Functional Grammar and Genre Analysis:

A Description of the Language of Learned and Popular Articles
(Volume 2)
by

John B. Corbett

A Thesis Submitted in Fulfilment of the Degree of Doctor of Philosophy
 Department of English Language University of Glasgow
 July, 1992

(C) John B. Corbett, 1992

CONTENTS

VOLUME 1
Chapter One: Introduction
1.0 Introduction. 1
1.1 Functional Grammar 3
1.2 Genre Analysis 4
1.3 The Corpus 10
1.4 Qualitative and Quantitative Analysis. 16
Chapter Two: Theme and Genre
2.0 Introduction............. 20
2.1 A Brief History of Thematic Analysis
2.1.1 Early Approaches. 20
2.1.2 Theme in Prague School Linguistics 23
2.1.3 Halliday's Approach to Theme. 29
2.2 Previous Thematic Analysis of Popular
and Learned Texts 38
2.3 The Concept of Theme in the Present Study 42
2.4 A Thematic Analysis of the Texts 48
2.4.1 Results and Discussion 55
2.4.1.1 Topical Themes 58
2.4.1.2 Textual Themes 63
2.4.1.3 Modal Themes 66
2.4.2 The Realisation of Theme 69
2.4.2.1 Participants in Material and Relational Processes 69
2.4.2.1.1 Nominalisation 70
2.4.2.1.2 Research-oriented Themes 79
2.4.2.1.3 Specificity of Themes 81
2.4.2.2 Circumstantial Themes of Location. 86
2.4.2.3 Modal Themes. 92
2.5 Summary 96
Chapter Three: Representation and Genre
3.0 Introduction. 102
3.1 Language as Representation. 102
3.2 The Criteria for Cases. 106
3.2.1 Criteria for Participants, Processes \& Circum- stances 110
3.2.1.1 Processes 111
3.2.1.2 Participants 117
3.2.1.3 Circumstances 119
3.2.2 A Working Classification 120
3.3 Towards a Representational Analysis of the Texts 126
3.3.1 Difficult Circumstances 127
3.3.2 Constituency 134
3.3.2.1 Prepositional Phrases 134
3.3.2.2 Projecting Clauses 135
3.3.3 Co-ordination. 137
3.3.4 Range in Material Clauses 138
3.3.5 Ambiguous Processes. 142
3.3.6 Relational Processes and their Participants.. 146
3.3.7 Metaphorical Elements 149
3.3.7.1 Metaphorical Processes 149
3.3.7.2 Metaphorical Circumstances 151
3.3.8 Non-representational Elements 152
3.4 Results and Discussion 154
3.4.1 Material Processes 155
3.4.1.1 Nominalisation. 159
3.4.1.2 Argumentative and Observational Narratives 165
3.4.2 Relational Processes 171
3.4.2.1 Types of Participant in Relational Processes 174
3.4.2.2 Order of Participants in Relational Processes 177
3.4.3 Other Processes 179
3.4.4 Circumstances 181
3.5 Summary 189
Chapter Four: Modality and Genre
 192
4.1 Mood. 193
4.1.1 Subject 193
4.1.2 Finite. 196
4.1.2.1 Immediate/Remote. 198
4.1.3 Modality 204
4.1.4 Polarity 208
4.2 Residue 210
4.2.1 Predicator. 210
4.2.2 Complement 212
4.2.3 Adjuncts 213
4.3 Summary 215
4.4 Pragmatic Considerations 216
4.5 Authorial Reference 219
4.6 The Analysis of the Texts 221
4.6.1 The Realisation of the Subject. 221
4.6.2 Finites and Adjuncts 234
4.6.2.1 Immediacy and Remoteness in the Texts. 234
4.6.2.2 Modality in the Texts 246
4.6.2.3 Possibility and Politeness 246
4.6.2.4 Authorial Persona. 262
4.6.2.5 Polarity in the Texts 268
4.7 Conclusion 270
Chapter Five: Discourse Patterns and Genre
5.0 Introduction.................................... 272
5.1 Discourse Patterns
5.2 Text Analysis: 5.2.1 Problems and Solutions. 276 294
5.2.2 Discontinuous Sequences 295
5.2.3 The Realisation of Problems 299
5.2.4 The Realisation of Solutions 306
5.2.5 Explicitness of Sequences. 324
5.3 Summary 328
Chapter Six: Conclusion
6.0 Introduction...... 332
6.1 Textuality and Genre 333
6.2 Ideationality and Genre 337
6.3 Interpersonality and Genre. 340
6.4 Discourse Patterns and Genre 344
6.5 Implications and Suggestions for Further Research. 346
VOLUME 2
Appendices
A The Corpus Articles 1
B Analysed Extracts 3
C Thematic Profiles 210
D Summary of Process, Participant \& Circumstance Types 220
E Tables Showing Processes, Participants and Circumstances in Selected Matched Extracts 239
F Subjects and Finites in Extracts from the Corpus 257
G Subjects From Analogous Popular and Learned Articles 385
H Table 1: First-person Subjects and Verbs in the Extracts 388
Table 2: Examples of Negative Polarity in the Extracts 392
I Problems in the Introductory Sections of Articles 396
Bibliography 402

Appendix A

The Corpus Articles

The corpus is based upon extracts taken from the following articles:

Biology
BP1:
Aronson, R. (1987) "A Murder Mystery from the Mesozoic" New Scientist 8 October, pp 56-59

BL1:
Aronson, R. \& Sues, H-D (1987) "The Paleoecological
Significance of an Anachronistic Ophiuroid Community" in W. C Kerfoot and A Sih, eds. Predation: Direct and Indirect Impacts on Aquatic Communities Hanover, N.H.: University Press of New England

BP2:
Poulton, J. (1987) "All About Eve" New Scientist, 14 May pp 5153

BL2:
Cann, R.L., Stoneking, M. \& Wilson, A.C. (1987) "Mitochondrial DNA and human evolution" Nature Vol. 325, 1 January pp 31-36

BP3:
Kitchener, A. (1988) "No domestic bliss" Guardian, 7 June
BL3:
French, D.D., Corbett, L.K., \& Easterbee, N. (1988)
"Morphological discriminants of Scottish wildcats (Felis silvestris), domestic cats (F.catus) and their hybrids" J. Zool. Lond. Vol. 214 pp 235-259

Computing

CP1:
Clark, A. (1987) "Cognitive science meets the biological mind" New Scientist 8 October pp 36-38

CL1:
Clark, A. (No Date) "PDP or not PDP: Is that the Question?" Unpublished MS: University of Sussex
CP2:
Lowe, D. (1987) "Vision leads robots from the factory" New Scientist 10 September pp 50-52

CL2:
Lowe, D. (1987) "The Viewpoint Consistency Constraint" International Journal of Computer Vision Vol. 1 pp 57-72

CP3:
Wilson, G. (1988) "Computing in Parallel" New Scientist 11
February pp 54-57
CL3:
Forrest, B.M., Roweth, D., Stroud, N. Wallace, D.J. and Wilson, G.V. (1987) "Implementing Neural Network Models on Parallel Computers" The Computer Journal Vol 30, No. 5, pp 413-419

History

HP1:
Walton, J.K. (1985) "The Seaside Resort and its Rise in
Victorian and Edwardian England" The Historian pp 16-22
HL1:
Walton, J.K. (1981) "The Demand for Working-Class Seaside Holidays in Victorian England" Economic History Review 2nd Series, 34 pp 249-265

HP2:
Stevenson, D. (1988) "The Bishops' Wars" The Sunday Mail Story of Scotland Vol 2 No. 16 pp 434-437

HL3:
Stevenson, D. (1981) Scottish Covenanters and Irish
Confederates Belfast: Ulster Historical Foundation (Chapter One)

HP3:
Bailey, V. (1988) "Crime in the Twentieth Century" History Today Vol. 38, May pp 42-48

HL3:
Bailey, V. (1980) "Crime, Criminal Justice and Authority in England" Bulletin of Society for the Study of Labour History No. 40, Spring pp 36-46

Appendix B
 Participants, Processes and Circumstances in Matched Extracts from the Corpus

Field: Biology No. 1
Popular article: "A Murder Mystery from the Mesozoic" (BP1) Learned article: "The Palaeoecological Significance of an Anachronistic Ophiuroid Community" (BL1)

Analogous Passages:

BP1:1 paras 1-4 (Introduction \& Persistence of community)
C: Time Actor Pr: mat

In 1885, the Liverpool Marine Biology Committee surveyed the
$\frac{\text { Range }}{\text { waters around the Isle of Man. Reporting on the expedition, }}$
Sayer \quad : verbal Verbiage

Herbert Chadwick noted that several dredge hauls at Spanish
Head, at the southernmost tip of the island, came up jam-packed

P: relat Attribute
Carrier
had taken more than half an hour to motor out from the
University of Liverpool's Marine Biological Station at Port
Erin. Senser P: mental C: Place Phenomenon
that confronted Chadwick the day he pulled up his unusual
$\frac{+}{\text { comples }-- \text { and then, with Mike Butler, }}$ a postgraduate student,

Actor P: mat C: place Actor P: mat C: place
I rolled over the side. We floated 30 metres down

+ C: Qual "Actor" P: "mat" C: "place" through the murk and gradually the seabed came into view.
Actor P: mat Goal C: place
A swift current carried us over an immense carpet of
brittlestars waving their spiny arms in the water.
Carrier P: rel Attribute C: frequ Actor P: mat Range The sight was astonishing. Normally, we encounter only
the occasional brittlestar hiding under a stone along the

BP1:1 (cont.) para 10 (Purpose of research)
Carrier rel Attribute
Brittlestar beds are interesting for what they tell us about
the past. They are the modern equivalent of marine
communities that flourished on sand and mud from almost 500
million years ago, in the Palaeozoic Era, until the Cretaceous.
C: Time
Beginning 130 million years ago, the Cretaceous was the last

period of the Mesozoic Era. Actor
animals such as brittlestars, sea lilies (stalked crinoids) and
Iampshells (brachiopods) that lived on top of the sea floor and
P: mat Range
filtered organic particles from the water -- formed dense
C: Temporal [Text]
communities on soft bottoms until the late Mesozoic. Then
Actor C: Quality P : mat Place Token
they virtually disappeared from shallow water. Today's
P: rel Value
brittlestar beds are a living link to this ancient type of
community.

BL1:1 paras 1-2 (Introduction \& Purpose of research)
C: Time "Range" P: "mat" "Ben" During the last few years, much attention has been paid to understanding large-scale shifts in community composition over Attribute P: rel Carrier geological time. Of particular interest have been recent efforts to uncover causal connections between physical events of global or even galactic magnitude and periodic, catastrophic C: Reporter
extinctions (Alvarez et al. 1980; Silver and Schultz 1982; Raup

C: Reporter
bioturbators and grazers (Garrett 1970; Dravis 1983; Thayer 1983).

BP1:2 para 9 (Location of dense beds of brittlestars)
C: Concession
Actor
Although they are rare elsewhere, dense populations of

American populations, both off the coast of California. $\frac{\text { Carrier }}{A}$ P: rel Attribute C: Place $\quad+$ Carrier P: rel other beds are scattered about the world, but they are

Attribute C: Place
most common in Britain's coastal waters.
'BL1: from para 19 (Location of dense beds of brittlestars)
Token
P: rel
...Population densities in the autochthonous assemblages can be

Value Sayer P: verbal Target very high. Kesling and Le Vasseur (1971) estimated original population densities for the Early Mississippian Strataster
Verbiage
ohioensis at 4,500 individuals per square meter at a water
depth of approximately 30 m.
Liddell (1975) reports densities Verbiage
for the Middle Ordovician Stenaster salteri greater than 440 .
individuals per square meter. Among recent epifaunal Token P: rel Value
ophiuroids, densities in some populations are comparable. Actor P: mat Range Warner (1971) studied an aggregation of Ophiothrix fragilis off the English coast with a mean density of 1,300 individuals per square meter (water depth: 14 m); Actor V Pevers (1952) counted about 340 individuals of this species per square meter at a depth of Actor P : mat C : Frequency 48 m near Plymouth. Ophiocomina nigra occurs at up to 500 C: Place C: Place
individuals per square meter in the Irish Sea at 10 to 30 m
$\frac{\text { C: Reporter }}{\text { depth (Brun 1972). }} \frac{\text { Verbiage }}{\text { Even higher ophiuroid densities have been }}$

C: Place Sayer
recorded off the British Isles by Keegan and Konnecker (1980). Token
The highest mean density of Ophiothrix oerstedii recorded in
P: rel Value
C: Report
Sweetings Pond was 434 individuals per square meter (Aronson and Harms 1985).

BL1:4 para 18 (Requirements for brittlestar survival)

C: Place Token P: rel Value
In the North Sea, burial and smothering is the leading
cause of death for ophiuroids (Schafer 1962). Sayer P: verb
Vebiage
that only 5 cm of sediment is required to trap and prevent the
\qquad
system in ophiuroids (Rosenkranz 1971). $\frac{\text { Range }}{\text { Areas of rapid }}$
sedimentation are therefore avoided. Kesling (1969),
Rosenkranz (1971) and Goldring and Stephenson (1972) haveRangeanalyzed fossil examples of autochthonous thanatocoenoses of
Articulated ophiuroids are usually found in fine-grained
C: Accompaniment
aleozoic and Mesozoic sediments, of ten with some clay content
P: ment Phenomenon C: Place
(see review in Rosenkranz 1971).

nge	
For comparison,	
reef just outside Port Erin Bay. Here brittlestars are	
Attribute + Actor P: mat Range C: Place	
in crevices	
Actor P: mat C: Place Actor P: mat Goal	
Nothing much happened at Bay Stacka. Starfish consumed bits of	
+ Actor P: mat	
a few tethered brittlestars, but most of them survived. At C: Place [Text] Actor P:mat	
Port Erin, on the other hand, ballan wrasses and flatfish ate	
Goal Actor P : mat Range	
C: Place	
Token P: rel	
Value	
identical: predation pressure is low in brittlestar beds. Carrier P: rel Attribute C: Condition	
The predation argument would be even more convincing if it also	
C: Comparison [Dir] P: ex	
applied elsewhere in the world. As it turns out, there is Existent C: Place Token P:rel	
one dense population of ophiuroids in the Bahamas. This is	
Value	
another species of Ophiothrix, living in Sweetings Pond,	
large saltwater lake on Eleuthera Island. $\frac{\text { Sarr }}{\text { Sweetings Pond is }}$	
cut off from the Caribbean Sea, and Ophiothrix oerstedii are	

Quality
hiding, coming out to feed only at night.

BL1:5 para 13 (Modern predators, measuring predation, results of experiments)

Possessor
Sweetings Pond, an isolated saltwater lake on Eleuthera Island, P: rel Possessed
Bahamas, contains another type of anachronistic community.
Actor P : mat Range
This lake supports a persistent, high density population of the epifaunal, suspension-feeding ophiuroid Ophiothrix oerstedi• Token
The ophiuroid density, which sometimes exceeds 400 individuals
per square meter (figs. 23.1A and 23.2) is rel Value
\qquad
magnitude higher than that found in nearby coastal habitats and
P: mat C: Reason
occurs because predatory fishes are virtually absent from the
C: Reporter C: Time
lake (Aronson and Harms 1985). When assemblages of ophiuroids comparable in density to those in Sweetings Pond were exposed in open arenas (from which they could not escape) at a coastal Goal P : mat $C:$ Quality P : mat site off Eleuthera, the brittlestars were completely consumed $\frac{\text { C: Temporal }}{\text { within } 48 \text { hours. }} \frac{\text { Actor }}{\text { No significant ophiuroid mortality occurred }}$

C: Place Sayer
in similar arenas in the lake. Gut content and fecal analyses of all possible sweetings Pond predators of Ophiothrix,
including the large majid crab Mithrax spinosissimus, confirmed
Verbiage
the virtual absence of predation. Through observation and

Actor
fact, nautiloids and ammonoids may have contributed predation
C: Reporter

Token
its high density of Octopus briareus, the Caribbean reef

Attrib Goal P: mat Actor
be responsible. The octopuses are limited by the availability
C: Reporter
of dens in Sweetings Pond (Aronson, in press).
$\frac{\text { [Dir] P:rel [Modal] Attribute }}{\text { it } \frac{\text { is }}{\text { perhaps more than coincidental that a slow-moving, }},}$
epifaunal, suspension-feeding echinoderm, which carpets
portions of the lake substrate and gives the benthos a
distinctly Paleozoic appearance, is accompanied by a cephalopod
(which does not feed upon ophiuroids; Aronson and Harms 1985).
Carrier P: rel Attrib C: Place Ectocochliate cephalopod carnivores were common in Paleozoic

P:ment Phenom + and Mesozoic coastal benthic communities (see Discussion), and
Actor P: mat \quad Range \quad C:Accomp

they may have exerted a relatively greater influence (in the
C: Comparison
absence of teleosts) than do the present-day coleoids.
Text] Token
Therefore, the abundant octopuses in Sweetings Pond may be

Value
functional analogues of ammonoids and/or nautiloids in
Actor
Paleozoic marine communities. The observations in Sweetings P: mat Range
Pond support the hypothesis that increased fish predation in
the Mesozoic contributed to the demise of dense ophiuroid as

C: Reporter

BL1:7 from para 15 (cf section 7 above)
C: Place
Where predation pressure from fishes (and crustaceans) is weak or absent, as in Sweetings Pond and some temperate and boreal Actor C: Time P: mat C: Qual coastal communities, exposed ophiuroids still occur densely C: Reporter
(Vevers 1952; Warner 1971; Wilson et al. 1977; Aronson and Harms 1985). [Modal] Range beds of Ophiothrix fragilis in the English Channel over a

P: mat
C: Accompaniment period of several decades have been correlated with changes in predation pressure exerted by two species of the starfish Ludia C: Reporter
(Holme 1984)

BP1:8 para 27 (Response to question: has predation increased?: injuries to brittlestars compared)

Actor P: mat Goal
I compared injuries to two populations of brittlestars that
Iived in warm seas more than 190 million years apart. $\frac{\text { Actor }}{\text { Not one }}$
P: mat
brittlestar in a Jurassic population from Dorset was Goal [Text] Possessor regenerating an arm. In contrast, 70 per cent of a closely

P: rel Possessed
related living species from Belize had at least one injured
$\overline{\text { arm. }} \frac{\text { Token P: rel Value }}{\text { This is }}+\frac{+ \text { Actor [Modal] }}{\text { [big difference, and it certainly }}$
P: mat Range
supports the notion that predation increased after the
Jurassic. Senser Palaeontologists have looked at injuries in several
other communities of ophiuroids that lived before the
Cretaceous. The highest level of injury they have found is rel
Value
$\frac{\text { Per cent. }}{2 \text { per }}$
BL1:8 paras 21-24 (Response to question: has predation increased?: injuries to brittlestars compared)
C: Place
From the Early Devonian Hunsruck shales in southwestern Actor P : mat Range
Germany, Lehmann studied more than 1000 well-preserved
ophiuroids, referable to 15 genera and 22 species. $\frac{\text { Actor }}{\text { Only } 23}$
P: mat Range
specimens showed regeneration of arms or of arm tips in this
C: Reporter \quad Carrier $P:$ rel Attribute Targe sample (Lehmann 1951). This is consistent with the hypothesis that predation pressures on Paleozoic ophiuroid
Copulations were low. Concession

With the possible exception of a large	
[Dir] P: ex Existent	C: Place
placoderm fish, there are no potential predators in the well-	

C: Quality
restricted occurrences of Paleozoic ophiuroids in that they were probably formed in the upper bathyal region (Seilacher and Hemleben 1966). The formation of this unusually rich and Token diversified assemblage of marine fossils was pol [Modal] Value

from the Late Mid-Jurassic of Weymouth, Dorset, housed in the collections of the British Museum (Natural History), only one $\frac{\text { P: mat Range }}{\text { showed arm regeneration (Aronson, personal observation). }}$

BP1:9 para 28 (Conclusions)
SText][Dir] P: ment Phenomenon gardens were severely affected when new, more efficient C: Time Actor
predators appeared in the Cretaceous. Today, epifaunal
P: mat C: Place
brittlestar beds survive only where predation is low. The next
$\frac{\text { P: rel Token }}{\text { step will be to explain why dense populations are so common }}$
around the British Isles yet so rare in North America and
elsewhere.

BL1:9 para 26 (Conclusions)

C: Concession
Even though direct evidence concerning the level of predation
pressure on dense populations of fossil ophiuroids is scanty,

Actor
the temporal distribution of these communities and the data on
P: mat Range
predation in some extant assemblages support our hypothesis
that dense communities of epifaunal brittlestars were largely
Style]
excluded from shallow water after the Mesozoic. In particular,
$\frac{\text { Senser P: ment Phenomenon }}{\text { we a relation between the explosive Cretaceous }}$

looked at the form and structure of whole organisms. For Actor
example, two proteins that apparently carry out the same role
P: mat C: Quality
in two different types of organism may vary widely
C: "place"
in their chemical composition: the detailed protein structure
belies the superficial resemblance. This kind of data enables

Range C: Result
researchers to reconstruct the order in which species diverged
during evolution. $\frac{\text { Text] }}{\text { For example, the immunological properties of }}$
P: verb Verbiage
albumen, a protein found in blood plasma, suggest that humans
are as closely related to chimpanzees and gorillas as these
apes are to each other. $\frac{\text { C: Time } \quad \text { Actor }}{\text { More recently, comparisons based on }}$
apes are to each other. $\frac{\text { C: Time } \quad \text { Actor }}{\text { More recently, comparisons based on }}$ P: mat Range
the analysis of DNA have provided more detail than either morphology or identifying the order of amino acids in proteins.

Actor P: mat Range
Researchers studying protein structure determine the sequence

of its amino acids. $\frac{\text { Actor }}{\text { The genetic code }}$ P: mat Goal	
C: Place	
to the order of bases in DNA: a triplet of bases forms a c	
	+ Carrier
word that specifies	a particular amino acid. But this code
P: rel Attribute C: Reason	
is "redundant",	in that several different triplets specify
	Actor P : mat Range
the same amino a	A mutation in one base might leave the

C: Result

human populations to a common ancestral female (bearing mtDNA type a).

BP2:3 paras 8-10 (Procedure: restriction-mapping)
Actor P : mat C : Accompaniment
Cann and her colleagues started with mitochondrial DNA
extracted from 147 individuals from five geographical regions.

Actor P: mat Goal C: Means
They digested these samples with 12 so-called restriction

Map comparisons

$\frac{\text { P: mat } \quad \text { C: Freg } \quad+\text { Token } \frac{\text { P: rel }}{} \quad \text { Val }}{\text { types were found three times and the seventh case involved }}$
type found in six individuals.

Range
A histogram showing the number of restriction site differences
P: mat C: Place Token
between pairs of individuals is given in Fig.i; the average
P:rel
number of differences observed between any two humans is
Value Token P:rel Value C: Accomp
9.5. The distribution is approximately normal, with an
excess of pairwise comparisons involving large numbers of
differences.

BP2:4 para 10 (Inferences)
(From this information Cann, Stoneking and Wilson advance three hypotheses.)
[Text] Sayer P:verb Verbiage
First, they suggest that the "common ancestor" of all surviving

$\overline{\text { previous estimates from animals as disparate as apes, monkeys, }}$ horses, rhinoceroses, mice, rats, birds and fishes ${ }^{15}$. Senser
[Text] P: ment Phenomenon $\frac{\text { Attribute }}{\text { therefore consider the above estimate of } 2 \%-4 \% \text { to be reasonable }}$

C: Concession
For humans, although additional comparative work is needed to.
obtain a more exact calibration.
C: Comparison Actor P:mat Goal

As Fig. 3 shows, the common ancestral mtDNA (type a) links mtDNA
types that have diverged by an average of nearly 0.57%.
C: Condition Sayer P : verb
Assuming a rate of $2 \%-4 \%$ per million years, this implies
Verbiage
that the common ancestor of all surviving mtDNA types existed
140 000-290 000 years ago. $\frac{\text { C: Compar Actor }}{\text { Similarly, ancestral types b-j may }}$
$\frac{\text { mat }}{\text { have existed }} 62 \frac{\text { Time }}{000-225000}$ years ago (Table 3).
[Text] P:-Actor \quad-mat \quad Actor
oldest of the clusters of mtDNA types to contain no African

exodus occurred as recently as 23-105 thousand years ago [Dir]
2). $\frac{\text { Sayer }}{\text { The mtDNA results cannot tell us useiv Verbiage }}$ exactly when these

C: Concession
AIthough recombination between mitochondrial genomes has never Actor P : mat Range

individual cow may contain a $50: 50$ mix (or some other

variation occurred in one mitochondrial genome out of the
thousands of others in each cell; how \quad P:- Actor
P: mat Goal C: Behalf
genome alone populate the embryo against the competition from

	Value \quad P: rel Token
the others? The simplest explanation is that some kind of	

bottleneck exists so that only a tiny proportion of the
mitochondria in the ovum contribute to the embryo's
mitochondrial genotype. $\frac{\text { Alext] }}{\text { Alternatively, the individual might be }}$
Value

C: Condition [Text] Token P: rel Value $\quad+\quad$ Actor C: Qual P: mat $\quad C:-[$ Text] other mitochondrial population rapidly takes over. If then, Condition
there are individuals whose mitochondrial range is effectively
P:rel Token
diploid, with contributions from two mitochondria, is a

Value

mutation the only possible source of variation? What abou
Token
a rare paternal contribution or some kind of recombination

are haploid for their mitochondrial genotype.
$\frac{\text { Senser }}{\text { The "mitochondrial clock hypothesis" assumes a uniform rate of }}$
mutation over long evolutionary time. $\frac{+ \text { Actor }}{\text { But researchers find }}$
[Dir] Attrib Range
it hard to see how this could be tested. $\frac{\text { However, should }}{}$
they discover that a significant proportion of supposedly neutral mítochondrial mutations affect genetic fitness,

Senser

researchers relying on the accumulation of mutations as a clock

$\frac{\text { P: ment }}{}$| C: Freg |
| :--- |
| to time evolution would need to think again. |
| Token |
| The Mother Eve hypothesis is rel Value |
| an important insight into |

human origins. Actor The study of mitochondrial lineages will
[Modal] -mat Ben $C:$ Result doubtless help us to unravel some of the movements and migrations of people as they spread around the Earth.

```
BL2:5 paras: 26-27 (Conclusions)
```

Conclusions and prospects

Studies of mtDNA	suggest a view of how, where and when modern
humans arose that fits with one interpretation of evidence fro	

ancient human bones and tools. $\frac{\text { Range }}{\text { More extensive molecular }}$

P: mat C: Purpose
comparisons are needed to improve our rooting of the mtDNA tree and the calibration of the rate of mtDNA divergence within the

Actor P : mat Range
human species. This may provide a more reliable time scale
for the spread of human populations and better estimates of the number of maternal lineages involved in founding the nonAfrican populations.
$\frac{\text { [Dir] P:rel [Text] Value Token }}{\text { It }}$ estimates of the overall extent of nuclear DNA diversity in both human and African ape populations. By comparing the [Dir] P: rel Attrib nuclear and mitochondrial DNA diversities, it may be possible Carrier
to find out whether a transient or prolonged bottleneck in
population size accompanied the origin of our species ${ }^{\mathbf{I} 5}$. [Text]
Actor
a fuller interaction between palaeoanthropology, archaeology
P: mat Range
and molecular biology will allow a deeper analysis of how our
species arose.

Field: Biology No. 3
Popular article: "No domestic bliss" (BP3)
Learned article: "Morphological discriminants of Scottish wildcats (Felis silvestris), domestic cats (F. catus) and their hybrids" ($\overline{\text { BL3 }}$)

BP3:1 para 1-7 (Introduction)
Senser
Ceaseless persecution and the loss of suitable habitat nearly
$\frac{\mathrm{P}: ~ " m e n t " ~ P h e n o m e n o n ~}{\text { saw the extinction of the Scottish wild cat at the turn of }}$

Actor

the century. Only a relaxation in the zeal of gamekeepers and
the rapid spread of coniferous plantation after the First World
$\frac{\text { P: mat }}{}$ Wange \quad C: Result
haunts in Scotland.

C: Reporter

BL3:1 1-6 (Introduction)
Introduction
Carrier
P:rel C: Time Attribute

P: re; Attrib C: Place
become scarce even in the Scottish Highlands.

populations of presumed wildcats collected at different time C: Result
periods in Scotland, thereby eliminating the assumption of

(Felis silvestris), domestic cats (F. catus) and their hybrids,
by skull morphometrics. $\frac{\text { Range mat } \quad \text { C:Role }}{\text { Wildcat samples were classified as }}$
'old' (collected 1901-1941), 'recent' (1953-1963) and 'modern'
(1975-1978) and skull measurements of these three groups
C: Accompaniment
together with samples of hybrid and domestic cats, were
C: Means
compared using Fisher Linear Discriminant Functions (FLDF),

Principal Component Analyses (PCA) and Canonical Variates (CVA).
all other groups.
[Dir] P:ex Existent
3. There was little or no difference between recent and $\tau_{\text {modern' wildcats. }} . \frac{\text { Range }}{}$ Both groups were separated not only from domestic cats, but also from old' wildcats.

Carrier Pirel Attribute
4. The hybrid group was the most variable. In PCA, and particularly in CVA, it overlapped extensively with both 'recent' and modern' wildcats, and FLDF produced most misclassifications between hybrids and other groups.

Possessor P; rel Possessed
C: Comparison
5. Wildcats had larger, more robust skulls than domestic

+ Token P:rel Value
cats, and all the distinguishing variables were characters
related to stalking, catching and killing of prey.
Carrier P:rel Attrib C: "Place" C: Comp

6. Sexes were most distinct in old' wildcats, less so ín

+ C: Comp
domestic cats and recent/modern' wildcats, and least in
hybrids, where the pattern of variation was also different from all other groups.

Sayer P:verb Verbiage
7. We concluded that old wildcats were probably a
(relatively) pure population of $F_{\text {. Silvestris, }}$ but that
'recent/modern' wildcat populations contained a (relatively)
high proportion of hybrids.
Actor \quad [Modal] P: mat \quad C: Time
8. Most hybridization probably occurred earlier in this

Possessor

C: Comparison
FLDF, while old wildcats were totally separated from both
Actor
domestic cats and hybrids, recent and modern wildcats both
$\begin{array}{lll}\text { P: mat } & \text { Range } & \text { C: Quality } \\ \text { overlapped } & \text { the hybrid group quite considerably. }\end{array}$

Carr P:rel Attrib	C: "Place" \quad C: Time
This was particularly so in females, or when	

both sexes were lumped together, as in FLDF. [Text] C: Cond
and modern wildcats were combined as a single group (except for
a single modern male, their ranges are indistinguishable), and
Sayer
sexes also combined within groups, as in FLDF, the component $\begin{array}{ll}\text { [Dir] } & \text { C: Freg } \\ (\text { Fig.5) } & \text { Consistently suggest just three 'primary }\end{array}$ scores (Fig.5) consistently suggest just three primary groups: domestic cats, hybrids and old wildcats -- with recent and modern wildcats together forming a secondary group, intermediate between old (presumed 'pure') wildcats and Actor [Text] P : mat Range hybrids. This in turn corroborates the conclusion from FLDF that old wildcats and domestic cats were both essentially
Tpure' forms, but that recent and modern wildcats contained a
higher hybrid component.
Range
Additional support for this concIusion is given by the
distances in component space between group centroids, and the
degree and direction of sexual dimorphism within groups.
C: "place" \quad [Dir]
Between groups (Table IV, see also Figs $3 \& 4$), old wildcats

from old wildcats, where sexual dimorphism was much greater.
Actor P : mat Range + Token Hybrids showed very little difference between sexes and what P:rel Value
difference there was, was of a completely different kind from $\frac{\text { [Dir] }}{\text { all other groups (e.g. Fig.3). }}$
[Text] Carrier
Conversely, the largest variation within group and sex

Attrib Carrier
notable that while in old wildcats and domestic cats
(especially the former) males were consistently more variable
than females, both hybrids and recent/modern wildcats
frequently had females as variable, or more variable than males.

C: Freq Sayer P:verb Verbiage
Yet again, the results imply a significant hybrid component in recent and modern wildcat populations (possibly slightly less
so in modern wildcats) but not in old wildcats or domestic $\overline{\text { cats. }}$

BL3:2 paras 49-51 (Reasons for hybridisation)

Token P:rel C:Time
geographical range was increasing, wildcat numbers were then
Value C: Reporter C: Reason
high mortality (due to gamekeepers) and the small area of
forest (compared to more recent times). Forests provide
Range C: Time C: Accompaniment
shelter in winter as well as food (especially rodents).
Actor
P: mat Range
Corbett (1978, 1979) showed that adult wildcats in north-east
Scotland are territorial, with the territory centred within or
adjacent to forest. $\frac{\text { Sayer [Text] P: verb Verbiage }}{H e}$
correlation between wildcat density and area of suitable
forest.
$\frac{\text { [Text] C: Time }}{\text { Secondry, when wildcat numbers were low, they may have had }}$
Possessed
difficulty finding conspecifics with which to mate, but no
C: Reason
trouble locating domestic cats, as numbers of feral domestic
cats (e.g. from abandoned farms) were then relatively high.

characters for preliminary identification. For example, one

> P:- C: Time -ment Value
cat in our sample was originally thought to be a domestic cat
C: Reason $+\quad$ C: Time
(because of a basically black pelage) but, in preliminary runs
P:- C: Freq -mat Sayer
of FLDF, was constantly 'misclassified'. Subsequent
examination of other characteristics (e.g. intestine length)
$\frac{P: \text { verb }}{}$ Verbiage + Range $\frac{\text { P: mat }}{\text { Cat Role }} \frac{\text { reclassified as a hybrid. }}{\text { The doubtful reliability of }}$ Pelage parand verb pelage characters as a guide to identifying hybrids was Sayer
confirmed by crossbreeding experiments, in which hybrids with pelage colours ranging from mottled tabby to completely black were produced. $\frac{\text { C: Time }}{}$ More recently, a series of large black cats C: Reporter
trapped or shot in Morayshire (see e.g. Steele, 1985 for a P:- C: Quality -mat Value typical press account) have all been shown to be almost

C: Means
certainly hybrids, by anatomical measures such as those used C: Reporter

C: Reporter
here (Hills, 1986), and chromosome markers (D. Fox, pers. comm.).

BP3:4 paras 9-10 (Conclusion of skulls report)
Carrier P: rel Attribute C: Means The Scottish wild cat does seem to be threatened by

[^0]

C: Purpose

C: Means
determined by similar future studies. A revision of the

P: mat
analyses reported here after, say, 20 years or so, could show
Range
whether a drift back had continued, or whether the pure form
of the wildcat is effectively extinct in Scotland.

