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ABSTRACT

Representing past and future hydro-climatic variability over multi-decadal
periods in poorly-gauged regions: The case of Ecuador

This thesis investigates methods to represent the past and future hydro-climatic variability in
space and over time in poorly-gauged regions. It proposes a complete and reproducible
procedure applied to the continental Ecuador to deal with observed and simulated hydro-
climatic data in order to represent past variability and project the potential impact of climate
change on water resources by the end of the 21% century. Up-to-date techniques were
identified in a literature review and were integrated in a chain protocol to obtain continuous
space-time series of air temperature, precipitation and streamflow over past and future
multi-decadal periods. Three central chapters are dedicated to this objective according to
the following topics: (1) regionalization of air temperature and precipitation from in situ
measurements by comparing deterministic and geostatistical techniques including
orographic corrections; (2) streamflow reconstruction in various catchments using
conceptual hydrological models in a multi-model, multi-parameter approach; and (3) hydro-
climate projections using climate model simulations under a high range emission scenario.
Climate regionalization revealed the importance of calibrating parameters and of assessing
interpolated fields against independent gauges and via hydrological sensitivity analyses.
Streamflow reconstruction was possible with the regionalized climate inputs and the
combined simulations of three hydrological models evaluated in contrasting climate
conditions. Future medium term (2040-2070) and long term (2070-2100) hydro-climatic
changes were analysed with confidence intervals of 95% using scenarios from nine climate
models and transferring the model parameters calibrated for streamflow reconstruction.
Analysis of hydro-climatic variability over the period 1985-2015 showed a slight increase in
temperature, while precipitation variability was linked to the main modes of El Nifio and La
Nifa phases at inter-annual scale and to the displacement of the inter-tropical convergence
zone (ITCZ) at seasonal scale. Under climate change, a general increase in temperature
(+4.4 °C) and precipitation (+17%) is expected by the end of the 21*" century, which could
lead to between +5% and 71% increase in mean annual streamflow depending on the
catchments. These results are discussed in terms of significance for water management
before suggesting future hydrological research such as regionalizing streamflow, better
guantifying uncertainties and assessing the capacity to meet future water requirements.

KEYWORDS: interpolation, hydrological modeling, climate change, impacts, uncertainties,
poorly-gauged context, tropical.



RESUME

Représenter la variabilité hydro-climatique passée et future sur des périodes
multi-décennales en contexte peu jaugé : le cas de 'Equateur

Cette these évalue des méthodes pour représenter la variabilité spatio-temporelle hydro-
climatique passée et future dans les régions peu jaugées. Elle propose une procédure
compléte et reproductible appliquée a I'Equateur et s’appuyant sur des données hydro-
climatiques observées et simulées en vue de représenter la variabilité passée et de projeter
I'impact potentiel des changements climatiques sur les écoulements a la fin du 21°™ siécle.
Un état de I'art a permis d’identifier plusieurs techniques qui ont été intégrées dans une
chaine méthodologique pour obtenir des séries spatio-temporelles continues de
température, de précipitation et de débit sur les périodes multi-décennales passées et
futures. Trois chapitres centraux sont consacrés a cet objectif selon les themes suivants : (1)
régionalisation de la température et des précipitations a partir de mesures in situ en
comparant des techniques déterministes et géostatistiques avec une prise en compte de
corrections orographiques; (2) reconstruction du débit dans différents bassins versants a
I'aide de modeles hydrologiques conceptuels utilisés selon une approche multimodéle et
multiparamétrique; et (3) projections hydro-climatiques basées sur des simulations de
modeles climatiques sous contrainte d’'un scénario marqué d’émission de gaz a effet de
serre. La régionalisation du climat a révélé l'importance de caler les paramétres de
spatialisation et d'évaluer les champs interpolés par rapport a des stations ponctuelles
indépendantes et via des analyses de sensibilité hydrologique. La reconstruction des débits a
été possible grace aux simulations combinées de trois modeles hydrologiques évalués dans
des conditions climatiques contrastées, et forcés par les variables climatiques régionalisées.
Des simulations de changements hydro-climatiques a moyen terme (2040-2070) et a long
terme (2070-2100) ont ensuite été analysées avec des intervalles de confiance de 95%, en
utilisant des scénarios de neuf modeéles climatiques et en transférant les parameétres
hydrologiques calibrés pour la reconstruction des débits. L'analyse de la variabilité hydro-
climatique montre une légere augmentation des températures sur la période 1985-2015,
tandis que la variabilité des précipitations est liée aux principaux modes des phases El Nifo
et La Nifia a I'échelle inter-annuelle et au déplacement de la zone de convergence inter-
tropicale (ZCIT) a I'échelle saisonniere. Une augmentation générale de la température
(+4,4°C) et des précipitations (+17 %) est attendue d'ici a la fin du 21°™ siecle, ce qui
pourrait entrainer une augmentation de +5% a +71 % du débit annuel moyen selon les
bassins versants. Ces résultats sont discutés en termes d'importance pour la gestion de I'eau,
avant de suggérer de futures recherches hydrologiques telles que la régionalisation du débit
des cours d'eau, une meilleure quantification des incertitudes et une évaluation de la
capacité a satisfaire les futurs besoins en eau.

MOTS-CLES : interpolation, modélisation hydrologique, changement climatique, impacts,
incertitudes, contexte peu jaugé, tropical.



RESUMEN

Representacion de la variabilidad hidroclimatica pasada y futura a lo largo de
periodos multi-decenales en regiones poco monitoreadas: el caso de Ecuador

Esta tesis evalia los métodos para representar la variabilidad hidroclimatica espacio-
temporal pasada y futura en regiones poco monitoreadas. Se propone un procedimiento
completo y reproducible aplicado en Ecuador basado en datos hidro-climaticos observados y
simulados para representar la variabilidad pasada y proyectar el impacto potencial del
cambio climéatico en los caudales hasta el final del 21%" siglo. Una revisidon bibliografica ha
permitido identificar varias técnicas que han sido integradas en un protocolo metodoldgico
para obtener series espacio-temporales continuas de temperatura, precipitacion y caudales
en periodos multi-decenales pasados y futuros. Tres capitulos centrales son dedicados a este
objetivo y abordan los siguientes temas: (1) regionalizacion de la temperatura y la
precipitacion a partir de mediciones in situ mediante la comparacion de técnicas
deterministicas y geoestadisticas que toman en cuenta correcciones orograficas; (2)
reconstrucciéon de caudales en diferentes cuencas hidrograficas utilizando modelos
hidroldgicos conceptuales aplicados de acuerdo a un enfoque de multimodelos vy
multiparametros; y (3) proyecciones hidro-climaticas basadas en simulaciones de modelos
climaticos considerando un escenario con altas emisiones de gases de efecto invernadero. La
regionalizacién climdtica ha revelado la importancia de calibrar los pardmetros de
espacializacion y de evaluar las superficies interpoladas con respecto a estaciones puntuales
independientes y mediante analisis de sensibilidad hidrolégica. La reconstruccion de
caudales fue posible gracias a las simulaciones combinadas de tres modelos hidrolégicos
evaluados en condiciones climaticas contrastantes y forzados con variables climaticas
regionalizadas. Las simulaciones de cambios hidro-climaticos a mediano plazo (2040-2070) y
a largo plazo (2070-2100) se analizaron con intervalos de confianza del 95% utilizando
escenarios de nueve modelos climaticos y transfiriendo los parametros hidrolégicos
calibrados en la reconstrucciéon de caudales. El andlisis de la variabilidad hidro-climatica
muestra un ligero aumento de las temperaturas durante el periodo 1985-2015, mientras que
la variabilidad de las precipitaciones esta vinculada principalmente a las fases de El Nifio y La
Nifa en la escala interanual y al desplazamiento de la zona de convergencia intertropical
(ITCZ) en la escala estacional. Se espera un aumento general de la temperatura (+ 4.4°C)y
la precipitacidn (+ 17%) para fines del 21%* siglo, lo que podria conducir a un aumento entre
+5% a + 71% de caudales anuales promedio dependiendo de cada cuenca hidrografica. Estos
resultados se discuten en términos de importancia para la gestidon del agua previamente a
sugerir futuras investigaciones hidrolégicas como la regionalizacién de caudales en rios no
monitoreados, una mejor cuantificacién de las incertidumbres y una evaluacién de la
capacidad para satisfacer los requerimientos futuros de agua.

PALABRAS CLAVE: interpolacion, modelacién hidroldgica, cambio climatico, impactos,
incertidumbres, contexto mal medido, tropical.
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FOREWORD

This thesis was carried out over a 5-year period from January 2016 to September 2020. This
unusually long time period is explained by the fact that | am a salaried staff member of the
Empresa Publica Metropolitana de Agua potable y Saneamiento (EPMAPS) of Quito. The
public agency authorized me to follow a PhD program in France with a number of stays
during which my salary continued to be partly paid.

The PhD thesis officially started in Janunary 2016 under the supervision of David Labat
(UPS, UMR GET) and Luc Bourrel (IRD, UMR GET). It consisted first in valorizing the work |
had done during my Master’s internship in Toulouse (2013-2014) that enabled me to publish
a paper on the validation of Satellite Estimates (Tropical Rainfall Measuring Mission, TRMM)
for rainfall variability over the Pacific slope and coast of Ecuador as a first author.

Erazo, B., Bourrel, L., Frappart, F., Chimborazo, O., Labat, D., Dominguez-Granda, L., Matamoros, D.,
and Mejia, R. (2018). Validation of satellite estimates (Tropical Rainfall Measuring Mission,
TRMM) for rainfall variability over the Pacific slope and coast of Ecuador. Water, 10, 213.

In parallel, as a second author, | contributed to another paper showing the limits in linking
global climate change to local water availability in a tropical mountain watershed. This work
was undertaken in collaboration with the project Chalpi-flow funded by the Agence
Francaise pour le Développement (AFD) in collaboration with IRD, and using data from the
local network of EPMAPS and the Water Fund of Quito (FONAG).

Gonzalez-Zeas, D., Erazo, B., Lloret, P., De Biévre, B, Steinschneider, S. and Dangles, O. (2019). Linking
global climate change to local water availability: Limitations and prospects for a tropical
mountain watershed. Sci. Tot. Env., 650, 2577-2586.

Both papers represent preliminary works to the PhD thesis and are included in appendices.

In Sept. 2017, Denis Ruelland (CNRS, UMR HydroSciences Montpellier) joined the PhD
supervision staff as director to support me in the design and writing of a full PhD
dissertation. The PhD topic was then deeply re-oriented towards the evaluation of the past
and future hydro-climatic variability over multi-decadal periods in Ecuador and was mainly
conducted during four main stays (Sept. 2017, Oct. 2018, Oct. 2019 to Dec. 2019, Feb. 2020
to Sept. 2020) at HydroSciences Montpellier.

The current dissertation thus focuses on this work. It is written in English to facilitate
on-going publications on the topics after my PhD thesis. The general introduction and
conclusion have been translated into French to meet the University’s requirements. It should
thus be noted that the chapters that comprise this manuscript have not yet been published
but are intended for publications in academic papers in international journals after my PhD
defense.

Bolivar Erazo, July 2020.
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GENERAL INTRODUCTION

1. What is hydro-climatic variability?

Hydro-climatology was originally and simply defined by Langbein (1967) as the “study of the
influence of climate upon the waters of the land”. More recently, hydro-climatology was also
defined as the intersection of climatology and hydrology taking into account the energy and
mass exchanges between the atmosphere, the oceans and land surface (Shelton, 2009). For
instance, interactions between precipitation, evapotranspiration, soil moisture storage,
interception, percolation, groundwater recharge and streamflow, among other surface
water relations, are all hydro-climatic components. Spatial and temporal variability is an
inherent characteristic of hydro-climatic processes. Variability refers to the oscillations, or
the pattern of fluctuations, in a specified mean value, while change refers to a secular trend
resulting in a displacement of the average. Some aspects of climate variability are associated
with horizontal (spatial) gradients and with temporal variability, including that associated
with day-to-day changes, inter-seasonal and inter-annual variations (Shelton, 2009).

Hydro-climatic variability is studied using different timelines, from the past hundred
years to millions of years using data proxies derived from natural sources such as tree rings,
ice cores, coral, and ocean and lake sediments. It has been possible to analyze hydro-climatic
variability in the human timeline more accurately since instruments have been installed on
the Earth’s surface (in situ gauges) or outside the Earth (meteorological satellites) to
measure or estimate climatic and hydrological variables. The future state of climatic and
hydrological systems can also be evaluated using climate change scenarios. The climate and
the hydrological cycle are obviously linked. Thus, much of the spatial and temporal variability
in the hydrological cycle is introduced through the atmospheric branch, which is an element
shared by the climate system and the hydrologic cycle.

2. Where does hydro-climatic variability come from?

Large-scale wind circulations occur over the major parts of the Earth's surface. Wind
circulations originate from the general atmospheric circulation (GAC) by which the energy
and entropy from equatorial regions are redistributed to higher latitudes (Schneider, 2006).
This is accomplished by a combination of a poleward flow of high energy and high entropy
air parcels and an equatorward return flow of parcels with lower energy and entropy
content (Pauluis et al., 2010). As a result of the GAC, the Earth’s atmosphere contains six
rotating cells of air in permanent motion (three in the northern hemisphere, and three in the
southern hemisphere), which encircle the Earth like giant “air doughnuts”. The mobility of
the atmosphere enables it to provide rapid transfer of energy (heat) and mass (moisture)
between places and to determine the hydro-climatic characteristics of a given location.
Large-scale circulation features, which arise from internal atmospheric dynamics, are
embedded in the GAC scheme, and play an important role in defining year-to-year and multi-
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decadal hydro-climatic variations. For instance, some standard descriptors of cyclic large-
scale circulation features (modes of climatic variability), such as ENSO (El Nifio Southern
Oscillation), NAO (North Atlantic Oscillation), PNA (Pacific/North America Pattern), PDO
(Pacific Decadal Oscillation) and AMO (Atlantic Meridional Oscillation) have been widely
identified as key elements in the analysis of hydro-climatic variability (McGregor, 2017).

Global climate has changed over time and will continue to change in response to internal
or external forcing in the natural climate system. Internal variability of the climate system,
also termed “climate noise” (Feldstein, 2000), occurs in the absence of external forcing, and
includes processes intrinsic to the atmosphere, the ocean, and the coupled ocean-
atmosphere system. External forcing of climate change is attributed to anthropogenic
emissions of greenhouse gases and requires a wider dimension to understand the
relationships between the climate, the hydrological cycle and the availability of water
resources (IPCC, 2013). The impact of climate change should result in significant global
warming and modifications in the precipitation patterns in the medium and long-term. This
represents an additional challenge to a comprehensive understanding of the present and
future state of the global hydro-climate system.

3. Why do we care about hydro-climatic variability?

Water is an essential resource for natural ecosystems and humans on Earth. An image of the
Earth taken from space is convincing evidence of the abundance of water on the planet.
Nevertheless, only a small percentage (2.5%) of the total water volume is available as
freshwater suitable for humans and natural continental ecosystems (Houser, 2016).
Furthermore, one-third of the world’s population lives in countries where the freshwater
supply is less than the recommended per capita minimum (Entekhabi et al., 1999; Padowski
et al.,, 2015). Improved knowledge of freshwater availability, water demand and vulnerability
is thus required to understand the occurrence and magnitude of the supply of water in space
and over time. The hydroclimate concept is thus applicable to the understanding of a broad
range of natural processes related to water distribution.

Beyond issues of water accessibility, special care is also required to address hydro-
climatic extreme events, such as floods and droughts. These events have been receiving
more attention due to the increasing loss of human life associated with natural hazards and
the high costs incurred by these events (Easterling et al., 2000). The irregular occurrence of
extreme hydro-climatic events has led humans to construct reservoirs and water supply
facilities in areas where drought exacerbates natural limitations to water supplies. Managing
and adapting to extreme hydro-climatic events is therefore an integral part of long-term
sustainable development planning in developing countries.

4. How can hydro-climatic-variability be represented?

Historical hydro-climatic evolutions in the Earth are very complex and efforts to understand
natural processes over time are limited by the relatively short existence of humans on the
planet. Comprehensive understanding of the complexity of hydro-climatic processes
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requires reliance on both theory and observational data. Weather instruments were
improved, standardized and the first network measurements of precipitation began in the
18" century in Europe. In the first half of the 20™ century, more knowledge on climate was
acquired using data measured in the atmosphere by aircraft and radiosondes deployed since
the 1920s. Some decades later, in 1966, the first meteorological geostationary satellite was
launched (Shelton, 2009). All the above-mentioned instruments have helped improve our
understanding of meteorological processes, and sciences as climatology and hydrology have
emerged as solutions to practical problems. However, most surface data are acquired from
direct measurements read in situ. An increasing number of weather and climate observation
stations are also based on automatic sensors whose data are remotely transferred by
telephone or radio transmission. The WMO’s Global Climate Observing System (GCOS)
Surface Network (GSN) was established to insure an evenly distributed network of
homogeneous land surface data to monitor global climate and to improve data availability
(Parker et al., 2000).

For many hydro-climatic applications, a significant issue is thus related to the use of
point sensors for climate data and data extrapolation away from the instrument site
(Shelton, 2009). Punctual data are often expressed as the representative area and are of
considerable importance in hydro-climatology. Climate data, such as temperature,
precipitation, radiation, evaporation, pressure, wind speed and humidity are viewed
traditionally as point data and are intended to record data at a given location. On the other
hand, streamflow is a volume measurement that includes processes operating over an area.
Observed climatic and hydrological data are not directly comparable due to the contrasting
nature of point and areal data. Gridding and remote sensing techniques are complementary
approaches for developing areal climatic estimates, even if the point data remains the
reference to verify these estimates (Shelton, 2009). Remote sensing can, for example,
provide spatial data to reduce point observation bias in order to estimate spatial variability.

5. Why is hydro-climatic variability difficult to represent?

Complete, representative, and long-duration data are of the greatest hydro-climatic utility.
Nevertheless, hydro-climatic analyses are generally limited by insufficient and incomplete
data that hinder precise evaluation of spatio-temporal variability. For instance, the temporal
depth of records in time series often fails to reveal the range of hydro-climatic behaviors
over multi-decadal periods, as recommended in climatology by WMO (Arguez & Vose, 2011).
In addition, spatial data may also be inadequate when their density is unable to portray
representative variability. More generally, problems of incomplete data usually arise when
the available hydro-climatic information has not been consistently measured in space or
over time. Given the above-mentioned limitations, which are most frequent in inhabited
regions and in developing countries, two considerations must be taken into account. The
first is getting the regions or countries concerned to make the decision to install and/or
maintain observational networks with representative gauges, continuous and quality data
series. The second is insuring the correct methods are used to deal with scarce data in space
and over time. If at least representative data are available, different methods can be used,
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but the contrary is not true. In the absence of representative data, methods may produce
highly unstable results or the methods simply cannot be used.

Beyond the limitations of observational records, more attention needs to be paid to
selecting representative gauges, the duration of the observations and to identifying
regionalization approaches that can be used in the case of scarce hydro-climatic data. Due to
limited data available at higher altitudes and the elevation-dependency of climatic variables,
vertical processes should also to be envisaged to represent hydro-climatic variability more
accurately. In data scarce regions, reconstruction of hydrological series is often necessary to
insure accurate representation over multi-decadal periods. Other aspects such as
uncertainty and human interactions in the hydrosystems should also be accounted for when
analyzing past and future hydro-climatic variability. Uncertainty is an intrinsic property of
nature and requires powerful diagnostic approaches for better characterization. Human-
modified hydrosystems have been receiving increasing attention due to the modifications
they cause to hydrological functioning. Hydrological systems are today at the interface
between the environment and human needs for water, and understanding hydrological
change is the key to planning sustainable water exploitation (Montanari et al., 2013).

6. Objectives and plan of the dissertation

Many studies have dealt with hydro-climatic variability (see literature overview in Chapter
1). However no clear consensus has emerged on the way to represent past and future hydro-
climatic variability, notably in data scarce conditions. This PhD dissertation thus proposes a
complete methodological chain to represent and assess past and future hydro-climatic
variability over multi-decadal periods in poorly-gauged regions. It addresses three main
methodological challenges:

= How to regionalize climate data and evaluate the spatialization results;
= How to reconstruct reference streamflow series in poorly-gauged regions;
= How to assess the impact of climate change on hydro-climatic variability.

These issues are investigated in Ecuador because the hydro-climatic conditions there are
complex, and have not been consistently monitored in space and over time in recent
decades. In addition, global ocean-atmosphere circulation systems, such as the Inter-tropical
convergence zone (ITCZ) and the El Nifio Southern Oscillation (ENSO) influence Ecuadorian
hydro-climatic variability. Finally, the Andes mountain system permanently interacts with
global and regional moisture originating from the Pacific Ocean, the Atlantic Ocean and the
Amazon region, making representing hydroclimate particularly challenging.

The dissertation is organized in six chapters plus a general conclusion. Chapter 1 is a
methodological introduction to the work as a whole. It provides an overview of available
climatic data sources in the literature, climate regionalization methods, hydrological
modelling and methods to assess future hydro-climatic variability. Chapter 2 presents the
key features of the study area analyzed in the thesis. Chapter 3 reports a procedure to
regionalize past climate over a 30-year period by comparing different interpolation methods
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based on punctual and hydrological assessments. Chapter 4 describes a modeling framework
aimed at reconstructing streamflow series over the same multi-decadal period. This
modeling framework is then used in Chapter 5 in combination with climate scenarios to
simulate the hydro-climatic changes at the medium (2040-2070) and long term (2070-2100)
horizons. Chapter 6 discusses advances in the representation of hydro-climatic variability in
poorly-gauged regions, the significance of the results for water management, and makes
suggestions for hydrological research in Ecuador. The general conclusion summarizes the
main findings of the thesis and highlights future research opportunities.
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INTRODUCTION GENERALE (FRANCAIS)

1. Qu'est-ce que la variabilité hydro-climatique ?

L'hydro-climatologie a été a l'origine définie par Langbein (1967) comme « |'étude de
I'influence du climat sur les eaux de la Terre ». Plus récemment, I'hydro-climatologie a
également été définie comme l'intersection de la climatologie et de I'hydrologie en tenant
compte des échanges d'énergie et de masse entre I'atmosphére, les océans et la surface
terrestre (Shelton, 2009). Par exemple, les interactions entre les précipitations,
I'évapotranspiration, le stockage de I'humidité du sol, l'interception, la percolation, la
recharge des eaux souterraines et I'écoulement fluvial, entre autres relations avec les eaux
de surface, sont toutes des composantes hydro-climatiques. La variabilité spatiale et
temporelle est une caractéristique inhérente aux processus hydro-climatiques. La variabilité
fait référence aux oscillations ou fluctuations par rapport a des valeurs moyennes, tandis
que le changement fait référence a une tendance séculaire entrainant un déplacement de la
moyenne. Certains aspects de la variabilité du climat sont associés aux gradients horizontaux
(variabilité spatiale) et a la variabilité temporelle, qu’elle soit journaliere, saisonnieres ou
inter-annuelle (Shelton, 2009).

La variabilité hydro-climatique est étudiée selon différentes échelles de temps allant
de centaines a plusieurs millions d'années, en analysant des données dendrologiques, des
carottes de glace, des coraux et des sédiments océaniques et lacustres. La variabilité hydro-
climatique peut étre analysée plus précisément depuis que des instruments ont été installés
a la surface (stations in situ) ou a l'extérieur (satellites météorologiques) de la Terre pour
mesurer ou estimer les variables hydro-climatiques. L'état futur des systémes climatiques et
hydrologiques peut également étre évalué a l'aide de scénarios de changement climatique.
Le climat et le cycle hydrologique sont évidemment liés. Ainsi, une grande partie de la
variabilité spatio-temporelle du cycle hydrologique est contrélée par la branche
atmosphérique, qui constitue un élément partagé par le systeme climatique et le cycle
hydrologique.

2. D'ou vient la variabilité hydro-climatique ?

Des circulations de vent a grande échelle se produisent sur les principales parties de la
surface de la Terre. Ces vents proviennent de la circulation atmosphérique générale (GAC)
par laquelle I'énergie et I'entropie des régions équatoriales sont redistribuées aux latitudes
plus élevées (Schneider, 2006). Ceci est accompli par une combinaison d'un flux vers le pole
de parcelles d'air a haute énergie et a forte entropie et un flux de retour vers I'équateur de
parcelles a faible énergie et a faible contenu entropique (Pauluis et al., 2010). L'atmospheére
terrestre contient six cellules d’air en rotation permanente (trois dans I’"hémisphére nord et
trois dans I’hémisphere sud) qui encerclent la Terre comme des « beignets d’air » géants. La
mobilité de I'atmosphere lui permet d'assurer un transfert rapide d'énergie (chaleur) et de
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masse (humidité) entre les lieux et de déterminer les caractéristiques hydro-climatiques d'un
lieu donné. Les caractéristiques de circulation a grande échelle, qui découlent de la
dynamique atmosphérique interne, sont intégrées dans le schéma de la GAC et jouent un
role important dans la définition des variations hydro-climatiques inter-annuelles et multi-
décennales. Par exemple, certains descripteurs standard des caractéristiques de circulation
cyclique a grande échelle (modes de variabilité climatique), tels que ENSO (El Nifio Southern
Oscillation), NAO (North Atlantic Oscillation), PNA (Pacific / North America Pattern), PDO
(Pacific Decadal) Oscillation) et AMO (Atlantic Meridional Oscillation) ont été largement
identifiés comme des éléments-clés dans l'analyse de la variabilité hydro-climatique
(McGregor, 2017).

Le climat mondial a changé au fil du temps et continuera de le faire en réponse au
forcage interne ou externe dans le systeme climatique naturel. La variabilité interne du
systéme climatique, également appelée « bruit climatique » (Feldstein, 2000), se produit en
I'absence de forcage externe et comprend des processus intrinseques a l'atmosphére, a
l'océan et au systéme couplé océan-atmosphere. Le forcage externe du changement
climatique est attribué aux émissions anthropiques de gaz a effet de serre et nécessite une
dimension plus large pour comprendre les relations entre le climat, le cycle hydrologique et
la disponibilité des ressources en eau (GIEC, 2013). L'impact du changement climatique
devrait entrainer un réchauffement climatique important et une modification des régimes
de précipitations a moyen et long terme. Cela représente un défi supplémentaire pour une
compréhension globale de I'état actuel et futur du systeme hydro-climatique mondial.

3. En quoi la variabilité hydro-climatique est importante ?

L'eau est une ressource essentielle pour les écosystémes naturels et les humains sur Terre.
Une image de la Terre prise de I'espace est une preuve convaincante de I'abondance de I'eau
sur la planete. Néanmoins, seul un faible pourcentage (2,5%) du volume total de cette eau
est disponible sous forme d'eau douce adaptée aux humains et aux écosystémes
continentaux naturels (Houser, 2016). En outre, un tiers de la population mondiale vit dans
des pays ou l'approvisionnement en eau douce est inférieur au minimum recommandé par
habitant (Entekhabi et al., 1999 ; Padowski et al., 2015). Une meilleure connaissance de la
disponibilité de I'eau douce, de la demande en eau et de la vulnérabilité est donc nécessaire
pour comprendre |'occurrence et I'ampleur de I'approvisionnement en eau dans |'espace et
dans le temps. Le concept hydro-climatique est donc applicable a la compréhension d'un
large éventail de processus naturels liés a la distribution de I'eau.

Au-dela des problémes d'accessibilité a I'eau, une attention particuliere est également
requise pour faire face aux événements hydro-climatiques extrémes, tels que les inondations
et les sécheresses. Ces événements ont recu plus d'attention en raison de la perte croissante
de vies humaines associée aux risques naturels et des co(its élevés occasionnés par ces
événements (Easterling et al., 2000). L'occurrence irréguliéere d'événements hydro-
climatiques extrémes a conduit les humains a construire des infrastructures de régulation et
des installations d'approvisionnement en eau dans les zones ol la sécheresse exacerbe les
limitations naturelles de l'approvisionnement en eau. La gestion et |'adaptation aux
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événements hydro-climatiques extrémes font donc partie intégrante de la planification du
développement durable a long terme dans les pays en développement.

4. Comment représenter la variabilité hydro-climatique ?

Les évolutions hydro-climatiques historiques de la Terre sont complexes et les efforts pour
comprendre les processus naturels sont limités par I'existence relativement récente des
humains sur la planéte. Une compréhension compléte de la complexité des processus hydro-
climatiques nécessite de s'appuyer a la fois sur des données théoriques et d'observation. Les
instruments météorologiques ont été améliorés, standardisés et les premiéres mesures de
précipitations ont commencé au 18°™ eme
siecle, des connaissances plus approfondies sur le climat ont été acquises grace aux données

siecle en Europe. Dans la premiére moitié du 20

mesurées dans |'atmosphére par les avions et les radiosondes déployés depuis les années
1920. Quelques décennies plus tard, en 1966, le premier satellite géostationnaire
météorologique a été lancé (Shelton, 2009). Tous les instruments mentionnés ci-dessus ont
contribué a améliorer notre compréhension des processus météorologiques, et Ia
climatologie et I'hydrologie sont apparues comme des réponses a des problemes pratiques.
La plupart des données de surface sont néanmoins acquises a partir de mesures directes in
situ. Un nombre croissant de stations climatiques d'observation repose également sur des
capteurs automatiques dont les données sont transmises a distance par téléphone ou
transmission radio. Le réseau de surface (GSN) du Systeme mondial d'observation du climat
(SMOC) de I'OMM a été créé pour assurer un réseau uniformément réparti de données
homogenes sur la surface terrestre, surveiller le climat mondial, et améliorer la disponibilité
des données (Parker et al., 2000).

Pour de nombreuses applications hydro-climatiques, un probléme important est donc
lié a l'utilisation de mesures climatiques ponctuelles et a leur extrapolation géographique
(Shelton, 2009). Les données ponctuelles constituent une référence fondamentale en hydro-
climatologie. Les données climatiques, telles que la température, les précipitations, la
radiation solaire, I'évaporation, la pression, la vitesse du vent et I'humidité sont
traditionnellement considérées comme des données ponctuelles et sont destinées a
enregistrer des données a un emplacement donné. D'un autre c6té, le débit est une mesure
de volume intégrant des processus complexes opérant sur une zone plus ou moins délimitée.
Les données climatiques et hydrologiques observées ne sont pas directement comparables
en raison de la nature contrastée des données ponctuelles et surfaciques. Les techniques de
spatialisation et de télédétection sont des approches complémentaires pour |'élaboration
d'estimations climatiques surfaciques, méme si les données ponctuelles restent les
références pour vérifier ces estimations (Shelton, 2009). La télédétection peut par exemple
fournir des données spatiales pour atténuer les biais d'observation ponctuels afin d'estimer
la variabilité spatiale.
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5. Pourquoi la variabilité hydro-climatique est-elle difficile a
représenter ?

Des données complétes, représentatives et de longue durée sont fondamentales en hydro-
climatologie. Néanmoins, les analyses hydro-climatiques sont généralement limitées par des
données insuffisantes et incomplétes qui empéchent une évaluation précise de la variabilité
spatio-temporelle. Par exemple, la profondeur temporelle des enregistrements dans les
séries chronologiques représente souvent mal la gamme des comportements hydro-
climatiques sur des périodes multi-décennales, comme cela est pourtant recommandé en
climatologie par I'OMM (Arguez et Vose, 2011). De plus, les données spatiales peuvent
également étre inadéquates lorsque leur densité n'est pas en mesure de représenter une
variabilité représentative. Plus généralement, des problemes de données incompléetes
surviennent généralement lorsque les informations hydro-climatiques disponibles n'ont pas
été mesurées de maniére cohérente dans l'espace ou dans le temps. Compte tenu des
limitations susmentionnées, qui sont particulierement fréquentes dans les régions peu
habitées et dans les pays en développement, deux considérations doivent étre prises en
compte. La premiére consiste a amener les régions ou pays concernés a prendre la décision
d'installer et/ou de maintenir des réseaux d'observation avec des stations représentatives
enregistrant des mesures continues et de qualité. La seconde consiste a s'assurer que les
bonnes méthodes sont utilisées pour traiter les données rares dans l'espace et dans le
temps. Si des données représentatives sont disponibles, différentes méthodes peuvent étre
utilisées, mais l'inverse n'est pas vrai. En l'absence de données représentatives, les
méthodes existantes peuvent produire des résultats trés instables ou ne peuvent
simplement pas étre mises en ceuvre.

Au-dela des limites liées aux mesures ponctuelles, une plus grande attention doit étre
accordée a la sélection de stations représentatives, a la durée des observations et a
I'identification d’approches de régionalisation pouvant étre utilisées dans le cas de données
hydroclimatiques rares. En raison des données limitées disponibles a des altitudes plus
élevées et de la dépendance a I'altitude des variables climatiques, des processus verticaux
doivent également étre envisagés pour représenter plus précisément la variabilité hydro-
climatique. Par ailleurs, dans les régions ou les données sont rares, la reconstruction des
séries hydrologiques est souvent nécessaire pour assurer une représentation précise sur des
périodes multi-décennales. D'autres aspects tels que l'incertitude et les interactions
humaines dans les hydrosystemes doivent également étre pris en compte lors de I'analyse
de la variabilité hydro-climatique passée et future. L'incertitude est une propriété
intrinseque de la nature et nécessite de puissantes approches diagnostiques pour une
meilleure caractérisation. Les hydrosystemes modifiés par I'homme recoivent une attention
croissante en raison des modifications qu'ils provoquent sur le fonctionnement
hydrologique. Les systemes hydrologiques sont aujourd'hui a linterface entre
I'environnement et les besoins humains en eau, et la compréhension du changement
hydrologique est la clé pour planifier une exploitation durable de I'eau (Montanari et al.,
2013).
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6. Objectifs et plan de la these

De nombreuses études ont traité de la variabilité hydro-climatique (voir revue de littérature
au chapitre 1). Cependant, aucun consensus clair ne s'est dégagé sur la maniere de
représenter la variabilité hydro-climatique passée et future, notamment dans le contexte de
données limitées. Cette these propose donc une chaine méthodologique compléete pour
représenter et évaluer la variabilité hydro-climatique passée et future sur des périodes
multi-décennales dans des régions peu jaugées. Elle traite notamment de trois principaux
défis méthodologiques :

= Comment régionaliser les données climatiques et évaluer les résultats de la
spatialisation ?

= Comment reconstruire des séries de débit de référence dans des régions faiblement
jaugées ?

= Comment évaluer l'impact du changement climatique sur la variabilité hydro-
climatique ?

Ces questions sont étudiées en Equateur ou les conditions hydro-climatiques sont complexes
et n'ont pas été analysées de maniére cohérente dans |'espace et dans le temps au cours des
derniéres décennies. De plus, les systemes mondiaux de circulation océan-atmosphere, tels
qgue la zone de convergence intertropicale (ITCZ) et l'oscillation australe El Nifio (ENSO),
influencent la variabilité hydro-climatique équatorienne. Enfin, le systtme montagneux des
Andes interagit en permanence avec I'humidité globale et régionale provenant de I'océan
Pacifique, de I'océan Atlantique et de la région amazonienne, ce qui rend la représentation
hydro-climatique particulierement difficile.

La thése est organisée en six chapitres, plus une conclusion générale. Le chapitre 1
constitue une introduction méthodologique au travail dans son ensemble. Il donne un
apercu des sources de données climatiques disponibles dans la littérature, des méthodes de
régionalisation du climat, des techniques de modélisation hydrologique et des approches
pour évaluer la variabilité hydro-climatique future. Le chapitre 2 présente les principales
caractéristiques de la zone d'étude analysée dans la these. Le chapitre 3 présente une
procédure pour régionaliser le climat passé sur une période de 30 ans, en comparant
différentes méthodes d'interpolation basées sur des évaluations ponctuelles et
hydrologiques. Le chapitre 4 décrit un cadre de modélisation visant a reconstruire des séries
de débits sur la méme période multi-décennale. Ce cadre de modélisation est ensuite utilisé
au chapitre 5 en combinaison avec des scénarios climatiques pour simuler les changements
hydro-climatiques a moyen (2040-2070) et a long (2070-2100) termes. Le chapitre 6 discute
les apports concernant la représentation de la variabilité hydro-climatique dans les régions
peu jaugées ainsi que l'importance des résultats pour la gestion de I'eau, et suggere des
pistes pour la recherche hydrologique en Equateur. La conclusion générale résume les
principaux résultats de la theése et met en évidence plusieurs recommandations et
opportunités de recherche.
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CHAPTER 1: LITERATURE OVERVIEW

1. Introduction

This chapter gives an overview of published literature including the main elements to
support a complete study of the past and future hydro-climatic variability over multi-decadal
periods in poorly-gauged regions. Studying hydro-climatic variability requires the correct use
of the most suitable methods to interpolate, reconstruct and project the available hydro-
climatic data in space and over time. Developing hydro-climatic studies involves facing a
“cascade of uncertainties” arising from the available hydro-climatic data, the regionalization
approaches chosen, and the models used, thus impacting the results obtained both for the
present time and future projections. Applying complete and appropriate methodological
protocols, and particularly applying right criteria at each stage, is decisive in reducing the
accumulation of uncertainty in the cascade and in obtaining reliable results.

The present Chapter is organized as follows. Section 2 presents the available climatic
data sources, and why gauge-based observations were preferred for this study. Section 3
presents a relatively complete overview of the regionalization methods applied to construct
continuous fields from gauge-based observations that are irregular in space and over time.
Section 4 provides details about the available hydrological models, the main methodological
challenges for their implementation and the way they can be used to reconstruct streamflow
series. Finally, Section 5 describes the models and techniques that are available to provide
climate change scenarios, and some approriate methods to assess future hydro-climatic
variability.

2. Climate data sources

2.1. Gauge-based observations

Accurate ground-based monitoring of the major fluxes and storages of the regional and local
water cycle is a prerequisite to improving water management and tackling associated
environmental challenges in each region. Traditionally, gauge-based datasets are point-
based measurements and have had the basic instruments needed to derive long hydro-
climatic records of reference for decades. Air temperature is measured busing traditional
thermometers or resistance elements. Precipitation is measured in varied forms such as
accumulation gauges, tipping bucket gauges, and other technological devices (e.g. radar,
disdrometers). Observation networks are often unevenly distributed and scarce, especially in
developing countries and remote areas like regions with complex terrain (e.g. mountains)
provide limited data series. Even with the limited coverage provided by gauge networks, this
information is the most reliable source to study hydro-climatic variability, which further
contributes to the development and evaluation of the satellite-based products (SBPs) and
gauge-based products (GBPs) presented in the following sections. Of course, for this task, a
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well-maintained and proper gauge network with continuous measurements will always be
required.

2.2. Gauge-based gridded products

Gauge-based gridded products (GBPs) are developed by interpolation of meteorological data
from gauge-based observations made by National Meteorological services (NMSs). Data
series produced by the NMSs are exchanged with the World Meteorological Organization
(WMO) and then standardized. The processed gauges of the WMO (around 34 000) are also
exchanged with global collections as the Global Historical Climatology Network (GHCN)
(Menne et al., 2012). Some research institutions have used the GHCN data with other global
collections (a total of around 15 000 gauges worldwide) to develop the most popular gauge-
based gridded products at global scale for air temperature, precipitation and streamflow.

The most widely used GBPs for temperature at spatial resolutions between 0.5 to 5°
latitude/longitude are the CRU-TEMA4v (Harris et al., 2014), the NASA-GISS of the National
Aeronautics and Space Administration Goddard Institute for Space Studies (Hansen et al.,
2010) and the NOAA-NCEI of the National Oceanic and Atmospheric Administration National
Center for Environmental Information (Smith et al., 2008b; Vose et al.,, 2012). For
precipitation, some products at spatial resolution of 0.5 x 0.5° include the well-known Global
Precipitation Climatology Centre (GPCC) data sets (Becker et al., 2013; Schneider et al.,
2014b) and the Climatic Research Unit (CRU) data sets (Harris et al., 2014) from the
University of East Anglia.

GBPs have been widely used to explore long-term variations at regional (e.g. Ouyang et
al., 2014) and global scales (e.g. Gu and Adler, 2015; Gudmundsson et al., 2019). They cover
periods of more than 100 years in climatic datasets (temperature and precipitation).
However, GBPs provide the reliable results in regions that contribute abundant ground-
based observations including the Continental United States, China, Australia, and Europe
(Menne et al.,, 2012). Unfortunately, in regions with sparse density of gauges, gridded
dataset products inspire limited confidence especially over mountainous areas (e.g. Erazo et
al., 2018; Hu et al., 2018) and local observations remain the preferred data sources.

2.3. Satellite-based products

The development of satellite-based products has emerged in the past three decades.
Satellite-based products provide remotely-sensed data on the main climate variables (air
temperature and precipitation). For temperature estimations, nine remotely-sensed data are
available to retrieve land surface temperatures and are listed in Table 1.1 (see review by
Tomlinson et al., 2011). The Moderate Resolution Imaging Spectroradiometer (MODIS) at 1
km x1 km is the most popular remotely-sensed estimation of surface temperature and
evapotranspiration (Justice et al., 2002; Mu et al., 2007; Wan, 2014). Surface temperature
datasets have been derived from land surface temperature estimated from satellites using
various approaches with different degrees of success (e.g. Hengl et al., 2012; Parmentier et
al., 2014). Transfer algorithms are used to remove the effects of atmospheric attenuations
and retrieve the land surface temperature estimations with certain errors (Sattari and
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Hashim, 2014), but these data are further restricted to cloud-free periods. Air temperature
can be derived using land surface temperatures retrieved remotely from the thermal radiant
emissions of the Earth’s surface. To this end, land surface temperature is first derived from
the thermal infrared signals received by remote sensors and then air temperature is
estimated using different model approaches (see e.g. Janatian et al., 2016). The accuracy of
surface temperature and air temperature products is checked by ground-based validation
despite the representativeness of the ground-truth surface temperature at the satellite pixel
scale. A wide range of errors are associated with estimations of land surface temperature
and consequently with air temperature including the spectral dependence of emissivity,
cloud cover, state of the surface and height of the instruments above the surface. These
estimations are limited to characterizing the surface temperature (land and/or air) over
multi-decadal periods due to their questionable accuracy and because few products cover
more than 20 year periods despite their fairly adequate spatial resolution.

Table 1.1: Main characteristics and references of nine remote sensing land surface temperature sources.
Information modified from Tomlinson et al. (2011).

Temporal
Full name of sensor and Temporal resolution Spatial Spatial
N Acronym | . References
satellite coverage (orbital coverage resolution
frecuency)
Enhanced Thematic Mapper
L 7 1 — 1 | | H ley, 201
(ETM+) - Landsat 7 andsat 999-present 6 days Globa 60 m eadley, 2010
MODerat lution | i
erate ‘reso ution Imaging MODIS-Aqua 2002-present Twice daily Global 1km Salomonson et al., 1989
Spectroradiometer-Aqua
MODerat lution | i
erate resolution Imaging MODIS-Terra 2000-present Twice daily Global 1km Salomonson et al., 1989

Spectroradiometer-Terra
Advanced Spaceborne
Thermal Emission and ASTER-Terra 2000-present Twice daily Global 90 m Yamaguchi et al., 1998
Reflection Radiometer-Terra

Advanced Very High

Resolution Radiometer- AVHRR-NOAA  1979-present Twice daily Global 1.1 km Jin, 2004
multiple satellites NOAA

Advanced Very High

Resolution Radiometer- AVHRR-MetOP  2006-present 29 days Global 1.1 km Jin, 2004
MetOP EUMETSAT
Advanced Along Track

Scanning Radiometer-ENVISAT AATSR 2004-present 35 days Global 1km Prata, 2002

Spinning Enhanced Visible and Goestationary Sobrino and Romaguera,

EVIRI 2 - | | k
Infrared Imager-Meteosat 8 S 005-present (15 mins) Globa 3 km 2004
Geostationary Operational Goestationar
Environmental Satellite GOES network  1974-present ¥ Global 4 km Sun and Pinker, 2003

Network (3h)

For precipitation, active microwave sensors (spaceborne radars) are generally preferred.
With good spatio-temporal resolution and online availability, satellite precipitation estimates
(SPEs) are an attractive alternative solution. SPEs are based on a combination of data from
different passive micro-wave (PMW) and infra-red (IR) radiometers on board low earth-
orbiting (LEO) and geosynchronous (GEO) satellites (Satgé et al., 2016). The TRMM Merged
Precipitation Analysis (TMPA; Huffman et al., 2007) was the most widely used distributed
precipitation products at 0.25° x 0.25° latitude/longitude. After TRMM-TMPA, the Integrated
Multi-satellite Retrievals for GPM (IMERG) precipitation products with high resolution (at
0.1° latitude/longitude) continue the mission of TRMM from their release in early 2015
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(Huffman et al., 2015). Other widely used precipitation products include Remotely Sensed
Information using Artificial Neural Networks (PERSIANN) (Ashouri et al., 2015), which
estimates precipitation through IR data, and the PMW information is used to improve the
accuracy of the estimate. As observed through an additional literature review, SPEs products
have also been used as input of hydrological models particularly in poorly-gauged regions
(Samaniego et al., 2011; Krakauer et al., 2013; Satgé et al.,, 2019). However, when only
driven by remotely-sensed inputs, the outputs of hydro-climatic studies must be interpreted
with caution due to the uncertainties and systematic errors associated with satellite
algorithms and sensors (Tian and Peters-Lidard, 2010; Wan, 2014; Derin et al., 2016).
Maggioni et al., (2016) showed a significant potential for using SPEs in flood forecasting in
some regions worldwide (America, Europe, Africa, and Australasia). However, these authors
also suggested that the performance of SPEs in hydrological modeling was still inadequate
for operational purposes. A complete overview of the most widely used satellite-based
products for precipitation is presented in Table 1.2.

Table 1.2. Main characteristics and references of 15 SPEs. In the data source column, S stands for satellite, R for
reanalysis, and G for gauge information. Modified from Satgé et al. (2019; 2020).

Data Temporal Temporal Spatial Spatial

Full Name Acronym . . References
source coverage resolution coverage resolution

Climate Hazard Group InfraRed CHIRP v.2 SR 1981-present daily 50° 0.05°  Funketal, 2015
Precipitation v.2
Climate Hazard Group InfraRed . o o
Precipitation with Station v.2 CHIRPS v.2 S,R,G 1981-present daily 50 0.05 Funk et al., 2015
CPC MORPHing technique CMORPH-RAW v.1 S 1998-present 3h 60° 0.25°  Joyce etal., 2004
RAW v.1
CPC MORPHing technique bias -\ opn cRTv1 5,6 1998-present 3h 60° 0.25°  Xie etal., 2007
corrected v.1
CPC MORPHing technique CMORPH-BLDV.1  S,G 1998—present 3h 60° 0.25° Xie et al., 2007
blended v.1
Global Satellite Mapping of Ushio et al., 2009
Precipitation Reanalyse Gauges GSMaP v.6 S,G 2000-02/2014 daily 60° 0.1° Yamamoto and
v.6 Shige, 2014
Multi-Source Weighted- MSWEPv.21  SRG  1979-present 3h Global 0.1°  Becketal,2018
Ensemble Precipitation v.2.1
Precipitation Estimation from Hsu et al., 1997
R | Inf i f

emotely Sensed Information PERSIANN 5,6 2000-present 6h 60° 025  Sorooshian etal.,
using Artificial Neural 2000
Networks
PERSIANN-Climate Data PERSIANN—-CDR S 1983-2016 6h 60° 0.25° Ashouri et al.,
Record 2015
PERSIANN-Real time PERSIANN-RT S 2000-present 6h 60° 0.25° Hsu et al., 1997
PERSIANN Adjusted PERSIANN-Ad] S,G 2000-2010 3h 60° 0.25° Hsu et al., 1997
TRMM Multi-Satellite H”ffnz‘grl‘;t al.
Precipitation Analysis Real TMPA-RT v.7 S 2000—-present 3h 60° 0.25°
Time v.7 Huffman and

: Bolvin, 2013

TRMM Multi-Satellite H“ffngzoet al.,
Precipitation Analysis Adjusted TMPA-Adj v.7 S,G 1998-present 3h 50° 0.25°
.7 Huffman and

. Bolvin, 2013
Soil Moisture to Rain from ESA . . N Ciabatta et al.,
Climate Change Initiative v.2 SM2Rain—-CCl v.2 S 1998-2015 daily Global 0.25 2018
Modern-Era Retrospective

. o Gelaroetal.,,

Analysis for Research and MERRA-2 S,R,G 1980-present hourly Global 0.5 2017

Applications 2
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2.4. Gauge observations versus gauge-based gridded or satellite-based
products?

