SIEMENS

IP 252 Closed-loop control module and COMREG
(EWA 4NEB8110480-02)

Manual

Section 6

Section 7

Release 03
for 6ES5252-5AB21
\qquad

Supplement to the IP 252 Manual,

- Amendment/corrections to the IP 252 Manual,

SIEMENS

SIMATIC S5
 IP 252 General-Purpose Closed-Loop Control Module

Fig. 1.1 General-Purpose Closed-Loop Control Module

Contents		Page
1.	Overview	1-1
1.1	Using the module within the S5 System	1-1
1.2	Description of the configuring principle	1-2
2.	Instructions for the IP 252	2-1
2.1	Description	2-1
2.1.1	Application	2-1
2.1.2	Principle of operation	2-1
2.1.2.1	General	2-1
2.1.2.2	Hardware architecture of the IP 252	2-2
2.1.3	Construction	2-3
2.1.3.1	Interiace assignments	2-3
2.1.3.1.1	Bus connectors $\mathrm{X1} 1 . \mathrm{X} 2$	2-4
2.1.3.1.2	Memory submodule $\times 3$	2-5
2.1.3.1.3	Digital tacho-generator input X4	2-6
2.1.3.1.4	PG interface X5	2-7
2.1.3.1.5	Analog inputs/outputs	2.7
2.1.3.1.6	Measuring sockets (M1, M2, M-)	2-9
2.1.4	Recommendations for installation and start-up	2-9
2.1 .5	Technical specifications	2-9
2.1.5.1	Environmental conditions	2-9
2.1.5.2	Mechanical specifications	2-9
2.1.5.3	Electrical specifications	2-10
3	Brief Programming Instructions	3-1
3.1	The configuring principle	3-2
3.2	Example for Operating a DC Motor with the 1 P 252	3-5
3.2 .1	System configuration for this example	3-5
3.2.2	Requirements to be met by open-loop and closed-loop control system	3-5
3.2.3	Preparation of the static converter and motor	3-5
3.2.4	Preparation of the S 5 control	3-7
3.2.5	Programming the IP 252	3.7
3.2 .6	Testing the controller block	3-8
3.2 .7	Entering the control program	3-8
3.2 .8	information about the control program	3-9
3.2 .9	Generatinga "COM REG S5-DOS" work diskette	3-10
3.3	Application example for $\$ 5115 \mathrm{U}$	3-11
3.4	Application example for $\$ 5135 \mathrm{U}, \mathrm{R}$ processor	3-18
4	Programming Instructions	4-1
4.1	Configuration overview	4-1
4.2	Maximum number of control loops on the IP 252	4-2
4.3	Input/output formats of the IP 252	4-3
4.3.1	Time values	4-3
4.3.2	Percentage values	4-3
4.3.3	Dimensioned variables	4-3
4.3.4	Dimensionless variables	4-5
4.4	Meaning of the LEDs on the front panel of the module	4-6
4.5	Data retention in the memory module	4-7
4.5.1	Retentive/non retentive data	4-7
4.5.2	Principle of data retention (see Fig. 4.2)	4-7
4.6	Start-up behaviour of IP 252 (response to "power on")	4-9
4.6.1	Treatment of the controller data aiter "poweron"	4.9
4.6 .2	Start-up behaviour of the controlloops after "power on" (Fig. 4.3)	4-9
4.7	Enabling/disabling of the control loops with the programmer	4-12
4.7.1	Disabling of the control loop in the RUN mode of the IP	4-12
4.7.2	Enabling a controlloop in the RUN mode of the IP	4.12
4.8	RUN/STOP mode of the module	4-13
4.8 .1	RUN mode	4.13
4.8.2	STOPmode	4-13

Contents		page	Contents		Page
4.12 .1	Outer loop controller (9)	4-109	6.1.1	Selection procedure	6-1
4.12 .2	Innerloop controlier(5)	4-109	6.1 .2	Parameter input/output	6-2
4.12 .3	Current setpoint	4-110	6.1.2.1	Subfieldeditor for input/output	6-2
4.12 .4	Additional functions	4-110	6.1.2.2	Types of parameters	6-2
4.12 .5	Detailed description of the drive controller		6.1.2.3	Input formats	6-3
	structure (DRS)	4-111	6.1.2.4	Parameters with physical units	6-3
4.12.5.1	Branch 1: Controller output/currentsetpoint	4-111	6.2	PG (programmer)functions	6-4
4.12.5.2	Branch 2: Friction	4-111	6.2.1	Start-up	6-4
4.12.5.3	Branch 3: Peripheral velocity (diameter		6.2.2	Input	6-4
	calculator)	4-112	6.2.2.1	Selection of the target device	6-4
4.12.5.4	Branch 4: Loop gain	4-113	6.2.2.2	Input of controllerloop number	6-6
4.12.5.5	Branch 5: Speed controller/velocity controller	4-113	6.2.2.3	Configuration or structure selection	6-6
4.12.5.6	Branch 6: Setting-up speed	4-114	6.2.2.4	Configuring	6-6
4.12.5.7	Branch 7: Inching speed	4-115	6.2.2.5	Input of sampling time	6-8
4.12.5.8	Branch 8: Speed/velocity setpoint	4.115	6.2.2.6	Selecting the stop behaviour	6-8
4.12.5.9	Branch 9: Outer loop controller	4-116	6.2.2.7	Definition of controller names and area names	6-9
4.12.5.10	Branch 10: Actual speed value	$4-117$	6.2.2.8	Determining the physical units	6-10
4.12.5.11	Branch 11: Actual armature current value	4-118	6.2.2.8.1	Characteristic input	6-10
4.12.5.12	Branch 12: Acceleration compensation	4-118	6.2.2.8.2	ASCll string input	6-11
4.12.5.13	Branch 13: Limit monitor 1	4-118	6.2.2.9	Assigning parameters	6-11
4.12.5.14	Branch 14: Limit monitor 2	4-119	6.2 .3	Output	6-14
4.12.5.15	Branch 15: Measuring socket	4-1.19	6.2.3.1	Output printer	6-14
4.12.5.16	Branch 16: Arithmetic	4-120	6.2.3.1.1	Printer parameters	6-15
4.12.5.17	Branch 17: Self-optimization	4-121	6.2.3.1.2	Print PG	6-15
4.12 .6	Functions of the drive controller	4-122	6.2.3.1.3	Print IP 252/submodule	6-15
4.12.6.1	Pre-assigned limit monitors in branches 5.and 9	4-122	6.2.4	Transfer	6-16
4.12.6.2	Filter block (see Fig, 4.6)	4-124	6.2 .5	Delete	6-17
4.12.6.3	Ramp-function generator	4-125	6.2.6	Special functions	6-17
4.12.6.4	Display	4-131	6.2.6.1	Operating mode	6-18
4.12.6.5	Characteristic curve	4-131	6.2.6.2	Defaults	6-18
4.12.6.6	Thermal monitoring	4-133	6.2 .7	Information	6-19
4.12.6.7	Limit monitor	4-135	6.2.7.1	Controller list	6-19
4.12 .7	Speed controller self-optimization	4-137	6.2.7.2	SYSID	6-20
4.12.7.1	Performance range and area of application	4-137	6.2.7.3	Faults/errors	6-21
4.12.7.2	Preconditions foruse	4-138	6.2.7.4	Processor loading	6-22
4.12.7.3	Speed controller self-optimization in the DRS		6.2 .8	Controllertest	6-22
	structure	4-142	6.3	List of abbreviations used in the PG 615	
4.12.7.4	Self-optimization messages	4-146		menus	6-23
4.12.7.5	Projecting the parameters found to greater sampling times	4-147	$\begin{aligned} & 6.4 \\ & 6.5 \end{aligned}$	Error messages on the PG 615 Output:printPG	$\begin{aligned} & 6-24 \\ & 6-25 \end{aligned}$
4.12 .8	Data block of the drive controller with selfoptimization (DRS)	4-149	7	COMREG	7-1
$\begin{aligned} & \mathbf{5} \\ & 5.1 \\ & 5.1 .1 \end{aligned}$	S5-CPU \longrightarrow IP 252 Communications	5-1	8		8-1
	Standard function block FB: STEU	5-1	8.1	Projection sheet: Drive controller	8-1
	Function block for drive controller structure FB-STEU-ANT	5-2	8.2	Projection sheet: Standard controller	8-19
5.1.2	Function block for standard stucture		9	Appendix	9-1
	FB-STEU-STD	5-8	9.1	Drive controller structure	9-1
5.1.3	STEP 5-Example on FB:STEU	5-14	9.2	Standard controller structure	9-2
5.2	Use of the data handling blocks of the S5-CPU	5-17	9.3	Firmware-Overview	9-3
5.2.1	Command: Control loop enable/disable	5-19	9.4	Abbreviations	9-4
5.2.2	Command: RUN/STOP mode of the module	5-19			
5.2.3	Data exchange with the control loops	5-20			
5.2.3.1	High-speed data exchange of defined data	5-20			
5.2.4	Exchange of random control loop data	5-22			
	IP 252 fault diagnostics by the CPU control program	5-25			
5.2.5	System identification and system status (SYSID and SYSTAT)	5-26			
5.2 .6	Recording and transferring the measured value of a control loop in the IP 252 (oscilloscope function)	5-27			
5.2 .7	STEP 5-Examples IP 252 -S5-CPU data traffic	5-29			
6	COM 252/615 Operator Guide	6-1			
6.1	General	6-1			

1. Overview

1.1 Using the module within the S5 System

The IP 252 module is a general-purpose closed-loop control module which can be configured for dedicated applications by inserting a memory submodule. The 252 intelligent $1 / \mathrm{O}$ module can be inserted into the subracks of the U range of programmable controllers (S5-115U, S5-135U with R processor and S5-150U). It can be used with these programmable controliers as a part of the SIMATIC S5 system.
Used in this way, it can be networked via a CP communications processor to a central operator communication and monitoring system (e. g. CP 526, DIMOS) or via another CP to a higher level bus.
Configuration, parameter assignment and also start-up can be carried out using the PG 615/635/675/685 and 695 programmers in conjunction with the COM 252 or COM REG clo-sed-loop control ariented operating systems. The programmers provide easy-to-use menus for these tasks.

The software interface between the logic program and the closed-loop control program is handled by a function block (FB). The data to be transferred between the CPU and the IP are defined in this block.

Fig. 1.2

Fig. 1.3

The IP 252 is a closed-loop control module which can be configured for dedicated tasks by inserting a memory submodule into it. The available solutions for dedicated tasks are referred to in the following pages as controller structures. These structures consist of individual functions such as speed controller, remp-function generator, etc., which are connected up to form controllers for specific tasks as required. There are two memory submodules available with the following controller configuration:

1. Drive controller structure and standard controller structure [DR/SR]
MLFB No.: 6ES5 374-0AA11
2. Expanded drive controlier structure with self-setting and standard controller structure [DRS/SR]

MLFB Na.: 6ES5 374-0AB11

Before starting up a control loop, the configuring data for the closed-loop controllers must be selected by closing appropriate software switches during a configuring data programming cycle.

Fig. 1.4

2.1.1 Application

Digital closed-loop control systems are growing in significance alongside programmable controllers in the field of automation. For this reason, the IP 252 general purpose closed-loop control module was developed for use in fastclosed-loop control applications. It can be used with the U range of programmable controllers ($\$ 5-115 \mathrm{U}, \mathrm{S} 5-135 \mathrm{U} / \mathrm{R}$ processor and $\$ 5$-150U). The IP 252 is one of a range of independent processor modules, which are modules that carry out their functions autonomously without using main CPU resources to any appreciable extent.
The closed-loop control module is available in compact design, so that it can be inserted in the S 5 -135U and S 5 - 150 U programmable controllers. For use in the S5-115U programmable controller, the IP 252 must be inserted into an adapter casing.

2.1.2 Principle of operation

2.1.2.1 General

The IP 252 interface processor module is used for solving fast closed-loop control tasks in the SIMATIC S5 automation system. It can execute up to eight control loops in parallel without using any CPU resources. With this module, much faster control loops can be processed by the SIMATIC system. The IP 252 cuts the shortest sampling time for other products from the previous figure of 100 ms down to 4 ms , which makes fast closed-loop controls such as in drive controls possible.
If more control loops have to be processed than can be executed by one module - the number of executable controllers per module depends on the requirements which are placed on the sampling time and the range of functions of the control system - then several IP 252 modules can be operated in one central controller. The number of closed-loop control modules which can be used in the various programmable controllers differs. Four IP 252 modules can be inserted in either the $\mathrm{S5}$-135 J or S 5 - 150 U programmable controlier. In the S5-115U PC, the maximum number depends on various factors. If the $\mathrm{S} 5-115 \mathrm{U}$ is operated without fans, then two IP 252 modules can be used, with fans four are possible.
The IP 252 module has eight analog inputs and eight analog outputs as well as an input for an incremental speed sensor. If additional analog inputs and outputs are required, analog modules can be used. The IP 240 module provides further digital pulse inputs. Up to two digital tachogenerators, whose pulse trains can be conditioned by the $\mathbb{P} 240$ to produce an actual speed value, can be connected.
As a special case when used in the $\$ 5-115 \mathrm{U}$, the IP 252 can access the anaiog input/output madules in the same subrack directly without going via the CPU. If one wants to make use of this special case, then the number of IP 252 mocules which can be used in the central controller even with fans is limited to three.
The IP 252 is a general purpose closed-loop control module which is configured for certain tasks by inserting a memory submodule. Special solutions for any dedicated tasks are referred to below as structures.

Fig. 2.1 shows the IP 252 used as a drive controller. The CPU of the programmable controller carries out the sequential and logic control and the IP 252 carries out the closed-loop drive control. The output signal from the control module has a range of $-10 \ldots+10 \mathrm{~V}$. This signal represents the current setpoint for the external current controller, which is housed together with the power section in a separate unit (e. g. SIMOREG).

For operator communication and monitoring of the controller, the user has available to him the 615/635/675/685 and 695 programmers with the corresponding COMREG software. User-friendly configuration and parameter assignment of the universal IP 252 closed-loop control module is possible with these programmers.
Standard function blocks are available for transferring the following data between the control module and the S 5 central processor:

- Start/stop commands
- Setpoints
- Binary variables

Fig. 2.1 Drive contralier with $55-175 \mathrm{U}$

2. Instructions for the IP 252

2.1 Description

2.1.2.2 Hardware architecture of the IP 252

The closed-loop controller is a double-width module in double Eurocard format. It consists of an analog and a digital card. The block diagram is shown in Fig. 2.2.
The closed-loop controller and its associated functions are executed by the 16 -bit 80186 microprocessor. The processor section has an interface for a memory submodule, which can be plugged in at the front. The submodule is a mixed memory type with 32 K bytes EPROM and 8 K bytes EEPROM). The clo-sed-loop controller structures, i. e. the firmware of the controller, are stored in the EPROM of this submodule. The configuring data entered during the configuration and parameter assignment cycle with the programmer are stored in the EEPROM of the memory submodule.
The processor section contains its own programmer interface for connecting up the programmer. Other interfaces connect the digital section with the backplane bus and the analog section.
The analog input/output section contains eight analog inputs and eight analog outputs. A 25 -pin Cannon connector in the front panel is used for connecting up the input/output lines via a mating plug-in terminal box. The incoming and outgoing wires can be connected up to the screw terminals in the terminal box. Each of the eight analog inputs can be supplied with $+/-10 \mathrm{~V}$ from a signal source. Higher voltages should be reduced to $+/-10 \mathrm{~V}$ using an external actual value conditioning circuit. The first input is an exception as it can accept a maxi mum input voltage of 200 V , which is then reduced to $+/-10 \mathrm{~V}$ in the terminal box. This input can be used for instance for connecting up an analog tacho-generator (see Section 2.1.3.1.5). The inputs are equipped with suppression networks for protection against current and voltage spikes and against overvoltages (up to $+/-24 \mathrm{~V}$).
The eight analog outputs have a voltage range of $+/-10 \mathrm{~V}$ at a maximum current of 5 mA . In order to protect against static discharges the outputs are equipped with suppression networks.
When using the IP 252 as a drive or position controlier, an additional input for connecting a digital tacho-generator is available in the module. The tacho-generator is connected up via a 15 -pin Cannon connector (see Section 2.1.3.1.3).

2.1.3 Construction

The module is a compact type and therefore can be plugged into the $55-135 \mathrm{U}$ and $55-150 \mathrm{U}$ programmable controllers. When using the S5-115U, the IP 252 must be inserted into an adapter casing.
A fan is generally not required when using the IP 252 controller module.

The front panel contains a receptacle for the memory submodule (X3), a 15 -pin socket for connecting up a digital tacho-generator ($\times 4$), a serial interface for connecting up a programmer (X 5), a 25 -pin socket for connecting up the analog inputs and outputs via the terminal box (X6) and various control and indicating elements (operating mode switch for RUN/STOP, LEDs for operating mode indication and measuring sockets).
Backplane bus connectors ($\mathrm{X} 1, \mathrm{X} 2$) are located at the back of the module for connecting up to both backplane bus PCBs The construction of the IP 252 is illustrated in Fig. 2.3.

Fig. 2.3 Construction of the IP 252

2.1.3.1 Interface assignments

In the following sections, the interfaces of the IP 252 are described in detail. These are:

- Backplane bus connectors
- Usermemory
($\times 1, \times 2$)
- Interface for connecting up an incremental encoder
- Serial interface for the programmer
- Analog inputs/outputs

2. Instructions for the IP 252

2.1 Description

2.1.3.1.1 Bus connectors $\mathbf{X 1}, \mathbf{X 2}$

Both 48 -pin backplane bus connectors of the 2 series form the interface between the IP 252 and the SIMATIC S5 (backplane) bus. The signals compiy with the " $\$ 5$-bus specification"

Backplane bus connector 1

Backplane bus connector 2

Fig. 2.4 Pin assignment of the bus connectors $X 1$ and $X 2$

2.1.3.1.2 Memory submodule X3

This interiace (48 -pin DIN 41612 connector, range c short version) is used for the memory submodule shown in Fig. 2.5. This module contains the controller structures in the form of firmware in a 32 K bytes EPROM and the configuring data (such as structure switches, controller parameters etc.) in an 8 K bytes EEPROM.

Fig. 2.5 Menory submodule

Fig. 2.6 Pin assignment $\times 3$

2. Instructions for the IP 252

2.1 Description

2.1.3.1.3 Digital tacho-generator input $X 4$

If required (e. g. for speed control), it is possible to connect up an incremental encoder (digital tacho-generator) via a 15 -pin socket to the pulse detection circuit of the IP 252. The utilization of the pulse acquisition module is projected during configuring with the programmer (PG 615 or PG 675). The exact assignment of the interface for connecting up the incremental encoder is shown in Fig. 2.7.

Sensors providing two pulse trains displaced by 90°, a reference track and the relevant inverse signals can be connected.

1	A	Track A
2	M5V	Internal ground
3	/B	Track/B
4	R	Reference track
5	$+5 \mathrm{~V}$	
6		
7		
8		
9	/A	Track/A
10	B	Track B
11	M5V	Internal ground
12	/R	Reference track/R
13		
14	$+5 \mathrm{~V}$	
15	/	Warning track

Fig. 2.7 Interface for RS 422 incremental encoder

2.1.3.1.4 PG interface X5

The 15-pin socket assignment shown in detail in Fig. 2.8 is the interface between the IP 252 and the programmer.

1	MEXT	External ground
2	TTYIN	Current input
3	+5.2 V	
4	-24 V	
5	Ground	Internal ground
6	TYOUT+	Current output
7	TYOUT-	Current output
8	MEXT	External ground
9	TYIN+	Current input
10	M24V	Earth for 24V
11	20 mA	Current source for transmitter
12	Ground	Internal ground
13	20 mA	Current source for receiver
14	+5.2 V	
15	Ground	Internalground

Fig. 2.8 Programmer interface

2.1.3.1.5 Analog inputs/outputs

Up to eight analog input and eight analog output signals can be connected via the terminal box (see Fig. 2.9) to the 25-pin socket on the controller module. Each of the eight inputs ($1 \mathrm{~N} 0+\ldots$ IN $7+$) contains its own ground connections ($I N \mathrm{O}-\ldots$. $1 \mathrm{~N} 7-$) whereas the eight analog outputs (OUT $0+\ldots$ OUT $7+$) are connected to the ground of the IP 252 (M5V).
The analog inputs and outputs are normalized to $10 \mathrm{~V}=100 \%$. The actual speed value from the analog speed controller can be adjusted to 10 V . The coarse adjustment is carried out using jumpers on the terminal block and the fine adjustment using a multi-turn potentiometer, which can be accessed from the outside of the terminal box. The maximum permissible tacho-generator voltage therefore lies in the range $0 \ldots 200 \mathrm{VDC}$ depending on jumpers A... F.
Table 2.1 shows the relationship between the jumpers and the maximum permissible tacho voltages.

Tacho voltage	Insertedjumpers	Fine adjustment width	Filter time constant
0... 10V	E	/	$300 \mu \mathrm{~s}$
$0 \ldots 30 \mathrm{~V}$	D,F	R8	1.5 ms
$0 . .70 \mathrm{~V}$	C, F	R8	1.5 ms
0...130V	B,F	R8	1.5 ms
$0 . .200 \mathrm{~V}$	A, F	R8	1.5 ms

Table 2.1 Acjusiment of the encoder voltage on the terminal block

The input impedance and therefore the smoothing time constant of the actual speed value detection circuit is therefore dependent on the jumper configuration. The standard configuration is with jumpers A and F inserted.

2. Instructions for the IP 252

2.1 Description

The actual armature current detection should be carried out via terminals Kl .3 and KI .4 , since it is possible to effectively smooth out the harmonic components at these terminals. Jumper G removed and jumper H inserted produces a smoothing time constant TGL $=10 \mathrm{~ms}$.
All the other analog inputs have a smoothing time constant of $300 \mu \mathrm{~s}$.

Fig. 2.9 Circuit diagram of the terminal block

2.1.3.1.6 Measuring sockets (M1, M2, M-)

The two measuring sockets $M 1$ and $M 2$ with the corresponding ground wires M - permit the analog measurement and recording of any two selectable variables (e. g. controller deviation and manipulated variable). The assignment of the measuring socket to the required variables is possible at any time during operation with the programmer. The measuring socket to be used must be specified during the configuring run during structure configuration.

2.1.4 Recommendations for instaliation and start-up

The following measures are recommended for protecting the IP 252 against electrical and magnetic interference via the analog inputs/outputs:

- All signal sources and loads must be connected via shielded cables.
- The leads, including their shielding, must be connected to a terminal block.
- A shielded, multi-core cable runs from the terminal block to the terminal block of the IP 252

The cable for the actual speed value (200 V max.) should be run externally.

- The cable shieids must be connected to the ground of the programmable controller via the terminal block.
- The shields of the analog input/output cables must be connected radially to the central grounding point in the immediate vicinity of the terminal block.
In the case of the $\$ 5-135 \mathrm{U}$ and $\mathrm{S5-150U}$ programmable controliers, the IP 252 closed-loop controller module is plugged into a suitable mounting location which connects it to the backplane bus. When used in the $\mathrm{S} 5-115 \mathrm{U}$ programmable controller, the ! 252 must be inserted into an adapter casing, which is then attached to the subrack of the $\$ 5-115 \mathrm{U}$.
To avoid erroneous addressing of the module, an interface block number should be assigned to the IP 252 in the SYSID function immediately after "power on" which is used to address the module from the CPU in all subsequent operations.
After switching the power supply of the programmable controller "on", initially both red LEDs on the IP 252 light up and the self-test on the module is initiated. After successful completion of the self-test routine the fault LED extinguishes; the module waits in the STOP state.
The IP 252 can be switched to the RUN state by moving the mode selector switch from the "STOP" position to the "RUN" position. If the fault LED does not extinguish after the self-test, then the programmer (e.g. PG 615) can be used for determining the cause of fault (see Section 4.5).
If the actual speed value is to be acquired via an analog tachogenerator, then the tacho voltage must be initially normalized to the $+/-10 \mathrm{~V}$ rated voltage with the voltage divider in the terminal box (see Section 2.1.3.1.5).
When the module is connected up to the programmable controller and the inputs and outputs, then the individual control loops which are to be executed in the IP 252 can be configured. This means that the required structure and parameters are entered using a programmer (see Sections 6 and 7).

2.1.5 Technical specifications

21.5.1 Environmental conditions

Degree of protection
Permissible ambient temperature
Transport and storage temperature
Humidity rating F (DIN 40040)
Mechanical stress
-Vibration
-Shock

IEC 68-2-26
IEC 68-2-27

IP 20
0 to $55^{\circ} \mathrm{C}$
-40 to $85^{\circ} \mathrm{C}$
$<75 \%$ humidity, average annual value
for $<35^{\circ} \mathrm{C}$, no condensation
Can be mounted on fixed equipment not free of vibrations
$10 \ldots 57 \mathrm{~Hz} 0.15 \mathrm{~mm}$
$57 . .500 \mathrm{~Hz} 2 \mathrm{~g}$
$30 \mathrm{~g} / 18 \mathrm{~ms}$, semi-sinusoidal

21.5.2 Mechanical specifications

Printed circuit board format
Front panel width
Adapter capsule
Weight
Backplane bus connectors
(ES 902, series 2,48 -pin)
Front panel connector
(socket, D-Sub, 15-pin)
Front panel connector
(socket, D-Sub, 25-pin)
Operating mode switch RUN/STOP
LED display elements

RN (RUN)
ST (STOP)
F (FAULT)

3
Double Eurocard format $160 \times 233 \mathrm{~mm}$
40.4 mm
$(42.5 \times 177 \times 201) \mathrm{mm}$

2

2

1
1

2. Instructions for the IP 252

2.1 Description

2.1.5.3 Electrical specifications

Dissipation
Microprocessor
12.9 Wmax .

Processor clock iAPx80186

Memory
Module EPROM
Memory submodule EPROM
Module RAM
Memory submodule EEPROM

Analog section

Analog inputs
Input signal range
8 MHz

Saturated range
Number of inputs
Inputresistance, channels 0-3 and 7 channeis 4-6
Input filter time constant
Digital signal representation
Conversion mode
Conversion time
Conversion time for 8 inputs with
command execution cycles
Permissible voltage between input
and central ground point (destruction limit)
Permissible voltage between (+)
input and (-) input (destruction limit)
$2 \times 8 \mathrm{~K}$ bytes
$2 \times 32 \mathrm{~K}$ bytes
$2 \times 8 \mathrm{~K}$ bytes (backup)
$1 \times 8 \mathrm{~K}$ bytes

Permissible voltage between reference
potential of a non-floating encoder and central

> ground
$\pm 10 \mathrm{~V}$
$\pm 11.25 \mathrm{~V}$
8
$>10 \mathrm{M}$
1 M
0.3 ms

11 bits with additional sign bit
stepwise approximation
30 us
560 us
max. 24 V or 75 V for max. 1 ms and $1: 20$ duty cycle
$\max . \pm 35 \mathrm{~V}$

Operating error limits ($0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)

Analog outputs

Output voltage range
Number of outputs
Burden, channels 0-6 channel 7
Digital signal representation
Short-circuit protection
Short-circuit current, channels 0-6

$$
\text { channel } 7
$$

Reference voltage of the analog output signals
Basic error limits $\pm 10 \mathrm{~V}$
Operating error limits
$\left(0^{\circ} \mathrm{C}\right.$ to $55^{\circ} \mathrm{C}$)
Cable length
Supply voltage (serial interface)
Ratedvalue
Supply voltage (logic)
Rated value
Suppiy voltage (PG 615)
Rated value
Current consumption +5 V
Module width (1 SPS $=15.24 \mathrm{~mm}$)

Pulse input

Measurement input type
Counter range
Input voltage for the tracks
Supply voltage for the encoder
input frequency
Operating modes
$\pm 10 \mathrm{~V}: \pm 0.06 \% \pm 1 \mathrm{LSB}$
$\pm 10 \mathrm{~V}$
$\pm 0.06 \% \pm 1 \mathrm{LSB}$
$\pm 0.17 \% \pm 1 \mathrm{LSB}$

8
$\geq 3.3 \mathrm{~K}$
$\geq 0.5 \mathrm{~K}$
11 bits with additional sign bit
Yes
approx. 25 mA
approx. 35 mA
Module ground (low resistance connection to subrack)
$\pm 0.05 \% \pm 1$ LSB
$\pm 0.15 \% \quad \pm 1 \mathrm{LSB}$
max. 200 m (screened)
24 V
$20 \mathrm{~V}-30 \mathrm{~V}$
$+5 \mathrm{~V}$
$4.75 \mathrm{~V}-5.25 \mathrm{~V}$
$+5.2 \mathrm{~V}$
$4.95 \mathrm{~V}-5.45 \mathrm{~V}$
max. 2.3A
max. 60 mA
$8 / 3 \mathrm{SPS}$ ($\wedge 2$ mounting locations)

incremental

0 10 32767
TL levels from line drivers, type SN55114
$+5 \mathrm{~V}$
max. 200 kHz
2 pulse trains, 90° shift, 1 zero pulse

3. Brief Programming Instructions

3.1 The Configuring Principle

These brief programming instructions cescribe the generation and start-up of control loops with the IP 252 closed-loop control module. Familiarity with the operation of the programmers used is assumed. The various input options (off-ine/on-line) are not described further.
The PG 615, equipped with the special operating system for the IP 252:
COM 252 automatically displays the menu after switching on the power suppiy: "Default: bus access $\mathrm{Y} / \mathrm{N}^{*}$ (see Section 6.2 .1) After answering this question and pressing the execute key, the basic menu is displayed where, for example, the operating modes "input", "Output", and "Controller test" can be selected.
If the PG 615 is connected to the IP via a PG cable, then the PG is supplied with +5.2 V when the IP is operated from an $55-115 \mathrm{P}$ PC If an S5-135 U PC or an S5-150 U PC is used, an external power supply (+5.2 V) is required.

If a PG 635/675/685/695 programmmer is used, the COM REG diskette is required.
The programming package for generating control-ioops with the IP 252 is then called up with: $\mathbf{S 5}$
After the COM REG package has been selected with the aid of the cursor, and soft key (function key) F1 is pressed, a menu with defaults is displayed. After pressing the "Finished" soft key, the basic menu appears in which the operating modes "Input" etc. can be called up using the soft keys.

3.1 The configuring principle

The programming and observation of a control-loop is carried out in 8 steps using the programmer:

1) Selection of the controller structure and assignment of a control loop number

The following structures are available

- DR (drive controlier see, Fig. 9.1)
- SR (standarc controller see, Fig. 9.2)
- DRS (expanded drive controller structure with self-setting, see Figure 9.3)

The control loop to be generated with the selected controlier structure is assigned a number from $1 . \ldots 8$. This means that up to 8 drive and/or standard controllers can be operated in parallel on an IP 252.
2) Selection of all required functions

The functions of a control toop (e. g. ramp-function generator, PID controller etc.) are selected by closing configuring switches. This occurs in the "configuration run". A configuring switch can only be modified in the "Input" and "Output" modes using the programmer.
3) Selection of the sampling time

The selection of the sampling time is always a compromise between a quasi-continuous assumption for the control loop on the one hand and the processor loading on the other.

Longer sampling times reduce the processing load on the processor of the IP 252 and allow the parallel operation of more control loops with one IP 252. However this also causes a slight degradation of the control system in terms of dynamic response and re-tuning of the controlling parameters to a specified performance criterion (e. $\mathrm{g} . \mathrm{max} .5 \%$ overshoot for setpoint changes) may be required.
Recommendation for the selection of the sampling time:
In order to use the well known analog assumptions for digital control loops (e.g. for selecting the controller parameters according to the symmetrical optimum principie), the sampling time cannot be too long.
Experience shows that a sampling time of approximately $1 / 10$ of the time constant $\mathrm{T}_{\text {RK dom }}$, which determines the step response of the closed control-loop, produces a controller response comparable with an analog control loop:

$$
T_{A} \leq \frac{1}{10} T_{\mathrm{RX}, \text { com }}
$$

The shortest sampling time $T_{A}=4 \mathrm{msec}$ loads the processor of the IP 252 to such an extent that only one drive or one standard control loop is possible without overloading the processor.

If such an overloading of the processor occurs (for instance through the quasi-parallel operation of two drive controllers with $T_{A}=4 \mathrm{msec}$ or 2 controliers with $T_{A}=8 \mathrm{msec}$ and 1 controller with $T_{A}=4 \mathrm{msec}$) the operating system of the IP 252 automatically increases the sampling time temporarily to the next higher value. This ensures trouble-free further operation of the control loops even in extreme cases.
The processor loading is displayed (in \%) on the screen, as soon as the entry of the sampling time is concluded.
The following sampling times can be specified: $\mathrm{T}_{\mathrm{A}}=4 / 8 / 16 / 32 / 64 / 128 / 256 / 512 \mathrm{msec}, 1 / 2 / 4 / 8 / 16 / 32$ sec.

3. Brief Programming Instructions

3.1 The Configuring Principle

4) Selection of the controller response

The following Yes/No questions have to be answered:

1) If the control loop is not executed, then the outputs are at " 0 ": Yes/No
"Yes" means that a disabled control loop has zero as its manipulated variable (m. v.).
"No" means that, as soon as a control loop is disabled, the last calculated manipuiated variable continues to be output. The enabling or disabling of a control loop is carried out with the programmer using the "Special functions" menu in the sub-menu "Operating mode" (Instruction Manual: Section 6.2.6.1).
This question should only be answered with "No" in applications where a ramping or a crossing of a limit value by the controlled variable (e. g. speed or temperature) is not possible or does not lead to damage. (For detailed description see Instruction Manual, Section 6.2.2.6)
II) Automatic warm restart after "Power on" required: Yes/No

This question determines whether after a power failure of any duration, the $\ddagger P 252$ should automatically enter the "Run" mode after the power has returned and continue with the processing of the control loops. This assumes that the IP 252 was in the RUN mode before the power failure.
If "No" is selected, this control loop is no longer executed after a power failure regardess of the previous state, the control loop is disabled.
Furthermore, if this question is answered with "Yes", then question lll must also be answered.
(Detailed description see Instruction Manual, Sections 4.7 and 6.2.2.6).
III) The warm restart criterion is considered: Yes/No

The warm restart criterion refers its decision criterion to the control deviation x_{0} before and after the power failure. As a guide to the duration of the interruption, the following start criterion is used;
$\left|x_{\text {D, new }}-x_{\text {D. old }}\right|<0.25^{*}\left|w_{\text {old }}\right|$
where:
$x_{D, n e w}$ is the control deviation after the power failure
$x_{D, \text { old }}$ is the control deviation before the power failure
$w_{\text {old }}$ is the setpoint before the power failure
If the question was answered with "Yes" and the criterion is fulfilled, then the conciusion is drawn that the interruption is only of short duration as the actual value has not distanced itself too far from the setpoint. In this case the old previous values are used for the calculation (e. g. manipulated variable) and the control loop is executed.
In the other case $\left(\left|x_{\mathrm{D}, \text { new }}-x_{\text {, oid }}\right|>0.25 *\left|w_{\text {cif }}\right|\right)$ the previous values of all functions are reset and the control loops are then executed further. This case corresponds to a "cold start" of the controller.
(Detailed description see Instruction Manual, Sections 4.7 and 6.2.2.6).
If this question was answered with "No", then a cold restart of the controller is always carried out, provided that warm restart was selected and the module was in the "RUN" mode before the power failure.
5) Specification of dimensions for dimensioned variables (only for the standard controller structure)

Limiting values, setpoint upper limits etc. of the standard controler configuration can be assigned any desired dimension. This dimension consists of max. 6 ASCII characters.
The range limits must then be entered in dimensioned absolute values e.g.: $0 \%=10.50$ (dimension)
$100.00 \%=68.42$ (dimension)
Note: The number of digits after the decimal point must be the same for both values.
The vaiues entered for 0% and 100% determine the coordinates of a straight line. In this way the range of values for $-100 \% \ldots$ $0 \ldots+100 \%$ of the dimensioned variable is specified.
(For detailed cescription see Instruction Manual, Sections 4.4.3 and 6.2.2.7).
6) Assigning parameters to the selected branches and functions

All selected functions and branches of the controller configuration must be assigned the required parameters by making corresponding entries on the programmer.
Parameters are for instance the controller amplification $\mathrm{K}_{\text {, }}$, smoothing time constants, as well as analog input/output channels and measuring points within the controller structure (e. g. setpoint to ramp-function generator).
Input formats on the PG:

- Time formats (e. g. controiler integral-action time T_{N})

The units msec , sec or h . min are selected by pressing a soft key and then the numerical value is entered.
The following time ranges can be selected on the programmer:
0.1 ... 999.9 msec
0.001 . . 9999. sec
$00.01 \ldots \quad 59.59$ h.min

- Percentage values (e. g. setpoint)

The input/output is carried out using fixed decimal point.
Input range: $\quad \pm 0.01 \% \ldots \pm 100.00 \%$
Outputrange: $\pm 0.01 \% \ldots \pm 200.00 \%$
The number range of $\pm 100.00 \%$ corresponds to a voltage range of $\pm 10 \mathrm{~V}$ at the analog inputs/outputs. (For detailed description, see Instruction Manual, Section 4.4).

All parameters, except for input/output channels, can be modified not only in the "Input" and "Output" operating mades but also in "Controller test". Therefore one can intervene in a running control loop, which maskes for example the tuning of the control loop or the entry of a new manipulated variable limit possibie.
The assignment of analog channel numbers to the A / D or D / A converters shown in the controller structure diagrams (Fig. 9.1 to Fig. 9.3) is carried out as follows:

For instance, in Fig. 9.1 (drive controller structure), DAC 2 of branch 1 is assigned to channel no. 3 corresponding to the wiring of the terminal block.
This determines in this example that the controiler output (manipulated variable) is available via terminais 21 (+) and 25 (ground) in the terminal block (see Table 3.1).

Terminals	Analog inputs (ADC)	Terminals	Analog outputs(DAC)
Term. 2 Term. 1	- input channel no. 0	Term. 24 Term. 25	\pm Outputchannelno. 0
Term. 4 Term. 3	\pm Input channel no. 1	Term. 23 Term. 25	+ Outputchannelno. 1
Term. 6 Term. 5	+ Input channel no. 2	Term. 22 Term. 25	+ Outputchannelno. 2
Term. 8 Term. 7	\pm Input channel no. 3	Term. 21 Term. 25	${ }_{-}^{+}$Output channelno. 3
Term. 10 Term. 9	\pm Input channel no. 4	Term. 20 Term. 25	+ Output channel n O. 4
Term. 12 Term. 11	+ input channeino. 5	Term. 19 Term. 25	${ }_{-}^{+}$Output channelno. 5
Term. 14 Term. 13	${ }_{-}^{+}$Input channeino.6	Term. 18 Term. 25	+ Outputchannelno. 6
Term. 16 Term. 15	+ Input channel no. 7	Term. 17 Term. 25	$\stackrel{+}{\div}$ Outputchannel n O. 7

Table 3.1 Relationship between the inputoutput channel nos. for which parameters have to be assigned and the terminals in the terminal block

If more than 8 ADCs or more than 8 DACs are required per IP 252, then it is possible to access external DACs and ADCs via direct bus access in the $\mathrm{S5-115U}$.
(For detailed description see Instruction Manual, Sections 2,1.3.1.5 and 4.9).

7) Enabling of controf-loops

Before a control loop can be started up, it must be enabled in the PG operating mode "Special functions" in the sub-menu "Operating mode".

Note regarding control loop enable:

Basically two different meanings are attached to 'Controller enable'.

- 'Controiler enable' within a control loop:

In the drive controller in each of the branches 5 and 9 there is a control algorithm which can only be executed if the corresponding controlier enable bit is active. This bit can be made active in the PG mode "Controller test", where the branch (5 or 9) is selected and the RF bit is set to 1 via the PG.

- 'Control-loop enable' or enabling of a programmed control loop.
'Control loop' in this context means the controller structure selected by the user with all configuring data and parameter assignments.
Before a control loop, which has been assigned a control loop no. between $1 \ldots 8$, can start control operation in the PG operating mode "Controller test", it must first be enabled for execution.

3. Brief Programming Instructions

3.1 The Configuring Principle

The enabling is carried out in the PG operating mode "Special functions" in the submenu "Operating mode".
Example:
Operating mode on the PG 615:

	R1	R2	R3	R. ${ }^{\text {a }}$	R5	R6	R7	R8
ENABLE	N]	N	J	-	-	-	-

This example illustrates the following:

1. Of the 8 possible control loops, those with numbers $1,2,3$ and 4 are aiready configured. Which structure (drive or standard controller) is selected cannot be seen from this menu.
2. The control loops 2 and 4 are enabled, i. e. they are executed if the IP 252 is in the "RUN" state. Control loops 1 and 3 are disabled, i. e. they are not executed.
The enabling of the controlloop can also be carried out via the PC.
8) Start up of a control loop ("Controller test")

After steps 1-7 have been carried out, the control loop can be started up. For this purpose the $1 P 252$ is brought to the RUN state using the PG or using the operating mode selector. Starting from the basic menu of the PG, the function "Test" or "Controller test" is called up. Then the control loop no. is requested. After this it is possible to call up the branches of the DR or SR structure which have been configured and assigned parameters. Oniy then can the enable bits, such as, for example, the controller enable bit RF in branch 5 of the DR structure, be set. The controller algorithm in branch 5 only begins execution when RF $=1$. This bit can be set or reset either from the PC or from the PG.

The modification of a bit, rełay or constant during controller test is carried out by first pressing the key ${ }^{-}$in the PG 615 or the "Force" soft key in the PG 635/675/685 and 695.
The cursor begins to blink and the modification of bits, relays and constants is possible.

A controller structure must therefore be

- configured,
- assigned parameters,
- enabled in the PG operating mode "Special functions", and
- the corresponding enable bits must be activated in the PG operating mode "Controller test". The last two functions can also be carried out from the PC.
Only ther. is the selected controiler structure able to control a process (e. g. electric drive).

3. Brief Programming Instructions

3.2 Example for Operating a DC Motor with the IP 252

3.2.1 System configuration for this example

PG 675 programmer

S5 115 U programmable controller
CR 700-2 subrack
Modules from leit to right:
6ES5 951-7LD11, power supply, max. 15 A
6ES5 942-7UA11, CPU, version 2, default: NR
6ES5 252-3AA11 P with DR/SR memory submodule (6ES5 374-OAA11)
6ES5 451-7LA11 digital output module
6ES5 430-7LA11 digital input module

Converter equipment and motor:

4-cuadrant static converter equipment
10 V current setpoint (actual value) corresponds to an armature current of 24 A
The nominal motor current is 15A; analog actual speed sensor

3.2.2 Requirements to be met by open-loop control and closed-loop control systems

- Speed control of the motor, current setpoint generation
- Remp function generator with "Manual" function (with the "Faster" and "Slower" keys)
- Temperature monitoring of the motor with shutdown at excess temperature (motor coasts to a standstill)
- Movement with auxiliary speeds "Setting-up forward" and "Setting-up reverse"; "Setting-up forward" is also used as the base speed of the drive
- Braking at "Stop"
- Generation of the warning, pause and enable time when switching on the drive
- Switching on the motor fieid and the motor fan, if installed
- Driving the warning horn
- Driving the main contactor
- Generating the controller enable
- Driving the control lamps for overload and enable time
- Output of two velocity limit values to the input/output modules
- Assigning the current setpoint to measuring socket 1 of the IP, and the actual speed to measuring socket 2.

3.2.3 Preparation of the static converter and motor

- Connect the static converter and the motor
- Optimize current controller (close the main contactor and bridge the controller enabie)
- Wire the current setpoint and the actual current to the IP, connect the tachogenerator (see Fig. 3.1).

Fig.3.1 System configuration

3. Brief Programming Instructions

3.2.4 Preparation of the S5 control

- Plug the $S 5$ modules and termination connector into the rack.
- Select the voltage on the power supply module, inserting the back-up battery if applicable.
- Ground the rack and connect the supply voltage.
- Wire the inputs and outputs.
- Remove the " G " jumper on the terminal block of the IP and insert the "H" jumper; the " A, B, C, D, E, F " jumpers must also be inserted-depending on the tachogenerator used.
- Attach the terminal block to the IP 252, plug in the user submodule, and set the mode selector switch to "STOP".
- Switch on the controller and execute an Overall Reset (hold the switch on the CPU in the "OR" position and move the Run/Stop switch twice from the ST position to the RN position).
- Switch the controller to "RUN" mode.

3.2.5 Programming the IP 252

- Plug in the connecting cable between the programmer and the IP 252 and switch on the programmer; insert the "PCP/MOperating System" diskette in drive 0 and the CEFU diskette (Section 3.2.9) in drive 1.
- The operating system answers with " $\mathbf{A}>$ ". You can call up the S5-DOS system with "B:S5<CR>".
- Remove the "PCP/M" diskette, insert the "COM REG" diskette (Section 3.2.9) and press function key $<\mathrm{F7}>$.
- "S5-DQS" answers with the available program package. On pressing <F1> ("Package") the module menu appears. Press key "IP 252" and you are now in the defaults form.
- In the "DEFAULTS FORM" the operating modes "ON LINE" and "IP 252 WITHOUTBUS ACCESS" are selected with < F8> and $<F 3\rangle .<F 8\rangle$ takes you to the main menu.
- On pressing <F7> "INFO" and $<F 4>$ "SYSID MODULE", page no. 5 is entered. $<C R>$ and $<$ F7> "READY" brings you back to the main menu.
- Now all old controller data of the module must be deleted. To do so, press < $55>$ "DELETE" and <F4> "DELETE MODULE". *is inserted as the controlier number. The job is terminated with <CR>.
- $\langle F 1\rangle$ "INPUT" is now pressed and the module is selected with $\langle F 4\rangle$.
- $\langle\mathrm{F} \mid\rangle$ determines that a drive controller is to be programmed.
- Next, the loop number is determined. 1 is entered and confirmend with <CR>.
- Now the controller structure is entered. The required branches are selected with 1. See printout: "1. Configuring switch".
- Configuration is terminated with $\langle F 7\rangle$ "READY".
- The sampling time is now selected. 4 ms is entered with $<F 2>$ "INPUT" and the time is confirmed with <CR>. After pressing $<F 7>$ "READY", the "Controller action" form appears.
- The questions are answered with <F1> "YES" and <F3> "NO" as follows: When the controller is not being processed, all outputs are set to 0 : YES
Automatic warm restert after power up: VES
The warm restart condition is valid: NO
This is also terminated with $<F 7>$.
- Nothing is entered in the next form. Pressing $<F 7>7$ "READY" again brings you to parameter assignment.
- The branches selected during configuration are now called up in sequence and initialized. After entering the branch number 1 and terminating with <CR>, the form of branch 1 "Controlier output" appears. The individual parameters can be found in the program printont under " 5 . Parameters".
$-<\mathrm{CR}>$ must be pressed every time a parameter is entered. When the last parameter of a branch is entered, the message "End of list reached" appears. The next branch is called up with the "Enter" key.
- After the last branch has been entered, a list of all branches used appears. < F7> "READY" must now be pressed. This transfers the controller block to the module. The "ABORT" key takes you back to the main menu.

3. Brief Programming Instructions

3.2 Example for Operating a DC Motor with the IP 252

3.2.6 Testing the controller block

- Closing the main contactor and bypassing the controller enable (current controller).
- Switch the IP 252 to "RUN" mode.
- Press <F6> "SPECIAL FUNCTIONS" and the <F7> "CONTROLLER PROCESSING". Then enable controller 1 for processing with <F1> "YES". The "ENTER" key brings you back to the main menu.
- Press <F8> "TEST" and enter controller number 1; <CR> takes you to the branch menu.
- Branch 5 is selected and terminated with $<C R>$.
- Now press <F2> "FORCE". Set the "Controller enable" parameter from 0 to 1 and confirm with <CR>. Important note: the drive may already have started to rotate slowiy
- Now press the "ENTER" key three times. The following parameters must be changed in branch 8:
"Setpoint enable" 1
"ADC/Key" in 1
A constant setpoint of $\mathbf{3 0 \%}$ must aiso be entered. $<\mathrm{F} 2>$ "FORCE" must be pressed before every change to a parameter and every entry must be confirmed with <CR>.
- The drive should now run with 30% of its nominal speed. The speed is adjusted with the spindle potentiometer on the terminal block of the IP 252
- The speed controller can now be optimized by disabling and enabling the set-up speed setpoint. For connecting a recorder, the current setpoint is available at measuring socket 1 and the actual speed at measuring socket 2 .
- Branch 6 is called up using < $78>$. Now set the "Set-up speed enabie" parameter to 1 and then reset it to 0 again. To change the controller parameters between step changes in the setpoint, branch 5 must be selected with $<$ F8> . The proportional coefficient can be changed here and the integrai action time can be entered.
- The speed of the motor with the setpoint of 100%, and the operating mode "Setting-up reverse" (creep speed branch 7) should now be checked.
- At the end of the test, set the controller enable in branch 5 , the two parameters in branch 8 and all setpoints to 0 . Remove the jumpers for the main contactor and the controller enable of the current controller.

3.2.7 Entering the control program

- Connect the interface cable from the IP 252 to the CPU and switch the IP 252 to "STOP".
- Change the operating system in the programmer and execute a cold restart with the keylock switch
- Now transfer the FB244, FB245, FB247, FB248 and FB249 function blocks (data handling blocks) from the PC to diskette. FB100 (FB:STEU) must also be transferred to this diskette.
- Now write the program onto the diskette (see printout).
- Then transfer all block types individually to the PC. When transferring the function blocks, error message 70 appears and the programmer aborts the transfer (because the data handling blocks are already in the S5-115U). However, all the other function blocks have been transferred before the abort.

3.2.8 Information about the control program

- Blocks used

OB 1, 21, 22;
PB 1, 2, 3 ;
FB $96,97,98,99,100,244,245,247,248,249$; (with the S5 115U)
FB 96, 97, $98,99,100,120,121,123,124,125$; (with the S5 135U, R processor)
FB $96,97,98,99,100,180,181,183,184,185$; (with the $S 5$ 150U)
DB 10, 11;

- Inputs
[8.0 "0" corresponds to STOP (fail-safe)
18.1 Faster
18.2 Slower
18.3 Setting-up forward
18.4 Setting-up reverse
18.5 Acknowledgement overload
18.6 Warning
18.7 Acknowledgement "Main contactor on"
- Outputs

Q4.0 Main contactor on
Q4. 1 Controller enable
Q4.2 Field and fan on
Q4.3 Enable lamp
Q4.4 Overload display
Q4.5 Warning horn
Q4.6 Limit monitor 6% of max. speed
Q4.7 Limit monitor 10% of max. speed

- Timers

T 10 to T 17

- Fiags
$0.0,0.1,31.1,31.2$,
FB 30, 112, 124,
FW 100 to 110,114 to 118 and 200 to 213
- Parameter assignment errors are not evaluated by the program.

3. Brief Programming Instructions

3.2 Example for Operating a DC motor with the IP 252

3.2.9 Generating a "COM REG S5-DOS" work diskette
"COMREG"
Make a back-up copy of the "COM REG" diskette.
"CEFU diskette"
The central functions (CEFU) are located in several files.
Find the CEFU diskette which contains the following files:

- S5.CMD
- S5KDS02X.CMD
- S5WX000H.CMD
- S5WX001H.CMD
- S5WX100H.CMD
- S5XXM01XDAT
- S5XXM02X.DAT
- S5XXM03X.DAT

In addition to the blocks printed out below, FB100 (FB:STEU) and the data handling blocks for the S5 115 S (excepting FB 246 and FB 248) are used. These data handing blocks are integrated in the operating system of the CPU. The data blocks used are not listed. DB10, length 20 words DB11, length 20 words.

```
OB1 LEN=23 SEC L
```

SEGMENT 1

| 0000 | $: A$ | F | 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0001 | $: R$ | F | 0.0 |\quad GENERATION OF RIO FLAG "O"

0002 :AN F 0.1 GENERATION OF RLO FLAG "1"
0003 :S F 0.1
$\begin{array}{llll}0004 & : & \\ 0005 & : A & \text { F } 30.0\end{array}$
$: A \quad$ COLD RESTART AT F 30.0 = 1
$0006 \quad$:JC FB98 $\quad \Rightarrow$ IP 252 MUST BE STARTED
0007 NAME : STP $=>$ RUN
$\begin{array}{llll}0008 & : & & \\ 0009 & : A & \text { F } \quad 30.1\end{array}$

OOOB NAME :GRUNDST.
OOOC :
OOOD :JU PB1 RESTART CONTROL,FLAGS FOR FB 100
OOOE :JU PB2 CALL FB 100
000F : JU PB3
0010 : ***
SEGMENT 2
$0011 \quad$:BE

3. Brief Programming Instructions

3.3 Application Example for $\mathbf{S 5} 115 \mathrm{U}$

0011	: R	F 30.2	RESET AUXILIARY FLAG
0012	:		MAIN CONTACTOR
0013	: R	T 14	RESET DROP-OUT DELAY
0014	:		MAIN CONTACTOR
0015	: R	F 30.3	RESET "RESTART CNTL. RUNNING"
0016	: R	F 107.3	RESET CONTROLLER ENABLE
0017	: A	F 0.0	T17 IS PROCESSED HERE ONCE
0018	: L	KTO10.1	WITH RLO $=0$ BEFORE STARTING
0019	:SI	T 17	IN FB 98
001B	:***		
SEGMENT			
001C	: BE		

OB22
SEGMENT 1

0000		: A	F	0.0
0001		: R	F	0.0
0002		: AN	F	0.1
0003		:S	F	0.1
0004		:		
0005		: A	F	30.0
0006		: R	F	30.0
0007		:		
0008		: JU		99
0009	NAME	: SYN	:	IPS
000A		:		
000B		:A	F	0.1
000C		: S	F	30.6
000D		:		
000E		:		
000F		: S	F	30.1
0010		:		
0011		: R	F	30.2
0012		:		
0013		: R	T	14
0014		:		
0015		: R	F	30.3
0016		:***		

SEGMENT 2
0017 : BE

LEN=29 SEC
PAGE 1
AUTOM. WARM RESTART AFTER POWER FAILURE GENERATE RLO FLAG " 0 "
generate rlo flag " 1 "

CODE: POWER FAILURE
($\mathrm{F} 30.0=0$) FOR FB 99
IP 252 SYNCHRONISATION

RLO $=1$
F $30.6=1 \Rightarrow$ JOBS FOR THE IP INHIBIT 252 (FB 96 EXECUTES BEFORE THE IP JOBS)
CODE: POWER FAILURE
($\mathrm{F} 30.1=1$) FOR OBI
RESET AUXILIARY FLAG
"MAIN CONTACTOR ON"
RESET DROP-OUT DELAY
MAIN CONTACTOR
RESET "RESTART CNTL. RUNNING"

PB1				
SEGMENT 1				
0000		: A		8.0
0001		: UN		8.7
0002		: UN	Q	4.4
0003		: S	F	30.4
0004		:		
0005		:0	F	110.0
0006		: ON	I	8.0
0007		:R	F	30.4
0008		:***		
SEGMENT 2				
0009		:A	I	8.6
000A		:S	F	30.3
000B		:		
000C		:ON	F	30.4
000D		:0	I	8.7
OOOE		:0	T	13
000F		: R	F	30.3
0010		:***		
SEGMENT 3				
0011		:0	F	30.3
0012		:0	I	8.7
0013		: 工		T200.1
0015		: SQ	T	10
0016		:A	T	10
0017		:	Q	4.2
0018		:***		
SEGMENT 4				
0019		: A	F	30.3
001A		: I		T030.1
001 C		:SI	T	11
001 D		:		
001E		: A	F	30.3
001 F		:S	Q	4.5
0020		:		
0021		: 0	T	11
0022		: ON	F	30.4
0023		: R		4.5
0024		:***		
SEGMENT 5				
0025		: 0		11
0026		: L		T020.1
0028		:SI		12
0029		:***		
SEGMENT 6				
002A		: A		12
002B		: L		T100.1
002D		:SI	T	13
002E		:***		
SEGMENT 7				
002F		:A		12
0030		:AN		[13
0031		: =	Q	Q 4.3
0032		:***		
SEGMENT 8				
0033		:0		18.3
0034		:0	I	I 8.4
0035		: A	Q	24.3

```
LEN=116 SEC
                                    PAGE 1
```

GENERATE "STOP STORED"
THE STOP IS ONLY CANCELLED
(F $30.4=1$) IF THE MAIN CONTACTOR
HAS DROPPED OUT AFTER BRAKING AN
THERE IS NO MOTOR OVERLOAD
TRIGGERING OF STOD (F30.4 = 0)
WITH MOTOR OVERLOAD AND WITH
I $8.0=0$ (FAILSAFE)

GENERATE F 30.3 "RESTART CNTL.

RUNNING"

THE RESTART CNTL. IS STARTED WITH A WARNING THE RESTART IS TERMINATED WITH STOP, MAIN CONTACTOR ON OR ENABL TIME OUT

SWITCH ON FIELD CIRCUIT AND FAN THE FIELD CIRCUIT AND FAN ARE SWITCHED ON WITH A WARNING

AFTER THE MAIN CONTACTOR HAS DROPPED OUT, FIELD CIRCUIT AND FAN REMAIN SWITCHED ON FOR ANOTHER 20 SEC.
WARNING TIME AND HORN
START 3 SEC. WARNING TIME

SWITCH ON HORN

THE HORN IS SWITCHED OFF AGAIN AFTER 3 SEC. OR WITH STOP

PAUSE TIME
WHEN THE WARNING TIME HAS ELAPSED, THE PAUSE TIME (2 SEC.) STARTED

ENABLE TIME
IF THE PAUSE TIME HAS ELAPSED, ENABLE TIME (10 SEC.) IS STARTED

ENABLE LAMP
THE ENABLE LAMP LIGHTS UP IF T12 HAS RUN DOWN AND T13 IS STILL RUNNING

AUXILIARY FLAG "MAIN CONTACTOR ON"
IF THE PUSHBUTTON "SETTING-UP FORWARD" OR "SETTING-UP REVERSE" IS PRESSED DURING ENABLE TIME,

3. Brief Programming Instructions

3.3 Application Example for S5 115 U

PB1			LEN=116 SEC	
				PAGE 2
0036	: S	F 30.2		F30.2 WILL BE SET
0037	:			
0038	: AN	F 107.3		F30.2 IS RESET WITH STOP AND
0039	: AN	F 30.4		WITH CONTROLLER ENABLE INACTIVE
003A	:R	F 30.2		
003B	: ***			
SEGMENT			MAIN CON	ACTOR ON/OFF
003C	:A	F 30.2		AUXILIARY FLAG "MAIN CONTACTOR
003D	: I	KT050.0		ON" 0.5 SEC. DROP-OUT DELAY OF
003F	: SQ	T 14		THE MAIN CONTACTOR AFTER CON-
0040	:A	T 14		TROLLER ENABLE OFF
0041	: $=$	Q 4.0		
0042	:***			
SEGMENT			CONTROLI	R ENABLE
0043	:A	F 30.2		THE CONTROLLER ENABLE IS TRANS-
0044	:A	I 8.7		MITTED TO THE IP 252 IF THE MAIN
0045	: A	F 30.4		SWITCH IS ON, THE ACKNOWLEDGE-
0046	:S	F 107.3		MENT SIGNAL IS PRESENT AND THERE
0047	:			IS NO STOP
0048	: AN	F 30.4		THE CONTROLLER ENABLE IS
0049	: AN	F 109.2		SWITCHED OFF WITH STOP AND N ACT
004A	:0	F 110.0		< 1\% N MAX. OR ON MOTOR OVERIOAD
004B	: R	F 107.3		
004C	:			
004D	: A	F 107.3		Q 4.1 CONTROLLER ENABLE FOR
004E	: $=$	F 4.1		CURRENT CONTROL
004F	:***			
SEGMENT			BREAKE	ABLE
0050	: AN	F 30.4		THE BREARE SETPOINT IS ENABLED
0051	: AN	A 4.4		WITH STOP AND IF THERE IS NO
0052	: $=$	F 106.6		OVERLOAD
0053	:***			
SEGMENT			SETTING	P FORWARD
0054	: A	I 8.3		"SETTING-UP FORWARD" IS INTER-
0055	: A	F 30.2		LOCKED WITH THE MAIN CONTACTOR
0056	: AN	F 106.4		AND "SETTING-UP REVERSE"
0057	: S	F 106.5		
0058	:			
0059	: R	F 30.4		THE SETPOINT IS SWITCHED OFF
005A	: R	F 106.5		AGAIN WITH STOP
005B	:***			
SEGMENT				"SETYING-UP BACK" IS INTERLOCKED
005C	: A	I 8.4		WITH THE MAIN CONTACTOR AND
005D	:A	F 30.2		WITH "SETPING-UP FORWARD"
005E	: AN	F 106.5		
005F	: S	F 106.4		
0060	:			
0061	: AN	F 30.4		THE SETPOINT IS SWITCHED OFF
0062	: R	F 106.4		AGAIN WITH STOP
0063	:***			
SEGMENT			FASTER	
0064	: A	I 8.1		IF "SETTING-UP FORWARD" IS
0065	: A	F 106.5		ACTIVE AND IF N SETPOINT OF
0066	: AN	F 111.0		BRANCH 8 IS NOT YET GREATER THAN
0067	; $=$	F 107.2		96\% OF N MAX. (4\% FROM BRANCH 6)
0068	:***			"FASTER" IS ENABLED
0069	: A	I 8.2		IF "SETTING-UP FORWARD" IS ACTIV
006A	: A	F 106.5		AND IF N SETPOINT OF BRANCH $8>$

PB1			
SEGMENT 15			
006B	:A	F	111.1
006C	: $=$	F	107.1
006D	:***		
SEGMENT 16			
	: BE		

SLOWER
"SLOWER" IS ENABLED
SEC
PAGE 3

LEN $=26$ SEC
PAGE 1
CALL FB100
F30.6 = 1, JOBS TO IP 252
INHIBITED
1 - DATA TRAFFIC PC <-> IP, CONTROLLER NUMBER 1 DRIVE CONTROLLER COMMUNICATION

DB FOR INTERNAL USE, 12 DW, PAGE NR. 5
JOB AND CONTROLLER NTMBER SPEED SETPOINT (VAR 8.1) SETPOINT (VAR 9.1)
INITIAL DIAMETER (VAR 3.1) RELAYS UND BITS (VAR 3.1) RELAYS UND BITS (VAR 3.1) RELAYS UND BITS (VAR 3.1) MESSAGE BITS OF THE IP MESSAGE BITS OF THE IP MESSAGE BITS OF THE IP PARAMETER ASSIGNMENT ERROR, 1 \Rightarrow ERROR

3. Brief Programming Instructions

3.3 Application Example for S5 115U

FB9 6
SEGMENT 1
NAME :GRUNDST.

3.3 Application Example for S5 115U

FB98		
SEGMENT 1		
NAME : STP=>RUN		
0005	: A	F 0.1
0006	: JU	FB244
0007 NAME	: SEND	
0008 SSNR	:	KY0, 5
0009 A-NR	:	KYO, 20
000A ANZW	:	FW114
000B QTYP	:	K5NN
OOOC DBNR	:	KYO, 0
OOOD QANF	:	KF+0
000E QLAE	:	$\mathrm{KF}+0$
D00F PAFE	:	FB121
0010	:	
0011	: A	F 0.1
0012	: L	KT010.1
0014	:SI	T 17
0015	:	
0016	: A	T 17
0017	: JC	=M001
0018	: R	F 30.0
0019	:R	F 30.6
001 A F001	:***	
SEGMENT 2		
001B	: BE	

LEN=33 SEC
PAGE 1
IP 252 FROM STOP TO RUN

RLO $=1$

0 DIRECT INITIALISED, 5 PAGE
NR. 0.2 TASK NO. FOR SEND 20
DISPLAY WORD
NN - NO DATA
IRRELEVANT
IRRELEVANT
IRRELEVANT
ERROR DISPLAY
$\mathrm{RLO}=1$
1 SEC. WAITING TIME AFTER STOP
=> RUN
IF THE PULSE TIMER HAS RUN DOWN, IS NO LONGER PROCESSED AND THE
IP IS READY TO PROCESS JOBS

FB99
SEGMENT 1
NAME : SYNC:IPS

0005	: A	F 30.0
0006	: JC	=M001
0007	:	
0008	: L	KT020.1
000A	: A	F 0.0
000B	:SI	T 15
000C	:A	F 0.1
000D	:SI	T 15
000E F002	: A	T 15
000F	: JC	=M002
0010	:	
0011 F001	: JUA	FB249
0012 NAME	: SYN	CHRON
0013 SSNR	:	KY0, 5
0014 BLGR	:	KY0, 6
0015 PAFE	:	FB120
0016	: ***	
SEGMENT 2		
0017	: BE	

LEN $=29$ SEC
PAGE 1
SYNCHRONISATION OF THE IP 252 INTERFACE

3. Brief Programming Instructions

3.4 Application Example for S5 135U, R Processor

The FB 100 (FB:STEU) and the data handling blocks for the S5 135U, R processor (without FB 122 and $F B 124$), are used as well as the blocks printed out. These data handling blocks are integrated in the operating system of the CPU, but they can oniy be called up if their headers have previously been loaded into the $C P \cup$ from the $F B: S T E U$ diskette. The foliowing data blocks are used but not listed

> DB 10 , length 20 words
> DB 11, length 20 words.

OB1 | LEN $=23$ |
| :--- |
| PEC |
| PAGE 1 |

SEGMENT 1

0000	:A	F 0.0
0001	:R	F 0.0
0002	: AN	F 0.1
0003	:S	F 0.1
0004	:	
0005	:A	F 30.0
0006	:JC	FB98
0007 NAME	:STP	=>RUN
0008	:	
0009	:A	F 30.1
000A	:JC	FB96
OOOB NAME	: GRU	NDST.
000C	:	
000D	: 30	PB1
000E	: J0	PB2
000F	: JU	PB3
0010	:***	
SEGMENT 2		
0011	: BE	

GENERATE RTO FLAG "O"
GENERATE RLO FLAG " 1 "
THERE WAS A COID RESTART OR A
MANUAL WARM RESTART AT F $30.0=1$
\Rightarrow IP 252 MUST BE STARTED

THERE WAS A POWER FAILURE AT
F $30.1=1$
\Rightarrow SET IP 252 TO INITIAL STAPE
RESTART CONTROL, FLAG F. FB 100
CALL FB 100
ASSIGN FLAGS $=>$ OUTPUPS

3. Brief Programming Instructions

3.4 Application Example for S5 135U, R Processor

3. Brief Programming Instructions

3.4 Application Example for S5 135U, R Processor

3.4 Application Example for S5 135U, R Processor

PB1			LEN=116 SEC	
				PAGE 2
0036	:S	F 30.2		F 30.2 TS SET
0037	:			
0038	:AN	F 107.3		F 30.2 IS RESET HITH STOP AND
0039	:AN	F 30.4		CONTROLJER ENABLE INACTIVE
003A	:R	F 30.2		
$\begin{array}{ll} \text { 003B } & \text { :**** } \end{array}$				
			MAIN CON	ACTOR ON/OFF
003C	:A	F 30.2		AUX. FLAG "MAATN CONTACTOR ON"
003D	:L	KT050.0		0.5 SEC. DROP-OUT DELAY OF
003F	:SP	T 14		THE MAIN CONTACTOR AFTER CON-
0040	:A	T 14		TROLLER ENABLE OFF
0041	: $=$	Q 4.0		
0042	:***			
SEGIEENT 10			CONTROLJER ENABLE	
0043	: A	F 30.2		IF THE MAIN SWITCH IS ON, THE
0044	: A	E 8.7		ACKNOWLEDGEEIENT IS PRESENT AND
0045	:A	F 30.4		THERE IS NO STOP, THE CONTROLTER
0046	:S	F 107.3		ENABLE IS TRANSMITMTED TO THE IP
0047	:			
0048	:AN	F 30.4		THE CONHROLILER ENABLE IS
0049	: AN	F 109.2		SNITCHED OFF WITH STOP AND WITH
004A	: 0	F 110.0		N ACT < $1 \% \mathrm{~N}$ MAX. OR ON MOTOR
004B	: R	F 107.3		OVERLOAD
004C	:			
004D	: A	F 107.3		Q 4.1 CONTROLTER ENABLE FOR
004E	: $=$	Q 4.1		CURRENT CONTROL
004F	: ***			
SEGMENT 11			BRAKE EII	ABLE
0050	: AN	F 30.4		THE BRAKE SETPOINT IS ENABLED
0051	: AN	Q 4.4		WITH STOP AND NO OVERIOAD
0052	: =	F 106.6		
0053	:***			
SEGMENT 12			SETTING-UP FORWARD	
0054	: A	I 8.3		"SETTING-UP FORWARD" IS INTER-
0055	: A	F 30.2		LOCKED WITH THE MAIN CONTACTIOR
0056	:AN	F 106.4		AND WITH "SETHING-UP REVERSE"
0057	:S	F 106.5		
0058	:			
0059	:AN	F 30.4		THE SETPOINT IS SWITCHED OFF
005A	:R	F 106.5		AGAIN WITH STOP
005B	:***			
SEGMENT 13				
005C	:A	I 8.4		"SETHING-UP BACK" IS INTER-
005D	:A	F 30.2		LOCKED WITH THE MAIN CONTACTOR
005E	: AN	F 106.5		"SETTING-UP FORNARD"
005F	:S	F 106.4		
0060	:			
0061	: AN	F 30.4		THE SETPOINT IS SWITCHED OPF
0062	: R	F 106.4		AGAIN WITH STOP
0063	:***			
SEGMENT 14			FASTER	
0064	:A	18.1		IF "SETTING-UP FORHARD" IS PRE-
0065	:A	F 106.5		SENT AND N SETTPOINT OF BRANCH 8
0066	:AN	F 111.0		IS NOT YET GREATER THAN MAX. 96\%
0067	:=	F 107.2		OF N MAX. (4\% FROM BRANCH 6),
0068	:***			"FASTER" IS ENABLED
0069	:A	I 8.2		IF "SETTING-UP FORNARD" IS PRE-
006A	: A	F 106.5		SENT AND SETPOINT N OF BRANCH

3. Brief Programming Instructions

3.4 Application Example for $\$ 5$ 135U, R Processor

PB1					LREN=116	$\begin{array}{r} \text { SEC } \\ \text { PAGE } \end{array}$	3
SEGMENT	15		SLOWER				
006B	: A	F 111.1		$8<0$,	"SLOWER" IS	ENABLED	
006C	: $=$	F 107.1					
006D	:***						
SEGMRNT	16						
006E.	: BE						

PB2		LIEN=26 SEC	
SEGMENT 1		CALS PB	100
0000	:A H 30.6		F30.6 = 1, TASKS TO IP 252
0001	: BEC		DISABLED
0002	: L KB1		1 - DATA TRAFFIC PC <-> IP.
0003	:T FB112		CONTROLLLER NUMBER 1
0004	:JU FB100		DRIVE CONTROLLER COMNUNICATION
0005 NAME	:STEU:ANT		
0006 DBNR	DB11		DB FOR INTTERNAU USE, 12 DF,
0007 SSNR	KF+5		PAGE NR. 5
0008 RENR	FB112		JOB AND CONTROINER NUMBER
0009 VAR8	FW100		SPEED SETPOINT (VAR 8.1)
000A VAR9	FW102		SETPOINT (VAR 9.1)
000B VAR3	FW104		INITIAL DIAMETER (VAR 3.1)
000C DEO	FB106		RELAYS AND BITS
000D DE1	FB107		RELAYS AND BITS
000E DE2	FB108		RETAYS AND BITS
000 F DA0	FB1 09		MESSAGE BITS OF THE IP
0010 DA1	FB110		HESSAGE BITS OF THE IP
0011 DA2	FB111		MESSAGE BITS OF THE IP
0012 PAFE	: F 31.2		PARAMEITER ASSIGNMENT ERROR,
0013	:***		$1 \Rightarrow$ ERROR
SEGMENT 2			
0014	: BE		

LEN=18 SEC
PAGE 1

OVERYOAD DISPLAY

SET DISPLAY
IF THE OVERLOAD NO LONGER EXISTS
AND THE MOTOR IS AT STANDSTILL, ACKNOWLEDGEMENT CAN BE MADE

LIMTT VALUES TO THE I/O VALUES
I.TMIT VALUE 68 N MAX.