Field: Computing No. 1
Popular article: "Cognitive science meets the biological mind" (CP1)
Learned article: "PDP or not PDP: Is that the question?" (CL1) Analogous passages

CP1:1 paras 1-2 (Introduction)
Sayer P:verb Verbiage
The Chinese philosopher Seng-Ts'an wrote: "If you work on your
mind with your mind, how can you avoid an immense amount of
confusion?" $\frac{\text { Modal] [Text] Token }}{\text { Perhaps, then, that confusion is the inevitable }}$

study the mind. $\frac{\text { [Modal] [Text] Actor P: mat } \text { Perhaps, though, we have relied too much }}{\text { we }}$

disciplines -- philosophy, psychology and linguistics, to name $\overline{\text { a few. }} \frac{+ \text { Range } P: ~ " m a t " \quad C: ~ P l a c e ~}{\text { But it is centred on the relatively new discipline }}$ $\overline{\text { of Artificial Intelligence. }}$ C: Accom Actor P:mat Range
trying to construct computers and computer programs that do the sorts of things that minds do.

Actor P : mat C: Place
Two distinct traditions are emerging in cognitive science.

[^1]P: mat Range
approach", accepts many of our intuitive ideas about how the $\overline{\text { mind works. }} \frac{\text { Range }}{\text { The other is based } 1}$

Actor
P:mat
computers, known as "connectionism". This newer approach may Ben Range
enable us to construct models of the mind that are similar in form to the brain's own network of neurons.

CL1:1 paras 1-2 (Introduction)
0 . Introduction
Token
PDP (Parallel Distributed Processing, a.k.a. Connectionism)
$\frac{\text { P: rel Value }}{\text { is a hot topic in cognitive science. }} \frac{\text { Possessor P:rel }}{\text { It }}$
Possessed
vehement supporters (e.g. Smolensky [forthcoming]) and equally
vehement detractors (Fodor and Pylyshyn [1988], Pinker and

Prince [1988], $\frac{\text { C: Place }}{\text { In what follows I }}$ Sayer P: verb ${ }^{\text {chall }}$ suggest that much
[Style] Sayer P:verb Verbiage
(virtual) teacup. In short, I suggest that PDP or not
PDP" is not the ques
Token P: rel Value SText] Sayer
My strategy will be as follows. First (section 1), I
P:verb Verbiage +P : ver
sketch the broad outlines of PDP-style approaches and repor
Verbiage [Text] Senser P: ment Phenomenon
simple example. Then (section 2) I focus on a recent
C: Reporter [Text]
critique of PDP models (Pinker and Prince [1988]). Finally,
Sayer P: verb Verbiage
ons 3 and 4) I propose a more ecumenical picture of the

C: Place
be contained in lessons that humble creatures can teach us.
Carrier \quad P:rel Attribute

Our ability to reason may be due to an underlying form of
computation that evolved to solve basic problems.
CL1:2 paras $34-35$ (The nature of intelligence)
Actor mixed models thus require multiplex forms of psychological/

Phenomenon
computational explanation. $\overline{\text { Not just different cognitive tasks }}$, C: Time P: ment Attrib but different aspects of the same task now look in need C: "Spatial" of different kinds of computational explanation. Insofar as human beings are required to negotiate some truly rule-governed $\overline{\text { problem domains (e.g. chess, language, mathematics) } \frac{\text { Token }}{} \quad \text { fome form }}$ P: rel Value
of mixed model may well be nature's most effective solution.
Carrier
The apparent success of thoroughly soft PDP systems in
negotiating some such domains (e.g. the model of past-tense
P: rel Attribute
acquisition) may be due to the presence of a concealed bolt-
$\overline{\text { on' symbol-processing unit -- us }} \frac{[\text { Text] C: "Place" }}{\text { Thus in the past tense }}$

Ben P : mat Range
acquisition model, the system received stems and then inflected
C: Reason
versions because we chose to divide the verbs up like that.
Sayer. $P:$ verb Verbiage Attribute
Pinker and Prince describe this choice as relying on intuitive
$\overline{\text { protolinguistics }} \cdot \frac{\text { [Text] }}{\text { C: Quality }}$ in that sense, even the Rumelhart and
rate, if mixed models are (for whatever reason) required, then

Possessor P:rel
the consequences must include:
Possessed

1. The rejection of the claim that any model exhibiting classical componential structure is a mere implementation of a classical theory. 2. The rejection of the claim that any classical account is at best an approximation to a correct PDP-based account.
[Text] $\frac{\text { Range }}{\text { Instead, correct explanations must be geared to the virtual }}$ machine responsible for particular aspects of task performance.

Carrier P:rel	Attrib [Modal]	$\frac{\text { [Dir] Pirel }}{\text { It would be }}$
All of which is	nicely ecumenical I'm sure.	
Attribute [Text] Carrier	Carrier	
boring, however, to	to close without making at le	t one
	[P:ment Phenomenon	C: Purpose
inflammatory claim.	(See Clark (forthcoming)	for an
	Value	

symbol processing capacities -- the factor (or one factor)
P:rel
which makes us thinkers and e.g. SHRDLU not -- may well be
Token
the subsymbolic, pattern-matching power of something like a PDP
mechanism operating within us. There is a strong intuition
that manipulating gross symbolic structure models the form of
some of our thought but somehow leaves out the content. Verbi-
-age \quad P:- C: Freq -verb $C:$ Means
intuition is often put by saying that such programs have
no understanding of what the symbol manipulations mean.

- 74 -
[Modal] [Text] Token P:rel Value Perhaps, then, our notion of understanding involves the ideas
of spontaneously seeing patterns, spotting similarities,

[Verbiage P:-C: Quality
shading meanings and so on (This position is most strongIy
-verb C: Place
advanced in Hofstader (1985).) $\frac{C: \text { Matter }}{\text { Of the two modes of thought }}$

[Dir] P:rel Token
treated in this paper, it would seem the PDP mode is in some
$\overline{\text { sense primary. }} \frac{\text { Actor [Modal] }}{}$ P: "mat" Range

Act- P:mat -or Range Ben
We allow (many of us) thoughts of some kind to lower animals, who are plausibly seen as advanced and complex PDP machines who
have not yet developed our capacities with symbolic
[Text] Actor P:mat Range Ben
representations. Yet we deny thoughts to BACON and
SHRDLU, programs which certainly manipulate gross symbolic
representations, but which lack any rich pattern matching substructure.

C: Condition [Text] Actor P: mat Range If this picture is correct, then we should maintain a dual $\frac{\text { [Text] Sensr }}{\text { That is, we }}$
thesis concerning explanat
P:ment Phenomenon...
(i) Good psychological explanations will often involve mixed models and hence will require analysis in both PDP and classical (symbol-manipulating) terms.
$\frac{+ \text { Senser P: }-[\text { Text] -ment }}{\text { But we may also hold }}$
Phenomenon
(ii) that the instantiation of any contentful psychological state requires not just the manipulation of gross symbolic structures but also access to the output of a powerful subsymbolic processor.

Actor P : mat Range
The Virtual Symbol Processor provides guidance and rigour;
Actor P:mat Range
the PDP substrate provides the fluidity and inspiration without
C: Reporter
which symbol processing is but an empty shell. In the words
Kant never used:
Carrier
P:rel Attrib
Subsymbolic processing without symbolic guidance is blind;
Carrier P:rel Attrib Symbolic processing without subsymbolic support is empty.

CP1:3 paras 8-12 (Description/Advantages of PDP)
Token
Neural networks, of the kind found in slugs, hamsters, monkeys
P:rel Value
and humans, are vast parallel networks of richly
interconnected but relatively slow and simple processors (New
Reporter Carrier
Scientist, 16 July 1987, p 54). The relative slowness of the
P:rel Attrib C: Means
individual processors (neurons) is offset by having them work
in a kind of cooperative parallelism on the tasks at hand.
Actor P: "mat" Goal
A useful analogy captures some of the flavour of this
processing: the way commodity prices are fixed in an open
market. $\frac{\text { Act P: Place mat Range }}{\text { In such a market we find only the local }}$ C: Concession
interactions of buying and selling, albeit a large number of
them. $\frac{\text { Actor }}{\text { Local constraints govern each single such interaction }-}$
how much the buyer wants the product, how badly the seller is [Text] C: Result
in need of buyers and so on. However, as a result of these

Value
biological star quality.
Carrier
P:rel Attrib
The second benefit I wish to mention is somewhat more elusive.
$\frac{\text { Sayer P:verb Target Verbiage }}{\mathrm{I} \text { call it informational holism". }}$ It involves the
integration of much of the stored information that we
intuitively tend to see as separate, discrete Iumps. [Text]
P:ment Phenomenon
suppose you have a connectionist (parallel) network dedicated

to processing information about shape. | Actor \quad P: mat |
| :---: |
| C: Matter |

information about a particular shape (say a rectangle) as a
potential pattern of activity of a set of units. These units $\frac{\text { P: mat } \quad \text { C: Place } \quad \text { C: Place }}{\text { are Iinked to other units in the recognition of shapes. }}$

CL1:3 paras 3-5 (Description of PDP)

1. Parallel Distributed Processing

Token \quad P: rel Value
Parallel Distributed Processing is a generic term covering a
class of models exhibiting a variety of algorithmic forms.
Value
P:rel Token
What these forms have in common is a general type of
Token
architecture and a set of properties. The type of architecture
P: rel Value
involves a large number of simple processing units connected in
parallel by a network of excitatory and inhibatory connections.
Actor
P:mat
These positively or negatively weighted connections encode (or

form of an intensity array.
$\frac{\text { Goal } \quad \text { Token P:rel Value }}{\text { Each unit (this is a }}$

C: Reason
simplification -- groups of units would almost certainly. be $\frac{\text { J: mat } \quad \text { C: Purpose }}{} \quad$ required) is primed to respond to one kind of feature in such $\overline{\text { an array. }} \frac{\text { Senser P:-[Text] [Text] -ment Phenomenon }}{\text { It must also, however, listen to the opinions }}$

C: Time Act P: mat C: "Place"
global network should relax into a communal, internally

> Token P: rel Value
consistent decision. This will amount to an interpretation of
C: Quality C:Cond the intensity array in terms ultimately of a 3.D scene. If the Actor connections between the units have been well chosen, the system $\frac{\text { P:- }}{\text { should (of Fen) }}$ get "mat" Range Attribute
Value [Text] P:rel Token
The essential point to note, then, is that connectionist
machines (as I shall use the term) are not just vast parallel
$\overline{\text { processors. }} \frac{\text { Token }}{\text { Parallelism alone is nalue }}$ not enough. $\frac{\text { [Text] Value }}{\text { Rather, what }}$

P:rel Token
counts is a process of cooperative group decision.
$\frac{\text { Actor }}{\text { Cooperative algorithms work to achieve (by a process of }}$
J Range
iterative adjustment) an interpretation which respects
constraints between neighbouring elements. Cooperation is
[Text] Attrib C: Comparison
therefore local, whereas the emergent order (the simultaneous
satisfaction of a large number of such constraints) is global.

Value Pirel Tok	
A homely example (which I first heard from J. Stone) is that	
C: Place Range	
of the open market place. Here global patterns of supply	
P: mat Actor	
and demand are established by local interactions of buying and Goal P:- [Text] -mat	
selling. Overall knowledge of demand is thus distributed	
C: Place + Goal C: Place	
amongst buyers and overall control of supply amongst suppliers.	
CL1:3 (cont) para 8 (Advantages of PDP)	
Token P:rel	
The way of encoding and retrieving specific information results	
$\begin{aligned} & \text { Value } \\ & \text { in a functional correlate of prototype-based reasoning. This } \end{aligned}$	
P:rel [Modal] Value	
is, in fact, a rather general property of PDP-style	
Actor P:mat Range	
approaches; they exhibit behaviour which, taken at face value,	
might seem strongly suggestive of a reliance on some special	
chanism aimed at the generation	
hypotheses or rules concerning the central structures of a+ [Modal] Range	
domain. But in fact no special mechanism is required and the	
P:- C: Quality -mat C: Quality	
hypotheses are not explicitly stored, at least not in any\qquad [Dir] P:rel [Modal] Attrib Carrier	
normal sense. It is perhaps misleading to say that th	
network does not in some sense learn and deploy the rules. For	
Carr P:rel Attrib C: Quality	
which -- in a nicely flexible manner -- tend to conform to the \qquad C: "Spatial"	
	- Insofar as rules can ever be stored inside a head, or

different kind of machine -- one specifically designed for the
basic operations of Lisp. $\frac{+ \text { [Text }] \quad \text { P:- Actor }}{\text { But how }}$
connectionist brain simulate a radically different kind of
machine?

CL1:4 paras 9-10 (Inadequacy of PDP model)
Value Token Actor P:-[Modal]-mat
So much for the good news. PDP models do indeed seem to
Range
provide an alternative to classical models involving special
mechanisms of rule-generation and storage.
$\frac{\text { C: Time Token }}{\text { Now }}$ for the bad news. $\frac{\text { Range }}{\text { Psychologically realistic models of }}$
C: Reporter
our performance of some tasks, according to recent critiques,
P: mat C: Means
can be obtained only by positing something like a classical
mechanism of rule-generation and storage. $\frac{\text { [Text] Value }}{\text { Hence a dilemma: }}$

Token
Insofar as PDP models offer a distinct alternative to classical ones, they must be inadequate; insofar as they may be adequate, they must turn out to be mere implementations of classical models.

CP1:5 paras 16-17 (Conclusion)
Value
The intriguing answer suggested by McClelland and Rumelhart
P:rel Token
is that the brain uses external symbols located in the real

world to augment its internal capacity to process symbols. $\frac{\text { Txt] }}{\text { For }}$
P:"mat" Range
example, take a conscious skill such as complex multi--
:---
C: Condition \quad Actor C: Qual P: mat Goal
example, given 7×7 as input we simply complete the pattern

CL1:5 paras 36-37 (Conclusion)

5. Conclusions

Sayer P:verb Verbiage
Pinker and Prince (1988) argue that PDP models will in general

C: Place
In the present - 86 -

Actor P:mat
Range
paper we chose to accept the overall thrust of their
specific criticisms. These suggested the need for more
structure within any PDP model of past-tense formation, some capacity for labelling and variable-binding and the use of a $\overline{\text { control structure }} \frac{+ \text { Verb- } \quad \text { Sayer P:verb -iage }}{\text { But accepting this, we argued, need not }}$ Tead us to conclude, along with Pinker and Prince, that any improved model must constitute a mere implementation of a classical theory. [Text] Actor P: mat Range

C: Purpose
counter-examples to show that even where a system includes a special lexical, rule-based component, the overall system need by no means constitute a mere implementation of a classical Token P:rel Value C: Reason
theory. This is so because (a) the classical components can call and access powerful and distinctive PDP operations of matching, search, blending and generalisation and (b) the

developmental process behind such a final system may itself
require PDP-style explanation.
Token \quad [Modal] P:rel [Modal] Value
PDP or not PDP, it seems, is simply not the question.

$\frac{\text { Senser }}{\text { Cognitive science, } i f \text { it seeks genuine psychological models of }}$
P: ment \quad Phenomenon
human thought, may need to recognise many kinds of virtual
cognitive machine. E: Condition
P: mat $\frac{\text { Range }}{\text { and satisfying account may require reference to a variety of }}$

architectures implicated in different aspects of the task.
Carrier
Recognition of this architectural multiplicity may be necessary
C: Condition
if cognitive science is to avoid the costly and unproductive

$\overline{\text { polarisation caricatured in the dramatic idiom of the title. }}$

Field: Computing, No. 2
Popular article: "Vision leads robots from the factory" (CP2)
Learned article: "The Viewpoint Consistency Constraint" (CL2)
Analogous passages
CP2:1 paras 1-2 (Introduction)
Phenomenon
Industrial robots working alongside humans on an assembly line
P: ment C: Comparison
look as if they could perform many of the same tasks as

dextrous as a human who is blind and deaf, lacks a sense of
touch, and has one hand tied down while working with a pair of

Token P:rel Value C: Reason
chopsticks. Robots are useful only because they position
themselves accurately, ready to receive components at precisely
determined positions from elaborate feeders. Most of the
C: mat C: "Place"
investment in a robot is spent on engineering its working area
C: Contrast
rather than on the machine.
$\frac{\text { Range }}{\text { Much of the inherent flexibility of a robot is wasted because }}$
it executes only a programmed sequence of motions. $\frac{\text { Senser }}{\text { Researchers }}$
P: ment Phenomenon
all over the world want to free robots from this
Senser P: ment Phenomenon
constraint. They want to equip the machines with multi-
fingered hands, provide them with a sense of touch and allow
Actor
them to measure and control forces precisely. The most

[^2]Actor
with a sense of sight. The ability to interpret images taken
P: mat Range C: Result by a television camera would enable a robot to work more like a C: Quality
human, picking up pieces from any position or orientation, performing visual inspections and recovering from inevitable accidents or errors without help.

CL2:1 para 1 (Introduction)
Value P: rel Token
A fundamental capability of human vision is the ability to
robustly recognize objects from partial and locally ambiguous
C: Comparison
data. As with most problems of interest to artificial
$\frac{\text { Range }}{\text { P: mat }}$
C: Means
through the use of large amounts of domain-specific knowledge,
in this case regarding visual appearance of objects and their
Phenom P: mental C: Purpose
components. Methods are known for representing information
regarding visual appearance in a computer with a high degree of
C: Comparison
fidelity, as has been shown by the success of computer graphics
in generating realistic images of natural scenes. $\frac{\text { Howt] }}{\text { Hower, }}$
Token $P:$ rel Value C: Accomp
this knowledge itself is of little use without effective
methods for applying the constraints implicit in the knowledge
during the recognition process.

CP2:2 . 4-7 (Human Vision)
Actor
The ease with which people perform common visual tasks -- such
as raising our eyes from a page and immediately recognising the $\overline{\text { objects in our surroundings -- could mislead us into }}$ Goal C: "Place"
believing that perception is simple and straightforward. [Mod] Token P: rel Value
fact, human vision involves a large number of highly
specialised modules in the brain that have developed during a
C: Accompaniment
Iong period of biological evolution. In addition to this
Actor P mat Range
biological heritage, each person accumulates prodigious amounts of information about the look of common objects.

Value
One reason why it is difficult to recognise objects visually
P:rel Token
is that any object has an infinite number of different
images, depending on variables such as viewpoint and the
position and characteristics of the light source. $\frac{\text { [Text] }}{\text { In addition, }}$
Carrier P: rel Attrib C: Result
parts of the object may be hidden, so we must be able to

P: mat Range C: Place
identify a particular object from all possible viewpoints.
CP2:2 (cont) para 14 (Viewpoint consistency constraint)
C: Time \quad Possessor P: rel Possessed
Before we recognise an object we have no idea of the
viewpoint from which we will see its image. [Towt] Senser P:
ment Phenomenon we wo
know that each object in any image will be seen from one
particular viewpoint, which provides a powerful constraint on
the possible locations of the object's features. [Text] put this
C: Condition
another way; if we use some of the imagers features to
[Text] Token
determine the viewpoint, then the object's other features
$\frac{\text { P: rel Value }}{\text { must be consistent with that viewpoint. }}$ Any initial matches
between edges in the image and edges of the computer s model
$\frac{\text { P:rel Value }}{\text { are only partially reliable, so it produces as many other }}$ close matches as possible to confirm its initial matches.

CL2:2 paras 2-3 (Human vision; cf also para 1 above/ Viewpoint consistency constraint)

C: Place Actor P : mat Range
In this paper, we examine one of the central constraints
provided by the prior three-dimensional knowledge, which allows
us to relate the three-dimensional structure of an object and
its components to the two-dimensional spatial structure of its
C: Comparison
projection in an image. As in other areas of artificial
intelligence, the effective application of such a strong
P:mat c: "place"
constraint leads, not only to increased robustness, but also to
a large reduction in the search space that must be explored
during the process of interpretation. The particular
P: verb
constraint that we will be examining can be stated as follows:
The viewpoint consistency constraint: The locations of all
projected model features in an image must be consistent with
projection from a single viewpoint.
$\frac{\text { Carrier }}{\text { The ease of stating this constraint is Attrib }}$ deceptive. Then

The ease of stating this constraint is deceptive. The P: rel mathematical and practical problems of implementing it have Value
been such that few model-based vision systems have made full use of the constraint. $\frac{\text { Senser } \quad \text { P: ment } \quad \text { Phenomenon }}{\text { Some systems have ignored it }}$

C: Qual C: "Time"
altogether while others have used loose approximations that
discard much of the inherent information content. $\frac{\text { [Text] }}{\text { However, }}$
Verbiage
the importance of this constraint for achieving robust
P:- C: Qual -verb $\quad+$ Sayer P: verbal
recognition can hardly be overstated, and we will argue
Verbiage
that it plays a central role in most instances of human visual
recognition. Since the appearance of a three-dimensional
object can change completely as it is projected from different

Token
viewpoints, any attempt to recognize an object without

CP2:3 paras 8-9 (Detection of "edges")
Value
The simplest example of the identification of stable features
P:rel Token Phen P: ment C:
is the detection of "edges" in an image. Edges appear in Place an image where the light changes intensity suddenly. They

P:mat C: Place
occur at the boundary between an object and its background, at
sudden changes in surface orientation or where pigment marks Carrier P:rel Attrib C: Place the surface of an object. Edges remain visible over a wide C: Result
range of different lighting conditions so they counter the effects of changing illumination. Stor P:mat Range of visual processing in the brain show that human vision also exploits the change in the intensity of reflected light at an edge rather than the light reflected from each side of the
edge. $\frac{\text { Possessor }}{\text { None of the numerous computational techniques to detect }}$ P:rel Posschanges in intensity and form edge-like structures had a very
-essed C: Comparison
impressive performance compared with people's ability to
identify edges in a photograph. [Text] Token P:rel Value
edges is the most common method to identify an initial set of features in an image for analysis.
C: Concession
While the detection of edges has been around since the earliest

$\frac{\text { Phenomenon }}{\text { a particular class of objects and required }}+\frac{\text { Range }}{}$

defines more and more objects in a bin of parts, for example, Token Pirel Value the number of remaining edges in the image become fewer and the
"Actor" P: mat \quad "Actor" P:mat C: Time
C: Freq Actor P: mat C: Time C: Reason
period because they are not part of a model or because so
Iittle of an object is visible that it would require too much computation to identify.

CL2:5 paras 30-32 (Recognition process)
Token
P:rel Value
The viewpoint consistency constraint is of little use for
C: Reason
the initial stages of matching. Since we initially may have no
idea of the viewpoint from which we will be viewing an object
and may have a library containing large numbers of possible Senser P: ment
objects, the initial bottom-up stages of vision must detect
Phenomenon
features that are at least partially invariant with respect to
viewpoint and are independent of any specific object. [Modal]
Possessor P: rel Possessed
human vision does have such "perceptual organization"
capabilities for detecting bottom-up viewpoint-independent
structure in the image. The SCERPO vision system begins by
Means
using established methods for edge detection. Figure 4 shows
Range
an image of a bin of disposable razors taken at a resolution of

-mat \quad Range $C:$ Means image features and object features, solving for a consistent viewpoint, extending the match by predicting the locations of other model features, and iterating. \qquad Figure 6 shows this sequence of operations in extending the match for a successful instance of binding.

Actor P : mat Range
Figure 6a shows an initial grouping of four image segments
(shown in bright blue) that was produced during the perceptual
Phenomenon P : "ment" Senser
grouping process. The grouping satisfies a skewed symmetry

+ [Text] P: mat C: Place
relation and therefore is matched to bilaterally symmetric
C: Time Actor
edges on the object during the search procedure. The remainder
$\frac{\text { P: "mat" Range }}{} \frac{\text { C: Place }}{\text { of figure } 6 \text { follows one of these tentative matches to its }}$

Range
successful conclusion. The initial viewpoint estimate for the model (shown in figure 6a in dark blue) is made by using simple Iinear approximations. This is then refined as shown in C: Means
figure 6b by two iterations of Newton's method (shown in dark
C: Result
blue), producing a least-squares viewpoint estimate (shown in red).

CL2:5 (cont) para 35 (Successful conclusion of process)
C: Time Goal \quad P:

$\frac{\text { P:- C: Time -mat } \quad \text { C: Accompaniment }}{}+$

P: mat Range
provide complete representations of physical properties of the
scene. [Text] Range P: "mat"
C: "Place"
at producing viewpoint-invariant groupings of image features
that can be judged unlikely to be accidental in origin, even in
the absence of specific information regarding which objects may

be required. $\frac{\text { Range }}{\text { Actual identification is based upon the full use }}$ +P : mat Range of the viewpoint consistency constraint, and maps the objectC: Place C: Accompaniment
Ievel data right back to the image level without any need for the intervening grouping constructs.
Range P: mat C:"Place" The matching process presented in this paper is based upon a probabilistic analysis of the likelihood that each potential $\begin{array}{ll} \\ \text { match is correct. } & \text { Token } \quad \text { Pis approach contrasts with the more }\end{array}$ traditional use of preset error thresholds during matching, which accept any match that is within a range that could be Range
accounted for by noise or modeling inaccuracies. $\frac{\text { Range }}{\text { The }}$

many other components of the recognition problem.

Field: Computing, No. 3
Popular article: "Computing in parallel" (CP3)
Learned article: "Implementing Neural Network Models on
Parallel Computers" (CL3)
Analogous passages
CP3:1 para 1 (Introduction)
C: Condition P:-
If it takes one woman nine months to produce a baby, shouldn't
$\begin{array}{ll}\text { Actor } & \text { Range } \\ \text { nine women be able to do the job in one month? } & \text { Range } \\ \text { Some tasks }\end{array}$
P: mat C: Quality C: Means C:Comp
cannot be performed more quickly by sharing out the work, as
the designers of the new parallel computers are finding.
C: Freq [Text][Dir] P:rel Token

	$\begin{aligned} & \text { appropriate } \\ & \text { Possessor } \\ & \text { Conventiona } \end{aligned}$						
	Rage						

Iimits to the speeds at which a single processor can operate.
C: Purpose Actor P: mat

For practical purposes, today's most advanced processors are
$\frac{\text { Range }}{\text { [Text] }}$
approaching these limits. A parallel computer, on the other
$\frac{\text { P: rel }}{\text { hand, contains many processors working in paralleI. There is }}$

Existent
no limit to the number of processors which a single computer
C: Result
can contain, so there is in theory no limit to the speed at
which a single computer could operate. $\frac{+ \text { Carrier }}{\text { And parallel computers }}$

P: rel Attribute	C: Reason
potentially more reliable, because the failure of a	
$-109-$	

Carrier P:rel Attribute
The DAP is programmed in DAP-FORTRAN, an extension of
[Txt]
FORTRAN-IV which incorporates array and vector constructs. For
$\frac{\text { C: Condition }}{\text { [Text] Actor }}$

Actor P : mat Ben Range
A masking facility allows us to select which of the processors we require the result on.

CP3:4 para 13-15 (Computer graphics/Image restoration)
Carrier P:rel C: Qual Attrib C: Time + Transputers have been generally available only since 1985, but
$\frac{\text { Possessor C: Time P: Poss Poss'd }}{\text { they }}$ already have many uses. Token One such application is

C: Place
in computer graphics, where a technique called "ray tracing"
can create realistic images.
Rhe images are built up by
shing an imaginary beam of light through each point on the
screen to reveal objects "behind" the screen. $\frac{\text { C: Condition }}{\text { If there is an }}$
Carrier $P:$ rel Attribute object there, the point takes on the colour of the object. If

Condition | Actor \quad P: mat |
| :--- |
| the object is reflective or transparent, the system generates |

$\frac{\text { Range }}{\text { more rays to create the objects reflected at that point. }}$ Value

P:rel Token C: Comp
application of ray tracing is interior design. Instead of
Actor P:- C: Accomp -mat

Range C: Purpose
a realistic image to show a client.

Text P: mat Range
conventional algorithms, however, produce images that are not
as "nice", that is, realistic, believable and detailed, as the
images which ray tracing produces. You can do ray tracing
C: Place + Carrier P:rel Attribute
on a DAP, but it is slow.
Token P:rel Value C: "Place"
The transputer is best at the sort of problem that can be
broken down into several independent "subproblems" which can be
Possessor
solved simultaneously. Applications under development include
Possessed
computer graphics, simulation of fluid dynamics and a ches
program which achieves high speeds by searching many different
possible positions at the board at once.
CL3:4 paras 45-51 (Computer graphics/Image restoration)
4.3 The Geman and Geman algorithm
Goal P: mat
The image restoration algorithm of Geman and Geman ${ }^{2}$ is applied
C: Place Token
to binary images which have been corrupted by noise. The
scheme employed for optimising the corresponding cost function P: rel Value
network of neurons, each of which can fire on a continuous
scale from non-firing ('black' pixel) to fully firing (white' pixel. Carrier The parameters of the cost function are Attribute

-118-
starting from a state corresponding to the observed (noisy)
Actor $P:$ mat $C:$ Temporal
image, the network settles in a few characterisitic time-steps
C: "place" . Carrier
into a state which minimises the cost-function. The connection P: rel Attrib
strengths are local, involving only a neuron and its immediate neighbours.

Actor P: Gat C: Place We have implemented the evolution of this network on the DAP

C: Means
and on the DAP ${ }^{23}$ and on the Computing Surface using the
analogue neuron method of Hopfield and Tank ${ }^{24}$.
4.3.1 Geman and Geman on the DAP

Goal $\frac{\text { P: mat }}{\text { The algorithm was applied to square images, assigning neurons }}$
to pixels with connections between each neuron and its nearest
neighbours (the pixels to the north, south, east and west).
C: Reporter
Goal
As pointed out in Ref.25, the state of half of the neurons
$\frac{\text { P: mat }}{\text { may be } \text {. Quality } C: \text { Behalf }}$ C: Reason
system since the new state of each pixel (neuron) depends only


```
Range \(P\) : mat \(C\) : Means
```

The update is performed thus
PROC Update()
SEQ
PAR
... update internal neurons
...transfer boundary data
...update boundary neurons
C: Purpose
To update neurons on the edge of the band assigned to one
Actor P: mat Range C: Place Actor P: mat Goal
processor we need data from the next; we transfer this
C: Time
data while updating the neurons in the centre of the band.
C: Time Actor P : mat Goal
When both of these tasks are complete we update the neurons
C: Place
in the boundary.
Actor P: mat Range
The implementation on the Computing Surface uses 40
C: Purpose
processors to restore 256×256 (or smaller) images.
Goal P: mat C: Place
Information on the state of each neuron is sent to the graphics
processor, where it is used to generate a display of the
$\frac{\text { P: rel Value } \quad \text { C: Reason }}{\text { processors is low because communications and }}$
calculations can be overlapped.
CP3:5 paras 17-18 (Conclusions)
Token P: rel Value
The DAP and the transputer are just two examples of new
Token P: rel
parallel computers. Many other variations on the theme are

simulations on the hardware described is well justified by the [Modal] C: "Place" [Dir] P:rel increase gained in performance; in fact in some cases it is Value Token
clear that the use of these parallel machines was essential for the simulations to be done at all in a feasible amount of time. $\frac{\text { Token }}{\text { Two further comments are in order. }} \frac{\text { [Text] [Dir] P: rel Value }}{\text { First it }}$ Token
that there is enormous potential in future developments in $\overline{\text { special-purpose silicon design, including analogue circuitry }}{ }^{27}$, $\overline{\text { and also in optical computing }}{ }^{28}$. [Text] Token P: rel Value this potential in real applications is dependent on lots of C: Result
ideas, analysis and simulation to develop new models which work effectively and competitively for these applications. $\frac{\text { In adal] }}{\text { In }}$ C: Place
in many of the models studied to date, $i t$ Pir is the C: Comparison Attribute
training rather than the recall mode which is most C: "Place" Actor
computationally intensive; in such cases, the actual operation
P:- Value -mat Range
of a trained net may not of itself require exceptional
computational resources. [Text] [Modal
Secondly, as all will appreciate who
have benefited from good interactive graphics facilities, their

P:rel Value
use in neural modelling is invaluable in beginning to
C: "Reporter"
understand the behaviour and performance of a net, particularly
in view of the large volume of data embedded in the connection strengths, and the obvious applications to image enhancement Carrier
and analysis. The integrated graphics capabilities of the
P:rel Attribute
C: Comp
Computing Surface are admirably suited to this task, as we
anticipate the new DAP3 system's will be also.

Token P:rel Value

comparative analysis and general synthesis have begun to
Attribute
emerge, building on the great pioneering work of J.A.R. Pimlott

	[Text]	P:-	Actor	-mat	Range
nearly 30 years ago.	Why	have	historians	Found	these
centres of frivolity	consp	con	mption and	reti	en
Attribute		[Tex	P:- Ac	tor -m	
so interesting and in	ant	what	can th		rib

Ben
to our understanding of Victorian and Edwardian society?

HL1:1 para 1 (Introduction)
Token
P: rel C: Place
Victorian seaside resorts were among the fastest-growing
C: Time $+C$ C: Time English towns in a period of rapid urbanization; and by the

Actor
later nineteenth century those which were expanding most P: [Text] -mat Range spectacularly were also having to come to terms with changing -127-

gave new mind to the jaded worker and caused the brain weary to forget their ineffable taedium vitae.

Carrier
P:rel Attrib

+ C: Place
occasional day trippers, and in the less cultivated setting of
Cleethorpes or Blackpool or Tynemouth. Even the Lancashire
cotton towns, which pioneered the seaside holiday as a mass
P: rel Possessed
experience, contained a significant residue of those who were unable -- or unwilling -- to afford a seaside visit. [Text] Moreover, Carrier P:rel Attrib C: Comp seaside reality was much less bland and conflict-free than the sentimentally idealised portrayals of commercial commentators might suggest. Actor The ideal of the seaside as refuge P: mat
and escape from urban pressure and industrial routine coexisted
C: Accomp
with alternative or supplementary conventions which portrayed,
especially in Punch, the discomforts, frustrations, social
embarrassments and disasters which could befall both the
middle-class family and the tripper.

HL1:2 para 18 (Universality of seaside holidays)
Sayer P: verbal Verbiage
All this helps to explain why the seaside holiday habit had
become so deeply rooted in the Lancashire textile district by

Token
inland. The social harmony of the Edwardian seaside, such as P: rel Value C: Comparison
it was, owed more to class segregation than to social reconciliation.

