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enthousiasme. Je les remercie tous deux pour les nombreuses discussions que j’ai eues avec
eux, qu’elles soient scientifiques ou non, et pour leur disponibilité grâce à laquelle je ne me
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Introduction

Ces pages contiennent le travail que j’ai effectué pendant les trois années de ma thèse de
doctorat. Il est cependant difficile d’en présenter le sujet et les résultats en quelques mots,
pour une raison qui devient évidente à la lecture des titres des différents chapitres : les
domaines mathématiques couverts ne semblent avoir que peu de relations entre eux. Aussi,
l’introduction de ce texte ne saurait être autre chose qu’un éclaircissement sur les liens entre
les sujets des travaux regroupés ici, liens qui relèvent de l’évolution de l’encadrement de
ma thèse, et expliquent que cette progression m’a paru naturelle. C’est au cours de cette
exposition que seront introduits les concepts étudiés.

Deux grands axes d’étude feront l’objet de ce document. Le premier concerne l’analyse
spectrale, et plus particulièrement le comportement asymptotique du spectre de certains
opérateurs à paramètres. Il s’agit des résultats que j’ai obtenus pendant la première moitié
de ma thèse, sur des sujets proposés par mon directeur de thèse Konstantin Pankrashkin,
avant qu’il ne quitte le laboratoire de mathématiques d’Orsay. Le second axe est celui de la
géométrie, Riemannienne et conforme, où les sujets abordés m’ont été proposés par Andrei
Moroianu, mon second directeur de thèse. Néanmoins, ces deux parties se confondent dans
l’étude asymptotique des opérateurs de Dirac avec masses, où le cadre géométrique prend
une place importante aux côtés de l’analyse spectrale.

Suivant naturellement l’ordre chronologique de mes recherches et de mon apprentissage,
je présenterai tout d’abord la partie portant sur l’analyse avant d’aborder les sujets
géométriques. En proposant une courte introduction sur les différents chapitres qui com-
posent ma thèse, j’espère, sans toutefois entrer dans les détails, que le lecteur pourra se faire
une idée des motivations qui m’ont poussé à l’étude de ces sujets, et de l’intérêt des résultats
énoncés.

Sur les δ-interactions sur des courbes à point de rebroussement

L’étude du comportement de particules assujetties à se déplacer dans une région restreinte de
l’espace est un problème récurrent de la physique quantique. Différents modèles peuvent être
proposés afin de décrire de telles particules, le plus simple, mais qui ouvre déjà de nombreuses
perspectives d’études, étant celui des graphes quantiques. Cependant, cette simplicité a un
prix : elle ne permet pas de prendre en compte certains effets physiques importants, comme
l’effet tunnel. Pour pallier ce défaut, on peut se pencher sur un modèle plus complexe qui
inclut ces phénomènes : les δ-interactions. Dans le contexte des particules dont le mouvement
est régi par l’équation de Schrödinger, et contraintes à se déplacer sur un graphe métrique Γ
plongé dans Rn, on perturbe l’opérateur de Schrödinger par un potentiel attractif et singulier
supporté par Γ. Une explication détaillée de ce modèle et des questions qu’il implique peut
être trouvée dans [21].

11
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D’un point de vue mathématique, et dans le cas où le graphe est un sous-espace de R2,
l’opérateur qui décrit le comportement des particules est donné formellement par l’expression

Hα := −∆− αδ(x− Γ),

où δ est la distribution de Dirac et α > 0. Afin de rendre cette définition rigoureuse, on
définit Hα comme l’opérateur auto-adjoint associé à la forme quadratique

H1(R2) ∋ u 7→ hα(u, u) :=

∫∫
R2

|∇u|2dx− α

∫
Γ

u2ds,

par les théorèmes de représentations usuels [41]. Le paramètre α > 0 représente l’attractivité
de la région Γ, et l’on peut se demander comment évolue cet opérateur lorsque Γ devient
très attractive, c’est-à-dire lorsque α → +∞. En effet, le modèle précédent n’interdit pas la
présence d’une particule en dehors de la région Γ, et c’est uniquement dans le cas de cette
limite que l’on confine effectivement le mouvement.

On s’intéresse donc au comportement asymptotique des valeurs propres de Hα, qui corre-
spondent physiquement aux niveaux d’énergie des particules, quand α tend vers +∞. Ce
problème particulier a déjà été étudié pour différents types de graphes comme des courbes
lisses ou des domaines à coins [17, 20, 23, 24, 26, 50, 69]. Dans tous ces cas, on peut proposer
un développement asymptotique des valeurs propres, sachant que le spectre discret contient
un nombre arbitraire d’éléments lorsque α devient grand.

Le premier chapitre de cette thèse retranscrit un article que j’ai rédigé avec Konstantin
Pankrashkin, et qui étudie le comportement asymptotique des valeurs propres de Hα lorsque
Γ est une courbe fermée, de classe C4 en tout point différent de l’origine, et il existe ε0 > 0
et p > 1 tels que

Γ ∩ (−ε0, ε0)2 =
{
(x1, x2) : x1 ∈ (0, ε0), |x2| = xp1

}
.

Cela signifie que la courbe forme un angle de mesure nulle à l’origine. Lorsque l’on s’intéresse à
une courbe lisse, on obtient un développement asymptotique en exhibant un opérateur effectif
par séparation de variables. Cette manipulation est rendue possible grâce à l’existence d’un
voisinage tubulaire régulier autour de Γ. Ici, la difficulté et la particularité du problème
résident dans l’absence d’un tel voisinage, forçant l’utilisation d’autres méthodes.

Par un découpage bien choisi de l’espace, on remarque que les fonctions propres se localisent
près de l’origine dans le régime asymptotique considéré, et la n-ième valeur propre de Hα,
notée En(Hα), se comporte de la manière suivante :

En(Hα) = −α2 + 2
2

p+2En(A)α
6

p+2 + O(α
6

p+2−η)

où η := min
{

p−1
2(p+2) ,

2(p−1)
(p+1)(p+2)

}
> 0.

La preuve de cette estimation repose principalement sur l’utilisation du principe du Min-
Max afin de localiser le problème au voisinage de l’origine et de se ramener à des opérateurs
effectifs pour lesquels les calculs sont plus faciles à mener.

Modèle MIT Bag dans des limites de grandes masses

Le deuxième chapitre s’inscrit dans la continuité du précédent, au sens où il porte sur l’étude
d’opérateurs de Dirac avec une masse, et le comportement asymptotique des valeurs pro-
pres de leurs carrés lorsque cette masse devient infinie. Il s’agit donc également d’analyse
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asymptotique en géométrie spectrale. Par ailleurs, précisons que, le carré de l’opérateur de
Dirac étant à peu de chose près le Laplacien, son étude a un lien fort avec l’opérateur de
Schrödinger, que nous avions regardé dans le chapitre précédent. Ce sujet m’a été suggéré par
Konstantin Pankrashkin, qui souhaitait généraliser un article qu’il avait écrit en collaboration
avec Andrei Moroianu et Thomas Ourmières-Bonafos [59].

Afin d’expliquer l’apport de ce second chapitre, il est nécessaire d’exposer une fois encore le
contexte physique avant de rentrer dans le cadre mathématique.

Le modèle MIT Bag a été imaginé par des chercheurs de l’université éponyme pour décrire
des particules telles que des quarks, qui seraient emprisonnées dans un hadron, représenté
par une région bornée K de l’espace ambiant [40]. Dans le cadre de la théorie quantique des
champs, ces particules sont considérées comme des champs quantiques, et donc régies par
l’équation de Dirac. De son côté, le confinement est cette fois imposé par une condition de
bord, indiquant que le flux du champ à travers la frontière de K est nul. Ce modèle diffère
fortement du cas des δ-interactions, où le potentiel permettait de localiser la particule dans
un voisinage de la zone d’attraction avec une certaine probabilité.

Les objets analysés ici présentent de nombreuses dissemblances avec ceux du chapitre
précédent, ceci venant de la complexité conceptuelle de l’équation de Dirac. Celle-ci a été
introduite par Paul Dirac afin de concilier la relativité restreinte et la mécanique quantique
pour la description de l’électron. Aussi, les solutions de cette équation ne sont plus des
fonctions complexes de l’espace et du temps, mais des fonctions à valeurs dans l’espace C4

appelées spineurs, dont le module ne s’interprète plus comme une densité de probabilité. On
peut écrire cette équation dans l’espace-temps à quatre dimensions sous la forme

Hmψ :=

(
−i

3∑
k=1

αk∂k +mβ

)
ψ = i

∂

∂t
ψ,

où Hm est l’opérateur de Dirac, les αk sont des matrices 4 × 4 qui satisfont aux conditions
de Clifford αiαj +αjαi = 2δji I4, m est le paramètre de masse, et ψ est le spineur solution de
l’équation.

Dans ce cadre, et en notant n le vecteur normal unitaire extérieur à ∂K, la condition de bord
du modèle MIT Bag s’écrit −iβ(α ·n)ψ = ψ. L’opérateur de Dirac avec la condition de bord
MIT Bag sur R3 est alors Hm défini sur le domaine {ψ ∈ H1(K,C4) | − iβ(α · n)ψ = ψ}.
Récemment, un intérêt a été porté au comportement des valeurs propres de cet opérateur
dans la limite de grandes masses [4, 5]. Ce régime s’interprète physiquement comme une
limite non-relativiste. En effet, dans l’équation physique, la masse présente dans l’expression
de l’opérateur Hm est remplacée par le terme mc2, ainsi, l’assertion ”m tend vers l’infini”
signifie que la vitesse des particules devient très faible devant la vitesse de la lumière.

Pour permettre l’utilisation d’outils tels que le principe du Min-Max, on regardera désormais
les carrés des opérateurs, ces-derniers n’étant pas bornés inférieurement.

Lorsque la masse crôıt, on observe une localisation des fonctions propres de H2
m près du bord

de K, et les valeurs propres de H2
m convergent vers celles d’un opérateur effectif sur ∂K. Par

ailleurs, dans [4], les auteurs se sont penchés sur un opérateur à deux paramètres de masse
m,m′ ∈ R donné par

Hm,m′ := Hm + 1Kc(m′ −m)β,

qui peut s’interpréter comme un opérateur de Dirac avec deux potentiels de masse localisés
dans les régions distinctes K et Kc. Ils ont démontré que lorsque m était fixé et que l’on
faisait tendre m′ vers l’infini, les valeurs propres de H2

m,m′ convergeaient vers celles du carré
de l’opérateur MIT Bag avec masse m.
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Ces résultats de convergence ont été généralisés au cadre Euclidien en dimension quelconque
dans [59]. De plus, les auteurs ont montré que l’opérateur modèle intervenant dans la limite
des valeurs propres du carré de l’opérateur de Dirac avec condition MIT Bag est en fait le
carré de l’opérateur de Dirac sur l’hypersurface ∂K. Puisque seul l’opérateur de Dirac sur
l’espace plat a été introduit jusqu’ici, et afin d’expliquer cette dernière phrase à un public
non averti, il est nécessaire de digresser sur l’opérateur de Dirac sur les variétés.

L’opérateur de Dirac général a été construit par Atiyah et Singer dans les années 1960 à la
suite de leur travail sur la théorie de l’indice. Ils ont remarqué que les variétés Riemaniennes
orientées dont le SOn-fibré principal induit admet un revêtement par un Spinn-fibré principal
permettent une construction similaire à celle de l’opérateur de Dirac des espaces Euclidiens.
Les variétés disposant d’une telle structure sont désormais appelées variétés spin, et il est à
noter que cette propriété est topologique, malgré l’apparente dépendance à une métrique :
elle est équivalente à l’annulation de la deuxième classe de Stiefel-Whitney.

Plus précisément, une variété Riemaninenne orientée (Mn, g) est spin si le SOn-fibré principal
des repères orthonormés PSOn

M admet un revêtement à deux feuillets par un Spinn-fibré
principal PSpinn

M , tel que, en notant χ : PSpinn
M → PSOn

M la projection, pour tout
u ∈ PSpinn

M on a le diagramme commutatif suivant:

Spinn PSpinn
M

M.

SOn PSOn
M

s 7→us

Ãd χ

p 7→χ(u)p

Fixons une variété spin (Mn, g). Considérons le module de Clifford Σn := C2⌊
n
2

⌋
, sur lequel

se représente de manière irréductible l’algèbre de Clifford complexe Cln. Ceci induit une
représentation spinorielle ρn : Spinn → End(Σn). On peut alors construire le fibré des
spineurs ΣM := PSpinn

M ×ρn Σn par la construction usuelle des fibrés associés [43], et les
sections de ce fibré sont appelées des spineurs. Dans le cas de l’espace Euclidien Rn, où la
structure spin est triviale, il s’agit de fonctions de Rn dans Σn, et pour n = 4, on retrouve
les spineurs introduits dans l’équation de Dirac.

Il existe plusieurs structures naturelles sur le fibré ΣM . Premièrement, on définit la mul-
tiplication de Clifford. Pour cela, remarquons déjà que l’on peut étendre la représentation
du groupe SOn(R) sur Rn à l’algèbre de Clifford complexe Cln en une représentation l.
En utilisant cette action, on définit le fibré de Clifford complexe sur M par Cl(M) :=
PSOn

(M)×l Cln. Alors, la multiplication de Clifford, notée ”·”, entre une section de Cl(M)
et un spineur est donnée par :

[χ(u), v] · [u, ψ] := [u, ρn(v)ψ]

où u ∈ PSpinn
M , v ∈ Cln et ψ ∈ Σn. Deuxièmement, le produit Hermitien canonique sur Σn,

pour lequel la multiplication de Clifford par les vecteurs de norme 1 dans Rn est unitaire, se
transporte sur ΣM en un produit Hermitien ⟨·, ·⟩. Il satisfait donc l’identité

⟨X ·Ψ1, X ·Ψ2⟩ = ∥X∥2⟨Ψ1,Ψ2⟩

pour tous spineurs Ψ1,Ψ2 et X ∈ TM . Enfin, la connexion de Levi-Civita sur PSOn
M se

relève en une connexion sur PSpinn
M , qui induit une connexion métrique ∇ sur ΣM [43].
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Les outils introduits dans le paragraphe précédent permettent de définir l’opérateur de Dirac
sur M . Soit (e1, . . . , en) un repère orthonormé en un point x de M . Alors, l’opérateur de
Dirac /D est l’opérateur différentiel d’ordre 1 défini en x par l’expression

/D :=

n∑
k=1

ek · ∇ek .

Il est facile de montrer que cette définition ne dépend pas du repère fixé. De plus, /D est
formellement auto-adjoint [15].

Ayant désormais exposé cette construction, une remarque est toutefois nécessaire pour con-
clure sur l’apparition de l’opérateur de Dirac sur ∂K dans le problème MIT Bag. Avec les
notations précédemment introduites, si N est une hypersurface orientée de M , alors la struc-
ture spin de M induit canoniquement une structure spin sur N , telle que la restrition ΣM |N
fibré des spineurs à N s’identifie à ΣN si n est impair, et à ΣN ⊕ ΣN si n est pair. En
utilisant cette identification, le produit Hermitien, la multiplication de Clifford et la dérivée
covariante sur ΣN sont reliés à leurs équivalents sur ΣM |N (voir [33, Proposition 1.4.1], ou
la Proposition 2.2.6 ci-après). La frontière de K hérite alors d’une structure spin induite par
celle de l’espace ambiant, qui permet de définir l’opérateur effectif.

L’intervention de cet opérateur classique de la géométrie différentielle dans le régime asymp-
totique de grande masse pose une question naturelle : le résultat de convergence est-il
généralisable au cadre de la géométrie spinorielle? C’est donc à cette question que l’on
s’intéressera au cours du second chapitre de cette thèse.

Néanmoins, le problème n’est pas encore bien posé sous cette forme, car l’opérateur étudié
dans le cadre Euclidien n’est pas l’opérateur de Dirac tel que nous l’avons défini sur les
variétés. On introduit donc un opérateur de Dirac qui généralise le modèle MIT Bag sur
les variétés spin, et une fois le cadre géométrique correctement déterminé, on démontre la
convergence des valeurs propres du carré de cet opérateur dans la limite de grandes masses.
Plus précisément, on s’intéresse au régime m → −∞, le régime m → +∞ ne donnant pas
une convergence des valeurs propres. On généralise également le résultat de convergence de
l’opérateur à deux masses en étudiant la limite m′ → +∞ à m fixée, et le régime où les deux
limites m→ −∞, m′ → +∞ sont considérées simultanément.

Spineurs de Cauchy sur les variétés de dimension 3

A la fin du projet décrit précédemment, l’encadrement de ma thèse a changé puisque Kon-
stantin Pankrashkin a quitté le Laboratoire de mathématiques d’Orsay. Même si il a continué
à encadrer mes travaux, j’ai, à partir de ce moment là, d’avantage travaillé sous la direction
d’Andrei Moroianu, qui m’avait formé à la géométrie spinorielle et m’avait aidé à mener
à bien mon entreprise précédente. Pour cette raison, je me suis orienté vers la géométrie
Riemannienne, qui fait partie de son domaine d’expertise.

Afin d’utiliser les compétences que j’avais acquises en me formant sur les spineurs et
l’opérateur de Dirac, il m’a été proposé un sujet comportant une forte composante d’analyse
sur une classe particulière de spineurs. Le troisième chapitre de ce manuscrit contient les
résultats de ce travail : il s’agit d’un article sur les spineurs de Cauchy en dimension 3,
co-écrit avec Sergiu Moroianu.

Optons dans un premier temps pour une approche historique, ou du moins chronologique,
de la définition des spineurs de Cauchy. En 1980, Thomas Friedrich [29] démontre une
inégalité améliorant la borne inférieure des valeurs propres de l’opérateur de Dirac, donnée
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par l’inégalité de Lichnerowicz [48]. Sur toute variété spin compacte (Mn, g), si λ est valeur
propre de l’opérateur de Dirac, alors

λ2 ≥ n

4(n− 1)
Scal0,

où Scal0 est l’infimum de la courbure scalaire. Lorsque l’égalité a lieu pour la valeur propre
λ0, la variété (M, g) est Einstein [15, Théorème 5.3], et il existe donc un spineur propre Ψ
sur M pour la valeur propre λ0, i.e. /DΨ = λ0Ψ. Un tel spineur satisfait alors une équation
particulière, appelée équation de Killing [15, Remarque 5.5] :

∇XΨ+
λ0
n
X ·Ψ = 0, ∀X ∈ TM,

dont les solutions sont dénommées spineurs de Killing réels. Cette appellation provient d’une
propriété de ces spineurs, affirmant que le champ de vecteurs

XΨ :=

n∑
k=1

i⟨Ψ, ek ·Ψ⟩ek

qui leur est associé est un champ de vecteurs de Killing [15, Lemme 5.9], i.e. LXΨg = 0.
Notons par ailleurs que le cas λ0 = 0 correspond aux spineurs parallèles.

On peut démontrer que remplacer la valeur propre λ0 par une fonction réelle quelconque f
dans l’équation de Killing ne définit pas une plus grande famille de spineurs sur une variété
compacte [15, Proposition 5.11]. Il existe néanmoins une généralisation naturelle, qui consiste
à étudier les solutions de l’équation

∇XΨ+A(X) ·Ψ = 0, ∀X ∈ TM,

où A est un endomorphisme symétrique de TM . Les spineurs solutions de cette dernière
équation ont été étudiés dans différents contextes sous le nom de spineurs de Killing
généralisés [3, 60–62].

Malgré les étapes que nous avons franchies pour arriver à la définition de ces derniers, ils
apparaissent naturellement lorsque l’on restreint des spineurs parallèles à des hypersurfaces.
Expliquons-nous. Supposons que (M, g) est une hypersurface d’une variété Riemannienne
spin (Z, gZ), munie de la métrique induite. Comme nous l’avons expliqué auparavant, M
hérite d’une structure spin induite par celle de Z, et les dérivées covariantes sur ΣZ et ΣM ,
notées respectivement ∇Z et ∇, sont reliées par l’dentité

∇XΨ+
A(X)

2
·Ψ = ∇Z

XΨ, ∀X ∈ TM,Ψ ∈ ΣZ|M ,

où cette fois A est le tenseur de Weingarten de M . Si Ψ est un spineur parallèle sur Z, i.e.
∇ZΨ = 0, sa restriction ψ := Ψ|M à M est solution de l’équation

∇Xψ = −A(X)

2
· ψ, ∀X ∈ TM,

et on reconnâıt l’équation des spineurs de Killing généralisés, introduite ci-dessus, pour
l’endomorphisme symétrique particulier A/2.

Cette construction par restriction à des hypersurfaces pose la question naturelle de la possi-
bilité d’une réciproque. En effet, donnons-nous un spineur ψ ∈ ΣM satisfaisant cette dernière



INTRODUCTION 17

équation pour un endomorphisme symétrique A de TM . On peut alors se demander si il ex-
iste une variété Riemannienne spin Z, telle que M se plonge isométriquement dans Z, que A
soit le tenseur de Weingarten de M et que ψ soit la restriction à M d’un spineur parallèle
sur Z ? De manière plus imagée, cela revient à demander si l’on peut ”épaissir” la variété M
en une variété Z, et prolonger ψ en un spineur parallèle sur Z.

La réponse à cette question se révèle positive dans le cas analytique mais négative en général
lorsque les données sont seulement lisses [3]. Ce problème pose la question de l’existence
des prolongements d’une métrique et d’un spineur, prolongements qui satisfont à certaines
équations différentielles, avec des conditions initiales sur l’hypersurface M . Il s’agit dès lors
d’un problème de Cauchy à résoudre. Pour cette raison, et afin de distinguer d’avantage
ces spineurs particuliers, nous les avons nommés spineurs de Cauchy, terminologie qui a
reçu l’approbation des différents auteurs ayant travaillé sur le sujet. Notons qu’un spineur de
Cauchy est accompagné d’un endomorphisme symétrique, appelé endormorphisme de Cauchy,
qui lui est naturellement associé par l’équation le définissant.

Le cas des variétés simplement connexes de dimension 3 est particulier, car les structures
additionnelles conduisent à supprimer les spineurs du problème. Ainsi, en dimension 3, un
endomorphisme symétrique A est associé à un spineur de Cauchy si et seulement si il vérifie
l’équation

0 = R(X,Y ) + ∗d∇A(X,Y ) +A(X) ∧A(Y ), X, Y ∈ TM,

où R est le tenseur de courbure de la variété ambiante, ”∗” est l’opérateur de Hodge et d∇ est
la dérivée covariante extérieure, définie par l’expression d∇A(X,Y ) = (∇XA)Y − (∇YA)X.
Dans le cas non simplement connexe, cette équation devient une condition nécessaire mais
non suffisante à l’existence d’un spineur de Cauchy associé à A.

C’est en utilisant cette équation constituve que nous démontrons les résultats du troisième
chapitre. On s’y intéresse à la structure de l’espace des endomorphismes de Cauchy : on
démontre que l’espace des déformations infinitésimales autour d’un endomorphisme donné
est de dimension finie. On résout également le problème de l’épaississement de la sphère
ronde S3 pour la donnée de certains spineurs de Cauchy. Enfin, on démontre des résultats
de classification des spineurs sur cette même variété.

Avant de clore la présentation de cette partie, il est nécessaire de signaler que même dans le
cas simple de S3, cette classification n’est pas complète. Deux familles d’exemples de spineurs
de Cauchy sont connues sur la sphère ronde [60–62], mais la question de savoir si ce sont les
seuls exemples reste ouverte.

Variétés localement conformément produit

L’étude des spineurs de Cauchy m’avait été suggérée afin d’inscrire mon projet de thèse
dans une continuité logique, en poursuivant un travail sur les spineurs après m’être formé
sur l’opérateur de Dirac. Toutefois, le cœur de la recherche de mon second directeur de
thèse, Andrei Moroianu, est désormais la géométrie conforme. Les problèmes qu’il avait à
me proposer, une fois rédigé l’article faisant l’objet du troisième chapitre, s’inscrivaient donc
dans cette dernière discipline. Cependant, il est à souligner que de nombreuses questions
concernant les spineurs de Cauchy restent en suspens, mais l’absence de piste pour y répondre,
même après de longues réflexions, semble devoir reculer leur résolution. C’est ainsi que
j’achevais ma transition depuis l’analyse vers la géométrie conforme, qui sera l’objet des
deux derniers chapitres de cette thèse.
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Les classes conformes sur les variétés on été introduites par Weyl dans son livre fondateur
Raum, Zeit, Materie [75], afin de construire une théorie unificatrice de l’électromagnétisme
et de la relativité. La volonté de Weyl était de rompre avec l’idée que l’espace-temps est
une variété Riemannienne, en considérant qu’il n’existe pas de mesure de distance absolue
définie en tout point de l’univers. Au lieu de cela, il a considéré que la notion de distance en
physique était régie par des principes proches de ceux de la théorie des connexions affines,
et que le déplacement parallèle était l’unique moyen de comparer des longueurs entre elles.
Bien que cette vision a été abandonnée par les physiciens, elle pose tout de même les bases
d’une large théorie mathématique.

Une classe conforme c sur une variété M est un ensemble de métriques Riemanniennes tel
que si g, g′ sont dans c, il existe une fonction lisse f sur M donnant l’identité e2fg = g′. La
donnée d’une métrique Riemannienne g induit donc naturellement une classe conforme en
considérant toutes les métriques multiples g par une fonction strictement positive. De cette
définition, il découle que la notion de distance n’a plus de sens sur une variété conforme,
alors que les angles sont les mêmes pour toutes les métriques de la classe.

Dans les mathématiques modernes, on opte pour une description différente des structures
conformes, qui permet de s’affranchir d’une métrique de référence. Définissons tout d’abord
pour k ∈ R le fibré des poids Lk := Fr(M)×

|det|
k
n
R, où Fr(M) est le fibré des repères surMn.

On remarque alors qu’étant donnée une métrique Riemannienne g dans la classe conforme c
sur M , son élément de volume vg : Fr(M) → R est identifié à la section de L−n donnée par
s(x) := [u, vh(u)] pour tout x ∈M , où u est un repère quelconque au-dessus de x. Via cette

identification, g ⊗ v
− 2

n
g est une section de Sym(T ∗M ⊗ T ∗M)⊗ L2, qui ne dépend pas de la

métrique choisie. Ainsi, cette section caractérise la classe conforme et peut être confondue
avec elle.

Afin de suivre l’idée originale de Weyl, il est nécessaire de définir une connexion sur le
fibré tangent TM pour comparer les vecteurs en utilisant le déplacement parallèle. Lorsque
l’on travaille en géométrie Riemannienne, il existe une connexion métrique sans torsion
préférentielle, la connexion de Levi-Civita. Dans le cadre de la géométrie conforme, on
s’intéresse plus largement aux connexions sans torsion qui préservent la classe conforme,
appelées structures de Weyl.

La classe conforme c définit une réduction de Fr(M) au groupe conforme COn(R), que l’on
notera PCOn

M . Ceci est mis en évidence par l’identification opérée précédemment entre c et
une section de Sym(T ∗M ⊗T ∗M)⊗L2. Une structure de Weyl est donc une connexion sans
torsion sur PCOn

M , ou de manière équivalente une connexion D sur TM qui préserve c.

En regardant désormais c comme un ensemble de métrique, la propriété de préservation de
c par D signifie que pour toute métrique g dans c, il existe une 1-forme θg, appelée forme
de Lee de D par rapport à g telle que Dg = −2θg ⊗ g. Dans cette dernière expression, le
coefficient −2, de peu d’importance, permet simplement des simplifications dans le jeu des
écritures.

Les structures de Weyl offrent un large choix de connexions sur TM , qui englobe notamment
les connexions de Levi-Civita des métriques dans c. En général, une structure de Weyl ne
préserve cependant aucune métrique dans la classe conforme. Lorsqu’il existe localement une
métrique préservée par D, cette structure de Weyl est dite fermée, et si cette métrique est
globale, elle est dite exacte. Cette terminologie provient directement de celle utilisée pour
les 1-formes : D est fermée (respectivement exacte) si et seulement si sa forme de Lee par
rapport à une métrique g ∈ c est fermée (respectivement exacte), propriété alors vraie pour
toutes les métriques dans c.
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Le relèvement D̃ d’une structure de Weyl D d’une variété conforme (M, c) à son revêtement

universel M̃ est une structure de Weyl exacte sur (M̃, c̃), où c̃ est le relèvement de la classe

conforme c. Ceci signifie qu’il existe une métrique h, définie sur M̃ à un facteur multiplicatif
près, telle que D̃ cöıncide avec la connexion de Levi-Civita de h. Les éléments de π1(M)

agissent alors sur M̃ comme des h-similitudes, qui se trouvent être uniquement des isométries
si et seulement si D est exacte. De plus, il existe une dualité entre les propriétés de (M, c,D)

et celles de (M̃, h).

Dans le quatrième chapitre, nous nous penchons sur l’étude des structures de Weyl fermées,
non-exactes, non-plates et à holonomie réductible sur les variétés compactes. Toutes ces
propriétés mises bout à bout semblent être un artifice de simplification hasardeux, mais
il répond pourtant à une logique précise que nous exposons maintenant. Soulignons tout
d’abord que les structures exactes n’ont qu’un intérêt limité en géométrie conforme, puisque
leur étude relève de géométrie Riemannienne, ce qui explique qu’on les écarte ici.

Il y a de cela quelques années, Florin Belgun et Andrei Moroianu ont formulé une conjecture
énonçant que les structures de Weyl fermées, non-exactes sur des variétés compactes étaient
soit irréductibles, soit plates [9]. Cet énoncé s’est toutefois révélé faux [52], et il a été
démontré par la suite, tout d’abord dans le cadre analytique par Vladimir S. Matveev et Yuri
Nikolayevsky [53], puis dans dans le cadre général des variétés lisses par Mickaël Kourganoff

[45], que la variété Riemannienne (M̃, h) pouvait également être le produit Riemannien Rq×
(N, gN ), où Rq, q ≥ 1, est un espace Euclidien, et (N, gN ) est une variété incomplète et
irréductible. Ce dernier cas constitue néanmoins la seule alternative possible. La connexion
D sur M est alors localement la connexion de Levi-Civita d’une métrique qui se relève en
une métrique produit sur M̃ . Pour cette raison, le triplet (M, c,D) est appelé une structure
localement conformément produit (ou LCP).

Le chapitre quatre se veut une ouverture à une classification des structures LCP. On y con-
struit de nouveaux exemples et l’on y démontre que les variétés LCP admettent des métriques
particulières, par rapport auxquelles la forme de Lee de D s’annule sur la distribution plate.
On y établit également un lien particulier entre la théorie des nombres et les structures LCP.

Connexions sans torsion sur les G-structures

Enfin, nous introduisons brièvement le dernier chapitre, qui est une simple note portant sur
les structures de Weyl. On s’y intéresse aux connexions compatibles avec une G-structure sur
une variété Mn, où G est un sous-groupe fermé de GLn(R) contenant SOn(R). On démontre
qu’il existe alors une telle connexion, et que celle-ci provient d’une structure de Weyl fermée
pour une certaine classe conforme sur M .

Ce résultat a été motivé par la lecture d’un exercice dans [58]. Si l’existence d’une telle
connexion sans torsion est une application classique de la théorie de la torsion intrinsèque,
le résultat, plus fort, que nous proposons, se démontre grâce à une classification des sous-
groupes de GLn(R) contenant SOn(R).





Chapter 1

δ-interactions on curves with
cusps

Ce chapitre est la retranscription d’un article co-écrit avec Konstantin Pankrashkin et paru
dans Journal of Mathematical Analysis and Applications, 491, 124287 (2020). Il porte sur
l’étude asymptotique des valeurs propres d’un opérateur de Schrödinger sur R2 avec un
potentiel singulier, porté par une courbe présentant un point de rebroussement.
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1.1 Introduction

Schrödinger operators with singular interactions supported by submanifolds represent an
important class of models in mathematical physics, and they have been the subject of an
intensive study during the last decades. In the present work we deal with two-dimensional
operators, so we assume that Γ is a metric graph embedded in the Euclidean space R2, and
we will be interested in the spectral study of the operators formally written as

Hα := −∆− αδ(x− Γ)

with δ being the Dirac distribution and α > 0 being the coupling constant. Such operators
describe the motion of particles confined to the graph Γ but allowing for a quantum tunneling
between its different parts. The above definition is made rigorous by considering first the
quadratic form

H1(R2) ∋ u 7→ hα(u, u) :=

∫∫
R2

|∇u|2dx− α

∫
Γ

u2ds,

where ds is the one-dimensional Hausdorff measure on Γ. Under suitable regularity assump-
tions on Γ (e.g. a finite union of bounded Lipschitz curves) the quadratic form hα is closed
and semibounded from below, and, hence, generate in a canonical way a unique self-adjoint
operator Hα in L2(R2) whose domain is contained in H1(R2) and such that∫∫

R2

uHαudx = hα(u, u)

for any function u in the domain. In informal language, the operator Hα is the distributional
Laplacian in R2\Γ with interface conditions [∂u]+αu = 0 on Γ, where [∂u] denotes a suitably
defined jump of the normal derivative of u on Γ, see e.g. [8,16] for a more detailed discussion.

The well-known review paper [21] provides an introduction to the topic and proposes a
number of research directions. An interesting problem setting is provided by the strong
coupling regime, i.e. the case α → +∞. It can be easily seen that the lowest eigenfunctions
of Hα concentrate exponentially near Γ, so that one might expect that an “effective operator”
on Γ governing the spectral behavior could come in play. This was first proved in [26] for
the case when Γ is a C4-smooth loop: for any fixed n ∈ N the operator Hα admits at least
n negative eigenvalues if α is sufficiently large, and the nth eigenvalue En(Hα) behaves as

En(Hα) = − 1
4 α

2 + En(P ) + O
(
logα
α

)
, (1.1.1)

where P is the operator on L2(Γ) acting in the arc-length parametrization as f 7→ −f ′′− 1
4 γ

2f
with γ being the curvature. A similar result holds for finite open arcs as well [24]. To our
knowledge, no sufficiently detailed analysis for non-smooth Γ was carried out so far. Being
based on the general machinery for problems with corners [13, 18, 42] one might expect that
if Γ is piecewise smooth with non-zero angles, then at least several lowest eigenvalues behave
as En(Hα) ≃ −µnα2 as α → +∞, where µn ∈ ( 14 , 1) are spectral quantities associated with
some model operators (so-called star leaky graphs) whose exact values are not known: we
refer to [17,20,23,50,69] for a number of estimates.

It seems that no work analyzed the case of non-Lipschitz Γ, and we make the first step in
this direction in the present text by considering curves with power cusps. More precisely, we
assume that Γ is a Jordan curve satisfying 0 ∈ Γ and the following two conditions:

Γ is C4-smooth at all points except at the origin,
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there exist ε0 > 0 and p > 1 such that

Γ ∩ (−ε0, ε0)2 =
{
(x1, x2) : x1 ∈ (0, ε0), |x2| = xp1

}
. (1.1.2)

The value p is indeed unique. It is easily seen that the essential spectrum of Hα covers the
half-axis [0,+∞) (use [16, Theorem 3.1] for example) and that for any α > 0 the discrete
spectrum is non-empty and finite. Our result on the asymptotics of individual eigenvalues of
Hα for large α involves an auxiliary one-dimensional operator A in L2(0,+∞) acting as

(Af)(x) = −f ′′(x) + xpf(x)

on the functions f satisfying the Dirichlet condition f(0) = 0. It is directly seen that A has
compact resolvent and that all its eigenvalues En(A) are strictly positive and simple.

Theorem 1.1.1. For any fixed n ∈ N one has, as α tends to +∞,

En(Hα) = −α2 + 2
2

p+2En(A)α
6

p+2 + O(α
6

p+2−η)

where η := min
{

p−1
2(p+2) ,

2(p−1)
(p+1)(p+2)

}
> 0.

Remark 1.1.2. For the quadratic cusp, p = 2, the eigenvalues En(A) can be computed
explicitly. The operator A in this case is unitarily equivalent to the restriction of the har-
monic oscillator to the odd functions, and its eigenvalues are the usual harmonic oscillator
eigenvalues with even numbers, i.e. En(A) = 4n− 1 for any n ∈ N. Hence, the asymptotics
of Theorem 1.1.1 takes the very explicit form

En(Hα) = −α2 + (4n− 1)
√
2α

3
2 + O(α

11
8 ).

We are not aware of other values of p > 1 admitting a simple expression for the eigenvalues
of A.

Remark 1.1.3. Both main and secondary terms in the result of Theorem 1.1.1 are different
from the asymptotics (1.1.1) for the smooth curves and from the expectations for the curves
with non-zero angles. In particular, the distance between the individual eigenvalues is of order
αk, where the power k = 6

p+2 can be given any value between 0 and 2 by a suitable choice

of p ∈ (1,+∞). Such a control of the eigenvalue gap asymptotics represents a new feature of
the model, which is not observed for δ-potentials supported by curves of a higher regularity.
Nevertheless we recall that similar effects can be seen in other boundary eigenvalue problems
by a suitable control of the boundary curvature, see e.g. [28, 70].

Remark 1.1.4. One should remark that the presence of a singularity does not involve any
problem with the semiboundedness of the form hα, and arbitrary values of p are allowed
due to the fact that both sides of Γ are involved. In fact, this directly follows from the fact
that Γ can be decomposed into two smooth open arcs, and the L2-trace of a function from
H1(R2) to such an arc is well-defined. This is in contrast with the one-sided Robin problems
for the Laplacian in a domain surrounded by Γ, for which the cusp is not allowed to be very
sharp: see e.g. [46] for the study of the eigenvalues and [54,66] for the issues concerning the
definition of the operator.

The proof of Theorem 1.1.1 is almost entirely based on the min-max tools for the study of
the eigenvalues: we recall them in Section 1.2. We first apply some truncations in order to
localize the problem near the cusp and then extend it to a suitable half-place and rescale it
in order to have a semiclassical formulation admitting a more explicit analysis (Section 1.3).
The resulting problem in the half-plane is analyzed by considering first the action of the



CHAPTER 1. δ-INTERACTIONS ON CURVES WITH CUSPS 24

operator in one of the variables and then by showing that only the projection onto the lowest
mode contributes to the individual eigenvalues. At some points the problem shows a number
of similarities to the case when Γ is a sharply broken line [20], and we were able to use a part
of that analysis. The overall proof scheme is rather classical, see e.g [28], but a big number
of various new technical ingredients and adapted variables are required in order to carry out
the complete study. In Section 1.4 we show the upper bound for En(Hα), which is rather
straightforward. The lower bound is obtained in Section 1.5, and is much more demanding,
both for the dimension reduction and for the analysis of the resulting one-dimensional effective
operator.

1.2 Preliminaries

We will recall some notation and basic facts on the min-max principle for the eigenvalues of
self-adjoint operators.

In this paper we only deal with real-valued operators, so we prefer to work with real Hilbert
spaces. Let H be a Hilbert space and u ∈ H, then we denote by ∥u∥H the norm of u.
For a linear operator T we denote D(T ) its domain. If the operator T is self-adjoint and
semibounded from below, then Q(T ) denotes the domain of its bilinear form, and the value
of the bilinear form on u, v ∈ Q(T ) will be denoted by T [u, v]. For n ∈ N := {1, 2, 3, . . . },
by En(T ) we denote the nth discrete eigenvalue of T (if it exists) when enumerated in the
non-decreasing order and taking the multiplicities into account.

Let H be an infinite-dimensional Hilbert space and T be a lower semibounded self-adjoint
operator in H. If T is with compact resolvent, we set Σ := +∞, otherwise let Σ denote the
bottom of the essential spectrum of T . The nth Rayleigh quotient Λn(T ) of T is defined by

Λn(T ) := inf
L⊂Q(T )
dimL=n

sup
u∈L\{0}

T [u, u]

∥u∥2H
.

The well-known min-max principle, see e.g. Section 4.5 of [22], states that one and only one
of the following assertions is true:

(a) Λn(T ) < Σ for all n, lim
m→+∞

Λm(T ) = Σ and En(T ) = Λn(T ) for all n.

(b) Σ < +∞ and there is N < +∞ such that the interval (−∞,Σ) contains exactly N
eigenvalues of T counted with multiplicity and for all n ≤ N , one has Λn(T ) = En(T )
and Λm(T ) = Σ for all m > N .

In what follows we will actively work with the Rayleigh quotients of various operators instead
of eigenvalues as the former are easier to deal with. The passage from the Rayleigh quotients
to the eigenvalues will be done at suitable points by simply checking that the values are below
the essential spectrum.

One of the most classical applications of the min-max principle is recalled in the next assertion
(the proof is by a direct application of the definition). It will be used systemically through
the whole text.

Proposition 1.2.1. Let T and T ′ be lower semibounded self-adjoint operators in infinite-
dimensional Hilbert spaces H and H′ respectively. Assume that there exists a linear map
J : Q(T ) → Q(T ′) such that

∥Ju∥H′ = ∥u∥H, T ′[Ju, Ju] ≤ T [u, u] for all u ∈ Q(T ).



CHAPTER 1. δ-INTERACTIONS ON CURVES WITH CUSPS 25

Then for any n ∈ N there holds Λn(T
′) ≤ Λn(T ).

At the last steps of the proof of Theorem 1.1.1 we will also need the following result, which is
a slight reformulation of [25, Lemma 2.1] or of [71, Lemma 2.2]. As some details are different,
we prefer to give a complete proof, which is quite short.

Proposition 1.2.2. Let H, H′ be two infinite-dimensional Hilbert spaces and T be a non-
negative self-adjont operator in H and T ′ be a lower semibounded self-adjoint operator in H′.
Assume that there exist a linear map J : Q(T ) → Q(T ′) and non-negative numbers δ1 and δ2
such that for all u ∈ Q(T ) there holds

∥u∥2H − ∥Ju∥2H′ ≤ δ1
(
T [u, u] + ∥u∥2H

)
,

T ′[Ju, Ju]− T [u, u] ≤ δ2
(
T [u, u] + ∥u∥2H

)
,

and that for some n ∈ N one has the strict inequality

δ1
(
Λn(T ) + 1

)
< 1, (1.2.1)

then

Λn(T
′) ≤ Λn(T ) +

(
δ1Λn(T ) + δ2

)(
Λn(T ) + 1

)
1− δ1

(
Λn(T ) + 1

) .

Proof. During the proof we abbreviate λn := Λn(T ). By (1.2.1), for any sufficiently small
ε > 0 one has

δ1(λn + 1 + ε) < 1. (1.2.2)

In view of the definition of λn, one can find an n-dimensional subspace F ⊂ Q(T ) such that
T [u, u] ≤ (λn + ε)∥u∥2H for all u ∈ F . Therefore, for any u ∈ F one has

∥Ju∥2H′ ≥ (1− δ1)∥u∥2H − δ1T [u, u] ≥
(
1− δ1(λn + 1 + ε)

)
∥u∥2H.

The first factor on the right-hand side is strictly positive by (1.2.2), and it follows that
J : F → J(F ) is injective. In particular, dimJ(F ) = n. Therefore, for u ∈ F \ {0} one has
Ju ̸= 0 and

T ′[Ju, Ju]

∥Ju∥2H′
≤
T [u, u] + δ2

(
T [u, u] + ∥u∥2H

)
∥Ju∥2H′

≤
T [u, u] + δ2

(
T [u, u] + ∥u∥2H

)(
1− δ1(λn + 1 + ε)

)
∥u∥2H

≤ λn + ε+ δ2(λn + 1 + ε)

1− δ1(λn + 1 + ε)

= λn +
λn + ε+ δ2(λn + 1 + ε)− λn

(
1− δ1(λn + 1 + ε)

)
1− δ1(λn + 1 + ε)

= λn +
ε+ (δ1λn + δ2)(λn + 1 + ε)

1− δ1(λn + 1 + ε)
.

Due to the definition of Λn(T
′) one has

Λn(T
′) ≤ sup

v∈J(F )\{0}

T ′[v, v]

∥v∥2H′
= sup
u∈F\{0}

T ′[Ju, Ju]

∥Ju∥2H′

≤ λn +
ε+ (δ1λn + δ2)(λn + 1 + ε)

1− δ1(λn + 1 + ε)
,

and the claim follows by sending ε to zero.
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1.3 Reduction to a problem in a moving half-plane

We first apply some truncations in order to obtain a model problem which only takes into
account the cusp and neglects the rest of Γ. For ε > 0 we denote

Γε :=
{
(x1, x2) : x1 ∈ (0, ε), |x2| = xp1

}
and consider the half-plane

Ωε := (−∞, ε)× R.

One clearly has Γε ⊂ Ωε, and by Hα,ε we denote the self-adjoint operator in L
2(Ωε) given by

Hα,ε =

∫∫
Ωε

|∇u|2dx− α

∫
Γε

u2ds, Q(Hα,ε) = H1
0 (Ωε)

where H1
0 is the standard Sobolev space. We start with the following result, taking ε0 from

(1.1.2):

Lemma 1.3.1. Let ε ∈ (0, ε0) and n ∈ N. Assume that

for some c > 1
4 there holds Λn(Hα,ε) ≤ −cα2 for large α > 0, (1.3.1)

then Λn(Hα) = Λn(Hα,ε) + O(1) for α→ +∞.

Proof. The proof will be in two steps. We first reduce the problem to a bounded neighbor-
hood of the origin, and then to the half-plane Ωε, as the latter is easier to analyze.

For ε > 0 denote □ε := (−ε, ε)2, then the assumption (1.1.2) rewrites as

there exists ε0 > 0 such that Γ ∩□ε0 = Γε0 ,

and then for any ε ∈ (0, ε0) one has Γ ∩□ε = Γε as well; we remark that we can take ε0 ≤ 1
in condition (1.1.2).

From now on let us pick some ε ∈ (0, ε0) and let χ1, χ2 ∈ C∞(R2) such that χ2
1+χ

2
2 = 1 and

χ1 = 1 in □ ε
2
, χ1 = 0 outside □ε.

An easy computation shows that for any u ∈ Q(Hα) ≡ H1(R2) one has

Hα[u, u] = Hα[χ1u, χ1u] +Hα[χ2u, χ2u]−
∫
R2

(
|∇χ1|2 + |∇χ2|2

)
u2dx

≥ Hα[χ1u, χ1u] +Hα[χ2u, χ2u]− C∥u∥2L2(R2), (1.3.2)

where C =
∥∥|∇χ1|2 + |∇χ2|2

∥∥
∞.

Denote by Dα,ε the self-adjoint operator in L2(□ε) given by

Dα,ε[u, u] =

∫∫
□ε

|∇u|2dx− α

∫
Γε

u2ds, Q(Dα,ε) = H1
0 (□ε).

Due to suppχ1 ⊂ □ε we have

χ1u ∈ Q(Dα,ε), Hα[χ1u, χ1u] = Dα,ε[χ1u, χ1u].
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On the other hand, by the initial assumption of Γ (C4-smoothness except at the origin) one
can find a C4-smooth Jordan curve Γ′ which coincides with Γ outside □ ε

2
. Denote by H ′

α

the self-adjoint operator in L2(R2) given by

H ′
α[u, u] =

∫∫
R2

|∇u|2 dx− α

∫
Γ′
u2 ds, Q(H ′

α) = H1(R2).

As suppχ2 ∩□ ε
2
= ∅, one has Hα[χ2u, χ2u] = H ′

α[χ2u, χ2u], and the inequality (1.3.2) takes
the form

Hα[u, u] + C∥u∥2L2(R2) ≥ Dα,ε[χ1u, χ1u] +H ′
α[χ2u, χ2u]. (1.3.3)

Noting that J : L2(R2) ∋ u 7→ (χ1u, χ2u) ∈ L2(□ε) ⊕ L2(R2) is isometric and that (1.3.3)
can be rewritten as

Hα[u, u] + C∥u∥2L2(R2) ≥ (Dα,ε ⊕H ′
α)[Ju, Ju],

we conclude by the min-max principle (Proposition 1.2.1) that

Λn(Hα) ≥ Λn(Dα,ε ⊕H ′
α)− C for all n ∈ N, α > 0.

As discussed in the introduction, see e.g. Eq. (1.1.1), due to the smoothness of Γ′, for some
C0 > 0 one has H ′

α ≥ − 1
4 α

2 − C0 for large α > 0. Hence, if

for some c > 1
4 there holds Λn(Dα,ε) ≤ −cα2 for large α > 0, (1.3.4)

then Λn(Dα,ε ⊕H ′
α) = Λn(Dα,ε), and then Λn(Hα) ≥ Λn(Dα,ε)−C for large α > 0. On the

other hand, by the min-max principle one directly has Λn(Hα) ≤ Λn(Dα,ε). Therefore, the
assumption (1.3.4) implies

Λn(Hα) = Λn(Dα,ε) + O(1) for α→ +∞. (1.3.5)

Now we need to pass from Dα,ε to Hα,ε, which is done in a very similar way. First, by the
min-max principle we have

Λn(Hα,ε) ≤ Λn(Dα,ε) (1.3.6)

for any α > 0. Furthermore, let us pick ξ1, ξ2 ∈ C∞(R2) such that ξ21 + ξ22 = 1 and

ξ1(x) = 1 for x ∈ (0,+∞)× (−εp, εp),
ξ1(x) = 0 for x /∈ (−ε,+∞)× (−ε, ε).

For any u ∈ Q(Hα,ε) we have then, with W (x) := |∇ξ1|2 + |∇ξ2|2 ≤ C ′,

Hα,ε[u, u] = Hα,ε[ξ1u, ξ1u] +Hα,ε[ξ2u, ξ2u]−
∫∫

Ωε

W u2dx

≡ Dα,ε[ξ1u, ξ1u] +

∫∫
Ωε

∣∣∇(ξ2u)
∣∣2dx−

∫∫
Ωε

W u2dx

≥ Dα,ε[ξ1u, ξ1u]− C ′∥u∥2L2(Ωε)
.

As in the first part of the proof, this implies

Λn(Hα,ε) ≥ Λn(Dα,ε ⊕O)− C ′ (1.3.7)

with O being the zero operator in L2(Ωε). Let (1.3.1) hold, then by (1.3.7) we also have
Λn(Dα,ε ⊕ O) ≤ −cα2 for large α. Then Λn(Dα,ε ⊕ O) = Λn(Dα,ε), and (1.3.4) holds,
which implies the estimate (1.3.5). At the same time, Eq. (1.3.7) reads now as Λn(Hα,ε) ≥
Λn(Dα,ε)−C ′, and together with (1.3.6) we arrive at Λn(Dα,ε) = Λn(Hα,ε) +O(1) for large
α. Substituting this estimate into (1.3.5) we prove the claim.
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Let us apply an additional scaling in order to pass to the semiclassical framework. For h > 0
and b > 0 consider the self-adjoint operator Fh,b in L

2(Ωb) defined for Q(Fh,b) = H1
0 (Ωb) by

Fh,b[u, u] =

∫∫
Ωb

(
h2(∂1u)

2 + (∂2u)
2
)
dx

−
∫ b

0

√
1 + p2h2s2(p−1)

(
u(s, sp)2 + u(s,−sp)2

)
ds.

Lemma 1.3.2. For any ε > 0 and α > 0 and n ∈ N one has

Λn(Hα,ε) = α2Λn(Fh,b) for h = α
1−p
p , b = εα

1
p ≡ εh

1
1−p .

Proof. We prefer to give a detailed explicit computation. Consider the unitary operator
Θ : L2(Ωb) → L2(Ωε) given by

(Θu)(x1, x2) = α
1
2 (

1
p+1) u(α

1
px1, αx2),

then ΘQ(Fh,b) = Q(Hα,ε). By writing the one-dimensional Hausdorff measure on Γε in an
explicit form, for any u ∈ Q(Hα,ε) we have

Hα,ε[u, u] =

∫∫
Ωε

[
(∂1u)

2 + (∂2u)
2
]
dx

− α

∫ ε

0

√
1 + p2s2p−2

(
u(s, sp)2 + u(s,−sp)2

)
ds.

