Relative Risk Example What is the likelihood of seeing a trait given a genotype compared to the overall likelihood of seeing that trait?

Dry ear wax? rs17822931

	Wet	Dry		
тт	0	19		
CT/CC	56	4		

For TT, 19/19 have dry wax = 1

For entire class, 23/79 have dry ear wax = .29

Relative Risk = 1/.29 = 3.4

http://stanford.edu/class/gene210/files/writeups/2012/Odds_Ratio_and_Likelihood_Ratio.pdf

Class GWAS (n=79) 1. Allele counts

earwax	(4988235)	:
W	let	Dry
А	44	5
G	68	41
earwax	(7495174)	:
W	let	Dry
A	95	25
G	17	21
earwax	(713598):	
W	let	Dry
С	56	20
G	56	26
earwax	(17822931	L):
W	let	Dry
С	89	8
Т	23	38
earwax	(4481887)	:
W	let	Dry
А	36	10
n	30	T O

Class GWAS (n=79) 2. Allele p-values

phenotype	rs4988235	rs7495174	rs713598	rs17822931	rs4481887	
earwax	0.0004513	4.67E-05	0.4561	3.32E-13	0.191	
eyes	0.0003015	7.26E-07	0.5007	5.43E-06	0.07006	
asparagus	0.7053	0.1705	0.678	0.9334	0.08973	
bitter	0.2804	0.8256	3.72E-05	0.5863	0.0229	
lactose	0.0008853	0.3083	0.7809	0.1813	0.02298	

Class GWAS 3. genotype counts

	-	35):	earwax	(17822	931):
1		Dry		Wet	-
AA	12	2		33	_
AG/GG	44	21	CT/TT		19
GG	24	20			
AA/AG	32	3	TT	0	19
			CC/CT	56	4
earwax	(74951	74):			
1	Wet	Dry	earwax	(44818	87):
AA	40	9	1	Wet	Dry
AG/GG	16	14	AA	7	1
			AG/GG	49	22
GG	1	7			
AA/AG	55	16	GG	27	14
			AA/AG	29	9
earwax	(71359	8):			
I	Wet	Dry			
CC	13	2			
CG/GG	43	21			
GG	13	5			
CC/CG	43	18			

Class GWAS 3. genotype counts

earwax	(17822	931):
1	Vet	Dry
CC	33	4
CT/TT	23	19
TT	0	19
CC/CT	56	4

T is a null allele in ABC11 T/T has dry wax. T/C and C/C have wet earwax usually.

Class GWAS 3. genotype p-values

	17822931	
	(CC rec.)	(TT rec.)
earwax	0.00105	1.002e-14
eyes	0.001628	0.0001687
asparagus	0.3713	0.4271
bitter	0.4654	1
lactose	0.6059	0.229

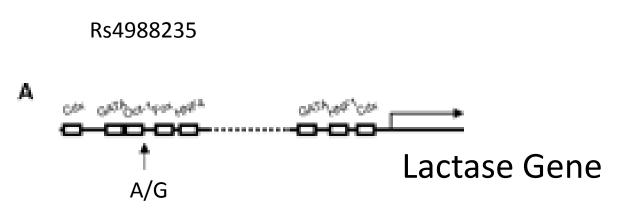
Allelic p-value for rs17822931 is 3e-13 model where TT is recessive fits the data best.

Class GWAS 3. genotype p-values

	4988235		7495174		713598		17822931		4481887	
	(AA rec.)	(GG rec.)	(AA rec.)	(GG rec.)	(CC rec.)	(GG rec.)	(CC rec.)	(TT rec.)	(AA rec.)	(GG rec.)
earwax	0.2145	0.0003765	0.01061	0.000545	0.208	1	0.00105	1.002e-14	0.4258	0.3331
eyes	0.05695	0.003398	1.675e-07	0.04753	1	0.3937	0.001628	0.0001687	1	0.01573
asparagus	1	0.6544	0.3575	0.2798	0.779	0.7896	0.3713	0.4271	0.1284	0.3643
bitter	0.533	0.4685	1	1	7.078e-07	0.04713	0.4654	1	0.09783	0.09343
lactose	0.1023	0.003507	0.5947	0.4103	0.7485	0.538	0.6059	0.229	0.1916	0.07385