HL1:3 paras 2-5 (Class conflicts)
Carrier P:rel Attribute C: Place These developments were particularly pronounced in many areas, C: Time
at a time when there was a growth in working-class free time as C: Reason
well as spending power, because the seaside appealed to the whole spectrum of popular attitudes to leisure, from the narrow dedication to the pursuit of physical, intellectual and moral health and improvement, to the more diffused desire to "have a spree" away from the depressing constraints of the working

Schools, temperance societies, and paternalistic employers were

Attribute

quick to use the seaside excursion as a counter-attraction to
the fairgrounds and race meetings which still dominated popular
holidays in the industrial towns in the early Victorian years,
C: Reason
for a seaside visit offered obvious opportunities for the

+ Possessor pursuit of health and educative recreations. But the enjoyment
[Text] P: rel
of cheap travel and the cult of sea bathing also had

Actor P: mat Range + seaside in ever-increasing numbers, they posed problems and

C: Result
and apparent elasticity to encourage entrepreneurs to cater
specifically for them. [Modal] C: Place
Indeed where working-class demand was

late nineteenth century, as the "better-class" visitor began to retreat to quieter and more select holiday and residential
haunts. $\frac{\text { C: "Place" }}{\text { Under these circumstances, the commercialization of }}$
entertainment which was developing rapidly inland soon made
$\frac{\text { Range }}{\text { C: Place }}+\quad+$ Range
P: mat $C:$ Time
attractions were supplemented in the later nineteenth century
C: Means
by increasingly heavily-capitalized entertainment centres.
C: Place Senser
Where this happened, the organizers of Sunday School and
P: ment Phenomenon +
temperance excursions began to look for safer destinations; but
C: Time Actor
by this time the commercial excursions and the railways own


```
C: Matter especially of the resorts in easy reach of the textile
```

conurbations of Lancashire and the West Riding of Yorkshire,
and the arc of seaside resorts along the Kent and Sussex coasts
to the south of London, especially in Thanet. Phen P: ment
C: Place C: Time $\quad+$ C: Place
in Blackpool and Scarborough at this time, and even in
Ramsgate, where, in 1861 a witness pointed out that besides the
high-class lodging-houses on the cliffs, there was
accommodation in the lower town near the harbour for "a vast
number of other people, a class of an inferior kind" ${ }^{7}$
C: "Place" [Dir] P: ex Existent
From these beginnings, there emerged a distinctively working-
C: Time
class holiday industry during the period of falling prices at
the end of the nineteenth century; and the new pattern of
P: mat
demand began to generate employment in lodging-house keeping,
building, retailing and other services. The lifestyles of the
[Text] P : mat Range C: Accompaniment
new visitors often generated conflict with the established

+ Actor
branches of the holiday trade, but the working-class season,
augmenting as it did an already swelling rush to the sea by
workers in the expanding white-collar occupations, provided
Range
C: Place
a new impetus to growth in many late Victorian resorts.
Actor P: mat Range C:Place +

Blackpool provides the most obvious example here, but
Phenomenon
Southend, Cleethorpes, Yarmouth, Scarborough, Morecambe and P: ment Attribute

C: Place
several others can be seen to fit this pattern
In the north
[Modal] Actor
of England, at least, the most rapid large-scale resort growth
P:mat C: Place
of the late nineteenth century came where the working-class

+ [Dir] P: rel Carrier presence was most strongly felt, and it was the resorts

Attribute
which adapted best to this new stimulus which expanded fastest.
$\frac{\text { [Text] }}{\text { On the other hand, resorts like Southport, which had prospered }}$
in the mid-Victorian heyday of the solid middle classes, found

Range \quad C: "Place"
difficulty in tapping the new sources of growth, and
P: mental Phenomenon
experienced relative stagnation as residents and landowners
resisted popular amusements and an inferior class of housing,

while local government and the local economy remained under the
sway of commuters and staid villa-dwellers 9 . Curther south
Goal \quad P: mat \quad Actor
the picture is complicated by the meteoric rise of Bournemouth,

C: Accompaniment
Hove and Eastbourne, along with several other select resorts of

C: Comp Actor

P:mat
Iess spectacular growth, while Margate and Ramsgate found
Range
that the early appearance of working-class visitors was no
guarantee of renewed expansion on any substantial scale ${ }^{10}$.

Range
Even Southend's remarkable surge of development at the turn of P: mat C: "Spatial" Actor
the century was fuelled in large part by London commuters,
C: Comparison
while Yarmouth owed its increasing prosperity largely to
visitors from the industrial Midlands. $\frac{+C: ~ P l a c e}{\text { But even in salubrious }}$ Actor P : mat
Sussex "better-class" resort growth was beginning to change
Goal C: Time C: Time
its focus by this time, as parts of the central areas of the
Targer resorts were being invaded by the working-class visitor, and as his social superiors retreated along the coastine into new "marine suburbs", carefully regulated to keep the trippers at bay, or began the colonization of the remoter coasts of Devon, Cornwall and Pembrokeshire ${ }^{11}$.

```
HL1:3 para 29 (Class conflicts)
```

C: Place
Outside the textile districts of Lancashire and the West [Text] Actor
Riding, then, the survival of irregular working habits, often associated with a deep attachment to a large number of

P: mat Range
customary festivals, inhibited the thrift and planning which were necessary for the development of holidays away from home. [Modal] Actor P: mat Range~the safe local pleasures of neighbourly conviviality and Carrier P:rel Attribute
hospitality. Day-trips were increasingly well-patronized
$\mathrm{C}:$ Time $\quad+\mathrm{C}$: Place
in the late nineteenth century, but over most of industrialized -140-

Possessor

C: Behalf + Actor

	C: Time \quad Actor \quad P: mat \quad C: Time
elsewhere.	In the long run, the railways responded, of ten

$\frac{\text { C: "Behalf" }}{\text { belatedly, to the rising demand for seaside holidays; but only }}$
in the earliest pioneering days of cheap excursions in the
P:- Actr -mat Range Token P:rel Value
1840s did they help to create it. They were necessary to
C: "Place" + Token P:rel C: Freq resort growth beyond a certain point but they were seldom,

Value
in themselves, a sufficient cause for expanded levels of
demand.

HL1:4 para 15 (Changing holiday patterns)
Actor P: mat Range
Steady pressure from the labour force brought extensions of the
C: Time
traditional holidays, especially in July and August,
C: Time C:Place
throughout the second half of the nineteenth century. In some

	[Modal]	Range	P: mat	C:	Time		Attrib
places,	indeed,	new holidays	were created	in	the 1	$1840 s$,	often
arising		seaside excur					

with their approval. Goal Bolton's holiday observances were
P: mat C: "Place" C: Time \quad concentrated into Whitsuntide throughout the latter half of the

week as it developed from the late seventies onwards.
$\frac{\text { Carrier }}{\text { Railways and resorts were Attribute }}$ uncomfortably crowded, and there $+\quad$ [Dir]

P:ex Existent
was nothing to encourage the provision of permanent amenities
for the working-class visitor. C: Place [Text]

P: mat C: Place story should stop at that point.

Actor P:mat Range
We need further work

C: Matter
on the changing fortunes of seaside resorts in the inter-war
$\frac{+ \text { Senser [Text] P: ment } \quad \text { Phen C: Matt }}{\text { and post-war years; and we also need to know more about }}$
the resorts of Scotland and Ireland, which have so far been
Actor
neglected by serious historians. The rise of the bungalow, the
chalet, the caravan and the holiday camp in the age of the motor car and the charabanc, and the changing experience of seaside England in the age of the package tour and the P: mat aeroplane, the holiday flat and the nude bathing beach, will Range

C: Behalf
C: Time
provide stimulating material for many historians in the future.
C: Time Ben P: mat Range

In the meantime, the seaside resort should be granted the C: Place
prominent place it deserves in general analyses of urbanisation and social change during the key decades of transition to industrial society in Victorian and Edwardian England.

HL1:6 para 32 (Conclusion)
Actor [Text] P:mat Goal
The loss of traditional summer holidays, then, retarded the C: Quality
development of the popular holiday industry just as seriously
C: Comparison
as did too strong an attachment to irregular work and frequent popular festivals. $\frac{\text { C: Result Actor }}{}$ P:- C: Spat -mat C: Place C:Time England was only just passing beyond the excursion stage by the

C: Concession
turn of the century, although Southend, Yarmouth, Weston-superMare, and the Thanet resorts were already seeing a deeper

working-class penetration of their local economies. But the
P: mat C: Place
really early advances had come on the coasts of Lancashire and
Attribute
North Nales, fed by the Lancashire textile workers. Their
P: mat \quad Goal Place
patronage had stimulated early investment in amusements and

accommodation for a working-class market, and this in turn had mat Range Attrib C: Behalf made the resorts more attractive not only to Lancashire working men and their families, but also to excursionists from the West Riding of Yorkshire and, later, the West Midlands. In all Range P : mat C : Means these areas, the holiday habit was encouraged by the cheap amusements and ample but unpretentious accommodation on offer in those resorts which were able to adapt to the needs of
working-class visitors in large numbers. $\frac{\text { C: "Spatial" }}{\text { To a lesser extent, }}$
Token
Cleethorpes, Bridlington and Scarborough were early
beneficiaries of a growing demand from Sheffield and the west
Riding woollen district in the last quarter of the nineteenth

century. C: Place

> P: rel Value
holiday became a mass experience, shared by almost every family which was not incapacitated by unemployment or the poverty cycle, at least twenty years before it gathered strength in -150-

Token
other parts of the country. The reasons for this precocious
development, and the pattern of change elsewhere, can be
C: Qual -rel Value
directly related to the speed and circumstances of town growth
and industrial development in the hinterlands of the resorts,
and above all to the relationship between family incomes,
Iabour discipline, and the persistence of local holiday
customs. $\frac{\text { There can be no doubt that it would be profitable to }}{}$
adopt a similar approach to the analysis of other aspects of
working-class leisure in the nineteenth century 64 .

Field: History, No. 2
Popular article: "The Bishop's Wars" (HP2)
Learned article: "Scottish covenanters and Irish confederates" (HL2)

Analogous passages
HP2:1 para 1 (Introduction)
C: Time Actor P : mat Goal C: Result
By 1637 Charles I had provoked his Scottish subjects into
C: Means
revolt against him through absentee, arbitrary, absolutist and,
perhaps worst of all, anglicising government. $\frac{\text { C: Time }}{\text { In the spring of }}$
Actor P : mat Range
1638 the king accepted that he could restore his authority in

Scotland only by military means. Further, he recognised
Phenomenon
that support for him in Scotland was so weak that a military
solution would need to come from outside -- from England.
C: Concession
Given the fact that England had five times the population of
Scotland, and that the difference in wealth of the two
Carrier P: rel Attrib
countries was far greater, Charles must have been confident
that he could subdue those distant provincial nuisances, the
Scottish Covenanters, without too much difficulty. $\frac{\text { [Text][Text] }}{\text { Yet in the }}$
Act P: mat C: Qual + Act C:"spat"P: mat Goal event he failed disastrously, and this so undermined his C: Result
prestige that it led to the collapse of his power in England and Ireland, as well as in Scotland. $\frac{\text { [Txt] P:"mat" C: Qual }}{\text { What went }} \frac{\text { wrong }- \text { or }}{}$ C: Qual C: "Place"
right, from the Scottish point of view?

HL2:1 para 1 (Introduction)
The Ulster Scots

Actor

The shortness of the sea crossing between Ulster on the one
hand and Argyll and the western Lowlands of Scotland on the

P:- C: Freq -mat
other has always ensured close contacts between the

inhabitants of Ireland and scotland. $\frac{\text { A: Time }}{\text { At the beginning of the }}$ Actor
sixth century the Scots, who had come from Ireland and settled
$\frac{\text { P: mat Range }}{\text { in Argyll, created a new kingdom there, }}$

Act P: mat Ben Range
they were to give Scotland both her ruling dynasty and her
name. $\frac{\text { Actor } C: " s p a t " P: m a t ~ C: ~ P l a c e ~}{\text { Christianity partly came to Scotland from Ireland, }}$ C: Means
through the work of Columba (who landed on Iona in 563) and others.

HL2:1 (cont) para 23 (Introduction to Bishops' Wars)
The First Bishops' Var, 1639
$\frac{\text { [Modal] }}{\text { Not surprisingly, once resistance to the king in Scotland }}$ Actor P:mat $C:$ Qual $C:$ Place C:Time
began, suspicion of the Scots grew fast in Ireland. In
September 1637 Wentworth obstructed the attempts of the earlof
Ancrum to obtain landin Ireland,$\quad+$ C: Time Act C: Oual
P: mat Goal 1638 he strongly
opposed an offer by the marquis of Hamilton and other Scots to
take over London's lands in County Londonderry. $\frac{\text { Sayer }}{\text { Wentworth }}$
 his English subjects would react to being told to fight the

Attribute
Scots, perhaps assuming that they would be eager to attack
their traditional enemy in the north. But though Englishmen
had little liking or respect for the Scots, many sympathised $\frac{+ \text { P: mat } C: " s p a t i a l " \quad \text { Phenomenon/Range }}{\text { with, and shared to some extent, the grievances that had led }}$

Senser P: ment Phenomenon
the Scots to revolt. They disliked arbitrary government and the king's religious and other policies [Text] well. $\frac{\text { Actor }}{\text { The Scots }}$ $\frac{\text { P: mat }}{\text { were making a } \quad \text { Ctand }}$ against the king: to help him defeat them
$\frac{\text { P: mat } \quad \text { Range Attribute } \quad \text { C: Comp }}{\text { would make him more inflexible than ever. }} \frac{\text { [Text] Actor }}{\text { Thus the king }}$
P : mat Range C: Time found a widespread lack of enthusiasm in England when he tried Attribute
to mobilise the country against the Scots, responses varying from sullen obstruction to open violence when attempts were made to enlist men.
[Text] Senser P: ment Phenom $\frac{\text { Attribute }}{\text { Third, the king had underestimated the Scots }}$
God was on their side, they were inspired by the national myth of their country as the never-conquered nation that had always managed to defeat the efforts of its great neighbour to destroy it. Charles's decision to use an English army to C: Means P : mat Ben
restore order in many respects helped the Scots war effort: -155-

$\frac{+}{}+\mathrm{P}:$ verb $\mathrm{C}:$ Role

Fife.

HL2:3 para 26 (Problematic policies)
Token
P:rel Value

military preparations were complete. This delighted the Ulster

Target P; verb
Scots; Bishop Henry Leslie of Down (himself a Scot) was told
Verbiage
that a petition to the king was being circulated asking for
similar concessions to be made in Ireland $-{ }^{-\infty}$ there is such
insulting amongst them here, that they make me weary of my
Iifer53. $\frac{\text { Modal] Carrier }}{}$ Clearly some action was necessary if control of
Ulster was not to be lost through inaction on the part of the
government, as Scotland had been lost. C: Time Sayer
P: verb Verbiage
wrote that disobedience ought quickly and roundly to be
corrected in the first Beginnings, lest dandled over long, the
Humour grows more churlish and difficult to be directed and
disposed to the peace of Church and Commonwealth; the names of

HL2:4 para 53 (Treaty of Berwick)
The Second Bishops' War, 1640
Actor $\frac{\text { P: mat Goal C: Result }}{\text { The king's failure to invade Scotland forced him to makea }}$ The king's failure to invade Scotland forced him to make a peace with the covenanters, the treaty of Berwick, signed on I8 June 1639. Senser $\frac{\text { P: ment Phenomenon }}{\text { Neither side expected lasting peace to follow; each }}$
P: mat Range
agreed to the treaty to postpone a conflict until circumstances $\frac{+ \text { Actor P: mat }}{} \quad \frac{\text { nange }}{}$ major part in Charles plans for the eventual subjection of Scotland. $\frac{\text { Ben }}{\text { [C: Time }} \frac{\text {] }}{\text { Donald }}$ Gorm (at this time or soon afterwards) was $\frac{\text { [Modal] }}{\text { apparently }}$ supplied with a ship and arms for 1,000 men ${ }^{112}$; and C: Time
on 5 June (just before the start of negotiations with the
Actor
covenanters) and 11 June (after negotiations had begun) Charles
P: mat Goal C: Role
appointed Donald Gorm and Antrim to be his joint lieutenants
C: Purpose
and commissioners in the Highlands and Isles, to act against
[Text] Ben P: mat Range + Poss his enemies. In return Antrim was promised Kintyre, and Donald
-essor P: rel Possessed
Gorm of Sleat was to have Ardnamurchan, Strathswordale in Skye, 'Punard' (evidently Sunart) and the islands of Rhum, Muck and

Canna 1 . $\frac{[\text { Dir }] \text { P:-[Modal] } \text {-ment } \text { Phenomenon }}{\text { wo doubt intended that Antrim should }}$
make use of his men in Ireland in attacking the king's enemies

+ Actor P: "mat" Range
in Scotland but the commission made no mention of Ireland;

Phenomenon
been decided that at least part of it should sail directly to
Goal \quad P: mat Scotland. Dumbarton Castle had been handed back to the king C: Time + Range after the treaty of Berwick and Strafford's idea of landing P: mat C: Concession

$\frac{\text { C:Time } P: m a t}{}$ Range 122.
Senser P: ment Phenomenon
The covenanters appear to have realised that the new Irish army
was no more ready to invade scotland than the king's army on
C: Reason
the Border was, for they felt it safe to let Argyll and 4,000
of his Highlanders leave the coast opposite Ireland and, in June and July, carry out a long march through the Highlands to
$\overline{\text { overawe any potential royalists }}{ }^{123}$. [Dir] P:rel Value Token covenanters had already resolved to force the king to fight by invading England, and were anxious to ensure that there was no

Highland royalist rising behind their backs. | Value |
| :---: |
| The other main |
| P:rel Token |

danger they foresaw if they invaded England was that

HP2:5 paras 15-17 (Conclusions)
Carrier $\frac{\text { P:rel Attrib }}{\text { The consequences of the Bishops Wars were profound. The }}$ Scots had called the bluff of the seemingly all-powerful king,

C: Result C: Time
demonstrating his true weakness. After long negotiations in
Actor P : mat C: Place $\quad+\quad \mathrm{P}$: mat
London in 1640-1 Charles came to Edinburgh, and acceded to
Range
the destruction of his power over the Church of Scotland and
C: Behalf
the abolition of bishops in favour of a presbyterian system of
church government. $\frac{\text { C: PLace Act } C: \text { Qual } \mathrm{In} \text { : mat }}{}$
Range Beneficiary C: Result
power to the Scottish parliament, leaving himself in the

Carrier

position of a mere figurehead. The triumph of the Covenanters
P: rel Attrib Value
seemed complete, a remarkable revolution achieved against what
had seemed to be overwhelming odds.
$\frac{\text { C: Time }}{\text { Within a few }}$ [Tears, Token P: rel Value $\quad \frac{\text { Actor }}{\text { The }}$
P: mat
Bishops Wars had destabilised all Britain.
First \quad in 1641 the
oppressed Irish Catholics, inspired by the Covenanters ${ }^{\top}$
P:mat Range Attribute
example, rose in rebellion. Seeing this as a tinreat to the
Scottish settlers in Ulster, and indeed to Protestantism

		Actor	P:mat Goal			C: Place		
throughou	Britain,	the Scots	sent	a la	e army	to	Ire	land
C: Time	[Text] C:	Time		Actor	P: mat			"Place"
in 1642.	Then in	the same	year	England	collaps		int	o civil

war between the king and the English parliament, and in 1643
Senser P:ment Phenomenon
the Scots felt that protecting their revolution necessitated
sending another army to England to help parliament there. $\frac{\text { [Dir] }}{\text { It }}$
$\frac{\text { P: rel Attrib Carrier }}{\text { was clear that the king had only made concessions to the }}$
Scots in 1641 so that he could concentrate on overcoming his

English enemies, and that once he had subdued them he would Eurn his attention back to punishing the rebellious Scots.

C: Reason
In seeking desperately to find security for scotland within

Goal P: mat C: Time + C: Time $\quad+\quad$ Goal					
Strafford was executed in May $1641+34$, and the same month hisP: matC: Result					
Irish army was disbanded, adding to the politica					
instability in Ireland the presence of several thousand trained					
but leaderless Irish Catholic troops.$\frac{[D i r] \text { P:rel Value }}{\text { It was not just the collapse of royal power, and fear of hol }}$					
those who seized power from Charles would treat Catholics, Token Actor					
which sparked off the Irish rebellion of 1641; the king's own [Text] P: mat Range					
incompetent plotting also made a major contribution. Attribute Finding himself unable to gather sufficient support in Englan					
Finding himself unable to gather sufficient support in EnglandActor P : mat Range					
to resist the English parliament, the king sought new allies C: Place C: Time C: Place Act P:mat Ben					
in Scotland and Ireland in 1641. In Scotland he granted the Range + P:"mat" Range Ben					
covenanters all that they demanded, and heaped favours on thei C: Purpose [Text]					
Teaders, in the hope of persuading them to help him; in return Ben P :mat Range C: Reason					
he gained nothing, for they remained deeply suspicious					
him ${ }^{135 .}$ In Ireland his plans were equally unsuccessful. $\frac{\text { He }}{\text { He }}$					
P: "mat" Range C: Accompaniment					
opened secret negotiations with the earl of Ormond, the mos					
powerful protestant noble in the country, who had					
Strafford's new army until its disbandment in May. In Jul					
just before leaving for Scotland to try to win over the					

protestant opponents in Ireland were all much more violently
Attribute
anti-Catholic than the king had ever been.
Fearing that their
Actor
position would change for the worse, many native Irish leaders $\frac{\text { P: mat }}{\text { C: Time }} \frac{\text { C: Accompaniment }}{}$ C: Time Verbiage
continent. By May an armed rising, to take place late in $\frac{\text { P: verbal }}{\text { October, was being discussed. }} \frac{\text { [Text] C: Time Senser }}{\text { Then in August they, and the }}$
P : ment C : Means Phenomenon leaders of the Old English, heard through Antrim of his and Ormond's plan to secure Dublin for the king, and that the king was seeking Irish help. $\frac{[D i r] \text { P:rel C: Temp Token }}{\text { It seemed briefly that the royalist }}$ plot to help the king and the native Irish plots to protect
Actor P : mat Goal themselves could be combined. The native Irish would help the $\frac{+\mathrm{P}: \text { mat }}{\text { king, and be rewarded and protected by the king for doing so. }}$ $\frac{+ \text { [Text] } \quad \text { Senser }}{\text { But in the end the native Irish, the fools' as Antrim later }}$ P : ment Phenomenon C : Accompaniment called them, decided to act on their own, without reference to Attribute the king, believing that once they rose in arms the king would $\overline{\text { support them. } \frac{\text { Ci Comparison }}{} \text { Senser P: ment Phen }}$ Attribute

Range
Dublin, hoping for a bloodless coup d'etat. This part of the
$\frac{\text { P: mat }}{} \frac{\text { Beneficiary }}{\text { plot } \text { was betrayed to the authorities on } 22 \text { October 1641, the }}$

P: verb Verbiage
suggests that the major economic and political crises of the
period -- the First and Second World Wars, the General Strike, the mass unemployment of the Depression years -- had little impact on criminal activity.

HL3:1 para 1 (Introduction)
C: Concession
Despite the central position which the law occupies in pre-and
Range P:- C: Quality -mat C: modern English society its study was relatively neglected until $\frac{\text { Time }}{\text { recently. }} \frac{\text { C: Time }}{\text { In the last decade, } h o w e v e r, ~ A c t o r ~ s e r i o u s ~ a n d ~ s y s t e m a t i c ~}$ research on crime and criminal justice has created a lively and

important part of social history.
Actor Concession
they study, historians have addressed similar questions about
the incidence, pattern and character of crime, about the
methodologies and approaches appropriate to an assessment of
past patterns of criminality, and about the social
relationships of authority which are expressed and contested in

 [Text] P: rel Token
is evident, however, is an unresolved, and perhaps
unresolvable, tension in the use of the records of criminal
Value
P: rel Token
justice. The essential dilemma is whether the criminal
indictments (the formal charges laid against the accused in the

the subsequent estimate of the published literature of the last ten years.

HP3:2 para 4 (Indictable crimes)
Actor
The yearly figure for indictable (or serious) crimes recorded
P: mat C: "Place"
by the police in England and wales rose from 100,000 in the
first decade, to 300,000 in the late 1930s, to half a million
C: Time Actor
in the mid-1950s. From that date the upward trend of crime P: mat C : Result
accelerated: one million crimes by the mid-1960s, two million
by the mid-1970s, and three-and-a-quarter million crimes in
\qquad
1984. When the growth in population is accounted for, the

P: mat C: Place
Act
pattern of increase in crime is shown in Figures 1 and 2. $\frac{A}{A}$
rate of 249 crimes per 100,000 population in 1901 rose to 2, "P1"
C: Time + C: "Place" C: Time Actor
crimes in 1965 and 6,674 crimes per 100,000 in 1984. The
$\mathrm{P}:$ mat $\mathrm{C}:$ Time +P : mat
upward trend started during the First World War and has
C: Time C: Accompaniment
continued ever since, apart from a brief period (1946-55)
Following the Second World War, and in a few years (1972-73,
Range
1978-79) since then. Much less academic and press attention
P:mat
Beneficiary
tends to be given to non-indictable (or less serious) offences.
Token
The annual average number of persons found guilty of non-

P: rel Value C: Time
indictable crime was around 650,000 in the first decade of
C: Time Range P:mat the century; by the mid-1970s, nearly two million persons were Attrib + Range P: mat Actor P:mat found guilty and another 136,000 were cautioned. Changes have C: "Place"
taken place in the types of non-indictable offences, reflecting Value
changes in social and economic conditions. The largest single group of non-indictable offences in the Edwardian years for

P:rel Token C: Time
which persons were found guilty was drunkenness; since the Value P: rel Token
I950s it has been motoring offences.

HL3:2 paras 2-3 (Indictable crimes)
Actor
P: mat C:Accom The present wave of interest in historical crime began with the naive assertion that, because of the local variations in the collection of figures, criminal statistics have little to tell
us about crime and criminals (Tobias, 1967 . $\frac{\text { Range }}{\text { A large }}$
$\frac{\mathrm{P}:-\quad \text { [Text] } \quad \text { - mat }}{\text { proportion of subsequent energies have, nevertheless, been }}$ C: Means
spent utilising time-series to plot the patterns of crime.
[Modal] Value
Of course, the premise upon which the analytic unity of time-
P:rel Token
series relies is that the ratio between recorded and actual
criminality was either fairly constant or changed in an
intelligible manner. Encouraged by an optimistic assessment of
the validity of using indictment totals as a guide to change in
$-177-$

Verbiage

property, notably theft and handling stolen goods and burglary.
Actor
Violent and sexual offences and robbery, although receiving
$\frac{\text { P:- C: Qual -mat }}{\text { most publicity, have generally accounted for only } 5 \text { per cent of }}$
all crime. This distribution of the main categories of crime
P: rel \quad Value \quad C: Time
has remained much the same throughout the century. $\frac{\text { C: Time }}{\text { In the }}$
$\frac{\text { post-war years, however, crimes of violence and the more }}{}$
organised crimes against property (robbery, burglary) have mat
C: Qual C: Comparison
increased at a faster rate than that of crime in general.
C: "Place" Token C: Time
P: rel C: "Place"
decades has been in malicious woundings, associated with pub
Token
brawls, domestic disputes and violence among adolescents. The
trend in homicides (including murder, manslaughter and
P:-[Text]-rel Value C: Time C: infanticide) has also been upwards since the early 1960s. From "Place" Token around 300 homicides each year in the early 1960 , the current
 P: mat C: Concession
bring it back have been resisted, despite the crime's increased C: "Place"
incidence. In over 40 per cent of homicide offences in 1983,

Actor P : mat Range
indictments. Cockburn (1977b) found that almost one half of all indicted thieves were accused of stealing merely clothes or C: Time Token
Iinen. In the nineteenth century eighty per cent of Black
Pirel C: Reason
Country committals were for larceny, mainly industrial thefts

C: Reporter
in indictments for murder and manslaughter (Beattie, 1974).
Actor
An analysis of violent offences in the mid-nineteenth century
P: mat C:"Place" C: Report points to an extremely low level of illegal homicides (Philips
1977). $\frac{\text { [Text] }}{\text { Nevertheless, }}$ examinations of cases of assault suggest

Verbiage
that violence was a common mode of resolving disputes, either
C: Reporter
individually or collectively (Beattie, 1974; Gatrell and
Hadden, 1972). $\frac{\text { Sayer Thext] P:verb Verbiage }}{\text { The }}$ [Dir] P: ex Existent
crime and protest. There seems to be no consistent coincidence
$\frac{\text { C: Place }}{\text { between these two forms of behaviour, but there is an }}+\frac{+ \text { Existent }}{\text { an }}$ C: Place
apparent association between property offences and political C: Time C: Reporter
protests in the period of the Industrial Revolution (Gatrell

C: Reporter

members of criminal gangs (Samaha, 1974; Cockburn, 1977b)--
$\frac{\text { [Comment] }}{\text { a very different image from that to be found in the rogue }}$

inhabitants of a distinct sub-culture, participants in
P: mat Actor
organised crime (Pound, 1971), is replaced by that of a sub-
group of the migrant population, composed of young males, commonly pushed out of forest and pastoral areas by scarcity of work into the regions of mixed farming in South East England C: Reporter Range and the Midlands (Beier, 1974 and 1978; Slack, 1974). This re-
evaluation of the stereotype of the criminal offender has also
-mat \quad Actor
been advanced by two important studies of nineteenth century
C: Reporter
crime (D. Hay et al., 1975a; E.P. THompson, 1975b). They

P: verb Verbiage
stress the difficulty of making a clear-cut division between
the working poor and a criminal Iumpenproletariat'. C: Place

Possessed P: rel Possessor
essays the eighteenth century offender belongs to the exploited
labouring poor not some parasitic urban underworld. C: "Place"

Attribute Carrier
difficult to find any neat distinction between the criminal
class and the honest respectable poor' $\frac{[T e x t][\text { [Dir] P: rel }}{}$
Attribute Carrier
possible that the notion of a well-defined hereditary criminal
class might have some validity in enclaves of urban areas, like
C: Report
the 'China' district of Merthyr Tydfil in South Wales (Jones
and Bainbridge, 1979). $\frac{[T e x t] \text { [Dir] P: ver Verever, it has been suggested that }}{\text { Moreover }}$
-iage
belief in a separate criminal class'broke down in the face of a more scientific classification of offenders, there existed,
ironically, an older and more recidivist criminal and prison
C: Concession
population than ever before -- although this might be explained
by more efficient police recording of previous convictions
C: Reporter
(Gatrell and Hadden, 1972).

HP3:5 para 8 (Quantitative value of indictments)
Token P: rel
The upward trend of officially recorded crime is not
[Modal] Value
Actor
or the real' rate of its increase. Variations in recorded P:-[Text]-mat Range
crime rates can often reflect the processes by which crime is
Verbiage
reported and recorded. Most crimes which become known to the P: verbal Sayer
police are reported by the victim or by members of the public -188-

HL3:5 paras 13-16 (Quantitative value of indictments)
Actor [Text] $\mathrm{P}:$ mat \quad C: Concession
The research Iiterature also undermines, although not always
Goal
explicitly, the quantitative worth of indictments. $\frac{\text { Range }}{\text { By means }}$

C: Comparison C: Reporter
Trecognizance rather than by indictment (Morrill, 1976;
Ingram, 1977). $\frac{\text { Coken }}{\text { Cases of poaching, prosecuted under the game }}$ P:rel C: Oual Value
laws, were increasingly the responsibility of magistrates in
C: Reporter
petty sessions (Munsche, 1977; Beattie, 1974; Hay, 1975c;
Jones, 1976b). $\frac{\text { Range }}{\text { Many moral offences were dealt with in the }}$
C: Reporter
ecclesiastical courts (Marchant, 1969; Houlbrooke, 1979;
Sharpe, 1977). [Dir] [Text] P:rel Attribute C: Concession Carrier
early-modern era, to examine the role of civil litigation in
the prosecution of essentially criminal causes, as well as the
C: Reporter
contribution of parochial courts (Ingram, 1977; Munsche, 1977).
$\frac{\text { Goal } \quad[\text { Text }] \quad \text { P: mat } \quad \text { C: "Place" }}{\text { Some offenders, moreover, were not brought into contact with }}$
C: Oual Token P: rel
the legal system at all. A prosecution for witcheraft was
[Text] Value C: Time
often the final expression of community action after informal
$-190-$

Token P: rel
The frequency of infanticide between 1840 and 1880 was related,
 C: Reporter Token found in the popular and medical press (Sauer, 1978). The frequency of theft during the same period could be a response to the determination of employers to crack down upon semiC: Reporter + [Text] Actor customary perquisites (Philips, 1977). And, finally, studies of popular resistance to the New Police of the nineteenth century, of the police crusades against street prostitution, and of the development of notions of juvenile delinquency P : mat Range
illustrate that local crime waves' could be generated by conscious police efforts, stimulated by middle-class members of the Puritan lobby, to outlaw street activity which had hitherto C: Reporter
been accepted (Malcolmson, 1973; Storch, 1975, 1976 and 1977; Gillis, 1975).

Token
More long-term and widespread changes in the pattern of crime P: rel Value
could be dependent upon factors such as the public sensitivity to crime (and the related reluctance of readiness to prosecute) and the form and efficiancy of the system of prosecution and [Style] Senser
trial. Broadly speaking, the sixteenth and seventeenth
P: ment Phenomenon
centuries witnessed an expansion of formal justice at quarter
sessions and assizes at the expense of more localized justice.

were tried either at higher of lower courts (Philips, 1977).

[Text] Actor	P: mat	C: Concession

In all, historians have produced, at times despite themselves,

Value
Another equally significant result of this critical approach to
the judicial documents has been a more searching appraisal of
the meaning of criminality, of the function of criminal justice
and the role of law in the development of the state.

HP3:6 para 14 (Socioeconomic variables)
C: Condition
If penal philosophy and the types of punishments used have had
[Text] Token
but a marginal impact on the volume of crime, what about larger
Actor
social and economic forces? London and the big provincial P: mat Range
cities and towns accounted for over 40 per cent of crime

$$
-196-
$$

crime rate, particularly the rise in delinquency in the 1950 s

post-war trend in crime.

HL3:6 para 5 (Socioeconomic variables)
Beneficiary
The relationship between crime and other variables such as P:- [Text] -"mat" Range urbanisation and economic conditions has also received some
attention. Sayer Beattie (1974) stresses the broad differences
between rural and urban parishes in the eighteenth century. Tok
P: rel C: Temp Value
$\frac{\text { are still in need of a study of the association between }}{}$
crime and the rate of urbanisation in the nineteenth century,

C: Concession
although judging from American studies it is probable that no
association between increased urban crime rates and rapid
urbanisation will be found. $\frac{\text { Range }}{\text { The connexion between property }}$

P:- C: Quality
offences and prices (or trade cycle) has been more fully
$\frac{\text {-mat }}{\text { examined. }} \frac{\text { Actor }}{\text { Samaha (1974) and Cockburn (1977b) find mat Range }}$

HL3:7 paras 11-12 (Alternatives to positivism) cf. also 13-16 above

Sources, Concepts and Methods in Historical Crime
Actor The exploration of this new field of social history has led to "place"
conceptual and methodological issues. Actor

| C: Time word crime' itself |
| :--- | :--- |
| still eludes common definition among historians. Should |

Actor - mat [Text] \quad Range
the early modern scholar include, for example, the social and
moral delinquencies (drunkenness, sexual lapses, economic
offences) which were dealt with largely by the Church courts?

