
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 9, 2013

84 | P a g e

www.ijacsa.thesai.org

An Open Cloud Model for Expanding Healthcare

Infrastructure

Sherif E. Hussein

Computer and Systems Department, Mansoura University,

Mansoura, Egypt.

Hesham Arafat

Vice Dean of Engineering and Head of Computer and

Systems Department, Mansoura University, Mansoura,

Egypt.

Abstract—with the rapid improvement of computation

facilities, healthcare still suffers limited storage space and lacks

full utilization of computer infrastructure. That not only adds to

the cost burden but also limits the possibility for expansion and

integration with other healthcare services. Cloud computing

which is based on virtualization, elastic allocation of resources,

and pay as you go for used services, opened the way for the

possibility to offer fully integrated and distributed healthcare

systems that can expand globally. However, cloud computing

with its ability to virtualize resources doesn't come cheap or safe

from the healthcare perspective. The main objective of this paper

is to introduce a new strategy of healthcare infrastructure

implementation using private cloud based on OpenStack with the

ability to expand over public cloud with hybrid cloud

architecture. This research proposes the migration of legacy

software and medical data to a secured private cloud with the

possibility to integrate with arbitrary public clouds for services

that might be needed in the future. The tools used are mainly

OpenStack, DeltaCloud, and OpenShift which are open source

adopted by major cloud computing companies. Their optimized

integration can give an increased performance with a

considerable reduction in cost without sacrificing the security

aspect. Simulation was then performed using CloudSim to

measure the design performance.

Keywords—Cloud Computing; OpenStack; Openshif;

Cloudsim; e-health

I. INTRODUCTION

Although much research effort has been put into the design
and development of novel e-Health services and applications,
their interoperability and integration remain challenging issues.
Health services deal with large amount of private data which
needs to be both fully protected and readily available to
clinicians. However, health care providers often lack the
capability to commit the financial resources for either the
research or the infrastructure required. In addition, the public is
often skeptical about whether IT systems can be trusted with
private clinical information. Past failures have fuelled a culture
to restrict any innovation by both members of the public and
the politicians responsible for health services [1].

Cloud computing has recently appeared as a new
computing paradigm, which promises virtually unlimited
resources. Customers rent resources based on the pay-as-you-
go model and thus are charged only for what they use.
Opposite to other service models, in-house Picture Archiving
and Communication System (PACS) and application service

provider PACS [2], cloud computing offers relatively lower
cost, higher reliability and scalability as shown in table 1.

TABLE I. STRENGTHS AND WEAKNESS OF IN-HOUSE PACS, ASP PACS,
AND CLOUD PACS.

Weakness Strengths Service

Model

Computing

Facilities

- Need for in-site

IT expertise

- Funded out from

the investment

budget

- Need for new

technology and

upgrading

- Smaller network

expenses

- Control over

data

- Clear ownership

of data

- Fast data

transmission

In-House

PACS

Dedicated

(Local)

- Not economical

with small

examination

numbers

- Greater network

expenses

- predictable costs

- Use of offsite IT

expertise

-Scalability

- Possibility to

share data

between

structures.

Application

Service

Provider

PACS

Shared

(Hosted)

- Slow data

transmission

-security risk

- Billed per study

and/or megabyte

- Economical with

both small and

large examination

number

- High reliability

and Scalability

- IaaS

ressources

-PaaS

development

platform

- SaaS PACS

utilities

Public

Cloud

The cloud system can be divided mainly into three main
layers. The infrastructure as a service (IaaS) is the lowest level
which delivers computing infrastructure as a service to end
users. IaaS is typically provided as a set of APIs that offer
access to infrastructure resources. The APIs allow creating
virtual machine instances, or to store or retrieve data from a
storage or database. The main benefit of virtualized
infrastructure, which is offered as a service, is scalability. The
commercial model is to pay for the infrastructure that is
actually used. This means the designer doesn’t have expensive
servers idling, and if there is a spike in the visitor numbers, the
designer doesn’t have to worry if the hardware will cope. He
simply scales the infrastructure up and down as needed. Since
the servers are virtual, it’s much easier to create a new one than
it was to add a new box to a server farm. IaaS provides users
with a way to monitor, manage, and lease resources by
deploying virtual machine (VM) instances on those resources.
Amazon EC2, Eucalyptus, Nimbus, OpenStack and Open

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 9, 2013

85 | P a g e

www.ijacsa.thesai.org

Nebula are examples of cloud infrastructure implementations
[3].

In Platform as a Service (PaaS), we move a step further. We
no longer have to deal with every element of the infrastructure;
instead, we can regard the system as one solid platform. For
example, in the case of IaaS, if the designer has a website that
suddenly requires more capacity because the amount of visitors
increased, he would typically fire up more virtual machine
instances. With PaaS, this is no longer the case; the platform
will scale up and down as necessary and takes care of the
implementation details.