The advances in the sensor technology, algorithms and methods used to improve the
datasets of gauge-based gridded (GBPs) or satellite-based (SBPs) products are promising.
However, the datasets are not still suitable for local hydro-climatic studies (e.g. Beck et al.,
2019, 2017; Satgé et al., 2019). Traditionally, errors in GBPs and SBPs have been assessed by
comparing the gridded climate estimates with ground truth gauge observations. Estimating
these errors, particularly for satellites, is challenging because of the complex interactions of
the satellite retrieval uncertainty with the natural space-time variability of climatic variables
(particularly precipitation), especially at fine temporal and spatial resolution. Thiemig et al.
(2012) evaluated six SBPs using three spatially aggregated levels: point-to-pixel,
subcatchment, and river basin, using standard statistical methods and visual inspection.
Alternative evaluation was also applied in some studies and consisted in assessing the
sensitivity of hydrological models to SBPs. The efficiency of SBPs can be evaluated indirectly
via their ability to generate reasonable discharge simulations at the outlet of the catchments
concerned. For instance, various satellite precipitation estimates (such as TMPA, CMORPH
and PERSIANN) were compared as forcing data for hydrological modelling in Africa (Thiemig
et al., 2013; Tramblay et al.,, 2016) and South America (Zubieta et al., 2015; Satgé et al.,
2019). These studies provided complementary information to gauge-based assessments,
offering an operational overview of SBPs for the management of water resources.
Nevertheless, due to the aggregation process at catchment scale, the potential of SBPs over
specific ungauged regions remains unclear.

GBPs and SBPs are not suitable for multi-decadal and local studies due to their limited
length series and/or spatial resolution (see Table 1.1 and 1.2). GBPs produce multi-decadal
series (>30 years) but at low spatial resolution (0.5° x 0.5°). SBPs (pure satellite products)
also present lower resolution (0.25° x 0.25°) and insufficient time series (around 20 years)
for multi-decadal studies. SBP products that use gauges and reanalysis such as i.e. CHIRPS v.2
have higher resolution (0.05° x 0.05°) and longer series (>30 years), but CHIRPS only uses
gauges from global databases (e.g. GHCN and FAO) and further errors in the reanalysis
frequently results in weak performances (e.g. Dinku et al., 2018). Because of the above-
mentioned limitations, GBPs and SBPs are not suitable for accurate representation of multi-
decadal climatic variability at high resolution in local climatic studies. A specific study
developed undertaken as part of this thesis revealed the limitations of using satellite
precipitation estimates and ground-based gridded products in Ecuador (Erazo et al., 2018,
see Appendix 1). The study compared two GBPs (CRU ad GPCC), one SBPs (TRMM/TMPA
3B43 v.7) and one reanalysis (ERA-Interim) at a monthly time step and showed that GPCC
and TRMM are better suited to represent the observed precipitation patterns in the coastal
and Pacific Slope and Coast of Ecuador. However, the results also showed that the high-
resolution (0.25° x 0.25°) TRMM product presented a slight positive bias over lowlands (+
7%) and had serious limitations in reproducing precipitation over the Andes, with a mean
negative bias (-28%).
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In general, SBPs and GBPs do not provide accurate data for water management
evaluation at local scales due to their spatial resolution, limited time-series length,
uncertainties, bias and errors (Maggioni et al., 2016). In addition, their relative performance
is to some degree a function of the topographic complexity, climate regime, season, and rain
gauge network density (Beck et al., 2019). SBPs and GBPs will continue to complement
surface gauged-based monitoring but they cannot replace in situ observations. For decades,
the observational data from national meteorological services/agencies have been the basic
meteorological and hydrological instruments. Observational networks provide the main
available referential information from which multi-decadal observed records are derived.
Gauged-based observations have provided (and will continue to provide) the most direct and
reliable measurements. Nevertheless, the local gauges only offer punctual information and
are more useful if they are regionalized as continuous surfaces using interpolation
techniques.

3. Regionalization methods applied with gauge-based observations

3.1. Different interpolation methods with gauge-based observations

Mapping of air temperature and precipitation using discrete observations based on gauge
networks has been the subject of many studies. For a review on the different deterministic
and geostatistical methods designed for operational hydrology and hydrological modelling,
readers can refer to, among others, Goovaerts (2000) and Ly et al. (2013).

3.1.1. Deterministic techniques

Deterministic methods are straightforward and non-computationally intensive methods, and
are frequently used (Li and Heap, 2008) particularly Thiessen polygons (THI) (Thiessen,
1911), also called nearest neighbor (NN) technique and inverse distance weighting (IDW)
(Shepard, 1968). NN requires the construction of a polygon network. These polygons are
formed by the mediators of segments joining the nearby gauges to other related gauges. The
surface area of each polygon is determined and used to balance the quantity of precipitation
measured by the gauge at the center of the polygon (Ly et al., 2013). The drawback of NN is
that it produces an abrupt transition between the polygon boundaries.

The IDW method is a widely used deterministic method. IDW estimates the values at
unsampled points using a linear combination of values at weighted sampled points. IDW is
based on the assumption that the interpolated values are most influenced by nearby values
and less influenced by distant observations. This technique assigns greater weights to
observation points close to the target location, and the weights diminish as a function of
distance (Gotway et al., 1996). Even though IDW is a fairly straightforward technique, the
selection of the weighting function is subjective and no measure of error is provided (Ly et
al., 2013). The resulting interpolation fields of IDW produces a gradual change in the
interpolated surface. The literature provides other less widely used deterministic methods
such as the polynomial interpolation (PI) method (Tabios and Salas, 1985), the moving

40



Chapter 1: Literature overview

window regression (MWR) (Fotheringham et al., 2003) and thin plate smoothing splines (see
e.g. O’Sullivan and Unwin, 2003).

3.1.2. Geostatistical techniques

Other widely used interpolation techniques correspond to the geostatistical Kriging (KRI)
methods, which account for the spatial dependence structure of the data (Cressie, 1993). KRI
resembles IDW in the sense that it also weights the surrounding measured values to derive a
prediction for an unmeasured location (Oliver and Webster, 1990). The weights used in KRI
are based not only on the distance between the observed points and the prediction location
but also on the overall spatial arrangement of the measured points (Tan and Xu, 2014). KRI
assumes that the distance or direction between observation points reflects a spatial
correlation that can be used to explain variations in the surface (Longley et al., 2005) by the
variogram model. This variogram model defines the degree of spatial correlation between
the data points (Webster and Oliver, 2007). The implementation of KRI follows a multistep
process that includes exploratory statistical analysis of the data, variogram modeling,
creating the surface, and (optionally) exploring a variance surface. There are several
derivations of KRl including simple kriging (SKR), ordinary kriging (OKR) and universal kriging
(UKR). SKR is applied when the mean of the interest variable is constant and known. OKR is
applied when the mean is constant but unknown. UKR, in contrast to the mentioned SKR and
OKR, is not stationary with regard to the mean, and is therefore used where the mean is
assumed to show a polynomial function of spatial coordinates (Ly et al., 2013). A detailed
presentation of geostatistical theories can be found in Cressie (1990), Goovaerts, (1997;
2000), and Webster and Oliver (2007).

3.2. Interpolation methods using auxiliary information

3.2.1. Geostatistical methods using auxiliary information

KRl methods have two derived non-stationary techniques called “hybrid” that use auxiliary
information (e.g. elevation, radar data, satellite estimations) to improve spatial predictions
(McBratney et al., 2000). The co-kriging (CKR) method involves the estimation of the variable
of interest by the weighted linear combination of its observations (i.e. temperature or
precipitation) and auxiliary correlated variables (i.e. elevation). CKR allows the incorporation
of densely correlated secondary information to estimate the principal variable (Journel and
Huijbregts, 1978) linking the primary and secondary variables on a correlation basis
(Goovaerts, 1997). Generally, CKR only improves OKR when the secondary variables are
better sampled than the primary variables, or more accurately reflect the real world (Li and
Heap, 2014). The contribution of the secondary variable should depend on: (1) a correlation
between the primary and secondary variables, (2) its pattern of spatial continuity, (3) the
spatial configuration of the primary and secondary sample points, (4) the sample density of
each variable and (5) the correct estimation of cross-variograms (Li and Heap, 2014).
Another widely used non-stationary technique is the Kriging external drift (KED)
(Ahmed and De Marsily, 1987). The theory behind KED is in fact the same as the theory
behind UK, which also contains a non-constant mean. KED assumes non-stationarity that can

41



Chapter 1: Literature overview

be represented by a secondary variable (i.e. elevation) (Goovaerts, 1997; Hengl et al., 2003).
The spatial behavior of the secondary variable resembles an indicator of general trend, the
so-called external drift. The choice and suitability of the secondary variable can be
determined through spatial correlation between this variable and the variable of interest.
More detailed concepts of kriging, semi-variogram and assumptions of kriging are reviewed
in Cressie (1993), Goovaerts (1997; 2000) and Webster and Oliver (2007).

3.2.2. Radars and satellite-based data used as auxiliary variables

Non-stationary kriging methods, particularly KED, are sometimes preferred in combination
with alternative secondary variables, other than elevation, particularly to improve the
estimation of precipitation. Data produced by technological equipment such as radar,
satellites, etc., are usually used with KED to test potential improvements in estimation of
hourly and monthly precipitation. In particular, the use of radar products in combination
with multivariate geostatistical methods could be advantageous to estimate hourly spatial
precipitation (Velasco-Forero et al., 2009; Schiemann et al., 2011; Verworn and Haberlandt,
2011). The advantage of using radar to estimate hourly precipitation is its ability to provide
information about the spatial structure of the precipitation. Other alternatives, such as
precipitation patterns observed by sensors on-board satellites, are also used. The study by
Manz et al. (2016) integrated information of the TRMM Precipitation Radar (lguchi et al.,
2009) with some satellite-gauges merging methods as residual IDW (R-IDW), residual OKR (R-
OKR), and KED. The results showed that simple spatial interpolation of gauge residuals (R-
IDW) yielded very similar results to the Kriging-based satellite-gauges merging methods (R-
OKR and KED) and even performed more consistently when gauge densities were low. The
study also concluded that the quality of the gauge network is therefore critical in the choice
of satellite-gauges merging methods. Other studies, such as Wagner et al. (2012), also
included the TRMM precipitation radar (as covariate) using regression based interpolation
methods to estimate daily precipitation using regression-based interpolation methods in a
meso-scale catchment (2 036 kmz) in India. Their results showed that the use of high
resolution TRMM pattern as covariate of regression-based interpolation methods is
promising in data scarce regions. The authors also suggested that in data scarce regions,
more sophisticated multi-step validation of interpolations schemes can be applied because
cross-validation techniques alone may not suffice.

3.2.3. Digital elevation models and orographic corrections

The relationship between temperature and elevation is generally obvious. The rate at which
air cools with a change in elevation ranges from -0.98 °C/100m for dry air (i.e., the dry-air
adiabatic lapse rate) to -0.40 °C/100m (i.e., the saturated adiabatic lapse rate; Dodson and
Marks, 1997). Average temperature gradients of -0.60 °C (Dodson and Marks, 1997) or -0.65
°C/100m (Barry and Chorley, 2010) are often used when high precision is not required.
However, such average values are known to be rough approximations that are not suitable
for more precise studies (Ruelland, 2020). Notably they mask significant variations in
different meteorological conditions and in different seasons. For instance, temperature
lapse rates are generally lower in winter than in summer (Barry and Chorley, 2010). For
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precipitation, atmospheric uplift caused by relief tends to increase precipitation with
elevation through the so-called orographic effect (Barry and Chorley, 2010). Nevertheless,
precipitation accumulation trends can show considerable scatter with altitude depending on
the region’s exposure to wind and synoptic situations (Sevruk, 1997).

In regions where modern equipment is not available and satellites have reduced
accuracy (e.g. due to complex topography) (Derin et al., 2016) other simpler secondary
variables can be used. Elevations, especially extracted from a digital elevation model (DEMs),
are cheaper and more widely available data to incorporate into CKR and KED methods (e.g.
(Masson and Frei, 2014). In the case of temperature, elevation dependency tends to be
obvious and thus a digital elevation model in association with the elevation of
meteorological stations data can be successfully used as covariate in interpolation schemes
(e.g. Ishida and Kawashima, 1993; Vicente-Serrano et al., 2003; Li et al., 2005; Valéry et al.,
2010; Ruelland, 2020).The efficiency and convenience of incorporating altitude in the
interpolation procedure for enhanced estimation of precipitation has also been highlighted
in many studies across different regions of world (Hevesi et al., 1992; Phillips et al., 1992;
Lloyd, 2005; Al-Dakheel, 2009;Moral, 2010; Subyani; Di Piazza et al., 2011; Feki et al., 2012
and Masson and Frei, 2014). However, the correlation between precipitation and
topography increases with the increasing time aggregation, as reported in Bardossy and
Pegram (2013), Berndt and Haberlandt, (2018) and Ruelland (2020). The elevation-
dependency of precipitation thus depends significantly on the accumulation time. At the
daily time scale, orographic enhancement is limited because on a given day there is no
monotonic relationship between elevation and the precipitation amount: it depends on
where the precipitation event occurs in the first place (Ruelland, 2020).

There are other ways to apply corrections for temperature and precipitation based on
relationships between the variable and altitude. Some basic methods attempted to include
the impact of elevation in an absolute way, with linear relationships between the
precipitation and elevation. These formulas are based on regional regressions between
precipitation and orography (Alpert, 1986; Basist et al., 1994; Sevruk and Mieglitz, 2002).
They are generally too simplistic. Another approach was proposed by Valéry et al. (2010),
who designed an elevation-dependent correction procedure for both air temperature and
precipitation. The procedure consists in estimating the lapse rates in the temperature and
precipitation inputs from gauge observations at the regional scale based on parameters
(elevation-dependent corrections) calibrated though a leave-one-out procedure. It was
successfully applied to mountainous areas in France and Sweden.

3.3. Comparing different spatial interpolation methods

3.3.1. Which interpolation method should be selected?

There are no defined rules on how to choose between interpolation methods. Authors
usually test the most frequently used methods and try to adapt and improve existing
methods to their specific study requirements. For instance, Li and Heap (2011) presented a
comprehensive review of 53 studies and the performance of 72 interpolation methods/sub-
methods frequently used in environmental sciences. Regarding 18 of the 53 comparative
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studies that reported all the information essential for a quantitative comparative analysis it
was shown that the most frequently compared methods are OKR (36%), IDW (16%), CKR
(15%), IDW used with a defined power distance of two (also called Inverse distance squared)
(14%) and NN (11%). Generally, kriging methods perform better than non-geostatistical
methods at monthly or annual time scale (Li and Heap, 2008; Li et al., 2011; Ly et al., 2013).
In another review by Li and Heap (2014), 25 commonly applied interpolation methods were
compared and the study concluded that there is no simple solution to choosing an
appropriate interpolation technique because a given method is only “best” in specific
situations. Retrieving the “best-performing” method requires the use of a decisions tree
according to the following factors: (1) the sampling design; (2) sample spatial distribution; (3)
data quality; (4) correlation between primary and secondary variables; (5) the choice of
parameters (e.g. semi-variogram models); and (6) the interaction among mentioned factors.
It should be noted that the selection of the most robust method for a given study region is
an endless process. The selection of the best-performing methods is also influenced by the
resources allocated, which really means what is the acceptable prediction error for a given
study area and what is the variable of interest (e.g. temperature, precipitation, soil
properties, etc.).

3.3.2. Performance of interpolation methods at various time scales

To interpolate air temperature, studies normally unite in recommending the CKR
interpolation method using sufficient gauge density and altitude and as secondary variables.
A study by Stahl et al. (2006) compared 12 models (regression-based and weighted-average)
for spatial interpolation of daily air temperature and found that all models performed better
for years with higher station density, particularly in relation to higher-elevation stations. At
monthly time scale, a study by Aznar et al. (2013) demonstrated that the CKR method used
with alternative information (regional climate predictions) as secondary variables provided
accurate predictions in a region with low density of instrumental data. This result contrasts
the use of elevation-based variables as a temporally constant variables showing that other
non-stationary secondary variables (i.e. climate models) can compensate for the lack of first-
order stationarity (local heterogeneity and temporal dependencies). For daily air
temperature, a study by Yang et al. (2004) suggested the use of CKR for interpolation in
areas with rough terrains and marked variations in elevation. For hourly air temperature,
CKR relying only on local correlation between air temperature and elevation, was more
useful than OKR and conventional least-squares procedure (Ishida and Kawashima, 1993). It
should be noted that beyond the fact that performance depends on the time scale and on
secondary variables, an appropriate observation network that includes high-elevation
stations is indispensable (Stahl et al., 2006).

There are no specific or suitable method(s) to interpolate precipitation. The use of
multivariate geostatistical methods combined with elevation data as the secondary variable
generally yields the most accurate predictions (Tabios and Salas, 1985; Phillips et al., 1992;
Diodato, 2005; Basistha et al., 2008 and Moral, 2010). The performances of interpolation
method also depend on the temporal time scale (hourly, daily, monthly, and yearly). To map
monthly and annual precipitation, geostatistical methods have generally been found to

44



Chapter 1: Literature overview

outperform deterministic methods (Goovaerts, 2000; Ly et al., 2013). In contrast, Ruelland et
al. (2008) showed that the IDW method was the most efficient to regionalize precipitation at
a daily time scale in a poorly-gauged context in West Africa. Some studies have focused on
incorporating elevation as a variable in multi-variate interpolation schemes of daily
precipitation. For instance, Masson and Frei (2014) showed that for daily precipitation,
interpolation accuracy improved with KED and the use of a simple digital elevation
compared to OKR (i.e. with no predictor). Conversely, other authors showed that, although
accounting for topography was indispensable to reconstruct temperature, whatever the
temporal resolution, the need was less clear for daily precipitation (Ly et al., 2011; Bardossy
and Pegram, 2013; Berndt and Haberlandt, 2018; Ruelland, 2020). For example, Ly et al.
(2011) reported no improvement in precipitation estimated at a daily timescale if
topographical information was taken into account with KED and CKR, compared to simpler
methods such as ORK and IDW. In a very complete comparative study in Germany, Berndt
and Haberlandt (2018) analyzed the influence of temporal resolution and network density
on the spatial interpolation of climate variables. They showed that KED using elevation
performed significantly better than ORK for temperature data at all temporal resolutions and
station densities. For precipitation, using elevation as additional information in KED
improved the interpolation performance at the annual timescale, but not at the daily
timescale. In a study in the French Alps, Ruelland (2020) also showed that, for precipitation,
incorporating elevation in deterministic (IED) and geostatistical (KED) methods was helpful
for yearly and monthly accumulation times, but could not for a daily time resolution. These
results suggest that the correlation between precipitation and topography increases with the
increasing time aggregation. As far as the hourly time scale is concerned, the KED
multivariate geostatistical method is among the most widely used, typically with the
incorporation of radar data as the secondary data source (e.g. Velasco-Forero et al., 2009;
Verworn and Haberlandt, 2011). As discussed above, both for air temperature and
precipitation, no single method has been shown to be optimal at all time scales and in all
conditions.

3.3.3. Placing meteorological fields in a hydrological perspective

Cross-validation techniques are usually applied to quantify interpolation performance (e.g.
Hattermann et al., 2005; Lloyd, 2005; Li and Heap, 2008). All sampled locations are generally
estimated successively using all other stations while always excluding the sample value at
the location concerned. However, the search strategy that generates the best cross-
validated results may not necessarily produce the best estimations at un-sampled locations.
This is the case when samples are not representative of the study area, such as scarce
samples and preferentially located samples (Goovaerts, 1997). Daly (2006) suggested the use
of combined approaches including data that are independent from those used in the
interpolation process. The same study also highly recommended the independent evaluation
of interpolated climate data sets by assessing their consistency with other additional
elements, such as streamflow, vegetation patterns and related climate elements (e.g. the
snowpack).
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Hence, a few authors (Schuurmans et al.,, 2007; Ruelland et al., 2008; Masih et al.,
2011; Tobin et al.,, 2011; Wagner et al., 2012; Ruelland, 2020) compared the efficiency of
different interpolation methods based on sensitivity analysis of hydrological models to the
mean areal precipitation amounts. Hydrological modeling provides temporally and spatially
integrated information in the sense of a water balance study. It also allows a spatially-
integrated and temporally-explicit perspective through the analysis of the simulated
hydrograph. In other words, sensitivity analysis of hydrological modeling to different
interpolation methods can produce an additional indicator to assess the quality of
regionalized climate forcings via their ability to generate reasonable simulations of discharge
(Ruelland et al., 2008). This integrative evaluation has rarely been applied so far, particularly
at a daily time step (Ly et al.,, 2013), even though it provides complementary insights to
traditional evaluation methods, which rely only on irregular gauges.

4. Simulating streamflow variability

4.1. Hydrological models: definition, classification and uses

The applications of hydrological models are many and varied, ranging from the assessment
of the impacts of long-term climate or land-use change to operational forecasting of
streamflows for flood forecasting or to manage hydroelectric reservoirs. Hydrological models
can also be used in conjunction with other modeling or assessment tools, such as hydraulic
models for the design of flood control structures, models of fish production and survival, or
nutrient transport models in water quality studies. They are also useful to increase our
understanding of how physical processes function in watersheds at a variety of scales and
how the processes are interlinked. Among the various applications of the hydrological
models, one can mention (Perrin, 2019, pers. com.): streamflow reconstitution (e.g. filling
the gaps in a time series of flows); streamflow prevision (flow trends in the near future),
simulations (e.g. to generate a fictitious chronicle of the flow variable under potential
changing conditions), streamflow predetermination (e.g. to search for a statistical
streamflow distribution for the evaluation of a risk or probability).

A hydrological model is a simplified representation of a real world system (Sorooshian
et al., 2008) and is expected to provide simulations close to reality with the use of a limited
number of free parameters. Hydrological models relies on equations that help estimate
runoff as a function of various parameters used to describe catchment characteristics (Devi
et al., 2015). The parameters of a hydrological model are mainly related to their input data
such as meteorological variables (e.g. temperature, evapotranspiration, precipitation) and
soil properties (e.g. soil moisture, infiltration, percolation). Researchers have been trying to
formulate different characteristics of catchments in hydrological models for the last four
decades, resulting in numerous mathematical models and structures (Jajarmizadeh et al.,
2012). Based on their main characteristics, models can be classified in three main categories
(see Table 1.3, and descriptions in the following sections).
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4.1.1. Physically-based models

Physically-based models try to represent the relevant process by physically considering the
meaning of the full procedure in a hydrological system (Hapuarachchi et al., 2003). In theory,
physically-based models are defined by wholly measureable parameters and can provide a
continuous simulation of the runoff response without calibration (Beven, 2001). These
models require a huge amount of data including soil moisture content, initial water depth,
topography, topology, dimensions of river network, etc. The physics behind the model
structures is generally based on small-scale in-situ field experiments, assuming that
collecting all the data required by model from the field or the laboratory is possible. The
extrapolation of physically-based models to larger catchment scales often involves the
assumption that the physical processes and properties are independent of scale, raising
uncertainty about their applicability (Beven, 2004). These models are extremely hard to
develop and frequently can only be used in a limited physical system or for specific research
(Jajarmizadeh et al., 2012). Some examples of physically-based models are the models SHE
(Systeme Hydrologique Européen, Abbott et al., 1986; Refsgaard et al., 1992), MIKE SHE
derivate of SHE (Graham and Butts, 2005; Refsgaard et al., 1995a), SHETRAN (Bathurst et al.,
1995) and GSFLOW (Markstrom et al., 2008) developed by the US Geological Survey (USGS).

4.1.2. Conceptual models

Conceptual models generally represent the main hydrological processes perceived to be of
importance in the catchment scale (Wheater, 2002). These models are formulated with a
number of conceptual elements that represent simplifications of the real hydrological
system (Pechlivanidis et al., 2011). Model structures have been developed with varying
degrees of complexity and are generally based on the extensive use of schematic reservoirs
that are interconnected and that represent the physical elements in a catchment at different
time steps (see Table 1.3). The model reservoirs are recharged by precipitation, infiltration
and percolation and are emptied by evaporation, runoff, drainage, etc. (Devi et al., 2015).
These so-called rainfall-runoff models require much fewer input data than physically-based
models and mainly rely on precipitation and potential evapotranspiration to simulate
streamflow. Their complexity and consequently the number of parameters can be reduced
by an appropriate degree through identification statistics or sensitivity analysis (e.g. Perrin et
al., 2003; Fenicia et al., 2008; Van Werkhoven et al.,, 2009), and by holding insensitive
parameters constant or even formally re-structuring the model (Perrin et al., 2003; Mclintyre
and Al-Qurashi, 2009; Valéry et al., 2014; Ruelland, 2020). Not all parameters of the models
have a direct physical interpretation therefore free parameters have to be calibrated.
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Table 1.3: Main characteristics of 26 lumped conceptual models available in the literature (modified from
Perrin, 2001 and Seiller et al., 2012)

Number of Number of

Model Name parameters reservoirs Time step Derived from

BUCKET 6 3 Daily Thornthwaite and Mather, 1955
CEQUEAU 9 2 Daily Girard et al., 1972

CREC 6 3 Daily Cormary, 1973

GARDENIA 6 3 Daily Thiéry, 1982

GR4H 4 2 Hourly Le Moine, 2008

GR5H 5 2 Hourly Ficchi, 2017

GR4) 4 2 Daily Perrin et al., 2003

GR5J 5 2 Daily Le Moine, 2008

GR6J 6 3 Daily Pushpalatha et al., 2011
GR2M 2 2 Monthly Mouelhi et al., 2006a

GR1A 1 1 Annual Mouelhi et al., 2006b

HBV 9 3 Daily Bergstrém and Forsman, 1973
HYMOD 6 5 Daily Wagener et al., 2001
IHACRES 7 3 Daily Jakeman et al., 1990
MARTINE 7 4 Daily Mazenc et al., 1984
MOHYSE 7 2 Daily Fortin and Turcotte, 2007
MORDOR 6 4 Daily Gargon, 1999

NAM 10 7 Daily Nielsen and Hansen, 1973
PDM 8 4 Daily Moore and Clarke, 1981
SACRAMENTO 9 5 Daily Burnash et al., 1973
SIMHYD 8 3 Daily Chiew et al., 2002

SMAR 8 3 Daily O’connell et al., 1970

TANK 7 4 Daily Sugawara, 1979
TOPMODEL 7 3 Daily Beven et al., 1984
WAGENINGEN 8 3 Daily Warmerdam and Kole, 1997
XINANJIANG 8 4 Daily Zhao, 1980

4.1.3. Metric Models

Metric models (mainly empirical) are based on available observations without considering
the features and processes of hydrological system (black box model). These models seek to
characterize the system response by identifying the functional relationship between inputs
and outputs (a process usually called “training”) using statistically based methods. The
earliest example of metric models is the unit hydrograph (UH) theory for event-based
catchment-scale simulation. Some recent approaches used for metric models are based on
hydro informatics methods using machine learning techniques such as fuzzy logic and
evolutionary computation methods, and artificial neural networks (see Yaseen et al., 2015).
For instance, metric models with artificial neural networks (ANN) (e.g. Dawson et al., 2006)
available rainfall (input) and runoff data (output) were used to train the relation between
inputs and outputs and consequently the behavior of rainfall-runoff processes. During this
process, ANNs adjust the connection weights in the neural network response to closely
match the runoff response. Metric models are highly simplistic because features and
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processes are not accounted for in sufficient detail to characterize a hydrological system. In
addition, they are catchment-specific, with low explanatory depth, which makes them less
useful than the physically-based and conceptual models.

Table 1.4. Dominant characteristics of three hydrological models taken from Devi et al., (2015).

Physically-based models Conceptual models Metric models

Mechanistic or white box model Parametric or grey box model Data based or metric or black box models

Based on spatial distribution, Evaluation = Based on modeling of reservoirs and X . X
Involve mathematical equations, derive values

of parameters describing physical Include semi-empirical equations with a . . .
o . X from available time series
characteristics physical basis
Require data about initial state of model  Parameters are derived from field data Do not account for catchment features and
and catchment morphology and calibration. system processes
Complex model. Requires human Simple and can be easily implemented in . o
. . - High predictive power, low explanatory depth
expertise and computation capability. computer code
Require large hydrological and
Suffer from scale related problems 4 geny g Cannot be generalized to other catchments

meteorological data

4.1.4. Spatial features in hydrological models

The models presented above are sometimes classified as lumped and distributed, according
to the spatial description of catchment processes (Refsgaard, 1996). Lumped models
represent a hydrological system as a homogeneous unit. In this case, models do not provide
any information about the spatial distribution of input and output variables but rather
describe the average situation of the hydrological system. On the other hand, distributed
models make predictions that are distributed in space, by discretizing the catchment into a
number of elements (or grid squares) (Singh and Frevert, 2006). All distributed models use
average variables and parameters at element or grid scales, and parameters are often
averaged over many grid squares, mainly due to data availability (Beven, 2001). There is also
an inter-mediate representation between the models called the semi-distributed models.
The semi-distribution discretizes the catchment to a degree thought to be useful using a set
of lumped models (Jajarmizadeh et al., 2012).

Many conceptual models are lumped models since the catchment is often represented
by a series of conceptual reservoirs that provide spatially average treatment of the
system. Despite their very poor assumptions of homogeneity of input data and basin
characteristics, these lumped models often produce reasonable and practical results
provided their parameters have been calibrated for the selected basin (WMO, 1975, 1992;
Koren et al., 1999). The use of lumped or fully distributed models depends on the specific
application. For instance, for rainfall-runoff forecasting over densely gauged regions it may
be important to use a model enabling highly accurate rainfall-runoff simulations through full
distribution (e.g. lvanov et al., 2004). On the contrary, for hydrological processes that are
less scale-dependent, lumped models are desirable when rainfall-runoff simulations are
performed over large ungauged regions and there is a need to transfer model parameters
from different sized basins (Koren et al., 1999).
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4.2. Model calibration and evaluation

4.2.1. Parameter calibration

Model calibration is wusually based on the comparison of modelled and
observed hydrographs. It basically consists in selecting suitable model parameter values such
that the hydrological behavior of the catchment can be simulated closely (Wagener et al.,
2004; Moore and Doherty, 2005; Pechlivanidis et al., 2011). Most models use two types of
parameters: physical parameters, and process parameters (Sorooshian and Gupta, 1995).
Physical parameters represent the physical properties of the catchment and are usually
measurable (e.g. catchment area, surface slope). Process parameters represent other
catchment characteristics that cannot normally be measured (e.g. water storage capacity,
coefficients that control the discharge rates) (Sorooshian and Gupta, 1995). Other physical
parameters exist that are difficult to measure (e.g. hydraulic conductivity, porosity) and are
consequently often calibrated. Parameters can be calibrated either manually or
automatically.

The manual adjustment of the parameter values is done by the modeler using a trial
and error process. This process uses a limited number of locations and a small number of
input parameters (Gupta et al., 1998). However, because the adjustment is manual, different
modelers may obtain different results (Wheater, 2002). Furthermore, manual adjustment
provides no or only limited information from the parameter adjustments and a formal
analysis of uncertainty is “difficult to impossible” (Sorooshian and Gupta, 1995). Beyond the
limitations of the manual adjustment, this supervision is very important to check if the
parameters values found using automatic calibration processes are realistic.

Automatic calibration is basically a computer-based method that provides more
objectivity in the adjustment of the parameters and requires less expertise on a particular
model. As shown by Sorooshian and Gupta (1995) the automatic procedure to estimate
parameters consists of four main elements: (1) the selected objective function (or
performance measure); (2) the optimization algorithm; (3) the termination criteria; and (4)
the calibration data.

4.2.2. Objective functions

An objective function is used for calibration, which describes the difference between the
observed and model simulated values. It is basically a numerical measure that informs on
the goodness of fit (Schaefli and Gupta, 2007). The RMSE statistics and the Nash—Sutcliffe
criterion (NSE) (Nash and Sutcliffe, 1970) are among the most commonly used metrics in the
literature. However, the literature analysis also shows that NSE captures the time to peak
and linear correlation with observed flow while underestimating the variability and mean of
flows (Schaefli and Gupta, 2007; Pechlivanidis et al., 2011). Another study by Gupta et al.,
(2009) proposed the so-called Kling and Gupta Efficiency (KGE) score to overcome some
limitations of NSE. KGE appears to be able to match the variability, peak and mean of flows,
while keeping the linear correlation between modelled and observed data high
(Pechlivanidis et al., 2010).
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NSE and KGE are thus the metrics preferred by hydrologists and have probably
received the most attention because they are more intuitive (e.g. Moussa, 2010;
Pechlivanidis et al., 2011; Gupta and Kling, 2011). Other authors (e.g. Fowler et al., 2016; Saft
et al., 2016; Silberstein et al., 2013) suggested that the NSE and KGE criteria often do not
lead to calibrated parameter sets that are robust to changing climate conditions. To partially
overcome this limitation, some authors suggested using the NSE on the square root of flows
(termed NSEgqtq, Oudin et al., 2006a), calculating the sum of absolute errors using the
refined index of aggreement (Willmott et al., 2012), or functions that weight each year in the
calibration series equally such as the split KGE (Gharari et al., 2013) are particularly effective
for regions with relatively high inter-annual variability in their past climate. Notably NSEqrq
can be considered as a multi-purpose criterion focusing on the simulated hydrograph. It puts
less weight on high flows than the standard NSE computed on non-transformed discharge
(Oudin et al., 2006a). The NSEiq (NSE criterion calculated on inverse flow values) criterion is
also advised to evaluate model performance on low flows. The NSE oq (NSE on logarithmic-
transformed streamflows ) criterion also puts a greater emphasis on low flows (Krause et al.,
2005). However, review studies (e.g. Pushpalatha et al., (2012) showed that NSE;q is better
suited for the evaluation in very-low-flow conditions than NSEi.,gq. Beyond the functions
above, a wide range of criteria have been proposed and used over the years. For an
extended review of this jungle of efficiency criteria the reader can refer to additional studies
(e.g. ASCE, 1993; Dawson et al., 2007; Moriasi et al., 2007; Reusser et al., 2009).

Other common approaches in the literature use multi-criteria composite functions (for
a review see e.g. Efstratiadis and Koutsoyiannis, 2010). Nevertheless, with this approach,
results are strongly dependent on the aggregation, or weighting of the objectives (Yapo et
al., 1998). A widely used alternative consists in focusing on the concept of Pareto optimality
(Pareto, 1971). From the size of Pareto-optimal sets and plots combining two or more
objective functions, one can make useful deductions on the correlation of the different
objective functions. The Pareto-optimal solutions in the domain of performance
measurement (often called the Pareto front) are then used to distinguish between several
rival structures (e.g. Fenicia et al., 2008; Lee et al., 2011; Hublart et al., 2015). If the objective
functions are highly correlated, one would expect a small Pareto front, which may result in a
small number of Pareto-optimal points (e.g. Boyle et al., 2001; Khu and Madsen, 2005).

4.2.3. Optimization algorithms

An optimization algorithm is required to automatically calibrate the parameters by searching
for the values that optimize (minimize or maximize) the numerical value of the objective (or
multi-objective) function, within a pre-defined allowable range of parameters (Pechlivanidis
et al., 2011). Automatic methods that use optimization algorithms seek to take advantage of
the speed and power of computers, while being objective and relatively easy to implement.
Generally, an optimization algorithm can be programmed to stop searching for the
optimized values of parameters when: (1) the parameters converge, which means that the
algorithm is unable to significantly improve the parameter values over one or more
iterations; or (2) the maximum number of iterations is reached, which is also a backup to
avoid wasting computer time.
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In general, global optimization procedures explore the whole feasible region of the
parameter space. They are often preferred over more traditional local search techniques,
because of the multiple local optima and regions of attraction that characterize the response
surface of (non-linear) hydrological models and objective functions (Xiong and O’Connor,
2000). The Shuffled Complex Evolution Algorithm (SCE), which is a global optimization
algorithm developed by (Duan et al., 1992, 1993) has been widely used in hydrologic
modeling and proven to be both efficient and consistent when searching for global optimum
parameter values of hydrologic models (Sorooshian et al., 1993; Vrugt et al., 2003). Other
evolutionary and genetic algorithms such as Multi-Objective COMplex evolution (MOCOM)
(Yapo et al., 1998), MultiObjective Shuffled Complex Evolution Metropolis (MOSCEM-UA)
(Vrugt et al., 2003), DREAM (Vrugt et al., 2008), AMALGAM (Vrugt et al., 2009), and DDS
(Tolson and Shoemaker, 2007) can also be used in hydrological applications, notably when a
deep assessment of parameter and structural uncertainty is needed.

4.2.4. Evaluation of streamflow simulations

Model evaluation is applied after a model has been calibrated. Model evaluation is defined
as the process of demonstrating that a calibrated model performs well on a subset of data
not used for model calibration. Evaluation criteria, metrics such as NSE, KGE, volume error,
time to peak error, etc. (for a review of the main metrics, see for instance Moriasi et al.,
2007 and Reusser et al., 2009) are basically used to validate the robustness and the ability of
the model to describe the catchment’s hydrological response. The most commonly used
evaluation techniques in the literature is the split sample test-s procedure (Klemes, 1986). In
this approach, one period of observations is used in model calibration and one or more
separate periods is/are used to check that the model predictions are satisfactory. Klemes
(1986) also proposed the use of differential split sample tests (DSST). In this case, the
observed series are divided according to the precipitation rate (or some other variable) to
show that the model is transferable to climate-constrated conditions (see e.g. Pechlivanidis
et al., 2010; Ruelland et al., 2015). Other evaluation tests are more rarely used because they
involve more than one catchment and correspond to the proxy-catchment test and different
proxy-catchment testing (Klemes, 1986; Refsgaard et al., 1995b). Basically, these tests
consist in calibrating the model against data for one catchment and then running an
evaluation using data for the other catchment.

4.3. Sources of uncertainty in hydrological modeling

Assessing the potential impact of climate change on runoff requires models capable of
reliably representing the hydrological processes in recent decades and at the scale of basins
that are sufficiently representative of water management issues, i.e. several hundred to
several thousand square kilometers (Fabre et al., 2016a). As mentioned above, the use of
physically-based distributed models in developing countries is generally hampered by
insufficient data to force and control the models (Dakhlaoui et al., 2019). Consequently,
model validation is usually based on the streamflow at the outlet, which does not guarantee
that the water redistribution processes and their interactions are well represented in the
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catchment. Application is even harder when it comes to testing the ability of models to
reproduce multi-decadal hydrological variability, which is a prerequisite for studying the
impact of climate change on water resources (Ruelland et al., 2012). Therefore, conceptual
models representing the functioning of the basins using a small number of empirical
equations whose few parameters can be calibrated with a minimum of data are often
preferred, particularly in a context of data scarcity (e.g. Bastola et al.,, 2011; Chen et al.,
2011; Hublart et al., 2015; Ruelland et al., 2012; 2015; Dakhlaoui et al., 2017; 2019). On the
other hand, their relative simplicity and the need to calibrate their parameters on current
data do not always plead for their use when conditions shift beyond the range of prior
experience (Hublart et al., 2015) as can be the case in a framework of future change (see e.g.
Vaze et al., 2010). The use of conceptual models is therefore conditional on the estimation
of the uncertainty associated with the modeling process itself, which is a combination of
uncertainties evolving from input and control data, model structures, parameterization and
parameter transferability under non-stationary conditions, such as climate change or
variability.

4.3.1. Input data errors

Input data errors arise from both measurement errors at the gauge level and errors made in
interpolating point measurements in space and over time (Hublart, 2015). This is particularly
true for precipitation whose characteristic spatial scales are typically poorly captured when
the network of measurements used is sparse. The ability to correctly reproduce areal
precipitation is however essential to avoid the failure of hydrological models, which are
particularly sensitive to input volumes at the catchment scale (see Oudin et al., 2006a;
Nicdtina et al., 2008; Ruelland, 2020). Other inputs such as potential evapotranspiration and
catchment morphology data also affect uncertainty in model predictions (Dodov and
Foufoula-Georgiou, 2005; Gotzinger and Bardossy, 2008) but to a lesser extent than
precipitation (see Oudin et al., 2006b for a detailed sensitivity analysis).

4.3.2. Inadequate model structure

Structural inadequacy is widely recognized as one of the main sources of uncertainty in
many hydrological studies (Smith et al., 2008). Some unobserved processes are usually
ignored in the structure of a model, introducing uncertainties to modelling results. The most
common approach used to identify model uncertainties is through the model behavior for
runoff properties such as peak discharge, time to peak, runoff volume ( e.g. Wagener et al.,
2003; Butts et al., 2004). Furthermore, uncertainty concerning model structure can be
assessed by testing different models and quantifying the range of their outputs (e.g. Hublart
et al., 2015; Seiller et al., 2012; 2017).

4.3.3. Imperfect parameter estimations

There should be sufficient interactions among the components of a system that, unless the
detailed characteristics of these components can be specified independently, many
representations may be equally acceptable (equifinality) (Beven and Freer, 2001). In this
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sense, there are many different parameter sets within a chosen model structure that may
reproduce the observed behaviour of a system. Simulations obtained using rainfall-runoff
models have shown that even moderate levels of model complexity display equifinality (e.g.
Dunn, 1999; Lamb et al., 1998). Even assuming a perfect model structure and no input data
or calibration errors, the complex topology of the model response and the generally small
number of available observations inevitably limit parameter identifiability (Hublart, 2015).
The assessment and reduction of parameter uncertainty is generally performed using
evolutionary algorithms such as the Shuffled Complex Evolution Metropolis algorithm (Vrugt
et al., 2003), or using Monte-Carlo procedures including the GLUE method (Beven and Freer,
2001; Bastola et al., 2011) and Bayesian inference methods (e.g. Huard and Mailhot, 2008).

4.3.4. Parameter transferability under hydrological changes

Making predictions under environmental change renders the task of hydrological modeling
even more challenging. Parameter instability under climate change conditions and/or
anthropogenic pressures (e.g. land-use changes) is an additional source of uncertainty that
may be difficult to distinguish from pure parameter equifinality without an analysis of
uncertainty (Brigode et al., 2013). Many authors (e.g. Poulin et al., 2011; Coron et al., 2012,
2014; Dakhlaoui et al., 2017, 2019) have shown that parameter identification and model
structures are important sources of uncertainty under climate change. For instance,
Dakhlaoui et al. (2017) evaluated the transferability of three rainfall-runoff models (GR4J,
HBV and IHACRES) under simultaneous precipitation and temperature variability in
catchments representative of hydro-climatic conditions in Tunisia. They showed that the
difference in climate conditions between calibration and validation periods progressively
affected the performance of hydrological models. They also showed that the models were
transferable to wetter and/or colder conditions, but that model robustness became
unacceptable when climate conditions involved a decrease of more than 25% in annual
precipitation and a simultaneous increase in annual mean temperatures of more than 2 °C.
In another paper, Dakhlaoui et al. (2019) suggested that the model parameters used for
climate change impact studies should rely on a calibration period in which the climate
conditions closely resemble the future climate conditions, thus significantly reducing the
uncertainty.

4.3.5. Uncertainty assessment

Uncertainty analysis means representing the certainty with which the model results
represent reality (Singh, 1995). Knowing model uncertainty will also inform about where the
model may need further improvement (Hublart, 2015). Quantitative measurement of the
uncertainty of a hydrological model can provide valuable information about the weight that
should be given in decision making when model outputs are used. The most common way to
present the uncertainty is using confidence interval ranges within the mean estimate that
exist with specified probability (e.g. 95%) (Melching, 1995). Other approaches have also
been used for the systematic examination of the overall uncertainty stemming from input
data, model structures, parameters and control data (e.g. Bayesian inference methods;
Brigode et al., 2013; Hublart et al., 2016; Smith et al., 2015).
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4.4. Hydrological models used for streamflow reconstruction

Hydrological models have been an alternative and complementary tool to generate
streamflow time series from meteorological data. They make it possible to provide
continuous proxy river flow data that are otherwise not directly available. This is particularly
useful in poorly-gauged regions. Outputs obtained with hydrological models can be used to
extend flow records, creating long sequences that extend back to before the observation
network was set up. The resulting reconstructed series enable the analysis of past variability
such as the frequency of severe events (e.g. Caillouet et al., 2017).

Most studies on this issue in the literature reconstructed streamflow series using
climate downscaling methods from largescale atmospheric reanalysis datasets. Only a few
studies focused on the use of hydrological models to derive plausible historical sequences
based on gauge-based observations (e.g. Smith et al., 2019). Current studies are mostly
developed to extend observed series of gauge networks back in time with fairly good
historical registers (e.g. United Kingdom, France, United States) and particularly to
reconstruct extreme events (drought and peak flows). Studies in poorly gauged regions are
rare due the lack of longer streamflow series (even for one or two decades) and those of
sufficient quality to be used with hydrological models to reconstruct and extend streamflows
are even rarer.

4.4.1. Streamflow reconstruction using indirect climate data

Hwang et al. (2013) used dynamically downscaled reanalysis data to reproduce local-scale
spatiotemporal precipitation and temperature data to accurately predict streamflow in the
Tampa Bay region of west central Florida. Their results showed that the accuracy of monthly
streamflow produced by the bias-corrected downscaled reanalysis data was satisfactory.
Kuentz et al. (2013) reconstructed climatic and hydrologic time-series over the 20th century
in the Durance catchment (southern French Alps) based on an analog downscaling method
and a conceptual hydrological model. Brigode et al. (2016) applied a downscaling method to
a global geopotential height reanalysis (Compo et al., 2011) to feed the GR4J hydrological
model to reconstruct streamflow variability in northern Quebec. Vidal et al. (2010)
developed a 50-year climatic reanalysis (called SAFRAN) to study drought events in France.
These authors presented a comprehensive reconstruction of precipitation, soil moisture and
streamflow from 1958 onwards computed by the SAFRAN-ISBA-MODCOU hydro-
meterological framework. Caillouet et al. (2017) also presented an ensemble reconstruction
of spatiotemporal extreme low-flow events based on reconstructed climate and streamflow
from the SCOPE Climate (Spatially COherent Probabilistic Extended Climate) and SCOPE
hydro (Spatially COherent Probabilistic Extended Hydrological) datasets. The authors used
SCOPE Climate and built on probabilistic downscaling of the 20CR reanalysis (Compo et al.,
2011) over France. The ensemble high-resolution daily meteorological dataset was used to
feed the daily hydrological model (GR6J with a snow-accounting model) together to derive a
25-member ensemble of daily reconstructed streamflow since 1871 over 662 near natural
catchments in France. Dayon (2015) also used a downscaling approach for two reanalyses,
the 20CR (Compo et al., 2011) and ECMWF ERA20C (Stickler et al., 2014) combined with a
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physically-based hydrological model to reconstruct hydro-meteorological data in France. The
main advantage of atmospheric reanalysis is achieving space—time continuity over multi-
decadal periods (> 30 year) and the general consistency of the various meteorological
variables required as hydrological inputs. Reanalysis, or rather regional reanalysis, is more
reliable in densely gauged regions because it combines high-quality and more detailed
observations (e.g. North American Regional Reanalysis, Mesinger et al., 2006; Regional
Reanalysis for Europe, Landelius et al., 2016). Climate datasets of regional reanalysis
(particularly for precipitation) have limited accuracy because they retain the uncertainties of
the climate models used in calculations. In addition, regional reanalysis are not available for
poorly gauged regions because the data and local capacities required to force and correct
global reanalysis are lacking (e.g. NCEP NCAR, Kalnay et al., 1996; ERA-40, Uppala et al.,
2005). Due to the above-mentioned limitations, climate gauge observations with space-time
continuity (climate regionalization) are recommended to simulate/reconstruct streamflows.

4.4.2. Streamflow reconstruction based on gauge observations

Regional reanalyses available in densely gauged regions offer continuous and long time
series of climatic variables (> 30 years) but their accuracy is still limited and they should be
used with caution. Gauge observations offer the most reliable data over multi-decadal
periods and are more suitable for streamflow reconstruction in both densely and poorly
gauged regions.

