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Abstract—with the rapid improvement of computation 

facilities, healthcare still suffers limited storage space and lacks 

full utilization of computer infrastructure. That not only adds to 

the cost burden but also limits the possibility for expansion and 

integration with other healthcare services. Cloud computing 

which is based on virtualization, elastic allocation of resources, 

and pay as you go for used services, opened the way for the 

possibility to offer fully integrated and distributed healthcare 

systems that can expand globally. However, cloud computing 

with its ability to virtualize resources doesn't come cheap or safe 

from the healthcare perspective. The main objective of this paper 

is to introduce a new strategy of healthcare infrastructure 

implementation using private cloud based on OpenStack with the 

ability to expand over public cloud with hybrid cloud 

architecture. This research proposes the migration of legacy 

software and medical data to a secured private cloud with the 

possibility to integrate with arbitrary public clouds for services 

that might be needed in the future. The tools used are mainly 

OpenStack, DeltaCloud, and OpenShift which are open source 

adopted by major cloud computing companies. Their optimized 

integration can give an increased performance with a 

considerable reduction in cost without sacrificing the security 

aspect. Simulation was then performed using CloudSim to 

measure the design performance. 
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I. INTRODUCTION  

Although much research effort has been put into the design 
and development of novel e-Health services and applications, 
their interoperability and integration remain challenging issues. 
Health services deal with large amount of private data which 
needs to be both fully protected and readily available to 
clinicians. However, health care providers often lack the 
capability to commit the financial resources for either the 
research or the infrastructure required. In addition, the public is 
often skeptical about whether IT systems can be trusted with 
private clinical information. Past failures have fuelled a culture 
to restrict any innovation by both members of the public and 
the politicians responsible for health services [1]. 

Cloud computing has recently appeared as a new 
computing paradigm, which promises virtually unlimited 
resources. Customers rent resources based on the pay-as-you-
go model and thus are charged only for what they use. 
Opposite to other service models, in-house Picture Archiving 
and Communication System (PACS) and application service 

provider PACS [2], cloud computing offers relatively lower 
cost, higher reliability and scalability as shown in table 1.  

TABLE I.  STRENGTHS AND WEAKNESS OF IN-HOUSE PACS, ASP PACS, 
AND CLOUD PACS. 

Weakness Strengths Service 

Model 

Computing 

Facilities 

- Need for in-site 

IT expertise 

- Funded out from 

the investment 

budget 

- Need for new 

technology and 

upgrading 

- Smaller network 

expenses 

- Control over  

data 

- Clear ownership 

of data 

- Fast data 

transmission 

In-House 

PACS 

 

 

Dedicated 

(Local) 

- Not economical 

with small 

examination 

numbers 

- Greater network 

expenses 

 

- predictable costs 

- Use of offsite IT 

expertise 

-Scalability 

- Possibility to 

share data 

between 

structures. 

Application 

Service 

Provider 

PACS 

 

Shared 

(Hosted) 

- Slow data 

transmission 

-security risk 

- Billed per study 

and/or megabyte 

- Economical with 

both small and 

large examination 

number 

- High reliability 

and Scalability 

- IaaS 

ressources 

-PaaS 

development 

platform 

- SaaS PACS 

utilities 

Public 

Cloud 

The cloud system can be divided mainly into three main 
layers. The infrastructure as a service (IaaS) is the lowest level 
which delivers computing infrastructure as a service to end 
users. IaaS is typically provided as a set of APIs that offer 
access to infrastructure resources. The APIs allow creating 
virtual machine instances, or to store or retrieve data from a 
storage or database. The main benefit of virtualized 
infrastructure, which is offered as a service, is scalability. The 
commercial model is to pay for the infrastructure that is 
actually used. This means the designer doesn’t have expensive 
servers idling, and if there is a spike in the visitor numbers, the 
designer doesn’t have to worry if the hardware will cope. He 
simply scales the infrastructure up and down as needed. Since 
the servers are virtual, it’s much easier to create a new one than 
it was to add a new box to a server farm. IaaS provides users 
with a way to monitor, manage, and lease resources by 
deploying virtual machine (VM) instances on those resources. 
Amazon EC2, Eucalyptus, Nimbus, OpenStack and Open 
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Nebula are examples of cloud infrastructure implementations 
[3]. 