The platform is typically represented as a single box. Since
the platform usually acts as if it were a single box, it’s much
easier to work with, and generally there is no need to change
much in the application to be able to run on a PaaS
environment. PaaS doesn’t only offer cpu, memory or file
storage; but also offers other parts of the infrastructure, such as
databases, either in the form of a scaling traditional RDBMS
system, or one of the ’NoSQL’ databases that are currently
gaining momentum due to its ability to distribute large amount
of data over the cloud infrastructure [4]. The third available
service model goes another step further in the realm of abstrac-
tion. We no longer care about infrastructure as with IaaS, nor
do we care about the platform, as with PaaS. Where in the past,
software was installed on the desktop, now with software as a
service (SaaS); the user just creates an account and is ready to
use the applications, in the comfort of the web browser. As
with SaaS, we only need to worry about the application we’re
dealing with. Good examples of SaaS are cloud PACS utilities
which can offer services for imaging centers, reading
physicians, primary care clinics, and hospital management [5].

Fig. 1. The relation between security restrictions against the benefits of cloud

adoption.

As shown in Figure 1, there is a spectrum of use cases
where one end consists of use cases that manipulates public
data, hence have very low risk associated with them, while the
other end consists of use cases that manipulates credit cards,
Social Security Numbers, or ultra sensitive data like nuclear
tests.

For the low end of the spectrum, Cloud Computing is an
obvious choice, while for the high end; Cloud Computing
might never be used. However, instead of public and private

cloud, Hybrid architectures provide another choice, a middle
ground.

For example, hybrid architecture could move computations
to the cloud while keeping sensitive data in a secure database
that resides in the private network [6].

In this paper, we provide a closer look into the
implementation of healthcare infrastructure using a private
cloud based on OpenStack. That was accompanied by setting a
PaaS on OpenShift for connecting the private cloud to other
health care services, mobile and web applications for clinicians
and patients, and resources provided by different cloud
providers. That hybrid design was assessed using CloudSim to
measure its performance.

The rest of this paper is organized as follow; section 2,
introduces a brief note about private cloud implementation,
section 3, explains the potentials of expanding the private cloud
infrastructure by incorporating other public cloud providers,
section 4, discusses a medical application that took advantage
of the implemented hybrid cloud, section 5, provides a
simulation analysis to assess the performance benefits behind
the proposed implementation, and finally we concluded the
paper by a discussion section.

II. PRIVATE CLOUD IMPLEMENTATION

A private cloud implementation aims to avoid many of the
objections including control over hospital and patients' data,
worries about security, and issues connected to regulatory
compliance. Because a private cloud setup is implemented
safely within the corporate firewall, it remains under the
control of the IT department. However, the hospital
implementing the private cloud is responsible for running and
managing IT resources instead of passing that responsibility on
to a third-party cloud provider. Hospitals initiate private cloud
projects to enable their IT infrastructure to become more
capable of quickly adapting to continually evolving healthcare
needs and requirements.

Launching a private cloud project involves analyzing the
need for a private cloud, formulating a plan for how to create a
private cloud, developing cloud policies for access and
security, deploying and testing the private cloud infrastructure,
and training employees and partners on the cloud computing
project. To create a private cloud project strategy, a hospital
identifies which of its healthcare practices can be made more
efficient than before, as well as which repetitive manual tasks
can be automated via the successful launch of a cloud
computing project. By creating a private cloud strategy, the
resulting cloud will be able to deliver automatic, scalable server
virtualization, providing the benefits of automated provision of
resources and the optimal use of hardware within the IT
infrastructure [7]. It is important for the private cloud
implementation process to analyze and ensure the proper
processes and policies are in place to successfully build a
secure private cloud. Research and acquire the private cloud
infrastructure and cloud-enabling software that will be used,
such as OpenStack, CloudStack, and Eucalyptus. Ensure the
hypervisor that will manage the virtual machines and
virtualized storage are available or can be purchased and
installed.

http://www.webopedia.com/TERM/P/private_cloud.html
http://www.webopedia.com/TERM/C/cloud_computing.html
http://www.webopedia.com/TERM/O/openstack.html
http://www.webopedia.com/TERM/C/cloudstack.html
http://www.webopedia.com/TERM/H/hypervisor.html
http://www.webopedia.com/TERM/V/virtual_machine.html

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 9, 2013

86 | P a g e

www.ijacsa.thesai.org

A. The cloud management software

Fig. 2. The cloud ecosystem for building private clouds. (a) Cloud consumers

need flexible infrastructure on demand. (b) Cloud management provides

remote and secure interfaces for creating, controlling, and monitoring

virtualized resources on an infrastructure-as-a-service cloud. (c) VM managers
provide simple primitives (start, stop, suspend) to manage VMs on a single

host.

Cloud management is the software and technologies
designed for operating and monitoring applications, data, and
services residing in the cloud as shown in figure 2. Cloud
management tools help ensure hospital's cloud computing-
based resources are working optimally and properly interacting
with users and other services. Cloud management strategies
typically involve numerous tasks including performance
monitoring (response times, latency, uptime, etc.), security and
compliance auditing and management, and initiating and
overseeing disaster recovery and contingency plans. With
cloud computing growing more complex and a wide variety of
private, hybrid, and public cloud-based systems and
infrastructure already in use, a hospital’s collection of cloud
management tools needs to be just as flexible and scalable as
its cloud computing strategy. Choosing the appropriate cloud
platform, however, can be difficult. They all have pros and
cons.