Jones (1984) proposed a simple method that first estimates the areal average rainfall
using isohyetal techniques and isomeric maps. Then, using a statistical rainfall-runoff model
(Wright, 1978) the streamflow series were reconstructed back to the middle of the 19™
century on 10 catchments in the United Kingdom. In another study, Jones et al. (2006)
presented a relatively simple procedure to reconstruct the streamflow on 15 catchments in
the United Kingdom using a monthly rainfall-runoff model based on linear combinations of
data on soil moisture and effective precipitation by regression techniques. The authors used
the calibrated parameters applied in other flow reconstruction exercises (Jones, 1984, 1983;
Jones and Lister, 1998). Interestingly, this study reported sources of errors that should be
accounted for when hydrological models are used for streamflow reconstruction: (1) the use
of constant monthly values for evapotranspiration losses; (2) the potential for snowpacks to
build up in winter periods on catchments with significant areas at high elevation; (3) possible
modification over time of factors such as changes in land management and/or use; (4)
changes in the location and number of precipitation gauges in the catchments and (5) errors
in streamflow measurement and the use of flow-naturalization techniques (removal of
human-induced factors). More recently, Smith et al. (2019) developed a novel multi-
objective calibration method on 303 catchments in the United Kingdom using gauge
observations from the data rescue program of the UK Met Office. One conceptual
parsimonious hydrological model was applied and calibrated using Latin hypercube sampling
(LHS) and six evaluation metrics simultaneously to evaluate high, median, and low flows,
thus optimizing calibration for a wide range of potential applications. The authors showed
that overall, the multi-objective calibration procedure yielded excellent model results when
compared with observations, with the exception of only a few catchments. Other
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reconstruction studies, mostly focused on the reconstruction of drought events, have also
been conducted in other countries including China (e.g. Wu et al., 2011) and the United
States (e.g. Andreadis et al., 2005).

5. Simulating climate change impacts on water resources

The usual way to assess the impact of climate change on water resources combines the use
of climate projections and hydrological modeling (see e.g. Prudhomme et al., 2003; Merritt
et al., 2006; Maurer, 2007; Minville et al., 2008; Ludwig et al., 2009; Bae et al., 2011;
Ruelland et al., 2012; 2015; Fabre et al., 2015; 2016a; Dakhlaoui et al., 2019). Four main
steps are considered in such impact studies: (1) selecting greenhouse gas (GHG)
emission/concentration scenarios; (2) running global circulation models (GCMs); (3)
downscaling and correcting biases in the GCM meteorological projections; and (4) running
hydrological models that simulate the potential impact of climate change on streamflow at
catchment scale. Step 4 is often considered to contribute less to overall uncertainty than the
other steps (Wilby and Harris, 2006; Prudhomme and Davies, 2009; Kay et al., 2009; Arnell,
2011; Teng et al., 2011). However, all the interlinked steps have associated uncertainties
whose relative importance may differ with the climate conditions and catchment
characteristics. Note that these steps include expanding an envelope of uncertainty into so-
called “cascade of uncertainty” (Figure 1.1).

5.1. Simulating the future climate

The most relevant meteorological variables for climatic impact studies are temperature and
precipitation (Bronstert et al., 2007). Precipitation is the most important driver to study
freshwater resources (Kundzewicz et al., 2007). Precipitation is considerably more difficult to
model than temperature mostly because of its nonlinear nature and high spatial and
temporal variability.

Coupled atmosphere ocean general circulation models (GCMs) are the main source of
information about future climate change (Collins et al., 2013). The Intergovernmental Panel
on Climate Change (IPCC) gathers and reviews GCMs as part of the international climate
change Assessment Reports (IPCC, 2013). The primary function of GCMs is to understand the
dynamics of the physical components of the climate system (atmosphere, ocean, land and
sea ice), and to make projections based on future greenhouse gas and aerosol forcing. The
ensemble of these models is called the Coupled Model Inter-comparison Project (CMIP)
(Meehl et al., 2000). The CMIP phase 5 (CMIP-5) (Taylor et al., 2012) provides a framework
for coordinated climate change experimentation, which, over the last few years, has yielded
new insights into the climate system and the processes responsible for climate change and
variability. Around 20 modeling groups contribute to the CMIP-5 simulations using more
than 50 GCMs models (Taylor et al., 2012). GCMs outputs are also calculated under four
main Representative Concentration Pathways (RCPs) (Table 1.5) that represent possible
future emissions and concentration scenarios (Moss et al., 2010). Each RCP (8.5, 6.0, 4.5 and
2.6) defines the amount of radiative forcing produced by greenhouse gases in 2100 in Watts
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per meter squared (W/m?). RCPs provide a good basis for the climate modeling community
to explore the range of climate outcomes.

Future society
(GHG emissions)

Downscaling
GCMs

N/

Hydrological
simulation

G

Local impacts

S

Adaptation
responses

+———————— The cascade of uncertainty

+——— Envelope of uncertainty

Figure 1.1. A cascade of uncertainty proceeds from different socio-economic and demographic pathways, their
conversion into concentrations of atmospheric greenhouse gas (GHG) emissions, expressed global climate
outcomes (GCMs). The downscaled GCMs are then used in hydrological models to assess local impacts on
human and natural systems, and further propose adaptation responses. Modified from Wilby and Dessai,
(2010).

Table 1.5. Representative concentration pathways (RCPs) and equivalent emission scenarios in the Special
Report on Emissions Scenarios (SRES) by the IPCC (Nakicenovic et al., 2000). Information was taken and
adapted from Van Vuuren et al. (2011) and Moss et al., (2010).

RCP Description* Emissions Equivalent SRES

High range  emission  scenario  (possible
development in the case of high population AlF1
numbers, high fossil/coal use)

Rising radiative forcing pathway leading to

RCP 8.5 8.5 W/m’ (>1370 ppm CO, eq) by 2100.

Stabilization without overshoot pathway to
RCP 6.0 6 W/m’(~850 ppm CO; eq) at stabilization after

2100

Stabilization without overshoot pathway to
RCP4.5  4.5W/m’(~650 ppm CO,eq) at stabilization
after 2100
Peak in radiative forcing at ~3 W/m’ (~490 ppm
CO, eq) before 2100 and then decline (the
selected pathway declines to 2.6 W/m2 by
2100).
* Approximate radiative forcing levels were defined as 5% of the stated level in W/m2 relative to pre-industrial levels. Radiative forcing
values include the net effect of all anthropogenic GHGs and other forcing agents.

Medium range emission scenario (low-medium

. . . - - B2
baseline scenario or high mitigation scenario)

Medium range emission scenario (high mitigation

. B1
scenario)

RCP 2.6 Low range mitigation scenario None

5.2. Downscaling and bias correction techniques

Processes governed from regional to local scale are not well represented, if represented at
all, in GCMs (Volosciuk et al., 2015). GCM grid cells typically measure about 1° (~ 100 km x
100 km), so to compare model results with observations at point locations (e.g., at gauge
station sites) the GCM must account for the mismatch in the spatial representativeness of
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data values. Moreover, significant biases in the GCM simulations mean they are not suitable
for direct use when assessing the impact of climate change at local scale. At this scale,
downscaling and/or bias corrections are required before analyzing the impact of climate
change (Onyutha et al., 2016). Because they use physical or statistical methods, downscaling
and/or bias correction “distill” as much small-scale information out of GCMs as possible
(Blrger et al., 2012). Generic downscaling methods frequently used for temperature and
precipitation are presented below.

5.2.1. Dynamic downscaling

Dynamic downscaling (DD) is one way to downscale large-scale GCM climate outputs to a
finer spatial resolution. It relies on regional climate models (RCMs) and aims to spatially and
temporally refine climate information over a given area of interest by describing forcings and
phenomena that are not resolved in GCMs. For this process, DD uses large-scale lateral
boundary conditions so the GCMs can produce higher resolution outputs by nesting an RCM
in the GCM. Basically, RCMs parameterize and resolve atmospheric processes and thus
realistically simulate regional climate features to produce higher resolution outputs (~0.1 to
0.5° in latitude and longitude) such as orographic precipitation (e.g. Frei et al., 2003),
extreme climate events (e.g. Fowler et al., 2005; Frei et al., 2006) and regional scale climate
anomalies. Three examples of DD are the Coordinated Regional Downscaling Experiment
(CORDEX framework) of South America (Solman, 2013), ENSEMBLES (Rummukainen, 2010)
and EURO-CORDEX (Jacob et al., 2014). RCM outputs (or so-called GCM-RCM couples) are
even able to represent non-linear effects, such as those associated with the El Nifio Southern
Oscillation (e.g. Leung et al., 2003). However, in a DD framework, RCM skills depends to a
great extent on biases inherited from the driving GCM and the presence and strength of
regional scale forcing such as orography, land-sea contrast and vegetation cover (Fowler et
al., 2007). Hence, GCM-RCM couples still involve substantial errors, partly inherited from the
driving GCMs (Rummukainen, 2010; Hall, 2014). For temperature simulations, the
uncertainty introduced by the RCMs may be less than that from the emissions scenario
(RCPs), but for precipitation simulations, the opposite is true (Fowler et al., 2007). The main
drawback of RCMs is their strong dependency on GCM boundary forcing. The GCM-RCM
couples can thus often not accurately reproduce the average seasonality of precipitation or
even average annual precipitation over the historical period, as shown in different regions
(Ruelland et al., 2012; Tramblay et al., 2013; Dakhlaoui et al., 2019; Gonzalez-Zeas et al.,
2019). The raw outputs of RCMs thus generally require additional statistical bias correction
treatments before being used as inputs in hydrological models.

5.2.2. Statistical downscaling

Statistical downscaling (SD) has received considerable attention from climatologists and
basically transforms large-scale GCM (or GCM-RCM couples) outputs into a finer resolution.
Statistical downscaling methods are generally classified as: (1) regression models (Wilby et
al., 2002); (2) weather typing schemes (Schoof and Pryor, 2001) and (3) weather generators
(Wilks, 1999). Regression models involve establishing statistical linear or nonlinear
relationships between observed local climatic variables and GCM outputs (Wilby et al.,
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2002). These methods are relatively simple, their main drawback being the probable
absence of a stable relationship between observations and GCMs (Wilby and Wigley, 1997).
Weather typing schemes involve grouping local meteorological variables in relation to
different classes of atmospheric circulation (Bardossy and Plate, 1992; Von Storch et al,,
1993). Using this scheme, local variables can be closely linked to global circulation. However,
its reliability depends on a stationary relationship between large-scale circulation and local
climate (especially for precipitation). The weather generator method is based on
perturbations of climate parameters (weather generator’s climate) according to the changes
projected between current and climate change by GCMs (Qian et al., 2010; Wilks, 2010).
Because weather generators are stochastic models, they can be used to produce synthetic
weather series of unlimited length, which can be consistent with both the current and
hypothetical climate change (Wilks, 2010). Grouillet et al. (2016) analyzed the sensitivity of a
hydrological model to three different methods (analog method, stochastic weather
generator and cumulative distribution function approach) to statistically downscale
precipitation and temperature data from NCEP/NCAR re-analyses as well as outputs from
two GCMs in Mediterranean basins. The authors used streamflow simulations from a
hydrological model as a benchmark to test the ability of different statistically downscaled
data sets to reproduce different aspects of the hydrograph. Their results showed that using
high-resolution downscaled climate values enabled a major improvement in runoff
simulations in comparison to the use of low-resolution raw inputs from re-analyses or
climate models. However, they also identified significant limitations including the inability of
such downscaled techniques to correctly reproduce mean seasonal streamflow, inter-annual
runoff volumes, or low/high flow distribution.

5.2.3. Delta-change method

Up to now, precipitation and temperature from dynamically or statistically downscaled GCM
outputs are not precise enough to be used as direct inputs in hydrological models. This is
why hydrologists have generally favored basic downscaling and bias correction techniques
when building climate scenarios using climate model outputs (GCMs or GCM-RCM couples).
The most widely used technique is the so-called perturbation method or delta change
approach (Prudhomme et al., 2002). This technique assumes that climate models reproduce
the relative change in climatic variables better than their absolute values. It consists in
producing high-resolution climate change scenarios by simply modifying the regionalized
observed climatic series so as to reproduce the mean variations between the control and
future climatic simulations from GCMs or RCMs (Ruelland et al., 2012). This method has
been used in many hydrological impact studies at different scales (e.g. Milano et al., 2012;
Fabre et al., 2016; Dakhlaoui et al., 2019). However, the perturbation method has significant
limitations because the temporal pattern of the perturbed series (i.e. occurrence,
persistence and internal structure of the various meteorological events) remains the same as
that of the observed series (Ruelland et al., 2012). The method is thus poorly suited to
representing changes in the frequency, intensity and duration of major phenomena, at the
scale of either the individual event or the season, as outlined by Hewitson and Crane (1996).
The same limitations apply to aspects related to spatial variability. Indeed, change factor
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only scale the climatic variables, ignoring changes in variability and assuming that the main
spatial pattern of climate will remain constant (Diaz-Nieto and Wilby, 2005). This method
therefore yields only a rough estimate of the hydrological impacts of a given climate change
scenario. It can be considered as acceptable to estimate changes in water resources, for
example, in terms of volumes and seasonal variations, but its use remains debatable to
estimate changes in extreme hydrological events (Ruelland et al., 2012).

5.3. Using ensemble approaches to assess the impact of climate change

According to the greenhouse gas emission scenarios for the 21° century (Nakicenovic et al.,
2000), climate change will involve increased air temperatures and changes in precipitation
(Trenberth, 2011). However in many regions, future changes in precipitation are highly
uncertain and depend on which GCMs are used. By altering the air temperature and
precipitation and other meteorological variables, such as net radiation, air humidity,
evaporation, groundwater recharge, surface and sub-surface runoff or snowmelt may also
have direct impacts on hydrological processes (Bronstert et al., 2007).

Catchment-scale hydrological models (e.g. lumped conceptual models) offer a
convenient way to evaluate the impacts of climate change on water resources. Studies that
involve hydrological models are typically centered on GCMs, downscaling methods and
emission scenarios (e.g. Boé et al., 2009; Kay et al., 2009; Teng et al., 2012). However,
knowledge of the associated uncertainties is required rather than only modelling and
comparing impacts. There is a cascade of uncertainty in hydro-climatic change impact
assessment that begins with the construction of future emission scenarios and ends in
impact assessment. Addressing these uncertainties calls for consistent and documented
approaches (e.g. Kiparski and Gleick, 2004; Maurer, 2007; Minville et al., 2008). According to
the literature, the main sources of uncertainty in hydrological modeling are the following:
GCMs, emission scenarios, downscaling methods, model structures, parameter
identification, changes in potential evapotranspiration (PET) and snowmelt and runoff
modelling.

Minville et al. (2008) found that GCMs create an important part of the uncertainty but
so do, to a lesser extent, climate downscaling and hydrological modelling. Other authors
such as Kay et al. (2009) compared six different sources of uncertainty including gas-
emission scenarios, GCMs, climate downscaling, natural variability (calculating GCM runs
from slightly modified initial conditions), hydrological model structures and their associated
parameters. These authors also found they all contribute to total uncertainty and that GCMs
are the most uncertain. Using a set of GCMs is generally recommended to cover a wide
range of potential climatic projections because the dispersion mainly originates in the
climate models (Arnell et al., 2004).

The uncertainty of hydrological model structures in climate change impacts studies has
been little studied so far. Ludwig et al. (2009) focused on uncertainties in hydrological
modelling, comparing structures of different complexity. Their results confirmed the
importance of the climatic projection uncertainty (emission scenarios, GCMs and
downscaling) but also established that hydrological models need to be carefully evaluated.
Poulin et al., (2011) identified equifinal parameter sets for two hydrological structures
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implemented on a Canadian catchment. They showed that model structures and parameter
identification are important sources of uncertainty under a changing climate. Other authors
also identified the influence of changing climate on potential evapotranspiration (PET) and
hence on changes in evaporative demand, which are thus an additional source of
uncertainty. For instance, Bae et al. (2011) evaluated uncertainties in hydrological models
and PET formulations on a Korean catchment. The authors compared three hydrological
models, three PET formulations, and thirty-nine climate scenarios. Their results underlined
the importance of the PET formulation and the need to account for them when assessing the
impacts of climate change. In another study, Seiller and Anctil (2014) examined uncertainties
related to the hydrological modelling of climate change impacts. The study used twenty
lumped conceptual hydrological models, twenty-four PET formulations, and seven snow
modules and showed that the largest source of uncertainty was natural climate variability
(illustrated by several members from the same GCM), followed by PET formulations, lumped
conceptual models, and snow modules.

Other studies also reported the advantages of model inter-comparison to provide
information about their complementarity. It is widely accepted that multi-model
combinations improve robustness in both past and current time analysis, and under climate
change conditions. Indeed, multi-model approaches aim to extract as much information as
possible from each model to compensate for their individual simulation errors in
combination. Some authors have indeed shown that multi-model combination generally
performed better than any single model (e.g. Kim et al., 2006; Duan et al., 2007; Viney et al.,
2009; Velazquez et al., 2010; Seiller et al., 2012). Other authors also recommended
considering multiple representations of hydrological behavior (model inter-comparison) to
not rely in a single model even if deemed “appropriate” (e.g. Perrin et al., 2001; Reed et al.,
2004; Gorgen et al.,, 2010; Bae et al.,, 2011; Hublart et al., 2015). Using the model inter-
comparison approach also makes it possible to represent structural uncertainty, which is
useful to study future impacts under climate change conditions. For instance, Seiller et al.
(2012) evaluated twenty lumped conceptual hydrological models under past contrasted
conditions for calibration and evaluation in two catchments (Canada and Germany). The
authors recommended the multi-model evaluation as a pre-requisite to climate change
applications because a large number of models have a better chance of being appropriate
for a large number of catchments. In another study, Seiller et al. (2015) extended the
number and diversity of catchments to twenty and another method of multi-model
combination was explored (weight averaged multi-models). Their results confirmed that,
compared to individual models, a deterministic multi-model approach can improve the
simulation performance under contrasted climate conditions. Flexible approaches based on
a combination of hybrid-model structures can also be used to construct ensembles of
conceptual hydrological models (Fenicia et al., 2011; Hublart et al., 2015). As stated by
Leavesley et al. (2002), massive empirical testing of model structures (creation of new child
hybrid models) seems to be an effective alternative to conventional hydrological modeling to
test combined model structures in many contexts, for example, forecasting streamflow,
simulating extreme hydrological regimes, ungauged catchments and also the impacts of
climate change.
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6. Conclusions

This overview of the literature showed the importance of relying on gauged-observed data
to represent multi-decadal climate variability, even if these data are scarce. Many spatial
interpolation techniques are available, adaptable, and sufficiently flexible to include
secondary variables. Aspect such as the impact of temperature and precipitation gauge
density on interpolation methods remain to be studied. In addition, the selection of
parameters and the use of different interpolated precipitation fields as inputs for
hydrological models, particularly at daily time scale have rarely been investigated. Beyond
regionalization of climatic datasets, the implementation of hydrological modeling itself is not
a limitation in poorly-gauged regions since simple and efficient conceptual rainfall-runoff
structures are available. However, the structural and parametrization uncertainties
associated with these models require the use of well-designed modeling methods. This is of
particular importance since the absence of streamflow observations is the main obstacle to
characterizing hydrological variability over multi-decadal periods. Hydrological models offer
the opportunity to reconstruct the missing streamflow information using model ensembles,
which has been identified as the most suitable approach. Projection of future hydro-climatic
variability is also possible if complete past multi-decadal hydro-climatic dataset are available.
Nonetheless, there will be uncertainty in all the above-mentioned steps. Thus, correct
selection of data and the use of a complete methodological chain will help to prevent the
accumulation of uncertainty.
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CHAPTER 2: STUDY AREA

1. Geographic and hydro-climatic context

1.1. Topography

The study area corresponds to the continental territory of Ecuador located in the tropical
region of South America (~ 2°N to 5°S and 81°W to 75°W) with a surface area of about
280 000 km?. The Andes is the main mountain chain and runs north-south in the middle of
the territory creating a wide altitudinal range from 0 to ~ 6 200 m a.s.l. The Andes also
represent a high and rugged water tower that divides the territory into two large drainage
zones (the Pacific and Amazon slopes) and three main regions. The three regions are the
coastal region in the west, the Andean region in the middle and the Amazon region in the
east. On the coastal border is a low coastal mountain range considered to be the second
most important mountain range, which extends ~ 330 km and reaches a maximum altitude
of ~700 m a.s.l. (see Fig. 2.1a).

1.2. Climate

1.2.1. Air temperature

The mountainous Andes system drives the spatial air temperature patterns in Ecuador.
According to the official cartography of the National Institute for Meteorology and
Hydrology (Instituto Nacional de Meteorologia e Hidrologia — INAMHI), the warmest
temperatures are typically measured in the lowlands of the Coastal and Amazon regions
(~26 °C/year), while coolest temperatures are measured in the Andes highlands (~7 °C/year).
The El Nifio-Southern Oscillation (ENSO) is the main driver of the inter-annual temperature
anomalies in most parts of Ecuador (Vuille et al., 2000a; Vicente-Serrano et al., 2017).
Specifically, variability in the coastal lowlands is closely linked to the Sea Surface
Temperature Anomalies (SSTA) in the eastern Pacific (Nifio 1+2 region) (Rossel, 1997), while
the northernmost part of the country (north of 0.58 °N) is more closely linked to the SSTA of
the tropical North Atlantic domain (Vuille et al., 2000a, 2000b). In the Andes, the
temperature anomalies are more linked to the SSTA in the central equatorial Pacific (Nifio 3
and Nifio 3.4 regions) (Vuille et al., 2000a; Moran-Tejeda et al., 2016). At seasonal scale, it is
hard to distinguish temperature changes which could be negligible (Vuille et al., 20003;
Vicente-Serrano et al., 2017), due to the location of the country in the middle of the tropical
region (between 2°N to 5°S) and receives stable solar radiation throughout the year.

1.2.2. Precipitation

Mean annual precipitation ranges from desert-like conditions along the western coastal
border wth < 200-600 mm (Garcia-Garizabal, 2017) to very humid regions with ~ 4 600 mm
(Moran-Tejeda et al., 2016) in the eastern Andes foothills in the Amazon region (Bendix and
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Lauer, 1992; Tobar and Wyseure, 2018). The ENSO is the main cause of inter-annual
precipitation variability due to higher SSTA anomalies in the Pacific Ocean, which enhances
or inhibits the transport of moisture respectively during its warm (El Nifio) and cold (La Nifia)
phases. High abnormally wet years in the Coastal region are the result of El Niflo phases in
the eastern Pacific (El Nifio 1+2 region), while the driest years are the result of La Nifia
phases (Bendix and Bendix, 2006; Grimm and Tedeschi, 2009; Bendix et al., 2011a). In the
Andes, above-average precipitation is due to humidity transported westward from the
Amazon regions due to strengthened easterlies during La Nifia phases in the central Pacific
(Vicente-Serrano et al., 2017; Tobar and Wyseure, 2018), while below-average precipitation
is due to El Nifo 142 conditions (Vuille et al., 2000a; Mora and Willems, 2012). In the
Amazon region, below normal precipitation and periodic droughts (Marengo, 2004; Espinoza
et al., 2011; Jiménez-Murioz et al., 2016) are associated with warm El Nifio phases, while La
Nifa conditions produce above average precipitation (Vuille et al., 2000a; Espinoza Villar et
al., 2009).

At seasonal scales, precipitation is produced by the transport of moisture enhanced by
the meridional displacement of the Intertropical Convergence Zone (ITCZ) (Schneider et al.,
2014a). In the Coast region, a rainy season is generally described lasting from March to May
whereas two rainfall seasons are reported in most parts of the Andes, one from March to
May and the other from October to December (Bendix and Lauer, 1992; Vicente-Serrano et
al., 2017). Precipitation on the Amazon plains is normally distributed all year round with no
real dry season. The precipitation is more marked between June and August and is mainly
driven by the moisture originating over the tropical Atlantic and the water recycled through
evapotranspiration from the Amazonian rainforest in the plains (Bendix and Lauer, 1992;
Espinoza et al., 2011; Poveda et al., 2014).

1.2.3. Other meteorological variables

Three additional meteorological variables drive the climate characteristics in each region:
relative humidity, solar radiation, main wind direction and speed.

Relative humidity in Ecuador depends on the moisture source (the Pacific Ocean or
evapotranspiration from the Amazon forest), the altitude and hence the temperature of
each region. Changes in the amplitude of relative humidity are particularly low during the
rainy season when cloudiness and rainfall are high (Fries et al., 2012). According to
measurements taken by representative INAMHI meteorological gauges, mean annual
relative humidity is higher in the coastal (~*85%) and Amazon regions (~87%), and decrease
ascending the Andes (~74%) because most air masses lose much of their humidity on the
mountain flanks.

Solar radiation is mainly driven by elevation and cloud cover. It usually increases with
elevation and decreases in the case of successive overcast days (Emck, 2007). According to
INAMHI, multi-annual daily mean radition in the Coastal region ranges from 3.5 to 4.5
kWh/mZ, in the Andes region from 4 to 5.5 kWh/m? and in the Amazon region from 4.5 to 5
kWh/m?.

Surface winds display high space-time variability and are influenced by the synoptic
conditions, topography and land cover. Wind directions mainly depend on atmospheric
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systems. In the Coastal region, especially in ENSO years, the dominant winds blow from the
west to the east and from the north to the south when approaching to the relief of the
Andes (Lugo, 1996). The influence of winds in the Andes region varies depending on whether
the wind comes from the eastern or western slopes (Vuille et al., 2000a), while at local scale,
wind directions also depend on contrasting heat patterns and on the dynamics of
mountain/valley winds (Emck, 2007). In the Amazon region, the dominant winds are easterly
trade winds originating over the tropical Atlantic and Amazon basin and the low-level
atmospheric flow (Garreaud, 2009). According to ground-based INAMHI data, mean annual
wind speed in the Coastal region ranges between approximately 1 and 2 km/h, increases
over the Andes to between 2 and 3 km/h and decreases to approximately 1 km/h in the
Amazon region.

1.3. Geology and soils

Taking into account the Quaternary to recent times (Goossens, 1970), the geology of
Ecuador can be characterized according to the three main regions. The Coastal region
extending from the coast itself inland, is respectively composed of marine terraces and
fertile plains of black clay fluvial deposits. The Andes region, including the intra-montane
piedmont, comprises mainly pyroclastic deposits resulting from volcanic and fluvio-glacial
activity. The Amazon region mainly comprises older sediment dating from the Tertiary
obscured by thick Quaternary gravels. Mostly of the geological formation thoughout the
territory presents intergranular porosity of medium and low permeability that recharge the
aquifers (“SNI,” n.d.).

Soils in Ecuador can be described using the official cartography of the Ecuadorian
National Information System (“SNI,” n.d.). They are mainly composed of Inceptisols (~66% of
the whole country) covering a wide range of diverse landscapes, and used as cropland or
pasture, depending on their fertility. The Coastal region present the most varied soil
taxonomies mainly composed of Inceptisols (~47%), Entisols (~17%), Alfisols (~10), Mollisols
(~7%), plus smaller percentages of others such as Vertisols and Aridisols. The Andes, both
the highlands and inter-Andean valleys are mainly composed of Andosols (~84%) developed
on volcanic ash and are typically used as cropland, pasture and for the Paramo ecosystem. A
small prortion of the Andes is covered by Mollisols (¥12%) and wastelands with rocky
outcrops (~4%). The Amazon region is mostly composed of Inceptisols (~90%) and Entisols
(~¥10%), which are mineral soils with incipient development and are mostly covered by
natural forest.

1.4. Land use/cover

Land use in Ecuador is the results of altitudinal floors created by the Andes topography,
climatic conditions, geology, soils, and human activities. According the 2016 national
vegetation map (“SNI,” n.d.) and studies by, for example, (De Koning et al., 1998), the land
use of each region can be described as follows (see Fig 2.1b):

The Coastal plain has the largest cultivated areas (62% of the whole coastal region)
thanks to easy access and favorable biogeophysical conditions. The plains are mostly
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covered by semi-perennials crops, e.g. banana, perennial crops e.g. coffee and cacao, and
temporary crops e.g. rice, soybean and hard maize. Natural forest is the second biggest land
cover (27% of the coastal region) covering the northern lowlands (Esmeraldas basin) and the
Andean flanks. The forest is mostly composed of tall, dense, evergreen trees, with a canopy
height of 30 m or taller (Jgrgensen and Ledn-Yanez, 1999). Urban land use is dispersed and
represents only 1.4% of the region.

The Andes region is mostly used to cultivate crops (32% of the Andes region). Intra-
Andean valleys are mainly used for annuals crops including potatoes, beans, soft corn and
permanent pasture for milk production (Schodt, 1991) and other uses such as flowers grown
for exportation (Mena-Vasconez et al., 2017). The outer slopes and warmer valleys of the
Andes are mainly used for perennial crops like coffee. The Paramo also accounts for a large
proportion (32%) of the Andes region in the highlands (> ~3 500 m a.s.l). Approximately
fourth (26%) of the Andes region is covered by natural forests mainly in less inaccessible
zones on the outer Andes slopes and in the national protected areas. Urban land use is
mostly concentrated in inter-Andean valleys and represents 1.6% of the region.

Most of the Amazon region (83%) is covered by natural forest composed of large and
medium-sized canopy trees (Valencia et al., 2004) of vascular epiphytes, while a second land-
use (15% of the Amazon region) corresponds to dispersed croplands created by colonization.
The main crops are semi-perennials such as bananas and yuca, and perennials, such as
coffee and cacao. Natural forests are mainly located in less accessible regions away from
roads and navigable rivers, as well as on national protected areas in the eastern part of the
region. Urban land use only accounts for 0.2% of the region.
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Figure 2.1. Main geographic characteristics of Ecuador:(a) elevations from a DEM of 90 x 90 m; (b) main land
covers/uses in 2016 including all urban areas and the three most populated cities (~40% of the total
population). The Andes chain is marked in red based on the 2 400 m a.s.l. contour line.
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1.5. Hydrological context

Based on the official cartography, there are 30 main catchments in Ecuador, 23 on the Pacific
Slope and coast (surfaces between 397 km? to 32 300 km?) and seven on the Amazon slope
(surface areas ranging from 3 100 km? to 59 700 km?) (Fig. 2.2). On the Pacific slope, the
topography of the Andes and of the lower coastal range comprises numerous catchments
(14) that receive a mean annual streamflow of ~186 m>/s from the Andes highlands and
their western flanks. Catchments configured by the coastal range are less numerous (9) and
dryer, producing a mean annual streamflow ~27 m®/s because they are disconnected from
the runoff produced by the Andes. The catchments located on the Amazon slopes are bigger
and produce the highest mean annual streamflow ~1 522 m?/s.

The Andes mountain range which crosses the middle of the territory represent an
important water tower that fills environmental requirements and human water demand
downstream. The best preserved areas in the highlands (~3 500 m a.s.l) are covered by the
Paramo ecosystem (Hofstede et al., 2003). This zone maintains the baseflow and is strictly
regulated by the headwaters to sustain dry season runoff (Poulenard et al., 2003; Buytaert et
al., 2006; Laraque et al., 2007). The Paramo is the main source of water for the populated
urban areas in the intra-Andean valleys. Moving down the flanks of the Andes toward the
Coastal and Amazon lowlands, catchments accumulate higher runoff as a result of
headwater flows, orographic precipitation, plus the delay and release of water stored in
natural forest. However, near the most populated areas, catchment runoff is artificially
modified by human activities as a result of water withdrawals for agricultural irrigation,
industrial uses, drinking water and the regulation for hydroelectric power stations. The most
important water uses are described in more detail in the following section.
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Figure 2.2. Main catchments of continental Ecuador showing the division of the Pacific and Amazon slopes and
the catchments that are disconnected from the Andes and those that receive runoff from the flanks of the
Andes.
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2. Water uses and management issues

2.1. Water distribution and uses

During the last 50 years (1960-2010), Ecuador has undergone an average population growth
rate of ~30% every 10 years to reach ~14.5 million according to the last national census in
2010 (“INEC,” n.d.). The renewable internal freshwater resources per capita corresponds to
~28 000 m>/year/inhabitant, i.e. almost five times more average water than the global
average of ~5 900 m3/year/inhabitant (AQUASTAT; FAQO’s Information System on Water and
Agriculture,” n.d.). Even though this theoretically means Ecuador has no water limitations, in
practice renewable freshwater is scarce because it is naturally unequally distributed
throughout the territory. The Pacific slopes concentrate 83% of the national population but
only 12% of total water (~1 414 m>/year/inhabitant). Conversely, the Amazon slopes host
only 17% of the population but own 88% of renewable freshwater resources (~52 800
m3/year/inhabitant).

According to the national water authorizations (2006-2016) (SENAGUA) main water
uses and authorizations (79%) correspond to the 10 biggest hydroelectric centrals, which is a
non-consumptive and produce 85% of the national energy with an installed capacity of 4 385
MW (Carvajal et al., 2017) (Fig 2.4a). Other water authorizations correspond to uses such as
agricultural irrigation (15%), industrial uses (4%), and drinking water (1.5%) plus other minor
uses (e.g. aquaculture, tourism). The Pacific slope, which comprises the whole Coastal region
and almost half of the Andes region, accounts for most demand for water because is the
most populated (~80%) and has the biggest agricultural area (75%), agriculture being the
second economic source of income in Ecuador (after the extraction of oil and minerals).

2.2. Water risks

Due to the availability of water in the coastal plains, water demand is normally high in the
dry season (June to September) and can be even higher under severe droughts conditions
during La Nifia events (Bendix et al., 2011a; Zambrano Mera et al., 2018). Conversely, the
coastal plains are also subject to extreme precipitation events during El Nifio conditions over
the eastern Pacific (e.g. the strong El Nifio in 1997-1998) resulting in severe flooding in the
lowlands (e.g. Frappart et al., 2017) with huge economic impacts (4.7% of agricultural GDP)
(Vos et al., 1999). Large areas in both the coastal region and in the Amazon lowlands are
exposed to the flooding risk caused by rivers overflowing during strong rainfall events. In the
Andes region, flood risks are more associated with the uneven seasonal distribution of water
and drought conditions during La Nifia events (e.g. Vicente-Serrano et al., 2017), which
represent the main risk for croplands that are not irrigated. The Amazon region is more
exposed to flooding during the rainy season, which also represents the main risk for
populated zones located near rivers and meanders (Fig 2.3).

Water quality represents another important risk in Ecuador. The most serious risk is
linked to the discharge of untreated wastewater downstream from population centers. At
national scale, only 10% of wastewater is treated before being discharged into rivers or
streams (Fernandez et al., 2018). Agriculture and the extraction of natural resources (mining
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and oil) are the second main source of contamination. The coastal lowlands (e.g. Guayas
catchment) in particular have higher concentrations of the chemical fertilizers and pesticides
used in agriculture due to the industrial production of bananas and rice (Deknock et al.,
2019). In the Andes, most water contamination is due to the use of pesticides for
commercial crops (e.g. potatoes) (Yanggen et al., 2004) followed by contamination produced
by mining (Knee and Encalada, 2014). Toward the Amazon region, contamination is mostly
due to oil extraction (e.g. Barraza et al., 2017).

Another major water risk is linked to soil erosion and sediment transport by water.
Climate conditions and the lack of a natural vegetation cover are the causes of erosion of the
flanks of the outer Andes (Pepin et al., 2013). The most exposed regions are located at the
limits of agricultural areas that have a more fragile morphodynamic equilibrium. Studies (e.g.
Armijos et al., 2013) reported loads of suspended sediment loads: 6 x 10° t/year and 47 x
10° t/year in rivers flowing down the Pacific and Amazon slopes, respectively. The sediment
load was higher in the Amazon region due to tectonic uplift and seismic and volcanic
dynamics. Landslides on the eastern flanks of the Andes expose the Amazon region to

flooding due to the blockage of rivers and the accumulation of sediment in the lowlands.
(a) (b)
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Figure 2.3. Maps of flooding risks in Ecuador, showing the vulnerability of (a) croplands and (b) urban
occupation.

2.3. Water management and adaptation

As shown above, each region in Ecuador deals with different water issues. The Coastal and
the Andes regions use different types of water infrastructure to control seasonal water
distribution as described below:

Most of the national agricultural production takes place in the Coastal region, which, at
same time, requires more protection due to the occurrence of extreme events such as
flooding and droughts produced by El Nifio and La Nifia events, respectively. Six large-scale
water infrastructures have been built in this region to store, regulate and transfer water
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(Fig 2.4b). There are two systems in the driest coastal area, the first, called Chone, is
designed for multi-uses: storage, regulation, irrigation and flood control in an area of 13 000
ha; and the second, called Chongon-San Vicente, used for water transfer and irrigation in an
area of 7 500 ha. Four other systems (Daule-Vinces, Bulubulu, Cafiar and Naranjal) are used
for flood control and irrigation in an area of 60 000 ha.

In the Andes region, the main infrastructures started being built in 1972 (with storage
capacity up to 23 hm?) in lakes and wetlands in the Paramos highlands and have been used
to relieve water demand in the dry season and drought periods. The water stored in the
highlands supplies the inter-Andean valleys with water for local agriculture via artisanal
irrigation canals (acequias) (Fig 2.4b), and via pipes for drinking water. However, the demand
for water in the Andes already exceeds the quantity available in their own region and water
has thus been extracted from more distant sources. For instance, big artificial reservoirs and
water transfers have been built since 1990 on headwater streams on the Amazon slopes to
meet the demand for drinking water in Quito, the capital of Ecuador. In addition, also for
Quito, in 2000, a water fund (Fondo del Agua, FONAG) was established to finance the
conservation of catchments to secure the quantity and quality of water sources (Echavarria,
2012).

Despite the above-mentioned adaptation measures, numerous water issues remain to
be solved in Ecuador, all of which require a good knowledge of the past hydro-climatic
variability at national scale. This knowledge is essential for (i) the adequate management of
existing drinking water infrastructure, irrigation, hydro-power production, flood control and
water transfer; and (ii) planning of new infrastructure and the development strategies to
solve present and future problems linked to water quantity and quality.
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Figure 2.4. Maps of main water infrastructure in Ecuador, showing (a) hydro-electric power stations including
the year of construction, usable storage and installed capacity, (b) infrastructure for flood control, water
transfer and irrigation (with the area they supply), and traditional irrigation canals (acequias) in the Andes.
Cascading systems are identified by arrows (L;).
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3. The lack of knowledge on the past and future hydro-climatic
variability

3.1. Hydro-climatic monitoring

To understand past hydro-climatic variability, all available ground-based climatic and
hydrological data series over a multi-decadal period (e.g. 30 years as recommended by
WMO; Arguez and Vose, 2011) is required. However, data on the hydro-climatic network is
scarce and has not been adequately processed to provide reliable continuous information.

The national network is managed and maintained by the National Institute for
Meteorology and Hydrology (/nstituto Nacional de Meteorologia e Hidrologia — INAMHI).
Few historical data series on the national network are available to develop hydro-climatic
knowledge at national scale to support water management policies. INAMHI is responsible
for the centralized management of the majority of national gauges, but the data series in the
central database contain temporal discontinuities and missing data percentages. Selecting all
raw gauges, disregarding their data series, can create a fictitious scenario with good spatial
density. Only limited gauges remain when continuous data over the last 30-year period is
required, which is typical of a poorly gauged context.

For instance, official climate maps in Ecuador present serious limitations. Maps of
mean annual temperature and precipitation clearly do not include corrections for altitude. In
addition, these products do not give any details on the criteria used to select the gauges
such as their climatic representatibility or percentage of missing data (Fig 2.5). More robust
regionalization products are required based on the correct and controlled application of
interpolation methods.

Figure 2.5. Mean annual maps produced by INAMHI for a 30 year period (1981-2010): (a) temperature and (b)
precipitation. The number of gauges, missing data percentages and interpolation methods used are not
reported by INAMHI.
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3.2. Studies on past and future hydro-climatic variability

There are some explanations for the limited development of hydro-climatic knowledge at
the scale of Ecuador. The first obvious problem is the scarce and/or incomplete data at the
INAMHI national hydro-climatic network over multi-decadal periods. The second is the lack
of free access to all available historical hydro-climatic data series. INAMHI does not provide
continuous dataset product(s) such as distributed climate gridded data and validated
hydrological series, nor a central repository to download hydro-climatic series. However,
virtually complete hydro-climatic data series are accessible for individual research projects.
As each project used different methodologies for gauge selection, quality control and
completion, when processed data are shared, they cannot be combined because data are
not normalized and the lengths of time periods are not the same.

Due to the limited information on the national network, since 2000, local
hydrometeological networks have solved the spatial lack of information in some regions.
There may be many local gauges located in representative places that can be used to
produce complementary information. These local networks are maintained by drinking
water companies in the main cities (e.g. Quito, Guayaquil and Cuenca), hydro-electric
companies, agricultural companies and universities. Data series from local networks are used
to monitor water availability but also for some research projects. Local networks have
produced specific hydro-climatic knowledge on small catchments in the Ecuadorian Andes
(see e.g. Correa et al., 2017; Sucozhainay and Célleri, 2018; Gonzalez-Zeas et al., 2019).

The INAMHI network of gauges has not been used to produce comprehensive studies
that address the past and future hydro-climatic variability based on gauge-based
observational data over multi-decadal periods (= 30 years). Published studies relied on
different numbers of gauges, time scales and temporal periods.

3.2.1. Studies on the past climate variability

Moran-Tejeda et al. (2016), studied the climate trend and variability of daily precipitation
and temperature using 50 gauges in Ecuador (1966-2011) in the coastal region and the
Andean region, but not in the Amazon region. Their results provide evidence for the close
control of precipitation by the ENSO, especially in the coastal region, as well as for warming
across the Coastal region and the Andes (0.25 °C/decade). In another study, Tobar and
Wyseure (2018) used 319 gauges with monthly rainfall measurements for the period
1982-2011 to classify seasonal rainfall patterns in Ecuador. Their results highlighted clusters
classifying the country according to seasonal precipitation patterns in the Andes, Coastal,
Amazon and the Coast Orographic Andes (COA) regions. The authors also reported the
relationship between ENSO and rainfall for the Coast and COA.

Other studies at the scale of Ecuador used indirect datasets such as satellite-based
precipitation. Ballari et al. (2018) used 180 precipitation gauges at the monthly time scale
over the period 1998-2011. The authors included gridded satellite precipitation (TRMM
3B43), correcting their bias by in situ rain gauges to regionalize seasonality as well as
intensity precipitation patterns in the territory. Their results revealed five relevant regions of
precipitation, although limitations to represent regions with important orographic
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precipitation and locally variability patterns were reported. Ulloa et al. (2017) also used
satellite precipitation datasets (TRMM 3B43) to develop gauge-satellite merging methods
using 14 precipitation gauges for the period 2001-2011 applying downscaling approaches.
Their results showed different accuracies of satellite precipitation, depending on the
availability of in situ gauged, auxiliary satellite variables (NDVI and cloud top height) and the
particularities of the climatic regions. Studies that relied on satellite estimation of
precipitation showed varied and limited accuracy. Satellite estimations have mostly been
used to solve the scarce spatial data of the national network of Ecuador. Their results were
limited to the temporal depth of the satellite products (around 20 years) and their lower
spatial resolution (0.25° x 0.25°).

3.2.2. Studies of future hydro-climatic variability

Campozano et al. (2020) used five dowscaled models using one RCM and five CMIP5 models
to study the Standardized Precipitation Index (SPI) for droughts for the period 2041-2070.
The results showed a slightly decreasing trend for future droughts for the whole country.
Buytaert et al. (2010) addressed climate change in Ecuador (2070-2099) in the tropical
Andes using only one GCM and one RCM. Mora et al. (2014) used 23 GCM/RCM to study the
impact of climate change (2045—-2065) in one tropical Andean catchment (Paute river basin)
to determine the impact of climate change on water resources. Carvajal et al. (2017)
assessed the impacts of climate change on hydrological patterns and on the resulting
hydropower generation in six rivers in Ecuador. For this purpose, a hydrologic-electric
analysis was conducted using 40 GCMs for the period 2071-2100. The above-mentioned
studies in Ecuador partially addressed the future hydro-climatic variability at country scale
without considering the complete future horizon that includes the medium and long term
(2040-2100). No studies have assessed future hydro-climatic variability and its potential
impact on water resources in Ecuador as a whole.

3.3. Toward a coherent database to assess hydro-climatic variability

As shown in the above sections, in Ecuador, a variety of water issues need to be solved
related to waters risks (e.g. flooding, droughts and sediment transport), management of
water infrastructure (e.g. water reservoirs and hydroelectric power stations) and the
planning of new infrastructure (e.g. water withdrawals and waste-water treatment plants).
To correctly address these tasks, a good knowledge of past hydro-climatic variability
throughout the territory is required therefore the retrieval of all ground-based hydro-
climatic data for the last 30 years (1985-2015). Due to the poorly gauged context of
Ecuador, with limited information in space and over time, the aim of this PhD thesis is to
adapt different methodological techniques to construct complete reliable hydro-climatic
datasets to study the past and future hydro-climatic variability in Ecuador. This requirement
is addressed in the three following chapters: Chapter 3, the regionalization of temperature
and precipitation; Chapter 4, reconstruction of streamflows; Chapter 5, projection of the
hydro-climatic changes in the medium (2040-2070) and long term (2070-2100). These
results, operational gridded datasets and hydro-climatic time series, are made available for
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the first time. The products will enable more structured research that effectively addresses
the main water issues facing Ecuador today.
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1. Introduction

Air temperature and precipitation observed at in-situ gauges are the most basic climatic
variables required for a wide range of environmental applications and the main inputs for
hydro-climatic studies. To insure their maximum operability, instead of only punctual gauges
series, regionalized gridded datasets are preferred and obtained by applying interpolation
methods that transform punctual into continuous data over space (see e.g. Goovaerts, 2000;
Lam, 1983). Whatever the region in the world, although sources including satellite data,
models and gridded global dataset are rapidly improving and becoming widely available,
ground-based observational data remain the reference and are the preferred data (Jeffrey et
al., 2001).

No single interpolation method or adaptation can be considered as optimal for all
regions. Different techniques applied worldwide produce different results thereby revealing
the advantages and limitations of both simple and complex methods (see e.g. Ly et al., 2013
for a review). Nevertheless, the performance of the methods is mainly driven by the density
of gauges, data variation and sample design (Hofstra et al., 2008; Li and Heap, 2008). In
regions where data are scarce, different interpolation methods can lead to different
efficiencies and make more difficult to choose the most suitable techniques. The reverse is
true in regions with high density networks, where simple and complex interpolation
methods (e.g. spline, IDW, kriging) are almost equally accurate (Jeffrey et al., 2001; Szolgay
et al., 2009; Otieno et al., 2014).

Differences in the results of interpolation methods are also related to the wrong way
of selecting data and applying the methods. It is thus important to understand how to
correctly apply interpolation methods with available ground-based data. The literature
review showed that two methodological stages are overlooked by many studies and that, if
they are correctly handled, improved results can be expected. The first stage concerns
choosing representative gauges and favors the strategic selection of data (e.g. Bhowmik and
Costa, 2015) regardless of the number of gauges, which is limited in data scarce regions. The
second is the importance of calibrating parameters (e.g. Li and Heap, 2011, 2014). Studies
elsewhere have already shown individual improvements of interpolation schemes when the
parameters are calibrated, for example, the power of distance (e.g. Kurtzman et al., 2009),
number of neighbor gauges (e.g. Ahrens, 2005), variograms of geostatistical methods (Aalto
et al., 2013; Ahmed et al., 2014) and altitudinal corrections (e.g. Valéry et al., 2010; Ruelland,
2020).

The main objective of this chapter is to propose a complete, structured, and
comprehensive methodological protocol that combines methodological approaches
potentially able to regionalize climate data in poorly-gauged regions. Individual
improvements combined in one methodological chain is expected to increase the collective
accuracy of interpolation estimations. Using Ecuador as a case study, the proposed
methodological protocol is organized in three sections. Section 2 underlines the importance
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of data selection in poorly gauged contexts, i.e. controlling missing data thresholds, checking
the stability of temporal data and its influence on trend changes. Section 3 describes the
interpolation methods tested and the calibration of their parameters including elevation
dependency. Section 4 is dedicated to the application of a comprehensive validation process
of interpolated results in three steps: cross-validation applied to calibrate parameters,
punctual validation with independent gauges and evaluation of interpolated datasets using
hydrological models.

2. Data and methodology

2.1. Selection of climatic data

All historical climatic ground-based observation were obtained from INAMHI’s database over
a 30-year period following the suggestion made by the World Meteorological Organization
(WMO) (Arguez and Vose, 2011). The selection of gauges began with all possible raw daily
climate information, with air temperature and precipitation data recorded by 206 and 424
gauges, respectively. Different selections of gauges were made according to missing data
thresholds over the hydrological year from September 1985 to August 2015 (hereafter
referred to as 1985-2015). Four of the most representative scenarios are shown in Figure
3.1 (top maps) and correspond to: (i) all raw available gauges, and gauges retained applying
missing data filters of less than (ii) 50%, (iii) 25%, and (iv) 5% for the period 1985-2015.

