesh: 4 � 4 � 2 for the 2 � 2
supercell of the single layer compounds CCO and Hg-1201.

All mean-field calculations used a Fermi-Dirac smearing of 0:2 eV. All mean-field
calculations were converged to an accuracy of better than 10�8 a.u. per unit cell.

We used the PBE0 [275] hybrid functional for all doping RBA and VCA concentra-
tions. The VCA is implemented by directly modifying the nuclear charges of Ca.
All calculations are unrestricted so that the AFM order can be stabilized at the DFT
level. HF calculations are also performed. However, due to the poor description of
HF in the doped states, we use PBE0 as the DMET starting point.

DMET settings
All DMET routines, including the bath construction, integral transformation, solver
interface and correlation potential fitting, are implemented in the libDMET package
[98, 180]. To remove core orbitals, which make the bath construction unstable and
increases computational cost, we froze the lowest mean-field bands (3s3p bands for
Cu and Ca, 2s bands for O, 5s bands for Ba); and we also froze the Cu 4f and O
3d virtuals to further reduce the cost.

We added the correlation potential u to the CuO2 three-band orbitals and only fit
the three-band orbital anomalous blocks of the density matrices, i.e.,

˝
ai˛ajˇ

˛
where

ij 2 3band orbitals (and the self-consistency of the normal magnetic part is not
considered in this work). We also enforce the C2h symmetry of u since we do not
consider inhomogeneous orders. The initial guess of u is chosen as a d -wave pattern
on Cu 3dx2�y2 orbitals with a small amplitude 10�3. The convergence criterion on
the DMET self-consistency was chosen such that the maximal change of an element
in u was less than 5 � 10�4 a.u..

In the DMET mean-field and correlation fitting, a small smearing of ˇ D 1=kBT D
1000:0 is added to the lattice.
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Solver settings
We used the Newton-Krylov GCCSD methods implemented inMPI4PYSCF [133]
as solvers. The CCSD T andƒ equations were converged to a residual smaller than
10�4 a.u.

The largest embedding problem we treated using the GCCSD solver was of size
(376o, 188e), with multiple such size fragments solved in the multi-fragment em-
bedding formalism.

Mean-field basis set completeness
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Figure 7.1: Mean-field basis check on the equation of state, magnetic momentmAFM
andmagnetic exchange coupling J of CCO using unrestricted PBE0. J ’s are labeled
as numbers.

We test different bases on CCO using unrestricted PBE0. From Fig. 7.1, it is clear
that all basis beyond single-� level provide reasonable Birch-Murnaghan (B-M)
equation of state (EOS) [204, 205]. The single-� basis (GTH-SZV), however, is too
small to give the correct EOS.

In terms of magnetic properties, there is a decreasing trend in the magnetic moment
when pressure increases (volume decreases); and there is a significant increasing
trend of magnetic coupling J . The single-� basis trend is reversed, although the



127

J trend is qualitatively correct. The GTH-DZVP basis has a qualitatively correct
trend but the absolute number of J (141 meV) is still far away from the plane-wave
reference (217 meV). Optimized GTH-cc-pVDZ basis and all-electron triple-�-level
def2-TZVP basis are both good agreement with the plane-wave reference (error in
�J < 5meV). We therefore in the following use the double-� level GTH-cc-pVDZ
basis as it best balances the accuracy and efficiency.

7.3 Results
Pressure effect
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Figure 7.2: Pressure effect on hole-doped cuprates using DMET @ PBE0 + RBA.
We consider three pressures, -15 GPa (left), 0 GPa (middle, the experimental struc-
ture) and 33 GPa (right). The pressure is applied to the horizontal ab plane.

We consider the pressure effect on CCO. The pressure is introduced by changing
the lattice parameters in a and b axes uniformly. The hole doping is introduced
through the RBA and VCA to the system. We show three pressure points in Fig. 7.2,
corresponding to p D �15 GPa (V D 209 Å3), p D 0 GPa (V D 189 Å3) and
p D 33 GPa (V D 171 Å3). The negative pressure is hypothetical but in principle
can be realized by chemical pressure or substrates with larger lattice constant. The
magnetic and superconducting orders are plotted as a function of doping x (number
of holes per Cu).

The AFM order decreases with respect to the doping concentration (for p > 0),
similar to what we have seen in the one-band and in the three-bandmodels. However,
the dropping of AFM order is generally slower than that in the experiments (and
in the model calculations). There are several confounding factors in this slower
decay. (i) It can be partly attributed to the distribution of the doped holes. In a
realistic material, the doping charges will not completely fall into the CuO2 plane,
but will have substantial population on the buffer atoms. Of course, this is also
related to the atomic models of the doped materials, where VCA and RBA are not as
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accurate as the supercell approach. Nonetheless, the supercell approach is unlikely
to have a faster decay of the AFM order, as the doped charges are even harder
to move to the CuO2 plane. (ii) The screening effect in realistic materials is not
fully considered in the quantum embedding approach. The 2 � 2 supercell may not
be large enough to take into account all long-range correlations. Also, we do not
consider the self-consistency of the AFM order in this work. In the model systems,
the screening effect is renormalized to the model parameters and thus has a faster
decay. (iii) In experiments, the order parameters are measured in a long-range and
thermo-averaged sense, meaning that the local orders may still exist. If we want to
fully reproduce the experimental observations, it may require a larger supercell to
consider the ensemble average of the inhomogeneous orders.

In general, the AFM order decay faster when pressure is applied (the extreme case is
the negative pressure, where the AFM order does not vanish even with large doping
x > 0:5). This is similar to the trend of the magnetic layer effect from Hg-1201
to CCO, where the stronger covalent bonding makes the J larger, but the magnetic
moment smaller.

It is clear that there is SC dome(s) when doping happens. In some sense, we
numerically verified that the theoretical prediction of the d -wave superconductivity
in the lattice models is not an illusion, but is also valid in the ab initio settings.
The d -wave order primarily consists of Cu-d characters (and in particular 3dx2�y2),
the oxygen contribution is generally smaller and is more evident when pressure is
low. One interesting feature is that we sometimes see a two-peak structure in the SC
orders. It could be related to the different d -wave atomic characters, or the influence
of AFM strength (i.e., one with a large AFM order, the other with a small AFM
order).

It is interesting to see the SC order increases with respect to the pressure, in agree-
ment with the experimental observations (Tc increases when pressure is applied to
the CuO2 plane). Here, we analyze the cause of the phenomenon. For the same
compound, the doping charge distribution is largely similar, and therefore, the main
change in the electronic parameter is the magnetic parameter (from Fig 7.1, we
see that there is a significant change in J from 172 to 285 meV). A related fact
is that the SC order always appears when the magnetic order starts to decay. Our
result then supports the AFM fluctuation as the driving force of superconductivity
(i.e. the !0 in Tc is related to the magnetic energy scale), and J is a good de-
scriptor for the SC strength with pressure. The Tc-J relation has been proposed
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recently by experiments [260] (see also the theoretical discussion in the three-band
models [276]).
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Figure 7.3: Pressure effect on hole-doped cuprates using DMET @ PBE0 + VCA.
We consider three pressures, -15 GPa (left), 0 GPa (middle, the experimental struc-
ture) and 33 GPa (right). The pressure is applied to the horizontal ab plane.

In Fig. 7.3, we consider the VCA modeling of the doping holes. The general
features, such as the decay of AFM orders, the emergence of SC dome(s), SC
strength increases with pressure, are almost the same as the RBA. This indicates the
robustness of our order parameter calculations. One interesting feature is that in the
VCA, the SC order is very weak in the negative pressure case, possibly owing to the
fact that fewer charges go the CuO2 plane compared to the RBA.

Layer effect
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Figure 7.4: Layer effect on doped cuprates using DMET @ PBE0 with dopants
simulated by (a) RBA and (b) VCA.

In Fig. 7.4 (a), we consider the Hg-1201 using RBA. It shows a slightly smaller SC
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dome, seems to suggest the same trend of magnetic properties. However, we have
not converged the points larger than x > 0:6. At the current stage, we can not draw
decisive conclusions on the layer effect. There is more complexity, since the doping
charge distribution is very different to that in CCO.We have shown that the RBA and
VCA results of CCO are quite similar, but it is not the case for Hg-1201 (Fig. 7.4).
In CCO, the buffer layer contains only Ca atoms and most of the doped charges enter
into the CuO2 layers, while in Hg-1201, the additional charges from the oxygen
atoms have a greater effect on the buffer layer and make the phase diagram different.
We see that in Fig. 7.4 (b), only a small SC region exists around x D 0:2. The
results of Hg compounds then raise the necessity of careful assessment of different
atomic modeling approaches for the doping phenomena.

Analysis on multi-orbital pairing orders
We first consider the orbital components of the d -wave parameter as a function of
doping x (see Figs. 7.5 and 7.6). The largest component is the nearest 3dx2�y2-
3dx2�y2 coupling, which verifies the conclusion in the three-band Hubbard. The
other important components are 3dx2�y2-4s, 4dx2�y2-3dx2�y2 and 4s-4s. For
oxygen couplings, the important ones are 2p-2p and 2p-3p. The results then
suggests that for an accurate simulation, one should at least use a double-�-level
basis. We also observed the change in the orbital characters during the doping. For
example, the 3d -4s coupling is important at x D 0:2, whereas the 3d -4d and 4s-4s
couplings become more important around x D 0:5. To some extent, this explains
the different SC peak structures in Fig. 7.3 (b).

We then discuss the orbital components of the s-wave parameter (see Figs. 7.7
and 7.8). Overall, the s-wave order is much smaller than the d -wave one, especially
for the Cu couplings. The s-wave, if can be observed in experiments, should more
closely relate to the oxygen degrees of freedom.

7.4 Conclusions
The superconductivity in realistic materials is simulated for the first time without
relying simplified models. The pressure effect and layer effects can be captured
by the ab initio quantum embedding approach and supports the proposals of the
relation between magnetic parameters and Tc. We also performed the orbital-
character analysis on the d -wave and s-wave SC pairing order parameters, which
highlights the orbital character evolution during the doping process. The work
provides a promising route to study thematerial-specific physics of high-temperature
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Figure 7.5: Copper orbital-resolved d -wave order parameter of CCO from
DMET @ PBE0 using VCA (4f orbitals are omitted for clarity).

superconductivity.
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Figure 7.6: Oxygen orbital-resolved d -wave order parameter of CCO from
DMET @ PBE0 using VCA.