We have decided to compare the capabilities of
CloudStack, Eucalyptus, and OpenStack as the most notable
open source systems available. Both Eucalyptus and
CloudStack's application programming interface (API)
provides compatibility with Amazon Web Services’ Elastic
Compute Cloud (EC2), the world's most popular public cloud.
While OpenStack, supports public clouds built by its major
vendors. OpenStack is backed by Dell, IBM, RackSpace the
second leading IaaS provider after Amazon, NASA, HP the
supplier of ARM cloud servers, Canonical the supplier of
ubuntu which is tightly integrated with OpenStack in every
release and the main operating system for ARM cloud servers
[8]. The simple implementation and support of OpenStack for
ARM cloud servers favored its choice for our private cloud
implementation as it increases the possibility for a lesser cost
and an ever growing performance [9, 10].

OpenStack refers to a collection of open-source software
packages designed for building public and private clouds.
OpenStack is implemented as a set of Python services that
communicate with each other via message queue and database.

Fig. 3. OpenStack Architecture.

Figure 3 shows a conceptual overview of the OpenStack
architecture, with the OpenStack Compute components (which
provides an IaaS) bolded and OpenStack Glance components
(which stores the virtual machine images) shown in a lighter
color. The nova-api service is responsible for fielding resource
requests from users. Currently, OpenStack implements two
APIs: the Amazon Elastic Compute Cloud (EC2) API, as well
as its own OpenStack API [11]. The nova-schedule service is
responsible for scheduling compute resource requests on the
available compute nodes. The nova-compute service is
responsible for starting and stopping virtual machine (VM)
instances on a compute node. The nova-network service is
responsible for managing IP addresses and virtual LANs for the
VM instances. The nova-volume service is responsible for
managing network drives that can be mounted to running VM
instances. The queue is a message queue implemented on top
of RabbitMQ [12] which is used to implement remote
procedure calls as a communication mechanism among the
services. The database is a traditional relational database such
as MySQL used to store persistent data shared across the
components. While, the dashboard implements a web-based
user interface.

B. The hypervisor

A hypervisor, also called a virtual machine manager, is a
program that allows multiple operating systems to share a
single hardware host. Each operating system appears to have
the host's processor, memory, and other resources all to itself.
However, the hypervisor is actually controlling the host
processor and resources, allocating what are needed to each
operating system in turn and making sure that the guest
operating systems (virtual machines) cannot disrupt each other.
Most OpenStack development is done with the KVM and XEN
hypervisors. KVM however is free and easier to deploy than
free XEN, well supported by every major distribution and is
adequate for most cloud deployment scenarios (for example,
EC2-like cloud with ephemeral storage) while storage support
is improving for KVM. It is also simpler and more stable to use
with OpenStack and is fully packed by ubuntu 12 Linux that is
why KVM was chosen over XEN for our private cloud [13].

http://www.webopedia.com/TERM/P/private_cloud.html
http://www.networkworld.com/news/2012/021312-citrix-cloudstack-256071.html
http://www.networkworld.com/news/2012/062212-ehcalyptus-mickos-260408.html
http://www.networkworld.com/news/2012/040512-openstack-258027.html
http://www.eucalyptus.com/
http://searchcio-midmarket.techtarget.com/definition/processor
http://wiki.openstack.org/OpenStack

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 9, 2013

87 | P a g e

www.ijacsa.thesai.org

C. Legacy migration

Legacy physical server could be migrated into OpenStack
cloud using a persistent volume so that the migrated VM is
backed by persistent storage. The function provided by the
legacy server was the same afterwards and had the
manageability benefits from running on an infrastructure
platform.

Two things were created: a volume that would contain the
data from legacy server and a 'working' VM as a way to work
with that volume throughout the migration process. Horizon
dashboard has been used to create volumes. The volume size
had to be large enough to store all the file systems from legacy
system, with appropriate growth, and included any swap-space
that might be needed. The 'working' instance was then launched
to set up the new volume. This instance had port 22 open under
access and security, and ssh key pair was placed onto the
system. Then, under 'volumes' the volume was attached to the
working instance. The rsync was used to synchronize files
between the legacy system and the new VM. The rsync tool
was perfect for this for a few reasons: If interrupted, it can
resume where it left off. Further, it can be throttled so that data
can trickle over to the new volume without impacting the
performance of the legacy server. For minimal downtime two
separate rsyncs were done. The first one would sync over the
vast majority of the data from the legacy server to the volume.
The second one was done while both servers were down in
order to sync the final changes from the legacy server right
before the replacement VM was booted.

The next step was to make the volume bootable by adding a
bootloader at the beginning of the volume. OpenStack provides
firewalling, so we needed to set up a special security-group for
VM that allowed all expected traffic to reach the server. This
was done under "Access & Security" in horizon. Before
committing to the change-over we had to verify that newly-
created bootable volume did indeed work as expected. Once
VM was setup correctly, the volume was unmount from the
working VM, and legacy server was powered down. New VM
system was finally launched.

