
Xbyak_aarch64;
Just-In-Time Assembler
for ARMv8-A and
Scalable Vector Extension
Kentaro Kawakami <kawakami.k@fujitsu.com>
Fujitsu Laboratories Ltd., Kawasaki, Japan

About Me

● Kentaro Kawakami <kawakami.k@fujitsu.com>

○ GitHub account: kawakami-k

○ Senior Researcher at Platform Innovation project,
Fujitsu Laboratories Ltd., Japan

○ Engaged in R&D of AI software for Arm high-performance computing

○ Developing the deep learning software stack for Fugaku, the world first Arm
ISA-based supercomputer, for the last two years

My GitHub

account icon

https://github.com/kawakami-k

Table of Contents

● What is Xbyak_aarch64?

○ Sample programs

● Proven working configuration

● Usage of Xbyak_aarch64

● How to debug programs implemented with Xbyak_aarch64

● Summary

What is Xbyak_aarch64?

Source code

What is Xbyak_aarch64?

● A JIT assembler for AArch64

● Enables to assemble AArch64 mnemonic at

runtime

● We can make generators that produce

instruction sequence

● Just-In-Time (JIT) functions are generated
by the generators at runtime

● Based on Xbyak that is for x64 CPUs

by S. Mitsunari (Cybozu Labs. Inc.)

Xbyak_aarch64

Standard C++ Compiler(g++, clang, …)

C++ application with

JIT code gen. and exec.

Call JIT func.

CodeGenerator

Gen_func(*x, N){

mov(reg0, 0);

for(i=0; i<N;i++){

ldr(reg1, x[i]);

add(reg0, reg0, reg1);

}}

Generate JIT func.

mov(reg0, 0);

ldr(reg1, x[0]);

add(reg0, reg0, reg1);

mov(reg0, 0);

ldr(reg1, x[0]);

add(reg0, reg0, reg1);

ldr(reg1, x[1]);

add(reg0, reg0, reg1);

Gen_func(x, 1);Gen_func(x, 2);

Various JIT functions can be

generated by input parameters

Minimal Sample Code

/* Write source code in C++11 or later */

#include <xbyak_aarch64/xbyak_aarch64.h>

using namespace Xbyak_aarch64;

class Generator : public CodeGenerator {

public:

Generator() {

add(w0, w1, w0);

ret();

}

};

int main() {

Generator gen;

gen.ready();

auto f = gen.getCode<int (*)(int, int)>();

int a = 3, b = 4;

printf("%d + %d = %d¥n", a, b, f(a, b));

return 0;

}

> ./a.out

> 3 + 4 = 7

>

make & execute

Include “Xbyak_aarch64.h”.

Define your class inheriting “CodeGenerator”.

Implement instruction sequence you want to do.

Define a function pointer for the machine code sequence.

Machine code sequence, “add” and “ret” is generated.

The machine code sequence can be called

as a C++ function.

Red bold texts are the functions, classes and

instances provided by Xbyak_aarch64.

Machine Code Sequence Generation

Generator() {

add(w0, w1, w0);

ret();

}

We call these functions as the mnemonic functions.

• The function name is one of the mnemonic of ARMv8-A + SVE

instruction set.

• Each function outputs a single machine code correspond to the

function name, such as “add”, “sub”, “ldr”, “str”, “ret”, etc.

• The instruction operands can be indicated by the function

arguments.

Address, Machine code
0xXXXXXXXX0000, 0x0b000020
0xXXXXXXXX0004, 0xd65f03c0

Disassembled code
add w0, w1, w0
ret

Memory

Write machine

code sequences

at runtime

w0, w1: 32-bit general purpose registers

Red bold texts are the functions, classes and

instances provided by Xbyak_aarch64.

The machine code sequence can be called as a function.

Supported Instructions

● ARMv8-A, ARMv8.1, ARMv8.2, ARMv8.3 instructions

● Scalable Vector Extension (SVE) instructions
~1K mnemonics

Variety of “add” instruction

• 32-bit/64-bit add on general purpose register

• SIMD add on ASIMD register

• SIMD add with/without predicate on SVE register

Variety of “ldr” instruction

• Load general purpose register

32-bit/64-bit

Post-index/Pre-index/Unsigned offset addressing

• Load ASIMD register

Post-index/Pre-index/Unsigned offset addressing

• Load SVE register

With/Without signed immediate offset

Each mnemonic followed by various types of
operands can construct a variety of instructions.
Xbyak_aarch64 supports all of them.