133

4s 5s 4p
x

4p
y

4p
z

5p
x

5p
y

5p
z

3d
xy

3d
yz

3d
z2

3d
xz

3d
x2

y2

4d
xy

4d
yz

4d
z2

4d
xz

4d
x2

y2

4s
5s

4px
4py
4pz
5px
5py
5pz

3dxy
3dyz
3dz2

3dxz
3dx2 y2

4dxy
4dyz
4dz2

4dxz
4dx2 y2

x = 0.1

4s 5s 4p
x

4p
y

4p
z

5p
x

5p
y

5p
z

3d
xy

3d
yz

3d
z2

3d
xz

3d
x2

y2

4d
xy

4d
yz

4d
z2

4d
xz

4d
x2

y2

4s
5s

4px
4py
4pz
5px
5py
5pz

3dxy
3dyz
3dz2

3dxz
3dx2 y2

4dxy
4dyz
4dz2

4dxz
4dx2 y2

x = 0.2

4s 5s 4p
x

4p
y

4p
z

5p
x

5p
y

5p
z

3d
xy

3d
yz

3d
z2

3d
xz

3d
x2

y2

4d
xy

4d
yz

4d
z2

4d
xz

4d
x2

y2

4s
5s

4px
4py
4pz
5px
5py
5pz

3dxy
3dyz
3dz2

3dxz
3dx2 y2

4dxy
4dyz
4dz2

4dxz
4dx2 y2

x = 0.3

4s 5s 4p
x

4p
y

4p
z

5p
x

5p
y

5p
z

3d
xy

3d
yz

3d
z2

3d
xz

3d
x2

y2

4d
xy

4d
yz

4d
z2

4d
xz

4d
x2

y2

4s
5s

4px
4py
4pz
5px
5py
5pz

3dxy
3dyz
3dz2

3dxz
3dx2 y2

4dxy
4dyz
4dz2

4dxz
4dx2 y2

x = 0.4

4s 5s 4p
x

4p
y

4p
z

5p
x

5p
y

5p
z

3d
xy

3d
yz

3d
z2

3d
xz

3d
x2

y2

4d
xy

4d
yz

4d
z2

4d
xz

4d
x2

y2

4s
5s

4px
4py
4pz
5px
5py
5pz

3dxy
3dyz
3dz2

3dxz
3dx2 y2

4dxy
4dyz
4dz2

4dxz
4dx2 y2

x = 0.5

4s 5s 4p
x

4p
y

4p
z

5p
x

5p
y

5p
z

3d
xy

3d
yz

3d
z2

3d
xz

3d
x2

y2

4d
xy

4d
yz

4d
z2

4d
xz

4d
x2

y2

4s
5s

4px
4py
4pz
5px
5py
5pz

3dxy
3dyz
3dz2

3dxz
3dx2 y2

4dxy
4dyz
4dz2

4dxz
4dx2 y2

x = 0.6

4s 5s 4p
x

4p
y

4p
z

5p
x

5p
y

5p
z

3d
xy

3d
yz

3d
z2

3d
xz

3d
x2

y2

4d
xy

4d
yz

4d
z2

4d
xz

4d
x2

y2

4s
5s

4px
4py
4pz
5px
5py
5pz

3dxy
3dyz
3dz2

3dxz
3dx2 y2

4dxy
4dyz
4dz2

4dxz
4dx2 y2

x = 0.7

4s 5s 4p
x

4p
y

4p
z

5p
x

5p
y

5p
z

3d
xy

3d
yz

3d
z2

3d
xz

3d
x2

y2

4d
xy

4d
yz

4d
z2

4d
xz

4d
x2

y2

4s
5s

4px
4py
4pz
5px
5py
5pz

3dxy
3dyz
3dz2

3dxz
3dx2 y2

4dxy
4dyz
4dz2

4dxz
4dx2 y2

x = 0.8

4s 5s 4p
x

4p
y

4p
z

5p
x

5p
y

5p
z

3d
xy

3d
yz

3d
z2

3d
xz

3d
x2

y2

4d
xy

4d
yz

4d
z2

4d
xz

4d
x2

y2

4s
5s

4px
4py
4pz
5px
5py
5pz

3dxy
3dyz
3dz2

3dxz
3dx2 y2

4dxy
4dyz
4dz2

4dxz
4dx2 y2

x = 0.9

0.00
0.02
0.04
0.06
0.08
0.10

m
SC

(a)

Figure 7.7: Copper orbital-resolved s-wave order parameter of CCO from
DMET @ PBE0 using VCA (4f orbitals are omitted for clarity).
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Figure 7.8: Oxygen orbital-resolved s-wave order parameter of CCO from
DMET @ PBE0 using VCA.
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Chapter 8

CONCLUDING REMARKS

To summarize, we presented our efforts in developing and applying quantum chem-
istry methods for faithful simulations of high-temperature superconductivity.

At the Hamiltonian level, we extended the original density matrix embedding theory
and dynamical mean-field theory from the lattice models to the periodic ab initio
materials. At the symmetry-breaking level, we developed a generalized spin-orbital
formalism to simultaneously study the magnetic and superconducting phases. At
the many-body solver level, we adapted the quantum chemistry solvers (coupled
cluster, density matrix renormalization group etc.) to large-scale quantum embed-
ding problems and made them suitable for symmetry-breaking Hamiltonians. At
the technical level, we enhanced the robustness of the embedding self-consistency
as well as the efficiency of the entire embedding and solver algorithms.

With thesemethodology advances, we studied the one-band and the three-bandHub-
bard model, which are minimal models for the high-Tc cuprates. Several interesting
features are observed, such as the coexistence of AFM and SC orders occurs in all
parameter sets, oxygen-participated d -wave SC orders, phase sensitivity to model
parameters �pd and tpp. These all raise questions about whether real cuprates
behave differently and how the structure determines the properties. With this in
mind, we investigated a family of cuprate superconducting materials in their parent
undoped states. We uncovered microscopic trends in the electron correlations and
revealed the link between the material composition and magnetic energy scales via
a many-body picture of excitation processes involving the buffer layers. We further
applied our methods to the doped cuprates and studied the pressure and layer effect
on the d -wave superconducting orders. The increased SC orders against pressure
support the magnetic “glue” as the main driving force of the Cooper pair formation.
The results also showed that even with a local quantum chemistry description, the
material-specific trends of exotic phases can be reliably simulated without any ar-
tificial parameters. Our work illustrates a path towards a quantitative and reliable
understanding of complex states of correlated materials at the ab initio many-body
level.

Based on the existing works, there are several possible future directions to pursue.



136

(i) Searching for the descriptors of higher Tc. Although we can perform the quantum
embedding on every possible material in the high-throughput screening, the embed-
ding is still not a black-box tool and is very costly. It is useful to search for some
simple descriptors and fit a function that could predict the Tc by a series of normal-
state DFT calculations. (ii) Larger supercell for inhomogeneous orders. Similar to
the study of the stripe order in the one-band Hubbard model [24], one could study
the stripe order, density wave, and many other orders through an impurity beyond
2�2 supercell. This certainly makes the calculations more expensive. Nevertheless,
it is still possible as we have demonstrated that the multi-fragment scheme allows
for a further dividing of sub-impurities in the supercell. The bottleneck would
then be the mean-field calculations and the correlation potential fitting. In these
cases, a more mean-field implementation (potentially a linear scaling algorithm)
would be preferred. (iii) Explicit doping atoms. The atomic model of doping in
our work is still preliminary, i.e., using rigid band approximation or virtual crystal
approximation. The optimal way is to enable a supercell calculation with explicit
doping atoms. How different doping atoms / concentrations influence the magnetic
and superconducting orders are of great interest to both computational modeling
and experimental realizations. (iv) Long-range correlation. The local nature of
the quantum embedding makes the description of inter-cell correlation is relatively
inaccurate (we have seen this in the spin-wave spectrum in Chap. 6). There are
several possible ways to improve it, e.g., a better set of baths that include more
entanglement between the impurity and environment; more orbitals that follow the
local correlation orbital selections; a better low-level theory beyond DFT (e.g., MP2
orGW ). (v) Better multi-reference impurity solvers. The coupled cluster theory, al-
though accurate enough for a moderately correlated system, could fail for extremely
strong interactions. A quantum Monte Carlo solver can be a good candidate, but
special treatment is needed to reduce the stochastic error in the density matrices or
Green’s functions. (vi) Excited states in the superconducting states. There exist
many experiments like angle-resolved photoemission spectroscopy that measure the
charge excitations in the cuprates. We can extend our scheme to the full-cell DMFT
to study such phenomena. (vii) Finite temperature effect. As we have mentioned in
Chap. 1, many phases emerge at finite temperatures, such as the pseudogap phase
and strange metal phase. How to simulate the materials with realistic ensemble
distribution is another important topic.

We hope that by combining the latest theoretical progresses and efficient algorithms,
the ab initio prediction of properties of high-temperature superconductors is within
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reach, and eventually the rational design of correlated materials can be routinely
achieved in silico.
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Appendix A

FOURIER TRANSFORM IN SOLIDS

A.1 Convention
The transformation between real R and reciprocal k spaces are ubiquitously used in the
quantum embedding of solids and utilizing the k-point symmetry is important for an efficient
implementation. In the following, we will use P;Q;R;S; � � � for cell indices, and use
X;Y;Z;W; � � � for k-point indices.

We first define the convention of discretized Fourier transform of operators,

aX�
p D

1
p
N

X
P
aP�
p e

iP�X;

aP�
p D

1
p
N

X
X
aX�
p e
�iX�P;

(A.1)

where N is the number of cells (or k-points) in the lattice .

We can get the transformation rule of orbitals by acting Eq. (A.1) on the vacuum,ˇ̌
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By applying hrj to left, we have

�X
p .r/ D
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N

X
P
�P
p.r/eiP�X; (A.3)

which gives the definition of crystalline gaussian bases [Eq. (2.32)] (up to a normalization
factor).

Similarly, for the inverse transform, we have
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There are several useful identities when working with discrete Fourier transforms,
1

N

X
k
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The continuous version of such identity is
1

V

Z
dr e�i.G�G0/�r

D ıG;G0 : (A.7)



139

A.2 Orbital coefficients
Given a set of MOs in k-space,

 k
i .r/ D

X
�

�k
�.r/C k

�i ; (A.8)

and the corresponding representation in R-space (Wannier function),
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�i : (A.9)

We want to know the relation between C k
�i and C

TR. To do so, the l.h.s. of Eq. (A.9) can
be expanded in k,
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and the r.h.s. can be expressed as
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Equaling the two parts, we have
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Similarly, the inverse transformation can be derived by multiplying eiR0�k on both sides and
summing over k. The final expression is,
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Note that the resulting supercell coefficients may have imaginary parts due to the phase
discontinuity in k.

Sometimes it is useful to project back the supercell (SC) band structures to the unit cell
(UC) Brillouin zone. This procedure is called Brillouin zone unfolding. To do so, we need
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to evaluate the AO overlap matrix between different k-meshes,D
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where Q D v0q with v0 is any lattice vector of the unit cell within the supercell; nb is
integer multiples of reciprocal lattice vectors.

The projection of MO coefficients then reads,
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We thus do not need to pre-compute the UC MOs and overlap matrices, only a structure
factor f is needed. If the SC MOs have the same symmetry of UC (no symmetry breaking
happens), the resulting UC MOs will have zero columns, i.e., at some k-points, there is no
projection from a specific SC MO state (the number of bands is reduced). Otherwise, there
will be multiple bands with non-integer spectral weights.
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A.3 Overlap and one-body matrices
The orbital overlap matrix can be computed as the integral over the normalized k-adapted
orbitals,
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where we have used
P

PQ D
P

P�Q;Q by shifting the origin of r to Q and Eq. (A.6). The
ı function makes the overlap matrix diagonal in the k space. This completes the derivation
of Eq. (2.33).

In general, a translational invariant one-body quantity A (such as Hamiltonian matrix h or
density matrix 
 ) can be compactly stored as a stripe (columns of the reference cell),
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We now consider how it can be related to the k-space quantity.

OA D
X
PQ

X
pq

APQ
pqa

P�
p a

Q
q

D
1

N

X
XY

X
PQpq

APQ
pqa

X�
p e
�iX�PaY

q e
iY�Q

D

X
XYpq

X
P�Q

AP�Q;0
pq e�iX�.P�Q/aX�

p a
Y
q

24 1
N

X
Q
e�i.X�Y/�Q

35
D

X
Xpq

X
P�Q

tP�Q;0
pq e�iX�.P�Q/aX�

p a
X
q

D

X
Xpq

AX
pqa

X�
p a

X
q ;

(A.18)

where
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X
P�Q

AP�Q;0
pq e�iX�.P�Q/; (A.19)

which corresponds to the forward fast Fourier transform (FFT). This also verifies the Eq.
(A.16).
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For the inverse transformation, we have
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where
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which corresponds to the inverse FFT (iFFT). Note that there is a 1=N factor.

A.4 Two-body quantities
Following the same trick, we can obtain the relation of two-body quantities between R and
k space.
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where
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Similarly, the inverse transformation reads,
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Note that in PySCF’s implementation of ERI, there is an additional N factor in Eq. (A.23)
that cancels the 1=N factor.
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Appendix B

SINGLE-PARTICLE METHODS

Here, we briefly review three kinds of single-particle approaches. The first two are HF
and hybrid DFT, which form the low-level mean-field methods that are the starting points
for the quantum embedding. The third is the DFT+U calculation. The primary drawback
of DFT+U is the level of empiricism that enters in the choice of U and double-counting
correction, which means that the errors are not simply improvable. We provide DFT+U
results in this thesis purely for comparison.

B.1 Coulomb and exchange matrices
The 7-dimension (7D) ERIs can be constructed from the density fitting integrals,
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Coulomb J and exchange K matrices can be obtained directly from the 7D ERI,
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In the PySCF program, thanks to the local Gaussian basis set and the density fitting tech-
niques, the HF exact exchange can be efficiently evaluated in the all-electron periodic
calculations. We first compute the auxiliary density,
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and then J is evaluated as a contraction of 3-center integral and �L,
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Note that J matrix only requires the diagonal part of the 3-center integral.
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K matrix, however, requires the off-diagonal part of the integral (two k points are involved).
The first step is a partial contraction between the integral and density matrix,
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and the second contraction gives the final exchange matrix,
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where we have used Eq. (2.43). By using the complex conjugation, there is no need to
load different k-point pairs at one time (for efficient implementation). Note that the MPI
parallelism can be ideally performed over k for the J matrix and for k-pairs for theK matrix,
and only the final step requires communications (reduce or gather operations).

