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Abstract. In this paper, exact formulæ of the input-output weight distribution function and its
exponential growth rate are derived for truncated convolutional encoders. In particular, these weight
distribution functions are expressed in terms of generating functions of error events associated with
a minimal realization of the encoder. Although explicit analytic expressions can be computed for
relatively small truncation lengths, the explicit expressions become prohibitively complex to compute
as the truncation lengths and the weights increase. Fortunately, a very accurate asymptotic expansion
can be derived using the Multidimensional Saddle-Point method (MSP method). This approximation
is substantially easier to evaluate and is used to obtain an expression of the asymptotic spectral
function, and to prove continuity and concavity in its domain (convex and closed). Finally, this
approach is able to guarantee that the sequence of exponential growth rates converges uniformly to
the asymptotic limit, and to estimate the speed of this convergence.
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1. Introduction. The estimation of weight enumerators of codes is a crucial
issue in the coding theory for both application and theoretical purposes. Weight
enumerators are in fact the main ingredients of all expressions that estimate error
probabilities and they characterize the correction capability of the code, when max-
imum likelihood decoding is assumed. An extensive amount of literature exists on
the bounds of weight distributions and on their use. The reader can refer to [1,2]. A
particularly relevant part of this literature concerns estimating the spectral function
of weight enumerators, that is their exponential growth rate when the code length
goes to infinity. Spectral functions provide important asymptotic information on the
codes, including their minimum distances.

In this paper, we focus on the estimation of input-output weight enumerators of
convolutional codes.

1.1. State of the art. Convolutional encoders can be considered as finite-state
machines with linear updates of the state and of the output. The code sequence
that emerges from the encoder depends on the previous message symbols, as well as
on the present ones. Although the natural setting considers encoders that map a
semi-infinite sequence into a semi-infinite stream, convolutional encoders are used in
the main applications with a fixed block-length. Each block is obtained by letting
the state machine evolve a finite number of steps, called truncation lengths. Trun-
cated convolutional encoders are mainly used in combination with uniform random
permutations in both serial and in mixed serial and parallel architectures, in order to
construct high-performance schemes, known as turbo-like codes [3–6].
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The average weight enumerators and the corresponding spectral functions of
turbo-like code ensembles play a decisive role in the analysis of average performances
under ML decoding. [7, 8]. Analyzing the weight structure of these coding schemes
is not a trivial issue. A basic requirement is to determine the weight distributions
of the constituent convolutional encoders. The average weight enumerators and the
corresponding spectral functions can in fact be expressed in terms of weight distri-
butions of the constituent components (see [9]). For example, in the case of repeat
multiple-accumulate codes [10], an explicit analytic formula is known for the asymp-
totic spectral functions and it can be expressed in a recursive way [11, 12]. In [13],
spectral functions are used to provide lower estimates of the noise channel parameter
that allows the error probability to arbitrarily be made small. In [12], they are shown
to be 0 below a threshold distance and positive beyond this distance. This threshold
is shown to be the typical normalized minimum distance.

The fundamental problems of general cases remain open. First, the theoretical
justification of the extension of the iterative formula of spectral function [14] requires
some finer work, since the limit step needs to converge uniformly to the spectral func-
tion of the constituent codes. This, to the best of our knowledge, has never been
proved before. Second, in order to pass from spectral functions to estimates on the
noise channel parameter, or minimum distance thresholds, we need some information
on the speed of convergence of the sequence of the exact exponents to the asymptotic
growth rate. Finally, in theoretical analysis, the continuity and concavity of the limit
function must be guaranteed [12].

The weight distribution of convolutional encoders has been studied extensively
in the literature [8, 13–18]. Although analytic formulæ of weight enumerators can be
derived in some cases using combinatorial techniques —i.e. for rate-1 convolutional
encoders with transfer functions (1+D)−1 and (1+D+D2)−1 [13]— no general method
exists that is able to derive explicit expressions. McEliece has shown how the weight
distribution can be derived, theoretically, from the adjacency matrix of the state
diagram, associated with a minimal realization of the encoder [15]. This approach is
able to precisely determine the weight enumerators for relatively small lengths, but
the computation becomes prohibitively expensive as the truncation lengths increase.
Bender et al. have shown, in [19], that central and local limit theorems can be derived
for the growth of the components of the power of a matrix. This approach would, in
principle, allow the Hayman approximation (see [20] for a survey) to be applied to the
problem of the weight distribution of convolutional codes. However, the hypotheses
of using these techniques are very restrictive and are not guaranteed in general cases.
An overview of these methods can be found in [17] and in [21].

In [14], a numerical procedure is introduced to determine the asymptotic expo-
nential growth rate. This method generally requires that a system of polynomial
equations is solved. However, this method is not able to provide more refined infor-
mation on the speed of convergence of the sequence of the exact exponents to the
asymptotic growth rate or to guarantee continuity of the limit function.

In this paper, we address the issue of estimatig the growth rate of the weight
enumerators as a function of truncation length, in order to investigate some additional
properties pertaining to the asymptotic spectral function.

1.2. What is new with respect to the existing literature. Our contribu-
tion is mainly theoretical. We have improved the previous results in the following
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ways.
First, we have found new expressions of the weight enumerators of truncated

convolutional encoders. These formulæ can be expressed as coefficients of generating
functions of regular error events (sequences starting and ending in the zero state and
taking the non-zero state values in-between) and truncated error events (sequences
which start in the zero state and never return). Although explicit analytic expressions
can be computed for relatively small truncation lengths, these expressions become
computationally complex as the truncation lengths and weights increase.

The extraction of coefficients in a fixed enumerating function can be considered a
crucial issue in enumerative combinatorics [22]. The Multidimensional Saddle-Point
(MSP) method is a technique that is used to approximate the growth rate of the
coefficients of some generating functions. This method was developed in [23, 24] and
then applied in [21, 25–29] in the context of the coding theory. Our contribution
consists in proving that a similar approach can also be extended to approximate
coefficients of generating functions of error events. This approximation is substantially
easier to evaluate, and the numerical procedure can be conveniently implemented
using any standard algorithm for the unconstrained minimization of a convex function
(e.g., gradient descent). We show, with some examples, that our approximation is very
accurate, even for quite short truncation lengths, and we improve the estimates known
from literature.

This approximation technique is used to guarantee that the sequence of exponen-
tial growth rates converges uniformly to an asymptotic limit, to estimate the speed of
this convergence, and to obtain expressions of the asymptotic spectral functions. It
can be proved that the expression of the asymptotic spectral function can be recast in
the form given in [14]. Our new representation emphasises that the spectral function
is continuous and concave in its convex and closed domain.

All these results, which were conjectured in [17], but never proved, are useful
to derive information regarding the ML properties of concatenated coding schemes
(see [7], [30]).

1.3. Outline of the paper. This paper is organized as follows. In addition
to the specific notation introduced in the core of the text, the general notation is
presented in Section 2. Preliminary facts on convolutional encoders are then intro-
duced (Section 3). In particular, the controller canonical form is discussed; minimal
realization of a convolutional encoder and the concept of error events (known also
as atomic codewords) and molecular codewords are defined. In Section 4, the main
results are stated formally. In particular, exact formulæ and accurate approximations
of weight enumerators and of the linear term of their exponential growth rate are
provided. Some examples and numerical results are shown in Section 5. Technical
proofs are collected in Section 6. Section 7 contains some concluding remarks. Fi-
nally, Appendix A, which describes the asymptotic estimates of powers of series with
nonnegative coefficients, completes the paper.

2. General notation. Let N,Z,Q,R,C be the usual number sets and Z2 =
{0, 1} be the Galois field with two elements. The sets of nonnegative and positive
reals are indicated with R+ = [0,+∞) and R+ = (0,+∞), respectively. N0 = {0}∪N

is also used. The sequence of integers from 1 to N ∈ N is summarized by notation
[N ]. For x ∈ R, notation ⌊x⌋ denotes the largest integer m ∈ Z such that m ≤ x.
For x ∈ R, ⌈x⌉ is the smallest integer m ∈ Z such that m ≥ x. The absolute value of
x ∈ R is |x|. If z is in C, z∗ is its conjugate. The imaginary part of the unit is denoted
by j =

√
−1. A complex number x ∈ C is represented using its absolute value and
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argument, i.e. x = |x|ejarg(x).

The log function should be considered with respect to the natural base e, unless
we explicitly mention otherwise. Conventionally, we set exp(−∞) = 0, exp(+∞) =
+∞, inf(∅) = +∞ and sup(∅) = −∞.

This paper makes frequent use of Landau symbols. The notation “f(N) =
O(g(N)) when N → ∞” means that positive constants c and N0 exist, so that
f(N) ≤ cg(N) for all N > N0. The expression “f(N) = o(g(N)) when N → ∞”
means that limN→∞ |f(N)/g(N)| = 0. Finally, we use the expression “f(N) ∼ g(N)
when N → ∞” for limN→∞ f(N)/g(N) = 1.

Boldface letters are used for the vectors and matrices. The vector of Rn, whose
elements are all equal to 1, is denoted as 1n. Given a set Ω ⊆ Rn, we denote the

interior, the closure and the convex hull of Ω with
◦
Ω, Ω and co(Ω), respectively. The

identity matrix in Rn×n is denoted with In. The transpose and inverse of A are
denoted with AT and A−1, respectively. We use symbols |A| for the determinant of
A ∈ Rn×n. Given a vector x ∈ Zn2 with n ∈ N, we denote the set of indices in which
x is nonzero with supp(x). For x ∈ Rn, ||x||2 =

√∑n
i=1 x

2
i denotes its Euclidean

norm and ||x||1 =
∑

i |xi|.

Given f and g in the vector space of Cn, we indicate their scalar product and
their pointwise product with 〈f , g〉 =

∑
k fkg

∗
k and f · g, respectively. For f ∈ Rn

and g ∈ Cn, we define fg in C as fg :=
∏
i∈supp(f) fi

gi .

Let x = (x1, . . . , xn), k = (k1, . . . , kn), and F (x) be a formal multivariate series.
We denote the coefficient of xk =

∏n
i=1 x

ki
i in F (x) with coeff{F (x),xk} or with Fk,

i.e.

F (x) =
∑

k

coeff
{
F (x),xk

}
xk =

∑

k

Fkx
k.

3. Fundamental facts on convolutional encoders. In this section we re-
call some basic system-theoretic properties concerning convolutional encoders. More
details can be found in [1, 2], and [31].

3.1. Convolutional encoders and weight enumerators. Let V ((D)) be the
Z2-vector space of the formal Laurent series with coefficients in the Z2-vector space V .
The elements in V ((D)) are represented as

∑+∞
−∞ vtD

t, with vt = 0 for a sufficiently
small t. The spaces of the causal Laurent series and of the rational functions with
coefficients in V are denoted with V [[D]] and V (D), respectively. We recall that
V [[D]] and V (D) are subspaces of V ((D)).

Definition 3.1. Given v ∈ V ((D)), we define the support of v as supp(v) :=
{t ∈ Z|vt 6= 0} and the Hamming weight as wH(v) :=

∑
t wH(vt).

Given v1,v2 ∈ V ((D)) and t̃ ∈ Z, we define the concatenation of v1 ∨t̃ v2 at t̃ as
the Laurent series

(v1 ∨t̃ v2)t =

{
v1
t if t < t̃

v2
t if t ≥ t̃

We will also consider multiple concatenations of the Laurent series v1 ∨t1 v2 ∨t2
v2 . . . ∨tm−1 vm at concatenation times t1 < t2 < . . . < tm−1. If v ∈ V ((D)) and
I ⊆ Z, we define the restriction of v to I as the element v|I ∈ V I , so that (v|I)t = vt

4



for each t ∈ I.