In Platform as a Service (PaaS), we move a step further. We 
no longer have to deal with every element of the infrastructure; 
instead, we can regard the system as one solid platform. For 
example, in the case of IaaS, if the designer has a website that 
suddenly requires more capacity because the amount of visitors 
increased, he would typically fire up more virtual machine 
instances. With PaaS, this is no longer the case; the platform 
will scale up and down as necessary and takes care of the 
implementation details. 

The platform is typically represented as a single box. Since 
the platform usually acts as if it were a single box, it’s much 
easier to work with, and generally there is no need to change 
much in the application to be able to run on a PaaS 
environment. PaaS doesn’t only offer cpu, memory or file 
storage; but also offers other parts of the infrastructure, such as 
databases, either in the form of a scaling traditional RDBMS 
system, or one of the ’NoSQL’ databases that are currently 
gaining momentum due to its ability to distribute large amount 
of data over the cloud infrastructure [4]. The third available 
service model goes another step further in the realm of abstrac-
tion. We no longer care about infrastructure as with IaaS, nor 
do we care about the platform, as with PaaS. Where in the past, 
software was installed on the desktop, now with software as a 
service (SaaS); the user just creates an account and is ready to 
use the applications, in the comfort of the web browser. As 
with SaaS, we only need to worry about the application we’re 
dealing with. Good examples of SaaS are cloud PACS utilities 
which can offer services for imaging centers, reading 
physicians, primary care clinics, and hospital management [5].  

 
Fig. 1. The relation between security restrictions against the benefits of cloud 

adoption. 

As shown in Figure 1, there is a spectrum of use cases 
where one end consists of use cases that manipulates public 
data, hence have very low risk associated with them, while the 
other end consists of use cases that manipulates credit cards, 
Social Security Numbers, or ultra sensitive data like nuclear 
tests.  

For the low end of the spectrum, Cloud Computing is an 
obvious choice, while for the high end; Cloud Computing 
might never be used. However, instead of public and private 

cloud, Hybrid architectures provide another choice, a middle 
ground.  

For example, hybrid architecture could move computations 
to the cloud while keeping sensitive data in a secure database 
that resides in the private network [6].  

In this paper, we provide a closer look into the 
implementation of healthcare infrastructure using a private 
cloud based on OpenStack. That was accompanied by setting a 
PaaS on OpenShift for connecting the private cloud to other 
health care services, mobile and web applications for clinicians 
and patients, and resources provided by different cloud 
providers. That hybrid design was assessed using CloudSim to 
measure its performance.  

The rest of this paper is organized as follow; section 2, 
introduces a brief note about private cloud implementation, 
section 3, explains the potentials of expanding the private cloud 
infrastructure by incorporating other public cloud providers, 
section 4, discusses a medical application that took advantage 
of the implemented hybrid cloud, section 5, provides a 
simulation analysis to assess the performance benefits behind 
the proposed implementation, and finally we concluded the 
paper by a discussion section. 

II. PRIVATE CLOUD IMPLEMENTATION 

A private cloud implementation aims to avoid many of the 
objections including control over hospital and patients' data, 
worries about security, and issues connected to regulatory 
compliance. Because a private cloud setup is implemented 
safely within the corporate firewall, it remains under the 
control of the IT department. However, the hospital 
implementing the private cloud is responsible for running and 
managing IT resources instead of passing that responsibility on 
to a third-party cloud provider. Hospitals initiate private cloud 
projects to enable their IT infrastructure to become more 
capable of quickly adapting to continually evolving healthcare 
needs and requirements.  