The series from all raw gauges contain a wide range of missing data percentages that
produce unrealistic yearly trends, as shown in Figure 3.1 (bottom graphs; red curves).
Accounting for all available gauges, past increase in available gauges until the early 1990s
produced unrealistic increases in air temperature (+ ~0.33 °C per decade over 1985-2015)
that may be falsely interpreted as being related to climate change. In the case of
precipitation, a decrease in the available series from the middle of the 1990s produced an
unrealistic reduction in precipitation (~150 mm) that masks even extreme precipitation
periods such as El Nifio 1997-1998.

On the other hand, the selection of gauges with less than 50%, 25% and 5% of missing
data revealed significant temporal stability (number of gauges with data) and produced
consistent yearly trends over the study period 1985-2015 as shown in Figure 3.1 (bottom
graphs; black, green and blue curves). The most demanding filter (< 5% of missing data)
resulted in the highest temporal stability but at the expense of spatial density. Filters of
<50% and <25% of missing data retained gauges with similar temporal stability, annual
trends and spatial density. The gauges with <25% of missing data retained produced the
most suitable relationship between spatial density, data stability and annual trends. This
filter was finally retained for the rest of the study and comprised 52 gauges for mean air
temperature and and 177 gauges for precipitation. This chapter shows that a balanced
selection (< 25% of missing data) focusing only on the main daily climatic variables such as
temperature and precipitation, provides considerably more spatially representative and
stable data over the period 1985-2015 and makes it possible to understand past climatic
variability all over Ecuador.
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Figure 3.1. Selection of climate data with respect to gauge density, data stability over time and yearly trends in
(a) temperature and (b) precipitation. The top maps show gauge density resulting from four selection criteria,
considering all raw available gauges and gauges retained applying missing data filters of less than 50%, 25%, 5%
missing data for the period 1985-2015. The bottom graphs present the data series provided by the gauges
presented in the top maps. Mean yearly trends were calculated applying a 5-year moving window.

2.2. Implementation of interpolation methods

Daily air temperature and precipitation regionalized datasets were created using a
representative range of interpolation methods from most simple to fairly complex. Four
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interpolation techniques with different ways of estimating unknown climate data between
observation points were implemented. Two deterministic methods that correspond to the
nearest neighbor (NN) technique (Thiessen, 1911) and the inverse distance weighting (IDW)
technique (Philip and Watson, 1982). Further, two geostatistical methods that correspond to
the ordinary kriging (OKR) technique and cokriging (CKR) technique (Goovaerts, 2000). For
deterministic methods (NN and IDW), an orographic gradient correction was integrated
according to the methodology proposed by (Valéry et al., 2010).

For the interpolations, a high-resolution (5 km x 5 km) grid was used. It was judged to
be sufficient to represent the national territory given the spatial density of selected climate
gauges. A SRTM (Shuffle Topographic Radar Mission) digital elevation model (DEM) (Jarvis et
al., 2001) originally 90 m was resampled to 5km x 5km to produce the reference spatial grid
for all interpolation schemes. Elevations from the DEM were specifically used for altitudinal
corrections for NN, IDW and as the covariable for the CKR scheme.

2.2.1. Deterministic methods

A simple way to interpolate temperature and precipitation is to assign to every un-sampled
point the value at its nearest control point using Euclidian distance. This technique was
introduced by (Thiessen, 1911), who was interested in how to use rain gauge records to
estimate total rainfall across a region. This approach, also called the nearest neighbor (NN)
technique, has the great virtue of simplicity since it does not require any parametrization,
unless one wants to account for the effect of elevation using multiplicative or additive
factors, as described below.

The inverse distance weighted (IDW) interpolation is based on the assumption that
the value at an un-sampled point can be approximated by a weighted average of observed
values in a search throughout a given range of closest points (Philip and Watson, 1982). The
weights used for averaging are a decreasing function of the distance between the sampled
and un-sampled points. A modified version of the IDW (Valéry et al., 2010) proposed a
technique to account for the altitudinal effect on temperature via Eq. 1.

An adiabatic thermal gradient can be considered based on an additional factor
affecting interpolated temperatures by an orographic gradient (lapse rate) according to
Eq. 1:

thaicm = ZNl X ZN [Wx,i X Tt(,)ibs - [etemp/loo X (Zx - Zi)]] (1)
i Wy, i
where thim is the temperature at the target grid point x at the time step; Tt‘ff’s is the
temperature at each gauging station i located in the neighborhood of the target point, 8¢y,
is the orographic gradient (in °C/100 m) to be estimated between 0 and 1.5.
A similar scheme was proposed for precipitation but accounted for the altitudinal
effect as an orographic gradient within an exponential function (exp) shown by Eq. 2.
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where Pgim is precipitation at the target grid point x at the time step t; Z"’; is the inverse

i Wxi

distance weighting interpolator based on the N available neighbors; Pt‘fl-bs is precipitation at
each gauging station i located in the neighborhood of the target point; z, is the elevation of
the target point and z; the elevation of the neighboring gauge stations; a is a real positive
number, called the power parameter’; Oprecip 1S the orographic gradient factor to be
estimated between 0 and 1.5 within the exponential function (exp). For instance, a value of
0.2 (0.4, 0.8, 1.2) corresponds roughly to a 20% (50%, 125%, 235%) increase in precipitation
at an elevation of 1000 m, while a zero value means no increase at all.

2.2.2. Geostatistical methods

Ordinary kriging (OKR) is a geostatistical estimator extensively described in (Goovaerts,
1997; Webster and Oliver, 2007). OKR relies on the distance-weighting approach involving
the development of a semi-variogram function that describes the characteristics of the
relationship between weight and distance that was specific to the data set (Matheron, 1971;
Isaaks and Srivastava, 1989). This technique first examines the covariation of data values
depending on their distances apart by constructing a sample (experimental) semi-variogram.
All possible pairs of data points are examined then grouped in distance classes and graphed
with one half the variance of the difference in values (the semi-variance). A theoretical curve
(model semi-variogram) is then automatically fitted to these points by optimizing the model
using cross-validation procedures. Lastly, this model determines the weights to be used for
each neighboring point to compute the interpolated values according to Eq. 4. The usual way
to estimate the theoretical semi-variogram model is using nugget variance (the variance at
zero distance), the sill (the variance to which the semi-variogram asymptotically rises), and
range (the distance at which the sill is reached) (Phillips et al., 1992).

n
Zosor= ) A Zoxy (4)
i=1

where nis the number of climate observations, Z(XO) is the estimation value of the
variable Z at unmeasured location Xo, Z(y;) is the value of the variable Z at the sample
location Xi, and 4; is the weight assigned to Zy;). It is assumed that the estimates Z(XO) are
not biased, therefore the sum of the weights A; must be equal to 1 (X1~ 4; = 1).

Cokriging (CKR) is a complex extension of OKR when auxiliary variables are used to
estimate values at unsampled locations. More details on the method can be found in

' The weight of the neighboring points decreases with an increase in the distance. The larger values of Alpha give a greater
influence to the values closest to the interpolated point. The choice of Alpha is therefore a function of the degree of smoothing desired for
the interpolation, the density and distribution of the interpolated samples, and the maximum distance beyond which an individual sample
can influence the surrounding points.
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(Cressie, 1990; Hevesi et al., 1992; Goovaerts, 2000). CKR uses the spatial cross-correlation
between the observed climate variable and a correlated co-variable to minimize the variance
of the estimation error. Estimations were calculated applying a weighted linear combination
of the climatic variable of interest and a co-variable (Eq. 5) using an additional cross-
semivariogram (Phillips et al., 1992; Erxleben et al., 2002). For this study, elevations from the
DEM were used as co-variables.

n m n

Z(XO)= Z:Aiz Zxiy z z A}" Yixj) (5)
i=1 j=1 i=0
where, in the case of CKR, the estimated value Z(XO) is obtained by a linear

combination of n climate gauges values Z at Xi locations with A7 weights, and m data values
of the covariable (elevations) Y at Xj locations with A}' weights.

2.3. Comprehensive validation of interpolated climate data

2.3.1. Parameter calibration by cross-validation

A leave-one-out cross validation also called jack-knife technique (for more details see e.g.
Efron and Gong, 1983; Brath et al., 2003) was used to calibrate the main parameters of the
different interpolation techniques. The jack-knife technique consists in extracting each
observation points (gauge) in turn then using the remaining points to estimate values at
excluded locations. Parameter calibration aimed at minimizing the differences between
observed and interpolated values using the root-mean-square error (RMSE) as objective
function (Eq. 6). The best-performing results lead to the smallest RMSE, thus indicating
smaller differences between interpolated and observed values and the associated parameter
sets that produce the best performance for each method.

For both deterministic methods (NN and IDW), the calibrated parameters were the
orographic gradient for air temperature and precipitation (8¢emp, Oprecip). Specifically, for
IDW, the power parameter (a) together with the number of neighbors (N) to consider were
also calibrated. Variograms and cross-variograms for the geostatistical methods (OKR and
CKR) respectively, were modeled by fitting a theoretical mathematical function. Orographic
gradients were not applied for OKR for the sake of comparison with the CKR technique,
which uses the full distributed altitudes of the DEM as co-variables. The above-mentioned
parameters were found throughout the ranges and mathematical functions shown in
Table 3.1.

RMSE=\/ §V=1(Xsir;,_Xobs)2 (6)

where, X,;, and X,,5, as appropriate, respectively correspond to simulated and observed
temperature or precipitation at time step i, and N is the total number of observations.
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Table 3.1. Interpolation methods and respective free parameters showing the ranges used during the jack knife
cross-validation.

PARAMETERS AND RANGES

INTERP Variogram and Cross-
Altitudinal correction (0) Number of neighbors (N) Distance power (a) . &
METHODS variogram models *

Btomp =0~-1.5°C/100 m

NN
Oprecip=0—1.5/1000 m
Bremp=0—1.5°C/100m 0-all gauges
IDW (52 for temperature) 0-4
Bprecip=0-1.5/1000m A
(177 for precipitation)
Bil, Cir, Sph, Pen,
OKR
Exp, Gau, Stb
Bil, Cir, Sph, Pen,
CKR
Exp, Gau, Stb

*For OKR and CKR, seven mathematical functions were used to fit their sample variograms and cross-
variograms, respectively: Bilinear (Bil), Circular (Cir), Spherical (Sph), Pentaspherical (Pen), Exponential (Exp),
Gaussian (Gau) and Stable (Stb). (For more details on using this functions in geostatistical studies, see e.g.
Pebesma, 2004).

2.3.2. Evaluation through punctual independent climate gauges

The cross-validation described in the preceding section was limited to gauges with less than
25% daily missing data in the period 1985-2015. An additional validation was conducted
based on independent gauges with between 25% and 50% daily data missing over the same
period. It thus consisted in using independent gauges to compare interpolated (or predicted)
values with observed values in unknown (independent) locations and in assessing the
accuracy of predictions obtained with interpolation methods (NN, IDW, OKR and CKR). The
accuracy of interpolation results for temperature and precipitation was evaluated using
RMSE (Eq. 6.), which measures the average precision of the interpolations and should be as
small as possible.

2.3.3. Evaluation using conceptual hydrological models

Two lumped hydrological models (GR4J and HBV9 (see Chapter 4 for a detailed description
of the models) were chosen to analyze the sensitivity of streamflow simulations to the
various interpolated precipitation datasets (NN, IDW, OKR and CKR).

The two models were calibrated on 10 representative catchments (see Figure 3.6) with
flow series containing less than 25% daily missing data over the period September
1990-August 2010 in hydrological years (hereafter referred to as 1990-2010). Both models
require daily potential evapotranspiration (PE) and precipitation (P) as inputs. PE has proved
to be an input with low sensitivity in conceptual hydrological models compared with
precipitation (see Andréassian et al.,, 2004; Oudin et al., 2006b). Moreover, PE depends
mainly on temperature that is subject to only slight seasonal variations in Ecuador, and
which was shown to be correctly captured whatever the interpolation method used (see
Table 3.2). The best-performing temperature gridded dataset selected based on the cross-
validation and the punctual independent evaluation was then used to compute potential
evapotranspiration (PE) applying the formula proposed by (Oudin et al., 2005) (see equation
4.1 in Chapter 4).
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Catchment PE and P-averaged values were computed from the 5 km grid cells PE
(derived from the best-performing temperature dataset) and P (from the NN, IDW, OKR and
CKR datasets) included in each catchment considered. The four precipitation datasets were
used sequentially as forcing precipitation datasets for the streamflow simulation (Q). For
each run, model parameter calibration was based on the shuffled complex evolution (SCE)
algorithm (Duan et al., 1992, 1993) by optimizing the Nash—Sutcliffe efficiency criterion (NSE,
Eq. 4.3; Nash and Sutcliffe, 1970) applied to root-squared transformed streamflows (NSEgq).
NSEsqrt can be considered as a multi-purpose criterion focusing on the simulated hydrograph.
It puts less weight on high flows than the standard NSE on non-transformed discharge
(Oudin et al., 2006a). It served as objective function during calibration. To put more
emphasis on high and low flow conditions for the comparison of the precipitation datasets,
two criteria were used to evaluate model performance over the 1990-2010 period in each
catchment: the NSE on non-transformed streamflows (NSE), which gives more weight to the
large errors generally associated with peak flows, and the NSE on log-transformed
streamflows (NSEj.g), which gives more weight to the errors associated with low flows. The
NSE criterion described above represents the overall agreement of the shape of the
hydrograph. NSE values vary from -o to 1, with a maximum score of 1 meaning a perfect
agreement between the observed and simulated values. By contrast, negative values mean
that more realistic estimates are obtained using the observed mean values than using the
simulated ones.

Regarding all results of the current section (NSEsq:, NSE and NSEi), together with
results of cross-validation section 2.3.1) and punctual independent climate gauges (section
2.3.2), the most realistic interpolated precipitation dataset was selected.

3. Results and discussion

3.1. Cross-validation of the interpolation methods

Table 3.2 lists the results of cross-validation of the interpolation methods against daily,
monthly, and yearly series from temperature and precipitation gauges. It presents the
interpolation performance in terms of RMSE the parameters calibrated at various time
scales. Depending on the interpolation method, these parameters correspond to orographic
gradients for air temperature (6¢emp) and precipitation (0p,.¢cip), power of inverse distances
(a), neighbor gauges (N), mathematical models for variograms (Vmodel) and cross-variogram
(CVmodel). The above-mentioned parameters were used to interpolate gridded datasets
covering a 30-year period (1985-2015). Finally, the gridded datasets were summarized in
mean annual maps of average air temperature and total annual precipitation (Figure 3.3).
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Table 3.2. Results of cross-validation for the period 1985-2015 at daily, monthly, and yearly time scales.
Average RMSE values and calibrated parameters are presented for each interpolation method and variable. The
best values are in bold.

TEMPERATURE PRECIPITATION
(52 gauges between 11 and 3600 m.a.s.l) (177 gauges between 8 and 3800 m.a.s.l)
Deterministic Geostatistical Deterministic Geostatistical
Metrics NN IDW OKR CKR NN IDW OKR CKR
RMSE 1.53°C 1.27°C 3.13°C 1.33°C 10.79 mm 8.50 mm 8.88 mm 8.55 mm
= = Vmodel = CVmodel = Vmodel = CVmodel =
= Parameters etemp etemp herical ial Bprecip=0 Oprecip=0 ial ial
S 0.48°C/100m  0.48°C/100m spherica exponentia exponentia exponentia
a=2 a=1
N=31 N=11
RMSE 1.15°C 0.98 °C 3.13°C 1.14°C 106.77 mm 88.52 mm 87.31 mm 85.54 mm
z 6 6
£ temp = temp = Vmodel = CVmodel = Vmodel = CVmodel =
‘g‘ Parameters P P . - eprecip =0 eprecip =0 . .
g 0.48°C/100m  0.47°C/100m spherical exponential exponential  pentaspherical
a=3 a=2
N =39 N=7
RMSE 1.04°C 0.88 °C 3.60°C 0.94°C 805 mm 699 mm 689 mm 695 mm
z 0 = 0 = Vmodel =  CVmodel = Vmodel = CVmodel =
= temp = temp = mode mode mode mode
< Parameters P P . . eprecip =0 eprecip =0 . .
L 0.48°C/100m  0.46°C/100m spherical exponential exponential  pentaspherical
a=2 a=2
N =26 N=11

3.1.1. Air temperature

For air temperature, it is essential to account for orographic gradient (6;epp). Not
accounting for orographic gradient as illustrated by OKR (Fig. 3.3) produced clearly
inaccurately representations of temperature. At daily, monthly and yearly time scales, IDW
outperformed all methods. At the daily time scale, IDW was the best performing method
(RMSE = 1.27 °C/day) using a fixed orographic gradient (6;¢y,, = 0.48 °C/100 m), a power of
inverse distance (¢ = 2) and neighbor gauges (N=31). IDW was closely followed by CKR
(RMSE=1.33 °C/day) using an exponential model to fit the daily cross-variogram shapes of
temperature (see Table 3.2).

Interpolated performances obtained with CKR were fairly close to IDW, but CKR
accounts for altitude differently. The CKR scheme has the capacity to apply different
orographic gradients at each time step (day by day corrections between 0.39 to 0.47 °C/100
m) and by altitudinal ranges (for altitudes < 4 500 m a.s.| = 0.43 °C/100 m, and for altitudes
>5 500 m a.s.] = 0.51 °C/100 m) (Fig. 3.2). This specific characteristic of CKR provides better
estimates of the lowest temperatures over the Andes region than the deterministic methods
(NN and IDW), which use fixed orographic gradients. This can be seen by looking closely at
central and north Andes where coldest temperatures (-0.1 °C/year) estimated by CKR match
those of four main higher mountains with glaciers (Cayambe, Antisana, Cotopaxi and
Chimborazo).
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Figure 3.2. Variability of orographic gradients estimated with CKR: (a) altitudinal (spatial) and (b) temporal
(daily multi-year average). Values were obtained by daily lineal regression of estimated temperature vs
altitudes obtained from DEM (5 km x 5 km).

Daily mean orographic gradients calculated for Ecuador (0.48 °C/100 m with NN and
IDW methods, and 0.43 °C/100 m with CKR) can be considered as consistent results at the
scale of Ecuador for several reasons. First, because values are within the ranges normally
tested in studies ranging from about 0.98 °C/100 m for dry air (i.e., the dry-air adiabatic
lapse rate) to 0.40 °C/100 m (saturated adiabatic lapse rate) (Dodson and Marks, 1997).
Second, because studies as (Dodson and Marks, 1997) have shown that spatial variation in
orographic gradients over larger mountainous regions may lead to smaller values. Finally,
because similar orographic gradients (0.39-0.52 °C/100 m) (Minder et al., 2010) were also
found for mountains ranges that separate maritime and continental climates (Cascade
mountain in United States) which is the almost the same effect as that produced by the
Andes range in Ecuador.
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Figure 3.3. Mean annual maps over 30 hydrological years (1985-2015) of temperature in °C/year using 52
gauges and obtained with the nearest neighbor (NN), inverse distance weighting (IDW), ordinary kriging (OKR)
and cokriging (CKR) methods. The maps in the bottom row represent a zoom over the Andes region showing
how each method represent the coldest regions. Red squares represent the four highest peaks with glaciers in
the CKR also represented by a satellite map of Google Earth. Numbers below maps show their respective
minimum, mean, and maximum values in °C/year.

3.1.2. Precipitation

For precipitation, whatever the time scale, deterministic interpolation methods (NN an IDW)
were clearly not sensitive to orographic gradients (6,¢cip = 0). At the monthly and yearly
time scales, geostatistical methods (OKR and CKR) outperformed deterministic methods. In
particular, CKR performed best at monthly time scale (RMSE = 85.54 mm/month) and OKR
at annual time scale (and RMSE = 689 mm/year), which is normally expected when
geostatistical methods are used at these time scales (Goovaerts, 2000; Diodato, 2005; Lloyd,
2005; Moral, 2010; Ruelland, 2020). However, at the daily time scale, IDW performed best
(RMSE = 8.50 mm/day) using a power of inverse distance (a = 1) and neighbor gauges (N=11).
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IDW was closely followed by CKR (RMSE=8.55 mm/day) using an exponential model to fit the
daily cross-variogram shapes of precipitation (see Table 3.2).

The maps of annual precipitation interpolated using the four different methods (NN,
IDW, OKR and CKR) present similar spatial patterns (Fig 3.4). The specific differences are
mostly related to the geometric and smoothing degree of the spatial patterns and to the
minimum, mean, and maximum precipitation values. NN produced polygonal patterns and
estimated more mean annual precipitation (2010 mm), while geostatistical methods led to
more smoothed pattern in the form of circular fields of influence producing lower annual
precipitation (OKR=1820 mm, CKR=1772 mm). Estimated with IDW, precipitation presented
less smoothed fields than with geostatistical methods and led to intermediate annual
precipitation (1946 mm) compared to when estimated with NN and geostatistical methods.

IDW

(mm / year)
5000
4500
4000

3500
297 | 2101 | 5067 334 | 1946 | 4581

OKR CKR

3000
2500
2000
1500

1000
500

3251|1820 | 4636 446 | 1772|4295

Figure 3.4. Mean annual maps over 30 hydrological years (1985-2015) of precipitation in mm/year using 177
gauges obtained with the nearest neighbor (NN), inverse distance weighting (IDW), ordinary kriging (OKR) and
cokriging (CKR) methods. Numbers below the precipitation maps show respectively their minimum, mean, and
maximum values in mm/year.

3.2. Interpolation performances versus punctual independent gauges

The interpolation methods (NN, IDW, OKR and CKR) at daily time scale were also evaluated
using 23 and 39 gauges for air temperature and precipitation, respectively. Selected gauges
were obtained from the original climate database authorizing daily data gaps between 25%
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and 50% over the study period (1985-2015). The locations of the gauges used for
interpolation (selected in section 2.1) and those used for the evaluation of prediction in
independent locations are shown in the Figure 3.5. It should be noted that 60% of the
independent gauges are located in the Andes (= 2 400 m a.s.l), i.e., are a suitable dataset to
assess the capacity of interpolation methods to estimate fields in altitude.

Temperature interpolated with CKR slightly outperformed (mean RMSE = 1.84 °C) the
other methods (NN, IDW and OKR) (Table 3.3). The dynamic orographic gradients used by
CKR over time (0.39-0.47 °C/100 m) and at altitude (0.43-0.51 °C/100 m) led to the
satisfactory estimation of the spatial pattern seen from independent locations.

Considering the previous results of cross-validation (the performances of IDW and CKR
were close), the appropriate representation of coldest temperatures in altitude (Fig. 3.3) and
the independent validation scores (Table 3.3), CKR dataset was considered to be the best
dataset to represent air temperature and was therefore retained for the rest of the study.

Regionalizing precipitation is more challenging than regionalizing temperature. The
results of the evaluation of four interpolation methods were close (RMSE ranged between
8.50 and 10.30 mm/day). However, the IDW technique (RMSE = 8.50 mm/day)
outperformed the simplest deterministic method (NN) and slightly outperformed the
geostatistical methods (OKR and CKR). As shown up to this section, there was no conclusive
evidence to discard a given precipitation dataset from these values. Further research was
thus needed in the form of a hydrological sensitivity analysis to better distinguish between
interpolation methods.

(a) (b)
N N
A Colombia A Colombia
g g
3 8
o o
g £
E £
[ [
® \/alidation gauges (23) @ Validation gauges (39)
* Interpolation gauges (52) * |nterpolation gauges (177)
Peru Peru

Figure 3.5. Location of interpolation gauges (blue dots) used for interpolation and validation gauges (red dots)
used to validate interpolation datasets for (a) temperature and (b) precipitation. Validation gauges were
selected applying a filter of between 25% to 50% of daily missing data.
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Table 3.3. Evaluation of RMSE performances of interpolation datasets as seen by independent gauges
composed of 23 gauges for temperature and and 39 for precipitation. The interpolation methods evaluated
were nearest neighbor (NN), inverse distance weighting (IDW), ordinary kriging (OKR) and cokriging (CKR). The
best scores are in bold. *Deterministic methods implement with a fixed orographic gradient for temperature
(Btemp = 0.48 °C/100m) and without gradient for precipitation (8, ¢cip = 0).

Temperature (23 gauges) Precipitation (39 gauges)
Interpolation Methods 25-50% of daily gaps (25-50% of daily gaps)
Mean RMSE (°C/day) Mean RMSE (mm/day)
NN* 2.21 10.30
Deterministic
IDW* 2.05 8.50
OKR 3.14 8.54
Geostatistical
CKR 1.84 8.55

3.3. Sensitivity of streamflow simulations to the interpolation methods

Temperatures interpolated with CKR (retained in the preceding sections) were used to
estimate potential evapotranspiration and were used together with four precipitation
interpolated datasets (NN, IDW, OKR and CKR) to run two hydrological models (GR4J and
HBV9) and to evaluate the mean areal precipitation on 10 catchments (Fig 3.6).

Colombia

Pacific Ocean

o
Elevation (m.a.s.l)

. High : 6200

Low: 0

® Streamflow gauges
D Catchment limits
River streams

T T T T T T

Figure 3.6. Location of 10 catchments and hydrological gauges used to validate the precipitation interpolation
datasets (NN, IDW, OKR and CKR) using the modeled streamflow obtained with two daily hydrological models
(GR4J and HBV9).

Table 3.4 summaries the results of the objective function (NSEsqt) and two additional
performance metrics (NSE - peak flows and NSEi,g = low flows) used to evaluated the
precipitation datasets (NN, IDW, OKR and CKR) with hydrological models (GR4J and HBV9)
for 10 catchments. The IDW precipitation dataset led to the best hydrological simulations,
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both with GR4J (NSEs=0.80; NSE=0.71; NSE,;=0.77) and HBV9 (NSE,+=0.83; NSE=0.76;
NSE,g=0.80). The slightly better performances obtained with the HBV9 model is probably
due to its nine parameters, which make it possible to further tune simulations compared to
GR4J, which is based on only four parameters (see Chapter 4 for further details).

All the results of the evaluations presented in the preceding sections (cross-validation,
punctual independent gauges and hydrological model sensitivity) clearly showed that IDW
provided the best dataset. The IDW dataset was thus retained to represent precipitation
regionalization for the rest of the study.

Table 3.4. Mean modeling performances in terms of NSE:, NSE and NSE,,, obtained in the 10 catchments
with two daily hydrological models (GR4J with 4 parameters and HBV9 with 9 parameters) forced by the four
interpolated precipitation datasets (NN, IDW, OKR and CKR). The best scores are in bold. Interpolated
precipitation datasets correspond to: nearest neighbor (NN), inverse distance weighting (IDW), ordinary kriging
(OKR) and cokriging (CKR).

GR4) HBV9

Interpolation
method NSEqt NSE NSE g NSEqt NSE NSE o
(precipitation)

NN 0.76 0.67 0.73 0.82 0.75 0.79
IDW 0.80 0.71 0.77 0.83 0.76 0.80
OKR 0.78 0.70 0.73 0.83 0.75 0.80
CKR 0.79 0.69 0.76 0.83 0.75 0.80

4. Past climatic variability

The selected gridded datasets of air temperature (CKR) and precipitation (IDW) were used to
characterize the past climatic variability at the scale of the whole of Ecuador. Figure 3.7
shows the mean annual spatial patterns and the seasonal and inter-annual variability of air
temperature and precipitation in the period 1985-2015 in three main regions (Coastal,
Andes and Amazon). The regions with highest annual precipitation are located in the
northern coastal region (~3 500 mm/year) and on the eastern flanks of the Andes (~4 500
mm/year). Precipitation normally increases with an increase in altitude on the western and
eastern flanks of the Andes due to the orographic effects and windward exposure (Bendix
and Lauer, 1992). However, above ~1 000 m a.s.l, precipitation decreases up to the inter-
Andean region (~1 100 mm/year).

Annual average patterns of air temperature gradients from the tropical Coastal region
(24 °C/year, range 12 °C to 26 °C), and the Amazon region (23 °C/year, range 12 °C to 25 °C)
to the cooler mountains in the Andes (12 °C/year, range -0.1 °C to 22 °C). Total annual
precipitation varies from the permanently humid Amazon region (2 741 mm, range 841-
4 623 mm), followed by the Coastal region (1 557mm/year, range 341-3 414 mm) and the
Andes (1 112 mm/year, range 487-2 912 mm).

No distinct seasons were identified for air temperature over the year in the three
regions. The differences between hottest and coldest months is fairly small (ATcoast=1.7;
ATandes=1.3; ATamazon= 1.6 °C/month), which is consistent for the tropical context of Ecuador
(latitudes ranging from 2°N to 5°S). In the Coastal and Andes regions, seasonal precipitation
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is associated with the meridional displacement of the intertropical convergence zone (ITCZ)
and sea surface temperature (SST) fluctuations over the Pacific Ocean (e.g. Rossel and
Cadier, 2009; Vuille et al., 2000b). The wet and dry seasons are respectively the result of the
southernmost and northern position of the ITCZ (Mitchell and Wallace, 1992). The Coastal
region presents the highest seasonal variability (difference between wettest and driest
months: AP=273 mm) with one marked wet season (January to April) and one dry season
(July to September). The Andes present the lowest variability (AP=95 mm) with one only
slighty distinguishable wet season (February to May) and one dry season (July to
September). The Amazon region also presents little seasonal variability (AP=104 mm) with
only one wet season (April to June) and without a real dry season because the precipitation
occurs almost all year round. The seasonal precipitation on the Amazon region is associated
with the southward-displacement of the ITCZ (Marengo, 1992) and the low-level moisture
transport from the tropical Atlantic Ocean onto the continent together with
evapotranspiration in the humid Amazonian rain forest plains (Bendix and Lauer, 1992;
Espinoza et al., 2011; Poveda et al., 2014).

Inter-annual air temperature throughout the three regions is not significant (difference
between the hottest and the coldest years; ATcoast=1.6; ATandes=1.0; ATamazon= 1.5 °C/year). A
slight increase in air temperature can be detected in the Coastal (0.24 °C per decade), Andes
(0.22 °C per decade) and Amazon (0.23 °C per decade) regions for the study period 1985—
2015. These results are close of warming ratios reported for the Coast and Andes of Ecuador
(0.25 °C per decade) over the period 1966—-2011 (Moran-Tejeda et al., 2016), Peru (0.20 °C
per decade) over the period 1970-2008 (Rau et al., 2018) and for the tropical Andes (0.32 °C)
over the period 1974-1998 (Vuille et al., 2000). The ENSO (El Nifio and La Nifia phases) was
the main cause of inter-annual precipitation variability in the Coastal region, which had the
most inter-annual variability (AP = 2775 mm). The very strong El Nifio event of 1997-1998
was by far the wettest year in the Coastal region (3 836 mmm), while other ENSO events of
different intensities also influenced the inter-annual variability of precipitation in the region
(e.g. strong El Nifio in 1991-1992 and moderate La Nifia in 1995-1996). In the Andes
(especially in the northwestern part of the Andes), El Nifio phases are associated with below-
average precipitation (Vuille et al.,, 2000a) (e.g. El Nifio 2002-2003), while the opposite
occurs during La Nifa events (Vicente-Serrano et al.,, 2017) (e.g. La Nifia 1999-2000).
Precipitation variability in the Amazon region is also influenced by ENSO. El Nifio phases (e.g.
El Niflo 1994-1995) reduces precipitation in the Amazon region due to the weakened South
Pacific trade winds and consequently less moisture is transported from the east (Marengo,
1992), while the opposite occurs during La Nifia phases (e.g. La Nifia 1999-2000) (Bendix et
al., 2011a; Vicente-Serrano et al., 2017).
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Figure 3.7. Past climatic variability of air temperature and precipitation in Ecuador over the period 1985-2015
in the three main climate regions: Coastal, Andes and Amazon regions. The maps on the left show the spatial
temperature and precipitation patterns, interpolated using cokriging (CKR) and inverse distance weighting
(IDW), respectively. The right panels show seasonal and inter-annual variability.

5. Conclusions

A methodological protocol adapted to poorly-gauged regions is proposed to construct a
reliable ground-based regionalization dataset for air temperature and precipitation. Three
main methodological steps should be implemented with great caution: (i) carefully selecting
gauges based on missing data thresholds to guarantee data stability over a multi-decadal
period while making sure trend changes are coherent; (ii) implementing different
deterministic and geostatistical interpolation methods considering all parameter calibration,
accounting for elevation; and (iii) applying a comprehensive validation chain considering
cross-validation, independent gauges and assessment of the hydrological models. All these
steps can be applied elsewhere and are expected to improve the data regionalization in all
contexts, particularly in data scarce regions.

For air temperature regionalization, obvious improvements can be made by taking
elevation into account during the interpolation process. Both applying constant orographic
corrections to deterministic methods (NN, IDW) and using geostatistical methods such as
CKR with calibrated cross-variogram produced satisfactory results. In the Andes of Ecuador,
the CKR technique produced consistent estimations of the coldest temperatures in mountain
areas. The accuracy of CKR is mainly due to its own calculation scheme that considers
orographic gradient corrections varying by elevation levels and over time (day-by-day
orographic gradients). Of course, CKR has previously yielded good results estimating
temperature as shown elsewhere in mountainous regions (e.g. Ishida and Kawashima, 1993)
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and with sparse gauges (e.g. Aznar et al., 2013). Nevertheless, other methods could be
included in future studies, for instance: kriging with external drift (KED, Ahmed and de
Marsily, 1987) or IDW with external drift (IED, Ruelland, 2020) that consider local trends in
the neighborhood, and techniques such as spatio-temporal regression-kriging (Hengl et al.,
2012). Even if research is already progressing thanks to including the effects of topography
at different spatial scales, an appropriate observation network that includes high-elevation
stations is indispensable.

Precipitation patterns are hard to regionalize whatever the deterministic or
geostatistical methods used. In the case of Ecuador, geostatistical methods appear to be
more adapted to represent monthly and yearly precipitation, as also confirmed in review
studies (e.g. Ly et al., 2013). Simple methods such as IDW without orographic correction
seem to be better adapted to represent daily precipitation, as also shown elsewhere in
poorly gauged regions in West Africa (Ruelland et al., 2008) and mountainous regions with
relative scarce data (Ruelland, 2020; French Alps). The use of hydrological model to evaluate
the areal precipitation produced by each interpolation methods can be highly
recommended. The hydrological sensitivity to interpolation fields of climate is indeed a
powerful complementary approach to choose between interpolation methods applied for
precipitation. Other interpolation methods, for instance kriging or IDW with external drift
(KED, IED), and regional regression methods, among many others, can also be used to
interpolate precipitation. Using KED or IED with the spatial patterns of satellite-based
products as secondary variable is also promising for poorly gauged regions (e.g. Wagner et
al., 2012).

Methods such as cross-validation can be used to evaluate and calibrate different
parameters for the estimation of temperature and precipitation. However, it should be
noted that the search strategy that generates the best cross-validated results may not
necessarily produce the best estimations at un-sampled locations, particularly in poorly
gauged regions. Including gauge-based independent evaluation, a visual examination of
spatial patterns, and further hydrological sensibility analyses are highly recommended,
particularly for precipitation. The hydrograph produced by hydrological models notably gives
a complementary and integrate overview to choose between interpolation techniques with
similar performances compared to when only traditional validation methods such as cross
validation are used.

As a technical result, high resolution (5 km x 5 km) gridded layers were generated that
interpolated observed daily temperature and precipitation data. These gridded datasets
represent the first ground-based observational data for Ecuador calculated for the 30-year
period 1985-2015. They pave the way for a wide range of studies and derived research such
as hydrological modeling and analysis of future climate change.
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1. Introduction

In poorly-gauged regions, streamflow observations typically involve serious problems of
missing data and quality. These problems severely limit our ability to represent and
understand the past hydrological variability over multi-decadal periods (e.g. 30 years). When
a regionalized climatic dataset is available (Chapter 3), the implementation of hydrological
modeling is not itself a limitation in poorly gauged regions since hydrological models can be
used to generate complete streamflow time series from meteorological time series, thus
providing continuous proxy river flow data. For the last four decades, researchers have tried
to incorporate different catchment characteristics in hydrological models, resulting in
numerous mathematical models and structures (Jajarmizadeh et al., 2012). These models
range from physically-based to conceptual and metric models.

Physically-based models require a huge amount of data including soil moisture
content, initial water depth, topography, topology, river network dimensions, etc. These
models are so hard to develop and can often only be used in a limited number of physical
systems or for specific research. Conceptual models usually represent the main hydrological
processes perceived to be of importance at the catchment scale (Wheater, 2002) using a
number of interconnected reservoirs and calibrated parameters. These models are made of
a number of conceptual elements that are simplifications of the real hydrological system
(Pechlivanidis et al., 2011). Metric models are highly simplistic because they only take a few
features and processes into account to characterize a hydrological system.

Conceptual rainfall-runoff models are more suitable for context where data is scarce
(Ruelland et al., 2008; 2012; Dakhlaoui et al., 2017) and a variety of model structures can be
found in the literature (see e.g. Perrin et al., 2001; Seiller et al., 2012). Conceptual models
require basic climate data such as precipitation and potential evapotranspiration to
represent the main natural hydrological processes in a catchment. Using conceptual models
(and any other types of model) involves some sources of uncertainty. These uncertainties
represent the lack of model robustness (considerably simplification of reality and different
philosophies) and the extrapolation of model parameters to different climate conditions
(climate dependence of some parameters), which introduce significant errors in simulations
(Coron et al., 2012; Brigode et al., 2013). Parameter uncertainty is generally assessed and
reduced using powerful optimization algorithms (e.g. shuffled complex evolution metropolis
algorithm; Vrugt et al., 2003). However, the extrapolation of the parameters to contrasted
climate conditions should also be addressed.

It is prefereable to use different model structures (Van Esse et al., 2013; Seiller and
Anctil, 2014; Seiller et al., 2012, 2015) combined with varied parameter subsets (e.g. Coron
et al., 2012) evaluated under contrasted conditions and long-term climate variability (e.g.
Dakhlaoui et al.,, 2019) to obtain a more coherent streamflow signal than single model
structures and single parameter subsets provide. The use of multi-models and multi-
parameters (model ensembles) is often recognized as a promising way to improve
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performances beyond that of the best single model as supported by other studies (e.g.
Veldzquez et al., 2010; Fenicia et al., 2011; Seiller et al., 2012; 2015; Van Esse et al., 2013;
Hublart et al., 2015). Taken together, diverse models and evaluated parameter subsets
enable better climate extrapolation and have a better chance of being appropiate for many
catchments (Seiller et al., 2012; 2015). Only a few studies have focused on the use of
hydrological models to reconstruct and extend historical sequences (Smith et al., 2019). To
our knowledge, no studies have focused on the use of varied hydrological models at
different time scales to reconstruct plausible historical sequences from a gauge-based
climate regionalized dataset.

This chapter presents an approach that relies on a multi-model multi-parameter
approach (ensemble approach) to reconstruct streamflow series. It describes a replicable
method based on various conceptual models and parameters subsets evaluated in
constrasted climate conditions for the reconstruction of multi-decadal flows in poorly
gauged regions. The method uses the regionalized climate dataset presented in Chapter 3 as
inputs. It is applied in 10 catchments in Ecuador to reconstruct the monthly streamflow over
a 30-year period (1985-2015). The chapter is organized as follows. Section 2 presents the
streamflow data selection. Section 3 describes the methodology, in particular details on
hydrological modeling and on the implementation of the ensemble approach. Section 4
presents the individual modeling performances according to different time scale, as well as
efficiency and stability of individual and combined model simulations to reconstruct
streamflow series. Section 5 presents the past seasonal and inter-annual variability of the
catchments studied. Finally, Section 6 presents conclusions.

2. Data selection

The network of streamflow gauges in Ecuador was originally composed of 182 gauges, but
only 64 streamflow gauges had less than 25% of missing daily values for the period
September 1985 to August 2015 (hydrological years). Many gauges had serious quality
problems, such as truncation of flow measurements and step changes that can be linked to
the modification of riverbeds and incorrect use of discharge curves. More coherent
streamflow series were identified over a shorter period of 20 years between September
1990 and August 2010 (hydrological years). Ten streamflow gauges in catchments with
medium and low perturbed flows (8 catchments) and with some artificial influences (2
catchments with regulatory infrastructure) were finally retained (see Figure 4.1 and Table
4.1). Two perturbed catchments have infrastructure of national interest upstream from
streamflow gauges. Catchment H365 has a water regulation dam built in 1987 (Daule-Peripa
dam) used for irrigation, drinking water provision and hydroelectric production (installed
capacity 213 MW at the Marcel Laniado hydroelectric power station). The dam in catchment
H365 had more historical disturbance due to its installation year and water storage capacity
(4 070 Hm?). Catchment H161 with little historical disturbance to their hydroelectric power
stations (Pilatén and Toachi in a cascade system) with an installed capacity of 254 MW, have
low storage capacity (2 Hm?) and were constructed recently (2018).
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The catchments were selected as representative of the north-to-south Pacific slope
(0.6°N to 4.3°S) and from the Andes highlands (5 838 m a.s.l.) to the coastal plains (8 m a.s.l.)
(Figure 4.1a) with a wide range of surface areas (641 km? and 19 532 km?). All the
catchments are also representative of the different climate conditions in Ecuador, with mean
annual temperatures (T) ranging between 12 °C and 25 °C, and mean annual precipitation (P)
ranging between 1 061 mm and 2 286 mm (see Table 4.1). Land use in all catchments is
mostly cropping (63 %). A small proportion of the catchments are covered by natural forests
(18%), and Paramo (7%) in the Andes highlands (Figure 4.1b).
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Figure 4.1. Location of catchments and their respective gauges showing their (a) topography, river streams, (b)
main land uses and most relevant infrastructure.

Table 4.1. Main characteristics of the catchments shown in Figure 4.1. The code, name and coordinates of each
of the 10 gauges is given together with the elevation range, surface area, mean annual temperature (T) and
total annual precipitation (P). Some additional information is also provided on the main water infrastructure
installed in each catchment.

Gauges Cathcments
Coordinates Surface Range elevation T P .
Code Gauge name (ma.s.) o Perturbation
. . area (km?) . (°C/year) (mm/year)
lat (°) long (°) min max
1 hydroelectric
H161 Toachi AJ Pilaton -78.953 -0.314 1535 800 5229 13 1430 power station
since 2018
H168  EsmeraldasDjSade  -79.420 0534 19532 60 5838 19 1888 me‘ig’;;:;"ce
H334 De Chima -79.069 -1.857 100 2080 3260 13 1268 low
H340 Chimbo en Bucay -79.138 -2.203 2233 300 5355 12 1 061 low
H346 Zapotal en Lechugal -79.439 -1.392 2839 23 4560 19 2116 low
H347 Quevedo en Quevedo -79.457 -1.009 3504 70 4083 23 2286 low
H348 Vinces en Vinces -79.743 -1.542 4343 8 4088 22 2251 low
H365 Daule en Capilla -79.995 -1.696 9102 9 760 25 1780 1 storage dam
since 1987
H591 Puyango -80.080 -3.883 2708 280 3928 20 1169 low
H616 Alamor en Saucillo -80.200 -4.261 641 240 3080 22 1108 low

* In the upper part of the catchments H168, water has been transfered since the 1990sfrom the upper Amazon
catchments to provide potable water to ~ 2.6 million inhabitants of the city of Quito (capital of Ecuador).
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3. Methodology

An ensemble approach based on different model structures and associated parameters was
designed for the reconstruction of streamflow series over a 30-year period in 10 Ecuadorian
catchments.

Figure 4.2 summarizes the complete methodology, which consists in three main steps:
(a) implementation of hydrological modelling, (b) evaluation of model performances on
various validation sub-periods, and (c) streamflow reconstruction using the ensemble
approach. Each methodological step is detailed in the following sections.
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Figure 4.2. Methodological scheme of the reconstruction of streamflow series using a multi-model, multi-
parameter approach (ensemble approach) comprising three methodological steps: (a) hydrological modeling,
(b) evaluation of model performances, and (c) reconstruction of streamflow series.

3.1. Hydrological modeling

Hydrological modelling comprised three main steps: (1) selection of hydrological models, (2)
preparation of the input data for the hydrological models and (3) model calibration.

3.1.1. Hydrological models

Three conceptual hydrological models were selected to test different structures, time steps
and number of free parameters: GR4J (Perrin et al., 2003), a 9-parameter lumped version of
the HBV model (Bergstrom, 1976), here referred to as HBV9, and GR2M, (Mouelhi et al.,
2006). The structure and the number of parameters differ between models. Further, the
selected models have a different philosophy of open/closed catchment systems. GR4J and
GR2M models were conceived to consider potential inter-catchment exchanges, which
means the possibility of water exchange between a catchment and its environment other
than the atmosphere (Mouelhi et al., 2006a), which is not the case for HBV9.

GR4J is a daily conceptual model proposed by Perrin et al. (2003). It belongs to the
family of soil moisture accounting models. It is based in two reservoirs (production and
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routing). The model requires daily precipitation and potential evapotranspiration data as
input and the calibration of four free parameters (X1 to X4) (Figure 4.2a). Basically, the
precipitation-runoff process is broken down into two components: a runoff generation
module computes the amount of water available for runoff (effective precipitation), and a
routing module subsequently routes this quantity to the catchment outlet. In the first
module, a soil-moisture accounting (SMA) store (production reservoir) is used to partition
the incoming rainfall into storage, evapotranspiration and excess precipitation. At each time
step, a fraction of the SMA store is also computed to represent soil drainage and added to
excess precipitation to form the effective precipitation. The second module splits this
guantity between two different pathways with respect to a constant ratio: 10% passes as
direct runoff through a quick flow routing path based on a single unit hydrograph while 90%
passes as delayed runoff through a slow flow routing path composed of a unit hydrograph
and an additional routing reservoir. Outputs from both pathways are finally summed to
simulate natural streamflow at the catchment outlet. Parameter X1 (mm) corresponds to the
capacity of the production reservoir; X2 (mm) represents the potential intercatchment
exchanges; X3 (mm) is the maximum capacity of the transfer reservoir, and X4 (days) is the
time base of the unit hydrographs.

HBV9 is a daily conceptual model originally proposed by Bergstrom (1976). For this
study, a 9-parameter lumped version (here referred to as HBV9) described in Beck et al.
(2016) was used (Figure 4.2b). It requires daily time series of precipitation and potential
evaporation as inputs. HBV9 has three reservoirs, one upper reservoir in the unsaturated-
zone and two groundwater reservoirs. The upper unsaturated reservoir gains water from
precipitation and loses water through evapotranspiration. The resulting excess of water in
the catchment area generates runoff according to the parameters FC, LP and BETA, which
govern the water balance of the model. The excess of water from unsaturated reservoir
discharge to each of two lower groundwater reservoirs connected in series by a constant
percolation rate. This routine has three recession coefficients (KO, K1 and K2), a reservoir
threshold UZL, and the constant percolation rate (PERC). The resulting outflow is finally
transformed using a triangular weighting function (MAXBAS) to simulate the channel routing
delays.

GR2M is a simple monthly conceptual model presented by Mouelhi et al. (2006a). Its
structure is based on two reservoirs (a production reservoir and a routing reservoir with a
capacity of 60 mm) and the calibration of two free parameters (X1 and X2’) (Figure 4.2c).
Precipitation is channeled either towards the routing reservoir by infiltration or directly
towards the production reservoir by surface flow. The production reservoir (capacity X1,
units of mm) gains water from surface flow and loses water through evapotranspiration and
the remaining water is routed by percolation. The percolated flow joins the water channeled
by infiltration and is routed to the routing reservoir. In the routing reservoir, groundwater
exchanges proportional to its content can occur (controlled by X2’, positive and non-
dimensional). If X2’ is greater than 1, there is a gain of water for the catchment and a loss
otherwise (Q = R,2/ (R, + 60), where R,=X2’ x Routing store).

