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Résumé

La thèse porte sur les réseaux de Kahn, un modèle de concurrence simple et expressif
proposé par Gilles Kahn dans les années 70, et leur implémentation sur des architectures
modernes, multi-cœurs et à mémoire partagée. Dans un réseau de Kahn, le programmeur
décrit un programme parallèle comme un ensemble de processus et de canaux communi-
cants, chaque canal reliant exactement un processus producteur à un consommateur.

Nous nous concentrons ici sur les aspects algorithmiques et les choix de conception
liés à l’implémentation, avec en vue deux paramètres clefs : les garanties non bloquantes
(lock freedom) et la mémoire relâchée. Le développement d’algorithmes non bloquants
efficaces s’inscrit dans une optique de gestion des ressources (importante pour les sys-
tèmes embarqués) et de garantie de performance sur les plateformes à ordonnancement
irrégulier, telles que les machines virtuelles ou les processeurs graphiques programmables.
Un travail complémentaire sur les modèles de mémoire relâchée vient compléter cette ap-
proche théorique par un prolongement plus pratique dans le monde des architectures à
mémoire partagée contemporaines.

Nous présentons un nouvel algorithme non bloquant pour l’interprétation de réseaux
de Kahn. Celui-ci est parallèle sur les accès disjoints : il permet à plusieurs processeurs
(ou plusieurs threads) de travailler simultanément sur un même réseau de Kahn partagé,
tout en exploitant le parallélisme inhérent aux processus indépendants. Il offre dans le
même temps des garanties de progrès global non bloquant, c’est-à-dire en mémoire bornée
et en présence de retards sur les processeurs. L’ensemble forme, à notre connaissance, le
premier système complètement non bloquant de cette envergure. Il met en œuvre une pa-
lette cohérente de concepts et de techniques classiques de programmation non bloquante
(recyclage de la mémoire, mises à jour complexes avec assistance, etc.), et incorpore des
idées et optimisations spécifiques aux réseaux de Kahn. Nous discutons également d’une
variante bloquante destinée au calcul haute performance, avec des résultats expérimen-
taux encourageants.
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Abstract

In this thesis, we are interested in Kahn process networks, a simple yet expressive model
of concurrency, and its parallel implementation on modern shared-memory architectures.
Kahn process networks expose concurrency to the programmer through an arrangement
of sequential processes and single-producer single-consumer channels.

The focus is on the implementation aspects. Of particular importance to our study are
two parameters: lock freedom and relaxed memory. The development of fast and efficient
lock-free algorithms ties into concerns of controlled resource consumption (important in
embedded systems) and reliable performance on current and future platforms with unfair
or skewed scheduling such as virtual machines and GPUs. Our work with relaxed memory
models complements this more theoretical approach by offering a window into realistic
shared-memory architectures.

We present a new lock-free algorithm for a Kahn process network interpreter. It is
disjoint-access parallel: we allow multiple threads to work on the same shared Kahn
process network, fully utilizing the parallelism exhibited by independent processes. It
is non-blocking in that it guarantees global progress in bounded memory, even in the
presence of (possibly infinite) delays affecting the executing threads. To our knowledge,
it is the first lock-free system of this size, and integrates various well-known non-blocking
techniques and concepts (e.g., safe memory reclamation, multi-word updates, assistance)
with ideas and optimizations specific to the Kahn network setting. We also discuss a
blocking variant of this algorithm, targetted at high-performance computing, with en-
couraging experimental results.
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Chapter 1

Introduction

The contemporary parallel-programming landscape is quite vast, with its many lan-
guages, frameworks and libraries. At the lowest level lies the raw interface of machines:
processors each running a sequence of instructions, communicating through shared mem-
ory and other devices. At a higher level, there are several competing paradigms that offer
various tools and abstractions to the programmer, and their implementations, whose job
is to translate these constructs into a raw low-level form involving threads and synchro-
nization primitives native to the target architecture. Several factors need to be balanced
in any such implementation. Do we want more performance? Do we need to satisfy par-
ticular system or hardware constraints? Latency? Throughput?

In this thesis, we are interested in a specific model of concurrency, namely, Kahn pro-
cess networks, and its parallel implementation on modern shared-memory architectures.
Kahn process networks expose concurrency to the programmer through a simple arrange-
ment of sequential processes and single-producer single-consumer channels. In a sense,
they share much in common with the popular task-based paradigm, mostly found in
performance-oriented applications such as numerical computations [Buttari et al., 2009],
and supported by mainstream solutions such as OpenMP. They also feature an innate
notion of streaming, through their channels, which appears to be a promising direction
for performance-minded parallelism. At the same time, the model has seen indirect uses
in embedded systems in the form of synchronous data-flow languages such as Lustre
[Caspi et al., 1987]. We believe these characteristics make for a good candidate to a
new experimental implementation: well-understood and exhibiting known use cases, yet
offering a little something more in the way of perspectives.

The focus is on the implementation aspects. We target a simple generic multi-threaded
system with shared memory and very basic synchronization capabilities, which may
equally represent a full-fledged multi-tasking operating system, or a bare-bone multi-
core machine. Of particular importance to our study are two parameters: lock freedom,
and relaxed memory. The former dictates what can be expected of the low-level thread
scheduling; the latter concerns synchronization through shared memory. Research into
a reasonably fast and practical lock-free implementation ties both into concerns of con-
trolled resource consumption (time and memory), which are linked to embedded-system
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uses, and reliable performance on current and future platforms with unfair or skewed
scheduling (e.g., virtual machines, or GPUs). Our work with relaxed memory models
complements this more theoretical approach by offering a window into realistic shared-
memory architectures of today.

Our main contributions are:

• A lock-free disjoint-access-parallel algorithm for the interpretation of Kahn process
networks, which allows multiple threads to work on and communicate with a shared
Kahn process network. It is lock-free in the sense that threads are always able to
assist each other in evaluating any Kahn process, such that, at any one time, no
more than one executing thread is necessary to make progress (i.e., produce output
from the process network), provided enough external input is available from the
environment. In particular, delayed threads are able to rejoin the fray regardless
of how long they have been asleep and what information they might have missed,
including communications with the environment. It is parallel on disjoint accesses,
meaning that threads working on disjoint parts of the Kahn process graph do not
interfere.

To the extent of our knowledge, the interpreter is the first lock-free object of its
kind, both in terms of size and the abstraction it provides: we offer a non-blocking
progress guarantee at the system level, while implementing higher-level blocking
communication for Kahn processes themselves.

• A high-performance, but not lock-free, spin-off of our Kahn process network imple-
mentation. This version is fully implemented and tested as a C11 library. It comes
with specially tailored parallelizations of a couple linear algebra algorithms, and
experimental results, which demonstrate performance on par with—and sometimes
better than—state-of-the-art specialized implementations such as Intel MKL and
PLASMA.

• A complete linearizability study of the lock-free algorithm under standard sequen-
tially consistent, i.e., interleaving, rules, as well as further analyses of select parts
of both the lock-free and performance-oriented implementations in the C11 re-
laxed memory model. This includes detailed proofs of two basic algorithms: the
Chase–Lev work-stealing deque, and a caching variation of a single-producer single-
consumer ring buffer.

It is worth mentioning that our approach assumes very little about the host platform.
In particular, we do not depend on automatic garbage collection. In the case of the lock-
free algorithm, the code is explicitly integrated with a lock-free memory reclamation
system (based on either reference counters or hazard pointers). As such, it is safe to use
in an environment with finite memory (sufficient for the execution of the process networks
of interest) and maintains strong resource-usage guarantees: it incurs no additional delays,
and, in the worst case, only leaks a bounded amount of memory.

This dissertation is organized as follows. In Chapter 2, we explain the necessary tech-
nical background related to concurrent and lock-free programming techniques. We first
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CHAPTER 1. INTRODUCTION

describe basic assumptions about the implementation environment and review definitions
of fundamental concepts such as linearizability and lock freedom. We then introduce sev-
eral programming patterns. Chapters 3 and 4 present our contributions. Chapter 3 starts
with a description of Kahn process networks, then dives into the main lock-free Kahn pro-
cess network algorithm. We take a bottom-up approach, by building progressively larger
linearizable components on top of each other. Finally, Chapter 4 deals with practical
issues of process scheduling and relaxation in the C11 memory model (proof techniques
and performance). It closes with a discussion of the performance-oriented blocking im-
plementation and accompanying applications.
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Chapter 2

Introduction to lock freedom

Before we delve into the Kahn-specific bits of our work, let us first reflect on the funda-
mental topic of non-blocking concurrent programming. To those new to it, this chapter
may act as an introductory text; to others, it should serve to clarify what precise flavor of
lock-free algorithms is developed in the rest of this work. Throughout, we aim to provide
the reader with the same insight that has guided us through our journey into the world
of lock freedom.

Sections 2.1 to 2.3 review the concurrent properties of the language our algorithms
are written in, as well as essential concepts such as linearizability. Sections 2.4 and 2.5,
describe some traditional generic lock-free techniques based on pointers and arrays, which
form the foundations for the data structures presented in later chapters. Finally, in Sec-
tions 2.6 to 2.8, we address the question of explicit memory management, which is central
in non-blocking systems such as ours, which do without automatic garbage collection.

2.1 Sequential consistency, lock freedom and linearizability

In this document, algorithms are written in a C-like imperative language, with integers
and pointers (including basic pointer arithmetics), but excluding any non-local control
structures (e.g., setjmp). We add a few convenience features—such as tuples and basic
type inference—which are explained on first use and should be quite intuitive regardless.
Sequential programs written in this language behave as would their C counterparts.

We showcase these different syntactic elements through the simple example in Fig-
ure 2.1 of a ring buffer. Notice the var keyword, under pop, used to declare variables
whose type can be infered from the right-hand side of an assignment—this is similar to
the auto keyword in C++11 or the var keyword in C#. Also, we repurpose the comma
separator to declare, construct, and match tuples, as seen in the return type of the same
function, akin to its role in the Go language.

We now consider concurrent programs made of several sequential threads of execu-
tion. As usual, each thread is simply a subprogram written in the sequential fragment.
Threads may communicate only through shared memory. Global variables not declared
with the thread_local specifier, as well as regions allocated through the system allocator
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// At this stage, let us not concern ourselves with integer wrap-around.
int front := 0;
int back := 0;
int data[L];

1 bool push(int x)
2 {
3 if (back − front = L − 1)
4 return false;
5 data[back % L] := x;
6 ++back;
7 return true;
8 }

1 (bool, int) pop()
2 {
3 if (back = front)
4 return false, 0;
5 var x := data[front % L];
6 ++front;
7 return true, x;
8 }

Figure 2.1: Simple ring buffer
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(e.g., malloc) are considered shared. Local variables declared within functions and global
variables declared thread_local are private and inaccessible to others. In particular, we
never publich the address of a local variable to shared memory.

Threads are defined similarly to normal procedures, except with the additional thread
specifier, which makes calling such a routine spawn a thread, as shown in Figure 2.2.
Execution starts with a single thread calling the main function, as is customary in C.
Most of the time, however, we simply assume already existing threads, when there is no
risk of confusion. Each running thread has a thread identifier, which is an integer stored
in the special read-only variable threadid. In certain algorithms, we further assume a
bounded maximal number of threads THREAD_MAX. Those are usually lower-level
algorithms designed to synchronize between hardware processors, which normally come
in fixed numbers.

The above notion of thread is intentionally very bare bone. Most importantly, threads
start only as a result of being invoked explicitly from another piece of code, and con-
trol flow within each thread is purely sequential. There is no supervision, no clocks, no
interrupts or other forced context switches, no signals or system-wide barriers.

We assume the semantics of a multi-threaded program is sequentially consistent,
as originally defined by Lamport [1977]: it is given by interleaving. That is, execution may
alternate between threads, one instruction at a time—control structures such as loops and
conditionals are unrolled appropriately. It never stops midway, meaning instructions are
atomic. And at any point in time, every changes to the shared memory made by previous
statements, whether they are from the same thread or a different one, are immediately
apparent to all further statements. Conversely, the order between operations that do not
affect shared memory does not matter as far as the observable shared state is concerned.
To sum up, any execution of the system is equivalent to a sequence of instructions taken
from the various threads, which is compatible with the local orderings from the threads
from which they originate.

In our simple buffer example, it was shown by Lamport that the code of Figure 2.1
does not need any particular adjustment to work under sequential consistency, and is
thus identical to its sequential version. The only difference is in its usage: instead of a
single sequence of push and pop operations, we have two distinct threads, the producer
and the consumer. They take on exclusive roles, as one inserts new data into the queue,
and the other retrieves it.

2.1.1 What is lock freedom?

In a sequentially consistent world, each possible execution of a concurrent program can be
described by a specific interleaving, which is a sequence of scheduler choices, or schedule.
More precisely, a schedule is a finite or infinite word over the set of threads (denoted
by their identifiers). For example, going back to the Lamport queue, if we note P the
producer thread and C the consumer thread, CCCPCP represents the execution in which
the consumer is allowed three steps, followed by one step from the producer, and again
one step from the consumer and another by the producer. With every choice in a given
schedule, we associate the action taken by the corresponding step in the chosen thread.
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1 thread void producer()
2 {
3 for (;;) {
4 // Get some value to push.
5 var x := input();
6 while (not push(x))
7 continue;
8 }
9 }

1 thread void consumer()
2 {
3 for (;;) {
4 bool ok;
5 int x;
6 do
7 ok, x := pop();
8 while (not ok);
9 // Do something with x.
10 output(x);
11 }
12 }

1 int main()
2 {
3 producer();
4 consumer();
5 return 0;
6 }

Figure 2.2: Producer and consumer for the simple queue

8



CHAPTER 2. INTRODUCTION TO LOCK FREEDOM

This defines a total order over actions taken during an execution, named happens-
before; more casually, we may say that an instruction happens (or occurs) before or
after another.

Given an execution of a concurrent program, call and return actions in a same thread
work strictly in tandem: we do not allow non-local control. Following the sequential
semantics of the language, calls stack and are matched by return statements in a first-
in last-out manner; at most, there may only be as many return actions as there are
calls. A call may be unmatched if there are not enough return instructions in the given
schedule. An invocation is the interval between a call and its matching return action,
if it exists, or the end of the execution, otherwise. If the former holds, the invocation is
said to be complete; otherwise, it is incomplete.

We consider functions that operate on a same set of shared locations, such that no
other part of the program may access those locations except by calling or being called by
those functions. By convention, we refer to this entire set of variables as a concurrent
object (or simply, object), and the associated functions as its methods. Without loss of
generality, we suppose that methods of a same object behave as if they do not call each
other; internal helper procedures do not count as methods. The fact that only methods
of a certain object may operate (perhaps indirectly) on its contents is known as non-
interference, and is a prerequisite for the proper operation of every algorithm presented
in this chapter and beyond.

Note that some objects can be part of larger objects, eventually making up the entire
program, if we want. This simply provides us with a notion of scope to work with.

We further restrict our study to concurrent objects that contain no input or output
actions (e.g., calls to stdio functions), and whose sole means of communication is therefore
shared memory.

An object is non-blocking, or lock-free, if: for every permissible schedule γ, if γ is
infinite and contains an unmatched invocation of some object method, then γ contains
an infinite number of complete method invocations.

If we break down the definition into alternatives, equivalently, γ must verify at least
one of the following propositions:

• γ is finite;

• γ contains only complete invocations of the object methods;

• or γ contains an infinite number of complete invocations of the object methods.

Intuitively, a non-blocking object always guarantees that if its methods run long
enough (γ does not end abruptly in the middle of some invocations), some instance will
eventually return. In other words, lock freedom ensures progress (in the form of method
completion), even in the presence of arbitrarily unfair scheduling choices, reflected
in the quantification over all possible schedules.

As a side remark, according to this, all programs that eventually make progress in a
bounded number of steps from any configuration are considered lock-free. This includes
algorithms that do not exhibit a constant, state-independent, limit on such bounds.
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Note also that if we removed the third alternative from the above list, we would require
that all invocations complete. This stronger condition is known as wait freedom.

In the previous queue example, neither the push nor the pop methods contains any
kind of looping construct, so the procedures cannot block. Therefore, Lamport’s queue
is lock-free (actually, wait-free).

It is useful, however, to pause for an instant and ask ourselves what “lock-free” means,
precisely, for a single-producer single-consumer ring buffer. What about the cases where
the queue is full or empty, thus triggering a false return from either operation? To begin
with, the two threads perform asymmetrical work: one produces values while the other
one consumes them. This brings about a fundamental, and general, point: can a system
that performs heterogeneous computations on its different threads ever be non-blocking?
Will the failure of one thread not inevitably deprive the whole of one essential part of
the calculation? In the case of our producer–consumer pair, if either one halts, the other
is left hanging with either an empty or a full buffer.

Yet, looking at the sample code in Figure 2.1 and our previous definitions, all condi-
tions appear to be satisfied. This apparent contradiction arises because of an important
notion, which is clearly illustrated on this simple example: scope. In other words, lock
freedom depends on what object and methods we consider. We have chosen to make
both push and pop return, regardless of whether they succeed in adding or removing an
element at all. Thus, there is a bounded number of steps between the beginning and the
end of any invocation, making the system wait-free, hence lock-free.

While all this might seem bizarre at first, we should remember that the object of
interest is the shared ring buffer, not the computation as a whole. And indeed, the
push and pop methods are non-blocking with respect to each other, and for the progress
criterion chosen, which accounts for failures due to full or empty buffers, which are treated
as out of scope, and thus discounted.

If instead we write the pop function as in Figure 2.3, with a loop instead of the
conditional, on line 3, then, according to our definition, this object is blocking, since the
consumer can starve in the loop, waiting for a halted producer. We can, however, agree
that both versions could be considered single-producer single-consumer queues, albeit
with different interfaces. In general, lock freedom is a relative criterion, and it is up to
the us, the programmers, to come up with reasonable and useful specifications for our
non-blocking objects and methods.

2.1.2 Object specifications

In the above definition of lock freedom, we quantify over all permissible executions.
This brings the question of how a concurrent object ought to be used by some client
code. Concretely, each object has an associated predicate that filters allowed executions.
Naturally, adding more restrictions to the filter gives us more hypotheses to work with,
but also makes life harder for clients. Depending on the kind of properties that we wish
to describe, different methods exist.

In our single-producer single-consumer queue example, the contract deals with own-
ership and exclusion: there may only be a single consumer and a single producer at any
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1 int pop()
2 {
3 while (back = front)
4 continue;
5 var x := data[front % L];
6 ++front;
7 return x;
8 }

Figure 2.3: Blocking pop

one time. In other words, the client must ensure that invocations of each method are
non-overlapping and totally ordered. In a more formal setting, concurrent program logics
offer tools to express this kind of conditions accurately. For example, any framework de-
scended from the concurrent separation logic of O’Hearn [2007] should be able to handle
such constraints quite easily, through the use of some form of permissions or another.

For many concurrent objects, the protocol imposed on clients rarely exceeds such
simple exclusion property. In fact, a large number of data structures, including most
specifications of dynamic sets such as lists or maps, allow their methods to be called in
any order, anytime. For our purpose, we keep to simple informally written predicates to
describe client obligations.

Aside from requirements on the part of the client, an object also usually offers guar-
antees about the expected behavior of the data structure interface when used correctly.
It might seem strange to ask ourselves how to express what our code does, when the
code itself already has an attached semantics. However, given the complex nature of con-
current algorithms and the multitude of implementations, it should come as no surprise
that people have come up with more abstract ways to specify their behaviors.

2.1.3 Linearizability

In sequential consistency, undeniably, the most popular abstraction criterion is lineariz-
ability, as defined by Herlihy and Wing [1987]. The ultimate goal is to relate the semantics
of a concrete concurrent implementation to a sequential specification where method invo-
cations from the client occur exclusively one after another—as if the methods themselves
never call each other.

Therefore, we start with a sequential version of our data structure, that exposes
the same methods. What is important here is not how it works, but rather what can be
observed from the outside, by calling said methods and reading their return values. Notice
that, again, we do not allow or consider more advanced sequential control structures, such
as non-local exits.

There are several ways to formalize these observations: any relation that describes
allowed (or forbidden) call and return sequences constitutes a valid specification. For
example, we could simply state: the single-producer single-consumer queue allows pop to

11



2.1. SEQUENTIAL CONSISTENCY, LOCK FREEDOM AND LINEARIZABILITY

successfully return a value only after matching a push call.
Linearizability, however, offers a more systematic approach. Informally, linearizability,

with respect to a given sequential specification, is the property of a concurrent object to
behave as if calls to its methods were performed atomically in a sequence compatible with
said specification. There are two commonly found, equivalent, definitions of linearizability.

2.1.3.1 First definition of linearizability

The first characterization is adapted directly from Herlihy and Wing [1987] with only a
few alterations to suit the above notion of execution.

We start with a few definitions. A history is a sequence of method call and return ac-
tions. Each such action is labeled with a thread identifier, an object, method name, argu-
ments and return values. Those call and return actions can be matched or unmatched and
make up invocations as defined in the previous subsection. Again, same-object method
invocations do not nest sequentially. Given a history H, we note complete(H) its restric-
tion to actions that form complete invocations, i.e., matching call and return actions.

A history is sequential if it is a sequence of consecutive matching pairs of call—return
actions, except for the last call, which may be unmatched. A sequential specification is a
set of legal sequential histories. If a history is not sequential, it is concurrent. We can
extract a concurrent history for a given set of objects from any execution.

We say that a concurrent object is linearizable to a sequential specification if, for
every permissible execution, the extracted history H can be extended to (is a prefix of)
some history H ′ such that:

• complete(H ′) is a permutation of some legal sequential history S;

• and if a return action precedes a call action in H ′, it also does in S.

Let us take a step back to look at what the sequential history S, which we call the
linearization of H, means for the client, and how it can be considered equivalent.

The extension to H ′ and restriction to complete(H) work in tandem. They govern
what we do with unmatched calls in the original execution. Although the completion of
those invocations has yet to be observed (they have yet to return), the effects of some
of them may already be observable through shared memory. Therefore, we allow the
extended history H ′ to treat them as if they had completed. Conversely, we want to
treat those invocations that have not taken effect yet as if they had not started at all,
hence complete(H ′).

Along with the fist condition listed, this tells us that no matter what actually happens
inside the procedures, our implementation behaves as if it were an interleaving not of
singular instructions, but of whole method invocations.

The second requirement can be justified by acknowledging that the client code may
enforce a specific ordering between invocations. While it has no control over the control
flow when execution is inside a method, it may very well constrain a specific instance to
finish (return) before another begins (call).

12
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oo //•2 oo

oo //•4

oo //•1 oo •3

Figure 2.4: Linearization points

Note that shuffling around actions from a same thread is forbidden by virtue of
their already being perfectly alternating call–return pairs. They therefore enforce a local
return-before-call ordering between all the pairs. Thus, locally, each thread observes the
same sequence of calls and returns in both the sequential and concurrent histories. Those
calls are then reordered on the global timeline according to the rules above to produce a
meaningful succession of states that can be explained by the sequential specification.

2.1.3.2 Second definition of linearizability

There is another common way to define linearizability, introduced as a lemma in [Herlihy
and Wing, 1987]. We remark that to get a sequential history, first, it is necessary to
group all matching call and return actions to form consecutive pairs. Then, those pairs
are moved around under the constraint that returns that precede calls in the original
history remain in that order in the permuted result. If we represent time as a line and
method invocations as segments on that line, then each segment is transformed into
a dot representing the resulting pair. The return-before-call rule now states that non-
overlapping segments stay in the same order. Equivalently, the two statements taken
together can be summed up by choosing, for each segment, one point to represent it from
the segment itself. Every complete invocation must include one such point; incomplete
invocations may or may not do so (depending on whether they are appended by H ′ or
excluded by complete(H ′)). The order of the points is the linearization.

Figure 2.4 illustrates this approach. For every complete invocation segment as well
as one incomplete segment, we have chosen a point. The order of those points (denoted
in superscript) yields a sequential history—which still needs to be proven correct with
respect to the specification. Notice that the third call has yet to return (the arrow does
not finish on the right), yet linearizes before the fourth, whose return has been observed
already, while the upper-right unmatched call does not have an associated point and is
totally absent from the linearization.

It is easy to see that this arrangement meets all the conditions, in particular, since
a point on a segment never gets placed after another on a disjoint following segment.
To convince ourselves that the other way around also works, consider a linearization
obtained under the above definition. We begin with the segments from the concurrent
history. Suppose actions (segment ends) lies on unit positions and no two actions share
a position (since they are strictly ordered according to sequential consistency). We note
segments [ai; bi[, where the subscript i follows the order of the corresponding invocations

13
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in the sequential history.
For the first pair of the sequence, we pick its representative point from the corre-

sponding segment [a0; b0[. Let us call x0 = a0 its position on the line.
Suppose that at rank n, points x0, . . . , xn−1 have been assigned from the sequential

history, that they all lie on their respective segments, and that one of those segments,
[ai; bi[, is such that xn−1 − ai ≤

∑n
k=1

1
2k

with xn−1 not an integer.
For the following pair, with segment [an; bn[, we choose the point whose position is

xn = max(xn−1 + 1
2n+1 , an). If xn−1 < an, the point lies exactly at the beginning of

the segment. Otherwise, there exists a previous segment whose lower end ai satisfies
xn−1 − ai ≤

∑n
k=1

1
2k

(by induction) and ai 6= bn (by definition). Since pair i in the
sequential history appears before pair n, it must be that segment i does not start after
segment n; else, they would be disjoint, and their order would have to be preserved by
the reordering. Thus, ai < bn, and ai < xn−1 +

1
2n+1 ≤ xn = ai+

∑n+1
k=1

1
2k
< ai+1 ≤ bn.

The new point lies on its segment. We verify that xn ≤ ai +
∑n+1

k=1
1
2k
.

We have thus shown that a possible way to create compatible sequential histories is
to assign to each invocation (at most) one point in time that lies its lifetime—between
its beginning call and return instructions. This construction actually provides a second
interpretation of linearizability: an object is linearizable if all its methods have an effect
point (or linearization point) during each invocation where they can be considered
to occur atomically, and the sequence of such points is compatible with the sequential
specification.

For most purposes, this characterization is both easier to use1 and simpler to under-
stand in practice: at a given instant, the effects of any invocation whose linearization
point comes before are fully seen; any point that comes after is not yet visible. It does
obscure, however, some aspects of the reasoning about which orderings in the original
concurrent history are important and must stay intact, and which can be broken or
modified.

2.1.4 Linearizability of the simple queue

As an example, let us reexamine our single-producer single-consumer queue for clues
about linearizability. As is often the case with basic data structures, the sequential se-
mantics are directly provided by the sequential ring buffer. Its abstract state is therefore
a list of current values v, to which we add two (unbounded) integers f and b that keep
track of how many successful invocations (that return true) to pop and push respectively
have been registered. The concrete state is, of course, made of the three variables front,
back, and data.

In the push method, new data is only visible once the new back index has been written.
Symmetrically, in pop, the consumption is actually signaled when front is increased.
In failing invocations, the linearization point can be taken as the first test, where the

1Using the effect points to enact proofs of linearizability only works reasonably if the points are mostly
constant for each method; if every invocation requires a different linearization point, it essentially boils
down to direct construction of histories.
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opposite index is checked.2 Although they do not contribute any changes to the data
structure, a suitable instruction must be chosen in accordance with other effect points
so as to build a permissible sequential history.

We now consider a modified abstract machine that keeps track of the abstract state
as well as the normal shared variables. The concrete state of the program is updated by
each instruction, according to the usual semantics. The abstract state, on the other hand,
only changes at linearization points. If the attempted operation is not valid according to
the specification, the machine halts with a simulation error.

Our goal is to show that given any concurrent history valid on the normal machine,
the same history can be reproduced on the augmented machine without simulation error.
To that end, we define an invariant over both concrete and abstract states:

0 ≤ front < L ∧ f ≡ front mod L ∧
0 ≤ back < L ∧ b ≡ back mod L ∧

0 ≤ b− f < L ∧
data[f . . . b− 1] = v

Where data[f . . . b− 1] is defined as a word over the element type T such that:

data[front] . . . data[back− 1] if front ≤ back

data[front] . . . data[L− 1]data[0] . . . data[back− 1] if front > back

Notice that |v| = b−f and v is empty when b = f and full when b = f+L. By definition,
b is incremented by one when a successful push linearizes; similarly for f on a successful
pop. Trivially, both b and f monotonically increase.

Furthermore, we recall that invocations of push are exclusive; same for pop. Therefore,
between two instructions of push (resp. pop) only statements from pop (resp. push) may
occur. Thus, b (resp. f) is invariable in between push (resp. pop) statements. The same
argument can be made about concrete variables.

It remains to be shown that every statement maintains the invariant. In particular,
we need to prove that given the invariant on input, linearization points both preserve it
and allow for a sensible operation on the abstract value.

• Local computation and control statements (e.g., call, return) do not modify the
global state. Neither do read instructions.

• However, the first test in either method is a linearization point for failed invocations,
which return false. According to the invariant, v is empty exactly if b = f , hence
back = front, and full exactly if b = f + L, hence back − front ≡ L − 1 mod L.
Thus the return actions follow the specification.

• The stores to data and back are part of a successful invocation of push, as depicted
in Figure 2.5. We note xi the value of variable x right before line i.

2Note that the order in which the variables are read is not significant as one of them is exclusively
written by the current thread.
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1 assert back − front 6= L − 1;
2 data[back % L] := x;
3 ++back;
4 return true;

Figure 2.5: Events in a successful invocation of push

1 assert back 6= front;
2 x := data[front % L];
3 ++front;
4 return true, x;

Figure 2.6: Events in a successful invocation of pop

– On line 1, we have b2 = b1 and f2 ≥ f1. Therefore, b2 − f2 ≤ b1 − f1 < L− 1
and the store at index back does not override any value present in v2.

– On line 3, we have data[back3] = data[back2] = x and, as above, b3 − f3 ≤
b1−f1 < L−1. After the increment to back, b−f = b3+1−f3 ≤ b1+1−f1 <
L, and the sequence data[f . . . b − 1] is extended with the new element at
data[back3] = x. At the same time, the abstract value registers the effect of
push(x) and becomes vx, which matches.

• Similarly, the load from data and store to front are part of a successful invocation
of pop, as seen in Figure 2.6.

– On line 2, we have f2 = f1 and b2 ≥ b1. Therefore, b2− f2 > 0 and data[front]
is the first element of data[f . . . b− 1], hence the first element of v.

– On line 3, we still have f3 = f1 and b3 ≥ b1, hence b3 − f3 > 0. After
incrementing front, the sequence data[f . . . b − 1] loses its first element, as
does the abstract value v upon registering the successful pop.

– On line 4, we finally return the value read earlier, which matches the expected
semantics of pop effected on line 3.

We conclude that the invariant is preserved, v has a legal value at all times, and both
methods return expected results with regard to the abstract value at their point of effect.
Thus, our simple queue is linearizable to a sequential bounded ring buffer.

2.1.5 Breaking down the linearizability of the simple queue

The fundamental strategy behind the proof above is the superposition of an abstract
object on top of the implementation, similar to what is used by Herlihy and Wing [1987].
As usual in algorithmic reasoning (usually under the guise of invariant strengthening or
similar terms), the added variables must not only account for the desired semantics, but
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also any intermediate properties necessary to the invariant. In the above development,
we do not strictly need the f and b abstract indices to describe the sequential queue, but
they help write a stricter invariant (b− f < L) than would have otherwise been possible
with just front and back.

The rest of the technical analyses follows methods borrowed more from the realm of
weak memory models. Namely, we construct action structures3: sequences of instructions
that match some specific scenario (e.g., a successful invocation of push). These let us
derive arguments by exploiting local information (e.g., from prior branches).

As can be seen through this example, proofs of correctness are often quite involved,
even for very simple algorithms.4 Other data structures visited in this chapter are not
systematically examined. We mostly keep to simple semi-formal arguments about states
and sequences, where appropriate, and instead concentrate on more specific questions
regarding the design and implementation of lock-free systems.

2.2 Reading from and writing to shared memory

In the previous section, we have worked with the usual imperative instruction set. In
particular, memory was accessed as we would have normal variables in a sequential
program. We now make explicit three additional constraints that will become necessary
in our future analyses:

1. each statement may only contain one reference to some shared object;

2. if the reference is on the left-hand side of an assignment, then it is the entire left-
hand side (i.e., it is not merely used to compute the address where the value should
be written).

An assignment with a shared left-hand side is a store instruction; otherwise, the
reference is read and corresponds to a load instruction.

In effect, we are disallowing—for now—complex atomic operations that affect multiple
memory locations at the same time. This essentially leaves just instructions that map to
register–memory operations in hardware.

While those simple load and store instructions are sufficient to build basic concurrent
data structures with a limited notion of lock freedom—as in the case of Lamport’s simple
queue, many non-blocking algorithms require more powerful shared-memory primitives,
such as the ones we introduce below.

2.2.1 Limitations of load and store instructions

Simple load and store instructions are insufficient for most lock-free algorithms. At the
core of the problem lies the notion of atomicity: a statement is atomic if it is either fully

3As is frequently done for recent axiomatic memory models such as C11, for example in Batty et al.
[2013].

4Although some, such as O’Hearn et al. [2010], have noted that sometimes more complex algorithms
do not necessarily translate into more complex proofs of linearizability.
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executed, or not at all. According to the sequentially consistent model described above, all
statements are always atomic: the full value of a variable is read on a load, and its entire
location is overwritten on a store. We could imagine other execution hypotheses, where
objects could be read or written partially (in groups of lower–higher bits, for example),
but we postpone such discussions, for the time being, to concentrate on a larger problem.

Even so, this guarantee is usually too weak. It is often the case that we want to read
a variable in order to update its value. Take, for example, the simple counter: an object
that linearizes to an integer with a single increment operation, whose purpose is to add
one to its value and return the previously stored one (see Figure 2.7). The use cases are
many: assigning an order of passage to some clients, counting occurrences of some events,
etc.

The code in Figure 2.7 performs fine in a sequential environment; however, if we tried
to run it from multiple threads, we might notice that values would be repeated from
time to time. This anomaly stems from the fact that the first two instructions within
increment, when taken together, are not atomic. Therefore, two concurrent threads could
start both reading the same value n, only to both assign the same value back to counter,
hence a duplicated return value.

Unfortunately, there is no way to write such a counter using only load and store
instructions while retaining the desirable non-blocking property.

2.2.2 There is no non-blocking load–store counter

It is known since Herlihy [1988] that a wait-free counter using only load and store in-
structions does not exist. Below, we provide a retelling of this story, featuring a lock-free
counter in our imperative model. Doing so also serves to introduce some proof techniques
that will come in handy later on.

Imagine we have a counter data structure, written in our simple concurrent language.
It has some shared variables, starting in a well-known initial state, and exposes a single
method: increment. From there, suppose that we are in total control of the scheduler and
want to find issues with the algorithm. Let us show that if it satisfies the above counter
interface and uses only load and store instructions, then it cannot be lock-free.

Note that the code can be as sophisticated as we want. However, as stated in Sec-
tion 2.1.1, we disallow explicit input and output from within concurrent objects. In this
case, since increment receives no arguments, it does not have access to any source of
information aside from what it has itself written to shared memory from previous invo-
cations. In particular, it cannot rely on external oracles. This is important, in general,
in lock-free programming: if there exists some mechanism that allows us to observe (or
better yet, control) the scheduler itself, then different, often more lightweight, strategies
are possible. Those techniques are mostly outside the scope of this chapter, as they deal
with an entirely different fault model; however, for some examples of what can be done
in the presence of stronger scheduler constraints, see Section 2.6.1.

That being said, our goal is now to craft a scheduling sequence involving concurrent
calls to increment such that either two or more instances return the same value (which
violates the interface contract), or the sequence is infinite without any call returning
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// Again, we do not bother with wrap-around.
int counter := 0;

1 // Sequential semantics of the counter.
2 int increment()
3 {
4 int n := counter;
5 counter := n + 1;
6 return n;
7 }

1 thread void counting()
2 {
3 for (;;) {
4 // Do something interesting.
5 ...
6 int x := counter();
7 // We want to count the number of times something interesting
8 // was done, with a margin of error up to F , where F is
9 // the number of thread faults.
10 output(x);
11 }
12 }

Figure 2.7: Sequential counter
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(which violates lock freedom). In order to linearize to a counter, the code must satisfy
some basic semantic properties:5

• from the initial state, if a thread executes a call to increment uninterrupted (it is
the only thread schedule throughout the invocation), then the method returns the
initial value (0);

• from the initial state, if two threads both call increment concurrently, one ends up
acquiring 0 and the other one gets 1.

We consider a system with two threads T and T ′ and an initial sequence of instructions
I as they are scheduled from either thread. For example, I = TTT ′ would mean: evaluate
two statements from T followed by one from T ′. Throughout the proof, we strive to
maintain the invariant that in state I (i.e., after executing the instructions from I), any
single thread that runs uninterrupted should have increment return the same value f(I).
We start with I = ε, the empty sequence.

We now define the integer c(T, T ′, I), as follows. Informally, c(T, T ′, I) is the number
of consecutive steps that can be taken by T in the state I without acquiring f(I).

More formally, consider the following setup. After the initial scheduling sequence I,
we first let T run while T ′ sleeps, until it returns from its first call to increment, with
value f(I), after executing n statements. We then carry out the experiment again, except,
this time, we stop after n− 1 instructions in T , and switch to T ′ until increment returns
in T ′. Either the call in T ′ returns f(I) or it returns ¬f(I). If it returns f(I), we can
repeat this process again and again until we determine at which step c(T, T ′, I) < n we
assign f(I) to T ′ instead of T . We can therefore define c(T, T ′, I) as the highest value
such that IT c(T,T ′,I)T ′ yields f(I) for T ′.

Note that c(T, T ′, I) ≥ 0 by definition of I, and c(T, T ′, I) = n is impossible, else T
could return from increment without interference (because of lock freedom), thus netting
f(I). This would result in a duplicate value if followed by T ′ also returning f(I).

Statement c(T, T ′, I) in T , counting from zero after the initial sequence I, must be a
store instruction to a shared variable. Otherwise, we could have stopped after c(T, T ′, I)+
1, as the shared state at c(T, T ′, I) and c(T, T ′, I) + 1 would be indistinguishable.

We now enumerate the different scenarios governing the value of c(T, T ′, I) and
c(T ′, T, I). We show that in all cases, it is possible to construct a longer prefix I that
brings us back to our initial hypothesis, thus creating an infinite schedule, which contra-
dicts lock freedom.

• If c(T, T ′, I) 6= 0, then the execution IT c(T,T
′,I) satisfies our invariant: whichever

of T or T ′ runs first after that segment gets f(I).

• Symmetrically, if c(T ′, T, I) 6= 0, we can take the sequence IT ′c(T,T ′,I).

• Suppose both c(T, T ′, I) = 0 and c(T ′, T, I) = 0, meaning whoever starts running
always gets assigned f(I). This implies that the first statements after I in both T

5This is in fact a reformulation of the classic two-thread consensus problem by Herlihy.
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and T ′ are store instructions. Either they both write to the same location, or they
write to different shared variables.

– If they target different locations, then it makes no difference whether T or T ′

runs first. Executing ITT ′T . . . is the same as IT ′T . . . and IT ′TT ′ . . . is the
same as ITT ′ . . .. Therefore, we can append TT ′ to I and start over with a
reversed scenario, where the first to run gets the complementary value ¬f(I).

– If they target the same location, then ITT ′ is equivalent to IT ′ as the value
gets immediately overwritten. This in turn implies c(T, T ′, I) ≥ 1, which con-
tradicts c(T, T ′, I) = 0.

In all cases, we can extend I by a strictly positive number of instructions, and repeat
the process indefinitely. Thus, we have built an infinite scheduling sequence that sees
neither thread returning from its method invocation. It is what we call a livelock and
precludes lock freedom, as no thread in the system makes any progress.

2.2.3 Explaining the impossibility of a load–store counter

The above proof might appear abstract and daunting at first, so let us take a couple of
paragraphs to explain where the intuition lies, and look at some alternative algorithms.
Starting from the conclusion, we have a statement of incompatibility. It is not possible
to combine three criteria:

1. upholding the counting semantics;

2. having only load and store instructions in our arsenal;

3. while remaining non-blocking.

2.2.3.1 Counter semantics

If the first condition can be relaxed, it is possible to devise lock-free algorithms for some
simpler tasks. For example, we could imagine partitioning the integers into subsets, one
for each thread. This would work for assigning unique identifiers (e.g., by giving all even
numbers to T and odd numbers to T ′), but would not serve the purpose of counting, as
an unbalanced work load or scheduling (e.g., one thread is consistently faster than the
others) would produce glaring results, with high and low values, and many unclaimed
positions in between. Following the reasoning of the previous subsection, we notice that
this alternative algorithm does not satisfy the most basic assumption, that in the initial
state (I = ε), running either thread yields the same value f(I) = 0. Thus, the proof does
not prooceed—it does not, in fact, even start.

We should not be hasty in dismissing this mechanism as mere sleight of hand. We
could be tempted to exclaim: “Of course, if threads do not access the same memory
locations, then everything is lock-free!” This is indeed the nature of such an algorithm.
However, it is an important idea. Generally speaking, whenever we have only load and
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store operations at our disposal, we want to create a partition of memory, such that each
thread gets assigned its own disjoint area to oversee. Unfortunately, as we will soon realize
more fully, this comes at cost of much wasted memory, especially should a scheduling
fault occur.

2.2.3.2 Only load and store instructions

The second constraint can be improved upon by including more powerful primitives, as
we will see in the rest of this chapter.

But for the time being, let us first observe that it is impossible to write such an
algorithm without any load instruction. Intuitively, if increment reads no value from
shared memory, then it will always return the same sequence. This corresponds to the
c(T, T ′, I) = 0 and c(T ′, T, I) = 0 case of the proof, where both sequences start with a
store instruction. Essentially, if these are the only statements in our method, either it
never returns (first subcase), or it will end with duplicate values (second subcase), which
matches our intuitive prediction.

If load instructions are included, then it actually makes the proof easier, as illustrated
by the first two branches, when c(T, T ′, I) 6= 0 or c(T ′, T, I) 6= 0. Since load statements
do not modify the shared state, an adversarial scheduler can always choose to schedule
those without affecting the outcome of any concurrent programs that might run just after
them. Those programs have no way of even knowing whether any pure read instruction
has been occurred.

But, concretely, what would happen in an actual algorithm? In practice, the concur-
rent program needs to account for the possibility of another thread having run in the
time between its last instruction and the one it is about to execute. We could see it as
a kind of election where the participants are threads. The threads attempt to elect who
is going to get the right to some resource (here, the value f(I)). They exchange votes
by means of store (casting a vote) and load (acknowledging a vote) instructions. In a
lock-free algorithm, indefinite waiting is prohibited, as if the waiting thread happens to
also be the last one alive, no progress is made. Thus even if both candidates agree on who
gets f(I) first, they can only ever strike conditional contracts. T might agree to let T ′

have the option of claiming f(I) until a certain date, measured in terms of instructions,
so as to satisfy lock freedom requirements. An evil omniscient scheduler can easily see
through such a scheme and always choose to run T until its patience is exhausted, so
that nobody can ever successfully exercise its option on the shared resource. Ironically,
doing so leads to our threads failing to agree, and thus negates any lock-free claim we
might initially have had.

2.2.3.3 Lock freedom

Indeed, abandoning lock freedom altogether leads to some interesting (blocking) algo-
rithms. Even though this introduction expressly focuses on lock freedom, it does not
hurt to examine what it is we lose and gain by temporarily lifting this restriction.
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// We still do not bother with wrap-around.
int counter := 0;
bool flags[2] := {0};
int turn := 0;

1 int increment()
2 {
3 flags[threadid] := true;
4 turn := not threadid;
5 bool f;
6 int t;
7 do {
8 f := flags[not threadid];
9 t := turn;
10 } while (f and t = not threadid);

12 int n := counter;
13 counter := n + 1;

15 flags[threadid] := false;
16 return n;
17 }

Figure 2.8: Counter with Peterson’s lock

Fundamentally, lock-based programming is all about waiting, while lock freedom is
the opposite. In a primitive sense, a lock is essentially any device that allows one or
more threads to wait for another. It is well-known that such objects can be implemented
using only load and store instructions [Dijkstra, 1965, Peterson, 1981].

Figure 2.8 shows a counter based on Peterson’s algorithm, for two threads. It works
by having each thread signal its desire to acquire exclusive use of the counter variable
by setting the corresponding slot in flags. A problem arises when both participants have
declared interest; in that case, a decision needs to be reached, with one thread yielding
to the other. This is reflected in the use of the write-shared turn variable, which can
only hold a single value at a time: the identity of the winner. By the time both threads
reach the while loop, both flags should be set, but turn is either zero or one, so exactly
one loop will exit first into the exclusive middle portion of the code, called the critical
section.

The system is not lock-free. If the scheduler decides to fault a thread within its
critical section, then its alter ego gets stuck in the while loop forever, as flags is never
again updated. Waiting in a loop such as the one in Peterson’s algorithm is usually
termed busy waiting, as the thread makes no significant action during this time; the
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bool flags[2] := {0};

1 int reserve()
2 {
3 for (;;) {
4 // First test.
5 bool f := flags[not threadid];
6 if (f)
7 return 1;
8 // Set.
9 flags[threadid] := true;
10 // Second test.
11 f := flags[not threadid];
12 if (not f)
13 return 0;
14 // Reset.
15 flags[threadid] := false;
16 }
17 }

Figure 2.9: Bit reservation

loop is by extension known as a busy loop.
Another approach, as hinted at through our discussion of the load–store restriction

above, is to have some kind of repeated election until an agreement is reached. Figure 2.9
illustrates this concept. It describes a system whose purpose is to assign distinct numbers
0 or 1 to two different threads. The algorithm uses only two shared locations, in the form
of a flags array. A set flag signifies intent to take the lower value 0 by the corresponding
thread; if either thread completes a full iteration of the loop uninterrupted, then the
routines end.

To see why, let us consider the different executions of the two threads. First, we
observe that if two consecutive tests agree (they read the same value), then the method
returns. This means that if a thread is scheduled consistently long enough to perform
two consecutive tests, then its program terminates, which in turn implies the opposite
thread will get to run uninterrupted and also finish.

It remains to be proven that if they do, then the return values are distinct. The
algorithm works by guaranteeing that the two invocations of reserve never take the same
return path:

• Suppose both calls return 1. Then it must be that both first tests read true. How-
ever, one of the first tests must run first, and the one that follows will also follow
the preceding reset. Since both tests are final—they lead to returns, no further
instruction changes the value of the flag. Thus, the second first test cannot read
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true. Contradiction.

• Similarly, suppose both calls return 0. Then it must be that both second tests read
false, yet both are also ordered. As before, the one that runs second follows the set
of the opposite thread and cannot read false.

This kind of reasoning appears in many concurrent algorithms, and relies on two
interleaved pairs of two instructions each: store S followed by load L. Each load statement
reads from the opposite store location. Suppose threads T0 and T1 execute S0L0 and S1L1,
respectively. Then there are only six possible scenarios, all of which start with either S0

or S1. If one starts with S0 then L1 will occur after S0 thus cannot read a value older
than the one written by S0; symmetrically for S1 and L0. This assemblage is known
as the anti-store-buffering pattern and although its use might seem obscure at this
point—the proposed technique can often be avoided entirely in a sequentially consistent
context through an appropriate choice of invariants—we will see further along that it
becomes rather central in more relaxed memory models.

As we have mentioned, the present bit reservation routines only terminate subject to
the condition that one thread gets to run without contention long enough. The class of
algorithms that satisfy this criterion is known as obstruction-free [Herlihy et al., 2003];
as with wait freedom, precise study of obstruction-free algorithms is beyond the scope of
this document.

2.3 Read-modify-write atomic instructions

As noted above, the only way to keep both lock freedom and the exact counter semantics
is to relax the only remaining criterion: the restriction to load and store instructions.

The litterature has many examples of more complex primitive operations, but at the
most basic level, they all share a common structure: they consist in an atomic grouping
of a few simpler instructions. They are also called read-modify-write instructions,
owing to the most oft-encountered shape, which has three stages: first, a shared variable
is read, then, an operation is applied (which may involve local data and conditionals),
then the variable is updated with the new value.

A simple example of such a construct is fetch-and-add, which linearizes to a sequential
counter incrementation. In our model, it is equivalent to having the function depicted in
Figure 2.10 execute atomically.

However, in practice, fetch-and-add is rarely seen outside of specialized algorithms.
The reason for this lack of popularity is mostly the result of its being overshadowed
by another compound operation by the name of compare-and-swap (also known as
compare-and-set or compare-exchange). Both are readily available on modern hardware,
but, as noted by Herlihy [1988], fetch-and-add is strictly less powerful than compare-
and-swap, meaning some non-blocking algorithms cannot be written with fetch-and-add
that can be written with compare-and-swap.6 Figure 2.11 describes the semantics of the
latter.

6Proof of this statement is beyond the scope of this introduction.

25



2.3. READ-MODIFY-WRITE ATOMIC INSTRUCTIONS

int faa(int ∗ptr, int c)
{

int x := ∗ptr;
∗ptr := x + c;
return x + c;

}

Figure 2.10: Fetch-and-add

1 // Writes new into ptr only if its current value matches expected.
2 bool cas(int ∗ptr, int expected, int new)
3 {
4 if (∗ptr 6= expected)
5 return false;
6 ∗ptr := new;
7 return true;
8 }

Figure 2.11: Compare-and-swap

In fact, compare-and-swap is so versatile that it has become the de facto standard
building brick of virtually all non-blocking algorithms. Compared to the simple load
and store instructions that we have used up to now, it offers an atomic operation that
can both retrieve and update shared information. It should not be difficult to see why
compare-and-swap is such a powerful operation; it combines three of the most essential
actions of the abstract machine: reading, writing and branching.

2.3.1 A counter with compare-and-swap

Implementing a counter with compare-and-swap is straightforward, as can be seen in
Figure 2.12. The principle is simple: first, we read a snapshot of the value, then apply
any operations locally, and finally update the object in one shot with a single compare-
and-swap operation.

What is perhaps more interesting is the lock-free property of the increment code
presented. Indeed, contrary to previous examples, this method is not wait-free. There
is no guarantee that the loop will not go on forever, but with each additional iteration,
with each failed compare-and-swap, another thread advances, another thread succeeds in
changing the value of the counter. While each winner can easily fall prey to a maverick
scheduler just after having altered the shared value, this cannot last, and ultimately,
the surviving thread will make progress on its own, thus bounding the number of steps
required to push the system forward. This implementation is lock-free.
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int increment()
{

bool ok;
int n;
do {

n := counter;
ok := cas(&counter, n, n + 1);

} while (not ok);
return n;

}

Figure 2.12: Counter with compare-and-swap

2.4 Introducing the ABA problem: a multi-word counter?

Now that we have built a reasonable single-word counter, we might be tempted to think
that extending the feat to a multi-integer counter would be a simple matter. Imagine we
want to count over more than the size of a word—let us say a word is 32 bits, maybe we
want to be able to count up to 2128 instead.

More generally, we often find ourselves in the following scenario: we have an object
of fixed size, that corresponds to a known set of bytes, which has been decided upon
creation—or any time before any contention occurs. As usual, different configurations of
the bits signify different values. Typically, we want to write a method that appears to
atomically read the whole multi-word blob, computes a modification, and then updates
it. To sum it up, perhaps unsurprisingly, we want most operations on more complex data
structures to behave just like some sort of read-modify-write macro-instructions.

2.4.1 Partial read and write operations

The task presents many difficulties centered around the lack of multi-word primitives.
Atomic read-modify-write operations only allow us to read one word, which generally
does not reflect the overall state of the object. Moreover, since there is no instruction
that writes every word of an object at once, there will be times when the shared state
represents an operation in progress. What do we do if we read an intermediate state?
For starters, how do we even know whether what we have read is not supposed to be a
complete value? And finally, how do we manage conflicting updates?

Going back to our multi-word counter example, let us take a moment to look at
two non-working solutions. Suppose we allocate all the space to the counting itself in a
simple “pure binary” fashion: with the successive bits representing growing powers of two.
In that case, inevitably, the less significant words will need to wrap, as the higher octets
change, to represent bigger values. The lower sequence 10 appears in the representation
of both 2 and 6. We rarely think of it this way, but, after all, the less significant bit flips
once for each incrementation.

27



2.4. INTRODUCING THE ABA PROBLEM: A MULTI-WORD COUNTER?

Since we can only update one word at a time, inevitably, some instruction leaves the
counter in an intermediate state. Any thread that observes the counter value at that
time sees the transient bit pattern. For example, assuming bit-sized words, is 010 (in
binary) the number 2? Or is it a transition between 011 and 100 where the rightmost bit
was cleared first? Since every bit combination represents a valid state, it is impossible
to tell whether a state corresponds to an update in progress or a legitimate value, if we
are only allowed to read from the pure binary representation without any supplementary
information. Consequently, it appears we cannot purely rely on such a compact encoding.

The problem described here stems from a need to update multiple words atomically.
To get rid of this, we may resort to other representations, such as the reflected binary, or
Gray, code. It is true that in a Gray representation, each value differs from the previous
one by exactly one bit, which reduces the width of each macro-modification to a single
word.