Actor $\frac{\mathrm{P}: \text { mat Range }}{\text { An answer to such questions requires the unscrambling of the }}$
different court systems and categories of criminal offence, a
$\overline{\text { task which is already under way (Baker, 1977a). } \frac{\text { C: Reporter }}{} \text { Another vital }}$
$\frac{\mathrm{P}: ~ \text { rel Token }}{\text { issue is the worth of court records in documenting forms of }}$ criminal behaviour, types of criminal offender and structures

	[Text]	[Text]	P:-	Actor
of social control.	To wh	for ex	does	the

P : mat Range
illustrates that historians have developed a critical awareness

of some of the limitations of their documentation, and have -203-

HL3:8 paras 25-26 (Conclusion)

definition of crimes engendered by case law. Little is
C: Time P: ment C: Matter
yet known about distinct categories of offenders,
including juvenile, white collar and persistent ciminals. Carrier P: rel The efficiency and routinization of the judicial process would Attribute C: Condition
be easier to gauge if we knew more about the changing ratios between known crime, arrests, commitals to trial and $\overline{\text { convictions. }} \frac{+ \text { [Text] } \text { And finally, more } \mathrm{P}: \text { mat } \mathrm{C} \text { (Matter }}{}$ and practices of sentencing and on the changing rates of
\qquad
punishment. Even so, the state of the subject has developed C: Qual C: Time C: Result sufficiently in the last decade to allow valuable exchanges to take place between historians working in different centuries (as witness the conference of the Social History Society, 'Crime, Violence and Social Protest') and in different countries (as witness the conference organized by the Dutch group for the Study of the History of Crime and the Criminal Law). Actor A comparative approach to the assessment of past
$\frac{\text { P: "mat" } \quad \text { Range } \quad \text { C: Qual } \quad \text { C: }}{\text { patterns of criminality will advance the subject enormously, as }}$ Condition
Iong as scrupulaous attention is paid to the uniqueness of
[Text] C: Condition
historical detail and context.
historical detail and context. For if there is one precept

Value P: rel Token
do which the historian should cleave, it is that the
definion and development of crime are formations of distinct

Appendix C: Thematic Profiles

The following tables give an indication of the types of participant and circumstance found as topical themes, as well as the types of textual and modal themes, in the extracts from each corresponding pair of popular and learned articles. At the top of each table, the total number of themes in each extract is given (popular/learned). The figures below show the percentage of thematic types which constitute that figure. These figures are rounded off to the nearest percentage or 0.5% 。

Extracts: BP1/BL1
 Thematic profile:

Thematic profile: Extracts: BP2/BL2

1	2	3	4	5	Total
43/23	27/3	14/14	11/30	44/6	139/76
32/39	48/33	43/57	$36 / 40$	25/17	34/41
14/17	4/0	21/21	0/13	16/17	12/14
5/0	11/0	0/0	18/3	0/17	5/3
$2 / 0$	0/33	14/0	18/10	9/0	6/4
0/4	0/0	0/0	0/0	0/0	0/1
$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	0/0
$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	0/0
$0 / 0$	4/0	7/14	$0 / 0$	$0 / 0$	1/3
5/0	4/0	$0 / 0$	$0 / 0$	$0 / 17$	2/1
$0 / 0$	4/0	7/7	$0 / 3$	0/17	1/4
$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	0/0	$0 / 0$
$0 / 0$	7/0	$0 / 0$	0/10	2/0	$2 / 4$
$0 / 4$	0/0	$0 / 0$	0/0	$0 / 0$	1/0
$0 / 0$	0/33	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 1$
$0 / 0$	0/0	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$
$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$
$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$
$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	0/0	$0 / 0$
2/0	4/0	$0 / 0$	$0 / 0$	7/0	3/0
$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	0/0
$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	2/0	1/0
5/0	$0 / 0$	7/0	$0 / 3$	7/0	4/1
$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$
0/0	0/0	0/0	0/0	2/0	1/0
0/4	4/0	$0 / 0$	0/0	$0 / 0$	1/1
0/0	$0 / 0$	0/0	0/7	0/17	0/4
$23 / 30$	11/8	8/8	$27 / 7$	18/8	17/12
12/0	0/0	0/0	0/3	11/0	7/1
0/0	0/0	0/0	$0 / 0$	$0 / 0$	0/0
0/0	0/0	0/0	0/0	0/0	$0 / 0$

Theme type	1	2	3	4	Total
Number of themes in extracts:	24/44	4/40	17/8	13/10	58/102
\% Topical themes (ideational):					
Participant types: material		25/22	6/25	31/20	$19 / 28$
relational	$21 / 18$	$0 / 20$	$23 / 12$	$23 / 10$	$21 / 18$
verbal	4/0	0/2	0/0	0/20	2/3
mental	4/4	$0 / 0$	18/12	$0 / 10$	7/4
behavioral	$0 / 0$	$0 / 0$	0/0	0/0	0/0
Circumstance types: extent: space	$0 / 0$	$0 / 0$	$0 / 0$	0/0	$0 / 0$
time	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	0/0
location: space	0/4	0/5	0/0	$0 / 0$	0/4
time	21/4	25/2	12/25	$0 / 0$	
manner: means	$0 / 0$	$0 / 0$	0/0	$0 / 0$	$0 / 0$
quality	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$
comparison	$0 / 0$	$0 / 2$	$0 / 0$	$0 / 0$	$0 / 1$
cause reason	$0 / 0$	$0 / 0$	0/0	$0 / 0$	$0 / 0$
purpose	$0 / 0$	$0 / 0$	0/0	$0 / 0$	$0 / 0$
behalf	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$
accompaniment	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$
matter	$0 / 0$	0/0	$0 / 0$	$0 / 0$	$0 / 0$
role	0/0	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$
concession	4/0	0/2	0/0	0/10	2/2
reporter	$0 / 0$	$0 / 0$	0/0	0/0	0/0
frequency	$0 / 0$	$0 / 7$	6/0	0/0	2/3
condition	$0 / 0$	$0 / 5$	$6 / 0$	0/0	2/2
result	$0 / 0$	$0 / 0$	$0 / 0$	0/0	0/0
\% contrast	0/0	0/2	0/0	0/0	0/0
\% Textual themes:					
existential	$0 / 4$	$0 / 2$	0/0	8/0	2/3
directive	$4 / 2$	25/2	6/0	$23 / 0$	10/2
cohesive: polar	21/23	25/17	12/25	15/20	17/20
question: polar	0/0	0/2	0/0	0/10	2/1
$\begin{gathered} \text { \% Modal themes (interpersonal): } \\ \text { attitudinal: } \\ \text { style: } \end{gathered}$	$0 / 0$ $0 / 0$	$0 / 2$ $0 / 0$	12/0 0/0	$\begin{aligned} & 0 / 0 \\ & 0 / 0 \end{aligned}$	$\begin{aligned} & 3 / 1 \\ & 0 / 0 \end{aligned}$

Thematic profile: Extracts: CP1/CL1

Thematic profile: Extracts: CP2/CL2

Theme type	1	2	3	4	5	6	Total
Number of themes in extracts:	10/5	30/22	11/11	8/7	27/41	7/17	93/103
Participant types: material	40/0	17/4	45/27	25/43	22/36	14/47	25/29
relational	20/40	13/18	27/9	25/14	15/17	28/6	18/15
verbal	0/0	0/14	$0 / 0$	0/0	$0 / 2$	$0 / 0$	0/4
mental	30/20	17/9	9/18	0/0	$0 / 7$	0/0	10/8
behavioural	0/0	0/0	0/0	0/0	$0 / 0$	0/0	0/0
Circumstance types: extent: space	0/0	$0 / 0$	0/0	$0 / 0$	$0 / 0$	$0 / 0$	0/0
circtime	0/0	$0 / 0$	0/0	0/0	$0 / 0$	0/0	0/0
location: space	0/0	0/4	0/0	0/0	0/2	$0 / 0$	0/2
time	0/0	$3 / 0$	$0 / 0$	25/0	18/9	0/0	9/2
manner: means	0/0	0/0	$0 / 0$	$0 / 0$	0/2	$0 / 0$	$0 / 1$
quality	$0 / 0$	$0 / 0$	$0 / 0$	0/0	0/0	0/0	$0 / 0$
comparison	0/20	$0 / 4$	$0 / 0$	0/0	$0 / 5$	$0 / 0$	0/4
cause reason	0/0	3/4	$0 / 9$	0/0	$0 / 0$	0/0	1/2
purpose	0/0	0/0	0/0	0/0	$0 / 0$	0/0	0/0
behalf	0/0	$0 / 0$	0/0	0/0	$0 / 0$	0/0	0/0
accompaniment	0/0	3/0	0/0	$0 / 0$	$0 / 0$	0/0	1/0
matter	$0 / 0$	0/0	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	0/0
role	0/0	0/0	0/0	$0 / 0$	0/0	0/0	$0 / 0$
concession	0/0	3/0	9/9	0/0	$0 / 0$	0/0	$2 / 1$
reporter	$0 / 0$	0/0	$0 / 0$	$0 / 0$	0/0	0/0	0/0
frequency	0/0	0/4	0/0	0/0	4/0	0/0	1/1
condition	0/0	3/0	$0 / 0$	0/0	11/0	0/0	4/0
result	$0 / 0$	0/0	0/0	$0 / 0$	$0 / 0$	0/0	0/0
contrast	0/0	3/0	0/0	0/0	0/0	0/0	1/0
\% Textual themes:					0/0	14/0	2/0
directive	0/0	3/4	0/9	0/28	4/0	14/6	3/5
cohesive:	0/20	13/32	9/18	12/14	22/19	28/41	15/25
question: polar	$0 / 0$	0/0	$0 / 0$	0/0	$0 / 0$	0/0	$0 / 0$
\% Modal themes (interpersonal) ${ }^{\text {wh- }}$	0/0	0/0	$0 / 0$	0/0	0/0	0/0	0/0
\% Modal themes (interpersonal):	10/0	13/0	0/0	$12 / 0$ $0 / 0$	$4 / 2$ $0 / 0$	$0 / 0$ $0 / 0$	$7 / 1$ $0 / 0$
style:	0/0	0/0	0/0	$0 / 0$	0/0	0/0	$0 / 0$

Theme type	1	2	3	4	5	Total
Number of themes in extracts:	19/11	.13/13	5/8	23/24	7/17	84/90
\% Topical themes (ideational):						
Participant types: material		15/15	60/37	35/62	14/0	21/25
relational	$21 / 27$	8/38	40/12	35/12	$57 / 23$	23/18
verbal	0/9	0/0	$0 / 0$	$0 / 4$	$0 / 0$	0/2
mental	$0 / 0$	15/0	0/12	$0 / 4$	$0 / 0$	2/2
behavioural	$0 / 0$	$0 / 0$	0/0	$0 / 0$	$0 / 0$	0/0
Circumstance types: extent: space	0/18	0/0	0/0	0/0	$0 / 0$	0/2
time	0/18	15/15	$0 / 0$	4/0	$0 / 0$	3/4
location: space	0/0	0/0	$0 / 0$	$0 / 0$	0/12	$0 / 2$
time	$0 / 0$	0/0	$0 / 0$	$0 / 4$	0/6	$0 / 2$
manner: means	0/0	0/0	0/0	0/0	$0 / 0$	$0 / 0$
quality	$0 / 0$	8/0	$0 / 0$	4/0	$0 / 0$	2/0
comparison	0/0	$0 / 0$	$0 / 0$	0/0	$0 / 0$	$0 / 0$
cause reason	0/0	0/8	$0 / 0$	4/0	$0 / 0$	1/1
purpose	$5 / 0$	0/0	$0 / 0$	$0 / 4$	$0 / 0$	1/1
behalf	0/0	0/0	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$
accompaniment	0/0	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$
matter	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 4$	$0 / 0$	$0 / 1$
role	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$
concession	0/0	$0 / 0$	$0 / 0$	$0 / 0$	0/6	$0 / 1$
reporter	0/0	0/0	0/0	$0 / 4$	$0 / 0$	$0 / 1$
frequency	5/0	0/0	0/0	$0 / 0$	0/6	1/1
condition	10/0	15/0	0/12	9/0	$0 / 0$	7/1
result	$0 / 0$	0/0	$0 / 0$	0/0	$0 / 0$	0/0
\% contrast	0/0	0/0	0/0	4/0	0/0	1/0
\% Textual themes: existential	16/0	0/15	0/12	0/0	0/0	3/3
directive	0/0	$0 / 0$	$0 / 0$	$0 / 0$	14/12	1/2
cohesive:	21/0	23/8	0/12	4/0	14/23	11/7
question: polar	0/0	0/0	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$
	$0 / 0$	0/0	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$
\% Modal themes (interpersonal): attitudinal: style:	$0 / 0$ $0 / 0$	$0 / 0$ $0 / 0$	$0 / 0$ $0 / 0$	$0 / 0$ $0 / 0$	$\begin{aligned} & 0 / 12 \\ & 0 / 0 \end{aligned}$	$\begin{aligned} & 0 / 2 \\ & 0 / 0 \end{aligned}$

Thematic profile: Extracts: HP1/HL1

Theme type	1	2	3	4	5	6	Total
Number of themes in extracts:	23/7	10/15	27/65	24/20	17/17	12/12	113/136
\% Topical themes (ideational):							
Participant types: material	30/0	30/33	33/28	21/50	23/18	50/33	30/29
relational	22/28	20/7	4/11	29/5	18/23	17/8	18/12
verbal	0/0	0/0	4/0	0/0	0/0	0/0	1/0
mental	9/0.	20/0	11/5	0/0	6/6	$0 / 0$	7/3
behavioural	0/0	0/0	0/0	0/0	0/0	0/0	0/0
Circumstance types: extent: space	0/0	$0 / 0$	4/0	0/0	0/0	0/8	1/1
circume time	0/0	$0 / 0$	0/0	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$
location: space	$0 / 0$	$0 / 13$	7/15	8/5	12/12	0/17	5/12
time	$0 / 42$	10/13	7/8	8/15	0/0	8/0	5/9
manner: means	$0 / 0$	0/0	$0 / 0$	0/0	0/0	$0 / 0$	0/0
quality	0/0	0/0	$0 / 0$	$0 / 0$	6/0	$0 / 0$	1/0
comparison	4/0	0/0	0/0	$0 / 0$	0/0	0/0	1/0
cause reason	0/0	0/0	$0 / 0$	$0 / 0$	0/0	$0 / 0$	0/0
purpose	$0 / 0$	0/0	$0 / 0$	0/0	0/0	0/0	$0 / 0$
behalf	$0 / 0$	0/0	$0 / 0$	0/0	$0 / 0$	0/0	$0 / 0$
accompaniment	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	0/0	0/0	0/0
matter	$0 / 0$	0/0	$0 / 0$	$0 / 0$	0/0	0/0	0/0
role	$0 / 0$	$0 / 0$	0/0	$0 / 0$	0/0	0/0	$0 / 0$
concession	0/0	$0 / 0$	$0 / 0$	$0 / 5$	$0 / 6$	$0 / 0$	$0 / 1$
reporter	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	0/0	$0 / 0$	$0 / 0$
frequency	0/0	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	0/0	0/0
condition	4/0	$0 / 0$	$0 / 0$	$0 / 0$	0/0	0/0	$0 / 0$
result	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	0/0	0/8	0/1
contrast	0/0	0/0	0/0	0/0	0/0	0/0	$0 / 0$
\% Textual themes: 0							
directive	$0 / 0$	$0 / 7$	$0 / 3$	0/0	6/0	0/0	1/2
cohesive: polar	22/68	28/27	$38 / 31$	25/100	29/29	25/17	28/67
question. wh-	9/0	0/0	$0 / 0$	- /0	0/0	0/0	2/0
\% Modal themes (interpersonal):	$0 / 0$ $0 / 0$	$0 / 0$ $0 / 0$	$0 / 0$ $0 / 0$	$1 / 0$ $0 / 0$	$0 / 0$ $0 / 0$	$0 / 0$ $0 / 0$	$1 / 0$ $0 / 0$

Thematic profile: Extracts: HP2/HL2

Theme type	1	2	3	4	5	Total
Number of themes in extracts:	11/17	29/7	7/13	19/56	22/58	88/151
\% Topical themes (ideational):						
Participant types: material	18/18	31/28	28/23	21/18	14/31	23/24
relational	0/12	7/0	14/15	0/7	9/0	6/5
verbal	0/12	0/0	0/8	0/5	0/0	0/4
mental	9/0	7/28	14/8	10/11	4/2	8/6
behavioural	0/0	0/0	0/0	0/0	0/0	0/0
Circumstance types: extent: space	0/0	0/0	0/0	0/0	0/0	$0 / 0$
time	0/0	0/0	0/0	0/0	0/0	0/0
location: space	0/6	3/0	0/0	5/2	4/7	3/4
time	18/29	3/28	14/8	11/9	32/17	15/15
manner: means	0/0	0/0	0/0	0/0	0/0	0/0
quality	0/0	0/0	0/0	$0 / 0$	0/0	0/0
comparison	0/0	0/0	0/0	5/2	0/3	1/2
cause reason	0/0	7/0	0/0	0/0	9/2	4/1
purpose	0/0	0/0	0/0	5/0	0/0	1/0
behalf	0/0	0/0	0/0	0/0	0/0	0/0
accompaniment	0/0	0/0	0/0	0/0	0/0	0/0
matter	0/0	0/0	0/0	0/0	0/0	0/0
role	0/0	3/0	0/0	0/0	0/0	1/0
concession	9/0	0/0	0/0	0/0	0/5	1/2
reporter	0/0	0/0	0/0	0/0	0/0	0/0
frequency	0/0	0/0	0/0	10/0	0/0	2/0
condition	0/0	0/0	0/0	0/11	0/0	0/1
result	0/0	0/0	0/0	0/0	0/0	0/0
\% Textual contrast	0/0	0/0	0/0	0/2	0/0	0/1
\% Textual themes: existential	0/0	0/0	0/0	5/0	0/0	1/0
directive	$0 / 0$	0/0	0/8	0/5	4/5	$1 / 5$
cohesive: question: polar	$36 / 12$ $0 / 0$	$38 / 14$ $0 / 0$	28/23	$26 / 32$ $0 / 0$	23/24	$31 / 25$
question: ${ }_{\text {wh- }}$	$0 / 0$ $9 / 0$	0/0 $0 / 0$	$0 / 0$ $0 / 0$	$0 / 0$ $0 / 0$	$0 / 2$ $0 / 0$	$0 / 1$ $1 / 0$
\% Modal themes (interpersonal):	0/12	0/0	0/8	0/3	0/2	0/4
style:	0/0	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	0/0

Thematic profile: Extracts: HP3/HL3

Theme type	1	2	3	4	5	6	7	8	Total
Number of themes in extracts:	7/14	14/27	16/14	13/19	12/53	19/20	24/15	8/27	113/189
\% Topical themes (ideational): $\quad 37 / 2143 / 33$ 31/36 $23 / 37$ 25/53 $26 / 2837 / 4762 / 26$									
Participant types: material	57/21	43/33	31/36	23/37	25/53	26/28	37/47	62/26	35/37
relational	0/21	14/11	19/7	23/16	8/19	10/20	37/13	0/11	18/15
verbal	14/0	0/7	0/7	0/5	50/0	0/5	4/13	0/0	7/4
mental	0/0	0/4	0/0	0/0	0/4	10/5	4/0	0/4	3/3
behavioural	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0
Circumstance types: extent: space	0/0	0/0	19/0	8/16	0/2	0/0	0/7	0/4	4/3
circume time	0/0	0/4	0/0	0/0	0/0	0/5	0/0	0/0	0/1
location: space	0/7	0/0	0/0	0/0	0/0	0/15	0/0	0/0	0/2
time	28/7	28/4	12/14	8/0	0/6	0/0	0/0	0/0	8/4
manner: means	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0
quality	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0
comparison	0/0	$0 / 0$	$0 / 0$	8/0	0/0	0/0	0/0	0/4	1/0
cause reason	$0 / 0$	$0 / 7$	0/0	0/0	0/2	5/0	0/0	0/0	1/1
purpose	0/0	$0 / 0$	0/0	0/0	0/0	0/0	0/0	0/0	0/0
behalf	$0 / 0$	$0 / 0$	$0 / 0$	0/0	$0 / 0$	0/0	0/0	0/0	0/0
accompaniment	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0
matter	$0 / 0$	0/0	0/0	0/5	0/0	0/0	0/0	0/0	0/0
role	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0
concession	0/14	0/0	0/0	0/0	0/0	0/0	0/0	0/4	0/1
reporter	$0 / 0$	0/0	0/0	0/0	0/0	0/0	$0 / 7$	0/0	0/0
frequency	0/7	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0
condition	0/0	0/4	0/0	0/0	0/0	10/0	4/0	0/4	3/1
result	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0
contrast	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0
\% Textual themes:									1/2
directive	$0 / 7$	0/0	0/0	15/10	0/2	5/0	0/0	$0 / 15$	3/4
cohesive:	$0 / 7$	14/18	12/21	15/10	17/9	26/10	12/7	25/22	16/13
question: polar	0/0	0/0	0/0	0/0	0/0	0/0	0/7	0/0	0/0
questions wh-	$0 / 0$	0/0	0/0	0/0	0/0	0/0	0/0	12/0	1/0
\% Modal themes (interpersonal): attitudinal: style:		0/7	0/0	0/0	0/2	5/0	0/0	0/4	1/2
	0/0	0/0	$0 / 0$	$0 / 0$	$0 / 2$	$0 / 5$	$0 / 0$	$0 / 0$	0/1

> Appendix D
> Summary of Process, Participant and Circumstance Types in the Matched Extracts

Key
P: Popular article
L: Learned article
Total: Number of process/participant/circumstance types in the matched extract
\%age: Proportion of process/participant/circumstance type as a percentage of the total number of processes/participants or circumstances in the extract

Texts: BP1/BL1

Circumstances	Tot	\%age	Tota	\%age	
Extent: Spatial	1	1.3	2	2	
- Temporal	3	3.8	4	3.9	
Location: Place	36	46.1	26	25.5	
Location time	7	9	7	6.9	
Manner: Means	1	1.3	1	1	
Quality	5	6.4	8	7.8	
Comparison	6	7.7	4	3.9	
Cause: Reason	1	1.3	4	3.9	
Purpose	4	5.1	1	1	
Behalf	0	0	0	0	
Accompaniment	1	1.3	5	4.9	
Matter	0	0	3	2.9	
Role	1	1.3	0	0	
Concession	1	1.3	5	4.9	
Reporter	0	0	28	27.45	
Frequency	5	6.4	3	2.9	
Condition	3	3.8	1	1	
Result	2	2.6	0	0	
$\frac{\text { Summary }}{\text { Total number of }}$ pr	processes:		BP1		BL1
			101		104
	participants		180		188
			78		102

Texts: BP2/BL2

Texts: BP2/BL2

Circumstances		\%age	Tot	\%age	
Extent: Spatial Temporal	$\begin{aligned} & 0 \\ & 0 \end{aligned}$				
Location: Place Time	$\begin{array}{r} 16 \\ 7 \end{array}$	$\begin{gathered} 18.4 \\ 8 \end{gathered}$	$\begin{array}{r} 18 \\ 5 \end{array}$	$\begin{array}{r} 32.7 \\ 9.1 \end{array}$	
Manner: Means Quality Comparison	8 9 8	$\begin{array}{r} 9.2 \\ 10.3 \\ 9.2 \end{array}$	11 3 3	$\begin{aligned} & 20 \\ & 5.4 \\ & 5.4 \end{aligned}$	
Cause: Reason Purpose Behalf	5 4 3	$\begin{aligned} & 5.7 \\ & 5 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & 7.3 \\ & 3.6 \\ & 0 \end{aligned}$	
Accompaniment	1	1.1	1	1.8	
Matter	0	0	0	0	
Role	1	1.1	2	3.6	
Concession	5	5.7	1	1.8	
Reporter	1	1.1	0	0	
Frequency	5	5.7	3	5.4	
Condition	8	9.2	2	3.6	
Result	6	6.9	0	0	
Summary Total number of processes: participants circumstances			BP2 111 198 87		BL2 73 117 55

Texts: BP3/BL3

Texts: BP3/BL3

Texts: CP1/CL1

Texts: CP1/CL1

Circumstances		\%age	Tota	\%age
Extent: Spatial Temporal	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 0 \end{aligned}$
Location: Place	$\begin{array}{r} 20 \\ 6 \end{array}$	$\begin{array}{r} 29.4 \\ 8.8 \end{array}$	$\begin{array}{r} 10 \\ 6 \end{array}$	$\begin{aligned} & 18.9 \\ & 11.3 \end{aligned}$
Manner: Means Quality Comparison	7 8 2	10.3 11.8 2.9	4 8 1	$\begin{array}{r} 7.5 \\ 15.1 \\ 1.9 \end{array}$
Cause: Reason Purpose Behalf	1 3 0	1.5 4.4 0	$\begin{aligned} & 3 \\ & 2 \\ & 0 \end{aligned}$	5.7 3.8 0
Accompaniment	4	5.9	0	0
Matter	1	1.5	1	1.9
Role	3	4.4	1	1.9
Concession	1	1.5	0	0
Reporter	2	2.9	4	7.5
Frequency	1	1.5	3	5.7
Condition	7	10.3	7	13.2
Result	2	2.9	1	1.9
Summary Total number of processes: participants circumstances			CP1 87 165 53	$\begin{array}{r} \text { CP2 } \\ \hline 101 \\ 180 \\ 68 \end{array}$

Texts: CP2/CL2

Process					Participants		P L		
		age		age		Tota	\%age		\%age
verbal	1	1.3	3	3.6	Sayer	0	0	1	0.8
					Verbiage	1	0.8	3	2.4
					Receiver	0	0	0	0
					Target	0	0	0	0

behav	0	0	0	0	Behaver	0	0	0	0

Texts CP2/CL2

Texts: CP3/CL3

Process	Tota	P\%age	Total	\%age	Participants	Total	\%age	Total	\%age
mat	29	47.5	31	45.6	Actor	22	21.1	17	14.6
					Range	20	19.2	19	16.4
					Goal	5	4.8	9	7.8
					Beneficiary	0	0	2	1.7
					Attribute	1	1	0	0
					Value	0	0	1	0.9

Proce		\%age		\%age	Participan	Tota	\%age		\%age
relat	28	45.9	28	41.2	Token	12	11.5	19	16.4
					Value	10	9.6	19	16.4
					Carrier	8	7.7	7	6.0
					Attribute	8	7.7	7	6.0
					Possessor	7	6.7	1	0.9
					Possessed	7	6.7	2	1.7

Process			-		Participants				\%age
				age		ta			
verbal	0	0	6	8.8	Sayer	0	0	4	3.4
					Verbiage	0	0	5	4.3
					Receiver	0	0	1	0.9
					Target	0	0	0	0

| mental | 1 | 1.6 | 0 | 0 | Senser
 Phenomenon | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | 1 | 1 | 0 | 0 | |

behav	0	0	0	0	Behaver	0	0	0	0

Texts: CP3/CL3

Texts: HP1/HL1

Process			\%age		Participants	P		\%age	
		ge							
verbal	2	2.3	1	0.9	Sayer	2	1.3	1	0.7
					Verbiage	2	1.3	1	0.7
					Receiver	0	0	0	0
					Target	0	0	0	0

behav	0	0	0	0	Behaver	0	0	0	0

Circumstances	Ot	$\% \mathrm{ag}$	Total	\%age	
Extent: Spatial Temporal	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 2 \\ & 2.7 \end{aligned}$	
Location: Place Time	31 18	$\begin{aligned} & 31 \\ & 18 \end{aligned}$	$\begin{aligned} & 48 \\ & 46 \end{aligned}$	$\begin{aligned} & 32.2 \\ & 30.9 \end{aligned}$	
Manner: Means Quality Comparison	6 6 7	6 6 7	2 7 8	$\begin{aligned} & 1.3 \\ & 4.7 \\ & 5.4 \end{aligned}$	
Cause: Reason Purpose Behalf	4 3 3	$\begin{aligned} & 4 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 4 \\ & 1 \\ & 4 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 0.7 \\ & 2.7 \end{aligned}$	
Accompaniment	5	5	6	4	
Matter	4	4	3	2	
Role	3	3	0	0	
Concession	2	2	5	3.4	
Reporter	0	0	0	0	
Frequency	5	5	5	3.4	
Condition	1	1	0	0	
Result	0	0	3	2	
Summary Total number of processes: participants: circumstances:			$\begin{aligned} & \frac{H P 1}{85} \\ & 153 \\ & 100 \end{aligned}$		HL1 105 176 149

Texts: HP2/HL2

Total \%age Total \%age					Participants				
relat	11	15.5	25	22.3	Token	3	2.3	14	7
					Value	3	2.3	10	5
					Carrier	7	5.4	7	3.5
					Attribute	7	5.4	7	3.5
					Possessor	1	0.8	4	2
					Possessed	1	0.8	4	2

Process					Participants		P L		
	Total \%age Total \%age					Tot	\%age		\%age
verbal	3	4.2	17	15.2	Sayer	2	1.5	9	4.5
					Verbiage	3	2.3	15	7.5
					Receiver	0		1	0.5
					Target	1	0.8	4	2

Proces	Total \% ase		\%age		Participants			$L_{\text {\%age }}$			
			Tot	\%age							
mental	15	21.1			18	16.1	Senser	12	9.2	14	7
					Phenomenon	15	11.5	18	9		
					Attribute	1	0.8		1		

Texts: HP2/HL2

Circumstances	ta	\%age	tal	\%age	
Extent: Spatial	3	3.8	1	0.8	
Temporal	2	2.5	1	0.8	
Location: Place	20	25.3	23	19.5	
Time	18	22.8	38	32.2	
Manner: Means	5	6.3	1	0.8	
Quality	7	8.9	7	5.9	
Comparison	3	3.8	7	5.9	
Cause: Reason	1	1.3	4	3.4	
Purpose	6	7.6	5	4.2	
Behalf	2	2.5	3	2.5	
Accompaniment	0	0	9	7.6	
Matter	0	0	0	0	
Role	2	2.5	5	4.2	
Concession	2	2.5	4	3.4	
Reporter	0	0	0	0	
Frequency	3	3.8	0	0	
Condition	0	0	4	3.4	
Result	5	6.3	6	5.1	
$\frac{\text { Summary }}{\text { Total number of pr }}$			HP2		HL2
			71		112
			130		200
circumstances			79		118

Texts: HP3/HL3

Process		P			Participants	Total \%age Total \%age			
mat	47	48.9	87	54	Actor	33	21.1	63	23.2
					Range	23	14.7	55	20.3
					Goal	3	1.9	17	6.3
					Beneficiary	2	1.3	3	1.1
					Attribute	2	1.3	1	0.4
					Value	0	0	1	0.4

Proces					Particip				
	Total \%age Total \%age					Tota	\%age		\%age
relat	29	30.2	45	27.9	Token	25	16	28	10.3
					Value	24	15.4	26	9.6
					Carrier	4	2.6	12	4.4
					Attribute	4	2.6	13	4.8
					Possessor	1	0.6	3	1.1
					Possessed	1	0.6	1	1.1

Total \%age Total \%age					Particip	Tota	\%age		\%age
verbal	13	13.5	16	9.9	Sayer	10	6.4	12	4.4
					Verbiage	13	8.3	16	5.9
					Receiver	0	0	0	0
					Target	0	0	0	0

Process ${ }^{\text {P }}$ Total \%age Total \%age Participants ${ }^{\text {L }}$ Total \%age Total \%age

exist $20.1 \quad 5 \quad 3.1$ Existent $\quad 2 \quad 1.3 \quad 6 \quad 2.2$

behav	0	0	0	0	Behaver	0	0	0	0

Texts: HP3/HL3

Circumstances	Ota	\%age	rotal	\%age	
Extent: Spatial Temporal	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & 0 \\ & 1.5 \end{aligned}$	
Location: Place	$\begin{aligned} & 20 \\ & 24 \end{aligned}$	$\begin{aligned} & 22.7 \\ & 27.3 \end{aligned}$	$\begin{aligned} & 34 \\ & 27 \end{aligned}$	$\begin{aligned} & 17 \\ & 13.5 \end{aligned}$	
Manner: Means Quality Comparison	$\begin{array}{r} 0 \\ 10 \\ 6 \end{array}$	$\begin{array}{r} 0 \\ 11.4 \\ 6.8 \end{array}$	$\begin{array}{r} 6 \\ 21 \\ 8 \end{array}$	$\begin{gathered} 3 \\ 10.5 \\ 4 \end{gathered}$	
Cause: Reason Purpose Behalf	8 1 2	9.1 1.1 2.3	6 3 2	$\begin{aligned} & 3 \\ & 1.5 \\ & 1 . \end{aligned}$	
Accompaniment	2	2.3	6	3	
Matter	3	3.4	5	2.5	
Role	1	1.1	4	2	
Concession	3	3.4	10	5	
Reporter	1	1.1	50	25	
Frequency	1	1.1	6	3	
Condition	3	3.5	5	2.5	
Result	3	3.4	4	2	
Summary Total number of processes: participants: circumstances:			HP3 96 156 88		$\begin{aligned} & \text { HL3 } \\ & \hline 161 \\ & 271 \\ & 200 \end{aligned}$

Appendix E
Tables Showing Processes, Participants and Circumstances in Selected Matched Extracts

Appendix E: Table 1
Material Processes and Participants in Selected Extracts
A: BP1:5/BL1:5
BP1:5

1. Cod, flatfish, dragonets and crabs eat ophiuroids...
2. starfish appeared...
3. I tied Ophiothrix....and set them out...
4. I did the same experiment...
5. we find them...
6. Nothing much happened...
7. Starfish consumed bits of a few tethered brittlestars...
8. most of them survived.
9. ballan wrasses and flatfish ate most of the experimental animals
10. I repeated the experiment...
11. Ophiocomina nigra forms a dense bed...
12. the animals cover the bottom and hold up their arms...
13. The results of the predation experiment mirrored those of the British study.
14. The brittlestars live...
15. Wrasses and other reef fish ate virtually all tethered brittlestars...
16. they all survived...
17. brittlestars must spend their lives...

BL1:5

1. This lake supports a persistent, high density population of the epifaunal, suspension-feeding ophiuroid, Ophiuroid oerstedi.
2. [The ophiuroid density] occurs...
3. the brittlestars were completely consumed...
4. No significant ophiuroid mortality occurred...
5. Aronson and Harms (1985) demonstrated...
6. Sweetings Pond brittlestars expose themselves...

B: BP2:4/BL2:4
BP2:4

1. they find that each geographically distinct population stems from many lineages...
2. they calibrate their "genetic clock"
3. The Berkeley researchers then extrapolate...