By convolutional encoder we mean a homomorphic map ψ : Zk2((D)) → Zn2 ((D))
which acts as a multiplicative operator ψ(u(D)) = u(D)Ψ(D), where Ψ ∈ Zk×n2 (D)∩
Zk×n2 [[D]]. We define the corresponding code so that it is the image of the encoder
Cψ = ψ

(
Zk2((D))

)
, and x(D) ∈ Cψ is a codeword.

As convolutional encoders are rational, there exists a finite state-space realiza-
tion. This means that the relationship between the input and the codewords can be
described by means of a linear dynamical system with finite memory. In other words,
there exist a state space Z = Z

µ
2 and matrices F ∈ Z

µ×µ
2 , G ∈ Z

µ×k
2 , H ∈ Z

n×µ
2 and

L ∈ Zn×k2 such that x(D) = u(D)Ψ(D) if, and only if, there exists a state sequence
z(D) ∈ Z((D)) that satisfies

{
zt+1 = Fzt +Gut
xt = Hzt + Lut

(3.1)

Let us now consider the realization (F,G,H,L) of convolutional encoderΨ. By fixing
z0 the sequence z(D) is uniquely determined by the input sequence u(D), through
the dynamic equations in (3.1); this z(D) is called the state sequence associated with
u(D). The interpretation of this representation is discussed in detail in [31]. From
now on, it will always be assumed that z0 = 0, which is the usual assumption that
means the shift register is filled with zero bits at the beginning of the encoding process.

A finite state map can be pictorially described by means of a trellis, by drawing,
at each time step t, vertices corresponding to the elements of Zµ2 , and an edge from
vertex zt to vertex zt+1, with an input tag ut and an output label xt. Formally, we
have the following definition.

Definition 3.2. We define the trellis section at time t ∈ Z of (F,G,H,L) as
the labeled directed graph given by the vertex set Zµ2 and the set of edges

{zt
(ut,xt)−→ zt+1|zt, zt+1 ∈ Z

µ
2 ,ut ∈ Zk2 ,xt ∈ Zn2 :

zt+1 = Fzt +Gut,xt = Hzt + Lut}

Fig. 3.1. Trellis associated to the realization of a convolutional encoder. Given the input ut,
the output and the state of the system are updated by zt+1 = Fzt +Gut and xt = Hzt + Lut
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It should be noted that the trellis is not an invariant of the code, but depends on
the choice of the generator matrix as well as on the realization.

It is well-known [31] that each encoder admits a minimal realization (i.e., with
observability and controllability properties and with the smallest state dimension µ).
From now on, it will always be assumed that we are using the minimal trellis. This
hypothesis is not necessary for the results of this paper to hold but is assumed for
practical reasons.

3.2. Truncated convolutional encoders. Given a convolutional encoder ψ ∈
Zk×n2 (D) and fixed N ∈ N, let us consider the block encoder ψN : ZkN2 → ZnN2 which
is obtained by restricting the inputs of the convolutional encoder ψ to those inputs
that are supported inside [0, N − 1], and also considering the projection of the output
on the coordinates in [0, N − 1]. Formally,

ψN (u0,u1, . . . ,uN−1) = (x0,x1, . . . ,xN−1)

if

ψ(u0 + u1D + . . .+ uN−1D
N−1) = x0 + x1D + . . .+ xN−1D

N−1 + r(DN−1)

where we use the symbol r(DN−1) to enclose all the terms of the whole semi-infinite
sequence ψ(u0 + u1D + . . . + uN−1D

N−1) whose indices are not in the [0, N − 1]
window.

We call ψN the truncated convolutional encoder with truncation length N .

For any block encoder ψN , obtained by truncating a convolutional encoder ψ ∈
Zk×n2 (D) ∩ Zk×n2 [[D]], we define the input-output weight enumerator as

Aw,d(ψN ) := |{u ∈ (Zk2)
N :wH(u)=w,wH(ψN (u))=d}|.

We are interested in the linear term of exponential growth rate of input-output
weight enumerators. For a given convolutional encoder and (u, δ) ∈ [0, 1]2, we define
the input-output weight distribution function

GN (u, δ;ψ) :=

{
lnA⌊ukN⌋,⌊δnN⌋(ψN )

nN if A⌊ukN⌋,⌊δnN⌋(ψN ) > 0,
−∞ if A⌊ukN⌋,⌊δnN⌋(ψN ) = 0

(3.2)

and the asymptotic growth rate as

G(u, δ;ψ) := lim
N→∞

GN (u, δ;ψ). (3.3)

The asymptotic growth rate of the weight distribution captures the behavior of
the codewords with a linear input-output weight in the truncation length. Sev-
eral authors [2, 17, 32–34] have defined a slightly weaker form of growth rate using
lim supN→∞GN (u, δ;ψ) instead of limN→∞GN (u, δ;ψ) in the definition. This weaker
definition would only allow the input-output weight enumerators to be upper bounded
by the product of a proper sub-exponential function inN and eNG(u,δ). Here, we adopt
the stronger definition, which implies both upper and lower bound of input-output
weight enumerators:

A⌊ukN⌋,⌊δnN⌋(ψN ) = enNG(u,δ)+o(N) ∀(u, δ) ∈ [0, 1]2.
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3.3. Error events and their generating functions. The concatenation of
the Laurent series defined in the previous section leads to the following definitions.
Some of these definitions can also be found in [15, 21].

Definition 3.3 (Error event). Sequence u ∈ Zk2((D)) is an error event for ψ if
there exists tb < te such that supp(u) ⊆ [tb, te] and the corresponding state sequence
z(D) ∈ Z((D)) has supp(z) = [tb+1, te]. It should be noted that this implies utb 6= 0
and supp(ψ(u)) ⊆ [tb, te]. We call [tb, te] the active window and we denote the length
of the (input) error event with l(u) = te − tb + 1.

Error events can be depicted as paths in the trellis that start and end in the
zero state and taking non-zero state values in-between. Each non-zero codeword of
a convolutional code (which is also known also as a molecular codeword) can be
considered as a composition of several concatenated error events.

If we consider a truncated convolutional encoder, it could occur that the state
sequence is not in the 0 state at time N. Thus it is necessary to distinguish two types
of error event for the family of truncated convolutional encoders: a regular and a
truncated error event.

Definition 3.4 (Regular error event). An input vector u ∈ (Zk2)
N is a regular

error event of length l ≤ N for ψN , if u(D) = u0 + u1D + . . . + uN−1D
N−1 is an

error event of length l for ψ.

Fig. 3.2. A regular error event with active window [tb, te].

Definition 3.5 (Truncated error event). An input vector u ∈ (Zk2)
N is a trun-

cated error event for ψN , if there exists tb < N such that the corresponding state
sequence has a support that is equal to the discrete interval [tb + 1, N ].

Fig. 3.3. A truncated error event.

These definitions lead the codewords being classified as regular or truncated.
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We denote the number of input sequences with an input weight w, output weight
d, and consisting exclusively of regular error events, or containing a truncated er-
ror event, respectively, with Rw,d(ψN ) and Tw,d(ψN ). We thus obtain Aw,d(ψN ) =
Rw,d(ψN ) + Tw,d(ψN ).

Let ψN be the block encoder obtained by truncating a convolutional encoder
ψ ∈ Zk×n2 (D) ∩ Zk×n2 [[D]] after N trellis steps. Let µ be the dimension of the state
space. Let us consider a triple (w, d, l); the number of distinct error events of input
weight w, output weight d and length l is denoted with Ew,d,l. We define the following
formal power series

E(x, y, z) =
∑

w,d,l

Ew,d,lx
wydzl

The function E(x, y, z) is called the detour generating function [21].
In order to display this function, we collect the information regarding the effect

of the state transitions at each step, except for the zero state, in matrix form. This
matrix, also known as the transition matrix, appears in different forms in [14,15,21,35].
We fix an ordering of the states. The transition matrix M ∈ (N0[x, y, z])

2µ−1×2µ−1 is
defined as follows. If there is a one step transition from state z to state v, with input
u and output x, we set theMv,z entry with a xwH(u)ywH(x)z label where wH(u) is the
weight of the input sequence that takes the machine from state z to state v, wH(x) is
the corresponding output weight and z takes into account the step in the trellis. We
set Mv,z = 0 if there is not a one step transition from state z to state v. Formally,
we have

Mv,z =

{
xwH(u)ywH(x)z if z

(u,x)−→ v

0 otherwise

It should be noted that, once we have fixed an ordering of the states, we should
always choose the same ordering for the row index and for the column index. The
transfer matrix depends exclusively on the minimal realization of the encoder. In this
sense, the transition matrix is well defined up to a similarity transformation via a
permutation matrix [36].

In a similar way, let a, b ∈ (N0[x, y, z])
2µ−1

be the vectors which encode the effect
of the transitions from state 0 to state z and from state v to state 0, respectively:

az =

{
xwH(u)ywH(x)z if 0

(u,x)−→ z

0 otherwise

bv =

{
xwH(u)ywH(x)z if v

(u,x)−→ 0
0 otherwise

.

With this formalism, the formal power series E(x, y, z) can be represented as
follows

E(x, y, z) =
∑

j

b(x, y, z)TM(x, y, z)ja(x, y, z). (3.4)

We define the truncated detour generating function as follows

Ẽ(x, y, z) :=
∑

w,d,l

Ẽw,d,lx
wydzl,
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where Ẽw,d,l is the number of paths that start, but do not end, in the zero state and
have no zero transition through the trellis with input weight w, output weight d, and
length l. With the previous formalism we obtain

Ẽ(x, y, z) =
∑

i


∑

j

Mj(x, y, z)a(x, y, z)



i

. (3.5)

Other algorithms, which can be used to compute the generating function of error
events, while avoiding the large transition matrix, are Viterbi’s method (see [35]), or
Mason’s gain formula, as described in [32]. Other methods can be found in [37].

4. Main results. In this section, we describe how to compute the weight dis-
tribution of a convolutional code in terms of the trellis representation and its cor-
responding exponential growth rate. The resulting expressions are new, or improve
results that already exist in the literature. Our contribution is discussed in detail.

In the following, we present a new representation of the weight enumerators of
convolutional encoders. The main tool is the use of a generating function for both
kinds of error event (regular and truncated). We will use the subsequent expressions
to evaluate the growth rate of the weight distribution as a function of truncation
length N.

Let us consider the following formal power series

F (x, y, z) :=
E(x, y, z)

(1− z)
(4.1)

L(x, y, z) :=
1

1− z
+
Ẽ(x, y, z)

E(x, y, z)
. (4.2)

At this moment, we do not require any concept of convergence and we interpret x, y,
and z as formal indeterminates.