Then for any v ∈ Q(Fh,b) one obtains

Hα,ε[Θv,Θv] =α
1
p+1

∫∫
Ωε

[
α

2
p ∂1v(α

1
px1, αx2)

2

+ α2∂2v(α
1
px1, αx2)

2
]
dx1dx2

− α
1
p+2

∫ ε

0

√
1 + p2s2(p−1)

(
v(α

1
p s, αsp)2

+ v(α
1
p s,−αsp)2

)
ds.

Using the new variables y1 = α
1
px1, x2 = αy2, t = α

1
p s we rewrite it as

Hα,ε[Θv,Θv] =

∫∫
Ω

εα
1
p

[
α

2
p ∂1v(y1, y2)

2 + α2∂2v(y1, y2)
2
]
dy1dy2

− α2

∫ εα
1
p

0

√
1 + p2α

2−2p
p s2p−2

(
v(t, tp) + v(t,−tp)

)
dt

= α2Fh,b[v, v],

which shows that Hα,ε is unitarily equivalent to α2Fh,b.

By combining Lemma 1.3.1 with Lemma 1.3.2 we arrive at the following reformulation:

Lemma 1.3.3. Let ε > 0, h0 > 0, n ∈ N be such that

Λn(F
h,εh

1
1−p

) ≤ −c for all h ∈ (0, h0) and some c > 1
4 . (1.3.8)

Then Λn(Hα) = α2Λn(F
h,εh

1
1−p

) + O(1) for h := α
1−p
p and α→ +∞.
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1.4 Upper bound

1.4.1 Reduction to a one-dimensional effective operator

For some k > 0, to be chosen later, denote

Ω′
h := (0, hk)× R

and denote by Gh the self-adjoint operator in L2(Ω′
h) given by

Gh[u, u] =

∫∫
Ω′

h

(
h2(∂1u)

2 + (∂2u)
2
)
dx−

∫ hk

0

(
u(s, sp)2 + u(s,−sp)2

)
ds

and Q(Gh) = H1
0 (Ω

′
h). For sufficiently small h > 0 one has the inclusion Ω′

h ⊂ Ω
εh

1
1−p

, and

for u ∈ H1
0 (Ω

′
h) we denote u0 its extension by zero to Ω

εh
1

1−p
, then Fh,b[u0, u0] ≤ Gh[u, u].

It follows by the min-max principle that:

Lemma 1.4.1. For any ε > 0 there exists h0 > 0 such that for h ∈ (0, h0) and n ∈ N there
holds Λn(F

h,εh
1

1−p
) ≤ Λn(Gh).

In order to study Gh we will use some facts on a simple one-dimensional operator Tx, x > 0,
which is the self-adjoint operator in L2(R) given by

Tx[f, f ] =

∫
R
f ′(y)2dy −

(
f(x)2 + f(−x)2

)
, Q(Tx) = H1(R). (1.4.1)

We recall some simple properties of Tx established in [20, Proposition 2.3]. The bottom of
the spectrum of Tx is a simple isolated eigenvalue, which we denote by σ(x) due to its special
role in what follows,

σ(x) := Λ1(Tx), x > 0,

and we denote by Ψx the respective eigenfunction chosen L2-normalized and positive. We
will use the following properties of their dependence on x > 0:

Proposition 1.4.2. The following holds:

(a) −1 < σ(x) < − 1
4 for all x ∈ (0,+∞),

(b) σ is non-decreasing,

(c) σ(x) = −1 + 2x+ O(x2) for x→ 0+,

(d) the function x 7→ ∥∂xΨx∥L2(R) is bounded on (0,+∞),

(e) for x < 1 one has Λ2(Tx) = 0.

The above properties allow one to give an upper bound for the Rayleigh quotients of Gh
by those of a one-dimensional operator on (0, hk). Namely, denote by Kh the self-adjoint
operator in L2(0, hk) given by

Kh[f, f ] =

∫ hk

0

(
h2f ′(x)2 + 2xpf(x)2

)
dx, Q(Kh) = H1

0 (0, h
k). (1.4.2)
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Lemma 1.4.3. There exists a0 > 0 such that

Λn(Gh) ≤ −1 + Λn(Kh) + a0(h
2+2k(p−1) + h2kp) for all h > 0 and n ∈ N.

Proof. If f ∈ H1
0 (0, h

k), then for the function u ∈ H1
0 (Ω

′
h) defined by

u(x1, x2) = f(x1)Ψxp
1
(x2)

we have ∥f∥L2(0,hk) = ∥u∥L2(Ω′
h)

and

∫∫
Ω′

h

(∂2u)
2dx−

∫ hk

0

(
u(s, sp)2 + u(s,−sp)2

)
ds =

∫ hk

0

σ(xp1)f(x1)
2dx1.

The L2-normalization of Ψxp
1
implies∫

R
Ψxp

1
(x2) ∂x1

Ψxp
1
(x2)dx2 =

1

2
∂x1

∥Ψxp
1
∥2L2(R) = 0,

hence, ∫∫
Ω′

h

(∂1u)
2dx =

∫ hk

0

∫
R

[
f ′(x1)

2Ψxp
1
(x2)

2

+ 2f(x1)f
′(x1)Ψxp

1
(x2)∂x1Ψxp

1
(x2)

+ f(x1)
2(∂x1Ψxp

1
(x2))

2
]
dx2 dx1

=

∫ hk

0

(
f ′(x1)

2 + w(x1)f(x1)
2
)
dx1,

where we denote w(x1) :=
∥∥∂x1Ψxp

1

∥∥2
L2(R) ≡ p2x

2(p−1)
1

∥∥(∂zΨz)z=xp
1

∥∥2
L2(R), and

Gh[u, u] =

∫ hk

0

(
h2f ′(x1)

2 +
[
σ(xp1) + h2w(x1)

]
f(x1)

2
)
dx1

Due to Proposition 1.4.2(c,d) for a sufficiently large a0 > 0 one can estimate

p2
∥∥(∂zΨz)z=xp

1

∥∥2
L2(R) ≤ a0, σ(xp1) ≤ −1 + 2xp1 + a0h

2kp, x1 ∈ (0, hk),

and then

Gh[u, u] ≤ −∥f∥2L2(0,hk) +

∫ hk

0

(
h2f ′(x1)

2 + 2xp1f(x1)
2
)
dx1

+ a0(h
2+2k(p−1) + h2kp)∥f∥2L2(0,hk).

Therefore, the linear operator J : Q(Kh) ∋ f 7→ u ∈ Q(Gh) satisfies, for all f ∈ Q(Kh), the
equality ∥Jf∥L2(Ω′

h)
= ∥f∥L2(0,hk) and the inequality

Gh[Jf, Jf ] ≤ −∥f∥2L2(0,hk) +Kh[f, f ] + a0(h
2+2k(p−1) + h2kp)∥f∥2L2(0,hk),

which implies the claim by the min-max principle.
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1.4.2 Analysis of the effective operator

Now we are reduced to the study of the eigenvalues of Kh for small h > 0. We will show
that the principal term of their asymptotics is determined by the eigenvalues of the model
operator A.

For µ > 0, we introduce first two auxiliary operators CµN/D, which are the self-adjoint oper-

ators in L2(0, µ) given by

CµN/D[f, f ] =

∫ µ

0

(
f ′(x)2 + xpf(x)2

)
dx,

Q(CµN ) =
{
f ∈ H1(0, µ) : f(0) = 0

}
, Q(CµD) = H1

0 (0, µ).

An elementary scaling argument gives the following result:

Lemma 1.4.4. For any n ∈ N and h > 0 one has

Λn(Kh) = 2
2

2+ph
2p

2+pΛn(C
µ
D), µ := 2

1
2+phk−

2
2+p .

Remark that if k < 2
2+p then in the above representation one has µ → +∞ as h → 0+. Let

us now study the behavior of the eigenvalues of CµN/D for large µ > 0.

Lemma 1.4.5. Let n ∈ N be fixed, then Λn(C
µ
N/D) = Λn(A) + O(µ−2) for µ→ +∞.

Proof. Directly by the min-max principle, for any µ > 0 one has the inequality

Λn(A) ≤ Λn(C
µ
D). (1.4.3)

Furthermore, consider the self-adjoint operator Dµ in L2(µ,+∞) given by

Dµ[f, f ] =

∫ ∞

µ

(
f ′(x)2 + xpf(x)2

)
dx,

Q(Dµ) =
{
f ∈ H1(µ,+∞) : x

p
2 f ∈ L2(µ,+∞)

}
,

then one clearly has Λn(A) ≥ Λn(C
µ
N ⊕Dµ) for any µ > 0. The left-hand side is independent

of µ, while Dµ ≥ µp → +∞ as µ→ +∞. Therefore, there exists µn > 0 such that

Λn(A) ≥ Λn(C
µ
N ) for µ ≥ µn. (1.4.4)

Now let χ1, χ2 ∈ C∞(R) such that

χ2
1 + χ2

2 = 1, χ1(t) = 1 for t ≤ 1
2 , χ1(t) = 0 for t ≥ 3

4 ,

and denote χj,µ := χj(·/µ). Consider the self-adjoint operator D′
µ in L2(µ2 , µ) given by

D′
µ[f, f ] =

∫ µ

µ
2

(
f ′(x)2 + xpf(x)2

)
dx, Q(D′

µ) = H1
(
µ
2 , µ

)
.

Then a direct computation shows that for any f ∈ Q(CµN ) one has, with K :=
∥∥(χ′

1)
2 +

(χ′
2)

2
∥∥
∞,

CµN [f, f ] = CµN [χ1,µf, χ1,µf ] + CµN [χ2,µf, χ2,µf ]
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−
∫ µ

0

(
(χ′

1,µ)
2 + (χ′

2,µ)
2
)
f2dx

≥ CµN [χ1,µf, χ1,µf ] + CµN [χ2,µf, χ2,µf ]−Kµ−2∥f∥2L2(0,µ)

= CµD[χ1,µf, χ1,µf ] +D′
µ[χ2,µf, χ2,µf ]−Kµ−2∥f∥2L2(0,µ),

= (CµD ⊕ D′
µ)[Jf, Jf ]−Kµ−2∥f∥2L2(0,µ),

Jf := (χ1,µf, χ2,µf),

which implies Λn(C
µ
N ) ≥ Λn(C

µ
D ⊕D′

µ)−Kµ−2 for any µ > 0. By (1.4.4), for µ→ +∞ the
left-hand side of the last inequality remains bounded, while D′

µ ≥ µp2−p → +∞. Therefore,
the value of µn in (1.4.4) can be assumed such that, in addition,

Λn(C
µ
N ) ≥ Λn(C

µ
D)−Kµ−2 for any µ ≥ µn. (1.4.5)

By putting together the above estimates, for µ ≥ µn we obtain

Λn(C
µ
D)−K/µ2

(1.4.5)

≤ Λn(C
µ
N )

(1.4.4)

≤ Λn(A)
(1.4.3)

≤ Λn(C
µ
D),

which implies first Λn(C
µ
D) = Λn(A) + O(µ−2) and then Λn(C

µ
N ) = Λn(C

µ
D) + O(µ−2) =

Λn(A) + O(µ−2).

By combining Lemma 1.4.4 with Lemma 1.4.5 we arrive at

Lemma 1.4.6. For any n ∈ N and k ∈ (0, 2
2+p ) there holds

Λn(Kh) = 2
2

2+ph
2p

2+p Λn(A) + O(h2−2k) as h→ 0+.

1.4.3 Proof of the upper eigenvalue bound

The substitution of the asymptotics of Lemma 1.4.6 (passage fromKh to A) into Lemma 1.4.3
(passage from Gh to Kh) shows that for every fixed n ∈ N and k ∈ (0, 2

2+p ) there holds

Λn(Gh) ≤ −1 + 2
2

2+ph
2p

2+p Λn(A) + O(h2+2k(p−1) + h2kp + h2−2k)

as h→ 0+. For k ∈ (0, 2
2+p ) one has

2 + 2k(p− 1) = 2kp+ 2(1− k) ≥ 2kp,

O(h2+2k(p−1) + h2kp + h2−2k) = O(h2kp + h2−2k).

Taking k := 1
1+p ∈ (0, 2

2+p ) and then applying Lemma 1.4.1 we see that for any ε > 0 and

n ∈ N there holds, as h→ 0+,

Λn(F
h,εh

1
1−p

) ≤ Λn(Gh) ≤ −1 + 2
2

2+ph
2p

2+p Λn(A) + O(h
2p

1+p ) < − 1
2 . (1.4.6)

It follows that the assumption (1.3.8) is satisfied for any ε > 0 and n ∈ N, which gives a
stronger version of Lemma 1.3.3:

Lemma 1.4.7. For any n ∈ N and ε > 0 there holds

Λn(Hα) = α2Λn(F
h,εh

1
1−p

) + O(1) for h := α
1−p
p and α→ +∞. (1.4.7)
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Applying again (1.4.6) to the right-hand side of (1.4.7) one arrives at

Λn(Hα) ≤ −α2 + 2
2

2+pΛn(A)α
6

2+p + O(α
4

1+p )

≡ −α2 + 2
2

2+pΛn(A)α
6

2+p + O(α
6

2+p−η), α→ +∞.

where η := 6
2+p − 4

1+p = 2(p−1)
(p+1)(p+2) > 0. As the upper bound obtained for Λn(Hα) is

strictly negative for large α, it lies below the essential spectrum of Hα which is [0,+∞) as
we emphasize it in the introduction, and it follows by the min-max principle that Λn(Hα) is
the nth eigenvalue of Hα.

1.5 Lower bound

1.5.1 Reduction to a smaller half-plane

Now we need to obtain a lower bound for the eigenvalues of F
h,εh

1
1−p

with a suitably chosen

ε > 0. Recall that

F
h,εh

1
1−p

[u, u] =

∫∫
Ω

εh
1

1−p

(
h2(∂1u)

2 + (∂2u)
2
)
dx

−
∫ εh

1
1−p

0

√
1 + p2h2s2(p−1)

(
u(s, sp)2 + u(s,−sp)2

)
ds.

Let k > 0, to be chosen later, and h > 0 sufficiently small to have hk < εh
1

1−p . Let Rh be
the self-adjoint operator in L2(Ωhk) given by

Rh[u, u] =

∫∫
Ω

hk

(
h2(∂1u)

2 + (∂2u)
2
)
dx

−
∫ hk

0

√
1 + p2h2+2k(p−1)

(
u(s, sp)2 + u(s,−sp)2

)
ds,

Q(Rh) = H1(Ωhk).

Lemma 1.5.1. Let k ∈
(
0, 2

2+p

)
. There exists ε1 > 0 such that for any ε ∈ (0, ε1) and any

n ∈ N there holds
Λn(F

h,εh
1

1−p
) ≥ Λn(Rh) as h→ 0+.

For the proof of Lemma 1.5.1 we need an auxiliary one-dimensional operator, which will also
play a role on later steps. For x > 0 and β > 0 we denote by Tx,β the self-adjoint operator
in L2(R) given by

Tx,β [f, f ] =

∫
R
f ′(y)2dy − β

(
f(x)2 + f(−x)2

)
, Q(Tx,β) = H1(R),

which is closely related to the operator Tx from (1.4.1) and Proposition 1.4.2: a simple scaling
argument shows that Tx,β is unitarily equivalent to β2Tβx and Λn(Tx,β) = β2Λn(Tβx) for
any n ∈ N. In particular,

Λ1(Tx,β) = β2σ(βx).
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Proof of Lemma 1.5.1. By considering separately the integrals for x1 < hk and x1 > hk

we arrive at F
h,εh

1
1−p

[u, u] = I1 + I2 with

I1 =

∫∫
Ω

hk

(
h2(∂1u)

2 + (∂2u)
2
)
dx

−
∫ hk

0

√
1 + p2h2x

2(p−1)
1

(
u(s, sp)2 + u(s,−sp)2

)
ds,

I2 =

∫ εh
1

1−p

hk

[ ∫
R

(
h2(∂1u)

2 + (∂2u)
2
)
dx2

−
√
1 + p2h2x

2(p−1)
1

(
u(x1, x

p
1)

2 + u(x1,−xp1)2
)]
dx1,

and one has obviously I1 ≥ Rh[u1, u1] with u1 := u|Ω
hk
.

Now one needs a lower bound for I2. First, by dropping the non-negative term (∂1u)
2 and

using the above one-dimensional operator operator Tx,β we estimate

I2 ≥
∫ εh

1
1−p

hk

λ(x1, h)

∫
R
u(x1, x2)

2dx2dx1,

where we denoted

λ(x1, h) := Λ1

(
T
xp
1 ,

√
1+p2h2x

2(p−1)
1

)
≡
(
1 + p2h2x

2(p−1)
1

)
σ
(√

1 + p2h2x
2(p−1)
1 xp1

)
.

To estimate λ(x1, h) from below let us pick q ∈ (0, 1
p−1 ), then for small h one has hk < h−q <

εh
1

1−p .

Consider first the values x1 ∈ (hk, h−q). Due to√
1 + p2h2x

2(p−1)
1 xp1 > xp1 > hkp,

by Proposition 1.4.2(a,b) one obtains

σ(hkp) ≤ σ
(√

1 + p2h2x
2(p−1)
1 xp1

)
< 0.

On the other hand, 1 + p2h2x
2(p−1)
1 < 1 + p2h2−2q(p−1), which together with the preceding

estimate gives(
1 + p2h2x

2(p−1)
1

)
σ
(√

1 + p2h2x
2(p−1)
1 xp1

)
≥ (1 + p2h2−2q(p−1))σ(hkp).

Using Proposition 1.4.2(c) to estimate σ(hkp), for small h > 0 we arrive at

λ(x1, h) ≥ (1 + p2h2−2q(p−1))
(
− 1 +

3

2
hkp
)
≥ −1 + 3

2h
kp − p2h2−2q(p−1).

As k and q were rather arbitrary so far, we may assume that

kp < 2, 0 < q < 2−kp
2(p−1) ≡

1−kp2
p−1 < 1

p−1 ,
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then kp < 2− 2q(p− 1) and h2−2q(p−1) = o(hkp). Therefore,

λ(x1, h) ≥ −1 + hkp for x1 ∈ (hk, h−q) and h→ 0+. (1.5.1)

Keeping the above value of q consider now x1 ∈
(
h−q, εh

1
1−p
)
. We have first√

1 + p2h2x
2(p−1)
1 xp1 > xp1 > h−pq

and then, by Proposition 1.4.2(a,b),

σ(h−pq) ≤ σ
(√

1 + p2h2x
2(p−1)
1 xp1

)
< 0.

In addition, 1 + p2h2x
2(p−1)
1 ≤ 1 + p2ε2(p−1), and σ(h−pq) < 0, therefore,

λ(x1, h) ≥ (1 + p2ε2(p−1))σ(h−pq).

In view of Proposition 1.4.2(b,c), one can choose δ > 0 sufficiently small such that σ(h−pq) ≥
−1+2δ for small h > 0. In addition, we may take ε1 > 0 sufficiently small to have p2ε

2(p−1)
1 <

δ, then for any ε ∈ (0, ε1) one λ(x1, h) ≥ (1+δ)(−1+2δ) ≥ −1+δ for small h. By combining

with (1.5.1) we see that λ(x1, h) ≥ −1+ hkp for all x1 ∈ (hk, εh
1

1−p ) if h is sufficiently small,
and then

I2 ≥ (−1 + hkp)

∫ εh
1

1−p

hk

∫
R
u(x1, x2)

2dx2dx1.

We summarize the above estimates as follows: there exist ε ∈ (0, ε1) and h1 > 0 such that
for all h ∈ (0, h1) and u ∈ Q(F

h,εh
1

1−p
) there holds

F
h,εh

1
1−p

≥ Rn[u1, u1] + (−1 + hkp)∥u2∥2L2(Ω
εh

1
1−p

\Ω
hk )
,

u1 := u|Ω
hk
, u2 := u|Ω

εh
1

1−p
\Ω

hk
,

and then for any fixed n ∈ N and small h one has

Λn(F
h,εh

1
1−p

) ≥ min
{
Λn(Rh),−1 + hkp

}
. (1.5.2)

The min-max principle shows that Λn(Rh) ≤ Λn(Gh) for the operator Gh from Subsec-

tion 1.4.1, and the estimate (1.4.6) for Λn(Gh) yields Λn(Rh) ≤ −1 + O(h
2p

2+p ). For

k ∈ (0, 2
2+p ) one has h

2p
2+p = o(hkp) and then Λn(Rh) < −1 + hkp. The substitution into

(1.5.2) concludes the proof.

1.5.2 Reduction to a one-dimensional problem

In the present section we will provide a lower bound for the eigenvalues of Λn(Rh) in terms
of a one-dimensional operator. Namely, consider the function

V : x 7→

{
1, x < 0,

2xp, x > 0
,
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and the operator Zh in L2(−∞, hk) given by Zhf = −h2f ′′ + V f with Neumann condition
at the right end, f ′(hk) = 0, i.e.

Zh[f, f ] = h2
∫ hk

−∞
f ′(x)2dx+

∫ 0

−∞
f(x)2dx+ 2

∫ hk

0

xpf(x)2dx

with Q(Zh) = H1(−∞, hk).

Lemma 1.5.2. For any n ∈ N, k ∈ (0, 2
2+p ) and s > 0 there holds

Λn(Rh) ≥ −1 + Λn(Zh0
) + O(h2+2k(p−1)−s + h2kp), h→ 0+,

where we denote
h0 := h

√
1− hs.

The proof will occupy the rest of the subsection.

It will be convenient to use the one-dimensional operator

Lx1,h := T
xp
1 ,
√

1+p2h2+2k(p−1)
,

its first eigenvalue

κ(x1, h) := Λ1(Lx1,h) ≡ Λ1

(
T
xp
1 ,
√

1+p2h2+2k(p−1)

)
≡
(
1 + p2h2+2k(p−1)

)
σ
(√

1 + p2h2+2k(p−1) xp1
)
,

and the associated eigenfunction Φx1,h chosen positive and normalized by ∥Φx1,h∥L2(R) = 1.
In terms of the first eigenfunction Ψx of Tx one has clearly

Φx1,h(t) =
4
√
1 + p2h2+2k(p−1) Ψ√

1+p2h2+2k(p−1) xp
1

(
√

1 + p2h2+2k(p−1) t).

Due to Proposition 1.4.2 for any h > 0 the function x1 7→ Φx1,h admits a finite limit Φ0,h at
x1 = 0+, so we define

Φ̂x1,h =

{
Φx1,h, x1 > 0,

Φ0,h, x1 < 0.

Consider the following closed subspace G of L2(Ωhk),

G :=
{
(x1, x2) 7→ f(x1)Φ̂x1,h(x2) : f ∈ L2(−∞, hk)

}
,

and denote by Π the orthogonal projector onto G in L2(Ωhk), then the operator Π⊥ := 1−Π
is the orthogonal projector onto G⊥. One easily checks that for u ∈ L2(Ωhk) there holds

(Πu)(x1, x2) = f(x1)Φ̂x1,h(x2) with f(x1) =

∫
R
Φ̂x1,h(x2)u(x1, x2)dx2,

∥Πu∥2L2(Ω
hk )

= ∥f∥2L2(−∞,hk),

and that for u ∈ Q(Rh) one has f ∈ H1(−∞, hk). We keep this correspondence between u
and f for subsequent computations. Recall that

Rh[u, u] =

∫∫
Ω

hk

(
h2(∂1u)

2 + (∂2u)
2
)
dx
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−
∫ hk

0

√
1 + p2h2+2k(p−1)

(
u(s, sp)2 + u(s,−sp)2

)
ds.

Using the spectral theorem for the above operator Lx1,h we obtain

I :=

∫∫
Ω

hk

(∂2u)
2dx

−
∫ hk

0

√
1 + p2h2+2k(p−1)

(
u(s, sp)2 + u(s,−sp)2

)
ds

≥
∫∫

Ω
hk∩{x1>0}

(∂2u)
2dx

−
∫ hk

0

√
1 + p2h2+2k(p−1)

(
u(s, sp)2 + u(s,−sp)2

)
ds

=

∫ hk

0

[ ∫
R
∂2u(x1, x2)

2dx2

−
√
1 + p2h2+2k(p−1)

(
u(x1, x

p
1)

2 + u(x1,−xp1)2
)]
dx1

≥
∫ hk

0

(
Λ1(Lx1,h)∥Πu(x1, ·)∥2L2(R) + Λ2(Lx1,h)∥Π⊥u(x1, ·)∥2L2(R)

)
dx1.

Assuming that h is small, by Proposition 1.4.2(e) one obtains, for any x1 ∈ (0, hk),

Λ2(Lx1,h) =
(
1 + p2h2+2k(p−1)

)
Λ2

(
T√

1+p2h2+2k(p−1) xp
1

)
= 0,

which gives

I ≥
∫ hk

0

κ(x1, h)∥Πu(x1, ·)∥2L2(R)dx1 ≡
∫ hk

0

κ(x1, h)f(x1)
2dx1.

Hence, if h is sufficiently small, for any u ∈ Q(Rh) we have

Rh[u, u] ≥ h2
∫∫

Ω
hk

(∂1u)
2dx+

∫ hk

0

κ(x1, h)f(x1)
2dx1. (1.5.3)

To obtain a lower bound for the first summand on the right-hand side we start with

Π∂1u(x1, x2) =

∫
R
Φ̂x1,h(t)∂1u(x1, t)dt Φ̂x1,h(x2),

∂1Πu(x1, x2) =
∂

∂x1

(∫
R
Φ̂x1,h(t)u(x1, t)dt Φ̂x1,h(x2)

)
=

∫
R
Φ̂x1,h(t)∂1u(x1, t)dt Φ̂x1,h(x2)

+

∫
R
(∂x1

Φ̂x1,h)(t)u(x1, t)dt Φ̂x1,h(x2)

+

∫
R
Φ̂x1,h(t)u(x1, t)dt (∂x1

Φ̂x1,h)(x2).

Therefore, using (a+ b)2 ≤ 2a2 + 2b2 and Cauchy-Schwarz inequality,
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∣∣(Π∂1 − ∂1Π)u(x1, x2)
∣∣2

=

∣∣∣∣ ∫
R
(∂x1Φ̂x1,h)(t)u(x1, t)dt Φ̂x1,h(x2)

+

∫
R
Φ̂x1,h(t)u(x1, t)dt (∂x1Φ̂x1,h)(x2)

∣∣∣∣2
≤ 2∥∂x1

Φ̂x1,h∥2L2(R)∥u(x1, ·)∥
2
L2(R)Φ̂x1,h(x2)

2

+ 2∥Φ̂x1,h∥2L2(R)∥u(x1, ·)∥
2
L2(R)(∂x1

Φ̂x1,h)(x2)
2.

We further recall that ∥Φ̂x1,h∥2L2(R) = 1 for all x1 and that

∂x1
Φ̂x1,h =

{
∂x1

Φx1,h, x1 > 0,

0, x1 < 0.

This gives∥∥(Π∂1 − ∂1Π)u
∥∥2
L2(Ω

hk )

≤ 2

∫ hk

0

∥∂x1Φx1,h∥2L2(R)∥u(x1, ·)∥
2
L2(R)

(∫
R
Φx1,h(x2)

2dx2

)
dx1

+ 2

∫ hk

0

∥u(x1, ·)∥2L2(R)

(∫
R
(∂x1

Φx1,h)(x2)
2dx2

)
dx1

≤ 4

∫ hk

0

w(x1, h)∥u(x1, ·)∥2L2(R)dx1,

where we denoted
w(x1, h) := ∥∂x1

Φx1,h∥2L2(R).

With λ :=
√
1 + p2h2+2k(p−1) we have Φx1,h(t) =

√
λΨλxp

1
(λ t) and

w(x1, h) = λ3
∫
R
p2x

2(p−1)
1 (∂zΨz)z=λxp

1
(λ t)2dt

= λ2p2x
2(p−1)
1

∫
R
(∂zΨz)z=λxp

1
(t)2dt

≤ p2(1 + p2h2+2k(p−1))x
2(p−1)
1 sup

z>0
∥∂zΨz∥2L2(R)

Due to Proposition 1.4.2(d) the last factor on the right-hand side is finite, and for a suitable

b0 > 0 one obtains w(x1, h) ≤ b0x
2(p−1)
1 , and then

∥∥(Π∂1 − ∂1Π)u
∥∥2
L2(Ω

hk )
≤ 4

∫ hk

0

b0x
2(p−1)
1 ∥u(x1, ·)∥2L2(R)dx1

≤ 4b0h
2k(p−1)∥u∥2L2(Ω

hk )
.

In addition, the function (Π⊥∂1−∂1Π⊥)u ≡ −(Π∂1−∂1Π)u admits the same norm estimate.
Using (a+ b)2 ≥ (1− δ)a2 − δ−1b2 for a, b ∈ R and δ > 0 we estimate, with any δ > 0,∥∥∂1u∥∥2L2(Ω

hk )
=
∥∥Π∂1u∥∥2L2(Ω

hk )
+
∥∥Π⊥∂1u

∥∥2
L2(Ω

hk )
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=
∥∥∂1Πu+ (Π∂1 − ∂1Π)u

∥∥2
L2(Ω

hk )

+
∥∥∂1Π⊥u+ (Π⊥∂1 − ∂1Π

⊥)
∥∥2
L2(Ω

hk )

≥ (1− δ)
∥∥∂1Πu∥∥2L2(Ω

hk )
− δ−1

∥∥(Π∂1 − ∂1Π)u
∥∥2
L2(Ω

hk )

+ (1− δ)
∥∥∂1Π⊥u

∥∥2
L2(Ω

hk )

− δ−1
∥∥(Π⊥∂1 − ∂1Π

⊥)u
∥∥2
L2(Ω

hk )

≥ (1− δ)
∥∥∂1Πu∥∥2L2(Ω

hk )
− bδ−1h2k(p−1) ∥u∥2L2(Ω

hk )
,

where we took b := 8b0. To estimate the term with ∂1Πu we compute

(∂1Π)u(x1, x2) = f ′(x1)Φ̂x1,h(x2) + f(x1)∂x1
Φ̂x1,h(x2)

and remark that due to∫
R
Φ̂x1,h(x2)∂x1

Φ̂x1,h(x2)dx1 =
1

2

d

dx1
∥Φ̂x1,h∥2L2(R) = 0

we have

∥∂1Πu
∥∥2
L2(Ω

hk )
=

∫ hk

−∞
f ′(x1)

2

∫
R
Φx1,h(x2)

2dx2 dx1

+

∫ hk

−∞
f(x1)

2

∫
R

(
∂x1

Φ̂x1,h

)
(x2)

2dx2 dx1

≥
∫ hk

−∞
f ′(x1)

2dx1.

Therefore, ∥∥∂1u∥∥2L2(Ω
hk )

≥ (1− δ)∥f ′∥2L2(−∞,hk) − bδ−1h2k(p−1) ∥u∥2L2(Ω
hk )
,

and the substitution into (1.5.3) gives

Rh[u, u] + bδ−1h2+2k(p−1) ∥u∥2L2(Ω
hk )

≥ h2(1− δ)

∫ hk

−∞
f ′(x1)

2dx1 +

∫ hk

0

κ(x1, h)f(x1)
2dx1.

For what follows it is convenient to set δ := hs with s > 0 to be chosen later, then

Rh[u, u] + bh2+2k(p−1)−s ∥u∥2L2(Ω
hk )

≥ h2(1− hs)

∫ hk

−∞
f ′(x1)

2dx1 +

∫ hk

0

κ(x1, h)f(x1)
2dx1. (1.5.4)

In view of Proposition 1.4.2(c) one can find constants a0, a > 0 such that for small h and
x1 ∈ (0, hk) there holds

κ(x1, h) =
(
1 + p2h2+2k(p−1)

)
σ
(√

1 + p2h2+2k(p−1) xp1
)
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≥
(
1 + p2h2+2k(p−1)

)(
− 1 + 2

√
1 + p2h2+2k(p−1) xp1

− a0(1 + p2h2+2k(p−1))x2p1
)

≥
(
1 + p2h2+2k(p−1)

)
(−1 + 2xp − 2a0h

2kp
)

≥ −1 + 2xp − a(h2+2k(p−1) + h2kp).

Substituting this inequality into (1.5.4) and taking into account the inequality ∥f∥2L2(0,hk) ≡
∥Πu∥2L2(Ω

hk )
≤ ∥u∥2L2(Ω

hk )
we obtain, with some constant B > 0,

Rh[u, u] +B(h2+2k(p−1)−s + h2+2k(p−1) + h2kp) ∥u∥2L2(Ω
hk )

≥ h2(1− hs)

∫ hk

−∞
f ′(x1)

2dx1 +

∫ hk

0

(−1 + 2xp1)f(x1)
2
)
dx1.

For s > 0 we clearly have h2+2k(p−1) = o(h2+2k(p−1)−s), hence, with some B′ > B,

Rh[u, u] +B′(h2+2k(p−1)−s + h2kp) ∥u∥2L2(Ω
hk )

≥ h2(1− hs)

∫ hk

−∞
f ′(x1)

2dx1 +

∫ hk

0

(−1 + 2xp1)f(x1)
2
)
dx1

≡ (−1+ Zh0
)[f, f ]. (1.5.5)

Consider now the isometric map

J : L2(Ωhk) ∋ u 7→ (f,Π⊥u) ∈ L2(−∞, hk)⊕ G⊥,

then the estimate (1.5.5) can be rewritten as(
Rh +B′(h2+2k(p−1)−s + h2kp)

)
[u, u] ≥

(
(−1+ Zh0

) ⊕ 0
)
[Ju, Ju].

As this holds for all u ∈ Q(Rh), the min-max principle shows that for any fixed n ∈ N one
has, as h→ 0+,

Λ(Rh) +B′(h2+2k(p−1)−s + h2kp) ≥ Λn
(
(−1+ Zh0

) ⊕ 0
)

= min
{
Λn(−1+ Zh0

), 0
}
= −1 + min

{
Λn(Zh0

), 1
}
.

The min-max principle also shows that for any n ∈ N and h > 0 one has Λn(Zh) ≤ Λn(Kh),
where the operator Kh was defined in (1.4.2), and it was shown in Lemma 1.4.4 that
Λn(Kh) = o(1) for small h. It follows that Λn(Zh0) = o(1), and then min

{
Λn(Zh0), 1

}
=

Λn(Zh0). This gives finally Λ(Rh) ≥ −1 + Λn(Zh0) + O(h2+2k(p−1)−s + h2kp). This proves
Lemma 1.5.2.

1.5.3 One-dimensional analysis

Now we need a more precise analysis of Zh for small h. We are going to prove the following
result, whose proof will occupy the rest of the subsection:

Lemma 1.5.3. Let 0 < k < 2
p+2 , then for any n ∈ N there holds

En(Zh) = 2
2

2+pEn(A)h
2p

p+2 + O(h
5p

2p+4 + h2−2k) as h→ 0+.
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It appears more convenient to change the scale in order to work with large constants. Namely,
for λ > 0 and µ > 0 we introduce self-adjoint operators Bµ,λ in L2(−∞, µ) by

Bµ,λ[f, f ] =

∫ µ

−∞
f ′(x)2dx+ λ

∫ 0

−∞
f(x)2dx+

∫ µ

0

xpf(x)2dx,

Q(Bµ,λ) = H1(−∞, µ).

An elementary scaling argument gives the following result:

Lemma 1.5.4. For any n ∈ N one has Λn(Zh) = 2
2

2+ph
2p

2+pΛn(B
λ,µ) with λ = 2

2
2+p h−

2p
2+p

and µ = 2
1

2+phk−
2

2+p .

In view of Lemma 1.5.4 the behavior of the eigenvalues of Zh for h → 0+ can be deduced
from that of the eigenvalues of Bλ,µ for λ → +∞ and µ → +∞. The latter will be again
approached using the auxiliary operators CµN/D already studied in Subsection 1.4.2.

Lemma 1.5.5. For any n ∈ N there exists λn > 0 and Mn > 0 such that

Λj(C
µ
N )−Kλ−

1
4 ≤ Λj(B

λ,µ) ≤ Λj(C
µ
D). (1.5.6)

for all (λ, µ) ∈ (λn,+∞)× (1,+∞).

Proof. Remark first that all operators Bλ,µ and CµN/D are non-negative. For µ > 1 and

λ > 0 the min-max principle gives

0 ≤ Λn(B
µ,λ) ≤ Λn(C

µ
D) ≤ Λn(C

1
D), (1.5.7)

and it follows, in particular, that the eigenvalue Λn(B
µ,λ) is uniformly bounded. It remains

to show the first inequality in (1.5.6). As the participating operators act in different spaces, it
will be convenient to use Proposition 1.2.2, and we remark that this proof scheme is inspired
by the constructions of [71]. Consider the linear map

J : Q(Bλ,µ) → Q(CµN ), (Jf)(x) = f(x)− f(0)e−x, x ∈ (0, µ).

For any ε > 0 and a, b ∈ R one has (a + b)2 ≥ (1 − ε)a2 − ε−1b2. Therefore, for any
f ∈ H1(−∞, µ) and ε > 0 one has

∥Jf∥2L2(0,µ) =

∫ µ

0

(
f(x)− f(0)e−x

)2
dx

≥ (1− ε)

∫ µ

0

f(x)2dx− ε−1

∫ µ

0

f(0)2e−2xdx

≥ (1− ε)∥f∥2L2(0,µ) − ε−1 f(0)2,

resulting in

∥f∥2L2(−∞,µ) − ∥Jf∥2L2(0,µ) ≤ ε∥f∥2L2(0,µ) + ε−1 f(0)2 + ∥f∥2L2(−∞,0). (1.5.8)

For any δ > 0 one can estimate

f(0)2 = 2

∫ 0

−∞
f(x)f ′(x)dx ≤ δ∥f ′∥2L2(−∞,0) + δ−1∥f∥2L2(−∞,0),
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and the substitution into (1.5.8) yields

∥f∥2L2(−∞,µ) − ∥Jf∥2L2(0,µ)

≤ ε∥f∥2L2(0,µ) + δε−1∥f ′∥2L2(−∞,0) + ε−1δ−1 ∥f∥2L2(−∞,0) + ∥f∥2L2(−∞,0)

= ε∥f∥2L2(0,µ) + δε−1∥f ′∥2L2(−∞,0) + (ε−1δ−1λ−1 + λ−1)λ∥f∥2L2(−∞,0).

We now set δ := λ−
1
2 and ε := λ−

1
4 , then for λ > 1 we have

∥f∥2L2(−∞,µ) − ∥Jf∥2L2(0,µ)

≤ λ−
1
4 ∥f∥2L2(0,µ) + λ−

1
4 ∥f ′∥2L2(−∞,0) + (λ−

1
4 + λ−1)λ∥f∥2L2(−∞,0)

≤ 2λ−
1
4

(
∥f∥2L2(0,µ) + ∥f ′∥2L2(−∞,0) + λ∥f∥2L2(−∞,0)

)
,

and it follows that

∥f∥2L2(−∞,µ) − ∥Jf∥2L2(0,µ) ≤ 2λ−
1
4

(
Bλ,µ[f, f ] + ∥f∥2L2(−∞,µ)

)
. (1.5.9)

Now let us estimate the difference CµN [Jf, Jf ] − Bλ,µ[f, f ]. For any ε ∈ (0, 1) and a, b ∈ R
one has (a+ b)2 ≤ (1 + ε)a2 + 2ε−1b2. Therefore, for any δ > 0 and ε ∈ (0, 1) we have, with
some K > 0,

CµN [Jf, Jf ] =

∫ µ

0

(
f ′(x) + f(0)e−x

)2
dx+

∫ µ

0

xp
(
f(x)− f(0)e−x

)2
dx

≤ (1 + ε)

∫ µ

0

(
f ′(x)2 + xpf(x)2

)
dx

+ 2ε−1f(0)2
∫ µ

0

(1 + xp)e−2xdx

≤ (1 + ε)

∫ µ

0

(
f ′(x)2 + xpf(x)2

)
dx+Kε−1f(0)2

≤ (1 + ε)

∫ µ

0

(
f ′(x)2 + xpf(x)2

)
dx

+Kε−1
(
δ∥f ′∥2L2(−∞,0) + δ−1∥f∥2L2(−∞,0)

)
.

As previously, set δ := λ−
1
2 and ε := λ−

1
4 , then, with some K ′ > 0,

CµN [Jf, Jf ] ≤ (1 + λ−
1
4 )

∫ µ

0

(
f ′(x)2 + xpf(x)2

)
dx

+Kλ−
1
4 ∥f ′∥2L2(−∞,0) +Kλ−

1
4 · λ∥f∥2L2(−∞,0)

≤
∫ µ

0

(
f ′(x)2 + xpf(x)2

)
dx

+K ′λ−
1
4

(∫ µ

0

(
f ′(x)2 + xpf(x)2

)
dx+ ∥f ′∥2L2(−∞,0)

+ λ∥f∥2L2(−∞,0)

)
≤ Bλ,µ[f, f ] +K ′λ−

1
4

(
Bλ,µ[f, f ] + ∥f∥2L2(−∞,µ)

)
,

resulting in

CµN [Jf, Jf ]−Bλ,µ[f, f ] ≤ K ′λ−
1
4

(
Bλ,µ[f, f ] + ∥f∥2L2(−∞,µ)

)
. (1.5.10)
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By (1.5.9) and (1.5.10) we are in the situation of Proposition 1.2.2 with

T := Bλ,µ, T ′ := CµN , δ1 = 2λ−
1
4 , δ2 = K ′λ−

1
4 .

Furthermore, in view of (1.5.7) one has Λn(B
λ,µ) ≤M := Λn(C

1
D) for all (λ, µ) ∈ (0,+∞)×

(1,+∞). Therefore, one can find λn > 0 such that

δ1
(
1 + Λn(T )

)
≡ 2λ−

1
4

(
1 + Λn(B

λ,µ)
)
≤ 2(M + 1)λ−

1
4

for all (λ, µ) ∈ (λn,+∞)× (1,+∞). Hence, Proposition 1.2.2 implies

Λn(B
λ,µ) ≥ Λn(C

µ
N )−

(
2Λn(B

λ,µ) +K ′)λ− 1
4

(
Λn(B

λ,µ) + 1
)

1− 2λ−
1
4

(
Λn(Bλ,µ) + 1

)
≥ Λn(C

µ
N )− (2M +K ′)(M + 1)

1− 2λ
− 1

4
n (M + 1)

λ−
1
4

=: Λn(C
µ
N )−Mnλ

− 1
4

for all (λ, µ) ∈ (λn,+∞)× (1,+∞).

By combining Lemma 1.5.5 with the estimate of the eigenvalues of CµN obtained in
Lemma 1.4.5) one arrives at the following result:

Lemma 1.5.6. For any n ∈ N there exist m > 0 and M > 0 such that∣∣Λn(Bλ,µ)− Λn(A)
∣∣ ≤M(λ−

1
4 + µ−2)

for all (λ, µ) ∈ (m,+∞)× (m,+∞).

Now we can complete the proof of Lemma 1.5.3. Choosing λ = 2
2

2+p h−
2p

2+p and µ =

2
1

2+phk−
2

2+p and using Lemma 1.5.4, for h→ 0+ we obtain

Λn(Zh) = 2
2

2+ph
2p

2+pΛn(B
λ,µ). (1.5.11)

By Lemma 1.5.6 we have

Λn(B
λ,µ) = Λn(A) + O(λ−

1
4 + µ−2) ≡ Λn(A) + O(h

p
4+2p + h

4
2+p−2k),

and the substitution into (1.5.11) completes the proof of Lemma 1.5.3.

1.5.4 Proof of the lower eigenvalue bound

We now use all the preceding components to obtain the sought lower bound for the eigenvalues
of Rh and then for those of Hα. For any m > 0 we have hm0 = hm(1−hs)m

2 = hm+O(hm+s),
and then we conclude by Lemma 1.5.3 that

En(Zh0) = 2
2

2+pEn(A)h
2p

p+2

0 + O(h
5p

2p+4

0 + h2−2k
0 )

= 2
2

2+pEn(A)h
2p

p+2 + O(h
2p

p+2+s + h
5p

2p+4 + h2−2k).

The substitution into Lemma 1.5.2 gives then

Λn(Rh) ≥ −1 + 2
2

2+pEn(A)h
2p

p+2 + ρ(h),
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ρ(h) = O(h
2p

p+2+s + h
5p

2p+4 + h2−2k + h2+2k(p−1)−s + h2kp).

It is convenient to set first k = 1
p+1 to have

ρ(h) = O(h
2p

p+2+s + h
5p

2p+4 + h2+2 p−1
p+1−s + h

2p
1+p ).

Furthermore, choosing s = 1 + p−1
p+1 − p

p+2 ≡ p(p+3)
(p+1)(p+2) we have

2p
p+2 + s = 2 + 2p−1

p+1 − s = p
p+2 + 1 + p−1

p+1 = p(3p+5)
(p+1)(p+2) ,

ρ(h) = O(h
p(3p+5)

(p+1)(p+2) + h
5p

2p+4 + h
2p

1+p ).

(One can prove that this choice of s and k optimizes the order in h.) We compute then

p(3p+5)
(p+1)(p+2) −

2p
1+p = p(3p+5)−2p(p+2)

(p+1)(p+2) = p2+p
(p+1)(p+2) > 0,

which yields h
p(3p+5)

(p+1)(p+2) = o(h
2p

1+p ) and ρ(h) = O(h
5p

2p+4 + h
2p

1+p ). To summarize,

Λn(Rh) ≥ −1 + 2
2

2+pEn(A)h
2p

p+2 + O(h
5p

2p+4 + h
2p

1+p ).

By Lemma 1.5.1 we have then, with a suitably small ε > 0,

Λn(F
h,εh

1
1−p

) ≥ −1 + 2
2

2+pEn(A)h
2p

p+2 + O(h
5p

2p+4 + h
2p

1+p ).

Applying now Lemma 1.4.7, for h := α
1−p
p and α→ +∞ we obtain

Λn(Hα) ≥ α2Λn(F
h,εh

1
1−p

) + O(1),

≥ α2
(
− 1 + 2

2
2+pEn(A)α

2(1−p)
p+2 + O(α

5(1−p)
2p+4 + α

2(1−p)
1+p )

)
+ O(1)

= −α2 + 2
2

2+pEn(A)α
6

p+2 + O(α
13−p
2p+4 + α

4
1+p ).

Noting that

η1 := 6
p+2 − 13−p

2p+4 = p−1
2(p+2) > 0, η2 := 6

p+2 − 4
p+1 = 2(p−1)

(p+1)(p+2) > 0

we obtain

Λn(Hα) ≥ −α2 + 2
2

2+pEn(A)α
6

p+2 + O(α
6

p+2−η), η := min{η1, η2} > 0.

Recall that in Subsection 1.4.3 we already obtained a suitable upper bound and noted that
Λn(Hα) is the nth eigenvalue of Hα if α is large. This completes the proof of Theorem 1.1.1.



Chapter 2

A MIT Bag model on spin
manifolds

Le présent chapitre retranscrit un article paru dans Journal of Geometry and Physics, 178,
104534 (2022), généralisant le modèle MIT Bag au cadre des variétés spin. On y étudie la
convergence des valeurs propres de l’opérateur de Dirac MIT Bag dans des limites de grandes
masses.
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2.1 Introduction

The MIT Bag model was developed by the physicists in order to describe the behaviour of
quarks fields inside hadrons. Mathematically, the hadron is seen as a compact region K

with smooth boundary of the ambient space, where the quarks are supposed to be confined.
This could be quantified by saying that the quantum flux through the border of K is null,
a condition which is satisfied if we add the so-called MIT Bag condition on the boundary of
K (see [40] for the details). Moreover, the quarks fields inside the hadron are Dirac fields,
which means they are governed by the Dirac equation.

A Dirac field in the case of the space of dimension 3 is a C4-valued function ψ also depending
on time, and the Dirac equation takes the form

Hmψ :=

(
−i

3∑
k=1

αk∂k +mβ

)
ψ = i

∂

∂t
ψ (2.1.1)

where α1, α2, α3, β ∈ M4(C) are four Hermitian matrices satisfying the conditions αkαl +
αlαk = 2δlkI4, β

2 = I4 and αk anti-commutes with β for all k, l ∈ {1, 2, 3}. In view of this
equation, the Dirac operator Hm can be interpreted as a Hamiltonian, and the description
of its spectrum is a natural question. Thus, in the context of the MIT Bag model, we are
interested in the operator resulting from the combination of Hm restricted to the region K

together with the MIT Bag boundary condition, namely

HK
mψ := Hmψ, dom(HK

m) = {ψ ∈ H1(K,C4), −i β(α · n)ψ|∂K = ψ|∂K}, (2.1.2)

where n is the outer normal vector field along ∂K. The spectrum of this operator has been
investigated in [5], where the non-relativistic limit was considered, i.e. the asymptotic regime
where the mass goes to infinity. From a physical point of view, this last fact means that the
speed of light becomes large, since this constant is hidden in the mass term in (2.1.1). It
was shown that if we denote by (µj)j≥1 the non-decreasing sequence of positive eigenvalues
of HK

m , one has the asymptotic

µj =
m→−∞

µ̃
1
2
j + O(m− 1

2 ) (2.1.3)

where (µ̃j) is the non-decreasing sequence of eigenvalues of an effective operator acting on
the boundary of K.

In the same framework, the MIT Bag Dirac operator was interpreted as the limit of a Dirac-
type operator with a potential corresponding to two masses m and M in the regions K and
Kc respectively [4]. More precisely, if we define the operator

Hm,M := Hm + (M −m)1Kc , dom(Hm,M ) := H1(R3,C4), (2.1.4)

then the eigenvalues of Hm,M converge to the corresponding ones of HK
m when M → +∞.

In the recent article [59], the case of Euclidean spaces was studied in order to enlarge the
precedent results. The expression of the operator in dimension 3 given by (2.1.2) was gen-
eralized to dimension n by considering n + 1 Hermitian matrices α1, . . . , αn+1 ∈ MN (C)
(N := 2⌊

n+1
2 ⌋) satisfying the Clifford conditions αkαl + αlαk = 2δlkIN and by setting

Dmψ :=

(
−i

n∑
k=1

αk∂k +mαn+1

)
ψ,dom(Dm) = H1(Rn,CN ). (2.1.5)
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This last operator is not the intrinsic Dirac operator in Rn but it can be interpreted like in
(2.1.1) as the Hamiltonian appearing in the Dirac equation of a Lorentzian space of dimension
n+ 1. From these considerations, the MIT Bag Dirac operator Am can be defined by

Am := Dm,dom(Am) := {ψ ∈ H1(K,C4), −i αn+1

n∑
k=1

nkαk ψ|∂K = ψ|∂K}. (2.1.6)

With this definition, the result on the convergence of the eigenvalues of Am still holds, and
the effective operator on the boundary can be explicited. Namely, the eigenvalues of A2

m

converge to the eigenvalues of the square of the intrinsic Dirac operator on ∂K. Moreover, if
n /∈ 4Z, the spectra of the operators are symmetric with respect to the origin, and we recover
the result stated in dimension 3.

As for the Minkowski space, the operator Am can be viewed as the limit of an operator with
two masses [59, Theorem 1.2]. This operator is defined in the same way as before:

Bm,M := Dm + (M −m)1Kαn+1, dom(Bm,M ) := H1(Rn,CN ), (2.1.7)

and the eigenvalues of B2
m,M converge to the eigenvalues of A2

m whenM → +∞. In addition,
a combination of the two previous asymptotic behaviours is also true [59, Theorem 1.3]: in
the asymptotic regime m → −∞ and M → +∞ with m

M → 0, one has that the eigenvalues
of B2

m,M converge to the corresponding ones of the intrinsic Dirac operator on the boundary
∂K.

