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Introduction

Ces pages contiennent le travail que j’ai effectué pendant les trois années de ma these de
doctorat. Il est cependant difficile d’en présenter le sujet et les résultats en quelques mots,
pour une raison qui devient évidente a la lecture des titres des différents chapitres : les
domaines mathématiques couverts ne semblent avoir que peu de relations entre eux. Aussi,
I'introduction de ce texte ne saurait étre autre chose qu'un éclaircissement sur les liens entre
les sujets des travaux regroupés ici, liens qui relevent de 1’évolution de I’encadrement de
ma these, et expliquent que cette progression m’a paru naturelle. C’est au cours de cette
exposition que seront introduits les concepts étudiés.

Deux grands axes d’étude feront I'objet de ce document. Le premier concerne ’analyse
spectrale, et plus particulierement le comportement asymptotique du spectre de certains
opérateurs a parametres. Il s’agit des résultats que j’ai obtenus pendant la premiere moitié
de ma these, sur des sujets proposés par mon directeur de these Konstantin Pankrashkin,
avant qu’il ne quitte le laboratoire de mathématiques d’Orsay. Le second axe est celui de la
géométrie, Riemannienne et conforme, ou les sujets abordés m’ont été proposés par Andrei
Moroianu, mon second directeur de these. Néanmoins, ces deux parties se confondent dans
I’étude asymptotique des opérateurs de Dirac avec masses, ou le cadre géométrique prend
une place importante aux c6tés de 'analyse spectrale.

Suivant naturellement 1’ordre chronologique de mes recherches et de mon apprentissage,
je présenterai tout d’abord la partie portant sur 'analyse avant d’aborder les sujets
géométriques. En proposant une courte introduction sur les différents chapitres qui com-
posent ma these, j’espere, sans toutefois entrer dans les détails, que le lecteur pourra se faire
une idée des motivations qui m’ont poussé a I’étude de ces sujets, et de 'intérét des résultats
énonceés.

Sur les /-interactions sur des courbes a point de rebroussement

L’étude du comportement de particules assujetties a se déplacer dans une région restreinte de
I’espace est un probleme récurrent de la physique quantique. Différents modeéles peuvent étre
proposés afin de décrire de telles particules, le plus simple, mais qui ouvre déja de nombreuses
perspectives d’études, étant celui des graphes quantiques. Cependant, cette simplicité a un
prix : elle ne permet pas de prendre en compte certains effets physiques importants, comme
Peffet tunnel. Pour pallier ce défaut, on peut se pencher sur un modele plus complexe qui
inclut ces phénomenes : les J-interactions. Dans le contexte des particules dont le mouvement
est régi par I’équation de Schrédinger, et contraintes a se déplacer sur un graphe métrique I'
plongé dans R™, on perturbe 'opérateur de Schrédinger par un potentiel attractif et singulier
supporté par I". Une explication détaillée de ce modele et des questions qu’il implique peut
étre trouvée dans [21].

11
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D’un point de vue mathématique, et dans le cas ol le graphe est un sous-espace de RZ,
I'opérateur qui décrit le comportement des particules est donné formellement par ’expression

H, :=—-A—adf(x-T),

ou ¢ est la distribution de Dirac et o > 0. Afin de rendre cette définition rigoureuse, on
définit H, comme 'opérateur auto-adjoint associé a la forme quadratique

HY(R?) 3w+ hg(u,u) := // |Vul|*dz — a/ u?ds,
R? r

par les théorémes de représentations usuels [41]. Le parameétre o > 0 représente 'attractivité
de la région I'; et I'on peut se demander comment évolue cet opérateur lorsque I' devient
tres attractive, c’est-a-dire lorsque a — +o00. En effet, le modele précédent n’interdit pas la
présence d’une particule en dehors de la région I', et c¢’est uniquement dans le cas de cette
limite que 'on confine effectivement le mouvement.

On s’intéresse donc au comportement asymptotique des valeurs propres de H,, qui corre-
spondent physiquement aux niveaux d’énergie des particules, quand a tend vers +o0o. Ce
probléme particulier a déja été étudié pour différents types de graphes comme des courbes
lisses ou des domaines & coins [17,20,23,24,26,50,69]. Dans tous ces cas, on peut proposer
un développement asymptotique des valeurs propres, sachant que le spectre discret contient
un nombre arbitraire d’éléments lorsque « devient grand.

Le premier chapitre de cette theése retranscrit un article que j’ai rédigé avec Konstantin
Pankrashkin, et qui étudie le comportement asymptotique des valeurs propres de H,, lorsque
I est une courbe fermée, de classe C* en tout point différent de 1'origine, et il existe g9 > 0
et p > 1 tels que

Fﬂ( 80780 —{.’L‘l,Ig)Z Ile(O,EO |x2|—x1}

Cela signifie que la courbe forme un angle de mesure nulle a ’origine. Lorsque I’on s’intéresse a
une courbe lisse, on obtient un développement asymptotique en exhibant un opérateur effectif
par séparation de variables. Cette manipulation est rendue possible grace a l'existence d’un
voisinage tubulaire régulier autour de I'. Ici, la difficulté et la particularité du probleme
résident dans I’absence d’un tel voisinage, forcant I'utilisation d’autres méthodes.

Par un découpage bien choisi de I’espace, on remarque que les fonctions propres se localisent
pres de lorigine dans le régime asymptotique considéré, et la n-ieme valeur propre de H,,
notée E, (H,), se comporte de la maniére suivante :

En(Hy) = —a2 + 2752 B, (A) a7t7 + O(ar? )

ot = min { =55, A} > 0.

La preuve de cette estimation repose principalement sur I'utilisation du principe du Min-
Max afin de localiser le probléme au voisinage de 'origine et de se ramener & des opérateurs
effectifs pour lesquels les calculs sont plus faciles & mener.

Modele MIT Bag dans des limites de grandes masses

Le deuxieme chapitre s’inscrit dans la continuité du précédent, au sens ou il porte sur I’étude
d’opérateurs de Dirac avec une masse, et le comportement asymptotique des valeurs pro-
pres de leurs carrés lorsque cette masse devient infinie. Il s’agit donc également d’analyse
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asymptotique en géométrie spectrale. Par ailleurs, précisons que, le carré de 'opérateur de
Dirac étant a peu de chose prés le Laplacien, son étude a un lien fort avec 'opérateur de
Schrédinger, que nous avions regardé dans le chapitre précédent. Ce sujet m’a été suggéré par
Konstantin Pankrashkin, qui souhaitait généraliser un article qu’il avait écrit en collaboration
avec Andrei Moroianu et Thomas Ourmieres-Bonafos [59].

Afin d’expliquer I’apport de ce second chapitre, il est nécessaire d’exposer une fois encore le
contexte physique avant de rentrer dans le cadre mathématique.

Le modele MIT Bag a été imaginé par des chercheurs de 'université éponyme pour décrire
des particules telles que des quarks, qui seraient emprisonnées dans un hadron, représenté
par une région bornée X de 'espace ambiant [40]. Dans le cadre de la théorie quantique des
champs, ces particules sont considérées comme des champs quantiques, et donc régies par
I’équation de Dirac. De son coté, le confinement est cette fois imposé par une condition de
bord, indiquant que le flux du champ & travers la frontiere de X est nul. Ce modele differe
fortement du cas des d-interactions, ou le potentiel permettait de localiser la particule dans
un voisinage de la zone d’attraction avec une certaine probabilité.

Les objets analysés ici présentent de nombreuses dissemblances avec ceux du chapitre
précédent, ceci venant de la complexité conceptuelle de I’équation de Dirac. Celle-ci a été
introduite par Paul Dirac afin de concilier la relativité restreinte et la mécanique quantique
pour la description de I'électron. Aussi, les solutions de cette équation ne sont plus des
fonctions complexes de I'espace et du temps, mais des fonctions & valeurs dans 1’espace C*
appelées spineurs, dont le module ne s’interpréte plus comme une densité de probabilité. On
peut écrire cette équation dans ’espace-temps a quatre dimensions sous la forme

3
Hint) := (—z‘ > axdy + mB) v=i %w,
k=1

ou H,, est 'opérateur de Dirac, les aj, sont des matrices 4 x 4 qui satisfont aux conditions
de Clifford a;orj + aja; = 26714, m est le parametre de masse, et 1 est le spineur solution de
I’équation.

Dans ce cadre, et en notant n le vecteur normal unitaire extérieur a 9K, la condition de bord
du modele MIT Bag s’écrit —i8(a-n)ip = ¢. L’opérateur de Dirac avec la condition de bord
MIT Bag sur R? est alors H,, défini sur le domaine {¢p € H*(X,C*) | —if(a - n) = ¢}
Récemment, un intérét a été porté au comportement des valeurs propres de cet opérateur
dans la limite de grandes masses [4,5]. Ce régime s’interprete physiquement comme une
limite non-relativiste. En effet, dans I’équation physique, la masse présente dans ’expression
de Vopérateur H,, est remplacée par le terme mc?, ainsi, I'assertion ”m tend vers 'infini”
signifie que la vitesse des particules devient tres faible devant la vitesse de la lumiere.

Pour permettre 'utilisation d’outils tels que le principe du Min-Max, on regardera désormais
les carrés des opérateurs, ces-derniers n’étant pas bornés inférieurement.

Lorsque la masse croit, on observe une localisation des fonctions propres de H2, pres du bord
de XK, et les valeurs propres de H?2, convergent vers celles d’un opérateur effectif sur XK. Par
ailleurs, dans [4], les auteurs se sont penchés sur un opérateur & deux parametres de masse
m,m’ € R donné par

Hppome i= Hp, + 1gce(m' —m)B,

qui peut s’interpréter comme un opérateur de Dirac avec deux potentiels de masse localisés
dans les régions distinctes K et K°. Ils ont démontré que lorsque m était fixé et que 'on
faisait tendre m’ vers l'infini, les valeurs propres de an’m, convergeaient vers celles du carré
de l'opérateur MIT Bag avec masse m.
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Ces résultats de convergence ont été généralisés au cadre Euclidien en dimension quelconque
dans [59]. De plus, les auteurs ont montré que 'opérateur modele intervenant dans la limite
des valeurs propres du carré de 'opérateur de Dirac avec condition MIT Bag est en fait le
carré de lopérateur de Dirac sur 'hypersurface 0K. Puisque seul 'opérateur de Dirac sur
lespace plat a été introduit jusqu’ici, et afin d’expliquer cette derniére phrase a un public
non averti, il est nécessaire de digresser sur I'opérateur de Dirac sur les variétés.
L’opérateur de Dirac général a été construit par Atiyah et Singer dans les années 1960 a la
suite de leur travail sur la théorie de 'indice. Ils ont remarqué que les variétés Riemaniennes
orientées dont le SO,,-fibré principal induit admet un revétement par un Spin,, -fibré principal
permettent une construction similaire a celle de 'opérateur de Dirac des espaces Euclidiens.
Les variétés disposant d’une telle structure sont désormais appelées variétés spin, et il est a
noter que cette propriété est topologique, malgré ’apparente dépendance a une métrique :
elle est équivalente a l’annulation de la deuxieme classe de Stiefel-Whitney.

Plus précisément, une variété Riemaninenne orientée (M™, g) est spin si le SO,,-fibré principal
des reperes orthonormés Pso, M admet un revétement a deux feuillets par un Spin,,-fibré
principal Pspin, M, tel que, en notant x : Pspin, M — Pso,M la projection, pour tout
u € Pspin, M on a le diagramme commutatif suivant:

SH—UsS,

Spin,, —— Pspin, M

™~

Ad X M.

g0, Poxtwp /

—_— PSO,LM

Fixons une variété spin (M", g). Considérons le module de Clifford %, := (CQL%J, sur lequel
se représente de maniere irréductible I'algebre de Clifford complexe Cl,. Ceci induit une
représentation spinorielle p, : Spin,, — End(X,). On peut alors construire le fibré des
spineurs XM := Pspin M X, %, par la construction usuelle des fibrés associés [43], et les
sections de ce fibré sont appelées des spineurs. Dans le cas de ’espace Euclidien R"”, ou la
structure spin est triviale, il s’agit de fonctions de R™ dans ¥,,, et pour n = 4, on retrouve
les spineurs introduits dans I’équation de Dirac.

Il existe plusieurs structures naturelles sur le fibré X M. Premierement, on définit la mul-
tiplication de Clifford. Pour cela, remarquons déja que I'on peut étendre la représentation
du groupe SO, (R) sur R™ & l'algebre de Clifford complexe Cl,, en une représentation I.
En utilisant cette action, on définit le fibré de Clifford complexe sur M par Cl(M) :=
Pso, (M) x; Cl,. Alors, la multiplication de Clifford, notée ”-”, entre une section de Cl(M)
et un spineur est donnée par :

[X(u)’ U] : [Uﬂﬂ = [uvpn(v)'(/}]

ot u € Pspin, M, v € Cl,, et ¢ € X;,. Deuxiémement, le produit Hermitien canonique sur ¥,
pour lequel la multiplication de Clifford par les vecteurs de norme 1 dans R™ est unitaire, se
transporte sur XM en un produit Hermitien (-,-). Il satisfait donc l'identité

(X 01, X - ) = || X[P( W1, U2)

pour tous spineurs ¥y, Uy et X € T'M. Enfin, la connexion de Levi-Civita sur Pso, M se
releve en une connexion sur Pspin M, qui induit une connexion métrique V sur XM [43].
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Les outils introduits dans le paragraphe précédent permettent de définir I'opérateur de Dirac
sur M. Soit (eq,...,e,) un repére orthonormé en un point « de M. Alors, 'opérateur de
Dirac ) est 'opérateur différentiel d’ordre 1 défini en = par ’expression

E = Zek . Vek.
k=1

Il est facile de montrer que cette définition ne dépend pas du repere fixé. De plus, P est
formellement auto-adjoint [15].

Ayant désormais exposé cette construction, une remarque est toutefois nécessaire pour con-
clure sur 'apparition de l'opérateur de Dirac sur 0K dans le probleme MIT Bag. Avec les
notations précédemment introduites, si N est une hypersurface orientée de M, alors la struc-
ture spin de M induit canoniquement une structure spin sur N, telle que la restrition XM |y
fibré des spineurs & N s’identifie & XN si n est impair, et & XN & XN si n est pair. En
utilisant cette identification, le produit Hermitien, la multiplication de Clifford et la dérivée
covariante sur XN sont reliés a leurs équivalents sur XM |y (voir [33, Proposition 1.4.1], ou
la Proposition 2.2.6 ci-apres). La frontiere de K hérite alors d’une structure spin induite par
celle de I'espace ambiant, qui permet de définir 'opérateur effectif.

L’intervention de cet opérateur classique de la géométrie différentielle dans le régime asymp-
totique de grande masse pose une question naturelle : le résultat de convergence est-il
généralisable au cadre de la géométrie spinorielle? C’est donc a cette question que 'on
s’intéressera au cours du second chapitre de cette these.

Néanmoins, le probleme n’est pas encore bien posé sous cette forme, car I'opérateur étudié
dans le cadre Euclidien n’est pas l'opérateur de Dirac tel que nous l’avons défini sur les
variétés. On introduit donc un opérateur de Dirac qui généralise le modele MIT Bag sur
les variétés spin, et une fois le cadre géométrique correctement déterminé, on démontre la
convergence des valeurs propres du carré de cet opérateur dans la limite de grandes masses.
Plus précisément, on s’intéresse au régime m — —oo, le régime m — 400 ne donnant pas
une convergence des valeurs propres. On généralise également le résultat de convergence de
lopérateur a deux masses en étudiant la limite m’ — +oo & m fixée, et le régime ou les deux
limites m — —oo, m’ — 400 sont considérées simultanément.

Spineurs de Cauchy sur les variétés de dimension 3

A la fin du projet décrit précédemment, I'encadrement de ma these a changé puisque Kon-
stantin Pankrashkin a quitté le Laboratoire de mathématiques d’Orsay. Méme si il a continué
a encadrer mes travaux, j’ai, a partir de ce moment la, d’avantage travaillé sous la direction
d’Andrei Moroianu, qui m’avait formé a la géométrie spinorielle et m’avait aidé a mener
a bien mon entreprise précédente. Pour cette raison, je me suis orienté vers la géométrie
Riemannienne, qui fait partie de son domaine d’expertise.

Afin d’utiliser les compétences que j'avais acquises en me formant sur les spineurs et
l'opérateur de Dirac, il m’a été proposé un sujet comportant une forte composante d’analyse
sur une classe particuliere de spineurs. Le troisieme chapitre de ce manuscrit contient les
résultats de ce travail : il s’agit d’'un article sur les spineurs de Cauchy en dimension 3,
co-écrit avec Sergiu Moroianu.

Optons dans un premier temps pour une approche historique, ou du moins chronologique,
de la définition des spineurs de Cauchy. En 1980, Thomas Friedrich [29] démontre une
inégalité améliorant la borne inférieure des valeurs propres de 'opérateur de Dirac, donnée
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par U'inégalité de Lichnerowicz [48]. Sur toute variété spin compacte (M™,g), si A est valeur
propre de 'opérateur de Dirac, alors

n
A2 > —— Scaly,
“4n—1) "
ou Scaly est I'infimum de la courbure scalaire. Lorsque 1’égalité a lieu pour la valeur propre
Ao, la variété (M, g) est Einstein [15, Théoreme 5.3], et il existe donc un spineur propre ¥
sur M pour la valeur propre Ao, i.e. D¥ = \gWU. Un tel spineur satisfait alors une équation
particuliere, appelée équation de Killing [15, Remarque 5.5] :

VX\I/+@X-\IJ:0, VX € TM,
n

dont les solutions sont dénommées spineurs de Killing réels. Cette appellation provient d’une
propriété de ces spineurs, affirmant que le champ de vecteurs

n

Xy = ZZ<\IJ, er - Weg
k=1

qui leur est associé est un champ de vecteurs de Killing [15, Lemme 5.9], i.e. Lx, g9 = 0.
Notons par ailleurs que le cas A\g = 0 correspond aux spineurs paralléles.

On peut démontrer que remplacer la valeur propre A\g par une fonction réelle quelconque f
dans I'équation de Killing ne définit pas une plus grande famille de spineurs sur une variété
compacte [15, Proposition 5.11]. Il existe néanmoins une généralisation naturelle, qui consiste
a étudier les solutions de 1’équation

Vx¥ + A(X) - ¥ =0, VX € TM,

ol A est un endomorphisme symétrique de T'M. Les spineurs solutions de cette derniere
équation ont été étudiés dans différents contextes sous le nom de spineurs de Killing
généralisés [3,60-62].

Malgré les étapes que nous avons franchies pour arriver a la définition de ces derniers, ils
apparaissent naturellement lorsque 1’on restreint des spineurs paralleles a des hypersurfaces.
Expliquons-nous. Supposons que (M, g) est une hypersurface d’une variété Riemannienne
spin (Z, gz), munie de la métrique induite. Comme nous 'avons expliqué auparavant, M
hérite d’une structure spin induite par celle de Z, et les dérivées covariantes sur X2 et XM,
notées respectivement VZ et V, sont reliées par I’dentité

A(X
VU4 % U= Vi, YX € TM, ¥ € S2|u,

ou cette fois A est le tenseur de Weingarten de M. Si W est un spineur parallele sur Z, i.e.
VZW¥ = 0, sa restriction 1 := ¥|p; & M est solution de ’équation

A(X
waz—%-w, VX e TM,

et on reconnait I’équation des spineurs de Killing généralisés, introduite ci-dessus, pour
l’endomorphisme symétrique particulier A/2.

Cette construction par restriction a des hypersurfaces pose la question naturelle de la possi-

bilité d’une réciproque. En effet, donnons-nous un spineur ¢ € XM satisfaisant cette derniere
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équation pour un endomorphisme symétrique A de TM. On peut alors se demander si il ex-
iste une variété Riemannienne spin Z, telle que M se plonge isométriquement dans Z, que A
soit le tenseur de Weingarten de M et que 1 soit la restriction & M d’un spineur parallele
sur Z 7 De maniere plus imagée, cela revient & demander si ’on peut ”épaissir” la variété M
en une variété Z, et prolonger ¥ en un spineur parallele sur Z.

La réponse a cette question se révéle positive dans le cas analytique mais négative en général
lorsque les données sont seulement lisses [3]. Ce probléme pose la question de l'existence
des prolongements d’une métrique et d’un spineur, prolongements qui satisfont & certaines
équations différentielles, avec des conditions initiales sur I’hypersurface M. Il s’agit des lors
d’un probleme de Cauchy a résoudre. Pour cette raison, et afin de distinguer d’avantage
ces spineurs particuliers, nous les avons nommés spineurs de Cauchy, terminologie qui a
recu I'approbation des différents auteurs ayant travaillé sur le sujet. Notons qu’un spineur de
Cauchy est accompagné d’un endomorphisme symétrique, appelé endormorphisme de Cauchy,
qui lui est naturellement associé par I’équation le définissant.

Le cas des variétés simplement connexes de dimension 3 est particulier, car les structures
additionnelles conduisent & supprimer les spineurs du probleme. Ainsi, en dimension 3, un
endomorphisme symétrique A est associé a un spineur de Cauchy si et seulement si il vérifie
I’équation

0=R(X,Y) +*dVAX,Y) + A(X) N A(Y), X,Y € TM,

ol R est le tenseur de courbure de la variété ambiante, ”+” est 'opérateur de Hodge et dV est
la dérivée covariante extérieure, définie par I'expression d¥ A(X,Y) = (VxA)Y — (Vy A)X.
Dans le cas non simplement connexe, cette équation devient une condition nécessaire mais
non suffisante a l'existence d’un spineur de Cauchy associé a A.

C’est en utilisant cette équation constituve que nous démontrons les résultats du troisieme
chapitre. On s’y intéresse a la structure de ’espace des endomorphismes de Cauchy : on
démontre que ’espace des déformations infinitésimales autour d’un endomorphisme donné
est de dimension finie. On résout également le probleme de 1’épaississement de la sphere
ronde S? pour la donnée de certains spineurs de Cauchy. Enfin, on démontre des résultats
de classification des spineurs sur cette méme variété.

Avant de clore la présentation de cette partie, il est nécessaire de signaler que méme dans le
cas simple de S3, cette classification n’est pas compléte. Deux familles d’exemples de spineurs
de Cauchy sont connues sur la sphere ronde [60-62], mais la question de savoir si ce sont les
seuls exemples reste ouverte.

Variétés localement conformément produit

L’étude des spineurs de Cauchy m’avait été suggérée afin d’inscrire mon projet de these
dans une continuité logique, en poursuivant un travail sur les spineurs apres m’étre formé
sur 'opérateur de Dirac. Toutefois, le cceur de la recherche de mon second directeur de
these, Andrei Moroianu, est désormais la géométrie conforme. Les problemes qu’il avait a
me proposer, une fois rédigé ’article faisant ’objet du troisieme chapitre, s’inscrivaient donc
dans cette derniere discipline. Cependant, il est a souligner que de nombreuses questions
concernant les spineurs de Cauchy restent en suspens, mais I’absence de piste pour y répondre,
méme apres de longues réflexions, semble devoir reculer leur résolution. C’est ainsi que
j'achevais ma transition depuis l'analyse vers la géométrie conforme, qui sera l'objet des
deux derniers chapitres de cette these.
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Les classes conformes sur les variétés on été introduites par Weyl dans son livre fondateur
Raum, Zeit, Materie [75], afin de construire une théorie unificatrice de I’électromagnétisme
et de la relativité. La volonté de Weyl était de rompre avec 'idée que 'espace-temps est
une variété Riemannienne, en considérant qu’il n’existe pas de mesure de distance absolue
définie en tout point de I'univers. Au lieu de cela, il a considéré que la notion de distance en
physique était régie par des principes proches de ceux de la théorie des connexions affines,
et que le déplacement parallele était I'unique moyen de comparer des longueurs entre elles.
Bien que cette vision a été abandonnée par les physiciens, elle pose tout de méme les bases
d’une large théorie mathématique.

Une classe conforme ¢ sur une variété M est un ensemble de métriques Riemanniennes tel
que si g, ¢’ sont dans ¢, il existe une fonction lisse f sur M donnant I'identité e?fg = ¢’. La
donnée d’'une métrique Riemannienne g induit donc naturellement une classe conforme en
considérant toutes les métriques multiples g par une fonction strictement positive. De cette
définition, il découle que la notion de distance n’a plus de sens sur une variété conforme,
alors que les angles sont les mémes pour toutes les métriques de la classe.

Dans les mathématiques modernes, on opte pour une description différente des structures
conformes, qui permet de s’affranchir d’une métrique de référence. Définissons tout d’abord

pour k € R le fibré des poids £¥ := Fr(M) x et R, ot Fr(M) est le fibré des repéres sur M™.

On remarque alors qu’étant donnée une métrique Riemannienne g dans la classe conforme ¢

sur M, son élément de volume v, : Fr(AM) — R est identifié & la section de £~" donnée par

s(x) == [u,vp(u)] pour tout z € M, ou u est un repeére quelconque au-dessus de x. Via cette
2

identification, g ® vy ™ est une section de Sym(T*M @ T*M) ® £2, qui ne dépend pas de la
métrique choisie. Ainsi, cette section caractérise la classe conforme et peut étre confondue
avec elle.

Afin de suivre l'idée originale de Weyl, il est nécessaire de définir une connexion sur le
fibré tangent T'M pour comparer les vecteurs en utilisant le déplacement parallele. Lorsque
l'on travaille en géométrie Riemannienne, il existe une connexion métrique sans torsion
préférentielle, la connexion de Levi-Civita. Dans le cadre de la géométrie conforme, on
s'intéresse plus largement aux connexions sans torsion qui préservent la classe conforme,
appelées structures de Weyl.

La classe conforme ¢ définit une réduction de Fr(M) au groupe conforme CO,,(R), que 'on
notera Pco, M. Ceci est mis en évidence par I'identification opérée précédemment entre c et
une section de Sym(7T*M @ T* M) @ £2. Une structure de Weyl est donc une connexion sans
torsion sur Pco, M, ou de maniere équivalente une connexion D sur T'M qui préserve c.

En regardant désormais ¢ comme un ensemble de métrique, la propriété de préservation de
c par D signifie que pour toute métrique g dans c, il existe une 1-forme 6,, appelée forme
de Lee de D par rapport a g telle que Dg = —20, ® g. Dans cette derniere expression, le
coefficient —2, de peu d’importance, permet simplement des simplifications dans le jeu des
écritures.

Les structures de Weyl offrent un large choix de connexions sur T'M, qui englobe notamment
les connexions de Levi-Civita des métriques dans c. En général, une structure de Weyl ne
préserve cependant aucune métrique dans la classe conforme. Lorsqu’il existe localement une
métrique préservée par D, cette structure de Weyl est dite fermée, et si cette métrique est
globale, elle est dite exacte. Cette terminologie provient directement de celle utilisée pour
les 1-formes : D est fermée (respectivement exacte) si et seulement si sa forme de Lee par
rapport & une métrique g € ¢ est fermée (respectivement exacte), propriété alors vraie pour
toutes les métriques dans c.
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Le relevement D d’une structure de Weyl D d’une variété conforme (M, ¢) a son revétement
universel M est une structure de Weyl exacte sur (M ,€), ol ¢ est le relevement de la classe
conforme c. Ceci signifie qu’il existe une métrique h, définie sur M & un facteur multiplicatif
pres, telle que D coincide avec la connexion de Levi-Civita de h. Les éléments de w1 (M)
agissent alors sur M comme des h-similitudes, qui se trouvent étre uniquement des isométries
si et seulement si D est exacte. De plus, il existe une dualité entre les propriétés de (M, ¢, D)

et celles de (M, h).

Dans le quatrieme chapitre, nous nous penchons sur 1’étude des structures de Weyl fermées,
non-exactes, non-plates et a holonomie réductible sur les variétés compactes. Toutes ces
propriétés mises bout a bout semblent étre un artifice de simplification hasardeux, mais
il répond pourtant a une logique précise que nous exposons maintenant. Soulignons tout
d’abord que les structures exactes n’ont qu’un intérét limité en géométrie conforme, puisque
leur étude releve de géométrie Riemannienne, ce qui explique qu’on les écarte ici.

Il y a de cela quelques années, Florin Belgun et Andrei Moroianu ont formulé une conjecture
énoncant que les structures de Weyl fermées, non-exactes sur des variétés compactes étaient
soit irréductibles, soit plates [9]. Cet énoncé s’est toutefois révélé faux [52], et il a été
démontré par la suite, tout d’abord dans le cadre analytique par Vladimir S. Matveev et Yuri
Nikolayevsky [53], puis dans dans le cadre général des variétés lisses par Mickaél Kourganoff
[45], que la variété Riemannienne (]Tf , h) pouvait également étre le produit Riemannien R? x
(N,gn), ou RY g > 1, est un espace Euclidien, et (IV,gn) est une variété incomplete et
irréductible. Ce dernier cas constitue néanmoins la seule alternative possible. La connexion
D sur M est alors localement la connexion de Levi-Civita d’'une métrique qui se releve en
une métrique produit sur M. Pour cette raison, le triplet (M, ¢, D) est appelé une structure
localement conformément produit (ou LCP).

Le chapitre quatre se veut une ouverture & une classification des structures LCP. On y con-
struit de nouveaux exemples et I’on y démontre que les variétés LCP admettent des métriques
particulieres, par rapport auxquelles la forme de Lee de D s’annule sur la distribution plate.
On y établit également un lien particulier entre la théorie des nombres et les structures LCP.

Connexions sans torsion sur les G-structures

Enfin, nous introduisons brieévement le dernier chapitre, qui est une simple note portant sur
les structures de Weyl. On s’y intéresse aux connexions compatibles avec une G-structure sur
une variété M™, ou G est un sous-groupe fermé de GL,,(R) contenant SO,,(R). On démontre
qu’il existe alors une telle connexion, et que celle-ci provient d’une structure de Weyl fermée
pour une certaine classe conforme sur M.

Ce résultat a été motivé par la lecture d’'un exercice dans [58]. Si l'existence d’'une telle
connexion sans torsion est une application classique de la théorie de la torsion intrinseque,
le résultat, plus fort, que nous proposons, se démontre grace a une classification des sous-
groupes de GL,(R) contenant SO, (R).






Chapter 1

d-interactions on curves with
cusps

Ce chapitre est la retranscription d’un article co-écrit avec Konstantin Pankrashkin et paru
dans Journal of Mathematical Analysis and Applications, 491, 124287 (2020). Il porte sur
I'étude asymptotique des valeurs propres d'un opérateur de Schrodinger sur R? avec un
potentiel singulier, porté par une courbe présentant un point de rebroussement.
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1.1 Introduction

Schrédinger operators with singular interactions supported by submanifolds represent an
important class of models in mathematical physics, and they have been the subject of an
intensive study during the last decades. In the present work we deal with two-dimensional
operators, so we assume that I' is a metric graph embedded in the Euclidean space R2?, and
we will be interested in the spectral study of the operators formally written as

H,:=-A—-adé(z—-T)

with ¢ being the Dirac distribution and a > 0 being the coupling constant. Such operators
describe the motion of particles confined to the graph I" but allowing for a quantum tunneling
between its different parts. The above definition is made rigorous by considering first the
quadratic form

HY(R?) 3 u v ho(u,u) := // |Vul|*dz — a/ u?ds,
R? r

where ds is the one-dimensional Hausdorff measure on I'. Under suitable regularity assump-
tions on I" (e.g. a finite union of bounded Lipschitz curves) the quadratic form h, is closed
and semibounded from below, and, hence, generate in a canonical way a unique self-adjoint
operator H, in L?(R?) whose domain is contained in H*(R?) and such that

// uHyudx = ho(u,u)
R2

for any function u in the domain. In informal language, the operator H,, is the distributional
Laplacian in R?\T with interface conditions [0u]+au = 0 on T', where [0u] denotes a suitably
defined jump of the normal derivative of u on T', see e.g. [8,16] for a more detailed discussion.

The well-known review paper [21] provides an introduction to the topic and proposes a
number of research directions. An interesting problem setting is provided by the strong
coupling regime, i.e. the case o — 400. It can be easily seen that the lowest eigenfunctions
of H,, concentrate exponentially near I', so that one might expect that an “effective operator”
on T' governing the spectral behavior could come in play. This was first proved in [26] for
the case when I is a C*-smooth loop: for any fixed n € N the operator H, admits at least
n negative eigenvalues if « is sufficiently large, and the nth eigenvalue E, (H,) behaves as

E,(H,) = —1a® + E,(P) + 0(*22), (1.1.1)

[

where P is the operator on L?(T") acting in the arc-length parametrization as f —f”—i ~2f
with v being the curvature. A similar result holds for finite open arcs as well [24]. To our
knowledge, no sufficiently detailed analysis for non-smooth I' was carried out so far. Being
based on the general machinery for problems with corners [13,18,42] one might expect that
if ' is piecewise smooth with non-zero angles, then at least several lowest eigenvalues behave
as E,(Ha) ~ —pina? as a — 400, where p, € (1,1) are spectral quantities associated with
some model operators (so-called star leaky graphs) whose exact values are not known: we
refer to [17,20,23,50,69] for a number of estimates.

It seems that no work analyzed the case of non-Lipschitz I', and we make the first step in
this direction in the present text by considering curves with power cusps. More precisely, we
assume that I is a Jordan curve satisfying 0 € I" and the following two conditions:

I' is C*-smooth at all points except at the origin,
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there exist g > 0 and p > 1 such that
Fﬂ( 60760 = { .Tl,.lﬁz) T X € (0,60 |l‘2‘ = 371} (1.1.2)

The value p is indeed unique. It is easily seen that the essential spectrum of H, covers the
half-axis [0, +00) (use [16, Theorem 3.1] for example) and that for any a > 0 the discrete
spectrum is non-empty and finite. Our result on the asymptotics of individual eigenvalues of
H,, for large o involves an auxiliary one-dimensional operator A in L?(0, +00) acting as

(Af)(@) = —f"(x) + 2" f(2)

on the functions f satisfying the Dirichlet condition f(0) = 0. It is directly seen that A has
compact resolvent and that all its eigenvalues E, (A) are strictly positive and simple.

Theorem 1.1.1. For any firted n € N one has, as a tends to +00,

En(Hy) = —a® + 2752 B, (A) avt? + O(artz 1)

where 1 := min { 2(’;;12), (pi(f plj»Z }>o.

Remark 1.1.2. For the quadratic cusp, p = 2, the eigenvalues F,,(A) can be computed
explicitly. The operator A in this case is unitarily equivalent to the restriction of the har-
monic oscillator to the odd functions, and its eigenvalues are the usual harmonic oscillator
eigenvalues with even numbers, i.e. E,(A) = 4n — 1 for any n € N. Hence, the asymptotics
of Theorem 1.1.1 takes the very explicit form

Eo(Hg) = —a® + (4n — 1)V2a? + O(a’®).

We are not aware of other values of p > 1 admitting a simple expression for the eigenvalues
of A.

Remark 1.1.3. Both main and secondary terms in the result of Theorem 1.1.1 are different
from the asymptotics (1.1.1) for the smooth curves and from the expectations for the curves
with non-zero angles. In particular, the distance between the individual eigenvalues is of order
o, where the power k = p% can be given any value between 0 and 2 by a suitable choice
of p € (1,400). Such a control of the eigenvalue gap asymptotics represents a new feature of
the model, which is not observed for d-potentials supported by curves of a higher regularity.
Nevertheless we recall that similar effects can be seen in other boundary eigenvalue problems

by a suitable control of the boundary curvature, see e.g. [28,70].

Remark 1.1.4. One should remark that the presence of a singularity does not involve any
problem with the semiboundedness of the form h,, and arbitrary values of p are allowed
due to the fact that both sides of I' are involved. In fact, this directly follows from the fact
that T’ can be decomposed into two smooth open arcs, and the L2-trace of a function from
H'(R?) to such an arc is well-defined. This is in contrast with the one-sided Robin problems
for the Laplacian in a domain surrounded by I', for which the cusp is not allowed to be very
sharp: see e.g. [46] for the study of the eigenvalues and [54,66] for the issues concerning the
definition of the operator.

The proof of Theorem 1.1.1 is almost entirely based on the min-max tools for the study of
the eigenvalues: we recall them in Section 1.2. We first apply some truncations in order to
localize the problem near the cusp and then extend it to a suitable half-place and rescale it
in order to have a semiclassical formulation admitting a more explicit analysis (Section 1.3).
The resulting problem in the half-plane is analyzed by considering first the action of the



CHAPTER 1. §-INTERACTIONS ON CURVES WITH CUSPS 24

operator in one of the variables and then by showing that only the projection onto the lowest
mode contributes to the individual eigenvalues. At some points the problem shows a number
of similarities to the case when I is a sharply broken line [20], and we were able to use a part
of that analysis. The overall proof scheme is rather classical, see e.g [28], but a big number
of various new technical ingredients and adapted variables are required in order to carry out
the complete study. In Section 1.4 we show the upper bound for E, (H,), which is rather
straightforward. The lower bound is obtained in Section 1.5, and is much more demanding,
both for the dimension reduction and for the analysis of the resulting one-dimensional effective
operator.

1.2 Preliminaries

We will recall some notation and basic facts on the min-max principle for the eigenvalues of
self-adjoint operators.

In this paper we only deal with real-valued operators, so we prefer to work with real Hilbert
spaces. Let H be a Hilbert space and u € K, then we denote by ||uls the norm of w.
For a linear operator T' we denote D(T) its domain. If the operator T is self-adjoint and
semibounded from below, then Q(7") denotes the domain of its bilinear form, and the value
of the bilinear form on w,v € Q(T) will be denoted by T[u,v]. For n € N := {1,2,3,...},
by E,(T) we denote the nth discrete eigenvalue of T' (if it exists) when enumerated in the
non-decreasing order and taking the multiplicities into account.

Let H be an infinite-dimensional Hilbert space and T' be a lower semibounded self-adjoint
operator in H. If T is with compact resolvent, we set ¥ := 400, otherwise let ¥ denote the
bottom of the essential spectrum of T. The nth Rayleigh quotient A, (T) of T is defined by

T
Ap(T) = inf up [U’QU]
(fc%(f) ueL\{0} [Jwll

The well-known min-max principle, see e.g. Section 4.5 of [22], states that one and only one
of the following assertions is true:

(a) Ap(T) < X for all n, lin+1 Ap(T) =% and E,(T) = A (T) for all n.
m—r—+00

(b) ¥ < 400 and there is N < 400 such that the interval (—oo,X) contains exactly N
eigenvalues of T' counted with multiplicity and for all n < N, one has A, (T) = E,(T)
and A,,,(T) = X for all m > N.

In what follows we will actively work with the Rayleigh quotients of various operators instead
of eigenvalues as the former are easier to deal with. The passage from the Rayleigh quotients
to the eigenvalues will be done at suitable points by simply checking that the values are below
the essential spectrum.

One of the most classical applications of the min-max principle is recalled in the next assertion
(the proof is by a direct application of the definition). It will be used systemically through
the whole text.

Proposition 1.2.1. Let T and T" be lower semibounded self-adjoint operators in infinite-
dimensional Hilbert spaces H and H' respectively. Assume that there exists a linear map
J:Q(T) — QT") such that

| Jullser = |Jullsc, T'[Ju, Ju] < T[u,u] for all uw € Q(T).
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Then for any n € N there holds A, (T") < A (T).

At the last steps of the proof of Theorem 1.1.1 we will also need the following result, which is
a slight reformulation of [25, Lemma 2.1] or of [71, Lemma 2.2]. As some details are different,
we prefer to give a complete proof, which is quite short.

Proposition 1.2.2. Let H, H' be two infinite-dimensional Hilbert spaces and T be a non-
negative self-adjont operator in H and T be a lower semibounded self-adjoint operator in H'.
Assume that there exist a linear map J : Q(T) — Q(T") and non-negative numbers 61 and d2
such that for all uw € Q(T) there holds
lull3e = 1 Tullze < 6 (TTu,u] + [lull3),
T'[Ju, Ju] — Tlu,u] < 6o (Tlu,u] + ||lul3),

and that for some n € N one has the strict inequality
61(An(T)+1) <1, (1.2.1)

then
(51A (T +52) (An +1)

1= 61 (An(T) +1)

An(T") < An(T) +

Proof. During the proof we abbreviate A, := A, (T). By (1.2.1), for any sufficiently small

€ > 0 one has
(A +14¢e) < 1. (1.2.2)

In view of the definition of \,, one can find an n-dimensional subspace F' C Q(T') such that
Tlu,u] < (A + €)||ul|3; for all u € F. Therefore, for any u € F one has

1TullFe > (1 =0 lullfe — 61T u,u] > (1= 61 (An + 1 +¢))ull5.

The first factor on the right-hand side is strictly positive by (1.2.2), and it follows that
J : F — J(F) is injective. In particular, dim J(F) = n. Therefore, for v € F'\ {0} one has
Ju # 0 and

T'[Ju, Ju] _ Tlu,u) + 62 (T[u,u) + ]|
[ JullZe — 1 Jull3e
Tu, u] + 62 (T[u, u] + |Jul|3) < A +e+d(A+1+¢)
T (=t 1+)ulZ T 1=a(Ant+14e)

Anteto(dn+1+e)—A(1—-01(A\n+1+¢))
1-61(An+1+¢)

+ (61 A0 +02)(Ap +1+¢)

1—6 (M +14¢)

:)\n

:)\n+5

Due to the definition of A, (7”) one has

T/ T/
An(Tl) < sup [Uév] = M
vesnoy IVI5e  wemvioy I1Jullze
e+ (01An +02)( A + 14 ¢)
1—6(A+1+4¢) ’

<At

and the claim follows by sending ¢ to zero. O
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1.3 Reduction to a problem in a moving half-plane

We first apply some truncations in order to obtain a model problem which only takes into
account the cusp and neglects the rest of I'. For € > 0 we denote

Fei={(@,22) - 1 € (0.2, || = of}

and consider the half-plane

Q== (—o00,¢) x R.
One clearly has I'. C ., and by H, . we denote the self-adjoint operator in L?(£2.) given by

Ha75=// |Vu|2dx—a/ u?ds, Q(Hye) = Hi ()
Qe e

where H{ is the standard Sobolev space. We start with the following result, taking ¢ from
(1.1.2):

Lemma 1.3.1. Let ¢ € (0,e0) and n € N. Assume that
for some ¢ > % there holds A, (H,. ) < —ca® for large o > 0, (1.3.1)
then A, (Hy) = Ap(Ha,e) + O(1) for o — +o0.

Proof. The proof will be in two steps. We first reduce the problem to a bounded neighbor-
hood of the origin, and then to the half-plane 2., as the latter is easier to analyze.