Launching a private cloud project involves analyzing the 
need for a private cloud, formulating a plan for how to create a 
private cloud, developing cloud policies for access and 
security, deploying and testing the private cloud infrastructure, 
and training employees and partners on the cloud computing 
project. To create a private cloud project strategy, a hospital 
identifies which of its healthcare practices can be made more 
efficient than before, as well as which repetitive manual tasks 
can be automated via the successful launch of a cloud 
computing project. By creating a private cloud strategy, the 
resulting cloud will be able to deliver automatic, scalable server 
virtualization, providing the benefits of automated provision of 
resources and the optimal use of hardware within the IT 
infrastructure [7]. It is important for the private cloud 
implementation process to analyze and ensure the proper 
processes and policies are in place to successfully build a 
secure private cloud. Research and acquire the private cloud 
infrastructure and cloud-enabling software that will be used, 
such as OpenStack, CloudStack, and Eucalyptus. Ensure the 
hypervisor that will manage the virtual machines and 
virtualized storage are available or can be purchased and 
installed. 

http://www.webopedia.com/TERM/P/private_cloud.html
http://www.webopedia.com/TERM/C/cloud_computing.html
http://www.webopedia.com/TERM/O/openstack.html
http://www.webopedia.com/TERM/C/cloudstack.html
http://www.webopedia.com/TERM/H/hypervisor.html
http://www.webopedia.com/TERM/V/virtual_machine.html
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A. The cloud management software 

 

Fig. 2. The cloud ecosystem for building private clouds. (a) Cloud consumers 

need flexible infrastructure on demand. (b) Cloud management provides 

remote and secure interfaces for creating, controlling, and monitoring 

virtualized resources on an infrastructure-as-a-service cloud. (c) VM managers 
provide simple primitives (start, stop, suspend) to manage VMs on a single 

host. 

Cloud management is the software and technologies 
designed for operating and monitoring applications, data, and 
services residing in the cloud as shown in figure 2. Cloud 
management tools help ensure hospital's cloud computing-
based resources are working optimally and properly interacting 
with users and other services. Cloud management strategies 
typically involve numerous tasks including performance 
monitoring (response times, latency, uptime, etc.), security and 
compliance auditing and management, and initiating and 
overseeing disaster recovery and contingency plans. With 
cloud computing growing more complex and a wide variety of 
private, hybrid, and public cloud-based systems and 
infrastructure already in use, a hospital’s collection of cloud 
management tools needs to be just as flexible and scalable as 
its cloud computing strategy. Choosing the appropriate cloud 
platform, however, can be difficult. They all have pros and 
cons.  

We have decided to compare the capabilities of 
CloudStack, Eucalyptus, and OpenStack as the most notable 
open source systems available. Both Eucalyptus and 
CloudStack's application programming interface (API) 
provides compatibility with Amazon Web Services’ Elastic 
Compute Cloud (EC2), the world's most popular public cloud. 
While OpenStack, supports public clouds built by its major 
vendors. OpenStack is backed by Dell, IBM, RackSpace the 
second leading IaaS provider after Amazon, NASA, HP the 
supplier of ARM cloud servers, Canonical the supplier of 
ubuntu which is tightly integrated with OpenStack in every 
release and the main operating system for ARM cloud servers 
[8]. The simple implementation and support of OpenStack for 
ARM cloud servers favored its choice for our private cloud 
implementation as it increases the possibility for a lesser cost 
and an ever growing performance [9, 10]. 

OpenStack refers to a collection of open-source software 
packages designed for building public and private clouds. 
OpenStack is implemented as a set of Python services that 
communicate with each other via message queue and database. 

 

Fig. 3. OpenStack Architecture. 

Figure 3 shows a conceptual overview of the OpenStack 
architecture, with the OpenStack Compute components (which 
provides an IaaS) bolded and OpenStack Glance components 
(which stores the virtual machine images) shown in a lighter 
color. The nova-api service is responsible for fielding resource 
requests from users. Currently, OpenStack implements two 
APIs: the Amazon Elastic Compute Cloud (EC2) API, as well 
as its own OpenStack API [11]. The nova-schedule service is 
responsible for scheduling compute resource requests on the 
available compute nodes. The nova-compute service is 
responsible for starting and stopping virtual machine (VM) 
instances on a compute node. The nova-network service is 
responsible for managing IP addresses and virtual LANs for the 
VM instances. The nova-volume service is responsible for 
managing network drives that can be mounted to running VM 
instances. The queue is a message queue implemented on top 
of RabbitMQ [12] which is used to implement remote 
procedure calls as a communication mechanism among the 
services. The database is a traditional relational database such 
as MySQL used to store persistent data shared across the 
components. While, the dashboard implements a web-based 
user interface. 

