## **New perspectives on fisheries**

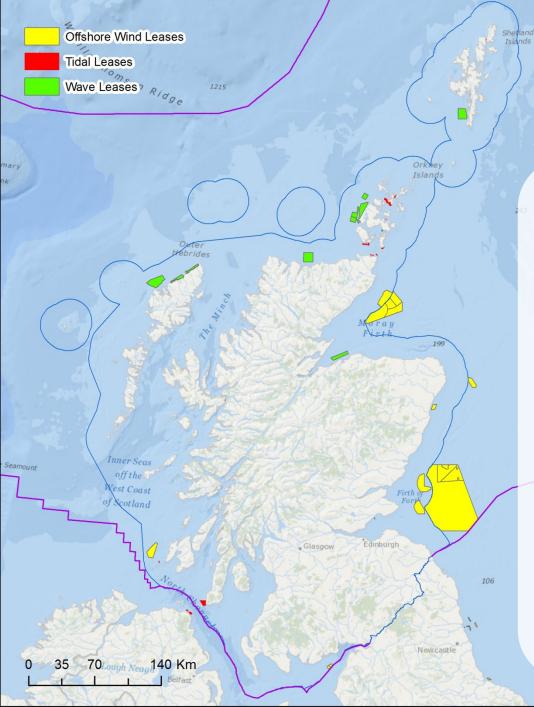
Combining the distribution of inshore and offshore commercial fisheries in Scotland



Andronikos Kafas, Ian Davies, Anne McLay, Matthew Gubbins, and Beth Scott



Stornoway | 30 April – 1 May 2014

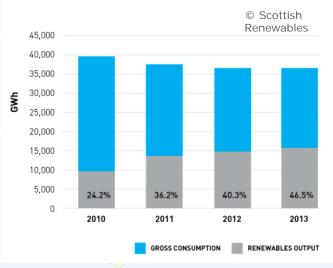

## **Outline**

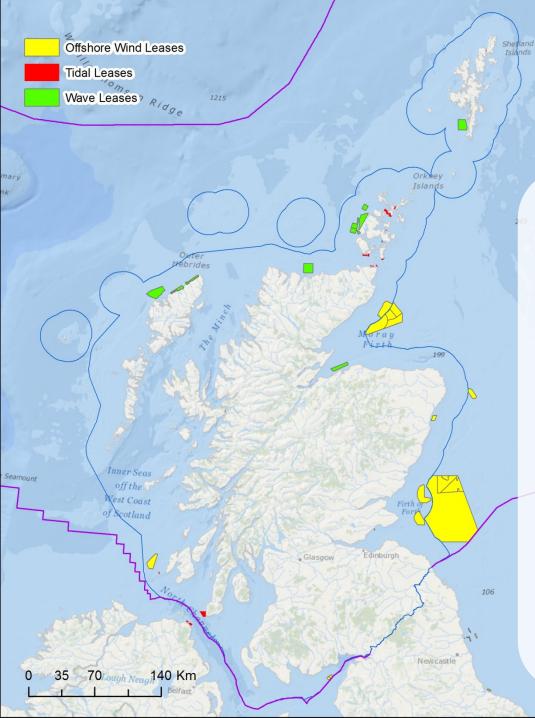
# marine scotland science

## Introduction

- □ Marine Renewable Energy in Scotland
- Commercial fisheries in Scotland
- ➢ Commercial fisheries in Marine Spatial Planning
  □ Offshore commercial fisheries (≥ 15 m; VMS)
  □ Inshore commercial fisheries (< 15 m; ScotMap)</li>
  □ Combining the two distributions

## Conclusions & Future steps





## Marine Renewable Energy in Scotland

## **Policy Targets**

- Harvest Scotland's huge marine resource potential
- Meet 100% electricity demand by 2020

#### GROSS ELECTRICITY CONSUMPTION AND % RENEWABLES OUTPUT





## Marine Renewable Energy in Scotland

## Facts

 ✓ ~12,000 jobs in the renewable energy sector in Scotland

#### PRE-OPERATIONAL CAPACITY OF PROJECTS IN SCOTLAND (DECEMBER 2013)



© The Crown Estate; March 2014

# Commercial fisheries in Scotland

20000

## **Policy Targets**

- Ensure fish stocks are harvested sustainably
- Sustain vibrant coastal communities