For € > 0 denote [J, := (—¢,¢)?, then the assumption (1.1.2) rewrites as
there exists g > 0 such that I' N O,, = Iy,

and then for any € € (0,g¢) one has 'O, =T'. as well; we remark that we can take g9 < 1
in condition (1.1.2).

From now on let us pick some ¢ € (0,g0) and let x1, x2 € C*°(R?) such that x? +x3 = 1 and
x1=1in0s, x1 =0 outside L.
An easy computation shows that for any u € Q(H,) = H'(R?) one has
Holu,u] = Ho[x1u, X1u] + Halx2u, x2u] — / (IVxal? + | Vxzf*) u’dz
R2
> Ho[x1u, xau] + Ho[x2u, xou] = Cllul|72ga), (1.3.2)

where C = ||[Vx1[* + [Vx2l?||
Denote by D, . the self-adjoint operator in L?(CJ.) given by

Dq clu,u] = // |Vul|?da — a/ u?ds, Q(Da.) = Hy(O.).
E’E Fs
Due to suppyi C . we have

x1u € QDae), Halx1u, x1u] = Do c[x1u, x11].
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On the other hand, by the initial assumption of I' (C*-smoothness except at the origin) one
can find a C*-smooth Jordan curve I which coincides with I' outside O:. Denote by Hy,
the self-adjoint operator in L?(R?) given by

H;[u,u]:// |vu\2dm—a/ u?ds, Q(H.)= H'(R?).
R2 I

As suppxe NOs = 0, one has Ha[x2u, x2u] = H},[X2u, x2u], and the inequality (1.3.2) takes
the form
He[u, u] + CHUH%2(R2) > Dae[xiu, xau] + H} [xau, x2u). (1.3.3)

Noting that J : L%(R?) 3 u — (x1u, xeu) € L*(:) @ L?(R?) is isometric and that (1.3.3)
can be rewritten as

Haluu] + Cllul3agge) > (Dae ® H)[Ju, Jul,
we conclude by the min-max principle (Proposition 1.2.1) that
An(Hy) > Ay(Doe® H) — C for all n € N, a > 0.

As discussed in the introduction, see e.g. Eq. (1.1.1), due to the smoothness of I, for some
Co > 0 one has H, > —1 a* — () for large a > 0. Hence, if

for some ¢ > 4 there holds A, (Dq,c) < —ca® for large o > 0, (1.3.4)

then A, (Dq . ® H),) = Ap(Da,e), and then A, (Hy) > A, (Do) — C for large a > 0. On the
other hand, by the min-max principle one directly has A, (H,) < Ay (Dq,e). Therefore, the
assumption (1.3.4) implies

Ay (Hy) = Ap(Doe) +0(1) for oo — +o0. (1.3.5)
Now we need to pass from D, . to H, ., which is done in a very similar way. First, by the

min-max principle we have

Au(Ho ) < An(Do2) (1.3.6)
for any a > 0. Furthermore, let us pick &1, & € C°°(R?) such that 7 + ¢2 = 1 and
& (z) =1 for z € (0,400) x (—eP,eP),
&1(z) =0 for x ¢ (—e,+00) X (—¢,¢).
For any u € Q(H, ) we have then, with W (z) := [V& |2 + |[V&|? < O,

Hoz,s[ua u] = Ha,s[gluaglu} + Ha,s[fQU, Eau) — //Q W u?dx

= Docl&1u, &u] + //QE |V(§2u)’2dx - //QE W uldx

> Dqcl&1u, §1u] — CIHUH%Q(QE)‘
As in the first part of the proof, this implies
An(Ho o) > Ay(Dp e ® 0) — C7 (1.3.7)

with O being the zero operator in L?(£2.). Let (1.3.1) hold, then by (1.3.7) we also have
Ap(Dye ® 0O) < —ca? for large a. Then Ay (Dae @& O) = Ay(Doc), and (1.3.4) holds,
which implies the estimate (1.3.5). At the same time, Eq. (1.3.7) reads now as A, (Hq,) >
Ay (Dqe) — C’, and together with (1.3.6) we arrive at Ay, (Dq.e) = Ap(Hae) + O(1) for large
a. Substituting this estimate into (1.3.5) we prove the claim. O
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Let us apply an additional scaling in order to pass to the semiclassical framework. For A > 0
and b > 0 consider the self-adjoint operator Fj,; in L?(€2,) defined for Q(F}, ) = Hg (%) by

Fpplu,u] = //Q (R*(O1u)? + (Ou)?)da

b
— / 1+ p2h2s2(p—1) (u(s, sP)? + u(s, —sp)Q)ds.
0
Lemma 1.3.2. For anye >0 and a > 0 and n € N one has
Ay (Hey) = oA (Fhp) for h = al'_Tp, b=car =chis.

Proof. We prefer to give a detailed explicit computation. Consider the unitary operator
O : L*(Q) — L3(£) given by

(Ou)(z1,22) = az(mth u(a%xl, axs),

then ©Q(Fj ) = Q(Hqa,e). By writing the one-dimensional Hausdorff measure on I'; in an
explicit form, for any v € Q(H, ) we have

aeuu // 81U 82u) ]d
1>
- a/ V14 p2s2=2(u(s, sP)% + u(s, —sP)?)ds.
0
Then for any v € Q(F}, ;) one obtains
H, :[0Ov, 0] —ar Tl // [a%alv(a%xl,a:ﬂgf
Q.
2 1 2
+ a”dv(arzy, axs) :|dl’1d$2
€
—art? / V1 + p2s2e—1) (v(a%s, asP)?
+ v(a%s, —asP)?)ds.
Using the new variables y; = oz%xl, To =y, t = a%s we rewrite it as

H, . [Ov,0v] = // 0“’3111 (y1,92)* + a262v(y1,y2)2]dy1dy2
1

aP

-

eEaP 2 2p
—a? / \/1 +p2a 7 s22(v(t,tP) + u(t, —tP))dt
0

= a2Fh7b[v,v],

which shows that H, . is unitarily equivalent to aQFhJ,. O
By combining Lemma 1.3.1 with Lemma 1.3.2 we arrive at the following reformulation:
Lemma 1.3.3. Let e >0, hg >0, n € N be such that

A"(Fh hﬁ) < —c for all h € (0,hg) and some ¢ > %. (1.3.8)

Then A, (Hy) = &?Ay(F 1 )+ O(1) for h:= a7 and a — +oo.
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1.4 Upper bound

1.4.1 Reduction to a one-dimensional effective operator
For some k > 0, to be chosen later, denote
Q= (0,hF) xR
and denote by G}, the self-adjoint operator in L?($}) given by
hk

Gulu,u] = //, (R?(01u)? + (02u)?)dz — / (u(s, sP)* +u(s, —s”)?)ds

0

and Q(Gp) = H}(2},). For sufficiently small 2 > 0 one has the inclusion Q) C Q R and
I —-p

for u € H}(),) we denote ug its extension by zero to R then Fj, p[ug, uo] < Gplu, ul.
T

It follows by the min-max principle that:
Lemma 1.4.1. For any e > 0 there exists hg > 0 such that for h € (0,ho) and n € N there
holds Ap,(F 1) < Ap(Gp).
h,eh1-p
In order to study G} we will use some facts on a simple one-dimensional operator T,,, = > 0,
which is the self-adjoint operator in L?(R) given by
Lo A= [ PPy = (f@F + f(=aP), AT = H'®).  (14)

We recall some simple properties of T, established in [20, Proposition 2.3]. The bottom of
the spectrum of T, is a simple isolated eigenvalue, which we denote by o(x) due to its special

role in what follows,
o(x) =M (Ty), x>0,

and we denote by U, the respective eigenfunction chosen L?-normalized and positive. We
will use the following properties of their dependence on x > 0:

Proposition 1.4.2. The following holds:
(a) =1 <o(z) < =% for all z € (0,+00),
(b) o is non-decreasing,
(c) o(z) = =1+ 2z + O(x?) for x — 0F,
(d) the function x + [|0, V| L2(r) is bounded on (0, +00),

(e) for x <1 one has A2(Ty) = 0.
The above properties allow one to give an upper bound for the Rayleigh quotients of G},

by those of a one-dimensional operator on (0,h*). Namely, denote by K}, the self-adjoint
operator in L?(0, h*) given by

hk
Kulf. f] :/O (R?f'(z)? + 227 f(2)?)dz,  Q(K}) = H{(0,h"). (1.4.2)
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Lemma 1.4.3. There exists ag > 0 such that
An(Gh) < =14 Ap(Kp) + ag(h2F2FP=1 L kP for ll h > 0 and n € N.
Proof. If f € H}(0,h*), then for the function u € H}(£2},) defined by
u(zy, w2) = f(21)Wr (22)

we have || fl|z2(0,n%) = llullL2(q;) and

//;L(azufdw - /Ohk (u(s, %)% + u(s, —s”)?)ds = /Ohk o(a) f(x1)2dz;.

The L?-normalization of W,» implies

1
[ Wt (2) 0 Bogadns = 500 [ ¥gley =0,

hence,

/ 81U dIE—/ / 131 2)2
Q’ 0

+2f (1) /(1) War (22) 0y Vo (22)
+ f(a:l)Q((')wl \IJIIf (wg))2:| dl‘g d:l?l

nE
N /0 (f'(x1)? + w(zr) f(21)?)dar,

where we denote w(x;) := H@Il\llzﬂﬁZ(R) p%cf(p b H (0,9,),— P HL2 , and

hk
Gplu,u] = / (h2f’(x1)2 + [U(xf) + th(xl)] f(a:1)2)da:1
0
Due to Proposition 1.4.2(c,d) for a sufficiently large ag > 0 one can estimate

p|(0:1.). = o? <ag, o) < 14220 +agh®?, 1z, € (0,h%),

ey

and then

hk
Grlu,u] < =[1fll720nn) +/ (R?f"(@1)? + 247 f(21)?)day
0
+ag(R*H2FP=1 4 h%p)HfH%z(o,hk)'

Therefore, the linear operator J : Q(K}) 3 f — u € Q(Gy,) satisfies, for all f € Q(K}), the
equality [|.Jf|lr2q;) = | fllz2(0,n*) and the inequality

Gl £, 1 < =l f[72 0,1y + Knlf 1+ ao(RFH2E07D 4 B2 £][72 6

which implies the claim by the min-max principle. [
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1.4.2 Analysis of the effective operator

Now we are reduced to the study of the eigenvalues of K} for small A > 0. We will show
that the principal term of their asymptotics is determined by the eigenvalues of the model
operator A.

For 1 > 0, we introduce first two auxiliary operators CKI /D which are the self-adjoint oper-
ators in L?(0, 1) given by
Mo e 2
Clipplff) = [ (£ + a7 (o))
0
QCN) ={f € H'(0,p) : f(0) =0}, Q(CP) = Hg (0, p)-
An elementary scaling argument gives the following result:

Lemma 1.4.4. For anyn € N and h > 0 one has

2p

An(Kp) = 2555 W75 A, (CL), o= 277 hF s,

Remark that if k£ < Tip then in the above representation one has 1 — +o0o as h — 07. Let
us now study the behavior of the eigenvalues of C%, /D for large p > 0.

Lemma 1.4.5. Let n € N be fized, then An(CK,/D) = An(A) + O(u=2) for u — +oo0.
Proof. Directly by the min-max principle, for any g > 0 one has the inequality
An(A) < A, (Ch). (1.4.3)

Furthermore, consider the self-adjoint operator D,, in L?(p, +0o0) given by

Dul.f= | T (@) + 2P f(@)?)de,
D) = {f € H (i +00) : 2 f € L?(+00)}.

then one clearly has A, (A) > A,,(CK, & D,,) for any p > 0. The left-hand side is independent
of p, while D,, > pP — +00 as u — +00. Therefore, there exists p, > 0 such that

An(A) > A, (CK) for p > puy. (1.4.4)

Now let x1, x2 € C°°(R) such that

Xi+x3=1, xi(t)=1fort<3, xi(t)=0fort>3,

%

and denote x; , := X;(-/p). Consider the self-adjoint operator Dj, in Lz(%, 1) given by

DLlf f] = /j (f' (@) +a? f(2)?) dz, QD) = H'(§, ).

2

Then a direct computation shows that for any f € Q(C%) one has, with K := H(X’1)2 +
(x)?]| s

C]li] [fa f] = Cllt[[xl,,ufa Xl,;tf] + CK/‘[XQ,,U«fa XQ,;Lf]



CHAPTER 1. §-INTERACTIONS ON CURVES WITH CUSPS 32

- 06+ (o)) f2da

> CN Ik X + Cx Ixenfs xonf1 = K21 F 11720,
= ChIxuufs x1ufl+ Dyxeuf xouf1 = K 21 £ 720,
= (Ch ® D)If, I f] = Kn™?|| fllZ2(0,0):

Jf = (X1,ufs x20f),

which implies A, (Ck) > An(C & D},) — Kpu~? for any > 0. By (1.4.4), for . — +o00 the
left-hand side of the last inequality remains bounded, while D:L > pP27P — 4o00. Therefore,
the value of p,, in (1.4.4) can be assumed such that, in addition,

AW (CR) > A (C) — Kp™2 for any p > puy,. (1.4.5)
By putting together the above estimates, for y > u,, we obtain

, (14:5) (1.4.4) (1.4.3) ,

which implies first A,,(Cl) = Ap(A) + O(p~2) and then A,(Ck) = A, (Ch) + O(u~2) =
An(A) +0(u™?). 0

By combining Lemma 1.4.4 with Lemma 1.4.5 we arrive at

Lemma 1.4.6. For anyn € N and k € (0, ﬁ) there holds

2 2p

A (Kp) =275 ot A, (A) + O(h?72%) as h — 0.

1.4.3 Proof of the upper eigenvalue bound

The substitution of the asymptotics of Lemma 1.4.6 (passage from K}, to A) into Lemma 1.4.3

(passage from G, to Kj) shows that for every fixed n € N and k € (0, Tip) there holds

An(Gh) <14 Qﬁh% An(A) + O(h2+2k(p71) _|_h2kp + h272k)

as h — 0%. For k € (0, ﬁ) one has

24 2k(p— 1) = 2kp + 2(1 — k) > 2kp,
o(h2+2k(p—1) + thp + h2—2k) — O(thp + h2_2k).

Taking k := ﬁ € (0, %p) and then applying Lemma 1.4.1 we see that for any € > 0 and

n € N there holds, as h — 07,

An(F ) < An(Gr) < —1 42755175 Ay (A) + O(hTi7) < —1L. (1.4.6)

1
h,ehT-p7 — 2

It follows that the assumption (1.3.8) is satisfied for any € > 0 and n € N, which gives a
stronger version of Lemma 1.3.3:

Lemma 1.4.7. For any n € N and € > 0 there holds

An(Hy) = aZAn(Fh hﬁ) + 0(1) for h:= a7 and a — +oo. (1.4.7)
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Applying again (1.4.6) to the right-hand side of (1.4.7) one arrives at

An(Hy) < —a? 4+ 2757 A, (A)aT7 + O(aTi7)
=-a’+ 2ﬁAn(A)a2+P +0(a?r ™), a— +oo.

where 7 := ﬁ - ﬁ = % > 0. As the upper bound obtained for A, (H,) is
strictly negative for large «, it lies below the essential spectrum of H, which is [0, +00) as
we emphasize it in the introduction, and it follows by the min-max principle that A, (H,) is

the nth eigenvalue of H,.

1.5 Lower bound

1.5.1 Reduction to a smaller half-plane

Now we need to obtain a lower bound for the eigenvalues of Fh Lt with a suitably chosen
€ -P
€ > 0. Recall that

2 2
Fh g //Q } (R*(01u)* + (82u)?)dx
eh

 1—p

Ehl P

— [ VTR (u(s, ) + uls, —s)?)ds.

0

Let k > 0, to be chosen later, and h > 0 sufficiently small to have h* < ehT7. Let Ry, be
the self-adjoint operator in L?(Q,x) given by

Rufu, ] = //Q (h2(01)? + (Byu)?)da

h
— | VT pPREREGD) (u(s, 5P)? + u(s, —s*)?)ds,
0

Q(Ry) = HY (1).

Lemma 1.5.1. Let k € (0 There exists €1 > 0 such that for any e € (0,£1) and any

n € N there holds

V3p)-

1) > A, (Rp) as h — 0T,

ehl-p

A"(Fh,
For the proof of Lemma 1.5.1 we need an auxiliary one-dimensional operator, which will also

play a role on later steps. For x > 0 and 8 > 0 we denote by T} 3 the self-adjoint operator
in L?(R) given by

T, 515, f) / £ )2y — B(F@)? + f(—2)?), OTwp) = H(R),

which is closely related to the operator T} from (1.4.1) and Proposition 1.4.2: a simple scaling
argument shows that T} g is unitarily equivalent to 3273, and A, (Ty5) = B?An(Tss) for
any n € N. In particular,

M(Ts ) = Bo(B).
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Proof of Lemma 1.5.1. By considering separately the integrals for x; < k¥ and z; > h*
we arrive at Fh 1 [u,u] = I + I with

,ehT-7
I =//Q k (R*(01u)? + (82u)?)dx

hk
— / 14 p2h222 Y (u(s, 7)2 + u(s, —s*)?)ds,
0

I :/:hl_p {/R(hQ(aluf—i—(agu)z)de

k
—\/1+ p2h2x§(p_1) (u(z1,27)? + u(z1, —28)?) | dzy,

and one has obviously I} > Rp[ug, u1] with uy := u|Qh,€.

Now one needs a lower bound for I,. First, by dropping the non-negative term (d;u)? and
using the above one-dimensional operator operator T, g we estimate

1

eh1-p
I Z/ A(ml,h)/u(ml,x2)2da:2dx1,
h R

k

where we denoted

)\(xlah) = Al (Tz‘l’,\/m)
= (1 +p2h2xi(p71))a(\/mxf).

To estimate A(z1, h) from below let us pick ¢ € (0, pi—l), then for small h one has h* < h=9 <
ehT.

Consider first the values z; € (h¥,h=%). Due to

V14 p2h2ai P g s b s ke,

by Proposition 1.4.2(a,b) one obtains

a(h*?) < o (\/ 1+ p2h2a3® ™Y ab) < 0.

On the other hand, 1 + p2h2x?(p_1) < 14 p?h?~24=1  which together with the preceding
estimate gives

(1 +p2h2x?(p71))0( 1 _’_pzhzxi(pfl) le)) > (1 +p2h2—2q(p—1))o(hkp)_

Using Proposition 1.4.2(c) to estimate o(h*P), for small A > 0 we arrive at
3
Az, h) > (1 +p2h2—2q(p—1))( 14 : hkp) > 14 2pp _ p2p2 21,

As k and g were rather arbitrary so far, we may assume that

kp < 2, 0<q<22(;ff;)z
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then kp < 2 — 2¢(p — 1) and h2~24(P=1) = o(h¥P). Therefore,

Mz1,h) > =1+ h* for z; € (W*,h™7) and h — 07. (1.5.1)

Keeping the above value of ¢ consider now x; € (ffq7 6hﬁ) We have first

\/1 +p2h2m?(p_1) > af > hPe

and then, by Proposition 1.4.2(a,b),

a(hP) < o(\/1+ p2h222® Y o) < 0.

In addition, 1 +p2h2x?(p_1) <14 p?e2=Y and o(h~?%) < 0, therefore,
M1, h) > (14 p?e2P=D)g(h7P9),

In view of Proposition 1.4.2(b,c), one can choose § > 0 sufficiently small such that o(h~P?) >
—1+26 for small h > 0. In addition, we may take £; > 0 sufficiently small to have p253(p71) <
J, then for any € € (0,e1) one M(x1,h) > (1+6)(—14+25) > —1+6 for small h. By combining
with (1.5.1) we see that A\(z1,h) > —1+ h*P for all z; € (h*, {—:hﬁ) if h is sufficiently small,
and then

ahﬁ
I > (-1+ hkp)/ /u(ml,xz)dedel.
hk R

We summarize the above estimates as follows: there exist € € (0,£1) and h; > 0 such that
for all h € (0,hy) and u € Q(Fh ) there holds
\E

1
hl-pr

o kp 2
Fh,ehﬁ 2 Ruluy, m] +(-1+h )HUQHLQ(Qahﬁ\Qhk)’

Ui ::U‘Qhw Uz 1=U|sz 1 \Q ko
i—p g

eh

and then for any fixed n € N and small h one has

Ap(F 1) > min {A,(Ry), —1 + A"}, (1.5.2)

h,eh1-pr

The min-max principle shows that A, (Rp) < A,(Gj) for the operator G, from Subsec-
tion 1.4.1, and the estimate (1.4.6) for A, (Gp) yields A,(Rp) < -1+ O(hz’%). For
k € (0, ﬁ) one has h?¥5 = o(h¥?) and then A, (Rj) < —1 + h*?. The substitution into
(1.5.2) concludes the proof. O

1.5.2 Reduction to a one-dimensional problem

In the present section we will provide a lower bound for the eigenvalues of A, (R}) in terms
of a one-dimensional operator. Namely, consider the function

1
Vie—< x<0,7
22P, x>0
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and the operator Z;, in L?(—o0, h¥) given by Z,f = —h%f" + V f with Neumann condition
at the right end, f'(h*) =0, i.e.
n* 0 r*
wlt =1 [ fapdes [ ferder [ afape
o S 0
with Q(Zy) = H(—o0, h¥).
Lemma 1.5.2. For anyn € N, k € (0, ﬁ) and s > 0 there holds

An(Rp) > =14 Ay (Zn,) + O(R¥T2RP=D=s L p2key - p 0

where we denote

ho := hv1 — hs.

The proof will occupy the rest of the subsection.

It will be convenient to use the one-dimensional operator

Ly;l,h = Tzllj, /71+p2h2+2k("71)’

its first eigenvalue

KJ((El, h) = Al(Lxl,h) = A1 (ng’\/m)
=(1 +p2h2+2k(17—1))0(\/1 + p2h2+2k(e—1) g)

and the associated eigenfunction ®,, ; chosen positive and normalized by [|®, 4l/z2®) = 1.
In terms of the first eigenfunction ¥, of T, one has clearly

2p2+2k(p—1) ¢).

Oy n(t) = V/1 4 p?h2H2k0-D) @\/fo(\/l +p
Due to Proposition 1.4.2 for any h > 0 the function z; — ®,, ; admits a finite limit ®¢ j at
21 = 07, so we define
~ D, >0,
(I’xl,h _ z1,hy L1
(I)Qh7 x1 < 0.
Consider the following closed subspace G of L?(Q,x),
G .= {(3?1,.’1)2) — f(xl)&\)a:l’h(l‘g) : f S LQ(—OO, hk)},

and denote by II the orthogonal projector onto G in L?(2x), then the operator IT+ := 1 —1I
is the orthogonal projector onto G*. One easily checks that for u € L?(£2,x) there holds

~

(TTu)(z1, x2) = f(x1)Pyy,n(z2) with f(z1) = / axhh(mg)u(xl,ajg)dxz,
R
Tl 1y = 1oty

and that for u € Q(Ry,) one has f € H'(—oo,h*). We keep this correspondence between u
and f for subsequent computations. Recall that

Rofu, u] = //Q (h2(010)? + (9au)?)da
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hk
B \/1 +p2h2+2k(p—1)(u(s7sp)2 +U(57_5p)2)d3'
0

Using the spectral theorem for the above operator L, ; we obtain

I:= // (Oou)?da
Qhk
hk

— V14 p2h2+2k@=1) (u(s, sP)% + u(s, —sP)?)ds
0

> // (Dgu)?dw
Q. k N{z1>0}

hk
— V14 p2h2+2k@=1) (u(s, sP)% + u(s, —sP)?)ds
0

Bk
:/ [/82u(x1,1:2)2dx2
0 R

— VI PR (u(er, 0))? + uler, ~af)?) |day

hk
> [ (M) o1, ) sy + ALy ) I i1, ) e .
0
Assuming that h is small, by Proposition 1.4.2(e) one obtains, for any x; € (0, h¥),

A2(L:1;1,h) = (1 + p2h2+2k(”_1))/\2 (T /1+p2h2+2k(p—1) wzf) = Oa
which gives
hk

hk‘
12/ H(ml,h)HHu(xl,~)||2L2(R)dx1E/ k(@1 B) f (21)2das.
0 0

Hence, if h is sufficiently small, for any u € Q(Ry) we have

hk
Rp[u,u] > h? // (O1u)?da +/ w(z1, h)f(21)*da;. (1.5.3)
Qk 0
To obtain a lower bound for the first summand on the right-hand side we start with

0y u(xy, 22) :/iml,h(t)alu(xl,t)dtcﬁmhh(u),
R

0 ~ ~
81HU($1,J)2) = 781'1 (/ <I>w17h(t)u(x1,t)dt (I)xl,h(x2))
R

_ / B, ()01, 1)t By, p(2)
R

~

+/@ﬂ%mmmww%wm
R

+ /R By, n(t)u(zy, t)dt (D, py p)(22).

Therefore, using (a + b)? < 2a? + 2b? and Cauchy-Schwarz inequality,
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|(H31 — 81H)u(x1, 1‘2) |2

_ \ [ 0nBe )@t ()
R
2

4 [ BapnOuler )t (01,81, (02)
R

< 2H8901(/I;9017h

L2 (@1, )22 2) Por n(22)

+ 201 @y 1172 gy (@, T2 (r) (Oay Py ) (22)°
We further recall that ||ZI\’x1,hH2L2(R) =1 for all ; and that
=~ Op @i n, 1 >0
8 (D — 1 1, ’
menh {0, 21 < 0.

This gives

| (110, — alH)“”i?(Qhk)

hk
<2 [ 1000, nl ey i, ey ([ @oinwa)Pdna) o
0 R
hk:
42 [ ulor M [ (0n1@ay0) @) dee)
0 R

hk
§4/ w(@r, h)Ju(@, )72 @y des,
0

where we denoted
w(xlah) = Haxlq)xl,h”%m@)-

With A := /1 + p2h2F2k@=1) we have ®,, 1 (t) = VA¥, ,»(At) and

w(zy, h) = A3 / PP (0.0, .oy e (V)2
R
=220 [ (00 g
< pP(1+ 22D 30 qup 0,0, )12, 5
z>0

Due to Proposition 1.4.2(d) the last factor on the right-hand side is finite, and for a suitable
by > 0 one obtains w(xy,h) < boac?(p*l)7 and then

hk
2 —
H(Hal - 31H)u||L2(Qhk) = 4/0 box?(p 1)||u(:c1, ')”%Q(R)dxl
< dboh® PV lul[72(q .

In addition, the function (II+9; — 911+ )u = —(I19; — &, I1)u admits the same norm estimate.
Using (a + )2 > (1 — §)a® — 5162 for a,b € R and § > 0 we estimate, with any § > 0,

Haluuimzhk) = !|H31“Hiz<ghk> + HHL‘%“H;(QM)
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= ||81HU + (H81 — 81H)u’|i2(9hk)

+ |0 T + (1140, — 31HL)H§2(QW)
_ 2
> (1 — 5)||61Hu||12(9hk) -9 ! H(Hal - alH)uHLQ(Qhk)
2
+(1- 5)”‘91HL“HL2(QM)
S (SR o T P

e Y N T A

Q)

where we took b := 8by. To estimate the term with 0;ITu we compute
(O1I)u(zy, x2) = f/(21)Pay p(@2) + f(21)0, Py p(22)

and remark that due to

—~ ~ 1 d -~
/R By 1 (2)0r, By (12)A1 = 2~ By 22y = O

2dxy

we have

hk

2
lonTTa g, ) = n f/(xl)Q/R‘l’zl,h(m)zdwdxl
hk
+ f($1)2/ (02, Py 1) (w2)*day Ay
—00 R
hk
> f(x1)?day

Therefore,

2 _ _
0rull oo, 0y = = O T2 (o0 ey = b5 B ull o, ),
and the substitution into (1.5.3) gives

Rifu,u] + 6~ RO u) 2

h* h*
>h21-0) [ f(@)da +/ (@, ) f (@) 2das.
[e’e) 0

For what follows it is convenient to set ¢ := h® with s > 0 to be chosen later, then

Ryfu,u] + bh*+2ke=1) s HUHQL?(Qhk)

h* h*
> h2(1 - h*) f(x1)%day +/ w(xy, h) f(z1)3dey.  (1.5.4)
00 0

In view of Proposition 1.4.2(c) one can find constants ag,a > 0 such that for small ~ and
x1 € (0,h*) there holds

w(@rh) = (14 pPh*0 D)o (V14 p2h2+2he-1) of)
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> (14 p?h*FE=D) (=1 4 2/1 + p2h2+2k-1) 17
— ag(1 + p?h2T2k—1) x%p)

(1+ p?h?T2H@E=1) (—1 4 227 — 2aoh**P)

> —1+ 2zP — a(h2H2RE=D 4 p2kpy,

Y

Substituting this inequality into (1.5.4) and taking into account the inequality || f ”%2(0 hey =
”HUHQL?(Qhk) < ||UH%2(Qhk) we obtain, with some constant B > 0,

Rofuy ] + B H2K0-0= 4 p24280-0) g2k 2, 0

Kk Kk
> h2(1— h*) f(x1)?day +/ (=1 +22%) f(21)?)das.
o 0

For s > 0 we clearly have h2T2k(P—1) — o(p2+2k(P—1)=5) hence, with some B’ > B,

Rufu,u] + B/ (2507 4 125) ]2

> h3(1 - h*) I (21)?day —i—/o (—1+ Qxf)f(xl)g)dxl

(_1+Zho)[faf]' (155)

Consider now the isometric map
J L) 3 u = (f,1T1w) € L (—o0, h¥) @ G,
then the estimate (1.5.5) can be rewritten as
(Rp, + B/ (R*T2P=D=s 4 n2k0)) gy ] > (=1 + Zp,) @ 0)[Ju, Ju].

As this holds for all u € Q(Ry,), the min-max principle shows that for any fixed n € N one
has, as h — 0™,
A(Rh) + B/(h2+2k(p—1)—s + h2kp) > An((—]l + Zho) @ O)
=min {Ap (=1 + Zp,),0} = =1+ min {A,(Zp,), 1}.
The min-max principle also shows that for any n € N and h > 0 one has A, (Zy) < A, (Kp),
where the operator K; was defined in (1.4.2), and it was shown in Lemma 1.4.4 that
An(Kp) = o(1) for small h. It follows that A, (Zx,) = o(1), and then min {An(ZhO), 1} =

An(Zy,). This gives finally A(Ry) > —1 + Ap(Zy,) + O(h?H26(=1=s 4 p2kp) - This proves
Lemma 1.5.2.

1.5.3 One-dimensional analysis

Now we need a more precise analysis of Z, for small h. We are going to prove the following
result, whose proof will occupy the rest of the subsection:

Lemma 1.5.3. Let 0 < k < ﬁ, then for any n € N there holds

En(Z),) = 2755 By (A) h#t? + O(h%%5 + h22%) a5 h — 0.
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It appears more convenient to change the scale in order to work with large constants. Namely,
for A > 0 and p > 0 we introduce self-adjoint operators B** in L?(—oo, i) by

H 0 H
BNS = [ r@rdsen [ p@rdes [ arpras
—00 —00 0
Q(B*) = H (00, ).
An elementary scaling argument gives the following result:

Lemma 1.5.4. For any n € N one has A, (Z),) = Qﬁh%An(B)"”) with \ = 2745 L~ 247
and p = 975 BF2he

In view of Lemma 1.5.4 the behavior of the eigenvalues of Zj, for h — 0% can be deduced
from that of the eigenvalues of BM* for A — +o00 and i — +oo. The latter will be again
approached using the auxiliary operators Cj’f[ /D already studied in Subsection 1.4.2.

Lemma 1.5.5. For any n € N there exists A, > 0 and M, > 0 such that
A;(CH) — KAT3 < Aj(BM) < Aj(CH). (1.5.6)
for all (\, ) € (A, +00) x (1, 400).

Proof. Remark first that all operators BM* and C /p are non-negative. For p > 1 and
A > 0 the min-max principle gives

0 < A (B*?) < An(Ch) < An(Cp), (1.5.7)

and it follows, in particular, that the eigenvalue A, (B***) is uniformly bounded. It remains
to show the first inequality in (1.5.6). As the participating operators act in different spaces, it
will be convenient to use Proposition 1.2.2, and we remark that this proof scheme is inspired
by the constructions of [71]. Consider the linear map

J1Q(BM) = Q(C),  (Jf)(x) = fz) = f(0)e™, x € (0,p).

For any ¢ > 0 and a,b € R one has (a + b)?> > (1 — €)a? — e 1b?. Therefore, for any
f € H(—oo, 1) and € > 0 one has

2

90 = [ () = F0)) o

>(1-2) [ floras - / F0)2e > da

> (L= o)l flZ20) — " £(O

resulting in

£ 122 ooy = 1T FZ20,0) < elfIEaq0) + 7" F0)* + 117200 (1.5.8)

For any 6§ > 0 one can estimate

—2/ @) f (@)dw < 01 1220y + 0122 o0y
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and the substitution into (1.5.8) yields

1172 ooy = 1T F 17200,
< el flZ20, + 06 172000y + €0 IR 000y + 1172 (—00s0)
= el fllZ2 0, + 05 I 122 (—o00) + (€T IAT E XD AN FIIT2 (o0

We now set § := A~2 and & := A~14, then for A > 1 we have
1172 copy = 1T F 7200,
_1 _1 _1 _
S AT 20, F AT N2 (—o0i0) + ATT F AT ANF 22— c0.0)
1
<2273 (||f||2L2(o,u) + Hf’Hiz(_wm + )‘||f||%2(—oo,0))’
and it follows that

_1
1172 ooy = 1T F 720, < 2271 (BM[F, £14 11172 (o) (1.5.9)

Now let us estimate the difference Ci[Jf, Jf] — BMH[f, f]. For any ¢ € (0,1) and a,b € R
one has (a + b)? < (1 +¢)a® + 2e71b?. Therefore, for any § > 0 and ¢ € (0,1) we have, with
some K > 0,

2

cstit.afl = [ (@ + 10 et [ (1) - 10 ) e
<0+ [ (@2 + 0 f(0)?)da

+2e71£(0)2 /“(1 + 2P)e " dx
0

n
<O+e) [ (F@P + e f@P)de + Ko (0
0
n
<(+e) [ (F@P+arf@)?)ds
0
+ K (S 122 ooy + 0 1B ooy
As previously, set ¢ := A% and ¢ = )\_%, then, with some K’ > 0,
1 12
CULI T < (14+27%) / (/@)% + 27 f(2)?) da
0
KX 1320y F EXTTANF 112 (o)
w
< / (F (@) + 27 f(2)?)do
0
/ 1 " / 2 2 112
+ ([ (@ +0 700 + 17 e
F A3 )
< BML A1+ KA (B A+ U1 o)

resulting in

CNLIF, Tf] = BMf, ] < KA (BMf, 1+ 1 F 112 oo ) (1.5.10)
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By (1.5.9) and (1.5.10) we are in the situation of Proposition 1.2.2 with
T:=BM, T :=Cl & =2\, & =K\4,

Furthermore, in view of (1.5.7) one has A, (BM) < M := A,,(C}) for all (\, 1) € (0, 400) x
(1,400). Therefore, one can find A, > 0 such that

51 (1+ An(T)) = 2075 (1 + A (BM)) < 2(M + 1A~ 1
for all (A, u) € (Ap, +00) X (1,+00). Hence, Proposition 1.2.2 implies

(20, (BM) + K )N~ (A, (BM) +1)
1— 2077 (A, (BMe) +1)

An(BM) > An(C) =

!
1 1
> An(Ch) — (2M+f<1)(M+ ))\_Z
1—2)\, 5 (M +1)
= A (CR) = MyA™H
for all (A, p) € (A, +00) % (1, +00). O

By combining Lemma 1.5.5 with the estimate of the eigenvalues of C%; obtained in
Lemma 1.4.5) one arrives at the following result:

Lemma 1.5.6. For any n € N there exist m > 0 and M > 0 such that
[An(BM) = An(A)] < MOATT +4172)
for all (A, ) € (m,+00) x (m,+00).

Now we can complete the proof of Lemma 1.5.3. Choosing A = 2755 =25 and w o=
275 *~ 735 and using Lemma 1.5.4, for h — 0+ we obtain

An(Zy) = 2755 B2 A, (BMH). (1.5.11)
By Lemma 1.5.6 we have
An(BM) = Ap(A) + OO T 4+ 572) = A (A) + O(hF7 + h7i7 k),

and the substitution into (1.5.11) completes the proof of Lemma 1.5.3.

1.5.4 Proof of the lower eigenvalue bound

We now use all the preceding components to obtain the sought lower bound for the eigenvalues

of Ry, and then for those of H,. For any m > 0 we have hj]' = h™(1—h*)2 = h"™ 4+ O(h™*5),
and then we conclude by Lemma 1.5.3 that

2B _5p
En(ZhO) = QHEn(A) hé’+2 4 O(hgp+4 + hg,Qk)
277 By (A) hitE O(h%“ L hEE 4 h2=2k),
The substitution into Lemma 1.5.2 gives then

An(Rp) > =1+ 2755 B, (A) ho 2 + p(h),
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p(h) _ o(h%-Fs + h% + h2—2k + h2+2k(p—1)—s + h2kp).
It is convenient to set first k = ﬁ to have

plh) = O(hF s 4 ks 4 p2H205 = 4 o),

Furthermore, choosing s = 1 + ;% — ﬁ = % we have

2p — p—1 — P p—1 _  p(3p+5)
pre t8=24200 —s =5+ 14 55 = ganeey
o(h) = O(WTETTD 4+ hoks 4+ 1),

(One can prove that this choice of s and k optimizes the order in h.) We compute then

p(3p+5) _ 2p _ pBBp+5)—2p(p+2) _ _ p’+p >0
(p+1)(p+2) 1+p = (p+1)(p+2) - (pt+D)(p+2) )

p(3p+5) 2p _5p 2p
which yields h®+D@+5 = o(hT+r) and p(h) = O(h%+1 4+ h1+7). To summarize,
An(By) > —1+ 2755 B, (A) hit2 + O(h%ha + h1ts).
By Lemma 1.5.1 we have then, with a suitably small € > 0,

A(F 1) > —14275 B, (A) h#f2 + O(h55 4 hifs),
s€ 1-p

Applying now Lemma 1.4.7, for h := a7 and a — 400 we obtain

A, (Hy) > o?A,(F 1)+ 0(1),

h,eh1l-p
2(1—p) 5(1-p) 2(1—p)

> a?(— 14275 B,(4) o + 00 + ™)) +0(1)

= —a? + 277 B, (A) a7 + O(a® ¥ + aTh).
Noting that

— 6 _ 1-p_ p-1_ — 6 _ 4 _ _2(p—1)
M= 555 = 2p7d — 2(pt2) 0, m=55 1= GrT2) — 0

we obtain
An(Hy) > —a® + Q%En(A)ow% + O(aﬁ_"), 7 := min{ny,n2} > 0.

Recall that in Subsection 1.4.3 we already obtained a suitable upper bound and noted that
A, (H,) is the nth eigenvalue of H,, if « is large. This completes the proof of Theorem 1.1.1.



Chapter 2

A MIT Bag model on spin
manifolds

Le présent chapitre retranscrit un article paru dans Journal of Geometry and Physics, 178,
104534 (2022), généralisant le modele MIT Bag au cadre des variétés spin. On y étudie la
convergence des valeurs propres de 'opérateur de Dirac MIT Bag dans des limites de grandes
masses.

45
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2.1 Introduction

The MIT Bag model was developed by the physicists in order to describe the behaviour of
quarks fields inside hadrons. Mathematically, the hadron is seen as a compact region X
with smooth boundary of the ambient space, where the quarks are supposed to be confined.
This could be quantified by saying that the quantum flux through the border of X is null,
a condition which is satisfied if we add the so-called MIT Bag condition on the boundary of
XK (see [40] for the details). Moreover, the quarks fields inside the hadron are Dirac fields,
which means they are governed by the Dirac equation.

A Dirac field in the case of the space of dimension 3 is a C*-valued function 1 also depending
on time, and the Dirac equation takes the form

3
Hyth = (—i > Ry + mﬂ) V=1 %w (2.1.1)
k=1

where a1, a9,as3,8 € My(C) are four Hermitian matrices satisfying the conditions ago; +
oo = 2(5214, B% =1, and «y anti-commutes with 3 for all k,1 € {1,2,3}. In view of this
equation, the Dirac operator H,, can be interpreted as a Hamiltonian, and the description
of its spectrum is a natural question. Thus, in the context of the MIT Bag model, we are
interested in the operator resulting from the combination of H,, restricted to the region X
together with the MIT Bag boundary condition, namely

HXv = Hpp, dom(H) = {1p € H'(X,C*), —i B(a- n) Yo% = Yjaxc}, (2.1.2)

where n is the outer normal vector field along K. The spectrum of this operator has been
investigated in [5], where the non-relativistic limit was considered, i.e. the asymptotic regime
where the mass goes to infinity. From a physical point of view, this last fact means that the
speed of light becomes large, since this constant is hidden in the mass term in (2.1.1). Tt
was shown that if we denote by (u;);>1 the non-decreasing sequence of positive eigenvalues
of HX, one has the asymptotic

1
pi = i +0(m7%) (2.1.3)

m—r—0oQ0

where (1) is the non-decreasing sequence of eigenvalues of an effective operator acting on
the boundary of X.

In the same framework, the MIT Bag Dirac operator was interpreted as the limit of a Dirac-
type operator with a potential corresponding to two masses m and M in the regions X and
K¢ respectively [4]. More precisely, if we define the operator

Hypng o= Hy + (M —m)1lge, dom(H,, ) = H'(R3,CY), (2.1.4)

then the eigenvalues of H,, 5 converge to the corresponding ones of HX when M — +oc.

In the recent article [59], the case of Euclidean spaces was studied in order to enlarge the
precedent results. The expression of the operator in dimension 3 given by (2.1.2) was gen-
eralized to dimension n by considering n + 1 Hermitian matrices aq,...,a,+1 € My(C)

(N := ZL%J) satisfying the Clifford conditions ara; + ojag = 25211\; and by setting

Dy = (—i Zak&c + man+1> ¥, dom(D,,) = Hl(R”,(CN). (2.1.5)
k=1
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This last operator is not the intrinsic Dirac operator in R™ but it can be interpreted like in
(2.1.1) as the Hamiltonian appearing in the Dirac equation of a Lorentzian space of dimension
n + 1. From these considerations, the MIT Bag Dirac operator A,, can be defined by

Am = D, dom(Am) = {¢ S Hl(jcvc4)a —1 Un41 Z N Qg ¢|62K = ¢\8K}- (216)
k=1

With this definition, the result on the convergence of the eigenvalues of A,, still holds, and
the effective operator on the boundary can be explicited. Namely, the eigenvalues of A2,
converge to the eigenvalues of the square of the intrinsic Dirac operator on 9X. Moreover, if
n ¢ 47, the spectra of the operators are symmetric with respect to the origin, and we recover
the result stated in dimension 3.