B.2 Model system
Here, we discuss how several model Hamiltonian can be written in the PBC quantum
chemistry format.

One-band Hubbard model.
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In k-space,
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Therefore,
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The corresponding J and K matrices (useful for HF),
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Local Hamiltonian.
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More generally, for models with local interaction (i.e., without inter-cell two-body Hamil-
tonian),
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Corresponding J and K,
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From above, we see that the local Hamiltonian gives k-independent ERI, J and K.

Extended Hubbard Model.
V PQR0
pqrs D V

P;P;0;0
pqrs ıP;QıR;0: (B.18)

Therefore,
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where Z is a redundant label, i.e., for all Z, the integrals are the same, and only V X�Y
pqrs is

need to be stored.

The corresponding J and K matrices are
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These formulations are used for the three-band Hubbard model with inter-cell Upd interac-
tions.

B.3 Hartree-Fock and hybrid functionals
Hybrid functional is an extension of pure density functional through introducing a certain
fraction of Hartree-Fock exact exchange. For example, one typical form of hybrid functional,

EhybŒ�.r/; 
� D ˛HF
�
EHFx Œ
� �EDFTx Œ�.r/�

�
CEDFTxc Œ�.r/�; (B.22)

incorporates a fractional substitution of DFT exchange energy, while the correlation part
is still approximated by the original functional. The fraction of exact exchange can be
rationalized by the adiabatic connection, which bridges the free particle and fully interact-
ing limits [275]. A reasonable choice of ˛HF was obtained by matching the atomization
energies of Møller–Plesset perturbation theory (MP4). Using Perdew–Burke-Ernzerhof
(PBE) functional as the normal DFT part, this gives the so called PBE0 functional, whose
˛HF D 1=4.

During the past decades, hybrid functional has achieved remarkable success, initially in the
field of quantum chemistry [275, 277–280], and later in the area of solid-state physics [200,
208, 281–285]. It partially remedies the deficiency of the local, semi-local approximate
functionals, including the self-interaction error (SIE) and the underestimation of the fun-
damental band gap. Due to the less SIE, for localized electrons, hybrid functional often
behaves better. DFT+U can also be understood as a local hybrid functional, in which the
hybrid region is limited to the correlated d or f orbitals and the exchange integral value is
semi-empirically chosen so as to take the screening effect into account.

Compared to the standard DFT, hybrid functional is computationally more expensive, espe-
cially in the periodic system, where the exact exchange scales as O

�
n2kn

4
bas
�
[cf. local DFT

scaling O
�
n2kn

3
bas
�
]. This issue is more severe if the plane wave basis is used [286].

The final expression of the hybrid Kohn-Sham Hamiltonian (restricted case) is thus,

h
hyb;k
pq D hcore;kpq C J k

pq �
1

2
˛HFKk

pq C
�
1 � ˛HF

�
vx;kpq C v

c;k
pq ; (B.23)



148

where vx (vc) is the normal Kohn-Sham effective exchange (correlation) potential expanded
in the crystalline Gaussian basis set.

HF is the extreme case where aHF D 0 and the correlation term vc is omitted.

B.4 DFT + U
DFT + U can be viewed as a combination of the DFT and the HF of a Hubbard model
(with a few correlated orbitals). In the PySCF program, we have implemented Dudarev’s
rotationally invariant DFT+U formulation [287] in a periodic Gaussian basis. Suppose we
have a set of local orbitals f�g expanded in a crystalline AO basis f�g,ˇ̌

�k
i

˛
D

X
p

ˇ̌
�k
p

˛
C
LO;k
pi (B.24)

and a set of molecular orbitals, ˇ̌
 k�
m

˛
D

X
p
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�k
p

˛
CMO;k�pm : (B.25)

The default localized orbitals are atomic orbitals in the Gaussian basis set, whose projector
is defined as,
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where Sk
pq is the AO overlap matrix and 
k�

pq D
P
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m C
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mq is the reduced

one-particle density matrix in the AO basis where f k�
m denotes the occupancy of molecular

orbital  k�
m .r/. The DFT+U Hamiltonian is then obtained from a partial derivative,
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(B.27)

where I labels the atom whose d or f orbitals are corrected by the U � J term.

Although conceptually very simple, the detailed implementation of DFT+U can differ in
different computer programs due to two factors: (1) several versions of DFT+U exist,
including various choices of double counting corrections [288, 289]. (2) different choices
of local orbital projectors. For example, in the PySCF program, we implement U in a
standard Gaussian basis, while in plane-wave codes, the local orbital is often chosen to be a
pseudopotential atomic orbital [290] or a localized Wannier orbital [291, 292].



149

Besides some ambiguity in the implementation, the computational results further depend
on the values of U and J , and the choice of orbitals where U is added. U and J are
usually treated as semi-empirical parameters, or estimated via a variety of methods such as
constrained DFT [173, 293, 294], linear response theory [295, 296] or constrained random
phase approximation [297–301].
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Appendix C

LOCALIZED ORBITALS

C.1 Maximally localized Wannier functions
The Maximally localized Wannier function (MLWF) aims to minimize the spatial spread,

� D
X
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˛
�
ˇ̌ ˝
w0
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ˇ̌
r
ˇ̌
w0
n.r/

˛ˇ̌2
; (C.1)

where the position operator r and r2 will involve therk of orbitals, and the cost function can
be expressed using the overlap matrix between orbitals with a finite momentum difference
b,

M k;kCb
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; (C.2)

where
ukCb
n .r/ D e�i.kCb/�r kCb

n .r/ (C.3)

is the periodic part of the MOs. C is the MO coefficients,
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Expanding Eq. (C.2), we have
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This integrals can be evaluated by the ft_ao_pair function in PySCF,

fpq.kj ;G;q/ D
X

T
eikj �T

Z
dr e�i.GCq/�r��p.r/�q.r � T/; (C.7)
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by setting kj D .kC b/, G D b and q D 0.

TheM matrix is used as an input of wannier90. The other input quantity is theAk
mi matrix

(CMO;LO), which serves as the initial guess. This is typically constructed by projected
Wannier functions, e.g., IAO orbitals that we will discuss in the following.

C.2 Intrinsic atomic orbitals
k-adapted IAO. The key ingredients for IAO construction [95] are the occupied MOs fj mig
and two sets of bases, B1 and B2. Concretely, B1 is the normal AO basis used in the mean-
field calculation (labeled by �; �; � � � ) and B2 is the reference minimal basis set (labeled by
�; �; � � � ). B1 usually contains the space of B2 and the extra part reflects the polarization.
The goal of IAO construction is to obtain a set of AO-like orbitals that contains the occupied
space but has the size of the small basis setB2. To achieve this, we first define the depolarized
MOs

˚ˇ̌
N m
˛	
by projecting the MOs to B2, then back to B1,ˇ̌

N m
˛
D orth

�
PB1PB2 j mi

�
; (C.8)

where P is the resolution of identity (or projector) of AOs, e.g.

PB1
�� D

X
��

ˇ̌
��
˛
SB1
�� h�� j : (C.9)

Using the depolarized MO projector NO �
P
m

ˇ̌
N m
˛̋
N m
ˇ̌
, we can split the B2 set into

occupied NO
ˇ̌
��
˛
and virtual spaces

�
1 � NO

� ˇ̌
��
˛
. The IAOs fjwi ig are obtained by further

projecting these two subspace bases onto their polarized counterparts (O �
P
m j mih mj

and 1 �O) and applying Löwdin orthogonalization,

jwi i D orth
˚�
O NO C .1 �O/
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�� ˇ̌
��
˛	
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In periodic systems, the quantities in the above equations should be understood to carry k
labels, e.g.

ˇ̌
��
˛
!
ˇ̌
�k
�

˛
is a crystal AO, and SB1 ! Sk;B1 is the corresponding overlap

matrix. These quantities are already evaluated in the mean-field calculations. The only
thing we need additionally is the overlap matrix S12 between basis B1 and B2, which can
be evaluated directly,

Sk;B1;B2
�� D

X
T

Z
dreik�T���.r/��.r � T/; (C.11)

where the summation is over the periodic images T. After the IAOs are constructed, the
k-adapted PAOs are obtained by projecting out the IAO components from the AOs at each
k-point.

IAO with frozen-core orbitals. When dealing with frozen-core orbitals, the construction of
IAOs needs to be adjusted. The key idea is thatB1 basis now becomes a subset of MOs (i.e.,
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only treat the non-core part of MOs), CpP (we use capital letters P;Q; � � � for non-core
indices). So that new occupied coefficients in the non-core basis,

C occpm !
X
pq

C
�
PqSqpC

occ
pm: (C.12)

The large basis overlap S1 matrix changes as the following,

Spq ! SPQ D
X
pq

C
�
PpSpqCqQ: (C.13)

Similarly, the inter-molecular overlap S12 reads,

Sp� ! SP� D
X
p

C
�
PpSp�: (C.14)

The core and non-core IAOs are then constructed separately.

IAO with finite-temperature smearing. For large basisO , we can replace occupied projector
by a finite-temperature projector
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The depolarized MO projector NO becomes,
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We can not use the same formula in Eq. (C.15) since
˚
N 
	
is not a orthogonal orbital set.

These definition makes the IAOs still roughly span the “occupied space” of the smeared
wavefunction. The deviation of electron number is of order 1=ˇ.

C.3 Projected atomic orbitals
Projected atomic orbitals can be constructed by projecting out the contribution of valence
part (i.e. IAOs), "
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Appendix D

ANALYTIC GRADIENTS OF DENSITY MATRIX FITTING

D.1 Analytic gradients of cost function Eq. (2.57) at finite temperature
Once the gradients of Eq. (2.57) are obtained, we can utilize efficient gradient-based nu-
merical methods, such as CG or the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm,
to optimize the correlation potential. By differentiating Eq. (2.57) with respect to uij we
have,

@w

@uij
D 2

X
kl
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 corr

�
kl

@
mf
kl

@uij
; (D.1)

and thus the key task in Eq. (D.1) is to evaluate the response of the mean-field density
matrix with respect to a perturbation, @
mf

kl
=@uij . The response at zero temperature can be

written in terms of orbital coefficients and energies (see e.g. Refs. [35, 101]) using first
order perturbation theory,
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where we have assumed the system is gapped. However, when the system becomes (nearly)
gapless, this expression diverges. In such cases, the divergent gradient causes the optimiza-
tion to fail, and this is a source of many convergence difficulties in DMET.

One way to ameliorate this issue is to introduce a finite temperature smearing, similar to
what is used in mean-field calculations of metals. With an inverse temperature ˇ and a
perturbation ıu, the Fermi-Dirac density matrix is defined as,


kl D
h
1C eˇ.h��Cıu/

i�1
kl
; (D.3)

where � is the Fermi level for the (quasi-)particles. The response of 
 with respect to the
correlation potential u then involves two terms,

d
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where the first term is the direct response of the density at a fixed Fermi level, while the
second term reflects the contribution of the implicit change in the Fermi level due to the
change in potential. The final expression for the first term in Eq. (D.4) is,
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�
ipKpqCjqC
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lq; (D.5)
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where

Kpq � np
�
1 � nq

�1 � eˇ."p�"q/

"p � "q
: (D.6)

It is easy to check thatKpq is always finite when "p D "q . One can also let ˇ go to infinity
and choose p / q to label occupied / virtual orbitals; the gradient then gives the correct zero
temperature limit in Eq. (D.2) (up to a symmetrization).

The final expressions for the second term in Eq. (D.4) are,
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Usually this contribution is very small at low temperatures, compared to the direct response
in Eq. (D.5). However, this contribution will be important in a real finite temperature
simulation, e.g. in Ref. [302].