Theorem 4.1 (Weight enumerators). The weight distribution of a truncated
convolutional encoder ψN is given by

Aw,d(ψN ) =

N∑

t=1

coeff
{
L(x, y, z)F (x, y, z)t, xwydzN

}
. (4.3)

Although the computation of the expression in (4.3) is easy for reasonably sized
parameters, it quickly becomes unpractical when the truncation length N grows. It
should be noted that the formula in (4.3) involves powers of series with nonnegative
coefficients. A technique to approximately evaluate the growth rate of the coefficients
of a multivariate polynomial has been developed in [23,24] and applied in [21,25,26,38]
to evaluate the weight and stopping set distribution of LDPC, and in [27,28] to study
the average distance distribution of irregular doubly generalized low-density parity-
check code ensembles. We will prove that a similar approach can also be extended
to approximate the coefficients of the generating functions in (4.3). With this tech-
nique, we obtain the asymptotic exponential growth rate of (4.3), which can in fact
be estimated much more easily.
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Let us define the following set

W := {(u, δ) ∈ [0, 1]2|∃N0 ∈ N : R⌊ukN0⌋,⌊δnN0⌋(ψN0) > 0}. (4.4)

Proposition 4.2. W is convex and closed.
Theorem 4.3 (Asymptotic growth rate). For a given convolutional encoder ψ,

when N → ∞, the functions GN (u, δ;ψ) converge uniformly for all (u, δ) ∈ W to

G(u, δ;ψ) =

{
max

α∈[0,1]
min

(x,y,z)∈Σ+
{α lnF (x,y,z)−uk ln x−δn ln y−ln z}

n if (u, δ) ∈ W
−∞ otherwise

(4.5)

where W is defined in (4.4), Σ ⊆ R3 is the region of absolute convergence of the power
series F (x, y, z), and Σ+ = Σ ∩ (R+)3.

The espression in (4.5) highlights the following property, which was conjectured
in [17], but never proved before.

Corollary 4.4. G(u, δ;ψ) is continuous and concave with respect to u and δ in
W.

An algorithm that can be used to efficiently compute the asymptotic growth
rate of the weight distribution for a convolutional encoder has already been given by
Sason et al. in [14]. We here improve their results in the following ways. First, the
continuity and concavity of function G(u, δ, ψ) is guaranteed with our representation
(4.4). Second, we can ensure the uniform convergence in both variables u and δ of
functions GN (u, δ;ψ) to the asymptotic limit G(u, δ;ψ). Although the expression in
(4.5) can in general only be evaluated numerically, the minimization required can be
conveniently implemented by minimizing

f(ξ1, ξ2, ξ3) = F̂α(e
ξ1 , eξ2 , eξ3),

where

F̂α(x, y, z) = ln

[
F (x, y, z)α

xukyδnz

]
.

using any standard algorithm for the unconstrained minimization of a convex function
(e.g., gradient descent).

Sometimes, if the focus is on the exponential growth rate, it is not necessary to
develop the full expression of the weight enumerators. Gallager [39–41] suggested
to focus directly on the logarithm instead of on the weight enumerators themselves.
In this way, all the sub-linear functions that multiply the exponential growth rate
can be neglected. However, the exponential growth rate of the weight enumerators
are often not sufficient to analyze the minimum distance properties or noise channel
parameters of turbo codes and some refined estimates are required on the growth rate
of the weight distribution.

Here, we present an approximation of the weight distribution of a finite truncation-
length (not only the exponent) and, consequently, we can estimate the measure of
convergence of the sequence of exponential GN (u, δ;ψ) to the asymptotic limit.

Theorem 4.5 (Finite length approximation). Let us suppose that the set

F = {(k1, k2, k3) ∈ Z3|coeff{F (x, y, z), xk1yk2zk3} > 0}
10



generates Zν as an abelian group. Then, for N → ∞

A⌊ukN⌋,⌊δnN⌋(ψN ) ∼
√
2πσ2L(xα⋆ , yα⋆ , zα⋆)√

(2πα⋆N)ν |Γα⋆ |
F (xα⋆ , yα⋆ , zα⋆)α

⋆N

xukNα⋆ yδnNα⋆ zNα⋆

(4.6)

where (xα, yα, zα) ∈ (R+)3 is the unique solution of the following system




x
F (x,y,z)

∂F (x,y,z)
∂x = uk

α

y
F (x,y,z)

∂F (x,y,z)
∂y = δn

α

z
F (x,y,z)

∂F (x,y,z)
∂z = 1

α

(4.7)

and α⋆ and Γα⋆ are defined by

α⋆ = argmax
0≤α≤1

{α lnF (xα, yα, zα)− uk lnxα − δn ln yα − ln zα} ,

Γα⋆ =




x ∂
∂x

(
x
F
∂F
∂x

)
y ∂
∂y

(
x
F
∂F
∂x

)
z ∂
∂z

(
x
F
∂F
∂x

)

x ∂
∂x

(
y
F
∂F
∂y

)
y ∂
∂y

(
y
F
∂F
∂y

)
z ∂
∂z

(
y
F
∂F
∂y

)

x ∂
∂x

(
z
F
∂F
∂z

)
y ∂
∂y

(
z
F
∂F
∂z

)
z ∂
∂z

(
z
F
∂F
∂z

)




∣∣∣∣∣∣∣
(xα⋆ ,yα⋆ ,zα⋆)

.

Theorem 4.5 largely parallels Theorem 10 in [25], in which an accurate approximation
of the average weight enumerators is given for ensembles of LDPC codes. Using similar
techniques (working with a formal series instead of polynomials), we are able not only
to estimate the order of magnitude of weight enumerators, but also to emphasize the
fundamental role played by ν.

Some of the examples given in Section 5 show that this approximation is very ac-
curate, even for quite short truncation lengths. Explicit applications of these theorems
are developed in [7] and [30].

5. Some examples. We discuss our theorems and we use them to compute
enumerating functions of some convolutional encoders. We now show that our method
provides explicit analytic expressions and, in some specific cases, we can improve the
approximation given in Theorem 4.5.

5.1. Accumulate encoder. Let AccN be the block encoder obtained from the
truncation, after N trellis steps, of the convolutional encoder with transfer function
G(D) = (1 +D)−1. The weight transition diagram is depicted in Figure 5.2.

Fig. 5.1. Trellis associated to the realization of the accumulate encoder.

In this case, the generating functions of the error events are given by the following
formal power series

E(x, y, z) = x2yz2
+∞∑

k=0

(yz)k =
x2yz2

(1− yz)
Ẽ(x, y, z) = xyz

+∞∑

k=0

(yz)k =
xyz

1− yz
.
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0 1 0

xyz

yz

xz

Fig. 5.2. Accumulate encoder: weight transition diagram

Using Theorem 4.1, we find that if w is even, then Tw,d(AccN ) = 0; otherwise, if w is
odd, then Rw,d(AccN ) = 0.

The computation is now given in detail: if w is even, then

Rw,d(AccN ) =

N∑

t=1

coeff

{
x2tytz2t

(1− z)t+1(1− yz)t
, xwydzN

}

t=w/2
= coeff

{
1

(1− z)w/2+1(1− yz)w/2
, yd−w/2zN−w

}

= coeff

{
1

(1− z)w/2+1(1− s)w/2
, sd−w/2zN−d−w/2

}

= coeff

{
1

(1− s)w/2
, sd−w/2

}
coeff

{
1

(1− z)w/2+1
, zN−d−w/2

}

=

(
N − d
w
2

)(
d− 1
w
2 − 1

)
;

while, if w is odd,

Tw,d(AccN ) =

N∑

t=1

coeff

{
x2t−1ytz2t−1

(1− z)t(1− yz)t
, xwydzN

}

t=(w+1)/2
= coeff

{
1

(1− z)(w+1)/2(1− yz)(w+1)/2
, yd−(w+1)/2zN−w

}

= coeff

{
1

(1 − z)(w+1)/2(1− s)(w+1)/2
, sd−(w+1)/2zN−d−(w−1)/2

}

= coeff

{
1

(1 − s)(w+1)/2
, sd−(w+1)/2

}
coeff

{
1

(1 − z)(w+1)/2
, zN−d−(w−1)/2

}

=

(
N − d
w−1
2

)(
d− 1

w+1
2 − 1

)
,

from which

Aw,d(AccN ) =

(
N − d

⌊w2 ⌋

)(
d− 1

⌈w2 ⌉ − 1

)
, (5.1)

a result that was also derived adopting different combinatorial techniques in [13]. The
asymptotic growth rate, as shown in [13], can easily be deduced.

After some manipulations, we obtain the following solution for the set of three
equations in (4.7)

α =
u

2
yz = 1− u

2δ
z = 1− u

2(1− δ)
.
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It should be noted that the region of convergence of the generating functions of the er-
ror events is given by Σ+ = {(x, y, z) ∈ (R+)3 : 0 ≤ z < 1, 0 ≤ yz < 1}. Equivalently,
the domain W = {(u, δ) ∈ [0, 1]2|u ∈ [0,min{2δ, 2(1−δ)}], which is convex and closed.

From Theorem 4.3 we find that

G(u, δ; Acc) =
u

2
ln

x2yz2

(1 − yz)(1− z)
− u lnx− δ ln y − ln z

=
u

2
ln yz − u

2
ln (1− yz) +

u

2
ln

z

1− z
− u lnx− δ ln y − ln z

=
u

2
ln
(
1− u

2δ

)
− u

2
ln

u

2δ
+
u

2
ln

z

1− z
− u lnx− δ ln(yz)− (1− δ) ln z

= δH
( u
2δ

)
+ (1− δ)H

(
u

2(1− δ)

)
. (5.2)

Finally, following the procedure given in Section 5.3, one obtains the following
approximation:

GN (u, δ; Acc) ∼ −1

2
ln

(
πuN

yz(1− z)2

(1 − yz)2

)
+G(u, δ) N → ∞.

It should be noted that this approximation is better than the assertion given in
Theorem 4.5. This improvement is due to the fact that when the input and output
weights of the accumulate encoder are fixed, the number of error events and the overall
length are automatically determined and no extra factor is needed in equation (4.6).

In Fig. 5.1, we show different results for truncation lengths N = 80 and N = 200.
It should be noted that the approximation is very good, even for these low values of N
and, as expected, for increasing N both the approximation and the direct calculation
result approach the asymptotic growth rate.

5.2. The (4,3) Single Parity Check Code. This code can be considered as a
truncated convolutional encoder φ ∈ Z3×4

2 (D) with zero memory and df (ψ) = 2. We
now focus on the output weight distribution function.

Again in this case, we can obtain an explicit expression for the output weight
enumerators Ad(φ) =

∑
w Aw,d(φ).

The generating function of the error events is given by

E(x, y, z) = (3xy2 + 3x2y2 + x3y4)z

and from Theorem 4.1, we obtain

Ad(φ) =

N∑

t=1

coeff

{
E(1, y, z)t

(1− z)t+1
, ydzN

}
=

N∑

t=1

coeff

{
(6y2 + y4)t

zt

(1 − z)t+1
, ydzN

}

=

N∑

t=1

coeff
{
(6y2 + y4)t, yd

}
coeff

{
1

(1− z)t+1
, zN−t

}

=

N∑

t=1

(
N

t

)
coeff

{
(6 + y2)t, yd−2t

}
=

N∑

t=1

(
N

t

)
coeff

{
(6 + y)t, yd/2−2t

}

13



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

normalized input weight u

G80

δ = 0.242

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

normalized input weight u

G200

δ = 0.242

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

normalized input weight u

G80

δ = 0.343

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

normalized input weight u

G200

δ = 0.343

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

normalized input weight u

G80

δ = 0.444

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

normalized input weight u

G200

δ = 0.444

Fig. 5.3. Accumulate encoder: once the output weight δ = 0.242, 0.343, 0.444 has been fixed,
the input-output weight distribution function GN (u, δ), defined in (3.2), can be plotted as a function
of the normalized input weight u (see the dots), and compared with the exponent of (4.6) (bottom
curve) and the asymptotic growth rate G(u, δ) defined in (3.3). The plot is obtained for truncation
lengths N = 80 (left) and N = 200 (right).

from which Ad(φ) = 0, if d is odd. If d is even,

Ad(φ) =

d/2∑

t=1

(
N

t

)
coeff

{
t∑

i=0

(
t

i

)
6iyt−i, yd/2−2t

}

=

N∑

t=1

(
N

t

)
62t−d/2

(
t

2t− d/2

)
(5.3)
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The asymptotic growth rate can easily be deduced.