BL2: 4

1. This inference comes...
2. we minimize the number of intercontinental migrations...
3. The second implication...can be illustrated...
4. Six other lineages lead...
5. This small region of New Guinea... seems to have been
colonised...
6. we calculate the minimum numbers of female lineages...
7. Each estimate is based...
8. These numbers will probably rise...
9. A time scale can be affixed...
10. People colonised these regions...
11. These times enable us...
12. a detailed account of this calculation appears...
13. the common ancestral mtDNA (type a) links mtDNA types...
14. ancestral types $b-j$ may have existed...
15. When did the migrations from Africa take place?
16. The oldest of the clusters...stems...
17. Its founders may have left Africa...

C: BP3:4/BL3:4
BP3:4

1. a new type of cat may have evolved...
2. Nigel Easterbee is trying to sort out this problem...
3. He is also working...
4. The work has only just begun...

BL3: 4

1. Numbers of "wildcats" have increased...
2. A revision of the analyses reported here...could show whether a drift back had continued...

D: CP1:3/CL1:3
CP1:3

1. A useful analogy captures some of the flavour of this processing...
2. we find only the local interactions of buying and selling..
3. Local constraints govern each single such interaction...
4. the system as a whole settles...
5. Such networks can perform complex tasks...
6. each neuron is primed...
7. These neurons are also linked...
8. Neurons with compatible contents form inhibitory links...
9. we build up a global pattern of activation...
10. The computational work is done...
11. Parallel networks or "connection machines" yield a number of important benefits...
12. the excitatory and inhibitory connections between units complete the pattern...
13. The network can complete the pattern...
14. Such a network can also continue to function...
15. animals need to make quick decisions...
16. the network would store information
17. These units are linked...

CL1:3

1. These positively or negatively weighted connections encode (or come to encode) the data...
2. The unit fires...
3. Two units...may then be linked...
4. it will tend to inhibit the other...
5. Mutually supporting hypo theses may be linked...
6. The links.. .allow the individual units to excite...
7. those units....will be influenced by all the units...
8. An iterative process...ensues...
9. Each unit...is primed...
10. the global network should relax...
11. the system should often get it right.
12. Cooperative algorithms work...
13. global patterns of supply and demand are established by local interactions of buying and selling.
14. Overall knowledge of demand is thus distributed...
15. they exhibit behaviour...
16. no special mechanism is required...
17. the hypotheses are not explicitly stored.

E: CP2:5/CL2:5

CP2:5

1. The computer...needs to adopt numerical methods...
2. The method starts...and then measures the errors...
3. Newton's method calculates simultaneous adjustments...
4. it projects its model of the object...
5. it adjusts its estimate...
6. The process ceases...
7. [the computer] removes all of the edges...
8. the search area decreases...
9. the search ends...
10. many uninterpreted edges remain...

CL2: 5

1. The SCERPO vision system begins...
2. Figure 4 shows an image of a bin of disposable razors...
3. a grouping process is executed...
4. the reader is referred...
5. The groupings are matched...
6. the groupings are used...
7. The viewpoint consistency constraint can greatly improve reliability...
8. Figure 6 shows this sequence of operations...
9. Figure 6a shows an initial grouping...
10. The remainder of Figure 6 follows one of these tentative matches...
11. The initial viewpoint estimate...is made...
12. This is then refined...
13. the identified segments are marked...
14. the search space actually decreases...
15. The final results of this process are shown...
16. more than 15 segments were matched...
17. all the remaining matches provide confirmation...
18. Figure 9 shows...
19. Each edge in this image is drawn solid...
20. it could probably be speeded up...

F: CP3:2/CL3:2
CP3:2

1. We can divide parallel processors...
2. all the processors simultaneously carry out the same task..
3. it would store the coordinates for each object...
4. Each processor would then square, sum and take a root....
5. a parallel-data computer could produce as many results...
6. some processors would run programs...

CL3: 2

1. SIMD (Single Instruction Multiple Data) computers execute the same instruction...
2. each processor runs its own program...
3. the processors must be able to communicate...
4. Data in the memory of one processor that is required by another must be passed...

G: HP1:3/HL1:3

HP1:3

1. Class conflict at the seaside revolve...
2. Most resorts began...
3. they developed trading and residential interests...
4. the established visiting public and its resident allies and dependants took fright.
5. They sought to curb the influx of excursion trains...
6. ...and to restrict the public behaviour of trippers...
7. They also tried to cut through what was of ten a tangle of conflicting jurisdictions...
8. assertive trippers....were met...
9. large landowners...were able to defend the status quo...
10. large sections of a resort could go...
11. it exposed the limitations of the ideal...
12. a more tolerant middle class reached out...
13. All classes mingled...

HL1: 3

1. The earliest railway excursions to the coast both responded to and stimulated this wide range of demand.
2. Many patronized the Sunday School and temperance outings....
3. Ramsgate, for instance, found that not all of the "reputed advocates of total abstinences from intoxicating liquors".. were as staid and decorous as might have been expected.
4. the railways gave facilities...or ran cheap trips...
5. these open excursions attracted those...
6. the working class seaside holiday...catered for all shades of opinion...
7. they posed problems....and offered opportunities...
8. The existing "better-class" visiting public of ten reacted..
9. the new visitors came to constitute a market...
10. the commercialisation of entertainment....made its
appearance...
11. stalls and fairground attractions were supplemented...
12. the commercial excursions and the railways own regular cheap holiday fares dominated the market...
13. the popular resorts were able to grow...
14. some of the more thrifty and resourceful of the better-paid working-class visitors contrived to extend their stay...
15. This may well have been happening...
16. a working-class accommodation industry was clearly emerging
17. the new pattern of demand began to generate employment...
18. The lifestyles of the new visitors of ten generated conflict
19. the working-class season...provided a new impetus...
20. Blackpool provides the most obvious example...
21. the most rapid large-scale resort growth of the late nineteenth century came...
22. resorts like Southport...found difficulty...
23. the picture is complicated by the meteoric rise of Bournemouth...
24. Margate and Ramsgate found that the early appearance of working class visitors was no guarantee...
25. Even Southend's remarkable surge of development at the turn of the century was fuelled... by London commuters...
26. "better class" resort growth was beginning to change its focus...
27. the survival of irregular working habits, of ten associated with a deep attachment to a large number of customary festivals, inhibited the thrift and planning...
28. most industrial workers retained a preference for the safe local pleasures of neighbourly conviviality...

29. Conflicts flared in many resorts...

H: HP2:4/HL2:4
HP2:4

1. the covenanters sent forces...
2. Aberdeen changed hands...
3. the covenanters finally gained control of the region...
4. a force was stationed...
5. harsh reality failed to live up to his expectations...
6. Open opposition to the war, and to his policies in general, was spreading...
7. They could not keep the large army...
8. they would force a showdown...

HL2: 4

1. The king's failure to invade Scotland forced him...
2. Each agreed to the treaty...
3. Ireland continued to play a major part in Charles' plans...
4. Donald Gorm....was apparently supplied with a ship and arms
5. Charles appointed Donald Gorm and Antrim...
6. Antrim was promised Kintyre...
7. the commission made no mention of Ireland...
8. the treaty of Berwick was used...
9. Argyll was assigned responsibility...
10. Dumbarton Castle had been handed back to the king...
11. Strafford's idea of landing troops there had been revived. .
12. Strafford's [plan] was ruined by delays...
13. it probably still required training...
14. the covenanters commissioned Argyll...
15. Argyll would lead forces...
16. the covenanters did not send an army...

I: HP3:6/HL3:6
HP3:6

1. London and the big provincial cities and towns accounted for over 40 per cent of crime...
2. Urbanisation, however, has increased little...and can hardly account for the post-war rise in crime.
3. a substantial and growing amount of crime has occurred...
4. a sizeable proportion of children and young persons have always been found....
5. the high levels of unemployment in the 1930's....has been associated with the upward curve of criminality...
HL3: 6
6. The relationship between crime and other variables...has also received some attention.
7. The connexion between property offences and prices (or trade cycle) has been more fully examined.
8. Samaha (1974) and Cockburn (1977b) find that variations in the incidence of theft closely follow the fluctuations in the price of food...
9. The major peaks in indictments follow the conclusion of wars...
10. Rising prices probably heightened the level of want...
11. the crime rate was affected...by unemployment...
12. the recorded levels of property crime fluctuated...
13. more took to this form of self-help.
14. this relationship began to reverse itself.
15. Property crime...were increasingly associated with periods of prosperity...

Appendix E: Table 2

Relational Processes and Participants in Selected Extracts

A: BP1:5/BL1:5

BP1:5

1. They might have been the chief predators...
2. The relults were identical...
3. The predation argument would be even more convincing
4. This is another species of Ophiothrix...
5. Sweetings Pond is cut off from the Caribbean Sea...
6. and Ophiothrix oerstedii are 100 times more abundant...

7* It is...more than coincidental that there are no reef fish that eat brittlestars in this lake.
8. the main predators have impeccable Palaeozoic pedigrees...
9. Ophiothrix is rare.
10. predation is...an important clue to the abundance of brittlestars.

BL1: 5

1. Sweetings Pond...contains another type of anachronistic community.
2. The ophiuroid density...is two orders of magnitude higher..
3. This behavioural difference is causally related to the difference in predatory activity by fishes...

B: BP2:4/BL2:4
BP2:4

1. This [estimate] fits with data from other species.

BL2: 4

1. It follows that b is a likely common ancestor of all nonAfrican and many African mtDNAs...
2. Asian lineage 50 is closer genealogically to this New Guinea lineage
3** One way of estimating this rate is to consider the extent of differentiation within clusters specific to New Guinea..
3. This rate is similar to previous estimates from animals as disparate as apes, monkeys, rhinoceroses, mice, rats, birds and fishes.
4. [The oldest of the clusters of mtDNA types to contain no African members] included types 11-29...
5. The apparent age of this cluster...is 90000 to 180000 years...
7* it is equally possible that the exodus occurred as recently as 23-105 thousand years ago...

C: BP3:4/BL3:4
BP3:4

1. The Scottish wild cat does seem to be threatened by hybridisation...
2. A sample of skulls from the 1970 s were much more similar in shape to the pure-bred wild cats of the last century.
3* It is possible that....hybridisation with domestic cats is reduced.
4* The trouble with skull measurements is that we can not really be sure what is happening.
5* It should be possible to find out how much interbreeding is going on...
6* It is critical that we find out exactly what is happening to the Scottish wild cat...

BL3: 4

1. [What future changes] are likely?
2. the two events are correlated.

D: CP1:3/CL1: 3

CP1:3

1. Neural networks...are vast parallel networks of richly interconnected but relatively slow and simple processors...
2. The relative slowness of the individual processors (neurons) is offset...
3. Vision and sensori-motor control are prime examples of the usefulness of organising networks in parallel cooperation.
4* The first of these [benefits] is "graceful degradation".
4. This is the capacity to function plausibly well despite the absence of...adequate data.
5. this would correspond to the overall market's capacity to tolerate the loss of a few local trading interactions without affecting the overall picture of supply and demand.
6. Graceful degradation....makes for biological star quality.
7. The second benefit I wish to mention is somewhat more elusive.
8. It [information holism] involves the integration of much of the stored information that we intuitively tend to see as separate, discrete lumps.

CL1:3

1. Parallel Distributed Processing is a generic term covering a class of models exhibiting a variety of algorithmic forms
2. The type of architecture involves a large number of simple processing units connected in parallel...
3. The state of a unit at a given time will depend... on the state of all the units to which it is linked.
4. This [relaxation] will amount to an interpretation of the
intensity array...
5* The essential point to note...is that connectionist machines...are not just vast parallel processors.
5. Parallelism alone is not enough.

7* what counts is a process of cooperative group decision.
8. Cooperation is....local

9\% A homely example...is that of the open market place.
10. The way of encoding and retrieving specific information results in a functional correlate of prototype-based reasoning.
11. This is...a rather general property of PDP-style approaches

12* It perhaps misleading to say that network does not in some sense learn to deploy the rules.
13. it becomes structured
14. this...seems...to amount to a version of such storage

15* What is interesting... is that such rules depend on no special mechanism of rule generation...
16* It is in this sense that distributed models...provide alternatives to a variety of models...

E: CP2:5/CL2:5
CP2:5
1* The first step in recognition is to find a promising correspondence between a few features...
$2 *$ it is mathematically difficult to define an object's position...
3. The equations are nonlinear...
4. they have no straightforward solution.

5: The mathematical technique we adopted at New York Univrsity is Newton's method which Sir Isaac Newton developed in the 17 th century.
6* it is unlikely that more than a few matches will be consistent with the initial estimate of the viewpoint.
7. the number of remaining edges in the image become fewer...

CL2: 5

1. The viewpoint consistency constraint is of little use for the initial stages of matching.
2. human vision does have such "perceptual organization" capabilities for detecting bottom-up viewpoint-independent structure in the image.
3. The methods for perceptual organization are beyond the scope of this paper...
4. Matches between an object and the image that based simply upon viewpoint-invariant properties will... ${ }^{\text {be }}$ unreliable.
5. we can have very reliable identification...
6. The total computation time expended on this example was about 3 min...
7. All of the code beyond the edge detection stage is written in Franz LISP...
8. each processor has its own programs to carry out...
9. This may be quite different from the programs that its neighbours are running.

CL3:2

1. SIMD machines...have direct serial connections...
2. The bus must be fast enough to service all the processors and memories...
3. [the bus] must contain arbitration logic...
4. The BBN Butterfly Computer is such a machine.

5* A simpler model of parallel processing is that each processor should have its own memory...
6. The Intel Hypercube, Ncube and Meiko Computing Surface are examples of this type of machine.

G: HP1:3/HL1:3
HP1:3

1. [Class conflict] was about styles of spending money...
2. This kind of conflict was common to almost all resorts near major population centres.
3. The classes continued to be segregated geographically...
4. The social harmony of the Edwardian seaside....owed more to class segregation than to social reconciliation.

HL1:3

1. These developments were particularly pronounced...
2. Sunday Schools, temperance societies and paternalistic employers were quick to use the seaside excursion as a counter-attraction to the fairgrounds and race-meetings...
3. the enjoyment of cheap travel and the cult of sea bathing also had devotees among the unregenerate.
4. Such developments depended on the regular appearance of large numbers of working-class visitors...
5. The working-class day-tripper never had much to offer the economy of most resorts...
6. This was true...
7. it was the resorts which adapted best to this new stimulus which expanded fastest.
8. Day-trips were increasingly well-patronized...
9. only the skilled and supervisory groups among the working class had the will or the resources to take a full-scale holiday away from home.
10. Such working people were usually "respectable" in dress and demeanour...
11* it was not until the twentieth century...that most working-
class day-trippers became metamorphosed into staying visitors.

H: HP2:4/HL2:4
HP2:4

1. time proved to be on their side, not on his.
2. the king had grandiose schemes...

HL2: 4

1. Donald Gorm of Sleat was to have Ardnamurchan...

2* It was a change in the king's plans that made these defensive measures necessary...
3* It is likely that the covenanters had already resolved to force the king to fight by invading England...
4* The other main danger they foresaw....was that Strafford would lead a diversionary raid from Ireland...
5. those who thought the commission 'may be but a boast to hold the Irish army at home' were wrong.
6. their plans....were no idle boasting...

I: HP3:6/HL3:6
HP3:6

1. [what about] larger social and economic forces?
2. rates of crime per head were much higher in urban areas than in rural regions
3. The numbers 'feeling' poor is what counts.
4. [what] of the criminogenic impact of unemployment?

HL3: 6

1. We are still in need of a study of the association between crime and the rate of urbanisation in the nineteenth century...
2. The situation in urban Surrey (London) was more complex.
3. Offenders seem not to have been under any immediate pressure of hunger...
4. poaching seems often to have been born of poverty...

Appendix E: Table 3

Circumstances of Time and Place in the Introductory and Concluding Sections of Selected Learned and Popular Texts

1a: BP1 Place
in rough seas
in a small inflatable boat
up
over the side
30 metres down
into view
over an immense carpet of brittlestars...
Here
From Chadwick's century-old record and studies by a student in the 1960's
only where predation is low
1b: BP1 Time
in 1885
Reporting on the exhibition
A century later
In the following weeks
Today

1c BL1 Place
In this chapter
1d BL1 Time
During the last few years
now

2a BP2 Place
in their chemical composition
to the order of bases in DNA
down through the male line
where this [a limited degree of chromosome recombination] does not happen often
in the figure
in an individual
2b BP2 Time
in the first week of 1987, following an article in Nature...
More recently
yet
much more recently than Eve
a few millenia before him

2c BL2 Place
into our genetic divergence from apes, and into the way in which humans are related to one another genetically
in nuclear genes
from both parents
in every generation
within a typical human
2c BL2 Time
now

3a BP3 Place
not from man but from the feral domestic cat
in Cyprus and the Near East
in the tombs of Ancient Egypt
3b BP3 Time
today
This time
by about 6000 BC
As the Scottish wild cat was ruthlessly eradicated from Britain Once the wild cat began to recover from man's persecution Recently

3c: BL3 Place
throughout the British Isles, except Ireland and the "Outer Islands" (Orkney, Hebrides etc)
from England, Wales and Southern Scotland
even in the Scottish Highlands
into Britain
throughout Scotland
from its nineteenth century "low"
In this paper
3d BL3 Time

formerly

at least as far back as the Pleistocene
By the end of the 19 th Century
much later, in about the 11 th Century
earlier
now
Over the past 60 years or so
in recent years
4a CP1 Place
on the relatively new discipline of Aritificial Intelligence
in cognitive science
on a new approach to designing computers, known as
"connectionism"
to 49
in a series of operations on these external symbols
To an evolutionary theorist
To many cognitive scientists

4b CP1 Time [None]

4c CL1: Place
In what follows
In the present paper
4d CL1: Time
[None]

5a CP2: Place
on engineering its working area
from providing robots with a sense of sight
5b CP2 Time
already

5c CL2 Place
at providing viewpoint invariant groupings of image features that can be judged unlikely to be accidental in origin, even in the absence of specific information regarding which objects may be present.
upon the full use of the viewpoint consistency constraint right back to the image level
upon a probabilistic analysis of the likelihood that each
potential match is correct
to a much smaller search space
5d CL2 Time
no longer

6a CP3 Place
in applications such as guiding aircraft and the control of processes in industry
around the world
6b CP3 Time
already
still
6c CL3 Place
In this paper
in Refs 1 and 2
in section 4
In section 5
on a variety of computer architectures
In practice
in some cases
in many of the models studied to date
in such cases

6d CL3 Time
Following early exploitation of the ICL Distributed Array Processor at Queen Mary College More recently (March 1986)

7a HP1 Place
to the nineteenth century
into textbooks and general interpretations
here
on the textbook and the school examination syllabus
in his Town, City and Nation: England 1850-1914 (Oxford 1983)
to several kinds of town which have attracted extensive recent research...
at the seaside
in any assessment of urban development in Victorian and Edwardian England
at that point
in general analyses of urbanisation and social change during the key decades of transition to industrial society in Victorian and Edwardian England

7b HP1 Time
now
yet
by 1914
in the future
In the meantime
7c HL1 Place
among the fastest-growing English towns at many resorts
beyond the excursion stage
on the coasts of Lancashire and North Wales
in amusements and accommodation for a working-class market
In all these areas
In these areas of northern England
7c HL1 Time
in a period of rapid urbanization
by the later nineteenth century
From the 1870s onwards
by the turn of the century

8a HP2 Place
from the Scottish point of view
to Edinburgh
In the state
to Ireland
into civil war between the king and the English parliament

8b HP2 Time
By 1637
In the spring of 1638
After long negotiations in London in 1640-1
Within a few years
in 1641
in 1642
in the same year
in 1643
within a decade
8c HL2 Place
between the inhabitants of Ireland and Scotland
there
to Scotland from Ireland
in Ireland
In this
in his struggle with the covenanters
to Scotland
(at Ripon...)
from an asset into a liability
In Ireland
in an attack on Strafford and his policies
Outside parliament
in at least nine parishes in Antrim and Down
in Scotland and Ireland
In Scotland
In Ireland
in the hands of the Irish
not from the regime in Dublin but from the Catholic Irish
8d HL2 Time
At the beginning of the sixth century
later
once resistance to the king in Scotland began
In September 1637
in 1638
in mid-1638
soon
As soon as a cessation was signed between the king and the covenanters
(...on 17 October)
in 1640-1
In March and April 1641, during the trial of Strafford... while 'the Scottismens frequent brags in the North, that Leslie wold come over ere long, and make a general reformation'
in May 1641
the same month
in 1641
In July
early in 1641
By May
in August

```
on 22 October 1641
within a few days
now
9a HP3 Place
in theft and breaking-in offences
on groups amongst whom crime has remained comparatively rare...
9 b HP3 Time
In the first half of the century
From 1900 to 1914
between 1915 and 1930
between 1930 and 1948
9 c HL3 Place
in this new field
in separate essays
In one case
in the same monograph
in this work
only on the basis of this latter evidence, albeit imperfect in such basic methods as the construction of crime rates and the validation of statistical findings
9d HL3 Time
until recently
In the last decade
in the past
At times
since the days of historical research into crime still
now
yet
in the last decade
```


Appendix F

Subjects and Finites in Extracts from the Corpus

Key
R: Remote finite
I: Immediate finite
Group: BP1

Extract: BP1:1

1.	the Liverpool Marine Biology Committee
2.	Herbert Chadwick
3.	I
4.	It
5.	I
6.	I
7.	We
8.	the seabed
9.	A swift current
10.	The sight
11.	we
12.	there
13.	it
14.	Mike Bates, a diving technician at Port
15.	We

Clause Mood
Finite Polarity/Modality Realisation

16.	the numbers	I	Positive	are
17.	The southwestern tip of the Is le of Man	I	Positive	is
18.	we	I	Positive	know
19.	Evidence from fossils	I	Positive	suggests
20.	A closer look at today's brittlestar beds	R	Positive/Possible	might tell
21.	Brittlestar beds	I	Positive	are
22.	They	I	Positive	are
23.	the Cretaceous	R	Positive	was
24.	Epifaunal suspension feeders -- animals such as brittlestars, sea lillies	R	Positive	formed
	(stalked crinoids) and lampshells (brachiopods) that lived on top of the sea floor and filtered organic particles from the water			
25.	they	R	Positive/Degree	virtually
26.	Today's brittlestar beds	I	Positive	are

Group: BL1

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	much attention	I	Positive	has been paid
2.	recent efforts to uncover causal connections between physical events of global or even galactic magnitude and periodic, catastrophic extinctions	I	Positive	have been
3.	The human mind	I	Positive/Possible	is perhaps
4.	The intellectual attraction to extinction	I	Positive/Degree	is amply reflected
5.	the dynamics of biotic interactions that caused global-scale community reorganisations	I	Positive	are
6.	it [that predator activity was of great importance to at least one biotic upheaval]	I	Positive	is
7.	we	I	Positive	hope are...used
8. 9.	Results from this living community	I	Positive	are...used has virtually
9.	Williamson (1982)	I	Positive/Degree	has virtually dismissed
10.	the fossil record	I	Positive	provides
1	we	I	Positive	take

Clause Mood

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
12.	it [that extant ophiuroid communities have persisted for long periods of time]	I	Positive	is
13.	The Sweetings Pond Ophiothrix oerstedii	I	Positive	has been
14.	community dense beds of 0 . fragilis	I	Positive	have been known
15.	The same	I	Positive/Possible	can be said
16.	these dense assemblages of ophiuroids	I	Negative	are not
17.	[Subject as 16: deleted]	I	Positive	represent
18.	Only one case	I	Positive	conforms
19.	Kesling (1969)	I	Positive	has postulated
20.	we	I	Positive	find
21.	Such anachronistic communities of organisms	I	Positive/Possible	can be
22.	These rare circumstances	I	Positive	are
23.	Stromatolites, which are structures composed of filamentous prokaryotes, trapped sediment and associated biota	I	Positive	are
24.	they	I	Positive	are thought
25.	This inference	I	Positive/Degree	is based in part

Group: BP1

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	dense populations of Ophiothrix and another species, Ophiothrix nigra	I	Positive	live
2.	Divers	I	Positive	encounter
3.	Brendan Keegan, a marine biologist at University College, Galway	I	Positive	has
4.	The Manx fishermen	I	Positive	avoid
5.	There [Existential]	I	Positive	are
6.	I	I	Positive/ Anticipatory	$\begin{aligned} & \text { Strangely... } \\ & \text { know } \end{aligned}$

Group: BL1

Extract: BL1:2

Clause Mood

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	Population densities in the autochthonous assemblages	I	Positive/Possible	can be
2.	Kesling and Le Vasseur (1971)	R	Positive	estimated
3.	Liddel (1975)	I	Positive	reports
4.	densities in some populations	I	Positive	are
5.	Warner (1971) .	R	Positive	studied
6.	Vevers (1952)	R	Positive	counted
7.	Ophiocomina nigra	I	Positive	occurs
8.	Even higher ophiuroid densities	I	Positive	have been recorded
9.	The highest mean density of Ophiothrix oerstedii recorded in Sweetings Pond	R	Positive	was

$\frac{\text { Group BP1 }}{\text { Extract: BP1: }} 3$
Clause Mood

Clause	Mood	Modulat		
	Subject	Finite	Polarity/Modality	Realisation
1.	Ecological studies	I	Positive	tell
2.	We	I	Positive/Possible	can look
3.	we	I	Positive	gain
4.	we	I	Positive/Possible	can begin
5.	Crinoid gardens	I	Positive/Degree	
6.	brittlestar beds	I	Positive	completely disappeared remain
7.	The vast swathes of ophiuroids	I	Positive	are

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	we	I	Positive	have shown
2.	Saltwater lakes and other islands	I	Positive	are
3.	The Bahama Is lands	I	Positive	contain
4.	most of them	I	Positive	remain
5.	Great Oyster Pond	I	Positive	is
6.	This body of water	I	Positive	supports
7.	a small apodid holothurian	R	Positive	was found
8.	Release of benthic organisms due to the absence of predatory fishes	I	Positive	has been not

$\frac{\text { Group BP1 }}{\text { Extract: }}$

Clase	Mood	Modulation	
	Subject	Finite	Polarity/Modality
1.	A second requirement for brittlestar beds	I	Positive
2.	the brittlestars	I	Negative/Possible

Group BL1

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	the leading cause of death for ophiuroids	I	Positive	is
2.	Schafer	R	Positive	noted
3.	Fine-grained sedimentary matter	I	Positive/Presumption	presumably obstructs
4.	Areas of rapid sedimentation	I	Positive	are
5.	Kesling (1969), Rosenkranz (1971) and Goldring and Stephenson (1972)	I	Positive	have analyzed
6.	Articulated ophiuroids	I	Positive/Erequency	are usually found

$\frac{\text { Group: BP1 }}{\text { Extract: BP1:4b }}$

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	The flow of water and the amount of sedimentation in it	I	Positive	provide
2.	many rocky reefs	I	Positive	are swept
3.	[Subject as 2: deleted]	I	Positive	have
4.	The third key requirement for a dense blanket of ophiuroids	I	Positive	is
$\frac{\text { Group: BLI }}{\text { Extract: BL1:4b }}$				
Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	Aronson and Harms (1985)	I	Positive	have suggested
2.	We	R	Positive	found
3.	Allman (1863)	R	Positive	described

Group BP1
 Extract: BP1:5

Clause Mood

Clause	Mood	Modulation		Realisation
	Subject	Finite	Polarity/Modality	
1.	Cod, flatfish, wrasses, dragonets and crabs	I	Positive	eat
2.	These modern predators --modern, geologically speaking	I	Positive/Frequency	are rarely seen
3.	slow-moving starfish	I	Positive	are
4.	starfish	R	Positive	appeared
5.	They	R	Positive/Possible	might have been
6.	I	R	Positive	tied
7.	[Subject as 6: deleted]	R	Positive	set...out
8.	I	R	Positive	did
9.	brittlestars	I	Positive	are
10.	we	I	Positive	find
11.	Nothing much	R	Positive	happened
12.	Starfish	R	Positive	consumed
13.	most of them	R	Positive	survived
14.	ballan wrasses and flatfish	R	Positive	ate
15.	I	R	Positive	repeated
16.	Ophiocomina nigra	I	Positive	forms
17.	The results	R	Positive	were
18.	predation pressure	I	Positive	is
19.	The predation argument	R	Positive/Predictive	would be
20.	there [existential]	I	Positive	

Clause Mood

21.	This	I	Positive	is
22.	Sweetings Pond	I	Positive	is
23.	Ophiothrix oerstedii	I	Positive	are
24.	the animals	I	Positive	cover
25.	[Subject as in 24: deleted]	I	Positive	hold up
26.	It [that there are no reef fish that eat brittlestars in this lake]	I	Positive/Possible	is surely
27.	the main predators	I	Positive	have
28.	they	I	Positive	are
29.	Ophiothrix	I	Positive	is
30.	The brittlestars	I	Positive	live
31.	The results of predation experiments in the Caribbean	R	Positive	mirrored
32.	Wrasses and other reef fish	R	Positive	ate
33.	they	R	Positive	survived
34.	predation	I	Positive	
35.	It	I	Positive	explains
36.	brittlestars	I	Positive/Necessary	must spend

$\frac{\text { Group: BL1 }}{\text { Extract: BL1: } 5}$
Clause Mood

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	Sweetings Pond, an isolated saltwater lake on Eleuthera Island	I	Positive	contains
2.	This lake	I	Positive	supports
3.	The ophiuroid density, which sometimes exceeds 400 individuals per square meter (figs. 23.1A and 23.2)	I	Positive	is
4.	[Subject as in 3: deleted]	I	Positive	occurs
5.	the brittlestars	R	Positive/Degree	were completely consumed
6.	No significant ophiuroid mortality	R	Positive	ocurred
7.	Gut content and fecal analyses of all possible Sweetings Pond predators of Ophiothrix, including the large majid	R	Positive	confirmed
	crab Mithrax spinosissimus			
8.	Aronson and Harms (1985)	R	Positive	demonstrated
9.	Sweetings Pond brittlestars	I	Positive	expose
10.	This behavioral difference	I	Positive/Causal	is causally related

$\frac{\text { Group: BP1 }}{\text { Extract: BP1:6 }}$
Clause Mood

Clause	Mood		Modulation		
	Subject	Finite	Polarity/Modality	Realisation	
1.	The top carnivores in Sweetings Pond	I	Positive	are	
2.	They	I	Positive	eat	
3.	Octopuses			Positive	are
4.	A cephalopod at the top of the food chain	I	Positive	makes	

Group: BL1

Clause	Mood	Modulation		Realisation
	Subject	Finite	Polarity/Modality	
1.	Cephalopods with external shells (ectocochliates)	R	Positive	were
2.	nautiloids and ammonoids	I	Positive/Admissive/ Possible	In fact... may have contributed
3.	Crop contents of Jurassic ammonites	R	Positive	contained
4.	the deep-dwelling Nautilus	I	Positive	is
5.	it	I	Positive	is
6.	The increased development of coarse ornamentation on ammonoid shells, especially by Cretaceous times	I	Positive	is interpreted
7.	The ammonoids	\mathbf{R}	Positive	
8.	Both global-scale physical disruptions (Alvarez et al. 1984) and the activities of durophagous predators (including invertebrates; Ward 1983)	I	Positive/Possible	may have contributed

Clause	Mood	Modulation Pinite Polarity/Modality		
	Subject			Realisation
9.	its high density of Octopus briareus, the Caribbean reef octopus	I	Positive	is
10.	The population density of this cephalopod	1	Positive	is
11.	the absence of predatory fishes	I	Positive/Possible	appears to be
12.	The octopuses	I	Positive	are limited
13.	It [that a slow-moving, epifaunal suspension-feeding echinoderm, which carpets portions of the lake substrate and gives the benthos a distinctly Paleoz appearance, is accompanied by a cephalopo (which does not feed upon ophiuroids; Aro and Harms 1985).]	I	Positive/Possible	is perhaps
14.	Ectocochliate cephalopid carnivores	R	Positive	were
15.	they	I	Positive/Possible	may have exerted
16.	the abundant octopuses in Sweetings Pond	I	Positive/Possible	may be
17.	The observations in Sweetings Pond	I	Positive	support
18.	exposed ophiuroids	I	Positive/Time	still occur
19.	fluctuations in the occurrence of dense beds of Ophiothrix fragilis in the English Channel over a period of several decades	I	Positive	have been correlated
20.	we	I	Positive/Predictive	shall review
21.	[Subject as in 20: deleted]	I	Positive/Predictive	[shall] attempt
22.	there [existential]	R	Positive	was
23.	there [existential]	I	Positive	is

I	Negative	is not
I		
I	Positive/Possible	are certainly
I	Positive	suspect
R	Positive/Presumptive To our	
	Positive/Possible	knowledge...is
		could thrive

the only living cephalopod that preys on ophiuroids
dense populations of ophiuroids
Group BP1
Extract: BP1:7

Clause	Mood	Modulation	Finite	Polarity/Modality
	Subject	Realisation		
1.	What	I	Positive	happens
2.	Many beds in the western English Channel	I	Positive	have
3.	Norman Holme of the Marine Biological	I	Positive	disappeared
4.	Association in plymouth these populations		R	Positive

Group: BP1

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	I	R	Positive	compared
2.	Not one brittlestar in a Jurassic population from Dorset	R	Positive	was regenerating
3.	70 per cent of a closely-related living species from Belize	R	Positive	had
4.	This	I	Positive	is
5.	it	I	Positive/Possible	certainly supports
6.	Palaentologists	I	Positive	have looked at
7.	The highest level of injury they have found	I	Positive	is

$\frac{\text { Group: BL1 }}{\text { Extract: }}$

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	Lehmann	R	Positive	studied
2.	Only 23 specimens	R	Positive	showed
3.	This	I	Positive	is
4.	there [existential]	I	Positive	are
5.	The shales	I	Positive	differ
6.	The formation of this unusually rich and and diversified assemblage of marine fossils	R	Positive/Possible	was possibly
7.	Kesling and Le Vasseur (1971)	R	Positive	found
8.	They	I	Positive	estimate
9.	that of the Late Jurassic Solnhofen lithographic limestones in Bavaria	I	Positive	is
10.	These deposits	R	Positive	formed
11.	The small ophiuroids Geocoma carinata and Ophiurella speciosa	I	Positive	are
12.	The associated fauna	I	Positive	contains
13.	We	I	Positive	know
14.	Of 55 well-preserved specimens of Ophiomusium weymouthiense from the	R	Positive	showed
	Late Mid-Jurassic of Weymouth, Dorset, housed in the collections of the British Museum (Natural History), only one			

$\frac{\text { Group: BP1 }}{\text { Extract: BP1:9 }}$
Clause Mood

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	it [that ancient brittlestar beds and crinoid gardens were severely affected when new, more efficient predators appeared in the Cretaceous]	I	Positive/	appears
2.	epifaunal brittlestar beds	I	Positive	survive
3.	The next step	I	Positive/Predictive	will be