As for the Minkowski space, the operator A,, can be viewed as the limit of an operator with
two masses [59, Theorem 1.2]. This operator is defined in the same way as before:

Bt = Dy + (M —m)lgcay, 1, dom(B, ) := HY(R",CY), (2.1.7)

and the eigenvalues of B’r2n, a7 converge to the eigenvalues of A2, when M — +o0. In addition,
a combination of the two previous asymptotic behaviours is also true [59, Theorem 1.3]: in
m

the asymptotic regime m — —oco and M — +oo with 7; — 0, one has that the eigenvalues
of BZ% a converge to the corresponding ones of the intrinsic Dirac operator on the boundary

oX.

In the precedent discussion, the spaces considered where always flat, but the Dirac operator
can be defined in a more general setting, for example over a manifold admitting a Spin-
structure. Consequently, our aim in the present text is to extend the results of [59] to this
more general framework. In order to do so, the first step is to understand the geometrical
meaning of the operator considered in the MIT Bag model, because we recall that the Dirac
operator considered in [59] is not the intrinsic Dirac operator of the Euclidean space. Indeed,
the operator D, is the so-called Dirac-Witten operator on R" seen as an hypersurface of
R™*1 plus a mass term which is actually the Clifford multiplication by the vector i ma, 1
in R**1. Note that D,, acts on spinors of Rt so it is not exactly the Dirac Hamiltonian
on R” plus the mass term.

Nevertheless, even if the expression (2.1.6) is a direct generalization of equation (2.1.2), the
Dirac-Witten operator is not the operator we obtain from the physical model [40]. Indeed,
in (2.1.1) we used the alpha matrices, but the Dirac equation is more often written using the
gamma matrices defined by

V=8, A*=—iy o, k=1,23.

If one rewrites (2.1.1) with the « matrices, one obtains

3
Hyp = (Z YOy o + mv‘)) Y, (2.1.8)

k=1

and this last operator is, up to a change of sign, the extrinsic Dirac operator on the hy-
persurface R? plus the mass term. Moreover, the boundary condition defined in [5] by
—if(a-m)yp = 1 reads i (v - n)yY = ¢ and this last boundary condition is the MIT Bag
boundary condition as introduced in [40].

Altogether, we have two natural ways of setting the problem in the case of a complete spin
manifold N. In both cases, we have to see N as an hypersurface of the Riemannian product
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C := N x R, and we denote by v the outer normal vector field over N. In addition, the
region X is now a compact submanifold of N with boundary. The theory of Spin-structures
restricted to hypersurfaces gives that € and 0X are also spin manifolds. Consequently, we
can define the spinor bundle X€ over €, and the extrinsic Dirac operator D™, which acts on
spinors of € restricted to N.

From the previous discussion, the obvious generalization of the MIT Bag Dirac operator in
the Euclidean spaces (2.1.6) is defined as the Dirac-Witten operator on N plus a mass term,
and we add the boundary condition iv -n-W¥ = ¥ on 0X. This last condition is not the
MIT Bag boundary condition, but the condition associated with a chirality operator, and it
is consistent with the condition imposed in (2.1.6). Namely, we have

Ay =v-DN +imv-, dom(A,) = {¥ € H'(SCx),iv-n-¥="TondK}. (2.1.9)

Furthermore, the cylinder € can be endowed with a Lorentzian metric such that v is a
time-like vector, and in this case, solving the Dirac equation in € in the same way as for
dimension 3 lets us with the study of the extrinsic Dirac operator on N plus the mass term.
The boundary condition imposed in this case is the original MIT Bag boundary condition
in-¥ =1V

Actually, the two operators we defined this way are unitarily equivalent since the manifold N
is totally geodesic in €. This last result explains how the operator studied in [59] is obtained
from the physical model, and the two definitions we gave above are equivalent.

In the same way as before, the two-masses operator is obtained by adding a potential cor-
responding to two masses in K and K¢ in the expression of the operator A,,. Since in our
framework the manifold N is complete but not necessarily compact, By, as is defined as the
closure of the operator

Bpg i=v - DN i (mlgc + Mlgce)v-, (2.1.10)

whose domain is the set of smooth sections with compact support in €. This definition is
consistent with (2.1.7) because it was shown in [59] that the two-masses operator is essentially
self-adjoint on the smooth functions with compact support.

The operators A,, and By, a are self-adjoint and we are interested in the behaviour of
the spectrum of A,, when m — —oo and the spectrum of B, s in the asymptotic regime
M — 400 and min(—m, M) — +oo. These limits are the ones studied in [59], and the three
main theorems we state below are the counterparts of [59, Theorems 1.1, 1.2, 1.3].

From now on, we use for j € N and a lower semibounded operator T the notation E;(T),
which stands for the j-th eigenvalue of T" when counted with multiplicity in the non-decreasing
order.

First of all, one has the convergence of the eigenvalues of A2, to the eigenvalues of the square
of the Dirac operator on 9K:

Theorem 2.1.1. For any j € N, one has E;(A2) — E; ((ﬂax)Q).

m——0o0
The two operators A7, and B, , are surprisingly related in the asymptotic regime M — 4-o0:
Theorem 2.1.2. For any j € N, there is My € R such that for all M > My, B72n,M has at

least j eigenvalues, and one has E;(B2, /) 2 Ej(A2).
’ —+o0

In addition, one has a combination of these two results:
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Theorem 2.1.3. For any j € N, there is 7; € R such that for all M > 7; and m <
—T;, the operator an,M has at least j eigenvalues, and one has E; (BE%M)

E; ((¢8K)2)-

—
min(M,—m)—+oo

Note that Theorem 2.1.3 is an improvement of [59, Theorem 1.3] since we drop the assumption
i — 0.
Remark 2.1.4. We can also look at the operator A2, when m — +oco and the operator

Bme when m, M — +oo (or m, M — —o0). We can prove that in these two cases, the
spectrum escapes to infinity (see Remarks 2.7.2 and 2.9.1 below).

Remark 2.1.5. It is not easy to understand the implications of the three theorems above
for the spectrums of the operators A,, and By, ps. However, as in the Euclidean case [59],
we can show that the spectrum of these operators is symmetric when the dimension n of N
is not in 4Z. Indeed, in this case there is a parallel antilinear map J on € which commutes
with the Clifford multiplication by elements of T'C (see [15, Theorem 1.39] for example).
Then, 6 := J o (v-) anticommutes with the operators A,, and By, as because v is parallel. In
addition, 6 preserves the domains of these operators. Consequently, if ¥ is an eigenspinor for
A, ie. AU := AU for a A € R, one has A4,,00 = —A\0¥, implying that —\ is an eigenvalue
of A,,. The case of B, ps is done in the same way.

Organization of the paper

The proofs of the three theorems are really close to the ones written in [59] once we have
stated the correct geometrical context. The global strategy is thus to compute sesquilinear
forms for the operators A2, and B?n, s in order to find lower and upper bounds for the limits
of the eigenvalues by use of the Min-Max principle.

In section 2.2 we first recall some fundamental results in spectral theory on the correspon-
dence between self-adjoint operator and sesquilinear forms on Hilbert space. The Min-Max
principle, which is the key point of our proof, is stated, and we also give a quick review on
the monotone convergence theorem in the case of sesquilinear forms. This last theorem is
helpful to find the lower bounds for the limits of the eigenvalues, since it gives a description
of the asymptotic domain of the operators. After these preliminaries on operators theory, we
introduce the basic tools needed to understand the geometrical context. Indeed, the theory of
restriction of the spin structure of spin manifolds to oriented hypersurfaces plays a significant
role in the understanding of the generalized MIT Bag operator.

Section 2.3 is devoted to the construction of the operators. We develop here the discussion
about the two equivalent ways of defining A,,,. We also define the operator B,,, »s and we show
that it is self-adjoint as a direct consequence of the completeness of N. The self-adjointness of
A, is more difficult to prove, and we need to compute the sesquilinear form for A2, in order
to understand its graph norm and its domain. The computations for the forms of square
operators are done in Section 2.4 and the main tool used to this aim is the Schrodinger-
Lichnerowicz formula, which gives the expression of the square of the Dirac operator on a
spin manifold. Once we get the sesquilinear forms, the graph norm of A,, is shown to be
equivalent to the H! norm on its domain, and we can use the analysis done in [36] to conclude
on self-adjointness.

An important idea to prove the main results is that we can restrict the analysis to a tubular
neighbourhood of the boundary of X. Thanks to this restriction of domain, we only have
to understand the operators on a generalized cylinder 9K x (—4,0) with § > 0. However,
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there is an additional difficulty since we cannot compare the covariant derivatives on the
different slices of the cylinder as it is done in [59]. Thus, we prove some comparison lemmas
in section 2.5, where we express the operators in tubular coordinates.

The aim of this restriction is to be able to separate the variables in the generalized cylinder
previously introduced. Thus, some one-dimensional operators will appear later in the analy-
sis, and we devote section 2.6 to the spectral analysis of these operators, even if a large part
of this work has already been done in [59, Section 3].

In section 2.7 we prove Theorem 2.1.1. The geometrical context is well-defined, and it
remains to follow the lines of [59, Section 4]. The proof is done by restricting the analysis to
the tubular neighbourhood of 9K intersected with the interior of X thanks to the Min-Max
principle. Next, an upper bound can be found for the limit by choosing good test functions
which are tensorial products between eigenspinors of a model operator on 90X and the first
eigenfunction of a one-dimensional operator. The proof of the lower bound relies on the
monotone convergence theorem after operating a transformation on the operator in tubular
coordinates.

The result stated in Theorem 2.1.2 is proved in section 2.8. We find an appropriate extension
operator which sends eigenspinors of A2, into dom(B,, rr), and this gives the upper bound.
The lower bound is once again a consequence of the monotone convergence theorem together
with the Min-Max principle.

Finally, we prove Theorem 2.1.3 in section 2.9 using a combination of the precedent argu-
ments. After restricting the problem to the tubular neighbourhood of 9K, the upper bound is
found in the same way as for Theorem 2.1.1 by choosing good test functions in the Min-Max
principle, and the lower bound is a consequence of the monotone convergence theorem.

2.2 Notations and preliminaries.

2.2.1 About spectral theory.

Let H be an infinite-dimensional Hilbert space endowed with the inner product (-, -)g. For a
self-adjoint and lower semibounded operator T on H, we denote by dom 7" its domain, and for
any j € N, E;(T) is the jth eigenvalue of T', counted with multiplicity in the non-decreasing
order. We also note o(T'), 0.s5(T) and o4(T) the spectrum, the essential spectrum and the
discrete spectrum of T' respectively.

We denote the adjoint of an operator T by 7™ and its closure by 7.

For a sesquilinear form ¢ in H, we denote its domain by Q(¢). There is a one-to-one corre-
spondence between densely defined, closed, symmetric, lower semibounded forms and lower
semibounded self-adjoint operators (see [41, VI, Theorem 2.1] for details). For a lower semi-
bounded self-adjoint operator T', we will denote by Q(T') the domain of the associated form.
If T and T' are two such operators, and t,¢' are the associated forms, we write T' < T if
AUT") C UT) and t(u,u) <t'(u,u) for all u € Q(T").

For j € N, we define the jth Rayleigh quotient of the form ¢ by

A;(t) .= inf Hu, u)

sup . (2.2.1)
Ve yevyjor llull3
dim V=j

We recall that if ¢ and t' are two semibounded from below bilinear forms, we write ¢ < ¢’ if
Q(t") c Q(t) and t(u,u) < t'(u,u) for all u € Q(t').
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Let t be a closed symmetric lower semibounded form, and 7' its associated operator. The well-
known Min-Max principle gives a link between the Rayleigh quotients of ¢ and the eigenvalues
of T. More precisely, we have the following theorem:

Theorem 2.2.1 (Min-Max principle). Let ¥ := inf o.5,T. We are in one of the following
cases:

(a) A;j(t) <X for all j, mgr_rs_loo/\m(t) =Y and E;(T) = Aj(t) for all j.

(b) OessT < 400 and there is N < +00 such that the interval (—oo,X) contains exactly N
eigenvalues of T counted with multiplicity and for all j < N, one has Aj(t) = E;(T)
and A, (t) =X for allm > N.

The proofs of the spectral part of this text will use monotone convergence of operators. The
result stated below is a reformulation of [7, Theorem 4.2].

Theorem 2.2.2. Let (T,,)nen be a sequence of lower semibounded self-adjoint operators in
closed subspaces (Hy,)nen of H, and let (t,)nen be the sequence of associated forms. Assume
there exists v € R such that t,, >« for all n and suppose moreover that the sequence (t,) (or
equivalently (T,,)) is non-decreasing. Then, the form to, defined by

teo) = {h € () Qtn), lim t,(h,h) < oo} (2.2.2)

n—oo
neN

and too(h, h) = lim, o t,(h, h) for all h € Q(ts) is closed, symmetric, and to, > 7.

Moreover, if Hy = Q(too), one can define the self-adjoint operator T, on Hy, associated
with teo, and the sequence (T,) strongly converges to Tw, in the generalized resolvent sense,
i.e. for all A <y, one has

(T, =N @0 )h — (Too —N) '@ 0gge )h, Vh e H. (2.2.3)
n n—00 hed

Since we are interested in the behaviour of the spectrum, we claim that in the framework of
Theorem 2.2.2, one has actually the convergence of the eigenvalues of T,, to the corresponding
eigenvalues of To.. To show this, we first recall [74, Theorem 2.1]:

Theorem 2.2.3. Let (T,) be a sequence of self-adjoint operators which are bounded from
below with T,, < T, 11, strongly converging to T in the generalized resolvent sense. Assume
that the essential spectrum of T,, is contained in [0,400) for all n € N. Suppose that T has
Jo negative eigenvalues (jo might be infinite). Then,

EJ(Tn) n—)—+>oo E](T) fOT‘ all] S j()

ngrfoo E;(T,) > 0 for all j > jo.
Moreover,
11 (=0, ) (Tn) = L(—oo, ) (D)]| n:)m 0 for all A < 0.

From Theorem 2.2.2 and Theorem 2.2.3 we deduce the following corollary:

Corollary 2.2.4. Let (T),)nen and To be like in Theorem 2.2.2. Assume moreover that
Oess(Thy) C [, +00) for some ng € N and that Too has jo eigenvalues below n (jo might be
infinite). Then, one has

By (Tn)  —=_ Ei(T) for all j < jo (2.2.4)
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and
||]_(_Oo7)\) (Tn) — 1(_00,)\)(TOO)|| n_)—+>oo 0, VA< 7. (2.2.5)

Proof. We consider for n > ng large enough the bounded self-adjoint operators in H

1
Byi=—— (T, —7) "' @ 0g-
p— (( ) H.)
1
Booi=—— = (Too —7) ' ® 051 ).
p— (( ) HL )
From [7, Proposition 2.2], it comes that for all n > ng, one has B, < B,+1 < Bs. In
addition, o.ss(B,) C [0, ﬁ], Oess(Bso) C [0, ﬁ], and (B,,) converges strongly to Bu.
Thus, Theorem 2.2.3 gives that for all j € N such that F;(Bs) < 0 one has

Ej(Bn) — E;j(Bs) (2.2.6)

n—+oo

and that for all ¢ < 0, there holds

1o (Ba) = 1oy (Boc) | — 0. (227)
For A > =, we define the strictly increasing function f(A) := ﬁ — %—w One has B,, = f(T},)

and By, = f(Ts) and we deduce that for all j < jg

n——+oo

and from

Loo, 1) (Bn) = Lo ) (Th):  L(—oo,r(0)(Boo) = L(—con) (T0),
we deduce that for all A <n

Hl(—oo,A)(Tn) - 1(—oo,A)(Too)|| — 0. O

n—oo

2.2.2 Clifford algebra

We recall here the basic facts about Clifford algebra, and we refer to [15] for the details. For
any d € N, the real Clifford algebra Cly is the quotient of the tensorial algebra over R? by
the two-sided ideal generated by the elements x ® = + ||z]|?1. The induced product on the
quotient algebra is called the Clifford product, and is denoted by ”-”. The complex Clifford
algebra is defined by Cly := Cl; ®g C. The spin group is the subgroup of Cl; given by

Sping := {wy - ... w9, € Cly, k € N and x; € R?, ||lz;|| = 1 for all 1 < j < 2k}.

We define the complex volume form as the element of Cly

w§ = it ey ey (2.2.8)
where (eq,...,eq) is any positively-oriented orthonormal frame of R¢, canonically identified
with a basis of C?.
If d is even, Cl; admits an unique irreducible complex representation (pg, X4) where X, is
a complex vector space of dimension 2%. When restricted to the Spin group, this Clifford
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module decomposes into ¥4 = Eji' @ X, and the representation splits in two irreducible
inequivalent representations (pf, E;t). These submodules are characterized by the action of
the complex volume form, namely wg acts as £Id on Ef.

When d is odd, Cl; admits two irreducible inequivalent representations over complex vector
spaces of dimension 25" They are characterized by the action of the complex volume form
which acts as +£Id. We denote by (pg4, X4) the representation on which wg acts as the identity.

2.2.3 Notations for manifolds and bundles

In all this text, the manifolds will be considered smooth and paracompact.

Let (M, g) be a Riemannian manifold of dimension d + 1, with boundary OM (possibly
empty). If M is oriented, we denote by vy the volume form on M compatible with the
metric. Throughout this article, integrations will be done with respect to the Riemannian
measure, which coincides with the integration with respect to the volume form vy¢ in the
oriented case.

We denote by VM the Levi-Civita connection of (M, g) and by RM, Ric™, Scal™ the Riemann
curvature tensor, the Ricci tensor, and the scalar curvature of M respectively.

If E is a vector bundle over M, we denote respectively by I'(E), I'.(E) and I'..(F) the smooth
sections of F, the smooth sections of E with compact support in M, and the smooth sections
of E with compact support in M\ @M. If moreover E is a Hermitian bundle, we note L?(F)
the space of square integrable sections of E. If it is necessary, we will write L?(E,vyt) to
specify the measure used for the integration.

We now assume that M is oriented. The manifold M admits a spin structure if there exists a
map x and a principal bundle Pspin, . M over M such that for every u € Pspin, . M we have
the commutative diagram:

. SH>US,
Splnd+1 B PSPind+1M

N .

X M

7

SO04+1 Xy Pso, M

Given a spin structure on M, we define the associated complex spinor bundle by ¥M :=
Psping ;M X, Zar1 where we recall that (pa+1,4+1) is an irreducible representation of
the Clifford algebra Cly4; as defined in section 2.2.2.

There is a natural action of the Clifford bundle CM := Pso,,, X Clg41 (where r is the action
of SO441 on R extended to a representation on Clg) defined by:

(), 0)([u, ¥]) := [u, patr(0)¢] (2.2.10)

for all u € PSpind+1M7 v € Clgyq and ¥ € 3g41. This action is called the Clifford product
and will be denoted by ”-”.

One has a canonical Hermitian product (-, -) on ¥M for which the Clifford product by a unit
vector is unitary. Moreover, one obtains a metric connection on XM by lifting the Levi-
Civita connection on the orthonormal frame bundle of M through the map x. The covariant
derivative obtained this way will still be denoted by VM.
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We define the intrinsic Dirac operator Ip™ on M, by its pointwise expression

d+1
P =" e VU, dom (D) = T(EM), (2.2.11)
k=1
where (e1,...,e4+1) is an orthonormal frame. This definition does not depend on the choice

of the frame.

Finally, we remind the Schrodinger-Lichnerowicz formula, which will be a fundamental tool
to compute sesquilinear forms of operators. A proof can be found in [33, Theorem 1.3.8].

Theorem 2.2.5 (Schrédinger-Lichnerowicz formula). The Dirac operator lZ)M satisfies the
formula

M

where (VM)* : D(T*M® SM) — T'(SM) is the formal adjoint of V™ and Scal™ is the scalar
curvature of M.

(2.2.12)

2.2.4 Restriction of the spinor bundle to hypersurfaces

We take (M, g) as in the previous section.

Let H be a smooth oriented hypersurface of M. Let v be the outer unit normal vector field
on K, that is, the only vector field such that if (eq,...,eq) is an oriented frame of 3, then
(e1,...,eq4,v) is an oriented frame of M. We define the Weingarten operator of H as the
endomorphism of TH given by

Wi (X) := —V¥v, (2.2.13)
and Hg : M — R will be the pointwise trace of this operator.

The hypersurface H inherits a spin structure from the one of M, and we can define the
spinor bundle 3 (for the details, see [15, Section 2.4]). This last bundle is endowed with
the natural Hermitian product on spinors, still denoted by (-, -). The covariant derivative on
YH induced by the Levi-Civita connection will be denoted by V7. We will also write V7
for the covariant derivative on XH @ LH (where @ stands for the Whitney product), and for
all X € TH, the Clifford product by X on XH & X3 is given by

X (U, 0) = (X -0y, —X - Uy), V(U T,) € SH & SH. (2.2.14)

There is a link between the restricted spinor bundle XM, 4 and X3, given by the following
proposition (see [33, Proposition 1.4.1]):

Proposition 2.2.6. Let M and H be as above. There exists an isomorphism ¢ from XM g
imto XH if d is even and into XH & LH otherwise, which satisfies the following properties:

1. Forallz € H, X € T(T,H) and ¥ € (¥M)|(4y, the Clifford product on H satisfies
X -¢(V) =((X - v(x)- D), (2.2.15)

2. The isomorphism ( is unitary,

3. For all V € T(¥M3¢) and X € TH,

C(VI) = V(D) + %W;CX (D). (2.2.16)



CHAPTER 2. A MIT BAG MODEL ON SPIN MANIFOLDS 55

4. For ¥ € ¥Mg¢,

0 I g
Cliv-T) = (Id od) (W) afdis odd (2.2.17)
w§ - ¢(D) if d is even

where the complex volume form wg was defined in section 2.2.2.

=M =M
We can define a covariant derivative V' on ¥XMg¢ such that V"W is the restriction of
VMU to T(T*H ® E). This notation will be useful as we will often consider the norm of the
restricted covariant derivative on hypersurfaces.

The link between ¥M|q¢ and XH gives rise to a natural operator called the extrinsic Dirac
operator. This is actually the Dirac operator of H which acts on the spinor bundle XM, g.
This extrinsic Dirac operator on H is the operator acting on I'.(XM) defined by

P = P Cif dis odd, DY =D @ —P )¢ if d is even. (2.2.18)

where ( is the isomorphism given by Proposition 2.2.6. It can be explicitly computed, and
its expression at x € H for ¥ € ¥M is

d
Hgc(x
DHW(z) = “2( )\Il(x) —v(x) Y er VIU(x) (2.2.19)
k=1
where (e1,...,eq) is an orthonormal frame of T, H [33, Proposition 1.4.1], [39].

2.2.5 Sobolev spaces on manifolds

Let (M, g) be a compact Riemannian manifold of dimension d + 1 with boundary oM. We
denote by vy the normal unit vector field over OM.

Let (E,VE (-,-)g) be an Hermitian bundle of dimension g over M. The construction of the
Sobolev spaces on E is done for example in [36, Definition 3.5], but we recall the idea to be
self-contained.

In what follows, we will denote by exp™ the Riemannian exponential map on M and by
B2 (r) the ball of radius 7 > 0 and of center 0 in 7, M where 2 € M. This notation will be
used for the boundary OM with an obvious modification. By the compactness of M, there is
r¢ > 0 such that:

e the map
F:OM x [0,2r4) 3 (x,t) — exp)(tvae(2)) (2.2.20)
is a diffeomorphism on its image;

e for all x € M\ F(OM x [0,2r,)), exp™ is injective on the open ball of radius r; of T,M;

o for all z € OM, exp™ is injective on the open ball of radius r; of T,,0M.

Let (Uj)jes be a finite covering of M such that U; = exp)'(BM(r)) with z € M\ F(dM x
[0,2r,)) (Gaussian coordinates) or U; = F(BI™(r,) x [0,2r;)) with € OM (normal coordi-
nates). The maps given by these charts are denoted by (f;);je.s. We trivialize E over U; with
Gaussian coordinates by identifying E, with C? and by making parallel transport along the
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radial geodesics. Over the set U; with normal coordinates, we trivialize E by identifying E,
with C? and by making parallel transport first along the radial geodesics in M and then
along the geodesics normal to M. The trivializations obtained are denoted by &;.

Let (h;)jes be a partition of unity adapted to the covering (U;);cs. For s € R we define the
H? norm by

1130y 3= 32 MED- (%) 0 £ 2 s oy (2:2.21)
jeJ '

where R;Hl := R4*! when U; NOM = () and R;Hl = R4 x RT otherwise.

Definition 2.2.7. Let s € R. The Sobolev space H*(E) is the completion of the space I'.(E)
for the H® norm.

Remark 2.2.8. The Sobolev spaces defined in this way are a generalization of the H® spaces
in R! and for k € N, the H* norm is equivalent to the norm defined by the square root of

k
ST I(VE) -2 (see [37, Theorem 5.7], or [36, Remark 3.6]).
j=0

A direct consequence of Definition 2.2.7 is that the intrinsic Dirac operator on a compact
manifold without boundary is essentially self-adjoint and the domain of its closure is the
Sobolev space H':

Proposition 2.2.9. If (M,g) is a compact Riemannian spin manifold without boundary,
lDM is essentially self-adjoint, and the domain of its closure is H*(XM).

Proof. The Dirac operator is symmetric, and then it is closable. By compactness, there
exists C' > 0 such that |Scal™| < C. Moreover, by the Schrodinger-Lichnerowicz formula

(Theorem 2.2.5), the graph norm of IZ)M is equivalent to

Scal™

M
1+ ||2L2(M) + [P - ||2L2(M) = (1 +C+ > | - ||2L2(M) + ||V ||2L2(Jv[)

and this last norm is equivalent to the H!(3M)-norm because of the boundedness of Scal™.
Then, the domain of the closure of ]ﬁM is the completion of I'.(XM) for the graph norm,
which is exactly H'(XM).

The manifold (M, g) is compact, and then the Dirac operator is essentially self-adjoint in
L?(¥M) [33, Proposition 1.3.5], which concludes the proof. O

By the definition of the Sobolev spaces, one can observe that it is possible to extend the results
valid for Euclidean spaces. We state a trace theorem which is a modification of [36, Theorem
3.7], where we add a bound for the L?-norm of the trace.

Theorem 2.2.10. Let (M, g) be a compact Riemannian manifold with boundary OM. Let
(E,VE (-,g) be an Hermitian vector bundle with base M.

Then, the pointwise restriction operator vy : I'e(E) — I'c(Ejon) extends to a bounded op-
erator from H'(E) onto H%(EWM), and there is a bounded right inverse to vy : HY(E) —

H%(E‘8M> denoted by ey, which maps T'c(Ejpp) into T'e(E). Moreover, there exists K > 0
such that for any € € (0,1),

1 _1
I @ I72 000y < K (5"’ IV 200) + €72 H‘I’H%Q(M)) , Ve H'(E).
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Proof. The proof of the first part of the theorem is done in [36, Theorem 3.7]. We prove
the last estimate.

With the notations of (2.2.21), we denote by Jy the set of all j € J such that U; N OM # 0,

and there is a constant C' > 0 and a constant K > 0 given by [35, Theorem 1.5.1.10] such
that for any € € (0,1) and for all ¥ € HY(E)

I @172 o2e) <C Z 1(65)« (R ®) o £ 122 (R oy.co)
JjeEJIN

<CR Y [H1€)e (W) 0 17 s ss o
JjeJ

_1 -
e HEN () 0 £ s )

—CK (19232 a0y + 132 a0 ) - O

The Rellich-Kondrachov theorem still holds for the Sobolev spaces on compact manifolds.

Consequently, the operators with domain included in the first Sobolev space on a vector

bundle with compact base have compact resolvent. We refer to [72, Proposition 3.13] for the
following theorem.

Theorem 2.2.11 (Rellich-Kondrachov-type theorem). Let E be an Hermitian vector bundle
over a compact manifold M. Then, the inclusion H'(E) C L*(E) is compact.

We end this section with a direct consequence of Proposition 2.2.6. We assume that (M, g) is
a compact Riemannian spin manifold of dimension d+1 and we take an oriented hypersurface
H of M. We use the notation of section 2.2.3.

Corollary 2.2.12. The isomorphism ( given by Proposition 2.2.6 is an isomorphism between
HY(XM3¢) and H'(SH) if d is even or H'(SH & XH) if d is odd.

Proof. We define ||Wyc|loo := SEECXeﬁll}IC)\{O}% < 0o. Let ¥ € I'.(¥M5) and

(e1,...,eq) alocal orthonormal frame of H at a point z € 3. At this point, one has, using
Proposition 2.2.6, (3),

1
V:}C(\I!F ZK VM\IJ —iwf}cek‘C(\I})FL?(}Q

d
=M 1
<2/C(V ) T2 g0) + 5 > Wacer v 7z
k=1

< AT W)+ Wl 19220
and then, by integration we obtain
IS (1372 30y = ICLNT2 90y + IV CPNT2 56
<1290 + 2V O a0 + 5 IIWf}cll 121172 50,
< G193 50,

where C7 > 0. The same argument shows that there exists Cy > 0 such that for all ¥ €
C(Ce(EMg¢)), one has ¢~ l‘I’HHl(%) = 02\\‘1’\@11(?0' H
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2.3 Definition of the operators

2.3.1 The generalized MIT Bag Dirac operator

In this section, we would like to give a generalization of the MIT Bag Dirac operator in the
context of spin manifolds. Our construction will be done by considering the Riemannian
product of a manifold N with R and interpreting the operator as the extrinsic Dirac operator
on the hypersuface N x {0}, modified by a Clifford multiplication with the normal vector
field. Since the hypersurface N is totally geodesic, this operator is the so-called Dirac-Witten
operator (see the remark in the proof of [33, Theorem 5.2.3] for example).

We first introduce the context of our study. Let n € N and let (N, g) be a n-dimensional
smooth Riemannian manifold which is spin and complete.

Let (€, ge) := (N, g) x (R,dt?) be the Riemannian product of N and R. We identify N with
N x {0}. Let p; be the projection on N in €. We endow € with a spin structure as follows:
we denote by P the pull-back to C of the bundle Pspi, N by the projection p;, and then the
extension of P to Spin,,, is a spin structure on C (see [6, Section 5] for example).

We denote by v the outer unit normal vector field on N x {0} in €, i.e. the vector field (0, %).
By construction, the Weingarten tensor of N vanishes, so the mean curvature Hy is zero.
We denote by ¢ be the isomorphism given by in Proposition 2.2.6, in the particular case where
M := C and H :=N. It is important to remark that the spin structure originally defined on
N and the spin structure inherited by N from the one of € according to Proposition 2.2.6 are
the same.

Let X be a submanifold of N of dimension n, and assume that X is compact with non-empty
boundary 0X. From these assumptions, we know that 0X is oriented. Thus, we denote by

% (0K) if n is odd

(XN —
a {2(89() ®X(0K) i n is even

the isomorphism given by Proposition 2.2.6 and by n the unit outer normal vector field over
0X viewed as a submanifold of N.

The operators DV, lDN, DX and lDax defined in (2.2.11) and (2.2.18) are essentially self-
adjoint [33, Proposition 1.3.5]. We keep the same notation for their closures.

In what follows, we will simply write W for Wyx and H for Hpx.

Let m € R. To any ¥ € I'(3€y), we associate an element W, of I'(2€) defined for (z,t) € €
by W, (x,t) = ™0 (x,t) where U(z, ) is obtained by parallel transport of ¥(z) along the
curves s — (z, s).

Let (e1,...,e,) be a local orthonormal frame at © € N. Then, we compute

(lbe@m)(x) = iej : ij\i/m +imv- U, | (z,0)

Jj=1

—Zy~y-ej~vgj\ll () +imy - U(x)
j=1

=v- (DN + im) ¥(z),

where the extrinsic Dirac operator D is the operator given by the expression (2.2.19). The
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operator obtained in the last line is precisely the operator that we want to study, as it can
be interpreted as a Dirac operator with a mass.

We remark that the above construction can be done by restricting the domain of the operator
to K. We thus introduce the generalized MIT Bag operator

Ap i=v- (DN +im), dom(A,,) := {Vel.(2€x),iv-n-¥=VondK}. (2.3.1)

Remark 2.3.1. One can observe that in the case of Euclidean spaces, the expression (2.3.1)
coincides with [59, Equation (1)], which is already a generalization of the MIT Bag Dirac
operator in dimension 3 (see [4, Equation 1.1]). Indeed, the only difference comes from the
convention on the Clifford multiplication, because in the present text we have the identity
X X=X

Remark 2.3.2. It is easily seen that the operator /Nlm is symmetric since v anti-commutes
with DN (see [39, Proposition 1] for the general case, or simply remark that v is parallel in
our framework). Since symmetric operators are closable, we denote by A,, its closure.

Actually, the boundary condition imposed in the domain of the operator is not the Lorentzian
MIT Bag boundary condition as stated by the physicists [40] because of the Clifford multi-
plication by v. However, this is consistent with the boundary conditions imposed in [5], [4]
and [59]. To understand this, we can give another interpretation of the operator Zm which
seems more physical, and appears to give a unitarily equivalent operator.

Until the end of this section, we will deal with Clifford algebra and spin structures in the
Lorentzian case. We refer to [6, section 2] for a detailed presentation.

One can endow C with the Lorentzian metric g — dt?>. There is a Sping-structure over C
given by the pull-back of the Spin-structure on N and extending the fiber. One can construct
the associated spinor bundle Y€, whose Clifford multiplication will be denoted by ” -;”.
Moreover, we write V% for the covariant derivative on 7€, and we denote by (-,-); the
Hermitian product on this spinor bundle. We recall that this inner product is not necessarily
definite. In this framework, the Dirac operator with a mass on X;,C admits the pointwise
expression

Prv=i |- VEU+Y e VEU | —mU (2.3.2)
=1 '
where (eq,...,e,) is any orthonormal frame on N (see [6, section 2]). Consequently, the

Dirac equation lPE\I/ = 0 is equivalent to

iVEU =iy vepe o, VEU —muo 0. (2.3.3)

j=1

Now, if we take W(x,t) = e™“!¢(x) for all (z,t) € €, where ¢ is parallel along the time lines,
we arrive at

wp=—i Y vopejLVE¢+mu-L ¢, (2.3.4)

j=1

We have the counterpart of Proposition 2.2.6 for the Lorentzian case. Namely, the spinor
bundle ¥ € can be identified to one or two copies of XN as in the Riemannian case.

Proposition 2.3.3. There is an isomorphism v1, from ¥1,Cn into XN if n is even and into
YN & XN if n is odd such that:
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o 1 (- X pvpU)=X 1V forall X €e TN and ¥ € ¥1.C,

0 Id
Id 0

C

® LV =uw, -t when n is even, and ( ) when n is odd.

o (1L, @) = (V,v-p @) for all @,V € X1Cy,
° LLV)L{\IJ = V%LL\I/ for X € TN and ¥ € €.

Proof. We recall that the notations for Clifford algebras were introduced in Section 2.2.2.

Consider the space R™! endowed with the Lorentzian quadratic form of signature (n,1) and
let (e1,...,en11) be the canonical basis of R™1, so that e, 1 is timelike. The Clifford algebra
over this Lorentzian space is denoted by Cl,, ;. We turn the representation (p,+1, Xn41) into
a complex representation of Cl,, 1 (pn,1,Xn+1) by setting

pn(ei) = pnyi(e;) for 1 <i <n, and py1(ent1) == i put1(ent1).

We remark that when n is even, i2 p, 1(€1 - ... - €,41) acts as the identity.

Following [6, section 2], the Hermitian product (-,-);, on ¥, ; for the Lorentzian structure
is defined for all ¢, ¢ € ¥, 11 by

(W, 9)r = (¥, pna(ent1)9)

where (-, -) is the natural Spin,, , ;-invariant Hermitian product on X, ;.

One can define a representation p of Cl,, over the space ¥,41 by
p(r) = —i Pn,1(x ~epy1) forall x € R™.

For n even, this representation is equivalent to (p,,%,), so we have an isomorphism U :
Yn+1 — 2y such that p, U = Up. Moreover, since i%pn)l(el ... ept1) acts as the identity
on ¥,41, an easy computation gives Up,, 1(en1)U " = pp(w).
We still denote by (-, -) the Hermitian product on X,, and we remark that U can be chosen
unitary for this inner product. Thus, for all ¢, ¢ € ¥, 11 one has

<UT/% U¢> = <wa¢> = <7/1,Pn,1(6n+1)2¢> = <7papn,1(6n+l)¢>L~

For n odd, the restriction of p to Z:H is equivalent to (pn, 2, ), so we have an isomorphism
Uy : E:—s—l — X, such that p, Uy = Upp. In addition, p,1(en+1) is an isomorphism from
¥ | into BF,,, so we set

U: Zn+1 = Z;L‘—Jrl (&) 2;+1 — En D En, U= (UO D Uo)(IdEB pn71(6n+1)).

Easy computations give Up(z)U™' = p,(z) & —pp(z) for all z € R® C R" and
Upp, i (2)U " (41,92) = (¥2,91) for all (1,¢2) € B, @ 5y,

The Hermitian product on ¥, extends to X, @ X, and this extension is still denoted by
(+,+). The isomorphism U can be chosen unitary for this inner product, and one has for all

U, ¢ € Sy
(U, Ug) = (1, ¢) = (1, p% 1) = (¥, pn1) -

Now, all these properties transport to manifolds by identifying e, with v since the Spin,
structure over € is defined by pull-back of the Spin structure over N.

The last point follows from the explicit formula of the covariant derivative on spinor [6,
formula 2.5] and the fact that N is totally geodesic in C. O
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We infer that € and X 1€ are both isomorphic to XN if n is even and to XN @ XN if n

is odd, so we can identify them via the isomorphism ¢~ '¢z.

Corollary 2.3.4. The isomorphism ¢t ‘i, : £1,C — L€ satisfies:

o (L)W iv- (1Thp)®) = (U, @) for all ¥, ® € X1C.
o VG hp)V = (L) VEY for all X € TN and ¥ € T(3Z.0).

o X (1)U = (Y ) (X L V) forall X € TN
e iv- ()= ("hy)vr.

Under the identification of Corollary 2.3.4, Equation (2.3.4) reads

w(b:ZV-ej-Vqub—l—iml/-(b:(—ZDN—i—imzx-)qb. (2.3.5)

j=1

This is an eigenvalue equation, and it is now natural to look at the spectrum of the operator
defined by the right-hand side. We just need to add a boundary condition to define a
generalized MIT Bag operator. Since the physical condition imposed in [40] is that the
flux (¢,n -1, @)1, of the field vanishes at the boundary, we consider the MIT Bag boundary
condition in - ¢ = ¢. One has

_<¢7 ¢>L = <¢a —in-p ¢>L = <ZI‘1 ‘L ¢a ¢>L = <¢7¢>L7

and we conclude that (¢, —in - ¢);, = 0, so the condition of the physical model is verified.
We can now define another generalization of the MIT Bag Dirac operator by

Ay i=DN +imv-, dom(A,,) = {¥ € [.(SCx),in-¥ =T}, (2.3.6)

The change of sign for the mass in (2.3.6) compared to (2.3.5) comes from the fact that we
consider a model where m — —oo (see [5, section 1.3.3] for more explanations).

We have now two candidates for the generalization of the MIT Bag Dirac operator. However,

one can remark that the difference between A,, and A,, is only a matter of how the Clifford
product is defined, and the two operators are unitarily equivalent.

Proposition 2.3.5. The operators ﬁm and A\m are unitarily equivalent via a V°-parallel
operator.

Proof. We define a new Clifford representation on the vector bundle € by setting X « ¥ :=
v- X -UVand vV :=v- -V for X € TN and ¥ € XC. This new product still satisfies the
Clifford conditions in each fiber, and when n is even the complex volume form w¢, | acts as

w;CL_H*\IJ:iLngzjel*...*en*y*\I/
:iLnTHJ(V-el)-...(1/~en)~u-\1':wg+1-\I',
where (eq,...,e,) is a direct orthonormal basis of TN. It follows by the general theory

of Clifford representations that there is a unitary isomorphism U : Y€ — Y€ such that
X -UV=U(Xx*¥)forall X € TC and ¥ € XC.
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Actually, one can give such an isomorphism explicitly. If n is even, we use the decomposition
YN = BTN @ XN (see [15, Proposition 1.32]) and the pointwise identification X€(, ;) =
YN, for all (x,t) € € given by Proposition 2.2.6. Under this identification, one has

v (U0 = (=it i), X (UFUT) =4 (=X - U, X -U") for all X € TN,
and we deduce that U can be defined by
U(TH, 0 = (F, i 07).
Indeed, one has for any X € TN
UX % (UH, 0 ) =U(w-X- (U, 07) =U(iv- (-X -0, X - T))
= UX U, X - UT)=(-X T ,iX U

and

X U@ T ) =X (I, -0 )= (—X - T, i X - ¥H),
thus U(X # (T, 07)) = X - U(¥+, ¥). In addition, U obviously commutes with v.

In the case where n is odd, one has the pointwise identification ¥C¢, ;) = XN, © XN, for
all (z,t) € € and under this identification,

v (U1, W) = (—i Wy, —i W), X - (U1, Ty) =i (X - Uy, —X - Uy) for all X € TN,

It follows that U can be defined by

1
U(\I/h\lfg) = \/5(\1/1 +’L\IJ2,Z\I’1+\I/2)

Indeed, for all X € TN one has

UX # (U, 0)) = iU (X - Uy, =X - 01)) =U(=X - Uy, X - Ty)

(X - (=01 +iWy), X - (=i ¥y + Uy))

Sl

and

X -U(Wy,0) = —X - (Uy 4 Uy, i Uy + Uy)

Sl S

(X (=0 +iWy), X - (—i Uy + Uy)),

thus X - U(¥y,Us) = U(X * (¥, Us)). Again, v commutes with U.

In both cases, U is parallel with respect to V€ and we remark that U(dom(A,,)) = dom(A,,).
We deduce from these considerations that

U*A,UU = A,,¥  for all U € dom(A,,), (2.3.7)
which is the statement we wanted to prove. O

Remark 2.3.6. The key point in Proposition 2.3.5 is of course that Hy = 0. It is only under
this condition that the isomorphism U is parallel with respect to V€. Thus, it is equivalent
to study any of the two operators, but we wanted to insist on the physical meaning of A,,.
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2.3.2 The two-masses Dirac operator

We introduce now an operator that can be interpreted as a Dirac operator on N with two
masses in the two separated regions X and X¢. The interest of this operator, as we will show
later, is that when the mass in K¢ goes to infinity, its spectrum converges to the spectrum
of the MIT Bag Dirac operator.