In the precedent discussion, the spaces considered where always flat, but the Dirac operator
can be defined in a more general setting, for example over a manifold admitting a Spin-
structure. Consequently, our aim in the present text is to extend the results of [59] to this
more general framework. In order to do so, the first step is to understand the geometrical
meaning of the operator considered in the MIT Bag model, because we recall that the Dirac
operator considered in [59] is not the intrinsic Dirac operator of the Euclidean space. Indeed,
the operator Dm is the so-called Dirac-Witten operator on Rn seen as an hypersurface of
Rn+1, plus a mass term which is actually the Clifford multiplication by the vector imxn+1

in Rn+1. Note that Dm acts on spinors of Rn+1 so it is not exactly the Dirac Hamiltonian
on Rn plus the mass term.

Nevertheless, even if the expression (2.1.6) is a direct generalization of equation (2.1.2), the
Dirac-Witten operator is not the operator we obtain from the physical model [40]. Indeed,
in (2.1.1) we used the alpha matrices, but the Dirac equation is more often written using the
gamma matrices defined by

γ0 := β, γk := −i γ0αk, k = 1, 2, 3.

If one rewrites (2.1.1) with the γ matrices, one obtains

Hmψ =

(
3∑
k=1

γ0γk∂k +mγ0

)
ψ, (2.1.8)

and this last operator is, up to a change of sign, the extrinsic Dirac operator on the hy-
persurface R3 plus the mass term. Moreover, the boundary condition defined in [5] by
−i β(α · n)ψ = ψ reads i (γ · n)ψ = ψ and this last boundary condition is the MIT Bag
boundary condition as introduced in [40].

Altogether, we have two natural ways of setting the problem in the case of a complete spin
manifold N. In both cases, we have to see N as an hypersurface of the Riemannian product
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C := N × R, and we denote by ν the outer normal vector field over N. In addition, the
region K is now a compact submanifold of N with boundary. The theory of Spin-structures
restricted to hypersurfaces gives that C and ∂K are also spin manifolds. Consequently, we
can define the spinor bundle ΣC over C, and the extrinsic Dirac operator DN, which acts on
spinors of C restricted to N.

From the previous discussion, the obvious generalization of the MIT Bag Dirac operator in
the Euclidean spaces (2.1.6) is defined as the Dirac-Witten operator on N plus a mass term,
and we add the boundary condition i ν · n · Ψ = Ψ on ∂K. This last condition is not the
MIT Bag boundary condition, but the condition associated with a chirality operator, and it
is consistent with the condition imposed in (2.1.6). Namely, we have

Am := ν ·DN + im ν·, dom(Am) =
{
Ψ ∈ H1(ΣC|K), i ν · n ·Ψ = Ψ on ∂K

}
. (2.1.9)

Furthermore, the cylinder C can be endowed with a Lorentzian metric such that ν is a
time-like vector, and in this case, solving the Dirac equation in C in the same way as for
dimension 3 lets us with the study of the extrinsic Dirac operator on N plus the mass term.
The boundary condition imposed in this case is the original MIT Bag boundary condition
in ·Ψ = Ψ.

Actually, the two operators we defined this way are unitarily equivalent since the manifold N

is totally geodesic in C. This last result explains how the operator studied in [59] is obtained
from the physical model, and the two definitions we gave above are equivalent.

In the same way as before, the two-masses operator is obtained by adding a potential cor-
responding to two masses in K and Kc in the expression of the operator Am. Since in our
framework the manifold N is complete but not necessarily compact, Bm,M is defined as the
closure of the operator

B̃m,M := ν ·DN + i (m1K +M1Kc)ν·, (2.1.10)

whose domain is the set of smooth sections with compact support in ΣC|N. This definition is
consistent with (2.1.7) because it was shown in [59] that the two-masses operator is essentially
self-adjoint on the smooth functions with compact support.

The operators Am and Bm,M are self-adjoint and we are interested in the behaviour of
the spectrum of Am when m → −∞ and the spectrum of Bm,M in the asymptotic regime
M → +∞ and min(−m,M) → +∞. These limits are the ones studied in [59], and the three
main theorems we state below are the counterparts of [59, Theorems 1.1, 1.2, 1.3].

From now on, we use for j ∈ N and a lower semibounded operator T the notation Ej(T ),
which stands for the j-th eigenvalue of T when counted with multiplicity in the non-decreasing
order.

First of all, one has the convergence of the eigenvalues of A2
m to the eigenvalues of the square

of the Dirac operator on ∂K:

Theorem 2.1.1. For any j ∈ N, one has Ej(A
2
m) −→

m→−∞
Ej

(
( /D

∂K
)2
)
.

The two operators A2
m and B2

m,M are surprisingly related in the asymptotic regimeM → +∞:

Theorem 2.1.2. For any j ∈ N, there is M0 ∈ R such that for all M ≥ M0, B
2
m,M has at

least j eigenvalues, and one has Ej(B
2
m,M ) −→

M→+∞
Ej(A

2
m).

In addition, one has a combination of these two results:
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Theorem 2.1.3. For any j ∈ N, there is τj ∈ R such that for all M ≥ τj and m ≤
−τj, the operator B2

m,M has at least j eigenvalues, and one has Ej(B
2
m,M ) −→

min(M,−m)→+∞

Ej

(
( /D

∂K
)2
)
.

Note that Theorem 2.1.3 is an improvement of [59, Theorem 1.3] since we drop the assumption
m
M → 0.

Remark 2.1.4. We can also look at the operator A2
m when m → +∞ and the operator

B2
m,M when m,M → +∞ (or m,M → −∞). We can prove that in these two cases, the

spectrum escapes to infinity (see Remarks 2.7.2 and 2.9.1 below).

Remark 2.1.5. It is not easy to understand the implications of the three theorems above
for the spectrums of the operators Am and Bm,M . However, as in the Euclidean case [59],
we can show that the spectrum of these operators is symmetric when the dimension n of N
is not in 4Z. Indeed, in this case there is a parallel antilinear map J on ΣC which commutes
with the Clifford multiplication by elements of TC (see [15, Theorem 1.39] for example).
Then, θ := J ◦ (ν·) anticommutes with the operators Am and Bm,M because ν is parallel. In
addition, θ preserves the domains of these operators. Consequently, if Ψ is an eigenspinor for
Am, i.e. AmΨ := λΨ for a λ ∈ R, one has AmθΨ = −λθΨ, implying that −λ is an eigenvalue
of Am. The case of Bm,M is done in the same way.

Organization of the paper

The proofs of the three theorems are really close to the ones written in [59] once we have
stated the correct geometrical context. The global strategy is thus to compute sesquilinear
forms for the operators A2

m and B2
m,M in order to find lower and upper bounds for the limits

of the eigenvalues by use of the Min-Max principle.

In section 2.2 we first recall some fundamental results in spectral theory on the correspon-
dence between self-adjoint operator and sesquilinear forms on Hilbert space. The Min-Max
principle, which is the key point of our proof, is stated, and we also give a quick review on
the monotone convergence theorem in the case of sesquilinear forms. This last theorem is
helpful to find the lower bounds for the limits of the eigenvalues, since it gives a description
of the asymptotic domain of the operators. After these preliminaries on operators theory, we
introduce the basic tools needed to understand the geometrical context. Indeed, the theory of
restriction of the spin structure of spin manifolds to oriented hypersurfaces plays a significant
role in the understanding of the generalized MIT Bag operator.

Section 2.3 is devoted to the construction of the operators. We develop here the discussion
about the two equivalent ways of defining Am. We also define the operator Bm,M and we show
that it is self-adjoint as a direct consequence of the completeness of N. The self-adjointness of
Am is more difficult to prove, and we need to compute the sesquilinear form for A2

m in order
to understand its graph norm and its domain. The computations for the forms of square
operators are done in Section 2.4 and the main tool used to this aim is the Schrödinger-
Lichnerowicz formula, which gives the expression of the square of the Dirac operator on a
spin manifold. Once we get the sesquilinear forms, the graph norm of Am is shown to be
equivalent to the H1 norm on its domain, and we can use the analysis done in [36] to conclude
on self-adjointness.

An important idea to prove the main results is that we can restrict the analysis to a tubular
neighbourhood of the boundary of K. Thanks to this restriction of domain, we only have
to understand the operators on a generalized cylinder ∂K × (−δ, δ) with δ > 0. However,
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there is an additional difficulty since we cannot compare the covariant derivatives on the
different slices of the cylinder as it is done in [59]. Thus, we prove some comparison lemmas
in section 2.5, where we express the operators in tubular coordinates.

The aim of this restriction is to be able to separate the variables in the generalized cylinder
previously introduced. Thus, some one-dimensional operators will appear later in the analy-
sis, and we devote section 2.6 to the spectral analysis of these operators, even if a large part
of this work has already been done in [59, Section 3].

In section 2.7 we prove Theorem 2.1.1. The geometrical context is well-defined, and it
remains to follow the lines of [59, Section 4]. The proof is done by restricting the analysis to
the tubular neighbourhood of ∂K intersected with the interior of K thanks to the Min-Max
principle. Next, an upper bound can be found for the limit by choosing good test functions
which are tensorial products between eigenspinors of a model operator on ∂K and the first
eigenfunction of a one-dimensional operator. The proof of the lower bound relies on the
monotone convergence theorem after operating a transformation on the operator in tubular
coordinates.

The result stated in Theorem 2.1.2 is proved in section 2.8. We find an appropriate extension
operator which sends eigenspinors of A2

m into dom(Bm,M ), and this gives the upper bound.
The lower bound is once again a consequence of the monotone convergence theorem together
with the Min-Max principle.

Finally, we prove Theorem 2.1.3 in section 2.9 using a combination of the precedent argu-
ments. After restricting the problem to the tubular neighbourhood of ∂K, the upper bound is
found in the same way as for Theorem 2.1.1 by choosing good test functions in the Min-Max
principle, and the lower bound is a consequence of the monotone convergence theorem.

2.2 Notations and preliminaries.

2.2.1 About spectral theory.

Let H be an infinite-dimensional Hilbert space endowed with the inner product (·, ·)H. For a
self-adjoint and lower semibounded operator T on H, we denote by domT its domain, and for
any j ∈ N, Ej(T ) is the jth eigenvalue of T , counted with multiplicity in the non-decreasing
order. We also note σ(T ), σess(T ) and σd(T ) the spectrum, the essential spectrum and the
discrete spectrum of T respectively.

We denote the adjoint of an operator T by T ∗ and its closure by T .

For a sesquilinear form t in H, we denote its domain by Q(t). There is a one-to-one corre-
spondence between densely defined, closed, symmetric, lower semibounded forms and lower
semibounded self-adjoint operators (see [41, VI, Theorem 2.1] for details). For a lower semi-
bounded self-adjoint operator T , we will denote by Q(T ) the domain of the associated form.
If T and T ′ are two such operators, and t, t′ are the associated forms, we write T ≤ T ′ if
Q(T ′) ⊂ Q(T ) and t(u, u) ≤ t′(u, u) for all u ∈ Q(T ′).

For j ∈ N, we define the jth Rayleigh quotient of the form t by

Λj(t) := inf
V⊂Q(t)
dimV=j

sup
u∈V \{0}

t(u, u)

∥u∥2H
. (2.2.1)

We recall that if t and t′ are two semibounded from below bilinear forms, we write t ≤ t′ if
Q(t′) ⊂ Q(t) and t(u, u) ≤ t′(u, u) for all u ∈ Q(t′).
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Let t be a closed symmetric lower semibounded form, and T its associated operator. The well-
known Min-Max principle gives a link between the Rayleigh quotients of t and the eigenvalues
of T . More precisely, we have the following theorem:

Theorem 2.2.1 (Min-Max principle). Let Σ := inf σessT . We are in one of the following
cases:

(a) Λj(t) < Σ for all j, lim
m→+∞

Λm(t) = Σ and Ej(T ) = Λj(t) for all j.

(b) σessT < +∞ and there is N < +∞ such that the interval (−∞,Σ) contains exactly N
eigenvalues of T counted with multiplicity and for all j ≤ N , one has Λj(t) = Ej(T )
and Λm(t) = Σ for all m > N .

The proofs of the spectral part of this text will use monotone convergence of operators. The
result stated below is a reformulation of [7, Theorem 4.2].

Theorem 2.2.2. Let (Tn)n∈N be a sequence of lower semibounded self-adjoint operators in
closed subspaces (Hn)n∈N of H, and let (tn)n∈N be the sequence of associated forms. Assume
there exists γ ∈ R such that tn ≥ γ for all n and suppose moreover that the sequence (tn) (or
equivalently (Tn)) is non-decreasing. Then, the form t∞ defined by

Q(t∞) =

{
h ∈

⋂
n∈N

Q(tn), lim
n→∞

tn(h, h) <∞

}
(2.2.2)

and t∞(h, h) = limn→∞ tn(h, h) for all h ∈ Q(t∞) is closed, symmetric, and t∞ ≥ γ.

Moreover, if H∞ := Q(t∞), one can define the self-adjoint operator T∞ on H∞ associated
with t∞, and the sequence (Tn) strongly converges to T∞ in the generalized resolvent sense,
i.e. for all λ < γ, one has

((Tn − λ)−1 ⊕ 0H⊥
n
)h −→

n→∞
((T∞ − λ)−1 ⊕ 0H⊥

∞
)h, ∀h ∈ H. (2.2.3)

Since we are interested in the behaviour of the spectrum, we claim that in the framework of
Theorem 2.2.2, one has actually the convergence of the eigenvalues of Tn to the corresponding
eigenvalues of T∞. To show this, we first recall [74, Theorem 2.1]:

Theorem 2.2.3. Let (Tn) be a sequence of self-adjoint operators which are bounded from
below with Tn ≤ Tn+1, strongly converging to T in the generalized resolvent sense. Assume
that the essential spectrum of Tn is contained in [0,+∞) for all n ∈ N. Suppose that T has
j0 negative eigenvalues (j0 might be infinite). Then,

Ej(Tn) −→
n→+∞

Ej(T ) for all j ≤ j0

lim
n→+∞

Ej(Tn) ≥ 0 for all j > j0.

Moreover,
∥1(−∞,λ)(Tn)− 1(−∞,λ)(T )∥ −→

n→+∞
0 for all λ < 0.

From Theorem 2.2.2 and Theorem 2.2.3 we deduce the following corollary:

Corollary 2.2.4. Let (Tn)n∈N and T∞ be like in Theorem 2.2.2. Assume moreover that
σess(Tn0

) ⊂ [η,+∞) for some n0 ∈ N and that T∞ has j0 eigenvalues below η (j0 might be
infinite). Then, one has

Ej(Tn) −→
n→+∞

Ej(T ) for all j ≤ j0 (2.2.4)
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and
∥1(−∞,λ)(Tn)− 1(−∞,λ)(T∞)∥ −→

n→+∞
0, ∀λ < η. (2.2.5)

Proof. We consider for n ≥ n0 large enough the bounded self-adjoint operators in H

Bn :=
1

η − γ
− ((Tn − γ)−1 ⊕ 0H⊥

n
)

B∞ :=
1

η − γ
− ((T∞ − γ)−1 ⊕ 0H⊥

∞
).

From [7, Proposition 2.2], it comes that for all n ≥ n0, one has Bn ≤ Bn+1 ≤ B∞. In
addition, σess(Bn) ⊂ [0, 1

η−γ ], σess(B∞) ⊂ [0, 1
η−γ ], and (Bn) converges strongly to B∞.

Thus, Theorem 2.2.3 gives that for all j ∈ N such that Ej(B∞) < 0 one has

Ej(Bn) −→
n→+∞

Ej(B∞) (2.2.6)

and that for all t < 0, there holds

∥1(−∞,t)(Bn)− 1(−∞,t)(B∞)∥ −→
n→∞

0. (2.2.7)

For λ > γ, we define the strictly increasing function f(λ) := 1
η−γ −

1
λ−γ . One has Bn = f(Tn)

and B∞ = f(T∞) and we deduce that for all j ≤ j0

Ej(Tn) −→
n→+∞

Ej(T ) for all j ≤ j0

and from

1(−∞,f(λ))(Bn) = 1(−∞,λ)(Tn), 1(−∞,f(λ))(B∞) = 1(−∞,λ)(T∞),

we deduce that for all λ < η

∥1(−∞,λ)(Tn)− 1(−∞,λ)(T∞)∥ −→
n→∞

0.

2.2.2 Clifford algebra

We recall here the basic facts about Clifford algebra, and we refer to [15] for the details. For
any d ∈ N, the real Clifford algebra Cld is the quotient of the tensorial algebra over Rd by
the two-sided ideal generated by the elements x ⊗ x + ∥x∥21. The induced product on the
quotient algebra is called the Clifford product, and is denoted by ”·”. The complex Clifford
algebra is defined by Cld := Cld ⊗R C. The spin group is the subgroup of Cld given by

Spind := {x1 · . . . · x2k ∈ Cld, k ∈ N and xj ∈ Rd, ∥xj∥ = 1 for all 1 ≤ j ≤ 2k}.

We define the complex volume form as the element of Cld

ωC
d := i⌊

d+1
2 ⌋e1 · . . . · ed (2.2.8)

where (e1, . . . , ed) is any positively-oriented orthonormal frame of Rd, canonically identified
with a basis of Cd.
If d is even, Cld admits an unique irreducible complex representation (ρd,Σd) where Σd is

a complex vector space of dimension 2
d
2 . When restricted to the Spin group, this Clifford
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module decomposes into Σd = Σ+
d ⊕ Σ−

d and the representation splits in two irreducible
inequivalent representations (ρ±d ,Σ

±
d ). These submodules are characterized by the action of

the complex volume form, namely ωC
d acts as ±Id on Σ±

d .

When d is odd, Cld admits two irreducible inequivalent representations over complex vector

spaces of dimension 2
d−1
2 . They are characterized by the action of the complex volume form

which acts as ±Id. We denote by (ρd,Σd) the representation on which ωC
d acts as the identity.

2.2.3 Notations for manifolds and bundles

In all this text, the manifolds will be considered smooth and paracompact.

Let (M, g) be a Riemannian manifold of dimension d + 1, with boundary ∂M (possibly
empty). If M is oriented, we denote by vM the volume form on M compatible with the
metric. Throughout this article, integrations will be done with respect to the Riemannian
measure, which coincides with the integration with respect to the volume form vM in the
oriented case.

We denote by∇M the Levi-Civita connection of (M, g) and by RM, RicM, ScalM the Riemann
curvature tensor, the Ricci tensor, and the scalar curvature of M respectively.

If E is a vector bundle over M, we denote respectively by Γ(E), Γc(E) and Γcc(E) the smooth
sections of E, the smooth sections of E with compact support in M, and the smooth sections
of E with compact support in M \ ∂M. If moreover E is a Hermitian bundle, we note L2(E)
the space of square integrable sections of E. If it is necessary, we will write L2(E, vM) to
specify the measure used for the integration.

We now assume that M is oriented. The manifold M admits a spin structure if there exists a
map χ and a principal bundle PSpind+1

M over M such that for every u ∈ PSpind+1
M we have

the commutative diagram:

Spind+1 PSpind+1
M

M

SOd+1 PSOd+1
M

s7→us

χ

g 7→χ(u)g

(2.2.9)

Given a spin structure on M, we define the associated complex spinor bundle by ΣM :=
PSpind+1

M ×ρd+1
Σd+1 where we recall that (ρd+1,Σd+1) is an irreducible representation of

the Clifford algebra Cld+1 as defined in section 2.2.2.

There is a natural action of the Clifford bundle CM := PSOd+1
×rCld+1 (where r is the action

of SOd+1 on Rd extended to a representation on Cld) defined by:

[χ(u), v]([u, ψ]) := [u, ρd+1(v)ψ] (2.2.10)

for all u ∈ PSpind+1
M, v ∈ Cld+1 and ψ ∈ Σd+1. This action is called the Clifford product

and will be denoted by ”·”.
One has a canonical Hermitian product ⟨·, ·⟩ on ΣM for which the Clifford product by a unit
vector is unitary. Moreover, one obtains a metric connection on ΣM by lifting the Levi-
Civita connection on the orthonormal frame bundle of M through the map χ. The covariant
derivative obtained this way will still be denoted by ∇M.
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We define the intrinsic Dirac operator /D
M

on M, by its pointwise expression

/D
M
Ψ =

d+1∑
k=1

ek · ∇M
ek
Ψ, dom( /D

M
) = Γc(ΣM), (2.2.11)

where (e1, . . . , ed+1) is an orthonormal frame. This definition does not depend on the choice
of the frame.

Finally, we remind the Schrödinger-Lichnerowicz formula, which will be a fundamental tool
to compute sesquilinear forms of operators. A proof can be found in [33, Theorem 1.3.8].

Theorem 2.2.5 (Schrödinger-Lichnerowicz formula). The Dirac operator /D
M

satisfies the
formula

( /D
M
)2 =

(
∇M

)∗ ∇M +
ScalM

4
, (2.2.12)

where (∇M)∗ : Γ(T ∗M⊗ΣM) → Γ(ΣM) is the formal adjoint of ∇M and ScalM is the scalar
curvature of M.

2.2.4 Restriction of the spinor bundle to hypersurfaces

We take (M, g) as in the previous section.

Let H be a smooth oriented hypersurface of M. Let ν be the outer unit normal vector field
on H, that is, the only vector field such that if (e1, . . . , ed) is an oriented frame of H, then
(e1, . . . , ed, ν) is an oriented frame of M. We define the Weingarten operator of H as the
endomorphism of TH given by

WH(X) := −∇M
X ν, (2.2.13)

and HH : M → R will be the pointwise trace of this operator.

The hypersurface H inherits a spin structure from the one of M, and we can define the
spinor bundle ΣH (for the details, see [15, Section 2.4]). This last bundle is endowed with
the natural Hermitian product on spinors, still denoted by ⟨·, ·⟩. The covariant derivative on
ΣH induced by the Levi-Civita connection will be denoted by ∇H. We will also write ∇H

for the covariant derivative on ΣH⊕ΣH (where ⊕ stands for the Whitney product), and for
all X ∈ TH, the Clifford product by X on ΣH ⊕ ΣH is given by

X · (Ψ1,Ψ2) := (X ·Ψ1,−X ·Ψ2), ∀(Ψ1,Ψ2) ∈ ΣH ⊕ ΣH. (2.2.14)

There is a link between the restricted spinor bundle ΣM|H and ΣH, given by the following
proposition (see [33, Proposition 1.4.1]):

Proposition 2.2.6. Let M and H be as above. There exists an isomorphism ζ from ΣM|H
into ΣH if d is even and into ΣH ⊕ ΣH otherwise, which satisfies the following properties:

1. For all x ∈ H, X ∈ Γ(TxH) and Ψ ∈ (ΣM)|{x}, the Clifford product on H satisfies

X · ζ(Ψ) = ζ(X · ν(x) ·Ψ), (2.2.15)

2. The isomorphism ζ is unitary,

3. For all Ψ ∈ Γ(ΣM|H) and X ∈ TH,

ζ(∇M
XΨ) = ∇H

X ζ(Ψ) +
1

2
WHX · ζ(Ψ). (2.2.16)



CHAPTER 2. A MIT BAG MODEL ON SPIN MANIFOLDS 55

4. For Ψ ∈ ΣM|H,

ζ(i ν ·Ψ) =


(
0 Id
Id 0

)
ζ(Ψ) if d is odd

ωC
d · ζ(Ψ) if d is even

, (2.2.17)

where the complex volume form ωC
d was defined in section 2.2.2.

We can define a covariant derivative ∇M
on ΣM|H such that ∇M

Ψ is the restriction of

∇MΨ to Γ(T ∗H⊗E). This notation will be useful as we will often consider the norm of the
restricted covariant derivative on hypersurfaces.

The link between ΣM|H and ΣH gives rise to a natural operator called the extrinsic Dirac
operator. This is actually the Dirac operator of H which acts on the spinor bundle ΣM|H.
This extrinsic Dirac operator on H is the operator acting on Γc(ΣM) defined by

DH := ζ∗ /D
H
ζ if d is odd, DH := ζ∗( /D

H ⊕− /D
H
)ζ if d is even. (2.2.18)

where ζ is the isomorphism given by Proposition 2.2.6. It can be explicitly computed, and
its expression at x ∈ H for Ψ ∈ ΣM is

DHΨ(x) =
HH(x)

2
Ψ(x)− ν(x) ·

d∑
k=1

ek · ∇M
ek
Ψ(x) (2.2.19)

where (e1, . . . , ed) is an orthonormal frame of TxH [33, Proposition 1.4.1], [39].

2.2.5 Sobolev spaces on manifolds

Let (M, g) be a compact Riemannian manifold of dimension d + 1 with boundary ∂M. We
denote by νM the normal unit vector field over ∂M.

Let (E,∇E , ⟨·, ·⟩E) be an Hermitian bundle of dimension q over M. The construction of the
Sobolev spaces on E is done for example in [36, Definition 3.5], but we recall the idea to be
self-contained.

In what follows, we will denote by expM the Riemannian exponential map on M and by
BM
x (r) the ball of radius r > 0 and of center 0 in TxM where x ∈ M. This notation will be

used for the boundary ∂M with an obvious modification. By the compactness of M, there is
rt > 0 such that:

� the map
F : ∂M× [0, 2rt) ∋ (x, t) 7→ expMx (tνM(x)) (2.2.20)

is a diffeomorphism on its image;

� for all x ∈ M \F (∂M× [0, 2rt)), exp
M is injective on the open ball of radius rt of TxM;

� for all x ∈ ∂M, exp∂M is injective on the open ball of radius rt of Tx∂M.

Let (Uj)j∈J be a finite covering of M such that Uj = expMx (BM
x (rt)) with x ∈ M \ F (∂M×

[0, 2rt)) (Gaussian coordinates) or Uj = F (B∂Mx (rt)× [0, 2rt)) with x ∈ ∂M (normal coordi-
nates). The maps given by these charts are denoted by (fj)j∈J . We trivialize E over Uj with
Gaussian coordinates by identifying Ex with Cq and by making parallel transport along the
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radial geodesics. Over the set Uj with normal coordinates, we trivialize E by identifying Ex
with Cq and by making parallel transport first along the radial geodesics in ∂M and then
along the geodesics normal to ∂M. The trivializations obtained are denoted by ξj .

Let (hj)j∈J be a partition of unity adapted to the covering (Uj)j∈J . For s ∈ R we define the
Hs norm by

∥Ψ∥2Hs(E) :=
∑
j∈J

∥(ξj)∗(hjΨ) ◦ f−1
j ∥2

Hs(Rd+1
j ,Cq)

, (2.2.21)

where Rd+1
j := Rd+1 when Uj ∩ ∂M = ∅ and Rd+1

j := Rd × R+ otherwise.

Definition 2.2.7. Let s ∈ R. The Sobolev space Hs(E) is the completion of the space Γc(E)
for the Hs norm.

Remark 2.2.8. The Sobolev spaces defined in this way are a generalization of the Hs spaces
in Rd+1, and for k ∈ N, the Hs norm is equivalent to the norm defined by the square root of
k∑
j=0

∥(∇E)j · ∥2 (see [37, Theorem 5.7], or [36, Remark 3.6]).

A direct consequence of Definition 2.2.7 is that the intrinsic Dirac operator on a compact
manifold without boundary is essentially self-adjoint and the domain of its closure is the
Sobolev space H1:

Proposition 2.2.9. If (M, g) is a compact Riemannian spin manifold without boundary,

/D
M

is essentially self-adjoint, and the domain of its closure is H1(ΣM).

Proof. The Dirac operator is symmetric, and then it is closable. By compactness, there
exists C > 0 such that |ScalM| ≤ C. Moreover, by the Schrödinger-Lichnerowicz formula

(Theorem 2.2.5), the graph norm of /D
M

is equivalent to

(1 + C)∥ · ∥2L2(M) + ∥ /DM · ∥2L2(M) =

(
1 + C +

ScalM

4

)
∥ · ∥2L2(M) + ∥∇M · ∥2L2(M)

and this last norm is equivalent to the H1(ΣM)-norm because of the boundedness of ScalM.

Then, the domain of the closure of /D
M

is the completion of Γc(ΣM) for the graph norm,
which is exactly H1(ΣM).

The manifold (M, g) is compact, and then the Dirac operator is essentially self-adjoint in
L2(ΣM) [33, Proposition 1.3.5], which concludes the proof.

By the definition of the Sobolev spaces, one can observe that it is possible to extend the results
valid for Euclidean spaces. We state a trace theorem which is a modification of [36, Theorem
3.7], where we add a bound for the L2-norm of the trace.

Theorem 2.2.10. Let (M, g) be a compact Riemannian manifold with boundary ∂M. Let
(E,∇E , ⟨·, ·⟩E) be an Hermitian vector bundle with base M.

Then, the pointwise restriction operator γM : Γc(E) → Γc(E|∂M) extends to a bounded op-

erator from H1(E) onto H
1
2 (E|∂M), and there is a bounded right inverse to γM : H1(E) →

H
1
2 (E|∂M) denoted by ϵM, which maps Γc(E|∂M) into Γc(E). Moreover, there exists K > 0

such that for any ε ∈ (0, 1),

∥γMΨ∥2L2(∂M) ≤ K
(
ε

1
2 ∥∇EΨ∥2L2(M) + ε−

1
2 ∥Ψ∥2L2(M)

)
, Ψ ∈ H1(E).
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Proof. The proof of the first part of the theorem is done in [36, Theorem 3.7]. We prove
the last estimate.

With the notations of (2.2.21), we denote by JN the set of all j ∈ J such that Uj ∩ ∂M ̸= ∅,
and there is a constant C > 0 and a constant K̃ > 0 given by [35, Theorem 1.5.1.10] such
that for any ε ∈ (0, 1) and for all Ψ ∈ H1(E)

∥γMΨ∥2L2(∂M) ≤C
∑
j∈JN

∥(ξj)∗(hjΨ) ◦ f−1
j ∥2L2(Rd×{0},Cq)

≤CK̃
∑
j∈J

[ε
1
2 ∥(ξj)∗(hjΨ) ◦ f−1

j ∥2
H1(Rd+1

j ,Cq)

+ ε−
1
2 ∥(ξj)∗(hjΨ) ◦ f−1

j ∥2
L2(Rd+1

j ,Cq)
]

=CK̃
(
ε

1
2 ∥∇EΨ∥2L2(M) + ε−

1
2 ∥Ψ∥2L2(M)

)
.

The Rellich-Kondrachov theorem still holds for the Sobolev spaces on compact manifolds.
Consequently, the operators with domain included in the first Sobolev space on a vector
bundle with compact base have compact resolvent. We refer to [72, Proposition 3.13] for the
following theorem.

Theorem 2.2.11 (Rellich-Kondrachov-type theorem). Let E be an Hermitian vector bundle
over a compact manifold M. Then, the inclusion H1(E) ⊂ L2(E) is compact.

We end this section with a direct consequence of Proposition 2.2.6. We assume that (M, g) is
a compact Riemannian spin manifold of dimension d+1 and we take an oriented hypersurface
H of M. We use the notation of section 2.2.3.

Corollary 2.2.12. The isomorphism ζ given by Proposition 2.2.6 is an isomorphism between
H1(ΣM|H) and H1(ΣH) if d is even or H1(ΣH ⊕ ΣH) if d is odd.

Proof. We define ∥WH∥∞ := sup
x∈H

sup
X∈TxH\{0}

|g(WX,X)|
g(X,X) < ∞. Let Ψ ∈ Γc(ΣM|H) and

(e1, . . . , ed) a local orthonormal frame of H at a point x ∈ H. At this point, one has, using
Proposition 2.2.6, (3),

|∇HζΨ|2 =

d∑
k=1

|ζ
(
∇M
ek
Ψ
)
− 1

2
WHek · ζ(Ψ)|2L2(H)

≤ 2|ζ(∇M
Ψ)|2L2(H) +

1

2

d∑
k=1

|WHek · ν ·Ψ|2L2(H)

≤ 2|∇M
Ψ|2L2(H) +

d

2
∥WH∥2∞ ∥Ψ|2L2(H)

and then, by integration we obtain

∥ζΨ∥2H1(H) = ∥ζΨ∥2L2(H) + ∥∇HζΨ∥2L2(H)

≤ ∥Ψ∥2L2(H) + 2∥∇M
Ψ∥2L2(H) +

d

2
∥WH∥2∞ ∥Ψ∥2L2(H)

≤ C1∥Ψ∥2H1(H),

where C1 > 0. The same argument shows that there exists C2 > 0 such that for all Ψ ∈
ζ(Γc(ΣM|H)), one has ∥ζ−1Ψ∥2H1(H) ≤ C2∥Ψ∥2H1(H).
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2.3 Definition of the operators

2.3.1 The generalized MIT Bag Dirac operator

In this section, we would like to give a generalization of the MIT Bag Dirac operator in the
context of spin manifolds. Our construction will be done by considering the Riemannian
product of a manifold N with R and interpreting the operator as the extrinsic Dirac operator
on the hypersuface N × {0}, modified by a Clifford multiplication with the normal vector
field. Since the hypersurface N is totally geodesic, this operator is the so-called Dirac-Witten
operator (see the remark in the proof of [33, Theorem 5.2.3] for example).

We first introduce the context of our study. Let n ∈ N and let (N, g) be a n-dimensional
smooth Riemannian manifold which is spin and complete.

Let (C, gC) := (N, g)× (R,dt2) be the Riemannian product of N and R. We identify N with
N × {0}. Let p1 be the projection on N in C. We endow C with a spin structure as follows:
we denote by P the pull-back to C of the bundle PSpinn

N by the projection p1, and then the
extension of P to Spinn+1 is a spin structure on C (see [6, Section 5] for example).

We denote by ν the outer unit normal vector field on N×{0} in C, i.e. the vector field (0, ∂∂t ).
By construction, the Weingarten tensor of N vanishes, so the mean curvature HN is zero.

We denote by ι be the isomorphism given by in Proposition 2.2.6, in the particular case where
M := C and H := N. It is important to remark that the spin structure originally defined on
N and the spin structure inherited by N from the one of C according to Proposition 2.2.6 are
the same.

Let K be a submanifold of N of dimension n, and assume that K is compact with non-empty
boundary ∂K. From these assumptions, we know that ∂K is oriented. Thus, we denote by

µ : ΣN →

{
Σ(∂K) if n is odd

Σ(∂K)⊕ Σ(∂K) if n is even

the isomorphism given by Proposition 2.2.6 and by n the unit outer normal vector field over
∂K viewed as a submanifold of N.

The operators DN, /D
N
, D∂K and /D

∂K
defined in (2.2.11) and (2.2.18) are essentially self-

adjoint [33, Proposition 1.3.5]. We keep the same notation for their closures.

In what follows, we will simply write W for W∂K and H for H∂K.

Let m ∈ R. To any Ψ ∈ Γ(ΣC|N), we associate an element Ψ̂m of Γ(ΣC) defined for (x, t) ∈ C

by Ψ̂m(x, t) = eimtΨ̃(x, t) where Ψ̃(x, t) is obtained by parallel transport of Ψ(x) along the
curves s 7→ (x, s).

Let (e1, . . . , en) be a local orthonormal frame at x ∈ N. Then, we compute

( /D
C
Ψ̂m)(x) =

 n∑
j=1

ej · ∇C
ej Ψ̂m + imν · Ψ̂m

 (x, 0)

=

−
n∑
j=1

ν · ν · ej · ∇C
ejΨ

 (x) + imν ·Ψ(x)

= ν ·
(
DN + im

)
Ψ(x),

where the extrinsic Dirac operator DN is the operator given by the expression (2.2.19). The
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operator obtained in the last line is precisely the operator that we want to study, as it can
be interpreted as a Dirac operator with a mass.

We remark that the above construction can be done by restricting the domain of the operator
to K. We thus introduce the generalized MIT Bag operator

Ãm := ν ·
(
DN + im

)
, dom(Ãm) :=

{
Ψ ∈ Γc(ΣC|K), i ν · n ·Ψ = Ψ on ∂K

}
. (2.3.1)

Remark 2.3.1. One can observe that in the case of Euclidean spaces, the expression (2.3.1)
coincides with [59, Equation (1)], which is already a generalization of the MIT Bag Dirac
operator in dimension 3 (see [4, Equation 1.1]). Indeed, the only difference comes from the
convention on the Clifford multiplication, because in the present text we have the identity
X ·X = −|X|2.

Remark 2.3.2. It is easily seen that the operator Ãm is symmetric since ν anti-commutes
with DN (see [39, Proposition 1] for the general case, or simply remark that ν is parallel in
our framework). Since symmetric operators are closable, we denote by Am its closure.

Actually, the boundary condition imposed in the domain of the operator is not the Lorentzian
MIT Bag boundary condition as stated by the physicists [40] because of the Clifford multi-
plication by ν. However, this is consistent with the boundary conditions imposed in [5], [4]

and [59]. To understand this, we can give another interpretation of the operator Ãm which
seems more physical, and appears to give a unitarily equivalent operator.

Until the end of this section, we will deal with Clifford algebra and spin structures in the
Lorentzian case. We refer to [6, section 2] for a detailed presentation.

One can endow C with the Lorentzian metric g − dt2. There is a Spin0-structure over C

given by the pull-back of the Spin-structure on N and extending the fiber. One can construct
the associated spinor bundle ΣLC, whose Clifford multiplication will be denoted by ” ·L”.
Moreover, we write ∇L for the covariant derivative on ΣLC, and we denote by ⟨·, ·⟩L the
Hermitian product on this spinor bundle. We recall that this inner product is not necessarily
definite. In this framework, the Dirac operator with a mass on ΣLC admits the pointwise
expression

/D
C

LΨ := i

−ν ·L ∇L
νΨ+

n∑
j=1

ej ·L ∇L
ejΨ

−mΨ (2.3.2)

where (e1, . . . , en) is any orthonormal frame on N (see [6, section 2]). Consequently, the

Dirac equation /D
C

LΨ = 0 is equivalent to

i∇L
νΨ = i

n∑
j=1

ν ·L ej ·L ∇L
ejΨ−mν ·L Ψ. (2.3.3)

Now, if we take Ψ(x, t) = eiωtϕ(x) for all (x, t) ∈ C, where ϕ is parallel along the time lines,
we arrive at

ωϕ = −i
n∑
j=1

ν ·L ej ·L ∇L
ejϕ+mν ·L ϕ. (2.3.4)

We have the counterpart of Proposition 2.2.6 for the Lorentzian case. Namely, the spinor
bundle ΣLC can be identified to one or two copies of ΣN as in the Riemannian case.

Proposition 2.3.3. There is an isomorphism ιL from ΣLC|N into ΣN if n is even and into
ΣN ⊕ ΣN if n is odd such that:
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� ιL(−iX ·L ν ·L Ψ) = X · ιLΨ for all X ∈ TN and Ψ ∈ ΣLC,

� ιLν·L = ωC
n · ιL when n is even, and

(
0 Id
Id 0

)
when n is odd.

� ⟨ιLΨ, ιLΦ⟩ = ⟨Ψ, ν ·L Φ⟩L for all Φ,Ψ ∈ ΣLC|N,

� ιL∇L
XΨ = ∇N

XιLΨ for X ∈ TN and Ψ ∈ ΣLC|N.

Proof. We recall that the notations for Clifford algebras were introduced in Section 2.2.2.

Consider the space Rn,1 endowed with the Lorentzian quadratic form of signature (n, 1) and
let (e1, . . . , en+1) be the canonical basis of Rn,1, so that en+1 is timelike. The Clifford algebra
over this Lorentzian space is denoted by Cln,1. We turn the representation (ρn+1,Σn+1) into
a complex representation of Cln,1 (ρn,1,Σn+1) by setting

ρn,1(ei) := ρn+1(ei) for 1 ≤ i ≤ n, and ρn,1(en+1) := i ρn+1(en+1).

We remark that when n is even, i
n
2 ρn,1(e1 · . . . · en+1) acts as the identity.

Following [6, section 2], the Hermitian product ⟨·, ·⟩L on Σn+1 for the Lorentzian structure
is defined for all ψ, ϕ ∈ Σn+1 by

⟨ψ, ϕ⟩L := ⟨ψ, ρn,1(en+1)ϕ⟩

where ⟨·, ·⟩ is the natural Spinn+1-invariant Hermitian product on Σn+1.

One can define a representation ρ of Cln over the space Σn+1 by

ρ(x) = −i ρn,1(x · en+1) for all x ∈ Rn.

For n even, this representation is equivalent to (ρn,Σn), so we have an isomorphism U :
Σn+1 → Σn such that ρnU = Uρ. Moreover, since i

n
2 ρn,1(e1 · . . . · en+1) acts as the identity

on Σn+1, an easy computation gives Uρn,1(en+1)U
−1 = ρn(ω

C
n).

We still denote by ⟨·, ·⟩ the Hermitian product on Σn and we remark that U can be chosen
unitary for this inner product. Thus, for all ψ, ϕ ∈ Σn+1 one has

⟨Uψ,Uϕ⟩ = ⟨ψ, ϕ⟩ = ⟨ψ, ρn,1(en+1)
2ϕ⟩ = ⟨ψ, ρn,1(en+1)ϕ⟩L.

For n odd, the restriction of ρ to Σ+
n+1 is equivalent to (ρn,Σn), so we have an isomorphism

U0 : Σ+
n+1 → Σn such that ρnU0 = U0ρ. In addition, ρn,1(en+1) is an isomorphism from

Σ±
n+1 into Σ∓

n+1, so we set

U : Σn+1 = Σ+
n+1 ⊕ Σ−

n+1 → Σn ⊕ Σn, U := (U0 ⊕ U0)(Id⊕ ρn,1(en+1)).

Easy computations give Uρ(x)U−1 = ρn(x) ⊕ −ρn(x) for all x ∈ Rn ⊂ Rn+1 and
Uρn,1(x)U

−1(ψ1, ψ2) = (ψ2, ψ1) for all (ψ1, ψ2) ∈ Σn ⊕ Σn.

The Hermitian product on Σn extends to Σn ⊕ Σn and this extension is still denoted by
⟨·, ·⟩. The isomorphism U can be chosen unitary for this inner product, and one has for all
ψ, ϕ ∈ Σn+1

⟨Uψ,Uϕ⟩ = ⟨ψ, ϕ⟩ = ⟨ψ, ρ2n,1ϕ⟩ = ⟨ψ, ρn,1ϕ⟩L.

Now, all these properties transport to manifolds by identifying en+1 with ν since the Spin0
structure over C is defined by pull-back of the Spin structure over N.

The last point follows from the explicit formula of the covariant derivative on spinor [6,
formula 2.5] and the fact that N is totally geodesic in C.
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We infer that ΣC|N and ΣLC|N are both isomorphic to ΣN if n is even and to ΣN⊕ΣN if n
is odd, so we can identify them via the isomorphism ι−1ιL.

Corollary 2.3.4. The isomorphism ι−1ιL : ΣLC → ΣC satisfies:

� ⟨(ι−1ιL)Ψ, i ν · (ι−1ιL)Φ⟩ = ⟨Ψ,Φ⟩L for all Ψ,Φ ∈ ΣLC.

� ∇C
X(ι−1ιL)Ψ = (ι−1ιL)∇L

XΨ for all X ∈ TN and Ψ ∈ Γ(ΣLC).

� X · (ι−1ιL)Ψ = (ι−1ιL)(X ·L Ψ) for all X ∈ TN

� i ν · (ι−1ιL) = (ι−1ιL)ν·L.

Under the identification of Corollary 2.3.4, Equation (2.3.4) reads

ωϕ =

n∑
j=1

ν · ej · ∇C
ejϕ+ im ν · ϕ = (−DN + im ν·)ϕ. (2.3.5)

This is an eigenvalue equation, and it is now natural to look at the spectrum of the operator
defined by the right-hand side. We just need to add a boundary condition to define a
generalized MIT Bag operator. Since the physical condition imposed in [40] is that the
flux ⟨ϕ,n ·L ϕ⟩L of the field vanishes at the boundary, we consider the MIT Bag boundary
condition in · ϕ = ϕ. One has

−⟨ϕ, ϕ⟩L = ⟨ϕ,−in ·L ϕ⟩L = ⟨in ·L ϕ, ϕ⟩L = ⟨ϕ, ϕ⟩L,

and we conclude that ⟨ϕ,−in ·L ϕ⟩L = 0, so the condition of the physical model is verified.
We can now define another generalization of the MIT Bag Dirac operator by

Âm := DN + im ν·, dom(Âm) =
{
Ψ ∈ Γc(ΣC|K), in ·Ψ = Ψ

}
. (2.3.6)

The change of sign for the mass in (2.3.6) compared to (2.3.5) comes from the fact that we
consider a model where m→ −∞ (see [5, section 1.3.3] for more explanations).

We have now two candidates for the generalization of the MIT Bag Dirac operator. However,
one can remark that the difference between Ãm and Âm is only a matter of how the Clifford
product is defined, and the two operators are unitarily equivalent.

Proposition 2.3.5. The operators Ãm and Âm are unitarily equivalent via a ∇C-parallel
operator.

Proof. We define a new Clifford representation on the vector bundle ΣC by setting X ∗Ψ :=
ν · X · Ψ and ν ∗ Ψ := ν · Ψ for X ∈ TN and Ψ ∈ ΣC. This new product still satisfies the
Clifford conditions in each fiber, and when n is even the complex volume form ωC

n+1 acts as

ωC
n+1 ∗Ψ = i⌊

n+2
2 ⌋e1 ∗ . . . ∗ en ∗ ν ∗Ψ

= i⌊
n+2
2 ⌋(ν · e1) · . . . (ν · en) · ν ·Ψ = ωC

n+1 ·Ψ,

where (e1, . . . , en) is a direct orthonormal basis of TN. It follows by the general theory
of Clifford representations that there is a unitary isomorphism U : ΣC → ΣC such that
X · UΨ = U(X ∗Ψ) for all X ∈ TC and Ψ ∈ ΣC.
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Actually, one can give such an isomorphism explicitly. If n is even, we use the decomposition
ΣN = Σ+N ⊕ Σ−N (see [15, Proposition 1.32]) and the pointwise identification ΣC|(x,t) ∼=
ΣN|x for all (x, t) ∈ C given by Proposition 2.2.6. Under this identification, one has

ν · (Ψ+,Ψ−) = (−iΨ+, iΨ−), X · (Ψ+,Ψ−) = i (−X ·Ψ−, X ·Ψ+) for all X ∈ TN,

and we deduce that U can be defined by

U(Ψ+,Ψ−) := (Ψ+,−iΨ−).

Indeed, one has for any X ∈ TN

U(X ∗ (Ψ+,Ψ−)) = U(ν ·X · (Ψ+,Ψ−)) = U(i ν · (−X ·Ψ−, X ·Ψ+))

= −U(X ·Ψ−, X ·Ψ+) = (−X ·Ψ−, iX ·Ψ+)

and

X · U(Ψ+,Ψ−) = X · (Ψ+,−iΨ−) = (−X ·Ψ−, iX ·Ψ+),

thus U(X ∗ (Ψ+,Ψ−)) = X · U(Ψ+,Ψ−). In addition, U obviously commutes with ν.

In the case where n is odd, one has the pointwise identification ΣC|(x,t) ∼= ΣN|x ⊕ ΣN|x for
all (x, t) ∈ C and under this identification,

ν · (Ψ1,Ψ2) = (−iΨ2,−iΨ1), X · (Ψ1,Ψ2) = i (X ·Ψ2,−X ·Ψ1) for all X ∈ TN,

It follows that U can be defined by

U(Ψ1,Ψ2) :=
1√
2
(Ψ1 + iΨ2, iΨ1 +Ψ2).

Indeed, for all X ∈ TN one has

U(X ∗ (Ψ1,Ψ2)) = i U(ν · (X ·Ψ2,−X ·Ψ1)) = U(−X ·Ψ1, X ·Ψ2)

=
1√
2
(X · (−Ψ1 + iΨ2), X · (−iΨ1 +Ψ2))

and

X · U(Ψ1,Ψ2) =
1√
2
X · (Ψ1 + iΨ2, iΨ1 +Ψ2)

=
1√
2
(X · (−Ψ1 + iΨ2), X · (−iΨ1 +Ψ2)),

thus X · U(Ψ1,Ψ2) = U(X ∗ (Ψ1,Ψ2)). Again, ν commutes with U .

In both cases, U is parallel with respect to ∇C and we remark that U(dom(Ãm)) = dom(Âm).
We deduce from these considerations that

U∗ÂmUΨ = ÃmΨ for all Ψ ∈ dom(Ãm), (2.3.7)

which is the statement we wanted to prove.

Remark 2.3.6. The key point in Proposition 2.3.5 is of course that HN = 0. It is only under
this condition that the isomorphism U is parallel with respect to ∇C. Thus, it is equivalent
to study any of the two operators, but we wanted to insist on the physical meaning of Âm.
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2.3.2 The two-masses Dirac operator

We introduce now an operator that can be interpreted as a Dirac operator on N with two
masses in the two separated regions K and Kc. The interest of this operator, as we will show
later, is that when the mass in Kc goes to infinity, its spectrum converges to the spectrum
of the MIT Bag Dirac operator.

Let m,M ∈ R. We define the operator B̃m,M by

B̃m,M := ν ·DN + i (m1K +M1Kc)ν·, dom(B̃m,M ) := Γc(ΣC|N). (2.3.8)

Since the Clifford multiplication by ν is an endomorphism of Γc(ΣC|N), the range of this
operator is included in Γc(ΣC|N).

Until the end of this subsection, we make a differentiation between the Dirac operators on
complete manifolds and their closures.

The operator B̃m,M is symmetric because ν anti-commutes with DN [39, Proposition 1] and
by Corollary 2.4.2 below. Since the manifold N is complete by assumption, the intrinsic
Dirac operator on N is essentially self-adjoint in L2(ΣC|N) [33, Proposition 1.3.5]. Moreover,

(2.2.18) gives that DN is unitarily equivalent to /D
N

if n is even and /D
N ⊕− /D

N
if n is odd,

and the isomorphism ι sends Γc(ΣC|N) into Γc(ΣN). Thus, DN is essentially self-adjoint, and
it is easy to see that its closure still anti-commutes with ν. Using the fact that the Clifford
multiplication by ν is a unitary isomorphism in L2(ΣC|N) we have

(ν ·DN)∗ = −DNν· = ν ·DN, and ν ·DN = ν ·DN,

so ν ·DN is self-adjoint.

We conclude that B̃m,M is essentially self-adjoint because the potential is a bounded self-

adjoint operator. We define the self-adjoint operator Bm,M as the closure of B̃m,M .

2.4 Sesquilinear forms for the operators with mass

An important tool for the asymptotic analysis will be the sesquilinear forms associated with
the square of the operators. We begin this section by recalling some useful formulas involving
the Dirac operator. After that, we compute the sesquilinear forms for the operators A2

m and
B2
m,M and we show that Am is self-adjoint. We end this section with the study of a model

operator which appears naturally in the asymptotic analysis, and we prove that it is unitarily
equivalent to the square of the Dirac operator on ∂K.

2.4.1 Integration by parts with the Dirac operator

We first recall the well-known result:

Lemma 2.4.1. Let Ψ,Φ ∈ Γc(ΣN). Then, one has the pointwise equality

⟨ /DN
Ψ,Φ⟩ = −div V + ⟨Ψ, /DN

Φ⟩

where V is the complex vector field on N defined by

g(V,X) := ⟨Ψ, X · Φ⟩ , ∀X ∈ TN.
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Proof. Let Ψ,Φ ∈ Γc(ΣC|N), x ∈ N and let (e1, . . . , en) be a normal coordinate system at x

for ∇N, i.e. ∇N
eiej(x) = 0 for all i, j ∈ {1, . . . , n}. One has at x,

〈
/D
N
Ψ,Φ

〉
= ⟨

n∑
j=1

ej · ∇N
ejΨ,Φ⟩.