$\frac{\text { Group: BL1 }}{\text { Extract: }}$

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	the temporal distribution of these communities and the data on predation in some extant assemblages	I	Positive	support
2.	we	I	Positive	see
3.	Dense extant assemblages on soft substrates in shallow-water settings	I	Positive/Frequency	are frequently composed
4.	Exposed epifaunal brittlestars	I	Positive	are
5.	they	I	Positive/Possible	can dominate
6.	The study of ecological release in saltwater release	I	Positive	has
7.	Information culled from Sweetings Pond and other lakes	I	Positive/Possible	may enable
8.	The high abundance of Octopus in a back-reef community on the north coast of Jamaica	I	Positive/Possible	may be related
9.	We	I	Positive	recommend

-	Subject	Finite	Polarity/Modality	Realisation
1.	Adam	R	Positive	called
2.	Eve	R	Positive	hit
3.	the Daily Telegraph	R	Positive	said
4.	What	I	Positive	is
5.	Rebecca Cann, Mark Stoneking, and Allan Wilson, of the University of California at Berkeley	I	Positive	present
6.	[Subject as 5.; deleted]	I	Positive	estimate
7.	The common ancestor of all the lineages	I	Positive/Possible	may represent
8.	Studies of evolution	I	Positive	have become
9.	Investigations of protein structure	R	Positive	superseded
10.	two proteins that apparently carry out the same role in two different types of organism	I	Positive/Possible	may vary
11.	This kind of data	I	Positive	enables
12.	the immunological properties of albumen, a protein found in blood plasma	I	Positive	suggest
13.	comparisons based on the analysis of DNA.	I	Positive	have provided
14.	Researchers studying protein structure	I	Positive	determine
15.	The genetic code	I	Positive	links
16.	this code	I	Positive	is

Group: BP2
Extract: BP2:1 (cont)

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
17.	A mutation in one base	R	Positive	might leave
18.	analysis of the DNA	I	Positive	gives
19.	the hypothesis	R	Positive/Obligation	should be qualified
20.	the statement "typical mammalian females ... behave as haploids"	I	Positive	is
21.	recent studies in cows	I	Positive	have shown
22.	an individual cow	I	Positive/Possible	may contain
23.	a new mitochondrial mutation	I	Positive	does....become
24.	[Imperative: subject deleted]	I	Positive	Suppose
25.	this mutated genome alone	R	Positive/Possible	could. . populate
26.	that some kind of bottleneck exists	I	Positive	
27.	the individual	R	Positive/Possible	might be
28.	it	I	Positive	is
29.	one or other mitochondrial population	I	Positive	takes over
30.	a mutation	[Positive	is
31.	a rare paternal contribution or some kind of recombination event	[Minor clause: verbless]		
32.	Any of these.	R	Positive/Hypoth	would complicate

Group: BL2

Clause	Mood	Modula		
	Subject	Finite	Polarity/Modality	Realisation
1.	Molecular biology	I	Positive	is
2.	It	I	Positive	has provided
3.	Our picture of genetic evolution within the human species	I	Positive	is
4.	Mutations	I	Positive	accumulate
5.	nuclear genes	I	Positive	are inherited
6.	[Subject as 5.; deleted]	I	Positive	mix
7.	This mixing	I	Positive	obscures
8.	[Subject as 7.; deleted]	I	Positive	allows
9.	Recombination	I	Positive	makes
10.	Our world-wide survey of mitochondrial DNA (mtDNA)	I	Positive	adds
11.	mtDNA	I	Positive	gives
12.	it	I	Positive	is
13.	there	I	Positive	are
14.	Typical mammalian females	I	Positive	behave
15.	This maternal and haploid inheritance	I	Positive	means
16.	A pair of breeding individuals	I	Positive/Possible	can transmit
17.	[Subject as 16.; deleted]	I	Positive/[Possible]	(can) carry
18.	The fast evolution and peculiar mode of inheritance of mtDNA	I	Positive	provide

Group: BP2
Group: $\operatorname{Extract:~BP2:2}$

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	This approach			is based
2.	The longer the time since this occurred, the more the differences that accumulate.	[Minor clause: verbless]		
3.	Only a small proportion of the DNA in the nucleus of a cell	I	Positive	codes
4.	The non-coding regions	I	Positive	accumulate
5.	Selection	I	Positive	operates
6.	The presence, in a population, of two or more variants of a gene	I	Positive	is called
7.	evolutionary geneticists	I	Positive/Possible	can estimate
8.	Small differences between corresponding regions of DNA in two groups	R	Positive/Hypoth	would suggest
9.	large differences	R	Positive/Hypoth	would suggest
10.	Cann and her colleagues	I	Positive	study
11.	Mitochondria	I	Positive/Frequ	are often called
12.	They	I	Positive	are
13.	These	I	Positive	include
14.	each mitochondrion	I	Positive	contains
15.	Most of this DNA	I	Positive	codes
16.	this compact piece of DNA	I	Positive	encodes

$\frac{\text { Group: BP2 }}{\text { Extract: BP2:2 (cont) }}$

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
17.	every piece of mitochondrial DNA	I	Positive	is
18.	Each individual	I	Positive	inherits
19.	the unfertilised ovum	I	Positive	contains
20.	Experiments	I	Positive	demonstrate
21.	no examples of recombination between maternal and paternal mitochondrial	I	Positive	have been documented
22.	genomes mitochondrial DNA	I	Positive	mutates
23.	All these factors	I	Positive	make
24.	Every individual	I	Positive	inherits
25.	the rate of acquiring mutations	I	Positive/Possible	can act

Group: BL2
Extract: BL2:2

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	A tree relating the 133 types of human mtDNA and the reference sequence (Fig.3)	R	Positive	was built
2.	we	I	Positive	make
3.	We	I	Positive/Possible	can...view

Group: BP2
Extract: BP2:3

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	Cann and her colleagues	R	Positive	started
2.	They	R	Positive	digested
3.	Each restriction enzyme	I	Positive	recognises
4.	[Subject as 3.; omitted]	I	Positive	breaks
5.	The result	I	Positive	is
6.	These	I	Positive/Possible	can be sorted out
7.	the collection of fragments	I	Positive/Possible	will be
8.	the resulting pattern	I	Positive/Possible	will [be]
9.	Restriction mapping, as the technique is called	I	Positive	is
10.	Cann	R	Positive/Possible	could discern
11.	the researchers	R	Positive	plotted
12.	This tree	I	Positive	is constructed
13.	Closely-related DNAs	I	Positive	are joined
14.	widely divergent DNA types	[verb as	13.; omitted]	
15.	The tree	I	Positive	has
16.	Cann, Stoneking and Wilson	I	Positive	advance

Modulation Positive was subjected วโqes!̣ィ̣p əдəM were found contained was found 0
0
0
0
\vdots
j
J
0
0
0 occurred
were found involved
is given is
is Positive were mapped
identified were surveyed is given

R
R
R
R
\square

Positive
Positive

Group: BL2
 Extract: BL2:3

Clause Mood

	Subject
1.	Each purified mtDNA
2.	Restriction sites
3.	we
4.	An average of 370 restriction sites per individual
5.	The 147 mtDNAs mapped
6.	Seven of these types
7.	no individual
8.	None of the seven shared types
9.	One type
10.	another type
11.	two more types
12.	two additional types
13.	the seventh case
14.	A histogram showing the number of restriction site differences between pairs of individuals
15. 16.	the average number of differences observed between any two humans The distribution

Group: BP2

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	What	[Minor cl	ause: verbless]	
2.	not enough data	I	Positive	exist
3.	Studies of the Y chromosome	R	Positive/Possible	might provide
4.	the Y chromosome	I	Positive	transmits
5.	women	I	Positive	have
6.	men	[Verb as	5.; omitted]	
7.	DNA probes	R	Positive/Possible	could search
8.	The results	R	Positive/Possible	could be employed
9.	you	R	Positive/Possible	might expect
10.	[Imperative; Subject omitted]	0	Positive	Suppose
11.	This	I	Positive	is illustrated
12.	seven of the mitochondrial lineages	I	Positive	are lost
13.	two	I	Positive	persist
14.	polygyny, with some males having more than one mate	R	Positive/Hypoth	would result
15.	Y lineages	R	Positive/Hypoth	would vanish
16.	The "common paternal ancestor", call him Adam, from whom all the current lineages diverged	R	Positive/Possible	might...have lived
17.	Eve	I	Positive/Possible	may have lived
18.	The point	I	Positive	
19.	The hypothesis	R	Positive/Oblig	should be qualified

the statement "typical mammalian females...
behave as haploids"
recent studies in cows
an individual cow
a new mitochondrial mutation
[Imperative; Subject omitted]
this mutated genome alone
The simplest explanation
the individual
it
one or other mitochondrial population
a mutation
arare paternal contribution or some kind
of recombination event
Any of these
The "mitochondrial clock hypothesis"
researchers
researchers relying on the accumulation of
The Mother Eve hypothesis
The study of mitochondrial lineages

- - NN
$\frac{\text { Group: BL2 }}{\text { Extract: } \overline{B L}}$
Extract: $\overline{B L} 2: 5$
Clause Mood

Clause	Mood	Modulation		Realisation
	Subject	Finite	Polarity/Modality	
1.	Studies of mtDNA	I	Positive	suggest
2.	More extensive molecular comparisons	I	Positive	are needed
3.	This	I	Positive/Possible	may provide
4.	It	I	Positive	is.
5.	it	I	Positive/Possible	may be
6.	a fuller interaction between palaeoanthropology, archaeology and molecular biology	I	Positive/Certain	will allow

$\frac{\text { Group: } \quad \text { BP3 }}{\text { Extract: BP3:1 }}$

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	Ceaseless persecution and the loss of suitable habitat	R	Positive/Degree	nearly saw
2.	Only a relaxation in the zeal of gamekeepers and the rapid spread of coniferous plantation after the First World War	I	Positive	have allowed
3.	a more insidious fate	I	Positive/Possible	may be awaiting
4.	the threat	I	Positive	comes
5.	The Scottish wild cat and its European cousins	I	Positive	are
6.	The African form of the wild cat	I	Positive	resembles
7.	[Subject as 6.; omitted]	I	Positive	look
8.	The African wild cat	I	Positive	
9.	They	R	Positive/Possible	were possibly
10.	[Subject as 9.; omitted]	I	Positive/Certain	...domesticated are definitely
11.	The mummified remains of domestic cats	R	Positive	known
12.	The domestic cat	I	Positive	
13.	cats	I	Positive	have...been
14.	its place as the main predator of rodents and rabbits	R	Positive	was taken
15.	it	R	Positive	came
16.	hybridisation	R	Positive	was

$\frac{\text { Group: BL } 3}{\text { Extract: BL }}$

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	Wildcats (Felis silvestris)	R	Positive	were
2.	they	R	Positive	had disappeared
3.	[Subject as 2.; omitted]	R	Positive	[had] become
4.	Domestic cats (E. catus)	R	Positive	were introduced
5.	feral domestic cats	I	Positive	are
6.	there	I	Positive	has been
7.	This increase	I	Positive/Possible/ Degree	may have been partly due
8.	[Subject as 7.; omitted]	I	Positive/Possible	may...have been
9.	There	I	Positive	are
10.	few	I	Positive	have been authenticated
11.	Many authors	I	Positive	have attempted
12.	All these studies	R	Positive	had
13.	many analyses	I	Positive	use
14.	even ratio measurements	I	Positive/Possible	may give
15.	we	I	Positive	aim
16.	We	I	Positive	attempt
17.	We	I	Positive	assume
18.	this method	R	Positive/Possible	should reflect
19.	we	R	Positive/Hypoth	would expect

0
0
0
3
0
0
0
0
$0 . c$ 0
0
3
3
0
0
${ }_{2}^{4}$
0
3 concluded
probably may．．．include was probably tend to be may be
Positive
Positive
Positive
0
2
+1
$0-1$
0
0
0 0
0
－H
－1
－
0
0
0

 Positive 0
$>$
+
+1
0
0
0
0
 0
0
0
$0-1$
0
0
0
0 Positive／Possible
Positive／Possible
Positive／Possible
Positive／Usuality Positive／Possible

ロロロロ

H \propto HM
er
skull measurements of these three groups together with samples of hybrid and
domestic cats
All analyses
There
Both groups
The hybrid group
LDF
FLDF
Wildcats
all the distinguishing variables
Sexes
We

4
0
0
0
Group: BP3

	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
	French and his co-workers	R	Positive	discovered
	they	R	Positive/Presumptive	would have had
	[Subject as 2.; omitted]	R	Positive/Presumptive	would have resorted

Group: BL3

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	The overall pattern	I	Positive	is
2.	recent and modern wildcats	R	Positive	overlapped
3.	This	R	Positive	was
4.	the component scores (Fig. 5)	I	Positive/Usuality	```consistently suggest```
5.	This	I	Positive	corroborates
6.	Additional support fro this conclusion	I	Positive	is given
7.	old wildcats	R	Positive/Usuality	were always
8.	Distance between domestic cats and hybrids	R	Negative	were not
9.	recent wildcats	R	Positive/Usuality	were always
10.	the results	I	Positive	imply
11.	domestic cats and old wildcats	I	Positive/Presumptive	appear to be
12.	modern and recent wildcats	I	Positive	do include

Positive	showed
Positive	were
Positive	showed
Positive	was
Positive	was
Positive/Usuality	was usually
Positive	were
Positive	was
Positive	imply
Positive/Presumptive	seems to have
	been
Positive	are
Positive/Possible	may have
	occurred
Positive	were
Positive	provide
Positive	showed
Positive	described
Positive/Possible	may have had
Positive/Presumptive/	Normally. would
Usuality	be prevented
Positive/Possible	may have
	reduced

$\propto \propto \propto \propto \propto$
Differences between sexes within groups
(Table V)
Recent and modern wildccats
Hybrids
what difference there was
the largest variation within group and sex
(measured by mean difference from group/sex
centroid, with recent and modern wildcats
combined as a single group)
This
Recent and modern wildcats
It
the results
There
the likely causes of this change
Hybridization
wildcat numbers
Forests
Corbett (1978, 1979)
He
they crossbreeding
such cross
the combination of low wildcat numbers and
a high density of feral domestic cats

Extract: BP3:3

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	there	I	Positive/Usuality	From time to time...are
2.	these fearsome felines	I	Positive	are
3.	Some	I	Positive	take
4.	they	R	Positive/Desirable	Unfortunately ...chose
5.	Some of these cats, but very few	I	Positive	are
6.	The Surrey Puma	R	Positive	was sighted
7.	[Subject as 6.; omitted]	I	Positive/Possible	probably falls
8.	two leopard cats, so named because of their spots not their size	R	Positive	were found
9.	These	R	Positive/Certain	were definitely
10.	The large black Kellas cats	I	Positive	have received
11.	these animals	I	Positive/Certain	without any doubt...are
12.	[Subject as 11.; omitted]	I	Positive	are
13.	we	R	Positive/Presumptive	would expect
14.	Nigel Easterbee	R	Positive	came across
15.	It	I	Negative/Certain/ Possible	will probably not be

$\frac{\text { Group: BL3 }}{\text { Extract: BL }}$

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	Distinguishing hybrids from domestic cats	I	Positive/Possible	may..be
2.	one cat in our sample	R	Positive	was...thought
3.	[Subject as 2.; omitted]	R	Positive/Usuality	was constantly misclassified
4.	Subsequent examination of other characteristics (e.g. intestine length)	R	Positive	indicated
5.	The doubtful reliability of pelage characters as a guide to identifying hybrids	R	Positive	was confirmed
6.	a series of large black cats trapped or shot in Morayshire (see e.g. Steele, 1985 for a typical press account)	I	Positive	have... .been

Group: BP3

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	The Scottish wild cat	I	Positive/Presumptive	does seem to be threatened
2.	there	I	Positive/Possible	may be
3.	A sample of skulls from the 1970s	R	Positive	were
4.	It	I	Positive	is
5.	a new type of wild cat	I	Positive/Possible	may have evolved
6.	The trouble with skull measurements	I	Positive	is
7.	Nigel Easterbee	I	Positive	is trying
8.	He	I	Positive	is...working
9.	It	R	Positive/Presumptive	should be
10.	The work	I	Positive	has...begun
11.	It	I	Positive	is

Group: BL3
Modulation

Clause	Mood	Modulation		Realisation
	Subject	Finite	Polarity/Modality	
1.	What future changes	I	Positive	are
2.	Numbers of 'wildcats'	I	Positive	have increased
3.	the two events	I	Positive	are
4.	Our results	I	Positive	suggest
5.	there	1	Positive	are
6.	We	I	Positive	suggest
7.	Whether 'pure' wildcats will ever become re-established	I	Positive/Possible	can...be determined
9.	A revision of the analyses reported here after, say, 20 years or so	R	Positive/Possible	could show

$\frac{\text { Group: CP1 }}{\text { Extract: CP1:1 }}$
Clause Mood

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	The Chinese philosopher Seng-Ts'an	R	Positive	wrote
2.	that confusion	I	Positive/Possible	Perhaps...is
3.	Cognitive scientists	I	Positive	try
4.	We	I	Positive	have
5.	we	I	Positive/Possible	Perhaps...have relied
6.	Cognitive science	I	Positive	is
7.	it	I	Positive	is centred
8.	it	I	Positive	shares
9.	Two distinct traditions	I	Positive	are emerging
10.	One, which for convenience I shall call the "mind's eye approach"	I	Positive	accepts
11.	The other	I	Positive	is based
12.	This newer approach	I	Positive/Possible	may enable

$\frac{\text { Group: CL1 }}{\text { Extract: }}$

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	```PDP (Parallel Distributed Processing a.k.a. Connectionism)```	I	Positive	is
2.	It	I	Positive	has
3.	I	I	Positive/Certain	shall suggest
4.	I	I	Positive	suggest
5.	My strategy	I	Positive/Certain	will be
6.	I	I	Positive	sketch
7.	[Subject as 6.; omitted]	I	Positive	report
8.	I .	I	Positive	focus
9.	I	I	Positive	propose

Clause	Mood	Modulation		
	Subject	Finite	Polarity /Modality	Realisation
1.	The mind's eye approach		R	Positive

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
> the secret of real intelligence
Our ability to reason
$\stackrel{\bullet}{N}$
$\frac{\text { Group: CL1 }}{\text { Extract: CL1: } 2}$
Clause Mood

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	Mixed models	I	Positive	require
2.	Not just different cognitive tasks, but different aspects of the same task	I	Positive	look
2.	some form of mixed model	I	Positive/Possible	may well be
3.	The apparent success of thoroughly soft PDP systems in negotiating such domains (e.g. the model of past tense acquisition)	I	Positive/Possible	may be due
4.	the system	R	Positive	received
5.	Pinker and Prince	I	Positive	describe
6.	even the Rumelhart and McClelland system	I	Positive	has
7.	the consequences	I	Positive/Necessary	must include
8.	correct explanations	I	Positive/Necessary	must be geared
9.	All of which	I	Positive	
10.	1	I	Positive	am
11.	It	R	Positive/Hypoth	would be
12.	[Imperative; Subject omitted]	0	Positive	See
13.	The power behind our gross symbol processing capacities -- the factor (or one factor) which makes us thinkers and e.g. SHRDLU not	I	Positive/Possible	may well be
14.	There	I	Positive	is
15.	The intuition	I	Positive/Frequ	is often put
16.	our notion of understanding	I	Positive/Possible	Perhaps... involves

is most strongly advanced
would seem
certainly fits
uṭeqụ̣ш Pinous
Kuap should hold may...hold 0
0
0
0
0
-7
0
0
0

This position
it
This
We...(many of us)
we
$\underset{3}{0}$
we
Subsymbolic processing without symbolic
guidance
 support

$\stackrel{\infty}{\sim}$
Group: CP1
Extract: CP1:3
Clause Mood

	Subject	Finite	Polarity/Modality	Realisation
1.	Neural networks, of the kind found in slugs, hamsters, monkeys and humans	I	Positive	are
2.	The relative slowness of the individual processors	I	Positive	is
3.	A useful analogy	I	Positive	captures
4.	we	I	Positive	find
5.	Local constraints	I	Positive	govern
6.	the system as a whole	I	Positive	settles
7.	we	I	Positive/Possible	can say
8.	Vision and sensori-motor control	I	Positive	are
9.	Such networks	I	Positive/Possible	can perform
10.	each neuron (or group of neurons)	I	Positive	is primed
11.	These neurons	I	Positive	are linked
12.	Neurons with compatible contents	I	Positive	form
13.	we	I	Positive	build up
14.	the computational work	I	Positive	is done
15.	Parallel networks or "connectionist machines"	I	Positive	yield
16.	The first of these	I	Positive	is
17.	This	I	Positive	is
18.	the excitatory and inhibitory connections between units	I	Positive	complete

can complete
can...continue would
correspond
әұеш од pəəu
makes for
call
involves
would store
are linked
Positive/Possible
Positive/Possible
Positive/Necessary
8
$\stackrel{1}{4}$
$\stackrel{1}{2}$
0
0
0
1
4
0
0
0

0
0
0
0

㖘

f
0
0
10

0
Δ
-1
0
0
0
0
0

HH~
HHHHMOવM

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	Parallel Distributed Processing	I	Positive	is
2.	a general type of architecture and a set of properties	I	Positive	is
3.	The type of architecture	I	Positive	
4.	These positively or negatively weighted connections	I	Positive	encode (or come to encode)
5.	we	I	Positive/Possible	may conceive
6.	The unit	I	Positive	fires
7.	Two units which stand for contradictory hypotheses	I	Positive/Possible	may...be linked
8.	it	I	Positive/Certain/ Usuality	will tend to inhibit
9.	Mutually supporting hypotheses	I	Positive/Possible	may be linked
10.	The links	I	Positive	allow
11.	The state of a unit at a given time	I	Positive/Certain/ Degree	will depend in part
12.	those units	I	Positive/Certain	will be influenced
13.	An iterative process of mutual adjustment of response	I	Positive	ensues
14.	This process	I	Positive/Usuality	is sometimes called

pəysṭqeasə əie is....
distributed
results is
exhibit
is required
are not....
stored
is perhaps
becomes
seems...to
amount
is
Positive
Positive
Positive
Positive/Oblig
Positive/Certain
Positive/Oblig/
Usuality
Positive
Negative
Positive
Negative
Positive/Possible
Positive
Positive/Presumtive
Positive
Positive
[Imperative; Subject omitted] Each unit
[Imperative; Subject omitted]
Each unit
It
the global network
This
the system
The essential point to note
Parallelism alone
a process of cooperative group decision
Cooperative algorithms
Cooperation
A homely example (which I first heard from
J. Stone)
global patterns of supply and demand
Overall knowledge of demand
The way of encoding and retrieving specific
information
This
they
no special mechanism
the hypotheses

Group: CP1

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	it	I	Positive/Usuality	does look, at times
2.	we	I	Positive/Presumptive	seem to move
3.	One theory which attempts to account for this phenomenon	R	Positive	was... propounded
4.	They	I	Positive	suggest
5.	The notion of simulation	I	Positive	is
6.	[Subject as 5.; omitted]	I	Positive/Necessary	needs to be treated
7.	A standard digital computer	I	Positive/Possible	can be set up
8.	it	I	Positive	simulates
9.	a connectionist brain	R	Positive/Possible	could... simulate

Group: CL1

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	So much for the good news.	[Minor clause; verbless]		
2.	PDP models	I	Positive/Assertive Presumptive	do indeed seem to provide
3.	Now for the bad news.	[Minor	use; verbless]	
4.	Psychologically realistic models of our performance of some tasks		Positive/Possible	can be obtained
5.	Hence a dilemma:...	[Minor	use: verbless]	

Group: CP1
Extract: CP1:5
Clause Mood

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	The intriguing answer suggested by McClelland and Rumelhart	I	Positive	is
2.	[Imperative; Subject omitted]	0	Positive	take
3.	They	I	Positive	suggest
4.	we	I	Positive	complete
5.	This ability	I	Positive	is combined
6.	We 777×77	I	Positive	deploy
7.	777×777	I	Positive	is reduced
9.	The first three such operations	I	Positive	[is] read off
10.	we	I	Positive	learn
11.	the kind of explicit, conscious reasoning that the mind's eye approach used as its model of the underlying architecture of thought	I	Positive/Assertive	is really
12.	It	I	Positive	is
13.	it	I	Positive	depends
14.	this	R	Positive/Hypoth	would be
15.	it	I	Positive	has come

Group: CL1
Extract: CL1:5

Group: CP2

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	Industrial robots working alongside humans on an assembly line	I	Positive	look
2.	most industrial robots	I	Positive	are
3.	Robots	I	Positive	are
4.	Most of the investment in a robot	I	Positive	is spent
5.	Much of the inherent flexibility of a robot	I	Positive	is wasted
6.	Researchers all over the world	I	Positive	want
7.	They	I	Positive	want
8.	The most dramatic advances in robotics	I	Positive/Possible	may come
9.	The ability to interpret images taken by a television camera	I	Positive/Hypoth	would enable
Group: CL2				
Extract:CL2:1				
Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.		I	Positive	is
2.	this high level of performance	I	Positive	is achieved
3.	Methods	I	Positive	are known
4.	this knowledge itself	I	Positive	

Group: CP2
 Extract: CP2:2

Modulation Finite Polarity/Modality Realisation_
R Positive/Possible could mislead accumulates
may be hidcien
know
can usually recognise is
know
\rightarrow look is

$\mapsto \quad H H \quad H H H F$

$\frac{\text { Group: CL2 }}{\text { Extract: CL2:2 }}$

Clause Mood

	Subject	Finite	Polarity/Modality	Realisation
1.	we	I	Positive	examine
2.	the effective application of such a strong constraint	I	Positive	leads
3.	The particular constraint that we will be examining	I	Positive/Possible	can be stated
4.	The ease of stating this constraint	I	Positive	is
5.	The mathematical and practical problems of implementing it	I	Positive	have been
6.	Some systems	I	Positive	have ignored
7.	the importance of this constraint for achieving robust recognition	I	Negative/Possible	can hardly be overstated
8.	we	I	Positive/Certain	will argue
9.	any attempt to recognize an object without application of the viewpoint consistency constraint	I	Positive/Certain	will end up
10.	Low-level vision	I	Positive	has proved
11.	low-level vision	I	Positive	provides
12.	It	I	Positive	
13.	A second area of bottom-up image analysis	I	Positive	has focused
14.	in themselves these region descriptions	I	Positive	are
15.	spatial correspondence	I	Positive/Frequ	is often

Group: CP2
Extract: CP2:3
Clause Mood

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	The simplest example of the identification of stable features	I	Positive	is
2.	Edges	I	Positive	appear
3.	They	I	Positive	occur
4.	Edges	I	Positive	remain
5.	Studies of the early stages of visual processing in the brain	I	Positive	show
6.	None of the numerous computational techniques to detect changes in intensity and form edge-like structures	R	Positive	had
7.	the detection of edges	I	Positive	is
8.	there	I	Positive	is
9.	Human vision	I	Positive	gives
10.	A computer	I	Positive/Possible	can apply

Group: CL2

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	The seminal work of Roberts [22] in the early 1960s	R	Positive	contained
2.	His vision system	R	Positive	began
3.	The interpretation process	R	Positive	assumed
4.	sets of matches	R	Positive	were hypothesized
5.	His method for performing spatial verification	R	Positive	assumed
6.	[Subject as 5.; omitted]	R	Positive	required
7.	The resulting solution	R	Positive	was
8.	the mean-square error	R	Positive	was used
${ }^{9} 10$.	these methods	R	Positive Positive	had

Group: CP2

Clause Mood ${ }_{\text {Subject }}$		Modulation		
		Finite	Polarity/Modality	Realisation
1.	a single rigid model	I	Negative/Predictive	Of course..does not capture
2.	Many objects	I	Positive	have
3.	an object	I	Negative/Possible	may not have
4.	Some vision systems	I	Positive/Possible	can manipulate
5.	it	I	Positive/Certain	will become
6.	robots	I	Positive/Certain	will need
$\frac{\text { Group: CL2 }}{\text { Extract: CL2: }}$				
Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	One argument that is sometimes advanced against the use of precise spatial correspondence	I	Positive	is
2.	It	I	Positive	is
3.	advances	I	Positive	will be made
4.	Our knowledge of the visual appearance of objects	I	Positive	includes
5.	To simply discard all of the available spatial information because some of it	R	Positive/Hypoth	would result
6.	It	I	Positive	is

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	The first step in recognition	I	Positive	is
2.	it first step in recognition	I	Positive/Desid've	Unfortunately is
3.	The equations	I	Positive	are
4.	they	I	Positive	have
5.	The computer	I	Positive/Necessary	needs to adopt
6.	The mathematical technique we adopted at New York University	I	Positive	is
7.	The method	I	Positive	starts
8.	[Subject as 7.; omitted]	I	Positive	measures
9.	Newton's method	I	Positive	calculates
10.	[Subject as 9; omitted]	I	Positive	minimises
11.	it	I	Positive	projects
12.	[Subject as 11.; omitted]	I	Positive	predicts
13.		I	Positive	adjusts
14.	The process	I	Positive	ceases
15.	we process	I	Positive/Possible	can expect
16.	it	I	Positive	is
17.	there	I	$\begin{aligned} & \text { Positive/Certain } \\ & \text { Possible } \end{aligned}$	will likely be
18.	it	I	Positive	remembers
19.	[Subject as 18.; omitted]	I	Positive	removes
20.	the number of remaining edges in the image	I	Positive	become
21.	the search area	I	Positive	decreases
22.	the search	I	Positive	ends
23.	many uninterpreted edges	I	Positive/Frequ	Usually...

Group: CL2

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	The viewpoint consistency constraint	I	Positive	
2.	the initial bottom-up stages of vision	I	Positive/Necessary	must detect
3.	human vision	I	Positive	does have
4.	The SCERPO vision system	I	Positive	begins
5.	Figure 4	I	Positive	shows
6.	Edges	I	Positive	are detected
7.	Straight line segments	I	Positive	detected
8.	a grouping process	I	Positive	is executed
9.	The methods for perceptual organization	I	Positive	are
10.	the reader	I	Positive	is referred
11.	The groupings	I	Positive	are matched
12.	the groupings	I	Positive	are used
13.	Matches between an object and the image that are based simply upon viewpointinvariant properties	I	Positive/Certain/ Necessary	will necessarily be
14.	The viewpoint consistency constraint	I	-Positive/Possible Degree	can greatly improve
15.	Figure 6	I	Positive	shows
16.	Figure 6a	I	Positive	shows
17.	The grouping	I	Positive	satisfies
18.	[Subject as 17.; omitted]	I	Positive	is matched
19.	The remainder of figure 6	I	Positive	follows
20.	The initial viewpoint estimate for the model (shown in figure 6a in dark blue)	I	Positive	is made
21.	This	1	Positive	is...refined

Group: CP2

Clause	Mood	Modulation		
Clause	Subject	Finite	Polarity/Modality	Realisation
1.	It	I	Positive/Possible	may be
2.	there	I	Positive	is
3.	More primitive forms of computer vision	I	Positive	are
4.	Vision	I	Positive	is
5.	it	I	Positive/Certain	will play

Realisation greatly
simplifies
is
need...function
[need] provide
is aimed
are not used
serve
is based
maps
is based
contrasts

$$
\stackrel{\stackrel{\text { ® }}{\widetilde{\sim}}}{\stackrel{\sim}{\sim}}
$$

Modulation

1.	Application of the viewpoint consistency constraint
2.	This constraint
3.	Bottom-up processing
4.	[Subject as 3.; omitted]
5.	the bottom-up description of an image
6.	These groupings
7.	[Subject as $6 . ;$ omitted]
8.	Actualidentification
9.	[Subject as $8 . ;$ omitted]
10.	The matching process presented in this paper
11.	This approach
12.	The individual probabilistic analysis
13.	of each match
14.	It

$$
\begin{aligned}
& \text { Positive/Degree } \\
& \text { Positive } \\
& \text { Positive/Necessary } \\
& \text { Positive/Necessary } \\
& \text { Positive } \\
& \text { Negative } \\
& \text { Positive } \\
& \text { Positive/Possible } \\
& \\
& \text { Positive } \\
& \text { Positive }
\end{aligned}
$$

Group: CP3

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	nine women	R	Negative/Necessity	shouldn't be able
2.	Some tasks	I	Negative/Possible	cannot be performed
3.	it	I	Positive/Freq	Sometimes...is
4.	Conventional computers	I	Positive	contain
5.	[Subject as 4.; omitted]	I	Positive/Possible	can do
6.	There	I	Positive	are
7.	-today's most advanced processors	I	Positive	are approaching
8.	A parallel computer	I	Positive	contains
9.	There	I	Positive	is
10.	parallel computers	I	Positive	are
11.	This reliability	I	Positive	is
12.	they	I	Positive	create
13.	Many of the techniques used on conventional computers	I	Positive	turn out
14.	parallel programs	I	Positive/Freq	often encounter
15.	many of these difficulties	I	Positive	are
16.	There	I	Positive	are

$\frac{\text { Group: } \quad \text { CL3 }}{\text { EXtract: CL3:1 }}$

Group: CP3

$\frac{\text { Group: CL3 }}{\text { Extract: CL3: } 2}$

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	There	I	Positive	are
2.	SIMD (Single Instruction Multiple Data) computers	I	Positive	execute
3.	each processor	I	Positive	runs
4.	the processors	I	Positive/Necessary/ Possible	must be able to to communicate
5.	SIMD machines	I	Positive/Freq	usually have
6.	There	I	Positive	are
7.	all the processors	I	Positive	communicate
8.	The bus	I	Positive/Necessary	must be
9.	[Subject as 8; omitted]	I	Positive/Necessary	must contain
10.	The BBN Butterfly Computer	I	Positive	is
11.	that each processor should have its own memory, and should communicate with a small number of other processors via point-to-point links.	I	Positive	is
12.	Data in the memory of one processor that is required by another	I	Positive/Necessary	must be passed
13.	The Intel Hypercube, Ncube and Meiko Computing Surface	I	Positive	are

$\frac{\text { Group: CP3 }}{\text { Extract: CP3:3 }}$
Clause Mood

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	Parallel computers of both types	I	Positive	are...being manufactured
2.	The Distributed Array Processor or DAP	I	Positive	is
3.	The DAP	I	Positive	is
4.	Each DAP	I	Positive	contains
5.	The processing elements	I	Positive	are arranged
Group: CL3				
Extract: CL3:3				
Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	The DAP, Ref 3	I	Positive	is
2.	There	I	Positive	are
3.	All PEs	I	Positive	obey
4.	[Imperative; Subject omitted]	0	Positive	See
5.	The DAP -	I	Positive	
6.	$A=B * C$	I	Positive/Certain	will produce
7.	A masking facility	I	Positive	allows