ZIP2

LDR

ADD

ADCS

ADC

Mnemonics

Advantage of Xbyak_aarch64 compared to Existing Assembler

● Easier to write assembly code

○ Simple assembly description in C++
syntax

○ Loop unrolling is easy to describe

● Optimization using runtime

parameters

○ It is possible to change the
instructions using parameters

for (int j = 0; j < 15; ++j)

fmla(ZRegS(j), PReg(0), ZRegS(j + 15), ZRegS(31));

if (isPowOfTwo(param)) {
int bitPos = 0;

do { bitPos +=1;

} while (param = (param >> 1));

lsr(r0, r1, bitPos); // Logical shift right

} else {

udiv(r0, r1, param); // unsigned division

}

Dynamical instruction selectionDynamical unrolling

Considering execution latency,

“lsl” is more preferable than “udiv”.

Implementation becomes simpler.

(The above code generates 15 “fmla” instructions.)

fmla z0.s, p0.s, z15.s, z31.s

fmla z1.s, p0.s, z16.s, z31.s

….

fmla z14.s, p0.s, z29.s, z31.s

x15

Performance Comparison
● Environment: FX700 / GCC 8.3.1

○ CPU: A64FX (ARMv8-A + 512-bit SVE)

○ Compile options: -march=armv8.2-a+sve -fopenmp -O3

● Measurement conditions

○ Reduction operation for N-size array (N = 512)

○ iterated 10 million times

void generate(int N) {

size_t offset = sizeof(float) * 16;

int numZregs = N/16;

ptrue(PRegS(0));

for(int i = 0; i < numZregs; i++){

add (x1, x0, i * offset);

ldr(ZReg(i), ptr(x1));

}

for(int i = numZregs; i > 0; i=i>>1){

for(int j =0; j < (i/2); j++){

if((j+(i/2)) < numZregs)

fadd(ZRegS(j), ZRegS(j), ZRegS(j+(i/2)));

}}

faddv(SReg(0), PReg(0), ZRegS(0));

ret();

}

JIT implementation with Xbyak_aarch64

float reduction(float* A){

s = 0;

for(i = 0; i < N; i++)

s += A[i];

return s;

}

Reference code

float reduction(float* A){

s = 0;

#pragma omp simd reduction (+:s)

for(i = 0; i < N; i++)

s += A[i];

return s;

}

Reference code + pragma

23.24

6.30 0.45Execution time [sec]

x51.6 times faster

x14 times faster

Proven working configuration

Main Development Target

● H/W: Fugaku, Fujitsu PRIMEHPC FX1000/FX700

○ CPU: Fujitsu A64FX, designed for high-performance computing and complies with the
ARMv8-A architecture profile and the Scalable Vector Extension (SVE)

● Compiler: FCC(Fujitsu C/C++ compiler)/GCC/LLVM

● Language: C++11 or later

● OS: Linux (RedHat Enterprise Linux 8.x)

(Since Xbyak_aarch64 is an OSS, it is basically provided as is.)

Proven working configurations

H/W CPU OS (64-bit) Compiler Note

FX1000＊1 Fujitsu A64FX RedHat Enterprise Linux 8.x FCC*2

Well-tested

oneDNN＊3 worksFX700＊1 Fujitsu A64FX CentOS 8 FCC/GCC/LLVM

IA server
QEMU 5.0.0

(Linux user mode)

(Host OS running on IA server)

Ubuntu 16.04.6 LTS
GCC oneDNN works

MAC mini, 2020 Apple M1 macOS Big Sur Apple clang oneDNN works

Raspberry Pi3

Model B Rev 1.2

Broadcom

BCM2835
Ubuntu 18.04.4 LTS GCC

Some samples of

Xbyak_aarch64

works＊4

(Since Xbyak_aarch64 is an OSS, it is basically provided as is.)

*1 https://www.fujitsu.com/jp/products/computing/servers/supercomputer/ (in Japanese)

*2 C/C++ compiler of FUJITSU Software Compiler Package

*3 oneDNN is one of the applications that uses up all the functionality of Xbyak/Xbyak_aarch64.