The hydrological models described above have been extensively used in various
catchments worldwide, under a wide range of physiographic conditions and climates ranging
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from semi-arid to temperate and tropical. For instance, GR4J has been widely used for varied
catchments in Australia, the United States and France (Oudin et al., 2006a), in French
territory (e.g. Le Moine et al., 2007, Valéry et al., 2014; Van Esse et al., 2013; Demirel et al.,
2015; Collet et al., 2015; Fabre et al., 2015; 2016a; Ruelland, 2020), Canada (e.g. Seiller et al.,
2012), China (e.g. Tian et al., 2013), Chile (e.g. Hublart et al., 2015), Africa (e.g. Ruelland et
al., 2010). HBV, has been used in several hundred catchments in more than 40 countries
worldwide (Bergstrom and Singh, 1995). For instance, HBV has been used in the United
States (e.g. Seiller et al., 2015), Thailand and China (e.g. Jin et al., 2009; Vetter et al., 2015;
Wilk et al., 2001), Austria, France, Switzerland and Sweden (Harlin and Kung, 1992; Konz and
Seibert, 2010; Ruelland, 2020) and South America (Lidén and Harlin, 2000; Plesca et al.,
2012; Zhang et al., 2014; Parra et al., 2018). GR2M has been used in Africa (e.g. Niel et al.,
2003), on the Mediterranean coast (Milano et al., 2013; Lespinas et al., 2014), in Southeast
Asia (Lyon et al., 2017) and South America (e.g. Farfan et al., 2020; Rau et al., 2019). The
recommended parameter ranges (lower and upper bounds), of the above-mentioned studies
were taken into account in model implementation (Fig 4.2d).

In the tropical context of Ecuador, some of the above hydrological models were used
in limited historical periods and catchments. Plesca et al. (2012) used a version of HBV (HBV-
light) and five other rainfall-runoff models to understand the tropical runoff-generation
process in a small catchment in the Andes (75 km?). The study only used one year of
observed periods for calibration (10 months) and validation (4 months). Another study by
Farfan et al. (2020) used GR2M to evaluate a hybrid technique that uses the monthly
simulated flow of GR2M, WEAP and two data-driven methods with artificial neural networks.
The study was only conducted in two catchments on the Andes (132 km? and 66 km?) for the
period 1979-2010. In this chapter, we consider far more catchments in Ecuador with
different characteristics (Table 4.1), representatively distributed across the territory (Andes
and lowlands), with a wide ranges of surface areas (100 km? to 19 532 km?), elevations (8 to
5 838 m a.s.l) to reconstruct streamflow series over a 30-year period. Catchments selected
for the first time were simulated using a rigorous methodological protocol that combines
three models (GR4J, HBV9 and GR2M) in an ensemble approach. Note that these simulations
take advantage of the complete regionalized climate datasets described in Chapter 3.
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Figure 4.3. Structure of conceptual hydrological models (a) GR4J, (b) HBV9, (c) GR2M and (d) calibrated
parameters, highlighted in red on each scheme, with their associated ranges.

3.1.2. Input data

Catchment delimitation and input climate data were prepared before hydrological modeling.
The catchment was first delineated upstream from the streamflow gauges according to the
altitudes of the digital elevation model (DEM) in 90 m x 90 m resolution (Fig 4.1). Then, using
the catchment limits, temperature and precipitation datasets were extracted (September
1985 to August 2015) from interpolated datasets (Chapter 3). Due to the resolution of the
climate datasets (5 km x 5 km), the proportional cell area within the catchments was used to
extract data extraction at the catchment scale. Finally, the extracted temperature in each
catchments was used to calculate the potential evapotranspiration (PE) using the
temperature-based approach proposed by (Oudin et al., 2005) (Eq. 4.1).

R, _T+K,

PE = rPReha

if T+ K, >0 ,else PE=0 (4.2)
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where PE is the rate of potential evapotranspiration (mm/day), R, is the extra-terrestrial
radiation (MJ/mZ2.day'), 1is the net latent heat flux (2.45 MJ/kg), p is the density of water
(kg/m3) and T is the mean air temperature (°C). Oudin et al., (2005) determined the values of
K; and K, by selecting those that gave the best streamflow simulations when the formula
was used to feed hydrological models.

3.1.3. Model calibration: Objective function and optimization algorithm

Model parameters are not measurable and hence need to be estimated through calibration.
For this purpose, automatic calibration was performed using the Shuffle Complex Evolution
(SCE) algorithm (Duan et al., 1993). The SCE algorithm is considered as “best practice” in the
hydrological community (Tolson & Shoemaker, 2007) because it improves the chance of
convergence to the global optimum parameters sets. The SCE iteratively calibrates
parameters of models to satisfy the best value of an objective function.

The aim of the objective function is to quantify the model performance based on the
closeness of simulated and observed streamflow during calibration. The Nash-Sutcliffe
efficiency index calculated on root-squared transformed streamflow (NSEsqrt), (Eq. 4.2) was
used as the objective function. This index reports the overall agreement between observed
and simulated streamflows and represents an intermediate compromise to simulate both
high and low flows accurately (Oudin et al., 2006a). This criterion varies between -eo and 1
(perfect simulation).

?Izl(\/Qsim,i - \/Qobs,i )2
—\2
Z?]=1 (\/ Qobs,i A Qobs ) (4'2)

NSEgqre = 1—

where Qi and Qs are, respectively, the simulated and observed streamflows at time step

i, and N is the total number of observations, /Q,ps is the mean observed square root
transformed flows over the calibration period.

Using the objective function and the optimization algorithm presented above,
hydrological simulations were executed over a 20-year simulation period (September 1990
to August 2010) with models running at a daily time step (GR4J and HBV9) or monthly time
step (GR2M). Although the hydrological models GR4J and HBV9 were run at a daily time
step, their calibration was also performed at the monthly time scale (i.e. based on monthly
mean values) in order to compare the three models using the same temporal scale. To limit
the number of errors in the initial conditions, a 5-year warm-up (Sep 1985-Aug 1990) period
preceding the simulation period was used to allow the model reservoirs to be filled to
coherent levels at the beginning of the simulation period.

3.2. Evaluation of simulated streamflows

3.2.1. Split sample tests on climate contrasted sub-periods

To evaluate the robustness of the models under different climatic conditions, several
calibration and validation exercises were performed using the SST (split-sample test) and
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DSST (differential split-sample test) techniques proposed by Klemes (1986). These sampling
techniques are those normally used to evaluate potential instability and/or transferability of
model parameters under changing conditions. This evaluation was used for both continued
and discontinued sub-periods, reinforcing the use of data series organized in hydrological
years.

The SST technique consisted of dividing the entire simulation period (1990-2010) into
two equivalent 10-year sub-periods (P1 = FIRST and P2= LAST). During the tests, the models
were first calibrated on P1 before being evaluated on P2, and vice versa. The DSST technique
consisted of splitting the two sub-periods by considering the statistical distribution of annual
precipitation to cross-validate the models under contrasted precipitation conditions (see e.g.
Ruelland et al., 2015). Hence, the models were calibrated on the driest (DRY) years before
being evaluated on the wettest (WET) years, and vice versa. The selected sub-periods (FIRST,
LAST, DRY, WET) contain three ENSO events that represent the highly contrasted conditions
in which the models were evaluated. These were one very strong El Nifo event (1997-1998),
and two strong La Nifia events (1999-2000 and 2007-2008) classified according to the ONI
index (CPC NOAA, n.d.).

3.2.2. Efficiency criteria

The performance of the streamflow simulation was evaluated by comparing simulated and
observed streamflow based on two efficiency criteria. The first one is NSE efficiency based
on non-transformed streamflows (Eq. 4.3) (Nash and Sutcliffe, 1970). Due to its quadratic
nature, the NSE mainly provides information about the capacity of the model to simulate
high flows (peak flows). The second criterion corresponds to NSE efficiency based on
logarithmic-transformed streamflows (NSEiog) that gives more weight to low flows (Eq. 4.4).

Zé\lzl(Qsim,i - Qobs,i)z

Z%V:1(Qobs,i - Qobs)2

évzl(longim,i - longbs,i)z
Z?I=1(longbs,i - longbs)Z

NSE =1-—

(4.3)

NSEjpy = 1— (4.4)

where Qg;,, and Q,,s are, respectively, the simulated and observed streamflows at time step
i, and N is the total number of observations, logQ,,s is the mean observed logarithmic
transformed flows on the evaluation period.

3.3. Reconstruction of streamflow series based on an ensemble approach

The monthly time scale was finally retained for the hydrological simulations since it led to
much higher performances due to the limited quality of observed streamflows (see
Section 4.1). The model performances were then tested statistically at a monthly time scale.
They showed that none of the three models tested (GR4J, HBV9 and GR2M) needed to be
excluded from the ensemble (see section 4.2). As a result, three different model structures
(GR4J, HBV9 and GR2M) and four parameter sets calibrated on different sub-periods over
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1990-2010 (FIRST, LAST, DRY and WET) in each catchment were available to reconstruct
flow series.

The resulting 12-member ensemble (3 models x 4 parameter sets) was applied to each
catchment. All possible combinations of the 12-member ensemble (from individual members
and means of all member combinations) were assessed to identify whether the best-
performing combinations were catchment-specific or whether a general combination could
be considered to reproduce streamflows over the 1990-2010 simulation period. Finally, the
selected combination was used to compute the average outputs of the individual models.
The ensemble average was then considered as the reference streamflow over the 1985-
2015 period, which made it possible to analyze hydro-climatic variability at the basin scale
over a 30-year period.

4. Reconstruction of streamflow series

4.1. Model performances depending on time scales

Figure 4.4 summarizes the performance of the three models (GR4J, HBV9 and GR2M) at daily
and monthly time scales in terms of two efficiency criteria (NSE and NSEog). The simulations
at the monthly time scale logically outperform daily ones regarding the median division of
boxplots and mean values (mean NSE and NSEig > 0.78). These results were expected
because day-to-day variability is more difficult to reproduce partly due to the limited quality
of the observed streamflows. It should also be noted that HBV9, based on nine free
parameters, slightly outperformed the two other models GR4J and GR2M based only on four
and two free parameters, respectively. Since the monthly time scale led to higher simulation
performances, it was the temporal resolution chosen for the rest of the study.

4.2. Multi-model,  multi-parameter combinations for streamflow
reconstruction

Figure 4.5 shows the mean efficiency criteria NSE and NSE|oz obtained with the three models
at the monthly time scale. The slight differences in criterion values (between 0.78 and 0.82)
suggest that the models perform similarly (Fig 4.5a). This was further confirmed by a
statistical comparison test. Since the performance distributions were not normal, as
revealed by a Shapiro test (Royston, 1995), a non-parametric statistical test was applied to
compare the model performances. Applying a Wilcox test (Myles and Wolfe, 1973) by paired
combinations confirmed there was no significant difference in the performances of the
models at p-values > 0.05 (Fig 4.5b). All model structures were then selected for the rest of
the analysis.
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Figure 4.4 Boxplots (showing 0.05, 0.25, 0.50, 0.75 and 0.95 percentiles) of the efficiency distributions in terms
of NSE and NSEi¢ values obtained from the evaluations conducted at daily (blue boxplots) and monthly (red
boxplots) time scales with the GR4J, GR2M and HBV9 models in the 10 catchments studied. Each boxplot
represents 40 efficiency criterion values obtained with four parameter sets (FIRST, DRY, LAST, WET) using one
of the three models applied in the 10 catchments. The numbers beside each boxplot are the mean values of
model performance. Letters in parentheses below the model names give the time scale of models (d = daily, m
= monthly).
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Figure 4.5. Comparison of simulation performances by models at the monthly time scale based on (a) their
efficiency criteria (NSE and NSEig) and (b) resulting p-values by paired combinations computed by a Wilcox
test. Results of p-values > 0.05 showing non-significant differences between model performances.
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All combinations (subsets) of the 12-member ensemble (3 models x 4 parameter sets) were
tested in order to identify the best-performing average simulations. Figure 4.6 shows the
performances (in terms of NSE and NSEig criteria) of all possible combinations (from one
member corresponding to one specific model with one specific parameter set to 12
members composed of the three models each with their four parameter sets). Optimal
specific combinations incorporating between two to seven members of different model
structures and parameters (blue dots) systematically outperformed other combinations
(black dots) including the averaged 12-member ensemble (red dots) in each catchment.
However, the optimal specific combinations varied depending on the efficiency criterion,
making it difficult to identify a fixed combination for each catchment. On the other hand,
whatever the criterion, the averaged 12-member ensemble produced very similar
performances compared to the optimal specific combinations (differences ranged only
between -0.4 and -4% for NSE, and -1 and -3% for NSEig). This suggests that the averaged
12-member ensemble is the best compromise combination.

Figure 4.7 summarizes the performance dispersions in ascending order from individual
model simulations to averaged 12-member ensemble applied in the 10 catchments. The
results clearly show that the performance dispersions (NSE and NSEiog criteria) are reduced
with an increase in the number of members in the ensemble. Even though best-performing
simulations can be obtained with specific combinations for a given catchment, the averaged
12-member ensemble presents the highest performance stability whatever the catchment.
The 12-member ensemble thus revealed as the more robust combination to simulate
streamflow in the 10 studied catchments, while ensuring satisfactory performances close to
optimum combinations.
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Figure 4.6. Performances (NSE and NSEo criteria) of all possible combinations (black dots) including the 12-
member ensemble (red dots) and the optimal specific combinations (blue points). The numbers across the top
of the figure indicate the number of optimal specific combination in each catchment.
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numbers across the top of the figure indicate the number of total possible combinations. The numbers within
the boxplot indicate the median values.

4.3. Reconstructed streamflow series over the period 1985-2015

The preceding results confirmed the interest of using an ensemble approach to reconstruct
flow series over longer periods. Previous works (Andréassian et al., 2006; Seiller et al., 2012;
Van Esse et al., 2013) already reported that a combination of varied model structures with
selected components (ensemble approach) increased performances and had a better chance
of being appropriate for a large number of catchments.

Figure 4.8 presents the reconstructed streamflows for the 10 catchments studied. It
shows the averaged 12-member ensemble together with the uncertainty bounds (maximum
and minimum values of all simulations). The performances of reconstructed flow series (in
terms of NSE and NSElog) were highly dependent on the quality of the observed series. The
best scores were obtained for catchment H348 (NSE = 0.93, NSEiog = 0.95), and the worst for
catchment H365 (NSE = 0.72, NSEi,g = 0.53). For the whole catchment set, averaged
performances of reconstructed series obtained similar scores for high flows (average NSE =
0.80) and low flows (average NSEiog = 0.78). It should be noted that the uncertainty bounds
are rather thin, suggesting that the discharge simulations contain limited dispersion despite
the use of 12 members in the ensemble. As a whole, the reconstructed streamflow series
can be considered as a reliable alternative to observations, providing complete reliable
information to characterize past hydro-climatic variability over the 1985-2015 period.
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associated parameter uncertainty bounds are given for each catchment.
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5. Past multi-decadal hydro-climatic variability at the catchment
scale

The climatic datasets developed in Chapter 3 and the streamflow reconstructed in the
current chapter provide complete hydro-climatic series for the period 1985-2015, thus
allowing the hydro-climatic variability to be analyzed over a 30-year period in the 10
catchments studied. The results presented below provide a general overview of the annual
mean, inter-annual and seasonal hydro-climatic variability in the 10 catchments.

5.1. Mean water balance over the period 1985-2015

Table 4.2 summarizes mean annual water balance in the 10 catchments over the period
1985-2015. Annual precipitation (P) ranges between 1 061 and 2 286 mm, temperature (T)
between 12 °C and 25°C and streamflow (Q) between 386 mm and 1 939 mm. Runoff
coefficients between 0.35 and 0.85 are within values calculated for small catchments in the
tropical Andes (Crespo et al., 2011) and tropical lowlands (Dos Santos et al., 2017). Aridity
indexes are between 0.61 and 1.29, which corresponds to ranges in dry sub-humid to very
humid regions (Agnew, 1993). The H347 catchment (Quevedo en Quevedo, 3504 km?)
presents the highest runoff coefficient (Q/P=0.85), suggesting that this catchment is the
most influenced by el Nifio events over the central Andes flanks and lowlands of the Pacific
slope. In contrast, the H616 catchment (Alamor en Saucillo, 641 km?) located in the South
presents the lowest runoff coefficient (Q/P =0.35) and the higherst aridity index (PE/P =
1.29), showing El Nifio events has less influence on its hydro-climatic regime.

Table 4.2. Mean annual hydro-climatic characteristics on 10 study catchments over the time period September
1985 to August 2015.

Average Runoff

Code Gauge name Area elevation T P PE Q coefficient Aridity index
(km?) (mas.) (°c) (mm/year) (mm/year) (mm/year) (/P) (PE/P)

H161 Toachi Al Pilaton 1535 2828 13 1430 981 844 0.59 0.69
H168 Esmeraldas DJ Sade 19532 1627 19 1888 1277 1354 0.72 0.68
H334 De Chima 100 2521 13 1268 974 438 0.35 0.77
H340 Chimbo en Bucay 2233 2912 12 1061 932 515 0.49 0.88
H346  Zapotal en Lechugal 2839 1442 19 2116 1288 1598 0.76 0.61
H347 Quevedo en Quevedo 3504 905 23 2286 1433 1939 0.85 0.63
H348  Vinces en Vinces 4343 739 22 2251 1473 1652 0.73 0.65
H365 Daule en Capilla 9102 188 25 1780 1625 1019 0.57 0.91
H591  Puyango 2708 1392 20 1169 1342 905 0.77 1.15
H616  Alamor en Saucillo 641 1016 22 1108 1427 386 0.35 1.29
min 12 1061 932 386 0.35 0.61
mean 19 1659 1308 1090 0.62 0.84
max 25 2286 1625 1939 0.85 1.29

5.2. Seasonal hydro-climatic variability

Figure 4.9 present the seasonal hydro-climatic variability in the 10 catchments studied.
Seasonal temperature variability over the whole catchment set is weak, with differences
between the hottest and coldest months ranging from 0.7 °C to 1.7 °C. Given the latitudinal
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range of the catchments (0.6°N to 4.3°S), it can be considered as typical values of the
tropical region.
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Figure 4.9. Seasonal temperature (T), precipitation (P) and streamflow (Q) variability in the 10 catchments over
the period 1985-2015. Catchments with more seasonal variability in their relation between the mean of wet
and dry season (W/D) are in the blue frame (W/D > 5) and those with less seasonal variability are in the green
frame (W/D < 5). Pwer (Porv) and Qwer (Qory) stand for mean precipitation and streamflow during the wet (dry)
season from December to June (July to November).

In general, all catchments have one wet season (between December and June) due to
the southernmost position of the inter-tropical convergence zone (ITCZ) which is closest to
the Equator in March (Vuille et al., 2000a). Conversely, the dry season (July to November) is
the result of northward shift of the ITCZ along 9°-10°N in August (Hastenrath and Heller,
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1977). The seasonal peak of the wet season is more marked in catchments in the lowlands,
on the western flanks of the Andes and in the southern part of the territory (H346, H347,
H348, H365, H591 and H616) because they are more exposed to the El Nino/Southern
Oscillation (ENSO) precipitation anomalies (Rossel and Cadier, 2009; Sulca et al., 2018),
which, in addition, extends and intensifies the ITCZ (Vuille et al., 2000a). The seasonal peak is
less marked in higher catchments toward the Andes (H161, H334 and H340) and in
significant portions of the Andes (H168) which have more continental behavior. On these
cathchments, ENSO has less influence in the wet season than in the coastal region (Rossel
and Cadier, 2009). The differences between the mean values in the wet season (W) and in
the dry season (D) were also confirmed by the ratio W/D. The W/D in the catchments most
influenced by ENSO is more than 5, while the reverse (W/D <5) is the case in catchments
located toward the Andes. Note that the seasonal streamflow in catchment H365
(streamflow W/D < 3) does not completely match seasonal precipitation due to the historical
influences of the regulation dam (Daule Perita) throughout the study period.

5.3. Inter-annual hydro-climatic variability

Figure 4.10 shows the inter-annual hydro-climatic variability in terms of yearly standardized
anomalies over the period 1985-2015 in the 10 catchments studied. The highest inter-
annual anomalies of air temperature over most catchments (except those located in the
Andes: H161, H334 and H340) were related with the significant ENSO 1997-1998 event.
Regarding the decadal average of the standardized anomalies, a warming was detected over
the last two decades in all catchments. Air temperature presented a slight warming trend
(+0.20 °C per decade on average) pointing to year-to-year positive air temperature
anomalies. Current calculated warming is slightly lower than that reported for the Coastal
and Andes regions in Ecuador for the period 1966—2011 (+0.25 °C per decade; Moran-Tejeda
et al., 2016). Nevertheless, it is within the range of warming ratios reported for other regions
in the tropical Andes (+0.11 and +0.10 °C per decade) in the Peruvian and Bolivian Andes for
the 1965—-2007 and 1960-2009 periods, respectively (Lavado et al., 2013; Seiler et al., 2013),
and +0.32 °C for the tropical Andes for the period 1974-1998 (Vuille et al., 2000).

The ENSO is the main source of inter-annual variability of precipitation and streamflow
in the Pacific slope and coast of Ecuador as already reported in other studies (e.g. Rossel and
Cadier, 2009; Moran-Tejeda et al., 2016; Erazo et al., 2018). Catchments located on lowlands
and western slopes of the Andes (H168, H346, H347, H348 and H365) experienced highest
streamflow anomalies due to their location in regions where the ENSO particularly
influences on annual precipitation. Catchments in the south (H591 and H616) and the Andes
(H161, H340, H334) presented less streamflow anomalies due to their location in the
transition zone between the boundary of strong and less significant ENSO influence on
annual precipitation.
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Figure 4.10. Inter-annual hydro-climatic variability in terms of standardized anomalies over the period 1985-
2015 in the 10 catchments. Standardized anomalies for temperature (Sanomry), precipitation (Sanompe) and

streamflow (Sanomq) are scaled indices calculated by subtracting average values from yearly observed hydro-
climatic variables and dividing by the standard deviation (Sanom; = (Xi— Xaw)/0).

6. Conclusions

The current chapter has shown the interest of using an ensemble approach based on various
lumped rainfall-runoff models (GR4J, HBV9 and GR2M) and different parameter sets to
reconstruct multi-decadal streamflow series in 10 poorly-gauged catchments in Ecuador. A
20-year simulation period was used to calibrate and evaluate the models according to split-
sample tests to produce a 12-member ensemble (products of three models and four
parameter sets). Due to the limited quality of the daily simulations, the multi-model, multi-
parameter ensemble was implemented to reconstruct streamflow series at the monthly time
scale over a longer period of 30 years (1985-2015). The 30-year reconstructed streamflow
series enabled the description the inter-annual and seasonal hydro-climatic variability in the
catchments studied, in association with the climatic data developed in Chapter 3.

The performances of the individual models and all possible combinations (40 950) in
the 12-member ensemble were explored and showed that it was not safe to rely on a single
model or on an optimum combination of ensembles. For the 10 catchments studied in
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Ecuador, combinations of between two and seven members provided the best-performing
averaged simulations. Nevertheless, the averaged 12-member ensemble performed close to
the optimal combination and also presented the highest performance stability whatever the
catchment. Using a large number of combinations was shown to best approximate the
relevant aspects of the behavior of many catchments thus improving the performance of
fixed model structures. As a whole, the average of 12-member ensemble thus represented
the best-compromise combination in each catchment to provide mean monthly streamflow
series for the period 1985-2015, and consequently allowed the hydrological variability to be
analyzed over a 30-year period at the catchment scale.

As expected, the seasonal variability of air temperature in the 10 catchments is weak
given the Ecuadorian context. At seasonal scale, the position of the ITCZ is the main source
of streamflow variability in all 10 catchments. The southward location of the ITCZ marks the
wet season (December to June), while its northern diplacement marks the dry season (July
to November). ENSO precipitation anomalies are also involved through the expansion and
intensification of the ITCZ (Vuille et al.,, 2000a) in the wet season, which produces more
marked seasonal peaks in catchments located on lowlands and on the lower western flanks
of the Andes.

At the inter-annual time scale, all the catchments showed a slight warming trend (on
average +0.20 °C per decade over the 30-year period) reflecting their year-to-year air
temperature anomalies. The ENSO is the greatest source of precipitation and streamflow
variability. Lowland catchments are more exposed to ENSO events in the eastern Pacific (El
Nifio 1+2). The highest historical streamflow variability ocurred in lowland catchments
during the strong El Nifio in 1997-1998. Catchments located at higher altitudes toward the
Andes were less influenced by ENSO conditions (Nifio 1+2) and thus present lower
streamflow variability.

To our knowledge, the streamflow series reconstructed in the current chapter and
the climate regionalization developed in Chapter 2 represent the most complete hydro-
climatic dataset ever assembled in Ecuador. This dataset is a valuable step forward in our
ability to describe the past hydro-climatic variability in Ecuador. It also opens the
opportunity to evaluate possible changes in hydro-climatic conditions under climate change
in the coming decades, which is addressed in the following chapter.
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CHAPTER 5: FUTURE HYDRO-CLIMATIC VARIABILITY

1. Introduction

Climate change is expected to impact water resources in many regions of the world. Higher
temperatures are likely to increase evapotranspiration, which may result in changes in
precipitation patterns and in the frequency of extreme events (Trenberth, 2011). At
catchment scale, such changes are notably expected to impact river flow regimes that are of
direct relevance for water resources management.

Global circulation model (GCM) and regional climate model (RCM) projections used to
downscale GCMs (GCM-RCMs couples), such as CORDEX (Giorgi et al., 2009) are usually
combined with hydrological models to study the potential future changes in streamflow.
Spatial resolution of the outputs of GCMs (~1°) and GCM-RCM ensembles (~0.5°) are not
precise enough to be used as direct inputs in hydrological models. Beyond dynamic or
statistical techniques available in the literature (see Chapter 1), hydrologists have generally
favored a basic downscaling and bias correcting technique when building climate scenarios
from GCMs or GCM-RCM ensembles. The so-called perturbation method or delta change
approach (see e.g. Prudhomme et al., 2002) can be used to reproduce the relative change in
climatic variables better than their absolute values. It consists in reproducing the mean
variations obtained between the control and future climatic simulations from GCMs or GCM-
RCM ensembles. The perturbation method can be considered as acceptable to estimate
changes in water resources, for example in terms of volumes and seasonal variation
(Ruelland et al., 2012).

According to greenhouse gas emission scenarios for the 21% century, as frequently
reported in the literature, climate change should increase air temperatures. However, future
changes in precipitation are highly uncertain in many regions and depend on which GCMs
are used (see e.g. Ma and Xie, 2013; Fabre et al., 2016). In impact studies, using the outputs
of a wide range of GCMs or GCM-RCM couples is usually recommended to estimate a set of
possible futures, as well as the probability of occurrence of these future scenarios (Wilby,
2010). Another challenge is the limited transferability of hydrological models to climate-
contrasted conditions (e.g. Vaze et al.,, 2010; Coron et al., 2012), notably towards hotter
drier conditions (Dakhlaoui et al., 2019). The use of multiple hydrological model ensembles is
thus recommended (e.g. Broderick et al., 2016; Seiller et al., 2017). The application of multi-
model multi-parameters approaches such as the one described in Chapter 4 (3 hydrological
models x 4 parameter sets) allows part of the structural and parameter uncertainty to be
accounted for in hydrological scenarios based on numerous streamflow simulations for each
catchment can provide an ensemble of simulations to assess future changes in streamflow
within statistical confidence intervals.

In this chapter, we evaluate hydro-climatic variability at the end of the 21° century in
Ecuador. Section 2 presents the selected GCMs-RCM simulations. Section 3 describes the
methods applied (i) to evaluate the raw climate simulations using a past control period, (ii)
to build a wide range of climate scenarios to cover the whole 21° century, and (iii) to assess
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their potential impact on streamflow at the catchment scale using an ensemble approach.
Section 4 presents the climate scenarios at the scale of Ecuador, before analyzing the climate
trends and their possible impact on streamflow at the scale of the study catchments.

Table 5.1. Climate simulations selected from the Coordinated Regional Downscaling Experiments (CORDEX) for

the South America domain at a ~55 x 55 km spatial resolution.

Model
acronym Name of RCM  Modelling center (country) Name of GCM Modelling center (country) References
Swedish Meteorological and Canadian Centre for
CanESM2 SMHI-RCA4 Hydrological Institute, Rossby CCCma-CanESM2 Climate Modelling and Chylek et al., 2011
Centre Analysis (Canada)
Swedish Meteorological and X X .
. . IPSL-IPSL-CM5A- Institut Pierre Simon
IPSL-CM5A SMHI-RCA4 Hydrological Institute, Rossby Dufresne et al., 2013
MR Laplace (France)
Centre
Swedish Meteorological and Commonwealth Scientifi
weaish i 108! CSIRO-QCCCE- wealth Scientitic
CSIRO SMHI-RCA4 Hydrological Institute, Rossby CSIRO-MK3-6-0 and Industrial Research (Gordon et al., 2002)
Centre Organization (Australia)
Swedish Meteorological and Irish Centre for High-End
. . . (Hazeleger et al.,
ICHEC SMHI-RCA4 Hydrological Institute, Rossby ICHEC-EC-EARTH Computing 2010)
Centre (Netherlands/Ireland)
Swedish Meteorological and .
R . MPI-M-MPI-ESM- Max Planck Institute for
MPI-ESM SMHI-RCA4 Hydrological Institute, Rossby (Stevens et al., 2013)
LR Meteorology (Germany)
Centre
Swedish Meteorological and Geophysical Fluid
) j NOAA-GFDL-GFDL- .
NOAA-GFDL  SMHI-RCA4 Hydrological Institute, Rossby ESM2M Dynamics Laboratory (Dunne et al., 2012)
Centre (United States)
Swedish Meteorological and
wed! . . gl MOHC-HadGEM2-  Met Office Hadley Centre .
HadGEM2 SMHI-RCA4 Hydrological Institute, Rossby . ) (Collins et al., 2011)
ES (United Kingdom)
Centre
Swedish Meteorological and
. . Japanese research (Watanabe et al.,
MIROCS SMHI-RCA4 Hydrological Institute, Rossby MIROC-MIROCS .
community (Japan) 2010)
Centre
Swedish Meteorological and Norwegian Meteorological
wegi i
NoreSM1 SMHI-RCA4 Hydrological Institute, Rossby =~ NCC-NorESM1-M u & (lversen et al., 2013)

Centre

Institute (Norway)

2. Raw climate simulations

The downscaled climate simulations (Table 5.1) from the CMIP5 Global Climate Models
(Taylor et al., 2012) were used to project daily mean temperature and precipitation. The
ouputs of one available RCM (SMHI) forced by nine different GCMs were downloaded using
the web interface Climated4impact (https://climatedimpact.eu/) from the Coordinated
Regional Downscaling Experiments (CORDEX) for the South America domain with a ~55 x 55
km spatial resolution. The period 1951-2005 corresponds to historical simulations while the

period 2006—2100 corresponds to future projections. All climate simulations were based on
the historical radiative concentration pathway (RCP) over the past and the RCP 8.5 by the
end of the 21 century. The RCP 8.5 was selected because it is characterized by increasing
greenhouse gases emissions over time leading to more than 1 370 ppm CO; equivalent by
2100 (Van Vuuren et al., 2011). The climate projections were based on two 30-year future
periods: one medium-term (2040-2070) and one long-term (2070-2100) horizon. They were
compared to the past reference period (1975-2005) as simulated by the climate models.
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3. Methodology

The climate and hydrological scenarios were built in three main steps (Figure 5.1): (a)
comparison of the raw climate simulations of temperature (T) and precipitation (P) versus
regionalized climate observations (detailed in Chapter 3) over a past control period; (b)
construction of climate scenarios for the medium and long-term horizon; and (c) simulation
of future streamflow for the two horizons at the catchment scale using an ensemble of 108
simulations (product of nine climate scenarios of T and P simulated with the 12-member
multi-model, multi-parameter ensemble developed in Chapter 4).

(c)
Simulation of future
streamflow

(a)
Evaluation of the
climate simulations

(b)
Construction of
climate scenarios

Regionalized
climate L
observations Evaluation of the climate Peﬂurb_aho; r;:]the ft}semed Extraction of the T and P
simulations over a past : eries by the relative » scenarios at the catchment
control period ¢nanges in the_ past ?nd scale
Climate future climate simulations l
simulations

Future evapotranspiration
(PE) computed based on a
temperature-based approach

I

Simulation of hydrological
scenarios

12-member ensemble x 9 RCMs =
108 simulations

Control period Medium term Long term Medium term Long term
. . le e | e ole |
| | | | | |
1885 2005 2040 2070 2100 2040 2070 2100

Figure 5.1. Scheme of the methodology applied to evaluate future hydro-climatic variability.

3.1. Evaluation of the climate simulations over a past reference period

Before using climate projections, the climate simulations were assessed over an historical
control period against the regionalized observed climate (temperature and precipitation).
For this comparison, the raw climate simulations were simply resampled based on the
nearest neighbor technique to be compared at the same resolution as the past climate
dataset (5 km x 5 km) over the period 1985-2005.

3.2. Construction of climate scenarios

The RCM bias in reproducing reference climate (notably precipitation volume and seasonal
patterns, see section 4.1) led us to apply a simple and widely used perturbation method (see
Déqué et al., 2007; Ruelland et al., 2012) in order to produce a range of climate scenarios
from the climate simulations. All our simulations of climate change were thus based on the
historical representative concentration pathway (RCP) over the reference period (1975—
2005) and the RCP 8.5 for a medium-term horizon (2040-2070) and a long-term horizon

117



Chapter 5: Future hydro-climatic variability

(2070-2100). High-resolution climate change forcing was thus obtained using a monthly
perturbation method, which assumes that climate models reproduce the relative change in
climatic variables better than their absolute values (see Ruelland et al., 2012). The method
consisted in producing future climate scenarios by modifying the daily observed climatic
series so as to reproduce the mean monthly variations obtained between the reference and
future climatic simulations produced by climate models (see Equations 5.1 and 5.2). As a
result, the climate scenarios represent the relative changes simulated by the climate
simulations in the spatial and temporal patterns of the interpolated observations.

T;RJ _ TU?BS + AT,,, with AT,, = (TRCP85 _ TREFY (5.1)

P;* = PJBS X (AP, + 1), with AP, = (BRCP®S — BREF) /PREF (5.2)

where TZR] and PdPRJ are the daily future climatic projections, respectively, for temperature

(T) and precipitation (P). T$ES and P95S are the daily observed interpolated series for each
5x5 km grid cell. AT,,, and AP,, are the monthly averaged values applied to perturb T and P.
TRCP8S — TRCP8S and PREF  PREF are the mean monthly raw climate simulations on the
future periods (2040-2070 and 2070-2100) under the RCP 8.5, and on the reference period
(1975-2005).

4. Simulation of future streamflow

The three hydrological models (GR4J, HBV9 and GR2M) and their four parameter sets
calibrated on the past climate conditions (see Chapter 4) were then used to simulate future
streamflows in changing climatic conditions (section 3.2).The future daily series of projected
temperature and precipitation were extracted within the limits of the 10 studied catchments
for the medium and long term horizons. Due to the resolution of climate projections (5 km x
5 km), the proportional cell area inside the catchments was used to extract data at the
catchment scale. The projected temperature at the catchment scale was then used to
calculate the future potential evapotranspiration (PE) applying the temperature-based
approach proposed by (Oudin et al.,, 2005) (see Eg. 4.1 in Chapter 4). Finally, for each
catchment, the PE scenarios together with the precipitation scenarios were used as inputs to
the three hydrological models using the parametrization calibrated over the past period
(Chapter 4, section 3.2). A 5-year warm-up period was included before the two future
periods (2035-2040 and 2065-2070) to limit the effect of the storage initialization.

A total of 108 future streamflow simulations at both time medium-term and long-term
horizons (2040-2070 and 2070-2100) were computed to evaluate the future hydrological
variability in each catchment. The 108-member output ensemble is expected to provide
reliable results to assess the future streamflow variability since it accounts for different
sources of uncertainty stemming from climate simulations (9 climate scenarios of air
temperature and precipitation), hydrological model structures (3 models) and calibrated
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parameters (4 parameter sets). The ensemble of 108 streamflow simulations was finally
used to represent the mean future streamflow with confidence intervals of 95%.

5. Results

5.1. Efficiency of the raw climate simulations over the control period

The ability of each climate model to reproduce the observed air temperature and
precipitation during the control period (1985-2005) was based on the comparison of the
spatial patterns and seasonal variability (Figure 5.2).

Temperature Precipitation

Observations

Observations

112126
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“Clyear \ mmiyear
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Figure 5.2. Spatio-temporal comparison of observed temperature and precipitation and simulations by nine
climate models over the control period 1985-2005. Maps and seasonal plots represent, respectively, mean
annual patterns and mean monthly values. The numbers below each map stand, respectively, for minimum,
mean and maximum values (expressed in °C for temperature and in mm/year for precipitation).

Lower temperatures in the Andes were captured by all climate models, while higher
temperatures (over the Coast and Amazon regions) were represented differently by each
model. The seasonal temperature variability was slightly underestimated by all climate
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models (-1.4 °C on average). Concerning precipitation, none of the climate models captured
the observed annual spatial patterns and even maximum values were largely overestimated
over the Pacific slope up to more than three-fold (e.g. IPSL-CM5A model). The climate
models were also unable to accurately reproduce the average seasonality of precipitation
since they simulated bimodal seasonality while the Ecuadorian regime is unimodal with a
well-marked wet season. They were not even able to represent mean annual precipitation,
which was largely overestimated (+34% on average) and especially marked in the beginning
of the hydrological year from September to November.

Although there were differences between the simulations of the tested climate
models, none of them was able to correctly capture the spatial, seasonal, and mean annual
patterns of precipitation over the control period. This limited efficiency thus prevented the
direct use of raw outputs of the climate model for building climate scenarios, as already
reported in tropical (e.g. Ruelland et al.,, 2012) and mediterranean (e.g. Dakhlaoui et al.,
2019) regions.

5.2. Climate scenarios in Ecuador

The bias observed in reproducing reference climate (notably precipitation volume as well as
spatial and seasonal patterns) led us to use a simple delta change method (see Section 3.2)
in order to produce a range of climate scenarios from the climate simulations.

Figure 5.3 presents the spatial and seasonal changes in air temperature and
precipitation at the medium-term (2040-2070) and the long-term (2070-2100) horizons
compared with the reference period (1985-2015). An increase in air temperature is clearly
projected throughout the territory in both the medium term (+2.7 °C on average) and long
term (+4.4 °C on average), which is line with the expected warming for the tropical region in
the 5°N-15°S band (see Marengo et al., 2010). The biggest increase in temperature could
occur in the Amazon region (+4.8 °C) by the end of the 21* century. A general increase in
mean annual precipitation is also expected in the medium (+8% on average) and long term
(+17% on average). The precipitation increase is particularly marked in the lowlands, in the
Amazon region, and in the southern part of Ecuador. The biggest increase in precipitation is
expected in the coastal region (+24%) by the end of the 21°' century. These climate
projections are the first detailed overview of the potential climate changes in Ecuador as
simulated by one RCM driven by nine GCMs. They provide complementary information to
previous studies in South America (Marengo et al., 2010) and in the tropical and Ecuadorian
Andes (Buytaert et al., 2010), which also reported warmer conditions and an increase in
precipitation by the end of the 21* century using up to three climate models. Our climate
projections are also more detailed than the work of Campozano et al. (2020), who reported
potential reductions in drought in Ecuador in the medium-term (2041-2070) using only five
climate simulations.

Figure 5.4 presents the seasonal shift toward warmer conditions in the medium term
(+2.6 °Cto +2.7 °C) and long term (+4.4 °C to +4.5 °C) with almost the same values during the
wet (December to June) and dry (July to November) seasons. This is not surprising given the
limited temperature seasonality in Ecuador. An increase in seasonal precipitation is also
expected during the wet season with +12% on average in the medium term and +25% on
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average in the long term. Conversely, precipitation is expected to decrease by -2% on
average during the dry season both in the medium and long terms. It should be noted that
both temperature and precipitation projections differ significantly depending on the climate
scenario concerned. As a consequence, uncertainty bounds tend to increase in the long term
and can be explained by different sensitivity of the climate models to the RCP 8.5 scenario,
which projects a continuous increase in gas emissions worldwide throughout the 21°t

century.
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Figure 5.3. Mean annual maps of changes in temperature and precipitation between the observed period
1985-2015 and the medium (2040-2070) and long (2070-2100) term horizons under RCP 8.5. Numbers below
maps give the mean values of present observed climate and the mean increase in temperature (in °C) and
precipitation (in %) in the future scenarios.
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Figure 5.4. Mean seasonal plots of changes in temperature and precipitation between the observed period
1985-2015 and at the medium (2040-2070) and long (2070-2100) term horizons under RCP 8.5. The red solid
lines stand for the averaged climate scenarios within their uncertainty bounds in gray. Vertical solid gray lines
separate the dry (July to November) and wet (December to June) seasons and the numbers give the mean
changes in temperature (°C) and precipitation (%) for each season.
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5.3. Hydro-climatic scenarios at the basin scale

Table 5.2 presents the mean annual hydro-climatic changes at the medium-term (2040-
2070) and long-term (2070-2100) horizons in comparison with the reference period
(1985-2015) in 10 catchments. General increases in temperature are expected in both the
medium (+1 to +3 °C) and long term (+3 to +5 °C) in the 10 study catchments. As a result of
warmer conditions, evapotranspiration is also expected to increase in both the medium (+8
to +15%) and long term (+13 to +25%). Increased precipitation is also expected in all
catchments in both the medium (+5 to +21%) and long term (+10 to +43%). These changes
could increase the mean annual streamflow in the catchments by between +3 and +47% in
the medium term and by between +5 to +71% in the long term depending on the
catchment. This broad range of simulated streamflow between catchments can be
explained by the differences in local projections of precipitation. For instance, the biggest
increase in streamflow (+47 and +71% in the medium and long term, respectively) is
expected in catchment H616 (Alamor en Saucillo) in the south of the country, mostly linked
with a potentially significant increase in precipitation (+17 and +31% in the medium and long
term, respectively) in the catchment (Figure 5.3).

Table 5.2. Mean annual hydro-climatic changes in 10 catchments, at the medium-term (2040-2070) and long-

term (2070-2100) horizons in comparison with the period 1985-2015. Future changes are presented as
increase (+) or decrease (-) in temperature (in °C) and precipitation (in %).

1985-2015 2040-2070 2070-2100
T PE P T PE P Q T PE P Q
Code  Gauge name mm/year
i Cclyear) (mmfyear) (mmjvear) 2VEN | e g g w0 | co 0 0 o
H161  Toachi AJ Pilaton 13 981 1430 844 +3 +14 +6 +6 +5 +23 +11 +8
E | D.
H168 S:;”:ra das DJ 19 1277 1888 1354 +2 +11  +11  +9 | +4 +18 420 +17
H334 De Chima 13 974 1268 438 +3 +15 +9 +34 +5 +24 +16 +43
H340 Chimbo en Bucay 12 932 1061 515 +3 +15 +5 +3 +5 +25 +10 +5
Z |
Hase Lapotalen 19 1288 2116 1598 +3  +11  +12 +12 | +4 +18 +22 +23
Lechugal
Quevedo en
H347 23 1433 2286 1939 +1 +10 +17 +11 +3 +17 +31 +27
Quevedo
H348  Vinces en Vinces 22 1473 2251 1652 +3 +10 +16 +17 +5 +16 +30 +34
H365  Daule en Capilla 25 1626 1780 1019 +2 +8 +14 +18 +4 +13  +25 +33
H591  Puyango 20 1342 1169 905 +2 +10 +21 +6 +4 +17 +43 +32
H616  Alamor en Saucillo 22 1427 1108 386 +2 +9 +17  +47 +4 +16 +31 +71
Min +1 +8 +5 +3 +3 +13  +10 +5
Mean +3 +11 +13 +16 +4 +19 +24 +29
Max +3 +15 +21 +47 +5 +25 +43 +71

Figure 5.5 and Table 5.3 present the expected seasonal climatic changes in past observations
and in future projections in the medium and long term at the catchment scale. As
temperatures are expected to increase relatively uniformly over the season at the scale of
the Ecuadorian territory (Section 5.2), this would lead to warmer conditions in all
catchments without changing the temperature seasonality, which is already weak.
Conversely, changes in precipitation are more marked in the wet season (December to June)
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than in the dry season (July to November) in all catchments. In the dry season, a moderate
increase in precipitation is expected in the catchments most influenced by conditions in the
Pacific Ocean (and hence El Nifio events) (H346, H347, H348, H365, H591 and H616) in both
the medium (+5 to +16%) and long term (12 to 21%). Conversely, in catchments located
toward the flanks of the Andes (H161, H168, H334 and H340), a slight reduction or a lower
increase in precipitation is expected in the dry season in both the medium (-4 to +5%) and
long term (-6 to +8%). The most significant changes are expected in the wet season in the
catchments influenced by the Pacific in both the medium (+12 to +21%) and long term (+23
to +45%). In catchments located toward the Andes, lesser changes in precipitation in the wet
season are expected in both the medium (+7 to +13%) and long term (+14 to +23%).

An increase in flow peaks in the wet season is thus expected in all catchments as a
result of a potential intensification of precipitation in the “double band” (see Brown et al.,
2013) of the Inter Tropical Convergence Zone (ITCZ). In catchments influenced by the ocean—
atmosphere interaction in the Pacific Ocean, extreme precipitation events due to El Nifio
could occur more frequently as the result of the warming of the eastern equatorial Pacific
(Cai et al., 2014). Due to potential intensification of El Nifio events, it is also logical to expect
intensification of the inverse effect (drought conditions) and hence of the impact on the low
flow regime in the catchments closer to the Andes.

Table 5.3. Mean seasonal climatic changes at the medium (2040-2070) and the long-term (2070-2100)
horizons in the 10 study catchments. Future changes are presented as an increase (+) or decrease (-) in
temperature (in °C) and precipitation (in %). WET stands for wet season (December to June) and DRY for dry
season (July to November).

TEMPERATURE PRECIPITATION
2040-2070 2070-2100 2040-2070 2070-2100
BASINS DRY(°C) WET(°C) DRY(°C) WET(°C)| DRY(%) WET(%) DRY(%) WET (%)
H161 +2.5 +2.5 +4.2 +4.2 -2 +8 -2 +15
H168 +2.5 +2.5 +4.1 +4.1 +5 +13 +8 +23
H334 +2.6 +2.6 +4.3 +4.3 +3 +10 +5 +19
H340 +2.5 +2.5 +4.2 +4.2 -4 +7 -6 +14
H346 +2.6 +2.6 +4.3 +4.3 +5 +12 +9 +23
H347 +2.6 +2.7 +4.4 +4.4 +10 +18 +17 +33
H348 +2.6 +2.6 +4.3 +4.3 +10 +17 +17 +32
H365 +2.3 +2.3 +3.9 +3.9 +11 +14 +20 +26
H591 +2.5 +2.4 +4.2 +4.0 +16 +21 +29 +45
H616 +2.5 +2.4 +4.1 +3.9 +14 +18 +32 +31

Figure 5.6 presents the seasonal changes in the streamflow due to climate change compared
to the reference period (1985-2015) in the 10 study catchments. Future mean streamflows
in the medium and long terms were obtained by averaging the 108-member output
ensemble with confidence intervals of 95%. The resulting confidence intervals are thin,
showing that the simulations are relatively consistent. In general, despite warmer
conditions, which should increase evapotranspiration, an increase in mean annual
streamflow is expected in all catchments by the end of the 21% century. The increase in
streamflow should be particularly marked in the wet season, with changes between +2 and
+48% by the medium term, and between +6 to +75% in the long term depending on the
catchment. In the dry season, streamflow is also expected to increase in most but not all
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catchments: changes range from -7% and +51%, and from -1% to +51% in the medium and
long term, respectively. Catchments that are particularly influenced by El Nifio events (H346,
H347, H348, H365, H591 and H616) could be subject to a more significant increase in
streamflow in the wet season in the medium (+8 to 48%) and long term (+24 to +75%) than

catchments located nearer the Andes (H161, H168, H334 and H340).
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Figure 5.5. Seasonal changes in temperature (T) and precipitation (P) in the present period (1985-2015) and at
the medium (2040-2070) and long-term (2070-2100) horizons at basin scale. More details about the seasonal
changes in streamflow are given in Table 5.3. The catchments that are the most/least influenced by conditions
in the Pacific Ocean are shown in blue and green, respectively. The uncertainty bounds represent the maximum
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Figure 5.6. Changes in mean seasonal streamflow at the medium (2040-2070) and long-term (2070-2100)
horizons compared to the reference period (1985-2015). The catchments that are the most/least influenced by
conditions in the Pacific Ocean are shown in blue and green, respectively. The uncertainty bounds represent
the 108 hydrological scenarios with confidence intervals of 95%. Values of Qwer and Qory correspond to mean
streamflow in the wet (December to July) and dry (June to November) months, respectively. Projected seasonal
mean streamflows are represented by the mean of 108 simulations with a 95% of confidence interval.
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6. Conclusions

The current chapter analyzed potential changes in air temperature and precipitation under
climate change and their impact on streamflow in Ecuador by the end of the 21% century.
Climate scenarios were performed using the simulations of nine climate models. They were
used as inputs in the hydrological ensemble approach evaluated under climate-contrasted
conditions in Chapter 4 to provide hydrological scenarios at the catchment scale.