D. Private cloud security measures

Dome9 secures OpenStack cloud servers and makes them
virtually invisible to hackers. That automation closes firewall
ports like RDP and SSH, and enables on-demand secure access
with just one click. With Dome9, OpenStack Security Groups,
centralizing policy management were automated within Dome9
Central. It has as well an SaaS management console for the
entire cloud infrastructure. In addition, inter- and intra-group
security rules gave ultimate flexibility and granularity. With
Dome9 Cloud Connect, setting up Dome9 with OpenStack
took less than a minute. Using Dome9 Account, we could add
OpenStack supported region, and enter credentials. It was then
connected to the private via API to manage all of Security
Groups.

III. HYBRID CLOUD IMPLEMENTATION

Public clouds involve the use of third party servers where
the user is typically charged on the usage basis. It helps cut the
user's capital expenditure significantly, while providing the
user with greater flexibility and scalability. However, the

advantages of the public cloud come at the cost of poorer
performance and increased risks to data and applications.
Private clouds attempt to solve the problem by providing cloud
installation on-site with better performance and security,
coming at increased capital expenditure and reduced flexibility.
Therefore, hybrid clouds attempt to bridge the gap by providing
the best of both worlds. Enterprises that use the hybrid cloud
typically have a private cloud that handles the performance-
sensitive core applications, while using the public cloud for
scaling and non-core applications. For instance, the mail server
and collaboration related components can be kept on the public
cloud, while keeping the patient's database and large files in the
private cloud. Another reason is that some applications are
highly suited for public cloud, while some other legacy
applications might not. Private clouds could be less robust than
a public cloud managed by a reputed service provider. If the
designer have a natural or manmade disaster attacking his
hospital site, his private cloud infrastructure might become
crippled. The designer can use the public cloud as a fail-over in
that case. Thus, the designer might want to have a hybrid
approach [14].

Although OpenStack integrates well with almost all IaaS
providers, that doesn't stop our implementation from taking full
advantages from those IaaS provider that don't support
OpenStack. The key was to use a PaaS that could communicate
with many different IaaS through a cloud interface. The cloud
interface is the holygrail of cloud computing as it bridges the
gap between different IaaS suppliers. On the higher level there
is a unified API that could be called from a PaaS while on the
lower level there are drivers specific to each IaaS and
implemented with the vendor without compromising their
codes. That cloud interface and the closely integrated PaaS are
now reality with deltacloud and openshift thanks to the ever
growing competition between cloud services providers to
control the cloud computing market [15].

PaaS was initially conceived as a hosted solution for web
applications. However the conceptual design forces the Cloud-
compliant applications to accept several restrictions: (1) use the
APIs exposed by PaaS owners; (2) use the specific
programming paradigm that is adequate for the type of
applications allowed by the PaaS; and (3) use the programming
languages supported by the PaaS owner. These constraints are
still valid for most current PaaS offers (e.g., Google
AppEngine, Azure, Heroku, Duostack, XAP, Cast, CloudBees,
and Stackato). A first step towards the developer freedom in
building new PaaS independent applications was done by
DotCloud which lets developers build their own software stack
for a certain application. This solution is unfortunately not free
and is currently based only on EC2 [16].

On the other hand, Deltacloud is an API developed by Red
Hat and the Apache Software Foundation that abstracts
differences between clouds. So, Deltacloud provides one
unified REST-based API that can be used to manage services
on any cloud. While each IaaS cloud is controlled through an
adapter called "driver" and provides its own API. Drivers exist
for the following cloud platforms: Amazon EC2, Fujitsu Global
Cloud Platform, GoGrid, OpenNebula, Rackspace, OpenStack,
RHEV-M, RimuHosting, Terremark and VMware vCloud.
Next to the 'classic' front-end, it also offers CIMI and EC2

http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Amazon_EC2
http://en.wikipedia.org/wiki/Fujitsu_Global_Cloud_Platform
http://en.wikipedia.org/wiki/Fujitsu_Global_Cloud_Platform
http://en.wikipedia.org/wiki/GoGrid
http://en.wikipedia.org/wiki/OpenNebula
http://en.wikipedia.org/wiki/Rackspace_Cloud
http://en.wikipedia.org/wiki/Red_Hat_Enterprise_Virtualization
http://en.wikipedia.org/w/index.php?title=RimuHosting&action=edit&redlink=1
http://en.wikipedia.org/wiki/Terremark
http://en.wikipedia.org/wiki/VMware
http://en.wikipedia.org/wiki/VCloud

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 9, 2013

88 | P a g e

www.ijacsa.thesai.org

front-ends. Deltacloud is used in applications such as Aeolus to
prevent the need to implement cloud-specific logic [17].

Deltacloud has some dependencies that need to be installed
before its installation as Deltacloud server relies on a number
of external rubygems and other libraries. However, once all the
dependencies have been installed the Deltacloud server
installation is done in one step [18].