Let m, M € R. We define the operator Em’M by
B = v - DN i (mlg + Mlgce)v-, dom(Byar) = To(2€n). (2.3.8)

Since the Clifford multiplication by v is an endomorphism of I'.(X€y), the range of this
operator is included in I'c(XC)y).

Until the end of this subsection, we make a differentiation between the Dirac operators on
complete manifolds and their closures.

The operator By, as is symmetric because v anti-commutes with DN [39, Proposition 1] and
by Corollary 2.4.2 below. Since the manifold N is complete by assumption, the intrinsic
Dirac operator on N is essentially self-adjoint in L2(E€|N) [33, Proposition 1.3.5]. Moreover,

(2.2.18) gives that D is unitarily equivalent to ]ﬁN if n is even and lDN & —]DN if n is odd,
and the isomorphism ¢ sends I'c(X€yy) into I'(SN). Thus, DV is essentially self-adjoint, and
it is easy to see that its closure still anti-commutes with v. Using the fact that the Clifford
multiplication by v is a unitary isomorphism in L?(3€) we have

(v-DN)* = —DNp. =p- DN, and v DN =p.DN,

so v - DN is self-adjoint.
We conclude that ém M is essentially self-adjoint because the potential is a bounded self-
adjoint operator. We define the self-adjoint operator B,, ys as the closure of By, p.

2.4 Sesquilinear forms for the operators with mass

An important tool for the asymptotic analysis will be the sesquilinear forms associated with
the square of the operators. We begin this section by recalling some useful formulas involving
the Dirac operator. After that, we compute the sesquilinear forms for the operators A2, and
th u and we show that A,, is self-adjoint. We end this section with the study of a model
operator which appears naturally in the asymptotic analysis, and we prove that it is unitarily
equivalent to the square of the Dirac operator on 9XK.

2.4.1 Integration by parts with the Dirac operator

We first recall the well-known result:

Lemma 2.4.1. Let U, € T'.(XN). Then, one has the pointwise equality
(P, ®) = —divV + (U, P P)

where V' is the complex vector field on N defined by

g(V,X) == (U, X - ), VX € TN.
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Proof. Let ¥,® € I'.(XC|), € N and let (e1,...,e,) be a normal coordinate system at
for VN, ie. Ve;(x) =0foralli,j € {1,...,n}. One has at z,

(0™, 0) = <§n: e VW, @),
j=1

On the other hand, for all j € {1,...,n},

<ej : vgj\p,q>> - <vgj\1:,ej : q>>

=—e; (V,e; - )+ <\I/7Vg(€j ' (I))> '

Thus, (lDN\II, D) =—> e (V,e; - P)+(T, DN\I/> We recognize in the first term of this last
j=1

sum the divergence of a complex vector field. To see this, we introduce V' € I'(T'N) as in the
statement of the lemma. Then, we have at the point x

divV =3 g(VXVie;) = > e;g(Vies) —g(V, Viie))
j=1 j=1
=Y eig(Vies) = e;(T,e;-0). O
j=1 j=1

A direct corollary is an integral version of Lemma 2.4.1.

Corollary 2.4.2. One has
N N
(D70, ®) 1290y = (U, 7 ®) 12(x) */ (U,n- ®)vgx
%
for all ¥, ® € HY(XX), and

(DX, ) ) = (0. DY) oy — [ (U Boe
oK

for all ¥, ® € Hl(EG‘K).
Proof. The first identity is proved by integrating the formula obtained in Lemma 2.4.1 for
U, ® € I'.(XCx) and using the divergence theorem. We conclude by density. For the second

one, we use the definition of the extrinsic Dirac operator given by (2.2.18) together with the
first equation. O

Finally, we obtain an integration by parts formula for the Dirac operator with a mass defined
in the previous section.

Corollary 2.4.3. For any ¥,® € H*(X€x), one has

V- (DY +im) W, @), o) = (T, v (DN +im)®) 1, ) + /ax (U, n- ®)vox.
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Proof. Let U, ® € H'(XCx), using Corollary 2.4.2 one has
(v (DN +im)¥, ®) = (DY +im)T,v-®) ;)

=— <\I/7 ('DN —im)(v- <I))>L2

—/ (T,n-v-v-P)uvgx
oK

L2(%)

(3

:<\I/,l/- (‘DN+im)q)>L2(JC) +/ <\I/7n-¢)>’u85<. O]
oK

2.4.2 Sesquilinear form for ﬁ% and essential self-adjointness

In this section we show that the operator Zm is essentially self-adjoint, and the domain of

its closure is an extension of dom(4,,) to the space H!(2€ j%c). The proof of this fact is done

in two steps. First, we compute the sesquilinear form of zzlv,zn to get the domain of the closure
and secondly, we show the essential self-adjointness following the analysis of [36].

From Corollary 2.4.3, we see that Zm is symmetric since for any ¥, ® € dom(ﬁm) one has
(I,n-®)=(T,iv-®)=(iv-¥,0)=(n-¥,0) =—(¥,n-d)=0.

Proposition 2.4.4. For all ¥ € dom(A4,,),
~ Scal™
A ¥y = | <|VN<L\P>|2 v 4|x11|2> ox

H
+m2H\IIH%2(J<) +/8:K (m - 2) [T 2vgsc.

Moreover, the graph norm of flm and the H'-norm are equivalent on dom(ﬁm).

Proof. We recall that dom(A,,) was defined in (2.3.1). Let ¥ € dom(A4,,). With Corol-
lary 2.4.2 one has

AWl ae) = (DN +im)T, (DN +im)¥) o
=D T2(50) + MW F2 5y + m (DNW,i W)
+m (10, D)

(X)
L2(X)
DN ey + W25y — /a Win v v

DN ey + 22 ey + /a L

where we used the property ¥ =iv-n- ¥ on 0X.

We consider the operator DIX .= DX if n is even and DX := DIX g DIX if n is odd.
From [39, Formula (13)] we have for all ® € I'(¥X)

IN
/ AR :/ VN2 + Si|c1>|2 UN
NS X 4

+/ (H|<1>|2 — <®f’ﬂ<<1>,q>>> Vo
ax \ 2
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Using this equation together with the definition of the extrinsic Dirac operator (2.2.18), one

has
Scal™
/KIDN‘I’IQUN=/K<IVN(L‘I’)|2 |‘1’|2)

+ /6% (—1;[|\I'|2 + <58K(LW),L\I/>> VoK -

On the other hand, as DX anti-commutes with the Clifford multiplication by n [39, Propo-
sition 1],

(2.4.1)

<D‘9K (L), > DX (1 (~in - v- \I')),L\I/> = <—i D¥n . (L\I/),L\Il>

<
<zn Daj{ 1¥) L\If> <@3X(L\If),in- (L\I/)>
= (P

DIX(W), —1(iv-n- \Il)> <@83<(L\Il),b\ll>

and we deduce that <@39<(L\Il), L\I/> =0.
Finally, using this equation together with (2.4.1), we get

~ Scal™
[Am Y172 g0) :/j< (IVN(L‘I’)I2 |‘1’I2>

H
+m2H\IJH%2(9<) +/M (m - 2) [T 2vgsc.

It remains to prove the equivalence of the norms. As X is a compact manifold with boundary,
Theorem 2.2.10 applies and there is C; > 0 such that for all ¥ € dom(A4,,),

~ Scal™
||‘1’||2L2(9<) + ||Am‘1’||2L2(9<) :HL‘I’||2L2(9<) + /‘(K (VN(L‘I’)|2 — I ‘1’2> UN

H
+ m2||L\II||%2(3<) +/ (m — 2) |L\I}‘2Uaj{
o%K
SCIHL‘I’H%?(K) + ||VN(L‘I’)||2L2(:K) + Cl‘IL\IJH%Il(:K)

Moreover, using Theorem 2.2.10 with ¢ small enough, there exists a constant Cy > 0 such
that _

||‘I’||2L2(9<) + HAm‘I’HQm(sc) 2 C2||L‘1’||%11(9<)-
Thus, the graph norm is equivalent to the H'(¢(X€x)) norm, which is equivalent to the
H'(X€ %) norm thanks to Corollary 2.2.12. O

We now show that A, is self-adjoint. For this purpose, it is sufficient to prove that v - DN
is essentially self-adjoint on dom(A,,) because the potential is a bounded operator. From
Proposition 2.2.6 and (2.2.18), one has

Ty DN = —iWC P ifnis even, (2.4.2)

and

T DN = '<I(()1 O)(zz) ®&—1p") ifnis odd. (2.4.3)
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Having these considerations in mind, we define
A= IDN if nis even, A := EN @ —lDN is n is odd, (2.4.4)

and
0 Id

Id 0

T:=—iwS - ifniseven, T := —i ( ) if n is odd. (2.4.5)

We remark that T is a unitary skew-Hermitian operator which anti-commutes with A.
Consider the operators

1+in: 1+iv-n-
Py = ' on 1(X€x), and Py := #ﬂ on XCx. (2.4.6)

Let A+ be the restriction of A to the domain {W € I'.(XCx), P+ ¥ = 0}. Then, the operator

v - DN with domain dom(A4,,) is unitarily equivalent to T'A for any parity of n.

Lemma 2.4.5. For any s € R, Py and Py define bounded operators from H?® to itself.

Proof. The proof is straightforward, see [36, Lemma 5.1 (ii)]. O

Theorem 2.4.6. The operator A,, is self-adjoint, and the equality in Proposition 2.4.4 holds
for any ¥ € dom(A,,) = {¥ € H(X€x), P_¥ = 0}.

Proof. We first prove that F := {\If el(XCx),P_¥ = O} is dense in F =
{V e H'(S€x),P_¥ =0} for the H' norm. Let ¥ € F. There exists a sequence (¥;);cn
in '.(X€x) converging to ¥ in the H' norm. Let ®; := ¥, — exP_vx ¥, where we recall
that ex is the extension operator defined in Theorem 2.2.10. One has P_~yx®; = 0 and from
Theorem 2.2.10 and Lemma 2.4.5 we obtain

125 — Ul = V5 — exP-yx¥; — V| ac)
< W5 — | gy + [lexc Py Wl ()

< 5 = ¥lla o) + CullP-yacly = Py ¥ 1 o

< o
< Call ¥~ Ul 2 0
with C1,Cs > 0.

Thus, F is dense in F, and as the graph norm of ﬁm and the H'! norm are equivalent
on E by Proposition 2.4.4. We conclude that F' C dom(A4,,). By density, the expression
of Proposition 2.4.4 holds for any ¥ € F, and the graph norm and the H' norm are still
equivalent on F. But F is closed for the H! norm, so we deduce that F' = dom(A4,,), and
using Corollary 2.2.12, we have dom(A) = {\IJ € Hl(LEG‘:K),PJ'_\II = 0}. This means that
A is exactly one or two copies of the operator D (up to a sign) studied in [36, Lemma 5.1].
By the same method, we can show that dom(A_) = {¥ € H'(1¥C%), P-¥ =0} and A_ is
one or two copies of the operator D_ (up to a sign) studied in [36, Lemma 5.1].

Finally, [36, Lemma 5.1 (v)] gives us (A1)* = A%, and we deduce that
(TAL) = —(A})'T=-A_T=TA,.

Consequently, T'A_ is self-adjoint, and so is A,, by unitary equivalence. O
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2.4.3 Sesquilinear form for B ),

As for the operator A,,, we compute the sesquilinear form of the operator Bfn, u defined
in section 2.3.2. As a consequence of the Schrédinger-Lichnerowicz formula, we can first
compute the square of the extrinsic Dirac operator acting on smooth sections with compact
support in N.

Lemma 2.4.7. Let V € T'.(XCx). Then

Scal™

[ (DN +im) |72 z/ |VN(L\P)|2+T|‘II|2+TH2|\P|2 UN.
N

Proof. Let ¥ € I'.(XCy). One has

v - (DN + zm) \IJ||2L2(N) <1/ . (’DN + im) U - (DN + zm) \I/>L2
(DN +im) W, (DN +im) ¥)
(

DNw, D)

N)

L2(N)

L2(N) + m2 <\Il’ \IJ>L2(N)

(DN i) L+ (0D ]
Using Lemma 2.4.1, one has at any point x € N,
(DT, T) + (i U, DNT) = —div V.

By the divergence theorem, the Schrédinger-Lichnerowicz formula (Proposition 2.2.5) and
Equation 2.2.18, one can integrate over N to obtain

v (DN +im) Ulf72py) = (DT, DNW)

-/,

We can now compute the quadratic form for the operator B,, ps by integration over N, and
it comes out that its domain is a subspace of the Sobolev space H'.

2w T W) 12

Scal™

T

VN (W) 2 + UN- O

Proposition 2.4.8. One has dom(By, ) C H'(X€w) and for ¥ € dom(Bpy, u),

Scal™

1B ¥l = [ [v”<w>|2+4|w oxc+ 2 9] e

M2 e + (M — m) /3 (P = [P0 v

where we recall that P+ were defined in (2.4.6).
Proof. Let ¥ € I'.(XCy). One has

| Bm s @72y =l - (DN + i M) + i (m — M)Locv - W[5z
=[[(DN + i M)W|72 ) + (m — M)?[[¥]|72 )
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-+ (m — M)2§R<(DN +iM)\II,Z‘]-fK\I/>L2(N)

With Lemma 2.4.1

2§R<(DN + iM)‘I/,i\I’>L2(g<) = —/ <\I/,i1’1 2 \I/> vox + 2M <‘I’, \II>L2(CK) .
oK

Thus, we have
1B all7z ) = (DY + i MY[[F2 ) + (10 = M)? || 5,
£ —m) [ Wiy W+ 20 (m = M)
= [[(DY + i M)W |22 o) + (m? = M?) |||,
+(M—m)/ (U in-v-U)vgx
%K
VN ()2 + %

B2+ MW | ox + (m? = M?)|| ][22

-/,
-/,

+(Mfm)/ax<\ll,in~l/~\ll>vag<

Scal™
VN (W) + T\‘I’IQWI2 on 4 M2 ]| 72 50y + M| ] 72 (e

+(Mfm)/ (T, in-v-V)vex (2.4.7)
oK
and

(Uyin-v-0) = (¥, —iv-n-U) = (U, P U) — (U, P, 0) =|P_U|? - |P, U%

It follows from Theorem 2.2.10 that there is a constant C' > 0 such that for all ¥ € I'.(XCy),
1Bt ¥l 200 = C (I 00) 220y = 112y ) -

This shows that the graph norm of Em,  is larger than the H' (3€))-norm up to a constant.
Thus dom(B,y,,a7) C H'(X€y), and one can conclude by density. O
2.4.4 The limit operator

In this section, we introduce the effective operator L which will appear naturally as the limit
operator for A,, when m — —oco. We define it as the operator acting on the Hilbert space

H:={V e L*(2Cpx),¥=iv-n- -V} (2.4.8)
associated with the quadratic form
- 1
o[, U] :/ {|VNL\I’|2 42 (Scalm - Tr(W2)> |\IJ|2} vosc, (2.4.9)
0% 4

() :={¥ € H'(X€px), ¥V =iv-n-V}.
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By the compactness of X, it follows that the form (2.4.9) is closed and semibounded from
below, so the operator L is well-defined.
The operator L is actually unitarily equivalent to the square of the Dirac operator on 0XK.

This fact can be established using the link between the spinor bundles of the spaces 0K C
Nce.

Remark 2.4.9. Using Gauss-Codazzi equations (see [6, Proposition 4.1], for example), one

has
Tr(W?) = H? 4+ Scal™ — Scal®™ — 2Ric™ (n, n).

Thus, the operator we are considering here is a generalization of the operator L defined
in [59, section 2.2] and we generalize the result of [59, Lemma 2.4].

Lemma 2.4.10. The operator L is unitarily equivalent to (ﬂaj{)z.

Proof. We consider separately the case of n even and n odd.

Case n odd: One can represent any ¥ € H as ¥ =: (0, ¥7) € L?(TCjpx) x L*(X7 € o),
and then
UV=iv-n- ¥ U=iv-n¥) < .¥=—in- V.

Thus, the isomorphism ¢ induces the isomorphisms ¢* : ¥*€ — XN, and one has

SO\ —in- SO

e S A N S R A A
We introduce the (pointwise) unitary operator U : L?(EN)gx ) — H, which sends H' (N 9x)
into Q(¢), and is defined by

=y (e )

We compute now |VNL(U\I/)|2 for ¥ € H'(ENjpx). Let (e1,...,e,—1) be a pointwise local
orthonormal frame of T'(9X). The vector fields (e;)i<j<n—1 are naturally identified with
elements of TN. Using the Schrodinger-Lichnerowicz formula and Proposition 2.2.6, (3) one
has

VYU = 5 (19 + i) @)+ 97 (1 - ine)w) 2)
n—1

(VDU +|(Vin)- U +n- VTP

1

N =

i
=

n—1
1 1
N 2 E 2

1
= |V 4 S Te(WE)| 0

S

=

1
= D7 w2+ ] (—Scalax + TT(W2)) |2,
Thus,

U, U] = /

oK
|®8:K\If|2vaj< = / |m M\I/|2’Uag<.
oK oK
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Case n even : The isomorphism g induces the isomorphisms p* : SN — 2K, According
to Proposition 2.2.6, as n — 1 is odd, for all f € I'(XN|px) one has

. (0 1Id ptft
Then, for ¥ € H one has

ivn-UV=Ue —(in-v - ¥)=10 & —pu@in- V) =m¥

0 Id pr )T Y T iy,
@—( ok )(ww & (1) = —(u) et ),
Thus, the unitary operator
U:L?(%(0X) — H
-
1,—1,,-1
v Bl s ( o )
sends H!'(X(0X)) into Q(¢). Now we compute |VNL(U\I/)|2 for ¥ € HY(X(0K)). Let
(e1,...,en—1) be a pointwise local orthonormal frame of T'(0X). One has, using Propo-

sition 2.2.6, (3)
VYU = [uV (U)

1
VB o)

El 3
1ML
N

1
= 1P w4, (~Seal”™ +Te(W?)) |0
Thus
(U, U] = / D7 W P
oK
which concludes the proof. O

2.5 Operators in tubular coordinates

When the masses m and M become large, one can localize the eigenvalue problem in a
neighbourhood of 9K since the potential in the square of the operators is large outside of
this region. For this reason, it is useful to express the operators in tubular coordinates around
OXK. Thus, we identify a collar near the boundary of X with the cylinder 0K x (—6,0) and
we look at the operator obtained via this identification. However, the aim of this procedure
is to simplify the expression, so we would like to change the induced metric on the cylinder
into the product metric. This last step cannot be done without a way to compare the spinor
bundles involved, and in particular the way we modify the covariant derivative.
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2.5.1 Tubular coordinates
For 6 > 0 we define the tubular neighbourhood of 0K by
ns(0K) := {z € N, dist(z, 0K) < d}. (2.5.1)

Since 9K is compact, ns(9K) can be identified with the product 0K x (—6,0) through the
Riemannian exponential map when ¢ is small. To make this precise, we define

Il; == 0K x (—=46,0), I} := 0K x (0,0), II5 := 0K x (—4,0), I* := 9K x {t},  (2.5.2)
and it is standard that there exists §p > 0 such that the map

H50 — ng, (89(:)

(z,t) > exp)(tn(z)) (2.5.3)

is a diffeomorphism on its image.

For every § < dg, Ils inherits an orientation via the previous identification. Moreover, one
has T(Il5) = T(0X) x TR and we denote by 2 the vector field (0,1) € T(0X) x TR.

Recall now the definition of a generalized cylinder introduced in [6]:

Definition 2.5.1. A generalized cylinder is a Riemannian manifold of the form Z := M x I
where I C R is an interval, M is a differentiable manifold and the Riemannian metric on
Z has the form gz = g; + dt? where (g¢)icr is a smooth 1-parameter family of Riemannian
metrics of M.

We identify any vector field X on the hypersurface 0K with the vector field on TTIs, also
denoted by X and defined by X, := X, for all (y,t) € Ils,. Note that in this case
(2, X]=0.

We have two natural metrics on Il5,. First, the metric g of N via the previous identification,

and secondly, the Riemannian product metric h := gjax + dt?. Furthermore, ¥1l;, is the
spinor bundle of N restricted to Il,.

With these notations, we have the useful property:

Lemma 2.5.2. The Riemannian manifold (Ils,, g) is a generalized cylinder.

Proof. It is sufficient to prove that g = g; + dt? with (g¢); a family of metrics on 9K. This
is equivalent to show that the vector field % is normal to II* for all ¢ € (—dp,dp). Let
(z,t) € Il;, and X € T(0X), identified with a vector field on IIs, as before. One has

d O\ _ (vnx @ N 9
b (5 -s(53n2) o(5512)
=0
—_——
o 0 0 0
_ NY Z - -
_g(vxat’8t>+g<[at’4’at>

([8]9)-

This shows that g (X, %) is constant along the curves s — (-, s) since g (X, %)(w 0 = 0. We

get g (X, %)(m) = 0, which concludes the proof. O
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From Proposition 2.5.2, we deduce that there exists a family of metrics (g;); on 0K such that
g = g; +dt?. One can observe that h = go + d¢? in these notations.

We define for any (s,t) € (—dg,dg) the map T'y which acts as the parallel transport from s
to t along the curves r + (-, ) with respect to the connection V.

We recall that vy is the volume form on Il5, compatible with the metric g. Let vy, := vax Adt
be the volume form compatible with h on Ilj,.

The bilinear form ¢ is identified with an endomorphism of T1Is, via the metric h. Let
(x,t) € IIs,. For any direct orthonormal frame f of T\, )IIs, endowed with the metric i we

define
oz, t) == +/detyg. (2.5.4)

One can show that this does not depend on the choice of the basis, and the volume forms
with respect to the different metrics are related by

N = QUp. (2.5.5)

Our aim in this section is relates all the objects on (Ils,, g) in terms of those over (Ils,, h).
The function ¢ defined above relates the integration over these two Riemannian manifolds,
and in particular the corresponding L? spaces. More precisely, the map

O: L*(XMs,,vN) — L2(XMs,,vs)

b . ot (2.5.6)

is a unitary isomorphism from L?(XIls,,vx) onto L2 (X, , vp).

2.5.2 Estimates in the generalized cylinder

We now fix § < %". In order to compare the structures over the hypersurfaces II' for

t € (—4,0), we first show that the norm of a vector field defined on II* and extended by
parallel transport with respect to V» does not vary too much when § is small.

Lemma 2.5.3. We endow Ils with the metric g. There exists C' > 0 depending only on dg
such that for all t,t' € (—6,0) and X € T(TTI), for all x € 0K, one has the estimate

‘X(z,t’) - Fi (X(m,t))|g < C|t - t/||X(r,t)|gﬂ

where X is extended to T1ls as before.

Proof. First, we remark that Cy := sup sup % is finite by com-

(y,8)€Hs,/2 ZE€T(y,5)\{0}
pactness. Let t € (—§,0) and X € T'(TTI"). We define the vector field Y € T'(TTls) by
Yiy.s) =T (X(y,)) for any (y,s) € Is.

One has for all t' € (-9, ),

ag(X,X)‘

— 2 NX,X‘ < 20,9(X, X) .
ot ) ‘g(v% )|( ) Cg( Je

Yy

[C5t

By integration, we obtain the inequality g(X, X)) < g(X, X) . 4) exp(2C1 |t — t[), and for
Ca 1= exp(260C1) one has g(X, X)) < Cog(X, X)(. 4.
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Now, one has

0
ag(X - YvX - Y)

- ‘Qg(vN@X,X —Y)
() ot Gt7)
= [2g(Wpw X, X — Y)|(.’t/)
< 201X (gl (X = Y) (. enlg

< 20162‘X(~,t)|g‘(X - Y)(nt’)‘g'

We need the following technical lemma to conclude.

Lemma 2.5.4. Let I be an interval of R containing 0 and let f : I — R be a differentiable
non-negative function. Assume there is C > 0 such that |f'| < C\/f. Then, one has

WF(z) = VF0)| < S| forallz € 1.

Using Lemma 2.5.4 we arrive at
g X -V, X - Y)(.’t/) < 0102|X(.)|§(t/ — t>2

and the claim follows by taking the square root in this inequality. O

e |avTEE
Proof of Lemma 2.5.4. Let € > 0. One has |f'| < Cy/f + ¢, which gives ‘ dj;

integration, we obtain that for all = € I, [\/f(z) +e — /f(0) + ¢| < §|z|. Letting  tend to
zero, one gets the result. O

< §. By

We are now able to compare the norms of the covariant derivatives on the different hyper-

surfaces of Il5. For this purpose, we recall that vap is defined as the restriction of VN to
T 0K @ X1ls.

Lemma 2.5.5. There exists C > 0 only depending on dy such that for any t € (—6,0) and
U e T (X1y),

(1—Co) VNF?\I/(-,t)’Q _Os|u (b < \v”\y(-,t)f
< (1+C9) ‘erqu(-,t))Q 4 CO[UR(, ).

Proof. Let ¥ € I'(X1Ils). Let (z,t) € Il; and X € T'(0K) such that | X, )|y, = 1, extended
constantly to IIs. The Riemannian curvature of (Ils, g) is bounded, so for any s € (—d,9)
one can find C; > 0 such that

(VX7 0)(a, 5)|

9 _ N o Ns N1s

pal =2 | (V% VAT;0) (2, 9), (VXTI ¥)(a,5) )|

= ’?R <RN (;,X) (T70)(z, 5), (V%Fi\ll)(x,s)>’
<C1lX(z,0)lg ¥ (2, || (VXTLT) (2, 5))-

By Lemma 2.5.3, one can find C' > 0 independent of X such that

| X(z.s)lg S 1+ CJt —s| <1+ Cdo.
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Thus,

0 N1s 2 N1s

55| (VT (@, 8)I%) < CL(1 + Coo)[ ¥ (2, )| (VXTE¥)(z, 5)].
Using Lemma 2.5.4, we obtain

[(VXT?W)(2,0)] = [VX U (2, 1)]] < CL(1 + Cdo)[t][ ¥ (x,1)].
On the other hand,

(VXTP)(2,0) — (V7o x T70) (2, 0)] <[ X (4.0 = T7 (X201 (V “r9w) (2, 0)|
<CIH|(V W) (@, 0)].
Thus, combining the previous estimates, one can find Cs > 0 such that
(72 T0W) (@, 0)] = VYW (a,8)|| < Calt] (1(a,0)] + (T TPW) (@, 0)]) .

Now, let (e1,...,e,) be an orthonormal frame at the point (z,¢). One obtains

T T0w)(2,0)] - [V W, 1)]| < Z(Wm )(x,0)| = [V ()]

<ZCg|t|( (2, )] + (V" T )(a;,o)|)

<nC30 (1¥(x, )] +|(V T{W)(2,0)])

The result is then a consequence of the following lemma:

Lemma 2.5.6. For all C > 0 and § < do/2, there is C' > 0 depending only on dg and C
such that for all a,b,d > 0 verifying |a—b| < C5(b+d), one has |a®> —b?| < C'6(b% +d?). O

Proof of Lemma 2.5.6. One has

la® = 0% =[(a = b+0)* = b*| = |(a = b)* +2(a — b)b| < |a = b|* + |2(a — b))
<C?6%(b+ d)* +2C5(b + d)b < C?6%(b + d)* + C5(b+ d)? + Cob?
<(202%6% + C8) (b2 + d) + Cob* < (2C%50 + 2C)6(b* + d?),
which is equivalent to the statement of the lemma. O

2.5.3 Bracketing for the quadratic form of A?

We end this section by finding a lower and an upper bound for the quadratic form of A2
expressed in the tubular coordinates.

Lemma 2.5.7. There exists ¢ > 0 depending only on dy such that the following estimates
hold:

16 = 1 oo 1) < €0 (2.5.7) IWNQSII%oo(né) <ci? (25.8)
H (at¢)(7 5) <ec (259) atd)(-, 0) = —E (2510)
20(+0) lloeox) ~ 2
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(0r9)?
4¢?

02¢
Qt?(x’t) -

for all (z,t) € 1.

(z,t) — i(Scalax(x) — Tr(W?)(x) — Scal™(z,1))| < ¢d, (2.5.11)

Proof. To show (2.5.7), (2.5.8) and (2.5.9), we just remark that ¢ is a smooth function on
the closure of Il which is compact, so it is bounded on IIs as well as all its derivatives.

Thanks to Lemma 2.5.2 we can use the explicit expression of the Weingarten tensor [6, formula
(4.1)], so (2.5.10) follows from:

04(,0) _ Fpy/detyg(-,0)  Tr(dg)(,0) _  2Te(W) H
R

2¢(-,0) 2  4/det; g(-,0) 4

Finally, we prove (2.5.11). Let (z,t) € II5 and let f be a direct orthonormal frame of (Ils, h)
at (x,t). One has, using lemma 2.5.2 and the formula for the scalar curvature of generalized
cylinders [6, equation (4.8)],

652;5(3:, f- (itjf (,1) :m(m’ - 31(55 dietifgg)); (2,1)
_ (33 dztfg 30 iegf g)2> (£.0) + O(t)
= (If — Tr(W?) + W) (z) +O(t)
:i(scaﬁx(x) ~ T (W2)(x) — Scal™ (z,8)) + O(1),
which gives the result. 0

For a € R, § € (0,00/2) and ¥ € H* (Zf?)) we define

J+ (V) = /ni

s

Scal™

H
|VNW|2 + T|x1:|2 v + /m (a + 2) |0 2vgac. (2.5.12)

Proposition 2.5.8. There is a constant ¢ > 0 depending only on dy such that for all o € R
and & € (0,00/2), the following inequalities hold:

1. For every ¥ € H' (Ef?), one has

Ji(0) > /Hi {(1 — ¢d) ‘(v”“r?eqf)(x,())(z + |v76§tex1/|2} op(, 1)

)
Hi

1

Uh

1 - C(5> 0w 2

(Scalax — Tr(W?)

+ [ [l @0 ~ ), 5] v (25,13
oK

2. If moreover ¥ = 0 on the outer boundary II*°, one has
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J+(¥) < /ni {(1 + ¢d) ‘(vNFQG\IJ)(:E,O)‘Q + VE%@\I/F} vp(z,t)

oK 2
+/ KSC&I W) +c<5> 0w ?
nf 4

Proof. It is sufficient to prove the result for ¥ € T, (Eﬁ) and to conclude by density. One

has
H
oy, +/ <ai ) |\I/|2vag<.
o% 2

We remark that ¢ =1 on 0K and Lemma 2.5.5 gives a constant C' > 0 such that

vh+a/ |(OW)(-,0)Pvax  (2.5.14)
oK

N
el |- tou?

Ji(0) = /i [IVNW;@W

8

/i {V?gb @\p‘ +(1-C9) ‘v r%r*@q/’ 05|¢2@\11|2} dun
II; ¢

11 H
+/ Sea ‘@)\m ovp, —|—/ <a:|: > ‘G\DFUOJC < Ji( )
ngs oK

)

</i [vjagqs-%@xp‘ + (14 C9) ’vNF?qﬁ @\1/] +ca¢—zeqf|2} dun
II; ¢

Scal™¥ H
+/ D grew ¢vh+/ (ai )|@\P| Vo
s K

)

Moreover, for all (x,t) € Il; and X € T,0X,

=N 0 _1 2
VAT (6750w)| (2,0)6(.1)
2

! (2,0)

2¢(x,t)
1
2¢(x,t)
1
o(x,1)

= [VAI'ev — X (¢)(z, ) [0
X+t t

2

- ‘Vﬁrgexpr (z,0) + ’ X(¢)(z,)I°0U| (z,0)

R <ﬁ§§r2@\p, X(¢)(z, t)r;)@\p> (z,0)
and
|7 (V00w X (6)(x.)TPOV ) (2,0)| < [V TYOU(2,0) + |OW|X (¢)*(z.1)/5.
Using this together with the inequality (2.5.8) shows the existence of C’ > 0 such that
15y [=NT0 2 / 2
(1— ') ‘v rt@qz] (z,0) — C'8 |00 (z,1)
. 1 2
< (1£C0) Vo 03] (2,0)6(,1)
_ 2
<(1+C5) ]v”rgeqf‘ (z,0) + C'8 |00 (z,1).

It remains to compute

2

¢|V3§f QU2 = ‘VNG\I/ —(batgb(@\ll)
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2 (09)? 09
=N t 2 O N
~ |V eu| + el » (v 0w, 0v)
2 (D9)? 8¢
:‘Vg@\l/’ +(4t¢2) ov)? -2 at|@\p|
Integrating by parts yields
1 2 2
VY ¢~ 200 2puy, = ’V:ﬁ@\lf‘ +(at¢) \@\p\Q——at¢at|@\1:\
H(si ot Héi ot 4¢2
2 (99)? 2 (@% (0:9)? ) 2]
= vy e + OU|° + | = — Qv | v
s [Iwgeel + S5 owr+ (55 - 55 ) ewt o
:F/ 62*;5|@\1/|2 ht a*¢\@\p|%dg<
e
2 82¢ (8 ¢)
_ N o ¢ O 2
‘/n; {Vﬁt@q" +<2¢> 16 )w }”h
S I | Glewkua
e 2¢)

where we used (2.5.10). Thus, we have

Ji(0) < /Hi {(1+05)’( 00w (z, 0)\ +\v§@qf|2

2  dg2 14

N
+ (8752(;5 _ (at¢)2 Scal ’Uh(l‘,t)

+05> 100[%(z, 1)

+ a/ |OW|2vg5 if ¥ = 0 on IIF°
HO

Ji () > /Hi {(1 — C9) ’(WNPQG\I/)(:U,O)‘Z + \v%@\m?

n (83(25 B (0;0)? n Scal™

2
i ; ca) U] (x,t)] un

0
+a/ |@\If|2vag<:|:/ t¢|@\11|2’l}ag<.
110 I+

These estimates, together with (2.5.9) and (2.5.11) give the result.

2.6 Analysis of the one-dimensional operators

The proofs of the main results will use some separation of variables in the generalized cylinder
II5. For this reason, we will need to analyse various one-dimensional operators. We define
them in this section and we state the properties that we need on the behaviour of their

eigenvalues in some asymptotic regimes.

We recall the following results from [59, Section 3|:
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Lemma 2.6.1. Let ¢ > 0. Let a > 0 and let S be the self-adjoint operator on L*(0,6)
associated with the quadratic form

g
st s = [ 1Pt = alFOR, 9 = (£ € H'(0.9). F(e) =0}
0
Then, when o — +00, one has E1(S) = —a? +0(e™°%), and the associated L? —normalized
eigenfunction f satisfies | f(0)|? = 2a + O(1).

Lemma 2.6.2. Let ¢ > 0. Let a,3 > 0 and let S’ be the self-adjoint operator on L?(0,¢)
associated with the quadratic form

s'[f. f] = /OE [/ [Pdt +m[f(0)* = BIf(e)]?, Q(S") = H'(0,¢).

Then, when o — +00, one has E1(S") = —a® + O(e™¢*), and there exist b= > 0 and b > 0
such that
b2 —b< E;j(S") <btj* forall j > 2 and a > 0.

A third one-dimensional operator will be of interest for the proof of Theorem 2.1.3. It can be
interpreted as the Laplacian on an interval (—d, ) with a potential consisting of two masses
on the two sides of the origin and a d-interaction at 0. For this last operator, we state the
result in the very specific case of our framework, for m, M € R and § € (0, dy/2).

For 8 > 0, let X be the operator associated with the quadratic form

g
ol fl= [ 17Pat=BUTOF + 1 -0)P)

0 5
4 [ apPacs [wd e - O - ml O,
-0 0
Q(x) = H'(=45,6). (2.6.1)
min(|72n|,M)5

Lemma 2.6.3. For 6 > 0 and 8 > 0 fized, one has E1(X) = O(e”
min(—m, M) — 4o00. Moreover, for all j > 2, one can find C1,Cs > 0 such that

) when

min(m?, M?) + C15% — Cy < Ej(X).

Proof. One can see that the operator X acts as f — —f" + (le(_(;,o) + m21(075))f on the
functions f € H(—6,8)N(H?(—5,0)UH?(0,6)) satisfying f'(8)—Bf(8) = f'(=06)+Bf(—6) =
0 and f/(07) — f£(07) + (|m| + M) f(0) = 0. We search for a negative eigenvalue for X of the
form —k? with k£ > 0. The associated eigenfunction must be of the form

—kqt kit : _
£(t) = { ae + bie if t € (—4,0) (2.6.2)

azef?t +byeF2t if t € (0,0)

where k1 := vVM? + k2 and k9 := vVm? + k2.
We can rewrite the equations satisfied by f as
0 = as(ky — B)er2® — by(ky + B)eF2?
0=ay(k; — B)e*% — by (ky + B)e*2°
a1 + b1 =az + bg
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0= a2k2 - bgkg + a1k1 - blkl + (|m| —+ M)(a1 -+ bl)

@6%26 ay. Thus, with the equation

The first two equations give by = o

of continuity we have
ki =8 ors k2 =B or,s
1+ ——e?M0) =gy (1+ 20
al( k1+5e a2 k‘2+ﬁe

as and by = %Ige%l‘s

We conclude that

ky — 8 2k5)1< ki — B 2k6>
= 1+ =— 2 14+ —= 1
ag al( ]{32—‘,—56 k1+66

because for min(|m|, M) large enough, one has that the different terms are not zero.

We arrive at

k2 =B opys )( ko — 8 2k5)1
M=oy (22220200 _q) (14 2220 2k
] + 2<k2+ﬁe Tt

k1= B ok )( k1—52k5>_1
ky | ——=e®0 — 1) (14 ——=e*M .
+ 1(k1+ﬁe T T

—1
Let F(z) :=x (%62‘”5 - 1) (1 + %62“) defined on (min(|m|, M), +o0). The previous
equation reads |m|+ M = F(k;) + F(k3), and when k = 0 the right-hand side is F(|m]|) +
F(M) < |m|+ M. Since F (k1) + F(k2) — +o0o when k — 400 and F' is strictly increasing
there exists an unique k € (0, 400) such that |m| + M = F(ky) + F(k2).

Now, one has
F(x) = (14 0(e™2%)) = 2 + O(e~329/2),
Thus, for ¢ := min(|m|, M) large enough one has
ko + ki — 27 < |m|+ M < kg + ky +2e7°

and

0<vVm2+k2—|m|+VM24+k2— M <2,
Then, \/¢2 + k2 — ¢ < 2¢7¢° and we arrive at
k2 = 0(e=%9/2).

To conclude, we consider the operator X’ defined by the same quadratic form as X but
with the form domain {f € H'(-6,9), f(0) = 0}. From the Min-Max principle, one has
E,_1(X') < Ej(X,) < Ej(X') for all j > 2 because X is a rank-one perturbation of X'.
But X' = (Sp +m?) @ (Sp + M?) where Sp is the operator acting in L2(0,5) as f > —f"
for f € H?(0,6) with f(0) = f'(6) — Bf(6) = 0. We conclude by remarking that E;(Sp) ~
7252/6% when j — +o0, so E;(X’) > min(m?, M?) — Cy 4+ C45? for suitable C;,Cy > 0. O

2.7 Asymptotics analysis for the operator A,,

In this section, we prove Theorem 2.1.1 following the analysis of [59, Section 4]. The proof
is made by localizing the problem near the boundary of X and using the analysis done in
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the previous section to find a lower and an upper bound for the limits of the eigenvalues.
These bounds coincide and are equal to the eigenvalues of the model operator L introduced
in (2.4.9). We begin by showing a Dirichlet-Neumann bracketing for the operator A,,.

Let § € (0,80/2). We introduce several new operators. Let Z, Z. Z! be the operators
defined by their quadratic forms z!, z—, 2/ which admit the same expression as the quadratic

m? “m?’ ~Tm

form of A2, given in Proposition 2.4.4 with

dom(z)) = {\IJ € H'(S€=), ¥ = iv-n-¥ on OK and ¥ =0 on H*é} , (2.7.1)
dom(z) = {\IfeHl(ze—,),\lfzw.n-q/on HO}, (2.7.2)

i,
dom(z},) = H' (S5, 1= ) - (2.7.3)

We define the maps Ji : dom(4,,) — dom(z,,) ® dom(z,,), ¥ (\IJIE, \IJ\JC\(HJ_UHO)) and

Jo : dom(z;}) — dom(A,,) which is the extension by zero. For ¥; € dom(A,,) one has
(2 @ 2p,) [J1(W1), 1 (P1)] < (A W1, A W1) o) »
and for ¥y € dom(z;),
(AmJ2(W2), Am J2(V2)) 25y < 2 [P2, Pa]

Then, the Min-Max principle gives

Ej (2, ® Z,) < B (A7) < E; (Z7) - (2.7.4)
We remark that Z;, > m? and then, for any j € N such that E; (Z,;) < m?, one has

E;(Z,) <E; (A2) < E; (Z}}). (2.7.5)

We introduce the notation Sy := L(ZG‘H—,). Let ¢ > 0 be the constant given by Proposi-
5

tion 2.5.8. We consider the two quadratic forms in L*(Sj, vj,) given by

yjn[\ll,\lf] = /
Iy

lafK_T 2
+/7 Kmﬂ Sca y HW7) +c5> M

[(1 +ed) VT2 4 |v9%\1/|2} "

Vp +mMm |\If(',0)|2vaj<
oK

Qyh) :={¥ e H" (S5), P_ " (¥(-,0)) =0and ¥(-,§) =0}, (2.7.6)

8

and

Y0, 0] = / (= )T TP + (VY ] v,
1I t

oK 2
+/7 <m2+Scal 4TT(W)_05> o
S5

8

Un

" /8 [0 = W) o
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yy,) == {W e H' (Sy5), P_u~'W(-,0) =0}. (2.7.7)
Remarking that Q(y ) = ©u(dom(zk)), and that ©¢ is unitary from LQ(zem;,vN) onto

L? (Sé_, Uh), Proposition 2.5.8 and the Min-Max principle give

Aj (y) < Ej (A2,) < Aj (y;)) for any j € N such that A;(y;h) < m®. (2.7.8)

2.7.1 Upper bound

The upper bound is found by taking good test functions in the Min-Max principle. The first
observation is that the quadratic form y;, admits a separation of variables. Indeed, it can be
seen as the tensor product of a sesquilinear form on 0K and a one-dimensional sesquilinear
form S. The behaviour of its first eigenvalue allows us to find the bound we are searching
for.