GIMIT VALUE 10\% N MAX.

PAGE 1
CNIL. NO. 1 OF THE IP 252 IN INITIAI STATE
SEGMENT 1
NAME : GRUNDST.

0005		: 1	KB21		21 DATA TRAFFIC PC \rightarrow IP, CON-
. 0006		:T	FB112		TROIT, ${ }^{\text {a }}$ NUMBER 1
0007		:			
0008		: 12	Km00000000	00000000	ALI RETAYS AND BITS HAVE " 0 "
000A		:T	FW100		DEFALIT
000B		: $\mathrm{T}^{\text {I }}$	FW102		
000C		:T	FW104		
000D		: 7	FW106		
000E		: T	FW108		
000F		:T	FW110		
0010		- J0	FB100		DRIVE CONTROLLER COMMUNICATION
0011	NAME	: STE	J:ANT		
0012	DBNR	:	DB10		DB FOR INTERNAL USE, 12 DH
0013	SSNR	:	KF+5		PAGE NR. 5
0014	RENR	:	FBI 12		JOB AND CONTROITLER NR.
0015	VAR8	:	FW100		SPEED SEPPPOINT (VAR 8.1)
0016	VAR9	:	FW102		SETPOINT (VAR 9.1)
0017	VAR3	:	FW104		INITIAL DIAMETER (VAR 3.1)
0018	DEO	:	FB106		RELAYS AND BITS
0019	DE1	:	FB107		RELAYS AND BITS
001A	DE2	:	FB108		RELIAYS AND BITS
001B	DAO	:	FB109		MESSAGE BITS OF THE IP
001 C	DAI	:	FB110		mESSAGE BITS OF THE IP
001D	DA2	:	FB111		message bits of THE IP
001E	PAFE	:	F 31.1		PARAMETER ASSIGNIENT ERROR,
001 F		:			1 => ERROR
0020		:A	F 212.0		BIT 0 OF THE PAFE BYTEE OF THE
0021		:			FB: INTERRNAL "SEND" IS USED
0022		:			HERE. $1 \Rightarrow$ JOB HAS NOT YET PRO-
0023		:			CESSED (E.G. DUE TO IP OVER-
0024		:			LOAD) , $0 \Rightarrow$ NO ERROR.
0025		: JC	$=$ F001		IF THE JOB HAS BEEN PROCESSED,
0026		: R	F 30.1		THE FB96 IS NO LONGER PROCESSED
0027		: R	F 30.6		AND THE IP IS READY TO PROCESS
0028	3001	: BE			OTHER TASKS.

21 DATA TRAFFIC PC \rightarrow IP, CON-

ALI RETAYS AND BITS HAVE " 0 " DEFADLT

DRIVE CONTROLLER COMAUNICATION
DB FOR INTERNAL USE, 12 DH PAGE NR. 5
JOB AND CONTROLLLER NR. SPEED SEXPOINT (VAR 8.1)

INITIAL DIAMETER (VAR 3.1)
RELAYS AND BITS
RETAYS AND BITS
RETAYS AND BITS
RESAGE BITS OF THE IP
message
PARAMETER ASSIGNIENT ERROR,
1 => ERROR
0 OF THE PAFE BYTE OF THE HERE. $1 \Rightarrow$ JOB HAS NOT YET PROCESSED (E.G. DUE TO IP OVERLOAD), $0 \Rightarrow$ NO ERROR.
IF THE JOB HAS BEEN PROCESSED, AND THE IP IS READY TO PROCESS OTHER TASKS.

3. Brief Programming Instructions

3.4 Application Example for S5 135U, R Processor

FB98		
SEGMENT 1		
NAME : STPP=>RUN		
0005	:A	F 0.1
0006	= Ju	FB120
0007 NAME	:SEND	
0008 SSNR	:	KYO, 5
0009 A-NR	:	KYO, 20
000A ANZW	:	MW114
000B QTYP	:	KCNN
OOOC DBNR	:	KYO,0
000D QANF	:	KF+0
000E QLAAE	:	KP+0
000F PAFE	:	MB121
0010	$:$	
0011	:A	F 0.1
0012	: \mathbf{L}	KT010.1
0014	: SE	T 17
0015	:	
0016	: AN	T 17
0017	: JC	$=\mathrm{MOO2}$
0018	: R	F 30.0
0019	:R	F 30.6
001A m002	:***	
SEGMENT 2		
001B	: BE	

LEN= 33
SEC
PAGE 1
IP 252 FROH STOP TO RUN
$R L O=1$

0 DIR.PARAM.ASSIGNM., 5 PAGE NR. 0,20 - JOB NR. FOR SEND 20 JOB STATUS WORD NN - NO DATA IRRELEVANT IRRELEVANT IRRELEVANF' ERROR FLLAG

RLO = 1
1 SEC. WAITING TIME AFTER STOP => RUN

IF THE DELAY TIME HAS ELAPSED, THE FB98 IS NO LONGER PROCESSED AND THE IP IS READY TO PROCESS JOBS

FB99
SEGMENTI 1
NAME :SYNC:IPS

0005	:A	H 30.0
0006	:JC	= F001
0007	:	
0008	:L	KT020.1
000A	:A	F 0.0
OOOB	:SI	T 15
000C	:A	F 0.1
0000	:SI	T 15
000E M002	:A	T 15
O00F	: JC	= F 002
0010	=	
0011 M001	: J0	FB125
0012 NAME	:SYN	CHRON
0013 SSNR	:	KYO, 5
0014 BLGR	$=$	KY0,6
0015 PAFE	:	M8120
0016	:***	
NETZWERK		
0017	: BE	

LEN=29 SEC PAGE 1 SYNCHRONISATION OF THE IP INTERFACE

THERE WAS A POWER FAILURE AT $F 30.0=0 \Rightarrow 2$ SEC. WATMING TINE BEFORE SYNCHRONISATION OF THE IP 252
T 15 IS PROCESSED ONCE WITH RLO $=0$ BEFORE STIARTING

STARTING T 15
2 SEC TIME LOOP, SCAN TIME HONITOR IS INOPERATIVE IN OB22. SYNCHRONISE INTERFACE WITH PAGE NR. 5

0 DIR. PARAM.ASSIGNM., 5 PAGE NR. 0.6 - BLOCK SIZE 512 BYTES ERROR FLAAG

3. Brief Programming Instructions

3.5 Application Example for S5-150U

In addition to the blocks below, FB 100 (FB:STEU) and the data handling blocks for the S5-150U (excepting FB182, FB183 and FB186) are used. These data handling blocks must be ordered separately on diskette, if required. The following data blocks used are also not listed:

$$
\begin{aligned}
& \text { DB10, length } 20 \text { words } \\
& \text { DB11, length } 20 \text { words. }
\end{aligned}
$$

OB1	r.EN=23	SEC
PAGE	1	

SEGMENT 1

0000	:A	F 0.0	GENERATION OF RLO FILAG "0"
0001	:R	F 0.0	
0002	:AN	F 0.1	GENERATION OF RLO FLAG "1"
0003	:S	F 0.1	
0004	:		COLD RESTART AT F 30.0 = 1
0005	:A	F 30.0	\Rightarrow IP 252 MUST BE

0006 :JC FB98
0007 NAME : STP=>RUN

0008	:	
0009	:A	F 30.1
000 A	:JC	FB96

PONER FAILURE AT F30.1 = 1
000A :JC FB96
\Rightarrow SET IP 252 TO INITIAL STATUS
OOOB NAKE =GRUNDST.
000C :
000D :JU PB1 RESTART CONTROL, FLAGS POR FB100
000E :JU PB2
000F :JU PB3
0010 : ***
SEGMENTI 2
0011 : BE

| OB20 | | | LEN=20 |
| :--- | :--- | :--- | :--- | :--- |
| SEGMENT 1 | | | SEC |
| PAGE | | | |

3. Brief Programming Instructions

3.5 Application Example for S5-150U

3. Brief Programming Instructions

3.5 Application Example for $\mathbf{S 5 - 1 5 0 U}$

PB1		
SEGMENT 1		
0000	:A	I 8.0
0001	:AN	I 8.7
0002	:AN	Q 4.4
0003	: S	F 30.4
0004	:	
0005	:0	F 110.0
0006	: ON	I 8.0
0007	:R	F 30.4
0008	:***	
SEGMENT 2		
0009	:A	I 8.6
000A	:S	F 30.3
000B	:	
000C	: ON	F 30.4
000D	:0	I 8.7
000E	:0	T 13
000F	:R	F 30.3
0010	:***	
SEGMENT 3		
0011	: 0	F 30.3
0012	: 0	I 8.7
0013	:	KT200.1
0015	:SQ	T 10
0016	:A	T 10
0017	: $=$	Q 4.2
0018	: ***	
SEGMENT 4		
0019	: A	F 30.3
001A	:L	KT030.1
001 C	:SI	T 11
001D	:	
001E	:A	F 30.3
0017	:S	Q 4.5
0020	:	
0021	: 0	T 11
0022	: ON	F 30.4
0023	:R	Q 4.5
0024	:***	
SEGIENT 5		
0025	:A	T 11
0026	:L	KT020.1
0028	:SI	T 12
0029	:***	
SEGMENT 6		
002A	: A	T 12
002B	:I	Kr100.1
002D	:SI	T 13
002E	: $\pm \star$ *	
SEGMENT 7		
002F	:A	T 12
0030	:AN	T 13
0031	: $=$	04.3
0032	:***	
SEGMENTP 8		
0033	:0	I 8.3
0034	:0	I 8.4
0035	:A	Q 4.3

GENERATE "STOP STORED"
THE STOP IS ONLI \bar{Y} CANCELLLED (F 30.4=1), IF MAIN CONIACTOR HAS DROPPED OUT AFTER BRAKING AND THERE IS NO MOTOR OVERLOAD

TRIGGERING OF STOP (F30.4 = 0) WITH MOTOR OVERLOAD AND WITH I $8.0=0$ (FAILSAFE)

GENERATE F 30.3, "RESET CNTL. RJNNING" THE RESTART CNTL. IS STARTED WITH A WARNING

THE RESTART IS TERMINATED WITH STOP, MAIN CONTACTOR ON OR ENABLE TTME OUT

SWITCH ON FIELD CIRCUIT, AND FAN THE FIELD CIRCUIT AND FAN ARE SWITCHED ON WITH A WARNING

AFTER THE MAIN CONTACTOR HAS DROPPED OUT, FIELD CIRCUIT AND FAN REMAIN SWITCHED ON FOR 20 SEC.
WARNING TIME AND HORN
START 3 SEC. WARNING TTME

SWITCH ON HORN

THE HORN IS SWITCHED OFF AGAIN AFTER 3 SEC. OR WITH STOP

PAUSE TIME
WHEN THE WARNING TIME HAS ELAAPSED, THE PAUSE TIME (2 SEC.) IS STARTED

ENABLE TIME
IF THE PAUSE TIME HAS ELAPSED, THE ENABLE TIME (10 SEC.) IS STARTED

ENABLE LAMMP
THE ENABLE LAMP LIGHTS UP IF T12 HAS RON DONN AND T13 IS STILL RONNING

AUXILIARY FLAG "MAIN CONTACTOR ON"
IF THE PUSHBUTTON "SETMING-UP FORWARD" OR "SETHING-UP REVERSE" IS PRESSED DURING ENABLE TIME.
3.5 Application Example for S5-150U


```
PB1
SEGMENT }1
006B :A F 111.1
006C := F 107.1
006D :***
SEGMENT 16
006E :BE
```


3. Brief Programming Instructions

3.5 Application Example for S5-150U

LEN=18 SEC

PB3		
SEGMENT 1		
0000	:A	F 110.0
0001	:S	Q 4.4
0002	: AN	F 110.0
0003	: AN	F 109.2
0004	:A	I 8.5
0005	:R	Q 4.4
0006	:***	
SEGMENTI 2		
0007	:A	F 109.0
0008	:=	Q 4.6
0009	:A	F 109.1
000A	: $=$	Q 4.7
0008	: BE	

OVERLOAD DISPLAY
SET DISPLAY
ACKNOFLEDGENENF CAN BE MADE IP THE OVERLOAD NO LONGER EXISTS AND IF THE MOTOR IS AT STANDSTIIM

LIMIT VALUES TO INPUT/OUIPUT MODULES LIMITT VALUE 6\% N MAX.

LIMIT VALUE 10\% N MAX.

FB96
SEGMENT 1
NAME : GRUNDST .

21 DATA TRAFFIC CPO -> IP, CONTROLLEER NUMBER 1

AIL RELAYS AND BITS HAVE " 0^{n} DEFAULT

DRIVE CONTROLLER COMMONICATION
DB FOR INTERNAL USE, 12 DW PAGE NR. 5
JOB AND CONTROLTER NUIBER
SPEED SETHPOINT (VAR 8.1)
SETPOINT (VAR 9.1)
INITIAE DIAMETER (VAR 3.1)
RELAYS AND BITS
RELAYS AND BITS
RELAYS AND BITS
uESSAGE BITS OF THE IP
MESSAGE BITS OF THE IP
MESSAGE BIIS OF THE IP
PARAMETER ASSIGMUENT ERRORS, 1 => ERROR
BIT 0 OF THE PAFE BYTE OF THE FB: CNIL. -INTERNAL "SEND" IS USED HERE. $1 \Rightarrow$ JOB HAS NOT XET RUN (E.G. DUE TO IP OVERLOAD), 0 => NO ERROR.
IF THE JOB HAS BEEN PROCESSED, FB96 IS NO LONGER PROCESSED AND THE IP IS READY TO PROCESS OTHER JOBS.

3. Brief Programming Instructions

3.5 Application Example for S5-150U

FB98		
SEGMENT 1		
NAME : STP=	>RUN	
0005	:A	F 0.1
0006	:JU	FB180
0007 NAME	: SEND	
0008 SSNR	:	KY0,5
0009 A-NR	:	KY0, 20
000A ANZW	:	FW114
000B QTYP	:	KSNN
000C DBNR	:	KY0, 0
000D QANP	:	KF+0
O00E QLAE	:	KF+0
000F PAFE	:	FB121
0010	:	
0011	:A	F 0.1
0012	: L	KT010.1
0014	:SI	T 17
0015	:	
0016	: AN	T 17
0017	: JC	= H 002
0018	: R	F 30.0
0019	: R	F 30.6
001A M002	:***	
SEGMENP 2		
001B	BE	

```
RLO = 1
O DIRECT INITIALISED, }5\mathrm{ PAGE
NR. 0.2 TASK NO. FOR SEND 20
DISPLAY WORD
NN - NO DATA
IRRELEVANT
IRRELEVANT
IRRELEVANT
ERROR DISPLAY
RLO = 1
1 SEC. WAITING TIME AFTER STOP
=> RUN
IF THE PULSE TIMER HAS RUN
DOWN, FB98 IS NO LONGER PRO-
CESSED AND THHE IP IS READY TO
PROCESS JOBS.
```


4. Programming Instructions

4.1 Configuration Overview

The IP 252 is a closed-loop control module which can be adjusted to specialised applications by plugging in a memory submodule. The task-specific solutions suggested are referred to in the following as controller structures. These structures consist of individual functions, e. g. speed controller, ramp function generator etc., which can be connected together to form task-specific controllers. The currently available controller structure spectrum is contained in two different memory submodules:

1. Memory submodule DR/SR 6ES5 374-0AA11.

This submodule contains the structures "Drive controller" (Section 4.10) and "Standard controller" (Section 4.11).
2. Memory submodule DRS/SR 6ES5 374-0AB11.

This submodule contains the expanded "Drive controller structure with self-setting" (Section 4.12) and the slightly modified structure "Standard controlier" (Section 4.11).

In addition to the self-setting feature, the DRS structure has been expanded by the following functions:

- Interlink capability of the control loops, also with the SR structure.
- Free assignment of measuring sockets
- Function expansions of the DRS controller structure
- In the ramp function generator
- In the diameter calculator
- In the primary controller
- In field current measurement
- Arithmetic operations

Two of these functions, which apply to both structures of the "DRS/SR" submodule, are briefly dealt with in the following:

a) Free assignment of measuring sockets

Both measuring sockets on the frontplate of the IP 252 module are used for displaying two measured values. Which measured values (control deviation, manipulated variable etc.) are to be displayed within which control loops (1 to 8) must be defined in the user submodule with the structures

DR/SR in the configuration phase. Later modifications can only be made in stop mode of the module.
In contrast to this, the measuring sockets for the
DRS/SR user submodule must be assigned to the desired measuring points immediately the controller is tested; in other words, while the process is running:
The operator interface of the COM REG packages also offers the "Measuring sockets" function as well as the "Controller test" function. In the "Measuring sockets" function, you can assign the socket 1 (DAC channel no. 5) and the socket 2 (DAC channel no. 6) in menu-driven mode to any measuring point of the controller structure (controllers nos. 1 to 8). These assignments can be changed at any time.
The measuring sockets can only be activated if the analog output channels 5 and 6 have not been otherwise assigned.

b) Interlink capability of the control loops

The user submodule with the "DRS/SR" structures supports the interlinking of control loops 1 to 8 to form master and slave controllers. Wherever an ADC n is indicated in Sections 8.2 and 8.3 of the configuration documentation, the following parameters may be entered:

It is now possible, for example, to transmit the processed actual value of controller no. 2 as a setpoint to controller no. 3 . The following value is now entered in the input field of ADC 6 (of branch 8 in controller no. 3) using the programmer:

$$
\text { ADC } 6 \quad 2.12
$$

4. Programming Instructions

4.2 Maximum Number of Control Loops on the IP 252

The operating system of the IP can supervise a maximum of 8 control loops. Each controlloop is assigned a sampling time by the user. The minimum sampling time is $\mathbf{4} \mathbf{m s}$, the maximum $\mathbf{3 2} \mathbf{s}$.

Each control loop uses up a certain percentage of the CPU resources of the IP 252. The total sum of resources used by the controllers should not exceed 100% of the CPU capacity.

How many percentage points a control loop uses up depends on the following influencing factors:

- Choice of structure (drive controller, . . .)
- Choice of sampling time ($4 \mathrm{~ms}, 8 \mathrm{~ms}, \ldots$)
- Choice of branches (limit monitor, . .) within the structure
- Choice of functions (ramp function generator, . . .) within a branch

The PG displays the percentage loading of the CPU in order to provide an estimate of the CPU loading of the IP. The table included in the Appendix (Section 9) states to what extent (in \%) each individual function loads the processor, given a sampling time of 4 ms . These ciata are however only a rough guide. Exact information as to whether all controllers in the IP can run without time problems is generated by the IP itself as follows:
If the FAULT lamp (Section 4.4) does not light up in the RUN state of the IP, then the loading is under 100\%.
Illumination means momentary overloading. This can happen for instance when the PG or $\$ 5-\mathrm{CPU}$ accesses the IP frequently. Overloading is detected by the operating system and "smoothed out" (see Section 4.4).

Overioading causes timing conflicts in the control loops of the IP. This means that the control loops cannot be processed at the sampling times specified by the user via the PG. In this case the operating system of the IP automatically lengthens the sampling time by 4 ms . This lengthening continues until the time conflict has ended. After this the control loops operate with the sampling times specified by the user.
The cperating system can cope with any overload situation. The IP can be operated via the PG or PC under all circumstances.
In the case of a permanent as opposed to a temporary overloading, the operating system permanently lengthens the sampling times of all control loops. This indicates that the user has selected sampling times which are too small and thus overloaded the IP.

Note:

The selected control loop sampling time is not valid for all branches of the structure
Branches such as the speed controller (branch 5, AR) are processed with the set sampling time $T_{A,}$, whereas the limit signal monitor is only processed during every eighth sampling interval ($8 \cdot \mathrm{~T}_{\mathrm{A}}$).
This relationship is represented in Sections 8 and 9 in the upper half of the diagram with " $T_{A}, 2 \cdot T_{A}$ and $8 \cdot T_{A}{ }^{\prime \prime}$.

4. Programming Instructions

4.3 Input/Output Formats of the IP 252

The ! P recognizes the following number formats:

- Time values
- Percentage values
- Dimensioned variables
- Dimensionless variables

4.3.1 Time values

The ranges which can be displayed on the PG are:

0.1	to 999.9	ms	(milliseconds)
0.001	to 9999.	s	(seconds)

00.01 to $59.59 \mathrm{~h} . \mathrm{m}$ (hours.minutes)

4.3.2 Percentage values

The input/output is carried out with fixed decimal point.
Inputrange: $\quad \pm 0.01 \%$ to $\pm 100.00 \%$
Output range: $\quad \pm 0.01 \%$ to $\pm 200.00 \%$
The number range of $\pm 100 \%$ corresponds to a voltage range of $\pm 10 \mathrm{~V}$.

4.3.3 Dimensioned variables

It is possible to input and output a dimensioned variable (e. g. setpoint for a temperature controller). For this the PG requests the following information:
$-0 \%=$?
$-100 \%=$?
$-\mathrm{ASCI}=$?
The values entered for 0% and 100% define a straight line. This specifies the value range for the dimensioned variable.
The example in Fig. 4.2 illustrates this. A temperature value is to be controlled. The user knows that the occurring temperature value varies in the range $+3,0^{\circ} \mathrm{C}$ to $-2,0^{\circ} \mathrm{C}$. The setpoint and the actual values are to be input and output in ${ }^{\circ} \mathrm{C}$. The following must be entered on the PG:

Input at PG		
-100%	$=0.5$	
$-A S C H$	$=$ DEGC	(maximum 6 characters)

The 0% value corresponds to the middle of the possible temperature range, the 100% value to the maximum value.
After these specifications the dimension of temperature can be specified directly (e. g. $2.01^{\circ} \mathrm{C}$).
Measuring point displays are then also converted to the temperature range (e.g. $-3.00^{\circ} \mathrm{C}$). The output range in this example lies between $+5.50^{\circ} \mathrm{C}$ and $-4.50^{\circ} \mathrm{C}$.

4. Programming Instructions

4.3 Input/Output Formats of the IP 252

Fig. 4.2 Example of dimensioned input/output via the PG

Notes on the correct selection of the 0\% and $\mathbf{1 0 0 \%}$ specification:

- Permissible range for the ($0 \% / 100 \%$) specification

\pm	1	to
\pm	± 10000	
\pm	0.1	to
± 1000.0		
± 0.001	to	± 100.00
± 0.0001	to	± 10.000
$\pm .00001$	to	± 1.0000
		to

- The permissible combinations for the ($0 \% / 100 \%$) specification:

After the 0% and the 100% values have been entered in the PG, the PG checks whether this pair of values is permissible. Only those pairs of values are permissible which make sense from the accuracy consideration and for which the specification of the 100% value is larger than the 0% value.

The checking of the accuracy is carried out according to the following procedure:

- Determination of the position of the decimal point for 0% and 100% values: K_{t}, K_{2}
- Multiplication of the 0% and the 100% values by 10^{*}, where x is the larger of the two numbers $K_{1} K_{2}$.
- If the magnitude of both results of the multiplications $\leqq 10000$ then the ($0 \% / 100 \%$) pair of values is sensible and permissible.

4. Programming Instructions

4.3 Input/Output Formats of the IP 252

Example 1:

$0 \%=0.1$	$K_{1}=1$	1. Determine position of decimal point
$100 \%=12345$	$K_{2}=0$	
$0.1 \cdot 10^{1}=1$	2. Multiplication with 10^{x}	

Result: The ($0 \% / 100 \%$) pair of values is not permissible!

Example 2:

$0 \%=0.01$	$K_{1}=2$	1. Determine position of decimal point
$100 \%=10$	$K_{2}=0$	
$0.01 \cdot 10^{2}=1$	2. Multiplication with 10^{x}	
$10 \cdot 10^{2}=1000$		

Result: The ($0 \% / 100 \%$) pair of values is permissible!
The following inputs/outputs are possibie via the PG:

0.01	0.9	0.95	1	1.2	1.06

4.3.4 Dimensioniess variables

There are dimensionless variables with and without a decimal point:

- Variables without decimal points have a range of 0 to ± 32767.
- Variables with decimal points always contain two digits after the decimai point and have a range of ± 00.01 to ± 99.99.

4. Programming Instructions

4.4 Meaning of the LEDs on the Front Panel of the Module

Combinations: Meaning:

RUN	The module is in the STOP mode (see Section 4.9)
STOP	
The module is in the RUN mode	
RUN	(see Section 4.9)

- Increase the sampling time of a control loop
- Delete a control loop
- Disable a controlloop
- Switch individual functions off
- Switch individual branches off
- Limit the communication with the S5-CPU or the PG

Symbols:	
	Lamp extinguished Lamp illuminated

4. Programming Instructions

4.5.1 Retentive/non-retentive data

The memory submodule used in the IP 252 contains memory (EEPROM) which retains data when the voltage is switched off, The controller parameters for a maximum of 8 control loops are stored there.
These variables are listed in Table 4.1 for each individual control loop. The controlier parameters stored in the EEPROM are known as "retentive" data. In contrast to this sort of data there is also "non-retentive" data, which is listed in Table 4.2. Non-rententive data is not stored in the EEPROM and are lost during a power failure, if no back-up battery is available.

The storage of controller parameters in the memory submodule is carried out fully automatically by the IP 252, without the user having to worry about it. The principle is explained briefly in Section 4.5.2.

Table 4.1: Retentive data of a control loop (see also Sections 4.10.7, 4.11.7 and 4.12.8 data words 0 to 167)

- Type of structure (drive controller, standard controller, . . .)
- Sampling time of the control loop
- Dimension specifications
- Structuring of the control loop (state of the structure switches)
- Addresses of the analog controller inputs "ADC 1, ..., ADC 8"
- Addresses of the analog controller outputs "DAC 1...., DAC 8"
- Constant of the control loop "KON X.Y"
- Assignment of the measuring points to the measuring sockets
- Assignment of the measuring points to the limit monitors

Table 4.2 NON-retentive data of a control loop (see also Sections 4.10.7, 4.11.7 and 4.12 .8 data words 168 to 255)

- Variable "VARX.Y"
- Contents of analog inputs/outputs
- Binary inputs/output values "BITX.Y"
- Relaystates "RELX.Y"
- Measuring point values "MPX"
- Past values of functions (smoothing, PID, ...)

4.5.2 Principle of data retention (see Fig. 4.2)

A workspace memory (RAM) is located in the IP, in which all the controller data is stored. This data can be subdivided into:

- retentive data (see Table 4.1)
- non-retentive data (see Table 4.2)

Retentive data can be modified with CPU/CP and PGs (Fig. 4.3, 1 and 2). However the following retentive data cannot be entered in the STOP state of the IP:

- Structure type
- Sampling time
- Dimensions
- Structure switches
- Adcresses for analog inputs/outputs

The remainder of the retentive data of Table 4.1 can also be modified in the RUN state of the IP.
Each input via the CPU/CP or PG is stored initially in the RAM of the IP. The operating system of the IP continuously compares the controller data of the module (RAM) with the controller data in the memory submodule (EEPROM). If a value differs then it is automatically updated in the memory submodule (Fig. 4.2,3).

Note:

\$f random data are transferred cyclically from the S5 CPU to the IP 252 (e. g. KON10.1, KON5.KP etc.), it may not be desirable to dump these data on EEPROM. If this is the case, use of a special job no. during data transfer will prevent these data being dumped in the EEPROM of the user submodule. The reason for using this method for data transfer is that the EEPROM can survive only a limited number of write cycles (updating).
This mode (Section 5.2.3.2) is only possible with the submodule "Expanded drive controller structure with self-setting and standard controller structure (DRS/SR)" (MLFB 6ES5 374-OAB11).

After a user input via the CPU/CP or PG, there is a certain interval of time during which the retentive data in the memory submodule is updated. If a power failure does not occur during this (short) interval of time, then the description given under "Case 1" applies. If a power failure occurs during this interval of time, then the description under "Case 2" applies.

4. Programming Instructions

4.5 Data Retention in the Memory Submodule

Fig. 4.2 Data retention in the 252 IP

Case 1: NO power failure during the updating of the EEPROMs

The EEPROM of the mernory module contains all the latest data required for the control loops according to Table 4.1.

Case 2: Power failure during the updating of the EEPROMs

In this case one must differentiate between whether the RAM of the \mathbb{P} is backed up or not. A battery in the power supply of the programmable controller is used for supplying the back-up voltage.

The RAM is supplied by a backup battery:
After the restoration of power, the EEPROM contains the most recent data for all the control loops as listed in Table 4.1. After power restoration there is no difference to case 1 .

The RAM is not backed up:
After restoration of power, the EEPROM contains the most recent data listed in Table 4.1 for all control loops except for those whose updating was interrupted by the power failure. The data of the control loop during which the power failure occured has the same state in the EEPROM as before the last modification.

Comment to case 2:

If the memory submodule is pulled out with the IP supply voltage switched "off", then it is not important whether RAM is backed up or not. The contents of the EEPROM are as follows:
The data for all control loops except for the one during which the power failure occurred, are the most recent.
The data of the controlloop during which the power failure occured, has the same state as before the last modification.

4. Programming Instructions

4.6 Start-up Behaviour of the IP 252 (response to "power on")

4.6.1 Treatment of the controller data after "power on"

After switching the power "on", the operating system checks the IP for the presence of a user memory submodule. If no submodule is present or a submodule with the wrong identification ($\neq 28$) is present, then the IP remains in the STOP mode. The IP can be accessed via the PG even when no submodule is plugged in!

If a valid memory submodule is plugged in, then the following two cases must be considered:

Case 1:
Assumption: The IP is powered up and the power fails. The submodule remains plugged in and the power is again restored.
Consequence: The controiler data in the RAM of the IP and the memory submodule are identical. How current the data are, as compared to the last modification by the user, is described in Section 4.6.2.

Case 2:

Assumption: The IP is powered up and the power fails. The submodule is removed when the power is "off" and another submodule with valid data is plugged in. Then the power is restored.

Consequence: In the following cases the controller data is copied from the memory submodule into the RAM of the IP:

- No battery is present

OR

- The IP was in the STOP mode before "power off" OR
- The stop switch of the IP was switched to stop in the unpowered state.

Note to case 2:

If the user wants to load new controller data into the IP, then the IP must be switched "off", the new memory submodule plugged in, the STOP switch moved to the STOP position and the power switched "on" again.

4.6.2 Start-up behaviour of the control loops after "power on" (Fig. 4.3)

After powering up, the IP goes into the RUN mode (green RUN LED lights up) or into the STOP mode (red STOP LED lights up). The STOP mode is entered under the following conditions:

- No battery is available OR
- The switch on the IP is in the STOP position OR
- The IP was in the STOP mode before power failure OR
- The power failure indication is not set

Before reaching the STOP mode, the controller data from the EEPROM of the memory submodule is copied to the RAM on the module. Also all the previous values, bits, relays and variables of the control loops are erased.

The RUN mode is entered under the following conditions:

- Battery is available
- The AND

- The IP was in the RUN mode before power failure
- The power failure bit is set

AND

There are various ways of influencing the start-up response of a control loop from the PG. The following statements assume that the IP automatically goes to the RUN mode after "power on". The PG can be used for setting in each control loop whether warm restart is desired and in that case whether the warm restart criterion should be used.

4. Programming Instructions

4.6 Start-up Behaviour of the IP 252 (response to "power on")

POWER ON	
- Battery connected - Switch in RUN position - No STOP before power failure - Power failure bit set?	
YES	
For all control loops	Delete all controller data blocks (DLWO-DW511) The following are reset - Reiays RELX.Y - Bits BITX.Y - Variables VARX.Y - Previous values - Load contents of EEPROM into RAM
For inactive BASP from CPU, the IP goes into the RUN mode (green LED illuminates)	The IP goes into the STOP mode (red LED illuminates)

Fig. 4.3 Start-up behaviour of the IP 252 after "power on"

4. Programming Instructions

4.6 Start-up Behaviour of the IP 252 (response to "power on")

The warm restart criterion is:
The actual values before and after power failure should not differ in magnitude by more than 25% of the actual value before the power failure.

$$
\begin{aligned}
& \text { I actual value atter NAU - actual value before NAU } \mid \\
& \quad \leq 10.25 \times \text { actual value betore NAU } \mid
\end{aligned}
$$

If no warm restart is required, the operating system disables all control loops and resets the previous values in the corresponding controller data blocks, i. e. the IP goes into the RUN mode with disabled control loops. These control loops can be enabled from the S5-CPU via a command, which is transmitted by data handling blocks. The enabling is carried out individually for each control loop ("Controller cold restart").

Now the case is considered where the user has selected warm restart behaviour via the PG. If the warm restart criterion is then not used, then ali previous values of the control loops are reset. The IP goes into the RUN mode and the control loops which were enabled before "power oft" remain enabled and begin to operate from the start up mode ("Controller cold restart").

When the warm restart criterion is used, the operating system of the IP checks whether the criterion is fulfilled. If it is not fulfilled, then all the previous values of the control loops are reset. The IP goes into the RUN mode and the controlloops which were enabled before "power off" remain enabled and begin to operate from the start up ("Controller cold restart").

If the warm restart criterion is fulfilled, no previous values are erased. The IP goes into the RUN mode and the control loops which were enabled before "power off" remain enabied and begin to operate again from the point at which they were interrupted by "power off" ("Controller warm restart").

Summary:

Controfler cold restart means that the control loops begin to operate from the restart after switching the power on. This means that all the previous values of these control loops are reset.

Controlier warm restart means that the control loops continue to operate with the old values after switching the power on. These values correspond to the state at the instant of the power failure. Several conditions must be fulfilled before any of the (maximum 8) control loops can carry out a warm restart.

The following applies for the IP 252:

- The RAM of the IP is backed up by a battery
- The IP is in the RUN mode at the instant of the power failure.

The following applies to the control loops:

- Warm restart is selected and the warm restart criterion is fulfilled.

The following applies to the S5-CPU:

- The CPU is in the RUN mode

4. Programming Instructions

4.7 Enabling/Disabling of the Control Loops with the Programmer

Individual control loops can be enabled or disabled via the PG from the "Operating mode" menu. This is possible in the RUN and in the STOP mode of the IP.
The command acts immediately in the RUN mode of the IP. If the command is given in the STOP mode of the IP, then it operates only when the IP goes to the RUN mode.

Example:

The following is entered during the STOP mode of the IP:

	R 1	R 2	R 3	R 4	R 5	R 6	R 7	R 8
ENABLE	N	Y	N	Y	-	-	-	-

When the IP subsequently goes into the RUN mode, the following happens:
Control loops 2,4 are enabled, i. e. they are processed
Control loops 1,3 are disabled, i. e. they are not processed

Note:

If, during configuration of the control loops, the programmer query "Warm restart after power failure" is answered with ' No ', the relevant control loops R1 to R8 will be disabled at power recover. Re-enabling must then be effected from the programmer or the S5-CPU.

4.7.1 Disabling of a control loop in the RUN mode of the IP

If a control loop is disabled by the programmer in the "Controller processing" form (or "Mode" form in the case of the PG 615), this means no calculation is carried out for this control loop.
The response of the analog outputs assigned to this disabled control loop can be selected by the user. There is a menu for this purpose on the PG. There are two options for selection:

Option 1: the analog outputs remain in the state they had at disabling.
Option 2: the analog outputs are reset, i.e. OV is output.
If the user selects option 2, then in addition all measuring points and previous values of the controi loop are reset.

4.7.2 Enabling a control loop in the RUN mode of the IP

The reaction of a control loop to being enabled depends on its past history.
Pre-history 1: The control loop was enabled during RUN of the IP and then disabled. When the control loop is again enabled, then two cases must be differentiated:

Case 1: The analog outputs of the control loop have retained the last value while the control loop is disabled. In this case, a check is made as to whether a warm restart of the controller is possible. If the warm restart criterion is fulfilled, then the control loop continues with the last values, which it had when it was disabled. The warm restart criterion is (as in Section 4.6): The actual value before disabling and the actual value after enabling should not differ in magnitude by more than 25% of the actual value before disabling.

If the warm restart criterion is not fulfiled, then a cold restart of the controller is carried out, i. e. ali previous values of the control loop are reset.

Case 2: The analog outputs of the contral loop were reset while the control loop is disabled (outputs at 0 V).
This always requires a cold restart of the control loop as a consequence. This means that the previous values of the control loop are reset.

Pre-history 2: The control loop was never enabled in the RUN mode of the IP. In this case enabling always leads to a cold restart of the control loop.

4. Programming Instructions

4.8 RUN/STOP Mode of the Module

Both modes STOP and RUN of the IP can be selected via the switch on the module, via the PG or via the S5-CPU. The switch has the top priority. If for instance the RUN mode was selected via the PG and the switch was set to the STOP position, then the IP always goes to the STOP mode.

A transition from the STOP mode to the RUN mode caused by the PG, CPU or switch always triggers a cold start (Section 4.7.2). This means that all previous values, bits, variables and relays are reset. The control loop enabiing however remains uninfluenced!

4.8.1 RUN mode

The following characteristics apply to the RUN mode:

- The analog outputs of the control loops are active.
- Individual control loops can be enabled or disabled.
- Enabled control loops are executed.
- Communication with the PG is possible.
- Communication with the S5-CPU is possible.
- Controiler parameters are automatically saveci on the EEPROM of the memory submodule.
- Constants, relays, bits, variables and measuring point assignments of the control loops can be modified.
- The structuring of a control loop is not allowed.

The IP can reach the RUN state in various ways.
After "power on" the IP goes automatically into RUN, if the conditions of Section 4.6.2 are fulfilled:
If the IP is in the STOP mode, then there are various ways of going to RUN. It is assumed that a memory submodule with a valid identifier is inserted, and the S5-CPU is in the RUN mode. These ways are:

- The switch is moved to the RUN mode OR
- The PG gives the RUN command and the switch is in the RUN mode OR
- The S5-CPU gives the RUN command and the switch is in the RUN mode

4.8.2 STOP mode

The following characteristics apply to the STOP mode:

- All analog outputs of the module are connected to module earth via relays.
- Individual control loops can be enabled and disabled. Enabled controllers are not executed.
- Communication with the PG is possible.
- Communication with the S5-CPU is possible.
- Controller parameters are automatically saved on the EEPROM of the memory submodule.
- Constants, variables and measuring point assignments can be modified; this does not apply to bits and relays.
- The structuring of a control loop is not allowed.

The STOP mode of the IP is reached by various ways.
After "power on" the IP goes into STOP, if the conditions described in Section 4.6.2 are fulfilled.
The IP goes from the RUN mode into the STOP mode, due to the following:

- The S5-CPU goes to STOP (BASP active)

OR

- The switch on the IP is set to STOP OR
- The voltage monitoring of the module signals a fault OR
- The PG gives a STOP command OR
- A hardware fault occurs

OR

- The S5-CPU gives the STOP command OR
- The watchdog is triggered OR
- An access is made to a defective or missing analog module.

4. Programming Instructions

4.9 Explanation of the Symbols used in the Configuring Sheets (Section 8)

The basis of the description of the controller structures are the configuring sheets (Section 8) for these controller structures. The symbols and abbreviations used are described below.

Main structure switeh (configuring bit) for branch 13:
The switch (St 13) is used for selecting branches within a controller structure. The user determines via the programmer if the branch is to be executed or not.

Structure switch 1 in branch 8:

The switch ($\$ 8.1$) determines the signal flow within a branch. The switch position is only scanned by the $P G$ if the corresponding branch is selected.

Note regarding the main structure switches. Modification of the switch position is only possible in the STOP state of the IP. The PG must be in the "Structuring" moce.

Relay 2 in branch 8:

The term relay (REL 8.2) is used to identify switches which can be modified in the RUN state of the control loop, i. e. during the time the IP is processing control loops, the signats in a control loop can be interrupted, switched through or switched over.
The relays are influenced by the control program of the CPU and from the PG.

Binary (input) value 1 in branch 3:

Binary (output) value 1 in branch 11:

The control loop recognises binary input variables and binary output variables. The states of the input bits ($0 /$ 1) can be modified in the RUN state of the IP both from PG and also from the control program of the CPU. Binary output variables $(0 / 1)$ are transferred to the control program of the CPU from the IP. They can be simultaneously observed with the PG.

Analog input 4 of the controller structure (anaiog-to-digital converter)

Analog output 1 of the controller structure (digital-to-analog converter)

Each controller structure has a certain number of analog input/output variables (ADC 1, ADC 2, . . or DAC 1, DAC $2, \ldots$. . The assignment of these inputs/outputs to the connected signal lines of the IP or the analog modules is carried out with the PG. This is only possible in the STOP state of the \mathbb{P}.
The following inputs are possible via the PG:
$0, \ldots, 7$ The analog input/output variables are processed in the IP and are connected to channel numbers $0, \ldots, 7$ at the terminal block. (Section 2.1.3.1.5)
$128, \ldots, 254$ The analog input/output variables are processed in the analog module. The S 5 addresses are in the range F 080 H to FOFFH . This is the peripheral range without process image.
Addressing is slot-coded. Address "128" corresponds to an analog input or output module in the slot next to the CPU and the second slot is then coded with " 160 " ($=128+32$). The two's complement must be set as the format and sampling is performed cyclically.

The IP 252 can only access analog modules when used in the 115 U -CPU. Depending on the CPU version only a limited number of IPs can access analog modules:

CPU	Number
944	3
941 to 942 B	1
otherwise	0

The following input is also possible in the case of user submodules with the structures "DRS/SR", wherever an $A D C_{n}$ is indicated in Sections 8.2 and 8.3 of the configuration documentation:
RNo. MPNo. R No. is the controller number 1 to 8 and
M No. is the number of a measuring point of this controller structure.
This makes it possible to assign, for example, the processed actual value of controller No. 2 to controller No. 3 as a setpoint. The following value is entered by the programmer in the entry field of ADC 6 (of branch 8 in controller No.3): ADC6 2.12.

4.9 Explanation of the Symbols used in the Configuring Sheets

Constant value 1 in branch 10

The following numerical values can be input via the PG in the STOP and the RUN state of the $1 P$:

- Timers (e. g. ramp-up time $=20 \mathrm{~s}$)
- Percentage values (e. g. setpoint $=50.05 \%$)
- Dimensioned variables (e. g. setpoint $=300.5 \mathrm{rev} / \mathrm{min}$)
- Dimensionless variables (e. g. proportional value $=10.01$)
(refer to Section 4.4 for available possible input formats)

Variable value 1 in branch 9

Setpoints can be input not only as analog signals but also as numerical values. These numerical values can be generated both by the PG and also by the control program of the CPU. If these numerical values are generated by the S5-CPU, then they are identified with "VAR". Variable values can be entered in the STOP and the RUN state of the IP.

The following values can ipe input:

- Percentage values (e. g. speed setpoint $=10.83 \%$)
- Dimensioned variables (e. g. temperature setpoint $=1024^{\circ} \mathrm{C}$)
(reier to Section 4.4 for available input formats)
Measuring point 1 of the controller structure
A series of measuring points are distributed over each controller structure. These measuring points can be used to observe the most important signals of the control loop.
Measuring points are
- Percentage values

OR

- Dimensioned variables

In the RUN state of the IP it is possible to assign any desired measuring points to limit monitors or measuring sockets with the $P G$. A recorder can be connected to the measuring sockets (on the front panel of the IP) and the signal can be recorded. Crossing of upper or lower limits by signals can be monitored with the limit monitors.

Note regarding the switch position for relays and function switches:

The position drawn in the configuring sheets is always the default position. A switch position can only be changed by an action on the part of the user:

- For structure switches, a branch or a function must be selected with the PG (=1).
- For relays, the corresponding bit must be active (" 1 "). This is possible using "Force" on the PG during the "Controller test" mode or via the S5-CPU.

4. Programming Instructions

4.10 Description of the Drive Controller Structure (DR)

The structure contains all functions required for controlling a drive, except for the current controller and the power stage. This means that depending on the requirements of the user, a speed control system (e.g. for mills, turbines) or a velocity control system (e. g. for paper machines, winders and foil machines) can be implemented.

The drive controller structure (Fig. 9.1) consists basically of two cascaded closed-loop controllers. Parameters can be assigned to each of the controilers of P, PI, PD or PID response. The outer loop controller (9) is used e. g. for position control, tension control or pressure control. One should mention at this stage that the numbers in brackets correspond to the branch number ((5) \doteq branch 5). A velocity control loop or a speed control loop can be implemented using the inner loop controller (5).

Upon a request by the CPU of the programmable controiler, the closed-loop controller structure can be switched over to "direct tension control". The output of the inner loop controller (5) is then switched to limit the outer loop controlier (9). The output of the outer loop controller (9) generates the manipulated variable (current setpoint).

4.10.1 Outer loop controller (9)

The setpoint (e. g. position setpoint) is input either via an A/D converter, or via the programmer or the CPU of the programmable controller. The actual value (e.g. actual position value) is sensed by an AVD converter. The controller output can be reduced in proportion to the actual speed value. This is used for speed-dependent adaptive control in foil machines.

4.10.2 Inner loop controller (5)

The following setpoint sources can be programmed:

- 1st channe!: Output of the outer loop controller (9)
- 2nd channel: Setting up speed (6)
- 3rd channel: Inching speed (7)
- 4th channel: Armature current dependent component (11)

This component is used e.g. in conveyor belts and continuous casting processes (load regulation).

- 5th channel: Main setpoint (speed or velocity setpoint (8)).

This setpoint is input either via an A/D converter, via the programmer or via the programmable controller CPU. The acquired setpoints can be processed by a ramp function generator and/or a smoothing module.
The ramp function generator module produces a ramp output from a step function at its input. This is required for instance during start up processes.
The smoothing module is used for "smoothing" the setpoint.
The control loop can be tuned to optimum disturbance response. Selection of a suitable smoothing time constant produces an optimum response to setpoint changes.

The actual value (10) (actual speed value) can be input either as a tacho voltage via the A/D converter or via a counter input. A smoothing module is used for suppressing any resonances. In addition, the high frequency disturbances to which the controller cannot respond are kept away from the PID module (10).
The display function (10) provides a steady display of the actual speed value via a measuring instrument connected to the D/Aconverter.

In the case of the speed control loop, the actual speed value (10) is used directly in the inner loop (speed) controller (5). If a velocity control is required, the current velocity is calculated from the actual speed value (3 a) and transmitted to the inner loop (velocity controller) as an actual velocity value.

The controller output, optionaliy evaluated with a factor (4), forms the main component of the current setpoint. This evaluation of the controller output produces a loop gain, as required e. g. during the field weakening operation of motors.

4. Programming Instructions

4.10.3 Current setpoint

The current setpoint which is generated by the IP 252 as a $\pm 10 \mathrm{~V}$ voltage at the D / A converter consists of the following:

- 1st channel: Main current setpoint (5)
- 2nd channel: Friction compensation (2)
- 3rd channel: Acceleration compensation (3 b); is used in velocity controllers (e. g. reeling and unwinding operations)
- 4th channel: Braking current modulation (1 b)

Instead of the summed output (1 a), an actual speed dependent braking current can be output as the manipulated variable.

Before the current setpoint is output as the manipulated variable, it can be converted and limited (1 b).

4.10.4 Additional functions

- Two user connected limit monitors (12), (13):

Each of the limit monitors can be assigned to any desired signal (measuring point) of the controller structure. The limit monitors contain 6 stages, which are specified via the programmers. The results of the limit monitors (overshoot or undershoot) are evaluated by the logic control program of the S 5 central controller.

- Four pre-assigned limit monitors:

These limit monitors support the operator communication and control concept of the compact controller structures. The results of the monitors are used for instance by the CP 526 communications processors as inputs for the standard displays on the VDUs. The limit monitors monitor setpoints and actual values of the outer loop (9) and the inner loop (5) controllers. The danger and the warning limits are specified via the programmer in the planning stage.

- Thermal monitoring of the motor (11):

Using the actual armature current a thermal monitoring of the motor is possibie. If one of the switching limits specified by the programmer is reached this is communicated to the logic control program.

- Two user assigned measuring sockets (14, 15)

Two measuring sockets are located on the front panel of the controller moduie. Any desired signals (measuring points) of the controller can be measured at these measuring sockets. The programmer is used to assign a particular signal to a particular measuring socket.

4. Programming Instructions

4.10 Description of the Drive Controller Structure (DR)

4.10.5 Detailed description of the drive controller structure

The following description refers to the configuring sheets (Section 8) for the drive controlier structure. The symbols used here are explained in Section 4.9.

The three overview pages of Section 8 show all the branches of the drive controller structure. The shading in branches 1,5 , and 10 of the drive controller structure means that these branches cannot be switched off. These branches are aiways active! The precise representation of the structure can be found in Section 9 (Fig. 9.1) of the Appendix.

4.10.5.1 Branch 1: Controller output/current setpoint

Function:

The current setpoint (manipulated variable) is generated and output via an analog output channel. The current setpoint can be inverted with structure switch $\$ 1.1$.
The limiting stage limits the current setpoint to values, which are specitied by the user via the PG. The upper and lower limiting values are cietected in branch 5 (Section 4.10 .5 .5) by the $P G$. If the current setpoint crosses the limits, then this is taken into account in the inner loop controlier (PID module) in branch 5; i. e. the corresponding overflow bits are set and the 1 component of the PID controller is disabled as long as an overflow bit is set.

Relay REL 1.1 is available for braking action. If the relay is active, then DAC2 outputs the current setpoint, which is linearly dependent on the instantaneous actual speed value. MP12 is multiplied by (-100) and by the constant CON1.1, with REL1.1 active. This means that 0% is output as the current setpoint when 0 speed is reached.

Input variables:

- Current setpoint component from branch 2
- Currentsetpoint component from branch 3
- Main current setpoint from branch 5

Braking compensation:

- CON1.1 The constant influences the magnitude of the braking current
- MP12 Actual speed from branch 10
- REL1.1 When active, the motor is braked to standstill.

Output variables:

- DAC2 Current setpoint (manipulated variable) after limiting.
- MP6 Magnitude of the braking current.

The actual speed value, multiplied by the constant CON1.1 and (-100) is the braking current.

- MP9 Current setpoint before limiting

4.10.5.2 Branch 2: Friction

Function:

This branch can be activated with relay REL 2.1 for compensating friction (stiction) forces. In order that the correct polarity of these current setpoint components is maintained even when the direction of rotation changes, the constant 2.1 is multiplied with the sign of the speed setpoint.

Input variables:

- CON2.1 The constant specifies the magnitude of the current setpoint component.
- REL2.1 When active, the current setpoint component is enabled.
- MP14 Speed setpoint from branch 8

Output variables:

- The output from branch 2 is connected to the summation point of branch 1.

4. Programming Instructions

4.10.5.3 Branch 3: Acceleration compensation and diameter calculator

This branch consists of two sections, which are used for operating axel-driven upcoilers and downcoilers.

Functions:

a) Acceleration compensation, branch 3 b

If rotating masses are accelerated (decelerated) an acceleration (deceleration) torque is required from the electric drive. If the rotating mass is connected by a web of material to a drive with a different mechanical time constant, this can produce fluctuations in tension in the web during acceleration or deceleration. To minimize these fluctuation, the drive is supplied with a current setpoint component dependent on the acceleration torque.
The speed setpoint from branch 5 is differentiated for this purpose. The result is acceleration. This is multiplied with the constant KON 3.1 and applied to branch 1 as acceleration current.
b) Diameter calculator, branch 3 a.

A primary requirement in upcoiling and downcoiling is that the web material is kept at a suitable tension. The IP 252 does this by means of velocity control (speed control) with primary tension control. With this "direct tension control" (actual tension measurement via tension load cells or dancer roll), the tension is controlled with branch 9 . If there is a dancer roll, the primary controller functions as a position controller. The tension is determined by the weight of the dancer roll or the load applied to it. The actual speed is matched to the coil diameter in branch 3 a. Excitation during the coiling operation can be influenced via measuring point MP 15, which is then routed to a DAC via a measuring socket (branch 14 or 15). A precondition for coiling control is that the web speed be set by the driven machine.

Function sequence in the case of downcoiling

If the coil diameter decreases, the speed controller tries at first to maintain the speed since its input signals remain constant. This increases the web tension. The tension controlier or position controller makes the appropriate adjustment and the speed is increased. This also increases the product $n \times d$ (MP 16). At the input to the summator in branch $3 a, n \times d$ is greater than the master reference voltage V_{L} at MP 14 and at this point the integrator runs from the set initial diameter (MP 15) downwards until the product $n \times d$ is again equal to V_{L}.
The actual value $n \times d$ for branch 5 is therefore smaller and so the drive is "faster". The correction value of the primary controller is decreased. During the coiling operation, n is therefore greater and d smaller; $n \times d$ always remains equal tc V ! Branch 3 a functions similarly in the case of upcoiling with the difference that, in this operation, the integrator functions upwards from a small initial diameter.
It is important that the new initial diameter be set at the beginning of a coiling operation (e. g. by the CPU control program). The level of the master reference voltage (MP 14) at max. production speed depends on the coiling ratio.

Example:

Diameter of empty mandirel $\quad 200 \mathrm{~mm}=22.2 \%$
Diameter of full coil
$900 \mathrm{~mm}=100 \%$
Diameter ratio $=4.5 \%$
Max. master reference voltage $=22.2 \%$
The master reference voltage can be influenced by means of the constant CON 8.2 in branch 8.
The diameter (MP 15) is only deleted in the STOP mode of the IP 252.
in the case of a warm restart after power failure, the old value is retained if the IP RAM has battery back-up.

Input variables

Acceleration compensation, branch 3b
-CON3.1 The constant determines the influence on the current setpoint
-MP 14 Velocity setpoint from branch 8
Diameter calculator, branch 3 a
MP 12 Actual speed from branch 10
-VAR 3.1 The diameter of a newly mounted coil must be entered here. The IP 252 calculates the current diameter in the case of up and down coiling, starting from this diameter.
-REL 3.1 This relay influences the output of the integrator. When the relay is inactive, the currently calculated diameter is at the integrator output. When active, the output of the integrator is set to the value of variable 3.1. The diameter can be set again at any time.
-BIT 3.1 If the bit is " 0 ", the integrator is disabled. The last diameter calculated remains at the output. If the bit is set to " 1 ", the integrator begins to work again from the last diameter calculated.

Output variables

Acceleration output, branch 3b:
-MP 7 Magnitude of the current setpoint component
Diameter calculator, branch 3a:

- MP 15 Current diameter of the coil
-MP 16 Velocity value (to the summator in branch 5).

4. Programming Instructions

4.10 Description of the Drive Controlier Structure (DR)

4.10.5.4 Branch 4: Loop gain

Function:

The output of the inner control loop in branch 5 is evaluated and gives the main component of the current setpoint. Depending on the position of structure switch $\$ 4.1$ various arithmetic operations can be carried out:

\$4.1 inactive: (division in branch 5)

The signal (field current) input through an analog input channel is transmitted to a function generator and multipied with the constant CON4.1. The characteristic cannot be changed on the IP and is described in Section 4.10.6.5. This characteristic gives the approximate relationship between the field current and the magnetic flux of the D. C. motor. The shape of the characteristic is selected to fit a majority of the most commonly used motors (see Section 4.10.6.5).

S4.1 active: (multiplication in branch 5)

In the case of velocity control, the actual diameter calculated in branch 3 (MP15) is multiplied with the constant CON 4.i.
The result of this product is multiplied with the output variable of the control algorithm.

Input variables:

- ADC5 Field current
- CON4.1 The constant determines the influence of the arithmetic operation
- MP15 Actual diameter from branch 3

Output variables:

- MP8 Operation on the controller output in branch 5

4.10.5.5 Branch 5: Speed controller/velocity controller

Branch 5 (and also branch 9) contains a relay (REL 5/9), which is only active in a special application ("Direct tension control"). Section 4.10.5.16 is devoted to this application. Therefore in the description below this relay is assumed to be inactive.

Function:

The instantaneous control deviation is determined in the summation stage. It is calculated from the difference between the setpoint and the actual value (see page 2 on branch 5 in Section 8.1). The setpoint consists of the outputs of branches $6,7,8,9$ and 11 , the actual value is the output of branch 3 or 10 . If the actual value comes from branch 3 , then it is a velocity control system otherwise it is a speed control system.
The setpoint and the actual value are each monitored by a preassigned limit monitor. The function of this monitor is described in Section 4.40.6.1.
If the relay REL 5.1 is inactive, then the output of the summation stage goes to the PID controller. For commissioning purposes the relay can be made active. Then the constant CON5.1 goes to the PID controller input.
The PID controller can be assigned $\mathrm{P}, \mathrm{PD}, \mathrm{PID}$ or PI control action by setting various parameters to zero:
$\begin{array}{ll}\mathrm{TN}=0 & \text { l component not active } \\ \mathrm{TV}=0 & \text { D component not active }\end{array}$
Both the limits CON5.B+ and CON5.B- limit the manipulated variable in branch 1. If the manipulated variable in branch 1 crosses one of the limit values, then the corresponding bits BIT5.UE+ and BIT5.UE- of branch 5 are set.
The PID controller in branch 5 then disables its integrator. This prevents "wind up" of the integrator.
The output of the PID controller is operated on by the output of branch 4 , if branch 4 was selected. If branch 4 was not structured then no operation is carried out, the controller output is connected to branch 1 without modification.
Evaluation: Multiplication if S4.1 $=1$
Division if $\$ 4.1=0$
The output of branch 5 is the main component of the current setpoint.

Input variables:

PID controller module:

- CON5.KP	Proportional value - CON5.TN - CON5.TV
Integrating time - CON5.B+	Differentiating time,The constant determines the upper limit for the limiting in branch 1. - CON5.B- of the PID controller
- BIT5.RF	The constant determines the lower limit for the limiting in branch 1.

Setpoint limit monitor:

- CON5.SOG Upper limit

Actual value limit monitor:

- CON5.OW Upper warning limit
- CON5.UW Lower warning limit
- CON5.OG Upper danger limit
- CON5.UG Lower danger limit

Miscellaneous;

- CON5.1 When relay REL5.1 is active, the constant works on the input of the PID controller. (Start-up value).
- REL5.1 When the relay is active, it switches the constant CON5.1 to the PID controller input.
- REL5/9 With this relay, one can switch over to "Direct tension control" (see Section 4.10.5.16).

Output variables:

PID controller madule:

- BIT5.UE+ This bit is active if the manipulated variable (MP9) in branch 1 crosses the upper limit CON5.B+ (in branch 1). The integrator in the PID controller is then frozen.
- BIT5.UE- This bit is active if the manipulated variable in branch 1 crosses the lower limit CON5.B- (in branch 1). The integrator in PID controller is then frozen.

Setpoint limit monitor

- BIT5.SOG The bit is active if the setpoint crosses the upper limit.
- BIT5.SUG The bit is active if the setpoint crosses the lower limit.

Actual value limit monitor

- BIT5.OW The bit is active if the actual value crosses the upper warning limit.
- BIT5.UW The bit is active if the actual value crosses the lower warning limit.
- BIT5.OG The bit is active if the actual value crosses the upper danger limit.
- BIT5.UG The bit is active if the actual value crosses the lower danger limit.

Miscellaneous:

- MP10 Main current setpoint (input of the summation stage in branch 1)
- MP11 Input of the PID controller (control deviation)

Note:

The bits BIT5.SOG to BIT5.SUG are not evaluated by the standard function block FB: FORCE (Section 5.1).

4.10.5.6 Branch 6: Setting-up speed

Function:

When relay REL6.1 is active, the constant CON6.1 is switched to the summation stage in branch 5.

Input variables:

- CON6.1 Constant used as the setting-up speed setpoint
- REL6. 1 Relay used to switch the constant CON6. 1 to the speed controller, branch 5 (control deviation).

Output variables:

- The result of branch 6 is connected to the summation stage in branch 5 .

4.10.5.7 Branch 7: Inching speed

Function:

If relay REL7.1 is active, then the constant CON7.1 is switched to the summation stage in branch 5 .

Input variables:

- CON7.1 Constant used as the inching speed setpoint.
- REL7.1 Relay used to switch the constant CON7.1 to the speed controller, branch 5 (control deviation).

Output variables:

- The result of branch 7 is connected to the input of the summation stage in branch 5 .

4. Programming Instructions

4.10 Description of the Drive Controller Structure (DR)

4.10.5.8 Branch 8 : Speed/velocity setpoint

Function:

The branch generates the main setpoint for the inner loop controller in branch 5 .
Relay REL8. 3 is used to select whether the setpoint is an analog or a digital input. In the case of an analog input (REL8.3 inactive) the IP inputs the value via ADC6.
In the case of a digital input (REL8.3 active) relay REL8.1 can be used to decide whether the setpoint comes from the PG (CON8.1) or from the logic control program of the S5-CPU (VAR8.1).

Further processing of the setpoint is only carried out if relay REL8.2 is active. The setpoint can be enabled or disabled with the relay.
The setpoint input via ADC or VAR8.1/CON8.1 can be transmitted via a ramp-function generator or a smoothing block or via both simultaneously. The structure switches S 8.1 and S 8.2 determine which block is selected.

The processed setpoint (MP17) is multiplied by the constant CON8.2 and then transmitted to branch 5.
If structure switch $\$ 8.3$ is active, then the processed setpoint (MP17) is output via an anaiog output channel (DAC5).
The ramp-function generator block and the smoothing block are described in detail in Section 4.10.6.
Input variables:

Setpoint input:

- ADC6 For analog setpoint input, the signal is input via ADC6.
- REL8.1 The source for the digital setpoint is selected by the relay. If the relay is inactive, the value comes from the PG (CON8.1).
- REL8.3 The relay determines whether the setpoint input is analog (relay REL8.3 inactive) or digital (relay REL8.3 active).
- REL8.2 When active, the relay allows the setpoint to be processed further.
- CON8.1 For digital setpoint input (REL8.3 active) and with relay REL8.1 inactive, the PG is the source of the setpoint (CON8.1).
- VAR8.1 For digital setpoint input (REL8.3 active) and with relay REL8.1 active, the logic control program of the S5-CPU is the source of the setpoint.
- CON8.2 Multiplication of the processed setpoint by a constant.

Ramp-function generator:

- CON8.TR Ramp-down time
- CON8.TH Ramp-up time
- CON8ZZUW
increment
- BIT8.HOE Increase bit
- BIT8.TIE Decease bit
- BIT8.LOE Reset
- MP12/16 Actual speed/velocity

Smoothing block:

- CON8.TVZ Delaytịme see Section 4.10.6.2

Output variables:

- MP14 Magnitude of the setpoint after optional processing by the ramp-function generator block and/or the smoothing module. This value is transmitted to the summation stage in branch 5 .
- MP17 Magnitude of the setpoint directly after being input.
- DAC5 For active structure switch S 8.3 , the processed setpoint is output to an analog output.

4.10 Description of the Drive Controller Structure (DR)

4.10.5.9 Branch 9: Outer loop (primary) controller

Branch 9 (and also branch 5) contains a relay REL $5 / 9$, which is only active in a special application ("Direct tension control"). Section 4.10 .5 .16 is devoted to this application. Therefore in the description below this relay is assumed to be inactive.

Function:

The control deviation is determined in the summation stage. The actual value is input via $A D C 1$. The setpoint can be input either as an analog variable ($\$ 9.2$ inactive) or digital variable (59.2 active). For digital setpoint input, the state of relay REL9.1 determines whether this value comes from the S5-CPU (VAR9.1) or from the programmer (CON9.1).
The setpoint and the actual value are each monitored by a preassigned and non-optional limit monitor (see page 2 on branch 9 in Section 8.1). The operation of both these imit monitors is described in Section 4.10.6.1.
The control deviation (output of the summation stage) is used as the input by the PID controller.
The PID controller can be assigned, P, PD, PID or PI control action by setting various parameters to zero:
TN = 0 I component not active
TV $=0 \quad$ D component not active
The controller output is limited by CON $9 . B+$ and CON $9 . B$ - and then multiplied before it reaches the summation stage of branch 5. The type of this evaluation can vary:
multiplication by a constant is possible via the PG value CON 9.2. However, it is also possible to make the operation proportional to the instantaneous speed value (MP 12 from branch 10).
If the signal reaches the limit, the relevant bit, BIT9.U+ or BIT9.U-, will be set. The PID controller then disables the integrator. In this way " wind up" of the integrator is prevented.

Input variables:

Setpoint input:

- ADC2 Setpoint input if analog setpoint input mode was selected ($S 9.2$ inactive) during structuring.
- REL9.1 The source for the digital setpoint is selected by the relay. If the relay is inactive, the value comes from the PG.
- CON9.1 For digital setpoint input and with relay REL9.1 inactive, the PG is the source of the setpoint (CON9.1).
- VAR9.1 For digital setpoint input and with relay REL9.1 active, the S5-CPU is the source of the setpoint (VAR9.1).

Actual value input:

- ADC1 The actual value is always input as an analog variable.

PID controller:

- CON9.KP

Proportional gain

- CON9.TN integral-actiontimé
- CON9.TV Derivative-action time
- CON9.B+ The constant determines the upper limit for the limiting.
- CON9.B- The constant determines the lower limit for the limiting.
- BIT9.RF The bit enables or disables the PID controller. The controller is enabled if the bit is active. In the disabled state, the controller outputs 0% and resets its internal memory.

Setpoint limit monitor:

- CON9.SOGL Upper limit
- CON9.SUGL Lower limit

Actual value limit monitor:

- CON9.OWL Upper warning limit
- CON9.UWL Lower warning limit
- CON9.OGL Upper danger ievel
- CON9.UGL Lower danger level

Multiplication of the controller output:

- CON9.2 This value is multiplied with the controller output if structure switch $\$ 9.3$ is active.
- MP12 The controller output is multiplied with the actual speed value input in branch 10 if structure switch S9.3 is inactive.

Miscellaneous:

- REL5/9 This relay can be used for switching over to "Direct tension control".

4. Programming Instructions

4.10 Description of the Drive Controller Structure (DR)

Output variables:

PID controller:

- BIT9.UE $+\quad$ The bit is set when the output of the PID controller crosses the upper limit CON9.B+. The integrator in the PID controller is then frozen.
- BIT9.UE- The bit is active when the output of the PID controller crosses the lower limit CON9.B-. The integrator in the PID controller is then frozen.

Setpoint limit monitors:

- BIT9.SOG The bit is active when the setpoint crosses the upper limit.
- BIT9.SUG The bit is active when the setpoint crosses the lower limit.

Actual value limit monitors:

- BIT9.OW The bit is active when the actual value crosses the upper warning limit.
- BIT9.UW The bit is active when the actual value crosses the lower warning limit,
- BIT9.OG The bit is active when the actual value crosses the upper danger limit.
- BIT9.UG The bit is active when the actual value crosses lower danger limit.

Miscellaneous:

- MP1 Actual value of the outer loop controller
- MP2 Setpoint of the outer loop controller
- MP3 Controi deviation of the outer loop controller
- MP4 Input of the summation stage in branch 5

Note:

The bits BIT9.SOG to BIT9.SUG are not evaluated by the standard function block FB:FORCE (Section 5).

4.10.5.10 Branch 10: Actual speed value

Function:

The actual speed value can be input via an analog input channel (ADC3) as a tacho voitage or via the pulse detection input as a pulse sequence. If required, the smoothing block can be used to smooth the actual value. Then the signal is multiplied by a constant (CON 10.1). If relay REL 10.1 is inactive, the result of the multiplication in the case of a speed control system goes to branch 5 , in the case of velocity control to branch 3 .
For display purposes the actual speed value (MP12) is processed further. It is multiplied by a constant (CON10.3), then transmitted via the display block and output via the analog output channel DAC1.

If relay REL 10.1 is active, the constant CON10.2 goes to branch 3 or branch 5 .
Relay REL 10.1 is used during start up.
The display and smoothing blocks are described in Section 4.10.6.4.

Input variables:

- CON10.1 The constant is used for normalizing the actual speed value.
- CON10.2 This value can be input for commissioning purposes via relay 10.1.
- CON10.3 The constant is used for calibrating the display via DAC1.
- CON10.4 Rated speed in revolutions per second.
- CON10.5 The number of index lines divided by 100. Both constants CON10.4 and CON10.5 are used for calibrating the digital actual speed value input. At rated speed the block outputs 100%. (Example: CON 10.5 ; 5 气 500 index lines).
- CON10.TVZ Input variable of the smoothing block, see Section 4.10.6.2.
- ADC3 Address of the analog input channel used for sensing the tacho voltage
- DAC1 Address of the analog output channel used for displaying the actual speed value.
- REL10.1 When active, this relay activates constant CON 10.2.

Output variables:

- MP12 This is the processed actual speed value.

It is effective at the input of either branch 3 or branch 5 . In addition the value can be output via an analog output channel.

4. Programming Instructions

4.10 Description of the Drive Controller Structure (DR)

4.10.5.11 Branch 11: Actual armature current value

Function:

The actual value of the armature current is input via ADC4. It should be routed via the input terminals 3 and 4 (channel 1) since actual value filtering is possible in the terminal block. The actual current value is used for thermal monitoring of the machine and/or for injection in the summator in branch 5 .
If applied to the summator in branch 5 , the actual current value is used, for example, for characteristic manipulation or, in the case of voltage controll, for ($\mid \times R$) compensation. A signed actual current value is required in the case of a 4 -quadrant drive. The influence of the actual current value can be influenced by constant CON11.3.
Using the armature current, a thermal monitoring of the motor is possible ($\$ 11.2$ active). For this purpose the armature current is substituted in an equation. This equation generates the approximate temperature response of the armature winding. When the limiting value is reached (CON1111), bit 11.1 becomes active.
A more detailed description of the equation is given in Section 4.10.6.6.