B. The hypervisor  

A hypervisor, also called a virtual machine manager, is a 
program that allows multiple operating systems to share a 
single hardware host. Each operating system appears to have 
the host's processor, memory, and other resources all to itself. 
However, the hypervisor is actually controlling the host 
processor and resources, allocating what are needed to each 
operating system in turn and making sure that the guest 
operating systems (virtual machines) cannot disrupt each other. 
Most OpenStack development is done with the KVM and XEN 
hypervisors. KVM however is free and easier to deploy than 
free XEN, well supported by every major distribution and is 
adequate for most cloud deployment scenarios (for example, 
EC2-like cloud with ephemeral storage) while storage support 
is improving for KVM. It is also simpler and more stable to use 
with OpenStack and is fully packed by ubuntu 12 Linux that is 
why KVM was chosen over XEN for our private cloud [13]. 

http://www.webopedia.com/TERM/P/private_cloud.html
http://www.networkworld.com/news/2012/021312-citrix-cloudstack-256071.html
http://www.networkworld.com/news/2012/062212-ehcalyptus-mickos-260408.html
http://www.networkworld.com/news/2012/040512-openstack-258027.html
http://www.eucalyptus.com/
http://searchcio-midmarket.techtarget.com/definition/processor
http://wiki.openstack.org/OpenStack
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C. Legacy migration  

Legacy physical server could be migrated into OpenStack 
cloud using a persistent volume so that the migrated VM is 
backed by persistent storage. The function provided by the 
legacy server was the same afterwards and had the 
manageability benefits from running on an infrastructure 
platform.  

Two things were created: a volume that would contain the 
data from legacy server and a 'working' VM as a way to work 
with that volume throughout the migration process. Horizon 
dashboard has been used to create volumes. The volume size 
had to be large enough to store all the file systems from legacy 
system, with appropriate growth, and included any swap-space 
that might be needed. The 'working' instance was then launched 
to set up the new volume. This instance had port 22 open under 
access and security, and ssh key pair was placed onto the 
system. Then, under 'volumes' the volume was attached to the 
working instance. The rsync was used to synchronize files 
between the legacy system and the new VM. The rsync tool 
was perfect for this for a few reasons: If interrupted, it can 
resume where it left off. Further, it can be throttled so that data 
can trickle over to the new volume without impacting the 
performance of the legacy server. For minimal downtime two 
separate rsyncs were done. The first one would sync over the 
vast majority of the data from the legacy server to the volume. 
The second one was done while both servers were down in 
order to sync the final changes from the legacy server right 
before the replacement VM was booted.  

The next step was to make the volume bootable by adding a 
bootloader at the beginning of the volume. OpenStack provides 
firewalling, so we needed to set up a special security-group for 
VM that allowed all expected traffic to reach the server. This 
was done under "Access & Security" in horizon. Before 
committing to the change-over we had to verify that newly-
created bootable volume did indeed work as expected. Once 
VM was setup correctly, the volume was unmount from the 
working VM, and legacy server was powered down. New VM 
system was finally launched. 

D. Private cloud security measures  

Dome9 secures OpenStack cloud servers and makes them 
virtually invisible to hackers. That automation closes firewall 
ports like RDP and SSH, and enables on-demand secure access 
with just one click.  With Dome9, OpenStack Security Groups, 
centralizing policy management were automated within Dome9 
Central. It has as well an SaaS management console for the 
entire cloud infrastructure. In addition, inter- and intra-group 
security rules gave ultimate flexibility and granularity. With 
Dome9 Cloud Connect, setting up Dome9 with OpenStack 
took less than a minute. Using Dome9 Account, we could add 
OpenStack supported region, and enter credentials. It was then 
connected to the private via API to manage all of Security 
Groups.  