Unfortunately, we still face another obstacle: the need to read multiple words in order
to decide in which state we are. Certainly, each transition requires writing exactly one
different bit, but we still have to look at the entire sequence to decide which one to
update. For example, the lower bit sequence 11 in a three-bit Gray code can belong
either to 011 (representing 2) or to 111 (representing 5). Thus, it is still necessary to look
at all the bits—hence all the words—to figure out in which state we currently reside, and
which one comes next.

Consider the following scenario. Suppose we have a way of incrementing our multi-
word Gray register. At some point, the method needs to write the new value by changing
the appropriate word in the compound while leaving all other bits unchanged. However,
we recall that given our arsenal of load, store and compare-and-swap, anything committed
to memory—by way of a store or compare-and-swap instruction—is conditional on at
most the value of a single word (in the case of compare-and-swap) or no value at all (in
the case of the simple store). Imagine that instead of changing 0001 to 0011, we instead
turn 0100 into 0110 (in binary, assuming word size is one bit). The value of the second
least significant bit is the same in both states, so one-bit compare-and-swap would know
no better. Because of lock freedom, the scheduler might decide to stop the thread right
there, thus leaving the counter with an incorrect value that will appear to every other
thread as if it were legitimate. Therefore, even in the case of such reflected coding, more
space is still required to distinguish between intermediate and complete states.

2.4.2 Compare-and-swap monotony

To give us some insight into a potential solution to the multi-word counter problem, let us
consider a non-wrapping—hence finite—counter that saturates at some maximal value.
A simple yet effective implementation of such an object uses a unary representation,
and thus requires as many bits as the value we want to count to. Its code is given in
Figure 2.13. The code is indeed naive. We might point out that since the loop index uses
a primitive integer type, our counter is no more powerful—and a lot more wasteful—than
the simple one-word counter above. However, perhaps unsurprisingly, the same technique
works where the individual word-sized pieces are not booleans but full-fledged integers
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bool counter[L] := {0};

1 // Let us not bother with how to read the value, for now. We simply
2 // return true if the operation succeeded, or false if the counter
3 // is saturated.
4 bool increment()
5 {
6 for (var i := 0; i < L; ++i) {
7 var b := counter[i];
8 if (not b) {
9 if (cas(&counter[i], false, true))
10 return true;
11 }
12 }
13 return false;
14 }

Figure 2.13: Unary counter

instead, as shown in Figure 2.14. This way, we can represent (2w − 1)L+ 1 (where w is
the width of a machine word) values with L cells.7

The basis for these implementations is a kind of word-level monotony:8 given two
counter states represented by their constituent words c = c0 . . . cL−1 and c′ = c′0 . . . c

′
L−1,

if c < c′ (we reach c′ from incrementing c), then ∀i, ci ≤ c′i. Intuitively it works by
never reusing bit patterns larger than a word in size, which eliminates the need for multi-
word—either read or write—operations. This ensures that delayed compare-and-swap
instructions are benign: if the general state has moved forward too much, then compare-
and-swap simply fails due to its old expected value, which is guaranteed never to occur
in more advanced states.

As with previous algorithms, our saturated increment method loops until it succeeds
in writing a new state computed from what it has read a few lines above. We have
extended the read-modify-write principle to multiple words, but lost the ability to wrap
around. Indeed state transitions still occur in a single (successful) compare-and-swap
statement. Resetting the counter, however, requires all the saturated words to go back
to zero for the operation to complete, with all the troubles it entails, as described above.

7Incidentally, for unrelated reasons, this kind of memory layout is reminiscent of what is done in
variable-length integer codes, such as in Huffman compression, and, to some extent, character encodings
such as UTF-8. In those codes, the purpose is to write some preferred values in less space than others. To
achieve this, while allowing decoding, no complete sequence may be a prefix of another, longer, string.
This leads to schemes where some words (or, more realistically, bit segments) never wrap around, with
higher values being preceded by a saturated prefix. In the simplest case, the result is akin to what we
have devised.

8This is a personal term and not widely used or acknowledged by the community.
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int counter[L];

1 bool increment()
2 {
3 for (var i := 0; i < L; ++i) {
4 for (;;) {
5 var x := counter[i];
6 if (x = INT_MAX)
7 break;
8 if (cas(&counter[i], x, x + 1))
9 return true;
10 }
11 }
12 return false;
13 }

Figure 2.14: Word-monotonic counter

There are many ways to get this wrong. For example, if we start by naively zeroing
words in ascending order (see Figure 2.15), a competing call might erroneously incre-
ment one of the new zeros before the wrap-around is complete, as shown in the trace in
Figure 2.16.

2.4.3 Understanding multi-word updates as a permission problem

As a matter of course, when executing any method, a thread makes various assumptions
about the object it is manipulating, starting from the preconditions to the call. This is
especially important at write statements, as any change performed is carried out on the
basis of those assumptions.

For example, in the monotonic counter above, each instance of compare-and-swap
relies on the fact that if the comparison succeeds, then not only the target location has
the expected value but the whole object is in the corresponding expected state. It is a
kind of indirection: we use a single-word value as a proxy for a larger predicate over the
entire object.

In the context of compare-and-swap, the mismatch between assumptions made at the
time when the expected value is read and at the actual compare-and-swap instruction
usually takes the form of the ABA problem. In this case, a variable changes from some
value A to B, then back to A again, thus appearing identical to single-word compare-
and-swap, although the associated state differs, and the initial assumptions do not hold
anymore. Again, we recall that, incrementing from 2 to 4 in our pure binary counter
example resets the least significant bit to A = 0, although, to do so, we must go through
3, in which it is set (B = 1). A one-bit compare-and-swap would not be able to distinguish
between 2 and 4 based solely on its innate comparison. Most commonly, though, the ABA
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int counter[L] := {0};

1 void increment()
2 {
3 for (;;) {
4 for (var i := 0; i < L; ++i) {
5 for (;;) {
6 var x := counter[i];
7 if (x = INT_MAX)
8 break;
9 if (cas(&counter[i], x, x + 1))
10 return;
11 }
12 }
13 for (var i := 0; i < L; ++i)
14 cas(&counter[i], INT_MAX, 0);
15 }
16 }

Figure 2.15: Bogus wrapping almost-word-monotonic counter

problem manifests itself in the context of pointers, as we will shortly see in Section 2.5.
By extension, we refer to the entire family of assumption-mismatch difficulties as ABA
problems, although they may not technically qualify as such (i.e., the target variable
itself may be stable, yet assumptions be broken by changes to other parts of the object).

Generally speaking, when writing a new value to a shared variable, we must make
sure that the object state thus produced satisfies every predicate currently assumed by
other threads. This typically ranges from almost nothing, if a concurrent invocation
is just starting, to very precise constraints if it is about to attempt a state-changing
modification.

We can see now why the two dense representations we first considered, pure binary
and Gray code, are unsatisfactory, in a more precise sense. In both cases, we need to
examine every bit in order to compute the next state. Due to the absence of atomic
multi-word read instructions, there will always be a gap between the moment we finish
reading and have decided on a state—this is our assumption—and the point where any
actual modification takes place. Since the representation is dense, every bit already carries
an integer-value information, which leaves no room for supplementary signaling. Thus,
the assumption cannot be made known to other threads. Therefore, by default, we have
no choice but to ensure that any new value we write places the counter in a state which
satisfies all possible constraints assumed by other threads. This, in turn, translates to
the possibility of another thread requiring any arbitrary object state, including one that
is incompatible with our change (i.e., does not contain the value we are writing at the
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〈T1〉 increment() {
c0 := counter[0] ⇒ INT_MAX;
assert c0 = INT_MAX;

}
〈T0〉 increment() {

cas(counter[0], INT_MAX, 0) ⇒ true, INT_MAX;
cas(counter[1], INT_MAX, 0) ⇒ true, INT_MAX;

}
〈T1〉 increment() {

// Now, T1 attempts to load counter[1] and sees 0.
c1 := counter[1] ⇒ 0;
assert c1 6= INT_MAX;
cas(&counter[1], 0, 1);
// The new state of the object is (0, 1), effectively skipping
// all values between (0, 0) and (INT_MAX, 0).

}

In traces, instances of method invocations (whether taken as a whole or fragmented) are
preceded by their thread name in angle brackets. In addition, we have replaced variables
with unique names representing the values read, and, where appropriate, results are
indicated by a double arrow.

Figure 2.16: Trace showing ABA with the bogus word-monotonic counter
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location we are writing to). Therefore, all modifications are illegal.
A sufficient criterion that avoids this situation is if we can make sure no concurrent

method expects the new value we are about to write. We can formulate it as a permission
problem. In order to use a given expected argument to compare-and-swap, a thread needs
to acquire the permission to expect that value–location pair. Conversely, we only allow
writing a new value if no other thread concurrently holds such a permission. This can
be ensured, for example, by retrieving every available permission tokens on that pair
ourselves beforehand. We can easily imagine implementing such a permission scheme
with locks; how it can be made to work in a lock-free setting will have to wait until
Section 2.6.

For the time being, let us simply observe how this explains the gap in difficulty
between a simple word-monotonic counter and its wrapping counterpart. Non-blocking
data structures that allow repetitions must deal with stale values that are expected by
other threads and thus temporarily unavailable for reuse. These characteristics tend to
drive lock-free design toward linked data structures. Indeed, pointers have a built-in
notion of indirection, which can be taken advantage of to circumvent such stale values
by substituting equivalent chunks of memory with different addresses. We now explain
this strategy in greater details.

2.5 Working with pointers

After mostly dealing with dead-ends and non-working ideas in the previous section,
we now start to examine actual solutions that build on our previous conclusions: that
building a lock-free data structure with repetitions is most easily achieved by chaining
blocks of memory through pointers.

In this section, we study two examples of concurrent object design that use pointers.
This is both an opportunity to flesh out what linked structures look like, and to reacquaint
ourselves with our old foe the ABA problem, in the context of pointers.

A typical linked concurrent object is organized as a set of blocks (or chunks) that
behave word-monotonically, meshed together through pointers. Repetition is then han-
dled at the block level, by swapping saturated chunks for fresh ones.

We postpone the delicate question of how to recycle blocks for future reuse to Sec-
tion 2.6. In the meantime, the code shown is intentionally incorrect, in both cases, in the
presence of ABA. It could be made to work as is if we are in an environment that offers
automatic garbage collection—or, alternatively, if we never free or reuse any memory.

We should keep in mind, though, that it is only a temporary writing artifact intro-
duced in an attempt to make the whole endeavor more palpable to readers unfamiliar
with the subject matter. For the more impatient, rest assured that this will lead us into
the next section, which will finally offer ways to overcome ABA issues completely, by
implementing our own lock-free memory management schemes that do not depend on
the existence of some magical garbage collector.
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int ∗head := calloc(L, sizeof ∗head);

1 R update(A args)
2 {
3 for (;;) {
4 var p := head;
5 var ok, i, old, new, newblk, ret := transition(p, args);
6 if (ok) {
7 // Monotonic transition.
8 ok := cas(p + i, old, new);
9 } else {
10 // Reset transition.
11 ok := cas(&head, p, newblk);
12 }
13 if (ok)
14 return ret;
15 }
16 }

Figure 2.17: Generic single-chunk algorithm

2.5.1 Pointer-based multi-word counters

For small objects and those where modifications swipe across the whole data structure,
it is usually simplest to keep all the actual data in a single block, as it is very easily
manipulated with a compare-and-swap operation on the pointer, as demonstrated in
Figure 2.17.9

For the multi-word counter, a direct implementation of this plan could look something
like the following: a head variable pointing to a single block of L words making up a word-
monotonic counter. Each time the chunk saturates, we swap in a freshly allocated one.
This is illustrated in Figure 2.18.

There is not too much to say about this piece of code. Informally, the function lin-
earizes whenever it gets away with a compare-and-swap. Delayed threads may safely
continue to iterate on expired blocks, even after they have been replaced at the head
(materialized by the counter variable).

This is because we never bother to free any previous chunk, which obviously leads to
memory leaks, unless we can afford a garbage collector. What would happen if instead we

9This is similar to the universal construction for small objects by Herlihy [1990], except we allow blocks
to be mutable as long as they satisfy the word-monotony criterion developed before. An argument could
also be made that it very loosely borrows some basic ideas from the lock-free normal form of Timnat and
Petrank [2014], where the task of computing a set of compare-and-swap instances to execute (where the
usual data structure logic lies) and actually carrying them out and taking action based on the feedback
(which is rather automatic; as is the case here) are separate.
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int ∗counter := calloc(L, sizeof ∗counter);

1 void increment()
2 {
3 for (;;) {
4 var c := counter;
5 for (var i := 0; i < L; ++i) {
6 for (var i := 0; i < L; ++i) {
7 for (;;) {
8 var x := c[i];
9 if (x = INT_MAX)
10 break;
11 if (cas(&c[i], x, x + 1))
12 return;
13 }
14 }
15 }
16 // Block is saturated.
17 int ∗b := calloc(L, sizeof ∗b);
18 if (cas(&counter, c, b))
19 break;
20 }
21 // Should we free c?
22 }

Figure 2.18: Single-chunk multi-word counter
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freed the swapped-out block at the end of the loop (where indicated by the comment)?
The answer depends on the semantics of freeing. If it invalidates the address and

makes it impossible to dereference the associated pointer (e.g., as does the standard free
call in the C language), then the algorithm becomes incorrect, other threads might still
be walking through a previous chunk.

If it does not, and the memory stays accessible transparently by the object methods
(e.g., we use a slab allocator where chunks conserve their sizes and types), then we
risk running into another problem. Assuming freed pointers become available again for
allocation through calloc, we are vulnerable to ABA: a delayed thread might swap out
an incomplete block at the same address as a previously saturated one.

2.5.2 Other pointer-based counters

While this first pointer-based version of the multi-word counter allows for wrap-around
behavior, it still sports some rather bad memory efficiency: with L-sized chunks, we
are only able to store 2wL different values. The use of monotonic chained blocks is
not tied to this representation, however. Here, we briefly consider some more advanced
implementation options. Although none of them is essential to the comprehension of
further sections, they may provide some insight into issues of representation and effective
memory use in a lock-free environment.

In general, more compact schemes also have shorter monotonic cycles. A direct ex-
tension of the previous algorithm is to use exactly the same layout, with a different
encoding. With a normal pure binary representation, the need to swap the head pointer
is driven by the wrapping around of the least significant word: other cells can only reset
in tandem with the lowest one. Conveniently, that is also the only time when multiple
words need to be updated at once, which can be hidden behind the pointer swap. That
is one swap for every 2w increments, which might or might not seem much, depending
on the application.

Because of the cascading reset behavior of our pure binary representation, there is
little need for us to try to give individual words separate chunks—and have multiple head
pointers—under that encoding. We might be tempted to mix the two solutions: can we
construct a counter with “wide digits” of M words each that can represent up to 2wM
values each? Well, certainly, if we so wish (although recovering the actual value becomes
more difficult, then): it is like counting in base 2wM at the upper level, and simply a
word-monotonic counter at the lower digit level. However, looking at it, it simply makes
reset cycles longer; it does not change the cascading behavior in any way, and as such
does not warrant a change in the number of head pointers.

2.5.3 A stack of user-provided cons cells

The previous example showcases a single-block object; but what if we want multiple
chunks? A prime motivation for such a request is varying-size data structures, of which
the list-based stack due to Treiber [1986] is perhaps the simplest, yet most convincing,
illustration. Its code is shown in Figure 2.19. At a glance, it appears to use the same
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familiar principle as before. Each method builds a new list from the value it sees, then
attempts to swap it with the previous list. Here, the key is that, although the structure
contains many nodes, the state of the object is represented by the single pointer variable,
top, which locates the head of the list.

However, identifying linked lists by their head pointer is only reliable if the next fields
of the cons cells do not change arbitrarily when we are not looking. To this end, at the
very least, it must be that client code does not touch those memory locations that are
internal to the shared data structures. This is assumed as part of non-interference, as
described in Section 2.1.1. In general, if we allow mutable links, then a same address may
refer to different actual lists, depending on the contents of the nodes.

Of course, we could argue that at any given time, a pointer represents only one list.
This is indeed true, at least in the interleaved world of sequential consistency. However,
our basic compare-and-swap strategy is not, on the whole, atomic: it relies on iterating
around a read-compute-commit loop. In this scheme, the correctness of the computed
value in the second step depends on the data loaded in the first. In the terms of Sec-
tion 2.4.3, this is an assumption we make before going into compare-and-swap, and other
threads need to account for this when performing their own modifications.

Even though it might have become rather repetitive by now, let us take a couple
of minutes to review why this is an issue in this specific case. The compare-and-swap
instruction only branches depending on the value of the pointer, not the pointed-to
contents. We do not make a deep copy of the list. Yet, looking at the pop method, our
computation function—that maps each value to the next—depends on said contents: it
reads the next field to find the tail of the list. Between the load and compare-and-swap
statements, the scheduler is free to inject steps from other threads. A successful compare-
and-swap ensures that the address of the cell does not change, but for our algorithm to
be correct, there needs to be an additional guarantee that those remote instructions do
not alter the value of the next field.

As described above, we will always suppose non-interference. We can thus concentrate
on our own code for sources of conflicts. The only spot that can defeat a pop computation
appears to be the assignment to next in the push method. For trouble to occur, we
need the node variable in push and the t variable in pop to refer to the same object—
otherwise, the two next fields would obviously not refer to the same location. One way
this could happen is if a previously removed node is inserted into the list again, as shown
in Figure 2.20.

In this example, the old node address reappears before the invocation of pop in thread
T0 finishes, yet its contents is different; hence, compare-and-swap will succeed even though
the assumption that the computation is valid depends on a falsified hypothesis, namely
that the node t0 has not changed. The code is fooled by the presence of a superficially
identical value. This phenomenon is perhaps the most common form of the the ABA
problem.

As we have seen, bad things happen because we lack word-level monotony on the
mutable fields: the contents of both top and next may cycle—through the reintroduction
of previous cells through push—before a delayed thread gets a chance to complete its
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struct Node {
Node ∗next;
int data;

};

Node ∗top := null;

1 void push(Node ∗node)
2 {
3 bool ok;
4 do {
5 var t := top;
6 node.next := t;
7 ok := cas(&top, t, node);
8 } while (not ok);
9 }

1 Node ∗pop()
2 {
3 bool ok;
4 Node ∗t;
5 do {
6 t := top;
7 if (t = null)
8 return null;
9 ok := cas(&top, t, t.next);
10 } while (not ok);
11 return t;
12 }

Figure 2.19: Treiber stack
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〈T0〉 pop() {
t0 := top;
assert t0 6= null;
n0 := t0.next;

}
t0 := 〈T1〉 pop();
〈T1〉 push(t1); // Pushes some new node t1 6= n0.
〈T1〉 push(t0); // Reuses t0 and pushes it.
〈T0〉 pop() {

// At this point, t0 points to a node with next field equal to t1 6= n0.
cas(&top, t0, n0);

}

Figure 2.20: Trace showing ABA with the Treiber stack

operation, therefore getting confused. In the pointer-based counter, this was assumed
to be guaranteed by the memory management system—or by never freeing memory.
However, the Treiber stack offers a new perspective on the problem: the chunks, here, are
not allocated directly by the algorithm, but provided by the user as part of the interface.
Consequently, we have no control over block reuse; we have no option to even let memory
leak, and even in the presence of a potent garbage collector, the user is under no constraint
to free the popped cells. It could definitely be turned into a mandatory prerequisite of
our interface: that pointers retrieved be cycled through the allocator (supposing that the
garbage collection system tracks all previous uses and does not reallocate said block before
it has been cleared of previous references, including delayed ones threatening compare-
and-swap). However, we suspect it would appear very counter-intuitive, and awkward to
use, to many.

As is often the case, the problem can be worked around by not taking direct chunks
from the caller, and instead making internal copies to privately allocated blocks. We then
end up in a similar scenario to the pointer-based counter. Although it may not be much
to the taste of veteran C programmers accustomed to pointer-passing interfaces, such
changes are often a necessity in the world of lock freedom. Indeed, even when applying
the various techniques that we are about to see, it is only possible to detect whether a
pointer is safe or unsafe to reuse. We can never force another presumably delayed thread
to make progress—perhaps it exploded already—nor can we be sure it will not resume
normal operation at some point—maybe the operator could salvage it after all. Therefore,
a pointer-passing interface would need to return a new kind of error telling the user that
this particular choice node is ill-fated and cannot be inserted back into the list, yet. It
would then be up to the caller to either wait or allocate a new node to hold the data.
While such a contract may be acceptable between components of a close-knit system, it
may not be suitable as an outward abstraction.

With this, we have a working multi-word counter, and once again, we postpone the

39



2.6. WAITING OUT ABA

need for solving the much more complex problem of true multi-word updates. Since such
multi-word atomic read-modify-write constructs are the most powerful instructions that
we know of in the lock-free arsenal—short of full transactions, they could certainly be used
to devise solutions to virtually every non-blocking problems, even the most mundane.
However, it is our humble opinion that doing can lead to less efficient algorithms, and
most importantly, would not help much in understanding some of the more important
principles behind lock freedom. Whether we are willing to trade such losses for more
automatic methods is naturally up for debate; however, given that this thesis discusses
a manually crafted lock-free algorithm for the evaluation of Kahn process networks, we
should naturally be somewhat biased toward explaining the little details that make up
part of the more traditional process of lock-free algorithm construction.

2.6 Waiting out ABA

In this section, we finally deal with what we consider the main source of low-level difficulty
in lock-free programming: dealing with the ABA problem and the complexity it brings
to resource management.

As the heading might suggest, to put it bluntly, solving the ABA requires waiting it
out. From our initial imperative pseudo-language, we remark two important facts:

1. there is no observational difference between indefinite delay and actual, terminating,
scheduling faults: at any point in time, the scheduler might decide to wake up a
long asleep thread;

2. there is no way for a thread to directly inject code into or otherwise influence the
control flow of another thread.

As we have seen, item number one, in particular, implies that once a thread is about
to apply an unconditional (store) or semi-conditional (partial compare-and-swap on one
word in a multi-word object) modification to memory, it represents a dormant threat to
others that need to be addressed properly. Rule number two further reduces the spectrum
of possible actions to basically just one: waiting. But, did we not agree that waiting was
against lock freedom, by design?

In truth, it depends on how we wait: what we do in the meantime, and what happens
if the awaited time never comes. Busy waiting certainly is against our precepts, because
one thread finishing its critical section is essential both to itself and all of its waiters to
advance. Generally speaking, we want the kind of wait that satisfies the following criteria:

1. it should allow waiting threads to work on other things while they passively keep
an eye out for an opportunity;

2. the locked-up resource must be non-essential to the system as a whole.

The first point simply states that there should be a way to poll without being sucked
into a busy waiting loop. The second requirement is more interesting. It has two corol-
laries.
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First, since threads must be able to continue making progress even in the worst-case
scenario where the resource ends up unavailable forever, it must be replaceable. In most
cases, we will be content with purely fungible objects such as memory chunks, i.e., ob-
jects that can be substituted for one another based on generic quantifiable characteristics
such as size or value. The other kind of design that would be allowed under this rule is
one where resources exist in specialized (e.g., thread-specific) copies. However, in such
scenarios, waiting is often either optional and included as a matter of performance opti-
mization, or falls back on a pool of entirely fungible objects after exhausting a few fast
paths.

Second, assuming a finite system, it implies any losses must be bounded, lest we
should run out of resources; thus, under normal conditions, unlimited leakage leads to
blocking behavior.

2.6.1 Bounded unfairness

Before dealing with the real thing, we first take a look at a more forgiving fault model:
bounded unfairness. Under bounded unfairness rules, simply, the adversarial scheduler
is not free to delay threads forever. There are many ways to describe such a setting; a
simple approach is to say that a k-fair sequentially consistent scheduler chooses a same
thread T at least every k moves, i.e., that in any history H, there is no k-length segment
of H where T does not appear.

If we can guarantee as much—which is normally offered by real-time operating sys-
tems, then various strategies are possible. Basically, we need enough time to pass between
two uses of a same value, so as to be sure that any stale threatening compare-and-swap
instance is gone. But how much time is that exactly? Unsurprisingly, it depends on the
k parameter, but also on the algorithm, more precisely on the maximal distance between
a load and the corresponding compare-and-swap instruction it feeds into. The safety gap
between two uses must be enough for any planned yet already failing compare-and-swap
statement to complete and its expected value be reread from shared memory. Therefore,
it is not a simple matter of adding idle time before write statements, for such instructions
would themselves add to the length of the loop that feeds into compare-and-swap.

Instead, we should refrain from reusing those values that have not done their time. A
popular technique consists in tagging pointers. In this context, a tag is a modification of
the pointer value to make it distinct from previous instances of itself. It usually takes the
form of a counter embedded in the few least significant bits of addresses that are aligned
to some higher boundary. For example, if we limit ourselves to manipulating objects
aligned on four octets, then it leaves the lower two bits unused. See Figure 2.21 for an
application of tagging to the Treiber stack. Obviously, this solution is only sufficient if
the k parameter is small enough, and compare-and-swap-based loops are tight. This is
sometimes assumed to be “good enough” for general-purpose user-space programs—even
when no concrete safety bound can be derived—where transient crashes can be recovered
in other ways: watchdogs, possibly with automatic snapshots of the application, or higher-
level transactions (e.g., in databases).

A different, and perhaps more direct, implementation of the same spacing idea is to
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1 // Users must call this function before using a pointer returned from pop.
2 // Otherwise, pointers should be kept with their tags so as to be passed to inctag.
3 void ∗untag(void ∗p)
4 {
5 uintptr_t addr := (uintptr_t)p;
6 return (void ∗)(addr & ~0x3);
7 }

1 void ∗inctag(void ∗p)
2 {
3 uintptr_t addr := (uintptr_t)p;
4 addr := (addr & ~0x3) | ((addr + 1) & 0x3);
5 return (void ∗)addr;
6 }

1 void push(Node ∗node)
2 {
3 bool ok;
4 do {
5 var t := top;
6 node.next := t;
7 // Here, we use a different tag to temporize.
8 ok := cas(&top, t, inctag(node));
9 } while (not ok);
10 }

Figure 2.21: Treiber stack with tagging (changes only)
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// Per-thread pointer quarantine. Starts with K null pointers,
// where K is the quarantine period.
thread_local NodeQueue ∗quarant := nodeQueue(K, null);

1 void increment()
2 {
3 for (;;) {
4 var c := counter;
5 // Usual word-monotonic increment.
6 ...
7 // Block is saturated.
8 int ∗b := calloc(L, sizeof ∗b);
9 if (cas(&counter, c, b)) {
10 // Put the swapped-out pointer in quarantine.
11 enqueueNode(quarant, c);
12 break;
13 }
14 }
15 // Free the pointer we swapped out K iterations before.
16 // free should be no-op on the initial null pointers.
17 Node ∗old := dequeueNode(quarant);
18 free(old);
19 }

Figure 2.22: Pointer-based counter with quarantine (changes only)

explicitly remember and monitor which pointers are susceptible to ABA in a quaran-
tine.10 On the pointer-based counter, for example, it could see each compare-and-swap
to the counter head variable followed by a registration of the swapped-out pointer in
some local data structure for later reuse, as shown in Figure 2.22. Those chunks could
be swapped back in after enough instructions have happened to guarantee any delayed
thread has completed at least one iteration of the increment loop. Our example code
is somewhat simplistic in that it counts quarantine days in terms of iterations of the
outer loop, which are de facto assumed to be equivalent in length, which is not true.
In general, though, it should be said that actually counting every instruction is both
incredibly tedious (it would most likely need to be done in the form of some automatic
instrumentation rather than manual bookkeeping) and ineffective on modern systems
and architectures that do not nicely fit into this simple fault model (e.g., because of
variable latencies at the hardware level, or unforeseen urgent events at the software level
in non-real-time operating systems).

10This is a personal term and not widely used; although the concept is widely accepted by the com-
munity, to the best of our knowledge, there is no one universally acknowledged terminology for this.
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The issue with both the tagging and quarantine approaches lies with their lack of
adaptability. The constants that govern waiting times must be chosen in advance and
do not change over time. On the one hand, this can lead to an ABA resurgence if the
parameters are set too low, even when more resources would be available to circumvent
it. On the other hand, if we choose too much safety, we risk wasting those resources even
when no ABA threat exists.

Before getting on with more elaborate techniques, let us ponder a moment about
what bounded unfairness means for locks. Actually, it should be said that the complaints
formulated in the previous paragraph are both alleviated by simply taking a lock for
the entire method. After all, if unfairness is bounded, we can simply wait for our turn
to perform an operation on the shared object. However, doing so obviously precludes
parallel work, though admittedly there should not be much of it to begin with, in the
two cases we are contemplating.

Improving on the simplistic quarantine idea, an arguably better strategy is thus to
passively wait for other threads to signal when they have made progress, instead of
relying solely on the local program counter. Looking again at the code of Figure 2.22,
we can see that the time spent by a pointer in quarantine starts when it is swapped
out, and ends a number of local steps after that. As we have established before, this
should be an upper estimate on the time it takes for every pending increment iterations
to complete and reload a fresh value of counter. So the important event we are waiting
for is the completion of concurrent iterations. Then, should we not have threads directly
signal whenever they finish one repetition of the loop? This is the basis behind another
very popular technique: epoch-based reclamation, also known as read-copy-update
[McKenney and Slingwine, 1998].

Figure 2.23 shows how such a strategy finds its place in the counter code. There are
four hooking points for epoch routines:11

• at the beginning and end of each iteration, before the counter value is reread;

• after we successfully update the structure;

• and at the end of the method, when we look to move blocks out of the quarantine.

Essentially, an epoch mechanism acts as if we had access to a global clock that
synchronized across the entire system, albeit with an interface limited to four predefined
functions and with opaque time stamp values that cannot be otherwise manipulated.
The newEpoch function associates an Epoch object with the current point in time—such
epochs are totally ordered by the hypothetical global clock. The beginEpochSection and
endEpochSection mark a threat section: at their core, they only acknowledge the current
time in the current thread. The former states our intention to read sensitive values from
this point onward; the latter indicates that we are done touching blocks for now. We use

11We might need more or less depending on the exact flavor of epoch-based reclamation, e.g., one at
the beginning and end of the method to signal an active section. For our expository purpose, this simple
scheme suffices.
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// Epoch interface.
void beginEpochSection();
void endEpochSection();
Epoch newEpoch();
bool epochOver(Epoch);

// Quarantine that contains nodes to be freed later.
thread_local NodeMap ∗quarant;

1 void increment()
2 {
3 for (;;) {
4 // Signal that we want to manipulate managed blocks.
5 beginEpochSection();
6 var c := counter;
7 // Usual word-monotonic increment.
8 ...
9 // Block is saturated.
10 int ∗b := calloc(L, sizeof ∗b);
11 if (cas(&counter, c, b)) {
12 // Register the swapped-out node for future reuse and increment the
13 // global epoch, to track threads that might still be holding the c
14 // pointer just swapped out. Any thread entering the loop after this
15 // point cannot see c at all.
16 insertNode(quarant, c, newEpoch());
17 endEpochSection();
18 break;
19 }
20 // Signal that we are done with an iteration, and thus hold no
21 // ABA-susceptible pointer.
22 endEpochSection();
23 }
24 // Free previously swapped-out pointers if other threads have passed its epoch.
25 for (var old, ep : quarant) {
26 if (epochOver(ep)) {
27 removeNode(quarant, old);
28 free(old);
29 }
30 }
31 }

Figure 2.23: Pointer-based counter with epochs (changes only)
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typedef unsigned int Epoch;

// The number of calls to newEpoch; may wrap around.
Epoch epoch := 0;

// Indicates which threads are currently in a method covered by our epoch system.
bool contends[THREAD_MAX + 1] := {false};
Epoch records[THREAD_MAX + 1] := {0};

For this to work with simple unsigned integers, we assume that threads do not drift apart
more than half UINT_MAX epochs. Note that only threads that have their contends bit
set participate in polls, so others, running outside of any managed method do not need
to be accounted for when looking to free blocks.

Figure 2.24: Simple wrapping integer-based epochs: declarations

endEpochSection as a kind of fence, to assert that the current thread will not execute
any compare-and-swap or similar operation in the future with values it read before the
fence. Finally, the epochOver test returns true if every threatening thread has signaled
its presence, using endEpochSection, at least once in the time before the call but after
the reference point passed as argument.

Naturally, we do not want to depend on the existence of an actual global hardware
clock. There are many ways to implement an epoch mechanism. In the case of bounded
unfairness, we may simply use a wrapping integer, and rely on the guarantee that threads
never drift apart more than half the value range, so we can always distinguish between a
wrapped time stamp and an actual small one. The shared state for such an implementa-
tion is commented in Figure 2.24, and the methods are given in Figure 2.25. Otherwise,
we could also simply wait for other threads to catch up whenever we reach the wrapping
point, since the wait is known to be bounded. Other approaches exist using system timer
interrupts, or alternating bits [Desnoyers et al., 2012].

Generally speaking, read-copy-update and its variants, such as hierchical read-copy-
update [McKenney, 2008], have found many uses in modern low-level general-purpose
code, notably in operating system kernels such as Linux. Most often, they use techniques
based on system timers and interrupts, which are not included in our implementation
language, as defined in Section 2.1.1. It should be quite evident that the inclusion of a
reliable timer interrupt that strikes periodically in every thread with a known frequency
renders all questions of lock freedom trivial, as threads can use it as a barrier to syn-
chronize, effectively waiting for each other in bounded time. An in-depth discussion of
epoch-based reclamation would, therefore, stray quite far away from lock-free program-
ming, and is beyond the scope of this introduction.

The three algorithms described above all handle value reuse (or, in the most common
case, memory reclamation, in the form of reuse of allocated blocks), although all three

46



CHAPTER 2. INTRODUCTION TO LOCK FREEDOM

1 void beginEpochSection()
2 {
3 records[threadid] := epoch;
4 contends[threadid] := true;
5 }

1 void endEpochSection()
2 {
3 records[threadid] := epoch;
4 contends[threadid] := false;
5 }

1 Epoch newEpoch()
2 {
3 var current := faa(&epoch, 1) + 1;
4 records[threadid] := current;
5 return current;
6 }

1 bool epochOver(Epoch ep)
2 {
3 var lower := records[threadid];
4 for (var i := 0; i < THREAD_MAX + 1; ++i) {
5 if (contends[i] and lower − records[i] < UINT_MAX / 2)
6 lower := records[i];
7 }
8 return lower − ep < UINT_MAX / 2;
9 }

Due to the assumptions made in Figure 2.24, values can be compared by evaluating their
difference relative to half UINT_MAX. Since actual epoch values (projected into the
natural integers) never differ by half UINT_MAX or more, any bigger gap means the
subtracted value is higher.

Figure 2.25: Simple wrapping integer-based epochs: implementation
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derive their bounded-loss guarantees from the explicit limit on delays between threads.
Among those, epoch-based reclamation is especially appealing because of its adaptability:
we do not need to tune any delay parameter in advance, objects are freed in a timely
fashion, and the system supports as much delay as it has memory.

To go beyond that, and handle cases of unlimited unfairness, while still ensuring finite
losses, we need to take a closer look at what makes epoch-based techniques block when
scheduling faults are introduced.

2.6.2 Block life cycle

In epoch-based reclamation, each block b cycles through a series of stages:

1. It starts somewhere in the memory allocator.

2. It is then returned to one thread in particular, through malloc or a similar call. At
this point, b becomes exclusive to its caller thread T .

3. It is swapped into the data structure, making it visible to and open for access from
other threads.

4. It is eventually swapped out from the data structure at some time tb, and enters
a quarantine period. After this point, no other thread may read b from the shared
object.

5. When it is determined that other threads have relinquished references to any blocks
read from the data structure before tb—and thus to b in particular, then b becomes
exclusive to T once again.

6. Afterward, T may free b back to the memory allocator.

It is an exclusive–shared life cycle: a chunk can be reused as a new value when it
is guaranteed not to appear in the shared object or locally in other threads. In fact,
read-copy-update originated as a shared–exclusive (or reader–writer) locking technique,
rather than the specialized resource reclamation scheme we present here. When used in
that fashion, an exclusive writer thread installs a new epoch (newEpoch) then waits for
any pending readers (beginEpochSection) to finish (endEpochSection).

How does this translate to our setting? The writer part is the easiest: each swapped-
out block is waited on by an exclusive thread after calling newEpoch. The shared part is
less obvious: it is unclear what precise blocks are being used by threads in a given reader
section delimited by beginEpochSection and endEpochSection.

The strangeness of epoch-based reclamation lies in how threads do not actually stop
doing usual work to wait for the lock they have demanded—they do not wait in the
usual, busy, sense. Instead, every value in quarantine is polled from time to time. The
key here is to recognize that the polling reclamation loop actually waits, virtually, not
on one read-copy-update lock but on many. Each quarantined block is actually locked
individually as part of its life cycle.
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The ingenuity behind using this particular locking scheme for reclamation is that
it allows lock objects to be mutualized. Instead of signaling for every managed chunk
separately, each thread only enters one epoch section that opens the right to read any
future values written in the present or in epochs to come, while the section is active.

Whenever a thread declares its intention to read addresses from the shared data
structure, by calling beginEpochSection, it does not announce which blocks are affected
(it actually does not even know), but rather that any value might be held until its read
section ends.

There lies the biggest strength and yet also the fundamental flaw of epoch-based
reclamation techniques, when it comes to lock freedom. Halting when holding a shared
lock on every current and future blocks shared through the data structure inevitably
means unbounded memory leakage, which as we have seen cannot be considered non-
blocking in a world with limited resources.

2.6.3 Read barriers

In a lock-free world, mutualizing waits on quarantined resources is unwise. We need more
fine-grained control over what values are held by each thread at any given time, so that
others might flow freely in the meantime.

As we have seen many times now, in non-blocking algorithms, the threat essentially
comes from stale values loaded from memory (that could be used later to gate a compare-
and-swap statement). Therefore, it stands to reason that loading potentially sensitive
values should be protected through the use of additional support instructions. Borrowing
the term from the prior works on garbage collection, perhaps we should call this mecha-
nism a read barrier.12 But what do they need to be protected from, or is it others that
ought to be protected from them?

A load operation protected by a read barrier, or safe read as it was first explicitly
named by Valois [1995], at address p should linearizably load a value b at location p
and enter a corresponding read section that locks down b for shared access. As usual,
we want the two actions to appear as if they executed together atomically. Since for all
intents and purposes, we are taking a reader lock on b, it should come as no surprise
that once the section has been entered, we may perform the actual load at any time (as
b cannot be recycled until we exit the section). But since, contrary to global epoch-based
reclamation, each value must be managed separately, how do we know what lock to take
before we read the value?

The simple answer is that we do not know, at least, we do not know for sure. As
illustrated in Figure 2.26, we can only tentatively enter a read section on some value,

12Looking at past work on the related topic of automatic memory management, we can find read
barriers in the first incremental (and later concurrent) garbage collectors, such as Baker [1978]’s. In
an incremental garbage collector, normal operations (usually collectively referred to as the mutator) are
interleaved with steps from collector code that reclaims memory. Without going into details, let us simply
say that both actors might alter the shared memory in different ways; in that context, read barriers,
that is, code added to protect load instructions, ensure that the system never falls into an irrecoverably
inconsistent state. While the particulars are quite different in our case, the fundamental need of handling
concurrency between normal accesses and the reclamation procedure persists.
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1 T safeRead(T ∗p)
2 {
3 T x;
4 for (;;) {
5 x := ∗p;
6 beginReadSection(x);
7 var y := ∗p;
8 if (y = x)
9 break;
10 endReadSection(x);
11 }
12 return x;
13 }

Figure 2.26: Safe read

load b, then see whether they match. If they do, we have got ourselves a complete safe
read.

2.6.4 Counting readers in read sections

While read-copy-update provides a convenient mechanism for mutualizing reader–writer
locks, having epoch counters for every block in the system could prove quite wasteful.

We first recall that a shared–exclusive lock with writer priority can be implemented
using one boolean and one counter, as in Figure 2.27. Briefly, the correction of this reader–
writer lock implementation relies on an anti-store-buffering pattern argument, similar to
the one we have seen before: if a reader and a writer are concurrent, then either the
reader sees the change to the writer variable when it checks its value after fetch-and-add,
or the writer sees the nreader counter go up after it has successfully flipped writer with
compare-and-swap. Since the design is biased toward exclusive access, once the boolean
flag has gone up, pending readers are waited upon but no new ones can queue up, due
to the first inner loop in lockShared.

Both the lockShared and lockExclusive methods are clearly blocking, and thus cannot
be used directly to build our read sections and reclamation waits. However, the code
provides useful insights into how we might implement those.

The safeRead function presented above is very similar to the lockShared method of
our reader–writer lock, with a few differences:

• instead of testing a boolean variable writer, the safe read checks the value at location
p: the presence of a value x at p indicates that x is available for a read section;
instead of waiting on a specific object, a safe read attempts to lock any value read
at p;
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• the beginReadSection and endReadSection invocations have been replaced by fetch-
and-add instructions that manage a counter tracking the number of readers.

The lockExclusive method is also reminiscent of the way reclamation is handled.
First, the thread takes ownership of the value through compare-and-swap. Its effect is
twofold: it ensures that only one thread gets exclusive access, and, at the same time,
warns concurrent and potential future readers that the value is not available anymore
for reading. Again, the main difference is what happens when the thread fails to acquire
its target. In a normal lock, the thread would wait until the resource is available; in
non-blocking resource reclamation, it means instead that the operation has failed (but
some other thread has won the right to pursue, as is necessary in lock freedom) and need
to be reattempted. Finally, the last loop in lockExclusive corresponds to the polling done
at the end of methods for the purpose of actually reclaiming chunks that have definitely
fallen into our exclusive care.

Based on this comparison, we can deduce one way to implement read sections for lock-
free reclamation: through the use of per-resource integer fields that count the number of
pending threads that are currently in a read section involving said resource. These can
take the form of reference counters embedded into the memory chunks themselves, as
is done in the works of Valois [1995], and in a slightly different form in Herlihy [1990]’s
universal construction using compare-and-swap. Figures 2.28 and 2.29 show the pointer-
based counter with reference counting.

We can verify that, with this method, losses are bounded. Since read sections in a
given thread do not overlap, even though there are numerous reference counters, each
thread only ever holds at most one reference at any one point in time. The quarantines can
therefore contain no more elements than there are threads. Indeed, imagine a quarantine
in thread T contains two chunks referenced by some other thread T ′. Then T ′ must have
ended its first read section (for b0) at some point before entering the second (for b1).
That point must be after the test of b0 during the round that swapped out b1 in T , thus
b1 was already swapped at that point (since the test occurs at the end of the method),
making it impossible for T ′ to read later.

In more complex algorithms, it is possible that threads hold more than one reference
at a time, but as long as that number is bounded, and methods regularly sweep exclusive
blocks out of their quarantine, this result should stand.

2.6.5 Hazard pointers

The observation that only a small number of sequential read sections overlap is an im-
portant one, as it implies most reference counters are zero most of the time. This is
wasteful both in terms of memory and synchronization: the memory needed to store the
counter, and the powerful compare-and-swap (or fetch-and-add) instructions required to
keep them in agreement.

An alternative design to reference counters is to use a dual representation: instead
of storing for every resource what threads refer to it, we can store for each thread what
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bool writer := false;
int nreader := 0;

1 void lockShared()
2 {
3 for (;;) {
4 bool w;
5 do
6 w := writer;
7 while (w);
8 faa(&nreader, 1);
9 w := writer;
10 if (not w)
11 break;
12 faa(&nreader, −1);
13 }
14 }

1 void unlockShared()
2 {
3 faa(&nreader, −1);
4 }

1 void lockExclusive()
2 {
3 while (not cas(&writer, false, true))
4 continue;
5 int nr;
6 do
7 nr := nreader;
8 while (nr > 0);
9 }

1 void unlockExclusive()
2 {
3 writer := false;
4 }

Figure 2.27: Shared–exclusive lock
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1 void beginReadSection(int ∗b)
2 {
3 faa(b, 1);
4 }

1 void endReadSection(int ∗b)
2 {
3 faa(b, −1);
4 }

1 bool canBeReclaimed(int ∗b)
2 {
3 var nref := ∗b;
4 return nref = 0;
5 }

The first integer in the block is the reference counter. The safeRead function is defined
as above.

Figure 2.28: Reference-counting functions

resources it currently holds. That can be seen as the basis for Michael [2002]’s safe
memory reclamation technique.

Since this set is bounded (else we would have unlimited leakage if such a thread halts)
by what should generally be a small constant, it can be materialized as a per-thread array
or list of hazard pointers. As shown in Figure 2.30, incrementing a reference counter
is replaced with writing the value into a free hazard pointer; decrementing amounts to
nullifying the corresponding slot in the array or removing it from the list. Finally, polling
for reclamation is done by scanning the hazard pointers of other threads.

In line with our initial motivation, this modification can help reduce both memory
consumption (unused reference counters) and store contention (through fetch-and-add).
Very importantly, it also moves bookkeeping information out of the blocks themselves,
making it possible for the allocator to fuse chunks as necessary instead of operating with
constant-size blocks whose meta-data cannot be overwritten.

2.6.6 Optimizations and other reclamation techniques

We now have a strategy for waiting out potential ABA occurrences—which was perhaps
the most critical problem to be discussed in this introduction—although several optimiza-
tions and alternatives exist. Perhaps most importantly, it should be noted that it is rather
unusual for every method invocations to systemically attempt to reclaim resources. It is
customary (e.g., in most implementations of read-copy-update, or Michael’s safe memory
reclamation system) to time the frequency of such collection cycles appropriately so the
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thread_local NodeSet ∗quarant := ...;

1 void increment()
2 {
3 for (;;) {
4 var c := safeRead(&counter);
5 // Usual word-monotonic increment with c + 1.
6 ...
7 // Block is saturated.
8 int ∗b := calloc(L + 1, sizeof ∗b);
9 if (cas(&counter, c, b)) {
10 addNode(quarant, c);
11 break;
12 }
13 endReadSection(c);
14 }
15 // Free previously swapped-out pointers if their reference counters
16 // are zero, meaning there are no more readers and the chunk is not
17 // referenced from the shared structure anymore.
18 for (var old : quarant) {
19 if (canBeReclaimed(old)) {
20 removeNode(quarant, old);
21 free(old);
22 }
23 }
24 }

Figure 2.29: Pointer-based counter with safe reference counting (changes only)
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NodeSet ∗hazard[THREAD_MAX + 1] := ...;

1 void beginReadSection(int ∗b)
2 {
3 addNode(hazard[threadid], b);
4 }

1 void endReadSection(int ∗b)
2 {
3 removeNode(hazard[threadid], b);
4 }

1 bool canBeReclaimed(int ∗b)
2 {
3 for (var i := 0; i < THREAD_MAX + 1; ++i) {
4 if (containsNode(hazard[i], b))
5 return false;
6 }
7 return true;
8 }

Figure 2.30: Hazard pointers
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cost of ABA management amortizes nicely to a constant, with regard to the algorithm.
As we have discussed before, using larger chunks with simple word-monotonic pro-

gressions also increases performance at the cost of more memory and sometimes more
complex operations, where elements that would naturally appear as separate nodes in an
equivalent sequential data structure are pulled together and handled in a constrained way.
This last point, however, also applies to many practical optimizations done on sequential
data objects to improve performance-sensitive attributes such as locality.

Other reclamation techniques have also been developped. Two examples are Herlihy
et al. [2002]’s pass-the-bucket, which shares many similarities with hazard pointers, and
Braginsky et al. [2013]’s drop-the-anchor, which, in rather simple terms, dynamically
associates a single read section with multiple chunks in a connected part of the block
graph (which should come with many of the same benefits as using larger blocks).

In conclusion, we can sum up our exploration on the topic of ABA avoidance, as
follows:

• The ABA problem can be avoided by waiting for other threads to forget about
sensitive values before reusing them. Sensitive values—mostly, chunks of memory—
are those that might be used for future compare-and-swap, which would lead to
erroneous successes.

• The number of blocks thus reserved should be bounded so as not to block because
of a lack of resources needed to finish the computation.

• This wait should be done lazily so as not to block. It is for most intents and purposes
a specialized variation of a shared–exclusive lock whose operations may fail instead
of spinning in busy loops.

• Loading ABA-sensitive values from shared memory should be protected by a shared
(read) section.

• Reclaiming chunks uses the exclusive (write) side of the mechanism.

• Different strategies exist to manage read sections and reclamation waits, including
reference counters and hazard pointers.

• Avenues for optimizations include larger chunks, amortized polling, and larger read
sections.

2.7 Memory allocation

In this section, we focus on the last piece of the lock-free resource management puzzle:
memory allocation.

Let us start with the simplest design possible, that does without any global allocator
at all: per-thread memory pools. In this approach, blocks are pulled from a thread-
local pool and returned to it when they become available for reuse, as indicated by the
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ABA avoidance scheme of our choice. This is another example of a very basic partitioning
structure, which requires no consensus. Essentially, the pool represents the set of resources
ready for shared use (i.e., insertion into the shared data structure), while the quarantine
holds those that have not been cleared for reuse yet.

The pool is used to eliminate busy waiting. It is part of the “lazy waiting” strategy we
described at length in the previous section: since we cannot stop to actively wait for any
single chunk to be cleared, it has to be done incrementally. The pool thus represents the
result of that incremental operation. However, it is not the central piece of the system;
the prime correctness criterion for ABA prevention is that every cycle of shared reuse
is broken by a period of exclusiveness. That way, any value swapped into a shared data
structure always appears unique, since it has not been witnessed by any other thread
since its last shared appearance.

This fact is essential in understanding how shared memory allocators can be imple-
mented. Indeed, at first glance, we could be tempted to think the role of ABA avoidance
mechanisms is to serve as better memory allocators that provide fresh blocks and re-
claim old ones to make them new again. In this view, it is difficult to see how the same
methods could be used to prevent ABA in the allocators themselves. However, as we
have explained, ABA reclamation devices are in fact not directly related to allocators;
standalone, they are closer to specialized passive locks: their job is to wait. They ensure
that life cycles properly alternate between shared and exclusive.

A shared memory allocator is nothing more than another shared data structure whose
purpose is to distribute blocks between threads. It can be as simple as a non-allocating
Treiber stack (for constant-size chunks), for example. The stack depends on ABA preven-
tion on the pointers passed to its push method: every shared cycle must be broken by an
exclusive period; if the same value is passed twice to push, between the two invocations,
it must not be continuously held by some thread within a stack method.

Initially, the notion of shared and exclusive states is relative to a specific data object.
From the viewpoint of the allocator, any chunk that leaves its pointer list and disappears
from all of its methods becomes exclusive, although it might very well be shared through
some other structures.

A closed fully lock-free system with one main object and one global allocator is
essentially a symmetrical construction, with the two exchanging chunks back and forth,
passing through quarantines as necessary to wait out any ABA threats.

Managing several separate instances of an ABA prevention mechanism can, however,
prove rather wasteful and cumbersome, especially once the system grows to include more
objects. Instead, we observe that different instances read sections can be mutualized, as
an over-approximation: if a value is exclusive with regard to every possible readers, then
it is exclusive with respect to the specific set we need. This is only correct, however,
if we can also assimilate writers, i.e., exclusive users. It would be problematic, indeed
if multiple threads ran at the same time claiming exclusive ownership. In practice, this
constraint is satisfied if blocks never appear in more than one shared data structure at
a time—so that only a compare-and-swap instruction at the proper single location is
able to grant exclusive access. This might have been a problem were we discussing ABA
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Figure 2.31: System with global allocator and shared objects

prevention for integers, but is barely worth mentioning in the case of pointers, which are
naturally used in this way, to indirectly denote unique chunks.

Putting everything together, this all boils down to the convenient fact that we can
use a common ABA prevention device to govern memory chunks for use in every shared
objects in a system, provided the following rules are respected:

1. at any given time, a chunk is only shared through at most one data structure,
including the memory allocator;

2. there is at least one exclusive holding period between any two appearances of a
same chunk pointer within a given data structure.

Given that the exclusive periods needed to satisfy rule number 2 are all equivalent, it
is usually best to arrange for a centralized quarantine and collection routine at a point
in the system that where blocks are guaranteed to pass through in each cycle. A global
memory allocator is a perfect place to carry out such a duty. Figure 2.31 illustrates this
design, and summarizes the concepts discussed in the previous paragraphs. We have noted
the various states that blocks go through during their life, on the diagram, with the letter
in parentheses (S for shared, X for exclusive or W when being waited on for exclusive
access) before a method name indicating a precondition and after it, a postcondition.

2.8 Disjoint access and the multi-word issue

To wrap up this introduction to lock freedom, we come back to the problem we left
toward the beginning of this chapter: multi-word updates. Compared to back then, we
are now better equipped with many tools and should already be able to build concurrent
data structures to virtually any functional specification we desire, using pointers, chunks,
ABA prevention, and memory management. So what is it that we are still lacking? Why
multi-word updates?

There is one area where multi-word operations shine: when we want to read and
write multiple objects independently. This may seem bizarrely redundant. Of course,
multi-word operations handle multiple words! But did we not see earlier in Section 2.5
that the same could be achieved using a few pointers and indirection to large blocks?
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The important notion at play is independence. What a linked structure does not offer is
efficient disjoint access.