On the other hand, for all j ∈ {1, . . . , n},〈
ej · ∇N

ejΨ,Φ
〉
= −

〈
∇N
ejΨ, ej · Φ

〉
= −ej ⟨Ψ, ej · Φ⟩+

〈
Ψ,∇N

ej (ej · Φ)
〉
.

Thus, ⟨ /DN
Ψ,Φ⟩ = −

n∑
j=1

ej ⟨Ψ, ej · Φ⟩+ ⟨Ψ, /DN
Ψ⟩. We recognize in the first term of this last

sum the divergence of a complex vector field. To see this, we introduce V ∈ Γ(TN) as in the
statement of the lemma. Then, we have at the point x

div V =

n∑
j=1

g(∇N
ejV, ej) =

n∑
j=1

ej g(V, ej)− g(V,∇N
ejej)

=

n∑
j=1

ej g(V, ej) =

n∑
j=1

ej ⟨Ψ, ej ·Ψ⟩ .

A direct corollary is an integral version of Lemma 2.4.1.

Corollary 2.4.2. One has

⟨ /DN
Ψ,Φ⟩L2(K) = ⟨Ψ, /DN

Φ⟩L2(K) −
∫
∂K

⟨Ψ,n · Φ⟩v∂K

for all Ψ,Φ ∈ H1(ΣK), and

⟨DNΨ,Φ⟩L2(K) = ⟨Ψ,DNΦ⟩L2(K) −
∫
∂K

⟨Ψ,n · ν · Φ⟩v∂K

for all Ψ,Φ ∈ H1(ΣC|K).

Proof. The first identity is proved by integrating the formula obtained in Lemma 2.4.1 for
Ψ,Φ ∈ Γc(ΣC|K) and using the divergence theorem. We conclude by density. For the second
one, we use the definition of the extrinsic Dirac operator given by (2.2.18) together with the
first equation.

Finally, we obtain an integration by parts formula for the Dirac operator with a mass defined
in the previous section.

Corollary 2.4.3. For any Ψ,Φ ∈ H1(ΣC|K), one has

〈
ν · (DN + im)Ψ,Φ

〉
L2(K)

=
〈
Ψ, ν · (DN + im)Φ

〉
L2(K)

+

∫
∂K

⟨Ψ,n · Φ⟩ v∂K.
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Proof. Let Ψ,Φ ∈ H1(ΣC|K), using Corollary 2.4.2 one has〈
ν · (DN + im)Ψ,Φ

〉
L2(K)

=−
〈
(DN + im)Ψ, ν · Φ

〉
L2(K)

=−
〈
Ψ, (DN − im)(ν · Φ)

〉
L2(K)

−
∫
∂K

⟨Ψ,n · ν · ν · Φ⟩ v∂K

=
〈
Ψ, ν · (DN + im)Φ

〉
L2(K)

+

∫
∂K

⟨Ψ,n · Φ⟩v∂K.

2.4.2 Sesquilinear form for Ã2
m and essential self-adjointness

In this section we show that the operator Ãm is essentially self-adjoint, and the domain of
its closure is an extension of dom(Ãm) to the space H1(ΣC|K). The proof of this fact is done

in two steps. First, we compute the sesquilinear form of Ã2
m to get the domain of the closure

and secondly, we show the essential self-adjointness following the analysis of [36].

From Corollary 2.4.3, we see that Ãm is symmetric since for any Ψ,Φ ∈ dom(Ãm) one has

⟨Ψ,n · Φ⟩ = ⟨Ψ, i ν · Φ⟩ = ⟨i ν ·Ψ,Φ⟩ = ⟨n ·Ψ,Φ⟩ = −⟨Ψ,n · Φ⟩ = 0.

Proposition 2.4.4. For all Ψ ∈ dom(Ãm),

∥ÃmΨ∥2L2(K) =

∫
K

(
|∇N(ιΨ)|2 + ScalN

4
|Ψ|2

)
vN

+m2∥Ψ∥2L2(K) +

∫
∂K

(
m− H

2

)
|Ψ|2v∂K.

Moreover, the graph norm of Ãm and the H1-norm are equivalent on dom(Ãm).

Proof. We recall that dom(Ãm) was defined in (2.3.1). Let Ψ ∈ dom(Ãm). With Corol-
lary 2.4.2 one has

∥ÃmΨ∥2L2(K) =
〈
(DN + im)Ψ, (DN + im)Ψ

〉
L2(K)

=∥DNΨ∥2L2(K) +m2∥Ψ∥2L2(K) +m
〈
DNΨ, iΨ

〉
L2(K)

+m
〈
iΨ,DNΨ

〉
L2(K)

=∥DNΨ∥2L2(K) +m2∥Ψ∥2L2(K) −m

∫
∂K

⟨Ψ, in · ν ·Ψ⟩ v∂K

=∥DNΨ∥2L2(K) +m2∥Ψ∥2L2(K) +m

∫
∂K

|Ψ|2v∂K,

where we used the property Ψ = i ν · n ·Ψ on ∂K.

We consider the operator D̃∂K := D∂K if n is even and D̃∂K := D∂K ⊕ D∂K if n is odd.
From [39, Formula (13)] we have for all Φ ∈ Γ(ΣK)∫

K

| /DN
Φ|2vN =

∫
K

(
|∇NΦ|2 + ScalN

4
|Φ|2

)
vN

+

∫
∂K

(
−H

2
|Φ|2 −

〈
D∂KΦ,Φ

〉)
v∂K.
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Using this equation together with the definition of the extrinsic Dirac operator (2.2.18), one
has ∫

K

|DNΨ|2vN =

∫
K

(
|∇N(ιΨ)|2 + ScalN

4
|Ψ|2

)
vN

+

∫
∂K

(
−H

2
|Ψ|2 +

〈
D̃∂K(ιΨ), ιΨ

〉)
v∂K.

(2.4.1)

On the other hand, as D̃∂K anti-commutes with the Clifford multiplication by n [39, Propo-
sition 1], 〈

D̃∂K(ιΨ), ιΨ
〉
=
〈
D̃∂K(ι(−in · ν ·Ψ)), ιΨ

〉
=
〈
−i D̃∂Kn · (ιΨ), ιΨ

〉
=
〈
in · D̃∂K(ιΨ), ιΨ

〉
=
〈
D̃∂K(ιΨ), in · (ιΨ)

〉
=
〈
D̃∂K(ιΨ),−ι(i ν · n ·Ψ)

〉
= −

〈
D̃∂K(ιΨ), ιΨ

〉
and we deduce that

〈
D̃∂K(ιΨ), ιΨ

〉
= 0.

Finally, using this equation together with (2.4.1), we get

∥ÃmΨ∥2L2(K) =

∫
K

(
|∇N(ιΨ)|2 + ScalN

4
|Ψ|2

)
vN

+m2∥Ψ∥2L2(K) +

∫
∂K

(
m− H

2

)
|Ψ|2v∂K.

It remains to prove the equivalence of the norms. As K is a compact manifold with boundary,
Theorem 2.2.10 applies and there is C1 > 0 such that for all Ψ ∈ dom(Ãm),

∥Ψ∥2L2(K) + ∥ÃmΨ∥2L2(K) =∥ιΨ∥2L2(K) +

∫
K

(
|∇N(ιΨ)|2 + ScalN

4
|ιΨ|2

)
vN

+m2∥ιΨ∥2L2(K) +

∫
∂K

(
m− H

2

)
|ιΨ|2v∂K

≤C1∥ιΨ∥2L2(K) + ∥∇N(ιΨ)∥2L2(K) + C1∥ιΨ∥2H1(K)

≤2(C1 + 1)∥ιΨ∥2H1(K).

Moreover, using Theorem 2.2.10 with ε small enough, there exists a constant C2 > 0 such
that

∥Ψ∥2L2(K) + ∥ÃmΨ∥2L2(K) ≥ C2∥ιΨ∥2H1(K).

Thus, the graph norm is equivalent to the H1(ι(ΣC|K)) norm, which is equivalent to the
H1(ΣC|K) norm thanks to Corollary 2.2.12.

We now show that Am is self-adjoint. For this purpose, it is sufficient to prove that ν ·DN

is essentially self-adjoint on dom(Ãm) because the potential is a bounded operator. From
Proposition 2.2.6 and (2.2.18), one has

ι−1(ν ·DN)ι = −i ωC
n · /DN

if n is even, (2.4.2)

and

ι−1(ν ·DN)ι = −i
(
0 Id
Id 0

)
( /D

N ⊕− /D
N
) if n is odd. (2.4.3)
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Having these considerations in mind, we define

A := /D
N

if n is even, A := /D
N ⊕− /D

N
is n is odd, (2.4.4)

and

T := −i ωC
n · if n is even, T := −i

(
0 Id
Id 0

)
if n is odd. (2.4.5)

We remark that T is a unitary skew-Hermitian operator which anti-commutes with A.

Consider the operators

P± :=
1± in·

2
on ι(ΣC|K), and P± :=

1± i ν · n·
2

on ΣC|K. (2.4.6)

Let A± be the restriction of A to the domain {Ψ ∈ Γc(ΣC|K), P±Ψ = 0}. Then, the operator
ν ·DN with domain dom(Ãm) is unitarily equivalent to TA+ for any parity of n.

Lemma 2.4.5. For any s ∈ R, P± and P± define bounded operators from Hs to itself.

Proof. The proof is straightforward, see [36, Lemma 5.1 (ii)].

Theorem 2.4.6. The operator Am is self-adjoint, and the equality in Proposition 2.4.4 holds
for any Ψ ∈ dom(Am) =

{
Ψ ∈ H1(ΣC|K),P−Ψ = 0

}
.

Proof. We first prove that E :=
{
Ψ ∈ Γc(ΣC|K),P−Ψ = 0

}
is dense in F :={

Ψ ∈ H1(ΣC|K),P−Ψ = 0
}
for the H1 norm. Let Ψ ∈ F . There exists a sequence (Ψj)j∈N

in Γc(ΣC|K) converging to Ψ in the H1 norm. Let Φj := Ψj − ϵKP−γKΨj , where we recall
that ϵK is the extension operator defined in Theorem 2.2.10. One has P−γKΦj = 0 and from
Theorem 2.2.10 and Lemma 2.4.5 we obtain

∥Φj −Ψ∥H1(K) = ∥Ψj − ϵKP−γKΨj −Ψ∥H1(K)

≤ ∥Ψj −Ψ∥H1(K) + ∥ϵKP−γKΨj∥H1(K)

≤ ∥Ψj −Ψ∥H1(K) + C1∥P−γKΨj − P−γKΨ∥
H

1
2 (K)

≤ C2∥Ψj −Ψ∥H1(K) −→
j→+∞

0

with C1, C2 > 0.

Thus, E is dense in F , and as the graph norm of Ãm and the H1 norm are equivalent
on E by Proposition 2.4.4. We conclude that F ⊂ dom(Am). By density, the expression
of Proposition 2.4.4 holds for any Ψ ∈ F , and the graph norm and the H1 norm are still
equivalent on F . But F is closed for the H1 norm, so we deduce that F = dom(Am), and
using Corollary 2.2.12, we have dom(A+) =

{
Ψ ∈ H1(ιΣC|K), P+Ψ = 0

}
. This means that

A+ is exactly one or two copies of the operator D+ (up to a sign) studied in [36, Lemma 5.1].

By the same method, we can show that dom(A−) =
{
Ψ ∈ H1(ιΣC|K), P−Ψ = 0

}
and A− is

one or two copies of the operator D− (up to a sign) studied in [36, Lemma 5.1].

Finally, [36, Lemma 5.1 (v)] gives us (A±)
∗ = A∓, and we deduce that

(TA+)
∗ = −(A+)

∗T = −A−T = TA+.

Consequently, TA− is self-adjoint, and so is Am by unitary equivalence.
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2.4.3 Sesquilinear form for B2
m,M

As for the operator Am, we compute the sesquilinear form of the operator B2
m,M defined

in section 2.3.2. As a consequence of the Schrödinger-Lichnerowicz formula, we can first
compute the square of the extrinsic Dirac operator acting on smooth sections with compact
support in N.

Lemma 2.4.7. Let Ψ ∈ Γc(ΣC|N). Then

∥ν ·
(
DN + im

)
Ψ∥2L2(N) =

∫
N

[
|∇N(ιΨ)|2 + ScalN

4
|Ψ|2 +m2|Ψ|2

]
vN.

Proof. Let Ψ ∈ Γc(ΣC|N). One has

∥ν ·
(
DN + im

)
Ψ∥2L2(N) =

〈
ν ·
(
DN + im

)
Ψ, ν ·

(
DN + im

)
Ψ
〉
L2(N)

=
〈(
DN + im

)
Ψ,
(
DN + im

)
Ψ
〉
L2(N)

=
〈
DNΨ,DNΨ

〉
L2(N)

+m2 ⟨Ψ,Ψ⟩L2(N)

+m
[〈
DNΨ, iΨ

〉
L2(N)

+
〈
iΨ,DNΨ

〉
L2(N)

]
.

Using Lemma 2.4.1, one has at any point x ∈ N,〈
DNΨ, iΨ

〉
+
〈
iΨ,DNΨ

〉
= −div V.

By the divergence theorem, the Schrödinger-Lichnerowicz formula (Proposition 2.2.5) and
Equation 2.2.18, one can integrate over N to obtain

∥ν ·
(
DN + im

)
Ψ∥2L2(N) =

〈
DNΨ,DNΨ

〉
L2(N)

+m2 ⟨Ψ,Ψ⟩L2(N)

=

∫
N

[
|∇N(ιΨ)|2 + ScalN

4
|Ψ|2 +m2|Ψ|2

]
vN.

We can now compute the quadratic form for the operator Bm,M by integration over N, and
it comes out that its domain is a subspace of the Sobolev space H1.

Proposition 2.4.8. One has dom(Bm,M ) ⊂ H1(ΣC|N) and for Ψ ∈ dom(Bm,M ),

∥Bm,MΨ∥2L2(N) =

∫
N

[
|∇N(ιΨ)|2 + ScalN

4
|Ψ|2

]
vN +m2∥Ψ∥2L2(K)

+M2∥Ψ∥2L2(Kc) + (M −m)

∫
∂K

(
|P−Ψ|2 − |P+Ψ|2

)
v∂K

where we recall that P± were defined in (2.4.6).

Proof. Let Ψ ∈ Γc(ΣC|N). One has

∥Bm,MΨ∥2L2(N) =∥ν · (DN + iM)Ψ + i (m−M)1Kν ·Ψ∥2L2(N)

=∥(DN + iM)Ψ∥2L2(N) + (m−M)2∥Ψ∥2L2(K)
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+ (m−M)2ℜ
〈
(DN + iM)Ψ, i1KΨ

〉
L2(N)

With Lemma 2.4.1

2ℜ⟨(DN + iM)Ψ, iΨ⟩L2(K) = −
∫
∂K

⟨Ψ, in · ν ·Ψ⟩ v∂K + 2M ⟨Ψ,Ψ⟩L2(K) .

Thus, we have

∥Bm,M∥2L2(N) = ∥(DN + iM)Ψ∥2L2(N) + (m−M)2∥Ψ∥2L2(K)

+ (M −m)

∫
∂K

⟨Ψ, in · ν ·Ψ⟩ v∂K + 2M(m−M)∥Ψ∥2L2(K)

= ∥(DN + iM)Ψ∥2L2(N) + (m2 −M2)∥Ψ∥2L2(K)

+ (M −m)

∫
∂K

⟨Ψ, in · ν ·Ψ⟩ v∂K

=

∫
N

[
|∇N(ιΨ)|2 + ScalN

4
|Ψ|2 +M2|Ψ|2

]
vN + (m2 −M2)∥Ψ∥2L2(K)

+ (M −m)

∫
∂K

⟨Ψ, in · ν ·Ψ⟩ v∂K

=

∫
N

[
|∇N(ιΨ)|2 + ScalN

4
|Ψ|2|Ψ|2

]
vN +m2∥Ψ∥2L2(K) +M2∥Ψ∥2L2(Kc)

+ (M −m)

∫
∂K

⟨Ψ, in · ν ·Ψ⟩ v∂K (2.4.7)

and

⟨Ψ, in · ν ·Ψ⟩ = ⟨Ψ,−i ν · n ·Ψ⟩ = ⟨Ψ,P−Ψ⟩ − ⟨Ψ,P+Ψ⟩ = |P−Ψ|2 − |P+Ψ|2.

It follows from Theorem 2.2.10 that there is a constant C > 0 such that for all Ψ ∈ Γc(ΣC|N),

∥Bm,MΨ∥2L2(N) ≥ C
(
∥∇N(ιΨ)∥2L2(N) − ∥Ψ∥2L2(N)

)
.

This shows that the graph norm of B̃m,M is larger than the H1(ΣC|N)-norm up to a constant.
Thus dom(Bm,M ) ⊂ H1(ΣC|N), and one can conclude by density.

2.4.4 The limit operator

In this section, we introduce the effective operator L which will appear naturally as the limit
operator for Am when m→ −∞. We define it as the operator acting on the Hilbert space

H :=
{
Ψ ∈ L2(ΣC|∂K),Ψ = i ν · n ·Ψ

}
(2.4.8)

associated with the quadratic form

ℓ[Ψ,Ψ] =

∫
∂K

[
|∇N

ιΨ|2 + 1

4

(
Scal∂K − Tr(W 2)

)
|Ψ|2

]
v∂K, (2.4.9)

Q(ℓ) :=
{
Ψ ∈ H1(ΣC|∂K),Ψ = i ν · n ·Ψ

}
.
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By the compactness of K, it follows that the form (2.4.9) is closed and semibounded from
below, so the operator L is well-defined.

The operator L is actually unitarily equivalent to the square of the Dirac operator on ∂K.
This fact can be established using the link between the spinor bundles of the spaces ∂K ⊂
N ⊂ C.

Remark 2.4.9. Using Gauss-Codazzi equations (see [6, Proposition 4.1], for example), one
has

Tr(W 2) = H2 + ScalN − Scal∂K − 2RicN(n,n).

Thus, the operator we are considering here is a generalization of the operator L defined
in [59, section 2.2] and we generalize the result of [59, Lemma 2.4].

Lemma 2.4.10. The operator L is unitarily equivalent to ( /D
∂K

)2.

Proof. We consider separately the case of n even and n odd.

Case n odd: One can represent any Ψ ∈ H as Ψ =: (Ψ+,Ψ−) ∈ L2(Σ+C|∂K)× L2(Σ−C|∂K),
and then

Ψ = i ν · n ·Ψ ⇔ ιΨ = i ι(ν · n ·Ψ) ⇔ ιΨ = −in · ιΨ.

Thus, the isomorphism ι induces the isomorphisms ι± : Σ±C → ΣN, and one has(
ι+Ψ+

ι−Ψ−

)
=

(
−in · ι+Ψ+

in · ι−Ψ−

)
.

We introduce the (pointwise) unitary operator U : L2(ΣN|∂K) → H, which sends H1(ΣN|∂K)
into Q(ℓ), and is defined by

UΨ =
1

2
ι−1

(
(1− in) ·Ψ
(1 + in) ·Ψ

)
.

We compute now |∇N
ι(UΨ)|2 for Ψ ∈ H1(ΣN|∂K). Let (e1, . . . , en−1) be a pointwise local

orthonormal frame of T (∂K). The vector fields (ej)1≤j≤n−1 are naturally identified with
elements of TN. Using the Schrödinger-Lichnerowicz formula and Proposition 2.2.6, (3) one
has

|∇N
ι(UΨ)|2 =

1

4

(
|∇N

((1 + in·)Ψ)|2 + |∇N
((1− in·)Ψ)|2

)
=

1

2

n−1∑
k=1

(
|∇N

ek
Ψ|2 + |(∇N

ek
n) ·Ψ+ n · ∇N

ek
Ψ|2
)

=

n−1∑
k=1

|∇N
ek
Ψ+

1

2
n ·Wek ·Ψ|2 + 1

4

n−1∑
k=1

|Wek ·Ψ|2

= |µ−1∇∂KµΨ|2 + 1

4
Tr(W 2)|Ψ|2

= |D∂KΨ|2 + 1

4

(
−Scal∂K +Tr(W 2)

)
|Ψ|2.

Thus,

ℓ[UΨ, UΨ] =

∫
∂K

|D∂KΨ|2v∂K =

∫
∂K

| /D∂K
µΨ|2v∂K.
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Case n even : The isomorphism µ induces the isomorphisms µ± : Σ±N → ΣK. According
to Proposition 2.2.6, as n− 1 is odd, for all f ∈ Γ(ΣN|∂K) one has

µ(in · f) =
(

0 Id
Id 0

)(
µ+f+

µ−f−

)
.

Then, for Ψ ∈ H one has

i ν · n ·Ψ = Ψ ⇔ −ι(in · ν ·Ψ) = ιΨ ⇔ −µ(in · ιΨ) = µιΨ

⇔ −
(

0 Id
Id 0

)(
µ+(ιΨ)+

µ−(ιΨ)−

)
= µιΨ ⇔ (ιΨ)− = −(µ−)−1µ+(ιΨ)+.

Thus, the unitary operator

U : L2(Σ(∂K)) −→ H

Ψ 7−→ 1√
2
ι−1µ−1

(
−Ψ
Ψ

)
sends H1(Σ(∂K)) into Q(ℓ). Now we compute |∇N

ι(UΨ)|2 for Ψ ∈ H1(Σ(∂K)). Let
(e1, . . . , en−1) be a pointwise local orthonormal frame of T (∂K). One has, using Propo-
sition 2.2.6, (3)

|∇N
ι(UΨ)|2 = |µ∇N

ι(UΨ)|2

=
1

2

∣∣∣∣µ∇N
µ−1

(
−Ψ
Ψ

)∣∣∣∣2
=

n−1∑
k=1

1

2

∣∣∣∣(∇∂K
ek

+
1

2
Wek

)(
−Ψ
Ψ

)∣∣∣∣2

=
1

2

n−1∑
k=1

(∣∣∣∣(∇∂K
ek

+
1

2
Wek

)
Ψ

∣∣∣∣2 + ∣∣∣∣(∇∂K
ek

− 1

2
Wek

)
Ψ

∣∣∣∣2
)

=

n−1∑
k=1

(
|∇∂K

ek
Ψ|2 + 1

4
|Wek|2|Ψ|2

)
= | /D∂K

Ψ|2 + 1

4

(
−Scal∂K +Tr(W 2)

)
|Ψ|2

Thus

ℓ[UΨ, UΨ] =

∫
∂K

| /D∂K
Ψ|2v∂K

which concludes the proof.

2.5 Operators in tubular coordinates

When the masses m and M become large, one can localize the eigenvalue problem in a
neighbourhood of ∂K since the potential in the square of the operators is large outside of
this region. For this reason, it is useful to express the operators in tubular coordinates around
∂K. Thus, we identify a collar near the boundary of K with the cylinder ∂K × (−δ, δ) and
we look at the operator obtained via this identification. However, the aim of this procedure
is to simplify the expression, so we would like to change the induced metric on the cylinder
into the product metric. This last step cannot be done without a way to compare the spinor
bundles involved, and in particular the way we modify the covariant derivative.
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2.5.1 Tubular coordinates

For δ > 0 we define the tubular neighbourhood of ∂K by

nδ(∂K) := {x ∈ N,dist(x, ∂K) < δ}. (2.5.1)

Since ∂K is compact, nδ(∂K) can be identified with the product ∂K × (−δ, δ) through the
Riemannian exponential map when δ is small. To make this precise, we define

Πδ := ∂K× (−δ, δ),Π+
δ := ∂K× (0, δ), Π−

δ := ∂K× (−δ, 0), Πt := ∂K× {t}, (2.5.2)

and it is standard that there exists δ0 > 0 such that the map

Πδ0 −→ nδ0(∂K)
(x, t) 7−→ expNx (tn(x))

(2.5.3)

is a diffeomorphism on its image.

For every δ < δ0, Πδ inherits an orientation via the previous identification. Moreover, one
has T (Πδ) ∼= T (∂K)× TR and we denote by ∂

∂t the vector field (0, 1) ∈ T (∂K)× TR.
Recall now the definition of a generalized cylinder introduced in [6]:

Definition 2.5.1. A generalized cylinder is a Riemannian manifold of the form Z := M× I
where I ⊂ R is an interval, M is a differentiable manifold and the Riemannian metric on
Z has the form gZ = gt + dt2 where (gt)t∈I is a smooth 1-parameter family of Riemannian
metrics of M.

We identify any vector field X on the hypersurface ∂K with the vector field on TΠδ0 also
denoted by X and defined by X(y,t) := Xy for all (y, t) ∈ Πδ0 . Note that in this case

[ ∂∂t , X] = 0.

We have two natural metrics on Πδ0 . First, the metric g of N via the previous identification,
and secondly, the Riemannian product metric h := g|∂K + dt2. Furthermore, ΣΠδ0 is the
spinor bundle of N restricted to Πδ0 .

With these notations, we have the useful property:

Lemma 2.5.2. The Riemannian manifold (Πδ0 , g) is a generalized cylinder.

Proof. It is sufficient to prove that g = gt + dt2 with (gt)t a family of metrics on ∂K. This
is equivalent to show that the vector field ∂

∂t is normal to Πt for all t ∈ (−δ0, δ0). Let
(x, t) ∈ Πδ0 and X ∈ T (∂K), identified with a vector field on Πδ0 as before. One has

d

dt
g

(
X,

∂

∂t

)
= g

(
∇N

∂
∂t
X,

∂

∂t

)
+ g

(
X,∇N

∂
∂t

∂

∂t

)

=

=0︷ ︸︸ ︷
g

(
∇N
X

∂

∂t
,
∂

∂t

)
+g

([
∂

∂t
,X

]
,
∂

∂t

)
= g

([
∂

∂t
,X

]
,
∂

∂t

)
= 0.

This shows that g
(
X, ∂∂t

)
is constant along the curves s 7→ (·, s) since g

(
X, ∂∂t

)
(x,0)

= 0. We

get g
(
X, ∂∂t

)
(x,t)

= 0, which concludes the proof.
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From Proposition 2.5.2, we deduce that there exists a family of metrics (gt)t on ∂K such that
g = gt + dt2. One can observe that h = g0 + dt2 in these notations.

We define for any (s, t) ∈ (−δ0, δ0) the map Γts which acts as the parallel transport from s
to t along the curves r 7→ (·, r) with respect to the connection ∇N.

We recall that vN is the volume form on Πδ0 compatible with the metric g. Let vh := v∂K∧dt
be the volume form compatible with h on Πδ0 .

The bilinear form g is identified with an endomorphism of TΠδ0 via the metric h. Let
(x, t) ∈ Πδ0 . For any direct orthonormal frame f of T(x,t)Πδ0 endowed with the metric h we
define

ϕ(x, t) :=
√
detfg. (2.5.4)

One can show that this does not depend on the choice of the basis, and the volume forms
with respect to the different metrics are related by

vN = ϕvh. (2.5.5)

Our aim in this section is relates all the objects on (Πδ0 , g) in terms of those over (Πδ0 , h).
The function ϕ defined above relates the integration over these two Riemannian manifolds,
and in particular the corresponding L2 spaces. More precisely, the map

Θ : L2(ΣΠδ0 , vN) −→ L2(ΣΠδ0 , vh)
Ψ 7−→

√
ϕΨ

(2.5.6)

is a unitary isomorphism from L2(ΣΠδ0 , vN) onto L2(ΣΠδ0 , vh).

2.5.2 Estimates in the generalized cylinder

We now fix δ < δ0
2 . In order to compare the structures over the hypersurfaces Πt for

t ∈ (−δ, δ), we first show that the norm of a vector field defined on Πt and extended by
parallel transport with respect to ∇N does not vary too much when δ is small.

Lemma 2.5.3. We endow Πδ with the metric g. There exists C > 0 depending only on δ0
such that for all t, t′ ∈ (−δ, δ) and X ∈ Γ(TΠt), for all x ∈ ∂K, one has the estimate

|X(x,t′) − Γt
′

t (X(x,t))|g ≤ C|t− t′||X(x,t)|g,

where X is extended to TΠδ as before.

Proof. First, we remark that C1 := sup
(y,s)∈Πδ0/2

sup
Z∈T(y,s)\{0}

|g(WΠsZ,Z)|
g(Z,Z) is finite by com-

pactness. Let t ∈ (−δ, δ) and X ∈ Γ(TΠt). We define the vector field Y ∈ Γ(TΠδ) by
Y(y,s) := Γst (X(y,t)) for any (y, s) ∈ Πδ.

One has for all t′ ∈ (−δ, δ),∣∣∣∣ ∂∂tg(X,X)

∣∣∣∣
|(·,t′)

=
∣∣∣2g (∇N

∂
∂t
X,X

)∣∣∣
|(·,t′)

≤ 2C1g(X,X)(·,t′).

By integration, we obtain the inequality g(X,X)(·,t′) ≤ g(X,X)(·,t) exp(2C1|t′ − t|), and for
C2 := exp(2δ0C1) one has g(X,X)(·,t′) ≤ C2g(X,X)(·,t).
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Now, one has ∣∣∣∣ ∂∂tg(X − Y,X − Y )

∣∣∣∣
(·,t′)

=
∣∣∣2g(∇N

∂
∂t
X,X − Y )

∣∣∣
(·,t′)

= |2g(WΠt′X,X − Y )|(·,t′)
≤ 2C1|X(·,t′)|g|(X − Y )(·,t′)|g
≤ 2C1C2|X(·,t)|g|(X − Y )(·,t′)|g.

We need the following technical lemma to conclude.

Lemma 2.5.4. Let I be an interval of R containing 0 and let f : I → R be a differentiable
non-negative function. Assume there is C > 0 such that |f ′| ≤ C

√
f . Then, one has

|
√
f(x)−

√
f(0)| ≤ C

2 |x| for all x ∈ I.

Using Lemma 2.5.4 we arrive at

g(X − Y,X − Y )(·,t′) ≤ C1C2|X(·)|2g(t′ − t)2

and the claim follows by taking the square root in this inequality.

Proof of Lemma 2.5.4. Let ε > 0. One has |f ′| ≤ C
√
f + ε, which gives

∣∣∣d√f+εdx

∣∣∣ ≤ C
2 . By

integration, we obtain that for all x ∈ I, |
√
f(x) + ε−

√
f(0) + ε| ≤ C

2 |x|. Letting ε tend to
zero, one gets the result.

We are now able to compare the norms of the covariant derivatives on the different hyper-

surfaces of Πδ. For this purpose, we recall that ∇N
Ψ is defined as the restriction of ∇NΨ to

T ∗∂K⊗ ΣΠδ.

Lemma 2.5.5. There exists C > 0 only depending on δ0 such that for any t ∈ (−δ, δ) and
Ψ ∈ Γ (ΣΠδ),

(1− Cδ)
∣∣∣∇N

Γ0
tΨ(·, t)

∣∣∣2 − Cδ|Ψ(·, t)|2 ≤
∣∣∣∇N

Ψ(·, t)
∣∣∣2

≤ (1 + Cδ)
∣∣∣∇N

Γ0
tΨ(·, t)

∣∣∣2 + Cδ|Ψ|2(·, t).

Proof. Let Ψ ∈ Γ(ΣΠδ). Let (x, t) ∈ Πδ and X ∈ T (∂K) such that |X(x,t)|gt = 1, extended
constantly to Πδ. The Riemannian curvature of (Πδ, g) is bounded, so for any s ∈ (−δ, δ)
one can find C1 > 0 such that∣∣∣∣ ∂∂s |(∇N

XΓstΨ)(x, s)|2
∣∣∣∣ =2

∣∣∣ℜ〈(∇N
∂
∂t
∇N
XΓstΨ)(x, s), (∇N

XΓstΨ)(x, s)
〉∣∣∣

=

∣∣∣∣ℜ〈RN

(
∂

∂t
,X

)
· (ΓstΨ)(x, s), (∇N

XΓtsΨ)(x, s)

〉∣∣∣∣
≤C1|X(x,s)|g|Ψ(x, t)||(∇N

XΓtsΨ)(x, s)|.

By Lemma 2.5.3, one can find C > 0 independent of X such that

|X(x,s)|g ≤ 1 + C|t− s| ≤ 1 + Cδ0.
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Thus, ∣∣∣∣ ∂∂s |(∇N
XΓstΨ)(x, s)|2

∣∣∣∣ ≤ C1(1 + Cδ0)|Ψ(x, t)||(∇N
XΓstΨ)(x, s)|.

Using Lemma 2.5.4, we obtain∣∣|(∇N
XΓ0

tΨ)(x, 0)| − |∇N
XΨ(x, t)|

∣∣ ≤ C1(1 + Cδ0)|t||Ψ(x, t)|.

On the other hand,

|(∇N
XΓ0

tΨ)(x, 0)− (∇N
Γ0
tX

Γ0
tΨ)(x, 0)| ≤|X(x,0) − Γ0

t (X(x,t))|g|(∇
N
Γ0
tΨ)(x, 0)|

≤C|t||(∇N
Γ0
tΨ)(x, 0)|.

Thus, combining the previous estimates, one can find C2 > 0 such that∣∣∣|(∇N
Γ0
tX

Γ0
tΨ)(x, 0)| − |∇N

XΨ(x, t)|
∣∣∣ ≤ C2|t|

(
|Ψ(x, t)|+ |(∇N

Γ0
tΨ)(x, 0)|

)
.

Now, let (e1, . . . , en) be an orthonormal frame at the point (x, t). One obtains∣∣∣|(∇N
Γ0
tΨ)(x, 0)| − |∇N

Ψ(x, t)|
∣∣∣ ≤ n∑

k=1

∣∣∣|(∇N
Γ0
tek

Γ0
tΨ)(x, 0)| − |∇N

ek
Ψ(x, t)|

∣∣∣
≤

n∑
k=1

C2|t|
(
|Ψ(x, t)|+ |(∇N

Γ0
tΨ)(x, 0)|

)
≤nC2δ

(
|Ψ(x, t)|+ |(∇N

Γ0
tΨ)(x, 0)|

)
.

The result is then a consequence of the following lemma:

Lemma 2.5.6. For all C > 0 and δ < δ0/2, there is C ′ > 0 depending only on δ0 and C
such that for all a, b, d > 0 verifying |a− b| ≤ Cδ(b+d), one has |a2− b2| ≤ C ′δ(b2+d2).

Proof of Lemma 2.5.6. One has

|a2 − b2| =|(a− b+ b)2 − b2| = |(a− b)2 + 2(a− b)b| ≤ |a− b|2 + |2(a− b)b|
≤C2δ2(b+ d)2 + 2Cδ(b+ d)b ≤ C2δ2(b+ d)2 + Cδ(b+ d)2 + Cδb2

≤(2C2δ2 + Cδ)(b2 + d2) + Cδb2 ≤ (2C2δ0 + 2C)δ(b2 + d2),

which is equivalent to the statement of the lemma.

2.5.3 Bracketing for the quadratic form of A2
m

We end this section by finding a lower and an upper bound for the quadratic form of A2
m

expressed in the tubular coordinates.

Lemma 2.5.7. There exists c > 0 depending only on δ0 such that the following estimates
hold:

∥ϕ− 1∥L∞(Πδ) ≤ cδ (2.5.7) ∥∇N
ϕ∥2L∞(Πδ)

≤ cδ2 (2.5.8)

∥∥∥∥ (∂tϕ)(·, δ)2ϕ(·, δ)

∥∥∥∥
L∞(∂K)

≤ c (2.5.9) ∂tϕ(·, 0) = −H
2

(2.5.10)
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∣∣∣∣∂2t ϕ2ϕ (x, t)− (∂tϕ)
2

4ϕ2
(x, t)− 1

4
(Scal∂K(x)− Tr(W 2)(x)− ScalN(x, t))

∣∣∣∣ ≤ cδ, (2.5.11)

for all (x, t) ∈ Πδ.

Proof. To show (2.5.7), (2.5.8) and (2.5.9), we just remark that ϕ is a smooth function on
the closure of Πδ which is compact, so it is bounded on Πδ as well as all its derivatives.

Thanks to Lemma 2.5.2 we can use the explicit expression of the Weingarten tensor [6, formula
(4.1)], so (2.5.10) follows from:

∂tϕ(·, 0)
2ϕ(·, 0)

=
∂t
√
detf g(·, 0)

2
=

Tr(∂tg)(·, 0)
4
√

detf g(·, 0)
= −2Tr(W )

4
= −H

2
.

Finally, we prove (2.5.11). Let (x, t) ∈ Πδ and let f be a direct orthonormal frame of (Πδ, h)
at (x, t). One has, using lemma 2.5.2 and the formula for the scalar curvature of generalized
cylinders [6, equation (4.8)],

∂2t ϕ

2ϕ
(x, t)− (∂tϕ)

2

4ϕ2
(x, t) =

∂2t detf g

4 detf g
(x, t)− 3(∂t detf g)

2

16(detf g)2
(x, t)

=

(
∂2t detf g

4
− 3(∂t detf g)

2

16

)
(x, 0) + O(t)

=

(
H2

4
− Tr(W 2) +

Tr(g̈t|t=0)

4

)
(x) + O(t)

=
1

4
(Scal∂K(x)− Tr(W 2)(x)− ScalN(x, t)) + O(t),

which gives the result.

For α ∈ R, δ ∈ (0, δ0/2) and Ψ ∈ H1
(
ΣΠ±

δ

)
) we define

J±(Ψ) :=

∫
Π±

δ

[
|∇NΨ|2 + ScalN

4
|Ψ|2

]
vN +

∫
∂K

(
α± H

2

)
|Ψ|2v∂K. (2.5.12)

Proposition 2.5.8. There is a constant c > 0 depending only on δ0 such that for all α ∈ R
and δ ∈ (0, δ0/2), the following inequalities hold:

1. For every Ψ ∈ H1
(
ΣΠ±

δ

)
, one has

J±(Ψ) ≥
∫
Π±

δ

[
(1− cδ)

∣∣∣(∇N
Γ0
tΘΨ)(x, 0)

∣∣∣2 + |∇N
∂
∂t
ΘΨ|2

]
vh(x, t)

+

∫
Π±

δ

[(
Scal∂K − Tr(W 2)

4
− cδ

)
|ΘΨ|2

]
vh

+

∫
∂K

[
α|(ΘΨ)(·, 0)|2 − c|(ΘΨ)(·, δ)|2

]
v∂K. (2.5.13)

2. If moreover Ψ = 0 on the outer boundary Π±δ, one has
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J±(Ψ) ≤
∫
Π±

δ

[
(1 + cδ)

∣∣∣(∇N
Γ0
tΘΨ)(x, 0)

∣∣∣2 + |∇N
∂
∂t
ΘΨ|2

]
vh(x, t)

+

∫
Π±

δ

[(
Scal∂K − Tr(W 2)

4
+ cδ

)
|ΘΨ|2

]
vh + α

∫
∂K

|(ΘΨ)(·, 0)|2v∂K (2.5.14)

Proof. It is sufficient to prove the result for Ψ ∈ Γc

(
ΣΠ±

δ

)
and to conclude by density. One

has

J±(Ψ) =

∫
Π±

δ

[
|∇Nϕ−

1
2ΘΨ|2 + ScalN

4
|ϕ− 1

2ΘΨ|2
]
ϕvh +

∫
∂K

(
α± H

2

)
|Ψ|2v∂K.

We remark that ϕ = 1 on ∂K and Lemma 2.5.5 gives a constant C > 0 such that∫
Π±

δ

[∣∣∣∇N
∂
∂t
ϕ−

1
2ΘΨ

∣∣∣2 + (1− Cδ)
∣∣∣∇N

Γ0
tϕ

− 1
2ΘΨ

∣∣∣2 (·, 0)− Cδ|ϕ− 1
2ΘΨ|2

]
ϕvh

+

∫
Π±

δ

ScalΠ

4
|ΘΨ|2ϕvh +

∫
∂K

(
α± H

2

)
|ΘΨ|2v∂K ≤ J±(Ψ)

≤
∫
Π±

δ

[∣∣∣∇N
∂
∂t
ϕ−

1
2ΘΨ

∣∣∣2 + (1 + Cδ)
∣∣∣∇N

Γ0
tϕ

− 1
2ΘΨ

∣∣∣2 (·, 0) + Cδ|ϕ− 1
2ΘΨ|2

]
ϕvh

+

∫
Π±

δ

ScalN

4
|ϕ− 1

2ΘΨ|2ϕvh +
∫
∂K

(
α± H

2

)
|ΘΨ|2v∂K.

Moreover, for all (x, t) ∈ Πδ and X ∈ Tx∂K,∣∣∣∇N

XΓ0
t (ϕ

− 1
2ΘΨ)

∣∣∣2 (x, 0)ϕ(x, t)
=

∣∣∣∣∇N

XΓ0
tΘΨ− 1

2ϕ(x, t)
X(ϕ)(x, t)Γ0

tΘΨ

∣∣∣∣2 (x, 0)
=
∣∣∣∇N

XΓ0
tΘΨ

∣∣∣2 (x, 0) + ∣∣∣∣ 1

2ϕ(x, t)
X(ϕ)(x, t)Γ0

tΘΨ

∣∣∣∣2 (x, 0)
− 1

ϕ(x, t)
ℜ
〈
∇N

XΓ0
tΘΨ, X(ϕ)(x, t)Γ0

tΘΨ
〉
(x, 0)

and ∣∣∣ℜ〈∇N
Γ0
tΘΨ, X(ϕ)(x, t)Γ0

tΘΨ
〉
(x, 0)

∣∣∣ ≤ δ|∇N
Γ0
tΘΨ|2(x, 0) + |ΘΨ|2|X(ϕ)|2(x, t)/δ.

Using this together with the inequality (2.5.8) shows the existence of C ′ > 0 such that

(1− C ′δ)
∣∣∣∇N

Γ0
tΘΨ

∣∣∣2 (x, 0)− C ′δ |ΘΨ|2 (x, t)

≤ (1± Cδ)
∣∣∣∇N

Γ0
tϕ

− 1
2ΘΨ

∣∣∣2 (x, 0)ϕ(x, t)
≤ (1 + C ′δ)

∣∣∣∇N
Γ0
tΘΨ

∣∣∣2 (x, 0) + C ′δ |ΘΨ|2 (x, t).

It remains to compute

ϕ|∇N
∂
∂t
ϕ−

1
2ΘΨ|2 =

∣∣∣∣∇N
∂
∂t
ΘΨ− 1

2ϕ
∂tϕ(ΘΨ)

∣∣∣∣2
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=
∣∣∣∇N

∂
∂t
ΘΨ
∣∣∣2 + (∂tϕ)

2

4ϕ2
|ΘΨ|2 − ∂tϕ

ϕ
ℜ
〈
∇N

∂
∂t
ΘΨ,ΘΨ

〉
=
∣∣∣∇N

∂
∂t
ΘΨ
∣∣∣2 + (∂tϕ)

2

4ϕ2
|ΘΨ|2 − ∂tϕ

2ϕ
∂t |ΘΨ|2 .

Integrating by parts yields∫
Π±

δ

|∇N
∂
∂t
ϕ−

1
2ΘΨ|2ϕvh =

∫
Π±

δ

[∣∣∣∇N
∂
∂t
ΘΨ
∣∣∣2 + (∂tϕ)

2

4ϕ2
|ΘΨ|2 − ∂tϕ

2ϕ
∂t |ΘΨ|2

]
vh

=

∫
Π±

δ

[∣∣∣∇N
∂
∂t
ΘΨ
∣∣∣2 + (∂tϕ)

2

4ϕ2
|ΘΨ|2 +

(
∂2t ϕ

2ϕ
− (∂tϕ)

2

2ϕ2

)
|ΘΨ|2

]
vh

∓
∫
Π±δ

∂tϕ

2ϕ
|ΘΨ|2vh ±

∫
Π0

∂tϕ

2ϕ
|ΘΨ|2v∂K

=

∫
Π±

δ

[∣∣∣∇N
∂
∂t
ΘΨ
∣∣∣2 + (∂2t ϕ

2ϕ
− (∂tϕ)

2

4ϕ2

)
|ΘΨ|2

]
vh

∓
∫
Π±δ

∂tϕ

2ϕ
|ΘΨ|2v∂K ∓

∫
Π0

H

2
|ΘΨ|2v∂K

where we used (2.5.10). Thus, we have

J±(Ψ) ≤
∫
Π±

δ

[
(1 + Cδ)

∣∣∣(∇N
Γ0
tΘΨ)(x, 0)

∣∣∣2 + |∇N
∂
∂t
ΘΨ|2

+

(
∂2t ϕ

2ϕ
− (∂tϕ)

2

4ϕ2
+

ScalN

4
+ Cδ

)
|ΘΨ|2(x, t)

]
vh(x, t)

+ α

∫
Π0

|ΘΨ|2v∂K if Ψ = 0 on Π±δ

J±(Ψ) ≥
∫
Π±

δ

[
(1− Cδ)

∣∣∣(∇N
Γ0
tΘΨ)(x, 0)

∣∣∣2 + |∇N
∂
∂t
ΘΨ|2

+

(
∂2t ϕ

2ϕ
− (∂tϕ)

2

4ϕ2
+

ScalN

4
− Cδ

)
|ΘΨ|2(x, t)

]
vh

+ α

∫
Π0

|ΘΨ|2v∂K ∓
∫
Π±δ

∂tϕ

2ϕ
|ΘΨ|2v∂K.

These estimates, together with (2.5.9) and (2.5.11) give the result.

2.6 Analysis of the one-dimensional operators

The proofs of the main results will use some separation of variables in the generalized cylinder
Πδ. For this reason, we will need to analyse various one-dimensional operators. We define
them in this section and we state the properties that we need on the behaviour of their
eigenvalues in some asymptotic regimes.

We recall the following results from [59, Section 3]:
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Lemma 2.6.1. Let ε > 0. Let α > 0 and let S be the self-adjoint operator on L2(0, δ)
associated with the quadratic form

s[f, f ] =

∫ ε

0

|f ′|2dt− α|f(0)|2, Q(s) =
{
f ∈ H1(0, ε), f(ε) = 0

}
.

Then, when α→ +∞, one has E1(S) = −α2+O(e−εα), and the associated L2−normalized
eigenfunction f satisfies |f(0)|2 = 2α+ O(1).

Lemma 2.6.2. Let ε > 0. Let α, β > 0 and let S′ be the self-adjoint operator on L2(0, ε)
associated with the quadratic form

s′[f, f ] =

∫ ε

0

|f ′|2dt+m|f(0)|2 − β|f(ε)|2, Q(S′) = H1(0, ε).

Then, when α → +∞, one has E1(S
′) = −α2 + O(e−εα), and there exist b± > 0 and b > 0

such that
b−j2 − b ≤ Ej(S

′) ≤ b+j2 for all j ≥ 2 and α > 0.

A third one-dimensional operator will be of interest for the proof of Theorem 2.1.3. It can be
interpreted as the Laplacian on an interval (−δ, δ) with a potential consisting of two masses
on the two sides of the origin and a δ-interaction at 0. For this last operator, we state the
result in the very specific case of our framework, for m,M ∈ R and δ ∈ (0, δ0/2).

For β > 0, let X be the operator associated with the quadratic form

x[f, f ] =

∫ δ

−δ
|f ′|2dt− β(|f(δ)|2 + |f(−δ)|2)

+

∫ 0

−δ
M2|f |2dt+

∫ δ

0

m2|f |2dt− (M −m)|f(0)|2,

Q(x) = H1(−δ, δ). (2.6.1)

Lemma 2.6.3. For δ > 0 and β > 0 fixed, one has E1(X) = O(e−
min(|m|,M)

2 δ) when
min(−m,M) → +∞. Moreover, for all j ≥ 2, one can find C1, C2 > 0 such that

min(m2,M2) + C1j
2 − C2 ≤ Ej(X).

Proof. One can see that the operator X acts as f 7→ −f ′′ + (M21(−δ,0) +m21(0,δ))f on the
functions f ∈ H1(−δ, δ)∩(H2(−δ, 0)∪H2(0, δ)) satisfying f ′(δ)−βf(δ) = f ′(−δ)+βf(−δ) =
0 and f ′(0+)− f(0−) + (|m|+M)f(0) = 0. We search for a negative eigenvalue for X of the
form −k2 with k > 0. The associated eigenfunction must be of the form

f(t) =

{
a1e

−k1t + b1e
k1t if t ∈ (−δ, 0)

a2e
k2t + b2e

−k2t if t ∈ (0, δ)
(2.6.2)

where k1 :=
√
M2 + k2 and k2 :=

√
m2 + k2.

We can rewrite the equations satisfied by f as

0 = a2(k2 − β)ek2δ − b2(k2 + β)e−k2δ

0 = a1(k1 − β)ek1δ − b1(k2 + β)e−k2δ

a1 + b1 = a2 + b2
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0 = a2k2 − b2k2 + a1k1 − b1k1 + (|m|+M)(a1 + b1).

The first two equations give b2 = k2−β
k2+β

e2k2δa2 and b1 = k1−β
k1+β

e2k1δa1. Thus, with the equation
of continuity we have

a1

(
1 +

k1 − β

k1 + β
e2k1δ

)
= a2

(
1 +

k2 − β

k2 + β
e2k2δ

)
.

We conclude that

a2 = a1

(
1 +

k2 − β

k2 + β
e2k2δ

)−1(
1 +

k1 − β

k1 + β
e2k1δ

)
because for min(|m|,M) large enough, one has that the different terms are not zero.

We arrive at

|m|+M = k2

(
k2 − β

k2 + β
e2k2δ − 1

)(
1 +

k2 − β

k2 + β
e2k2δ

)−1

+ k1

(
k1 − β

k1 + β
e2k1δ − 1

)(
1 +

k1 − β

k1 + β
e2k1δ

)−1

.

Let F (x) := x
(
x−β
x+β e

2xδ − 1
)(

1 + x−β
x+β e

2xδ
)−1

defined on (min(|m|,M),+∞). The previous

equation reads |m| +M = F (k1) + F (k2), and when k = 0 the right-hand side is F (|m|) +
F (M) < |m| +M . Since F (k1) + F (k2) → +∞ when k → +∞ and F is strictly increasing
there exists an unique k ∈ (0,+∞) such that |m|+M = F (k1) + F (k2).

Now, one has

F (x) = x(1 + O(e−2xδ)) = x+ O(e−3xδ/2).

Thus, for ζ := min(|m|,M) large enough one has

k2 + k1 − 2e−ζδ ≤ |m|+M ≤ k2 + k1 + 2e−ζδ

and
0 ≤

√
m2 + k2 − |m|+

√
M2 + k2 −M ≤ 2e−ζδ.

Then,
√
ζ2 + k2 − ζ ≤ 2e−ζδ and we arrive at

k2 = O(e−ζδ/2).

To conclude, we consider the operator X ′ defined by the same quadratic form as X but
with the form domain {f ∈ H1(−δ, δ), f(0) = 0}. From the Min-Max principle, one has
Ej−1(X

′) ≤ Ej(Xα) ≤ Ej(X
′) for all j ≥ 2 because X is a rank-one perturbation of X ′.

But X ′ ∼= (SD +m2)⊕ (SD +M2) where SD is the operator acting in L2(0, δ) as f 7→ −f ′′
for f ∈ H2(0, δ) with f(0) = f ′(δ) − βf(δ) = 0. We conclude by remarking that Ej(SD) ∼
π2j2/δ2 when j → +∞, so Ej(X

′) ≥ min(m2,M2)− C2 + C1j
2 for suitable C1, C2 > 0.