III. HYBRID CLOUD IMPLEMENTATION 

Public clouds involve the use of third party servers where 
the user is typically charged on the usage basis. It helps cut the 
user's capital expenditure significantly, while providing the 
user with greater flexibility and scalability. However, the 

advantages of the public cloud come at the cost of poorer 
performance and increased risks to data and applications. 
Private clouds attempt to solve the problem by providing cloud 
installation on-site with better performance and security, 
coming at increased capital expenditure and reduced flexibility. 
Therefore, hybrid clouds attempt to bridge the gap by providing 
the best of both worlds. Enterprises that use the hybrid cloud 
typically have a private cloud that handles the performance-
sensitive core applications, while using the public cloud for 
scaling and non-core applications. For instance, the mail server 
and collaboration related components can be kept on the public 
cloud, while keeping the patient's database and large files in the 
private cloud. Another reason is that some applications are 
highly suited for public cloud, while some other legacy 
applications might not. Private clouds could be less robust than 
a public cloud managed by a reputed service provider. If the 
designer have a natural or manmade disaster attacking his 
hospital site, his private cloud infrastructure might become 
crippled. The designer can use the public cloud as a fail-over in 
that case. Thus, the designer might want to have a hybrid 
approach [14].  

Although OpenStack integrates well with almost all IaaS 
providers, that doesn't stop our implementation from taking full 
advantages from those IaaS provider that don't support 
OpenStack. The key was to use a PaaS that could communicate 
with many different IaaS through a cloud interface. The cloud 
interface is the holygrail of cloud computing as it bridges the 
gap between different IaaS suppliers. On the higher level there 
is a unified API that could be called from a PaaS while on the 
lower level there are drivers specific to each IaaS and 
implemented with the vendor without compromising their 
codes. That cloud interface and the closely integrated PaaS are 
now reality with deltacloud and openshift thanks to the ever 
growing competition between cloud services providers to 
control the cloud computing market [15].  

PaaS was initially conceived as a hosted solution for web 
applications. However the conceptual design forces the Cloud-
compliant applications to accept several restrictions: (1) use the 
APIs exposed by PaaS owners; (2) use the specific 
programming paradigm that is adequate for the type of 
applications allowed by the PaaS; and (3) use the programming 
languages supported by the PaaS owner. These constraints are 
still valid for most current PaaS offers (e.g., Google 
AppEngine, Azure, Heroku, Duostack, XAP, Cast, CloudBees, 
and Stackato). A first step towards the developer freedom in 
building new PaaS independent applications was done by 
DotCloud which lets developers build their own software stack 
for a certain application. This solution is unfortunately not free 
and is currently based only on EC2 [16]. 

On the other hand, Deltacloud is an API developed by Red 
Hat and the Apache Software Foundation that abstracts 
differences between clouds. So, Deltacloud provides one 
unified REST-based API that can be used to manage services 
on any cloud. While each IaaS cloud is controlled through an 
adapter called "driver" and provides its own API. Drivers exist 
for the following cloud platforms: Amazon EC2, Fujitsu Global 
Cloud Platform, GoGrid, OpenNebula, Rackspace, OpenStack, 
RHEV-M, RimuHosting, Terremark and VMware vCloud. 
Next to the 'classic' front-end, it also offers CIMI and EC2 

http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Amazon_EC2
http://en.wikipedia.org/wiki/Fujitsu_Global_Cloud_Platform
http://en.wikipedia.org/wiki/Fujitsu_Global_Cloud_Platform
http://en.wikipedia.org/wiki/GoGrid
http://en.wikipedia.org/wiki/OpenNebula
http://en.wikipedia.org/wiki/Rackspace_Cloud
http://en.wikipedia.org/wiki/Red_Hat_Enterprise_Virtualization
http://en.wikipedia.org/w/index.php?title=RimuHosting&action=edit&redlink=1
http://en.wikipedia.org/wiki/Terremark
http://en.wikipedia.org/wiki/VMware
http://en.wikipedia.org/wiki/VCloud
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front-ends. Deltacloud is used in applications such as Aeolus to 
prevent the need to implement cloud-specific logic [17]. 