Let S be the self-adjoint operator on L?(0,§) associated with the quadratic form

s
st g1 = [ 1P+ mlfOF, 9s) = {f € 0.0, f6) =0}, (279)
0
and let f be a normalized eigenfunction for the first eigenvalue of S. According to

Lemma 2.6.1, when —m is large, there is b > 0 such that S[f, f] + m? < bexp(—d|m|).

For a > 0, we introduce the quadratic form

v )= [

4 VoK s

— Scal?® — Tr(W?
(1—|—ca)|VNL\If|2+< @ x )—|—ca> MK

Q) = Q0), (2.7.10)

where ¢ was defined in (2.4.9). The sesquilinear form ¢, is lower semibounded and closed.
We denote by L, the associated self-adjoint operator.

Let &1, ...,&; be linearly independant eigenspinors for the first j eigenvalues of Ls. We define
the set

Vi={V e L?(S;),¥(z,t) = f(OTH(&(x)), £ € Span(&, ..., &)} . (2.7.11)

With all these notations, for ¥(z,t) := f(t)I'}(:£(x)) € V and —m large enough, one has,
using Leibniz’s rule

il v = |

: [W?%W +(1+ asWNrgqﬂ n

5

oK 2
+/ Km2+sca1 4Tr(W)+C(S> o

)

v +m [T(.,0)[2va
0K

9 _
= [ |1 2R + e TV o
H(S

oK 2
+/ Km% Scal 4Tr(W ) +c5> w2 vh+m/ 9 (-,0)[*voxc
5 oK

= U5[€ €I FlIZ20,5) + (SIF 1+ m7) €122 o)
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< U5[€, €] + bexp(=8|m|) [€]|72(ox)
< (B;(Ls) + bexp(=d|m|)) 1€]1Z: osc)-

Thus, A;(y}) < Ej(Ls) + bexp(—d|m|). We remark that %imoEj(L(S) = E;(L) so we get the
—

bound
lim sup E;j(A2) < E;(L). (2.7.12)

m—r—0o0

2.7.2 Lower bound

The strategy to obtain the lower bound is to relax the constraint in the domain of y,, in
order to obtain a separation of variable. In this way, we arrive are in the good setting to
apply the monotone convergence theorem. This analysis will be done in the remaining part
of this section.

Let S’ be the self-adjoint operator on L?(0,4) associated with the quadratic form

)
S'f.f] = / F2dE+ ml FO)2 — el f(0)[2, Q(S") = H(0,5), (2.7.13)

and let (fr)ren be a sequence of normalized eigenfunctions for the eigenvalues Ej(S’).
According to Lemma 2.6.2, there exist b* > 0, b > 0 and by > 0 such that E;(S') >
—m? — be~0I"™l when m — —oo and b~ k% — by < Ey(S") < bTk? for all k > 2.

If ¢ > 0 is the constant given by Proposition 2.5.8, we define the quadratic form y,, by the
same formula as y,,, but with the domain Q(y.,) = H' (Sy).

We also define for a € R the sesquilinear form

oK 2
e;[qf,qf]:/ 1+ ca)|V )2 (Scal ) +ca> |2
oK

VoK
4 00X

Q(l,) = H' (S€jpx). (2.7.14)

This form is closed and lower semibounded. We denote by L/ the associated self-adjoint
operator.

We state the following density result, which allows us to express Y,, as the sum of tensor
products of operators.

Lemma 2.7.1. Let
F:={¥, 3(f, Vo) € L*(0,5) x L* (XCax) , U(z,t) = f(—t)Th (1¥o(x))} .

Then, Span(F) is dense in L? (EH(S_), so one has a natural isomorphism L? (Sé_,vh) =~
L2(0,0) ® L? (Z@|ag<).

Proof. Let E := (—4,0) x R viewed as a vector bundle over (—¢,0), and P := E ® XC|px.
The statement of the lemma is then equivalent to the density of Span(F’) in L?(P,v;,) where

F' = {W, 3(f, V) € L*(—6,0) x L (2€ja) , U(z,t) = f(t)To(2)},

and this fact is standard. O
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We denote by Y,, the self-adjoint operator associated with y,,, and using the identification
of Lemma 2.7.1, one can write

Y= +m*)@1+10L ;.
Now, we define the unitary transformation
U:L?(Sy) — A(N)® L? (2Cjox)

s
Wy = (0,), Wy :/ o) T 1)),
0
By the spectral theorem, }Afm := UY,, U* is given by its quadratic form denoted by ¥,,:

Tnl(3), (@) = 37 (L5100, i+ (B(8) + )| W3 ey )
keN

and the form domain is the subset of (3(N) ® L2 (E€|33<) for which the right-hand side
converges. Thus,

AGn) = {(U),) € A(N) @ L2 (SCjaxc) , Ui € H' (Cjpsc )

Setting )Af,g = UY,;U*, the sesquilinear form for 17;; is the same as for ¥,, with the domain
A7) = {@ = () € QFm) : P_UT(-,0) = o} . (2.7.16)
Then, if we define

win [¥, W] = £ 5[0, ©1] — bexp(=dm|) [ V1| 00

) 5[0, U] 4+ (7K = bo +mP) [Tk F2 a5y
k>2

Qwp) == Ay,,), (2.7.17)

we have ¥, > wy,. The form w,, is semibounded form below and closed. Let W, be the
associated self-adjoint operator. By Theorem 2.2.11, this operator has compact resolvent.
For all j € N, one has

Bj(A7) = A (ym) = 8j(m) = Bj (W)

We can now apply the monotone convergence theorem to the non-decreasing family of self-
adjoint operators (W,,). The form domain of the limit operator will be:

Quo = {@ = (U) € () QW) supW;[¥, 9] < oo} . (2.7.18)

m<0 m<0

One has U := (Uy) € Qo iff Uy =0 forall k >2and 0 = T_u*\f/(-,O) = f1(0)P_Ty. If we
denote by e; := (1,0,0,...) € £2(N) this gives

sz{\i:el@wl;\yleg(z)}.



CHAPTER 2. A MIT BAG MODEL ON SPIN MANIFOLDS 85

Thus, for any U € Q. one has

lim W[V, U] = L_s[¥y, ¥y].

m——0oQ
We define the Hilbert space Hy, := e; ® H and the sesquilinear form
woo[el X \Ifl, e1 ® \Ifl] = L,(s[\:[/l, \Ifl], Q(U)OO) = Hoo (2719)

Let W4 be the associated self-adjoint operator. By Corollary 2.2.4 (monotone convergence),
one has lim E;(W,,) = E;(Ws) = E;(L_s) for all j € N. Letting § go to 0 we obtain
m— — 00

lim inf E;(A2) > E;(L). (2.7.20)

m—0o0

The estimates (2.7.12) and (2.7.20) together with Lemma 2.4.10 give

lim B (A%) = E; ((1#’“)2) . (2.7.21)

m—o0

Remark 2.7.2. With the help of the sesquilinear form, we can investigate another asymp-
totic regime. Let ¥ € dom(A,,) and assume m > 0. Proposition 2.4.6 gives that for m large
enough, ||Am\IIH%2(N) > m2||\11||%2(N). Hence, when m — 400, one has Ej(A,,) — +oo for
all 7 € N by the Min-Max principle.

2.8 The operator B, , in the limit of large M

We now prove Theorem 2.1.2 following the lines of [59, Section 5]. Again, this is done by
finding a lower and an upper bound for the limit of the eigenvalues of Bg% u- The proof
relies on the localization of the problem in a neighbourhood of X and the construction of an
appropriated extension for the spinors in X. For the lower bound, we make another use of
the monotone convergence theorem to observe that the projection P4 on the boundary of X
must vanish in the asymptotic regime.

We begin with some preliminary estimates and the definition of the extension operator.

Lemma 2.8.1. Let 1/, be the sesquilinear form given by

IN
[V, W] ::/ |VNL\I/|2+S&\\II|2 N
ICe\TTH 4

with Q(r]) = {\II‘KC\H;, U € dom(By, m)}. Then, rl, is semibounded from below.

Proof. Let ¥ € Q(r7)). Let x1, x2 be two non-negative real smooth functions on N such that
X2 +x3 =1, x1 is supported in K U}, and x2 is supported in N\ (K UIIL;).
2 4

An easy computation gives

oW, 9] =1 1%, x1 9] 4 r [x2 ¥, x2 7] —/ +(|(01X1)L‘~I’|2 + [ (dx2)e ¥ [* o,
e\ITH

and then there exists a constant C7 > 0 such that

ro [0, > L [a W xa W] + e W xa ¥ — Gl 72 -
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Now, the Schrodinger-Lichnerowicz formula gives
rale ¥, x2¥] = DM W22 = 0.
Moreover, there exists Cy > 0 such that
ro X1, xa W] > —Collx1 9|72
because x; has compact support.
Altogether, we have r/, [V, U] > —C||\Il||%2(N) for a constant C' > 0. O
We define S} := L(EG|HT+)'

Lemma 2.8.2. For ¥ € {®|xc, ® € dom(By, )} and a > 0 we define the sesquilinear form

1N H
ro| U, U] :/ <|VNL\I/|2+SCZ|\IJ|2> UN+/ <2a> W) 20gsc.
c 8:}{

Then, there exists C > 0 such that for o« > 0 large enough, one has a map F,
H'(1(3€9%)) — dom(ry) with F, U =¥ on 0K and

c
TalFoW, FoW] + o | FoW|| 72 (g < aH‘I’Hle(aﬂq
Moreover there exists a constant Co > 0, such that A1(ry) > —a? — Cp.

Proof. We recall that for @ > 0 we defined in (2.7.9) the operator S associated with the
sesquilinear form

5
U f)= [ 1£Pat = alfO)F. 9(s) = {£ € H'(0,5), (5) =0}.
0
Let f be the first eigenfunction of the operator S normalized by f(0) = 1.
We define the map F,, by

AR if 2 € I
Fo¥(z) '_{ 0 if 2 € %\ T}

where v := f ® ¥. From Lemma 2.6.1 there exists C' > 0 such that ||f||2L2(0 5 < € and
o? + E1(S) < Ce™®*. Then, using Proposition 2.5.8, one can find a > 0 such that

TalFa W, FaW] + 02| Fa |32 (xce) = Ja(Fa®) + 0| fall 12 (e

< / (a|ﬁNF?v|2 + VY v+ (a® + a)|v|2) vp — a/ [T 2vas
Iy ot oK

=N
= [ ol (08 + 02+ W]l

C(C+a
< %H‘I’H?{l(ax)-

For the second assertion, we introduce the sesquilinear forms

Scal™ H
o= [ Qmu - |@|2>w+ [ (5 -a) 1
1t 4 oK 2

8
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with Q(rg) = {¥|;y+, ¥ € dom(By, )} and

IN
W, ] ;:/ N+ S g2
ICe\TTH 4

with Q(rl) = {W\xc\njv ¥ € dom(Bp,m)}. One has the inequality Aq(ro) >
min(A;(r,), A1(rl)). Since 7/, is lower semibounded by Lemma 2.8.1, another use of Propo-
sition 2.5.8 gives that when « is large A1 (r%) > A;(ga) with

1 —
aelw. vl = | [VNFM2+ V", w2 _a|q,|z] on
Hg» a ot

—a / 0 (-, 0)Poasc — a / U (., 8)Poosc
oK oK

where a > 0 and Q(q,) = H' (S;). We recall that the operator S’ with parameter « was
defined in Lemma 2.6.2.

For any x € 0K, we define an orthonormal basis (¢1,...,1;) of the fiber S}"(x 0y’ and we
extend it by parallel transport along {z} x (0,8) in II. Let ¥ € Q(q,), then for any z € 0K

there are functions (f¥,..., f) from (0,9) to C such that ¥(z,t) = le . With these
notations and using Fubini’s theorem, we obtain

GolU, U] z/ [|vh@xp|2fa|qf|ﬂ vhfa/ |\I/(~,0)|2vag<fa/ 10(-, 8)[2vax
I} ot oK

oK
l l
= /B:K l;(s/ _a)[flfaflf]‘| Vox > /B:K l(Al(S’) _a); ||flf|%2(0’5)‘| VoK

= (M(8) = D)W )2, s

We deduce that Aq(ry) > A1(ga) > A1(S") —a > —a? — C with C > 0 when @ — +oo. [

Using Proposition 2.4.8, the sesquilinear form for Bfn, M can be written for any spinor ¥ €
dom(B,, ) and any € > 0 as

Scal™
||Bm,M‘I’H%2(N):/ [WN(”I’)F‘*‘( 1 +m2> (W[ | vy
%

H
+/ <m€ > |\If|2’vax+2(Mfm)/ |P_T|2vas
Pl 2 8%

N H
+/ [NN(L\I/)P + (SCZ + M2> 0|2 | vy —/ <M e 2) 0205 (2.8.1)
¢ oK

l1—iv-n-
> .

where we recall that P_ =

2.8.1 Upper bound

We are now able to find an upper bound for the limit of E;(By, 5;) when M — +oo for
J € N. Let n > 0 and pick (¥y,...,¥;) in ['(XCx ), smooth spinors such that

AnY, V)12

i < E;(AZ) +n.
wespan(wr,. ;) U2, 5(Am) +n

(%)
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We define a := sup{||\1:||§p(aj<),\1: € Span(Wy, ..., U;), [ W] 2oy = 1}. Let U € V :=
Span(¥q,...,¥,) and

"17 L v in X
o FM(\I/|3:K) in K°.

By Lemma 2.8.2 there is a constant C' > 0 such that

~ Scal™ ~ H\ ~
/ lIVN(L\I')I2+< CZ +M2> v vN—/ (M—2> W [*vggc
¢ oK

- ~ C, ~ Ca
— a8, B+ M2y < 700 omy < 37003

Then, using the expression (2.8.1) with e = 0,

~ Ca Ca
B, 2y < A2 [0, W] + MH‘I’HZL%K) < (Ej(AEn) +n+ M) )17 0)

Ca\ =~
< (B2 0+ 57 ) 181

and letting 77 go to zero one gets lim supy,_, . Ej( By, 1) < Ej(A7,).

m

2.8.2 Lower bound

It remains to find a lower bound for the eigenvalues. In order to do so, we separate the
representation (2.8.1) in the two parts corresponding to X and X¢ and we remark that the
outer part becomes very large when M goes to +o00 so the eigenvalues must converge to the
eigenvalues of an operator in X.

Let j € N. One has
Ej(B'?n,M) > min {Aj(k'ﬁ/[,s),Ej(Km,M.,s)}

where K, p,c is the operator associated with the sesquilinear form

IN
K[V, 0] ::/ <|VNL\1:|2 + <m2 + SCZ) |qf|2> N
X

H
b [ e = NP+ 200 —m) [P0 (282)
oK 2 oK

¢ .
and kf, . is the sesquilinear form

IN
kS, [0, 0] ;:/ (lVNL\I/z n <M2 n —SCZ‘ ) \112> uN
H
— / (M — & — )| 2vasc  (2.8.3)
oK 2

where the respective domains are the restrictions of dom(B,, as) to X and X°.
One has kf; . = rym—c + M?, where rj;_. was defined in Lemma 2.8.2). The same lemma
gives

A (k§ro) = M(ra—e + M?) > —(M —€)> = Co + M? =2eM — & — Cy
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=eM + (eM — &> — Cy) > eM when M — 4o0.

It follows that E;(Bz, 1) = E;(Kp ) when M — +0o. But kajm ¢ is increasing inM, and

]CM,m’E[\I/,\I/] — <Am\If,Am\I’>L2(:K) *&?H\I/”LQ(@K).

M—+o00

Furthermore,

{\If € 1\/QU dom(kpm, ae), M1~I>H<l}oo ke [P, U] < oo} = dom(4,,),

thus, by monotone convergence (Corollary 2.2.4) and letting ¢ go to 0, we obtain
liminfar, oo Ej(B2, 5r) = E;j(AZ,). Taking into account the upper bound obtained above,
one gets limus, o0 Ej(B2, 1) = Ej(AZ).

2.9 The operator B,, s for large masses

In this section, we investigate the asymptotic regime m — —oo and M — 400 and we give
a proof of Theorem 2.1.3. The method we use is very similar to the one of section 2.8. The
difference lies in the proof of the lower bound, where we do not make the analysis on the
operator outside and inside X, but we rather divide the ambient space into three pieces:
the tubular neighbourhood of 9K, and the remaining regions lying inside and outside the
compact K. By Dirichlet-Neumann bracketing, it is then sufficient to study the operator
restricted to the tubular neighbourhood to conclude.

2.9.1 Upper bound

In this section, we write S5 := ¢ (ZC’“T&). We recall that for o € R we defined the self-adjoint

operator S, associated with the quadratic form

§
salf, f] =/0 |12t — af f(0)]%, Qsa) = {f € H'(0,5), f(6) =0}, (2.9.1)

and denoting by f, the L?-normalized eigenfunction associated with F;(S,), one has
|fa(0)|2 = 2+ O(1) and E;(S,) = a® + O(e~*°) when a — +00 (see Lemma 2.6.1).

The operator L, was defined by the quadratic form (2.7.10).

Let j € N and ¥y,...,¥; be j eigenspinors for the first j eigenvalues of Ls. For ¥ € V :=
Span(¥1,...,¥;), we define the extension operator € : H(S5) — H'(X€x) by

|\ff_z»74n((00))|‘ (O (¥ ® fu) inIf

EV = ©) (T ® fn) inII; - (2.9.2)
0 n N\H5

Ja(0)
We use the expression (2.8.1) and Proposition 2.5.8 to compute:

2
One easily sees that ||8\I/H%2(N) = (1 + (f"”(o)> ) ||\I/||i2(6j<), so the operator € is injective.
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Scal™

UN

IVN(LEW)|? + ( + m2> |ew|?

1320 E0 20 = /x

H I
+/ (m—e—) \eqf|%ax+/ VN eew 2+ (29 a2 ) jewp
oK 2 Ke 4

H
—/ (M—e—) |EY |2 vasc
8% 2

< [ o+ |[@Trve Lol + 195w e L]
I ot

5

183( _T 2
+/7 [(Sca r(W7) 2 +c5> |\11®f_m2] voxcdt

UN

4

{(1 + ¢f) ‘(WNI‘?\I/ ® fM)(CU,O)‘2 + \Vjé‘l’ Y fMQ} Uh

oK 2
+/+ l(seal 4Tr(W ) +M2+c5> |\If®fM|2] voscdt
H5

n / (=T © fop(0)% + M| ® far) (-, 0)[2)vonc
oK

: (H (?A;n((oo))f) [65[\1/,\1']+C||\p||2L2(6K) (67M5+67|m|5)}

where C' > 0.
The Min-Max principle gives

B2, [EV, €V
E;(B}, ) < sup —m’M[ 5 ]
’ eV ||8‘I’||L2(N)

< sup [L51, 9] 4 CINO (3 ey (€77 4+ ¢71717) | 10112 e

< E;(Ls;) +C (e*M‘s + e*|m|5) .

We now let min(—m, M) — 400, so we obtain

limsup  E;(BZ ) < E;(Ls).

min(—m,M)—+oc0

On the other hand, 0 can be taken arbitrary small, and one has the obvious limit £;(L) 6—>0
N

E;(L), so we arrive at
limsup  E;(B}, 5) < Ej(L). (2.9.3)

min(—m,M)—+oco
2.9.2 Lower bound
We consider the lower semibounded sesquilinear forms

Scal™

UN

Bt [0, U] :/

N\Hg

|VN(L\IJ)|2+< +m213<+M213<c> |T|?
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Q(KmyM) = {\IJN\H(;, UNS dom(BmM)} (294)

and

Scal™
bl = [ lIVN(t\P)IQ + ( = +m2> p?

UN
5

H
+/ <m5 > |\Il|2vax+2(Mfm)/ |P_T|2vas
% 2 ox

N H
+/ [VN(L\II)Z-% (Sca +M2> M UN—/ (M—a—) 0|20,
ot 4 oK 2

K}, ) = H'(ZCp).  (2.9.5)

We denote by K, ), the operator associated with &7, ;.

m,

Let j € N The Min-Max principle gives the lower estimate E;(Bp, ) >
min(E; (K7, 1), A1(km,ar)), and by Lemma 2.8.1 there is a constant C' > 0 such that
A1 (kpm.ar) > min(m?, M?) — C. This last quantity goes to +o0o in the asymptotic regime
under consideration, and we know thanks to the upper bound that E; (BZ%M) = O(1). Thus,
in the given asymptotic regime one has E; (B}, 1) > E;(K}, 1)

We now apply a transformation to the operator K;n’ a Written in tubular coordinates, and
we consider the operator P, ps associated with the quadratic form

Pm,M[‘I’a‘I’] = /

II

‘)
IIs

+(m—M)/

oK

— 2
[(1 — cb) \(VNFQW)(:E,O)] + |v78§t\1/|2] on
)

1 vyacdt

lafK _T 2
(Sca r(W7) +m21y + M?*1ge — C5> w[?

19(-,0) 0o —c/ |\I/(-,6)|Uag<—|—2(M—m)/ P02y,
oK oK
Q(pm,ar) = H'(S5), (2.9.6)
where ¢ > 0 is chosen so that Proposition 2.5.8 is valid, implying that E;(K}, /) >
Ej(Pm,M)-

For a € R, let L be the operator given by the sesquilinear form ¢/, having the same expression
as (2.7.10) but with the domain H'(3Cjgx).

Let meM be the operator defined by the same quadratic form as in (2.9.6) but without the
term involving the operator P_. We recall that the one-dimensional operator X was defined
by (2.6.1), so one has

Poy=0s01+10X.

Let (f) be a sequence of L?-normalized eigenfunctions for the eigenvalues Ey(X). We define
the unitary transformation

W: L*(S5) — 2(N) ® L* (3Cpx)
4
Ur = (\IIk)v \Ijk = ‘/_5 fk(t) L_l]_“g(\Il(t’ ))dt

Let E’RM = UP,, ,,U*. This is a self-adjoint operator acting on 2(N) @ L? ($€jgxc). One
can write
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~

Phyoaal0,8) = 3 (€750, 0] + Br(X) [ Wh]3 s, )
keN

Py, ar) = { ¥ € A(N) © LA(S€oxc), Ui € H' (2€)o50),

Z <||\Ifk||3{1(35<) + sz\I}k”%z(aﬂC))} . (2.9.7)

keN

The operator ﬁm’M = U*P,, »U has the same form domain as ﬁr’nM and

Py [0,0] = (é’_’5[\llk,\llk]—|—Ek(X)H\I/k||2L2(Z)) +2(M+|m|)/2|ﬂ>_u*\f/|2ds.
keN

where the operator X was defined in (2.6.1). We set

¢ := min(M, —m). (2.9.8)

Using Lemma 2.6.3, we consider the quadratic form w¢ defined by
we[W, W] = 07 5[y, 0] — Ce™ /2 4 4(/ |P_U*T|2ds
b

+ Z (ZLS[‘I’IW U]+ (C1k? — C2)H‘I’k||2L2(z,<CN) + CQH‘I’k”%z(z)) :
k>2

Qwe) = QPmar), (2.9.9)

and we claim that ﬁm, M > we for a suitable C' > 0. The form we is semibounded from below
and closed, and we define the associated self-adjoint operator W, with compact resolvent.
The previous discussion gives the lower estimate Ej(B?n’ u) = E;(We) in the asymptotic
regime.

In order to apply the monotone convergence theorem, we define

Q=< Ve ﬂ Q(W¢) = Qwe), supwc[\f/,\fl] < 400 p. (2.9.10)
¢>0 ¢>0

We easily see that T is in Q if and only if ¥, = 0 for all & > 2 and P_UT = 0,
which is equivalent to ¥ = e; ® ¥y with e; := (1,0,0,...) and P_¥; = 0. It follows that
Qp = {61 @V, : ¥ € H(Z,CV)N 9{}. Moreover, we have

lim Wg[el X \1117 e1® \111] = L_(;[\Ill, \I/l] (2911)
(—o0

Thus, if we define the operator Wler ® ¥i,eq ® U1] := L_s[¥1,¥;] on e ® K,
the monotone convergence theorem gives Clim E;(W;) = E;j(L_s). Altogether, we ar-
hde el
rive at (1im]\i41)1f E;j(B2% /) > Ej(L_s). We now let 6 go to zero and we obtain

min(—m, — 40 ’

lim inf  E;(B, 3) > E;(L). The upper and the lower bounds together give

min(—m,M)—+oco

4 i 2 _ ) — ) 0K\ 2
min(,nﬁ{%%+mE3 (Bp,m) = Ej(L) = E; ((129 ) ) . (2.9.12)
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Remark 2.9.1. We can look at the asymptotic regime M — 400 and m — +oo. Let
(my, My)ren be a sequence of R? such that my, M, k—> +00. In this case, we can use the
—+o0

inequality F, (B,Qn}M) > E1 (P, M), and for any U € Q(py, ar) there exists a constant C' > 0
such that

Dot [0, 0] > / V% T2 + / (121005 + M1 (50— C] [¥[?0n
s ot s
e / U (-, ) v — [M — m| / 0P
OK oK

Without loss of generality, we can assume that there is a subsequence of (Mj, my) still
denoted by (Mj, my) such that My > my, for all k. We have

Pt [0, 9] 2 m2 [0, 0 1912 g (MR + By (Sat i) = Ol

but when £ is large there is a constant C; such that

M;? + E1(Smy—my,) = Ml? —M,g —mi + 2Mpmy, — C
> 2Mpmy, fmi —Cy > mﬁ — (4.

Thus, E, (Bfnk’Mk) > E1(Pny m,) > mi—C—C1 — +oo. This means that every sequence

k——+o0
E1(B2,, ) admits a divergent subsequence, an we conclude that E1 (B, 5;) — 400 in this
regime.

By similar constructions, the same result holds for m, M — —oo as well.






Chapter 3

Cauchy spinors on 3-manifolds

Les lignes de ce chapitre proviennent d’un article co-écrit avec Sergiu Moroianu, et paru
dans Journal of Geometric Analysis, 32, 186 (2022). On y démontre certaines propriétés
des spineurs de Cauchy sur les 3-variétés, et on établit des résultats de classification de ces
mémes spineurs sur S3.

95
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3.1 Introduction

The Cauchy problem for parallel spinors

If (M, g) is an oriented hypersurface in a spin manifold (Z, gz) and ¥ is a parallel spinor on
Z, then the restriction ¢ := ¥y is a spinor on M satisfying the initial condition

A(X)

where A is the second fundamental form of M (see [33, Proposition 1.4.1]).

Conversely, given a spinor ¢ on M satisfying the constraint (3.1.1) for some symmetric
endomorphism A, is it always possible to embed M as a hypersurface in an ambient manifold
Z with second fundamental form A, and such that ¢ is the restriction to M of a parallel
spinor ¥ on Z? In other words, is (3.1.1) the only constraint for the existence of Z and ¥?
This is the so-called Cauchy problem for parallel spinors studied in [3]. The answer is positive
when all the objects involved are real analytic, and negative in general in the smooth setting
for dim(M) > 3 [3, Theorems 1.1 and 4.27].

A spinor and symmetric 2-tensor on M satisfying Equation (3.1.1) will be called below a
Cauchy spinor, respectively a Cauchy endomorphism. Since (3.1.1) includes as a particular
case the Killing spinor equation (i.e., when A is a constant multiple of the identity), Cauchy
spinors were sometimes called generalized Killing spinors e.g. in [60-62]. Different generaliza-
tions of the notion of Killing spinors appear however in the literature, e.g. in the papers [38]
or [30,31]. We believe that the current name should be more appropriate, as it describes
more accurately the property of being the restriction of a parallel spinor to a hypersurface.

The classification problem for Cauchy spinors and endomorphisms on a given manifold M
requires us to describe all pairs (¢, A) verifying (3.1.1). In dimension 3, partial results in
this direction were found in [60], where Cauchy spinors are characterized in terms of an
orthonormal frame of divergence-free vector fields on M. The same authors investigated
in [61,62] the case of the sphere S3, classifying all Cauchy endomorphisms having at most
2 distinct eigenvalues. This example illustrates the little understanding we have of Cauchy
spinors in dimension 3, as we are unable to classify them even on the round sphere. Note
that a complete description can be given in several other dimensions [62].

Cauchy spinors on 3-manifolds and flat connections

Spin geometry in dimension 3 is special because the Hodge * operator allows an exceptional
identification between 1- and 2-forms, and moreover the real spinor bundle carries a quater-
nionic structure. Using these algebraic structures, on simply connected 3-manifolds (which
by the Poincaré conjecture must be diffeomorphic to the sphere) we can restate the classifica-
tion problem for Cauchy spinors without mentioning spinors at all! Indeed, Equation (3.1.1)
implies a constraint for the symmetric endomorphism field A:

0=R(X,Y)++dVAX,Y) + A(X) A A(Y), (V)X,Y € TM. (3.1.2)

Here R is the Riemann curvature tensor and dV is the exterior covariant derivative on M
mapping sections of A'M ® TM to sections of A2M ® TM. The set of symmetric endomor-
phisms satisfying (3.1.2) is denoted Cof. If M is simply connected, every solution of Equation
(3.1.2) also satisfies (3.1.1) for some Cauchy spinor, unique up to right multiplication by a
quaternion. Our strategy below is to exploit Equation (3.1.2) in order to obtain new results
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on the Cauchy problem for parallel spinors, and also on the classification problem for Cauchy
spinors.

Equation (3.1.2) amounts to the flatness of the modified metric connection V4 = V + xA
on TM. Even in the compact and simply connected case, the structure of the set of flat
connections CY¢ remains elusive, in part because Equation (3.1.2) is non-linear and not
elliptic. For this reason, we first study the linearization of (3.1.2). We show that if the scalar
curvature of M is positive, the space of infinitesimal deformations, defined as the space of
symmetric endomorphism fields solution to the linearization of (3.1.2), is finite-dimensional
(Theorem 3.3.2). This can be interpreted as a finiteness result for the dimension of the
“tangent space” of Gk‘}ﬂ with the caveat that this set of flat connections is a priori not a
smooth manifold. The hypothesis on the sign of the scalar curvature is necessary: we exhibit

flat compact 3-manifolds for which the dimension of the space of deformations is infinite.

Cauchy endomorphisms on the round three-sphere

We view S3 as the Lie group of unit-length quaternions. Four examples of symmetric en-
domorphisms A fulfilling the flatness condition (3.1.2) on S* are known from [60, Example
3.2]: £Id, and the endomorphism fields constant in a left (resp. right)-invariant orthonor-
mal frame, with eigenvalues 1, —3, —3 (respectively —1,3,3). It was already shown in [62]
that there are no deformations around A = +Id. We prove that the space of infinitesimal
deformations around the other two examples has dimension 2, and corresponds to the Lie
derivative of A in the direction of a left (or right-) invariant vector field from ker(A + 3Id).
In particular, there are no other deformations of the above solutions. If GISO?? were a smooth
manifold, it would therefore necessarily have at least 4 connected components.

The examples of endomorphisms on S? given above are analytic, so by [3] they can be realized
as second fundamental forms of the three-sphere embedded as a hypersurface in a generalized
cylinder 2 := (—¢,¢) x S carrying a parallel spinor. The cases A = +Id both induce the
standard embedding of S? into R*. We calculate in Section 3.4 an explicit expression of this
metric in the other two cases, finding an extension of the family of Euclidean Taub-NUT
metrics with a negative parameter. This computation solves the long-time Cauchy problem
on the three-sphere for the four known examples of Cauchy spinors on S3.

Classification results

In the final section we prove three classification results for symmetric endomorphisms solving
Equation (3.1.2) on S3. The known examples of Cauchy endomorphisms have constant
matrices in a left or right-invariant orthonormal basis of the tangent bundle of the Lie group
S3. It is natural to ask if these are the only symmetric endomorphisms solutions to (3.1.2)
with this property. We prove in Proposition 3.6.1 that this is indeed the case. Moreover, since
all the solutions of (3.1.2) with at most two eigenvalues are known [62, Theorem 4.10], we
investigate the case where A has three distinct constant eigenvalues. We show that there is
no solution in this case, using a characterization of the Hopf fields on S* (Proposition 3.6.2).
Finally, we show that the solutions which are constant only in the direction of a left or
right-invariant eigenvector & of A, i.e., such that £¢A = 0, must also be constant in a left
(respectively right) invariant orthonormal frame, so they fall in the class of previously known
examples (Proposition 3.6.4). This result turns out to imply (a slight extension of) the
Liebmann rigidity theorem [49].
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Related results

Cauchy spinors in 3+ 1 Lorentzian signature were recently classified by Murcia and Shahbazi
[64], [65], thanks to the fact that one of the elements in the global coframe defined by the
Cauchy spinor on the hypersurface is privileged, and determines an integrable foliation. On
the other hand, unlike in the Riemannian case, the Lorentzian initial value problem for
parallel spinors is of hyperbolic nature and has solutions in the smooth category. Thus the
two problems are in fact rather different, despite some formal similarities.

3.2 Preliminaries

3.2.1 Spinors in dimension 3

The real Clifford algebra Cls is canonically isomorphic to the quaternion algebra H by the
map sending e; to i and ep to j, where {e1, ez} is the standard basis of R2. Tt follows that
the even Clifford algebra CI5" is also isomorphic to H by the unique algebra map sending
eres to i, eges to j, and hence eses to k.

Multiplication by the central element P := 1_"1% is a projector in Clz. Let X3 be the
image of this projector. Then P maps CI5*®" isomorphically onto X3, thus identifying 33
to H. Since P is central, CI3™" acts on X3 by left multiplication, and this representation
commutes with the right action of H ~ X3 on itself. The restriction of this quaternionic
representation to the spin group Sping is the spinor representation. By construction, the
spinor representation is thus the restriction of a Cls representation under which the volume
element ejeqzes acts as minus the identity.

The spinor representation is orthogonal with respect to the natural scalar product on 3.
The right multiplication by quaternions is also compatible with the scalar product, in the
sense that (1a, pa) = |a|?>(1), ¢) for all @ € H and 1, ¢ € 3.

Recall now that every oriented 3-manifold is parallelizable, hence spin. Let (M, g) be an
oriented Riemannian 3-manifold with a fixed spin structure. The real spinor bundle XM over
M is the vector bundle associated to the spin bundle and the Spin, spinor representation Xs.
It is endowed with a natural inner product (-, -) and a Cl(T'M)-action such that the Clifford
product by vectors on XM is skew-symmetric. The right action of H on X3 induces a right
H action on XM commuting with Clifford multiplication by tangent vectors, and satisfying
(a, pa) = |a|?*(x, ¢) for all @ € H and 1), ¢ € TM.

By construction, Clifford multiplication with the volume form acts as —Id on ¥M. This
choice implies that for a 2-form w € A%(M) and a spinor 1) € XM we have

w-th = Hw -, (3.2.1)

where * denotes the Hodge star-operator.

3.2.2 Cauchy spinors and endomorphisms

Let F — M be a vector bundle endowed with a connection V. The exterior differential
twisted by V is defined on E-valued p-forms using Einstein’s summation convention:

V(W V) =dwoV+ (-1)fwA X @ Vx,V,
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where (X;)1<;<n is any local orthonormal frame on M. For an endomorphism field A €
End(T'M), the above formula becomes

dVA(X,Y) = (VxA)Y — (Vy A)X, (V)X,Y € TM. (3.2.2)

The divergence operator 6V is the formal adjoint of dV with respect to the L?-inner product
on vector-valued forms.

Let now V be the Levi-Civita covariant derivative on an oriented 3-manifold M, and R =
dV oV its Riemann curvature tensor. The Levi-Civita covariant derivative on the spinor
bundle XM is still denoted by V, and its curvature tensor is written XR.

Definition 3.2.1. Let (M, g) be a spin 3-manifold. A non-zero section ¢ € T'(EM) is a
Cauchy spinor if there exists a symmetric endomorphism field A € T'(T*M x TM) such that
the pair (v, A) satisfies Equation (3.1.1). In this situation, A is called a Cauchy endomor-
phism.

We denote by Cps the set of all Cauchy endomorphisms on M, and by CYX¢ the set of all
symmetric endomorphisms on M satisfying Equation (3.1.2).

In other words, an endomorphism field A on M is a Cauchy endomorphism if it is symmetric
and there exists some non-zero spinor ¢ € I'(XM) satisfying Vx¢ = —1A(X) - ¢ for all
vectors X € T'M. We stress that the symmetry assumption on A is crucial here, since in
dimension 3 every spinor of constant length determines uniquely some general endomorphism
field A so that Equation (3.1.1) holds.

The sets Cps and ClPF will form our main object of study in this paper.

3.2.3 Parallel spinors in dimension 4

Let us review below the main results of [3] about parallel spinors in dimension 4, Ricci-flat
metrics and Cauchy spinors.

Let (M, g) be a hypersurface in a 4-dimensional manifold (Z, g%). If Z is Ricci-flat, the second
fundamental form W of the embedding M < Z satisfies the contracted Codazzi and Gauss
equations:

Scal™ = tr(A4)% — tr(A?), 6V A+ dtr(A) = 0. (3.2.3)

Conversely, if (M, g™) is real analytic and the constraints (3.2.3) hold on M for some analytic
symmetric endomorphism A, Koiso [44] proved that there exists a Ricci-flat real-analytic
ambient manifold (Z,¢*) in which M imbeds isometrically with second fundamental form A
(see also [3, Theorem 2.1]).

Upon replacing Z by a collar neighborhood of M, we can assume that Z is also parallelizable.
Fix a spin structure on Z. The restriction of each of the spinor bundles ©*Z to M is
isomorphic to ¥ M as right H-modules. If Z admits a nonzero parallel spinor ¥, up to
reversing the orientation on Z we can assume that the chiral component ¥ is nonzero. The
parallel spinor induces an algebra map ¢ : H — I'(End(T'M)) via the quaternionic structure
of the spinor bundle:

H 3 g ¢(q) = Q, Q) ¥T =V U'q, (VV e I(TM).

The endomorphisms in the image of ¢ are parallel, implying that the metric g% is hyperkahler,
hence self-dual and therefore Ricci flat (if ¥+ and W~ are both nonzero then g% is flat).
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Moreover, the restriction of ¥+ to M is a Cauchy spinor, and the second fundamental form
of M — Z is a Cauchy endomorphism.

Conversely, if there exists a Cauchy spinor 1) and a Cauchy endomorphism A on M satisfying
(3.1.1), then the identities (3.2.3) are satisfied (an alternate derivation of these identities can
be found in [61, Lemma 3.1, Equation (12)]). If moreover M, g™, A and 1) are real-analytic,
then by the above cited result of Koiso there exists a Ricci-flat 4-manifold (2, g*) into which
(M, gM) embeds isometrically with second fundamental form A, and locally there exists a
parallel spinor of positive chirality on Z extending 1, see [3, Theorem 1.1]. In particular, g*
is self-dual and hence hyperkéahler.

3.2.4 The modified metric connection V*

Throughout the paper we identify 1-forms and vectors on M using the metric g. Given any
AeT(A'M @ TM), we define A € T(A'M @ A2M) by A(X) := x(A(X)) for all X € TM.
We can view the 2-form A(X) as a skew-symmetric endomorphism of 7'M in the usual way:
for Y € TM, A(X)(Y) is the unique vector Z satisfying g(Z, W) = A(X)(Y,W) for all
WeTM.

We introduce the connection on T'M
V&Y :=VxY + A(X)(Y), X,Y € TM, (3.2.4)

and we denote by R4 its curvature tensor. Since by construction A(X) is skew symmetric,
V4 is compatible with the Riemannian metric and hence induces a connection, still denoted
V4, on the spinor bundle £M by pull-back from the orthonormal frame bundle:

A(X)

Ve =V + ?X -h, (V)X € TM,+ € $M.

We denote by R4 the curvature of V4 on spinors.
The problem of finding solutions to (3.1.1) can be reduced to solving an equation involving
the endomorphism field A alone, at least when M is simply-connected.

Proposition 3.2.2. Let (M,g) be a Riemannian 3-manifold and A € T(A'M @ TM) a
symmetric endomorphism field. The following conditions are equivalent:

1. Locally on M there exist nonzero Cauchy spinors with respect to A;

2. RA=0;

3. R4 =0;

4. The symmetric endomorphism A satisfies the equation (3.1.2), i.e., A € ClF.

When M is simply connected, the first condition is equivalent to the global existence of Cauchy
spinors, hence (flj\of =Cuy.

Proof. If there exists a locally defined, nonzero spinor ¢ satisfying (3.1.1), then the four
mutually orthogonal spinors (¢, i, ¥, ¥k), defined with the help of the quaternionic struc-
ture on .M, are parallel for the covariant derivative V4. This implies that the curvature
endomorphism R4 of (XM, VA) vanishes. Conversely, if R4 = 0, locally there exist non-zero
spinors parallel with respect to the connection V4, i.e., Cauchy spinors. Moreover, if M is
simply connected then such spinors exist globally on M.
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Since the connection V4 on ¥ M is induced from the connection with the same name on
TM and the spinor representation M, it is well known that R4(X,Y) = iRA(X,Y)-,
where - denotes Clifford multiplication (see e.g. [15, Theorem 2.7]). In dimension 3 the
map associating to a 2-form its action by Clifford multiplication on spinors is injective, thus
RA(X,Y) = 0 if and only if RA(X,Y) = 0.

For all X,Y € TM, we compute from the definition of V4 its curvature:

RAY(X,Y) =R(X,Y) +dVA(X,Y) + [A(X), A(Y)]

Since the Hodge * operator is parallel, it commutes with dV, so d¥A = *dY A. Also, we
check directly that

A(X) o A(Y) — A(Y) 0 A(X) = A(X) A A(Y).
Hence R4 =R+ %dVA+ A A A as claimed. O

Proposition 3.2.2 shows that Cy C CF, with equality when M is simply connected.

3.3 Deformation of endomorphism fields

There is not much one can say about the structure of the sets Cp; or Gll\(jf, even in the simply
connected case when they coincide. Let us introduce the following definition:

Definition 3.3.1. The space of infinitesimal deformations of C¢ at A € CF is

{C(0)| (e > 0,(3)C € C®((—e,e),[(Sym*(TM)),C(0) = A, %Rc(t)|t20 =0}.

In the case where GIA‘}[C is a differentiable manifold, its tangent space T A(flff is the space of
tangent vectors at ¢t = 0 to smooth curves C : (—¢,e) — CF with C(0) = A. In general,
since we do not know any differentiable structure on CY¢, the above cone might even not be
a vector space. The space of infinitesimal deformations always contains this formal tangent

cone.

Theorem 3.3.2. Let (M,g) be a compact oriented Riemannian 3-manifold with strictly
positive scalar curvature and let A € CYo¢. Then the space of infinitesimal deformations of A
is finite-dimensional.