### Scottish fishing vessels



2,046 660 >10m

## **Annual Landings**

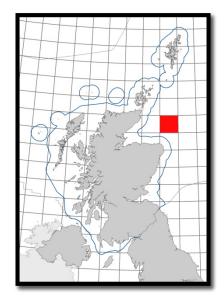


#### **Scottish fishermen**



© Scottish Sea Fisheries Statistics 2012

## **Fishing information in EU**


## Logbooks (FIN)

- Mandatory for Vessels >10m
- Declare all landing in excess of 50kg
- Low spatial resolution

## Vessel Monitoring System

- All vessels ≥15m overall length
- Exact location and ID of all vessels
- Submitted to a centralized database

## marine scotland science



# Offshore commercial fishing fleet (≥ 15 m)

RESEARCH

. .8.

1 1 1. 0.5

LK 62

Pelagic trawler at sea Marine Scotland Image Bank © Crown copyright

6 8

6 6

RESEARCH

# Offshore commercial fishing fleet (≥ 15 m)

# marine scotland science

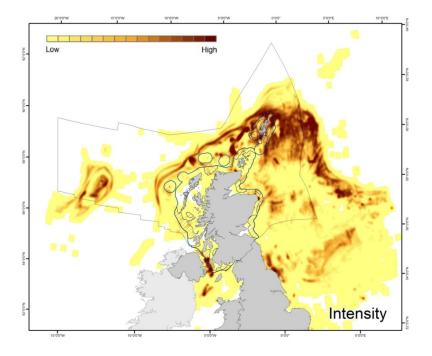
#### **1. RAW VMS DATA DESCRIPTION**

VMS data for all UK registered commercial fishing vessels with an overall length of ≥15m in years 2007-2011 landing into UK ports.

#### 2. DISTINGUISH FISHING OVER STEAMING

Speed threshold (0 < speed < 5 knots); Pings within a 2.5 km<sup>2</sup> radius from ports have been removed.

#### **3. LINK WITH LANDINGS INFORMATION**


Merged with logbook data

#### **4. GROUP IN TARGETED FISHERIES**

Pelagic (Mackerel, Herring, Other) Demersal (mobile and static gears) Shellfish (Crab, Lobster, Nephrop, Scallop)

#### **5. INTENSITY ANALYSIS**

Kernel density estimation with a data-driven bandwidth



Kafas, A., Jones, G., Watret, R., Davies, I., Scott, B., 2012. *Representation of the use of marine space by commercial fisheries in marine spatial planning.* ICES CM I:23.

Low

37.5 75

150 Km

High

Demersal fisheries distribution (mobile gears) 2007-11

#### **Pros:**

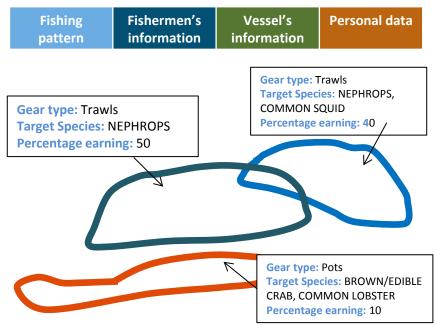
- Advanced density analysis which significantly increases spatial representation
- Several year's activity can be amalgamated
- Activity can be weighted against landings volume and value
- Available for national and regional scales

## Cons

- X Units do not represent landing value
- X Challenging to explain to nontechnical audience
- X Method highly depended on bandwidth selection process
- X Scale dependent