Deltacloud has some dependencies that need to be installed 
before its installation as Deltacloud server relies on a number 
of external rubygems and other libraries. However, once all the 
dependencies have been installed the Deltacloud server 
installation is done in one step [18]. 

OpenShift takes care of all the infrastructure, middleware, 
and management and allows the developer to focus on what 
they do best: designing and coding applications. It takes a No-
Lock-In approach to PaaS by providing built-in support for 
Node.js, Ruby, Python, PHP, Perl, and Java. In addition, 
OpenShift is extensible with a customizable cartridge 
functionality that allows enterprising developers to add any 
other language they wish such as Clojure and Cobol. In 
addition to this flexible, no-lock-in, language approach, 
OpenShift supports many of the popular frameworks that make 
development easier including frameworks ranging from Spring, 
to Rails, to Play. OpenShift is designed to allow Developers to 
work the way they want to work by giving them the languages, 
frameworks and tools they need for fast and easy application 
development [19]. 

IV. THE MEDICAL IMAGE WEB APPLICATION 

 

Fig. 4. Web application interface. 

Healthcare generates a tremendous amount of data each day 
(CT, MRI, US, PET, SPECT, Mammography, X-Ray … etc) 
and consumes quickly the hospitals storage space. For the 
reason of combining private and public cloud resources, a web 
application has been designed to store medical images on the 
private cloud using Mongodb which automatically migrate 
images older than one month to the public cloud. The subjects 
information were removed by stripping out the PHI (Protected 
Health Information) to conform to HIPAA standard and a 
sharding key was selected for our database that combines exam 
date and exam id. Compression, upload, delete, retrieval, and 
viewing were all integrated into the web application. Hibernate 
OGM; java and SWING were used to manage the backend on 
OpenShift with the ability to detect which device is trying to 
access the database. That allows smart phones as well as 
desktops to access the data for consultation purposes as shown 
in figure 4. We now detail the design of the Medical Image 
Web Application (MIWA) to guarantee the Atomicity, 
Consistency, Isolation, and Durability properties. Each of the 
properties is discussed individually [20].  

A. Atomicity 

The Atomicity property requires that either all operations of 
a transaction complete successfully, or none of them does. To 
ensure Atomicity, for each transaction issued, MIWA is using 
shards for actually storing data, mongos processes for routing 
requests to the correct data, and config servers, for keeping 
track of the cluster’s state. As soon as an agreement to 
“COMMIT” is reached, the mongos processes can 
simultaneously return the result to the web application and 
complete the second phase. 

B. Consistency 

The consistency property requires that a transaction, which 
executes on a database that is internally consistent, will leave 
the database in an internally consistent state. Consistency is 
typically expressed as a set of declarative integrity constraints. 
We assume that the consistency rule is applied within the logic 
of transactions. Therefore, the consistency property is satisfied 
as long as all transactions are executed correctly. 

C.  Isolation 

The Isolation property requires that the behavior of a 
transaction is not disturbed by the presence of other 
transactions that may be accessing the same data items 
concurrently. The MIWA decomposes a transaction into a 
number of sub-transactions, each accessing a single data item. 
Thus, the isolation property requires that if two transactions 
conflict on any number of data items, all their conflicting sub-
transactions must be executed sequentially, even though the 
sub-transactions are executed in multiple mongos processes. 

D.  Durability 

The Durability property requires that the effects of 
committed transactions cannot be undone and would survive 
server failures. In our case, it means that all the data updates of 
committed transactions must be successfully written back to the 
back-end cloud storage service. The main issue here is to 
support mongos processes failures without losing data. For 
performance reasons, the commit of a transaction does not 
directly update data in the cloud storage service but only 
updates the in-memory copy of data items in the shards. 
Instead, each mongos process issues periodic updates to the 
cloud storage service. During the time between a transaction 
commit and the next checkpoint, durability is ensured by the 
replication of data items across several shards. After 
checkpoint, we can rely on the high availability and eventual 
consistency properties of the cloud storage service for 
durability. 