Consider the following example. We have two variables x and y, and three concurrent
operations: one that changes x, one that changes y, and a last one that swaps the two.
Now, under a block-based design, two locations that can be modified by a single method
need to share a same block, so they can be updated in one compare-and-swap instruction.
Because of the swap operation, x and y thus need to be co-located. However, we would
like for the methods that update only x or y to run independently, so that there is no
contention between threads that only care about one or the other, unless a swap occurs.

This calls for a multi-word design, where each of the single-variable operations access
only that variable, while the two-variable swap spans both, as a multi-word update.

For simplicity, we assume that our data structure is made of protected constant
blocks, as explained in Sections 2.5 and 2.6, and that the single-block methods are basic
read-modify-write macro-operations as depicted in Figure 2.17.

2.8.1 Descriptors and assistance

As we have touched upon in Section 2.4.1, a central issue when dealing with operations
than affect multiple variables is leaving shared variables in an inconsistent, intermediate
state, where only some of them have been properly updated. What happens if a thread
halts after overwriting x with the value of y without completing the opposite leg of the
swap?

From our analysis in Section 2.4.3, we know such transient states need to be made
explicit—as additional bits of information in shared memory—so that other threads may
learn about them. Since our data structure is made of protected chunks, transient states
can be added as a new kind of blocks, different from the ones we use to represent actual
values. These intermediate blocks are known as descriptors, owing to the fact that they
describe ongoing operations.

At the very least, a descriptor must carry enough information to compute one or more
desired outcomes, in terms of the shared variables making up the object. For example,
the descriptor for our swap operation may be a two-item array, which hold the values of
x and y assumed by the original swapping thread at the point where it wishes to write
those values back to memory (in reverse positions).

As a thread loading the state of the object, whenever we encounter a descriptor instead
of a regular value, we should remember that lock freedom forbids us from waiting for the
transient state to fade. After all, this might be the last surviving thread. Therefore, we
have no choice but to help move the object toward one of the prescribed outcomes, an
act known as assistance.

2.8.2 Snapshots

Before we can make and publish assumptions about the state of some object, we first
need to load it. When such state consists of multiple words, this is an issue in itself, as
we have seen in Section 2.4.1. The general task is known as the snapshot problem: we

59



2.8. DISJOINT ACCESS AND THE MULTI-WORD ISSUE

1 (‘T ∗, ‘U ∗) snapshotTwo(‘T ∗∗pp, ‘U ∗∗qq)
2 {
3 var p := safeRead(pp);
4 var q := safeRead(qq);
5 if (p = ∗pp)
6 return p, q;
7 else {
8 endReadSection(p);
9 endReadSection(q);
10 return null, null;
11 }
12 }

We introduce the ‘T type variable notation for polymorphic functions. We only allow
those types to appear as base types for pointer types. This is just syntactic sugar for void
pointers, similar to how erasure works for generics in the Java language.

Figure 2.32: Snapshot of two protected pointers

want to retrieve a consistent view of all the variables making up the object. By that, we
mean a set of values that have coexisted at some point in time in the current execution.

Correct and efficient snapshot algorithms depend heavily on the underlying data
structure and its invariants. For the our toy two-pointer problem, there is a relatively
simple solution that relies on read sections, as demonstrated in Figure 2.32. Notice that
the snapshotTwo procedure also returns read permissions along with the results, if any.
In a sense, it works similarly to a safe read. We first read pp, then qq, then pp again.
If both values of pp match, then we know that there is no modification of pp between
line 3 and line 5. Indeed, p is protected by the safe read, such that for it to occur again
in the data structure, it would first need to be removed, quarantined, and freed. Such
a sequence cannot happen between the two reads, as we hold a part of the permissions
needed to do so, in the form of a read section on p. Therefore, on line 4, pp contains p
and qq still contains q.

2.8.3 Double compare-and-swap

Once we have a consistent snapshot of our object state and a descriptor recording that
information, it is time to actually update the variables, in what amounts to a double
compare-and-swap, which acts over two possibly non-contiguous words at a same time.
The method we sketch here is basically a simplified version of the multi-word compare-
and-swap algorithm of Harris et al. [2002], which is, to our knowledge, the most complete
modern implementation thereof, and is both lock-free and parallel on disjoint accesses.

Since we have two locations to modify, there is always a risk that one of them changes
before we can publish our descriptor; that would mean failure and another attempt.
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As a consequence, while writing definitive values to x and y, we need to make sure
that both of them do not move from their expected values for the whole duration of
the swap. It would be catastrophic to write a new value to x, only to realize we cannot
update y because it differs from the recorded snapshot. At that point, a thread working
only with x might have already assumed the new value was permanent and continued
with further mutations.

In other words, the swap must be ordered with respect to all operations on x and all
operations on y. Since those boil down to a single central read-modify-write instruction
on either variable, the only way to interpose ourselves in their chains of updates is to
overwrite that variable ourselves, with our descriptor pointer.

Given a descriptor d, which describes a snapshot acquired as explained above, the
double compare-and-swap is carried out in three stages, as shown in Figure 2.33. We ini-
tiate a swap by calling performSwapXY, and any reader that stumbles upon a descriptor
must invoke assistSwapXY.

The performSwapXY routine starts by overwriting x with d, at which point the
descriptor becomes visible to other threads operating on x, which are recruited to help.
The assistance procedure, assistSwapXY, consists of two parts: publishing the descriptor
to the y crowd and wrapping up the transaction.

One way to explain why this works is to start with the wrap-up. There are two
exclusive branches; since status moves monotonically from UNDECIDED to either OK
or FAILED, if a thread takes the first branch, it is impossible that another enters the
second in the same execution.

• If status is OK, then we require both x and y to have changed from their old
expected values to d, at some point prior.

• If status is FAILED, then we simply cancel out the effect of any previous swap.

As usual, we assume non-interference, meaning that only these two functions move x
and y to and from d. In particular, this guarantees that x only changes to d if its previous
value matches the associated snapshot.

Being in assistSwapXY implies that x has changed to d previously; otherwise, there
would be no shared descriptor at all. Furthermore, if a thread sets status to OK, it must
first see y equal to d, which may only happen as a result of compare-and-swap from the
old expected value of y, since no other statement overwrites y with d. Therefore, the
above OK branch is correct.

The FAILED branch is always safe, as it is exclusive with the OK path. Therefore,
any instance of compare-and-swap it performs simply reverts the value of x or y back to
what it was when first replaced with d.

2.8.4 Revisiting the in-place multi-word counter

We now revisit and finally bring a solution to the in-place multi-word counter problem.
As we have seen many times now, indirection is king in the world of lock freedom,

because of the need to work around quarantined values that, from the perspective of a

61



2.8. DISJOINT ACCESS AND THE MULTI-WORD ISSUE

enum {
OK,
FAILED,
UNDECIDED

};

1 bool performSwapXY(Desc ∗d)
2 {
3 d.status := UNDECIDED;
4 if (not cas(&x, d.x, d))
5 return false;
6 return assistSwapXY(d);
7 }

1 bool assistSwapXY(Desc ∗d)
2 {
3 if (d.status = UNDECIDED) {
4 if (cas(&y, d.y, d) or y = d)
5 cas(&d.status, UNDECIDED, OK);
6 else
7 cas(&d.status, UNDECIDED, FAILED);
8 }
9 if (d.status = OK) {
10 cas(&x, d, d.y);
11 cas(&y, d, d.x);
12 return true;
13 } else {
14 cas(&x, d, d.x);
15 cas(&y, d, d.y);
16 return false;
17 }
18 }

Memory management is omitted to keep the code simple and focused on the main algo-
rithmic elements. The value of descriptor d is supposed unique.

Figure 2.33: Double compare-and-swap for the two-pointer object
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given thread, should be reusable, but truly are not due to threats (assumptions) by other
threads. In-place operations are no exceptions.

Starting from the word-monotonic counter, the main challenge in the construction of
a multi-word counter lies in the need to cycle individual words back to zero once we have
reached the maximal value. These are the two dangerous values.

• Since delayed threads might be threatening to increment a zero value to one, as-
suming a different overall value, it may not be safe to reuse zero.

• Similarly, if we interrupt a thread while it is resetting some words, it might awaken
to continue later, when the overall value is not saturated anymore, but individual
words have maximal value.

We have now seen several block-based data structures, using pointer indirections; in
such systems, there is a notion of equivalence between memory states: only the contents
of chunks matter, rather than the absolute pointer values. This concept can be applied
to the present case as well. There is a need to distinguish between concrete values with
meaning zero, or maximum, in case one of them is held by a delayed thread, yet they
should all be equivalent, for the purpose of counting: the successor to any zero is always
one, and maximum is always followed by zero.

We thus divide the set of word values in two classes: univocal values, and equivocal
ones. Although we could imagine more compact partitioning, for simplicity, we settle
for reserving the lowest two bits: 11 (in binary) for univocal and any other pattern for
equivocal (as we will see, we need a few different kinds). The first sort is the usual integers,
taken at face value when shifted by one bit to the right to eliminate the type bits. The
second is the class of all those equivalent values whose meaning is actually zero (type bits
equal 00) or maximum (type bits equal 10). Remember that in a tagging scheme (which
is not lock-free), we would simply iterate through bit patterns associated with, e.g., zero,
by incrementing until we loop, hoping that any pending thread has relinquished any old
values by then.

In a proper ABA-protected system, however, delayed thread hold equivocal values
through the use of read sections. As we have seen before, the need for different values as
well as the potential losses are bounded and proportional to the number of threads; with
a sufficiently large value range reserved for the equivocal class, we can be sure that the
algorithm is non-blocking, including in terms of resource availability.

The proposed plan solves the problem of pending compare-and-swap statements, but
there remains another equally important issue: how do we ensure that lower words are
still saturated by the time we attempt to increment a higher word? Similarly, how do
we know that we are replacing all the maxima of a single saturation? What if we were
delayed and touch maximized words in a non-maximized overall state?

The basic insight necessary to answer this question is that once a read section is
entered for a given value, it blocks that value from reappearing in the same place indefi-
nitely until the section is released. Therefore, we can take advantage of the fixed update
order of our counter to good effect, in order to take a snapshot of the shared state, as
illustrated in the snapshot function of Figure 2.35.
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• Suppose that resetting to zero always occurs from the lowest to the highest word.
We walk through the data structure, taking read sections on each of the maxi-
mum values at all positions. Once we reach saturation, we confirm our findings by
rereading the first word: if its value is unchanged, then we know that we have got
ourselves a proper snapshot of the object. Indeed, if any maximum value loaded
had changed since our initial read of the first word, then since it is maximal, it
would have required all the lower words to also be maximized (during saturation)
or the first word to be zero (during another reset). In both cases, the first word
would have been overwritten, which did not happen, since we reread the same value
at the lowest cell and are guaranteed by the read section that values do not repeat.

• If instead we reach a non-maximized cell, then either it is non-zero, in which case,
an increment is always correct, as any different overall state with the same word
value would be equivalent (i.e., lower words maximized, higher words zero). If it is
zero, the same trick as above can be used: we read the first cell again. If it matches,
then similarly, this zero cannot have cycled since we entered the first read section
and loaded the initial value.

With these two patches in place, only the problem of assistance remains. A resetting
thread might be delayed during its operation, leaving the half of the words at maximum
and the other one at zero. To correct this flaw, we need other threads to step in and
complete the zeroing in its stead, should the help be needed.

Essentially, when a thread sees zero in the first word, it looks ahead to see if any
maxima remain to be reset, and if so, it offers to help. Again, this relies on the snapshot
being accurate, but fortunately, an argument similar to the above applies: if word i is
maximum and the first word is zero twice in a row, then i cannot have changed between
the two reads of the first word. If it had, then since it is maximal, it would have required
all the lower words to also be maximized (during saturation) or the first word to be a
different zero (during another reset), which is not the case since the first word is the same
zero and cannot have been repeated due to the read section.

Putting all the pieces together, we get something along the lines of Figure 2.34,
with auxiliary functions defined in Figure 2.35. Looking at the code, in a way, we have
implemented the exact natural semantics of how we first envisioned wrapping should be
achieved: by resetting words one after the other when saturation is reached. What we did
not foresee was that we now have equivalence classes instead of some sensitive values.

Generally speaking, this new counter uses a slew of tricks and techniques far more
advanced than the only unprotected compare-and-swap instruction that we then had at
our disposal. Whether it is in any way useful, compared to its pointer-based alter ego
is doubtful. However, it shows that all of the concepts we have seen in this chapter can
blend together to create complex objects.

2.8.5 Our complete non-blocking toolkit

Snapshots, assistance, and multi-word updates thus complete our lock-free programming
toolkit, as this chapter draws to a close. Over the course of this introduction to lock
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1 void increment()
2 {
3 int x[L];
4 int i;
5 for (;;) {
6 snapshot(x);
7 // If first word is zero, someone might need assistance.
8 if ((x[0] & 0x3) = 0x0) {
9 for (i := 1; i < L and (x[i] & 0x3) = 0x0; ++i)
10 continue;
11 if (i < L)
12 reset(x, i);
13 }
14 // Skip maxima.
15 for (i := 0; i < L and (x[i] & 0x3) = 0x1; ++i)
16 continue;
17 if (i = L) {
18 // Reset and try again to get the first increment.
19 reset(x, 0);
20 } else {
21 // Attempt single increment.
22 switch (x[i] & 0x3) {
23 case 0x0: // zero
24 if (casnew(&counter[i], x[i], 0x6)) {
25 cleanup(x);
26 return;
27 }
28 break;
29 case 0x3: // univocal
30 int p := 0;
31 if (x[i] = (INT_MAX & ~0x1))
32 p := alloc(0x1);
33 if (casnew(&counter[i], x[i], p ? p : x[i] + 0x4)) {
34 cleanup(x);
35 return;
36 }
37 }
38 }
39 cleanup(x);
40 }
41 }

Figure 2.34: Wrapping almost-word-monotonic counter (main method)
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int counter[L] := {0};

1 void snapshot(int x[])
2 {
3 for (;;) {
4 for (var i := 0; i < L; ++i)
5 x[i] := safeRead(&counter[i]);
6 var again := counter[0];
7 if (again = x[0])
8 break;
9 cleanup(x);
10 }
11 }

1 void reset(int x[], int i0)
2 {
3 for (var i := i0; i < L; ++i)
4 casnew(&counter[i], x[i], alloc(0x0));
5 }

1 bool casnew(int ∗p, int expected, int new)
2 {
3 if (cas(p, expected, new)) {
4 if ((expected & 0x3) 6= 0x3)
5 free(expected);
6 } else {
7 if ((new & 0x3) 6= 0x3)
8 free(new);
9 }
10 return ok;
11 }

1 void cleanup(int x[])
2 {
3 for (var i := 0; i < L; ++i)
4 endReadSection(x[i]);
5 }

Figure 2.35: Wrapping almost-word-monotonic counter (auxiliary functions)
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freedom, we have seen several important techniques and mechanisms that constitute the
foundations on which our Kahn process implementation is built:

• Explicit lock-free memory management, as described in Sections 2.6 and 2.7. Where
some algorithms leave out the memory management details—assuming they can
be worked out later using some implementation of read sections—we think it is
important to build the system from the ground up with these considerations in
mind, as they affect performance and often dictate what kind of data structure
layout may be preferable.

• A construction using linked monotonic blocks (Sections 2.3 and 2.5) to produce
various compound data objects that do not need disjoint access capabilities. This
is very effective for any data structure in which state changes sequentially, although
operations may come from different threads. There are numerous instances of these
in a Kahn process network interpreter, due to the nature of communication in such
programs, as we will see in the next chapter.

• In particular, it should be stressed that word-monotonic updates (Section 2.4.2)
constitute a highly efficient concurrent transport, since they do not require any
expensive synchronization primitive (even more so in a relaxed setting, as we will
see in Section 4.2). Although limited to a finite number of modifications when used
by themselves, we have seen how they combine with a block replacement strategy
(Section 2.6) to form versatile reusable objects.

• Lastly, the more expensive multi-words ingredients presented in this chapter, such
as descriptors, snapshots and assistance, can be used to implement operations span-
ning multiple monolithic objects while offering disjoint-access parallelism.

As we slowly head into the next chapter, which deals with a fairly large system made
of several components, our focus will shift from individual techniques to their applications
and combinations: how to design actual lock-free data structures to support Kahn process
networks, and how to compose non-blocking objects in a reasonable way.

Our solutions involve hybrid approaches combining linked monotonic blocks, descrip-
tors, specialized multi-word operations, and a fair dose of careful planning around the
order and nature of updates, so as to allow assistance. All of our algorithms build on
top of the techniques we have presented in detail in this introduction, with a few ideas
unique to the making of Kahn process networks sprinkled across, and an overall attention
to performance characteristics such as overhead and contention.
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Chapter 3

A lock-free Kahn process network
implementation

We now present our first main contribution: a non-blocking Kahn process network im-
plementation that is is parallel when working on disjoint parts of the process graph.

As we did previously, the code presented throughout this chapter is written in a
syntactic variant of the C programming language, with a few extensions, and assuming
sequentially consistent concurrent semantics. We insist that, although the syntax may
appear somewhat different from what can be found in usual C source files, the changes
are purely cosmetic. Unless explicitly stated otherwise, the actual code shown (aside from
the extensions) is intended to be valid C, with its normal precise semantics as defined by
the C standard.

3.1 Overview of Kahn process networks

For our purpose, we define Kahn process networks to be the programs that can be
expressed in a variation of the concurrent imperative language first introduced by Kahn
[1974], and further specified by Kahn and MacQueen [1977]. The syntax is shown in
Figure 3.1.

Informally, the language semantics follows Kahn’s description, summarized as follows.
A program is a network made of a number of processes, declared with the process key-
word (proc rule). Those processes do not exist until called by an inst rule, which creates
an instance of the process and binds all its formal parameters to actual channels and
concrete values—as would a normal function call in a traditional programming language.

The main constraint that applies to a Kahn process network rules that channels
must have exactly one producer and one consumer. It is an error for a channel identifier
to appear twice as an in argument, or twice as an out argument in inst. Additionally,
channel variables that are declared as in or out parameters in the enclosing context can
only be bound on that side. For example, if a process reconfigures into two subprocesses,
it cannot bind any of its in parameters as an output channel of its children.
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prog → proc∗

proc → "process" NAME "(" procParmList? ")" blck
procParmList → procParm ("," procParm)∗
procParm → (chanType | type) NAME

blck → "{" decl∗ stmt∗ "}"
stmt → NAME ":=" expr ";"

| "if " "(" expr ")" blck
| "while" "(" expr ")" blck
| chanStmt
| rcfg

chanStmt → NAME "←" expr ";"
rcfg → "reconfigure" "{" chanDecl∗ decl∗ inst∗ "}"
chanDecl → "channel" NAME "[" expr "]" ";"
decl → type NAME ";"
inst → NAME "(" exprList? ")" ";"

exprList → expr ("," expr)∗
expr → prod ("+" | "−") prod
prod → prim ("∗" | "/") prim
prim → NAME | "(" expr ")"

| NAME "(" exprList? ")"

chanType → "in" | "out"
type → "int"

Figure 3.1: Kahn process language
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It is assumed that some operator in the external run-time environment calls a desig-
nated main process at startup, and provides it with input data in the form of constants
and data on its input channels, while consuming output from its output channels.

The code within process bodies executes sequentially. It may use local integer vari-
ables, as well as channels declared with the channel (chan-decl rule), or received as
argument specified with the in or out keywords (proc-parm rule). In addition to the
usual imperative statements, the code may perform three concurrent actions:

• reading from a channel, if a channel identifier appears on the right-hand side of the
arrow operator (chan-stmt rule);

• writing to a channel, if the channel identifier appears on the left-hand side (chan-
stmt rule);

• and replacing a process with a subgraph, through the use of a reconfigure statement
(rcfg rule).

Channels are the only means of communication between live processes, and reconfig-
uration is the only way to add new processes to the network.

In a Kahn process network, each process is always either executing a statement or
waiting on a channel. Since we implement bounded queues, processes can wait on either
a read or a write statement.

3.1.1 Non-blocking Kahn process networks?

We recall from the last chapter that non-blocking systems are defined as concurrent
systems that tolerate arbitrary scheduler delays while making progress as a whole. In
particular, in a finite system, this also implies bounded resource (e.g., memory) con-
sumption. As we have seen, two important parameters are at play in a lock-freedom
claim: scope and progress.

As far as Kahn process networks are concerned, the question tends to naturally raise
some suspicion. After all, individual Kahn processes in a Kahn network follow a blocking
semantics (they wait for data on channels, and we know how waits are bad for our lock-
free karma). Consequently, the notion of a non-blocking implementation might at first
appear counterintuitive. How can execution not block if one Kahn process completely
stops? The calculation it is responsible for will no doubt cease to be performed.

The key observation here is that Kahn processes are not threads. In fact, the
situation is very similar to one we have already encountered: the reader–writer lock-like
devices we used for resource reclamation in the previous chapter. The same principles
of non-blocking waits apply here: we are allowed to wait for some condition, as long as
we do not actively do so (busy loops), and the sum of losses due to conditions never
materializing (as a consequence of scheduling delays) must be recoverable or bounded.

These requirements already provide two fundamental guidelines as to the design of a
lock-free Kahn process implementation:
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Multiplexing All threads should be able to run multiple Kahn processes alternatively.
Failure to read from or write to a channel should not result in active waiting, but
execution should instead pick up another process.

Concurrency Conversely, all processes should be able to run on any thread, at any
time, including concurrently. Although at a high semantic level, Kahn process net-
works rely purely on single-producer single-consumer communication, as far as our
implementation is concerned, there may be multiple threads attempting to touch
a same process or modify a same channel simultaneously.

There lie the apparent contradictions of our lock-free Kahn process network imple-
mentation. We want to write what amounts to a non-blocking interpreter with inter-
producer and inter-consumer concurrency, for a blocking single-producer single-consumer
process language.

3.2 A sequential interpreter

3.2.1 Single-process interface

We start by looking at a sequential interpreter for a single Kahn process—not a whole
network, just one process. The interpreter takes as input a description of the sequential
instructions of the process, written in (actually translated from, as we will see) the Kahn
process language, and executes it on a target machine, in our case, one of the threads of
our concurrent model defined in the previous chapter.

This could be as simple as a single procedure. However, the process can have un-
bounded input and output channels that communicate with the environment. Since infi-
nite streams of values can be read and written on those transports, they cannot simply
be implemented as function arguments or return values.

Instead, it is necessary to design an interface which interleaves Kahn process work
and code for input–output from the environment. We postpone a precise definition of
what constitutes a proper Kahn process in the context of our interpreter to Section 3.2.2.
For the time being, let us simply say that a Kahn process acts as a kind of “coroutine.”
Intuitively, a coroutine is a routine that keeps its own state and can be interrupted and
resumed, alongside its calling context. Notice that this calling context can be another
Kahn process, such as the parent process in the case of a recursive process network, or
the environment of the interpreter itself, if the process is the top-level root process.

Such coroutines are cooperative in the sense that control flows from one coroutine
to its caller at certain well-defined points (i.e., channel input and output statements in
a Kahn process), instead allowing preemption at arbitrary positions in the code.

Thus, our interpreter should be envisioned not merely as a function, but an object,
which maintains a state and has methods to communicate with it, as shown in Figure 3.2.
Our interface may deserve some explanation. First, we assume, for the time being, the
existence of values of type Proc, which represent programs to be interpreted, in a suitable
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(bool, Chan ∗) cocall(Proc ∗);
(bool, int) chrecv(Chan ∗);
bool chsend(Chan ∗, int);

Figure 3.2: Sequential Kahn process interface

format. Such a process can be evaluated through cocall. The cocall method executes the
coroutine until one of the following observable events occurs:

Termination If the process exits, cocall returns true and a null channel pointer.

Input or output When the coroutine performs a successful input or output operation
on a channel, cocall returns true and the channel in question. This gives an oppor-
tunity for the environment to react, if it so wishes.

Wait If instead, the input or output operation fails due to lack of data on read, or space
on write, then cocall returns false along with the guilty channel.

The chrecv and chsend functions can then be used to remove data from output buffers
(thus freeing space), and provide new data to the process, respectively. In a sequential
context, they do not fail unless the channels are empty or full.

Alternatively, the interpreter could also be conceived as a procedure that makes
extensive use of callbacks. This is just a matter of flow inversion. We consciously choose
to approach it as a stateful object, however, as it will make the transition to a lock-free
linearizable data structure that much easier in the next section.

In the case where there are only one input and one output channels, our Kahn process
behaves much as would a filter of sorts. Similar to how a Unix pipe works, the single-
input single-output Kahn filter receives a stream of data, processes it and spits out a new
sequence of values. The only difference—though admittedly a major one—is the presence
of a preemptive process scheduler, as well as forced memory isolation, in the case of Unix.
With Kahn processes, a single thread of execution has to juggle between the coroutine
and its caller explicitly. It is also the case that it must follow the cooperation protocol:
we saw in the last chapter that the thread scheduler is adversarial, in an environment
that requires lock freedom; in contrast, we consider the local coroutine scheduler in each
thread to be under our total control (or at least acting in a friendly way) and perfectly
willing to carry out the defined protocol, if the platform or hardware lets it do so.

This serves as the basic abstraction for our Kahn processes. As a data object, the
interpreted Kahn program appears as a cooperatively concurrent “multi-filter,” whose
observable behavior is described by three phenomena:

• data exchanges from the environment to the process, initiated through chsend and
acknowledged by a true return from cocall ;

• data exchanges from the process to the environment, initiated through chrecv and
acknowledged by a true return from cocall ;
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• and termination of the process, as attested by a null return from cocall.

3.2.2 Processes as state machines

Although we present our work as the construction of an interpreter, we are not interested
in the sequential parts of the evaluation. In fact, we want to allow sequential code written
in the target language to be turned into and run as Kahn processes. Instead of a full-
fledged interpreter and source language, we provide a run-time library. This library
accepts programs written in a version of the Kahn process language encoded in the host
language as data and functions. We now describe this embedding into a fairly average
imperative language with threads, as we have relied on in the previous chapter.

The main intent of such a program representation is, of course, that most statements
simply map one-for-one to their host counterparts, in the sequential portions. We assume
the target language does not have built-in coroutines. Instead, embedded Kahn processes
are written as state machines.

• The state of a machine is given by (the value of) a dictionary of all local variables
declared in the Kahn process, which is most commonly implemented as an array
(with variables properly renamed) or structure with named fields. In the simplified
version of the language we are studying, those fields are limited to integers, but they
could easily be extended to hold linked data structures, making for state machines
that are not necessarily finite.

• A transition corresponds to a potentially yielding statement, where control might
deviate from the normal sequential flow and be transferred deliberately to the caller
of the coroutine. These special cooperation points include channel input and output
instructions, as well as the special handling of the reconfigure statement that will
be explained in the next subsection.

Given the above definitions, we can already construct a simple run-time library for
single Kahn processes without reconfiguration, which are just coroutines with bounded
first-in first-out queues. To get an idea of the whole picture, we give pseudo-code for this
first step in Figures 3.3 to 3.7, using the code for the simple queue seen in Section 2.1
(not reproduced).

In our sequential implementation, the state machine is implemented by a combination
of a state array and a step transition function. The state field in the Proc structure
(Figure 3.3) points to two reserved cells (see below), followed by one cell per process-
local variable, as described above. The transition function is expected to comply with
certain rules:

• It does not access any shared memory aside from the Proc structure it receives as
argument. Within that object, only the state array can be written; the other fields
are read-only.
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struct Proc {
bool step(Arg[∗], int[∗]);
Arg args[∗];
int state[∗];
bool finished;

};

struct Chan {
int front;
int back;
int buf[∗];

};

We use the T [∗] type to denote a fat array pointer, which holds both the length and the
address of the array. It may be cast to and from an integer–pointer pair of the appropriate
type. The countof operator provides access to the length of a fat pointer. Otherwise, it
automatically decays to a pointer of the right type, and behaves just like a normal array
pointer over items of type T .

Figure 3.3: Sequential single-process implementation: Proc and Chan

enum ArgKind {
IN,
OUT,
CST

};

struct Arg {
ArgKind kind;
union {

Chan ∗ch;
int c;

};
};

Figure 3.4: Sequential single-process implementation: Arg and ArgKind
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1 Proc ∗mkproc(Proc ∗p, bool step(Arg[∗], int[∗]), int nvar, Arg args...)
2 {
3 p.finished := false;
4 p.step := step;
5 p.args := calloc(countof args, sizeof ∗args);
6 memcpy(p.args, args, countof args ∗ sizeof ∗args);
7 p.state := aalloc(2 + nvar, sizeof ∗p.state);
8 p.state[0] := p.state[1] := −1;
9 return p;
10 }

1 void cofree(Proc ∗p)
2 {
3 free(p.args);
4 free(p.state);
5 }

The aalloc function is a wrapper around calloc that returns a fat array pointer.

Figure 3.5: Sequential single-process implementation: mkproc and cofree

• It does not perform any input–output action, or otherwise communicate with ex-
ternal sources. Thus, it behaves as a pure function over states: it maps one state
to the next one, although it does so by mutating the state array.

• It returns in a bounded number of instructions, i.e., transitions take a finite amount
of time.

• If the process terminates, it returns true and does not alter the state.

• If it wants to read from or write to one of its process arguments, it returns false,
and sets the two reserved cells of the state array as follows. The first cell should
contain the index of the argument to read or write. The second one specifies the
index of the process-local variable to copy date to or from. This initiates a state
transition, such that the next time step is called, the requested action is guaranteed
to have been completed, and its state changed, if necessary, to reflect it.

In effect, the first two cells of the state array encode the part of the transition that may
require the process to wait, and delegates the actual waiting to the run-time library (see
cocall in Figure 3.6) instead of entering a busy loop. This allows lazy waiting similar to
the quarantine for recycling pointers, in the last chapter. The reserved cells are initialized
to invalid indices to indicate that no transition is ongoing, and are guaranteed to reset
each time step is called.
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1 (bool, Chan ∗) cocall(Proc ∗p)
2 {
3 if (p.finished)
4 return true, null;
5 if (p.state[0] = −1 or p.state[1] = −1) {
6 if (p.step(p.args, p.state)) {
7 p.finished := true;
8 return true, null;
9 }
10 }
11 assert(p.state[0] ≥ 0 and p.state[0] < countof p.args);
12 assert(p.state[1] ≥ 2 and p.state[1] < countof p.state);
13 var arg := p.args[p.state[0]];
14 var px := &p.state[p.state[1]];
15 bool ok;
16 int x;
17 switch (arg.kind) {
18 case IN:
19 ok, x := chrecv(arg.ch);
20 ∗px := x;
21 break;
22 case OUT:
23 ok := chsend(arg.ch, ∗px);
24 break;
25 default:
26 abort();
27 }
28 if (ok) {
29 p.state[0] := −1;
30 p.state[1] := −1;
31 }
32 return ok, arg.ch;
33 }

Figure 3.6: Sequential single-process implementation: cocall
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1 Chan mkchan(Chan ∗ch, int len)
2 {
3 ch.front := 0;
4 ch.back := 0;
5 ch.buf := aalloc(len, sizeof ∗ch.buf);
6 return ch;
7 }

1 void chfree(Chan ∗ch)
2 {
3 free(ch.buf);
4 }

1 (bool, int) chrecv(Chan ∗ch)
2 {
3 return pop(ch);
4 }

1 bool chsend(Chan ∗ch, int x)
2 {
3 return push(ch, x);
4 }

1 bool isEmpty(Chan ∗ch)
2 {
3 return ch.back = ch.front;
4 }

1 bool isFull(Chan ∗ch)
2 {
3 return (ch.front − ch.back) % countof ch.buf = 1;
4 }

Figure 3.7: Sequential single-process implementation: channels
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A
u(1)

~~

v(1)

  
B

w(2) //

x(1)   

C

y(2)~~
D

Chan ∗u, ∗v, ∗w, ∗x, ∗y;
u := mkchan(malloc(sizeof ∗u), 1);
v := mkchan(malloc(sizeof ∗u), 1);
w := mkchan(malloc(sizeof ∗u), 2);
x := mkchan(malloc(sizeof ∗u), 1);
y := mkchan(malloc(sizeof ∗u), 2);

// Processes declared as:
// process A(out u, out v)
// process B(in u, out w, out x)
// process C(in w, out y)
// process D(in x, in y)

Proc ∗a, ∗b, ∗c, ∗d;
a := mkproc(malloc(sizeof ∗a), ..., {OUT, u}, {OUT, v});
b := mkproc(malloc(sizeof ∗b), ..., {IN, u}, {OUT, w}, {OUT, x});
c := mkproc(malloc(sizeof ∗c), ..., {IN, w}, {OUT, y});
d := mkproc(malloc(sizeof ∗d), ..., {IN, x}, {IN, y});

Figure 3.8: Sample four-process network

3.2.3 Multiple processes

Let us now build a graph out of our sequential Kahn processes. Our goal should be quite
modest for now. The graph will be static: constructed once and unchanging ever after.

From the viewpoint of the host program operating the coroutines, managing multiple
processes involves two additional tasks: linking processes together through channels, and
choosing what to do each time we are given control, e.g., when cocall returns.

Meshing the processes together is simply a matter of first creating the Chan ob-
jects with mkchan, then the different Proc objects by calling mkproc and passing the
appropriate channels as in and out arguments. See Figure 3.8 for an example.

The question of what to do when we have control is in many ways more interesting.
To push the overall network toward progress (or completion, in the case of a finite com-
putation), we need data to be produced in channels as they are needed. For half-bound
channels, which are only connected to a process on one side, there must be some specific
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logic, that varies by use case, that provides inputs and consumes outputs. For example,
the program could be reading and writing to system file streams. We conveniently as-
sume the presence of the generic input and output statements that abstract away those
details. Input statements return data to be pushed onto an unbound input port; output
statements consume items popped from unbound output ports.

For all other channels, both ends should be assigned to some process. It is thus a
matter of scheduling appropriate coroutines at the right time. A fundamental property
of Kahn process networks is their deterministic nature: as shown by Kahn [1974], all
choices in terms of what routine to schedule and when lead to compatible streams of
values being written to all channels. By compatible, we mean that the streams thus
produced are totally ordered in a prefix relation. Some schedules might produce shorter
sequences, if, for example, a process enters an infinite loop (which we actually disallow
as per the finite transition rule above), or if the operator always chooses to run a same
process that is in a waiting state and thus cannot progress further, unless data or space
is made available, usually by passing control to others.

3.2.3.1 Compatible schedules

We can give a short concrete reformulation of Kahn’s result in the context of our work.
Given a Kahn process network, with processes defined as state machines, according to
the previous subsection. Process transitions occur in two parts: first the process state is
updated by the step procedure; then the associated channel operation (written to the
reserved cells of the state array) is performed. Both actions, which we call start and end
half-transitions, happen as part of cocall.

We consider legal schedules of a given process network: interleaved sequences of
alternating process half-transitions, as generated by cocall on processes of said network, in
any permissible execution. The contract for cocall, chsend and chrecv impose no particular
restriction on when they may be called. They simply fail without effect if nothing can
be done. Therefore, we may quantify over all arbitrary sequences of invocations. Even
though we are in a sequential setting, we still need to assume non-interference from the
client. In particular, this ensures that channels are correctly operated, with values being
enqueued then dequeued. Let us show the following theorem.

Theorem 1. If two legal schedules contain the same number of half-transitions for some
process p, then:

• they have the same process state s for p;

• and the same history of produced values u0 . . . uk−1 (resp. number of consumed
values) for every channel u whose producer (resp. consumer) process is p.

Proof. We proceed by induction on the length of schedules (all legal):

• If the schedules have length zero, then every counts of half-transitions are zero, and
all the schedules are the same, so both properties hold.
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• Suppose that for some n, the properties hold for every two schedules of length less
than n. Let γ be a schedule of length n and γ′ another of length n′. Without loss
of generality, we assume n′ ≤ n. Let p be some process with the same number of
associated half-transitions in both γ and γ′. We recall that half-transitions of a
given process are strictly alternating.

– Suppose the last half-transition of p in γ and γ′ is a start half-transition.
Since only half-transitions modify the corresponding state array, we consider
the shortened prefixes that cut before the last (start) half-transition of p in
both schedules. Those prefixes have length less than n, thus, by induction,
they leave p in the same state. Since step is a pure function over states, the
new start half-transition produces the same state for p in both γ and γ′.

– Let u be an output channel of p. Since only end half-transitions of p may
produce values in u, we consider the shortened prefixes that cut before the
last end half-transition of p that affects u in both schedules. Those prefixes
have length less than n, thus, by induction, they leave p in the same state
and produce the same history of values on u. The new value added to u is
read from the state array of p, which is the same by induction. Therefore, it
is equal in γ and γ′. Since previous values produced on u are also equal, the
new histories of values are equal.

– Let u be an input channel of p. Since only end half-transitions of p may
consume values from u, we consider the shortened prefixes γu and γ′u that cut
before the last end half-transition of p that affects u in both schedules. Let k
be the index read by that half-transition. Those prefixes have length less than
n, thus, by induction, they leave p in the same state and consume the same
number of values on u. The prefixes that produce exactly k values on u are
even shorter (else, the half-transition could not occur), therefore the values
at index k in u in both γu and γ′u are equal. The new value taken from u is
written to the state array of p, which is also the same in γ and γ′. Therefore,
the new states are equal.

Corollary 1. If two legal schedules have the same number of half-transitions of both
kinds for every process, they are equivalent, in the sense that their overall shared state
is the same. Thus, any transition that can be appended to one can be equally appended to
the other to yield two new equivalent extended schedules.

Corollary 2. Given a legal schedule γ, if there exists a legal schedule γ′ and a process
with more half-transitions in γ′, then there is at least one half-transition that can be
appended to γ to yield a longer schedule.

Proof. There are two cases:

• If there exists a process p that has more start half-transitions in γ′ than in γ, then
appending a start half-transition of p to γ is always legal.
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• Otherwise, all processes with more half-transitions in γ′ only have one more end
half-transition. Let p be the process associated with the earliest such end half-
transition α, and γ′α the prefix of γ′ that excludes every action from α (inclusive)
onward. Suppose the added end half-transition consumes at index k in some channel
u. The state of p and the number of consumed values on u in γ and γ′α are the same
since both schedules have the same number of corresponding half-transitions for p.
Since γ′α contains less half-transitions than γ for every process, in particular, the
first k of u must have been produced in γ, and α can be appended to γ to consume
the value at index k.

Lemma 1. Given a bounded Kahn process network, the same network with larger bounds
on some of its channels produces compatible results. For every execution of the tighter
network (with stricter bounds), there exists an execution of the looser one that produces
at least as many values on every channel.

Proof. Any schedule of the tighter network is also a valid schedule of the looser one,
in which the scheduler could have taken other decisions with regard to production on
channels where space was available but decided not to. This proves the second point. By
Theorem 1, all those schedules are therefore compatible with any other schedule allowed
by the looser network.

The above lemma states that increasing the bounds on channels of a given network
may only lead to more output being produced. Up to this point, we have considered
general bounded Kahn process networks. In the rest of this thesis, however, we will only
be interested in programs in which the boundedness of channels merely acts as a resource
constraint and does not otherwise affect the outcome. Intuitively, we focus on programs
with sufficiently large buffers. For a process network to qualify, its results should be the
same as would be produced by the same network where every channel is unbounded.
That is, if there exists a schedule of the unbounded network that produces a certain
number of values, then there must exist a schedule of the bounded network that does
the same. In particular, this excludes programs that produce more values the longer the
channels we give them. If precise acknowledgment of consumed values is needed, we must
add explicit reverse channels to this effect, instead of relying on the implicit feedback
provided by bounded pushes.

The reason we require such implicit channel sizes has to do with performance. We
generally want the programmer to specify only a lower bound on each channel, so that
the implementation may decide to round it up however it likes, which will have important
practical applications later on.

3.2.3.2 Maximal progress

In general, we want schedulers that guaranteemaximal progress conditional on the root
process. That is, at any point in time, if there exist a schedule that leads to more root
transitions than the current schedule, then the maximal-progress scheduler eventually
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makes progress with probability one.1 As a baseline, we should note that any scheduler
that picks what next action to attempt randomly satisfies the criterion, provided it is
minimally fair. A scheduler is minimally fair if there is a constant lower bound on the
probability it will choose any given item in a round.

Lemma 2. Any minimally fair scheduler makes maximal progress.

Proof. If there is a schedule with a longer transition sequence for the root process, then
Corollary 2 tells us that there exists a target process p that, if selected, makes progress.
Since it is minimally fair, each attempt has at least some constant probability of choosing
p. Therefore, it will sooner or later pick p, with probability one.

This method is not, however, very efficient as many of its actions are wasted on cocall
invocations that initiate no new transitions. Fortunately, we have defined the interface
such that cocall returns just enough information to tell the environment what it needs
to continue (i.e., data or space in a specific buffer). Therefore, a very simple yet ef-
fective strategy for a sequential interpreter is demand-driven scheduling, one of the
approaches discussed in [Kahn, 1974].

In such a scheduler, shown in Figure 3.9, the scheduling function, demand, takes
two process arguments. The first one is the source process that we wish to run. The
second, the target process, specifies when we should stop. The operator invokes cocall on
the source process repeatedly until it produces something on the channel bound to the
target process—which is presumably waiting on it. The current work may itself require
other processes to run, and thus calls demand recursively. If needed, then input or output
by the environment is performed.

Lemma 3. If demand is recursively called with a source argument p that has already
been passed to a pending invocation (on the stack), then it loops forever. The schedule
generated at the second call site contains the same number of half-transitions of p as the
one at the point where the first invocation recursed.

Proof. Suppose demand is called recursively with a source argument p that already ap-
pears on the stack. Consider the first such occurrence. This implies that all source pro-
cesses on the stack except p are distinct. Morever, p is in a state that requires progress
on some channel u (in some direction). That progress can only be achieved by running
the opposite process q (by the single-producer single-consumer rule). Since q appears at
most once in the sequence of demand invocations between the two occurrences of p, it
must be the immediate recursive call following the first of p. Since that call did not re-
turn, it did not complete its target condition, thus did not affect u. Therefore, the second
occurrence of p cannot proceed any further than the first. No new half-transition has
been introduced for p, and the loop repeats identically. The same argument can be made
for every following process we encounter in the ensuing cycle. Each new cycle introduces
one new occurrence of every process in the loop, which similarly does not return, thus

1Note that we do not require progress to be made on the root process specifically, simply that it acts
as a global termination condition.

83



3.2. A SEQUENTIAL INTERPRETER

// Returns the adjacent process following the specified link,
// or null if the channel is unbound on that side.
Proc ∗adjacent(Proc ∗, Chan ∗);

// Returns the argument of the process bound to some channel.
Arg arg(Proc ∗, Chan ∗);

1 // Runs the first process just enough times to be able
2 // to yield to the second one.
3 void demand(Proc ∗p, Proc ∗r)
4 {
5 for (;;) {
6 var ok, ch := cocall(p);
7 if (ok and ch = null)
8 return;
9 var q := adjacent(p, ch);
10 if (ok) {
11 // Is the demand satisfied?
12 if (q = r)
13 return;
14 } else {
15 if (q 6= null)
16 demand(q, p);
17 else {
18 switch (arg(p, ch).kind) {
19 case IN:
20 var x := input(ch);
21 chsend(ch, x);
22 break;
23 case OUT:
24 var _, x := chrecv(ch);
25 output(ch, x);
26 default:
27 abort();
28 }
29 }
30 }
31 }
32 }

Figure 3.9: Sequential demand-driven scheduler
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does not affect the required channel. Finally, no new half-transition is introduced from
the first repetition onward.

Lemma 4. The demand-driven scheduler makes maximal progress.

Proof. Suppose the demand-driven scheduler enters an infinite loop and stops making
progress. Since we consider only finite graphs, this only occurs if demand recurses indefi-
nitely, as in Lemma 3. Moreover, there is a finite set W of processes covered by this loop,
including the root process. Equivalently, it is the set of processes present as arguments
to demand invocations on the stack. Let γ be the current schedule.

Suppose there is a legal schedule γ′ that has a longer half-transition sequence for
the root process. Let α be the earliest half-transition in γ′ but not in γ, of a process p
belonging to W . Since demand invokes cocall on every process it touches, the last half-
transition for each is a start half-transition, thus α cannot also be a start half-transition.
Let u be the channel that is operated on by α.

Let γ′α be the prefix of γ′ up to but excluding α. Since γ′α and γ have the same number
of half-transitions for all processes in W , all related channels have the same histories of
produced and consumed values, including u. Let q be the other process bound to u, that
is not p.

We look at a pending invocation of demand (on the stack) that has p as first argu-
ment. Since p is inW and its state mandates an operation on u, this invocation must have
generated a recursive call to demand with argument q, which did not return, by hypothe-
sis. Thus, it did not match its target, and u was not affected. By Lemma 3, we know that
no following invocation involving q could have added any new half-transition. Therefore,
the state of u in γ is the same as it was when p first recursed. The half-transition α
cannot be applied to such a state, hence not to γ′ either. We have a contradiction.

Lastly, in preparation of things to come, we would like to point out that any scheduler
can be made minimally fair, hence achieving maximal progress, by interleaving its choices
with a random scheduler at bounded intervals; e.g., pick one process at random every k
clever choices for some k. This can be used advantageously by choosing k such that those
random rounds are amortized by the number of processes in the network, in combination
with unsafe schedulers that do not have a maximal progress guarantee. While not very
interesting for a sequential algorithm, we will use this method to turn lock-free schedulers
that are non-maximal in the presence of faults into minimally fair schedulers. There is a
gain to be had in both practical efficiency and simplicity of design.

Yet other variations and heuristics are also possible. We shall, however, be content
with the above demonstration of sequential scheduling, which paves the way for the next
important topic: reconfiguration.

3.2.4 Recursive processes in the sequential world

To complete our sequential Kahn process network implementation, we need to support
reconfiguration: the ability for one process to split itself into several children connected by
channels. In a Kahn process network, reconfiguration happens at most once per process,
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as it effectively replaces the parent with its children, much like execve replaces a Unix
process with another.

Put another way, a reconfigured process delegates all further actions it is allowed to
take to its subprocesses. We can think of reconfigure as recursive interpretation. As a
statement, it combines the initialization of a network of child processes, followed by a
transition to a final state that loops while scheduling those child coroutines, as we have
seen in the previous subsection. To the external observer, it should be invisible: it seems
like the parent process could be carrying out the exact same work in sequence instead of
running a nested interpreter. But could it really?

Unfortunately, there is a certain mismatch between single processes and networks of
those: the former behave sequentially and deterministically; the latter allow for different
schedules, as we have seen, and are therefore non-deterministic.

In particular, central to the Kahn design, one process can only wait on one channel at
a time. Once reconfigured, however, the subgraph is inherently concurrent and different
child processes might have different needs. Since the the inner scheduler has no knowledge
of coroutines outside of the enclosing parent scope, it cannot decide between requests for
different channels. If child A requires data from channel u while child B wants to write
to channel v, and both channels are bound only on one side within the subgraph, how
do we know which one to ask for and return to the outer environment as the result of
cocall? If we ask for the wrong one, the parent scheduler might just not be able to satisfy
the request because of dependencies unseen by the deeper level. Perhaps u and v must
alternate, or maybe u can only be read after five values have been consumed from v. A
perfectly nested scheduler cannot know the answer to those questions.

This shows that, while cocall might be suitable for single processes, we need a different
interface to deal with networks. We define a new function copoll that borrows much from
cocall, except it orchestrates the execution of a whole network rooted at a given process.
Instead of asking to run a specific process, the caller gives copoll a set of channels for which
it is responsible. In a way, it is similar to multiplexing system calls such as select and poll
on Unix, or WaitForMultipleObjects on Windows, albeit with different timing priorities.
The copoll function does not return for each individual movement within the network.
Instead, it only yields control to its caller when it registers a request for more data or
space on one of the provided channels, or on special conditions such as termination. This
is in contrast to select, which attempts to return as soon as any operation is possible on
any monitored file descriptor. Our copoll procedure is rather lazy and only gives control
back whenever intervention by the environment is required. This does not change whether
progress is made; it simply affects which side advances first. In our case, Kahn processes
are given the preference.

We demonstrate an implementation of copoll and cocall in Figures 3.10 to 3.12, where
a single topmost copoll invocation handles any level of nested subgraphs. Alternatively,
we note that a recursive implementation should be possible, by breaking the single-
process abstraction of cocall, and considering each node as a potential subgraph. Recursive
execution would then be handled by copoll itself, making for a network of networks.
We feel such an arrangement brings little to the table, since the graph of subgraphs

86



CHAPTER 3. A LOCK-FREE KAHN PROCESS NETWORK IMPLEMENTATION

struct Conf {
Proc procs[∗];
Chan chans[∗];

};

struct Proc {
bool step(Arg[∗], int[∗]);
Arg args[∗];
int state[∗];
Conf ∗reconfigure(Arg[∗], int[∗]);
Conf ∗conf;
bool finished;

};

Figure 3.10: Single-scheduler reconfiguration: declarations (changes only)

could really just be handled as one big network instead, which is both simpler and more
efficient.2

We define global termination as the state of every process in the network having
finished. An alternative would be to have one child inherit the root process property,
which makes it possible to reuse the demand-driven scheduler almost unchanged, as
suggested in [Kahn, 1974]. While it might seem appealing, as we will see, the demand-
driven scheduler is not a good fit in a concurrent context. Plus, such a design complicates
having multiple parallel outputs handled by different processes—care must be taken when
picking a root process that indeed finishes after all others. Therefore, we opt here for the
more straightforward solution.

The implementation relies on the existence of a scheduler routine, schedule, that picks
processes to execute, with the same caveats already discussed in the previous section (e.g.,
maximal progress). Fortunately, any scheduler (including all those in the previous sub-
section) that only navigates the graph from vertex to vertex (each representing a process)
through channel edges remains conveniently compatible with this new organization. We
postpone further discussions of process scheduling to Section 4.1. Thus our sequential
Kahn process network implementation can be considered complete, with full support for
networks rather than single processes.

2Connecting multiple networks run by different interpreters would be a valid reason to have copoll
handle only part of a larger graph. While we believe this should be possible in a sequential world using
nothing more than the copoll interface defined here, the situation is a lot more complex in the concurrent
case, and is overall beyond the scope of our present work.
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// Number of live processes left to run.
int nproc;

// Returns a process to execute, or null if none can run.
Proc ∗schedule(Proc ∗, bool w[]);

1 int copoll(Proc ∗p, bool w[])
2 {
3 for (var i := 0; i < countof p.args; ++i) {
4 if (w[i]) {
5 var arg := p.args[i];
6 if (arg.kind = IN and isEmpty(arg.ch) or
7 arg.kind = OUT and isFull(arg.ch)) {
8 return i;
9 }
10 }
11 }
12 while (nproc > 0) {
13 var q := schedule(p, w);
14 if (q = null) {
15 // Deadlock.
16 return −2;
17 }
18 var ok, ch := cocall(q);
19 if (not ok) {
20 for (var i := 0; i < countof w; ++i) {
21 if (w[i] and p.args[i] = ch)
22 return i;
23 }
24 }
25 }
26 // Global termination.
27 return −1;
28 }

Figure 3.11: Single-scheduler reconfiguration: copoll
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1 (bool, Chan ∗) cocall(Proc ∗p)
2 {
3 if (p.finished)
4 return true, null;
5 if ((p.state[0] = −1 or p.state[1] = −1) and
6 p.step(p.args, p.state)) {
7 p.finished := true;
8 −−nproc;
9 if (p.reconfigure 6= null) {
10 p.conf := p.reconfigure(p.args, p.state);
11 nproc +:= countof p.conf.procs;
12 }
13 return true, null;
14 } else {
15 // Usual channel input/output handling.
16 ...
17 }
18 }

Figure 3.12: Single-scheduler reconfiguration: cocall (changes only)

3.3 Concurrent interpretation

3.3.1 An interpreter shared object

From our sequential implementation in the previous section, we now shape a concurrent
lock-free Kahn process interpreter: one that makes use of multiple threads. In doing so,
our objective is evidently to exploit the inherent potential for parallelism in Kahn process
networks—an interesting case of disjoint-access parallelism.

Before we delve into further implementation discussions, there is one question that
needs to be addressed: what is it that will run in parallel? In other words, what is the
protocol that we intend to allow?

Instead of a procedure, we constructed our sequential Kahn process interpreter as
a stateful object, which is ideal as a foundation for the sequential specification of a fu-
ture linearizable concurrent data structure. It has three top-level methods: copoll (which
supersedes cocall), chrecv and chsend. As we have seen, these cover three classes of ob-
servable behaviors: data transfers from and to the network, plus termination.

Crucially, concurrent invocations of copoll should be allowed and, as a rule of thumb,
they should take care of different parts of the network, so as to be able to run processes
in parallel without competing for too many shared resources. Due to its dependency on
a black-box scheduler, in most cases, where multiple process choices can be made, the
semantics of copoll is naturally non-deterministic, from the viewpoint of its caller.

The main point of contention is with regard to the channel methods: should we allow
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multiple threads to read from or write to the same unbound channel port? There are
mainly two alternatives:

1. Disallow concurrent client accesses to the same channel: the client must guaran-
tee that all invocations chrecv or chsend to a same channel object be exclusive.
This does not apply to transfers made by the run-time library, which, as we have
explained, are necessarily concurrent if we want to attain lock freedom.