In Fig. 5.2, we compare the exact weight enumerators (computed above) with
the approximation obtained with Theorem 4.5 and the asymptotic spectral function
provided by the method described in Theorem 4.3. The truncation lengths are taken
as N = 20 and N = 50.
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Fig. 5.4. (4,3)-Single Parity Check Code: the exact exponent of the output weight enumerators
given in (5.3) is compared with the exponent of the approximation using Theorem 4.5 (bottom curve)
and the asymptotic growth rate (upper curve). The plot is obtained for truncation lengths N = 20
(left) and N = 50 (right).

6. Proofs. In this section, we provide the proofs of the results listed in Section
4. Here, the proofs are outlined.

• In Subsection 6.1, we prove Theorem 4.1 by using some combinatorial results
regarding convolutional codes.

• The proofs of Proposition 4.2, Theorem 4.3, and Corollary 4.4 are provided
in Subsection 6.2.

• Finally, the approximation of the weight enumerators for finite length codes
(Theorem 4.5) is derived in Subsection 6.3.

6.1. Exact method for the weight enumerators. Here, we prove Theorem
4.1.

Proof. [Proof of Theorem 4.1] A codeword is a concatenation of several error
events. We therefore need to compute how many ways these patterns can be arranged
over their total length N , so that their total input weight is w and their total output
weight is d.

Given w, d, t, l ∈ N, let us denote the cardinality of the set of all the input se-
quences u ∈ Zk2 [[D]] with the input weight vector w, and the output weight d, which
is obtained by concatenating t full error events, and whose total length is l, with
Rw,d,t,l(ψN ) . Let us now take into consideration the combinatorics of the 0’s which
separate the error events (what Sason et al. call silent periods in [14]): it is necessary
to dispose of N − l elements in a maximum of t+ 1 different blocks (see Figure 6.1).

Let CN−l,t+1 be the number of t+1-combination with repetition of the finite set
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at+1

1 2 t

{ ∑t+1
i=1 ai = N − l

ai ≥ 0
=⇒ CN−l,t+1 =

(
N−l+t

t

)

Fig. 6.1. Combinatorics of the 0’s which separate the error events

{1, . . . , N − l}. We obtain:

Rw,d(ψN ) =

N∑

t=1

N∑

l=1

CN−l,t+1Rw,d,t,l(ψN ) =

N∑

t=1

N∑

l=1

(
N − l + t

t

)
Rw,d,t,l(ψN )

=

N∑

t=1

N∑

l=1

(
N − l + t

t

) ∑

(w1, ..., wt) :∑t
i=1 wi = w

∑

(d1, ..., dt) :∑t
i=1 di = d

∑

(l1, ..., lt) :∑t
i=1 li = l




t∏

j=1

Ewj ,dj ,lj




=

N∑

t=1

N∑

l=1

coeff

{
1

(1− z)t+1
, zN−l

}
coeff

{
[E(x, y, z)]

t
, xwydzl

}

=

N∑

t=1

coeff

{
[E(x, y, z)]t

(1 − z)t+1
, xwydzN

}
(6.1)

Through similar arguments, we find that the number of input sequences with input
weight w, output weight d, and containing a truncated error event, is given by

Tw,d(ψN ) =

=
N∑

t=1

N∑

l=1

CN−l,t
∑

(w1, ..., wt) :∑t
i=1 wi = w

∑

(d1, ..., dt) :∑t
i=1 di = d

∑

(l1, ..., lt) :∑t
i=1 li = l



t−1∏

j=1

Ewj ,dj,lj


 Ẽwt,dt,lt

=

N∑

t=1

N∑

l=1

CN−l,t

N∑

wt=1

N∑

dt=1

N∑

lt=1

Ẽwt,dt,lt× (6.2)

×
∑

(w1, ..., wt−1) :∑t
i=1 wi = w − wt

∑

(d1, ..., dt−1) :∑t
i=1 di = d− dt

∑

(l1, ..., lt−1) :∑t
i=1 li = l − lt

t−1∏

j=1

Ewj ,dj,lj
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Tw,d(ψN ) =

N∑

t=1

N∑

l=1

CN−l,t

N∑

wt=1

N∑

dt=1

N∑

lt=1

coeff
{
Ẽ(x, y, z), xwtydtzlt

}
× (6.3)

× coeff
{
[E(x, y, z)]

t−1
, xw−wtyd−dtzl−lt

}

=

N∑

t=1

N∑

l=1

(
N − l+ t− 1

t− 1

)
coeff

{
Ẽ(x, y, z) [E(x, y, z)]

t−1
, xwydzl

}

=

N∑

t=1

coeff

{
Ẽ(x, y, z)

[E(x, y, z)]
t−1

(1− z)t
, xwydzN

}
. (6.4)

. . .︸ ︷︷ ︸
a1

. . .︸ ︷︷ ︸
a2

. . . . . . . . .︸ ︷︷ ︸
at

1 2 t

↑
truncated

{ ∑t
i=1 ai = N − l

ai ≥ 0
=⇒ CN−l,t+1 =

(
N−l+t−1

t−1

)

Fig. 6.2. Combinatorics of the 0’s which separate the error events

The term CN−l,t takes into consideration the combinatorics of the 0’s which sep-
arate the error events: it should be noted that, in this case, we have to dispose of
N − l elements in a maximum of t different blocks, since the last error event has not
yet terminated (see Figure 6.2). The thesis is obtained by adding expression (6.1) to
(6.4).

6.2. Asymptotic growth rate of the weight enumerators. Let us now dis-
cuss how the exponential growth rate of the weight enumerators can be derived. Some
other technical proofs have been deferred to Appendix A for better readability pur-
poses.

Lemma 6.1. For fixed (u, δ) ∈ Q2 ∩ [0, 1]2, consider the set

Nu,δ = {N ∈ N : ukN ∈ N, δnN ∈ N and RukN,δnN (ψN ) > 0}. (6.5)

This set is either empty, or has infinite cardinality. If N0 ∈ Nu,δ, then jN0 ∈ Nu,δ

for all j ∈ N.
Proof. If N0 ∈ Nu,δ, then jN0 ∈ Nu,δ for each positive integer j. In order to

comprehend this fact, it should be observed that if N0 ∈ Nu,δ, then there exists an
input sequence u(D) ∈ Zk2((D)) such that u|[0,N0−1] consists exclusively of regular
error events, wH(u|[0,N0−1]) = ukN0 and wH (ψN0(u)) = δnN0. By considering the
sequence

w(D) = u(D) ∨N0 D
N0u(D) ∨2N0 . . . ∨(j−1)N0

D(j−1)N0u(D),

we obtain wH(w|[0,jN0−1]) = ukjN0 and wH (ψjN0(w)) = δnjN0, or equivalently
jN0 ∈ Nu,δ.

Proof. [Proof of Proposition 4.2]
We can prove the assertion through the following steps:
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1. W ∩Q2 is dense in W ;
2. W ∩Q2 is convex;
3. W is closed;
4. W is convex.

1) The W ∩ Q2 set is dense in W due to the way it is defined. In fact, for each
ω ∈ W and open ball

B1(ω, ε) = {ω : |ω1 − ω1| < ε1, |ω2 − ω2| < ε2} ∩W ,

we obtain

B1(ω, ε) ∩W ∩Q2 6= ∅.

In order to comprehend this fact, let N ∈ N ∈ Nω1,ω2 , as defined in (6.5), then from
Lemma 6.1 we obtain jN ∈ Nω1,ω2 .

It should be noted that all ω ∈ Q2, so that |ω1 − ω1| < 1
2j1kN

, and |ω2 − ω2| <
1

2j2nN
with j1 ≥ 1

2ε1kN
and j2 ≥ 1

2ε2kN
are in B1(ω, ε) ∩W ∩Q2 since

R⌊ω1kN⌋,⌊ω2nN⌋(ψN ) = R⌊ω1kN⌋,⌊ω2nN⌋(ψN ) > 0.

2) Let (u1, δ1), (u2, δ2) ∈ W ∩Q2 and

N1 = min{N |N ∈ Nu1,δ1} N2 = min{N |N ∈ Nu2,δ2} N⋆ = lcm(N1, N2).

On the basis of the above calculation, it follows that jN⋆ ∈ Nu1,δ1 ∩ Nu2,δ2 for each
positive integer j and there exist u1,u2 ∈ Zk2((D)) input sequences, such that

wH(u1|[0,N1−1]) = u1kN1 wH (ψN1(u1)) = δ1nN1

and

wH(u2|[0,N2−1]) = u2kN2 wH (ψN2(u2)) = δ2nN2.

In order to comprehend that W is convex, it is sufficient to prove that

(ϑu1 + (1− ϑ)u2, ϑδ1 + (1− ϑ)δ2) ∈ W ∀ϑ ∈ [0, 1] ∩Q.

Let us consider j1, j2, so that j1N1 = j2N2 = N⋆ and the following input sequences

w1(D) = u1(D) ∨N1 D
N1u1(D) ∨2N1 . . . ∨(j1−1)N1

D(j1−1)N1u(D),

w2(D) = u2(D) ∨N2 D
N2u2(D) ∨2N2 . . . ∨(j2−1)N2

D(j2−1)N2u(D).

Let q be an integer, so that qϑ ∈ N, then the sequence

v = w1∨N⋆ ...∨(qϑ−1)N⋆D(qϑ−1)N⋆

w1∨qϑN⋆DqϑN⋆

w2∨(qϑ+1)N⋆ ...∨qN⋆−1D
qN⋆−1w2

has the following properties

wH(v|[0,qN⋆−1]) = (ϑu1+(1−ϑ)u2)qkN
⋆ wH (ψqN⋆(v)) = (ϑδ1+(1−ϑ)δ2)qnN

⋆.

We can conclude that qN⋆ ∈ Nϑu1+(1−ϑ)u2,ϑδ1+(1−ϑ)δ2 and ϑ(u1, δ1)+(1−ϑ)(u2, δ2) ∈
W .
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3) We now show that region W is also closed.

From equation (6.1) we find that (u, δ) ∈ W if, and only if, there exists (α, β) ∈
(0, 1)2 such that the following problem is feasible

∑

i,j,l

λi,j,l = 1,
∑

i

iλi,j,l =
uk

α
,

∑

j

jλi,j,l =
δn

α
,

∑

k

lλi,j,l =
β

α
.

(6.6)

It should be noted that λi,j,l represents the limit fraction of the error events in a linear
fashion with input weight i, output weight j and length l. Equivalently, (u, δ) ∈ W if,
and only if, (α, β) ∈ [0, 1]2 exists, for which the following decision problem is feasible:

Φλ =

(
1,
uk

α
,
δn

α
,
β

α

)T
λ � 0, (6.7)

in which the region of u and δ for which (6.6) is feasible is closed. In order to
comprehend this fact, let us consider the dual problem of 6.7.