Input variables:

Thermal monitoring:

- CON11.1 The constant gives the value from which the thermal monitor sets bit 11.1.
- CON11.2 The constant is a characteristic of the motor. It is a criterion for how quiekly the motor warms up.

Miscelianeous:

- CON11.3 The constant is multiplied by the armature current when 511.1 is active.
- ADC4 Address of the analog input channel used for the actual armature current.

Output variables:

- BIT11.1 This bit is set, when the thermal monitor has reached the limit CON11.1. When the bit is set, the maximum permitted heating of the armature has been reached.
- MP5 The actual armature current value after multiplication by constant CON11.3. This value is used as the input of the summation stage in branch 5 .
- MP13 Actual armature current value input via ADC4.

4.10.5.32 Branch 12: Limit monitor 1

Function:

The limit monitor monitors the value at any desired measuring point. A maximum of six limits can be used. The no. of the monitored measuring point can be modified in the RUN mode of the IP at any time.
The function is described in detail in Section 4.10.6.7.
Input variables:

- MPNO. No. of the measuring point to be monitored (1... 17)
- CON12.1
- CON12.2
- CON12.3
- CON 12.4
- CON12.5
- CON12.6
- CON12.7 Number of limiting values

Output variables:

- BIT12.1
- BIT12.2
- BIT12.3

Maximum of 6 limit values

- BIT12.4
- BIT12.5
- BIT12.6

4. Programming Instructions

4.10 Description of the Drive Controller Structure (DR)

4.10.5.13 Branch 13: Limit monitor 2

Function:

The limit monitor monitors the value at any desired measuring point. A maximurn of six limits can be used. The no. of the monitored measuring point can be modified in the RUN mode of the IP at any time.
The function is described in detail in Section 4.10.6.7.

Input variables:

- MPNO No. of the measuring point to be monitored (1... 17)
- CON13.1
- CON13.2
- CON13.3 Maximum of 6 limit values
- CON13.4
- CON13.5
- CON:3.6
- CON13.7 Number of limiting values

Output variables:

- BIT13.1
- BIT13.2
- BIT13.3
- BIT 13.4

Maximum of 6 output bits

- BIT13.5
- BIT13.6

4.10.5.14 Branch 14: Measuring socket 1

Function:

The value of any desired measuring point can be output via an analog output channel. The no. of the measuring point can be modified any time during the RUN mode of the IP.

Input variables:

- MPNO No. of the measuring point, which is to be recorded (1 ... 17)
- DAC3 Address of the analog output channel at which the value of the measuring point is to be output. Measuring socket 1 is permanently connected to the DAC channel 5 .

4.10.5.15 Branch 15: Measuring socket 2

Function:

The value of any desired measuring point can be output via an analog output channel. The no. of the measuring point can be modified any time during the RUN mode of the IP.

Input variables:

- MPNO No. of the measuring point, which is to be recorded (1... 17)
- DAC4 Address of the analog output channel at which the value of the measuring point is to be output. Measuring socket 2 is permanently connected to the DAC channel 6.

4. Programming Instructions

4.10.5.16 Special case: Direct tension control

In the case of a velocity control system (branch 3 active), one can switch over to "Direct tension control". Switchover is carried out by relay REL $5 / 9$ from the control program of the S5-CPU.

When relay REL 5/9 is active the following occurs:

- Measuring point MP10 of the velocity controller in branch 5 is used by the outer loop controller in branch 9 either as the upper or lower limit. The state of the structure switch S9.1 determines whether the lower or upper limit is specified by MP10.
- Measuring point MP4 of the outer loop controller in branch 9 becomes the input of branch 1 . MP4 is therefore the main component of the current setpoint.

This is illustrated by Fig. 4.4. This shows the case where the lower limit of the controlier from branch 9 is determined by the controller in branch 5 (S9.1 inactive). The upper limit is then the constant CON9.B+, which was specified via the PG.
When structure switch $\$ 9.1$ is active, then the upper limit of the controller frem branch 9 is determined by the controller in branch 5. The lower limit is then CON9.B-, which was specified via the PG.

4. Programming Instructions

4.10 Description of the Drive Controller Structure (DR)

4.10.6 Functions of the drive controller

4.10.6.1 Pre-assigned limit monitors in branches 5 and 9

The results of these limit monitors are used by a CP526 for display purposes. The output bits cannot be read from the standard FB used with the logic program (Section 5.1).

Function of the actual value limit monitor:
Four limits can be specified via the PG:

- Upper warning limit
- Lower warning limit
- Upper danger limit
- Lower danger limit

Each of these limits is assigned a bit. If a signal crosses the upper warning/danger limit, then the "Upper warning/danger limit crossed" bits are set. In all other cases they are reset. When the signal crosses the lower warning/danger limit, then the "Lower warning/danger limit crossed" bits are set. In all other cases they are reset.

Function of the setpoint limiting monitor:
Two limits can be specified via the PG:

- Upper limit
- Lower limit

Both limits are assigned two bits. When the upper limit is crossed the "Upper limit crossed" bit is set, otherwise it remains reset. When the lower limit is crossed, the "Lower limit crossed" bit is set, otherwise it is reset (Fig. 4.5).

Example: Setpoint limit monitor

Fig. 4.5 Method of operation of the pre-assignectimis monitor

4. Programming Instructions

4.10 Description of the Drive Controller Structure (DR)

4.10.6.2 Filter (see Fig. 4.6)

Function:
The filter smoothes an analog variable using a first order delay function.

Explanation of function parameters

Type of variable	Symbol	Description	Number format	Setting range
Parameter	TVZ	Filter time constant	Time	4 ms to 99 hrs 59 min

Explanation of function input/output variables

Type of variable	Symbol	Description	Number format	Setting range
Input variable	$X(t)$	Submodule input variable to be filtered	variable-dependent	-100% to $+100 \%$
Outputvariable	$Y(t)$	Filtered submodule output variable	variable-dependent	-100% to $+100 \%$

Fig. 4.6 Filter

4. Programming Instructions

4.10.6.3 Ramp-function generator

Function: (Fig. 4.7)

The ramp-function generator produces a ramp as the output signal $y(t)$ from an input step change $x(t)$.

- The slope of the positive ramps is determined by the constants (ZUW, TH) and of the negative ramps by the constants (ZUW, TR).
Positive ramps are where the output value $y(t)$ changes towards increasing speed ($\pm 100 \%$). Negative ramps are where $y(t)$ changes towards decreasing speed ($\pm 0 \%$).

The constant ZUW (increment) specifies the percentage value which is reached after expiry of the negative (TR) or positive (TH) ramp times, when a 100% step is connected to the input of the ramp-function generator.

In Fig. 4.7 (diagrams 1 to 4) several examples are included. They illustrate the influence of the constants ZUW, TR and TH.

- The ramp-function generator takes into account the actual value (MPx). This guarantees the fastest possible tracking of the setpoint $y(t)$ by the actual value $i(t)$. When ramping down, the actual value is taken into account, if it is less than the momentary ramp value calculated by the ramp-function generator. When ramping up, the actual value is taken into account if it is greater than the momentary ramp value calculated by the ramp-function generator. This procedure is explained in Fig. 4.8 (diagrams 1 to 5).
- Fig. 4.9 shows how the ramp-function generator behaves if the input signal is changed before the output signal has reached its final value.
The actual value is also taken into account here.

Explanation of function parameters and binary variables

Type of variable	Symbol	Deseription	Number format	Setting range
Parameter	CONTH CONTR CONZUW	Ramp-up time Ramp-down time Ordinates of the ramp-function generator, i. e. the ramp value achieved in the time TH or TR at 100% input step change (thus determining the ramp slope)	Time Time variabledependent	0.1 ms to 99 hrs 59 min 0.1 ms to 99 hrs 59 min 0 to $+100 \%$
Binary input signals	$\begin{aligned} & \hline \text { BITHOE } \\ & \text { BITTIE } \\ & \text { BITLOE } \end{aligned}$	Higher bit, $\mathrm{BH}=1$ starts rising ramp Lower bit, $\mathrm{BL}=1$ starts falling ramp Delete bit, $\mathrm{BD}=1$ effects switch from manual to automatic mode	$\begin{aligned} & \text { Bit } \\ & \text { Bit } \\ & \text { Bit } \end{aligned}$	$\begin{aligned} & 0 / 1 \\ & 0 / 1 \\ & 0 / 1 \end{aligned}$

Explanation of function input/output variables

Type of variable	Symbol	Description	Numberformat	Value range
Input variables	$\mathbf{X (t)}$	Current setpoint	variable- dependent variable- dependent	-100% to $\div 100 \%$ -100% to $+100 \%$
Output variable	$Y(t)$	Current actual value (MP12 or MP16)	variable- dependent	-100% to $+100 \%$

4. Programming Instructions

4.10 Description of the Drive Controller Structure (DR)

Fig 4.7 Ramp-function generator for drive controlle Assumption: Actual value referencing not sensible!

4. Programming Instructions

4.10 Description of the Drive Controller Structure (DR)

Fig. 4.8 Ramp-function generator actual value referencing

4. Programming Instructions

4.10 Description of the Drive Controller Structure (DR)

Fig. 4.9 Ramp-function generator:
Changing the imput before the output has reached its final value

4. Programming Instructions

4.10 Description of the Drive Controller Structure (DR)

- The ramp-function generator has three binary input signals with which the output $y(t)$ can be influenced (independently of the input $x(t)$).
- If the HOE bit is active, then the output $y(t)$ ramps to the $+100 \%$ limit. The actual value is not taken into account (MPx).
- If the TIE bit is active, then the output ramps to the -100% limit. The actual value is not taken into account.
- If the HOE and TIE bits are both active simultaneously, then the output remains at the last value;
i. e. no ramp is generated
- If the LOE bit is active, a change of mode is made from manual to automatic (i. e., the setpoint is approached via the preset parameters T_{H}, T_{R} an ZUW), as long as the HOE and TIE bits are inactive.
The actual value is taken into account in this case.
Resetting of the bit causes the output $y(t)$ to ramp to the input value $x(t)$. The actual value is also taken into account here.
- The HOE and TIE bits have priority over the LOE bit.

The function of the bits is illustrated in Fig. 4.10 (diagrams 1 to 2).

4. Programming Instructions

4.10 Description of the Drive Controller Structure (DR)

4. Programming Instructions

4.10.6.4 Display

Function:

The display function provides a non-flickering display of the actual speed value.
The input signal to the display is output as a rounded signal.

4.10.6.5 Characteristic curve

Function:

The characteristic curve stage transforms an analog input variable \times (fieid current) into an analog output variable γ. The function $y=f(x)$ used has the following characteristics:

- Linear range
$y \geqq 0 \quad$ for $0 \leqq x \leqq 100 \%$
$y=0 \quad$ for $\quad-100 \% \leqq x \leqq 0 \%$
$y=3 / 2 x$ for $0 \leqq x \leqq \frac{100}{3} \%$
- Parabolic region
$y=-\frac{9}{800}(x-100)^{2}+100$ for $\frac{100}{3} \% \leqq x=\leqq 100 \%$
The curve is shown in Fig. 4.11.
The curve is also called the normalized excitation curve. It represents the relationship between the field current and the flux of a d. c. motor. The curve is an approximation which is valid for most d. c. motor types.

4. Programming Instructions

4.10 Description of the Drive Controller Structure (DR)

Value table:

Fig. 4.11 Normalized excitation Eurve

4．Programming Instructions

4．10．6．6 Thermal monitoring

When current flows through an electric machine，the temperature rise can be described approximately using the e function．This
＂thermal image＂is used to regulate the temperature rise in the machine in a calculation involving the armature current and the con－ stant CON 11.2 （thermal time constant）according to the following equation

Temperature rise $=i_{\text {armature }}^{2} \cdot\left(1-e^{-\frac{t}{T}}\right)$ ．
If the permissible temperature limit（temperature rise）is exceeded，bit 11.1 is set．The temperature limit is given with the constant CON 11．1．A temperature limit is seiected such that under operation with nominal current the temperature limit is never quite reached （or theoretically would be only after an infinite period）．Cooling is expressed by the equation $i^{2} \cdot e^{-\frac{1}{2}}$

Example：
Nominal thyristor current $=500 \mathrm{~A} 今 10 \mathrm{~V} \mathrm{I}_{\text {IST }} 气 100 \%$
Nominalmotorcuprent $\quad=400 \mathrm{~A}$ 气 $8 \mathrm{VI}_{\text {ISt }}$ 气 80%
Thermal time constant： 30 min （CON 11．2）

Temperature rise curve with nominal current
Temp．rise $=i_{N}^{2} \times\left(1-\exp -\frac{t}{30 \mathrm{~min}}\right)=\frac{80 \cdot 80}{100} \%\left(1-\exp -\frac{t}{30 \mathrm{~min}}\right)=64 \%\left(1-\exp -\frac{t}{30 \mathrm{~min}}\right)$
Temperature rise curve at，e．g．， $1.2 \mathrm{I}_{\mathrm{N}}=480 \mathrm{~A}(=96 \%)$
Temp．rise $=92.16 \%\left(1-e-\frac{t}{30 \min }\right)$
It can be seen from Fig． 4.12 that，when operating with $1.2 \times i_{N}$ bit 11.1 is set after approximately 36 minutes．The temperature rise value is only reset when the module is in STOP status．If the IP RAM has battery backup，the old value will be retained on＂restart after power fallure＂．

4. Programming Instructions

4.10 Description of the Drive Controller Structure (DR)

"Heating" of the armature winding

$$
i^{2} \cdot\left(1-e^{-\frac{t}{x}}\right)
$$

Heating equation
i Armature current
x Thermal time constant
t Time

Fig. 4.12 Thermal monitoring

4. Programming Instructions

4.10.6.7 Limit monitor

Function: (Fig. 4.13)

The value of a measuring point MPx is checked against six limit values $\mathrm{GW}(\mathrm{i})$. If for positive limit values MPx $>\mathrm{GW}(\mathrm{i})$ or for negative limit values $M P x<G W(i)$, then the corresponding limit value bit $\mathrm{B}(\mathrm{i})$ is set.
$-G W(i) \geqq 0: \quad M P x \leqq G W(i)-B(i)=0$
$M P x>G W(i)-B(i)=1$
for $1 \leqq i \leqq N$

- $G W(i)<0: \quad M P x \geqq G W(i) \rightarrow B(i)=0$
$M P x<G W(i)-B(i)=1$
- The number N of limit values is defined by: $1 \leqq \mathrm{~N} \leqq 6$
- Unused limit value bits are set to zero:
$B(i)=0$ for $i>N$

Explanation of function parameters:

Type of variable	Symbol	Description	Number format	Setting range
Parameter	CON 12.7 (or 13.7)	Number of preset limit values	no unit	1 to
	CON 12.1 (or 13.1)	Limit value 1	variable-dependent	-100% to $+100 \%$
	\vdots	\vdots	(or \%)	$:$
	CON 12.6 (or 13.6)	Limit value 6	\vdots	$:$

Explanation of function input/output variables:

Type of variable	Symbol	Description	Number format	Value range
Input variable	Xe	Input value to be tested	variable-dependent (or \%)	-100% to $+100 \%$
Binary output	Bit 12.1 (or 13.1)	Limit value bit 1	Bit	$0 / 1$
signals	\vdots	\vdots	\vdots	\vdots
	\vdots	\vdots	\vdots	\vdots
	Bit 12.6 (or 13.6)	Limit value bit 6	$0 / 1$	

4. Programming Instructions

4.10 Description of the Drive Controller Structure (DR)

Fig. 4.13 Limit monitor of the drive controller structure

4. Programming Instructions

4.10.7 Data block of the drive controller (DR)

The data block contains all the data of the DR controller structure. If the contents of these data words have to be read or overwritten by the CPU, access to these internal IP 252 data can be effected with the help of data handling blocks (Section 5.2).

4. Programming Instruction

4.10 Description of the Drive Controller Structure (DR)

4. Programming Instructions

4. Programming Instructions

4.10 Description of the Drive Controller Structure (DR)

4. Programming Instructions

4.10 Description of the Drive Controller Structure (DR)

4. Programming Instructions

4.10 Description of the Drive Controller Structure (DR)

4. Programming Instructions

4.10 Description of the Drive Controller Structure (DR)

4. Programming Instructions

4.10 Description of the Drive Controller Structure (DR)

4. Programming Instructions

4.10 Description of the Drive Controller Structure (DR)

Controller Mangement

Configuring Switches

4. Programming Instructions

4.10 Description of the Drive Controller Structure (DR)

Input bit variables

	Abbreviation		Branch	Meaning
DW 180:	REL	1.1	01	Deceleration enable Friction enable Initial value switch for integrator Integrator enable Enable start-up speed controller Controller enable speed controller Direct tension control (transfer) Setting-up speed Creepspeed Setpoint switch (speed) Setpoint enable (speed) Resetramp-function generator Low ramp-function generator High ramp-function generator Setpoint switch (position) Controller enable position controller
	REL	2.1	02	
	REL	3.1	3 a	
	BIT	3.1	3 a	
	REL	5.1	05	
	BIT	5.RF	05	
	REL	5/9	05,09	
	REL	6.1	06	
	REL	7.1	07	
	REL	8.1	08	
	REL	8.2	08	
	BIT	LOE	08	
	BIT	TIE	08	
	BIT	HOE	08	
	REL	9.1	09	
	REL	9.RF	09	
DW 181:	REL	8.3	8	Setpoint switch: analog/dig. setpoint
		10.1	10	Enable start-up value

4. Programming Instructions

4.10 Description of the Drive Controller Structure (DR)

Output bit variables

леझ！

лаן⿴囗⿱一兀䒑uoэ peeds eчt dof prom smeis

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

The controller structure referrec' to as the "Standard controller" is designed for simple tasks with single-loop controls. It can be used, for example, in temperature, pressure, position, flow, and other "standard" control systems.
The result calculated by the controller algorithm can be output in various iorms:

- Continuous signal
- "On" - "Off" signal
- Pulse signal

Fig.4.14 Block diagram of the standard controller
As can be seen from the block diagram in Fig. 4.14, the standard controlier basically offers an option between two different types of controllers:

- a continuous PID controller
- a step controller

Both types are based on a PID algorithm. The parameters of the controller make it possible to assign P, Pl, PD or PID control action to each controller. The output response is also determined by the parameters assigned.

4.11.1 Controlier and controller output

The step controller with a puise generatormodule produces control pulses for driving an integral-action actuator. The PID controlier has an option where the calculated manipulated variable can be either output directly via an analog output to the process actuator or alternatively converted to an equivalent "on" - "off" signal when using a switching actuator.
In the case of a continuous controller, the user also has the possibility of selecting a standard or extended controller by providing additional amplification in the proportional component, a separate D input, disturbance variable compensation and optional limiting of the correction rate.

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

4.11.2 Setpoint branch

The setpoint can be input from the CPU or from an A/D converter. It is also possible to specify a setpoint sequence consisting of a maximum of ten corner points via the PG. The following functions are available in the setpoint branch:

- Ramp function generator
- Filter stage.

4.11.3 Actual-value branch

The actual value can be input using either an analog or a digital input. The actual value branch can contain the following, depending on the user requirements:

- Plausibility checking
- Averaging function
- Function generator for signal linearization

The functions are described in detail in Section 4.12.

4.11.4 Additional functions

- Two user-connected limit monitors:

Each of the limit monitors can be assigned to any desired signal (measuring point) of the controller structure. The limit monitors contain 6 stages, which are specified via the programmer. The results of the limit monitors (overshoot or undershoot) are evaluated by the logic control program of the S 5 central controller.

- Two pre-assigned limit monitors:

These limit monitors support the operator communication and control concept of the standard controller structure. The results of the monitors are used for instance by the CP 525/CP 526 communications processors as inputs for the standard displays on the VDUs.
The limit monitors monitor setpoints and actual values of the control loop.
The danger and the warning limits are specified via the programmer curing the initialization phase.

- Two user-assigned measuring sockets:

Two measuring sockets are located on the front panel of the controller module. Any desired signals (measuring points) of the controller can be measured at these measuring sockets. The programmer is used to assign a particular signal to a particular measuring socket.

4. Programming Instructions

4.12 Description of the Standard Controller Structure (SR)

4.11.5 Detailed description of the standard controller structure

The following description refers to the configuring sheets (Section 8.2 ; standard controller structure). The symbols used are explained in Section 4.9 .

All branches of this structure are shown on the cover page of the configuring sheets of the standard controller structure. In contrast to the drive controller structure, all controller functions and outputs here are included in branch 1. A detailed block diagram of the standard controller structure is included in Section 9 (Fig 9.2).

4.11.5.1 Branch 1.1: Continuous controller (standard)

Function:

The input variable of this branch is the control difference which is generated in branch 3 . This control difference is converted into a controller result using a PID algorithm. The result is then converted into a manipulated variable in branch 1.3 or 1.4 .
The PID controller can be assigned P, PD, PID or P! control action by setting various parameters to zero:

$$
\begin{array}{ll}
T N=0 & \text { I component not active } \\
T V=0 & D \text { component not active }
\end{array}
$$

By switching relay REL 1.11 on, the controller can be switched over to manual operation. This relay can be switched either from the PG or from the S5-CPU. Whether the manual value comes from the PG (CON HA) or from another A/D converter is determined by switch S1.1.1.
If the controller is switched over from automatic to manual operation (REL1.1.1 active), then the manipulated variable is changed exponentially from the instantaneous value to the specified value, which leads to a bumpless switch-over.
The manipulated variable (MP4) calculated by the algorithm is compared with the control limits $B+$ and $B-$. If these limits are crossed, then an overflow bit is set (bit UE + or UE-). If the manipuiated variable returns to within the specified limits, then the previously set bit is reset.
These bits can be read by the CPU, as can all bit variables.
The setting of the overflow bits also leads to the freezing of the integral component, so that a "wind up" of the integrator is prevented.

Input variables:

- CONKP Proportional value
$\left.\begin{array}{ll}\text { - CONTN } & \begin{array}{l}\text { Integral-action time } \\ \text { - CONTV }\end{array} \\ \text { Derivative-action time }\end{array}\right\}$ influence the behaviour of the PID controfler
- CONB+ Derivative-action time
The constant determines the upper lifitt of the limiting in branch 1.1.
- CONB- The constant determines the lower limit of the limiting in branch 1.1.
- BITRF This bit disables or enables the controller. The controller is enabled if the bit is active. In the disabled state the controler outputs 0% and deletes the internal memory.
- CONHA Constant input value for manual input

Output variables:

- BITUE+ The bit becomes active when the controller output signal (MP4) crosses the upper limit (CONUE+).

BITUE The integrator is frozen as long as the bit is active.

- BITUE- The bit is active when the controller output signal (MP4) crosses the lower limit (CON UE-). The integrator is frozen as long as the bit is active.
- MP3 Input signal of the controller algorithm
- MP4 Output signal of the controlier algorithm
- MP10 Input signal of the manual input
- ADC5 Analog manual input

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

4.11.5.2 Branch 1.2: Continuous controller (enhanced)

Function:

The enhanced version of the continuous controlier offers several advantages described below in addition to the features described in Section 4.11.5.1.

- User specifiable additional amplification R in the proportional component

Due to the parallel structure of the PID algorithm, it is possible to disable each component separately. Therefore-in contrast to the standard version - it is possible to disable the proportional amplification. In this way the controller can have a P, I, D, PI, PD or PID response.

- Separate Dinput

A separate D component can be connected to the PID controller via structure switch $S 1.2 .3$. This D component is inputvia an A / D converter and can be observed at measuring point MP11.
This additional D component allows the user to utilize an auxiliary variable for differentiating changes in the control variable. This is very useful for example where long sampling times do not allow satisfactory differentiation of the actual control variable.

- Ideal or real PID controller

The \mathbb{R} bit can be utilized by the user to determine whether the control algorithm should emulate the behaviour of an ideal or a real PID controller.
An ideal PID controller only contains a P, D, and I component while a real PID controller contains an additional delay in the D component. The delay time used in this algorithm corresponds to the selected sampling time.

- Disturbance variable input

With structure switch S 1.2 .2 , the user can structure A / D converter $\mathrm{ADC4}$ as an input for a disturbance variable compensation. If this is so structured, then the calculated manipulated variable can be modulated with a known measurable disturbance variable via relay REL 1.2.2.

- Holding the manipulated variable constant

By setting bit ST it is possible to make the manipulated increment equal to zero independently of the control difference. This makes it possible to hold the manipulated variable constant.
This function is essential for instance during the opening up of a cascaded controlloop.

- Limiting the rate of change of the manipulated variable

Using constants A+ and A-, it is possible to limit the variation in the control variable between two successive sampling points. This limiting results in a compulsory limiting of the rate of change of the manipulated variable.
This limiting can be disabled by setting A+ and A- to $\pm 100 \%$.

Input variables:

- CONKP Proportional value
- CONTN Integral-actiontime
- CONTV Derivative-action time
influence the behaviour of the PID controller
- CONB+ The constant determines the upper limit of the limiting in branch 1.2.
- CONB - The constant determines the lower limit of the limiting in branch 1.2.
- CON HA Constant input value for manual input.
- BITRF This bit disabies or enables the controller.

The controller is enabled if the bit is active. In the disabled state the controller outputs 0% and deletes the internal memory.

- CONA+ The constant determines the upper limit of the change in the manipulated variable.
- CONA- The constant determines the lower limit of the change in manipulated variabie.
- CONR

With this variable the user can specify an amplification which only influences the P component of the controller.

- BITIR This bit aliows the user to choose between a real and an ideal PID controller.
- BITST Bit for disabling manipulated variable changes.

If the bit is active, then the manipulated variable increment is set to 0 and the manipulated variable therefore held constant.

- ADC3 Input for separate D component
- ADC4 Input for the disturbance variable
- ADC5 Input for the manual control variable

4. Programming Instructions

Output variables:

- BITUE+ The bit becomes active, when the controller output signal (MP4) crosses the upper limit (CONUE+). The integrator is frozen as long as the bit is active.
- BITUE- The bit is active, when the controller output signal (MP4) crosses the lower limit (CON UE-). The integrator is frozen as long as the bit is active.
- MP4 Controller output signal
- MP3 Input signal to the control algorithm
- MP10 Input signal to the manual input
- MP11 Input signal to the separate D input
- MP12 input signal to the disturbance variable input

4.11.5.3 Branch 1.3: Continuous output

Function:

This output branch is selected via structure switch $\mathrm{ST3}(=0)$. It outputs the controller output signal calculated in branch 1.1 or 1.2 continuously. Matching to the actuator is possible. This matching atlows both the slope and the offset to be corrected. The specification of the matching values is carried out by selecting parameters of the linear equation:
where

$$
Y=a \cdot x+b
$$

is the slope (CONVER) is the offset (CON OFF) is the controller output signal is the manipulated variable.

Whether the actuator matching is carried out or not is determined by switch S1.3.1. If this switch is in the 1 position, then the matching is carried out.
The control (manipulated variable) signal can be observed at measuring point MP5 and is output via D/A converter DAC1.

Input variables:

- Controller output signals from branch 1.1 or 1.2
- CONVER The slope of the actuator matching can be set with this signal
- CONOFF This constant is used for selecting the offset

Output variables:

- MP5	Continuous control (manipulated) signal
- DAC1	Output for the control (manipulated) signal

4.11.5.4 Branch 1.4: "On" - "Off" output

Function:

The second output branch, the "on" - "off" output branch, is used for the implementation of two and three-step controllers within this controiler structure.
For this purpose the controiler output signal from branch 1.1 or 1.2 is transformed into an "on" - "off" signal with a minimum putse length of 4 ms . The sampling time for this controlier is a multiple of the minimum pulse length.

$$
T A=n \cdot T \min \quad \text { with } n=1,2, \ldots
$$

An analog output is required for a two-step controlier. The three-step controller requires two analog outputs. The analog outputs are used in this application as digital outputs.
The positive pulse of the two-step controller corresponds to a +10 V signal at the corresponding analog output.
If the analog outputs DAC1 and DAC2 are selected for the three-step controller, then the following signals are generated

$\mathrm{DAC1}=0 \mathrm{~V}$ and $\mathrm{DAC2}=0 \mathrm{~V}$	$==>$	manipulated signal 0%
$\mathrm{DAC1}=10 \mathrm{~V}$ and $\mathrm{DAC2}=0 \mathrm{~V}$	$==>$	manipulated signal $+100 \%$
$\mathrm{DAC1}=0 \mathrm{~V}$ and $\mathrm{DAC2}=10 \mathrm{~V}$	$==>$	manipulated signal -100%

The second output of the three-step controller is connected via switch S1.4.1, i. e. when this switch is inactive, the output branch has a two-step response.
The constant CON ASW is used for assigning the hysteresis parameter which makes it possible to prevent high frequency switching of the actuator during small oscillations of the manipulated variable around the steady state position. The threshold can be assigned a value between 0% and 50%.
A second influencing factor affecting the controller behaviour (only for three-step controliers) is the matching factor. This value which can be assigned a parameter, allows the controller intervention for positive and negative ranges to be different. With this it is possible for example to implement a heating/cooling controlloop with different control interventions for the heating and cooling cycles. This matching factor (APF) can be entered in the range between 0 to 99.99 , where the value APF $=1$ corresponds to a weighting of $1: 1$.

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

Input variables:

- Controller output signal from branch 1.1 or 1.2
- CONTMIN Minimum pulse duration of the "on" - "off" output, adjustable between 4 ms and 32 sec .
- CONASW Threshold value of the "on" - "off" function, adjustable in the range between 0% to 50%. This value determines the hysteresis range of the stage.
- CONAPF Matching factor for weighting the control interventions in positive and negative control ranges, where the value 1 corresponds to intervention without weighting.
This factor is adjustable in the range between 0 to 99.98.

Output variables:

- BITPP This bit is always set during the time a positive pulse is output.
- BITNP This bit is always set during the time a negative pulse is output.
- MP6 Output signal of the "on" - "off" function.
- MP7 Output signal of the "on" - "off" function, only active in case this output is selected for the three-step controller.
- DAC 1 Output of this function for both the two and three-step controller
- DAC2 Output of this function used for the three-step controller, if this was structured with switch S1.4.1

4.11.5.5 Branch 1.5: Step controller with pulse output

Function:

The step controller with pulse output implemented here is a digital three-step controller. It is used for controlling actuators with integral response (e. g.; valves, dampers and flaps). In order to prevent high frequency osciliations of the actuators due to small control deviations, a dead band with hysteresis is connected before the PID algorithm. This dead band can be made separately inactive for the I component, which leads to optimum protection of the actuator and prevents a continuous control deviation.
In contrast to the "on" - "off" output, here the change in the manipulated variable is output to the pulse generator instead of the manipulated variable. The pulse generator converts the manipulated variable change (dYk) to a pulse duration (Tk).

$$
\mathrm{Tk}=\mathrm{TM} \cdot \mathrm{dYk}
$$

The input range for the actuator travel time (TM) is between 0.1 ms and $59.59 \mathrm{~h} . \mathrm{min}$.
In order to limit the switching frequency, a minimum pulse duration (Tmin) must be specified. From this viewpoint, the pulse length can also be represented as a multiple of the minimum pulse duration Tmin.

$$
\mathrm{Tk}_{\mathrm{k}}=\mathrm{x} \cdot \mathrm{~T}_{\mathrm{min}}
$$

The output signal from the pulse generator stage is output as in branch 1.4 via two D / A converters.
It is also possible to structure a manual input for this controler branch using switch S 1.5 .1. The manual branch can be activated via relay REL 1.5.1 if required. The manual value can be specified in two ways, either via an A/D converter or by entering this value via the programmer. In this step controller, the manual value has a different meaning to the normal case due to the way it is processed. Here the manual value does not operate as a manipulated variable change but instead as a rate of change.
Note: A further method of operating the step controlier in manual mode (two switches 'actuator open/closed') is demonstrated in Sections 4.11.6.12 and 5.2.3.1.

Input variables:

- MP3
- CON
- CONKP
- CONTN

Control difference from branch 3
Proportional value

- CONTV $\left.\begin{array}{l}\text { Integral-action time } \\ \text { Derivative-action time }\end{array}\right\}$ influence the behaviour of the PID controller
- CONTMIN
- CONTM

Minimum pulse duration, must be specified in order to limit the switching frequency

- CONAN Actuator travel time; it can be adjusted in the range between 0.1 ms to 59.59 h . min.
Triggering threshoid for the input hysteresis
Release threshold for the input hysteresis
- CONHA Constant input value for manual input
- BITRF This disables or enables the controller.
The controller is enabled if the bit is active. In the disabled state the controller outputs 0% and deletes the internal memory.
- BITHAI This "manual input inactive" bit, when inactive (bit $=0$), causes the manipulated variable to become zero.
- BIT TOT "BIT TOT" determines whether the dead band is active for the integral component or not. When the bit is active (BITTOT = 1) the dead band is inactive.
- BITBA Both these bits provide information to the pulse generator as to whether the actuator is in one of its eno
- BITBZ positions. If "BIT BA" $=1$, then the actuator has reached its final OPEN position, whereas "BIT $B Z^{\prime \prime}=1$ signals that the actuator has reached its final CLOSED position. This information can be communicated to the pulse generator stage either from the PG or from the CPU.
- MP10 Input signal of the manual input
- ADC5 Input for manual control variable

4. Programming Instructions

4.11 Description of the Standard Controller Structure

Output variables:

- MP6 Output signal of the puise generator
- MP7 Output signal of the pulse generator
- DAC $1 \quad$ Pulse generator output for "positive" pulses
- DAC2 Pulse generator output for "negative" pulses
- BITAUF These bits signal the direction of motion of the actuator. If "BIT AUF" is set, this indicates for instance that the
- BITZU' valve is just opening, whereas if "BITZU" is set it is just closing. If both these bits are not set, then the actuator is in a steady state.

4.11.5.6 Branch 2: Actual-value branch

Function:

This branch provides several other options of processing the actual value signal apart from just sensing.
The actual value can be input in analog form or as a pulse signal. The type of input signal is specified by the user via switch S2.1. The signal can be observed at the measuring point MP8.
Using the plausibility check, the input value can be checkec to ascertain whether it matches the three previous measured values. For this purpose switch $\$ 2.2$ must be set to 1 and the constant CON ZUL must be selected, which specifies by how much the actual current value can deviate from the caiculated value during this time. The current actual value is calculated as an extrapolation of the three previous values.
The user can connect an averaging stage in the actual value branch using switch S2.3. This stage can be used as protection against interference voltages. However the user should take into account that the exact actual value can also be falsified (averaged) by considering the previous values.
The averaging is carried out according to the equation:

$$
X a=(X e+7 \cdot X v) / 8
$$

In this equation
Xe is the actual value
$X_{v} \quad$ is the previous average value
Xa is the current average value
Apart from the functions described above it is possible in the actual value branch to linearize the actual value using an optional function generator. This linearization function is enabled via switch $\$ 2$.4. When specifying the curve for the function generator up to ten equi-distant extrapolation nodes can be specified.
The values to be specified are
Number of extrapolation nodes
The first abscissa value X (1)
Distance to the next extrapolation nodes (DX)
N ordinate values
At the output of the actual value branch, switchover to a start up actual value is possible via relay REL2.3. This value can be input vie the programmer.
The actual value output from this actual value branch, which is used for calculating the control difference, can be observed at measuring point MPG.

Input variables:

- ADC2 The actual value to be controlled, which can also be input as an incremental input ($\mathrm{S} 2.1=1$). In the case of incremental actual value sensors, stanciardization is carried out to 100% for rated signal in the following steps:
- configure and initialize SR structure with polygon in the actual value branch. The polygon first implements the function $y=x$.
- After manual acceleration of the actual value to, for example, 10% of the nominal value, the actual value measured by the IP 252 can be read in the controller test at MP 8 . If this is, for example, 4%, the polygon must implement a straight-line equation according to $y=\frac{10 \%}{4 \%} \cdot x=2.5 x$.
- CON ZUL. Permissibie deviation of the actual value from the calculated expected value
- CONN
- CONSTA Number of extrapolation nodes in the function generator
- CONSCH
- CON01.10

Starting value of the extrapolation nodes (abscissa value)
Interval between neighbouring extrapolation nodes
Ordinate values of the extrapolation nodes $7 . .10$
CONINB
Commissioning actual value

Output variables:

- MP9 Processed actual value used for calculating the control deviation
- MP8 Actual value as input

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

4.11.5.7 Branch 3: Setpoint branch

Function:

This setpoint branch provides various options for specifying the setpoint and processing the setpoint after being input.
The user can use switch 53.1 to decide whether the setpoint is entered as an analog value via the A / D converter $A D C 1$ or digitally. The digital value can be input from the CPU or from the PG! For input from the PG it is possible to specify a setpoint sequence of up to ten points, where the number of extrapolation nodes (N), a maximum of ten setpoints (SW (i$)$) and the interval time (Ti) must be specified. Bit 3.1 determine whether the extrapolation nodes describe a staircase or linear curve.
The selected setpoint which can be observed at measuring point MP1, can now be processec using a ramp-function generator and/ or a smoothing stage. Switch S 3.2 shorts out the ramp-function generator when it is inactive (0), and switch S 3.3 shorts out the smoothing stage when it is inactive.
The ramp-function generator transforms step setpoint changes into ramping signals, which then can be smoothed by the smoothing stage. Apart from the already known ramp-functions parameters such as positive and negative ramping times, an additional constant must be specified for the ramp-function generator. This constant is known as the increment and corresponds to the amplitude which the ramp-function generator generates at its output after the positive or negative ramping time has expired when a step signal of 100% is connected to its input.
In addition the higher, lower and reset bits are provided as is already known in analog ramp-function generator pushbuttons.
The smoothing time is the only parameter of the smoothing stage.
Via relay REL3. 2 it is possible to disable the complete setpoint brench.
The control difference is generated at the output of the setpoint branch, which subtracts the actual value processed in branch 2 from the setpoint processed in branch 3 and outputs this to the controller. The processed setpoint is available at measuring point MP2, and the calculated control difference at measuring point MP3.

Input variables:

- ADC 1 Input for the analog setpoint
- VAR3. 1 Setpoint from the CPU
- CONN Number of extrapolation nodes for the setpoint sequence
- CONTI Distance between neighbouring extrapolation nodes
- CONSOL(i) Setpoints $1 . .10$
- CONTH Ramp-up time of the ramp-function generator
- CONTR Ramp-down time of the ramp-function generator
- CONZUW Increment constant: measure of the amplitude, which the ramp-function generator output reaches for a 100%
- CONTVZ Delay time constant of the smoothing stage
- BIT3.1 This bit determines whether the extrapolation nodes are treated as a staircase function of interpolated linearly.

Bit $3.1=1$: linear; $=0$: staircase function

- BITHOE With this bit the setpoint can be shifted to the $+100 \%$ limit, regardless of the curfent setpoint
- BITTIE With this bit the setpoint can be shifted to the -100% limit, regardless of the current setpoint.
- BITLOE When this bit is set, automatic mode is resumed. The HOE and TIE bits have priority over the LOE bit.

Output variables:

- MP1 Input signal of the setpoint branch
- MP2 Output signal of the setpoint branch
- MP3 Calculated control difference

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

4.11.5.8 Branch 4: Limit monitor 1

Function:

The limit monitor monitors the value of any desired measuring point of this control toop. A maximum of six limiting values can be specified. The no. of the monitored measuring point can be changed any time during the RUN mode of the IP.
The function is described in Section 4.16.6 in more detail.

Input variables:

- MP-No.

No. of the measuring point to be monitored 1...12)

- CON 4.1
- CON 4.2
- CON 4.3
- CON4.4
- CON 4.5
- CON 4.6
- CON $4.7 \quad$ Number of limiting values

Output variables:

- BIT 4.1
- BIT 4.2
- BIT4.3 maximum 6 output bits for signalling
- BIT4.4. "limit value reached"
- BIT 4.5
- BIT 4.6

4.11.5.9 Branch 5: Limit monitor 2

Function:

The limit monitor monitors the value of any desired measuring point of this control loop. A maximum of six limiting values can be specified. The no. of the monitored measuring point can be changed any time during the RUN mode of the IP. The function is described in Section 4.16 .6 in more detail.

Input variables:

- MP.No. No. of the measuring point to be monitored (1...12)
- CON5.
- CON5.2
- CON5.3
- CON5. 4
max. 6 limiting values
-

(see Section 4.11.6.6)

- CON 5.5
- CON5.6
- CON 5.7 Number of limiting values

Output variables:

- BIT5. 1
- BIT5.2
- BIT5.3 maximum 6 output bits for signalling
- BIT5.4 "limit value reached"
- BIT 5.5
- BIT 5.6

4.11.5.to Branch 6: Measuring socket 1

Function:

The value of any measuring point of the control loop can be connected via an output channel to measuring socket 1 . The no. of the measuring socket can be changed at any time during the RUN mode of the IP.

Input variables:

- MP-No. No. of the measuring point which is connected to measuring socket 1 (1...12).

Output variables:

- DAC3 Address of the analog output channel to which the measuring point value is output.

Measuring socket 1 is wired to output channel 5 . Measuring socket 1 is used for the output of a random measuring point to analog output channels 0 to 7 .

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

4.11.5.11 Branch 7: Measuring socket 2

Function:

The value of any measuring point of the control loop can be connected via an analog output channel to measuring socket 2 . The no. of the measuring socket can be changed at any time during the RUN mode of the IP.

Input variables:

- MPNo. No. of the measuring point which is connected to measuring socket 1 (1...12).

Output variables:

- DAC4 Address of the analog output channel to which the measuring point value is output.

Measuring socket 2 is wired to output channel 6 in the case of the DR/SR submodule. Measuring socket 2 (and also measuring socket 1) of the DRS/SR submodule are used to output a random measuring point to analog output channels 0 to 7 , since global assignment of the measuring sockets takes place in the case of this submodule, (see Section 4.1).

4.11 Description of the Standard Controller Structure (SR)

4.11.6 Functions of the standard controller

4.11.6.1 Preassigned limit monitors in branches 2 and 3

The results of these limit monitors are used by a CP 526 for display purposes. The output bits cannot be read from the standard FB used with the logic program (Section 4.14).

Function of the actual value limit monitor:

Four limits can be specified via the $P G$:

- Upper warning limit
- Lower warning limit
- Upper danger limit
- Lower danger limit

Each of these limits is assigned a bit. If a signal crosses the upper warning/danger limits, then the "upper warning/danger limits crossed" bits are set. In all other cases they are reset. When the signal crosses the lower warning/danger limits, then the "lower warning/danger limits crossed" bits are set. In all other cases they are reset.

Function of the setpoint limiting monitor:

Two limits can be specified via the PG:

- Upper limit
- Lower limit

Both the limits are assigned two bits. When the upper limit is crossed the "upperlimit crossed" bit is set, otherwise it remains reset. When the lower limit is crossed, the "lower limit crossed" bit is set, otherwise it is reset (Fig. 4.15).

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

Fig. 4.15 Method of operation of the pre-assigned limit monitor

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

;. 2 Setpoint sequence

tion description:

mpling time (TA) driven setpoint sequence $X_{a}(t)$ is generated from $i=1, \ldots, 10$ setpoint interpolation nodes CON SOL (1),..., , SOL (i).
options are available:
aircase waveform:
$\pm 3.1=0$ is set, the output variable $X a$ is equal to the last setpoint $\mathrm{CONSOL}(1)$ until the period between 2 successive setpoints $\mathrm{NTI}\left(>\right.$ TA) has expired. Then, for the duration CONTI of the next period, $\mathrm{Xa}_{a}=\operatorname{CONSOL}(1+1)$ is output (Fig. 4.16).

near interpolated waveform:

it $3.1=1$, then linear interpolation is carried out between successive setpoints (fig. 4.17).
etpoint generated in this way is continued cyclically after the expiry of the period $T P E R=N \cdot C O N$.
:onstant setpoint $X a=C O N S O L$ (1) is output in case $N=1$, regardless of the values of $C O N T 1$ and bit 3.1.

:strictions:

jit $3.1=1$ (case "linear interpolation") the following additional assumptions are made:

* $\operatorname{CONTI}=\mathrm{P} \cdot \mathrm{TA}, \mathrm{P}=$ positive integer.
* $P<=32767$.
gtween the setpoints $\operatorname{CONSOL}(1)$ and $\operatorname{CONSOL}(1+1)$, a linear approximation given by the straight line equation is always used:
$\mathrm{Xa}_{a}(\mathrm{M} \cdot \mathrm{TA})=[\operatorname{CONSOL}(1+1)-\operatorname{CONSOL}(\mathrm{I})] \cdot \mathrm{M} / \mathrm{P}+\operatorname{CONSOL}(1), \mathrm{M}<=\mathrm{P}$,
there $M * T A$ is the time since the last setpoint CON SOL (I).

[^0]
4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

Fig. 4.17 Linearly interpolated waveform setpoint sequence (Example $N=3$)

Symboi:

Fig. 4.18 Symbol of the setpoint sequence stage
Description of function parameters and binary variables:

Type of variable	Symbol	Description	Number format	Numerical range
Parameter		Number of setpoints Setpoint 1 Setpoint 10 Interval time Sampling time	undimen. variabledependent \vdots variabledependent Time Time	$\begin{gathered} 1 \ldots 10 \\ -100 \% \ldots+100 \% \\ \vdots \\ -100 \% \ldots+100 \% \\ 4 \mathrm{~ms} \ldots . .99 \mathrm{~h} 59 \mathrm{~min} \\ 4 \mathrm{~ms} \ldots 9 \mathrm{~h} 59 \mathrm{~min} \end{gathered}$
Binary input variable	Bit 3.1	$\begin{aligned} & =0: \text { Staircase waveform } \\ & =1: \text { Linearly interpolated waveform } \end{aligned}$	Bit	$0 / 1$

Description of function input and output variables:

Type of variable	Symbol	Description	Number format	Value range
Input variable	T	Time	Time	$0.1 \mathrm{~ms} \ldots 99 \mathrm{~h} 59 \mathrm{~min}$
Output variable	Xa	Setpoint sequence	variable- dependent	$-100 \% \ldots+100 \%$

4.11.6.3 Function generator

Function description:

A function described in a table is used to generate a function value $X a=F(X e)$ from a given abscissa value $X e$ within the interval $X(1)$ $\leq \mathrm{Xe} \leq \mathrm{X}(\mathrm{N})$ using linear interpolation.

The function can be defined by $N=1, \ldots, 10$ pairs of values $[(X)], F(1)]$, where the N abscissa values $X(1), \ldots, X(N)$ define a strictly monotonous curve starting with the abscissa value of the first interpolation node CON STA and with a period of CON SCH between the interpolation nodes, i. e.:

$$
X(1) \leq X(2) \leq \ldots \leq X(N)
$$

Therefore the abscissa values are equidistant.
The corresponding ordinate values should be specified in the sequence $\operatorname{CON}(1), \operatorname{CON}(2), \ldots, \operatorname{CON}(\mathrm{N})$.

Procedure:

A given value $X e$ is compared successively with the selected abscissa values, until the abscissa values $X(L)$ and $X(R)$ of the neighbouring table interpolation nodes are found. Then the function value is calculated according to the straight line equation:

$$
F(X e)=\frac{F(R)-F(L)}{X(R)-X(L)}(X e-X(L))+F(L)
$$

Note:

Due to its use as a setpoint, the function value outside the defined interval is defined as follows:

* $X a=F(1)$ for $X e<X(1)$,
* $X a=F(N)$ for $X e>X(N)$.

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

Symbol:

Fig. 4.20 Symbol of the function generator

Description of the function parameters:

Type of variable	Symbol	Description	Number format	Numerical range
Parameter	N	Number of equi-distant nodes	nounit	1... 10
	CONSTA	Abscissa value of the first nodes	variable-	$-100 \% \ldots+100 \%$
	CONSCH	Distance between neighbouring nodes	dependent variable-	$-100 \% \ldots+100 \%$
			dependent	-100\% ... + 100%
	CON(1)	Ordinate value of the first node	variabledependent	-100\% ... +100\%
			:	
			:	
	CON(10)	Ordinate value of the tenth corner point	variabledependent	$-100 \% \ldots+100 \%$

Description of the function input and output variables:

Type of variable	Symbol	Description	Number format	Value range
Input variable	Xe	Abscissa value	variable- dependent	$-100 \% \ldots+100 \%$
Output variable	Xa	Linearly interpolated function value	variable- dependent	$-100 \% \ldots+100 \%$

4.11.6.4 Averaging

Function description:

The new averaged output value $X a$ is generated from the input value $X e$ (i. e. actual value), which may be falsified (due to "ripple"), using the old (averaged) output value X_{v}, as follows:

$$
X_{a}=\frac{1}{8}\left(X_{e}+7 \cdot x_{v}\right)
$$

Note: The averaging may falsify correct values!

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

Fig. 4.21 Suppression of measurement ripple by averaçing

Block symbol:

Fig.4.22 Symbol of the averaging function
The block has no parameters.

Description of the block input and output variables:

Type of variable	Symbol	Description	Number format	Numerical range
Input variable	Xe	Input value (with ripple)	variable- dependent	$-100 \% \ldots+100 \%$
Output variable	Xa	Averaged output value	variable- dependent	$-100 \% \ldots+100 \%$

In addition the previous value X_{V} is stored in the block. However this value is not accessible to the user.

4.11.6.5 Plausibility check

Function description:

Any interference which causes a difference between two consecutive sampled values Xek1, Xek to be greater than a specified (physically meaningful) value CON ZUL is suppressed.
The current output value Xak is calculated as follows:
(1) $X a k=X e k$ for $|X e k-X a k 1| \leq C O N Z U L$,
(2) $X_{a k}=X_{a k} 1+\frac{\left(X_{a k} 1-X_{a k} 2\right)+\left(X_{a k} 2-X_{a k 3}\right)}{2}=$

$$
=\frac{3}{2} \text { Xak } 1-\frac{1}{2} \text { Xak } 3 \text { for }|X e k-X a k 1|>\text { CONZUL. }
$$

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

Fig. 4.23 Method of operation of the plausibility check
If the difference is >CON ZUL for ionger than 2 sampling periods, then the input value is interpreted as being permissibie and the output value is changed to the input value according to an expotential function.
$=\Rightarrow>$ Permissible values are not falsified by the plausibility checking (different to averaging action)!
Symbol:

Fig. 4.24 Symbol of the plausibility checking stage

Description of the function parameter:

Type of variable	Symbol	Description	Number format	Numerical range
Parameter	CONZUL	Magnitucie of the maximum permissible difference between two successive sampling values	variable- dependent	$0 \ldots+100 \%$

Description of the function input and output variables:

Type of variable	Symbol	Description	Number format	Numericai range
Input variable	Xek	Input value	variable- dependent	$-100 \% \ldots+100 \%$
Output variabie	Xak	Output value	variable- dependent	$-100 \% \ldots+100 \%$

Note:

The minimum pulse duration $T_{\text {min }}$ can only be changed in the "Input" and "Output" modes, but not in the controller test.

4.11.6.6 Limit monitor

Function description:

An input value MP NR is checked against up to 6 limit values
CON 4.1 (or 5.1) to CON 4.6 (or 5.6). (No hysteresis!)
No given sequence of limiting values is assumed.
If limiting values are crossed, then N bits are set, i. e. bits $4.1, \ldots, 4.6$ (or $5.1, \ldots, 5.6$):
Case 0: $N=C$ (trivial case, should be discarded at the PG)
No checking of $X e$ is necessary. For safety reasons all bits Bit(i) are reset.
Case 1: $1 \leq N \leq 6$
The bits of the specified limit values are set, if a positive value or a negative value is crossed:
CON $4 . i \geq 0: X_{e} \leq C O N 4 . i==>$ Bit $4 . i:=0$,
Xe>CON4.i $=>$ Bit $4 . i:=1$,
$\operatorname{CON} 4 . i<0: X e \geq \operatorname{CON} 4 . i==>\operatorname{Bit} 4 . i:=0$,
Xe<CON4. $i==>\operatorname{Bit} 4 . i:=1$,
$\mathrm{i}=1, \ldots, \mathrm{~N}$.
$==>$ For $N<6$ due to safety reasons, the $6-N$ not required bits are set to 0 :
Bit 4. $(\mathbf{N}+1)=\ldots=\operatorname{Bit} 4 .(6)=0$.
N is specified by the constant CON 4.7 (or CON 5.7).

Fig. 4.25 Methed of operation of the limit monitor for the maximum case $N=6$ (with ascending sequence of limit values)

Fig, 4.26 Symbol of the limit monitor

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

Description of the function parameters:

Type of variable	Symbol	Description	Number format	Numerical range
Parameter	CON 4.7 (or 5.7) CON 4.1 (or 5.1) \vdots \vdots $\operatorname{CON} 4.6($ or 5.6$)$	Number of specified limit values Limit 1 Limit 6	nounit variabledependent (or \%)	$\begin{gathered} 1 \ldots 6 \\ -100 \% \ldots+100 \% \end{gathered}$

Description of the function input and output variables:

Type of variable	Symbol	Description	Numberformat	Value range
Inputvariable	Xe	Monitored input value	variable- dependent (or $\%$)	$-100 \% \ldots+100 \%$
Binary			Bit	\vdots
output signals	Bit 4.1 (or 5.1)	Limitvalue bit 1	\vdots	$0 / 1$
	\vdots	\vdots		
Bit 4.6(or 5.6)	Limit valuebit 6	Bit	\vdots	

4.11.6.7 Ramp-function generator

Function description:

The ramp-function generator produces an output signal Xa which ramps up to the required setpoint W after a setpoint jump at its input.

* The ramp begins e.g. at the current actual value XS of the controller (see "Actuai value referencing") and ramps with the specified slope to the upper or lower setpoint W.
* If the setpoint is changed after it has been reached (ramp value is equal to setpoint), then the ramp is continued with the current valid slope from the current ramp value, except when the actual value is between the ramp value and the setpoint. In this case the ramp starts from the actual value.
* If the setpoint changes before it is reached, then the ramp is started again from the current actual value or from the last ramp value.
* In addition it is possible by pressing the "higher" pushbutton, i. e. by setting input bit BIT HOE $=1$, to ramp past the setpoint W up to the maximum 100% setpoint, or correspondingly by pressing the "lower" pushbutton," i. e. by setting input bit BIT TIE $=$ 1, to ramp to the minimum -100% setpoint.
As long as the "higher" or "lower" pushbutton is pressed, then the ramp-function generator ramps with the specified slope. When the pushbutton is no longer pressed then the current momentary ramp value is frozen till a pushbutton is pressed again.
* The "higher" pustbutton always causes the ramp to go to more positive values, that is in the positive range with the "higher" slope and in the negative range with the "lower" slope.
Similarly the "lower" pushbutton always causes the ramp to go to more negative values, that is in the positive range with the "lower" slope and in the negative range with the "higher" slope.
* When both pushbuttons are pressed at the same time the ramp value remains constant.
* When the reset switch is activated (input bit BITLOE) the following occurs: When the LOE bit is set, the ramp-function generator is switched from setpoint manual mode to automatic (i.e., the setpoint is approached via the preset parameters $\mathrm{T}_{\mathrm{H},} \mathrm{T}_{\mathrm{R}}$ and ZUW), provided the HOE and TIE bits are set.
* The "higher"/"lower" pushbuttons have priority over the LOE bit.
* If the setpoint W changes when the "higher" or "lower" pushbutton is pressed, then the new setpoint is targeted only after the pushbutton has been released and the reset switch has been pressed.

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

Actual value referencing:

The main function of the ramp-function generator is to smoother setpoint jumps and to travel to setpoint at a predefined rate of change.

With the aim of reaching the setpoint as quickly as possible, the actual value can only be used sensibly in certain cases as a ramp starting point after any switch-over ("reset", setpoint change):

* The switch-over causes a positive ramp:
$==>$ Actual value referencing sensible in cases where XS $>$ Xa.
* The switch-over causes a negative ramp:
$==>$ Actual value referencing sensible in cases where $X S<X a$.
Otherwise starting the ramp at the current actual value leads to an unnecessary jump in the ramp value which is the effective setpoint and causes the ramp value to target the setpoint after a delay, see Fig. 4.27.

Fig. 4.27 Actual value referencing in the ramp-function generator during "switch"over"
In practice another operating state can occur, which makes actual value referencing necessary: i. e. power failure. If, for example, during a very slow heating process which must be ramped up during one hour, the power supply fails after half an hour for a long period of time, then the actual value sinks far below the last ramp value.
On power restoration, the ramp should be continued at the current actual value and not at the last ramp value. Otherwise the sudden large control deviation causes excessive heating ("overshoot").

For this purpose the ramp-function generator must be able to detect a power failure, since none of the "switch-overs" mentioned occurs. A central power fault bit does not solve the problem, as in this case a controller with a sampling time of 10 minctes may only be executed 10 minutes after power restoration, i. e. it could only then determine that a power failure has occurred. For other controllers with shorter sampling times, however, this bit must be reset much sooner, otherwise they would always react to that bit.

For this purpose the actual value referencing is implemented in the following way: After power return the previous values of the setpoint and the ramp-function generator are reset. Since $\mathrm{W}<>\mathrm{W}_{\text {old }}=0$, actual value referencing takes place compulsorily for the next execution of the function. Therefore, after a power failure, the ramp starts at zero or, if valid, at the current actual value.

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

Fig. 4.28 Actual value referencing in the ramp-function generator after power failure
Symbol:

Fig. 4.29 Symbol of the ramp-function generator

Description of the function parameters and binary variables:

Type of variable	Symbol	Description	Numberformat	Numerical range
Parameter	CONTH CONTR CONZUW	Positive ramp time Negative ramp time Ordinate of the ramp-function generator value, i. e. the ramp value traversed during the time TH or $T \mathrm{R}$ (therefore determines the ramp slope)	Time Time variabledependent	$\begin{gathered} 0.1 \mathrm{~ms} \ldots 99 \mathrm{~h} 59 \mathrm{~min} \\ 0.1 \mathrm{~ms} \ldots 99 \mathrm{~h} 59 \mathrm{~min} \\ 0 \ldots+100 \% \end{gathered}$
Binary input signals	BITHOE BITTIE BITLOE	"Higher" bit, $\mathrm{BH}=1$ causes positive ramp "Lower" bit, $\mathrm{BT}=1$ causes negative ramp Reset bit, $\mathrm{BL}=1$ causes matching of the ramp value to the setpoint if the HOE and TIE bits are set.	$\begin{aligned} & \hline \text { Bit } \\ & \text { Bit } \\ & \text { Bit } \end{aligned}$	$\begin{aligned} & 0 / 1 \\ & 0 / 1 \\ & 0 / 1 \end{aligned}$

Description of the parameters:

Fig. 4.30 Relationship between the ramp-function generator user parameters Th, TR, ZUW and the effect of the "higher" and "lower" pushbuttons.

Description of the function input and output variables:

Type of variable	Symbol	Description	Number format	Value range
Input variables	W	Current setpoint	variable- dependent variable- dependert	$-100 \% \ldots+100 \%$
	XS	Current actual value	$-100 \% \ldots+100 \%$	
Output variable	Xa	Outputvalue (ramp value)	variable- dependent	$-100 \% \ldots+100 \%$

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

4.11.7.8 Filter

Function description:

For filtering an analog variable Xe , a first-order delay stage (VZ1 stage) is available with the transfer function:

$$
\frac{X_{a}(s)}{X_{w}(s)}=\frac{1}{1+T V Z \cdot s}
$$

Procedure:

In order to implement a discrete filter, the time domain representation is transferred into integral notation

$$
\left\{\begin{array}{l}
X_{a}(t)+T V Z \cdot X a(t)=X e(t) \\
X A(v) d v+T V Z \cdot X a= \\
0
\end{array}\right\}
$$

If the trapezoidal approximation is used for both integrals $t=k \cdot T A$ and $t=(k-1)$ TA and the resulting two equations are subtracted from one another, then the solution for output variable Xak gives the following equation at the sampling time $t=k \cdot T A$:

$$
X a k=\frac{2 \cdot T V Z-T A}{2 \cdot T V Z+T A} X_{a k} 1+\frac{T A}{2 \cdot T V Z+T A}\left(X e k+X_{e k} 1\right)
$$

One arrives at the same result, when $s=(2 / T A)(z-1) /(z+1)$ is substituted into the complex transfer function and the inverse z-transformation is carried out.
If one uses the less accurate rectangle approximation for integrating X_{e}, then one obtains the same basic iterative equation used in FB 97 in Catalog ST 56.

$$
X_{a k}=\underbrace{\frac{2 \cdot T V Z-T A}{2 \cdot T V Z+T A}}_{K G}\left(X_{a k} 1-X_{e k} 1\right)+X_{e k 1} .
$$

This form which only requires one block parameter is also used here in order to prevent the dead time in the Xe sampling, with the following modification:

$$
\mathrm{Xak}=\mathrm{KG}(\text { Xak } 1-\mathrm{Xek})+\text { Xek }
$$

Symbol:

Fig. 4.31 Symbol of the smoothing

Description of the function parameters:

Type cf variable	Symbol	Description	Number format	Numerical range
Parameter	TVZ	Filter time constant	Time	$4 \mathrm{~ms} \ldots 99 \mathrm{~h} 59 \mathrm{~min}$

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

Jescription of the function input and output variables:

Type of variable	Symbol	Description	Numberformat	Numerical range
Input variable	Xek	Function input variable to be filtered	variable- dependent	$-100 \% \ldots+100 \%$
Output variable	Xak	Filtered function output variable	variable- dependent	$-100 \% \ldots+100 \%$

in addition the following variables are present in the block, which however cannot be accessed by the user:

* Parameter:

$$
\begin{aligned}
K G= & \left(2^{*} T V Z-T A\right) /\left(2^{*} T V Z+T A\right) \\
= & \text { smoothing factor, } \\
& T V Z=\text { filter time constant }, \\
& T A=\text { sampling time }
\end{aligned}
$$

* Previous values: Xak1 Previous output value ($k-i$) th sampling value)

4.11.6.9 PID controller

Function description:

The equation for the relationship between the control deviation $x_{w}(t)$ and the manipulated variable $y(t)$ of the continuous PID controller in the time domain is given by:
$y=K p\left(x_{w}+1 / T N \cdot\left\{\begin{array}{l}t \\ \left.x_{w}(v) d v+T v \cdot x_{w}\right),\end{array}\right.\right.$
This equation is emulated by a quasi-continuous PID controller where a manipulated variable increment dYk is calculated from the control deviation XWk using the PID velocity algorithm. The manipulated variable Yk is output as the sum of the previously generated increments.
The switch-over between various operating modes is carried out via binary signals $\mathrm{B} 1-\mathrm{B}$.

Procedure:

A parallel structure is implemented (see Fig. 4.32) where the factor R , the integral-action time TN and the derivative-action time TV can be adjusted separately. In addition the proportional factor of Kp can be entered as a parameter which influences all 3 parallel branches.

PID velocity algorithm (with trapezoidal integration):

$$
d Y k=K_{p} \cdot[R \cdot(X W k-X W k 1)+(X W k+X W k 1) \cdot T A /(T N \cdot 2)+D k]
$$

where

$D k=0.5 \cdot[T V / T A \quad(X W k-X W k 1)-(X W k 1-X W k 2) \quad+D k 1]$.
Here Kp, TN, TV are the actual PID controller parameters. The trapezoidal integration was selected since it gives a more exact representation of the continuous integration when used in a PI controller.
To switch off one of the controller branches the corresponding parameter ($\mathrm{R}, \mathrm{TN}, \mathrm{TV}$) is set to zero. Setting TN $=0$ causes the l component to be switched off which is not explicit in the quotient TA/TN.

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

PID controller
(HA)
(S 1.2.3)
(BITIR)
(BITST)
(S127)
(1.2.2) B5:1 = Disturbance variable modulation, $0=$ none
(ST2) $B 6: 1=$ Standard version, $0=$ extended version (not marked here)
(BITRF) B7:1 = Controller disabled, $0=$ enabled
B8: $1=$ Switch for prevention of integral wind up (only used by program)
XWk : Control deviation
XZk \quad : Separate D input
Zk
dYk
Yk
YHk TA
: Disturbance variable
: Calculated m. v. increment
: Outputm. v.
: Manualinput
: Sampling time

Fig. 4.32 Structure of the PID controller

Fig. 4.32 shows the structure of the PID controlier with the switch-over options for the operating modes which are described in detail below.
Basically one can choose between a standard version ($S T 2=1$) and an extended version ($S T 2=0$) of the controller. The simpler standard version has the following differences over the more general extended version:

* $R=1$ (not a parameter, i. e. the P component cannot be switched off)
* A+ and A - not parameters, i. e. rate of change of manipulated variable limiting is not possible
* S $1.2 .3=0$, i. e. no separate D input $X Z k$
* BITIR $=0$, i.e. D component is always delayed
* BITST $=0$, i. e. the manipulated variable cannot be held constant
* S 1.2.2 $=0$, i. e. no disturbance variable compensation is possible

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

The upgraded version of the controlier has the following functions:

* One can switch over to manual operation (signal HA). The manipulated variable is then matched to the adjusted manual value YHk according to an exponential function.
* The input for the D component can be selected from either the control deviation XWk or a separate input variable XZk (signal S1.2.3).
* The D component can be calculated with or without delay (signal BIT IR) corresponcing to a real or ideal PID controller.
* The m. v. increment can be set to zero independently of the control difference so that the manipulated variable is held constant. This is used e. g. for the opening up of a cascaced control loop (signal BIT ST).
* In order to compensate for a measurable interference signal Zk as early as possible, the interference signal can be added as an increment $d Z K$ to the calculated manipulated variable increment for disturbance variable compensation (signal S1.2.2). The measured interference signal must be inverted before being input to the controller, otherwise, without inversion, it would be added to the manipulated variable.
* During operating mode switch-overs no unpredictable manipulated variable jumps can occur due to the precautions which have been taken in the program and the internal velocity algorithm used, especially in the case of manual/automatic switchovers. A control difference set during manual operation will only be controlled to zero by the I component after switching over to automatic.
In a controller without an I component, however, a control deviation set during manual operation is retained after switching over to automatic operation.
* The rate of change of the manipulated variable, i. e. the manipulated variable increment, can be limited with $A+$ and $A-$ which is useful for a slow actuator. The portion cut off by the limiting is stored and to prevent any information from being lost is added to the value at the next sampling period. The resulting increment is then again subject to limiting.
* The manipulated variable can aiso be limited using the parameters $\mathrm{B}+$ and $\mathrm{B}-$.
* When the manipulated variable limit is reached, the I component is switched off to prevent integrator wind up.
* If the manipulated variable crosses the limit, the overflow bit UE + or UE- is set.
* BIT RF represents a controller enable signal. If this signal is 0 , then the manipulated variable is output as zero, regardess of the state of the controller inputs. If the signal becomes 1 , then the controller reacts with a manipulated variable jump at the output (caused mainly by the D and P components) corresponding to the instantaneous control difference, as if a setpoint jump had occurred at the input.
This allows the controller to be enabled and disabled on-line.

Symbol:

Parameter and control bits

Fig. 4.33 Symbol of the PID controiler

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

Description of the function parameters and binary variables:

Type of variable	Symbol	Description	Number format	Numerical range
Parameter	Kp R TN TV B+ B- A+ A-	Proportional constant, the sign determines the direction of control action: + same direction of change in setpoint and $\mathrm{m} . \mathrm{v}$. - opposite direction of change Separate R factor (usually 1), the P component can be disabled by $\mathrm{R}=0$ Integral-action time, the l component can be disabled by $T N=0$ Derivative-action time, the D component can be disabled by $\mathrm{TV}=0$ Upper limit of output Yk Lower limit of output $\mathrm{Yk}(\mathrm{B}-<\mathrm{B}+$) Upper m. v. rate limit ($\mathrm{A}+>0$) Lower m. v. rate limit ($A-<0$)	no unit no unit Time Time \% \%	$\begin{aligned} & -99.99 \ldots+99.99 \\ & \\ & -99.99 \ldots+99.99 \\ & 0.1 \mathrm{~ms} \ldots 99 \mathrm{~h} 59 \mathrm{~m} \\ & 0.1 \mathrm{~ms} \ldots 9 \mathrm{~h} 59 \mathrm{~m} \\ & -100 \% \ldots+100 \% \\ & -100 \% \ldots+100 \% \\ & 0 \% \ldots+100 \% \\ & -100 \% \ldots .0 \% \\ & \hline \end{aligned}$
Binary control signals	S. 1.2.1 S1.2.3 BITIR BITST S.1.2.2 ST2 BITRF	```1 = Manueloperation \(0=\) Automatic operation \(t=\) Separate \(D\) input \(0=X W k\) as D input (can only be modified in STOP) \(1=\) Ideal PID controller, D comp. without delay \(0=\) Real PID controller, D comp. with delay \(1=\) Hold \(\mathrm{m} . \mathrm{v}\). constant independently of the outputs \(0=\) Do not hold constant 1 = Disturbance variable connected to controller \(0=\) Nc disturbance variable 1 = Standard version \(0=\) Upgraded version (cen only be modified during STOP) \(1=\) Controlier enabled \(0=\) Controller disabled```	Bit Bit Bit Bit Bit Bit Bit	$0 / 1$ $0 / 1$

The parameters $T N$ and $T V$ are converted into the parameters $T I=T A / T N$ and TD $=T V / T A ;$ these variables are stored in specific data areas for that block.