OpenShift takes care of all the infrastructure, middleware,
and management and allows the developer to focus on what
they do best: designing and coding applications. It takes a No-
Lock-In approach to PaaS by providing built-in support for
Node.js, Ruby, Python, PHP, Perl, and Java. In addition,
OpenShift is extensible with a customizable cartridge
functionality that allows enterprising developers to add any
other language they wish such as Clojure and Cobol. In
addition to this flexible, no-lock-in, language approach,
OpenShift supports many of the popular frameworks that make
development easier including frameworks ranging from Spring,
to Rails, to Play. OpenShift is designed to allow Developers to
work the way they want to work by giving them the languages,
frameworks and tools they need for fast and easy application
development [19].

IV. THE MEDICAL IMAGE WEB APPLICATION

Fig. 4. Web application interface.

Healthcare generates a tremendous amount of data each day
(CT, MRI, US, PET, SPECT, Mammography, X-Ray … etc)
and consumes quickly the hospitals storage space. For the
reason of combining private and public cloud resources, a web
application has been designed to store medical images on the
private cloud using Mongodb which automatically migrate
images older than one month to the public cloud. The subjects
information were removed by stripping out the PHI (Protected
Health Information) to conform to HIPAA standard and a
sharding key was selected for our database that combines exam
date and exam id. Compression, upload, delete, retrieval, and
viewing were all integrated into the web application. Hibernate
OGM; java and SWING were used to manage the backend on
OpenShift with the ability to detect which device is trying to
access the database. That allows smart phones as well as
desktops to access the data for consultation purposes as shown
in figure 4. We now detail the design of the Medical Image
Web Application (MIWA) to guarantee the Atomicity,
Consistency, Isolation, and Durability properties. Each of the
properties is discussed individually [20].

A. Atomicity

The Atomicity property requires that either all operations of
a transaction complete successfully, or none of them does. To
ensure Atomicity, for each transaction issued, MIWA is using
shards for actually storing data, mongos processes for routing
requests to the correct data, and config servers, for keeping
track of the cluster’s state. As soon as an agreement to
“COMMIT” is reached, the mongos processes can
simultaneously return the result to the web application and
complete the second phase.

B. Consistency

The consistency property requires that a transaction, which
executes on a database that is internally consistent, will leave
the database in an internally consistent state. Consistency is
typically expressed as a set of declarative integrity constraints.
We assume that the consistency rule is applied within the logic
of transactions. Therefore, the consistency property is satisfied
as long as all transactions are executed correctly.

C. Isolation

The Isolation property requires that the behavior of a
transaction is not disturbed by the presence of other
transactions that may be accessing the same data items
concurrently. The MIWA decomposes a transaction into a
number of sub-transactions, each accessing a single data item.
Thus, the isolation property requires that if two transactions
conflict on any number of data items, all their conflicting sub-
transactions must be executed sequentially, even though the
sub-transactions are executed in multiple mongos processes.

D. Durability

The Durability property requires that the effects of
committed transactions cannot be undone and would survive
server failures. In our case, it means that all the data updates of
committed transactions must be successfully written back to the
back-end cloud storage service. The main issue here is to
support mongos processes failures without losing data. For
performance reasons, the commit of a transaction does not
directly update data in the cloud storage service but only
updates the in-memory copy of data items in the shards.
Instead, each mongos process issues periodic updates to the
cloud storage service. During the time between a transaction
commit and the next checkpoint, durability is ensured by the
replication of data items across several shards. After
checkpoint, we can rely on the high availability and eventual
consistency properties of the cloud storage service for
durability.

E. Security

Cryptographic modules supplied by HP Atalla were used in
the medical image web application to encrypt healthcare data
and reduce the risk of data encryption and reputation damage
without sacrificing performance using high-performance
hardware security modules. Those Data Security solutions meet
the highest government and financial industry standards-
including NIST, PCI-DSS and HIPAA/HITECH-protect
sensitive data and prevent fraud. HP Enterprise Secure Key
Manager (ESKM) and Atalla Network Security Processors
(NSP) provided robust security, high performance and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 9, 2013

89 | P a g e

www.ijacsa.thesai.org

transparency while ensuring comprehensive, end-to-end
network security.

V. SIMULATION

Evaluation of alternative designs or solutions for Cloud
computing on real test-beds is not easy due to several reasons.
Firstly, public Clouds exhibit varying demands, supply
patterns, system sizes, and resources (hardware, software,
network) [19]. Due to such unstable nature of Cloud resources,
it is difficult to repeat the experiments and compare different
solutions. Secondly, there are several factors which are
involved in determining performance of Cloud systems or
applications such as user's Quality of Service (QoS)
requirements, varying workload, and complex interaction of
several network and computing elements. Thirdly, the real
experiments on such large-scale distributed platforms are
considerably time consuming and sometimes impossible due to
multiple test runs in different conditions. Therefore, a more
viable solution is to use simulation frameworks which will
enable controlled experimentation, reproducible results and
comparison of different solutions in similar environments.
Despite the obvious advantages of simulation in prototyping
applications and developing new scheduling algorithms for
Cloud computing, there are a few simulators for modeling real
Cloud environments. For evaluating a scheduling algorithm in
a Cloud computing environment, a simulator should allow
users to define two key elements: (i) an application model
specifying the structure of the target applications in Clouds,
typically in terms of computational tasks and data
communication between tasks; (ii) a platform model of Cloud
computing data centers specifying the nature of the available
resources and the network by which they are interconnected.
Clouds currently deploy wide variety of applications both from
industrial enterprises and scientific community [21]. In terms
of the platform, Cloud computing is quite different from
traditional distributed computing platforms defined by service-
oriented features such as resource elasticity, multiple-level of
services and multi-tenancy of resources.