ΦT ζ � 0

(
1,
uk

α
,
δn

α
,
β

α

)
ζ > 0 (6.8)

According to Farkas’ lemma [42], (6.7) and (6.8) are strong alternatives, which means
that only one of them holds (i.e. either (6.7) or (6.8) is feasible, but not both). On
the other hand, the region of (u, δ) for which (6.8) is feasible is clearly an open set
(notice that Φ is independent of α, β, u, and δ), so that the region for which (6.6) is
feasible is closed.

4) Let ω1,ω2 ∈ W and λ ∈ [0, 1]. Since W ∩ Q is dense in W (see point 1))
and Q ∩ [0, 1] in [0, 1], sequences λm ∈ Q,ω1

m,ω
2
m ∈ W ∩ Q exist, so that λm → λ,

ω1
m → ω1 and ω2

m → ω2. As W ∩Q is convex, then λmω1
m + (1 − λm)ω2

m ∈ Q ∩W
and

λmω1
m + (1− λm)ω2

m
m→∞−→ λω1 + (1− λ)ω2 ∈ W

results from the fact that W is closed and W is clearly convex.

Now, in order to obtain a closed form expression for the asymptotic spectral
function G(u, δ), we use the multidimensional saddle-point method for large powers.
Before illustrating this method, some notations and definitions are fixed.

Given a function F (x) of class C2 of η variables, x = (x1, . . . , xη), let us define
the following operators:

∆i[F ](x) := xi
∂ lnF

∂xi
=
xi
F

∂F

∂xi
∀i ∈ {1, . . . η} (6.9)

Γi,j [F ](x) := xj
∂ (∆i[F ](x))

∂xj
∀i, j ∈ {1, . . . η}. (6.10)
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Theorem 6.2. [Multidimensional saddle-point method for large powers] Let S(x)
and F (x) be power series of the type

S(x) =
∑

l∈N
η
0

Slx
l =

∑

l∈S

Slx
l

F (x) =
∑

k∈N
η
0

Fkx
k =

∑

k∈F

Fkx
k

where x = (x1, . . . , xη), x
k =

∏η
i=1 x

ki
i , and

F := {k ∈ N
η
0 |Fk > 0} S := {l ∈ N

η
0 |Sl > 0} .

Let us suppose that F has the following properties:
(P1) Fk ∈ N0 for each k, F0 > 0 and |F | ≥ 2.
(P2) There exist C ∈ R+ and s ∈ N such that Fk ≤ C|k|s for each k.
(P3) There exists a finite subset F0 ⊆ F and k1, . . .kl ∈ N

η
0 such that:

(P3a) F ⊆ {k0 +
∑l

i=1 tik
i | k0 ∈ F0, ti ∈ N}.

(P3b) There exists k̃i ∈ F for i = 1, . . . , l such that k̃i + tki ∈ F for each
t ∈ N0.

(P4) F generates Zν as an Abelian group.
Let us assume that S satisfies the following conditions:

(P5) Sl ∈ N0 for each l, S0 > 0 and |S | ≥ 2.
(P6) There exists a finite subset S0 ⊆ S such that:

(P6a) S ⊆ {l0 +∑l
i=1 tik

i | l0 ∈ S0, ti ∈ N}.
(P6b) There exists l̃i ∈ S for i = 1, . . . , l such that l̃i + tki ∈ S for each

t ∈ N0.

Let us consider αn and ωn, so that there exists α and ω ∈
◦

co(F ) with |αn−α| =
O(n−1) and ||ωn − ω|| = O

(
n−1

)
when n→ ∞. Let

N = {n ∈ N|ωnαnn ∈ Nη, αnn ∈ N}.

Then we have

coeff{S(x)[F (x)]αnn,xωnαnn} =
S(xω)√

(2παnn)ν |Γ(xω)|
[F (xω)]

αnn

xωnαnn
ω

(
1 +O

(
n−1/10

))
,

(6.11)
for n→ ∞, so that n ∈ N , and

lim
n∈N

1

n
ln (coeff{S(x)[F (x)]αnn,xωnαnn}) = α lnF (xω)− α ω · lnxω (6.12)

where xω ∈ (R+)η is the unique solution to ∆(x) = ω. Moreover, the convergence in
(6.12) is uniform in α and ω.

Theorem 6.2, whose proof is rather technical and therefore deferred to Appendix
A, may be considered as a generalization of [19, Thm. 2] and [21, Lemma D.14].
There, only the case in which the generating function is a power of a multivariate
polynomial, with non-negative coefficients, was considered. Theorem 6.2 covers a more
general class of generating functions, which includes the case treated in [19, Thm. 2].
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Moreover, our modification allows the order of magnitude of a (convergent) sequence
of coefficients to be estimated in large powers of multivariate functions and highlights
the fundamental role played by ν.

Lemma 6.3. Let us consider function F (x, y, z), which is defined in (4.1). Then

(P1)-(P3) hold true. The power series Ẽ(x, y, z) satisfy in (3.5) and (1− z)−1 satisfy
the (P5)-(P6) properties.

Proof. The condition F0 > 0 is obtained by taking the common factors out.
Properties (P1)-(P2) can be verified trivially and here we only prove condition (P3).

Let G = (V , E) be the directed graph associated with the trellis of the convo-
lutional encoder, where V = {v1, v2, . . . vµ} is a finite set of vertices that represent
the states of the convolutional encoder and E ⊆ V × V with (vi, vj) ∈ E , if there
is one step transition from state vi to state vj . Let us now suppose that a label is
assigned to each edge in the graph. If e = (vi, vj) ∈ E , a label is assigned to the

edge f(e) = xk = xk11 x
k2
2 x

k3
3 in which k1 is the weight of the input sequence that

takes the machine from state vi to state vj , k2 is the corresponding output weight,
and k3 is the length of the input sequence. A path in such a graph is a sequence
of edges of the form p = (v0, v1), (v1, v2), . . . , (vn−1, vn). Such a path is said to be
a path of length n, and it is usually represented by the string (v0, v1, . . . vn). Let
us define the label of a path as the product of the labels of the component edges
f(p) =

∏
e∈p f(e) =

∏
e∈p x

ke = x
∑

e∈p ke . Let us define kp =
∑
e∈p ke.

With this formalism, the generating function F (x) is the sum of the labels of all
the paths that start and end in the zero state. A c ∈ Cv|v1,...,vn cycle is a sequence
that starts and ends in v with transitions in V \ {v, v1, ..., vn}. Let Cmin be the set
of all the minimal cycles, that is, all the cycles that start and end in a generic vertex
v and taking distinct values in-between. Since the encoder has a fixed memory, then
|Cmin| is finite. Given a path p, we denote the set of all the sequences in Cv|v1,...,vn
(and C s

min) included in p with C
p
v|v1,...,vn (and C

p
min).

The following lemma states that each multi-index k ∈ F 6= {k|Fk > 0} can be
written in terms of minimal cycles.

Let k ∈ F . Then a sequence s = (0, v1, ..., vn, 0) exists, so that f(s) = xk. If vi
are all distinct values then s ∈ Cmin, k = ks and the assertion is verified. Otherwise,
f(s) =

∏
c0∈C s

0
f(c0).

f(s) =
∏

c0∈C s
0

∏

v∈c0

∏

c1∈C s
v|0

f(c1)

If C s
v|0 = Cmin for all the v, we can conclude the thesis. If this is not the case, it is

necessary to proceed as before:

f(s) =
∏

c0∈C s
0

∏

v∈c0

∏

c1∈C s
v|0∩C s

min

f(c1)
∏

c′1∈C s
v|0\C s

min

f(c′1)

The process halts after a maximum nomber of |V| = µ steps, and we obtain

f(s) =
∏

c0∈C s
0

∏

v1∈c0

∏

c1∈Cv1|0∩Cmin

f(c1) . . .
∏

vµ∈cµ−1

∏

cµ∈Cvµ|vµ−1,...,v1,0∩Cmin

f(cµ).

It should be noted that finally s is decomposed exlusively in terms of minimal cycles.
Let us define tc as the number of times the cycle appears in the sequence s, and we
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conclude that

f(s) =
∏

c∈Cmin

f(c)tc = x
∑

c tckc .

Similar arguments can be used to prove conditions (P5)-(P6) for Ẽ(x, y, z). Fi-
nally, (P5)-(P6) are trivially verified for (1 − z)−1.

Proof. [Proof of Theorem 4.3] If (u, δ) /∈ W , then we trivially have that

R⌊ukN⌋,⌊δnN⌋(ψN ) = 0 ∀N ∈ N,

functions GN are not defined in these points, and we conventionally set GN (u, δ) =
−∞ ∀N ∈ N.

From Theorem 4.1 (see expressions (4.1), (4.2), and (4.3)), we obtain

GN (u, δ) ≥ 1

nN
ln coeff

{
L(x, y, z)F (x, y, z)

⌊αN⌋
, x⌊ukN⌋y⌊δnN⌋zN

}
∀α ∈ [0, 1]

=
1

nN
ln coeff

{
1

1− z
F (x, y, z)⌊αN⌋, x⌊ukN⌋y⌊δnN⌋zN

}
+

+
1

nN
ln coeff

{
Ẽ(x, y, z)

1− z
F (x, y, z)

⌊αN⌋−1
, x⌊ukN⌋y⌊δnN⌋zN

}
∀α ∈ [0, 1]

Let us define

ωN =

(⌊ukN⌋
⌊αN⌋ ,

⌊δnN⌋
⌊αN⌋ ,

N

⌊αN⌋

)
ω =

(
uk

α
,
δn

α
,
1

α

)

and αN = ⌊αN⌋
N . It should be noted that ||ω − ωN || = O

(
N−1

)
and |αN − α| =

O(N−1). Since (u, δ) ∈ W , ω ∈
◦

co(F ), and from Lemma 6.3, the hypotheses of
Theorem 6.2 are satisfied.

Using Theorem 6.2, we can estimate function G as follows

lim
N→∞

GN (u, δ) ≥ 1

n
{α lnF (xα, yα, zα)− uk lnxα − δn ln yα − ln zα} ∀α ∈ [0, 1]

lim
N→∞

GN (u, δ) ≥ 1

n
max
α∈[0,1]

{α lnF (xα, yα, zα)− uk lnxα − δn ln yα − ln zα} ,

in which (xα, yα, zα) is the solution of system ∆[F ](x, y, z) = (uk/α, δn/α, 1/α),
which is equivalent to system (4.7).

On the other hand, from Theorem 4.1 (see expression (4.3)) we obtain ∀(x, y, z) ∈
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(R+)3

GN (u, δ) ≤
lnN

nN
+max

α

1

nN
ln coeff

{

L(x, y, z)F (x, y, z)⌊αN⌋
, x

⌊ukN⌋
y
⌊δnN⌋

z
N

}

≤
lnN

nN
+max

α

{

1

nN
ln coeff

{

L(x, y, z)F (x, y, z)⌊αN⌋
, x

⌊ukN⌋
y
⌊δnN⌋

z
N

}

+

−
1

n
[α lnF (xα, yα, zα)− uk ln xα − δn ln yα − ln zα] +

+
1

n
[α lnF (xα, yα, zα)− uk ln xα − δn ln yα − ln zα]

}

≤
lnN

nN
+max

α

{

1

nN
ln coeff

{

L(x, y, z)F (x, y, z)⌊αN⌋
, x

⌊ukN⌋
y
⌊δnN⌋

z
N

}

+

−
1

n
[α lnF (xα, yα, zα)− uk ln xα − δn ln yα − ln zα]

}

+

+
1

n
max

α
[α lnF (xα, yα, zα)− uk ln xα − δn ln yα − ln zα] .

where the last step is obtained from Theorem 6.2.