Description of the function input and output variables:

Type of variable	Symbol	Description	Number format	Value range
Input variables	XWk YHk XZk Zk	$=W k-X k=$ setpoint - actual value $=$ control deviation Manual input. During switch-over from automatic to manual, the m. v. is matched according to an exponential function. This prevents step changes in the $\mathrm{m} . \mathrm{v}$. Separate D variable input Disturbance variable input	variable dependent \% variable dependent \%	$\begin{aligned} & -200 \% \ldots+200 \% \\ & -100 \% \ldots+100 \% \\ & \\ & -100 \% \ldots+100 \% \\ & -100 \% \ldots+100 \% \end{aligned}$
Output variables	Yk	M.v. output	\%	- $100 \% \ldots+100 \%$
Binary output variables	$\begin{aligned} & \text { UE+ } \\ & \text { UE- } \end{aligned}$	$1=$ Indication positive limit reached $1=$ Indication negative limit reached	$\begin{aligned} & \text { Bit } \\ & \text { Bit } \end{aligned}$	$\begin{aligned} & 0 / 1 \\ & 0 / 1 \end{aligned}$

4.11 Description of the Standard Controller Structure (SR)

4.11.6.10 "On" - "Off" output

Function description:

A pulse generator stage with "on" - "off" characteristic for converting a calculated quasi-continuous control signal Yk into binary output signals for 2 or 3 -step controllers is implemented.
The manipulated variable is set to $+100 \%$ (for 2 -step output) or $+100 \%$ or -100% (for 3 -step output) only for the part of the sampling time corresponding to the calculated manipulated variable $1 Y \mathrm{kI} \leq 100 \%$. As for the pulse generator stage of the step controller the pulse duration cannot be less than the minimum duration Tmin. Therefore the following equation also applies here:

$$
T A=n \cdot T \min , n=1,2,3, \ldots
$$

Procedure:

The function input variable is the value calculated by the PID algorithm and limited to $\pm 100 \%$ i. e. the manipulated variable Yk .
During the first call of the "on" - "off" output function when the manipulated variable Yk is calculated, it is first compared with the threshold value $\mathrm{ASW}=0 \%, \ldots, 50 \%$:

* $|f| Y \mathrm{Yl}<\mathrm{ASW}$, no pulse is generated.
* $[f I Y \mathrm{kl}>100 \%$ - ASW, a pulse of the maximum length TA is generated, i. e. the number of individual pulses is $T A / T \mathrm{~min}$.
* If the range $\mathrm{ASW} \leq \mathrm{IYkl} \leq 100 \%$ - ASW, a tota! pulse duration (proportional to the m. v . Yk) or number of individual pulses of minimum pulse duration Tmin in given by: $^{\text {in }}$

$$
\mathrm{ANZ}=\mathrm{Yk} \cdot \mathrm{TA} / \mathrm{T}_{\mathrm{min}}
$$

as in the "Step controller" (TA instead of TM) function.
A negative value of ANZ always means negative pulses, which however can only be output with a three-step output stage.

Fig. 4.34 Influence of the threstald value $A S W$ on the number of puises ANZ for a manipulateci variable Yk
If only a two-step output is configured this means that only one analog output (DAC) is used, which is assigned to the positive pulse. In this case the heating can oniy be switched on (DAC1 $=10 \mathrm{~V}$) or off (DAC1 = OV).
With a three-step output however, again in the case of temperature control, 3 control states can be implemented:

$$
\begin{aligned}
& -D A C 1=0 \mathrm{~V}, D A C 2=0 \mathrm{~V}==>O F F \\
& -D A C 1=10 \mathrm{~V}, D A C 2=0 \mathrm{~V}=\Rightarrow \mathrm{HEAT} \\
& -D A C 1=0 \mathrm{~V}, D A C 2=10 \mathrm{~V}==>\mathrm{COOL}
\end{aligned}
$$

In order to prevent possible stronger control interventions on the cooling side as compared to the heating, a heat/cool factor or general matching factor APF $=0, \ldots, 99.99$ can be used in the three-step controller.
Consider an example where 10 seconds of heating increases the temperature by 2 degrees whereas 10 seconds of cooling reduces the temperature by 4 degrees. Therefore the heating effect is only half as powerful as the cooling. Due to the matching factor APF $=0.5$, the analog output assigned to the cooling is only set to 1 for a period half as long as criginally determined by the value ANZ.
Please note the threshold value for the cooling output must be reduced by the same factor!

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

Generalization:

By definition, the matching factor refers to the analog output DAC2. If the value range of APF is extended to values >1, in order to include the possibility of larger control interventions for heating as compared to cooling for example, then the effect of the matching factor APF >0 is defined as follows:

* APF <1: The total pulse duration determined by ANZ at the output DAC2 is shortened by the factor APF.
* APF > 1: The total pulse duration determined by ANZ at the binary output DAC1 is shortened by the factor 1/APF.

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

After the value ANZ is calculated during the first execution of the block, it is then only evaluated and, if required, updated during subsequent executions of the block till the next execution of the controller. The analog outputs DAC1 and DAC2 are set according to the current value of $A N Z$.

Notes:

- A value (e. g. remainder after updating) $|A N Z|<1$ is lost.
- In contrast to the step controller, a controller with "on" - "off" output generates pulses during the steady state of the manipulated variable Yk.

Symbol:

Fig. 4.37 Symbol of the "on" - "of", output
Description of the function parameters:

Type of variable	Symbol	Description	Number format	Numerical range
Parameter	ASW	Threshold value $(0 \%, \ldots, 50 \%)$ * No control pulse for YYkl <ASW \% Control pulse of a maximum duration TA forIYkl 100%-ASW Matehing factor: takes into account different intervention of the two binary outputs	no unit	$0 \% \ldots 50$

Description of the function input and output variables:

Type of variable	Symbol	Description	Number format	Value range
Input variable	Yk	M. v. output of PID controller module	$\%$	$-200 \% \ldots+200 \%$
Output variable	DAC1	Positive pulse Negative pulse	$\%$ $\%$	$0 \% / 100 \%$
Dinary input variable	S1.4.1	$=0$: two-step output $=1:$ three-step output	Bit	$0 / 1$

In addition, the following variable is present in the function, but not accessible to the user:
ANZ At function start: the number of puises to be output with duration Tmin is calculated during the first execution. At the end of the function: number of pulses not yet output.

Note:

The minimum pulse duration $T_{\text {min }}$ can only be changed in the "Input" and "Output" operating modes, not in the controller test.

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

4.11.6.11 Step controller

Function description:

The step controller is a digital controller with three-step action, which only operates in the plants with motorized integral actuators (e. g.vanes, flaps and other positioning equipment).
The step controller constructed using analog components such as a three-step stage with hysteresis and delayed feedback is implemented here as a series circuit of three function blocks:

* Dead band with hysteresis,
* PID velocity algorithm
* Pulse generator stage step controller

Procedure:

The control difference XWek goes first through a dead band stage with hysteresis, in orcer to filter out small control deviations and to protect the actuator. A positive or negative analog value XWek can be suppressed in a symmetrical prediefined range around the zero point.

Fig. 4.38 Dead band with hysteresis
The limits at which the output value XWk is set to 0 or equal to the input value XWek (hysteresis) can be selected with the parameters $A N$ and $A B$.
A manipulated value increment $d Y k$ is calculated from the output variable XWk of the dead band stage using the PID velocity algorithm:

$$
d Y k=K_{p} \cdot[(X W k-X W k 1)+(X W k+X W k 1) \cdot T A /(2 \cdot T N)+D k]
$$

where
$D k=0.5 \cdot[T V / T A, \quad(X W k-X W k 1)-(X W k 1-X W k 2) \quad+D k 1]$.

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

;TEP CONTROLLER

Ip $\quad=$ Proportional constant, $T N=$ integral-action time, $T V=$ derivative time
iA $\quad=$ Controller sampling time, Tmin $=$ minimum pulse duration
FM =Actuator positioning time
$N k \quad=$ Setpoint, $X k=$ actual value
XWk $\quad=$ Control deviation after dead band, XWek: before dead band
x
S 1.5.1 $=$ Automatic operation $(=0)$, manual operation $(=1)$
BITRF $=$ Controller enabled $(=1$), disabled $\langle=0$)
BITTOT $=$ Dead band active for (comp. $(=0)$, inactive ($=1$)
BITHAI $=$ Manual input active $(=1)$, inactive $(=0)$
Fis.4.39 Strueture of the step controller
Here Kp, TN, TV are the control parameters of the PID algorithm. Normally $\mathrm{TV}=0$ is selected as a parameter, i. e. only a Pl algorithm is selected, since a step controller is normally only used in slow plants with slow acting actuators.
In the pulse generator, the pulse duration proportional to the size of the manipulated variable increment dYk is calculated and transformed into a corresponding number of binary control signals +1 (clockwise rotation), -1 (anticlockwise rotation) or 0 (standstill) for controlling the actuator drive.
The relationship between the pulse duration Tk and the manipulated variable increment dYk is given in Fig. 4.40;

Fig. 4.40 Response of an actuator drive to a pulse of amplitude 1 and duration Tk or TM

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

The pulse duration Tk assigned to a manipulated variable increment $d Y k$ is therefore given by

$$
T k=T M \cdot d Y k
$$

in order to limit the switching frequency, a minimum pulse duration Tmin must be specified. in this way the pulse length $T k$ can be represented as a multiple of the minimum pulse duration Tmin:

$$
T k=X \cdot T_{\min } .
$$

The number of individual pulses of length $T \min$ to be output as a result of a calculated manipulated variable increment $d Y k$ is therefore

$$
X=(T M / T \min) \cdot d Y k
$$

Since there is a possibility that all X pulses cannot be cutput during the time TA (sampling time of the PID algorithm), the value X calculated at the time k-TA must be added to the remaining value X.
The new value X is then transmitted to the pulse generator stage.
For $|X|<1$ the minimum pulse duration $T \min$ is not reached, therefore no pulses are output.
For $|X| \geq 1$ the pulse generator stage outputs a pulse of length Tmin each time it is called and decrements the magnitude of X by 1 until $|X|<1$.
After switching over from automatic to manual (switch S1.5.1), a manual value dYH can be entered via a manual input. A number of control pulses corresponding to this manual value is calculated per sampling period, which is then processed further during automatic operation of the pulse generator. The manual value is actually only operational if HAl is set (manual input active). With the help of this bit however it is possible to bring an actuator under manual operation to a predefined position (without the bit HAl the actuator would travel into the limits without stopping for a fixed manual vaiue $<>0$).
Precautions have been taken which prevent longer pulses being generated when switching over to automatic operation. A control deviation set under manual operation is therefore only controlied to zero via the I component.
In automatic operation it is also possibfe to make the dead band inactive for the icomponent using the software switch TOT, i. e. to calculate the I component with the actual control deviation XWek.
Bit RF represents the controller enable signal. If this signal is 0 , then no pulses are output regardless of the state of the controller input. If the signal is set to 1 then the controller reacts with a number of pulses which corresponds to the current control deviation. in this way the controiler can be enabled and disabeld on-line.

Symbol:

Note:

The minimum pulse duration $T_{\text {min }}$ can only be changed in the "input" and "Output" modes, not in the controller test.
4.11 Description of the Standard Controller Structure (SR)

Description of the function parameters and binary input variables:

Type of variable	Symbol	Description	Number format	Numerical range
Parameter	Kp	Proportional constant; the sign determines the direction of control action: + same direction of change in setpoint and m.v. - opposite direction of change in setpoint and m. v .	nounit	-99.99 ... +99.99
	TN	Integral-action time; the l component can be disabled by $T N=0$	Time	$0.1 \mathrm{~ms} \ldots .99 \mathrm{~h} 59 \mathrm{~m}$
	TV	Derivative-action time; the l component can be disabled by $\mathrm{TV}=0$	Time	$0.1 \mathrm{~ms} \mathrm{..}. \mathrm{99h} 59 \mathrm{~m}$
	TM	Positioning time of integrating final control element e. g. actuator	Time	0.1 ms ... 99h 59m
	AN $A B$	Trigger threshold of dead band Release threshold of dead band	variabledependent variabledependent	$\begin{aligned} & -100 \% \ldots+100 \% \\ & -100 \% \ldots+100 \% \end{aligned}$
Binary input signals	$\begin{aligned} & \text { S.1.5.1 } \\ & \text { BITTOT } \end{aligned}$	$\begin{aligned} & T=\text { Manual operation, } 0=\text { automatic operation } \\ & T=\text { Dead-band inactive forintegral component } \\ & 0=\text { Dead-band active for integral component } \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & \text { Bit } \end{aligned}$	$\begin{aligned} & 0 / 1 \\ & 0 / 1 \end{aligned}$
	BITRF	$1=$ Controller disabled $0=$ Controller enabled	Bit	$0 / 1$
	BITHAI	$1=$ Manual value active, $0=$ inactive	Bit	$0 / 1$

The sampling time TA and the minimum pulse duration T min are also required for the step controller. These values however cannot be considered as block parameters, but as global variables of the control loop specified once only which may also be evaluated by the system program.
The user parameters $T N$ and $T V$ are converted into the internal parameters $T /=T A / T N$ and $T D=T V / T A$.
Similarly $K p$ is converted into the parameters $K=K p-T M / T m i n$. These converted variables are in the data area specific to the block.
Description of the function input and output variables:

Type of variable	Symbol	Description	Number format	Value range
input variable	XWek XHK X	$=W k-X k=$ control deviation is generated from the setpoint and actual value before caling up the module Manual input Initially contains number of pulses of duration Tmin not yet output	```variable- dependent % no unit```	$\begin{aligned} & -200 \% \ldots+200 \% \\ & -100 \% \ldots+100 \% \end{aligned}$
Output variable	X	At program end contains number of pulses still to be output	nounit	

In addition the following variables are present, which are not accessible to the user:
XWek 1 previous control deviation before the dead band
XWk control deviation after the dead band
XWk1 previous control deviation after the dead band ($(k-1)$ th sampling period)
Dk1 previous D component

4.11.6.12 Pulse generator for the step controller

Function description:

The pulse generator function converts the manipulated variable pulse duration (or to be more exact: the number X of pulses of minimum duration Tmin with sign corresponding to the pulse direction) calculated by the step controller function in the k-th sampling period into 2 analog signals for DAC 1 and DAC 2 for controlling an integral-action actuator:
$*|X|<1==>D A C 1=0, D A C 2=0 \quad$ ("standstill")

* $X \geq 1==>$ DAC1 $=10 \mathrm{~V}$, DAC2 $=0 \quad$ ("open")
$* x<-1==>D A C 1=0$, DAC $2=10 \mathrm{~V}$ ("close")

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

When these signals are output the analog outputs remain set for the time specified by the total pulse duration IXI-Tmin.

One should consider the following:

- The minimum pulse duration Tmin should be smaller than the sampling period TA of the control loop in order to achieve maximum control accuracy, where
$T A=n \cdot T \min , n=1,2,3, \ldots$ and thus also $T \min <T A<T M$.
Within the sampling period TA, up to n pulses with the minimum duration Tmin can be output consecutively. This means that the pulse generator program is processed within the time TA exactly n times.
- For $\mathrm{XI}<1$ the minimum pulse duration T min is not yet reached, therefore no pulses are output. The value X however is not lost, it is added in the next sampling period to the new value X.
- For IXI ≥ 1 the pulse generator produces a pulse of duration T min at the corresponding cutput each time it is called and decrements the magnitude of X by 1 .
- If the controller program has calculated a total pulse duration IXI - Tmin $>$ TA, then not all X pulses can be output during the sampling period TA. Therefore the number of remaining pulses is stored and is added in the next samping period to the new value X.
- For active acknowledgement $\mathrm{BA}=1$ ("fina! OPEN position reached") the DAC1 output is disabled; similarly for active acknowledgement $B Z=1$ ("final CLOSED position reached"), the DAC 2 output is disabled in order to prevent the actuator from being damaged by overdriving. The acknowledgement signal from the PC is transferred to the IP 252 via a standiard FB (Section 5).

Example: $\quad n=T A / T_{\min }=4, X=3.7$

Fig-4.42 Example of puise generation
Symbol:

Fig. 4.43 Symbol of the pulse generator stage
Description of the function parameters and binary input variables:

Type of variable	Symbol	Description	Number format	Numerical range
Binary input	BA	Acknowiedgement bit: Endposition OPEN reached	Bit	$0 / 1$
variables	BZ	Acknowledgement bit: End position CLOSED reached	Bit	$0 / 1$

Description of the function input and output variabies:

Type of variable	Symbol	Description	Number format	Value range
Input variable	X	Initialy contains number of pulses of duration Tmin not yet output	no unit	
Output variables	X	At program end: contains number of pulses still to be output	no unit	
	DAC 1	Positive pulse Negative pulse	$\%$	$0 \% / 100 \%$
	DAC 2	$\%$	$0 \% / 100 \%$	

Note: The following, additional method of operating the step controller manually is not illustrated in Figure 4.43:
The puls generator has two additional binary inputs, the "Actuator open" and "Actuator closed" keys. The functions of both keys are transferred via the S5 CPU to the IP 252 . Neither of these keys is accessible in the COM REG programmer software or in the standard function block FB:STEU:STD in Section 5.1.2.
in contrast to manual mode with constant manual value (CON HA), the output of the step controller is controlled direct here:

BIT 1.5.HAZ $=1$--> Manual mode "Actuator closed"
BIT 1.5. HAA $=1$--> Manual mode "Actuator open"
For this type of manual mode, the following bits must be set:
BIT 1.5.RF $=1$ (to controller enable)
BIT 1.5.1 $=1$ (to manual mode)
$\mathrm{BIT} 1.5 . \mathrm{HAI}=0$ (to manual value "CON HA" non-active).
In section 5.2.3.1 there is a description of the transier of both "HAZ" and "HAA" keys from the STEP 5 program in the CPU to the IP 252.

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

4.11.7 Data block of the standard controller (SR)

The data block contains all the data of the SR controller structure. If the contents of these data words have to be read or overwritten by the CPU, these internal IP 252 data can be accessed with the help of data handling blocks (Section 5.2).

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

Controller management bit RBV $=0$; Controller not being processed
RBV $=1$: Controller being processed

Bit variables in the PIQ:

$1111 \quad V$
| | | | 'Limit monftor 2' submodule
1111
| +--|--+--a> 'Pulse converter' submodule 1
+-----+---> 'Pulse-pause output' subsocule

Status word of the controller

The status word created for the compact controlier signalling system contains Dit information on the "hard-wired" itwit montiors.

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

Meaning of the bit variables in the process input/output image:

Bit variables in the P\| area can be changed by the user at any time during operation (via STEP 5, PG).
They can be divided into

* Structure relays, which enable certain structure changes during operation
* Internal control bits.

Bit or binary variables in the PIQ area indicate specific signal statuses of the controlier. They can only be changed from the structure program.

HOE

TIE : "Lower" bit of the "ramp-function generator": $0=$ No effect $1=$ Ramp with negative slope.

LOE : "Delete" bit of the "ramp-function generator":
$0===>1$: Return from manual mode to automatic mode if $\mathrm{HOE}=0=\mathrm{TIE}$
$1===>0$: No effect
"Acknowledge" bit of the "Pulse generator":
$0=$ Final position OPEN not reached
$1=$ Final position OPEN reached.
BZ : "Acknowledge" bit of the "Pulse generator":
$0=$ Final position CLOSED not reached
$1=$ Final position CLOSED reached.
RL.1-RL3 : Structure relay (ef. standard controller structure!)
SETPOINT(RL1) : Setpoint selection bit:
$0=P C$ setpoint effective
$1=$ "Setpoint sequence" effective.
SZFR (RL2) : Setpoint branch enable bit:
$0=$ Setpoint branch on
$1=$ Setpoint branch off.

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

INBET (RL3) : Actual value branch startup bit:
$0=$ Actual value branch on
$t=$ Actuai value branch off
Startup value effective.
HAI : "Manual value active/inactive" bit of the step controller
$0=$ Manual value inactive, i. e. no pulse output
(final control element standstill)
$1=$ Manual value active, i. e. pulse output with a frequency corresponding to the manual value (final control element run).

SRF : Enable bit of the "Step controller":
$0=$ Controller disabled, i. e. zero output.
$1=$ Controller enabled, i. e. output of the calculated value.
TOTI : Switch for selecting the input variable for the I component of the "Step controller"
$0=$ Dead zone for the 1 component effective.
$1=$ Dead zone for the 1 component ineffective.
AH (RL4) : Automatic/manual transfer in the case of the "PID controlier" or "Step controiler":
$0=$ Automatic mode
i = Manual mode .
IDRE : Change from ideal to real "PID controlier":
$0=$ Real
$1=$ Ideal PID.
INO : Bit for setting the control increment to zero in the case of the "PID controller":
$0=$ No effect
$1=$ Control increment is set to zero or manipulated variable is kept constant.
STOER (RL5) : Disturbance variable injection in the case of the "PID controller":
$0=$ Ignored
$1=$ Effective, i. e. disturbance variable increment is added to calculated control increment.
RF : Enable bit of the "PID controller":
$0=$ Controller disabled, i. e. zero output
(past values are set to zero, no manipulated value calculation).
$1=$ Controller enabled, i. e. output of the calculated value.

4. Programming Instructions

4.11 Description of the Standard Controller Structure (SR)

GW1	```Limit bits of the 'Limit monitor 1' submodule: Limit bits of the 'Limit monitor 2' submodule: 0 = Relevant limit not exceeded 1 = Relevant limit exceeded.```
NUE	```: Bit for lower limit of the manipulated variable in th of the 'PID controller' submodule: 0 = not exceeded 1 = exceeded.```
PUE	: Bit for the upper limit of the control variable in th of the 'PID controller' submodule: $0=$ not exceeded 1 = exceeded.
QO	: Binary output "Open" of the 'Pulse converter' submodu $0 / 1$
QS	: Binary output "Close" of the 'Pulse converter' submod $0 / 1$
QP	: Binary output "Positive pulse" in the case of the 'Pulse-pause output' submodule: 0/1
QN	: Binary output "Negative pulse" in the case of the 'Pulse-pause output' submodule: 0/1

YOG	$\begin{aligned} & :=P U E i \\ & =B A \text { i } \end{aligned}$	in the PID controller with continuous control in the step controller
YUG	$\begin{aligned} := & \text { NUE } i \\ & =B Z \quad i \end{aligned}$	in the PID controller with continuous control out in the step controller
SOG	:= 1	---> Setpoint exceeded upper limit (otherwise 0).
SUG	: $=$	---> Setpoint exceeded lower limit (").
OW	:= 1	-> Actual value exceeded upper warning limit ("
UW	:= 1	\rightarrow Actual value exceeded lower warning limit ("
OG		\rightarrow Actual value exceeded upper danger limit (")
UG	:= 1	---> Actual value exceeded lower deanger limit (")

4. Programming Instructions

4.12 Description of the Drive Controlier Structure with Self-Optimization (DRS)

The structure contains all functions required for controlling a cirive, except for the current controller and the power stage. This means that depending on the requirements of the user, a speed control system (e. g. for mills, turbines) or a velocity control system (e. g. for paper machines, foil machines) can be implemented.

The drive controller structure (Fig. 9.1) consists basically of two cascaded closed-loop controllers. Parameters can be assigned to each of the controllers of P, PI, PD or PID response. The outer loop controller (9) is used e. g. forposition control, tension control or pressure control. One should mention at this stage that the numbers in brackets correspond to the branch no. ($(5) \hat{=}$ branch 5). A velocity control loop or a speed control loop can be implemented using the inner loop controlier (5).

The "DRS" structure on memory submodule 6ES5 374-0AB11 is a further development of the drive controller structure ("DR") described in Section 4.10. The Self-setting of drive controllers function (16) and the facility for performing mathematical operations (17) are both new developments. In addition, the eight possible control loops of the IP 252 are user-configurabie (Section 4.12.2).

4.12.1 Outer loop controller (9)

The setpoint (e. g. position setpoint) is input either via an A/D converter, or via the programmer or the CPU of the programmable controller. The actual value (e. g. actual position value) is sensed by an A/D converter. The controiler output can be reduced in proportion to the actual speed value. This is used for speed-dependent adaptive control in foil machines.

4.12.2 Inner loop controller (5)

The following setpoint sources can be programmed:

- 1st channel: Output of the outer loop controller (9)
- 2nd channel: Setting-up speed (6)
- 3rd channel: Inching speed (7)
- 4th channei: Armature current dependent component (11)

This component is used e. g. in conveyor belts and continuous casting processes (load regulation).

- 5th channel: Main setpoint (speed or velocity setpoint (8)).

This setpoint is input either via an AVD converter, via the programmer or via the programmable controlier CPU. The acquired setpoints can be processed by a ramp-function generator and/or a smoothing moduie.
The ramp-function generator module produces a ramp output from a step function at its input. This is required for instance during start up processes.
The smoothing module is used for "smoothing" the setpoint.
The control loop can be tuned to optimum disturbance response. Selection of a suitable smoothing time constant produces an optimum response to setpoint changes.

The actual value (10) (actual speed value) can be input either as a tacho voltage via the A/D converter or via a counter input. A smoothing module is used for suppressing any resonances. In addition, the high frequency disturbances to which the controller cannot respond are kept away from the PID module (10).
The display function (10) permits amplification and display of the alternating component of the actual speed value via a measuring instrument connected to the D / A converter.

In the case of the speed control loop, the actual speed value (10) is used directly in the inner loop (speed) controller (5). If a velocity control is required, the current velocity is calculated from the actual speed value (3) and transmitted to the inner loop (velocity) controller as an actual velocity value.

The controller output, optionally evaluated with a factor (4), forms the main component of the current setpoint. This evaluation of the controller output produces a loop gain, as required e.g. during the field weakening operation of motors.

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

4.12.3 Current setpoint

The current setpoint which is generated by the IP 252 as a $\pm 10 \mathrm{~V}$ voltage at the D/A converter consists of the following:

- 1st channel: Main current setpoint (5)
- 2nd channel: Friction compensation (2)
- 3rd channel: Acceleration compensation (12); is used in velocity controliers (e. g. reeling and unwinding operations)
- 4th channel: Braking current modulation (1 b)

Instead of the summed output (1 a), an actual speed dependent braking current can be output as the manipulated variable.

Before the current setpoint is output as the manipulated variable, it can be converted and limited (1 b).

4.12.4 Additional functions

- Two user connected limit monitors (12), (13):

Each of the limit monitors can be assigned to any desired signal (measuring point) of the controller structure. The limit monitors contain 6 stages, which are specified via the programmers. The results of the limit monitors (overshoot or undershoot) are evaluated by the logic control program of the S5 central controller.

- Four pre-assigned limit monitors:

These limit monitors support the operator communication and control concept of the compact controller structures. The results of the monitors are used for instance by the CP 526 communications processors as inputs for the standard displays on the VDUs. The limit monitors monitor setpoints and actual values of the outer loop (9) and the inner loop (5) controllers.
The danger and the warning limits are specified via the programmer in the planning stage.

- Thermal monitoring of the motor (11):

Using the actual armature current a thermal monitoring of the motor is possible. If one of the switching limits specified by the programmer is reached this is communicated to the logic control program.

- Free assignment of the measuring sockets ${ }^{\text {¹ }}$
- User configurability of the control loops ${ }^{22}$
- Internal branch function expansions in the branches
- 3: Peripheral velocity
- 4: Loop gain (field current monitoring)
- 8: Setpoint branch (ramp-function generator and actual value referencing)
- 9: Primary controlier (actual value processing and controlier output)
- 10: Actual value branch (digital actual value capture with IP 240)
- 11: Actual armature current (temperature display)
- 12: Acceleration compensation (decoupled from branch 3)
- New branches in the "DRS" structure
- Branch 15: Analog measuring point output
- Branch 16: Arithmetic
- Branch 17: Self-optimization of the speed controller

The functions listed under "1)" and "2)" apply to both structures of the "DRS/SR" block and, therefore, also to the standard controller structure:

1) Free assignment of the measuring sockets

Both measuring sockets on the frontplate of the IP 252 module are used for displaying two measured values. Which measured values (e. g. control deviation, manipulated variable, etc.) are to be displayed within which control loops (1 to 8) is to be defined at the configuration stage in the memory submodule with the DR/SR structures.
Later changes can only be undertaken with the module in the STOP mode.
With the DRS/SR memory submodule, on the other hand, the measuring sockets must be assigned to the desired measuring points during controller test, i. e. while the process is running:
For this purpose, the operator interface of the COMREG packages offers the "Measuring sockets" function as well as the "Controller test" function. With the "Measuring sockets" function you can assign MB7 (DAC channel No. 5) and MB2 (DAC channel No. 6) menudriven to any measuring point of the controller structure from controler Nos. 1 to 8 . These assignments can be changed at any time. The measuring sockets may only be activated if analog output channels Nos. 5 and 6 are not otherwise assigned!
2) Configurability of the control loops

The memory submodule with the "DRS/SR" structures supports the configuring of control loops 1 to 8 to master and slave controllers. Wherever an ADCn is indicated in Sections 8.2 and 8.3 of the configuration documentation, the following parameters can be entered:

e.g. $A D C 6=$	0 to 7	IP 252 - internal ADC channels
	128 to 254	Backplane bus addresses of the S5 analog I/ $/$ modules: only possible with the S5 115 U .
	RNo. MPNo.	The R No. is the controler No. 1 to 8, and the MP No. is the No. of the measuring point of this

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

It is thus possible to transfer, for example, the processed actual value of controller no. 2 to controller no. 3 as the setpoint. If both controllers have the "DRS" structure, the following inputs are reçuired:

The following value is entered, using the programmer, in the entry field of ADC 6 (of branch 8 in controller no. 3): ADC6 2.12

If controller no. 2 is a drive controlier (DRS) and controller no. 3 is a standard controller (SR), the following value is entered, using the programmer, in the entry field of $A D C 1$ (oi branch 3 in controller no. 3): ADC 1
2.12

4.12.5 Detailed description of the drive controller structure (DRS)

The following description refers to the configuring sheets (Section 8.3) for the drive controller structure. The symbols used here are explained in Section 4.9.

The overview pages of Section 8 show all the branches of the drive controlfer structure. The shading in branches 1,5 , and 10 of the drive controller structure means that these branches cannot be switched off. These branches are aiways active! Exact representation of the structures can be found in the Appendix in Section 9 (Fig. 9.3).

4.12.5.1 Branch 1: Controller output/current setpoint

Function:

The current setpoint (manipulated variable) is generated and output via an analog output channel. The current setpoint can be inverted with structure switch S1.1.
The lifiting stage limits the current setpoint to values, which are specified by the user via the PG. The upper and lower limiting values are detected in branch 5 (Section 4.12.5.5) by the PG. If the current setpoint crosses the limits, then this is taken into account in the inner loop controller (PID module) in braneh 5; i. e. the corresponding overflow bits are set and the I component of the PID controller is disabled as long as an overflow bit is set.

Relay REL 1.1 is available for braking action. If the relay is active, then DAC2 outputs the current setpoint, which is linearly dependent on the instantaneous actual speed value. This means that 0% is output as the current setpoint when 0 speed is reached.

Input variables:

- Currentsetpoint component from branch 2
- Currentsetpointcomponent from branch 3
- Main current setpoint from branch 5

Braking compensation:

- CON1. The constant influences the magnitude of the braking current
- MP12 Actual speed from branch 10
- REL1.1 When active, the motor is braked to standstill.

Output variables:

- DAC2 Current setpoint (manipulated variable) after limiting
- MP6 Magnitude of the braking current :
- MPG The actual speed value, multiplied by the constant CON1.1 and (-100) is the braking current.
- MP9 Current setpoint before limiting

4.12.5.2 Branch 2: Friction

Function:

This branch can be activated with relay REL 2.1 for compensating friction (stiction) forces. In order that the correct polarity of these current setpoint components is maintained even when the direction of rotation changes, the constant 2.1 is multiplied with the sign of the speed setpoint (MP14 from branch 8).

input variables:

- CON2.1 The constant specifies the magnitude of the current setpoint component
- REL2.1 When active, the current setpoint component is enabled
- MP20 Summated setpoint from branch 5

Output variables:

- The output from branch $\mathbf{2}$ is connected to the summation point of branch 1.

4. Programming Instructions

4.12 Description of the Driver Controller Structure with Self-Optimization (DRS)

4.12.5.3 Branch 3: Peripheral velocity (diameter calculator)

This branch is required for operating axle-driven upcoilers and downcoilers.

Function:

A velocity control system operates with a velocity setpoint. Accordingly, the actual value must also be available as a velocity. In branch 3, therefore, the actual speed (MP12) measured in branch 10 is used for calculating the velocity of the web material.
The actual value of MP12 of branch 10 is measured in branch 3 while the setpoint is being read in via ADC7. Under normal conditions, ADC7 will be switched to measuring socket 14 of its own controller number. It is also possible to obtain the primary setpoint from an analog web tachometer.
The difference between actual velocity and velocity setpoint is calculated and the resultant signal routed to the deadband filter. Oniy signals greater than the preset value CON 3.1 pass the deadband filter. The resulting signal is multiplied with the sign of the rotational speed value and intergrated overtime if the integrator has been enabled (bit 3.1 active). The integration period is set with CON3.TID according to requirements. A value for CON3.TID of approximately 10 s for thin sheeting and paper, and approximately 60 s for stip metal roughly 1 mm thick, can be used as a rule of thumb when working with normal web velocities.
The result is the calculated diameter of the reel. If this calcuiated value falls below a minimum diameter (CON3.DUG), the preset lower diameter limit CON3.DUG is used. The diameter calculated in this way (MP15) is multiplied with the actual rotational speed (MP12) to give the web velocity (MP16).
The control program of the S5-CPU provides the desired initial diameter at VAR3.1, which is accepted by the integrator of branch 3 if relay 3.2 is active.
The diameter calculator has four operating modes:

1) The master reference voltage from the tacho is positive
1. Downcoiling with positive revs (clockwise)

The calculated diameter (MP15) is within the range
$0 \%<d \leq 100 \%$
Meaningful entries for the constants CON3.DUG and VAR3.1 lie within the positive value range $0 \%<x \leq 100 \%$
2. Downcoiling with negative revs (anti-clockwise)

The calculated diameter (MP15) is within the range
$-100 \% \leq d<0 \%$
Meaningful entries for the constants CON3.DUG and VAR3. 1 lie within the positive value range
$-100 \% \leq x<0 \%$
11) The master reference voltage from the tacho is negative
3. Upcoiling with positive revs (clockwise). This corresponds to "1) 2." above.
4. Upcoiling with negative revs (anti-clockwise). This corresponds to "1) 1 " above.

A primary requirement in upcoiling and downcoiling is that the web material be kept at a suitable tension throughout the whole coiling operation. The IP does this by means of velocity control (speed control) with primary ("direct") tension control. Tension is controlled with branch 9 (actual tension measurement via tension load cell or dancer roll).
If there is a dancer roll available, the primary controller functions as a position controller. Tension is determined by the weight of the dancer roll or the weight applied to it.
The actual rotational speed is matched to the coil diameter in branch 3 . Excitation during the coiling operation can be influenced via measuring point MP15, whose signal is then routed to a DAC via the measuring socket (branch 15). A presondition for coiling control is that web velocity be determined by the driven machine.

Function sequence during downcailing

If the coil diameter decreases, the speed controller will at first attempt to maintain the speed since its input signals remain constant. This leads to an increase in web tension. The tension controller or position controller makes the appropriate adjustment and the speed is increased. This also increases the product $n \times d$ (MP16). At the input to the summator in branch 3 a, $n \times d$ is greater than the master reference voitage V_{L} at MP14 and at this point the integrator runs from the set initial diameter (MP15) downwards until the product $n \times d$ is again equal to V_{L}.
The actual value $n \times d$ for branch 5 is therefore smaller and so the driver is "faster". The correction value of the primary controller is decreased. During the coiling operation, n is therefore greater and d smalier; with the difference that, in this operation, the integrator functions upwards from a small initial diameter.
It is important that the new initial diameter be set at the beginning of a coiling operation (e. g. by the CPU control program). The level of the master reference voltage (MP14) at max. production speed depends on the coiling ratio.
Example:
Diameter of empty mandrel $\quad 200 \mathrm{~mm}=\mathbf{2 2 . 2 \%}$
Diameter of full reel $\quad 900 \mathrm{~mm}=100 \%$

Diameterratio $=4.5 \%$

Max. master referencevoltage $=22.2 \%$
The master reference voltage can be influenced by means of the constant CON 8.2 in branch 8 .
The diameter (MP 15) is only reset in the STOP mode of the IP 252. In the case of a warm restart after power failure, the old value is retained if the IP RAM has battery back-up.
Input variables:
Acceleration compensation, branch. 3b
-ADC7 Channel for feeding in the veiocity setpoint (primary setpoint).
-MP12 Actual speed from branch 10.

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

- CON3.1 Constant for setting a threshold value for the difference between velocity setpoint and actual velocity
- CON3.TID
- CON3.DUG
- VAR3. 1 Integration time constant of the diameter calculator
Lower limit of rolt diameter
The variable gives the diameter of a newly inserted reel. The IP uses this diameter to calculate the current actual diameter during upcoiling and downcoiling.
- REL3.2 This relay influences the output of the integrator. When the relay is inactive, the current diameter is always available at the integrator output. When the relay is active, the integrator is set to the value of variable 3.1. The diameter can be reset at any time.
- BIT3.1 If this bit is " 0 ", the integrator is disabled. The output retains the last calculated diameter. If the bit is set to " 1 ", the integrator starts to work again from the last calculated diameter.

Output variables:

- MP15 Actual diameter of the reel.
- MP16 Velocity (to summator in branch 5).

4.12.5.4 Branch 4: Loop gain

Function:

The output of the inner control loop in branch 5 is evaluated and gives the main component of the current setpoint. Depending on the position of structure switch $\$ 4.1$ various arithmetic operations can be carried out:

S4.1 inactive: (division in branch 5)

The signal (fieid current) input through an analog input channel is multiplied with the constant CON 4.1 for standardization and displayed with limit indicators at measuring point MiP18 for possible further processing. If S 4.2 is inactive, the signal is transmitted via a characteristic. The characterisitic cannot be changed and is described in Section 4.12.6.5. This characteristic gives the approximate relationship between the field current and the magnetic flux of the d. c . motor. The shape of the characteristic is selected to fit a majority of the most commonly used motors (see Section 4.12.6.5)

S4.1 active: (multiplication in branch 5)

In the case of velocity control, the actual diameter calculated in branch 3 (MP15) is entered. In both cases (S4.1 active/inactive), the signal entered can be matched to offset and gain vie a straight-line equation ($S 4.3$ active). Only if relay 4.1 is inactive will the value calculated in this way reach branch 5 . If REL4.1 is active, a constant loop gain can be given for start-up purposes using CON4.2 (format: -100% to $+100 \%$). Depending on the position of the structure switch S4.1, either an increase ($\$ 4.1$ inactive) or a decrease ($\$ 4.1$ active) in loop gain is produced.
Input variables:

- ADC5 Field current
- CON4.1 The constant is used for standardizing the field current (format -99.99 to +99.99)
- CON4.2 The constant determines the influence of the evaluation
- CON4.VER Gain factor of the interface (format: -99.99 to 99.99)
- CON4.OFFOffset of the interface (straight-line equation $y=x^{*}$ CON9.VER + CON9.OFF)
- MP15 Actual diameter from branch 3

Output variables:

- MP8 Operation on the controller output in branch 5
- MP18 Measured and standardized field current

4.12.5.5 Branch 5: Speed controller/velocity controller

Function:

The instantaneous control deviation is determined in the summation stage. It is calculated from the difference between the setpoint and the actual value (see page 2 of branch 5 in Section 8.3). The setpoint consists of the outputs of branches $5,6,7,8,9$ and 11 , the actual value is the output of branch 3 or 10 . If the actual value comes from branch 3 , then it is a velocity control system, otherwise it is a speed control system.
The setpoint and the actual value are each monitored by a preassigned limit monitor. The function of this monitor is described in Section 4.12.6.1.
Relay 5.1 can be made active for start-up purposes. Then the constant CON5.1 acts on the PID controller input as an additional setpoint component.
The PID controlier can be assigned P, PD, PID or Pl control action by setting various parameters to zero:
TN =0 \quad icomponent not active
TV $=0 \quad$ D component not active
Both the limits CON5.B+ and CON5.B- limit the manipulated variable in branch 1. If the manipulated variable in branch 1 crosses one of the limit values, then the corresponding bits BIT5. UE + and BIT5. UE- of branch 5 are set.
The PID controller in branch 5 then disables its integrator. This prevents "wind up" of the integrator.
The output of the PID controller is operated on by the output of branch 4 , if branch 4 was selected. If branch 4 was not structured then no operation is carried out, the controlier output is connected to branch 1 without modification.
Evaluation: Multiplication if $\mathrm{S} 4 . \mathrm{i}=1$
Division if S4.1 $=0$
The output of branch 5 is the main component of the current setpoint.

4. Programming instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

Input variables:
PID controller module:

- CON5.KP Proportional value influence the behaviour
- CON5.TN Integral-action time of the PID controller
- CON5.TV Derivative-action time
- CON5.B+ The constant determines the upper limit for the limiting in branch 1.
- CON5.B- The constant determines the lower limit for the limiting in branch 1.
- BIT5.RF The bit disables or enables the PID controller, The controller is enabled, when the bit is active. When disabled, the controller produces 0% of its output and resets its internal memory.

Setpoint limit monitor:

- CON5.SOG Upperlimit
- CON5.SUG Lower limit

Actual value limit monitor:

- CON5.OW Upper warning limit
- CON5.UW Lower warning limit
- CON5.OG Upper danger limit
- CON5.UG Lower danger limit

Miscellaneous:

- CON5. 1 When relay REL5. 1 is active, the constant CON5.1 works on the input of the PID controller as an additional setpoint component (start-up value).
- REL5. 1 When the relay is active, it switches the constant CON5. 1 to the summator.
- REL5/9 With this relay, one can switch over to "Direct tension control" (see Section 4.10.5.16).

Output variables:

PID controller module:

- BIT5.UE+ This bit is active if the manipulated variable (MP9) in branch 1 crosses the upper limit CON5.B+ (in branch 1). The integrator in the PID controller is then frozen.
- BIT5.UE- This bit is active if the manipulated variable in branch 1 crosses the lower limit CON5.B- (in branch 1).

The integrator in PID controller is then frozen.

Setpoint limit monitor

- BIT5.SOG The bit is active if the setpoint crosses the upper limit.
- BIT5.SUG The bit is active if the setpoint crosses the lower limit.

Actual value limit monitor

- BIT5.OW The bit is active if the actual value crosses the upper warning limit.
- BIT5.UW The bit is active if the actual value crosses the lower warning limit.
- BIT5.OG The bit is active if the actual value crosses the upper danger limit.
- BIT5.UG The bit is active if the actual value crosses the lower danger limit.

Miscellaneous:

- MP10	Main current setpoint (input of the summation stage in branch 1)
- MP11	input of the PID controlier (control deviation)
- MP16/12	Actual velocity or actual speed summated setpoint
- MP20	Summated setpoint

Note: The bits BIT5.SOG to BIT5.SUG are not evaluated by the standard function biocks FB:STEU (Section 5).

4.12.5.6 Branch 6: Setting-up speed

Function:

When relay REL6. 1 is active, the constant CON6.1 is switched to the summation stage in branch 5 .

Input variables:

- CON6.1 Constant used as the setting-up speed setpoint
- REL6.1 Relay used to switch the constant CON6.1 to the speed controller, branch 5 (control deviation).

Output variables:

- The result of branch 6 is connected to the summation stage in branch 5 .

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

4.12.5.7 Branch 7: Inching speed

Function:

If relay REL7.1 is active, then the constant CON7.1 is switched to the summator stage in branch 5 .

Input variables:

- CON7. 1 Constant used as the inching speed setpoint.
- REL7.1 Relay used to switch the constant CON7.1 to the speed controller, branch 5 (control deviation).

Output variables:

- The result of branch 7 is connected to the input of the summator stage in branch 5 .

4.12.5.8 Branch 8: Speed/velocity setpoint

Function:

The branch generates the main setpoint for the inner loop controller in branch 5.
Relay REL8. 3 is used to select whether the setpoint is an analog or a digital input. In the case of an anaiog input (REL8.3 inactive) the IP inputs the value via ADC6.
In the case of a digital input (REL8.3 active) relay REL8. 1 can be used to decide whether the setpoint comes from the PG (CON8.1) or from the logic control program of the S5-CPU (VAR8.1).

Further processing of the setpoint is only carried out if relay REL8.2 is active. The setpoint can be enableci or disabled with the relay.
The setpoint input via ADC or VAR8.1/CON8.1 can be transmitted via a ramp-function generator or a smoothing block ar via both simultaneously. The configuring switches $\$ 8.1$ and $\$ 8.2$ determine which block is selected.

The setpoint (MP17) is previously muttiplied with the constant CON8.2.
Whether the ramp-function generator block is to reference the actual value from branch 10 or 3 can be decided using configuring switch S8.3.

The ramp-function generator block and the filter block are described in detail in Section 4.15.

input variables:

Setpoint input:

- ADC6 For analog setpoint input, the signal is input via ADC6.
- REL8.1 The source for the digital setpoint is selected by the relay. If the relay is inactive, the value comes from the PG (CON8.1).
- REL8. 2 When active, the relay allows the setpoint to be processed further
- REL8.3 The relay determines whether the setpoint input is analog (relay REL8.3 inactive) or digital (relay REL8.3 active).
- REL8.4 If relay 8.4 is active, branch 8 operates in isolated mode. The setpoint et MP14 is then not transmitted to branch 5.
- CON8.1 For digital setpoint input (REL8.3 active) and with relay REL8.1 inactive, the PG is the source of the setpoint (CON8.1).
- VAR8. 1 For digital setpoint input (REL8.3 active) and with relay REL8.1 active, the logic control program of the S5-CPU is the source of the setpoint.
- CON8.2 Multiplication of the processed setpoint by a constant.

Ramp-function generator:

- CON8.TR Ramp-down time
- CON8.TH Ramp-up time
- CON8.ZUW Increment
- BIT8.HOE "Higher" bit
- BIT8.TIE "Lower" bit
- BIT8.AUT Automatic mode bit
- BIT8.NUL Move setpoint slowly to zero percent
- MP12/16 Actual speed or actual velocity

Filter biock:

- CON8.TVZ Delaytime see Section 4.12.6.2

Output variables:

- MP14 Magnitude of the setpoint after optional processing by the ramp-function generator block and/or the filter
- MP17 Module. This value is transmitted to the summation stag

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

4.12.5.9 Branch 9: Outer loop controller

Function:

The control deviation is determined in the summator. The actual value is input via $A D C 1$. If required, the actual value can be matched to offset and gain via a straight-line equation ($\$ 9.1$ active) and/or transmitted via a filter function (S 9.4 active). The setpoint can be input either as an analog variable (S 9.2 inactive) or digital variable (S 9.2 active). For digital setpoint input, the state of relay REL9.2 determines whether this value comes from the S5-CPU (VAR9.1) or from the programmer (CON9.1).
The setpoint and the actual value are each monitored by a preassigned and non-optional limit monitor (see page 2 of branch 9 in Section 8.3). The operation of both these limit monitors is described in Section 4.12.6.1.
The control deviation (output of the summation stage) is used as the input by the PID controlier.
The PID controller can be assigned, P, PD, PID or PI control action by setting various parameters to zero:
$\mathrm{TN}=0 \quad$ l component not active
$T V=0 \quad D$ component not active
The controller output is limited by CON $9 . B+$ and $\operatorname{CON} 9 . B$ - and then multiplied before it arrives at the summation stage of branch 5. Various types of multiplication are available:

Multiplication by a constant is possible via the PG value CON9.2. However it is also possible to make the operation proportional to the instantaneous actual speed value (MP 12 from branch 10) multiplied by CONS. 2.
In case the signal crosses the limit, the corresponding bit $\mathrm{BIT} . \mathrm{U} \div$ or $\mathrm{BIT} 9 . \mathrm{U}$ - is set. The PID controler then disables the integrator. In this way "wind up" of the integrator is prevented.

Input variables:

Setpoint input:

- ADC2 Setpoint input if analog setpoint input mode was selected (S 9.2 inactive) during structuring.
- REL9.1 The source for the digital setpoint is selected by the relay. If the relay is inactive, the value comes from the PG.
- CON9.1 For digital setpoint input and with relay REL.9.1 inactive, the PG is the source of the setpoint (CON9.1).
- VAR9.1 For digital setpoint input and with relay REL9.1 active, the S5-CPU is the source of the setpoint (VAR9.1).

Actual value input:

- ADC1 The actual value is always input as an analog variable.
- CON9.VER Gain factor of the interface (format: -99.99 to 99.99)
- CON9.OFF Offset of the interface (even equation $y=x *$ CONS.VER + CON9.OFF)
- CON9.TVZ Input variable of the filter block, see Section 4.12.6.2

PID controlier:

- CON9.KP Proportional gain
- CON9.TN Integral-action time
- CON9.TV Derivative-action time
- CON9.B+ The constant determines the upper limit for the limiting.
- CON9.B- The constant determines the lower limit for the limiting.
- BIT9.RF The bit enables or disables the PID controller. The controller is enabled if the bit is active. In the disabled state, the controller outputs 0% and resets its internal memory-

Setpoint limit monitor:

- CONG.SOGL Upperlimit
- CON9.SUGL Lowerlimit

Actual value limit monitor:

- CON9.IOWL Upper warning limit
- CON9.IUWL Lower warning limit
- CON9.IOGL Upper danger level
- CON9.IUGL Lower danger level

Weighting of the controller output:

- CON9.2 This value is multiplied with the controller output if structure switch 59.3 is active. (CON $9.2=-99.99$ to +99.99)
- MP12 The controller output is multiplied with the actual speed value input in branch 10, and with CON9.2, if structure switch $59-3$ is inactive.

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

Output variables:

PID controlier:

- BIT9.UE+ The bit is set when the output of the PID controller crosses the upper limit CON9.B+. The integrator in the PID controller is then frozen.
- BIT9.UE- The bit is active when the output of the PID controller crosses the lower limit CON9.B-. The integrator in the PID controller is then frozen.

Setpoint limit monitors:

- BIT9.SOG The bit is active when the setpoint crosses the upper limit.
- BIT9.SUG The bit is active when the setpoint crosses the lower limit.

Actual value limit monitors:

- BIT9.OW The bit is active when the actual value crosses the upper warning limit.
- BIT9.UW The bit is active when the actual value crosses the lower warning limit.
- BIT9.OG The bit is active when the actual value crosses the upper danger limit.
- BIT9.UG

> The bit is active when the actual value crosses lower danger limit.

Miscellaneous:

- MP1 Actual value of the outer loop controller
- MP2 Setpoint of the outer loop controller
- MP3 Control deviation of the outer loop controller
- MP4 Input of the summator in branch 5

Note: The bits BIT9.SOG to BIT9.SUG are not evaluated by the standard function block (Section 4.13).

4.12.5.10 Branch 10: Actual speed value

Function:

The actual speed value can be input via an analog input channel (ADC3) as a tacho voltage or via the pulse detection input as a pulse sequence. If required, the filter block can be used to smooth the actual value. Then the signal is multiplied by a constant (CON10.1). If relay REL10.1 is inactive, the result of the multiplication in the case of a speed control system goes to branch 5 , in the case of velocity control to branch 3 .
If the actual value is obtained in the form of a pulse train $(\$ 10.1=1)$, a decision must be made, using $S 10.4$, whether to use singlechannel internal pulse acquisition or one channel (1 or 2) of the external IP 240 input/output module.

- For internal pulse acquisition, a digital tachometer is connected to the 25 -way Cannon connector on the frontplate of the IP 252.
- If the IP 240 external counter module is used for digital actual value acquisition ($\mathrm{S} 10.4=1$), the slot-coded $\mathrm{I} / 0$ address (128 to 252) and the channel no. (1 or 2) must be specified as well as the sensor pulses per rev/100 and the nominal speed in rev/s. An IP 252 can access several IP 240s. However, only one IP 252 can access both channels of an IP 240 !
This backplane bus access is only possible in the $\mathbf{S 5 - 1 1 5 U}$ programmable controller, with the IP 252 connected directly adjacent to the CPU (see also Section 4.9).
For display purposes the actual speed value (MP12) is processed further. It is multiplied by a constant (CON10.3), then transmitted via the display block and output via the analog output channel DAC1.
If relay REL 10.1 is active, the constant CON10.2 goes to branch 3 or branch 5 .
Relay REL 10.1 is used during start up.
The display and filter blocks are described in Section 4.12.6.4.

Input variables:

- CON10.1 The constant is used for normalizing the actual speed value.
- CON10.2 This value can be input for commissioning purposes via relay 10.1.
- CON10.3 The constant is used for calibrating the display via DAC1.
- CON10.4 Rated speed in revolutions per second.
- CON10.5 The number of index lines divided by 100. Both constants CON10.4 and CON10.5 are used for calibrating the digital actual speed value input. At rated speed the block outputs 100% (example: CON $10.5=5$ 今 500 index lines).
- CON10.TVZ Input variable of the smoothing block, see Section 4.12.6.2.
- ADC3 Address of the analog input channel used for sensing the tacho voltage.
- DAC1 Address of the analog output channel used for displaying the actual speed value.
- REL10.1 When active, this relay activates constant CON10.2.
- ADR.K Address of the external IP 240 counter module and channe! no.

Output variables:

- MP12 This is the processed actual speed value.
- MP21 It is either the input of branch 3 or branch 5 . In addition the value can be output via an analog output channel.
- MP21 Actual value display

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

4.12.5.11 Branch 11: Actual armature current value

Function:

The actual value of the armature current is input via ADC4. It should be routed via input terminals 3 and 4 (channel 1) since actual value filtering is possible here in the terminal block.
Using the armature current, a thermal monitoring of the motor is possible ($\$ 11.2$ active). For this purpose the armature current is substituted in an equation. This equation generates the approximate temperature response of the armature winding. When the limiting value is reached (CON11.1), bit 11.1 becomes active.
A more detailed description of the equation is given in section 4.15.6.
Input variables:

Thermal monitoring:

- CON11.1 The constant gives the value from which the thermal monitor sets bit 11.1.
- CON11.2 The constant is a characteristic of the motor. It is a criterion for how quickly the motor warms up.

Miscellaneous:

- CON11.3 The constent is multiplied by the armature current when S 111 is active.
- ADC4 Address of the analog input channel used for the actual ammature current.

Output variables:

- BIT11.1 This bit is set, when the thermal monitor has reached the limit CON11.1. When the bit is set, the maximum permitted heating of the armature has been reached.
- MP5 The actual armature current value after multiplication by constant CON11.3. This value is used as the input of the summation stage in branch 5 .
- MP13 Actual armature current value input via ADC4.
- MP19 Instantaneous temperature

4.12.5.12 Branch 12: Acceleration compensation

Function:

If rotating masses are accelerated (decelerated), an acceleration (deceleration) torque must be developed by the electric drive. If the rotating mass is connected by a web to a drive with a different mechanical time constant, this can produce variations in tension in the web during acceleration or deceleration. To minimize these variations, the drive is given a current setpoint component dependent on the acceleration torque.
The speed setpoint from branch 5 is differentiated for this purpose. The result is acceleration. It is multiplied with the constant CON3.1 and transmitted to branch 1 as acceleration current.

Input variabies

- CON3.1 The constant determines the influence on the current setpoint
- MP20 Velocity setpoint from branch 5

Output variables

- MP7 Size of the current setpoint components

4.12.5.13 Branch 13: Limit monitor 1

Function:

The limit monitor monitors the value at any desired measuring point. A maximum of six limits can be used. The no. of the monitored measuring point can be modified in the RUN mode of the IP at any time. The function is described in detail in Section 4.12.6.7.

Input variables:

- MPNo.

No. of the measuring point to be monitored (1 ... 29)

- CON13. 1
- CON13.2
- CON13.3
- CON13.4
- CON13.5
- CON13.6
- CON13.7

Number of limiting values

Output variables:

- BIT13.1
- BIT 13.2
- BITt3. 3
- BIT13.4
- BIT13.5
- BITi3.6

4. Programming Instructions

4.12.5.14 Branch 14: Limit monitor 2

Function:

The limit monitor monitors the value at any desirec measuring point. A maximum of six limits can be used. The no. of the monitored measuring point can be modified in the RUN mode of the IP at any time.
The function is described in detail in Section 4.12.6.7.
Input variables:

- MPNo. No. of the measuring point to be monitored (1 ... 29)
- CON14.1
- CON14.2
- CON14.3
- CON14.4
- CON14.5
- CON14.6
maximum of 6 limit values

Number of limiting values

Output variables:

- BIT14.1
- BIT14.2
- BIT14.3
maximum of 6 output bits
- BIT14.4
- BIT14. 5
- BIT14.6,

4.12.5.15 Branch 15: Measuring socket

Function:

The value of any desired measuring point can be output via an analog output channel. The no. of the measuring point can be modified any time during the RUN mode of the IP.
input variables

- MPNR No. of the measuring point to be output (1 to 29)
- REL 15.1 When activated, the relay releases the selected measuring point for further processing.
- CON15.1

Multiplication of the MP value with -99.99 to +99.99

- CON15.TVZ

Filter time constant (see Section 4.12.6.2)

- DAC3

Analog output channel at which the valiue of the measuring point is to be output.

Output variables

- MP22 Value output at DAC 3

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

4.12.5.16 Branch 16: Arithmetic

Functions:

The "Arithmetic" branch offers the facility of gating signais logically. The signal may come from various sources, depending on how the $A D C$ has been initialized:
1.) The $A D C$ is initialized with a channel no. 0 to 7 (internal IP 252 converter) or 128 to 254 (external analog input modules in the case of the S5-115U).
2.) The ADC is initialized with the controller no. and measuring point no. of a controller 1 to 8 of the IP 252. A signal is supplied which is at a random measuring point of random controller 1 to 8 of this IP 252.
3.) The ADC is not initialized.

In this case, a value can be supplied by the S5 CPU via the data handling function (see Section 5.2.3.2).
If branch 16 ($\mathrm{ST} 16=1$) is configured, each of the eight functions of addition, subtraction, multiplication, division, absolute value generation, reciprocal value generation, conversion and comparison can be selected exactly once per controller 9 to 8 of the "DRS" structure. The operations can be nested. This means, for example, that two signals can first be multiplied and the result can be subtracted from a third signal etc. In order to avoid unnecessary dead times here, please note that the operations are processed by the $\mathbb{P} 252$ in the order detailed above. If the results of branch 16 of other controller nos. are used, the following also applies here: controllers 1 to 8 are executed chronologically (t . e. controller 1 first).

The precision of the arithmetic operations is determined by the format of the input signal and the result. The format is 16 -bit fixed point two's complement with a value range of -16384 to +16383 (correspondig to -100% to $+100 \%$).

The results of the operations are displayed at one measuring point each for further processing. This measuring point can be read in by other branches of controllers 1 to 8 wherever an ADC channel has been initialized with "Controller no. and measuring point no.".

The Comparator implements a special function ($\$ 16.8$ active):
One of the signals detailed in 1.) to 3.), e. g. the result of the subtrection in MP 24 , is available at ADC 19 and if relay 16.1 is energized, is routed to a comparator with hysteresis. Depending on the parameters of this comparator (upper and lower response threshold of the Schmitt trigger), signal status " 0 " (not yet triggered) or signal status " 1 " (triggered) is generated. This result can be inverted if required ($S 16.9=1$), and is then flagged at BIT16.1. The result (" 0 " or " 1 ") is simutaneously routed to an arbitrary input bit or relay of branch 1 to 17 of this controller. This is dore by specifying the relevant branch and bit no. If S 16.8 is active, the position of REL 16.1 will decide whether the bit specified in the particular branch is influenced by the programmer or the S5 CPU (REL16.1 inactive) on the one hand, or by the result of the comparison (REL. 16.1 active) on the other. The upper and lower response threshoids of the Schmitt trigger can be entered in the format -100% to $+100 \%$. Meaningful entries are in the range $0 \leq A B \leq A N \leq 100 \%$. Negative entries from CON16.AN and CON16.AB are treated as positive entries by the IP 252.

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Seli-Optimization (DRS)

Input variables

- ADC 8	Channel 1 of the addition
- ADC 9	Channel 2 of the addition
- ADC10	Channel 1 of the subtraction
- ADC11	Channel 2 of the subtraction
- ADC12	Channel 1 of the multiplication
- ADC13	Channel 2 of the multiplication
- ADC14	Channel 1 of the division
- ADC15	Channel 2 of the division
- ADC16	Input channel of the absolute value generation
- ADC17	Input channel for generating the reciprocal vaiue
- ADC18	Input channel for conversion (multiplication with [-1])
- ADC19	Input channel of the comparator
- CONAN	Upper response threshold of the Schmitt trigger
- CONAB	Lower response threshold of the Schmitt trigger
- REL16.1	Comparator enable
- Z.B	Branch and bit no. of affected by the comparison result

Output variables

- MP23	Result of the addition
- MP23	Result of the subtraction
- MP23	Result of the multiplication
- MP23	Resuti of the division
- MP23	Absolute value of the input variable
- MP23	Reciprocal value of the input variable
- MP23	Input variable multiplied by [-1]
- B1T16.1	Result

4.12.5.17 Branch 17: Self-optimization

Optimization of the speed controller is a problem when starting up drive controi systems.
A procedure based on the guidelines of the symmetrical optimum is available here for the self-setting of speed controllers. This procedure first determines the parameters of a Pl controller K_{P} and T_{N} and of a setpoint filter. The parameters found are post-optimized to the desired target response by simulation in the IP 252 and subjected to thorough final testing.
The desired target response (transient response or overshoot) can be varied with the help of a presettable parameter.
A precise description of the self-setting feature can be found in Section 4.12.7.3.

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

4.12.6 Functions of the drive controller

4.12.6.1 Pre-assigned limit monitors in branches 5 and 9

The results of these limit monitors are used by a CP 526 for display purposes. The output bits cannot be read from the standard FB used with the logic program (Section 5.1).

Function of the actual value limit monitor:

Four limits can be specified via the PG:

- Upper warning limit
- Lower warning limit
- Upper danger limit
- Lower danger limit

Each of these limits is assigned a bit. If a signal crosses the upper warning/danger limits, then the "upper warning/danger limits crossed" bits are set. In all other cases they are reset. When the signal crosses the lower warning/danger limits, then the "iower warning/danger limits crossed" bits are set. In all other cases they are reset.

Function of the setpoint limiting monitor:
Two limits can be specified via the PG:

- Upperlimit
- Lower limit

Both limits are assigned two bits. When the upper imit is crossed the "upper limit crossed" bit is set, otherwise it remains reset. When the lower limit is crossed, the "lower limit crossed" bit is set, otherwise it is reset (Fig. 4.44).

Example: Setpoint limit monitor

"Upper limit crossed"
"Lower limit crossed"

Fig. 4.44 Methoci oi operation oi the pre-assigned limit monitor

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Seff-Optimization (DRS)

4.12.6.2 Filter block (see Fig. 4.6)

Function:

The filter smoothes an analog variable using a first order delay function.

Explanation of function parameters:

Type of variable	Symbol	Description	Number format	Settingrange
Parameter	TVZ	Filter time constant	Time	4 ms to 99 h 59 min

Explanation of function input/output variables:

Type of variable	Symbol	Description	Number format	Setting range
Input variable	$X(t)$	Function input variable to be filtered	variable- dependent	-100% to $+700 \%$
Output variabie	$Y(t)$	Filtered function output variable	variable- dependent	-100% to $+100 \%$

Fig. 4.7 Filter function

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

[2.6.3 Ramp-function generator

inction: (Fig. 4.46)
ie ramp-function generator produces a ramp as the output signal $y(t)$ from an input step change $x(t)$.
The slope of the positive ramps is determined by the constants (ZUW, TH) and of the negative ramps by the constants (ZUW, TR).
Positive ramps are where the output value $y(t)$ changes towards increasing speed ($\pm 100 \%$). Negative ramps are where $y(t)$ changes towards decreasing speed ($\pm 0 \%$).

The constant ZUW (increment) specifies the percentage vaiue which is reached after expiry of the negative (TR) or positive (TH) ramp times, when a 100% step is connected to the input of the ramp-function generator.

In Fig. 4.46 (diagrams 1 to 4) several examples are inciuded. They illustrate the influence of the constants ZUW, TR and TH.

- The ramp-function generator takes into account the actual value when 58.3 is active. This guarantees the fastest possible trakking of the setpoint $\gamma(t)$ by the actual value $i(t)$. When ramping down, the actual value is taken into account, if it is less than the momentary ramp value calculated by the ramp-function generator. When ramping up, the actual vaile is taken into account if it is greater than the momentary ramp value calculated by the ramp-function generator. This procedure is explained in Fig. 4.47 (diagrams 1 to 5).
- Fig. 4.48 shows how the ramp-function generator behaves if the input signal is changed before the output signal has reached its final value.
The actual value is also taken into account here.

Explanation of the function parameters and the binary variables:

Type of variable	Symbol	Description	Numberformat	Setting range
Parameter	KONTH KONTR KONZUW	Ramp-up time Ramp-down time Ordinate of the ramp-function generator value, i.e. the ramp value reached in the time TH or TR with 100% input step change (thus determining ramp slope)	Time Time variabledependent	0.1 ms to 99 h 59 min 0.1 ms to 99 h 59 min 0 to $+100 \%$
Binary input signals	BITHOE BITTIE bitaut BITNUL	"Higher" bit. $\mathrm{BH}=1$ causes rising ramp. "Lower" bit, $\mathrm{BT}=1$ causes falling ramp. Automatic bit, BL $=1$ causes switch from manual to automatic mode Zero bit, NUL = 1 brings the setpoint down to 0%	Bit Bit Bit	$0 / 1$ 0/1 $0 / 1$

Explanation of the function input/output variables:

Type of variable	Symbol	Description	Numberformat	Setting range
Input variables	$x(t)$ $i(t)$	Currentsetpoint Currentactual value (MP12 or MP16)	variabledependent variabledependent	$\begin{aligned} & -100 \% \text { to }+100 \% \\ & -100 \% \text { to }+100 \% \end{aligned}$
Output variable	$Y(t)$	Output value (ramp value)	variabledependent	-100\% to $+100 \%$

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

Fig. 4.46 Ramp-iunction generator tor drive controllep
Assumption: Actual value referencing not sensible or $58.5=0$!

4. Programming Instructions

Fig. 4.47 Ramp-fuaction generato:

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

Fig. 4.48 Ramp-function generator
Cinanging the input before the output has reached its final value, $\mathbf{\$ 8 . 3}=1$ is assumec

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

- The ramp-function generator has four binary input signals with which the output $y(t)$ can be influenced (independently of the input $x(t)$).
- If the HOE bit is active, then the output $y(t)$ ramps to the $+100 \%$ limit. The actual value is not taken into account (MPx).
- If the TIE bit is active, then the output ramps to the - 100% limit. The actual value is not taken into account.
- If the HOE and TIE bits are both active simultaneously, then the output remains at the last value;
i. e. no ramp is generated
- If the AUT bit is active, a change is made from manual to automatic mode (i. e. the setpoint is approached via the preset parameters T_{H}, T_{R} and $Z U W$) provided the HOE and TIE bits are inactive.
Here, the actual value is taken into account if 58.3 is active.
- The HOE and TIE bits have priority over the LOE bit.
- The NUL bit has the highest priority. If it is active, the 0% setpoint is immediately approached at the preset ramp rate of rise. The actual value is not taken into account.

4. Programming Instructions

4.12 Description of the Drive Controlier Structure with Self-Optimization (DRS)

Fig. 4.49 Ramp-function generato
Function of HOE, TIE and AUT bits

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

4.12.6.4 Display

Function:

When active, this function diplays only the lower eight bits of the actual speed value.

4.12.6.5 Characteristic curve

Function:

The characteristic curve stage transforms an analog input variable x (field current) into an analog output variable y. The function $y=f(x)$ used has the following characteristics:

- Linear range
$y \geqq 0 \quad$ for $0 \leqq x \leqq 100 \%$
$y=0 \quad$ for $\quad-100 \% \leqq x \leqq 0 \%$
$y=3 / 2 x$ for $0 \leqq x \leqq \frac{100}{3} \%$
- Parabolic region
$y=-\frac{9}{800}(x-100)^{2}+100$ for $\frac{100}{3} \% \leqq x=\leqq 100 \%$
The curve is shown in Fig. 4.50.
The curve is also called the normalized excitation curve. it represents the relationship between the field current and the flux of a d. c. motor. The curve is an approximation which is valid for most d. c. motor types.

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

Value table:

Fig. 4.50 Normalized excitation curve

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

4.12.6.6 Thermal monitoring

When current flows through an electrical machine, the temperature rise can be described approximately by the e function. This "thermal image" is used to regulate the temperature rise in the machine in a calculation involving the armature current and the constant KON11. 2 (thermal time constant) according to the following equation

$$
\text { Temperature rise }=i^{2} \text { armature } \cdot\left(1-e^{-\frac{t}{T}}\right) \text {. }
$$

If the permissible temperature timit (temperature : MP19) is exceeded, bit 11.1 is set. The temperature limit is specified with the constant CON11.1. A temperature limit is selected such, that under operating with nominal current, the temperature limit is never quite reached (or theoretically would be only after an infinite period). Cooling is expressed by the equation $i^{2} \cdot e^{-\frac{2}{T}}$.

Example:
Nominal thyristorcurrent $\quad=500 \mathrm{~A}$ 人 $10 \mathrm{~V} \mathrm{I}_{15 T} \hat{} \mathrm{~N} 100 \%$
Nominal motor current $=400 \mathrm{~A} \triangleq 8 \mathrm{~V} \mathrm{I}_{\mathrm{iST}} \triangleq 80 \%$
Thermal time constant: 30 min (CON 11.2)
Temperature rise curve with nominal current:
Temp. rise $=i_{N}^{2} \times\left(1-\exp -\frac{t}{30 \mathrm{~min}}\right)=\frac{80 \cdot 80}{100} \%\left(1-\exp -\frac{t}{30 \mathrm{~min}}\right)=64 \%\left(1-\exp -\frac{t}{30 \mathrm{~min}}\right)$
Temperature rise curve at, e. g.. $1.2 \mathrm{i}_{\mathrm{N}}=480 \mathrm{~A}(=96 \%$)
Temp. rise $=92.16 \%\left(1-e-\frac{t}{30 \mathrm{~min}}\right)$
It can be seen from Fig. 4.51 that, when operating with $1.2 \times i_{N}$, bit 11.1 is set after approximately 36 minutes. The temperature rise value is only reset when the module is in STOP mode. If the IP RAM has battery backup, the old value will be retained on restart after power failure.