2.7 Asymptotics analysis for the operator Am

In this section, we prove Theorem 2.1.1 following the analysis of [59, Section 4]. The proof
is made by localizing the problem near the boundary of K and using the analysis done in
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the previous section to find a lower and an upper bound for the limits of the eigenvalues.
These bounds coincide and are equal to the eigenvalues of the model operator L introduced
in (2.4.9). We begin by showing a Dirichlet-Neumann bracketing for the operator Am.

Let δ ∈ (0, δ0/2). We introduce several new operators. Let Z+
m, Z−

m, Z ′
m be the operators

defined by their quadratic forms z+m, z−m, z′m which admit the same expression as the quadratic
form of A2

m given in Proposition 2.4.4 with

dom(z+m) =
{
Ψ ∈ H1(ΣC

|Π−
δ

),Ψ = i ν · n ·Ψ on ∂K and Ψ = 0 on Π−δ
}
, (2.7.1)

dom(z−m) =
{
Ψ ∈ H1(ΣC

|Π−
δ

),Ψ = i ν · n ·Ψ on Π0
}
, (2.7.2)

dom(z′m) = H1
(
ΣC|K\(Π−

δ ∪Π0)

)
. (2.7.3)

We define the maps J1 : dom(Am) → dom(z−m) ⊕ dom(z′m), Ψ 7→ (Ψ
|Π−

δ

,Ψ|K\(Π−
δ ∪Π0)) and

J2 : dom(z+m) → dom(Am) which is the extension by zero. For Ψ1 ∈ dom(Am) one has

(z−m ⊕ z′m) [J1(Ψ1), J1(Ψ1)] ≤ ⟨AmΨ1, AmΨ1⟩L2(K) ,

and for Ψ2 ∈ dom(z+m),

⟨AmJ2(Ψ2), AmJ2(Ψ2)⟩L2(K) ≤ z+m [Ψ2,Ψ2] .

Then, the Min-Max principle gives

Ej
(
Z−
m ⊕ Z ′

m

)
≤ Ej

(
A2
m

)
≤ Ej

(
Z+
m

)
. (2.7.4)

We remark that Z ′
m ≥ m2 and then, for any j ∈ N such that Ej (Z

+
m) < m2, one has

Ej
(
Z−
m

)
≤ Ej

(
A2
m

)
≤ Ej

(
Z+
m

)
. (2.7.5)

We introduce the notation S−
δ := ι(ΣC

|Π−
δ

). Let c > 0 be the constant given by Proposi-

tion 2.5.8. We consider the two quadratic forms in L2(S−
δ , vh) given by

y+m[Ψ,Ψ] :=

∫
Π−

δ

[
(1 + cδ)|∇N

Γ0
tΨ|2 + |∇N

∂
∂t
Ψ|2
]
vh

+

∫
Π−

δ

[(
m2 +

Scal∂K − Tr(W 2)

4
+ cδ

)
|Ψ|2

]
vh +m

∫
∂K

|Ψ(·, 0)|2v∂K

Q(y+m) :=
{
Ψ ∈ H1

(
S−
δ

)
, P−ι

−1(Ψ(·, 0)) = 0 and Ψ(·, δ) = 0
}
, (2.7.6)

and

y−m[Ψ,Ψ] :=

∫
Π−

δ

[
(1− cδ)|∇N

Γ0
tΨ|2 + |∇N

∂
∂t
Ψ|2
]
vh

+

∫
Π−

δ

[(
m2 +

Scal∂K − Tr(W 2)

4
− cδ

)
|Ψ|2

]
vh

+

∫
∂K

[
m|Ψ(·, 0)|2 − c|Ψ(·, δ)|2

]
v∂K
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Q(y−m) :=
{
Ψ ∈ H1

(
S−
δ

)
, P−ι

−1Ψ(·, 0) = 0
}
. (2.7.7)

Remarking that Q(y±m) = Θι(dom(z±m)), and that Θι is unitary from L2(ΣC|Π−
δ
, vN) onto

L2
(
S−
δ , vh

)
, Proposition 2.5.8 and the Min-Max principle give

Λj
(
y−m
)
≤ Ej

(
A2
m

)
≤ Λj

(
y+m
)
for any j ∈ N such that Λj(y

+
m) < m2. (2.7.8)

2.7.1 Upper bound

The upper bound is found by taking good test functions in the Min-Max principle. The first
observation is that the quadratic form y+m admits a separation of variables. Indeed, it can be
seen as the tensor product of a sesquilinear form on ∂K and a one-dimensional sesquilinear
form S. The behaviour of its first eigenvalue allows us to find the bound we are searching
for.

Let S be the self-adjoint operator on L2(0, δ) associated with the quadratic form

s[f, f ] =

∫ δ

0

|f ′|2dt+m|f(0)|2, Q(s) =
{
f ∈ H1(0, δ), f(δ) = 0

}
, (2.7.9)

and let f be a normalized eigenfunction for the first eigenvalue of S. According to
Lemma 2.6.1, when −m is large, there is b > 0 such that S[f, f ] +m2 ≤ b exp(−δ|m|).
For a > 0, we introduce the quadratic form

ℓa[Ψ,Ψ] =

∫
∂K

[
(1 + ca)|∇N

ιΨ|2 +

(
Scal∂K − Tr(W 2)

4
+ ca

)
|Ψ|2

]
v∂K,

Q(ℓa) = Q(ℓ), (2.7.10)

where ℓ was defined in (2.4.9). The sesquilinear form ℓa is lower semibounded and closed.
We denote by La the associated self-adjoint operator.

Let ξ1, . . . , ξj be linearly independant eigenspinors for the first j eigenvalues of Lδ. We define
the set

V :=
{
Ψ ∈ L2

(
S−
δ

)
,Ψ(x, t) = f(t)Γt0(ιξ(x)), ξ ∈ Span(ξ1, . . . , ξj)

}
. (2.7.11)

With all these notations, for Ψ(x, t) := f(t)Γt0(ιξ(x)) ∈ V and −m large enough, one has,
using Leibniz’s rule

y+m[Ψ,Ψ] =

∫
Π−

δ

[
|∇N

∂
∂t
Ψ|2 + (1 + cδ)|∇N

Γt0Ψ|2
]
vh

+

∫
Π−

δ

[(
m2 +

Scal∂K − Tr(W 2)

4
+ cδ

)
|Ψ|2

]
vh +m

∫
∂K

|Ψ(., 0)|2v∂K

=

∫
Π−

δ

[
| ∂
∂t
f |2|ξ|2 + (1 + cδ)|∇N

ιξ|2|f |2
]
vh

+

∫
Π−

δ

[(
m2 +

Scal∂K − Tr(W 2)

4
+ cδ

)
|Ψ|2

]
vh +m

∫
∂K

|Ψ(·, 0)|2v∂K

= ℓδ[ξ, ξ]∥f∥2L2(0,δ) +
(
S[f, f ] +m2

)
∥ξ∥2L2(∂K)
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≤ ℓδ[ξ, ξ] + b exp(−δ|m|)∥ξ∥2L2(∂K)

≤ (Ej(Lδ) + b exp(−δ|m|)) ∥ξ∥2L2(∂K).

Thus, Λj(y
+
m) ≤ Ej(Lδ) + b exp(−δ|m|). We remark that lim

δ→0
Ej(Lδ) = Ej(L) so we get the

bound
lim sup
m→−∞

Ej(A
2
m) ≤ Ej(L). (2.7.12)

2.7.2 Lower bound

The strategy to obtain the lower bound is to relax the constraint in the domain of y−m in
order to obtain a separation of variable. In this way, we arrive are in the good setting to
apply the monotone convergence theorem. This analysis will be done in the remaining part
of this section.

Let S′ be the self-adjoint operator on L2(0, δ) associated with the quadratic form

S′[f, f ] =

∫ δ

0

|f ′|2dt+m|f(0)|2 − c|f(δ)|2, Q(S′) = H1(0, δ), (2.7.13)

and let (fk)k∈N be a sequence of normalized eigenfunctions for the eigenvalues Ek(S
′).

According to Lemma 2.6.2, there exist b± > 0, b > 0 and b0 > 0 such that E1(S
′) ≥

−m2 − be−δ|m| when m→ −∞ and b−k2 − b0 ≤ Ek(S
′) ≤ b+k2 for all k ≥ 2.

If c > 0 is the constant given by Proposition 2.5.8, we define the quadratic form ym by the
same formula as y−m, but with the domain Q(ym) = H1

(
S−
δ

)
.

We also define for a ∈ R the sesquilinear form

ℓ′a[Ψ,Ψ] =

∫
∂K

[
(1 + ca)|∇N

ιΨ|2
(
Scal∂K − Tr(W 2)

4
+ ca

)
|Ψ|2

]
v∂K,

Q(ℓ′a) = H1(ΣC|∂K). (2.7.14)

This form is closed and lower semibounded. We denote by L′
a the associated self-adjoint

operator.

We state the following density result, which allows us to express Ym as the sum of tensor
products of operators.

Lemma 2.7.1. Let

F :=
{
Ψ, ∃(f,Ψ0) ∈ L2(0, δ)× L2

(
ΣC|∂K

)
, Ψ(x, t) = f(−t)Γt0 (ιΨ0(x))

}
.

Then, Span(F ) is dense in L2
(
ΣΠ−

δ

)
, so one has a natural isomorphism L2

(
S−
δ , vh

) ∼=
L2(0, δ)⊗ L2

(
ΣC|∂K

)
.

Proof. Let E := (−δ, 0) × R viewed as a vector bundle over (−δ, 0), and P := E ⊗ ΣC|∂K.
The statement of the lemma is then equivalent to the density of Span(F ′) in L2(P, vh) where

F ′ :=
{
Ψ, ∃(f,Ψ0) ∈ L2(−δ, 0)× L2

(
ΣC|∂K

)
, Ψ(x, t) = f(t)Ψ0(x)

}
,

and this fact is standard.
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We denote by Ym the self-adjoint operator associated with ym, and using the identification
of Lemma 2.7.1, one can write

Ym = (S′ +m2)⊗ 1 + 1⊗ L′
−δ.

Now, we define the unitary transformation

U : L2
(
S−
δ

)
−→ ℓ2(N)⊗ L2

(
ΣC|∂K

)
UΨ = (Ψk), Ψk =

∫ δ

0

fk(t) ι
−1Γ0

t (Ψ(·, t))dt.

By the spectral theorem, Ŷm := UYmU∗ is given by its quadratic form denoted by ŷm:

ŷm[(Ψk), (Ψk)] =
∑
k∈N

(
ℓ′−δ[Ψk,Ψk] + (Ek(S

′) +m2)∥Ψk∥2L2(∂K)

)
,

and the form domain is the subset of ℓ2(N) ⊗ L2
(
ΣC|∂K

)
for which the right-hand side

converges. Thus,

Q(ŷm) =
{
(Ψk) ∈ ℓ2(N)⊗ L2

(
ΣC|∂K

)
, Ψk ∈ H1

(
ΣC|∂K

)
and

∑(
∥Ψk∥2H1(∂K) + k2∥Ψk∥2L2(∂K)

)
<∞

}
. (2.7.15)

Setting Ŷ −
m := UY −

mU∗, the sesquilinear form for Ŷ −
m is the same as for Ŷm with the domain

Q(ŷ−m) =
{
Ψ̂ = (Ψk) ∈ Q(ŷm) : P−U

∗Ψ̂(·, 0) = 0
}
. (2.7.16)

Then, if we define

wm[Ψ̂, Ψ̂] := ℓ′−δ[Ψ1,Ψ1]− b exp(−δ|m|)∥Ψ1∥2L2(∂K)

+
∑
k≥2

ℓ′−δ[Ψk,Ψk] + (b−k2 − b0 +m2)∥Ψk∥2L2(∂K),

Q(wm) := Q(ŷ−m), (2.7.17)

we have ŷ−m ≥ wm. The form wm is semibounded form below and closed. Let Wm be the
associated self-adjoint operator. By Theorem 2.2.11, this operator has compact resolvent.
For all j ∈ N, one has

Ej(A
2
m) ≥ Λj(y

−
m) = Λj(ŷ

−
m) ≥ Ej(Wm).

We can now apply the monotone convergence theorem to the non-decreasing family of self-
adjoint operators (Wm). The form domain of the limit operator will be:

Q∞ :=

{
Ψ̂ = (Ψk) ∈

⋂
m<0

Q(Wm), sup
m<0

Wm[Ψ̂, Ψ̂] <∞

}
. (2.7.18)

One has Ψ̂ := (Ψk) ∈ Q∞ iff Ψk = 0 for all k ≥ 2 and 0 = P−U
∗Ψ̂(·, 0) = f1(0)P−Ψ1. If we

denote by e1 := (1, 0, 0, . . .) ∈ ℓ2(N) this gives

Q∞ =
{
Ψ̂ = e1 ⊗Ψ1 : Ψ1 ∈ Q(ℓ)

}
.
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Thus, for any Ψ̂ ∈ Q∞ one has

lim
m→−∞

Wm[Ψ̂, Ψ̂] = L−δ[Ψ1,Ψ1].

We define the Hilbert space H∞ := e1 ⊗H and the sesquilinear form

w∞[e1 ⊗Ψ1, e1 ⊗Ψ1] = L−δ[Ψ1,Ψ1], Q(w∞) = H∞. (2.7.19)

Let W∞ be the associated self-adjoint operator. By Corollary 2.2.4 (monotone convergence),
one has lim

m→−∞
Ej(Wm) = Ej(W∞) = Ej(L−δ) for all j ∈ N. Letting δ go to 0 we obtain

lim inf
m→∞

Ej(A
2
m) ≥ Ej(L). (2.7.20)

The estimates (2.7.12) and (2.7.20) together with Lemma 2.4.10 give

lim
m→∞

Ej
(
A2
m

)
= Ej

(
( /D

∂K
)2
)
. (2.7.21)

Remark 2.7.2. With the help of the sesquilinear form, we can investigate another asymp-
totic regime. Let Ψ ∈ dom(Am) and assume m > 0. Proposition 2.4.6 gives that for m large
enough, ∥AmΨ∥2L2(N) ≥ m2∥Ψ∥2L2(N). Hence, when m → +∞, one has Ej(Am) → +∞ for
all j ∈ N by the Min-Max principle.

2.8 The operator B2
m,M in the limit of large M

We now prove Theorem 2.1.2 following the lines of [59, Section 5]. Again, this is done by
finding a lower and an upper bound for the limit of the eigenvalues of B2

m,M . The proof
relies on the localization of the problem in a neighbourhood of K and the construction of an
appropriated extension for the spinors in K. For the lower bound, we make another use of
the monotone convergence theorem to observe that the projection P+ on the boundary of K
must vanish in the asymptotic regime.

We begin with some preliminary estimates and the definition of the extension operator.

Lemma 2.8.1. Let r′α be the sesquilinear form given by

r′α[Ψ,Ψ] :=

∫
Kc\Π+

δ

(
|∇NιΨ|2 + ScalN

4
|Ψ|2

)
vN

with Q(r′α) = {Ψ|Kc\Π+
δ
, Ψ ∈ dom(Bm,M )}. Then, r′α is semibounded from below.

Proof. Let Ψ ∈ Q(r′α). Let χ1, χ2 be two non-negative real smooth functions on N such that
χ2
1 + χ2

2 = 1, χ1 is supported in K ∪Π+
3δ
2

and χ2 is supported in N \ (K ∪Π+
5δ
4

).

An easy computation gives

r′α[Ψ,Ψ] = r′α[χ1Ψ, χ1Ψ] + r′α[χ2Ψ, χ2Ψ]−
∫
Kc\Π+

δ

(|(dχ1)ιΨ|2 + |(dχ2)ιΨ|2)vN,

and then there exists a constant C1 > 0 such that

r′α[Ψ,Ψ] ≥ r′α[χ1Ψ, χ1Ψ] + r′α[χ2Ψ, χ2Ψ]− C1∥Ψ∥2L2(N).
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Now, the Schrödinger-Lichnerowicz formula gives

r′α[χ2Ψ, χ2Ψ] = ∥DNχkΨ∥2L2(N) ≥ 0.

Moreover, there exists C2 > 0 such that

r′α[χ1Ψ, χ1Ψ] ≥ −C2∥χ1Ψ∥2L2(N)

because χ1 has compact support.

Altogether, we have r′α[Ψ,Ψ] ≥ −C∥Ψ∥2L2(N) for a constant C > 0.

We define S+
δ := ι(ΣC

|Π+
δ

).

Lemma 2.8.2. For Ψ ∈ {Φ|Kc , Φ ∈ dom(Bm,M )} and α > 0 we define the sesquilinear form

rα[Ψ,Ψ] =

∫
Kc

(∣∣∇NιΨ
∣∣2 + ScalN

4
|Ψ|2

)
vN +

∫
∂K

(
H

2
− α

)
|Ψ|2v∂K.

Then, there exists C > 0 such that for α > 0 large enough, one has a map Fα :
H1(ι(ΣC|∂K)) → dom(rα) with FαΨ = Ψ on ∂K and

rα[FαΨ, FαΨ] + α2∥FαΨ∥2L2(Kc) ≤
c

α
∥Ψ∥2H1(∂K).

Moreover there exists a constant C0 > 0, such that Λ1(rα) ≥ −α2 − C0.

Proof. We recall that for α > 0 we defined in (2.7.9) the operator S associated with the
sesquilinear form

s[f, f ] =

∫ δ

0

|f ′|2dt− α|f(0)|2, Q(s) =
{
f ∈ H1(0, δ), f(δ) = 0

}
.

Let f be the first eigenfunction of the operator S normalized by f(0) = 1.

We define the map Fα by

FαΨ(x) :=

{
(Θι)−1v(x) if x ∈ Π+

δ

0 if x ∈ Kc \Π+
δ

where v := f ⊗ Ψ. From Lemma 2.6.1 there exists C > 0 such that ∥f∥2L2(0,δ) ≤ C
α and

α2 + E1(S) ≤ Ce−δα. Then, using Proposition 2.5.8, one can find a > 0 such that

rα[FαΨ, FαΨ] + α2∥FαΨ∥2L2(Kc) = Jα(FαΨ) + α2∥fα∥2L2(Kc)

≤
∫
Π+

δ

(
a|∇N

Γ0
t v|2 + |∇N

∂
∂t
v|2 + (α2 + a)|v|2

)
vh − α

∫
∂K

|Ψ|2v∂K

=

∫
∂K

[
a|∇N

Ψ|2 + (E1(S) + α2 + a)|Ψ|2
]
vh∥f∥2L2(0,δ)

≤ C(C + a)

α
∥Ψ∥2H1(∂K).

For the second assertion, we introduce the sesquilinear forms

r0α[Ψ,Ψ] :=

∫
Π+

δ

(
|∇NιΨ|2 + ScalN

4
|Ψ|2

)
vN +

∫
∂K

(
H

2
− α

)
|Ψ|2v∂K
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with Q(r0α) = {Ψ|Π+
δ
, Ψ ∈ dom(Bm,M )} and

r′α[Ψ,Ψ] :=

∫
Kc\Π+

δ

(
|∇NιΨ|2 + ScalN

4
|Ψ|2

)
vN

with Q(r′α) = {Ψ|Kc\Π+
δ
, Ψ ∈ dom(Bm,M )}. One has the inequality Λ1(rα) ≥

min(Λ1(r
′
α),Λ1(r

0
α)). Since r

′
α is lower semibounded by Lemma 2.8.1, another use of Propo-

sition 2.5.8 gives that when α is large Λ1(r
0
α) ≥ Λ1(qα) with

qα[Ψ,Ψ] =

∫
Π+

δ

[
1

a
|∇N

Γ0
tΨ|2 + |∇h

∂
∂t
Ψ|2 − a|Ψ|2

]
vh

− α

∫
∂K

|Ψ(·, 0)|2v∂K − a

∫
∂K

|Ψ(·, δ)|2v∂K

where a > 0 and Q(qα) = H1
(
S+
δ

)
. We recall that the operator S′ with parameter α was

defined in Lemma 2.6.2.

For any x ∈ ∂K, we define an orthonormal basis (ψ1, . . . , ψl) of the fiber S+
δ |(x,0), and we

extend it by parallel transport along {x}× (0, δ) in Π+
δ . Let Ψ ∈ Q(qα), then for any x ∈ ∂K

there are functions (fx1 , . . . , f
x
l ) from (0, δ) to C such that Ψ(x, t) =

∑l
1 f

x
kψk. With these

notations and using Fubini’s theorem, we obtain

qα[Ψ,Ψ] ≥
∫
Π+

δ

[
|∇h

∂
∂t
Ψ|2 − a|Ψ|2

]
vh − α

∫
∂K

|Ψ(·, 0)|2v∂K − a

∫
∂K

|Ψ(·, δ)|2v∂K

=

∫
∂K

[
l∑

k=1

(s′ − a)[fxk , f
x
k ]

]
v∂K ≥

∫
∂K

[
(Λ1(S

′)− a)

l∑
k=1

∥fxk ∥2L2(0,δ)

]
v∂K

= (Λ1(S
′)− a)∥Ψ∥2

L2(Π+
δ )
.

We deduce that Λ1(rα) ≥ Λ1(qα) ≥ Λ1(S
′)− a ≥ −α2 − C with C > 0 when α→ +∞.

Using Proposition 2.4.8, the sesquilinear form for B2
m,M can be written for any spinor Ψ ∈

dom(Bm,M ) and any ε > 0 as

∥Bm,MΨ∥2L2(N) =

∫
K

[
|∇N(ιΨ)|2 +

(
ScalN

4
+m2

)
|Ψ|2

]
vN

+

∫
∂K

(
m− ε− H

2

)
|Ψ|2v∂K + 2(M −m)

∫
∂K

|P−Ψ|2v∂K

+

∫
Kc

[
|∇N(ιΨ)|2 +

(
ScalN

4
+M2

)
|Ψ|2

]
vN −

∫
∂K

(
M − ε− H

2

)
|Ψ|2v∂K (2.8.1)

where we recall that P− = 1−iν·n·
2 .

2.8.1 Upper bound

We are now able to find an upper bound for the limit of Ej(B
2
m,M ) when M → +∞ for

j ∈ N. Let η > 0 and pick (Ψ1, . . . ,Ψj) in Γ(ΣC|K), smooth spinors such that

inf
Ψ∈Span(Ψ1,...,Ψj)

⟨A2
mΨ,Ψ⟩L2(K)

∥Ψ∥2L2(K)

≤ Ej(A
2
m) + η.
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We define a := sup
{
∥Ψ∥2H1(∂K),Ψ ∈ Span(Ψ1, . . . ,Ψj), ∥Ψ∥L2(K) = 1

}
. Let Ψ ∈ V :=

Span(Ψ1, . . . ,Ψj) and

Ψ̃ :=

{
Ψ in K

FM (Ψ|∂K) in Kc.

By Lemma 2.8.2 there is a constant C > 0 such that∫
Kc

[
|∇N(ιΨ̃)|2 +

(
ScalN

4
+M2

)
|Ψ̃|2

]
vN −

∫
∂K

(
M − H

2

)
|Ψ̃|2v∂K

= rM [Ψ̃, Ψ̃] +M2∥Ψ̃∥2L2(Kc) ≤
C

M
∥Ψ̃∥2H1(∂K) ≤

Ca

M
∥Ψ∥2L2(K).

Then, using the expression (2.8.1) with ε = 0,

∥Bm,M Ψ̃∥2L2(N) ≤ A2
m[Ψ,Ψ] +

Ca

M
∥Ψ∥2L2(K) ≤

(
Ej(A

2
m) + η +

Ca

M

)
∥Ψ∥2L2(K)

≤
(
Ej(A

2
m) + η +

Ca

M

)
∥Ψ̃∥2L2(K)

and letting η go to zero one gets lim supM→+∞Ej(B
2
m,M ) ≤ Ej(A

2
m).

2.8.2 Lower bound

It remains to find a lower bound for the eigenvalues. In order to do so, we separate the
representation (2.8.1) in the two parts corresponding to K and Kc and we remark that the
outer part becomes very large when M goes to +∞ so the eigenvalues must converge to the
eigenvalues of an operator in K.

Let j ∈ N. One has
Ej(B

2
m,M ) ≥ min

{
Λj(k

c
M,ε), Ej(Km,M,ε)

}
where Km,M,ε is the operator associated with the sesquilinear form

km,M,ε[Ψ,Ψ] :=

∫
K

(
|∇NιΨ|2 +

(
m2 +

ScalN

4

)
|Ψ|2

)
vN

+

∫
∂K

(m− ε− H

2
)|Ψ|2v∂K + 2(M −m)

∫
∂K

|P−Ψ|2v∂K (2.8.2)

and kcM,ε is the sesquilinear form

kcM,ε[Ψ,Ψ] :=

∫
Kc

(
|∇NιΨ|2 +

(
M2 +

ScalN

4

)
|Ψ|2

)
vN

−
∫
∂K

(M − ε− H

2
)|Ψ|2v∂K (2.8.3)

where the respective domains are the restrictions of dom(Bm,M ) to K and Kc.

One has kcM,ε = rM−ε +M2, where rM−ε was defined in Lemma 2.8.2). The same lemma
gives

Λ1(k
c
M,ε) = Λ1(rM−ε +M2) ≥ −(M − ε)2 − C0 +M2 = 2εM − ε2 − C0
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= εM + (εM − ε2 − C0) ≥ εM when M → +∞.

It follows that Ej(B
2
m,M ) = Ej(Km,M,ε) whenM → +∞. But kM,m,ε is increasing inM , and

kM,m,ε[Ψ,Ψ] −→
M→+∞

⟨AmΨ, AmΨ⟩L2(K) − ε∥Ψ∥L2(∂K).

Furthermore,{
Ψ ∈

⋂
M>0

dom(km,M,ε), lim
M→+∞

km,M,ε[Ψ,Ψ] <∞

}
= dom(Am),

thus, by monotone convergence (Corollary 2.2.4) and letting ε go to 0, we obtain
lim infM→+∞Ej(B

2
m,M ) = Ej(A

2
m). Taking into account the upper bound obtained above,

one gets limM→+∞Ej(B
2
m,M ) = Ej(A

2
m).

2.9 The operator Bm,M for large masses

In this section, we investigate the asymptotic regime m → −∞ and M → +∞ and we give
a proof of Theorem 2.1.3. The method we use is very similar to the one of section 2.8. The
difference lies in the proof of the lower bound, where we do not make the analysis on the
operator outside and inside K, but we rather divide the ambient space into three pieces:
the tubular neighbourhood of ∂K, and the remaining regions lying inside and outside the
compact K. By Dirichlet-Neumann bracketing, it is then sufficient to study the operator
restricted to the tubular neighbourhood to conclude.

2.9.1 Upper bound

In this section, we write Sδ := ι
(
ΣC|Πδ

)
. We recall that for α ∈ R we defined the self-adjoint

operator Sα associated with the quadratic form

sα[f, f ] =

∫ δ

0

|f ′|2dt− α|f(0)|2, Q(sα) =
{
f ∈ H1(0, δ), f(δ) = 0

}
, (2.9.1)

and denoting by fα the L2-normalized eigenfunction associated with E1(Sα), one has
|fα(0)|2 = 2α+ O(1) and E1(Sα) = α2 + O(e−αδ) when α→ +∞ (see Lemma 2.6.1).

The operator La was defined by the quadratic form (2.7.10).

Let j ∈ N and Ψ1, . . . ,Ψj be j eigenspinors for the first j eigenvalues of Lδ. For Ψ ∈ V :=
Span(Ψ1, . . . ,Ψj), we define the extension operator E : H1(Sδ) → H1(ΣC|N) by

EΨ :=


|f−m(0)|
|fM (0)| (Θι)

−1(Ψ⊗ fM ) in Π+
δ

(Θι)−1(Ψ⊗ f−m) in Π−
δ

0 in N \Πδ
. (2.9.2)

One easily sees that ∥EΨ∥2L2(N) =

(
1 +

(
f−m(0)
fM (0)

)2)
∥Ψ∥2L2(∂K), so the operator E is injective.

We use the expression (2.8.1) and Proposition 2.5.8 to compute:
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∥B2
m,MEΨ∥2L2(N) =

∫
K

[
|∇N(ιEΨ)|2 +

(
ScalN

4
+m2

)
|EΨ|2

]
vN

+

∫
∂K

(
m− ε− H

2

)
|EΨ|2v∂K +

∫
Kc

[
|∇N(ιEΨ)|2 +

(
ScalN

4
+M2

)
|EΨ|2

]
vN

−
∫
∂K

(
M − ε− H

2

)
|EΨ|2v∂K

≤
∫
Π−

δ

[
(1 + cδ)

∣∣∣(∇N
Γ0
tΨ⊗ f−m)(x, 0)

∣∣∣2 + |∇N
∂
∂t
Ψ⊗ f−m|2

]
vh

+

∫
Π−

δ

[(
Scal∂K − Tr(W 2)

4
+m2 + cδ

)
|Ψ⊗ f−m|2

]
v∂Kdt

+

∫
Π+

δ

[
(1 + cδ)

∣∣∣(∇N
Γ0
tΨ⊗ fM )(x, 0)

∣∣∣2 + |∇N
∂
∂t
Ψ⊗ fM |2

]
vh

+

∫
Π+

δ

[(
Scal∂K − Tr(W 2)

4
+M2 + cδ

)
|Ψ⊗ fM |2

]
v∂Kdt

+

∫
∂K

(−m|Ψ⊗ f−m(·, 0)|2 +M |(Ψ⊗ fM )(·, 0)|2)v∂K

≤

(
1 +

(
f−m(0)

fM (0)

)2
)[

ℓδ[Ψ,Ψ] + C∥Ψ∥2L2(∂K)

(
e−Mδ + e−|m|δ

)]
where C > 0.

The Min-Max principle gives

Ej(B
2
m,M ) ≤ sup

Ψ∈V

B2
m,M [EΨ,EΨ]

∥EΨ∥2L2(N)

≤ sup
v∈V

[
Lδ[Ψ,Ψ] + C∥Ψ∥2L2(∂K)

(
e−Mδ + e−|m|δ

)]
∥Ψ∥−2

L2(∂K)

≤ Ej(Lδ) + C
(
e−Mδ + e−|m|δ

)
.

We now let min(−m,M) → +∞, so we obtain

lim sup
min(−m,M)→+∞

Ej(B
2
m,M ) ≤ Ej(Lδ).

On the other hand, δ can be taken arbitrary small, and one has the obvious limit Ej(L) −→
δ→0

Ej(L), so we arrive at
lim sup

min(−m,M)→+∞
Ej(B

2
m,M ) ≤ Ej(L). (2.9.3)

2.9.2 Lower bound

We consider the lower semibounded sesquilinear forms

km,M [Ψ,Ψ] =

∫
N\Πδ

[
|∇N(ιΨ)|2 +

(
ScalN

4
+m21K +M21Kc

)
|Ψ|2

]
vN
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Q(Km,M ) = {ΨN\Πδ
, Ψ ∈ dom(Bm,M )} (2.9.4)

and

k′m,M [u, u] =

∫
Π−

δ

[
|∇N(ιΨ)|2 +

(
ScalN

4
+m2

)
|Ψ|2

]
vN

+

∫
∂K

(
m− ε− H

2

)
|Ψ|2v∂K + 2(M −m)

∫
∂K

|P−Ψ|2v∂K

+

∫
Π+

δ

[
|∇N(ιΨ)|2 +

(
ScalN

4
+M2

)
|Ψ|2

]
vN −

∫
∂K

(
M − ε− H

2

)
|Ψ|2v∂K,

Q(K ′
m,M ) = H1(ΣCΠδ

). (2.9.5)

We denote by K ′
m,M the operator associated with k′m,M .

Let j ∈ N. The Min-Max principle gives the lower estimate Ej(B
2
m,M ) ≥

min(Ej(K
′
m,M ),Λ1(km,M )), and by Lemma 2.8.1 there is a constant C > 0 such that

Λ1(km,M ) ≥ min(m2,M2) − C. This last quantity goes to +∞ in the asymptotic regime
under consideration, and we know thanks to the upper bound that Ej(B

2
m,M ) = O(1). Thus,

in the given asymptotic regime one has Ej(B
2
m,M ) ≥ Ej(K

′
m,M ).

We now apply a transformation to the operator K ′
m,M written in tubular coordinates, and

we consider the operator Pm,M associated with the quadratic form

pm,M [Ψ,Ψ] =

∫
Πδ

[
(1− cδ)

∣∣∣(∇N
Γ0
tΨ)(x, 0)

∣∣∣2 + |∇N
∂
∂t
Ψ|2
]
vh

+

∫
Πδ

[(
Scal∂K − Tr(W 2)

4
+m21K +M21Kc − cδ

)
|Ψ|2

]
v∂Kdt

+ (m−M)

∫
∂K

|Ψ(·, 0)|2v∂K − c

∫
∂K

|Ψ(·, δ)|v∂K + 2(M −m)

∫
∂K

|P−Ψ|2vK,

Q(pm,M ) = H1(Sδ), (2.9.6)

where c > 0 is chosen so that Proposition 2.5.8 is valid, implying that Ej(K
′
m,M ) ≥

Ej(Pm,M ).

For a ∈ R, let L′′
a be the operator given by the sesquilinear form ℓ′′a, having the same expression

as (2.7.10) but with the domain H1(ΣC|∂K).

Let P ′
m,M be the operator defined by the same quadratic form as in (2.9.6) but without the

term involving the operator P−. We recall that the one-dimensional operator X was defined
by (2.6.1), so one has

P ′
m,M = ℓ′′−δ ⊗ 1 + 1⊗X.

Let (fk) be a sequence of L2-normalized eigenfunctions for the eigenvalues Ek(X). We define
the unitary transformation

U : L2 (Sδ) −→ ℓ2(N)⊗ L2
(
ΣC|∂K

)
UΨ = (Ψk), Ψk =

∫ δ

−δ
fk(t) ι

−1Γ0
t (Ψ(t, ·))dt.

Let P̂ ′
m,M := UP ′

m,MU∗. This is a self-adjoint operator acting on ℓ2(N) ⊗ L2
(
ΣC|∂K

)
. One

can write
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P̂ ′
m,M [v̂, v̂] =

∑
k∈N

(
ℓ′′−δ[Ψk,Ψk] + Ek(X)∥Ψk∥2L2(Σ)

)
,

Q(P̂ ′
m,M ) =

{
Ψ̂ ∈ ℓ2(N)⊗ L2(ΣC|∂K),Ψk ∈ H1(ΣC|∂K),∑

k∈N

(
∥Ψk∥2H1(∂K) + k2∥Ψk∥2L2(∂K)

)}
. (2.9.7)

The operator P̂m,M = U∗Pm,MU has the same form domain as P̂ ′
m,M and

P̂m,M [Ψ̂, Ψ̂] =
∑
k∈N

(
ℓ′′−δ[Ψk,Ψk] + Ek(X)∥Ψk∥2L2(Σ)

)
+ 2(M + |m|)

∫
Σ

|P−U
∗Ψ̂|2ds.

where the operator X was defined in (2.6.1). We set

ζ := min(M,−m). (2.9.8)

Using Lemma 2.6.3, we consider the quadratic form wζ defined by

wζ [Ψ̂, Ψ̂] = ℓ′′−δ[Ψ1,Ψ1]− Ce−ζδ/2 + 4ζ

∫
Σ

|P−U
∗Ψ̂|2ds

+
∑
k≥2

(
ℓ′′−δ[Ψk,Ψk] + (C1k

2 − C2)∥Ψk∥2L2(Σ,CN ) + ζ2∥Ψk∥2L2(Σ)

)
,

Q(wζ) = Q(P̂m,M ), (2.9.9)

and we claim that P̂m,M ≥ wζ for a suitable C > 0. The form wζ is semibounded from below
and closed, and we define the associated self-adjoint operator Wζ with compact resolvent.
The previous discussion gives the lower estimate Ej(B

2
m,M ) ≥ Ej(Wζ) in the asymptotic

regime.

In order to apply the monotone convergence theorem, we define

Q∞ =

Ψ̂ ∈
⋂
ζ>0

Q(Wζ) = Q(wζ), sup
ζ>0

wζ [Ψ̂, Ψ̂] < +∞

 . (2.9.10)

We easily see that Ψ̂ is in Q∞ if and only if Ψk = 0 for all k ≥ 2 and P−U
∗Ψ̂ = 0,

which is equivalent to Ψ̂ = e1 ⊗ Ψ1 with e1 := (1, 0, 0, . . .) and P−Ψ1 = 0. It follows that
Q∞ =

{
e1 ⊗Ψ1 : Ψ1 ∈ H1(Σ,CN ) ∩H

}
. Moreover, we have

lim
ζ→∞

Wζ [e1 ⊗Ψ1, e1 ⊗Ψ1] = L−δ[Ψ1,Ψ1]. (2.9.11)

Thus, if we define the operator W∞[e1 ⊗ Ψ1, e1 ⊗ Ψ1] := L−δ[Ψ1,Ψ1] on e1 ⊗ H,
the monotone convergence theorem gives lim

ζ→∞
Ej(Wζ) = Ej(L−δ). Altogether, we ar-

rive at lim inf
min(−m,M)→+∞

Ej(B
2
m,M ) ≥ Ej(L−δ). We now let δ go to zero and we obtain

lim inf
min(−m,M)→+∞

Ej(B
2
m,M ) ≥ Ej(L). The upper and the lower bounds together give

lim
min(−m,M)→+∞

Ej(B
2
m,M ) = Ej(L) = Ej

(
( /D

∂K
)2
)
. (2.9.12)
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Remark 2.9.1. We can look at the asymptotic regime M → +∞ and m → +∞. Let
(mk,Mk)k∈N be a sequence of R2 such that mk,Mk −→

k→+∞
+∞. In this case, we can use the

inequality E1(B
2
m,M ) ≥ E1(Pm,M ), and for any Ψ ∈ Q(pm,M ) there exists a constant C > 0

such that

pm,M [Ψ,Ψ] ≥
∫
Πδ

|∇N
∂
∂t
Ψ|2vh +

∫
Πδ

[
m21(0,δ) +M21(−δ,0) − C

]
|Ψ|2vh

− C

∫
∂K

|Ψ(·, δ)|v∂K − |M −m|
∫
∂K

|Ψ|2vK.

Without loss of generality, we can assume that there is a subsequence of (Mk,mk) still
denoted by (Mk,mk) such that Mk ≥ mk for all k. We have

pmk,Mk
[Ψ,Ψ] ≥ m2

k∥Ψ∥2
L2(Π−

δ )
+ ∥Ψ∥2

L2(Π+
δ )
(M2

k + E1(SMk−mk
))− C∥Ψ∥2L2(Πδ)

,

but when k is large there is a constant C1 such that

M2
k + E1(SMk−mk

) ≥M2
k −M2

k −m2
k + 2Mkmk − C1

≥ 2Mkmk −m2
k − C1 ≥ m2

k − C1.

Thus, E1(B
2
mk,Mk

) ≥ E1(Pmk,Mk
) ≥ m2

k−C−C1 −→
k→+∞

+∞. This means that every sequence

E1(B
2
mk,Mk

) admits a divergent subsequence, an we conclude that E1(B
2
m,M ) → +∞ in this

regime.

By similar constructions, the same result holds for m,M → −∞ as well.





Chapter 3

Cauchy spinors on 3-manifolds

Les lignes de ce chapitre proviennent d’un article co-écrit avec Sergiu Moroianu, et paru
dans Journal of Geometric Analysis, 32, 186 (2022). On y démontre certaines propriétés
des spineurs de Cauchy sur les 3-variétés, et on établit des résultats de classification de ces
mêmes spineurs sur S3.
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3.1 Introduction

The Cauchy problem for parallel spinors

If (M, g) is an oriented hypersurface in a spin manifold (Z, gZ) and Ψ is a parallel spinor on
Z, then the restriction ψ := Ψ|M is a spinor on M satisfying the initial condition

∇Xψ = −A(X)

2
· ψ, (∀)X ∈ TM, (3.1.1)

where A is the second fundamental form of M (see [33, Proposition 1.4.1]).

Conversely, given a spinor ψ on M satisfying the constraint (3.1.1) for some symmetric
endomorphism A, is it always possible to embedM as a hypersurface in an ambient manifold
Z with second fundamental form A, and such that ψ is the restriction to M of a parallel
spinor Ψ on Z? In other words, is (3.1.1) the only constraint for the existence of Z and Ψ?
This is the so-called Cauchy problem for parallel spinors studied in [3]. The answer is positive
when all the objects involved are real analytic, and negative in general in the smooth setting
for dim(M) ≥ 3 [3, Theorems 1.1 and 4.27].

A spinor and symmetric 2-tensor on M satisfying Equation (3.1.1) will be called below a
Cauchy spinor, respectively a Cauchy endomorphism. Since (3.1.1) includes as a particular
case the Killing spinor equation (i.e., when A is a constant multiple of the identity), Cauchy
spinors were sometimes called generalized Killing spinors e.g. in [60–62]. Different generaliza-
tions of the notion of Killing spinors appear however in the literature, e.g. in the papers [38]
or [30, 31]. We believe that the current name should be more appropriate, as it describes
more accurately the property of being the restriction of a parallel spinor to a hypersurface.

The classification problem for Cauchy spinors and endomorphisms on a given manifold M
requires us to describe all pairs (ψ,A) verifying (3.1.1). In dimension 3, partial results in
this direction were found in [60], where Cauchy spinors are characterized in terms of an
orthonormal frame of divergence-free vector fields on M . The same authors investigated
in [61, 62] the case of the sphere S3, classifying all Cauchy endomorphisms having at most
2 distinct eigenvalues. This example illustrates the little understanding we have of Cauchy
spinors in dimension 3, as we are unable to classify them even on the round sphere. Note
that a complete description can be given in several other dimensions [62].

Cauchy spinors on 3-manifolds and flat connections

Spin geometry in dimension 3 is special because the Hodge ∗ operator allows an exceptional
identification between 1- and 2-forms, and moreover the real spinor bundle carries a quater-
nionic structure. Using these algebraic structures, on simply connected 3-manifolds (which
by the Poincaré conjecture must be diffeomorphic to the sphere) we can restate the classifica-
tion problem for Cauchy spinors without mentioning spinors at all! Indeed, Equation (3.1.1)
implies a constraint for the symmetric endomorphism field A:

0 = R(X,Y ) + ∗d∇A(X,Y ) +A(X) ∧A(Y ), (∀)X,Y ∈ TM. (3.1.2)

Here R is the Riemann curvature tensor and d∇ is the exterior covariant derivative on M
mapping sections of Λ1M ⊗ TM to sections of Λ2M ⊗ TM . The set of symmetric endomor-
phisms satisfying (3.1.2) is denoted Cloc

M . IfM is simply connected, every solution of Equation
(3.1.2) also satisfies (3.1.1) for some Cauchy spinor, unique up to right multiplication by a
quaternion. Our strategy below is to exploit Equation (3.1.2) in order to obtain new results
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on the Cauchy problem for parallel spinors, and also on the classification problem for Cauchy
spinors.

Equation (3.1.2) amounts to the flatness of the modified metric connection ∇A = ∇ + ∗A
on TM . Even in the compact and simply connected case, the structure of the set of flat
connections Cloc

M remains elusive, in part because Equation (3.1.2) is non-linear and not
elliptic. For this reason, we first study the linearization of (3.1.2). We show that if the scalar
curvature of M is positive, the space of infinitesimal deformations, defined as the space of
symmetric endomorphism fields solution to the linearization of (3.1.2), is finite-dimensional
(Theorem 3.3.2). This can be interpreted as a finiteness result for the dimension of the
“tangent space” of Cloc

M , with the caveat that this set of flat connections is a priori not a
smooth manifold. The hypothesis on the sign of the scalar curvature is necessary: we exhibit
flat compact 3-manifolds for which the dimension of the space of deformations is infinite.

Cauchy endomorphisms on the round three-sphere

We view S3 as the Lie group of unit-length quaternions. Four examples of symmetric en-
domorphisms A fulfilling the flatness condition (3.1.2) on S3 are known from [60, Example
3.2]: ±Id, and the endomorphism fields constant in a left (resp. right)-invariant orthonor-
mal frame, with eigenvalues 1,−3,−3 (respectively −1, 3, 3). It was already shown in [62]
that there are no deformations around A = ±Id. We prove that the space of infinitesimal
deformations around the other two examples has dimension 2, and corresponds to the Lie
derivative of A in the direction of a left (or right-) invariant vector field from ker(A ± 3Id).
In particular, there are no other deformations of the above solutions. If Cloc

S3 were a smooth
manifold, it would therefore necessarily have at least 4 connected components.

The examples of endomorphisms on S3 given above are analytic, so by [3] they can be realized
as second fundamental forms of the three-sphere embedded as a hypersurface in a generalized
cylinder Z := (−ϵ, ϵ) × S3 carrying a parallel spinor. The cases A = ±Id both induce the
standard embedding of S3 into R4. We calculate in Section 3.4 an explicit expression of this
metric in the other two cases, finding an extension of the family of Euclidean Taub-NUT
metrics with a negative parameter. This computation solves the long-time Cauchy problem
on the three-sphere for the four known examples of Cauchy spinors on S3.

Classification results

In the final section we prove three classification results for symmetric endomorphisms solving
Equation (3.1.2) on S3. The known examples of Cauchy endomorphisms have constant
matrices in a left or right-invariant orthonormal basis of the tangent bundle of the Lie group
S3. It is natural to ask if these are the only symmetric endomorphisms solutions to (3.1.2)
with this property. We prove in Proposition 3.6.1 that this is indeed the case. Moreover, since
all the solutions of (3.1.2) with at most two eigenvalues are known [62, Theorem 4.10], we
investigate the case where A has three distinct constant eigenvalues. We show that there is
no solution in this case, using a characterization of the Hopf fields on S3 (Proposition 3.6.2).
Finally, we show that the solutions which are constant only in the direction of a left or
right-invariant eigenvector ξ of A, i.e., such that LξA = 0, must also be constant in a left
(respectively right) invariant orthonormal frame, so they fall in the class of previously known
examples (Proposition 3.6.4). This result turns out to imply (a slight extension of) the
Liebmann rigidity theorem [49].
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Related results

Cauchy spinors in 3+1 Lorentzian signature were recently classified by Murcia and Shahbazi
[64], [65], thanks to the fact that one of the elements in the global coframe defined by the
Cauchy spinor on the hypersurface is privileged, and determines an integrable foliation. On
the other hand, unlike in the Riemannian case, the Lorentzian initial value problem for
parallel spinors is of hyperbolic nature and has solutions in the smooth category. Thus the
two problems are in fact rather different, despite some formal similarities.

3.2 Preliminaries

3.2.1 Spinors in dimension 3

The real Clifford algebra Cl2 is canonically isomorphic to the quaternion algebra H by the
map sending e1 to i and e2 to j, where {e1, e2} is the standard basis of R2. It follows that
the even Clifford algebra Cleven3 is also isomorphic to H by the unique algebra map sending
e1e3 to i, e2e3 to j, and hence e2e3 to k.

Multiplication by the central element P := 1−e1e2e3
2 is a projector in Cl3. Let Σ3 be the

image of this projector. Then P maps Cleven3 isomorphically onto Σ3, thus identifying Σ3

to H. Since P is central, Cleven3 acts on Σ3 by left multiplication, and this representation
commutes with the right action of H ≃ Σ3 on itself. The restriction of this quaternionic
representation to the spin group Spin3 is the spinor representation. By construction, the
spinor representation is thus the restriction of a Cl3 representation under which the volume
element e1e2e3 acts as minus the identity.

The spinor representation is orthogonal with respect to the natural scalar product on Σ3.
The right multiplication by quaternions is also compatible with the scalar product, in the
sense that ⟨ψa, ϕa⟩ = |a|2⟨ψ, ϕ⟩ for all a ∈ H and ψ, ϕ ∈ Σ3.

Recall now that every oriented 3-manifold is parallelizable, hence spin. Let (M, g) be an
oriented Riemannian 3-manifold with a fixed spin structure. The real spinor bundle ΣM over
M is the vector bundle associated to the spin bundle and the Spin3 spinor representation Σ3.
It is endowed with a natural inner product ⟨·, ·⟩ and a Cl(TM)-action such that the Clifford
product by vectors on ΣM is skew-symmetric. The right action of H on Σ3 induces a right
H action on ΣM commuting with Clifford multiplication by tangent vectors, and satisfying
⟨ψa, ϕa⟩ = |a|2⟨ψ, ϕ⟩ for all a ∈ H and ψ, ϕ ∈ ΣM .

By construction, Clifford multiplication with the volume form acts as −Id on ΣM . This
choice implies that for a 2-form ω ∈ Λ2(M) and a spinor ψ ∈ ΣM we have

ω · ψ = ∗ω · ψ, (3.2.1)

where ∗ denotes the Hodge star-operator.

3.2.2 Cauchy spinors and endomorphisms

Let E → M be a vector bundle endowed with a connection ∇. The exterior differential
twisted by ∇ is defined on E-valued p-forms using Einstein’s summation convention:

d∇(ω ⊗ V ) := dω ⊗ V + (−1)pω ∧Xj ⊗∇Xj
V,



CHAPTER 3. CAUCHY SPINORS ON 3-MANIFOLDS 99

where (Xj)1≤j≤n is any local orthonormal frame on M . For an endomorphism field A ∈
End(TM), the above formula becomes

d∇A(X,Y ) := (∇XA)Y − (∇YA)X, (∀)X,Y ∈ TM. (3.2.2)

The divergence operator δ∇ is the formal adjoint of d∇ with respect to the L2-inner product
on vector-valued forms.

Let now ∇ be the Levi-Civita covariant derivative on an oriented 3-manifold M , and R =
d∇ ◦ ∇ its Riemann curvature tensor. The Levi-Civita covariant derivative on the spinor
bundle ΣM is still denoted by ∇, and its curvature tensor is written R.

Definition 3.2.1. Let (M, g) be a spin 3-manifold. A non-zero section ψ ∈ Γ(ΣM) is a
Cauchy spinor if there exists a symmetric endomorphism field A ∈ Γ(T ∗M × TM) such that
the pair (ψ,A) satisfies Equation (3.1.1). In this situation, A is called a Cauchy endomor-
phism.

We denote by CM the set of all Cauchy endomorphisms on M , and by Cloc
M the set of all

symmetric endomorphisms on M satisfying Equation (3.1.2).

In other words, an endomorphism field A on M is a Cauchy endomorphism if it is symmetric
and there exists some non-zero spinor ψ ∈ Γ(ΣM) satisfying ∇Xψ = − 1

2A(X) · ψ for all
vectors X ∈ TM . We stress that the symmetry assumption on A is crucial here, since in
dimension 3 every spinor of constant length determines uniquely some general endomorphism
field A so that Equation (3.1.1) holds.

The sets CM and Cloc
M will form our main object of study in this paper.

3.2.3 Parallel spinors in dimension 4

Let us review below the main results of [3] about parallel spinors in dimension 4, Ricci-flat
metrics and Cauchy spinors.

Let (M, g) be a hypersurface in a 4-dimensional manifold (Z, gZ). If Z is Ricci-flat, the second
fundamental form W of the embedding M ↪→ Z satisfies the contracted Codazzi and Gauss
equations:

ScalM = tr(A)2 − tr(A2), δ∇A+ dtr(A) = 0. (3.2.3)

Conversely, if (M, gM ) is real analytic and the constraints (3.2.3) hold onM for some analytic
symmetric endomorphism A, Koiso [44] proved that there exists a Ricci-flat real-analytic
ambient manifold (Z, gZ) in which M imbeds isometrically with second fundamental form A
(see also [3, Theorem 2.1]).