We can conclude that

lim
N→∞

GN (u, δ) ≤ 1

n
max
α

[α lnF (xα, yα, zα)− uk lnxα − δn ln yα − ln zα] .

The assertion is then obtained by observing that

(xα, yα, zα) = argmin
x,y,z

{α lnF (x, y, z)− uk lnx− δn ln y − ln z}

(see the proof of Lemma B.2).

Proof. [Proof of Corollary 4.4] The continuity of function G(u, δ) in (u, δ) ∈ W is
obtained immediately from the expression in (4.5).

We can now prove that function G is also concave in its domain. It should be
noted that the function

f(u, δ, α) = min
x,y,z

{α lnF (x, y, z)− uk lnx− δn ln y − ln z}

is concave in (u, δ, α) ∈ W × [0, 1] as a pointwise minimum over an infinite set of
concave functions:

θf(u1, δ1, α1) + (1− θ)f(u2, δ2, α2) =

= min
x,y,z

[θα1 lnF (x, y, z)− θu1k lnx− θδ1n ln y − θ ln z] +

+ min
x,y,z

[(1− θ)α2 lnF (x, y, z)− (1− θ)u2k lnx− (1− θ)δ2n ln y − (1− θ) ln z]

≤ min
x,y,z

[(θα2 + (1− θ)α2) lnF (x, y, z)− (θu1 + (1 − θ)u2)k lnx+

−(θδ2 + (1− θ)δ2)n ln y − ln z]

= f(θu1 + (1 − θ)u2, θδ1 + (1− θ)δ2, θα1 + (1− θ)α2).
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Let αi = argmax
α

f(ui, δi, α), then

θG(u1, δ1) + (1 − θ)G(u2, δ2)

= θmax
α

f(u1, δ1, α) + (1− θ)max
α

f(u2, δ2, α)

= θf(u1, δ1, α1) + (1− θ)f(u2, δ2, α2)

≤ f(θu1 + (1− θ)u2, θδ1 + (1 − θ)δ2, θα1 + (1 − θ)α2)

≤ max
α

f(θu1 + (1 − θ)u2, θδ1 + (1− θ)δ2, α)

= G(θu1 + (1− θ)u2, θδ1 + (1− θ)δ2).

We can conclude that G(u, δ) is concave in (u, δ) ∈ W .

6.3. Finite length approximation of the weight distribution. The basic
technique in the following proof is a direct application of Theorem 6.2 for multivariate
generating functions.

Proof. [Proof of Theroem 4.5] On the basis of Theorem 6.2, we know that for
w = ⌊ukN⌋, d = ⌊δnN⌋ and N → ∞

AαNw,d(ψN ) := coeff
{
L(x, y, z)F (x, y, z)αN , xwydzN

}

∼ L(xα, yα, zα)√
(2παN)ν |Γα|

[F (xα, yα, zα)]
αN

xwαy
d
αz

N
α

(6.13)

where (xα, yα, zα) is the solution of system




x
F (x,y,z)

∂F (x,y,z)
∂x = uk

α

y
F (x,y,z)

∂F (x,y,z)
∂y = δn

α

z
F (x,y,z)

∂F (x,y,z)
∂z = 1

α

Let us assume that AαNw,d(ψN ) attains its maximum in αN , then

Aw,d(ψN ) = AαNN
w,d (ψN )

∫ 1

0

AαNw,d(ψN )

AαNN
w,d (ψN )

dα

= AαNN
w,d (ψN )

∫ 1

0

L(xα,yα,zα)√
(2παN)ν |Γα|

[F (xα,yα,zα)]
αN

xw
αy

d
αz

N
α

L(xαN
,yαN

,zαN
)√

(2παNN)ν |ΓαN
|
[F (xαNN ,yαN

,zαNN )]αN

xw
αN

ydαN
zNαN

(1 + o(1))dα

Considering the Taylor expansion of function

KN (α) = −
1

2
ln ((2παN)ν |Γα|)+lnL(xα, yα, zα)+αN lnF (xα, yα, zα)−w ln xα−d ln yα−ln zα

at α = αN , we obtain

Aw,d(ψN ) = AαNN
w,d (ψN )

∫ 1

0

eK
′
N (αN )(α−αN )+ 1

2K
′′
N (α)(α−αN )2(1 + o(1))dα

According to the assumption that AαNw,d(ψN ) has its maximum value at α = αN , we
know that K ′

N(αN ) = 0 and

Aw,d(ψN ) = AαNN
w,d (ψN )

∫ ∞

−∞
e−

x2

2σ2 (1 + o(1))dx
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where 1
σ2 = −K′′

N(α⋆)
N2 . Since |αN − α⋆| = O(1/N), we obtain

Aw,d(ψN ) = A
⌊αNN⌋
w,d (ψN )

√
2πσ2(1 + o(1))

∼
√
2πσ2L(xα⋆ , yα⋆ , zα⋆)√
(2π⌊α⋆N⌋)ν |Γα⋆ |

[F (xα⋆ , yα⋆ , zα⋆)]α
⋆N

xwα⋆ydα⋆zNα⋆

(1 + o(1)).

7. Concluding remarks. In this paper we have analyzed the weight distribu-
tion of truncated convolutional encoders. In particular, we have derived exact formulæ
of weight enumerators in terms of generating functions of regular and truncated error
events. We have shown how asymptotic estimates of the powers of multivariate func-
tions, with nonnegative coefficients, can be used in the analysis of the growth rate
of weight distribution as a function of the truncation length. We have investigated
the connection of our estimates through a method that was previously introduced by
Sason et al. in [14].

With respect to current literature, our results offer deeper insights into the prob-
lem of the spectra of truncated convolutional encoders, and they can be considered
useful to derive results regarding the performance of turbo-like codes under maximum-
likelihood decoding (e.g. [7], [30]).

However, we should not underestimate the importance of other analyses, such
as pseudo-codewords, or stopping and trapping sets distribution, which are measures
of the performance of the turbo decoder that was introduced for turbo-like codes
in [43–46].

Stopping set distributions play an analogous role to that of distance spectra in
ML decoding, when a binary turbo decoder is used on the binary erasure channel.
Turbo decoding works on each code separately and exchanges information from one
decoder to the other, until it can progress no further. When the transmitted codeword
has not been recovered correctly, the set of erased positions that remain, when the
decoder stops, is equal to the unique maximum-size turbo stopping set, which is also
a subset of the (initial) set of erased positions.

Analyzing the stopping set distribution for these coding schemes is not a trivial
issue. A basic requirement is to determine the subcode input-output support size
enumerators (SIOSE) of the constituent convolutional encoders. In some cases, the
SIOSE of a convolutional code can be computed using an extended trellis section of
the convolutional code [45]. The extended trellis section includes and extends the
trellis of the code to represent all the support vectors of the subcodes. The extended
trellis section, for the convolutional encoders with ψ(D) = 1/(1 +D), is depicted in
Fig. 7.1.

Our techniques can be adapted to compute SIOSE through the extended trellis
section in the same way as the input-output weight enumerator is computed using the
trellis.
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was visiting Massachusetts Institute of Technology. We would like to thank the Lab-
oratory of Information and Decision Systems and Professor Devavrat Shah for their
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Fig. 7.1. The extended trellis associated with the accumulate encoder ψ(D) = (1 +D)−1. The
edge labeled with 1/1, from state 1 to state 1, is an extra edge which is not part of the original trellis
section.
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Appendix A. Multidimensional saddle-point method for large powers.

We now prove Theorem 6.2 through the use of intermediate steps. Our proof is
based on multidimensional saddle-point (MSP) techniques which are used to estimate
the order of magnitude of coefficients in large powers of multivariate functions.

The MSP method can be summarized as follows. The first step is to recast the
problem as a computation of a Cauchy integral and to apply the residue theorem. In
order to estimate complex integrals of an analytic function, it is often a good strategy
to choose a path that crosses a saddle-point and to estimate the local integrand near
this saddle-point (i.e. where the modulus of the integrand achieves its maximum on
the contour). If the generating function satisfies some “nice” properties, which go un-
der the name of localizations or concentrations, the contribution near the saddle-point
captures the essential part of the integral. Some examples of admissible functions are
multivariate polynomials (see Lemma D.14 in [21]) and univariate series (see Section
VIII.8.1 in [22]). Applications of the multidimensional saddle-point method, in the
context of the coding theory, can be found in [21,25,26] and can be used to study the
weight/stopping sets distribution of LDPC codes.

Theorem 6.2 can be considered as an extension of Theorem 2 in [19]:

• The generating function is given by the product of two kinds of function (S(x)
and a large power of F (x)).

• It involves a multivariate series with non-negative coefficients, for which the
“localization property”, cited above, has never been proved.

• Theorem 6.2 estimates the order of magnitude of a (convergent) sequence of
coefficients in large powers of multivariate functions.

Appendix B. Concentration property for a multivariate series.

In what follws, we will consider a multivariable formal power series of the type

F (x) =
∑

k∈N
η
0

Fkx
k

where x = (x1, . . . , xη), and xk =
∏η
i=1 x

ki
i and we recall the notation:

F := {k ∈ N
η
0 |Fk > 0} .

Throughout this section we will assume that F (x) has the following properties:

(P1) Fk ∈ N0 for every k, and F0 > 0.
(P2) There exist C ∈ R+ and s ∈ N such that Fk ≤ C|k|s for every k.
(P3) There exist a finite subset F0 ⊆ F and k1, . . .kl ∈ N

η
0 such that:

(P3a) F ⊆ {k0 +
∑l

i=1 tik
i | k0 ∈ F0, ti ∈ N}.

(P3b) There exists k̃i ∈ F for i = 1, . . . , l such that k̃i + tki ∈ F for every
t ∈ N0.

(P4) F generates Zµ as an Abelian group.

According to (P1), (P2) and (P3), it follows that the region of absolute conver-
gence Σ ⊆ Rη of F (x) is given by the open set:

Σ =

{
x ∈ Rη

∣∣∣∣
∣∣∣xki

∣∣∣ < 1 ∀i = 1, . . . , l

}
(B.1)
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The sum of the series on Σ is denoted by the same symbol F (x) :=
∑

k∈N
η
0

Fkx
k. Put

Σ+ := Σ ∩ (R+)η.
Lemma B.1. Let x ∈ ∂Σ+ with xi > 0 for every i = 1, . . . , η. Let xn ∈ Σ+ be a

sequence, so that xn → x for n→ +∞. Then,

F (x) = lim
n→+∞

F (xn) = +∞ .

Proof. (P1) and Fatou’s lemma [47] yield:

lim inf
n→+∞

F (xn) ≥ F (x) ,

hence, to prove the result, it is sufficient to show that F (x) = +∞ (it should be
noted that the expression of F (x) is meaningful because it is the summation of a
non-negative series). Let us instead suppose, ab absurdo, that F (x) < +∞. Then,
using (P3b) and (P1), for each i = 1, . . . , l we obtain

+∞ > F (x) =
∑

k∈N
η
0

Fkx
k ≥

+∞∑

t=0

F
k̃i+tki

xk̃i
(
xki
)t ≥

+∞∑

t=0

xk̃i
(
xki
)t

This yields xki < 1 for every i = 1, . . . , l. From (B.1) it follows that x is an interior
point of Σ+, contrarily to what was previously assumed.