The use of nine climate simulations enabled estimation of the probability of
occurrence of these future scenarios. Climate projections showed a significant rise in
temperature throughout Ecuador in both the medium (+2.7 °C on average) and long term
(+4.4 °C on average). Projected precipitation also showed a general increase in the medium
(+8 % on average) and long (+17 % on average) terms.

At the catchment scale, temperatures are expected to increase relatively uniformly
throughout the year. On the other hand, precipitation could increase particularly in the wet
season (December to June) in all the study catchments. The biggest increases are expected
in the catchments that are the most influenced by El Nifio events. Lower changes in
precipitation are expected in the wet season in the medium and long term in the catchments
toward the flanks of the Andes. In general, despite warmer conditions, which should
increase evapotranspiration, an increase in mean annual streamflow is expected in all
catchments: between +3 and +47% in the medium term and between +5 and +71% in the
long term depending on the catchment. This broad range of simulated streamflows between
catchments can be explained by the differences in local precipitation projections. Most
catchments could undergo a streamflow increase in all seasons. However, in the dry season,
hydrological projections showed slight increases and decreases depending the catchment,
and even no changes between the medium and long term are expected in the Andean
catchments.

Potential risks of floods during the wet season and dry season should thus be expected
by the end of the 21* century. For instance, catchments such as H161 which has a
hydroelectric power station (Toachi-Pilaton) and H365, which has a flood control dam (Daule
Peripa) may require special attention due to the potential increase in streamflow in the wet
season. Additional inflows for hydropower generation and water storage may require
changes in the operating procedures.
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1. Advances in the representation of hydro-climatic variability

1.1. A complete methodological protocol to regionalize climate observations

This thesis represents the first comprehensive attempt to create a complete high-resolution
(5 km x 5 km) daily climate dataset for the period 1985-2015 that is valid for hydro-climatic
research in Ecuador. The proposed climate regionalization protocol emphasizes the value of
a purely gauge-based observational dataset. Indeed, preliminary works showed that
satellite-based products, gauge-based gridded products and reanalysis cannot provide a
reliable regionalized dataset in Ecuador (see Erazo et al., 2018 in appendix 1).

Climate regionalization was accomplished in four methodological steps: (1) careful
selection of climate gauges; (2) calibration of the interpolation parameters through cross-
validation; and (3) evaluation of the resulting datasets based on independent gauges and
hydrological sensitivity analyses. Compared to studies that produced observational daily
gridded dataset at country scale (e.g. Dumitrescu and Birsan, 2015; Livneh et al., 2015), the
regionalization methodology applied in the current thesis can be considered exhaustive,
adapted and reproducible in other poorly-gauged regions. The initial selection of gauges was
an essential step prior to using interpolation methods to transform gauge data from
punctual to continuous surfaces. Retaining only climate gauges with less than 25% daily
missing records allowed a coherent signal of air temperature and precipitation to be
represented over a 30-year period, as shown in Chapter 3. Additionally, choosing among
various deterministic and geostatistical interpolation methods and their associated
parameters was critical for the regionalization of temperature and precipitation.

Concerning air temperature regionalization, clear improvements were obtained when
elevation was taken into account in the interpolation process. Satisfactory results were
obtained both by applying constant orographic corrections to deterministic methods (NN,
IDW) and by using geostatistical methods such as CKR with calibrated cross-variograms.
However, CKR technique provided better estimations of temperature in the mountains, as
revealed by an independent punctual evaluation in which 60% of the gauges were located
above 2 400 m a.s.l. in the Andes. This reinforces the findings of previous studies that used
this method to interpolate temperature according to different timescales (Ishida and
Kawashima, 1993; Aznar et al., 2013). The accuracy of CKR is mainly due to its own
calculation scheme that involves corrections to orographic gradients that vary over time
(day-by-day orographic gradients). Further improvement can be expected by using other
methods that account for local differences in topographic influence depending on the
season, and synoptic situations such as kriging with external drift (KED; Ahmed and de
Marsily, 1987; Goovaerts, 2000) or IDW with external drift (IED; Ruelland, 2020). However,
as pointed out by Ruelland (2020), lack of high-elevation stations can seriously limit correct
estimation of local, time-varying lapse rates, thus hampering the efficiency of such methods
in poorly-gauged contexts. The regionalization of air temperature in Ecuador is thus limited
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by the information available on the national network. Local improvements could probably be
achieved using measurements made by gauges installed at high elevations (e.g. gauges
belonging to the networks of drinking water companies). This option was not investigated in
the thesis because the missing temporal data in these gauges would not enable the
production of a stable signal over multi-decadal periods.

As far as precipitation in Ecuador is concerned, IDW without orographic correction
outperformed geostatistical methods at the daily time scale in the results of cross-validation,
independent gauges and hydrological sensitivity. The simple IDW scheme seems relatively
suitable for the regionalization of daily precipitation in varied climate conditions, as already
suggested both in the context of a dense gauge network (Dirks et al., 1998) and in poorly-
gauged regions (Ruelland et al., 2008; Ruelland, 2020). Hydrological sensitivity analyses of
the interpolated precipitation fields provided valuable and complementary insights to
standard evaluation methods that only rely only on punctual gauges. These analyses
suggested that correct assessment of the precipitation input volume was more important
than the spatial pattern itself when simulating streamflow hydrographs as already shown in
other studies (Ruelland et al., 2008; Masih et al., 2011). It is widely accepted that relief tends
to increase precipitation with elevation through the so-called orographic effect (Barry and
Chorley, 2010), at least in mid-latitudes (Hanson et al., 1980). In Ecuador, no improvement in
precipitation estimates was obtained when elevation was taken into account, whatever the
timescale (yearly, monthly or daily). In fact, maximum precipitation may not necessarily
occur at the highest elevation of a catchments (Daly et al., 1994), which seems to be the case
in the tropical Andes of Ecuador. The magnitude of displacements in the precipitation
maximum and accumulation trends in altitude is not easily generalized, and depends on
barrier characteristics, the source of moisture, storm types, wind speed, and other factors
(Daly et al., 1994; Sevruk, 1997). Additional studies to evaluate and refine the precipitation
relation with elevation could be carried out by analyzing streamflow measurements made in
high mountain catchments and by exploring the role of unmeasured precipitation at high
elevations (see e.g. Ruelland, 2020). Other physical variables (e.g. the direction of the
prevailing wind and exposure) could be considered with non-stationary schemes to test
potential improvements, and including spatial patterns derived from satellite estimates as a
covariate in the interpolation schemes could also be evaluated. Such approaches consist in
merging gauged-based data with satellite-based precipitation to provide gridded climate
dataset in regions where data is scarce (see e.g. Wagner et al., 2012; Yang et al., 2017; Aybar
et al, 2019). It is worth mentioning that these approaches may include significant
uncertainties and bias errors due to the limited consistency of satellite estimates in space
and over time (see e.g. Maggioni et al., 2016; Satgé et al., 2019). Finally, the limited time
depth in the satellite estimates still limit regionalization over multi-decadal periods.

1.2. Streamflow reconstruction: a suitable alternative to poorly-gauged
regions

The daily climate datasets discussed above provided continuous inputs for hydrological
modeling and enabled the reconstruction of streamflow series in 10 catchments and over 30
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years in Ecuador as presented in Chapter 4. As discussed in the literature overview, a
number of studies used reanalysis datasets due to their space—time continuity over multi-
decadal periods (>= 30 year) to complete and extend streamflow series. However, the
accuracy of such datasets is closely linked to errors in the climate models on which they rely
and should thus be used with caution, notably in poorly-gauged regions. Despite their
scarcity, hydro-climatic data recorded by gauges remain the most reliable sources over
multi-decadal periods and are the most suitable for streamflow reconstruction.

Daily observed discharges measured at the gauges belonging to the national network
in Ecuador are of limited quality and numerous data are missing for the last 30-40 years. A
full reconstruction of the streamflow series in time was thus required to enable hydro-
climatic analysis over a multi-decadal period (30 years). Simulations with daily rainfall-runoff
models (GR4J and HBV9) were not sufficiently accurate in reproducing the daily observed
streamflows, mainly due to the poor quality of discharge observations. In this context,
aggregating daily simulations at a monthly time scale was judged to be the best way to
evaluate model efficiency. Furthermore, it allowed the inclusion of a third parsimonious
model (GR2M) specifically designed to run at a monthly time step. Integrating three models
with different structures and parameters to reconstruct streamflow represented an original
framework that differs from the single model used in many studies (e.g. Smith et al., 2019;
Jones and Lister, 1998). Combining the three models with four parameter sets calibrated
under climate-contrasted conditions via split-sample techniques enabled the production of a
12-member ensemble. The performances of individual models and all possible combinations
in the 12-member ensemble were evaluated in each catchment. For the 10 catchments
studied, combinations of between 2 and 7 members produced the best averaged
simulations. On the other hand, the averaged 12-member ensemble performed similarly to
the optimal combination and also had the most stable performance whatever the
catchment. Using a large number of combinations was thus shown to best approximate the
relevant aspects of behavior of many catchments thereby improving the performance of
fixed model structures. Frequently, no single hydrological model will perform better than all
the others in all circumstances and the use of model ensembles (called also multi-model
ensemble) is then better than the best individual models, as already reported in other
studies (e.g. Velazquez et al., 2010; Fenicia et al., 2011; Seiller et al., 2012; 2015; Van Esse et
al.,, 2013; Hublart et al., 2015). Clearly, more model structures (see available models in the
literature overview) could have been included in the multi-model framework. For instance,
20 and 72 model structures were used to simulate streamflow in Seiller et al. (2015) and
Hublart et al. (2015), respectively. However, the current thesis showed that multi-model
ensembles perform satisfactorily and are robust even when a smaller number of models is
used. Beyond the number of models, the proposed multi-model ensemble also relied on
different parameter sets to improve its transferability under climate-contrasted conditions.

Using a 12-member ensemble was thus found to be highly appropriate for streamflow
reconstruction in Ecuador. The resulting reconstructed inter-annual series obtained in 10
study catchments produced good performance metrics (NSE and NSEq; respectively used to
evaluate high and low flows) with relatively narrow bands of associated uncertainty. Wider
uncertainties were identified in the reconstruction of inter-annual peak flows, which is not
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surprising, since the biggest uncertainties in hydrological modeling are associated with
extreme precipitation events (see e.g. Seibert, 2003), be it in the context of natural
variability or climate change (see e.g. Bronstert et al., 2007). The three hydrological models
used in this thesis can be considered as reasonably suitable to represent base flows and
floods in Ecuador, whereas less complex parsimonious models (e.g., GR2ZM) may be sufficient
in catchments dominated by base flow. In addition, more complex models (with more
reservoirs and parameters such as HBV9) may be more suitable in catchments with higher
runoff variability. Combining different model structures and parameters thus makes it
possible to extract as much information as possible to represent the behavior of the
catchment system. Consequently, the 12-member ensemble was not merely a collection of
the “best” models because individual models with lower performances may successfully
contribute to the ensemble, as already suggested by Veldazquez et al. (2010) and Seiller et al.
(2012). This can be explained by the fact that the errors of independently constructed
models tend to be mutually statistically independent. Therefore, through model averaging,
these errors would cancel each other out, resulting in better overall predictions (Ajami et al.,
2006). For further improvement, other averaging techniques (as different as the simple
arithmetic mean used to represent reconstructed streamflows) could be implemented. For
instance, Bayesian model averaging and the Granger-Ramanathan averaging methods could
be used to assess whether some gain in hydrological predictions can be reached, as
proposed by some authors (e.g. Najafi and Moradkhani, 2015; Broderick et al., 2016).

1.3. Simulating the hydrological impact of climate change

As shown in Chapter 5, climate simulations from dynamically downscaled GCM outputs are
not sufficiently accurate to be used as direct inputs in hydrological models. The raw outputs
of different GCMs dynamically downscaled with one RCM were evaluated over the control
period in comparison with the regionalized dataset developed in Chapter 3. The evaluation
showed that none of the climate models was able to correctly capture the spatial, seasonal,
and mean annual patterns of air temperature and precipitation in Ecuador, as already
reported in other tropical regions (e.g. Ruelland et al.,, 2012) and semi-arid regions (e.g.
Dakhlaoui et al., 2019). The bias in reproducing reference climate led to the use of a simple
perturbation method to produce a range of climate scenarios from the climate model
outputs. Nine high-resolution air temperature and precipitation scenarios were thus built for
both the medium-term (2040-2070) and long-term (2070-2100) in Ecuador. These scenarios
relied on the outputs from nine different GCMs under RCP 8.5, previously dynamically
downscaled with one RCM (SMHI RCA4 model - Swedish Meteorological and Hydrological
Institute), and further downscaled and unbiased using a perturbation method. They served
as inputs for the 12-member hydrological modeling ensemble evaluated under past climate
conditions to provide hydrological scenarios in the 10 study catchments. This is the most
widely used method to assess the impact of climate change on water resources (see e.g.
Prudhomme et al., 2003; Merritt et al., 2006; Maurer, 2007; Minville et al., 2008; Ludwig et
al., 2009; Bae et al., 2011; Ruelland et al., 2012; 2015; Fabre et al., 2015; 2016; Dakhlaoui et
al., 2019). However, this thesis provided more insights to calculate and analyze future
simulations.
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First, the multi-model ensemble relied on four parameter sets that were calibrated
under different past climate conditions based on split-sample techniques (SST and DSST) as
recommended by Klemes (1986). The differential split-sample test (DSST) is a powerful
procedure to evaluate transferability under climate variability. It consists of calibration and
validation exercises for hydrological models using sub-periods with contrasted climate
conditions, which makes it possible to evaluate model transferability from one climate
condition to another. Hence some ENSO events (one very strong El Nifio event, and two
strong La Nifia events), with differential impacts in Ecuador (Vicente-Serrano et al., 2017)
occurred during the evaluation sub-periods as defined by the SST and DSST techniques on all
catchments. The ability of the multi-model ensemble to correctly reproduce the impact of
these ENSO events on streamflow supports our confidence in the ability of the modeling
chain to simulate streamflow under climate change. However, an in-depth analysis could
have been conducted to fully assess the transfer limits of the multi-model ensemble towards
drier/wetter and colder/warmer conditions using for instance the general differential split-
sample test (GDSST) proposed by Dakhlaoui et al. (2019). Based on this technique applied in
several basins in Tunisia, the authors showed that rainfall-runoff models are transferable to
wetter and/or colder conditions but that their transferability significantly decreased when
climate conditions involved a decrease of more than 25% in annual precipitation and a
simultaneous increase in annual mean temperatures of more than 2°C. More generally, the
drop in the performance of conceptual models in non-stationary conditions is worth
discussing (see e.g. Stephens et al., 2019) and should be evaluated to reduce uncertainty in
the hydrological predictions (see section 3.2.).

Beyond the possible limitations of model transferability, the hydrological scenarios
were based on 108 streamflow series (3 hydrological models x 4 parameter sets x 9 climate
scenarios) in each catchment studied and in each future horizon (2040-2070 and 2070-
2100). This large sample allowed normal distribution to be assumed (which was confirmed
by statistical tests). The average hydrological projections can then be presented with a range
of 95% confidence intervals from a probabilistic point of view (see e.g. Melching, 1995 for
more details on the probabilistic concepts). These ranges allow easier interpretation of the
future streamflow variability resulting from further uncertainty bounds that facilitate
interpretation.

1.4. Past and future hydro-climatic variability in Ecuador

1.4.1. Past hydro-climatic variability

As expected, seasonal variability of air temperature is weak in Ecuador. A slight increase in
air temperature can be detected for the Coastal region (+0.26 °C per decade), the Andes
(+0.25 °C) and the Amazon region (+0.23 °C) over the study period 1985-2015. These results
are in agreement with the range of warming ratios reported for the Coastal region and the
Andes of Ecuador (+0.25 °C) over the period 1966-2011 (Mordn-Tejeda et al., 2016) and a
wider region as the tropical Andes (+0.32 °C) over the period 1974-1998 (Vuille et al., 2000).

In the Coastal and Andes regions, seasonal precipitation is associated with the
meridional displacement of the Intertropical Convergence Zone (ITCZ). The wet and dry
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seasons are respectively the result of the southernmost and northern position of the ITCZ
(Mitchell and Wallace, 1992). El Nifio Southern Oscillation (ENSO) conditions in the eastern
Pacific (El Nifio 1+2) intensify the wet season thereby futher influencing ITCZ expansion. At
the inter-annual time scale, the ENSO events (El Nifio and La Nifia phases) are the most
significant source of variability in the Coastal region and on the western flanks of the Andes.
The 1997-1998 El Nifio event led to the wettest year in the Coastal region (3 836 mm). In the
Andes, El Nifio phases are associated with below-average precipitation, particularly in the
northwestern part of the Andes, while the opposite occurs during La Nifia events (Vicente-
Serrano et al., 2017). The precipitation variability in the Amazon region is also influenced by
the ENSO events in the opposite way to the Coastal region. El Nifio phases reduced
precipitation in the Amazon region due to the weakened South Pacific trade winds and
hence less moisture transported from the east (Marengo, 1992), while the opposite occurs
during La Nifia phases (Vicente-Serrano et al., 2017).

At catchment scale, seasonal and inter-annual streamflow variability is mostly linked to
precipitation varability. A single streamflow peak occurs in all catchments between
December and June due to the southernmost position of the ITCZ. This seasonal peak is
more marked in catchments on the lowlands, which are highly exposed to the occurrence of
ENSO events in the eastern Pacific (EI Nifio 1+2). At inter-annual scale, catchments on
lowlands are strongly influenced by ENSO. Particularly, the highest historical streamflow
variability occurred during the strong El Nifio event in 1997-1998. Catchments located at
high altitudes toward the Andes present lower streamflow variability because they are less
influenced by ENSO events. Additional analysis should be envisaged on the influence of El
Nifio phases in the central Pacific region (El Nino 3.4 index) on the occurrence of droughts
and the impact of El Nifio on streamflows in all catchments (see e.g.Vicente-Serrano et al.,
2017).

1.4.2. Future hydro-climatic variability

Warming scenarios are already reported in South America (e.g. Marengo et al., 2010; Solman
et al.,, 2013) and in the tropical Andes (Urrutia and Vuille, 2009; Buytaert and De Biéevre,
2012;). Available studies in Ecuador (e.g. Buytaert et al. 2010; Mora et al. 2014; Carvajal et
al. 2017; Campozano et al., 2020;) only partially addressed future hydro-climatic projections
as they did not include a representative sample of catchments nor considered both the
medium- and long-term horizons. This thesis thus presents the most detailed hydro-climatic
projections in Ecuador including the complete future horizon that includes the medium
(2040-2070) and long term (2070-2100), varied climate scenatios and streamflow
projections thought 108 simulations in a representative sample of 10 catchments. The
projections for Ecuador show a significant rise in temperature throughout the country in the
medium term (+2.7 °C on average) and long term (+4.4 °C on average). Projected
precipitation also shows a general increase in the medium term (+8 % on average) and long
term (+17 % on average). Despite a warmer future climate (which should increase
evapotranspiration), an increase in mean annual streamflow between +5% and 71% is
expected by the end of the 21% century depending on the catchment. More streamflow (+14
to +45 %) is thus expected during the wet season (December to June) while streamflow
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could decrease or increase (-6 to 32%) in the dry season (July to November). These potential
future hydrological conditions appear to be favorable in terms of the quantity of water that
will be available in Ecuador and in the catchments studied here. However, they should be
analyzed in terms of water management.

2. Significance for water management in Ecuador

2.1. Water risks in the 21st century: potential flood risks and water
restrictions

In general, an increase in mean annual streamflow is expected in all catchments during the
wet season. To deal with this seasonal shift, probably more infrastructures should be
envisaged to regulate and store water from the wet season to be used in the dry season. In
particular, catchments located on lowlands on the Pacific slope, could provide favorable
conditions for agricultureal production in terms of water quantity. Nevertheless, more
seasonal streamflow also means more risk of flooding, and even more serious flooding could
occur if ENSO events intensify in the future (see e.g. Cai et al., 2014). However, it is worth
mentioning that the hydrological projections were analyzed at a monthly time scale in the
thesis. Consequently, more streamflow in the wet season does not explicitly imply an
increase in extreme hydrological events. Daily streamflow simulations would be required to
detect these potential changes. Helpfully, two hydrological models used in this thesis that
run at a daily time step (GR4J and HBV9) can be used in future studies to detect potential
daily changes in the frequency and intensity of extreme hydrological events up to the end of
the 21" century.

Based on general projections available for South America and in one catchment in the
Ecuadorian Andes in the studies mentioned below, changes can be expected at daily time
scale for Ecuador. For instance, Marengo et al., (2009) suggested an increase in the number
of days with heavy precipitation (> 10 mm) in South America (including the northern coast of
Peru and Ecuador). Mora et al.,, (2014) projected marked changes in extreme rainfall
intensities and an increase in high peak flows in one catchment in the Ecuadorian Andes
(Paute River). Based on these results, it can be assumed that higher peak flows may occur in
the wet season in the 10 catchments studied, particularly on lowlands, which are more
influenced by ENSO conditions (e.g. Vicente-Serrano et al., 2017; Rossel and Cadier, 2009).
Wetter wet seasons with possibly more frequent and higher peak flows thus represent a
serious risk for human safety and agricultural production in the lowlands of the Pacific slope.
Extensive croplands along the main rivers and in the floodplain of the delta may experience
higher flood water levels, thus increasing risks of reduced productivity, crop failure and
higher economic losses as was the case during historical ENSO events (e.g. strong El Nifio in
1998; Santos, 2006). On the other hand, other water risks could occur in the Andean
catchments in the dry season. Agricultural activities could be exposed to a reduction in the
number of wet days, which may require the extension of irrigation and improvement of the
efficiency of current systems. In the Andes, the water intakes for drinking water may also
require adaptation strategies (e.g. Gonzalez-Zeas et al., 2019a, 2019b) to deal with low
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water availability during future dry seasons also taking into consideration that more dense
populations will require more water in the future. Water storage will probably become more
important in the future as already projected for some sub-regions and the main cities
(Bogotd, Quito, Lima, La Paz) located in the tropical Andes (e.g. Buytaert and De Bievre,
2012).

2.2. Water management and adaptation

This thesis provided complete historical series and future hydro-climatic projections, which
are essential to support water management strategies for a wide range of activities in
Ecuador.

For research and operational uses, the historical hydro-climatic series can be used to
shed light on past streamflow variability, the occurrence of floods and drought events and
their characteristics (duration, termination, and seasonality). Knowledge of historical
monthly and daily events can also be used to explore statistical correlations with
atmospheric and oceanic drivers of flood and drought events that may help predict the
onset of events (e.g. Tobar and Wyseure, 2018; Moran-Tejeda et al., 2016; Recalde-Coronel
et al., 2014). Extending observed hydrological records by 30 years significantly increases the
sample of historic streamflow for future projections in the short term (weather forecasting)
and in the long term (climate change). Complete streamflow data can be used as the
reference records in seasonal hydrological forecasting using persistence and historical
analogs (e.g. Svensson, 2016) and for long term projections using global/regional climate
change models.

Adaptation strategies can be planned for the short, medium, and long term for the
whole of Ecuador. These strategies can focus on regulating peaks flows starting with existing
water infrastructure in the coastal lowlands (described in Chapter 2 — Study area). The dry
season in the Andes region requires special attention due to their historical low precipitation
and limited streamflow. For instance, improvements in irrigation efficiency could be adapted
to the present and future limited water availability expected in the dry season. Both more
efficient and more extensive irrigation in defined areas is recommended. Farmers who have
access to irrigation water are better able to buffer their crops against irregular rainfall and
hydrological changes than those without. In addition, to offset the water limitation due to
the increase in crop consumption, new reservoirs for irrigation and water intakes may be
envisaged to store water available in a slightly wetter wet season to supply water during an
unchanged or even drier dry season. For catchments with hydroelectric power stations,
future changes should envisage more water available for the production of hydroelectric
power. Both for hydropower stations and water regulation infrastructures, an increase in
water quantity and in peak flows may require changes in operating procedures (e.g. excess
derivations). Additional attention should also be paid to sediment transport processes in
catchments. The suspended sediment load on the Pacific slopes is fairly high (6 x 10° t/year,
Armijos et al., 2013) and may be increased by more frequent peak flows. The nutrient
dynamics in the downstream floodplains may be affected by increased sediment transport,
which may also affect existing ecosystems and agricultural practices.
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Seasonal forecasting is a potentially usual strategy in the regions exposed to flood
events caused by ENSO events in the lowlands of the Pacific slope. Some catchments and
regions are already less exposed to ENSO events due to water control infrastructure built in
the last 10 years. However, for financial reasons, all regions cannot be protected and many
cropland and urban areas are vulnerable to floods. Quishpe-Vasquez et al., (2019)
demonstrated the advantage of using the tropical Pacific sea surface temperature (SST)
anomalies of certain areas of the tropical Pacific to determine streamflow anomalies across
Ecuador. In this line of thought, reconstructed streamflow can be used to highlight
relationships between flooding and SST anomalies and to develop seasonal forecast systems
for risk management in the lowlands of Ecuador.

2.3. On the need to maintain and develop observational networks

Appropriate and reproducible methodologies were produced in this thesis to regionalize
climate data, simulate/reconstruct streamflow and assess the future hydro-climatic changes
in poorly-gauged regions. The scarce data series in Ecuador are limited in space (low density)
and in time (data gaps and quality problems) and many gauges were discarded. The
implementation/adaptation of methodologies to undertake a complete hydro-climatic study
was challenging. It should be taken into consideration that if fewer data are used than the
quantity used for this thesis, the proposed methodologies could be less suitable and the
results could lead to more uncertainties. Serious problems in maintaining reference data and
a sufficiently dense network of weather stations are frequent in developing countries like
Ecuador. The crucial importance of a well maintained meteorological network as a reference
should be strongly institutionalized in order to justify and assign permanent economic
resources for national meteorological monitoring. The economic and human resources
required for a permanent observation network in Ecuador can be sustained if their value for
water management and water security is recognized. The correct designs of costly water
projects rely on continuous, longer and good quality series recorded over multi-decadal
periods and these series should be maintained in the future in sufficiently representative
locations.

Observational networks also provide the most important basis for the detection and
attribution of the causes of global climate change. Observation networks are used in a
variety of applications to reduce climate-related risk to life and property, and often act as
anchor points for validating space-based measurements (Trenberth et al., 2002). Historical
meteorological data constitute an irreplaceable resource to plan a wide range of strategic
decisions related with water infrastructures and their management. Gauge networks in
developing countries function under serious difficulties associated with limited economic
resources, thus limiting the number of stations that can/should be maintained. However,
beyond economic limitations, problems also arise from due to the lack of effective
communication about the value of observational networks. The comprehensive
methodological protocol of this thesis has had to deal with scarce data. The thesis is also a
call to maintain at least the gauges that were used and to strategically increase the density
of gauges in regions with identified water problems. In particular, regions facing risks of
flood and drought events should be better monitored in space and over time. It is also
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recommended to start coordination strategies to optimize economic resources assigned to
meteorological monitoring. In this perspective, some local networks belonging to
universities and drinking water companies should be incorporated in a national hydro-
climatic network that is permanently maintained and coordinated with sufficient human and
economic resources. It is not only the quantity of data that counts, but the quality of data
series needs to be permanently take into account. In all cases, the guideline to
meteorological instruments and methods of observation (WMO 2008) is the standard global
reference for this task.

3. Suggestions for future hydrological research in Ecuador

3.1. Streamflow regionalization at national scale

Having reconstructed complete streamflow series over a 30-year period in 10 main
catchments is an important step for a poorly-gauged region as Ecuador. Nevertheless, the
complete regionalization of streamflow at national scale should be envisaged.
Regionalization is required when there are no (or few) streamflow data in ungauged
catchments. There is no universal method for streamflow regionalization and this process is
widely regarded as a challenging task in hydrology (Oudin et al., 2008; Stoll and Weiler,
2010; Samuel et al., 2011) and was recognized in 2003 by the International Association of
Hydrological science (IAHS) (decade 2003-2012, Sivapalan et al., 2003). The most efficient
approach for regionalization is site-specific and appears to be driven by climate and
physiographic conditions (Razavi and Coulibaly, 2013). In the case of Ecuador, complete
gridded climate datasets and optimized/evaluated parameter subsets obtained in 10
catchments with different characteristics can be used in regionalization to identify
relationships between parameter values and catchment characteristics in gauged basins. The
parameters can be transferred using different approaches to provide flow estimations for
ungauged catchments.

Dedicated studies can be undertaken to identify the best approach for streamflow
regionalization in all Ecuadorian catchments among the main methods: (1) hydrological
model-dependent (e.g. Peel and Bloschl, 2011) or (2) hydrological model-independent
methods (e.g. Besaw et al., 2010). Among the hydrologic model-independent methods for
regionalization, linear and nonlinear regression methods have performed well in warm
temperate regions (e.g., European countries), whereas in cold and snowy climates (e.g.,
Canada) and warm humid climates (e.g., Brazil), scaling relationships have performed well.
HBV and GR4J were satisfactorily used in this thesis for streamflow reconstruction and are
potentially suitable for regionalization in Ecuador. According to the literature (e.g. Samuel et
al., 2011; Oudin et al., 2008; Razavi and Coulibaly, 2013), GR4J, HBV and IHACRES (among
other models) have frequently been used for regionalization and could be included in
combined approaches using different regionalization methods. Profiting from the experience
of the use of these models in Ecuador in this thesis, they could be used both for monthly and
daily time scale. For Ecuador, a combination of regionalization approaches and individual
methods could be investigated among existing hydrological model-dependent approaches
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and model-independent approaches. For this task, it will be important to analyze the
adaptability of the different methods to the specific characteristic of catchments,
particularly if there are major physiographic differences between the catchments. This is the
case of the Pacific and Amazon catchments which have different climate, land cover, and
water volumes. It may also be the case of small catchments in the Andes highlands, where
water is strongly regulated by their vegetation cover (Pdaramo) (see e.g. Buytaert et al.,
2006). Finally, uncertainty analysis is always required and strongly recommended in the case
of regionalization, for instance, to detect uncertainties resulting from difficulties in
identifying errors in model parameters, calibration strategies and model structures
(Wagener and Wheater, 2006).

3.2. Characterization and quantification of modeling uncertainty

The fact that hydrological modeling permanently faces uncertainty both for past and future
hydrological simulations is thus worth discussing. Scientific interest has been growing in the
major sources of uncertainty that are widely accepted in the literature. Uncertainty occurs
under stationary conditions (i.e. independently of climate and/or environmental variability)
and is linked to the imperfect model structures, calibration procedures, and erroneous data
used for calibration and evaluation (e.g.Liu and Gupta, 2007; Brigode et al.,, 2013).
Uncertainty is even greater under non-stationarity conditions (such as climate and/or
anthropogenic changes) which can lead for instance to parameter instability (e.g. Thompson
et al.,, 2013; Coron et al.,, 2012; Poulin et al.,, 2011). The above-mentioned uncertainty
sources were partially accounted for in the methodological protocol implemented
throughout this thesis. Particular attention was thus paid to the accuracy of regionalized
climate inputs and to the use of a powerful optimization algorithm (evolutionary algorithm)
to calibrate and evaluate the parameters of three different hydrological models in climate-
contrasted conditions. Further research could focus on model structures that use inference
frameworks to identify structural failures under a changing climate (e.g Stephens et al.,
2019; Fowler et al., 2018). Even if all the above elements are taken into consideration to deal
with the uncertainty in hydro-climatic studies, model transferability to future climate
conditions differing from present ones will remain uncertain. Long-term climate change will
probably lead to changes in water tables, changes in vegetation due to increasing
concentations of atmospheric CO, (Cramer et al., 2001), changes in land use/cover and
in evapotranspiration processes (not only linked with temperature increase) (e.g. Ruelland et
al., 2012). These additional non-stationary processes have not yet been sufficiently assessed,
particularly in data sparse regions. What is more, the quantification of uncertainty has rarely
been addressed in scarce data regions (Hublart et al., 2015).

Due to the characteristics of the hydrological scheme used for this thesis, modular
modeling frameworks (MMFs) could have been used to characterize structural and
parameter uncertainty. Clark et al.,, (2011) argued that ensembles of competing model
structures obtained from MMFs (e.g. FUSE, Clark et al., 2008; SUPERFLEX, Fenicia et al.,
2011) should be used to quantify the structural uncertainty arising because of system non-
identifiability. MMFs could also be tested in Ecuador using the concept of Pareto-optimality
to distinguish between several rival structures that can be used to characterize both the
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parameter uncertainty arising from each model’s structural deficiencies (model inadequacy)
and the ambiguity associated with the choice of model components (model non-uniqueness)
(Hublart et al., 2015). In addition, a Bayesian total error analysis framework could be used to
qguantify uncertainty. Bayesian inference is a robust and comprehensive calibration and
uncertainty estimation method (e.g. Kuczera et al., 2006) that has already been used in
poorly gauged regions (Claro river, Andes of Chile) by Hublart et al., (2016). The above-
mentioned methods could be adapted to quantify and reduce the uncertainty surrounding
streamflow predictions. They could also be used to account for more complex process such
as integrating the effects of irrigation water use on runoff (see also Hublart et al., 2016).

3.3. Toward model-based predictions of the capacity to meet future water
requirements

The products developed in this thesis were obtained using appropriate methodologies to
represent hydro-climatic-variability under the hypothesis of natural or semi-natural systems.
Nevertheless, in Ecuador, and worldwide, most catchments are subject to water withdrawals
to fulfil the demand for water, which requires more comprehensive and integrative analyses
(Montanari et al., 2013). In many cases, hydrological systems (hydrosystems) in current
climate conditions are modified by anthropogenic influences, resulting in water limitation,
particularly in the dry season (e.g. Pacific coastal border and the Andes in Ecuador). These
modified hydrosystems require permanent evaluation of their capacity to satisfy the
demand for water for human uses, in both current and future conditions, while keeping
withdrawals and consumptive use at environmentally sustainable levels (see Fabre et al.,
2015). To address this issue, information on water demand (e.g. Grouillet et al., 2015) should
be incorporated in frameworks that include hydrological models, demand-driven dam
management models (e.g. Fujihara et al., 2008) and robust decision-making approaches
(Dessai and Hulme, 2007; Dessai et al., 2009; Wilby and Dessai, 2010). The problem of
satisfying water demand at catchment scale in complex systems has rarely been studied so
far. Some studies at catchment scale assessed the impacts of hydrological changes on the
capacity to satisfy current water demand (e.g. Pulido-Velazquez et al., 2011; Lépez-Moreno
et al., 2014) and planned future water demand but without considering the possible impact
of climate change on agricultural water demand (e.g. Milano et al., 2013). Collet et al. (2015)
assessed water supply sustainability and adaptation strategies under anthropogenic and
climatic changes of a meso-scale Mediterranean catchment. Fabre et al. (2015; 201643;
2016b) accounted for the numerous spatial and temporal interactions between water uses
and water availability in complex river basins in France (Hérault, 2500 km?) et Spain (Ebro,
85000 km?). They notably assessed the sustainability of water uses under both
anthropogenic and climatic changes, considering all water uses at catchment scale including
environmental requirements and accounting for climate change uncertainty.

Considering the catchments as real complex hydrosystems according to integrated
modeling approaches may be the next step to be developed in Ecuador. Upstream—
downstream interactions should be considered through the simulation of water
withdrawals, return flows and consumptive uses spatially addressed using water demand
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nodes and indicators of water demand satisfaction (see Fabre et al., 2015; 2016a; 2016b).
For this task, the main water demands should be estimated in clearly defined hydrosystems:
environmental requirements, domestic demand, agricultural consumption, industrial
demand and regulation of hydro-electric power stations and reservoirs (evaporative losses in
flood plains). Such an integrated modelling approach could be implemented in catchments
(e.g. H365 Daule en Capilla studied in the thesis) where agricultural, energy, human and
environmental water demands are in competition and could lead to water restrictions in the
dry season. Similar approaches could also be implemented in complex hydrosystems in the
Ecuadorian Andes (e.g. Papallacta System or Chalpi catchment, which supply 30% of the
current water demands of Quito) where the population growth may be the main driver of
increasing stress on water resources in the future (Buytaert and De Biévre, 2012), in
conjunction with the unchanging streamflow projections during the dry season simulated in
this thesis. Such approaches can be used to evaluate possible adaptive management
strategies to optimize water withdrawals (Gonzalez-Zeas et al., 2019b), and the use of
environmental flow concept as actionable management thresholds (Rosero-Lépez et al.,
2019).
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GENERAL CONCLUSION

1. Context overview

Recent and future climate changes and population growth raise the issue of balancing water
availability and water uses over the long term in regions facing these rapid changes. An
essential step in addressing this issue is assessing hydro-climatic variability in human time-
line terms. Hydro-climatic variability over multi-decadal periods can be estimated with
relative accuracy since instruments have been installed on the Earth’s surface to measure
and estimate climate and hydrological variables such as temperature, precipitation and
streamflow. The future state of climatic and hydrologic systems can also be evaluated using
climate models under future greenhouse gas emission scenarios.

A wide range of individual methodologies are available in the literature to describe and
assess hydro-climatic variability. In regions with dense gauge coverage there are several
possible ways to obtain reliable representations. In poorly-gauged regions, the
implementation of these methods is more challenging due to the limited information in
space and over time. As a result, indirect climatic data sources such as estimations by
sensors on board satellites, gauge-based global datasets or reanalysis are being increasingly
used. However, up to now, these indirect data sources have low spatial resolution, the time
series are too short, and include significant biases and/or errors, thus making it extremely
difficult to accurately represent space-time climate variability over multi-decadal periods. On
the other hand, although they are scarce in poorly-gauged regions, gauge-based
observations can provide multi-decadal records to represent past hydro-climatic variability,
and a base reference to assess the potential impact of future climate change on water
resources. Still, their use requires appropriate methods to regionalize climate data,
reconstruct referential streamflow series and to assess the impact of climate scenarios on
hydro-climatic variability.

Using continental Ecuador as a representative study case, the current PhD dissertation
has proposed a reproductible methodological chain to represent and assess past and future
hydro-climatic variability over past multi-decadal periods in poorly-gauged regions.

2. Summary of research and main findings

The literature review reported in Chapter 1 was used to support the selection of methods,
their adaptation and implementation in poorly-gauged regions. Chapter 2 described the
study area, notably its main geographic and hydro-climatic features, water uses,
management issues and lack of knowledge on the past and future hydro-climatic variability
in Ecuador. The objectives of the thesis were then addressed by developing a reproducible
methodological protocol organized in three central chapters (Chapters 3, 4 and 5). The
successful application of the proposed methodologies provides complete, continuous spatial
and temporal reliable datasets to characterize the past and future hydro-climatic variability
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in Ecuador, to discuss their significance for water management, and to make
recommendations for future hydrological research (Chapter 6). The main findings and
recommendations can be summarized with respect to the different key steps of the PhD
dissertation.

2.1. Regionalizing air temperature and precipitation

A regionalization process was implemented for air temperature and precipitation over a 30-
year past period in Ecuador. The initial selection of gauges was an essential step prior to
using interpolation methods to transform gauge data from punctual to continuous fields.
When the network of measurements is sparse, the characteristic spatial scales of
temperature and precipitation estimates may be inaccurately captured. In poorly-gauged
regions, it is thus tempting to retain all the available stations to regionalize temperature and
precipitation. However, gridded datasets obtained by interpolating all available
measurements are then affected by significant inaccuracies, which are spatially and
temporally variable. This can notably lead to unreal yearly trends in air temperature and
precipitation over multi-decadal periods, as shown in Chapter 3. It is consequently
recommended to limit the number of gauges used for regionalization to obtain a coherent
and stable signal in space and over time. This requires a compromise between temporal
stability stemming from the available gauges without disregarding data at each time scale
and their spatial representativeness. In the current PhD thesis, retaining only climate gauges
with less than 25% daily missing records was found to be a satisfactory compromise since it
allowed a coherent signal of air temperature and precipitation to be represented over a 30-
year period. Furthermore, choosing between different deterministic and geostatistical
interpolation methods and their associated parameters (including orographic corrections)
was critical for air temperature and precipitation regionalization.

For air temperature, clear improvements were obtained when elevation was included
in the interpolation process. This is particularly important to avoid overestimating
evapotranspiration when using temperature fields as inputs for hydrological models.
Satisfactory results were achieved either by applying constant orographic corrections with
deterministic methods or using geostatistical methods such as co-kriging (CKR) with
calibrated cross-variograms. However, the CKR technique produced slightly better
estimations of temperature in the mountains due to its calculation scheme that accounts for
varying orographic corrections over time (day-by-day orographic gradients). Further slight
improvement could perhaps be achieved using other techniques that account for local
differences in topographic influence in different seasons and synoptic situations such as
kriging with external drift (KED; Ahmed and de Marsily, 1987; Goovaerts, 2000) or IDW with
external drift (IED; Ruelland, 2020). However, local improvements could only be achieved by
using measurements recorded by gauges installed at high elevations (e.g. gauges belonging
to the networks of drinking water companies). This option was not investigated because the
temporal data missing in these gauges would prevent a stable signal over multi-decadal
periods.
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As far as precipitation in Ecuador is concerned, no improvement in precipitation
estimates was obtained by taking topographical information into account, whatever the
timescale considered (yearly, monthly or daily). Maximum precipitation occurs over the
eastern and western flanks of the Andes (around 1800 m a.s.|, which is the maximum
precipitation due to the saturation vapor pressure in Ecuador; Bendix and Lauer, 1992)
rather than in the inter-Andean region of Ecuador. This can be explained by the high
amount of vapor extracted windward of the western and eastern slopes of the Andes,
meaning precipitation decreases at higher altitudes.

Evaluation of the interpolated fields against independent gauges and via hydrological
sensitivity analyses clearly showed that the inverse distance weighted (IDW) technique was
the most efficient way to represent both the spatial pattern of precipitation throughout
Ecuador and the daily volumes of areal precipitation at the catchment scale. This method is
thus recommended to regionalize daily precipitation in varied climate conditions, as already
reported both in the context of dense gauge networks (Dirks et al., 1998) and in poorly-
gauged regions (Ruelland et al., 2008; Ruelland, 2020). More generally, applying
hydrologically sensitivity analyses to the interpolated precipitation fields provided valuable
and complementary insights to traditional evaluation methods that rely only on punctual
gauges. They are thus highly recommended for the evaluation of precipitation fields.

2.2. Reconstructing streamflow series

Daily discharges measured by the gauges belonging to the national network in Ecuador are
of poor quality and many data concerning the last 30-40 years are missing. A full
reconstruction of the streamflow series in time was thus required to represent hydrological
variability over a multi-decadal period.

This thesis demonstrated the interest of using an ensemble approach based on
various rainfall-runoff models and different parameter sets to reconstruct streamflow series
in poorly-gauged catchments. Using the regionalized climate datasets as inputs, three
rainfall-runoff models were calibrated and evaluated under climate-contrasted conditions
according to split-sample tests, thus providing a 12-member ensemble (products of three
models and four parameter sets). The performances of the individual models and all possible
combinations in the 12-member ensemble were then explored. Results showed that it was
not safe to rely on a single model or even on the optimal combination of ensembles. The
averaged 12-member ensemble performed almost the same as the optimal combination,
and offered the highest performance stability whatever the catchment.

Using a large number of combinations of model structures and parameters was thus
shown to best approximate the relevant aspects for many catchment behaviors thereby
improving the performance of fixed model structures. This suggests that an ensemble should
not just be a collective of “best” models because less-efficient models may also successfully
contribute to the ensemble, as already reported by Veldzquez et al. (2010) and Seiller et al.
(2012). Through model averaging, errors in the various model structures and parameters
cancel each other out, resulting in better overall predictions. Multi-model and multi-
parameter ensembles thus offer good performances and robustness. Therefore, they are
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highly recommended for reconstructing streamflow series and, further, for simulating the
impact of climate change on water resources.

2.3. Assessing the impact of climate scenarios on hydro-climatic variability

Climate simulations are not sufficiently accurate to be used as direct inputs in hydrological
models. The raw outputs of nine GCMs dynamically downscaled with one RCM were
evaluated over a control period against regionalized observations. The evaluation showed
that none of the climate models were able to correctly capture the spatial, seasonal, and
mean annual patterns of air temperature and precipitation in Ecuador, as already reported
in tropical regions (e.g. Ruelland et al., 2012) and in mediterranean regions (e.g. Dakhlaoui et
al.,, 2019). A simple perturbation method was thus applied to produce a range of climate
scenarios from the climate model outputs. High-resolution climate scenarios of air
temperature and precipitation were thus built for both the medium term (2040-2070) and
long term (2070-2100) under a high radiative concentration pathway (RCP 8.5).

Climate scenarios served as inputs for the 12-member hydrological modeling ensemble
evaluated under past climate conditions to provide hydrological scenarios in different
catchments. The performance of the 12-member hydrological ensemble in reconstructing
past streamflow series reinforced confidence in the ability of the applied modeling chain to
simulate streamflow under climate change. Nevertheless, the reduced performance of
conceptual models under non-stationary conditions could have been further investigated
(see section 1.3. in Chapter 6). Beyond the possible limitations of model transferability under
climate change, a large sample of 108 hydrological scenarios (product of 3 hydrological
models x 4 parameter sets x 9 climate scenarios) allowed the representation of hydrological
projections with confidence intervals of 95% for each study catchment and each future
horizon.

2.4. Past and future hydro-climatic variability in Ecuador

As expected, seasonal variability of air temperature is weak in Ecuador. The ITCZ position is
the main mode of seasonal precipitation and streamflow variability. A slight increase in air
temperature (+0.23 °C per decade on average) was observed for the period 1985-2015 in
the main regions of Ecuador (the Coastal, Andes and Amazon regions). El Nifio events drive
the inter-annual precipitation and streamflow variability. The very strong El Nifio event of
1997-1998 notably produced by far the wettest year in Coastal region. The Andes regions
was less influenced by El Nifio 1+2 events and thus presented lower streamflow variability.
Climate projections at the end of the 21*" century at the country scale showed a
significant rise in temperature in the medium term (+2.7 °C on average over the period
2040-2070) and in the long term (+4.4 °C on average over the period 2070-2100). An
increase in precipitation is also expected in both the medium (+8% on average) and long
(+17% on average) terms. These future climate conditions could lead to an increase of
between +5% and 71% in mean annual streamflow, depending on the catchment. Higher
streamflow is expected in the wet season (December to June) in the catchments located on
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the lowlands of the Pacific slope, while in the Andes, the increase could be less and even
slight reductions are projected for the dry season (July to November).

2.5. Facing future hydro-climatic variability

These projections can be analyzed in terms of water management. For instance, an increase
in streamflow in the wet season may require changes in operating procedures of
infrastructures such as reservoirs, regulation dams and hydroelectric power stations.
Lowlands might also be exposed to increased risk of flooding due to the potential
intensification of exceptional El Nifio events in the future. These conditions could also
increase erosion. As a result, adaptation strategies should be foreseen for agricultural
practices and water reservoir management to reduce the risk of sediment transport.
Different strategies may be required for future changes in the Andes region, particularly
during the dry season. Improvements in irrigation efficiency should be envisaged together
with the construction of new reservoirs to store water collected in the wet season and to
mitigate potential water restrictions on agricultural production in the dry season. To offset
potential future water limitations due to an increase in domestic water demand, measures
designed to optimize water withdrawal at catchment level to meet urban demand could be
first envisaged before constructing new water intakes.

Whatever the projected hydro-climatic variability, there is a need to maintain and
develop a reference observational network to support water management actions. Ensuring
a permanent reference gauge network is indeed essential to manage water risks such as
floods and droughts and to further sustain main economic activities in developing countries
(e.g. agriculture, energy). Ecuador could in particular be more involved in global initiatives
aimed at improving observation networks, such as the World Meteorological Organization's
Global Hydrometry Support Facility (WMO HydroHub) launched in 2016 (Dixon et al., 2020).