*4 A limited number of sample programs has been tested.

https://www.fujitsu.com/jp/products/computing/servers/supercomputer/

Usage of Xbyak_aarch64

Usage of Mnemonic Functions

● Prototype declaration of the mnemonic functions

○ https://github.com/fujitsu/xbyak_aarch64/blob/main/xbyak_aarch64/xbyak_aarch64_
mnemonic_def.h

● Usage samples

○ https://github.com/fujitsu/xbyak_aarch64/tree/main/sample/mnemonic_syntax/nm.m
ake*.cpp

https://github.com/fujitsu/xbyak_aarch64/blob/main/xbyak_aarch64/xbyak_aarch64_mnemonic_def.h
https://github.com/fujitsu/xbyak_aarch64/tree/main/sample/mnemonic_syntax/nm.make*.cpp

General Purpose Register Class
Class name defined in Xbyak_aarch64 Pre-instantiated variable Remarks

WReg
w0, w1, ..., w30 32-bit general purpose registers

wsp, wzr 32-bit stack pointer, zero register

XReg
x0, x1, ..., x30 64-bit general purpose registers

sp, xzr 64-bit stack pointer, zero register

WReg dstReg(0);

WReg srcReg0(1);

WReg srcReg1(2);

add(dstReg, srcReg0, srcReg1);

add(w0, w1, w2);

for(size_t i=0; i<16; i++)

add(WReg(i), WReg(i), WReg(i+1));

(B) These two line generate the same machine code

of “add w0, w1, w2”.

(A) Register instances can be freely defined.

(C) Register can be instantiated on the fly.

Xbyak_aarch64 also defines the classes and has the pre-instantiated variables for

V (128-bit SIMD), Z (SVE), P (scalable predicate) registers.

Please refer README.md of Xbyak_aarch64.

https://github.com/fujitsu/xbyak_aarch64/blob/main/README.md

Passing parameters to JIT-ed code/
Receiving return value from JIT-ed code

● As JIT-ed code complies the procedure call standard of AArch64, JIT-ed code can freely

exchange parameters with the code generated by compiler.

Generator() {

add(w0, w1, w0);

ret();

}

• The first and second parameters are

passed by r0(w0), r1(w1).

• The return value is passed by r0(w0).

From “Procedure Call Standard

for the Arm 64-bit Architecture

(AArch64)”

Register usage in JIT-ed code

JIT-ed code can be freely use

these registers.

JIT-ed code

• must save the values on

these registers to the stack

before use them,

• must restore them before

“ret” instruction.

“Procedure Call Standard” also defines the usage for V (128-bit SIMD) registers, Z

(SVE) resisters and P (scalable predicate) registers of SVE, please refer them.

Register usage in JIT-ed code

Generator() {

/* stp: store register pair

pre_ptr: Pre-index addressing

sp: stack pointer register */

for(size_t i=19; i<=28; i+=2)

stp(XReg(i), XReg(i+1), pre_ptr(sp, -16));

/* Implement what you want to do

with x0 – x7, x9 - x15, x19 – x28. */

/* ldp: load register pair

post_ptr: Post-index addressing */

for(size_t i=28; i>=19; i-=2)

ldp(XReg(i-1), XReg(i), post_ptr(sp, 16));

ret();

}

Save the registers before use them

Restore the registers after use them

Red bold texts are the functions, classes and

instances provided by Xbyak_aarch64.

Label and Branch Instructions
Generator() {

Label L1, L2; // Instancing Label class of Xbyak_aarch64.

L(L1); // L function of Xbyak_aarch64 registers JIT-ed code address of this position to Label L1.

add(w0, w1, w0);

cmp(w0, 13); // Compare the register w0 value to the immediate value 13.

b(EQ, L2); // Branch to L2, if the register w0 value == 13.

sub(w1, w1, 1); // Decrement loop counter value.

b(L1); // Unconditional branch.

L(L2);

ret();

}

Red bold texts are the functions, classes and

instances provided by Xbyak_aarch64.

Referencing Static Table

JIT-ed code

Generating and Referencing Table

JIT-ed code

Precautions1

● Xbyak_aarch64 can output instructions that cannot be executed on the CPU

running Xbyak_aarch64.

○ Your CPU may not have support for cryptographic, atomic, SVE instructions etc.,
but Xbyak_aarch64 running on your CPU can output machine code of these instructions,
which raises the illegal instruction exception.
-> Please check your CPU capability and chose the mnemonic functions.

○ In an extreme case, if Xbyak_aarch64 is run on an x64 machine, any ARMv8-A machine
code generated by Xbyak_aarch64 causes the exception.

Precautions2

● Xbyak_aarch64 does not validate

every argument passed to the

mnemonic functions.

○ Example: immediate value of FMOV
FMOV copies an immediate floating-
point constant into every element of
SIMD&FP register
FMOV <Vd>.<T>, #<imm>

From “Arm Architecture Reference Manual

Armv8, for Armv8-A architecture profile”

Only these constant values are
allowed for #<imm> of “FMOV”

Precautions2

● Xbyak_aarch64 does not validate

every argument passed to the

mnemonic functions.