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

Temperature rise of the armature winding

$$
i^{2} \cdot\left(1-e^{-\frac{t}{x}}\right)
$$

Temperature rise equation
i Armature current
x Thermal time constant CON11.2
t Time

[^1]
4.12.6.7 Limit monitor

Function: (Fig. 4.52)
The value of a measuring point MPx is checked agains: six limit values $G W(i)$.
If for positive limit values $\mathrm{MPx}>\mathrm{GW}(\mathrm{j})$
or for negative limit values $M P x<G W(i)$,
then the corresponding limit value bit $\mathrm{B}(\mathrm{i})$ is set.
$-\operatorname{Limit}(i) \geqq 0: \quad M P x \leqq \operatorname{Limit}(i)-B(i)=0$
$M P_{x}>\operatorname{Limit}(i)-B(i)=1$

$$
\text { for } 1 \leqq i \leqq N
$$

$-\operatorname{Limit}(i)<0: \quad M P x \geq \operatorname{Limit}(i)-B(i)=0$
$M P x<\operatorname{Limit}(i)-B(i)=1$

- The number N of limit values is detined by:
$1 \leqq N \leqq 6$
- Unused limmit value bits are set to zero:
$3(i)=0$ for $i>N$

Explanation of function parameters:

Type of variable	Symbol	Description	Number format	Setting range
Parameter	CON 13.7 (or 14.7)	Number of preset limit values	no unit	1 to6
	CON 13.1 (or 14.1)	Limit value 1	variable-	-100% to +100\%
	\vdots	\vdots	dependent (or \%)	$:$
	CON 13.6 (or 14.6)	Limit value6	\vdots	$:$

Explanation of function input/output variables:

Type of variable	Symbol	Description	Number format	Value range
Input variable	Xe	Input value to be checked	variable- dependent (or $\%$)	-100% to +100\%
Binary output	Bit 13.1 (or 14.1)	Limit value bit 1	Bit	$0 / 1$
signals	\vdots	\vdots	\vdots	\vdots
	Bit 13.6(or 14.6)	Limit value bit 6	\vdots	\vdots

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

Fig. 4.52 Limit monitor of the drive consoliter structure

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (ARS)

4.42.7 Speed controller self-optimization

A large number of applications of the DRS drive controller structure of the IP 252 (various coiling mechanisms, centrifuges, calenders and hoists) heve more or less rigid mechanical conditions in the speed loop and displey a relatively simple unified basic structure.
For applications of this type, the structure has been equipped with a start-up procedure for the speed controller. In conjunction with the on-line adaptation of the drive controller structure (see branch 4: Influencing the loop gain), the procedure can also be used for controlled drive systems with variable moments of inertia.
The controlier parameters can be determined in this way without lengthy trail and error, whereby only limit data for the protection of the motor and the machine need be specified as input variables for optimization. The dynamics of the controller setting can be inffuenced with the help of a further parameter.
This section is concerned with the principle and operation of the procedure and the preconditions for its use.

4.12.7.1 Performance range and area of application

The procedure is suitable for use in the speed control of DC shunt-wound motors with secondary current control loop corresponding to Figs. 4.61 and 4.62.

Fig. 4.61 Drive control system

Fig. 4.62 Simplified block diagram of the speed control loop with secondary current controiler and fiter eiement (rigid mechanics)

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

The gain and integral action time for the speed controller are to be found in the preconditions outlined below, as well as (if configured) the time constant for a PT, element, through which the setpoint of branch 8 is supplied.
4 ms or 8 ms can be selected as the sampling time of the speed controller. For greater sampling times, Section 4.12 .7 .5 contains appropriate conversion formulas.
The values of the constants and the position of the configuring switch set by the user are taken into account, insofar as these have an influence on the system.

Control and monitoring functions

The self-optimizing procedure consists of an identification phase, in which the behaviour of the controlied system is determined by acceleration attempts, and an optimization phase, in which the control parameters are determined from the measuring signals acquired.
Control of the incividual steps of the procedure and avoiciance of impermissible machine states are the task of the sequence control, which is also a component of the DRS structure. During the acceleration test runs in the identification phase, any exceeding of a speed limit (armature current dependent) is prevented and, if required, adherence to position limits is ensured. The parameters established in the self-optimizing procedure are subjected to a validity check, based on simulation of the controller behaviour in the IP 252 and comparison with a reference modei, before they are presented to the user. It is also possible, after finishing the optimization run, to represent the target response and the simulated response of the closed loop control using a programmer with graphies capability and the appropriate software (COM REG GRAPHICS, see Section 7).

4.12.7.2 Preconditions for use

This section describes the preconditions for use of the procedure.

Current controller, static converter

The characteristics of the system consisting of static converter motor must be largely independent of the operating point throughout the useful speed range. This assumes converter sets in inverse-parallel connection with or without circulating current, and adaptation of the curent controller to the response of the armature loop modified in pulsating-current operation.
Torque reversal must be possible. The current control loop should exhibit no more than 10% overshoot for optimum results, which is usually the case. When using single-phase static converters in conjunction with very short mechanical acceleration times, it is necessary to use anticipatory EMF control (standard with all SIMOREG devices).

Motor and mechanics

It must be permissible to accelerate the system to be identified with constant torque.
The load and the speed sensor must be connected to the driven machine as rigidly as possible and with minimum backlash. Consequently, a suitable, programmable filter must be configured by the user and a correspondingly slow response for optimization must be set. The lowest mechanical natural frequency of the system must at all costs be clearly higher than the limiting frequency of the current control loop and the actual value acquisition system. During the identification process the load torques must be kept approximately constant.
The rotating mass and the accelerated mass must be maintained at a constant level, as must the field current. Strong speed-dependent load torques, as for example an unusuaily high friction torque or fluctuating external load torques, are not detected in the identification phase and can therefore lead to incorrect results.

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

Changes in the plant or controlled system parameters in on-line operation

The controller setting for constant plant (controlled system) parameters is made with the control loop open. However, in many drive systems, these parameters change in the course of operation.
The on-line adaptation capability of the DRS structure or parameter-insensitive optimization of the control loop permit the use of the self-setting function also in field weakening operation or in the case of a variable rotating mass during coiling operations (Section 4.12.7.3).

Parameter range

The acceleration time of the motor with the driven machine connected must be under 4 seconds for numerical reasons. Mechanical transients must have decayed at the latest after 400 ms at a sampling time of 4 ms or 800 ms at a sampling time of 8 ms .

Permissible loading of the IP 252

When using automatic self-start up, no more than two controllers can be programmed on the IP 252 due to restricted memory space. Controllers 1 and 2 are permitted. Otherwise, the self-setting routine cannot be called. If an impermissible controller no. is used, the relevanterror message is stored in the IP 252.
The sampling time of the speed controller can be selected at 4 ms or 8 ms . During the identification and optimisation process of a control loop, the IP can service no other controllers. Updating of the measuring sockets is not possible. Old values may be displayed under certain circumstances in the "Controller test" function of the COM packages.

The setting procedure

By measuring the reaction of the drive system to sudden changes in excitation under constant load conditions the setting procedure used obtains a non-parametrical description of the response of the controlled system in the form of the step-function response, which impicitly contains all the parameters important for controller seting, such as the small time constants and the system order. This presupposes that, during the identification process, the friction can be neglected and external ioad torques remain constant.
On the basis of this model, a robust controller setting is determined, the dynamic response of which can be adapted to the mechanical conditions by the user. The setting determined is then tested by simulation in the IP 252.
The identification process for the speed system must be carried out at constant field and with a constant rotational mass.

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

The required parameters are obtained in the following steps:
a) Determination of a constant external load torque and deceleration

By adjusting the drive to zero speed with the help of a Pl controller carefully set by the user, an external ioad torque, which can have a possible effect on the drive, is approximately determined. The controller parameters required for this measurement are non-critical. However, they influence the duration of the measuring operation.
No start parameters need be entered if there is no load torque acting on the motor during the identification process. Deceleration of the motor is then performed by a P controller the gain of which is adapted to the mass moment of inertia during the acceleration phase, in order to shorten this phase as much as possible. The max. deceleration current is determined by the manipulated variable limits "CON5.B+" and "CON5.B-" from branch 5.
b) Determination of the speed step-function response

The system is then accelerated by inputting a constant eurrent setpoint whereby a constant external load torque corresponding to the result from (a) is compensated. The measurement is repeated 16 times in order to suppress measurement noise. If impermissible speeds are reached when doing this, the motor is immediately braked and the process is repeated with lower current setpoints, if it is meaningful to do so. The same applies on exceeding of position limits calculated from the position limits entered by the user, allowing for the braking distance. If the acceleration time is over 1 sec ., 32 measurements are executed.
The measurement duration is 400 ms for 4 ms sampling time or 800 ms for 8 ms sampling time. The acceleration characteristics determined over 16 or 32 measurements on the output side of the actual value filter block can be displayed on a programmer with graphics capability or with "COM REG GRAPHIK" software.
A subsequent low-pass filter will produce an initial criterion for the use of the procedure:
The step-function response measured must have approximately IT1 behaviour (Fig. 4.63). If no steady state has been reached, the procedure is aborted with the appropriate error message, since it is then assumed that it cannot be used for one of the following reasons:

- Poorly damped natural oscillations in the controlled system
- Non-compensated EMF influence in the armature circuit
- Changing load conditions during the identification process
- System parameters not constant during the identification process
$n(t)$

Fig-4.63 Step response of the IT1 element and relevent control parameters for a Pi controiler set to double fatios (double ratio factor $=$ CON 77 .DV/2)
c) Calculation of the parameters for the speed controller and setpoint filter

The response of the closed control loop is then tuned to a target function, corresponding to the double ratio specification, by means of an optimization procedure using the values determined from the controlled system parameters (Fig. 4.63). The target behaviour can be varied by a parameter, to be set by the user, between the limit case of the "Symmetrical optimum" (double ratio factor $=0.5$ or $\mathrm{CON17.DV}=100 \%$) and a setting which is infinitely insensitive to parameter variations and mechanical inadequacies of the controlied system at the cost of dynamic response (double ratio factor less than 0.5). A robust controller setting provides the default for this parameter. Depending on the result obtained, this value can be changed empirically towards a slower or more dynamic controller setting (prior to a subsequent optimization run, if necessary). Any dead time due to the discrete processing can be taken into account in the course of the optimization process. The time constant for a configured setpoint filter is obtained direct from the integral action time. Should the target function prove to be insufficiently approachable during simulation in the IP 252, especially if the parameters in Fig. 4.63 are used, the preconditions are obviously not met and the procedure will be aborted with the relevant error message.
The relationship between setting time and the CON17.DV parameter can be seen from Fig. 4.64.

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

Fis. 4.64 Target behaviour of the sef-setting feature for different values of CONi7.DV and the inffuence of setpoint fittering.

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

4.12.7.3 Speed controller self-optimization in the DRS structure

In addition to the parameters of branch 17 , there are also a number of external data of the controller structure, that have an influence on the optimisation process.

- The controller structure must be operated without direct backplane bus access.
- The controller sampling time can be selected at 4 ms and 8 ms .

Constants and configuring switches with influence on optimisation
Branch 1, Controller output:
S1.1 "Conversion"
Branch 4, Adaptation of the loop gain:
At the "Diameter injection" position of switch $\$ 4.1$, the initial diameter VAR 3.1 entered before the optimisation run is taken into account.
Branch 5, Speed controlier:
KP, TN as initial values, if the shaft is to be identified under load and these values are entered and are not equal to 0 . Upper and lower control limits "CON5.B+" and "CON5.B-" determine the max. acceleration current in the identification phase.
Branch 9, Primary controller:
CON9,1OWL, CON9.IUWL (upper/lower warning limit for actual position) are required, if position monitoring during the acceleration phase is needed.
Branch 10, Actual speed acquisition:
CON 10.1, actual value weighting
S 10.1, filter block
CON10.TVZ, if the filter element is selected
S 10.1: analog/digital sensor

On-line adaptation of the parameters found by self-setting

The output variables of branch 3 and 4 can be used to adapt the gain of the speed control loop to field weakening operation or in the event of variable moment of inertia in the case of velocity control. ff the conditions listed in the following are satisfied, the setting found by self-start up will also be suitable for these cases.

Field weakening operation

The loss of gain caused by the weakening of the field current can be determined approximately in adaptation branch 4 of the ORS structure via the flux characteristic and can then be used for correcting the loop gain.
The gain is automatically and correctly adapted by branch 4 (flux calculation position) if the identification process is carried out at rated field current.

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

Variable rotating mass in the case of coiling operations

To adapt the controller setting to the diameter-dependent system gain of the controlled system, it must be made correspondingly robust by defining its target behaviour accordingly.
The weighting of the speed with the diameter estimated in branch 3 of the controller structure gives a proportional growth of the controller gain which acts against the loop gain decreasing with increasing diameter. Where the rotating mass of the coil has a strong influence on the total inertia, this effect can be further amplified with the help of branch 4 "Diameter injection" (or, additionally, with the help of brench 16 "Arithmetic"), in order to achieve a dynamic controller setting.
If, however the load influence on the mechanical inertia is small - for example, as e result of high motor inertia or a gear reduction - control of gain should not be dependent on diameter. In this case, branch 16 may equally well be used.
In order to obtain the fluctuation width of the total gain, severai optimization runs are required.
The reaction of the controller to the extreme values of the moment of inertia should in any case be monitored by the user.
identification must be carried out at fult coil diameter. The initial diameter value must be set accordingly (integrator enable disabled) in branch 3 (peripheral velocity). Any diameter-dependent field current controi must similariy be set to the coil diameter with which the control system is identified.
Diameter signal injection by branch 3 increases controller gain proportionally to the diameter. Optimization must, however, take place in the direction of a robust controlier behaviour, since no complete compensation of the changed system gain can be achieved.
Suitable guide values for the "CON17.DV" parameter can be obtained as per fig. 4.64. The behaviour of the controller at full and empty coil must be checked by the user, since the control simulation covers only those system conditions existing during the identification procedure. If there is a tendency to oscillation, the CON 17 . DV double ratio factor must be further reduced and se-optimized.

Setpoint entry

A filter element can be configured in setpoint branch 8 of the DRS drive structure. By using this block, the overshoot in response to sudden changes in the setpoint can be reduced from 50% to less than 5% without affecting the controller response. However, this increases the rise time (Fig. 4.64). Natural oscillations in this system are less markedly excited by step changes in the setpoint.

Operator interface for speed controller self-optimization of the DRS structure with COM REG

The operator interface of the branch for self-optimization on startup is described in this Section. Section 4.12.7.4 contains an application example.

1. Notes on configuring and initializing the controller structure:

The self-optimization on startup function constitutes branch No. 17 of the DRS drive controller structure. In the configuring run, configuring switch ST 17 must therefore be set to 1 . The controlier structure must be operated without direct backplane bus access. The controller sampling time can be selected at 4 ms or 8 ms . In the "Programming of selected branches" function, the following inputs are possibie:
a) Monitoring of the commutation characteristic (for protecting the motor during speed system identification):

	Value range	Dimension
Maximum permissible armature current Imax1:	-100 to +100	$\%$
N1:	-100 to +100	$\%$
At speed	-100 to +100	$\%$
Maximum permissible armature current $\operatorname{Imax2:}$	N2:	-100 to +100
At speed	$\%$	
Maximum permissible armature current $\operatorname{lmax3:}$	-100 to +100	$\%$
At speed	N3:	-100 to +100

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

Explanation:
The permissible speed as a function of the current can be obtained from the commutation characteristic represented here by the input of up to three value pairs - speed $N x$, armature current lx - (approximation in the $1 P 252$ by linear interpolation corresponding to Fig. 4.65).

Fig. 4.65 Possible value pairs of the commutation characteristic
2. Notes on startup (controller test) of the controller structure:

In branch 17 the following appears

Monitaring of position limits? Sudden setpoint changes in pos. direction? Sudden setpoint changes in reg direction? Double ratio factor KON I7.DV Self-optimizing enable Controllergain KP Integralactiontime TN Filter time constant TVZ Accept determined values? Maximum permissible armature current hnax at speed Maximum permissible armature current Imax at speed Maximum permissible armature current imax at speed

Value range	Dimension
$0 / 1$	
$0 / T$	
$0 / 1$	
+5 to +100	$\%$
$0 / 1$	
-99.99 to 99.99	
0 to $99 h 59$ min	t
0 to $99 h 59$ min	t
$0 / 1$	
-100 to +100	$\%$

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Seff-Optimization (DRS)

Explanation:

- Monitoring of position limits during the identification phase:

If the switch is on, the permissible traversing range must be defined by entering a positive upper limit and a negative lower limit: in branch 9 (primary controller) these are represented by the parameters "CON9.IOWL (upper warning limit, actual position)" or "CON9.IUWL (lower warning limit, actual position)".

- Setting the direction of acceleration:

Depending on the switch position, the machine is accelerated using positive, negative or alternating armature current. For the sake of precision, both current directions should be enabled where possible.

Fig. 4.66 Variation in speed and armature current during the identification procedure of the speed controiler system. The operation is repeated 76 or 32 times.

- The parameter CON17.DV influences the dynamic response of the controller setting found. It can be set at 5% or 100%, in which case the defeult is 50%. Values of "CON17.DV" $<100 \%$ lead to an insensitive controller setting, to the detriment of the dynamic response. In this way, the controlier setting can be adapted to, for example, mechanical backlash, tacho ripple or changing system parameters.
- Start of self-optimization on startup Switch (4) is reset by the operating system after completion of the optimization run or after power failure. Resetting of this bit aborts the optimization run.
- When the optimization has been successfully completed, the controller parameters found are displayed.
- By setting this switch or bit, the speed controller (branch 5) accepts the displayed parameters KP and TN. The filter time constant TVZ found is accepted by branch 8, provided branch 8 has been configured with a filter element. If there is no filter element in braneh 8 of the controller structure generated, CON17.TVZ is displayed with " 0 ". This pushbutton is then reset automatically.

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

4.12.7.4 Self-optimization messages

The optimization run is made visible to the user by the flashing green RUN LED and the error LED in order to call attention to limited operating system functions (overioad).
The status of the optimization run can be monitored by the S 5 CPU (Section 5.2) and using the programmer with COM REG from the "Errors" submenu, which is reached from "Info" in the main menu.

The following status messages are possible:

- No. 75: "Prepare self-optimization"
- System capability and controller configuration check
- Initialization of programs; bring machine to standstill
- No. 76: "Self-optimization active"
- Code for the speed controller optimization run
- No.77: "Self-optimization successfully completed"
- The parameters displayed in branch 17 can be accepted.
- No. 78: "Structure or parameter assignment error"
- The controller structure contains bus accesses
- Traversing range wrongly entered (upper limit must be positive, lower limit negative)
- Both acceleration directions disabled
- No. 79: "Impermissible controller no."
- Controllers with impermissible controller nos. (>2) or more than two controllers have been configured
- A second controller structure has not been disabled
- No. 80: "Sampling tíme too large"
- A sampling time greater than 8 ms has been selected
- No. 81: "Load torque too high"
- The external load torque is too high to be compensated for by the armature current setpoint prescribed by the commutation characteristic.
- No. 83: "Controlled system unsuitable"
- The system response measured does not correspond to the reference model and self-optimization cannot then be used.

Reasons: - Overshoot of the current controller greater than approx. 40%

- Kp greater than 100
- Required controller response cannot be achieved with the given arrangement
- No. 84: "Optimization unsuccessful" (parameters could not be calculated)
- The validity check in the last phase of self-optimization was not passed Reasons: - Overshoot of the current controller greater than approx. 40%
- Kp greater than 100
- Required controiler response cannot be achieved with the given arrangement
- No. 85: "Abort by PG/PC"
- Message via software stop in the case of abort

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

Application example

It is assumed that speed controllers no. 1 and no. 2 have been configured on the $1 P 252$. The speed loop of controller no. 1 is to be optimized for a drive with fixed system parameters (Fig. 4.61). The following sequence then applies:

- Move controller 2 to stop; lock the shaft mechanically, if necessary, since this controller will not be processed by controller no. 1 during the stariup run.
- If the motor is under constant load during the identification procecure, the speed controller (branch 5) must be set with "conservative" start parameters (e. g. $K P=1, T N=500 \mathrm{~ms}$) and enabled with setpoint 0 , so that the shaft can be kept still when the mechanical lock is cancelled. All other branches of controller 1 are disabled (i. e. the relevant relays are set to "0"). If no external load torque is acting on the motor during the identification process, pre-initialization can be dispensed with.
- Call branch 17 (speed controller setting) in the "Controller test" function for controller No. 1 and - if this has not already been done - enter suitable value pairs for the commutation characteristic, according to the manufacturer's recommendations.
- Preselect one or both acceleration directions, depending on the operating conditions of the driven machine.
- Select the desired controller dynamic response with "CON17.DV", retain this in the case of unknown mechanical conditions e. g. defaut (CON17.DV $=50 \%$) and, depending on the success of the optimization run, repeat with changed "CON17.DV".
- If necessary, release mechanical brake (the shaft is now held by the controller).
- Enable self-optimization. The speed controller system is now identified by making step changes in the armature current setpoint; field current and load must remain constant. See Section 4.12.7.3. for procedure in the case of variable field or moment of inertia).
- Reed the self-optimization message in the COM REG "Info", "Errors" function on completion of the optimization run. In the case of successful completion of optimization, the parameters found will be displayed and can be transferred to the controller.
- Accelerate controler 2 again
- The basic optimization of the speed loop has now been found for controller 1 , and this will be used as a reference point for further startup procedures.

4.12.7.5 Projecting the parameters found to greater sampling times

The self-optimization function of the IP 252 can only be run if the sampling time has been set at 4 or 8 ms . If it is desired to operate the controller tater with greater sampling times, the desired sampling time can be projected using the formulae outlined below. In doing so, please note the following:
a) Increasing the sampling time will always lead to deterioration of the dynamic response of the controller.
b) The sampling time of the digital controller should be ten times smaller than the dominating time constant of the controlled system.

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

Self-optimization

The influence of the control parameters K_{p} and T_{n} on the response of the controlier loop is illustrated in Fig. 4.67:

Fig. 4.67 Malacjustment to the symmetrical optimum
K_{p} and T_{n} represent the controlier parameters set to according to the symmetrical optimum (see centre of diagram). Any change to these parameters by the factor " $1 / 2$ " of " 2 " leads to the response illustrated. It is a precondition in these cases that the sampling time of the digital control loop must be small compared with the dominating time constant of the closed control loop.

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

4.12.8 Data block of the drive controller with seff-optimization (DRS)

The data block supplied contains all data of the DRS controller structure. If the contents of these data words are to be read or overwritten by the CPU, they can be accessed with the help of data handling blocks (Section 5.2).

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

DW 36:

S	4.1	04
S	4.2	04
S	4.3	04
S	9.1	09
S	9.4	09
S	10.2	10
S	10.3	10
S	10.4	10
S	11.2	11
$S T$	12	12
$S T$	13	13
$S T$	14	14
$S T$	15	15
S	15.1	15
$S T$	17	17

Diameter compensation Field current monitoring Conditionning Actual value correction
Filter
Filter
"Expanded scale"
External pulse input
Thermal monitoring
Acceleration output
Limit value monitor 1
Limit value monitor 2 Measuring point output Filterng
Speed controller self-optimization

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

Input bit variables

15	24	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Bata word adaress 1
																V
1 BIT	REL	BIt	Est	BIT	BIT	BIT I	OH\% 180									
13.1	1.1	6.1	7.1	3.2	8.2	8.1	9.1	2.1	5.2	4.1	9.1	5.1	8.5	8.6	8.71	
												----*			----*	
1 rel	BIT	REL	REL			REL	REL	BIT	BIT	BIT	gIt	BIT			I	DW 181
18.4	8.8	15.1	16.1			10.1	8.3	17.1	17.2	17.3	17.4	17.5			1	

4. Programming Instructions

4.12 Description of the Drive Controller Structure with Self-Optimization (DRS)

Output bit variables

Abbreviation Branch Meaning


```
YOGD: = 1 ---> Upper control limit exceeded
YUGD: = 1 ---> Lower control limit exceeded
SOGD: = 1 ---> Speed setpoint exceeding upper limit
SUGD: = 1 ---> Speed setpoint exceeding lower limit
IOWD: = 1 m-m Actual speed exceeding upper warning limit
IUWD: = 1 --m Actual speed exceeding lower warning limit
IOGD: = I ---> Actual speed exceeding upper danger limit
IUGD: = 1 ---> Actual speed exceeding upper danger limit
```


5. S5-CPU $<\longrightarrow$ IP 252 Communications

The IP 252 intelligent input/output module is capable of exchanging data with the control CPU via the backplane bus.
For this purpose, the $\mathrm{CPU}<\longrightarrow \mid P 252$ connection must be established on both sides of the interface.

- On the IP 252 this is done by assigning a page no. 0 to 254. Using the "COM REG" or "COM 252" operating system (Sections 6 and 7), the page no. can be entered in the "Info" function in the "SYSID" submenu. This page no. is also referred to as the interface no. "SSNR".
- The connection to the IP 252 on the CPU side is established by the data handling blocks, which are called in the STEP5 user program and initiatized with the relevant SSNR.

The standard function block FB:STEU, which calts the data handing blocks internally, is described in Section 5.1. This FB:STEU is used for high-speed data exchange of defined data. Knowledige of the data handing blocks is not required for their use.

Expanded means of communication (exchange of random parameters between the CPU and IP 252) are described in Section 5.2. In these cases, the data handing blocks are used direct. In Section 5.2.7 there are relevant examples to accompany all the possibilities described.

Note:

1) The data handing blocks (standard FBs) must be ordered separately for the $S 5135 \cup$ (R processor) and $S 5150 \mathrm{U}$ programmable controliers. In the case of the S5 115U, they are part of the operating system.
2) Section 5 describes the methods of communication between the IP 252 and the S5 CPU. Here also, a distinction is made at certain points between the

DR/SR user submodule (MLFB: 6ES5 374-OAA11 or 0AA13)
or DRS/SR usersubmodule (MLFB: 6ES5 374-0AB11)
The text and examples are marked accordingly.

5.1 Standard function block FB:STEU

The FB:STEU is a standard FB for data exchange between the S5 CPU and the IP 252. There is a STEP 5 standard FB for each of the controller structures available on the IP 252, i. e. "Drive controller (DR)" or "Drive controller with self-setting (DRS)" and "Standard controller (SR)";

DR und DRS : FB100 (Name: STEU:ANT)
SR : FB101 (Name: STEU:STD)
The function blocks FB 100 and FB 101 implement the following functions:

- Transfer of setpoints to the IP 252 closed-loop control module
- Enabling or disabling of the controller branches and the structure branches
- Setting of overflow identifiers
- Recognition of limits
- Recognition of parameter assignment errors

5. S5-CPU < $<$ IP 252 Communications

5.1 Standard Function Block FB:STEU/FB 100

5.1.1 Function block for drive controller structure FB:STEU:ANT

Overview

Function description:

As shown in the overview, communication between the PC and the IP 252 in drive control systems is carried out by function block "STEU:ANT". This function block is used for exchanging the most important parameters.

Flag bytes are used as the transfer area for the data to be transmitted or received.
During the actual data transmission/reception, the data handling blocks which consist of standard function blocks are called up specifically in the "STEU:ANT" function block and carry out the data transmission via a dual-port RAM interface (*). These data handling blocks need not be initialized by the user.

Functions:

FB:STEU:ANT

- Transfer setpoints to the IP 252
- Enabling and disabling of controllers and structure branches
- Enabling and disabling of setpoints and actual values
- Transfer of overflow identifier bits
- Detection of limiting values
- Detection of incorrect parameter assignment
(*) Communication interfate of the IP 252 for the CPU (1 K -address range with 8 -bit cata width).

Calling up the function block
Graphical representation: List representation:

--I DENR			NAME	: JU FB 100 : STEU:ANT
1	PAFE	---	DBNR	: ${ }^{\text {a }}$
-1 SSNR		-	SSNR	$K F$
1 I			RENR	:
--1 RENR			VAR8	:
			VAR9	:
			VAR3	:
$-\cdots-1$ VARB		1	DEO	:
1		1	DE1	:
1 VAR9		1	DE2	:
1 VAR7		1	DAO	:
-1 VAR3				:
-1 VAR3		1	DA2	:
1		t	PAFE	:
-1 DE 0	DA D	1 ---		
1		1		
-1 DE 1	DA 1	$1 \rightarrow$		
1		1		
-1 DE 2	DA 2	---		

Description of the parameters

Name	Type	Data	Description	Note
DBNR	B	-	Datablock no.	DW0-12 used, after that data transfer area
SSNR	D	KF	Interface no.	Page no. set on thelP
RENR	1	BY	Controller no.	8 controller nos. and task assigment
VAR8	[W	Speed setpoint	Branch 8 of the structure
VAR9	i	W	Position setpoint	Branch 9 of the structure
VAR3	I	W	Starting value circumferential	Branch 3 of the structure
DED	I	BY	"Relay 0 " of the structure	-
DE1	1	BY	"Relay 1 " of the structure	-
DE 2	1	BY	"Relay 2" of the structure	-
DAO	Q	BY	"Relay 3" of the structure	-
DA1	Q	BY	"Relay 4 " of the structure	-
DA2	Q	BY	"Relay 5" of the structure	-
PAFE	Q	Bl	Parameterfault	-

Parameter assignment

NOTE: During the "transmit" job (data transfer) the assignment of the outputs DA0, DA1, DA2 is irrelevant.
During the "receive" job (data reception) the assignment of the inputs VAR8, VAR9, VAR3, DE0, DE1, DE2 is irrelevant.

5. S5-CPU $<\longrightarrow$ IP 252 Communications

5.1 Standard Function Block FB:STEU/FB100

DE 0- "Relay 0" of the structure

Bit	7	6	5	4	3	2	1	0	
Stucture Branch	$\begin{aligned} & \hline \text { Bit } \\ & 3.1 \end{aligned}$	$\begin{aligned} & \text { Rel } \\ & \hline 1.1 \end{aligned}$	$\begin{aligned} & \hline \text { Rel } \\ & 6.1 \end{aligned}$	$\begin{aligned} & \hline \mathrm{Rel} \\ & 7.1 \end{aligned}$	$\begin{aligned} & \hline \text { Rel } \\ & 3.1 \end{aligned}$	$\begin{aligned} & \mathrm{Rel} \\ & 8.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ReI} \\ & 8.1 \end{aligned}$	$\begin{aligned} & \text { Rel } \\ & 9.1 \end{aligned}$	iortheDR structure
Structure Branch	$\begin{aligned} & \hline \text { Bit } \\ & 3.1 \end{aligned}$	$\begin{aligned} & \text { Rel } \\ & 1.1 \end{aligned}$	$\begin{aligned} & \hline \mathrm{Rel} \\ & 6.1 \end{aligned}$	$\begin{aligned} & \hline \operatorname{Rel} \\ & 7.1 \end{aligned}$	$\begin{aligned} & \hline \text { Rel } \\ & 3.2 \end{aligned}$	$\begin{aligned} & \mathrm{Rel} \\ & 8.2 \end{aligned}$	$\begin{aligned} & \hline \operatorname{Rel} \\ & 8.1 \end{aligned}$	$\begin{aligned} & \hline \operatorname{Re!} \\ & 9.1 \end{aligned}$	fortheDRS structure **
Rel9.1	Setpoint selector outer loop controller 0 - specified from PG 1 - specified from PC								Inching speed enable 0 -disable 1-enable
Rel8.1	Setpoint selector speed controller 0 -specified from PG 1 - specified from PC								Setting up speed enable 0 -disable 1-enable
Rel 8.2	Setpoint enable speed 0 -disabled 1 - enabled								Braking enable 0 - no braking 1-braking
Rel3.1* or Rel3.2**	Starting value for integrator 1 - specified from PG TO-calculated value								Enable integrator 0 -no integration 1 -integration

DE 1 - "Relay 1 " of the structure

Bit 7	76	5	4	3	2	1	0		
Structure Rel Branch 2.1	Rel Rel 2.1 5.1	$\begin{aligned} & \text { Rel } \\ & 5 / 9 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 9 . R F \end{aligned}$	$\begin{aligned} & \hline \text { Bit } \\ & 5 . R F \end{aligned}$	Bit 8. HOE	$\begin{aligned} & \text { Bit } \\ & 8 . T I E \end{aligned}$	$\begin{aligned} & \hline \text { Bit } \\ & 8 . \mathrm{LOE} \end{aligned}$	forthe DR structure	*
Structure Re! Branch 2.1	Rei Rel 21 5.2	$\begin{aligned} & \hline \mathrm{Rel} \\ & 4.1 \end{aligned}$	Bit 9.1RF	Bit 5.1RF	Bit 8.5HOE	Bit 8.6TIE	Bit 8.7AUT	for the DRS structure	**
Bit 8. LOE* * or Bit8.7 AUT**	Ramp-function generator reset 0 -inoperational 1-operational						Rel5/9	Switch-over to direct tension control (branch 5) 0 -speed control 1 -tension control	
Bit8.TIE* or Bit8.6TIE**	"Lower" ramp-function generator 0 -inoperational 1-operational						Rel4	Loop gain 0 - structure-dependent 1-start-up loop gain	
Bit 8. HOE* or Bit $8.5 \mathrm{HOE}^{* *}$	"Higher" ramp-function generator 0 -inoperational 1 -operational						Rel5.1* or Rel5.2*	Start-up enable 0 -structure-dependent 1 - specified from PC	
Bit5.RF* or Bit 5.1 RF **	Speed controller enable 0 -disabled 1 -enabled						Rel2	Friction enable 0 - disabled 1 - enabled	

$\begin{array}{ll}\text { Bit } 9 . R F * & \text { Outer loop controller enable } \\ \text { or } & 0 \text { - disabled }\end{array}$
Bit9.1 RF** 1 -enabled
DE 2 - "Relay 2" of the structure

Bit	7	6	5	4	3	2	1	0		
Structure Branch	0	0	0	0	0	0	$\begin{aligned} & \hline \operatorname{Rel} \\ & 10.1 \end{aligned}$	$\begin{aligned} & \text { Rel } \\ & 8.3 \end{aligned}$	forthe DR structure	*
Struecture Branch	$\begin{aligned} & \hline \mathrm{Rel} \\ & 8.4 \\ & \hline \end{aligned}$	Bit 8.8 NUH	Rel 15.1	Re] 16.1	0	0	$\begin{aligned} & \text { Rel } \\ & 10.1 \end{aligned}$	$\begin{aligned} & \hline \operatorname{Rel} \\ & 8.3 \end{aligned}$	forthe DRS structure	**

Rel 8.3 ADC/specification
0 - setpoint specified by ADC
1 - setpoint specified by PG/PC
Rel 10.1 Actual speed value selector
0 -structure-dependent
1 - specified from programmer
Rel 16.1 Comparison function enable
0 -comparator inhibited
1 - comparator enabled

Rel 15.1
Enabling of the measuring point output 0 -inhibited 1 -free
Bit 8.8 NUL "Setpoint to 0\%" ramp-function generator 0 -ineffective
1 -effective
Bit 8.4 Isolated operation
0 - setpoint of branch 8 transmitted at branch 5
1 -isolated operation for branch 8
\qquad

DA O- "Relay 3" of the structure

| Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Structure | Bit | for the OR structure | $*$ |
| Branch | $9 . U E-$ | $9 . U E+$ | 12.6 | 12.5 | 12.4 | 12.3 | 12.2 | 12.1 | | |
| Structure | Bit | for the DRSstructure | ** |
| Branch | 9UE- | $9 . U E+$ | 13.6 | 13.5 | 3.4 | 13.3 | 13.2 | 13.1 | | |

Bit 12.1 to bit 12.6 on the AR and bits 13.1 to 13.6 on the DRS are the limit monitor bits of limit monitor 1 (GWM 1)
When the bit is set, the corresponding limit value from branch 12 of the structure has triggered.

Bit 9.UE+	Upper limit position controller 0 -no overflow 1 -overflow	Bit 9.UE-	Lower limit position controller 0-no overtlow 1 -overflow

DA 1 - "Relay 4" of the structure

Bit	7	6	5	4	3	2	1	0		
Structure Branch	0	0	0	0	0	0	0	$\begin{aligned} & \hline \text { Bit } \\ & 11.1 \\ & \hline \end{aligned}$	for the DR structure	*
Structure Branch	0	0	0	0	0	0	$\begin{aligned} & \hline \text { Bit } \\ & 16.1 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 19.1 \end{aligned}$	for the DRS structure	**

Bit 11.1 When the bit is set, the thermal annunciator in branch 11 of the structure has triggered.
Bit 16.1 flags the result of the comparison function in branch 16.

DA 2 - "Relay 5" of the structure

Bit	7	6	5	4	3	2	1	0	forthe DRstructure	
Structure Branch	$\begin{aligned} & \text { Bit } \\ & 5 . \mathrm{UE}- \end{aligned}$	$\begin{aligned} & \hline \text { Bit } \\ & \text { 5.UE } \end{aligned}$	$\begin{aligned} & \hline \text { Bit } \\ & 13.6 \end{aligned}$	$\begin{aligned} & \mathrm{Bit} \\ & 13.5 \end{aligned}$	$\begin{aligned} & \hline \text { Bit } \\ & 13.4 \end{aligned}$	$\begin{aligned} & \hline \text { Bit } \\ & 13.3 \end{aligned}$	Bit 13.2	$\begin{aligned} & \text { Bit } \\ & 13.1 \end{aligned}$		
Structure Branch	$\begin{aligned} & \hline \text { Bit } \\ & \text { 5.UE- } \end{aligned}$	$\begin{aligned} & \hline \text { Bit } \\ & \text { 5.UE }+ \end{aligned}$	$\begin{aligned} & \hline \text { Bit } \\ & 14.6 \end{aligned}$	$\begin{aligned} & \hline \text { Bit } \\ & 14.5 \end{aligned}$	$\begin{aligned} & \hline \text { Bit } \\ & 14.4 \end{aligned}$	$\begin{aligned} & \hline \text { Bit } \\ & 14.3 \end{aligned}$	Bit 14.2	$\begin{aligned} & \hline \text { Bit } \\ & 14.1 \end{aligned}$	for the DRS structure	**

Bit 13.1 to bit 13.6 are the limit monitor bits of limit monitor 2 (GWM 2)
When the bit is set, the corresponding limit value from branch 13 of the structure has triggered.

Bit $5 . U E+$	Upper limit speed controller	Bit 5.UE-
	Lower limit speed controller $0-$ no overflow $1-$ overflow	$0-$ no overfiow
$1-$ overflow		

PAFE - Parameter error

When the bit is set, the execution of the function block is discontinued.

Conditions

The data block specified at input "DBNR" (DB No. 3...255, length at least 12DW, free for user from DW13) must be present in the memory of the programmable controiler. The page frame No. must be selected on the IP 252 before start-up via a programmer. Selection via the "info" function, submenu "SYSID".
If one wants to observe the task execution ("TRANSMIT" or "RECEIVE" data), this is possible via the corresponding status word (ANZW) or the error byte (PAFE) of the data handling blocks. See "Technical Specifications"!

5. S5-CPU $<\longrightarrow$ Communications

5.1 Standard Function Block FB:STEU/FB100

Program structure

Start-up

Procedure:

- Select the transfer block no. on the corresponding IP 252 with the programmer using the "COMREG" or "COM 252" operating system.
- Structure and assign parameters to the required control loop
- TransferFB:STEU:ANT fromPG to PC (with the S5 135L, R-processor, blocks FB 120, FB 121 and FB 123 must also be transferred)
- insert an absolute call to FB:STEU:ANT in organization block OB 1.

Technical specifications of FB100 (STEU:ANT)

	S5 115U	S5 135U (R processor)	S5 150 U
Library No.	P71200-S $1100-\mathrm{A}-1$	P71200-S9100-A-1	P71200-S4100-A-0
Block length	221 words	224 words	222 words
Calliength	21 words	21 words	21 words
Execution time: Data "SEND"	$941: 18.5 \mathrm{~ms}$ 942: 11.5 ms 943: 8.0 ms	approx. 4.2 ms	approx. 4 ms
Data "RECEIVE"	941 : 14.5 ms 942: 10.0 ms 943: 6.5 ms	approx. 3.8 ms	approx. 3.7 ms
Data "SEND" and "RECEIVE"	$941: 25.0 \mathrm{~ms}$ 942:17.5 ms $943: 12.0 \mathrm{~ms}$	approx. 6.5 ms	approx. 5.6 ms
Function blocks called Data handling block "SEND" Data handling block "RECEIVE" Data handling block "CONTROL"	$\begin{array}{\|l} 244 \\ 245 \\ 247 \\ \hline \end{array}$	$\begin{array}{r} 120 \\ 121 \\ 123 \\ \hline \end{array}$	$\begin{aligned} & 180 \\ & 181 \\ & 184 \\ & \hline \end{aligned}$
Flags, timers, counters used "Send" job "Receive" job Data handling blocks	FB200 to FB208 FB209 to FB211 FB212 FB213	FB200 to FB208 FB209 to FB211 FB212 FB213	FB243 to F8253 FB197 to FB199 FB254 to FB255 FB200 to FB242
Monitoring the job sequence: ANZW job"SEND" job "RECEIVE" PAFE job"SEND" + job "RECEIVE"	DW8 in the D-DB DW10 in the D-DB FB212 FB213	DW8 in the D-DB DW10 in the D-DB FB212 FB213	DW8 in the D-DB DW10 in the D-DB FB253 FB255
Nesting depth	1	1	1

Details on ANZW and PAFE can be found, if required, in the data handling block specifications.

5. S5-CPU $<\longrightarrow$ IP 252 Communications

5.1 Standard Functions Block FB:STEU/FB 101

5.1.2 Function block for standard controller structure FB:STEU:STD

Overview

Function description:

As shown in the overview, communication between the PC and the IP 252 in standard control systems, is carried out by function block "STEU:STD". This function block is used for data communication in both directions in the "Standard" controller structure.

Flag bytes are used as the transfer area for the data to be transmitted or received.
During the actual data transmission/reception, the data handling blocks which consist of standard function blocks are called up specifically in the "STEU:STD" function block and carry out the data transmission via a dual-port RAM interface (*).

Functions:

FB:STEU:STD

- Transfer setpoints to the IP 252
- Enabling and disabling of controllers and structure branches
- Enabling and disabling of setpoints and actual values
- Transfer of overflow identifier bits
- Detection of limiting values
- Detection of incorrect parameter assignment

Calling up the function block

Graphical representation:
FE 101

List representation:

:JUFB 101
NAME: STEU:STD DBNR:
SSNR: KF
RENR :
VAR3
DEO
DE1
DAO
DA 1
PAFE

Description of the parameters

Name	Data	Type	Description	Note
DBNR	B	-	Data block no.	DW0-12 used, after that data transfer area
SSNR	D	KF	Interiaceno.	Page no. set on the IP
RENR	1	BY	Controllerno.	8 controller nos. and task assignment
VAR3	1	W	Setpoint	Setpoint branch
DEO	1	BY	"Relay 0 " of the structure	-
DE 1	1	BY	"Relay 1" of the structure	-
DAO	Q	BY	"Relay $2^{\prime \prime}$ of the structure	$\underline{\square}$
DA 1	Q	BY	"Relay 3" of the structure	-
PAFE	Q	BI	Parametererror	-

Parameter assignment

DBNR	-	DB3-DB25	
SSNR	-	$\mathrm{KF}=0-254$	
RENR		BY	
			$\begin{aligned} & \mathrm{KF}=1 . \\ & \mathrm{KF}=11- \\ & \mathrm{KF}=21- \end{aligned}$
VAR3	-	W	

NOTE: During the "transmit" job (data transfer) the assignment of the outputs DAO, and DA1 is irrelevant.

During the "receive" job (data reception) the assignment of the inputs VAR 3, DE0 and DE1 is irrelevant.
DEO- "Relay 0 " of the structure

Bit	7	6	5	4	3	2	1	0
Structure	Bit	Rel	Bit	Bit	Rel	Bit	Bit	Bit
Branch	1.1.RF	1.2 .1	$1.2 . S T$	$1.2 .1 R$	1.1 .1	1.5.TOT 1.5.RF	1.5.HAI	
	1.2.RF				1.2 .2			

Bit 1.5.HAI Manual input of the "step-action controller" function
1 - manual input active
0 - manual input inactive
Bit 1.5.RF Enable bit of the "step-action controller" function
1 - enable controlier, i. e. calculated value is output
0 - controller disabled, i. e. zero is output
Bit 1.5. TOT Switch for selecting the input variables for the I component in the "step-action controller" function
1 - dead band for the l component inactive
0 - dead band for the \mathfrak{j} component active

5. S5-CPU $<\longrightarrow$ IP 252 Communications

5.1 Standard Function Block FB:STEU/FB 101

Rel 1.1.1 Automatic/manual operation switch-over in the
Rel 1.2.1 "PID-controlier" or "step-action controller" function
Rel 1.5.1 $\quad 0$-automatic operation
1 -manual operation
Bit 1.2.IR Switch-over between ideal and real "PID controller"
0 -real PID
1 -ideal PID
Bit 1.2.ST Bit for setting the manipulated variable increment in the "PID controller" function to zero
0 - no effect
1 - manipulated variable increment is set to zero or the manipulated variable is held constant
Rel 1.2.2 Disturbance variable injection in the "PID controller" function
$0-$ not operational
1 - operational, i. e. disturbance variable increment is added to the calculated manipulated variable increment.
Bit 1.1.RF Enable bit of the "PID controller" function
Bit 1.2.RF 1-enable controller, i. e. calculated value is output
0 -disable controller, i. e. zero is output

DE 1 - "Relay 1" of the structure

Bit	7	6	5	4	3	2	1	0
Structure	Rel	Rel	Rel	Bit	Bit	Bit	Bit	Bit
Branch	2.3	3.2	3.1	1.5.BA	1.5.BZ	3.HOE 3.TIE	3.LOE	

Bit 3.LOE "Reset" bit of the "ramp-function generator" function
$0-$ no effect
1 - reset, i. e. set the output value to zero and for $7 / 0$ transition ramp to the last setpoint
Bit 3.TIE "Lower" bit of the "ramp-function generator" function
0 -no effect
1 -output of ramp-function generator negative (-100%)
Bit 3.HOE "Higher" bit of the "ramp-function generator" function
0 -no effect
1 - output of ramp-function generator positiv ($+100 \%$)
Bit 1.5.BZ Acknowledgement bit of the "pulse generator" function
0 -final CLOSED position not reached
1 - final CLOSED position reached
Bit 1.5.BA Acknowledgement bit of the "pulse generator" function
0 - final OPEN position not reached
1 - final OPEN position reached
Rel 3.1 Setpoint selection
$0-\mathrm{PC}$ setpoint operationai
1 - "setpoint sequence" function operational
Rel 3.2 Setpoint enable
1 - setpoint branch enabled
0 - setpoint branch disabled
Rel 2.3 Start-up enable
0 - actual value branch enabled
1-actual value at start-up operational

5. S5-CPU $<\longrightarrow$ IP 252 Communications

DA O- "Relay 2" of the structure

Bit	7	6	5	4	3	2	7	0
Stucture	Bit							
Branch	1.4.PP	1.4.NP 5.6	5.5	5.4	5.3	5.2	5.1	
	1.5.OPEN1.5.CLOSED							

Bit 5.1- Limit value bit of the "limit monitor 2 " function
Bit $5.6 \quad 0$ - corresponding limit value not violated
1 - corresponding limit value violated
Bit 1.5.AUF Binary output "open" of the "pulse generator" function 0/1
Bit 1.5.ZU Binary output "ciose" of the "pulse generator" function 0/1
Bit 1.4.PP Binary output "positive pulse" of the "on" - "off" output function $0 / 1$
Bit 1.4.NP Binary output "negative pulse" of the "on" - "off" output function $0 / 1$

DA 1 - "Relay 3" of the structure

Bit	7	6	5	4	3	2	1	0
Structure	Bit							
Branch	1.1.UE- 1.1.UE +4.6	4.5	4.4	4.3	4.2	4.1		
	1.2.UE- 1.2.UE +							

Bit 4.1- Limit value bits of the "limit monitor 1 " function
Bit $4.6 \quad 0$-corresponding limit value not violated
1 -corresponding limit value violated
Bit 1.1.UE + Bit for upper limit of the manipulated variable in the "PID controller" function
Bit 1.2.UE +0 - not crossed
1 -crossed
Bit 1.1.UE- Bit for lower limit of the manipulated variable in the "PID controller" function
Bit 1.2.UE-0-not crossed
1 -crossed
PAFE - Parameter assignment error
If the bit is set the execution of the furction block is discontinued.

Conditions

The data block specified at input "DBNR" (DB no. $3 \ldots 255$, length at least 12DW, free for user from DW13) must be present in the memory of the programmable controller. The page no. must be selected on the IP 252 before start-up via a programmer. Selection via the "Enquiry" function, submenu "SYSID".
If one wants to observe the job execution ("TRANSMIT" or "RECEIVE" data), this is possible via the corresponding condition code word (ANZW) or the error byte (PAFE) of the data handling blocks. See "Technical Specifications"!

5. S5-CPU $<\longrightarrow$ IP 252 Communications

5.1 Standard Function Block FB:STEU/FB 101

Program structure

Start-up

Procedure:

- Select the page no. on the corresponding IP 252 with the programmer using the "COMREG" or "COM 252 " operating system. Structure and assign parameters to the required control loop
- Transfer FB:STEU:STD from PG to PC (with S5 135U, R-processor, blocks FB 120, FB 121 and FB 123 must also be transferred).
- Select data block in the PC (DB3 255, length at least 12 DW , remainder free for user)
- Insert an absolute call to FB:STEU:STD in organization block OB1.

Technical specifications of FB101 (STEU:STD)

	S5-115U	S5-135U (R-processor)	S5-150U
Library No.	P71200-S1101-A. 1	P71200-S9101-A-1	P71200-S4101-A-0
Blocklength	179 words	183 words	182 words
Call length	17 words	17 words	17 words
Execution time: Data "SEND"	$941: 15.0 \mathrm{~ms}$ 942: 10.0 ms 943: 6.5 ms	approx. 3.9 ms	approx. 3.8 ms
Data "RECEIVE"	$941: 13.0 \mathrm{~ms}$ 942: 9.5 ms 943: 6.0 ms	approx. 3.7 ms	approx. 3.6 ms
Data "SEND" and "RECEIVE"	$941: 21.0 \mathrm{~ms}$ 942: 15.5 ms 943: 10.5 ms	approx. 5.6 ms	approx. 5.4 ms
Function blocks called Data handling block "SEND" Data handling block "RECEIVE" Data handling block "CONTROL"	$\begin{array}{\|l} 244 \\ 245 \\ 247 \end{array}$	$\begin{aligned} & 120 \\ & 121 \\ & 123 \end{aligned}$	$\begin{aligned} & 180 \\ & 181 \\ & 184 \end{aligned}$
Flags, timers, counters used "Send" job "Receive" job Data handling blocks	FB200 to MF203 FB204 to MF205 FB206 FB207	FB200 to FB203 FB204 to FB205 FB206 FB207	FB243 to FB250 FB198 to FB199 FB251 to FB252 FB200 to FB242
Monitoring the job sequence: ANZW job"SEND" job "RECEIVE" PAFE job"SEND" job "RECEIVE"	DW8 DW10 FB206 FB207	DW8 DW10 FB206 FB207	DW8 DW10 FB250 FB252
Nesting depth	1	1	1

Details on ANZW and PAFE can be found, if required, in the data handling block specitications.

5.1 Standard function block FB:STEU/FB 101

The following example describes initialization of the FB:STEU. PB 100 standard function block for the drive controller structure (DR an DRS) an FB 101 for the standard controller. Flag words are used in the first example, and in the other example, data words of a block are used. Error recognition is valid for the S5-115U only. The FB:STEU for the S5-135U/150U reserves other flag bytes which can be found in the tables in Sections 5.2.1 and 5.2.2, if required.

SEGMENT 1
NAME : FORCE

0005		:A	F 30.6	WAITING TIME FROM FB6 ACTIVE $?$
0006		: BEC		END IF YES.
0007		: \mathbf{L}	RIP-2233	KP-2233 $=-22,33$ \% AS THE SETPOINT
0009		-T	FW122	TO BE TRANSFERRED TO THE IP 252
000A		:		
000B		:Ir	KH0608	THE POILOWING BITS AND RETAYS
000D		:T	FW1 28	ARE SET AS A RESULI:
000E		: $工$	KB1	1.) BIT5.RF (CONTROLTER EHABLE)
000F		:T	FBI30	2.) REL 8.1 (SETPOTNT FROM PC)
0010		:		3.) REJ 8.2 (SETPOINP EINABLE)
0011		:		4.) SETPOTNT NOT FROM ADC 6,
0012		:		BUT PROGRAMIED
0013		:		
0014		: L	KB6	"6" TO FB 34 (=RENR), I.E. SEND
0015		:	FB34	AND RECEIVE DATA AT CONFROTMER
0016		:		NO 6 OF THE IP 252.
0017		:		TEE FOLTOHING APPLIES IN GENERAL
0018		:		FOR RENTR:
0019		:		
001A		:		= $11 \ldots 18:$ AG $\ldots->$ IP252
0018		:		= $21 \ldots 28$: AG m-> IP252
001 C		:		FB:STEU.ANT FOR THE DRIVE CON-
001 D		:		TROLIER SIRUCFURE OF THE IP 252.
001E		:		THIS FUNCTION BIOCK SENDS/RECEIVES
0017		:		DAIA AITD CONTROL/MESSAGE BITS
0020		:		
0021		:		
0022		: 50	FB100	
0023	RAEE	: STE	O : ANTI	
0024	DBNTR	:	DB41	DATA DB FOR INHPRKAET USE (1)
0025	SSNR	:	KP+4	PAGE NO. OF THE IP
0026	REMR	:	FB34	JOB AND CONHROLTER NO (2)
0027	VAR8	:	FW122	VAR8 \rightarrow SEITPOITP VRR 8.1 OF THE DR
0028	VAR9	:	FW124	VAR9 \rightarrow POSITION SETPOIMT VAR 9.1
0029	VAR3	:	FFI 26	
002A	DEO	:	FB128	>
002B	DE1	:	FB129	\gg RELAYS AND BITS OF THEE DR
002C	DE2	:	FB130	$>$ STRUCTURE
002D	DAO	\%	FB131	$>$
002E	DAI	:	FB132	\gg MESSAGE BITS OF THE DR
002 F	DA2	=	FB133	$>$ STRRUCTURE
0030	PAFE	*	F 30.4	BIT IS SET IF E.G.
0031		:		VAR8 > KF+10000 (= 100.00\%)
0032		=		$<\mathrm{KP}-10000 \quad(=-100.00 \%)$

FB2

0033	:
0034	:
0035	:
0036	:
0037	:
0038	:
0039	:
003A	:
003B	:
003C	:
003D	:
003E	:
003F	:
0040	:
0041	:
0042	:
0043	:
0044	:
0045	:
0046	:
0047	:
0048	:
0049	:
004A	:
004B	:
004C	:
004D	$: 0 \quad F 30.4$
004E	:0 F 212.0
004 F	: F 213.0
0050	$: 0 \quad F 213.0$
0051	:
0052	:JC = M001
0053	:JU $=\mathbf{H 0 0 2}$
0054	:
0055 M001	:
0056	:I KB2
0057	:T FB5
0058	:
0059	:

LEEN=138

ADDITIONAL EXPLANATION:
(1 THE DATA DB IS USED BY FB100 FROM DNO TO DW12.
IF DATA FORDS OR DATA BYTES ARE
USED INSTEAD OF FLAG WORDS OR
FLAG BYTES, THE DATA DB AB DW 13
SPECIFIED SHOUED BE USED (AND
EXTENDED ACCORDINGIY) - THIS
DB NO. SHOUID THEN BE OPENED BEFORE CAMIING THE FB100. (WITH *A DBXY")
(2) IN THE CASE OF RENR, A FLAG BYTE IS SPECIFIED HERE, THE CONPENTS OF WHICH DECIDE WHICH CONTROLIER NO. (1 TO B) OF THE IP IS TO BE ACCESSED WIIH THE PAGE NO. SPECIFIED, AND WHICH OF THE FOLTONING IS TO BE DONE:
A) DATA FROK PC --> IP 252
B) DATA FROM IP 252 --> PC
C) BOTH

INITIALIEATION ERROR ? SEND ERROR (FROM PC TO THE IP 252 ?
RECEIVE ERROR (PC<-IP)
JURP, IF YES

ERROR HANDLITNG: E.G.
MOVE NO. OF THE FB IN WHICH THE
ERROR OCCURRED TO FB5
(FIAG BYYE 5)

5. S5-CPU $<\longrightarrow$ IP 252 Communications

5.1 Standard function block FB:STEU/FB 101

FB2
005A 005B 005C 005D K002

005E :

005 F :
0060 :
0061 :

0062	$: Q$	DB 42
0063	$=$	

0064
0065
$0066 \quad$:I Kr+5577
0068 :T DF13

006 :I KH8040
006C :T DF14

006D

 006E 006 F 0070 :I KB230071 :T FB35
0072 :
0073 :JU FB101

0074 NAME :SIEU:SID
0075 DBIR : DB42

0076 SSKR : KF+3
0077 REHTR : FB35
0078 VAR3 : DW13
0079 DE0 : DL14
007A DE1 : DR14
007B DAO : DL15
007C DA1 : DR15
007D PAFE : F 30.5
$\begin{array}{llll}007 E & : & \\ 007 F & : O & F & 30.5\end{array}$
$0080 \quad: 0 \quad F \quad 206.0$
0081 : 0 F 207.0
0082
0083
0084 -BE

LEEN $=138$

EXAMPLE FOR FB:STEU.STD
HITHOUI USING FILAG AREAS
(EXCEPTION: INTERKIA FLAG AREAS AND PAPE BYTE)

OPEN DB42, SIHCE IT IS ALSO
USED HERE FOR ASSIGNING PARAMETEERS TO FB101.

KP+5577 $=+55.77$ \& AS THE SETTPOINT TO BE TRANSFERRED TO THE IP

AS A RESULT, THE FOLLONING RELAYS ARE SET ON THE STAANDARD STRUCIURE:
1.) BIT RF (CONTROINSER ENABLE)
2.) REL 3.2 (SEIPOINT EMABLE)

SEIND TO CONTROLTER NO. 3

DB FOR INTERNAL AND EXTHERNAL USE
PAGE NO. OF THE IP
JOB AND CONFROITER NO.
DW13 IN DB42 CONTAINS SETPOINP
IEFT-HAND BYYE OF DF14
RIGHT-EAND BYTE OF DW14

ERROR OCCURED ?
INITIATIKAPION ERROR ?
SEND ERRROR ?
RECEIVE ERROR ?
SEE ABOVE FOR ERROR HANDLING:

5. S5-CPU $<\longrightarrow$ IP 252 Communications

5.2 Use of the Data Handling Blocks of the S5-CPU

Zommunication between the controllers and the S5-CPU takes place either with the help of the FB:STEU or direct via the data landling blocks. The S5-CPU can both exchange data with the controllers and issue commands to the IP 252.
f the FB:STEU only is used, data exchange will be restricted. In Section 5.2, all methods of data exchange between the IP 252 and he CPU are explained and are illustrated in Section 5.2.7 using STEP 5 programming examples.

The principles of data exchange between the IP/CP and the CPU;

The interface between the CPU and the IP/CP must generally be "synchronized" at the beginning, i. e. in the restart organization blocks of the CPU. The IP 252 does not require this synctronization internally. The IP 252 interface or the dual-port RAM should, however, be synchronized for the foliowing reason:

After a power failure or a CPU error arising from the program, resumption of data exchange after a warm restart or cold restart of the CPU cannot be guaranteed without synchronization of the IP 252.

In the example FBs in Section 5.2.7, the IP 252 is synchronized as soon as the organization blocks OB20, OB21 and OB22 have been called. In these OBs the example FB99 is called in each case for synchronization of the three interfaces (i. e. in the following example: three IP 252s with the page Nos. 2, 3 and 4). There is an explanation in FB99 of the waiting times before and after synchronization which are required for restarting the IP 252.

Note:

When exchanging data between a CPU and several IP 252 s in an S 5 environment, the page nos. (interface nos.) of the IPs must not be identical, as this would result in a bus short-circuit. Exception: page no. 255, since the S5-CPU only has to "read" this page no. but does not have to "write" it.

At the initial startup of the IP 252, page no. 255 is set for the above reasons. If it is now desired to transfer data between the CPU and the IP 252, a page no. 0 to 254 must be set for this purpose in the IP 252.
This is done with COM REG or COM 252 by calling the "SYSID" function in the submenu of the "Info" form. The IP 252 can now be accessed by the data handing block of the CPU via the page no. (interface no.) set in this way.

The STEP 5 programming examples detailed in Section 5.2 .7 apply to the S 5115 U programmable controller. For the $\mathrm{S5} 135 \mathrm{U}$ (R processor) and the S 5150 U the "Call nos." of the data handling blocks must be changed according to the foilowing table:

Data handing blocks	FBNo. in the S5 115U	FBNo. in the S5 135 U(R)	FBNo. in the S5 150U
SEND	244	120	180
RECEEVE	245	121	181
FETCH	246	122	182
CONTROL	247	123	184
RESET	248	124	183
SYNCHRON	249	125	185

Note on data exchange in multiprocessor mode in the case of the 55 135U:

- Communication between one or several IP 252s and several R processors is possible, as outlined in the examples in Section 5.2.7. Several R processors may not access an IP 252 with one and the same job no. In doing so, each interface may be synchronized by only one (random) R processor.

5. S5-CPU $<\longrightarrow$ IP 252 Communications

5.2 Use of the Data Handling Blocks of the S5-CPU

The data handling blocks of the $\mathrm{S} 5-115 \mathrm{U}, \mathrm{S} 5-135 \mathrm{U}$ with R processor and $\$ 5-150 \mathrm{U}$ programmable controllers called in the examples enable the user to monitor correct execution of the job in progress and respond to errors:

The job status word (ANZW) of the data handling block flags the job status to the user.

Structure of the parameter assignment error byte "PAFE":

Further details can be found in the descriptions of relevant data handling blocks.

5. S5-CPU $<\rightarrow$ IP 252 Communications

5.2 Use of the Data Handling Blocks of the S5-CPU

5.2.1 Command: Control loop enable/disable

This command is used for enabling or disabling of control loops on the IP. This command has the same effect as the enable/disable command from the PG (PG menu: "Operating mode").

Calling up in the logic control program of the S5-CPU:

- SEND 10 (with data)

SEND 10 transfers a byte to the IP.
The byte has the following format:

See example FB3 in Section 5.2.7

5.2.2 Command: RUN/STOP mode of the module

With this command the IP can be set to the STOP mode or to the RUN mode.
The command has the same effect as operating the switch on the IP or selecting the RUN/STOP command from the PG (PG menu:
"Operating mode").
Calling up in the logic control program of the S5-CPU:

- SEND 19 (without data): module STOP
- SEND 20 (without data): module RUN

The parameters for the source type must be specified as "NN".
See examples FB6 and FB7 in Section 5.2.7.

5. S5-CPU $<->$ IP 252 Communications

5.2 Use of the Data Handling Blocks of the S5-CPU

5.2.3 Data exchange with the control loops

5.2.3.1 High-speed data exchange of defined data

The "SEND 11 to $18^{\prime \prime}$ and "RECEIVE 11 to 18 " jobs enable high-speed exchange of defined data between the CPU and the IP 252. The length of time between initiating the job in the CPU and using the parameters on the P 252 is independent of the loading of the processor in the IP 252.

The jobs correspond exactly to those used in FB:STEU (Section 5.1).

Direction S5-CPU to IP:

The data handing blocks "SEND 11 to 18 " transfer data to the controllers 1 to 8.
Depending on the structure of the controller on the IP (drive controller or standard controller) either 9 bytes or 4 bytes are transferred. The meaning of the data bytes is given in Fig. 5.2.

Direction IP to S5-CPU:

The data handing blocks "RECEIVE 11 to 18 " transfer data from the controllers 1 to 8.
Depending on the structure of the controflers on the IP (drive controller or standard controller) either 2 bytes or 3 bytes are received. The meaning of the data bytes is given in Fig. 5.1.
The data handling blocks "SENO 11 to 18 " and "RECEIVE 11 to 18 " are included in the user-friendly standard function blocks FB:STEU/FB 100 for drive controllers FB:STEU/FB 101 for standard controllers.

While the number of bytes transferred is fixed in the FB:STEU, it is possible in the example FBs 4 and 5 to send or receive only 1,2 etc. data words or bytes.

Data from a drive controller:

7	6	5	4	3	2	1	0	BYTE
BIT	BIT	BIT	${ }_{125}$	SIT 12.4	B1T 12.3	$\begin{gathered} \text { BIT } \\ 12.2 \end{gathered}$	$\begin{aligned} & \mathrm{BIT} \\ & 12.1 \end{aligned}$	0
							BIT 11.1	1
BIT	$\begin{gathered} \text { BIT } \\ 5 . \mathrm{UE}+ \end{gathered}$	$\begin{aligned} & \text { BIT } \\ & 13.6 \end{aligned}$	$\begin{aligned} & \text { BIT } \\ & 13.5 \end{aligned}$	$\begin{aligned} & \mathrm{BIT} \\ & 15.4 \end{aligned}$	$\begin{gathered} \mathrm{BIT} \\ 13.3 \end{gathered}$	$\begin{aligned} & \text { BIT } \\ & 13.2 \end{aligned}$	$\begin{aligned} & \text { BIT } \\ & 13.1 \end{aligned}$	2

Increasing

 addressesData from a standard controlier:

7	6	5	4	3	2	1	0	BYte
BIt	0							
1.4.PP	14.NP	5.6	5.5	5.4	5.3	5.2	5.1	
[15AUF	1.5.ZU							
BIT	BIT	BIT	BIT	BIT	B!	BIT	BIT	
11.1.UE-1	11.UE +	4.6	4.5	4.4	4.3	4.2	4.1	1
2.UE-	1.2.UE+							

Increasing addresses

Fig. 5.1 -RECEIVE 11 to 18 ($1 \mathrm{P} 252 \longrightarrow$ S5-CPU)

Data sent to a drive controlier:

Data sent to a standard controlier:

Note: Both these bits (pushbuttons) HAA: Manual input "Open", and HAZ: Manual input "Close"
can be transferred to the IP 252 only with "SEND 11 to 18" (Section 4.11.6.12).

Fig. 5.2 "SEND 11 to 18" (S5-CPU-IP)

See examples FB4 and FB5 in Section 5.2.7

5. S5-CPU $<\longrightarrow$ IP 252 Communications

5.2 Use of the Data Handling Blocks of the S5-CPU

5.2.3.2 Exchange of random control loop data

The previous subsections of Section 5 have described the exchange of a number of defined control loop data.
This subsection will demonstrate how transfer of random controller structure data can be impiemented. The data which can be transferred between the iP 252 and the CPU are listed in Sections 4.10.7 (DR), 4.11.7 (SR) and 4.12.8 (DRS). The following description refers to these controller data blocks.

The following procedure is required for programming data transfer:

1) Select the desired constant or desired bit etc. from the configuration documentation in Section 8 or 9 .
2) Search for the selected values in Sections $4.10 .7,4.11 .7$ and 4.12 .8 (controller data blocks). In doing so, each value of the controller structure must be assigned a DW No. in the controller DB.
3) This DW No. and the corresponding controller no. (1 to 8) are stored in a CPU DB as source/destination parameters.
4) By specifying a page no. when calling the data handting block, the desired values are then clearly assigned.

Note: The data handling blocks described here run on the IP 252 with lower priority. Depending on the IP 252 processor load, this can result in relatively large dead times between job allocation on the CPU side and the time at which the transferred parameters come into effect (up to several seconds).

Receiving random control loop data of the IP 252

Random data of the control loop are transferred to a CPU DB with the "RECEIVE ALL" job. The data handling block "FETCH" determines which data are transferred from which controller.

Only the "FETCH21" job is permissible for the DS/SR user submodule (MLFB: 6ES5374-0AA11). This job, initialized with the "READ/ WRITE" data handing function, transfers the source and destination parameters to the IP 252 , so that in any subsequent "SEND ALL" the desired data will be transferred to a CPU DB.

The " FETCH 21 " job prepares data transfer according to the illustration below, i. e.:

1) The source (IP 252) ignores the initial address and the length of the data block. The IP 252 always presents the data of a control loop starting with the first data word (DWO).
2) Only meaningful data are transferred. The areas DW120 to DW179 and DW200 to DW219 are not transferred, since only intemal IP values are stored here.

See example FB 12 in Section 5.2.7.
If the DRS/SR user submodule (MLFB: GES5 374-0AB11) is used, the "FETCH23" job is available as well as the above-mentioned "FETCH21" job.
Use of this job permits the user to give the initial address and the length not only on the destination side (CPU) but also on the source side (IP 252). All controller block data, including internal IP values, can be transferred here. Special care must be taken that the amount of data transferred in one cycle does not exceed 224 data words, since the length of the dual-port RAM is limited to 224 data words.

See example FB13 in Section 5.2.7.

Sending random data to a control loop of the IP 252

In the example FBs 10 and 11 of Section 5.2.7, two data words from CPU DB9 are transferred to the data block of controller no. 1 . The parameters for the source (CPU DB9, DW5 and 6) and the destination (controller DB1, DW105 and DW106) are sent to the IP 252 by "SEND21" using the READ/WRITE function. If controlierno. 1 is a drive controlier (DR/DRS), the data word has the following meaning (see Sections 4.10.7 and 4.12.8):

DW105: Setpoint, upper danger limit of the speed controller (SOGD)
or DW106: Setpoint, lower danger limit of the speed controiler (SUGD)
If controller no. 1 of the IP 252 had been a standard controller (SR), transfer of data words 105 and 106 would have had no effect since, according to Section 4.11.7, these are not assigned.

According to Section 4, data words 105 and 106 belong to the group of "retentive data" in the IP 252. Retentive data of a controller structure are constants, configuring switches (bits), DAC/ADC addresses and page nos. etc. In the user submodule they are stored automatically in EEPROM along with the DR/SR structures of the IP 252. Since the EEPROM only has an operating life of >10.000 write cycles, such a mode may not send data cyclically to the IP 252.

5. S5 CPU $<\longrightarrow$ IP 252 Communications

5.2 Use of the Data Handling Blocks of the S5-CPU

If a cyclic change of retentive controlier data is required, the user submodule with the DRS/SR structures (MLFB: 6ES5 374 0AB11) must be used. This submodule permits a choice between "Data dump desired/not desired" by using the following job numbers:

If it is desired to dump the data on EEPROM, job "SEND21" must be used (example FB10). If otherwise retentive data are not to be dumped, job "SEND22" must be used (example FB11).

If the user submoduie with the DR/SR structures (MLFB: 6ES5374-0AA1) is used, only "SEND21" with subsequent "SEND ALL" may be called (exampie FB10). Cyclic transfer of retentive data to the IP 252 is then not possible, since the EEPROM will have been destroyed after a relatively short time.

The following figure illustrates data transfer from the CPU DB via the dual-port RAM to the controlier DB of the IP 252. It can be seen from this figure that the data range in the dual-port RAM of the IP 252 permits the transier of a maximum of 224 words. Transfer of all controller DBs would therefore have to be executed in block mode.