2. Allow concurrent client accesses to the same channel that linearize to a first-in
first-out queue. Each thread gets to read or write one item of the buffer in some
sequence consistent with how it appears to Kahn processes: e.g., client threads read
out values in the order they were added to the channel by the Kahn program.

Given the signatures of the chrecv and chsend methods defined above, there is hardly
any other possible interpretation. We could however imagine a more involved interface
with indexed accesses. This would add much complexity and depth to the question. Are
out-of-order accesses legal? Do we permit concurrent stores of different values at the same
index? What about those that assign the same value to the same spot?

In this work, however, we settle for the simplest dynamic: exclusive access to a same
channel. We justify this choice with two arguments: one conceptual, and one practical.

On a conceptual level, we would like to view the entire system as blending Kahn
processes with system threads to fabricate a composite network made of two types of
nodes:

Soft nodes high-level Kahn processes, that are lightweight, cooperative, and guaranteed
non-blocking by our run-time library;

Hard nodes low-level system threads, that are heavyweight, typically few in number,
and may carry out any duty, including blocking tasks3 that require waiting on
external input or output conditions, e.g., from disks or sensors.

This system would still follow the Kahn process network philosophy—or at least
appear to do so. Most importantly, the single-producer single-consumer rule would apply:
meaning there is at most one node, either soft or hard, on each end of a channel. Hence,
the exclusive access restriction on the use of chrecv and chsend on a same channel.

From a practical angle, this constraint also makes most sense, as it permits direct
reuse of part of the internal channel implementation, which is not suited for use as
a multi-producer multi-consumer queue. Indeed, even though we must allow contention
between multiple readers or writers in order to avoid deadly waits, we surely want to take
advantage of the main feature of Kahn process networks: deterministic computations,

3They lie on the other side of our lock-free criterion, which we believe to be totally reasonable.
Such treatment would typically be reserved for things that cannot be accomplished satisfyingly within
a normal Kahn process, such as reading from a socket. Even if multiplexing calls such as select exist,
the actual ensuing input operation can usually not be repeated, which does not lend itself easily to lock
freedom, to say the least.
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which is implied by the pureness of the step function as specified in the previous section.
Under this hypothesis, values written to a given channel at a given position by concurrent
threads interpreting the same Kahn program are always equal: a fact we can leverage in
our algorithms. This, however, also makes our channel objects unfit for use as general
multi-producer multi-consumer queues, as would be required if we were to allow arbitrary
concurrent invocations of chrecv and chsend.

It should also be noted that this protocol does not prevent the Kahn process network
from communicating with its environment through as many channels as desirable. Each
channel may be bound to a different hard node—a thread. In addition, there may also
be threads that do not perform any input or output operation and simply call copoll. On
a semantic level, they may do so in order to observe termination of the process network.
In practice, they help execute spare soft processes, whose side effects on channels are
seen by hard nodes. We call any thread that contributes copoll instances a worker
thread (or simply worker). Taken together, method invocations emitted by all threads
interacting with the interpreter shared object, assuming they follow the above protocol,
should linearize to the sequential “multi-filter” interpreter described the previous section.

3.3.2 States and transitions in a concurrent world

As a preliminary to data structures and algorithms, let us first discuss some vital char-
acteristics of what we are trying to implement.

As we have seen, internally, the Kahn process interpreter works in steps called tran-
sitions, which can themselves be divided into a start and an end half-transitions. The
former updates a process state, while the latter performs (internal) input or output on a
channel.

Since we wish for disjoint-access parallelism on unrelated transitions, different ele-
ments of the graph—such as distinct processes or channels—should be represented and
updated separately. This brings the fundamental issue of multi-word algorithms, intro-
duced in the last chapter: safely modifying two locations at once. Those two locations
are one for the process, and another for the channel.

Obviously, the process and its channels lived in a single chunk of memory, we could
swap it in a single operation. But what about the other processes bound to those same
channels then? They would need to be crammed into the very same chunk. Or maybe
they could have their own version of the channel objects? But then how do we synchronize
those? We are back with the multi-word problem.

Fortunately, Kahn process networks also have very nice properties, most notably
determinism, which we can leverage to build better, leaner algorithms.

First of all, our update operations all touch exactly two locations and have a natural
ordering: start followed by end half-transition. Moreover, processes are sequential and
deterministic, so at any one point in time, there is at most one transition in flight—the
most recent—that is legitimate, while all others have already expired, even if their host
threads might not have realized it yet.

Lastly, producer and consumer on a channel operate on opposite ends of the buffer,
which means that—depending on the representation of channels—some transitions that
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‘T ∗safeRead(‘T ∗∗);
void beginReadSection(‘T ∗);
void endReadSection(‘T ∗);
bool inReadSection(‘T ∗);

// To make matters simpler, every integer type is int;
// this does not match standard C, where alloc functions
// take size_t arguments.
void ∗malloc(int);
void ∗calloc(int, int);
void aalloc(int, int)[∗]
void destroy(‘T ∗, void (∗)(‘T ∗));
void collect();
void free(void ∗);
void freex(void ∗);

Figure 3.13: Memory management interface

overlap might in fact update different locations altogether.

3.4 Memory management and ABA prevention

As the basis for all of the following algorithms, we assume the existence of a global
lock-free memory management and ABA-prevention system, as described in Sections 2.6
and 2.7. We do not specify an exact implementation, although differences in the expres-
siveness of the interface, and their impact on our algorithms, will be noted. Furthermore,
we will be precise as to where to place the necessary read barriers in our Kahn process
interpreter code, in order to enable any such system to work. Thus, our algorithms do
not require automatic garbage collection.

Before turning to our new data structures, we briefly describe the interface to the
lock-free memory management system. For more information, including a full explanation
of how to implement one of those (or several variants thereof), please refer to the previous
chapter.

The memory management system exposes four functions that cater to read sections,
and several functions that operate the per-thread quarantine and (manual) garbage collec-
tion mechanism. Signatures for all these functions are shown in Figure 3.13, and explained
below.

safeRead Safely loads a block pointer b stored at the given shared location a. Upon
return, we are guaranteed that b is locked by a read section as if beginReadSection
had been called on it atomically as its value was read.

beginReadSection Unconditionally enters a read section on the specified block. It will
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1 // aalloc is just a convenience function.
2 void aalloc(int n, int size)[∗]
3 {
4 var p := calloc(n, size);
5 return (void[∗])(n, p);
6 }

Figure 3.14: Memory management: aalloc

not be collected by the memory allocator (see collect below) before we pass it to
endReadSection.

endReadSection Leaves a read section started with safeRead or beginReadSection. Note
that read sections on a same block do not nest.

inReadSection Returns true if the current thread is within a read section for the spec-
ified block. We never use this call in actual code; only in assertions to establish
(sequential) preconditions.

alloc Family of functions that return fresh blocks. The malloc function returns a block of
the requested size or more. The calloc function returns a block of size the product of
its arguments—the first argument specifies the number of elements in the allocated
array and the second one gives the size of one element. As a reminder, in C, calloc
zeroes out every bits of the returned region, but malloc does not. Finally, the aalloc
function is defined in Figure 3.14.

destroy Sends the given block, to which the calling thread must have exclusive write
access (e.g., by detaching it from the shared data structure in a way that makes it
unavailable to other writers), to the quarantine, along with a destructor function
to run when there are no more readers.

collect Scans the quarantine looking for blocks that can be safely freed. For each such
block found, call its destructor function, which should call free on the chunk itself
and any wholly owned chunks.

free Marks a block as clear for reallocation by alloc. It must be exclusively held by
the caller (e.g., designated as such by collect); therefore, free should normally only
be called from within a destructor. We use freex when outside of collect, e.g., for
chunks allocated locally and not (yet) swapped into any shared data structure.

To help with initialization cases, the inReadSection, endReadSection, destroy, free and
freex functions accept null pointer arguments, and produce no effect when so called. The
safeReread function behaves like safeRead if passed a null second argument.

In the following proofs, we generally do not pay much attention to the read-section
management routines, except for confirming that a specific use of a pointer acts as if it
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were unique. This is in large part due to the fact that the memory reclamation system
offers a different interface to most other structures. Most importantly, memory addresses
only serve as proxies to the blocks they represent; in particular reallocated blocks are
semantically distinct entities, while two otherwise identical histories except for block
addresses should be considered equivalent. Abstractly, the memory system has two modes
of operation.

• Under normal circumstances, when the system uses no more than the available
space, and every thread only uses up to its allotted amount of read-protected
memory, the allocator behaves as a lock-free source of fresh blocks, albeit with non-
deterministic addresses. Very importantly, in this scenario, individual read sections
taken by other threads are invisible. Therefore, they act as if they were purely
local operations, and for the most part can be ignored when studying linearizable
behaviors.

• However, should one of the two above conditions fail, then it may become possible
for clients to observe foreign read sections, due to their direct influence on the
quantity of memory available.

This being the case, all of our proofs will assume that both the heap and read-section
limits are appropriately sized for the application, so that memory management operations
appear transparent, and allocations never fail.

3.4.1 Grouped block reclamation

An important optimization that was only mentioned in passing in the previous chapter
is the grouping of multiple actual chunks into under a single master block that acts as
the unique protected resource, with regard to memory reclamation.

There are many scenarios where read sections can be elided, depending on the ar-
rangement of the blocks. We are interested in a very restricted use case that we call
bins, after the name sometimes taken to designate the equivalent grouped allocation in
sequential programs. The principle is simple: blocks can be grouped together into a bin,
and more blocks can be added to the bin, but never removed, unless the entire bin is
freed. A bin is always represented by its original chunk (or root), which is the only one
directly visible to the memory management system, with regard to the shared–exclusive
life cycle. All other blocks in the bin share its fate. In particular, shared access to any
block in a bin requires taking a read section on the root, which must be held for the
duration of the operations, as usual.

The only implementation of the bin concept that we will use is the tree bin, in which
chunks are organized as nodes in a tree. The whole structure is represented by its sole
root—as a normal tree would be in a sequential world—and no location external to the
object may point to one of its blocks, except the root. Consequently, swapping the root
chunk in and out of shared data structures acts as an exclusion mechanism.
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Sample code for a generic tree bin is provided in Figure 3.15. In practice, we will want
to specialize the layout and branch handling code to fit a fine-tuned existing structure.
In particular, having leaves also count as tree nodes is both wasteful and cumbersome.

Each node of a tree bin has a number of designated branch fields that hold pointers
to other nodes, or null for a leaf. Each of those branch fields may be swapped exactly
once, from null to point to some additional block that is thus added to the bin. Since
branch fields cannot be modified again, those blocks never leave the bin thereafter.

Reclaiming the entire tree bin is just a matter of waiting on its root and traversing
the tree sequentially, as we would a normal tree. Adding nodes is done by modifying one
of the existing blocks in the bin, which requires a read section on the root. Therefore, if
all read sections expire while we have exclusivity over the tree bin, no more chunks can
be added, and freeing all those that are currently linked is safe (no external pointer to
any block and no live read section) and does not leak memory.

3.5 Overview of the concurrent interpreter

With memory management well-understood, we are ready to start with the construction
of the concurrent interpreter itself.

The following sections propose an in-depth bottom-up construction of the concurrent
interpreter, as we did for the sequential version, only with (a lot) more intermediate steps.
At every stage, we prove linearizability of the components presented, for easy reuse at
the next level.

Sections 3.6 and 3.7 present the two data structures at the lowest layer: monotonic
buffers in Section 3.6, and macro queues in Section 3.7. The two must be used in tandem,
according to the monotonic-block replacement technique introduced in the previous chap-
ter, to form a full channel that connects two Kahn processes. As we will see, this channel
object is unlike the usual lock-free queues designed for thread-to-thread communication.
It specifically supports non-blocking transitions, as defined above, and, in exchange, takes
advantage of the single-producer single-consumer nature of Kahn processes.

Then, in Section 3.8, we build upon those combined channels to create a process graph,
by adding process nodes, and methods to access and update both processes and channels
in a consistent way. As regards the representation of process networks, we present a
flexible three-layered design:

• an authoritative consensus-based shared base;

• an efficient monotonic layer where most communication operations happen; it per-
mits exchanges between Kahn processes controlled by different threads using only
load and store instructions;

• a local layer, where threads maintain cached views of the process states.

Section 3.9 implements the missing transitions—without which there would be no
action—on top of processes and channels, and finally in Section 3.10, we conclude by
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// Embed as the first member of a custom structure.
struct Tree {

Tree ∗root;
Tree ∗br[∗];

};

1 // Call this after allocating a new chunk for a tree node.
2 Tree ∗makeTree(Tree ∗t, int nbr, Tree ∗∗pbr)
3 {
4 t.root := t;
5 t.br := (Tree ∗[∗])(nbr, pbr);
6 return t;
7 }

1 bool growBranch(Tree ∗t, int bi, Tree ∗new)
2 {
3 assert(inReadSection(t.root));
4 assert(bi ≥ 0 and bi < countof t.br);
5 assert(new.root = new);
6 new.root := t.root;
7 if (cas(&t.br[bi], null, new))
8 return true;
9 new.root := new;
10 return false;
11 }

1 // Pass this to destroy on the root.
2 void freeTree(Tree ∗p)
3 {
4 for (var i := 0; i < countof t.br; ++i) {
5 if (t.br[i] 6= null)
6 freeTree(t.br[i]);
7 }
8 free(t.br[i]);
9 }

Figure 3.15: Tree bin example
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writing a concurrent version of copoll and proving a correspondence with sequential
schedules.

3.6 Monotonic channels for finite closed programs

Let us begin our exploration with a very simplified version of the problem, by considering
only finite closed forms of process networks, that receive no input and terminate in a fixed
amount of time.

As a starting point, we want to give a word-monotonic implementation of such an
object. The goal of the closed Kahn program is to fill one or several output buffers with
values from its computation. The fully redundant but nonetheless lock-free4 first solution
should be to run multiple sequential interpreters in parallel and simply write the results
to the same output buffers. Due to determinism (Theorem 1), we know that whatever
values get out will be equal, which means we do not need to worry about conflicts even
when running different schedulers or random ones.

Naturally, we wish to do better than that. In particular, we seek the much-touted
disjoint-access parallelism property: we would like for different threads to partake in
the execution of our single network, seamlessly handling disjoint parts of the graph in
parallel.

What if we just implement all channels as shared buffers? Threads can then simply
execute processes to fill the individual buffers. The same determinism applies to those
intermediate values as they do to the final output. Failing or delayed threads can be
replaced simply by peers picking up their assigned processes and restarting them from
the beginning. This will certainly regenerate and overwrite parts of the associated buffers
that had already been filled, but is not harmful (and should be infrequent, anyway).

However, we do face another problem: synchronization between producers and con-
sumers. How can one thread tell how much content has been produced in a given channel
controlled by another thread?

Fortunately, we need look no further than the saturating counter of the previous
chapter. The basic trick is to have every word-sized modification move the overall state
forward in an non-ambiguous manner: values never repeat at any location. If we view
the entire collection of shared variables as a large tuple (w0, . . . , wn−1) (one entry for
each word), then the set of possible values for our system must be arranged in a partially
ordered set, where the overall order is compatible with the separate orders over individual
words that comprise the tuple: ∀w,w′, ∀k, wk ≤ w′k =⇒ w ≤ w′.

There are many ways to achieve this, with various trade-offs. We can use an index
variable that keeps track of how many values have been pushed in a given channel. The
consumer then only needs to poll for increased index values. This solution is trivially
word-monotonic. However, it suffers from a common caveat: it forces a costly read-modify-
write operation onto the producer, in order to deal with delayed and repeated processes
without repeating values.

4This is not at all surprising, given that lock freedom is a fault tolerance property, and strategy zero
for any fault tolerance system is pure redundancy.
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1 bool monoPush(atomic int buf[∗], int i, int x)
2 {
3 assert(i ≥ 0 and i < countof buf / 3);
4 if (i > 0 and not buf[(i − 1) ∗ 3 + 1])
5 return false;
6 buf[i ∗ 3] := x;
7 buf[i ∗ 3 + 1] := true;
8 return true;
9 }

Figure 3.16: Monotonic buffer: monoPush

1 (bool, int) monoPop(atomic int buf[∗], int i)
2 {
3 assert(i ≥ 0 and i < countof buf / 3);
4 if (i > 0 and not buf[(i − 1) ∗ 3 + 2])
5 return false;
6 if (not buf[i ∗ 3 + 1])
7 return false;
8 var x := buf[i ∗ 3];
9 buf[i ∗ 3 + 2] := true;
10 return true, x;
11 }

Figure 3.17: Monotonic buffer: monoPop
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Figures 3.16 and 3.17 demonstrate another idea, using flags, as follows. We replace
integer buffers with arrays of triples:

1. the value written out;

2. a write flag that goes from false to true to indicate the presence (production) of a
value;

3. a read flag that goes from false to true to indicate that it has been consumed.

Again, the whole thing remains word-monotonic, and we have eliminated our use of
complex instructions. As a rule of thumb, we will always try to keep expensive atomic
primitives such as compare-and-swap to a minimum, preferably completely out of the
common “fast” path, if possible, or else, at least amortized over several cheaper operations.

Lemma 5. Assuming the client calls monoPush always with the same pairs of index–
value arguments, the monoPush and monoPop functions are linearizable.5

Proof. Successful invocations of the monoPush function linearize when they set the write
flag. Analogously, the monoPop function linearizes when setting the read flag. Failed
invocations linearize on the test they fail.

The abstract value of the monotonic buffer is a list of values that have been written,
and a count of how many have been consumed. Values are considered to exist only when
their write flag is set, so the abstract list of values only changes on line 7 in monoPush;
on the consumer side, change occurs when the read flag is set, also on line 9. We then
verify that: on the one hand, when run sequentially, the behavior of methods depends
only on this abstract value; on the other hand, by induction on linearization points in an
arbitrary history, each invocation behaves exactly like the sequential equivalent applied
to the abstract state at the point of linearization.

3.6.1 Replacing buffers

The main limitation of this approach should be evident, however. It does not handle
arbitrary Kahn programs, since the buffers need to be dimensioned just large enough to
hold the entire sequence of values that will ever be produced by each process, instead of
just the lower bound necessary to hold temporary values in channels as they transit from
one point to another.

Thus, we ought to ask ourselves: what would be needed to permit buffer reuse?
Going down the same path we took in the last chapter, the next logical step would be to
upgrade to a chained-block structure. Following this method, monotonic sequences are
to be divided into cycles, separated by a reset operation. This reset operation replaces
full blocks (that have reached the top value) with fresh ones in the bottom state. In our
case, it means swapping full buffers for empty ones.

5When we do not specify the sequential target of such linearization, we mean, by convention, lineariz-
able to the same function run sequentially.
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We thus set forth on a quest to create a block-based channel algorithm that supports
wrapping around, by swapping blocks. At the same time, it must expose an interface
compatible with our Kahn process network needs.

At first glance, our channels may look very similar to standard first-in first-out queues,
that allow multiple threads to enqueue and dequeue elements in a linearizable way. How-
ever, they differ in a fundamental way: they are used to simulate single-producer single-
consumer channels in the higher-level Kahn language. This is apparent through the above
dependency on process states.

Let us look at the producer role, for example. Although it is true that multiple threads
will be attempting to write into a same channel, they will all do so while “impersonating”
(interpreting) the same Kahn process: the single producer bound to that channel. That
process is sequential, and at each step performs at most one operation on a given channel,
which must complete before the next step can be computed and another channel operation
considered. In other words, channel operations are interleaved with, and dependent upon,
particular process states.

Thus proper channel implementation in a Kahn process interpreter starts with a
close examination of states. To begin, what is a process state? Until now, our monotonic
implementation does not actually specify a representation for process states. In fact,
quite the opposite: we have explicitly seen that in order to assist another thread, its
processes have to be repeated from the beginning, with some redundancy in the output.
Any intermediate state is thus known only to the worker thread and not persisted as a
value in shared memory.

This only works because the purely monotonic implementation preserves all values
inserted into channels since the beginning of time and forever. Thus, any process can be
rebooted without fear, for any necessary data it may have to read is still present and
can still be found in the same channels where they were first appeared. Looking back,
we notice that although we defined read flags for our data, they are actually optional:
nobody needs to know when data has been consumed, if everything is only filled once.
Of course, we did so in order to introduce the present block replacement problem.

When block reuse is added to the game, things become more interesting with regard
to states. Once a block is swapped out, the intent is to recycle the associated memory.
Previous values are lost. Therefore, processes need to persist their states to shared mem-
ory, lest they should be lost if the host thread halts. And unlike before, without prior
consumed values to rely on, they cannot be restarted from the beginning. At least, they
cannot be restarted in isolation.

We could, of course, imagine an implementation that also reapplies any further pro-
cess, deeper in the dependency chain, as necessary to reproduce those already consumed
values. This strategy, however, fails in the presence of possibly infinite streams of inputs
that cannot be stored. Therefore, an interpreter supporting infinitely running Kahn pro-
cess networks needs process states to commit to shared memory, from time to time, at
checkpoints. Those checkpoints need to be at least as frequent as channel block changes,
to make up for the lost information discarded along with the previous chunks.

In concrete terms, we associate with each process a single variable that points to a
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block representing its state at the last checkpoint. It is simply updated with a compare-
and-swap statement whenever needed, so as to establish consensus between potential
competing worker threads.

3.6.2 A non-working chained-block strategy

We start by examining a natural yet misleading idea, which goes something like the
following: “This is a monotonic-block algorithm, and we already have one chunk per
channel. Therefore, we need to replace that unique chunk every time it is saturated.”

This sounds simple enough, however, it suffers from one major flaw. As matter of
course, we want to keep disjoint-access parallelism, that is, parallelism between threads
working on different parts of the Kahn process graph. Therefore, we must update each
channel separately. Even so, there remains the issue of producer–consumer decoupling.
In our current progress scheme, buffers are updated monotonically until every word is
produced and then consumed. If we wait until this top state is reached to swap out the
block, however, we are breaking bounded channel semantics. Indeed, when we are at
the end of a chunk, we must wait for every triple to be read before pushing in contents
into a new block. This does not fare well in many configurations that may require more
production before the last few values are cleared to make way for a chunk replacement
that will thus never come.

To illustrate this, imagine the following example, depicted in Figure 3.18. Two pro-
cesses P and Q are mutually connected by one channel in each direction, and take turn
being producer and consumer. Each channel can hold 10 elements, and the two processes
want to exchange 15 values. P pushes 15 times, then pops 15 times. Q on the other hand
starts by reading 5 values, then proceeds to push 15 and pop the remaining 10. In a
correct implementation, a possible schedule is: P pushes 10; Q pops 5; Q pushes 10; P
pushes 5; P pops 10; Q pushes 5; P pops 5; Q pops 10. However, if we do not allow
push operations to occur while the buffer is half-read, then after Q first pushes 10, P
still needs to push 5, yet Q is not popping anymore and the buffer cannot be cycled: we
have a deadlock.

The central issue with this naive approach thus stems from the fact that a monotonic
buffer of length LB is only able to accurately represent all the states of a normal queue
of length L ≤ LB up until it is entirely filled with (read or unread) items and there are
less than L elements left to read. More precisely, let p be the position of the highest set
write flag and c the position of the highest set read flag; we consider a monotonic buffer
to be in a degenerate state whenever:

p = LB ∧ c > LB − L

At that point, no new data can be pushed into the buffer, yet the queue contains less
than L elements: it should not be full. In a normal ring buffer, whenever the structure
contains less than its full length L, new push operations are allowed. Thus, the two differ
in their semantics. This is undesirable, since it may introduce unwanted deadlocks, as we
have just seen in Figure 3.18.
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P

u(10)

&&
Q

v(10)

ff

process P(in v, out u)
{

int i;
int x;
i := 0;
while (i < 15) {

u ← i;
i := i + 1;

}
i := 0;
while (i < 15) {

x ← v;
i := i + 1;

}
}

process Q(in u, out v)
{

int i;
int x;
i := 0;
while (i < 5) {

x ← u;
i := i + 1;

}
i := 0;
while (i < 15) {

v ← i;
i := i + 1;

}
i := 0;
while (i < 10) {

x ← u;
i := i + 1;

}
}

Figure 3.18: Feedback loop example
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This was never a problem when LB was large enough to hold all the items ever
produced and consumed on the channel. In a setting where chunks need to be recycled,
however, the actual top state of a monotonic buffer changes accordingly. It lies therefore
not when no consumer or producer actions are possible, but just before it degenerates
and stops behaving according to queue semantics.

A natural follow-up to this analysis is to propose swapping blocks whenever a mono-
tonic buffer enters a degenerate state. While apparently very simple, it is not straight-
forward to implement, once we notice that there are multiple such states, to begin with:
the consumer could be anywhere within the last L items (preventing the consumer from
popping elements once it reaches LB just reverses the problem).

This condition needs to be accounted for in the channel block-swapping code. There
are basically two solutions: either producers and consumers synchronize to freeze and
reflect the old consumer state into the new array (a sort of multi-word transaction), or
the old array needs to be kept around to satisfy old reader requests.

3.6.3 Queues of queues

The second of the two propositions above is a lot more reasonable than the first, given
how difficult—not to mention expensive—it is to manage multi-word operations. The
idea of keeping multiple monotonic chunks is sound, but does not tell us how to deal
with them, or more generally what our data structure should look like. We decide to take
an approach based on the following remark: a queue of queues can be used loosely like a
bigger queue.

If the outer (macro) queue has room for n little (micro) queues, which can contain
m items each, then the whole can be operated approximately like a queue of size nm,
as shown in Figure 3.19. This is only an approximation, as on the edges it temporarily
allows more items to be produced than a strict nm-ring buffer would: when the producer
catches up with the consumer, the outer ring can be completely filled with inner queues,
with the consumer holding onto a supplementary buffer in its c field. This is precisely
this trait, however, that allows consumers and producers to keep on working, without
ever having to wait for each other for more than nm operations to proceed.

In the context of bounded Kahn process networks, the queue of queues is similar to
a selectively bigger queue: the scheduler is only sometimes allowed to push more into it.
From Lemma 1 and its proof, we conclude that it may only produce more output than
the same network using regular queues. Since we are only interested in programs with
sufficiently large buffers—as described in Section 3.2.3.1—in the first place, the output
should actually stay identical.

Sequential queues of queues do not directly solve our concurrent block-replacement
problem. However, they provide valuable insight.

We remark that actual communication in terms of values exchanged happens only
at the micro-queue level. Essentially, the queue-of-queues design allows producers and
consumers to operate on multiple data-carrying smaller objects (the inner queues) as if
they were a single contiguous channel. Figure 3.20 illustrates this for n = 1 and m = 2,
i.e., the macro queue has a single item and each micro queue can hold two values. If we
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struct MetaQueue {
QueueQueue ∗qq;
Queue ∗c;
Queue ∗p;

};

1 bool push(MetaQueue ∗mq, int x)
2 {
3 if (mq.p 6= null) {
4 if (enqueue(mq.p, x))
5 return true;
6 }
7 var q := newQueue();
8 if (not enqueueQueue(mq.qq, q)) {
9 freeQueue(q);
10 return false;
11 }
12 mq.p := q;
13 enqueue(q, x);
14 return true;
15 }

1 (bool, int) pop(MetaQueue ∗mq)
2 {
3 if (mq.c 6= null) {
4 var ok, x := dequeue(mq.c);
5 if (ok)
6 return true, x;
7 }
8 var ok, q := dequeueQueue(mq.qq);
9 if (not ok)
10 return false;
11 if (mq.c 6= null)
12 freeQueue(mq.c);
13 mq.c := q;
14 var _, x := dequeue(q);
15 return true, x;
16 }

Figure 3.19: Sequential queue of queues
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mpush
//

��

µpush
//

��

µpush
//

��

mpush
//

��

µpush
//

��

· · ·

mpop
//

33

µpop
//

33

µpop
// mpop

// µpop
// · · ·

Macro queue of size one; micro queues of size two. Nodes are operations on the macro
(m) and micro (µ) queues. Framed operations act together to simulate an overall push
or pop operation. Arrows denote dependencies.

Figure 3.20: Example interaction between macro and micro operations

forget about queues of queues and concentrate only on the µpush and µpop operations,
then the example usage shown is exactly that of a normal single-layer queue, with push
and pop matching each other (downward arrows), and the reverse dependency from each
instance of pop to the next push operation that occupies the same physical location every
m items (shown as a dashed arrow). Macro-queue events, denoted mpush and mpop, add
a level of indirection by periodically replacing the underlying inner queue actually used
to transfer values.

Interestingly, looking at the implementation in Figure 3.19, each individual inner
queue is used for exactly one round of values, undergoing m enqueue and the same
number of dequeue operations before being freed. Thus, the usage pattern of micro queues
precisely matches that of monotonic buffers.

From this, we can deduce, perhaps unsurprisingly, that our buffer replacement should
be done following a first-in first-out queue pattern. Concretely, we need a concurrent
macro queue to synchronize which blocks to use between producers and consumers. We
thus conclude that to upgrade our monotonic buffer into a full-fledged concurrent queue,
we need to implement a concurrent queue in the first place. Have we not gained anything
from this exercise?

There are two benefits to this two-layered approach. First, if we take m = L equal to
the size of the actual channel we want, we only need to implement a one-item macro queue
(n = 1), which simplifies its design. Second, as we have seen in Chapter 2, monotonic
operations are cheap, while objects that allow unbounded repeating values are expensive.
Therefore, it makes sense for us, from a performance standpoint, to distinguish between
fast (micro) and slow (macro) operations, and keep occurrences of the second kind to a
strict minimum. We thus set out to write a single-item lock-free queue to complement
our monotonic buffers.

3.7 Descriptor-based macro queues

We now present a specialized macro queue object. We dub it the register, for it should
store only one element, although we previously observed that the queue of queues some-
times temporarily behaves as if it had more, when the producer catches up with the
consumer.
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3.7.1 Process-controlled channels

To integrate with Kahn processes, which may be handled by multiple worker threads at
the same time, our register is built around the classic concept of descriptors, previously
introduced in Section 2.8.1. A descriptor is a structure that represents a macro-level
operation on the channel: macro push or macro pop. Even though both specify an oper-
ation to execute, unlike a simple method call, a descriptor exposes a visible shared state
that can be read and updated by threads. At any time, it is either complete, if the
associated operation has been performed successfully, or incomplete, if it is still pending.
Fundamentally, we want to guarantee that multiple applications of a same descriptor are
idempotent, so assistance is straightforward: simply apply the current descriptor until it
is complete. This is similar to the role played by the status field in descriptors for the
two-word swap discussed in Sections 2.8.1 to 2.8.3.

As we have seen in Section 2.8.1, the appearance of descriptors is linked to disjoint-
access multi-word operations. In the case of channel descriptors, this is caused by the
need for checkpoints, as defined in Section 3.6.1. We recall that process states need to be
saved along with channel block swaps, so that no further computation depends on the
data contained in the old chunk we are throwing away.

We want to update in a single transaction both one side (producer or consumer) of a
channel and the attached process. Furthermore, this operation may span many different,
disjoint, process–channel couples, thus we opt for the more complex multi-word update
instead of a simpler design where the two would be fused in a same block. If we did that,
by transitivity, we would end up representing whole connected components in the Kahn
process graph as single chunks!

In place of a full-fledged double compare-and-swap mechanism, as we presented in
Section 2.8.3, here, we propose a cheaper solution, by taking advantage of some properties
of our process networks:

• Instead of allocating a separate descriptor object, we bundle descriptors with pro-
cess states. Each chunk contains thus both a valid process state and a descriptor. Its
effective value depends on the status of the descriptor part. If it is incomplete, then
the block is taken to represent the descriptor; if it is complete, then the transaction
is finished and the actual process state may be accessed normally.

• In the two-pointer swap example of Section 2.8.3, we first overwrite both variables
affected by the transaction with the descriptor. Here, although we are also updating
two locations (one in the process structure and another in the channel), we only
need to set the descriptor on the process side. Overwriting locations with the de-
scriptor only serves to stabilize the shared state, so that no renegade thread makes
a divergent modification to one of the variables involved in the transaction while it
is underway. However, in our case, we only ever replace buffers that are maximal on
the side we are working on: we only push new blocks when the previous ones have
no space left, and only pop old blocks when all the values have been read. There-
fore, no conflicting concurrent change can occur, because there is no other possible
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struct Desc;

struct State {
...
int chi;
Desc descs[];

};

struct Proc {
...
State ∗ atomic state;
...

};

As a syntactic note, fields marked atomic may be both read and written concurrently
by several threads at a same time. Other variables are at most accessed read-only by
multiple threads, and may be written to in non-concurrent code, e.g., during thread-
local initialization, before the object is made visible through the shared data structure.

Figure 3.21: Channel–process integration

action to take once the block is maximized. Further stabilizing is unnecessary; we
only need to protect against different threads assisting a same transaction.

Put together, this provides us with a skeleton for the structure of processes and
states, which we sketch in Figure 3.21. Each process is represented by a fixed shared
Proc object, spawned during reconfiguration. Worker threads share process states through
State blocks. Since processes may be (and usually are) bound to multiple channels, we
allow multiple descriptors to coexist within a single State chunk, as part of the descs array.
Conversely, a channel is logically associated with exactly two sequences of descriptors,
on each side, stored in State objects. Macro operations occur as mandated by those
descriptors. The stateOfDesc function, Figure 3.22, returns the State object containing
a given descriptor.

Process states may not be updated freely, though. To guarantee the proper opera-
tions of the channels, we must make sure to follow two simple rules, which ensure that
assumptions we have previously made hold true:

Client alternation Although we store descriptors along with process states, they still
virtually represent a value distinct from the state itself. Descriptors need assistance
and any thread that reads an incomplete descriptor must help finish its transaction,
without exception. This rule forces modifications of the process state (i.e., the state
field) to strictly alternate with complete macro operations. They happen one after
another in lockstep.
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1 // Returns the State instance that contains the given descriptor.
2 // This function is only used in assertions.
3 State ∗stateOfDesc(Desc ∗d, int chi)
4 {
5 // Not strictly valid C, but this is how offsetof is usually implemented.
6 var offset := (char ∗)&((State ∗)0).descs[chi] − (char ∗)0;
7 return (State ∗)((char ∗)d − offset);
8 }

Figure 3.22: Process state from descriptor

Relevant descriptors We assume that each process state change may introduce at
most one new descriptor, replacing a previous complete one at the same position
in the descs array. Others must be copied over unaltered. The chi field specifies
which descriptor is relevant for a specific state. This rule is a natural consequence
of the nature of Kahn processes: at any checkpoint, a process may be waiting on at
most one channel. In practice, in the rest of this section, we only consider relevant
descriptor updates, and generally disregard copies.

Intuitively, we can say that this overall construction enforces the process-level single-
producer single-consumer constraint. In essence, the channel methods themselves only
handle strictly sequential requests exposed through descriptors. As is standard in lock-free
fare, we have transformed the blocking problem of exclusive single-producer or single-
consumer channel operations (at the Kahn process level) into a lock-free word-sized
election problem (on state fields), where the winner dictates the next (macro) operation,
which may then be assisted by other threads.

3.7.2 The channel structure

The Chan type of Figure 3.23 represents a channel, that is, in our case, a one-element
queue of monotonic blocks used as a larger queue. It should thus serve the same function
as the MetaQueue structure from Figure 3.19. However, they look quite different.

The first thing we notice is that Chan contains only two fields. Both fields taken
together essentially describe just one array: data has two slots for Mono pointers, each
one referring to a micro queue of len items. Of particular interest is the fact that there
does not seem to be any equivalent of the c and p fields of MetaQueue.

The reason for this has to do with how memory chunks are handled in a lock-free
system. Usually, it is best to refrain from moving block references around as much as
possible. The reason is that moving things requires at least a two-word operation that
covers the source and destination, which we would rather avoid. We could copy the
pointers, but it blurs questions of ownership—who gets to call destroy on the block.

Instead, we choose to add one layer of indirection, as follows. In place of moving
micro queues from the macro queue to the client-specific variables, we let the producers
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struct Desc {
Chan ∗ch;
unsigned int turn;
Mono ∗block;

};

struct Mono {
unsigned int turn;
atomic bool empty;
atomic int buf[];

};

struct Chan {
int len;
Mono ∗ atomic data[2];

};

void makePush(Chan ∗, Desc ∗, Desc ∗);
void makePop(Chan ∗, Desc ∗, Desc ∗);

bool macroPush(Desc ∗, Proc ∗, int);
bool macroPop(Desc ∗, Proc ∗, int);
Mono ∗getMono(Desc ∗d, Proc ∗, int);

Again, only fields marked atomic may be both read and written concurrently. Therefore,
len does not change after initialization, while we can expect data to be modified further
by the algorithm.

Figure 3.23: Descriptor-based channel interface
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and consumers access the last monotonic buffer pushed (by macroPush) or popped (by
macroPop), respectively, directly in the data array. In order to do so, all operations—
hence descriptors—must be indexed: the turn (held in a field of the same name) is the
number of previously completed operations on the same side. The first descriptor has
turn zero, and each subsequent one increments the turn by one.

Macro push and pop invocations add and remove elements only at their given turn,
accessing the data array in round-robin fashion, such that all even turns get mapped to
index zero, and all odd turns to index one. The producer side is responsible for swapping
in new blocks, while consumers must mark removable Mono blocks as such by setting
their empty bit. The combination of both descriptors and the empty state of the current
blocks determines the state of the register, as shown in Figure 3.24.

This diagram demonstrates all possible (legal) states of the shared variables making
up the register data structure, starting with 0PC after being initialized according to
Figure 3.25. We do not represent almost constant fields such as turn, which do not change
after initialization (before they get plugged into the shared object). Of particular note,
only states that do not feature an underlined marker are stable; others are transient, as
they involve incomplete descriptors.

As we can see from the state diagram, each transaction related to a macro operation
consists of two parts:

1. The descriptor is replaced, as the result of swapping in a new State object. New
descriptors are created by the makePush and makePop, in Figure 3.26. This corre-
sponds to the arrow from an unmarked letter to the same underlined letter. Which
letter changes depends on which descriptor is refreshed.

2. The descriptor is completed, as the result of a call to macroPush or macroPop. This
corresponds to the arrow from an underlined letter to the same unmarked letter.
Again, which letter changes depends on which method completes.

In a concurrent execution, many more things can happen. However, we will prove
that the range of possible behaviors is limited to what is shown in Figure 3.24. The
succession of stable states in a concurrent history can then be taken as a linearization of
the corresponding execution.

3.7.3 An example of macro-queue usage

To conclude these preliminary discussions of the macro queue, and before diving into
the concurrent code proper, let us examine a step-by-step example of process–channel
interaction. Figure 3.27 illustrates how the various functions making up the macro-queue
interface (as defined in Figure 3.23 and described above) might be called together by
some worker thread, in order to perform their channel duties.

3.7.4 Pushing into the macro queue

We first study the code for the macro push, given in Figure 3.28. The arguments are as
follows:
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The two digits represent the data array, where each digit is the value of the empty flag
in the corresponding block. The P and C subscripts indicate the turn associated with
the current producer and consumer descriptors, respectively. They are underlined if the
operation is incomplete. Ill. denotes an illegal state. For example, 0C1P is the state
in which the first data element is not empty, the second is, the producer descriptor is
incomplete and has an odd turn value, while the consumer descriptor is complete and
has an even turn value.

Figure 3.24: Register states
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1 void makeChan(Chan ∗ch, int len)
2 {
3 ch.len := len;

5 Mono ∗a := malloc(sizeof ∗a + len ∗ sizeof ∗a.buf);
6 memset(a.buf, 0, len ∗ sizeof ∗a.buf);
7 a.turn := 0;
8 a.empty := false;
9 ch.data[0] := a;

11 Mono ∗b := malloc(sizeof ∗b + len ∗ sizeof ∗b.buf);
12 memset(b.buf, 0, len ∗ sizeof ∗b.buf);
13 b.turn := −1;
14 b.empty := true;
15 ch.data[1] := b;
16 }

1 // Copies prevd to d for process initialization purposes during reconfiguration;
2 // prevd should be non-null for inherited channels and null for new channels.
3 void copyPush(Chan ∗ch, Desc ∗d, Desc ∗prevd)
4 {
5 d.ch := ch;
6 d.turn := prevd = null ? 0 : prevd.turn;
7 d.block := prevd = null ? ch.data[0] : prevd.block;
8 }

1 // Same as copyPush, but for consumers.
2 void copyPop(Chan ∗ch, Desc ∗d, Desc ∗prevd)
3 {
4 d.ch := ch;
5 d.turn := prevd = null ? 0 : prevd.turn;
6 d.block := null;
7 }

Figure 3.25: Descriptor-based register: initialization
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1 void makePush(Chan ∗ch, Desc ∗d, Desc ∗prevd)
2 {
3 d.ch := ch;
4 d.turn := prevd.turn + 1;
5 d.block := malloc(sizeof ∗d.block + ch.len ∗ sizeof ∗d.buf);
6 d.block.turn := d.turn;
7 d.block.empty := false;
8 memset(d.block.buf, 0, len ∗ sizeof ∗d.buf);
9 }

1 void makePop(Chan ∗ch, Desc ∗d, Desc ∗prevd)
2 {
3 d.ch := ch;
4 d.turn := prevd.turn + 1;
5 d.block := null;
6 }

Figure 3.26: Descriptor-based register: make methods

1 Proc ∗p := ...;
2 var s := safeRead(&p.state);
3 Chan ∗ch := ...;

5 var t := cloneState(s);
6 makePush(ch, &t.descs[0], &s.descs[0]);

8 beginReadSection(t);
9 cas(&p.state, s, t);
10 macroPush(&t.descs[0], p, 0);

12 var a := getMono();
13 var buf := (int[∗])(ch.len ∗ 3, a.buf)
14 monoPush(buf, 0, 0xDEADBEEF);

A macro push followed by a micro push on the new buffer. States are copied using a
fictional cloneState function which is assumed to exist. The code assumes all fallible calls
(e.g., cas, macroPush, getMono) are successful.

Figure 3.27: Example macro-queue usage
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1 bool macroPush(Desc ∗d, Proc ∗p, int chi)
2 {
3 assert(inReadSection(stateOfDesc(d, chi)));
4 var a := safeRead(&d.ch.data[d.turn % 2]);
5 bool status;
6 var empty := a.empty;
7 if (&p.state.descs[chi] 6= d)
8 status := true;
9 else if (not empty)
10 status := false;
11 else {
12 if (a 6= d.block) {
13 if (cas(&d.ch.data[d.turn % 2], a, d.block))
14 destroy(a, free);
15 }
16 status := true;
17 }
18 endReadSection(a);
19 return status;
20 }

Figure 3.28: Descriptor-based register: macroPush

d a protected pointer to the descriptor of the push operation to execute, which must
belong to a State block safe-read by the caller;

p the process to which the descriptor is bound;

chi the index of the parameter of p (as a Kahn process) to which the channel is bound.

The macroPush method performs the requested operation and returns true if it has
been completed, or false if it cannot yet be fulfilled. For a macro push operation, comple-
tion is defined as successfully executing line 13 (no other line writes to shared memory),
at which point the register state changes: the corresponding index in the data array turns
from an old empty block to a new non-empty one, which can be consumed by further
macro pop calls.

The life of a register is punctuated by two kinds of events of particular importance to
the producer side: producer descriptor swaps, and data block changes. The responsibility
for these modifications falls entirely upon producers. Provided the caller follows strict
client alternation as specified above, let us show that the alternation property extends
to data block changes.

Lemma 6. If an invocation of macroPush returns true, it happens after a compare-
and-swap on line 13 executed with the same descriptor (either in the same invocation or
another).
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Proof. There are only two paths that return true in macroPush. The first one requires
the test on line 7 to branch out, which implies the descriptor passed to the method has
been swapped out. By the client alternation protocol, this only happens after a previous
true return from another instance of macroPush with the same descriptor. Thus, the first
such occurrence must pass through line 13.

Given a channel and history, let α0 . . . αa−1 be the sequence of changes to the data field
(at either index), and π0 . . . πp−1 the sequence of relevant producer descriptor changes.
(Index zero denotes initialization, counted as a modification.) Per convention, when there
is no possible confusion, we also use those notations to refer to the values thus instated,
in addition to the modifications themselves, as memory events.

Lemma 7. The sequences α and π alternate such that p = a ∨ p = a+ 1 and ∀k, πk ≺
αk ≺ πk+1, where ≺ denotes the happens-before relation, and each αk swaps in the block
described by πk.

Proof. As usual, we suppose that only our register code (hence only macroPush) changes
the data field. We proceed by induction on the number of descriptor changes in a history.

Initially, the property is verified since initialization occurs sequentially and the initial
descriptor π0 and blocks match, therefore no compare-and-swap occurs at all, and all
invocations of macroPush fail on line 12.

Suppose the property holds for all histories such that p ≤ n. Let us show it for n+1.
Suppose we have a history containing p = n+ 1 producer descriptor changes.

Consider a call A to macroPush whose successful modification of the data field occurs
after πn. Let πk be the descriptor passed to A as its third argument. Let us show that
k = n.

Suppose k < n. Because of client alternation, πn−1 must be complete, thus, by
Lemma 6, the history must contain αn−1. By induction hypothesis, history looks like
the following around πk. (Since k < n, this structure is maintained until at least πk+1.)

αk−2
// πk−1

// αk−1
// πk // αk // πk+1

// (αk+1
// πk+2

// αk+2)

The value of πk is assumed to be safe-read by the caller, therefore a successful double
check on line 7 (that does not branch out) must happen before πk+1. Thus, line 4 must
read either αk−2 (the previous value at the same parity) or αk, depending on whether it
happens before or after αk.

• Suppose we load αk−2. Since line 4 performs a safe read and only fresh pointers are
swapped into data, αk−2 stays unique during A, and thus cannot be overwritten
for compare-and-swap to succeed. Therefore, line 13 must happen before αk; thus
πn ≺ αk, which is impossible since k < n.

• Suppose we load αk on line 4, then the same-block test on line 12 does not branch
into the compare-and-swap. Impossible.
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1 bool macroPop(Desc ∗d, Proc ∗p, int chi)
2 {
3 assert(inReadSection(stateOfDesc(d)));
4 var a := safeRead(&d.ch.data[d.turn % 2]);
5 var b := safeRead(&d.ch.data[(d.turn − 1) % 2]);
6 bool status;
7 var empty := a.empty;
8 if (&p.state.descs[chi] 6= d)
9 status := true;
10 else if (empty)
11 status := false;
12 else if (b.turn 6= d.turn − 1)
13 status := true;
14 else {
15 b.empty := true;
16 status := true;
17 }
18 endReadSection(b);
19 endReadSection(a);
20 return status;
21 }

Figure 3.29: Descriptor-based register: macroPop

Therefore, k = n.
Let us consider all the invocations of macroPush that successfully modify data during

the stint of πn as current descriptor. They must all receive πn as descriptor, as per
the above. Furthermore, all such calls compete to set data to the same block pointer
prescribed by πn. Since that block is freshly fetched from the global allocator, it is
different from αn−2, which is live when πn is first instated. Therefore, exactly one change
occurs: the first to swap from αn−2 to αn, after which subsequent calls either exit on
line 12, or fail during compare-and-swap because of their outdated expectations.

We have thus verified the property for n+ 1.

3.7.5 Popping from the macro queue

We now look at the consumer side, in Figure 3.29. A macroPop invocation completes its
descriptor upon writing to the empty field on line 15.

We extend the above notations to include κ0 . . . κc−1 as the sequence of relevant
consumer descriptor changes, and β0 . . . βb−1 as the sequence of empty field changes on
a live block (linked from the register shared structure or held in a read section).

Lemma 8. The sequences α, β and κ alternate such that:
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1. b ≤ c ≤ b+ 1 and b ≤ a ≤ b+ 1, hence a = c± 1;

2. for all k, κk ≺ βk ≺ κk+1;

3. each βk sets the empty flag of the corresponding block αk−1 when it is current, and
αk ≺ βk ≺ αk+1;

4. and every true return from macroPop with descriptor κk happens after the matching
βk.

Proof. We safe-read both blocks on lines 4 and 5 and expect that no other code touches
those memory locations while they are in use in our register. Thus, only macroPop flips
the empty field from false to true on a block while it lives in a register.

We proceed by induction on the number of descriptor changes in a history. Initially,
the property is verified since initialization occurs sequentially and the block at index −1
is initialized to empty, hence every macroPop call on the initial descriptor κ0 fails on
line 7.

Suppose the property holds for all histories such that c ≤ n. Let us show it for n+1.
Suppose we have a history containing c = n+ 1 consumer descriptor changes.

Because of client alternation, κn−1 must be complete. Therefore, the history must
contain a true-returning invocation of macroPop, which, by the fourth point of the in-
duction hypothesis, happens after βn−1. Therefore:

βn−1 ≺ κn (3.1)

Let us show first show the two first points of the induction hypothesis for n+ 1:

b ≤ c ≤ b+ 1 ∧ b ≤ a ≤ b+ 1 (3.2)
∀k, κk ≺ βk ≺ κk+1 (3.3)

For any k < n, the induction hypothesis tells us that history looks like the following
around κk. The dotted frame indicates those events thare are not strictly ordered with
regard to κk. (Since k < n, this structure is maintained until at least κk+1.)

αk−2
//

$$

πk−1
// αk−1

//

$$

πk // αk //

##

(πk+1
// αk+1

//

$$

πk+2
// αk+2)

βk−2
//

::

κk−1
// βk−1

//

<<

κk // βk //

::

κk+1
// (βk+1

//

99

κk+2)

• Consider a call B to macroPop whose successful store (that replaces false with true)
into the empty field on line 15 occurs after κn. Let κk be the descriptor passed to
B as its third argument. Let us show that:

κn ≺ βk′ ∧ [βk′ has descriptor κk] =⇒ k = n (3.4)

Suppose k < n. Similarly to the producer side, the value of κk is assumed to be
safe-read by the caller, therefore a successful double check on line 8 (that does not
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branch out) must happen before κk+1. Thus, line 5 must read either αk−1 or αk+1,
depending on whether it happens before or after αk+1.

By the first point of our induction hypothesis, they cannot load any newer value,
by virtue of the read statements taking place in a prefix history that stops right
before κk+1, hence with only c = k + 1.

– If it is αk−1, then by the time B reaches line 15, after κn, hence after κk+1,
βk will have already occured on the same block (by the third point of our
induction hypothesis). Therefore B does not change the empty field.

– If it is αk+1, then the turn test on line 12 fails, assuming the turn field can
hold at least three different values, so that for any turn value t, t−1 and t+1
are different. Thus B does not reach line 15.

• Consider a call A to macroPush whose successful modification of the data field
occurs after κn. Let πk be the descriptor passed to A as its third argument. Let us
show that:

κn ≺ αk =⇒ n ≤ k ≤ n+ 1 (3.5)

By Lemma 7, A must contain αk. If k + 1 ≤ n − 1, then by induction hypothesis
on the shorter history that stops at κk+1, αk ≺ κk+1 ≺ κn, which is impossible.
Therefore, k ≥ n− 1.

Yet, if k = n−1. We recall that βn−1 ≺ κn by Equation (3.1). Therefore, induction
hypothesis again yields αn−1 ≺ βn−1 ≺ κn. Impossible.

If k > n+1, then αn+2 must exist in the history. By induction hypothesis, it cannot
happen before κn. By Lemma 7, αn+2 takes πn+2 as argument, hence its turn is
n+2. It needs not to branch out because of line 6: the empty bit must be set on the
block it replaces, which is πn. Since only macroPop sets the empty flag, there must
be a βk′ that matches αn. However, by induction hypothesis, any βk′ happening
before κn must have k′ ≤ n − 1 and is already matched with the corresponding
αk′−1. Conversely, we have shown as Equation (3.4) that any βk′ that happens after
κn takes κn as argument, and therefore target the empty flag of a block with the
same parity as n− 1. Such a block cannot be αn. In either case, none of them can
match αn. Therefore, k ≤ n+ 1.

Let us review the different clauses we need to prove. We have just proven the new
bounds on a, b and c for n+1. Also, for all βk, we have shown that k < n =⇒ βk ≺ κn.
Points 3 and 4 remain.

Let us now show that:

∀k, [βk empties block αk−1] ∧ αk ≺ βk ≺ αk+1 (3.6)
∀k, κn ≺ βk =⇒ k = n (3.7)
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• Let us now consider all the calls B to macroPop that qualify for β status, i.e.
they change empty from false to true, after κn. By Equation (3.4) above, they
all receive κn as descriptor. On one side, Equation (3.5) tells us that the history
contains no αk greater than αn+1. On the other side, we know by Equation (3.1)
that αn−1 ≺ βn−1 ≺ κn ≺ call(B).

Thus, B loads either αn−1 or αn+1 on line 5, and by the same reasoning as we used
to derive Equation (3.4), it must load αn−1, else the turn check on line 12 would
fail. Therefore, if it indeed mutates empty from false to true, it can only do so on
αn−1. This also implies that there is at most one such call, since only the first can
change the bit on αn−1 from false to true.

• Conversely, Equation (3.5) tells us that only αn or αn+1 may happen after κn.