Now we first evaluate the direct response [Eq. (D.5)]. One can expand the exponential using
the interaction picture,
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where u.�/ is in the interaction picture,
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To first order, the exponential becomes,"
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The density matrix is then
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We can expand the first order term in the eigenstates of h (MO basis),
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Performing the integral yieldsX
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and we finally get the derivative of the density matrix with respect to the correlation potential
at a finite temperature:
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We then consider Eq. (D.7), i.e. if the Fermi level is allowed to change, this is the contribution
from the change in Fermi level. The density response with respect to �, by definition, is
@
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P
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. The response of � with respect to u can be evaluated by

taking the derivative with respect to uij on both sides of the equality,X
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leading to the following expression,
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By using the first order perturbation expression for the orbital energy, we reach the final
expression for the � contribution,
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Appendix E

SUPPLEMENTARY MATERIALS FOR CHAPTER IV

E.1 Numerical convergence
Here we assess the accuracy and convergence of the DMET procedure in the three-band
model calculations. The error in the DMET calculations arises from three possible sources:
(a) DMET self-consistency error (from incomplete convergence), (b) DMRG solver error
due to the finite bond dimension, and (c) error from the finite size of the impurity. The finite
size error (c) can, in principle, be eliminated by increasing the cluster size and extrapolating
to the thermodynamic limit (TDL), as performed in the one-band Hubbard model case [32].
In this work, we use a fixed 2� 2 cluster size due to the increased computational cost of the
three-band model, thus we cannot assess the finite-size error, except via some comparisons
to the 2 � 2 cluster error in the one-band model. However, the error due to (a) and (b) can
be directly estimated in our framework, which we now discuss.

2.13

2.12

2.11

E

x = 0.0

0.34
0.35
0.36
0.37

m
AF

M

0 2 4 6
iteration

0.000

0.005

0.010

m
SC

-2.25

-2.20
x = 0.2

0.15
0.20
0.25
0.30

0 5 10 15 20
iteration

0.00

0.05

0.10

Figure E.1: DMET energy (in units of tpd ) and order parameters of the Hybertsen minimal
parametrized three-band model, with respect to the number of iterations, at doping x D 0:0
(left) and x D 0:2 (right).

Fig. E.1 shows the overall convergence of DMET with respect to the number of DMET
self-consistent iterations. We observe qualitatively different convergence in the normal and
superconducting parts of the DMET phase diagram. To illustrate this, we plot the DMET
energy, AFM, and (d -wave) SC order parameter for the Hybertsenmodel at different dopings
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x. (These order parameters are defined precisely in Sec. 4.2). We first discuss the undoped
system. Here we see that the DMET cycle converges smoothly within 7 iterations. For the
DMET energy, a single DMET step is enough to converge to � 10�4, demonstrating the
utility of single-shotDMETcalculations in normal (and especially non-magnetic) states. The
order parameters (density matrices) are more strongly affected by self-consistency. We find
that the AFM order increases during the iterations, while the SC order is suppressed, giving
a pure antiferromagnetic state at convergence. We next consider x D 0:2 doping. Here, the
self-consistency cycle converges more slowly, requiring about 20 DMET iterations to reach
convergence. The total energy as well as AFM order converges at around the 10th iteration,
while the SC order oscillates until the 20th iteration. This in part reflects the influence
of the initial guess: the AFM guess [v� in Eq. (2.17)] is quite close to the converged
potential, while the SC guess [�˛ˇ in Eq. (2.17)] is initialized randomly and thus needs
more iterations to converge. If we were to restrict the DMET optimization to only pairing
potentials with d -wave symmetry (as is commonly done in most cluster DMFT [53] or VCA
calculations [172]), the convergence would be much faster. However, the more general form
of the correlation potential in DMET allows for the possibility of other pairing channels
and orders to emerge, as we will see in the discussion below. The remaining DMET self-
consistency error can be estimated from the difference between the expectation values (e.g.
DMET energy) of the last two iterations [32], e.g. ıE D 1

2 jE.n � 1/ �E.n/j. Consistent
with our chosen convergence criterion, the typical size of the DMET self-consistency error
in the undoped region is less than 10�5 (for both the energy and order parameters), and less
than 10�4 (for the energy) and � 10�3 (for the order parameters) in the doped region.

The error from the DMRG solver can be estimated using standard techniques based on
the discarded weight in the DMRG calculation [124–126] and can be further reduced by
extrapolation. The error in the impurity observables (used to evaluate the DMET energy
and order parameters) is linear in the (sufficiently small) discarded weight ı and hence can
be extrapolated to the exact result (ı D 0) [126]. The convergence with bond dimension
M for fixed correlation potential u is shown in Fig. E.2. We find that the discarded
weight in the normal state (undoped model) is extremely small and usually less than 10�8,
thus extrapolation is unnecessary. In fact, calculations can be carried out using a bond
dimension as small asM D 100 without any significant error. On the other hand, when the
system becomes superconducting, the discarded weight also increases, e.g. to 3 � 10�5 at
M D 800, indicating that the system is more entangled. In such situations, extrapolation
has a significant effect on the DMET expectation values. Compared to the extrapolated
values, atM D 800 the error in the energy (per site) and order parameters is about 10�3.

In summary, from the above analysis, we find that the DMET calculations can be smoothly
converged, with minimal error from either the self-consistency or from the solver.
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Figure E.2: DMET energy (in units of tpd ) and order parameters of the Hybertsen minimal
parametrized three-band model, with respect to the discarded weight ı of the DMRG solver,
at doping x D 0:0 (left) and x D 0:2 (right). The values are linearly extrapolated to the limit
where ı D 0:0 (dash line). The error shown is the standard deviation of linear regression.

E.2 Antiferromagnetic order of one-band Hubbard model
See Fig. E.3 for the AFM order of the one-band Hubbard model from DMET with different
cluster sizes.

0.00 0.05 0.10 0.15 0.20 0.25
doping x

0.0
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0.2

0.3

0.4

m
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M

1-band Hubbard 2 × 2
2 × 4
4 × 4
extrap.

Figure E.3: AFM order parameter of the doped one-band Hubbard model (U D 6) from
DMETwith different cluster sizes (2�2, 2�4 and 4�4) and the corresponding extrapolated
value. The data are taken from Ref. [32].



159

E.3 Phase diagram of Hybertsen and Martin models
See Fig. E.4 for the antiferromagnetic (AFM) and superconducting (SC) order of the three-
band Hubbard model with Hybertsen and Martin minimal parametrizations from DMET.
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doping x
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AFM
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Figure E.4: AFM and SC order parameter of the hole-doped three-band Hubbard model
(Hybertsen and Martin parameter sets) from DMET.

E.4 Charge, spin and pairing orders at different dopings and parametrizations
See Fig. E.5 - E.10 for charge, spin and pairing patterns at different dopings and parametriza-
tions of the three-band Hubbard model.
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(a) 0:0, Cu-Cu (b) 0:0, next-nearest O-O (c) 0:0, Cu-O, nearest O-O

(d) 0:1, Cu-Cu (e) 0:1, next-nearest O-O (f) 0:1, Cu-O, nearest O-O

(g) 0:2, Cu-Cu (h) 0:2, next-nearest O-O (i) 0:2, Cu-O, nearest O-O

(j) 0:3, Cu-Cu (k) 0:3, next-nearest O-O (l) 0:3, Cu-O, nearest O-O

Figure E.5: Charge, spin and pairing patterns for the hole-doped Hybertsen model. See
the caption of Fig. 4.9 in Chap. 4 for details.
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(a) 0:0, Cu-Cu (b) 0:0, next-nearest O-O (c) 0:0, Cu-O, nearest O-O

(d) 0:1, Cu-Cu (e) 0:1, next-nearest O-O (f) 0:1, Cu-O, nearest O-O

(g) 0:2, Cu-Cu (h) 0:2, next-nearest O-O (i) 0:2, Cu-O, nearest O-O

(j) 0:3, Cu-Cu (k) 0:3, next-nearest O-O (l) 0:3, Cu-O, nearest O-O

Figure E.6: Charge, spin and pairing distributions of the hole-doped Martin model. See
the caption of Fig. 4.9 in Chap. 4 for details.
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(a) 0:0, Cu-Cu (b) 0:0, next-nearest O-O (c) 0:0, Cu-O, nearest O-O

(d) 0:1, Cu-Cu (e) 0:1, next-nearest O-O (f) 0:1, Cu-O, nearest O-O

(g) 0:2, Cu-Cu (h) 0:2, next-nearest O-O (i) 0:2, Cu-O, nearest O-O

(j) 0:3, Cu-Cu (k) 0:3, next-nearest O-O (l) 0:3, Cu-O, nearest O-O

Figure E.7: Charge, spin and pairing distributions of the Hanke minimal model. See the
caption of Fig. 4.9 in Chap. 4 for details.
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(a) 0:0, Cu-Cu (b) 0:0, next-nearest O-O (c) 0:0, Cu-O, nearest O-O

(d) 0:1, Cu-Cu (e) 0:1, next-nearest O-O (f) 0:1, Cu-O, nearest O-O

(g) 0:2, Cu-Cu (h) 0:2, next-nearest O-O (i) 0:2, Cu-O, nearest O-O

(j) 0:3, Cu-Cu (k) 0:3, next-nearest O-O (l) 0:3, Cu-O, nearest O-O

Figure E.8: Charge, spin and pairing distributions of the hole-doped Hanke full model
(solution 2, from the strongly polarized guess). See the caption of Fig. 4.9 in Chap. 4 for
details.
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(m) 0:4, Cu-Cu (n) 0:4, next-nearest O-O (o) 0:4, Cu-O, nearest O-O

(p) 0:5, Cu-Cu (q) 0:5, next-nearest O-O (r) 0:5, Cu-O, nearest O-O

(s) 0:6, Cu-Cu (t) 0:6, next-nearest O-O (u) 0:6, Cu-O, nearest O-O

Figure E.8: Charge, spin and pairing distributions of the hole-doped Hanke full model
(solution 2, from the strongly polarized guess). See Fig. 4.9 in Chap. 4 for details. (cont.).
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(a) 0:3, Cu-Cu (b) 0:3, next-nearest O-O (c) 0:3, Cu-O, nearest O-O

(d) 0:31, Cu-Cu (e) 0:31, next-nearest O-O (f) 0:31, Cu-O, nearest O-O

(g) 0:325, Cu-Cu (h) 0:325, next-nearest O-O
(i) 0:325, Cu-O, nearest O-
O

(j) 0:35, Cu-Cu (k) 0:35, next-nearest O-O (l) 0:35, Cu-O, nearest O-O

Figure E.9: Charge, spin and pairing distributions of the hole-doped Hanke full model
(solution 1, from the weakly polarized guess). See the caption of Fig. 4.9 in Chap. 4 for
details.
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(a) �0:1, Cu-Cu (b) �0:1, next-nearest O-O (c) �0:1, Cu-O, nearest O-O

(d) �0:2, Cu-Cu (e) �0:2, next-nearest O-O (f) �0:2, Cu-O, nearest O-O

(g) �0:3, Cu-Cu (h) �0:3, next-nearest O-O (i) �0:3, Cu-O, nearest O-O

(j) �0:4, Cu-Cu (k) �0:4, next-nearest O-O (l) �0:4, Cu-O, nearest O-O

Figure E.10: Charge, spin and pairing distributions of the electron-dopedHanke full model.
See the caption of Fig. 4.9 in Chap. 4 for details.
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(m) �0:5, Cu-Cu (n) �0:5, next-nearest O-O (o) �0:5, Cu-O, nearest O-O

(p) �0:6, Cu-Cu (q) �0:6, next-nearest O-O (r) �0:6, Cu-O, nearest O-O

Figure E.10: Charge, spin and pairing distributions of the electron-dopedHanke full model.
See the caption of Fig. 4.9 in Chap. 4 for details. (cont.).
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Appendix F

SUPPLEMENTARY MATERIALS FOR CHAPTER VI

F.1 Computational details
System

Ba

(a) Hg-1201

Ba

Ca

(b) Hg-1212

Ca

(c) CCO

O

(d) CuO 2–
2

Figure F.1: Crystal structures of HgBa2CuO4 (Hg-1201), HgBa2CaCu2O6 (Hg-1212),
CaCuO2 (CCO) and CuO

2–
2 .

Table F.1: Crystal structures of HgBa2CuO4 (Hg-1201), HgBa2CaCu2O6 (Hg-1212),
CaCuO2 (CCO) and CuO

2–
2 .

Compound a [Å] c [Å] † Cu-O-Cu [ı ] apical ızCu�O [Å]
Hg-1201 a 3.8714 9.5023 180.0 2.767
Hg-1212 b 3.8630 12.6978 179.5 2.822
CCO c 3.8556 3.1805 180.0
CuO 2–

2 3.8556 3.1805 180.0

a From Ref. [303]. b From Ref. [304]. c From Ref. [305].