5. S5-CPU $<\longrightarrow$ IP 252 Communications

5.2.4 IP 252 Fault diagnosties by the CPU control program

The following messages are transferred from the IP 252 to the CPU control program for diagnostics:

Fault No. (decimal)	Text on PG	Fault caused by	Response of the IP 252
00.	No fault in IP	initial state: "No fault in IP 252"	
31.	Hardware	Time-out (not analog module)	"Stop"
12.	Hardware	Checksum of EEPROMs incorrect	"Stop"
13.	Hardware	Result of offset correction: Deviation of a DAC > 7LSB	"Stop"
14.	Hardware	Fault in hardware test program: RAM	"Stop"
15.	Hardware	Fault in hardware test program: MUART	"Stop"
20.	Watchdog	Time-out	"Stop"
21.	Direct access	S5 bus not enabled by S5-CPU	"Stop"
22.	Analogsection	Wire break at digital input (digital tachogenerator)	"Stop"
23.	Analog section	Power tailure in analog section	"Stop"
30.	PCatstop	BASP active	"Stop"
31.	Submodule fault	Wrong orno submodule in IP 252	"Stop"
$\begin{aligned} & 50 . \\ & 51 . \end{aligned}$	Analog module Overfoad	Time-out or wire break in analog module \| $P 252$ overioaded (timing conflict)	"Stop" LED "F" flashing
$\begin{aligned} & 70 . \\ & 71 . \end{aligned}$	Stop switch Software stop	Stop switch on IP 252 set to "Stop" Stop of IP 252 (initiated by command from PG or CPU)	"Stop" "Stop"
The following messages apply only to the DRS structure			
$\begin{aligned} & 75 . \\ & 76 . \\ & 77 . \end{aligned}$	Prepare SE SO active SO successfuliy completed	Prepare seff-optimization Self-optimization active	None None
		Self-optimization successfully completed Configuring/parameter-assignment error	None None
78. 79.	CONFIG./PAR. error Impermissible CNTL.No.		
		Configuring/parameter-assignment error Impermissible controller number (only no. 1 or 2 are permissible)	
			None
80.	Sampling time toolarge	Sampling time toolarge (only TA $=4$ or 8 ms permissible)	None
81.	Moment of inertiatoohigh		
		Moment of inertia too high	None
83. 84.	Unsuitable system	Unsuitable system (procedure cannot be used)	None
	Unsuccessful optimization	Parameters could not be calculated (unsuccessful optimization)	None
85. 86.	Abortby PG/PC S5 communications	Abort by programmer	None
	error S5 wire break	S5 communications error with the IP 240	None
87.		Wire break on the IP 240 module	None

All the messages listed above are recognized by the IP 252 operating system and can be

1. interrogated with the help of COM 252 for the PG 615 (or COM REG for PG $635 / 675 / 685 / 695$) via the "Info" function in the "Errors" submenu and
2. fetched by the CPU via RECEIVE 200 from a specified RAM area of the IP 252 (dual-port RAM).

The error is reset again via RESET 200 . Furthermore, any error entered once will be automatically reset when the module changes from STOP to RUN. CONTROL 200 can be used to determine whether a new error has been entered by the IP 252, and whether it is meanningful to call RECEIVE 200.

Generally, only the first message to appear will be entered. Exceptions are nos. 51 an 75 to 85 : However, these messages are overwritten by all subsequent messages!

See example FB8 in Section 5.2.7

5. S5-CPU $<\longrightarrow$ IP 252 Communications

5.2 Use of the Data Handling Blocks of the S5-CPU

5.2.5 System identification and system status (SYSID and SYSTAT)

In the first section of the example FBS, the SYSID area (SYSID = system identification) is read with the help of RECEIVE 223 from the dual-port RAM of the IP 252 with the page no. specified. The SYSID area is limited to a maximum length of 100 data words. The data are stored in ASCII code.

This SYSID area, which is also similar in other CPs and IPs, has the following structure in the IP 252:

Byte No.	ASCll characters (examples)	General description
Bytes 0 to 5	$0 \mathrm{AA} 11<\mathrm{CR}$ > or $0 \mathrm{AB} 11<\mathrm{CR}>$	Submodule order code
Bytes 6to 13	$1 \mathrm{P}-252$ <CR>	Module deseription
Bytes 14 to 21	V1.2B<CR>	Module FW version
Byte 22	<CR>	
Bytes 23 to 31	15.10.87<CR>	Date
Bytes 32 to 38	<CR> to <CR>	7 blank lines
Bytes 39 to 42	255<CR>	Page no.
Bytes 43 to 44	<CR> <CR >	2 blank lines
Bytes 45 to 52	$\mathrm{V} 1.2 \mathrm{M}<\mathrm{CR}>$	MM-FW version
Bytes 53 to 199	-	not assigned

In the second section of the example FB9, the SYSTAT area (SYSTAT = system status) is read with the heip of RECENE 221 from the dual-port RAM of the IP 252 with the page no. specified:

This SYSTAT area, which is also similar in other CPs and IPs, has the following structure:

Byte No.	Meaning
Byte 0	$1 \mathrm{H}:$ IP at STOP / 2H : IP at RUN
Byte 1	2H \rightarrow IP has no additional battery back-up
Byte 2	Irrelevant
Byte 3	Irrelevant
Byte 4	Irrelevant
Byte 5	Error message of the IP
Byte 6	00 H (i.e.: no additional information in the IP 252)

The second method of error diagnostics by the S5-CPU is to receive byte 5 of the SYSTAT range specifically (see Section 5.2.4),

See example FB9 in Section 5.2.7.

5. S5-CPU $<\longrightarrow$ IP 252 Communications

5.2 Use of the Data Handing Blocks of the S5-CPU

5.2.6 Recording and transferring the measured values of a control loop in the IP $\mathbf{2 5 2}$ (oscilloscope function)

The IP 252 has a memory in which measured values can be recordec. Three different measured values can be stored in parallel in the RAM of the IP 252 for each of the 150 sampling points. The oscilloscope function is only important if it desired to display the meared values on CRT systems. Using an operator keyboard, for example, a step change can be made in the setpoint for a control loop and the resulting transfer function/change in manipulated variable etc. can be displayed on the screen.
a) Sending the parameters of the oscilloscope function from the CPU to the IP 252

It is now possible to inform the IP 252, via the CPU control program, which measuring points of the selected controller structure (DR/SR/DRS) are to be recorded, e. g. MP 12 of controlier no. 1 (actual speed of the drive controller structure DR and DRS) and when the recording is to begin:

- Either via a trigger condition (e. g. "Value of the first measuring point exceeds 5% ")
- Or immediately after the parameters of the oscilloscope function have been transferred by means of "SEND 30 ", i. e. without a trigger condition.

The values of the oscilloscope function for initialization are transferred to the IP 252 in the order listed below (see also example FB14 in Section 5.2.7):

DWNo.	Example	General meaning
DW0	KF $=17$ Setpoint in the case of DR and DRS	1st measuring point no. (" 00 " not permissible)
DW1	KF $=14$ Processed setpoint in the case of DR and DRS	2nd measuring point no. ("00": no recording)
DW2	$\mathrm{KF}=8$ Actual value in the case of SR	2nd measuring point no. ("00": no recording)
DW3	$K F=144(=[1-1] \cdot 1034+144)$	([Controller no. of the 1stMP] - 1) $1034+144$
DW4	$K F=144(=[1-1] \cdot 1034 \div 144)$	([Controlier no. of the 2md MP] - 1) $1034 \div 144$
DW5	KF $=1178(=\{2-1\} \cdot 1034+144)$	([Controller no. of the 3rd MP] - 1) 1034 + 144
DW6	$K F=164(\underline{\triangle}+1 \%)$	Trigger iever (-100% to $+100 \%$) 人 -16384 to +16383
DW7	$\mathrm{KF}=1$ (Noexpansion)	Expansion factork (see "Notes")
DW8	$\mathrm{KM}=000000 \mathrm{yz} 0000000 \mathrm{x}$	$\begin{array}{rlr}\text { Trigger edge: } x=0 & \text { : positive edge } \\ x=1 & \text { :negative edge }\end{array}$
		Trigger: $\quad y z=01$: without trigger condititon $y z=10$: with trigger condition
DW9	$\mathrm{KF}=0$ (No delay)	Delay factorn(see "Notes")

Notes:

- The trigger condition refers to the measuring point no. in DWO
- The bit "with/without trigger condition" is deleted at the beginning of the recording
- Expansion factor $: k=1$ to 9999
i.e. "every k-th sampling point is recorded"

Delayfactor $\quad: n=0$ to 999
i. e. "recording begins after n sampling intervals"

5. S5-CPU < $~$ IP 252 Communications

5.2 Use of the Data Handling Blocks of the S5-CPU

The recording interval is obtained from the two values "expansion factor" and "delay factor" with the sampling time T_{A}
\rightarrow Start after beginning of recording:

$$
k \cdot n \cdot T_{A}(\mathrm{~ms})
$$

(ms)
\rightarrow End after beginning of recording:
Recording duration + delay time
$k \cdot 150 \cdot T_{A}(\mathrm{~ms})+k \cdot n \cdot T_{A}(\mathrm{~ms})=\ldots . .(\mathrm{ms})$
b) Transferring oscilloscope function parameters in the IP 252 to a DB of the CPU.
"RECEIVE30" is used for transferring trace data which already exist in the IP 252 (see above for order).
c) Receiving measured data of the oscilloscope function in the CPU
"CONTROL31" is used to check whether all measured values of the oscilloscope function exist in the IP 252 . "FEICH23" is called to prepare the data transfer, and, in doing so, it sends th source/destination parameters to the IP 252. In the example FB15, all data recorded by the oscilloscope function (450 data words) are transferred to three CPU DBs. The actual transfer of data is executed with "RECEIVE ALL". In example FB15, each group of 150 data words of a measuring point are transferred three times to a CPU DB.

5. S5-CPU $<\longrightarrow$ IP 252 Communications

5.2 Use of Data Handling Blocks of the S5-CPU
5.2.7 STEP 5-Examples of IP $252<\longrightarrow$ S5-CPU data traffic

OB1
LEN= $=12$

SEGMENTI 1

0000	:A F 100.0	
0001	:R F 100.0	RLO $=0$ - FLIAG
0002	:AN F 100.1	UNCONDITIONATLY REQUIRED:
0003	:S F 100.1	RLO $=1$ - FLAG
0004	:JU FB2	E.G.: CALL "FB2"
0005 NAME	: FORCE	
0006	: BE	

OB20
LEN $=12$
SEGMENT 1

0000	=AN F 30.0	30.0=1 CODE : NO POWER PAILIURE
0001	:S F 30.0	(IS REQUIRED IN FB99)
0002	:A $\quad \mathbf{F} 30.1$	30.1=0 CODE: COLD RESTART
0003	:R F 30.1	
0004	:JU FB99	FB FOR SYNCHRONIZING THE IPS
0005 NAME	:SYNC:IPS	
0006	: BE	

SEGMENTT 1		
0000	=AN F 30.0	30.0=1 CODE: NO POWER FAILURE
0001	-S F 30.0	(IS REQUIRED IN FB99)
0002	:AN F 30.1	30.1=1 CODE: HEARH RESTIART
0003	:S F $\mathbf{3 0 . 1}$	(TEIS FLAG IS USED IN THE EXAMPLE
0004	: ${ }^{\text {P }}$	FB6 AND CAN BE USED FOR THE
0005	:	S5-1350 AND S5-1500
0006	:	TO ENABLE THE JOB "SEND20"
0007	:	(SET THE IP 252 TO RUN) OMIT IF
0008	:	THE ITPPUTS/OUTPOTS ARE BEIMG PRO-
0009	:	CESSED AGAIN, I.E. AFIEER THE
0008	:	PC CYCFE PREVIOUSIT INTERRUPIED BY
000B	:	THE CPU STOP HAS BEEN PROCESSED TO
000C	=	TO THE END.
000D	:	
000E	:JU FB99	FB FOR SYNCHRONIZING THE IPS
OOOF GAME	:STNC: IPS	
0010	:BE	

OB21

0822

LEN=10
SEGMEINT 1
$\begin{array}{llll}0000 & \text { :A } \quad \text { F } 30.0\end{array}$
0001 :R F 30.0
0002 :JU FB99
0003 NAME :SYNC:IPS
0004 :BE
30.0=0: CODE: "POWER FAILURE" THEREFORE: IN PB99 PIRST 2 SECS

WAITING. FB2
5.2 Use of Data Handling Blocks of the S5-CPU

FB3
LEN $=65$

SEGMENT 1
NARE : STRUK-FR

0005		:			EXAMPLLE OF DISABJING/ENABLING
0006		:			CONTROIIER LOOPS OF THE IP 252
0007		:A	F 30.6		FAITING TIME FROM FB6 ACTIVE ?
0008		: BEB			IF YES, END.
0009		: 1	KB255		
000A		-T	FB82		KG=1111 1111 DH. : ALI 8 CON-
000B		:			TROLLERS ARE ENABLED.
000C		:A	F 100.1		SET R RLO=1
0000		:JU	FB244		THE IP WITH PAGE NUABER 2 IS
000E	NALE	:SEND			TRANSFERRED TO THE "CONFIGURING
000F	SSNR	:	KYO, 2		EIABLE BYYE"
0010	A-NR	:	KY0, 10		
0011	ANZW	=	FW70		
0012	QTYP	:	KSFB		
0013	DBNR	:	KY0, 0		IRRELEVANT, SINCE Q TYPE: P BYTE
0014	QANF	$=$	KF+82		FLAG BYTE 82 IS THE SOURCE
0015	QILAE	=	KF+1		(OKLI 1 BYYE)
0016	PAPE	:	FB67		
0017		: 5	KBl		KM=0000 0001, I.E. ENABLE ONLY
0018		: T	FB83		CONITR. NO 1 Of THE IP WITH THE PAgE
0019		:			NO 3 (DISABLE CONHR. NOS 2 TO 8)
001A		:A	F 100.1		SET RHO=1
001B		:J0	FB244		
001C	NAME	: SEEND			
001D	SSNR	:	KYO, 3		
001E	A-NR	:	KY0. 10		
0017	ANZW	:	FW74		
0020	QTYP	:	KSFB		
0021	DBNR	:	KY0,0		IRRELEVANT
0022	QANF	:	KF+83		FB83
0023	QLAE	:	KP+1		ONET 1 FB
0024	PAFE	:	FB68		
0025		: \mathbf{I}	KB3		KM=0000 0011, I.E. ENABLE ONLY CON-
0026		: 9	FB83		TROLF.ER NO. 1 AND 2 OF THE IP WITH
0027		=			PAGE NULBER 4 (DISABLE 3 TO 8)
0028		:			
0029		:A	F 100.1		SET RLO=1
002A		: J	FB244		
002B	THAME	-SEND			
002C	SSIR	=	KYO. 4		
002D	A-R1R	:	KY0,10		
002E	ANEW	:	FF78		
002F	QPYP	:	KSFB		
0030	DBER	:	KYO, 0		IRRELEVANT
0031	QANF	:	KF+83		
0032	QLAE	:	KF+1		
0033	PAPE	:	FB69		
0034		:0	F 67.0		ANY ERRORS IN TRANSIISSIION ?
0035		:0	F 68.0		
0036		:0	F 69.0		
0037		:JC	$=15001$		IF YES, JUiP.
0038		:BEA			
0039	M001	:L	KB3		ERROR HANDLING: E.G.
003A		:T	FB5		TRANSFER NOMBER OF THE FB, IN
003B		: BE			HHICH THE ERROR APPEARED, TO FB5

FB4
SEGRENTI 1
NAIE =FORCE 1

0005		:	
0006		:	
0007		:	
0008		:	
0009		:	
000A		:	
000B		:	
000C		:	
000D		:	
O00E		:	
000F		:	
0010		:	
0011		: L	KF+1234
0013		:T	FW106
0014		:	
0015		:	
0016		=	
0017		:	
0018		: JJ	FB244
0019	NAME	:SEND	
0018	SSNR	:	KY0,4
0018	A-MR	=	KY0,12
001 C	AN2W	:	FW100
0010	QTYP	:	KSFB
D01E	DBER	:	KYO, 0
0015	QANF	:	KF+106
0020	QIAE	:	KP+4
0021	PAFE	:	FB104

JOBS FOR THE IP 252
IN THIS EXAMPLE DATA ARE SENT FROM FLAG FORD 106 AND FWI 08 OF TEE CPO TO THE IP 252.

PAGE NUMBER 4 IS SET ON THE IP 252, THE JOB GOES TO CONTROLLER NUEBER 2 (SEE JOB NO. 0.12)
(JOB NUMBERS 0.11 to 0.18 CORRESPOND TO THE CONTROL工ER NOMBERS 1 TO 8)

SET 12.34\% AS THE SETPOINT BEFORE "SEND" IS CAJLLED, THE FLAAG BYTEES USED (HERE FB106 TO FB109) MUST BE INITIAIIZED.

TRANSKITTING DATA FROM THE IP 252
PAGE NOMBER OF THE IP (HERE: 4) JOB NUABER 12, I.E. TO R-NO. 2 JOB STATHS TORD IS FW100 AND FW102 THE DAITA ARE FROM FBS

IRRELEVANTI, SINCE FLAG BYTFES THE DATA FROM FB106 BEGIN HERE:
4 FB, I.E. 2 WORDS

DEPENDING ON THE CONTROITER STRUCTURE USED FOLIOWING DIVISION WIII RESULT:

1. CONTHROLIEER NUEBER 2 OF THE IP 252 HAS "DRIVE" STRUCTURE I.E.:

FFI 00: ANZT, SENDD 2
FW102: ANZW+1, SEND12
FB104: PAFE, SENDI2
FB105: FREE
FWIO6: VAR 8.1 OF THE IP 252
FW108: VAR 9.1 OF THE IP 252

> IN THE EXANPLE ONLY VAR 8.1 AND VAR 9.1 GERE TRANSMITIED TO THE IP 252 .
> IN ORDER TO ALSO TRANSMIT THE FOMONTNG VATUES TO THE IP, THE 'GLAE' PARANETER MUST BE SET TO BETNEEA " 6 " AND 9 "

FF1IO: VAR 3.1 OF THE IP 252
FB112: DE0 (BITS AND RELAYS V : AR) FBII3: DE1 (BITS AND RELAYS V : AR) FB114: DE2 (BITS AND RELAYS V: AR)
5. S5-CPU $<\longrightarrow$ IP 252 Communications

5.2 Use of Data Handling Blocks of the S5-CPU

FB4
003D
003E 003 F 0040 0041 0042
0043
0044 0045 0046
0047 0048
0049 004 A 004B 004C

LEEN $=82$
2. CONTROITLER NO. 2 OF THE IP 252 IS A STANDARD CONTROLLER
I.E. $=$

FW100: ANZW, SEND12 FW102: ANZFtI, SEND12 FB104: PAPE r SEND12 FB105: FREE FT106: VAR 3.1 OF THE IP 252 FB108: DE0 (BITS AND RETAYS V: SR) FB109: DE1 (BITS AND RELAYS V: SR) IN ORDER TO SEND ONDT VAR 3.1, THE PARAMETER "OLAE" MUST BE SET TO "QIAE $=2$ ". (2 BYTES)

FB5
SEGMENTI 1 NAHIS : FORCEI

0005		:	
0006		:	
0007		:	
0008		-	
0009		:	
000A		=	
000B		:	
000C		:	
000D		:	
000E		:Q	DB41
000F		: Ju	FB245
0010	MAME	:REC	EIVE
0011	SSNR		KY0. 4
0012	A-NR	:	KY0,12
0013	ANZW	:	DF1
0014	ZIYP	:	KCDB
0015	DBNR	=	KY0,41
0016	ZANF	:	KP+3
0017	ZIAAE	:	KF+1
0018	PAFE	:	FB100
0019		=	
001A		:	
0018		:	
001C		:	
001D		:	
001E		=	
0017		:	
0020		:	
0021		:	
0022		:	
0023		:	
0024		:	
0025		:	
0026		:	
0027		:	
0028		:	
0029		=	
002A		:	
002B		:	
002C		:	
002D		:	
002E		:	
002F		:	
0030		:	
0031		*	
0032		:	
0033		:	
0034		=	
0035		$=$	
0036		=	
0037		=	
0038		=	
0039		:	
003A		- 8 E	

JOBS FOR THE IP 252
IN THIS EXAMPLE DATMA IS TRANSMITHED PROM THE IP 252 TO DATA WORDS IN DB41.
PAGE NUMBER 4 IS SET ON THE IP 252 . THE JOB GOES TO CONHROILER NOMBER 2
(S. A-MR = 0.12)
(JOB HUMBER A-NR: 0.11 TO 0.18 CORRESPOND TO CONHROTLIER NUMBERS 1 TO 8)
OPEN DB41
RECEIVE DATA FROM THE IP 252
PAGE NUIBER OR THE IP (HERE: 4)
JOB NO. 12, I.E. FROM CONHR. NO. 2
DF1 AND DW2 FOR DISPLAY WORDS DESTIINATION PARAMETERS TO DB LIRETISE DB41
ASSIGN FROM DF3
RECEIVE 1 FORD
PARAMEFER ASSIGNLESTI ERROR BYTE DB41 MOST HAVE A MINTMOH LENGIH OF 4 DATA FORDS IN THIS EXAMMTE:

DEPEINDING ON THE CONHROILER STURDCTURE USED, THE FOLIONING DIVISION FITH RESULTI:

1. CONTROMTER NUABER 2 OF THE

IP 252 HAS "DRIVE" STRDCIURE
THEREFORE:
FB100: PAFE; RECEIVE12
DB41:
DF1: ANZT, RECEIVE12
DF2: ANZW+1, RECEIVB12
DL3: DA0 (LIMITS)
DR3: DA1 (TIMITS)
ONILY DAO AND DAI FIERE RECEIVED
FROM THE IP 252 IN THE EXAMPLAB IN ORDER TO ALSO RECEIVE DA2 FROM THES IP, "ZIAB" MUST BE SET 50 " 2 ". IN THIS CASE 1 BYHE (DR4), WHICH IS IRRKIEVANT, WOULD THEEN AKSO BE TRARSFERRED.
2. CONTROLTER NO. 2 OF THE IP 252 IS A "SIANDARD CONTROTLER"
THEREFORE:
FB100: PAFE, RECEIVE12
DB41:
DH1 : ANZN, RECEIVE12
DW2: ANZW+1, RECEIVE12
DL.3 : DA. 0 (LIMITS)

DR3: DA1 (LTMITS)

SEGERNT 1
NALER :STP->RUN

0005	=	THIS EXAMPLE TAKES THE IPS WITH
0006	:	THE PAGE NOEBERS 2, 3 AND 4 FROM
0007	:	"STOP" TO "RUN" IF THE PC IS AT
0008	:	RUN AND IF THE RUN/STOP SNITCHES
0009	:	OF THE IPS ARE AT THE RUN
000A	:	POSITIION.
000B	:	
000C	:A F 30.1	
000D	:JC = EFIDE	IF A MANJAL HARM RESTART IS EXE-
000E	:	CUNED AND IF THE "IPS TO RUN" JOB
000F	:	IS TO BE EXECUTED FIRST, I.E. IM-
0010	;	MEDIATELY, IT MUST BE NOTED THAT
0011	:	TEE PREVIOUSLI INTERRUPTED PC
0012	:	CYCLE MUST FIRST BE PROCESSED TO
0013	:	THE END, WITHOUT REFERENCING TEE
0014	:	I/OS.
0015	:	
0016	:	
0017	=	THIS LEANS THAT THE IP 252 CAN
0018	:	OLKI BE SET TO RUN WHEN THIS PC
0019	:	CYCLE HAS BEEN PROCESSED.
001A	:	THEREFORE, THE FIAAG DSED FOR THIS
0018	:	PURPOSE IS INTERROGATED.
001C	-	
001D	:A F 30.7	MODULES ALREADY IN RUN?
001E	:JC =M001	I.E.: JOB FINISHED?
0017	:AN F 30.7	
0020	:S F 30.7	SET THE CODE FOR TEE FIRST RUN.
0021	:S F 30.6	TEIS FIAGG SHOULD BE INTEERROGAIED
0022	: ${ }^{\text {a }}$	BY THE OSER. TO ESTABEISH WIETIEER
0023	:	OR NOT THE REQUIRED WAITING TIME
0024	:	AFTER A "STOP-->RUN" OF THE IP 252
0025	:	HAS ELAPSED:
0026	:	P $30.6=0 \Rightarrow$ RUN
0027	:	F $30.6=1 \Rightarrow$ Hart MITH
0028	=	FURIPEER JOBS

SET RLO=1
IP FI'HE PAGE NUHBER 2 TO "RUN"
*JOB NO. 20" FOR "RUN"
"RLN" I.E. NO DATA IRRELEVANT
NO DEEA
IRRETEVANT

SET RTO=1
IP HITH PAGE NUMBER 3 TO "RUN"

```
FB6 LEN=110
\begin{tabular}{|c|c|c|c|}
\hline 003A & ANZW & : & FW58 \\
\hline 003B & QIYP & : & KSEX \\
\hline 003C & DBNR & : & KYO,0 \\
\hline 003 D & QANP & : & KF+0 \\
\hline 003E & QLAE & = & KF+0 \\
\hline 003F & PAPE & : & FB65 \\
\hline 0040 & & :A & F 100. \\
\hline 0041 & & :JU & FB244 \\
\hline 0042 & KANE & : SEN & \\
\hline 0043 & SSNR & : & KYO, 4 \\
\hline 0044 & A-NR & : & KY0, 20 \\
\hline 0045 & ANZW & : & FW62 \\
\hline 0046 & QIYP & : & KSNIN \\
\hline 0047 & DBNR & : & KYO:0 \\
\hline 0048 & QANP & : & KP+0 \\
\hline 0049 & QLAE & : & KF+0 \\
\hline 004A & PAFE & : & FB66 \\
\hline 004B & & : & \\
\hline
\end{tabular}
004C M001 :AN F 30.5
004D :L KT002.2 WAIT 2 SECONDS AFIEER STOP ->> RUN
004F :SI T 5
0050 :A TT 5
0051 := F 30.5
0052 :AN TT 5
0053 :JC =M002
0054 :A F F 30.7
0055 :R F 30.6
0056
0057
0058 :R F 30.7
lll
005B H002 :O F F 64.0
005D :O F 66.0
005E :JC =H003
005F :BRA
0060 H003
0061 :I KB6
0062 :TF FB5
0063 :BRA
0064
O065 EHDE :A F F 30.1
0066 :R F 30.1
0067 :S F 30.6
0068 :BE
SET RLO=1
IP WITH PAGE NHOBER 4 TO "RUN"
WAIT 2 SECONDS AFIER STOP \(\rightarrow\) RUN TIIE THE IPS ARE READY FOR OTHER JOBS
JUNP IF THE TDIER HAS NOT FET RUN
JOB: IPS FROM STOP \(\rightarrow\) RON ATREADY RUN
\(=0\), I.E. IPS READY FOR FURTHER JOBS
ERRORS IN TRANSMISSION?
IF YES, JUEP
ERROR HANDLING: E.G. TRANSFER NUNBER OF ITHE FB IN WHICH TEE ERROR OCURRED TO MB5
RESEF THE FLAG FOR MANUAL MARI RESTEART
DISABLE ATM OTHER JOBS TO THIE IP
```


5. S5-CPU $<\longrightarrow$ IP 252 Communications

5.2 Use of Data Handling Blocks of the S5-CPU

FB7

SEGMENT 1
WANE : RUN $->S T P$

0005		:		THIS EXAMPLE TAKES THE IPS WIHTH THE
0006		:		PAGE NTUEERS 2, 3 AND 4 FROM RUN
0007		:		HODE TO STOP HODE
0008		:		
0009		:A	P 30.6	WAITING TIME FROM FB6 ACTIVE ?
000A		:BEB		IF YES, ERND.
000B		:A	F 100.1	SETP RLO=1
000C		©JU	FB244	IP FITE PAGE NOMBER 2 TO "STOP"
000D	mage	:SEND		
DOOE	SSIRR	:	KY0, 2	
000 F	A-NR	:	KY0,19	
0010	ANEM	:	FW42	
0011	QTYP	:	KSNan	"MN", I.E. NO DATA
0012	DBER	:	KY0,0	IRRELIEVANTI
0013	QANF	:	KF+0	.
0014	QLAE	:	KP+0	*
0015	PAFE	-	FB39	
0016		:A	F 100.1	SET RLO=1
0017		:J0	FB244	IP WITE PAGE NUNBER 3 TO "STOP"
0018	NAME	:SEND		
0019	SSNR	:	KY0, 3	
001A	A-NR	-	KY0, 19	
001B	ANZT	=	FFT46	
001C	QHYP	-	KCMN	
001 D	DBIRR	:	KYO, 0	
001E	QANF	\%	KF+0	
001F	QLAE	:	KF+0	
0020	PAFE	-	FB40	
0021		:A	F 100.1	SETP RLO $=1$
0022		-Ju	FB244	IP HITH PAGE NUIBER 4 TO "STOP"
0023	have	:SEATD		
0024	SSAR	:	KY0,4	
0025	A-NR	:	KYO, 19	
0026	ANET	=	FW50	
0027	QHYP	:	KSMES	
0028	DBNR	:	EYO.0	
0029	QANF	:	EP+0	
0024	gILAE	:	KF+0	
0028	PAFE	:	FB41	
002C		: 0	F 39.0	ERRORS IN TRANSMISSION?
002D		: 0	F 40.0	
002E		=0	F 41.0	
0027		:JC	=1001	IF YES, JUEP.
0030		-BEA		
0031	12001	:		ERRROR HANDLIING: E.G. TRANSFER
0032		:L	KB7	NOMBER OF THE FB IN FHICH THE
0033		$2 T$	FB5	ERROR OCCURED TO FB5
0034		: BE		

SEGMENTP 1 NAAE $=$ IP-ERROR

0005		:		IN THIS EXANTILE AN ERROR REPORTED
0006		:		BY THE IP 252 WITH PAGE KUABER 4
0007		:		IS FETYCHED FROM THE DPR OF THE IP
0008		:		AND TRANSFERRED TO THE CPU.
0009		:		
000A		\%		(FOR DIAGNOSING SOFTWARE AND HARD-
000B		:		WIARE ERRORS AS WESI AS FOR MESSAGE
000C		:		MONITORING)
000D		:		THE REPORTED ERROR IS STORED IN
OOOE		:		THIS EXAIPLE IN FB110
000F		:		
0010		:A	F 30.6	HAITING TTER FROM FB6 ACTIVE?
0011		: BEB		IF YES, END.
0012		:		
0013		:		"RLO" FOR "CONFIROL" IRREMEVANTI
0014		: J0	FB247	NEFN ERROR ON THE IP 252
0015	NAME	: CONTH	ROL	
0016	SSNR	: $\quad 1$	KYO,4	REPORTED ?
0017	A-NR	: $\quad 1$	KYO, 200	
0018	ANZW	: 1	FW88	FW88 = FB88 AND FB89
0019	PAFE	:	FB9 7	
001A		:		IF NEW ERROR:
001B		:AN	F 89.0	F 89.0 OF THE ANET $=1$!
001C		:JC	= $\mathbf{4 0 0 1}$	
001 D		:A	F 100.1	SET RTO=1 (NOT REQUIRED AT THIS
001E		:		POSITION, SINCE "JC = H001" SEPS
$001 F$		-		THE RLO TO 1")
0020		: J0	FB245	EVALUATION IF NET ERROR
0021	Majer	:RECE	IVE	
0022	SSIR	:	KYO. 4	RECRIVE ERROR WITH RECEIVE 200
0023	A-MR	:	KYO, 200	
0024	Alfz\%	:	FW92	
0025	ZITYP	:	KSFB	
0026	DBER	:	KY0,0	
0027	zanf	:	KP+110	FB110 = ERRROR NUEIBER OP THE IP
0028	zLaE	:	KF+1	
0029	PAFE	:	FB98	
002A		:A	F 100.1	SEFT RLO=1
002B		-JU	FB248	RESET ERRROR AGATN WITH RESET 200
002C	nawe	:RESE		
002D	SSITR	:	KY0, 4	
002E	A-IR	:	KY0,200	
002 F	pafe	:	FB99	
0030	H001	=0	F 96.0	ERRROS IN TRANSMISSION ?
0031		:0	F 97.0	
0032		:0	F 98.0	
0033		:0	F 99.0	
0034		: J0	= x 002	IF YES, JUnP.
0035		:BEA		
0036	m002	:		ERROR HANDITING: E.G. TRANSFER
0037		: 5	KB8	NUMEER OF THE FB IN FHICH THE
0038		:T	FB5	ERROR OCCURRED TO FB5
0039		: BE		

5. S5-CPU $<\longrightarrow>$ IP 252 Communications
5.2 Use of Data Handling Blocks of the S5-CPU

FB9
SEGMFINT 1
NAME :STEATUS

0005		:	
0006		:	
0007		:	
0008		=	
0009		*	
000A		=	
0008		:	
000C		:	
000D		$=$	
000E		:	
000F		:A	F 30.6
0010		:BEB	
0011		:	
0012		:A	F 100.1
0013		:	
0014		: Ju	FB245
0015	NAME	: RECE	IVE
0016	SSARR	:	KY0, 4
0017	A-NR	:	KYO, 223
0018	ANEW	:	FW84
0019	ZITYP	:	KCMB
001A	DBNR	:	KY0, 0
0018	zANF	:	KF+112
001C	zlas	:	KP+53
001D	PAFE	:	FB96
001E		:	
001F		:A	F 100.1

001 F :A 100.1
$\begin{array}{lll}0020 & \text { : } & \\ 0021 & \text { :JU FB245 }\end{array}$
0022 NAME :RECEIVE
0023 SSNR : KY0.4
0024 A-NR : KYO,221
0025 ANEW : FW84
0026 ZTYP : RCEM
0027 DBER : KYO;0
0028 ZANF $=\quad K F+102$
0029 ZLAE : KF+7
002A PAFE : FB96
$002 B$
002 C M001 :A F 96.0
002D
002E \quad :JC $=15002$
$0027 \quad$ BREA
0030 K002 :
0031 EL KB9
0032 :T FB5
0033 =BE

LEN $=57$

SYSID / SYSTAT - INFORMATION
IN THIS EXANPLE, THE SYSID AREA
(SYSTEM IDENPIFICATION AREA) OF THE IP IS READ PIRST BX MEANS OF "RECEIVE 223"

THEN "RECEIVE 221" READS THE SYSTAT AREA (SYSTEM STATUS AREA) OF THE IP WITH PAGE NURIBER 4

HAITING TIME FROM FB6 ACTIVE ? IF YES, END.

SET RIO $=1$
RECEIVE - 221
RECEIVE THE SYSID OF THE IP 252 WITH PAGE NUNBER 4 AND STORE IN IHE AREA PB112 TO FB164

IRRETEVANT, SIMCE ZTYP: FB
STORE FROM PBII2
LENGTH OF THE IP 252 - SYSID IN BYYES

SET RLO=1

RECEIVE SYSTAT WITH RECEIVE 221

IRRELEVANT, SINCE ZITP: FB
STORE FROM FB 102
IENGITH OF THE IP 252 - SYSTAT

ERRORS IN TRANSIISSION ?
IF YES, JURP.
ERROR HANDLING: E.G. TRANSFER NULBER OF THE FB, IN WHICH THE ERROR OCCURRED TO FB5

5. S5-CPU $<\longrightarrow$ IP 252 Communications

5.2 Use of Data Handling Blocks of the S5-CPU

FB10

NAEE :S-AIL			
0005	:		
0006	:		
0007	:		
0008	:		
0009	:		
000A	:		
0008	:		
000C	:		
000D	:		
000E	:		
000F	:		
0010	:		
0011	:		
0012		:Q	DB9
0013		:L	KF+123
0015		:T	DF5
0016		: 5	KP-1234
0018		:T	DW6
0019		:	
001A		:A	F 100.1
0018		:	
001C		= 50	FB244
001 D	NAME	:SEND	
001E	SSNR	:	KY0, 4
001 F	A-NR	:	KYO, 21
0020	ANzT	:	FW10
0021	QPYP	:	KCRW
0022	DBER	:	KYO, 10
0023	QANF	=	KF+8
0024	QLAE	:	KF+0
0025	PAFE	:	FB18
0026			
0027	:		
0028	:		
0029	:		
002A		:	
002B		:Ju	FB244
002C	FAME	: SEND	
002D	SSAR	:	KY0, 4
002E	A-RR	:	KYO, 0
0027	ANZW	:	FW14
0030	QTYP	:	KCNS
0031	DBER	-	KYO,0
0032	QANF	:	KF+0
0033	OLIAE	:	KF+0
0034	PAFE	:	FB19
0035		$=0$	F 18.0
0036		:0	F 19.0
0037		:JC	$=\mathrm{MOOI}$
0038		:BEA	
0039	YOO1	:	
003A		:L	KB10
003B		:T	FB5
003C		: BE	

$\operatorname{LEN}=66$

PROGRAMITNG EXAMPLE OF TRANSFER OF DATA (HERE: SOG AND SUG OF THE DRIVE CONTROITER STRUCTURE) TO THE CONTROLTER NOLBER 1 OF THE IP NITH PAGE NUMBER 4 TMPORTANT:
THE TRANSFERRED DATA CAUSE THE IP 252 TO DUMP ALC. RETENTIVE DATA IN THE EEPROM OF THE DSER SUBMODULE.
THIS MEANS THAT THIS JOB MAY NOT
EXECUIE CYCLIC HODIFICATION OF RETENITIVE DATA:
DB9 AS SOURCE
TRANSFER KF+0123 = + 1.23 \% AS
SETPOINT UPPER LIMITP (SOG)
TRANSFER KF-1234 $=-12.34$ \% AS SEIPOINT LOWER LIMIT (SUG)

TO GENERATE RLO=1
"SEND 21" IN PREPARATION OF
"SEND ATL"
TO IP WITH PAGE NOMBER 4
A-NO. 21
"RN", THEREFORE DB10 CONTLAINS THE S/D PARAMETERS FOR THE FOKIOFING "SEND ATI." START. ADDR. IN DB10 IRRKLEVANT; SINCE THERE ARE ALINAYS 8 DF (RW)
"SEND ALL" (JOB-NO. 0.0) TRANSFERS DATA FROM THE SOURCE SPECIFIED IN DB10 (HERE: DB9, DW5 AND DW6) TO THE DESTINATION (SPECIFIED IN DB10 BY DFI 12 TO DFI 5 (HERE: CONTROILIER FIUMBER 1)
"NN", I.E. NO DATA IN THE BLOCK IRRELEVANT
$"$

ERRORS IN TRANSMISSION?
IF YES, JUMP.
ERROR HANDLING: E.G. TRANSFER NULIBER OF THE FB IN WHICH THE ERROR OCCURRED TO FB5

5.2 Use of Data Handling Blocks of the S5-CPU

FB11
SEETERNT 1
HAME :S-ATI-*
0005
0006
0007
0008
0009
000A
000B
000 C
0000
$000 E$
000 F
0010

0013
0014
0016
0017
$\begin{array}{lll}0017 & \text { :A } & \text { DB9 } \\ 0018 & \text { :I } & \text { KP+123 }\end{array}$
$\begin{array}{lll}001 \mathrm{~A} & : T & \text { EW5 } \\ 001 \mathrm{~B} & \text { :L } & \text { KF-1234 }\end{array}$
001 D :T DW6
$001 E$
0020 :SPA FB244

0021 NALE :SESND
0022 SSMR : KYO, 4
0023 A-NR : KYO,22
0024 AKZW : MFIO
0025 QTYP : KCRW
0026 DBNR : \quad KYO, 10
0028 QLAE : KF+0
0029 PAFE : MB18

002A
002B
002C
002 D :SPA FB244
002E MAME :SERT

002F	SSER	:	KY0,4
0030	A-IR	:	KYO,0
0031	ANEW	:	MFI4
0032	QTYP	=	KCNT
0033	DBNR	:	KYO,0
0034	QANF	-	EF+0
0035	QLAE	:	KF+0
0036	PAFE	:	LB19
0037		:0	H 18.0
0038		:0	M 19.0
0039		:SPB	$=1001$
003A		:BEA	
003B	4001	: L	KB11
003C		: 7	MB5
003D		: BE	

LENN $=67$

ONLY FOR THE DRS/SR STRUCTURE
PROGRAMIING EXAMPLE OF TRANSFERRING
DATA (HERE: SOG AND SUG OF THE
DRIVE CONFIROLIER STURCTURE DRS)
TO CONIR. NO. 1 HITH PAGE NO. 4 IMPORTANT :
THE DATA TRANSFERRED DO NOT CAUSE ANY SAVING OF DATA (WHETHER RETENTIVE OR NOT) IN THE EEPROM OF THE USER SUBMODULE.

THEIS JOB (A-NO. 22) HAY MODIFY ANY DATA OF THE DRS/SR STRUCTURE CYCLICALLY.
HONEVER, APTER A PONER FATIURE, THE OLD VALUES (STORED ON EEPROM) FIRST BECOAE THE CURRENTI VALUES AGAIN.
DB9 AS SOURCE
TRANSFER KY $+0123=+1.23$ \% AS
SETPOINT UPPER LTMTT (SOG)
THRANSFER KF-1234 $=-12.34$ \% AS
SEITPOINF LOFER LINITT (SUG)
TO GENIERATE RUO=1
-SEAD 22" IN PREPARATIION FOR
"SEND ATM"
TO THE IP NITH PAGE NUBBER 4
JOB NO. 22
"RF" THEREFORE DB10 CONTAINS THE S/D PARANETERS FOR THE FOLLOWING "SENTD ALL" IN DB10
IRRELEVANT, SINCE THERE ARE AImAYS 8 DH (RW) "SEND AIJ" (JOB NO. 0.0) TRANSFERS DATR FROM THE SOURCE SPECIFIED IN DB10 (HERE: DB9, DF5 AKD DN6) TO THE DESTINATION (SPECIFIRD IR DW10 BY DWi2 TO DF15) (HKRE CONTROTITIER NOMBER 1)

```
FETCH DATA WITH "SEND ALE"
    "MN". I.E. NO DANA IN BLOCK
        IRRRELEVANNT
        TRRELEEVANT
            PAFE
    ERRORS IN TRANSEISSION ?
    IF YES, JUMP.
    ERROR HANDLIIKG: E.G. TRANSFER
    NUNBER OF THE FB IN WHICH THE
    ERROR OCCURRED TO FB5
```


5. S5-CPU $<\longrightarrow$ IP 252 Communications

5.2 Use of Data Handling Blocks of the S5-CPU

FB12
SEGMENT 1 MANIE :R-ALT

0005		:	
0006		:	
0007		:	
0008		:	
0009		:	
000A		:	
000B		:	
000C		:	
000D		:	
000E		:A	F 100.1
000F		:	
0010		:JU	FB246
0011	HAME	:FEHC	CH
0012	SSNR	:	KY0, 4
0013	A-KR	:	KY0,21
0014	ANZW	:	FW20
0015	2TYP	:	KCRW
0016	DBNR	:	KYO,10
0017	ZANF	:	KF+17
0018	ELAE	:	KP+0
0019	PAFE	:	FB28
001A		:	
001B		:	
001C		;	
001D		:	
001E		:	
001 F		:	
0020		:	
0021		:	
0022		: 5	FB245
0023	KANE	:REC	EIVE
0024	SSER	:	KYO, 4
0025	A-IR	:	KYO. 0
0026	ANEW	:	FW24
0027	ETYP	:	KCNar
0028	DBER	:	KYO; 0
0029	EANF	:	KP+0
002A	ZT,AE	:	KP+0
002B	PAFE	:	FB29
002 C		:	
002D		:0	F 28.0
002E		:0	F 29.0
002 F		:JC	=m001
0030		:BEA	
0031	2001	:	
0032		: 1	EB12
0033		:T	FB5
0034		:BE	

LLEN=58

PROGRAMITING EXANPILE OF RECEIVING DATA FROM CONTROTIEER NUNBER 1 OF THE IP WITH PAGE NUMBER 4 (AII AVATLABLE DATA, I.E. A TOTAL OF 176 DATA WORDS, ARE LOADED INTO DB11 OF THE BC)
<SEE ALSO: DBII>
TO GENERATE RLO=1
"PEICH 21" IN PREPARATION FOR "RECEIVE ALL"

TO THE IP WITH RAGE NOMBER 4
"RN", THEREF. DB10 CONTPAINS THE S/D PARAMEIERS FOR THE FOILOTING "SEND AI工" STRTT. ADDR. THE PARAM. IN DB10 IRRELEVANT, SINCE THERE ARE ALMAYS 8 D.
"RECEIVE ATL." (JOB NO. 0.0) TRANSFERS DATA FROM THE SOURCE SPECIFIED IN DBIO (HERE: CONTHROLLER NULBER 1 OF THE IP 252 HITH PAGE NUPIBER 4 TO THE DESTINATION (SPECIPIED IN DBIO BY DF17.DF24) (HERE: PC-DB-NO. 11)

IRRETEVANFI, SINCE "NAN* $\stackrel{\rightharpoonup}{*}$

ERRORS IN TRANSIISSION ?
IF YES, JUPP.
ERROR HANDLING: E.G. TRANSFER NOMBER OF THE FB IN HHICH THE ERROR OCCURRED TO FB5
5.2 Use of Data Handling Blocks of the S5-CPU

FBI 3
SEGMENT 1
NAME :R-ATE,*

```
0005
0006
0007
```


0008

```
0009
```


000A

```
000B
000C
000D
000E 000F \(0010 \quad: A \quad\) F 100.1
0011 0012
```


0013 NAME :FETCH

0014 SSNR : KY0,4
0015 A-NR : KYO, 23
0016 ANZW : FW20
0017 ZTYP : KCRW
0018 DBNR : KY0,10
0019 ZANF : KF+26

0G1A ZLAE : KF+0
001B PAFE : FB28

001 C 001 D 001E
$001 F$
0020
0021 :

0022
0023 : JU .FB245
0024 NAME :RECEIVE.
0025 SSNR : KYO 4
0026 A-NR : KY0, 0
0027 ANZW : FW24
0028 ZYFP = KCRN
0029 DBRR : KYO, 0
002A ZANF : KP+0
002B ZLAE : KF+0
002C PAFE : FB29
$002 \mathrm{D} \quad: 0 \quad$ F 28.0
002E :O F 29.0
$002 \mathrm{~F} \quad: \mathrm{JC}=\mathrm{H} 001$
0030 :BEA
0031 上001 :
0032 :I KB13
0033 :T FB5
0034 : BE

LEND=58

ONLY FOR THE DRS/SR STRUCTURE
PROGRAMITING EXAMPLE OF RECEIVING DATA FROM CONIROLLER NUEIBER 1 OF THE IP WITH PAGE NOMBER 4
IN CONTRAST TO THE EXAMPLE FB12, IT IS POSSIBLE HERE FOR AN ASSIGNED DATA BLOCK TO BE RECEIVED BY THE
IP. (A DATA SET OF THE CONHROLIER IN THE IP IS TRANSFERRED TO DBII OF THE CPU)
<SEE ALSO: DB11>
TO GENERATE RLO=1
"FETCH 23" IN PREPARATION FOR
"RECEIVE ATM,"
TO IP WITH PAGE NUMBER 4
"RW", THEREF. DB10 CONTRATNS THE S/D PARAM. FOR THE FOLHON. "SEND AKT" STRT. ADDR. OF THE PARAM. IN DB10 IRRELEVANT, SINCE THERE ARE ALHAYS 8 DW
"RECEIVE ATI," (JOB NO. 0.0) TRANSFERS DATA FROM THE SOURCE SPECIFIED IN DB10 (HERE: CONIROITER NUIBER 1 OF THE IP 252 FITH PAGE NUMBER 4 TO THE DESTINATION (SPECIFIED IN DB10 BY DW26.DW33) (HERE: PC-DB-NO. 11)

IRRETEEANT, SINCE "NW"
"
-

ERRORS IN TRANSIISSION ?
IF YES, JURP.
ERROR HANDILING: E.G. TRANSFER NUEIBER OF THE FB IN WHICH TERE ERROR OCCURRED TO FB5

5. S5-CPU $<\longrightarrow$ IP 252 Communications

5.2 Use of Data Handling Blocks of the S5-CPU

LEN=58

ONLY FOR THE DRS/SR STRUCTURE
PROGRAMIING EXAMPLE OF RECEIVING DATA FROM CONTROLLER NUEBER 1 OF THE IP HITH PAGE NUMBER 4
IN CONHRAST TO THE EXAMPLEE FBI2, IT IS POSSIBLE HERE FOR AN ASSIGNED DATA BLOCK TO BE RECEIVED BY THE IP. (A DATA SET OF TEE CONTROITHER IN THE IP IS TRANSFERRED TO DBII OF THE CPD
<SEE AKSO: DBII>
TO GENERATTE RLO=1
"FETCH 23" IN PREPARATION POR
"RECEIVE ATJ"
TO IP WITH PAGE NOUBER 4
"RW", THEREF. DB10 CONFAINS THE S/D PARAM. FOR THE FOLIOW. "SEND ALK" STRT. ADDR. OF THE PARAM. IN DBIO IRRELEVANT, SINCE THERE ARE ALHIAYS 8 D ${ }^{1}$
"RECEIVE AII." (JOB NO. 0.0) TRANSFERS DATA FROM THE SOURCE SPECIFIED IN DB10 (HERE: CONTROLLER NOMBER 1 OF THE IP 252 WITH PAGE NUMBER 4 TO THE DESTINATION (SPECIPIED IN DB10 BY DH26.DF33) (HERE: PC-DB-NO. 11)

IRRETAEVANT, SIACE "MN"
.

ERRORS IN TRANSMISSION ?
IF YES, JUSP.
ERROR HANDLING: E.G. TRANSFER NUNBER OF THE FB IN WHICH THE ERROR OCCURRED TO FBS

5.2 Use of Data Handling Blocks of the S5-CPU

FB14
SEGMENTI 1
NAME :TRACE-ON

0005	$:$
0006	$:$
0007	$:$
0008	:JU
0009	HANE
000 SERND	

000A SSER : KYO,4
000B A-RR : KYO. 30
000C ANEW : FH10
0000 QHYP : KSDB
000E DBAR : KY0,14
000F QANF : KP+0
0010 QLAE : KF+10
0011 PAFE : FB18
0012
0013
0014
0015
0016
0017
0018
0019
0018
001.8

001 C
0010 :JU FB245
OO1E KAME : RECEIVE $001 F$ SSNR : KYO. 4
0020 A-NR : KYO, 30
0021 ANZT : FE14
0022 ZTYP : KCDB
0023 DBNR : KY0. 14
0024 ZANF : KP+0
0025 ZLAE : KF+10 0026 PAFE : FB19 0027 :BE

LEEN $=45$

ONLT FOR THE DRS/SR STRRUCTURE
-SEND30" IS USED FOR TRANSFER AND ACTIVATION OF THE TEST FUNCTION ON THE IP 252

PAGE NULPER 4
JOB NURER FOR TEST FUNCTION

DB14 CONTATNS THE TEST PARAMETERS FROM DWN

IERGTH 10 DW
\#ITH "RECEIVE30" TEST PARAMETIERS OP THE IP 252 WHICH \#HAVE ALREADY BEEN SET CAN BE LOADED INFO A DB OF THE CPO. THESE PARAMIETERS, ALRRADY PRESENT IN THE IP, ORIGINATE EITHHR IN THE "COM REG GRAPHICS" INITIALISATION SOFTHARE OR IN A "SEND30" OF THE CPO

PAGE NOLBER 4
JOB NUNBER 30 FOR "TEEST"
STORE THE DATA IN DB
DBNO. 14
FROU STARTING ADDRESS 0

FB15		
SEMGENT 1		
NAME : TRACE-DA		
0005	:	
0006	:	
0007	:	
0008	:	
0009	=	
000A	:	
000B	:	
000C	:	
000D	:	
000E	:	
000F	:	
0010	:	
0011	:	
0012	:	
0013	:	
0014	:	
0015	:	
0016	: J0	FB247
0017 NAEE	: CONH	ROL
0018 SSTR	:	KY0,4
0019 A-NR	=	KY0,31
001A ANEW	:	FW8
001B PAFE	:	FB6
001C	:	
$001 D$:AN	F 8.0
001E	:BEB	
$001 F$:LL	KB0
0020	-T	FB50
0021	=	
0022	:	
0023	:	
0024	:Q	DB10
0025	:L	KCDB
0027	:T	DF35
0028	:L	EP+31
002A	:T	DW36
002B	:L	KF+1
002D	:T	Dr37
002E	:L	KP+150
0030	:T	DW38
0031	:	
0032	: 1	KSDB
0034	:T	DW39
0035	: 1	KP+15
0037	:T	DF40
0038	: \mathbf{H}	EP+1
0032	:T	DF41
003B	: \mathbf{I}	KF+150
003D	: T	DW42
003E	:	
003F ANP	:A	F 100.1
0040	:	
0041	:J0	FB246
0042 NAME	: FET	CH
0043 SSNR	:	RYO, 4

LEEN=119

```
ONLY FOR THE DRS/SR STRUCTUUE
PROGRAMMING EXANIPLEE OF RBCEIVING
TEST DAPA FROM THE IP 252 FIMH
PAGE NUNIBER }
(ALT AVATLABLE DAMA, I.E. 3 x }15
    DATA HORDS, ARE LOADED INTO THE
    DATA BLOCKS
    DB15: VALUES OF THE 1ST HRASUR.PT.
    DB16: VALUES OF THE 2ND MRASUR.PT.
    DB17: VAEUES OF IHE 3RD MRASUR.PP.
<DB10 FROIN DB35 IS USED FOR
    ADDRESSING THE SOURCE/DESTINEATION
    PARAMETERSS
THE FOLIONIING *CONTROL31" CHECRS
WHETHRER OR NOT YHE TRACE DAYA ON
THE IP GAVE BEEN RECORDED.
```

nIT8 $=0 \rightarrow$ NO DATA PRESEANT
MN8 = $1 \rightarrow$ DATA PRESENTI!
RECEPTION OF TRACE DATA HRANIMGFOL?
IF NO, ENDD.
PRESET FB50 AS IETGRRAL COUNYERR
INITIATE FIRST DATA BHOCK TRANSEER
TO DBI5
DB FOR S/D PARANETHERS
SOURCE IS DB NO. 31 OF THB IP 252
<- STRT. ADDR. OF THE S/D PARAM.
IP DB NO. FOR TEST DATA DB
STRRT. ADDRESS OF THE 1ST BLOCK IN
THE IP DB NO. 31
LEFHGTH (OR NUNEBER OF DAPA)

THE DESTHTATION IS DB15 TH THE CPO
DB NO_{N}
STRT. ADDRESS IN DB 15 (HERE: 1)
LENGTH (HONBER OF DATA)

FOR GENERATING RTO=1
"FETCH 21" IN PREPARATIO FOR
"RECEIVE ALI"
TO IP WITH PAGE NOMBER 4

5. S5-CPU $<\longrightarrow$ IP 252 Communications

5.2 Use of Data Handling Blocks of the S5-CPU

FB99
SEGEENT 1
NAME :SFIC:IPS

0005	:A F 30.0	FILAG TO INDICATE POFER FAILURE
0006	:JC = M001	F $30.0=0$ IN THE EVENT OF POWER
0007	=	FAIIURE (SEE OB 20 TO OB 22)
0008	=L KT002.2	APPROX. 2 SECS WAITING TTENE IN THE
000A	:A F 35.0	EVENTI OF POWER FAIMJRE
0008	:SI T 1	
000C	=AN F 35.0	
000D	:SI T 1	
OOOE H003	:A T 1	
000F	:JC = 1003	
0010	:	SYNCHRONIZE INTERFACE WITH PAGE
0011 H001	:J0 FB249	NUUBER 2
0012 NAME	:SYNCERRON	
0013 SSNR	KYO, 2	
0014 BLGR	KY0,6	IP 252 ONEY RECOGNIZES BLGR: 6
0015 PAFE	FB36	
0016	:	
0017	:0 P 1.1	FOR GENERATING
0018	:ON F 1.1	RLO $=1$
0019	:JU FB249	
001A HAME	: SYNCHRON	SYNCHRONIZE SS NO. 3
001B SSNR	KY0, 3	
O01C BLGR	KY0,6	
001 D PAFE	FB37	
001E	:	
001 P	=0 F 1.1	FOR GEKERATING
0020	:ON P 1.1	RLO $=1$
0021	:J0 FB249	
0022 NAHE	:SYNCHROM	
0023 SSER	KY0,4	SYNCHRONIZE SS NO. 4
0024 BLGR	KY0,6	
0025 PAFE	: FB38	
0026	:R F 30.6	RESET FLAG FOR WAITING TPIME IN
0027	:	FB6.
0028	:0 F 36.0	ERRORS IN STIMCERONISATION ?
0029	:0 F 37.0	
002A	:0 F 38.0	
002B	:JC = 5009	IF YES, JITP.
002C	: BEA	
002 D M009	:	ERROR HANDLTMG: E.G. TRANSFER
002E	: L KB99	MWIBER OF THE "RESTART FB" TO FB5
002 F	:T FB5	AND ERRORS IN PAGE NUEBER 2 ?
0030	:AN F 36.0	
0031	:JC $=\mathbf{E 0 1 0}$	IF NO, JUEP.
0032	:I KB2	TRANSF. PAGE NO. IN WHICH THE ERROR
0033	:T FB4	OCCURRED TO FB4
0034 1010	:AN F 37.0	ERRORS IN PAGE NUIBER 3 ?
0035	-JC - 2011	
0036	:I, KB3	
0037	:T FB4	
00381011	=Ax F 38.0	ERRORS IN PAGE NOMIBER 4 ?
0039	:BEB	NOTE: IN THIS EXAMPLE THE LATEST
003A	:L. KB4	ERROR OVERWRITES AII PREVIOUS
003B	-T FB4	ERRORS :
003C	= BE	

LEEN=12

$0:$	$K H=0000 ;$
$1:$	$\mathrm{KH}=0000 ;$
$2:$	$\mathrm{KH}=0000 ;$
$3:$	$\mathrm{KH}=0000 ;$
$4:$	$\mathrm{KH}=0000 ;$
$5:$	$\mathrm{KF}=+00123 ;$
$6:$	$\mathrm{KF}=-01234 ;$

DB10				LIEN=46		
0 :		KH=	0000;			
1 :	-	KR=	0000;			
$2=$	=	KH=	0000:			
3 :	:	KH=	0000;			
4 :	:	KH=	0000;			
5	$=$	KH=	0000;			
6	:	KH=	0000;			
7 :	:	RH=	0000;			
8	:	KS $=$	DB	KS DB $=$ CP CPU-DB-NR. 9	!	
9	=	KF=	+00009;	NO. 9	SOURCE : !	
10	:	KF=	+00005;	STRT. ADDRESS IN DB 9	CPU	to
11	:	KF=	+00002;	LuENGTH IN WORDS	!	FB10
12	:	KS $=$	DB	KS DB $=\Rightarrow$ DB-NO. 1 (C-NO.1)		and
13	:	KF=	+00001;	No. 1 (1 dr-no. 1 (C-NO.1)	DESTIN.:	FBll
14	:	KF=	+00105;	STRTY. ADDRESS IN R DB NO. 1	IP 252	
15	:	KF=	+00002;	I,ENGETH In WORDS	!	
16	:	KH=	0000;	==>==-==-	$=1$	=
17	=	KS=	DB	KS DB \Rightarrow DB NO. 1 (C-NO.1)	- !	
18	$=$	KF=	+00001;	KR. 1 DB NO. 1 (c-N0.1)	SOURCE : !	
19	=	KFI=	0000;	IRRELEVANT	IP 252	to
20	:	KH=	0000;	IRREIEVANFT	-	FBI2
21	:	KS $=$	DB	KS DB \Rightarrow CPU DB NO. 11		
22	:	KP=	+00011:	NO. 11T	DESTIN.:	
23	$=$	KF=	+00002:	STRT. ADDRESS IN DB 11	CPU	
24	$=$	KF=	+00176;	LENGETE IN WORDS	!	
25	:	KH=	0000;	======= here: free	$=$	= =
26	=	KS=	DB	KS DB \Longrightarrow DB NO. 1 (C-NO.1)	-	
27	:	KF=	+00001;	NO. 1 DB 1 (C	SOURCS $=$!	
28	:	EF=	+00110;	STRT. ADDRESS IN R DB NO. 1	IP 252	to
29	:	KP=	+00010\%	MIULBER OF DAGEA WORDS ____		FB12
30	:	KS $=$	DB	KS DB \Longrightarrow CPU DB NO. 11	- !	
31	:	KF=	+00011;	NO. 117	DESTEN.:	
32	:	KF=	+00180;	SIRT. ADDRESS IN DB 11	CPD	
33	:	KP=	+00010;	LENGETH IN WORDS	! !	
34	-	KH=	0000;	$\Rightarrow=>===0$ here: free		
35	:	KH=	0000;	$+$		
36	:	KH=	0000;	! ${ }^{\text {a }}$ (${ }^{\text {a }}$	$!$	
37	:	KH=	0000;	: Area of the source/destin-	$!$	
38	:	KH=	0000;	! ation parameters for FB15	$!$	
39	:	KH=	0000:	$!$ 边	$!$	
40	:	KH=	0000;	$!$!	
41	:	KH=	0000;	$!$!	
42	:	KH=	0000;	+	+	

6. COM 252/615 Operator Guide

6.1 General

The IP 252 closed-loop control module can be contigured and assigned parameters with the PG 615 and PG 635/675/685/695 programmers. User-friendly menu-driven prompts help the user during operation.
In this section the operator communication of the PG 615 is described and input formats which may occur are also described.

Note:
The PG 615 programmer with the IP-specific "COM $252^{\prime \prime}$ initialization software can only be used if the memory submodule GES5 374-OAA11 is used on the IP 252.

6.1.1 Selection procedure

Starting from the main menu (see Fig. 6.1) in which all functions available to the user are listed, the corresponding sub-menus (functions) can be selected by directly entering the call number shown in the main menu. Except for the branch selection menu, for which two digits can be entered and which is therefore provided with a separate input field, an enter key is not required and the selected sub-menu is called up directly after entry of the number.
If a menu is longer than four lines, it can be scrolled upwards and downwards using the cursor keys. In all cases where the menu display field can be scrolled, this is indicated on the right hand border of the display with the corresponding direction.

Fig. 6.1 a: Main menu betore seroling

Fig. 6.1 b : Main menu after scrolling several times

6. COM 252/615 Operator Guide

6.1 General

6.1.2 Parameter input/output

6.1.2.1 Subfield editor for input/output

Input: The input is left justified on entry in the input field. During input the first character deletes the original contents of the subfield. The cursor can be positioned anywhere within the input field with the cursor keys. After an entry is made, the subfield can only be exited by pressing the subfield enter key. After entering several data items in an input fieid, they must be entered using the global enter key.
Fig. 6.2 shows an example of data input before transferring the braking current normalization value with the subfield enter key, Fig. 6.3 shows this after the subfield enter key has been pressed.

Fig. 5.2 Left ̧̧ustified input
Output: Data is output right justified, i. e. each subfield is represented on the right after subfield enter key has been pressed.

1	*	I	N	P		P	6	6	I		c	1			51								I
1																							I
I	5	T	A	-	I			0	C	L								1	-1	\%			1
I	A	1	R		D	A	A	C	2										7				I
I														,									I
I																							1
1																							I
I	*	P	A	R	.			B	R	A	N	C	C	H		0						\pm	I

Fig. 6.3 Right justified outpur
Sign: In signed parameters, the sign appears in a special sign position. Positive signs are suppressed during output.

6.1.2.2 Types of parameters

	Dim.	Sign	Digits	Decimal point	Range
Bit value	-	-	1	-	$0 / 1$
Integervalue					
Number, MP number	-	-	2	-	var.
Address	-	-	3	-	var.
Constants	-	yes	6	2	$+/-99.99$
Percent values	$\%$	yes	7	2	$+1-100.00$
Time values	ms	-	5	$0 / 1$	$0.1-9999$
	5	-	5	$0-3$	$0.001-9999$
	hm	-	5	2	$00.01-59.59$

6.1.2.3 Input formats

1. Integer constants

6.1.24 Parameters with physical units

In some structures (e. g. standard controlier) it is possible for the user to input and observe setpoint values, actual values and limit values as well as polygon interpolation points and variables with physical units. Depending on the complexity of the structure, up to 4 different dimensions or physical units can occur simultaneously. For each of the 4 dimensions the user can specify an ASCll string with a maximum of 6 characters and also the characteristic line usec to convert dimension values into a percentage representation used internally by the processor.
Since the unit field is only two characters long, the six characters long ASCll string cannot be output after the subfield. Instead of this a number (D1 to D4) is output. With the "OTHER" key the ASCII strings of all current units can be displayed on the screen. By pressing any other key the original display is restored to the screen. Figs. 6.4 and 6.5 show an example for this. In Fig. 6.4 an example of an input is shown which uses the physicalD1. By pressing the "OTHER" key the representation is displayed as shown in Fig. 6.5.

1	*	1 N	P		5	B	M		C			5	2					1
1																		1
1	H	-	4	A	R	N	I	N	6				2	0	5	D	1	
I	L	-	W	A	R	N	1	N	6				1	2	3	D	,	
I	H	D	A	N	E	-		L	I	H			3	0	2	D	1	
I	1	D	A	N	6	-	L	I	M				1	8	6	D	1	
I																	V	
1	*	P ${ }^{\text {A }}$	R	-		B	2	A	N	c			0	2				

Fig. 6.4 Encoded physital unit display during parameter input

Fig. 6.5 Physical unit display after "OTHER": key

6. COM 252/615 Operator Guide

6.2 PG (Programmer) Functions

6.21 Start-up

After switching the power on, the COM 252 executes a short self-diagnostic test and then goes immediately into the default routine. Here the defaults form is displayed on the screen (see Fig. 6.6), which the user can acknowledge with the Break key or modify with the function keys. After modification, the defaults must also be acknowledged before the main menu is displayed. This main menu is shown in Fig. 6.1.
The main menu corresponds to the base state to which the user can return from any point by single or repeated activation of the
Break key. From this main menu he can go into the required function by entering the calling number of the function.

Fig. 6.6 Default menu

6.2.2 Input

The term "input" refers to all steps required for fully specifying a control loop with the COM 252/615. In order to prevent any steps being overiooked during the first input procedure, the PG guides the user linearly, i. e. on a path without branches, through all input functions.

Input sequence:

$$
\begin{aligned}
& \text { Selection of the target device } \\
& \text { Input of the control loop no. } \\
& \text { Structure selection } \\
& \text { Structuring } \\
& \text { Input of the sampling time } \\
& 1 \\
& \text { Selecting the stop behaviour } \\
& \text { Determining the dimensions } \\
& \text { I } \\
& \text { Parameter assignment of the branches }
\end{aligned}
$$

6.2.2.1 Selection of the target device

After selection, the input function checks the programmer initially for a controller block in the PG. If this is the case, the delete menu appears on the screen (see Fig. 6.7), and the user must decide whether this block is to be deleted or not.

6. COM 252/615 Operator Guide

I	$*$	I	N	P					
I									
I	B	L	O	C	K				
I									

Biled 6.7 Delete mens
After the user has decided to delete the block by entering " 1 ", the input menu appears on the PG as shown in Fig. 6.8.

```
I * I N P UT T I
I I I
I 1 PGG
I 2 I P 2 5.2, I
I 3 SUSMODULEEI
I I
I I
I *SELECT FUNCTI ON - I
```

Fig. 6.8 Input menu
By entering a number $(1-3)$ the user determines where the controller block generated in the subsequent step is to be stored. If the user selects input into the IP 252 controller module or into the submodule, the PG fetches the necessary text and description lists from the selected target device. However, if the block is to be stored in the PG, then the user must first specity whether on-line or off-line operation is required. During this, the user is guided by the "Select operating mode" menu shown in Fig. 6.9. Depending on this input, the list source is displayed in the top ment display fine.

```
I*INPPEI
```

I I 1 I I
10 NLINE I
I 20 FFLINE I
1 I
1

```1
```

```I*SELECTMODE\(I\)
```

- I*
Fig. 6.9 Selection of opersting mode

6.2 PG (Programmer) Functions

6.2.2.2 Input of control loop number

The next step of the input procedure is the input of the controller number, which is necessary so that the IP 252 can process eight control loops simultaneousiy. For this purpose, the PG displays the menu shown in Fig. 6.10.

Fig. 6.:0 input of controller number
The input of the controiloop number must be concluded with the subfield or giobal enter key, where controller numbers smaller than 1 or greater than 8 are neglected.
The letter which is displayed in the first line of the dislplay directiy after "PG" (M in Fig. 6.10) indicates whether the memory submodule or the IP 252 is used as the list source.

62.2.3 Configuration or structure selection

After the control loop numbers have been selected, the configuration of the controlloop must be seiected. This is normally determined by the application.
The programmer shows the user at this point the maximum 4 controller structures available in the memory submodule. If there are less than 4 structures, then the list is filled up with lines (see Fig. 6.11).

```
I*INPPGM
I I I
I I DRIVE I
I 2 STANNDARD I
I 3 - - - I
I 4 - - - I
I I
I*SELECT CONFIGUR.I
Fig. 6.11 Configuration selection menu
```


6.2.24 Configuring

Configuring means the setting of software switches (configuring bits), which are embedded between permanently assigned branches, according to the application. This means that the switches of necessary branches are closed ($=1$) and those of unnecessary branches are left open.
The configuring or structure switches function both as "on"/"off" and also selector switches.
For "on" $/$ " off" switches, "0" means "No" and " 1 " means "Yes". Selector switches are identified by a " $/$ " in the text and select between two alternative sub-branches. " 0 " in this case is the first alternative and " 1 " is the second.
The structure switches are hierarchically organized and assigned to corresponding levels. This organization can be recognized by the indentation of the corresponding lower level structure swizch designations in the configuring menu.
For a better overview, the user prompting is configured in such a way that sub-functions of a not selected branch, i. e. a branch set to " 0 ", are skipped over during structuring or configuring, so that they do not appear in the corresponding menu displays. The structure switches are displayed according to branches. If the cursor is at the last position of a structure branch, then after entering the subfield entry key the structure switches of the next brancin are displayed. If the cursor moves upwards past the main structure switch, the structure switches of the previous branch are displayed.
Positioning within the dispiay is carried out with the heip of the cursor-up and cursor-down keys. The selection of the branch to be used is carried out by setting to "0" or " 1 " and subsequent pressing of the subfield enter key. As an example Figs. 6.12 and 6.13 illustrate two cases where a selector is set to " 0 " and then " 1 ".