I	Positive	have been
I	Positive	have
I	Positive	is
I	Positive	are built up
I	Positive	takes on
I	Positive	generates
I	Positive	is
I	Positive/Possible	can...create
I	Positive	assigns
I	Positive	calculate
I	Positive	receive
I	Positive	process
I	Positive/Possible	can work
I	Positive	is
I	Negative	is not
R	Negative/Possible	could not
		process
R	Positive	was

These conventional algorithms
You
it
The
Appl

かioṅㅜㅜ
$\frac{\text { Group: CL3 }}{\text { Extract: CL }}$
Extract: CL3:4
Clause Mood

Murray et al
 Information on the state of each neuron
The cost of splitting processing between
many processors
Group: CP3

| Clause | Mood | Modulation | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Subject | Finite | Polarity/Modality | Realisation |
| 1. | The DAP and the transputer | I | Positive | are |
| 2. | Many other variations on the theme | I | Positive | are |
| 3. | We | I | Positive | have |
| 4. | It | I | Positive/Possible | may seem |
| 5. | the real objective | I | Positive | is |
| 6. | Progress in the design of parallel computers | I | Positive/Certain | will make |

$\frac{\text { Group: CL3 }}{\text { Extract: CL3: } 5}$
Clause Mood

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	The range of models studied in this paper	I	Positive	are
2.	[Subject as 1.; omitted]	I	Positive/Possible	can be... mounted
3.	this	I	Positive	is
4.	It	I	Positive	is
5.	it	I	Positive	is
6.	Two further comments	I	Positive	are
7.	it	I	Positive	is
8.	the realisation of this potential in real applications	I	Positive	is
9.	it	I	Positive	is
10.	the actual operation of a trained net	I	Negative/Possible	may not... require
11.	their use in neural modelling	I	Positive	is
12.	The integrated graphics capabilities of the Computing Surface	I	Positive	are

$\frac{\text { Group: } \mathrm{HP1}}{\text { Extract: HP1:1 }}$
Clause Mood

$\frac{\text { Group: HL1 }}{\text { Extract: HL1:1 }}$
Clause Mood

Clause	Mood	Modulation		
	Subject	Finite	Polarity Modality	Realisation
1.	Victorian seaside resorts	R	Positive	were
2.	those which were expanding most	R	Positive	were having to
3.	spectacularly			come to terms
4.	rising living standards		Positive	released
5.	the skilled worker and his family		R	Positive

$\frac{\text { Group: HP1 }}{\text { Extract: HP1:2 }}$
Clause Mood

Group: HL1

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	All this	I	Positive	helps
2.	whole towns	R	Positive	had
3.	The fairgrounds	R	Positive	persisted
4.	they	R	Positive	were frequented
5.	The traditional amusements of the Wakes	R	Positive/Degree	had in large measure migrated
6.	this response to new opportunities, especially at Blackpool, itself	R	Positive	made
7.	textile Lancashire	R	Positive	led
8.	it	I	Positive	is
, 9.	there	R	Positive	were
${ }^{10}$	they	I	Positive/Presumptive	
:11.	we	I	Positive/Certain/ Necessary	shall need to bear

$\frac{\text { Group: HP1 }}{\text { Extract: H}}$

Clause	Mood	Modulat		
	Subject	Finite	Polarity/Modality	Realisation
1.	Class conflict at the seaside	R	Positive	revolved
2.	it	R	Positive	was
3.	Most resorts	R	Positive	began
4.	they	R	Positive	developed
5.	the established visiting public and its resident allies and dependants	R	Positive	took
6.	They	R	Positive	feared
7.	they	R	Positive	viewed
8.	They	R	Positive	sought
9.	They	R	Positive	tried
10.	'Respectable' working-class visitors, who reacted passively to their surroundings and accepted a silent and subordinate place in the seaside scheme of things	R	Positive	were tolerated
11.	assertive trippers, who set out to enjoy themselves in their own way	R	Positive	were met
12.	large landowners in alliance with strong and single-minded local authorities	R	Positive/Possible	were able to defend
13.	large sections of a resort	R	Positive/Possible	could go
14.	This kind of conflict	R	Positive	was
15.	It	R	Positive	expressed
16.	it	R	Positive	exposed
17.	a more tolerant middle-class consensus	R	Positive	reached out
18.	All classes	R	Positive	mingled
19.	the classes	R	Positive	continued
20.	The social harmony of the Edwardian seaside such as it was	R	Positive	owed

$\frac{\text { Group: HL1 }}{\text { Extract: } H L}$

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	These developments	R	Positive	were
2.	The earliest railway excursions to the coast	R	Positive	both responded to and stimulated
3.	Sunday Schools, temperance societies, and paternalistic employers	R	Positive	were
4.	the enjoyment of cheap travel and the cult of sea bathing	R	Positive	had
5.	Many	R	Positive	patronized
6.	Ramsgate	R	Positive	found
7	the railways	R	Positive	gave
8.	[Subject as 7.; omitted]	R	Positive	ran
9.	these open excursions, which often ran on Sundays, especially in the south of England	R	Positive	attracted
10.	The earliest days of cheap travel for the masses	R	Positive	saw
11.	the working-class seaside holiday as it grew out of the day excursion	R	Positive	catered
12.	they	R	Positive	posed
13.	[Subject as 12.; omitted]	R	Positive	offered
14.	The existing "better-class" visiting public	R	Positive/Freq	often reacted
15.	the new visitors	R	Positive	came
16.	some resorts	R	Positive	saw
17.	the commercialization of entertainment which was developing rapidly inland	R	Positive	made
18.	stalls and fairground attractions	R	Positive	were supplemented

Clause Mood

Clause	Mood	Modulation		
		Finite	Polarity/Modality	Realisation
19.	the organizers of Sunday School and temperance excursions	R	Positive	began
20.	the commercial excursions and the railways' own regular cheap holiday fares	R	Positive	dominated
21.	the popular resorts	R	Positive/Possible	were able to grow
22.	Such developments	R	Positive	depended
23.	The working-class day-tripper	R	Positive/Freq	never had
24.	some of the more thrifty and resourceful of the better-paid working-class visitors	R	Positive	contrived
25.	This	I	Positive/Possible	may well have been hapening
26.	a working-class accommodation industry	R	Positive	was clearly emerging
27.	This	R	Positive	was
28.	It	I	Positive/Possible	can be seen
29.	there	R	Positive	emerged
30.	the new pattern of demand	R	Positive	began
31.	The lifestyles of the new visitors	R	Positive/Freq	often generated
32.	the working-class season, augmenting as it did an already swelling rush to the sea by workers in the expanding white-collar	R	Positive	provided
33.	occupations Blackpool	I	Positive	provides
34.	Southend, Cleethorpes, Yarmouth, Scarborough, Morecambe and several others	I	Positive/Possible	can be seen
35.	the most rapid large-scale resort growth of the late nineteenth century	R	Positive	came
36.	it	R	Positive	was

Clause Mood

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
37.	resorts like Southport, which had prospered in the mid-Victorian heyday of the solid middle-classes	R	Positive	found
38.	[Subject as 37.; omitted]	R	Positive	experienced
39.	the picture	I	Positive	is complicated
40.	Even Southend's remarkable surge of development at the turn of the century	R	Positive	was fuelled
41.	"better-class" resort growth	R	Positive	was beginning
42.	the survival of irregular working habits often associated with a deep attachment to a large number of customary festivals	R	Positive	inhibited
43.	most industrial workers	R	Positive	retained
44.	Day-trips	R	Positive	were
45.	only the skilled and supervisory groups among the working class	R	Positive	had
46.	Such working people	R	Positive/Freq	were usually
47.	[Subject as 46.; omitted]	R	Positive	were
48.	Conflicts	R	Positive	flared
49.	it	R	Positive	was

Group: HP1

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	Different resorts	R	Positive	responded
2.	there	R	Positive	was
3.	The evolution of a resort's 'social tone'	R	Positive	was
4.	The level of working-class demand	R	Positive	became
5.	this	R	Positive	was affected
6.	the seaside habit	R	Positive/Possible	could develop
7.	This	R	Positive	was
8.	the working-class seaside holiday	R	Positive	was
9.	Cheap and rapid transport	R	Positive/	was
10.	the causal impact of railways, as such	R	Positive	was
11.	They	R	Positive	made
12.	the policies of individual companies	R	Positive/Freq	sometimes favoured
13.	the positive impetus to resort growth and changing demand patterns	R	Positive/Freq	usually came
14.	the railways	R	Positive	responded
15.	they	R	Positive	did...help
16.	They	R	Positive	were
17.	they	R	Positive/Ereq	were seldom

Group: HL1

Extract: HL1:4

Clause Mood

Clause	Mood	Modula		
	Subject	Finite	Polarity/Modality	Realisation
1.	Steady pressure from the labour force	R	Positive	brought
2.	new holidays	R	Positive/Assertive	indeed....were created
3.	Bolton's holiday obserevances	R	Positive	were concentrated
4.	a subsidiary August break	R	Positive	grew
5.	they	R	Positive	lengthened
6.	Burnley	R	Positive	had
7.	Most people in the town	R	Positive	had achieved
8.	the fair holiday	R	Positive	was extended
9.	an additional long week-end in September	R	Positive	had...been secured
10.	The other textile towns	R	Positive	showed
11.	Oldham and Darwen each	R	Positive	acquired
12.	Chorley and Nelson	R	Positive	obtained
13.	Blackburn	R	Positive	followed
14.	only Bolton, which still took several days off at Whitsuntide, and a few of the the smaller towns	R	Positive	had
15.	Lancashire cotton workers	R	Positive	had
16.	their observance of a regular working week for the rest of the time	R	Positive	made

$\frac{\text { Group: HP1 }}{\text { Extract: HP1: } 5}$
Clause Mood

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	Developments in the resorts themselves	R	Positive	were
2.	It	R	Positive	was
3.	The policies of landowners	R	Positive	were
4.	Large landowners	R	Positive/Possible	might...subsidise
5.	they	R	Positive/Possible	might step in
6.	Large-scale entertainment	R	Positive/Freq	was rarely
7.	local government	R	Positive	took on
8.	local authorities	R	Positive	were taking over
9.	The leading citizens of succesful seaside resorts	R	Positive/Possible	might like
10.	most such towns	R	Positive	owed
11.	The rising demand for seaside holidays	R	Positive	owed
12.	this	R	Positive	owed

Group: HL1

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	The evolution of this distinctive	R	Positive	had
	Lancashire holiday system			
2.	The demand for seaside visits	R	Positive	was spread
3.	this accidental stagger effect	R	Positive	made
4.	the working-class season	R	Positive	lasted
5.	even this	R	Positive	was
6.	working-class demand	R	Positive	was channelled
7.	Railways and resorts	R	Positive	were
8.	there	R	Positive	was
9.	August Bank Holiday	R	Positive	was
10.	the longer season	R	Positive	enabled
11.	Rhyl, Douglas, New Brighton and Scarborough	R	Positive	were
12.	the relationship	I	Positive/Possible	can be seen

$\frac{\text { Group: HP1 }}{\text { Extract: HP1: } 6}$
Clause Mood

$\frac{\text { Group: HL1 }}{\text { Extract: HL1: } 6}$
Clause Mood

Clause	Mood	Modulat		
	Subject	Finite	Polarity/Modality	Realisation
1.	The loss of traditional summer holidays	R	Positive	retarded
2.	much of the southern half of England	R	Positive	was...passing
3.	the really early advances	R	Positive	had come
4.	Their patronage	R	Positive	had stimulated
5.	this	R	Positive	had made
6.	the holiday habit	R	Positive	was encouraged
7.	Cleethorpes, Bridlington and Scarborough	R	Positive	were
8.	the working-class holiday	R	Positive ${ }^{\text {Positive/Possible }}$	became can be...related
9.	The reasons for this precocious development, and the pattern of change	I	Positive/Possible	
10.	There There	I	Positive/Possible	can be

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	Charles I	R	Positive	had provoked
2.	the king	R	Positive	accepted
3.	he	R	Positive	recognised
4.	Charles	I	Positive/Logical Necessity	must have been
5.	he	R	Positive .	failed
6.	this	R	Positive	undermined
7.	What	R	Positive	went

Group: HL2
Extract: HL2:2

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	The shortness of the sea crossing between Ulster on the one hand and Argyll and the western Lowlands of Scotland on the other	I	Positive/Freq	has always ensured
2.	the Scots, who had come from Ireland and and settled in Argyll	R	Positive	created
3.	they	R	Positive	were
4.	Christianity	R	Positive/Degree	partly came
5.	suspicion of the Scots	R	Positive	grew
6.	Wentworth	R	Positive	obstructed
7.	he	R	Positive/Degree	strongly opposed
8.	Wentworth	R	Positive	denounced
9.	he	R	Positive	had
10.	both Ancrum and Hamilton	R	Positive	were
11.	Hamilton	R	Positive/Assertive	indeed was sent
12.	Sir John Clotworthy, an English planter in in Antrim, whose offer to take over the Londonderry lands Wentworth had preferred to Hamilton's	R	Positive	was...reported
13.	English blood	R	Positive	was

Extract: HP2:2

Clause Mood
Group: HL2
Extract: HL2:2

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	the national covenant	R	Positive	was drafted
2.	[Subject as 1.; omitted]	R	Positive	[was] signed
3.	effective control of the country	R	Positive	was
4.	Charles I	R	Positive	concluded
5.	Both king and covenanters	R	Positive	began
6.	These events	R	Positive/Predictive	naturally had
7.	The Scots colonists in Ulster, originally seen as bulwarks of English authority in Ireland	R	Positive	became

$\frac{\text { Group: HP2 }}{\text { Extract: HP2:3 }}$
Clause Mood

Clause	Mood		Modulation	Finite	Polarity/Modality
	Subject	Realisation			
1.	The plan	R	Positive	looked	
2.	it	R	Positive	was	
3.	Attempts to raise the forces necessary for	R	Positive	demonstrated	
4.	the war		R	Positive	came
5.	Charles		R	Positive	sailed

-	Subject	Finite	Polarity/Modality	Realisation
1.	the Covenanters	R	Positive	sent
2.	There	R	Positive	was
3.	Aberdeen	R	Positive	changed
4.	the 'Trot of Turrif'	R	Positive	saw
5.	the Covenanters	R	Positive	gained
6.	Many	R	Positive	hoped
7.	few	R	Positive	expected
8.	The king	R	Positive	had realised
9.	[Subject as 8.; omitted]	R	Positive	saw
10.	the Covenanters	R	Positive	knew
11.	time	R	Positive	proved
12.	a force	R	Positive	was stationed
13.	the king	R	Positive	had
14.	harsh reality	R	Positive	failed
15.	Open opposition to the war, and to his policies in general	R	Positive	was spreading
16.	the Covenanters	R	Positive	decided
17.	They	R	Negative/Possible	could not keep
18.	they	R	Positive/Volition	would force

Group: HL2

Clause	Mood	Modulation Finite Polarity/Modality		
	Subject			Realisation
1.	The king's failure to invade Scotland	R	Positive	forced
2.	Neither side	R	Positive	expected
3.	each	R	Positive	agreed
4.	Ireland	R	Positive	continued
5.	Donald Gorm	R	Positive/Presumptive	apparently supplied
6.	Charles	R	Positive	appointed
7.	Antrim	R	Positive	was promised
8.	Donald Gorm of Sleat	R	Positive	was
9.	It	R	Positive/Presumptive	was no doubt intended
10.	the commission	R	Positive	made
11.	Charles	R	Positive/Possible	probably...
12.	[Subject as 11.; omitted]	R	Positive	recognised offered
13.	the treaty of Berwick	R	Positive	was used
14.	The covenanters	R	Positive	decided
15.	it	R	Positive	was being said
16.	Argy 11	R	Positive	was assigned
17.	it	R	Positive	was
18.	it	R	Positive	had been decided
19.	Dumbarton Castle	R	Positive	had been handed

Strafford's idea of landing troops there
Strafford's
He
it
it
The covenanters
It
that Strafford would lead a diversionary
raid from Ireland, or would send his army
to help the king in England
the covenanters
Argyll
Argyll
This commission to Argyll
they
he
those who thought the commission 'may be
but a boast to hold the Irish army at home'
the covenanters
their plans to do so if necessary
The fact that at this very moment they were
successfully invading England

Group: HP2

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	The consequences of the Bishops' Wars	R	Positive	were
2.	The Scots	R	Positive	had called
3.	Charles	R	Positive	came
4.	[Subject as 3.; omitted]	R	Positive	acceded
5.	he	R	Positive/Degree	virtually surrendered
6.	The triumph of the Covenanters	R	Positive	seemed
7.	victory	R	Positive	turned
8.	The Bishops' Wars	R	Positive	had destabilised
9.	the oppressed Catholics, inspired by the Covenanters' example	R	Positive	rose
10.	the Scots	R	Positive	sent
11.	England	R	Positive	collapsed
12.	the Scots	R	Positive	felt
13.	It	R	Positive	was
14.	the Covenanters	R	Positive	overstretched
15.	they	R	Positive	infuriated
16.	the great Scots triumph of the Bishops' Wars	R	Positive	was converted
17.	The never-conquered country	R	Positive	was conquered
18.	the consequences of the Covenanters' early triumphs in the Bishops' Wars	I	Positive/Possible	can be seen

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	Strafford	R	Positive	had proved
2.	he	R	Positive	had...managed
3.	it	R	Positive	was
4.	Strafford's new Irish army	R	Positive	was transformed
5.	The fact that it was largely Catholic	R	Positive	meant
6.	the need for money to pay it	R	Positive	forced
7.	Discontent with the rule of Charles I	R	Positive	was given
8.	The weakness of the crown, now powerless in Scotland and under attack in the English parliament	R	Positive/Predictive	naturally encouraged
$\dot{\sim}^{9 .}$	The 'Old English' (descendants of preElizabethan settlers who had remained	R	Positive	combined
$\stackrel{N}{N}_{\substack{10}}$	Catholics) and protestant settlers Ulster protestant settlers of puritan or presbyterian outlook, mainly Scots	R	Positive	issued
11.	there	R	Positive	were
12.	the native Irish	R	Positive	began
13.	royal power	R	Positive	was collapsing
14.	the bitter hatred of Catholics expressed by the covenanters and the English parliament	R	Positive/Presumptive	seemed to indicate
15.	Strafford	R	Positive	was executed
16.	his new Irish army	R	Positive	was disbanded
17.	It	R	Negative	was not

the king's own incompeten the king	R
he	R
[Subject as 20.; omitted]	R
he	R
his plans	R
He	R
Charles	R
the conspirators	R
Charles I	R
it	
the Irish plot	I
it	I
his rash tampering with a	R
situation in Ireland	
News that Charles was see	R
it	R
many native Irish leaders	R
an armed rising, to take	R
October	
they, and the leaders of	R
It	
The native Irish	R
[Subject as 38.; omitted]	R
[Subject as 39.; omitted]	R

Positive
the native Irish, 'the fools' as Antrim
later called
later called
they
This part of the plot
a simultaneous rising in Ulster
Sir Phelim o Neill
virtually all Ulster except for the north
of counties Down and Londonderry and
County Antrim
the main threat to Scottish interests in
Ireland

Group: HP3

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	The history of crime in the twentieth century	I	Positive/Predictive	is inevitably dominated
2.	the level of crime recorded by the police	R	Positive	grew
3.	the crime level	R	Positive	remained
4.	Recorded crime	R	Positive	increased
5.	The main increases in these early decades	R	Positive	occurred
6.	Drunkenness offences	R	Positive	declined
7.	It all	I	Positive	suggests

$\frac{\text { Group: HL3 }}{\text { Extract: } \mathrm{HL} 3: 1}$
Clause Mood

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	its study	R	Positive/Degree	was relatively neglected
2.	serious and systematic research on crime and criminal justice	I	Positive	has created
3.	historians	I	Positive	have addressed
4.	No single theme	R	Positive/Possible	could... encapsulate
5.	an unresolved, and perhaps unresolvable tension in the use of the records of criminal justice	I	Positive	
6.	whether the criminal indictments (the formal charges laid against the accused in the county quarter sessions and assizes) should be taken as a measure of the changes which occurred in criminal behaviour over time, or as an indicator of the contours of criminal justice	I	Positive	is
7.	These two approaches	I	Negative	have neither been nor need be
8.	A study of criminal prosecutions	I	Positive	yields
9.	A positivist interpretation of the criminal statistics	I	Positive/Possible	can...be improved
10.	there	I	Positive	has been
11.	historians	I	Positive/Assertive	indeed....have adopted
12.	both approaches	I	Positive	have been used
13.	It	I	Positive	is

$\frac{\text { Group: HP3 }}{\text { Extract: HP3: } 2}$

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	The yearly figure for indictable (or serious crimes recorded by the police in England and Wales	R	Positive	rose
2.	the upward trend of crime	R	Positive	accelerated
3.	the pattern of increase in crime	I	Positive	is shown
4.	A rate of 249 crimes per 100,000 population in 1901	R	Positive	rose
5.	The upward trend	R	Positive	started
6.	[Subject as 5.; omitted]	I	Positive	has continued
7.	Much less academic and press attention	I	Positive/Freq	tends to be given
8	The annual average number of persons found guilty of non-indictable crime	R	Positive	was
9.	nearly two million persons	R	Positive	were found
10.	another 136,000	R	Positive	were cautioned
11.	Changes	I	Positive	have taken
12.	drunkenness	R	Positive	was
13.	motoring offences	I	Positive	has been

Clause Mood

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	The present wave of interest in historical crime	R	Positive	began
2.	A large proportion of subsequent energies	I	Positive	have... .been spent
3.	that the ratio between recorded and actual criminality was either fairly constant or changed in an intelligible manner	I	Positive/Assertive Positive	Of course...is have been
4.	the criminal patterns	I	Positive	have been traced
5.	All these studies	I	Positive	have examined
6.	Samaha's study of Essex, which restricts itself to serious crime (thereby omitting indictments for misdemeanor although they comprised a significant percentage of cases handled at quarter sessions)	I	Positive	points
7.	the overall crime rate	R	Positive	doubled
8.	Cockburn's essay	I	Positive	duplicates
9.	[Subject as 8.; omitted]	I	Positive	draws
10.	Beattie	I	Positive	maintains
11.	the rural parishes of Surrey and the	R	Positive	experienced
12.	agricultural county of Sussex Further research on different counties	I	Positive/Certain	will...fill

has been taken
will be based
is

[^3]Group: HP3

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	offences against property, notably theft and handling stolen goods and burglary	I	Positive/Freq	has consistently been
2.	Violent and sexual offences and robbery	I	Positive/Freq	have generally accounted for
3.	This distribution of the main categories of crime	I	Positive	has remained
4.	crimes of violence and the more organised crimes against property (robbery, burglary)	I	Positive	have increased
5.	the most rapid increase in recent decades	I	Positive	has been
6.	The trend in homicides (including murder, manslaughter and infanticide)	I	Positive	has...been
7.	the current average	I	Positive	is
8.	The death penalty	R	Positive	was abolished
9.	the periodic parliamentary attempts to bring it back	I	Positive	have been resisted
10.	the victim	R	Positive	was
11.	[Subject as 10.; omitted]	R	Positive	was
12.	there	R	Positive	were
13.	Recent crime statistics	I	Positive	reveal
14.	There	R	Positive	were
15.	that burglary crimes fell by 4 per cent last year (and by 11 per cent in London)	I	Positive	is

Group: HL3

Extract: HL3:3

Clause Mood
have... provided indicate
found
was
was
points
suggest
seems to be

$$
\underset{\sim}{\infty}
$$

$\frac{\text { Group: HP3 }}{\text { Extract: HP3:4 }}$

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	males	I	Positive	are
2.	the figure	I	Positive	is
3.	Most crimes	I	Positive	are
4.	young of fenders aged 10-21	R	Positive	accounted for
5.	the crime rate both for boys aged fourteen an under seventeen and for young adults aged seventeen and under twenty-one	I	Positive	has increased
6.	Other statistics	I	Positive	indicate
7.	Some of the offenders aged seventeen to twenty-one	I	Positive	display
8.	[Subject as 7.; omitted]	I	Positive	
9.	It	R	Positive/Oblig	should be noted
10.	The police	I	Positive/Presumptive	are obviously arresting
11.	the rise in juvenile crime in the post-war years	I	Positive/Degree	To some degree ...is due
12.	it	I	Positive/Oblig	should....be

Group: HL3
Extract: HL3:4
Clause Mood

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	the extent to which contemporary portrayals of crime and criminals exaggerate the professionalism of such behaviour and the role of 'sub-cultural' formations	I	Positive	is
2.	Early-modern felons	I	Positive/Freq	were ordinarily
3.	An examination of the court records	I	Positive	has...led
4.	The image of large gangs of professional vagabonds, inhabitants of a distinct subculture, participants in organised crime (Pound, 1971)	I	Positive	is replaced
5.	This re-evaluation of the stereotype of the criminal offender	I	Positive	has...been advanced
6.	They	I	Positive	stress
7.	the eighteenth century offender	I	Positive	belongs
8.	a defence of forest rights or an act of popular price-fixing	R	Positive/Possible	could lie
9.	Some types of criminality	R	Positive	were

Positive	constructed Positive/Presumptive seems to have
had	
Positive	has influenced
Positive	is being found

R
I
I
I
I
I
I
I
I

Group: HP3

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	The upward trend of officially recorded crime	I	Negative	is not
2.	Variations in recorded crime rates	I	Positive/Possible/ Freq	can often reflect
3.	Most crimes which become known to the police	I	Positive	are reported
4.	Victims	I	Negative/Freq	often do not report
5.	F.H. McClintock	R	Positive	argued
6.	The level of official crime	I	Positive/Possible	can...be affected
7.	the American criminologist, Thorsten Sellin	R	Positive	declared
8.	Views	I	Positive	differ
9.	Some	I	Positive	say
10.	others	I	Positive	say

Group: HL3

Extract: HL3:5

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	The research undermines	I	Positive	undermines
2.	By no means all crime	R	Positive	was dealt with
3.	Criminal behaviour	R	Positive/Freq	was often dealt with
4.	Cases of poaching, prosecuted under the game laws	R	Positive/Freq	were increasingly
5.	Many moral offences	R	Positive	were dealt with
6.	It	I	Positive	seems
7.	Some offenders	R	Negative	were not brought
8.	A prosecution for witchcraft	R	Positive/Freq	was often
9.	Other types of crime, such as assault and domestic violence	R	Positive/Possible	could...be dealt with
10.	Such limits to the recourse to prosecution	R	Negative	were not... granted
11.	Many of the existing studies	I	Positive	pour
12.	The criminal justice system	I	Negative	does not create
13.	it	I	Positive	processes
14.	It	I	Positive	dips
15.	Such active intervention in the regulation of social conduct	R	Positive	induced
16.	Early-modern fears that hunger bred a temptation to both crime and disorder	I	Positive/Presumptive	seems to have led

Positive	reflect
Positive	encouraged
Positive	was
Positive	records
Positive	has been
Positive	was related
Positive/Possible	could be
Positive	illustrate
Positive	could be
Positive/Validative	Broadly speaking witnessed
Positive	uncovers
Positive	indicted
Positive	registered
Positive	ensured
Positive	detects
Positive/Possible/	he feels, ma
Assertive	have encoura

H	

The statistical findings in relation

The local maintenance of base children
The peak of crime (especially riot and
assault cases) in the 1720 s
[Subject as 19.; omitted]
The increase in sodomy cases at the
beginning of the nineteenth century
The frequency of infanticide between 1840
and 1880
The frequency of theft during the same
period
studies of popular resistance to the 'New
Police' of the nineteenth century, of the
police crusades against street prostitution,
and of the development of notions of
juvenile delinquency
More long-term and widespread changes in
the pattern of crime
the sixteenth and seventeenth centuries

[^4]

Positive/Presumptive were evidently	
Positive	sent
Positive	acquitted
Positive	sentenced
Positive	was
Positive	
	was
Positive	influenced
Positive	led Positive Positive/Assertive
	might have changed Without doubt led
Positive	have produced
Positive/Degree	is in large Positive
Positive	

the decisions of prosecutors, juries and and judges	R
grand juries	R
petty juries	R
judges	R
that grand juries in rural areas tended to	R
deliver more no bill verdicts in the light of high food prices (Beattie, 1974)	
the development of summary hearings either	R
before individual magistrates or at petty sessions	
Nineteenth century changes in judicial personnel and practice	R
A transfer of magisterial authority from	R
the landed to the industrial classes	
between 1836 and 1860 in the Black Country	
The expanding police role in the prosecution	R
of crime	
the Criminal Justice Act of 1855 (empowering	R
the magistrates' courts to deal with many	
indictable thefts)	
historians	
${ }^{\prime}$ Crime'	I
The criminal statistics	I
a more searching appraisal of the meaning	I
of criminality, of the function of criminal	
justice and the role of law in the	
development of the state	

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	what about larger social and economic forces	[Minor clause; verbless]		
2.	London and the big provincial cities and towns		Positive	accounted for
3.	rates of crime per head	R	Positive	were
4.	Urbanisation	I	Positive	has increased
5.	[Subject as 4.; omitted]	I	Negative/Possible	can hardly account for
6.	a substantial and growing amount of crime	I	Positive	has occurred
7.	Crime	I	Positive/Freq	is often thought
8.	we	I	$\begin{aligned} & \text { Negative/Logical } \\ & \text { Necessity. } \end{aligned}$	must...not conclude
9.	Not necessarily	[Minor	ause; verbless]	
10.	what counts	I	Positive	is
11.	a sizeable proportion of children and young persons	I	Positive/Freq	have always been found
12.	what of the criminogenic impact of unemployment	[Minor clause; verbless]		
13.	Most criminologists	I	Positive	have regarded
14.	the high levels of unemployment in the 1930s, especially amongst young people between fourteen and eighteen years of age	I	Positive	has been associated
15.	It	I	Positive	remains

$\frac{\text { Group: HL3 }}{\text { Extract: HL }}$

Clause	Mood	Modulation ${ }_{\text {Finite }}$		
	Subject			Realisation
1.	The relationship between crime and other variables	I	Positive	has...received
2.	Beattie (1974)	I	Positive	stresses
3.	We	I	Positive	are
4.	The connexion between property offences and prices (or trade cycle)	I	Positive/Degree	has been more fully examined
5.	Samaha (1974) and Cockburn (1977b)	I	Positive	find
6.	These	I	Positive/Necessity	must be seen
7.	both the short-term and long-term trends of prices and indictments (per 100,000 population)	I	Positive	suggest
8.	The situation in urban Surrey	R	Positive	was
9.	The major peaks in indictments	I	Positive	follow
10.	Rising prices	R	Positive/Possible	probably heightened
11.	the crime rate	R	Positive	was affected
12.	the recorded levels of property crime	R	Positive	fluctuated
13.	Offenders	I	Negative/Presumptive	seem not to have been
14.	more	R	Positive	took
15.	poaching	I	Positive/Freq/ Presumptive	seem often to have been born
16.	this relationship	R	Positive	began
17.	Property crime, as well as assaults and and offences involving drunkenness	R	Positive/Freq	were increasingly associated

Group: HP3

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	The attempt to find the cause of crime in subcultural value systems	I	Positive	has ceased
2.	the social and legal processes by which some individuals get 'labelled' as criminal	I	Positive	have come
3.	these sociologists	R	Positive	rejected
4.	They	R	Positive	urged
5.	Their argument	R	Positive	was
6.	criminality	I	Negative	is not
7.	Labelling theory	I	Positive	has...been criticised
8.	It	I	Positive	has...been criticised
9.	This 'new criminology'	I	Positive	favours
10.	It	I	Positive	is
11.	It	I	Positive	is
12.	Criminologists	I	Positive	have...tried
13.	'Biogenic ${ }^{\text {explanations }}$	I	Positive	have ranged
14.	Such biological factors	I	Positive/Possible	are probably
15.	'Psychogenic' explanations	I	Positive	have
16.	it	I	Positive/Possible	can...result
17.	Delinquency	I	Positive	is
18.	John Bowlby's main hypothesis	R	Positive	was
19.	H.J. Eysenck	R	Positive	brought
20.	criminologists	I	Positive	have put forward
21.	The problem with all these attempts to pinpoint the causes of crime	I	Positive	is

$\frac{\text { Group: HL3 }}{\text { Extract: HL3:7 }}$
Clause Mood

Clause	Mood	Modulation		
	Subject	Finite	Polarity/Modality	Realisation
1.	The exploration of this new field of social history	I	Positive	has led
2.	The word 'crime' itself	I	Positive	eludes
3.	the early modern scholar	R	Positive/Oblig	should... include
4.	An answer to such questions	I	Positive	requires
5.	Another vital issue	I	Positive	is
6.	the availability of discretion to police and prosecutors	I	Positive	does... compromise
7.	The published literature	I	Positive	illustrates
8.	historians	I	Positive	have initiated
9.	a majority of early-modern assize indictments	I	Positive	are
10.	Vagrants	R	Positive	were described
11.	The stated domicile of the offender	R	Positive/Freq/ Assertive	was often in fact
12.	Similar doubts	I	Positive	have been cast
13.	The factual reliability of the records	I	Positive/Degree	has...been severely undermined

Group: HP3
Extract: HP3:8

1.	The search for predisposing factors in the genesis of delinquent behaviour	I	Positive/Certain	will continue
2.	future research R	R	Positive/Oblig	should...go down
3.	More attention	R	Positive/Oblig	should be given
4.	More work	I	Positive	is needed
5.	The search for the effect on delinquency of increases in affluence or of movements in	R	Positive/Oblig	should continue
6.	the unemployment level in previous decades the essentially historical questions posed by the 'new criminologists', including the processes by which criminal laws and policies are enacted, and the contrasts in the criminal codes of different socioeconomic systems	I	Positive/Necessary	must be confronted

Group: HL3
Extract: HL3:8
Modulation

Clause	Mood	Modulation	Finite	Polarity/Modality
Subject	Realisation			
1.	Faith in the positivist procedure of quantification	I	Positive/Degree	has been
considerably				

Appendix G: Subjects From Analogous Popular \& Learned Articles

Subjects from Popular Articles
(Underlined)
BP3: 2
French and his co-workers discovered that wild cats had, indeed, hybridised extensively with domestic cats as they spread from their last stronghold in the western Highlands more than 70 years ago. As wild cats moved into new areas they would have had few opportunities to mate with their own kind and instead would have had resorted to mating with their distant domestic relatives.

Subjects from Learned Articles (Underlined)

BL3: 2
There seems to have been a sudden, intensive period of hybridization just prior to the recent wildcats, ie around the 1940s. What are the likely causes of this change?
Hybridization may have
occurred more frequently for two main reasons. First, although their geographical range was increasing, wildcat numbers were then very low... probably because of high mortality (due to gamekeepers) and the small area of forest (compared to more recent times). Forests provide shelter in winter as well as food (especially rodents). Corbett (1978, 1979) showed
that adult wildcats in northeast Scotland are territorial with the territory centred within or adjacent to forest. He also described a positive correlation between wildcat density and area of suitable forest.
Secondly, when wildcat numbers were low, they may have had difficulty finding conspecifics with which to mate but no trouble locating domestic cats, as numbers of feral domestic cats (e.g. from abandoned farms) were then relatively high. Normally, such crossbreeding would be prevented by 'agonistic' behaviour...but the combination of low wildcat numbers and a high density of feral domestic cats may have reduced the effectiveness of these isolating mechanisms, allowing significant hybidization.