Weprimarily consider 4 compounds in thiswork: (a) the single-layer compoundHgBa2CuO4
(Hg-1201), (b) the double-layer compound HgBa2CaCu2O6 (Hg-1212), (c) the infinite-layer
compound CaCuO2 (CCO), and (d) a hypothetical CuO

2–
2 layer (repeated in the vertical

direction) (see Fig. F.1). The lattice parameters are summarized in Table F.1.

We use two types (
p
2�
p
2 and 2� 2) of supercells in this work to accommodate different

magnetic configurations (see Sec. F.1 for details). Their crystal structure files can be found
at the GitHub repository https://github.com/zhcui/cuprate_parent_state_data.

https://github.com/zhcui/cuprate_parent_state_data
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(a) AFM (b) FM (c) SDW

Figure F.2: Magnetic configurations considered in this work. Only Cu atoms are shown in
the figure and the two flavors of spin are represented by up and down arrows respectively.

Magnetic configurations and model mapping
In this work, we consider 3 magnetic configurations for the in-plane exchange coupling in
all cuprate calculations, namely AFM, FM, SDW states (see Fig. F.2). The spins in the AFM
state [Fig. F.2(a)] are arranged in a checkerboard pattern while in the FM [Fig. F.2(b)] state
the spins are all aligned in the same direction. In the SDW phase [Fig. F.2(c)], spins are
aligned along the x direction, but are anti-parallel along the y direction.

Heisenberg model. In this work, we consider a nearest-neighbor (NN) Heisenberg spin
Hamiltonian with the nearest (J1) neighbor coupling parameter,

H D J1
X
hij i

Si � Sj ; (F.1)

where h� � �i denotes the nearest neighbors. Within the Heisenberg model, the energies of
the 3 magnetic states can be expressed as,

EAFM D E0 � J1NZ1S
2;

EFM D E0 C J1NZ1S
2;

ESDW D E0;

(F.2)

where Zn denotes the average number of nth nearest neighbors (here Z1 D Z2 D 2), N is
the number of Cu atoms per cell (here N D 4 for the 2 � 2 cell) and S D 1=2.

1-band Hubbard model. Using the fourth order perturbation theory of the one-bandHubbard
model (with hopping t and onsite interaction U ) around the U D1 limit, we obtain a spin
Hamiltonian with 4 terms [306],

H DJ1
X
hij i

Si � Sj C J2
X
hhij ii

Si � Sj C J3
X
hhhij iii

Si � Sj

CJc
X
hijkli

�
Si � Sj

�
.Sk � Sl/C .Si � Sl/

�
Sk � Sj

�
� .Si � Sk/

�
Sj � Sl

�
;

(F.3)

where

J1 D 4
t2

U
� 24

t4

U 3
; (F.4)
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and

Jc D 80
t4

U 3
(F.5)

is the cyclic magnetic coupling parameter that measures the exchange pathway around the
plaquette of the four Cu’s.

J2 D J3 D
Jc

20
D 4

t4

U 3
: (F.6)

Within this expansion of the Hubbard model, the energies of the 3 magnetic states can be
expressed as,

EAFM D E0 � J1NZ1S
2
C J2NZ2S

2
C J3NZ3S

2
C JcNZcS

4;

EFM D E0 C J1NZ1S
2
C J2NZ2S

2
C J3NZ3S

2
C JcNZcS

4;

ESDW D E0 � J2NZ2S
2
C J3NZ3S

2
C JcNZcS

4;

(F.7)

where Z1 D Z2 D Z3 D 2, Zc D 1. Equivalently, the energies can be expressed in terms
of the two independent Hubbard parameters, t and U ,

EAFM D E0 � 8
t2

U
C 84

t4

U 3
;

EFM D E0 C 8
t2

U
� 12

t4

U 3
;

ESDW D E0 C 20
t4

U 3
:

(F.8)

These parameters can be determined from the least-squares solution of the above equations.

Effective 3J (multi-J ) Heisenberg model. Themagnetic couplings from the 1-bandHubbard
model can be renormalized into a multi-J Heisenberg model with couplings J1, J2 and
J3 [259, 262].

H D J eff1

X
hij i

Si � Sj C J eff2
X
hhij ii

Si � Sj C J eff3
X
hhhij iii

Si � Sj : (F.9)

The effective J ’s are related to the previous 1-band Hubbard J ’s,

J eff1 D J1 � 2JcS
2;

J eff2 D J2 � JcS
2;

J eff3 D J3:

(F.10)

Inter-layer coupling J?. We consider both inter-layer AFM and FM coupled configurations
for CCO to evaluate the inter-layer coupling J?,

J? D
EFM �EAFM

2NCuZ?S2
; (F.11)

where the perpendicular coordination numberZ? D 1. (Note: the individual cuprate layers
in CCO are AFM coupled; FM above refers only to the inter-layer, or layer-layer, coupling).
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The inter-layer magnetic order of the double-layer compound Hg-1212 is fixed to be AFM
coupled; we do not evaluate J? for this compound since it is not required for the spin-
wave spectrum at kz D 0, the setting for Hg-1212. The inter-layer couplings in the other
compounds are very weak and are thus neglected.

Spin wave spectrum. Once the spin model parameters are determined from the ab initio
calculation, the spin wave spectrum can be obtained from linear spin wave theory, which
converts a spin problem to a quadratic bosonic problem [307, 308]. We use the SpinW
program [308] to generate the spin wave dispersions of the three compounds andwe compare
them to data from resonant inelastic X-ray scattering (RIXS). We present spin-wave spectra
for the NNHeisenberg and 3J eff model. Following typical experimental conventions (which
allows us to compare directly to the experimental couplings), we do not use a quantum
renormalization factor for the NN Heisenberg spin-wave spectrum, but use a quantum
renormalization factor of Zc D 1:219 [259] for the multi-J model.

Single-particle method settings
The single particle mean-field (SCF) calculations (HF, DFT, DFT+U ) were carried out in
crystalline Gaussian bases using the PySCF package [82, 138], and were cross checked with
plane wave basis calculations using the VASP package [269–273].

For CCO and CuO 2–
2 , we used the minimal basis GTH-SVP-MOLOPT-SR for various

benchmarks. This consists of 1s1p1d shells for Cu, 1s1p for O, 2s1p for Ca, and uses
the GTH pseudopotential for the core electrons [192, 193]. GDF was used to compute
the two-electron integrals. We used an even-tempered Gaussian basis as the density fitting
auxiliary basis (naux � 10nAO).

For the more realistic calculations, we used an all-electron basis of polarized double-zeta
(split-valence) quality, def2-SVP [258] for all elements (consisting of 5s3p2d1f shells for
Cu, 3s2p1d for O, 4s2p1d for Ca, 5s2p2d1f for Hg, 3s2p1d for Ba, and 5s2p2d1f for
La). The sufficiency of the basis was further checked with a larger polarized triple-zeta
basis set def2-TZVP [258] as well as plane-wave basis calculations. For Hg, Ba and La, an
effective core potential (ECP) was used to handle the core electrons and scalar relativistic
effects [309, 310]. For the Hg, Ba, Ca and La bases, small exponent Gaussians (< 0:05) were
dropped to remove linear dependencies and to ensure numerical stability. GDF was also
used for the two-electron integrals. We used the density fitting auxiliary basis def2-SVP-RI
[311, 312], which is specially optimized for correlated calculations with the def2-SVP basis
(naux � 5nAO).

For the plane wave basis calculations, a projector augmented wave (PAW) [273, 274]
representation was used to treat the core electrons and we used a plane wave kinetic energy
cutoff of 500 eV.
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We sampled the Brillouin zone with a �-centered k mesh: 6 � 6 � 2 for the
p
2 �
p
2 cell

of the single layer compounds CuO 2–
2 , CCO and Hg-1201; 6� 6� 1 for the

p
2�
p
2 cell

of the double layer compound Hg-1212; 4� 4� 2 for the 2� 2 supercell of the single layer
compounds CuO2, CCO and Hg-1201; 4 � 4 � 1 for the 2 � 2 supercell of the double layer
compound Hg-1212. All mean-field calculations were converged to an accuracy of better
than 10�8 a.u. per unit cell.

We used the Perdew-Burke-Ernzerhof (PBE) functional [191] in the DFT+U calculations
and also used the PBE0 [275] hybrid functional. PBE+U calculations were performed using
Dudarev’s approach with a U value of 7.5 eV for the Cu 3d AOs. We also refer to additional
DFT data using other functionals from the literature (see below).

DMET settings
All DMET routines, including the bath construction, integral transformation, solver inter-
face, chemical potential and correlation potential fitting, are implemented in the libDMET
package [98, 180]. To remove core orbitals, which make the bath construction unstable and
increases computational cost, we froze the lowest mean-field bands (1s2s2p3s3p bands for
Cu and Ca, 1s2s bands for O, 5s5p bands for Hg, Ba and La). We added the correlation
potential u to all Cu and O orbitals and fit the three-band orbital blocks of the density
matrices, which avoids any instabilities in the DMET self-consistency. The convergence
criterion on the DMET self-consistency was chosen such that the maximal change of an
element in u was less than 5� 10�5 a.u., which corresponds roughly to an energy accuracy
of better than 1 � 10�5 a.u.

Solver settings
We used the UCCSD and UCCSD(T) methods implemented in PySCF as solvers. The
CCSD energy and ƒ equations were converged to an energy of better than 10�6 a.u.

The DMRG impurity solver used the Block2 program [125, 139–141, 241]. We used the
standard DMRG sweep settings and a genetic algorithm for orbital ordering. The tolerance
of the DMRG sweep energy was set to 10�6 a.u., the largest bond dimension was chosen to
be 5000 and extrapolation of the DMET energy was performed (see below).

The largest embedding problem we treated using the UCCSD solver was of size (364o,
168e), with multiple such size fragments solved in parallel in the multi-fragment embedding
formalism. For the UCCSD(T) and DMRG solvers, the largest problems treated were of
size (122o, 60e) and (60o, 60e) respectively.
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Figure F.3: Benchmark with k-CCSD. See the caption of Fig. 6.1(f). Here, we additionally
show DMET 1-shot results and HF results.

F.2 Benchmarks
Finite size effects
We first benchmark the finite impurity size error of the DMET calculations. We extract the
nearest-neighbor coupling J1 in a large periodic lattice from a k-CCSD solver, and compare
that to J1 extracted from impurity calculations of different sizes, also with the CCSD solver.
The difference between these results is the finite size error. The largest periodic lattice used
for this purpose was a 6� 6� 1 lattice of the AFM cell of CCO (72 primitive unit cells). In
Fig. F.3, we show the convergence of the J1 values from k-CCSD calculations and different
k meshes (cluster sizes) (note that the mean-field finite size error is always corrected by the
result from the largest mean-field calculation, so the data is showing the convergence with
respect to correlation effects only).

For the impurity, we use two cluster shapes (
p
2�
p
2 and 2� 2 cells of CCO). Even in the

very small
p
2�
p
2 impurity (the smallest magnetic supercell), the embedding calculation

gives a very accurate J1. Importantly, the DMET calculations show significantly less finite
size error compared to CCSD on periodic clusters of the same size, showing the effectiveness
of the embedding. Another feature we observe is that the 1-shot DMET calculation (1st

iteration) gives similar results to the self-consistent one. This indicates that the initial
mean-field, which breaks S2 symmetry, is already close to the final one corrected by the
correlation potential. This is, however, not true in the larger basis set calculations, where
correlations produce larger corrections and self-consistency is important.
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Table F.2: Local magnetic moment and nearest exchange coupling parameter of CCO with
a minimal basis set.

Method mAFM [�B] mFM [�B] J1 [meV]
multi-frag (

p
2 �
p
2 cell, 1-shot) 0.62 0.76 178

multi-frag (
p
2 �
p
2 cell, SCF) 0.61 0.76 191

full-cell (
p
2 �
p
2 cell, 1-shot) 0.63 0.77 185

full-cell (
p
2 �
p
2 cell, SCF) 0.62 0.77 197

multi-frag (2 � 2 cell, 1-shot) 0.63 0.77 183
multi-frag (2 � 2 cell, SCF) 0.63 0.77 211
full-cell (2 � 2 cell, 1-shot) 0.63 0.78 184
full-cell (2 � 2 cell, SCF) 0.63 0.78 202
UCCSD (extrap.) 194

Multi-fragment scheme
We next test the accuracy of the multi-fragment scheme. From Table F.2, we see that the
error in J1 from the multi-fragment treatment is less than � 10 meV and indeed energies
in all the schemes are very close to the TDL k-CCSD value. The multi-fragment scheme
also does not affect the local magnetic moments. Since the multi-fragment scheme does not
introduce significant errors in the minimal basis but greatly reduces the computation cost,
we use it in all following calculations.