– αn either happens before κn or after. If it happens before, then the induction
hypothesis applies and βn−1 ≺ αn ≺ κn ≺ βn (if any βn exists).
If it happens after, then by Equation (3.1) βn−1 ≺ κn ≺ αn. If βn exists, it
must happen after αn. Indeed, in the macroPop invocation associated with βn,
line 4 follows κn, hence αn−2, and there is no αn+2 or higher in the current
history. Thus it loads either αn or αn−2, depending on whether it happens
before or after αn. However, since it happens after κk, the empty bit on αn−2

is already set by βn−1 ≺ κn, making the test on line 7 fail; and since n is
maximal in the current history, line 8 does not override it. Thus, it can only
be αn, and we have βn−1 ≺ αn ≺ βn.

– αn+1 requires the empty bit to be set on αn−1. Following a similar reasoning
to what we did for Equation (3.5) above, this condition cannot be satisfied
by a previous βk′ with k′ < n, which is matched with αk′−1 by induction
hypothesis. Therefore, it must be the only invocation of macroPop (as we
have seen above) with κn that flips the bit on αn−1. Thus, βn ≺ αn+1.

We are left with proving that return values from macroPop are consistent for all
invocations that return after κn. Let B be such a call, with descriptor κk, let us show
that:

∀B, [B takes κk] ∧ [B returns true] =⇒ βk ≺ return(B) (3.8)

If the return statement happens after κn but the test that branches to it happens
before, then the method could have returned already in a shorter history that excludes
κn. Thus, by induction hypothesis, βk ≺ return(B). Suppose the test itself happens after
κn.

• If B returns after line 8, then k ≤ n − 1, and by induction hypothesis and Equa-
tion (3.1), βk happens before it.

• If B returns after line 12, then by the double check on line 8, it must be that
n − 1 ≤ k ≤ n. By Equations (3.3) and (3.6), and due to parity, failing the test
means B loads αk+1, which happens after βk by Equation (3.6) again.
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• Otherwise, B contains βk.

We have thus shown all the points of the induction property for n + 1, and the
induction finally holds for any n.

Corollary 3. If an invocation B of macroPop with descriptor κk returns false, then it
must have been called between κk and αk.

Proof. The call to B happens before κk+1. From Lemma 8, it therefore happens after
αk−1 and before both αk+2 and βk+1. It can therefore read only either αk−2 or αk on
line 4, due to parity. B returns false, but the bit on αk is set by βk+1 (Lemma 8), which
happens after the double check, line 8, thus after checking for empty on line 7.6 The latter
must thus check against αk−2. Therefore, the call must occur before αk, which replaces
αk−2.

Corollary 4. If an invocation A of macroPush with descriptor πk returns false, then it
must have been called between πk and βk−1.

Proof. Symmetrically, from the proof of Corollary 3.

3.7.6 A linearizable macro queue

We can now put the above pieces together into a linearizable macro queue.

Lemma 9. Register methods macroPush and macroPop are linearizable.

Proof. Lemmas 6 to 8 and Corollaries 3 and 4 give us a straightforward set of linearization
points. Invocations of macroPush and macroPop that contain α or β events linearize at
those points. Other instances—which do not affect the shared state—linearize at their
return point if they return true, or when they are called if they return false.7

Below is a subset of the state diagram of Figure 3.24, annotated with the memory
events—that double as linearization points—we have defined.

6This explains why the value of empty is loaded before the double check, but the branch occurs after.
This is to ensure the empty bit read is consistent with the array matching the descriptor; e.g., we want
to make sure that calls to macroPop that begin after βk do not get delayed enough that they mistake
the empty bit of the next same-parity chunk for their own.

7Of course, we could have taken other linearization points for those invocations, but this option is the
simplest, since calls on a same descriptor are supposed to monotonically go from “cannot be fulfilled” to
“state changing” to “too late, already over,” so it makes sense for the groups on each side to pick their
linearization points as far as possible.

120



CHAPTER 3. A LOCK-FREE KAHN PROCESS NETWORK IMPLEMENTATION

0PC1
κzz π $$

0P1C

π $$

0C1P

κzz α $$
01PC

α $$

0C0P

κzz π $$
00PC

βzz π $$

0PC0
κzz

10PC

κzz π $$

0P0C

βzz
1C0P

π
%%

1P0C

κ
yy

α
%%

· · · · · ·
The alternation of stable and unstable states is guaranteed by the alternation prop-

erties of α and π on the producer side (Lemma 7), and β and κ on the consumer side
(Lemma 8). Guarding against illegal states is a result of the relation between the bounds
a, b, c and p (Lemmas 7 and 8), which prevents any unwanted accumulation on a single
side.

Therefore, invocations of macroPush and macroPop that modify the shared state of
the register linearize into the corresponding abstract state changes.

Futhermore, Lemmas 6 and 8 tell us that other invocations that return true do so as
if they atomically happened at any point after the corresponding state change has been
effected (and would thus also return true in a sequential context).

Conversely, from Corollaries 3 and 4, we can say that false-returning invocations
behave as if executed on the spot, when they are called.

Finally, every invocation of macroPush or macroPop, whether it returns true or false,
whether it affects the shared state or not, is linearizable.

3.7.7 Data block access

Now that we have a linearizable queue of blocks, we still need a way to access those blocks,
in order to carry out the monotonic operations that actually matter. This is accomplished
by calling the getMono function, shown in Figure 3.30, on a complete descriptor.

The semantics of the getMono function is very simple: if called with a current de-
scriptor, it returns the associated data block; otherwise, it returns null. It is linearizable
as a direct consequence of the alternation structure of descriptors and data arrays proven
above.

Lemma 10. The getMono method is linearizable.

Proof. It linearizes when testing whether the descriptor is still current, on line 5.
In the producer case, suppose we receive πk as argument. By client hypothesis, the

call happens after αk completes πk. Then, either line 5 happens before πk+1 or it does
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1 Mono ∗getMono(Desc ∗d, Proc ∗p, int chi)
2 {
3 assert(inReadSection(stateOfDesc(d)));
4 var a := safeRead(&d.ch.data[d.turn % 2]);
5 if (&p.state.descs[chi] 6= d) {
6 endReadSection(a);
7 a := null;
8 }
9 return a;
10 }

Figure 3.30: Descriptor-based register: getMono

not. If it does, then by Lemma 7, there is a single αk that can be read on line 4, which
is the same as if we ran the function sequentially at that point. If it does not, then we
return null.

In the consumer case, suppose we receive κk as argument. By client hypothesis, the
call happens after βk completes κk, hence after αk. Then, either line 5 happens before
or after κk+1. If before, then by Lemma 8, there is only one corresponding αk with the
same parity to be read on line 4. If after, then we return null.

In all cases, a sequential invocation at the point of the test would have the exact same
effects.

3.8 Semi-local layer

We finally get to build an entire process network from all the pieces we have gathered
along the way. The goal is to add the buffer-reuse capabilities of Section 3.7 to the
initial design developed in Section 3.6. As we have seen, maintaining entirely local copies
of process states is not satisfactory. However, it helps keep contention low. We therefore
proceed by adding process sharing between worker threads as needed: whenever recycling
is in order.

Our new graph data object has a two-level structure: the semi-local (or monotonic)
level, and the shared level. Normal operations execute at the semi-local level, until a
major event that must be synchronized (e.g., a buffer being replaced) happens, at which
point, a more expensive consensus-based synchronization phase plays out.

The overall structure of the interpreter is outlined in Figure 3.31. The nodes in the
diagram represent data types. We can see the process graph on the left-hand side, made
of an alternation of Proc (process), Chan (channel) and Conf (configuration) objects. We
introduced the concurrent Proc and Chan types in Section 3.7.1, and the Conf structure
is the same as the sequential version, defined in Section 3.2.4. The three kinds of arrows
show different sharing relations:

• A plain arrow (e.g., between Proc and Chan) indicates that one object has a con-
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Proc
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// Chan
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Proc . . . Chan . . .

Figure 3.31: Memory layout of the concurrent implementation

stant (after initialization) field pointing to the other. Those links are set before the
objects are made visible in the shared structure.

• A dashed arrow (e.g., between Proc and Conf ) denotes a monotonic pointer that
may go from null to point to an instance of the described structure. In the case of
Proc and Conf, a process starts with no children (no linked Conf object) and may
be reconfigured once, by swapping a pointer to point to the new configuration.

• Finally, a dotted arrow (e.g., between Proc and State) represents the most permis-
sive relation, where the pointer from one structure to the other may be updated
multiple times, using compare-and-swap, according to the various protocols de-
scribed in this chapter (e.g., macro operations to change Mono buffers).

As a rule of thumb, operations that update links in the shared process graph structure
(the non-plain arrows in Figure 3.31) are rather expensive, as they involve compare-and-
swap.

Macro operations, presented in Section 3.7, are more expensive than the simple micro
operations of Section 3.6. Writing to or reading from a Mono queue chunk is very cheap,
as it requires only load and store instructions.

The same applies to process state updates. Replacing the State object pointed to by
a process is a costly endeavor. However, as explained in Section 3.6, we do not need to
keep process states perfectly synchronized between threads at all times. The only times
when we absolutely must update the state pointer is when setting up a new descriptor
for a macro operation, according to the protocol detailed in Sections 3.7.1 to 3.7.3. The
entire purpose of the semi-local layer is thus to enable worker threads to locally inter-
polate process states for use in conjunction with monotonic channel buffers, such that,
eventually, an average Kahn process transition takes zero read-modify-write operations.

3.8.1 Shared process graph

We start with a look at the shared data structure, in Figure 3.32. The biggest change
compared to Figure 3.10 is the change from an integer array to a dedicated structure for
the state field. The State structure contains the following members:

final True if this is a final state on which step should not be called anymore.
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struct State {
bool final;
int ∗vars;
int ∗inds;
atomic int chi;
Desc descs[];

};

struct Proc {
bool step(Arg[∗], int[∗]);
Arg args[∗];
int nvar;
State ∗ atomic state;
Conf ∗reconfigure(Arg[∗], int[∗]);
Conf ∗ atomic conf;
atomic int njoined;
Proc ∗parent;

};

Figure 3.32: Kahn process graph data structure

vars Process variables, the contents of which is the same as the old state field.

inds Channel indices, for micro (monotonic) operations, with one entry for each con-
nected channel, mirroring the order of the args array.

chi Index of the descriptor describing the ongoing macro operation; monotonically falls
down to −1 to signify completion of the most recent macro operation.

descs Descriptors for macro operations; again, one entry per channel argument.

Regarding shared Proc nodes, we manage memory using a bin, as described in Sec-
tion 3.4.1. Since we do not support multiple reconfigurations per process, the network
strictly grows until all processes stop as there is no notion of graph contraction symmetric
to reconfiguration. We can apply the tree bin technique to the entire process tree. The
Proc objects make up the nodes of the tree, with children linked by the conf field of their
parent. In fact, since reconfiguration allocates arrays of Proc objects at a time, tree bin
nodes are really arrays of processes rather than single objects.

3.8.2 Local process graph

For our strategy to work, each worker thread must also have its own shadow copy of
process states, at the very least, and may hold onto a few more things to speed up the
computation, or just make our life easier. Essentially, it acts as a local cache, that is, a
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typedef Cache[‘K, ‘V];

‘K ∗getCached(Cache[‘K, ‘V] ∗, ‘K ∗);
void putCached(Cache[‘K, ‘V] ∗, ‘K ∗, ‘V ∗, void (∗)(‘K ∗, ‘V ∗));

thread_local Cache[Proc, LocalProc] ∗pcache;

Here, the T [‘X] syntax is used to denote a polymorphic data type. As before, this is just
syntactic sugar for void pointers: the type variables may only be used indirectly, as base
types for pointers.

Figure 3.33: Local process cache

struct LocalProc {
Proc ∗p;
State ∗shared;
State ∗local;
Mono ∗blocks[];

};

LocalProc ∗getLocalProc(Proc ∗);
(State ∗, int) getState(LocalProc ∗);
bool setState(LocalProc ∗);
bool setMacroState(LocalProc ∗, int);
int getBuffer(LocalProc ∗, int)[∗];

Figure 3.34: Semi-local layer interface

dictionary with some eviction strategy built-in. Its interface is shown in Figure 3.33. Since
this is a strictly sequential data structure, many tricks and optimizations are possible,
which are beyond the scope of this chapter. We will simply assume that we have an
efficient way to associate local information with process pointers.8

The semi-local layer provides process proxy, LocalProc, objects, which hold local
(sequential) information about a process, for use by a single worker thread. Before at-
tempting any modification to a process, the worker first obtains a LocalProc pointer to
work with, by calling the getLocalProc method of Figure 3.35. Proxies offer a transac-
tional view of process states, through an assortment of three functions: getState, setState
(and its cousin setMacroState) and getBuffer, whose signatures are given in Figure 3.34.

Abstractly, a process proxy is a simple object: a pair made of an expected and

8For example, one straightforward implementation would be to simply have an array of local payloads
in each Proc structure. Otherwise, trees or hash tables can be used in conjunction with some kind of
doubly-linked list to simulate the eviction protocol.

125



3.8. SEMI-LOCAL LAYER

1 LocalProc ∗getLocalProc(Proc ∗p)
2 {
3 var lp := getCached(pcache, p);
4 if (lp = null) {
5 lp := malloc(sizeof ∗lp + countof p.args ∗ sizeof ∗lp.blocks);
6 lp.p := p;
7 lp.shared := null;
8 lp.local := null;
9 for (var i := 0; i < countof p.args; ++i)
10 lp.blocks[i] := null;
11 putCached(pcache, p, lp, freeLocalProc);
12 }
13 return lp;
14 }

1 void freeLocalProc(Proc ∗p, LocalProc ∗lp)
2 {
3 endReadSection(lp.shared);
4 freeState(lp.local);
5 for (var i := 0; i < countof p.args; ++i)
6 endReadSection(lp.blocks[i]);
7 }

1 void allocState(int nvar, int narg)
2 {
3 State ∗s := malloc(sizeof ∗s + narg ∗ sizeof ∗s.descs);
4 s.vars := calloc(nvar, sizeof ∗s.vars);
5 s.inds := calloc(narg, sizeof ∗s.inds);
6 }

1 void freeState(State ∗s)
2 {
3 free(s.vars);
4 free(s.inds);
5 free(s);
6 }

Figure 3.35: Concurrent implementation: getLocalProc
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a tentative values. Those correspond to the shared and local fields of the LocalProc
structure. The p field is just the key to the corresponding process, while the blocks array
is present purely as an optimization, which we discuss afterward, but otherwise does not
affect the abstract semantics of our operations.

getState Fetches a writable copy of the most up-to-date working state for the given
process, updating the expected view of the shared state, and executing assistance,
if needed. Returns null and a channel index if the process is waiting on said channel
and no working state is available.

The most up-to-date working copy is the tentative state, with any previous local
modifications, if the shared state is at the expected value (and hence provably
older), or a new copy of the shared state, if it has changed since the last call to
getState.9 The returned state object, if any, can then be modified, and connected
channels can be accessed through getBuffer.

setState Compares the actual shared state with the expected value we have read pre-
viously, and swaps in our tentative modifications, making them permanent, if the
test succeeds. Essentially, just compare-and-swap, with additional handling for de-
pendent read sections, blocks, etc.

getBuffer Returns the current block associated with a given argument if the shared
state has the expected value, or null otherwise.

3.8.3 Read section caching

Aside from the above semantics, process proxies also offer some opportunities for opti-
mization, by caching and reusing some costly resources, most notably read sections. As
we will see, this method is employed in both getState and getBuffer.

Instead of calling safeRead everytime, we keep a read section open on the last version
of the target variable we have loaded. When needed, we simply refresh that read section:
by calling endReadSection and safeRead again only if necessary.

The way this works deserves a little explanation. We recall from the previous chapter
that safeRead is merely a loop that attempts to match a loaded value with a call to begin-
ReadSection that must happen before said load instruction. In essence, we are guessing
at the read value and gambling on a read section on it, later aborting and retrying if
we realize we are wrong. In the case where we already have a read section open on a
previous version of the object, we can skip the first iteration of the safeRead loop and
jump straight to testing whether we are right in our guess.

9The new shared value is considered newer, which is always the case if worker threads only commit
at obligatory checkpoints (e.g., when changing blocks), but may be slightly wrong in the presence of
non-deterministic early swaps since one thread may progress further with its monotonic updates, while
another may decide to commit early and switch to another process, for example. However, unless threads
repeatedly call setState without making any changes to the state, this strategy is conservative and still
allows lock-free progress, since we only discard our own modifications if someone else has made some.
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Caching read sections obviously increases the risk of losing more memory if a thread
crashes while holding onto those sections. Therefore, the cache and main memory heap
need to be adjusted accordingly, so that the algorithm remains non-blocking.

3.8.4 Layered linearizability

Before we continue with more code and linearizability results, let us pause for a moment to
discuss the correctness criteria for the layered design. While the channel objects presented
so far are small and well-delimited, in this section, we build a full-fledged Kahn process
network interpreter. What is then the scope of our linearizable objects?

In fact, it is the process graph itself, as a whole. Indeed, most of the methods we
are about to introduce affect multiple components at once. Making progress in a process
network requires touching processes and channels in different, non-disjoint combinations.
Sometimes, a method may act on behalf of the producer, some other, it may be acting
as the matching consumer: same channel, different process objects.

Even in this context, however, the principle of separation still applies. We prove
each procedure linearizable in its action on the entire process graph. However, for that
purpose, we only need to consider interference from other instances that manipulate the
same process and channel objects. Since we present the functions one at a time, it might
be difficult to project a full view of the current layer. To ease with mental navigation, each
proof starts with the interference hypotheses it relies upon. As a general guideline, the
data type descriptions of Sections 3.8.1 and 3.8.2 provide (somewhat implicit) invariants
regarding the values and progressions of shared variables, and fields are only modified
by a single function or indirectly by others that call it. With this in mind, let us start
exploring the upper layers of our Kahn process interpreter.

3.8.5 Reading states

We first study the code of getState and its auxiliary function assistProc, presented in
Figures 3.36 and 3.37. As described above, getState acts as a conditional copy from the
shared to the local state. Let us prove a few simple properties on these functions.

Lemma 11. Given on input a LocalProc object whose shared field has been safe-read
from the corresponding Proc object, the assistProc function is linearizable.

Proof. We recall that LocalProc objects are entirely local to the calling thread. We assume
only assistProc concurrently modifies the chi field in the State structure.

First, the function loads the chi field from the shared data structure, on line 4. This
variable is only updated monotonically from positive or zero to −1. In instances where
it reads −1, the function immediately returns, thus linearizes on the load instruction.

Suppose chi is not −1. The only actions that do not operate on either local or read-
only (after initialization) memory are: the macroPush and macroPop calls (which are
both linearizable due to Lemma 9) on lines 8 and 10, and the shared modification of
chi on line 12. The invocations linearize at the macro call on failure, and on line 12 on
success.
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1 (State ∗, int) getState(LocalProc ∗lp)
2 {
3 if (lp.p.state 6= lp.shared) {
4 endReadSection(lp.shared);
5 lp.shared := safeRead(&lp.p.state);
6 if (lp.local = null)
7 lp.local := allocState(lp.p.nvar, countof lp.p.args);
8 copyState(lp.local, lp.shared, lp.p.nvar, countof lp.p.args);
9 if (lp.local.chi 6= −1) {
10 // Invalidating the cached block is entirely optional. If not now,
11 // it will be replaced the next time we call getBuffer.
12 endReadSection(lp.blocks[lp.local.chi]);
13 lp.blocks[lp.local.chi] := null;
14 lp.local.chi := −1;
15 }
16 }
17 var ok, chi := assistProc(lp);
18 return ok ? lp.local : null, chi;
19 }

1 void copyState(State ∗d, State ∗s, int nvar, int narg)
2 {
3 memcpy(d, s, sizeof ∗s + narg ∗ sizeof ∗s.descs);
4 memcpy(d.vars, s.vars, nvar ∗ sizeof ∗s.vars);
5 memcpy(d.inds, s.inds, narg ∗ sizeof ∗s.inds);
6 }

Figure 3.36: Concurrent implementation: getState
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1 (bool, int) assistProc(LocalProc ∗lp)
2 {
3 bool ok := true;
4 var chi := lp.shared.chi;
5 if (chi 6= −1) {
6 var d := &lp.shared.descs[chi];
7 if (d.block = null)
8 ok := macroPop(d, lp.p, chi);
9 else
10 ok := macroPush(d, lp.p, chi);
11 if (ok) {
12 lp.shared.chi := −1;
13 chi := −1;
14 }
15 }
16 return ok, chi;
17 }

Figure 3.37: Concurrent implementation: assistProc

Indeed, if the macro operation returns false, then it cannot be satisfied, and a se-
quential run at that point would produce the same effect.

In the case where it returns true, we know that macroPush and macroPop invocations
on the same descriptor after the first successful instance are idempotent. Furthermore,
only assistProc sets chi to −1, thus the only path that leads to a −1 value passes through
a true return from either macro operation. Therefore, instances of assistProc that reach
line 12 after the first do some redundant work, but otherwise behave exactly as if they
had been called at that point, seen the −1 flag and immediately returned.

Lemma 12. The getState method is linearizable.

Proof. The three concurrent operations that touch the shared mutable parts of the Kahn
graph are the first load on line 3, the following safe read on line 5, and the invocation of
assistProc at the end.

We note that the call to copyState on line 8 copies from a mostly constant (after
initialization) state object into a local recipient. The only mutable field in State is chi.
It is however reset to −1 by the following lines regardless of its initial value.

We also remark that if the shared state has changed on the first test, on line 3, then
since the expected value is ABA-protected, the same test taken later will produce the
same result.

Invocations where assistProc returns false linearize at the point of loading or reloading
the shared state. Due to the above remark, the test on line 3 taken at the later point,
when reloading, would result in the same branching decision. Moreover, since loading
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1 bool setState(LocalProc ∗lp)
2 {
3 var ok := cas(&lp.p.state, lp.shared, lp.local);
4 endReadSection(lp.shared);
5 if (ok) {
6 destroy(lp.shared, freeState);
7 lp.local := null;
8 }
9 lp.shared := null;
10 return ok;
11 }

Figure 3.38: Concurrent implementation: setState

happens before the failing call to assistProc, earlier assistance on the same descriptor is
sure to also fail with false.

Invocations where assistProc returns true linearize either on the first load on line 3,
if chi is −1, or where the descriptor current when loading the shared state (on line 3 or
line 5) is completed (which may occur out of the method). Indeed, at that point the shared
state is the same as upon loading, since only completed descriptors can be swapped out.
Besides, assistance is guaranteed to succeed, since completion has just happened.

3.8.6 Updating states

We now tackle the counterpart to getState, namely, setState (Figure 3.38), which may be
called after retrieving and modifying the local state returned by getState. Every call to
setState must be preceded by a matching successful return from getState: it is illegal for
the client to call setState first, or multiple times in a row without an intervening getState.

The setState function operates mostly as a big compare-and-swap statement, with the
ability to introduce a state and its associated descriptor into the shared data structure.

Lemma 13. The setState method is linearizable.

Proof. The only operation on the shared mutable memory of the Kahn graph is the first
and only instance of compare-and-swap. The method linearizes at that point, since every
other action happens locally, and thus could be taken at any time.

There is a straightforward caching optimization illustrated in Figure 3.39. Instead
of losing all references to state objects, we instead preventively take a read section on
what we believe is going to be the next shared value: our tentative state. Then we, if the
gamble is correct, we inline the next call of getState into the success path of setState,
eliminating the unneeded safe read. In the other case, the revert the read section and
proceed as usual. Although it is quite simple, we have chosen not to clutter the above
proof with these details.
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1 bool setState(LocalProc ∗lp)
2 {
3 beginReadSection(lp.local);
4 var ok := cas(&lp.p.state, lp.shared, lp.local);
5 endReadSection(lp.shared);
6 if (ok) {
7 destroy(lp.shared, freeState);
8 lp.shared := lp.local;
9 // Same as in getState.
10 lp.local := allocState(lp.p.nvar, countof lp.p.args);
11 copyState(lp.local, lp.shared, lp.p.nvar, countof lp.p.args);
12 if (lp.local.chi 6= −1) {
13 endReadSection(lp.blocks[lp.local.chi]);
14 lp.blocks[lp.local.chi] := null;
15 lp.local.chi := −1;
16 }
17 } else {
18 endReadSection(lp.local);
19 lp.shared := null;
20 }
21 return ok;
22 }

Figure 3.39: Concurrent implementation: setState (optimized)
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1 bool setMacroState(LocalProc ∗lp, int chi)
2 {
3 lp.local.inds[chi] := 0;
4 lp.local.chi := chi;
5 var arg := lp.p.args[chi];
6 if (arg.kind = IN)
7 makePop(arg.ch, &local.descs[chi], &shared.descs[chi]);
8 else
9 makePush(arg.ch, &local.descs[chi], &shared.descs[chi]);
10 return setState(lp);
11 }

Figure 3.40: Concurrent implementation: setMacroState

On top of setState, we provide the setMacroState function (Figure 3.40), which pre-
pares the local state for a macro operation (macroPush or macroPop) and attempts to
swap it in. A call to setMacroState takes the place of a similar invocation of setState,
with regard to alternation with getState.

Corollary 5. The setMacroState function is linearizable.

Proof. The shared descriptors are constant and accessed read-only. Everything else is
local. Thus, every invocation linearizes at the call to setState.

3.8.7 Accessing data

Lastly, for the semi-local cache, we study how to access data, using getBuffer from Fig-
ure 3.41. Similarly to setState, every call to getBuffer must be preceded by a matching
successful instance of getState.

Lemma 14. The getBuffer method is linearizable.

Proof. There are two statements that access the shared mutable state of the graph: the
test against the shared value of the data array on line 5, and the call to getMono on
line 7.

As above, if the invocation hits the cache and proceeds without branching in, then it
linearizes at the only contended access, on line 5. (Note that it cannot return null, due
to the way the macro queue is structured; see Figure 3.26.)

Otherwise, it calls getMono on line 7, which returns either null if the descriptor is
not current anymore, or a valid block otherwise. In both cases, the invocation linearizes
on line 7. Indeed, since we hold a read section over the block locally obtained on line 3,
it cannot be swapped back in between line 5 and line 7. Therefore, performing the test
sequentially together with the rest of the method at the later point yields the same
result.
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1 int getBuffer(LocalProc ∗lp, int chi)[∗]
2 {
3 var ∗a := lp.blocks[chi];
4 var d := &lp.shared.descs[chi];
5 if (d.ch.data[d.turn % 2] 6= a) {
6 endReadSection(a);
7 a := getMono(d, lp.p, chi);
8 lp.blocks[chi] := a;
9 }
10 if (a = null)
11 return null;
12 else
13 return (int[∗])(d.ch.len ∗ 3, a.buf);
14 }

Figure 3.41: Concurrent implementation: getBuffer

3.9 Non-blocking transitions

After much preparation, the next step in our journey finally brings us back to high-level
design considerations first introduced in our sequential overview at the beginning of this
chapter. We now look at how transitions are realized using the tools we have just built.

We recall that transitions are made of two halves: the start and the end half-transitions.
The former consists in updating the process state with the result of the step function. The
latter completes the transition by executing a channel input or output order triggered
by the first half.

In our implementation, checkpoints are deterministic and reduced to the mini-
mum necessary: they occur only when a process needs one of its monotonic buffer re-
placed, or has reached its final state. The succession of shared states is therefore the
same for all worker threads. In particular, if setState or setMacroState fails, then we are
guaranteed that any pending local operation has already been completed on the global
state, i.e., that the current thread is late.

3.9.1 Start half-transitions

The start half-transition, Figure 3.42, plays out similarly to its sequential counterpart: it
applies the step function to the current state and handles termination and reconfiguration.
The main differences are:

• the working state being a copy, for step to write into;

• reconfiguration requiring compare-and-swap, so we do not replace a subgraph mul-
tiple times;
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1 int startHalf(LocalProc ∗lp, State ∗s)
2 {
3 var vs := (int[∗])(lp.p.nvar, s.vars);
4 if (not lp.p.step(lp.p.args, vs))
5 return 0;
6 if (lp.p.reconfigure 6= null) {
7 var conf := lp.p.reconfigure(lp.p.args, vs);
8 if (not cas(&p.conf, null, conf))
9 freex(conf);
10 }
11 s.final := true;
12 return setState(lp) ? 0 : −1;
13 }

Figure 3.42: Concurrent implementation: startHalf

• no apparent counting of finished children.

Another notable feature is the return value, which we will encounter again when
dealing with end halves. Instead of the customary true–false dichotomy, here we have
three status values: zero indicates normal completion, as is usual in C, a positive value
signals that we have been too fast and need to wait (listed here for completeness but
only used for endHalf ), while a negative one means we have been too slow and another
worker has already completed the current half-transition. This is useful information for
our future scheduler.

Lemma 15. Assuming it is called on a local state with no pending end half-transition,10

the startHalf function is linearizable.

Proof. If step returns false and the function branches out after line 4, the process has
not finished, and we return zero. The computation is entirely local, so we can linearize
anywhere, for example, at the call.

Else, step returns true and the routine branches into either reconfiguration if reconfig-
ure is not null, or single-process termination otherwise. In both cases, a new final state is
swapped in by calling setState on line 12, which is linearizable by Lemma 13. We assume
that startHalf is the only method to introduce final states or new configurations.

The compare-and-swap statement on line 8 may either succeed or fail, with the same
overall effect. Since we are in the only procedure that modifies the conf field, reaching
line 12 always guarantees that conf is non-null and—by determinism of the Kahn pro-
cess network and the reconfigure function—contains an equivalent value representing the
subgraph.

10Otherwise, the behavior of the step user transition function is ill-defined.
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If setState succeeds, then the shared state has not changed at that point and the whole
startHalf invocation can linearize at it. If it fails, then the shared state has changed, and
we can also linearize at the setState invocation, since a startHalf run beginning at that
point would simply end up attempting the same setState call and similarly failing.

3.9.2 End half-transitions

End half-transitions complete the transition by executing any channel command re-
quested by the start half. It is the only routine that uses and changes the inds array
(locally, of course) to track consumption and production into the monotonic buffers, so
they can be used as queues. We apply the ideas developed previously: semi-local oper-
ations on monotonic blocks (monoPush on line 16, monoPop on line 14), separated by
obligatory checkpoints on saturation, in the form of shared state changes (setMacroState
on line 10).

It should be noted that endHalf actually does not always complete the end half-
transition exactly, due to the way macro operations play out. If the requested channel
action requires a block change, then the procedure returns after setting the new state,
without actually doing the work. Although the exit status is zero, the half-transition is
still pending; it will only close after another call to getState and endHalf.11 This does not
affect linearizability, however; the same quirk would manifest should we decide to run
the function sequentially.

Lemma 16. In all histories made of invocations of startHalf and endHalf (with the
implicit getState), the values written to the monotonic buffers are indeed monotonic,
i.e., different threads writing to the same location within a buffer write the same value.12

Proof. First, we remark that only endHalf modifies locations within buffers, through
monoPush and monoPop. Furthermore, endHalf invocations under the same expected
shared state (as loaded by the call that provides s to endHalf ) access the same buffers.

We prove the lemma by induction on the length of histories. By linearizability, we con-
sider whole invocations of startHalf, setMacroState, monoPush and monoPop as atomic
actions.

If the history is empty, no buffer is written, therefore the property holds. Suppose it
is true for all histories of length less than or equal to n. Let H be a history of length
n+ 1.

11We thought long and hard about a simple way to have endHalf actually guarantee a full half-
transition; however, the added complexity was judged counterproductive, hence this slight but unfortu-
nate deviation.

12This lemma looks very much like Theorem 1, but is in fact weaker; it only shows that within a same
concurrent execution, the same values are produced and the same decisions taken by any redundant
segment of a given process. It says nothing of different scheduling choices; in a sense, it states the
opposite: that there are no choices to be had, and all workers are bound to repeat the same program for
every process (which is good). We use it to prove linearizability of the endHalf procedure, which will be
used to build an equivalence with sequential schedules later on, but for now, this is a simpler lemma,
with a simpler proof.
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1 int endHalf(LocalProc ∗lp, State ∗s)
2 {
3 var chi := s.vars[0];
4 var vi := s.vars[1];
5 var buf := getBuffer(lp, chi);
6 if (buf = null)
7 return −1;
8 if (s.inds[chi] = lp.p.args[chi].ch.len) {
9 s.inds[chi] := 0;
10 return setMacroState(lp, chi) ? 0 : −1;
11 }
12 bool ok;
13 if (lp.p.args[chi].kind = IN)
14 ok := monoPop(buf, s.inds[chi], &s.vars[vi]);
15 else
16 ok := monoPush(buf, s.inds[chi], s.vars[vi]);
17 if (ok) {
18 s.vars[0] := −1;
19 s.vars[1] := −1;
20 ++s.inds[chi];
21 }
22 return ok ? 0 : 1;
23 }

Figure 3.43: Concurrent implementation: endHalf
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If the last action is not a successful instance of monoPush or monoPop, then nothing
new is written to any buffer, therefore the property holds by induction hypothesis on the
n-prefix.

Otherwise, the last action ξ is a successful invocation of monoPush (line 16) or
monoPop (line 14) within an invocation of endHalf. If this is the first such call at this
index in the buffer, then the property trivially applies. Else, there exists another action
ξ′ of the same nature that has written a value at this index before in H.

• Suppose ξ and ξ′ are based off the same expected shared state s′. Local states
can only be constructed by successive applications of startHalf (through the step
function) and monoPop. The initial shared state used by both derivations is the
same, hence the buffers are also the same by the remark above. At each successive
step, by induction hypothesis, any values read by monoPop must also be the same.
Therefore, it takes the same steps to reach the local state of both ξ and ξ′, which
must be equal. Thus, they write the same value.

• Suppose ξ and ξ′ are based off different expected shared states. ξ must have an older
expected state s, as newer states would have a higher index, or a different buffer,
depending on whether setMacroState on line 10 is called with the same chi or not.
Let us consider any older derivation from the introduction of s to its replacement
by the next state. This sequence must exist since ξ′ is newer and is based off a
subsequent expected state. Either the derivation is longer than the number of steps
required to reach ξ, or it is shorter.

If it is longer, then by the same reasoning as above, starting from the same ini-
tial state and with the same input and transitions, it hits a modification of the
same location as ξ and ξ′ after the same amount of steps used for ξ. By induction
hypothesis on a prefix of H, the value written is the same as that of ξ′ and ξ.

If it is shorter, then we should have hit the same setMacroState call before reaching
ξ, which is impossible.

In every case, ξ writes the same value as ξ′. The property applies at rank n+ 1.

Corollary 6. Checkpoints are deterministic.

Proof. As a straightforward extension of the above proof, since local states based off the
same expected shared state are equal after a given number of steps, then they all attempt
to establish a checkpoint after the same number of iterations, when a buffer needs to be
swapped.

Lemma 17. Assuming it is called on a local state with a pending end half-transition, the
endHalf function is linearizable.

Proof. If an invocation fails after loading the buffer on line 5, then it means the state
has changed between the call and getBuffer (linearizable, due to Lemma 14). We can
linearize at getBuffer.
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Otherwise, either the block is saturated on the side of the current process, and we
call setMacroState, on line 10 (linearizable by Corollary 5), or it is not, and we perform
a monotonic operation on lines 14 and 16 (linearizable by Lemma 5).

If setMacroState succeeds, then the shared state has not changed at that point, and
so previous tests would pass identically were the invocation to take place at that instant
instead. If it fails, then it does not affect the shared structure occurs; the shared state,
however, has changed from its expected value. In the corresponding linear run, the pre-
vious getBuffer test would branch out, yet also return −1. Therefore, in both cases, we
linearize on line 10.

Finally, if we go down the route of monotonic operations, then we call either line 14
or line 16, depending on its nature (which is constant after initialization, being drawn
from the args array). Since checkpoints are deterministic by Corollary 6, we know that
if the call fails, no new shared state has been published at that point; otherwise, the
current operation would have been completed first. We can thus linearize at the monotonic
operation.

If the monotonic operation succeeds, then there are two cases: either the expected
state is unchanged at the call, in which case we simply linearize at that point, or it
has changed by the time we invoke monoPush or monoPop. By Corollary 6, the current
operation must have been completed by another thread before reaching the next check-
point. Therefore, we can pick as our linearization point the instant just before the next
shared state is installed by the other thread (which lies outside of the current method
invocation). At that point, the operation is sure to succeed (albeit redundantly so), yet
the state remains unchanged, thus the test on line 5 passes and yields the same buffer as
in the current execution.

3.10 A non-blocking interpreter

At long last, we can finally write a new concurrent lock-free implementation of the cocall
function introduced early in this chapter, in Figure 3.44. It makes use of alternating
getState, startHalf and endHalf, as we have outlined already in Lemma 16.

Lemma 18. The cocall function is linearizable.

Proof. Note that getLocalProc is purely a sequential helper routine that does not touch
shared memory.

Invocations that return early after loading the state on line 5 linearize at getState
(linearizable by Lemma 12), since the tests are totally local.

If we branch out after the call to startHalf on line 11, there are two cases: either
startHalf returns zero or it returns a negative value. If zero, we can linearize at startHalf,
since the state has not changed at that point, hence a call to getState in the linear run
would keep us on the same path. If negative, then we can also linearize at startHalf, since
a sequential run at that point would simply return true–null earlier, when testing for the
final field on line 8.
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1 (bool, Chan ∗) cocall(Proc ∗p)
2 {
3 var lp := getLocalProc(p);
4 again:
5 var s, chi := getState(lp);
6 if (s = null)
7 return false, lp.p.args[chi].ch;
8 if (s.final)
9 return true, null;
10 if (s.vars[0] = −1 or s.vars[1] = −1) {
11 if (startHalf(lp, s) < 0 or s.final)
12 return true, null;
13 }
14 assert(s.vars[0] 6= −1 and s.vars[1] 6= −1);
15 chi := s.vars[0];
16 var status := endHalf(lp, s);
17 if (status < 0)
18 goto again;
19 return status = 0, lp.p.args[chi].ch;
20 }

Figure 3.44: Concurrent implementation: cocall
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Otherwise, the invocation reaches line 16. If we do not return from startHalf or before,
then the process has not finished and is not waiting for a macro block either, just before
the call to endHalf. Very importantly, it implies that startHalf did not touch shared
memory. There are two cases:

• If endHalf returns zero or a positive status, then the state has not changed at
endHalf, so a displaced getState at that point would yield the same result. It is the
linearization point.

• If endHalf returns a negative value, then the channel buffer has changed, hence
the shared state with it. This particular call to endHalf, hence this entire cocall
iteration, has had no effect. Indeed, since the expected state has moved, the next call
to getState will discard any tentative modifications we have just made. Therefore,
we can simply loop on the cocall procedure and linearize at the next opportunity.

Due to the caveat discussed above concerning the endHalf procedure, this concurrent
version of cocall does not have the exact same semantics as the sequential cocall. However,
it does accurately report waits (false–channel return pair), which becomes important for
its use in copoll later on.

Nevertheless, in a concurrent execution made of cocall invocations, we can construct a
compatible legal sequential schedule for the same Kahn process network, based on this
altered semantics.13 We consider the linear history of cocall equivalent to the concurrent
one. Then, by Lemma 16 and Corollary 6, we know that every half-transition is either
the first to hit such an channel index or position in the process program, or it is redun-
dant with a previous such half-transition that has already been carried out by a prior
invocation of startHalf or endHalf, hence of cocall. We build the compatible sequential
schedule as follows: if the concurrent half-transition is first (and even if it is purely local),
then we append the corresponding sequential half-transition to the compatible schedule;
if not we do nothing.

Lemma 19. The compatible schedule is legal.

Proof. Sequentially, we verify that a succession of successful invocations of startHalf and
endHalf on non-repeating local states implements a Kahn process network using queues
of queues and a process tree not much different from the sequential interpreter.14 Our
previous construction builds such a non-repeating sequence by picking only the first half-
transition at each index. By Lemma 16 and Corollary 6, we know that later redundant
half-transitions are entirely idempotent and do not spoil the construction from those that
came first.

13The only problem is that we need to look at the actual effects on shared memory, at the level of
states and buffers, rather than basing our scheme entirely on the observable return values from cocall or
endHalf ; in a sense, we are implicitly using an additional (unnamed) interface that gives us a glance at
the shared data structure. We must do this to distinguish between unfinished end half-transitions and
those that actually completed, following an invocation of endHalf.

14Although we give no actual proof, it is really just a complicated sequential implementation with
compare-and-swap statements that cannot fail, and queues of queues instead of regular ring buffers.

141



3.10. A NON-BLOCKING INTERPRETER

Corollary 7. For all local states observed between calls to cocall, there exists a prefix
of the compatible schedule where an equivalent (same process variables, same production
and consumption indices) state was current.

Proof. From the construction of the compatible schedule. If the state comes from an
effective half-transition (that was first) that introduces a corresponding sequential half-
transition, then the prefix is the schedule up to and including the introduced sequential
half-transition. This prefix builds the same state when considering only non-redundant
half-transitions, as seen in the proof of Lemma 19.

Else, the state comes from a redundant half-transition, by Corollary 6, and there
exists an equivalent first half-transition, which has a compatible prefix.

3.10.1 Termination

Since start transitions do not take care of counting finished processes anymore, we need
another way to check for termination. This is accomplished by the checkFinished proce-
dure, shown in Figure 3.45. It should be called on processes whose children are suspected
to have finished themselves. This task is best left to a smart scheduler (with some help
from the core functions presented in this section). For now, however, let us simply observe
that by default, it suffices to chain checkFinished after any true–null return from cocall,
to guarantee that termination will be detected eventually (albeit inefficiently).

Lemma 20. The checkFinished function is linearizable.

Proof. As we have seen many times now, branching out at either of the first two tests
following line 3 means a linearization point at the call to getState. Indeed, the tests only
touch constant (at that point) or local memory.

Going further, if update is false, then the invocation linearizes on line 8, when loading
njoined. At that point, we are in a final state, which means the first test cannot fail, and
reconfigure is constant after initialization, so does not change in between either.

If update is true, then we can pick the last iteration of compare-and-swap on line 16
as the linearization point. The same reasoning as in the previous paragraph applies; in
addition, the last compare-and-swap also provides the only (optional) modification, and
the value of nj used in the final comparison when deciding the return value. Therefore,
everything works as if we had executed instantly at that point.

3.10.2 Assemblage

We can now plug everything into the framework we have built earlier, more specifically
the copoll method, Figure 3.46.

The code of concurrent copoll is similar to its sequential counterpart, except the
invocation of cocall now references the concurrent version of cocall, which, as detailed
above, has slightly different semantics. The main result of this chapter, which should now
become apparent, is that, in spite of this underlying difference, copoll itself is fully lin-
earizable with respect to the specification induced by sequential copoll. Said specification
is certainly not trivial.
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1 bool checkFinished(LocalProc ∗lp, bool update)
2 {
3 var s, _ := getState(lp);
4 if (s = null or not s.final)
5 return false;
6 if (lp.p.reconfigure = null)
7 return true;
8 var nj := lp.p.njoined;
9 if (update) {
10 int i;
11 for (i := nj; i < countof lp.p.conf.procs; ++i) {
12 if (not checkFinished(lp.p.conf.procs[i], false))
13 break;
14 }
15 while (nj < i) {
16 cas(&lp.p.njoined, nj, i);
17 nj := lp.p.njoined;
18 }
19 }
20 return nj = countof lp.p.conf.procs;
21 }

Figure 3.45: Concurrent implementation: checkFinished
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1 int copoll(Proc ∗p, bool w[])
2 {
3 for (;;) {
4 var q := schedule(p, w);
5 if (q = null)
6 return −2;
7 var ok, ch := cocall(q);
8 if (ch = null) {
9 if (checkFinished(q)) {
10 if (q = p)
11 break;
12 }
13 } else if (not ok) {
14 for (var i := 0; i < countof w; ++i) {
15 if (w[i] and p.args[i] = ch)
16 return i;
17 }
18 }
19 }
20 return −1;
21 }

Figure 3.46: Concurrent implementation: copoll
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First, its interface involves multiple helper routines (e.g., mkproc) around the main
copoll method. Those serve to abstract input and output values. Most importantly, we
recall that the Proc object is not expected to be manipulated by the user directly. Instead,
it is to be considered an opaque structure defined by the arguments passed tomkproc. This
introduces a simple equivalence between the input arguments of sequential and concurrent
copoll. There are other ways around this. We could, for example, fully separate Proc and
Chan into user-facing immutable structures and internal mutable objects; however, this
comes at the price of added indirection and implementation complexity.

Second, we recall that the expected behavior of the interpreter is defined in terms of
allowed interleavings of call and return actions from its methods. In the case of copoll,
concurrency has an influence on the end result: this is modeled in the sequential specifica-
tion by the schedule black-box procedure, which non-deterministically returns a process
to execute. In doing so, we mask away the potential environmental interactions between
the interpreter object and the system, thus allowing for the linearization of copoll.

In the implementation of concurrent copoll, notice how unlike the sequential copoll
method, we have no way of testing for empty or full channels without examining the
attached processes. Therefore, this version does not start with a scan of the w array
(compare Figure 3.11). Instead, we rely exclusively on the scheduler eventually giving us
a process waiting on half-bound channel to be supported by the environment.

This approach is, evidently, highly inefficient. As with termination, this should be
solved by better scheduling techniques that keep track of information and can answer
such queries as: “Are such and such channel preventing processes from progressing?”

Theorem 2. Plugging our concurrent implementation of cocall into copoll yields a
concurrent, lock-free, disjoint-access-parralel interpreter.

Proof. As we have seen, even though concurrent cocall is not equivalent to sequential
cocall, at the very least, it accurately reports waits. Therefore, when plugged into copoll,
which simply iterates on any non-wait return code, such internal fluctuations are ignored,
and the external behavior complies with the specification, which can be described as
follows.

Every call to copoll appears as if it linearizes at the point where it finds a suitable
channel to return to its caller. Any progress it makes on Kahn processes to get there are
seen as the effect of some schedule obtained non-deterministically—it is in fact the result
of the scheduler plus the many hazards of concurrency.

This implementation is lock-free, since any loop ensures global progress. The one
in cocall is entered only if a buffer has been replaced, and the main loop in copoll calls
cocall with each iteration. Through the various lemmas of this chapter, we have seen that
cocall builds upon pieces that guarantee an accurate representation of the Kahn process
network, both at the local and shared level (although they may indicate different times,
they all belong to the same equivalent sequential schedule as shown in Corollary 7).

Finally, it is disjoint-access-parallel through the use of blocks and descriptors, such
that thread executing a specific process only competes for resources associated with its
immediate actions: the shared process state, and connected buffers.
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3.10.3 Lock-free performance

Although we must admit that, at the time of writing, this non-blocking interpreter algo-
rithm has yet to be fully implemented and tested in a real-world environment, we want
to summarize and justify some of the motivations behind it, and why we believe it has
the potential to be a robust, fast and realistic implementation.

The main appeal of our work lies in the fact that it combines lock freedom with
characteristics that are typically good for performance.

• First, we would like to reiterate that it mirrors the disjoint-access parallelism of the
source Kahn process network: a transition, as executed by startHalf and endHalf,
only touches the parts of the data structure corresponding to the specific process
and channel that it covers.

• Second is the relatively low overhead of transitions in terms of atomic operations.
Read-modify-write operations are only involved when updating the shared process
states and channel buffers (one compare-and-swap instance for each), or when ter-
minating. Most normal channel input and output use only simple read and write
operations.

Very importantly, contrary to some popular inter-thread communication devices
that do transfers in large chunks at a time, we push and pop items one at a time,
and therefore do not constrain the original process network in any way, with regard
to the length of its cycles.15

This, however, is distinct from the fact that it is possible to increase the size of
channels, even beyond what can naturally be used by the Kahn process. In our
implementation, this leads to less frequent shared state updates, thus less expensive
compare-and-swap instructions. We thus offer a convenient way of trading memory
for less overhead, which often has a sizable impact on practical performance.

• Although we rely heavily on the presence of a lock-free memory management sys-
tem,16 which is often criticized for the high cost associated with taking read sections,
our algorithm also offers a way mitigate this expense: through the caching mecha-
nism of the semi-local layer. When cached, it only costs one simple load instruction
check whether the pointer is still valid; we could even ditch this test completely,
at the risk of doing more redundant work. Again, it is possible for the user to
determine how much memory to trade for potentially unused cached read sections.

While caching and local execution are great tools to have, we would be right to
question whether it is wise to promote them as a way to combat overhead. After all, using
very long channels would cause processes to be run for correspondingly long times before

15We recall that in a process network with feedback loops, it may sometimes be necessary to produce
before being able to consume more (and vice versa), therefore it is not always possible to wait to have
more data to write to an output channel, or read from an input channel.

16As do all complex lock-free data structures.
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threads have to compete for a checkpoint, therefore leading to potentially tremendous
amounts of redundant work.

However, we feel that this is best addressed as a scheduling problem; after all, nothing
prevents our interpreter threads from cooperating in other, less costly (and less author-
itative), ways. For example, we could easily imagine a system of priority whereby each
worker flags the process or processes it wants to execute, and others refrain from doing
the same, unless they have no choice.

This brings us to the topic of scheduling, which we left as a black box in our final
copoll implementation in Figure 3.46.

3.10.4 Scheduler independence

In our concurrent interpreter, following the same design philosophy that we used in the
sequential case, there is an almost complete separation between the core interpretation
mechanisms (under cocall), and the process scheduler (represented by the schedule rou-
tine). In particular, progress will be made with any sufficiently fair scheduler, as we have
seen in Section 3.2.3.2.

Most notably, this allows us to use scheduling techniques that may be slightly incor-
rect in a lock-free environment, by interleaving their decisions with a fair scheduler based
on traversal of the process graph, as discussed in that section. Concretely, we support
two kinds of deviations from correct fair scheduling behavior:

• process duplication, where two worker threads schedule the same process for exe-
cution at the same time;

• and process loss, whereby every thread forgets about some process that is never
selected again.

Moreover, the fair interleaving trick of Section 3.2.3.2 ensures that no process is
ever completely forgotten. We thus head into the last chapter of our construction with
considerable flexibility as regards the remaining major component of the interpreter,
namely, scheduling.
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Chapter 4

Dynamic scheduling in
shared-memory systems

In this chapter, we turn our attention to practical matters: realistic implementations and
applications of Kahn process networks. In particular, we discuss scheduling, in its various
forms.

As a starting point, in Section 4.1, we present solutions to the problem of process
scheduling, mentioned several times in the last chapter, only to be invariably relegated
to a background role. The non-blocking interpreter routines we have built—hereafter
referred collectively as the core interpreter—only make up half of the equation, half
of the ingredients needed for good lock-free performance. The other necessity is a good
process scheduler.

In Section 4.2, we take a lower-level view. We examine how our algorithms fare when
mapped onto real hardware threads. Indeed, we have assumed until now a sequentially
consistent world, made of pure interleaving, which by modern standards can be consid-
ered unrealistic. Precise hardware and language memory models exist but involve more
complex rules and require special handling, such as adding memory fences or specific
memory ordering tags to instructions. We thus look at what is needed to keep ourselves
safe and correct in those environments, and how the added machinery affects the perfor-
mance characteristics of our algorithms.

Finally, we wrap up our study by adopting a slightly different angle: that of applica-
tions. Section 4.3 deals with several programming patterns that can be used with Kahn
process networks, and more generally how computations can be designed for efficient
execution as process networks, and on our proposed implementation in particular. We
discuss how they benefit from or are hindered by various strategies devised in the rest of
the chapter, or sometimes more pervasive mechanics inherent to our approach.

4.1 Process scheduling

The interpreter we have built, in the previous chapter, is very reliant on the existence
of a function that performs process scheduling. In our design, we split the life of a
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Kahn process into transitions between states. In short, a transition takes execution (of a
single process) from one channel input or output operation to the next. Core interpreter
routines alternate with the scheduler after each transition, giving us the opportunity
to reevaluate our priorities and decide on a follow-up: whether it be pushing the same
process further, switching to another one, or maybe even waiting (for a bounded amount
of time, to stay lock-free). Process scheduling is the brains that drive all of these things,
it is the essential procedure that answers the simple question: “What do we do next?”

To be more precise, as we have seen, transitions can be complete or incomplete, where
only one half or none at all gets done before returning to the scheduler. In this chap-
ter, we generally spare ourselves the trouble of distinguishing between all the subcases
when looking at the bigger picture, unless they contribute something essential to the
discussion—which usually they do not.

In the simplest case, the whole of scheduling can be summed up in a single schedule
function that returns the next task to accomplish. However, as we will see, more involved
strategies often require the use of hooks, i.e., code additions to existing procedures whose
sole purpose is to collect information that will guide the decision process. As a rule, we
will always make sure that these insertions do not otherwise alter the semantics we
have previously established outside of what is covered by the non-deterministic nature
of copoll.1

4.1.1 What makes a good scheduler?

There are several qualities we can look for in a process scheduler. While it is possible
(and in some sense desirable, see Section 3.2.3.2) to pick targets at random, in general,
it is inefficient. Lock freedom implies an ability on the part of worker threads to execute
any process at any time, but it does not mean we should waste time scheduling a same
process in different threads at the same time, if given the choice. As a rule of thumb,
fault tolerance is a constraint, and as such incurs a performance penalty. Therefore, in
the general case, we are much better off trying to emulate an unsafe—blocking—system
as much as possible.