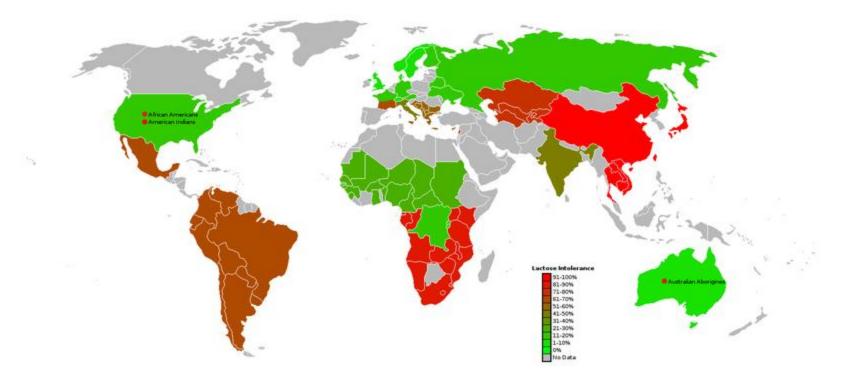
Class GWAS results

Known Associations:


Lactose intolerance: rs4988235, GG associated with lactose intolerance Eye color: rs7495174, AA associated with blue/green eyes Bitter taste: rs713598, CC associated with inability to taste bitterness Earwax: rs17822931, TT associated with dry earwax

Class GWAS

Odds Ratio, Likelihood Ratio, Relative Risk


		P-value	OR	LR	RR
Lactose Intolerance	rs4988235	8e-4	5.5	1.45	1.5
Eye Color	rs7495174	1e-7	Large	1.55	1.6
Bitter Taste	rs713598	7e-7	4.5	1.95	2.8
Earwax	rs17822931	1e-14	18	4.02	3.4

Lactose Intolerance

- A lactase expressed in adulthood
- G lactase expression turns off in adulthood

Lactose Intolerance

Eye Color

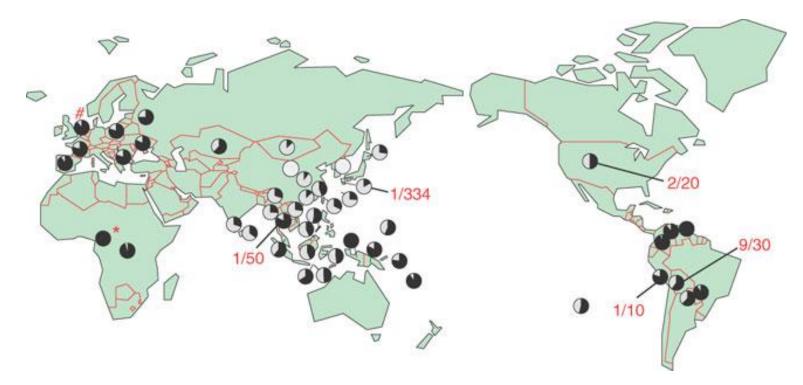
Rs7495174

In OCA2, the oculocutaneous albinism gene (also known as the human P protein gene). Involved in making pigment for eyes, skin, hair.

accounts for 74% of variation in human eye color.

Rs7495174 leads to reduced expression in eye specifically.

Null alleles cause albinism



Ear Wax

Rs17822931

- In *ABCC11* gene that transports various molecules across extra- and intra-cellular membranes.
- The A allele is loss of function of the protein.
- Phenotypic implications of wet earwax: Insect trapping, self-cleaning and prevention of dryness of the external auditory canal.
- Wet earwax: linked to axillary odor and apocrine colostrum.