Proof. Let C € COO((—E,E),F(Sym2(TM)) be a smooth curve as in Definition 3.3.1, with
C(0) = A. We define A := C(0). By differentiating with respect to ¢ in (3.1.2) the condition
ARCO|,_y = 0 rewrites

0=x*(dVA)(X,Y)+ AX)ANAY) + A(X) AA(®Y). (3.3.1)

We recall some elementary identities about the Hodge star-operator in dimension 3. Let
X,Y € TM and o € A2M. Then we easily check that

XixY =—% (X AY), X A *a = —x (X aa). (3.3.2)

Using these identities, one has for all X,Y € TM

AX)NAY) +AX)ANAY) = — s A(Y)(A(X)) + *AX)(A(Y)).
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Consequently, Equation (3.3.1) rewrites
0= (A A)(X,Y) = AWV)(AX)) + AX)(AY)) = (@7 A)(X, V).
We are hence led to the equation for the infinitesimal deformation of a flat connection:
VA =o. (3.3.3)

According to Proposition 3.2.2, the connection V4 is flat, meaning that R4 = AV ovA =0
on I'(T'M). But dV" 0d¥" is given by the action of R4 also on [(A*M @ TM) for all k > 0.
This implies that d¥" o d¥" =0 on I'A*M @ TM). The differential operators

d¥" T(A*M © TM) — T(A*™ M @ TM)

form therefore an elliptic complex. By Hodge theory, Equation (3.3.3) implies that there
exists a vector field X ; € I'(T'M) and a dV” -harmonic vector-valued 1-form BieT(A'M®
TM) (ie, 6V B, = 0 and d¥"B; = 0) such that A = VAX, + B,. Notice that this
equation still involves the symmetric endomorphism A which defines the flat connection V4.
The symmetry condition on A can be rewritten as an equation on X i» B, and A:

Lemma 3.3.3. Let X € I(TM) and B € T(A'M ®@ TM). The endomorphism dV'X + B is

symmetric if and only if X, viewed as a 1-form, satisfies dX —x(Xtr(A)—AX)+XAB(X}y) =
0, where (X1, X2, X3) is any orthonormal basis.

Proof. The endomorphism dV'X + B is symmetric if and only if its skew-symmetric part
is zero. Using the identities (3.3.2) we compute

0= X, AVE, X+ Xi AB(Xy)
= Xp A (Vx, X + A(Xp) (X)) + Xi A B(Xk)
=X A (Vx, X + XJA(Xy)) + Xi A B(Xy)
=X AN (Vx, X — (X ANA(Xy))) + X A B(X%)
= Xp AVx, X — Xi Ax(X ANA(XE)) + Xp A B(X3)
= Xp AVx, X + #(Xpa(X AA(XR))) + Xi A B(X)
= dX + #(X(Xi) A(Xk) — A(Xp)(Xi)X) + X A B(X)
= dX + =(A(X) — XtrA) + X; A B(Xp). O

The space of d¥" -harmonic vector-valued 1-forms B is finite dimensional by ellipticity.
Lemma 3.3.3 implies the identity dX ; — *(X jtr(4) — AX;) = —X, A B;(Xy), and for
a given B, the solutions X € TM of

dX — x(Xtr(A) — AX)+ X AB(Xy) =0

form an affine space of direction ker(X — dX — x(Xtr(A) — AX)). Thus, to show that the
space of deformations is finite dimensional, it is sufficient to prove that the solution space of

dX — #(Xtr(A) — AX) =0 (3.3.4)

is finite dimensional.
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By applying the exterior derivative to equation (3.3.4) we have 0 = d % (Xtr(4) — AX) =
*0(Xtr(A) — AX), and then
0(Xtr(A) — AX) =0.

We define the differential operator
E:AM — A’M @AM, E(X) = (dX — #(Xtr(A) — AX),6(XtrA — AX)).

To compute the principal symbol of =, recall that for any x € M, any element of ALM is the
differential at z of some smooth function. Let thus f be a smooth function on M. Again by
using (3.3.2) we obtain

o=(df)(X) = E(fX) — fEX
= (d(fX) — fdX,0[f(XtrA — AX)] — fo[XtrA — AX])
= (df NX,—(df,(XtrA — AX))).
Hence, the principal symbol of Z at a € ALM is given by
oz(a)(X) = (e A X, (o, (XtrA — AX))).

We want to show that this principal symbol is injective in order to use the theory of elliptic
operators. To do so, we first remark that equation (3.2.3) holds for any manifold carrying a
Cauchy spinor even if it is not embedded into a Ricci-flat manifold [61, Lemma 3.1]. Then,
the eigenvalues (A1, A2, A3) of A satisfy AjAs + A\iA3 + Aoz = %ScalM. We now use the
hypothesis Scal™ > 0.

Lemma 3.3.4. Let B € M3(R) be a symmetric matriz with eigenvalues (A1, A2, Az) such
that A A2 + A1 A3 + Aadg > 0. Then B — tr(B)Id is definite.
Proof. Since B is symmetric and real, there is P € O3(R) such that
PTBP = diag(\1, A2, \3).
Thus, PT(B — tr(B)Id)P = —diag(\2 + A3, A\1 + A3, A1 + A2). Moreover, one has
(A2 +A3) (A1 +A3) = Xad1 4+ Aoz + X301 A3 >0

and similarly ()\1 + )\3)(/\1 + )\2) > 0, ()\2 + )\3)()\1 + )\2) > 0. We conclude that As + A3, A1 +
A3, A1 + A2 have the same sign and are different from 0, so B — tr(B)Id is definite. O

As a consequence of Lemma 3.3.4, A—tr(A)Id is definite under the assumption that Scal™ >
0. Now, let a € A'M such that there is a non-zero vector X with o=z(a)(X) = 0. In
particular, we have g(a,[A — tr(A)Id]X) = 0 and a« A X = 0. We deduce that X = fa
and g(a, [A — tr(A)Id]a) = 0, so a = 0 because the endomorphism A — tr(A)Id is invertible.
Consequently, the principal symbol of = is injective.

The operator =Z*= has the same kernel as = and is elliptic, so its kernel is finite dimensional
(see e.g. [67, Theorem 5.2]). Thus the space of infinitesimal deformations of A is finite
dimensional, ending the proof. O

The assumption Scal™ > 0 is necessary, as shown by the following example:
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Remark 3.3.5. We look at a flat Riemannian product M = S! x E, where E = R?/T is
an elliptic curve. Let p : M — S! be the projection on the first factor, and P : TM — TM
the orthogonal projection on the first factor in the tangent bundle. The endomorphism P is
parallel and symmetric, and it clearly satisfies Equation (3.1.2). Moreover, for any smooth
function f: S! — R, the symmetric endomorphism field A := (p* f) P also satisfies Equation
(3.1.2) since all the terms in this equation vanish when at least one of the vectors X,Y are
tangent to the second factor £. Thus the space of infinitesimal deformations of A; contains
the infinite-dimensional space C°°(S1).

Not every such Ay € Clo¢ is necessarily associated to a Cauchy spinor, because the torus is

not simply connected. Take a non-zero parallel spinor ¥ on the flat torus F' x E, where F
is also an elliptic curve, and consider any closed simple curve v in F' of length 27, hence
isometric to S'. Then the manifold v x E is isometric to M, so the restriction of ¥ to M is
a Cauchy spinor on M with respect to A, where € is the geodesic curvature function of ~.
Since the set of curvature functions of curves of length 27 in F' parametrized by arc-length is
not finite-dimensional, it is evident that the deformation space of flat connections near such
a Ag cannot be finite dimensional either.

3.4 Deformations of Cauchy spinors on the three-sphere

Let us illustrate the above result in the case of the round 3-sphere, noting that even in this
simplest possible case Equation (3.1.1) is not yet fully understood.

We identify S with the unit sphere in the quaternions H ~ R*. In this way, S? becomes
a Lie group with Lie algebra the space of imaginary quaternions ImH. Let (ej,es,e3) be
the three left-invariant vector fields corresponding to the quaternions ¢, j, k. They form an
orthonormal frame at any point of S3. Recall that the Levi-Civita covariant derivative of
left-invariant vector fields on compact Lie groups is given by VxY = %[X ,Y]. Recall also
that for an even permutation (a, b, ¢) of the indices (1,2, 3), the Lie brackets are given by

[€a, €p] = 2e. (3.4.1)

We compute from here the covariant derivatives of these orthonormal vector fields:

Ve,e1=0 Ve,e2 =0 Ve,e3 =0
Veleg = €3 v6263 = €1 Ve3€1 = €2 (342)
v€261 = —e€3 VegeZ = —€ V61€3 = —es.

On the round sphere, the curvature tensor satisfies R(X,Y) = —X A'Y so Equation (3.1.2)
rewrites

*dVAX,Y) =X ANY — A(X) AA(Y). (3.4.3)

Remark 3.4.1. From [60, Example 3.2], we know four families of Cauchy endomorphisms
in 653 :

e plus or minus the identity

e the symmetric endomorphism fields constant in a left-invariant orthonormal frame, with
eigenvalues 1, -3, -3

e the symmetric endomorphism fields constant in a right-invariant orthonormal frame,
with eigenvalues -1, 3, 3.
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It was already shown in [62, Theorem 5.1] that € does not admit infinitesimal deformations
at the endomorphisms +Id. Let us thus study the infinitesimal deformations of (‘31503? at the
symmetric endomorphism field

Ag:=e1®@ep — 3(62 ®ext+e3® 63). (344)

Lemma 3.4.2. Let (M,g) be a simply connected 3-manifold and A € T'(End(T'M)) such
that the connection V4 defined by (3.2.4) is flat. Then the cohomology space H'(M, dvA)
vanishes, hence there are no nonzero dV" -harmonic sections in I'(A'M ®@TM).

Proof. Fix a global frame sy, 2, s3 € I'(T'M) consisting of V4-parallel vector fields, possible
since M is simply-connected. In this basis, the elliptic complex (T'(A*M ® TM ),dVA) is
isomorphic to the tensor product of the standard de Rham complex with R3. It follows
that H'(M,d"V") ~ H'(M) ® R3, and this space vanishes since the first Betti number of a
simply-connected manifold is zero. O

By the analysis from the proof of Theorem 3.3.2 and Lemma 3.4.2, any infinitesimal deforma-
tion A can be written as the covariant derivative V40 of a vector field X ;. By Lemma 3.3.3,

the symmetry of A leads to the equation

dX + +(AgX +5X) = 0. (3.4.5)

If we write X =: mkek, we have dX = d(mkek) = dz* Aej, +2Fdey, and the exterior derivatives
are given by dey, = —2 * ¢;, for all k € {1,2,3}. Finally, equation (3.4.5) rewrites

dz® A e + 4ates A eg = 0.

This means that we have the differential system of equations in the unknown functions
xl 2% 23 € C(S3):

ea(at) = er(2?), ez(z!) = ex(a?), e3(2?) = ez(a®) + 4a’.
By taking further partial derivatives one has

esea(zt) = eser (22) = eres(z?) 4 2eq(2?)

1

eges(xt) = egeq (23) = erea(z®) — 2e3(x?)

dei(z') = eres(x?) — erea(x?).
We subtract the first equation from the sum of the last two, and we obtain
3eq(zh) + ea(x?) + ez(x®) = 0.
Hence,
3erer(zt) = —eren(2?) —eres(2®),  esea(x!) = eser(2?), eses(x') = eseq(x?),
and summing these three equations one has
3erer(zh) + egen(a!) + eses(x!) = 2e9(2®) — 2e3(2?) = —8x'.

Consequently, we have to solve
Azt = 8zt
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where Ap := —(3e1e1 + eaea + ezes). Note that this operator is the Laplacian on the Berger
sphere with metric %e%—&-e%—l—e%. Let A = —(eje1+esea+e3es) be the Laplacian for the round
metric. Since e; is a Killing vector field, it commutes with A, and since it is divergence-free
it follows that ef = —e;. Thus the operator —e? is symmetric and positive, so Ap commutes
with A and Apg > A. Tt follows that an eigenfunction of Apg for the eigenvalue 8 is a sum of
eigenfunctions of A for the eigenvalue 3 or 8. From the analysis done in [10, Section 5 and
6.2] or by direct computation, we know that all eigenfunctions of A for the eigenvalue 3 (the
spherical harmonics of degree 1) are also eigenfunctions of Ap of eigenvalue 5. Moreover,
an eigenfunction of A for the eigenvalue 8 (a spherical harmonic of degree 2) is a sum of
eigenfunctions of Ap for the eigenvalues 8 and 16, and the multiplicity of the eigenvalue 8
for Ap turns out to be 3. More precisely, the associated eigenspace Vg is spanned by the
functions *yy, for k € {1,2,3} where 7 : S — S?(1) is the Hopf fibration for which e; is
tangent to the fibers and ¥, is the k' coordinate in R? D S2. In particular, the action of e;
is trivial on Vg, so ej(z!) = 0.

Lemma 3.4.3. For any k € {1,2,3} one has eaes(n*yr) = ezea(n*yx) = 0 and ezea(n*yy) =
eses(mryr) = —4n*yy.

Proof. The space Span(n*y;, 7*ya, m*ys3) is generated by the three harmonic quadratic poly-

nomials {a% + a% — a% — ai, aiaq + asas, ajaz — agay} restricted to S3, where a, stands for
the k' coordinate in R*. The lemma follows by a direct computation. O

Now we have
ere1(2?) = erea(x!) = eger (z!) + 2e3(zt) = 2e3(zh)
esea(r?) = —eges(x?)
eses(x?) = ezeq(23) 4 des(xt)

and by adding these equations we obtain for the Laplacian A = —(eje; + ezes + ezes) of the
round metric:
Az? = —2e3(x') + 2e1(23) — des(z') = —des(z!).

In the same way we have
erer(23) = ejes(xt) = —2eq(xt)
egea(x3) = eges(z?) — deq(xh)
eses(2®) = —ezeq(x?),

thus,
Ax? = 2eq(xt) — 2 (2?) + dea(2!) = dey(2h).

We are left with the system
Ax? = —des(z'), Ax® = dey(zh).
Since eq, €2, e3 are Killing vector fields, A commutes with ey, e5 and e3. This implies that
Az? + %63(1’1)) =0, Az — %62(1’1)) =0.

Since harmonic functions on a compact manifold must be constant, we deduce that zo =
—%eg(xl) + ¢y and 23 = %82(1‘1) + c3 for some constants co,c3 € R. Finally, the space of

solutions

S = {xlel + (—%63(901) +co)es + (%eg(xl) + C3)€3;£E1 € Vg, ca,c3 €R} (3.4.6)
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is 5-dimensional, since the eigenspace Vg of Ap for the eigenvalue 8 has dimension 3.

From (3.4.1), the Lie derivatives of Ay in the direction of es, e3 are given by

Loy, Ag = Le,(e1 ®ep —3ea ® ea — ez @ e3)
—2(e3®@e1 +e1®ez) —6(e1 @ez +e3@eq)
—8(ez@e1 +e1 ®es);

Loy Ag = Ley(e1 @ ep — ez @ ex — 3e3 @ e3)

=2(ea®e; +e1®ez) +6(e; Rea+ea®ey)
=8(ea ®e1 + €1 ® ea).

Let X := 2%e;, € 8. One has

VX =di* @ er + szAoek
=dz* @ ep + Q:vl(eg ®e3 —e3 @ eg)
+22%(e1 ® ez +e3 ®er) — 22°(ey ®ea +ea ®ey),

and we can compute the coefficients of V40X using Lemma 3.4.3:

2VA X 61 ®e1) = 2e1(z!) =0
2(VA0X ex ®eg) = —egeg(acl) =0
2<VA°X e3 ®e3) = ezea(z!) =0
2AVA X e) ® eg) = —erez(x!) — 2eq(at) — dez = 2en(x!) — 2en(xt) — dez = —4es
VA X 61 ® e3) = eren(xt) — 2es(xt) + dey = 2e5(xt) — 2es(xt) + dey = 4ey
(

2 VAOX es ® es = egeqxt + 42t = 0.

From the symmetry of V4°X we conclude that
VA X = 2c5(e1 ®es+e3®er) —2ca(er ®ex +e2 ®eq)

1
71(63563140 + Cgfze?Ao).

Consequently, we proved the following proposition:

Proposition 3.4.4. The space of infinitesimal deformations of Cloc at Ao is of dimension
2, and consists exactly of the Lie derivatives of Ag in the dzrectzons spanned by (ez, e3).

The same analysis holds for endomorphism fields constant in a right-invariant orthonormal
frame.

Remark 3.4.5. The infinitesimal deformations described in Proposition 3.4.4 can be ob-
tained as the tangent vectors to actual smooth curves in Clso§, as described after Definition
3.3.1. This comes from the fact that the solutions we know form a differentiable manifold

with four connected components.
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3.5 Endomorphisms fields on the 3-sphere and the sec-
ond fundamental form

3.5.1 Thickening of the three-sphere

In the real-analytic case, it was shown in [44] and [3, Theorem 1.1] that the existence of a
Cauchy spinor ¢ over (M, g) is equivalent to the existence of a Ricci-flat metric of the form
g% = dt? + g; on a cylinder Z := (—¢,¢) x M with gy = g, which carries a parallel spinor
. In this case, the Cauchy endomorphism A from (3.1.1) is the second fundamental form of
the hypersurface {0} x M, and ¢ is the restriction of ¥ to this hypersurface. Moreover, the
germ near t = 0 of the Ricci-flat metric g% is unique by analyticity.

When A is plus or minus the identity on the sphere S3, the resulting metric on Z is flat
and isometric to the induced metric on a tubular neighborhood of S? through the canonical
embedding in R*.

In this section we shall describe the ambient metric obtained by this thickening procedure
in the case where the Cauchy endomorphism field is Ay defined in (3.4.4) in terms of the
left-invariant orthonormal frame (eg, €2, e3) on the standard sphere S3. Once again, a similar
analysis can be carried out in the case of an endomorphism field constant in a right-invariant
orthonormal frame, as it amounts to reversing the orientation on Z.

Since both the standard metric on S and Ay are real-analytic and S'-invariant, by uniqueness
it follows that the Ricci-flat metric g* is also S'-invariant. For an interval I 5 0 (to be defined
later), we thus make the following Ansatz: let 71,72, 73 be the 1-forms dual to the Hopf vector
fields ey, es, e5, we look for a metric on Z := S® x I of the form

g% = dt* + g, g =t a(t)’n; +b(t)*(n3 +13) (3.5.1)

such that XZ carries a parallel spinor ¥ and Ay is the Weingarten map of S® x {0}. Moreover,
go has to coincide with the metric of the round sphere, so a(0) = b(0) = 1, and we assume
that the functions a and b are non-negative.

We introduce the notation M; := S3 x {t}. Because of the form of the metric g; defined by
(3.5.1), the hypersurfaces M; are Berger spheres.

The covariant derivative on (M, g;) is denoted V. We also denote by R’ the Riemann
curvature tensor of (M, g;), and by A; the Weingarten map of the hypersurface M; in Z.

The fact that W is parallel in 32 implies that each hypersurface M; carries a Cauchy spinor
(the restriction of ¥ to M;) with associated endomorphism field A;. In particular, Equation
(3.1.2) gives for all ¢

0=RIX,Y)+xd¥ Ay(X,Y) + A (X) A A(Y) (3.5.2)

for all X,Y € TM; ~TM. In turn, the identity (3.5.2) for all ¢ will be shown to determine
uniquely the metric g%, hence, as explained above, it implies the vanishing of the Ricci tensor
of g* by [44] and the existence of a parallel spinor on Z by the main result of [3].

Using Koszul’s formula and the expression (3.4.1) for the Lie brackets of e1, eq, e5, we obtain
by a straightforward computation that

Vi ey = 2—a—2(t) e A% ——aj(t) Vi es = ﬁ(t)—z
e €2 = b2 35 e €1 = b2 €3, 163 = b2 €2,

t _ &2 t
Vesel = (t)eg, V

t
b2 6263:61, Vv €y = —€1

€3
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t _ t _ t —
VelelfO, VeQGQ—O, \Y €3 =

From this we immediately get

4 2

a a
RE o1 =—pr(tea, R 2= (t)en, R, es =0
a a?
Rffl,es.el = _bj(t)e& Ril,eseQ =0, Rzl,e363 = bﬁ(t)el
¢ ¢ a’ ¢ a’
R,e2 6361 = 0, Re2 6362 = (3 b2 (t) 4) €3 :R,e2 6363 = <4 — 3b2 (t)) €3
Thus, in the basis (eg, eq, e3) one has
0 % 0 0 0 %
Rl . = . t..=10 0 0
€e1,e2 _bT 0 0 €1,e3 4
0 0 0 -3 0 0
0 0 0
H.2
R22,63 = O 20 4 - 3672
0 3% -4 0

We shall identify vectors and 1-forms on M; using the metric g;. Notice that the Hopf frame
(e1,e2,€3) is orthogonal, but not orthonormal on M;. In terms of 2-forms, the ¢-dependent
curvature matrices become

t a’ t a’?
R(el,eg):—bj€1/\€2 R(el,eg):—b—élel N es
3a? — 4b?
Rt(e% 63) = Tez N es.

Let us now analyze the Weingarten maps A;. By [6, Proposition 4.1], A; is computed in the
frame {ey, ea,e3} by the formula g:(A+(X),Y) = —%% (g:(X,Y)). We obtain

b b
(t)el X e — —(t)eg X eg — —(t)eg X €3.

é
Av=-— b3 b3

a?
The twisted exterior differential of A; is

(@Y Ag)(er, e0) = VI (Ares) — A,VE ea — VE_(Aser) + AV eq
b a? a a?
= —E(t)vz;eg — (2 — b2(t>) At€3 + E(t)v22€1 — b—2(t)At63

(thAt)(el, 63) = Vil (Ateg) — AtV;eg - VZS (Atel) + AtV;el

CL2

b2 (t)At €9

b ° a
=——(t)V! ez — ((t) - 2) Ares + E(t)viael +
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(AV" Ap) (e, e3) = VE_(Ases) — AVE ez — Vi (Agea) + A,V e

b b
= _B(t)v2263 — Ajer + B(t)vz?’eg — Aieq

- <Z(t) - Z(t)) e1.

a b a
2 (t) <b(t) - a(t)> e1 N eg,

«(@Y" A (er, e3) = :2(15) (Z(t) _ Z(t)) e1 Aes,

Thus

«(dV A (e1, e2) =

(0" A ez, e5) = (1) (j@) - Z(t)) 2 hes.

Finally, Equation (3.5.2) rewrites as the system

0=REL, ., +*(dY A;)(er, ) + As(er) A Ay(e2)
0=REL, ., +*(dY A;)(er, es) + As(er) A Ay(es)
0=RE, ., +#(a" Ay)(e2, e3) + Ar(e2) A Ayles)

and taking into account the previous computations, this system reads

a? a (b a ab
():—leel/\ez-i-bf2 » o 61/\62"‘@@1/\62

b2 \b

. N\ 2
3a® — 4b? 2a (a b b
O:T€2A€3+b72 5_5 ey N\ es+ E es N\ e3

so we are left with the two independent equations

a® a (b a ab
0:**61/\634** - — — 61/\634’*61/\63
b* a ab

2

o__ % _a_ab ab
Tovt 2 ab

. N 2 3.5.3
o 30° - 20 2ab (b (3:3:3)
G 2 b b)

Moreover, from the identity go(Ao(X),Y) = —2§o(X,Y) for all X,Y € T My, we have the
initial conditions

a(0) =b(0) =1 a(0) = -1 b(0) = 3.
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The first equation of (3.5.3) can be rewritten as

0 56D (5 03)

thus either i)—% =0or Z—j +a& = 0. However, from the initial conditions one has b(0) — 2(0) =
2 # 0 so the first case never occurs. Consequently, we get

Substituting this a in the second equation of the system (3.5.3), one obtains by factorization

1 . ,
0= b—4(a — bb —2b)(a — bb+ 2b).
Thus, either a — bb — 2b = 0 or a — bb 4 2b = 0. The initial conditions give a(0) — bb(0) =
1 —3 = —2 and we conclude that the second case occurs. We have reduced (3.5.3) to the

simpler system
2

. a
a = _b72
i):%+2 (3.5.4)

a(0) = b(0) = 1, a(0) = —1, b(0) = 3.

In order to solve this system, we will find a conserved quantity and make a well-chosen change
of variable. We begin by computing the derivative of g:

: ==+

(b)’_ba—ab_ (2+2)a+Bb 2 2
B B b a’

a

0= <Z>/—2<i+i> ©O—ab<2>/—2(a+b).

In addition, one has

and then,

2
" — bt ba = -2 @ —
(ab) = ab+ ba = b2b—|—a(b+2) 2a,
thus

2(a+b)2a+2ba2a<b+1> = (ab)’ (b+1)’
a a

a

and finally we have

0=ab <2)/—(ab)’ <2+1> & <alb <Z+1>>/_0.

We conclude that the quantity ﬁ (% + 1) is constant, so

1 /b
—(-+1)=2
ab <a+ >
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A natural change of variable is to set s = ¢(t) := a(t)b(t), so % =2¢(t) — 1 =2s—1.
Composing by ¢~! on the right, we obtain for s in a neighborhood of 1

a

(67 (5) = =75 (871(9))

and setting o :==ao ¢! and B :=bo ¢! one arrives at

. _ ,a2_ 1y 1
a=—(¢ 1)@——@ 1)@
. 1y [« L gds—1
b= (§+2) =y
aff = s

§:23—1.

(07

Differentiating the last two equations one gets

QB+ af =1 (3.5.5)
and
af—4f =207 & 0= - al2s 1) = (67 o + (67 s
1y 28
S a=(¢ )25_1~
Re-injecting this last equation in (3.5.5) we have
B A _1y 28 _ 71/# — —iyds 1 =
a<aa+5>1@(¢’ )25—1( @) & T )23—1>1
N 4 —1y/ 25 —1
S(0)) oy =1e @ ==

where we used that the derivative of ¢ is positive. Thus, one has

PV D 1
G=0 ) e = 2/5(2s — 1)}

43—1_ 4s — 1

25 —1 2252 — s

B=(¢7")

and by integration we finally obtain

a:@, 8= /5@ —1).
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We conclude that in terms of the new variable s, the metric on S® x I introduced in (3.5.1)
is
2  25—1 1

s
9 == d52+287_1n%+s(2s—1)(17§+77§), 5 € (5,00).

We can compute the interval to which the variable ¢ belongs by calculating

/é (1Y (s)ds = / L
:\i@ [s,/1—218—i1n(4s—1+\/m>]

2 —In(1 2
_ . 111(3—}-2\/5):\[ n( JF\[)
2 42 2v/2
and so the family of metrics ¢g; from (3.5.1) admitting Cauchy spinors exists for t €
(% (%ln(l +v2) — 1) ,oo).
We now show the metric obtained on Z is indeed the Ricci-flat metric we were searching for.

Being able to extend a Cauchy spinor on {0} x S to a parallel spinor on Z is equivalent to
¥*+Z being flat because of the quaternionic structure. This is equivalent to

1

=

11
S ~0,1884,

*R%y = —RX.v, VX,Y € T2, (3.5.6)

where R? is the curvature tensor of Z, thus we just check this last fact. Equation (3.5.2)

already gives that (3.5.6) is true for any X,Y € T'M;, t € I. We will use the notation v := %.

By [6, Proposition 4.1], one has
9 (R, Y, Z) = g(d¥ Ay(Y, Z), X), Vt € I,VX,Y,Z € TM,.

This together with system (3.5.4) gives
Py o fa b a® +a®b
g~ (RZ, ,e2,e3) = 2a ( - b) = _4T

9*(RZ, Je1,e3) = a® (

@
a
a
9*(RE, 21, 22) = —a < -

3142
a > =2 —l;a
Moreover, by [6, Proposition 4.1], one has
9*(Rx,Y,v) = %(gt(x, Y) + g:(A(X),Y)), vt e I,VX,Y € TM,,
thus, another use of system (3.5.4) gives
GH(RE, yer,) = 3 (200 + 202 — 20) = ait = Akl ;“Bb
g*(RE, e2,v) = % (2b?3 + 20 — 252) = bh = 4%
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a® + ab
2

1/ o . ) .
g*(RZ, yes.) = 5 (be 22— 2b2) —bh=—2

and g% (Rfk)l,el, v) for all k # . We now define the oriented orthonormal base (21, 2, z3,v) :=
(e1/a,ea/b,e3/b,v). All together, one has

2
2 _a“+ab
Ry ==

+2x3 ® (21 Axo — x5 AV)),

(421 @ (1 Av — 22 ANa3) — 222 @ (21 A3 + 22 A V) (3.5.7)

and we easily check that property (3.5.6) is true. This means that Z carries a parallel spinor
so it is hyperkéahler, and then Ricci-flat.

3.5.2 Link with the family of Euclidean Taub-NUT metrics

Let us first extend the previous study to the case where the initial sphere has radius r > 0. It
is easy to see that this does not change the form of the endomorphism Ay defined in (3.4.4).
This modification results in the rescaling of the metric by a factor 2. Subsequently, if we
keep the same notations as in the case r = 1, the metric g% on Z is given by

2 25—1

2
2 2 res
- d
g TP |

i +1?s(2s — 1)(n3 + n3), s € (3,00).

With the change of variable u := rs we can express this metric by

2u—r r2u
Z 2
= du” +
g 4u Y 2u —

rnf+U(2u—T)(n§+n§), u € (%,00). (3.5.8)

This family of metrics is strikingly similar to the well-known family of Euclidean Taub-NUT
metrics on R* (see e.g. [63] and the references therein). In polar coordinates, the Euclidean
Taub-NUT metrics are given (up to a constant) by the expression

+5b 4h%s?
grN = s (ds2 + ( i

" S15 + 487 (13 + 7732,))

as+b)
where a and b are positive parameters and we recall that 71, 12,13 are the 1-forms dual to
the Hopf vector fields eq, e2, e3. Through a change of variable u = \/g s in the radial variable
s, we can always normalize the parameter a to be equal to 2:

2u+r 4r2u?

grN =

where r = \/%b. The metric from Equation (3.5.8) belongs formally to the extension for
negative values of the parameter r of the family of Taub-NUT metrics normalized with
a = 2. Note that the parameter r cannot vanish, else the metric degenerates. Alternately,
we recover (3.5.8) formally as the Taub-NUT metric (3.5.9) with » > 0, but on the interval
(—00, —%) x S3. The metrics in this family admit a nonzero parallel spinor. This implies that
they are hyperkéahler, hence Ricci-flat, and also (anti-) self-dual, according to the chirality of
the nonzero parallel spinor.

Miyake [56, Prop. 2.2 (2)] found the above family of metrics for non-zero r in his study of
self-dual metrics of Iwai-Katayama type.
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In the presentation (3.5.9) of the Taub-NUT metric, s = 0 is an apparent singularity, but in
fact the metric extends smoothly in the origin of R?. In contrast, the metric (3.5.8) has a true
singularity at s = % The horizontal directions e and e3 collapse, while the vertical direction
of e; explodes in finite time as s \, % As a result, the curvature operator is unbounded near
S =

Note that on (—%,0) x S?, (3.5.9) describes the original (Lorentzian) Taub-NUT metric.

N[

3.6 Classification results on S°

In this section we analyze the set of symmetric solutions of (3.1.2) in the case M = S3.
Recall that Cgs = (‘flsogf’ because the sphere is simply-connected. Since the known examples of
solutions can be expressed as constant matrices in a frame of left (or right-) invariant vector
fields, we will investigate some classes of endomorphisms related to these vector fields.

3.6.1 Endomorphisms constant in a left or right invariant orthonor-
mal frame

The four examples we recalled in Remark 3.4.1 can be interpreted as constant matrices either
in a left- or a right-invariant orthonormal frame. For this reason, it is legitimate to search
for all symmetric endomorphisms in Cgs that verify this property. We shall prove that there
exist no other examples besides the ones already known from Remark 3.4.1.

Proposition 3.6.1. Let A € Cgs. Assume that A is constant in a left (resp. right)-invariant
orthonormal frame. Then, either A = £1d or A has eigenvalues 1, —3, —3 (resp. —1, 3, 3).
In particular, A is one of the endomorphism fields described in Remark 3.4.1.

Proof. We recall that (ej, ez, e3) are the three left-invariant vector fields corresponding to
the quaternions i, §, k on S3.
Let A € Cgs (i.e., A is symmetric and satisfies Equation (3.4.3) on S?), and assume that A is
constant in a left-invariant orthonormal frame. Hence, A can be viewed as a real symmetric
3 x 3 matrix, in particular it is diagonalizable. From these considerations, up to an isometry
of the sphere we can assume without loss of generality that A = ae; ® e1 +bes @ 5 + ces R eg
for a,b,c € R.
Equation (3.4.3) applied to X,Y € {e1,e2,e3} together with (3.2.2) and (3.4.2) give the
system

a+b—2c=1—ab (a+1)(b+1)=2(c+1)

b+c—2a=1-bc &< (b+1)(c+1)=2(a+1)

c+a—2b=1-ca (a+1)(c+1)=2(b+1).
We easily see that a+1=0<b+1=0< c+1 =0, and in this case A = —Id. We assume
now that a + 1 # 0. The product of all the equations give

(a+1)(b+1)(c+1) =8,

and we conclude that (a+1)? = (b+1)? = (c+1)? = 4. Therefore a+1,b+1,c+1 € {-2,2}
and moreover an even number among them are negative, concluding the proof when A is
constant in a left-invariant frame.

The case of a right-invariant orthonormal frame is treated similarly and produces the addi-
tional solution —1, 3, 3. O
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3.6.2 Endomorphism fields with three distinct constant eigenvalues

The case of an endomorphism solution of (3.4.3) with at most two distinct eigenvalues was
already studied in [62], where it was shown that the only possibilities are the ones given in
Remark 3.4.1.

Proposition 3.6.2. There is no element of Cgas with three distinct constant eigenvalues.

Proof. Let A € Cgs with three constant eigenvalues A\; < Ag < A3. The associated unitary
eigenvectors are global vector fields on S3, which form an orthonormal frame, and are denoted
by X1, X2, X5. Equation (3.4.3) means that for every cyclic permutation (a, b, ¢) of the index
set (1,2,3) one has

MwVx, Xp — AaVx, Xo — A[Xo, Xp] = (1 — Ao o) Xe.
Projecting on X, we see that

)\bg(VXaXb»Xa) - )\ag(vX;,XaaXa) - )\ag([Xav Xb]a Xa) =0
<:>()\b — /\a)g(VXaXb,Xa) =0
<:>(/\b - /\a)g([Xava]vXa) = 0.

This last equation is true for any a,b € {1,2,3}, and this means [X,, X;] € Span(X_).

As a direct consequence of Koszul formula, Vx X, = 0 for a € {1,2,3}. We can compute
for any a
0(Xy) = —XpaVx, Xo =9(X,,Vx, Xi) = 0.

This shows that the vector fields X}, are geodesic and divergence free. By a result of Gluck
and Gu [34, Theorem A], every geodesic and divergence free vector field on S? is a Hopf
vector field (i.e. a unit vector field tangent to the fiber of a Hopf fibration). Moreover,
since they form an orthonormal basis at any point, they are all either left or right-invariant.
However we can give a simpler argument in our case:

Lemma 3.6.3. Let (X1, X2, X3) be a global orthonormal frame of geodesic vector fields on
S? (i.e. Vx, X =0). Then (X1, Xo, X3) is either a left- or a right-invariant frame.

Proof. Using Koszul’s formula, one sees that the assumption Vi, X, = 0 is actually equiv-
alent to the existence of three real functions oy, as, az on S? such that [X,, Xp] = a. X, for
any cyclic permutation (a, b, ¢) of the indices 1,2, 3.

We define the real-valued functions 28, = (—1)%*a; + (—=1)°2kaqy + (—1)%*a3. By the
Koszul formula,

vXa-Xb = BaXc; VXa-ch = 75aXba

Moreover, the curvature tensor on the sphere satisfies R(X,, X3)Xp = X,. Since the vector
fields X7, X2, X5 are geodesic, we also have

R(Xa, Xp)Xp = —Vx,Vx, Xy — Vix, x,1 X6
= _Xb(ﬁa)Xb - ﬁaﬁbXa + 2achXa
= *Xb(ﬂa)Xb + (*ﬂaﬂb + Baﬂc + BbBC)Xaa

so the projection of this equation on X, yields

_ﬁaﬁb + Baﬁc + ﬁbﬂc =1
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Since this is true for any value of (a, b, ¢) in {(1,2,3),(2,3,1),(3,1,2)}, one has 8,8, = 1 and
we conclude that 8 = +1 for any k € {1,2,3}.

Assume first that 8, = 1 for any k € {1,2,3}. We define for any X,Y € T'S?® the covariant
derivative o

VxY :=VxY —x(X AY),
which was already considered in (3.2.4). The vector fields X}, are parallel for V and so are
the left-invariant vector fields with value (X}). at e. Thus, these vector fields coincide.

In the case 8, = 82 = B3 = —1, the same proof shows that X, X5, X3 are right-invariant. [

Hence, A is constant in a left or right-orthonormal frame and according to Proposition (3.6.1)
it must have at most 2 different eigenvalues, which contradicts the hypothesis. O

3.6.3 Endomorphisms constant in the direction of a left-invariant
vector field

We will now weaken the condition from Section 3.6.1, and search for solutions A of (3.4.3) on
S3 that are constant in the direction of a left-invariant vector field &, i.e. LA = 0. Assuming
this invariance, all the objects can be expressed on the basis of the Hopf fibration with fibers
tangent to £&. We decompose A under the form:

A=fERE4+1vRE+HERUVEB (3.6.1)

where f is a function on S%, v € ¢- and B is the restriction of A to ¢+. The condition
LA =0 gives

0=LeA=(Ef)EDE+Lev@E+ER Lev + LB,
and we know that for all X € £+, £L:X € ¢ since € is a Killing field, so we deduce

As a direct consequence of equations (3.6.2) we can interpret f, v and B respectively as a
function, a vector and an endomorphism on the basis SZ(%) of the Hopf fibration.

We define the endomorphism J of &+ by JX := —Vx¢. This endomorphism is skew-
symmetric and satisfies J?> = —1; it is actually the lift of the standard almost complex
structure from Sz(%) through the Hopf fibration, so we will see it as an endomorphism of the
base.

The invariance equations (3.6.2) give

Vev =V, § = —Jv
(VeB)X = V¢(BX) — BV¢X = Vpxé+ €, BX] + BJX — B[¢, X]
=[B,J]X + L¢(BX) — BLeX = [B,J|X + (LeB)X = [B, J]X.

Now, we express Equation (3.4.3) in terms of f, v and B by considering horizontal and
vertical vectors for X and Y.

Let X,Y be two orthogonal vector fields in £&+. One has,
dVA(E, X) = (VeA)X — (Vx A)E
=—(Jv@f+E@Jv—[B,J))X — Vx(AE) — AJX
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=—g(Jv,X)§ —JJBX +BJX —Vx(f§+v)—gv, JX) — BJX
= JBX — Vx(ft +).

We now use the fact that for any X, g(JX, X) = 0 to infer that *{ AX = JX and x0o A X =
—g(v, JX)E, so Equation (3.4.3) implies

—JBX —Vx(f§+v) =+EANX) —*(f§ +v) A(g(X,v)§ + BX)

(3.6.3)
=JX — fJBX + g(v, JBX)¢ + g(X,v)Jv.
Projecting equation (3.6.3) on £, one has
thus
g(BJv+ Jv—df,X) =0.
Since this last equation is true for any X € ¢* we conclude
BJv =—Jv +df. (3.6.4)

We define the orthogonal projector P on £*+. We now project equation (3.6.3) on the orthog-
onal of £, and we obtain

—JBX + fJX — PVxv=JX — fJBX + g(X,v)Jv

thus
(f—=1)(JBX +JX)=PVxv+g(X,v)Jv.

Thus, we have the system

BJv = —Jv+df
(f—-1)(JBX 4+ JX)=PVxv+g(X,v)Jv

We now compute:

(VxA)Y =(X(f)(@E—FIX®E— fERTX +Vxv®E
+E@Vxv—JX@v—v®JX 4+ (VxB))Y
=—[9(JX,Y){+ g(Vxv,Y)E — g(J X, Y)v
—g(v,Y)JX + (VxB)Y.

We deduce that

dVAX,Y) == fg(JX,Y)E+ g(Vxv,Y)E— g(JX,Y)v — g(v,Y)JX + (VxB)Y
+ f9(JY, X)€ — g(Vyv, X) + g(JY, X)v + g(v, X)JY — (VyB) X
=2fg(X,JY)E 4 dv(X,Y)E 4+ 29(X, JY v
—g(v,Y)JX + g(v,X)JY +d¥B(X,Y).

Equation (3.4.3) leads to

2fg(X, JY)E 4 dv(X,Y)E 4+ 29(X, JY )v — g(v,Y)JX + g(v, X)JY +dVB(X,Y)
=* X NY —x(g9(X,v)§ + BX) A (g(Y,v)¢ + BY)
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=—[9(X,JY) = g(BX,JBY)J§ — g(X,v)JBY +g(Y,v)JBX
which leads to

[~9(X,JY) 4+ g(BX,JBY) — 2fg(X,JY) — dv(X,Y)|¢€ — 2g(X, JY v
=dVB(X,Y) + g(X,v)J(B+1)Y —g(Y,v)J(B + 1)X.

Since

9(dYB(X,Y),€) = g(Vx (BY) - Vy(BX) - BIX,Y].¢)
=9(Vx(BY),§) — g(Vy(BX),¢)
= —g(BX,JY) + g(BY, JX),
the projection on & gives
—g(X,JY)+¢g(BX,JBY) - 2fg(X,JY) —dv(X,Y) = —g(BX,JY) + g(BY, JX)
and
2(14+ flg(X,JY)+dv(X,Y)=9g((B+1)X,J(B+1)Y).
We remark that for any symmetric endomorphism S, one has SJS = det(S)J and the last
equation is rewritten
[2(1+ f) —det(B + 1)]g(X,JY) = —dv(X,Y).
Moreover, the projection on &+ provides the equation

—PdVB(X,Y) = g(X,v)J(B+1)Y — g(Y,v)J(B + 1)X + 29(X, JY ).

For the remainder of this section, we will denote by V the covariant derivative on S?(1) (the
basis of the Hopf fibration). We recall that if U,V are basic vector fields on S® we have the
equation

VoV =VyV + g(V, JU)E.

Now, we study the objects on S?(1). For any X,Y € TS%*(3), one has dv(X,Y) =
d*(Jv)g(JX,Y) and, using a unit vector field X at a point of S?(1) and the fact that .J
is parallel, one has

«dVB =dYB(X,JX) = (VxB)JX — (V,;xB)X
= (VxBJ)X + (V xBJ)JX = =6V (BJ).