The question then becomes: what measure of unsafety is acceptable, for a process
scheduler? As we recall from our prior introduction to the subject, Section 2.1.1, lock
freedom should not be considered in a vacuum. We want non-blocking objects that lin-
earize to useful specifications. In this subsection, we thus discuss what such a “good
specification” entails.

4.1.1.1 Partitioning

In the last chapter, we saw how to characterize a sequential scheduler, in terms of maximal
progress and fairness, applied to a function over the whole network state. Unfortunately,
these do not translate very well to a concurrent context. Indeed, let us imagine that
schedule is a pure function of the current state of the Kahn process network, i.e., of

1From the point of view of software engineering, they are transverse, or, in aspect-oriented terms,
cross-cutting, similar to profile or debug instrumentation.
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the individual process states and channel contents. Then calling schedule multiple times
with the same input should produce the same output—the choice of the next process to
execute. In that case, a linearizable concurrent version would instruct multiple worker
threads toward the same task if invoked at close intervals, before any thread has the
opportunity to update the network. This, in general, is undesirable since we want to take
advantage of the disjoint-access properties we have worked so hard to achieve. For those to
yield any benefits, however, workers need to operate on different processes simultaneously.
Otherwise, we would simply end up doing redundant work.

Looking at the problem from a different angle, suppose we forget about non-blocking
constraints, for a second. What would be the best schedule if all threads were guaranteed
to execute at the same speed without delays, for example? In these conditions, we should
strive to give each thread separate but equivalent amounts of work. It is inherently a
classic partition optimization problem: given a set of tasks to accomplish (acceptable
process transitions) with associated weights (the time needed for the computation), split
the work into subsets such that the subset sums match as closely as possible. Even under
our ideal no-delay same-speed hypotheses, the problem is further complicated by a couple
of factors, however:

• As soon as one task completes, the set to partition may change. Recall that one
transition equals one channel operation. Thus, we may observe up to two two
changes: the executed process may or may not be able to undergo an immediate
successive transition, and its peer on the other side of the channel may be able to
run now if it was waiting before.

• Accurately putting a time estimate on each task is a very hard problem on its own,
requires a cost model, as well as deciding what kind of estimate it is that we want.
Do we balance for the average? Do we shoot for the worst-case execution time? This
becomes downright impossible to achieve in any automatic capacity, in practice, in
the case of a run-time library such as ours, where the transition functions are given
as black-box user-defined procedures.

To summarize, without further information, provided by the user, or some higher-
level compiler, perhaps, there is little we can do, as a mere run-time library to figure out
the contents of a potential transition, short of attempting to execute it.

It should be noted that there exist restricted classes of Kahn process networks, such
as the synchronous data-flow graphs of Lee and Messerschmitt [1987] and its successors,
that exhibit more regular properties which can aid in scheduling. Moreover, given more
control over the source Kahn process programs (e.g., in a form of a compiler), there
is no doubt that automated processing could be conducted to yield suitable hints (e.g.,
duration estimates or channel affinities), for example by applying well-known control-flow
and data-flow analysis techniques borrowed from the field of compiler construction. There
are also several data-flow languages that could be considered as candidates for a higher-
level representation, one that would allow scheduling information to be collected and
handed down to our run-time library in some form or another. Among those, perhaps
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the most promising option points toward equational synchronous data-flow languages
in the tradition of Lustre [Caspi et al., 1987],2 which translate nicely to Kahn process
networks, as it is, and could potentially be integrated to provide more cues with regard to
parallel scheduling in the future. Alternatives include declarative–imperative hybrids a la
StreamIt [Thies et al., 2002], which already offer good compile-time scheduling abilities
for restricted subsets of process networks. Looking further, we could imagine hypothetical
adaptations and extensions of the more distant family of task-based parallel languages
(of which there is no shortage, e.g., the OpenMP standard in its fourth version, StarSs
[Planas et al., 2009], OpenStream [Pop and Cohen, 2013], or Swan [Vandierendonck et al.,
2013], to name a few) or distributed frameworks that feature channel constructs in the
vein of the widely known MPI library.

Those all constitute interesting research directions for the future. However, in the
present work, we concentrate on the minimal case we have described: our Kahn process
implementation works as a run-time library embedded into a host language, where tran-
sitions are represented as functions written in that same host language. While we may
thus forgo some cleverness as regards scheduling, this decision is not without its own
merits. The simplicity of its interface makes it possible for programmers to write Kahn
processes as state machines directly in the language of their choice, e.g., directly in C,
with all the convenience (and inconvenience) it brings. On the other hand, requiring the
complete scheduling information required to compute a good partition of the tasks at
hand is likely to prove prohibitively complex for human users.

In practice, from our experience, even just writing the state machines in raw C already
amounts to a rather specialized task. We can only imagine how much harder it could
become were we to add compulsory control-flow and data-flow analyses to the mix without
the assistance of a compiler. More than likely, the cost-efficiency would plummet to
unacceptable levels well before the point where any sizable Kahn programs could be
written.

4.1.1.2 Still more waiting

Given our (self-imposed) constraints, all potential actions are a priori identical. It would
seem that the best we can do is simply to randomly partition the work, assuming uniform
weights, and give it to threads. Does it mean we are back to square one?

While, this would be true if we had to decide upfront where to allocate time, we have
already established that this is not the case. Quite to the contrary, our system is built
around a form of online scheduling, also known as dynamic scheduling: after each
transition, control comes back to the scheduler. Therefore, it is possible to correct any
imbalances after the fact, or at least, we can attempt to. The basic blocking algorithm
thus implements a straightforward greedy strategy, as illustrated by Figures 4.1 and 4.2.

This process scheduler is somewhat basic and abstract. It adapts to tasks of different
lengths, thanks to letting them sit in the A set and not reassigning them immediately.
However, beyond that, it does not, for example, distinguish between complete and in-

2Not to be confused with the above usage of synchronous data-flow by Lee and Messerschmitt [1987].
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We start with a setW of tasks to assign to worker threads, and another set A of currently
assigned tasks and their hosts. F contains processes that have terminated. When asked
for something to do by a thread T , through schedule:

1 getTask():
2 While W = ∅ ∧A 6= ∅
3 Wait
4 If W = ∅
5 // The process network has terminated.
6 End
7 Else
8 x′ ← some random task in W
9 W ←W \ {x′}
10 A← A ∪ {(T, x′)}
11 Return x′.

Figure 4.1: Basic blocking scheduler: getTask

When a worker is done with a process, it tells the scheduler to make it available for others
again:

1 putTask(x):
2 A← A \ {x}
3 If x is finished
4 F ← F ∪ {x}
5 Else
6 W ←W ∪ {x}

Figure 4.2: Basic blocking scheduler: putTask
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1 putTask(x):
2 A← A \ {(T, x)}
3 If ∃u, [x has just completed a transition on u]
4 If ∃y, (y, u) ∈ D
5 D ← D \ {(y, u)}
6 W ←W ∪ {y}
7 W ←W ∪ {x}
8 Else if ∃u, [x is waiting on u]
9 D ← D ∪ {(x, u)}
10 Else
11 F ← F ∪ {x}

Figure 4.3: Blocking scheduler with channel waits

complete transitions. What happens if a thread returns a process to the pool simply
because its channel operation cannot be carried out just yet? It is simply returned to
the W pool, and thus may end up being chosen again before it is ready to make any
progress. This naive strategy is sometimes termed polling or active waiting, due to
its resemblance to a busy loop: we simply poke things in the pool hoping to fish out the
good one, the one that will bring the whole network one step forward. Needless to say,
if dormant processes—those waiting on channels—outnumber the suitable ones, this can
be a recipe for disaster. It might not be incorrect, but it could be horribly slow.

To help with these situations, we introduce the new D work set, as shown in Fig-
ure 4.3, which contains pairs mapping a waiting process to the channel it is waiting for.
Since Kahn processes can only block on a single channel at a time, D should have at
most one pair for each process.

Notice how the W , A, D and F sets are mutually exclusive. Processes flow from
one to another depending on their current status. At any point in time, only tasks in
W are eligible for execution by a worker. Conversely, every process in W has at least a
half-transition to offer. Indeed, initially, all processes can at least complete a start half-
transition. Afterward, whenever a transition goes incomplete, the corresponding process
is put into a D set (line 9), and only exits that state when the opposite actor makes a
move on the connecting channel (line 5); at that point, the process goes back to W with
at least one end half-transition ready.

4.1.1.3 Moving between work sets

From the code in Figure 4.1, we can clearly see where the source of blocking behavior
comes from: if all the work is currently assigned to other threads, then we wait. Could
we do it without waiting? The intuitive solution is to get tasks from A if W is empty.
However, if the process is paired in A, it means some other worker is already taking care
of it. In an ideal fault-intolerant world, this has a couple of implications.

If we know that some other thread is working on it and has started before us, is there
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really a need to jump onto the same transition? If threads are guaranteed to progress at
the same speed, the answer is obviously negative: since Kahn transitions are deterministic,
we would spend as much time as any other execution unit, thus we cannot catch up if
they started early. If some mild delays are allowed, the question becomes more nuanced;
some external factors (e.g., the system or hardware scheduler) might be slowing our fellow
worker down, and we could perhaps speed up the whole thing by taking it upon ourselves
to accomplish the same task.

However, this is assuming we are able to assist other threads at all. It requires that
multiple threads be allowed to work on a same transition simultaneously. This is far from
the norm for most task-based environments, where each unit of work is usually exclusive
and locks down several shared resources for use by the particular thread it is assigned
to. Fortunately, in our case, the whole of last chapter was dedicted to building a non-
blocking data structure to represent Kahn processes and channels, one which supports
concurrent overlapping transitions.

Therefore, though we have taken a different path, we end up with a similar conclusion
to the one we drew in the previous chapter about fair sequential schedulers: to attain
lock freedom, it suffices that we can inject some fair selection (e.g., picking randomly
from the A set) in the wait times of our blocking algorithm.

With these additions, the specification of our process scheduler—or at least an ideal-
ized version thereof—can thus be considered satisfactory, and we now turn our attention
onto the implementation side. At a glance, the code features a lot of disjoint-set oper-
ations, all of which move an element from one set to the next. As we recall from our
lock-free adventures in the past two chapters, moving things between shared data ob-
jects is usually difficult. Previously, we have solved the various cases that have appeared
before us (e.g., pushing to and popping from macro queues) by using indirection backed
by election-like algorithms (in the form of compare-and-swap) and assistance. In this
chapter, however, we take a different route altogether.

Moving something from one place to another does not exist as a primitive operation;
we only have assignments, and, by extension, copying. Thus, to move an item from one
set to another, we need to combine two actions: deleting from the old and inserting into
the new. The two major risks associated with this intervention are as follows.

• If we perform the statements in that order—delete before insert—then we need to
store the content in some temporary (local) variable first. The risk is therefore that
the driving thread halts and the moving value is lost forever, since it is absent from
the first set, and not yet present in the second.

• If we perform the statements in the reverse order—insert before delete—then sym-
metrically there is the risk of duplication, if the thread stops before it removes
from the old set.

In general, duplication is more acceptable than loss, since at least, there is still a
chance we might realize and fix it in the future, whereas once a value is gone from the
system, it cannot be recovered, by definition (else it would not have been really gone,
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merely hidden or scattered in some other form as redundant information somewhere).
This is why compare-and-swap is eventually involved, at some point, to merge back
different versions of a same entity, by requiring consensus, which lets threads know about
each other and synchronize.

However, we should note that a single compare-and-swap instruction is able to unify
possibly as many copies as we want. Therefore, a basic principle follows: there is no
need to have such merge guards at every move operation. It suffices that eventually one
happens. This is a boon for us, since our data structure that allows equivalent transitions
to happen simultaneously already handles deduplication. Moreover, the process graph we
thus maintain also always lists every possible process in existence.

Therefore, there is no need for us to repeat what has been done in the previous
chapter. More specifically, it would be possible to represent disjoint sets using some sort
of marker on the processes themselves, while memory does not move at all—essentially
using indirection, as we did in Section 3.7.2 for macro channels. Another possibility, as
we mentioned in the same section, is to make use of some sort of full transaction, such
as a multi-word compare-and-swap operation. However, keep in mind that even with
the latter, moving protected pointers to blocks of memory obtained from a lock-free
heap is even more expensive than it is for plain values. Indeed, read sections need to be
established for each thread participating in assistance, lest the chunk risk being recycled
while the transaction is still considered underway by some—similarly to how we handle
joint updates to process-bound descriptors and channel blocks in Section 3.7.1.3 As we
have been saying, however, none of this is necessary in our case, since we can delegate
all of the hard lock-free-related work to the contraptions of the last chapter.

Instead, we build our scheduling functions as if they were blocking, with a twist: we
deliberately allow process identifiers to be duplicated between the work sets and the ear-
lier authoritative Kahn process graph, which acts as a secondary scheduler, less efficient
but exact. Therefore, although the algorithms are blocking, they are not permitted to
wait explicitly without making progress. Instead, the Wait statement of Figure 4.3 is re-
placed by a special failure code that tells the caller to switch to the secondary scheduler,
which draws tasks directly from the graph data object instead of the usual work sets.

In this design, the primary (blocking) and secondary (non-blocking) schedulers work
completely separately. In particular, once getTask is aborted, we do not call putTask : the
graph-based algorithm does not touch the work sets defined previously. For example, if
a thread running a given process is delayed, another worker may fetch the same element
by scanning the graph, but is not allowed to put it back into W , or move dormant items
from D to W on its behalf. This avoids introducing duplicates in the circuit, and allows
sets to be implemented by weaker data structures that do not guarantee uniqueness.

Following these guidelines, Section 4.1.2 explores a couple of techniques to manage
the W set—and later the A set—concurrently and efficiently. Section 4.1.3 deal with the
remaining D and F sets, and the methods to detect and synchronize information about

3Note that, when using a memory management system based on reference counting, it is possible
to carry over the references within descriptors, which simplifies the equation quite a bit; with hazard
pointers, however, it requires a non-trivial protocol, such as the one we used in Section 3.7.1.
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W
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A (transition) //
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``

F

Arrows represent moves from one work set to another. Delay-induced losses are not
represented: lost elements end up in A implicitly. Dashed lines do not enforce uniqueness,
while full lines (after a transition) do.

Figure 4.4: Scheduling cycle

completion, be it of transitions or whole processes.
This study is completed by the more open-ended Section 4.1.4, which deals with the

topic of correctly meshing the two scheduling levels. We touch upon a few ideas that go
beyond the strict separation into two layers. We discuss what would be the consequences
of allowing the backup scheduler to manipulate the primary work sets directly, and how
we might want to deal with them.

4.1.2 Dynamic load balancing

4.1.2.1 Focused process selection policy

The first thing we need to be wary of, when looking for an implementation of the W set,
is the presence of caching of process states by worker threads, as we have demonstrated
in the previous chapter. While they are very welcome for performance reasons, private
process states must be taken into consideration when designing a scheduler. Indeed,
the algorithm in Figure 4.3 dictates that processes having completed a transition be
returned to W for further fair selection (line 7). However, this assumes that the state of
the x process just executed has been shared; otherwise, there is no point in pushing into
W as no other thread can take advantage of the progress just made.

Therefore, a more sensible caching-aware algorithm should instead focus on a single
process as much as possible, rescheduling x again and again as long as it completes its
transitions (thus does not need to wait) and does not terminate. In this way, the process
rejoins the W set only when it either finishes or waits.

In both cases, its shared state should be updated. We remark that this is not the
natural behavior of the core interpreter we have designed, which presently only syn-
chronizes the shared state minimally—whenever it would be incorrect to do otherwise.
Notably missing is the wait case, which does not trigger an update in the version shown
in the last chapter. However, manually forcing the local state to be published is easily
achieved by calling setState from copoll, when informed by cocall that a transition has
been left incomplete. It is also transparent to existing routines, as the effects of setState
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1 putTask(x):
2 A← A \ {(T, x)}
3 If ∃u, [x has just completed a transition on u]
4 If ∃y, (y, u) ∈ D
5 D ← D \ {(y, u)}
6 W ←W ∪ {y}
7 return x
8 Else if ensureSharedState(x)
9 If ∃u, [x is waiting on u]
10 D ← D ∪ {(x, u)}
11 Else if x is finished
12 F ← F ∪ {x}
13 Else
14 // Incomplete transition due to a macro operation.
15 return x

Figure 4.5: Caching-aware blocking scheduler

are completely absorbed by the following invocation of getState that begins the next
cocall.

This is our first hook into the existing code. The pseudo-code is given in Figure 4.5,
where ensureSharedState makes sure, as its name indicates, that the local state has been
pushed into the shared graph structure (either by a prior call to cocall or by invoking
setState itself), and returns true if it succeeds, or false if another thread has beaten us
to the update.

With this, each process goes through a scheduling cycle that alternates between W ,
A, D and F as illustrated by Figure 4.4.

4.1.2.2 A shared work set

As a starting point, let us note that the most direct implementation of the algorithm
from Figure 4.3 casts W as a global shared collection. Any collection that exposes an
insertion and fair selection operations can do the job. Perhaps the one that first comes
to mind is the first-in first-out multi-producer multi-consumer queue. In this case, we
replace random selection from a set with the round-robin behavior of a queue, which
also ensures fairness and can be fairly efficient. Since we already have a lock-free memory
management system, we could use, for example, the list-based non-blocking queue of
Michael and Scott [1996].

But since we allow ourselves to use blocking algorithms, what prevents us from apply-
ing mutual exclusion to the entire W set? Instead of waiting for the lock, other threads
would simply degrade to the fallback option of scanning the process graph, as explained
above. While it is technically feasible, in the sense that it would still produce a correct
algorithm, such an approach would be very sensitive to delays, as there is no way to
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struct Deque {
atomic int bottom;
atomic int top;
Array ∗ atomic array;

};

struct Array {
int size;
atomic void ∗buffer[];

};

Figure 4.6: Chase–Lev work-stealing deque: declarations

recover once the lock is lost to some delayed thread.
Compare this to the previous idea of plugging a stock lock-free queue to play the role

of W . Doing so does not prevent tasks from temporarily disappearing when they exit
the scope of the queue and become local for the duration of a transition, as explained
in Section 4.1.1.3. However, even if a thread T halts in this way, the damage is limited:
only one process is lost and needs to be handled by the secondary scheduler, which is
not necessary until the rest of W is exhausted. This gives T time to rejoin the ranks, if
at all possible.

In general, we therefore concentrate on almost lock-free algorithms—what is some-
times referred to informally as “lockless” in some circles—even on our blocking side. The
objective is to isolate losses to single elements transiting between sets, in order to conserve
the desirable damage-control quality just cited.

4.1.2.3 Work stealing

An arguably more interesting option is to distribute the contents of W among worker
threads. One popular technique that achieves this is the work stealing of Blumofe and
Leiserson [1999].

In work stealing, each thread owns a specialized work deque that contains tasks to be
scheduled (references to processes, in our case). New items are only ever pushed to one’s
own deque, but can be either be taken locally from the same structure, or stolen from a
remote deque. Of course, threads give priority to the local source. The overall ensemble
of deques acts as the single set W .

A lock-free version of this algorithm has been proposed by Chase and Lev [2005],
although it depends on unbounded integers. The code is reproduced in Figures 4.6 to 4.9,
in the form of three methods: give, take and steal.

The algorithm offers an asymmetrical deque: the owner thread pushes and pops el-
ements from the bottom, as if it were a stack, while thieves steal from the top. In this
way, there is contention only when the owner stumbles upon the a thief, i.e., when there
is only one element left. At that point, compare-and-swap is used to decide a winner for
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1 bool give(Deque ∗q, void ∗x)
2 {
3 var b := q.bottom;
4 var t := q.top;
5 var a := q.array;
6 bool ok;
7 if (b − t ≤ a.size − 1) {
8 a.buffer[b % a.size] := x;
9 q.bottom := b + 1;
10 ok := true;
11 } else {
12 // Full queue; can be resized by swapping in a new Array.
13 ok := false;
14 }
15 return ok;
16 }

Figure 4.7: Chase–Lev work-stealing deque: give

the last prize.
The basic insight is reminiscent of the single-producer single-consumer queue. Indices

control what threads see or do not see of the underlying array. When one side is controlled
entirely by a single thread, it can manipulate the index using inexpensive load and store
instructions to dictate the boundaries of what is shared and what is not (hence only
accessible to that thread). If, however, there is a risk of contention, compare-and-swap
is used to resolve the situation.

Lemma 21. The Chase–Lev work-stealing deque is linearizable.

Proof. Following the above intuition, we give a brief and informal—more so than previous
proofs—explanation of the linearizability of the work-stealing deque; for more details,
please refer to [Chase and Lev, 2005].

We can see that give is linearizable, either upon increasing the index on line 9 (if
successful) or upon reading the top index on line 4 (if not). Data is visible only when
the index moves, and since only the current thread can add more items, if the deque was
spacious enough before, it remains so now. Conversely, loading top is the only shared
operation in a failed run, thus everything occurs seemingly instantly at that point.

The take method is more complex, arguably, the most complex of the three. It has
three main paths:

• If we find an empty queue, then by the same reasoning as above, we linearize upon
reading top, on line 6.

• Otherwise, there is at least one element when we first enter. If it is not the only
one, compare-and-swap is not needed and linearization happens upon writing to
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1 void ∗take(Deque ∗q)
2 {
3 var b := q.bottom − 1;
4 var a := q.array;
5 q.bottom := b;
6 var t := q.top;
7 void ∗x;
8 if (t ≤ b) {
9 x := a.buffer[b % a.size];
10 if (t = b) {
11 // Last element.
12 if (not cas(&q.top, t, t + 1))
13 x := null;
14 q.bottom := b + 1;
15 }
16 } else {
17 x := null;
18 q.bottom := b + 1;
19 }
20 return x;
21 }

Figure 4.8: Chase–Lev work-stealing deque: take

1 void ∗steal(Deque ∗q)
2 {
3 again:
4 var t := q.top;
5 var b := q.bottom;
6 void ∗x := null;
7 if (t < b) {
8 var a := q.array;
9 x := a.buffer[t % a.size];
10 if (not cas(&q.top, t, t + 1))
11 goto again;
12 }
13 return x;
14 }

Figure 4.9: Chase–Lev work-stealing deque: steal
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bottom, on line 5, as top is guaranteed to be less than or equal to the value we have
read in the actual invocation, on line 6, due to monotony. (Notice this is only true
because we write to bottom before reading from top.)

• Else, we fight for the single last item. Whether we win or lose at compare-and-swap
(line 12), we can linearize there. If we win, then any competing steal invocation
fails and loops, totally discarding the results of previous iteration, and are therefore
equivalent to fresh invocations (see linearization of steal below), started after our
compare-and-swap on line 12. If we lose, then we could have read top later and
gone directly on the empty path.

Finally, steal is the only method that contains a loop. As mentioned when discussing
take, this makes it so failed iterations appear as if they did not happen and the invocation
simply started later. There are, in fact, only two meaningful paths in steal : exiting with
an element or null to signify emptiness. In the case of the latter, we linearize at the read
from bottom on line 5. Since top monotonically increases, its value can be no less than
on the previous load, on line 4, therefore also indicating an empty deque. If instead steal
returns some item, then we can pick compare-and-swap, line 10, as the linearization point,
knowing that any competing (failed) steal operation discard their iteration, thus linearize
after that point, and any concurrent take occur at their own unsuccessful compare-and-
swap (see above) in the linear history, therefore seeing the result of this invocation and
bailing out with an empty result, as expected.

Note that the above argument is more subtle than it sounds, as there is in fact no
point in the concurrent history where the steal invocation could take place atomically
without affecting other invocations. We also need to rewrite any concurrent take instance
into a call that goes through the direct path (no compare-and-swap), in order to get a
valid linearization. Alternatively, instead of considering the later occurrence of take in
the linear history, we could also linearize steal early, before line 6 in the competing take,
thus similarly rewiring it into its direct path.

With this, we can easily implement a W set for our scheduler. Since Kahn process
networks do not follow the structured fork–join paradigm work stealing was originally
designed for, none of the theoretical bounds apply. However, it still makes for an effective
way, in practice, to spread the contention, especially with the Chase–Lev algorithm.

Work-stealing deques and integer overflow In order to be useful in an entirely
lock-free system, however, we cannot rely on infinite integers. After all, if we had settled
for that in the beginning, there is no doubt that much of the work so far would have
looked vastly different.

The monotonic-block technique that we have used up to now still works: we wrap the
whole object in a protected pointer that requires safe reading. After all, infinite indices
are just another case of monotonic counters. The problem is made more complex by the
fact that, similar to queues of queues, the current index interval can span two containers
at once, when the producer reaches the end of the current range, but consumers are still
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〈T0〉 x pushes into u ⇒ true
〈T0〉 x pushes into u ⇒ false
〈T1〉 y pops from u ⇒ true
〈T1〉 y pops from u ⇒ false
〈T0〉 D ← D ∪ {(x, u)}
〈T1〉 D ← D ∪ {(y, u)}

Figure 4.10: Non-injective mapping in D

lagging behind. It is even more complex in the case of a work-stealing deque, since the
owner can waver back and forth with take and give, whereas our macro queues could
only go one way.

One solution to this is to maintain two deques at once. Once bottom reaches the maxi-
mum, the owner thread switches to using steal on itself to remove the remaining elements
and push top to saturation, at which point the object is swapped out. Meanwhile, the
other deque is used to store new tasks introduced by give.

While this method is clearly quite simple, following the pattern we have seen several
times by now, it suffers from one blatant issue: it does not follow deque semantics. Indeed,
at the point when indices must wrap, the owner switches to self stealing, which does not
follow the order of usual take operations. The object thus effectively morphs into some
data structure that is almost a deque, but not quite.

However, as we have already stated, Kahn process networks do not benefit from
this last-in first-out behavior in any theoretically significant way, except for the reduced
contention. Therefore, while, to the best of our knowledge, it has not been used elsewhere,
and may not prove so useful to others, it is quite sufficient for us.

4.1.3 Passive waiting

4.1.3.1 Waiting on channels

Next on the list is the D set. Unlike W , this one is very much specialized, as it is really a
function from processes to channels. We might argue that it should be injective. After all,
in a correct program, each channel is bound to one producer and one consumer: the first
waits if there is no space, the second, if there is no data. The two options are mutually
exclusive, since a channel cannot be both empty and full at the same time. However, due
to concurrency, it is still possible for D to have both elements temporarily associated
with the same channel, as shown in Figure 4.10.

The straightforward implementation of D is thus a pair of variables in the Chan
structure, e.g., an additional dormant array indexed by the IN or OUT directions. Each
cell is null when empty, and a process pointer otherwise.

Putting a process to sleep in one of the D cells is not as easy as writing a single
value to memory, however. As we have just seen in Figure 4.10, there is a potential race
between one operation and the opposite side of the channel. This example is actually a
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// Returns true if the current (cached) transition can be completed.
bool canComplete(Proc ∗);

1 // To be called after an incomplete transition.
2 bool putToSleep(Proc ∗p, Chan ∗ch, ArgKind kind)
3 {
4 var ok := canComplete(p);
5 if (not ok) {
6 ch.dormant[kind] := p;
7 var ok := canComplete(p);
8 if (ok)
9 ok := cas(&ch.dormant[kind], p, null);
10 }
11 return not ok;
12 }

Figure 4.11: Passive channel wait: putToSleep

specific case of a larger problem, which can be described as follows.
Suppose we attempt a transition on some process x, which fails to complete due to

channel u. We then proceed to add (x, u) to D. However, before we are allowed to, y, the
process on the other side of u, pushes to or pops from u, and immediately examines D
for something to wake up. Yet, it finds nothing, since x has yet to be moved there. If y
then itself blocks on some input or output (possibly on u itself, as in Figure 4.10), this
can create a nasty dependency cycle.

Of course, as always, we could rely on the fallback graph scan to cover up for us.
However, this would mean losing processes from our primary scheduler even though
no delays or faults occur. In other words, the algorithm would be incorrect when used
standalone, even in a blocking context, which is definitely not what we want. In keeping
with the spirit of the above subsection, we should instead strive to limit the blocking
behavior to those cases where tasks are held transitorily by threads during a move. In
cases, like this one, where the items are still present in the shared work sets, we should
not have to resort to waddling through the Kahn process graph.

The expected result can be achieved by double checking the feasibility of the transition
after saving to D. Notice that in Figure 4.10, if T0 looks back and reattempts to push
into u at the end, it will go through.

The procedure putToSleep, in Figures 4.11 and 4.12, implements this idea. It puts
its argument p to sleep on the given channel ch, then checks whether the last transition
on p can be completed (line 7). If true, we attempt to take back the process (line 9),
since it should not be asleep. The putToSleep function returns true to indicate that p
has indeed been put to sleep, or false otherwise. If false, the caller still has ownership of
p and should retry the transition.
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1 // To be called after a complete transition.
2 Proc ∗awaken(Chan ∗ch, ArgKind kind)
3 {
4 var p := ch.dormant[kind];
5 if (p 6= null) {
6 if (cas(&ch.dormant[kind], p, null))
7 return p;
8 }
9 return null;
10 }

Figure 4.12: Passive channel wait: awaken

Lemma 22. In the context of a blocking scheduler, the putToSleep and awaken proce-
dures are linearizable.

Proof. We assume exclusive ownership of tasks, according to Figure 4.4. Therefore, on
entry to putToSleep, the dormant cell must be null (otherwise, we would not be in pos-
session of this process), and no concurrent thread can set it to a non-null value. The only
competition permitted is in the form of awaken.

If canComplete returns false on line 7, then the call linearizes on line 6, as retrying
earlier would also certainly lead to failure.

If canComplete returns true on line 7 and compare-and-swap succeeds, then we lin-
earize there, on line 9. Indeed, the value has not changed since we set it to non-null,
therefore, there has been no concurrent compare-and-swap from awaken between line 6
and line 9, thus we can safely move all the action to that point.

If canComplete returns true on line 7 and compare-and-swap fails—thus has no
effect—then the invocation behaves as if we simply hand over the task without doing
anything more. We thus linearize at the first check, on line 4. Indeed, at that point the
winning compare-and-swap from awaken has yet to happen, and the state does not allow
for further progress by virtue of canComplete returning false once. Therefore, the linear
equivalent skips compare-and-swap completely and simply returns true.

For awaken, the procedure takes effect on line 4 if that test fails, since it is then the
only shared access.

If p is non-null, then awaken linearizes at compare-and-swap. If it is lost, then dormant
is empty at that point and the linear invocation returns null by reading null directly from
the field the first time on line 4. If it is a win, then we are first on compare-and-swap
and at that point, the value is sure to be non-null, therefore the whole invocation could
very well take place instantly right there.

Corollary 8. If every complete transition is eventually followed by a call to awaken
on the opposite side of its channel, then there is no (x, u) in D such that x can make
progress.
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Proof. By Lemma 22, we consider an equivalent linear history containing instances of
putToSleep and awaken. Suppose there is a process x in D that can make progress. Then
there must be an invocation of putToSleep that adds x to D and a complete transition
that allows x to continue. By hypothesis, that complete transition is followed by a call
to awaken. If putToSleep happens before awaken then the latter removes x from D. Else,
putToSleep happens after, the call to canComplete returns true, and therefore x is not
added to D. Impossible.

Corollary 8 states an important result: as long as awaken is called sufficiently often,
no process is wrongfully blocked in D when it could be placed in W for immediate
execution. Furthermore, “sufficiently often” does not mean after every transition; it only
needs to happen eventually.

This leads to a number of lazy waiting strategies, regarding when and how often we
check for processes to move out of D. The most straightforward application is to buffer
up on required awaken calls, and batch them together once the list is full. This allows
multiple operations on a same channel to be grouped, necessitating a single awaken.
Needless to say, however, that this is a very blocking tactic, so we should be careful not
to oversize our wait buffers.

An alternative is to call awaken only when the worker thread releases ownership of the
process; it then scans and awakens every adjacent node in the graph. These invocations
cover for every possible transitions that have been performed by the thread on behalf of
the process, when it was selected. Incidentally, due to the focus policy, this makes it so
putToSleep is preceded by a round of awaken.

Sleeping in the presence of a secondary scheduler Interestingly, these lazy wait-
ing strategies are also needed in order to integrate with the secondary scheduler. In the
presence of fallback scheduling, processes might progress concurrently, which only affects
our two functions in so far as putToSleep calls canComplete. What do we do if not only
the transition can be made, but has actually already been made? Certainly, the task
should not be put to sleep, since the transition that required this to complete is already
over. Therefore, it would seem that neither the code nor the proofs changes.

However, the bigger issue lies with the fact that awaken cannot be called by the
secondary scheduler, by construction. How do we guarantee the alternation with complete
transitions needed by Corollary 8?

The basic insight is that we can turn all deadlocks into livelocks, by rescheduling
waiting tasks unconditionally, i.e., removing them from D, when out of work. As a side ef-
fect, this also eliminates any errors we might introduce ourselves due to the superposition
of the two scheduling layers.

For instance, one solution is to use the awaken-before-sleep strategy described above.
This works because, in this strategy, if even one item is left in W (or executing on
some thread), then the whole connected component will eventually be woken up by
breadth-first traversal, regardless of alternation or anything else. In effect, it replaces
every possible deadlock by a corresponding livelock.

166



CHAPTER 4. DYNAMIC SCHEDULING IN SHARED-MEMORY SYSTEMS

Another similar solution is to impose a full scan of the D set by every thread in get-
Task, before terminating. If every element is in F , then we are effectively done; otherwise,
we loop on anything in D, thus again turning any deadlock into a livelock. Since we are
talking about primary scheduling, this is a blocking action that removes elements from
D to examine them one by one. If any of them is erroneously asleep, it is thus recovered,
and the scheduler stops its termination procedure to resume normal operations.

4.1.3.2 Waiting for termination

This brings us to the second kind of passive waiting: termination, the F set. This one is
even more specialized than D since elements moved to F never go back to any other work
set. There is also little opportunities for unrecoverable errors, as terminated processes are
not needed for progress by anything else in the network. Besides, once processes reach
their final state, they are no longer updated.

The specificity here is different. As a matter of fact, detecting termination in the
primary scheduler, which is sensitive to delays, is unreliable, by definition. Furthermore,
we remember that we already have checkFinished routine from the previous chapter, that
can play this role for the secondary scheduler. Therefore, the primary implementation of
F serves a slightly different purpose: it provides hints as to when checkFinished should
be called.

Quite simply, we keep a counter of definitely finished children in each process, that is
updated only by the primary scheduler, therefore eliminating any possibility of duplicate
counting. When this counter equals the total number of children, checkFinished can be
called to join all the subprocesses.

In parallel, the secondary scheduler keeps its slow but reliable counting strategy, so
that any missed children in the first layer can eventually be accounted for in the second.

4.1.4 With or without the secondary scheduler

In the previous subsections, we have been through several techniques that together build a
credible blocking primary process scheduler. We now take a step back to look at the bigger
picture: how our proposed implementation would fare both as a standalone scheduler,
and in a non-blocking system, backed by a fair and reliable (and less efficient) deputy.

4.1.4.1 As a primary scheduler

We have already explained the basics of how the two scheduling layers should intereact in
Section 4.1.1. A worker always refers to the primary, and only queries the secondary if the
first returns null. This can signify both network termination, if the secondary scheduler
confirms, or a blocking condition, in which case it provides a fallback option.

In our base design, the second layer is not allowed to touch any of the data structures
of the first. Therefore, interactions are limited interference at the level of process states
and progress, as described in Section 4.1.3.1, and cooperation with regard to detecting
termination, as seen in Section 4.1.3.2.
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It would be tempting to allow more than this. Why not let the secondary scheduler
push intoW or D? For one, it seems like it could simplify the awaken alternation problem
Section 4.1.3.1. Indeed, as we recall, the main issue was that transitions triggered from
the secondary layer were not systematically followed by awaken. However, this does not
account for the fact that under such a scenario, Lemma 22 and Corollary 8 do not hold,
or at least not without some major algorithmic changes and code modifications, so at
least the first store instruction is replaced by compare-and-swap, to handle concurrency
(and potential delayed invocations) on the D set, which only allows one mapping for
each process, as we have implemented it. Otherwise, we need to accept multiple pairs per
process in D.

More generally, the problem is one of duplication: allowing the secondary level to
modify the work sets directly kills the exclusivity that comes with blocking code. This,
in turn, could lead to increased redundancy and contention, potentially infinitely so, if
no measure is taken to control the inflation.

One radical way to deal with the situation is to put a user-defined limit to the size of
the work sets, perhaps proportional to the number of processes it should contain, without
duplicates. When the cap is reached, items—either new or old—are simply dropped, thus
relying on the secondary scheduler to recover them, if they were not duplicates. This works
in theory; however, it could suffer from high variance in its performance, depending on
how much garbage is present in the work sets. Moreover, the algorithms in their present
state are made to conserve every element. Most likely, this strategy would require the
addition of some form of duplication control heuristic to complement the safe nature
of the construction. Whether all those additions would be worth paying for is another
question, as with each of them, the difference in performance between the two layers
decreases.

In contrast, our suggested build, which is far simpler, also exhibits almost unhindered
performances when running with little delays. We have been careful in our choice of
algorithms to bound the number of temporarily lost tasks to a small constant—basically
only those being run or transiting from one set to another. As noted before, this gives
ample time for delayed threads to recover. Morever, the strict separation between the
two scheduling layers might be a drawback if workers start halting for long periods of
time, but it is also an advantage when dealing with short pauses. Indeed, the impact
of a few stray secondary picks are unlikely to significantly affect the course of the main
scheduling and execution effort.

This can be enhanced by making the non-blocking scheduler smarter, and allowing it
to provide hints to the first layer. Although we want to guarantee maximal progress in
the fallback selection mechanism, it does not completely rule out cleverness: we can have
weighted choices, and intelligent graph traversal. For example, we can prioritize processes
that do not seem to be in D, or concentrate on finding processes that seem stuck (not in
W either). As for hints, we could imagine a non-authoritative subset of D, updated by
the secondary to inform the primary of elements it should look at before embarking onto
a full scan of D to find missed awakenings (as explained at the end of Section 4.1.3).

Lastly, although we believe it may be unnecessary, there is nothing preventing us
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from designing an efficient non-blocking backup scheduler in itself. As an example, just
using local counters to keep track of what processes draw more contention on their shared
states, it is possible for threads to assign lower priorities to those tasks that are likely
already taken by other workers, and attain some form of dynamic partition. Add to that
some form of demand-driven traversal, and we should have decent locality.

We believe this shows our design to be a reasonable compromise for a general-purpose
Kahn process implementation, with the potential for great peak performance under ideal
conditions, and reasonable guaranteed behavior in all situations.

4.1.4.2 As part of a blocking Kahn process implementation

We remark that, if used in a fault-intolerant environment, the blocking algorithms de-
scribed in this section make a perfectly fine scheduler by itself. As we have noted several
times, it has always been our goal not to rely too much on the presence of a secondary
layer, so that the primary one could act as a standalone entity.

If we go down this route, there is no need to burden ourselves with the complexity
of our non-blocking graph implementation. We can basically keep the Proc tree as it
is, and simply swap in a more efficient single-producer single-consumer channel imple-
mentation, such as the one we present later in Section 4.2.2. Since our design grants
the executing worker thread exclusive access to the running process, the single-producer
single-consumer contract is satisfied: at any one time, only one thread sits on each end
of the channel.

This leads to a very efficient blocking Kahn run-time library, which we have actually
implemented in C11 and experimented on, as a benchmark for future implementation
work on a fully fault-tolerant system—the non-blocking core components have yet to be
realized in C11 at the time of writing. The blocking version serves as the basis for the
performance demonstrations of section Section 4.3, which show how, at a higher level,
Kahn processes can be used to match, or in some cases surpass, other task-based parallel
paradigms currently in use.

A key factor in achieving such results—and that we believe makes our lock-free efforts
promising—is the perspectives of low overhead of our algorithms when ported to a relaxed
memory setting. This is the focus of the next section, as we turn our attention to further
implementation challenges and more performance-oriented discussions.

4.2 In relaxed memory

In this section, we discuss the difficult problem of concurrent algorithms when faced with
the harsh reality of weak memory properties. In contrast to the sequentially consistent
view we have held up to this point, the world of both hardware and language concurrency
consists mostly of what are termed relaxed memory models (or weak memory models),
which are, broadly speaking, anything that guarantees less than sequential consistency.

In a weak model, at the lowest level, execution is not made of interleaving instructions.
Instead, unordered statements can exist, neither acknowledging the effect of the other.
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Imagine two threads. One sets x then reads y; the other one does the opposite. Surely,
at the end of it all, at least one of them should see x or y set, depending on which of the
store instructions happens first. That is certainly the case under sequential consistency,
and is the basis for the anti-store-buffering pattern, as seen previously in Sections 2.2.3.3
and 2.6.4. However, this may or may not be the case under relaxed rules: it could very
well be that both x and y end up being loaded as unset, if the actions of the two threads
are considered unordered.

To work around this, additional primitives are offered, that control what must be
related by some order and what can be left floating. These usually take one of two forms:

• variations of the basic operations, such as load, store, and compare-and-swap;

• or special fence instructions to be inserted between other statements to force cer-
tain constraints.

Some popular contemporary memory models are C11 (the memory model of the C
language in its 2011 revision, as formalized by Batty et al. [2011]), x86-TSO, POWER
and ARM, all of which have their own quirks and generally lead to subtly (and less subtly)
different architecture-specific code patterns. All of our implementation work utilizes the
C11 language. Therefore, although we try to introduce new ideas and arguments in a
more neutral way, whenever possible, the proofs themselves, presented in this section
and the corresponding appendices, all depend on the C11 memory model.

It is generally admitted that every non-esoteric concurrent platform, including C11,
must be able to somehow provide basic linearizable objects and routines, such as load–
store registers and compare-and-swap—although they may not be available directly as
primitives and may not play well with the rest of the field. As such, at the very least,
all of the algorithms presented in the previous pages could be used without change on
virtually any realistic system that would need them. They would run. However, without
relaxation, they would also certainly suffer some performance penalty. Hence, the interest
in the kind of low-level optimizations we discuss in this section.

Sections 4.2.2 and 4.2.3 provide in-depth commentary of two major components,
single-producer single-consumer channels and work-stealing deques, with proofs of ad
hoc important properties. In Section 4.2.4, we briefly review more relaxation opportuni-
ties. Finally in Section 4.2.5, we talk about the disparities between C11 and the standard
linearizable world we come from. We discuss how the new relaxed optimizations could
potentially be integrated into the existing linearizable blocking or non-blocking inter-
preter, and how, conversely, our run-time library could be called from user code written
in C11, in the future.

Before we start with detailed coverage, however, let us first quickly introduce the C11
memory model, from a programmer’s point of view.

4.2.1 The C11 memory model in two useful patterns

C11 distinguishes between atomic (denoted by the atomic qualifier we have seen in
many codes), which may be accessed concurrently, and non-atomic objects, which may
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w0
mo // w1

mo //

hb ""

· · · mo // w2
mo // w3

mo // w4

r
hb

66

Each instance of w denotes a write action, while r is a lone read action. Together, write
actions are sorted by modification order (mo arrows). The dotted box represents all
the write statements r may potentially read from, given the happens-before (hb arrows)
relations shown.

Figure 4.13: C11 coherent reads

not. The rules we are about to present only apply to the former, and it is the job of the
programmer to ensure that writes to non-atomic variables are exclusive with any other
operation on the same location, a pact known as data-race freedom. That being said,
let us concentrate on atomic objects.

Informally, executions of a C11 program are sets of actions (e.g., read, compare-and-
swap) linked by binary relations, most of which are partial orders, themselves constrained
by rules. Together, they define what can or cannot occur, when running the program.

Most importantly, those relations regulate what values are read from and written
to shared variables. Each shared location acts as a (potentially infinite) list of values,
provided by operations that write to the location. Those operations each store a new value
at the end of the list; the order thus induced between writes is called the modification
order. Each statement that requests a value from some shared location is matched with
a unique write operation in a relation known, quite intuitively, as reads-from. In the
absence of further constraints, threads can read any value from any variable. Most of the
additional constructs in the memory model serve to restrict that freedom.

4.2.1.1 Message passing

In sequential consistency, load and store instructions are all ordered with respect to
each other, and an action always reads from the most recent write to the same location.
In C11, things are, as expected, more relaxed. The main mechanism that limits what
can or cannot be read at some point is the happens-before relation. Although the
terminology is similar, happens-before in the realm of C11 is not a total order, as in
sequential consistency. However, it is still compatible with both the modification and
reads-from orders seen above.

In a sense, two events not related by happens-before can be considered truly concur-
rent. Basically, the behavior is relaxed in that there are now multiple candidates for each
read operation: in addition to the most recent write that happens before, it can also read
from any instruction that is not known to happen after, as shown in Figure 4.13.

The objective in concurrent algorithms is generally to bound the range of values that
can be read in each position between two well-known modification statements. This can
be achieved by sandwiching the operation between happens-before edges, as shown in
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w0
mo // relw1

mo //

rf

��

hb

""

· · · mo // w2
mo // w3

mo // w4

acq r0
sb // r1

sb //

hb

55

relw′
rf // acq r′

sb

OO

As above, w and r denote operations to a same location; w′ and r′ to another location.
Arrows mark relations and carry the initials of the order they represent, i.e., rf for reads-
from, sb for sequenced-before. The rel and acq superscripts indicate release and acquire
operations, respectively.

Figure 4.14: C11 release–acquire synchronization example

Figure 4.13.
The most basic way to ensure that an action happens before another is to place them

in a same thread. This is called sequenced-before in C11 and is simply the sequential
thread order, which is part of happens-before.

Between threads, arguably the main method to restrict possible values available
for reading is the message-passing pattern, where a reads-from pair is promoted to
happens-before through the use of release–acquire synchronization. Formally, a reads-
from relation between a release-qualified write instruction (annotated with rel in code
and figures) and an acquire-qualified read instruction (acq in code and figures) is pro-
moted to happens-before.4 Intuitively, release–acquire is a propagation mechanism: a
releasing thread publishes all of its knowledge at the time of writing to a potential ac-
quiring reader. In hardware terms, on current machines, this forces the sender to commit
any prior write operations, and the reader to postpone any subsequent reads to after the
acquire instruction has completed, thus ensuring that any modifications preceding the
release are visible after the acquisition.

C11 provides specific variations of write primitives that have release semantics; simi-
larly for read primitives with acquire semantics. The synchronization occurs if an acquire
operation reads from a release write, as in Figure 4.14. Observe that the reads-from
edge from w1 to r0 links a release write to an acquire read, and is therefore promoted
to happens-before. The same happens between w′ and r′. This results in the dashed
happens-before relations, that occur as the union of the underlying sequenced-before and
(promoted) happens-before edges.

A similar effect can be accomplished by placing fences: a release fence before the write,
and an acquire fence before the read, as shown in Figure 4.15. In this case, the synchro-
nization is between the fence instructions, thus moving the targets of the happens-before
relation. Most importantly, this feature can be used conditionally. This is especially useful
on the acquire side, when polling or double checking for a specific value, for example.

A special use case of release–acquire synchronization is to have multi-word objects
updated using completely relaxed instructions, followed by a single release write to a flag
to indicate that the previous data is ready to be read. Hence, message passing.

4Formally, it is part of the synchronizes-with relation, which is part of happens-before.
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· · · sb // rel f
sb //

hb
((

w
rf

��
r

sb
// acq f

sb
// · · ·

Similarly to how w and r represent write and read operations, f denotes fences.

Figure 4.15: C11 release–acquire fences

4.2.1.2 Total ordering

The message-passing pattern creates happens-before edges by chaining alternating write
and read instructions. Therefore, constraining a load statement can only be done rel-
ative to a preceding read and a following write operations. When used alone, release–
acquire can be used to build single-producer single-consumer queues, as we will see in
Section 4.2.2. In conjunction with compare-and-swap, many more small objects are pos-
sible. However, many times, we need stronger ordering.

This is where the next instruction set comes into play. The C11 memory model offers
its own set of “sequentially consistent” primitives (denoted by the sc qualifier, in code and
figures) that can be used to write linearizable algorithms on top of C11. The standard
makes it clear that if a program uses only those instructions to access shared memory,
then it behaves as if it ran in a sequentially consistent environment.

Fundamentally, C11 guarantees that all instructions marked sequentially consis-
tent are related, according to some separate partial order that never applies to any other
kind of instructions. Hereafter, we refer to this order as the sequentially consistent to-
tal order, or sequentially consistent order, for short. It is implied by the happens-before
and modification orders, but the opposite is generally not true.

When not used entirely by themselves, these instructions interact with the rest of the
C11 kit in two important ways. First, they imply release–acquire, hence happens-before
between a write and following reads to the same location.

Second is the existence of sequentially consistent fences. In addition to acting as both
release and acquire fences at the same time, they also serve a role similar to (but weaker
than) happens-before with regard to constraining what values can be read by a given
statement. The rule is as follows: an operation r preceded (in sequential code) by such
a fence f may read from the most recent visible write, or any later modification. The
most recent visible5 write w is the last one in modification order that satisfies one of
the following configurations:

w
hb // r scw

sc // f
sb // r w

sb // sc f ′
sc // sc f

sb // r

5The term might sound somewhat confusing; it actually designates the “most recent” modification
that we can be sure is visible—it does not mean that others are somehow invisible. Moreover, technically,
the C11 standard defines it only for happens-before and not for the sequentially consistent total order.
For the sake of simplicity, we regroup the various cases in our explanation.
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w0
mo // w1

mo //

sb
��

))

w2
mo // · · ·

sc f
sc // sc f ′

sb // r

Sequentially consistent operations and order are denoted by sc. Again, the dotted frame
delimits those values that can be read by r. The presence of the fences prevents r from
reading from writes ealier than w1. The dashed arrow represents the equivalent happens-
before edge that would be needed to enforce the same constraint.

Figure 4.16: C11 sequentially consistent fences

w
sb //

((

sc f
sb //

sc
��

r′

w′
sb // sc f ′

sb // r

w
sb // sc f

sb // r′

w′
sb //

66

sc f ′
sb //

sc

OO

r

Depending on the ordering of f and f ′, at least one of the two dashed arrows correctly
specifies a lower bound for the corresponding read operation, in modification order.

Figure 4.17: C11 anti-store-buffering pattern

A more detailed example is provided in Figure 4.16. As can be seen, these fences only
provide half the benefits of happens-before, as the set of readable values is unbounded on
the right-hand side. However, this is sufficient to write the very useful anti-store-buffering
pattern, as demonstrated in Figure 4.17.

As such, there is some limited interoperability between the sequentially consistent
subset of C11 and the rest of its more relaxed arsenal. Furthermore, through the use of
fences, a pattern can be created that prevents store buffering.

4.2.1.3 Summary and other C11 features

In our experience, few constructs are actually required to efficiently implement most
the algorithms we need. In this work, we limit ourselves to a subset of the concurrent
language with only the following:

• sequentially consistent fences;

• sequentially consistent or release–acquire compare-and-swap;

• release–acquire load and store;

• relaxed (but still concurrent) load and store when used either to write identical
values or behind a release–acquire pair;

• and non-concurrent (non-atomic) accesses to shared memory, which are guaranteed
to be totally ordered by happens-before by the rest of the code.
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We have already explained release–acquire operations as well as the sequentially con-
sistent fences. Compare-and-swap behaves as one would expect: it reads and condition-
ally writes the next value in the modification order of some variable. It is thus atomic
with respect to the modification order. The fact that we use the sequentially consistent
variant means that all instances of compare-and-swap—targeting the same or different
locations—are also related to respect to each other in the sequentially consistent total
order.

Relaxed accesses basically have no inherent restrictions tied to them, except they
must honor the sequential semantics, when executing in a same thread. We use the
patterns presented in Sections 4.2.1.1 and 4.2.1.2 to constrain what can be read and
when modifications are made visible by such relaxed operations.

In C11, relaxed instructions have bizarre and complex semantics. In particular, they
permit self-satisfaction cycles, meaning an assignment may be conditional upon a test
that is only possible if the same assignment indeed occurs. The reasons behind and the
full range of implications of such a thing are far beyond the scope of our work. However,
they are a must in many algorithms, due to their ability to conditionally convert into
more powerful variants through the help of fences. For more information on the full extent
of their semantics, see [Vafeiadis et al., 2015].

4.2.2 Case study: a relaxed single-producer single-consumer queue

Part of this subsection is reproduced from [Lê et al., 2013]. For more information, please
refer to that paper.

The first component we study is a lock-free single-producer single-consumer queue.
Although the channel methods are lock-free, they impose that actions on each side,
consumer or producer, be totally ordered (by happens-before), which requires some kind
of exclusion mechanism in the client, which is not lock-free by design. It is, however,
ideally suited to a high-performance blocking Kahn process implementation.

We start from the simple Lamport queue presented before and add two features:
batching and index caching. The first is the ability to group multiple contiguous opera-
tions on either side under a single index update. The latter permits lazy loading of the
opposite index. The code is shown in Figure 4.18.

The producer never writes to front, nor does the consumer ever write to back, thus,
following the C11 memory model, the loads to back (line 4 in push) and front (line 4 in
pop) in their exclusive method do not require restrictive memory orderings.