E. Security 

Cryptographic modules supplied by HP Atalla were used in 
the medical image web application to encrypt healthcare data 
and reduce the risk of data encryption and reputation damage 
without sacrificing performance using high-performance 
hardware security modules. Those Data Security solutions meet 
the highest government and financial industry standards-
including NIST, PCI-DSS and HIPAA/HITECH-protect 
sensitive data and prevent fraud. HP Enterprise Secure Key 
Manager (ESKM) and Atalla Network Security Processors 
(NSP) provided robust security, high performance and 
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transparency while ensuring comprehensive, end-to-end 
network security. 

V. SIMULATION 

Evaluation of alternative designs or solutions for Cloud 
computing on real test-beds is not easy due to several reasons. 
Firstly, public Clouds exhibit varying demands, supply 
patterns, system sizes, and resources (hardware, software, 
network) [19]. Due to such unstable nature of Cloud resources, 
it is difficult to repeat the experiments and compare different 
solutions. Secondly, there are several factors which are 
involved in determining performance of Cloud systems or 
applications such as user's Quality of Service (QoS) 
requirements, varying workload, and complex interaction of 
several network and computing elements. Thirdly, the real 
experiments on such large-scale distributed platforms are 
considerably time consuming and sometimes impossible due to 
multiple test runs in different conditions. Therefore, a more 
viable solution is to use simulation frameworks which will 
enable controlled experimentation, reproducible results and 
comparison of different solutions in similar environments. 
Despite the obvious advantages of simulation in prototyping 
applications and developing new scheduling algorithms for 
Cloud computing, there are a few simulators for modeling real 
Cloud environments. For evaluating a scheduling algorithm in 
a Cloud computing environment, a simulator should allow 
users to define two key elements: (i) an application model 
specifying the structure of the target applications in Clouds, 
typically in terms of computational tasks and data 
communication between tasks; (ii) a platform model of Cloud 
computing data centers specifying the nature of the available 
resources and the network by which they are interconnected. 
Clouds currently deploy wide variety of applications both from 
industrial enterprises and scientific community [21]. In terms 
of the platform, Cloud computing is quite different from 
traditional distributed computing platforms defined by service-
oriented features such as resource elasticity, multiple-level of 
services and multi-tenancy of resources. 

Fig. 5. The main parts and relations of CloudSim. 

The experiments in this research were performed on the 
CloudSim cloud simulator which is a framework for modeling 
and simulating the cloud computing infrastructures and 
services [22]. The CloudSim simulator has many advantages: it 
can simulate many cloud entities, such as datacenter, host and 
broker. It can also offer a repeatable and controllable 

environment. And we do not need to take too much attention 
about the hardware details and can concentrate on the 
algorithm design. The simulated datacenter and its components 
can be built by coding and the simulator is very convenient in 
algorithm design [23]. The main parts which relate to the 
experiments in this research and the relationship between them 
are shown in Figure 5 while the functions of those components 
are explained in table 2. 

TABLE II.  CLOUDSIM COMPONENTS AND THEIR FUNCTIONS [24] 

CloudSim 

Component 

Function 

Cloud Information 

Service 

It is an entity that registers, indexes and 

discovers the resource. 

Datacenter It models the core hardware infrastructure, 

which is offered by Cloud providers. 

Datacenter Broker It models a broker, which is responsible for 

mediating negotiations between SaaS and Cloud 

providers. 

Host It models a physical server. 

Vm It models a virtual machine which is run on 

Cloud host to deal with the cloudlet. 

Cloudlet It models the Cloud-based application services. 

VmAllocation A provisioning policy which is run in datacenter 

level helps to allocate VMs to hosts. 

VmScheduler The policies required for allocating process 

cores to VMs. It is run on every Host in 

Datacenter. 

CloudletScheduler It determines how to share the processing 

power among Cloudlets on a virtual machine. It 

is run on VMs.  