Upon replacing Z by a collar neighborhood ofM , we can assume that Z is also parallelizable.
Fix a spin structure on Z. The restriction of each of the spinor bundles Σ±Z to M is
isomorphic to ΣM as right H-modules. If Z admits a nonzero parallel spinor Ψ, up to
reversing the orientation on Z we can assume that the chiral component Ψ+ is nonzero. The
parallel spinor induces an algebra map ϕ : H → Γ(End(TM)) via the quaternionic structure
of the spinor bundle:

H ∋ q 7→ ϕ(q) := Q, Q(V ) ·Ψ+ = V ·Ψ+q, (∀)V ∈ Γ(TM).

The endomorphisms in the image of ϕ are parallel, implying that the metric gZ is hyperkähler,
hence self-dual and therefore Ricci flat (if Ψ+ and Ψ− are both nonzero then gZ is flat).
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Moreover, the restriction of Ψ+ to M is a Cauchy spinor, and the second fundamental form
of M ↪→ Z is a Cauchy endomorphism.

Conversely, if there exists a Cauchy spinor ψ and a Cauchy endomorphism A onM satisfying
(3.1.1), then the identities (3.2.3) are satisfied (an alternate derivation of these identities can
be found in [61, Lemma 3.1, Equation (12)]). If moreover M , gM , A and ψ are real-analytic,
then by the above cited result of Koiso there exists a Ricci-flat 4-manifold (Z, gZ) into which
(M, gM ) embeds isometrically with second fundamental form A, and locally there exists a
parallel spinor of positive chirality on Z extending ψ, see [3, Theorem 1.1]. In particular, gZ

is self-dual and hence hyperkähler.

3.2.4 The modified metric connection ∇A

Throughout the paper we identify 1-forms and vectors on M using the metric g. Given any
A ∈ Γ(Λ1M ⊗ TM), we define A ∈ Γ(Λ1M ⊗ Λ2M) by A(X) := ∗(A(X)) for all X ∈ TM .
We can view the 2-form A(X) as a skew-symmetric endomorphism of TM in the usual way:
for Y ∈ TM , A(X)(Y ) is the unique vector Z satisfying g(Z,W ) = A(X)(Y,W ) for all
W ∈ TM .

We introduce the connection on TM

∇A
XY := ∇XY +A(X)(Y ), X, Y ∈ TM, (3.2.4)

and we denote by RA its curvature tensor. Since by construction A(X) is skew symmetric,
∇A is compatible with the Riemannian metric and hence induces a connection, still denoted
∇A, on the spinor bundle ΣM by pull-back from the orthonormal frame bundle:

∇A
Xψ = ∇Xψ +

A(X)

2
· ψ, (∀)X ∈ TM,ψ ∈ ΣM.

We denote by RA the curvature of ∇A on spinors.

The problem of finding solutions to (3.1.1) can be reduced to solving an equation involving
the endomorphism field A alone, at least when M is simply-connected.

Proposition 3.2.2. Let (M, g) be a Riemannian 3-manifold and A ∈ Γ(Λ1M ⊗ TM) a
symmetric endomorphism field. The following conditions are equivalent:

1. Locally on M there exist nonzero Cauchy spinors with respect to A;

2. RA = 0;

3. RA = 0;

4. The symmetric endomorphism A satisfies the equation (3.1.2), i.e., A ∈ Cloc
M .

WhenM is simply connected, the first condition is equivalent to the global existence of Cauchy
spinors, hence Cloc

M = CM .

Proof. If there exists a locally defined, nonzero spinor ψ satisfying (3.1.1), then the four
mutually orthogonal spinors (ψ,ψi, ψj, ψk), defined with the help of the quaternionic struc-
ture on ΣM , are parallel for the covariant derivative ∇A. This implies that the curvature
endomorphism RA of (ΣM,∇A) vanishes. Conversely, if RA = 0, locally there exist non-zero
spinors parallel with respect to the connection ∇A, i.e., Cauchy spinors. Moreover, if M is
simply connected then such spinors exist globally on M .
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Since the connection ∇A on ΣM is induced from the connection with the same name on
TM and the spinor representation ΣM , it is well known that RA(X,Y ) = 1

2R
A(X,Y )·,

where · denotes Clifford multiplication (see e.g. [15, Theorem 2.7]). In dimension 3 the
map associating to a 2-form its action by Clifford multiplication on spinors is injective, thus
RA(X,Y ) = 0 if and only if RA(X,Y ) = 0.

For all X,Y ∈ TM , we compute from the definition of ∇A its curvature:

RA(X,Y ) = R(X,Y ) + d∇A(X,Y ) + [A(X), A(Y )]

Since the Hodge ∗ operator is parallel, it commutes with d∇, so d∇A = ∗d∇A. Also, we
check directly that

A(X) ◦A(Y )−A(Y ) ◦A(X) = A(X) ∧A(Y ).

Hence RA = R+ ∗d∇A+A ∧A as claimed.

Proposition 3.2.2 shows that CM ⊂ Cloc
M , with equality when M is simply connected.

3.3 Deformation of endomorphism fields

There is not much one can say about the structure of the sets CM or Cloc
M , even in the simply

connected case when they coincide. Let us introduce the following definition:

Definition 3.3.1. The space of infinitesimal deformations of Cloc
M at A ∈ Cloc

M is

{Ċ(0)| (∃)ε > 0, (∃)C ∈ C∞((−ε, ε),Γ(Sym2(TM)), C(0) = A,
d

dt
RC(t)|t=0 = 0}.

In the case where Cloc
M is a differentiable manifold, its tangent space TAC

loc
M is the space of

tangent vectors at t = 0 to smooth curves C : (−ε, ε) → Cloc
M with C(0) = A. In general,

since we do not know any differentiable structure on Cloc
M , the above cone might even not be

a vector space. The space of infinitesimal deformations always contains this formal tangent
cone.

Theorem 3.3.2. Let (M, g) be a compact oriented Riemannian 3-manifold with strictly
positive scalar curvature and let A ∈ Cloc

M . Then the space of infinitesimal deformations of A
is finite-dimensional.

Proof. Let C ∈ C∞((−ε, ε),Γ(Sym2(TM)) be a smooth curve as in Definition 3.3.1, with
C(0) = A. We define Ȧ := Ċ(0). By differentiating with respect to t in (3.1.2) the condition
d
dtR

C(t)|t=0 = 0 rewrites

0 = ∗(d∇Ȧ)(X,Y ) + Ȧ(X) ∧A(Y ) +A(X) ∧ Ȧ(Y ). (3.3.1)

We recall some elementary identities about the Hodge star-operator in dimension 3. Let
X,Y ∈ TM and α ∈ Λ2M . Then we easily check that

X⌟ ∗ Y = − ∗ (X ∧ Y ), X ∧ ∗α = − ∗ (X⌟α). (3.3.2)

Using these identities, one has for all X,Y ∈ TM

Ȧ(X) ∧A(Y ) +A(X) ∧ Ȧ(Y ) = − ∗A(Y )(Ȧ(X)) + ∗A(X)(Ȧ(Y )).
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Consequently, Equation (3.3.1) rewrites

0 = (d∇Ȧ)(X,Y )−A(Y )(Ȧ(X)) +A(X)(Ȧ(Y )) = (d∇
A

Ȧ)(X,Y ).

We are hence led to the equation for the infinitesimal deformation of a flat connection:

d∇
A

Ȧ = 0. (3.3.3)

According to Proposition 3.2.2, the connection ∇A is flat, meaning that RA = d∇
A ◦∇A = 0

on Γ(TM). But d∇
A ◦ d∇A

is given by the action of RA also on Γ(ΛkM ⊗TM) for all k ≥ 0.

This implies that d∇
A ◦ d∇A

= 0 on Γ(Λ∗M ⊗ TM). The differential operators

d∇
A

: Γ(Λ∗M ⊗ TM) → Γ(Λ∗+1M ⊗ TM)

form therefore an elliptic complex. By Hodge theory, Equation (3.3.3) implies that there

exists a vector field XȦ ∈ Γ(TM) and a d∇
A

-harmonic vector-valued 1-form BȦ ∈ Γ(Λ1M ⊗
TM) (i.e., δ∇

A

BȦ = 0 and d∇
A

BȦ = 0) such that Ȧ = ∇AXȦ + BȦ. Notice that this
equation still involves the symmetric endomorphism A which defines the flat connection ∇A.

The symmetry condition on Ȧ can be rewritten as an equation on XȦ, BȦ and A:

Lemma 3.3.3. Let X ∈ Γ(TM) and B ∈ Γ(Λ1M ⊗TM). The endomorphism d∇
A

X +B is
symmetric if and only if X, viewed as a 1-form, satisfies dX−∗(Xtr(A)−AX)+Xk∧B(Xk) =
0, where (X1, X2, X3) is any orthonormal basis.

Proof. The endomorphism d∇
A

X + B is symmetric if and only if its skew-symmetric part
is zero. Using the identities (3.3.2) we compute

0 = Xk ∧∇A
Xk
X +Xk ∧B(Xk)

= Xk ∧ (∇Xk
X +A(Xk)(X)) +Xk ∧B(Xk)

= Xk ∧ (∇Xk
X +X⌟A(Xk)) +Xk ∧B(Xk)

= Xk ∧ (∇Xk
X − ∗(X ∧A(Xk))) +Xk ∧B(Xk)

= Xk ∧∇Xk
X −Xk ∧ ∗(X ∧A(Xk)) +Xk ∧B(Xk)

= Xk ∧∇Xk
X + ∗(Xk⌟(X ∧A(Xk))) +Xk ∧B(Xk)

= dX + ∗(X(Xk)A(Xk)−A(Xk)(Xk)X) +Xk ∧B(Xk)

= dX + ∗(A(X)−XtrA) +Xk ∧B(Xk).

The space of d∇
A

-harmonic vector-valued 1-forms B is finite dimensional by ellipticity.
Lemma 3.3.3 implies the identity dXȦ − ∗(XȦtr(A) − AXȦ) = −Xk ∧ BȦ(Xk), and for
a given B, the solutions X ∈ TM of

dX − ∗(Xtr(A)−AX) +Xk ∧B(Xk) = 0

form an affine space of direction ker(X 7→ dX − ∗(Xtr(A) − AX)). Thus, to show that the
space of deformations is finite dimensional, it is sufficient to prove that the solution space of

dX − ∗(Xtr(A)−AX) = 0 (3.3.4)

is finite dimensional.
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By applying the exterior derivative to equation (3.3.4) we have 0 = d ∗ (Xtr(A) − AX) =
∗δ(Xtr(A)−AX), and then

δ(Xtr(A)−AX) = 0.

We define the differential operator

Ξ : Λ1M −→ Λ2M ⊕ Λ0M, Ξ(X) = (dX − ∗(Xtr(A)−AX), δ(XtrA−AX)).

To compute the principal symbol of Ξ, recall that for any x ∈M , any element of Λ1
xM is the

differential at x of some smooth function. Let thus f be a smooth function on M . Again by
using (3.3.2) we obtain

σΞ(df)(X) = Ξ(fX)− fΞX

= (d(fX)− fdX, δ[f(XtrA−AX)]− fδ[XtrA−AX])

= (df ∧X,−⟨df, (XtrA−AX)⟩).

Hence, the principal symbol of Ξ at α ∈ Λ1
xM is given by

σΞ(α)(X) = (α ∧X, ⟨α, (XtrA−AX)⟩).

We want to show that this principal symbol is injective in order to use the theory of elliptic
operators. To do so, we first remark that equation (3.2.3) holds for any manifold carrying a
Cauchy spinor even if it is not embedded into a Ricci-flat manifold [61, Lemma 3.1]. Then,
the eigenvalues (λ1, λ2, λ3) of A satisfy λ1λ2 + λ1λ3 + λ2λ3 = 1

2Scal
M . We now use the

hypothesis ScalM > 0.

Lemma 3.3.4. Let B ∈ M3(R) be a symmetric matrix with eigenvalues (λ1, λ2, λ3) such
that λ1λ2 + λ1λ3 + λ2λ3 > 0. Then B − tr(B)Id is definite.

Proof. Since B is symmetric and real, there is P ∈ O3(R) such that

PTBP = diag(λ1, λ2, λ3).

Thus, PT (B − tr(B)Id)P = −diag(λ2 + λ3, λ1 + λ3, λ1 + λ2). Moreover, one has

(λ2 + λ3)(λ1 + λ3) = λ2λ1 + λ2λ3 + λ3λ1 + λ23 > 0

and similarly (λ1+λ3)(λ1+λ2) > 0, (λ2+λ3)(λ1+λ2) > 0. We conclude that λ2+λ3, λ1+
λ3, λ1 + λ2 have the same sign and are different from 0, so B − tr(B)Id is definite.

As a consequence of Lemma 3.3.4, A−tr(A)Id is definite under the assumption that ScalM >
0. Now, let α ∈ Λ1M such that there is a non-zero vector X with σΞ(α)(X) = 0. In
particular, we have g(α, [A − tr(A)Id]X) = 0 and α ∧ X = 0. We deduce that X = fα
and g(α, [A− tr(A)Id]α) = 0, so α = 0 because the endomorphism A− tr(A)Id is invertible.
Consequently, the principal symbol of Ξ is injective.

The operator Ξ∗Ξ has the same kernel as Ξ and is elliptic, so its kernel is finite dimensional
(see e.g. [67, Theorem 5.2]). Thus the space of infinitesimal deformations of A is finite
dimensional, ending the proof.

The assumption ScalM > 0 is necessary, as shown by the following example:
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Remark 3.3.5. We look at a flat Riemannian product M = S1 × E, where E = R2/Γ is
an elliptic curve. Let p : M → S1 be the projection on the first factor, and P : TM → TM
the orthogonal projection on the first factor in the tangent bundle. The endomorphism P is
parallel and symmetric, and it clearly satisfies Equation (3.1.2). Moreover, for any smooth
function f : S1 → R, the symmetric endomorphism field Af := (p∗f)P also satisfies Equation
(3.1.2) since all the terms in this equation vanish when at least one of the vectors X,Y are
tangent to the second factor E. Thus the space of infinitesimal deformations of Af contains
the infinite-dimensional space C∞(S1).

Not every such Af ∈ Cloc
M is necessarily associated to a Cauchy spinor, because the torus is

not simply connected. Take a non-zero parallel spinor Ψ on the flat torus F × E, where F
is also an elliptic curve, and consider any closed simple curve γ in F of length 2π, hence
isometric to S1. Then the manifold γ ×E is isometric to M , so the restriction of Ψ to M is
a Cauchy spinor on M with respect to Ak, where k is the geodesic curvature function of γ.
Since the set of curvature functions of curves of length 2π in F parametrized by arc-length is
not finite-dimensional, it is evident that the deformation space of flat connections near such
a Ak cannot be finite dimensional either.

3.4 Deformations of Cauchy spinors on the three-sphere

Let us illustrate the above result in the case of the round 3-sphere, noting that even in this
simplest possible case Equation (3.1.1) is not yet fully understood.

We identify S3 with the unit sphere in the quaternions H ≃ R4. In this way, S3 becomes
a Lie group with Lie algebra the space of imaginary quaternions ImH. Let (e1, e2, e3) be
the three left-invariant vector fields corresponding to the quaternions i, j, k. They form an
orthonormal frame at any point of S3. Recall that the Levi-Civita covariant derivative of
left-invariant vector fields on compact Lie groups is given by ∇XY = 1

2 [X,Y ]. Recall also
that for an even permutation (a, b, c) of the indices (1, 2, 3), the Lie brackets are given by

[ea, eb] = 2ec. (3.4.1)

We compute from here the covariant derivatives of these orthonormal vector fields:

∇e1e1 = 0 ∇e2e2 = 0 ∇e3e3 = 0

∇e1e2 = e3 ∇e2e3 = e1 ∇e3e1 = e2 (3.4.2)

∇e2e1 = −e3 ∇e3e2 = −e1 ∇e1e3 = −e2.

On the round sphere, the curvature tensor satisfies R(X,Y ) = −X ∧ Y so Equation (3.1.2)
rewrites

∗d∇A(X,Y ) = X ∧ Y −A(X) ∧A(Y ). (3.4.3)

Remark 3.4.1. From [60, Example 3.2], we know four families of Cauchy endomorphisms
in CS3 :

� plus or minus the identity

� the symmetric endomorphism fields constant in a left-invariant orthonormal frame, with
eigenvalues 1, -3, -3

� the symmetric endomorphism fields constant in a right-invariant orthonormal frame,
with eigenvalues -1, 3, 3.
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It was already shown in [62, Theorem 5.1] that Cloc
S3 does not admit infinitesimal deformations

at the endomorphisms ±Id. Let us thus study the infinitesimal deformations of Cloc
S3 at the

symmetric endomorphism field

A0 := e1 ⊗ e1 − 3(e2 ⊗ e2 + e3 ⊗ e3). (3.4.4)

Lemma 3.4.2. Let (M, g) be a simply connected 3-manifold and A ∈ Γ(End(TM)) such

that the connection ∇A defined by (3.2.4) is flat. Then the cohomology space H1(M,d∇
A

)

vanishes, hence there are no nonzero d∇
A

-harmonic sections in Γ(Λ1M ⊗ TM).

Proof. Fix a global frame s1, s2, s3 ∈ Γ(TM) consisting of ∇A-parallel vector fields, possible

since M is simply-connected. In this basis, the elliptic complex (Γ(Λ∗M ⊗ TM), d∇
A

) is
isomorphic to the tensor product of the standard de Rham complex with R3. It follows

that H1(M,d∇
A

) ≃ H1(M) ⊗ R3, and this space vanishes since the first Betti number of a
simply-connected manifold is zero.

By the analysis from the proof of Theorem 3.3.2 and Lemma 3.4.2, any infinitesimal deforma-
tion Ȧ can be written as the covariant derivative ∇A0 of a vector field XȦ. By Lemma 3.3.3,

the symmetry of Ȧ leads to the equation

dX + ∗(A0X + 5X) = 0. (3.4.5)

If we write X =: xkek, we have dX = d(xkek) = dxk∧ek+xkdek and the exterior derivatives
are given by dek = −2 ∗ ek for all k ∈ {1, 2, 3}. Finally, equation (3.4.5) rewrites

dxk ∧ ek + 4x1e2 ∧ e3 = 0.

This means that we have the differential system of equations in the unknown functions
x1, x2, x3 ∈ C∞(S3):

e2(x
1) = e1(x

2), e3(x
1) = e1(x

3), e3(x
2) = e2(x

3) + 4x1.

By taking further partial derivatives one has

e3e2(x
1) = e3e1(x

2) = e1e3(x
2) + 2e2(x

2)

e2e3(x
1) = e2e1(x

3) = e1e2(x
3)− 2e3(x

3)

4e1(x
1) = e1e3(x

2)− e1e2(x
3).

We subtract the first equation from the sum of the last two, and we obtain

3e1(x
1) + e2(x

2) + e3(x
3) = 0.

Hence,

3e1e1(x
1) = −e1e2(x2)− e1e3(x

3), e2e2(x
1) = e2e1(x

2), e3e3(x
1) = e3e1(x

3),

and summing these three equations one has

3e1e1(x
1) + e2e2(x

1) + e3e3(x
1) = 2e2(x

3)− 2e3(x
2) = −8x1.

Consequently, we have to solve
∆Bx

1 = 8x1
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where ∆B := −(3e1e1 + e2e2 + e3e3). Note that this operator is the Laplacian on the Berger
sphere with metric 1

3e
2
1+e

2
2+e

2
3. Let ∆ = −(e1e1+e2e2+e3e3) be the Laplacian for the round

metric. Since e1 is a Killing vector field, it commutes with ∆, and since it is divergence-free
it follows that e∗1 = −e1. Thus the operator −e21 is symmetric and positive, so ∆B commutes
with ∆ and ∆B ≥ ∆. It follows that an eigenfunction of ∆B for the eigenvalue 8 is a sum of
eigenfunctions of ∆ for the eigenvalue 3 or 8. From the analysis done in [10, Section 5 and
6.2] or by direct computation, we know that all eigenfunctions of ∆ for the eigenvalue 3 (the
spherical harmonics of degree 1) are also eigenfunctions of ∆B of eigenvalue 5. Moreover,
an eigenfunction of ∆ for the eigenvalue 8 (a spherical harmonic of degree 2) is a sum of
eigenfunctions of ∆B for the eigenvalues 8 and 16, and the multiplicity of the eigenvalue 8
for ∆B turns out to be 3. More precisely, the associated eigenspace V8 is spanned by the
functions π∗yk for k ∈ {1, 2, 3} where π : S3 → S2( 12 ) is the Hopf fibration for which e1 is
tangent to the fibers and yk is the kth coordinate in R3 ⊃ S2. In particular, the action of e1
is trivial on V8, so e1(x

1) = 0.

Lemma 3.4.3. For any k ∈ {1, 2, 3} one has e2e3(π
∗yk) = e3e2(π

∗yk) = 0 and e2e2(π
∗yk) =

e3e3(π
∗yk) = −4π∗yk.

Proof. The space Span(π∗y1, π
∗y2, π

∗y3) is generated by the three harmonic quadratic poly-
nomials {a21 + a22 − a23 − a24, a1a4 + a2a3, a1a3 − a2a4} restricted to S3, where ak stands for
the kth coordinate in R4. The lemma follows by a direct computation.

Now we have

e1e1(x
2) = e1e2(x

1) = e2e1(x
1) + 2e3(x

1) = 2e3(x
1)

e2e2(x
2) = −e2e3(x3)

e3e3(x
2) = e3e2(x

3) + 4e3(x
1)

and by adding these equations we obtain for the Laplacian ∆ = −(e1e1 + e2e2 + e3e3) of the
round metric:

∆x2 = −2e3(x
1) + 2e1(x

3)− 4e3(x
1) = −4e3(x

1).

In the same way we have

e1e1(x
3) = e1e3(x

1) = −2e2(x
1)

e2e2(x
3) = e2e3(x

2)− 4e2(x
1)

e3e3(x
3) = −e3e2(x2),

thus,
∆x3 = 2e2(x

1)− 2e1(x
2) + 4e2(x

1) = 4e2(x
1).

We are left with the system

∆x2 = −4e3(x
1), ∆x3 = 4e2(x

1).

Since e1, e2, e3 are Killing vector fields, ∆ commutes with e1, e2 and e3. This implies that

∆(x2 + 1
2e3(x

1)) = 0, ∆(x3 − 1
2e2(x

1)) = 0.

Since harmonic functions on a compact manifold must be constant, we deduce that x2 =
− 1

2e3(x
1) + c2 and x3 = 1

2e2(x
1) + c3 for some constants c2, c3 ∈ R. Finally, the space of

solutions

S := {x1e1 + (− 1
2e3(x

1) + c2)e2 + ( 12e2(x
1) + c3)e3;x

1 ∈ V8, c2, c3 ∈ R} (3.4.6)
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is 5-dimensional, since the eigenspace V8 of ∆B for the eigenvalue 8 has dimension 3.

From (3.4.1), the Lie derivatives of A0 in the direction of e2, e3 are given by

Le2A0 = Le2(e1 ⊗ e1 − 3e2 ⊗ e2 − 3e3 ⊗ e3)

= −2(e3 ⊗ e1 + e1 ⊗ e3)− 6(e1 ⊗ e3 + e3 ⊗ e1)

= −8(e3 ⊗ e1 + e1 ⊗ e3);

Le3A0 = Le3(e1 ⊗ e1 − 3e2 ⊗ e2 − 3e3 ⊗ e3)

= 2(e2 ⊗ e1 + e1 ⊗ e2) + 6(e1 ⊗ e2 + e2 ⊗ e1)

= 8(e2 ⊗ e1 + e1 ⊗ e2).

Let X := xkek ∈ S. One has

∇A0X = dxk ⊗ ek + xk∇A0ek

= dxk ⊗ ek + 2x1(e2 ⊗ e3 − e3 ⊗ e2)

+ 2x2(e1 ⊗ e3 + e3 ⊗ e1)− 2x3(e1 ⊗ e2 + e2 ⊗ e1),

and we can compute the coefficients of ∇A0X using Lemma 3.4.3:

2⟨∇A0X, e1 ⊗ e1⟩ = 2e1(x
1) = 0

2⟨∇A0X, e2 ⊗ e2⟩ = −e2e3(x1) = 0

2⟨∇A0X, e3 ⊗ e3⟩ = e3e2(x
1) = 0

2⟨∇A0X, e1 ⊗ e2⟩ = −e1e3(x1)− 2e2(x
1)− 4c3 = 2e2(x

1)− 2e2(x
1)− 4c3 = −4c3

2⟨∇A0X, e1 ⊗ e3⟩ = e1e2(x
1)− 2e3(x

1) + 4c2 = 2e3(x
1)− 2e3(x

1) + 4c2 = 4c2

2⟨∇A0X, e2 ⊗ e3⟩ = e2e2x
1 + 4x1 = 0.

From the symmetry of ∇A0X we conclude that

∇A0X = 2c3(e1 ⊗ e3 + e3 ⊗ e1)− 2c2(e1 ⊗ e2 + e2 ⊗ e1)

= −1

4
(c3Le3A0 + c2Le2A0).

Consequently, we proved the following proposition:

Proposition 3.4.4. The space of infinitesimal deformations of Cloc
S3 at A0 is of dimension

2, and consists exactly of the Lie derivatives of A0 in the directions spanned by (e2, e3).

The same analysis holds for endomorphism fields constant in a right-invariant orthonormal
frame.

Remark 3.4.5. The infinitesimal deformations described in Proposition 3.4.4 can be ob-
tained as the tangent vectors to actual smooth curves in Cloc

S3 , as described after Definition
3.3.1. This comes from the fact that the solutions we know form a differentiable manifold
with four connected components.
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3.5 Endomorphisms fields on the 3-sphere and the sec-
ond fundamental form

3.5.1 Thickening of the three-sphere

In the real-analytic case, it was shown in [44] and [3, Theorem 1.1] that the existence of a
Cauchy spinor ψ over (M, g) is equivalent to the existence of a Ricci-flat metric of the form
gZ = dt2 + gt on a cylinder Z := (−ϵ, ϵ) ×M with g0 = g, which carries a parallel spinor
Ψ. In this case, the Cauchy endomorphism A from (3.1.1) is the second fundamental form of
the hypersurface {0} ×M , and ψ is the restriction of Ψ to this hypersurface. Moreover, the
germ near t = 0 of the Ricci-flat metric gZ is unique by analyticity.

When A is plus or minus the identity on the sphere S3, the resulting metric on Z is flat
and isometric to the induced metric on a tubular neighborhood of S3 through the canonical
embedding in R4.

In this section we shall describe the ambient metric obtained by this thickening procedure
in the case where the Cauchy endomorphism field is A0 defined in (3.4.4) in terms of the
left-invariant orthonormal frame (e1, e2, e3) on the standard sphere S3. Once again, a similar
analysis can be carried out in the case of an endomorphism field constant in a right-invariant
orthonormal frame, as it amounts to reversing the orientation on Z.

Since both the standard metric on S3 and A0 are real-analytic and S
1-invariant, by uniqueness

it follows that the Ricci-flat metric gZ is also S1-invariant. For an interval I ∋ 0 (to be defined
later), we thus make the following Ansatz: let η1, η2, η3 be the 1-forms dual to the Hopf vector
fields e1, e2, e3, we look for a metric on Z := S3 × I of the form

gZ := dt2 + gt, gt =: a(t)2η21 + b(t)2(η22 + η23) (3.5.1)

such that ΣZ carries a parallel spinor Ψ and A0 is the Weingarten map of S3×{0}. Moreover,
g0 has to coincide with the metric of the round sphere, so a(0) = b(0) = 1, and we assume
that the functions a and b are non-negative.

We introduce the notation Mt := S3 × {t}. Because of the form of the metric gt defined by
(3.5.1), the hypersurfaces Mt are Berger spheres.

The covariant derivative on (Mt, gt) is denoted ∇t. We also denote by Rt the Riemann
curvature tensor of (Mt, gt), and by At the Weingarten map of the hypersurface Mt in Z.

The fact that Ψ is parallel in ΣZ implies that each hypersurface Mt carries a Cauchy spinor
(the restriction of Ψ to Mt) with associated endomorphism field At. In particular, Equation
(3.1.2) gives for all t

0 = Rt(X,Y ) + ∗d∇
t

At(X,Y ) +At(X) ∧At(Y ) (3.5.2)

for all X,Y ∈ TMt ≃ TM . In turn, the identity (3.5.2) for all t will be shown to determine
uniquely the metric gZ, hence, as explained above, it implies the vanishing of the Ricci tensor
of gZ by [44] and the existence of a parallel spinor on Z by the main result of [3].

Using Koszul’s formula and the expression (3.4.1) for the Lie brackets of e1, e2, e3, we obtain
by a straightforward computation that

∇t
e1e2 =

(
2− a2

b2
(t)

)
e3, ∇t

e2e1 = −a
2

b2
(t)e3, ∇t

e1e3 =

(
a2

b2
(t)− 2

)
e2,

∇t
e3e1 =

a2

b2
(t)e2, ∇t

e2e3 = e1, ∇t
e3e2 = −e1
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∇t
e1e1 = 0, ∇t

e2e2 = 0, ∇t
e3e3 = 0.

From this we immediately get

Rte1,e2e1 = −a
4

b4
(t)e2, Rte1,e2e2 =

a2

b2
(t)e1, Rte1,e2e3 = 0

Rte1,e3e1 = −a
4

b4
(t)e3, Rte1,e3e2 = 0, Rte1,e3e3 =

a2

b2
(t)e1

Rte2,e3e1 = 0, Rte2,e3e2 =

(
3
a2

b2
(t)− 4

)
e3 Rte2,e3e3 =

(
4− 3

a2

b2
(t)

)
e3.

Thus, in the basis (e1, e2, e3) one has

Rte1,e2 =

 0 a2

b2 0

−a4

b4 0 0
0 0 0

 Rte1,e3 =

 0 0 a2

b2

0 0 0

−a4

b4 0 0



Rte2,e3 =

0 0 0

0 0 4− 3a
2

b2

0 3a
2

b2 − 4 0

 .
We shall identify vectors and 1-forms on Mt using the metric gt. Notice that the Hopf frame
(e1, e2, e3) is orthogonal, but not orthonormal on Mt. In terms of 2-forms, the t-dependent
curvature matrices become

Rt(e1, e2) = −a
2

b4
e1 ∧ e2 Rt(e1, e3) = −a

2

b4
e1 ∧ e3

Rt(e2, e3) =
3a2 − 4b2

b4
e2 ∧ e3.

Let us now analyze the Weingarten maps At. By [6, Proposition 4.1], At is computed in the
frame {e1, e2, e3} by the formula gt(At(X), Y ) = − 1

2
∂
∂t (gt(X,Y )). We obtain

At = − ȧ

a3
(t)e1 ⊗ e1 −

ḃ

b3
(t)e2 ⊗ e2 −

ḃ

b3
(t)e3 ⊗ e3.

The twisted exterior differential of At is

(d∇
t

At)(e1, e2) = ∇t
e1(Ate2)−At∇t

e1e2 −∇t
e2(Ate1) +At∇t

e2e1

= − ḃ
b
(t)∇t

e1e2 −
(
2− a2

b2
(t)

)
Ate3 +

ȧ

a
(t)∇t

e2e1 −
a2

b2
(t)Ate3

=
a2

b2
(t)

(
ḃ

b
(t)− ȧ

a
(t)

)
e3

(d∇
t

At)(e1, e3) = ∇t
e1(Ate3)−At∇t

e1e3 −∇t
e3(Ate1) +At∇t

e3e1

= − ḃ
b
(t)∇t

e1e3 −
(
a2

b2
(t)− 2

)
Ate2 +

ȧ

a
(t)∇t

e3e1 +
a2

b2
(t)Ate2
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=
a2

b2
(t)

(
ȧ

a
(t)− ḃ

b
(t)

)
e2

(d∇
t

At)(e2, e3) = ∇t
e2(Ate3)−At∇t

e2e3 −∇t
e3(Ate2) +At∇t

e3e2

= − ḃ
b
(t)∇t

e2e3 −Ate1 +
ḃ

b
(t)∇t

e3e2 −Ate1

= 2

(
ȧ

a
(t)− ḃ

b
(t)

)
e1.

Thus

∗(d∇
t

At)(e1, e2) =
a

b2
(t)

(
ḃ

b
(t)− ȧ

a
(t)

)
e1 ∧ e2,

∗(d∇
t

At)(e1, e3) =
a

b2
(t)

(
ḃ

b
(t)− ȧ

a
(t)

)
e1 ∧ e3,

∗(d∇
t

At)(e2, e3) =
2a

b2
(t)

(
ȧ

a
(t)− ḃ

b
(t)

)
e2 ∧ e3.

Finally, Equation (3.5.2) rewrites as the system
0 = Rte1,e2 + ∗(d∇

t

At)(e1, e2) +At(e1) ∧At(e2)

0 = Rte1,e3 + ∗(d∇
t

At)(e1, e3) +At(e1) ∧At(e3)

0 = Rte2,e3 + ∗(d∇
t

At)(e2, e3) +At(e2) ∧At(e3)

and taking into account the previous computations, this system reads

0 = −a
2

b4
e1 ∧ e2 +

a

b2

(
ḃ

b
− ȧ

a

)
e1 ∧ e2 +

ȧḃ

ab
e1 ∧ e2

0 = −a
2

b4
e1 ∧ e3 +

a

b2

(
ḃ

b
− ȧ

a

)
e1 ∧ e3 +

ȧḃ

ab
e1 ∧ e3

0 =
3a2 − 4b2

b4
e2 ∧ e3 +

2a

b2

(
ȧ

a
− ḃ

b

)
e2 ∧ e3 +

(
ḃ

b

)2

e2 ∧ e3

so we are left with the two independent equations
0 = −a

2

b4
− ȧ

b2
+
aḃ

b3
+
ȧḃ

ab

0 =
3a2 − 4b2

b4
+

2ȧ

b2
− 2aḃ

b3
+

(
ḃ

b

)2

.

(3.5.3)

Moreover, from the identity g0(A0(X), Y ) = − 1
2 ġ0(X,Y ) for all X,Y ∈ TM0, we have the

initial conditions

a(0) = b(0) = 1 ȧ(0) = −1 ḃ(0) = 3.
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The first equation of (3.5.3) can be rewritten as

0 =
1

ab

(
ḃ− a

b

)(a2
b2

+ ȧ

)
,

thus either ḃ− a
b = 0 or a

2

b2 + ȧ = 0. However, from the initial conditions one has ḃ(0)− a
b (0) =

2 ̸= 0 so the first case never occurs. Consequently, we get

ȧ = −a
2

b2
.

Substituting this ȧ in the second equation of the system (3.5.3), one obtains by factorization

0 =
1

b4
(a− bḃ− 2b)(a− bḃ+ 2b).

Thus, either a − bḃ − 2b = 0 or a − bḃ + 2b = 0. The initial conditions give a(0) − bḃ(0) =
1 − 3 = −2 and we conclude that the second case occurs. We have reduced (3.5.3) to the
simpler system 

ȧ = −a
2

b2

ḃ =
a

b
+ 2

a(0) = b(0) = 1, ȧ(0) = −1, ḃ(0) = 3.

(3.5.4)

In order to solve this system, we will find a conserved quantity and make a well-chosen change
of variable. We begin by computing the derivative of b

a :(
b

a

)′

=
ḃa− ȧb

a2
=

(
a
b + 2

)
a+ a2

b2 b

a2
=

2

b
+

2

a
,

and then,

0 =

(
b

a

)′

− 2

(
1

b
+

1

a

)
⇔ 0 = ab

(
b

a

)′

− 2(a+ b).

In addition, one has

(ab)′ = ȧb+ ḃa = −a
2

b2
b+ a

(a
b
+ 2
)
= 2a,

thus

2(a+ b) = 2a+ 2
b

a
a = 2a

(
b

a
+ 1

)
= (ab)′

(
b

a
+ 1

)
,

and finally we have

0 = ab

(
b

a

)′

− (ab)′
(
b

a
+ 1

)
⇔
(

1

ab

(
b

a
+ 1

))′

= 0.

We conclude that the quantity 1
ab

(
b
a + 1

)
is constant, so

1

ab

(
b

a
+ 1

)
= 2.
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A natural change of variable is to set s = ϕ(t) := a(t)b(t), so b(t)
a(t) = 2ϕ(t) − 1 = 2s − 1.

Composing by ϕ−1 on the right, we obtain for s in a neighborhood of 1

ȧ(ϕ−1(s)) = −a
2

b2
(ϕ−1(s))

ḃ(ϕ−1(s)) =
a

b
(ϕ−1(s)) + 2

a(ϕ−1(s))b(ϕ−1(s)) = ϕ(ϕ−1(s))

b

a
(ϕ−1(s)) = 2ϕ(ϕ−1(s))− 1

and setting α := a ◦ ϕ−1 and β := b ◦ ϕ−1 one arrives at

α̇ = −(ϕ−1)′
α2

β2
= −(ϕ−1)′

1

(2s− 1)2

β̇ = (ϕ−1)′
(
α

β
+ 2

)
= (ϕ−1)′

4s− 1

2s− 1

αβ = s

β

α
= 2s− 1.

Differentiating the last two equations one gets

α̇β + αβ̇ = 1 (3.5.5)

and

αβ̇ − α̇β = 2α2 ⇔ 2α = β̇ − α̇(2s− 1) = (ϕ−1)′
4s− 1

2s− 1
+ (ϕ−1)′

1

2s− 1

⇔ α = (ϕ−1)′
2s

2s− 1
.

Re-injecting this last equation in (3.5.5) we have

α

(
α̇
β

α
+ β̇

)
= 1 ⇔ (ϕ−1)′

2s

2s− 1

(
−(ϕ−1)′

1

(2s− 1)2
(2s− 1) + (ϕ−1)′

4s− 1

2s− 1

)
= 1

⇔
(
(ϕ−1)′

)2 4s

2s− 1
= 1 ⇔ (ϕ−1)′ =

√
2s− 1

4s
,

where we used that the derivative of ϕ is positive. Thus, one has

α̇ = −(ϕ−1)′
1

(2s− 1)2
= − 1

2
√
s(2s− 1)

3
2

β̇ = (ϕ−1)′
4s− 1

2s− 1
=

4s− 1

2
√
2s2 − s

and by integration we finally obtain

α =

√
s

2s− 1
, β =

√
s(2s− 1).
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We conclude that in terms of the new variable s, the metric on S3 × I introduced in (3.5.1)
is

gZ =
2s− 1

4s
ds2 +

s

2s− 1
η21 + s(2s− 1)(η22 + η23), s ∈ ( 12 ,∞).

We can compute the interval to which the variable t belongs by calculating∫ 1

1
2

(ϕ−1)′(s)ds =

∫ 1

1
2

√
2s− 1

4s
ds

=
1√
2

[
s

√
1− 1

2s
− 1

4
ln
(
4s− 1 +

√
16s2 − 8s

)]1
1
2

=
1

2
− 1

4
√
2
ln(3 + 2

√
2) =

√
2− ln(1 +

√
2)

2
√
2

≈ 0, 1884,

and so the family of metrics gt from (3.5.1) admitting Cauchy spinors exists for t ∈(
1
2

(
1√
2
ln(1 +

√
2)− 1

)
,∞
)
.

We now show the metric obtained on Z is indeed the Ricci-flat metric we were searching for.
Being able to extend a Cauchy spinor on {0} × S3 to a parallel spinor on Z is equivalent to
Σ+Z being flat because of the quaternionic structure. This is equivalent to

∗RZ
X,Y = −RZ

X,Y , ∀X,Y ∈ TZ, (3.5.6)

where RZ is the curvature tensor of Z, thus we just check this last fact. Equation (3.5.2)
already gives that (3.5.6) is true for any X,Y ∈ TMt, t ∈ I. We will use the notation ν := ∂

∂t .
By [6, Proposition 4.1], one has

gZ(RX,νY,Z) = gt(d
∇t

At(Y,Z), X), ∀t ∈ I, ∀X,Y, Z ∈ TMt.

This together with system (3.5.4) gives

gZ(RZ
e1,νe2, e3) = 2a2

(
ȧ

a
− ḃ

b

)
= −4

a3 + a2b

b2

gZ(RZ
e2,νe1, e3) = a2

(
ȧ

a
− ḃ

b

)
= −2

a3 + a2b

b2

gZ(RZ
x3,νx1, x2) = −a2

(
ȧ

a
− ḃ

b

)
= 2

a3 + a2b

b2
.

Moreover, by [6, Proposition 4.1], one has

gZ(RX,νY, ν) =
1

2
(g̈t(X,Y ) + ġt(At(X), Y )), ∀t ∈ I, ∀X,Y ∈ TMt,

thus, another use of system (3.5.4) gives

gZ(RZ
e1,νe1, ν) =

1

2

(
2aä+ 2ȧ2 − 2ȧ2

)
= aä = 4

a4 + a3b

b4

gZ(RZ
e2,νe2, ν) =

1

2

(
2bb̈+ 2ḃ2 − 2ḃ2

)
= bb̈ = −2

a2 + ab

b2
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gZ(RZ
e3,νe3, ν) =

1

2

(
2bb̈+ 2ḃ2 − 2ḃ2

)
= bb̈ = −2

a2 + ab

b2
,

and gZ(RZ
ek,ν

el, ν) for all k ̸= l. We now define the oriented orthonormal base (x1, x2, x3, ν) :=
(e1/a, e2/b, e3/b, ν). All together, one has

RZ
·,ν =

a2 + ab

b4
(4x1 ⊗ (x1 ∧ ν − x2 ∧ x3)− 2x2 ⊗ (x1 ∧ x3 + x2 ∧ ν)

+ 2x3 ⊗ (x1 ∧ x2 − x3 ∧ ν)),
(3.5.7)

and we easily check that property (3.5.6) is true. This means that Z carries a parallel spinor
so it is hyperkähler, and then Ricci-flat.

3.5.2 Link with the family of Euclidean Taub-NUT metrics

Let us first extend the previous study to the case where the initial sphere has radius r > 0. It
is easy to see that this does not change the form of the endomorphism A0 defined in (3.4.4).
This modification results in the rescaling of the metric by a factor r2. Subsequently, if we
keep the same notations as in the case r = 1, the metric gZ on Z is given by

gZ =
2s− 1

4s
r2ds2 +

r2s

2s− 1
η21 + r2s(2s− 1)(η22 + η23), s ∈ ( 12 ,∞).

With the change of variable u := rs we can express this metric by

gZ =
2u− r

4u
du2 +

r2u

2u− r
η21 + u(2u− r)(η22 + η23), u ∈ ( r2 ,∞). (3.5.8)

This family of metrics is strikingly similar to the well-known family of Euclidean Taub-NUT
metrics on R4 (see e.g. [63] and the references therein). In polar coordinates, the Euclidean
Taub-NUT metrics are given (up to a constant) by the expression

gTN =
as+ b

4s

(
ds2 +

4b2s2

(as+ b)2
η21 + 4s2(η22 + η23)

)
where a and b are positive parameters and we recall that η1, η2, η3 are the 1-forms dual to
the Hopf vector fields e1, e2, e3. Through a change of variable u =

√
a
2s in the radial variable

s, we can always normalize the parameter a to be equal to 2:

gTN =
2u+ r

4u

(
du2 +

4r2u2

(2u+ r)2
η21 + 4u2(η22 + η23)

)
. (3.5.9)

where r =
√

2
ab. The metric from Equation (3.5.8) belongs formally to the extension for

negative values of the parameter r of the family of Taub-NUT metrics normalized with
a = 2. Note that the parameter r cannot vanish, else the metric degenerates. Alternately,
we recover (3.5.8) formally as the Taub-NUT metric (3.5.9) with r > 0, but on the interval
(−∞,− r

2 )×S3. The metrics in this family admit a nonzero parallel spinor. This implies that
they are hyperkähler, hence Ricci-flat, and also (anti-) self-dual, according to the chirality of
the nonzero parallel spinor.

Miyake [56, Prop. 2.2 (2)] found the above family of metrics for non-zero r in his study of
self-dual metrics of Iwai-Katayama type.
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In the presentation (3.5.9) of the Taub-NUT metric, s = 0 is an apparent singularity, but in
fact the metric extends smoothly in the origin of R4. In contrast, the metric (3.5.8) has a true
singularity at s = 1

2 . The horizontal directions e2 and e3 collapse, while the vertical direction
of e1 explodes in finite time as s↘ 1

2 . As a result, the curvature operator is unbounded near
s = 1

2 .

Note that on (− r
2 , 0)× S3, (3.5.9) describes the original (Lorentzian) Taub-NUT metric.

3.6 Classification results on S3

In this section we analyze the set of symmetric solutions of (3.1.2) in the case M = S3.
Recall that CS3 = Cloc

S3 because the sphere is simply-connected. Since the known examples of
solutions can be expressed as constant matrices in a frame of left (or right-) invariant vector
fields, we will investigate some classes of endomorphisms related to these vector fields.

3.6.1 Endomorphisms constant in a left or right invariant orthonor-
mal frame

The four examples we recalled in Remark 3.4.1 can be interpreted as constant matrices either
in a left- or a right-invariant orthonormal frame. For this reason, it is legitimate to search
for all symmetric endomorphisms in CS3 that verify this property. We shall prove that there
exist no other examples besides the ones already known from Remark 3.4.1.

Proposition 3.6.1. Let A ∈ CS3 . Assume that A is constant in a left (resp. right)-invariant
orthonormal frame. Then, either A = ±Id or A has eigenvalues 1, −3, −3 (resp. −1, 3, 3).
In particular, A is one of the endomorphism fields described in Remark 3.4.1.

Proof. We recall that (e1, e2, e3) are the three left-invariant vector fields corresponding to
the quaternions i, j, k on S3.

Let A ∈ CS3 (i.e., A is symmetric and satisfies Equation (3.4.3) on S3), and assume that A is
constant in a left-invariant orthonormal frame. Hence, A can be viewed as a real symmetric
3× 3 matrix, in particular it is diagonalizable. From these considerations, up to an isometry
of the sphere we can assume without loss of generality that A = ae1⊗ e1+ be2⊗ e2+ ce3⊗ e3
for a, b, c ∈ R.
Equation (3.4.3) applied to X,Y ∈ {e1, e2, e3} together with (3.2.2) and (3.4.2) give the
system 

a+ b− 2c = 1− ab

b+ c− 2a = 1− bc

c+ a− 2b = 1− ca

⇔


(a+ 1)(b+ 1) = 2(c+ 1)

(b+ 1)(c+ 1) = 2(a+ 1)

(a+ 1)(c+ 1) = 2(b+ 1).

We easily see that a+1 = 0 ⇔ b+1 = 0 ⇔ c+1 = 0, and in this case A = −Id. We assume
now that a+ 1 ̸= 0. The product of all the equations give

(a+ 1)(b+ 1)(c+ 1) = 8,

and we conclude that (a+1)2 = (b+1)2 = (c+1)2 = 4. Therefore a+1, b+1, c+1 ∈ {−2, 2}
and moreover an even number among them are negative, concluding the proof when A is
constant in a left-invariant frame.

The case of a right-invariant orthonormal frame is treated similarly and produces the addi-
tional solution −1, 3, 3.
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3.6.2 Endomorphism fields with three distinct constant eigenvalues

The case of an endomorphism solution of (3.4.3) with at most two distinct eigenvalues was
already studied in [62], where it was shown that the only possibilities are the ones given in
Remark 3.4.1.

Proposition 3.6.2. There is no element of CS3 with three distinct constant eigenvalues.

Proof. Let A ∈ CS3 with three constant eigenvalues λ1 < λ2 < λ3. The associated unitary
eigenvectors are global vector fields on S3, which form an orthonormal frame, and are denoted
by X1, X2, X3. Equation (3.4.3) means that for every cyclic permutation (a, b, c) of the index
set (1, 2, 3) one has

λb∇Xa
Xb − λa∇Xb

Xa −A[Xa, Xb] = (1− λaλb)Xc.

Projecting on Xa, we see that

λbg(∇Xa
Xb, Xa)− λag(∇Xb

Xa, Xa)− λag([Xa, Xb], Xa) = 0

⇔(λb − λa)g(∇Xa
Xb, Xa) = 0

⇔(λb − λa)g([Xa, Xb], Xa) = 0.

This last equation is true for any a, b ∈ {1, 2, 3}, and this means [Xa, Xb] ∈ Span(Xc).

As a direct consequence of Koszul formula, ∇XaXa = 0 for a ∈ {1, 2, 3}. We can compute
for any a

δ(Xa) = −Xk⌟∇Xk
Xa = g(Xa,∇Xk

Xk) = 0.

This shows that the vector fields Xk are geodesic and divergence free. By a result of Gluck
and Gu [34, Theorem A], every geodesic and divergence free vector field on S3 is a Hopf
vector field (i.e. a unit vector field tangent to the fiber of a Hopf fibration). Moreover,
since they form an orthonormal basis at any point, they are all either left or right-invariant.
However we can give a simpler argument in our case:

Lemma 3.6.3. Let (X1, X2, X3) be a global orthonormal frame of geodesic vector fields on
S3 (i.e. ∇Xk

Xk = 0). Then (X1, X2, X3) is either a left- or a right-invariant frame.

Proof. Using Koszul’s formula, one sees that the assumption ∇Xk
Xk = 0 is actually equiv-

alent to the existence of three real functions α1, α2, α3 on S3 such that [Xa, Xb] = αcXc for
any cyclic permutation (a, b, c) of the indices 1, 2, 3.

We define the real-valued functions 2βk = (−1)δ1,kα1 + (−1)δ2,kα2 + (−1)δ3,kα3. By the
Koszul formula,

∇Xa
Xb = βaXc, ∇Xa

Xc = −βaXb,

Moreover, the curvature tensor on the sphere satisfies R(Xa, Xb)Xb = Xa. Since the vector
fields X1, X2, X3 are geodesic, we also have

R(Xa, Xb)Xb = −∇Xb
∇XaXb −∇[Xa,Xb]Xb

= −Xb(βa)Xb − βaβbXa + 2αcβcXa

= −Xb(βa)Xb + (−βaβb + βaβc + βbβc)Xa,

so the projection of this equation on Xa yields

−βaβb + βaβc + βbβc = 1.
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Since this is true for any value of (a, b, c) in {(1, 2, 3), (2, 3, 1), (3, 1, 2)}, one has βaβb = 1 and
we conclude that βk = ±1 for any k ∈ {1, 2, 3}.
Assume first that βk = 1 for any k ∈ {1, 2, 3}. We define for any X,Y ∈ TS3 the covariant
derivative

∇XY := ∇XY − ∗(X ∧ Y ),

which was already considered in (3.2.4). The vector fields Xk are parallel for ∇ and so are
the left-invariant vector fields with value (Xk)e at e. Thus, these vector fields coincide.

In the case β1 = β2 = β3 = −1, the same proof shows that X1, X2, X3 are right-invariant.

Hence, A is constant in a left or right-orthonormal frame and according to Proposition (3.6.1)
it must have at most 2 different eigenvalues, which contradicts the hypothesis.