Basis set completeness
We first check basis set convergence for the mean-field (single-particle) methods. Cross-
checks between def2-SVP and a plane-wave basis are summarized in Tables F.3-F.6. The
data clearly show that the relative energies in both the HF and DFT calculations are well
converged. The error is 5 meV or less in HF, and 10 meV or less in PBE0. The deviation
in PBE+U is larger, primarily due to the different choices of local projector, but not the
basis set completeness. The basis convergence in HF is also shown in Table F.7, where the
difference among def2-SVP (the main basis used in this work), def2-TZVP and plane wave
is less than 1 meV.

Converging the correlation parts of the energy is in principle more challenging, requiring
bases with more valence, polarization, and diffuse functions. We assess the basis set
completeness in the small impurity (

p
2 �
p
2 cell) DMET calculations in Table F.7.

Compared to a larger basis def2-TZVP, the magnetic moments from def2-SVP agree well,
and the difference in the derived NN magnetic coupling J1 is only 5 meV. This suggests
that def2-SVP basis provides a satisfactory balance between accuracy and efficiency for this
study, allowing for reasonably converged energy scales while enabling larger impurity sizes
(2 � 2 supercell) in the following realistic calculations.
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Table F.3: Comparison of the single-particle approach results for Hg-1201 from PySCF
andVASP. Some long-range parameters are left blank since the SDW state in the plane wave
basis converges to a paramagnetic state.

Method software Heisenberg 1-band Hubbard 3J eff Heisenberg
J1 J1 J2,

J3

Jc U=t J eff1 J eff2 J eff3

PBE+U
PySCF 149.7 149.7 9.7 194.7 4.6 52.4 -38.9 9.7
VASP 175.2 175.2 8.0 159.0 5.3 95.7 -31.8 8.0

PBE0
PySCF 198.8 198.8 11.3 225.4 4.9 86.1 -45.1 11.3
VASP 206.0 206.0 13.9 278.2 4.6 66.9 -55.6 13.9

HF
PySCF 33.7 33.7 1.0 20.2 6.3 23.6 -4.0 1.0
VASP 34.2

Table F.4: Comparison of the single-particle approach results for Hg-1212 from PySCF
and VASP.

Method software Heisenberg 1-band Hubbard 3J eff Heisenberg
J1 J1 J2,

J3

Jc U=t J eff1 J eff2 J eff3

PBE+U
PySCF 159.6 159.6 11.0 220.9 4.5 49.1 -44.2 11.0
VASP 181.5 181.5 7.5 149.5 5.5 106.8 -29.9 7.5

PBE0
PySCF 210.2 210.2 12.5 250.2 4.8 85.1 -50.0 12.5
VASP 214.1 214.1 14.6 291.5 4.5 68.3 -58.3 14.6

HF
PySCF 36.3 36.3 1.2 23.4 6.1 24.6 -4.7 1.2
VASP 36.1

Table F.5: Comparison of the single-particle approach results for CCO from PySCF and
VASP.

Method software Heisenberg 1-band Hubbard 3J eff Heisenberg
J1 J1 J2,

J3

Jc U=t J eff1 J eff2 J eff3

PBE+U
PySCF 168.9 168.9 14.0 279.0 4.3 29.4 -55.8 14.0
VASP 199.6 199.6 14.0 279.7 4.5 59.7 -55.9 14.0

PBE0
PySCF 213.9 213.9 13.4 267.2 4.7 80.3 -53.4 13.4
VASP 217.2 217.2 16.0 319.0 4.4 57.6 -63.8 16.0

HF
PySCF 38.0 38.0 1.4 27.0 5.8 24.5 -5.4 1.4
VASP 37.1 37.1 1.7 33.2 5.3 20.5 -6.6 1.7

Solver accuracy
We further check the accuracy of the solver (CCSD) against more accurate solvers [CCSD(T)
and DMRG]. In Fig. F.4(a), we extrapolate the DMET energy from the DMRG solver to
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Table F.6: Comparison of the single-particle approach results for CuO 2–
2 from PySCF

andVASP. Some long-range parameters are left blank since the SDW state in the plane wave
basis converges to a paramagnetic state.

Method software Heisenberg 1-band Hubbard 3J eff Heisenberg
J1 J1 J2,

J3

Jc U=t J eff1 J eff2 J eff3

PBE+U
PySCF 165.5 165.5 26.0 520.4 3.5 -

94.7
-104.1 26.0

VASP 194.8

PBE0
PySCF 269.8 269.8 11.9 238.4 5.4 150.6 -47.7 11.9
VASP 280.9

HF
PySCF 55.5 55.5 2.1 41.9 5.7 34.6 -8.4 2.1
VASP 50.9

Table F.7: Basis set size convergence. Both mean-field (HF) and correlated (DMET with
p
2 �
p
2 impurity cell size) calculations of CCO are shown.

Basis set method mAFM [�B] mFM [�B] J1 [meV]
def2-SVP

HF 0.81 0.87 38.0
DMET (CCSD) 0.68 0.77 122

def2-TZVP
HF 0.81 0.86 37.5
DMET (CCSD) 0.68 0.77 117

plane wave
HF 37.1

Table F.8: DMET solver benchmark. The results use the embedding Hamiltonian from the
last DMET self-consistent iteration in CCO (

p
2�
p
2 cell) with the minimal and def2-SVP

basis sets.

Basis set method mAFM [�B] mFM [�B] J1 [meV]
minimal basis

CCSD solver 0.61 0.76 191
CCSD(T) solver 0.61 0.75 195
DMRG solver (M D 1000) 0.61 0.76 231
DMRG solver (M D 5000) 0.61 0.75 212
DMRG solver (extrap.) 0.61 0.75 195˙ 22

def2-SVP
HF 0.81 0.87 38
CCSD solver 0.68 0.77 122
CCSD(T) solver 0.67 0.76 132
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Figure F.4: Linear extrapolation of the DMET energy using a DMRG solver for (a) CCO
and (b) CuO 2–

2 . The energies are generated by reverse sweeps of the DMRG calculation
from bond dimensionM D 5000. We useM D 1500; 2000; 2500; 3000; 3500; 4000; 4500
to perform the linear energy extrapolation with respect to the discarded weight. The energy
zero is taken as the extrapolated AFM energy (per Cu). The error bar is estimated as 1/5 of
the extrapolation distance, i.e., ŒE.M D 4500/ �E.M D1/�=5.

zero discarded weight ı ! 0 [infinite bond dimension (M !1)] for CCO. Both the AFM
and FM states energies exhibit good linearity with respect to the discarded weight (the AFM
state energy is slightly more linear). Despite the small size of the energy difference, the
extrapolated J1 agrees very well with the CCSD solver. This illustrates the accuracy of
CCSD for the AFM ordered state starting from the symmetry broken mean-field reference.
Similarly, the magnetic moments are also very close.

CCSD(T) includes more dynamical correlation than CCSD and this becomes important in
larger basis sets. From Table F.8, one can see that for the minimal basis, CCSD(T) gives
a very small correction of 4 meV in J1. For the larger basis def2-SVP, as expected, it
gives a slightly larger correction of 10 meV. The change in the magnetic moment is about
0:01 �B. We also show HF reference magnetic moments. The CC results are significantly
different from the Hartree-Fock reference, showing the magnitude of magnetic fluctuations.
In summary, for the parent state, CCSD yields good accuracy in the magnetic properties
and its error mainly comes from the neglect of some dynamical correlation (about 10 meV
in J ), rather than any breakdown of the CC approximation due to multi-reference effects.

We also benchmarked the artificial CuO 2–
2 material using the same strategy as above. The

results are summarized in Fig. F.4(b) and Table F.9. The DMRG extrapolation shows a
similar degree of linearity and energy uncertainty as in CCO, and the conclusions about the
accuracy of CCSD in comparison to CCSD(T) and DMRG are unaltered.
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Table F.9: Same as caption of Table F.8, but for CuO 2–
2 .

Basis set method mAFM [�B] mFM [�B] J1 [meV]
minimal basis

CCSD solver 0.50 0.69 294
CCSD(T) solver 0.50 0.69 297
DMRG solver (M D 1000) 0.50 0.70 395
DMRG solver (M D 5000) 0.49 0.69 349
DMRG solver (extrap.) 0.49 0.69 315˙ 22

Additional data for La2CuO4

As a more realistic benchmark example, we applied our methods to La2CuO4, which has
been extensively studied both experimentally and theoretically. There are two commonly
studied structural phases of La2CuO4, namely the high-temperature tetragonal (HTT) and
low-temperature orthorhombic (LTO, stabilized below 520 K) phases. In the HTT phase,
the CuO6 octahedra are perfectly aligned along the z axis and all Cu’s are equivalent while
in the LTO phase, the octahedra are distorted and the Cu-O-Cu angle is no longer 180ı (see
Fig. F.5). We computed the exchange coupling parameters in the two phases in Table F.10
and plot their spin wave dispersions in Fig. F.5. When fitted to the NN Heisenberg model,
the J1 results of the two phases are similar and agree well with experimentally derived
parameters, which reflects the fact that the local chemical environments of Cu are similar.
However, the long-range parameters (J2, J3 and Jc) in the two phases are different and
larger in the HTT phase. It is likely that the distortion among the CuO6 octahedra is harmful
for the long-range exchange process due to weaker overlap of orbitals. In general, the LTO
phase spin-wave spectrum agrees better with the experimentally measured spectrum. Away
from the � point and the Brillouin zone boundary, the error compared to the experimental
spectrum is larger; this can be traced to the smaller value of J1 compared to experiment.
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Table F.10: Magnetic exchange cou-
pling parameters [in meV] of La2CuO4
fitted from ab initio DMET and experi-
ments. a from Ref. [306], inelastic neu-
tron scattering data fitted to the Heisen-
berg and 1-band Hubbard models.

Method Heisenberg Hubbard
J1 J1 J2,

J3

Jc

HTT 102 102 7 135
LTO 106 106 2 42
Expt.a 112 138 2 39
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F.3 Multi-orbital electronic structure
Population analysis

Table F.11: Population analysis. n: number of electron; m: magnetization.

Element orbital Hg-1201 Hg-1212 CCO CuO 2–
2

n m n m n m n m

Cu
4s 0.18 -0.02 0.21 -0.02 0.24 -0.02 0.27 -0.03
4px 0.24 -0.02 0.25 -0.02 0.26 -0.02 0.28 -0.03
4py 0.25 -0.02 0.26 -0.02 0.27 -0.02 0.28 -0.03
4pz 0.18 0.00 0.19 0.00 0.18 0.00 0.25 0.00
3dxy 1.99 0.00 1.99 0.00 1.99 0.00 1.99 0.00
3dyz 1.98 0.00 1.98 0.00 1.98 0.00 1.98 0.00
3dzx 1.98 0.00 1.98 0.00 1.98 0.00 1.98 0.00
3dz2 1.95 0.00 1.93 0.01 1.91 0.00 1.90 0.00
3dx2�y2 1.20 0.76 1.21 0.74 1.22 0.72 1.29 0.63
5s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4dxy 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00
4dyz 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00
4dz2 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00
4dxz 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00
4dx2�y2 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00
4f .�7/ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
total 10.01 0.71 10.06 0.69 10.10 0.67 10.30 0.55

O in-plane
2px 1.60 0.00 1.58 0.00 1.55 0.00 1.50 0.00
2py 1.92 0.00 1.92 0.00 1.92 0.00 1.94 0.00
2pz 1.90 0.00 1.87 0.00 1.84 0.00 1.85 0.00
3s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3px 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3py 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00
3pz 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00
3d.�5/ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
total 5.46 0.00 5.40 0.00 5.35 0.00 5.33 0.00
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Table F.11: Population analysis (cont.).