3. Prospects

3.1. Toward the study of ungauged catchments

Sustainable water management also requires complete regionalization of streamflow at
national scale to define suitable strategies in poorly or ungauged catchments, particularly
those most exposed to flooding or water restrictions. There is no universal method for
streamflow regionalization and the process is widely considered to be a challenging task in
hydrology. Some regionalization approaches developed in the literature, such as hydrological
model-dependent or model-independent methods (see e.g. Oudin et al., 2008; Peel and
Bloschl, 2011; Samuel et al.,, 2011; Razavi and Coulibaly, 2013) should be investigated.
However, the problem of data availability raises questions on how to adapt these
approaches in poorly-gauged regions. Another emerging issue related to non-stationarity in
hydrological time series caused by changes in land cover and climate change also raises the
question of the validity of regionalization methods based on the assumption of stationarity.
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Finally, uncertainty analysis is also required when regionalization methods are applied. As a
consequence, a well-established method for uncertainty estimation should also be included.

3.2. Further addressing uncertainty

This PhD dissertation considered uncertainties stemming from scarce observed data, climate
projections and the variety of methods used to represent past and future hydro-climatic
variability. However, it would be instructive to further explore these aspects. In hydrology,
robust characterization of the uncertainties affecting rainfall-runoff models remains a major
scientific and operational challenge. Uncertainty occurs and accumulates in each
methodological step under stationary conditions from the sampling and measurement
errors, through the implementation of imperfect model structures and parametric
uncertainty. In non-stationarity conditions, such as climate and/or anthropogenic changes,
even more uncertainty accumulates due to the use of climate projections and parameter
instability. A deeper understanding of the different sources of uncertainty and their effect on
model simulations is required to improve the predictive capability of hydrological models.
Bayesian inference is a robust comprehensive calibration and uncertainty estimation
method to quantify and further reduce the uncertainty surrounding the streamflow
predictions, particularly in poorly-gauged regions (see e.g. Hublart et al., 2016). A reliable
quantitative understanding of uncertainty and its reduction should be seen as an important
and complementary research issue to accurately analyze hydro-climatic variability.

3.3. Integration of socio-hydrological dynamics

Providing information in ungauged catchments and assessing uncertainties associated with
data, simulations and projections will be an important step to better assess hydro-climatic
variability. Nevertheless, it will be necessary to include human interactions in the system
because the hypothesis of natural or semi-natural systems is no longer valid. In reality,
human activity has impacted almost all parts of the landscape worldwide, to such an extent
that hydrologic and human systems are now intrinsically interlinked. Explicit recognition of
this fact should encourage further studies to progress toward coherent holistic, quantitative
prediction of hydrological variability. It is clear that improved understanding of the complex
reality of socio-hydrology dynamics is needed to enable the predictions required to support
better management of water resources (Montanari et al, 2013). For instance,
comprehensive modeling frameworks that address present and future hydro-climatic
variability should also address the balance between water demand and supply with the aim
of evaluating the sustainability of current water uses and foresee adaptive strategies to face
future socio-hydrological changes (see Fabre et al., 2016a; 2016b).

Future research could thus explore the possibility of including different modeling
aspects of coupling human-water systems to climatic and hydrological model frameworks
used to represent present and future multi-decadal variability. For this task, five major issues
presented in Wada et al. (2017) can be addressed: (1) issues related to the limitations in
representing regional water management; (2) issues related to current human impact
modeling and associated indicators; (3) issues related to the need for a nested approach
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integrating human behavior (bottom—up) in large-scale modeling (top—down); (4) issues
related to the need to model the co-evolution of human—water systems, including land use
and climate interaction; and (5) issues related to the lack of human water management
information. These themes represent the current main challenges for the human-water
interface in hydrological modeling. Integral understanding of hydro-climatic variability
coupled with human impact modeling offers a valuable opportunity for the hydro-climatic
research community to become more truly integrative and interdisciplinary than even
before. Finally, it is envisioned that this integral knowledge of hydro-climatic variability will
inform decision-making, along with other critical information, particularly in developing
countries.
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CONCLUSION GENERALE (FRANGAIS)

1. Rappel du contexte

Les changements climatiques récents et futurs et la croissance démographique posent le
probléme de I'équilibre entre disponibilité et usages de I'eau a long terme dans les régions
confrontées a ces changements rapides. Une étape essentielle pour appréhender ce
probléme consiste a évaluer d’abord la variabilité hydro-climatique sur le passé récent. La
variabilité hydro-climatique sur des périodes multi-décennales peut étre estimée avec une
précision relative depuis que des instruments ont été installés a la surface de la Terre pour
mesurer et estimer les variables telles que la température, les précipitations et le débit.
L'état futur des systémes climatiques et hydrologiques peut également étre évalué a l'aide
de simulations de modeéles climatiques contraints par des scénarios d'émission de gaz a effet
de serre.

De nombreuses méthodes sont disponibles dans la littérature pour décrire et évaluer
la variabilité hydro-climatique. Des représentations fiables peuvent étre obtenues dans les
régions avec une bonne densité de mesures. En revanche, dans les régions peu jaugées, la
mise en ceuvre de ces méthodes est plus difficile en raison des informations limitées dans
I'espace et dans le temps. En conséquence, des sources de données climatiques indirectes
telles que les estimations par des capteurs satellitaires ou des réanalyses climatiques
régionales sont de plus en plus utilisées. Cependant, jusqu'a présent, ces sources de données
indirectes ont une faible résolution spatiale, et leurs séries chronologiques sont trop courtes
et comportent des biais importants, ce qui limite leur utilisation pour représenter avec
précision la variabilité climatique spatio-temporelle sur des périodes multi-décennales. D'un
autre coOté, bien qu'elles soient rares dans les régions peu jaugées, les mesures locales
peuvent fournir des enregistrements multi-décennaux pour représenter la variabilité hydro-
climatique passée, et ainsi constituer une référence de base pour évaluer l'impact potentiel
des changements climatiques sur les ressources en eau. Leur utilisation nécessite néanmoins
des méthodes appropriées pour régionaliser les données climatiques, reconstruire des séries
de débits de référence et évaluer I'impact des scénarios climatiques sur la variabilité hydro-
climatique.

En utilisant I'Equateur continental comme cas d'étude représentatif, cette thése de
doctorat a proposé une chaine méthodologique reproductible pour représenter et évaluer la
variabilité hydro-climatique passée et future sur des périodes multi-décennales passées dans
les régions peu jaugées.

2. Syntheése des travaux et principaux résultats

La revue de la littérature rapportée au chapitre 1 a permis d’identifier des méthodes en vue
de leur adaptation pour une application en contexte peu jaugé. Le chapitre 2 a présenté la
zone d'étude, notamment ses principales caractéristiques géographiques et hydro-
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climatiques, les usages de I'eau, les problémes de gestion et le manque de connaissances sur
la variabilité hydro-climatique passée et future en Equateur. Les objectifs de la thése ont
ensuite été abordés en développant un protocole méthodologique reproductible organisé
en trois chapitres centraux (chapitres 3, 4 et 5). L'application des méthodologies proposées a
abouti a un ensemble complet de données spatio-temporelles fiables pour caractériser la
variabilité hydro-climatique passée et future en Equateur, discuter de son importance pour
la gestion de I'eau, et proposer des perspectives pour les futures recherches hydrologiques
(chapitre 6). Plusieurs conclusions et recommandations peuvent étre résumées en lien avec
les différentes étapes-clés de la these.

2.1. Régionalisation de la température de I'air et des précipitations

Une régionalisation de la température de |'air et des précipitations a été mise en ceuvre sur
une période de 30 ans en Equateur. La sélection initiale des stations s’est avérée une étape
essentielle avant d'utiliser des méthodes d'interpolation pour spatialiser les données
ponctuelles. Lorsque le réseau de mesures est peu dense, les échelles spatiales
caractéristiques des estimations de températures et de précipitations peuvent étre
capturées de maniére inexacte. Dans les régions peu jaugées, il est donc tentant de
conserver toutes les stations disponibles pour régionaliser les températures et les
précipitations. Cependant, les jeux de données maillés obtenus en interpolant toutes les
mesures disponibles sont ensuite affectées par des inexactitudes importantes et variables a
la fois dans I'espace et le temps. Cela peut notamment conduire a des tendances annuelles
irréelles de la température de l'air et des précipitations sur des périodes multi-décennales,
comme cela a été montré dans le chapitre 3. Il est par conséquent recommandé de limiter le
nombre de stations utilisées pour la régionalisation afin d'obtenir un signal cohérent et
stable dans I'espace et dans le temps. Cette sélection initiale implique un compromis entre la
fréquence temporelle des séries disponibles et leur représentativité spatiale. La thése a
montré que la sélection de stations climatiques avec moins de 25 % d’enregistrements
quotidiens manquants était un compromis satisfaisant car elle permettait de représenter un
signal cohérent de température de |'air et de précipitations sur une période de 30 ans. Le
choix entre différentes méthodes d'interpolation (déterministes et géostatistiques) ainsi que
leurs parametres associés (y compris les corrections orographiques) s’est également révélé
essentiel pour la régionalisation de la température de I'air et des précipitations.

Pour la température de l'air, des améliorations significatives ont été obtenues
lorsque ['élévation était considérée dans le processus d'interpolation. Ceci est
particulierement important pour éviter de surestimer ['évapotranspiration lors de
['utilisation des champs de température comme entrées pour les modéles hydrologiques.
Des résultats satisfaisants ont été obtenus soit en appliquant des corrections orographiques
constantes avec des méthodes déterministes, soit en utilisant des méthodes géostatistiques
telles que le co-krigeage (CKR) avec des variogrammes croisés. Cependant, des estimations
un peu plus réalistes de la température ont été obtenues dans les zones de montagnes avec
la technique CKR en raison de sa technique de calcul qui tient compte des corrections
orographiques quotidiennement. Des améliorations seraient encore possibles en utilisant
d'autres techniques prenant en compte les différences locales d'influence topographique
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selon les saisons et les situations synoptiques, telles que le krigeage avec dérive externe
(KED; Ahmed et de Marsily, 1987; Goovaerts, 2000) ou la méthode IDW avec dérive externe
(IED; Ruelland, 2020). Cependant, des améliorations locales ne pourront étre obtenues qu'en
utilisant des mesures enregistrées par des stations installées a haute altitude (par exemple,
des stations appartenant aux réseaux de compagnies d'eau potable). Cette option n'a pas
été étudiée car les données temporelles manquantes dans ces stations ne permettaient pas
de représenter un signal stable sur des périodes multi-décennales.

En ce qui concerne les précipitations en Equateur, aucune amélioration des
estimations n'a été obtenue en prenant en compte 'orographie et, ce, quelle que soit
I'échelle de temps considérée (annuelle, mensuelle ou quotidienne). En réalité, les
précipitations maximales se produisent sur les flancs est et ouest des Andes (a environ
1 800 m d'altitude) plutdt que dans la région interandine, en lien avec les processus locaux
de condensation en Equateur (Bendix et Lauer, 1992). Cela peut s'expliquer par la grande
quantité de vapeur extraite par les vents sur les versants ouest et est des Andes, ce qui
conduit a diminuer les précipitations a des altitudes plus élevées.

L'évaluation des champs interpolés par rapport a des stations indépendantes et via
des analyses de sensibilité hydrologique a clairement montré que la technique de la distance
inverse pondérée (IDW) était la plus efficace pour représenter a la fois la distribution
spatiale des précipitations en Equateur et les volumes journaliers de précipitations a
I'échelle des bassins. Cette méthode est donc recommandée pour régionaliser les
précipitations quotidiennes dans des conditions climatiques variées, comme cela a déja été
signalé a la fois en contexte de réseau dense (Dirks et al., 1998) et dans des régions peu
jaugées (Ruelland et al.,, 2008; Ruelland, 2020). Par ailleurs, I'analyse de sensibilité
hydrologique aux champs de précipitations interpolés a fourni des informations précieuses
et complémentaires par rapport aux méthodes d'évaluation traditionnelles qui ne reposent
gue sur des stations ponctuelles. De telles analyses sont donc également fortement
recommandées pour I'évaluation des champs de précipitations.

2.2. Reconstruction des séries chronologiques de débit

Les débits journaliers mesurés par les stations du réseau national équatorien sont de qualité
médiocre et de nombreuses données concernant les 30 a 40 derniéres années sont
manguantes. Une reconstruction compléte des séries chronologiques a donc été nécessaire
pour représenter la variabilité hydrologique sur une période multi-décennale.

La these a montré l'intérét d'utiliser une approche ensembliste basée sur plusieurs
modeles hydrologiques et jeux de parametres associés pour reconstruire les séries de débits
dans des bassins peu jaugés. Trois modéles hydrologiques ont été calés et évalués dans des
conditions climatiques contrastées en utilisant les données climatiques régionalisées. Un
ensemble de 12 membres (produits de trois modéles et quatre jeux de parametres) a ainsi
été constitué. Les performances des modeéles individuels et de toutes les combinaisons
possibles dans I'ensemble de 12 membres ont ensuite été explorées. Les résultats ont
montré qu'il n'était pas conseillé de s'appuyer sur un seul modéle ou méme sur une
combinaison optimale de membres. En effet, I'utilisation d’'un ensemble de 12 membres
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permettait d’obtenir des simulations équivalentes a la combinaison optimale sur chaque
bassin, tout en offrant la meilleure stabilité de performance quel que soit le bassin.

Par rapport aux performances des structures individuelles de modeles, |'utilisation
d'un grand nombre de structures combinées et de parameétres permet donc de mieux
capturer les comportements hydrologiques des bassins. Ceci suggére qu'une approche
ensembliste ne devrait pas seulement étre constituée d’un collectif des « meilleurs »
modeles. En effet, des modéles moins efficaces peuvent contribuer a améliorer les
performances de I'ensemble, comme I'ont déja rapporté Velazquez et al. (2010) et Seiller et
al. (2012). Les erreurs dans les différentes structures et parameétres peuvent se compenser a
travers la moyenne de I'ensemble et conduire ainsi a des simulations hydrologiques plus
réalistes. Les ensembles multi-modeles et multi-paramétres peuvent donc étre considérés
comme performants et robustes. Par conséquent, ils sont fortement recommandés pour
reconstruire les séries de débits et, au-dela, pour simuler I'impact du changement climatique
sur les ressources en eau.

2.3. Evaluation de I'impact de scénarios climatiques sur la variabilité hydro-
climatique

Les simulations climatiques ne sont pas suffisamment précises pour étre utilisées comme
entrées directes dans les modeles hydrologiques. Les sorties brutes de neuf GCMs
désagrégés dynamiquement avec un RCM ont été évaluées sur une période de contréle par
rapport aux observations régionalisées. L'évaluation a montré qu'aucun des modeles
climatiques n'était en mesure de reproduire correctement la distribution spatiale et les
dynamiques saisonniéres et annuelles moyennes de la température de l'air et des
précipitations en Equateur, comme déja signalé dans les régions tropicales (par ex. Ruelland
et al.,, 2012) et méditerranéennes (par ex. Dakhlaoui et al., 2019). Une méthode de
perturbation simple a donc été appliquée pour produire une gamme de scénarios a partir
des sorties des modeles climatiques. Des scénarios climatiques a haute résolution de Ila
température de l'air et des précipitations ont ainsi été construits a moyen terme (2040-
2070) et a long terme (2070-2100), sous contrainte d’un scénario élevé d’émission de gaz a
effet de serre (RCP 8.5).

Les scénarios climatiques ont servi de forcage a l'ensemble hydrologique de 12
membres évalué dans les conditions climatiques passées pour fournir des scénarios
hydrologiques dans différents bassins. La performance de I'ensemble hydrologique de 12
membres pour la reconstruction des séries passées de débit apporte de la confiance dans la
capacité de la chaine de modélisation a simuler les débits sous changement climatique.
Néanmoins, la performance limitée des modeles conceptuels dans des conditions non
stationnaires aurait pu étre étudiée plus en détail (voir la section 1.3 du chapitre 6). Au-dela
des limites possibles de la transférabilité des modeéles sous changement climatique, un large
échantillon de 108 scénarios hydrologiques (produit de 3 modeéles hydrologiques x 4 jeux de
parametres x 9 scénarios climatiques) a permis de représenter les projections hydrologiques
selon des intervalles de confiance de 95% pour chaque bassin d'étude et chaque horizon
futur.
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2.4. Variabilité hydro-climatique passée et future en Equateur

Comme on pouvait s’y attendre, la variabilité saisonniere de la température de |'air est faible
en Equateur. La position de I''TCZ est le principal mode de variabilité saisonniére des
précipitations et du débit. Une légére augmentation de la température de l'air (+0,23 ° C par
décennie en moyenne) est observable sur la période 1985-2015 dans les principales régions
de I'Equateur (régions cotiéres, andines et amazoniennes). Les événements El Nifio
entrainent une forte variabilité interannuelle des précipitations et du débit. Le tres fort
événement El Nifio de 1997-1998 a notamment produit I'année la plus humide dans la
région cotiére. Les régions andines sont généralement moins influencées par les événements
El Nifio 1 + 2 et présentent donc une variabilité plus faible de débit.

Les projections climatiques a la fin du 21°™¢ siécle A I'échelle du pays ont montré une
augmentation significative de la température a moyen terme (+2,7 ° C en moyenne sur la
période 2040-2070) et a long terme (+4,4 ° C en moyenne sur la période 2070-2100). Une
augmentation des précipitations est également attendue a moyen terme (+ 8% en moyenne)
et a long terme (+ 17% en moyenne). Ces conditions climatiques futures pourraient
entrainer une augmentation de +5 % a +71 % du débit annuel moyen selon les bassins. Des
écoulements plus élevés sont prévus pendant la saison des pluies (de décembre a juin) dans
les bassins situés sur les basses terres du versant Pacifique, tandis que, dans les Andes,
I'augmentation pourrait étre moindre et les étiages pourraient méme étre plus séveres
pendant la saison séche (de juillet a novembre).

2.5. Implication des changements hydro-climatiques pour la gestion de I’eau

Ces projections peuvent étre analysées en termes de gestion de |'eau. Par exemple, une
augmentation du débit durant la saison des pluies pourrait nécessiter des changements dans
les procédures d'exploitation des infrastructures telles que les réservoirs, les barrages de
régulation et les centrales hydroélectriques. Les basses terres pourraient également étre
exposées a un risque accru d'inondation en raison de l'intensification potentielle
d'événements exceptionnels El Nifio. Ces conditions pourraient également accroitre
I'érosion. En conséquence, des stratégies d'adaptation concernant les pratiques agricoles et
la gestion des réservoirs d'eau pourraient étre envisagées afin de réduire le risque de
transport de sédiments. D’autres stratégies d’adaptation pourraient étre nécessaires dans la
région des Andes, en particulier pendant la saison seche. Par exemple, I'efficacité de
I'irrigation pourrait étre améliorée localement et de nouveaux réservoirs pourraient étre
construits pour stocker I'eau pendant la saison des pluies et ainsi atténuer les restrictions
potentielles d'eau pendant la saison seche. Pour compenser les éventuelles pénuries d’eau
dues a une augmentation de la demande d'eau domestique, des mesures congues pour
optimiser le prélevement d'eau au niveau du bassin pour répondre a la demande urbaine
pourraient aussi étre envisagées avant de construire de nouvelles prises d'eau.

Quelle que soit la variabilité hydro-climatique projetée, il est nécessaire de maintenir et
de développer un réseau d'observation de référence pour soutenir les actions de gestion de
I'eau en Equateur. Il est en effet essentiel d'assurer un réseau permanent de stations de
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référence pour gérer les risques liés a I'eau tels que les inondations et les sécheresses et
pour continuer a soutenir les principales activités économiques dans les pays en
développement (par exemple Il'agriculture, |'énergie). L’Equateur pourrait notamment
davantage s’impliquer au niveau des initiatives mondiales visant a améliorer les réseaux
d'observation, telles que le Centre mondial d'appui a I'hydrométrie de I'Organisation
météorologique mondiale (OMM HydroHub) lancé en 2016 (Dixon et al., 2020).

3. Perspectives

3.1. Régionalisation des débits pour les bassins non-jaugés

La gestion durable de I'eau nécessite également une régionalisation compléte du débit a
I'échelle nationale pour définir des stratégies appropriées dans les bassins peu ou non
jaugés, en particulier ceux les plus exposés aux inondations ou aux restrictions d'eau. Il n'y a
pas de méthode universelle pour la régionalisation du débit et le processus est largement
considéré comme une tache difficile en hydrologie. Certaines approches de régionalisation
développées dans la littérature (voir par exemple Oudin et al., 2008; Peel et Bloschl, 2011;
Samuel et al., 2011; Razavi et Coulibaly, 2013) devraient étre testées. Cependant, le
probleme de la disponibilité des données souléve des questions sur la maniere d'adapter ces
approches dans des régions peu jaugées. Un autre probleme émergent, lié a la non-
stationnarité dans les séries chronologiques hydrologiques causée par les changements
d’usage des sols et le changement climatique, souléve également la question de la validité
des méthodes de régionalisation basées sur I'hypothese de stationnarité. Enfin, une analyse
d'incertitude est également requise lorsque des méthodes de régionalisation sont
appliquées. En conséquence, une méthode bien établie pour I'estimation de l'incertitude
devrait également étre incluse.

3.2. Vers une meilleure caractérisation de l'incertitude

Cette thése de doctorat a considéré les incertitudes en lien avec les données observées, les
projections climatiques et les méthodes utilisées pour représenter la variabilité hydro-
climatique passée et future. Cependant, il serait instructif d'explorer davantage ces aspects.
En hydrologie, une caractérisation robuste des incertitudes affectant les modeles
hydrologiques reste un enjeu scientifique et opérationnel majeur. Dans des conditions
stationnaires, l'incertitude se produit et s'accumule a chaque étape méthodologique, des
erreurs d'échantillonnage et de mesure a la mise en ceuvre de structures imparfaites de
modeles et a leur paramétrisation. Dans des conditions non-stationnaires, telles que les
changements climatiques et/ou anthropiques, encore plus d'incertitude s'accumule en
raison, entre autres, de l'utilisation de projections climatiques et de l'instabilité des
parametres. Une meilleure compréhension des différentes sources d'incertitude et de leur
effet sur les simulations est nécessaire pour améliorer la capacité de prédiction des modeles
hydrologiques. L'inférence bayésienne constitue une méthode puissante pour quantifier les
différentes sources d'incertitude en particulier dans les régions peu jaugées (voir par ex.
Hublart et al.,, 2016). Une compréhension quantitative fiable de l'incertitude et de sa
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réduction devrait donc étre considérée comme une question de recherche importante et
complémentaire pour analyser avec précision la variabilité hydro-climatique.

3.3. Intégration des dynamiques socio-hydrologiques

Régionaliser les débits et évaluer les incertitudes associées aux données, aux simulations et
aux projections constitueront une étape importante pour mieux estimer la variabilité hydro-
climatigue. Néanmoins, il sera nécessaire d'inclure les interactions humaines dans le
systeme, car |'hypothése des systéemes naturels ou semi-naturels n'est désormais plus
valable. En réalité, I'activité humaine concerne la majeure partie des hydrosystemes dans le
monde, a tel point que les systemes hydrologiques et humains sont désormais
intrinsequement liés. La reconnaissance explicite de ce fait devrait encourager de nouvelles
études a progresser vers une prévision holistique et quantitative cohérente de la variabilité
hydrologique. Il est clair qu'une meilleure compréhension de la réalité complexe de la
dynamique socio-hydrologique est nécessaire pour fournir les prévisions requises et soutenir
une meilleure gestion des ressources en eau (Montanari et al.,, 2013). Par exemple, des
approches intégratives de modélisation traitant de la variabilité hydro-climatique actuelle et
future devraient également prendre en compte les équilibres entre demande et disponibilité
dans le but d'évaluer la durabilité des usages actuels de I'eau et de prévoir des stratégies
d'adaptation pour faire face aux futurs changements socio-hydrologiques (voir Fabre et al.,
2016a; 2016b).

Les recherches futures pourraient ainsi explorer la possibilité de modéliser le
couplage des systemes homme-eau en plus des modeles climatiques et hydrologiques
utilisés pour représenter la variabilité pluriannuelle actuelle et future. Pour cette tache, cinq
problémes majeurs présentés dans Wada et al. (2017) doivent étre abordés : (1) les
problémes liés aux limites de la représentation de la gestion régionale de I'eau ; (2) les
questions liées a la modélisation actuelle de I'impact humain et aux indicateurs associés ; (3)
les questions liées a la nécessité d'une approche intégrative du comportement humain dans
la modélisation a grande échelle ; (4) les questions liées a la nécessité de modéliser la co-
évolution des systémes homme-eau, y compris lI'occupation du sol et l'interaction
climatique ; et (5) les problémes liés au manque d'informations sur la gestion de I'eau. Ces
thémes représentent les principaux défis actuels de l'interface homme-eau dans la
modélisation hydrologique. La compréhension intégrale de la variabilité hydro-climatique
couplée a la modélisation de l'impact humain offre une opportunité précieuse pour les
sciences hydrologiques de devenir plus intégratives et interdisciplinaires. Cette connaissance
intégrée de la variabilité hydro-climatique est de nature a mieux éclairer les prises de
décision en particulier dans les pays en développement.
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Abstract: A dense rain-gauge network within continental Ecuador was used to evaluate the quality
of various products of rainfall data over the Pacific slope and coast of Ecuador (EPSC). A cokriging
interpolation method is applied to the rain-gauge data yielding a gridded product at 5-km resolution
covering the period 1965-2015. This product is compared with the Global Precipitation Climatology
Centre (GPCC) dataset, the Climatic Research Unit-University of East Anglia (CRU) dataset, the
Tropical Rainfall Measuring Mission (TRMM/TMPA 3B43 Version 7) dataset and the ERA-Interim
Reanalysis. The analysis reveals that TRMM data show the most realistic features. The relative bias
index (Rbias) indicates that TRMM data is closer to the observations, mainly over lowlands (mean
Rbias of 7%) but have more limitations in reproducing the rainfall variability over the Andes (mean
Rbias of —28%). The average RMSE and Rbias of 68.7 and —2.8% of TRMM are comparable with
the GPCC (69.8 and 5.7%) and CRU (102.3 and —2.3%) products. This study also focuses on the
rainfall inter-annual variability over the study region which experiences floods that have caused high
economic losses during extreme El Nifio events. Finally, our analysis evaluates the ability of TRMM
data to reproduce rainfall events during El Nifio years over the study area and the large basins of
Esmeraldas and Guayas rivers. The results show that TRMM estimates report reasonable levels of
heavy rainfall detection (for the extreme 1998 El Nifio event) over the EPSC and specifically towards
the center-south of the EPSC (Guayas basin) but present underestimations for the moderate El Nifio
of 2002-2003 event and the weak 2009-2010 event. Generally, the rainfall seasonal features, quantity
and long-term climatology patterns are relatively well estimated by TRMM.

Keywords: rainfall variability; El Nifio events; in situ data; TRMM; Ecuadorian Pacific slope and
coast; Esmeraldas and Guayas basins
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1. Introduction

Spatio-temporal analysis of rainfall is crucial for water-resource management including water
supply, risk management, sustainable agriculture and hydrological infrastructure. These aspects
must be addressed and discussed before promulgating public policies in order to achieve the best
climate-adapted development. Over South America, at continental scale, the rainfall distributions
and related processes, such as moisture sources and transport, atmospheric circulation over oceans
and continents, and the Andes range forcing, are fairly well-documented [1-4]. At regional scale, the
Ecuadorian Pacific slope and coast (EPSC) is an area of particular interest due to its physiographic
features (surface, altitudinal range and the considerable horizontal distance from the coastal border to
the watershed division on the high Andes) because they have a strong impact on the spatial variability
of rainfall. In addition, the El Nifio-Southern Oscillation (ENSO) is commonly identified as the main
driver of temporal rainfall variability along the Ecuadorian coastal region and how the influence of
this is different on the Andes [5].

High-rainfall events over the EPSC, generally associated with El Nifio events, are responsible for
increases in runoff that cause major floods over Ecuador and Peru. The results of a 35-year simulation
of rivers’ runoff over the Pacific Slope and coast of South America (PSCSA) showed that 15% of the total
PSCSA runoff comes from the EPSC [6] making it one of the main runoff surfaces over the PSCSA. By
comparison, the Peruvian Pacific slope produces 17% of the PSCSA runoff over the area that is six times
the area of the EPSC [6]. This highlights the importance of conducting more detailed climatological
and hydrological studies over the whole EPSC and also in its two largest basins (the Guayas and
Esmeraldas basins) considering different types of ENSO events in terms of strength and seasonality.

The rainfall distribution and anomalous heavy rainfall in the coastal area of Ecuador are known
to be related to the strong positive Sea-Surface Temperature Anomalies (SSTA) in the El Nifio 1 + 2
region (N1 + 2) located between 0-10° S/80-90° W [7]. The spreading of atmospheric instability in
the N1 + 2 Pacific region to the eastern escarpment of the Andes could be a result of the temporary
eastward shift of the Walker circulation [8]. Moreover, over the Andes, the rainfall patterns are driven
by the influence of both the Pacific Ocean and the Amazon basin [8] and the combinations of regional
and local atmospheric processes which interact with the topography [5,7,9-11]. Currently, various
datasets are available to study different aspects of the Ecuadorian climate, such as the spatio-temporal
rainfall patterns over this region. These datasets include the best rainfall estimates from gauge analyses
such as the best-estimate precipitation rate with multiple independent precipitation estimates of the
Tropical Rainfall Measuring Mission (TRMM) sensors and rain-gauge analysis (TRMM 3B43 monthly
Version 7 product) or called TRMM Multi-Satellite Precipitation Analysis (TMPA /3B43) [12] that later
we will name only TRMM.

A few studies have investigated the rainfall patterns over Ecuadorian areas [9,13,14], but
they do not examine in detail the entire EPSC surface. One of the objectives of this study is to
better understand rainfall behavior over the EPSC. A critical step to achieving this goal consists in
identifying the best regionally available dataset (e.g., based on synoptic observations from in situ
networks, model reanalyzes, or derived from remote sensing) to represent the rainfall patterns over
the EPSC. Consequently, this identified dataset will provide a more realistic framework to advance
further hydro-climatic studies. Of course, in situ observations, that pass a quality-control process,
constitute the most valuable source of information for climate studies. However, post-processing of
satellite information contribute to enhancing the products that are only based on in situ observations,
particularly on areas where it is too difficult to install a weather station. Over South America,
TRMM products were used for regional analyses of rainfall variability already tested, e.g., the
Peruvian [15-17] and Central Andes [18], Brazil [19], Andean—Amazon River Basins [20,21] or the
Amazon Basin [22]. Therefore, this study aims to test whether TRMM information represents the
climatological conditions of the EPSC obtained from in situ observations better than the other three
datasets (Global Precipitation Climatology Centre (GPCC), Climatic Research Unit-University of East
Anglia (CRU), and ERA-Interim Reanalysis). To determine which global dataset provides the better
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results, a monthly 5-km resolution product was generated from the rain gauge network that covers the
entire EPSC region. This product served as reference for the comparison with the four other datasets.
This study is organized as follows: the details of the study area are presented in Section 2, whilst
Section 3 presents the data. First, the quality-control process applied to the information of all available
rain gauges in Ecuadorian territory that are maintained by the Meteorological and Hydrological
National Institute of Ecuador (INAMHI); second, the process to generate the 5-km gridded rainfall
dataset applying the cokriging method (COK) to the rain-gauge data; and last, a brief overview of the
other rainfall products. Section 4 presents methods for comparing the different products based on
statistical metrics, principal component analysis (PCA), and an analysis of selected El Nifio rainfall
events corresponding to different types and amplitudes. Section 5 is dedicated to the summary of the
results. Section 6 presents the discussion. Finally, Section 7 presents the conclusions of this work.

2. Study Area

Ecuador is located in north-western South America, between Colombia and Peru, between
81.03° W-75.16° W, 1.48° N-5.04° S. Ecuador extends from the Pacific coast in the west to the Amazon
plain in the east. Following a north—south direction, the Andes range crosses the entire Ecuadorian
territory. Along this section, the Andes are divided in two main chains, the western and eastern ranges.
These two quasi-parallel lines form an inter-Andean zone characterized by several valleys where
many human settlements are found, including the capital of Ecuador, Quito. The highest watershed
altitude divides the territory into two large drainage surfaces, with main flow directions towards the
Pacific Ocean and the Amazon basin respectively (Figure 1). Over the western Andes slopes, rainfall is
produced from moist air coming from the Pacific Ocean, whilst over the western Andes the moisture
comes from the Amazon basin and the Atlantic Ocean. The eastern side, through the trade winds,
generally receive more moist air than the western slope [5,23]. In addition, the inter-Andean valleys
are influenced by both the oceanic and continental air masses [5], the prevailing easterly moisture flow
extends across the mountains depending on the speed of trade winds, especially in the south (around
3° S), where the mountain chain is generally lower [10].

Our study area, the EPSC, is delimited to the west by the Pacific Ocean and to the east by the
Andes watershed division. From west to east, the EPSC can be divided into the coastal region, the
low-altitude coastal cordillera (extending from 1° N to 2° S, with a maximum altitude of 860 m.a.s.L.),
an inland low valley, the western flanks of the Andes, the western high Andes ranges until they reach
the tropical glaciers, and finally an inter-Andean region in the north (Figure 1). The EPSC covers an
area of ~116,436 km? and represents about 47% of Ecuadorian territory with a total wide range of
altitudes varying from 0 to 5870 m.a.s.l. from the coastal border to the higher Andes summits. Due
to the complex topography of the study area, 74 basins are delimited according to level five of the
Pfafstetter methodology [24]. The Esmeraldas and Guayas basins are the largest of the EPSC, covering
19,680 km? and 32,300 km? respectively, together representing 44.6% of the EPSC surface.

The singular rainfall distribution of the EPSC is related to the two relevant mountains chains. The
coastal border is characterized by low rainfall (<600 mm/year); the rainfall amount increases over the
low coastal cordillera; and eastwardly, between this chain and the start of the Andes foothills, rainfall
amounts reach the maximum of the region (>2000 mm/year). Then, to the east, rainfall decreases
with altitude towards the high Andes (~400 to 1200 mm) [25]. Over the entire region, large rainfall
variability is associated with the influence of the Pacific Ocean warming during extreme El Nifio
events [7], which induce extensive floods that can become devastating during the extreme El Nifio
years [26] over the lowlands.
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Figure 1. Topographical map of continental Ecuador obtained using the digital elevation model of the
Shuttle Radar Topographic Mission (SRTM) at 1 km of spatial resolution. The Pacific slope and coast
(study area) is delineated with a red line and the two largest basins (Esmeraldas and Guayas) with
orange and purple lines respectively. The other hydrographic basins are delineated with black lines
according to level 5 of the Pfafstetter methodology. There are in total 74 basins for the Pacific slope and
coast and three basins for the Amazon slope.

3. Data

3.1. In Situ Rainfall Data

The in situ observations are composed of the monthly rainfall records from 325 selected
meteorological stations (262 gauges on the Pacific slope and coast, and 63 on the Amazon slope)
with at least 10 years of data over the 1965-2015 period (Figure 2). The meteorological stations network
is managed by INAMHI. The method applied to select the stations with valid long-term records is
described in Section 3.1.1.



Water 2018, 10, 213 50f23

Altitude (meters)

[ 0-250 i
[ 250- 500
I 500 - 750
[ 750- 1 000
[ J1000-1250 L
[ ]1250-1500
[ 1500-1 750
[ J17s0-2000
[ ]2000-2250
[ ]2250-2500
[ Ja2s00-2750

Rainfall records | [ ]27s0-3000
(years) 3000 - 3250

1+

0° 1

Pacific Ocean

1° 8

2° 81 ® >40 B s250-3500 [
o 31-40 B 3500 -3 750
® 21-30 B 2 750 - 4 000
[ 4 000- 4 250

3° §- ® 10-20 [ 4 250 - 4 500 L
[ 4500 -4 750
Rain gauges [ 4 750- 5 000

[ 5000 - 5250
Rain gauges Pacific slope [ 5250 -5 500

/\ Rain gauges Amazon slope [ 5500 -5 750

4° -

| | Esmeraldas basin B 758,000

; J [ ]eoo0-6250

D Guayas basin [ Je2s0-6500
L)

5° 8

Figure 2. The rain gauges of the Pacific slope and coast (EPSC) network (the 262 stations are represented
using circles and the colors represent the rainfall record length of the stations for the 1965-2015 period).
The rain gauges of the Amazon slope (63 stations) are represented using triangles. The study area
(EPSC) is delineated using a black and bold line. The Esmeraldas and Guayas basins are delineated
using orange and purple lines, respectively. The topography is represented using the digital elevation
model (SRTM at 1 km of spatial resolution).

3.1.1. Data Homogenization and Validation

The raw data from the rain gauge network operated by INAMHI (370 gauges) were first
quality-checked with the methodology applied in [27,28]. In the following analysis a valid station
record should contain at least 10 years of observations and pass the quality-assessment and
regionalization processes using the Regional Vector Method (RVM) [29]. The RVM assumes that for
the same rainfall regime in a climatic zone, the total annual rainfall presents a pseudo-proportionality
(little random variation) associated with the rain distribution in the zone. Based on this method,
the coherence of the gauge data was checked grouping the gauges by watersheds and altitudinal
ranges. Then, they were regrouped iteratively to check their homogeneity. The main statistical criteria
for regrouping stations are based on thresholds applied to the standard deviation of the differences
between annual pluviometrical indices of stations and the regional vector indices; and to the correlation
coefficient between the regional vector and annual pluviometric values of stations [27,28]. During
this process, an exhaustive geographical supervision was conducted using a background isohyet map
with all data under review. This allowed excluding stations with doubtful data and those that did
not correspond to any group and did not represent real climate zones. After this process, 45 gauges
were excluded.

Belonging to the EPSC, 262 stations were grouped and selected; however, due to the low-gauge
density over the Amazon region, only 63 stations were taken into account for this region. The
information from these stations was used to perform an interpolation of the rainfall for all the
Ecuadorian continental territory.
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3.1.2. Rainfall Data Interpolation

Mountainous or sparsely populated regions often lack stations, so the meteorological information
that represents these places does not exist or is limited. To solve these problems, spatial interpolation
methods are convenient approaches. These techniques create continuous data over the region with
missing information from sampled point values adjacent to a determined location.

The 325 validated gauges were interpolated using the cokriging method (COK) [30] for the
whole Ecuadorian territory but the results are only applied to the EPSC. The Digital Elevation Model
(DEM) of the Shuttle Radar Topographic Mission (SRTM) at 1-km resolution, provided by the National
Aeronautics and Space Administration-National Geospatial-Intelligence Agency (NASA-NGA) and
available at [31] was used as the external covariable for COK. Considering the gauge network density
and the covariable resolution, the results of COK were obtained at a spatial resolution of 5 km. The R
language and the libraries raster [32], gstat [33], were mainly used to perform the COK on the rainfall
records. The library automap [34] was used to get the best fit for the variogram model. The best values
to fit the variogram model were selected by testing the following four models: exponential, spherical,
Gaussian and Matern-Stein. Considering the whole period, the best-fit indices were obtained with the
exponential model, and therefore it was chosen.

The COK method was selected to interpolate the rainfall data because it allows avoiding the
instability caused by highly redundant secondary data [35]. Improved results over the Andes have
already been shown using this method [36] as well as over complex terrain in general [37]. However,
despite the advantages of COK, the main weakness of the Kriging method is the tendency to produce
maximum rainfall values over the summits rather than on the slopes [38]. Despite this limitation,
the COK interpolation produces better results compared to those obtained in a previous study using
simple Kriging and Cressman [39]. The gridded rainfall data obtained with COK represents adequately
the rainfall variation by altitude. This better representation is thanks to the DEM data used by the
COK method, which allows representing coherent rainfall changes by altitude, especially over the
slope and the Andes.

In order to show a brief summary of the EPSC features and the results obtained with the validated
gauges, Figure 3a shows the topography of the study area using SRTM (1 km of spatial resolution)
and Figure 3b presents a three-dimensional view of the relief. The average annual rainfall map for the
1965-2015 period obtained using the COK spatial rainfall interpolation is presented in Figure 3c. The
monthly mean rainfall variability averaged over the whole region is presented in Figure 3d.

The rainfall spatial distribution (Figure 3c) shows the lowest rainfall region (<750 mm/year)
located on the central coastal border between latitudes 1° S and 2.5° S. This is associated with the
limited displacement of the Inter-Tropical Convergence Zone (ITCZ) to the south in normal conditions,
which is truncated by the cold water of the south-west Pacific inhibiting the development of convection
processes [40]. Towards to the east, the rainfall increases over the low-altitude coastal cordillera (~750
to 1500 mm /year) and reaches the highest rainfall (~1500 to 3500 mm/year) on an inter-valley between
the low coastal cordillera and the Andes (1° N to 1° S and 79.5° W to 78.5° W). Finally, on the eastern
side of the EPSC, over the Andes range, the rainfall decreases (~750 to 1750 mm/year).
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Figure 3. (a) Pacific slope and coast (EPSC) topography; and (b) south-north perspective

3D-topography view showing the low-altitude costal cordillera (west) and the Andes (east);

(c) multiyear average rainfall distribution from 325 rain gauges (262 stations from the EPSC) for
the 1965-2015 period obtained with the cokriging interpolation method (COK) at 5 km grid resolution
in mm/year; and (d) the rainfall averaged over the whole region (mm/month) for the 1965-2015 period.

3.2. Rainfall Products

7 of 23

The gridded in situ rainfall obtained with COK interpolation as described in Section 3.1.2 was used
to evaluate four commonly used gridded monthly rainfall datasets. They include two global gridded
gauge-analysis products (CRU and GPCC), a reanalysis product (ERA-Interim) and the satellite-based
estimate product from the TRMM monthly rainfall estimates with 3B34 algorithm, version 7. The
details of the products used are shown in Table 1.
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Table 1. Description of the regional gridded interpolated rain-gauge product and four external rainfall
datasets used in this study.

Product and Spatial Time Period Source and Reference Using Period
Version Resolution Available (Common Period)

Ecuadorian rain gauges

Meteorological and

Interpolated o Hydrological National
Rainfall (Cokring) 5 km (0.04%) 1965-2015 Institute of Ecuador 1970-2015
(INAMHI)
Global rain-gauge dataset
Global Precipitation
Climatology Centre
GPCC, v7 0.5° 1901-2013 (GPCC), National 1970-2013

Meteorological Service
of Germany [41]

Climate Research Unit
CRU, v3.22 0.5° 1901-2013 (CRU), University of 1970-2013
East Anglia [42]

Reanalysis
ERA-Interim Futopeen Cents for
(Synopr)rtllecalrlll)onthly 0.125 1979—present Weather Forecasts 1979-2015
(ECMWEF) [43]
Satellite
National Aeronautics
Tropical Rainfall A damniciliS:sFt)?aC’Son
Measuring Mission 0.25° 1998-2015 1998-2015
(TRMM) 3B43 V7 (NASA) Goddard
Space Flight Centre
[44]
4. Methods

4.1. Evaluation of the Rainfall Products

The interpolated in situ observations obtained with COK were considered as the reference data to
assess the quality of the four rainfall products described in Section 3.2. Three standard comparison
metrics were used: the Pearson correlations coefficient (Crr), the Root Mean Squared Error (RMSE)
and the Relative bias index (Rbias), the latter expressed in percentage (Equations (1)—(3)):

Crr=—— ZZ( (A, ot (TPP(AIM> (x(/\, ¢.t) —x(/\,go,t)> 1)

Ox
RMSE = \/

Rbias — DIe1(PO, 9.8 = x(h 9. ) 0o
Yiz1 P(A, ¢.1)

where 7 is the number of months; P is the monthly observed interpolated rainfall of the grid located at

the coordinates (A, @) in the month £; P and op, represent respectively the mean and standard deviation

of P; x, corresponds to the monthly series rainfall of the compared product; X and o, represent,

respectively, the mean and standard deviation of x.

S\H

Z (A, @.t) —x(A, @) )

®)
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The comparisons were performed over the longest time period of common availability by
resampling the in situ observations at the same original resolution of the four tested products (see
Table 1): for ERA-Interim at 0.125°, for TRMM at 0.25° and for the rainfall products GPCC, CRU at 0.5°.

4.2. Evaluation of the Tropical Rainfall Measuring Mission (TRMM) Rainfall Product

Principal Component Analysis (PCA) (or the Empirical Orthogonal Functions (EOF))
technique [45,46] is a commonly used method to characterize the spatio-temporal variability of physical
fields in climate-related studies. It was applied to the centered and deseasonnalized anomalies of
the interpolated monthly gridded in situ observations obtained in Section 3.1.2, over the 1965-2015
period. Given that, TRMM shows the best comparison metrics in terms of the criteria presented in
4.1 among the four tested products; we performed a more detailed evaluation of the TRMM data
over the overlapping period with the gridded in situ observations (1998-2015). In particular, the
PCA was also applied on the centered and deseasonalized anomalies to analyze the spatio-temporal
variability of rainfall estimates from TRMM and compare them to those obtained using the gridded in
situ observations.

Furthermore, the TRMM estimates were also evaluated during El Nifio events over the entire
EPSC area and over the two largest river basins (Esmeraldas and Guayas basins). The results of the
comparison will be presented for each study region and each El Nifio event as the percentage of Rbias
of the TRMM rainfall estimates and the total rainfall episodes.

The duration of El Nifio rainfall events were selected according to the consecutive positive values
of the Southern Oscillation Index (SOI) [47]; El Nifio intensity was ranked according to the NOAA
Oceanic Nifio Index (ONI) [48]; sea-surface temperature anomaly (SSTA) as weak (0.5 °C to 0.9 °C
SSTA), moderate (1 °C to 1.4 °C SSTA) and extreme (>2 °C SSTA). Finally, the events’ ranking was
fine-tuned according to the observed rainfall quantity in the study area. The events intensity for
the EPSC was also adjusted regarding the SOI values because the ONI only considers the mean of
extended reconstructed sea-surface temperature anomalies (ERSST.v4) [49] in the El Nifio 3.4 region
(5° N-5° 5, 120°-170° W). According to these criteria, and for the overlapping data period, the El Nifio
events selected were: El Nifio 1998 (January 1998-September 1998) ranked as extreme, the El Nifio of
2002-2003 (January 2002-September 2003), 2007-2008 (September 2007-September 2008) ranked as
moderates and El Nifio of 2009-2010 (October 2009-September 2010) ranked as weak. It should be
noted that only a part of El Nifio 1997-1998 (from January 1998) could be analyzed due to the data
availability of TRMM.

5. Results

5.1. Rainfall Products Comparison

The first step consists of determining the rainfall product that provides the better rainfall estimates
compared with in situ observations. The results of the comparison between in situ observations
interpolated with COK and the four rainfall products described in Section 3.2 are presented in Table 2
and Figure 4.
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Table 2. Results of the comparison between the four rainfall products and in situ gridded (interpolated
with COK) observations. The monthly time-series comparison is shown, along with the gridded
resolution of the comparison, the mean annual precipitation with the mean bias difference of each
product with the interpolated observations. Finally, the results of the three comparison metrics:
correlation, RMSE and relative bias. The comparison was made in reference to the common temporal
periods and the original grid resolutions of the four rainfall products compared (see Table 1).

Mean Annual

Compared Precipitation Mean Mean Mean of Relative
. "p Resolution (mm/year) and . RMSE with  Bias Index (Rbias)
Rainfall Source Times . . Correlation o .
Series (Degrees) Difference with with Obs Obs (%) with Respect to
Observations in % (mm/year) Observations
(in Parenthesis)
Interpolated Common
observations periods 0.008 1537.1
(COK) respectively
ERA-Interim Total 41174
precipitation 1979-2015 0.125 (+167.9%) 0.69 288.2 —-177.1
1345.5
TRMM 3B43 V7 1998-2014 0.25 o 0.82 68.7 —2.8
(~12.5%)
1331.8
GPCC V7 1970-2013 0.5 (—~13.4%) 0.83 69.8 5.7
CRU V3.22 1970-2013 0.5 (5163'3) 0.66 102.3 -23
ERA-Interim TRMM 3B43 GPCC o o CRY 10
10 10 4 .
08 0.8
o 0 | 08 | ol
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Figure 4. Maps of (a) linear correlations; (b) root mean squared error (RMSE) (in mm) and; (c) relative
bias (in %) between interpolated in situ observations with COK and the four studied rainfall datasets
(ERA-Interim, TRMM 3B43 V7, GPCC V7, CRU V3.22).
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An analysis of variance (ANOVA) was performed on the four global rainfall products and the in
situ one, all resampled at 0.5° of spatial resolution (corresponding to 10,572 samples in the EPSC from
1998 to 2013 at monthly time-scale) in order to determine if the differences between the datasets are
significant. The different datasets do not perfectly follow the normal distribution, but they have almost
all similar variances (20,388, 14,849, 18,646, 24,670 mm? for the observations, TRMM, GPCC and CRU,
respectively), except ERA-Interim (95,579 mm?). Results of the ANOVA give a F-statistic of 2839 and a
p-value close to 0. As the ERA-Interim does not perfectly fit the assumption of the ANOVA and also as
the results of the comparison with the in situ data show important differences with the in situ dataset,
an ANOVA on the in situ product, TRMM, GPCC and CRU was then performed. A F-statistic of 33.85
and a p-value of 7.6 x 10722 were obtained. A final ANOVA on the in situ data, TRMM and GPCC
was performed as CRU provides quite different results from the other datasets. A F-statistic of 6.78
and p-value of 0.0011 were obtained. In all the cases, the null hypothesis was rejected, showing that
the results presented in Table 2 and Figure 4 are statistically significant.