Lemma B.2. For every ω ∈
◦

co(F ), there exists a unique x ∈
◦
Σ+ such that

∆[F ](x) = ω, (B.2)

where ∆[F ] is defined in (6.9).
Proof. It should first be noted that the points that solve equation (B.2) are the

stationary points in
◦
Σ+ of F̂ω(x) = ln (F (x)/xω).

UNIQUENESS: Consider the function fω(ξ) = F̂ω(e
ξ1 , eξ2 , . . . , eξη). It is strictly

convex on Ξ = {ξ|(ξ1, . . . , ξη) = (lnx1, . . . , lnxη),x ∈ Σ+} ⊆ Rη. In fact,

vT∇2f(ξ)v =

η∑

i=1

η∑

j=1

vi
∂2f

∂ξj∂ξi
vj

=

η∑

i=1

η∑

j=1

vi

(
∑

k

Fke
(k−ω)·ξ(ki − ωi)(kj − ωj)

)
vj

=
∑

k

Fke
(k−ω)·ξ

η∑

i=1

η∑

j=1

vi(ki − ωi)(kj − ωj)vj

=
∑

k

Fke
(k−ω)·ξ||(v · (k − ω))|| ≥ 0

Since ω ∈
◦

co(F ), vT∇2f(ξ)v = 0 ⇐⇒ v = 0. This implies that f(ξ) is strictly
convex in ξ ∈ Ξ. Hence, uniqueness of the solution of (B.2) follows.

EXISTENCE: We now show that for any sequence of xn, whether converging to
a point of ∂Σ+ or unbounded, F̂ω(xn) is superiorly unbounded. This implies that F̂ω

attains a global minimum in
◦
Σ+ and completes the proof.
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First, let us consider the case in which xn → x ∈ ∂Σ+ with xi > 0 for all i. In
this case, the result easily follows from Lemma B.1. If, instead, there exists i, so that
xi = 0, then,

F (xn)

xω
n

≥ F0

xω
n

→ +∞ (n→ +∞) (B.3)

The case in which at least one component of xn diverges to +∞ remains to be

considered. Since ω ∈
◦

co(F ), we find f1, . . .fµ ∈ F \ {0} which generate Rµ and
some strictly positive constants γ1, . . . , γs such that

∑
γj < 1 and ω =

∑
γjf

j . If

we pass to subsequences, it can always be assumed that xf l

n → αl ∈ [0,+∞] for all
l ∈ {1, . . . , µ}. If αl ∈]0,+∞[ for all l, then this would imply that xn is bounded. If

αl ∈ [0,+∞[ for all l, and at least one of them is 0, then, since xω
n =

∏
l[x

f l

n ]γl , we
would have xω

n → 0 and we can use the same arguments as in (B.3). Let us finally
consider the case in which at least one αl = +∞. It should be noted that

F (xn)

xω
n

=
F (xn)∏
l[x

f l

n ]γl

where γ =
∑
γl < 1. Let us now put zl = xf l

n > 0 for l = 1, . . . , µ. Then,
∏

l

zγ
l

l ≤
∑

l

zγl . (B.4)

In order to comprehend this fact, let

Γ(z) =

∏
j z

γj

j∑
j z

γ
j

.

Since Γ(λz) = Γ(z) for every z and λ > 0, Γ(z) is studied, considering the z so that∑
j z

γ
j = 1. From necessity, zj ≤ 1 for all j and this yields

Γ(z) =
∏

j

zγ
j

j ≤ 1

This proves the inequality.
Using (B.4) we obtain

F (xn)

xω
n

=
F (xn)∏
l[x

f l

n ]γl
≥

∑
j x

fj

n
∑

j [x
f j

n ]γ

where γ =
∑
γj < 1. The expression on the left is clearly superiorly unbounded for

n→ +∞ and this completes the result.

Lemma B.3. The matrix Γ[F ](x) (defined in (6.10)) is symmetric and positive
definite ∀x ∈ Σ+.

Proof. In what follows, we put Γ = Γ[F ].

F (x)2vTΓ(x)v = F (x)2
η∑

i=1

η∑

j=1

viΓij(x)vj

= F (x)2
η∑

i=1

v2i Γii(x) + F (x)2
η∑

i=1

η∑

j 6=i
viΓij(x)vj
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F (x)2vTΓ(x)v =

η∑

i=1

v2i

[
∑

k

∑

l

(
k2i − kili

)
FkFlx

k+l

]
+

+

η∑

i=1

η∑

j 6=i
vivj

[
∑

k

∑

l

(kikj − kilj)FkFlx
k+l

]

=
∑

k

∑

l

FkFlx
k+l




η∑

i=1

v2i
(
k2i − kili

)
+

η∑

i=1

η∑

j 6=i
vivj (kikj − kilj)




=
∑

k

∑

l

FkFlx
k+l

[
η∑

i=1

v2i (ki − li)
2
+

η∑

i=1

v2i li (ki − li)+

+

η∑

i=1

η∑

j 6=i
vivj (kikj − kilj − kj li + lilj) +

η∑

i=1

η∑

j 6=i
vivj li (kj − lj)




=
∑

k

∑

l

FkFlx
k+l

[
η∑

i=1

v2i (ki − li)
2
+

η∑

i=1

v2i li (ki − li)+

+

η∑

i=1

η∑

j 6=i
vivj (ki − li) (kj − lj) +

η∑

i=1

η∑

j 6=i
vivj li (kj − lj)




=
∑

k

∑

l

FkFlx
k+l

[
η∑

i=1

vi (ki − li)

]2
+

+
∑

k

∑

l

FkFlx
k+l




η∑

i=1

vili


vi(ki − li) +

η∑

j 6=i
vj (kj − lj)




 ,

from which

F (x)2vTΓ(x)v =
∑

k

∑

l

FkFlx
k+l

[
η∑

i=1

vi (ki − li)

]2

+
∑

k

∑

l

FkFlx
k+l




η∑

i=1

η∑

j=1

vivj li (kj − lj)




=
∑

k

∑

l

FkFlx
k+l

[
η∑

i=1

vi (ki − li)

]2
≥ 0 ∀x ∈ Σ+

Clearly, vTΓ(x)v = 0 if, and only if, v = 0. This yields the thesis.

Lemma B.4. For each r ∈ (R+)η, there exists a strictly positive constant χ =
χ(F, r) such that ∀θ ∈ [−π, π)η \

[
−n−2/5, n−2/5

]
the following inequality hold true

∣∣∣∣∣
F
(
rejθ

)

F (r)

∣∣∣∣∣

n

≤ χn−1/5. (B.5)
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Proof. Let us consider

∣∣∣∣∣
F
(
rejθ

)

F (r)

∣∣∣∣∣

2

=

(∑
k Fkr

kejk
T θ
)(∑

l Flr
le−jlT θ

)

|F (r)|2 =

∑
k,l FkFlr

k+lej(k−l)T θ

|F (r)|2

= 1−
∑

k 6=l FkFlr
k+l

[
1− cos

(
(k − l)Tθ

)]

|F (r)|2

and, by choosing k̃, l̃ ∈ F , we obtain

∣∣∣∣∣
F
(
rejθ

)

F (r)

∣∣∣∣∣

2

≤ 1−
F
k̃
F
l̃
rk̃+l̃

[
1− cos

(
(k̃ − l̃)Tθ

)]

|F (r)|2

≤
1− F

k̃
F
l̃
rk̃+l̃

[
1
2 |(k̃ − l̃)Tθ|2 − 1

6 |(k̃ − l̃)Tθ|3
]

|F (r)|2 .

If we assume θ ∈ (−ε, ε)η with ε ≤ 3/(2||k̃− l̃||1) and r ∈ (R+)η, then, from the last
inequality, we find that there exists a constant χ = χ(F, r) ∈ R+, that only depends
on F and r, such that

∣∣∣∣∣
F
(
rejθ

)

F (r)

∣∣∣∣∣

2

≤ 1− χ||θ||22. (B.6)

Since 〈F 〉 = Zη, the standard results of Fourier analysis [48] show that

〈F 〉 · θ = 0 (mod 2π) ⇐⇒ θ = 0 (mod 2π).

Since F (r) > 0 ∀r ∈ (R+)η, and due to the fact that region [−π, π]η \ (−ε, ε)η
is compact and on the basis of continuity arguments we obtain that there exists a
constant τ ∈ R+, such that

∑
k 6=l FkFlr

k+l
[
1− cos

(
(k − l)Tθ

)]

F (r)
> τ.

This proves that the inequality (B.6) is also true for θ ∈ [−π, π)η \ (−ε, ε)η.
From inequality (B.6), it follows that ∀θ ∈ [−π, π)η \ [−n−2/5, n−2/5]

∣∣∣∣∣
F
(
rejθ

)

F (r)

∣∣∣∣∣

n

≤
(
1− χ||θ||22

)n/2 ≤ e−χn
1/5 ≤ χn−1/5.

Appendix C. Proof of Theorem 6.2. In this subsection, we split the proof
of Theorem 6.2 into two parts. The first considers the case of 〈F 〉 = Zη. However,
if 〈F 〉 = Zν ⊂ Zη, the saddle-point approximation cannot be applied directly to the
generating function. In the second part of the proof, we show that we can reformulate
the problem in such a way that the conditions that are necessary to apply the saddle-
point method are satisfied.
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Proof of Theorem 6.2. Proof. [Proof of Theorem 6.2 with 〈F 〉 = Zη] On the
basis of Lemma B.2 we know that there exists a unique solution x̃ ∈ Σ+ = (R+)η ∩Σ
to ∆(x) = ω, in which ∆ = ∆[F ] is defined in (6.9). According to the residue
theorem [49] and choosing the integration surface to be a sphere of radius x̃ we
obtain

coeff {S(x)[F (x)]αnn,ωnαnn}

=
1

(2π)η

∫

[−π,π]η
S
(
x̃ejθ

) F
(
x̃ejθ

)αnn

x̃
αnnωnejαnnθTωn

dθ

=
1

(2π)η
S(x̃)

F (x̃)
αnn

x̃
αnnω

∫

[−π,π]η

S
(
x̃ejθ

)

S (x̃)

F
(
x̃ejθ

)αnn

F (x̃)
αnn e−jαnnθ

Tωndθ.

By splitting the integration region [−π, π]η into Θ =
[
−(αnn)

−2/5, (αnn)
−2/5

]η
and

its complement [−π, π]η \Θ:

coeff {S(x)[F (x)]αnn,ωnαnn}

= S(x)
F (x̃)

αnn

x̃
αnnωn

[
1

(2π)η

∫

[−π,π]η\Θ

S
(
x̃ejθ

)

S (x̃)

F
(
x̃ejθ

)αnn

F (x̃)αnn e−jnαnθ
Tωndθ

+
1

(2π)η

∫

Θ

S
(
x̃ejθ

)

S (x̃)

F
(
x̃ejθ

)αnn

F (x̃)
αnn e−jαnnθ

Tωndθ

]
.