Fig. 5. The main parts and relations of CloudSim.

The experiments in this research were performed on the
CloudSim cloud simulator which is a framework for modeling
and simulating the cloud computing infrastructures and
services [22]. The CloudSim simulator has many advantages: it
can simulate many cloud entities, such as datacenter, host and
broker. It can also offer a repeatable and controllable

environment. And we do not need to take too much attention
about the hardware details and can concentrate on the
algorithm design. The simulated datacenter and its components
can be built by coding and the simulator is very convenient in
algorithm design [23]. The main parts which relate to the
experiments in this research and the relationship between them
are shown in Figure 5 while the functions of those components
are explained in table 2.

TABLE II. CLOUDSIM COMPONENTS AND THEIR FUNCTIONS [24]

CloudSim

Component

Function

Cloud Information

Service

It is an entity that registers, indexes and

discovers the resource.

Datacenter It models the core hardware infrastructure,

which is offered by Cloud providers.

Datacenter Broker It models a broker, which is responsible for

mediating negotiations between SaaS and Cloud

providers.

Host It models a physical server.

Vm It models a virtual machine which is run on

Cloud host to deal with the cloudlet.

Cloudlet It models the Cloud-based application services.

VmAllocation A provisioning policy which is run in datacenter

level helps to allocate VMs to hosts.

VmScheduler The policies required for allocating process

cores to VMs. It is run on every Host in

Datacenter.

CloudletScheduler It determines how to share the processing

power among Cloudlets on a virtual machine. It

is run on VMs.

The application simulates an IaaS provider with an arbitrary
number of datacenters. Each datacenter is entirely
customizable. The user can easily set the amount of
computational nodes (hosts) and their resource configuration,
which includes processing capacity, amount of RAM, available
bandwidth, power consumption and scheduling algorithms. The
customers of the IaaS provider are also simulated and entirely
customizable. The user can set the number of virtual machines
each customer owns, a broker responsible for allocating these
virtual machines and resource consumption algorithms. Each
virtual machine has its own configuration that consists of its
hypervisor, image size, scheduling algorithms for tasks (here
known as cloudlets) and required processing capacity, RAM
and bandwidth.

The simulation scenario models a network of a private and
a public cloud (HP's cloud). The public and the private clouds
were modeled to have two distinct data centers. A
CloudCoordinator in the private data center received the user’s
applications and processed (queue, execute) them in a FCFS
basis. To evaluate the effectiveness of a hybrid cloud in
speeding up tasks execution, two test scenarios were simulated:
in the first scenario, all the workload was processed locally
within the private cloud. In the second scenario, the workload
(tasks) could be migrated to public clouds in case private cloud
resources (hosts, VMs) were busy or unavailable. In other
words, second scenario simulated a CloudBurst by integrating
the local private cloud with public cloud for handing peak in
service demands. Before a task could be submitted to a public
cloud (HP), the first requirement was to load and instantiate the
VM images at the destination. The number of images

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 9, 2013

90 | P a g e

www.ijacsa.thesai.org

instantiated in the public cloud was varied from 10% to 100%
of the number of hosts available in the private cloud. Task units
were allocated to the VMs in the space-shared mode. Every
time a task finished, the freed VM was allocated to the next
waiting task. Once the waiting queue ran out of tasks or once
all tasks had been processed, all the VMs in the public cloud
were destroyed by the CloudCoordinator. The private cloud
hosted 20 machines. Each machine had 2 GB of RAM, 10TB
of storage and one CPU run 1000 MIPS. The virtual machines
created in the public cloud were based on an HP's small
instance (2 GB of memory, 2 virtual cores, and 60 GB of
instance storage). We considered in this evaluation that two
virtual cores of a small instance has the same processing power
as the local machine. The workload sent to the private cloud
was composed of 2,000 tasks. Each task required between 20
and 22 minutes of processor time. The distributions for
processing time were randomly generated based on the normal
distribution. Each of the 2,000 tasks was submitted at the same
time to the private cloud.

Fig. 6. The relation between cost in USD and the public cloud percentage

(up). The relation between makespan in seconds and public cloud percentage

(down).

Figure 6 shows the makespan of the tasks that were
achieved for different combination of private and public cloud
resources. The pricing policy was designed based on the HP’s
small instances (U$ 0.042 per instance per hour) business
model. It means that the cost per instance is charged hourly.
Thus, if an instance runs during 1 hour and 1 second, the
amount for 2 hours (U$ 0.084) will be charged [25].