Element orbital Hg-1201 Hg-1212 CCO CuO 2–
2

n m n m n m n m

O apical
2px 1.95 0.00 1.95 0.00
2py 1.95 0.00 1.95 0.00
2pz 1.63 0.00 1.65 0.00
3s 0.00 0.00 0.00 0.00
3px 0.01 0.00 0.01 0.00
3py 0.01 0.00 0.01 0.00
3pz 0.00 0.00 0.00 0.00
3d.�5/ 0.00 0.00 0.00 0.00
total 5.57 0.00 5.58 0.00

Ca
4s 0.15 0.00 0.16 0.00
3d.�5/ 0.00 0.00 0.00 0.00
total 0.15 0.00 0.16 0.00

Ba
6s 0.16 0.00 0.16 0.00
5d.�5/ 0.00 0.00 0.00 0.00
6p.�3/ 0.00 0.00 0.00 0.00
7s 0.00 0.00 0.00 0.00
total 0.16 0.00 0.16 0.00

Hg
6s 1.03 0.00 1.03 0.00
5dxy 1.98 0.00 1.98 0.00
5dyz 1.98 0.00 1.98 0.00
5dzx 1.98 0.00 1.98 0.00
5dz2 1.55 0.00 1.52 0.00
5dx2�y2 1.98 0.00 1.98 0.00
6px 0.01 0.00 0.01 0.00
6py 0.01 0.00 0.01 0.00
6pz 0.00 0.00 0.00 0.00
5f .�7/ 0.01 0.00 0.01 0.00
6d.�5/ 0.00 0.00 0.00 0.00
7s; 8s; 9s 0.00 0.00 0.00 0.00
total 10.59 0.00 10.57 0.00
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Bonding analysis

Table F.12: Bonding analysis of different compounds. Both the total bond order b and
orbital specific bond order are shown.

Bond type Hg-1201 Hg-1212 CCO CuO 2–
2

length order length order length order length order
Cu-O (in plane) 1.936 0.320 1.932 0.352 1.928 0.377 1.928 0.430
Cu-O (apical) 2.767 0.060 2.824 0.055
Cu-Cu (intra-layer) 3.871 0.044 3.863 0.052 3.856 0.060 3.856 0.073
Cu-Cu (inter-layer) 9.502 0.000 3.119 0.025 3.180 0.023 3.180 0.047
O-O (nearest) 2.737 0.005 2.732 0.007 2.726 0.008 2.726 0.010
O-O (next nearest) 3.871 0.002 3.863 0.002 3.856 0.001 3.856 0.001
Ca-Cu 3.145 0.004 3.156 0.004
Ca-O 2.488 0.030 2.499 0.033
Ba-Cu 3.340 0.002 3.351 0.003
Ba-O 2.722 0.035 2.732 0.035
Hg-O (apical) 1.984 0.393 1.966 0.386
Orbital specific bond order
Cu 3dx2�y2 - O 2px 0.073 0.075 0.077 0.092
Cu 4s - O 2px (� ) 0.043 0.047 0.054 0.057
Cu 4px - O 2px (� ) 0.157 0.160 0.162 0.161
Cu 4py - O 2py (�) 0.009 0.012 0.015 0.024
Cu 4pz - O 2pz (�) 0.038 0.055 0.068 0.093
total 0.320 0.349 0.376 0.427
Cu 3dz2 - O 2pz (apical) 0.000 0.000
Cu 4s - O 2pz (apical) 0.009 0.008
Cu 4pz - O 2pz (apical) 0.051 0.047
total 0.060 0.055

Comparison to DFT population

Table F.13: DFT charge, magnetic moment, bond order of CCO compared to DMET.

Method nCuO2 mCu bCu�O

PBE 15.58 0.00 0.442
PBE0 15.54 0.54 0.476
DMET 15.45 0.67 0.377
HF 15.37 0.81 0.356

We compare the population from different DFT functionals to DMET and HF in Table F.13.
The semi-local PBE functional, as expected, completely fails in describing magnetism
(mCu D 0). HF is in another limit, where the electrons are over-localized and the magnetic
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moment is overestimated. PBE0, due to the mixing of 25% HF exchange in the functional,
is between the two limits and predicts reasonable charge and magnetic moment similar to
DMET. As described in the main text, hybrid functionals like PBE0, gives qualitatively
correct results for a single compound. However, hybrid DFT or DFTCU may fail in
predicting systematical trends among different compounds, especially for the subtle influence
of the buffer layer.

Real space density and ELF analysis

Hg-1201 Hg-1212 CCO CuO2
2

0.02
0.00

0.04

0.08

0.12
0 1 2

Figure F.6: Electron density contour in the CuO2 plane of different compounds (From left
to right: Hg-1201, Hg-1212, CCO, CuO 2–

2 ). Only the valence electron �˛.r/ of the AFM
state is shown. The second row shows the density difference between compoundsX and the
reference Hg-1201, i.e., �� D �.X/ � �.Hg-1201/.

For a real space description of the charge and bonding in the xy plane, we have analyzed
the electron density �.r/ in Fig. F.6 and the electron localization function (ELF) in Fig. F.7.
In general, the three compounds have very similar plots of the density and ELF. From the
density plot (Fig. F.6), the differential density shows that the Cu electron density increases
from Hg-1201 to CuO 2–

2 , consistent with the previous population analysis. In the ELF
plots, we clearly see the lone electron pairs on the non-3-band oxygen 2p’s. Between Cu
and O, although there is a maximum in the ELF function, it does not show a very typical
covalent bonding pattern. This suggests the bonding between Cu and O is more ionic than
covalent. The differential ELF plots show that the electron is less likely to localize around
the core region of oxygen moving from Hg-1201 to CuO 2–

2 , i.e., the covalent bonding in
the inter-atomic bonding region is increasing and the ionic character becomes weaker.

A similar analysis can be done for the xz plane, see Fig. F.8 and F.9. In the differential
density plot, we see that the electron density around Cu increases in the xy plane, but
decreases in the xz plane. This can be interpreted as a change in bond order. When the
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Figure F.7: Electron localization function (ELF) contour in the CuO2 plane of different
compounds (From left to right: Hg-1201, Hg-1212, CCO, CuO 2–

2 ). Only valence electrons
ELF˛.r/ of the AFM state are shown. The second row shows the difference of ELF between
compounds X and the reference Hg-1201, i.e., �ELF D ELF.X/ � ELF.Hg-1201/.
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Figure F.8: Same caption as Fig. F.8, but on the xz plane.

system has apical oxygens, it has two effects: the first is to form bonds in the z direction
with Cu. Since the total valence of Cu (the ability to form covalent bonds) is finite, Cu
then has less ability to form covalent bonds in the CuO2 plane. The other effect is to
make Cu’s change more positive and the whole system becomes more ionic and the overall
covalent bond order is then decreased. In the language of electronic bands, the inclusion
of apical oxygen enlarges the orbital energy gap between the Cu 3d and O 2p bands (c.f.
�pd D �p��d is an important parameter in the 3-band model) and makes the hybridization
weaker. Also, the density / ELF plots show covalency between Hg and the apical O, which
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Figure F.9: Same caption as Fig. F.9, but in the xz plane.

has been discussed in the bond order analysis.
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Spin-traced natural orbitals around Fermi level
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Figure F.10: Spin-traced natural orbitals of Hg-1201 from DMET around the Fermi level
(dash line) at different k points. The main orbital character and the occupancy are labelled.
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Figure F.11: Spin-traced natural orbitals of Hg-1212 from DMET around the Fermi level
(dashed line) at different k points. The main orbital character and occupancy are labelled.
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Figure F.12: Spin-traced natural orbitals of CCO from DMET around the Fermi level
(dashed line) at different k points. The main orbital character and occupancy are labelled.

Although the correlated band structure is not currently available in our DMET calculations,
one can analyze the orbitals around the Fermi level through the natural orbitals, see Figs. F.10,
F.11 and F.12. Starting with the CCO natural orbitals, we can see that around the Fermi
level, the valence bands mainly have O p character and the conduction bands have a mixture
of Cu d and Cu s characters, which is typical for a charge transfer insulator. There is some
dispersion along the different k points, but it does not change either the orbital character
or natural occupancy significantly. The natural occupancies are not very far from 1 and 0,
which means the system is not far from a symmetry-breaking single reference system (and
this is why UCCSD gives a very accurate description).

Compared to the CCO natural orbitals, Hg-1212 has some Hg-apical O bands among the
low-lying virtual bands (evenmore appear for Hg-1201). This feature has also been observed
in the band structures using hybrid functionals [313], i.e., as the number of Hg-O layers
increases, the system CBM is dominated by the Hg-O bands and the band gap approaches
zero. This plays a role in the layer effects on the superexchange constants, as discussed in
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the main text and further below.

Spin-resolved natural orbitals around Fermi level
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Figure F.13: Spin-resolved HF orbitals of CCO around Fermi level (dash line) at different
k points. The main orbital character and the occupancy are labelled.
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Figure F.14: Spin-resolved natural orbitals of CCO from DMET around the Fermi level
(dash line) at different k points. The main orbital character and the occupancy are labelled.
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F.4 Magnetic trends across the cuprates
We present additional data from the literature and mean-field methods on the magnetic
exchange coupling parameters in this section. (Tables F.14, F.15, F.16, F.17).

Hg-1201

Table F.14: Magnetic exchange coupling parameters (in meV) of Hg-1201 calculated from
different methods, fitted to different spin models.

Method Heisenberg 1-band Hubbard 3J eff Heisenberg
J1 J1 J2, J3 Jc U=t J eff1 J eff2 J eff3

PBE+U 149.7 149.7 9.7 194.7 4.6 52.4 -38.9 9.7
PBE0 198.8 198.8 11.3 225.4 4.9 86.1 -45.1 11.3
HF 33.7 33.7 1.0 20.2 6.3 23.6 -4.0 1.0
DMET 103.8 103.8 2.4 48.4 7.0 79.6 -9.7 2.4
HSE06 204
B3LYP 235
DDCI 136.2 a, 141 b

CASPT2 123 c

Expt. 123 d, 135 e

a From Ref. [250], difference dedicated configuration interaction (DDCI) (molecular model) cal-
culation fitted to the Heisenberg model.

b From Ref. [314], difference dedicated configuration interaction (DDCI) (molecular model) cal-
culation fitted to the Heisenberg model.

c From Ref. [314], complete active space second-order perturbation theory (CASPT2) (molecular
model) calculation fitted to the Heisenberg model.

d From Ref. [261], resonant inelastic X-ray-scattering data fitted to the Heisenberg model.
e From Ref. [260], resonant inelastic X-ray-scattering data fitted to the Heisenberg model.



192

Hg-1212

Table F.15: Magnetic exchange coupling parameters (in meV) of Hg-1212 calculated from
different methods, fitted to different spin models.

Method Heisenberg 1-band Hubbard 3J eff Heisenberg
J1 J1 J2, J3 Jc U=t J eff1 J eff2 J eff3

PBE+U 159.6 159.6 11.0 220.9 4.5 49.1 -44.2 11.0
PBE0 210.2 210.2 12.5 250.2 4.8 85.1 -50.0 12.5
HF 36.3 36.3 1.2 23.4 6.1 24.6 -4.7 1.2
DMET 122.1 122.1 5.3 106.7 5.4 68.7 -21.3 5.3
HSE06 215
B3LYP 224
DDCI 153.8 a

Expt. 176 b

a From Ref. [250], DDCI (molecular model) calculation fitted to the Heisenberg model.
b From Ref. [260], resonant inelastic X-ray-scattering data fitted to the Heisenberg model.

CCO

Table F.16: Magnetic exchange coupling parameters (in meV) of CCO calculated from
different methods, fitted to different spin models.

Method Heisenberg 1-band Hubbard 3J eff Heisenberg J?