3.6.3 Endomorphisms constant in the direction of a left-invariant
vector field

We will now weaken the condition from Section 3.6.1, and search for solutions A of (3.4.3) on
S3 that are constant in the direction of a left-invariant vector field ξ, i.e. LξA = 0. Assuming
this invariance, all the objects can be expressed on the basis of the Hopf fibration with fibers
tangent to ξ. We decompose A under the form:

A = fξ ⊗ ξ + v ⊗ ξ + ξ ⊗ v +B (3.6.1)

where f is a function on S3, v ∈ ξ⊥ and B is the restriction of A to ξ⊥. The condition
LξA = 0 gives

0 = LξA = (ξf)ξ ⊗ ξ + Lξv ⊗ ξ + ξ ⊗ Lξv + LξB,

and we know that for all X ∈ ξ⊥, LξX ∈ ξ⊥ since ξ is a Killing field, so we deduce

ξf = 0, Lξv = 0, LξB = 0. (3.6.2)

As a direct consequence of equations (3.6.2) we can interpret f , v and B respectively as a
function, a vector and an endomorphism on the basis S2( 12 ) of the Hopf fibration.

We define the endomorphism J of ξ⊥ by JX := −∇Xξ. This endomorphism is skew-
symmetric and satisfies J2 = −1; it is actually the lift of the standard almost complex
structure from S2( 12 ) through the Hopf fibration, so we will see it as an endomorphism of the
base.

The invariance equations (3.6.2) give

∇ξv = ∇vξ = −Jv
(∇ξB)X = ∇ξ(BX)−B∇ξX = ∇BXξ + [ξ,BX] +BJX −B[ξ,X]

= [B, J ]X + Lξ(BX)−BLξX = [B, J ]X + (LξB)X = [B, J ]X.

Now, we express Equation (3.4.3) in terms of f , v and B by considering horizontal and
vertical vectors for X and Y .

Let X,Y be two orthogonal vector fields in ξ⊥. One has,

d∇A(ξ,X) = (∇ξA)X − (∇XA)ξ

= −(Jv ⊗ ξ + ξ ⊗ Jv − [B, J ])X −∇X(Aξ)−AJX
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= −g(Jv,X)ξ − JBX +BJX −∇X(fξ + v)− g(v, JX)ξ −BJX

= −JBX −∇X(fξ + v).

We now use the fact that for any X, g(JX,X) = 0 to infer that ∗ξ ∧X = JX and ∗v ∧X =
−g(v, JX)ξ, so Equation (3.4.3) implies

−JBX −∇X(fξ + v) = ∗(ξ ∧X)− ∗(fξ + v) ∧ (g(X, v)ξ +BX)

= JX − fJBX + g(v, JBX)ξ + g(X, v)Jv.
(3.6.3)

Projecting equation (3.6.3) on ξ, one has

−g(∇X(fξ + v), ξ) = g(v, JBX)

thus
g(BJv + Jv − df,X) = 0.

Since this last equation is true for any X ∈ ξ⊥ we conclude

BJv = −Jv + df. (3.6.4)

We define the orthogonal projector P on ξ⊥. We now project equation (3.6.3) on the orthog-
onal of ξ, and we obtain

−JBX + fJX − P∇Xv = JX − fJBX + g(X, v)Jv

thus
(f − 1)(JBX + JX) = P∇Xv + g(X, v)Jv.

Thus, we have the system{
BJv = −Jv + df

(f − 1)(JBX + JX) = P∇Xv + g(X, v)Jv

We now compute:

(∇XA)Y =(X(f)ξ ⊗ ξ − fJX ⊗ ξ − fξ ⊗ JX +∇Xv ⊗ ξ

+ ξ ⊗∇Xv − JX ⊗ v − v ⊗ JX + (∇XB))Y

=− fg(JX, Y )ξ + g(∇Xv, Y )ξ − g(JX, Y )v

− g(v, Y )JX + (∇XB)Y.

We deduce that

d∇A(X,Y ) =− fg(JX, Y )ξ + g(∇Xv, Y )ξ − g(JX, Y )v − g(v, Y )JX + (∇XB)Y

+ fg(JY,X)ξ − g(∇Y v,X)ξ + g(JY,X)v + g(v,X)JY − (∇YB)X

=2fg(X, JY )ξ + dv(X,Y )ξ + 2g(X, JY )v

− g(v, Y )JX + g(v,X)JY + d∇B(X,Y ).

Equation (3.4.3) leads to

2fg(X, JY )ξ + dv(X,Y )ξ + 2g(X, JY )v − g(v, Y )JX + g(v,X)JY + d∇B(X,Y )

= ∗X ∧ Y − ∗(g(X, v)ξ +BX) ∧ (g(Y, v)ξ +BY )
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=− [g(X,JY )− g(BX, JBY )]ξ − g(X, v)JBY + g(Y, v)JBX

which leads to

[−g(X, JY ) + g(BX, JBY )− 2fg(X, JY )− dv(X,Y )]ξ − 2g(X,JY )v

= d∇B(X,Y ) + g(X, v)J(B + 1)Y − g(Y, v)J(B + 1)X.

Since

g(d∇B(X,Y ), ξ) = g(∇X(BY )−∇Y (BX)−B[X,Y ], ξ)

= g(∇X(BY ), ξ)− g(∇Y (BX), ξ)

= −g(BX, JY ) + g(BY, JX),

the projection on ξ gives

−g(X, JY ) + g(BX, JBY )− 2fg(X, JY )− dv(X,Y ) = −g(BX, JY ) + g(BY, JX)

and
2(1 + f)g(X, JY ) + dv(X,Y ) = g((B + 1)X,J(B + 1)Y ).

We remark that for any symmetric endomorphism S, one has SJS = det(S)J and the last
equation is rewritten

[2(1 + f)− det(B + 1)]g(X, JY ) = −dv(X,Y ).

Moreover, the projection on ξ⊥ provides the equation

−Pd∇B(X,Y ) = g(X, v)J(B + 1)Y − g(Y, v)J(B + 1)X + 2g(X, JY )v.

For the remainder of this section, we will denote by ∇ the covariant derivative on S2( 12 ) (the
basis of the Hopf fibration). We recall that if U, V are basic vector fields on S3 we have the
equation

∇UV = ∇UV + g(V, JU)ξ.

Now, we study the objects on S2( 12 ). For any X,Y ∈ TS2( 12 ), one has dv(X,Y ) =
d∗(Jv)g(JX, Y ) and, using a unit vector field X at a point of S2( 12 ) and the fact that J
is parallel, one has

∗d∇B = d∇B(X, JX) = (∇XB)JX − (∇JXB)X

= (∇XBJ)X + (∇JXBJ)JX = −δ∇(BJ).

Consequently, we obtain four equations on the sphere S2( 12 )
(B + 1)Jv = df

(f − 1)J(B + 1) = ∇v + v ⊗ Jv

2(1 + f)− det(B + 1) = d∗(Jv)

δ∇(BJ) = J(B + 3)Jv.

(3.6.5)

The system (3.6.5) seems too difficult to solve in full generality for the time being, and is left
as an open problem.
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3.6.4 A particular case: v = 0

We proceed by treating only the special case in the system (3.6.5) where ξ is an eigenvector
of A, i.e. v = 0 in (3.6.1). In this situation, the system reduces to

df = 0

(f − 1)J(B + 1)X = 0

2(1 + f)− det(B + 1) = 0

δ∇(BJ) = 0.

(3.6.6)

Proposition 3.6.4. Let A ∈ CS3 be the symmetric endomorphism corresponding to a Cauchy
spinor on S3. Assume that there exists a left (resp. right)-invariant vector field ξ such that
LξA = 0 and such that ξ is an eigenvector of A. Then A = ±Id or A = ξ ⊗ ξ − 3P (resp.
A = −ξ ⊗ ξ + 3P ), where P is the orthogonal projector on ξ⊥.

Proof. We start with the case where ξ is left-invariant. We have seen that A must equal
fξ⊗ξ+B where the Killing vector field ξ is an eigenvector of A, and f and B are ξ-invariant,
hence they are pull-back of objects from the base S2( 12 ) of the Hopf fibration. Define the
open set O = {x ∈ S2, B(x) ̸= −Id} ⊂ S2. On O, the second equation gives f = 1, and the
third one gives det(B + 1) = 4. Since f is constant by the first equation, O is either empty
or equal to S2.

If O is empty, B = −Id on S2, so f = −1 and the only solution of the system is A = −Id.

If O = S2, we have seen that f = 1 so we are left with the two equations det(B+1) = 4 and

δ∇(BJ) = 0. Equivalently, we search for a symmetric endomorphism field C = B+1
2 on the

unit sphere S2 with detC = 1 and δ∇(CJ) = 0. Notice that δ∇(JCJ) = −Jδ∇(CJ) = 0,

hence the symmetric endomorphism U := JCJ satisfies detU = 1 and δ∇U = 0. The
following proposition contains the result we need:

Proposition 3.6.5. Let U be a symmetric endomorphism on S2 which satisfies detU = 1

and δ∇U = 0. Then U = ±Id.

Proof. Let t := 1
2 trU , and S := J(U − tId). Since U − tId is symmetric and traceless, so

is S. We will use several times below that traceless symmetric endomorphisms anticommute

with J . One has δ∇S = δ∇(JU) − δ∇(JtId) = Jdt. Since U2 − 2tU + detU = 0 by
Cayley-Hamilton’s theorem, one has

S2 = (JS)2 = (U − tId)2 = U2 − 2tU + t2Id = (t2 − 1)Id. (3.6.7)

Thus, |t| ≥ 1 because S2 = SS∗ is non-negative. The function t is continuous on S2, so
it cannot change sign. It follows that either t ≥ 1 on S2 or t ≤ −1 on S2. We shall show
below that in the first case U = Id. In the second case, −U also satisfies the hypotheses of
the proposition and moreover tr(−U) > 0, so by the first case we get −U = Id. It suffices
therefore to solve the first case, i.e., we can assume in the rest of the proof that t ≥ 1 on S2.

We want to show that the open set E := {x ∈ S2; t(x) > 1} is empty. One has S ̸= 0 on E,
thus we can define T := S

∥S∥ . Since S is symmetric and traceless, so are T and JT , hence

(T, JT ) is an orthonormal frame over E in the bundle of symmetric traceless endomorphisms
of TS2. Therefore,

∇T =: α⊗ JT (3.6.8)
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for some 1-form α ∈ Λ1(E). By taking a further covariant derivative in this equation and
skew-symmetrizing one has for any X,Y ∈ TS2

dα(X,Y )JT = R̄X,Y T

where R̄ is the curvature of S2, which acts on any endomorphism field W as R̄X,YW =
[R̄X,Y ,W ]. Then, using the identity R̄X,Y = −X ∧ Y on S2, we obtain dα = −2vol, where
vol is the Riemannian volume form.

We identify α with a vector field α♯ via the metric, and one has δ∇T = −JTα♯ by Equation

(3.6.8). Since T 2 = (JT )2 = 1
2 Id we obtain α♯ = −2JT (δ∇T ). The condition δ∇S = Jdt

gives δ∇T = δ∇S
∥S∥ + Tgrad ln(∥S∥) = Jdt

∥S∥ + Tgrad ln(∥S∥), hence

α♯ = −2S(grad(t))

∥S∥2
− Jgrad ln(∥S∥).

We now differentiate this equation to obtain

d∗Jα♯ = −d∗
(
2JS(grad(t))

∥S∥2

)
+∆ ln(∥S∥)

where ∆ = d∗d is the positive Laplacian on S2. Using the fact that dα = −2V , which is
equivalent to d∗Jα♯ = −2, one has

−2 = −d∗
(
2JS(grad(t))

∥S∥2

)
+∆ ln(∥S∥).

We know from (3.6.7) that ∥S∥2 = 2(t2 − 1), so t =
√

1
2∥S∥2 + 1. This leads to dt =

∥S∥d(∥S∥)
2
√

1
2∥S∥2+1

, and finally

−2 = −d∗
 JSd ln(∥S∥)√

1
2∥S∥2 + 1

+∆ ln(∥S∥).

We define ζ := 1
2∥S∥

2 and we rewrite the above equation as

−1 = −d∗(JSd ln ζ√
ζ + 1

) + ∆ ln ζ.

Let x ∈ S2 be a point where t, and thus ∥S∥, reaches its maximum. Clearly, x ∈ E. Let
(e1, e2) be an orthonormal frame which is parallel at x. At this point, one has

d∗(
JSd ln ζ√
ζ + 1

) = −⟨J∇e1(
Sd ln ζ√
ζ + 1

), e1⟩ − ⟨J∇e2(
Sd ln ζ√
ζ + 1

), e2⟩

=

[
⟨∇e1d ln ζ, SJe1⟩+ ⟨∇e2d ln ζ, SJe2⟩

]
√
ζ + 1

=
⟨Hess ln ζ, SJ⟩√

ζ + 1
,

where the Hessian is defined for any function β by Hessβ := ∇dβ. Thus,

−1 = −⟨Hess ln ζ, SJ⟩√
ζ + 1

− ⟨Hess ln ζ, Id⟩
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= −⟨Hess ln ζ, Id +M⟩,

where M := SJ√
ζ+1

. Since ζ = 1
2∥S∥

2 one has

∥M∥ =

√
2ζ

ζ + 1
<

√
2.

Since the trace of M vanishes, ∥M∥ =
√
2ρ(M), where ρ(M) is the spectral radius of M .

Thus one has ρ(M) < 1, so Id+M is positive definite. We now use the following elementary
result:

Lemma 3.6.6. Let N1, N2 ∈ Sn(R) be two symmetric matrices such that N1 is positive and
N2 is non-positive. Then, ⟨N1N2x, x⟩ ≤ 0 for all x ∈ Rn.

Proof of the lemma. By working in a eigenbasis (f1, . . . , fn) of N1, we can suppose that N1

is diagonal. Thus, for any j ∈ {1, . . . , n} we have N1fj =: λjfj and

⟨N1N2fj , fj⟩ = ⟨N2fj , N1fj⟩ = λj⟨N2fj , fj⟩ ≤ 0.

The matrix Hess ln(∥S∥) is non-positive because we are at a maximum point, and Id+M is
positive definite, so the previous lemma yields:

−1 = −⟨Hess ln ζ, Id +M⟩ ≥ 0

which is absurd. Thus E = ∅, so t = 1 on S2, and hence S = 0 by (3.6.7). Therefore, in the
case t > 0 we finally get U = Id.

The solution U = −Id is obtained in the case t < 0, as explained in the beginning of the
proof.

Recall that in the case B ̸= −Id we defined U = C−1 where C = B+Id
2 . As a consequence of

Proposition 3.6.5, we get the additional solutions B = −3Id or B = Id. We obtain therefore
three solutions to equations (3.6.6), which lead to the endomorphism fields A = ±Id and
A = ξ ⊗ ξ − 3P , where we recall that P is the orthogonal projector on ξ⊥.

The previous analysis adapts as usual in the case where ξ is right-invariant, yielding the
fourth solution A = −ξ ⊗ ξ + 3P .

3.6.5 Link with the sphere rigidity theorem

A classical result due to Liebmann [49] states that the only isometric immersions of the round
sphere S2 in R3 are the totally umbilical embeddings (hence they differ from the standard
embedding by an isometry of R3). Let us recall a property of Codazzi tensors in dimension
2:

Lemma 3.6.7. Let Σ be a surface endowed with a Riemannian metric h and S a field of
endomorphisms on Σ. Then S is a Codazzi tensor (i.e., d∇S = 0) if and only if JSJ is
divergence-free, where J is the Hodge star on 1-forms.

Proof. Let X be a locally-defined unit vector field on Σ. Using ∇J = 0 we compute

−δ∇(JSJ) =∇X(JSJ)(X) +∇JX(JSJ)(JX)

=J∇X(S)(JX) + J∇JX(S)(JJX)

=Jd∇(S)(X, JX).
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Proposition 3.6.5 implies the following slight extension of the sphere rigidity theorem:

Proposition 3.6.8. Every isometric immersion of the round 2-sphere in a flat 3-manifold
is totally umbilical.

Indeed, the Gauss and Codazzi equations of the embedding S2 ↪→M with second fundamental
form S tell us that det(S) = 1 and d∇S = 0. By the above lemma, this is equivalent to
det(JSJ) = 1 and δ∇(JSJ) = 0, so by Proposition 3.6.5 we deduce that JSJ = ±Id, which
means that S itself is ±Id.

We refer to [2] for a modern proof of Liebmann’s theorem using the curvature of the metric
defined by the second fundamental form S.

The interplay between solving the system (3.6.6) and a nontrivial classical result might ex-
plain why the more general system (3.6.5) is not so easy to solve.





Chapter 4

Locally conformally product
structures

On étudie dans ce chapitre les structures de Weyl fermées, non-exactes, non plates et à
holonomie réductibles sur les variétés compactes. On démontre l’existence de métriques pour
lesquelles la forme de Lee de la structure de Weyl est tangente à la distribution non-plate, et
on élargit le champ des examples des variétés admettant de telles structures en utilisant la
théorie des nombres.

125
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4.1 Introduction

On any Riemannian manifold, there exists a unique torsion-free metric connection, called
the Levi-Civita connection, which is the basic tool of Riemannian geometry. However, if
one consider the slightly more general context of conformal geometry, the uniqueness of
compatible connection does not hold anymore.

Conformal structures were introduced in 1919 by Weyl in the third edition of the book Raum,
Zeit, Materie [75], in an attempt to unify electromagnetism and gravity. He defined conformal
classes of Riemannian metrics, and considered the set of torsion-free compatible connections,
nowadays called Weyl structures. The fundamental theorem of conformal geometry states
that they form an affine space modelled on the space of one-forms.

In general, a Weyl structure does not preserve any metric in the conformal class, even locally.
Those which satisfy this property in a neighbourhood of each point are called closed, and
those which preserve a global metric are called exact Weyl structures. In this article we are
mostly interested in the closed, non-exact Weyl structures on compact conformal manifolds.

The study of closed Weyl structures on a conformal manifold M can be better understood in
terms of the universal cover M̃ . Indeed, the lift of a closed Weyl structure D to M̃ is exact,
meaning that it is the Levi-Civita connection of a Riemannian metric hD on M̃ , uniquely
defined up to a constant factor. The fundamental group of M acts by hD-similarities on M̃ ,
all of them being isometries if and only if D is exact.

Every geometrical property of the closed Weyl connection D can be interpreted on the Rie-
mannian manifold (M̃, hD), and conversely. One natural question to study is the reducibility
of the holonomy group of D, or equivalently of the Riemannian metric hD.

A first step in this direction was done by Belgun and Moroianu in [9], where the authors,
motivated by a result of Gallot [32], conjectured that a closed non-exact Weyl structure on a
compact conformal manifold has reducible holonomy if and only if it is flat. They showed that
the conjecture holds under an additional assumption about the lifetime of half-geodesics on
the universal cover. However, soon after the formulation of the conjecture, a counter-example
was proposed by Matveev and Nikolayevsky [52] who constructed a cocompact action by a
group of similarities on the Riemannian product of an Euclidean space and an incomplete
irreducible Riemannian manifold. Additionally, the same authors proved that this is the only
possible type of counter-example in the analytic setting [53].

More recently, Kourganoff extended this result to the smooth setting [45, Theorem 1.5].
More precisely, he proved that if a closed, non-exact Weyl structure D on a compact confor-
mal manifold (M, c) is non-flat and has reducible holonomy, then the Riemannian manifold

(M̃, hD) is isometric to the Riemannian product Rq × (N, gN ) where Rq (the flat part) is
an Euclidean space and (N, gN ) (the non-flat part) is an irreducible, non-complete manifold.
In this case, (M, c,D) is called a locally conformally product structure, or LCP structure
for short. This article is devoted to the study of these particular structures on compact
manifolds.

There are up to now only few examples of LCP manifolds. As mentioned before, the first
one was given in [52], and generalized in [45, Example 1.6] (we outline the construction
in Example 4.2.8 below). This example is very restrictive because it only provides LCP
manifolds of dimension 3 or 4, with a flat part of dimension 1 or 2 [51]. Nevertheless, they
are the only examples when the non-flat part is of dimension 2 [45, Theorem 1.8].

The other class of example comes from the theory of locally conformally Kähler (or LCK)
manifolds. A conformal complex manifold is LCK if for any point there exists a metric in
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the conformal class which is Kähler in a neighbourhood of this point. This is equivalent
to the existence of a Kähler metric on the universal cover, which belongs to the lift of the
conformal class. In [68], Oeljeklaus and Toma constructed a class of complex manifolds
called OT-manifolds, some of which admit LCP structures (we recall the construction in
Example 4.2.18 below). These LCP manifolds have flat parts of dimension 2, so they are still
restrictive examples.

One can define several invariants on LCP manifolds. On the one hand, the dimensions of the
flat and the non-flat parts, and on the other hand, the rank of the subgroup of R∗

+ generated

by the similarity ratios of π1(M) acting on (M̃, hD), which we call the rank of the LCP
manifold. As noticed before, in the known examples the possibilities for these numbers are
limited: the flat part is always of dimension 1 or 2, and it is not clear whether or not the
rank can be higher than 1. Our first goal in the present text is to extend the examples of
LCP manifolds, and to show, in particular, that the three invariants previously introduced
can be chosen arbitrarily large.

Let us now describe the organization of the paper. In Section 4.2, we recall the background of
Weyl structures and we define LCP manifolds. We also remind some basics about algebraic
number fields, which will be needed in the sequel. Indeed, it turns out that the study of LCP
manifolds is closely related to number theory, a fact that we can already notice from the
previous examples, which involve matrices in GLn(Z) [45] and algebraic number fields [68].
The structure theorem for LCP manifold proved by Kourganoff [45, Theorem 1.9], is also
restated. This last article will actually be our main tool, so we will often refer to it in the
subsequent lines.

Section 4.3 is devoted to the proof of several properties of LCP manifolds. First, we prove
in Proposition 4.3.6 that there exists a metric in the conformal class c on M with respect
to which the Lee form of the Weyl structure D vanishes on the flat distribution of D. This
property is equivalent to the existence of a smooth function defined on the non-flat factor
N , having the same equivariance as the metric hD on M̃ with respect to the action of
π1(M). In turn, the existence of such functions allows us to construct, starting from a given
compact LCP manifold (M, c,D), infinitely many new examples, by taking the product of

M̃ with the universal cover of a compact manifold, endowed with a warped product metric
admitting a free cocompact action by similarities. This leads to the concept of reducible
LCP manifolds. Moreover, in Proposition 4.3.12 we prove that the similarity ratios of π1(M)

acting on (M̃, hD) are always units in some algebraic number field.

In Section 4.4, we construct new examples of LCP manifolds. We give a general construc-
tion which contains all previous examples of LCP manifolds, and using some Galois theory
and Dirichlet’s unit theorem, we construct LCP manifolds with arbitrary rank in Propo-
sition 4.4.9. We also find LCP manifolds with flat and non-flat part of arbitrarily large
dimension.

4.2 Preliminaries

4.2.1 Locally conformally product manifolds

Let M be a smooth manifold of dimension n and denote by Fr(M) its frame bundle. For
every k ∈ R we define the weight bundle Lk := Fr(M)×

|det|
k
n
R, which is an oriented bundle.

A conformal class onM is a positive definite section of the fibre bundle Sym(T ∗M⊗T ∗M)⊗
L2. The manifold M together with this section is called a conformal manifold. Equivalently,
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a conformal manifold is given byM and a class of metrics c which are related in the following
manner: for any g, g′ ∈ c, there is f :M → R such that g′ = e2fg.

On a conformal manifold, there is no preferential connection as in the Riemannian case with
the Levi-Civita connection, because the metric is defined up to multiplication by a positive
function. However, a new class of connections is relevant:

Definition 4.2.1. A Weyl structure on a conformal manifold (M, c) is a torsion-free con-
nection D on TM which preserves c i.e. such that for any g ∈ c, there is a 1-form θg on M ,
called the Lee form of D with respect to g, satisfying Dg = −2θg ⊗ g.

It comes from the definition that if θg is the Lee form of D with respect to g ∈ c, then for
any g′ := e2fg ∈ c, the Lee form of D with respect to g′ is θg − df . Then, the Lee form of
D with respect to g is closed (resp. exact) if and only if the Lee form of any metric in c is
closed (resp. exact). For this reason, we introduce the following terminology:

Definition 4.2.2. A Weyl structure D on a conformal manifold (M, c) is closed (resp. exact)
if the Lee form of at least one metric (and then of all metrics) in c is closed (resp. exact).

An easy consequence of the definition is that a closed Weyl structure is locally the Levi-Civita
connection of a metric in c, and an exact Weyl structure is the Levi-Civita connection of a
metric in c.

We recall that a similarity between two Riemannian manifolds (M1, g1) and (M2, g2) is a
diffeomorphism s : M1 → M2 such that s∗g2 = λ2g1 for some positive real number λ > 0
called the similarity ratio. In order to define the main object of this text, we need the
following definition:

Definition 4.2.3. A similarity structure on a compact manifold M is a metric h on its
universal cover M̃ such that π1(M) acts by similarities on (M̃, h). A similarity structure is
said to be Riemannian if in addition π1(M) acts only by isometries.

It turns out that this notion is closely related to closed Weyl structures. More precisely, we
have the following result:

Proposition 4.2.4. On a conformal manifold (M, c) there is a one-to-one correspondence
between closed Weyl structures and similarity structures h in the lifted conformal structure
c̃ on the universal cover, defined up to multiplication by a positive real number. This corre-
spondence takes exact Weyl structures to Riemannian similarity structures.

Proof. Let D be a closed Weyl structure on (M, c). Let M̃ be the universal cover of M and

c̃ the induced conformal structure on M̃ . The connection D induces a Weyl structure D̃ on
M̃ which is exact since M̃ is simply connected. Thus, there is a metric hD ∈ c̃, unique up
to multiplication by a positive number, such that ∇hD = D̃, where ∇hD is the Levi-Civita
connection of hD. If g ∈ c is a metric on M , the induced metric g̃ on M̃ can be written
g̃ = e−2fhD for some real-valued function f of M̃ , and a simple calculation shows that the
Lee form of D̃ with respect to g̃ is df , which means that the pull-back θ̃g of the Lee form θg
is equal to df . Now, let γ ∈ π1(M). One has df = θ̃g = γ∗θ̃g = γ∗df , thus there is λ > 0
such that γ∗f = f + lnλ and γ∗hD = λ2hD. We conclude that the elements of π1(M) act on

(M̃, hD) as similarities. Moreover, if these similarities are all isometries, the Weyl structure
D is exact.

Conversely, assume one has a compact manifold M and a metric h on its universal cover M̃
such that π1(M) acts by similarities on (M̃, h). Then, the metric h does not define a metric
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on M , but it induces a conformal class c, and the Levi-Civita connection ∇h descends to
a closed Weyl structure on (M, c). If the elements of π1(M) are all isometries, this Weyl
structure is exact.

As we mentioned in the introduction, it was conjectured by Belgun an Moroianu [9] that
given a conformal manifold together with a closed, non-exact Weyl structure, the induced
connection on the universal cover must be flat or irreducible. A counter-example to this
conjecture was found by Matveev and Nikolayevsky [52], who showed that in the non-flat,
analytic case, the universal cover is a Riemannian product Rq × N where q ≥ 0 and N
is a non-complete, irreducible manifold of dimension at least 2. This result was extended
by Kourganoff to the smooth setting. More precisely, he proved the following theorem [45,
Theorem 1.5]:

Theorem 4.2.5. Consider a compact manifold M endowed with a non-Riemannian simi-
larity structure, and its universal cover M̃ is equipped with the corresponding Riemannian
metric hD (D being the closed non-exact Weyl structure associated via Proposition 4.2.4).
Then we are in exactly one of the following situations:

1. (M̃, hD) is flat.

2. (M̃, hD) has irreducible holonomy and dim(M̃) ≥ 2.

3. (M̃, hD) = Rq × (N, gN ), where q ≥ 1, Rq is the Euclidean space, and (N, gN ) is a
non-flat, non-complete Riemannian manifold which has irreducible holonomy.

In the third case of Theorem 4.2.5, we say thatM is a locally conformally product manifold, or
LCP manifold for short. Then, a LCP manifold (M, c,D) is the data of a compact manifold,
a conformal class, and a closed, non-exact Weyl structure, with reducible, non-flat holonomy.

Remark 4.2.6. We recall that the Cauchy border of a Riemannian manifold Z is ∂Z :=
CZ\Z, where CZ is the metric completion of Z. The classification of flat similarity structures
was done in [27]. From this result, it comes that in the first case of Theorem 4.2.5, the Cauchy

border of M̃ must be a single point. But this cannot happen in the case of an LCP manifold,
because the flat part is a Riemannian factor of M̃ and the non-flat part is incomplete, so ∂M̃
must have infinite cardinal. A direct consequence of this observation is that on a compact
conformal manifold (M, c), a closed, non-exact Weyl structure D defines an LCP structure if

and only if (M̃, hD) (where M̃ is the universal cover of M , and hD is the similarity structure

induced by D) has reducible holonomy and infinite Cauchy border, or equivalently if (M̃, hD)
has a flat Riemannian factor R.

We will often write the universal cover of an LCP manifold (M, c,D) as (M̃, hD) = Rq ×
(N, gN ). In this case, Rq will always stand for the flat part of the de Rham decomposition of

M̃ , (N, gN ) is the non-flat, incomplete, irreducible part, and hD is the similarity structure
induced by D, defined up to a constant factor.

We define the following invariant on LCP manifolds:

Definition 4.2.7. The rank of an LCP manifold (M, c,D) is the rank of the subgroup of R∗
+

generated by the ratios of the elements of π1(M) viewed as similarities acting on (M̃, hD).

Equivalently, the rank of an LCP manifold (M, c,D) is the minimal rank of a subgroup of
H1(M,Z) whose span in H1(M,R) contains the cohomology class [θ] of the Lee form of D.
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To prove this last fact, we recall that there is a canonical isomorphism

Ξ : H1(M,R) → Hom(π1(M),R), [w] 7→
(
[γ] 7→

∫
γ

w

)
. (4.2.1)

This map induces an isomorphism from H1(M,Z) to Hom(π1(M),Z). In addition, an easy
computation shows that Ξ([θ]) is exactly the composition of the logarithm and the morphism
associating to an element of π1(M) its similarity ratio, so the rank of the image of Ξ([θ]) is
the rank of the LCP manifold, denoted by r. Since Ξ is an isomorphism, it is sufficient to
prove that the rank s of the smallest subgroup of Hom(π1(M),Z) whose span contains Ξ(θ) is
r. Since the image of Ξ(θ) is of rank r, there exist r morphisms p1, . . . , pr ∈ Hom(π1(M),R),
whose images are of rank 1, such that Ξ(θ) =

∑r
k=1 pk. For all 1 ≤ k ≤ r, there is ak ∈ R

such that pk = akp
′
k where p′k ∈ Hom(π1(M),Z). Consequently, Ξ(θ) =

∑r
k=1 akp

′
k, thus

s ≤ r. In addition, r ≤ s because if Ξ(θ) =
∑s
k=1 pk with the pk’s being morphisms with

images of rank 1, then the rank of the image of Ξ(θ) is smaller than s.

A first example of LCP manifold was given by Matveev and Nikolayevsky [52] and generalized
by Kourganoff [45, Example 1.6]. We outline it here:

Example 4.2.8. Let M̃ := Rq+1 × R∗
+ with q ≥ 1. Let b be a symmetric positive definite

bilinear form on Rq+1 and A ∈ SLq+1(Z) such that there exist λ ∈ (0, 1) and a decomposition
Rq+1 = Eu ⊥ Es (where the orthogonal symbol refers to the metric induced by b) stable by
A with A|Es = λO where O ∈ O(Es, b|Es), and Eu is one-dimensional.

Let G be the group of transformation of M̃ generated by the translations Rq+1 × R∗
+ ∋

(x, t) 7→ (x + ek, t), k ∈ {1, . . . , q + 1} where ek is the k-th vector of the canonical basis of
Rq+1, and the transformation Rq+1 × R∗

+ ∋ (x, t) 7→ (Ax, λt).

Let φ : R∗
+ → R∗

+ be a function satisfying φ(λt) = λ2q+2φ(t). We define a metric h on M̃ by

hx,t := b|Es + φ(t)b|Eu + dt2

for any (x, t) ∈ M̃ . Then, the metric h defines a similarity structure on the manifold M̃/G.

However, as it was pointed out in [51, Proposition 1], the only admissible values of q in
Example 4.2.8 are q = 1, 2, so this construction only provides examples of LCP manifolds of
dimension 3 or 4.

In the remaining part of this section, (M, c,D) is an LCP manifold, and (M̃, hD) = Rq ×
(N, gN ) is its universal cover.

Let γ ∈ π1(M). Since γ acts as a similarity on (M̃, hD), it must preserve the de Rham
decomposition, meaning that there is a similarity γE (for Euclidean) of Rq and a similarity
γN of N such that γ = (γE , γN ).

Thus, we introduce the following definitions:

Definition 4.2.9. We define P = {p ∈ Sim(N),∃γ ∈ π1(M), γN = p}, the restriction of

π1(M) to the non-flat part N . We also introduce P , P
0
which are respectively the closure of

P in Sim(N), and the identity connected component of this closure.

The groups considered in Definition 4.2.9 were introduced by Kourganoff in [45], and their
analysis provides several useful results on LCP manifolds. We will keep these notations

throughout this text. From [45, Lemma 4.1] we know that P
0
is abelian and by [45, Lemma

4.13] that P
0
acts on N by isometries.

There is actually a correspondence between P and π1(M):
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Lemma 4.2.10. The group P is isomorphic to π1(M).

Proof. The second projection π1(M) → P, γ 7→ γN is a group morphism. We will show that
it is an isomorphism. Assume there is γ ∈ π1(M) \ id such that γN = id. Let v ∈ π1(M)
whose similarity ratio is λ ∈ (0, 1). By the Banach fixed point theorem, vE has a fixed point,
and we can assume without loss of generality that it is 0. Then, we can find Rv, Rγ ∈ Oq(R)
and tγ ∈ Rq such that vE(a) = Rva and γE(a) = Rγa + tγ for any a ∈ Rq. Since γ cannot

have a fixed point, because π1(M) acts freely on M̃ , one has tγ ̸= 0.

One has, for any k ∈ N and (a, x) ∈ Rq ×N :

vkγv−k(a, x) = (RkvRγR
−k
v a+Rkvtγ , x). (4.2.2)

Since vkγv−k(0, x) = (Rkvtγ , x) −→
k→+∞

0, the orbit of (0, x) by π1(M) admits an accumulation

point, which contradicts the fact that π1(M) acts properly on M̃ .

4.2.2 Number theory

We will need a few notions coming from number theory in order to give examples of locally
conformally product manifolds having arbitrary high rank.

First, we recall that an algebraic number field K, or number field for short, is an extension
of Q of finite dimension. The degree [K : Q] of such an extension is its dimension as Q-
vector space. If α is an algebraic number, we will denote by Q[α] the smallest extension of Q
containing α. In this case, the degree of α is the degree of its (monic) minimal polynomial.
The conjugates of an algebraic number α are the roots of its minimal polynomial.

Definition 4.2.11. An algebraic number field is called totally real if all its embeddings in C
lie in R.

Equivalently, a number field K := Q[α] is totally real if and only if the minimal polynomial
of α has only real roots, i.e. all the conjugates of α are real.

We recall that an extension K/L is a Galois extension if it is normal, meaning that all the
conjugates of an element α ∈ K lie in K, and separable, i.e. the minimal polynomial of any
α ∈ K has simple roots in an algebraic closure of K. In this case, the Galois group of K/L is
the set of automorphisms of K which fixes L. When L = Q, all the algebraic extensions are
separable, so for an extension Q[α], to be a Galois extension means that all the conjugates
of α lie in Q[α]. These considerations lead us to introduce the following definition:

Definition 4.2.12. An extension K/L is called cyclic if it is a Galois extension and its
Galois group is cyclic.

One object of interest for our analysis will be the ring of integer of an extension K, and more
specifically its group of units.

Definition 4.2.13. An element β of an algebraic number field K is an algebraic integer if
its monic minimal polynomial is in Z[X].

One basic result is that the set OK of the algebraic integers in K is indeed a ring.

Definition 4.2.14. The group O×
K of invertible algebraic integers in K is called the group

of units of K and its elements are called units.
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Remark 4.2.15. A useful characterization of units is the following: an algebraic integer of
K is a unit if and only if the constant coefficient of its minimal polynomial in Z[X] is equal
to ±1.

A fundamental result on the structure of the group of unit is the Dirichlet’s units theorem
(for a proof, see [55, Theorem 5.1]):

Theorem 4.2.16 (Dirichlet’s units theorem). The group of units in a number field K is
finitely generated with rank equal to s + t − 1, where s is the number of real embeddings of
K, and 2t is the number of nonreal complex embeddings of K (so s+ 2t = [K : Q]).

In particular, O×
K ≃ T ⊕ Zs+t−1, where T is the subgroup of torsion elements in O×

K . When
K is totally real, there is no torsion element different from ±1, and then O×

K ≃ {±1}⊕Zs−1.

The last notion that we need concerns the bases of an algebraic number field K. More
precisely, we are interested in the case where K admits a basis which is adapted to the ring
of integers.

Definition 4.2.17. An algebraic number field K is called monogenic if there exists a power
integral basis in K, i.e. there is an element α ∈ K such that OK = Z[α].

We also recall that the n-th cyclotomic extension is the extension of Q generated by a
primitive n-th root of unity. The degree of this extension is the value of the Euler’s totient
function at n.

We now have the tools to construct the so-called OT-manifolds, which where introduced by
Oeljeklaus and Toma in [68]. Before giving the construction, we emphasize that throughout
this article, a lattice in an Abelian Lie group G will be a discrete subgroup H of G. If the
quotient G/H is compact, then H will be called a full lattice.

Example 4.2.18 (OT-manifolds). LetK by a number field with s real embeddings σ1, . . . , σs
and 2t complex embeddings σs+1, . . . , σs+2t such that σs+i and σs+t+i are conjugated for
any 1 ≤ i ≤ t (such a field always exists, see [68, Remark 1.1]). We define the geometric
representation of K

σ : K → Cs+t, a 7→ (σ1(a), . . . , σs+t(a)).

The image of the ring of integers OK of K by σ is a lattice of rank s+2t in Cs+t. Moreover,
we consider

O
×,+
K := {a ∈ O×

K , σi(a) > 0, 1 ≤ i ≤ s},
and we define an action of this set on Cs+t by az := (σ1(a)z1, . . . , σs+t(a)zs+t) for any
a ∈ O

×,+
K . Let U be a subgroup of O×,+

K such that the image of U by the composition pRs ◦ l
of the logarithmic representation

ℓ : O×,+
K → Rs+t,

ℓ(u) := (ln |σ1(u)|, . . . , ln |σs(u)|, 2 ln |σs+1(u)|, . . . , 2 ln |σs+t(u)|)
(4.2.3)

and the projection pRs : Rs+t → Rs on the first s coordinates is a full lattice.

Let H := {z ∈ C, Im(z) > 0}. Combining the additive action of OK and the multiplicative
action of U , the group U ⋉OK acts freely, cocompactly and properly on Hs ×Ct. Thus, the
quotient X(K,U) := (Hs × Ct)/(U ⋉ OK) is a compact manifold.

When t = 1, the manifold X(K,U) admits an LCK structure, which is determined by a
Kähler potential

F (z) :=

s∏
k=1

i

zk − z̄k
+ |zs+1|2
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on its universal cover [68]. This induces in turn a similarity structure on X(K,U). If
this structure was Riemannian, the Kähler metric i∂∂̄F would descend to X(K,U). This
is impossible because an OT-manifold admits no Kähler metric [68, Proposition 2.5]. In
addition, from the form of the Kähler potential, the second factor Ct(= C) of the universal
cover of X(K,U) is a Riemannian factor. Thus, by Remark 4.2.6, X(K,U) admits an LCP
structure when t = 1.

Remark 4.2.19. In Example 4.2.18, when s = t = 1, the Kähler potential of the lift of the
LCK metric to the universal cover is [68]

F : H × C → R, F (z) :=
i

z1 − z̄1
+ |z2|2. (4.2.4)

Writing the Kähler form as
∑
k ̸=l

ωkldzk ∧ dz̄l, one has:

ω11 = ∂z1 ∂̄z1

(
i

z1 − z̄1
+ |z2|2

)
=

1

4

(
∂

∂x1
− i

∂

∂y1

)(
∂

∂x1
+ i

∂

∂y1

)
1

2y1
=

1

4

1

y31

ω22 = 1 ω12 = 0.

Then, the metric can be rewritten as g := 1
4y31

(dx21+dy21)+(dx22+dy22). We make the change

of variable v1 := x1/2, w1 := 1√
y1

and the metric becomes

g = (w6
1dv

2
1 + dw2

1) + (dx22 + dy22). (4.2.5)

Moreover, the group U is generated by a single unit u ∈ O
×,+
K which satisfies σ1(u) =

|σ2(u)|−2. After the change of variable, the multiplicative action of u is given, for any
(v1, w1, x2 + iy2) ∈ R× R∗

+ × C, by

u · (v1, w1, x2 + iy2) = (σ1(u)v1, σ1(u)
− 1

2w1, σ2(u)(x2 + iy2))

= (σ1(u)v1, |σ2(u)|w1, σ2(u)(x2 + iy2)).

If we look at the restriction of this action to R× C by dropping the variable w1, we remark
that the matrix of the transformation in a basis of the lattice σ(OK) belongs to SL3(Z) (see
the proof of Corollary 4.4.6 below for more details). Then, we recognize the example 4.2.8
in the case q = 2.

4.2.3 Foliations and LCP manifolds

A foliation of dimension p of an n-dimensional manifold M is a maximal atlas (Ui, ϕi)i∈I on
M such that for each i, j ∈ I the transition map Φi,j := ϕj ◦ϕ−1

i : ϕi(Ui ∩Uj) → ϕj(Ui ∩Uj)
satisfies

∂Φli,j
∂xk

= 0 for all p+ 1 ≤ l ≤ n, and 1 ≤ k ≤ p (4.2.6)

where xk is the k-th coordinate of Rn.
A foliation induces a p-dimensional distribution on M , taking at each point x ∈ Ui the
subspace of TxM given by dϕ−1

i (ϕi(x))(Rp × {0}). From this, one can define the leaves of
the foliation as follows: if x ∈M , the leaf passing through x is the set of all the points that
can be reached from x by continuous, piecewise differentiable paths whose tangent vector at
each smooth point is in the distribution previously defined. For more details, see [57].
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When the manifold M is compact, one can extract a finite covering (Ui)i∈J , J ⊂ I such that
for any i ∈ J the open set Ui is diffeomorphic to a product Vi × Ti where Vi and Ti are open
cubes of Rp and Rn−p respectively. This induces maps fi : Ui → Ti in a natural way, and we
define the transition maps γij : fi(Ui ∩Uj) → fj(Ui ∩Uj) by fj = γij ◦ fi. The disjoint union
T :=

⊔
i∈J

Ti is called the transversal of the foliation. The foliation is said to be Riemannian

if there exists a metric on the transversal such that the transition maps are isometries.

In [45, Theorem 1.9], it was shown that an LCP manifold carries a Riemannian foliation.
More precisely, one has the following theorem:

Theorem 4.2.20. Let (M, c,D) be a LCP manifold, and let (M̃, hD) = Rq × (N, gN ) be its
universal cover endowed with the metric hD induced by D. Here, (N, gN ) is the non-flat,

irreducible factor of the de Rham decomposition. The foliation F̃ tangent to Rq induces by
projection a foliation F on M . Then F is a Riemannian foliation on M , and the closures of
the leaves form a singular Riemannian foliation F on M , such that each leaf of F is a smooth
manifold of dimension d, depending of the leaf, with q < d < q + n, where n = dim(N).

Moreover, on each leaf of F, there is a flat Riemannian metric which is compatible with the
similarity structure of M .

Definition 4.2.21. In Theorem 4.2.20, we call the distribution tangent to the leaves of F
the flat distribution on M , and the orthogonal distribution is called the non-flat distribution.

Again, we recall several results and observations from [45]. In the setting of Theorem 4.2.20,

we can describe the leaves of F using the canonical surjection π : M̃ → M , and the group
P previously defined. The leaf of F passing through π(a, x) for (a, x) ∈ Rq × N is equal to

π(Rq × Px), and its closure is Fx := π(Rq × P
0
x) [45, Lemma 4.11]. By Theorem 4.2.20,

the metric hD restricted to Rq × P
0
x descends to a metric gx on Fx. Thus, the metric hD

induces a Riemannian metric, up to a multiplicative factor, on the closure of the leaves of F.

Since P
0
is abelian and acts by isometries, for any x ∈ N , the closed leaf Fx is the product

of an Euclidean space and a flat torus. In particular, it is a complete space, which implies

that an element of π1(M) with ratio ̸= 1 acts freely on N/P
0
.

We consider the subgroup of π1(M) defined by Γ0 := π1(M) ∩ (Sim(Rq) × P
0
). From [45,

Lemma 4.18], we know that this group is a full lattice in Rq ×P
0
where Rq is identified with

its translations. In Example 4.2.8 for instance, Γ0 is the group of translations Zq+1 acting
on Rq+1. This observation explains why we will always consider such lattices in order to
construct examples.

4.3 Properties of LCP manifolds

Let (M, c,D) be an LCP manifold and (M̃, hD) = Rq × (N, gN ) be its universal cover,

endowed with the similarity structure hD induced by D. We denote by π : M̃ → M the
canonical surjection.

4.3.1 Adapted metrics

In this subsection, we prove that there exists a metric g ∈ c such that the Lee form θg of
D with respect to g vanishes on the flat distribution (Definition 4.2.21) of D on M . This
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is equivalent to the existence of a function of N having the same equivariance (the term
same automorphy is also often used in the litterature) as hD with respect to π1(M). For this
reason, we introduce the following definition:

Definition 4.3.1. Let G be a group acting on a Riemannian manifold (Z, gZ) by similarities.
A smooth function f : Z → R is said to be G-equivariant if for every γ ∈ G, one has γ∗e2f =
λ2γe

2f where λγ is the similarity ratio of γ. Equivalently, a function f is G-equivariant if G

consists of isometries of e−2fgZ.

We now give an important property of the equivariant functions on the universal cover
Rq × N of LCP manifolds: they are bounded on sets of the form Rq × K where K is a
compact subset of N . In order to prove this result, we recall that the Cauchy boundary ∂Z
of a Riemannian manifold Z is the set CZ \ Z where CZ is the metric completion of Z. The
Riemannian distance dZ on Z, is extended to CZ in the following natural way: if (xn), (yn)
are representatives of elements x, y ∈ CZ (which consists of equivalence classes of Cauchy
sequences in Z), (dZ(xn, yn))n∈N is a Cauchy sequence, and dZ(x, y) is defined as the limit
of this sequence. We first state the following easy lemma:

Lemma 4.3.2. Let A be a subset of a Riemannian manifold Z. Assume that ∂Z is non-
empty. We define α := inf

x∈A
dZ(x, ∂Z) and β := sup

x∈A
dZ(x, ∂Z). Then, if γ is a similarity of

Z of ratio λ ∈ R∗
+, it extends uniquely to CZ as a uniformly continuous function on a dense

subset of CZ and one has the property

∀x ∈ A, dZ(γx, ∂Z) ∈ [λα, λβ].

Proof. Let x ∈ A and γ a similarity of Z of ratio λ ∈ R∗
+. One has, α ≤ dZ(x, ∂Z) ≤ β. It

is easy to see from the definition that γ(∂Z) = ∂Z, thus λα ≤ dZ(γx, ∂Z) ≤ λβ.

Corollary 4.3.3. In the setting of Lemma 4.3.2, for any compact subsets K1,K2 ⊂ Z, the
similarity ratios of the elements of Γ = {γ ∈ Sim(Z), (γK1) ∩ K2 ̸= ∅} are included in a
compact subset of R∗

+.

Proof. Let ρ : Sim(Z) → R∗
+ be the group morphism which associates to an element of

Sim(Z) its similarity ratio. We also introduce

α1 := inf
x∈K1

dZ(x, ∂Z) β1 := sup
x∈K1

dZ(x, ∂Z)

and
α2 := inf

x∈K2

dZ(x, ∂Z) β2 := sup
x∈K2

dZ(x, ∂Z).

Let γ ∈ Γ. By definition, there exists x ∈ K1 such that γx ∈ K2 so in particular we have

α2 ≤ dZ(γx, ∂Z) ≤ β2.

Moreover by Lemma 4.3.2 one has

ρ(γ)α1 ≤ dZ(γx, ∂Z) ≤ ρ(γ)β1,

which implies

ρ(γ)α1 ≤ β2 α2 ≤ ρ(γ)β1,

so we conclude
α2/β1 ≤ ρ(γ) ≤ β2/α1.

Thus, ρ(Γ) is included in the compact set [α2/β1, β2/α1].
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We have now all the tools to prove the boundedness property for equivariant functions:

Lemma 4.3.4. Let f : M̃ → R be a smooth π1(M)-equivariant function. Then, for any
compact subset K of N , f is bounded on Rq ×K.

Proof. Let K ⊂ N be a compact set. Since π1(M) acts cocompactly on M̃ , there is a

compact set C ⊂ M̃ such that π1(M)C = M̃ . Moreover C can be assumed to be equal to
CE × CN where CE is a compact of Rq and CN is a compact of N . Let

Γ := {γ ∈ π1(M), (γC) ∩ (Rq ×K) ̸= ∅} = {γ ∈ π1(M), (γNCN ) ∩K ̸= ∅}.

Let ρ : π1(M) → R∗
+ be the group morphism which associates to an element of π1(M) its

similarity ratio. By Corollary 4.3.3, ρ(Γ) is included in a compact set [α, β], with α, β > 0.
We know that f is bounded on C, meaning there are α′, β′ ∈ R such that α′ ≤ f ≤ β′ on
C. In addition, for any x ∈ Rq × K, there is γ ∈ Γ and y ∈ C such that γy = x. Thus,
the equivariance property of e2f yields α′ + lnα ≤ f(x) ≤ β′ + lnβ, which gives the desired
result.

For x ∈ N , let Sx := {γ ∈ π1(M)|γN · x ∈ P
0
x} (P

0
was defined in Definition 4.2.9). We

recall that in Section 4.2.3 we defined the closed leaf Fx ⊂ M , and showed that the metric
hD descends to a metric gx on it. We give here a short proof of a result partially stated in
the proof of [45, Lemma 4.18].

Lemma 4.3.5. Let x ∈ N . Then, Fx is isomorphic to (Rq×P 0
x)/Sx and Sx acts on (M̃, hD)

by isometries. Moreover, if γ ∈ π1(M) with similarity ratio λ > 0, there is a similarity
γ : (Fx, gx) → (Fγx, gγx) of ratio λ for which the following diagram is commutative:

Rq × P
0
x Rq × P

0
γNx

Fx FγNx

γ

π π

γ

(4.3.1)

Proof. The proof of [45, Proposition 4.16] shows that the elements of π1(M) with ratio

different from 1 act freely on N/P
0
. Since the set Sx stabilizes P

0
x in N/P

0
, it contains

only isometries.

Let (a, y) and (a′, y′) in Rq × P
0
x. Assume there is γ ∈ Sx such that γ(a, y) = (a′, y′). By

definition, π(a, x) = π(a′, y′), thus, the application π induces a surjective map ϕ : (Rq ×
P

0
x)/Sx → Fx. We will show that ϕ is injective. Assume ϕ(Sx(a, y)) = ϕ(Sx(a

′, y′)). Thus,
one has π(a, y) = π(a′, y′), meaning there is γ ∈ π1(M) such that γ(a, y) = (a′, y′), implying

γNy = y′. By definition, there are p, p′ ∈ P
0
such that y = p · x and y′ = p′ · x, so we obtain

γNp ·x = p′ ·x, whence γNpγ−1
N γN ·x ∈ P

0
x. Using that P

0
is normal in P , because it is the

connected component of the identity, one gets γN · x ∈ γNp
−1γ−1

N P
0
x = P

0
x. We conclude

that γ ∈ Sx and Sx(a, y) = Sx(a
′, y′), providing that ϕ is injective.