The release and acquire qualifiers on loading the opposite index and updating our own
are rather intuitive uses of message passing. We want the data written on line 11 to be
visible to the consumer after loading the index. Conversely, any reading on line 11 should
be secured before telling the producer to overwrite the same cells. In C11 terms, this
ensures data-race-freedom on the accesses to data, meaning it can be manipulated just
like a regular variable, since all related operations are totally ordered by happens-before.

As far as C11-specific memory ordering goes, this is it. The rest is classic concurrent
algorithms. Index caching, borrowed from the ring buffer of Lee et al. [2009], stems
from the simple observation that each side only moves forward: the consumer does not
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atomic size_t front;
size_t pfront;
atomic size_t back;
size_t cback;

// L must divide SIZE_MAX.
int data[L];

1 bool push(const int xs[∗])
2 {
3 var n := countof xs;
4 var b :=rlx back;
5 if (pfront + L − b < n) {
6 pfront :=acq front;
7 if (pfront + L − b < n)
8 return false;
9 }
10 for (var i := 0; i < n; ++i)
11 data[(b + i) % L] := xs[i];
12 back :=rel b + n;
13 return true;
14 }

1 bool pop(int xs[∗])
2 {
3 var n := countof xs;
4 var f :=rlx front;
5 if (cback − f < n) {
6 cback :=acq back;
7 if (cback − f < n)
8 return false;
9 }
10 for (var i := 0; i < n; ++i)
11 xs[i] := data[(f + i) % L];
12 front :=rel f + n;
13 return true;
14 }

Figure 4.18: Caching single-producer single-consumer queue
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unconsume, the producer does not unproduce. It is implemented by reloading the opposite
index only if we have caught up with the previously read value. Indeed, if we have been
promised five values (or apples, or something) and only ate three and only we are allowed
to eat them, then it is self-evident that the remaining two have gone nowhere and are
still waiting at the same place.

Batching is another simple idiom. In the case where data can be aggregated, it makes
sense to only update the index once per batch. Of course, this should not be made
mandatory, as that would make the queue unsuitable for use as a generic channel in
Kahn process networks—for the same reason we could not wait for whole monotonic
chunks to fill before swapping them in the previous chapter.

We now move onto the crux of the matter: the proof of correctness in the C11 mem-
ory model. We prove two ad hoc properties. The first relates to call and return values,
and states that successful push and pop invocations behave as if they were writing to
and reading from the same infinite stream of values, value by value, in the same order.
The second lifts the message-passing pattern to the granularity of the queue object: suc-
cessful pop invocations return after the corresponding call to push (that writes the value
consumed).

4.2.2.1 Preliminary definitions for the C11-correct queue

Actions and values For convenience, we represent initializations as pseudo-store ac-
tions. We note wf

i (resp. w
b
i ) the write action at position i in the modification order of

variable front (resp. back); index 0 is the initial value and is assumed to be zero.
Other actions are denoted by their respective letter, and the appropriate superscript

as needed, e.g., rf .

Method invocations Since invocations on each side are totally ordered, let P (resp.
C) be the sequence of push (resp. pop) operations. We note (P, k) the push of rank k
and (C, k) the pop of rank k (counting from zero). The sequence of push (resp. pop)
operations alternate between cached, successful uncached and failed push (resp. pop)
instances. Those may appear as subscripts to denote actions happening within them.

• A cached push (resp. pop) determines locally that it has enough space ahead in
the buffer, and does not reload the shared variable front (resp. back).

• A successful uncached push (resp. pop) observes that it does not have sufficient
space left over from its previous operation to complete its current request, and
reloads the shared variable front (resp. back). It then ascertains that sufficient
space is available and proceeds successfully.

• A failed push (resp. pop) is an uncached push (resp. pop) that observes an insuf-
ficient amount of space available after reloading front (resp. back).

We note (T, k)x (for x ∈ {f, b} and T ∈ {P,C}) the cached value of x as can be
observed sequentially at the beginning of the operation (T, k).
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Thread-private variable are initialized to zero. Hence the first push operation in the
producer thread will be uncached, and the first pop operation in the consumer thread will
be uncached or failed. We subsequently define, for T ∈ {P,C}, the following functions
on ranks of push and pop:

TkUT = max{i ≤ k | [(T, i) is uncached]}
VkWT = max{i | TiUT ≤ TkUT }

Intuitively, TkUT is the index of the nearest preceding uncached instance; VkWT is the
highest rank in the sequence of cached instances to which (T, k) belongs. We extend the
notations TT, kU and VT, kW to mean (T, TkUT ) and (T, VkWT ), respectively.

Wrap-around and modulo arithmetic The shared variables front and back are
implemented as (log2M)-bit unsigned integers, where M = SIZE_MAX+ 1 in the C11
code. However, we treat the sequences of values written by wf and wb as not wrapped,
in the proof; instead, the bit width constraint is reflected through the use of modulo-M
arithmetic on the variables. This adjustment makes for easy distinction between equal
wrapped values obtained from successive increments of front and back, but is otherwise
equivalent. The x%y operation denotes the integer remainder of x divided by y, as in C.
We note w[i] and r[i] actions on the memory location with index i%L in the underlying
array backing the queue, where m is the size of the array. For this definition to match the
C11 code given in Figure 4.18, L must divide M , so that ∀i ∈ N, (i%M) %m = i%m.
Additionally, ifM 6= SIZE_MAX+1, the remainder operations need to be made explicit.

4.2.2.2 Action structures of the C11 queue

We now formally define the three kinds of push and pop instances (cached, uncached
and failed), previously introduced, and matching action structures through the control
flow graph of the corresponding function. Figures 4.19 and 4.20 show all three action
structures of a push or pop operation. Paths are split into their constituent shared-
memory accesses, both atomic and non-atomic. For accesses to the data buffer, which
depend on the batch size n (equal to the size of the xs array argument), only the first and
last are represented. When multiple outgoing edges are possible, each one is annotated
with the corresponding predicate condition under which it is taken.

4.2.2.3 Proof of the C11 queue

The proof is split in two. In the first half, up to Corollary 10, we prove useful invariants
on the index variables front and back, using coherency and release–acquire semantics.
These first results focus on establishing bounds on the locally observable values of the
indexes (e.g., f(P, k) ≤ b(P, k) between the locally observable values of front and back
in (P, k)). The latter half, from Lemma 29 onward, exploits these invariants to prove our
three main theorems:
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ini/relwb
i

rf // rlx rb = b

[cached (P,k)]
��

¬[cached (P,k)]
// acq rf = f

[uncached (P,k)]

��

[failed (P,k)] // return false

w[b] // w[b+n−1] // relwb
i+1 = b+ n // return true

[cached (P, k)] = ((wf
(P,k) +m− b) %M) ≥ n

[uncached (P, k)] = ((f +m− b) %M) ≥ n
[failed (P, k)] = ¬[uncached (P, k)]

Figure 4.19: C11 action structures of the push function

ini/relwf
i

rf // rlx rf = f

[cached (C,k)]
��

¬[cached (C,k)]
// acq rb = b

[uncached (C,k)]

��

[failed (C,k)] // return false

r[b] // r[b+n−1] // relwf
i+1 = f + n // return true

[cached (C, k)] = ((wb
(C,k) − f) %M) ≥ n

[uncached (C, k)] = ((b− f) %M) ≥ n
[failed (C, k)] = ¬[uncached (C, k)]

Figure 4.20: C11 action structures of the pop function
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• Theorem 3 establishes that calls to pop either fail or return a different element each
time.

• Theorem 4 establishes that successful calls to pop read all elements pushed in the
queue, without skipping.

• Finally, Theorem 5 asserts that the algorithm does not contain any data race,
despite accessing its data buffer non-atomically.

The flow of this proof can be understood as building systems of inequations that
substantiate the goals. We use local hypotheses (i.e., predicates listed in Figures 4.19
and 4.20) as elementary inequalities, further refined through constraints derived from the
partial orders that comprise the memory model, as previously illustrated in Section 4.2.1.

Additionally, where needed, more complex constraints that expand significantly—
and perhaps unintuitively—upon the premises of the memory model, are elaborated
inductively. The inequations themselves consist of straightforward modular arithmetic.
We included the calculations for completeness, but they should not distract from the
construction of the formulas as the main contribution of this proof.

Theorem 3. A value stored in the data buffer is never read more than once.
Formally, given a store w[i] in an instance of push, there exists at most one load r[j]

from an instance of pop, such that w[i] rf−→ r[j].

Theorem 4. For any store to the data buffer, there is a matching load that reads its
value, provided enough data is requested by the consumer.

Formally, given a store w[i], there is at least one load r[j] such that w[i] rf−→ r[j],
provided the consumer side contains enough non-failed non-empty pop operations:∑

k′∈CNF

nk′ ≥ i

where CNF = {l′ | ¬[(C, l′) is failed or empty]}, and nl′ denotes the batch size argument
passed to (C, l′).

Theorem 5. All (non-atomic) accesses to the data buffer are data-race-free. That is,
given a store w[i]:

∀w[j], i ≡ j mod m =⇒ w[i] hb−→ w[j] ∨ w[j] hb−→ w[i]

∀r[j], i ≡ j mod m =⇒ w[i] hb−→ r[j] ∨ r[j] hb−→ w[i]

Please refer to Appendix A.1 for the detailed proof.
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1 void give(Deque ∗q, void ∗x)
2 {
3 var b :=rlx q.bottom;
4 var t :=acq q.top;
5 var a :=rlx q.array;
6 bool ok;
7 if (b − t > a.size − 1)
8 a := resize(q);
9 a.buffer[b % a.size] :=rlx x;
10 q.bottom :=rel b + 1;
11 }

Figure 4.21: C11 work-stealing deque: give

4.2.3 Case study: the relaxed Chase–Lev deque

This section adapts the work from [Lê et al., 2013] to the C11 memory model. Compared
to the paper version, which is based on the ARMv7 inline assembly, the code, execution
diagrams and proof have been updated.

Another major component of our blocking interpreter is work stealing. We relax the
sequentially consistent data structure by Chase and Lev, presented in Section 4.1.2.3,
by taking advantage of the various options offered by C11. The new code is shown in
Figures 4.21 to 4.23.

4.2.3.1 Notions of correctness for relaxed work stealing

For any given deque, give and pop operations execute on a single thread. Concurrency
can only occur between one execution of give or take in the owner thread, and one or
more executions of steal in different threads.

Given this simple protocol is respected, the expected behavior of the work-stealing
deque is intuitive: tasks pushed into the deque are then either taken in reverse order by
the same thread, or stolen by another thread. We say that an implementation is correct
if it satisfies four criteria. Informally, those are:

1. Tasks are taken in reverse order.

2. Only tasks pushed are taken or stolen (well-defined reads).

3. A task pushed into a deque cannot be taken or stolen more than once (uniqueness).

4. Given a finite number of push operations, all pushed values will eventually be either
taken or stolen exactly once, if enough take and steal operations are attempted
(existence).

We first provide some intuitive reasoning, to justify the relaxed construction.
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1 void ∗take(Deque ∗q)
2 {
3 var b :=rlx q.bottom − 1;
4 var a :=rlx q.array;
5 q.bottom :=rlx b;
6 fencesc();
7 var t :=rlx q.top;
8 void ∗x;
9 if (t ≤ b) {
10 x :=rlx a.buffer[b % a.size];
11 if (t = b) {
12 var ok, _ := cassc(&q.top, t, t + 1);
13 if (not ok)
14 x := null;
15 q.bottom :=rlx b + 1;
16 }
17 } else {
18 x := null;
19 q.bottom :=rlx b + 1;
20 }
21 return x;
22 }

Figure 4.22: C11 work-stealing deque: take
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1 void ∗steal(Deque ∗q)
2 {
3 var t :=rlx q.top;
4 var b :=acq q.bottom;
5 void ∗x := null;
6 if (t < b) {
7 var a :=acq q.array;
8 x :=rlx a.buffer[t % a.size];
9 var ok, _ := cassc(&q.top, t, t + 1);
10 if (not ok)
11 x := (void ∗)−1;
12 }
13 return x;
14 }

Unlike the linearizable version, here steal operations that fail at compare-and-swap return
a special code. This is only for simplicity in the proof, so we can refer to each iteration
as a separate invocation. It does not affect our definition of progress, which ignores failed
non-empty steal.

Figure 4.23: C11 work-stealing deque: steal

• Newly pushed tasks are made visible to take and steal by the increment to bottom
in give. As we shall see in Appendix A.2, our C11 implementation enforces this by
placing a release fence before the update of bottom, guaranteeing that the pushed
element can not be stolen before bottom is updated.

• Taken tasks are reserved first by updating bottom; in our code, the ; barrier placed
after the update to bottom will ensure that it will not be concurrently stolen.

• Stolen tasks are reserved by updating top. The only situation where steal and
take contend for the same task is when the deque has a single element left; this
particular conflict is resolved through the compare-and-swap instructions in both
take and steal. This scenario allowed Chase and Lev to make the compare-and-
swap in take conditional upon the size of the deque being one, as we have seen in
Section 4.1.2.3.

The correctness of this optimization in a relaxed memory model depends on the
presence of the two fences in take and steal, to ensure that at least one of the
participants will have a consistent view of the size of the deque—the anti-store-
buffering pattern of Section 4.2.1.2. Having just one take or steal instance seeing
a consistent view of the size of the deque is enough: if it is take, that will force a
compare-and-swap to be performed; if it is steal, the index reservation will ensure
an empty return value.
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• Finally, stolen tasks are protected from being concurrently stolen multiple times by
the monotonic compare-and-swap update to top in steal. This compare-and-swap
orders steal operations and makes them mutually exclusive. At the same time, steal
operations that abort due to a failed compare-and-swap do not change the state of
the deque.

The proof validates criteria 2 to 4 enumerated above. Since give and take never
execute concurrently and bottom is only ever modified in one of these functions, the
proof of criterion 1 does not involve reasoning about concurrency and we omit it here.

4.2.3.2 Preliminary definitions for the relaxed work-stealing deque

We note b(n) (for n ∈ N) the sequence of values taken by the variable bottom over the
course of the program, according to the modification order relation. Initially b(0) = 0.
Since all give and take operations occur in a single thread, and steal operations never
alter the value of bottom, the elements of b(n) correspond to writes to bottom in program
order within the give and take operations. Similarly, we define t(m) (for m ∈ N) the
sequence of values taken by the variable top. We assume t(0) = 0. Furthermore, since all
writes to top are from compare-and-swap instructions, which are sequentially consistent
with each other, and all such compare-and-swap instructions increment top by one, t(m)
is monotonically increasing, and such that t(m) = m.

For each index i, we define the sequence xi(v) (for v ∈ N) of successive values given
to the (abstract) element at index i in the deque by the last (non-resize) write wa[i] of
a give operation, regardless of the address a of the underlying array. Only the last such
write is called significant as it induces a new value to xi, while writes due to resizing
do not. For all i ∈ N, xi(0), the value before the first significant write to index i, is
undefined: xi(0) = ⊥. Similarly, a read is significant if it occurs in a successful instance
of take or steal.

Lemma 23. For all i ∈ N, the writes producing the xi(v) are totally ordered by happens-
before.

Proof. Trivial since there is only one producer thread calling give.

We define the reads-from-far relation (noted rff in superscript) as follows. A read
operation r reads from a far write w if the two are related by a chain of copies (alternating
reads-from and sequenced-before edges). This is just syntax to hide the effects of resizing.

4.2.3.3 Action structures in the work-stealing deque

We consider the three operations of the work-stealing algorithm: take (Figure 4.25), give
(Figure 4.24) and steal (Figure 4.26). Each of them exhibits different execution paths
depending on control flow. In formulas, the bottom, top, and array variables are denoted
by their initials in superscript, and the variables b, t and a, respectively, when we mean
the corresponding memory values. na denotes the array size of a. When indexing a, the
size modulo is implicit.
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rlx rb = b

��
acq rt = t

��
rlx ra = a

b−t<na−1
ss b−t≥na−1��

rlxwa[b−1] = x

��

rlx ra[t]

��
relwb

still = b+ 1 rlxwa
′[t]

��
...

��
relwa = a′

��
rlxwa

′[b−1] = x

��
relwb

resize = b+ 1

Figure 4.24: Action structures of the give function

For take and steal, we say that an instance of the operation is successful if it returns
one element; otherwise (including if it returns empty) it is considered failed.

4.2.3.4 Proof of the work-stealing deque

We build on a precise analysis of all the possible executions of arbitrary invocations of the
algorithm. Individual lemmas strive to narrow down the set of possible candidates, based
on properties of the algorithm and the memory model. To that end, we pinpoint specific
subgraphs of an execution that cannot occur together in the same consistent execution.
We then show that all incorrect executions, such as those containing two instances of
steal reading the same value added by a single instance of give, cannot have consistent
executions and, as such, cannot happen.

The proof is divided into five parts. In Section 4.2.3.3 we describe all the possible
action structures for each of the three operations (give, take and steal), following the
control flow of the code. In Appendix A.2.1 we show that the succession of dynamic ar-
rays built by resizing can be abstracted as a single sequence of unique abstract significant
values, independent of resize operations. Lemma 34 establishes criterion 2 (well-defined
reads). In Appendix A.2.2 we build on the previous abstraction to prove Theorem 6,
pertaining to the uniqueness of elements taken and stolen, which corresponds to crite-
rion 3 (uniqueness). Finally, in Appendix A.2.3, we rely on all previous results to prove
Theorem 7 establishing criterion 4 (existence): the existence of matching take or steal
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Figure 4.25: Action structures of the take function
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Figure 4.26: Action structures of the steal function
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operations for every pushed element, under the appropriate hypotheses.

Theorem 6. Given a worker thread executing a sequence of give and take operations,
and finite number number of thief threads each executing steal operations, all against a
same deque, if X and Y are two distinct successful instances of steal or take, then:

∀r = xi(v) ∈ X, ∀r′ = xi′(v
′) ∈ Y, i 6= i′ ∨ v 6= v′

Theorem 7. Consider a worker thread executing a sequence of give and take operations,
and a finite number of thief threads each executing steal operations, all against a same
deque. If the number of give is finite, then all threads reach a stationary state where b = t
in a finite number of transitions, and for all xi(v), v > 0, there exists a unique significant
read r = xi(v) in some thread before the stationary point.

Please refer to Appendix A.2 for the detailed proof.

4.2.4 Further relaxation

4.2.4.1 Relaxed passive waiting

The passive waiting mechanism explained in Section 4.1.3 also offers opportunities for
relaxed optimization. As stated in Corollary 8, waiting on processes depends on the
interplay between complete transitions, putToSleep and awaken. Each side performs a
two-phase routine: on one side, a process is put to sleep, then the channel is double
checked for progress; on the other side, the channel is updated, then it is checked again,
this time for any dormant neighbor.

This reveals a classic anti-store-buffering pattern.6 Correctness relies on the fact that
double checking the channel is going to yield the change made on the other side, if any.
In C11, it translates to the presence of a sequentially consistent fence between the two
parts—the modification and the test—on each side.

The use of fences instead of qualified statements allows for some flexibility in place-
ment. In particular, it is possible to batch multiple modifications together before the
fence, and the corresponding tests after, instead of expending one fence for each pair.
As it happens, this meshes very well with the idea of lazy waiting, which already does
exactly that on the awakening side.

The reason this is not as easily implemented on the sleeping side has to do with
ownership. We recall that this part of the construction is unsafe under delays, meaning
we are allowed to assume exclusivity on some objects. For performance, in the primary
process scheduler, we rely on exclusively owning a task in order to be able to move it
between sets. Therefore, it is difficult to postpone putting a process to sleep. We would
either need to hold onto its ownership for longer than desirable, or have to release it

6More so than the one in the Chase–Lev deque of Figures 4.22 and 4.23, where the modification of
top is not in the invocation of steal where the fence occurs.
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back to an inappropriate set and thus risk it being taken up by another unaware thread,
wasting computing resources.

The downside of this optimization is quite obviously that it breaks some level of
modularity. The fences need to be lifted up to the level of the scheduler itself, instead of
staying isolated in a few specialized functions that deal with passive waiting specifically.

4.2.4.2 Relaxed non-blocking core interpreter

Although it may not be immediately apparent to the reader, the algorithms presented in
the previous chapter were in fact designed with relaxation in mind, from the start. This
is partly due to historical motivations—the blocking relaxed interpreter came first—and
partly due to the authors’ prior background in high-performance low-level programming.

The specialized non-blocking channel data structure, in particular, has the potential
for good relaxed performance. Micro-updates to monotonic buffers only require release–
acquire semantics, if we are willing to accept some intermittent delays in propagation
of information and values, in the same way as in the single-producer single-consumer
queue of Section 4.2.2. There is no denying that block swapping at the macro level will
be costly; however, it can be mitigated by having longer buffers than strictly necessary.
This will often results in having a few standard buffer sizes that suit all channels, which
has other advantages, such as easing memory management (e.g., less fragmentation, and
the ability to use reference counting if we so desire) and preventing false sharing with
proper padding. Again, we reiterate that unlike purely batch-oriented algorithms, ours
do not require Kahn processes to deal in large arrays of values at a time. The size of
monotonic buffers only influences how often we need to replace them, not how much
data is needed before communication can be established: at the fine-grained granularity,
synchronization is ensured by release–acquire.

These points are only meaningful because they are complemented by process caching,
which allows a worker thread to operate on a private copy of a process state as long as only
micro-operations are involved—we only require the shared state to be updated when a
macro descriptor changes. Once cached, block pointers need not go through the expensive
multi-safe-read protocol, as the thread locally stores a consistent view of both the process
and the associated monotonic channel chunks. Although the code is peppered with tests
that recheck the value of the various cached pointers, those are entirely optional. Indeed,
each test returns whether we need to reload a specific changed shared variable. However,
they only serve as short-circuit device, to cut redundant paths before we reach the sole
authoritative compare-and-swap operation on the shared process state. We can therefore
relax them all, as their results do not matter, for correctness purposes, as long as we
ensure that they do not wrongly tell us to reload a same value, as this would impede
progress. This is not a problem with release–acquire synchronization; some care must
be taken if we want to use fully relaxed C11 instructions, to establish happens-before
relations that forbid reading pointers older than our cached versions.
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4.2.5 Integration and perspectives

Sections 4.2.2 and 4.2.3 above provide ad hoc correctness criteria for two basic compo-
nents of our system, through Theorems 3, 4, 6 and 7. However, most of our existing
work has been in a linearizable environment, building linearizable objects. Thus, a most
legitimate question to ask is how we intend to blend them together into a single working
implementation—actually two of them depending on whether we go for the blocking or
the non-blocking route.

4.2.5.1 Abstraction in the C11 memory model

In a sequentially consistent universe, linearizability is both an abstraction principle (i.e.,
the rules under which one routine can be substituted for its specification) and a well-
understood specification method (sequential procedures as specification). A good place
to start with our reflection is the work of Batty et al. [2013], which establishes an ab-
straction theorem for the C11 memory model. Below, we briefly provide an overview of
the technique they propose, then we explore its potential application to our Kahn process
library.

We recall that, in sequential consistency, one interpretation of classical linearization
tells us that for each authorized execution of the linearizable object (the library imple-
mentation), there exists at least one equivalent sequential run of the specification (the
library abstraction). The notion of equivalence is then defined by two criteria:

• any return-to-call ordering in the original history must be enforced in the lineariza-
tion;

• and the histories must have the same interface—call and return—actions.

Intuitively, the first rule guarantees that any ordering enforced by the client—which
can only be done outside invocations hence return-to-call—is honored by the abstraction.
The second property ensures that any potential client observes the same values out of
the library when putting in the same data. In a sense, they describe two sides of a same
coin: the library controls what happens inside method bodies, while the client oversees
everything that may occur in between.

In C11, things are similar, in spirit. Instead of concurrent interleaved histories, we
have execution graphs made of C11 primitive actions (e.g., load, store, compare-and-
swap, fences) and relations (e.g., happens-before, reads-from, sequentially consistent,
modification). We still quantify over all possible sets of obligations in the form of return-
to-call edges (first criterion), only this time, the set is only made of those constraints that
are actively enforced by client code. While this may sound trivial, it means we cannot
assume that a hb−→ b ∨ b hb−→ a.

The sequential specification run becomes a standard C11 execution, since unlike se-
quential consistency, there is no easy (or uniquely agreed upon) way to define what it
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means to replace a concurrent invocation by an atomic instance of anything. For ab-
straction to apply, we must evidently still have identical values at the interface (second
criterion). Is that all there is to it?

Unsurprisingly, the answer is no. In classical linearizability, the sequential history
provides not only values but also order between invocations. From the point of view of the
caller, this translates to call-to-return guarantees (since whatever happens in the middle
of a method is not directly observed by the client). The set of possible linearizations is
indicative of what interleaving the client may expect. For example, in a stack or in a
queue, the push operation always precedes the matching pop, so a user of the library can
count on that fact to derive useful patterns, such as message passing.

In C11, the situation is slightly different. Whereas the ordering of method instances is
implicit in the sequence of a classical linearization, in C11, the library abstraction is now
a normal execution graph. The set of invocations does not form a sequential history, and
thus only certain method calls are guaranteed to happen before certain return actions.
This is formally captured as a set of call-to-return happens-before edges. Again, note
that in a relaxed model, the absence of such a relation does not imply the opposite: a
call that does not happen before a return does not necessarily happen after either.

Keeping with this idea, in addition to guarantees, the library may also simply deny
the client the possibility of forming certain return-before-call edges, which is essentially
a weaker version of the above guarantees. It means that such executions of the speci-
fication are not compatible with clients that would enforce such relations. In practice,
denial is mainly the work of sequentially consistent relations, which, as we have seen in
Section 4.2.1.2, do not imply happens-before but are nevertheless compatible with it.
There are therefore three possible relations between two invocations: one call happens
before the other return, one call cannot happen after the other return (implied by the
previous case), or library-neutral. Each library-side constraint restrains the number of
possible executions of the client. Together with the set of interface actions, these are
considered by Batty et al. [2013] to define a history in C11.

They offer two abstraction theorems, depending on the subset of C11 in use, whether
it includes the infamous relaxed atomic instructions of C11 or not. For the simpler model,
without relaxed, the concrete library can be replaced by the abstract version if the imple-
mentation guarantees and denies at least as much as the specification. This is intuitive,
as by adding more edges from the library, we may only reduce the number of possibilities
from the abstraction, never allow something that is impossible in the specification. Due
to self-satisfaction cycles—which we briefly mentioned in Section 4.2.1.3—the same does
not hold true when relaxed accesses are enabled. In that case, the guarantee sets on both
sides must be equal.

In addition to this, something that is often taken for granted in informal sequen-
tially consistent arguments about composition, but becomes more prevalent in the C11
world, is non-interference between the components, we touched upon in the beginning,
Section 2.1.1. The reason why this specific issue is raised in the context of C11 is because,
in the presence of relaxed operations, memory isolation between the client and library
needs to be enforced at the level of the implementation instead of the abstraction.
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It is beyond the scope of this document to explain precisely why such differences exist.
However, practically speaking, by now, we should be well-aware of the simple reality
that our own algorithms in Sections 4.2.2 and 4.2.3 make heavy use of those relaxed
instructions—although always in conjunction with fences or release–acquire guards.

Does this mean we need to use the weaker version of the theorem? Yes and no. In
truth, it depends on what clients we allow. The main issue with relaxed atomic instruc-
tions is that, counter-intuitively perhaps, the self-satisfaction pattern gives too much
observational power to clients to distinguish between unwary libraries.

Even so, it should be noted that an abstraction theorem in itself—even in its weak
form—is a very powerful device, as it effectively allows us to reason on a different program,
by replacing the implementation with its abstraction (with the caveat that, in the case
of relaxed abstraction, non-interference needs to be proven on the original program). If
we can isolate low-level uses of relaxed instructions and replace them with specifications
that do not contain any, then we get to use the stronger version of the theorem on any
higher-level abstractions. Putting these ideas together, a possible proof strategy could be
the following:

1. Do a whole-program proof of non-interference on the implementation, so we can
apply the weak theorem.

2. Apply the weak theorem to every component that uses relaxed operations sepa-
rately to prove it equivalent to a specification that does not involve any.

3. Substitute those into the original program.

4. Apply the strong theorem to prove any remaining abstractions.

Admittedly, this may not be possible. For starters, it requires that every component
cooperates: external libraries outside of our control must provide a non-relaxed specifi-
cation, or we need to write one ourselves.

Also, not every occurrence of a relaxed operation may be abstracted. However, in
many cases, actual relaxed instructions are constrained by algorithmic hypotheses or
contracts on the interface that must be satisfied by clients.

For example, in the single-producer single-consumer queue of Section 4.2.2, the only
relaxed accesses occur on the same-side index variable, which is guaranteed exclusive to
the current thread, due to the interface contract. There is therefore a single write that can
be read from, each time. Changing those to acquire does not introduce new guarantees,
since any would-be synchronization is already covered by same-side happens-before.

This technique, however, unfortunately meets with some difficulties when dealing
with sequentially consistent instructions. In theory, we would want to go from a release–
acquire implementation to a sequentially consistent abstraction—so that we can apply
classical linearization over the resulting sequentially consistent program.

To continue with the queue example, the express purpose of release–acquire over
sequentially consistent index accesses is to allow the machine to decide when opposite
indices are made available for reading. In practice, we want to allow both consumer and
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N front;
N back;
int data[∞];

1 bool push(int x)
2 {
3 if (nondet())
4 return false;
5 data[back++] :=sc x;
6 return true;
7 }

1 bool push(int ∗x)
2 {
3 if (nondet() or front ≥ back)
4 return false;
5 ∗x :=sc data[front++];
6 return true;
7 }

Figure 4.27: Non-deterministic sequentially consistent single-producer single-consumer
queue specification
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push
sb //

hb

��

push;;

sc

{{

hb

��
pop

sb
// pop

Figure 4.28: Simple non-deterministic queue example

producer to bump their indices without immediately informing the other side; in essence,
it is a form of on-write caching, symmetrical to the on-read caching we do manually.
Hiding this behavior behind non-determinism, we get the specification in Figure 4.27.

However, we cannot apply the C11 abstraction theorem. Replacing the release–acquire
pair with sequentially consistent primitives introduces edges in the deny set, due to the
sequentially consistent total order. For example, consider Figure 4.28, where we have
represented four successful invocations of queue methods. Each pop reads from the above
push. If this is an execution of the release–acquire implementation, then the second push
does not synchronize with the first pop one way or the other.

There is no execution of the sequentially consistent code of Figure 4.27, however,
which does not also add a sequentially consistent edge between the first pop and second
push, denoted as a dashed arrow. That edge denies the opposite return-to-call relation
from the client. Without the sequentially consistent C11 instruction set, we can only
add to the deny set through happens-before; yet, we certainly do not want our second
push to have to wait for the first pop to take effect, or the other way around. There-
fore, the release-acquire queue implementation is not abstracted by our non-deterministic
specification.

Perhaps it was naive of us to expect as much, in the first place. It could certainly
be argued that it was never the purpose of the C11 standard to offer such functionality.
However, we find the difficulty of mixing classical linearizability results with relaxed
components to be quite restrictive and problematic at scale, where most higher-level
components have no need for the minutiae of relaxation.

4.2.5.2 Systematic uses of relaxed instructions

The previous example of a relaxed read statement being converted to acquire is actually
not an isolated instance. Throughout our journey in the land of C11 concurrent algo-
rithms, we have come to distinguish a few systematic use cases of relaxed instructions
that we now explain.

Exclusive read The most trivial usage of relaxed is for exclusive access on read. This
is the case for same-side index reads in both the queue (front for the consumer,
back for the producer) and the work-stealing deque (bottom, array pointer and
elements for each owner). In this scenario, we know that every modification of the
target location either happens before or after the current load operation. This kind
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of relaxed access can be replaced by an explicit local cached copy of the variable,
using non-concurrent accesses, with updates changing both.

Speculative part of a double check Lock-free programming is rife with this sort of
pattern, where a value is preventively loaded for an operation, only to be confirmed
later by a second “proper read.” As we have explained in the previous chapter, the
correctness of this kind of double checks lies in the fact that the speculative read
basically serves as an oracle: any value could be returned, and the algorithm would
still proceed safely (although it may not make progress). One obvious use is to read
the expected value of an upcoming compare-and-swap, as is done in take and steal
for work stealing.

Redundant acquire fence This category encompasses those cases where an acquire
qualifier can be removed due to being redundant with another operation. Case
in point: the first relaxed read in the steal deque method. It is followed by a
sequentially consistent fence, and an acquire fence on the load would be flagged
as locally redundant.

The other relaxed read in steal is more subtle. It occurs on the array element, and is
followed by compare-and-swap. There are two cases. If the function succeeds, then
any information that would be acquired by the data read is also carried by the
previously loaded bottom variable, which is updated by the producing thread after
the element is written. If the function fails, then the item value is discarded and
everything proceeds as if nothing was read in the first place: a would-be specification
of the deque may not include such an operation in its failing branch at all.

Once those cases are taken out of the picture, the only remaining uses of relaxed are
writing to array elements in give and updates to the bottom variable in take. Those are
more subtle and depend on the algorithm.

For array item updates, this is a property of steal that makes it so it never returns
an outdated element, therefore, the following release from writing to bottom carries onto
any successful steal invocation, which relieves the need for another release operation on
the item itself.

For owner index updates in take, the problem is different. Since the indices merely
guard the content handed over by the user to give, we do not need to establish happens-
before between take and steal. Therefore, we are content with letting the updates fall into
the release sequence of the previous instance of give, instead of every one of them being
a release store. This is a concept we have not explained in Section 4.2.1. Quite simply,
it is similar to having a release fence before the first write in a same-thread sequence:
everything that comes before the fence is released along with any of the subsequent writes
when it is acquired.

For those two cases, especially the last one, writing an abstract specification in C11
without using relaxed would no doubt require non-deterministic failure to simulate the
cases where no happens-before edge occurs between take and steal even though they do
communicate and share indices.
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4.2.5.3 Correctness in the C11 memory model

From the realization that current abstraction theorems in C11 are unlikely to help us
integrate relaxed content directly into our existing linearizable code, we are left with
several suboptimal solutions.

Of course, the basic, straightforward and rather disappointing solution is to simply
use the sequentially consistent subset of C11 for everything. It is good that it exists so
at least we know there exists a slow but correct version of our algorithms.

At the opposite end of the spectrum, we have the frontal approach. We simply go
ahead and formalize any correctness properties we want on the C11 code directly. Needless
to say, this has scaling issues, both in terms of writing the correct specification for multiple
layers of components, and human horse power needed to produce the proofs—informal
as they may be—with enough confidence. The former is difficult without the guidance
of an abstraction principle or reasoning framework. The latter is problematic due to the
size of the model and the code, and again the lack of proper tools to deal with them.

A third option, which is currently unavailable, would be to find a suitable subset of
the C11 memory model that allows linearizable reasoning without being as limiting as
the so-called sequentially consistent native instruction set.

Finally, the approach we consider the most promising is the recent development of
program logics adapted to relaxed memory models, such as [Vafeiadis and Narayan,
2013, Turon et al., 2014, Lahav and Vafeiadis, 2015]. We believe this direction provides
promising techniques to assist in writing proper specifications and proofs, much as we
would do in a frontal engagement of the problem, albeit hopefully with less need for brute
force.

4.3 Applications

4.3.1 Data-flow and task-based parallelism

We conclude our study of Kahn process networks with a look at what kind of applications
may benefit from our work. We distinguish between what we consider typical data-flow
use cases, and other more general parallel programming scenarios, many of which have
been briefly introduced in Section 4.1.1.1, when discussing the various scheduling con-
straints under which one can operate.

Data-flow applications include those for which a description as Kahn process net-
works already exists or can be naturally formulated. As we have already mentioned,
stream-oriented languages such as StreamIt [Thies et al., 2002], and synchronous data-
flow languages such as Lustre [Caspi et al., 1987] provide a good reservoir of potential
candidates. Automated compilation from such high-level programming languages to state
machines suitable for execution on our run-time library would certainly be a worthwhile
project.

More general concurrent programming models with streams include Y-API [de Kock
et al., 2000] and the Go language. In addition to single-producer single-consumer chan-
nels, Go supports non-deterministic multi-producer multi-consumer queues. Both also
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allow non-determinism through the use of waits on multiple objects (similar to the select
Unix call) within processes.

Non-data-flow applications are those that exhibit parallelism expressed using a dif-
ferent metaphor: e.g., fork–join or task-based parallelism.

• In a fork–join design, as found in the Cilk language [Blumofe et al., 1995] and its
descendants, sequential execution is allowed to split (fork) and then wait for all the
parts to finish (join) before resuming. This was the original model of work stealing
as introduced by Blumofe and Leiserson [1999].

• Although there is no single accepted definition of task-based parallelism, by far the
most common idiom—implemented in [Planas et al., 2009, Pop and Cohen, 2013]
as well as OpenMP—takes the following shape. Programs are described as direct
acyclic graphs: the vertices represent sequential work units, while the edges are
dependency constraints. The graph itself is usually built sequentially by a control
thread (or task), which, depending on the exact implementation, has various ways
of synchronizing with (e.g., waiting for) the tasks it spawns. Some systems permit
recursive graphs, in which single tasks may themselves split into a private subgraph.
This provides a kind of hybrid with fork–join parallelism, in which parent nodes
are offered more control over how their children execute (through dependencies),
instead of simply splitting and waiting.

While it could be argued that task graphs are similar to Kahn process networks, they
differ in some important ways. Most visibly, Kahn processes are stateful and communicate
through channels, whereas tasks in a task-based environment are one-shot activities that
have a fixed set of one-time dependencies. In most implementations, it is possible to pass
(implicit) memory ownership through such dependencies; some, such as OpenStream,
also feature explicit data-carrying objects.

It is true, however, that the two paradigms are convertible, in a sense. On the one
hand, finite direct acyclic graphs of tasks can be systematically translated to Kahn process
networks by mapping tasks to processes one for one, and dependencies to single-item
channels. Each process simply reads from all its input channels, executes the task it has
been assigned then pushes the result on all connected output channels. Conversely, Kahn
processes can be unrolled, as shown in Figure 4.29, so that each transition defines a task
and individual channel indices correspond to a dependency edge between producers and
consumers.

The translation problem is complicated by dynamic creation of processes and tasks:
recursive process networks, as opposed to the sequential control model. This is a concern
mostly as regards memory management. When do nodes and edges cease ot be eligible
for further graph extensions—and can thus be recycled? When can we start executing?

In classical Kahn process networks, this problem is addressed by the recursion mech-
anism. Only new processes can have their input and output channels bound at creation
time, and channels are scoped by the reconfiguration block they belong to.

In sequential-control task graphs, the control task similarly reigns over creation and
decides what lives, what dies, and when. The main difference lies in the fact that child
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Figure 4.29: Kahn process to individual tasks

nodes can be added and bound incrementally, whereas the Kahn reconfigure statement
is atomic. This design discrepancy is closely related to the necessity, in the task-based
model, of active recycling: any infinitely running program will generate an infinite number
of tasks and dependencies. Compare this to Kahn processes, which are mostly expected
to stabilize at a given graph structure and continue looping through the same channels,
reusing buffers and states. Therefore, not only does the control thread incrementally
creates, it must also incrementally destroy.

The same effect can be achieved by extending the Kahn process language to allow
incremental reconfiguration, whereby channels can stay unbound on one side while al-
ready configured processes start executing. We must also add to the run-time library
the ability to delete process and channel objects, once they terminate or both of their
ends close, respectively. This is not exactly trivial in the non-blocking algorithm, which
uses a tree bin to manage the memory associated with the network itself (as opposed
to individual state and buffer blocks). However, our blocking implementation does offer
such fine-grained control, coupled with a more precise memory management system.

With these similarities and differences hopefully clarified, we can now focus on a
couple of concrete examples and results.

4.3.2 Experimental results and the libkpn blocking implementation

Our experimental evaluation is based on our blocking run-time library—libkpn, which
acts as a kind of performance benchmark for our future Kahn process implementation
endeavors.

Indeed, the blocking library is geared toward high performance. It employs a single
primary scheduler based on the relaxed work-stealing deques described in Section 4.2.3
and the lazy passive waiting algorithms of Section 4.1.3, relaxed according to Sec-
tion 4.2.4.1.

Worker threads acquire exclusive access to Kahn processes by removing them from
shared sets (e.g., the work-stealing deque) and keeping them from being seen by other
threads. Workers run the process state machines and carry out any communications as
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needed, through the cached single-producer single-consumer channel of Section 4.2.2.
As explained above, the blocking run-time library supports incremental reconfigura-

tion, as well as partial garbage collection of channel and process objects as they become
unused. This allows for easy emulation of task-based run-time libraries. In fact, libkpn
offers an emulation layer, KOMP, for the OpenMP task subsystem, where OpenMP di-
rectives can be mapped one-for-one to corresponding function calls.

Compared with a would-be complete non-blocking implementation, this version re-
quires less bookkeeping (e.g., safe reads), has less overhead in terms of costly instructions
(no need for compare-and-swap unless sleeping or contending for the last item in a deque).
In particular, both state updates and channel operations can be done entirely in-place,
without the need to constantly swap in new blocks. In a way, it represents an upper
bound on the performance that can be expected of the lock-free implementation in the
unlikely event that:

• monotonic buffers are infinite (or large enough to hold the entirety of a finite
execution), such that there is no need to ever replace descriptors;

• and processes are distributed among worker threads with no redundant computa-
tion, at all times.

For more information on the concrete C11 source code of the libkpn library, please
refer to Appendix B.

Direct comparison with existing implementations of such data-flow models is possible
if we limit ourselves to the subsets commonly supported. Preliminary measurements on
simple benchmarks point toward performances roughly on par with StreamIt for the
static subset and Go for Kahn process networks on small configurations (few processors).
On larger systems, our implementation scales better.

We now concentrate on a couple of in-depth examples drawn from the task-parallelism
literature.

4.3.3 Case study: matrix factorizations

Matrix algorithms make an interesting case study for several reasons. They are well-
defined problems with well-known solutions, including parallel implementations read-
ily available in the form of libraries such as LAPACK (and compatible replacements).
Furthermore, they have been shown to utilize task-based concurrency well in a shared-
memory setting. [Buttari et al., 2009]

The basic idea behind parallel matrix programming is tiling. Most common matrix
transforms have a block version, where operations on individual elements are replaced
with analogous routines on submatrices. This offers control over the granularity at which
sequential processing unfolds. Therefore, we can represent the calculation as a number
of interdependent steps: each step reads from one or more input tiles, computes some
values, and writes the results in one output tile.
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Figure 4.30: Dependency graph for a 3x3 Cholesky transform
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Figure 4.31: Row aggregation for the Cholesky transform

4.3.3.1 The Cholesky transform

Our first example is the Cholesky transform. Figure 4.30 shows its action on a 3x3 block
matrix; each element shown is actually a tile of unspecified size. Each step is a call names
a basic matrix operation from BLAS or LAPACK. Knowledge of what each routine does
precisely is not essential to the comprehension of the parallel arrangement explained here.
Briefly, potf2 is the sequential base-case Cholesky factorization; trsm solves a triangular
matrix equation; syrk performs a specific case of matrix-matrix multiplication of a given
matrix with its own transpose; and gemm is the general matrix-matrix multiplication.
They are linked by arrows indicating what intermediate results are needed for each step.
The ones that modify a common tile are grouped in dotted boxes; the tile indices are
denoted in subscripts.

The transition to task-based parallelism is straightforward, by taking each step as a
task, and arrows as dependencies; it then suffices that we choose any compatible sequen-
tial creation order. The graph has both vertices and edges in O(n3), where n is the size
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of the matrix (the length of one side such that it has n2 elements in total), although
popular frameworks, including StarSs, OpenMP, and Swan, all aggregate dependencies
originating from the same tile, and thus have only O(n2) dependency objects.

The same algorithm can be implemented as is on our libkpn run-time system. It should
be noted that, since the library is not lock-free, it allows exclusive memory ownership
in Kahn processes. In the case of block matrix algorithms, this allows our implementa-
tions to work in-place on shared-memory tiles, only relying on channels to communicate
dependencies, along with implicit permissions to access the tiles.

Optimizing Cholesky We now describe an enhanced Cholesky algorithm which ex-
ploits the features of Kahn process networks. Starting from the previous task-based ver-
sion, we proceed to optimize task and dependency usage.

We remark that steps in Figure 4.30 only have write permissions to a single tile.
Same-tile steps are therefore prime candidates for task aggregation into Kahn processes.
Each process is responsible for one tile, which improves locality: those tasks will have a
higher chance of running one after another uninterrupted (temporal locality), due to the
bias in the primary scheduler as described in Section 4.1.2.1, and on a same worker thread
(spatial locality). This aggregation is already visible as dotted boxes in Figure 4.30.

The next step is to fuse dependencies into channels, since having single-item chan-
nels in a Kahn process network is suboptimal. The basic rule in order for two one-shot
dependencies to become part of a same channel is that they must be totally ordered.
If A → B and C → D are two dependency edges, then they can only be merged if
A → D ∨ C → B. More generally, we want to find a sequence of dependencies Ai → Bi
such that ∀i ≤ j, Ai → Bj . This way, it suffices to keep track of the highest satisfied Ai,
in order to know which Bj can execute: we have a channel. However, due to the single-
producer single-consumer nature of channels in a Kahn process network, an additional
constraint applies: the Ai tasks must be part of a same Kahn process, and similarly for
the Bj tasks.

In our case, with Cholesky, no natural channels appear in the task-graph representa-
tion. Tiles do not exhibit trivial channel constructs in their dependencies. Consider the
process corresponding to tile (3, 2). Its first task depends on trsm21 and its second task
on potf222. These dependencies satisfy the ordering requirement. However, they do not
originate from the same tile—one is produced by (2, 1) and the other by by (2, 2), which
precludes the use of a channel, a priori.

To realize this pattern, we need to introduce another level of aggregation on top of
tile processes: at the row level. We add an artificial process representing each row of tiles,
as shown in Figure 4.31. The intrinsic Cholesky dependencies are thus cut in two: tile
processes first report to the row process, which then broadcasts results to further tasks
as needed. Indeed, this can be seen as a recursive use of Kahn processes: first, we have
only rows, then each row reconfigures into a full-fledged, fine-grained, subgraph.

While this appears to be a futile exercise at first—after all we are adding more
dependency objects, the main benefit lies in that once thus aggregated, the results can
be transmitted through a channel to every tiles located on lower rows of the matrix—e.g.,
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row 2 is consumed by tiles (i, 2) for all i > 2. Notice that, by applying this optimization,
we convert what would be a product into a sum in the number of necessary objects
to represent all the edges in the graph, resulting in O(n2) occupation. This result is
similar to what is achieved by task-based frameworks that aggregate based on memory
location—hence on tiles. However, the aggregation patterns are different.

The traditional task-based approach is to ease duplication by allowing multiple con-
sumers for a single producer natively. This is usually done at the expense of precise
garbage collection, as noted above. In models based on sequential creation in a con-
trol thread or task, it is that sequential order that determines when previous values are
shadowed by newer ones. For example, in Cholesky, the result of syrk22 cannot be read
anymore once potf222 spawns. This, however, has the undesirable side effect of creating
a bottleneck in the form of the creation path. The problem is well-known in the folklore:
if the control thread moves too fast, then the scheduler is overwhelmed with tasks to
schedule; if it moves too slowly, then workers starve. In contrast, Kahn processes and
channels, by design, streamline part of the resource management, as either transitions
within a single process (for tasks) or items within a channel (for dependencies).

4.3.3.2 The LU factorization

As a complementary result, we present results for a Kahn implementation of the LU
factorization. Our algorithm is based on the ScaLAPACK decomposition [Choi et al.,
1996], which is a tiling algorithm similar to the Cholesky parallelization shown above.

We thus apply a similar technique to the one described above, where same-tile steps
are collected into Kahn processes. However, the classic LU transform also features expen-
sive cross-tile steps: a recursive getf2—the LU decomposition routine in LAPACK—call
applied to every column, along with permutations that span multiple tiles. Such multi-
level permissions translate to transverse Kahn processes, similar to the row processes in
Cholesky.

The presence of those multi-tile steps also means that there is less freedom and more
imbalance in scheduling tile processes: we may need to wait for a whole column to finish,
instead of pursing individual calculations off the result of a few tiles, as in the Cholesky
algorithm. The combination of these factors results in overall lesser performances than
for Cholesky across the board, for all implementations.

4.3.3.3 Experimental comparison

Evaluation of the Cholesky factorization We compare four task-based run-time
systems running the generic tiled algorithm described at the beginning of this subsec-
tion, against our optimized Kahn version as well as two other hand-tuned reference
implementations. The four generic participants are: Swan, the OpenMP 4, SMPSs (the
shared-memory variant of StarSs), and our own KOMP emulation layer. The two refer-
ence implementations are PLASMA, the shared-memory parallel successor to LAPACK
by Buttari et al. [2009], and Intel MKL, as shipped with their C compiler, version 14.
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The GNU compiler, version 4.9.1, was used for those codes that depend on it (Swan,
SMPSs, OpenMP 4), while the Intel one took care of the rest. All versions were given
access to the optimized sequential BLAS and LAPACK routines from Intel, in an effort
to isolate the impact of parallelization. For each of those, a suitable tile size was searched
beforehand, as a preprocessing step.

Figures 4.32 and 4.33 show that the four generic systems share similarly shaped
performance curves, which appear to plateau for matrix sizes greater than 6000. At that
point, the difference between any two implementations is a constant overhead factor on
task and dependency operations, of which there are in the order of n3, the same order as
the number of floating-point matrix operations. As expected, we verify that this overhead
is constant per operation and is not affected by the decision to aggregate dependencies
or represent them separately.

Taking OpenMP 4 as the reference point, once the curves have plateaued, the over-
head of KOMP stays stable at 5% on both test machines. For simplicity, we have opted
for a naive dynamic interpretation of OpenMP directives in our emulation layer, so part
of the overhead can be attributed to the cost of mapping and juggling sequentially with
dependency objects within the parent task. More importantly, the difference between
KOMP and OpenMP is within the variations of Swan and SMPSs, which perform alter-
natively better and worse than OpenMP on the two platforms.

On our test platforms, our enhanced version, labeled KPN, consistently outperforms
the competition, including the state-of-the-art reference implementations. On the bigger
twelve-core Xeon machine, the difference is more visible. Our enhanced algorithm peaks
earlier, exhibiting a throughput 19% higher at sizes 4000 and 5000, which progressively
tapers off; still, our FLOPS count remains 5% higher than the closest alternative once
all implementations plateau.

The Intel MKL results deserve their own small paragraph. Contrary to other imple-
mentations of Cholesky, the version from Intel automatically selects its own tile size.
Furthermore, it is unknown what algorithms and schedulers are actually used by the
library. As such, we can only speculate as to the reason of the sharp drop in performance
around 7000. The most likely explanation is that smaller sizes use dedicated settings,
ad hoc implementations, partially static schedules, or a combination thereof, which are
abandoned at higher matrix sizes in favor of more generic but maybe less well-tuned
algorithms.

Evaluation of the LU factorization Figures 4.34 and 4.35 display FLOPS mea-
surements for five implementations of the LU factorization: the SMPSs version and its
OpenMP 4 port, the MKL and PLASMA parallel LAPACK routines, and our a Kahn
process network.

Compared to Intel MKL and PLASMA, our implementation appears to be competi-
tive on moderate and large matrices, but suffers on smaller sizes. While we applied similar
optimization techniques to LU as we did to Cholesky, our implementation is missing one
improvement that we believe is mostly responsible for these relatively poor results: in the
LU factorization, the per-column getf2 operation, which is fairly expensive, can execute
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on large portions of the matrix sequentially. We believe it would benefit from paralleliza-
tion at a finer grain, rather than being treated as a whole step.
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Chapter 5

Conclusion

In this thesis, we have discussed new parallel implementations of Kahn process networks
on shared-memory systems, blocking and non-blocking, in sequential consistency as well
as in the C11 relaxed memory model. The lock-free algorithm has good theoretical prop-
erties as regards resource usage, contention and overhead. The blocking algorithm is
simpler and achieves promising performance on practical applications, in contexts that
do not require or benefit much from lock-free properties.

That being said, many topics were, however, not addressed or only partially covered.
In particular, the non-blocking algorithm has not been fully implemented, and more work
is still needed before we can hope to achieve a full proof of a relaxed version in the C11
memory model. This opens up a number of interesting perspectives for future work:

C11 non-blocking implementation A partial concrete implementation of the non-
blocking algorithm can be readily derived from the code in Chapter 3. Aside from
a few junctions here and there in the code (e.g., with regard to process and net-
work creation), the main missing component is the lock-free memory management
system described in Chapter 2. For better mainstream acceptance, more work still
would be needed to expose a friendly interface to the host language. A relaxed C11
implementation is probably dependent on advances on a C11 proof (see below).

Algorithmic improvements We believe the macro queue of Section 3.7 can be sim-
plified to remove the need for a two-word update, by inlining each half of the
queue in the corresponding process state. This, however, greatly complicates both
reconfiguration (which would then require a multi-word transaction) and memory
management, as it conflates the permissions related to states and buffers—a single
monotonic chunk could end up being referenced from multiple states. We suspect
a more flexible interface to the memory management system would be required.