The application simulates an IaaS provider with an arbitrary 
number of datacenters. Each datacenter is entirely 
customizable. The user can easily set the amount of 
computational nodes (hosts) and their resource configuration, 
which includes processing capacity, amount of RAM, available 
bandwidth, power consumption and scheduling algorithms. The 
customers of the IaaS provider are also simulated and entirely 
customizable. The user can set the number of virtual machines 
each customer owns, a broker responsible for allocating these 
virtual machines and resource consumption algorithms. Each 
virtual machine has its own configuration that consists of its 
hypervisor, image size, scheduling algorithms for tasks (here 
known as cloudlets) and required processing capacity, RAM 
and bandwidth.  

The simulation scenario models a network of a private and 
a public cloud (HP's cloud). The public and the private clouds 
were modeled to have two distinct data centers. A 
CloudCoordinator in the private data center received the user’s 
applications and processed (queue, execute) them in a FCFS 
basis. To evaluate the effectiveness of a hybrid cloud in 
speeding up tasks execution, two test scenarios were simulated: 
in the first scenario, all the workload was processed locally 
within the private cloud. In the second scenario, the workload 
(tasks) could be migrated to public clouds in case private cloud 
resources (hosts, VMs) were busy or unavailable. In other 
words, second scenario simulated a CloudBurst by integrating 
the local private cloud with public cloud for handing peak in 
service demands. Before a task could be submitted to a public 
cloud (HP), the first requirement was to load and instantiate the 
VM images at the destination. The number of images 
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instantiated in the public cloud was varied from 10% to 100% 
of the number of hosts available in the private cloud. Task units 
were allocated to the VMs in the space-shared mode. Every 
time a task finished, the freed VM was allocated to the next 
waiting task. Once the waiting queue ran out of tasks or once 
all tasks had been processed, all the VMs in the public cloud 
were destroyed by the CloudCoordinator. The private cloud 
hosted 20 machines. Each machine had 2 GB of RAM, 10TB 
of storage and one CPU run 1000 MIPS. The virtual machines 
created in the public cloud were based on an HP's small 
instance (2 GB of memory, 2 virtual cores, and 60 GB of 
instance storage). We considered in this evaluation that two 
virtual cores of a small instance has the same processing power 
as the local machine. The workload sent to the private cloud 
was composed of 2,000 tasks. Each task required between 20 
and 22 minutes of processor time. The distributions for 
processing time were randomly generated based on the normal 
distribution. Each of the 2,000 tasks was submitted at the same 
time to the private cloud.  

 

        
Fig. 6. The relation between cost in USD and the public cloud percentage 

(up). The relation between makespan in seconds and public cloud percentage 

(down). 

Figure 6 shows the makespan of the tasks that were 
achieved for different combination of private and public cloud 
resources. The pricing policy was designed based on the HP’s 
small instances (U$ 0.042 per instance per hour) business 
model. It means that the cost per instance is charged hourly. 
Thus, if an instance runs during 1 hour and 1 second, the 
amount for 2 hours (U$ 0.084) will be charged [25].  

This experiment showed that the adoption of a hybrid 
public/private Cloud computing environments could improve 
productivity of the healthcare organization. With this model, 
organizations can dynamically expand their system capacity by 
leasing resources from public clouds at a reasonable cost.  

VI. DISCUSSION AND CONCLUSION 

Cloud computing is quickly becoming a dominant model 
for end-users to access centrally managed computational 
resources. Through this work in extending OpenStack, we have 
demonstrated the feasibility of providing healthcare users with 
access to heterogeneous computing resources using a hybrid 
cloud computing model.  

Open cloud computing is not only a low cost choice for 
implementation but also provides the designer with a vast 
number of choices. That low cost solution for resources 
allocation can solve both the limited storage space and the lack 
of full utilization of computer infrastructure that healthcare 
always suffered from. We have to be aware that users' 
requirements may be very different and so the optimal 
infrastructure will vary. The ability to select suitable resources 
from different cloud providers can increase performance and 
lower cost considerably. That was achieved using Deltacloud 
and OpenShift which offers a communication layer between 
web applications, mobile applications and the different cloud 
providers. Simulation was an important step to measure the 
feasibility of our design and showed better makespan when 
public cloud took a higher workload share. 
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