○ Example: immediate value of FMOV

JIT-ed code

3.0 is OK

3.33 is NG

If you use values that are not listed in the table,

the operation of the mnemonic function is undefined.

The operand validation is the future work.

How to debug programs

implemented with Xbyak_aarch64

Debug JIT-ed Code

● So far, there is no efficient way to debug JIT-ed code

● Basically, it’s the same as debugging assembler.

○ I often use GDB with “asm” layout.

● JIT-ed code can be dump as a file and disassembled by “objdump”.

Debug JIT-ed Code

1) Set a break point to the address

of the function pointer f, before it is

called.

Debug by GDB

Debug by GDB

2) Set layout to “asm” or “regs”

3) Continue execution

4) The program breaks at the start of JIT-ed code

5) Then, you can step through the instruction level with GDB command “si”.

Dumping JIT-ed Code

Summary

Summary

● Xbyak_aarch64; just-in-time assembler for ARMv8-A + SVE, is introduced,

○ which can dynamically generate optimized code considering runtime
parameters and make it easier than the existing assembler to implement
optimized code at the instruction level.

● Xbyak_aarch64 is mainly developed to implement the deep learning

processing software on the supercomputer Fugaku, but it can be expected

to work with a variety of software for ARMv8-a architecture systems.

● Xbyak_aarch64 is being developed as an OSS. I hope that many people

will use Xbyak_aarch64 on various platforms and participate in its

development.

○ Questions, bug reports, pull requests, etc. on Github are welcome.
https://github.com/fujitsu/xbyak_aarch64

https://github.com/fujitsu/xbyak_aarch64

Acknowledgment

● The authors thank S. Mitsunari (Cybozu Labs, Inc.), the developer of the

original Xbyak. He contributed helpful advice to Xbyak_aarch64 and

brushed up the source code.

References
● Xbyak_aarch64: Just-In-Time assembler for ARMv8-A + SVE

○ https://github.com/fujitsu/xbyak_aarch64

● Xbyak: Just-In-Time assembler for x86_64

○ https://github.com/herumi/xbyak

● oneDNN: Deep Learning Processing Library

○ https://github.com/oneapi-src/oneDNN

● oneDNN for A64FX: Deep Learning Processing Library for A64FX

○ https://github.com/fujitsu/oneDNN

● A64FX: CPU designed for high-performance computing and complies with the ARMv8-A architecture

profile and the Scalable Vector Extension (SVE)

○ Toshio Yoshida, “Fujitsu High Performance CPU for the Post-K Computer,” in Proc. Hot Chips 30, Aug. 2018.

● “Arm Architecture Reference Manual Armv8, for Armv8-A architecture profile”

● “Procedure Call Standard for the Arm 64-bit Architecture (AArch64)”

● TechBlog

○ https://blog.fltech.dev/entry/2020/11/19/fugaku-onednn-deep-dive-en

○ https://blog.fltech.dev/entry/2020/11/18/fugaku-onednn-deep-dive-ja (in Japanese)

https://github.com/fujitsu/xbyak_aarch64
https://github.com/herumi/xbyak
https://github.com/oneapi-src/oneDNN
https://github.com/fujitsu/oneDNN
https://blog.fltech.dev/entry/2020/11/19/fugaku-onednn-deep-dive-en
https://blog.fltech.dev/entry/2020/11/18/fugaku-onednn-deep-dive-ja

Thank you
Accelerating deployment in the Arm Ecosystem

What is Xbyak_aarch64?

● Xbyak_aarch64 (https://github.com/fujitsu/xbyak_aarch64) is the Just-In-Time

(JIT) assembler for ARMv8-A + Scalable Vector Extension (SVE), inheriting the

concept of Xbyak, written in C++11.

● Xbyak (https://github.com/herumi/xbyak) is the Just-In-Time assembler for

x86_64 instruction set architecture (ISA),

○ developed by S. Mitsunari (Cybozu Labs, Inc.),

○ pronounced “kəi-bja-k” (I'm not sure the correct spelling by IPA),
https://translate.google.com/?hl=ja&sl=ja&tl=en&text=kaibyaku

○ The word “Xbyak” is derived from Japanese word “開闢”.

■ Its meanings is "the beginning of the world", "exploring the unexplored", etc.

● The main purpose of developing Xbyak_aarch64 is to port oneDNN, a deep

learning processing library for x86_64, to A64FX (ARMv8-A + SVE).

https://github.com/fujitsu/xbyak_aarch64
https://github.com/herumi/xbyak
https://translate.google.com/?hl=ja&sl=ja&tl=en&text=kaibyaku