Fig. 6.12 Configuring the controller output: continuous controlier

I *	I N	P		P	G	H		C		2		S	2			I
1																1
1 L	00	P		c	0	N	T	R		0	L	L	E	R	1	I
I	$[0$	N	T	/	5	T	E	P							1	1
1	P	\square		k	E	Y	1	A		D	C				\square	1
1																1
1															V	I
$1 *$	CO	N	F	I	6	.	B			0	1				+	

Fig. 6.13 Configuring the controller output: step controlier
The selector switches shown in this example switch between the two alternatives "continuous controller output" and "step controller output". In Fig. 6.12 continuous output is selected, in which case the programmer displays the sub-functions of this branch, e.g. standard/enhanced and H.PG/ADC. (The meaning of the abbreviations used in the menus is described in the appendix of this section). In Fig. 6.13 the selector switch is set to " 1 ", i. e. the output functions as a step controlier output and the programmer displays the sub-functions of the "step controller output" branch, H.PG/ADC.

Fig. 6.14 Setpoint branch not seiected
If a branch is not selected, then its sub-functions remain invisible to the user and are only listed when the branch is selected in the display of the PG. This is illustrated in Figs. 6.14 and 6.15 using the example of a speed setpoint.

I	*	1		P		p	-	G	M		C	C	1		5	1				I
I																				- I
1	5	E			R	E	E	V	1	M	I	N	N							1
1		R		M	p			E	E	N	E		R	A	1	0		R		0
I		5		0	0	T	T	H	1	N	E									0
I		5		T	P	.			5	E	C		\sqcup	E	N	C		E		0
I																				$V I$
1	*	C		N	F	I	1	G	-	B	R	R	0	8						$+$

6. COM 252/615 Operator Guide

6.2 PG (Programmer) Functions

6.2.2.5 Input of sampling time

After the structure of the controller has been selected in the last step, the required sampling time is input in this step. One should note that only times which can be expressed as powers of two between 4 ms and 32 s can be selected.
The processor loading caused by this control loop on the IP 252 is also calculated in this menu depending on the structure and sampling time.
Figs. 6.16 and 6.17 show the sampling time menu.

I	*	I	N	P		p	G	M		C	1										
	T	A		$=$		0	.	1	*	T	1	H				0	N	5	T		
I																					
1		5	A	M	P	ᄂ	*	T	I	M	E							8	M		
1		I	P		L	0	A	D		C	1						4	2	\%		
1																					
1	5	T	0	R		p.	A	R								T	A	$<$			

Fig. 6.17 Sampling time menu after ehanging the time
In the sampling time menu one is initially reminded of the rule of thumb that the sampling time should be approximately 10% of the dominant plant time constant. The input line for the sampling time with a default value of 4 ms is located under this reminder. The line below the sampling time shows the processor loading of the selected control loop. The last line of the display shows the assignment of the numerical keys as function keys. In Fig. 6.16 " $1^{* \prime}$ is used for the function "ABSP", " 2 " for the function "PAR" and " 3 " for the function "TA>". "ABSP" is used for aborting the storage of previously entered data and returning to the basic menu. Pressing the "PAR" or the ENTER key takes the operator to the next function, i. e. "programming stop behaviour". The " 3 " key is assigned the function "TA>" which increases the sampling time in steps (in powers of 2). After changing the sampling time (TA> 4 ms) the function "TA<" then appears in the menu and is assigned to key "4". With the " 4 " key it is possible to reduce the sampling time shown on the display. Whether the controller is stable at the selected sampling time remains within the responsibility of the user. Similarly, it is his responsibility when changing the sampling time to also adjust the controlier parameters accordingly.

6.2.2.6 Selecting the stop behaviour

At this point the behaviour of the outputs must be determined separatehy for each controiler if the control structure is inhibited. Two alternatives are available here: either the outputs are set to zero or they remain in the state in which they were last. In the second line of this menu the user is asked whether the control loop should carry out an automatic warm restart after a power failure. Below this is the option of taking the warm restart condition into account. This condition states that the magnitude of the difference between the control deviation before the power failure and after the restoration of the power should be not greater than 25% of the setpoint value before the power failure. With this last option the user can determine which of the following occurs:

- no warm restart
- conditional warm restart
- unconditional warm restart.

6. COM 252/615 Operator Guide

These decisions have defaults of YES and can be changed by pressing "1" or " 2 ". In this case, "1" means "YES" and "2" means "NO". These inputs must be concluded by pressing the ENTER key.
Fig. 6.18 shows the menu for determining the stop behaviour.

1	*	1	N	P			6	M		C	1		5						
1																			1
I	5	E	T		0		T	P	U	1	5		T	0					1
1	0		1	F			1	5	A	B	L	E		:	Y	E	5		I
1	W	A	R	M			E	5	T	A	R	T		:	Y	E	5		I
I	R	E	5	T	A	R	T		C	0	N	D		:	Y	E	5		I
1																			I
I		γ	E	5			N	0											

Fig, 6.18 Determining the stop response

6.2.2.7 Definition of controlier names and area names

After the stop behaviour has been defined and acknowledged with the ENTER key ,the menu "Input for CP 526 displays" appears. Here, each controller 1 to 8 can be assigned a controller name and an area name consisting of up to eight characters. Only numbers are acceptable as input with COM 252 , but any ASCll characters are acceptable when using the COM REG programmer software.

Fig. 6.19 CP 526 interface

Note:

An entry in this screen form is not relevant for the control. Such an entry is only meaningful for controller manipulation and monitoring with the CP 526. The ASCII characters entered can then be displayed on the CP screen.

6. COM 252/615 Operator Guide

6.2 PG (Programmer) Functions

6.2.2.8 Determining the physical units

If parameters with physical units appear in the selected structure, the user can determine the ASCl| string and characteristic of the units before beginning the assignment of parameters. In the default state the 6 characters of the ASCll string contain "\%", " 0 " is used for the 0% vaiue and " 100.00 " for the 100% value. If other units are present, this is indicated by the scrolling arrow in the base units menu (see Fig. 6.20), "'hey can also be displayec by pressing the corresponding cursorkeys (not with the DR/DRS structures).

Fig. 6.20 Base units ment
From the base units menu the characteristic or ASCli input can be called up via softikeys.

6.2.2.8.1 Characteristic input

The 0% and 100% values can be input with the decimal point at any position. However, the pure numerncai value must lie in the range $+i-10000$.
When accepting the entered value only a check ior correct syntax is carried out. Only after the ENJER kev is pressed is a check made as to whether the characteristic can be determined from both nodes enterec.
The prerequisites for this ars:

1. The characteristic has a positive slope, i. e. the 100% value is greater than the 0% value.
2. The value with the smalier number of digits after the decimal point can be normalized to the number of digits after the decima: point of the other value without exceeding 10000 in magnitude.
An example for an acceptable input is shown in Fig. 6.21.

Fig. 6.21 Charazteristic inpu: for the physical units

9.2.2.8.2 ASCII string input

Since no ASCll keyboard is provided, the maximum 6 characters iong ASCli string must be entered by positioning the cursor on an ASClt table menu. If only one single character has to be modified, then any position in the string can be directly seiected. Otherwise input automatically begins with the first position and moves on to the next position aiter entry.
Figs. 6.22 and 623 show an example with a physical unit input "D1; KP/CM2", an ASCII table menu and a menu for selecting the oosition in the string.

F:g.6.23 Position seiection

6.2.2.9 Assigning parameters

In the last step of the input procedure, the parameters of the previousiy configured controllers must be input. At this point the programmer displays only the subfunctions for parameter assignment which have been activated in the previous configuring step. During parameter assignment the PG shows the user a iist oi the selected subfunctions, where each subiunction has a selection number which corresponds to the branch number (see Fig. 6.24). Using the seiection number, the user can suiosequentiy call up the parameter list ior assigning parameters to the subfunctions.

6. COM 252/615 Operator Guide

6.2 PG (Programmer) Functions

Fig. 6.24 Overview of the selected branches
The parameter iist only displays the parameters of the selected branches and subbranches.
Each input must be concluded with the subfield ENTER key, whereas the completion of the branch parameter assignment must be conciuded with the Enter key. After this, the parameter list for the next branch appears until all branches have been assigned parameters. Then the branch list appears again on the PG. If no further parameter is to be modified, the previously entered data can be stored by pressing the ENTER key again. If a data record is already present in the target device under the specified controller number, then the menu shown in the Fig. 6.25 appears on the PG.

Fig. 6.25 Delete Yes/ No
in this step the user must decide whether the old or the newly entered parameter sets are to be used further.
Special cases:

1. Limit monitor

The limit monitors are designed for a maximum of 6 steps. For operation with fewer stages the user must select the number af limits to be monitored in the first menu input line. The limit value menu changes accordingly and the PG requests the limit values in the same menu. The physical units of the entered limit values are determined by those of the monitored measuring point.

Fig. 5.26 Limit monitor with 1 limit value

6. COM 252/615 Operator Guide

Fig. 6.27 Limit monitor with 2 limit values

2. Function generator and setpoint sequence

In the function generator and setpoint sequence, the number of vertices (interpolation and extrapolation nodes) can be selected optionally between 1 and 10 . The parameter assignment mens is generated according to the number selected.

Fig. 6. 28 Setpoint sequence

Fig. 6.29 Setpoint sequence with 2 interpolation nodes
Apart from the number of interpolation nodes, the user must also select the distance between nodes by specifying the interval time (T-interv).
In addition, the user can decide whether the interpolation between the nodes should be linear or according to a staircase waveform. This is specified by " 1 " or " 0 ", which is entered after the input field "LINEAR".

6. COM 252/615 Operator Guide

6.2 PG (Programmer) Functions

6.2.3 Output

If the user has selected the output function by entering the selection number " 2 " in the basic menu, the output menu shown in Fig. 6.30 is displayed on the screen.

Fig. 6.30 Display menu
Using the selection numbers listed in this menu, the user must seiect the source device from which the controlier data blocks are to be output. After selecting the source device, the menu shown in Fig. 6.31 prompts for selection of the listed data to be output.

Fig. 6.31 Function selection output
in contrast to the rigid user guidance during incut, various operational procedures can be selected individually during output. After each operational step the program returns to this output menu. The BREAK or ENTER key branches from this menu to the storage prompts.

IMPORTANTNOTE:

When assigning parameters the selected dimensions are displayed initially and can be changed as during input.
Please note that modification of the characteristic does not cause the values previously entered for that physical unit to be changed, so that it is possible for values which are outside the input range to be present.
Example:

Old node	$: 0 \%$	$=0 \mathrm{kp} / \mathrm{cm}$
	100%	$=300.0 \mathrm{kp} / \mathrm{cm}$
Input	$\vdots 0 \%$	$=270.0 \mathrm{kp} / \mathrm{cm}$
New node	$: 0 \mathrm{kp} / \mathrm{cm}$	
		100%

The value 270.0 remains as entered but now, instead of being converted by the $I P$ to 90%, it is converted to a completely random modulo value since the inner limit has been exceeded.

$$
==>\text { The user must take full responsibility for modifications of the dimensional characterisitic during output. }
$$

5.2.3.1 Output printer

Entering "4" as the selection number in the output menu displays the print menu. This menu shown in Fig. 6.32 again offers the user various functions. From this menu it is possible to select the source device for the data to be printed. Selection of " 1 " displays the printer parameters on the PG screen.

Fig. 6.32 Print ment

6.2.3.1. Printer parameters

In the "Print parameters" menu (see Fig. 6.33) all parameters required for connecting up to various types of printer are grouped together.

Fig. 6.33 Print parameters
In the last display line the selection numbers " 1 " to " 4 " are assigned values for selecting the batud rate.

6.2.3.1.2 Print PG

After selecting "Print PG" by entering "2" no further sub-menu appears, except for the prompt for source of the list, as in "input PG". "Print PG" documents the current control loop in the PG. The documentation is printed in the following sequence: structure switch positions, sampling time, resulting processor loading and finally the parameters of the individual branches (see Section 6.5).

6.2.3.1.3 Print IP 252 / submodule

After selecting the "Print IP 252" or "Print submodule" function, the user has three alternatives (see menu "Print IP" Fig. 6.34).
Parameter list:
The parameter list documents a controller with structure switches, sampling time and branch parameters as in "Output PG" (see Section 6.E.).

Cross reference list:
The cross reference list documents the caling list of all inputs anci outputs used in all the control loops so that multiple assignments can ie detected and the wiring can be documented.

Complete printout:
The complete printout is a combination of the parameter list of all controilers availabie on the IP 252 or submodule and the cross reierence list.

6. COM 252/615 Operator Guide

6.2 PG (Programmer) Functions

Fig. 6.34 "Print IP"

6.2.4 Transfer

The user selects this function by " 4 " in the base menu and can then select the source and destination of the transier operation. The control loop parameters are transierred between the PG and the IP 252/submodule packed in a data block (DB). Each control loop is assigned a fixed DB number which however remains invisible to the user.
If the control loop is transferred to the IP 252 or submodule, which is already present at the destination, then the user is prompted as to whether he wants to overwrite the previous control loop. The same prompt occurs if transfer is carried out to the PG and a control loop data block is present there.
Two possible transfer menus are illustrated in Figs. 6.35 and 6.36.

Fig. 6.35 Transfer menu before scrolling

[^2]
6. COM 252/615 Operator Guide

6.2 PG (Programmer) Functions

6.2.5 Delete

This Deiete function can be selected by the user by entering the number " 5 ". After this, the Delete menu shown in Fig. 6.37 appears on the PG display.

Fig. 6.37 Delete menu

After selecting "Delete IP $252^{\prime \prime}$ or "Delete submodule" the user is prompted by the PG to enter the number of the control toop to be deleted. In "Delete PG" the lines " 2 Delete IP 252 " and " 3 Delete submodule" are displayed and in line 3 after the " 1 Delete PG" a question mark is displayed (see Fig. 6.38). This question mark is a safety prompt and should be acknowledged by entering " 1 ".

I*DELETE					
I					
I	1	P	6	?	I
I 1 O					
I					
I					
I					
1	5	L	E		I

Fig. 6.38 Safety prompt: Delete PG
If "Delete submodule" and "Delete IP" are selected, the user is prompted by the PG to enter the number of the control loop to be deleted.

6.2.6 Special functions

The menu "Special functions" can be called up by the user by selecting the number "6". The menu which appears on the PG display is shown in Fig. 6.39.

Fig. 6.39 Special functions menu
As described in the previous sections, one enters into the "Operating mode" or "Defaults" menu by entering the corresponding selection number.

6. COM 252/615 Operator Guide

6.2 PG (Programmer) Functions

6.2.6. Operating mode

The "Operating mode" menu controls both the general IP module RUN/STOP as well as the selective control loop enable. The operating mode menu is shown in Fig. 6.40.
In the last line of the display the decimal keypad of the $P G$ is assigned the following functions:

$$
1=Y E S \quad 2=\mathrm{NO} \quad 3=\text { RUN } / S T O P
$$

The upper line shows the current module state whereas both lines underneath show whether the eight control loops in the IP modules are enabled or disabled.

Fig. 6. 40 Operating mode mens
After entering a selection number, a question mark appears after the selected function appears (e. g. RUN). This prompts the user to enter the selection number a second time. This safety check reduces the probability of incorrect operation.
If the module is in the STOP by software initiation, then it can be put in the RUN state by entering " 3 " twice in succession. The message text in the display changes from RUN to STOP. STOP appears in the last display line above the " 3 ", i. e. the selection number " 3 " is assigned to another function.
In order to enable or disable one particular control loop the user must position the cursor to the point below the control loop number. Then he can change the enable/disable state of the particular control loop by pressing the selection number twice. The line which contains the message "ENAB" gives information about the current state of the particular controller, where \mathbf{Y} stands for enabled and \mathbf{N} for disabled or not used.

6.2.6.2 Detaults

The Defaults menu (see Fig. 6.41) is restricted to the prompts bus access YES or NO.
Bus access means in this case that the IP 252 not only uses the internal ADCs and DACsbut also accesses the extended peripherals of the $\$ 5$ bus. This has an effect on the syntax checking for the address assignments of the ADCs and DACs. Without bus access only the internal addresses 0 to 7 are possible, with bus access however the addresses 128 to 254 are possible.

This "direct bus access" is only possible with the PC 115 U !

[^3]6. COM 252/615 Operator Guide

6.2.7 Information

This menu is called by selecting number "7" as shown in Fig. 6.42.

Fig. 6.42 Information menu

6.2.7.1 Controller list

In this list the available control loops in the IP 252 and the submodule are listed. For each control loop the structure name and version number is displayed.
After selecting the controlier list the menu shown in Fig. 6.43 appears in which the user must enter the operating mode (online/offline). This influences whether the IP 252 or the submodule is used in the lower submodule receptacle of the PG 615 as the source device for the list. Fig. 6.44 shows the actual controller list appearing after selection.

Fig. 6.43 Controller list/ source selection

Fig. 6.44 Controller list

6. COM 252/615 Operator Guide

6.2 PG (Programmer) Functions

62.7.2 SYSID

This function was introduced so that the system CPU could access its IPs (intelligent I/Os) and CPs (communications processors', and read the version number, the date of generation and the module designation for diagnostic purposes. If the "SYSID" functior is called up under the "Information" function, then the menu shown below in Fig. 6.45 is displayed.

```
I*SYSID I
I I I
I 1 ONLINE I
I 2 OFFLINE I
I I
I I
I I
I*SELECTMODE + I
```

Fig. 6.45 SYSID base menu
In this menu the user must decide whether he wants to work online or offline. Next, the actual SYSID mask, which is shown in Fig 6.46 , is displayed.

Fig. .46 SYSID menu
Only the date is to be entered by the user in this screen form. The page number and the submodule version, in this case V 1.3 M , art displayed after scroling down twice.

Fig. 6.47 Second part of the SYSID menu

6. COM 252/615 Operator Guide

6.2 PG (Programmer) Functions

6.2.7.3 Faults/errors

This function enables error/fault diagnostics if, for example, the IP will not enter the RUN mode.
Under normal conditions - no error - the following menu will be displayed:

Fig. 6.48 Error form
The following messages are transferred from the IP 252 to the CPU control program for diagnostics purposes:

Errornumber decimal	Text on PG615	Error caused by	Reaction of IP to error
$\begin{aligned} & 00 . \\ & 11 . \\ & 12 . \\ & 13 . \\ & 14 . \\ & 15 . \end{aligned}$	Noerror on IP Hardware Harctware Hardware Hardware Hardware	Basic status: "No error on 1P 252" Time-out (not analog module) Checksum of EPROMs incorrect Result of offsetcorrection: Deviation of a DAC > 7LSB Error in hard́ware diagnostics program: RAM Error in hardware diagnostics program: MUART	"Stop" "Stop" "Stop" "Stop" "Stap"
$\begin{aligned} & 20 . \\ & 21 . \\ & 22 . \\ & 23 . \\ & 30 . \\ & 31 . \end{aligned}$	Watchdog Directaccess Analog section Analog section PC on Stop Submodul	Time-out S5 bus not enabled by S5-CPU Wire breakage at digital input (digital tacho) Power failure in analog section BASP activ Wrong or no submodule in IP 252	"Stop" "Stop" "Stop" "Stop" "Stop" "Stop"
$50 .$ $51 .$	Analog module Overload	Time-out or wire breakage in analog module IP 252 overioaded (timing conflict)	"Stop" LED " F " flashing
$\begin{aligned} & 70 . \\ & 71 . \\ & \hline \end{aligned}$	RUN/ STOP switch Software stop	RUN / STOP switch on IP 252 set to "Stop" Stop of IP 252 initiated by command from PG or PC	$\begin{aligned} & \text { "Stop" } \\ & \text { "Stop" } \end{aligned}$

All the messages listed above are recognized by the IP 252 operating system and can be

1. scanned with the help of COM 252 for the PG 615 or COM REG for the PG 635/675/685/695 via the "Info" function in the "Errors" submenu, and
2. fetched via RECEIVE 200 from a specific RAM area of the IP 252 (the dual-port RAM) by the CPU. The error bit in question is then reset via RESET 200 . An error bit, once entered, will be automatically reset when the module goes from "STOP \rightarrow RUN". CONTROL 200 can be used to determine whether a new error bit has been entered by the IP 252, and therefore whether it is meaningful or not to call up a RECEIVE 200.

Generally, only the first message received is entered. The numbers 51 and 75 to 85 are exceptions: these messages are overwritten by all subsequent messages!

6. COM 252/615 Operator Guide

6.2 PG (Programmer) Functions

6.2.7.4 Processor loading

After selecting the "Processor loading" function, the menu shown in Fig. 6.49 appears. In this menu one decides whether online or offline operation is required. After this the actual control loop loading menu containing information about the individual control loops is displayed.
This function displays the processor loading caused by the individual control loops in the IP 252 or submodule on the processor of the IP 252 (depending on the selection online / offline). The total loading is given in the iast line.

Fig. 6.49 Controller loading / source selection

Fig. 6.50 Controiler loading

6.2.8 Controller test

The controler test function is selected by entering the selection number " 8 ". It is used for operator communication and monitoring of the controlier under online operation. In addition to the input and dispiay of parameters, the controller test is also used for displaying bit variables (e.g. branch enable bits or limit value identifier bits), input vaiues (e.g. PC setpoints) or intermediate variables (referred to as measuring points). All values are updated several times per second by the IP 252.

Forcing during controller test (\rightarrow key)

The cursor is not visible during the status display. If a parameter is to be modified in the RUN mode, the cyclic status request is interrupted by the FORCE key. The last display is frozen and the cursor appears in the first forceabie field or in the last forced field in this screen. If no forceable field is available in the current screen, the PG searches for the first forceable field after the current screen. If no field is found, the old screen remains displayed and a corresponding fault message appears and the status is again cyclically requested. Otherwise the display serolis until the first forceable field found appears on the display.
In the "Force" mode, the cursor can be moved upwards or downwards with the cursor keys as during parameter assignment with the restriction that positioning is only possible on forceable fields. If no forceable field is available in the direction of the cursor key, a fault message appears and cyclic updating is again started (cursor disappears).
If a parameter on which the cursor was positioned is to be changed, the desired value is input and the subfield ENTER key is pressed. The PG then transmits the new value to the $\mathbb{P} 252$, interrupts the forcing mode and returns to the status display mode.
Values which cannot be forced:

> * Addresses
> * Measuring points
> * Number of limit values
> * interpoiation/extrapolation node and setpoint numbers

When selecting the following parameters, there may be conflicts with the outer loop controller since it aiso accesses the same memory locations via the dual-port mechanism:

[^4]| ADR | Address |
| :---: | :---: |
| ADC | Analog-to-digital converter |
| ANQ | Analogoutput |
| BRO1 | Branch 01 |
| C1 | Controller 1 |
| CLIST | Controller list |
| CNO | Controller number |
| CONT | Continuous-action controller |
| CR.W.TIME | Waiting time after carriage return |
| D1 | Dimension 1 |
| DAT | Date |
| DAC | Digital-to-analog converter |
| DLM | Danger limit |
| ENAB | Enable |
| HH.MM | Input format for hours/minutes |
| INP | Input |
| IP | Intelligent I/O module (\|P is often used as an abbreviation for IP 252 in this manual) |
| IP-LOADC1 | IP loading due to controlier 1 |
| 1 | Lower |
| LF.W.TMME | Waiting time after line feed |
| LMV | Limiting value |
| MAX.LINES | Maximum number of lines |
| MOD | Submodule |
| M.PG | Manuaivalue PG (manipulated variable for manual intervention) |
| MS | Milliseconds |
| MS.PT-NO | Measuring point number |
| NORMDECEL | Normalization of the decelerating current |
| OPM | Operating mode |
| OUT | Output |
| PAR | Parameter assignment |
| PAR.AS | Parameter assignment |
| PLNT-CONST | Plant time constant |
| P-NO | Page number |
| PRI | Printer output |
| PROC.LOAD | Processor loading |
| POSN | Position (in dimension designation) |
| S | Seconds |
| S1 | Structure 1 (drive controller DR) |
| S2 | Structure 2 (standard controller DR) |
| S3 | Structure 3 (drive controller with self-setting DRS) |
| SEC | Seconds |
| STEP | Step controller |
| STOR | Store |
| STRUC | Structuring (configuring) |
| SYSID | Systemidentification |
| TINTERV | Interval time |
| TLD | Total loading |
| TS | Sampling time |
| TS> | increasing sampling time |
| TS< | Decreasing sampling time |
| U | Upper |
| WARNG | Warning limit |
| WR | Warmrestart |
| X ${ }^{1} \mathrm{LM}$ | Limit monitor |

6. COM 252/615 Operator Guide

6.4 Error messages on the PG 615

Hardware messages		
NO.	ERROR	REMEDY
02	External RAM error	Replace PG
03	Internal RAM error	Replace PG
04	Buffer overfiow	Repeat function
05	Parity error	Repeat function
06	Wire break	Repeat function
07	Time expired	Repeat function or disconnect PG connector temporarily
08	Unknown	Repeat function; if required disconnect $P G$ connector temporarily
22	Incorrect operating mode	Select correct operating mode; then repeat function
30	Block not available	
33	Usart fault	Repeat function; if required exchange PC or interface
44	Unknown message	Repeat function
50	Wrong key	Press right key
51	Unknown command	Enter right command
53	Key-operated switch	Key switch must be on ll position
60	No information DB	
61	No description and text lists	
62	Range cannot be represented uniformly	
63	Branch not available	
64	Conclude subfield	I key
65	Description list error	Enter controller once again (configure and assign parameters); it is not functioning properly as it has been generated on the basis of an obsolete descriptionlist
66	No parameter in branch	
67	Inadmissible number of steps/minimum pulse duration	
68	No value in the direction of the arrow/ on the page can be forced	
69	Unknown measuring point	
72	Address not allowed	
73	Parameter overilow	Enter command with the correct parameter
85	Parameter cannot be forced	Acknowledge
87	Data in the selected format cannot be represented	Change format
91	Submodule programming error	Delete controller and re-enter/ replace submodule
92	Wrong submodule inserted	Identify submodule correctly
93	No space on the subrnodule	
95	No submodule inserted	

```
PRINTPG CONTR.: 02 CONFIGUR.: DRIVE VERSION:0.2 PAGE 01
```

1. Configuring bits (structure switches):

Branch 01:	Controller output	9
Branch 02:	Conversion	0
Friction	1	
Branch 03:	Periph.vel+accel	1
Branch 04:	Increase loop gain	1
Branch 05:	Inject dia. signal	1
Branch 06:	Set-up spentroller	1
Branch 07:	Creep speed	1
Branch 08:	Setrev/min	1
	Ramp-function generator 1	
	Filter	1
	Setpoint sequence	1
Branch 09:	Primary controller	1
	B+/B-	1
	ADC/Input	1
	Nact/PG scaler	1

Branch 10:	Actual rev/min	1
	Analog/pulse	1
	Filter	1
	Zoom display	1
Branch 11:	Act. armature current	1
	Signal injection	1
	Thermal monitor	1
Branch 12:	Limit monitor 1	1
Branch 13:	Limitmonitor2	1
Branch 14:	Meas. socket 1	1
Branch 15:	Meas. socket2	1

2. Sampling time/IP252 load:

Sampl. time:	4 ms
IP252load:	105%

PRINTPG CONTR.: 01 CONFIGUR.: DRIVE VERSION: 0.2
3. Controller parameters:

6. COM 252/615 Instructions

6.5 Output : Print PG

PRINTPG CONTR. 01 CONFIGUR.: STANDARD VERSION: 0.3 PAGE: 01

1. Configuring bits (structure switches):

Branch01:	Controlier output	1
	Cont/step	0
	M. PG/ADC	0
	Standard/upgraded	1
	Sep.d-comp.input	0
	Disturbance inp.	0
	M.PG/ADC	0
M.PG/ADC	0	
	Cont/"on" ("off"	1
	$2 / 3$-stepcontr.	0
	Conditioning	0

Branch 02:	Actual value	1
	ADC/PULSE	0
	Validitycheck	0
	Averaging	0
	Polygon	1
Branch 03:	Setpoint	1
	ADC/input	1
	Ramp generator	0
	Smoothing	0
Branch 04:	Limit monitor 1	1
Branch 05:	Limit monitor 2	0
Branch 06:	Meas. socket 1	0
Branch 07:	Meas. socket 2	0

2. Sampling time/IP 252 load

Sampl. time:	4 ms
P252load:	65%

PRINT PG	CONTR.: 01	CONFIGUR.: STANDA	ARD VER	SION: 0.3	PAGE 02		
3. Controlier parameters:							
Branch01:	Controller output	CONT/STEP					
		STANDARD/				POLYGON	
		UPGRADED				NR. VERTICES	1
		M. PG ADC				STARTVAL.	10.00\%
		CONST.MAN	22\%			CORNER	2.00\%
		H.LIMIT	100.00\%			ORDINATE1	20.00\%
		L. LIMIT	-100.00\%			START-UPACT	0.00\%
			5.00	Branch 03:	Setpoint	ADCINPUT	
		TN	is			NR. SETP.	2
		TV	OS			LINEAR	1
		CONT/*ON"/"OFF"	" 1			TINTERVAL	
		TMIN	4MS			SETPOINT 1	20.00\%
		ADF	1.00\%			SETPOINT2	0.00\%
		RSP	10.00\%			SHL	0.00\%
		2/3 STEP CONTR.	1			SLL	0.00\%
		ADRDAC1	0	Branch 04:	Limit monitor 1	NR.LIMTS	1
Branch 02:	Actual value	ADC/PULSE				MEASPTNO.	4
		ADRADC2	0			LIMITVAL. 1	22.00\%
		H. WARNING	0.00\%				
		L. WARNING	0.00\%				
		H. DANG.LIM	0.00\%				
		L. DANG.LIM	0.00\%				

SIEMENS

COM REG
 Programmer-Software

TABLEOECOETEETS

3 General Eotes.. $3-1$
3.1 Structure of the Masks. 3-1
3.2 Selecting Fumetions. 3-2
3.3 Entry Fields.. 3-3
3.4 Types of Pacameters and their Input Formats............3-4
3.5 Recomendations for the Procedure..............................3-5
3.5.1 Entering a Controller. ...3-5
3.5.2 Creating the Controller List (only for R64).............3-6
3.5.3 Transfer to the Yodule..3-6
3.5.4 Online Test of the Controller......................................3-6
3.5.5 Changing the Structare... 6
3.5.6 Transferring to a File.. 6
3.5.7 Programming the EPROMS... 3-7
3.5.8 Documentation..................... .3-7
3.6 Possible Sorrces of Errors. .3-7
3.7 Checkist for Troubleshooting. 3-8
4. Proiecting the Controller Structure P64....................4-1
4.1 Processing the Controlier FB. 4 -1
4.2 Preset... . . . $4-3$
4.3 Kin_Yemp. 4 . 5
4.4 Inprit. 4 . 7
4.4.1 Entering a Controller DB... $4-8$
4.4.1.1 Controller Strueturing. ... $4-8$
4.4.1.2 Sean Tine...4-10
4.4.1.3 Controller Bebaviour and FB Irmber..........................4-13
4.4.1.4 CP526 Adaptation. 4-14

4.4.1.6 Parameter Inpet. .4-18
4.4.1.7 Controller Branch. $4-20$
4.4.1.8 Actual Value Branch. ...4-21
4.4.1.9 Setpoint Branch. 4- 22
4.4.1.10 Limit Honitor Branch. 4 -23
4.4.i.11 Test Socket. 4-24
4.4.1.12 Digital Addresses.. . . $4-25$
4.4.2 Input of the Controller List...................................4-27

4.6 Transfer. 4-34
4.7 Delete. 4-36
4.8 Special Fumetions. 4-37
4.9 Information. 4 . 39
4.10 Test. 4 -40
5 Proiecting Controller Stnotures for 12252 5-1
5.1 Main Memu 5-4
5.2 Input 5-5
5.2.1 Structuring 5-7
5.2.2 Entering the Scan Time 5-8
5.2.3 Controller Behaviour 5-10
5.2.4 Specifying the Controller Name and Area Name 5-11
5.2.5 Specifying the Dimension. 5-12
5.2.6 Parameter Input 5-13
5.3 Ontput. 5-15
5.4 Transfer. 5-18
5.5 Delete. 5-20
5.6 Special Fumctions 5-21
5.7 Information Functions on the IP252 5-24
5.8 Controller Test 5-29

3 Ceneral Notes

3.1 Structure of the Masks

As in other SINATIC 55 operator areas, the dialog between the user and COM REG is executed exclusively by means of masks. All the masks are structured basically the same:

- two headiines with information on the selected function and the block which is being processed
- 19 lines of working area
- three lines of function key memu for selecting functions and controlling the parameter input.

This structure is illustrated in the "Controlier selection" mask. This mask appears immediately after selecting "COM REG" by means of the <F1> / <Package> key. All existing COM REG packages are displayed.

In the "Controller selection" mask the user chooses the controller he wishes to work with using the COH software. For this purpose, the function keys offer the following options:
<F1> Controller structure R64
<F2> Closed-loop controller IP 252
<F8> Break
The assignment of the function keys $\langle\mathbb{>}\rangle$ to $\langle 7\rangle$ in the mask shown above depends on the existing packages.

After a module has been selected the preset mask is displayed.
To exit COM REG press the break key <r8>. Then the command interpreter is loaded which will display again all available packages. To exit S5-DOS press the function key $<78>$. This command must be confirmed by activating the 《Enter> key.

3.2 Selecting Functions

COM REG is operated by means of the alphanumeric keyboard, the cursor keys, the eight function keys, the <Break> key, the Enter> key, and the <Hard copy> key. All other STEP5 specific keys are ineffective.

When you press an ineffective key the message "Btocked KEY" is displayed; afterwards you can correct the input. Keyboard entries are closed by pressing the <Carriage return>. After that the user is prompted to enter further data or, the next menn is antomatically displayed.

COM REG is structured hierarchically, i. e. there are different levels on which the program may rum. The upper level is the main menu. When the user selects a function from the main menu (for example output) a new mem is displayed from which the data that is to be output may be selected. Then the user selects, for example, "PARAMETER" the third level is entered. The following diagrall shows this in detail:

Normally a function is closed by pressing the function key <ri> (Ready); then the program returns to the next higher level. The entries or changes made are stored. When a function is cancelled by pressing <FB> the program returns to the next higher level without storing the entries or the changes.
As with other operator areas the <Breatc> key and the <Carriage return> are effective under COM REG. Often the <Break> key functions the same as $\langle F 8\rangle$ and the <Enter> key functions in the same way as <F7>.
When the hardcopy key is pressed the screen contents may be output at any time via a connected printed.

3.3 Fintry Fields

You enter data into the entry fields by means of the alphanumeric keyboard and close the entries by pressing the EEnter> key. Before pressing this key fou can move the cursor within the entry field and correct brong entries.
Before you start to enter data into the entry field the cursor is positioned in the leftmost position of the field. When the entry field is blank, data can be entered left-justified. After you have pressed the Enter> key COM REG displays the entry rightjustified. When the entry field is not blank you can enter data in one of two ways:

- You enter the new value left-justified. Since the previous entry is still displayed, right-justified, it is not overwritten completely. A blank must follow the last character of the new entry so that COM REG can recognize it. After pressing the <Enter> key COI REG accepts the new value and displays it right-justified. In the following example the value "10.5" should be replaced by "9.5". (Blanks are represented by "_")

Before the entry is made: "_10.5"
Before pressing the <Enter> key: "9.5_5"
After pressing the <Enter> key: " 9.5"

- You overwrite the old value with the new one in such a way that the position of the decimal point is maintained, i. e. the new value is entered right-justified. The advantage of this method is that only those characters that really have to be changed are entered. In the previous example "10" is overwritten with "_9".

When you wish to enter parameters of different time units or data types COM BBG offers possible time units such as ms, s, hm or different data types such as IFW, $X W$, $P W$, $F W$ in the function key menu, during completion of the entry field. The default unit can be changed by means of the appropriate function key before pressing the <Enter> key.

3.4 Types of Parameters and their Input Formats

There are different types of parameters under COM REG and for each type of parameter only particular input formats are allowed. In the folloring table all types of parameter are listed:

Type of Parameter	Dimension	Sign	Decimal places	Range
Controller no.	-	no	0	1-8
DB no.	-	no	0	2-255
FB \quad \%.	-	no	0	0-255
Bit value	-	no	0	0/1
Address	-	no	0	0-254
Fixed point	-	yes	2	+/-100.00
Percent value	\%	yes	2	$+/-100.00$
Times	ms	no	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.0-999.9 \\ & 0-9999 \end{aligned}$
	sec	no	$\begin{aligned} & 3 \\ & 2 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.000-9.999 \\ & 0.00-99.99 \\ & 0.0-999.9 \\ & 0-9999 \end{aligned}$
	bm	no	2	0.00-59.59
Determination of plysical dimension	6 optional characters	yes	$\begin{aligned} & 4 \\ & 3 \\ & 2 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.0000-1.0000 \\ & 0.000-10.000 \\ & 0.00-100.00 \\ & 0.0-1000.0 \\ & 0-10000 \end{aligned}$
Dimensiondependent parameter	6 optional characters	Fes	as determ. above	format determined above

Dimension-dependent parameters are parameters with the same unit as the values to be controlled, for example the setpoint value, the error signal, the setpoint value error limits, the processed actual value. For further information see chapter 4, section "Input/Entering a standard controller/Input characteristic".

3.5 Recommendations for the Procedure

You can project a controller by means of COM REG according to the steps described below:

- Enter the controller structure and parameters into a program file.
- Greate the controller list (only for controller structure R64)
- Transfer the data blocks (and possibly the function blocks) from the program file to the module.
- Online test of the controller; optimize the parameters.
- Change the structure with "Output", if required, and test it again.
- Store the tested controller data block in the program file.
- Program the data blocks in EPROMs, if required.
- For documentation, print the controller structure and parameters.

3.5.1 Bettering a Controiler

In order to structure a controller the "INPUT"-function is selected from the main memu by pressing function key $\langle\boldsymbol{F l}\rangle$. In order not to lose any data, in the event of interference, it is advisable to initially enter controller data blocks into a file and not send them directly to the module. Then you enter data cou reg guides you with masks so that you can enter the data in a suitable order:

- structuring
- determining the sampling time ${ }^{1}$)
- determining the controllex response
- determining the physical dimension
- parameterizing the branches and modules that were switched on during stzucturing
When a controller is being entered no values are preset by COM REG in order to avoid mintended controller functions being activated. For an appropriate parameterization of controller structure 264 it is necessary to enter values >0 for the following parameters:
- Scan time ${ }^{1)}$
- Tine base of the controller list
- Upper limit (of the controller)
- Lorer limit (of the controller)
- Positive increment limit
- Hegative increment limit
- Adjustment factor on a continuous controller with pulse/pause output
- Gain of the actuator adjustment
- Kinimum pulse duration on a step or continuous controller with pulse/pause output
- Kumber of vertices of the polygon curve
- Distance between the vertices of the polygon curve
- Number of setpoints of the setpoint sequence
- Filter time constant
- Increase at the ramp-function generator
- Mumber of linit values of the limit monitors
- Measuring point number for limit monitors and test sockets

1) Here, 'samping time' and 'scan time' have the same meaning

3.5.2 Greating the Controller list (only for R64)

The system program of the processor must be inforned in the reserved data block DB2 in which sequence each controller is called. Therefore, after the creation of the data blocks, each of which contains a controllex structure, the controller list must be created by COM REG.

3.5.3 Transfer to the Nodule

In order to be able to test the controller the data block should be transferred from the file to the module using the fanction < $4>$ "TRANSFER". When working with controllef structure R64 the function block (FB102) and the controller list (DB2) must be transferred along with the data block in which the controller structure is stored.

3.5.4 Online Test of the Controller

After starting the PC the controller can be tested by means of the function <F8> "TEST". It is recommended to ensure that the controller receives the correct values from the input module by selecting a test point table where the different test point values are visible at a glance.

You can optimize the parameters online during the controller test by overvriting the current parameter using the function "FORGE".

3.5.5 Changing the stracture

Since only the parameters may be changed during test you have to exit the test and select the function $\langle\boldsymbol{F} 2>$ "OUTPUT" in order to change the structure. It is reasomable to change the data blocks at the module (in SIOP state) since it is there that the parameter changes, resuiting from test, will be accepted, in contrary to the data block on file. After a structure has been changed the processor must be restarted. The user may now change the masks completed by "InPUI". In contrary to input, the user mon't have to follow the complete sequence of masks, but may select directly the masks to be changed. The "Test" and "Change" steps are repeated until the desired controller characteristics are obtained.

3.5.6 Tramsferring to ai File

After the test all data blocks that have been changed should be saved in the file using the function <F4> "TRANSFER".

3.5.7 Prograt ing the EPROAE

When you work with the IP252, COM REG offers the possibility to program the created data blocks into EPROMs using the function <F4> "TRANSEER". When using the "controller structure R64" the programming of EPROMs is only possible using the STEP5 program package.

3.5.8 Docurentation

After you have finished projecting the controller, the structures and parameters should be printed. To do this, select <F8> "PRINT OUHPDT" using the <F2> key. In addition to the parameters, a cross reference list with the input/output modules used by each controller can be printed.

3.6 Possible Sources of Errors

This section attempts to list all possible problems and sources of errors so that you may avoid them after having studied this section.

- If there are notes on the delivered program version at the begimning of this mamal, please pay attention to the remarks given!
- A valid filename should be preset when blocks are to be read froll or written onto floppy/hard disk. The valid form of a filename is: "X:YZZZZZST.S5D" vhere "X" is a valid drive name (e. g. "A"), "Y" is a capital letter and "Z" a capical letter or a digit.
When you do not enter a filename or when you enter one incorrectly COH REG cancels the access to the floppy/hard disk and displays the message "ERROR EXTERRAI STORAGE". If this error occurs then you are writing a data block this block can be saved because the data is still in the "programmer" medium, although the input medium "FILE" was selected. You can save this data block from the programmer by transferring it into a valid file by means of the function "TRANSFER".
- When you work with the controller structure 864 and the IP252 you should store the data block for both devices in different files so that they are not mixed unintentionally!
- After disconnecting and recomecting the cable between PG and PC, when a power failure on the PC occurs, or following a cold restart of the R-Processor a transfer error occurs that is detected during the next commuication between PG and PC. COM REG then cancels the transfer and displays the message "PC <-> PG TRANSFER ERROR". Then the cancelled fumction is called again the connection may be established.
- In order to increase data security each data block is almost always simultaneously sent to the PG storage as you process a data block (input, output, transfer). It is this PG storage that always contains the last data block processed, even if it
vas input to the module or into a file.
When you cancel the input or output function umintentionally the PG storage retains the data block until you work on a different one; therefore the block can be saved by transferring it from the PG to the module or the file.
- The input function offers "PG" as the target for a data block. Because of the characteristics of the PG storage mentioned above this data block is overwritten without warning when you work on another DB. Therefore you are advised against selecting the PG as destination for input!
- When you cancel the function "OUTPUT" (except "OUTPUT/PARAMETER") not only the output of the mask but also output of the complete data block is cancelled with the result that all other changes (e. g. parameters) are lost. This block can only be saved by means of the PG storage mentioned above.
- The encoding switch of the printer PT88 should be set as it was when the printer was delivered, i. e. all switches "ON".

Note: An incorrect printout indicates that the parity of the printer interface is not set correctly.

3.7 Checkiist for Troubleshooting

The following list contains the most frequent causes of the most important possible user errors, from call of COM REG to controller test.

PGs are highly complex, high performance defices where many fumctions must run correctly at the same time, in particular in the multitasking mode, in order to realize the required action. The large mumber of available functions may lead to a large number of possible operator errors. It is therefore reasonable to restrict the troubleshooting of particularly stubborn and apparentiy inexplicable faults to the necessary modules and functions. Experience has shown that faults are not necessarily found in the function where they appear bat in a different one.

COK REG camot be started

- Does the floppy/hard disk contain all tools and drivers required?
- Were all tools and drivers taken from the same ZEFD package?
- Does the floppy/hard disk contain all COM REG files?
- Were all COM REG files taken from the same COM REG package?

You campot exit a COK REG mask

- Is there still a wrong entry in the inpat field (e. g. entry of time base or determination of input characteristic)?
- Is it possible to leave the mask by pressing the <Break> key or the Enter> key?
- Is the keyboard locked with the key switch?

Probless then moxing fith the progran fille

- Is the name of the defanlt program file in the correct format?
- Is there enough space on the floppy/hard disk?
- Is the attribute of the selected program file "Read only"?
- Is the selected program file stored in a different user area? (User areas can read files vith the attribute "SYS" from user 0 but canmot write into them)
- Is the disk formatred?
- Is the disk drive closed?

Probler when accessing the module

- Is the defarrlt of COM REG "Online"?
- Is the PC supplied with power?
- Is the module plugged in?
- Is the cable comection between the PC and the PG correct?
- Is the comnection cable servicable?
- Are the correct $\$ 5$ DOS drivers used?

The following module-specific notes refer to the controller structure R64:

Folloring cold restart, the processor does not enter the RDIX mode

- For multiprocessing: Is there a valid DB1?
- For multiprocessing: Is the coordinator installed? Are all jumpers set correctly? Is the correct mode set?
- Is the controller function block wissing?
- Is a data block that was entered in the controller list missing?
- Do all accessed input/output modules exist? (Print out eross reference list!)
- Is the correct base address set for all modules?
- Do all modules receive the enable and supply voltage required?
- Are the modules plugged in correctly?

Chapter 5 in wich the controller structure R64 is described gives information on how controller faults (and acknowledgement delay on controllers) can be identified and evaluated.

The processor is in the "RIIT" mode bett the controller does not function eorrectiy. Then refer to the folloring checklist:

- After any transfer/change on the module a restart must be carried out
- The controller mast be entered in the controlier list
- The controller mast be enabled (see Special functions/Controller processing)
- If you entered an address in digital inpets: Das this entry supplied with meaningful values (by STEP5 programs, CP, or switch)? E.g., flagwords must be filled vith values by the $C P$ or the STEP5 program, special switches comnected with I/O modules. Special attention is to be peid to the position of the bit values for "Inhibit controller", "Final position ON achieved", "Final position OFF achieved", "Manusl operation", and "Haintain regulating variable constant".
- The bits mentioned above could have been set in test.
- Are all parameters preset with meaningful values? (see chapter "Entering a controller")
- The address of an ADC (DAC) may not be maintained in a switched off branch. (You should activate the appropriate branch using the structure switch to check it!)
- Do the input/output modules work correctly? Were they parameterized for the correct range?
- Do the imput/output modules work with the correct data format? (Negative values must be represented in two's complement!)
- Does a STEP5 program describe an incorrect data word in the controller data block?

Values entered during the test are not accepted or overuritten

- Not all parameters may be changed during the test!
- Were the parameters entered in the correct format?
- Was an imput made with the addressing for the digital inputs? Then the digital inputs cannot be controlled during the test!

4 Projecting the Controller Structure R64

4.1 Processing the Controller FB

The processor executing the control process is a word processing control processor that recognizes the common STEP5 functions and organization blocks (OBI, OB13; etc.).
Only when data block DB2 (controllex list) containing usable data is available, following restart, will the time-controlled call-up cycle of the controllers be started by the system program. Each controller is represented by a data block. The system program receives information from the controller list as to which controller is called with which scan time. When calling, the appropriate data block is selected. In data word 0 the number of the function block, which contains the control algorithm (e.g. 102 for the controller structure R64) is entered. This function block which is called by the system program processes the projected controller structare using the data in the data block. During this procedure all input values (setpoint, actual value etc.) can be taken from the data block. The computed output values (e.g. regulating variable) are stored in the data block. The process image (takes input values from the peripheral to the data block and output values from the data block to the peripheral) is produced by the system program, if there is an address given in the appropriate parameters. The input/output values can also be supplied by a STEP5 prograin. In this case no addresses may be allocated with the respective parameters so that the system program does not execute a process image for these parameters. The function block that contains the controller struc-tare must exist only once for all controllers because all controller specific data is stored in the data block.

Those tines not marked for controller processing are available to the STEP5 program. During these times, optional STEP5 programs may run to process input and output values of controllers. Thus multi-loop control systems may be created.

The higher the processor load, i. e. the more controllers that are entered in the controller list, the longer the cycle time of the STEP5 program. The STEP5 programs run asynchronically compared with the controllers.

The following blocks must be available in order to enable a control procedure:

- DB 2 controller list
- DB x a controller data block ($3 \leq x \leq 255$)
- FB 102 function block vith the control algorithm

Since a STEP5 program always rums in the background (idle cycle if no program was input) the operating system executes the process image for the digital peripherals (PB 0 ... PB 127). When the control procedure uses input/output devices whose addresses are less than 128, the process image of the STEP5 program overwrites their process images. In order to avoid this a DB 1 that does not assign input or output to the STEP5 program should be entered in the processor. In order to execute a control procedure without SIEP5 software and without any knowledge of STEP5, a "dumay DBl" which prevents the cyclic STEP5 program from accessing peripheral addresses <128 is delivered together with the controller structure s 64 .

Note: - The file "REGR64ST.S5D" contains the control algorithm as function block FB102. Then you already use an FB102 on your system you can assign another block number to the delivered one using COM REG or "LAD CSF STL". You should enter this new name in the controller data block.

- A11 changes to the structure and the comtroller list are transferred correctily only when the processor is restarted. Controllers must not be changed rising the function oodrifur, ducing processing! only those chamges that the function TISI offers are pernitted. Before changing the structure the processor mast be brought to the "sropm mode in order to accept the changes afterwards by means of the function mestrary.
- In the following sections the processor is also called "module" following the conventions of COI REG.

Fou can find more detailed information on the processor and its system prograin in the User's Guide for the processor and in the description of the controller structure R64.

Please pay particular attention to the application exaple given in the controller stzucture R64 description and to the explanation of all terns used by CoM RPG:

4.2 Preset

After S5DOS is started and COM REG is selected (see section "Starting COM REG") COM REG displays the preset mask.

Select the operating mode and the program file from the Preset mask.

- "ONLMNE" means that the PG can copmunicate directly with the module. You can select this operating mode only when the module is ready to operate and when it is comected with the PG. In the online mode, controllers can be projected directly to the module.
If no PC is provided, the controller data blocks can be created using COM REG and stored in a program file. In this case, you should select the operating mode "OFFLINE".
- COK REG can store data and fumetion blocks in a program file. All following accesses to external storage (floppy or hard disk) refer to the blocks in the specified program file. You can enter the program file name after you have pressed the $F 6$; key. The format of the filename is "X:YZZZZZST.S5D" where "X" is the drive name (e. g. "A:", "B:", or "C:"), "Y" is an upper case and "2" an upper case letter or a digit. The name should have the mumber of characters specified above, otherwise it is filled with "e". The entry is completed with <GR>.

Example: "B:KILNO2ST.STD"
The name of the program file should refer to the project. In the specified program file, STEP5 DB, FB and controller DB and FB cam be stored together.

By pressing the function key <F7> you can exit the preset mask and enter the main memu. To return to the module selection press < 8 8.

4.3 Main Menn

The main meru is the highest mask level of COM BEG. From there you can select the following functions:

INPUT. - enter the controller data blocks

- enter the controller 1ist

OUTPUT - change the existing controller data blocks

- change the existing controller list
- print the controller structure
- print the cross reference list

TEST - test controllers online: starting-up, operating, monitoring and changing the parameters

TRANSFER - transfer the data blocks and function blocks between the module (programable controller), program file and block memory of the PG

DELETE - delete data and function blocks in the module and program file

- delete the program file and all blocks within

SPECIAL FUNCTIONS - cold restart of the processor

- warm restart of the processor
- stop the processor
- compress the data blociks in the processor
- change the presetting
- controller processing

IMFO

- list of contents of all control loops on the module, program file or submodale
- SYSID module
- SISID submodule (frame number, version)

4.4 Trrput

Using the function "INPUT" you can project controllers by creating a controller data block. Additionally a controller list (DB2) can be created using the function "INPUT".

After selection of the function "INPUT" by pressing the function key $\langle F 1\rangle$ the main menu offers the possible destinations where entries may be stored automarically:

Fi> program file
<F4> module
<F5> programmer (PG)
Note: - It is advisable, even in online mode, that the entries are stored in the program file first and then transferred to the module so that in the case of disturbances at the PC (e. g. mintentional removal of the module etc.), the data is still available.

- You should never enter the data directly into the PG because its data block storage can only hold one block, as described by STEP5. The block stored in the PG is lost without warning when you work on the next one (e. g. input, output, transfer).

In the following mask input of a controller data block and a controller list is offered:

Fi> controller data block
<F8> controller list
It is only realistic to create a controller list after the creation of all controller data blocks. Following the input of a controller data block or the controller list, described below, the mask is displayed again so that you can make further entries.

The fupetion "IRIPUI" is terninated by pressing the Break key!
Note: If COH REG realizes that an entered data block already exists on the specified destination medium the following question is displayed: "OVERVRITE EXISTING DATA BLOCK? ($Y / N)^{n}$. If you do not wish to overwrite the existing data block, you can save the newly created one. It still exists in the PG memory even though you specified the program file or the module as destination. In order to save the new data block enter "X" and copy the data block from the $P G$ to the program file or to the module by means of the function "Transfer". The data block number may also be changed during this procedure.

4.4.1 Entering a Controller DB

The first step on entezing a controller DB consists of specifying a data block number ícrween 3 and 255. A controller DB entry is generally carried out in a linear way, i. e. all inputs are requested one after the other, without branching, in the form of masks. Entries are offered in the following order:

- entry of structure
- entry of scan time
- entry of controller bebaviour
- entry of function block number
- entry of controller and area name for CP526
- definition of dimensions and mumerical range
- parameterization of selected branches

Note: Parameterization offers only those branches and modules that have been selected during the preceding structuring operation. If you realize daring parameterization that you have forgotten a module when structuring the controller, exit the imput and change the structure using "OUTPUT", in order to be able to paramererize the desired module.

4.4.1.1 Controller Structuring

After entering the data block number the structuring mask is displayed. By means of the structuring function, you can establish an individually required controller struetwre by setting the structure-switches. Based on the given primary structure you can activate specific controller branches.

The structare-switches have the functions of either on/off or change-over switches. The stitches can only be set by entering " 0 " or "1". In case of on/off switches (e. g. "ramp-function generator"), entry of "l" causes the module to be activated. When entering "0" the module remains switched off. Ghangeover switches are marked in the text by a slash "/" (e.g. "contimuous/step"), where one of two selections is possible: ${ }^{\left(0^{\prime \prime}\right.}$ for the alternative preceeding the slash or "1" for the alternative following the slash.

After each entry of "0" or "1" the cursor shows the next logical switch, i. e. only switches of branches that have been activated can be moved. Thus, you are spared umecessary and confusing entries. If you select, for example, the continuous controller "standard" by ' 0 ' the cursor will never point to the item 'interference input' since the latter is optional only for the upgraded controller.

The cursor may also be moved to the respective switches using the four cursor keys. Since the list of switches is longer than the available space, the list can be scrolled up or dow using the function keys $\leqslant 4\rangle$ and $<F 5>$.

Notes: - If the suitch indicated by the cursor position is preset to "0" and you do not wish to change it, you are nevertheless recoumended to enter "0". As a result, the cursor is positioned to the next logical switch by the prograll. Entering the digits one or zero exclusively prevents fou from actiating a switch several times or not at all. If you move the cursor using the cursor keys you do this vithout prompting from the program!

- The change-over switches "Wamual Value PG/ADC" and "Analog/Digital output" are given several times in the List for reasons of program structure. However, COM REG sets the cursor to the respective switch only once, depending on the specified structure.
- The branches "Controlier", "Actual Value" and "Digital Addresses" camot be switched off, thus they are present in each controller.
- When structuring you can only set structure-switches, digital inputs may not be set. Relays can be controlled during online test only.

In order to show the relationships between the structuring mask and the switches of the controller block diagram, a list with the corresponding assignments is provided in the description of the controller structure R64 (chapter 3, Tables).

Stracturing operations are terminated by pressing the fumction key <F7> after which the next entry mask is displayed. Entry can be cancelled by pressing <F8>; all preceding entries are lost.

Note: If the entry is not cancelled during structuring but at a later point in time, cOM REG attempts to store the data block along with previous entries at the destination medium! Only if a data block with the same mumber exists the question "Block x overwrite (Y / N)" is displayed.

```
4.4.1.2 Scam Time
The "scan time" mask enables you to enter individual scan rimes
for each controller.
The scan time is the period of time in which the input values
(actual value, setpoint, etc.) are read in once and the output
values (e. g. manipulated variable, limit) are evalvated and
output to the process.
```


The scan tine may be entered after pressing the fumetion key F2D. The notes on the sequence of keys during entry, given in the section "Input fields" should be observed. The following points are important for the mumerical value:

- In the quasi-contimuous controller outline, the recommended scan time value amounts to 10% of the dominating time constant of the system to be controlled.
- The scan time must be an integer maltiple of 10 ms , i.e. each at least 20 ms .
- For step controllers and continuous controllers with pulse/ panse output, the scan time inust be an integer muitiple of the minimum puls duration.
- A processor can process a maximam of eight different scan times.
- The smaller the scan time the higher the processor load. Therefore, fewer controllers can be processed at the same time. In other words the cycle time of a STEP5 program in the backgromd is becoming longer.
- In the controllex list which is to be entered later, the maximum common divisor of the scan times of all continuous controllers must be entered as time base. If an umusual value is specified for the scan time it should either be corrected later, or the time base should be selected to be unnecessarily
small causing an increased processor load and STEP5 programs to be processed more slowly.
(It is not possible, for example, to enter a controller with a scan time of 30 ms and another with a scan time of 50 ms into the controller list at the same time; the maximum common divisor is 10 ms thile the minimam time base must be 20 ms.)
- After changing the scan time the controller DB in DB2 must be switched off, then on again. Then, a cold restart is to be erecuted for the processor.
(Further information can be found in the description of the controller list and the controlier structure R64.)

Tse function key $<77\rangle$ to terminate entry of sean time and step to the next entry mask. Entry may be cancelled by pressing <F8>; the data block is then created.

4.4.1.3 Controller Behaviour and FB Muber

This mask requires fowr entries. The cursor may be moved by use of the keys <cursor up> and <cursor down>. Ies/no entries are to be made by means of the function keys $\langle 1\rangle$ and $\langle F 3\rangle$. The fumction block number should be entered via the keyboard and terminated by pressing the <Carriage Recurn>.

With the PG you can switch on and off individual controllers during operation without influencing the other controllers (Special functions/controller enable). For this status and for the "STOP" status of the processor you can specify, with the first entry, if in case of a controller stop all outputs of the controller should be set to zero or if they are to remain in the same states as before the controller stop.

By means of the second entry, you may specify whether the controller output is to be updated immediately following the controller processing, or time controlled, i. e. together with the controller input.
In the first case, dead time is short but not constant due to a variable program execution time. In the second case, dead time is constant but of the same length as the scan time. This entry is relevant for those controlled systems where the time constant is about the same duration as the scan time. You then have to decide which entry to select, depending on the controlled system.

With the analog input modrales 6ES5-460-40 and 6ES5-465-40, the
measuring range $4 \ldots 20 \mathrm{~mA}$ is not mapped to $0 \ldots 100 \%$, but to 25 (1000ㅍ) ... 125\% (5000H).
You may select a suitable adaptation fia the controller. 25% are then subtracted from all ADC input values of this controller.

Entering the function block number informs the processor which fumction block contains the control algorithm. Therefore this entry is mandatory. (The controller structure R64 is supplied with the function block number 102.)

Press the function key <F7> to terminate this encry and step on to the next entry mask. Entry can be cancelled by use of <F8>; the data block is then created.

4.4.1.4 GP526 Adaptation

[^5]
4.4.1.5 Trput Chsracteristic

Analog input/ontput modules work with normalized signals, e.g. with $4 . .20 \mathrm{~mA}$ for the analog part and with the range of values of $0000 \mathrm{~h} . .4000 \mathrm{~h}$ on the digital part. With a temperature of $300^{\circ} \mathrm{C}$ a transducer provides a current of 12 mA . The analog input module transforms this current into a hexadecimal value, e. g. 2000 h . This is the value that the controller structure R64 receives from the analog input. In order to work with COM REG using the actual numerical values and units fou should tell the controller by means of this mask how to interpret the hexadecimal value of 2000 h , i. e. the characteristic of the input range should be detemined.

The controller structure R64 assumes that the input/output modules represent the positive range of values of $0 . .100 \%$ as digital value of 0000 h .4000 . Negative values are expected in two's complement (for 4... $20 \mathrm{~mA}=1000 \mathrm{~m} . .50000$ see chapter 4.4.1.3).

Three entries are required in order to specify the characteristic:

- physical dimension (6 characters maximum)
- numerical value of the controlled condition to be provided 0 : ($=0000 \mathrm{~h}$) by the controller in the data format
- numerical value of the controlled condition to be provided 100 of ($=4000 \mathrm{~h}$) by the controller in the data format

Hotes: Kany analog input/output modules have a resolution of 2048 units. On the digital part the modules work with 16 -bitwords where the three least significant bits are not evaluated or set, i. e, the umits that correspond to the analog value are shifted 3 bits to the left (miliplied by 8). Therefore, for a resolution of 2048 mits, on the digital part is represented by 16384, corresponding to 4000h.

Example 1: range of actual value:
-50 .. 150 Degr C
4 .. 20 mA transducer provides

0000h .. 4000h
0 .. 2048 units
controller interprets
0 \% .. 100 \%
During the work with COM REG, in the initial position the following entries (in italics) apply:

Dinension D1 : Degr_C
0 Percent corresp. -50.0 Degr_C
100 Percent corresp. 150.0 Degr_c

Both input values that specify the characteristic of the input range determine the number of decimal places with wich all dimension-dependent parameters are inpat and output. The following values apply for the valid input range:
$0.0000-1.0000$
$0.000-10.000$
$0.00-100.00$
$0.0-1000.0$
$0-10000$
The five formats, shown above, have the marimum resolution, i.e. the greatest possible number of decimal places. The user may ignore a part of the resolution by specifying less decimal places than permitted for this formit. For erample 1, the entry of -50.. 150 Degr_c would also be correct. Since most of the analog input modules can also process negative current and voltages the input range in example 1 is $-250 . .150$ Degr_C.

Note: - The algorithm specified in the input characteristic, with which the controlier is to process the input/output, is valid for all dimension dependent parameters. Therefore, all imput/output modules should have the same data format.

iscrazenexwi 7 wopurdep wofswortp Tre

4.4.1.6 Parameter Input

[^6]- For several parameters no input may be required (e. g. the danger limit of the actual value need not be entered when the corresponding bit is not evaluated). Under particular circumstances complete controller branches can be jumped without input (e. g. the branch digital address when neither digital input or digital output is intended).
- In addition to the input fields the masks also contain output fields that show the selections made when structuring. The cursor can be moved to the input fields only by using the keys <cursor up> and <cursor down>. When parameters are entered the procedure recomended in the section "Input fields" is to be considered.
- Since several parameter lists need more space than provided on the screen, these lists should be scrolled up or down (automatically) while the user completes them. Fressing the function keys <F5> "Scroll down" and <F6> "Scroll up" has the same effect. In order to show the end of a list the message "List end is reached !" is displayed when the last entry is transferred. This message must not be interpreted as an error message referring to the last entry!
- When an entry is made in the address of an ADC, DAC, DO or DI (i. e. input/output module) the corresponding parameter (e. g. actual palue, setpoint, digital input, etc.) is described when the controller is operated by the system program creating the process profile. Then fuput values are not supplied by the input modnles bot by the GP or the FG to be tested (e. g. Aigital inpots) mo entry mast be Eade in the corresponding address of the input/output modnie othervise the specified value is overwritten by the process profile. (The default provides "FW" for each address. An entry is only accepted if this abbreviation (resp. "HFW", "EW", "XW") is foliored by a number. Entries may be deleted by overwriting this number with three blanks.

In the following sections the peculiarities of each controller branch are briefly discussed.

4.4.1.7 Controller Branch

In order to put a contimuous controller into operation, the values entered for parameters "High limit" and "Lower limit" must not equal zero, otherwise the regulating variable is limited to zero.

The same is valid for the parameters "POS increment limit" and "NEG increment limit" of the upgraded controller, i. e. the values should not be zero.

If an actuator adjustment is projected the gain may not be zero.

4.4.1.8 Acturi Value Branch

The paraineters for the warning limit and the danger limit need not be entered if the corresponding bits in the digital output word are not evaluated.

If a polygon curve was entered during structuring the muber of vertices in the mask for the parameterizing of the actual vaiue branch is preset fith zero. Only when a number between one and ten is entered will the corresponding mumber of lines be displayed, which is required for parameterizing the ordinal values of the polygon curve. Although COM REG would accept the defanit number of zero vertices, this mumer is illogical; it must be set to a value between one and ten.

4.4.1.9 Setpoint Erameh

[^7]
4.4.1.10 Lifit Fonitor Branch

The number of limit values is preset to zero; it may be increased to 6 maximum. All limit values of the limit monitor branch refer to the same measuring point. When a positive or negative limit value is violated, the corresponding bit of the digital output word is set. The limit monitors can only refer to active measuring points.

4.4.1.11 Test Soeket

The test sockets emable the user to output internal controller values to external recording instruments. By means of the simultaneous outprat of the read setpoint and the processed setpoint on a recorder, the functions of all modules of the setpoint branch may be checked (the same refers to the actual value bramch).

In contrary to the $A D C$ address, the measuring point number can be modified online during the rest.

Note: Before a test socket can be switched off using the structure key, the address of the ADC should be overwritten with blaniks; ocherwise, the system program attempts to output the contents of the measuring point to the ADC. This means that the ADC should exist physically, else the processor passes into the STOP state signalling a controller fault (see chapter 5, description of controller structure R64.

4.4.1.12 Digital Addresses

The description of controller structure 264 shows that the controller has a digital output word (DO) and a digital input word (DI).

The output word output out the statuses of the ilmit monitor and in particular the status of the step controller outputs ("Open" and "Close") and the continuous controller with Pulse/Pause output. When the regulating variable is to be output digitally the address of a digital output module should be entered into the mask.

Use one of the following options to control the digital inputs, for instance, the signals "End position open reached", "End position closed reached", "Inhibit controller", "Dead zone effective", "Opper", "Lower", "Delete" etc.:

- Then the address of a digital input module is entered for the input "Address DI O1" the digital imput rord is read in antomatically by the operating system and stored in the particular data word.
- When a (interprocessor communcation) flag is entered for the input "Address DI 01" the input word may be specified by a STEP5 program or by a GP where the defined flag is described.
- The digital input word can also be specified directly by a STEP5 progran where the data word 180 in the controller data block is described.
- The bit values of the digital input word may be controlled by the PG during test.

In the last two cases data should not be entered under any circumstances for the input "Address DI 01" since the digital input word is overwritten by the operating system when the process fmage is created.

Important Note: - The digital imput mori eontains many inportant bit values. Then one of these bit values is in an incorrect status the controller camot contime rumbing (e. g. the bit "Inbibit controller").
 - Dhen the user mires an entry in the address for the digital input the specified address, respectively the specified flag should supply a defined valwe.
 - Then the user makes an entry in the adaress for the digital impert the relays camot be controlled during test?

4.4.2 Input of the Controller List

The entries in the controller list determine the calling sequence of the controllers.

The controller list shows clearly the method of working and the loading of the processor:

The processor is able to manage a maximum of 8 different scan times, corresponding to the eight colymns of the controller list. The processor processes the colums one after the other selecting only one controller per colum, then stepping on to the next colum. The time wich passes after one controller of a column is processed until the next one in the same colum is processed, is called time base which is to be entered into the head of the mask. When the time base, for example, is 100 ms the processor should process a controller every 25 ms when there are 4 lists; when there are 8 lists, a controller of a list should be processed every 12.5 ms . Since the processing time of a controller is 2.5 ms maximum, 22.5 ms or 10 ms respectively, are available for the processor to execute a STEP5 program between two controller processes, in the example above.

When, for this example, a list is processed every 100 ms it may contain a controller with a scan time of 100 ms . When the scan time of the controller of this colum is 200 ms it should be called in every second colum. Therefore, this colum may contain two controllers with a scan time of 200 ms each. The number of
controllers per colum is derived from the quotients of the controller scan time of the column and the time base. The number of controllers, however, is limited to 8 since storage, not time, is restricted. All scan times (minimum pulse duration) of the projected controllers (see description below) should be an integer moltiple of the time base so that the quotient is an integer. The maximum combon divisor of all scan times (minimum pulse duration) should therefore be entered for the time base.

If a colum does not contain any controllers or if the maximum muber of controllers per colum is not reached the operating system detects this and may possibly execute an existing STEP5 program instead of a controllex.

For step and continuous controllers with a palse/pause output the regulating variable is comverted into the mumber of pulses. In order to output a pulse with the length of the parameterized miniman pulse duration the controller structure R64 should be called at least once during the minimun puise duration to enable the bit of the digital controller output to be set or reset. This is vhy the minimum pulse duration is decisive for entry of step and continuous controllers with prolse/pause outputs into the controller list.

When the controller list is processed the time base is to be entered first. The following two conditions should be met:

- It shoald be a multiple of 10 ms , at least 20 ms .
- It should be the maximum conmon divisor of the scan times (respectively the minimum pulse duration) of the controller to be processed. When a smaller scan time is selected the processor loading increases because of umecessary administration work.

It is only possible to leave the entry field when a valid time base was entered. The function keys are assigned the following:

$\langle F 1\rangle$	Enter DB
$\langle F 2\rangle$	Remove DB
$\langle F 3\rangle$	Time base
$<F 7\rangle$	Ready
$\langle F 8\rangle$	Brealk

In order to enter the controllers into the controller iist, press the function key $\subset 1\rangle$, enter the data block number, and conclude the input by pressing <Carriage Return>. In order to simplify the entry COM REG does not return to the previous menu but requires the entry of a new data block manber. This input loop may be broken by pressing the <Break> key.

After the data block mumber is entered the program reads the scan time (ninimum palse duration) from the particular data block of the selected destination mediun and attempts to enter the controller into the controller list. Daring this procedure the existing colums with the same scan time are filled before a new colum is opeaed. If the scan time (표inimum pulse duration) is not a multiple of the time base the controller cannot be entered and the time base or the sean time (minimum pulse duration) must be modified. The removal of individual controllers from the controller list is also carried out in form of a loop that is to be terminated by pressing the <Break> key.

After the fumction key <ri> is pressed the time base may be modified. However, the new value is only accepted if it is an integer divisor of all controllers contained in the list. The value is not deleted before a valid value is entered. If there is no further value, which meets all conditions for the time base, the old value should be entered again so that the user can leave the inpat field. If the modification was successful the controller list is updated.

The input of the controller list may be terminated by pressing $\langle F 7\rangle$; the DB2 that was created is stored. By pressing <F8> the input is terminated; the entries are lost.

4.5 Output

By means of the function "Output" an already existing controller data block or the controller list may be checked, amended or corrected. Additionally all controller data and a cross reference list may be printed out using a print function. The only difference between the fumctions "Input" and "Oatprat" is that, in contrary to the rigid operator prompting in the input function, the mask the user wishes to complete may be directly selected in the output function.