## **Inshore commercial** fishing fleet (< 15 m)

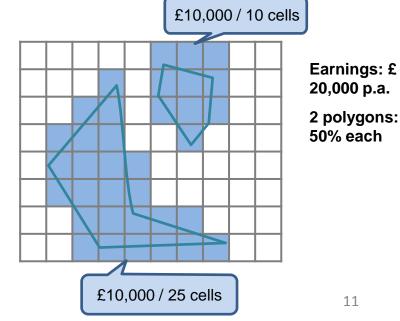
## Prawn vessel tied up at Lochinver


© Robert Watret

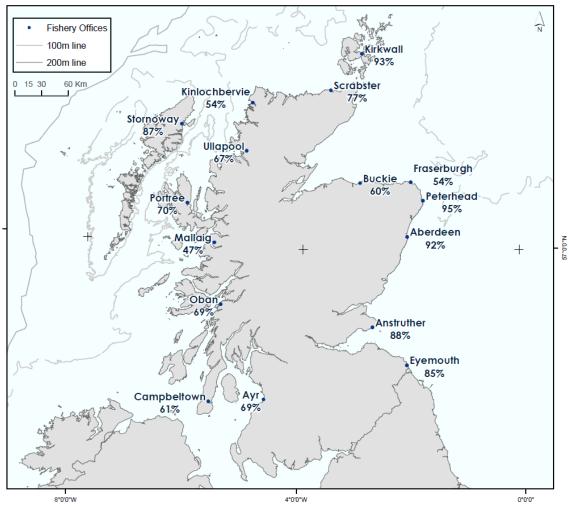
## Inshore commercial fishing fleet (< 15 m) - ScotMap

# marine scotland science

#### **1. FACE-TO-FACE INTERVIEWS**


#### Requested Information on:




In total: 1090/ 1510 mapped interviews (72%) 2,634 fishing areas (polygons)

#### 2. RASTERISING & AGGREGATING

- Monetary value (£s per cell),
- Relative value (sum of percentage splits per cell), and
- Number of vessels and Crew (total number of vessels or Crew associated with each cell).



## **Landings Coverage**

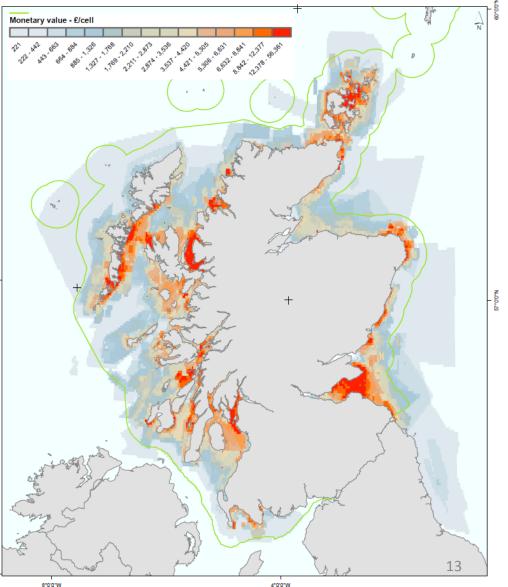


# marine scotland science

| District Nan  | ne Landings Coverage             |
|---------------|----------------------------------|
| Aberdeen      | £ 4.02M /£ 4.39M (92%)           |
| Anstruther    | £ 7.06M /£ 8.04M (88%)           |
| Ayr           | £ 4.53M /£ 6.54M (69%)           |
| Buckie        | £ 2M /£ 3.31M (60%)              |
| Campbeltown   | £ 7.22M /£ 11.88M (61%)          |
| Eyemouth      | £ 7.37M /£ 8.69M (85%)           |
| Fraserburgh   | £ 2.33M /£ 4.35M (54%)           |
| Kirkwall      | £ 9.66M /£ 10.34M (93%)          |
| Kinlochbervie | £ 0.56M /£ 1.05M (54%)           |
| Lochinver     | £ 0.69M /£ 1.22M (57%)           |
| Mallaig       | £ 1.11M /£ 2.38M (47%)           |
| Oban          | £ 5.9M /£ 8.53M (69%)            |
| Peterhead     | £ 1.42M /£ 1.51M (95%)           |
| Portree       | £ 7.96M /£ 11.36M (70%)          |
| Scrabster     | £ 2.53M /£ 3.28M (77%)           |
| Stornoway     | £ 10.67M /£ 12.22M (87%)         |
| Ullapool      | £ 3.67M /£ 5.48M (67%)           |
|               | Total: £ 78.71M /£ 104.56M (75%) |

Average FIN Landings 2010-2011

## Inshore commercial fishing fleet ScotMap (< 15 m)


## Pros:

- ✓ Interview based approach
- ✓ Provided a long needed layer
- ✓ Data accounts for 75% of Scottish inshore landings
- ✓ Layers consulted with the public

## Cons

- X Resolution
- X Regional coverage variations
- X Snap shot of the activity
- X Information recorded with variable precision
- X Unable to verify individual data

Kafas, A., McLay, A., Chimienti, M., Gubbins, M. 2013. Mapping fishing activity in Scotland's inshore waters – analytical approaches applied to data from fishery stakeholders. ICES CM I:28.