Considering the global products only based on in situ observations, better results are obtained
using the GPCC product than the CRU (correlation 0.83 versus 0.66 and RMSE of 69 versus 102 mm).
This is likely to be due to the use of a larger number of rain gauges in GPCC than in CRU [42,50]. ERA
Interim reanalysis monthly mean data show a large rainfall overestimation over the central region of
the EPSC (Guayas basin). This was already observed in other studies in the same latitude range as
Ecuador [51] and over the Peruvian Andes [52].

The two rainfall estimates that provide the best results are GPCC and TRMM products with Crr
higher than 0.8 and Rbias lower than 6%. The major advantage of TRMM over GPCC is its higher
spatial resolution (0.25° against 0.5°) and the availability of more frequently updated data. TRMM
underestimates the total rainfall (—12.5%) with a Rbias, mean Crr and RMSE of —2.8%, 0.82 and
68.7, respectively (Table 2). TRMM exhibits the best score in the lowlands, with high correlation, low
RMSE and low Rbias compared to the other products (Figure 4). Nevertheless, the performance of
TRMM is quite low over the high-altitude regions, as already mentioned in several studies [16,53-57]
(Figure 4a,c). This can be explained by the fact that the rainfall data from TRMM are derived through
an inverse approach from the brightness temperature at the cloud top [58]. The TRMM processing
scheme of microwave and infrared (IR) data has to cope with the highly heterogeneous terrain with
varying brightness temperatures which affects the rainfall estimates [18]. Generally, the microwave
signal as seen from space is strongly dependent on surface type [17], and is affected by the presence
of topography that is especially the case over the Andes [59]. The Andes cause strong scattering of
the electromagnetic waves emitted by the Precipitation Radar (PR). This is a large source of error for
rainfall estimation [38,44] and also may severely affect the infrared retrieved estimation of rainfall [54].

5.2. Identification of Spatio-Temporal Rainfall Variability with TRMM

As a second step, as showed in 5.1, the TRMM product was chosen among the other rainfall
products because of its evaluation scores, which were some of the best, and also because of its higher
spatial resolution (0.25° x 0.25°).

PCA was applied on deseasonalized anomalies to both the TRMM product and the gridded
interpolated observations averaged at 0.25° of spatial resolution over 1998-2015. According to North’s
rule of thumb [60], the first five PCA modes are significant, but only the first three PCA modes will
be discussed because the higher-order modes explain a variance lower than 5% and are difficult to
interpret. Figure 5 shows these three first modes, which represent 76% (53, 13 and 10%, respectively)
of the explained total variance for the gridded observations and 86% (69, 10, and 7%, respectively) for
TRMM. The spatial structures of both rainfall products are very similar, especially the first spatial and
temporal component, which accounts for the highest explained variance. The explained variances
obtained are lower for the observations resampled at the 0.25° x 0.25° resolution than for TRMM.
This difference is because the PCA method is less able to represent (as explained variance) the more
detailed spatial distribution of observed resampled grid rainfall than the TRMM estimates.
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Figure 5. Comparison of spatial and temporal components of the first (a), second (b) and third (c) first
Principal Component Analysis (PCA) modes obtained on the deseasonalised rainfall anomalies for the
gridded observations and TRMM estimates. The comparison was performed at the spatial resolution
of the TRMM 3B43 V7 product (0.25°) and over the common period of availability of the two datasets

(1998-2015).

Very similar spatial and temporal patterns, with Crr = 0.91 and 0.95 and RSME = 55 mm and
0.07 respectively, were found for the first PCA mode (Figure 5a). For the spatial component, small
differences can be observed in terms of amplitude. TRMM represents more rainfall variability: lower
over the Andes foothills and higher over the lowlands. The temporal component is dominated by
the signature of the ENSO events, especially the extreme event of 1998 and the moderate event
of 2002-2003. For the second PCA mode, showing a meridional dipole, the spatial patterns are
very similar between TRMM and the re-gridded deseasonalized anomalies” observations (Crr = 0.91,
RMSE = 45 mm), although the amplitudes of the dipole centers are smaller for TRMM, especially over
the north of the EPSC (ITCZ migration region) and on the coastal center and south border (Humboldt
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Current influence). The temporal components are quite different (Crr = 0.57 and RMSE = 0.27). In
particular, TRMM exhibits a stronger variability with respect to the observations (Figure 5b). Similar
spatial and temporal patterns with, respectively, Crr = 0.81 and 0.82 and RSME = 34 mm and 0.19 were
found for the third PCA mode. However, a clear east-west gradient is present in the in situ gridded
rainfall. It does not appear so clearly for TRMM (Figure 5c¢).

5.3. Identification of Spatio-Temporal Rainfall Variability during El Nifio-Southern Oscillation (ENSO) Events
with TRMM

As a third and final step, three regions were studied for extreme, moderate and weak El Nifio
events selected in Section 4.2 over the whole EPSC and its two largest basins (Esmeraldas and Guayas).
Time series and maps of average rainfall (1998-2015 period), as well as temporal events and cumulative
rainfall maps over each study area and for each El Nifio event are presented in Figure 6.

5.3.1. Pacific Slope and Coast

For the EPSC, the monthly averaged time variations of the observed rainfall were well estimated
in the TRMM product. They present a low Rbias of —6.9% with respect to the observations. As shown
in Table 3, the 1998 El Nifio event was the strongest rainfall event of the entire period 1998-2015 over
the EPSC with 75.1% above the pluri-annual monthly average rainfall. Next was the moderate El
Nifio event of 2007-2008, with a cumulative rainfall event of 9.3% above the monthly average. The
moderate and weak events of 2002-2003 and 2009-2010, with an average rainfall of —3.5% and —0.8%,
respectively, were the closest to the monthly average of the EPSC. The best represented event by TRMM
was the moderate 2002-2003 El Nifio, and the worst was the weak 20092010 EI Nifo (Figure 6a).

The spatial and temporal results presented in Figure 6a show that the 1998 El Nifio, for the
9 months considered, produced a maximum cumulative rainfall event between 3500 and 4000 mm
over most of the lowlands and the high rainfall was observed towards the south until 2.5° S. During
2002-2003 El Nifio, a maximum cumulative rainfall event of 6000 mm in 21 months was located in
the northern region (~1° N to 0.5° S). For the 2007-2008 El Nifio, the maximum cumulative rainfall
event of 3500 mm in 13 months was located over the north of the region (~1° N to 0.5° S). During the
2009-2010 El Nifio, with a duration of 12 months, the maximum cumulative rainfall event of 3500 mm
was located in the north (~1° N to 1° S). For all of these four events, high rainfall was delimited at the
west and east by the low coastal cordillera and the Andes range, respectively (Figure 6a).

5.3.2. Esmeraldas Basin

In the Esmeraldas basin, the monthly average rainfall was generally underestimated by TRMM,
with an average Rbias of —16.4%. The rainfall during El Nifio events of 1998, 2002-2003, 2007-2008
and 2009-2010 exceeded by 43.2%, 3.4%, 8.1% and 5.9% the pluri-annual monthly average rainfall
observations. The extreme 1998 El Nifio was the major rainfall event. The Rbias comparison of rainfall
observations and TRMM estimates of El Nifio events of 1998, 2002-2003, 2007-2008 and 2009-2010 are
presented in Table 3.

The rainfall during the extreme EI Nifio of 1998 and the weak 20092010 El Nifio are, respectively,
the best and worst estimated using TRMM. The rainfall during the weak 2009-2010 El Nifio was the
most underestimated by TRMM. Regarding the spatial rainfall distribution of the events (Figure 6b),
the maximum accumulated rainfall was observed in the central and southern regions of this basin.
The upstream basin (in the Andes) was, in all cases, the region with least rainfall and lower variability.
This spatial distribution is in accordance with the zonal rainfall distribution showed by the multiyear
average rainfall map and the first spatial PCA mode.
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Table 3. Percentages of cumulated observed rainfall with respect to the monthly average (period 1998-2015) for each El Nifio event (1998, 2002-2003, 2007-2008
and 2009-2010) and for each study region (Ecuadorian Pacific Slope and Coast, Esmeraldas and Guayas basins) and the corresponding Rbias (in %) of the TRMM

rainfall estimates.

Ecuadorian Pacific Slope and Coast Esmeraldas Basin Guayas Basin
Time Period Observed Rainfall TRMM Estimation Observed Rainfall TRMM Estimation Observed Rainfall TRMM Estimation
Event with Respect  of Observed Rainfall =~ Event with Respect  of Observed Rainfall = Event with Respect = of Observed Rainfall
to the Average (%) (%) to the Average (%) to the Average (%)
Available period:
Jan 1998-Dec 2015 —69 —164 -85

ENSO: Jan 1998-Sep 1998 75.1 7.7 43.2 6.3 100.7 8.5

ENSO: Jan 2002-Sep 2003 -3.5 —24 34 -12 -21.3 5.3

ENSO: Sep 2007-Sep 2008 9.3 —11 8.1 -13.1 0.8 —14.2

ENSO: Oct 2009-Sep 2010 -0.8 -17.1 5.9 —23.7 -7.5 —18.9
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Figure 6. Rainfall comparison of the gridded observations and TRMM estimates at 0.25° of spatial
resolution, during the El Nifio events of 1998, 2002-2003, 2007-2008 and 2009-2010. The top image
corresponds to the map of the observed pluri-annual monthly average rainfall of the period 1998-2015

and the monthly comparison of four El Nifio events with the mean rainfall observed and estimated by
TRMM for (a) the Pacific slope and coast, for (b) the Esmeraldas basin, and for (c) the Guayas basin.
The other maps are the spatial cumulative rainfall observations and the comparisons of the temporal

average series by El Nifio event, between observations and TRMM made for the (a) Pacific slope and

coast and for (b) the Esmeraldas basin and (¢) Guayas basin.
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5.3.3. Guayas Basin

In the Guayas Basin, the monthly average rainfall was also underestimated by TRMM, with an
average Rbias of —8.5% (lower than in the Esmeraldas basin). El Nifio events of 1998, 2002-2003,
2007-2008 and 2009-2010 presented 100.7%, —21.3%, 0.8% and —7.5% more/less rainfall with reference
to the average of the basin (Table 3). The extreme 1998 El Nifio presented the largest impact on the
rainfall variability compared to the EPSC and Esmeraldas basin. The moderate El Nifio of 2002-2003
was the best estimated, and the worst was the weak El Nifio of 2009-2010.

The distribution of average rainfall (Figure 6¢) indicates that it was mostly concentrated in the
northern basin region (normal seasonal ITCZ influence). The largest rainfall amounts occurred in the
center and along the north-south border of the basin during the 1998 El Nifio event. The total rainfall
(4000 mm in 9 months) was distributed over most of the lowlands in the region delimited by the Andes
and the low-altitude coastal cordillera. For all events, less rainfall was found in the Andean part of
the basin. This spatial distribution is in accordance with the multiyear average rainfall distribution
and with the zonal and meridional rainfall-variability distribution (N-S increase and W-E decrease)
showed by the spatial PCA modes (EOF1 and EOF2) of Figure 5.

6. Discussion

Our work presents a detailed rainfall distribution for the EPSC, which shows a significant
correlation with orographic features. The high amount of climatology rainfall is concentrated in
the north at the western windward side of the Andes and in the low coastal cordillera due to the
intense low-level convergence when the ITCZ is placed on the north of the equator (almost in line
with the oceanic ITCZ) in austral winter [4]. The mountain slopes exposed perpendicularly to frequent
winds that transport moisture [11] can produce this highest amount of rainfall. This could also be
supported by a larger cloud frequency observed in the north (~0) than the south (~4 S) [61]. The
spatial rainfall distribution over the EPSC is clearly delimited by its two mountain chains, which
act as weather divisions, mainly the Andes, as the major borderline between Pacific and Amazonian
climatic influences. These two chains have permanent interactions with tropospheric flow, which is
more remarkable during the rainy season due the ITCZ seasonal migration and the interannual ENSO
influence periodicity (ranging from 2 to 7 years [62]). The particular case of the coastal border, where
the rainfall amount is minimum, can be related to the influence of the SE Pacific anticyclone and the
cold water upwelling of the Humboldt Current in austral winter [61]. As for the temporary rainfall
distribution over the EPSC, the first rainfall seasons starts in November-December when the ITCZ
begins its southern displacement, then a second marked season, due to the direct influence of the ITCZ
on convective processes, starts in Jan-May reaching a maximum in March. A third season with lower
(minimum) rainfall occurs during Jul-Sep due to the northward shift of the ITCZ, during the northern
hemisphere summer, and the intensified Walker circulation that produces advective low cloud [63].

The largest interannual variability within the EPSC region is mostly produced by the ENSO
conditions and influenced by the seasonal meridional migration of the ITCZ. This relationship
is supported by the fact that the ITCZ migration is delayed (favored) during warm (cool) ENSO
phases [64] because the ITCZ generally migrates toward a differentially warming hemisphere [65].
The spatial component of the second EOF mode is consistent with the higher cloud frequency during
the ITCZ meridional migration over the EPSC and, therefore, closely related to the ENSO events
represented by the first EOF mode. The spatial component of the first EOF specifically reveals the
zonal rainfall variability influence of El Nifio events, which is highest over the lowlands, specifically
higher over the center south (Guayas basin), low over the Andes slope, and very low over the Andes.
This was clear, for example, during the extreme 1998 El Nifio, with a high rainfall variability impact
towards the center-south according to the spatial rainfall variability presented by the first EOF mode
and the event rainfall accumulation over the Esmeraldas and Guayas basins. The higher rainfall
variability for the Guayas basin (center-south region) than for the Esmeraldas basin (north region) can
be accounted for by evidence of historic strong and extreme El Nifio events, which clearly separate
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the moist northern Ecuadorian coast, under the normal influence of the ITCZ, from the south coast of
Ecuador, which is the driest region and sensitive to ENSO events [66]. It should be noted that the ITCZ
shift during warm ENSO episodes reduces rainfall by about 100 mm/year along the northern edge of
the normal ITCZ over the eastern Pacific [67], mostly in December-February (DJF) and March-May
(MAM). It is equally important to mention that the western and central Pacific ITCZ shifts southward
by about 2° S on typical ENSO conditions, and by about 5° S during strong El Nifio events (such as in
1983 and 1998) [65] with the longitudinal ITCZ structure modified by ENSO’s zonal rearrangement of
convection [67].

Although the monthly global datasets as GPCC and CRU obtained by interpolating global gauges
observations allow for fairly good rainfall data for the study region, TRMM 3B34 V7 is the better source
among all the datasets considered in this study. TRMM showed good agreement with gauge data
compared with GPCC and CRU, and it showed to be superior to the global atmospheric reanalysis of
ERA-Interim. Nevertheless, TRMM presents some overestimations over lowlands (mean Rbias of 7%)
and has more underestimations over the Andes (mean Rbias of —28%) when compared with in situ
gauges. For the El Nifio rainfall events, TRMM presents mostly underestimations for the considered
El Nifio events. This could be explained because the TRMM dataset is the result of the combination
of multiple independent precipitation estimates from the TRMM microwave imager (TMI), visible
and infrared scanner (VIRS), rain gauge data and the precipitation radar (PR). PR underestimates
rainfall rate for extremely intense convective rainfall [68], especially for extreme precipitating systems
that contain significant mixed phase and/or frozen hydrometeors [69], as on the Andes. There is
also the limitation of the VIRS data that provide information of cloud-top height, which do not
correlate well enough with ground precipitation [70]. Different cloud types may have similar cloud-top
temperatures and are associated with different amounts of rainfall at the ground [71]; for higher
convective cloud there are normally underestimations compared to low-level short convection [72].
Finally, the TMI also missed the light and heavy rainfall because of its small scale (swath width of
758.5 km) [73] and/or type of rainfall according to its nature as, for example, the warm rain (derived
from non ice-phase processes in clouds) [74]. As shown by [61], over Ecuadorian territory the average
cloud-top height increases from west to east during the wet season (December-May), which means
W-E rainfall cloud-top height increases; thus, this results in important underestimation over the Andes

7

against a reasonably small overestimation over lowlands. It could also suggest that during the lower
rainfall season (July-September), as shown in [75], TRMM overestimations over the dry areas could be
attributed to sub-cloud evaporation.

7. Conclusions

Comparison of the gridded observations with the commonly used rainfall datasets from GPCC,
CRU, ERA-Interim reanalysis, and the satellite estimates from TRMM 3B43, showed that the
satellite-based rainfall product provides the more reliable estimates. Overall, considering the 1998-2015
period, there is a good agreement between observations and TRMM with an average lowest RMSE
of 68.7 mm/year and Rbias of —2.8% for the entire EPSC. We can note that, for the lowlands, the
Rbias obtained (7%) are closer (small overestimation) to the observations than for the Andes (—28%)
(underestimation). These results can be related to the uncertainties associated with the TRMM 3B43
algorithm and the errors from the different sensors onboard the satellite (TMI, PR and VIRS) which
are responsible for underestimations of the rainfall during the wet season (December-May) when
top-cloud heights increase from W-E of the EPSC over the Andes slopes and inter-Andean basin.

Very similar spatial and temporal patterns were found, especially for the first mode (Crr = 0.91
and 0.95 and RSME = 55 mm and 0.07 mm), when applying the PCA to deseasonalized anomalies of
rainfall from TRMM 3B43 and in situ gridded observations over the EPSC between 1998 and 2015. For
the spatial component, some differences can be observed in terms of rainfall variability amplitude and
structures form over the Andes foothills (lower for TRMM) and over the lowlands (higher for TRMM).
The first temporal component is dominated by the signature of the ENSO events, especially the extreme



Water 2018, 10, 213 20 of 23

event of 1998. The first PCA spatial mode clearly shows the location of heavy rainfall impact of El
Nifio events and their zonal rainfall variability influence, which is highest over the lowland and lower
towards the Andes.

The TRMM 3B43 product showed a generally good capability for providing realistic rainfall
estimates during extreme El Nifio 1998 (mean Rbias of +7.7%), and moderate El Nifio of 2002-2003
(mean Rbias of —2.4%) over the EPSC. Nevertheless, rainfall for the El Nifio 2007-2008 and 2009-2010
events were underestimated by TRMM (mean Rbias of —11% and —17.1%) over the EPSC and more
notably underestimated for the 20092010 event for the Esmeraldas (—23.7%) than the Guayas basin
(—18.9%). General good agreement was also found over the Esmeraldas basin for the extreme
El Nifio 1998 (mean Rbias 6.3%) and over the Guayas basins for the extreme 1998 and moderate
2002-2003 El Nifio events (mean Rbias of +8.5%, +5.3%) in spite of small overestimations. All these
results confirm that TRMM 3B43 V7 reports reasonable levels of heavy rainfall detection over the
EPSC and specifically towards the center-south of the EPSC (Guayas basin) but presents a general
underestimation for the moderate and weak El Nifio events. Over the whole EPSC, the seasonal
features and quantity are relatively well estimated by TRMM and the long-term climatology patterns
are well represented. The present study validates the use of remotely sensed rainfall data in regions
with sparse rain-gauge stations and high rainfall variability, taking into account the potentialities and
limitations of satellite estimates.
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1. Introduction

Climate change is associated with a variety of physical and biological
effects that impact water availability for human uses (Kundzewicz et al.,
2008). In particular, climate change is expected to strongly modify both
temporal and spatial patterns in temperature and rainfall, with impor-
tant consequences on hydrological regimes and aquatic biota (Kilsby
etal., 2007; Lopez-Moreno et al., 2011; Woodward et al., 2010). Accord-
ing to outputs of climate model simulations, higher temperatures are
likely to increase evapotranspiration, causing changes in large-scale
precipitation patterns and the frequency of extreme events (Buytaert
etal, 2010). These changes are also expected to strongly affect different
key parameters of hydrosystems such as stream flow, soil moisture and
groundwater storage, as well as water provision to people (Klgve et al,,
2014; Mishra et al., 2018).

The standard procedure for studying the impact of climate change
on water resources at a basin scale is to downscale climatic variables —
both control (CTL) and future scenarios - obtained from the outputs of
global or regional climatic models (GCMs, RCMs). Given the bias of
most RCMs under CTL scenario, different downscaling techniques and
bias-correction methods have been developed to estimate the differ-
ence in climate outputs (mean, variability) between current and future
conditions (Gonzalez-Zeas et al., 2012, 2014; Pulido-Velazquez et al.,
2011; Teng et al.,, 2015). These corrected values then feed a hydrological
model that determines the available water resources in a watershed of
interest (Gosling et al., 2011). Over the last three decades, there have
been many attempts to use climate model projections to inform water
management decisions in the face of climate change mean trends and
variability (e.g., Chavez-Jiménez et al., 2013; Mourato et al., 2015). Sev-
eral studies have noted that climatic conditions recorded at weather sta-
tions in local watersheds may strongly differ from those predicted by
global and regional climate models (e.g. Gudmundsson et al., 2012;
Piani et al., 2010), therefore limiting the application of climate change
models for sound predictions of water resource availability. While inno-
vative methods to alleviate these challenges continue to be developed
in many high-income countries (e.g. Maraun, 2016; Turco et al., 2017),
the situation is contrastingly different in most tropical regions where
we still lack information on potential discrepancies between measured
and modeled climatic conditions, in particular in mountainous
watersheds.

There are several practical and conceptual reasons for being con-
cerned with climate change predictions for water resource availability
in mountain watersheds located in the tropical and sub-tropical belts.
First, unlike temperate mountain regions, tropical mountains host
many large cities and the growth trends of urbanization and population
require increasing volumes of water to be extracted and transported
(Jacobsen and Dangles, 2017). In the tropical Andes, the four major cit-
ies receiving water from high altitude sources (Bogota, Quito, Lima, La
Paz) have experienced exponential growth coefficients between 1.82
and 2.42 over recent decades (Buytaert and De Biévre, 2012). Popula-
tion growth will be the main driver of increased stress on water re-
sources in the future as water demand in the four major cities of the
tropical Andes may rise by up to 50% in 2050. Second, there is growing
evidence that the rate of warming is amplified with elevation such that
many, high mountain ranges (>3000 m above sea level, m.a.s.1.) experi-
ence more rapid changes in temperature than environments at lower
elevations. This process, known as elevation-dependent warming, is ex-
plained by the fact that several mechanisms (e.g. elevation-dependent
changes in cloud cover and soil moisture) lead to enhanced warming
with elevation (Mountain Research Initiative EDW Working Group
2015). Third, tropical mountain watersheds have permanent growing
seasons resulting in well-developed soil and vegetation covers (e.g.
paramos and bofedales in the Andes, prairies in Himalayas) and highly
active biological communities when compared to temperate mountains.
This implies that biological processes, which profoundly depend on
temperature and humidity, may play a key role in understanding

climate change-water flow interaction in these systems. Last, due to
the limited research capacity in climate and hydrological modeling in
developing countries, water managers often rely on non-academic ex-
pertise (e.g. banks of development, private agencies) to help them
plan their future strategies. Instead of conducting critical assessments
of model fidelity, these experts generally use available global climatic
predictions to run poorly parameterized climatic-hydrological models
(due to a lack of data), thereby leading to weakly grounded predictions
(e.g. Vergara et al,, 2007). For all these reasons, hydrosystems in tropical
and mountainous areas urgently require more attention to achieve
sound management of water resources in the face of climate change.

To address this issue, this paper evaluates the limitations and pros-
pects of RCMs in water resources availability in the Chalpi basin, a
small watershed located in the Ecuadorian Andes at >3500 m.a.s.l. This
watershed is part of the Papallacta system that provides Quito, the cap-
ital of Ecuador, with about 30% of its current water needs. We used cli-
mate projections previously implemented for the Andes and obtained
downscaled predictions with the regional climate model PRECIS. The
main objective of our study was to assess the limitations of using RCM
outputs (precipitation and temperature variables) to predict future
water availability in the Papallacta system. Our methods were not fo-
cused on testing different downscaling methods at basin scale or bias-
correction techniques for improving RCM estimates under CTL scenario,
because it is unclear if the bias correlation applies in a future climate
when the underlying dynamics of the climate system have change
under global warming. Our specific objectives were: (i) to evaluate
the limitations of using outputs of RCMs at a local scale, (ii) to quantify
the temporal and spatial discrepancies between predicted and observed
precipitation and temperature under current and future scenarios, (iii)
to evaluate the variability in extreme rainfall events in the watershed
and (iv) to propose a framework to guide future climate change impact
studies that could be relevant for water managers in tropical mountain-
ous regions.

2. Material and methods
2.1. Study site

The Chalpi basin is one of the main sources of water supply to the
Papallacta System, which provides potable water to about 30% of the
2.6 million people city of Quito. Quito's water utility (EPMAPS) has
built different hydraulic structures in the upper part of this basin
(e.g., water intakes and reservoirs) to withdraw water from the river
and to transport it through pipes to the city. This system, together
with other existing systems (Pita, Mica, Atacazo and Noroccidente sys-
tems, see Fig. 1a), covers the entire demand of drinking water for the
city. The study basin is located in the continental division of the Pacific
and Amazon, specifically in the headwaters of the Amazon basin. It
has an approximate area of 95 km? with elevations that vary between
2880 and 4200 m.a.s.l. (Fig. 1b). Additionally, EPMAPS’ long-term capac-
ity expansion plan currently includes the construction of four new
water intakes in the lower part of the basin, with the potential to signif-
icantly increase water supply reliability for the system by 2040. The
basin is covered by soils and vegetation typical of the pAramo ecosystem
(high elevations wetlands), which are characterized by their high ca-
pacity for water interception, filtering and retention (see Appendix A,
Fig. A1).

2.2. Meteorological data

Seven rain gauges and five climatic stations provided 10-minute
precipitation and temperature data, respectively, for different periods
between 2003 and 2016 (see Appendix A, Table A1 for details). The
selection of stations with meteorological data allowed a reasonably
good spatial coverage of the entire study basin, at different altitudes
(Fig. 1b), especially during the period between 2008 and 2016



D. Gonzdlez-Zeas et al. / Science of the Total Environment 650 (2019) 2577-2586 2579

(a) (b)
N nﬂ}" N
w®s > Altitude M5021
s oy 4293 m
. . o331 m

Pipes .
[ ] Reservoir

[ | Basins EPMAPS
[ chalpi basin
] Popula.tions

; K
0 8 16 24 32

P68
® .P37

A Climatic stations
@ Rain gauges

P63
@
M5025
A
N
P46
W%'! M5024 P34 K
o LTI 1
S A M5023 & 0 15 3 45 6m

Fig. 1. (a) Location of study basin within the water supply system of Quito city. (b) Location of climatic stations and water intake structures in the Chalpi basin (see Appendix A, Table A1 for

further details on the data associated with each station).

(Table A1). Although elevations in the basin vary between 2880 and
4200 m.a.s.l, the events of snow only occur in anomalous years, or
they may not happen in some years, and they can be minimal and of
short duration (hours), so they definitely not represent an
undercatching problem. Besides, precipitation is very heterogeneous
in mountainous regions, so this could lead to large uncertainty in the ob-
servations. Moreover, over the western slope of Ecuador, a single rainfall
maximum occurs between 1000 and 3500 m.a.s.l. (Bendix and Lauer,
1992) as like observed in other mountainous ranges (Anders and
Nesbitt, 2014; Collados-Lara et al,, 2018).

We modeled the spatial patterns of precipitation and temperature in
the study watershed using two interpolation methods, inverse distance
weighting (Chen and Liu, 2012; Cressie, 1993) and co-kriging (Pebesma,
2004; Vicente-Serrano et al., 2003), respectively. These procedures
allowed generating maps of mean monthly isohyets and isotherms for
the study period (2008-2016). Furthermore, we used 1) the Worldclim
dataset to obtain average monthly climate data of precipitation and
temperature for 1971-2000 with a spatial resolution of 30 s (approxi-
mately 1 km2, Fick and Hijmans, 2017) and 2) the Climate Hazards
group Infrared Precipitation with Stations (CHIRPS) dataset (Funk
et al., 2015), which is based on high-resolution observations of infrared
Cold Cloud Duration (CCD). CHIRPS uses the Tropical Rainfall Measuring
Mission Multi-satellite Precipitation Analysis version 7 (TMPA 3B42v7,
Huffman et al., 2007) to calibrate CCD rainfall estimates and provides
monthly precipitation from 1981 to present at a resolution of 0.05°.

2.3. Climate change simulations

Climate change scenarios were obtained from the International Cen-
ter of Tropical Agriculture based in Colombia (CIAT, http://www.ccafs-
climate.org/). The CIAT produces dynamically downscaled meteorolog-
ical variables from the PRECIS RCM, an atmospheric and land surface
model focused on the Andes (PRECIS, 2001). Monthly precipitation
and temperature data were obtained in ARC GRID format (decimal de-
grees and datum WGS84) with a resolution of 25 min (cells of approx-
imately 50-km sides). PRECIS provides simulations under a control
scenario (CTL) and future emission scenarios. We used two of them,
A1B (intermediate growth in emissions) and A2 (rapid growth in emis-
sions), which reflect intermediate and high greenhouse gas emission
scenarios, respectively. These two scenarios were run using the
MPI_ECHAMS5 and MPI_ECHAM4 GCMs, respectively, which produce
the boundary conditions for PRECIS. The CTL scenario corresponds to
the period between 1961 and 1990, while future scenarios were

calculated for the year 2040. RCM PRECIS outputs for South America
Andes only provide mean values for a given period of data (and not
data for individual years), thereby impeding us to calculate inter-
annual variability.

24. Analyses

24.1. Observed data vs. simulations

We first quantified mean monthly precipitation and temperature
values from the RCM under the CTL scenario (1961-1990) and com-
pared them to observed data. Because our observed data correspond
to a relatively short period (2008-2016), we used the information pro-
vided by Worldclim (1971-2000) and CHIRPS (1981-2010) datasets to
count with at least 30 years of data. First, we assessed whether observed
precipitation (2008-2016) presented a good adjustment with CHIRP
predictions. Then, we evaluated to what extent the seasonal patterns
of CHIRPS and Worldclim data were reproduced by RCM simulations
(see Appendix C, Fig. C1 and C2”) (2008-2016). Although the compari-
son used two different periods, it gave us a broad assessment of the re-
liability of RCM outputs for hydrological modeling. Then, for each of the
two emissions scenarios, we evaluated the change in precipitation Ap
and temperature At under climate change scenarios (CC) with respect
to the control scenario (CTL) as follows:

CC—CTL
B =y (1)
Ar = CC—CTL (2)

Ap and At were calculated from the RCM grid cells over and nearby
the watershed. Indeed, establishing predicted temperature and precipi-
tation maps under different climate change scenarios would be para-
mount for water managers so that they can calculate water availability
at a sub-basin level (see Fig. 1b). Following Janssen and Heuberger
(1995) we used a bias indicator B between monthly observed (O) and
monthly simulated (S) values of the variables, calculated as follows:

_S-0

B=>5x100 (3)

24.2. Precipitation variability
As an additional analysis of potential climate change impacts in the
watershed, we performed an analysis of extreme rainfall events over
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14 years with a daily temporal resolution. Those events are of great in-
terest to water managers, as they can threaten infrastructure during
floods and provoke water shortages during severe droughts (Begueria
et al, 2011; Vairavamoorthy et al., 2008). Furthermore, several climate
change simulations predict an increased frequency, intensity and un-
predictability of extreme events in the future (Keath and Brown,
2009). In general, it is recommended to use at least 30 years of rainfall
data to account for inter-annual variation in seasonal and annual
means. Due to the lack of data in the Chalpi watershed, we assessed
inter-annual variability by using the rain gauge (P34) with the longest
data period (2003-2016). As the probability of extreme flood and
drought events are directly related to precipitation, we calculated the
95th percentile of precipitation over the 14 years (%95 = 11.5 mm)
and the number of days with no rain as metrics of precipitation ex-
tremes (Barton and Giannakaki, 2016; Coles, 2001; Fukutome et al.,
2015). Unfortunately, it was not possible to compare observed vs. pre-
dicted precipitation variability because the annual PRECIS model data
were not available.

3. Results

3.1. Analysis of precipitation and temperature under the CTL scenario
Based on the grid outputs for every month simulated by the RCM

over the Chalpi basin (Fig. 2a and b), our results reveal an important

overestimation of precipitation and temperature simulated by CTL cli-
mate models when compared to observed data (Fig. 2c and d). The
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bias in the magnitude of precipitation is approximately 200% and pre-
dicted mean temperature is around 16 °C instead of the measured 6
°C. Importantly, there were strong seasonal discrepancies in precipita-
tion patterns between simulations by RCM and observed data, with a
complete inversion in the timing of the rainy and dry seasons
(Fig. 2¢). The seasonal pattern of air temperatures, namely a slight de-
crease during the rainy season, was observed in both simulated and ob-
served data (Fig. 2d).

To understand the mechanisms behind the difference in seasonality
between observed data and the CTL scenario of the PRECIS, we evalu-
ated precipitation bias at the scale of the whole country by drawing
the differences between simulated (PRECIS) and observed (CHIRPS)
rainfall data for all months. We found that PRECIS overestimated precip-
itation in the Andean cordillera (in particular the eastern slope), while
the CHIRPS tended to under-estimate precipitation in the Amazon
from July to September (Fig. 3). The RCM under the CTL scenario was
better at capturing precipitation patterns on the Pacific coast where
the rainy season occurs from January to April (see Appendix B,
Fig. B1). CTL PRECIS estimations in the Chalpi basin followed climatic
patterns observed in the Ecuadorian coast (wet from January to April,
dry from May to September), hence the pattern observed in Fig. 2c.
Also, the PRECIS model failed to represent the annual migration of the
inter-tropical convergence zone, and produced rainfall hotspots be-
tween latitudes 1°N-2°S, which were not congruent with the reality.
Importantly, it would be extremely difficult to apply bias corrections
to these types of precipitation errors, which are indicative of a poor rep-
resentation of the large-scale atmospheric circulation over the region.
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Fig. 2. Maps of Ecuador representing the spatial characterization of (a) annual precipitation and (b) annual temperature simulated by regional climate models under current scenario. Black
symbols represent the location of the Chalpi basin, which provide Quito with potable water. The lower panels provide a temporal characterization of CTL scenario of the PRECIS
(1961-1990), observed data (2008-2016) and CHIRPS (1981-2010) for (c) monthly precipitation and CTL scenario of the PRECIS (1961-1990), observed data (2008-2016) and

Worldclim (1971-2000) for (d) monthly temperatures.
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the study basin.

Any precipitation bias in the CTL scenario may change in a future period
if the atmospheric circulation shifts under anthropogenic warming. This
makes it virtually impossible to verify that projected changes in precip-
itation are accurate, and not just an artifact of a bias in atmospheric cir-
culation that is changing from baseline to future conditions.

3.2. Analysis of precipitation and temperature under climate change
projections

In view of the strong biases of PRECIS to model observed climatic
data, future predictions would likely be unreliable. Yet, as an illustrative
exercise, we mapped the relative change in average monthly precipita-
tion (Ap) and temperatures (At) in the Chalpi basin and surrounding
cells for two emission scenarios, A1B and A2 (Fig. 4). Overall, Ap maps
showed highly inconsistent patterns both spatially and between both
scenarios, in particular for precipitation. The A1B scenario predicted
an overall decrease in precipitation by 2040 (ranging from 5% in August
to 39% in September), except in May that presented an overall 2% in-
crease in precipitation. Under the A2 emission scenario, predictions
were even more erratic as precipitation decreased by 8%, 7%, 31% and
39% in January, June, November, and December, respectively, while
the other months it increased from 3% (July) to 88% (August). For the
two climate change scenarios, At maps showed an overall increase in
temperatures in the Chalpi basin. These increases varied between 1.3
°C (April) and 2.0 °C (September) under the A1B scenario, and from
2.4 °C (September) to 3.4 °C (January) under the A2 scenario. For both
precipitation and temperature, PRECIS predictions were highly erratic
spatially (in particular for the A2 scenario), with differences between
adjoining cells as high as 2.5 °C and 100% of precipitation. There are
many months where the grid cell over the Chalpi basin was straddled
by other grid cells with opposing signs of precipitation change. The im-
plication is that small spatial biases in PRECIS could lead to large differ-
ences in projected precipitation change in this transition zone, reducing
the reliability of projected changes for the Chalpi basin.

3.3. Precipitation variability

Beyond testing the relevance of climate change models for the
Chalpi basin, we also analyzed precipitation variability across years
(Fig. 5). Overall, daily precipitation variability was comparable among
the 14 years of data, ranging between 0 and 40 mm-day ! (Fig. 5a).
The number of days without rain was significantly more variable
among years (Fig. 5b), than days with precipitation > 11.5 mm (percen-
tile 95th). In particular 2005, presented an exceptionally high number of
days (120) without precipitation. This pattern was confirmed when
plotting the cumulative number of extreme events for the 14 studied
years (Fig. 5¢c-d). All cumulative number of days with high values of
rainfall curves had a similar S-shape through time, with an abrupt in-
crease in the number of rainy days between the day 150 and 200
(Fig. 5d), which corresponds to the start of the rainy season (see Fig. 2c).

4. Discussion
4.1. Limits of climate predictions

Bridging the gap between the predictions of coarse-scale climate
models and the fine-scale climatic reality of mountainous watersheds
is a key issue of hydrological research. Indeed, our study confirmed
the common view that regional climate models do not adequately cap-
ture the reality of the climate in such settings (Sharma et al., 2007;
Teutschbein and Seibert, 2012; Varis et al., 2004). This result was not
surprising as mountain ranges provide key boundary conditions for cli-
mate modeling (Fekete et al., 2002; Viviroli et al., 2011). RCM output
biases have been well documented in the literature (Marcos et al.,
2017), and it is generally recommended to eliminate such bias before
using predicted climatic values as inputs for hydrological models
(Christensen et al., 2008). However, in the case of precipitation, our
study revealed that not only the mean predicted values were much
higher than observed ones but also that the seasonal pattern in
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Fig. 4. Differences in predicted and current precipitations Ap (%, a, b) and temperatures Ar (°C, ¢, d) under A1B (a, c) and A2 (b, d) emission scenarios with respect to CTL scenario for the
year 2040. Output grid resolution of the RCM is approximately 50-km wide. Black symbols represent the Chalpi basin.

precipitation was completely unrealistic (see Urrutia and Vuille, 2009
for similar conclusions in the tropical Andes). In our case, the predicted
precipitation regime in the Chalpi basin, located on the Amazonian side
of the Andes, clearly follows climatic patterns from the Ecuadorian Pa-
cific coast (Erazo et al., 2018). This suggests profound limitations in
our understanding of regional climate simulations under a control sce-
nario, which cannot be fixed by a simple bias correction of RCM outputs
(Addor et al,, 2016; Foley, 2010). Importantly, our study case clearly il-
lustrates that we are not only facing a “climate prediction” issue but
also an inability to reproduce the current climatic situation (Buytaert
et al., 2010). Bias between observed and predicted climates can vary
greatly and randomly among adjacent RCM grid cells, which reveals
that these models do not produce robust results at a local scale for the
region considered.

While several authors (e.g., Marengo et al., 2009; Alves and
Marengo, 2010; Canziani and Carbajal Benitez, 2012) used the PRECIS
RCM to simulate precipitation and temperature patterns over South
America, there are still systematic errors in the regional model. These
are related to the physics of the model (convective schemes, topogra-
phy, and land-surface processes), the lateral boundary conditions, and
possible biases inherited from the global model (Palmer and
Weisheimer, 2011; Bruyére et al., 2014). According to Buytaert and De
Biévre (2012), the Andean region clearly presents higher variations in
climate model simulations compare to surrounding areas (Pacific
Ocean and Amazon basin). This strongly suggests that the difficulties
in representing the current climate are a major source of uncertainty
in tropical mountains and that future projections should be treated
with care (Urrutia and Vuille, 2009). One of the limiting factors regard-
ing the use of RCM information is the scale misalignment between the

output of the climate models and the scale use for water availability pre-
dictions (basin scale, Wood et al., 2002) so that several studies have de-
veloped downscaling techniques to overcome this deficiency
(e.g., Pulido-Velazquez et al.,, 2011; Gutmann et al., 2014). Another fac-
tor that limits the use of RCM simulations is its bias with respect to ob-
served data. Bias-correction techniques consider the influence of
specific statistical metrics (e.g., mean and variance, Raty et al., 2014;
Pulido-Velazquez et al,, 2017).

The difficulty of RCMs to simulate climatic patterns at a local scale
makes their applications for hydrological simulations very hazardous,
particularly in the context of climate change predictions (Wood et al.,
2004). A few studies recommend using an ensemble of models for cov-
ering these uncertainties (e.g., Graham et al., 2007; Velazquez et al.,
2013), yet when working at a local scale, such approaches generally
do not substantively improve the reliability of predictions (Kjellstrom
et al,, 2010; Solman et al., 2013). Besides, the spatial scale of average
precipitation should be large enough to preserve topographical gradi-
ents and reduce random errors (Wong and Chiu, 2008). Consequently,
the use of larger spatial scales from RCMs produces a wide range of fu-
ture patterns but cannot account for the fine-scale complexities that in-
fluence localized hydrological processes (Miles and Band, 2015).
Additionally, several uncertainties are linked to RCMs such as the choice
of the GCM (wide variability between models, especially in precipita-
tion), the parameterization of the spatial scale reduction, and the bias
when comparing with observed data (Déqué et al., 2007). These factors
limit the ability of climate models to quantify the behavior of climatic
variables at basin scales and the possibility to evaluate the interaction
between climate, water, land use and their influence on ecosystem pro-
cesses (Martin et al,, 2017).
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4.2. Critical issues to improve water availability in changing tropical Andes

Our point here is not to critique climate models, as they represent
unique and invaluable tools to better understand climate dynamics at
large scales. However, we strongly critique the inappropriate use of
these models to inform water planning with regards to adaptation strat-
egies to face climate change. We argue that instead of developing and
funding studies on water availability based on GCM and RCM predic-
tions, water planners in tropical mountain regions should rather focus
on two main objectives: (i) to improve climate and hydrological moni-
toring networks and (ii) to increase the ecohydrological knowledge on
how increasing temperatures would affect climate-vegetation-soil-
hydrosystem interactions.

4.2.1. To improve climate and hydrological monitoring networks
Mountain massifs can have a marked effect on climate by affecting the
movement of frontal systems, as well as through a local topographic in-
fluence on airflow and resulting orographic precipitation and winds
(Jacobsen and Dangles, 2017). For these reasons the deployment of auto-
matic weather stations in mountain watersheds is crucial to have a better
grasp on the relative importance of altitude and local effects on climate to
improve our climate prediction models (Mufioz et al., 2010). Long-term
meteorological stations (with >20 years of records) are, however, ex-
tremely sparse at high elevations. For example, out of 7297 stations in
the Global Historical Climatology Network, only 191 (3%) are above
2000 m.a.s.l. and 54 (0.7%) above 3000 m.a.s.l (Mountain Research Initia-
tive EDW Working Group 2015). Moreover, most of the meteorological
stations in mountain regions are located in valleys, meaning that slopes
and peaks are under-represented in resulting data. This can have pro-
found consequence for water flow predictions, as illustrated by signifi-
cant incongruences between measured discharges and rainfall data in
the Chalpi basin (DG, unpublished results). There is therefore an urgent

need for a greater coverage of climatic stations, especially in the higher al-
titudes of the basin. This is an important issue, taking into account that
several key infrastructures that withdraw the water from the basin for
urban supply are located at high altitude (see Fig. 1b).

Moreover, long-term time series of climate would be invaluable for
the development of innovative methodologies for testing the resilience
of water systems to climate variability, for instance by supporting the
construction of stochastic weather generators to drive water system sen-
sitivity analyses. Stochastic weather generators are computer algorithms
that produce series of synthetic daily weather data, and are fit on existing
meteorological records to ensure the characteristics of historic weather
emerge in the daily stochastic process (Wilks and Wilby, 1999). If enough
data are available to fit these models, they can be used to generate plau-
sible sequences of weather that have not been previously observed. These
sequences can then be used to force hydrologic and water system models
at the local scale, and to test the robustness of water system performance
under a wider range of plausible climate than currently exists in the ob-
served record (Hutchinson, 1995). Further, weather generator parame-
ters can be perturbed to systematically alter the underlying climate that
is produced, enabling an alternative method to conduct climate change
impact assessments for local water systems that does not depend on
the output GCMs or RCMs, which may have underlying biases that
make them difficult to directly use in local water planning exercises
(Confalonieri, 2012; Jones, 2000; Steinschneider and Brown, 2013;
Steinschneider et al., 2015). This approach is likely to provide more ac-
tionable information to water managers regarding the sensitivity of
their system to climate, and can be supported with just a few years of ad-
ditional climate data in high tropical regions.

4.2.2. To increase the knowledge on how higher temperatures would affect
climate-vegetation-soil-hydrosystem interactions

While there are strong uncertainties on future precipitation variabil-
ity, predictions of temperature increases are much more consistent, as
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reported by many authors (e.g. Gonzalez-Zeas, 2010; Maurer, 2007)
and the present study. Ecosystems at the coldest margins of life, in par-
ticular in the alpine belts, are particularly sensitive to warming effects
because chemical and biological processes are generally more tempera-
ture sensitive in colder environments (Bell, 2012). As a result, any
warming-induced changes in the functioning of the well-developed
vegetation, soils and associated biological communities in tropical
mountains may strongly affect hydrological regimes (Brown et al.,
2005; Flores-Lopez et al., 2016; Waddington et al., 2015). We propose
that four main biologically-controlled processes in mountain water-
sheds should be further investigated to better predict the impact of cli-
mate change on water availability for human consumption (see
numbers in Fig. 6). (1) At the climate-vegetation interface, altitudinal
distribution shifts in vegetation and tree lines are well documented in
many mountain regions worldwide (see Oztiirk et al., 2015), with po-
tential consequences on water (rainfall and fog) interception. For exam-
ple, in the tropical Andes (Tovar et al., 2013), the natural vegetation
below the paramo belt is mostly tropical montane forest whose hydro-
logical production is considered to be high because of cloud interception
(Buytaert et al., 2006). (2) Such vegetation changes may also affect
water retention in soils as different plant species may have particular
strategies in water needs and capture (Farley et al., 2004; Lopez et al.,
2017). (3) Eco-hydrological processes in the soil compartment are
also likely to be greatly affected by changes in temperatures. Soil organic
carbon accumulation in tropical mountains is due to the continuous
vegetation cover, low air temperature and atmospheric pressure, and
frequent waterlogging of the soils. Increased temperature (together
with decreased moisture) may affect soil microbial communities
thereby reducing carbon accumulation and soil depth (Delarue, 2016),
with unknown, yet potentially strong, effects on water filtering and re-
tention. (4) Finally, warmer climate may not only affect water quantity
but also water quality. Increased heating in surface waters can boost the
primary production in high altitude lakes, wetlands and reservoirs, trig-
gering periodical natural eutrophication processes. Algal blooms, in-
cluding those of toxic cyanobacteria, are likely to be more frequent in
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Fig. 6. A simple climate-vegetation-soil-water framework highlighting four key processes
through which predicted increase in temperature may affect water availability for users in
mountainous watershed of the tropical Andes. 1. Water capture, 2.Water retention, 3.
Microbial processes and 4. Toxic algal blooms (see text for further details).

a warmer climate, putting at risk the potability of water (e.g.
Echenique et al., 2014; Roegner et al., 2013).

5. Conclusions

Our findings were generally consistent with the expectation that re-
gional outputs of RCM simulations are inadequate for predicting local
scale climate conditions, especially in a mountainous basin with a
great variability of topographical gradients. Under the CTL scenario, im-
portant biases were detected for both temperature and precipitation.
The use of these models for water management should therefore be
considered with extreme caution by water planers in the tropical
Andes. In view of these limitations, we strongly advocate the need for
water managers to (1) implement long-term hydro-climatic monitoring
networks with appropriate spatial cover at watershed scales and (2) de-
velop research on how warming temperatures may affect key hydro-
ecological processes in the river system.
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