Subjects from Popular Articles (Underlined)

CP1: 2
Researchers devised programs that did well at individual tasks. Computer played chess at a level close to world class; they rediscovered one of Kepler's laws and Ohm's law. They learnt to re-use successful planning strategies to meet new demands. They could answer questions about the stated implications of stories. Yet something seemed to be missing. The programmed computers lacked the smell of real intelligence.

Subjects from Learned Articles (Underlined)

CL1: 2
The power behind our gross symbol processing capacities -the factor (or one factor) which makes us thinkers and eg SHRDLU not -- may well be the subsymbolic, pattern-matching power of something like a PDP mechanism operating within us. There is a strong intuition that manipulating gross symbolic structure models the form of some of our thought but somehow leaves out the content. The intuition is of ten put by saying that such programs have no understanding of what the symbol manipulations mean.

CL2:4

One argument that is sometimes advanced against the use of precise spatial correspondence is that many objects are nonrigid with internal degrees of freedom and variable dimensions. It is also clear that human vision has a remarkable capability for recognizing distorted images and drawings. However, advances will be made on these important problems only by explicitly representing the possible degrees of freedom and distortions that are present in a situation. Our knowledge of the visual appearance of objects includes a large amount of information on internal degrees of freedom in their shape and visual
properties. To simply discard all of the available spatial information because some of it is not fully constrained would result in the loss of a large portion of our most useful visual knowledge.

Appendix G: (cont.)

Subjects from Popular Articles (Underlined)

Realising the potential danger in the north-east, the Covenanters sent forces north led by the earl (later Marquis) of Montrose -- a fervent covenanter at this time, though later to become the great royalist champion. There was some confused fighting in the north-east: Aberdeen changed hands several times, and further north on 14 May the 'Trot of Turriff' saw royalists drive Covenanting forces from that town. But the Covenanters finally gained control of the region after the Battle of the Brig o' Dee on 19 June, when Montrose's men stormed across the bridge and occupied Aberdeen -- the day after the king had swallowed his pride and made a compromise peace with the Covenanters at Berwick upon Tweed. Many hoped the Treaty of Berwick would provide a lasting peace: but few expected it to. The king had realised that he had not gathered sufficient men to invade Scotland with confidence, but saw the treaty as merely a temporary humiliation, necessary to provide him with a breathing space while he prepared for a new military effort in 1640 . But in 1640 as in 1639 the Covenanters knew well what the king intended, and again time proved to be on their side, not on his. So they could concentrate their attention on the Borders, a force was stationed in Aberdeen to ensure that there was no further trouble in the north-east

Subjects from Learned Articles (Underlined)

The King's failure to invade Scotland forced him to make a peace with the covenanters the treaty of Berwick, signed on 18 June 1639. Neither sideexpected lasting peace to follow; each agreed to the treaty to postpone a conflict until circumstances were more favourable to it, and Ireland continued to play a major part in Charles' plans for the event -ual subjection of Scotland. Donald Gorm (at this time or soon afterwards) was apparently supplied with a ship and arms for 1000 men; and on 5 June (just before the start of negotiations with the covenanters) and 11 June (after negotiations had begun) Charles appointed Gorm and Antrim to be his joint lieutenants and commissioners in the Highlands and Isles, to act against his enemies. In return Antrim was promised Kintyre and Donald Gorm of Sleat was to have Ardnamurchan, Strathswordale in Skye, 'Punard' (evidently Sunart) and the islands of Rhum, Muck and Canna. It was no doubt intended that Antrim would make use of his men in Ireland in attacking the king's enemies in Scotland but the commission made no mention of Ireland; probably Charles recognised that it was hopeless to try to get Wentworth and Antrim to work together, and therefore offered them no help from Dublin.

Appendix H
Table 1: First-person subjects and verbs in the extracts

BP1:1

I rounded
I gazed
I rolled
we floated
we encounter
We found
we know
BP1:2
I know
BP1:3
We can look
we gain
we can begin
BP1:4
[None]

BP1:5
Itied
[I] set out
I did
we find
I repeated
BP1: 6
None]

BP1:7
[None]
BP1:8
I compared
BP1:9
[None]

BP2:1
[None]
BP2: 2
None]

BL1:1
we hope
we take
we find

BL1: 2
[None]
BL1:3
[None]

BL1:4
Aronson and Harms (1985) have suggested
We found
BL1: 5
Aronson and Harms (1985) demonstrated

BL1:6
we shall review
[we] shall attempt
we suspect
BL1: 7
[None]
BL1: 8
We know
BL1:9
we see
We recommend
BL2:1
[None]

BL2: 2
we make
We can view

$\frac{\text { BP3: }}{[\text { None }]}$	$\frac{\text { BL2: } 3}{\text { we identified }}$
$\frac{\mathrm{BP} 2: 4}{[\text { None }]}$	BL2:4 We infer we minimize we calculate we consider
$\frac{\mathrm{BP} 2: 5}{[\text { None }]}$	$\frac{\text { BL2: } 5}{[\text { None }]}$
$\frac{\text { BP3:1 }}{[\text { None }]}$	$\begin{aligned} & \frac{\text { BL3: } 1}{\text { We aim }} \\ & \text { We attempt } \\ & \text { We assume } \\ & \text { we would expect } \\ & \text { We concluded } \end{aligned}$
$\frac{\mathrm{BP} 3: 2}{[\text { None }]}$	$\text { BL3: } 2$ Corbett (1978, 1979) showed He described
$\frac{\mathrm{BP} 3: 3}{[\text { None }]}$	$\frac{\text { BL3: } 3}{[\text { None }]}$
$\frac{\text { BP3:4 }}{\text { [None }]}$	$\frac{\text { BL } 3: 4}{\text { We suggest }}$
$\begin{aligned} & \frac{\text { CP1 }: 1}{\text { We try }} \\ & \text { We have } \end{aligned}$	$\begin{aligned} & \text { CL1:1 } \\ & \hline \text { I shall suggest } \\ & \text { I suggest } \\ & \text { I sketch } \\ & \text { [I] report } \\ & \text { I propose } \end{aligned}$
$\begin{aligned} & \text { CP1:2 } \\ & \text { We explain } \\ & \text { we say } \\ & \text { We have } \end{aligned}$	CL1: 2 I would be We allow (many of us) we deny we should maintain we should hold we may...hold
CP1:3 we find we can say we build up I call	$\frac{\text { CL1: } 3}{\text { we may conceive }}$
$\frac{\text { CP1:4 }}{\text { we seem to move }}$	$\frac{\text { CL1:4 }}{[\text { None }]}$

$\frac{\mathrm{CP} 2: 1}{[\text { None }]}$	$\frac{\text { CL2:1 }}{\text { [None }]}$
CP2: 2	CL2: 2
we know	we examine
We can usually recognise	we will argue
we know	we have
	we do know
CP2:3	CL2:3
[None]	[None]
CP2:4	CL2:4
[None]	[None]
CP2: 5	CL2: 5
we can expect	we can have
CP2: 6	CL2: 6
[None]	[None]
CP3:1	CL3:1
[None]	we describe
	we received
	We begin
CP3: 2	CL3:2
We can divide	[None]
CP3:3	CL3: 3
[None]	[None]
CP3:4	CL3:4
[None]	We have implemented
	We implement
	we need we transfer
	we update
CP3:5	CL3: 5
We have	[None]
HP1:1	HL1:1
[None]	[None]
HP1:2	HL1:2
[None]	we bear
HP1:3	HL1:3
[None]	[None]
HP1:4	HL1:4
[None]	[None]

$\frac{\mathrm{HP} 1: 5}{[\text { None }]}$	$\frac{\text { HL1:5 }}{\text { [None] }}$
HP1:6	HL1:6
I have tried	[None]
We need we need	
HP 2:1	HL2:1
[None]	[None]
HP2: 2	HL2:2
[None]	[None]
HP2:3	HL2:3
[None]	[None]
HP2:4	HL2:4
[None]	[None]
HP2: 5	HL2: 5
[None]	[None]
HP3:1	HL3:1
[None]	[None]
HP3:2	HL3:2
[None]	[None]
HP3:3	HL3:3
[None]	[None]
HP3:4	HL 3: 4
[None]	[None]
$\text { HP3: } 5$	HL3: 5
[None]	[None]
HP3:6	HL3: 6
we must....not conclude	We are
HP3:7	HL3:7
[None]	[None]
HP3:8	HL3: 8
[None]	[None]

Appendix H
Table 2: Examples of Negative Polarity in the Extracts
BL1:1: Hence, these dense assemblages of ophiuroids are not examples of "explosive opportunism" (sensu Levinton 1970) but rather represent stable populations.

BP1:4: If silt clogs up their tube feet, the brittlestars cannot feed.

BL1:6: It is not unreasonable to imagine that cephalopods were common predators in some ancient ophiuroid-dominated communities, as they are in Sweetings Pond.
*
BL2:4: The mtDNA results cannot tell us exactly when these migrations took place.

*

BP3:1: It is not always easy to tell whether an animal which looks like a Scottish wild cat is tainted with domestic cat blood.

BL3:2: Modern and recent wildcats were not clearly separable from each other but, in the males at least, recent wildcats were always further from old wildcats, and closer to hybrids, than were modern wildcats.

BP3:3: It will probably not be long before we get a ginger tom or a tortoiseshell.

CP1:2: Even if it gives an adequate description of behaviour, such talk need not give an accurate account of the computational structure underlying behaviour.

CP1:2: Such achievements are not as intuitively "cognitive" as chess-playing and the like.

CL1:3: Parallelism alone is not enough.
CL1:3: But in fact no special mechanism is required and the hypotheses are not explicitly stored, at least not in any normal sense.

CL1:5: But accepting this, we argued, need not lead us to conclude, along with Pinker and Prince, that any improved model must constitute a mere implementation of classical theory.

CP2:2: On the other hand, an object's appearance does not change drastically with every small change in viewpoint.

CL2:2: However, the importance of this constraint for achieving robust recognition can hardly be overstated, and we will argue that it plays a central role in most instances of human visual recognition.

CP2:4: Of course, a single rigid model does not capture the potential variations in the appearance of many common objects.

CP2:4 In addition, an object may not have exactly the the same measurements and shape as any previously encountered, yet we recognise it because it resembles a "generic" class of objects.

CL2:6: These groupings are not used for final identification of objects but rather figure as "trigger features" to reduce the amount of search that would otherwise be required.
*
CP3:1: If it takes one woman nine months to produce a baby, shouldn't nine women be able to do the job in one month? Some tasks cannot be performed more quickly by sharing out the work, as the designers of the new parallel computers are finding.

CP3:4: This sort of calculation is not well suited to the DAP because the amount of calculation to be done can differ widely from point to point.

CL3:5: In any event, in many of the models studied to date, it is the training rather than the recall mode which is most computationally intensive; in such cases, the actual operation of a trained net may not of itself require exceptional computing resources.

*

HP1/HL1: [No negative polarities]
*
HL2:3: In the event the covenanters refused to submit but the king was not ready to invade Scotland.

HP2:4: They could not keep the large army they had raised in the field indefinitely, waiting for a time when it suited the king to invade Scotland.

HL2:4: He had at first hoped to have his new army of 9,000 men at Carrickfergus in May, but in the event it was not
fully assembled until mid-July, and even then it probably still required training.

HL2:4: In the event the covenanters did not send an army to Ireland, but their plans to do so if necessary were no idle boasting, a bluff which could safely have been called.

HL2:5: It was not just the collapse of royal power, and fear of how those who seized power would treat Catholics, which sparked off the Irish rebellion of 1641; the king's own incompetent plotting made a major contribution.

HL2:5: With his conviction of his own skill in producing political miracles it is certainly possible that he did; on the other hand, the Irish plot does not seem to have been pursued by him with any great determination, and it may be that he intended it only as an expedient to fall back on if he failed to secure the help of the covenanters.
*
HL3:1: These two approaches have neither been nor need be mutually exclusive.

HP3:5: The upward trend of officially recorded crime is not necessarily an accurate reflection of the 'real' level of crime or the 'real' rate of its increase.

HP3:5: Victims often do not report offences, however, either because they believe they are trivial (and around one in four burglary victims loses nothing of value) or because they think the police will be unable to make an arrest.

HL3:5: Some offenders, moreover, were not brought into contact with the legal system at all.

HL3:5: Such limits to the recourse to prosecution, however, were not so readily granted to strangers, thereby increasing the likelifood of indictment and conviction for those who were not local residents.

HL3:5: The criminal justice system does not create a mirror image of actual crime; it processes only a selective number of offenders.

HP3:6: Urbanisation, however, has increased little since the 1930s, and, hence, can hardly account for the post-war rise in crime.

HP3:6: But since improvement in living conditions over the century, and increased affluence in the post-war decades
have not led to a decline in crime, must we not conclude that poverty does not predispose to crime?

HL3:6: Offenders seem not to have been under any immediate pressure of hunger, but in times of 'distress' (1842, 1848) more took to this form of self-help.

HP3:7: As such, criminality is not an inherent property of an individual, but a property conferred by society.

Appendix I	
Problems in the Introductory Sections of Articles	
$\frac{\text { BP1:1 }}{\text { SITUATION }}$	From Chadwick's century-old record and studies by a student in the 1960's we know that this bed of Ophiothrix is no fly-by-night community: it is highly persistent.
PROBLEM	Evidence from fossils suggests that millions of years ago, similar communities were commonplace throughout the oceans of the world.
$\frac{\text { BL1 }: 1}{\text { SITUATION }}$	During the last few years
PROBLEM	much attention has been paid to understanding large-scale shifts in community composition over geological time.
$\frac{\text { BP2 }: 1}{\text { SITUATION }}$	"And Adam called his wife's name Eve; because she was the mother of all living" (Genesis 3, 20). Eve hit the papers in the first week of 1987, following an article in Nature which suggested that a common maternal ancestor of all living humans had lived 200000 years ago in Africa. "'Super Eve" must have lived in East Africa," said the Daily Telegraph.
PROBLEM	What is the story really about?
SIT/PROB	Studies of evolution have become increasingly powerful and verifiable.
$\frac{\text { BL2:1 }}{\text { SITUATION }}$	Molecular biology is now a major source of quantitative and objective information about the evolutionary history of the human species. It has provided new insights into our genetic divergence from apes, and into the way in which humans are related to one another genetically.
PROBLEM	Our picture of genetic evolution is clouded, however, because it is based mainly on comparisons of genes in the nucleus. Mutations accumulate slowly in nuclear genes. In addition nuclear genes are inherited from both. parents and mix in every generation. This mixing obsures the history of individuals and allows recombination to occur. Recombination makes it hard to trace the history of particular segments -396-

	of DNA unless tightly linked sites within them are considered.
BP3:1	

PROBLEM

CL1:1 SITUATTION

PROBLEM

CP2:1 SITUATION

PROBLEM:
a few. But it is centred on the relatively new discipline of Artificial Intelligence.

With AI, it shares the aim of trying to construct computers and computer programs that do the sort of things that minds do.

PDP (Parallel Distributed Processing, a.k.a. Connectionism) is a hot topic in cognitive science.

It has vehement supporters (e.g. Smolensky [forthcoming]) and equally vehement detractors (Fodor and Pylyshyn [1988], Pinker and Prince [1988]).

Industrial robots working alongside humans on an assembly line look as if they couldymany of the same tasks as people. perform

In fact, most industrial robots are about as dextrous as a human who is blind and deaf, lacks a sense of touch, and has one hand tied down while working with a pair of chopsticks.

CL2:1
SITUATION

PROBLEM
A fundamental capability of human vision is the ability to robustly recognize objects from partial and locally ambiguous data. As with most problems of interest to artificial intelligence, this high. level of performance is achieved through the use of large amounts of domain-specific knowledge, in this case regarding visual appearance of objects and their components. Methods are known for representing information regarding visual appearance in a computer with a high degree of fidelity, as has been shown by the success of computer graphics in generating realistic images of natural scenes.

However, this knowledge itself is of little use without effective methods for applying the constraints implicit in the knowledge during the recognition process.

CP3:1

RHETORICAL QUESTION

SIT/PROB

CL3:1
SITUATION

PROBLEM

If it takes one woman nine months to produce a baby, shouldn't nine women be able to do the job in one month?

Some tasks cannot be performed more quickly by sharing out the work, as the designers of the new parallel computers are finding.

In this paper we describe recent work at Edinburgh
investigating a range of neural network models using existing parallel computing facilities. This work is part of a wider research effort in applications of parallel computing which spans molecular dynamics, phase transitions, and critical phenomena, lattice gauge theories of elementary particle interactions, fluid dynamics, electronic structure circulations, optimisation problems, image enhancement, protein crystallography and protein sequence analysis.

HP1:1
SITUATTION

PROBLEM

HL1:1
SITUATION

PROBLEM

HP2:1
SITUATION
PROBLEM

HL2:1
SITUATTION

SITUATION

PROBLEM

HP3:1
SITUATTION
PROBLEM
spectacularly were also having to come to terms with changing patterns of demand for their services. From the 1870's onwards, rising living standards released a flood of new visitors.

At first, tradesmen and whitecollar workers predominated, but the skilled worker and his family were strongly in evidence at many resorts stimulating the development of new kinds of retailing and entertainment provision and posing problems of public order and marketing strategy for those in authority.

Charles I had provoked his Scottish subjects into revolt against him through absentee, arbitrary, absolutist and, perhaps worst of all anglicising government.

The shortness of the sea crossing between Ulster on the one hand and Argyll and the western Lowlands of Scotland on the other has always ensured close contacts between the inhabitants of Ireland and Scotland. At the beginning of the sixth centruy the Scots, who had come from Ireland and settled in Argyil, created a new kingdom there, Dalriada; later they were to give Scotland both her ruling dynasty and her name. Christianity partly came to Scotland from Ireland, through the work of Columba (who landed on Iona in 563) and others.
-••
Not surprisingly, once resistance to the king in Scotland began
suspicion of the Scots grew fast in Ireland.

The history of crime in the twentieth century
is inevitably dominated by the explosion of criminality in the last thirty years. In the first half of the century, the level of crime recorded by the police grew at a much more moderate rate, extending a pattern of slow growth since the 1870^{\prime} s.

HL3:1 SITUATION $\quad \begin{aligned} & \text { Despite the central position which the law } \\ & \text { occupies in pre- and modern English society }\end{aligned}$

PROBLEM its study was relatively neglected until recently.

Bibliography

Adams Smith, D.E. (1987) "Variation in Field-Related Genres" ELR Journal Vol 1 pp 10-32

Anderson, J.M. (1971) The Grammar of Case Cambridge: CUP
----- (1987) "Case Grammar and the Localist Hypothesis" In Dirven,R. and Radden, G., eds PP 103-121

Barber, C.L. (1962) "Some Measurable Characteristics of Modern Scientific Prose" Reprinted in Swales, J. ed., (1984) pp 1-16

Baynham, M. (1986) "Talking to Halliday" Language Issues No. 1 pp 7-11

Bazerman, C. (1988) Shaping Written Knowledge: The Genre and Activity of The Experimental Article in Science Madison: University of Wisconsin Press
----- (1987) "Codifying the Social Scientific Style: The APA Publication Manual as a Behaviorist Rhetoric" in Nelson J.S., Megill, A. and McCloskey, D.N., eds. PP 125-144

Beaugrande, Robert de, \& Dressler, Wolfgang (1981) Introduction to Text Linguistics London and New York: Longman

Benson, J.D. and Greaves, W.S., eds. (1985) Systemic Perspectives on Discourse Vol II Norwood, N.J.: Ablex

Berlin, B. and Kay, P (1969) Basic Color Terms Berkeley: University of California Press

Berry, M. (1975) An Introduction to Systemic Linguistics: 1 Structures and Systems London: Batsford
-.--- (1977) An Introduction to Systemic Linguistics: 2 Levels and Links London: Batsford

Brazil, D., Coulthard, M., and Johns, C. (1980) Discourse Intonation and Language Teaching Harlow: Longman

Brown, G. and Yule G. (1983) Discourse Analysis Cambridge: CUP
Butler, C. (1985) Systemic Linguistics: Theory \& Applications London: Batsford
----- (1989) "Systemic models: unity, diversity and change" Word Vol 40 Nos. 1-2 pp 1-35
----- (1990) "Qualifications in Science: Modal Meanings in
Scientific Texts" in Nash, W., ed. pp 137-170
Carter, R. (1987) Vocabulary London: George Allen \& Unwin

Chafe, W. (1974) "Language and Consciousness" Language 50:1 pp. 111-133

Channell, J. (1990) "Precise and Vague Quanities in Writing on Economics" in Nash, W. ed. pp 95-117

Comrie, B. (1976) Aspect Cambridge: CUP
Connor Ferris, D. (1983) Understanding Semantics Exeter: Exeter Linguistic Studies

Corbett, J. (forthcoming) "Encoding Nature: Writing Science in English" FEMS Microbiology Letters Vol. 100
Cooper, C.R. and Greenbaum, S. eds (1986) Studying Writing: Linguistic Approaches Beverly Hills: Sage

Couture, B. (1985) "A Systemic Network for Analyzing Writing Quality" in Benson, J.D and Greaves, W.S., eds. PP 67-87
----- ed. (1986) Functional Approaches to Writing London: Pinter

Crismore, A., and Farnsworth, R. (1990) "Metadiscourse in Popular and Professional Science Discourse" in Nash, W. ed. pp 118-135

Crystal, D. and Davy, D. (1969) Investigating English Style Harlow: Longman

Dah1, 0. (1987) "Case Grammar and Prototypes" in Dirven, R. and Radden, G. eds (1987a) Pp $147-161$

Danes, F., ed. (1974) Papers on Functional Sentence Perspective Janua Linguarum Series Minor, 147 Prague: Academia
----- (1987) "On Prague School Functionalism in Linguistics" in Dirven, R. and Fried, V. eds. (1987a) PP 3-37
Davidse, K (1987) "M.A.K. Halliday's Functional Grammar and the Prague School" in Dirven, R. and Fried, V. eds. (1987a) pp 39-79

Davies, F. (1991) 'Language varieties, genres and text-types across the curriculum" English Studies 6 PP 17-20

Dik, S. C. (1987) "Some Principles of Functional Grammar" in Dirven, R. and Radden, G. eds (1987a) PP 37-53

Dirven, R. and Fried, V. eds (1987) Functionalism in Linguistics Amsterdam: John Benjamins

Dirven, R. and Radden, G. eds (1987a) Concepts of Case Tubingen: Narr

Ghadessy, M., ed. (1988) Registers of Written English London \& New York: Pinter

Golkova, E (1987) "On FSP Functions of the First Syntactic Element in the English Sentence" Brno Studies in English 17 pp. 86-95

Greenbaum, S. (1969) Studies in English Adverbial Usage London: Longman

Halliday, M.A.K. (1971) "Linguistic function and literary style: an inquiry into the language of William Golding's The Inheritors in Chatman, S., ed. Literary Style: A Symposium New York: OUP pp 330-365
----- (1976) "Theme and information in the English Clause" in Kress, G. ed., pp 174-188
Arnold (1978) Language as a Social Semiotic London: Edward
----- (1985) An Introduction to Functional Grammar London: Edward Arnold
----- (1987) "Language and the Order of Nature" in Fabb, N., et al eds. The Linguistics of Writing Manchester: MUP pp 135-154
----- (1988) "On the Language of Physical Science" in Ghadessy, M. ed. pp 162-178
----- (1990) "New Nays of Meaning" Paper presented to the Ninth World Congress of Applied Linguistics, 15-19 April
-.--- and Hasan, R. (1976) Cohesion in English Harlow: Longman
----- and Hasan, R. (1989) Language, context and text: aspects of language in a social-semiotic perspective 2nd edition; 0xford: OUP

Hirtle, W.H. (1975) Time, Aspect and the Verb Quebec: Les Presses de L'Universite Laval

Hoedt, J. et al., eds. (1982) Pragmatics and LSP Copenhagen: Unesco-ALSED

Hoey, M. (1983) On the Surface of Discourse London: George Allen \& Unwin
----- (1986) "Overlapping Patterns of Discourse Organization and their Implications for Clause Relational Analysis in Problem-Solution Texts" in Cooper, C.R. and Greenbaum, S. eds. pp $187-214$
----- (1991) Patterns of Lexis in Texts Oxford: OUP
----- (1987b) Fillmore's Case Grammar: A Reader Heidelberg: Julius Groos Verlag

Dubois, B-L (1982) "The Construction of Noun Phrases in Biomedical Journal Articles" in Hoedt, J., et al., eds. pp 4967

Dudley-Evans, T, ed. (1987) "Genre Analysis and ESP" ELR Journal Vol. 1 PP 1-q
----- and Henderson, W., eds. (1990) The Language of Economics: The Analysis of Economics Díscourse ELT Documents 134: MEP and The British Council

Fillmore, Charles (1968) "The Case for Case" in Bach, E. \& Harms, R.T. Universals in Linguistic Theory New York: Holt, Rinehart \& Winston PP 1-90
----- (1971) "Verbs of Judging: An Exercise in Semantic Description" in Fillmore, C.J. and Langendoen, D.T. Studies in Linguistic Semantics New York: Holt, Rinehart \& Winston; pp 273-289
----- (1977) "Schemata and Prototypes" Lecture published in Dirven, R. and Radden, G. eds. (1987b) PP 99-105
----- (1987) "A Private History of the Concept 'Frame"" in Dirven, R. and Radden, G. eds. (1987a) Pp 28-35

Firbas, J. (1987a) "On the Delimitation of the Theme in Functional Sentence Perspective" in Dirven, R. and Fried, V. eds. $\quad P P$ 137-155
-.-.- (1987b) "On Some Basic Issues of the Theory of Functional Sentence Perspective" Brno Studies in English 17 pp 51-59

Fodor, J.D. (1977) Semantics: Theories of Meaning in Generative Grammar Hassocks: Harvester Press

Fowler, R. (1991) Language in the News: Discourse and Ideolozy in the Press London: Routledge

Francis, G. (1989) "Thematic selection and distribution in written discourse" Word 40:1-2 pp. 201-221

Fries, P.H. (1987) "Patterns of information in initial position in English" Paper presented to the Sixteenth International Systemic Congress, University of Helsinki
----- (1987) "Lexico-grammatical patterns and the interpretation of texts" Unpublished MS : Central Michigan Univ.

Gee, J.P. (1991) "Social Gravity: How Sociohistorical Discourses Shape Language and Practice" Mimeo: University of Southern California, Los Angeles

$$
-404-
$$

Huddleston, R.D. (1970) "Some remarks on Case Grammar" Linguistic Inquiry 1 pp. 501-511
----- (1971) The Sentence in Written English Cambridge: CUP
-..-- (1984) Introduction to the Grammar of English Cambridge: CUP
(1988) "Constituency, multi-functionality and
grammaticalization in Halliday"s Functional Grammar" Journal of
Linguistics $24137-174$

Hudson, R. (1986) "Systemic Grammar: Review Article" Linguistics 24 pp 791-815
Hurford, J.R. \& Heasley, B. (1983) Semantics: A Coursebook Cambridge: CUP

Jackson, H. (1990) Grammar and Meaning Harlow: Longman
Joos, M. (1964) The English Verb: Form and Meaning Madison: University of Wisconsin Press

Jordan, Michael P. (1984) Rhetoric of Everyday English Texts London: George Allen \& Unwin

Kress, G., ed. (1976) Halliday: System and Function in Language Oxford: OUP
-.--- and Hodge, B. (1981) Language as Ideology London:RKP
Lackstrom, J.E., Selinker, L., and Trimble, L.P. (1972)
"Grammar and Technical English" Reprinted in Swales, J., ed. (1985) pp 58-68

Lakoff, G. (1987) Women, Fire and Dangerous Things Chicago: University of Chicago Press
Leech, G.N. \& Svartvik, J. (1975) A Communicative Grammar of English London: Longman
----- (1987) Meaning and the English Verb London: Longman
----- (1981) Semantics 2nd edn. Harmondsworth: Penguin
Lemke, J. (1985) "Ideology, Intertextuality and the Notion of Register" in Benson, J.D. and Greaves, W.S., eds. Pp 275-294

Lewis, M. (1986) The English Verb Hove: Language Teaching Publications

Lyons, J. (1977) Chomsky 2nd edn. Glasgow: Fontana/Collins

$$
-406-
$$

McCawley, J.D. (1975) "Verbs of Bitching" in Hockney, D. et al, eds. Contemporary Research in Philosophical Logic and Semantics Dordrecht-Holland: D. Reidel; pp 313-332

McCoard, R. W. (1978) The English Perfect: Tense-choice and Pragmatic Inferences Amsterdam: North-Holland

McIntosh, A. \& Halliday, M.A.K. (1966) Patterns of Language London: Edward Arnold

Mathesius, V. (1975) A Functional Analysis of Present-Day English on a General Linguistic Basis trans. L. Duskova;
Paris: Mouton
Megill, A. and McCloskey, D.N. (1987) "The Rhetoric of History" in Nelson, J.S., Megill, A. and McCloskey, D.N., eds. PP 221-238

Morley, G.D. (1985) An Introduction to Systemic Grammar London: Macmillan

Myers, G. (1985a) "The Social Construction of Two Biologists' Proposals" Written Communication 2:3 pp 219-245

Myers, G. (1985b) "Texts as knowledge claims: the social construction of two biologists' articles" Social Studies of Science 15, 593-630
----- (1985c) "The social construction of popular science: the narrative of science and the narrative of nature" Paper presented to the Enlish Language research seminar, University of Birmingham, and the Department of Linguistics, University of Leeds, October 1985
----- (1988) The social construction of science and the teaching of English" in Robinson, P.C., ed. Academic Writing: Process and Product ELT Documents 129, London: Modern English Publications and The British Council pp 143-150
----- (1989) "The Pragmatics of Politeness in Scientific Articles" Applied Linguistics 10:1 pp 1-35

Nash, W., ed. (1990) The Writing Scholar: Studies in Academic Discourse Newbury Park: Sage

Nilsen, Don Lee Fred (1972) Toward a Semantic Specification of Deep Case Janua Linguarum Series Minor, 152, París: Mouton \& Co.

Nelson, J.S., Megill, A., and McCloskey, D.N., eds., (1987) The Rhetoric of the Human Sciences: Language and Argument in Scholarship and Public Affairs Madison: University of Wisconsin Press

$$
-407-
$$

Nwogu, K. \& Bloor, T. (1989) "Thematic Progression in Professional and Popular Medical Texts" Paper Presented to the International Systemic Workshop, Helsinki

Palmer, F.R. (1979) Modality and the English Modals London: Longman
(1987) The English Verb 2nd edn. London: Longman

Paprotte, W \& Sinha, C (1987) "Functional Sentence Perspective in Discourse and Language Acquisition" in Dirven, R. and Fried, V. eds. PP 265-298

Quirk, R., Greenbaum, S., Leech, G., \& Svartvik, J. (1972) A Grammar of Contemporary English London: Longman

Quirk, R. \& Greenbaum, S. (1973) A University Grammar of English London: Longman

Rosch, E.H. (1973) "On the Internal Structure of Perceptual and Semantic Categories" in Moore, T.E., ed. Cognitive Development and the Acquisition of Language New York: Academic Press; pp 111-143

Simpson, P. (1990) "Modality in Literary-Critical Discourse" in Nash, W., ed. pp 63-94

Smith Jr., E.L. (1985) "Functional Types of Scientific Prose" in Benson, J.D. and Greaves, W.S., eds.

Smith, R. and Frawley, W.J. (1983) "Conjunctive cohesion in four English genres" Text 3:4 pp 347-374

Steele, R. and Threadgold, T., eds (1987) Language Topics: Essays in Honour of Michael Halliday, Vol. 2 Amsterdam/ Philadelphia: John Benjamíns

Svoboda, A. (1983) "Thematic Elements" Brno Studies in English $15 \mathrm{pp} .49-83$

Swales, J. (1981) Aspects of Article Introductions Aston ESP Research Reports No. 1; Language Studies Unit, University of Aston in Birmingham
----- (1984) "Research into the Structure of Introductions to Journal Articles and its Application to the Teaching of Academic Writing" in Williams, Swales and Kirkman, eds. pp 77-86
-----, ed. (1985) Episodes in ESP Oxford: Pergamon
----- (1990) Genre Analysis: English in academic and research settings Cambridge: CUP

Taglicht, J. (1984) Message and Emphasis English Language Series 15, Harlow: Longman

Tarone, E., et al (1981) "On the Use of the Passive in Two Astrophysics Journal Papers" Reprinted in Swales, J., ed. (1985) pp 188-207

Thibault, P.J. (1987) "An Interview with Michael Halliday" in Steele. R. and Threadgold, T. eds. pp 601-627

Thorne, J. (1988) "The Language of synopses" in Ghadessy, M. ed. pp. 137-144

Trimble, L. (1985) English for Science and Technology: A Discourse Approach Cambridge: CUP

Varantola, K. (1987) "Popularization Strategies and text functional shifts in scientific/technical writing" UnescoALSED LSP Newsletter Vol 10, No. 2 pp 33-52
Weil, H. (1887; 1978) The Order of Words in the Ancient Languages, Compared with that of the Modern Languages trans C.W. Super Amsterdam: John Benjamins

Whorf, B.L. (1956) Language, Thought and Reality ed John B Carroll; Massachusetts: MIT Press

Wiggin, B and Bernstein, J. (1979) "Technical Writing in EFL: The Journal Article" RELC Journal Vol. 10, No. 2 67-69
Williams, R., Swales, J. \& Kirkman, J., eds. (1984) Common Ground: Shared Interests in ESP and Communication Studies ELT Documents 117; OXford: The British Council and Pergamon Winter, E.O. (1977) "A Clause-Relational Approach to English Texts" Instructional Science 6 pp 1-92

```
----- (1982) Towards a Contextual Grammar of English London:
George Allen & Unwin
```

Young, D. (1985) "Some Applications of Systemic Grammar to TEFL or Whatever Became of Register Analysis" in Benson, J.D. and Greaves, W.S., eds.

Young, L. (1990) Language as Behaviour, Language as Code: A Study of Academic English Amsterdam/Philadelphia: John Benjamins

[^0]: + [Dir] P:ex Existent
 hybridisation, but there may be some hope for our only wild

[^1]: Actor
 One, which for convenience I shall call the "mind's eye - 68 -

[^2]: P: mat C: "Place"
 dramatic advances in robotics may come from providing robots

[^3]:

[^4]: Samaha's study of Elizabeth Essex (1974)
 Grand juries
 petty juries
 reorganization of the court system and its
 bureaucracy
 Cockburn (1969, 1975 and 1978)
 the judges