marinescotland

science

# Combining spatial information from the two fleet sections

BF.24

I III

BF.24

1.2

Fishing boats tied up at Fraserburgh

Marine Scotland Image Bank © Crown copyright

# Combining spatial information from the two fleets sections

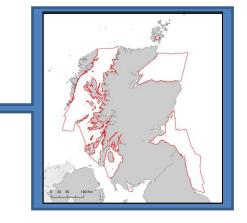
# marine scotland science

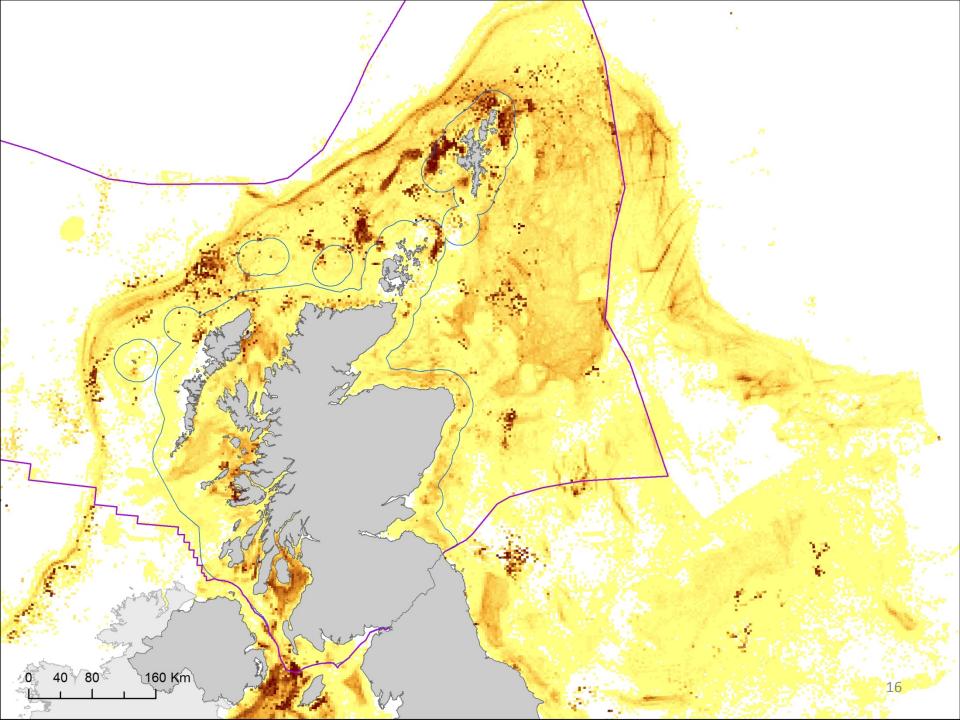
#### **1. VMS QUADRANT COUNT ANALYSIS**

Using the same VMS data, a Quadrant Count analysis using a fine grid produced landings distribution maps of the offshore fleet.

#### 2. RASTERISE SCOTMAP

Same analysis as described before, but using FIN values and same resolution with VMS layer.


#### **3. SCALING UP SCOTMAP**


This was done in two different ways:

- A) For fleet sectors closely associated with specific habitats – ScotMap spatial extent was used.
- B) Remaining non-interviewed vessels landing values in ICES statistical rectangles was used.

#### 4. COMBINING

The scaled up value data from ScotMap and VMS layers were added together to produce a combined data set.





#### **Pros:**

- ✓ Combination of the 2 fleets
- Commonly used Quadrant count analysis
- Simple methodology

## Cons

10 80

160 Km

- X Non-UK fishing activity is not included
- X Combination of heterogeneous datasets careful handling

17

## **Conclusions**

# marine scotland science

- The combination of the spatial information from the two fleets (offshore and inshore), provides a comprehensive representation of fishing activities in Scotland
- Can inform decision making in various policy areas
  - o marine spatial planning,
  - o sustainable development of offshore renewable energy,
  - o nature conservation, and
  - o fisheries management.
- The data set will inform future studies of fisheries displacement

## marine scotland science

## Andronikos Kafas

Marine Renewable Energy Scientist

Offshore Energy Environmental Advice Group Marine Scotland Science Marine Laboratory, Aberdeen, Scotland, UK

e: Andronikos.Kafas@scotland.gsi.gov.uk

Google: Marine Scotland Interactive

# Thank you!