Consequently, we obtain four equations on the sphere S2(%)

(B+1)Jv=df
(f=1)JB+1)=Vv+veJv
214 f) — det(B+ 1) = d* (Jv)

6V(BJ)=J(B+3)Jv.

(3.6.5)

The system (3.6.5) seems too difficult to solve in full generality for the time being, and is left
as an open problem.
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3.6.4 A particular case: v =0

We proceed by treating only the special case in the system (3.6.5) where £ is an eigenvector
of A,ie. v=01n (3.6.1). In this situation, the system reduces to

df =0
(f-=1D)JB+1)X=0
21+ f) —det(B+1)=0

§V(BJ) =0.

(3.6.6)

Proposition 3.6.4. Let A € Cgs be the symmetric endomorphism corresponding to a Cauchy
spinor on S3. Assume that there exists a left (resp. right)-invariant vector field & such that
LeA =0 and such that § is an eigenvector of A. Then A = £Id or A =€ ® & — 3P (resp.
A= (&4 3P), where P is the orthogonal projector on £*.

Proof. We start with the case where ¢ is left-invariant. We have seen that A must equal
fE®E+ B where the Killing vector field £ is an eigenvector of A, and f and B are {-invariant,
hence they are pull-back of objects from the base S*(3) of the Hopf fibration. Define the
open set O = {x € S?, B(x) # —Id} C S2. On O, the second equation gives f = 1, and the
third one gives det(B + 1) = 4. Since f is constant by the first equation, O is either empty
or equal to S2.

If O is empty, B = —Id on S2?, so f = —1 and the only solution of the system is A = —Id.

If O = S?, we have seen that f = 1 so we are left with the two equations det(B + 1) = 4 and
6v(BJ ) = 0. Equivalently, we search for a symmetric endomorphism field C' = % on the
unit sphere $2 with det C' = 1 and 6V(CJ) = 0. Notice that 6V (JCJ) = —J5V(CJ) = 0,
hence the symmetric endomorphism U := JCJ satisfies detU = 1 and VU = 0. The
following proposition contains the result we need:

Proposition 3.6.5. Let U be a symmetric endomorphism on S? which satisfies detU = 1
and VU = 0. Then U = £Id.

Proof. Let t := %trU7 and S := J(U — tId). Since U — tId is symmetric and traceless, so
is S. We will use several times below that traceless symmetric endomorphisms anticommute
with J. One has §VS = 6V(JU) — §V(Jtld) = Jdt. Since U? — 2tU + detU = 0 by
Cayley-Hamilton’s theorem, one has

S§% = (JS)? = (U —tld)? = U? — 2tU + t?1d = (+* — 1)Id. (3.6.7)

Thus, [t| > 1 because S? = $S* is non-negative. The function ¢ is continuous on S?, so
it cannot change sign. It follows that either ¢ > 1 on S% or t < —1 on S2. We shall show
below that in the first case U = Id. In the second case, —U also satisfies the hypotheses of
the proposition and moreover tr(—U) > 0, so by the first case we get —U = Id. It suffices
therefore to solve the first case, i.e., we can assume in the rest of the proof that ¢ > 1 on S2.

We want to show that the open set E := {x € S?;¢(x) > 1} is empty. One has S # 0 on E,
thus we can define T := ﬁ Since S is symmetric and traceless, so are T and JT', hence

(T, JT) is an orthonormal frame over F in the bundle of symmetric traceless endomorphisms
of TS?. Therefore, o
VI = a®JT (3.6.8)
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for some 1-form a € A'(E). By taking a further covariant derivative in this equation and
skew-symmetrizing one has for any X,Y € T'S?

dOé(X,Y)JT = nyyT

where R is the curvature of S2, which acts on any endomorphism field W' as RXyW =
[Rx,y, W]. Then, using the identity Rxy = —X AY on S?, we obtain da = —2vol, where
vol is the Riemannian volume form.

We identify a with a vector field of via the metric, and one has VT = —JTat by Equation
(3.6.8). Since T? = (JT)? = 3Id we obtain o = —2JT(6VT). The condition §VS = Jdt

gives 6VT = % + Tgrad In(]|S||) = ﬂ’—gﬁ + Tgrad In(||S||), hence

e _25ad®) _ g ams)).

15112
We now differentiate this equation to obtain
2J S (grad(t
d*Jot = —d* (W) + Aln(||S])

where A = d*d is the positive Laplacian on S2?. Using the fact that da = —2V, which is
equivalent to d*Ja! = —2, one has

o (2JS5(grad(t)) 0
2= i (PEE) + Amsi

We know from (3.6.7) that [|S|? = 2(t* — 1), so t = {/3|\S||>+1. This leads to dt =

[1S14dIS1)

24/3 11512 +1

, and finally

JSdn(]S]))
Vallsl?+1

We define ¢ := ||S||? and we rewrite the above equation as

2= —d + Aln(||S]).

JSdlIn ¢
VCFT

Let z € S? be a point where ¢, and thus ||S||, reaches its maximum. Clearly, + € E. Let
(e1,e2) be an orthonormal frame which is parallel at 2. At this point, one has

—1=—d*(

)+ Alnc.

. JSdIn( — ,SdIn( — ,SdIn(
d ( \/m ) = 7<Jv€1(\/<_|_71)761> - <Jv€2(\/m)762>
(Ve dIng, SJer) + (Ve,dIng, SJes)]
B V1
_ (Hess In¢,SJ)
RS

where the Hessian is defined for any function 3 by Hess 3 := Vdj3. Thus,

(Hess In¢, SJ)

= e

— (Hess In ¢, Id)
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= —(Hess In(,Id + M),

where M := —2L-. Since ( = £||S||? one has

VCFL
_ ]2
| M| = : 1<\/§.

Since the trace of M vanishes, |M| = v/2p(M), where p(M) is the spectral radius of M.
Thus one has p(M) < 1, so Id + M is positive definite. We now use the following elementary
result:

Lemma 3.6.6. Let N1, Ny € 8,,(R) be two symmetric matrices such that Ny is positive and
Ny is non-positive. Then, (N1Nox,z) <0 for all x € R™.

Proof of the lemma. By working in a eigenbasis (f1,..., fn) of N1, we can suppose that N;
is diagonal. Thus, for any j € {1,...,n} we have Ny f; =: A, f; and

(N1Nafj, fi) = (Nafj, Nifj) = Nj(Nafj, f;) <0. O

The matrix Hess In(||S]|) is non-positive because we are at a maximum point, and Id + M is
positive definite, so the previous lemma yields:

—1=—(Hess In¢,Id+ M) >0
which is absurd. Thus E = (), so ¢t = 1 on S?, and hence S = 0 by (3.6.7). Therefore, in the

case t > 0 we finally get U = Id.

The solution U = —Id is obtained in the case ¢t < 0, as explained in the beginning of the
proof. O

Recall that in the case B # —Id we defined U = C~! where C' = %. As a consequence of
Proposition 3.6.5, we get the additional solutions B = —3Id or B = Id. We obtain therefore
three solutions to equations (3.6.6), which lead to the endomorphism fields A = £Id and
A =¢®E— 3P, where we recall that P is the orthogonal projector on £+.

The previous analysis adapts as usual in the case where ¢ is right-invariant, yielding the
fourth solution A = - ® £ + 3P. O

3.6.5 Link with the sphere rigidity theorem

A classical result due to Liebmann [49] states that the only isometric immersions of the round
sphere S? in R3 are the totally umbilical embeddings (hence they differ from the standard
embedding by an isometry of R3). Let us recall a property of Codazzi tensors in dimension
2:

Lemma 3.6.7. Let ¥ be a surface endowed with a Riemannian metric h and S a field of
endomorphisms on ¥. Then S is a Codazzi tensor (i.e., d¥S = 0) if and only if JSJ is
divergence-free, where J is the Hodge star on 1-forms.

Proof. Let X be a locally-defined unit vector field on ¥. Using VJ = 0 we compute
—V(JSJT) =Vx(JSI)(X) + Vyx(JSI)(JX)
=JVx(S)(JX)+ JV;x(S)(JJX)
=Jdv (S)(X,JX). O
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Proposition 3.6.5 implies the following slight extension of the sphere rigidity theorem:

Proposition 3.6.8. Every isometric immersion of the round 2-sphere in a flat 3-manifold
is totally umbilical.

Indeed, the Gauss and Codazzi equations of the embedding 82 «— M with second fundamental
form S tell us that det(S) = 1 and dVS = 0. By the above lemma, this is equivalent to
det(JSJ) =1 and 6V (JSJ) = 0, so by Proposition 3.6.5 we deduce that JSJ = £Id, which
means that S itself is +Id.

We refer to [2] for a modern proof of Liebmann’s theorem using the curvature of the metric
defined by the second fundamental form S.

The interplay between solving the system (3.6.6) and a nontrivial classical result might ex-
plain why the more general system (3.6.5) is not so easy to solve.






Chapter 4

Locally conformally product
structures

On étudie dans ce chapitre les structures de Weyl fermées, non-exactes, non plates et a
holonomie réductibles sur les variétés compactes. On démontre I'existence de métriques pour
lesquelles la forme de Lee de la structure de Weyl est tangente a la distribution non-plate, et
on élargit le champ des examples des variétés admettant de telles structures en utilisant la
théorie des nombres.
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4.1 Introduction

On any Riemannian manifold, there exists a unique torsion-free metric connection, called
the Levi-Civita connection, which is the basic tool of Riemannian geometry. However, if
one consider the slightly more general context of conformal geometry, the uniqueness of
compatible connection does not hold anymore.

Conformal structures were introduced in 1919 by Weyl in the third edition of the book Raum,
Zeit, Materie [75], in an attempt to unify electromagnetism and gravity. He defined conformal
classes of Riemannian metrics, and considered the set of torsion-free compatible connections,
nowadays called Weyl structures. The fundamental theorem of conformal geometry states
that they form an affine space modelled on the space of one-forms.

In general, a Weyl structure does not preserve any metric in the conformal class, even locally.
Those which satisfy this property in a neighbourhood of each point are called closed, and
those which preserve a global metric are called exact Weyl structures. In this article we are
mostly interested in the closed, non-exact Weyl structures on compact conformal manifolds.

The study of closed Weyl structures on a conformal manifold M can be better understood in
terms of the universal cover M. Indeed, the lift of a closed Weyl structure D to M is exact,
meaning that it is the Levi-Civita connection of a Riemannian metric hp on M, uniquely
defined up to a constant factor. The fundamental group of M acts by hp-similarities on M,
all of them being isometries if and only if D is exact.

Every geometrical property of the closed Weyl connection D can be interpreted on the Rie-
mannian manifold (M, hp), and conversely. One natural question to study is the reducibility
of the holonomy group of D, or equivalently of the Riemannian metric hp.

A first step in this direction was done by Belgun and Moroianu in [9], where the authors,
motivated by a result of Gallot [32], conjectured that a closed non-exact Weyl structure on a
compact conformal manifold has reducible holonomy if and only if it is flat. They showed that
the conjecture holds under an additional assumption about the lifetime of half-geodesics on
the universal cover. However, soon after the formulation of the conjecture, a counter-example
was proposed by Matveev and Nikolayevsky [52] who constructed a cocompact action by a
group of similarities on the Riemannian product of an Euclidean space and an incomplete
irreducible Riemannian manifold. Additionally, the same authors proved that this is the only
possible type of counter-example in the analytic setting [53].

More recently, Kourganoff extended this result to the smooth setting [45, Theorem 1.5].
More precisely, he proved that if a closed, non-exact Weyl structure D on a compact confor-
mal manifold (M, ¢) is non-flat and has reducible holonomy, then the Riemannian manifold
(M ,hp) is isometric to the Riemannian product R? x (N, gxn) where R? (the flat part) is
an Euclidean space and (N, gn) (the non-flat part) is an irreducible, non-complete manifold.
In this case, (M, ¢, D) is called a locally conformally product structure, or LCP structure
for short. This article is devoted to the study of these particular structures on compact
manifolds.

There are up to now only few examples of LCP manifolds. As mentioned before, the first
one was given in [52], and generalized in [45, Example 1.6] (we outline the construction
in Example 4.2.8 below). This example is very restrictive because it only provides LCP
manifolds of dimension 3 or 4, with a flat part of dimension 1 or 2 [51]. Nevertheless, they
are the only examples when the non-flat part is of dimension 2 [45, Theorem 1.8].

The other class of example comes from the theory of locally conformally Kdihler (or LCK)
manifolds. A conformal complex manifold is LCK if for any point there exists a metric in
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the conformal class which is Kéhler in a neighbourhood of this point. This is equivalent
to the existence of a Kéhler metric on the universal cover, which belongs to the lift of the
conformal class. In [68], Oeljeklaus and Toma constructed a class of complex manifolds
called OT-manifolds, some of which admit LCP structures (we recall the construction in
Example 4.2.18 below). These LCP manifolds have flat parts of dimension 2, so they are still
restrictive examples.

One can define several invariants on LCP manifolds. On the one hand, the dimensions of the
flat and the non-flat parts, and on the other hand, the rank of the subgroup of R* generated

by the similarity ratios of w1 (M) acting on (]T], hp), which we call the rank of the LCP
manifold. As noticed before, in the known examples the possibilities for these numbers are
limited: the flat part is always of dimension 1 or 2, and it is not clear whether or not the
rank can be higher than 1. Our first goal in the present text is to extend the examples of
LCP manifolds, and to show, in particular, that the three invariants previously introduced
can be chosen arbitrarily large.

Let us now describe the organization of the paper. In Section 4.2, we recall the background of
Weyl structures and we define LCP manifolds. We also remind some basics about algebraic
number fields, which will be needed in the sequel. Indeed, it turns out that the study of LCP
manifolds is closely related to number theory, a fact that we can already notice from the
previous examples, which involve matrices in GL,,(Z) [45] and algebraic number fields [68].
The structure theorem for LCP manifold proved by Kourganoff [45, Theorem 1.9], is also
restated. This last article will actually be our main tool, so we will often refer to it in the
subsequent lines.

Section 4.3 is devoted to the proof of several properties of LCP manifolds. First, we prove
in Proposition 4.3.6 that there exists a metric in the conformal class ¢ on M with respect
to which the Lee form of the Weyl structure D vanishes on the flat distribution of D. This
property is equivalent to the existence of a smooth function defined on the non-flat factor
N, having the same equivariance as the metric hp on M with respect to the action of
m1(M). In turn, the existence of such functions allows us to construct, starting from a given
compact LCP manifold (M, ¢, D), infinitely many new examples, by taking the product of
M with the universal cover of a compact manifold, endowed with a warped product metric
admitting a free cocompact action by similarities. This leads to the concept of reducible
LCP manifolds. Moreover, in Proposition 4.3.12 we prove that the similarity ratios of 71 (M)
acting on (M ,hp) are always units in some algebraic number field.

In Section 4.4, we construct new examples of LCP manifolds. We give a general construc-
tion which contains all previous examples of LCP manifolds, and using some Galois theory
and Dirichlet’s unit theorem, we construct LCP manifolds with arbitrary rank in Propo-
sition 4.4.9. We also find LCP manifolds with flat and non-flat part of arbitrarily large
dimension.

4.2 Preliminaries

4.2.1 Locally conformally product manifolds

Let M be a smooth manifold of dimension n and denote by Fr(M) its frame bundle. For

every k € R we define the weight bundle £* := Fr(M) x det] & R, which is an oriented bundle.

A conformal class on M is a positive definite section of the fibre bundle Sym(T*M QT* M) ®
£2. The manifold M together with this section is called a conformal manifold. Equivalently,
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a conformal manifold is given by M and a class of metrics ¢ which are related in the following
manner: for any g, g’ € ¢, there is f : M — R such that ¢’ = e*fg.

On a conformal manifold, there is no preferential connection as in the Riemannian case with
the Levi-Civita connection, because the metric is defined up to multiplication by a positive
function. However, a new class of connections is relevant:

Definition 4.2.1. A Weyl structure on a conformal manifold (M, c) is a torsion-free con-
nection D on T'M which preserves c i.e. such that for any g € c, there is a 1-form 6, on M,
called the Lee form of D with respect to g, satisfying Dg = —20, ® g.

It comes from the definition that if 6, is the Lee form of D with respect to g € ¢, then for
any ¢ := e*fg € ¢, the Lee form of D with respect to ¢ is 0y — df. Then, the Lee form of
D with respect to g is closed (resp. exact) if and only if the Lee form of any metric in ¢ is
closed (resp. exact). For this reason, we introduce the following terminology:

Definition 4.2.2. A Weyl structure D on a conformal manifold (M, ¢) is closed (resp. exact)
if the Lee form of at least one metric (and then of all metrics) in c is closed (resp. exact).

An easy consequence of the definition is that a closed Weyl structure is locally the Levi-Civita
connection of a metric in ¢, and an exact Weyl structure is the Levi-Civita connection of a
metric in c.

We recall that a similarity between two Riemannian manifolds (M, g1) and (Ma,ge) is a
diffeomorphism s : M; — M, such that s*go = A\2g; for some positive real number A > 0
called the similarity ratio. In order to define the main object of this text, we need the
following definition:

Definition 4.2.3. A similarity structure on a compact manifold M is a metric h on its
universal cover M such that m (M) acts by similarities on (M, h). A similarity structure is
said to be Riemannian if in addition m (M) acts only by isometries.

It turns out that this notion is closely related to closed Weyl structures. More precisely, we
have the following result:

Proposition 4.2.4. On a conformal manifold (M,c) there is a one-to-one correspondence
between closed Weyl structures and similarity structures h in the lifted conformal structure
¢ on the universal cover, defined up to multiplication by a positive real number. This corre-
spondence takes exact Weyl structures to Riemannian similarity structures.

Proof. Let D be a closed Weyl structure on (M, c¢). Let M be the universal cover of M and
¢ the induced conformal structure on M. The connection D induces a Weyl structure D on
M which is exact since M is simply connected. Thus, there is a metric hp € ¢, unique up
to multiplication by a positive number, such that VhD = D, where V/» is the Levi-Civita
connection of hp. If g € c is a metric on M, the induced metric g on M can be written
g=¢e2hp for some real-valued function f of M and a simple calculation shows that the
Lee form of D with respect to ¢ is df, which means that the pull back 0 of the Lee form 0,
is equal to df. Now, let v € m(M). One has df = 9 =7 9 = ~*df, thus there is A > 0
such that v*f = f+1In X and v*hp = AN2hp. We conclude that the elements of 71 (M) act on
(]Téf ,hp) as similarities. Moreover, if these similarities are all isometries, the Weyl structure
D is exact.

Conversely, assume one has a compact manifold M and a metric i on its universal cover M
such that 71 (M) acts by similarities on (M, h). Then, the metric h does not define a metric
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on M, but it induces a conformal class ¢, and the Levi-Civita connection V" descends to
a closed Weyl structure on (M, c). If the elements of 71 (M) are all isometries, this Weyl
structure is exact. O

As we mentioned in the introduction, it was conjectured by Belgun an Moroianu [9] that
given a conformal manifold together with a closed, non-exact Weyl structure, the induced
connection on the universal cover must be flat or irreducible. A counter-example to this
conjecture was found by Matveev and Nikolayevsky [52], who showed that in the non-flat,
analytic case, the universal cover is a Riemannian product R? x N where ¢ > 0 and N
is a non-complete, irreducible manifold of dimension at least 2. This result was extended
by Kourganoff to the smooth setting. More precisely, he proved the following theorem [45,
Theorem 1.5]:

Theorem 4.2.5. Consider a compact manifold M endowed with a non-Riemannian simi-
larity structure, and its universal cover M is equipped with the corresponding Riemannian
metric hp (D being the closed non-exact Weyl structure associated via Proposition 4.2.4).
Then we are in exactly one of the following situations:

1. (M, hp) is flat.
2. (]\7, hp) has irreducible holonomy and dim(M) > 2.

3. (M, hp) = R? x (N,gn), where ¢ > 1, R? is the Fuclidean space, and (N,gn) is a
non-flat, non-complete Riemannian manifold which has irreducible holonomy.

In the third case of Theorem 4.2.5, we say that M is a locally conformally product manifold, or
LCP manifold for short. Then, a LCP manifold (M, ¢, D) is the data of a compact manifold,
a conformal class, and a closed, non-exact Weyl structure, with reducible, non-flat holonomy.

Remark 4.2.6. We recall that the Cauchy border of a Riemannian manifold Z is 02 :=

CZ\Z, where CZ is the metric completion of Z. The classification of flat similarity structures
was done in [27]. From this result, it comes that in the first case of Theorem 4.2.5, the Cauchy

border of M must be a single point. But this cannot happen in the case of an LCP manifold,
because the flat part is a Riemannian factor of M and the non-flat part is incomplete, so OM
must have infinite cardinal. A direct consequence of this observation is that on a compact
conformal manifold (M, ¢), a closed, non-exact Weyl structure D defines an LCP structure if
and only if (]/\\4/ ,hp) (where M is the universal cover of M , and hp is the similarity structure
induced by D) has reducible holonomy and infinite Cauchy border, or equivalently if (M ,hp)
has a flat Riemannian factor R.

We will often write the universal cover of an LCP manifold (M, ¢, D) as (M, hp) = RY x
(N, gn). In this case, R? will always stand for the flat part of the de Rham decomposition of

M, (N,gn) is the non-flat, incomplete, irreducible part, and hp is the similarity structure
induced by D, defined up to a constant factor.

We define the following invariant on LCP manifolds:
Definition 4.2.7. The rank of an LCP manifold (M, c, D) is the rank of the subgroup of R

generated by the ratios of the elements of w1 (M) viewed as similarities acting on (M, hp).

Equivalently, the rank of an LCP manifold (M, ¢, D) is the minimal rank of a subgroup of
H'(M,7Z) whose span in H'(M,R) contains the cohomology class [f] of the Lee form of D.
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To prove this last fact, we recall that there is a canonical isomorphism
=: H'(M,R) — Hom(m (M), R), [w] ([7] > /w) (4.2.1)
¥

This map induces an isomorphism from H'(M,Z) to Hom(my(M),Z). In addition, an easy
computation shows that Z([f]) is exactly the composition of the logarithm and the morphism
associating to an element of 7 (M) its similarity ratio, so the rank of the image of Z([6]) is
the rank of the LCP manifold, denoted by r. Since Z is an isomorphism, it is sufficient to
prove that the rank s of the smallest subgroup of Hom(71 (M), Z) whose span contains Z(8) is
r. Since the image of Z(8) is of rank r, there exist » morphisms py, ..., p, € Hom(71 (M), R),
whose images are of rank 1, such that Z(0) = >, _, px. For all 1 < k < r, there is ax € R
such that py = agp), where pj, € Hom(m;(M),Z). Consequently, Z(0) = >, _, axp}, thus
s < r. In addition, » < s because if () = Y_;_, pr with the p;’s being morphisms with
images of rank 1, then the rank of the image of Z(6) is smaller than s.

A first example of LCP manifold was given by Matveev and Nikolayevsky [52] and generalized
by Kourganoff [45, Example 1.6]. We outline it here:

Example 4.2.8. Let M := RI+1 x R*% with ¢ > 1. Let b be a symmetric positive definite
bilinear form on R?*! and A € SL,1(Z) such that there exist A € (0,1) and a decomposition
R+ = Ev | B (where the orthogonal symbol refers to the metric induced by b) stable by
A with A|gs = AO where O € O(E®,b|g=), and E" is one-dimensional.

Let G be the group of transformation of M generated by the translations Rt x R% >
(z,t) = (z + ex,t), k € {1,...,q+ 1} where ey, is the k-th vector of the canonical basis of
R, and the transformation RIT! x R% > (z,¢) — (Az, At).

Let ¢ : R% — R% be a function satisfying p(At) = A272(t). We define a metric h on M by

het :=b|gs + @(t)b|gu + dt?

for any (z,t) € M. Then, the metric h defines a similarity structure on the manifold M /G.

However, as it was pointed out in [51, Proposition 1], the only admissible values of ¢ in
Example 4.2.8 are ¢ = 1, 2, so this construction only provides examples of LCP manifolds of
dimension 3 or 4.

In the remaining part of this section, (M, ¢, D) is an LCP manifold, and (M, hp) = RY x
(N, gn) is its universal cover.

Let v € m(M). Since v acts as a similarity on (1\7, hp), it must preserve the de Rham
decomposition, meaning that there is a similarity vg (for Euclidean) of R? and a similarity
vy of N such that v = (vg,vn)-

Thus, we introduce the following definitions:

Definition 4.2.9. We define P = {p € Sim(N),3y € m1(M),yn = p}, the restriction of

71 (M) to the non-flat part N. We also introduce P, P° which are respectively the closure of
P in Sim(N), and the identity connected component of this closure.

The groups considered in Definition 4.2.9 were introduced by Kourganoff in [45], and their
analysis provides several useful results on LCP manifolds. We will keep these notations

throughout this text. From [45, Lemma 4.1] we know that P is abelian and by [45, Lemma
4.13] that P acts on N by isometries.

There is actually a correspondence between P and (M ):
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Lemma 4.2.10. The group P is isomorphic to m (M).

Proof. The second projection 71 (M) — P,y +— vy is a group morphism. We will show that
it is an isomorphism. Assume there is v € m (M) \ id such that vy = id. Let v € 7 (M)
whose similarity ratio is A € (0,1). By the Banach fixed point theorem, vg has a fixed point,
and we can assume without loss of generality that it is 0. Then, we can find R,, Ry € O4(R)
and t, € R? such that vg(a) = R,a and yg(a) = Rya + t, for any a € R9. Since 7y cannot
have a fixed point, because 71 (M) acts freely on M, one has t, # 0.

One has, for any £ € N and (a,z) € R? x N:
v yv(a,x) = (RFR, R *a + RFt,, 2). (4.2.2)

Since v*yv=*(0,x) = (Rt ) s 0, the orbit of (0, ) by 7 (M) admits an accumulation
—+00

point, which contradicts the fact that m (M) acts properly on M. O

4.2.2 Number theory

We will need a few notions coming from number theory in order to give examples of locally
conformally product manifolds having arbitrary high rank.

First, we recall that an algebraic number field K, or number field for short, is an extension
of Q of finite dimension. The degree [K : Q] of such an extension is its dimension as Q-
vector space. If «v is an algebraic number, we will denote by Q[a] the smallest extension of Q
containing «. In this case, the degree of « is the degree of its (monic) minimal polynomial.
The conjugates of an algebraic number « are the roots of its minimal polynomial.

Definition 4.2.11. An algebraic number field is called totally real if all its embeddings in C
lie in R.

Equivalently, a number field K := Q[q] is totally real if and only if the minimal polynomial
of a has only real roots, i.e. all the conjugates of « are real.

We recall that an extension K/L is a Galois extension if it is normal, meaning that all the
conjugates of an element o € K lie in K, and separable, i.e. the minimal polynomial of any
a € K has simple roots in an algebraic closure of K. In this case, the Galois group of K/L is
the set of automorphisms of K which fixes L. When L = Q, all the algebraic extensions are
separable, so for an extension Q[a], to be a Galois extension means that all the conjugates
of a lie in Q[a]. These considerations lead us to introduce the following definition:

Definition 4.2.12. An extension K/L is called cyclic if it is a Galois extension and its
Galois group is cyclic.

One object of interest for our analysis will be the ring of integer of an extension K, and more
specifically its group of units.

Definition 4.2.13. An element 8 of an algebraic number field K is an algebraic integer if
its monic minimal polynomial is in Z[X].

One basic result is that the set Og of the algebraic integers in K is indeed a ring.

Definition 4.2.14. The group O of invertible algebraic integers in K is called the group
of units of K and its elements are called units.
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Remark 4.2.15. A useful characterization of units is the following: an algebraic integer of
K is a unit if and only if the constant coefficient of its minimal polynomial in Z[X] is equal
to 1.

A fundamental result on the structure of the group of unit is the Dirichlet’s units theorem
(for a proof, see [55, Theorem 5.1]):

Theorem 4.2.16 (Dirichlet’s units theorem). The group of units in a number field K is
finitely generated with rank equal to s +t — 1, where s is the number of real embeddings of
K, and 2t is the number of nonreal complex embeddings of K (so s+ 2t = [K : Q]).

In particular, O% ~ T @ Z**~1 where T is the subgroup of torsion elements in O . When
K is totally real, there is no torsion element different from +1, and then O ~ {1} @ Z*~ .

The last notion that we need concerns the bases of an algebraic number field K. More
precisely, we are interested in the case where K admits a basis which is adapted to the ring
of integers.

Definition 4.2.17. An algebraic number field K is called monogenic if there exists a power
integral basis in K, i.e. there is an element o € K such that O = Z[al].

We also recall that the n-th cyclotomic extension is the extension of Q generated by a
primitive n-th root of unity. The degree of this extension is the value of the Euler’s totient
function at n.

We now have the tools to construct the so-called OT-manifolds, which where introduced by
Oeljeklaus and Toma in [68]. Before giving the construction, we emphasize that throughout
this article, a lattice in an Abelian Lie group G will be a discrete subgroup H of G. If the
quotient G/H is compact, then H will be called a full lattice.

Example 4.2.18 (OT-manifolds). Let K by a number field with s real embeddings o1, ..., 05
and 2t complex embeddings osy1,...,0s42; such that os4; and osy44; are conjugated for
any 1 < ¢ <t (such a field always exists, see [68, Remark 1.1]). We define the geometric
representation of K

o: K = C" am (01(a),...,0614(a)).

The image of the ring of integers Ok of K by o is a lattice of rank s+ 2t in C***. Moreover,
we consider

0t :={ac 0%, 0i(a) >0,1<i<s},
and we define an action of this set on C*** by az := (01(a)z1,...,0s+¢(a)zs4¢) for any
a € OIX(’+. Let U be a subgroup of O}((’Jr such that the image of U by the composition pgs ol
of the logarithmic representation

. @%t s+t
00T = RS

U(u) == (In|or(w)],...,In|og(w)],2In|osp1 (u)], ..., 210 |oge(u)]) (4.2.3)

and the projection pgs : RSt? — R® on the first s coordinates is a full lattice.

Let H := {z € C,Im(z) > 0}. Combining the additive action of O and the multiplicative
action of U, the group U x Ok acts freely, cocompactly and properly on H® x C!. Thus, the
quotient X (K,U) := (H® x C")/(U x O) is a compact manifold.

When ¢t = 1, the manifold X (K,U) admits an LCK structure, which is determined by a
Kahler potential

{
Fi) =[] =5 + el
k=1



CHAPTER 4. LOCALLY CONFORMALLY PRODUCT STRUCTURES 133

on its universal cover [68]. This induces in turn a similarity structure on X(K,U). If
this structure was Riemannian, the Kihler metric i90F would descend to X (K,U). This
is impossible because an OT-manifold admits no Kéhler metric [68, Proposition 2.5]. In
addition, from the form of the Kihler potential, the second factor Ct(= C) of the universal
cover of X (K,U) is a Riemannian factor. Thus, by Remark 4.2.6, X (K,U) admits an LCP
structure when ¢ = 1.

Remark 4.2.19. In Example 4.2.18, when s = ¢t = 1, the Kéahler potential of the lift of the
LCK metric to the universal cover is [68]

F:HxC—=R, F(z):= — + |22 (4.2.4)
Z1 — 21
Writing the Kéhler form as Y wydzi A dZ;, one has:
k#l
= i 1/ 0 0 0 0 1 11
:8z62 2) =2 — —i— —_— | — | — = ——
“i ! ! (zl—Zl +|22| ) 4 (8.’E1 Zay1> (8.’E1 +Zay1) 2y1 4y:1)’
Woo = 1 w12 = 0.
Then, the metric can be rewritten as g := ﬁ(dx% +dy?) + (dz3 4+ dy2). We make the change
of variable vy 1= x1/2, wy := \/% and the metric becomes
g = (widvi + dwi) + (do3 + dy3). (4.2.5)

Moreover, the group U is generated by a single unit v € O[X{F which satisfies o1(u) =
|oa(u)|~2. After the change of variable, the multiplicative action of u is given, for any
(v1, w1, 2 +iy2) € R x RY x C, by

u- (v, wy, e + iys) = (O'l(u)’l}l,Ul(u)7%w1702(u)($2 + iy2))

= (o1(u)v1, |oa(u)|wr, o2 (u)(z2 + iy2)).

If we look at the restriction of this action to R x C by dropping the variable wy, we remark
that the matrix of the transformation in a basis of the lattice 0(Ox) belongs to SL3(Z) (see
the proof of Corollary 4.4.6 below for more details). Then, we recognize the example 4.2.8
in the case ¢ = 2.

4.2.3 Foliations and LCP manifolds

A foliation of dimension p of an n-dimensional manifold M is a maximal atlas (U;, ¢;);cr on
M such that for each 4, j € I the transition map ®; ; := ¢;0¢; ' : ¢;(U;NU;) — ¢;(U; NU;)
satisfies

0P

Ti’jzo forallp+1<i<n,and 1 <k<p (4.2.6)
Ty

where xj is the k-th coordinate of R™.

A foliation induces a p-dimensional distribution on M, taking at each point x € U; the
subspace of T, M given by d¢; ' (¢i(z))(RP x {0}). From this, one can define the leaves of
the foliation as follows: if z € M, the leaf passing through z is the set of all the points that
can be reached from z by continuous, piecewise differentiable paths whose tangent vector at
each smooth point is in the distribution previously defined. For more details, see [57].
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When the manifold M is compact, one can extract a finite covering (U;);cs, J C I such that
for any ¢ € J the open set U; is diffeomorphic to a product V; x T; where V; and T; are open
cubes of RP and R™? respectively. This induces maps f; : U; — T; in a natural way, and we
define the transition maps v;; : f;(U; NU;) — f;(U;NU;) by fj = v 0 fi- The disjoint union
T := || T; is called the transversal of the foliation. The foliation is said to be Riemannian
icJ

if there exists a metric on the transversal such that the transition maps are isometries.

In [45, Theorem 1.9], it was shown that an LCP manifold carries a Riemannian foliation.
More precisely, one has the following theorem:

Theorem 4.2.20. Let (M, ¢, D) be a LCP manifold, and let (M, hp) =R? x (N,gn) be its
universal cover endowed with the metric hp induced by D. Here, (N, gn) is the non-flat,

irreducible factor of the de Rham decomposition. The foliation F tangent to R? induces by
projection a foliation F on M. Then F is a Riemannian foliation on M, and the closures of
the leaves form a singular Riemannian foliation F on M, such that each leaf of T is a smooth
manifold of dimension d, depending of the leaf, with ¢ < d < g+ n, where n = dim(N).

Moreover, on each leaf of F, there is a flat Riemannian metric which is compatible with the
similarity structure of M.

Definition 4.2.21. In Theorem 4.2.20, we call the distribution tangent to the leaves of F
the flat distribution on M, and the orthogonal distribution is called the non-flat distribution.

Again, we recall several results and observations from [45]. In the setting of Theorem 4.2.20,
we can describe the leaves of F using the canonical surjection 7 : M — M , and the group
P previously defined. The leaf of F passing through 7(a,z) for (a,x) € R? x N is equal to
7(R? x Px), and its closure is F, := m(R? x ?Ox) [45, Lemma 4.11]. By Theorem 4.2.20,
the metric hp restricted to RY x P x descends to a metric g, on F,. Thus, the metric hp
induces a Riemannian metric, up to a multiplicative factor, on the closure of the leaves of F.
Since P is abelian and acts by isometries, for any x € N, the closed leaf F, is the product
of an Euclidean space and a flat torus. In particular, it is a complete space, which implies
that an element of 7y (M) with ratio # 1 acts freely on N, /FO.

We consider the subgroup of m1 (M) defined by Ty := 71 (M) N (Sim(RY) x ﬁo). From [45,
Lemma 4.18], we know that this group is a full lattice in R? x P° where R is identified with
its translations. In Example 4.2.8 for instance, I'g is the group of translations Z9t! acting

on R?t!. This observation explains why we will always consider such lattices in order to
construct examples.

4.3 Properties of LCP manifolds

Let (M,¢,D) be an LCP manifold and (]\A/[/, hp) = R? x (N, gn) be its universal cover,

endowed with the similarity structure hp induced by D. We denote by 7 : M — M the
canonical surjection.

4.3.1 Adapted metrics

In this subsection, we prove that there exists a metric g € c such that the Lee form 6, of
D with respect to g vanishes on the flat distribution (Definition 4.2.21) of D on M. This
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is equivalent to the existence of a function of N having the same equivariance (the term
same automorphy is also often used in the litterature) as hp with respect to w1 (M). For this
reason, we introduce the following definition:

Definition 4.3.1. Let G be a group acting on a Riemannian manifold (Z,gz) by similarities.
A smooth function f : Z — R is said to be G-equivariant if for every v € G, one has y*e*f =
)\362f where A\ is the similarity ratio of y. Equivalently, a function f is G-equivariant if G
consists of isometries of e %f gz

We now give an important property of the equivariant functions on the universal cover
R? x N of LCP manifolds: they are bounded on sets of the form R? x K where K is a
compact subset of N. In order to prove this result, we recall that the Cauchy boundary 9%
of a Riemannian manifold Z is the set CZ \ Z where CZ is the metric completion of Z. The
Riemannian distance d* on Z, is extended to CZ in the following natural way: if (x,), (¥»)
are representatives of elements z,y € CZ (which consists of equivalence classes of Cauchy
sequences in 2), (d*(Zn,Yn))nen is a Cauchy sequence, and d*(z,y) is defined as the limit
of this sequence. We first state the following easy lemma:

Lemma 4.3.2. Let A be a subset of a Riemannian manifold Z. Assume that 0Z is non-

empty. We define a := ingdz(m,ﬁz) and 3 := sup d*(x,0Z). Then, if v is a similarity of
z€ z€A
Z of ratio A € R, it extends uniquely to CZ as a uniformly continuous function on a dense

subset of CZ and one has the property
V€ A, d*(yx,02) € [Aa, \G].

Proof. Let x € A and v a similarity of Z of ratio A € R%.. One has, o < d*(z,02) < B. Tt
is easy to see from the definition that (0Z) = 0Z, thus Aa < d*(yx,92) < A\B. O

Corollary 4.3.3. In the setting of Lemma 4.5.2, for any compact subsets K1, Ko C Z, the
similarity ratios of the elements of T = {y € Sim(Z), (yK1) N Ky # 0} are included in a
compact subset of R .

Proof. Let p : Sim(Z) — R be the group morphism which associates to an element of
Sim(Z) its similarity ratio. We also introduce

oy = inf d*(z,02)  Bi:= sup d*(z,d2)
reEK, rzeK;

and

oo = inf d*(z,02) By := sup d*(z,dZ).
€K, zEK>

Let v € I'. By definition, there exists z € K7 such that vz € K3 so in particular we have
g < d*(yz,02) < fs.
Moreover by Lemma 4.3.2 one has
p(7)ar < d*(yz,02) < p(v)p1,
which implies
p(y)ar < Bz az < p(y)Br,

so we conclude
az/P1 < p(y) < B2/
Thus, p(T) is included in the compact set [aa/B1, f2/01]. O
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We have now all the tools to prove the boundedness property for equivariant functions:

Lemma 4.3.4. Let f : M — R be a smooth w1 (M)-equivariant function. Then, for any
compact subset K of N, f is bounded on R? x K.

Proof. Let K C N be a compact set. Since m1(M) acts cocompactly on M, there is a

compact set C' C M such that m (M)C = M. Moreover C' can be assumed to be equal to
Cg x Cn where Cg is a compact of R? and C'y is a compact of N. Let

[i={yem(M),(vC)N (R x K) # 0} = {y € m(M), (\wCn) N K # 0}.

Let p : m (M) — R% be the group morphism which associates to an element of 7 (M) its
similarity ratio. By Corollary 4.3.3, p(T) is included in a compact set [«, 5], with «, 5 > 0.
We know that f is bounded on C, meaning there are o', 3 € R such that o/ < f < 3 on
C. In addition, for any x € R? x K, there is v € I" and y € C such that vy = x. Thus,
the equivariance property of €2/ yields o/ + Ina < f(z) < '+ In 3, which gives the desired
result. O

For z € N, let S, := {y € m(M)|yn -z € fox} (PO was defined in Definition 4.2.9). We
recall that in Section 4.2.3 we defined the closed leaf ¥, C M, and showed that the metric
hp descends to a metric g, on it. We give here a short proof of a result partially stated in
the proof of [45, Lemma 4.18].

Lemma 4.3.5. Letx € N. Then, F, is isomorphic to (R4 XPOJ;)/SQJ and Sy acts on (]Tj, hp)
by isometries. Moreover, if v € m (M) with similarity ratio A > 0, there is a similarity

Y (Fzy9z) = (Fyzy gva) of ratio X for which the following diagram is commutative:

RY x Pz —1 RY x PO’yNz

Jﬁ iﬂ (4.3.1)

> . _
Fo — Ty

Proof. The proof of [45, Proposition 4.16] shows that the elements of 71 (M) with ratio
different from 1 act freely on N, /FO. Since the set S, stabilizes Pz N /ﬁo, it contains
only isometries.

Let (a,y) and (a/,y’) in R? x Pz. Assume there is v € S, such that v(a,y) = (d/,y’). By
definition, w(a,x) = w(a’,y’), thus, the application 7 induces a surjective map ¢ : (R? x
?()J?)/Sw — F,. We will show that ¢ is injective. Assume ¢(S,(a,y)) = ¢(Sz(a’,y')). Thus,
one has 7(a,y) = 7(d’,y’), meaning there is v € m (M) such that v(a,y) = (¢’,y’), implying
yny = y'. By definition, there are p,p’ € P such that y=p-z and ¢y =p -z, so we obtain
yNp-x = p - x, whence WNp%QlWN S Pz Using that P is normal in P, because it is the
connected component of the identity, one gets vy - = € ’pr_leQlﬁox — P’2. We conclude
that v € S, and S, (a,y) = S (a’,y), providing that ¢ is injective.

Now, let v € 71 (M) with similarity ratio \. One has

~F(RY x ﬁox) =R x ’yNﬁox =R x ’nyO’yg,lfYNz =R x PO’yNz,

justifying the first line of the diagram. On the other hand, if (a,y), (a/,y’) are elements of
RY x Pz such that there is ~' € S, with v'(a,y) = (a’,y’), one has

moy(a,y) =7(a,y) =7(v(a,y)) =7(d’,y").
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Thus, 7o~y induces a surjective map from (R? x Pom)/S’I to (R? x FO'me)/SWNw. To prove
that v descends to an isomorphism 7, it is then sufficient to prove that this map is injective,
or equivalently that S;(a,y) = Sz(a’,y’) implies Sy, 27(a,y) = Syyzy(a',y"). It is sufficient
to show that y~1S,,v = S, which follows from

Y ey =YY € Sy}
_ —0
={v""v, 78~ - x € P yna}

_ — -0
={v""7 98" NN - w € Pad
C Sz,

using again that P is a normal subgroup of P. The same proof shows that vS;7™1 C Sy,
so we conclude that S, = v~1S,, .7, which shows the existence of 7.