Dynamic worker pool A useful extension to both the blocking and non-blocking im-
plementations is the possibility to dynamically add and remove worker threads
on the fly. Such a feature would complement our lock-free properties well, seeing
that we already support a fluctuating number of workers (out of a maximum) due
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to delays. It would mainly require adaptations from the global memory allocator
(e.g., per-thread hazard pointers) and scheduling data structures (e.g., per-thread
work-stealing deques).

Dynamic reconfiguration Another potential extension is the ability to reconfigure in-
crementally while reclaiming unused portions of the graph. This is already available
in our blocking implementation, which allows for better interoperability with task-
based tools, as explained in Section 4.3.1. Such a feature, however, is non-trivial in
the context of our lock-free algorithm, as the process graph is currently assumed
never to be freed. A move toward a more dynamic network would certainly in-
crease the number of safe reads, and impose a new block usage strategy that allows
memory to be recycled.

C11 proof Lastly, as we suggested in Section 4.2.5.3, we believe it should be feasible (al-
though by no means easy) to prove a moderately relaxed version of our algorithms
in a simplified C11 memory model featuring only release–acquire and compare-
and-swap, under a relaxed program logic such as [Turon et al., 2014]. Of all the
perspectives mentioned in this list, this is perhaps the most elusive yet, but also, in
our opinion, the most promising. Throughout the algorithmic journey summarized
in this thesis, we have had the chance to test and study several approaches (clas-
sical linearizability [Herlihy and Wing, 1987], direct use of the C11 memory model
[Batty et al., 2011], and C11 library abstraction [Batty et al., 2013]) to engineering
a reasonable proof—informal as it may be—of the kind of moderately large lock-free
concurrent systems of which our Kahn process interpreter provides a good illustra-
tion. Although, with respect to proofs, we have not reached a definitive answer that
combines all the right ingredients (e.g., lock freedom and relaxation), if anything,
the experience has left us with the sense that there is much to be researched and
hopefully much to be found ahead, in this direction.
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Appendix A

Proofs of data structures in the C11
memory model

A.1 Proof of the C11 single-producer single-consumer queue

This section is reproduced in full from [Lê et al., 2013], with updated presentation and
notations, but otherwise identical content.

Lemma 24. Reading an opposite index value f prevents any later acquire load on the
same side from obtaining a value older than f , and any earlier acquire load from obtaining
a newer value. Newer and older are relative to the modification order of front.

Conversely, storing an owned index value f that is read by the opposite side as acq rf =
f prevents any acquire load of the opposite index sequenced before the store from obtaining
a value newer than that at the point of acq rf = f .

The same applies symmetrically to back instead of front.
Formally, for all k ≥ 0 and k′ ≥ 0. If ini/relwb = b(P, k)

rf−→ acq rb
(C,k′), then:

∀l < k, [(P, l) is not cached] =⇒ ∃l′ ≤ k′, ini/relwf = f(C, l′)
rf−→ acq rf

(P,l)

∀l′ ≤ k′, [(C, l′) is not cached] =⇒ ∃l ≤ k, ini/relwb = b(P, l)
rf−→ acq rb

(C,l′)

If ini/relwf = f(C, k′)
rf−→ acq rf

(P,k), then:

∀l ≤ k, [(P, l) is not cached] =⇒ ∃l′ ≤ k′, ini/relwf = f(C, l′)
rf−→ acq rf

(P,l)

∀l′ < k′, [(C, l′) is not cached] =⇒ ∃l ≤ k, ini/relwb = b(P, l)
rf−→ acq rb

(C,l′)

Proof. The two sides of the lemma are symmetrical. Proof is only provided for the first
scenario. We suppose that ini/relwb = b(P, k)

rf−→ acq rb
(C,k′).
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Let l < k such that (P, l) is not cached. Since acq rf
(P,l)

sb−→ relwb = b(P, k)
rf−→

acq rb
(C,k′), we have acq rf

(P,l)
hb−→ acq rb

(C,k′). Besides, since only the consumer writes to

front, we know there exists l′ such that ini/relwf = f(C, l′)
rf−→ acq rf

(P,l). It must be
that l′ ≤ k′; otherwise, we have the following happens-before cycle:

relwf
(C,l′−1) = f(C, l′)

rf−→ acq rf
(P,l)

hb−→ acq rb
(C,k′)

sb−→ relwf
(C,l′−1) = f(C, l′)

Let l′ ≤ k′ such that (C, l′) is not cached. Since only the producer writes to back, we
know there exists l such that ini/relwb = b(P, l)

rf−→ acq rb
(C,l′). It must be that l ≤ k.

Otherwise, we have the following happens-before edge:

relwb = b(P, l)
rf−→ acq rb

(C,l′)
sb−→ acq rb

(C,k′) hence relwb = b(P, l)
hb−→ acq rb

(C,k′)

Therefore, if ini/relwb = b(P, k)
hb−→ relwb = b(P, l), we have a contradiction:

ini/relwb = b(P, k) 6rf−→ acq rb
(C,k′) = b(C, k′)

Symmetrically if ini/relwf = f(C, k′)
rf−→ acq rf

(P,k) = f(P, k).

From Lemma 25 to Corollary 9, we prove the following local bounds on the index
values, under various hypotheses:

0 ≤ b(T, k)− f(T, k) ≤ m

where T is either the producer P or the consumer C, and (T, k) designates a specific
instance of push or pop. We say that an instance is bounded if it satisfies the above
predicate.

Lemma 25. If a cached instance of push or pop is bounded, then all following operations
up to and including the next non-cached instance are also bounded.

Formally, given T either the producer P or the consumer C. For all k such that (T, k)
is cached and 0 ≤ b(T, k)− f(T, k) ≤ m:

∀l ∈ {k, . . . , VkWT + 1}, 0 ≤ b(T, l)− f(T, l) ≤ m

Proof. If T is the producer. It follows from the definition of V.WT that (T, l) is cached
for all l ∈ {k, . . . , VkWT }. Hence, no such (T, l) reads from front, and f(T, l) = f(T, k).
We proceed by induction on l. The hypotheses provide the base case. Suppose 0 ≤
b(T, l − 1)−f(T, l − 1) ≤ m. (T, l−1) is cached, hence there exists n0 ≤ m < M such that
b(T, l) = b(T, l − 1) + n0. Furthermore, the cached execution guarantees (f(T, l − 1) +
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m − b(T, l − 1)) % M ≥ n0. Since 0 ≤ b(T, l − 1) − f(T, l − 1) ≤ m, we have 0 ≤
m− (b(T, l − 1)− f(T, l − 1)) ≤ m < M . Hence:

(f(T, l − 1) +m− b(T, l − 1)) %M = (m− (b(T, l − 1)− f(T, l − 1))) %M

= m− (b(T, l − 1)− f(T, l − 1)) ≥ n0

Since b(T, l) = b(T, l − 1) + n0 and f(T, l) = f(T, l − 1):

m− (b(T, l − 1)− f(T, l − 1)) ≥ n0 ⇐⇒ m ≥ b(T, l)− f(T, l)

If T is the consumer. It follows from the definition of V.WT that (T, l) is cached for all
l ∈ {k, . . . , VkWT }. Hence, no such (T, l) reads from back, and b(T, l) = b(T, k). We proceed
by induction on l. The hypotheses provide the base case. Suppose 0 ≤ b(T, l − 1) −
f(T, l − 1) ≤ m. (T, l− 1) is cached, hence there exists n0 ≤ m < M such that f(T, l) =
f(T, l − 1) + n0. The cached execution guarantees (b(T, l − 1) − f(T, l − 1)) %M ≥ n0.
Since 0 ≤ b(T, l − 1)− f(T, l − 1) ≤ m < M , we have:

(b(T, l − 1)− f(T, l − 1)) %M = b(T, l − 1)− f(T, l − 1) ≥ n0

Since f(T, l) = f(T, l − 1) + n0 and b(T, l) = b(T, l − 1):

m ≥ b(T, l − 1)− f(T, l − 1) ≥ n0 ⇐⇒ m ≥ m− n0 ≥ b(T, l)− f(T, l) ≥ 0

Lemma 26. If an instance of push or pop reads the initial value of its opposite index,
then every operation up to and including the next uncached instance is bounded.

Formally, given push (P, k) and pop (C, k′):

iniwb = 0
rf−→ acq rb

(C,k′) = 0 =⇒ ∀l′ ≤ Vk′WC + 1, 0 ≤ b(C, l′)− f(C, l′) ≤ m

iniwf = 0
rf−→ acq rf

(P,k) = 0 =⇒ ∀l ≤ VkWP + 1, 0 ≤ b(P, l)− f(P, l) ≤ m

Proof of the first implication. Suppose iniwb = 0
rf−→ acq rb

(C,k′) = 0; let us show by
induction that b(C, l′) = f(C, l′) = 0 for all l′ ≤ Vk′WC .

In the base case, if l′ = 0, by definition, b(C, l′) = f(C, l′) = 0.
Induction case. Assume b(C, l′) = f(C, l′) = 0 and l′ ≤ Vk′WC . Either (C, l′) is cached

or not. If (C, l′) is not cached, then it follows from Lemma 24 that:

∃l ≤ 0, ini/relwb = b(P, l)
rf−→ acq rb

(C,l′) = b(C, l′ + 1)

hence b(C, l′ + 1) = b(P, 0) = 0

• If (C, l′) is failed, then f(C, l′ + 1) = f(C, l′).

• If (C, l′) is not failed, then (b(C, l′ + 1)−f(C, l′))%M ≥ n, where n is the batch size
argument of (C, l′); hence n = 0, and f(C, l′ + 1) = f(C, l′)+0 = f(C, l′). If (C, l′)
is cached, then b(C, l′ + 1) = b(C, l′) = 0. Since it must be that (b(C, l′)−f(C, l′))%
M ≥ n, the pop must be empty: n = 0; thus, f(C, l′ + 1) = f(C, l′) + 0 = f(C, l′).
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By induction, f(C, l′ + 1) = f(C, 0) = 0.

Proof of the second implication. Suppose iniwf = 0
rf−→ acq rf

(P,k) = 0 and l ≤ VkWP .
Symmetrically to the above, we show that f(P, l) = f(C, 0) = 0. We prove 0 ≤ b(P, l)−
f(P, l) ≤ m by induction on l:

In the base case:

0 ≤ b(P, 0)− f(P, 0) ≤ m ⇐⇒ 0 ≤ 0− 0 ≤ m

Induction case. Assume 0 ≤ b(P, l) − f(P, l) ≤ m and l ≤ VkWP . We recall that
f(P, l + 1) = f(P, l) = 0; hence b(P, l) ≤ m. If (P, l) is failed then b(P, l + 1) = b(P, l)
and the property holds. If (P, l) is cached, the result follows from Lemma 25. If (P, l) is
uncached, let n0 be the batch size argument passed to (P, l). We have, for some n0 ≤ m:

(f(P, l + 1) +m− b(P, l)) %M = (0 +m− b(P, l)) %M

= m− b(P, l) ≥ n0

Since b(P, l + 1) = b(P, l)+n0, it follows that b(P, l + 1) ≤ m. Moreover, f(P, l + 1) =
0, hence 0 ≤ b(P, l + 1)− f(P, l + 1) ≤ m.

Lemma 27. If an instance (T, k) of push or pop reads an opposite index value written
by an opposite bounded operation, then the next operation (T, k+ 1) on the same side as
(T, k) is also bounded.

Formally, given push (P, k) and pop (C, k′), such that 0 ≤ b(C, k′) − f(C, k′) ≤ m
and 0 ≤ b(P, k)− f(P, k) ≤ m.

relwb
(P,k−1) = b(P, k)

rf−→ acq rb
(C,k′) = b(P, k) =⇒ 0 ≤ b(C, k′ + 1)− f(C, k′ + 1) ≤ m

relwf
(C,k′−1) = f(C, k′)

rf−→ acq rf
(P,k) = f(C, k′) =⇒ 0 ≤ b(P, k + 1)− f(P, k + 1) ≤ m

Proof. The two sides of the lemma being symmetrical, we only provide the proof for
the first scenario. Suppose relwb

(P,k−1) = b(P, k)
rf−→ acq rb

(C,k′) = b(P, k). We have
b(C, k′ + 1) = b(P, k) and f(C, k′ + 1) = f(C, k′) + n0 for some n0 ≥ 0 (if (C, k′) is
failed, n0 = 0).

Since only the consumer writes to front, there is k′0 such that f(P, k) = f(C, k′0). It
follows from Lemma 24 that k′0 ≤ k′. Hence, f(P, k) = f(C, k′0) ≤ f(C, k′) and:

b(C, k′ + 1)− f(C, k′ + 1) = b(P, k)− (f(C, k′) + n0) ≤ b(P, k)− f(P, k) ≤ m

Consequently, b(C, k′ + 1)−f(C, k′) ≤ m+n0 < M . Furthermore, b(C, k′) ≤ b(C, k′ + 1),
hence:

0 ≤ b(C, k′)− f(C, k′) ≤ b(C, k′ + 1)− f(C, k′) < M
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If (C, k′) is failed, then n0 = 0; thus, 0 ≤ b(C, k′) − f(C, k′) ≤ b(C, k′ + 1) −
f(C, k′ + 1). Otherwise, (C, k′) satisfies (b(C, k′ + 1) − f(C, k′)) %M = b(C, k′ + 1) −
f(C, k′) ≥ n0. Thus:

b(C, k′ + 1)− f(C, k′) ≥ n0 ⇐⇒ b(C, k′ + 1)− f(C, k′ + 1) ≥ 0

Symmetrically if relwf
(C,k′−1) = f(C, k′)

rf−→ acq rf
(P,k) = f(C, k′).

Lemma 28. If an instance of push or pop reads a opposite index value from a release
store, then every operation up to and including the next uncached instance is bounded.

Formally, given push (P, k) and pop (C, k′). If (C, k′) is not cached, then the following
holds:

∀l′ ∈ {k′ + 1, . . . ,Vk′WC + 1}, 0 ≤ b(C, l′)− f(C, l′) ≤ m

If (P, k) is not cached, then the following holds:

∀l ∈ {k + 1, . . . ,VkWP + 1}, 0 ≤ b(P, l)− f(P, l) ≤ m

Proof. The two sides of the lemma being symmetrical, we only provide the proof for the
(C, k′) scenario. (C, k′) is not cached; hence acq rb

(C,k′) = b(C, k′) reads from either the

initial write to back or there is k0 such that relwb = b(P, k0)
rf−→ acq rb

(C,k′) = b(C, k′).
If (C, k′) reads from the initial write, then it follows from Lemma 26 that the property

holds. Otherwise, (C, k′) reads from a release store, and we know that relwb
(P,k0−1) =

b(P, k0)
rf−→ acq rb

(C,k′) = b(P, k0). We proceed by induction on max(k0, k
′ + 1).

In the base case, Lemma 26 asserts that the first push (P, 0) can only read the
initial value of front, and that the property holds for that pair. The first pop (C, 0)
can either read from the initial write to back or from a push (P, k0). If it reads from
the initial write, then the property holds from Lemma 26. Otherwise, (C, 0) reads from
ini/relwb = b(P, k0), and it follows from Lemma 24 that f(P, k0) is the initial value
of front, since no non-zero write to front exists before the first pop. Hence, Lemma 26
implies that 0 ≤ b(P, k0)− f(P, k0) = b(C, 0)− f(C, 0) ≤ m.

Let us prove the induction step. Assume the property holds for all (P, l) and (C, l′),
such that max(l, l′+1) < max(k0, k

′+1), and ini/relwb = b(P, l)
rf−→ acq rb

(C,l′) = b(P, l)

or ini/relwf = f(C, l)
rf−→ acq rf

(P,l′) = f(C, l).

Let us consider ini/relwf = f(C, k′0)
rf−→ acq rf

TP,k0−1U = f(C, k′0) for some k′0. It
follows from Lemma 24 that k′0 ≤ k′. Two cases:

• If k0 ≤ k′, then max(k0, k
′ + 1) = k′ + 1. Since k′0 < k′ + 1 and Tk0 − 1UP ≤

k0 − 1 < k′ + 1, we have max(k′0,Tk0 − 1UP + 1) < k′ + 1 = max(k0, k
′ + 1). By

induction, the property is true for (k′0,Tk0 − 1UP + 1), and, from Lemma 25, we
have 0 ≤ b(P, k0)− f(P, k0) ≤ m.
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Similarly, the property holds for max(k−1,Tk′ − 1UC + 1) < max(k0, k
′ + 1) (for

some matching k−1), and 0 ≤ b(C, k′)− f(C, k′) ≤ m. Hence, Lemma 27 concludes
that 0 ≤ b(C, k′ + 1) − f(C, k′ + 1) ≤ m. Lemma 25 extends the bounds to all
cached direct successors.

• Otherwise, k0 > k′. There exists k1 such that we have: ini/relwb = b(P, k1)
rf−→

acq rb
TC,k′0−1U = b(C, k1). Moreover, it follows from Lemma 24 that k1 ≤ k0−1. Since

the property holds for all max(l, l′ + 1) < max(k0, k
′ + 1), it does in particular for

all max(l, l′ + 1) < max(k′0, Tk0 − 1UP + 1). By symmetry with the above case, we
get 0 ≤ b(P, k0)− f(P, k0) ≤ m.

It remains to be shown that 0 ≤ b(C, k′) − f(C, k′) ≤ m. Either there is k′1 ≤
Tk′ − 1UC such that ini/relwb = b(C, k1) 6

rf−→ acq rb
TC,k′1U = b(C, k1), or there is no

such k′1.

If there is no such k′1, then consider the first pop; let k′1 = 0. We have a base case:
0 ≤ b(C, k′1)− f(C, k′1) ≤ m. If k′1 exists, then max(k−1, k

′
1) < max(k0, k

′ + 1) (for
some matching k−1) and, by induction, 0 ≤ b(C, k′1)− f(C, k′1) ≤ m.

In both cases, 0 ≤ b(C, k′1)− f(C, k′1) ≤ m, and by repeatedly applying Lemma 25
and Lemma 27, we get 0 ≤ b(C, k′ + 1)− f(C, k′ + 1) ≤ m. Lemma 25 extends the
bounds to all cached direct successors.

Corollary 9. All instances of push or pop are bounded. In other words, for T either the
producer P or the consumer C, and all k ≥ 0, we have: 0 ≤ b(T, k)− f(T, k) ≤ m.

Proof. Consider the previous push (resp. pop) that is not cached TT, k − 1U. If there
is none, Lemma 26 concludes. If there is such an operation, then Lemma 28 applies to
TT, k − 1U and the result holds for k ∈ {Tk − 1UT + 1, . . . ,Vk − 1WT + 1}.

Corollary 10. All accesses—both loads or stores—to the data buffer take place at an
index within the local bounds previously established.

Formally, given a push (P, k) and a store w[i] in (P, k):

0 ≤ b(P, k) ≤ i < f(P, k) +m

And given a pop (C, k′) and a load r[j] in (C, k′):

0 ≤ f(C, k′) ≤ j < b(C, k′)

Proof. For such a store to occur, (P, k) must not be failed; assume (P, k) stores n0

elements. From Corollary 9, we have:

0 ≤ b(P, k)− f(P, k) ≤ m
=⇒ 0 ≤ (f(P, k) +m− b(P, k)) = m− (b(P, k)− f(P, k)) ≤ m
=⇒ 0 ≤ n0 ≤ (f(P, k) +m− b(P, k)) %M = f(P, k) +m− b(P, k) ≤ m
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Therefore, 0 ≤ b(T, k) ≤ i < b(C, k) + n0 ≤ f(P, k) +m.
Similarly, for such a load to occur, (C, k′) must not be failed; assume (C, k′) reads n0

elements. Corollary 9 gives:

0 ≤ n0 ≤ (b(C, k′)− f(C, k′)) %M = b(C, k′)− f(C, k′) ≤ m

Hence, 0 ≤ f(T, k) ≤ j < f(C, k′) + n0 ≤ b(C, k′).

The remaining lemmas and theorems pertain to the data transferred through the
single-producer single-consumer queue. We recall that all accesses to the data buffer are
made by the queue code alone. Consequently, any load (resp. store) from the data buffer
is implicitly assumed to take place during a pop (resp. push).

Lemma 29. Reading from the data buffer yields a well-defined value, written by a cor-
responding store.

In other words, given a load r[j] from an instance of pop: ∃w[i], w[i] rf−→ r[j].

Proof. Sequentially, a store relwb = n in a push is always preceded by writes w[i] for all
i < n. Let (C, k′) be the pop r[j] belongs to. It follows from Corollary 10 that 0 ≤ j <

b(C, k′); thus we know that iniwb = 0 6rf−→ b(C, k′). There is a push (P, l) that stores
relwb = b(C, k′), such that:

w[j] sb−→ relwb
(P,l) = b(C, k′)

rf−→ acq rb
TC,k′U = b(C, k′)

sb−→ r[j]

Consequently, iniw[i] 6rf−→ r[j]; the value read must come from some w[i].

Lemma 30. A load from the data buffer reads exactly the value written by a store at the
same extended index (in N). In other words, if w[i] rf−→ r[j], then i = j.

Proof. Suppose w[i] rf−→ r[j]. Let (P, k) be the push w[i] belongs to and (C, k′) the pop
r[j] belongs to. Corollary 10 asserts that j < b(C, k′). We have two cases:

• If j < i+1, then there exists q > 0 such that j = i−qm. Therefore, on the one hand
f(C, k′) ≤ j ≤ i−m. On the other hand, since (P, k) stores at i, f(P, k) ≥ i−m+1.
Hence, f(C, k′) < f(P, k) and there is a pop l′ ≥ k′ that writes the value f(P, k).
We have a happens-before cycle. Impossible.

• Otherwise, j ≥ i. Suppose j > i; then there exists q > 0 such that j = i + qm.
We have b(C, k′) > j ≥ i + m. Hence there must be a push (P, l) that stores
relwb = b(C, k′), such that:

w[i+m] sb−→ relwb
(P,l) = b(C, k′)

rf−→ acq rb
TC,k′U = b(C, k′)

Furthermore, w[i] hb−→ w[i+m], thus it cannot be that w[i] rf−→ r[j]. Therefore, it
must be that i = j.
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Lemma 31. All stores to the data buffer at some index i happen before any load at an
index j > i.

Formally, given a store w[i] and a load r[j], we have the following implication:

i ≤ j =⇒ w[i] hb−→ r[j]

Proof. Suppose i ≤ j. It follows from Corollary 10 that b(C, k′) > j ≥ i. Hence there
must be a store relwb = b(C, k′) in the producer sequenced after w[i], such that:

w[i] sb−→ relwb = b(C, k′)
rf−→ acq rb = b(C, k′)

sb−→ r[j]

We now move on to prove the theorems formulated in Section 4.2.2.3.

Proof of Theorem 3. Suppose there are two such loads, r[j] and r[j′] with j 6= j′:

w[i] rf−→ r[j] and w[i] rf−→ r[j′]

It follows from Lemma 30 that i = j = j′. Impossible.

Proof of Theorem 4. Sequentially, a store relwf = m in a pop is always preceded by reads
r[j] for all j < m. Hence, if

∑
k′∈NFC nk′ ≥ i, then there is a pop that stores relwf = m

for some m > i. Hence there exists a load r[i]; it follows from Lemma 29 that we have a
store w[i′] rf−→ r[i], and from Lemma 30 that i′ = i.

Proof of Theorem 5. Suppose we have w[j]. The store belongs to the producer side, as
does w[i]; hence the two are sequentially ordered.

Suppose we have r[j] in pop (C, k′). If i ≤ j, then by Lemma 31, w[i] hb−→ r[j].
Otherwise, i > j. Let (P, k) be the push to which the store belongs. There exists q > 0
such that i = qm + j. Furthermore, it follows from Corollary 10 that i < f(P, k) +m.
Thus:

i < f(P, k) +m ⇐⇒ i−m < f(P, k) ⇐⇒ qm+ j −m < f(P, k)

Hence, f(C, k′) ≤ j < f(P, k). Therefore, there must be a store relwf = f(P, k), such
that:

r[j] sb−→ relwf = f(P, k)
rf−→ acq rf = f(P, k)

sb−→ w[i]

A.2 Proof of the Chase–Lev work-stealing deque

This section adapts the work from [Lê et al., 2013] to the C11 memory model. The
overall layout stays identical, although several individual proofs have been modified—
usually simplified—substantially.
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A.2.1 Significant reads and writes

Lemma 32. Given a write wa[i] and a read ra′[j], i 6= j =⇒ wa[i] 6rf−→ ra
′[j].

Proof. If the addresses of the underlying arrays differ, then the memory locations read
and written are distinct and there can be no reads-from relation.

Otherwise, since old arrays are never reused, the addresses are the same and i ≡ j
mod na. We know that ra′[j] belongs to a successful instance of take, give (with resizing),
or steal. Let X be that instance.

Let P be the instance of give to which wa[i] belongs. In P , we have the following
action structure:

acq rtP = tP
sb−→ rlxwa[i] sb−→ rel f

sb−→ rlxwb = bP + 1

where tP ≤ i ≤ bP ∧ bP − tP < na − 1

Let us assume i 6= j ∧ wa[i] rf−→ ra
′[j] and show it is indeed impossible.

Assume X is a successful instance of take or give. Since X and P belong to the same
thread, P must be sequenced before X. Most notably wa[i] hb−→ ra

′[j].

• If j < i, then j ≤ i− na (due to modulo access). However, the following must hold
in P :

tP ≤ i ≤ bP ∧ bP − tP < na − 1

hence j < i− na + 1 ≤ bP − na + 1 < tP

Furthermore, if X is a take operation, ra′[j] reads the last element of the deque,
and j = bX − 1 ≥ tX (where bX and tX are the indices read in X); if X is a give
operation, ra′[j] results from a copy operation of the resizing code, hence j ≥ tX .
Since X occurs after P in program order and top is monotonically increasing,
rtP = tP

hb−→ rtX = tX and j < tP ≤ tX ≤ j. Impossible.

• If i < j, then, since j ≥ i+na ≥ bP , bottom must increase from bP to j+1 between
the write in P and the read in X. Hence, there must be an instance P ′ of give
between P and X (in program order) that increments bottom to j +1. Indeed, the
only writes that increase the value of bottom occur in give and take; and the effect
of take as a whole never increases the value of bottom since it first decrements the
variable. We have:

w
a[i]
P

mo−→ w
a[j]
P ′

hb−→ r
a′[j]
X

Thus, wa[i]
P 6rf−→ r

a′[j]
X by coherence.

Now, assume X is a successful instance of steal. We have the following execution
graph for X:

rlx rt
X = tX = j

sb−→ sc f
sb−→ acq rb = bX

sb−→ acq ra = a
sb−→ rlx ra

′[j] sb−→ sc st = tX → tX + 1
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• If j < i, then j ≤ i− na. As above, the following must hold in P :

j < i− na + 1 ≤ bP − na + 1 < tP

Hence tX = j < tP . Since top increases monotonically, it must be that:

r
a′[j]
X

sb−→ st = tX → tX + 1

rf−→ acq rt
sb−→ sc f ′

sb−→ st
rf−→ · · · rf−→ st = tp − 1→ tP

rf−→ acq rtP = tP
sb−→ wa[i]

The compare-and-swap operations are sequentially consistent, thus imply release–
acquire, and ra

′[j]
X

hb−→ wa[i] rf−→ r
a′[j]
X . Impossible.

• If i < j, then j ≥ i + na, and there must be an instance P ′ of give such that
W [P ′]b = j + 1 (

sb−→ wb = bX)
rf−→ rbX = bX , so that index j be accessible in

X. P ′ cannot occur before P in program order because, as above, we would have
tP ′ ≤ tP ≤ i on the one hand, and i ≤ j − na < tP ′ on the other hand. The
underlying array also monotonically increases in size, so the inequality still holds
if the sizes in P and P ′ differ. Hence P ′ occurs after P . Furthermore, there exists
w
a′′[j]
P ′ in P ′.

If a in P and a′′ in P ′ refer to different arrays, then a resize operation R must
precede P ′, such that:

wa = a
sb−→ ra

P = a
sb−→ wa

R = a′′
sb−→ w

a′′[j]
P ′

sb−→ relwb = j + 1 (
sb−→ wb = bX)

rf−→ acq rb
X = bX

sb−→ acq ra = a = a′
sb−→ ra

′[j]

wb = bX is either release or in the release sequence of a previous release write on
bottom in the same thread (since only the owner modifies bottom). Thus, wa =

a
mo−→ wa

R = a′′
hb−→ ra

X = a′, and therefore wa = a 6rf−→ ra
X = a′. Since arrays are

never reused, a′ 6= a. Impossible.

Otherwise, a and a′′ refer to the same array, hence a[i] and a′′[j] refer to the same
location, and we get:

w
a[i]
P

sb−→ w
a′′[j]
P ′

sb−→ relwb = j + 1(
sb−→ wb = bX)

rf−→ acq rb
X = bX

sb−→ r
a′[j]
X

Thus, wa[i]
P

mo−→ w
a′′[i]
P ′

hb−→ r
a′[j]
X , and therefore wa[i]

P 6rf−→ r
a′[j]
X . Impossible.

Corollary 11. Given a significant write wa[i] = xi(v) and a significant read ra′[j]:

i 6= j =⇒ wa[i] 6rff−→ ra[j]
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Proof. If i 6= j, we know that wa[i] 6rf−→ ra[j]. Furthermore, all copies, which happen
during a resize operation, copy from and to the same index. Since there are less copies
than the size of the expanded array, there can be no two copies writing to the same
memory location in the new array. Hence, there can be no sequence of copies from wa[i]

to ra[j].

Lemma 33. Given a significant write w = xi(u) and a significant read ra[i] = xi(v):

w = xi(u)
hb−→ ra = a

sb−→ ra[i] = xi(v) =⇒ u ≤ v

Proof. Suppose v < u. We define wa[i]
W ′ = xi(v) as follows.

If v = 0, xi(v) = ⊥ is an undefined value; let wa[i]
W ′ = xi(0)

rf−→ ra[i] = xi(v) be the
initialization of a[i]. wa[i]

W ′ comes before w in program order.

Otherwise, 0 < v < u. Let w′ = xi(v) be the significant write such that w′ rff−→
ra[i] = xi(v). In other words, there exists a sequence of copies carrying the value xi(v)
to ra[i] = xi(v). That sequence ends with a write wa[i]

W ′ = xi(v)
rf−→ ra[i] = xi(v). By

the definition of xi, since v < u, it must be that w′ sb−→ w. According to the sequential
semantics of resizing, wa[i]

W ′
sb−→ w too, since otherwise wa[i]

W ′ could not copy from w′ (either
overwritten or in a different array).

We have two cases: either w and ra[i] = xi(v) refer to the same memory location or
they do not.

• Assume that they refer to the same memory location a[i]. Then we have:

w
a[i]
W ′ = xi(v)

mo−→ w = xi(u)
hb−→ ra[i] = xi(v)

Yet wa[i]
W ′

rf−→ ra[i] = xi(v) by definition. Impossible.

• Conversely, assume that they do not refer to the same memory location. Then there
must be a resize operation between wa[i]

W ′ and w:

wa = a
sb−→ w

a[i]
W ′ = xi(v)

sb−→ wa = a′
sb−→ w = xi(u)

hb−→ ra = a
sb−→ ra[i] = xi(v)

Therefore, wa = a 6rf−→ ra = a. Since there is only one write that gives the value a
to array, we have a contradiction.

Lemma 34. All load operations ra[i] = x in successful instances of take or steal read
initialized values: x = xi(v) for some v > 0.
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Proof. Let X be the successful instance of take or steal that contains ra[i] = x.
We assume that only give writes to array. Suppose x = ⊥, then it can only be

an undefined value from the uninitialized array, which is not copied during resizing.
Otherwise, the release store on array ensures that copies are seen by any thread that
reads the new array pointer. Such a copy corresponds to some significant write.

Therefore, a[i] is not affected by copying. Then it must be one of the new slots
allocated by the resizing, and its initial value is xi(0). Let R be the resizing give operation
that allocates the array x. There exists a xi(u) such that:

iniwa[i] = ⊥ mo−→ rlxw
a[i]
R = xi(u)

sb−→ relwa = a
rf−→ acq ra

X = a
sb−→ ra[i],ξ if in steal

· · · sb−→ wa = a
sb−→ ra

X = a
sb−→ ra[i],ξ if in take

Thus, iniwa[i] = ⊥ 6rf−→ ra[i] = x. Impossible.

A.2.2 Uniqueness of significant reads

The results from the previous section establish that two significant reads at different
indexes cannot retrieve the same element xi(v). The only possible cause of duplicate
significant reads is thus reduced to the case where the reads access the same index i.

Lemma 35. Given S and S′ distinct successful instances of steal,

∀r = xi(v) ∈ S, ∀r′ = xi′(v
′) ∈ S′, i 6= i′

Proof. All writes to top atomically increment it (by atomicity of compare-and-swap).
Hence two successful steal operations cannot write (thus read) the same value of top.
Elements fetched in a steal operation access the index given by the value of the top
variable. Hence rt = i ∈ S and rt = i′ ∈ S′ imply i 6= i′.

Lemma 36. Given T a successful instance of take and P an instance of give. If P
comes after T in program order, then:

∀r = xi(v) ∈ T, ∀w = xj(u) ∈ P, i 6= j ∨ v 6= u

Proof. Assume i = j∧v = u. We have ra sb−→ r
sb−→ w; therefore, from the contraposition

of Lemma 33, it follows that u > v. We have a contradiction.

Lemma 37. Given T and T ′ distinct successful instances of take:

∀r = xi(v) ∈ T, ∀r′ = xi′(v
′) ∈ T ′, i 6= i′ ∨ v 6= v′
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Proof. We have the following action structures:

rb
T = b(n)

sb−→ wb = b(n)− 1
sb−→ rt = t

sb−→ r = xb(n)−1(v)
sb−→ · · ·

rb
T ′ = b(n′)

sb−→ wb = b(n′)− 1
sb−→ rt = t′

sb−→ r′ = xb(n′)−1(v
′)

sb−→ · · ·

Hence, b(n)− 1 = i and b(n′)− 1 = i′.
Since all instances of take occur in the same worker thread, we have:

wb
T = b(n)− 1

sb−→ rb
T ′ = b(n′) ∨ wb

T ′ = b(n′)− 1
sb−→ rb

T = b(n)

Let us assume the first case as well as i = i′∧v = v′ and show it is impossible, the other
case being symmetrical. We have b(n)−1 = i = i′ = b(n′)−1, and wb

T = i
sb−→ rb

T ′ = i+1.
Hence bottom must increase from i to i+1 between n and n′: there exists an instance

P of give that writes wb = b(k)
sb−→ rb

T ′ = i+ 1, such that n < k ≤ n′, b(k − 1) = i and
b(k) = i+1 (as noted above, take as a whole does not increase the value of bottom). We
get the following graph:

rb = i
sb−→ w = xi(u)

sb−→ wb = b(k) = i+ 1
sb−→ rb

T ′ = b(n′)
sb−→ r′ = xi=i′v

′

It follows from Lemma 33 that u ≤ v′ and from Lemma 36 that v < u. Impossible.

Lemma 38. Given T a successful instance of take and S a successful instance of steal:

∀r = xi(v) ∈ T, ∀r′ = xi′(v
′) ∈ S, i 6= i′ ∨ v 6= v′

Proof. We have the following execution graphs:

rlx rb
T = b(n)

sb−→ rlxwb = b(n)− 1
sb−→ sc f

sb−→ rlx rt = t(m)
sb−→ rlx r = xi=b(n)−1(v)

sb−→ · · ·

rlx rt
S = t(m′)

sb−→ sc f ′ acq acq rb = b(n′)

sb−→ rlx r′ = xi′=t(m′)(v
′)

sb−→ sc st = t(m′)→ t(m′) + 1

Let us assume i = i′ ∧ v = v′. Then t(m′) = i′ = i = b(n) − 1. For S to succeed, we
must have t(m′) < b(n′). Hence, b(n) ≤ b(n′).

Also, for T to succeed, we must have t(m) < b(n). Two cases:

• If b(n) = t(m) + 1, then a successful compare-and-swap occurs in T . Moreover,
b(n) = t(m)+1 implies t(m′)+1 = b(n) = t(m)+1, hence t(m′) = t(m). Impossible,
since top is monotonically increasing and S must also contain a successful compare-
and-swap with the same value of top.
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• If b(n) > t(m) + 1, then no compare-and-swap occurs in T and t(m′) = b(n)− 1 ≥
t(m) + 1 > t(m). Since top monotonically increases, there must be two writes
st

1 = t(m)− 1→ t(m)
mo−→ st

2 = t(m′)− 1→ t(m′) such that:

rel st
1

rf−→ acq rt
T = t(m) ∧ rel st

2
rf−→ acq rt

S = t(m′)
sb−→ rb(n

′)

The fences f and f ′ are totally ordered by sequential consistency. Suppose f ′ sc−→ f .
Then, we have:

sc st
2

rf−→ acq rt
S = t(m′)

sb−→ sc f ′
sc−→ sc f

hence st
1

mo−→ st
2

sc−→ f ′
sc−→ f

sb−→ rt
T

Thus, rt
T cannot read from st

1, which occurs before st
2 in modification order. Im-

possible.

Therefore wb
T = b(n+ 1) = b(n)− 1

sb−→ f
sc−→ f ′

sb−→ rb
S = b(n′), and n′ ≥ n+ 1;

i.e., wb = b(n′), which is read by rb
S = b(n′), must not come before wb

T = b(n)− 1.

Consequently, bottom must increase from b(n)− 1 = i to b(n′) between n+ 1 and
n′. Since T does not increment the value of bottom (execution without compare-
and-swap), there must be an instance P of give after T that writes wb

P = b(k)
sb−→

wb = b(n′)
rf−→ rb

S = b(n′), such that n < k ≤ n′ ∧ b(k − 1) = i ∧ b(k) = i+ 1.

We get the following execution graph:

w
a[i]
P = xi(u)

sb−→ relwb = i+ 1 (
sb−→ wb = b(n′))

rf−→ acq rb
S = b(n′)

sb−→ ra = a
sb−→ r′ = xi′(v

′)

As before, wb = b(n′) is either release or in the release sequence of a previous release
store in give. Thus it follows from Lemma 33 that u ≤ v′, and from Lemma 36 that
v < u ≤ v′. We have a contradiction.

Theorem 6 follows directly from Lemmas 35, 37 and 38.

A.2.3 Existence of significant reads

Let PF be the last instance of give in the worker thread, in program order, with wb
PF

=
b(nF) and rt

PF
= t(mF). We say that an instance X of take or steal is trailing if ∃n ≥

nF, r
b = b(n) ∈ X.

Lemma 39. Given X a successful trailing instance of take or steal:

rt = t(m) ∈ X =⇒ m ≥ mF
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Proof. We have two cases:

• Assume X is an instance of take. X is sequenced after PF: rt
PF

= t(mF)
sb−→ rt

X =
t(m), and m ≥ mF by sequential constraints.

• Assume X is an instance of steal. Since X is successful, X contains a successful
instance of compare-and-swap st

X = t(m)− 1→ t(m). If m < mF, then:

sc st
X

rf−→ · · · rf−→ sc st = t(mF)
rf−→ acq rt

PF

sb−→ wb = b(n)
rf−→ acq rb

X

With wb = b(n) either a release itself or in a release sequence that begins after rt
PF

.
This is a cycle in happens-before, which is not allowed. Therefore, m ≥ mF.

Lemma 40. Given X and Y distinct successful trailing instances of take or steal, then:

∀r = xi(v) ∈ X, ∀r′ = xi′(v
′) ∈ Y, i 6= i′

Proof. Assume i = i′. By Theorem 6, we have v 6= v′. Thus there exist two distinct
significant writes w = vi(v) and w′ = vi′=i(v

′), which provide the two versions.
Without loss of generality, let us assume v < v′. By definition, wb

PF
= b(nF) is

sequenced after both writes. Furthermore, there is a release fence in give after each
significant write, thus before wb(nF)

PF
. Since X reads from wb

PF
, we have:

w′ = xi′=i(v
′)

sb−→ relwb
PF

= b(nF) (
sb−→ wb)

rf−→ acq rb
X

sb−→ ra sb−→ r = xi(v)

With wb either a release itself or in a release sequence that begins with or after wb
PF

.

Hence we have w′ hb−→ ra sb−→ r, and it follows from Lemma 33 that v′ ≤ v; thus,
v < v′ ≤ v. Impossible.

Corollary 12. The combined number of successful trailing instances of take and steal
is less than or equal to b(nF)− t(mF).

Proof. Let X be a successful trailing instance of take or steal, with rb
X = b(n) and

rt
X = t(m). We know that n ≥ nF (by definition) and m ≥ mF (from Lemma 39).

Furthermore, a take operation always contains one decrementing write to bottom (by
one), which may be followed by one incrementing write to bottom (by one). Hence n ≥ nF

implies b(n) ≤ b(nF).
Therefore, X can only read at an index i, such that t(mF) ≤ i < b(nF). Lemma 40

tells there can be no more than b(nF)− t(mF) such X.

Lemma 41. There is a finite number of successful (trailing or non-trailing) instances of
take or steal.
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Proof. It follows from Corollary 12 that there is a finite number of successful trailing
instances of take or steal.

Furthermore, there must be a finite number of non-trailing take operations, which
are sequenced before PF.

Lastly, there is a finite number of give operations, thus bottom reaches a maximum
bmax over the execution of the program. Since two successful steal operations must read
different values of top, there can be no more than bmax successful instances of steal.

Hence the finite number of successful instances of take or steal.

Lemma 42. In each thread, there exists X a failed instance of take or steal such that:

∀rb = b(n) ∈ X, ∀rt = t(m) ∈ X, b(n) ≤ t(m)

Furthermore, each thread makes no more than 1 +mF + b(nF) − t(mF) attempts at
take or steal that result in a failed compare-and-swap instruction.1

Proof. It follows from Lemma 41 that there is a finite number of successful instances,
hence a finite number per thread. Thus, there must exist a failed instance of take or steal.

A failure can occur either because the deque is empty (b(n) ≤ t(m)) or because of
a failed compare-and-swap instruction. Suppose there is no X where b(n) ≤ t(m); then
all failures must be due to a failed compare-and-swap instruction. A failed compare-and-
swap occurs if the two values of top read during the instance X differ. Let Y1 and Y2 be
two such failed instances executing in a same thread; let us assume that Y2 is sequenced
after Y1. For some m1 6= m′1 and m2 6= m′2:

rt
Y1 = t(m1)

sb−→ rt = t(m′1)
sb−→ rt

Y2 = t(m2)
sb−→ rt = t(m′2)

There exists a write st = t(m′1)
rf−→ rt = t(m′1)

sb−→ rt
Y2

= t(m2). Therefore, m′1 ≤ m2.
Since m1 6= m′1 ∧ m2 6= m′2, and top is monotonically increasing, it must be that

t(m1) < t(m′1) ≤ t(m2) < t(m′2). It follows from Corollary 12 that top takes no more
than 1 +mF + b(nF)− t(mF) different values.

Therefore, there can be no more than 1+mF+b(nF)−t(mF) compare-and-swap-failing
instances of take or steal per thread. Since there is also a finite number of successful such
instances, any further take or steal operations must return empty, and the thread reaches
its stationary point.

Corollary 13. The combined number of successful (trailing or not) instances of take
and steal is equal to the number of give.

Proof. A successful instance of take either decreases the value of bottom by one or in-
creases the value of top by one; a successful instance of steal increases the value of top
by one. An instance of give increases the value of bottom by one.

1Hence a thread eventually reaches a stationary state where b = t; it should be noted that the model
does not guarantee progress; it is legal for a thread to end up looping on a non-final state where b = t
but b 6= b(nF).
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It follows from the previous lemma that the worker thread reaches a stationary point
where b = t. Clearly, this cannot occur before all give operations and all successful
instances of take have occurred.

Since b = t at the stationary point and all increases to bottom precede, the sum of
increases to top and decreases to bottom (the combined number of successful instances of
take and steal) must be at least equal to the number of increases to bottom (the number
of give operations).

It is exactly equal, as otherwise there would be more significant reads than significant
writes, which is impossible according to Theorem 6.

One may finally prove Theorem 7. On the one hand, Corollary 13 tells that the number
of significant reads (from a successful instance of take or steal) is equal to the number of
significant writes (from an instance of give). On the other hand, Theorem 6 states that
significant reads uniquely map to significant writes. By injectivity, there exists a unique
significant read for each significant write.
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Appendix B

Reading the libkpn source code

This annex serves as a brief reading guide to the C11 source code of the libkpn high-
performance blocking run-time library, whose package should have been distributed
alongside this thesis document. It is a continuation of Section 4.3.2, which explains the
high-level design and correspondence with the algorithms described in earlier sections.

This implementation has been tested extensively1 on Linux and MacOS X, on x86-64
and ARMv7, and a variety of compilers including several versions of the GNU, Intel, and
Clang compilers.

The package should contain the following main C files:

log.c, logtr.c, log.h A low-overhead concurrent logging system, for debugging and pro-
filing purposes. See Appendix B.2.

kpn.h Main header file, to be included by client programs.

sched.c, sched.h Main process scheduling code for the primary scheduler, with passive
waiting, as described in Section 4.1.3.1. Also includes a custom (manual) garbage
collection and termination-detection algorithm based on reference counters, not de-
scribed in this thesis, and which supports incremental reconfiguration, as suggested
in Section 4.3.1.

spscq.c, spscq.h Caching single-producer single-consumer queues, which implement
the algorithm described in Section 4.2.2.

synctask.c, synctask.h Interface between Kahn processes and external (non-worker)
POSIX threads, mutexes and signals.

tarray.c, tdeque.c, tarray.h, tdeque.h Chase–Lev work-stealing deque implementa-
tion, which closely follows Section 4.2.3.

task.c, task.h Bookkeeping functions for Kahn process objects.

thrpool.c, thrpool.h Simple thread pools, to represent workers.
1Although, as stated by the license, it is provided without any express or implied warranties.
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types.h All public types defined by the library.

The following source and header files define utility functions that are referenced by
the main sources:

a.h Convenience macros for atomic operations.

atomic.h, stdatomic.h Drop-in replacement of stdatomic.h for select older compilers,
and auto-selection header based on compile-time constants.

c11.h, thread_local.h Stubs for non-essential C11 features that might not be present
in all compilers.

cachealign.c, cachealign.h Cache alignment and memory allocation.

cotask.h, . . . (Multiple files beginning with the cotask prefix.) Alternative encoding
for step functions, as single interruptible stateful coroutines. Those support con-
text switches using low-level assembly or the ucontext.h Unix library. None of our
examples actually use this.

nanotime.h Access to a precise wall-clock, for tests and benchmarks.

B.1 Libkpn architecture overview

The libkpn run-time library is built around Kahn processes (KPN_TASK objects), in-
ternally referred to as tasks, for historical reasons, channels (KPN_SPSCQ objects), and
scheduling data associated with each worker thread (KPN_WORKER).

Each process holds the argument channels it is bound to in arrays, in the _qvs field of
the KPN_TASK structure. Just like the non-blocking interpreter designed in Chapter 3,
libkpn channels do not normally link directly to the processes to which they are bound.
Consequently, it is not possible to query a channel to know who is writing or reading on
the other side.

Processes that are ready to schedule (which make up the W set, according to Sec-
tion 4.1.2) are distributed among work-stealing deques, of type KPN_TDEQUE.

Pointers to active processes (the A set), currently executing on some worker, are
removed from shared memory completely, giving exclusive rights to said worker.

Lastly, sleeping processes (the D set) are stored in _sa field of the opposite process,
on which awakening is dependent. Positions in _sa and _qvs match. Channel objects
are attached to processes by having their _s field set to refer to the appropriate slot in
a _sa array, making it possible for another process to wait on the opposite side of the
queue.

The run-time library supports two passive waiting schemes, as well as several vari-
ants, which can be chosen at run-time by calling the kpn_set_stall_policy function. The
first, KPN_STALL_FENCE, implements a double check after each successful push or
pop, which requires a more expensive sequentially consistent fence for every operation.
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The second, KPN_STALL_SCAN, uses a lazy waiting strategy, which relies on a full
scan of adjacent nodes before putting a process to sleep. Both methods are described in
Section 4.1.3.1. We thus forgo the fence after push and pop operation, however, as we
have seen, there is a risk of being overzealous and waking up unnecessary processes while
walking through neighbors.

The representation of the D set as arrays in the responsible process is a deliberate
design choice that significantly speeds up the lazy approach, which makes it a worthwhile
choice for some workloads. Others benefit more from the regularity of the systematic-
fence strategy.

B.2 Logging and tooling

Libkpn comes with a logging system designed to have minimal interference with memory
orderings and system thread scheduling. We use thread-local buffers, periodically flushed
to disk on separate files, to be joined later by an external script. The logging format is
binary, which eliminates the need to serialize data; an external program, logtr, is used to
parse these binary dumps and convert them to SQL entries,2 for statistics, analyses and
visualization.

The implementation makes extensive use of this logging framework, which also acts
as the main debugging tool available to diagnose and repair problems in the library itself.
More elaborate traditional tools such as debuggers (e.g., GDB) and memory tracers (e.g.,
Valgrind) tend to serialize thread actions, due to the necessary memory and system hooks
used. As such, most issues related to race conditions and the memory model have been
caught and solved using our custom tool set rather than more standard means.

The tools folder at the base of package contains a collection of scripts to be used
in conjunction with log files. The main utility is known as kpn_prof and serves as a
driver for several other tools. It has subcommands to enable logging in libkpn-enabled
programs, printing the resulting logs, extracting logs from a core dump, and exporting
to SQL.

Once extracted to SQL, the timeline.tcl visualization tool displays an interactive time
line of process activation, as color-coded tasks, on the different worker threads. The user
can then browse scheduling events, and zoom around to get a feel of the actual concrete
execution, as well as possible bottlenecks.

2Those are stored in SQLite database files, which can be manipulated without a server.
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Résumé 
 

La thèse porte sur les réseaux de Kahn, un 

modèle de concurrence simple et expressif 

proposé par Gilles Kahn dans les années 70, 

et leur implémentation sur des architectures 

multi-cœurs modernes, à mémoire partagée. 

Dans un réseau de Kahn, le programmeur 

décrit un programme parallèle comme un 

ensemble de processus et de canaux 

communicants, reliant chacun exactement un 

processus producteur à un consommateur. 

Nous nous concentrons ici sur les aspects 

algorithmiques et les choix de conception liés 

à l'implémentation, avec deux points clefs : 

les garanties non bloquantes et la mémoire 

relâchée. Le développement d'algorithmes 

non bloquants efficaces s'inscrit dans une 

optique de gestion des ressources et de 

garantie de performance sur les plateformes 

à ordonnancement irrégulier, telles que les 

machines virtuelles ou les GPU. Un travail 

complémentaire sur les modèles de mémoire 

relâchée vient compléter cette approche 

théorique par un prolongement plus pratique 

dans le monde des architectures à mémoire 

partagée contemporaines. 

Nous présentons un nouvel algorithme 

non bloquant pour l'interprétation de réseaux 

de Kahn. Celui-ci est parallèle sur les accès 

disjoints : il permet à plusieurs processeurs 

de travailler simultanément sur un même 

réseau de Kahn partagé, tout en exploitant le 

parallélisme entre processus indépendants. Il 

offre dans le même temps des garanties de 

progrès non bloquant : en mémoire bornée et 

en présence de retards sur les processeurs. 

L'ensemble forme, à notre connaissance, le 

premier système complètement non bloquant 

de cette envergure : techniques classiques de 

programmation non bloquante et contributions 

spécifiques aux réseaux de Kahn. Nous 

discutons également d'une variante bloquante 

destinée au calcul haute performance, avec 

des résultats expérimentaux encourageants. 
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Abstract 
 

In this thesis, we are interested in Kahn 

process networks, a simple yet expressive 

model of concurrency, and its parallel 

implementation on modern shared-memory 

architectures. Kahn process networks expose 

concurrency to the programmer through an 

arrangement of sequential processes and 

single-producer single-consumer channels 

The focus is on the implementation 

aspects. Of particular importance to our study 

are two parameters: lock freedom and relaxed 

memory. The development of fast and 

efficient lock-free algorithms ties into 

concerns of controlled resource consumption 

and reliable performance on current and 

future platforms with unfair or skewed 

scheduling such as virtual machines and 

GPUs. Our work with relaxed memory models 

complements this more theoretical approach 

by offering a window into realistic shared-

memory architectures. 

We present a new lock-free algorithm for a 

Kahn process network interpreter. It is 

disjoint-access parallel: we allow multiple 

threads to work on the same shared Kahn 

process network, fully utilizing the parallelism 

exhibited by independent processes. It is non-

blocking in that it guarantees global progress 

in bounded memory, even in the presence of 

(possibly infinite) delays affecting the 

executing threads. To our knowledge, it is the 

first lock-free system of this size, and 

integrates various well-known non-blocking 

techniques and concepts (e.g., safe memory 

reclamation, multi-word updates, assistance) 

with ideas and optimizations specific to the 

Kahn network setting. We also discuss a 

variant of the algorithm, which is blocking and 

targeted at high-performance computing, with 

encouraging experimental results. 
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