J1 J1 J2,
J3

Jc U=t J eff1 J eff2 J eff3

PBE+U 168.9 168.9 14.0 279.0 4.3 29.4 -55.8 14.0 10.4
PBE0 213.9 213.9 13.4 267.2 4.7 80.3 -53.4 13.4 12.0
HF 38.0 38.0 1.4 27.0 5.8 24.5 -5.4 1.4 2.7
DMET 155.4 155.4 9.7 194.4 4.7 58.2 -38.9 9.7 8.9
QMC 142 a

Expt. 142 b, 158 c 182 d 10.3
d

205.6
d

4.9 d 79.5
e

-41.1
e

10.3
e

6.5 e

a From Ref. [248], fixed-node diffusion Monte Carlo (FN-DMC) (crystal) calculation fitted to the
Heisenberg model.

b From Ref. [263], Raman spectrum data fitted to the Heisenberg model.
c From Ref. [262], RIXS data fitted to the Heisenberg model.
d From Ref. [262], RIXS data fitted to the 1-band Hubbard model.
e From Ref. [262], RIXS data fitted to the 3J eff Heisenberg model.
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CuO 2–
2

Table F.17: Magnetic exchange coupling parameters (in meV) of CuO 2–
2 calculated from

different methods, fitted to different spin models. U D 7:5 eV is added to the Cu 3d orbitals
in the PBE+U method.

Method Heisenberg 1-band Hubbard 3J eff Heisenberg
J1 J1 J2,

J3

Jc U=t J eff1 J eff2 J eff3

PBE+U 165.5 165.5 26.0 520.4 3.5 -94.7 -
104.1

26.0

PBE0 269.8 269.8 11.9 238.4 5.4 150.6 -47.7 11.9
HF 55.5 55.5 2.1 41.9 5.7 34.6 -8.4 2.1
DMET 205.5 205.5 14.0 279.6 4.6 65.8 -55.9 14.0
QMC 241 a

a From Ref. [248], fixed-node diffusion Monte Carlo (FN-DMC) (crystal) calculation fitted to the
Heisenberg model.

Remarks on sign and error of exchange coupling parameters
We note that the sign of the 2nd neighbor exchange coupling parameter J2 is related to
the specific spin model that is being fit. When fitting to a J1-J2 Heisenberg model, J2 is
positive, indicating an antiferromagnetic coupling. On the other hand, in the effective 3J
model, after absorbing the cyclic exchange Jc , J2 becomes negative, i.e., ferromagnetic
coupling.

When comparing to the experimental spectra, there are several possible sources of error:
(i) Finite-size effects: As the largest cluster size we used in the embedding calculation is a
2� 2 supercell, it is more likely that the long-range parameters J2, J3, Jc have larger error.
Errors in these parameters can typically be seen in the spin-wave dispersion away from the
� point (e.g. the X point in Fig. 6.4 in the main text, where the curvature is dominated by
Jc). Also because of the current mean-field Hartree-Fock treatment of long-range Coulomb
interactions outside of the computational cell (and given that Hartree-Fock underestimates
the Heisenberg exchange parameters in this system) we expect that if the cluster size is
further enlarged, the derived J ’s will only increase, further improving agreement with with
experiment. (ii) Model error: the current spin-wave spectrum is derived by fitting energies
to spin models and then applying linear spin-wave theory. It is possible that the chosen
spin models do not fully capture the high-energy part of the spin wave dispersion. Also, the
mapping from the ab initio energies to the spin model assumes that the chosen electronic
energies relate to Ising-like effective spins, but there is some ambiguity in this mapping.
For instance, the current mapping assumes that hSzi D ˙12 ; however, due to the charge
fluctuation of 3dx2�y2 orbitals, their jhSzij < 1

2
and fitting to such Sz will make the
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J values larger. (iii) Experimental uncertainty: the mercury-barium cuprate samples are
typically doped and the spin-wave dispersion can differ from that of the undoped parent
state. The doping dependence of the spin-wave dispersion in La2CuO4 has been studied
and the dispersion along � to R was found to be softened (to lower energy) compared to the
parent state. On the other hand, the dispersion along � to X was insensitive to the doping
[315].
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F.5 Untangling layer effects
Freezing out-of-plane orbitals

Cu O Ca Hg Ba
Cu d Cu d Cu d Cu d

(a) Cu d orbitals in the adjacent layer.
Cu d + Ca s Cu d + Ca s Cu d + Ca s Cu d + Ca s

Ca s Ca s Ca s Ca s Ca s Ca s

Ca s Ca s Ca s Ca s Ca s Ca s

(b) Cu d / Ca s hybrid orbitals.
Ca s Ca s Ca s Ca s Ca s

(c) Ca s orbitals.

Figure F.15: Out-of-plane localized embedding orbitals (isosurfaces) of CCO (view along
x axis). The main character of each orbital is labeled.

Table F.18: Effect of freezing orbitals on the magnetic exchange coupling parameters of
CCO and Hg-1201 (in meV).

Compound Heisenberg 1-band Hubbard 3J eff Heisenberg
J1 J1 J2, J3 Jc U=t J eff1 J eff2 J eff3

CCO (1-shot) 114.6 114.6 3.3 67.0 6.3 81.1 -13.4 3.3
CCO (frozen buffer) 105.7 105.7 1.0 19.7 10.6 95.8 -3.9 1.0
change -8% -71% +68%
Hg-1201 (1-shot) 92.3 92.3 1.1 22.0 9.5 81.3 -4.4 1.1
Hg-1201 (frozen buffer) 90.3 90.3 0.8 16.9 10.6 81.9 -3.4 0.8
change -2% -23% +12%

To understand the effects of the buffer layers (including the apical oxygens), we first localized
the embedding orbitals using PM localization (see Fig. F.15 for CCO and F.16 for Hg-1201).
We see that most of the out-of-plane orbitals are part of the virtual bands, except for some
of the apical oxygen orbitals. The two compounds are similar w.r.t. Ca and Ba centered
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Cu O Ca Hg Ba
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(b) apical O p orbitals.
Hg sd + O p Hg sd + O p Hg sd + O p Hg sd + O p

(c) Hg s and d orbitals hybridized with O p.
Cu d + Ba s Cu d + Ba s Cu d + Ba s Cu d + Ba s

(d) Cu d / Ba s hybrid orbitals.
Ba s Ba s Ba s Ba s Ba s

Ba s Ba s Ba s Ba s

(e) Ba s orbitals.

Figure F.16: Out-of-plane localized embedding orbitals (isosurfaces) of Hg-1201 (view
along x axis). The main character of each orbital is labeled. Only the bottom buffer layer
orbitals are shown.

orbitals. The CCO bath also has some additional orbitals that come from the Cu d of the
adjacent layers, while Hg-1201 has additional apical O and Hg orbitals.

We then freeze the out-of-plane orbitals in CCO and Hg-1201 and recompute the (1-shot)
DMET impurity wavefunctions. Concretely, the buffer and its coupling to the CuO2 layer are
treated by HF in the impurity solver; then the freezing procedure forbids the excitation/de-
excitation process (excitation D particle-hole excitations, including multiple particle-hole
channels) from the CuO2 layer to buffer layers. Thus the correlated impurity wavefunction,
when formally expanded in singles, doubles, etc. excitations relative to the Hartree-Fock
determinant, is missing those specific excited configurations. The resulting J values are
shown in Table F.18. One sees that J1 decreases by 8 %. Jc is very strongly influenced
by the freezing of the buffer layer orbitals and decreases by 71%. This suggest that J1 is a
relatively local property and is less influenced by freezing exchange pathways that involve
the buffer layers; Jc is a long-range property and its value is more strongly controlled by
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excitations to / from buffer layers. In Hg-1201, J1 is almost unchanged and the magnitude
of the change in Jc is significantly smaller than in CCO. After freezing the buffer layer, the
exchange couplings in CCO and Hg-1201 become very similar, highlighting the importance
of explicit excitations involving the buffer in differentiating the physics.

Wavefunction excitation analysis
Additional insight into the type of excitations involving the buffer layer that affect the
magnetic physics can be obtained by explicitly analyzing theCCwavefunction in the impurity
solution. This is discussed below.
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Figure F.17: Visualization of the coupled-cluster T1 amplitude in a local orbital basis. The
row indices are transformed from the occupied molecular orbitals and the column indices
are transformed from the virtual orbitals. (a) T1 amplitude of Hg-1201, where the important
orbital hybridization excitations are labeled: O - Cu and Cu 3d - 4d . (b) Difference between
T1 before and after freezing out-of-plane (buffer) orbitals of Hg-1201, where the primary
changes are labeled: O - Cu and Cu - buffer. (c), (d): Same as (a), (b), but for CCO.

We first transform the CCSD T1 amplitudes to the local orbital basis

T qp D
X
ij

Cpi t
a
i C

�
qa; (F.12)
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and this quantity is plotted in Fig. F.17. The T1 amplitude carries information on the single-
particle excitations that correct the Hartree-Fock solution. It thus describes the change
in orbital character (rehybridization) driven by fluctuations. Visualizing this quantity (a
matrix) in the local orbital basis allows us to describe the rehybridization in terms of the
atomic orbitals. The difference in the T1 amplitude on freezing the orbitals thus identifies
the change in fluctuation driven hybridization, where the fluctuations involve the buffer
degrees of freedom.

The basic feature seen in the T1 amplitude is a strong excitation from O 2p to Cu 3d and
hybridization between Cu 3d and 4d . The former is slightly stronger in CCO (0.070) than in
Hg-1201 (0.065), reflecting the stronger super-exchange in CCO, which has a larger J1 than
Hg-1201. The latter has also been observed in some recent CASPT2 calculations [316].

We next focus on the amplitude change after freezing the buffer orbitals [see Fig. F.17
(b), (d)]. It is clear that freezing has three significant effects: (i) excitations within the
buffer layer are prohibited (bottom right corner); (ii) excitations from the CuO2 plane to the
buffer layer are blocked (upper right corner); (iii) since screening effects from the buffer
are also removed (which increases the charge-transfer gap), there is a change in the in-plane
excitations, in particular the in-plane O ! Cu excitation (upper left corner). (i) does not
directly affect the in-plane magnetism, as it is limited to rehybridization of the buffer orbitals
themselves. The change in (iii) is similar in the two compounds. However, the change in (ii)
is almost two times larger in Hg-1201 than in CCO, due to much stronger CuO2 ! buffer
(Hg and apical O) excitation.

The effect of these processes on the resulting super-exchange can be understood to come from
several effects. First, the in-planeO!Cuexcitations directly lead to increased superexchange
(as this is part of the superexchange mechanism). Second, longer range exchange (including
ring-like exchange Jc) can be connected to non-local hopping between oxygen orbitals
facilitated by a diffuse orbital on Cu. The strong excitation into the buffer layer changes
the character of this orbital, reducing its effective mixing with the oxygen orbitals in the
virtual hopping process. [This is similar to the mechanism envisioned in Ref. [243, 317]].
Third, excitations from the ground-configuration to other non-super-exchange configurations
overall renormalizes all the exchange constants. The first and second effects are the likely
the largest ones and they act in opposite directions in Hg-1201, leading to the overall
insensitivity of the couplings to freezing/unfreezing the buffer orbitals.

The T2 amplitudes contain information on the connected two-particle excitations (see
Fig. F.18 for the largest 2000 elements in T2 and �T2). Again, the amplitudes are trans-
formed to the local orbital basis and partitioned into 4 types: pure in-plane excitations;
coupled and double excitation terms involving indices in both the buffer and the CuO2 plane
(double refers to two holes/two-particles in the buffer); pure buffer-buffer excitations. We
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Figure F.18: Visualization of the coupled-cluster T2 amplitude in a local orbital basis.
The largest 2000 elements of .T2/pqrs are labelled as in-plane (all 4 indices belong to the
in-plane orbitals), coupled/double (some indices are in-plane and some are out-of-plane) and
out-of-plane (all 4 indices are for out-of-plane orbitals). (a) T2 of Hg-1201. (b) Difference
between T2 before and after freezing out-of-plane (buffer) orbitals of Hg-1201. (c), (d):
Same as (a), (b), but for CCO.

find that CCO has a larger change in the coupling component of the two-particle excitations
than Hg-1201. Note that this change in the connected two-particle excitation reflects a fluc-
tuation that cannot be renormalized into an effective static picture, and is thus not contained
in earlier arguments that rely on such a picture, e.g., Ref. [243, 317]. Although we have not
carefully derived the influence on superexchange of this dynamical effect, it seems likely that
the larger coupled layer-buffer excitation can couple into longer-range exchange processes
in CCO, further increasing Jc relative to Hg-1201.
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Effect of shifting apical oxygen
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Figure F.19: Effect of apical oxygen distance ı on (a) J1 and (b) Jc of Hg-1201.

We studied the influence of apical oxygen in more detail by shifting the apical oxygen closer
or further away from the CuO2 plane of Hg-1201. Its influence on J1 and Jc is shown in
Fig. F.19.
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