This experiment showed that the adoption of a hybrid
public/private Cloud computing environments could improve
productivity of the healthcare organization. With this model,
organizations can dynamically expand their system capacity by
leasing resources from public clouds at a reasonable cost.

VI. DISCUSSION AND CONCLUSION

Cloud computing is quickly becoming a dominant model
for end-users to access centrally managed computational
resources. Through this work in extending OpenStack, we have
demonstrated the feasibility of providing healthcare users with
access to heterogeneous computing resources using a hybrid
cloud computing model.

Open cloud computing is not only a low cost choice for
implementation but also provides the designer with a vast
number of choices. That low cost solution for resources
allocation can solve both the limited storage space and the lack
of full utilization of computer infrastructure that healthcare
always suffered from. We have to be aware that users'
requirements may be very different and so the optimal
infrastructure will vary. The ability to select suitable resources
from different cloud providers can increase performance and
lower cost considerably. That was achieved using Deltacloud
and OpenShift which offers a communication layer between
web applications, mobile applications and the different cloud
providers. Simulation was an important step to measure the
feasibility of our design and showed better makespan when
public cloud took a higher workload share.

REFERENCES

[1] David Villegas, Norman Bobroff, Ivan Rodero, Javier Delgado, Yanbin
Liu, Aditya Devarakonda, Liana Fong, S. Masoud Sadjadi, Manish
Parashar, "Cloud federation in a layered service model," Journal of
Computer and System Sciences, Volume 78, Issue 5, September 2012,
Pages 1330-1344.

[2] Pierre Boiron, Valère Dussaux, "Healthcare Software as a Service: the
greater Paris region program experienc The so-called “Région Sans
Film” program," Enterprise Distributed Object Computing Conference
Workshops (EDOCW), 2011 15th IEEE International, 29 Aug.- 2 Sep.
2011, pp. 247-251,Paris, France.

[3] P. Sempolinski and D. Thain, “A comparison and critique of Eucalyptus,
OpenNebula and Nimbus,” in Proceedings of the 2010 IEEE Second
International Conference on Cloud Computing Technology and Science
(CloudCom), 2010.

[4] Ivo Jansch and Vito Chin. Php/architect’s Guide to PHP Development in
the Cloud. Blue Parabola, Canada, 2011.

[5] Trieu C. Mohindra, Ajay Karve, Alexei a. Segal, Alla Chieu, "Dynamic
Scaling of Web Applications in a Virtualized Cloud Computing
Environment," in 2009 IEEE International Conference on e-Business
Engineering, 2009, pp.: 281-286.

[6] Perera, S.; Kumarasiri, R.; Kamburugamuva, S.; Fernando, S.;
Weerawarana, S.; Fremantle, P., "Cloud Services Gateway: A Tool for
Exposing Private Services to the Public Cloud with Fine-grained
Control," Parallel and Distributed Processing Symposium Workshops &
PhD Forum (IPDPSW), 2012 IEEE 26th International, 2012 , pp.: 2237 -
2246.

[7] F. Quesnel and A. L`ebre, “Cooperative dynamic scheduling of virtual
machines in distributed systems,” in Proceedings of the 6th Workshop
on Virtualization in High-Performance Cloud Computing (VHPC ’11)
Euro-Par 2011, Bordeaux, France, Aug. 2011.

[8] new extreme low-energy server technology. (n. d.). Retrieved from

http://h17007.www1.hp.com/us/en/iss/110111.aspx

[9] Open source software for building private and public clouds. (n. d.).
Retrieved from http:// www.openstack.org

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

Public Cloud Percentage %

C
o
s
t

(U
S

D
)

0 10 20 30 40 50 60 70 80 90 100
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
x 10

4

Public Cloud Percentage %

M
a
k
e
s
p
a
n
 (

s
)

http://www.openstack.org/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 9, 2013

91 | P a g e

www.ijacsa.thesai.org

[10] Corradi, A., Foschini, L. , Povedano-Molina, J. , Lopez-Soler, J.M. ,
"DDS-Enabled Cloud Management Support for Fast Task Offloading,"
Computers and Communications (ISCC), 2012 IEEE Symposium on, 1-
4 July 2012, pp.: 67 - 74, 2012.

[11] Crago, S.; Dunn, K.; Eads, P.; Hochstein, L.; Dong-In Kang; Mikyung
Kang; Modium, D.; Singh, K.; Jinwoo Suh; Walters, J.P.,
"Heterogeneous Cloud Computing," Cluster Computing (CLUSTER),
2011 IEEE International Conference on, pp.:378 - 385.

[12] RabbitMQ - Messaging that just works (n. d.). Retrieved from http://
www.rabbitmq.com

[13] Kernel Based Virtual Machine (n. d.). Retrieved from http://www.linux-
kvm.org

[14] J. Tordsson, R. S. Montero, R. Moreno-Vozmediano, and I. M. Llorente,
“Cloud brokering mechanisms for optimized placement of virtual
machines across multiple providers,” Future Generation Comp. Syst.,
vol. 28, no. 2, pp. 358–367, 2012.