Now, let γ ∈ π1(M) with similarity ratio λ. One has

γ(Rq × P
0
x) = Rq × γNP

0
x = Rq × γNP

0
γ−1
N γNx = Rq × P

0
γNx,

justifying the first line of the diagram. On the other hand, if (a, y), (a′, y′) are elements of

Rq × P
0
x such that there is γ′ ∈ Sx with γ′(a, y) = (a′, y′), one has

π ◦ γ(a, y) = π(a, y) = π(γ′(a, y)) = π(a′, y′).
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Thus, π ◦ γ induces a surjective map from (Rq × P
0
x)/Sx to (Rq × P

0
γNx)/SγNx. To prove

that γ descends to an isomorphism γ, it is then sufficient to prove that this map is injective,
or equivalently that Sx(a, y) = Sx(a

′, y′) implies SγNxγ(a, y) = SγNxγ(a
′, y′). It is sufficient

to show that γ−1Sγxγ = Sx, which follows from

γ−1SγNxγ = {γ−1γ′γ, γ′ ∈ SγNx}

= {γ−1γ′γ, γ′NγN · x ∈ P
0
γNx}

= {γ−1γ′γ, γ−1
N γ′NγN · x ∈ P

0
x}

⊂ Sx,

using again that P
0
is a normal subgroup of P . The same proof shows that γSxγ

−1 ⊂ SγNx,
so we conclude that Sx = γ−1SγNxγ, which shows the existence of γ.

We easily see that γ is a similarity of ratio λ using the commutative diagram and the fact
that hD descends to the closure of the leaves.

Proposition 4.3.6. Let (M, c,D) be an LCP manifold and (M̃, hD) = Rq × (N, gN ) be its
universal cover, endowed with the similarity structure hD induced by D. Then, there exists a
smooth P -equivariant function φ : N → R (P was defined in Definition 4.2.9). In particular,

if we denote by πN : M̃ → N the second projection, π∗
Nφ is a π1(M)-equivariant function on

M̃ depends only on the non-flat factor N .

Proof. We first prove that there always exists a π1(M)-equivariant function on M̃ . Let g be

any Riemannian metric on M in the conformal class c. The pull-back g̃ of g to M̃ satisfies
e2f g̃ = hD for a function f : M̃ → R, which is clearly π1(M)-equivariant.

By Lemma 4.3.5, Fx ≃ (Rq × P
0
x)/Sx and Sx acts by isometries, so the function f |Rq×P 0

x

descends to a function f̄x on Fx. The manifold Fx being compact, we can define

e2w(x) :=

(∫
Fx

dµx

)−1(∫
Fx

e2f̄xdµx

)
, (4.3.2)

where dµx is the measure induced by the metric gx. Doing this for any x ∈ N gives a
function w : N → R. We claim that this function is bounded on any compact subset of
N . Indeed, if K ⊂ N is compact, by Lemma 4.3.4 there is a constant βK > 0 such that

f(a, x) ≤ βK for any (a, x) ∈ Rq × K. Since P
0
acts by isometries, f(a, x) ≤ βK for any

(a, x) ∈ Rq× (P ∩P 0
)K, and by density this still holds for (a, x) ∈ Rq×P 0

K. Thus, for any
x ∈ K one has f̄x ≤ βK and consequently w(x) ≤ βK .

We now check that the function w still has the desired equivariance. Let p ∈ P , and let
λ > 0 be its similarity ratio with respect to the metric gN . By Lemma 4.2.10, there is a
unique γ ∈ π1(M) such that p = γN . Denoting y := p · x, Lemma 4.3.5 allows us to define
γ : Fx → Fy, which is a similarity of ratio λ. Thus, one has

e2w(y) =

(∫
Fy

dµy

)−1(∫
Fy

e2f̄ydµy

)

=

(∫
Fx

γ∗(dµy)

)−1(∫
Fx

γ∗(e2f̄y )γ∗(dµy)

)
=

(∫
Fx

λndµx)

)−1(∫
Fx

λ2e2f̄xλndµx

)



CHAPTER 4. LOCALLY CONFORMALLY PRODUCT STRUCTURES 138

= λ2e2w(x).

However, the function w is not necessarily smooth. We will use a convolution process to
obtain the desired smooth equivariant function. Since the foliation F is Riemannian, one can
define a complete Riemannian metric g̃N on N with respect to which P acts by isometries
(see [45, Lemma 4.9] for further details).

As P acts cocompactly by isometries on (N, g̃N ), the injectivity radius r0 of (N, g̃N ) is positive
i.e. for any x ∈ N the Riemannian exponential expx defined by g̃N is a diffeomorphism on
Bx(r0), the open ball of radius r0 and center 0 in TxN . Let 0 < 3r < r0 and let χ : R+ → R+

be a smooth plateau function in a neighbourhood of 0, compactly supported in [0, r]. For
every x ∈ N , let dVx be the measure induced on TxN by the metric g̃N . Consider the function
φ : N → R given by

e2φ(x) :=

∫
TxN

e2w ◦ expx(v)χ(∥v∥)dVx, (4.3.3)

which is well-defined because the function e2w is bounded on any compact subset of N .

We claim that the function φ is smooth. To prove this fact, we first remark that for any
x, if one denotes by BN (y, a) := expy(By(a)) the ball of radius 0 < a < r0 and center
y in (N, g̃N ), for any y ∈ BN (x, r) the Riemannian exponential is a diffeomorphism from
By(2r) to BN (y, 2r) because r < r0/3. In particular, BN (x, 2r) does not meet the cut-locus
of y, and the square of the distance function dg̃N induced by g̃N is smooth on BN (x, 2r).
Consequently, we can apply a differentiation under integral argument if we remark that for
y := expx(v0) ∈ BN (x, r) (with v0 ∈ TxN), one has

e2φ(y) =

∫
TyN

e2w ◦ expy(v)χ(∥v∥)dVy

=

∫
TyN

e2w ◦ expx ◦ exp−1
x ◦ expy(v)χ(dg̃N (expx ◦ exp−1

x ◦ expy(v), 0))dVy

=

∫
TxN

e2w ◦ expx(v)χ(dg̃N (expx(v), expx(v0)))(exp
−1
y ◦ expx)∗(dVy)

=

∫
TxN

e2w ◦ expx(v)χ(dg̃N (expx(v), y))vol(y, v)dVx

where vol is a smooth function giving the change of volume element.

It remains to check the equivariance property. Let p ∈ P , and let λ > 0 be its similarity ratio
for the metric hD. One has, denoting y := p · x, and using the fact that p is an isometry of
(N, g̃N ):

e2φ(y) =

∫
TyN

e2w ◦ expy(v)χ(∥v∥)dVy

=

∫
TxN

(p∗e2w) ◦ expx(v)χ(∥v∥)p∗(dVy)

=

∫
TxN

λ2e2w ◦ expx(v)χ(∥v∥)dVx

= λ2e2φ.

Then, φ is a P -equivariant function.

Remark 4.3.7. It is easy to show that the P -equivariant function φ given by Proposi-

tion 4.3.6 is in fact P -equivariant. Indeed, for any p ∈ P ∩P 0
one has p∗φ = φ since P

0
acts



CHAPTER 4. LOCALLY CONFORMALLY PRODUCT STRUCTURES 139

by isometries. As P ∩P 0
is dense in P

0
, we actually have φ = p∗φ for all p ∈ P

0
. Our claim

thus follows from [45, Lemma 4.10], which states that P = PP
0
.

We define a particular class of metric on M :

Definition 4.3.8. A metric g on M with lift g̃ on M̃ is said to be adapted if there exists a
smooth function f : N → R such that e2f g̃ = hD.

With this definition, Proposition 4.3.6 just states that there exist adapted metric.

As a direct application of Proposition 4.3.6, we show that given a compact manifold K with
universal cover K̃, it is possible to construct an LCP manifold with universal cover M̃ × K̃.
Indeed, let φ : N → R be the smooth equivariant function given by Proposition 4.3.6. Let
gK be a metric on K and g̃K its pull-back to K̃. The metric

hM,K := hD + e2φg̃K (4.3.4)

on M̃ × K̃ defines a similarity structure on M × K, and thus an LCP structure (M ×
K, cK , DK), which proves our claim.

We give a name to the previous construction

Definition 4.3.9. The LCP structure (M ×K, cK , DK) is called an extension of (M, c,D)
(by K).

Proposition 4.3.10. Let (M ×K, cK , DK) be an extension by K of (M, c,D). Then, the

non-flat part of (M̃ × K̃, hM,K) (hM,K is defined in Equation (4.3.4)) is N × K̃.

Proof. It is easy to see that the non-flat distribution (Definition 4.2.21) of (M̃×K̃, hM,K) is

a subdistribution of T (N × K̃) since it has to be orthogonal to the flat distribution, and then
orthogonal to Rq. From the definition of LCP manifold (see Theorem 4.2.5 and the definition

below), (N×K̃, gN+e2φg̃K) has a de Rham decomposition of the form Rq′×(N ′, gN ′), where
q′ migth be 0 and (N ′, gN ′) is an incomplete non-flat manifold.

We introduce the notations g := gN + e2φg̃K and g′ := e−2φgN + g̃K , so that g = e2φg′, and
let ∇′ be the Levi-Civita covariant derivative of g′. We recall that the restriction of D̃K to
N × K̃ is the Levi-Civita of the metric g. Let k ∈ K̃, and X,Y ∈ T (N × {k}). Now, we use
the formula for the Levi-Civita connection under conformal change [11, Theorem 1.159, a)]
and we obtain:

∇′
XY = (D̃K)XY − dφ(X)Y − dφ(Y )X + g(X,Y )D̃Kφ.

We identify N × {k} with N in the canonical way, and using again the formula of conformal
change for the metric g′|N = e−2φgN , one obtains:

∇′
XY = D̃XY − dφ(X)Y − dφ(Y )X + gN (X,Y )D̃φ.

Combining these two equations and remarking that g(X,Y )D̃Kφ = gN (X,Y )D̃φ we obtain

(D̃K)XY = D̃XY , which means that N × {k} is totally geodesic in N × K̃.

Suppose now that q′ ̸= 0. Let X ∈ TRq′ be a parallel vector field of norm 1. It induces
canonically a parallel vector field of norm 1, still denoted by X, on the Riemannian manifold
(N×K̃, gN+e2φg̃K). We claim that X is tangent to K̃. Indeed, for any k ∈ K̃, the projection
of X onto T (N × {k}) is parallel because N × {k} is totally geodesic. However, (N, gN ) is
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irreducible and of dimension greater than 2, so it does not admit a non-zero parallel vector
field, thus this projection is equal to zero. Now we remark that g′ is a product metric, so
∇′
XX ∈ TK̃ and another use of the formula for the Levi-Civita connection under conformal

change gives:

0 = (D̃K)XX = ∇′
XX + 2dφ(X)X − g′(X,X)∇φ = ∇′

XX − g′(X,X)∇φ

because φ is a function of N . Thus TK̃ ∋ ∇′
XX = g′(X,X)∇φ, and g′(X,X) ̸= 0 so

∇φ ∈ TK̃ and ∇φ ∈ TN , again because φ is a function of N , which implies ∇φ = 0 and φ is
constant. This is absurd because of the π1(M)-equivariance of φ, so q′ = 0 and we conclude

that (N × K̃, gN +e2φg̃K) is irreducible, thus it is the non-flat part of the LCP manifold.

In particular, the dimension of the non-flat part of the universal cover of an LCP manifold
can be of any integer higher or equal to 2.

These observations lead to the definition of reducible LCP manifolds:

Definition 4.3.11. A LCP manifold is called reducible if it arises from the previous con-
struction, up to a finite covering. A non-reducible LCP manifold is called irreducible.

4.3.2 Similarity ratios of π1(M)

In the known examples of LCP manifolds, the similarity ratios are always algebraic numbers
because they are roots of characteristic polynomials of matrices with coefficients in Z. We
will prove that this property is always true.

Proposition 4.3.12. Let (M, c,D) be an LCP manifold. For any γ ∈ π1(M), the ratio of

γ viewed as a similarity of (M̃, hD) is a unit of an algebraic number field.

Proof. Let γ ∈ π1(M) and let λ be its similarity ratio. For any a ∈ Rq we will denote by τa
the translation by a in Rq, so Rq is naturally identified with the space of translations. The
restriction of γ to Rq can be written as γE =: τα ◦ λι where ι is an isometry of Rq endowed
with the metric induced by hD, and α ∈ Rq.

Since P
0
is an abelian Lie group, the group Rq × P

0
is abelian too. We define the group

automorphism ϕ : Rq × P
0 → Rq × P

0
by

ϕ(τa, p) := γ(τa, p)γ
−1 = (τλιa, γNpγ

−1
N ). (4.3.5)

Our proof relies on the crucial fact that the group Γ0 := π1(M) ∩ (Sim(Rq)× P
0
) defined in

Section 4.2.3 is a full lattice in Rq × P
0
by [45, Lemma 4.18].

The preimage of Γ0 by the Lie group exponential map is a full lattice Γ′
0 of the Lie algebra

of Rq × P
0
, which is canonically identified with Rq+t, for some t ≥ 1. The differential of ϕ

at e is a linear map satisfying deϕ(Γ
′
0) ⊂ Γ′

0 because ϕ(Γ0) ⊂ Γ0. Moreover, ϕ is invertible
and the symmetry between γ and γ−1 in the previous discussion gives that deϕ

−1(Γ′
0) ⊂ Γ′

0.
Thus, if we take a basis B of the lattice Γ′

0, the matrix A := MatB(deϕ) is in GLq+t(Z).
But ϕ stabilizes Rq and its restriction to this space coincides with λι. It means that there
exists a complex number z of modulus 1 such that λz and λz̄ are roots of the characteristic
polynomial χA of A. Since A ∈ GLq+t(Z), λz and λz̄ are units of the algebraic field K
generated by the roots of χA. Thus, λ

2 = (λz)(λz̄) is a unit of K, and therefore so is λ.

Remark that in the case where P
0
is a simply-connected space (thus isomorphic to Rt) we

don’t need to use the exponential map, because ϕ is then linear already.
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4.4 Examples of LCP manifolds

We begin this section by stating a well-known result which will be useful for constructing
LCP manifolds:

Proposition 4.4.1. Let G be a discrete topological group acting on a manifold M . Let
D ⊴ G be a normal subgroup. Then, G/D acts on M/D, and (M/D)/(G/D) is in bijection
with M/G.

If moreover D and G/D act freely and properly discontinuously on M and M/D respectively,
then so does G on M . In particular, (M/D)/(G/D) and M/G are diffeomorphic manifolds.

Proof. The action of G/D on M/D is given by gD ·Dx := Dgx for any (g, x) ∈ G×M .

We define ϕ : (M/D)/(G/D) → M/G by ϕ(G/D · Dx) := Gx for any x ∈ M . This map
is clearly surjective. In addition, if there are (x, y) ∈ M2 such that Gx = Gy, there exists
g ∈ G such that gx = y, implying gD ·Dx = Dy and then G/D ·Dx = G/D ·Dy, so ϕ is
one-to-one.

Now, assume that D and G/D act freely and properly discontinuously on M and M/D
respectively. Let g ∈ G and x ∈ M such that gx = x. Then, gD ·Dx = Dx, so gD = 1G/D
because G/D acts freely on M/D, implying g ∈ D, and g = 1G because D acts freely on M .
Thus G acts freely on M .

To see that G acts properly discontinuously on M , we pick a compact K ⊂ M . Let g ∈ G
satisfying (gK) ∩ K ̸= ∅. Since DK is a compact subset of the manifold M/D, the set
{g′D ∈ G/D | g′D · (DK) ∩ (DK) ̸= ∅} is finite: let (gjD)j∈J be the family of its elements,
where J is a finite set. Now, since (gK) ∩K ̸= ∅, we also have gD ·DK ∩DK ̸= ∅, so there
is j ∈ J such that gjD = gD. This show that we can find d ∈ D with dgj = g because D is
normal. Then, (dgjK) ∩K ̸= ∅. But there are only finitely many elements d ∈ D satisfying
this property because D acts properly discontinuously on M . Let (dj,i)i∈Ij be the family of
these elements, where Ij is a finite set for every j ∈ J . Consequently, there exist j ∈ J and
i ∈ Ij such that g = dj,igj , and conversely any element of this form satisfy (gK) ∩K ̸= ∅.
Thus,

|{g ∈ G | (gK) ∩K ̸= ∅}| =
∑
j∈J

|Ij | < +∞,

so G acts properly discontinuously on M .

Finally, denote by πD :M →M/D, πG/D :M/D → (M/D)/(G/D) and by πG :M →M/G
the canonical projections. One has the following commutative diagram:

M

(M/D)/(G/D) M/G

ϕ◦πG/D◦πD=πG
πG/D◦πD

ϕ

(4.4.1)

and [47, Proposition 7.17] implies that ϕ is smooth.

4.4.1 General construction

Inspired by the known examples, we will now make a more general construction which includes
all the models of LCP manifolds previously described.
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Let N be a compact manifold. We will denote by N its universal cover and by Γ its funda-
mental group, so N ≃ N/Γ. Let p ∈ N and let ϕ : Γ → Affp(Z) be a group morphism, where
Affp(Z) := Rp⋊GLp(Z) is the set of affine transformations of Rp with linear part in GLp(Z).
We denote by ϕL : Γ → GLp(Z) the group morphism associating to γ ∈ Γ the linear part of
ϕ(γ).

We consider the simply connected manifold M̃ := Rp × N. Let D ≃ Zp be the group of
translations M̃ ∋ (a, x) 7→ (a + z, x) for z ∈ Zp. Let H be the group defined by H :=

(ϕ, id)(Γ) = {(ϕ(γ), γ)|γ ∈ Γ} ⊂ Affp(Z)× Γ ⊂ Diff(M̃). Let G be the subgroup of Diff(M̃)
generated by D and H. It is clear that D is a normal subgroup of G and G := D ⋊H. We
claim that G acts freely, properly discontinuously and cocompactly on M̃ . Indeed, one has
M̃/D ≃ (S1)p ×N and H acts freely on this quotient because Γ acts freely on N. Moreover,
H also acts properly discontinuously because the map (S1)p × N → N being proper and
H acting separately on Rp and N, it is sufficient to observe that Γ acts properly on N. In
addition, this action is cocompact because Γ acts cocompactly on N and (S1)p is compact.

Altogether, by Proposition 4.4.1 the quotient M̃/G is a compact manifold which we denote
by Q(N, ϕ), and whose fundamental group is G.

We now wish to construct an LCP structure on Q(N, ϕ). To do so, we assume that the
following conditions hold:

(J1) there exist δ ∈ N, a decomposition Rp =: E1⊕. . .⊕Eδ stabilized by the action of ϕL(Γ),
and a positive definite bilinear form b on Rp such that the previous decomposition is
orthogonal with respect to b and for any 1 ≤ k ≤ δ, the restriction of ϕL(Γ) to (Ek, b|Ek

)
consists of similarities;

(J2) O(E1, b|E1
) does not contain ϕL(Γ)|E1

.

Remark 4.4.2. In particular, condition (J1) allows us to define a group morphism Λ :
Γ → (R∗

+)
δ which associates to any γ ∈ Γ the δ-tuple given by the similarity ratios of

ϕL(γ)|E1
, . . . , ϕL(γ)|Eδ

. For any 1 ≤ k ≤ δ, Λk will denote the k-th coordinate of Λ. Condi-
tion (J2) implies that 2 ≤ p. Indeed, if p = 1, ϕL(Γ) ⊂ {±1} = O(Rp, b). In addition, from
(J2) we also deduce that 2 ≤ δ, because otherwise Rp = E1 and there would exist an element
γ ∈ Γ such that ±1 ̸= Λ1(γ)

p = detϕL(γ) = ±1, which is absurd. In particular, Q(N, ϕ) has
dimension at least 3.

We will need the following standard lemma:

Lemma 4.4.3. Let Z be a smooth manifold on which a group Γ′ acts freely and properly
discontinuously, so in particular Z/Γ′ is a smooth manifold. Let ρ : Γ′ → R∗

+ be a group
morphism. Then, there exists a function f ∈ C∞(Z,R) such that for any γ ∈ Γ′, γ∗e2f =
ρ(γ)2e2f .

Proof. Let πZ : Z → Z/Γ′ be the canonical submersion. We define the oriented line bundle
L := Z×ρ−1R. Since any orientable line bundle is trivial, there exists s : Z/Γ′ → L a nowhere
vanishing smooth section of L. Then, after replacing s by −s if necessary, there is a function
f : Z → R such that for all x ∈ Z one has s(πZ(x)) = [x, ef (x)]. Moreover, for any γ ∈ Γ′,
we have

[x, ef (x)] = s(πZ(x)) = s(πZ(γx)) = [γx, ef (γx)] = [x, ρ(γ)−1ef (γx)],

which implies ρ(γ)ef (x) = ef (γx), so the function f has the desired equivariance property.
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We are now in position to construct an LCP structure on Q(N, ϕ).

Proposition 4.4.4. Under the assumptions (J1), (J2) there exists an LCP structure on
Q(N, ϕ). The LCP manifold obtained in this way has rank equal to rk(Λ1(Γ)) and the flat
part of its universal cover contains E1.

Proof. Let ḡ be any Riemannian metric on N and let g̃ be its lift to N. Let f ∈ C∞(N,R)
be the function given by Lemma 4.4.3 applied to the morphism ρ := Λ1. By definition, an
element γ ∈ Γ acts as a similarity of ratio Λ1(γ) on (N, g := e2f g̃).

For any 2 ≤ k ≤ δ, we define the morphism

ρk : Γ → R∗
+, γ 7→ Λ1(γ)/Λk(γ). (4.4.2)

By Lemma 4.4.3, we know that the set

Feq(k) := {f ∈ C∞(N,R) | ∀γ ∈ Γ, γ∗e2f = ρk(γ)
2e2f}. (4.4.3)

is non-empty.

We identify the tangent bundle TRp with Rp×Rp in the canonical way, and the bilinear form
b thus defines a Riemannian metric on Rp. Then, we define a metric h on M̃ = Rp ×N by

h := b|E1
+

δ∑
k=2

e2fkb|Ek
+ g, (4.4.4)

where for all 2 ≤ k ≤ δ, fk ∈ Feq(k).

One clearly has for any T ∈ D that T ∗h = h. For any γ ∈ Γ, one has

(ϕ(γ), γ)∗h =Λ1(γ)
2b|E1

+

δ∑
k=2

γ∗e2fkΛk(γ)
2b|Ek

+ γ∗g

=Λ1(γ)
2b|E1

+

δ∑
k=2

(
Λ1(γ)

Λk(γ)

)2

e2fkΛk(γ)
2b|Ek

+ Λ1(γ)
2g

=Λ1(γ)
2h.

Since G = D ⋊ H, the elements of G act as similarities, and g̃ is a similarity structure on
Q(N, ϕ) which is not Riemannian because of condition (J2).

It remains to prove that (M̃, h) is non-flat with reducible holonomy. But E1 is a Riemannian

factor of M̃ , so the claim follows from Remark 4.2.6.

Example 4.4.5. We consider the matrix

B :=

(
1 1
1 2

)
∈ SL2(Z). (4.4.5)

Let q ≥ 1. Let A ∈ SL2q(Z) which is the matrix diagonal by blocks with q times the block
B. We consider a bilinear symmetric form b0 on R2 for which the two eigenspaces of B

are orthogonal, and we define the symmetric bilinear form b :=
q⊕

k=1

b0 on R2q. We consider

N := S1, whose fundamental group is Γ := Z, and the group morphism ϕ : Γ → SL2q(Z),
n 7→ An. By Proposition 4.4.4, Q(S1, ϕ) admits an LCP structure whose universal cover has
a flat part of dimension q. Thus the dimension of the flat part can be any integer.
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As an application of Proposition 4.4.4, we will show that on any OT-manifold (recall that
they were defined in Example 4.2.18) carries an LCP structure. The proof of this fact just
relies on the remark that an OT-manifold is a particular case of the construction above.

Corollary 4.4.6. Any OT-manifold X(K,U) can be endowed with an LCP structure.

Proof. We use the notations of Example 4.2.18. By definition one has

X(K,U) = (Hs × Ct)/(OK ⋊ U)

so its universal cover is naturally isomorphic to (R∗
+)
s × Rs × R2t ≃ Rs × Rs+2t using the

logarithm map. By construction, the group Γ := pRs ◦ ℓ(U) acts freely, properly discontinu-
ously and cocompactly on N := Rs because it is a full lattice. Moreover, U is of rank s, so
ψ := (pRs ◦ ℓ)−1 is a group isomorphism between Γ and U .

Let B = (e1, . . . , es+2t) be the canonical basis of Rs+2t. Let B′ be a basis of the lattice σ(OK),
so in particular another basis of Rs+2t. With respect to the basis B′, the action of U restricted
to Rs+2t consists of multiplication by matrices of GLs+2t(Z) because U preserves σ(OK). This
induces a group morphism U → GLs+2t(Z) and then a group morphism ϕ : Γ → GLs+2t(Z)
using the isomorphism ψ between Γ and U . Consequently, X(K,U) ≃ Q(N/Γ, ϕ).

It is now sufficient to check that conditions (J1), (J2) hold, so we can apply Proposition 4.4.4
to conclude. Let b be the Euclidean metric on Rs+2t for which B is orthonormal. By
construction, for any γ ∈ Γ, the matrix of ϕ(γ) in the basis B is of the form

σ1(u)
. . .

σs(u)
|σs+1(u)|O1

. . .

|σs+t(u)|Ot


(4.4.6)

where u ∈ O
×,+
K and O1, . . . , Ot ∈ SO2(R). Then, the spaces

Ej := Span(ej)

for 1 ≤ j ≤ s and
Es+j := Span(es+2j−1, es+2j)

for 1 ≤ j ≤ t give a decomposition of Rs+2t in orthogonal subspaces stable by the action of
ϕ(Γ), so (J1) is verified because of the form of the matrix (4.4.6). Finally, σ1 is injective so
for any u ∈ U , σ1(u) = 1 implies u = 1. Thus there exists u ∈ U such that σ1(u) ∈ (0, 1)
(because we recall that σ1(u) > 0 by construction) so (J2) holds.

It is important to notice that the LCP metrics constructed by using the proof of Proposi-
tion 4.4.4 on OT-manifolds with the approach of Corollary 4.4.6 do not contain the LCK
structures introduced in [68] when t = 1. However, we can extend the family of LCP metrics
defined in the proof of Proposition 4.4.4. For any 2 ≤ k, k′ ≤ δ with k ̸= k′, consider the
morphism

ρk,k′ : Γ → R∗
+, γ 7→ Λ1(γ)/

√
ΛkΛk′(γ), (4.4.7)
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and let bk,k′ : Ek × Ek′ → R be a bilinear form satisfying ϕ(γ)∗bk,k′ = bk,k′ for any γ ∈ Γ
(such forms always exists, since we can take bk,k′ = 0), and let fk,k′ be an element of the set

Feq(k, k
′) := {f ∈ C∞(N,R) | ∀γ ∈ Γ, γ∗e2f = ρk,k′(γ)

2e2f}. (4.4.8)

Then, we consider the metric h on Rp ×N defined by

h := b|E1 +

δ∑
k=2

e2fkb|Ek
+

δ∑
k=2

δ∑
k′=2

e2fk,k′ bk,k′ + g. (4.4.9)

If the functions fk,k′ are taken small enough on a relatively compact fundamental domain of
N, h is positive definite, and an argument similar to the one used in Proposition 4.4.4 shows
that the elements of the group G act as h-similarities.

On an OT-manifold with t = 1, the LCK metric on its universal cover Hs×C defined in [68]
is of the form

h :=

 s∏
j=1

1

yj

 s∑
k,k′=1

1

ykyk′
dxk ⊗ dxk′ + dyk ⊗ dyk′

+ dx2s+1 + dy2s+1, (4.4.10)

where zk := xk + iyk, 1 ≤ k ≤ s + 1 are the canonical complex coordinates. This falls

on the construction above, with the functions fk,k′ :=

(
s∏
j=1

1
yj

)
1

ykyk′
and the bilinear forms

bk,k′ := dxk ⊗ dxk′ .

4.4.2 Rank of an LCP manifold

Our next goal is to construct LCP manifolds of arbitrary rank using again Proposition 4.4.4
again. For this purpose, we need a special family of commuting matrices, which will be
constructed by means of number theory. This makes the object of the two following two
lemmas:

Lemma 4.4.7. For any n ∈ N there exists a cyclic, totally real and monogenic algebraic
number field of degree p ≥ n+ 1.

Proof. Let n ∈ N, and let m ≥ 2n + 3 be a prime number. Let K be the maximal real
subfield of the m-th cyclotomic extension. Then K is an extension of Q of degree p :=
(m− 1)/2 ≥ n+1, which is totally real, monogenic by [73, Proposition 2.16], and cyclic.

Lemma 4.4.8. Let n ≥ 2. There exists an integer p ≥ n + 1 and diagonalizable matrices
A1, . . . , An ∈ GLp(Z) with the following properties:

� The matrices A1, . . . , An commute, so their are codiagonalizable.

� Let (e1, . . . , ep) be a common basis of diagonalization for A1, . . . , An. For any 1 ≤
k ≤ p, let Ek = Span(ek), and denote by λk(Al) the eigenvalue of Al associated to the
eigenspace Ek. Then, the subgroup ⟨|λ1(A1)|, . . . , |λ1(An)|⟩ of R∗

+ has rank n.

Proof. Let K be a cyclic, totally real and monogenic algebraic number field of degree p ≥
n+ 1, which exists by Lemma 4.4.7. There is an algebraic integer α such that α generates a
power basis of K, in particular K = Q[α]. By Dirichlet’s units theorem, the group of units of
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Q[α] has rank p−1. Since p−1 ≥ n, we can take n independent fundamental units u1, . . . , un
in Q[α]. By monogeneity, there are polynomials P1, . . . , Pn ∈ Zp−1[X] such that Pl(α) = ul
for any 1 ≤ l ≤ n.

Now, let A ∈ GLp(Z) be the companion matrix of the minimal polynomial of α and let
Al := Pl(A) ∈ GLp(Z) for 1 ≤ l ≤ n. Since the minimal polynomial of α is irreducible over
Q, it is separable and A is diagonalizable in R, with eigenvalues equal to the conjugates of
α, namely α, σ(α), . . . , σp−1(α), where σ is a generator of the (cyclic) Galois group of Q[α].
Then, the matrices Al are diagonalizable with eigenvalues ul, σ(ul), . . . , σ

p−1(ul). Moreover,
their determinants are Πp−1

k=0σ
k(ul) = ±1 because ul is a unit.

Finally, let e1 be an eigenvector of A for the eigenvalue α. Then, E1 := Span(e1) is a one-
dimensional eigenspace of any Al for the eigenvalue ul, and ⟨u1, . . . , un⟩ is of rank n. We can
complete (e1) in a basis of diagonalization of A to obtain the last property of the lemma.

The matrices defined in Lemma 4.4.8 will be used to define the morphism ϕ needed for the
construction of Proposition 4.4.4, so we prove the following:

Proposition 4.4.9. Let n ≥ 1. Let p ≥ n+1 and A1, . . . , An ∈ GLp(Z) be the matrices given
by Lemma 4.4.8. The group H := ⟨A1, . . . , An⟩ is canonically isomorphic to Zn, defining a
group isomorphism ϕ : Zn → H. Then, there exists a LCP structure on Q((S1)n, ϕ) of rank
n.

In particular, the rank of an LCP manifold can be any positive integer.

Proof. We keep the notations of Lemma 4.4.8 in this proof. Let B be a basis adapted
to the decomposition E1 ⊕ . . . ⊕ Ep and let b be the symmetric, positive definite bilinear
form for which B is orthonormal. Then, the conditions (J1) and (J2) are satisfied, so by
Proposition 4.4.4 Q((S1)n, ϕ) carries an LCP structure of rank n.

Example 4.4.10. We can make an explicit computation of the matrices given by
Lemma 4.4.8 in the case n = 2 by following the constructive approach of the proof. Taking
m = 7 in the proof of Lemma 4.4.7 shows that K := Q[2 cos( 2π7 )] is a totally real, monogenic,
cyclic extension of Q of degree p = 3. From now on, we denote by α := 2 cos( 2π7 ). From [73,
Proposition 2.16], one has OK = Z[α]. The minimal polynomial of α is X3 +X2 − 2X − 1,
and its conjugates are 2 cos( 4π7 ) and 2 cos( 6π7 ). Let σ be the automorphism of K such that
σ(α) = 2 cos( 4π7 ). Then σ2(α) = 2 cos( 6π7 ) and σ3 = idK .

We claim that the (multiplicative) group ⟨α, σ(α)⟩ has rank 2. Indeed, if there were a, b ∈ Z
such that αa = σ(α)b,then the two vectors of R3 given by

X1 := (ln |α|, ln |σ(α)|, ln |σ2(α)|), X2 := (ln |σ(α)|, ln |σ2(α)|, ln |α|)

would be collinear. But X1 and X2 have the same norm for the standard Euclidean metric in
R3 because the coefficients of X2 are a permutation of the ones of X1, so they are collinear
if and only if X1 = ±X2. But this is false because cos( 2π7 ) ̸= cos( 4π7 )±1.

Now, we have the equality σ(α) = α2 − 2. Thus, we consider the companion matrix of the
minimal polynomial of α:

A1 :=

0 0 1
1 0 2
0 1 −1

 , (4.4.11)

and the matrix

A2 := A2
1 − 2I3 =

−2 1 −1
0 0 −1
1 −1 1

 . (4.4.12)
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One easily checks that eigenvectors corresponding to the eigenvalues α, σ(α), σ2(α) of A1 can
be taken respectively as

x1 =

 1
α+ α2

α

 , x2 =

 1
σ(α) + σ(α)2

σ(α)

 , x3 =

 1
σ2(α) + σ2(α)2

σ2(α)

 , (4.4.13)

and they are eigenvectors of A2 for the eigenvalues σ(α), σ2(α), α respectively.

Using these matrices, we can now give the explicit construction of an LCP manifold of rank
2 following Proposition 4.4.9 and Proposition 4.4.4. On the manifold M̃ := R3 × (R∗

+)
2, the

group
G := D ⋊ ⟨(A1, (|α|, 1)), (A2, (1, |σ(α)|))⟩ (4.4.14)

acts freely, properly discontinuously and cocompactly (here the group D is defined as in
Section 4.4.1, as the group of translations Z3 acting on R3). Let (t1, t2) be the canonical
coordinates of (R∗

+)
2. We define the metric

hx,t := dx21 + ϕ2(t1, t2)
2dx22 + ϕ3(t1, t2)

2dx23 + t22dt
2
1 + t21dt

2
2. (4.4.15)

where

ϕ2(t1, t2) :=

∣∣∣∣ α

σ(α)

∣∣∣∣ln(t1)/ ln(|α|) ∣∣∣∣ σ(α)σ2(α)

∣∣∣∣ln(t2)/ ln(|σ(α)|) (4.4.16)

ϕ3(t1, t2) :=

∣∣∣∣ α

σ2(α)

∣∣∣∣ln(t1)/ ln(|α|) ∣∣∣∣σ(α)α

∣∣∣∣ln(t2)/ ln(|σ(α)|) . (4.4.17)

The manifold M := M̃/G admits a non-Riemannian similarity structure given by h, which
in turn defines an LCP structure of rank 2 on M .

4.5 Some open questions

Some questions arise naturally from the analysis and the discussions done in the previous
sections. We make here a non-exhaustive list of such ones, whose answers would lead to a
better understanding of LCP manifolds. Throughout this section, we will use the notations
of Section 4.2.3.

First of all, it was noticed by Kourganoff [45, Theorem 1.9] that the dimension of the closures
of the leaves, which are the elements of F in the setting of Theorem 4.2.20, may vary. However,
in all the examples given in this article, this dimension is constant, so we ask the following:

� In the setting of Theorem 4.2.20, do all the elements of F have the same dimension?

We can propose a strategy to answer this first question. Indeed, assume that P
0
is simply

connected, i.e. it is isomorphic to the group Rt for some t ∈ N. Then, since the group Γ0 is

a full lattice in Rq × P
0 ≃ Rq+t, the group Γ0 is of rank q + t. In addition, for any x ∈ N

(the non-flat part), the closed leaf Fx = π(Rq × P
0
x) has the same dimension as Rq × P

0
x.

As we already saw, this last manifold is isomorphic to the product of an Euclidean space
with a flat torus so it is a Lie group, and Γ0 acts freely and properly discontinuously on it.

Consequently, Γ0({(0, x)}) is a lattice of Rq × P
0
x with rank equal to q + t. Thus

q + t = rank(Γ0) ≤ dim(Rq × P
0
x) ≤ q + t, (4.5.1)
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and these inequalities turn out to be equalities, so Fx has dimension q+ t. This leads to the
following question, whose answer is positive in all the examples:

� Is the group P
0
simply connected, or equivalently is it isomorphic to Rt for some t ∈ N?

In order to have a better understanding of the group P , we should specify how it acts on N .
In [45, Lemma 4.17], it was shown that P acts freely on N , but the proof proposed seems
incorrect, even if it does not modify the correctness of the rest of the article. The only result
we can obtain is the one of Lemma 4.2.10, stated previously. We thus ask:

� Does P acts freely on N? If this is true, does P acts freely on N?

In Section 4.4.1, we have given a general construction to obtain LCP manifolds. Nevertheless,
some points remain imprecise:

� What are the acceptable choices for the morphism ϕ, given a compact manifold N (even
without asking for conditions (J1) and (J2))?

� Can we weaken conditions (J1) and (J2)?

Finally, we remark that the only known LCK manifolds which are also LCP are the OT-
manifolds for t = 1. A natural way to construct new examples would be to take extensions
of OT-manifolds (see Definition 4.3.9).

� Can an extension of an LCP manifold which is also LCK be an LCK manifold?

� Are the OT-manifolds with t = 1 the only LCP manifolds which are also LCK?



Chapter 5

Torsion-free connections on
G-structures

Ce chapitre est une note concernant des G-structures particulières, à savoir celles où le groupe
G contient SOn(R). On démontre qu’elles admettent des connexions sans torsion provenant
de structures de Weyl fermées.

149
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5.1 Introduction

Let M be a smooth manifold of dimension n and G a closed subgroup of GLn(R). A G-
structure on M is a reduction of the frame bundle of M to G i.e. a principal subbundle of
Fr(M) with structure group G.

We recall the following well-known result:

Proposition 5.1.1. Let G be a closed subgroup of GLn(R) containing SOn(R) and let P be
a G-structure on M . Then, there exists a torsion-free connection on P .

We quickly outline the proof of Proposition 5.1.1, using the analysis of [19, Chapter 4]. Denote
by g the Lie algebra of G and by adP the adjoint bundle of P (which is a vector subbundle
of the bundle of endomorphisms of TM). The set of connections on TM compatible with P
is an affine space of direction Ω1(M, adP ). For any ξ ∈ Ω1(M, adP ), we define (∂ξ)(X,Y ) :=
ξ(X)(Y )− ξ(Y )(X) where X,Y ∈ TM and we consider the set

TP :=
Ω2(M,TM)

∂(Ω1(M, adP ))
. (5.1.1)

The intrinsic torsion T int
P of P is the equivalence class [T∇] ∈ TP where T∇ is the torsion of

any connection∇ compatible with P . This is well-defined because if∇′ is another connection,
there is ξ ∈ Ω1(M, adP ) such that ∇′ = ∇ + ξ, and an easy computation leads to T∇′ =
T∇ + ∂(ξ). Then, there exists a torsion-free connection on P if and only if T int

P = 0.

For any x ∈M , fix a frame u ∈ Px (which identifies Rn with TxM). For any ϕ ∈ Λ2(Rn)∗⊗Rn,
let ξ ∈ (Rn)∗ ⊗ End(Rn) be given by

2ξ(X)(Y ) := ϕ(X,Y )− ϕ(X, ·)∗(Y )− ϕ(Y, ·)∗(X) X,Y ∈ Rn, (5.1.2)

where ”∗” denotes the adjoint with respect to the standard metric on Rn. By construction,
one has ∂ξ = ϕ and ξ(X) is skew-symmetric for every X ∈ Rn. Since on(R) ⊂ g, we have
ξ ∈ (Rn)∗ ⊗ g. We deduce that ∂(Ω1(M, adP )) = Ω2(M,TM), implying TP = 0, thus
T int
P = 0, which gives the result.

Proposition 5.1.1 was originally stated as an exercise in [58, Section 17.4, exercise (1)]. The
author’s strategy of proof was to consider a reduction of P to On(R) in order to take the Levi-
Civita connection of the associated Riemannian metric as the desired torsion-free connection,
implying the stronger result that the connection on P is induced by the Levi-Civita connection
of a metric onM . However, such a reduction fails to exist in general, as shown by the following
example:

Example 5.1.2. We consider the circle S1 ⊂ C, parametrized by the map ψ : [0, 2π) ∋ θ →
eiθ. Its tangent bundle is given by TS1 ≃ S1 ×R, and its frame bundle is Fr(S1) ≃ S1 ×R∗.
Let G be the closed subgroup of R∗ generated by 2, and let P be the G-structure of S1 given
by Pψ(θ) = {ψ(θ)}×2

θ
2πG for any θ ∈ [0, 2π). There is no reduction of P to G∩O1(R) = {1}

because P is a non-trivial principal bundle.

Nevertheless, we can prove that the torsion-free connection in the setting of Proposition 5.1.1
is locally induced by a Riemannian metric. More precisely, the aim of this note is to prove
the following fact:

Theorem 5.1.3. Let G be a closed subgroup of GLn(R) containing SOn(R) and let P be
a G-structure on M . Then, there is a reduction Q of P to G ∩ COn(R) and a torsion-free
connection on Q such that the connection induced on the extension of Q to COn(R) is a
closed Weyl structure.
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5.2 Proof of Theorem 5.1.3

We recall that the conformal group COn(R) is the group of all matrices λS for (λ, S) ∈
R∗ × On(R). The proof of Theorem 5.1.3 relies on the classification of the subgroups of
GLn(R) containing SOn(R).
In all this text, we will denote by Diag(a1, . . . , an) the diagonal matrix with diagonal coeffi-
cients a1, . . . , an. We first show the maximality of SOn(R) in SLn(R).

Lemma 5.2.1. Let G be a subgroup of SLn(R) containing SOn(R). Then, G = SLn(R) or
G = SOn(R).

Proof. For n = 1 there is nothing to prove. For n = 2, suppose that there exists A ∈
G \ SO2(R). Using the polar decomposition and the spectral theorem, one can assume that
A = Diag(a, 1a ) with a > 1. For θ ∈ R let Rθ be the rotation of angle θ. Let ψ be
the map which associates to an element of SLn(R) the largest eigenvalue of the symmetric
part of its polar decomposition. This map is continuous and one has ψ(AR0A) = a2 and
ψ(ARπ/2A) = 1. Thus, by the intermediate value theorem, for any x ∈ [1, a2], the matrix

Diag(x, 1x ) is in G, and this is true for any x > 1 by induction, which gives the result.

Now, let n ≥ 3. Using the polar decomposition and the spectral theorem again, it is enough
to show that the group D of diagonal matrices with positive coefficients and determinant
1 is contained in G if G ̸= SOn(R). Suppose that there is A ∈ G \ SOn(R). We can
assume that A is diagonal using the polar decomposition, thus A = Diag(a1, a2, . . . , an). It
is easy to see that G ∩D is stable by permutation of the diagonal coefficients. Thus, G ∩D

contains the matrix Diag(a1/a2, a2/a1, 1, . . . , 1), and by the case n = 2, we know that all the
matrices Diag(u, u−1, 1, . . . , 1) with u > 0 are in G ∩D, and so are the matrices of the form
Diag(1, . . . , 1, u, u−1, 1, . . . , 1). Since all the elements of D are products of such elements, this
concludes the proof.

Lemma 5.2.2. Let G be a subgroup of GLn(R) containing SOn(R), and let x ∈ det(G).

Then, |x| 1
nDiag(sgn(x), 1, . . . , 1) ∈ G.

Proof. Let x ∈ det(G). There is a matrix A ∈ G such that det(A) = x, and using the
polar decomposition of A, there is a diagonal matrix D ∈ G with det(D) = x. If D is of

the form |x| 1
nDiag(±1, . . . ,±1) we have the conclusion of the lemma after multiplying by an

element of SOn(R) of the form Diag(±1, . . . ,±1), so we assume that D2 /∈ Span(In). There
is a matrix S ∈ SOn(R) with SD2 ̸= D2S. Let B := D−1STDS ∈ SLn(R). One has

BBT = D−1STDSSTDSD−1 = D−1STD2SD−1 = (D−1SD)−1(DSD−1),

then
BBT = In ⇔ D−1SD = DSD−1 ⇔ D2S = SD2,

and this last assertion is false, thus BBT ̸= In and B /∈ SOn(R). By Lemma 5.2.1, we

conclude that G ∩ SLn(R) = SLn(R), and in particular |x| 1
nDiag(sgn(x), 1, . . . , 1)D−1 ∈ G,

so |x| 1
nDiag(sgn(x), 1, . . . , 1) ∈ G after multiplication by D on the right.

One write GLn(R) = SLn(R) ⋊ R∗ with the identification {Id} ⋊ R∗ → GLn(R), x 7→
|x| 1

nDiag(sgn(x), 1, . . . , 1). We finally give the classification result:

Proposition 5.2.3. Let G be a subgroup of GLn(R) containing SOn(R). There exists a
subgroup H of (R∗,×) such that G is equal to either SOn(R)⋊H or SLn(R)⋊H. Moreover,
if G is closed, so is H.
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Proof. One has the following short exact sequence:

0 → SLn(R) ∩G→ G
det→ det(G) → 1.

Now, let ϕ : H := det(G) → G given by ϕ(x) = |x| 1
nDiag(sgn(x), 1, . . . , 1), which is well-

defined by Proposition 5.2.2. It is clear that ϕ is a morphism and det ◦ϕ = idH , thus one
has G = (SLn(R) ∩ G) ⋊ H. Moreover, by Lemma 5.2.1 one has SLn(R) ∩ G = SLn(R) or
SLn(R) ∩G = SOn(R) because G contains SOn(R).
It remains to show that H is closed when G is closed. But if H is non-discrete, H ∩ R∗

+ has

to be dense in R∗
+, so, G being closed, it contains all the matrices of the form |x| 1

n In, x ∈ R,
and then H = detG = R∗

+ or R∗.

Remark 5.2.4. Note that in Proposition 5.2.3, the semi-direct product is actually direct
when H ⊂ R∗

+.

Proof of Theorem 5.1.3. According to Lemma 5.2.3, there is a closed subgroup H of R∗ such
that G ≃ SOn(R)⋊H or SLn(R)⋊H. From the classification of the subgroups of R∗, H is
either R∗, R∗

+ or discrete.

First case: H = R∗ or H = R∗
+. In this case, G is either GLn(R) or COn(R) or GL+

n (R)
or CO+

n (R). In all these cases, there is a metric g compatible with the G-structure, i.e. a
reduction P ′ of P to G ∩On(R). Then, the Levi-Civita connection of g is torsion-free, so it
induces a torsion-free connection on P ′, and thus a torsion-free connection on the extension
Q of P ′ to G ∩ COn(R). The resulting connection on the extension of Q to COn(R) is a
closed (actually exact) Weyl structure because it is induced by the Levi-Civita connection of
a metric on M .

Second case: H is discrete. Let M̃ be the universal cover ofM and let P̃ be the pull-back
of P to M̃ .

We first study the case G = SOn(R) ⋊ H. Then, the H-principal bundle P̃ /SOn(R) is a

covering of M̃ so it is trivial. Every element a ∈ H thus defines an SOn(R)-structure on M̃
i.e. a metric g̃. Since π1(M) acts on P/SOn(R) by multiplication by an element of H, we

deduce that π1(M) acts by similarities on (M̃, g̃). Consequently, the Levi-Civita connection

of g̃ induces a torsion-free connection on P̃ which descends to a torsion-free connection on
P . We can take Q := P in the statement of the theorem since G ⊂ COn(R). Finally, the
resulting connection on the extension of P to COn(R) is a closed Weyl structure because it
is locally given by the Levi-Civita covariant derivative of a Riemannian metric defined by a
local reduction of P to G ∩On(R).
We consider now the case G = SLn(R)⋊H. Just as before, the H-principal bundle P̃ /SLn(R)
is trivial. Choosing an element a ∈ H defines a SLn(R)-structure Q̃ on M̃ i.e. a volume form

ṽ, and in particular an orientation on M̃ . Let h be a Riemannian metric on M , and let h̃
be its pull-back to M̃ . Let vh be the volume with respect to ṽ of a h̃-orthonormal frame
of TM̃ (note that v2h does not depend on the choice of the frame). We define g̃ := (v2h)

1
n h̃.

Then, any oriented g̃-orthonormal frame has volume 1 with respect to ṽ. This implies that
g̃ defines a reduction of Q̃ to SOn(R). As in the previous case, π1(M) acts on P/SLn(R) by
multiplication by an element of H, so for γ ∈ π1(M), γ∗ṽ is a multiple of ṽ. Since, π1(M)

acts by isometries on (M̃, h̃), it acts by similarities on (M̃, g̃). We finally conclude in the
same way as for the case G = SOn(R)⋊H.

From the proof we see that the principal bundle Q defined in Theorem 5.1.3 has SOn(R)⋊H ′
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as structure group, where H ′ is a discrete subgroup of R∗
+ (just take H ′ := {1} when H = R∗

or R∗
+, and H

′ := H otherwise).
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Résumé: Cette thèse se divise en deux grandes parties. Dans la première, on s'intéresse à

deux problèmes d'analyse spectrale portant sur la convergence des valeurs propres d'opérateurs à

paramètres. D'une part, on considère l'opérateur de Schrödinger dans le plan, avec un potentiel

singulier supporté par une courbe fermée Γ admettant un point de rebroussement. Ce potentiel

s'écrit formellement −αδ(x−Γ), et l'on décrit le comportement du spectre de l'opérateur dans la

limite α → +∞. D'autre part, on étudie l'opérateur de Dirac qui apparaît dans le modèle MIT

Bag, en le généralisant aux variétés spin. Lorsque le paramètre de masse de cet opérateur tend

vers l'in�ni, on observe une convergence des valeurs propres. Dans la seconde partie, on discute

di�érents problèmes de géométrie. On démontre tout d'abord des résultats de structure et de clas-

si�cation en dimension 3 pour une classe particulière de spineurs, appelés spineurs de Cauchy, qui
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Abstract: This thesis is divided into two main parts. In the �rst one, we focus on two problems

of spectral analysis concerning the convergence of eigenvalues of operators with parameters. On the

one hand, we consider the Schrödinger operator in the plane, with a singular potential supported

by a closed curve Γ admitting a cusp. This potential is formally written −αδ(x − Γ), and we

describe the behaviour of the spectrum of the operator as α → +∞. On the other hand, we

study the Dirac operator which appears in the MIT Bag model, by generalizing it from Euclidean

spaces to spin manifolds. We observe a convergence of the eigenvalues of this operator when the

mass parameter tends to in�nity. In the second part, we discuss two di�erent geometric problems.

First, we prove structure and classi�cation results in dimension 3 for a particular class of spinors,

called Cauchy spinors, arising as restrictions of parallel spinors to oriented hypersurfaces of spin

manifolds. Finally, we focus on Weyl connections on conformal manifolds. We de�ne a locally

conformally product (LCP) structure as a closed, non-exact, non-�at Weyl structure with reducible

holonomy on a compact conformal manifold. We analyse the LCP manifolds in order to initiate a
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