We easily see that 7 is a similarity of ratio A using the commutative diagram and the fact
that hp descends to the closure of the leaves. O

Proposition 4.3.6. Let (M, ¢, D) be an LCP manifold and (M, hp) =R x (N, gn) be its
universal cover, endowed with the similarity structure hp induced by D. Then, there exists a
smooth P-equivariant function ¢ : N = R (P was defined in Definition 4.2.9). In particular,
if we denote by wy : M — N the second projection, iy is a w1 (M)-equivariant function on
M depends only on the non-flat factor N.

Proof. We first prove that there always exists a 71 (M )-equivariant function on M. Let g be
any Riemannian metric on M in the conformal class c¢. The pull-back g of g to M satisfies
e?fg = hp for a function f: M — R, which is clearly 7 (M)-equivariant.

By Lemma 4.3.5, F, ~ (R? x ﬁox)/Sx and S, acts by isometries, so the function f|, w0,

descends to a function f, on F,. The manifold F, being compact, we can define

—1 B
e2w@) .= (/ duw> (/ le’d,uz> , (4.3.2)
Fe T

where dy, is the measure induced by the metric g,. Doing this for any x € N gives a
function w : N — R. We claim that this function is bounded on any compact subset of
N. Indeed, if K C N is compact, by Lemma 4.3.4 there is a constant Sx > 0 such that

fla,z) < Bk for any (a,z) € R? x K. Since P’ acts by isometries, f(a,z) < Bk for any
(a,r) € R x (PN PO)K, and by density this still holds for (a,z) € R? x P'K. Thus, for any
x € K one has f, < Sk and consequently w(z) < fk.

We now check that the function w still has the desired equivariance. Let p € P, and let
A > 0 be its similarity ratio with respect to the metric g;. By Lemma 4.2.10, there is a
unique v € 71 (M) such that p = yn. Denoting y := p - 2, Lemma 4.3.5 allows us to define
5 : F, — F,, which is a similarity of ratio A. Thus, one has

e2e) — (/g duy>1 (/ﬁr ezfyduy>
([ v*(dm)_l (f 7T )
S ([ o) ([ )
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However, the function w is not necessarily smooth. We will use a convolution process to
obtain the desired smooth equivariant function. Since the foliation F is Riemannian, one can
define a complete Riemannian metric gy on N with respect to which P acts by isometries
(see [45, Lemma 4.9] for further details).

As P acts cocompactly by isometries on (N, gy ), the injectivity radius rq of (IV, gn ) is positive
i.e. for any x € N the Riemannian exponential exp, defined by gy is a diffeomorphism on
By (rg), the open ball of radius r¢ and center 0 in T, N. Let 0 < 3r < rg and let x : Ry — Ry
be a smooth plateau function in a neighbourhood of 0, compactly supported in [0,7]. For
every € N, let dV, be the measure induced on T, N by the metric gn. Consider the function
¢ : N — R given by

(29(@) . /T e oexp, (0x(o])aV (4.3.3)

which is well-defined because the function e?* is bounded on any compact subset of N.

We claim that the function ¢ is smooth. To prove this fact, we first remark that for any
z, if one denotes by By(y,a) := exp,(B,(a)) the ball of radius 0 < a < 7 and center
y in (N,gn), for any y € By(z,r) the Riemannian exponential is a diffecomorphism from
B, (2r) to Bn(y,2r) because r < r¢/3. In particular, By (z,2r) does not meet the cut-locus
of y, and the square of the distance function d9~ induced by gy is smooth on By (x,2r).
Consequently, we can apply a differentiation under integral argument if we remark that for
y = exp,(vo) € By (z,7) (with vy € T, N), one has

o — [ v o e, wp(elhay,
T,N
= / e?¥ oexp, oexp, ! o expy(v)x(d?m (exp, oexp, o exp, (v),0))dV,
T,N
= [ o exp (0@ (exp, (o), expy (o)) exp,  oexp,) (V)
T.N

N / e 0 exp, (v) x(d7 (exp, (v), y))vol(y, v)dV,
TN

where vol is a smooth function giving the change of volume element.

It remains to check the equivariance property. Let p € P, and let A > 0 be its similarity ratio
for the metric hp. One has, denoting y := p - x, and using the fact that p is an isometry of

(N, EN)

e20(y) — / e o exp,, (v)x([[v])dV,
T,N

y

- / (1"¢2) o exp, (0)x([[0])p(AV,)
TN

=[x oem,@(lav,
TN
= \2e2%.
Then, ¢ is a P-equivariant function. O

Remark 4.3.7. It is easy to show that the P-equivariant function ¢ given by Proposi-
tion 4.3.6 is in fact P-equivariant. Indeed, for any p € P OFO one has p*p = ¢ since P’ acts
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by isometries. As P NP is dense in ﬁo, we actually have ¢ = p*p for all p € P°. Our claim
thus follows from [45, Lemma 4.10], which states that P = PP’

We define a particular class of metric on M:

Definition 4.3.8. A metric g on M with lift g on M is said to be adapted if there exists a
smooth function f: N — R such that e27g = hp.

With this definition, Proposition 4.3.6 just states that there exist adapted metric.

As a direct application of Proposition 4.3.6, we show that given a compact manifold K with
universal cover K, it is possible to construct an LCP manifold with universal cover M x K.
Indeed, let ¢ : N — R be the smooth equivariant function given by Proposition 4.3.6. Let
gr be a metric on K and gg its pull-back to K. The metric

hark = hp + €¥gk (4.3.4)

on M x K defines a similarity structure on M x K, and thus an LCP structure (M X
K, ¢k, D), which proves our claim.

We give a name to the previous construction

Definition 4.3.9. The LCP structure (M x K, ck, Dk) is called an extension of (M, ¢, D)
(by K ).

Proposition 4.3.10. Let (M x K,ck,Dg) be an extension by K of (M,c, D). Then, the
non-flat part of (M x K, ha i) (b k is defined in Equation (4.3.4)) is N x K.

Proof. It is easy to see that the non-flat distribution (Definition 4.2.21) of (MX K, harx) is
a subdistribution of T(NN x K) since it has to be orthogonal to the flat distribution, and then
orthogonal to RY. From the definition of LCP manifold (see Theorem 4.2.5 and the definition
below), (N x IN(, gn +e*#Gx) has a de Rham decomposition of the form RY x (N, gn'), where
¢’ migth be 0 and (N’, gn-+) is an incomplete non-flat manifold.

We introduce the notations g := gy + €*#gx and ¢’ := e ??gn + i, so that g = e*?¢/, and
let V' be the Levi-Civita covariant derivative of g’. We recall that the restriction of Dg to
N x K is the Levi-Civita of the metric g. Let k € K, and X,Y € T(N x {k}). Now, we use
the formula for the Levi-Civita connection under conformal change [11, Theorem 1.159, a)]
and we obtain:

ViY = (Dg)xY — dp(X)Y — dp(Y)X + g(X,Y)Dxe.

We identify N x {k} with N in the canonical way, and using again the formula of conformal
change for the metric ¢'|y = e~2¢gy, one obtains:

VY = DxY — de(X)Y — dp(Y)X + gn(X,Y) Dep.

Combining these two equations and remarking that g(X,Y)Dx¢ = gn(X,Y)Dg we obtain
(Dk)xY = DxY, which means that N x {k} is totally geodesic in N x K.

Suppose now that ¢' # 0. Let X € TRY be a parallel vector field of norm 1. It induces
canonically a parallel vector field of norm 1, still denoted by X, on the Riemannian manifold
(Nx K, gn+e2?gx). We claim that X is tangent to K. Indeed, for any k € K, the projection
of X onto T(N x {k}) is parallel because N x {k} is totally geodesic. However, (N, gyn) is
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irreducible and of dimension greater than 2, so it does not admit a non-zero parallel vector
field, thus this projection is equal to zero. Now we remark that ¢’ is a product metric, so
Vs X € TK and another use of the formula for the Levi-Civita connection under conformal
change gives:

0=(Dg)xX = VX +2dp(X)X — ¢ (X,X)Vy = Vi X — ¢'(X, X))V

because ¢ is a function of N. Thus TK 3 V4 X = ¢'(X,X)Ve, and ¢/(X,X) # 0 so
Ve TK and Ve € TN, again because ¢ is a function of N, which implies Vo = 0 and ¢ is
constant. This is absurd because of the 7 (M )-equivariance of ¢, so ¢ = 0 and we conclude
that (N x IN(, gn +e2#gk) is irreducible, thus it is the non-flat part of the LCP manifold. [J

In particular, the dimension of the non-flat part of the universal cover of an LCP manifold
can be of any integer higher or equal to 2.

These observations lead to the definition of reducible LCP manifolds:

Definition 4.3.11. A LCP manifold is called reducible if it arises from the previous con-
struction, up to a finite covering. A non-reducible LCP manifold is called irreducible.

4.3.2 Similarity ratios of 7 (M)

In the known examples of LCP manifolds, the similarity ratios are always algebraic numbers
because they are roots of characteristic polynomials of matrices with coefficients in Z. We
will prove that this property is always true.

Proposition 4.3.12. Let (M, ¢, D) be an LCP manifold. For any v € (M), the ratio of
v viewed as a similarity of (M, hp) is a unit of an algebraic number field.

Proof. Let v € w1 (M) and let A be its similarity ratio. For any a € R? we will denote by 7,
the translation by a in R?, so R? is naturally identified with the space of translations. The
restriction of 7 to R? can be written as yg =: 7, o At where ¢ is an isometry of R? endowed
with the metric induced by hp, and a € RY.

Since P° is an abelian Lie group, the group R? x P° is abelian too. We define the group
automorphism ¢ : R? x P’ S RIx P by

O(Ta:p) = V(70 P)Y " = (Trwa, INPYR)- (4.3.5)

Our proof relies on the crucial fact that the group T'g := w1 (M) N (Sim(R?) x ﬁo) defined in
Section 4.2.3 is a full lattice in RY x P" by [45, Lemma 4.18].
The preimage of 'y by the Lie group exponential map is a full lattice I'jj of the Lie algebra

of RY x PO, which is canonically identified with R9*t, for some ¢ > 1. The differential of ¢
at e is a linear map satisfying d.¢(I'y) C T’y because ¢(I'g) C I'g. Moreover, ¢ is invertible
and the symmetry between v and v~ in the previous discussion gives that d.¢~1(T'}) C I'p.
Thus, if we take a basis B of the lattice I'j), the matrix A := Matg(d.¢) is in GLy1+(Z).
But ¢ stabilizes R? and its restriction to this space coincides with Ac. It means that there
exists a complex number z of modulus 1 such that Az and A\Z are roots of the characteristic
polynomial x4 of A. Since A € GLg4+(Z), Az and AZ are units of the algebraic field K
generated by the roots of x 4. Thus, A2 = (Az)(\2) is a unit of K, and therefore so is \.

. =0 . . . .
Remark that in the case where P is a simply-connected space (thus isomorphic to R?) we
don’t need to use the exponential map, because ¢ is then linear already. O
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4.4 Examples of LCP manifolds

We begin this section by stating a well-known result which will be useful for constructing
LCP manifolds:

Proposition 4.4.1. Let G be a discrete topological group acting on a manifold M. Let
D < G be a normal subgroup. Then, G/D acts on M /D, and (M/D)/(G/D) is in bijection
with M/G.

If moreover D and G/D act freely and properly discontinuously on M and M /D respectively,
then so does G on M. In particular, (M/D)/(G/D) and M/G are diffeomorphic manifolds.

Proof. The action of G/D on M/D is given by gD - Dz := Dgx for any (g,z) € G x M.
We define ¢ : (M/D)/(G/D) — M/G by ¢(G/D - Dzx) := Gz for any x € M. This map
is clearly surjective. In addition, if there are (x,y) € M? such that Gz = Gy, there exists
g € G such that gz = y, implying gD - Dz = Dy and then G/D - Dx = G/D - Dy, so ¢ is
one-to-one.
Now, assume that D and G/D act freely and properly discontinuously on M and M/D
respectively. Let g € G and x € M such that gr = 2. Then, gD - Dz = Dz, so gD = 1g,p
because G/D acts freely on M/D, implying g € D, and g = 1¢ because D acts freely on M.
Thus G acts freely on M.
To see that G acts properly discontinuously on M, we pick a compact K C M. Let g € G
satisfying (gK) N K # (. Since DK is a compact subset of the manifold M/D, the set
{¢/DeG/D|¢D-(DK)N(DK) # 0} is finite: let (g;D);es be the family of its elements,
where J is a finite set. Now, since (gK) N K # (), we also have gD - DK N DK # (), so there
is j € J such that g;D = gD. This show that we can find d € D with dg; = g because D is
normal. Then, (dg;K) N K # (). But there are only finitely many elements d € D satisfying
this property because D acts properly discontinuously on M. Let (dj;)icr; be the family of
these elements, where I; is a finite set for every j € J. Consequently, there exist j € J and
i € I; such that g = d;;g;, and conversely any element of this form satisfy (¢K) N K # 0.
Thus,

{g€ G| (gK)NEK #0} = |I;] < +o0,

JjeJ

so G acts properly discontinuously on M.
Finally, denote by np : M — M /D, 7¢/p : M/D — (M/D)/(G/D) and by ng : M — M/G
the canonical projections. One has the following commutative diagram:

M

TG/DOTD $omG/DOTD=NG (4.4.1)
¢
(M/D)/(G/D) — M/G
and [47, Proposition 7.17] implies that ¢ is smooth. O

4.4.1 General construction

Inspired by the known examples, we will now make a more general construction which includes
all the models of LCP manifolds previously described.
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Let N be a compact manifold. We will denote by N its universal cover and by T its funda-
mental group, so N~ N/T. Let p € N and let ¢ : I' — Aff,(Z) be a group morphism, where
Aff,(Z) := RP x GL,(Z) is the set of affine transformations of RP with linear part in GL,(Z).
We denote by ¢r, : I’ — GL,(Z) the group morphism associating to v € I' the linear part of
o(7)-

We consider the simply connected manifold M = RP x N. Let D ~ 7P be the group of
translations M > (a,z) — (a + z,2) for 2 € ZP. Let H be the group defined by H :=
(¢,id)(T) = {(¢(7),7)|y € T} C Aff,(Z) x T C Diff(M). Let G be the subgroup of Diff(M)
generated by D and H. It is clear that D is a normal subgroup of G and G := D x H. We
claim that G acts freely, properly discontinuously and cocompactly on M. Indeed, one has
M /D ~ (S1)? x N and H acts freely on this quotient because I' acts freely on N. Moreover,
H also acts properly discontinuously because the map (S*)? x N — N being proper and
H acting separately on RP and N, it is sufficient to observe that I" acts properly on N. In
addition, this action is cocompact because I' acts cocompactly on N and (S1)? is compact.
Altogether, by Proposition 4.4.1 the quotient M /G is a compact manifold which we denote
by Q(N, ¢), and whose fundamental group is G.

We now wish to construct an LCP structure on Q(N,$). To do so, we assume that the
following conditions hold:

(J1) there exist 6 € N, a decomposition RP =: E1@®...® Ejs stabilized by the action of ¢, (T'),
and a positive definite bilinear form b on R? such that the previous decomposition is
orthogonal with respect to b and for any 1 < k < §, the restriction of ¢, (T") to (Ey, b|g, )
consists of similarities;

(J2) O(En,blg,) does not contain ¢, (T')|g, .

Remark 4.4.2. In particular, condition (J7) allows us to define a group morphism A :
I —» (Rj_)‘s which associates to any v € T' the é-tuple given by the similarity ratios of
LM Eys - oL (Y)|E,s- For any 1 < k < §, Ay, will denote the k-th coordinate of A. Condi-
tion (Jo2) implies that 2 < p. Indeed, if p = 1, ¢ (T") C {£1} = O(RP,b). In addition, from
(J2) we also deduce that 2 < 4, because otherwise R? = E; and there would exist an element
v € T such that 1 # A;(y)? = det ¢1,(y) = £1, which is absurd. In particular, Q(N, ¢) has
dimension at least 3.

We will need the following standard lemma:

Lemma 4.4.3. Let Z be a smooth manifold on which a group TV acts freely and properly
discontinuously, so in particular Z/T" is a smooth manifold. Let p : T — R% be a group
morphism. Then, there exists a function f € C®(Z,R) such that for any v € T', v*e2/ =

p(v)%el.

Proof. Let g : Z — Z/T" be the canonical submersion. We define the oriented line bundle
L := Z x,-1R. Since any orientable line bundle is trivial, there exists s : Z/I" — L a nowhere
vanishing smooth section of L. Then, after replacing s by —s if necessary, there is a function
f:Z — R such that for all # € Z one has s(7z(z)) = [z, e (z)]. Moreover, for any v € I”,
we have

[z, ()] = s(mz2(2)) = s(mz(v2)) = [y, el (y2)] = [z, p(7) e/ (2)],

which implies p(y)ef (z) = ef (y2), so the function f has the desired equivariance property.
O
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We are now in position to construct an LCP structure on Q(N, ¢).

Proposition 4.4.4. Under the assumptions (J1), (J2) there exists an LCP structure on
QN,¢). The LCP manifold obtained in this way has rank equal to tk(A1(T')) and the flat

part of its universal cover contains F1.

Proof. Let g be any Riemannian metric on N and let § be its lift to N. Let f € C®(N,R)
be the function given by Lemma 4.4.3 applied to the morphism p := A;. By definition, an
element € T' acts as a similarity of ratio A;(y) on (N, g := €2/7).

For any 2 < k < §, we define the morphism

pr o T — R, v = A () /Ak(y)- (4.4.2)
By Lemma 4.4.3, we know that the set
Feq(k) :={f € C®(N,R) | Vy € T, v*e*) = pr(y)%e*/}. (4.4.3)

is non-empty.
We identify the tangent bundle TR? with R? x R? in the canonical way, and the bilinear form
b thus defines a Riemannian metric on RP. Then, we define a metric h on M = RP x N by

5
he=blp, + Y ebg, +g, (4.4.4)
k=2

where for all 2 < k <4, fi € Feq(k).
One clearly has for any T' € D that T*h = h. For any v € T, one has

§
(@(1),7) D =M1 (1)?0]p, + Y 7" Au(4)°bls, + 779

k=2
(M)
=/\1 2 62fk 2 1 2
M+ 3 (5107) s, M

:Al(’}/)zh

Since G = D x H, the elements of G act as similarities, and g is a similarity structure on
Q(N, ¢) which is not Riemannian because of condition (J3).

It remains to prove that (M ,h) is non-flat with reducible holonomy. But F; is a Riemannian
factor of M, so the claim follows from Remark 4.2.6. O

Example 4.4.5. We consider the matrix

B= G ;) € SLy(Z). (4.4.5)

Let ¢ > 1. Let A € SLy,(Z) which is the matrix diagonal by blocks with ¢ times the block
B. We consider a bilinear symmetric form by on R? for which the two eigenspaces of B
q
are orthogonal, and we define the symmetric bilinear form b := @ by on R??. We consider
k=1
N := S1, whose fundamental group is T' := Z, and the group morphism ¢ : I' — SLy,(Z),
n +— A™. By Proposition 4.4.4, Q(S!, ¢) admits an LCP structure whose universal cover has
a flat part of dimension ¢. Thus the dimension of the flat part can be any integer.
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As an application of Proposition 4.4.4, we will show that on any OT-manifold (recall that
they were defined in Example 4.2.18) carries an LCP structure. The proof of this fact just
relies on the remark that an OT-manifold is a particular case of the construction above.

Corollary 4.4.6. Any OT-manifold X (K,U) can be endowed with an LCP structure.
Proof. We use the notations of Example 4.2.18. By definition one has
X(K,U) = (H* xC") /(0 x U)

so its universal cover is naturally isomorphic to (R%)® x R® x R? ~ R® x R*T?* using the
logarithm map. By construction, the group T := pgs o £(U) acts freely, properly discontinu-
ously and cocompactly on N := R?® because it is a full lattice. Moreover, U is of rank s, so
Y := (prs o £)~1 is a group isomorphism between I' and U.

Let B = (eq,...,es12:) be the canonical basis of R*T2t. Let B’ be a basis of the lattice o(Ox),
so in particular another basis of R*T2¢. With respect to the basis B’, the action of U restricted
to R*T2! consists of multiplication by matrices of GLg2¢(Z) because U preserves (O ). This
induces a group morphism U — GLg;9:(Z) and then a group morphism ¢ : I' — GLg;9:(Z)
using the isomorphism v between I' and U. Consequently, X (K,U) ~ Q(N/T, ¢).

It is now sufficient to check that conditions (J1), (J2) hold, so we can apply Proposition 4.4.4
to conclude. Let b be the Euclidean metric on R*t2* for which B is orthonormal. By
construction, for any v € I, the matrix of ¢(7y) in the basis B is of the form

o1(u)

—~
£

Og
001(u)[O: (4.4.6)

|05+t (u) O
where u € Of{“ and Oq,...,0; € SO2(R). Then, the spaces
E; := Span(e;)

for 1 <j<sand

Esyj = Span(esy2j-1,€s+2;)
for 1 < j < t give a decomposition of R*T2* in orthogonal subspaces stable by the action of
(T, so (J1) is verified because of the form of the matrix (4.4.6). Finally, o7 is injective so
for any u € U, o1(u) = 1 implies w = 1. Thus there exists u € U such that oy (u) € (0,1)
(because we recall that oy(u) > 0 by construction) so (Jz) holds. O

It is important to notice that the LCP metrics constructed by using the proof of Proposi-
tion 4.4.4 on OT-manifolds with the approach of Corollary 4.4.6 do not contain the LCK
structures introduced in [68] when ¢t = 1. However, we can extend the family of LCP metrics
defined in the proof of Proposition 4.4.4. For any 2 < k, k' < § with k # k', consider the
morphism

Pk.k’ : I' —» Rj_, Y = Al(")/)/\/ AkAk/(’y), (447)
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and let by : Er X Epr — R be a bilinear form satisfying ¢(v)*bg = b for any v € T
(such forms always exists, since we can take by r» = 0), and let fi 5 be an element of the set

Feq(k, k') :={f € C®(N,R) | Vy € T, v*e* = pppr (7)2e* 1. (4.4.8)

Then, we consider the metric h on R? x N defined by

5 é é
PR YLD 3 p S W (149
k=2 k=2 k’'=2

If the functions f ;s are taken small enough on a relatively compact fundamental domain of
N, h is positive definite, and an argument similar to the one used in Proposition 4.4.4 shows
that the elements of the group G act as h-similarities.

On an OT-manifold with ¢ = 1, the LCK metric on its universal cover H® x C defined in [68]
is of the form

S S

1

1
he=]]— dzy, @ dzy + dyy @ dys | + da? ) + dy?, (4.4.10)
1 Yy 1 YRYK
Jj= k,k'=1
where zp := xp + iyr, 1 < k < s+ 1 are the canonical complex coordinates. This falls

S
on the construction above, with the functions fi = (H ;) yk;k/ and the bilinear forms
j=1"

bk7kl =dxp @ dry.

4.4.2 Rank of an LCP manifold

Our next goal is to construct LCP manifolds of arbitrary rank using again Proposition 4.4.4
again. For this purpose, we need a special family of commuting matrices, which will be
constructed by means of number theory. This makes the object of the two following two
lemmas:

Lemma 4.4.7. For any n € N there exists a cyclic, totally real and monogenic algebraic
number field of degree p > n + 1.

Proof. Let n € N, and let m > 2n + 3 be a prime number. Let K be the maximal real
subfield of the m-th cyclotomic extension. Then K is an extension of Q of degree p :=
(m—1)/2 > n+1, which is totally real, monogenic by [73, Proposition 2.16], and cyclic. [

Lemma 4.4.8. Let n > 2. There exists an integer p > n + 1 and diagonalizable matrices
Aq, ..., A, € GL,(Z) with the following properties:

e The matrices Ay, ..., A, commute, so their are codiagonalizable.

o Let (e1,...,ep) be a common basis of diagonalization for Ai,...,A,. For any 1 <
k < p, let Ex, = Span(ey), and denote by A\ (A;) the eigenvalue of A; associated to the
eigenspace Ey. Then, the subgroup (|A1(A1)l],..., |\ (An)]) of RE has rank n.

Proof. Let K be a cyclic, totally real and monogenic algebraic number field of degree p >
n + 1, which exists by Lemma 4.4.7. There is an algebraic integer o such that o generates a
power basis of K, in particular K = Q[a]. By Dirichlet’s units theorem, the group of units of
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Q[a] has rank p—1. Since p—1 > n, we can take n independent fundamental units uq, ..., u,
in Q[a]. By monogeneity, there are polynomials Pi, ..., P, € Z,_1[X] such that Pj(«) = w
for any 1 <[ <n.

Now, let A € GL,(Z) be the companion matrix of the minimal polynomial of a and let
Aj := Pj(A) € GL,(Z) for 1 <1 < n. Since the minimal polynomial of « is irreducible over
Q, it is separable and A is diagonalizable in R, with eigenvalues equal to the conjugates of
a, namely a, o(a),...,0P 1 (a), where o is a generator of the (cyclic) Galois group of Q[a].
Then, the matrices A; are diagonalizable with eigenvalues u;, o(u;), . ..,oP~!(u;). Moreover,
their determinants are Hi;éak (u;) = £1 because w; is a unit.

Finally, let e; be an eigenvector of A for the eigenvalue o. Then, E; := Span(e;) is a one-
dimensional eigenspace of any A, for the eigenvalue u;, and (uq, ..., u,) is of rank n. We can
complete (e1) in a basis of diagonalization of A to obtain the last property of the lemma. [

The matrices defined in Lemma 4.4.8 will be used to define the morphism ¢ needed for the
construction of Proposition 4.4.4, so we prove the following:

Proposition 4.4.9. Letn > 1. Letp > n+1 and A, ..., A, € GL,(Z) be the matrices given
by Lemma 4.4.8. The group H := (Ay,...,A,) is canonically isomorphic to Z™, defining a
group isomorphism ¢ : Z" — H. Then, there exists a LCP structure on Q((SY)", ¢) of rank
n.

In particular, the rank of an LCP manifold can be any positive integer.

Proof. We keep the notations of Lemma 4.4.8 in this proof. Let B be a basis adapted
to the decomposition Eq @ ... ® E, and let b be the symmetric, positive definite bilinear
form for which B is orthonormal. Then, the conditions (J;) and (Jz) are satisfied, so by
Proposition 4.4.4 Q((S1)", ¢) carries an LCP structure of rank n. O

Example 4.4.10. We can make an explicit computation of the matrices given by
Lemma 4.4.8 in the case n = 2 by following the constructive approach of the proof. Taking
m = 7 in the proof of Lemma 4.4.7 shows that K := Q[2cos(2)] is a totally real, monogenic,
cyclic extension of Q of degree p = 3. From now on, we denote by « := 2cos(27”). From [73,
Proposition 2.16], one has O = Z[a]. The minimal polynomial of o is X3 + X2 — 2X — 1,
and its conjugates are 2005(47”) and 2cos(67”). Let ¢ be the automorphism of K such that
o(a) = 2cos(4). Then o2(a) = 2cos(%Z) and o® = id.

We claim that the (multiplicative) group (a, o(«)) has rank 2. Indeed, if there were a,b € Z

such that a® = ()b then the two vectors of R? given by
X, := (In]al,In|o(a)],In|o?(a)]), X5 := (In|o(a)],In|o?(a)|,In|a|)

would be collinear. But X; and X5 have the same norm for the standard Euclidean metric in
R3 because the coefficients of X, are a permutation of the ones of X7, so they are collinear

if and only if X1 = £X,. But this is false because cos(2) # cos(4X)*!.

Now, we have the equality o(a) = a? — 2. Thus, we consider the companion matrix of the
minimal polynomial of a:

00
A=[10 2], (4.4.11)
0 1

and the matrix

Ag:=A?-2=[0 0 —1]. (4.4.12)
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One easily checks that eigenvectors corresponding to the eigenvalues o, o (), 0% () of A; can
be taken respectively as

1 1 1
ry=|a+a?|, mm=|ola)+o@)?], z3=|0c*a)+*a)?], (4.4.13)
! o(a) % (a

and they are eigenvectors of A, for the eigenvalues o(a), 0%(a), o respectively.
Using these matrices, we can now give the explicit construction of an LCP manifold of rank
2 following Proposition 4.4.9 and Proposition 4.4.4. On the manifold M := R? x (]Rj_)Q, the
group

G = D x {(Ay, (Ja], 1)), (A, (1, |o(@)))) (14.14)
acts freely, properly discontinuously and cocompactly (here the group D is defined as in
Section 4.4.1, as the group of translations Z3 acting on R®). Let (¢1,t2) be the canonical
coordinates of (R*)?. We define the metric

B i= dad + ¢o(ty, t2)?das + ¢3(ty, ta)?dal + t3dt3 + t3dt3. (4.4.15)
where
In(t1)/ In(|a]) In(t2)/ In(|o ()
o()
t,tg) == | —— 4.4.16
i) = |5 (@) 10
In(t1)/ In(|a]) In(t2)/ In(lo (a)))
o(@)
t1,to) == - 4.4.17
balint) = |0 « (1.4.17)

The manifold M := M /G admits a non-Riemannian similarity structure given by h, which
in turn defines an LCP structure of rank 2 on M.

4.5 Some open questions

Some questions arise naturally from the analysis and the discussions done in the previous
sections. We make here a non-exhaustive list of such ones, whose answers would lead to a
better understanding of LCP manifolds. Throughout this section, we will use the notations
of Section 4.2.3.

First of all, it was noticed by Kourganoff [45, Theorem 1.9] that the dimension of the closures
of the leaves, which are the elements of F in the setting of Theorem 4.2.20, may vary. However,
in all the examples given in this article, this dimension is constant, so we ask the following:

e In the setting of Theorem 4.2.20, do all the elements of F have the same dimension?

We can propose a strategy to answer this first question. Indeed, assume that P’ is simply
connected, i.e. it is isomorphic to the group R? for some ¢t € N. Then, since the group Iy is
a full lattice in RY x P° =~ R9*tt the group Iy is of rank ¢ + t. In addition, for any z € N
(the non-flat part), the closed leaf F, = m(RY x Pox) has the same dimension as RY x P .
As we already saw, this last manifold is isomorphic to the product of an Euclidean space
with a flat torus so it is a Lie group, and I'y acts freely and properly discontinuously on it.

Consequently, T'g({(0,2)}) is a lattice of R? x P’z with rank equal to ¢ + ¢. Thus

q+t =rank(T'y) < dim(R? x Pox) <qg+t, (4.5.1)
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and these inequalities turn out to be equalities, so F, has dimension ¢+ ¢. This leads to the
following question, whose answer is positive in all the examples:

e Is the group P° simply connected, or equivalently is it isomorphic to R* for some ¢ € N?

In order to have a better understanding of the group P, we should specify how it acts on N.
In [45, Lemma 4.17], it was shown that P acts freely on N, but the proof proposed seems
incorrect, even if it does not modify the correctness of the rest of the article. The only result
we can obtain is the one of Lemma 4.2.10, stated previously. We thus ask:

e Does P acts freely on N? If this is true, does P acts freely on N?

In Section 4.4.1, we have given a general construction to obtain LCP manifolds. Nevertheless,
some points remain imprecise:

e What are the acceptable choices for the morphism ¢, given a compact manifold N (even
without asking for conditions (J;) and (Jz2))?

e Can we weaken conditions (J;) and (Jz2)?

Finally, we remark that the only known LCK manifolds which are also LCP are the OT-
manifolds for t = 1. A natural way to construct new examples would be to take extensions
of OT-manifolds (see Definition 4.3.9).

e Can an extension of an LCP manifold which is also LCK be an LCK manifold?

e Are the OT-manifolds with ¢ = 1 the only LCP manifolds which are also LCK?



Chapter 5

Torsion-free connections on
(7-structures

Ce chapitre est une note concernant des G-structures particulieres, a savoir celles ou le groupe
G contient SO, (R). On démontre qu’elles admettent des connexions sans torsion provenant
de structures de Weyl fermées.

149
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5.1 Introduction

Let M be a smooth manifold of dimension n and G a closed subgroup of GL,(R). A G-
structure on M is a reduction of the frame bundle of M to G i.e. a principal subbundle of
Fr(M) with structure group G.

We recall the following well-known result:

Proposition 5.1.1. Let G be a closed subgroup of GL,(R) containing SO, (R) and let P be
a G-structure on M. Then, there exists a torsion-free connection on P.

We quickly outline the proof of Proposition 5.1.1, using the analysis of [19, Chapter 4]. Denote
by g the Lie algebra of G and by adP the adjoint bundle of P (which is a vector subbundle
of the bundle of endomorphisms of TM). The set of connections on TM compatible with P
is an affine space of direction Q!(M,adP). For any ¢ € Q(M, adP), we define (9¢)(X,Y) :=
EX)(Y) —&(Y)(X) where X, Y € TM and we consider the set
 92(M,TM)

Tp = B (M, adP))’ (5.1.1)
The intrinsic torsion T};nt of P is the equivalence class [Ty]| € Tp where Ty is the torsion of
any connection V compatible with P. This is well-defined because if V' is another connection,
there is ¢ € Q'(M,adP) such that V/ = V + ¢, and an easy computation leads to Ty =
Ty + 0(€). Then, there exists a torsion-free connection on P if and only if TH* = 0.

For any z € M, fix a frame u € P, (which identifies R with T, M ). For any ¢ € A?(R")*®@R",
let £ € (R™)* ® End(R™) be given by

2§(X)(Y> = QS(X’ Y) - ¢(X, )*<Y) - ¢<Yv >*(X> X, Y eR", (5'1'2)

where ”*” denotes the adjoint with respect to the standard metric on R". By construction,
one has 9§ = ¢ and £(X) is skew-symmetric for every X € R™. Since 0, (R) C g, we have
¢ € (R")* ®@g. We deduce that 9(Q'(M,adP)) = Q*(M,TM), implying Tp = 0, thus
Tnt = (), which gives the result.

Proposition 5.1.1 was originally stated as an exercise in [58, Section 17.4, exercise (1)]. The
author’s strategy of proof was to consider a reduction of P to O, (R) in order to take the Levi-
Civita connection of the associated Riemannian metric as the desired torsion-free connection,
implying the stronger result that the connection on P is induced by the Levi-Civita connection
of a metric on M. However, such a reduction fails to exist in general, as shown by the following
example:

Example 5.1.2. We consider the circle S* C C, parametrized by the map 1 : [0,27) > 6 —
e’ Tts tangent bundle is given by T'S* ~ S' x R, and its frame bundle is Fr(S') ~ S x R*.
Let G be the closed subgroup of R* generated by 2, and let P be the G-structure of S! given
by Py = {1(0)} x 227 G for any 0 € [0,27). There is no reduction of P to GNO;(R) = {1}
because P is a non-trivial principal bundle.

Nevertheless, we can prove that the torsion-free connection in the setting of Proposition 5.1.1
is locally induced by a Riemannian metric. More precisely, the aim of this note is to prove
the following fact:

Theorem 5.1.3. Let G be a closed subgroup of GL,(R) containing SO, (R) and let P be
a G-structure on M. Then, there is a reduction Q of P to G N CO,(R) and a torsion-free
connection on @Q such that the connection induced on the extension of @ to CO,(R) is a
closed Weyl structure.
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5.2 Proof of Theorem 5.1.3

We recall that the conformal group CO,(R) is the group of all matrices AS for (A, S) €
R* x O, (R). The proof of Theorem 5.1.3 relies on the classification of the subgroups of
GL,(R) containing SO, (R).

In all this text, we will denote by Diag(aq,...,a,) the diagonal matrix with diagonal coeffi-
cients ay, ..., a,. We first show the maximality of SO,,(R) in SL, (R).

Lemma 5.2.1. Let G be a subgroup of SL,(R) containing SO, (R). Then, G = SL,(R) or
G =S0,(R).

Proof. For n = 1 there is nothing to prove. For n = 2, suppose that there exists A €
G\ SO3(R). Using the polar decomposition and the spectral theorem, one can assume that
A = Diag(a, %) with @ > 1. For 0 € R let Ry be the rotation of angle 6. Let 3 be
the map which associates to an element of SL,,(R) the largest eigenvalue of the symmetric
part of its polar decomposition. This map is continuous and one has ¥(ARyA) = a? and
Y(ARy/3A) = 1. Thus, by the intermediate value theorem, for any x € [1,a?], the matrix
Diag(x, %) is in G, and this is true for any x > 1 by induction, which gives the result.

Now, let n > 3. Using the polar decomposition and the spectral theorem again, it is enough
to show that the group D of diagonal matrices with positive coefficients and determinant
1 is contained in G if G # SO,(R). Suppose that there is A € G\ SO,(R). We can
assume that A is diagonal using the polar decomposition, thus A = Diag(ai,as,...,a,). It
is easy to see that G ND is stable by permutation of the diagonal coefficients. Thus, G N D
contains the matrix Diag(ay/as,as/a1,1,...,1), and by the case n = 2, we know that all the
matrices Diag(u,u=1,1,...,1) with u > 0 are in G N D, and so are the matrices of the form
Diag(1,...,1,u,u~%1,...,1). Since all the elements of D are products of such elements, this
concludes the proof. O

Lemma 5.2.2. Let G be a subgroup of GL,(R) containing SO, (R), and let x € det(G).
Then, |z|*Diag(sgn(z),1,...,1) € G.

Proof. Let z € det(G). There is a matrix A € G such that det(A) = x, and using the
polar decomposition of A, there is a diagonal matrix D € G with det(D) = x. If D is of
the form |9L‘|%Diag(:t17 ..., 1) we have the conclusion of the lemma after multiplying by an
element of SO, (R) of the form Diag(+1,...,41), so we assume that D? ¢ Span(l,,). There
is a matrix S € SO, (R) with SD? # D2S. Let B := D~'STDS € SL,(R). One has

BBT =D 'S"DSSTDSD™! = D'STD?SD~! = (D~*SD)"Y(DSD™1),
then
BBT =1, < D7'SD=DSD™ ! < D?S = SD?,
and this last assertion is false, thus BBT # I, and B ¢ SO, (R). By Lemma 5.2.1, we

conclude that G N SL,,(R) = SL,(R), and in particular |z|= Diag(sgn(z),1,...,1)D~! € G,
so |z|= Diag(sgn(z),1,...,1) € G after multiplication by D on the right. O

One write GL,(R) = SL,(R) x R* with the identification {Id} x R* — GL,(R),z —
|z|= Diag(sgn(z),1,...,1). We finally give the classification result:
Proposition 5.2.3. Let G be a subgroup of GL,(R) containing SO, (R). There ezists a

subgroup H of (R*, x) such that G is equal to either SO, (R) x H or SL,(R) x H. Moreover,
if G is closed, so is H.
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Proof. One has the following short exact sequence:

det

0—SL,(R)NG — G = det(G) — 1.

Now, let ¢ : H := det(G) — G given by ¢(z) = |z|=Diag(sgn(x),1,...,1), which is well-
defined by Proposition 5.2.2. It is clear that ¢ is a morphism and deto¢ = idy, thus one
has G = (SL,(R) N G) x H. Moreover, by Lemma 5.2.1 one has SL,,(R) N G = SL,(R) or
SL,(R) NG = SO, (R) because G contains SO, (R).

It remains to show that H is closed when G is closed. But if H is non-discrete, H NR* has

to be dense in R* , so, G being closed, it contains all the matrices of the form |z %In, z € R,
and then H = det G =R or R O

Remark 5.2.4. Note that in Proposition 5.2.3, the semi-direct product is actually direct
when H C RY.

Proof of Theorem 5.1.3. According to Lemma 5.2.3, there is a closed subgroup H of R* such
that G ~ SO, (R) x H or SL,,(R) x H. From the classification of the subgroups of R*, H is
either R*, R* or discrete.

First case: H = R* or H = R’.. In this case, G is either GL,(R) or CO,(R) or GL; (R)
or CO;(R). In all these cases, there is a metric g compatible with the G-structure, i.e. a
reduction P’ of P to G N O,(R). Then, the Levi-Civita connection of g is torsion-free, so it
induces a torsion-free connection on P’, and thus a torsion-free connection on the extension
Q of P’ to GN CO,(R). The resulting connection on the extension of @ to CO,(R) is a
closed (actually exact) Weyl structure because it is induced by the Levi-Civita connection of
a metric on M.

Second case: H is discrete. Let M be the universal cover of M and let P be the pull-back
of P to M.

We first study the case G = SO, (R) x H. Then, the H-principal bundle P/SO, (R) is a
covering of M so it is trivial. Every element a € H thus defines an SO, (R)-structure on M
i.e. a metric g. Since m (M) acts on P/SO,(R) by multiplication by an element of H, we

deduce that 71 (M) acts by similarities on (M,g). Consequently, the Levi-Civita connection
of g induces a torsion-free connection on P which descends to a torsion-free connection on
P. We can take @ := P in the statement of the theorem since G C CO,(R). Finally, the
resulting connection on the extension of P to CO,(R) is a closed Weyl structure because it
is locally given by the Levi-Civita covariant derivative of a Riemannian metric defined by a

local reduction of P to G N O, (R).

We consider now the case G = SL,, (R) x H. Just as before, the H-principal bundle P/SL,, (R)
is trivial. Choosing an clement a € H defines a SL, (R)-structure Q on M i.e. a volume form
v, and in particular an orientation on M. Let h be a Riemannian metric on M, and let h
be its pull-back to M. Let vy be the volume with respect to v of a h-orthonormal frame
of TM (note that v? does not depend on the choice of the frame). We define g := (v}%)%h.
Then, any oriented g-orthonormal frame has volume 1 with respect to v. This implies that
g defines a reduction of @ to SO, (R). As in the previous case, w1 (M) acts on P/SL,(R) by
multiplication by an element of H, so for v € m (M), v*v is a multiple of ¥. Since, 71 (M)
acts by isometries on (]Tf , E), it acts by similarities on (]Tj ,g). We finally conclude in the
same way as for the case G = SO, (R) x H. O

From the proof we see that the principal bundle @ defined in Theorem 5.1.3 has SO, (R) x H’
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as structure group, where H' is a discrete subgroup of R (just take H' := {1} when H = R*
or R, and H' := H otherwise).
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