[15] J. Lucas-Simarro, R. Moreno-Vozmediano, R. Montero, and I. Llorente,
“Dynamic placement of virtual machines for cost optimization in
multicloud environments,” in Proceedings of the 2011 International
Conference on High Performance Computing & Simulation (HPCS
2011), July 2011, pp. 1–7.

[16] dotCloud - One home for all your apps (n. d.). Retrieved from
https://www.dotcloud.com

[17] The Aeolus Project (n. d.). Retrieved from http:// www.aeolusproject.org

[18] Deltacloud (n. d.). Retrieved from http://deltacloud.apache.org

[19] Develop and scale apps in the cloud (n. d.). Retrieved from
https://openshift.redhat.com

[20] Genqiang Gu,Qingchun Li,Xiaolong Wen,Yun Gao,Xuejie Zhang, "An
overview of newly open-source cloud storage platforms," 2012 IEEE
International Conference on Granular Computing (GrC-2012), August
2012, pp. 142-147.

[21] Inçki, K., Ari, I., Sozer, H., "A Survey of Software Testing in the
Cloud", Software Security and Reliability Companion (SERE-C), 2012
IEEE Sixth International Conference on, pp.: 18 - 23.

[22] Wei Liu, Feiyan Shi,Wei Du and Hongfeng Li "A Cost-Aware Resource
Selection for Data intensive Applications in Cloud-oriented Data
Centers" in the International Journal of Information Technology and
Computer Science 2011.

[23] The Cloud Computing and Distributed Systems (CLOUDS) Laboratory,
University of Melbourne http://www.cloudbus.org/cloudsim

[24] Yuxiang Shi; Xiaohong Jiang and Kejiang Ye, "An Energy-Efficient
Scheme for Cloud Resource Provisioning Based on CloudSim," Cluster
Computing (CLUSTER), 2011 IEEE International Conference on, 26-30
Sept. 2011, pp.: 595 - 599.

[25] Wickremasinghe, B.; Calheiros, R.N.; Buyya, R., "CloudAnalyst: A
CloudSim-Based Visual Modeller for Analysing Cloud Computing
Environments and Applications," Advanced Information Networking
and Applications (AINA), 2010 24th IEEE International Conference on
Communication, Networking & Broadcasting ; Computing & Processing
(Hardware/Software), 2010 , pp.: 446 – 452.

[26] HP Cloud Pricing (27 Jan. 2013). Retrieved from
https://www.hpcloud.com/pricing#Compute

[27] J. Diaz, G. v. Laszewski, F. Wang, and G. Fox, "Abstract Image
Management and Universal Image Registration for Cloud and HPC
Infrastructures, " IEEE Cloud. 2012.

[28] Nordin, M.I., Amin, A.H.M., Shah, S.N.M., "Agent based Resource
Broker for medical informatics application in clouds", Computer &
Information Science (ICCIS), 2012 International Conference on, pp.:
802 – 807, Volume: 2, 12-14 June 2012.

[29] C. Quinton, R. Rouvoy, and L. Duchien, "Leveraging Feature Models to
Configure Virtual Appliances," in 2nd International Workshop on Cloud
Computing Platforms (CloudCP'12), (Bern, Switzerland), Apr. 2012.

[30] M. Rahman , R. Thulasiram , P. Graham, "Differential time-shared
virtual machine multiplexing for handling QoS variation in clouds,"
Proceedings of the 1st ACM multimedia international workshop on
Cloud-based multimedia applications and services for e-health, Nov.
2012, Nara, Japan.

[31] B. Nicolae, G. Antoniu, L. Boug´e, D. Moise, and A. Carpen-Amarie,
“BlobSeer: Next-generation data management for large scale
infrastructures,” J. Parallel Distrib. Comput., vol. 71, pp. 169–184,
February 2011.

[32] Källander K, Tibenderana JK, Akpogheneta OJ, Strachan DL, Hill Z, ten
Asbroek AHA, Conteh L, Kirkwood BR, Meek SR, "Mobile Health
(mHealth) Approaches and Lessons for Increased Performance and
Retention of Community Health Workers in Low- and Middle-Income
Countries: A Review," J Med Internet Research, 2013;15(1).

[33] Mell, P.; Grance, T. (2010), "The NIST Definition of Cloud
Computing," Communications of the ACM, Vol. 53 (2010) No. 6, pp.
50-50.

[34] von Laszewski, G., Diaz, J., Fugang Wang, Fox, G.C., "Comparison of
Multiple Cloud Frameworks," Cloud Computing (CLOUD), 2012 IEEE
5th International Conference on Communication, Networking &
Broadcasting ; Components, Circuits, Devices & Systems ; Computing
& Processing Hardware/Software, 2012 , pp.: 734 - 741.

[35] Lori M. Kaufman. Data security in the world of cloud computing. IEEE
Security and Privacy, 7:61–64, 2009.

[36] Youseff, L.; Butrico, M.; Da Silva, D. (2008), "Toward a Unified
Ontology of Cloud Computing," the Grid Computing Environments
Workshop, 2008. GCE '08, Austin, Texas, USA, pp. 1-10.