According to Lemma B.4, there exists a constant χ, such that
∣∣F
(
x̃ejθ

)
/F (x̃)

∣∣ ≤
χn−1/5 and beacuse of inequality (B.6) we also have

∣∣S
(
x̃ejθ

)
/S (x̃)

∣∣ < 1. It follows
that

∣∣∣∣∣
1

(2π)η

∫

[−π,π]η\Θ

S
(
x̃ejθ

)

S (x̃)

F
(
x̃ejθ

)αnn

F (x̃)
αnn e−jαnnθ

Tωndθ

∣∣∣∣∣

≤ 1

(2π)η

∫

[−π,π]η\Θ

∣∣∣∣∣
S
(
x̃ejθ

)

S (x̃)

∣∣∣∣∣

∣∣∣∣∣
F
(
x̃ejθ

)

F (x̃)

∣∣∣∣∣

αnn

dθ = O
(
n−1/5

)
,

and the contribution to the integral from the [−π, π]η \Θ region is negligible.
On the other hand, by expanding the function ln

(
F
(
x̃ejθ

)
/F (x̃)

)
up to second

order terms we obtain

1

(2π)η

∫

Θ

S
(
x̃ejθ

)

S (x̃)

F
(
x̃ejθ

)αnn

F (x̃)
αnn e−jαnnθ

Tωndθ =

=
1

(2π)η

∫

Θ

ejθ
T
∆[S](x̃)− 1

2θ
T
Γ[S](x̃)θ+O(||θ||3)+jαnnθ

T
∆[F ](x̃)−αnn

2 θT
Γ[F ](x̃)θ+αnnO(||θ||3)×

× e−jαnnθ
Tωndθ

=
1

(2π)η

∫

Θ

ejθ
T
∆[S](x̃)− 1

2θ
T
Γ[S](x̃)θ+O(||θ||3)−αnn

2 θT
Γ[F ](x̃)θ+αnnO(||θ||3)×

× e−jαnnθ
T (ωn−ω)dθ

where the last equality is obtained from ∆[F ](x̃) = ω.
It should be noted that αnn||θ||3 = O(n−1/5) if θ ∈ Θ = [−(αn)

−2/5, (αn)
−2/5].

Since Γ[S](x̃) is symmetric and positive definitive (see Lemma B.3), there exist P,Λ
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such that Γ[S] = PTΛP where Λ is a diagonal matrix with positive entries {λi}ηi=1

and

1

2
θTΓ[S](x̃)θ =

1

2
θTPTΛPθ =

1

2

∑

i

λi||(Pθ)i||22 = O(n−4/5) = O(n−1/5).

We obtain

1

(2π)η

∫

Θ

S
(
x̃ejθ

)

S (x̃)

F
(
x̃ejθ

)αnn

F (x̃)
αnn e−jαnnθ

Tωndθ =

=
1

(2π)η

∫

Θ

e−
αnn

2 θT
Γ[F ](x̃)θ+O(n−1/5)−j[αnnθ

T (ωn−ω)−θT
∆[S](x̃)]dθ

=
1

(2π)η

∫

Θ

e−
αnn

2 θT
Γ[F ](x̃)θ−j[αnnθ

T (ωn−ω)−θT
∆[S](x̃)]

(
1 +O

(
n−1/5

))
dθ.

By defining σ =
√
αnnθ and Σ =

[
−(αnn)

1/10, (αnn)
1/10

]η
we obtain

1

(2π)η

∫

Θ

S
(
x̃ejθ

)

S (x̃)

F
(
x̃ejθ

)αnn

F (x̃)
αnn e−jαnnθ

Tωndθ =

= (αnn)
−η/2

(
1 +O

(
n−1/5

))

(2π)η

∫

Σ

e
− 1

2σ
T
Γ(x̃)σ−j[

√
αnnσ

T (ωn−ω)− 1√
αnnσT

∆[S](x̃)]
dσ

=

(
1 +O

(
n−1/5

))
√
(2παnn)η|Γ(x̃)|

∫

Σ

√
|Γ(x̃)|
(2π)η

e
− 1

2σ
T
Γ(x̃)σ−j[

√
αnnσ

T (ωn−ω)− 1√
αnnσT

∆[S](x̃)]
dσ

=

(
1 +O

(
n−1/5

))
√
(2παnn)η|Γ(x̃)|

[∫

Rη

√
|Γ(x̃)|
(2π)η

e
− 1

2σ
T
Γ(x̃)σ−j[

√
αnnσ

T (ωn−ω)− 1√
αnnσT

∆[S](x̃)]
dσ

−
∫

Rη\Σ

√
|Γ(x̃)|
(2π)η

e
− 1

2σ
T
Γ(x̃)σ−j[

√
αnnσ

T (ωn−ω)− 1√
αnnσT

∆[S](x̃)]
dσ

]

=

(
1 +O

(
n−1/5

))
√
(2παnn)η|Γ(x̃)|

[
e−

1
2αnn(ωn−ω)TΓ

−1(x̃)(ωn−ω)

−
∫

Rη\Σ

√
|Γ(x̃)|
(2π)η

e
− 1

2σ
T
Γ(x̃)σ−j[

√
αnnσ

T (ωn−ω)− 1√
αnnσT

∆[S](x̃)]
dσ

]
.

Since Γ[F ](x̃) is symmetric and positive definitive (see Lemma B.3), there exists
Q,D, such that Γ = QTDQ, where D is a diagonal matrix with positive entries
{Di}ηi=1 and Dmin = miniDi. Then, by defining y = Qσ, we have

∣∣∣∣∣

∫

Rη\[−(αnn)1/10,(αnn)1/10]
η
e
− 1

2σ
T
Γ(x̃)σ−j[

√
αnnσ

T (ωn−ω)− 1√
αnnσT

∆[S](x̃)]
dσ

∣∣∣∣∣

≤
∫

||y||2≥(αnn)1/10
e−

1
2Dmin||y||2dy = O

(
e−(αnn)

1/5

(αnn)1/10

)
= O(n−1/10).
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We obtain

1

(2π)η

∫

Θ

S
(
x̃ejθ

)

S (x̃)

F
(
x̃ejθ

)αnn

F (x̃)αnn e−jαnnωnθ
T

dθ

≤
(
1 +O

(
n−1/5

))
√
(2παnn)η|Γ(x̃)|

[
e−

1
2αnnD

−1
min||ωn−ω||2 +O(n−1/10)

]

=

(
1 +O

(
n−1/5

))
√
(2παnn)η|Γ(x̃)|

[
eO(

1
n) +O(n−1/10)

]

(
1 +O

(
n−1/5

))
√
(2παnn)η|Γ(x̃)|

[
1 +O(n−1/10)

]

and we can conclude that for n→ ∞

coeff {S(x)[F (x)]αnn,ωnαnn} =
S(x̃)√

(2παnn)η|Γ[F ](x̃)|
F (x̃)αnn

x̃
ωnαnn (1 + o(1))

and

lim
n∈N

1

n
ln (coeff{S(x̃)[F (x)]αnn,xωnαnn}) = α lnF (x̃)− α ω · ln x̃

It should be noted that o(1) is independent of ωn, and the convergence in (6.11) is

uniform in ω ∈
◦

co(F ).

Proof. [Proof of Theorem 6.2 with 〈F 〉 ⊂ Zη] If 〈F 〉 ⊂ Zη, the saddle-point
approximation cannot be applied directly to function B(x) = S(x)[F (x)]αnn.

Since submodules of free modules over a Noetherian ring are free [50], there exists
a basis, B = {b1, . . . , bν}, with |B| = ν ≤ η of 〈F 〉, and each element in F can be
expressed in a unique way as a finite sum of the elements in B multiplied by some
coefficients in Z:

k =
∑

b∈B
γb(k)b, k ∈ F .

On the basis of this hypothesis the elements in S = {l|Sl > 0} can also be written
as follows

l =
∑

b∈B
γb(l)b, l ∈ S .

Let us define wb = xb, ∀b ∈ B, set Gγ(k) = Fk, Tγ(l) = Sl and let G = {γ ∈ Zν :
Gγ > 0}.

We obtain

F (x) =
∑

k∈F

Fkx
k =

∑

γ∈G

Gγx
∑

b∈B γbb =
∑

γ∈G

Gγ

∏

b∈B
xγbb

=
∑

γ∈G

Gγ

∏

b∈B

(
xb
)γb

=
∑

γ∈G

Gγw
γ = G(w).

and, for the same reason, S(x) = T (w).
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If k ∈ B, then there exists q ∈ S such that k =
∑

l∈F
all+ q with

∑
l∈F

al = αnn
and, equivalently,

k =
∑

l∈F

al
∑

b∈B
γb(l)b+

∑

b∈B
γb(q)b =

∑

b∈B

∑

l∈F

al[γb(l) + γb(q)]b

with
∑

l∈F
al = αnn. Let

ξn,b = (αnn)
−1
∑

l∈F

al[γb(l) + γb(q)],

then

coeff {S(x)[F (x)]αnn,xωnαnn} = coeff
{
T (w)[G(w)]αnn,wξnαnn

}
.

If ωn → ω when n → ∞, ξn is a convergent sequence to ξ in which ξ satisfies∑
b∈B ξbb = ω.

It is trivial to comprehend that if ω ∈
◦

co(F ), then ξ ∈
◦

co(G ). We can conclude
by means of Lemma B.2, that there exists a solution w̃ ∈ (R+)ν of ∆[G](w) = ξ.

Moreover, since ||ωn − ω|| = O( 1
n ), then ||ξn − ξ|| = O( 1

n ). Since 〈G 〉 = Zν , we
can apply the multidimensional saddle-point method:

coeff
{
T (w)[G(w)]αnn,wξnαnn

}
=

T (w̃)√
(2παnn)ν |Γ[G](w̃)|

[G(w̃)]αnn

w̃
ξnαnn

(1+o(1)) n→ ∞.

and

lim
n→∞

1

n
ln coeff

{
T (w)[G(w)]αnn,wξnαnn

}
= α lnG(w̃)− α ξ · ln w̃. (C.1)

Since w̃ is a solution of ∆[G](w) = ξ, we obtain

ν∑

i=1

∆i[G](w̃)b(i) =

ν∑

i=1

w̃i
G(w̃)

∂G

∂wi

∣∣∣∣
w̃

b(i) = ω

from which we find that ∀j = 1, . . . , η

ν∑

i=1

w̃i
G(w̃)

∂G

∂wi

∣∣∣∣
w̃

b
(i)
j =

xj
F (x)

ν∑

i=1

∂G

∂wi

xb(i)

b
(i)
j

xj
=

xj
F (x)

ν∑

i=1

∂G

∂wi

∂wi
∂xj

=
xj
F (x)

∂F

∂xj
= ωj.

We can conclude that

∆[G](w̃) = ξ ⇐⇒ ∆[F ](x̃) = ω,

and for n→ ∞

coeff
{
S(x)[F (x)]αnn,xξnαnn

}
=

S(x̃)√
(2παnn)ν |Γ[F ](x̃)|

[F (x̃)]αnn

x̃
ωnαnn (1 + o(1)).
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lim
n→∞

coeff {F (x)αnn,xωnαnn} = α lnG(w̃)− α

ν∑

i=1

ξi ln w̃i

= α lnF (x̃)− α

ν∑

i=1

ξi ln x̃
b(i)

= α lnF (x̃)− α
ν∑

i=1

ξi ln




η∏

j=1

x̃
b
(i)
j

j




= α lnF (x̃)− α

ν∑

i=1

ξi

η∑

j=1

b
(i)
j ln x̃j

= α lnF (x̃)− α

η∑

j=1

ln(x̃j)

ν∑

i=1

ξib
i
j

= α lnF (x̃)− αω · ln x̃.
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