Ear Wax

Rs17822931

"the allele A arose in northeast Asia and thereafter spread through the world."

Asparagus

Certain compounds in asparagus are metabolized to yield ammonia and various sulfur-containing degradation products, including various thiols and thioesters, which give urine a characteristic smell. Methanethiol (pungent) dimethyl sulfide (pungent) dimethyl disulfide bis(methylthio)methane dimethyl sulfoxide (sweet aroma) dimethyl sulfone (sweet aroma)

rs4481887 is in a region containing 39 olfactory receptors

Bitter taste

Rs713598

Taste receptor 2 member 38 accounts for up to 85% of the variation in PTC tasting ability

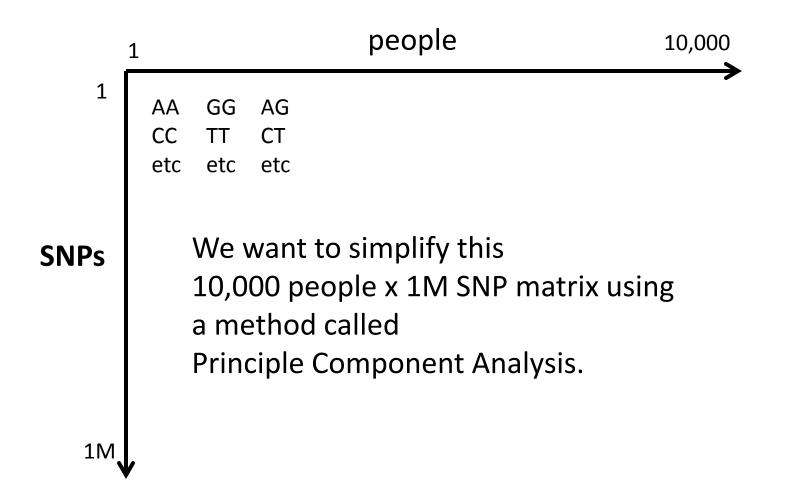
Genetic principles are universal

Construction of a Genetic Linkage Map in Man Using Restriction Fragment Length Polymorphisms

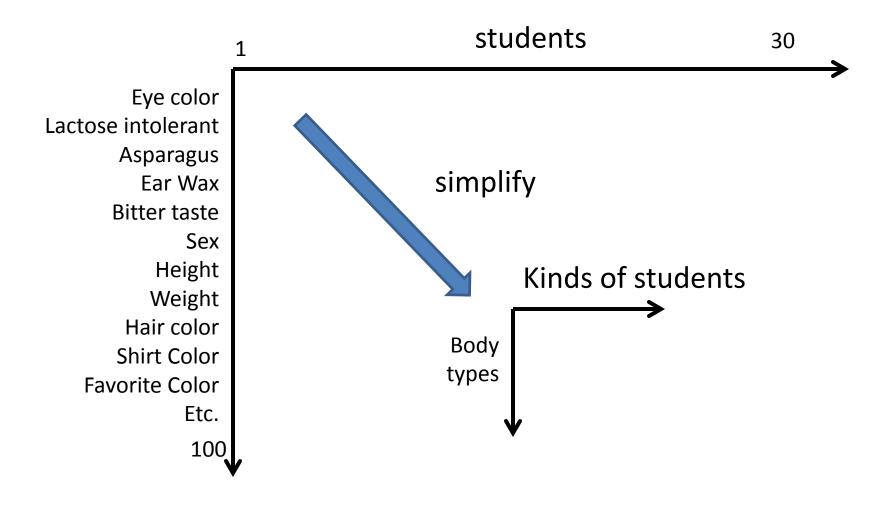
DAVID BOTSTEIN, 1 RAYMOND L. WHITE, 2 MARK SKOLNICK, 3 AND RONALD W. DAVIS⁴

<u>Am J Hum Genet.</u> 1980 May;32(3):314-31.

Home About	Available Technologies Industry Entrepreneurs & Investors Faculty & Researchers News & E						
	News Archive						
Events News	Back to home page.						
News Archive	David Botstein among 11 recipients of inaugural 3						
Featured Video	million prize						
	Posted Feb 22, 2013 By by Staff						
	David Botstein, Princeton University's Anthony B. Evnin '62 Professor of Genomics and molecular biology and director of the Lewis-Sigler Institute for Integrative Genomics, was among 11 recipients of the inaugural Breakthrough Prize in Life Sciences. The \$3 million award recognizes Botstein for his "linkage mapping of Mendelian disease [one caused by a single gene mutation such as sickle-cell anemia or cystic fibrosis] in humans using DNA polymorphisms," according to the Breakthrough Prize in Life Sciences Foundation. The foundation supports outstanding research intended to cure "intractable diseases and extend human life."						


Different genetics for different traits

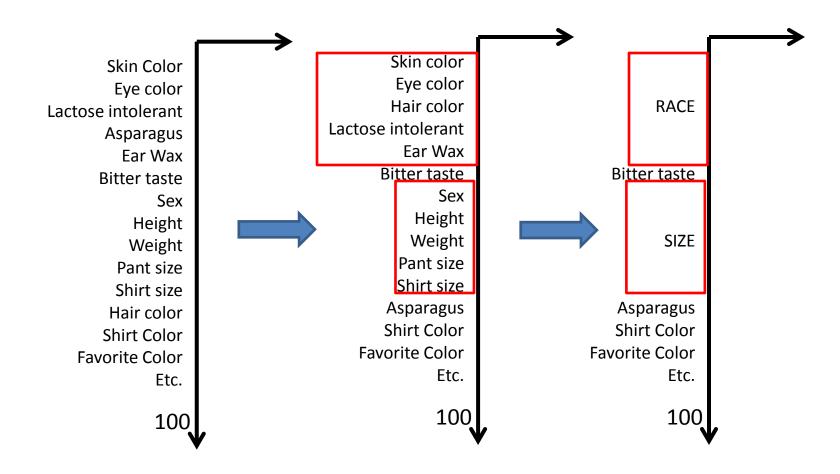
Simple: Lactose tolerance, asparagus smell, photic sneeze Complex: T2D, CVD Same allele: CFTR, sickle cell Different alleles: BRCA1, hypertrophic cardiomyopathy


Ancestry

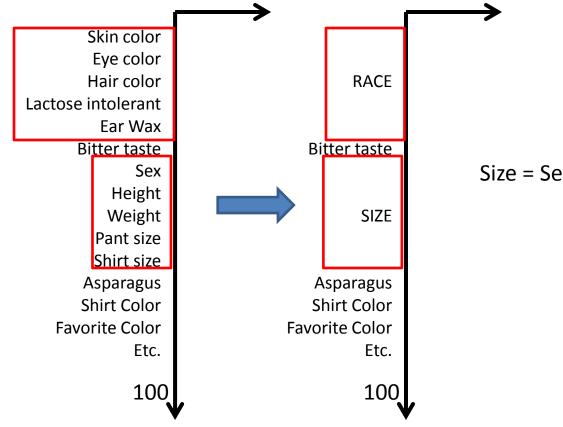
Go to Genotation, Ancestry, PCA (principle components analysis) Load in genome. Start with HGDP world Resolution 10,000 PC1 and PC2

Then go to Ancestry, painting

PCA example


Informative traits Uninformative traits Skin color eye color height weight sex hair length etc.

shirt color Pants color favorite toothpaste favorite color etc.


~SNPs informative for ancestry

~SNPs not informative for ancestry

PCA example

PCA example

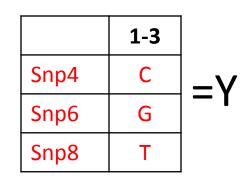
Size = Sex + Height + Weight + Pant size + Shirt size ...

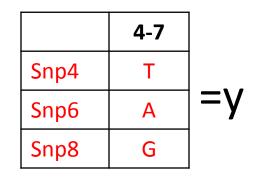
	1	2	3	4	5	6	7
Snp1	А	А	А	А	А	А	Т
Snp2	G	G	G	G	G	G	G
Snp3	А	А	А	А	А	А	Т
Snp4	С	С	С	Т	Т	Т	Т
Snp5	А	А	А	А	А	А	G
Snp6	G	G	G	А	А	А	А
Snp7	С	С	С	С	С	С	А
Snp8	Т	Т	Т	G	G	G	G
Snp9	G	G	G	G	G	G	Т
Snp10	А	G	С	Т	А	G	С
Snp11	Т	Т	Т	Т	Т	Т	С
Snp12	G	С	Т	А	А	G	С

Reorder the SNPs

	1	2	3	4	5	6	7
Snp1	Α	Α	Α	Α	Α	Α	Т
Snp3	Α	Α	Α	Α	Α	Α	Т
Snp5	Α	Α	Α	Α	Α	Α	G
Snp7	С	С	С	С	С	С	Α
Snp9	G	G	G	G	G	G	Т
Snp11	Т	Т	Т	Т	Т	Т	С
Snp2	G	G	G	G	G	G	G
Snp4	С	С	С	Т	Т	Т	Т
Snp6	G	G	G	А	A	А	А
Snp8	Т	Т	Т	G	G	G	G
Snp10	А	G	С	Т	А	G	С
Snp12	G	С	Т	А	A	G	С

	1	2	3	4	5	6	7
Snp1	Α	Α	Α	Α	Α	Α	Т
Snp3	Α	Α	Α	Α	Α	Α	Т
Snp5	Α	Α	Α	Α	Α	Α	G
Snp7	С	С	С	С	С	С	Α
Snp9	G	G	G	G	G	G	Т
Snp11	Т	Т	Т	Т	Т	Т	С
Snp4	С	С	С	Т	Т	Т	Т
Snp6	G	G	G	А	А	А	Α
Snp8	Т	Т	Т	G	G	G	G
Snp2	G	G	G	G	G	G	G
Snp10	А	G	С	Т	А	G	С
Snp12	G	С	Т	А	А	G	С

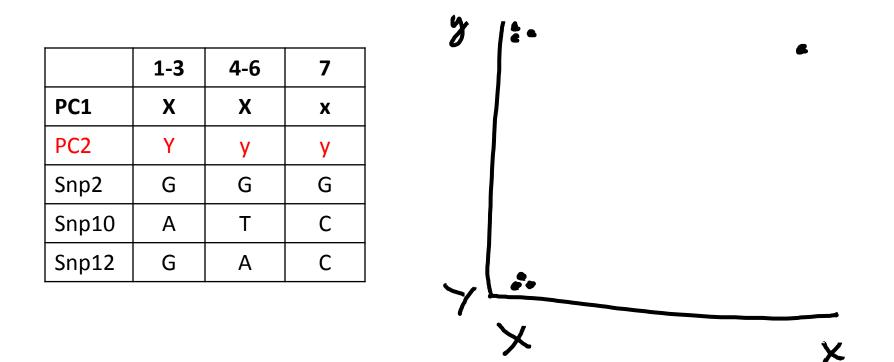

	1	2	3	4	5	6	7		
Snp1	Α	Α	Α	Α	Α	Α	Т		
Snp3	Α	Α	Α	Α	Α	Α	Т	•	
Snp5	Α	Α	Α	Α	Α	Α	G	•	
Snp7	С	C	С	С	С	С	Α	•	
Snp9	G	G	G	G	G	G	Т		
Snp11	Т	Т	Т	Т	Т	Т	С		
1-6	7			1]			7	
A	т		Snp1	Α			Snp1	Т	
A	т		Snp3	Α			Snp3	Т	
A	G		Snp5	Α] =X		Snp5	G	x =
C	Α		Snp7	С]		Snp7	Α	
G	т		Snp9	G]		Snp9	Т	
т	С		Snp11	Т]		Snp11	С	
	Snp3 Snp5 Snp7 Snp9 Snp11 1-6 A A A A A A C G	Snp1ASnp3ASnp5ASnp7CSnp9GSnp11T1-67ATAGCAGTATAGCAGT	Snp1AASnp3AASnp5AASnp7CCSnp9GGSnp11TT1-67AATAAGFATFAGFGATAGCAGTGT	Snp1AAASnp3AAASnp5AAASnp7CCCSnp9GGGSnp11TTT1-67Snp1ATSnp1ATSnp3AGSnp5AGSnp5AGSnp5AGSnp5CASnp5GTSnp9	Snp1AAASnp3AAASnp5AAASnp7CCCSnp9GGGSnp11TTT1-6711ATSnp1AAGSnp3ATSnp1ATATAGAGAGAGSnp5ASnp5ASnp7CGTSnp9G	Snp1AAAAASnp3AAAAASnp5AAAAASnp7CCCCCSnp9GGGGGSnp11TTTTT1-6711ATSnp1AAGSnp3AAGSnp5AGTSnp7CGTSnp9G	Snp1AAAAAASnp3AAAAAASnp5AAAAAASnp7CCCCCCSnp9GGGGGGSnp11TTTTTT1-67Snp1AAATSnp3AAGSnp5ACASnp7CGTSnp9G	Snp1AAAAAATSnp3AAAAAAATSnp5AAAAAAAGSnp7CCCCCCASnp9GGGGGGTSnp11TTTTTTC1-67Snp1AASnp1Snp1ATSnp5ASnp5ASnp5Snp5AGSnp7CSnp7CSnp7GTSnp9GSnp9GSnp9	Snp1AAAAAASnp3AAAAAATSnp3AAAAAATSnp5AAAAAAGSnp7CCCCCCASnp9GGGGGGTSnp11TTTTTTC1-671ATSnp1ASnp1TATSnp3ASnp3TAGSnp7CSnp5GSnp7AGTSnp9GGSnp9T


	1	2	3	4	5	6	7
Snp1	Α	Α	Α	A	Α	Α	Т
Snp3	Α	Α	Α	Α	Α	Α	Т
Snp5	Α	Α	Α	Α	Α	Α	G
Snp7	С	С	С	С	С	С	Α
Snp9	G	G	G	G	G	G	Т
Snp11	Т	Т	Т	Т	Т	Т	С
Ļ							•

	•	_
	Μ	Ν
PC1	Х	x

	1	2	3	4	5	6	7
Snp4	С	С	С	Т	Т	Т	Т
Snp6	G	G	G	Α	Α	А	А
Snp8	Т	Т	Т	G	G	G	G

	1-3	4-7
Snp4	С	Т
Snp6	G	А
Snp8	Т	G



	1-3	4-7
PC2	Υ	у

	1	2	3	4	5	6	7
PC1	Х	Х	Х	Х	Х	Х	x
PC2	Y	Y	Y	у	У	у	У
Snp2	G	G	G	G	G	G	G
Snp10	А	G	С	Т	А	G	С
Snp12	G	С	Т	А	А	G	С

	1-3	4-6	7
PC1	Х	X	x
PC2	Y	У	У
Snp2			
Snp10			
Snp12			

PC1 and PC2 inform about ancestry

Complex traits: height heritability is 80%

Sizing up human height variation

Peter M Visscher

Genome-wide association studies have identified many variants affecting susceptibility to disease. Now, three studies use this approach to study adult height variation in a combined sample size of ~63,000 individuals and report a total of 54 validated variants influencing this trait.

NATURE GENETICS | VOLUME 40 | NUMBER 5 | MAY 2008

Genome-wide association analysis identifies 20 loci that influence adult height

Michael N Weedon^{1,2,23}, Hana Lango^{1,2,23}, Cecilia M Lindgren^{3,4}, Chris Wallace⁵, David M Evans⁶, Massimo Mangino⁷, Rachel M Freathy^{1,2}, John R B Perry^{1,2}, Suzanne Stevens⁷, Alistair S Hall⁸, Nilesh J Samani⁷, Beverly Shields², Inga Prokopenko^{3,4}, Martin Farrall⁹, Anna Dominiczak¹⁰, Diabetes Genetics Initiative²¹, The Wellcome Trust Case Control Consortium²¹, Toby Johnson^{11–13}, Sven Bergmann^{11,12}, Jacques S Beckmann^{11,14}, Peter Vollenweider¹⁵, Dawn M Waterworth¹⁶, Vincent Mooser¹⁶, Colin N A Palmer¹⁷, Andrew D Morris¹⁸, Willem H Ouwehand^{19,20}, Cambridge GEM Consortium²², Mark Caulfield⁵, Dataixia D Morris¹⁸, Andrew T Uniterplace Mark J McConthu³⁴ & Timesthe M Enculie 12

Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index

Many sequence variants affecting diversity of adult human height

63K people

54 loci

~5% variance explained.

NATURE GENETICS VOLUME 40 [NUMBER 5 [MAY 2008 Nature Genetics VOLUME 42 | NUMBER 11 | NOVEMBER 2010

Calculating RISK for complex traits

- Start with your population prior for T2D: for CEU men, we use 0.237 (corresponding to LR of 0.237 / (1 – 0.237) = 0.311).
- Then, each variant has a likelihood ratio which we adjust the odds by.

dbSNP	Genotype	Imputed from	R squared	Likelihood Ratio	Running Total LR	Running Total Probability
Prior				0.311	0.311	23.700%
2283228	AA			1.031	0.320	24.252%
2237897	CC			1.023	0.328	24.675%
7903146	CC			0.753	0.247	19.789%
985694	CC			0.918	0.226	18.463%
726281	AA			0.909	0.206	17.071%
3020317	Π			0.928	0.191	16.032%

LETTER

doi:10.1038/nature09410

Hundreds of variants clustered in genomic loci and biological pathways affect human height

A full list of authors and their affiliations appears at the end of the paper.

183K people 180 loci ~10% variance explained

832 | NATURE | VOL 467 | 14 OCTOBER 2010

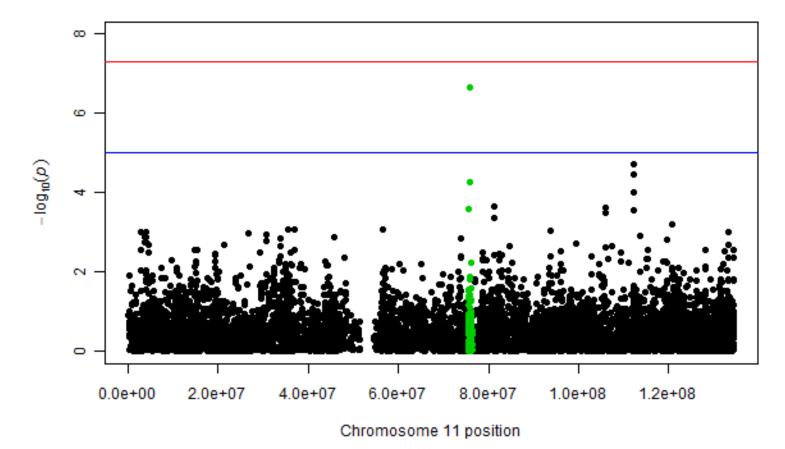
Missing Heritability

Table 1	Estimates of heritability	and number of loci for several	complex traits
---------	---------------------------	--------------------------------	----------------

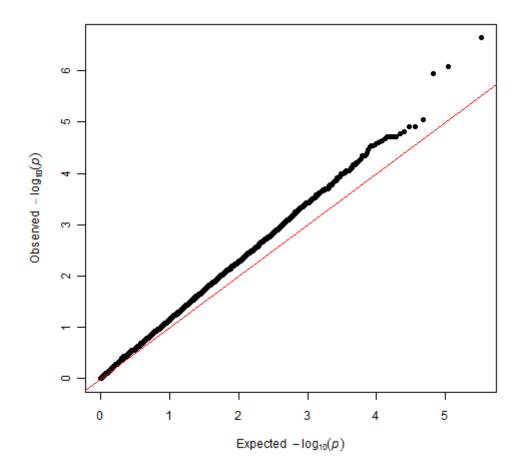
Disease	Number of loci	Proportion of heritability explained	Heritability measure	
Age-related macular degeneration ⁷²	5	50%	Sibling recurrence risk	
Crohn's disease ²¹	32	20%	Genetic risk (liability)	
Systemic lupus erythematosus ⁷³	6	15%	Sibling recurrence risk	
Type 2 diabetes ⁷⁴	18	6%	Sibling recurrence risk	
HDL cholesterol ⁷⁵	7	5.2%	Residual* phenotypic variance	
Height ¹⁵	40	5%	Phenotypic variance	
Early onset myocardial infarction ⁷⁶	9	2.8%	Phenotypic variance	
Fasting glucose ⁷⁷	4	1.5%	Phenotypic variance	

* Residual is after adjustment for age, gender, diabetes.

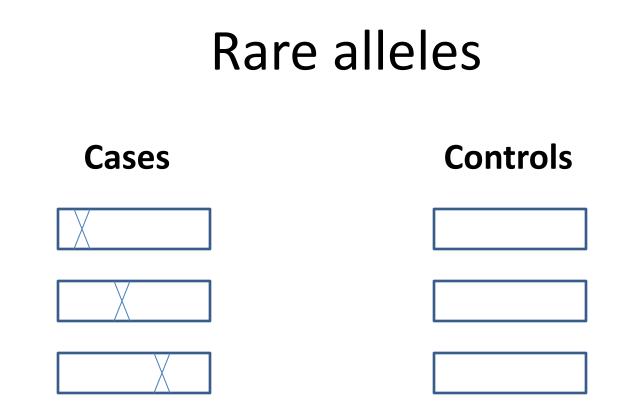
Where is the missing heritability?

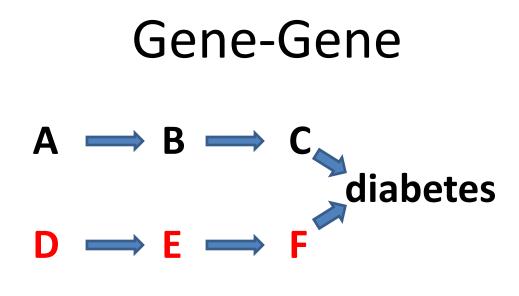

Lots of minor loci Rare alleles in a small number of loci Gene-gene interactions Gene-environment interactions

Common SNPs explain a large proportion of the heritability for human height


Jian Yang¹, Beben Benyamin¹, Brian P McEvoy¹, Scott Gordon¹, Anjali K Henders¹, Dale R Nyholt¹, Pamela A Madden², Andrew C Heath², Nicholas G Martin¹, Grant W Montgomery¹, Michael E Goddard³ & Peter M Visscher¹

Nature Genetics VOLUME 42 | NUMBER 7 | JULY 2010


Chromosome 11


Q-Q plot for human height

This approach explains 45% variance in height.

- 1. You wont see the rare alleles unless you sequence
- 2. Each allele appears once, so need to aggregate alleles in the same gene in order to do statistics.

- A^{-} not affected $A^{-}D^{-}$ affected
- **D**⁻ not affected A⁻ E⁻ affected
- - A⁻ F⁻ affected
- A⁻ B⁻ not affected **D**⁻ **E**⁻ not affected

Gene-environment

- 1. Height gene that requires eating meat
- 2. Lactase gene that requires drinking milk

These are SNPs that have effects only under certain environmental conditions