After "Output" is selected from the min menu the user may select the medium on which the data biock to be processed is stored. The print function may be branched to fron this menu.
<Fl> Program file
<54> Modale
<F5> Programmer (PG)
<F8 Print
After the medium is selected and the data block mumber is entered the mask selection menu is displayed. When data block two is selected the controller list may be processed. The controller list is output the same way as it was input.

The following description applies to controlier data blocks, not to the controller list.

When the user presses function key $\langle F 1\rangle,\langle F 2\rangle$, or $\langle\beta 4\rangle$, the associated mask is displayed and may be directly completed; however, then function key $\operatorname{FF}^{3>}$ is pressed, another mena is displayed, from which the user may select the masks, controller response/FB number or CP526 adaptation. When function key $\langle F 5\rangle$ is pressed, the memu displayed for the controller branch selection is the same as for input displayed.

When the masks are terminated by pressing <r7> "Ready" COM REG returns to the mask shown above. When a mask is terminated by pressing $\langle F 8\rangle$ "Break" the user leaves not only the processing of the mask but also the complete oatput of the data block. The program returns to that level were the user is requested to enter the data block mumber. In order to save changes already made, the data block wich is in PG block memory may be transferred to the module or program file by means of the function "TRANSEER".

When the user leaves the output menn by pressing <F7> "Store controller", COM REG overwites the old data block rith the new one once the prompt "Block x owerwrite (Y / \mathbb{N}) ?" is answered. If this prompt is answered with "N" or if the output menu is left by pressing <F8> "Break" the modified data block can still be saved from the PG memory.

Note: - When a structure switch is modified by means of the function "OUTPUT", COK REG changes this switch only, not the parameters that become invalid by this procedure. For example, when the polygon curve is switched off with the
corresponding structure switch the parameters for the polygon curve are maintained in the data block so that it need not be entered again when the polygon curve is reactivated. Another consequence is that the ADC adiress is still stored in the data block after the test socket was switched off with the structure switch or after the setpoint was transferred from the ADC to the setpoint sequence. As already described, this existing address input requests the system program to read cyclically the particular variable of the imput module. This means that the input module must exist although the variable read is not evaluated. Therefore the adiress of each ADC or DAC should be ovexuritten fith blanks before the bramch Fith the ADC (MAC) is switcihed off by means of a structure suiteh! After the address vas switched off vith the structure switch it camot be deleted because it is no longer offered for paraneterizing!

- When the format or the number of decimal places is modified during entry of the input characteristic, all dimension dependent parameters are falsified by the decimal power that corresponds to the modification to the mumber of decimal places, i. e. all dimension-dependent parameters should be entered again.

Example:	0% corresponds to	0.00∇
	100% corresponds to	10.00∇
	Setpoint upper limit	1.23∇

After the format of the input characteristic was modified to one decimal place the upper limit of the setpoint is falsified.

> 0 o corresponds to 0.0 V 100 o corresponds to Setpoint high limit 12.0 V

As described above, the function "OUTPUT" also contains the option to print out the controller data entered. After the function "Print" is selected by pressing function key <F8> of the first output menu the following functions are offered:
<T2> Print a controllex data block
<T5> Print all
<F6> Print eross reference list
<F8> Break

After being selected all three functions request information on which medium (program file/module) the data to be printed is to be read. When only one controller data block is to be printed the block number should be entered. Of course, a printer ready to run should be comected to the module. When the "SIERENS PT88" printer is used, all DII switches should be set to "ON".

The cross reference list looks like this:

*						*
*	Analog Inputs:					*
*						*
*		FW	128	DB 003	$A D C 2$	*
*		${ }_{\text {FW }}$	130	D8 003	$A D C 1$	*
*		FW	132	DB 004	$A D C 2$	*
*		FW	134	D8004	$A B C 1$	*
*						*
*						*
*	Analog Oututs:					*
*						*
*				D3004	DAC 1	\star
*		FW	192	D8 003	DAC 1	*
*						*
*						*
*	Digital Irputs:					*
*						*
*		F ${ }^{\text {W }}$	4	D8 003	DI 1	*
*		FW	6	DB 004	DI I	*
*						
*						
*						*
*	Digital Outputs:					*
*						*
*		FW	0	D8003	Do 1	*
*		Ew	2	D3004	DO 1	*

The cross reference list shows the controllers and the input/output module types and the required addresses, whether addresses are accessed trice, and the chamel of modules not yet assigned.

When the function "Print all" is selected the controller list and all controllers entered are printed. The representation of the controller data corresponds to the representation of the controller input.

When the function "Print a controller data block" is selected one single controller may be printed.

4.6 Transfer

By means of the function "Transfer" any (i. e. also STEP5) data and function blocks may be transferred between the media "program file", "module", and "PG".

tax

In order to tramsfer data the source medium should be selected by pressing the corresponding function key. When the program file is selected as source the name of the preset program file is displayed automatically. Afterwards the user specifies the biock type (DB or FB) to be transferred by pressing function key <Fi> or $<2\rangle$. If all blocks of the selected type are to be transferred, function key <ri> should be pressed in place of the entry of a block number; othervise the block mumber must be entered. The destination medium may also be selected by means of the function keys. When the program file was selected as destination, the name of the destination file may be entered according to the conventions described in section "Presetting". The destination file may be identical to the source file. This is only useful when the block number is modified during the transfer procedure. When the user wishes to change the block number, function key $\$ 3\rangle$ "Change block no." should be pressed and the new number entered. When all entries are correct the function key <FT> "Transfer" may be pressed. The entries may only be corrected after <F5> is pressed. The cursor is moved over each input line which may then be corrected or acknowiedged by means of <Carriage Return>. The input may be terminated at any time by pressing fanction key <F8>.

Notes: - "PG" is the term for the block memory of the programmer. It may contain only one block and is overwritten each time a new block is created.

- Then blocks are transferred from the program file to the module they are initially stored in the pirg-in RAM module of the processor. Then this storage is occupied other data blocks, except function blocks, may be stored in the data block storage of the processor. Therefore, it is advisable to transfer the function block(s) first to the module.
- Then no more blocks can be transferred to the module because there is not enough free memory the function "Compress PC" may possibly provide the memory required.

4.7 Delete

By means of the function "Delete" single data and function blocks, or the complete program file may be deleted. After the function is called the function key mem offers the following:

<F1> Delete single blocks from the program file
$42>$ Delete the complete program file
<F4> Delete single blocks from the modale
<F8> Break
Then single blocks are to be deleted, the block type (DB or FB) and the block number should be selected by pressing function key $\langle T\rangle$ or $\langle\mathcal{Z} 2\rangle$. When a program file is to be deleted, the name of this file should be entered. By means of this function not only the preset program file may be deleted but also each program file in the current user axea of the user's disk (hard disk).

The function "Delete" may be terminated at any time by pressing the <Brealc key.

4.8 Special Functions

After the "Special functions" key is pressed the following mentu is displayed:

人

Each function, except "Preset" may be called if an operational processor is comected to the PG and if "Online" was selected when COK REG was preset.

- "Cold restart" has the same function as the manual restart of the R-Processor. "Cold restart" causes a new interpretation of the controlier list and the acceptance of the modifications of the controller structure or modifications of the mumer of controllers. The cold restart deletes all internal controller variables (e. g. a large integral-action componenent which was created on the basis of a long-range controller deviation). The cold restart of the $P G$ can be executed only if the operating mode switch of the processor is set to "RUN".
- The "Warm restart" causes the processor to contimue the cycle with all previous values after it was stopped by means of "Stop". A waril restart may be executed only if the operating mode switch of the processor is set to "RUN".
- "STOP" will interrupt the ruming processor. The processor sets the digital outpat modules to zero by using the "command output inhibit" ('BASP') signal.
- When blocks are deleted from the processor the storage contains gaps that camot be used because new blocks transferred are always stored after the already allocated storage. The fumction "Compress FG" compresses the blocks in the processor so that the gaps disappear and the contimuous free storage increases. "Compress PC" may be called during operation.
- <F6> calls the presetting mask described in the chapter "Presetting". By means of this function the program filename may be changed for example.
- The function "Controller processing" enables or disables each controller of the module. TFi> (Yes) enables, $\langle\mathcal{Z}\rangle$ (No) disables the controller. The cursor may be moved to each controller by means of the cursor keys. The response of each disabled controller regarding the outputs may be determined for each controller when the mask "Controller response" is completed.

Note: Only those controllers that were entered in the controller list may be enabled or disabled. The fumetion "Controller processing" may be called only if the processor contains a correct controller list.

The user may exit the menu "Special functions" without an entry being made by pressing the <Break> key.

4.9 Infornation

When the function "Info" is called, the list of contents referring to data and function blocks of the preset program file or the module is displayed. For purchased fanction blocks the library number is displayed in addition to the block number.

After "Info" is called the user selects - after pressing <F2> between program file by pressing $\langle\mathcal{F}\rangle$ and module by pressing F4>. The block type is then to be specified by pressing the function keys $\langle F 1\rangle$ and $\langle\mathbf{F} 2\rangle$.

The function "Info" may be exited at any time by pressing the Breal> key.

Hote: Not only the blocks created using COE REG are displayed but all blocks contained on the selected medium.

4.10 Test

The controller test enables the user to test operating and monitoring of the controllers in online mode (operating mode of the module: "RUN"). This function enables the user to

- start-up the system
- control the digital inputs
- change and optimize the parameters
- obtain an overview of all important controllex statuses.

In addition to the correctable parameters the different masks also display the structure switch position, the input values, the averaging (measuring points), and the output values.

Each value is requested several times per second from the module and updated on the screen.

After the function "Test" is selected and the data block mumber of the controller to be tested is entered, the branch selection mask is displayed. This mask contains only the active branches as in the parameter input. In addition, a start-up branch and a measuring point table are available.

After the branch number is entered all data of the selected controller branch is displayed and permanently updated on the screen:

Note: The measuring points of the limit monitors can also be changed in test operation. If you want to change measuring points of different dimensions (example: MP4 regulating fariable given as $\%$, MPl actual value dimension dependent), it may be necessary to re-enter the limit vaiues in order to obtain a correct indication of the limit monitor bits.

During the status display the function keys are assigned the folloring:

```
<F2> Force
<4> Scroll #P
<55 Scroll down
<F7> Next branch
<8> Branch selection
```

When the list requires more space on the screen than is available the display may be scrolled up ($\beta 4\rangle$) or scrolled down ($\leqslant 5\rangle$). The next branch is selected by pressing <F7>; when the user presses \langle P8> he is led back to the memu for branch selection.

After the function key $\langle\boldsymbol{F} \boldsymbol{\gamma}\rangle$ is pressed the cyclical status display is frozen on the screen and the cursor may be moved by means of the cursor keys to the input field required. As soon as the nev parameter value is enterd and the <Carriage Return> is pressed the new value is sent to the module by the PG and shown in the new cyclical status display. Since the value displayed comes from the module, it is confirmed that the module has accepted the value.
The following variables may not be controlled and thus mast be changed by means of the function "Output":

- structare switch
- addresses
- number of limits
- muber of vertices of the polygon curve
- number of setpoints for the setpoint sequence

The measuring point table is the most important aid for providing an overview of all important controller data. It supplies the following information:

- Do the input modules supply the correct values?
- Do the output modules output the correct values?
- Does the controller run? (the modified setpoint or actual value should be displayed at latest after the scan time)
- By comparing the fed and processed actual value (setpoint) the function of the processing modules may be tested in the corresponding branches.
- Are the controller parameters correct, does the controller output the expected regulating variable?

Note: When a data block is transferred from the module to the program file after test, the positions of the digital inputs are also transferred.

5 Projecting Controller Structures for IP252

The previous chapters (COM REG) described how COM-software is loaded and how the user steps from loading to the point where he way decide whether to use the COM REG software to operate either the R64 controller of the PC 55-1350 or the controller device IP252. The controller selection menu is now displayed.

Fig. 5.1 Controller selection

In the controller selection the user specifies the modale he wishes to operate using the COM software. The function keys offer the folloring options:
<T1>: Controller stracture R64
<F2> : Control on CPU S5-115U
《F3> : Closed-100p control module IP252

《4> : Closed-100p control module IP252 with graphic parameterization softrare
*88 : Break
The assignment of the function keys $\langle\mathcal{P}\rangle$ to $\langle 7\rangle$ of the mask shown above depends on the existing packages.

After the controller selection the presetting menu is displayed.

Fig. 5.2 Presetting memu
This memu.is structured the same as all other memus of this COM package and is an example of the principle structure of memus. The structure consists of a header area, foot area, and inbetween the particular inpur and output field.

In the left part of the header area, the function to be executed is displayed (e. g. presetting, input, etc.) The right part of this area contains information about entries already made. This information is: "Hodule:", "Source/Dest.:", "Struct.", and "Block:", Modale:" gives information about whether the user has selected the controller structure R64 or the IP252.
"Source/Dest." shows from where the output data was read or where the input data is stored. The following entries are possible: program file, submodule, module or PG. In the foot area the function keys are assigned the corresponding functions; the particular inputs and outputs are made in the area between header and foot area.

The presetting has the following defaults:

Operating mode: Offline
Hodule: : IP252 in S5-1150, -1350, -1500 without access to backplane btis AR./SR memory submodule

In the presetting the user specifies how to operate the module with this cOM software. The function keys offer the following options:

```
<F1> : OFFLLNE
<F2> : ONLINE
<F4> : Selection
<6> : Program file
<7> : Finished
<F8> : Break
```

The operating mode depends on whether the user wishes to work offline first, i. e. programming into the PG, the submodule or the disk, or whether he wishes to program directly to the module (ONLITES).

The functions IP252 vith or vithout bus access refer to the direct bus access. The direct bus access means that the IP252 is not restricted to its eight analog inputs/outputs but that it can additionally use the analog peripherals of the central controller. In this case the IP252 behaves as a co-processor and leaves the bus administration to the CFO. However, the bus can be accessed only in the S5-115U programable controller.

The user submodule wich contains the structures "ARS/SR" supports the comection of control loops 1 to 8 with master and servo controllers. Wherever you find ADC in in the documentation on projecting (chapters 8.2 und 8.3, manual IP252) you can enter the following parameters:

It is thus possible to assign, for example, the processed actual value from controller no. 2 to controller no. 3 as a setpoint value. The folloring value is entered via the PG fnto the entry field of $A D C 6$ (of branch 8 of controller no.3):
$A D C 6 \quad P W \quad 2.12$

Use the $\langle 4\rangle$ function key to carry out these presettings.
For the description of the following masks a standard controlier with memory submodule AR/SR is taken as an example.

When the $\langle F\rangle\rangle$ key is pressed the main menu is displayed.

5.1 Main Mem

The main ment is the starting mask for all functions; the user can reach it from each position of the program by pressing the Break key once or several times.

Fig. 5.3 Yain memu
Starting from this main menu, the user steps to the sub-memus by pressing the respective function key. The selectable fumetions are:

5.2 Tmput

The term "Input" describes each step for specifying the control loop. In order no step is omitted during the initial inpat the PG leads the user in a linear manner, i. e. Without branches, through all input functions.

Input sequence: Select the destination medium
I
I
Enter the control loop number
I
I
Select the structure
I
I
Structure
I
I
Enter the scan tine
I
I
Specify the Stop behaviour
I
I
Specify the dimension
I
I
Parameterize the branches

After the input function is selected the $P G$ replies by displaying the ment in figure 5.3.

This menu requests the input of the medium where the data to be inprat should be stored. This information is entered into the field rSource/Dest.: ${ }^{n}$ in the header area. The following entries are permitted:

Fi> : Program file
F2> : ----
<F3> : Submodule
<F4> : Module
<F5>: Programer
<R6> : ---
$\langle\mathrm{FT}\rangle$: --..
<78> : Break

Fig. 5.4 Menu for destination input

After the destination is selected the controller structure is selected in the same way. The fumction keys are assigned the following:
<Ti> Standard controller
<F2> Drive controller
T8) Break

At this stage the PG requests the control loop number. Since IP252 is able to process up to eight control loops, the entry $1 . .8$ is permitted. Thus the data entered in the following procedure is allocated to a specific control loop.

Each entry made appears in the right part of the header area. Then the user has entered the control loop mumber and transferred it by pressing the Return key, the structuring mask (figure 5.5) is displayed.

5．2．1 Structuring

Structuring means that the software switches that exist between the permanently assigned branches，are set according to the application．That means that the switches of the branches re－ quired are closed（ $=1$ ）and those of the branches not reguired are open（ $=0$ ）．

The structuring switches may function as on－off switches as well as changeover switches．For on－off switches＂ 0 ＂means No and＂1＂ means Yes．Changeover switches are marked with a slash＂／＂in the text and are used to select one of two sub－branches．＂0＂is assigned to the first and＂1＂to the second alternative．

The structuring switches are subordinated hierarchically and assigned to corresponding levels．These divisions are indicated by the indentations of the particular subordinate structure switch terms in the structuring mask．

＊＊							
＊	Input	Mocule ：IP252		Struct．	：Starditul		\pm
＊	STRUCTURING	Scurce／Dest．：FIIE		Block	：Catl	003	＊
＊							＊
＊	t						\pm
＊＊							
＊	1：Caxtoller	1	2：Actul value			1	＊
＊	Contiruas／Step	0	ADC／Pulse			0	＊
＊	Hariel inyat FG／ADC	0	Validicy check			0	夫
\pm	Standerd／Opgraded	0	Averaging			0	＊
＊	Separate D－Irput	0	Polygen curve			0	＊
シ	Interference ingut	0					＊
＊	Mamal incat PG／EDC	0					＊
＊	Manal ixput PG／ADC	0					＊
＊	Cath．／mark－space	0					\pm
＊	2－／3 Foint cantuller	0					＊
＊	Actuator adjusomert	0					\pm
＊							\pm
＊	3：Sexpoint	1	4：Inmit mitior 1			0	＊
＊	$A D C / E x^{\prime}$	0					\pm
＊	Pap－function generator	0					＊
＊							＊
＊							＊
＊	F1 1 F2 ！F3 ！	F4 ！	F5 I F	F6 ！	F7！	$F 8$	＊
＊	$!$ ！！	Scroll ！	Scroll ！	$!$	$!$		＊
\pm	\boldsymbol{l} ！！	ゅ！	dowen ！He	Help ：R	Ready ！	Break	＊
＊							＊

Fig．5．4 Structuring masix

Since not all the structure switches of a controller structure can be displayed at a time，the contents of the screen may be scrolled up or down．
These functions can be executed by pressing the function keys ＜ 4 4＞or \langle F5＞．The function key $\langle F 5\rangle$ is assigned the function

Heip; by pressing <F7> the entries made are transferred, by means of 38 the processing of the mask is terminated and the main meni : s displayed.
<44> : Scroll up
\langle 5> : Scroll down
<F6> : Help
<F7> : Ready
< 8 8> : Break
The cursor is moved on the screen by means of the cursor keys. The user structures the branches and subbranches by entering a "1". The branches not selected are suppressed.

As soon as the branches are set the user has defined the final control loop structure. When he is satisfied with it he may terminate the projection by pressing the function key <FT> (Ready).

5.2.2 Entering the Scan Fine

After the controller structure is defined in the last step, the scan time is entered. The user should note that the scan time may only be a two's square value between 4 ms and 32 sec .

In the mask shown in figure 5.5, a rough formala is offered for selecting the scan time; the possible range is indicated. Below, the set or the default scan time is displayed (default is always $T A=4 m s)$. In the bottom ine the PG provides information on the processor loading according to the selected scan time, for the structure selected for the control loop. The unit is percent (\%), 100 \% indicates complete loading of the processor.

Fig. 5.6 Scan time menu

The menu offers the following function keys:
<F2> : Input
<77> : Ready
<78> : Break
By pressing function key $\langle F 2\rangle$ the defanlt scan time can be modified. The keys $\langle 7\rangle$ and $\langle\Gamma\rangle>$ are assigned the same functions as in the previous menus.

To which extent the controller works stably with the scan time selected is the responsibility of the user. He is also responsible for the adaptation of controller parameters to the modified scan time.
Then function key <F7> is pressed the mask for setting the conFroller behaviour (see figure 5.7) is displayed.

5.2.3 Controller Behaviour

In this memu the aser specifies the controlier behaviour in the case of a controller stop (e. g. when power failure occurs). For such a case three entries are necessary respectively three questions have to be answered. The default is "Yes" in all cases.
a) Should the controller outputs be set to "O" when the control loop is not erecuted?
b) Should the system restart, automatically, with resumption of power supply?
c) Is a restart condition to be observed when the system is started automatically (for a detalled description of this condition see sections 3.1 and 4.7)?

Fig. 5.7 Setting the controller behaviour
The displayed responses may be changed by pressing function key $<F 1>$ or <F3>. The function keys are assigned the following:
<
<F3> : No
<T7>: Ready
$\langle 78\rangle$: Break

5.2.4 Specifying the Controllex Bane and Area Elope

After specifying the controller behaviour and pressing the "Ready" key <F7> each controllex (No. 1 to 8) of the IP252 can be assigned a comtroller mame and area name comprising each not more than 8 ASCII characters. Input in this mask, however, is useful only if controllers of the IP252 are to be operated and monitored via a CP526 or a similar device.

А

Fig. 5.8 Adaptation to CP526

At this stage, note that there is a difference between standard controllers and drive controliers. With the drive controller, activating the <F7> key will lead directly to the parameter assignment, winereas the standard controller still requests an intermediate step.
In this intermediate step, the dimension and characteristic is specified.

5.2.5 Specifying the Dimension

Then the standard structure contains values with physical dimensions the user may specify an ASCII string and a characteristic of the dimension before parameterization. The default ASCII string with 6 characters contains "ẹ"; the 0% value contains " 0 ", and the 100% value contains " 100 ". The specification of the dimension consists of entering - the ASCII string,

- the characteristic.

The menu for these entries is shown in figure 5.9.

小

Fig. 5.9 Input of the physical dimension

In the first line of the menu "Dimension $D 1$ " the user may enter the dimension necessary for the control loop, with an ASCII string up to 6 characters long if the defarit "\%" does not match. Aftermards the cursor jumps to the next line and the of sign in che characteristic lines is replaced by the dinension entered. Then the "O \%" value and the "100 of" value are assigned a nomerical value.

When these values are entered the PG checks whether the decimal places are identical and whether the characteristic entered is positive, i. e. whether the 0% value is less than the 100% value (see section 4.4.3).

5.2.6 Paraneter Input

The last step of the inprat is to enter the parameters of the last structured controller. Here the PG offers only those subfuctions (branches) activated in the previous structuring mode, for parameterizing.

The parameterizing starts with the PG displaying a list of the comected branches where each branch is assigned a selection number, which is identical to the branch number (see figure 5.10). By means of the selection muber the user may call the parameter list of the subfunctions to be parameterized. After the selection mumer is entered the branch selection is terminated by pressing the <nter> key.

Fig. 5.10 Parameter input/Branch overview

After a branch is selected the corresponding parameter list is displayed. Oniy the parameters of the selected subbranches are displayed.

After the branches are parameterized each entry should be termimated by pressing <Carriage Return>, whereas the complete parameter list of each branch is terminated by pressing the

Bnter> key. Then the parameter list of the nert branch is displayed until all branches are parameterized. Figure 5.11 shows the parameters of branch 3 of the standard controller when the memory submodule ARS/SR is used.

Fig. 5.11 Parameter inpot

Following this procedure the PG redisplays the Iist of all activated branches. This emables the user to correct the entries later. Then all the values are modified the $\langle F\rangle\rangle$ key is pressed and the data, entered so far, is tramsferred. When the destination device already contains a data set vith the same controller mumber the progranmer displays a menu winch prompts the user whether the data set stored in the PG may be deleted.

The user must answer the prompt "Controller x overwrite (Y/N)". He does this by pressing the function key "Ies" or "fro". When "Yes" is pressed the data set just entered is stored and the data set in the destination medium is overwritten; when "No" is pressed the new data set is lost.

5.3 Output

When the user selects the function "Output" in the main menu by pressing function key $\langle F\rangle$ the output menu as shown in figure 5.12 is displayed after entry of the destination medium and the control loop number. By means of this function an already existing control block may be checked, amended or corrected.

Contrary to the linear prompting during imput, the desired masks may directly be selected in the output function. The screen masks "STRUCTURING", "SGAN TTIE", "CONTROLLER BERAVIOUR", "PHYSICAL DIntixSION", and "PARAMETERIZING" are handled in the output function as described in the previous section. After each step the program returns to the output memu. If the Break> key or the <Enter> key is pressed this menu is left and the saving dialog started.

Fig. 5.12 Output memu
In the subment to
<33 BESY parameter
the softkeys
<F3> Behaviour
<F4> Adaptation to CP526
are displayed (see also figures 5.7 and 5.8).

Fig. 5.13 Submenc to function "BESY parameter"

CAUTIOR:
When the controller is parameterized the set dimension is, if necessary, displayed initially and may be modified in the output function. The user should note that the modification of the characteristic does not cause another check of the values previcusiy entered. After the characterstic is modified the new values may exceed the input range and lead to modefined states.

The user is completely responsible for the nodiffication of the ditension characteristic in the cutput!

Then the user presses fumction key $<2\rangle$ in the main menu the output mode is called. When at this stage the "Print" function key is pressed, the "Print" menu shown in figure 5.14 is displayed.

In this menu the user may select the following printouts:

```
<F2> : Print block
F5> : Print all
<F6> : Cross reference list
<8> : Break
```

```
The cross reference list contains a list of all imputs and out-
puts used for each control loop. This documents the intercomnec-
tion and maltiple allocations may be avoided.
With the function "Print block" the controller structures, scan
time and all parameters are printed for one selected control
loop.
With the function "Print all" the cross reference list, con-
troller structure, scan rime and all parameters of all control
loops are printed.
After the program is selected the imput of the source medium is
requested; when the fumction "Print block" is selected, the con-
trol loop number should also be entered.
When the <Break> key is pressed the user returns to the main
menu.
```


Fig. 5.14 Print memu

5.4 Transfer

With the function "Transfer" the blocks are transferred to the individual media; however, only one block can be transferred at a time.
When the function key $<\mathbb{F}\rangle$ is pressed in the main memu, the user is prompted to enter the source and the destinstion medium. The function keys are assigned the following:
$\langle\boldsymbol{T 1 \rangle}$: Program file
<33 : Submodule
<F4>: Hodule
<F5>: PG
<F8> : Break
The user should additionally enter the block (parameter set) that is to be transferred. When an asterisk ($*$) is entered all blocks are transferred.
Afterwards the PG displays the memu shown in figure 5.15 where the function keys are assigned the folloring:

F3>: Change block number
F5> : Correct
$\langle\boldsymbol{T 7}\rangle$: Transfer
<F8> : Break

Fig. 5.15 Hemu for block transfer

<F3> Change block number	This function enables the user to change the block mumbers. The input of the new nombers is to be terminated by pressing <Carriage Return>.
<F5> Correct	This function enables the user to correct incorrect entries. When for erample the data set is to be transferred not to the selected device (medium) bat to another one the user may change this entry by means of this function.
F7> Iransfer	This function enables the transfer in the selected manner. If a block with the same number is already stored in the destimation device (medium) the user is prompted "Overwrite module? (I/N) ${ }^{n}$.
<F8> Break	This function terminates the function without transferring the data.

5.5 Delete

The user may call the Delete function by pressing function key F5> in the main menu. Then the PG displays the Delete menu shown in figure 5.16.

The following delete functions can also be called up by function keys:

```
TFl> Delete block from file
    An individaal block of the activated
    program file may be deleted.
<F3> Delete block from submodule
    Individual controller data sets may be
    deleted from the memory module. When
    an asterisk (*) is entered instead of a
    controller mumber all controllers of
    this memory module are deleted.
    <4> Delete block from module
        Individual controller data sets may be
        deleted from the module. When an aste-
        risk (*) is entered instead of a con-
        troller number, all controllers are
        deleted from the module.
48> Delete complete prog. file
        A program file is deleted completely
        from the disk or the Winchester. Thus
        all blocks are deleted from this file.
```


小

Fig. 5.16 Delete memu

5.6 Special Functions

The special functions which the user selects from the main menu by pressing <F6> offer the following:

```
《FI> Start
    This function that only rums online, sets
    the operating mode "Rum" for the module.
<4> Stop
    This fumction that only rums online, sets
    the operating mode "Stop" for the module.
    < 6 6> Preset
        From this mem that is shown in figure 5.2,
        the operating mode and the program file may
        be selected. When the operating mode is
        prompted the user should enter, offline, if
        programmer and programable controller are
        not comnected.
        The user is offered two alternatives when
        operating the IP252:
        - "IP252 without bus access" (<F3>)
        - "IP252 with bus access" (< \(44>\) ).
```

[^8]

Fig. 5.17 Controller processing menu

The cursor may be moved to the individual control loops in this menu. The function keys are assigned the folloring:

Frl> Yes
The control loop on which the cursor is positioned is enabled.
<T3> No
The control loop on wich the cursor is positioned is disabled.
<F8> Main mern
When this function key is pressed the main menu is displayed.

5.7 Information Functions on the IP252

When the user presses the function key $<F 7\rangle$ in the main menu the memi "Information" is displayed. The function keys are assigned the following:

```
<F2> Directory:
    After the source device is selected, the
    programmer supplies a list of contents of all
    control loops of this medirm. In addition to the
    control loop number the structure, the version
    mumber, and the processor loading are displayed.
<4>> SYSID Kodule:
F5> SYSID Submodule:
    These functions that lead to the menu shown in
    figure 5.18 inform the user about the plant to
    be controlled, the module, the submodule, the
    version number of the firmware, and the bus
    addresses.
    Input is possible in the fields
    "Plant from : date" and
    "Frame no.: x' (x = 0 to 254).
    These fumctions were introduced in order to enab-
    le the CPU of a programmable controller to ope-
    rate its IPs and CPs and in order to read the
    data described above for diagnostic purposes.
```


Fig. 5.18 SYSID menu

IP252 - Error diagnosis
<F6> IP252 fault
When a fault occurs in the IP252 this function displays an error message containing error muber and description. Only one error message is displayed at a time, even if several errors should have occured. See figure 5.19 for the error messages.

When the "Info" fumction in the submenu "Error" is activated IP252 outputs the following messages for error diagnosis. The preceding fault numbers are stored as error code in the dual-port RAM (see also chapter 5, mamual IP252).

Error code (decimal)	Text displayed at the PG_{G}	Error description	Reaction of IP
∞. 11. 12. 13. 14. 15.	No error Harchare Hardware Harchare Harctrare Hardware	Normal state: "No error in IPZS2" Timeout (except amalog mocile) Ckecksta of EPROMs is not valid offset check: deviation of a DAC >7LSB Error in harchare test program: RNM Error in hardware test program: MMART	"stop" "stop" "stap" "Stcpen *STOP*
20. 21. 22. 3. 30. 31.	Uatchcog Dir. bus access Wire break at digital inport Error in analog sec. PC STOP sum. error	Monitoring time elapsed SS bus is not erabled by SS CPU Open ciravit at digital inpert (digital tacho) Volrage stpply of analog sec. has failed Intibit comand output (BASP) is active Hrong/no sumodule in 1P2S?	"STOP" "stce" EsTop" "stcp" "STOP" "STOP" "stcpu
$50 .$ $51 .$	Error in analog module Overtcad	Timeout or open circuit in aratog mocule ip 252 overloaded (time confliet)	"Stcp" LED max flashing
$70 .$ $71 .$	STOP switch Software STCP	STDP switch of IP 252 in STOP position stop of IP 252 (caused by PG or CPU)	$\begin{aligned} & \text { "STOP" } \\ & \text { "STCP" } \end{aligned}$

The following messages only apply for the ins structure

76.	Prepare self-setting		
76.			nore
			none
77.	Self-setting success-		none
	fully terminated		
78.	Structuring/		none
79.	Invalid antl numer	Inval id controller to. (no. 1 or 2 onty	none
80.	Samp. time too long	Sampling tize too long ($\mathrm{T}^{\prime}=4$ or 8 ms cnly)	mone
81.	Laxd torque too high		none
83.	Unsuritable	Illegal procedre	none
84.	Optisization failed	Parameters could not been calculated	none
85.	Break by PG/PC	Ereak caused by programmer	rone
86.	S5 commication error	55 comminication error with if 240	none
87.	\$5 wire break	open circsit in If 240 module	nove

Fig. 5.19 Error messages of IP252 for error diagnosis

All messages listed above are recognized by the operating system of the IP252 and can also be fetched by the CPU from a specific RAH area of the IP252 (dual-port RAK) by means of RECEIVE 200. A fault entry \quad ill automatically be deleted when the module passes from "STOP" to "RON".

Normally only the message which has been signalled first is entered. Message numbers 51 and 75 to 85 are an exception to this rule: These messages are overwritten by each following one?

> <F7> Processor loading:
> After the source device is entered this fumction supplies a list of all control loops together with the version number, a controller structure, the description list, and the processor loading of each control loop (IP252 loading). The total load of the individual modules must not exceed the 100% limit. See figure 5.20 for processor loading.

Fig. 5.20 Frocessor loading

5.8 Controller Test

The controller rest fonction which the user calls by pressing function key <F3> in the main memu, enables the user to operate and monitor the controller in online mode; in addition to the imput and the display of parameters (in control mode) the controller test shows actual bit values (e. g. enabling branches or limit value identification), imput values (e. g. PC setpoints) or intermediate results of the algorithm (so-called measuring points). All values are requested and updated by the IP252 several times per second.

This function is suitable, in particular, for the starting-up procedure, error diagnosis and optimization of control loops.

After the user has selected the function "Test" ($\langle F 3\rangle$) and entered the control loop number, the branch selection memu is displayed wich is identical to the branch overview shown in figure 5.10. In addition to the branches offered for parameterization, there are the two functions "Measuring point table" and "Starting-up" in the control test. Within the individual branches, bit values and switch positions are displayed in addition to the data displayed for parameterization. After the user has selected a branch, a mask is displayed as shown in figure 5.21, for example.

Note: The measuring points of the limit monitors can also be changed in test operation. If you wish to change measuring points of different dimensions (example: MP4 regulating variable given as $\%$, HPl actual value is dimension-dependent), it is necessary to re-enter the limit values in order to obtain a correct indication of the limit monitor bits.

Fig. 5.21 Controller test menu

During this controller test the user may change each value except the structure switches. These changes should be made by means of the "Rorce" mode.

Controlling in the controller test
During the normal controller test the cursor is not visible. If the user wishes to modify a parameter during RUN he may initiate it by pressing the "Force" key. The result is that the cyclical status request is terminated and the last display is frozen. Then the cursor appears on the first field that can be accessed with the "Force" key respectively on the field that was accessed last in this section. In the "Force" mode, the cursor control is the same as in parameterization mode, except that the cursor can only be moved to "accessible" fields.

When a parameter, on wich the cursor is to be moved, should be changed the existing value is overwritten by the new one and the entry is terminated by pressing the Retarn key. The PG transfers this new value immediately to the IP252, cancels the control mode and returns to the cyclical status output.

Hon-controllable values: addresses measuring points number of limit values number of vertices/setpoints

The folloring parameters may cause conflicts in the overlayed control of the IP252 since these parameters also may access the same lines Fia dnal-port-RAM operation:

PG setpoints
PC enabling

Configuration sheet: Drive controller

Controller No:
Module No:
Date:
Handled by:

BRANCH 1 : CONTROLLER OUTPUT CURRENT SETPOINT

Description
Value
Phys. unit

S 1.1 Structure Selector CONVERSION

CON 1.1

SCALing DeCeLeration Value \square $\%$
DAC 2
ADdRess \square
REL 1.1 BREAK ENABLE
MP 6 IBR Deceleration current
MP 9 I SOL Current setpoint
MP 12 N-ACT Actual speed

Module No: Plant:

Handled by:

BRANCH 2: FRICTION

to Branch 1
\square

BRANCH 3: PERIPHERAL VELOCITY AND ACCELERATION

Peripheral velocity

Description
CON 3.1
BIT 3.1
REL 3.1
VAR 3.1

MP 7 DVDT Acceleration
Value
Phys. unit
\square \%
\%

MP 12 N-ACT Actual speed
MP 14 N-SET Setpoint after ramp generator \%
MP 15 D Diameter \%
MP 16 V-ACT Actual speed $\%$

Controller No:
Module No:
Plant:

Date:
Handled by:

BRANCH 4: LOOP GAIN

Description

Value Phys. unit

S 4.1	Structure selector INJECT DIAmeter SIGNAL		
CON 4.1	SCALing LOOP amplification	\square	$\%$
ADC 5	ADdRess		
MP 8	K Gain		$\%$
MP 15	D Diameter		$\%$

BRANCH 5: VELOCITY CONTROLLER
Page 1
SPEED CONTROLLER

Description
CON5. 1 CON5.KP CON5.TN CON5.TV CON5.B + CON5.B-

BIT5.CE CONTRoller ENABle BIT5.OV + High OVER FLOW (identifier) BIT5.OV- Low OVER FLOW (identifier)

REL 5.1 STart-UP DerivatioN ENable
REL 5/9

STart-UP SETPoint
Proportional value Integral-action time Derivative-action time Controller HIGH LIMIT Controller LOW LIMIT

Value

Phys. unit
\%
\square
\%
\%

MP10 I*1 controller output \% MP11 DN-ACT control deviation \%

Controller No:
Module No:
Plant:

Date:
Handled by:

BRANCH 5: (ROTATIONAL) SPEED CONTROLLER

Description
Value

Page 2

Value . Phys. unit

CON 5.SHL Setpoint High Limit, Speed controller

CON 5.SLL Setpoint Low Limit, Speed controller

CON 5.AHW Actual value High Warning limit, Speed controller

CON 5.ALW Actual value Low Warning limit, Speed controller
CON 5.AHD Actual value High Danger limit, Speed controller

CON 5.ALD Actual value Low Danger limit, Speed controller

BIT 5.SHL SHLS VIOLated
BIT 5.SLL SLLS VIOLated
BIT 5AHW AHWS VIOLated
BIT 5.ALW ALWS VIOLated
BIT 5.AHD AHDS VIOLated
BIT 5.ALD ALDS VIOLated

[^9]Date:
Handled by:

BRANCH 6: SET-UP SPEED

to Branch 5

Description

Value
\square

CON 6.1 Set-UP SPEED $\%$

REL 6.1 SET-up Speed ENABle

Controller No:
Module No:
Plant:

Handled by:

BRANCH 7: CREEP SPEED

to Branch 5

Description

CON 7.1 Creep SPEED
REL 7.1 CREEP speed ENABle

BRANCH 8: (ROTATIONAL) SPEED SETPOINT, VELOCITY SETPOINT

Description
S8.1 Struct. sel. RAMP GENERATOR
S 8.2 Struct. sel. SMOOTHING
S8.3 Struct. sel. SETPoint SEQUENCE
CON8.1 CONSTant SETPoint
CON8.2 SETPoint SCALER
CON8.TR
CON8.TH
CON8.INC
CON8.TZV
Ramp-down time
Ramp-up time
INCREASE
Smoothing time constant
ADC 6 ADdRess
DAC 5 ADdRess
BIT 8.hi HIGHER
BIT 8.LO LOWER
BIT 8.ERA ERASE
REL 8.1 PG/PC-SETPoint
REL 8.2 SETpoint ENABLE
REL 8.3 ADCINPUT
VAR 8.1 VARiable SETPoint
MP12 N-ACT Actual speed
MP14 N-SET Setpoint after ramp generator
MP 17 N-SET Setpoint before ramp generator

Value
Phys. unit

Controller No:
Module No:
Plant:

Date:
Handled by:

BRANCH 9: PRIMARY CONTROLLER

Page 1

Description

S9.1 Struct. sel. Limit choice B + B-
S9.2
59.3

CON9. 1
CON9. 2
CON9.KP
CON9.TN
CON9.TV
CON9.B +
BON9.B-
ADC1
ADC2
BIT9.CE
BIT9.OV +
BIT9.OV-
REL.9.1
REL5/9
VAR9. 1

MP1	ACTUAL
MP2	SET
MP3	DIFF
MP4	CORR
MP12	N-ACT

Struct. sel. Setpoint selection ADCINPUT
Struct. sel. multiplier select $N-A C T / P G$ SCALER
CONSTant SETPoint
SCALer CONST.
Proportional value
Intergral-action time
Derivative-action time
Controller HIGH UMIT
Controller LOW UMIT
ADdRess
ADdRess
CONTRoller ENABIe
High OVERfLOW (identifier)
Low OVERFLOW (identifier)
VARiable SETPoint DIRect TENSIO CONTROI

VARiable SETPoint
Actual value at controller
Setpoint at controller
Deviation at controller
Correction value at controller
Actual speed

Value
Phys. unit

$\%$ \%

Controller No:
Module No:
Plant:

Date:
Handled by:

BRANCH 9: SETPOINT/ACTUAL VALUE MONITORING

CON9.SHL
CON9.SLL CON9.AHW

CONG.ALW
CON9.AHD
CON9.ALD

BiT9.SHL
BIT9.SLL
BIT9.AHW
BIT9.ALW
BIT9.AHD
BIT9.ALD
MP1 ACTUAL
MP2 N-ACT

Description

Setpoint High Limit, Position controller Setpoint Low Limit, Position controller Actual value High Warning limit, Position controlier
Actual value Low Warning limit, Position controller
Actual value High Danger limit, Position controller
 Actual value Low Danger limit, Position controller
SHILP VIOLated ALIP VIOLated AHWP VIOLated ALWP VIOLated HDP VIOLated ALDP VIOLated
Actual value at controller Setpoint at controller

Controller No:
Module No:

Date:
Handled by:

Plant:

BRANCH 10: SPEED ACTUAL VALUE

Description
Value
Phys. unit
S 10.1 Struct. sel. actual value ANALOG/PULSE sensor
S 10.2 SMOOTHING
S 10.3 EXPAND (flicker eliminator)
CON10.1 ACTual SCALing speed
CON10.2 STart-UP ACTual value CON10. 3 CALibration DISPlay
CON 10.4 Rated speed REV/SEC
CON 10.5 Line numbers/100 ($\mathrm{NC} / 100$)
CON10.TVZ Smoothing time constant

ADC 3	ADdRess
DAC 1	ADdRess

REL 10.1 Start-up ACTual ENABle
MP 12 N-ACT Actual speed

Controller No:
Module No:
Date:
Handled by:

Plant:

BRANCH 11: ACTUAL ARMATURE CURRENT

S11.1 Struct. sel. THERMal MONITORing
S 11.2 Struct. sel. Armature CURRent INJECTION

CON 11.1 THERMaI LIMit
CON 11.2 THERMAL CONSTant
CON 11.3 SCALing ARMature current

ADC 4
ADdRess

BIT 11.1 THERMaI ALARM

MP 5 I*R Correction value at actual current \%
MP13 I-ACT Actual armature current \%

Controller No:

Module No:
Plant:

BRANCH 12: LIMIT MONITOR 1

MP NR MEASuring POInt NumbeR

CON 12.1 LIMIT 1
CON 12.2 LIMIT 2
CON 12.3 LIMIT 3
CON 12:4 LIMIT 4
CON 12.5 LIMIT 5
CON 12.6 LIMIT 6
CON 12.7 Number OF LIMITS

$$
\begin{aligned}
& \% \\
& \% \\
& \% \\
& \% \\
& \% \\
& \% \\
& \%
\end{aligned}
$$

BIT 12.1 LIMIT IDENTifier 1
BIT 12.2 LIMIT IDENTifier 2
BIT 12.3 LIMIT IDENTifier 3
BIT 12.4 LIMIT IDENTifier 4
BIT 12.5 LIMIT IDENTifier 5
BIT 12.6 LIMIT IDENTifier 6

BRANCH 13: LIMIT MONITOR 2

Description
Value
Phys. unit
MP NR MEASuring POInt Number \square
CON 13.1 LIMIT 1
CON 13.2 LIMIT 2
CON 13.3 LIMIT 3
CON 13.4 LIMIT 4
CON 13.5 LIMIT 5
CON 13.6 LIMIT 6
CON 13.7 Number OF LIMITS

BIT 13.1 LIMIT IDENTifier 1
BIT 13.2 LIMIT IDENTifier 2
BIT 13.3 LIMIT IDENTifier 3
BIT 13.4 LIMIT IDENTifier 4
BIT 13.5 LIMIT IDENTifier 5
BIT 13.6 LIMIT IDENTifier 6

Controller No:
Date:
Module No:
Plant:

BRANCH 14: MEASURING SOCKET 1

Controller No:
Niodule No:
riant.

Date:
Handled by:
8.1 Configuration sheet: Drive controller

BRANCH 15: MEASURING SOCKET 2

Description

Value
Phys. unit

MP NR MEAS. POInt Number
DAC 4 ADdRess

BRANCHE 1.1 : CONTINUOUS-ACTION CONTROLLER (STANDARD-VERSION)

	Description	Value	Phys. unit
S1.1.1	Struct. sel. Manual input	PG/ADC	
CON 1.1.MA	CONSTant MANual value		\%
CON 1.1.KP	Proportional value		
CON 1.1.TN	Integral-action time		
CON 1.1.TV	Derivative-action time		
CON 1.1.B +	Controlier High LIMIT		\%
CON 1.1.B -	Controller Low LMIT		\%
ADC 5	ADdRess		
REL1.1.1	AUTOmatidMANUAL (mode)		
BIT 1.1.CE	CONTRoller ENABIe		
BIT 1.1.0V +	High OVERFLOW (identifier)		
BIT 1.1.OV -	Low OVERFLOW (identifier)		
MP 3	Deviation		
MP 4	Controller output		\%
MP 10	Manual value		\%

Controlier No:
Module No:
Plant:

Date:
Handled by:

BRANCH 1.2: CONTINUOUS-ACTION CONTROLLER (UPGRADED VERSION)

Description

S1.2.1
S1.2.2
S1.2.3
CON 1.2.MA
CON 1.2.KP
CON 1.2.R
CON 1.2. N
CON 1.2.TV
CON 1.2.A +
CON 1.2.A.
CON 1.2.B +
CON 1.2.B-
ADC 3
ADC 4
ADC 5
BIT 1.2.CE
BIT 1.2.MV
BIT 1.2.IR
BIT 1.2.0V +
BIT 1.2.OV -
REL 1.2.1
REL. 1.2.2
MP 3
MP4
MP 11
MP 12
Manual input
Struct. sel. DISTURBANCe INPut SEPARate D-INPUT

CONSTant MANual value
Proportional value
Additional gain
Integral-action time Derivative-action time Positive increment limit Negative increment limit Controller High LMMT Controller Low LIMIT

ADdRess
ADdRess
ADdRess
CONTRoller ENABle CONstant MANIPulated VARiable Real/ideal PID controlier High OVERFLOW (identifier) Low OVERFLOW (identifier)

DISTURBance ENABle

 AUTOmatic/MANUAL (mode)Deviation
Controller output
Separate D-input
Disturbance input
\square

Value
PG/ADC

Phys. unit
\%
\qquad
$\%$
$\%$
$\%$

Controller No:
Date:
Module No:
Handled by:
Plant:

BRANCH 1.3: ACTUATOR ADJUSTMENT

Description
Value
Phys. unit

S 1.3.1 Struct. sel ACTUATOR ADJustment
CON1.3.GAI GAIN
CON1.3.OFF OFFSET
DAC 1 ADdRess

MP5 Manipulated variable

Controller No:
Module No:
Plant:

Date:
Handled by:

BRANCH1.4: MARK-SPACE OUTPUT

Description
Value
Phys. unit

S1.4.1
Struct. sel. 2/3-POInt CONTRoller
 CON 1.4.TMIN Minimal Pulse duration TMIN
CON 1.4.RTH Response THreshold
CON 1.4.ADF ADaptation Factor

DAC1 ADdRess
DAC 2 ADdRess

BIT 1.4.PP	POSitive PULSE
BIT 1.4.NP	NEGative PULSE

MP $6 \quad$ Positive mv output
MP 7 Negative mv output

BRANCH 1.5: STEP-ACTION CONTROLLER WITH PULSE OUTPUT

Description
Struct. sel. Manual input PG/ADC
S1.5.1

ADC5DAC1$-D A C 2$1 DO1DA2

REL 1.5.1
BIT 1.5.CE
BIT 1.5.DB
BIT 1.5.BC
BIT 1.5.BZ
BIT 1.5.OPN
BIT 1.5.CLS
BIT 1.5.MEN

MP 3

MP 6
MP 7
MP 10

ANAlog/DIGItAl output
CONSTant MANual value
Proportional value Integral-action time Derivative-action time ACTUATOR runtime
ON THRESHold OFF THRESHold Minimal pulse duration TMIN

ADdRess ADdRess ADdRess ADdRess ADdRess
AUTOmatic/MANUAL (mode) CONTRolier ENABle
Dead Band ACTIVE
Position OPEN REACHED
Position ClOSED REACHED
OPEN
CLOSE
MANUAL ENABIE
Deviation
Positive mv output
Negative mv output
Manual value

Controller No
Niodule No:
Plant:

Handled by:

BRANCH 2: ACTUAL VALUE BRANCH
Page 1

Value
Phys. unit

Controller No:
Module No:

Date:
Handied by:

Description
Value
Phys. unit

CON 2.HWL High WARNING limit
CON 2.LWL Low WARNING limit
CON 2.HDL High DANGer LIMit
CON 2.LDL Low DANGer LIMit

BIT 2.HWL HWL VIOLated
BIT 2.LWL LWL VIOLated
BIT 2.HDL HDL VIOLated
BIT 2.LDL LDL VIOLated

MP $9 \quad$ Processed actual value

Controller No:
Module No:
Plant:

Date:
Handled by:

BRANCH 3 : SETPOINT BRANCH
Page 1

Description
Struct. sel. ADCINPUT
Struct. sel. RAMP GENERATOR
Struct. sel. SMOOTHING

CON3.N
CON3. n
CON3.SET 1
CON3.SET 2
CON3.SET 3
CONB.SET 4
CON3.SET 5
CON3.SET 6
CON3.SET 7
CON3.SET 8
CON3.SET 9
CON3.SET10
CON3.TR
CON3.TH
CONS.INC
CON3.TVZ
ADC 1
REL3.1
REL3. 2
VAR3.1
BIT 3.HI
BIT 3.10
BIT 3.ERA
BIT 3.1

MP1	Fed SetPoint
MP2	Processed SetPoint
MP3	Deviation

Controller No:
Module No:
Plant:

NUMBER OF SETPOINTS
INTERVAL time
SETPOINT 1
SETPOINT 2
SETPOINT 3
SETPOINT 4
SETPOINT 5
SETPOINT 6
SETPOINT 7
SETPOINT 8
SETPOINT 9
SETPOINT 10
Ramp-down time
Ramp-up time
INCREASE
Smoothing time constant ADdRess
PC-setpoint/SETPoint SEQUence SETPOint ENABIe

SETPOint FRom PC
HIGHER
LOWER
ERASE
UNEAR (rectangular/interpol)

Fed SetPoint
Processed SetPoint
Deviation

Value

Phys. unit

Description
Value
Phys. unit
CON 3.SHL Setpoint high limit CON 3.SLL Setpoint low limit

BIT 3.SHL SHL VIOLated
BIT 3.SLL SLL VIOLated

MP 2 Processed Setpoint

Controller No:
Module No:
Plant:

Date:
Handled by:

BRANCH 4: LIMIT MONITOR 1

Description
Value Phys.unit
MP NR MEASuring POInt NumbeR \square

CON 4.1 LIMIT 1
CON 4.2 LIMIT 2
CON 4.3 LIMIT 3
CON 4.4 LIMIT 4
CON 4.5 LIMIT 5
CON 4.6 LIMIT 6
CON 4.7 Number OF LIMITS

BIT 4.1 LIMIT IDENTifier 1
BIT 4.2 LIMIT IDENTifier 2
BIT 4.3 LIMIT IDENTifier 3
BIT 4.4 LIMIT IDENTifier 4
BIT 4.5 LIMIT IDENTifier 5
BIT 4.6 LIMIT IDENTifier 6

BRANCH 5: LIMIT MONITOR 2

Description Value Phys.unit

MP NR MEASuring POInt Number \square
CON 5.1 LIMIT 1
CON 5.2 LIMIT 2
CON 5.3 LIMIT 3
CON 5.4 LIMIT 4
CON 5.5 LIMIT 5
CON 5.6 LIMIT 6
CON 5.7 Number OF LIMITS

BIT 5.1 LIMIT IDENTifier 1
BIT 5.2 LIMIT IDENTifier 2
BIT 5.3 LIMIT IDENTifier 3
BIT 5.4 LIMIT IDENTifier 4
BIT 5.5 LIMIT IDENTifier 5
BIT 5.6 LIMIT IDENTifier 6

BRANCH 6: MEASURING SOCKET 1

BRANCH 7: MEASURING SOCKET 2

Phys. unit

Date:
Module No:
Plant:

Configuration sheet: Drive controller with self-optimization

Controller No:
Module No:

Date:

Handled by:

Plant:

BRANCH 1: CONTROLLER OUTPUT

CURRENT SETPOINT

Description
Value
Phys. unit

S 1.1 Conversion structure switch

CON 1.1
Standardization
deceleration value

DAU 2
Address \square
REL 1.1 Break enable \%
MP 6
MP 9
MP 12
Deceleration current \%
Current setpoint \%

Actual speed

BRANCH 2: FRICTION

CON 2.1
Friction

Value
Phys. unit

REL2.1 Friction enable

MP 20
Summated setpoint
\%

Module No:
Date:

Plant:
Handled by:

BRANCH 3: PERIPHERAL VELOCITY

Peripheral velocity

Controller No:
Module No:
Plant:

Date:
Handled by:

BRANCH 4: LOOP GAIN INCREASE

Value
Phys. unit
S4.1 Structure selecto; inject diameter signal
S4.2 Field current moritor
S4.3 Interface
CON 4.1 Stardardization field zurrent
CON 4.2
CON 4.VER Start-up loop gain

CON 4.OFF Offset
ADC 5 Address
REL 4.1 Start-up relay
MP 8 Gain
MP 15 Diameter

MP 18 Field current\%
\%

Controller No.
Module No:
Plant-

BRANCH 5: VELOCITY CONTROLLER Page 1 SPEED CONTROLLER

Description

CON5. 1
CON5.KP
CON5.TN
CON5.TV
CON5.B +
CON5.B-
BIT5.1.RF Controller enable
BIT5.UE +
BIT5.UE-
REL 5.2 Start-up setpoint enable
MP10 Controller output
MP11 Controller deviation
MP12/16
MP20

Start-up setpoint Proportional value Integral-action time Derivative-action time Controller high limit Controller low limit

High overflow Low overflow

Actual speed / velocity Summated setpoint

Value

Phys. unit
\%
 \% \%\% $\%$

Description
CON 5.SOGD Setpoint high limit, speed controller
CON 5.SUGD Setpoint low limit, speed controller
CON 5.IOWD Actual value high warning limit, speed controller
CON 5.IUWD Actual value low warning limit, speed controller

\%

CON 5.IOGD Actual value high danger limit, $\quad \square$ \% speed controller
 CON 5.IUGD Actual value low danger limit, \square speed controller$\%$

BIT 5.SOGD	SHLS violated
BIT 5.SUGD	SLLS violated
BIT 5.IOWD	AHWS violated
BIT 5.IUWD	ALWS violated
BIT 5.IOGD	AHDS violated
BIT 5.IUGD	ALDS violated

Controller No:
Module No:
Plant:

Date:
Mandled by:

BRANCH 6: SET-UP SPEED

to Branch 5

Description

Value
Phys. unit

CON 6.1 Set-up speed \square $\%$
REL 6.1 Set-up speed enable

Controller No:
Module No
Plant:

Date.
Handled by:

BRANCH 7: CREEP SPEED

to Branch 5

Description

Value
Phys. unit

CON 7.1 Creep speed
$\square \%$
REL 7.1 Creep speed enable

BRANCH 8: (ROTATIONAL) SPEED SETPOINT, VELOCITY SETPOINT

Description
Struct. sel. RAMP GENERATOR
Struct. sel. SMOOTHING
Struct. sel. SETPOINT SEQUENCE
Constant setpoint
Setpc scaler
Ramp-down time
Ramp-up time
Increase
Smoothing time constant
Address
Higher
Value
Phys. unit

S 8.1
58.2

S 8.3
CON8. 1
CON8. 2
CON8.TR
CON 8.TH
CON 8.ZUW
CON8.TVZ
ADC 6
BIT 8.5 HOE
BIT 8.6TIE
BIT 8.7 AUT
BIT 8.8 NUL
REL 8.1
REL 8.2
REL 8.3
REL 8.4
VAR 8.1
MP 12
MP 14
MP 17

Lower
Automation mode
Move setpoint to 0 \%

PG/PC-setpoint
Setpoint enable
ADC/input
Isolated mode

Variable setpoint
Actual speed
Setpoint after ramp generator Setpoint before ramp generator
\square
\%

Module No:

Date:
Handled by:

BRANCH 9: PRIMARY CONTROLLER
Page 1

Description
Value
Phys. unit
59.1
59.2
$\$ 9.3$
59.4

CON 9.1
CON 9.2
CON 9.KP CON 9.TN CON 9.TV CON 9.8 + CON 9.BCON 9.VER CON 9.OFF CON 9.TVZ ADC 1
ADC 2
BIT 9.1 RF
BIT 9.UE +
BIT 9.UE-
REL 9.2
VAR 9.1
MP 1
MP 2
MP 3
MP4
MP12

Interface structure switch
Struct. sel. setpoint selection ADCINPUT
Struct. sel. multiplier select. N-ACT/PG SCALER
Filter structure switch
Constant setpoint
Constant factor
Proportional value
Integral-action time
Derivative-action time
Controller high limit
Controller low limit
Gain
Offset
Filter time constant
Address
Address

Controller enable
High overflow (identifier)
Low overflow (identifier)
Variable setpoint
Variable setpoint

Actual value at controller
Setpoint at controlier
Deviation at controller
Correction value at controller \%
Actual speed

Controller No:
Module No:
Plant:

Date:
Handled by:

BRANCH 9: SETPOINT/ACTUAL VALUE MONITORING

Description
KON 9.SOGL Setpoint high limit, position controller
KON 9.SUGL Setpoint low limit, position controller
KON 9.IOWL Actual value high warning limit,
Unit
Phys. unit
position controller
KON 9.IUWL Actual value low warning limit,
 position controller
KON 9.IOGL Actual value high danger limit,
 position controller
KON 9.IUGL Actual value low danger limit, position controller

BIT 9.SOGL SHILP violated
BIT 9.SUGL ALIP violated
BIT 9.IOWL AHWP violated
BIT 9.IUWL ALWP violated
BIT 9.1OGL HDP violated
BIT 9.IUGL ALDP violated
MP 1 Actual value at controller \%
MP 2 Setpoint at controller \%

Contraller No:
Date:
Handled by:
Module No:

BRANCH 10: ACTUAL ARMATURE CURRENT

Description

Value
Phys. unit
S 10.1 Struct. sel. actual value ANALOG/PULSE sensor
S 10.2 Smoothing
S 10.3 EXPAND (flicker eliminator)
S 10.4 Structure selector internal pulse capture/
external IP 240 counter module
CON10.1 Scaling speed actual value
CON10.2 Actual start-up value
CON10.3 Calibration display
CON 10.4 Rated speed rev/sec
CON 10.5 Line numbers/100 (NC/100)
CON10.TVZ Smoothing time constant
ADCC 3 Address
DAU 1 Address
ADR.K \quad /O address Channel No. of the IP 240
REL 10.1 Actual start-up value enable

MP 12 Speed actual value
MP 21 Actual speed display

BRANCH 11: ACTUAL ARMATURE CURRENT

S 11.1 Struct. sel. thermal monitoring
S 11.2
Struct. sel. armature current injection

KON 11.1
KON 11.2
KON 11.3
ADU 4
BIT 11.1 Thermal interrupt
MP 5 Correction value at actual current \%
MP13
MP19
Thermal limit
Thermal constant
Standardization armature current

Actual armature current \%
Temperature \%
\%

\%

Date:
Module No:
Plant:

BRANCH 12: ACCELERATION COMPENSATION

KON 12.1 Acceleration standardization \square
MP 7 Acceleration $\%$

MP 20 Summated setpoint \%

Controller No:
Module No:
Plant:

BRANCH 13: LIMIT MONITOR 1

MP NR Measuring point number \square
CON 13.1 Limit 1
CON 13.2 Limit 2
CON 13.3 Limit 3
CON 13.4 Limit 4
CON 13.5 Limit 5
CON 13.6 Limit 6
CON 13.7 Number of limits

BIT 13.1 Limit identifier 1
BIT 13.2 Limit identifier 2
BIT 13.3 Limit identifier 3
BIT 13.4 Limit identifier 4
BIT 13.5 Limit identifier 5
BIT 13.6 Limit identifier 6

Controller No:
Module No:
Date:

Plant:
Handled by:

BRANCH 14: LIMIT MONITOR 2

Description
Value
Phys. value

MP NR Measuring point number
CON 14.1 Limit 1
CON 14.2 Limit 2 .
CON 14.3 Limit 3
CON 14.4 Limit 4
CON 14.5 Limit 5
CON 14.6 Limit 6
CON 14.7 Number of limits

BIT 14.1 Limit identifier 1
BIT 14.2 Limit identifier 2
BIT 14.3 Limit identifier 3
BIT 14.4 Limit identifier 4
BIT 14.5 Limit identifier 5
BIT 14.6 Limit identifier 6

BRANCH 15: MEASURING POINT OUTPUT

Description

Value
Phys. unit

S15.1 Smoothing
MP NR Measuring point number
CON15.1
Standardization
CON15.TVZ
DAU 3
Smoothing constant
REL 15.1
MP22
Address
Measuring point enable Measuring point output

BRANCH 16: ARITHMETIC

Controller No:
Date:
Module No:
Plant:
Handled by:

BRANCH 16: ARITHMETIC (Parameter)

Description

S16.1	Forming the sum
S16.2	Summated setpoint
S16.3	Forming the product
S16.4	Forming the quotient
S16.5	Forming the unsigned value
S16.6	Forming the reciprocal value
S16.7	Conversion
S16.8	Comparator
S16.9	Conversion

CON 16.AN Upper response threshoid CON 16.AB Lower response threshold

ADC 8 Address
ADC 9 Address
ADC 10 Address
ADC 11 Address
ADC 12 Address
ADC 13 Address
ADC 14 Address
ADC 15 Address
ADC 16 Address
ADC 17 Address
ADC 18 Address
ADC 19 Address
Value
Phys. unit

REL 16.1 Switch enable
BIT 16.1 Switch result
Z.B

Branch/bit-number

MP 23 Summated value $\%$
MP 24 Difference value
\%
MP 25 Product value \%
MP 26 Quotient value $\%$
MP 27 Unsigned value \%
MP 28 Reciprocal value $\%$
MP 29 Converted value $\%$

Module No:
Plant:

BRANCH 17: SELF SETTING

Phys. unit

BIT17.1.POS Setpoint step changes in positive direction?
BIT17.2.NEG Setpoint step changes in negative direction?
BIT17.3.LAG Position limit monitoring enable?
BIT17.4.OPT Self-optimization
REL17.5.UEB Accept calculated value?
CON17.KP Controller gain KP
CON17.TN Integral action time TN
CON17.TVZ Filter time constant TVZ

Controller No:
Module No:
Plant:

Date:

Handled by:

II

Fig. 9.2: Standard controller structure (SR)

9.4 Firmware-Overview

EPROMs for IP 252

	Location	Label	Module
Operating system on IP 252	D 4 D 3	IP 1 252 $\mathrm{~V} \times .2$ IP 2 252 V x.z	IP 252 processor card
Operating system on mixed-memory submodule	D 2 D 3	MM 1 252 AS Vy.z MM 2 252 AS $V y . z$	
COM $252 / 615$	$\text { D } 1$ $\text { D } 2$		A: Drive controller structure S: Standard controller structure

9.5 Abbreviations

ADU	Analog/digital converter
BASP	Command output disable
CP	Communications processor
CPU	Central processing unit
DAC	Digital/analog converter
DIMOS	Diagnostic and Monitoring System
DR	Drive controller
DRS	Drive controller with self-optimization
FB	Function block
IF	Interface
IP	Intelligent l/O module
KON	Delay time constant ($=$ TVZ)
KP	Proportional gain
LM	Limit monitor
US	Microseconds
PB	Program block
PC	Programmable controller
PG	Programmer
S5-DOS	S5 Disk Operating System
SR	Standard controller
TN	Integral-action time
TS	Sampling time
TV	Derivative-action time
TVZ	Smoothing time constant (= KON)

9.6 Controller loading of the IP 252

The following list states the approximate percentage loading imposed on the processor by each branch at a given sampling time of 4 ms . The percentage values given are halved when the sampling time is doubled (8 ms). It is intended as a guideline for the user in ascertaining the maximum number of control loops he can implement on the IP 252 for his particular purpose.
COM 252/COM REG initialization software gives the current total percentage loading of the processor in the "Processor loading" submenu of the "Info" function. If this value is less than 100%, the sampling time T_{A} of the control loops is automatically extended by 4 ms . This extension applies until the time discrepancy has been eliminated. In this way, the operating system of the IP 252 can control all overioads and, in this case, can still be operated via the programmer or the $55-C P U$.

Drive controller

Branch 1: Controller output
a) Without conversion
b) With conversion

| Branch 2: Friction | $*$ |
| ---: | :--- | ---: |
| Branch | 3: Circumferential velocity and |
| acceleration | |$\quad 5 \%$

Branch 5 : Speed controller	$*$		
Branch	6: Setting-up speed	\quad	cannot be
:---			
measured			

Branch 8: Speed setpoint
a) Branch without ramp-function - 7,5\% generator and smoothing stage
b) Ramp-function generator
c) Smoothing stage1%
1%
Branch 9: Outer loop controller
a) Position setpoint from PC
8%
b) Position setpoint from ADC

Branch 10: Actual speed value
a) Branch without smoothing stage *
and expanded scale
b) Smoothing stage 1\%
c) Expanded scale **

Branch 11: Actual armature current value 4\%
Branch 12: Limit monitor $1 \quad 1 \%$
Branch 13: Limit monitor 21%
Branch 14: Measuring socket 1 3\%
Branch 15: Measuring socket $2 \quad 3 \%$

Standard controller

Branch 1:Controllera) Step controller with analog output 54\%
b) Continous-action controller without 48\%controller output
c) Additional features of extended5\%version of the continous-action con-troller, without separate D inputand without disturbance input
5\%
d) Separate D input
5\%
e) Disturbance input
7,5\%
f) "On"-"Off" output with digital
5\%
g) "On"-"Off" output (two-step output)
Branch 2: Actual value
a) Branch without function generator, ***averaging and plausibility checking
b) Function generator$1,5 \%$
c) Averaging $* *$
d) Plausibility checking 0,5\%
Branch 3: Setpoint
a) Branch without ramp-function gene- 1,5\%
rator and without smoothing stage
b) Ramp-function generator 1%
c) Smoothing stage 0,5\%
d) Setpoint sequence 0,5\%
Branch 4: Limit monitor 1 1%
Branch 5: Limit monitor 2 1%
Branch 6: Measuring socket 1 3\%
Branch 7: Measuring socket 2 3\%

* This load is part of the base load of the drive controller; with a sampling time of $4 \mathrm{~ms} 55 \%$.
** These loads are negligible.
*** The loads of these branches are accounted for in the base load specified for branch 1a) and branch 1b).

9.7 Controller loading of the IP 252 Drive controller with self-optimization (DRS)

((Text folgt))

[^0]: Fig.4.16 Staircase waveform setpoint secuence (Example $N=3$)

[^1]: Fig. 4.57 Thermal monitoring

[^2]: Fig. 6. 36 Transfer menu after scrolling twice

[^3]: Fig. 6.4: Defaults mentu

[^4]: * PC setpoints
 * PC enable bits

[^5]: This mask should be complezed only if you wish to operate and monitor the controller using CP526.
 Entries for controller and area name are used for display building of CP526 and they are stored in the data words 192 .. 199 of the data block. The entry comprises of eight characters maximum; letters, digits, spaces and underscores ("'") are allowed.

 Press the function key $\langle F 7\rangle$ to conclude the entry and go on to the next entry mask. The entry may be cancelled by pressing <ri>; the data block is then created.

[^6]: The first mask of the parameter input contains a list of all active branches and their mubers. Since you can select the branch you vish to parameterize first, the linearity of the input in the function "Parameter input" is interrupted. This is realized by the independence of the input for the parameterizing of the controller branches, i. e. the order of inpat is mimportant. This program structure enables the user to modify a branch that is already parameterized, vithout leaving the function "Parameter input".
 The controller branch to be parameterized is selected exceptionally by entering its number by means of the alphanweric keyboard and then pressing the <Carriage Return. This procedure enables COM REG to also process controllers fith more than eight (= number or function keys) branches.

 You can exit the branch selection menn by pressing the function key < 7 •. The data block entered is stored at the specified destination medium.

 For parameter input, note the following:

 - When you make the first parameter input you always should select branch 1 first, COM REG then guides you (function key $\langle 7\rangle$ must be activated) through all branches. Oniy when you wish to enter modifications should you directly select the branch to be modified.

[^7]: The parameters "Setpoint high limit" and "Setpoint lower limit" do not limit the setpoint but a bit is set in the digital output word when these limits are exceeded. When these bits are not evaluated these parameters need not be entered.

 When a setpoint sequence was entered during structuring the default mumber of setpoints in the mask for the parameterizing of the setpoint branch is zero. Only when a number between one and ten is entered rill the corresponding mumber of lines be displayed, which is required for parameterizing the setpoints of the setpoint sequence. Although COM REG would accept the default number of zero setpoints, this number is illogical; it must be set to a value between one and ten.

 Note: When the structure key $\$ 8$ is set to "1", i. e. when the setpoint is specified by a STEP5 program or the setpoint sequence, and a module address was entered in the address of ADCl, the specified input module should exist, although the values are not used.

[^8]: The term "with bus access" respectively "without bus access" means that the IP252 may behave like a co-processor; if "with bus access" is selected the IP252 may access the peripheral, plugged into the same central processor, without increasing the GPO loading. This direct bus access is described in detail in section 4 and is restricted to the IP252 in the $55-1150$.
 The controller blocks may be stored together in a program file on an external storage medium. The file name is optional; the user should enter it inco this presetting mask, to inform the program. The filename consists of 6 characters maximum; when it is smaller, the remaining places are filled with "e" signs. When no drive is selected the default drive is assumed.
 <F7> Controller processing Using this function wich runs only online, the user is able to individually enable or disable the control loops of the module. This is show in the menn in figure 5.17.

[^9]: Controller No:
 Module No:

