COMPENDIUM OF MATERIALS FOR NOISE CONTROL # COMPENDIUM OF MATERIALS FOR NOISE CONTROL Work performed by the Illinois Institute of Technology Research Institute, Chicago, Ill. Contract No. HSM 99-72-99 U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service Center for Disease Control National Institute for Occupational Safety and Health Division of Laboratorics and Criteria Development Cincinnati, Ohio 45202 June 1975 or sale by the Superintendent of Documents, U.S. Quvernment Printing Office, Washington, D.C. 20402 The contents of this report are reproduced herein as received from the contractor, except for some editorial and technical changes. The opinions, findings, and conclusions expressed are those of the contractor and not necessarily those of NIOSH. Mention of company or product names is not to be considered as an endorsement by NIOSH. The contractor reported the data as received from the manufacturers and the accuracy of these data is not necessarily supported by NIOSH. IITR Project Director: W. Ernest Purcell NIOSH Project Officer: Barry L. Lempert who provided substantive editorial and technical input to this compendium. HEW Publication No. (NIOSH) 75-165 #### **FOREWORD** The National Institute for Occupational Safety and Health (NIOSH), in 1972 transmitted to the Department of Labor a recommended Federal standard for occupational noise exposure including the criteria upon which the recommendation was based. The recommended standard included administrative and engineering noise control specifications necessary to reduce noise levels. At that time, only a few professional and trade journals were concerned specifically with noise control and a suitable compendium of noise control product specifications was not available. This compendium of commercial noise-reduction materials aids in solving industrial noise control problems and is designed for purchasers of noise control materials. It can be used to determine what industrial noise control materials are available, their characteristics, and sources of supply. The information contained in this document, when utilized by those concerned with occupational noise, should serve to contribute to a quieter industrial environment. John F. Finklea, M.D. Director, National Institute for Occupational Safety & Health #### PREFACE NIOSH developed this compendium of available, commercial noise-reduction materials as a contribution to engineering solutions for industrial noise control problems. The compendium is designed for use by those selecting materials to effect noise control. It can be used to determine availability, characteristics, and sources of materials; especially those useful in industrial noise control. Included are data on both sound absorption and transmission loss of noise control materials as well as a general and technical description of the uses and limitations of these materials. Similar comprehensive lists of noise control product specifications are not provided by trade and professional journals; however, several existing publications do provide lists of manufacturers who are potential sources of such specifications. The primary sources used to construct our list of manufacturers were "Buyer's Guide," Sound and Vibration (July and August, 1972), the Riverbank Acoustical Laboratory client list, Handbook of Noise Control (Harris, 1957), Noise and Vibration Control (Beranek, 1971), "A Guide to Airborne, Impact and Structure Borne Noise" (HUD, 1967), "The Construction Specifier," "Materials Research and Standards," Dun and Bradstreet Million Dollar Directory (1971), Standard and Poor's Register (1972), and Moody's Industrial Manual (1972). From the list of manufacturers of noise control products, 823 companies were sent questionnaires (OMB No. 68-S72182), along with 31 related laboratories and special organizations. Product data were solicited and usually received in the form of brochures, specification sheets, and acoustical test laboratory reports. Data for the compendium were provided by 213 manufacturers. Many laboratories and special organizations, as well as some companies, responded with generic data that was suitable for use in the narrative portions of this document. Of the project specifications requested, only the unit cost information was insufficient for equitable delineation in the compendium. Data are presented as received from the manufacturers and have not been verified by IITRI or NIOSH. Information about a product such as how it was tested and its temperature, relative humidity, and chemical limitations is presented in the footnotes at the end of each table. For various reasons some items are presented with no acoustical data, but these items are included to maintain a broad coverage of available materials. The range of noise control materials that could be listed was essentially unlimited; however, it was decided that unit silencers, such as exhaust mufflers or products specifically designed for vibration damping or vibration isolation, were outside the scope of this compendium. The data tables of noise control product specifications comprise the principal content of the compendium. The narrative sections provide basic information on the use of noise control materials and nomenclature used in current standard laboratory test procedures. This book is not intended as a noise control manual; however, the pertinent equations and noise control methodology included will benefit those who may not be familiar with noise control. The compendium will provide engineers, architects, acoustical consultants, and others with a ready reference of useful noise control materials. #### **ACKNOWLEDGMENTS** The diligence and attention to detail by Dr. Prakash D. Desai of IITRI in the initial preparation of the data tables and the technical assistance of Mary Sims, also of IITRI, are appreciated. NIOSH expresses sincere thanks to Raymond D. Berendt, National Bureau of Standards; Robert D. Bruce, Bolt Beranek and Newman, Inc.; Dr. Franklin D. Hart, North Carolina State University; Dr. Elmer L. Hixon, University of Texas; Herbert H. Jones, Central Missouri State University; and Dr. Roger L. Kerlin and Dr. Paul L. Michael, Pennsylvania State University; for their expeditious reviews and comments. Also, NIOSH is grateful to the Bruel and Kjaer Company for permission to reprint their microphone graphs, to EDN Magazine for Figure I-1 depicting the frequency ranges for some common items, and to the Acoustical and Insulating Materials Association (AIMA) for providing the absorption information on the many general building materials shown in Data Table 47. The illustrations in the data table guides are from the many photographs provided in manufacturers' brochures. Specific credit for these illustrations is given at the beginning of Section VI. #### ABSTRACT This compendium of available commercial, noise-reduction materials was developed for use by plant engineers, industrial hygienists, acoustical consultants, and others engaged in noise control. It can be used to determine the availability of noise control materials, the characteristics and specifications of the materials, and their supply sources. Also included are data on both sound absorption and transmission loss of materials and a general and technical description of the uses and limitations of the materials listed. #### CONTENTS | SECTION | AGE | |--|------| | Foreword | iii | | Preface | v | | Acknowledgments | vii | | Abstract | | | I — ELEMENTS OF SOUND, SOUND MEASUREMENT,
AND CONTROL | 1 | | I-1 — Introduction | | | I-2 — Some Basic Concepts | | | I-2.1 — Terminology and Definitions | | | I-2.1.1 — Units of Sound Measurement | | | I-2.1.2 — Sound Intensity Level | | | I-2.1.3 — Sound Pressure | | | I-2.1.4 — Sound Power | | | I-2.1.5 — Combining Decibels | | | I-2.1.6 — Sound Pressure Weighting and Filtering | | | I-2.2 — Instruments for Noise Measurements | | | I-2.2.1 Microphones | | | I-2.2.2 — Sound Level Meters | | | I-2.2.3 — Calibration of Sound Level Meters | | | I-2.2.4 — Frequency Analyzers | | | I-2.3 — Methods of Noise Control | | | I-3 — Measurement of Material Noise-Reduction Properties | | | I-3.1 — Absorption (Random Incidence Coefficients)— | | | re ASTM C423-66 | . 19 | | I-3.1.1 — Test Method | . 19 | | I-3.1.2 — Absorption Coefficients Exceeding Unity | . 21 | | I-3.1.3 Mountings for Absorption Tests | . 21 | | I-3.1.4 — Dependence of Absorption Coefficient on Frequency | 21 | | I-3.2 Absorption (Normal Incidence Coefficients) | | | re ASTM C384-58 | . 23 | | I-3.2.1 — Relationship between Random
and Normal Incidence Coefficients | 99 | | I-3.3 — Transmission Loss Measurements | | | I-3,3.1 — Test Method—re ASTM E90-70 | | | I-3.3.2 — Dependence of Transmission Loss | | | on Frequency | 24 | | I-3.3.3 — Test Facility Requirements | 24 | | I-3.4 — Impact Noise Testing—re ASTM E492-73T (RM14-4) | 26 | | I-3.5 — Insertion Loss | | | I-3.6 Noise Reduction | | | I-4 — Use of Noise Control Products | | | I-4.1 — Noise Control Absorption | | | T 4 4 4 . O. W | 0.0 | #### **CONTENTS Continued** | SECTION | PAGE | |--|---------| | I-4.1.2 — Walls | 39 | | I-4.1.3 — Ducts | 39 | | . I-4.1.4 Furnishings | | | I-4.2 — Noise Control by Barrier | | | I-4.2.1 — Natural Objects | | | I-4.2.2 — Ceilings | 44 | | I-4,2,3 — Walls | 44 | | I-4.2.3.1 — Freestanding Wall | 44 | | I-4.2.3.2 — Walls as Partitions between Spaces | 45 | | I-4,2,3,3 — Plasterboard Walls | | | I-4.2.3.4 — Concrete and Brick Walls | 47 | | I-4.2.4 Glass | | | I-4.2.5 — Doors | 49 | | I-4.2.6 — Enclosures | | | I-4.2.7 Floors | 52 | | I-4.2.8 — Ducts and Piping | 53 | | I-4.3 — Noise Control by Combination of Absorption | | | and Barrier | | | I-4.3.1 — Walls and Enclosures | 55 | | I-4.3.2 — Ducts and Piping | 56 | | I-5 - Selected Publications for Further Reading | 57 | |
I-5.1 — Books on Acoustic Materials and Noise | 57 | | I-5.2 — Periodical References | | | I-5.2.1 — Acoustic Materials | | | I-5.2.2 — Buildings and Building Components | | | I-5.2.3 — Industrial and Machinery Noise | | | I-5.2.4 — Community Noise and Noise Effects on | ,,, ,,, | | Humans | 68 | | I-5.2.5 — Measurement and Testing | | | I-5.2.6 — Theoretical Analysis | 72 | | II - COMPANY CODE NUMBERS AND ADDRESSES | 75 | | III LIST OF DATA TABLES AND COMPANIES REPRESENTE | n 87 | | IV — TESTING LABORATORIES WITH ACRONYMS | J 0. | | AND ADDRESSES | 89 | | V - DESCRIPTION OF PERTINENT STANDARDS | 01 | | V-1 — Absorption | | | V-2 — Properties of Thermal Insulation | | | V-3 — Transmission Loss, Sound Transmission Class, | 02 | | and Impact Isolation | . 93 | | V-4 — American National Standards Institute | . 96 | | VI — DATA TABLES | 99 | | • | | ### ILLUSTRATIONS | FIGURE PA | LGE | |---|------------| | I- 1. — Audible Sound Frequencies of Some Musical Instruments, | _ | | Voices, and Other Noises (approximate) | . 2 | | I- 2. — Chart for Adding or Subtracting Decibels | . გ | | I- 3. — Standard A-, B-, and C-Weighting Curves for Sound Level | | | Meters; Also Proposed D-Weighting Curve for Monitoring Jet Aircraft Noise | 10 | | I- 4. — Free Field Correction for Microphone with Protecting Grid | 12 | | I- 5. — Typical Directional Characteristics for 1 inch Microphone | | | with Protecting Grid | 13 | | I- 6. — Frequency Response Curve Supplied by B&K Instruments | | | with 1 inch Pressure Microphone Type 4144 | . 13 | | I- 7. — Frequency Response Curve Supplied by B&K Instruments | | | with 1 inch Free Field Microphone Type 4145 | | | I- 9. — Coincidence of Incident Wave and Flexural Wave in a Wall | | | | 10 | | I-10. — Typical Practical Performance of a Wall Relating to the
Transmission of Sound Showing Three Separate Regions | 20 | | I-11. — Mountings Used in Sound Absorption Tests | | | I-12. — Sound Absorption Coefficients Versus Frequency | | | for Some Types of Sound Absorbing Materials | 23 | | I-13. — Relationship of Random to Normal Incidence Absorption | | | Coefficients at a Test Frequency of 500 Hz | 23 | | I-14. — Determination of Sound Transmission Class | 26 | | I-15. — Possible Routes for Sound Travel from One Room to Another | | | I-16. — Impact Insulation Class Contours | 27 | | I-17 Relative Sound Pressure Level Versus Distance from | | | the Source for Semireverberant Fields | 33 | | I-18. — Relative Distribution of Absorption Qualities of Acoustical Ceiling Materials | 90 | | I-19. — Typical Absorption Data for Acoustical Ceilings | 39 | | I-20. — Interconnections between Noise Sources, Paths, and Receivers | | | I-21. — Uses of Flexible Couplings in Ducts | | | I-22. — Noise Sources and Attenuation in a Simple Duct System | 41 | | I-23. — Increase of Absorbing Surface in Lined Ducts | | | I-24. — Sound Absorbing Plenum | | | I-25. — Dependence of Noise Reduction Coefficient of Duct Lines | 44 | | on Thickness | 42 | | I-26. — Geometry for Determining Sound Attenuation by a Free- | | | standing Wall | 45 | | I-27. — Improvement in Wall Transmission Loss by Spacing Sides, | | | and by Adding Absorbing Material in the Cavity | 48 | | I-28. — Effects of Improved Scaling of Doors on Sound | E0 | | Transmission Class | | | I-20, — Vibration Isolation of Compressor Piping | | | I-31. — Vibration Break in Building Structure to Reduce | υſ | | Transmission of Vibrations | 58 | | I-32. — Typical Barriers for Partial Noise Control in Work Areas | | #### **TABLES** | TABLE PAG | ŀΕ | |---|----| | I- 1 — Sound Intensity Level Ratios and Number of Decibels for Each | 4 | | I- 2 — Levels of Some Common Sounds | 8 | | I- 3 — A-, B-, and C-Weighting Networks for Sound Level Meters as Specified by ANSI S1.4-1971 | 9 | | I- 4 — Center and Cutoff Frequencies for Preferred Series of
Contiguous Octave and One-Third Octave Bands as
Specified by ANSI S1.6 | 11 | | I- 5 — Transmission Loss versus Frequency for a Range of Sound Transmission Class Contours | 25 | | I- 6 — Sound Transmission Class of Some Common Building Materials | 26 | | I- 7 — Reverberation Time Data for 500 Hz Test Frequency | 32 | | I- 8 Coefficients of General Building Materials and Furnishings | 35 | | I- 9 — Average Absorption Coefficient Calculated using Equation (51) | 36 | | I-10 — Average Absorption Coefficient Calculated using Equation (55) | 36 | | I-11 — Effects of Padding on Carpet Noise Reduction Coefficient | 43 | | I-12 - Effects of Carpets and Pads on Impact Noise 4 | 43 | | I-13 — Noise Reduction Coefficients for Concrete | 48 | | I-14 — Sound Transmission Class of Monolithic and Laminated Glass | 49 | | I-15 — Sound Transmission Class of Airspaced Glass and Monolithic Glass of Comparable Thickness | 19 | | I-16 — Typical Improvements with Floor and Ceiling Treatments 5 | 54 | ## COMPENDIUM OF MATERIALS FOR NOISE CONTROL Work performed by the Illinois Institute of Technology Research Institute, Chicago, Ill. Contract No. HSM 99-72-99 U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service Center for Disease Control National Institute for Occupational Safety and Health Division of Laboratories and Criteria Development Cincinnati, Ohio 45202 June 1975 For sule by the Superintendent of Documenta, U.S., Government Printing Office, Washington, D.C., 20402 ## COMPENDIUM OF MATERIALS FOR NOISE CONTROL Work performed by the Illinois Institute of Technology Research Institute, Chicago, Ill. Contract No. HSM 99-72-99 U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service Center for Disease Control National Institute for Occupational Safety and Health Division of Laboratorics and Criteria Development Cincinnati, Ohio 45202 June 1975 For anile by the Superintendent of Documents, U.S. Government Spiriting Office, Washington, D.C., 20402 ## COMPENDIUM OF MATERIALS FOR NOISE CONTROL #### I-ELEMENTS OF SOUND, SOUND MEASUREMENT, AND CONTROL #### I-1-INTRODUCTION The sounds of industry, growing in volume over the years, have heralded not only technical and economic progress but also the threat of an ever increasing incidence of hearing loss and other noise related disturbances to exposed employees. Noise is not a new hazard. Indeed, noise-induced hearing loss was observed centuries ago. Ramazzini in "De Morbis Artificium Diatriba" in 1700 described how those hammering copper "have their ears so injured by that perpetual din that workers of this class become hard of hearing and, if they grow old at this work, completely deaf." Before the Industrial Revolution, however, comparatively few people were exposed to high level workplace noise. It was the advent of steam power in connection with the Industrial Revolution that first brought general attention to noise as an occupational hazard. Workers who fabricated steam boilers were found to develop hearing loss in such numbers that such a malady was dubbed "boilermakers disease." Increasing mechanization in all industries and most trades has since proliferated the noise problem. Exposures to noise levels found at the workplace, particularly in mechanized industries, are likely to be the most intense and sustained of any experienced in daily living. As such, they represent the severest form of acoustic insult to man and therein pose the greatest harm to human function. The real or alleged effects of occupational noise exposures include the following: > Temporary and permanent losses in hearing sensitivity. Physical and psychological disorders. Interference with speech communications or the reception of other wanted sounds. Disruption of job performance. Engineering controls for the abatement of environmental noise reduce the intensity of the noise either at the source or in the immediate exposure environment. A number of these procedures require considerable expertise, and it is recommended that employers avail themselves of the services of a competent acoustical engineer in development of a noise abatement program. However, many noise control techniques may be implemented directly by company personnel at relatively little expense. (NOTE: The foregoing discussion was ex- erpted from "Criteria for a Recommended Standard... Occupational Exposure to Noise," DHEW, NIOSH, 1972.) This document is presented as a guide and data book for anyone attempting to contribute to a quieter environment. #### I-2-SOME BASIC CONCEPTS ### I-2.1—TERMINOLOGY AND DEFINITIONS Sound waves are pressure waves traveling in an elastic medium, such as air, with propagation occurring in the direction of the wave motion. The speed at which the sound wave is propagated in air depends on the pressure, temperature, density, and humidity. A pure tone of sound originates from simple harmonic motion, e.g., the reciprocating motion of a piston in air. The sound wave produced by this motion is a sinusoidal pressure wave whose fluctuation is governed by the dis- FIGURE I-1.—Audible Sound Frequencies of Some Musical Instruments, Voices, and Other Noises (approximate), (Courtesy of Sonotone Corp., Elmsford, N. Y. Reprinted by permission of EDN Magazine, April 1967.) placement and rate at which the piston moves back and forth. Frequency is defined as the number of times this pressure fluctuation passes through a complete cycle in 1 second (sec), and the units are identified by hertz (Hz). The sound frequencies of some common items are shown in Figure I-1. Small changes in atmospheric pressure resulting from this compression and rarefaction of the air molecules is called "sound pressure". Physiologically, the sensation of hearing is produced by this pressure variation. Broadband noise may be defined as a combination of sound waves with
differing frequencies and amplitudes as distinct from a pure tone of single frequency and amplitude. Thus, broadband noise is a sound wave composed of a number of components combining to yield a resultant complex wave. In noise control work, broadband noise is the most common type of sound. The techniques available for analyzing the components of broadband noise into distinct frequency ranges is referred to as "spectral analysis". If one were to freeze an oscillating, traveling, pressure fluctuation in time, wavelength is the measured distance between the maximum pressure points or any other analogous points on two successive parts of the wave. The Greek letter lambda (λ) is the symbol for wavelength, and it is measured in units of feet (ft, English system), or meters (mks system). The velocity with which the analogous pressure points on successive parts of the wave pass a given point is the speed of sound, and the speed of sound is always equal to the product of the wavelength and the frequency. This speed is dependent on the equilibrium pressure, p_n , of the gas through which the sound wave is traveling and on the equilibrium gas density, p_n . The constant of proportionality is the well known (Greek gamma) γ , which is the ratio of the specific heat at constant pressure to the specific heat at constant volume. For air under most conditions γ is 1.4 so the speed of sound (c) is given by the expression $$c = \left(\frac{1.4 \ p_s}{p}\right)^{1/4} \text{ m/sec or ft/sec. (1)}$$ It is assumed that air behaves as an ideal gas. For a temperature (T) of 22°C (71.6°F), the speed of sound in air is $$c = 20.05 \sqrt{T (°K)} = 344 \text{ m/sec.}$$ (2) or $$c = 49.05 \sqrt{T (^{\circ}R)} = 1,131 \text{ ft/sec.}$$ (3) The propagation of a sound wave in air is a very complex pattern of reflections, absorptions, and transmissions through barriers. To describe the sound field, two extreme cases of a free field and a diffuse or reverberant field are generally employed. In a free field the sound from a nondirectional point source radiates equally in all directions in the form of a spherical wave. As such, the intensity of the wave follows the usual inverse square law for energy propagation, and the intensity drops to one-fourth its value each time the distance is doubled. Since the sound pressure is proportional to the square root of the intensity, the sound pressure drops by one-half its value, However, this decrease for each doubling of distance only holds for the region defined as the far field (i.e., beyond about two to three wavelengths). Closer to the sound source is the near field, and a special mathematical treatment is required to describe the sound field in this region. In symbolic form the spherical wave in a free field is represented by $$I = \frac{W}{4\pi r^2} = \frac{p_{\text{row}}^2}{\rho c} \text{ (at distance } r\text{)}$$ (4) where I is the intensity, W is the total acoustic (sound) power radiated by the source in watts, $p^2_{\rm rms}$ is the root-mean-square sound pressure, and ρc is the product of the density and the speed of sound. This product is called the "characteristic impedance" of the medium through which the sound wave is traveling and is the constant of proportionality that relates the sound pressure squared to the sound intensity. #### I-2.1.1-Units of Sound Measurement The range of sensation to which the human ear can respond, from the barely discernible to the threshold of pain, is approximately seven orders of magnitude (10⁷). The level of sensation is usually measured or reported in a smaller range of numbers by use of the logarithm of the ratio of the measured level to some reference level. For this purpose the unit of the Bel has been borrowed from telephone technology. The loudness of a sound is defined in Bels as number of Bels = $$\log_{10} (I/I_g)$$ (5) where I is the intensity of sound and I_n is the reference intensity. Therefore, if $I=I_o$, the number of Bels is 0, and if $I=10\ I_o$, the number of Bels is 1. The preferred unit for measuring sound has become the minimum difference in loudness that is usually perceptible, one-tenth of a Bel, or 1 decibel, abbreviated dB; thus number of decibels (dB)= $$10x$$ (number of Bels) = $10 \log_{10} (I/I_0)$, (6) It is clear from this expression that for each change in the intensity by one order of magnitude (factor of 10), the number of decibels is changed by 10; or, for each change in the intensity of a factor of 2, the number of decibels is changed by 3. Some decibel values for selected intensity ratios are shown in Table I-1. #### I-2.1.2-Sound Intensity Level The intensity of a sound wave can also be expressed in decibels of sound intensity and is then called the sound intensity level (L_l) ; thus $$L_I = 10 \log \frac{I}{I_0} dB \text{ re } I_0. \tag{7}$$ If a sound source is omnidirectional, the relationship between sound power and sound intensity, shown in equation (4), yields the reference sound intensity level if $$I_a = \frac{W_a}{4\pi r^2} \tag{8}$$ where W_n is the reference sound power of 10^{-12} watts, and the spherical surface around the source has a radius such that the area is equal to 1 meter²; $$I_0 = \frac{10^{-12} \text{ watt}}{1 \text{ meter}^2}.$$ (9) The reference sound intensity is therefore, $I_0 = 10^{-12}$ watt/m². EXAMPLE 1: Determine the sound intensity at 10 meters of a source radiating uniformly into free space a sound power of 0.38 watts. 1.51 TABLE I-1—SOUND INTENSITY LEVEL RATIOS AND NUMBER OF DECIBELS FOR EACH | SOUND
INTENSITY
RATIO, /// | NUMBER
OF DECIBELS
(dB=10 log (I/I ₀) | |----------------------------------|---| | | | | 1,000.0 | 30.0 | | 100.0 | 20.0 | | 10.0 | 10.0 | | 9.0 | 9.5 | | 8.0 | 9.0 | | 7.0 | 8.5 | | 6.0 | 7.8 | | 5.0 | 7.0 | | 4.0 | 6.0 | | 3.0 | 4.8 | | 2,0 | 3.0 | | 1.0 | .0 | | .9 | -0.5 | | .8 | -1.0 | | .7 | -1.5 | | .6 | -2.2 | | .5 | -3.0 | | .4 | -4.0 | | .3 | -5.2 | | .2 | -7.0 | | .1 | -10.0 | | .01 | -20.0 | | .001 | -30.0 | | | | SOLUTION: Determine the intensity of the sound passing through a spherical surface 10 meters from the source. $$I = \frac{W}{4\pi r^2} = \frac{0.38}{4\pi (10)^2} = 0.000302 \text{ watt/m}^2.$$ Then calculate the intensity level $$L_i = 10 \log \frac{I}{I_o} = 10 \log \frac{0.000302}{10^{-12}}$$ = 10 \log 3.02 + 10 \log 10^{-4} - 10 \log 10^{-12} =4.8-40+120=84.8 dB re 10^{-12} watt/m². #### I-2.1.3-Sound Pressure Since measuring instruments respond to pressure fluctuations, the decibel of sound pressure has become very common. As with sound intensity there is a reference sound pressure, p_0 , and in this case the interest is in the square of the pressure, or more specifically, the mean squared pressure. Applying equation (4), $$\frac{I}{I_0} = \frac{\frac{p^2_{\text{min}}}{\rho c}}{\frac{p^2_0}{\rho c}} = \frac{p^2_{\text{min}}}{p^2_0}.$$ (10) Therefore, the sound pressure level in dB is defined as the logarithm of the ratio of the mean squared pressure to the reference pressure squared: $$L_p = 10 \log \frac{p^2_{\text{rms}}}{p^2_0} = 20 \log \frac{p_{\text{rms}}}{p_0} dB \text{ re } p_0.$$ (11) Note in this expression that the logarithm of the pressure ratio is multiplied by 20 instead of 10 as for sound intensity level. This is due to the fact that the pressure ratio is squared. Thus, there is a 20 dB change in sound pressure level for an order of magnitude change in the sound pressure, and 40 dB change for an increase of 100 times; and instead of -3 dB for the one-half value point, there is a -6 dB change in the case of sound pressure level. The reference pressure in Newtons (N) per meter is obtained by using equation (4): $$p_{0}^{2} = I_{ap}c$$ $$= 406 \times 10^{-19} (N/m^{2})^{2}$$ $$p_{0} = 2 \times 10^{-6} (N/m^{2})$$ (12) where $\rho c = 406$ mks rayls is the characteristic impedance of the medium for air at $T = 22^{\circ}$ C, and a static pressure of 0.751 meter of Hg. For a young person with good hearing the faintest sound that can be heard has a mean squared pressure of approximately 2 x 10⁻⁵ N/m². This value was thus chosen as the reference value. The decibel scale for sound pressure therefore begins at 2 x 10⁻⁵ N/m² which is zero decibel level. #### I-2.1.4-Sound Power Sound power is the amount of energy per unit time that radiates from a source in the form of an acoustic wave. If the source is enclosed by some bounded imaginary surface, then all energy leaving the source must pass through this surface. The larger this surface the less power per unit area will pass through the surface. This relationship can be written $$W = I \times S \tag{13}$$ where W is the sound power, S is the area of the surface enclosing the source, and I is the average intensity per unit area of the surface. If the source is in a free field, and radiates power equally in all directions, then the sound power can be written as $$W = I(4\pi r^2)$$ watts (14) where the chosen enclosing surface is a sphere of radius r for convenience. It is difficult to measure sound power directly. The pressure of the sound wave is usually measured. Fortunately, there is a unique relationship between the intensity and the pressure of a spherical sound wave as illustrated by equations (8) and (10). Thus, for sound power the expression becomes sound power "level" to indicate a logarithm and is given by $$L_{w} = 10 \log_{10} \frac{W}{W_{o}} dB re W_{o}.$$ (15) where W is the sound power in watts, and W_0 is the reference sound power of 10^{-12} watts. (Note: Some earlier texts use 10^{-13} watt as the reference value so whenever the power level is reported the reference used must also be stated.) The relationship between sound power, sound intensity, and sound pressure can be written, using equation (4), as $$I = \frac{W}{S} = \frac{p^2}{\rho c}$$ and letting $S_0 = 1$ meter, 10 times the common logarithm of this expression can be written as $$10 \log
\frac{I}{I_o} = 10 \log \frac{W}{W_o} - 10 \log S$$ (16) or $$L_i = L_w - 10 \log S. \tag{17}$$ If spherical radiation in a free field is assumed and $S=4\pi r^2$ then for L_1 $$L_l = L_w - 20 \log r - 11 \text{ dB re } 10^{-12} \text{ watts/m}^2$$ (18) where r must be in meters. If radiation outdoors over the ground is assumed, the power is only radiated into a hemisphere, and the area becomes $2\pi r^2$ with the result that $$L_l = L_w - 20 \log r - 8 \text{ dB re } 10^{-12} \text{ watt/m}^2$$ (19) or for r in feet these expressions become $$L_l = L_w - 20 \log r - 0.7 \text{ dB}$$ re $10^{-12} \text{ watt/m}^2$ (spherical) (20) and $$L_l = L_w - 20 \log r + 2.3 \text{ dB}$$ re $10^{-12} \text{ watt/m}^2$ (hemispherical). (21) EXAMPLE 2: Determine the sound intensity level at 10 meters of the sound from a source radiating a power level of 116 dB re 10⁻¹² watt into a free field, #### SOLUTION: $$L_t = L_w - 20 \log r - 11 = 116 - 11 - 20 \log 10$$ = 85 dB re 10^{-12} watt/m². The relation between sound power level and sound pressure level is actually more useful in practice. Again recalling equation (4) $$\frac{W}{S} = \frac{p^2_{\text{rms}}}{\rho c}$$ or $$\frac{W}{S} \times \frac{1}{W_0} = \frac{p_{r_{\min}}^2}{\rho c} \times \frac{1}{W_0} \times \frac{p_{n_0}^2}{p_{n_0}^2} = \frac{p_{r_{\min}}^2}{p_{n_0}^2} \times \frac{p_{n_0}^2}{\rho c} \frac{W_0}{W_0}.$$ (22) Taking 10 times the logarithm gives 10 $$\log \frac{W}{W_o}$$ - 10 $\log S = 10 \log \frac{p^2_{\text{rms}}}{p^2_o} + 10 \log \frac{p^2_o}{p^c W_o}$ (23) or $$L_{w} = L_{p} + 10 \log S + 10 \log Z$$ dB re 10^{-12} watt (24) where $$Z = L_p/\rho c W_o, \qquad (25)$$ As before, the value of ρc is approximately 400 rayls which gives for Z $$Z = \frac{(2 \times 10^{-6})^{9}}{(400) (10^{-12})} = 1$$ (26) thus giving 10 log Z=0. While ρc varies around 400 depending on the atmospheric conditions, the value of 10 log Z is generally less than one-quarter of a decibel and can be neglected in most cases. Consequently $$L_p = L_w - 10 \log S$$ dB re 2 x 10^{-a} N/m^a (27) where square meters are to be used for S. This expression for L_p is identical to the expression for L_l shown in equation (17). Thus, in a free field $$L_u = L_t \tag{28}$$ From the above, it can be seen that for two identical sound sources, the sound power would be twice the sound power of one of the sources which is a 3 dB increase in sound power level. Also for this case the sound pressure level would be 3 dB more for the two sources than for the single source. In this case the sound power is what is doubled and not the sound pressure. A doubling of the sound pressure results in a 6 dB increase. The difference here is that when the power increases by a factor of 2 the sound pressure only increases by a factor of $\sqrt{2}$ since W is proportional to p^2 . (Note that in the special case of two coherent sound sources, the sound pressure would be doubled.) EXAMPLE 3: (a) Determine the sound pressure level at 10 meters for the sound source in Example 2 which is radiating 116 dB re 10⁻¹² watt into a free field. (b) Also determine the sound pressure level for this source over a flat open plane. SOLUTION: In part (a) the surface chosen is a sphere with a radius of 10 meters; thus, $$L_p = L_w - 10 \log S = 116 - 10 \log 4\pi (10^2)$$ $$= 116 - 10 \log 4\pi - 10 \log 10^2$$ $$= 116 - 11 - 20$$ $$= 85 \text{ dB re } 2 \times 10^{-5} \text{ N/m}^2$$ which is the result obtained for L_I in Example 2. For part (b) the surface is a hemisphere and so $$L_p = 116 - 10 \log 2\pi (10^2)$$ = 116 - 10 log $2\pi - 10 \log 10^2$ = 116 - 8 - 20 = 88 dB re 2 x 10⁻⁵ N/m². For hemispherical radiation the result is just 3 dB greater than for spherical or free field radiation. This is borne out by the fact that radiation over a flat plane is like the radiation of a light bulb in front of a mirror. All light radiated into the hemisphere which contains the mirror is reflected into the hemisphere with which we are concerned. Or one may consider optically that there is a true source and an imaginary mirror image that is also radiating which in effect gives us two identical sources and a 3 dB increase in sound pressure level. To relate some of these values to how the human ear responds to sound is a complex process. Generally a change in sound pressure level of 1 dB can be just barely distinguished under proper conditions. A change of 3 dB in sound pressure level is readily discernible and a change of 10 dB would be interpreted as a doubling or halving of the sound. Some common sounds, their sound pressure levels at a few feet, and sound power levels are listed in Table I-2. #### I-2.1.5—COMBINING DECIBELS In order to show how to combine decibel levels of sound sources when given the power, pressure, etc., the following examples are presented. EXAMPLE 4: Two sources are radiating noise into a free field. One source has a sound power level of 123 dB and the other source has a sound power level of 117 dB re 10⁻¹² watt. What is the combined sound power level of the two sources? SOLUTION: $$L_w = 10 \log \frac{W}{W_s}$$ or $W = W_a$ antilog $L_a/10$ Source 1: $$W_1 = 10^{-12}$$ antilog $\frac{123}{10}$ = 10 — 12 x 1.996 x 10^{12} = 1.996 watt Source 2: $$W_3 = 10^{-12}$$ antilog $\frac{117}{10}$ = 10^{-12} x 5.012 x $10^{11} = 0.5012$ watt Total = 2.4972 watt $$L_w$$ total = 10 log [2.4972 x 10¹²] = 3.9743 + 120 = 124 dB re 10⁻¹² watt The same process can be used for sound intensity level or sound pressure level. EXAMPLE 5: Suppose the sound pressure level of each of the three individual noise sources is measured at a point such that with only the first source running, the sound pressure level is 86 dB re 2 x 10⁻⁵ N/m², with only the second source running it is 84 dB re 2 x 10⁻⁵ N/m², and with only the third source it is 89 dB re 2 x 10⁻⁵ N/m². What will be the sound pressure level at this point with all three sources running? #### SOLUTION: $$p^{2}_{\text{tot}} = p^{2}_{\text{o}} \left[\text{ antilog } \frac{L_{p_{1}}}{10} + \text{antilog } \frac{L_{p_{3}}}{10} + \text{antilog } \frac{L_{p_{3}}}{10} \right]$$ $$= p^{2}_{\text{o}} \left[\text{ antilog } 8.6 + \text{ antilog } 8.4 + \text{ antilog } 8.9 \right]$$ $$= p^{2}_{\text{o}} \left[3.982 + 2.512 + 7.944 \right] \times 10^{4}$$ $$= p^{2}_{\text{o}} \times 14.438 \times 10^{4}.$$ $$L_{p_{\text{tot}}} = 10 \log \frac{p^{2}_{\text{tot}}}{10.00} = 10 \log \left[1.4438 \times 10^{6} \right]$$ $$Lp_{\text{tot}} = 10 \log \frac{p^2_{\text{tot}}}{p^2_{\text{o}}} = 10 \log [1.4438 \times 10^{\circ}]$$ = 1.58 + 90 = 91.6 dB, EXAMPLE 6: Add 85 dB and 88 dB (see Figure I-2). SOLUTION: $L_L - L_8 = 88 - 85 = 3$ dB. Enter row a to 3 and read row b to get 4.8 to be added to smaller level: $L_{\text{Tot}} = 85 + 4.8 = 89.8 \text{ dB}.$ Or, enter row a to 3 and read value of row c to get 1.8 dB to be added to larger level; $$L_{\text{Tot}} = 88 + 1.8 = 89.8 \text{ dB}$$. To subtract levels enter row b or c, whichever corresponds to the difference between the levels, then read value in row a which must be added (subtracted) to (from) the smaller (larger) value to obtain the unknown value. EXAMPLE 7: Subtract 83 dB from 87 dB (see Figure I-2). TABLE I-2-LEVELS OF SOME COMMON SOUNDS | SOUND POWER,
WATTS | SOUND POWER
LEVEL,
dB
re 10 ⁻¹² WATT | SOUND
PRESSURE,
N/m² | SOUND PRESS
LEVEL
dB
re 2 x 10-5 N/ | | | |-----------------------|--|----------------------------|--|--|--| | 3,000,000.0 | 200
185
175 | 1 atmosphere
20000.0 | 194
180
170 | Saturn rocket. | | | 30,000.0 | 165
155 | 2000,0 | 160
150 | Ram jet.
Turbo jet. | | | 300.0 | 145
135 | 200.0 | 140
135
130 | Propeller aircraft.
Threshold of pain.
Pipe organ. | | | 3.0 | 125
115 | 20.0 | 120
110 | Riveter, chipper.
Punch press. | | | .03 | 105
95 | 2.0 | 100
90 | Passing truck.
Factory. | | | .0003 | 85
75 | .2 | 80
70 | Noisy office. | | | .000003 | 65
55 | .02 | 60
50 | Conversational speech
Private office. | | | .0000003 | 45
35 | .002 | 40
30 | Average residence.
Recording studio. | | | .000000003 | 25
15 | .0002 | | Rustle of leaves.
Threshold of good
hearing. | | | .00000000000 | 5 | .00002 | 0 | Threshold of excellent youthful hearing. | | FIGURE 1-2.—Chart for Adding or Subtracting Decibels. Upper row b shows the difference between the total and smaller values. Bottom row c shows the difference between the total and larger values, and center row a shows the difference between the large and small values. (Chart good for any decibels—pressure, power, or intensity.) Use of this chart is shown in EXAMPLES 6-8. SOLUTION: $L_T - L_B = 87 - 83 = 4$ dB. Enter row b to 4 and read value in row a of 1.7 which must be subtracted from the larger value of 87 dB to obtain the unknown value of 85.3. **EXAMPLE 8:** Add the three sound pressure levels of Example 5 using the chart in Figure I-2. #### SOLUTION: which is the same result we obtained with the more lengthy procedure shown in Example 5. I-2.1.6—Sound Pressure Weighting and Filtering Thus far only the magnitude of sound has been discussed. Sound is generally not composed of a single frequency oscillating wave -sound can be made up of any and all frequencies, all existing simultaneously. A young, healthy ear is sensitive to the sound frequency range from about 20 to 20,000 Hz. This range narrows with age of the listener plus any possible hearing loss that may have occurred, such that for a normal adult the upper frequency limit may be approximately 14,000 Hz. Also the ear response varies with different frequencies; the least sensitivity in the lower frequency range and the greatest sensitivity in the range 2,000 to 4,000 Hz. This difference in sensitivity with frequency tends
to become less as the intensity of the sound increases. Consequently, to build an instrument that responds to sound in a manner similar to the human ear, acousticians have developed four frequency weighting networks for measuring sound. These correspond to the A-, B-, C-, and D-weighting curves, and are electronic filters which attenuate the signal versus frequency as shown in Figure I-3. The specific attenuation versus frequency is shown in Table I-3. Other filters used to analyze sound pass a narrower range of frequencies than the A., B., C., or D.-curves. These filters are of two types — the first, a constant bandwidth filter. TABLE I-3-A-, B-, AND C-WEIGHTING NETWORKS FOR SOUND LEVEL METERS AS SPECIFIED BY ANSI S1.4-1971 | FRE-
QUENCY,
Hz | A.
WEIGHTING
RELATIVE
RESPONSE,
dB | B-
WEIGHTING
RELATIVE
RESPONSE,
dB | VEIGHTING
RELATIVE
RESPONSE,
dB | |-----------------------|--|--|--| | 10 | -70.4 | -38.2 | -14.3 | | 12,5 | -63.4 | -33,2 | -11.2 | | 16 | -56.7 | -28.5 | - 8.5 | | 20 | -50.5 | -24.2 | - 6.2 | | 25 | -44.7 | -20.4 | - 4.4 | | 31.5 | -39.4* | 17.1 | - 3.0 | | 40 | -34.6 | -14.2 | - 2.0 | | 50 | ~30,2 | -11.6 | - 1.3 | | 63 | -26.2* | - 9.3 | - 0.8 | | 80 | -22,5 | - 7.4 | - 0.5 | | 100 | -19.1 | - 5.6 | - 0.3 | | 125 | -16.1* | - 4.2 | - 0.2 | | 160 | -13.4 | - 3.0 | - 0.1 | | 200 | -10,9 | - 2.0 | 0 | | 250 | - 8,6* | - 1.3 | 0 | | 315 | - 6.6 | - 0.8 | 0 | | 400 | - 4.8 | - 0.5 | 0 | | 500 | - 3.2* | ~ 0.3 | 0 | | 630 | - 1,9 | - 0.1 | 0 | | 800 | - 0,8 | 0 | 0 | | 1,000 | 0 * | 0 | 0 | | 1,250 | + 0.6 | 0 | 0 | | 1,600 | + 1.0 | 0 | - 0.1 | | 2,000 | + 1.2* | - 0.1 | - 0.2 | | 2,500 | + 1.3 | - 0.2 | - 0.3 | | 3,150 | + 1.2 | - 0.4 | - 0.5 | | 4,000 | + 1.0* | - 0.7 | - 0.8 | | 5,000 | + 0.5 | - 1.2 | - 1.3 | | 6,300 | - 0.1 | - 1.9 | - 2.0 | | 8,000 | - 1.1* | - 2.9 | - 3.0 | | 10,000 | - 2.5 | - 4.3 | - 4.4 | | 12,500 | - 4.3 | - 6.1 | - 6.2 | | 16,000 | - 6.6 | - 8.4 | ~ 8.5 | | 20,000 | - 9.3 | -11.1 | -11.2 | | | | | | ^{*}Values used for converting octave-band readings into A-weighted sound levels. This type of filter generally has a narrow bandwidth of a few hertz which does not change as the operating frequency changes. The second type of filter is more commonly used in acoustics and is a constant percentage filter. The width of the band being utilized is a fixed percent of the frequency at which the instrument is operating. FIGURE I-3.—Standard A-, B-, and C-Weighting Curves for Sound Level Meters; Also Proposed D-Weighting Curve for Monitoring Jet Aircraft Noise. For example, a 6 percent bandwidth filter would have a bandwidth of 60 Hz when it is set to operate at 1,000 Hz, and a bandwidth of 120 Hz when operating at 2,000 Hz. The constant percentage filters most often used in acoustics are octave band filters or some submultiple of an octave such as one-half octave, one-third octave, or one-tenth octave. The logarithmic difference between each upper frequency limit, f_2 , and the corresponding lower frequency limit, f_1 , for constant percentage filters is also a constant. For octave band filters, this difference by definition in $$\log f_x - \log f_1 = \log \frac{f_2}{f_1} = \log 2;$$ (29) and $$f_z = 2f_y.$$ (30) If each filter has a frequency range equal to a submultiple, k, of an octave, then the constant difference is $$\log f_2 - \log f_1 = \frac{\log 2}{k} = \log 2^{1/k}$$ (31) and $$f_n = 2^{1/k} f_1$$, (32) Note: In the special case of one-third octave bands (k=3), since $2^{1/3}=1.25992$ and $10^{1/10}=1.25893$, $f_2=10^{1/10}$ f_1 is used in practice for computational convenience. The center frequency, f_{e_1} of a constant percentage filter is the logarithmic or geometric mean of f_1 and f_2 $$f_c = \text{antilog } \frac{\log f_1 + \log f_2}{2} = (f_1 f_2)^{1/2},$$ (33) $$f_c = (2^{1/k} f_1 f_1)^{1/2} = 2^{1/2k} f_1 = 2^{-1/2k} f_2$$ (34) and $$f_1 = 2^{-1/2k} f_c,$$ (35) $$f_z = 2^{1/2k} f_{ex}$$ (36) The constant percentage, P_k , for a set of filters is thus $$P_k = 100 \frac{(f_2 - f_1)}{f_c} = 100 (2^{1/2k} - 2^{1/2k}),$$ $$k = 2, 3, \dots$$ (37) The most common constant percentages used are 70.7 percent of the center frequency for octave band filters and 23.2 percent for one-third octave bands. For a broadband sound the octave band sound pressure level will be just the sum of the three one-third octaves that make up the octave band. Similarly, if measurements are made in one-tenth octaves then 10 of these will add up to the sound pressure level in the octave band. This addition must be made of the mean sound pressures squared and then converted to decibels or the decibels can be added using Figure I-2. For example. if the three one-third octave levels are 65. 68, and 70 dB we get 72.9 dB for the octave band. The preferred series of octave band and one-third octave band center frequencies, as specified by ANSI S1.6, along with upper and lower frequency limits are shown in Table I-4. ## I-2.2—INSTRUMENTS FOR NOISE MEASUREMENTS #### I-2.2.1-MICROPHONES The basic sensing instrument for measuring sound pressure in air is the microphone. These sensors come in a variety of sizes and types but they all have one thing in common. The basic sensor is a diaphragm which is forced to vibrate as the sound wave impinges upon it. This vibratory motion is then converted into an electrical signal in any one of a number of ways. TABLE 1-4 — CENTER AND CUTOFF FREQUENCIES FOR PREFERRED SERIES OF CONTIGUOUS OCTAVE AND ONE-THIRD OCTAVE BANDS AS SPECIFIED BY ANSI S1.6 | FREQUENCY, Hz | | | | | | |-------------------------|--------|------------------------|----------------------------|----------------------------|----------------------------| | OCTAVE ONE-THIRD OCTAVE | | | | | | | LOWER
BAND
LIMIT | CENTER | UPPER
BAND
LIMIT | LOWER
BAND
LIMIT | CENTER | UPPER
BAND
LIMIT | | 11 | 16 | 22 | 11.2
14.1
17.8 | 12.5
16
20 | 14.1
17.8
22.4 | | 22 | 31.5 | 44 | 22.4
28.2
35.5 | 25
31.5
40 | 28.2
35.5
44.7 | | 44 | 63 | 88 | 44.7
56.2
70.8 | 50
63
80 | 56.2
70.8
89.1 | | 88 | 125 | 177 | 89.1
112
141 | 100
125
160 | 112
141
178 | | 177 | 250 | 354 | 178
224
282 | 200
250
315 | 224
282
354 | | 354 | 500 | 707 | 354
447
562 | 400
500
630 | 447
562
707 | | 7 07 | 1,000 | 1,414 | 707
891
1,122 | 800
1,000
1,250 | 891
1,122
1,414 | | 1,414 | 2,000 | 2,828 | 1,414
1,778
2,239 | 1,600
2,000
2,500 | 1,778
2,239
2,828 | | 2,828 | 4,000 | 5,656 | 2,828
3,548
4,467 | 3,150
4,000
5,000 | 3,548
4,467
5,656 | | 5,656 | 8,000 | 11,312 | 5,656
7,079
8,913 | 6,300
8,000
10,000 | 7,079
8,913
11,220 | | 11,312 | 16,000 | 22,624 | 11,220
14,130
17,780 | 12,500
16,000
20,000 | 14,130
17,780
22,390 | One of the ways to transduce sound is to use the diaphragm as one side of a capacitor. Any movement in the diaphragm results in a change in the capacitance and an electrical signal is generated when a large polarizing voltage to charge the capacitor is applied. A second type of microphone is one in which the diaphragm is attached directly to a piezoceramic material. Motion of the diaphragm causes strain in the ceramic which results in the generation of an electronic signal. These microphones are generally less sensitive than the capacitor types since the diaphragm is mounted directly to the ceramic, although a polarization voltage is not required. A third type is the dynamic (moving coil) microphone. In this type the diaphragm is attached to a coil which is forced to move through a magnetic field as the diaphragm moves. The movement of the coil through the magnetic field causes a current to flow in the coil. These microphones have a lower electrical impedance. However, because of the mass of the coil, these microphones are more sensitive to vibration, the magnetic field makes them susceptible to external magnetic fields, and their low frequency response is limited due to the larger excursions of the coil as the frequency is lowered. A newcomer to the microphone arena is the electret microphone. These are capacitor microphones but the air gap between the capacitor plates is replaced with a prepolarized dielectric. This construction offers the quality of the capacitor microphone but eliminates the need for the direct current bias voltage. These microphones are of more simple and rugged construction, and have a higher capacitance which simplifies some of the electrical problems associated with the very small capacitance of the capacitor type microphones. The sensitivity of a microphone is generally dependent on frequency, direction of the incident sound wave, and size of the diaphragm. The sensitivity at a given frequency is defined as the ratio of the root mean square output voltage to the root mean square sound pressure and is given in units of volts per Newtons/meter² or other similar units. If the sound pressure is applied uniformly over the surface of the diaphragm the response is called *pressure response*. The free field response at a given frequency is defined as the ratio of the root mean square voltage to the root mean square sound pressure that existed at the microphone location prior to the insertion of the microphone. These two definitions are identical for a microphone with negligible dimensions. However, when the wavelength of the sound wave becomes comparable to the dimensions of the diaphragm, the microphone acts as a reflector which causes an increase in pressure on the diaphragm and a corresponding increase in output voltage. This reflection effect also depends on the angle of incidence of the sound wave on the diaphragm. Since it is impossible to make a microphone with zero dimensions
there will always be some effect on the sound field when the microphone is inserted. Therefore, to obtain the pressure that exists at that point before the microphone is inserted one must apply a correction to the sensitivity of the microphone. In Figure I-4 some corrections are shown that FIGURE 1-4.—Free Field Correction for Microphone With Protecting Grid (electrostatic actuator method of pressure calibration). (Courtesy Bruel & Kjaer Instruments Inc.) must be applied to the microphone sensitivity as a function of frequency in kilohertz (kHz) and angle of incidence on the diaphragm. As previously mentioned the increase in pressure at the diaphragm for wavelengths comparable to the dimensions of the diaphragm shows up very clearly in the sensitivity correction that must be applied when the sound wave is incident normally on the diaphragm. Note how close the peak in the zero incidence correction curve comes to the frequency where the wavelength equals the diameter of the diaphragm (shown in this figure as $D/\lambda = 1$). Another view of the dependence of sensitivity on frequency and angle of incidence is shown in Figure I-5. In this figure the rela- FIGURE I-5.—Typical Directional Characteristics for 1-inch Microphone with Protecting Grid. (Courtesy Bruel & Kjaer Instruments Inc.) tive response for five frequencies through the full 360 degrees (deg) of possible incidence are shown. For the microphone shown, the circular symmetry makes the response symmetric about the axis of the diaphragm. To reduce the complexity of applying these corrections when using a microphone the manufacturers have designed microphones with proper tension and damping on the diaphragm so that either a free field response may be obtained directly or a pressure response will result. Figure I-6 shows the response of a typical "pressure" microphone (Bruel & Kjaer 1-inch microphone). If the 90 deg curve of Figure I-4 is applied to this microphone the response will remain unchanged to beyond 10 kHz for sound waves striking the diaphragm at grazing incidence (90 deg). This type of microphone should be pointed at right angles to the source of the sound to obtain the proper flat frequency FIGURE I-6.—Frequency Response Curve Supplied by B&K Instruments with 1-inch Pressure Microphone Type 4144. (Courtesy Bruel & Kjaer Instruments Inc.) response. To produce a so-called "free field" microphone, this manufacturer has constructed the diaphragm so that the pressure response is as shown in the lower curve in Figure I-7. If the FIGURE I-7.—Frequency Response Curve Supplied by B&K Instruments with 1-inch Free Field Microphone Type 4145. (Courtesy Bruel & Kjaer Instruments Inc.) Lower curve: Microphone pressure response. Upper curve: Microphone pressure response with correction added for zero angle of incidence giving the free field response. microphone is pointed at the sound source so that the sound wave impinges normally (zero) on the diaphragm the top correction curve (zero incidence) of Figure I-4 when applied to the pressure response will result in the upper microphones. If one desires to use a microphone has a flat frequency response when it is pointed at the sound source whereas the pressure microphone has a flat frequency response when pointed 90 deg to the sound source. For either of these microphones the corrections for angles other than zero or 90 deg still must be applied as required. These general characteristics hold for most microphones. If one desires to use a microphone which qualifies as a precision instrument he can take assurance in the fact that standards for the performance of such microphones are published by the American National Standards Institute (ANSI), for example, ANSI S1.12-1967, "Specifications for Laboratory Standard Microphones". When purchasing such a microphone the manufacturer will supply the buyer with a calibration curve, stating to which appropriate standard the microphone complies and this calibration will be traceable to the National Bureau of Standards (refer to standard ANSI S1.10-1966, "Method for the Calibration of Microphones"). #### I-2.2.2-Sound Level Meters In its basic form a sound level meter (SLM) is simply a microphone mounted on an amplifier with a meter to indicate the level of the sound pressure at the microphone. Such a simple process is no longer in use, and all SLM's should read the same value when exposed to the same sound pressure. Consequently, ANSI has another standard for sound level meters — ANSI S1.4-1971, "Specification for Sound Level Meters". This standard clearly points out the tolerances within which the meter must be able to measure sound pressure levels. As discussed in Subsection I-2.1.6, sound is composed of both amplitude and frequency, and the A-, B-, C-, and D-weighting curves were introduced along with band pass filters. A typical SLM may incorporate some or all of these filters such as shown in Figure I-8. The "typical" SLM has the microphone mounted on the front and the output is amplified and fed to one of the filter circuits as selected by a switch. Band pass filters are usually of the constant percentage or fractional octave type. FIGURE I-8.-Block Diagram of a Sound Level Meter. Constant bandwidth filters are not usually provided on portable meters. After passing through the selected filter network the signal is again amplified. At this point an output jack is provided so that the signal may be recorded on tape or fed to some other signal analyzing device. After being amplified the signal goes to a mean square rectifier and the value is displayed on a meter in decibel units. Note here that the meter may have either a fast or a slow response which is switch selectable. The fast response provides an averaging time of 200 to 250 milliseconds. The slow response position averages the signal for a greater period of time. Each of the blocks shown in Figure I-8 is covered in the specifications of ANSI S1.4-1971, including the response time of the meter. While this standard does not specify which of the filter circuits a SLM must have it does specify how accurately the weighting curves must correspond to the attenuations shown in Table I-3. The accuracy requirements are divided into three groups Type 1—Precision SLM (most stringent) Type 2—General purpose SLM Type 3—Survey SLM (least stringent) A fourth type called special purpose SLM includes those which have only a portion of the Only sound levels that are reasonably steady variations possible. These special purpose meters must meet the standard for those features they do incorporate, in time have been considered thus far. Another noise type which must be considered is the so-called "impulse" noise. This is a sound of short duration such as a gunshot or the noise produced by a hammer striking an object. To measure such sounds the SLM described is not very well equipped because the meter simply cannot respond fast enough. These sounds can best be measured by connecting the SLM output to a storage oscilloscope and reading the peak amplitude from the display. However, there are some instruments available which incorporate a "peak hold" feature. This is an instrument that has a very fast response electrical circuit which measures the peak of the sound pressure pulse and holds the value long enough for the meter to display the value that is held. The meter then holds this value until the operator resets the instrument. At this time few instruments have this peak hold feature and it is also under discussion just how such noises should be measured so that the instrument will display a value that has meaning as related to how the ear responds to such sounds. Currently in use in Europe and being considered here and by international standards groups is another meter response time called "impulse" response. This impulse measurement is between the meter fast response time and the true peak measurement (see S/V Sound and Vibration, March 1974). #### I-2.2.3-Calibration of Sound Level Meters Although a sound level meter comes from the factory calibrated and is provided with the appropriate traceability to the National Bureau of Standards, its performance must be checked on a regular basis. Several devices are available for this purpose. The most common of these is a calibrator which fits directly over the microphone and generates a known pressure level within the closed volume by the motion of a piston back and forth or with a small loudspeaker. These devices are not intended to replace proper laboratory procedures for microphone calibration. If an instrument cannot be adjusted in the field to indicate the proper sound pressure level of the calibrator, the problem should be first corrected and a recalibration performed by an agency qualified to do so. #### I-2.2.4—Frequency Analyzers Since a sound level meter is a small portable device it cannot incorporate all of the capabilities to analyze sounds which an engineer may desire. This is the reason for the output jack. With this output the engineer can either record the sounds on tape or he may connect the sound level meter directly to some other signal analysis device. Some of the devices which find particular use in acoustics are frequency analyzers which can produce frequency spectra in real time in almost any desired bandwidth or type. These "real time analyzers" are generally of two types. The first is the multiple filter in which the electronic signal is fed to many filters simultaneously and the output of each is dis- played in suitable fashion. The second type uses a time compression technique and feeds the signal through a single variable filter at a speed such that the result appears to have been obtained in real time. Either of these analyzers are rather large expensive devices and are therefore not on the equipment list of the average individual or small company. The types of analysis that can be performed with these or other even more sophisticated instruments are too many
and too varied to be included here. #### I-2.3-METHODS OF NOISE CONTROL The basic idea behind the techniques for limiting a person's exposure to noise is very simple and straightforward. The reference frame dealt with in noise reduction is composed of a sound source, the sound wave PATH, and a sound wave RECEIVER which, in common circumstances, is an ear or a microphone that is used for measurement. The best and most satisfying means of reducing noise levels is to reduce the source sound output. This approach may require major modifications to the noisy device. Some of these modifications include better quality control, closer tolerances on moving parts, better balancing of rotating parts, and sometimes even a complete redesign of the technique utilized to perform the job for which this machine is intended. Since something vibrating causes compression and rarefaction of the air which is observed as sound, the abovementioned and many other modifications to a sound source are all aimed toward reducing the vibration of any part to the lowest possible level. Normally these modifications are not within the capability of the user and therefore must be left to the equipment manufacturers. Fortunately for those directly affected, manufacturers are beginning to make these changes. There is, however, one set or kind of modification that the user can perform. A particular piece of machinery may be the driving force to produce vibrations but it often is the floor, wall, or other support member that is doing much of the sound radiating. This kind of vibration problem can be effectively reduced by proper use of vibration isolation or vibration damping treatment. Essentially vibration isolation means that the connection between the driving force and the driven member is such that the vibration is not transmitted through the connection. Any device which behaves as a spring can be utilized for this purpose. Vibration isolators can be made with actual steel springs, or with rubber pads. Vibration isolators are also made out of coils of cable laid on their side or even air can be used when properly contained. The selection of which vibration isolator to use depends on the forces involved, the frequency of the driving force, and the possible natural frequencies of the support member itself. If not properly selected, a vibration isolator can make a problem situation worse. Vibration damping is the dissipation of energy in a vibrating system. This dissipation of energy results in a lower vibration level with the consequent reduction in noise power output. All materials exhibit some damping naturally but the amount of natural damping in most metals is too low to be of any significance. Common lead has a reasonable amount of natural damping, and some special metals designed for high damping can also be effective. Vibration damping usually is the application of some viscoelastic material such as rubber and plastics, etc., to the vibrating member. The most suitable substances are the high-molecular weight polymers, and application of these to a surface can increase the energy dissipation significantly. Materials for vibration damping can be obtained in several forms. Some can be sprayed or painted on, some come laminated to the metal part, and others are in sheet or roll form and can be glued on. It is not the authors' intention to present a course in vibration isolation or damping, but a decent discussion cannot overlook what is called "constrained layer" damping. In this technique the damping material is sandwiched between the panel to be damped and a backing plate of some rigid material. The backing plate is firmly held in place by bonding the layers together with adhesive or bolting the sandwich together. This technique further increases the energy dissipative processes and provides for greater reduction in vibration levels. At the other end of the noise control frame is the receiver. The method of controlling noise exposure at the receiving end usually means removing the affected person from the sound field. When this cannot be done the alternative is to have the person wear ear muss or ear plugs. This procedure is actually a control on the path of the noise but since it is incorporated directly with the receiver it is considered a receiver application. The middle course of action is modification to the path the sound takes from the source to the receiver. Although this document is not intended to be a noise control manual, it is with controls on the sound path that most of the items listed herein are concerned. Consequently it is beneficial to take a detour at this point and briefly describe some of the processes that occur when a sound wave comes into contact with some surface. Sound can reach a listener's ears by several different routes. The most obvious for internal noise sources is the direct path. In a given room, reflections from walls, ceiling, floor, or any obstacles may contribute equally or more to the sound pressure level than the direct path. As sound travels through solids and air, it may travel an indirect route through floors and walls and arrive at the receiver after reradiation. Paths for external sound include penetration through and/or around open or closed doors, partitions, walls, windows, roofs, ceilings and floors. The effectiveness of a welldesigned acoustical wall can be largely destroyed by relatively small openings. Basically the two different acoustic environments that are employed in evaluating noise sources or the effectiveness of acoustic insulation are the free field and diffuse field. As previously mentioned a free field is defined as a homogenous, isotropic medium, free from boundaries. A reverberant field exists when sound from the source bounces back and forth from the hard surfaces of the room such that the sound pressure level at any one point is composed of many such reflected waves. In an ideal reverberant field the sound waves are perfectly reflected with no loss in intensity and a diffuse condition exists where the sound pressure level is equal everywhere. In actual conditions when a sound wave strikes a surface it is partially reflected, partially transmitted through the surface, and partially absorbed. The sound absorbing quality of a material is described by an absorption coefficient, a, which is defined as the ratio of the total energy incident on a surface minus the energy reflected from the surface, to the energy incident upon the surface. As such the absorption coefficient can vary between zero and one. When the energy is perfectly reflected the ratio is zero and when the energy is completely absorbed this ratio is 1. The mechanism of sound absorption is that the acoustic energy of the wave is converted to some other form of energy, usually heat. Three major means of converting the acoustic energy are by using porous absorptive materials, diaphragmatic absorbers, and resonant or reactive absorbers. Porous absorptive materials are the best known of the acoustical absorbers. These are usually fuzzy, fibrous materials, perforated board, foams, fabrics, carpets, and cushions, etc. In these materials the sound wave causes motion of the air in the spaces surrounding the fibers or granules, the frictional energy losses occur as heat, and the acoustic energy is reduced. Because this is the mechanism by which these materials absorb sound, it is easy to see that a "too loose" material will not cause enough frictional energy losses and will be a poor absorber. On the other hand, a material which is too dense will not permit enough air motion to generate sufficient friction and will also be a poor absorber. The latter type of material is more of a reflector than an absorber. In a diaphragmatic absorber the panel oscillates at the same frequency as the sound wave impinging upon it (or at some harmonic). Since no material is perfectly elastic, the natural damping will absorb some of the incident energy. This type of absorber is usually more effective at lower frequencies since the higher frequencies tend to be reflected. Since the absorption coefficient of this absorber type is very dependent on mass, rigidity, size, shape, and mounting methods, it is difficult to forecast how any particular panel will operate in practice. Usually it is necessary to test prototypes for each specific application. Resonant or reactive absorbers (often called Helmholtz resonators) are cavities which confine a volume of air which is connected to the atmosphere by a small hole or channel in the cavity. If the cavity is very small compared with the wavelength of the incident sound wave, the air in the connecting channel is forced to oscillate into and out of the cavity. The air inside the cavity acts as a spring and the kinetic energy of the vibration is essentially that of the air in the channel moving as an incompressible and frictionless fluid. This type of absorber has a very narrow frequency band where absorption takes place and as such its use is somewhat limited. This narrow band of absorption can be broadened by insertion of a porous type of absorber into the cavity. Also, the absorption peak is usually in the lower frequencies and as such this principle is useful for increasing the low frequency performance of common porous type absorbers. Commercial panels are available which have many small holes in the face and the appropriate dimensions of absorber and air gap behind the faces to increase the low frequency absorption. This principle requires that the face plate have an opening of approximately 5 percent or less to effect any tuning. Common perforated absorption panels usually have a much higher open area, since the large closed surface acts to reflect the higher frequencies. The portion of the sound wave that is not absorbed or reflected when the sound wave strikes a surface is transmitted through to the other side. The fraction of the incident energy that is transmitted through the partition is
defined to be the transmission coefficient (τ). This transmission coefficient is related to the transmission loss (TL) such that the transmission loss is equal to 10 times the common logarithm of the reciprocal of the transmission coefficient, or $$TL = 10 \log \frac{1}{\tau} dB \tag{38}$$ and the transmission loss is obtained directly in decibels. Just as with the absorption coefficient the transmission coefficient depends on frequency and equation (38) indicates the transmission loss is also frequently dependent. Since a complete list of transmission coefficient versus frequency is required to describe the transmission loss characteristics of a given material a means of simplifying this has been developed. By fitting the actual test performance curve to standard curves this list can be reduced to a single number which is called the STC of the partition. The mechanism of transmission loss is sim- ilar to that of a diaphragmatic absorber. The incident sound wave causes the partition to vibrate. This vibration in turn causes the air on the other side of the partition to be set into motion and sound is radiated as though this partition were now a sound source. However, this new sound field will be much lower in energy since much of the energy of the incident wave was spent in forcing the partition to vibrate. If the basic laws of motion are considered the force required to accelerate the massive partition is given by Force = mass x acceleration. The kinetic energy of this vibrating mass is given by #### 1/2 MV² where M= mass of the partition and V= velocity of the partition. For higher frequencies more force (pressure) is required to vibrate the partition and the greater the mass the greater is the force (pressure) or energy required to vibrate the partition at any given frequency. Specifically, if the frequency is doubled the energy increases four times, since the energy is proportional to the square of the velocity. If the mass is doubled the force (pressure) required to give it the same acceleration is doubled. Since the energy is also proportional to the square of the pressure, the energy also increases fourfold if the mass is doubled. Thus either a doubling of the frequency or of the mass produces a 6 dB increase in the transmission loss. Note, however, that this relationship only holds for a limp mass that moves back and forth such as a piston. This 6 dB increase in transmission loss for each doubling of the mass for a limp panel is known as the "mass law". This is shown as $$TL = 20 \log W + 20 \log f - 33 dB$$ (39) where W is the weight per unit area (lb/ft³) and f is the frequency in hertz. In practice, a partition is not truly limp and does not behave in the theoretical manner. Generally the transmission loss increases more slowly than 6 dB per octave of frequency below 1,000 Hz, and approximately at the rate of 6 dB per octave above this frequency. Some notable exceptions to this are due to stiffness, resonances, and coincidence effects. Resonance occurs when the frequency of the incident sound wave corresponds to a natural frequency of the partition. At this frequency very little energy is required to force the panel to vibrate, and the high amplitude of this vibration produces a correspondingly high sound pressure level on the opposite side of the panel. In some instances the sound wave passes through the panel almost as if it were not there. To avoid the effects of resonance it is desirable to have the lowest natural frequency possible. This condition can best be met by using panels which are as limp and as massive as possible. A condition similar to resonance can occur when sound waves are incident on a panel at an oblique angle. At certain frequencies the phases of the incident wave will coincide with the phase of the panel's flexural waves as shown in Figure I-9. FIGURE I-9.—Coincidence of Incident Wave and Flexural Wave in a Wall. If the wavelength of sound in air is λ , and the wave impinges on the panel at an angle θ , then when $\lambda/\sin\theta$ is equal to the wavelength of the flexural wave the intensity of the transmitted wave approaches that of the incident wave. Wave coincidence can only occur when the wavelength of the sound in air is less than the wavelength of sound in the panel. Thus, coincidence can only occur at a frequency above a certain critical frequency which is determined by the material and thickness of the panel. In practice the sound wave is usually not incident from a single direction but is more omnidirectional. A typical panel will have studs, braces, discontinuities, etc., and the effect of coincidence can usually be neglected. If, however, this effect is encountered it can usually be reduced by using very stiff and thick walls or by heavy walls with small stiffness. In general, the transmission properties of a wall behave more like the typical performance shown in Figure I-10. It should be emphasized that sound absorbent materials due to their soft, porous structure offer only low resistance to a sound wave and permit the passage of the wave through to the other side relatively unattenuated. Only when these materials are very dense or very thick will they appreciably reduce the amplitude of a sound wave as it passes through. Thus, a sound absorbing material is a poor sound barrier. Remember that if air can pass through the material, so can sound. On the other hand, typical sound barrier materials are hard, heavy, and very reflective. These materials generally follow the mass law and as such offer a high resistance to the passage of a sound wave. A sound barrier material is a poor absorber and an absorbent material is a poor barrier. Therefore the best acoustical treatment almost always uses some combination of these two types of materials. #### I-3—MEASUREMENT OF MATERIAL NOISE-REDUCTION PROPERTIES I-3.1—ABSORPTION (RANDOM INCIDENCE COEFFICIENTS)— RE ASTM C423-66 I-3.1.1-Test Method In the laboratory the absorption coefficient of a test specimen is determined by measuring the rate of decay of a sound in a reverberant room. It may be shown theoretically and experimentally that when a sound source is turned off, the rate of decay of the sound level (in decibels per second) is a constant which is dependent upon room geometry and the amount of absorbent material present. This enables one to define the "reverberation time" of a room as the time required for the sound level to decrease by 60 dB. The test procedure for the measurement of random in- FIGURE I-10.—Typical Practical Performance of a Wall Relating to the Transmission of Sound Showing Three Separate Regions. cidence absorption coefficients is specified by, and described in ASTM Standard C423-66, "Standard Method of Test for Sound Absorption of Acoustical Materials in Reverberation Rooms". The total absorption in the room is first measured without the specimen by turning on a sound source long enough to come to a steady state level and then measuring the rate of decay of the sound pressure level when the sound source is suddenly turned off. The total absorption of the room is then given by the Sabine equation $$A = 0.9210 \, \frac{Vd}{c} \tag{40}$$ where V is the volume of the room in fts, d is the rate of decay of the sound field in dB/sec, c is the speed of sound in ft/sec, A is the total absorption in sabins (ft²). If the volume of the room is in meters' and the speed of sound in meters/sec, then the absorption will be in metric sabins (meters²). After measuring the total absorption in the room the specimen is brought into the room and the total absorption is again measured in the same manner. The absorption added to the room by the test specimen is then determined by taking the difference, thus $$A_{ m specimen\ only} = A_{ m with\ specimen} - A_{ m without\ specimen} = 0.9210\ V(d_{ m with} - d_{ m without})/c.$$ (41) The absorption coefficient is then determined by dividing the total absorption by the area of the specimen $$\alpha = A/S$$ (42) where α is the absorption coefficient and S is the area of the specimen in either meters² or ft^2 as required. There are several important factors to note about this standard laboratory procedure. First, the room must be very hard and be able to support a reverberant (diffuse) sound field very close to the ideal. Also, the room must be sufficiently large so that the introduction of a highly absorbing specimen will not destroy this diffuse field. Because of the second limitation the specimen must be small enough to not interfere with the diffuseness of the sound field but it must also be large enough so that accurate data may be obtained. The size of the specimen also introduces other effects such as the fact that smaller specimens will generally measure higher values of absorption coefficient than a larger area of the same material. To avoid variations from different laboratories the standard specifies that the specimen size is to be at least 72 ft2, which is the customary size. ### I-3.1.2—Absorption Coefficients Exceeding Unity In this method of testing the diffuse sound field measures absorption for all angles of incidence and not just for normal incidence. The method of measuring absorption coefficients using the decay rate of the sound field can yield absorption coefficients as high as 1.2 to 1.3 (the absorption coefficient by definition must be between zero and 1). Although it has been shown theoretically that the absorption coefficient cannot exceed 1 these higher values do not cause problems in practice. The principal reasons that the measured values of absorption coefficients sometimes exceed unity are diffraction effects and the size of the specimen. Diffraction probably accounts for most of the difference in the lower frequencies while specimen size is more responsible for the effects at higher frequencies, since the theory which relates absorption to the decay rate of the sound field is based on an infinite size sample in
a diffuse field. An additional factor affecting the absorption in a reverberation room is that the air is also an absorber, the extent of which is dependent on temperature and relative humidity, especially at the higher frequencies. Since this phenomenon cannot be precisely accounted for, the laboratory measurement of absorption is usually made in a room where these values are maintained within narrow limits. (Temperature and humidity controls should be included in the laboratory report of a test.) #### I-3.1.3-Mountings for Absorption Tests Another item that affects the absorption properties of a material is the method of mounting. For a porous type absorber the space between it and the wall will increase the absorption somewhat as the space is increased. Consequently, to maintain standard mountings for testing, the Acoustical and Insulating Materials Association (AIMA) specifies seven standard mountings which should be used for testing sound absorbing materials. These mountings are shown in Figure I-11. Laboratories making absorption tests will always include in their report which of these mountings were used for the test. #### I-3.1.4—Dependence of Absorption Coefficient on Frequency Only the magnitude of sound absorption has been discussed but as with the other properties of sound the absorption also depends on frequency. Some typical sound absorption coefficients versus frequency are shown in Figure I-12. Notice the increase in absorption coefficient with increasing frequency and increasing thickness. The frequency dependence of the absorption coefficient is obtained by measuring the absorption as described above in six one-third octave bands centered at 125, 250, 500, 1,000, 2,000 and 4,000 Hz. The laboratory report will therefore show six absorption coefficients and the frequencies at which they were measured. Note that these numbers are rounded to the nearest integral multiple of 0,01 as specified in the standard. It is somewhat cumbersome to compare absorbers if one must be looking at six numbers for each of them. To simplify such comparisons and to provide a means of rating the sound absorbing properties of a material, a one-number rating is employed which is called the Noise Reduction Coefficient (NRC). The average of the absorption coefficients at the four measuring frequencies of 250, 500, 1,000, and 2,000 Hz, rounded to the nearest multiple of 0.05, is the NRC. For example, if the absorption coefficients at the six frequencies were 0.16, 0.26, 0.68, 0.99, 1.11, and 1.22 and the FIGURE I-11.—Mountings Used in Sound Absorption Tests. (from AIMA Bulletin, "Performance Data, Architectural Acoustical Material") FIGURE I-12.—Sound Absorption Coefficients versus Frenquency for Some Types of Sound Absorbing Materials. average of the four is 0.7625, the report would show the results as follows: Frequency, Hz...... 125 250 500 1,000 2,000 4,000 NRC Absorption Coefficients...0.16 0.26 0.69 0.99 1.11 1.22 0.75 #### I-3.2—ABSORPTION (NORMAL INCIDENCE COEFFICIENTS)— RE ASTM C384-58 Another test procedure used to determine sound absorption coefficients is performed using an impedance tube. The test procedure is governed by ASTM standard C384-58, "Test for Impedance and Absorption of Acoustical Materials by the Tube Method". Absorption coefficients (a_n) are determined for normal incidence only and an NRC is not computed. In effect, a small sample of the material to be tested is placed at one end of a closed tube and a pure tone sound is generated within the tube. By measuring the maxima and minima of the sound pressure inside the tube the absorption coefficients can be determined. For this test, pure tones are utilized, the frequency of which corresponds to the center frequency of an octave band, (i.e., 125, 250, 500, 1,000, 2,000, or 4,000 Hz). Often a laboratory or the manufacturer will measure the normal incidence absorption coefficients in an impedance tube and then estimate a value for the Noise Reduction Coefficient. #### I-3.2.1—Relationship Between Random and Normal Incidence Coefficients It is important to realize that a concrete theoretical relationship has not yet been developed to relate α_n to α , and that any estimate made is based on empirical relationships. A rule of thumb for relating α_n to α (Section V-1, ASTM C384) is that α_n is about one-half of α for small values of α and as α becomes large α_n becomes almost equal to α . The maximum difference occurs for intermediate values and can be as large as 0.25 to 0.35. In general α_n is always smaller than α . (See Figure I-13) FIGURE I-13.—Relationship of Random to Normal Incidence Absorption Coefficients at a Test Frequency of 500 Hz. (A. London, JASA, 1950) #### I-3.3—TRANSMISSION LOSS MEASUREMENTS I-3.3.1-Test Method-re ASTM E90-70 The test procedure for measurement of transmission loss of materials is specified by, and described in, ASTM Standard E90-70, "Standard Recommended Practice for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions". The measurement of transmission loss properties in the laboratory is a much more straightforward procedure than that used for absorption. Transmission loss in decibels is 10 times the logarithm of the inverse of the transmission coefficient; as shown in Equation (38) of Subsection I-2.3. $$TL = 10 \log \frac{1}{r} dB$$ where τ is the transmission coefficient and is defined as the ratio of the sound power transmitted to the sound power incident on the partition. To measure the fransmission loss of a specimen it is simply mounted in the connecting opening between two reverberation rooms. Care is taken to assure that the only sound path between the two rooms is through the specimen. A sound source is operated in the source room and sound pressure levels in the source room and the receiving room are then measured in each of 16 contiguous one-third octave bands from 125 through 4,000 Hz. The tranmission loss is then computed from the relationship $$TL = NR + 10 \log S - 10 \log A$$ (43) where TL is the transmission loss in decibels, S is the total area of the sound transmitting surface of the test specimen, A is the total absorption in the receiving room (expressed in units consistent with S), and $$NR = L_{p_{\mu}} - L_{p_{\mu}} \tag{44}$$ is the noise reduction between the two reverberation rooms. The sound pressure level in the source room is L_{P_a} , and L_{P_r} is the sound pressure level in the receiving room. Note that the absorption, A, in the receiving room is measured in the same manner as absorption measurements described in Subsection I-3.1.1. # I-3.3.2—Dependence of Transmission Loss on Frequency Since once again there is a situation where the acoustical properties of an item are frequency dependent and there are 16 numbers to describe these properties it is desirable to reduce this amount of data to a single number. In the case of transmission loss properties this single-number rating is called Sound Transmission Class (STC). The STC is determined by comparing the set of transmission losses at all 16 frequencies to a set of standard contours as described in ASTM Standard E413-70T, "Tentative Classification for Determination of Sound Transmission Class". Briefly stated, the TL curve must fit the standard contour in such a way that in no event is the TL curve more than 8 dB below the STC contour at any frequency, and the sum of the deviations of the TL values which are below the contour shall not exceed 32 dB. The highest contour to which the specimen TL curve can satisfy these requirements is used as the STC curve. The value of this curve at 500 Hz is then chosen as the STC of the specimen. The specific values of transmission loss versus frequency as given by this classification are shown in Table I-5. The STC values of some common materials are shown in Table I-6. The values shown in Table I-6 are representative because the weights and densities of these materials vary and some of the items are porous even though they are heavy. In general these curves provide a good comparison between specimens, but due to the way deviations from the standard curve are handled poor comparisons can be made as shown in Figure I-14. The partition shown by the solid line has transmission loss values that are higher than those for the dashed curve except between about 600 to 2,000 Hz and yet has a STC 5 dB lower than for the dashed curve. This only points out that STC is a convenience and should not be used as the basis for selection of any particular item. #### I-3.3.3-Test Facility Requirements A few comments are in order at this point about the characteristics of the reverberation rooms used for testing partitions for transmission loss. One of these is that the rooms should be large enough to support a diffuse field in the lower frequencies. The size should be such that | | 97 / | 7 \ _3 | 3 > / | · \ | -0 ~ | |---------------------|---------------------------|------------------------------------|---------------------------------------|--------------------------|-------------| | 125 | 250 | 500 | ık | 2K | 41< | | 1321109876543210111 | 2229876543210987654321011 | 2222222210987654321109876543210111 | 3332222222222109876543211098765432100 | 333398765432109876543210 | 33210911111 | } = -- --} !... ţ 10 ### TABLE 1-5 — TRANSMISSION LOSS VERSUS FREQUENCY FOR A RANGE OF SOUND TRANSMISSION CLASS CONTOURS Note: A particular contour is identified by its TL value at 500 Hz. (From ASTM E413) | | | | | | | | | n AS'I | WI E | | | | | | | | |-------------------------|------|-----|-----|-----|-----|-----------|-------------|--------|------|-------|-------|-----------|-------|-------|-------|-------| | Hz | 125 | 160 | 200 | 250 | 315 | 400 | 500 | 630 | 800 | 1,000 | 1,250 | 1,600 | 2,000 | 2,500 | 3,150 | 4,000 | | | 44 | 47 | 50 | 53 | 56 | 59 | 60 | 61 | 62 | 63 | 64 | 64
 64 | 64 | 64 | 64 | | | 43 | 46 | 49 | 52 | 55 | 58 | 59 | 60 | 61 | 62 | 63 | 63 | 63 | 63 | 63 | 63 | | | 42 | 45 | 48 | 51 | 54 | 57 | 58 | 59 | 60 | 61 | 62 | 62 | 62 | 62 | 62 | 62 | | | 41 | 44 | 47 | 50 | 53 | 56 | 57 . | 58 | 59 | 60 | 61 | 61 | 61 | 61 | 61 | 61 | | | 40 | 43 | 46 | 49 | 52 | 55 | 56 | 57 | 58 | 59 | 60 | 60 | 60 | 60 | 60 | 60 | | | 39 | 42 | 45 | 48 | 51 | 54 | 55 | 56 | 57 | 58 | 59 | 59 | 59 | 59 | 59 | 59 | | | 38 | 41 | 44 | 47 | 50 | 53 | 54 | 55 | 56 | 57 | 58 | 58 | 58 | 58 | 58 | 58 | | | 37 | 40 | 43 | 46 | 49 | 52 | 53 | 54 | 55 | 56 | 57 | 57 | 57 | 57 | 57 | 57 | | | 36 | 39 | 42 | 45 | 48 | 51 | 52 | 53 | 54 | 55 | 56 | 56 | 56 | 56 | 56 | 56 | | | 35 | 38 | 41 | 44 | 47 | 50 | 51 | 52 | 53 | 54 | 55 | 55 | 55 | 55 | 55 | 55 | | | 34 | 37 | 40 | 43 | 46 | 49 | 50 | 51 | 52 | 53 | 54 | 54 | 54 | 54 | 54 | 54 | | 8 | 33 | 36 | 39 | 42 | 45 | 48 | 49 | 50 | 51 | 52 | 53 | 53 | 53 | 53 | 53 | 53 | | 3 | 32 | 35 | 38 | 41 | 44 | 47 | 48 | 49 | 50 | 51 | 52 | 52 | 52 | 52 | 52 | 52 | | ង | 31 | 34 | 37 | 40 | 43 | 46 | 47 | 48 | 49 | 50 | 51 | 51 | 51 | 51 | 51 | 51 | | 55 | 30 | 33 | 36 | 39 | 42 | 45 | 46 | 47 | 48 | 49 | 50 | 50 | 50 | 50 | 50 | 50 | | Sound Transmission Loss | 29 | 32 | 35 | 38 | 41 | 44 | 45 | 46 | 47 | 48 | 49 | 49 | 49 | 49 | 49 | 49 | | 퉏 | 28 | 31 | 34 | 37 | 40 | 43 | 44 | 45 | 46 | 47 | 48 | 48 | 48 | 48 | 48 | 48 | | F | 27 | 30 | 33 | 36 | 39 | 42 | 43 | 44 | 45 | 46 | 47 | 47 | 47 | 47 | 47 | 47 | | ä | 26 | 29 | 32 | 35 | 38 | 41 | 42 | 43 | 44 | 45 | 46 | 46 | 46 | 46 | 46 | 46 | | ş | 25 | 28 | 31 | 34 | 37 | 40 | 41 | 42 | 43 | 44 | 45 | 45 | 45 | 45 | 45 | 45 | | - | . 24 | 27 | 30 | 33 | 36 | 39 | 40 . | 41 | 42 | 43 | 44 | 44 | 44 | 44 | 44 | 44 | | | 23 | | 29 | 32 | 35 | 38 | 39 | 40 | 41 | 42 | 43 | 43 | 43 | 43 | 43 | 43 | | | 22 | 25 | 28 | 31 | 34 | 37 | 38 | 39 | 40 | 41 | 42 | 42 | 42 | 42 | 42 | 42 | | | 21 | 24 | 27 | 30 | 33 | 36 | 37 | 38 | 39 | 40 | 41 | 41 | 41 | 41 | 41 | 41 | | | 20 | 23 | 26 | 29 | 32 | 35 | 36 | 37 | 38 | 39 | 40 | 40 | 40 | 40 | 40 | 40 | | | 19 | 22 | 25 | 28 | 31 | 34 | 35 | 36 | 37 | 38 | 39 | 39 | 39 | 39 | 39 | 39 | | | 18 | 21 | 24 | 27 | 30 | 33 | 34 | 35 | 36 | 37 | 38 | 38 | 38 | 38 | 38 | 38 | | | 17 | 20 | 23 | 26 | 29 | 32 | 33 | 34 | 35 | 36 | 37 | 37 | 37 | 37 | 37 | 37 | | | 16 | 19 | 22 | 25 | 28 | 31 | 32 | 33 | 34 | 35 | 36 | 36 | 36 | 36 | 36 | 36 | | | 15 | 18 | 21 | 24 | 27 | 30 | 31 | 32 | 33 | . 34 | 35 | 35 | 35 | 35 | 35 | 35 | | | 14 | 17 | 20 | 23 | 26 | 29 | 30 | 31 | 32 | 33 | 34 | 34 | 34 | 34 | 34 | 34 | $V = 4\lambda^a \tag{45}$ where V is the room volume and λ is the wavelength of the lowest frequency of interest in units consistent with V. For example if a room has a volume of 6,300 ft³ it should not be used for measurements below about 97 Hz. A second requirement is that the sound field in the two reverberation rooms be sufficiently diffuse so that measurements can be made such as to ensure that the mean value of the noise reduction can be known to within 1 dB with 90-percent confidence. To accomplish this, laboratories use special, very hard rooms, with both fixed and rotating panels (vanes) to increase the diffusences of the sound field. A further requirement on the laboratory is the reduction of flanking path transmission to the point where it no longer interferes with the measurements. Flanking transmission occurs #### TABLE I-6 — SOUND TRANSMISSION CLASS OF SOME COMMON BUILDING MATERIALS | MATERIAL | STC | |---|------| | 24-gauge steel | . 26 | | 1/4-inch plate glass | . 28 | | 1/4-inch plate glass | . 30 | | 3/16-inch steel plate | . 35 | | 4-inch two-cell concrete block | . 41 | | 4-inch two-cell concrete block (filled with sand) | . 43 | | on center | . 43 | | 8-inch lightweight hollow concrete block | . 46 | | 8-inch hollow core concrete block | . 50 | | 4-inch brick wall with 1/2-inch plaster | . 50 | | 8-inch brick wall | . 52 | | 6-inch dense concrete | . 54 | | 12-inch brick wall | . 59 | FIGURE I-14.—Determination of Sound Transmission Class. when the sound travels from the source room to the receiving room by some route other than through the test specimen. Some of these paths are through cracks or gaps around the specimen, into the floor or wall in the source room, through the connecting floor and wall, or any other route the sound may take as shown in Figure I-15. FIGURE 1-15.—Possible Routes for Sound Travel from One Room to Another. For paths 1 through 4 the sound travels some portion of the path in solid material. Path 5 represents transmission through any crack, gap, or other opening in the wall. Finally, the ASTM standard for measuring transmission loss recommends that the minimum dimensions of the test specimen be at least 8 ft with the exception that doors, windows, and other smaller items should be their normal size. This is because the full effects of stiffness, resonances, etc., will be different if the specimen is different from what will be constructed in actual use. # I-3.4—IMPACT SOUND TRANSMISSION RE ASTM E492-73T (RM14-4) NOTE: The term "Impact Sound" as used here should not be confused with hazardous "Impact Noise" as defined by OSHA regulations. The tests described below are used to measure transmission of footsteps and similar sounds and have little relevance to control of industrial impact noise. The described tests for sound transmission are useful for many objects such as walls, floors, doors, windows, specialized panels, or any other item that may be used to block a sound path. In the case of floors, however, not all noise in the space below the floor is due to airborne sound transmission through the floor. Some of the noise below the floor is due to sliding objects across the floor, footsteps, dropping objects, etc. These occurrences and the sounds they produce in the space below are covered by testing the floor for impact sound transmission. The recommended method for this test procedure has been published by ASTM as RM14-4, "Proposed Method of Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine". This test for impact sound transmission utilizes a standard impact source which is known as a "tapping machine". With this machine making fixed amplitude impacts on the floor the sound pressure level produced in the room below is measured in 16 contiguous one-third octave bands from 100 Hz through 3,150 Hz. The sound pressure levels thus measured are affected by the absorption in the receiving room so these values are normalized to a reference room which has an absorption of 108 sabins or 10 metric sabins. This normalization is obtained through the relationship $$L_N = L_p - 10 \log (A_o/A_a)$$ dB re 2 x 10⁻⁵ N/m² (46) where - L_{μ} is the mean square measured sound pressure level, - A, is the measured absorption in the receiving room measured as described for absorption tests, and - A₀ is the reference absorption in the same units as A₂. There is still much debate over the use of the tapping machine as an impact source. Many feel that this excitation is not representative of footsteps, sliding furniture, etc. Just as with absorption and transmission data the impact data make comparisons between products difficult. There is another one-number rating called the Impact Insulation Class (IIC), which is obtained by comparing the normalized sound pressure levels at each of the 16 one-third octave bands to a set of standard contours as in the case of the STC for transmission loss. These contours however, have a different shape, and the normalized sound pressure level curve in this case must fit the standard contour in such a way that in no event is the L_N curve more than 8 dB above the IIC contour at any frequency, and the sum of the deviations of the L_x values which are above the IIC contour shall not exceed 32 dB. The lowest contour to which the specimen L_{N} curve can satisfy these requirements is used as the IIC curve, and again, the value of this curve at 500 Hz is then chosen as the number to use as the IIC of the specimen. A few of the standard contours are shown in Figure I-16. FIGURE I-16.—Impact Insulation Class Contours. Contour 1, IIC=55; Contour 2, IIC=52; Contour 3, IIC=48. An older single-number rating for impact insulation which was used by the Federal Housing Administration is known as the Impact Noise Rating (INR). This rating is based on the same contours, but a standard floor was given an INR=0. Thus, the first contour above this had a rating of -1 (higher sound pressure level=poorer floor) and the first contour below had a rating of +1. Consequently the INR can take on positive and negative values. This standard floor compares to the contour which has a value of 51 at 500 Hz; thus, this standard floor has an IIC of 51 and any value of IIC can be obtained from the INR by adding 51. That is, IIC = INR + 51. (47) ## I-3.5---INSERTION LOSS The tests described above are designed for sound barrier items such as walls, floors, doors, windows, etc., but do not apply to such items as ducts, mufflers, pipe lagging, etc. The measurement procedure for these is simply to measure the noise radiating from some pipe or duct work, and then apply (insert) the specimen and measure the sound pressure levels again. The difference in sound pressure levels is due to the insertion of the device under test and is called the "insertion loss". This is a before-and-after type measurement as opposed to the simultaneous measurement on two sides of a partition for noise reduction and transmission loss. # I-3.6-NOISE REDUCTION A particular measurement where the difference in two simultaneous sound pressure level measurements is obtained, is referred to as Noise Reduction (NR). For example, the sound pressure level inside an enclosure, L_1 , and the sound pressure level outside the enclosure, L_2 ,
may be measured simultaneously. The difference in these two levels is the NR value. If the noise source is inside the enclosure the NR is given by L_1-L_2 , or NR is L_2-L_1 if the noise source is outside the enclosure. The NR can differ significantly from the transmission loss for a specimen since the absorption in the two regions where measurements are made is not included in the calculation. Whenever this value is presented in the data tables it is pointed out so the user will be aware of the difference. The measurement of NR is not only used for enclosures, but for any case where the difference in two sound pressure levels is determined. One should also be aware that the NR of a specimen bears no relation to the NRC of an absorber material. The NR relates to the ability of a specimen to block sound whereas the NRC is a sound absorption property. ### I-4--USE OF NOISE CONTROL PRODUCTS The practical approach to noise control takes into account the noise sources, paths, and receivers. The following items must be determined successively to accomplish noise control: - Noise criteria for each occupied space. - (2) Sound power level of the noise produced by each source. - (3) Noise levels at typical employee positions in that space. - (4) Attenuation of the noise by walls, ducts, etc., between each source and the space in question. - (5) Required additional attenuation (item 3 minus item 1). - (6) Identify major noise sources and select noise control treatment. - (7) Any special mountings of the devices necessary to control flanking noise. - (8) Any vibrating elements whose vibrations may be transmitted to some other member causing it to become a noise radiator. - (1) Criteria—The first of these items, criteria for the space, is not part of the scope of this compendium. In a factory the criteria are determined by some federal agency such as the Occupational Safety and Health Administration (OSHA). In an office environment or concert hall the factors determining acoustic criteria are more numerous and complex than just a requirement for reduction of the sound pressure level to conserve hearing. (2) Sound Power-The second item is more straightforward. If at all possible one should obtain from the manufacturer of a noisy device the sound power levels that have been measured in the laboratory. Fortunately, more and more manufacturers are taking such measurements and data are becoming available. Barring this course one must make his own measurements of sound power, which is very difficult if not completely impossible, on a large piece of machinery in a factory environment. One usually is forced to make sound pressure level measurements at many locations around the noise source and attempt to guess at the sound power. The effects of other machinery, the room itself, background noises, etc., preclude a very accurate determination. The procedure for determining sound power is basically simple. Make enough measurements on a hemisphere around the source in a quiet anechoic space. If one is careful to choose his points on this hemisphere such that each measurement represents an equal area of the surface, then the sound power is computed as follows. (Note: the measurements and the following calculations are made in each of the 16 contiguous one-third octave bands.) The average sound pressure level of the measurements made is determined by arithmetic averaging procedures if the variations do not exceed about 6 dB. If the variations exceed 6 dB, then the decibels must be converted to pressure squared (p^2) as previously discussed. These are then averaged and the logarithm is taken of the average p^2 . The sound power level in decibels is then given by equation (27) $$L_w = L_p + 10 \log S$$ dB re 10^{-12} watt (48) where S is the area of the hemisphere in meters, which is $2\pi r^2$ with r in meters. It is important to realize that this procedure only produces accurate results if the measurements are made in a free field environment. When performed in a factory the results are far from accurate but provide an estimate of the sound power. Since the sound source is radiating into a hemisphere, only the sound that is radiated downward toward the solid floor is reflected back into the measuring hemisphere and the measured sound pressures are twice as high when compared to measurements made in a complete free field. The sound power thus determined is twice the true sound power. This can be accounted for by subtracting 3 dB from the final result obtained. Now consider another aspect of the noise source; does the sound radiate equally in all directions? If not, then one must be concerned with the directionality of the noise. Directionality of a sound source is defined as the directivity factor Q_{θ} which is the ratio of the mean square sound pressure $(N/m^2)^2$ at an angle θ and distance r from an actual sound source radiating W watts of acoustic power, to the mean square sound pressure that would be measured at the same distance from a source which radiates W watts uniformly in all directions. Expressed as an equation Q_{θ} is given by $$Q_{\theta} = p^{2}_{\theta}/p^{2}_{s} = \operatorname{antilog} \frac{L_{p_{\theta}} - L_{p_{s}}}{10}$$ (49) $L_{r\theta}$ =the sound pressure level measured at distance r and angle θ for the source in question, and L_{p_n} = sound pressure level that would exist at distance r for a source with the same acoustic power W radiating into anechoic space. Note that in practice one uses $\overline{L_{P\theta}}$ (the average value of the measured sound pressure levels) to determine W. Or conversely, which is equivalent, W_{θ} is determined for each $L_{P\theta}$ then \overline{W} is obtained. This is the value to use for obtaining $L_{P_{\theta}}$ and we see that $L_{P_{\theta}}$ is equal to $\overline{L_{P\theta}}$. In practice $L_{P_{\theta}}$ can be replaced by $\overline{L_{P\theta}}$. The sound power equation shown earlier should be modified to include this possibility. Thus for $$L_{P\theta}$$ = $L_x - 10 \log S + 10 \log Q_{\theta}$ (50) where S is in meters². EXAMPLE: What is the sound pressure level in the 1,000 Hz band at 10 meters in the direction of position 1 for a noise source when the free hemispherical field sound pressure levels measured in the 1,000 Hz band at 3 meters are | Position | L_p | Position | L_p | Position | L_p | |----------|-------|----------|-------|----------|-------| | 1 | 100 | 5 | 89 | 9 | 101 | | 2 | 94 | 6 | 90 | 10 | 100 | | 3 | 97 | 7 | 93 | 11 | 97 | | 4 | 93 | 8 | 96 | 12 | 95 | SOLUTION: Since the spread is greater than 6 dB we must obtain $\overline{L_{r\theta}}$ by averaging mean square pressures. Thus, $$\begin{array}{lllll} p^2, = p^2, & \text{antilog } L_{p_1}/10 = 2 \times 10^6 & (N/\text{m}^2)^2 \\ p^2, = & = & 0.5024 \times 10^5 \\ p^2, = & = & 1.0024 \times 10^5 \\ p^2, = & = & 0.3991 \times 10^5 \\ p^2, = & = & 0.1589 \times 10^5 \\ p^2, = & = & 0.2000 \times 10^6 \\ p^2, = & = & 0.3991 \times 10^5 \\ p^2, = & = & 0.7962 \times 10^5 \\ p^2, = & = & 2.5179 \times 10^5 \\ p^2_{10} = & = & 2.0000 \times 10^4 \\ p^2_{11} = & = & 1.0024 \times 10^5 \\ p^2_{12} = & = & 0.6325 \times 10^5 \end{array}$$ Total = 11.6109×10^{4} Average = 0.9676×10^{5} $$\overline{L_{p_{\theta}}} = 10 \log \frac{p_{\text{avg}}^2}{p_{\text{o}}^2} = 10 \log \frac{0.9676 \times 10^5}{2 \times 10^{-5}}$$ $$\overline{L_{pg}} = 96.85 \text{ dB re } 2 \text{ x } 10^{-4} \text{ N/m}^2$$ The sound power level L_w is now determined from equation (48) $$L_w = \overline{L_{pg}} + 10 \log S - 3 \text{ dB}$$ = 96.85 + 10 log $4\pi (3)^2 - 3 \text{ dB}$ = 117.4 - 3 dB = 114.4 dB re 10^{-12} watt. Now determine Q_{θ} for position 1 from equation (49) $$Q_{\theta} = \text{antilog} \frac{L_{p_i} - \overline{L_{p_{\theta}}}}{10} = \text{antilog} \frac{100 - 96.85}{10} = 2.065$$ The sound pressure level at 10 meters in the direction of position 1 can be found using equation (50) $$\begin{split} L_{p_1} &= L_w - 10 \log S + 10 \log Q_{\theta} \\ &= 117.4 - 10 \log 2\pi (10)^2 + 10 \log 2.065 \\ &= 117.4 - 28.0 + 3.1 \\ &= 92.5 \text{ dB re } 2 \times 10^{-8} \ N/\text{m}^2. \end{split}$$ To compare the results of averaging mean pressures with averaging sound pressure levels in this case \overline{p}^{i} gives a value for \overline{L}_{p} of 96.85 dB. By simply averaging the decibel values we would have obtained $\overline{L_n} = 95.4$ which is about 1.5 dB low. This example points out the difference in the values obtained between arithmetic averaging of the decibel levels and averaging of the true values. Whenever a set of decibel levels of any sort must be averaged a simple arithmetic averaging process will yield a result that is lower than the true average of the measured value. This holds true for decibel sound power, decibel sound intensity, decibel sound pressure, or any other decibel numbers. - (3) Noise Levels The sound pressure levels must be measured at all locations where it is desirable to reduce the noise. These measurements must include an A-weighted sound pressure level, dBA, and they should also include measurements in each of the octave bands. For engineering analysis of machine noise sources a narrow band analysis of the noise can also be of value if the presence of pure tones is observed. This frequency analysis is an aid in determining the source of the noise as well as being necessary to be able to make a proper selection of the noise control item. The best choice of noise control item is made by obtaining the closest fit possible between the noise spectrum and the noise reduction spectrum of the noise control device. - (4) and (5) Noise Attenuation—Having measured the sound pressure levels and knowing the criteria that must be met, the noise level now must be reduced by the required amount. The fourth and fifth items can best be handled at the same time. When attempting to reduce the noise
levels one is faced with the fact that the presently existing attenuation is not sufficient and more must be done. If the attenuation is sufficient this will be evident when the noise levels are measured at the desired locations. Absorption data are given in terms of the absorption coefficient versus frequency in one-third octave bands; also, products are rated with an NRC which is an average value of the absorption coefficients for the 250, 500, 1,000, and 2,000 Hz octave bands. Although the absorption coefficient of any given material varies with the angle of incidence of the sound wave, the usual technique for measuring absorption coefficients is to use a reverberant field which results in a statistical average over all angles of incidence. The absorption of sound by a surface is given by the product of the absorption coefficient and the area. The unit of absorption is the sabin where the absorption of 1 ft² of perfectly absorbing surface is 1 sabin. The average absorption of a room or enclosure is determined by the sum of absorptions of each area as $$\overline{\alpha} = \frac{\sum_{i}^{\Sigma} \alpha_{i} S_{i}}{\sum_{i}^{\Sigma} S_{i}}$$ (51) where α_i is the random incidence absorption coefficient of the i-th surface and S_i is the area of that surface in square feet. The total absorption in the room is given by the numerator or $$A = \sum_{i} \alpha_{i} S_{i} = S_{\alpha}^{-} \tag{52}$$ where S is the total surface area. The reverberation time of the room (as discussed in Section I-3.1.1) is then calculated using the Sabine formula $$T = \frac{0.049 \ V}{A} = \frac{0.049 \ V}{S_{\alpha}}$$ (53) where V is the volume of the room, \overline{a} is the average absorption coefficient, and S is the total area of the room in square feet. Another method which can be used to determine the average absorption of a room can be derived from the modified reverberation time equation developed by Fitzroy (JASA, 1959) $$T' = \frac{0.049 \ V}{S} \left(\frac{x}{S \ \overline{\alpha}_s} + \frac{y}{S \ \overline{\alpha}_p} + \frac{z}{S \ \overline{\alpha}_s} \right)$$ (54) where x = total floor-ceiling areas with averageabsorption coefficient $\overline{\alpha}_{r}$, > y = total side wall areas with average absorption coefficient α_y , and z = total end wall areas with average absorption coefficient $\overline{\alpha}_2$. Thus, $$\overline{\alpha} = S / \left(\frac{x}{\alpha_x} + \frac{y}{\alpha_y} + \frac{z}{\alpha_z} \right). \tag{55}$$ As illustrated in Table I-7, the calculated reverberation times using equation (54) more closely approximate the true reverberation times, *Tactual*, especially in cases where room absorption is not evenly distributed. Thus, effective average room absorption coefficients are also more closely approximated using Equation (55). A number which is sometimes convenient to use is the room constant, R, defined as $$R = \frac{S_{\alpha_e}^{-}}{(1 - \alpha_e)}$$ (56a) where $\overline{\alpha_e}$ is the geometric mean energy absorption coefficient. To define R in terms of the random incidence or Sabine absorption coefficient, the relationship $$\overline{\alpha}_c = (1 - e^{-\overline{\alpha}})$$ as presented by Young (JASA, 1959) can be used; thus, $$R = \frac{S(1 - e^{-\overline{\alpha}})}{e^{-\overline{\alpha}}} = S(e^{-\overline{\alpha}} - 1)$$ (56b) Frequently it is impractical or even impossible to determine the room constant by directly calculating $\overline{\alpha}$. In this case the room constant can be determined by first measuring the reverberation time of the room. The average absorption coefficient can then be derived from equation (53) such that when $$T = \frac{0.049 \text{ V}}{S \alpha},$$ $$\bar{\alpha} = \frac{0.049 \text{ V}}{T S}$$ and the room constant, thus, is $$R = S(e^{\frac{0.049V}{TS}} - 1)$$ (56c) | Č | |------------------| | Ž | | REGUEN | | RE | | - | | EST] | | E | | Hz | | VIA FOR 500 Hz T | | Ħ | | <u>F</u> | | Ţ | | DATA | | B | | TIME | | 7. | | 8 | | ERBERATIO | | E | | E | | EV | | 쒸 | | 4 | | ∺
3 | | BE | | IA | | - ' | | ROOM 1 | ROOM DIMENSIONS,
ft | IONS, | SUF | SURFACE AREAS,
ft: | EAS, | ABS | ABSORPTION = S_{α}^{-} , sabins | =S_a, | ¥ 8 | ABSORPTION
COEFFICIENTS,
sabin/ft² | NO
TS, | REVI | REVERBERATION
TIMES,
sec | NOIT | |--------|------------------------|--------|-----------------------|-----------------------|-------|-----|--|-------|------|--|-----------|------|--------------------------------|--------| | Height | Height Length | i | Width $x=2HW$ $y=2LW$ | y=2LW | z=2HL | Å, | A, | ď | 1 8 | 1 % | 18 | T | 7 | Tactua | | 12 | 30 | 36 | 096 | 2,284 | 720 | 29 | 890 | 22 | 0.03 | 0.39 | 0.03 | 0.63 | 2.62 | 2.55 | | 12 | 151/2 | 17 | 432 | 512 | 304 | 12 | 211 | 6 | .03 | .41 | .03 | .59 | 2.47 | 2.47 | | 12 | 6 | 192 | 4,605 | 3,456 | 216 | 335 | 1,175 | 9 | .07 | .34 | .03 | .61 | 1.13 | 1.24 | | 141/2 | 55 | 57 | 1,936 | 6,270 | 1,540 | 265 | 2,532 | 46 | .14 | .40 | .03 | .64 | 1.73 | 1.70 | | 12 | 30 | 315/12 | 756 | 1,890 | 720 | 34 | 485 | 133 | .05 | .26 | .19 | 77. | 1.31 | 1.28 | | 20 | 54 | 81 | 3,240 | 8,748 | 2,160 | 657 | 1,291 | 617 | .20 | .15 | .29 | 1.51 | 1.62 | 1.57 | The effect of the room absorption and distance from the noise source on the sound pressure level can be seen in Figure I-17 where the relative sound pressure level in decibels is plotted versus distance from a noise source of sound power level L_{ν} for several values of the room constant. If the room constant is near zero (perfectly reflecting surfaces) the sound pressure level does not differ anywhere in the room and an ideal reverberation field exists. On the other hand as the room constant becomes very large the sound pressure field approaches that of a free field. This information can be very important when considering sound treatment for a room. In many cases, the operator of a piece of machinery is probably affected more by the direct field of the noise source rather than the reverberant field. Consequently, absorption treatment on the walls and ceiling will not reduce the noise of this machine at the operator's position. It can be seen in Figure I-17 that the sound pressure level can never be below the straight line corresponding to the free field 1/r2 decrease. Employees a little further from the machine will probably be in a region that can be called a semireverberant field, i.e., where the sound pressure level is made up of some combination of the direct and reflected sound. Figure I-17 can be used as a quick guide to determine if sound absorption treatment reduces the noise level at a given location. Suppose it is desired to reduce the sound pressure level at a particular operator's position which is 8 m from the sound source with a sound power level of L_w . If the room constant is determined to be about 1,000, any absorbent material on the walls will have a negligible effect on the sound pressure level at this position. If, however, the room constant is significantly below 1,000, an absorption treatment of the surfaces of the room (e.g. R = R' = 1.000 after treatment) can have an appreciable effect which would be equal to $[(L_p-L_w)_{R<1,000}]-[(L_p-L_w)_{R'=1,000}].$ Thus, in practice, one must first determine when absorption treatment will be useful. It is important to look at the equations upon which Figure I-17 is based. In a free field the sound pressure (p_F) obeys the inverse square law and by Equation (4) FIGURE I-17.—Relative Sound Pressure Level versus Distance from the Source for Semireverberant Fields. r=distance from acoustic center; R=room constant. $$I = \frac{W}{4\pi r^2} = \frac{p^2_{rms}}{\rho c}$$ or $$p^{z}_{F} = \frac{W\rho c}{4\pi r^{z}}.$$ (57) Also one must describe the sound field when there are walls and objects which cause reflections and the sound field has a reverberant character. The reverberant field sound pressure (p_R) depends on the total absorption, and it can be shown that $$p^{z}_{B} = \frac{4W\rho c (1 - \tilde{\alpha}_{e})}{S \, \tilde{\alpha}_{e}} \qquad (58a)$$ where $\bar{\alpha}_e$ is the geometric mean energy absorption coefficient, and by equation (56), $$R = \frac{S\overline{\alpha}_{\alpha}}{1 - \overline{\alpha}_{\alpha}} = S(e^{\overline{\alpha}} - 1)$$ where R is the room constant and $\bar{\alpha}$ is the random incidence (Sabine) absorption coefficient, thus $$p^2_R = \frac{4W\rho c}{R} \tag{58b}$$ The total squared sound pressure is just the sum of the component pressures squared: $$p^{2}_{\text{tot}} = p^{2}_{F} + p^{2}_{H} = \frac{W\rho c}{4\pi r^{2}} + \frac{4W\rho c}{S\alpha} \frac{(1-\alpha)}{\alpha}$$ (59) $$p^2 = W_{\rho C} \left(\frac{1}{4\pi r^2} + \frac{4}{R} \right)$$ (60) in terms of sound pressure level for a free field, and by equations (25) and (26) $$L_p = L_w + 10 \log \left(\frac{1}{4\pi r^2} + \frac{4}{R} \right)$$ (61a) where r^2 and R are in meters. For a free field above a reflecting plane this relationship becomes $$L_p = L_w + 10 \log \left(\frac{1}{2\pi r^2} + \frac{4}{R} \right)$$ (61b) The more general form of this expression includes the directivity Q such that $$L_p = L_w + 10 \log \left(\frac{Q}{4\pi r^2} + \frac{4}{R} \right)$$ (61c) Note that equations (61a, b, and c) are identical except for the first term in the argument of the logarithm. Equations 61a and 61b can be obtained readily from 61c if one notes that for a nondirectional source in a free field Q=1 and for the same nondirectional source in a free field over a reflecting plane Q=2. (See Beranek, "Acoustics," pp 311-322, 1957, for the development and discussion of equation (61).) Clearly the larger R becomes, the lower the sound pressure level. To determine the decrease in sound pressure level when absorption is added to a room, which increases the room constant R, one could calculate the value of L_p from equation 61 for R before treatment and
again for R', the room constant after treatment, or by the equivalent relation Reduction in dB = $$(L_p - L_w) - (L'_p - L_w)$$ (62) $$L_p - L'_p = 10 \log \left[(\frac{Q}{S} + \frac{4}{R}) / (\frac{Q}{S} + \frac{4}{R'}) \right]$$ where L'_p is the sound pressure level after acoustic treatment. The use of this equation is illustrated by the following example. EXAMPLE: The dimensions of a room are 50 ft (length), 25 ft (width), and 12 ft (height). The absorption in the room is shown below using absorption coefficients provided by AIMA in Table I-8. | Room component Sp. ft ² | αρ
@ 500 Hz | A_{i} , subins | |--|----------------|----------------------| | Floor, linoleum 1,150 | 0,03 | 34.5 | | sented at dosks 100 | .55 | 55.0 | | Ceiling, plaster 1,250 | .06 | 75.0 | | Side walls, gypsum 1,000
board, windows 100 | ,05
,10 | <i>5</i> 5,0
10.0 | | End walls, gypsum | .05
.18 | 22,5
27.0 | | Floor-ceiling,
using eq (51) 2,500 | .066 | 164.5 | | Side walls 1,200 | .054 | 65.0 | | End walls | .082 | 49.5 | Given these initial room conditions: - (a) Can absorption treatment be effective in reducing the 500 Hz octave band sound level of a newly installed machine at a position 8 meters from an observer? - (b) How much reduction of the sound level from this source will be achieved using absorption treatment? SOLUTION: Since the absorption in the room is fairly evenly distributed, the average absorption can be calculated using equation (51) where $$\bar{\alpha} = \frac{\sum S_i \alpha_i}{\sum S_i} = \frac{164.5 + 65 + 49.5}{4,300} = 0.065$$ or for comparison by equation (55) $$\overline{a} = \frac{S}{\frac{x}{a_s} + \frac{y}{a_u} + \frac{z}{a_z}} = \frac{\frac{4,300}{2,500} + \frac{1,200}{0.054} + \frac{600}{0.082}}{0.082} = 0.064$$ and, thus, the room constant $$R = 4,300 \times (e^{0.005} - 1)$$ = 4,300 x 0.067 = 289 ft² or $$R = 4,300 \text{ (x } 0.093 \text{ m}^2/\text{ft}^2\text{) x } 0.067$$ = $400 \times 0.067 = 27 \text{ m}^2$ Observing Figure I-17, a room constant corresponding to 27 m^2 is well above the free field curve at r=8 meters. Absorption can thus be effective for this position. Note, however, that for a given room constant, absorption treatment will have less of an effect as the distance from the machine, or r, decreases. Also, the use of absorber materials can never reduce the sound to a level below that of the free field radiation. At best, a sound absorber can reduce the reflections to zero which is the same as removing the surface entirely (i.e., no surface=no reflection=perfect absorber). From the data tables of Section VI, an acoustical wall treatment with an absorption coefficient of 0.95 at 500 Hz and a type of mineral fiber ceiling panels with an absorption coefficient of 0.90 at 500 Hz are selected for absorption treatment. The following room components are used to calculate the effects of absorption treatment. TABLE I-8 — COEFFICIENTS OF GENERAL BUILDING MATERIALS AND FURNISHINGS Complete tables of coefficients of the various materials that normally constitute the interior finish of rooms may be found in the various books on architectural acoustics. The following short list will be useful in making simple calculations of the reverberation in rooms. | simple calculations of the reverneration in rooms. | | | | | | | |---|----------|------------|----------------|------------|------------|------------| | MATERIALS | | | COEFFIC | IENTS, I | Z | | | | 125 | 250 | 500 | 1,000 | 2,000 | 4,000 | | Brick, unglazed | 0.03 | 0.03 | 0.03 | 0.04 | 0.05 | 0.07 | | Brick, unglazed, painted | .01 | ,01 | .02 | .02 | .02 | .03 | | Carpet, heavy, on concrete | .02 | .06 | .14 | .37 | .60 | .65 | | Same, on 40 oz hairfelt or foam | | | | | | | | rubber | .08 | .24 | .57 | .69 | .71 | .73 | | Same, with impermeable latex | | | | | | | | backing on 40 oz hairfelt or | 00 | 0.5 | 90 | 0.4 | 40 | 00 | | foam rubber | | .27 | .39 | .34 | .48 | .63 | | Concrete Block, coarse | | .44
.05 | .31
.06 | ,29
,07 | .39
.09 | .25
.08 | | Fabrics: | ,10 | ,00 | ,00 | ,07 | .05 | .00 | | Light velour, 10 oz per sq yd, | | | | | | | | hung straight, in contact with wall | .03 | .04 | .11 | .17 | .24 | .35 | | Medium velour, 14 oz per sq yd, | .00 | .04 | • + + | • 4 1 | | ,00 | | draped to half area | .07 | .31 | .49 | .75 | .70 | .60 | | Heavy velour, 18 oz per sq yd, | | | 1.0 | | *15 | ,,,, | | draped to half area | .14 | .35 | .55 | .72 | .70 | .65 | | Floors: | | , | | 1,12 | ***- | | | Concrete or terrazzo | .01 | .01 | .015 | .02 | .02 | .02 | | Linoleum, asphalt, rubber or cork | | | | | | | | tile on concrete | .02 | .03 | .03 | .03 | .03 | .02 | | Wood | .15 | .11 | .10 | .07 | .06 | .07 | | Wood parquet in asphalt on concrete | .04 | .04 | .07 | .06 | .06 | .07 | | Glass: | | | | | | | | Large panes of heavy plate glass | .18 | .06 | .04 | .03 | .02 | .02 | | Ordinary window glass | ,35 | .25 | .18 | .12 | .07 | .04 | | Gypsum Board, ½" nailed to 2 x 4's | •• | | | | | | | 16" o.c. | .29 | .10 | .05 | .04 | .07 | .09 | | Marble or Glazed Tile | ,01 | .01 | .01 | .01 | .02 | .02 | | Openings: | | | 05 | 75 | | | | Stage, depending on furnishings | | | .25
.50 | | | | | Deep balcony, upholstered seats Grills, ventilating | | | .30 —
.15 — | 1.00 | | | | Plaster, gypsum or lime, smooth | | | .10 — | ,00 | | | | finish on tile or brick | .013 | .015 | .02 | .03 | .04 | .05 | | Plaster, gypsum or lime, rough finish | 1010 | .010 | .02 | .00 | .04 | ,00 | | on lath | .14 | .10 | .06 | .05 | .04 | .03 | | Same, with smooth finish | .14 | .10 | .06 | .04 | .04 | .03 | | Plywood Paneling, %" thick | .28 | .22 | .17 | .09 | .10 | .11 | | Water Surface, as in a swimming pool | .008 | .008 | .013 | .015 | .020 | .025 | | Air, Sabins per 1000 cubic feet @ 50% RH | **** | , | | .9 | 2.3 | 7.2 | | | CIP A MC | A A NID A | TIDIENO | 173 | | | | ABSORPTION OF sabins per square for | | | | | | | | | r of sec | tting area | or per uni | · | | | | Audience, seated in upholstered seats, | 0.00 | | | | | | | per sq ft of floor area | 0.60 | 0.74 | 0.88 | 0.96 | 0.93 | 0.85 | | Unoccupied cloth-covered upholstered | 40 | 00 | 00 | 0.0 | 00 | 70 | | seats, per sq ft of floor area | .49 | .66 | .80 | .88 | .82 | .70 | | Unoccupied leather-covered upholstered | 4.4 | E 4 | en. | go. | 50 | EO | | seats, per sq ft of floor area | .44 | .54 | .60 | .62 | .58 | .50 | | Wooden Pews, occupied, per sq ft of | .57 | .61 | .75 | .86 | .91 | .86 | | floor area | ,07 | ,OI | . (1) | ,00 | 121 | ,00 | | each, unoccupied | .15 | .19 | .22 | .39 | .38 | .30 | | <u> </u> | .10 | 110 | •== | 100 | ,00 | ,uv | | (Reprinted Courtesy of AIMA.) | | | | | | | | Room Component | S_i | a | A_{i} | |-------------------|-------|-------|---------| | Floor-ceiling: | | | | | No treatment | 2,500 | 0,066 | 164 | | W/treatment | | | | | (to ceiling only) | 2,500 | .486 | 1,215 | | Side walls: | | | | | No treatment | 1,200 | .054 | 65 | | W/treatment | 1,200 | .950 | 1,140 | | End walls: | | | | | No treatment | 600 | .082 | 49 | | W/treatment | 600 | .950 | 510 | The reduction in sound level for applications of the absorption materials are calculated using equation (62), with a directivity constant Q=2, Reduction in dB $$= 10 \log \left[\left(\frac{1}{2\pi r^2} + \frac{4}{R} \right) / \left(\frac{1}{2\pi r^2} + \frac{4}{R'} \right) \right]$$ where r=8 meters and the 'untreated' room constant $R=27~\mathrm{m}^2$. The results are presented in Table I-9 for the average absorption coefficient as calculated using equation (51) and in Table I-10 calculated using equation (55) which is more representative of the effective absorption. TABLE I-9. — AVERAGE ABSORPTION COEFFICIENT CALCULATED USING EQUATION (51). | | Absorption | Floor- | Side | End | Absorption Coefficient | | | |-----------|------------------------------------|---------|-------|--------------|------------------------|------------------------|------------------| | Condition | Treated
Components | Ceiling | Walls | Walls
α₂ | a.
overall | $R^{\prime},$ m 2 | Reduction,
dB | | 1 | Side and
End Walls | 0.066 | 0.950 | 0.950 | 0.436 | 219 | 8,6 | | 2 | Ceiling | .486 | .054 | .082 | .309 | 145 | 7.0 | | 3 | Ceiling and
End Walls | 486 | .054 | .950 | .430 | 215 | 8.5 | | 4 | Ceiling and
Side Walls | .486 | .950 | .082 | .559 | 300 | 9.8 | | 5 | Ceiling,
Side, and
End Walls | .486 | .950 | . 950 | .680 | 390 | 10.7 | # TABLE I-10. — AVERAGE ABSORPTION COEFFICIENT CALCULATED USING EQUATION (55). | | Absorption | Floor- | Side | End | Abac | rption Co | efficient | |-----------|------------------------------------|---------|-------|-------|---------|-----------|------------------| | Condition | Treated Components | Ceiling | Walls | Walls | overall | R',
m² | Reduction,
dB | | 1 | Side and
End Walls | 0.066 | 0.950 | 0.950 | 0.108 | 46 | 2.2 | | 2 | Ceiling . | .486 | .054 | .082 | .124 | 53 | 2,8 | | 3 | Ceiling and
End Walls | .486 | .054 | ,950 | .154 | 66 | 3,8 | | 4 | Ceiling and
Side Walls | .486 | .950 | .082 | ,313 | 147 | 7.1 | | 5 | Ceiling,
Side, and
End Walls | .486 | .950 | 950 | .611 | 337 | 10.2 | For room conditions 1, 2, and 3 it is evident that the absorption in the room is not evenly distributed. Therefore, an inflated estimate of the sound level reduction results if the average absorption coefficient does not take into account the component distribution of absorption. Thus, with these conditions, the significantly more accurate estimate of noise reduction is 2 to 4 dB, as calculated using equation (55). Room conditions 4 and 5 indicate sound level reductions of 7 to 10 dB where, especially for condition 5, the absorption treatment is more evenly distributed than for the other conditions, and most of the surface area of the room has a fairly high absorption coefficient. A note of caution
should be heeded here, however, because a reduction on the order of 7 to 10 dB is difficult to achieve in practice, with a reduction of 4 to 7 dB being more realistic. Also, it is usually advisable to perform the above calculations for each octave band, which is necessary for the determination of noise level reduction in dBA. - (6) Noise Control Devices—This item concerns the selection and use of noise reducing devices, and because this is the subject that occupies most of the latter portion of the compendium, it is only defined at this point. - (7) Mountings—When the desire is to keep noise from traveling, any possible path should not be overlooked. Normally one thinks of sound traveling through the air but this certainly is not the only medium that will support sound waves. In fact, sound travels very well in most solids, Therefore when one deals with flanking and transmission problems it must be remembered that the hard materials being used are very good conductors of sound. The aid in reducing sound transmitted through these objects is the mismatch of impedances at boundary surfaces such as from air to steel, or steel to wood. Just as with electrical power transmission, the greater the mismatch of impedances the more reflection of energy and loss in power transfer results. As in electronics, the optimum power is transferred when the impedances of the two items are equal. The same holds true for acoustics. Therefore, flanking paths can be greatly reduced by introducing materials in the path of the sound which have poorly matching impedance. For example, place pieces of rubber or cork between structural steel members, mount items on a material different from the main support, etc. The most commonly occurring flanking path is an actual opening in the partition. A direct leak such as this can completely destroy the effectiveness of any sound barrier. (8) Vibration—While the same principle of impedance mismatching also applies to vibration isolation and vibration damping, we are not dealing with the conduction of sound but with coupled vibrational forces. This topic was not included in the scope of this work. Anyone interested in this problem area may refer to the literature relating to vibration. # I-4.1—NOISE CONTROL BY ABSORPTION #### I-4,1.1—Ceilings The main purpose of acoustical ceilings is for the absorption of sound. In the earlier examples, it was shown how the absorption added to a room can reduce the sound pressure level in the reverberant sound field region of a room. There are many types of acoustical ceilings, ranging from the attractive tiles seen in homes and offices to the thicker sturdier panels that can be used in an industrial atmosphere. The range of absorption ability of modern acoustical ceilings extends from an NRC of about 0.30 to over 0.90. The ceiling used in the example had an NRC of 0.90. From a sampling of the tests performed at one acoustical testing laboratory the most common value for NRC is about 0.55 to 0.70 as can be seen in Figure I-18. This sampling includes ceilings made of wood fiber, glass fiber, and other mineral fibers. It also includes the full range of densities and thicknesses that are common to ceilings. This figure shows the relative number of ceiling materials whose NRC lies in the indicated range. Since a mean value is about NRC=0.60 one can say that typical noise reduction effects will be obtained with NRC =0.60 items, not with NRC=0.90 items. Note that ceilings are usually tested with the number 7 mounting (16-inch plenum behind material). The effect of this mounting is to increase the absorption in the lower frequency range over what would be obtained FIGURE I-18.—Relative Distribution of Absorption Qualities of Acoustical Ceiling Materials, if the material were mounted directly to the surface. What one can expect from ceilings for absorption is NRC=0.55 to 0.70. The typical shape of the curve of sound absorption coefficient versus frequency can be seen in Figure I-19. In this figure, three "typical" absorption coefficient versus frequency curves are shown. Note the increase in low frequency absorption, and reduction in high frequency absorption for the absorbing material covered with a perforated metal facing tested using mounting number 7. Note also that while the thicker material will usually have a better low frequency absorption the two shown here for mounting number 4 appear to contradict this. However, the thicker one does have an overall higher absorption level and this further points out that there is no such thing as "typical". These data once again reemphasize that the NRC should not be used as the basis for selecting any acoustical treatment. The full set of frequency data should be utilized and the chosen product matched to the noise spectrum in the space where it is to be used. One note of caution on ceilings should be heeded. Since acoustic absorption takes place when the sound penetrates into the pores or openings in the material, care should be taken when the ceiling is painted. If the paint is not applied properly, it can plug the openings so that sound cannot enter into the material. The result is that sound is reflected from the FIGURE I-19.—Typical Absorption Data for Acoustical Ceilings. surface, and the absorbent capability is completely destroyed. If it becomes necessary to paint an acoustical ceiling the manufacturer should be contacted for his recommended method which will preserve the acoustical qualities. If it is known before purchasing a ceiling that painting will be required in the future, the "paintability" of the ceiling should be considered, as some ceiling materials are better able to withstand painting than others. Again, check with the manufacturer for his recommendations. ### I-4.1.2-Walls Normally walls are considered to be sound barriers, but as seen in the example, the applications of absorbent materials to the walls of a room aid in the reduction of noise levels in a noisy space. #### I-4.1.3-Ducts One subject area which has not been mentioned thus far is the sound path through ductwork which often connects spaces which would otherwise be sound isolated from each other. In particular, the noise of a fan or blower can travel great distances along the ductwork and be heard in many areas of a building. Figure I-20 illustrates interconnection through ducts. The fan in room A produces vibrations which enter room B through the floor and it produces noise which may enter room B through the air diffuser or by vibration FIGURE I-20.-Interconnections between Noise Sources, Paths, and Receivers, FIGURE I-21.—Uses of Flexible Couplings in Ducts. - (a) Canvas or flexible molded rubber and fabric sleeves serve as vibration breaks between fan and connecting ductwork, - (b) Canvas or molded rubber connectors between duct-work and high-attenuation devices such as aircoustat package sound attenuators prevent short-circuiting of noise through duct walls. Vibration-isolating hangers should be used where objectionable amounts of noise may short-circuit through supports and building structure. of the duct walls. The noise may travel to all other rooms through the duct. The men talk- ing in room C produce noise in room B. Noise from the shop D may travel through the ducts to rooms B, C, and E. Figure I-21 shows the use of flexible couplings between ducts and blower and between ducts and a noise attenuation package, as well as the use of vibration-isolating hangers. Figure I-22 shows the noise sources in a simple duct system with the spectra of the sources and the attenuation of a lined duct, an attenuation package, a bend, and the end reflection losses. A very good description of the propagation of sound as related to ductwork can be found in the "ASHRAE Guide and Data Book Systems, 1970". The following discussion presents some of the pertinent information taken from Chapter 33 of the book, Although the attenuation of sound in a lined duct is very complicated, theoretically the following empirical relation can be used to estimate the sound attenuation if the proper limitations on its use are observed. Attenuation (dB) = 12.6 $$l \frac{P}{S} \alpha^{1.4}$$ (63) where l=length of lined duct in feet; P=perimeter of the duct inside the lining, inches; S=cross-sectional area of the duct inside the lining, square inches; and α =absorption coefficient of the lining (frequency dependent). Some limitations on the use of equation (63) are: - 1) smallest duct should be between 6 and 18 inches; - 2) duct width to height ratio should be less than 2; - 3) equation should not be used where air-flow velocities are greater than 4,000 ft/minute; and - 4) line of sight propagation of the higher frequencies is not accounted for by this equation. (In a straight 12-inch FIGURE I-22.—Noise Sources and Attenuation in a Simple Duct System. The sources are the fan and the grille. Attenuation is provided by a package attenuation unit, a lined duct, a bend, and by reflection of low-frequency waves backward at the end of the duct. duct the attenuation in the 8,000 Hz octave band will be only about 10 dB for any lining length over 3 ft. The attenuation in the next lower octave band, 4,000 Hz, will be about midway between 10 dB and the value calculated from equation (63). The frequency above which the 10 dB limit applies is inversely proportional to the shortest dimension of the duct.) Some actual measurements have indicated that the sound level drops much faster than predicted by equation (63) for the first 5 ft of the duct. After that the rate of sound level dropoff is much slower than predicted by equation (63). This is mainly due to flanking transmissions where the sound enters the duct wall and is transmitted along the wall itself. This flanking appears to be the limiting factor in any instance where the predicted sound attenuation exceeds 2 dB/ft. To reduce this flanking it is therefore recommended that flexible vibration couplings be inserted in the
ductwork for every 25 dB of lining attenuation required in any frequency band. If additional attenuation is still required then the attenuation can be increased by increasing the absorbing surface in the lined duct as shown, for example, in Figure I-23. Another means of reducing the noise in a duct is by using a sound absorption plenum, shown in Figure I-24, which is sometimes the most FIGURE 1-23,-Increase of Absorbing Surface in Lined Ducts. FIGURE I-24,-Sound Absorbing Plenum. economical arrangement. The attenuation provided by such a plenum can be determined by the empirical expression Attenuation (dB) = 10 log $$\left[\frac{1}{S_r \left(\frac{\cos \theta}{2\pi d^2} + \frac{1-\alpha}{\alpha S_n} \right)} \right]$$ (64) where a= absorption coefficient of the lining (frequency dependent), $S_a =$ plenum exit area (It²), $S_w = \text{plenum wall area (ft}^2),$ d = distance between entrance and exit (ft), \[\theta = \text{ the angle of incidence at the exit,} \] i.e., the angle \(d \) makes with the normal to the exit opening (degrees). \[\text{degrees} \] As an example of the attenuation a plenum can provide, suppose we build a box 10 ft on a side which attaches to a 2-ft square duct. Now line the plenum with a sound absorbing liner such as foam or fiberglass, which has an absorption coefficient in the 1,000 Hz octave band of 0.6. For the 1,000 Hz band, $$\alpha = 0.6$$, $S_x = 4$ ft², $S_w = 6 \times (10^2) - 4 = 596$ ft², $d = \sqrt{8^2 + 10^2} = 12.8$ ft, $\theta = \tan^{-1} (8/10) = 38.7$ degrees, Attenuation (dB) = $$10 \log \left[\frac{1}{4 \left(\frac{\cos 38.7}{2\pi (12.8)^2} + \frac{1 - 0.6}{0.6 \times 596} \right)} \right] = 21.2 \text{ dB}.$$ This result is fairly accurate as the predictions obtained with equation (64) normally are within a few decibels for frequencies where the wavelength is less than the plenum dimensions, (in this case the wavelength is just over a foot). For the lower frequencies this equation can be conservative by 5 to 10 dB since the abrupt change in the duct dimensions acts to reflect these longer wavelengths. It may be necessary to purchase a prepackaged silencer, which can be installed as part of the ductwork, and acoustically treated grills where the ducts terminate in rooms. The attenuation of these devices as with airflow silencing application is dependent on the flow rate, the pressure drop, and the noise frequency content, etc. Specific data for each application should be obtained directly from the manufacturer of these items. The dependence of absorption NRC on thickness is shown in Figure I-25. This figure shows the range of typical NRC's for any given thickness. The frequency dependence varies as with any absorbing material on the type and spacing of the pores, any covering such as mylar, perforated metal, etc. Again the specific product and thickness should be se- FIGURE 1-25.—Dependence of Noise Reduction Coefficient of Duct Lines on Thickness. lected on the basis of the full range of frequency data and not just on NRC. #### I-4.1.4-Furnishings The use of general furnishings, such as chairs, draperies, carpets, etc., can be used to provide absorption of the sound in the room. As seen in the earlier example, absorption can be very effective in reducing noise levels. For offices, homes, schools, etc., the noise control should also be attractive. Modern sound absorption wall and ceiling treatments are available in many colors and patterns. But just using these is not quite enough. If the wall and ceiling treatment is selected for good sound absorption and the effect of general furnishings is overlooked, the finished area may be too dead and unpleasant. It is necessary to have absorption data on these items. The coefficients shown in Table I-8 were obtained from the AIMA Bulletin which was also used for the example. It is appropriate to note here the data usage for some of the special wall applications or landscape screens which are being used in some of the new open plan offices. Since the screens are obviously sold as a preformed unit and the size of the specimen will affect the absorption, the measured absorption is reported directly in sabins per unit and is not reduced to a coefficient. Some of the special wall treatments that do not cover the entire wall, but do place individual ornamental pieces in some unconnected arrangement, will also yield different absorption values depending on the surface area. The data for these may be reported as sabins per unit or as an absorption coefficient. If the absorption coefficient is reported the exact number, surface area covered, and relative placement of the individual pieces must be known. The absorption of curtains and draperies depends on spacing from the wall, how close and deep the pleats are, size, and the material used. Some coefficients for these items can be found in the data tables. Carpets serve the dual purposes of floor covering and noise reduction. Noise reduction is achieved in two ways: carpets absorb the incident sound energy; and sliding and shuffling movements on carpets produce less noise than on bare floors. The Carpet and Rug Institute has published a report on "Sound Conditioning with Carpet" and some of their findings are: - 1) NRC of carpets laid directly on bare concrete floor ranged from 0.25 to - fiber type has virtually no influence on sound absorption: - cut pile provides greater noise reduc- - tion than loop pile; the NRC increased as pile weight and/or pile heights were increased; - carpet pads have considerable effects. on sound absorption as shown in Table I-11; - permeability of backing results in higher NRC. In one test a carpet with a coated backing had an NRC of 0.40 and the same carpet with an uncoated backing had an NRC of 0.60; and - carpets and pads provide significant improvements in impact noise ratings of floors. Table I-12 shows the results of tests made on a concrete slab using a woven, 44 oz wool carpet with various pads. TABLE I-11 - EFFECTS OF PADDING ON CARPET NOISE REDUCTION COEFFICIENT | PAD WEIG | HT, | | |----------|---------------------|------| | OZ | PAD MATERIAL | NRC | | | None | 0,35 | | 32 | Hair | 0,50 | | 40 | Hair | 0,55 | | 86 | Hair | 0.60 | | 32 | Hair jute | 0,55 | | 40 | Hair jute | 0.60 | | 86 | Hair jute | 0.65 | | 31 | Foam rubber, %-inch | 0.60 | | 44 | Sponge rubber | | TABLE 1-12 - EFFECTS OF CARPETS AND PADS ON IMPACT NOISE | FLOOR COVERING | INR | IIC | |--------------------------------|------|-----| | None | 17 | 34 | | Carpet only | +14 | 65 | | Carpet with 40-oz hairfelt pac | 1+21 | 72 | | Carpet with urethane foam pa | | 75 | | Carpet with 44-oz | | | | sponge rubber | +25 | 76 | | Carpet with 31-oz, | | | | %-inch foam rubber | + 28 | 79 | | Carpet with 80-oz | | | | sponge rubber | +29 | 80 | # I-4.2-NOISE CONTROL BY BARRIER #### I-4.2.1—Natural Objects Controlling noise by barrier is simply a matter of providing some form of wall or other heavy dense object between the source of the sound and the receiver, i.e., its path is blocked. One of the most inexpensive and easiest to accomplish ways of providing a barrier is to locate a source or a receiver behind an already existing barrier. For example, if a new apartment is to be constructed near an expressway and the landscape is hilly, build with a hill between the apartment and expressway. When this is not possible, bedrooms or other spaces where quiet is desired should be on the far side of the building. Hallways, elevators, etc., should be on the side facing the noise. In this way much of the special acoustical treatment can be completely eliminated. In a factory the noisy machinery should not be in the same room with quieter objects. If noisy equipment is to be located outdoors, it should be placed on the side away from the area where quiet is desired. If the plant is located near a residential neighborhood the noisy activities such as loading docks should be on the side away from the homes. A little thought before the installation of some noise source can save a lot of time and money later. #### I-4.2.2-Ceilings The use of ceilings as sound barriers is not a normal application. Yet it is frequently through the ceiling, and the open plenum above into the next room and down through the ceiling of the adjoining room, that sound travels. This is just one flanking path that can seriously degrade the sound isolation between rooms. There are several alternatives for reducing the noise transmitted in this way. One method is to place a barrier in the ceiling plenum between the two rooms. This may be difficult sometimes due to piping, wiring, ductwork, etc., that is probably in this space. A second way is to place some barrier material such as gypsum board on top of the ceilings. However, one must be careful because enclosing the space above the ceiling may de- crease the absorption coefficient of the ceiling and reduce the absorption of the room below. The third method is to use a ceiling that has both the proper absorption and sound transmission loss properties. For this reason ceilings are tested for their transmission from one room to another as well as for sound absorption. This test provides a sound attenuation factor for the ceiling. A two-room test procedure has been developed for this purpose (see figure for Data Table 34, Ceiling Sound Transmission Factor). #### I-4.2.3-Walls The most common means of blocking a sound path is to build a wall between the source and the receiver. A wall may be outdoors such as a high fence or it may close off the space between two rooms. I-4.2.3.1—Freestanding Wall A freestanding wall is defined here as a solid fence, with no bounding surface above the wall so that sound waves can pass freely over the wall. As with all sound control systems the amount of attenuation provided by a freestanding wall depends on the frequency as well as many other factors. For low frequencies where the sound wavelength is of the same order of magnitude as the wall
dimensions, the sound diffracts around the edges and over the top of the wall with very little attenuation (zero to $5 \, dB$) on the other side. The higher frequencies can be very effectively attenuated with reductions of 20 dB being quite possible. The attenuation of an infinitely long, freestanding wall can be determined from Figure I-26 and the relationship Attenuation (dB) = 20 (log 2.5) N+5 dB $$N \ge 1$$, for where (65) $$N = \left[\frac{2}{\lambda} (A + B - d) \right]^{\frac{14}{3}}, \quad (66)$$ $\lambda =$ wavelength of sound, meters, d=straight line distance from source to receiver in meters, A+B=shortest path length of wave travel over the wall between source and receiver. FIGURE I-26.—Geometry for Determining Sound Attenuation by a Freestanding Wall. Attenuations range from a low of about 5 dB to a maximum of about 24 dB. This attenuation can then be subtracted from the sound pressure level that would exist at the point of the receiver if the wall were not there, The obvious maximum attenuation occurs when A+B >> d and/or when λ is very small (high frequency), i.e., for N large. As an example in the use of equation (65), the attenuation in the 1,000 Hz octave band for a freestanding wall 4 meters high can be determined in the following manner. Assume the wall long enough so that the sound diffracting around the ends can be neglected. Also assume the point noise source is 1.7 meters from the ground and the receiver is a human ear also 1.7 meters from the ground. Locate the wall such that the source is 3 meters from the wall and the receiver 6 meters from the wall. Then $$N = \left[\frac{2f}{c}(3.78 + 6.43 - 9)\right]^{1/4} = \sqrt{7.24} = 2.7,$$ and Attenuation = 20 log (2.5) (2.7) +5 dB = 21.6 dB re $$2 \times 10^{-6} \text{ N/m}^2$$ On the other hand, how high must the wall be built to obtain a specified attenuation? For example, for the same case as above, how high must the wall be to obtain 15 dB attenuation in the 125 Hz octave band? By rearranging equation (65), $$N = 0.4 \text{ antilog } \frac{dB - 5}{20}$$. (67) The value of A+B can be derived from equation (66) as $$A+B=N^2 \lambda/2+d$$. The wall height can then be determined on a trial and error basis or graphically; in this case, A+B is 11.2 meters, which corresponds to a wall height of 5 meters. (Further discussion of the attenuation of sound by freestanding walls can be found in J. Acoust. Soc. Amer. 55(3), pp 504-518, March 1974.) The wall should be constructed of a material such that transmission through the wall does not degrade its performance since the above equations assume no transmission through the wall. This can be readily accomplished if the surface density of the wall is at least about 2 lbs/ft². One final note on the use of a freestanding wall is that the noise from the source will reflect off the wall so that to an observer on the same side of the wall, the sound pressure level will be higher than if the wall were not there I-4.2.3.2—Walls as Partitions Between Spaces When using a wall as a sound barrier between two spaces the principal concern is with the transmission loss and flanking paths. The transmission loss (TL) of a partition is given by equation (38) $$TL = 10 \log \frac{1}{r} dB$$ where τ is the transmission coefficient and is a function of frequency. Also the transmission loss is measured between two reverberation rooms and calculated from equation (43) as $$TL = NR + 10 \log S/A$$ where $NR = L_{P_s} - L_{P_p}$ is the difference in sound pressure levels between the two rooms, S is the transmitting area of the specimen, and A is the total absorption in the receiving room. Thus, to determine what the sound level in a room would be after a barrier wall has been erected, this equation can be reversed to obtain $$NR = TL - 10 \log S/A$$ and it can then be seen that the noise reduction is dependent on the total absorption in the receiving room. This is understandable if one remembers what reverberation does to the sound field. The noise that comes through the wall bounces around in the receiving room so the level is not what it would be if a free field existed on the receiving side. EXAMPLE: The sound pressure level on one side of a 10 ft by 14 ft wall is measured 95 dB in the 500 Hz octave band. If the transmission loss of the wall is 47 dB in this band and the absorption in the receiving room is 1,000 sabins, what will the sound pressure level be in the receiving room? ### SOLUTION: $$NR = L_{p_1} - L_{p_2} = TL - 10 \log S/A$$ or $$L_{p_r} = L_{p_s} - TL + 10 \log S/A$$ $$= 95 - 47 + 10 \log \frac{10 \times 14}{1,000}$$ $$= 39.5 \text{ dB re } 2 \times 10^{-s} \text{ N/m}^s.$$ and the absorption in the receiving room has reduced the sound level by 8.5 dB more than what is predicted by simply subtracting the transmission loss value from the sound level in the source room. Note that if the receiving room is very hard such that S > A, then the opposite is true. In the general case of using a partition as a sound barrier, the partition may be a wall with a door and windows and may even be built in several sections each with a different transmission loss. It is necessary to know the average transmission loss of the entire assembly. This is found by first determining an average transmission coefficient $\overline{\tau}$ as $$\tilde{\tau} = \frac{\sum_{i} \tau_{1} S_{1}}{\sum_{i} S_{4}} = \frac{\tau_{1} S_{1} + \tau_{2} S_{2} + \tau_{3} S_{3} + \ldots + \tau_{n} S_{n}}{S_{1} + S_{2} + S_{3} + \ldots + S_{n}} = \frac{T}{S},$$ (68) and $$TL_{\text{avg}} = 10 \log S/T, \tag{69}$$ where T is the total transmittance, S is the total surface area of the barrier system, S_1 is the area of the i^{th} section of the partition, and τ_i is the transmission coefficient of the i^{th} section of the partition which is determined by rearranging equation (38): $$\tau_i = \text{antilog } \left(-\frac{TL_i}{10}\right).$$ (70) Now the noise reduction of this partition can be determined by combining equation (69) with equation (43) as $$NR = TL - 10 \log S/A$$ = 10 log S/T - 10 log S/A or $$NR = 10 \log A/T dB$$ (71) As an example, the noise reduction of a partition that is one wall of the room used in the example of absorption material application can be determined for the 500 Hz octave band. (See Section I-4, item (5).) Let the wall be made of concrete with a transmission loss of 50 dB at this frequency, a doof with a transmission loss of 25 dB, a window with a transmission loss of 30 dB, and a leak under the door 0.25 inch high. The areas and transmission coefficients for each as determined from equation (70) are | Item | Dimension | Aroa,
ft² | TL, | T _i | ri Si, | |--------|--------------------|--------------|------|----------------|--------| | Wall | 12 ft x 100 ft | 1200 | 50 | 0,00001 | 0.0120 | | Door | 7 ft x 3.5 ft | 24.5 | 25 | .00316 | .0775 | | Window | .4 ft x 8 ft | 24 | 30 | ,00100 | .0240 | | Leak | 0.25 inch x 3,5 ft | 0.88 | 0 | 1.00000 | .8800 | | | To | tal tran | smit | tance, T | ,9935 | (Note the largest transmittance is through the 0.25-inch leak under the door.) The noise reduction of this wall can now be determined using equation (71) and the total absorption in the room. Thus $$NR = 10 \log \frac{278}{.9935} = 24 \text{ dB}.$$ Due to the sections with lower transmission loss values (especially the leak) and the hardness of the receiving room, the 50 dB wall results in a noise reduction of only 24 dB. If the same absorbent treatment as in the absorption example is used, we will have a noise reduction of $$NR = 10 \log \frac{2865}{.9935} = 35 \text{ dB}.$$ The noise reduction increased, by 11 dB to 35 dB which indicates the leak should have been fixed first. If the leak is plugged with a seal that provides a transmission loss of 50 dB, the total transmittance is reduced to 0.1135. Consequently, the noise reduction of 24 dB is increased to $$NR = 10 \log \frac{278}{0.1135} = 34 \text{ dB},$$ which is almost as much as the sound absorbing treatment provided. Now the whole job, sealing the leak and adding absorption materials to the room, results in a noise reduction of $$NR = 10 \log \frac{2865}{0.1135} = 44 \text{ dB},$$ which is 20 dB greater than the 24 dB obtained with the leak and without additional absorption. To improve this even more, it can be seen from the calculated transmittances that the door and the window are still the weakest links. Also, the transmittances of these two sections are seven times as high as the rest of the wall even though their total area is only a little more than 3 percent of the total surface area. Before discussing complete enclosures around noise sources, a brief detour should be taken at this point to discuss the behavior of walls as sound barriers. Referring to equation (39), the transmission loss of a barrier behaves according to the "mass law". Basically this mass law states that if the weight is doubled, the transmission loss will increase by 6 dB. This, however, does not hold strictly true in practice. In the real world a doubling of the mass of the wall will increase the transmission loss only by about 4 or 5 dB. The real world mass law, which is obtained from empirical results can be stated as $$TL = 23 + 14.5 \log m \, dB$$ (72a) where m is expressed in lb/ft2 or $$TL = 13 + 14.5 \log m \text{ dB}$$ (72) where m is expressed in kg/m². The increase predicted from this expression for a doubling of the mass is about 4.4 dB (Harris, Chapter 20). If proper construction techniques are used, it is possible to get more than a 6 dB increase in transmission loss by doubling the mass. The main factor in achieving greater than the mass law prediction is to construct what is referred to as a "double wall". In a double wall arrangement the two sides of the wall are inde- pendent of each other (there are no connecting braces, and each side uses its own set of studs.) In general, walls can be classified as nonload-hearing partition type walls,
load-bearing, and masonry type walls. Masonry walls are made up of bricks, or various types of concrete and may be plastered or painted. I-4,2,3,3-Plasterboard Walls Plasterboard walls are relatively light, inexpensive, and easy to erect. A typical plasterboard wall consists of two plasterboard leaves, separated by an air space and a system of studs or framing members. The sound transmission loss of such a wall depends on the transmission losses of the individual leaves and on the degree of coupling introduced by the intervening air space and stud system. The studs can sometimes act as vibration conductors and thus may degrade the performance of a wall assembly. If the stude have low torsional rigidity (e.g., steel channels) transmission via the stude appears to be negligible. Figure I-27 shows the transmission losses of three wall assemblies as functions of frequencies. Wall assembly number 1 has the lowest STC even though its density is slightly higher than the other two assemblies. It can be seen from the figure that a significant increase (14 dB in this case) in transmission loss can be achieved by separating the two leaves of a wall and putting a sound absorbent batt in the wall cavity. # I-4.2.3.4-Concrete and Brick Walls Load-bearing walls made from concrete or bricks are heavier than the plasterboard wall and consequently they can provide increased sound attenuation. For instance, the Brick Institute reports STC's from 39 to 59 for specific walls made from structural clay tiles or bricks, with their weights ranging from 22 to 116 lh/ft². Concrete walls also provide similar attenuation and in general the dense, heavyweight concrete walls perform better than the lightweight concrete walls—particularly at low frequencies. It should also be noted that unpainted lightweight concrete blocks have good sound absorption but painting or spraying the wall will result in reduced absorption. This is summarized in Table I-13. FIGURE I-27.—Improvement in Wall Transmission Loss by Spacing Sides, and by Adding Absorbing Material in the Cavity. (Data Courtesy National Research Council of Canada.) Wall Assembly No. 1: Two layers of ½-inch plasterboard with joint compound. Weight—4.6 lb/sq ft. Wall Assembly No. 2: Two 1/2-inch plasterboard leaves with 3%-inch space, no studs. Weight—4.2 lb/sq ft. Wall Assembly No. 3: Two 1/2-inch plasterboard leaves with 35%-inch space, 2-inch thick absorption. Weight—1.2 lb/sq ft. TABLE I-13—NOISE REDUCTION COEFFICIENTS FOR CONCRETE (Courtesy Expanded Shale and Slate Institute) | Material, | • | Adjustment, perc | | | |------------------------------|--------------------|-------------------|-----------------|--| | medium texture,
unpainted | Approximate
NRC | Coarse
texture | Fine
texture | | | Expanded shale block | 0,45 | Add 10 | Deduct 10 | | | Heavy aggregate block | ,27 | Add 5 | Deduct 5 | | | Deductions from NRC for painted block, percent | | | | | |--|-------------|--------------|--------------|----------------| | Paint type | Application | One'
Cont | Two
Conts | Three
Coats | | Any | Spray | 10 | 20 | 70 | | Oil base | Brushed | 20 | 55 | 75 | | Latex or resin base | Brushed | 30 | 55 | 90 | | Cement base | Brushod | 60 | 90 | _ | In addition to plasterboard and masonry many other types of wall materials are used and the wall construction also ranges from a simple brick wall to walls with a complex stud system combined with acoustical and thermal batts. Plywood, hardboard, steel, etc. are other commonly used wall materials. In all cases it can be said that increased mass and decreased coupling between different components along the path of sound result in high transmission loss. Data Tables 27, 28, and 29 provide much useful information about the transmission losses of many different types of walls. # I-4.2.4-Glass Glass windows are often the weak link in an otherwise good sound barrier. Acceptable sound transmission loss can be achieved in most cases by a proper selection of glass. Mounting of the glass in its frame should be done with care to eliminate noise leaks and to reduce the glass plate vibrations, Acoustical performance of glass is often improved by a plastic inner layer or an air gap. Table I-14 shows the comparison of STC values for glass and laminated glass of various thicknesses. Table I-15 compares the monolithic glass plate with air-spaced glass of equal thicknesses. TABLE I-14—SOUND TRANSMISSION CLASS OF MONOLITHIC AND LAMINATED GLASS | Overall
Thickness,
inch | lvionolithic
Glass,
STC | Two Equally Thick Layers
Glass with 0.030-inch
Plastic Inner Layer,
STC | |-------------------------------|-------------------------------|--| | 0.125 | 23 | _ | | .25 | 28 | 34 | | .5 | 31 | 37 | | .75 | 36 | 41 | | 1.00 | 37 | _ | TABLE I-15—SOUND TRANSMISSION CLASS OF AIRSPACED GLASS AND MONOLITHIC GLASS OF COMPARABLE THICKNESS | Overall
Thickness
inch | Air-spaced
s, Glass
Construction STC | Comparably
Thick Glass
without
Air Space,
STC | |------------------------------|--|---| | 1.0 | Two 0,25-inch plates
with 0,50-inch air space32 | 31 | | 1,5 | Two 0.25-inch plates with 1-inch air space35 | 31 | | 2.75 | 0.25- and 0.5-inch plates
with 2-inch air space39 | 36 | | 4.75 | 0,25- and 0.5-inch plates
with 4-inch air space40 | 36 | | 6.75 | 0,25- and 0,5-inch plates
with 6-inch air space42 | 36 | # I-4.2.5-Doors Sound transmission loss of a door depends upon its material and construction, and the sealing between the door and the frame, Most doors are of wood or steel construction with various stiffnesses and barrier batts added to the hollow cavity inside the door if one exists. It is usually difficult to specify the STC of a door because the scaling between the door and the frame is not a precisely controlled variable. The variations in STC's of two doors as the scaling was improved by increasing the deflection of gaskets, by adding extra gaskets, and by changing the gaskets materials, are shown in Figure I-28. In each case the improved scaling improves the performance such that the STC approaches its maximum possible value shown by the completely scaled case. This figure points out improvements that can be made by attacking the weakest link. If better sealing does not offer sufficient improvement selecting a better door design becomes necessary. Generally the heavier doors provide increased attenuation. Wood and steel doors behave essentially in a similar manner as shown in Figure I-29 which shows a form of the mass law dependence of STC's on weights (in lbs/ft2) for wood and steel doors. These data which are based on many tests conducted in an acoustical laboratory, indicate an increase of 8 to 9 dB in STC for a doubling of the weight. Note, however, that effects of better design, better sealing, etc., are also reflected in this figure. The approximate relationships are For steel doors: $STC = 15 + 27 \log W$ For wood doors: $STC = 12 + 32 \log W$ where W=weight of the door in lb/ft^2 . It should be emphasized that these relationships are purely empirical and that a large deviation can be expected for any given door. # I-4.2.6-Enclosures In many cases the purpose of an acoustic enclosure is to keep the noise from getting inside. Examples are sound proof booths for machine operators and audiometric test booths for testing the hearing of employees. It is relatively straightforward to calculate the noise reduction by employing the principles presented in Section I-4.2.3.2, since the enclosure may simply be regarded as a small room, and its walls as partitions. More often, however, an enclosure, or box, is placed around FIGURE I-28.—Effects of Improved Scaling of Doors on Sound Transmission Class. (Based on a Series of Tests on Two Different Types of Door.) a noise source to keep the noise from getting outside. In predicting the noise reduction for this case there are some subtleties which warrant further discussion. To predict the noise reduction of an enclosure the procedure is the same as with a barrier wall. One first determines the transmittance of the total surface area and then, including the absorption of the space outside the enclosure, determines the noise reduction of the box. EXAMPLE: Suppose the noisy machine in the factory of the previous example is covered. If the enclosure is built with partitions whose transmission loss in the 500 Hz octave band is 50 dB and the size of the enclosure is 10 ft x 10 ft x 10 ft with a 7 ft x 3.5 ft door (no leak this time), and the sound pressure level inside the box is measured to be 99 dB in the 500 Hz octave band, what is the noise reduction of the enclosure? SOLUTION: As before, first determine the total transmittance of the enclosure using equation (70) as | Item | Area,
ft² | TL,
dB | τ | Sτ | |---------|--------------|-----------|---------|--------| | Walls | 375.5 | 50 | 0.00001 | 0.0039 | | Ceiling | 100.0 | 50 | .00001 | .0010 | | Door | 24,5 | 25 | .00316 | .0775 | | | Total Trans | mitta | nce T= | 0823 | FIGURE I-29.—Dependence of Sound Transmission Loss for Doors on Weight. Approximate STC for wood door, STC=12+32 log W; Approximate STC for steel door, STC=15+27 log W; where W=weight of the door in lb/sq ft. and then the noise reduction from equation (71) $$NR = 10 \log \frac{A}{T} = 10 \log \frac{2865}{0.0823} = 45 \text{ dB}$$ where the total absorption in the room is taken from the previous example for the case where the room was treated with absorbent materials. In this case a noise reduction has been achieved that is greater than the 44 dB transmission loss that might be expected (and with a 25 dB door). However, the noise reduction (NR) computed above is the difference between noise levels inside
and outside the box, and represent what one would most likely be concerned with in practice. The real question concerns the reduction in noise level at a point outside the box, measured before and after the installation of the box. An interesting phenomenon occurs in a complete enclosure. If there is some source of sound power and a box is built around it, the sound energy density, or the intensity, will increase until the amount of power absorbed by the walls is equal to the power emitted by the source. This phenomenon is referred to as "sound build-up". For example, the new machine to be installed in the room will be enclosed by a 10 ft x 10 ft x 10 ft box made of steel with an absorption coefficient in the 500 Hz octave band of 0.02. Assume the floor is smooth concrete with the same absorption coefficient. The room constant for this enclosure is determined using equation (56b) $$R = S(e^{\alpha} - 1) = 12 \text{ ft}^2$$. The sound pressure level just inside the enclosure (assume 5 ft to wall) is now obtained from equation (61b) $$L_p = L_w + 10 \log \left(\frac{1}{2\pi r^2} + \frac{4}{R} \right)$$ $=105+10 \log (0.0685+3.5880)$ $= 110.6 \text{ dB re } 2 \times 10^{-8} \text{ N/m}^2$ Note: r^2 and R must be in meters squared for this equation. The sound pressure level that existed at the 5 ft position before this steel enclosure was built, was only $$L_p = 105 + 10 \log (0.0685 + 0.0119)$$ = 105 - 10.9 $=94.1 \text{ dB re } 2 \times 10^{-3} \text{ N/m}^2$ (using R from the absorption example in the appendix with absorption in the room). This value of 94.1 dB corresponds to the 5 ft position prior to the construction of the enclosure, whereas noise reduction corresponds to the value that exists within the enclosure. For example, since a noise reduction of 45 dB was determined for the enclosure 94.1-45=49.1 dB is not used, but instead 110.6-45=65.6 dB or an effective noise reduction of only 94.1-65.6=28.5 dB. This problem is not insumountable. The solution is to add absorption to the lining of the walls of the enclosure. If the job is good enough, the level at the inside of the wall can be very nearly what it would be in a free field. In the above example, the external room constant was so large that the sound pressure at 5 ft from the source was essentially that of a free field. A quick check of the relative magnitudes of the two terms in the argument of the logarithm in equation (61) indicates this. Another factor that must be considered is resonance. If the dimensions of the box result in resonance due to one of the modes of the sound, the box can be driven to high levels of vibration and become a new radiator of these components of the sound. When this occurs the sound pressure level outside the box can be higher than it was even before the box was installed. This effect is significantly reduced when the noise source occupies a sufficient fraction of the room volume, by the use of absorbent lining on the interior surfaces of the enclosure, damping treatment on the panels, and stiffening of the panels. The use of floors as barriers of sound in the path between two rooms is exactly as with walls plus a few additional considerations. First consider the STC of the floor, Generally, floors have good STC since their structural requirements are such that the floor has sufficient mass. However, this is not always true, especially in some of the modern apartment constructions. One of the main problems with floors is that they are located in the direction of gravity for footsteps, falling objects, support of furniture and equipment of all sorts, etc. These falling objects produce impact noises both in the spaces above and below the floor. Because of these impacts, many floors are now tested for impact insulation. As discussed in Section I-3.4, a standard tapping machine makes impacts on the floor and the sound pressure level is measured in the space below. These measurements are made in one-third octave bands and the spectrum of the sound is compared to a set of standard contours resulting in a one-number rating for the IIC of the floor. Also, the measured sound pressure level in each of the 16, one-third octave bands is normalized to a room with an absorption of 10 metric sabins or 108 sabins in square feet. To determine the sound pressure levels in the space below the floor, equation (46) is simply reversed $$L_n = L_p - 10 \log A_p / A$$ or $$L_{\nu} = L_{n} + 10 \log A_{o}/A$$ where $A_{\rm o}$ is 108 sabins and A is the absorption in the room below the floor. For example, suppose the floor of interest is the ceiling of the large room used in the previous examples. If the floor had an IIC of 51, what sound pressure level would the tapping machine produce in the room below in the 500 Hz band? By definition, the IIC is the same as the sound pressure level in the 500 Hz band. Before adding the absorption treatment the total absorption in the room in the 500 Hz band was 278 sabins. Thus $$L_p = 51 + 10 \log \frac{108}{278} = 47 \text{ dB re } 2 \times 10^{-5} \text{ N/m}^2$$ and with the measured background levels this would not contribute anything at all. What background level will be measured after absorption is added to the room? The total absorption with the source of sorption is 2865 sabins in the 500 Hz band and $$L_{\rm p} = 51 + 10 \log \frac{108}{2865}$$ $=37 \text{ dB re } 2 \times 10^{-6} \text{ N/m}^2$. Again it is seen how absorption in the receiving space complements the sound barrier properties of some other item. While these two calculations show the kind of games one can play with numbers and absorption treatments, it cannot be said that the real noises produced by objects hitting the floor above will resemble the noises of the tapping machine. There is no definite way one can predict the sound pressure levels in the room below any particular floor without first measuring the noise of the specific impact of interest. The only handle that is available is that the higher the IIC the lower the sound level in the space below for most, but not all, types of impact noises. Of course, just as with STC, the true shape of the sound spectrum must be considered in its entirety. If it is desired to increase the IIC of a floor structure it can usually be accomplished with relative ease by the placing of a carpet and pad or other suitable soft material on the floor. With regard to airborne sound transmission, it was shown earlier that the floor probably has a good STC. It should not be overlooked, however, that flanking paths such as into the walls of the upper room, down through the wall, and out into the space of the room below, can contribute a good portion of the noise in the space below. Also, any impact on the floor will send vibrations into the walls which can become airborne sound in the room below. Laboratories that measure impact insulation provide a good test floor in terms of isolation. Any good installation of a floor that must have a high insulation against impact noises should be equal to the laboratory setup. There are numerous ways and materials that can be used to increase the isolation of the floor from the wall and even from the subfloor. The interested reader should consult a good book on architectural acoustics for the many designs presently used. Of additional benefit to the sound barrier properties of a floor is the fact that if there is a space below there is probably some kind of ceiling also. Consequently, a floor should not be considered alone but as a floor-ceiling system. Well designed floor-ceiling systems can significantly improve the acoustic environment by reducing impact cound generation, increasing the sound absorption, and attenuating the airborne sound that passes through the floor. Sound transmission of a floor can be decreased by increasing the weight of the floor or by designing a more complex floor system using acoustical batts, cavities, etc., as shown in the figures for Data Tables 30 and 31. The IIC of a floor cannot be significantly increased by increasing its weight, but a carpet on the floor, or even better, a carpet placed on a pad, can greatly increase the IIC. The effects of various floor treatments on STC and IIC are shown in Table I-16. Consideration must be given to what happens when a piece of vibrating machinery is mounted on the floor. At the moment no particular test procedure exists to predict what noise this type of installation will have. What can be said is that if the floor is driven to a sufficiently high level of vibration it will become an acoustic radiator of noise into the spaces both above and below. To prevent such problems one must mount machinery on proper vibration isolation mounts. # I-4.2.8-Ducts and Piping Previously the propagation of sound along the length of a duct and some of the benefits of linings, bends, plenum chambers, etc., were discussed. Now the concern is with sound that propagates through the duct wall, into and out of the duct. The primary concern in this case is keeping the sound from getting out of the duct, therefore, it should be remembered that ducts make good acoustical connections between rooms. One does not want to have sound enter the duct where it passes through a noisy room to be transmitted to another room, especially if a great deal of time, money, and effort have been expended to reduce the noise (e.g. from fans, blowers, etc.) by installing plenums or silencers. In either case, if barrier treatment is applied on the outside of the ductwork or the piping it should reduce the transmission of sound through the walls, The covering of a pipe or duct with some sound barrier material is normally referred to # TABLE I-16.—TYPICAL IMPROVEMENTS WITH FLOOR AND CEILING TREATMENTS | | Change | Change in Ratings | | |---|------------------|-----------------------|--| | Type of Treatment | Airborne,
STC | Impact,
INR or IIC | | | 2-inch
concrete topping, 24 psf | 3 | 0 | | | Standard 44 oz carpet and 40-oz pad | 0 | 48 | | | Other carpets and pads | 0 | 44 to 56 | | | Vinyl tile | 0 | 3 | | | 0.5-inch wood block adhered to concrete | | 20 | | | 0.5-inch wood block and resilient fiber under-
lay adhered to concrete | 4 | 26 | | | Floating concrete floor on fiberboard | 7 | 15 | | | Wood floor, sleepers on concrete | 5 | 15 | | | Wood floor on fiberboard | 10 | 20 | | | Acoustical ceiling resiliently mounted | 5 | 27 | | | Acoustical ceiling added to floor with carpet | 5 | 10 | | | Plaster or gypsum board ceiling resiliently mounted | 10 | 8 | | | Plaster or gypsum board ceiling with insulation in space above ceiling | 13 | 13 | | | Plaster direct to concrete | 0 | 0 | | as "lagging". Lagging amounts to wrapping the pipe with a flexible sound barrier material in such a way that no seams exist to permit an acoustic leak, This is accomplished by overlapping the barrier material at the places where one piece ends and another begins, also overlapping the two ends of each piece at the point where they wrap back on each other. These seams should then be secured with duct tape so that the barrier remains properly in place. To realize full benefit of the lagging, the barrier must not touch the pipe it is covering. Any direct connection between the lagging and the pipe will cause the lagging to vibrate as well, and reduce its effectiveness as a sound barrier. This incidently also holds for any enclosure around a noise source. The lagging can be effectively "floated" away from the pipe wall by first wrapping the pipe with a layer of foam, fiberglass, or other porous material that acts both as a vibration isolator, and sound absorber, and even increases the transmission loss in the higher frequencies. The outer layer of barrier material can be made of any limp impermeable membrane such as thin sheet metal, asphalted paper, rubber, lead loaded vinyl, lead sheet, etc. The heavier and limper the better, just as with any barrier application (see figures for Data Table 45 for application). The means of determining how much reduction in sound level can be achieved by such treatment is a little more difficult to determine than for a wall or enclosure because of the different types of acoustical data that are encountered. Some items that are useful as lagging materials such as leaded vinyl may also be useful as a hanging curtain or as a plug to close some opening. Consequently, the manufacturer of these items has tested them for transmission loss in the usual way between two reverberation rooms. This provides a good measure of the sound barrier capability of the material, but requires that one knows the sound pressure level very close to the pipe along its length and the absorption in the surrounding space. Some manufacturers actually mount their material on a piece of test pipe and determine the noise reduction of the covering by measuring the sound pressure level inside the pipe and in the space outside the lagging. To use these data requires that the sound pressure level inside the pipe, the sound pressure level produced by the pipe vibrations, and the absorption in the surrounding space be known. Some measurements are made with a test pipe in a reverberation room with a noise source of some kind inside the pipe. Measurements are made in the room with only the bare pipe and again after the pipe is lagged. This measurement is called "Insertion Loss", i.e., the loss of sound pressure level due to the insertion of the item under test. This is the same technique as used for mufflers and other such devices, Since these insertion loss data are so much more meaningful and easier to use, there is presently under consideration by ASTM a standard test procedure for pipe lagging. Hopefully, in the near future the new data generated by this method will be available for use. In pipes in which there is some fluid flowing, the sound source may be more than the noise of the fan, blower, or whatever. The turbulent fluid flow also creates noise which can travel far downstream from the source. The noise making item is usually connected to the following piping so that when the fluid-borne sound causes the pipe to vibrate, the vibration of the noise source is also transmitted along the pipe walls. Any or all of these vibrations can result in an increased sound power output of the piping system. It is therefore recommended that flexible pipe connections be inserted every so often in the pipe to prevent the passage of the pipe wall vibration to the next section of pipe. Prevention of such vibration paths, or short circuits, can be very helpful in reducing the amount of attenuation required in the succeeding section of piping. #### I-4.3—NOISE CONTROL BY COMBINATION OF ABSORPTION AND BARRIER # I-4.3.1-Walls and Enclosures Walls are usually thought of as sound barriers, but they are also a place to mount sound absorbent materials. It has been discussed how walls introduce a transmission loss into the paths of the sound from source to receiver, and how the barrier property is enhanced by proper use of absorption in the receiving space. Generally a wall behaves according to the mass law as a barrier but this predicted mass law can be exceeded if proper design techniques are incorporated, such as using double wall. Even this double wall construction can be enhanced as a sound barrier if the space between the two sides is filled with a sound absorbing material, or more limp mass can be added by simply hanging a piece of sheet lead or leaded vinyl in the space. All of these techniques have been in use for some time such that many constructions are available. The capability of obtaining tremendous sound transmission loss through a wall still has a weakest link. All too often the effectiveness of a wall is reduced or even destroyed by careless inclusion of poor sound barrier windows and doors or even an open leak somewhere in an otherwise impermeable wall. (See example in Subsection I-4.2.3.2.) Not only does the weakest link reduce our effectiveness but flanking is a reality that cannot be overlooked. If a sound barrier is to be installed then someone is concerned enough about it to spend the time and money. It only seems reasonable that the installation should produce its best results. No portion of the noise source should touch the barrier, and the barrier should be isolated from other surfaces that extend beyond it. For example, even when simply putting an enclosure over a noisy machine, the enclosure should not be mounted directly to the floor even if the machine is on vibration isolation mounts. There may still be some vibration in the floor and that, when coupled with the wall and the noise inside, can result in a loss of effectiveness. Also, with enclosures one must be concerned with buildup of the sound pressure level within the enclosure and the room constant. For example, let an enclosure be placed at a position 10 ft from a noise source, and over the frequency range of interest let the transmission loss of the material be 30 dB. If the sound pressure level is measured at this position one might at first expect the level to be reduced by 30 dB. This is not the case, however. When the enclosure is built around the noise source it becomes a new room with its own room constant which will be different from that of the original space. If the original space is a very large room or outdoors such that the sound field is essentially that of a free field, the sound pressure level at the 10 ft position will be approximately 28 dB below the sound pressure level of the source (see Figure I-17). If the enclosure is now constructed out of a highly reflecting material such as steel, a reverberation field is set up inside the enclosure. If the room constant of the enclosure is now determined to be 500 the sound pressure level at the enclosure wall on the inside will be only 20 dB below the sound pressure level at the source, or 8 dB greater than the original measurement. Thus the transmission loss of the panel will be 30 dB below this new value and the overall reduction on the outside of the wall will only be 22 dB and not the 30 dB that was anticipated. This sound pressure buildup inside the enclosure can cause an effective decrease in sound transmission loss of up to 10 dB. It is for this reason that enclosures are normally lined with a sound absorbent material in order to increase the room constant of the enclosure. It should be noted, however, that not in any case can the use of acoustical treatment inside a room reduce the sound pressure level at a point below that of the direct path transmitted wave. This wave is the free field wave which represents the minimum achievable sound pressure level that can be obtained without using a sound barrier between the source and the receiver. When using an enclosure to reduce the noise transmitted from a sound source, the importance of leaks cannot be overemphasized. A very small area of low transmission loss can greatly reduce the effectiveness of the surface. If, for example, a panel with a transmission loss of 50 dB, 4-ft wide by 8-ft long is installed with 0.1-inch crack around the edge, the effective transmission loss is reduced to approximately 22 dB. The effects of a freestanding wall as a sound barrier depend on the frequency of the sound, the height, and the location of the wall. The frequency dependence is such that the dimensions of the wall or barrier must be very much larger than the wavelength of the lowest frequency of interest. Just as with absorption and transmission loss, the higher frequencies are more significantly affected. When the dimensions are small compared to a wavelength the sound wave merely diffracts over the top or around the edges and the attenuation is negligible. For the maximum effect the wall should be as high and as near to the sound source or receiver as possible. When considering the use of a wall as a sound
barrier the relative positions of the source and the observer must be taken into account. Also, it is possible that the side of the wall toward the noise source may need to be lined with an absorbent material so that reflected sound waves do not increase the sound pressure level on this side. #### I-4.3.2-Ducts and Piping When noise from an air duct must be reduced the usual procedures of absorption and transmission loss are used. A lining of an absorption type material not only reduces the sound pressure level observed outside the duct but also attenuates the sound waves that are propagating along the inside of the duct. For these sound waves the attenuation due to an absorbent type lining, per Equation (63), Attenuation = 12.6 $$\frac{P}{A} \alpha^{1.4} dB/ft$$ where P is the perimeter in inches, A is the cross-sectional area in square inches, and α is the absorption coefficient of the liner material. This empirical relationship has been found to predict the attenuation to within 10 percent over a limited range of duct size, absorption coefficient and frequency of the sound. For cases outside these ranges many techniques are available for reducing the sound pressure level. These techniques include the use of mufflers, tuned absorbers, bends, restrictions, special design of the duct liner plenums, etc. To limit the noise transmitted through the pipe walls, a limp, massive, impermeable covering over some porous sound absorbing material can produce significant insertion loss. Vibration breaks in the length of the pipe or duct also serve to stop the flow of vibrational energy along the length of the piping. Piping connected to vibrating machinery such as a compressor should be isolated by flexible couplings, or isolation hangers as shown in Figure I-30. The use of additional FIGURE I-30.-Vibration Isolation of Compressor Piping. mass to further reduce vibrations is also shown. The compressor itself is mounted on vibration isolators. Where this is insufficient, the floor itself should be isolated from adjacent building structures as shown in Figure I-31. Such isolation may also be used for offices adjacent to production areas. Noise generated by machinery can be reduced in adjacent work areas by the use of barriers (Figure I-32). Acoustic absorbent lining on such barriers on the side toward the source will increase this effectiveness. Reductions of 5 to 10 dB in the low frequency range and 20 dB in the high frequency range can be achieved. Much larger attenuation is obtained with a complete enclosure. These require well-designed access doors and observation windows. In any noise control application, while the required sound pressure level reduction will be the prime determiner of the acoustic treatment necessary, one should not overlook such items as the following: space limitation, weight limitation, cost limitation, exposure to damage by moving objects (e.g., lift trucks), requirements for ventilation and maintenance, weather exposure, temperature environment, and lifetime of the material under above situa- ### I-5—SELECTED PUBLICATIONS FOR FURTHER READING # I-5.1—BOOKS ON ACOUSTICS AND NOISE CONTROL American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE); "Guide and Data Book, Systems", Chapter 33, Sound and Vibration (1970) Beranek, L. L.; "Noise and Vibration Control", McGraw-Hill, New York (1971) Beranek, L. L.; "Noise Reduction", McGraw-Hill, New York (1960) Beranek, L. L., "Acoustics", McGraw-Hill, New York (1957) Beranek, L. L.; "Acoustic Measurements", McGraw-Hill, New York (1949) FIGURE I-31,-Vibration Break in Building Structure to Reduce Transmission of Vibrations. Berendt, R. D.; Winzer, G. E.; Burroughs, C. B.; "A Guide to Airborne, Impact, and Structure-Borne Noise Control in Multifamily Housing", prepared by National Bureau of Standards for Federal Housing Administration, U. S. Govt. Printing Office, Washington, D. C. (1967) Berendt, R. D.; Winzer, G. E.; "Sound Insulation of Wall, Floor, and Door Constructions", National Bureau of Standards Monograph 77 (Nov. 1964) Bolt, R. H.; Lukasik, S. J.; Nolle, A. W.; Frost, A. D.; "Handbook of Acoustic Noise Control", WADC Technical Report 52-204, Vol. 1, USAF Wright Air Development Center, Ohio (Dec. 1952) Bolt, R. H.; Lukasik, S. J.; Nolle, A. W.; Frost, A. D.; "Handbook of Acoustic Noise Control", WADC Technical Report 52-204, Vol. 1, Supplement 1, USAF Wright Air Development Center, Ohio (1955) Broch, J. T.; "The Application of the Brüel and Kjaer Measuring Systems to Acoustic Noise Measurements", Brüel and Kjaer Instruments (Jan. 1971) Bruel, P. V.; "Sound Insulation and Room Acoustics", Chapman and Hall Ltd., London (1951) Close, P. D.; "Sound Control and Thermal Insulation of Buildings", Reinhold Publishing Corp., New York (1966) Egan, "Concepts in Architectural Acoustics", McGraw-Hill, New York Harris, C. M.; "Handbook on Noise Control", McGraw-Hill, New York (1957) Hunter, "Acoustics", Prentice-Hall, Englewood Cliffs, N. J. (1962) "Industrial Noise", Public Health Service Bulletin 1572, U. S. Govt. Printing Office (1967) Ingerslev, "Acoustics in Modern Building Practice", Architectural Press, London (1952) Kinsey, B. Y.; "Environmental Technologies in Architecture", Prentice-Hall (1965) Kinsler, L. E.; Frey, A. R.; "Fundamentals of Acoustics", Wiley, 2nd ed. (1962) Knudsen, V. O.; "Architectural Acoustics", Wiley, London (1947) Kryter, K. D.; "Effects of Noise on Man", Academic Press, New York (1970) FIGURE I-32.-Typical Barriers for Partial Noise Control in Work Areas. Meyer, H. B.; Goodfriend, L. S.; "Acoustics for the Architect", Reinhold, New York (1957) NBS Sound Section Staff, "Sound Insulation of Wall and Floor Constructions", Building Materials and Structures Report 144, National Bureau of Standards (Feb. 1955) Olsen, H. F.; "Acoustical Engineering", D. Van Nostrand, New Jersey (1957) Parkin, P. H.; Humphreys, H. R.; "Acoustics, Noise and Buildings", F. A. Praeger Publishers, New York (1958) Parkin, P. H.; Purkis, H. J.; Scholes, W. E.; "Field Measurements of Sound Insulation between Dwellings", Her Majesty's Stationery Office, London (1960) Peterson, A.P.G.; Gross, E. E. Jr.; "Handbook of Noise Measurement", General Radio Company (1972) Purkis, H. J.; "Building Physics: Acoustics", Pergammon Press (1966) Rettinger, M.; "Acoustics, Room Design and Noise Control", Chemical Publishing Co., New York (1968) Richardson, E. G., Ed.; "Technical Aspects of Sound", Vol. 1, Elsevier Publishing Co., New York (1953) Sabine, H. J.; "Less Noise, Better Hearing", The Celotex Corporation Smith, "Acoustics", Elsevier, Amsterdam, New York Stevens and Bates, "Acoustics and Vibrational Physics", Edward Arnold Ltd., London (1966) Thumann, A.; Miller, R. K.; "Secrets of Noise Control", Fairmont Press, Atlanta, Ga. (1974) Yerges, L. F.; "Sound, Noise and Vibration Control", Van Nostrand Reinhold, New York (1969) #### I-5.2—PERIODICAL REFERENCES This compilation comprises 239 papers on acoustic tests performed on building materials, and noise control. In the search following sources were examined: - Shock and Vibration Digest: Jan, 1969-Feb, 1973 - 2. J. Acoust. Soc. America - 3. J. Sound and Vibration: July 1964-July 1972 - 4. S/V Sound and Vibration: Jan. 1966-June 1973 - 5. Acustica: Jan. 1966-June 1972 - Nat'l Res. Council, Canada. List of publications (1947-71) In addition, pertinent references listed in each article were included. #### I-5.2.1—Acoustic Materials | Wood | Brick | |------------------|--------------| | Fabric Materials | Glass | | Felt | Lead | | Foams | Steel | | Plastics | Metal Fibers | | Porous | Sandwich | | Materials | Construction | | Concrete | General | #### WOOD Heebink, T. B.; Grantham, J. B.; "Field/Laboratory STC Ratings of Wood-Framed Partitions", S/V Sound and Vibration, 5(10), pp 12-16 (Oct. 1971) Godshall, W. D.; Davis, J. H.; "Acoustical Absorption Properties of Wood-Base Panel Materials", Forest Products Journal, 104, p 8 (1969) #### FABRIC MATERIALS Kath, Von u.; "Der Einfluss Der Bekleidung Auf Die Schallabsorption Von Einzelpersonen", (The Influence of Clothes on the Sound Absorption of Individual Persons), Acustica, 17(4), pp 234-237 (1966) "Acoustical Drapsry", J. Acoust. Soc. Amer., 47(4), pp 971-972 (1970) Lebedeva, I. A.; Nesterov, V. S.; "Acoustical Parameters of a Lightweight Perforated Membrane", Soviet Physics-Acoustics, 10(3), pp 269-275 (1964) Kingsbury, H. F.; Wallace, W. J.; "Acoustic Absorption Characteristics of People", S/V Sound and Vibration, 2(12), pp 15-16 (Dec. 1968) #### FELT Tyzzer, F. G.; Hardy, H. C.; "The Properties of Felt in the Reduction of Noise and Vibration", J. Acoust. Soc. Amer., 19(5), pp 872-877 (Sept. 1947) Utley, W. A.; et al; "The Use of Absorbent Material in Double-Leaf Wall Constructions", J. Sound and Vib., 9(1), pp 90-96 (Jan. 1969) #### **FOAMS** "Acoustical Foams for Sound Absorption Applications", S/V Sound and Vibration, 11(7), pp 12-16 (July 1970) Gardinier, R. E.; et al; "Acoustical Foams for Sound Absorption Applications", S/V Sound and Vibration, 4(7), pp 12-16 (July 1970) "S/V Observer; Noise Control in the F-111", S/V Sound and Vibration, 2(8), p 4 (Aug. 1968) #### PLASTICS Betzhold, Von. C.; Kurz, K.; "Schalldammstoffe Aus Kunstoff", (Plastic for Sound Insulation), Acustica, 26(3), pp 162-165 (March 1972) #### POROUS MATERIALS Mechel, Von F.; Royar, J.; "Experimentelle Untersuchungen Zur Therie Des Perosen Absorbers", ((Experimental Investigation of the Theory of Porous Absorbers), Acustica, 26 (2), pp 81-96 (Feb. 1972) "Der Einfluss Von Materialeigenschaften, Insbesondere Von Gefugedichte Und-Steifigkeit Auf Das Schallisolations-Ver-Halten Poroser Absorber", 7th Intl. Congr. on Acoustics, Budapest, p 129 (1971) #### CONCRETE Kihlman, T.; "Sound Transmission in Building Structures of Concrete", J. Sound and Vib., 11(4), pp 435-456 (April 1970) Ward, F. L.; Randall, K. E.; "Investigation of Sound Isolation of Concrete Slab Floors",
J. Sound and Vib., 3(2), pp 205-215 (March 1966) Noll, Von, G. G.; "Die Frequenzabhangigkeit Der Komplexen Elastizitatskonstanten Einiger Baustoffe Zwischen etwa 5 und 100 kHz", (Frequency Dependency of Complex Elastic Constants of Some Building Materials between Approximately 5 and 10 kHz), Acustica, 24(2), pp 93-100 (Feb. 1971) Kohasi, Y.; "Sound Absorption Characteristics of a Hollow Concrete Block with a Slotted Face", Report in the 6th Intl. Congr. on Acoustics, Tokyo, Vol. III Paper E-3-5 (1968) #### BRICK Noll, Von. G. G.; "Die Frequenzabhangigkeit Der Komplexen Elastizitatskonstanten Einiger Baustoffe Zwischen etwa 5 und 100 kHz", (Frequency Dependency of Complex Elastic Constants of Some Building Materials between Approximately 5 and 100 kHz), Acustica, 24(2), pp 93-100 (Feb. 1971) #### GLASS Bhandari, P. S.; Balachandran, C. G.; Krishnan, P. V.; "Functional Sound Absorbers and Noise Reduction in a Cafeteria", Indian J. Tech., 3(11), pp 345-350 (Nov. 1965) Noll, Von. G. G.; "Die Frequenzabhangigkeit Der Komplexen Elastizitatskonstanten Einiger Baustoffe Zwischen etwa 5 und 100 kHz", (Frequency Dependency of Complex Elastic Constants of Some Building Materials between Approximately 5 and 100 kHz), Acustica, 24(2), pp 93-100 (Feb. 1971) Eisenberg, A.; Quenett, R.; "Sound Reduction by Multilayered Glass Thermopanes", (Schalldammung von Doppelscheiben Aus Mehrschichtglasern), 7th Intl. Congr. on Acoustics, Budapest, p 81 (1971) "Functional Acoustic Absorbers", S/V Sound and Vibration, 3(7), p 4 (July 1969) #### LEAD Eisenberg, A.; Quenett, R.; "Schalldammung von Doppelscheiben Aus Mehrschichtglasern", (Sound Reduction by Multilayered Glass Thermopanes), 7th Intl. Congr. on Acoustics, Budapest, p 81 (1971) Ostergaard, P. B.; Cardinell, R. L.; Goodfriend, L. S.; "Transmission Loss of Leaded Building Materials", J. Acoust. Soc. Amer., 35(6), pp 837-843 (June 1963) Meier, A. V.; "Application of Lead for Sound Insulating Partitions", S/V Sound and Vibration, 1(5), pp 14-19 (May 1967) Meteer, C. L.; "Application of Lead-Vinyl Noise Barriers in Transportation Equipment", SAE Paper No. 720222, pp 1-7 #### STEEL Noll, Von., G. G.; "Die Frequenzabhangigkeit der Komplexen Elastigitatskonstanten Einiger Baustoffe Zwischen etwa 5 und 100 kHz", (Frequency Dependency of Complex Elastic Constants of Some Building Materials between Approximately 5 and 100 kHz), Acustica, 24(2), pp 93-100 (Feb. 1971) #### METAL FIBERS Karplus, H. B.; et al; "Noise and Vibration Control with Fiber Metallurgy", J. Soc. Japan, 10(5), pp 209-217 (Nov. 1964) #### SANDWICH CONSTRUCTION Choudhury, N. K. D.; Bhandari, P. S.; "Impact Noise Rating of Resilient Floors", Acustica, 26(3), pp 135-140 (March 1972) Chen, Y. N.; "Influence of the Space in the Acoustic Sandwich Sheet 'Rockwool, Foil, Perforated Plate' on the Sound Absorption Capacity", 7th Intl. Congr. on Acoustics, Budapest, p 241 (1971) Burns, J. J.; "The Use of Asphalt-Mastics for Acoustical Damping", S/V Sound and Vibration, 6(10), pp 4, 6, 8 (Oct. 1972) Toyoda, H.; Hayek, S.; "Attenuation of Acoustic Waves by Composite Plates", J. Sound and Vib., pp 103-113 (Jan. 1971) Higgs, R. W.; Eriksson, L. J.; "Acoustic Attenuation in Composite Materials", J. Acoust. Soc. Amer., 50(1), pp 306-309 (July 1971) Heebink, T. B.; Grantham, J. B.; "Field-Laboratory STC Ratings of Wood-Framed Partitions", S/V Sound and Vibration, 5(10), pp 12-16 (Oct. 1971) Utley, W. A.; Cummings, A.; Parbrook, H. D.; "The Use of Absorbent Material in Double-Leaf Wall Constructions", J. Sound and Vib., 9(1), pp 90-96 (Jan. 1969) Braunisch, Von H.; "Vibration Damping by Three-Layered Sandwich Systems", Acustica, 22(5), pp 136-144 (1969) #### GENERAL Szudrowicz, B.; Zuchowicz, I.; "Uber Bezeichnung der Akustischen Eigenschaften von Werkstoffen und Konstruktionen auf Grund von Messungen an Kleinen Proben", (Specification of Acoustical Properties of Structural Materials and Construction on the Basis of Small Test Models), 7th Intl. Congr. on Acoustics, Budapest (1971) Callaway, D. B.; Ramer, L. G.; "The Use of Perforated Facings in Designing Low Frequency Resonant Absorbers", J. Acoust. Soc. Amer., 24(3), pp 309-312 (May 1952) "Acoustical Ceilings", Contr. Spec. Inst., Monograph 09M531 (June 1970) Scott, H. L.; "The Performance of Sound Absorbers in a Radial Diffuser Configuration", J. Sound and Vib., 19(4), pp 445-451 (Dec. 1971) "How to Select Acoustical Materials," Acoustical Materials Assn., 7, pp 187-188 (July 1965) Waller, R. A.; "The Performance and Economics of Noise and Vibration Reducing Materials in the Construction Industry", J. Sound and Vib., 8(2), pp 177-185 (Sept. 1968) Lindblad, S.; "Impact Sound Characteristics of Resilient Floor Coverings with Linear and Nonlinear Dissipative Compliance", 7th Intl. Congr. on Acoustics, Budapest (1971) Svensson, J.; "Impact Noise Reduction Predicted from Samples on Flooring Materials", 7th Intl. Congr. on Acoustics, Budapest, p 60 (1971) Borisov, L. A.; "Experimental Investigation of the Effectiveness of Sound-Absorbent Coatings", Soviet Phys. Acoust., 11(4), pp 366-372 (1966) Mallik, A. K.; et al; "Improvement of Damping Characteristics of Structural Members with High Damping Elastic Inserts", J. Sound and Vib., 27(1), pp 25-36 (Mar. 1973) Yerges, L. F.; "The Use of Acoustical Absorbents in Industrial Noise Control", S/V Sound and Vibration, 6(9), pp 31-32 (Sept. 1972) Emme, J. H.; "Composite Materials for Noise and Vibration Control", S/V Sound and Vibration, 4(7), pp 17-21 (July 1970) "Lead-Vinyl Fabric Shuts out Noise", Materials in Design Engineering, 64(4), pp 27-29 (Oct. 1966) "Functional Panels Control Noise", S/V Sound and Vibration, 3(7), pp 4, 6 (July 1969) "Grass Makes a Good Sound Absorber", S/V Sound and Vibration, 3(5), p 10 (May 1969) Brilloin, J.; "Sound Absorption by Structures with Perforated Panels", S/V Sound and Vibration, 2(7), pp 6-22 (July 1968) Pancholy, M.; Bindal, V. N.; "Transmission Loss Studies in Granular Materials", Acustica, 17(1), pp 51-55 (1966) Duggar, B. C.; "Special Sound Absorptive Materials in Noise Control", Amer. Industrial Hygiene Assn. J., 20, pp 447-452 (Dec. 1959) ## I-5.2.2—BUILDINGS AND BUILDING COMPONENTS Houses and Buildings Rooms Walls and Partitions Panels Floors Ceilings Doors and Windows Fences and Other Noise Barriers Effects of Structural Elements Architectural Acoustics Standards #### HOUSES AND BUILDINGS Young, J. R.; "Attenuation of Aircraft Noise by Wood-Sided and Brick-Veneered Frame Houses", Stanford Research Inst., NASA CR-1637 Pretlove, A. J.; "The Transmission of Outdoor Noises into Buildings", Environmental Engineers, 43, pp 7-10 (March 1970) Hardy, A. D.; Lewis, P. T.; "Sound Insulation Standards for Buildings Adjacent to Urban Motorways", J. Sound and Vib., 15(1), pp 53-59 (Mar. 1971) "Engineering Outline 113; Sound Insulation in Buildings", Anon. Engineering, 205 (5314), pp 307-310 (1968) Siekman, W., Jr.; "Architectural Acoustics (A Problem of Measurement)", Frontier, 3, pp 16-21 (Autumn 1966) Sato, H.; "On the Outdoor Noise Insulation of Dwellings Particularly on the Results of Field Measurements", Reports of the 6th Intl. Congr. on Acoustics, Vol. IV, Paper F-5-16, Tokyo (1968) Ingemansson, S.P.N.; "The Calculation of Sound Insulation in a Building", Reports of the 6th Intl. Congr. on Acoustics, Vol. III, Paper E-4-7, Tokyo (1968) Ellwood, E.; "The Anatomy of a Wall", S/V Sound and Vibration, 6(6), pp 14-18 (June 1972) Kihlman, T.; "Transmission of Structure-Borne Sound in Buildings", Natl. Swedish Inst. of Building Research, Box 27163, Stockholm 27, Report 9-1967 #### ROOMS Harris, C. M.; "Acoustical Design of the John F. Kennedy Center for the Performing Arts", J. Acoust. Soc. Amer., 51(4), pp 1113-1126 (April 1972) "Acoustical Drapery", J. Acoust. Soc. Amer., 47(4), pp 971-972 (1970) Sarkov, N.; Petrov, K.; "Ober Absorptionsgradmessungen in Hallraum", (Measurement of Degree of Absorption in Halls), 7th Intl. Congr. of Acoustics, Budapest, p. 189 (1971) Lazar, D.; "Schallschluckendre Modulelemente", Intl. Congr. on Acoustics, Budapest, p 249 (1971) Kihlman, T.; "Sound Radiation into a Rectangular Room. Applications to Air-Borne Sound Transmission in Buildings", Acustica, 18(1), pp 11-20 (1967) Eijk, J. van Den; "The New Dutch Code on Noise Control and Sound Insulation in Dwellings and its Background", J. Sound and Vib., 3(1), pp 7-19 (Jan. 1966) Bhandari, P. S.; Balachandran, C. G.; Krishnan, P. V.; "Functional Sound Absorbers and Noise Reduction in a Cafeteria", Indian J. Technol., 3(11), pp 345-350 (1965) Barron, M.; "Growth and Decay of Sound Intensity in Room According to Some Formulae of Geometric Acoustics Theory", J. Sound and Vib., 27(2), pp 183-196 (March 1973) ## WALLS AND PARTITIONS Utley, W. A.; Cummings, A.: Parbrook, H. D.; "The Use of Absorbent Material in Double-Leaf Wall Constructions", J. Sound and Vib., 9(1), pp 90-96 (Jan. 1969) Heebink, T. B.; Grantham, J. B.; "Field/Laboratory STC Ratings of Wood-Framed Partitions", S/V Sound and Vibration, 5(10), pp 12-16 (Oct. 1971) Meier, A. V.; "Application of Lead for Sound Insulating Partitions", S/V Sound and Vibration, 1(5), pp 14-19 (May 1967) Rettinger, M.; "Acoustic, Room Design and Noise Control", N. Y., p 386 (1968) Harris, C. H.; "Reduction of Noise by Walls or Fences", Handbook of Noise Control, p 7, New York (1975) Siekman, W.; "STC's and Room Dividers", Construction Specifier, pp 51-54 (Dec. 1971) "Eine Dunne, Leichte Trennwand mit Hoher Schalldammung", (A Thin Lightweight Partition Wall High Sound Reduction), 7th Intl. Congr. on Acoustics, Proceedings 4, p 77, Budapest (1971) Szudrowicz, B.; Zuchowicz, I.; "Uber Bezeichnung der Akustichen Eigenschaften von Werkstoffen und Konstruktionen Auf Grund Von Messungen an Kleinen Proben", (The Designation of Acoustic Properties of Materials and Constructions Based on Small Sample Measurements), 7th Intl. Congr. on Acoustics Proceedings 4, Budapest, p 141 (1971) Ingemanson, S.: "Sound
Insulation of Light Walls", 5th Intl. Congr. on Acoustics Proceedings, Liege (Sept. 1965) Lindahl, R.; "The Use of Insulation Board in Walls of Gypsum and Wood Studs to Improve Airborne Sound Insulation", 5th Intl. Congr. on Acoustics Proceedings, Liege (Sept. 1965) Zaborov, V. I.; "Normalization of the Acoustic Reduction in Buildings", Soviet Physics-Acoustics, 16(1), pp 43-45 (July/Sept. 1970) Donato, R. J.; "Sound Transmission through a Double-Leaf Wall", J. Acous. Soc. Amer., 51(3), pp 807-815 (March 1972) Kost, Von A.; "Modelluntersuchungen zur Theorie der Einfachwand", (Model Investigations on the Theory of Partition Walls), Acustica, 18(6), pp 342-350 (1967) "Zur Luftschalldammung von Einschaligen Wanden und Decken", (Airborne Sound Insulation of Single Partitions and Ceilings), 20(6), pp 334-342 (1968) Nilsson, A. C.; "Reduction Index and Boundary Conditions for a Wall between Two Rectangular Rooms, Part II: Experimental Results", Acustica, 26(1), pp 19-23 (Jan. 1972) Nilsson, A. C.; "Reduction Index and Boundary Conditions for Wall between Two Rectangular Rooms. Part I: Theoretical Results", Acustica, 26(1), pp 1-8 (Jan. 1972) Kihlman, T.; "Sound Transmission in Building Structures of Concrete", J. Sound and Vib., 11(4), pp 435-445 (April 1970) Velizhanina, K. A.; et al; "Impedance Investigation of Sound Absorbing Systems in Oblique Sound Incidence", Soviet Physics-Acoustics, 17(2), pp 193-197 (Oct./Dec. 1971) Lord, P.; "Improved Sound Insulation of Double Leaf Partitions Using Absorbent Cavity Linings", Insulation, 10(3), pp 122-123 (1966) Von Meier, A.; "Sound Insulation of Stiff Lightweight Partitions", Reports of the 6th Intl. Congr. on Acoustics, Tokyo, Vol. III, Paper E-4-4 (1968) Banuls-Terol, V.; "Composed Airborne Sound Isolation of Partitions under Suspended Ceilings", Reports of the 6th Intl. Congr. on Acoustics, Tokyo, Vol. III, Paper E-4-5 (1968) Fader, B.; "Mass-Air Mass Resonance Monograph", S/V Sound and Vibration, 4(8), p 25 (Aug. 1970) Tseo, G. G.; "Estimating the Noise Reduction of Wall Structures of Enclosures", J. Acoust. Soc. Amer., 52(6), Part 1, pp 1573-1578 (Dec. 1972) #### PANELS Awaya, K.; Miyazaki, Y.; "A New Theory on the Edge Effect of Sound Absorbing Panels", 7th Intl. Congr. on Acoustics Proceedings 4, Budapest, p 245 (1971) Ford, R. D.; Lord, P.; Walker, A. W.; "Sound Transmission through Sandwich Constructions", J. Sound and Vib., 5(1), pp 9-21 (Jan. 1967) Fang, G. T.; "Influence of Internal and Boundary Damping on Response of Panels to Random Excitations", Reports of the 6th Intl. Congr. on Acoustics, Tokyo, Vol. IV, Paper F-4-9 (1968) Kuga, S.; "On the Sound Transmission Loss of Sandwich Panels", Reports of the 6th Intl. Congr. on Acoustics, Tokyo, Vol. III, Paper E-4-6 (1968) #### **FLOORS** Ward, F. L.; Ranadall, K. E.; "Investigation of the Sound Isolation of Concrete Slab Floors", J. Sound and Vib., 3(2), pp 205-215 (March 1966) Choudhury, N. K. D.; Bhandari, P. S.; "Impact Noise Rating of Resilient Floors", Acustica, 26(3), pp 135-140 (March 1972) Ver, I. L., "Impact Noise Isolation of Composite Floors", J. Acoust. Soc. Amer., 50(4), pp. 1043-1050 (Oct. 1971) Ver, I. L.; "Relation between the Normalized Impact Sound Level and Sound Transmission Loss", J. Acoust. Soc. Amer., 50(6), pp 1414-1417 (Dec. 1971) Zaborov, V. I.; et al; "Reduction of Impact Noise by Flooring Materials", Soviet Physics-Acoustics, 12(3), pp 263-265 (1967) Choudhury, N. K. D.; "Impact Noise Transmission Through Floors", Indian J. Technol., 6(7), pp 213-216 (1968) Zaborov, V. I., "On the Transmission of Impact Noise through Single-Layer Floors", Akust. ZH., 14(1), pp 127-128 (1968) Larsen, J.; "Transmission Loss of Double Door Constructions", Reports of the 6th Intl. Congr. on Acoustics, Tokyo, Vol. III, Paper P-0-14 (1968) Matsui, M.; et al; "Sound Absorption Characteristics on an Acoustic Ceramic Tile", Reports of the 6th Intl. Congr. on Acoustics, Tokyo, Vol. III, Paper E-3-7 (1968) Northwood, T. D.; Clark, D. M.; "Frequency Considerations in the Subjective Assessment of Sound Insulation", Reports of the 6th Intl. Congr. on Acoustics, Tokyo, Vol. III, Paper E-3-8 (1968) Ellwood, E.; "The Anatomy of a Wall", S/V Sound and Vibration, 6(6), pp 14-18 (June 1972) DeBiase, J. L.; "Criteria and Design Specifications for Plant Noise Control", S/V Sound and Vibration, 6(9), pp 26-30 (Sept. 1972) Barton, C. K.; "A Single Number Rating for Effective Noise Reduction", S/V Sound and Vibration, 7(2), pp 23-25 (Feb. 1973) Heebink, T. B.; Grantham, J. B.; "Field/ Laboratory STC Ratings of Wood-Framed Partitions", S/V Sound and Vibration, δ(10), pp 12-16 (Oct. 1971) Siekman, W.; et al; "A Simplified Field Sound Transmission Test", S/V Sound and Vibration, 5(10), pp 17-21 (Oct. 1971) "Standards and Codes", S/V Sound and Vibration, 5(2), pp 4-5 (Feb. 1971) "Airport Operators Quit Noise Abatement Council", S/V Sound and Vibration, 2(3), p 4 (March 1968) #### **CEILINGS** Gosele, Von K.; "Zur Luftschalldammung Von Einschaligen Wanden und Decken", (Airborne Sound Insulation of Single Partitions and Ceilings), Acustica, 20(6), pp 334-342 (1968) Donato, R. J.; "Insulating Houses against Aircraft Noise", J. Acoust. Soc. Amer., 53(4), pp 1025-1027 (April 1973) #### DOORS AND WINDOWS "Zur Bewertung der Schalldemmung Von Fenstern", (The Evaluation of Sound Damping by Windows), 5th Intl. Congr. on Acoustics Proceedings, Liege (Sept. 1965) "Schalldammung Von Doppelscheiben Aus Mehrschichtglasern", (Sound Reduction by Double Pane Windows of Multilayered Glass), 7th Intl. Congr. on Acoustics Proceedings 4, Budapest (1971) Kiss, L. G.; "Ober Einige Akustischen Probieme Von Schalldammenden Turen und Fenstern in Studios", (Several Acoustic Problems on Sound Reducing Doors and Windows in Studios), 7th Intl. Congr. on Acoustics, Budapest (1971) ## FENCES AND OTHER NOISE BARRIERS Rettinger, M., "Fences and Other Noise Barriers", New York (1968) Harris, C. H.; "Reduction of Noise by Walls or Fences", Handbook of Noise Control, New York (1957) Scholes, W. E.; Salvidge, A. C.; Sargent, J. W.; "Field Performance of a Noise Barrier", J. Sound and Vib., 16(4), pp 627-642 (June 1971) #### EFFECTS OF STRUCTURAL ELEMENTS Bhandari, P. S.; Balachandran, C. G.; Krishnan, P. V.; "Functional Sound Absorbers and Noise Reduction in a Cafeteria", Indian J. Technol., 3(11), pp 345-350 (1965) Focsa, V.; Biborosch, L. D.; "Untersuchung der Schalldammung in Bauteilen Mit Hilfe Einer Impulsmethode", (Investigation of Sound Reduction of Structural Elements with the Help of an Impulse Method), 7th Intl. Congr. on Acoustics, Budapest (1971) Lazar, D.; "Schallschluckendre Modulelelemente", (Sound Absorbing Modular Elements), 7th Intl. Congr. on Acoustics, Budapest (1971) #### ARCHITECTURAL ACOUSTICS Eijk, J. V. D.; "The New Dutch Code on Noise Control and Sound Insulation in Dwellings and Its Background", J. Sound and Vib., 3(1), pp 7-19 (Jan. 1966) Harris, C. M.; "Acoustical Design of the John F. Kennedy Center for the Performing Arts, J. Acoust. Soc. Amer., 51(4), pp 1113-1126 (April 1972) "Ober Einige Akustischen Probleme Von Schalldammenden Turen und Fenstern in Studios", (Several Acoustic Problems on Sound Reducing Doors and Windows in Studios), 7th Intl. Congr. on Acoustics, Budapest (1971) Ishill, K.; "Architectural Acoustics of Steel Pavillion at Expo '70 in Alaska", 7th Intl. Congr. on Acoustics, Budapest (1971) #### **STANDARDS** Siekman, W.; "STC's and Room Dividers", Construction Specifier, pp 51-54, (Dec. 1971) Kryter, K. D.; "Acoustical Society of America Policy on Noise Standards", J. Acoust. Soc. Amer., 51(3), pp 803-806 (March 1972) Meyer, A. F.; "The Need for Standards on Noise", J. Acoust. Soc. Amer., 51(3), pp 800-802 (March 1972) Heebink, T. B.; Granthan, J. B.; "Field/Laboratory STC Ratings of Wood-Framed Partitions", S/V Sound and Vibration, 5(10), pp 12-16 (Oct. 1971) Guinter, J. M.; "Action Plan for Product Noise Reduction", S/V Sound and Vibration, 6(12), pp 18-22 (Dec. 1972) "AGMA Standard Specification for Measurement of Lateral Vibration on High Speed Helical and Herringbone Gear Units", S/V Sound and Vibration, 7(6), p 20 (June 1973) Thoma, F. A.; "Vibration Limits for High-Speed Gear Units", S/V Sound and Vibration, 7(6), p 20 (June 1973) #### I-5.2.3—INDUSTRIAL AND MACHINERY NOISE Machinery and Equipment Ducts Appliances Traffic Noise General #### MACHINERY AND EQUIPMENT Hardy, H. C.; Bishop, D. E.; "Evaluation of Equipment Noise", ASHRAE Journal Section Heating, Piping & Air Conditioning, pp 137-141 (Sept. 1955) Callaway, D. B.; "Reducing Noise in Machines", Machine Design, pp 1-8 (Dec. 1951) Potter, S. M.; Hardy, H. C.; "General Principles of Reducing Noise in Machinery", Noise Control, 1(5), pp 43-48 (Sept. 1955) Sanders, G. J.; "Noise Reduction in Machinery", Noise Control, 3(6), pp 29-37 (Nov. 1957) Sperry, W. C.; Sanders, G. J.; "Quiet Blades for 18-Inch Rotary Type Power Lawn Mowers", Noise Control, 5(3), pp 26-31 (May 1959) Badgley, R. H.; "Mechanical Aspects of Gear-Induced Noise in Complete Power Train Systems", ASME Paper 70-WA/DGP-1 Diboll; "The Measurement and Prediction of Exhaust Frequencies in Large Internal Combustion Engines", ASME Paper 72-DGP-2 #### DUCTS Scott, H. L.; "The Performance of Sound Absorbers in a Radial Diffuser Configuration", J. Sound and Vib., 19(4), pp 445-451 (Dec. 1971) Hall, H. H.; "Laboratory Evaluation of Field Measurements of the Truck Exhaust Noise", J. Acoust. Soc. Amer., 26(2), pp 216-220 (March 1954) Sparks, C. R.; Lindgren, D. E.; "Design and Performance of High-Pressure Blowoff Silencers", ASME Paper 70-WA/PET-1 Davies, H. G.; Williams, J. E. F.; "Aerodynamic Sound Generation in a Pipe", J. Fluid Mech., 32(4), pp 765-778 (1968) "Coping with Control-Valve Noise", Chemical Engineering, pp 149-153 (Oct. 1970) Callaway, D. B.; Tyzzer, F. G.; Hardy, H. C.; "Techniques for Evaluation of Noise-Reducing Piping Components", J. Acoust. Soc. Amer., 24(6), pp 725-730 (Nov. 1952)
Callaway, D. B.; Tyzzer, F. G.; Hardy, H. C.; "Resonant Vibrations in a Water-Filled Piping System", J. Acoust. Soc. Amer., 23(5), pp 550-553 (Sept. 1951) Mariano, S. J.; "Sound Absorption in Lined Rectangular Ducts with Wall Shear Layers-Convergence of the Numerical Procedure to the Analytical Solution", J. Sound and Vib., 27(1), pp 123-127 (March 1973) Bokor, J.; "A Comparison of Some Acoustic Duct Lining Materials According to Scott's Theory", J. Sound and Vib., 14(3), pp 367-373 (Feb. 1973) Lansing, D. L.; et al; "Effects of Wall Admittance Changes on Duct Transmission and Radiation Sound", J. Sound and Vib., 27(1), pp 85-100 (March 1973) Candel, S. M.; "Acoustic Radiation from the End of a Two-Dimensional Duct, Effects of Uniform Flow and Duct Lining", J. Sound and Vib., 28(1), pp 1-13 (May 1973) Hirata, Y.; et al; "Influence of Airflow on the Attenuation Characteristics of Resonator Type Mufflers", Acustica, 28(2), pp 115-120 (Feb. 1973) Audette, R. R.; McCormick, R. J.; "Silencers for Corrosive Applications", S/V Sound and Vibration, 5(2), pp 10-11 (Feb. 1971) Strumpft, F. M.; "Water Piping Systems and Noise Control", S/V Sound and Vibration, 3(5), pp 23-25 (May 1969) Sanders, G. J.; "Silencers: Their Design and Application", S/V Sound and Vibration, 2 (2), pp 6-13 (Feb. 1968) Doak, P. E.; "Fundamentals of Aerodynamic Sound Theory and Flow Duct Acoustics", J. Sound and Vib., 28(3), pp 527-562 (June 1973) #### APPLIANCES Tree, D. R.; Uffman, W. P.; "Noise Reduction of a Household Vacuum Cleaner", S/V Sound and Vibration, 7(3), pp 27-30 (March 1973) Tsao, M. C. C.; Musa, R. S.; "Noise Control in Home Appliances", S/V Sound and Vibration, 7(3), pp 31-33 (March 1973) Bender, E. K.; "Noise Source Impact in Construction/Buildings/Homes", S/V Sound and Vibration, 7(5), pp 33-41 (May 1973) #### TRAFFIC NOISE "Noise in Mass Transit Systems", SRI Journal, 16(1), pp 2-7 (Sept. 1967) Meteer, C. L.; "Application of Lead-Vinyl Noise Barriers in Transportation Equipment", Soc. Automotive Engineering, Preprint 720222, p 7, 4 refs. Harris, C. M.; Aitken, B. H.; "Noise in Subway Cars", S/V Sound and Vibration, 5(2), pp 12-14 (Feb. 1971) Campbell, R. A.; "A Survey of Passby Noise for Boats", S/V Sound and Vibration, 3(9), pp 24-26 (Sept. 1969) Callaway, V. E.; "Noise Control of Auxiliary Power Units for Aircraft", S/V Sound and Vibration, 1(9), pp 10-16 (Sept. 1967) Brasch, J. K.; "Vehicular Traffic Noise Near High Speed Highways", S/V Sound and Vibration, 1(12), pp 10-27 (Dec. 1967) "Objective and Subjective Measurement of Truck Noise", S/V Sound and Vibration, 1(4), pp 8-13 (April 1967) #### **GENERAL** Sanders, G. J.; Lawrie, W. E.; "Low Frequency Combustion Noise in Oilburning Equipment", ASHRAE Journal, Section Heating, Piping and Air Conditioning, (Oct. 1958) "A Pitch for the Noiseless Home", Business Week, pp 87-88 (May 1971) Bonvallet, G. L.; "The Measurement of Industrial Noise", Amer. Indus. Hygiene Assoc. Quart., Technical Guide No. 5 (Sept. 1952) Karplus, H. B.; Bonvallet, G. L.; "A Noise Survey of Manufacturing Industries", Amer. Indus. Hygiene Assoc. Quart., 14(4), pp 235-263 (Dec. 1953) "Typical Factory and Office Noise Problems in an Aircraft Plant", Noise Control, 2(2), pp 22-25, 90 (March 1956) Heitner, I.; "How to Estimate Plant Noises", Hydrocarbon Processing, 47(12), pp 67-74 (Dec. 1968) Seebold, J. G.; "Process Plant Noise Control at the Design Engineering Stage", ASME J. Engr. Industry, pp 779-784 (Nov. 1970) Jacks, R. L.: "Sound Suppression", Chemical Process Industries, pp 127-134 (Feb. 1961) Tyzzer, F. G.; "Reducing Industrial Noise, General Principles", Amer. Indus. Hygiene Assoc. Quart., 14(4), pp 1-22 (Dec. 1953) Bonvallet, G. L.; "Noise Sources in Modern Industry", Noise Control, 1(3), pp 30-33 (May 1955) Eijk, J. V. D.; Bitter, C.; "Neighbour's Footsteps", 7th Intl. Congr. on Acoustics, Budapest (1971) Hosey, A. D.; et al; "Industrial Noise: A Guide to its Evaluation and Control", U. S. Dept. of Health, Education and Welfare, Publication 1572 DeBiase, J. L.; "Criteria and Design Specifications for Plant Noise Control", S/V Sound and Vibration, 6(9), pp 26-30 (Sept. 1972) Mulholland, K. A.; "The Transmission of Sound through Structures", J. Inst. Heat. Vent. Engr., 38, pp 58-60 (June 1970) DiRita, R. A.; George, D. L.; "How to Estimate Sound Levels in Industrial Environments", S/V Sound and Vibration, $\theta(9)$, pp 33-36 (Sept. 1972) "Acceptable Noise Exposures", S/V Sound and Vibration, 1(11), pp 4, 6 (Nov. 1967) "Noise Control of Metal Stamping Operations", S/V Sound and Vibration, 5(11), pp 41-45 (Nov. 1971) "Standards and Codes", S/V Sound and Vibration, 5(2), pp 4-5 (Feb. 1971) "The First Quiet Portable Compressor", S/V Sound and Vibration, 3(5), pp 6-8 (May 1969) Torpey, P. J.; "Noise Reduction of a 115 KW Generator Set", S/V Sound and Vibration, 1(11), pp 16-22 (Nov. 1967) "Circular Saw Noise Control", S/V Sound and Vibration, 3(7), p 6 (July 1969) # I-5.2.4—COMMUNITY NOISE AND NOISE EFFECTS ON HUMANS Hardy, H. C.; "Tentative Estimate of a Hearing Damage Risk Criterion for Steady-State Noise", J. Acoust. Soc. Amer., 24(6), pp 756-761 (Nov. 1952) Cohen, A.; Anticaglia, J. R.; Carpenter, P. L.; "Temporary Threshold Shift in Hearing from Exposure to Different Noise Spectra at Equal dBA Levels", 51(2), pp 503-507 (Feb. 1972) Jones, H. H.; Cohen, A.; "Noise as a Health Hazard at Work, in the Community, and in the Home", 95th Annual Meeting of the American Public Health Assoc., 83(7), pp 533-536 (July 1968) Karplus, H. B.; "Mechanism of a Correlation Theory of Hearing", from Bionics Symp., 1962, J. Acoust. Soc. Amer., 35, p 809 (1963) Attenborough, K.; et al; "Large Scale Noise Surveys: An Educational Experiment", Acustica, 28(5), pp 290-295 (March 1973) Rice, C. G.; Marton, A. M.; "Impulse Noise Damage Risk Criteria", J. Sound and Vibration, 28(3), pp 359-368 (June 1973) Northwood, T. D.; Clark, D. M.; "Frequency Considerations in the Subjective Assessment on Sound Insulation", Reports of the 6th Intl. Congr. on Acoustics, Tokyo, Vol. III, Paper E-3-8 (1968) Schultz, T. J.; "Comments of the Paper Errors Due to Sampling in Community Noise Level Distributions'", J. Sound and Vib., 27(2), p 261 (March 1973) Schultz, T. J.; "Some Sources of Error in Community Noise Measurement", S/V Sound and Vibration, 6(2), pp 18-27 (Feb. 1972) Safeer, H. B.; "Community Noise Levels—A Statistical Phenomenon", J. Sound and Vib., 26(4), pp 489-502 (Feb. 1973) Bragdon, C. R.; "Urban Planning and Noise Control", S/V Sound and Vibration, 7(5), pp 26-32 (May 1973) Thiessen, G. J.; Olson, N.; "Community Noise-Surface Transportation", S/V Sound and Vibration, 2(4), pp 10-16 (April 1968) Donley, R.; "Community Noise Regulation", S/V Sound and Vibration, 3(2), pp 12-21 (Feb. 1969) Bragdon, C. R.; "City Noise Ordinances—A Status Report", S/V Sound and Vibration, 7(5), pp 45-48 (May 1973) Guinter, J. M.; "Action Plan for Product Noise Reduction", S/V Sound and Vibration, 6(12), pp 18-22 (Dec. 1972) Adams, J. V.; et al; "S/V Status Report: 3 Community-Noise Programs", S/V Sound and Vibration, 7(5), pp 42-44 (May 1973) "New Housing and Airport Noise (A Supplement to the Site Planning Handbook)" Central Mortgage and Housing Corporation, Ottawa, K1A, OP7, Canada #### I-5.2.5—MEASUREMENT AND TESTING Test Facilities Testing Techniques Test Results #### TEST FACILITIES Schultz, T. J.; "New Acoustical Test Facilities of the National Gypsum Company", J. Acoust. Soc. Amer., 45(1), pp 20-36 (Jan. 1969) Ingerslev, F.; Pedersen, O. J.; Moller, P. K.; Kristensen, J.; "New Rooms for Acoustic Measurements at the Danish Technical University", Acustica, 19(4), pp 185-199 (1968) Koltzsch, P.; Carraro, U.; "Ein Akustisch Reflexionsarmer Raum Mit Schallhartem Boden für Industrielle Messzwecke", (A Room for Industrial Measurements with Low Acoustic Reduction Properties and Acoustically Nonabsorbing Floors), 7th Intl. Congr. on Acoustics, Budapest (1971) Lavender, D. C.; "Interpretation of Noise Measurements", J. Sound and Vib., 15(1), pp 1-9 (March 1971) Siekmen, W.; "STC's and Room Dividers", Construction Specifier, pp 51-54 (Dec. 1971) Kost, V. A.; "Modelluntersuchungen Zur Theorie Der Einfachwand", (Model Investigations on the Theory of Partition Walls), Acustica, 18(6), pp 342-350 (1967) Zaveri, K.; "Estimation of Sound Pressure Levels at a Distance from a Noise Source", Testing Technique, pp 24-29 Hirschorn, M.; Singer, E.; "The Effect of Ambient Noise on Audiometric Room Selection", S/V Sound and Vibration, 7(2), pp 18-22 (Feb. 1973) "Test Room for Vocoder Research", S/V Sound and Vibration, 2(7), p 4 (July 1968) "Laboratory Measurements of Sound Transmission through Suspended Ceiling Systems", J. Acoust. Soc. Amer., 33(11), pp 1523-1530 (Nov. 1961) Sepmeyer, L. W.; "Effect of Filter Bandwidth and Attenuation Characteristics on Sound-Transmission Loss Measurements", J. Acoust. Soc. Amer., 39(2), pp 399-401 (Feb. 1966) Parking, P. H.; Stacy, E. F.; "The Anechoic and Reverberant Rooms at the Building Research Station", J. Sound and Vib., 19(3), pp 277-286 (Dec. 1971) Siekman, W., Jr.; "Architectural Acoustics (A Problem of Measurement", Frontier, pp. 16-21 (Autumn 1966) Kolmer, F.; Wagner, G.; "Several Physical Conditions at Measurements in Reverberation Rooms", Reports of the 6th Intl. Congr. on Acoustics, Tokyo, Vol. III, Papers E-5-6 (1968) #### TESTING TECHNIQUES Siekman, W.; Yerges, J. F.; Yerges, L. F.; "A Simplified Field Sound Transmission Test", S/V Sound and Vibration, 5(10), pp 17-21 (Oct. 1971) Utley, W. A.; Cummings, A.; Parbrook, H. D.; "The Accuracy of Laboratory Measurements of Transmission Loss", J. Sound and Vib., 16(4), pp 643-644 (June 1971) Jorgen, G. O.; "Technical Problems in Impact Noise Testing", 5th Int. Congr. on Acoustics, Liege (Sept. 1965) Svensson, J.; "Impact Noise Reduction Predicted from Samples of Flooring", 7th Int. Congr. on Acoustics, Budapest (1971) Walker, B.; Delsasso, L. P.; "Integrated Pulse
Technique for the Measurement of Acoustical Absorption Techniques", 7th Int. Congr. on Acoustics, Budapest (1971) Szudrowicz, B.; Zuchowicz, I.; "Uber Bezeichnung der Akustichen Eigenschaften Von Werkstoffen und Konstruktionen Auf Grund Von Messungen an Kleinen Proben", (The Designation of Acoustic Properties of Materials and Constructions Based on Small Sample Measurements), 7th Int. Congr. on Acoustics, Budapest (1971) Focsa, V.; Biborosch, L. D.; "Untersuchung der Schalldammung in Bauteilen mit Hilfe Einer Impulsmethode", (Investigation of Sound Reduction of Structural Elements with the Help of an Impulse Method), 7th Int. Congr. on Acoustics, Budapest (1971) Tyzzer, F. G.; Hall, H. H.; "An Evaluation Technique for Impact-Type Noises", Noise Control, 2(2), pp 38-41, 98 (March 1956) Higginson, R. F.; "A Study of Measuring Techniques for Airborne Sound Insulation in Buildings", J. Sound and Vib., 21(4), pp 405-429 (April 1972) Burd, A. N.; "The Measurement of Sound Insulation in the Presence of Flanking Paths", J. Sound and Vib., 7(1), pp 13-26 (Jan. 1968) "8th Acoustics Conference on Room and Building Acoustics in Czechoslovakia", J. Acoust. Soc. Amer., 47(5), pp 1160-1161 (1970) Huntley, R.: "The Effect of Room Characteristics on Sound Power Measurements", Noise Control, 5(1), pp 59-63, 77 (Jan. 1959) Heebink, T. B.; "The Field Measurement of Sound Insulation", S/V Sound and Vibration, 3(5), pp 18-22 (May 1969) Zwieback, E. L.; "Recording Aircraft Flyover Noise", S/V Sound and Vibration, 1(9), pp 17-24 (Sept. 1967) "Research Project on Impact Noise", S/V Sound and Vibration, 2(3), p 4 (March 1968) Safeer, H. B.; "Community Noise Levels—A Statistical Phenomenon", J. Sound and Vib., 26(4), pp 489-502 (Feb. 1973) Schultz, T. J.; "Some Sources of Error in Community Noise Measurement", S/V Sound and Vibration, 6(2), pp 18-27 (Feb. 1972) Fearn, R. W.; "Some Reverberation Time Measurements in English and Spanish Churches", J. Sound and Vib., 27(1), pp 134-135 (March 1973) Schultz, T. J.; "Comments of the Paper 'Errors Due to Sampling in Community Noise Level Distributions'", J. Sound and Vib., 27(2), p 261 (March 1973) Kertr, T. S.; King, D. B.; "Noise Control Design Using Scale Model Tests", S/V Sound and Vibration, 7(1), pp 14-21 (Jan. 1973) Steele, J. M.; "Time/Accuracy Tradeoffs in the Analysis of Random Signals", S/V Sound and Vibration, 6(12), pp 23-27 (Dec. 1972) Tatge, R. B.; "Noise Control of Gas Turbine Power Plants", S/V Sound and Vibration, 7(6), pp 23-27 (June 1973) "AGMA Standard Specification for Measurement of Lateral Vibration on High Speed Helical and Herringbone Gear Units", S/V Sound and Vibration, 7(6), pp 20-22 (June 1973) Maling, G. C.; "Guidelines for Determination of the Average Sound Power Radiated by Discrete-Frequency Sources in a Reverberation Room", J. Acoust. Soc. Amer., 53(4), pp 1064-1069 (April 1973) #### TEST RESULTS Lindahl, R.; "The Use of Insulation Board in the Walls of Gypsum and Wood Studs to Improve Airborne Sound Insulation", 5th Intl. Congr. on Acoustics Proceedings, Liege (Sept. 1965) Hudson, R. R.; Mulholland, K. A.; "The Measurement of High Transmission Loss (The Brick Wall Experiment)", Acustica, 24(5), pp 251-261 (May 1971) Nilsson, A. C.; "Reduction Index and Boundary Conditions for a Wall Between Two Rectangular Rooms. Part II: Experimental Results", Acustica, 26(1), pp 19-23 (Jan. 1972) Ward, F. L.; Randall, K. E.; "Investigation of the Sound Isolation of Concrete Slab Floors", J. Sound and Vib., 3(2), pp 205-215 (March 1966) Choudhury, N. K. D.; Bhandari, P. S.; "Impact Noise Rating of Resilient Floors", Acustica, 26(3), pp 135-140 (March 1972) Scholes, W. E.; Salvidge, A. C.; Sargent, J. W.; "Field Performance of a Noise Barrier, J. Sound and Vib., 16(4), pp 627-642 (June 1971) Scholes, W. E.; "A Note on the Repeatability of Field Measurements of Airborne Sound Insulation", J. Sound and Vib., 10(1), pp 1-6 (July 1969) Kodaras, M. J.; Hansen, R. A.; "Measurement Sound-Transmission Loss in the Field", J. Acoust. Soc. Amer., 36(3), pp 565-569 (March 1964) Ostergaard, P. B.; Cardinell, R. L.; Goodfriend, L. S.; "Transmission Loss of Leaded Building Materials", J. Acoust. Soc. Amer., 35(6), pp 837-843 (June 1963) Eisenberg, A.; Quenett, R.; "Schalldammung von Doppelscheiben Aus Mehrschichtglasern", (Sound Reduction by Double Pane Windows of Multilayered Glass), 7th Intl. Congr. on Acoustics, Budapest (1971) Fasold, W.; "Zur Bewertung Der Schalldammung von Fenstern", (The Evaluation of Sound Damping by Windows), 5th Int. Congr. on Acoustics, Liege (Sept. 1965) Kasteleijn, M. L.; "The Statistical Spread of Measured Airborne and Impact Sound Insulation in the Field", J. Sound and Vib., 3(1), pp 36-45 (Jan. 1966) Sarkov, N.; Petrov; "Uber Absorptionsgradmessunger in Hallraum", (Measurement of the Degree of Absorption in Halls), 7th Intl. Congr. on Acoustics, Budapest (1971) Bishop, D. E.; "Reduction of Aircraft Noise Measured in Several Schools, Motel, and Residential Rooms", J. Acoust. Soc. Amer., 39(5), pp 907-913 (1966) Bhandari, P. S.; Balachandran, C. G.; Krishnan, P. V.; "Functional Sound Absorbers and Noise Reduction in a Cafeteria", Indian J. Technol., 3(11), pp 345-350 (1965) Mintz, F.; Tyzzer, F. G.; "A Loudness Chart for Octave-Band on Complex Sounds", J. Acoust. Soc. Amer., 24(1), pp 80-82 (Jan. 1952) Utley, W. A.; Cummings, A.; Parbrook, H. D.; "The Use of Absorbent Material in Double-Leaf Wall Constructions", J. Sound and Vib., 9(1), pp 90-96 (Jan. 1969) McFadden, D.: Russell, W. E.; Pulliam, K. A.; "Monaural and Binaural Masking Patterns for a Low-Frequency Tone", J. Acoust. Soc. Amer., 51(2), pp 534-543 (1972) Tyzzer, F. G.; Hardy, H. C.; "The Properties of Felt in the Reduction of Noise and Vibration, J. Acoust. Soc. Amer., 19(5), pp 872-878 (Sept. 1947) Callaway, D. B.; Ramer, L. G.; "The Use of Perforated Facings in Designing Low Frequency Resonant Absorbers", J. Acoust. Soc. Amer., 24(3), pp 309-312 (May 1952) Noll, V. G. G.; "Die Frequenzahhangigkeit der Komplexen Elastizitatskonstanten, Einiger Baustoffe Zwischen etwa 5 und 100 kHz", (Frequency Dependency of Complex Elastic Constants of Some Building Materials between Approximately 5 and 100 kHz), Acustica, 24(2), pp 93-100 (Feb. 1971) Attenborough, K.; "Large Scale Noise Surveys: An Educational Experiment", Acustica, 28(5), pp 290-295 (March 1973) Koyasu, M.; "Investigations into the Precision of Measurement of Sound Absorption Coefficients in a Reverberation Room", Reports of the 6th Intl. Congr. on Acoustics, Tokyo, Vol. III, Paper E-5-8 (1968) Kolmer, F.; Wagner, G.; "Several Physical Conditions at Measurements in Reverberation Rooms", Reports of the 6th Intl. Congr. on Acoustics, Tokyo, Vol. III, Paper E-5-6 (1968) Karplus, H. B.; "Environment for Measuring Noise", Noise Control, 3(2), pp 19-22 (March 1957) McAuliffe, D. R.; "Design and Performance of a New Reverberation Room at Armor Research Foundation", J. Acoust. Soc. Amer., 29(12), pp 1270-1273 (Dec. 1957) Duggar, B. C.; "Special Sound Absorptive Materials in Noise Control", Amer. Indus. Hygiene Assn. J., 20, pp 447-452 (Dec. 1959) #### I-5,2,6—THEORETICAL ANALYSIS Waya, K.; Miyazaki, Y.; "A New Theory on the Edge Effect of Sound Absorbing Panels", 7th Intl. Congr. on Acoustics, Budapest (1971) Mechel, V. F.; Royar, J.; "Experimentelle Untersuchungen Zur Theorie Des Porosen Absorbers", (Experimental Investigation of the Theory of Porous Absorbers), Acustica, 26 (2), pp 81-96 (Feb. 1972) Ingemanson, S.; "Sound Insulation of Light Walls", 5th Intl. Congr. on Acoustics Proceedings, Liege (Sept. 1965) Nilsson, A. C.; "Reduction Index and Boundary Conditions for a Wall between Two Rectangular Rooms. Part I: Theoretical Results", Acustica, 26(1), pp 1-18 (Jan. 1972) Kihlman, T.; "Sound Transmission in Building Structures of Concrete", J. Sound and Vib., 11(4), pp 435-445 (April 1970) Waller, R. A.; "The Performance and Economics of Noise and Vibration Reducing Materials in the Construction Industry", J. Sound and Vib., 8(2), pp 177-185 (Sept. 1968) Ver, I. L.; "Calculation of the Resonant Sound Transmission Loss of a Finite Double Partition with Elastic Bridges using Statistical Energy Analysis", 7th Intl. Congr. on Acoustics, Budapest (1971) Zaborov, V. I.; "Normalization of the Acoustic Waves by Composite Platse", Soviet Physics-Acoustics, 16(1), pp 43-45 (July-Sept. 1970) Toyoda, H.; Hayek, S.; "Attenuation of Acoustic Waves by Composite Plates", J. Sound. Vib., 14(1), pp 103-113 (Jan. 1971) Thurston, E. G.; "On the Lowest Flexural Resonant Frequency of a Circular Disk of Linearly Varying Thickness Driven at Its Center", J. Acoust. Soc. Amer., 27(5), pp 926-929 (Sept. 1955) Donato, R. J.; "Sound Transmission through a Double-Leaf Wall", J. Acoust. Soc. Amer., 51(3), pp 807-815 (March 1972) Kihlman, T.; "Sound Radiation into a Rectangular Room, Applications to Airborne Sound Transmission in Buildings", Acustica, 18(1), pp 11-20 (1967) Ford, R. D.; Walker, A. W.; "Sound Transmission through Sandwich Constructions", J. Sound and Vib., 5(1), pp 9-21 (Jan. 1967) Karplus, H. B.; Raelson, V. J.; Schwartzbart, H.; "Noise and Vibration Control with Fiber Metallurgy", The Shock & Vibration Bulletin, 35(7), pp 261-265 (April 1966) Gilford; Gibbs, B. M.; "Internal Losses of Sound Propagation in Structures", 7th Intl. Congr. on Acoustics, Budapest (1971) Kraak, W.; Stobe, H. D.; "Der Einfluss Von Materialegenschaften, Insebesondere von Gefugenschaften, Insebesondere von Gefugenschaften, Insbesondere von Gefugedichte und Steifigkeit auf Das Schallisolations Verhalten Poroser Absorber", (The Effect of Material Properties Especially of Grain Density and Grain Stiffness on the Sound Reducing Properties of Porous Absorbers), 7th Intl. Congr. on Acoustics, Budapest (1971) Betzhold, V. C.; Kurz, K.; "Schalldammstoffe Aus Kunststoff", (Plastic for Sound Insulation), Acustica, 6(3), pp 162-165 (March 1972) Sperry, W. C.; "Analysis of Dynamic Systems Using the
Mechanical Impedance Concept", Noise Control, 7(2), pp 13-21 (March-April 1961) Sanders, G. J.; "Identification and Diagnosis of Noise Problems with References to Product Noise Quieting", Noise Control, 4(2), pp 15-21, 72-73 (March 1958) Al-Temimi, C. A.; "Interaction between Two Sound Fields Propagating in Different Directions", J. Sound and Vib. 8(1), pp 44-63 (July 1968) Pretlove, A. J.; "The Transmission of Outdoor Noises into Buildings", Environmental Engineers, 43, pp 7-10 (March 1970) Young, J. R.; "Attenuation of Aircraft Noise by Wood-Sided and Brick-Veneered Frame Houses" NASA CR-1637 (Aug. 1970) Tyzzer, F. G.; Hardy, H. C.; "Accelerometer Calibration Technique", J. Acoust. Soc. Amer., 22(4), pp 454, 457 (July 1950) Benson, R. W.; "Efficiency and Power Rating of Loudspeakers", Proc. of the Natl. Electronics Conference (Oct. 1955) Hardy, H. C.; Hall, H. H.; Ramer, L. G.; Proc. of the Natl. Electronics Conference, 8 (Jan. 1953) Benson, R. W.; "Evaluation of High-Powered Outdoor Sound Systems", Proc. of the Natl. Electronics Conference (Oct. 1956) Yousri, S. N.; et al; "Sound Radiation from Transversely Vibrating Unbaffled Beams", J. Sound and Vib., 26(3), pp 437-439 (Feb. 1973) Koss, L. L.; et al; "Transient Sound Radiated by Spheres Undergoing an Elastic Collision", J. Sound and Vib., 27(1), pp 59-75 (March 1973) Mazzola, C. G.; "A Note on Stimulated Emission Acoustic Power", J. Sound and Vib., 26(3), pp 307-310 (Feb. 1973) Guy, R. W.; et al; "The Transmission of Sound through a Cavity-Backed Finite Plate", J. Sound and Vib., 27(2), pp 207-223 (March 1973) Romilly, N.; "Sound Transmission through a Thin Plate under Tension", Acustica, 22(3), pp 183-186 (1970) Meier, A. V.; "Transmission Loss of Homogeneous and Sandwich Plates in the Coincidence Range", Acustica, 22(3), pp 125-136 (1970) Tseo, G. G.; "Estimating the Noise Reduction of Wall Structures of Enclosures", J. Acoust. Soc. Amer., 52(6), Part 1, pp 1573-1578 (Dec. 1972) Donato, R. J.; "Insulating Houses against Aircraft Noise", J. Acoust. Soc. Amer., 53(4), pp 1025-1027 (April 1973) Braunisch, Von. H.; "Vibrating Damping by Three-Layered Sandwich Systems", Acustica, 22(3), pp 136-144 (1969) ## II—COMPANY CODE NUMBERS AND ADDRESSES | Code
Numbe | r Company | Address | Pertinent
Data Table
Number | |---------------|---|--|---| | 1. | Abco Inc. | 4901 North Cooper
Oklahoma City, Okla. 73118 | 33 | | 2. | Accessible Products Co. | 1350 East 8th St.
Tempe, Ariz. 85281 | 43 | | 3. | Acousticorp Inc. | North Morehall Rd.
Malvern, Pa. 19355 | 12, 23 | | 1 4. | Acoustics Development Corp. | 1810 Holste Rd.
Northbrook, Ill. 60062 | 26 | | 5. | Acoustics Mfg. Corp. | 17210 Gable Ave.
Detroit, Mich. 48212 | 34 | | б. | Acoustiflex Corp. | P.O. Box 434
327 North Water St.
Batavia, III. 60510 | 1, 10-11, 20, 34, 36 | | 7. | Adcomold International | 1558 California St.
Denver, Colo. 80202 | 44 | | 8. | Adhaco Hardware Corp. | 5436 West 111th St.
Oak Lawn, Ill. 60453 | 46 | | 9. | Aeroncoustic Corp. | P.O. Box 65
Amityville, N. Y. 11701 | 26, 40 | | 10. | Aeronca Inc.
Environmental Control Gp. | P.O. Box 688
Pineville, N. C. 28134 | 20, 39 | | 11, | Air-O-Plastik Corp. | Asia Place
Carlstadt, N. J. 07072 | 7 | | 12. | Airtex Industries Inc.
(612) 588-0715 | 3558 Second St. North
Minneapolis, Minn. 55412 | 1, 6-9, 12, 18, 24,
36, 41-42, 44-45 | | 13. | Airtherm Mfg. Co. | 700 South Spring Ave.
St. Louis, Mo. 63110 | 25 | | 14, | Alpana Aluminum Products Inc. | 14105 State Hwy. 55
Minneapolis, Minn. 55427 | 33 | | 15. | Alpro Acoustics Div.
Structural Systems Corp. | P.O. Box 30460
New Orleans, La. 70190 | 21, 39, 46 | | 16. | Amax Aluminum Co., Inc.
Foil Products Div. | 6106 South Broadway
St. Louis, Mo. 63111 | 13 | | 17. | Amelco Window Corp. | P.O. Box 333
Hasbrouck Heights, N. J. 07604 | 33 | | 18. | American Acoustical Products
Div. of Ward Process Inc. | 9 Cochituate St.
Natick, Mass. 01760 | 8-10, 12, 19 | | 19. | American Desk Mfg. Co. | Temple, Tex. 76501 | 46 | | Code
Number | Company | Address | Pertinent
Data Table
Number | |----------------|----------------------------------|---|-----------------------------------| | 20. | American Seating Co. | 901 Broadway Ave. N.W.
Grand Rapids, Mich. 49504 | 46 | | 21. | American Smelting & Refining Co. | 150 St. Charles St.
Newark, N. J. 07101 | 13 | | 22. | American Vermiculite Corp. | 52 Executive Pk, South
Atlanta, Ga. 30329 | 44 | | 23. | Amweld Building Products | 100 Plant St.
Niles, Ohio 44446 | 32 | | 24. | Antiphon Inc. | 10 Westport Ave.
Norwalk, Conn. 06851 | 17 | | 25. | Arketex Ceramic Corp. | Brazil, Ind. 47834 | 11, 29 | | 26. | Arlon Products Inc. | 23924 South Vermont Ave,
Harbor City, Calif. 90710 | 45 | | 27. | Art Dropery Studios Inc. | 2766 North Lincoln Ave.
Chicago, Ill. 60614 | 36 | | 28. | Bar-Ray Products Inc. | 209 25th St.
Brooklyn, N. Y. 11232 | 13 | | 29. | BASF Mexicana, S. A. | Apartado Postal: 18-953
Mexico 18, D. F. | 21 | | 30. | Berven Rug Mills Inc. | P.O. Box 1792
2600 Ventura Ave.
Fresno,Calif. 93717 | 24 | | 31. | Breeko Industries | P.O. Box 1247
Nashville, Tenn. 37202 | 29 | | 32. | Brunswick Corp. | One Brunswick Plaza
Skokie, III. 60076 | 44 | | 33. 1 | Builders Brass Works Corp. | 3447 Union Pacific Ave.
Los Angeles, Calif. 90023 | 45 | | 34. 1 | Burkart . | 36th & Commercial Sts.
Cairo, Ill. 62914 | 1, 4, 24 | | 35.] | Butler Mfg. Co. | BMA Tower, Penn Valley Pk.
Kansas City, Mo. 64141 | 30 | | 36. (| Canada Metal Co. Ltd. | 721 Eastern Avc.
Toronto 8, Canada | 8, 10, 12-13, 43 | | 37. | Carey Electronic Engr. Co. | 1882 Clifton Ave.
Springfield, Ohio 45505 | 44 | | 38. (| Carney & Assoc. Inc. | P.O. Box 1237
Mankato, Minn. 56001 | 4, 18 | | Code
Number | r Company | Address | Pertinent
Data Table
Number | |----------------|---|---|-----------------------------------| | 39. | Casings Inc. | West Middlesex, Pa. 16159 | 40 | | 40. | C. E. Glass Co. | 825 Hylton Rd.
Pennsauken, N. J. 08110 | 16 | | 41. | Chemprene Inc. | 579 South Ave.
Beacon, N. Y. 12508 | 18 | | 42. | Commercial Plastics & Supply Corp. (COMCO) | 98-34 Jamaica Ave.
Richmond Hill, N. Y. 11418 | | | 43. | Concrete Products Inc. | P.O. Box 130
Brunswick, Ga. 31520 | 25 | | 44. | Congoleum Industries Inc. | 195 Belgrove Dr.
Kearny, N. J. 07032 | 41 | | 45. | Consolidated Kinetics Corp. | 249 Farnof Lane
Columbus, Ohio 43207 | 1, 9, 18, 36, 39, 43-45 | | 46. | Corlett-Turner Co. | 9145 King St.
Franklin Park, Ill 60130 | 46 | | 47. | Dearborn Glass Co. | 6600 South Harlem Ave.
Bedford Park, Ill.
P.O. Argo, Ill. 60501 | 16 | | 48. | Designed Enclosures Inc. | 316 East Beach Ave.
Inglewood, Calif. 90302 | 40 | | 49. | DeVac Inc. | 10130 State Hwy. 55
Minneapolis, Minn. 55441 | 33 | | 50. | Diamond Perforated Metals
Div. of Whittaker Corp. | 1791 South Figueroa
Gardena, Calif. 90248 | 44 | | 51. | Dixie Mfg. Co. | 110 Colley Ave.
Norfolk, Va. 23501 | 4 | | 52. | Dodge Cork Co. Inc. | Lancaster, Pa. 17604 | 18, 41, 44 | | 53. | Donn Products Inc. | 1000 Crocker Rd,
Westlake, Ohio 44145 | 21-22, 38 | | 54. | Duracote Corp. | 350 North Diamond St.
Ravenna, Ohio 44266 | 18 | | 55. | Duraflake Co. | P.O. Box 428
Albany, Oreg. 97321 | 16, 32, 41, 44, 46 | | 50. | Duwe Precast Concrete Products Co. | P.O. Box 412
Oshkosh, Wis. 54901 | 25 | | 57. | Eagle-Picher Industries Inc.
Chemicals and Fibers Div. | P.O. Box 1328
Joplin, Mo. 64801 | 20, 43 | | Code
Number | r Company | Address | Feriineni
Data Table
Number | |----------------|--|--|-----------------------------------| | 58. | Eastern Products Corp. | 9325 Snowden River Pkwy.
Columbia, Md. 21046 | 27 | | 5 9, | Eckel Industries Inc. | 155 Fawcett St.
Cambridge, Mass. 02138 | 6, 9, 19-20, 26, 32,
36, 39-40 | | 60, | Eggers Hardwood Products Corp. | P.O. Box 250
Necnah, Wis. 54956 | 32 | | 61. | E. I. DuPont de Nemours & Co. | Wilmington, Del. 19898 | 16 | | 62. | Elwin G. Smith Div. | 100 Walls St.
Pittsburgh, Pa. 15202 | 22, 28 | | 63, | Emerson Engr. Co. | 2719 North Emerson Ave.
Indianapolis, Ind. 46218 | 32 | | 64. | Environeering Inc. | 9933 North Lawler
Skokie, III. 60076 | 40 | | 65.
/ | ESP Inc. Environmental Services & Products | P.O. Box 1281
Dayton, Ohio 45401 | 9, 12, 18 | | √ 6G. | Enviropane Inc. | 348 North Marshall St.
Lancaster, Pa. 17602 | 33 | | 67. | Erdle Perforating Co. Inc. | P.O. Box 1568
100 Pixley Industrial Pkwy.
Rochester, N. Y. 14603 | 9, 44 | | 68, | Feeder Corp. of America | 4429 James Place
Melrose Park, Ill. 60507 | 40 | | 69.
/ | Felters Co. | 22 West St.
Millbury, Mass. 01527 | 4 | | √70. | Fenestra Door Products | 4040 West 20th St.
P.O. Box 8189
Erie, Pa. 16505 | 32 | | 71. | Fentron Industries Inc. | 2801 NW Market St.
Seattle, Wash. 98107 | 33 | | 72. | Ferro Corp. | 34 Smith St.
Norwalk, Conn. 06852 | 1, 9, 18, 36, 43-45 | | 73. | Fire Protection Products Co. | 1101 16th St.
San Francisco, Calif. 94107 | 20, 39 | | 74. | Flexicore Co. Inc. | P.O. Box 825
Dayton, Ohio 45401 | 30 | | 75. | Florida Concrete
& Products Assoc. Inc. | P.O. Box 160
Winter Park, Fla. 32789 | 5 | | Code
Number | · Company | Address | Pertinent
Data Table
Number | |----------------|--|---
-----------------------------------| | 76. | Florida Tile | 608 Prospect St.
Lakeland, Fla. 33802 | 44 | | 77. | Foamade Industries | 1220 Morse St.
Royal Oak, Mich. 48068 | 1, 6 | | 78. | Formigli Corp. | P.O. Box F
Berlin, N. J. 08009 | 30 | | 79. | Forty-Eight Insulations Inc. | Aurora, Ill. 60504 | 10, 18, 43 | | 80. | Friedrich & Dimmock Inc. | Millville, N. J. 08332 | 44 | | 81. | GAF Corp.
Industrial Products Div. | 140 West 51 St.
New York, N. Y. 10020 | 14-15, 18 | | √82. | General Acoustics Corp. | 12248 Santa Monica Blvd.
Los Angeles, Calif. 90025 | 1, 20, 20, 39-40 | | 83. | General Noisecontrol Corp. | 101 East Main St.
Little Falls, N. J. 07424 | 26 | | √84. · | Glen O'Brien
Movable Partition Co. Inc. | 5301 East 59th St.
Kansas City, Mo. 64130 | 38 | | 85. | Globe-Amerada Glass Co. | 2001 Greenleaf Ave.
Elk Grove Village, Ill. 60007 | 16 | | 86. | Globe Industries Inc. | 2638 East 126th St.
Chicago, Ill. 60633 | 10-11, 14-15 | | 87. | Goodyear Tire & Rubber Co. | Akron, Ohio 44316 | 39, 44 | | 88, | Gordon J. Pollock & Assoc. Inc. | P.O. Box 4243
Euclid, Ohio 44132 | 40 | | 89, | Harbison-Walker Refractories | 2 Gateway Center
Pittsburgh, Pa. 15222 | 29 | | ĐO, | Harrington & King
Perforating Co. Inc. | 5655 Fillmore St.
Chicago, Ill. 60644 | 44 | | 91. | Hecht Rubber Corp. | 484 Riverside Ave.
Jacksonville, Fla. 32202 | 44 | | 92. | H. E. Douglas Engr. Sales Co. | 2700 West Burbank Blvd.
Burbank, Calif. 91505 | 26 | | 93. | H. J. Otten Co. Inc. | 77 Cornwall Ave.
Buffalo, N. Y. 14215 | 39 | | 94. 1 | H, K. Porter Co. Inc. | P.O. Box 10516
Charlotte, N. C. 28201 | 18, 44 | | 95. 1 | Holcomb & Hoke Mfg. Co. Inc. | 1545 Calhoun St.
Indianapolis, Ind. 46207 | 23, 37 | | Code
Number | r Company | Address | Pertinent
Data Table
Number | |----------------|--|--|---| | 96. | Hol-O-Met Corp. | P.O. Box 1190
441 South Robson St.
Mesa, Ariz. 85201 | 32 | | 97. | Homosote Co. | Box 240
West Trenton, N. J. 0862 | 27, 41-42
8 | | 98. | Hough Mfg. Corp. | Janesville, Wis. 53545 | 37 | | 99. | Huebert Fiberboard Inc. | P.O. Box 167
East Morgan St.
Boonville, Mo. 65233 | 27 | | 100. | Hunter Douglas Canada Ltd. | 2501 Trans Canada Hwy.
Pointe-Claire, Quebec, C | 21
anada | | 101. | Hupp Corp.
Richard-Wilcox Mfg. Co. | 174 Third St.
Aurora, Ill. 60507 | 32, 37-38 | | 102. | Illinois Brick Co. | 228 North LaSalle St.
Chicago, Ill. 60801 | 29 | | 103. | Incel Corp. | P.O. Box 395
Bluffton, Ind. 46714 | 44 | | 104, | Industrial Acoustics Co. Inc. | 380 Southern Blvd.
Bronx, N. Y. 10454 | 26, 32, 38-39 | | 105. | Inescon, Inc. | P.O. Box 1386
Hudson, Ohio 44236 | 20 | | 100. | Inland-Ryerson Construction Products Co. | Box 393
Milwaukee, Wis. 53201 | 20, 25, 35, 30, 46 | | 107. | Insul-Coustie Birma Corp. | Jernee Mill Rd.
Sayreville, N. J. 08872 | 10-11, 18-19 | | 108. | Jamison Door Co. | P.O. Box 70
Hagerstown, Md. 21740 | 32 | | /109. | Johns-Manville Sales Corp. | Greenwood Plaza
Denver, Colo. 80217 | 2, 4, 21, 34, 39, 46 | | 110.
/ | Kawneer Co. Inc. | 1105 North Front St.
Niles, Mich. 49120 | 33 | | 111. | Korfund Dynamics Corp. | P.O. Box 235
Contiague Rd.
Westbury, Long Island, N. | 9 , 12, 18, 20, 26, 29, 36, 39
. Y. 11590 | | 112. | Krieger Steel Products Co. | 14200 South San Pedro St.
Los Angeles, Calif. 90061 | 32 | | 113. | Lahabra Products Inc. | 1631 West Lincoln Ave.
Anaheim, Calif. 92800 | 44 | | Code
Number | | Address | Pertinent
Duta Table
Number | |----------------|--|--|-----------------------------------| | 114. | Lake Shore Industries Inc. | 2806 North Reynolds Rd.
Toledo, Ohio 43615 | 32 | | 115. | Laminated Glass Corp. | 355 West Lancaster Ave.
Haverford, Pa. 19041 | 16 | | 116. | L. E. Carpenter and Co. | 964 Third Ave.
New York, N. Y. 10022 | 20, 22, 39 | | 117. | Bob Lench Co. | 16808 Armstrong Ave.
Santa Ana, Calif. 92705 | 32 | | 118. | Logan Long Co. | Franklin, Ohio 45005 | 11, 14-15 | | / 119. | Lord Corp. | 2000 West Grandview Blvd.
Erie, Pa. 16512 | 1, 9, 11, 17,
19, 26, 39 | | 120. | Martin Fireproofing Georgia Inc. | Elberton, Ga. 30635 | 25 | | 121. | Mason Industries Inc. | 92-10 182nd Place
Hollis, N. Y. 11423 | 30 | | 122. | Musonite Corp. | 29 North Wacker Dr.
Chicago, Ill. 60606 | 27 | | 120. | Midwest Woodworking Co. Inc. | 4019-21 Montgomery Rd.
Cincinnati, Ohio 45212 | 32 | | 124. | Miller Building Supply Co. Inc. | 1721 Standard Ave.
Glendale, Calif. 91201 | 32, 33 | | 125. | MIP Sciences Inc. | 223 Maple Ave.
Waukesha, Wis. 53181 | 1 | | 126. | Munchhausen Soundproofing Co. Inc. | 290 Riverside Dr.
New York, N. Y. 10025 | 32 | | 127. | National Cellulose Corp. | 12315 Robin Blvd.
Houston, Tex. 77045 | 3, 11, 17, 19, 43 | | 128. | National Gypsum Co.
Gold Bond Building Products | 1650 Military Rd.
Buffaio, N. Y. 14217 | 19-21, 27, 34 | | 129. | National Research Corp. | Concord Rd.
Billerica, Mass. 01821 | 13, 19-20, 36, 39 | | 130. | Norton Co./Sealants | 12 Bennett Dr.
Granville, N. Y. 12832 | 45 | | 131. | Overly Mfg. Co. | Greensburg, Pa. 15602 | 32 | | 132. | Owens/Corning Fiberglas Corp.
Technical Center | Granville, Ohio 43023 | 2, 18-21, 27, 30-31 | | 133. | Owens-Illinois Inc. | 1020 North Westwood Ave.
Toledo, Ohio 43607 | 44 | | Code
Number | Сопрапу | Address | Pertinent
Data Table
Number | |----------------|--|--|-----------------------------------| | √134. | Panelfold Doors Inc. | 10700 Northwest 36th Ave.
Miami, Fla. 33167 | 37, 44 | | 135. | Paramount Industries Inc. | P.O. Box 4
1711 South Second St.
Piscataway, N. J. 08854 | 6 | | 136. | Peelle Co. Ltd. | P.O. Box 10
Torbram Rd.
Malton, Ontario, Canada | 32 | | 137. | Pittsburgh Corning Corp. | Three Gateway Center
Pittsburgh, Pa. 15222 | 19 | | 138. | PPG Industries Inc. | P.O. Box 11472
Guys Run Rd,
Pittsburgh, Pa. 15238 | 16 | | 139. | Precision Acoustics Corp. | 55 West 42nd St.
New York, N. Y. 10036 | 26 | | 140. | Presray Corp. | 159 Maple Blvd.
Pawling, N. Y. 12564 | 45 | | √141. | The Proudfoot Co. Inc. | P.O. Box 9
Greenwich, Conn. 06830 | 5, 29 | | 142. | Ray Proof Corp. | 50 Keeler Ave.
Norwalk, Conn. 06856 | 26, 39 | | 143. | RCA Rubber Co. | 1833 East Market St.
Akron, Ohio 44305 | 8, 41 | | 144. | Reeves-Bowman Div.
Cyclops Corp. | Box 2129
Pittsburgh, Pa. 15230 | 25 | | 145. | Republic Steel Corp. | 1315 Albert St.
Youngstown, Ohio 44505 | 32 | | 146. | Reynolds Aluminum | 5th & Cary Sts.
Richmond, Va. 23218 | 21 | | 147. | Rink Corp. | Hazleton, Pa. 18201 | 20, 39 | | 148. | Rohm and Haas Co.
Plastics Engr. Lab. | Box 219
Bristol, Pa. 19007 | 16 | | | John Schneller & Assoc. | Kent, Ohio 44240 | 6, 8, 12, 18 | | \int 150. | Scott Paper Co.
Foam Div. | 1500 East Second St.
Chester, Pa. 19013 | 1, 6, 7, 44 | | 151. | Semco Mfg. Co. | P.O. Box 189
Salisbury, Mo. 65281 | 20, 39 | | Code
Number | r Company | Address | Pertinent
Data Table
Number | |----------------|----------------------------|---|--| | 152. | Shatterproof Glass Corp. | 4815 Cabot Ave.
Detroit, Mich. 48210 | 16 | | 153. | Shielding Research Co. | 3295 South Hwy. 97
Redmond, Oreg. 97756 | 8 | | 154.
/ | Simpson Timber Co. | 2000 Washington Building
Scattle, Wash. 98101 | 27 | | √ 155. | Singer Partitions Inc. | 444 North Lake Shore Dr.
Chicago, Ill. 60611 | 18, 23, 36, 40 | | / 156. | Sound Fighter Systems Inc. | 1200 Mid-South Towers
Shreveport, La. 71101 | 1, 12, 32, 39, 43 | | / 157. | Sound Solutions Corp. | 601 Washington St.
Lynn, Mass. 01901 | 1, 4, 6, 9, 12, 26,
32, 39, 43, 45-46 | | 158, | Souther Inc. | 1952 Kienlen Ave.
St. Louis, Mo. 63133 | 46 | | 159. | Span-Deck Inc. | Box 99
Franklin, Tenn. 37064 | 30 | | 160. | Specialty Composites Corp. | Delaware Industrial Pk.
Newark, Del. 19711 | 7, 9, 11-12 | | 161. | Standard Felt Co. | P.O. Box 871
115 South Palm Ave.
Alhambra, Calif. 91802 | 4, 18 | | 162. | Stark Ceramics Inc. | P.O. Box 8880
Canton, Ohio 44711 | 11, 29 | | 163. | Starline Inc. | P.O. Drawer G
Carencro, La. 70520 | 33 | | 164. | Starreo Co. Inc. | 1515 Fairview Ave.
St. Louis, Mo. 63132 | 26 | | 165. | St. Joe Minerals Corp. | Monaca, Pa. 15061 | 13 | | 166. | Superwood Corp. | 14th Ave. West & RR
Duluth, Minn. 55802 | 13, 18 | | 167.
/ | Tenneco Chemicals | 1430 East Davis St.
Arlington Heights, Ill. 60005 | 37 | | 168. | Tracor Inc. | 6500 Tracor Lane
Austin, Tex. 78721 | 26 | | 169. | Transco Inc. | 80 East Jackson Blvd.
Chicago, Ill. 60600 | 39 | | 170. | Premco Mfg. Co. | 10701 Shaker Blvd.
Cleveland, Ohio 44104 | 45 | | Code
Number | r Company | Address | Pertinent
Data Table
Number | |-------------------|--|--|-----------------------------------| | 171. | Trus Joist Corp. | 9777 West Chinden Blvd.
Boise, Idaho 83702 | 31 | | 172. | United McGill Corp.
United Sheet Metal Div. | 883 North Cassady Ave.
Columbus, Ohio 43219 | 20, 39 | | √ _{173.} | U. S. Air Duct Corp. | P.O. Box 187 Mattydale
Syracuse, N. Y. 13211 | 39 | | 174. | U. S. Industrial Chemicals Co. | P.O. Box 218
Tuscola, III. 61953 | 44 | | 175. | U. S. Mineral Products Co. | Stanhope, N. J. 07874 | 3, 17 | | 176. | U. S. Plywood |
777 Third Ave.
New York, N. Y. 10017 | 32 | | 177. | U. S. Rubber Reclaiming Co. Inc. | P.O. Box 54
Vicksburg, Miss. 39180 | 44 | | 178. | United Sheet Metal Div.
United McGill Corp. | 200 East Broadway
Westerville, Ohio 43081 | 20 | | 179. | Vecta Educational Co. | 2605 East Kilgore Rd.
Kalamazoo, Mich. 49003 | 37 | | 180. | Veneered Metals Inc. | P.O. Box 327
Woodbridge Ave, at Main St,
Edison, N. J. 98817 | 13, 44 | | /181. | Vibrasonies Inc. | P.O. Box 2543
Garland, Tex. 75040 | 20, 39 | | 182. | Virginia Metal Products Div. | Orange, Va. 22960 | 28 | | 183. | Vogel-Peterson Co. | P.O. Box 90
Elmhurst, Ill. 60126 | 19 | | 184. | Ward Process Inc. | P.O. Box 85
Cochituate, Mass. 01778 | √8, 10, 12 | | 185. | Wausau Metals Corp. | 1415 West St.
P.O. Box 1182
Wausau, Wis. 54401 | 33 | | 186. | Weblite Corp. | P.O. Box 780
Roanoke, Va. 24004 | 29 | | 187. | Wenger Corp. | Owatonna, Minn. 55060 | 26 | | 188. | Western Acadia Inc. | 4115 Ogden Ave.
Chicago, Ill. 60623 | 23, 44 | | Code
Number | Company | Address | Pertinent
Data Table
Number | |----------------|--------------------------------|---|-----------------------------------| | 189. | Weyerhneuser Co. | Box B
Tacoma, Wash. 98401 | 27, 31-32 | | 190. | Wheeling Corrugating Co. | 1134 Market St.
Wheeling, W. Va. 26003 | 25 | | 191. | William T. Burnett & Co. Inc. | 1500 Bush St.
Baltimore, Md. 21230 | 1 | | 192. | Workwall Movable Partitions | P.O. Box 130
Bronson, Mich. 49028 | 23 | | 193. | Zero Weatherstripping Co. Inc. | 415 Concord Ave.
Bronx, N. Y. 10455 | 46 | #### OTHER ORGANIZATIONS CONTRIBUTING DATA | Acoustical and Insulating Materials Assoc. | L | |--|----| | 205 West Touhy Ave. | | | Park Ridge, Ill. 60068 | | | American Hardboard Assoc. | N. | | 20 North Wacker Dr. | | | Chicago, Ill. 60606 | | American Plywood Assoc. 1119 A St. Tacoma, Wash. 98401 Brick Inst. of America 1750 Old Meadow Rd. McLean, Va. 22101 Carpet & Rug Inst. Inc. 909 Third Ave. New York, N. Y. 10022 Cast Iron Soil Pipe Inst. 2029 K St. NW Washington, D. C. 20006 Expanded Shale Clay, & Slate Inst. National Press Bldg. Washington, D. C. 20004 Gypsum Assoc. 201 N. Wells St. Chicago, Ill. 60606 Lead Industries Assoc. Inc. 292 Madison Ave. New York, N. Y. 10017 NAHB Research Foundation Inc. 627 Southlawn Lane Rockville, Md. 20850 National Concrete Masonry Assoc. P.O. Box 9185, Rosslyn Station 1800 North Kent St. Arlington, Va. 22209 National Research Council of Canada Div. of Building Research Ottawa, Canada Perlite Inst. Inc. 45 West 45th St. New York, N. Y. 10036 Prestressed Concrete Inst. 20 North Wacker Dr. Chicago, Ill. 60608 Spancrete Manufacturer's Assoc. 660 East Mason St. Milwaukee, Wis. 53202 U. S. Dept, of Agriculture Wood Construction Research 4507 University Way NE Seattle, Wash. 98105 # III—LIST OF DATA TABLES AND COMPANIES REPRESENTED | No. | Title | Company Code Numbers' | | | |-------------------|--|---|--|--| | | GROUP A: SOUND ABS | ORPTION MATERIALS | | | | 1 | Foams | 6, 12, 34, 45, 65, 72, 77, 82, 119, 125, 150, 156-157, 191 | | | | 2 | Glass Fiber Materials | 6, 109, 132 | | | | 3 | Spray-on Absorption Materials | 127, 175 | | | | 4 | Felt and Other Fibers | 34, 38, 51, 69, 109, 157, 161 | | | | 5 | Concrete Blocks | 75, 141 | | | | | GROUP B: COMPO | SITE MATERIALS | | | | 6 | Composites Vinyl/Foam | 12, 59, 77, 111, 135, 149-150, 157 | | | | 7 | Film/Foam | 11-12, 150, 160 | | | | 8 | Lead/Foam | 12, 18, 36, 143, 149, 153, 184 | | | | 9 | Other Barrier Materials and Foam | 12, 18, 45, 59, 65, 67, 72, 119, 157, 160 | | | | 10 | Barrier Material/Fiberglass | 6, 18, 36, 79, 86, 107, 184 | | | | 11 | Other Composite Materials | 3, 6, 25, 86, 107, 118-119, 127, 160, 162 | | | | 12 | Foam/Barrier/Foam | 12, 18, 36, 65, 111, 149, 156-157, 160, 184 | | | | | GROUP C: SOUND BA | ARRIER MATERIALS | | | | 13 | Lead | 16, 21, 28, 36, 129, 165-166, 180 | | | | 14 | Mastic | 81, 86, 118 | | | | 15 | Mastic with Cotton | 81, 86, 118 | | | | 16 | Glass and Plastic | 40, 47, 55, 61, 85, 115, 138, 148, 152 | | | | 17 | Spray-on Materials | 24, 119, 127, 175 | | | | 18 | Other Barrier and Damping Materials | 12, 38, 41, 45, 52, 54, 65, 72, 79, 81, 94, 107, 111, 132, 149, 155, 161, 166 | | | | | GROUP D: SOUND AB | SORPTION SYSTEMS | | | | 19 | Unit Absorbers | 18, 59, 107, 116, 119, 127-129, 132, 137, 183 | | | | 20 | Wall Treatments and Facings | 6, 10, 57, 59, 73, 82, 104-106, 111, 116, 128-
129, 132, 147, 151, 172, 178, 181 | | | | 21 | Ceilings | 15, 29, 53, 100, 109, 128, 132, 146 | | | | 22 | Partitions (Absorption) | 53, 62, 116 | | | | 23 | Curtains (Absorption) | 3, 95, 155, 188, 192 | | | | 24 | Floor Coverings (Absorption) | 12, 30, 34 | | | | 25 | Roof Decks (Absorption) | 13, 43, 56, 106, 120, 144, 190 | | | | Classical Control | and anti-lang are listed in species II | | | | ## III—LIST OF DATA TABLES—Continued | No. | Title | Company Code Numbers¹ | |-----|--|--| | | GROUP E: COMP | POSITE SYSTEM | | 26 | Prefabricated Quiet Rooms | 4, 9, 59, 82, 92, 104, 111, 119, 139, 142, 157, 164, 168, 187 | | | GROUP F: SOUND E | BARRIER SYSTEMS | | 27 | Gypsum Board Walls | 58, 97, 99, 122, 128, 132, 154, 189 | | 28 | Steel Walls | 62, 182 | | 29 | Masonry Walls | 25, 31, 89, 102, 141, 162, 186 | | 30 | Concrete Floors | | | 31 | Wood Floors | 132, 171, 189 | | 32 | Doors | 23, 55, 59, 63, 70, 96, 101, 104, 108, 112, 114, 117, 123-124, 126, 131, 136, 145, 156-157, 176, 189 | | 33 | Windows | 1, 14, 17, 42, 49, 66, 71, 110, 124, 163, 185 | | 34 | Suspended Ceilings — Sound | | | | Attenuation Factor | 5, 6, 109, 128 | | 35 | Roof Decks (Barrier) | 106, 120 | | 36 | Curtains (Barrier) | 6, 12, 27, 45, 59, 72, 155 | | 37 | Operable Partitions | 95, 98, 101, 134, 167, 179 | | 38 | Semipermanent Partition Assemblies | 53, 84, 101, 104 | | 39 | Prefabricated Sound Barrier Panels | 10, 15, 35, 45, 55, 59, 73, 82, 87, 93, 104, 106, 109, 111, 116, 119, 129, 142, 147, 151, 156-157, 169, 172-173, 181 | | 40 | Enclosures | 9, 48, 59, 68, 82, 88, 155 | | 41 | Floor Coverings — Tapping Machine Data | | | 42 | Floor Coverings - Transmission | | | | Loss Data | | | 43 | Pipe Laggings | 2, 36, 45, 57, 72, 79, 127, 156, 157 | | | GROUP G: SPEC | IALIZED ITEMS | | 44 | Other Materials | 7, 12, 22, 32, 37, 45, 50, 52, 55, 67, 72, 76, 80, 87, 90-91, 94, 103, 113, 133-134, 150, 174, 177, 180, 188 | | 45 | Gaskets, Scalants, and Scaling Tapes | 12, 26, 33, 45, 72, 130, 140, 157, 170 | | 46 | Special Application Products | | | 47 | General Building Materials and Furnishings | | # IV—TESTING LABORATORIES WITH ACRONYMS AND ADDRESSES | Cedar Knolls Acoustical Laboratory | | |---|--| | Cominco Ltd. of Canada | | | Geiger & Hamme | | | International Acoustical Testing Laboratory (INTEST)IATL 2200 Higherest Drive St. Paul, Minn. 55119 | | | Kodaras Acoustical Laboratory | | | Riverbank Acoustical LaboratoryRAL 1512 Batavia Avenue Geneva, Ill. 60134 | | | National Bureau of Standards | | | Owens Corning Reverberation Laboratory | | | Scott Foam Division Acoustical Laboratory | | | Product tested by the manufacturer | | | | | These are the principal laboratories performing acoustical tests on products listed in this document. The first six are independent testing laboratories whose facilities meet the requirements for performing tests according to the standards discussed in Section V. Note, however, that the National Bureau of Standards does not perform tests of this sort on a routine basis as in the past. To maintain uniformity among testing laboratories, the American Society for Testing and Materials (ASTM) Committee E-33 on Environmental Acoustics periodically conducts a round robin test series, in which a single specimen is tested in each of the laboratories. The results of these tests are compared at the committee meetings, and laboratories are able to maintain their test results to within a few decibels of each other. Not only do the independent testing laboratories participate in these round robin tests, but many manufacturers with their own test facilities also join the testing to check on and to maintain their calibration. The next three laboratories are owned and operated by the manufacturer for the purpose of testing their own products. However, they sometimes perform tests for other companies and are thus identified here. The last listing includes any testing facility operated by a company for the express purpose of testing their own products. These facilities do not necessarily meet the requirements imposed by any testing standard. However when they do meet the requirements the test data will include a statement that the test was performed in accordance with the required standard. For the purpose of uniformity, testing laboratories identified as CLC, OCRL, and SFDAL are listed as company tested (CT) when the data are for their own products. #### V—DESCRIPTION OF PERTINENT STANDARDS The published standards that pertain to the many types of noise measurements are too numerous to be included here. While ASTM is by no means the only organization publishing standards, it is these standards which cover almost all of the tests reported in the data tables in Section VI. It is therefore pointed out that since through the years standards have been changed, data obtained using older standards are somewhat different than they are today. A user knows the year of the standard because the ASTM designation shows the year as the last digits of the code number. For example, for
the present absorption test the code designation is C423-66 indicating standard number C423 first appeared as a standard in 1966. This does not necessarily mean that 1966 is the first year ASTM had a standard for absorption testing but that this form of the standard was published in 1966. It should also be noted here that there are standards covering the measurement of these values under field rather than laboratory conditions. The procedures are basically the same in principle, but generally, tests performed in the field will yield poorer results than tests performed under controlled laboratory conditions. However if careful attention is given to detail during construction and good measurement practice is maintained, the field test can give values approaching the laboratory values. #### V-1.—ABSORPTION The absorption standards are ASTM C423-66 American Society for Testing and Materials Standard Method of Test for Sound Absorption of Acoustical Materials in Reverberation Rooms ASTM C423-65T American Society for Testing and Materials Standard Method of Test for Sound Absorption of Acoustical Materials in Reverberation Rooms ASTM C423-60T American Society for Testing and Materials Standard Method of Test for Sound Absorption of Acoustical Materials in Reverberation Rooms ASTM C423-58 American Society for Testing and Materials Standard Method of Test for Sound Absorption of Acoustical Materials in Reverberation Rooms ASTM C384-58 American Society for Testing and Materials Standard Method of Test for Impedance and Absorption of Acoustical Materials by the Tube Method Brief descriptions of standards listed above: ASTM C423-66—Standard Method of Test for Sound Absorption of Acoustical Materials in Reverberation Rooms. The measurement method for determining the sound absorption properties of materials in a diffuse sound field is specified. Included in the specification are the test methods, room and specimen requirements, and sound source. When the specimen is in the form of an extended flat surface, the results are reported as random incidence absorption coefficients (i.e., absorption per unit area). If the specimen is in some specific size or shape such as a chair, or unit absorber, or landscape screen, etc., the results shall be reported as the total absorption in sabins for that unit (i.e., sabins/ unit). When this is the case the size, shape, number, and spacing of the units during the test must be stated exactly. When the specimen is in the form of an extended flat surface an additional piece of information reported is a one-number rating called Noise Reduction Coefficient (NRC). This NRC is an average of the values of the absorption coefficients at 250, 500, 1,000, and 2,000 Hz. Sometimes absorption coefficients measured by this method are greater than unity. This standard recommends that no adjustment be made to these values. However, if some adjustment is made the laboratory report must state exactly how the adjustment was performed. It is common for laboratories to report absorption coefficients greater than 1 but to round the NRC to 0.95 if it is greater than 1. The method for absorption testing in a reverberation room is described in Subsection I-3.1.1. ASTM C423-65T — Standard Method of Test for Sound Absorption of Acoustical Materials in Reverberation Rooms. This test method and ASTM C423-66 are exactly alike. The number is different because the method was accepted tentatively in 1965, and then adopted officially in 1966. ASTM 423-60T—Standard Method of Test for Sound Absorption of Acoustical Materials in Reverberation Rooms. This standard covers the same tests as ASTM C423-66 but allows a choice of three different sound sources. The other portions of the test procedure are essentially the same and results obtained in accordance with either form are equivalent. The current standard states that the test signals shall be one-third octave bands of random noise with a continuous frequency spectrum and with either equal energy per constant bandwidth, called white noise, or equal energy per constant proportional bandwidth, called pink noise. This earlier version of the standard permitted swept frequency tones or "warble" tones. The tone was warbled at a rate of 5 to 10 times per second through a range of +11 percent to -11 percent of the center frequency giving a bandwidth of approximately one-third octave. In lieu of warbling the tone signal this standard also permitted the use of suitable multitones centered on the standard test frequencies with a bandwidth of one-third octave. Finally, it also permitted the use of white noise of one-third octave bands centered on the standard test frequencies. One of the main reasons for rewriting the absorption standard was to eliminate the differences in test signals between testing laboratories. The newer standard specifies only the one type of test signal that may be used. While the test signals are quite different in these two test procedures, no problems are encountered when using the earlier data since the values obtained according to each standard compare well with each other. ASTM C423-58—Standard Method of Test for Sound Absorption of Acoustical Materials in Reverberation Rooms. This standard preceded and is similar to C423-60T. It was one of the first modern standards dealing with the properties of absorption as measured in the reverberation room. ASTM C384-58 (Reapproved 1972)— Standard Method of Test for Impedance and Absorption of Acoustical Materials by the Tube Method. The methodology for computing normal incidence absorption coefficients is specified. The method uses a closed tube with the specimen mounted in one end. A pure tone of sound is generated within the tube and the maxima and minima of the sound pressure inside the tube are measured. Normal incidence absorption coefficients, which this method determines are always lower than random incidence coefficients determined in a reverberation room. There is no simple way of relating these two values, especially since the relationship depends on the material itself. This standard is discussed in more detail in Subsection I-3.2. # V-2.—PROPERTIES OF THERMAL INSULATION The standards for the properties of thermal insulation are ASTM C262-64 American Society for Testing and Materials Standard Specification for Mineral Fiber Batt Insulation (Industrial Type) ASTM C553-70 American Society for Testing and Materials Standard Specification for Mineral Fiber Blanket and Felt Insulation (Industrial Type) ASTM C612-70 American Society for Testing and Materials Standard Specification for Mineral Fiber Block and Board Thermal Insulation Brief descriptions of standards listed above: ASTM C262 — Standard Specification for Mineral Fiber Batt Insulation (Industrial Type). The composition, dimensions, and physical properties are specified for mineral fiber industrial batt type thermal insulation, for use on surfaces operating continuously at temperatures up to 1,200° F. ASTM C553 — Standard Specification for Mineral Fiber Blanket and Felt Insulation (Industrial Type). The composition, dimensions, and physical properties are specified for mineral fiber blanket and felt thermal insulation for use either on heated surfaces up to 400° F or on refrigerated surfaces of equipment, ducts, and space at temperatures below ambient. ASTM C612 — Standard Specification for Mineral Fiber Block and Board Thermal Insulation, The composition, physical properties, and dimensions are specified for mineral fiber (rock, slag or glass) block and board intended for use as thermal insulation on surfaces at temperatures below ambient and above ambient up to 1,800° F. #### V-3.—TRANSMISSION LOSS, SOUND TRANSMISSION CLASS, AND IMPACT ISOLATION The standards of transmission loss, determination of sound transmission class, and impact isolation are ASTM E90-70 American Society for Testing and Materials Standard Recommended Practice for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions **ASTM E90-66T** American Society for Testing and Materials Standard Recommended Practice for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions **ASTM E90-61T** American Society for Testing and Materials Standard Recommended Practice for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions ASTM E90-55 American Society for Testing and Materials Standard Recommended Practice for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions ASTM E336-71 American Society for Testing and Materials Standard Method of Test for the Measurement of Airborne Sound Insulation in Buildings ASTM E336-67T American Society for Testing and Materials Standard Method of Test for the Measurement of Airborne Sound Insulation in Buildings AMA-I-II-1967 Acoustical Materials Association Ceiling Sound Transmission Test by the Two-Room Method for Measurement of Normalized Attenuation Factors ASTM E413-70T American Society for Testing and Materials Tentative Classification for Determination of Sound Transmission Class ASTM E492-73T (RM14-4) American Society for Testing and Materials Impact Sound Transmission Through Floor-Ceiling Assemblies Using the Tapping Machine FHA 750 Federal Housing Administration Guide to Impact Noise Control in Multifamily Dwellings Brief descriptions of standards listed above: ASTM E90-70 — Standard Recommended Practice for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions. Testing of the sound barrier properties of walls, partitions, doors, windows, floors, floor-ceiling assemblies, or any other material or system which may be utilized to provide sound isolation between two spaces is covered. The procedure calls for mounting the specimen between two reverberation rooms and measuring the sound pressure level in each. A description of the test procedure can be found in Subsection I-3.3. This standard was adopted in 1970 essentially
unchanged from its predecessor which appeared in 1966. ASTM E90-66T—Standard Recommended Practice for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions, This standard which covers testing of tiem sound barrier properties is the same as E90-70. It was in this standard that the test frequencies were fixed at one-third octave of either pink or white noise. Prior to this the transmission loss standard permitted the testing laboratory a choice of one of three different sound source signals. ASTM E90-61T—Standard Recommended Practice for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions, The same testing as in E90-66T and E90-70 is covered by this standard. However, the sound source is not as completely specified in this standard. Because of the different sound sources used, the data obtained under this standard sometimes showed values a few decibels higher in the lower frequencies. Also, this standard had provision for determining two different one-number ratings of the specimen. One of these ratings is called the "Nine-Frequency Average". This number is simply the average decibel value of the transmission losses at the nine test frequencies of 125, 175, 250, 350, 500, 700, 1,000, 2,000, and 4,000 Hz. It should be noted that the test frequencies, while they are approximately one-third octave wide, they are centered on the one-half octaves and are not the series used in today's test standards. The other one-number rating was called the Sound Transmission Class (STC). STC's obtained by this method are equivalent to STC's computed by E413-70T to within the accuracy of the measurements, however the methods of computation are different. The change made in 1966 for transmission loss testing was the same as the change made in the absorption standard. The choice of one-third octave wide warble tone bands, or multitone bands, as in absorption testing, were replaced with a continuous spectrum source, either white or pink noise in shape, and filtered with a one-third octave band filter. Whereas this change produced little effect in absorption coefficients, the values of transmission loss tested with the newer sound source showed values 2 to 3 dB lower in the first few bands leaving the higher frequency bands relatively unchanged. Normally, a 2 to 3 dB change would not be a matter of major concern, although this 2 or 3 dB could result in a lower value of STC for a particular product. ASTM E90-55 — Standard Recommended Practice for the Laboratory Measurement of Airhorne Sound Transmission Loss of Building Partitions. This standard preceded and is similar to E90-61T. It was one of the first modern standards dealing with the properties of transmission loss of industrial materials. ASTM E336-71—Standard Method of Test for the Measurement of Airborne Sound Insulation in Buildings. This standard establishes uniform procedures for the determination of field transmission loss, i.e., the airborne sound insulation provided by a partition already installed in a building. It also establishes a standard method for the measurement of the noise reduction between two rooms in a building. If the test structure is a complete enclosure out-of-doors, neither the field transmission loss nor the noise reduction is appropriate; instead, a method for determining the insertion loss is established. Results from this method may then be reported in three ways: Field Sound Transmission Class (FSTC), which provides an evaluation of the performance of a partition in certain common sound insulation problems; Noise Isolation Class (NIC), which provides an evaluation of the sound isolation between two enclosed spaces which are acoustically connected by one or more paths; or Field Insertion Loss (FIL), which is a measure of the sound isolation between two locations, one of which is not enclosed. ASTM E336-67T — Standard Method of Test for the Measurement of Airhorne Sound Insulation in Buildings. This test method and ASTM E336-71 are exactly alike. The numbers are different because it was accepted as a tentative method in 1967 before the official adoption in 1966. AMA-I-II-1967—Ceiling Sound Transmission Test by the Two-Room Method for Measurement of Normalized Attenuation Factors, The method of test is intended for the direct measurement of sound transmission through a suspended ceiling. This is a performance test for a configurational property of ceiling construction, without explicit reference to the sound absorption coefficients or sound transmission loss (TL) of ceiling materials. Performance is rendered independent of the total in situ absorption contribution of the receiving-room ceiling under test conditions by normalizing results with respect to separate measurements and thereby focusing attention upon the relative energy transmission of the ceiling configuration. The method of test is designed to reflect field conditions of ceiling erection under laboratory conditions of measurement control. ASTM E413-70T—Tentative Classification for Determination of Sound Transmission The purpose of this classification is to provide a standard method for determining the one-number rating of sound barrier items. The original intention of STC was to correlate measured sound reduction properties with subjective impressions of the specimen performance when used as a barrier against such sounds as speech, music, radio, television, etc., because these are the types of sounds that exist in most homes, apartments, offices, and schools. Consequently, the sounds of a factory, or of jet aircraft, or other transportation systems, whose noise spectrum is quite different from music or speech are not well treated by the STC value. It is therefore necessary to use the complete set of TL values to determine the performance of a partition against such noises. Prior to the publication of E413 in 1970 the procedure for determining STC was published by ASTM as a recommended method (RM14-2) in 1966. This procedure is the same as E413 and first appeared in 1966 when E90 was revised. The procedure for determining STC before 1966 was a part of E90-61T and was different from the present method (see discussion of E90-61T). This standard specifies the technique for comparing the TL values at each of the 16 one-third octave bands to the STC contours and the determination of the STC. The highest contour to which the specimen TL curve meets the requirements (see Subsection I-3.3.2) is the STC curve. The value of this curve at 500 Hz is the STC rating of the specimen. The numerical values for this set of standard contours are shown in Table I-5. Further discussion of STC can be found in Subsection I-3.3. ASTM E492-73T (RM14-4) — Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine. This procedure was originally published in 1971 as a recommended method only (RM14-4). The method uses a standard tapping machine to produce impacts on a floor- ceiling assembly and the sound pressure levels produced by these impacts are measured in the room below the assembly. There is still much debate over the use of the tapping machine as to impact source because many feel that these impacts are not representative of noises produced by such occurrences as dropping objects on the floor, sliding objects across the floor, and in particular, the noises due to footfalls. Prior to the publication in 1971 of RM14-4 there was no American standard to cover impact testing. There is, however, an international standard which is very much the same which is published by the International Standards Organization (ISO) as R140, This standard does not provide for an IIC value but did specify normalization to 10 metric sabins (meter2) absorption. This standard is discussed in more detail in Subsection I-3.4. FHA 750—Guide to Impact Noise Control in Multifamily Dwellings. This authority establishes a method of testing which makes it possible to evaluate different floors, as to their ability to impede the transmission of impact noise to the space below. A tapping machine, which generates the impact noise, is set into operation on the floor. Sound pressure levels are then taken in the space below. These levels are normalized to a receiving room with a reverberation time of 0.5 second. The normalized levels are then compared to the standard FHA impact noise curve, allowing a single number, the Impact Noise Rating (INR), to be determined. INR numbers which are zero or greater meet the recommended FHA specifications; those less than zero do not. The higher the INR the better the impact isolation. #### V-4,—AMERICAN NATIONAL STANDARDS INSTITUTE For the many other types of acoustic test data there is probably some type of standard which governs the procedure. While the above test standards and the many other standards that relate to specific types of items provide for the measurement of particular items, there is another series of standards that specifies general acoustic measurement methods, values for references, etc. These are the standards published by the American National Standards Institute (ANSI). This institute was originally known as the American Standards Association and the published standards have the prefix ASA. In 1966 the name was changed to United States of America Standards Institute (USASI) and standards published by this group are prefixed with USAS. Again in 1969 the name of this organization was changed. Since American National Standards Institute is the current name, the following standards are shown with the prefix ANSI regardless of the year of publication. While some copies of earlier standards may bear the title of ASA standard or USAS standard, all of these have been adopted as ANSI standards. These standards specify how to make acoustic measurements. the characteristics of laboratory microphones, how calibrations shall be performed on these, test room characteristics, etc. This organization does not concern itself with
the special procedures which must be followed when making these measurements on any special class of items. These standards are listed below and described in the subsequent paragraphs. | ASA Z24.19-1957 | Laboratory Measurement | |-----------------|--------------------------| | | of Airborne Sound Trans- | | | mission Loss of Building | | | Floors and Walle | | ANSI | S1.1-1960 | American | Nations | ıl Stan- | |------|-----------|----------|---------|----------| | | | dard Aco | ustical | Termi- | | | | nology. | | | | ANSI | S1,2-1962 | American National Star | | | |------|-----------|-------------------------|--|--| | | | dard Method for the | | | | | | Physical Measurement of | | | | | | Sound | | | | ANSI S1.4-1971 | American National Stan- | |----------------|-------------------------| | | dard Specification for | | | Sound Level Meters | | ANSI | S1.6-1967 | Amer | ican | Natio | nal | Stan- | |------|-----------|------|------|-------|-------|--------| | | | dard | Pref | erred | Fre | equen- | | | cies | for | Aco | นร | tical | | | | | Meas | urem | ents | | | ANSI S1.8-1969 Ame American National Standard Preferred Reference Quantities for Acoustical Levels ANSI S1.10-1966 American National Standard Method for the Calibration of Microphones ANSI S1,11-1966 American National Standard Specification for Octave, Half-Octave, and One-Third Octave Band Filter Sets ANSI S1.12-1967 American National Standard Specification for Laboratory Standard Microphones ANSI S1.13-1971 American National Standard Method for the Measurement of Sound Pressure Levels ANSI S1.21-1972 American National Standard Method for the Determination of Sound Power Levels of Small Sources in Reverberation Rooms Brief descriptions of standards listed above: ASA Z24.19-1957 — Laboratory Measurement of Airborne Sound Transmission Loss of Building Floors and Walls. This recommended practice is intended to cover the random incidence or reverberant sound method for the laboratory measurement of airborne sound transmission loss of floors, walls, windows, doors, etc. It gives specifications for the test facility and testing equipment including the signal requirements of random noise or warble tone, sound sources, position of microphones, and format for the report. It also gives minimum conditions of the sample. ANSI S1.1-1960—American National Standard Acoustical Terminology (Including Mechanical Shock and Vibration). The purpose of this standard is to establish and define standard acoustical terminology. ANSI S1.2-1962—American National Standard Method for the Physical Measurement of Sound. Methods for measuring and reporting the sound pressure levels and sound power generated by a source of sound are established. This standard applies primarily to airborne sound produced by apparatus which normally operates in air. These sounds must not be impulsive and must be of sufficient duration to be within the dynamic measuring capabilities of the instruments used. ANSI S1.4-1971—American National Standard Specification for Sound Level Meters. The purpose of this standard is to maintain maximum possible accuracy of sound level measuring instruments and to maintain uniformity between instrument measured quantities. Characteristics of sound level meters starting with the amplitude, frequency response, and directional properties of the microphone are specified. The frequency weighting filters are standardized both to shape of the weighting function and tolerances on these shapes. The tolerances are divided into three groups with Type I (Precision) the most stringent, then Type II (General Purpose) and Type III (Survey) the least stringent. Meter response time and output requirements are also covered. ANSI S1.6-1967—American National Standard Preferred Frequencies for Acoustical Measurements. To maintain uniformity and comparability among measurements this standard specifies which series of frequencies shall be used as the preferred octave, one-half octave, and one-third octave bandwidths. It is in this standard that the one-third octave series is modified so that they are actually one-tenth decade. This modification changes the bandwidths less than 0.1 percent and provides a series of frequencies where 10 successive one-third octave bands are in the ratio of 10:1 in center frequency (see Subsection I-2.2.4). ANSI S1.8-1969—American National Standard Preferred Reference Quantities for Acoustical Levels. Values to be used as reference when acoustic quantities such as power, pressure, intensity, etc., are stated in the form of levels are specified. This standard does not specify that level shall be used but provides the reference to a convenient magnitude for any physical quantity that may be used in acoustics. ANSI S1.10-1966 — American National Standard Method for the Calibration of Microphones. Techniques and principles involved for performing absolute calibration of microphones are described. Experimental procedures for determining pressure, free field, and diffuse field calibrations are standardized. These procedures provide for either absolute calibration based on the reciprocity principle or calibration by comparison with another microphone, ANSI S1.11-1966 — American National Standard Specification for Octave, Half-Octave, and One-Third Octave Band Filter Sets. Just as ANSI S1.4 specifies the characteristics and tolerances on sound level meters, this standard specifies the characteristics of band pass filters for acoustical measurements. Some of the items specified are the features of the pass band and the slope and width of the skirts of the band. This standard assures the user of acoustic band pass filter sets that measurements made with one filter set will agree with those made with any other filter set providing each set conforms to the standard. ANSI S1.12-1967 — American National Standard Specification for Laboratory Standard Microphones. The physical, electrical, and acoustical properties of microphones that are suitable for calibration by an absolute method, such as the reciprocity technique described in ANSI S1.10, are described. These microphones are intended to be used for acoustical standards or as comparison microphones for calibrating other microphones by the comparison technique. ANSI S1.13-1971 — American National Standard Method for the Measurement of Sound Pressure Levels, This standard is a partial revision of ANSI S1.2-1962 and contains recommendations pertaining to the techniques of the physical measurement of sound. These techniques are applicable to a variety of environment conditions but are not intended to include measurements made for the purpose of determining the sound power level radiated from a source. This standard is applicable to the many different types of sound pressure level measurements that may be encountered in practice and is intended to provide assistance to those persons responsible for the preparation of test codes, ordinances, acoustical criteria, and effects of noise on people, etc. ANSI S1.21-1972 — American National Standard Method for the Determination of Sound Power Levels of Small Sources in Reverberation Rooms. While the main purpose of this standard is to describe in detail the procedures for the measurement of sound power levels, its pertinence here is due to the lengthy and complete discussion of the quality and characteristics of the reverberation room for making the measurements. This standard describes both a direct method for determining sound power level and a comparison method which uses a calibrated reference sound source. DATA TABLES ## SECTION VI DATA TABLES ### GUIDES TO TABLES Materials for noise control come in a variety of forms. Actually any material can be used to reduce noise since each form has a certain capacity to absorb, reflect or attenuate sound. The products listed in the data tables have been proven to be efficient and/or economical means to reduce noise. Usually the basic materials are either good sound barriers or absorbers. To improve the acoustic performance of a product, two or more such materials are often combined to form a composite material or a total sound control system. There are materials and systems which control noise directly by sound absorption or sound transmission reduction, and indirectly by limiting the sound power output of machines by reducing the vibration levels of panels, floors, etc. This diversity of products requires different testing procedures and parameters. For this reason products are grouped in these tables so that a meaningful study of the products and their properties may be made. ### Group A: Sound Absorption Materials (Tables 1 through 5) Foams, glass fiber products, spray-on materials, felts, and concrete blocks with cavities. # Group B: Composite Materials for Sound Absorption and Sound Transmission Reduction (Tables 6 through 12) Foams laminated to lead or leaded vinyl, foam with protective films, glass fibers applied to barrier materials, and other such products. ### Group C: Sound Barrier Materials (Tables 13 through 18) Lead, mastic, mastic with cotton, glass, plastic, and others. ### Group D: Sound Absorption Systems (Tables 19 through 25) Functional absorbers, wall treatments, ceilings, partitions, curtains, floor coverings, and roof decks. # Group E: Composite System for Sound Absorption and Transmission Reduction (Table 26) Quiet rooms and booths constructed from sound barrier panels on the outside and lined with absorptive materials on the inside. # Group F: Sound Barrier Systems (Tables 27 through 43) Walls, floors, ceilings, roof decks, curtains, partitions, panels, machinery enclosures, floor coverings, and pipe laggings. Certain floors and floor coverings which reduce impact noise generation and transmission are also listed in this group of tables. ## Group G: Specialized Items (Tables 44 through 47) Special materials like rubber, cloth, etc., which may be used with advantage in specific applications. Also included in
this group are gaskets, sealants, special application products, general building materials, and furnishings. The data tables along with appropriate footnotes are for the most part self-explanatory. The following comments are made to clarify or to emphasize certain points: - The tables are presented in three distinct formats: (1) Transmission loss and noise reduction data are provided for each one-third octave band with center frequencies of 125, 160, 200, 250, 315, 400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500, 3150, and 4000 Hz. (2) In a slightly different format, sound absorption coefficient data are shown for one-third octave bands with center frequencies of 125, 250, 500, 1000, 2000, and 4000 Hz. (3) Products for which the transmission loss or sound absorption type information was not available are listed as to product name, description, application, and manufacturers. - The products are arranged in the order of increasing thicknesses. Sound absorption of the products depends upon how they were mounted in the test laboratory and accordingly, sound absorption materials are initially arranged according to the mounting number. For each mounting method the products are arranged according to their thicknesses. - Testing procedures are not always identical for the products listed in the same table. For this reason the footnotes and the test procedure codes should be studied carefully before making a comparison between two products in the same table. - The weight or density of the product may be given in lb/ft², lb/ft³, or in lb/unit. The column headings show the units used in each table. - The identification numbers of the manufacturers appearing in the data tables are listed in Section II. - The Lab. column identifies the laboratory where the acoustic test was performed and the test report number. Acronyms of the laboratories are used and they are spelled out in Section IV. \$ ¹ - A dash indicates that the information for the column was not available. - Product name is listed in the Product column. Some items are identified by a short product description as no trade name was given. - Some products are in more than one table, their properties being applicable to a variety of situations. - Glossary includes generic trade terms, but does not include more specific, product orientated terms which are described in the footnotes. - Footnotes include specific product information, test specifications or test method, and other useful data. - Abbreviations and rating codes that are used in the tables and footnotes to provide additional acoustic or nonacoustic information about a product or test procedure are explained below. ASTM American Society for Testing and Materials UL Underwriters Laboratories UL 94 UL Specification 94 -- ASTM Designation D1692. Small-scale laboratory procedure to compare flammability. Correlation with flammability under actual use condition is not implied. Temperature Range Range of temperature in which the product behaves according to specification Humidity Range Range of relative humidity in which the product behaves according to specification AIMA Acoustical and Insulating Materials Assn. AMA American Materials Assn. (Now AIMA) ANSI American National Standards Institute FHA Federal Housing Administration ASA American Standards Assn. (Now ANSI) ISO International Standards Organization NEMA National Electrical Manufacturers Assn. NFPA National Fire Protection Assn. UL Fire Hazard Classification a/b/c The UL-developed tunnel test method, UL723, for testing the fire characteristics of building materials is also known as standard ASTM E-84 and NFPA Number 255. ### a: Flame Spread Material to be tested is placed on the underside of a removable top panel of a tunnel and a flame is introduced at one end. The distance at which the flame spreads, in a given period of time, is called the flame spread and is rated on a scale where cement asbestos board is zero and red oak is 100. Most building codes have sections in which the most stringent requirements permit a flame spread rating from zero to 25. # b: Fuel Contributed The temperature rate of increase is measured at the end of the tube opposite the flame, and again compared to cement asbestos board and red oak. ### c: Smoke Developed The smoke density is measured with a photoelectric cell. Figures used in table guides are included courtesy of the following manufacturers: | Figure | Company | |--------|---| | 1 | Sound Solutions Corp. | | 5 | The Proudfoot Co. Inc. | | 6 | Sound Solutions Corp. | | 7 | Specialty Composites Corp. | | 10A | Canada Metal Co. Ltd. | | 10B | Globe Industries, Inc. | | 11A | Stark Ceramics Inc. | | 11B | Specialty Converters, Inc. | | 12A | Canada Metal Co. Ltd. | | 12B | Korfund Dynamics | | 19A | Pittsburgh Corning Corp. | | 19B | Insul-Coustic Birma Corp. | | 19C | Owens/Corning Fiberglas Corp. | | 20A | L. E. Carpenter and Co. | | 20B | Owens/Corning Fiberglas Corp. | | 21 | Owens/Corning Fiberglas Corp.
and Johns-Manville Sales Corp. | | 22 | L. E. Carpenter and Co. | | 25A | Concrete Products, Inc. | | 25 B | Inland Ryerson | | 26A | Industrial Acoustics Co. Inc. | | 26B | Korfund Dynamics | | 27A | Owens/Corning Fiberglas Corp. | | 27B | National Gypsum Co. | | 28 | Virginia Metal Products | | 29 | Florida Concrete | | 30 | Owens/Corning Fiberglas Corp. | | 31 | Owens/Corning Fiberglas Corp. | | 32 | Overly Manufacturing Co. | | 33 | Amelco Window Corp. | | 34 | Acoustical and Insulating Materials Assn. | | 36 | National Research Corp. | | 37 | Hough Manufacturing Corp. | | 40 | General Noise Control Corp. | | 43 | Ferro Corp. | # TABLE 1 FOAMS The sound absorption properties of various types of foams are listed. Foam has excellent absorption, provides a fair amount of vibration isolation and damping, but is a poor sound barrier material. Ester types of polyure-thane foams are most commonly used for noise reduction. These flexible foams are available in reticulated open-pore construction or non-reticulated with a microporous integral skin left intact. Foams with convoluted surfaces and compressed felt-like foams are also manufactured to maximize absorption in specific frequency regions. The $2\ lb/ft^3$ density foam is normally used for sound absorption. Flame retardatory additives and protective films for dirty or oily environments are the commonly available options. The table is arranged in the order of increasing thicknesses ranging from 1/4 inch to 6 inches. Figure 1 shows foams of different thicknesses. The companies (by number shown in Section II) with products listed in Table 1 are: 6, 12, 34, 45, 65, 72, 77, 82, 119, 125, 150, 156, 157, 191. # CAUTION - ABSORPTION COEFFICIENTS MAY EXCEED 1.0. FOR A COMPLETE DISCUSSION OF THESE VALUES SEE SECTION 1-3.1.2. - 2. ABSORPTION COEFFICIENTS ARE SHOWN EITHER AS PERCENTAGES (NORMAL INCIDENCE DATA) OR AS DECIMAL FRACTIONS (RANDOM INCIDENCE DATA). THE DIFFERENCES BETWEEN THESE TWO DATA ARE DISCUSSED IN SECTION I-3.2. ### GLOSSARY Reticulated: Thread-like network. Figure 1 Sample Illustration of Acoustical Foam TABLE 1 FOAMS | 8 | | | adA | orption | Coaffic | ients | | | | | | | |----------------------|------|--------|--------------|---------|---------|----------|---------|------------------|----------------|----------|------------------------------------|--------------------------------| | Intomess
(inches) | MRC | 125 Hz | 7.
250 Ez | 500 Hz | 1000 3z | 2000 112 | 4000 Fz | Densit
1b/ft- | y
Lab. | Co. | Product | Foot-
note | | 1/4 | .25 | 2,2% | 2,67 | 3.6% | 7.0% | 36% | 627. | 2 | IATL
S-250 | 12 | Industrial Foam 4100 | 1 ₂₄ ³ , | | 1/4 | .30 | 2.47 | 2.97 | 3,4% | 5.9% | 17% | 66% | 2 | IATL | 12 | Safety Foam 4750 | 2,3,
24 | | 1/4 | . 33 | .08 | .10 | ,20 | .30 | .70 | 1.00 | 2 | • | 45
72 | Coustifoam | 5,15,27 | | 1/4 | .38 | 2.2% | 3.3% | 8.4% | 17.8% | 45% | 63% | 2 | IATL | 12 | Industrial Foam 2950 | 1,3,
24 | | 1/4 | - | 12% | 147 | 27% | 45% | 60% | 697 | 2 | - | 157 | UL-94 Foam | 6,9 | | 1/4 | • | .04 | .10 | .13 | ,24 | .61 | 1.00 | - | CT | 150 | Scott Fine Pore
Acoustical Foam | 9,17,25 | | 1/4 | - | ,10 | ,10 | .13 | .18 | .48 | 75، | 2 | iatl | 65 | Acoustical Foam
F-2007 | 7,9 | | 1/4 | • | | .17 | .13 | .23 | .82 | 1,00 | 2 | RAL
T72-1 | 191 | Unifoam | 23,24 | | 3/8 | . 35 | ,15 | .20 | .26 | .21 | .73 | ,59 | 2.1 | RAL
172-1 | 6 | Acousti-foam | 8,23,24 | | 1/2 | .31 | ,15 | . 21 | .26 | .17 | .63 | .65 | 2,1. | RAL
T72-1 | 6 | Acousti-foom | 8,23,24 | | 1/2 | .32 | 3% | 47. | 5.2% | 97, | 23% | 797, | 2 | IATL | 12 | Safety Foam 4750 | 2 ₄ 3, | | 1/2 | ,45 | .09 | .11 | ,22 | .60 | ,88 | . 95 | 2 | IATL | 45
72 | Coustifoam | 5,15,27 | | 1/2 | .51 | 6% | 11% | 20% | 32% | 70% | 85% | - | SFDAL | 12 | Acquatic Foam 4780 | 3,4,
24 | | 1/2 | .60 | 4.3% | 10.2% | 24% | 35% | 68% | 627, | 2 | IATL | 12 | Industrial Fosm 2950 | $\frac{1}{24}^{3}$, | | 1/2 | .65 | 37, | 4.8% | 11.5% | 46% | 86% | 56% | - | IATL | 12 | Fosmkote-749 on
Fosm #2950 | 10,24,
26 | | 1/2 | .66 | 5.4% | 7.2% | 15.5% | 57% | 71% | 66% | 2 | I ATL
5-250 | 12 | Industrial Fosm 4100 | 1,24 | | 1/2 | .67 | 3.6% | 9.2% | 25% | 75% | 47% | 32% | | I ATL | 12 | Foamkore-749
on Foam #4100 | 1,10,
24,26 | | 1/2 | • | 16% | 25% | 44% | 827, | 93% | 94% | 2 | - | 157 | UL-94 Foam | 6,9 | | 1/2 | - | .10 | .10 | -22 | .40 | .75 | . 82 | 2 | • | 65 | Acoustical Foam
F-2007 | 7,0 | | 1/2 | • | .075 | .12 | -26 | .51 | .84 | .90 | 2-4 | ст | 150 | Pyrell | 13,14,
25 | | 1/2 | .51 | .12 | .21 | .36 | .54 | ,92 | 1.00 | 2.5 | ст | 150 | Coustex | 12,23.
25,28 | | 1/2 | - | • | .10 | .27 | .50 | .86 | 1.00 | 4 | ст | 150 | Scottfelt 4-900 | 11,25,
28 | | 1/2 | - | .07 | .10 | .21 | .45 | .80 | 1.00 | 4-40 | CT | 150 | Scottfelt 3-900 | 11,25,
28 | TABLE 1 FOAMS (Contd) | • | | | Abso | rption | Coeffic | :1ents | | | | | | | |-----------------------
-----|---------|-------|--------|---------|--------|-------|-------------------|--------------|----------|------------------------------------|---------------------------------| | es) | | - ZH | 뀲 | 14 | Ϋ́ | ΉZ | 포 | | | | | | | Thickness
(inches) | MAC | 125 1 | 250 1 | 200 3 | 1000 | 2000 | 6007 | Density
lb/ft3 | Lab. | Ço. | Product | Foot-
note | | 1/2 | - | ,06 | | .30 | .63 | .97 | ,92 | - | CT | 150 | Scott Fine Pore
Acoustical Foam | 9,17.
25 | | 5/8 | .38 | . 14 | .18 | .28 | .21 | .86 | .97 | 2.1 | RAL
17201 | 6 | Acousti-foam | 8,23,24 | | 3/4 | .39 | 3.9% | 5.5% | 8.1% | 17.5% | 51% | 917 | 2.1 | IATL | 12 | Safety Foam 4750 | 2,3,
24 | | 3/4 | .60 | 7% | 13% | 25% | 45% | 81% | 85% | - | SFDAL | 12 | Acquatic Foam 4780 | 3,4.
24 | | 3/4 | .61 | 7.3% | 16.5% | 29% | 44% | 587. | 56% | 2 | IATL | 12 | Industrial Foam 2950 | 1 ₂ 4 ³ . | | 3/4 | .67 | 4 , 27. | 7.0% | 11.5% | 38% | 98.5% | 66% | 2 | IATL | 12 | Industrial Foam 4100 | 1,3,
6,24 | | 3/4 | | 22% | 34% | 61% | 87% | 96% | 95% | 2 | CT | 157 | UL-94 Foam | 6,9 | | 3/4 | .60 | 14 | .25 | .44 | .70 | .98 | 1,00 | 2.4 | cr | 150 | Coustex | 12,23,
25,28 | | 13/16 | .59 | , 16 | .25 | .40 | .73 | .98 | .78 | 2.1 | RAL
172-1 | 6 | Acousti-fosm | 8,23,24 | | 1 | .58 | 4.5% | 7.3% | 11.4% | 29.5% | 79% | 82.5% | 2 | IATL | 12 | Safety Foam 4750 | ² 24 ³ , | | 1 | .63 | . 16 | .25 | .45 | .84 | .97 | .87 | 2.1 | RAL
T72-1 | 6 | Acousti-foam | 8,23,24 | | 1 | .63 | 10.5% | 20.5% | 29% | 56% | 51% | 63% | 2 | IATL | 12 | Industrial Foam 2950 | 1,3, | | 1 | .64 | 8% | 15% | 30% | 53% | 85% | 86% | • | SFDAL | 12 | Acoustic Foam 4780 | 3,4, | | 1 | .65 | ,08 | .20 | .47 | ,90 | 1,00 | 1,00 | | cr | 150 | Scottfelt 3-900 | 11,23,
25,28 | | 1 | .65 | , 16 | .30 | .53 | ,80 | 1.00 | 1,00 | 2,4 | cī | 150 | Countex | 12,23,
25,28 | | 1 | .65 | .13 | .27 | .46 | .91 | .95 | .89 | | cr | 150 | Pyrell | 13,14,
25 | | | | | | | | | | _ | | | • | | | 1 | .70 | • | .37 | ,68 | .93 | .89 | .84 | 2 | cr | 150 | Afonic
Foamado | 14,25 | | 1 | .70 | .08 | .24 | .66 | 1.02 | .93 | .61 | 2 | G&H | 77 | Product 22313 | 16,23,
26 | | 1 | .72 | 7.2% | 11.5% | 237. | 67% | 63% | 82% | 2 | IATL | 12 | Industrial Foam 4100 | 1,3,
24 | | 1 | .72 | 87, | 19% | 43% | 74% | 47% | 38% | - | IATL | 12 | Foamkote-749 on
Foam #4100 | 1,10
24,26 | | 1 | .73 | .5% | 9% | 30% | 98.5% | 52% | 71% | • | IATL | 12 | Foamkote-749 on
Foam #2950 | 1,10,
24,26 | | 1 | .73 | 8.2% | 387. | 51% | 54% | 487, | 64% | 6 | IATL | 12 | Industrial Foam 4600 | 1,3,
24 | | 1 | .76 | .23 | .54 | .60 | .98 | .93 | .99 | 2 | | 45
72 | Coustifoam | 5,15,27 | | 1 | .77 | 8.3% | 16.4% | 49% | 89% | 61% | 797. | 4 | IATL | 12 | Industrial Fosm 4400 | 1 ₂ 4 ³ , | TABLE 1 FOAMS (Contd) | :- | | | Abso | rption | Coeffi | cients | | | | | | | |-----------------------|------|-------|-------|--------|--------|--------|-------|-----------------|---------------|----------|------------------------------------|--------------------| | 100 | | Ħ | Hz | Hz | 7H | 2 | HZ. | | | | | | | Thichness
(inches) | Mac | 125 | 250 | 280 | 1000 | 2000 | 0005 | Denait
1b/fc | Lab. | Co, | Product | Foot-
note | | 1 | . 85 | ,11 | .48 | 1,04 | ,90 | .89 | | 1.8 | KAL
A69-60 | 191 | 90 PPI Custom Fosm | 16,26 | | 1 | - | .16 | .26 | .47 | .72 | .93 | .92 | 2 | - | 65 | Acoustical Foam
F-2007 | 7,9 | | 1 | | 31% | 61% | 86% | 96% | 99% | 96% | 2 | - | 157 | UL-94
Convoluted Foem | 6,9 | | 1 | - | 27% | 44% | 70% | 93% | 977 | 96% | 2 | ·- | 157 | VL-94 Flat
Surface Foam | 6,9 | | 1 | - | .10 | .28 | .49 | .96 | 1.00 | .95 | 2 | cr | 150 | Scott Fine Pore
Acoustical Foam | 9,17,
25 | | 1 | - | .10 | .23 | .39 | .72 | 1,00 | 1.00 | 4-40 | CT | 150 | Scottfelt 2-900 | 11,25,
28 | | 1 | • | .20 | ,40 | .73 | .86 | .86 | .94 | 4-40 | CT | 150 | Scottfelt 7-900 | 11,25,
28 | | 1-7/16 | .69 | .17 | .30 | .53 | .97 | .96 | .96 | 2.1 | RAL
T72-1 | 6 | Acousti-foam | 8,23,24 | | 1-1/2 | .66 | 21.2% | 24% | 36% | 62% | 48% | 65% | 2 | I ATL | 12 | Industrial Foam 2950 | $\frac{1}{24}^3$, | | 1-1/2 | .75 | 11.5% | 18,1% | 337 | 86% | 87% | 98% | 2 | IATL | 12 | Safety Foam 4750 | 24 ³ , | | 1-1/2 | . 85 | 10% | 21% | 53% | 97.5% | 75% | 84% | 2 | IATL | 12 | Industrial Fosm 4100 | 1,3,
24 | | 1-1/2 | - | 31% | 72% | 91% | 97% | 997 | 96% | 2 | - | 157 | UL-94
Convoluted Form | 6,9 | | 2 | .64 | 21.8% | 24% | 36% | 50.5% | 52% | 61% | • | - | 12 | Industrial Fosm 2950 | 243. | | 2 | .80 | .19 | .43 | .77 | 1.00 | 1,00 | 1,00 | 2-4 | cT | 150 | Scott Industrial Foam | 22,23,
25,28 | | 2 | .80 | .24 | .49 | . 81 | .91 | .98 | .97 | 2,1 | - | 6 | Acousti-foam | 8,23,24 | | 2 | .82 | .17 | .35 | . 94 | .96 | .99 | .91 | 2 | - | 45
72 | Coustifoam | 5,15,
27 | | 2 | .87 | 14.5% | 32% | 70% | 95.2% | 67% | 77.5% | 2 | I ATL | 12 | Safety Foam 4750 | 24 ³ , | | 2 | .90 | 18.2% | 46% | 62% | 81% | 84% | 80.5% | 2 | IATL | 12 | Industrial Foam 4100 | 1,3, | | 2 | - | .33 | .50 | .72 | .85 | .96 | .91 | 2 | • | 65 | Acoustical Fosm
F-2007 | 7,9 | | 2 | • | 33% | 912 | 97% | 100% | 99% | 962 | 2 | - | 157 | UL-94
Convoluted Foam | 6,9 | | 2 | • | .60 | .91 | 1.00 | 1.00 | 1.00 | 1.00 | 4 | CT | 150 | Scottfelt 2-1/2 -900 | 11,25,
28 | | 2 | - | .27 | .61 | . 90 | .98 | .1.00 | 1.00 | 4-40 | CT | 150 | Scottfelt 3-900 | 11,25,
28 | | 2-1/2 | - | 39% | 94% | 99% | 100% | 99% | 96% | 2 | • | 157 | UL-94
Convoluted Foam | 6,9 | | 3 | . 82 | .36 | .54 | .91 | .86 | .97 | .99 | 2 | - | 45
72 | Coustifoam | 5,15,
27 | TABLE 1 FOAMS (Concl) | | us | | | Absor | ption (| Coaffici | ents | | | | | | | |-----|-----------------------|-----|--------|---------|---------|----------|---------|---------|-------------------------------|--------------|----------|---------------------------------|--------------| | | Thickness
(inches) | NAC | 125 32 | 250 fiz | 500 Hz | 1000 Hz | 2000 Hz | 4000 Hz | Density
lb/ft ³ | Lab. | Co, | Product | Foot- | | | 3 | - | 817 | 85% | 987 | 100% | 97% | 96% | 2 | - | 157 | UL-94
Convoluted Fosm | 6,9 | | | 4 | .58 | .04 | .22 | .46 | .80 | .84 | .88 | 2 | • | 119 | Open Cell
Polyurethene Fosm | 18,23 | | 3 | 4 | .86 | .56 | .69 | . 85 | .90 | .98 | .95 | 2.1 | RAL
T/2-1 | 6 | Acousti-fosm | 8,23,24 | | 204 | 4 | .89 | .67 | .80 | .90 | .92 | .94 | .97 | 2 | - | 45
72 | Coustifosm | 5 , 15 , 27 | | | 4 | | .41 | .83 | 1,00 | 1.00 | 1,00 | 1.00 | 2-4 | CT | 150 | Scott
Industrial Poem | 22,25,
28 | | | 5 | .90 | .72 | .83 | .88 | .93 | .95 | .98 | 2 | - | 45
72 | Coustifosm | 5 ,18 ,27 | | | 5 | | 86% | 96% | 99% | 100% | 99% | 96% | 2 | - | 157 | UL-94
Convoluted Foam | 6,9 | | | 6 | .91 | .72 | . 83 | .88 | .94 | .97 | 1.00 | 2 | _ | 45
72 | Coustiform | 5,15,27 | | | 6 | _ | .80 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2-4 | cr | 150 | Scott
Industrial Foam | 22,25,
28 | | | | _ | | Se | e Foot | note | | | • | - | 156 | Foam Sheet
(SFF-I, SFF-II) | 19 | | | - | | | Se | a Foots | note | | | - | | 34 | Fire Retardant
Urezhane Foam | 20 | | | • | • | | Se | n Faati | note | | | - | - | 125 | Synthocell | 21 | | | 24 | 1 | .99+ | | | | | | _ | | 82 | Polyurethane Wedges | 29 | ### FOOTNOTES FOR TABLE 1 ### FOAMS - 1. Polyester urethane foam, chamical resistant, self-extinguishing. - Open call, flexible polyester urethane foem combined with a permanent fire retardant. UL approved. Passed UL test 94. - Supplied in sheet, roll, also, or block form. Custom fabrication available. Sound barrier laminates and protective sheets or films can be ordered with the foam. - Folyester uretians fosm with a microporous integral skin and raticulated cellular structure of good repeatability. UL approval pending. - Self-extinguishing, resilient with less than 10% compressive set, temperature range -45° to 275°F, also good thermal insulation, resistant to oils, greases, alkalis and mild acids. - 6. Certified by UL to meet or exceed their number 94 specifications. Polyaster foom with charcoal color is available in thicknesses ranging from 1/4 inch to 5 inches. Standard sheet size is 36" × 56". Guetom sizes and thicknesses on request. The product is available with 1/2 mil flexible vinyl film or 1/2 mil DuPont Myler coating. Foom with convoluted surface is also available in similar sizes and it is claimed that greater low frequency attenuation is achieved by this surface as compared to flat surface foom. - Polyurathors polyather foem. Self-extinguishing per ASTN D1692-67T. Sizes: 2*x 4* sheets. Density 2 ± 0.1 lb/cu ft. Haximum temperature 250°F. Thicknesses: 1/4", 1/2", 1", 2". Recommended adhesive 3M34 industrial adhesive. - Fire retardent, flexible polyurathene form. Can be glued, taped, heat seeled, neiled or bonded. Supplied in rolls 16" wide x 20 yards long, and in 1/4", 1/2", 3/4", and 1" thicknesses. Also available leminated to mess filled vinyl or reinforced foil. Color: gray. Maximum compressive set 10%. Tested according to ASTM C384-58. - 9. Data extracted from a graph. - Maits at 275°F, nonburning, polyethylons sheeting is chemically inert and impervious to all normal contaminants. - Yisxibis, compressed urathane foam. Permanent set as high as 20 (compressed to 1/20 of original thickness) available. Can be cut, glued, or shaped. Available in various sizes. Thickness range: 1/16" to 2". - 12. Reticulated polygrathene foam with microporous surface. Passus ASTM 1692-68 test for flame retardance. Temperature range: ~40° to 250°F. Chemical resistant. - Polyeater polyurethane foam. Temperature range: -40° to 250°F. Available in various sizes with or without barrier laminates. Protective coverings. Passes vertical and harricontal tests for fire retardant affectiveness. Flame spread UL-94. - 14. Flame apread UL-94. Temperature range; -40° to 250°F. Excellent resistance to chemicals. - 15. Polyester flexible foam. Supplied in sheet of roll form to suit customer requirements.
- 16. Hung on wall with approximately 2" space between well and the test specimen. - 17. Is not an open-pore foam. Available in various sizes and shapes. Resilient. - 18. Temperature range: 0° to 150°F. Relative humidity range: 0 to 95%. Self-extinguishing, ASTM Dto. - Foam with Pyrell. Available with Tedlar finish. Fire seterdant, Size: 48" x 24", Thickness 1/2", 1", and custom. - Fire retardant foam. Temperature range: -50° to 175°F. | Humidity range: 0 to 95%. Flame spread less than 4" per minute. Sizes as required. Density range: 1.5 to 4 lb/cu ft. - 21. Resilient molded four made in any desired shape. Density range: 2.5 to 4.5 lb/cu ft. - 22. Reticulated, open-pore, ester type of polyurethano foam. Temperature range: -40° to 250°F. Is not affected by oils or greezes at normal temperatures. Ninety pores per linear inch. Available as buns, rolls, or fabricated parts. Various sizes. Colors: gray, beige, or green. - 23. Tested in number 4 mounting position. - 24. Tesced and evaluated according to ASTM C354-58 impedance twbs test method. - 25. Normal incidence data obtained with impadance tube corrected to random absorption coefficients. - 26. Tested and evaluated according to ASTM C423-66 reverberation room test method. - 27. Reverberation room test method used. - Temperature range: -40° to 225°F. Flame retardant. Conforms to ASTM 1692-59T, excellent chemical resistance. - $24^{\prime\prime}$ x $24^{\prime\prime}$ x $25^{\prime\prime}$ long wedge. Module comprised of three $6^{\prime\prime}$ x $24^{\prime\prime}$ x $25^{\prime\prime}$ long polyurethane wedges. For use in anechoic chambers. # TABLE 2 GLASS FIBER MATERIALS The sound absorption properties of various glass fiber products are listed. Long glass fibers when bonded with resins or other bonding materials, convert acoustic energy into heat through air friction within the porous body of the material. However, glass fiber products are poor sound barrier materials. Table 2 is subdivided into five parts (2A, 2B, 2C, 2D, and 2E) for convenience. The scheme of the subdivision is: - 2A Glass fiber products tested with mounting No. 4 - 2B Glass fiber products tested with mounting No. 6 and thicknesses up to 1/2 inch - 2C Glass fiber products tested with mounting No. 6 and thicknesses 3/4 inch and 1 inch - 2D Glass fiber products tested with mounting No. 6 and thicknesses greater than 1 inch - 2E Glass fiber products tested with mounting No. 7 Within each table the products are arranged in the order of increasing thickness. The companies (by numbers shown in Section II) with products listed in Table 2 are: 6, 109, 132 # CAUTION THE NUMBERS LISTED UNDER THE "MOUNTING" COLUMN REFER TO THE AIMA STANDARD MOUNTINGS DESCRIBED IN SECTION 1-3.1.3. AND ILLUSTRATED IN FIGURE 1-11. ### GLOSSARY Facing: The outside surface of the specimen. In general the side facing the sound source Backing: The other outside surface of the specimen. In general the side not facing the sound source Core: The region between the facing and the backing TABLE 2A GLASS FIBER TESTED WITH MOUNTING NO. 4 | | | | | Abs | orption | Couffi | cients | | | | | | | |----------|-----------------------|----------------|--------|--------|---------|---------|---------|---------|------------------------------|------------------|-----|------------|-------| | Noveltre | Thickness
(inches) | NA
NA
NA | 125 Hz | 250 Hz | 500 Hz | 1000 Hz | 2000 Hz | ZH 0007 | Deneit
lb/fr ³ | y
Lab. | Co. | Product | Fact- | | 4 | 1/2 | ,40 | .04 | .13 | .32 | .46 | .61 | .73 | . 85 | CKAL
671-8 | 109 | Spin-glas | 11,18 | | 4 | 1/2 | ,45 | .08 | ,14 | .32 | . 60 | .73 | .73 | .75 | - | 109 | Hicrolite | 12 | | 4 | 1/2 | . 50 | .08 | .16 | .37 | .65 | .77 | .78 | , 75 | • | 109 | Microlite | 12 | | 4 | 1/2 | ,50 | .01 | .15 | ,43 | .62 | .74 | .90 | 1.9 | CKAL
671-12 | 109 | Spin-glas | 11 | | 4 | 1/2 | .55 | .04 | ,13 | .41 | .75 | .91 | .99 | 2.8 | CKAL
671-16 | 109 | Spin-glas | 11,18 | | 4 | 1 | 60 | .14 | . 25 | .51 | .80 | .78 | .76 | .75 | - | 109 | Microlite | 12 | | 4 | 1 | .60 | .13 | .30 | .64 | ,76 | .78 | .82 | .85 | CKAL
671-9 | 109 | Spin-glas | 11,18 | | 4 | 1 | .65 | .15 | .33 | .62 | .76 | .52 | .83 | .75 | NAL
A71-193 | 109 | Microlite | 12,18 | | 4 | 1 | .70 | ,12 | .30 | .68 | .94 | .82 | .80 | .75 | - | 109 | Microlita | 12 | | 4 | 1 | .75 | .07 | .36 | .76 | ,91 | .96 | .97 | 1.9 | CKAL
671-13 | 109 | Spin-glas | 11,18 | | 4 | 1 | .75 | ,23 | .50 | .73 | .88 | .91 | . 97 | 3 | CKAL
671-8-31 | 109 | Spin-glas | 11,18 | | 4 | 1 | .80 | .08 | .34 | .93 | .99 | .99 | .99 | 2,8 | CKAL
671-17 | 109 | Spin-glas | 11,18 | | 4 | 1-1/2 | .70 | .24 | .60 | .99 | .75 | .35 | .16 | • | RAL
A71-21 | 109 | Rigid Roll | 13 | | 4 | 1-1/2 | . 75 | .18 | .44 | .77 | .92 | ,81 | .77 | .75 | - | 109 | Microlite | 12 | | 4 | 2 | .77 | . 31 | .58 | .86 | .81 | .83 | .65 | 1 | - | 109 | Microlite | 12,18 | | 4 | 2 | .80 | .45 | ,77 | .98 | .89 | ,61 | .39 | .75 | - | 109 | Microlite | 7,12 | | 4 | 2 | .90 | .33 | .68 | .96 | .95 | ,95 | .99 | .75 | RAL
A71-195 | 109 | Microlite | 12,18 | | 4 | 2 | .90 | .31 | .70 | .99 | .99 | .97 | .99 | .85 | CKAL
671-10 | 109 | Spin-glas | 11,18 | | 4 | 2 | .95 | .27 | .81 | .99 | .99 | .99 | ,99 | 1.9 | CKAL
671-14 | 109 | Spin-glas | 11,15 | | 4 | 2 | .95 | . 29 | .99 | .99 | .99 | .99 | .99 | 2.8 | CKAL
671-18 | 109 | Spin-glas | 11,18 | | 4 | 4 | .95 | .99 | .99 | .99 | .99 | .99 | .99 | 2,8 | CKAL
671-19 | 109 | Spin-glas | 11,18 | | 4 | 4 | .95 | .84 | .99 | .99 | .99 | .99 | .99 | 1.9 | CKAL
671-15 | 109 | Spin-glas | 11,18 | | 4 | 4 | .95 | .65 | .99 | .99 | .99 | .99 | .99 | .85 | CKAL
671-11 | 109 | Spin-glas | 11,18 | TABLE 2B GLASS FIBER TESTED WITH MOUNTING NO. 6 AND THICKNESSES UP TO 1/2 INCH | | <u>.</u> | | | Abse | orption | Conffic | ients | | | | | | | |----------|-----------------------|------|----------------|------|---------|---------|-------|------|----------------|------------------|-----|------------------------------|---------------| | tfu | hes) | | - 2 | Hz | Hz | 142 | Hz | H2 | | | | | | | Mounting | Thickness
(inches) | NRC | 125 | 150 | 500 | 000 | .000 | 0007 | Densi
15/ft | ţy
Leb. | Ca. | Product | Foot-
note | | 6 | 1/4 | .25 | ,17 | .33 | .13 | .15 | . 29 | . 28 | 6 | RAL
A73-89 | 109 | Exact-O-Board | 14,18 | | 6 | 1/4 | ,30 | ,18 | .34 | .20 | .28 | .40 | .45 | 3 | RAL
A73-90 | 109 | Exact-O-Board | 14,18 | | 6 | 1/4 | .35 | ,19 | ,35 | .24 | .33 | .49 | .74 | 3 | RAL -
A72-113 | 109 | Exact-O-Mat | 15,18 | | 6 | 1/4 | , 35 | .07 | .31 | .20 | . 29 | .56 | .66 | 1 | CT | 132 | PF 336 | 19 | | 6 | 1/4 | ,35 | ,07 | ,31 | .21 | .34 | .60 | .69 | 1.5 | CT | 132 | PF 338 | 19 | | 6 | 1/4 | .40 | .07 | ,31 | .23 | .41 | .66 | .73 | 2,5 | CT | 132 | PF 391 | 19 | | 6 | 1/4 | .40 | .07 | .31 | .22 | .38 | .64 | .71 | 2 | CT | 132 | PF 339 | 19 | | 6 | 1/4 | .45 | .06 | .45 | .27 | .48 | .67 | .72 | 3 | CT | 132 | Type 3,0 (plain) | 8,19 | | 6 | 1/4 | . 50 | .08 | .44 | .28 | .51 | .73 | .82 | 3 | CT | 132 | Туре 3.0 | 9,19 | | 6 | 1/4 | .50 | .09 | .18 | .37 | .60 | .73 | .76 | 3 | CT | 132 | PF 382 | 19 | | 6 | 3/8 | .40 | .17 | .38 | ,31 | .41 | .49 | .53 | 2 | RAL
A73-91 | 109 | Exact-O-Board | 14,18 | | 6 | 3/8 | .45 | ,17 | .40 | .34 | .45 | .58 | .76 | 2 | • | 109 | Exact-O-Board | 15,18 | | 6 | 1/2 | .40 | .12 | .40 | .31 | .40 | .50 | .57 | .75 | CT | 132 | PF 335 | 9 | | 6 | 1/2 | .45 | .18 | .44 | .38 | .47 | , 59 | .70 | 1.50 | - | 109 | Exact-O-Mat | 15,18 | | 6 | 1/2 | .45 | .09 | .40 | .32 | ,43 | .64 | .70 | ,5 | CT | 132 | PF 334 | 19 | | 6 | 1/2 | .45 | .11 | .40 | .32 | .47 | .62 | .71 | - | CT | 132 | RA 26 | 19 | | 6 | 1/2 | .45 | .10 | .41 | .33 | .50 | .64 | . 74 | - | CT | 132 | RA 25 | 19 | | 6 | 1/2 | .50 | .19 | .40 | .40 | .56 | .72 | .92 | 2 | RAL
A72-115 | 109 | Exact-0-Mat | 15,16 | | 6 | 1/2 | .55 | .14 | .43 | .45 | .42 | .39 | .25 | .75 | CT | 132 | PF 335 | 1,19 | | 6 | 1/2 | .55 | .09 | .40 | .35 | ,63 | ,76 | .78 | 1.5 | CT | 132 | PF 338 | 19 | | 6 | 1/2 | ,55 | .09 | .40 | .39 | .68 | ,79 | .80 | 2 | CT | 132 | PF 339 | 19 | | 6 | 1/2 | .60 | .12 | ,46 | , 36 | ,73 | ,86 | .86 | 3 | - | 6 | Mid-nite Blanker
or board | 2 | | 6 | 1/2 | .60 | .13 | .48 | .39 | .70 | .83 | .84 | 2 | | 6 | Mid-nite Blanket
or Board | 2 | TABLE 28 GLASS PIBER TESTED WITH MOUNTING NO. 6 AND THICKNESSES UP TO 1/2 INCH (Concl) | | | 19 | | | adA | orption | Coeffi | cients | | | | | | | |---|----------|-----------------------|------|--------|--------|---------|---------|---------|---------|------------|-----------------|-----|------------------------------|---------------| | | Mounting | Thichness
(inches) | NAC | 125 Hz | 250 Hz | 500 Hz | 1000 Hz | 2000 Hz | 4000 Hz | Den
1b/ | sity
ft Lab. | Co. | Product | Foot-
note | | | 6 | 1/2 | .60 | .14 | .51 | .42 | ,67 | .80 | .82 | 1.5 | - | 6 | Mid-nite Blanket
or Board | 2 | | | 6 | 1/2 | . 60 | .28 | .42 | .49 | .62 | .76 | .77 | 1.5 | - | 109 | Microlite | 12,17 | | | 6 | 1/2 | .60 | •09 | .40 | .40 | ,72 | .81 | ,81 | 2.5 | - | 132 | PF 381 | 19 | | | 6 | 1/2 | .60 | .14 | .43 | .40 | .64 | .99 | ,49 | ,75 | - | 132 | PF 335 | 5,8,
19 | | | 6 | 1/2 | .60 | .43 | .42 | .39 | .62 | .99 | .58 | .75 | - | 132 | PF 335 | 4 | | | 6 | 1/2 | ,50 | .10 | .42 | .55 | ,53 | .69 | .79 | - | CL | 132 | RA 24 | 19 | | | 6 | 1/2 | .50 | ,10 | .42 | .36 | .54 | .70 | .81 | - | CT | 132 | RA 236 | 19 | | | 6 | 1/2 | .50 | .10 | .41 | .36 | .54 | .72 | ,84 | - | CT | 132 | RA 23 | 19 | | | 6 | 1/2 | .50 | .10 | .41 | .36 | . 54 | .71 | .83 | 4.2 | cr | 132 | 704 Insulation | 19 | | | 6 | 1/2 | . 50 | .13 | .40 | .37 | ,56 | .73 | .87 | 2 | CT | 132 | PF 339 | 9,19 | | | 6 | 1/2 | . 50 | ,09 | .40 | .34 | •50 | .68 | .73 | .75 | CT | 132 | PF 335 | 19 | | | 6 | 1/2 | .50 | .09 | .40 | .36 | ,55 | ,71 | .75 | 1 | CT. | 132 | PF 336 | 19 | | | 6 | 1/2 | .50 | ,12 | .38 | ,32 | . 54 | .77 | .88 |
6 | CT | 132 | 705 Insulation | 19 | | | 6 | 1/2 | .55 | .23 | .44 | .43 | . 64 | .76 | .80 | 3 | CKAL
671-20 | 109 | Spinglas | 11,18 | | | 6 | 1/2 | , 60 | .11 | ,53 | .46 | .73 | .77 | .81 | 2 | cr | 132 | Тура 2.0 | 3,19 | | | 6 | 1/2 | .60 | ,15 | .44 | .51 | ,74 | .81 | .21 | .75 | CT | 132 | PF 335 | 6,9
19,20 | | | 6 | 1/2 | .60 | .09 | .53 | .44 | , 63 | .76 | . 79 | 1.5 | CL | 132 | Type 1,5 | 8,19,
20 | | • | 6 | 1/2 | .65 | .11 | .40 | .33 | , 89 | .94 | .50 | 2 | cr | 132 | PF 339 | 19 | | | 6 | 1/2 | . 65 | .11 | .46 | .52 | .83 | .84 | .83 | 3 | CT | 132 | PF 382 | 19 | TABLE 2C GLASS FIBER TESTED WITH MOUNTING NO. 6 AND THICKNESS RANGE OF 3/4 INCH THROUGH 1 INCH | 96 | 8 | | | Abo | orption | | clents | | _ | | | | | |----------|-----------------------|------|--------|--------|---------|---------|---------|---------|----------------|---------------------|-----|----------------|---------------| | Nounting | Thickness
(inches) | NRC | 125 Hz | 250 Hz | 500 Hz | 1000 Hz | 2000 Hz | 4000 Hz | Densi
1b/fc | ξ ^y Lab. | Co. | Product | Foot-
note | | 6 | 3/4 | .55 | .14 | .46 | ,41 | .61 | ,72 | .80 | - | CT | 132 | RA-26 | 19 | | 6 | 3/4 | .60 | .14 | .47 | .48 | .64 | .74 | .83 | - | CT | 132 | RA-25 | 19 | | 6 | 3/4 | . 60 | .14 | .48 | .48 | .67 | .79 | .88 | - | CT | 132 | RA-24 | 19 | | 6 | 3/4 | .60 | ,13 | .48 | ,50 | .69 | .81 | .90 | - | cr | 132 | RA-236 | 19 | | 6 | 3/4 | .65 | .13 | .47 | .51 | .70 | .83 | .92 | • | CT | 132 | RA-23 | 19 | | 6 | ı | .55 | .28 | .53 | .47 | .56 | .68 | .78 | ,6 | RAL
A72-137 | 109 | Exact-0-Hat | 15,18 | | 6 | 1 | .65 | .17 | .60 | .57 | .68 | .76 | .82 | 1 | - | 109 | Exact-0-Hat | 15,18 | | 6 | 1 | .65 | .10 | .51 | .54 | , 73 | .79 | .79 | .5 | CT | 132 | PF 334 | 19 | | 6 | 1 | .65 | .17 | .52 | ,61 | .75 | .81 | .89 | - | CT | 132 | RA-26 | 19 | | 6 | 1 | .70 | .17 | .52 | ,62 | .77 | .84 | .92 | - | CT | 132 | RA-24 | 19 | | 6 | 1 | . 70 | .17 | ,52. | .62 | .77 | .84 | .92 | - | CT | 132 | RA-25 | 19 | | 6 | 1 | .70 | .28 | .5B | .66 | .76 | .89 | .92 | 1,5 | - | 109 | Exact-O-Mat | 15,18 | | 6 | 1 | .70 | .10 | .51 | .56 | .81 | .83 | .81 | ,75 | CT | 132 | PF 335 | 19 | | 6 | ι | .70 | .10 | .51 | .58 | .86 | .85 | , 83 | 1 | CT | 132 | PF 336 | 19 | | 6 | 1 | . 70 | .35 | ,45 | .64 | .89 | .87 | .84 | 1,5 | - | 109 | Microlite | 3,18 | | 6 | 1 | .70 | . 19 | .51 | .63 | .88 | .83 | .78 | 1.58 | CT | 132 | 701 Insulation | 19 | | 6 | 1 | .75 | ,23 | .50 | .73 | .88 | .91 | .97 | 3 | CKAL
671-21 | 109 | Spin-glas | 11 | | 6 | 1 | .75 | .18 | ,56 | .66 | .96 | .89 | .83 | 4.2 | CT | 132 | 704 Insulation | - 19 | | 6 | 1 | .75 | .16 | .54 | .64 | .83 | .92 | .98 | - | CT | 132 | RA-236 | 19 | | 6 | 1 | . 75 | ,10 | .51 | .61 | .90 | .89 | .85 | 1.5 | CT | 132 | PF 338 | 19 | | 6 | 1 | .75 | .10 | .51 | .63 | .94 | .91 | .87 | 2 | CT | 132 | PF 339 | 19 | | 6 | 1 | .75 | ,16 | .53 | ,65 | .85 | .94 | .99 | - | CT | 132 | RA-23 | 19 | | 6 | 1 | .75 | .19 | .54 | .63 | .92 | .87 | .82 | 2.25 | CL | 132 | 702 Insulation | 19 | | 6 | 1 | .75 | .23 | .50 | .73 | .88 | .91 | .97 | 3,25 | - | 109 | Micro-Aire | 16,19 | TABLE 2C GLASS FIBER TESTED WITH MOUNTING NO. 6 AND THICKNESS RANGE OF 3/4 INCH THROUGH 1 INCH (Conel) | ğ | | | | Abs | eption | Coaffi | cients | | | | | | | |----------|----------------------|-----|--------|--------|--------|---------|---------|---------|-------------------|----------------|-----|------------------------------|-------| | Mounting | Thicknes
(inches) | MAC | 125 Hz | 250 Hz | 500 Hz | 1000 Hz | 2000 Hz | 7H 0007 | Density
1b/ft3 | Ļab. | Co, | Product | Fout~ | | 6 | 1 | .75 | .23 | ,54 | .68 | .83 | .92 | .89 | 1.5 | RAL
A71-115 | 109 | Lina-Coustic A | 17,18 | | 6 | 1 | .75 | .23 | .53 | .67 | .97 | .89 | .82 | 3 | CT | 132 | 703 Insulation | 19 | | 6 | 1 | .75 | .26 | .49 | .63 | ,95 | .87 | .82 | 6 | CT | 132 | 705 Insulation | 8,19 | | 6 | 1 | .80 | .20 | .67 | .73 | .96 | .90 | .84 | 2 | CT | 132 | Туре 2,0 | 8,19 | | 6 | 1 | .80 | .24 | .70 | .72 | .93 | .90 | .83 | 1.5 | CT | 132 | Type 1.5 | 8,19 | | 6 | 1 | .80 | .16 | .63 | .70 | .95 | .89 | .84 | 1.5 | - | 6 | Mid-nite Blanket
or Board | 2 | | 6 | 1 | .60 | .17 | .63 | .74 | 97 | .90 | .86 | 2 | - | 6 | Mid-nite Blanket
or Board | 2 | | 6 | 1 | .85 | .19 | .62 | .78 | .99 | .92 | .88 | 3 | _ | 6 | Mid-nite Blanket
or Board | 2 | TABLE 2D GLASS FIBER TESTED WITH MOUNTING NO. 6 AND THICKNESSES GREATER THAN 1 INCH | | =- | | | Abs | orption | Coaffi | cients | | | | | | | |----------|-----------------------|------|------|-----|---------|--------|--------|------|-------------------|----------------|-----|--------------|---------------| | Houncing | 100 | | H | Hz | HZ. | H | 꿆 | 귚 | - | | | | | | * | Thickness
(inches) | MRC | 125 | 250 | 옭 | 1000 | 2000 | 7000 | Dengity
16/Ety | Lab. | Co, | Product | Foot-
note | | 6 | 1-1/2 | .75 | ,11 | .58 | .69 | .90 | .87 | .83 | ,5 | CT | 132 | PF 334 | 19 | | 6 | 1-1/2 | .80 | ,11 | .58 | .77 | .99 | .95 | .90 | 2 | CT | 132 | PF 339 | 19 | | 6 | 1-1/2 | .80 | .11 | .58 | .75 | .98 | .94 | .89 | 1.5 | CT | 132 | PF 338 | 19 | | 6 | 1-1/2 | .60 | .11 | .58 | .73 | .96 | ,92 | .87 | ı | CŤ | 132 | PF 336 | 19 | | 6 | 1-1/2 | .80 | ,11 | .58 | .71 | ,94 | .90 | .86 | .75 | CT | 132 | PF 335 | 19 | | 6 | 1-1/2 | .85 | .24 | .62 | .93 | .97 | .88 | .86 | 3 | CKAL
671-22 | 109 | Spin-glas | 11,18 | | 6 | 1-1/2 | .90 | .36 | .67 | .87 | .97 | .99 | .95 | 1,5 | RAL
A72-139 | 109 | Exact-0-Mat | 15,18 | | 6 | 1-1/2 | .90 | . 12 | .68 | .92 | .99 | .99 | .94 | 1.5- | RAL
A71-116 | 109 | Line-Coustic | 17 | | 6 | 2 | .90 | .42 | .83 | 1.02 | 1.05 | 1,04 | .48 | 1.5 | MAL
A71-117 | 109 | Lina-Coustic | 17,18 | | 6 | 2 | .95 | .28 | .52 | .99 | .99 | .99 | .99 | • | CT | 132 | RA-236 | 19 | | 6 | 2 | .95 | .29 | .82 | .99 | .99 | .99 | .99 | • | CI | 132 | RA-23 | 19 | | 6 | 2 | .95 | .27 | .81 | .99 | .99 | .99 | .99 | - | CT | 132 | RA-24 | 19 | | 6 | 2 | .95 | .25 | .79 | .99 | .99 | ,99 | .99 | - | CT | 132 | IA-25 | 19 | | 6 | 2 | .95 | .23 | .78 | .99 | .98 | .99 | .99 | • | CT | 132 | RA-26 | 19 | | 6 | 3 | .90 | •44 | .72 | .99 | .99 | .95 | .93 | 3 | CKAL
671-23 | 109 | Spin-glas | 11,18 | | 6 | 3 | .95 | .41 | .99 | .99 | ,99 | .99 | .99 | - | CT | 132 | RA-26 | 19 | | 6 | 3 | .95 | .45 | .99 | .99 | .99 | .99 | .99 | - | CT | 132 | RA-25 | 19 | | 6 | 3 | . 95 | .45 | .99 | .99 | .99 | .99 | .99 | - | CT | 132 | RA-24 | 19 | | 6 | 3 | .95 | .53 | .99 | .99 | .99 | .99 | .99 | • | CT | 132 | IIA+23 | 19 | | 6 | 3 | .95 | . 52 | .99 | .99 | .99 | .99 | .99 | • | CT | 132 | RA-236 | 19 | TABLE 2E GLASS FIBER TESTED WITH MOUNTING NO. 7 | | Ņ. | | | Absor | ption C | oeffic | ients | | | | | | | |----------|-----------------------|-----|--------|--------|---------|---------|---------|-----|-------------------------------|---------------|-----|-------------------------------|-------| | Mocmting | Thickness
(inches) | NRC | 125 Hz | 250 H= | 500 Hz | 1000 Hz | 2000 Hz | | Density
1b/ft ³ | ,
Lab. | Co. | Product | Foot- | | 7 | 1 | .70 | . 67 | .72 | .64 | ,75 | ,63 | .45 | - | • | 109 | Microlite Blanket | 7,12 | | 7 | 1 | .70 | .73 | .72 | .62 | .83 | ,70 | .52 | - | RAL
A63-72 | 6 | Acoustiflex
Rolls and Pads | 10,20 | | 7 | 1-1/4 | .95 | .99 | .90 | .97 | .99 | ,85 | 57 | - | RAL
A63-87 | 6 | Acoustiflex
Rolls and Pads | 10,20 | | 7 | 1-1/2 | .70 | .24 | .60 | .99 | .75 | .35 | .16 | • | RAL
A71-21 | 109 | Rigid Roll
Fiberglass | 13 | | 7 | 1-1/2 | .75 | .95 | .71 | .73 | .91 | .69 | .45 | - | RAL
A63-66 | 6 | Acoustiflex
Rolls and Pads | 10,20 | | 7 | 1-1/2 | .80 | .86 | .91 | .80 | .89 | ,62 | .47 | • | - | 109 | Thermal-
Acoustical Batts | | | 7 | 2 | .80 | .84 | .87 | .85 | .87 | .64 | .48 | • | - | 109 | Microlite Blanket | 7,12 | | 7 | 2 | .90 | .99 | .96 | .89 | .94 | ,77 | .60 | • | RAL
A63-74 | 6 | Acoustiflex
Rolls and Pads | 10,20 | | 7 | 2-1/2 | .90 | .89 | .88 | .89 | ,91 | ,83 | .55 | • | RAL
A63-75 | 6 | Acoustiflex
Rolls and Pads | 10,20 | | 7 | 3 | ,90 | .93 | .94 | .92 | .91 | .82 | ,56 | - | RAL
A63-76 | 6 | Acquatiflex
Rolls and Pads | 10,20 | | 7 | 5-3/8 | .90 | ,97 | 1.00 | 1.00 | .88 | .69 | .49 | - | - | 109 | Thermal-
Acoustical Batts | | ### FOOTHOTES FOR TABLE 2A. 2B. 2C. 2D. and 2E CLASS FIBER MATERIALS - 1. Faced with Duplex laminated kraft paper (reinforced with fiberglass yarn). - Neoprene coated blanket, UL standard 723 flame spread does not exceed 25, meets requirements of NFPA90A. - Neoprene coated, temperature range to 250°F, UL Fire Hazard Rating 25/50/50, product meets NFFA90A standards when tested by UL 723, good resistance to chemicals. - 4. Aluminum foil faced (0.0007"). - 5. Aluminum foil faced (0.001"). - 6. Vinyl faced (0.003"). - 7. With perforated transite panels, fire spread rating 0-25. - 8. Mat faced equipment insulation, 20.22. - 9. Neoprene costed. - Rated "incombustible" by UL. Available as pads or rolls. Roll thicknesses: 1", 1-1/2", 2", 2-1/2", 3". Pad thickness; 1", 1-1/4". Roll widths 23-5/8", 25-5/8", 47-5/8". Pad size: 11-7/8" x 23-7/8". - 11. 1000 Series Spin-Glas is a semi-rigid board produced by combining Spin-Glas fiber and organic bindar, Available in board form only in thicknesses from 1" to 6" in 1/2" increments; width of 2", lengths 24", 36", and 48". Also custom sizes. Temperature limit 850°F. 800 Series Spin-Glas is duct insulation memufactured from inorganic glass fibers bended by a thermosatting resin. With certain facings, meets the fire standard requirements of NFFA90A and 90B. Temperature limit of 350°F unfaced and 250°F faced. Available in sheet and roll form. Density range 1.08 lb/cuft to 6 lb/cuft. Thicknesses: 1", 2" 2-1/2", 3", 4". Foil-scrim-kraft, plastic-scrim-foil, and glass cloth vapor barrier facings available. - 12. Microlite-resin bonded fiber glass blanket. Light weight. Temperature range subzero to 300°F. Thicknesses 1/2"
to 4". Density range 61b/cu ft to 3 lb/cu ft. Widths 240, 36", 48", 72". Hade-to-order widths from 3" to 120". Foil, foil-scrim-kraft, vinyl film, kraft paper facings. available. UL Fire Hazard classification flame spread 10, fuel contributed 20, smoke developed 0. - Rigid Roll (trademark) is fiber glass insulation board for ceilings or walls. Available in rolls 5' wide, thicknesses 1-1/2" and 2". Cut length 40' to 110'. UL Fire Hazard classification 25/50/50. # FOOTNOTES FOR TABLE 2A, 2B, 2C, 2D, and 2E (Concl) GLASS FIBER MATERIALS - 14. Exacto-Board: Board-type thermal and acoustical insulation with smooth surface. Available in sheets and rolls in various sizes. UL Fire Hazard classification: flame spread 10, fuel contributed 20, smoke developed 0. - 15. Exact-0-Hat: Fiber glass blunket faced on one side with a black plastic bonded fiberglass mai. Available in rolls 100' long, widths 43" to 48" and 65" to 72". Density range 0.6 lb/cu ft to 3 lb/cu ft. Thickness range 1/4" to 1-1/2". Temperature range to 250°F. UL Fire Hazard classification 25/0/15. - Micro-Aire (trademark) SR is a preformed fiber glass duct. Supplied as round duct with internal diameter for 4" through 40" and 6' long. Complies with UL 181 standards of safety for air ducts. Fire hazard classification 25/50/50. - Lina-Coustic A (trademark) is a glass fiber duct liner insulation covered with black fiber glass mat. Available in rolls 36", 48", and 60" wide, 50' long. Thicknesses 1", 1-1/2", and 2". Temperature range to 250°F. Fire hazard classification 25/50/50. Good resistance to chemicals. - 18. Tested and evaluated according to ASTM C423-56. Reverberation room tested. - 19. Tests conducted in reverberation room. - 20. Tested and evaluated according to ASTM C423-60T. # TABLE 3 SPRAY-ON ABSORPTION MATERIALS The sound absorption properties of spray-on materials are listed. Sound absorption provided by the spray-on coating is dependent upon the sprayed material, the thickness of the applied material and the base material on which the spray was applied. Accordingly the table shows the sound absorption properties of the materials sprayed to different thicknesses and sprayed on different base materials. The manufacturers' suggested spraying techniques are essentially comprised of spraying the material through a nozzle on a prepared surface. The companies (by numbers shown in Section II) with products listed in Table 3 are: 127, 175. ### CAUTION - 1. ABSORPTION COEFFICIENTS MAY EXCEED 1.0. FOR A COMPLETE DISCUSSION OF THESE VALUES SEE SECTION 1-3.1.2. - 2. THE NUMBERS LISTED UNDER THE "MOUNTING" COLUMN REFER TO THE AIMA STANDARD MOUNTINGS DESCRIBED IN SECTION 1-3.1.3. AND ILLUSTRATED IN FIGURE 1-11. # GLOSSARY Lath: Thin, lightweight structure used as groundwork for plastering, tiles, etc. It may be in a form of perforated metal, wire cloth, thin wood strips, etc. TABLE 3 SPRAY-ON ABSORPTION MATERIALS | | Thickness
(irches) | | | Abso | ption | Coeffic | ients | | | | | Product | Foot- | |----------|-----------------------|-----|--------|--------|--------|---------|---------|---------|-------------------|----------------|------|---|-------------| | Mornefog | | NAC | 125 Hz | 250 Hz | 500 Hz | 1000 Hz | 2000 Hz | 4000 Hz | Density
1b/ft3 | Lab. | Co. | | | | 4 | 1/4 | .30 | ,04 | .04 | .20 | .39 | .60 | .81 | .45* | RAL | 175 | Cafco Sound-Shield
"85" (Solid base) | 1,4, | | 4 | 3/8 | ,45 | ,02 | .08 | .26 | .60 | .84 | .89 | _ | RAL
A67-17 | 175 | Cafco Sound-Shield
"85"(Solid base) | 1,3, | | 4 | 1/2 | .85 | .26 | , 51 | .98 | .99 | .95 | .86 | i - | RAL
A63-152 | 175 | Cafco Sound-Shield
"85"(Metal lath base) | 1,4,
6 | | 4 | 5/8 | .55 | .05 | .16 | .44 | ,79 | .90 | .91 | 2.5 | RAL
A68-45 | 127 | K-13 (Solid base) | 2,3,
4,6 | | 4 | 3/4 | .75 | .11 | .22 | .71 | 1,13 | 1.26 | 1.38 | - | CKAL
701-23 | 175 | Cafco Deck-Shield
(Gypsum lath base) | 1,3,
6 | | 4 | 1 | .75 | .08 | .29 | .75 | ,98 | .93 | .76 | 2.5 | RAL
A65-376 | 1.27 | K-13 | 2,4,
5,6 | | 4 | 1. | .95 | .47 | .90 | 1,10 | 1,03 | 1,05 | 1.03 | 2.5 | RAL
A68-218 | 127 | K-13
(Motal lath base) | 2,3,
4,6 | | 4 | 1-1/4 | .75 | ,10 | .30 | .73 | ,92 | .98 | .98 | 2.5 | RAL
A70-102 | 127 | r-13 Painted surfac
(Solid 1/2" plywood) | 2,3,
4,6 | | 7 | 3/8 | .49 | .63 | .59 | .76 | .88 | .94 | , 70 | .88* | RAL
A68-116 | 175 | Cafco Sound-Shield
"85"(Metal lath base) | 1,3,
6 | ^{*} Weight in 1b/ft2 ### FOOTNOTES FOR TABLE 3 SPRAY-ON ABSORPTION MATERIALS - 1. White, hard, textured surface. Does not contain asbestos or free crystalline silica. - Spray-on cellulose fiber for thermal and acoustical control. Thickness and density can be varied during application. Textured surface. Temperature range: -25°F to 200°F. Thickness range: 1/2" to 3". Relative humidity range: 0% to 85%. - 3. Tested and evaluated according to ASTM C 423-66. - 4. Tested and evaluated according to ASTM C 423-60T. - K-13 type spray-on inside of a 25000 sq ft aluminum dome reduced the reverberation time as shown below: | Frequency, Hz. | 125 | 250 | 500 | 1000 | 2000 | 4000 | |-----------------------------|-----|-----|-----|------|------|------| | Reduction in the | | | | | | | | reverberation
time, sec. | 2,2 | 4,1 | 5.9 | 6,6 | 6,2 | 5,6 | 6. Thickness of material represents acoustical plaster only. # TABLE 4 FELT AND OTHER FIBERS The sound absorption properties of various types of felts are listed. Felt is made of fibers worked together by pressure, heat, chemical action etc., without weaving or knitting. Felts in general have average to good sound absorption properties, but have poor barrier properties. (See Table 18 for additional listing of felts.) The companies (by numbers shown in Section II) with products listed in Table 4 are: 34, 38, 51, 69, 109, 157, 161. # CAUTION THE NUMBERS LISTED UNDER THE "MOUNTING" COLUMN REFER TO THE AIMA STANDARD MOUNTINGS DESCRIBED IN SECTION 1-3.1.3. AND ILLUSTRATED IN FIGURE I-11. TABLE 4 FELT AND OTHER FIBERS | | | | | Ahno | ration | Conffic | | 71 1111D | OTHER | LIbrith | | | | |----------|-----------------------|-----|--------|--------|--------|---------|---------|----------|------------------|----------------|-----|---|---------------| | Nounting | Thickness
(inches) | MAC | 125 Hz | 250 Hz | 500 Hz | 1000 Hz | 2000 Hz | 4000 Hz | Weight
1b/ft2 | | Co. | Product | Foot-
nata | | 4 | 1/2 | .40 | .02 | .07 | .25 | .49 | .68 | .87 | 8 | KAL
A72-181 | 34 | Jute felt | 1,8 | | 4 | 1 | .78 | .34 | .70 | .74 | .84 | .79 | .90 | 8 | CT | 109 | J-M Cerafelt | 2,8 | | 4 | 2 | .82 | .61 | .70 | .77 | .90 | .90 | .90 | 8 | CT | 109 | J-M Corafelt | 2,8 | | 4 | 3 | .83 | .52 | .69 | .78 | .92 | .93 | .90 | 8 | CT | 109 | J-M Corofelt | 2,8 | | 4 | 4 | .84 | .63 | .76 | .81 | .90 | .89 | ,90 | 8 | CT | 109 | J-M Cerafelt | 2,8 | | 4 | 5 | .86 | .65 | ,79 | .80 | .94 | .91 | ,90 | 8 | CT | 109 | J-M Cerafelt | 2,8 | | 4 | 6 | .88 | .70 | .84 | .83 | .94 | .89 | ,90 | 8 | CT | 109 | J-M Cerafelt | 2,8 | | - | • | - | | | | | | | 6.667 | - | 51 | Jute Felt | 3 | | • | - | - | | | | | | | - | - | 69 | Industrial felts | 4 | | - | 1/2 | - | | | | | | | • | - | 157 | Felc | 5 | | - | 1 | - | .08 | , 33 | .80 | .88 | .89 | ,89 | - | | 161 | Felt wood or synthetic | 6 | | - | | ;79 | | | | | | | 3 | - | 38 | Carney Sound Attenua-
tion blankets, 0" air
space | . 7 | | • | | .82 | | | | | | | 3 | | 38 | Carney Sound Attenua-
tion blankets, 1/2"
air space | 7 | | | | .91 | | | | | | | 3 | • | 38 | Carney Sound Attenua-
tion blankets, 1"
air space | 7 | ### FOOTNOTES FOR TABLE 4 FELT AND OTHER FIBERS - Garnetted, needled belted jute padding. Temperature range approximately 50-175°F. Relative humidity range 0-95%. Flame agreed less than 4"/minute. Used as domestic and automotive carpet underlay. Supplied in rolls or die cut patterns. - Refractory fiber insulation. Supplied in rolls 25' long or as 4' and 8' long sheets. Density range 3 to 8 lb/cu ft. Various thicknesses available. Maximum temperature 2300°F. Humidity range 0-100%. Used as domestic and automotive carpet underlay. Sizes ranging from 3' x 6' to 12' x 60'. Maximum humidity 70%. Does not exceed flammability of interior materials federal MVSS 302. - Industrial felts available in rolls or fabricated to custom specifications. Many colors and compositions available. Primary ingradient wool. Temperature range: -50°F to 225°F. - Standard size 36" x 72" x 12". Oil resistant. May be die-cut, can be supplied with pressure sensi-tive coating. Mainly used to reduce shock and vibration. - Acoustic data extracted from a graph. Mounting method not specified. Preferred density for acoustic felt is 107 sm/cc and optimum absorption for 1" thickness. Thicknesses available are 1/12", 1/8", 1/2", 3/4", 1", 1-1/2". Temperature range: -80° to 200°F, flower rasistance; F.R. treated, less than 3-1/2" vent burn. - High calcium fiberglas felt. Temperature range: -50° to 500°F, humidity range: 0-95%. Flame rasiatance: 25, conforms to ASTM C 384-58. The table shows changes in MRC's as the air space in the back of the blanket is changed. - 8. Tested and evaluated according to ASTM C 423-66. # TABLE 5 CONCRETE BLOCKS The sound absorption of concrete blocks with built-in cavitics are listed. These cavities act as damped (Helmholtz) resonators to absorb sound. Figure 5 shows three concrete blocks with cavities and cuts of different shapes or sizes. The block can be "tuned" to a certain frequency band by proper selection of the cavities and the cuts. These blocks are good sound barriers too (see Table 29 for transmission loss of some of the concrete blocks listed in this table). The comparies (by numbers shown in Section II) with products listed in Table 5 are: 75, 141. Figure 5 Sound Absorbing Concrete Blocks # CAUTION - 1. ABSORPTION COEFFICIENTS MAY EXCEED 1.0. FOR A COMPLETE
DISCUSSION OF THESE VALUES SEE SECTION I-3.1.2. - 2. THE NUMBERS LISTED UNDER THE "MOUNTING" COLUMN REFER TO THE AIMA STANDARD MOUNTINGS DESCRIBED IN SECTION 1-3.1.3. and ILLUSTRATED IN FIGURE 1-11. TABLE 5 CONCRETE BLOCKS | | Thickess
(inches) | | | Abso | rption (| Coeffici | enta | | | | Product | | |----------|----------------------|-----|--------|--------|----------|-------------|---------|-------------------|---------------|-----|---------------------|---------------| | Hounting | | 13C | 125 Hz | 250 Hz | 500 Hz | 1000 Ez | 2000 Hz | Density
1b/ft3 | Lub. | Co. | | Foot-
note | | 4 | 3-5/8 | .30 | .14 | .47 | .34 | .18 | .13 | ,14 32 | RAL
A67-71 | 75 | Concrete Blocks | 1,2 | | 4 | 4-1/2 | .51 | .19 | .83 | .41 | .38 | ,42 | .40 19* | G&H | 141 | Sound Blox, Type A | 3 | | 4 | 4-1/2 | .70 | .20 | .95 | .85 | .49 | .53 | .50 17* | G&H | 141 | Sound Blox, Type B | 2 | | 4 | 6-1/2 | .47 | .62 | .84 | .36 | .43 | .27 | ,50 23,4* | G&H | 141 | Sound Blox, Type A | 3 | | 4 | 6-1/2 | .63 | ,31 | .97 | .56 | .47 | .51 | .53 24* | G&H | 141 | Sound Blox, Type B | 3 | | 4 | 8-1/2 | .45 | .97 | .44 | .38 | .39 | .50 | .60 28* | Cah | 141 | Sound Blox, Type A- | 12. | | 4 | 8-1/2 | .45 | .74 | ,57 | .45 | .35 | .36 | .34 35* | G&H | 141 | Sound Blox, Type B | 2 | | 4 | 8-1/2 | .55 | . 60 | .72 | .56 | . 48 | .46 | .47 37.5* | C&H | 141 | Sound Blax, Type BE | 2 | | 4 | 9-3/8 | .90 | .80 | ,97 | 1.02 | .90 | .77 | .71 30* | G&H | 141 | Sound Blox, Type BE | 2 | ^{*} Density entry shown is the weight in lbs/block (approximate). ### FOOTNOTES FOR TABLE 5 CONCRETE BLOCKS - 1. 5 cell, $4" \times 8" \times 16"$, partition block well are face-sawcut and acoustically treated with 7/16" thick core (3-7/8" \times 6-7/8") of glass fiber. - 2. Tested and evaluated according to ASTM C 423-66. Block size 8" x 16". - 3. Tested and evaluated according to ASTM C 423-60T. Block size $8^{\prime\prime}$ x $16^{\prime\prime}$. # TABLE 6 COMPOSITES VINYL/FOAM The composite products made from vinyl and foam are listed. Vinyl is laminated onto a foam layer either to protect the foam surface or to provide a sound barrier. Protective vinyl facing on foam is perforated to expose the foam to sound while barrier vinyl sheet is comparatively thick and is not perforated. Both types of composites -- one where vinyl is merely a protective facing and another where vinyl acts as a sound barrier -- are referred to here as vinyl/foam composites but this table shows only the sound absorption data for such products. Transmission loss of vinyl sheets can be determined by referring to some of the vinyl products listed in Tables 10 and 18. Figure 6 shows a product with perforated vinyl facing laminated on a foam layer Figure 12 illustrates a product where vinyl is used as a barrier material. The companies (by numbers shown in Section II) with products listed in Table 6 are: 12, 59, 77, 111, 135, 149, 150, 157. ### CAUTION - 1. ABSORPTION COEFFICIENTS MAY EXCEED 1.0. FOR A COMPLETE DISCUSSION OF THESE VALUES SEE SECTION 1-3.1.2. - 2. THE NUMBERS LISTED UNDER THE "MOUNTING" COLUMN REFER TO THE AIMA STANDARD MOUNTINGS DESCRIBED IN SECTION I-3.1.3. AND ILLUSTRATED IN FIGURE I-11. - 3. ABSORPTION COEFFICIENTS ARE SHOWN EITHER AS PERCENTAGES (NORMAL INCIDENCE DATA) OR AS DECIMAL FRACTIONS (RANDOM INCIDENCE DATA). THE DIFFERENCES BETWEEN THESE TWO DATA ARE DISCUSSED IN SECTION 1-3.2. Figure 6 Perforated Vinyl Facing on Foam # GLOSSARY The outside surface of the specimen. In general the side facing the sound source $% \left\{ 1,2,\ldots,n\right\}$ Facing: The other outside surface of the specimen. In general the side not facing the sound source Backing: The region between the facing and the backing Core: # TABLE 6 COMPOSITES VINYL/FOAM | _ | | | | Aba | orption | Coeff | icienta | | | | | | | |----------|-----------------------|------|-------|-------------------------|-----------------------------------|-------------------|----------------------|------|-----------------|--------------------|-----|---------------------------------|---------------| | 3 | | | # | £ | 护 | Ä | Ez | 봈 | • | | | | | | Mounting | Thickness
(inches) | MRC | 125 1 | 250 E | 500 1 | 1000 | 2000 | 4000 | Densit
1b/ft | y Lab. | Co. | Product | Foot-
note | | _ | | | | foan | -cell po
flame-t
ic back | onded : | r uratha
to vinyl | ne | | IATL | | | | | • | 1/4 | . 35 | 2,8% | 37. | 3,8% | 8% | 53% | 497. | - | 5-250-
12/18/71 | 12 | Bondtite Acoustic
Upholstery | 1,15 | | | | | | flam | orated v
e-lamina | ited to | form | | | | | Perforated vinyl | 2,3 | | - | 1/4 | • | 10% | 13% | 22% | 41% | 567 | 687 | • | • | 157 | on foam | • | | | | | | | urethane
ed vinyl | | | | | | | | 4.5 | | • | 1/4 | - | | .05 | .09 | .20 | .44 | .80 | • | • | 149 | Sound/Eaze TL-Alpha | 4,5,
6,13 | | | | | | Polye
flex:
TLB-P | urethane
ible, de
My backin | foam
mae vi | on
ny l | | | | | | 4.7 | | • | 1/4 | - | | .05 | .09 | .20 | .44 | .80 | - | • | 111 | Sound/Esze TL-Alpha | 6,7,
13 | | | | | | high- | rethane
strengt
inyl ba | h, high | | | | | | Eckoustic Noiss | | | - | 5/16 | - | | .05 | .10 | .22 | .48 | .85 | • | - | 59 | Barrier | 8,9 | | | | | | foam; | cell po
flame-
lo backi | bonded | | | | IATL
5-250- | | Bondtite Acoustic | 1,15 | | • | 1/2 | .60 | 3.2% | 4.27 | 7.2% | 227 | 84% | 74% | • | 12/18/71 | 12 | Upholstery | | | | | | | | rated v
-lamina | | | | | | | Perforated vinyl | 2,10 | | • | 1/2 | - | 15% | 227 | 412 | 45% | 87% | 92% | • | - | 157 | on foam | 2,10 | | | | | | | rethane
d vinyl | | | | | | | | ۸ 5 | | • | 1/2 | • | | .11 | .24. | .58 | .89 | .96 | • | - | 149 | Sound/Eaze TL-Alpha | 4,5
6,13 | | | | | | | rethane
d vinyl | | | | | | | | 6.7 | | • | 1/2 | - | | .11 | .29 | .58 | .89 | .96 | • | • | 111 | Sound/Eaze TL-Alpha | 6,7
13 | | | | | | fused | tical po
to high-
ty poly: | -strene | th, high | 1- | | | | Eckoustic Noisa | | | - | 9/16 | • | | .10 | .28 | .50 | .85 | .95 | • | • | 59 | Barrier | 8,9 | | | | | | Perfo
flame | rated vi
-lamina | nyl far
ted to | ing
foam | | | | | Perforated Vinyl | | | • | 3/4 | - | 227, | 29% | 60% | 82% | 917 | 96% | • | • | 157 | on Foam | 2,11 | TABLE 6 COMPOSITES VINYL/FOAM (Concl) | | w _ | | | Abso | rption | Coeffi | cients | | | | | | | |----------|-----------------------|----------|----------------|----------------|-----------------|----------------------|--------------|------|-------------------|-----------------|-----|---------------------------|---------------| | E Ta | knet
Nes) | | 2 . | ž | | H2 | # | 봤 | | | | | | | Mounting | Thickness
(inches) | IRC
C | 125 1 | 250 3 | 503 | 1090 | 2000 | 7000 | Density
1b/ft3 | Lab. | Co, | Product | Post"
note | | | | | | | | vinyl;
atod fo | | | | | | | | | 4 | 1 | .70 | ,10 | ,26 | .70 | 1.06 | .87 | . 87 | - | G&H
4/28/72 | 77 | Foamade Product
22 373 | 14 | | | | | | Perfo
54" w | rated
1de/60 | vinyl; | facing | | | | | Perforated Vinyl | | | - | 1 | .50 | .07 | .23 | .66 | .63 | .51 | .55 | - | CT | 150 | Pyrell | 16 | | | | | | foam | | bonded | r ureth | | | I ATL
5-250- | | Bondtite Acoustic | | | - | 1 | .70 | 7.5% | 10.2% | 21% | 667 | 79% | 50% | - | 12/8/71 | 12 | | 1,15 | | | | | | | | vinyl f | | | | | | Perforated Vinyl | | | - | ı | • | 30% | 40% | 70% | 89% | 95% | 98% | - | - | 157 | | 2,12 | | | | | | | | a fosm e
l backia | | | | | | | 4,5, | | • | 1 | - | ,11 | ,29 | .66 | .91 | .98 | .90 | - | - | 149 | Sound/Eaze TL-Alpha | 13'' | | | | | | | | e foam (
TLB-M) | on flexi | bla, | | | | | 6,7, | | • | 1 | - | .11 | .29 | .66 | .91 | .98 | .90 | - | - | 111 | Sound/Eaze TL-Alpha | 13'' | | | | | | on pol | lyureth | inyl fa | | | | KAL
1393-2- | | | | | • | 1 | .75 | . 19 | .42 | .70 | .98 | .84 | .85 | 3.3 | 72 | 135 | Parafoam | 17 | | | | | | flame- | ated v | inyl fa | cing
foam | | | | | Perforated Vinyl | | | - | 2 | • | 38% | 67% | 91% | 98% | 99% | 99% | - | • | 157 | on Foam | 2,3 | | | | | | | onded
backi | to viny | 1 | | | IATL
5-250- | | | | | - | 2 | .77 | 18.5% | 24% | 46% | 80% | 62% | 617 | • | 12/18/71 | 12 | Acoustic Upholstery | 1,15 | # FOOTNOTES FOR TABLE 6 COMPOSITES VINYL/FOAM - 1. Available in rolls 54" wide or as cut sheets. Weight 2 lb/cu ft. Provides thermal insulation, - 2. Custom thickness available. - 3. Available in rolls 54" wide, - Available in a wide range of configurations using different foam thicknesses, septum weights, decorative surfaces and with pressure sensitive adhesive. - 5. Random incidence absorption coefficients computed from normal incidence data. - Septum density 1 1b/sq ft. Foam density 2 1b/cu ft. The coefficients shown are random incidence absorption coefficients. - 7. For standard 1 1b/ft2 septum STC-26. - 8. Self-extinguishing ASTM 1692-87T. - 9. Temperature range 20° to 200°F. Gasoline, oil, and abrasion resistant. - 10. Available in rolls 54" wide, 50' long. - 11. Available in rolls 54" wide 35' long. - 12. Available in rolls 54" wide 25' long. - 13. Optional Tedlar surface. - 14. Available in sheets or rolls. The test conducted with vinyl side exposed. - 15. Conforms to ASTM C384-58, impedance tube tested. - 16. Impadance tube tested. - 17. Conforms to C423-66, reverberation room tested. # TABLE 7 FILM/FOAM Various film protected foams and their sound absorption coefficients are listed. These coefficients are based on tests made with protective film side exposed to sound. The protective film can reduce the amount of sound absorption at high frequencies but in certain types of environments, the protection of a film is absolutely essential. It is possible to have protection against water, oils, fuels, solvents, particles, sunlight, etc., using an appropriate film and still get a product with the desired sound absorption. Figure 7 shows a foam pad covered by a metallic film on both sides. The companies (by numbers shown
in Section II) with products listed in Table 7 are: 11, 12, 150, 160. Figure 7 Foam Pad with a Protective Metallic Film Covering ### CAUTION ABSORPTION COEFFICIENTS ARE SHOWN EITHER AS PERCENTAGES (NOR-MAL INCIDENCE DATA) OR AS DECIMAL FRACTIONS (RANDOM INCIDENCE DATA). THE DIFFERENCES BETWEEN THESE TWO DATA ARE DISCUSSED IN SECTION I-3.2. TABLE 7 FILM/FOAM | | | | | Absor | ption | Coeffic | ienta | | | | | | | |----------|-----------------------|------|-------|--------|----------------------------|---------|--|---------|-------------------|----------------|------|--------------------------------------|---------------| | Hounting | Thickness
(inches) | NG C | 125 æ | 250 34 | 1. 005 | 1000 Hz | 2000 Hz | aH 0007 | Density
lb/ft3 | Lab. | Co. | Product | Foot-
note | | - | 1/2 | .54 | | . 16 | ,43 | ,70 | .80 | .91 | | | 160 | Tufcote Acoustical | 14 | | - | 1/2 | .57 | 3.5% | 7.02 | 36% | 437 | 15% | 28% | | iatl | 12 | Foam No. 4100 | 1,2,11 | | - | 1/2 | . 58 | 3.0% | 6.3% | 447 | 38% | 27% | 35% | • | IATL
3/5/73 | 12 | Film No. 766 on Foun | 3,11 | | | 1/2 | . 60 | 4.6% | 7.5% | 442 | 49% | 23% | 39% | • | IATL
3/5/73 | 12 | Film No. 764 on Poss | 4,11 | | - | 1/2 | , 62 | 5.0% | 6.0% | 42% | 57% | 31% | 49% | - | IATL
3/5/73 | 12 | Film No. 761 on Foam | 5,11 | | | 1/2 | , 65 | 3.5% | 5.5% | 20% | 74% | 46% | 497 | • | TATL | 12 | Foamkote No. 746 on
Foam No. 4100 | 2,6,11
13 | | | 1/2 | .65 | 3.0% | 4.6% | 11.5% | 467 | 86% | 56% | • | IATL | 12 | Foamkote No. 749 on
Foam No. 2950 | 7,6,11
13 | | • | 1/2 | .67 | 3,6% | 9.2% | 25% | 75% - | 47% | 32% | • 2 | IATL | 12 | Foamkote No. 749 on
Foam No. 4100 | 2,7,11 | | | 1 | .25 | • | .11 | .18 | .29 | .57 | .45 | | CT | 150 | Urethane Laminate on Foam | 9 | | - | 1 | .40 | .15 | .68 | .40 | , 35 | .38 | .45 | - | CT | 1.50 | Metalized Polyester
Film | 10,12 | | • | 1 | .40 | _ | .15 | .68 | .40 | .35 | .30 | - | CT | 150 | Metalized Film
Laminate on Foam | 10 | | • | 1 | ,50 | 4.87 | 9.5% | 34% | 16% | 11% | 20% | | LATL | 12 | Protective Film 748
on Foam 4100 | 1,2,11 | | | 1 | .54 | 5.0% | 16.5% | 10% | 24% | 20% | 29% | - | IATL | 12 | Protective Film 766
on Foam | 3,11 | | | 1 | .57 | 5.8% | 15% | 45% | 20% | 29% | 30% | - | iatl | 12 | Protective Film 764 on Foam | 1,4 | | | 1 | .63 | 11% | 35% | 35% | 49% | 15.5% | 30% | - | IATL | 12 | Founkote No. 748 on
Foam No. 4100 | 11,13 | | _ | 1 | .69 | 6.0% | 117 | 45% | 71% | 40% | 45% | | IATL | 12 | Fosmkota No. 746 on
Fosm No. 4100 | 216
11,13 | | | 1 | .72 | 8.0% | 19% | 43% | 74% | 47% | 38% | • | IATL | 12 | Foamkote No. 749 on
Foam No. 4100 | 21,13 | | | 1 | ,72 | - | .27 | ,63 | 1.0 | .99 | , 96 | - | | 160 | Tufcoat Acoustical
Fosm | 14 | | - | 1 | .73 | 5.0% | 9.0% | 30% | 98.5% | 52% | 71% | • | IATL | 12 | Foamkote No. 749 on
Foam No. 2950 | 7,8
11,13 | | • | 2 | .57 | 9,2% | 15% | 32% | 29% | 31% | 26% | • | IATL | 12 | Protective Film 764 on Poam | 4,11 | | • | 2 | .55 | 12% | 16% | . 26% | 24% | 28% | 36% | • | IATL | 12 | Protective Film 766 on Foam | 3,11 | | - | | | | films | pressu
hylena
- 40 t | ro aena | k ureth
itized
Tempera
. Humi | on | | | 11 | Urethane films | - | ## FOOTHOTES FOR TABLE 7 FILM/FOAH - Foamkots 748 is a two cost system with 0.013" thickness of Hypaton and a 0.005" layer of finishing cost to provide a sealed surface resistant to weather, said, oils, solvents, fuels, etc. - 2. No. 4100 is Airtex Industrial Form 4100, 2 10/cu ft polester weethens form. - Film No. 766 is a polywinyl fluoride film which can be adhesive bonded to fosm. Protects against contaminants or warmth of sunlight. - 4. Film No. 764 is wrethene film. Protects against liquids and dirt. - 5. Film No. 761 is metalized film. For engine compartment uso, etc. - Formkote No. 746 is a single sprayed 0.015" thickness coating of Hypalon. Resistant to moisture and weather. - Foankote No. 749 is a 0.0025" thick sheet of polyethylene to totally enclose simple shapes of urethane foam. Sheeting is chemically inert, impervious to all normal contaminants and has high tear and puncture strength. - 6. No. 2950 is Airtex Industrial Foam 2950, 2 1b/cu ft polyether urethane foam. - 9. Nonporous wrathers film. Resistant to chemicals. Temperature range: -40° to 250°F. Flume resistance ASTM 1692-99T. - 10. Metalized polyester fiber. - 11. Conforms to ASTM C 384-50, impedance tube test. - 12. Temperature range: -40° to 225°F. Excellent resistance to chemicals. - 13. Conforms to ASTH C 423-66, Taverberation room test. - 14. Random incidence coefficients calculated from normal by means of B&K conversion chart. The foam has aluminized polyecter file or cast wrethene film facing. The film protects against gasoline, water, oil or solvents. Passes UL 94. ## TABLE 8 LEAD/FOAM The composite products manufactured using a lead and foam combination are listed. These products combine the sound barrier property of lead with sound absorption provided by foam. They are often used in machinery enclosures and accordingly, most of the test data shown in this table are noise reduction and not transmission loss. In these cases the products were tested with an enclosure and therefore the footnotes for the table should be studied carefully before interpreting the noise reduction data. A few products listed in the table were tested for transmission loss however, and this is clearly indicated. Additional information about transmission loss of some lead and lead loaded products is available in Tables 13 and 18. The companies (by numbers shown in Section II) with products listed in Table 8 are: 12, 18, 36, 143, 149, 153, 184. #### CAUTION - 1. NOISE REDUCTION VALUES MAY HAVE BEEN SUBSTANTIALLY INCREASED DUE TO THE MATERIAL ON WHICH THE PRODUCT WAS MOUNTED. REFER TO THE APPROPRIATE FOOTNOTE FOR THE TEST SPECIMEN DESCRIPTION. - 2. VALUES PRESENTED IN TABLE 8A ARE NOISE REDUCTIONS AND THOSE IN TABLE 8B ARE TRANSMISSION LOSSES. SEE SECTION 1-3.6. FOR EXPLANATION OF DIFFERENCES. #### GLOSSARY Lead Loaded: Lead added to a base material such as vinyl to increase sound transmission loss. TABLE BA LEAD/FOAM | • | • | .037 | • | - | - | | - | - | 1/2 | 1/2 | 1/2 | Thichness (inches) | * | |---|--|-----------------------------------|-------------------------------|--------------|--------------|---------------|---------------|--|----------------------------------|--------------|--------------|--------------------|-----------------| | 20 | 18 | 20 | 31 | • | • | • | • | 31 | | | | STC | | | œ | 7 | 9 | 17 | 18 | 18 | 16 | 16 | 19 | 27.8 | 17 | 17 | 125 **- | | | æ | 9 | D | | | | | | | œ | • | - | 125 Ez
160 Ez | 1 | | 10 | 5 | 5 | | | | | | | | | | 200 Fz | | | Pin | 3' x
ansi
acc. | 12 | 22 | 22 | 22 | 22 | 22 | 22 | 31,6 | 17 | 17 | 250 Hz | | | | # 5 gg | 12 | | | | | | | Ď | - | - | 315 15 | ĕ | | 14 m | 12 | 7 | | | | | | | | | | 400 Ez | 186 | | ole noise con
sures, dust u
, and drapes,
14 14 17 20 | | 5 | 26 | 27 | 27 | 24 | 24 | 24 | 44.3 | 19 | 5 | 500 liz | Rec | | 17 pg dia | 7 - 35 | 17 | | | | | | | i. | - | - | 630 Hz | duc | | Flexible noise control
enclosures, dust wrap-
pints, and drapes, etc.
13 ll 14 14 17 20 21 2 | 3' x 75' rolls used as surface barrier on inside walls, curtains, atc. 10 il 12 l3 14 l6 18 19 | 19 | | | | | | | | | | 800 liz | Noise Reduction | | 21 cra | 18 A 1 | 22 | 37 | 29 | 29 | 27 | 27 | 27 | 55.5 | 22 | 22 | 1000 Hz | Į. | | 22 - 11 | | 22 | | | | | | | i | | | 1250 Hz | 6 | | 25 | 21 | 24 | | | | | | | | | | 1600 Hz | 臣 | | nerol
etc.
21 22 25 26 29 | N
G | 26 | 3 | £ | 1 | 4 | 6 | 36 | 60.4 | 36 | 36 | 2000 Hz | (decibels) | | 29 | 24 | 27 | | | | | | | * | - | • | 2500 Hz | | | ន | 25 | 22 | | | | | | | | | | 3150 Hz | ļ | | 72 | 26 | 8 | 47 | 41 | 4 | £ | 4 | 4 | 66 | 멅 | 36 | 4000 Hz | ĺ | | tu. | :: | .44 | 1.0 | 1.0 | 1.0 | 1,0 | 1.0 | 1.0 | | 1.0 | 1.0 | Weight
16/fc | | | RAL
TL70-235 | IAL
TL73-27 | RAL
TL72-232 | g
c | CLC | ctc | OT C | t c | ctc | TITAL | 01.0 | crc | Fab. | | | 149 | 153 | 143 | 35 | 18 | 184 | 18 | 184 | 36 | z | 184 | . | 8 | | | Leaded vinyl
on foam | Sound Stopper
Leaded vinyl | Lead Vinyl, Stock
No. 15-12949 | (MCP II) trol Product II con- | Hushcloth IV | Hushcloth IV | Nusheloth III | Mushcloth III | Sheald Noise Con-
trol Product I
(KCP-I) | Airtex Acoustic
Laminate 9510 | Hushcloth II | Husholoth II | Product | | | 10 | 9,9 | 9, | 7 | 5,11 | 5,10 | 4,11 | 4,10 | u | * | 1,10 | 1,10 | Foot- | | | | | | | | | | | | | | | | | *Note: The thickness of the foam does not have significant effect on transmission loss, Different everall thicknesses will provide similar results. ## FOOTNOTES FOR TABLE BA AND 8B - 1 1b/sq ft lead laminated to a single layer of polyurathane. Supplied in rolls 36" wide by 120" long. The data show noise reduction achieved by installing a 20 gs ztoel machine enclosure, 24" x 24" x 30", lined with Husheloth II (lead face bonded to the steel). - 2. Special Nonstandard test. - 3. 1 1b/sq ft Sheald laminated to 1" thick polyurethane foam. Sheald or foam eide can be laminated directly to the enclosure panel. The data shows noise reduction achieved by 24 ga steel machine enclosure, 24" x 24" x 30", lined with NCF-1 (Sheald face bonded to the inside faces). - 4. 1 1b/sq ft lead sandwiched between two 1/2" layers of foam. Supplied in roll form. Standard rolls are 1" thick, 3' x 10'. Nonstandard sizes available. The data show noise reduction achieved by installing a 20 ga steel machine onclosure, 24" x 24" x 30", lined with Hushcloth III. - 5. 1 lb/sq ft lead between two layers of 1/2" thick foam with an outer skin of 0.004"
vinyl impervious to oil or moisture. Standard rolls are 1" thick, 3' x 10'. Nonstandard sizes available. The test data show noise reduction achieved by installing a 20 ga steel machine enclosure, 24" x 24" x 30", lined with Husheloch IV. - 6. I lb/sq ft lead sandwiched between two layers of 1/4" thick Industrial Acoustic foam 4100. Other combinations of laminates available. The test data show transmission reduction obtained by the General Motor's test utilizing reverberation room and an anachoic chamber, except that samples were adhered to 16 ga steel plate. - 7. 1 1b/sq ft Sheald sandwiched between two layers of 1" thick foam. One foam layer has a plastic facing to protect the foam from oil and water. The test data show noise reduction achieved by the installation of a 24 ga steel machine enclosure, 24" x 24" x 30", lined with NCP-II. - 8. Tested and evaluated according to E413-70T. - 9. Tested and evaluated according to ASTM E 90-70. - Conforms to Fire retardant test, UL-94 and ASTM 1692-59T. Temperature range; -45° to 250°F; 100% humidity range. - 11. Reverberation room test method used. # TABLE 9 OTHER BARRIER MATERIALS AND FOAM The composite products which combine foam with materials other than vinyl, film, or lead are listed. The table is divided in two parts. Table 9A shows the transmission loss data while Table 9B shows absorption coefficients of the products (none of the products appears in both tables). Foam composites with rubber, steel, and vinyl materials are represented in this table. The companies (by numbers shown in Section II) with products listed in Table 9 are: 12, 18, 45, 59, 65, 67, 72, 119, 157, 160. #### GLOSSARY Loaded: A foreign substance added to the base material. In noise control materials this usually means addition of a dense material to a fabric type material to increase sound transmission loss. TABLE 9A OTHER BARRIER MATERIAL AND FOAM (TRANSMISSION LOSS) | | | _ | | _ | 7 | ran | amf | osi. | on | Los | a (| dec | ibe | 18) | | | | | | | | | |-----------------------|------|--------|----|----|------------------------------|---------------------------|-----------------|--------------------------|------------|-----------------------|------------------|---------|---------|---------|--------|----------|---------|------------------|------------------------|-----|--|-------| | Thickness
(inches) | STC | 125 12 | | | | 315 Hz | 400 Hz | | 630 Hz | 300 Hz | 1003 Hz | 1250 Hz | 1600 Hz | 2000 Hz | 2500 班 | 31.50 Hz | 4000 Hz | Weight
1b/ft2 | Lab. | Co. | Product | Foot. | | 5/16 | - | | | | | yur
pol | | | |) Årn | £и
26 | ed | _ | 32 | | | 36 | - | • | 59 | Eckoustic Noise
Barrier Type 250 | 1 | | 9/16 | - | | | | Pol
to
15 | yur
pol | e ti
yv: | iane
Iny l
20 | fo | mac | fu
28 | ed | | 32 | | | 36 | • | - | 59 | Eckoustic Noise
Barrier Type 500 | 1 | | | | | | | bot | el :
west
poly | n t | wo | ĺΔy | er | • | | | | | | | | | | | | | 1 | - | 18 | 16 | 19 | 20 | 21 : | 25 | 25 | 30 | 31 | 35 | | | 48 | | | 53 | - | CT | 119 | Fosm faced steel | 9,10 | | | | | | | wit
cel | ded
h £:
l £: | ibe | ra) | an
ogn | d c | per | • | | 41 | •• | • • | 21 | | TL ^{PAL} -197 | | Cousticomposito | 4.2 | | 1.08 | 24 | 15 | 13 | | | | | | | | | 27 | 29 | 31 | 33 | 34 | 30 | • | 15/1-13/ | 672 | 0-10-100 | 2,3 | | | | | | | οť | thic
ded
per | ck
to
for | ate | d g | ub!
lay
raj | , to | | | | _ | | | | CKI | 4. | | | | 1 1/8 | · - | | | | .14 | | | , 34 | | | . 76 | • | | . 8 | • | | , 63 | • | 722-10 | 67 | "Anachole Pad" | 4,5 | | | | | •• | | ina
bar
x 1 | yur
ted
rie:
20" | to
hi | ata
gh | ast
ria | om
1 | 54" | 3 | | ., | •• | • | 26 | | RAL | | Nushcloth I | 2.2 | | 1 1/8 | 5 30 | 10 | 18 | 19 | 20 | 22 | 23 | 25 | 27 | 30 | 32 | 33 | 33 | 34 | 33 | 33 | 70 | 1,2 | TL73-77 | 18 | (Whispermat) | 2,3 | | , | | | | •• | col | ded
h f | ibe
oau | ra) | npo
oqe | d : | per
e | • | | ~* | • | •• | •• | 7.5 | RAL | 45 | Cousti-Composite | | | 1.54 | • | 11 | y | 10 | 12 | 12 ; | 14 | 13 | 17 | 13 | 20 | 21 | 24 | 20 | 28 | 29 | 32 | .75 | TL71-197 | 672 | 5-100 | 2,3 | | - | • | | 15 | 17 | to | yero
poly
19 | yvi | nyl | | | | | 32 | 32 | 33 | 36 | 37 | - | HLB | 59 | Eckaustic Noise
Barrier | | | | | | | | foa | in c
m ba
rie: | вck | eå ' | by . | à | d | | | | | | | - | - | 157 | DEE BEE Dropper
Plastic Barrier
Insulation | 8 | | | - | | | | Foar | n 40 | ıd
bb | blad
er d | ck
she | oti | ng | | | | | | | - | - | 12 | Airtex Acoustic
Laminates | | | | _ | | | | iret
back
Leol
Lure | han
ced
lati | by
on | las
1/4
fos
Liv | tm, | ner
chi
P
dh | ck
res
esi | | | | | | | - | • | 160 | Tufcote Noise
Barrier 101 | 11 | TABLE 98 OTHER BARRIER MATERIAL AND FOAM (SOUND ABSORPTION) | 9 | | | Abs | orption | Coeffi | cients | | | | | | | |-----------------------|-----|--------|--|--------------|--|------------------------|---------|------------------|------|-----|------------------|---------------| | Thickness
(inches) | NRC | 125 HE | 250 Hz | 500 Hz | 1000 Hz | 2000 1·z | 4000 Ez | Weight
1b/fc2 | Lab. | Co, | Product | Foot-
note | | | | | usetu | bing n | eat, rub
l and 1/
blocking
oise clo | and | ١, | - · | | | | | | 1/2 | - | .11 | .13 | .30 | .40 | .75 | .82 | 1.0 | CT | 65 | Acousta Damp 5 | 6,7 | | | | | 24 aq
mat m
usafu
absori
to so | bing no | est, rub
l 1º foa
clocking
ciss clo | ber
m,
and
se | | | | | | | | 1 | - | .16 | .30 | -60 | .72 | .93 | ,94 | 1.0 | CT | 65 | Acquata Damp 10 | 6,7 | | | | | 24 sq
mat ma | ft she | et, rubl | ber
foam | | | | | | | | 2 | • | . 33 | .55 | .78 | .85 | .96 | ,91 | 1.0 | CT | 65 | Acousta Damp 20 | 6,7 | | | | | Rubber | hase
with | mat mate
acoustic | erial | a.m | | | | | | | 1/2 | - | .11 | , 13 | .22 | .40 | .74 | .82 | - | CT | 65 | Acousts Damp 125 | 6,7 | | | | | Rubber
bonded | base (| mat mate
menustic | rial
foam | | | | | | | | 1 | - | . 16 | .31 | .75 | , 72 | .93 | ,92 | • | - | 65 | Acqueta Damp 225 | 6,7 | | | | | bonded | with a | mat mate
occustic | rial
foam | | | | | | | | 2 | • | . 34 | . 57 | . 75 | .84 | . 96 | , 92 | • | • | 65 | Acousta Damp 425 | 6,7 | #### FOOTNOTES FOR TABLES 9A AND 9B OTHER BARRIER MATERIALS AND FOAM - Self-extinguishing per ASTH 1692-57T. Temperature range; -20° to 200°F, gasoline, oil and abrasion resistant. - 2. Tested and evaluated according to E90-70. - 3. Tested and evaluated according to E413-70T. - 4. Tested and evaluated according to ASTM C 364-58. - 5. Good tack strength up to 180°F, chemical; solvent and weather resistant. Non-toxic and odorless. - 6. Reverberation room test mothod used. - 7. Data extracted from a graph. - %. Temperature range: -50° to 450°F. Resistant to gasoline, alkalis, ${\rm H}_2{\rm O}$. - 9. Self-extinguishing per ASTM D 1692. Temperature range: 0 to 150°F. - 10. Tested and evaluated according to ASTM E90. - 11. Temperature range: -40°F to 250°F ## TABLE 10 BARRIER MATERIAL/FIBERGLASS The composite products comprising fiberglass to provide sound absorption and a dense material backing, e.g., lead asbestos, felt, mastic, etc., to provide the sound transmission barrier are listed. Figure 10A shows a lead/fiberglass combination with a protective vinyl film and Figure 10B shows a mastic/fiberglass composite with pressure sensitive adhesive on the mastic side. The sound absorption provided by the products depends mainly upon the surface characteristics, thickness, and density of the fiberglass. Sound absorption data are not presented in the table. The products are usually available with various fiberglass thicknesses to suit different absorption requirements. The table does provide sound barrier information. Table 10A shows noise reduction data and Table 10B shows transmission losses of the products and lists additional products for which acoustic data were not available. Appropriate footnotes should be referred to before interpreting the data in this table. Products of this type have multiple uses. Typically they are used in machine enclosures, as pipe wrappings, or in large rooms to reduce the reverberation time of the room. The companies (by numbers shown in Section II) with products listed in Table 10 are: 6, 18, 36, 79, 86, 107, 184. #### CAUTION - 1. NOISE REDUCTION AND TRANSMISSION LOSS VALUES MAY HAVE BEEN SUBSTANTIALLY INCREASED DUE TO THE MATERIAL ON WHICH THE PRODUCT WAS MOUNTED. REFER TO THE APPROPRIATE FOOTNOTE FOR THE TEST SPECIMEN DESCRIPTION. - 2. VALUES PRESENTED IN TABLE 10A ARE NOISE REDUCTIONS AND THOSE IN TABLE 10B ARE TRANSMISSION LOSSES. SEE SECTION I-3.6 FOR EXPLANATION OF DIFFERENCES. Figure 10A Lead/Fiberglass Composite with a Protective Facing Figure 10B Mastic/Fiberglass Composite with Pressure Sensitive Adhesive ## GLOSSARY Facing: The outside surface of the specimen. In general the side facing the sound source The other outside surface of the specimen. In general the side Backing: not facing the sound source The region between the facing and the backing Core: Any of various quick-drying pasting cements. For sound barrier application this is usually a dense flexible asphalted product. Mastic: Scrim: A light, loosely woven cotton or woolen cloth. ## TABLE 10A BARRIER MATERIAL/FIDEAGLASS (NOISE REDUCTION) | | | | | | | Noi | He | Red | uct | ion | (| leci | lbe: | ls) | | | | | | | | | |-----------------------|-----|--------|--------|--------|-----------------|-----------|--------|-------------|--------|--------|----------|--------|----------|--------|--------|--------|---------|------------------|------|-----|-------------|--------| | Thickness
(inches) | STC | 125 Bz | 160 Hz | 200 Hz | 250 Bt | 315 Ph | 7H 00% | 500 Hz | 630 Hz | 300
H: | 29: COOI | 1250 % | 1600 :42 | 2000 E | 2500 🛬 | 3150 4 | ₹ 900\$ | Weight
16/7c2 | Lab. | Co. | Produce | Foot- | | 1 | | 14 | - | | 1"
1/8
16 | fib
"1 | | 1 a a
38 | | | 48 | | | 49 | | | 55 | 1.0 | CL.C | 104 | Husheloth 1 | , 133, | | 3 | | 18 | | | £1b
24 | erg | | 8 a
25 | nd | | d
29 | | | 42 | | | 43 | 1.0 | CLC: | 15 | Husheloth 1 | /1 1.2 | #### TABLE 108 BARRIER MATERIAL/FISERGLASS (TRANSMISSION LOSS) | | | | | | Tr | ane | mi | sa1 | on L | 08 | a (| dec | ibe | 15) | | | | | | | | | |-----------------------|-----|--------|--------|----------|--------------------|--------------|------------|-------------------|---------------------------|----------|------------|---------|---------|----------|---------|---------|---------|-------------------|-----------------|-----|---------------------------------------|---------------| | Thickness
(inches) | STC | 125 Ez | 160 tz | 200 1/2 | 41 052 | त्रा शह | 711 GO5 | 500 Hz | 630 Hz | 800 Hz | ZH C001 | 1250 Hz | 1600 Hz | 2000 Hz | 2500 Hz | 3150 Hz | 4000 Hz | Weight
(1b/ft2 |) Lab. | Co, | Product | Fout*
note | | 1 | 27 | | | , | ri ci | th 1
h 1 | ck
11 | ,11t | ft | la: | 88
88 C | Lc. | | | | | | 1.0 | GEN | 86 | Acquatipsd
L 24-48(100) | 4 | | 1-1/5 | 2 - | | | 1 | zla:
ext
or; | tile
ptic | E1b | ers
eri
dat | nko
ric
and
a se | Fo | Tal | ole | 12 | • | | | | - | - | 107 | Insul-Quilt
Studio bishket | 11,12 | | 2 | 31 | 18 | | 4
2: | ith
nd
3 | ,00 |)4"
; | hic
th
24 | k fi
lek | vi
vi | nyl
28 | | | 1g
43 | | | 43 | 2.8 | CLC
#738 | 36 | Sheald Noise Con-
trol Product III | 5,6 | | 2 | 47 | 233 | 3 3 | | | | | | and
35 5 | | | 57 | 56 | 51 | 48 | 50 | 53 | | RAL
TL73-107 | 79 | Acoustifiber | 6,7,8 | | - | 38 | | | - 21 | BCDI | dR | Īas | 18 3 | foi
Eibe
Tab | r. | 34 | • | | | | | | - | - | 6 | Sound Control
Blanket | 9 | | - | 26 | | | Wj
An | lth
id s | l :
Pre: | 16/
164 | re | ber
ft :
sen: | 1 | ti | 3 | | | | | | - | - | 86 | Acoustipad
L 24-49 (100) | 10 | #### FOOTNOTES FOR TABLES 10A AND 10B BARRIER MATERIAL/FIBERGLASS - Temperature range: to 350°F. Data show Noise Reduction (dB) achieved after the product was bonded on fiberglassface to a 20 gage steel panel. - 2. NFPA flame spread 10. - 3, NFPA flame spread 20. - 4. Sound absorption coefficient = .65. - 5. Data shows Transmission loss of the product cemented to 20 ga steel. - 6. Tested and evaluated according to ASTM E 90-70. - Tested and evaluated according to ASTM E 413-70T. The test specimen was 5.91 lb/sq ft wall with its cavity filled with 2 inch by 2 feet by 4 feet Acoustifiber. - 8. Temperature range: to 450°F. - 9. Available in 1", 2", 3" thicknesses and 24", 26", 48" widths on 100 ft roll lengths. - 10. Temperature range: -20° to 200°F. - 11. Tested and evaluated according to ASTM C 384-58. - 12. Temperature range: -65° to 250°F. Resistant to fuels, oils, alkalies, salt atmospheres. - 13. Conforms to fire retardant test. UL-94 ASTM 1692-59T. ## TABLE 11 OTHER COMPOSITE MATERIALS The composite products which for one reason or another cannot be placed in any one of the Tables 6 through 10 are listed. These products include clay tiles with fiberglass pads (see Figure 11A), fabric bonded to foam, mastic with foam, and other products using various combinations of materials. The combinations are used to impart extra strength (see Figure 11B), to provide protection to the absorption material, or to increase the sound transmission loss of the product. The table, however, shows only the sound absorption of the listed products except a few for which no acoustic information is given. The companies (by numbers shown in Section II) with products listed in Table 11 are: 3, 6, 25, 86, 107, 118, 119, 127, 160, 162. Figure 11A Perforated Clay Tile with Fiberglass Pad in Core Figure 11B Reinforced Foam ## CAUTION THE NUMBERS LISTED UNDER THE "MOUNTING" COLUMN REFER TO THE AIMA STANDARD MOUNTINGS DESCRIBED IN SECTION 1-3.1.3. AND ILLUSTRATED IN FIGURE 1-11. #### GLOSSARY The outside surface of the specimen. In general the side facing the sound source $% \left(1\right) =\left\{ 1\right\} =\left$ Facing: The other outside surface of the specimen. In general the side not facing the sound source $% \left(1\right) =\left\{ 1\right\} 1\right\}$ Backing: Core: The region between the facing and the backing Any of various quick-drying pasting cements. For sound barrier application this is usually a dense flexible asphalted product. Mastic: Scrim: A light, loosely woven cotton or woolen cloth. TABLE 11 OTHER COMPOSITE MATERIALS | | | | | Abso | rption | Coeffic | ients | | | | | | | |---------|-----------------------|------|------------|----------------------------|-------------------------------|------------------------------------|--------------------|------|--------------|---------|-----|---|-------------| | Kamtana | Thickness
(inches) | | ž | Hz . | H. | 112 | H | ¥ | - | | | | | | | 37 | ų | ₩n | | | 1000 | 2000 | 0007 | Weig | he | | | Foot- | | ž. | _ E | MC | 125 | 250 | 200 | | 200 | 07 | Weig
lb/f | Lab. | Co. | Product | note | | | | ,50 | | of gines
glass
text: | lass fa
s fiber
lle scr | | mbrane
glass | • | | | | Insul-Quilt Studio | | | 2 | 1 | .60 | .09 | .15 | .41 | .78 | .90 | .90 | - | - | 107 | Blanksta | 11,12 | | | | .65 | 2 0 | of gl | lass fi | anket a
bric me
ø, and
im | mbrane, | | • | | | Insul-Quilc Studio | | | 2 | 2 | .75 | .02 | .21 | . 60 | .99 | .95 | .91 | - | • | 107 | Blanketa | 11,12 | | | | | | pad. | orated,
tile
8" x 1 | fibere
with fi
6" | las str
berglas | ruc- | | RAL. | | Starkus tie | | | 2 | 4 | .55 | .19 | ,64 | .73 | .62 | .20 | .14 | 80* | A66-19 | 162 | Acoustile | 5,13 | | | | | | struc | fibers: | rforate
clay ti
las pad | le | | | RAL | | Starkustic | | | 4 | , 4 | ,60 | .06 | ,66 | .79 | .62 | .29 | .16 | 80* | A54-128 | 162 | Acoustile | 5,13 | | | | | | Korel | film c
lyether | ylon on
n Poly | :
sater | | | | | Tuf coat | 7,11, | | • | 1/2 | . 54 | • | ,16 | .43 | .70 | .88 | .91 | 1 | CT | 100 | Acoustical foam | 15 | | | 1 | .72 | | Korel | | ylon or
n Polye | | ,96 | 1 | СТ | 160 | Tuf coat
Acoustical foam | 7,11,
15 | | _ | - | ••• | _ | • • • | , | | 1 | .,, | • | ٠. | | 110000011111111111111111111111111111111 | | | | | | | .05 lt | o/ft² a | 0.8 lb
aced wi
sbestos | felt. | | | | | Sound control | _ | | - | 1-1/2 | .90 | .18 | . 59 | .96 | .49 | .21 | .19 | . 16 | C&H | 6 | Blanker | 2 | | | | | • | with 2
15 3/4 | Elber | glazed
glass i | nserts | | | RAL | | | | | - | 3-3/4 | .65 | [.28] | .67 | .99 | .48 | [.37] | .37 | 23.75 | A59-399 | 25 | Sound Bar | 3,4 | | | | | , | 1/8" t | i to pl | weave
astic f | fabric
Joan | | | | | | 8.9. | | - | - | .45 | .04 | .26 | .55 | . 54 | .48 | .51 | - | G&H | 3 | Acoustidrape | 8,9,
16 | | | | | | | | | | | | | | | | *Density in 1b/ft3. TABLE 11 OTHER COMPOSITE MATERIALS (Concl) | | 9 | | | Absor | ption (| coeffic: | ionts | | | | | | | |----------|-----------------------|-----|--------|--------------------------------------|------------------------------|--|----------------------------|------------|------------------------------|------|-----|-----------------------------|-------------| | Hounting | Thickness
(inches) | NRC | 125 Hr | 250 Hz | 500 Hz | 1000 Hz | 2000 Hz | | Weight
1b/ft ² | Lab. | Co. | Product | Foot- | | | • | .65 | ,10 | Open,
bonda
urath
.49 | d to 1/ | waaya
'8" chi | fabri
ck foa
.68 | .71 | • | G&H | 3 | Acoustidrape | 9,
10,16 | | | - | .65 | .09 | 1 1b/ | eg ft 🕫 | erglas
astic (
ve adhi
.80 | on pro | .75 | | ст | 86 | Acoustipad
L24-48 | 6,14 | | - | • | - | - | | a lamin | of cell
ated to | | | .25 | - | 127 | K-13 Acoustical
Blankets | 1 | | - | | - | | .5 to
with | 2 lb/s
l/8" po | q ft (
Lyethyl | nastic
Lone fo | ain | • | - | 118 | KFO Series | | | - | • | | • | .5 to
with | 2 lb/s
l/8" po | g ft t
lyethyl | mastic
Lene fo | Ain | - | - | 118 | KA Saries | | | - | • | - | - | .5 to
with | 2 lb/s:
0/4" po | e fc π
lyethyl | nastic
one fo | am | - | - | 118 | CFJ Series Chipbos | ırd | | - | - | - | | to LD | -400 da: | foam a
mping a
x l fo
hick. | heets | | | CT | 119 | LD-400 with foam | | | - | - | | | or sci
ing th
Increa
bility | rim iä
on foam
weed st | media o
introdu
ing pro
rength
ossible
t. | iced di
cess.
and st | IT-
:4- | | _ | 160 | Rainforced Tuf- | | #### FOOTNOTES FOR TABLE 11 OTHER COMPOSITE MATERIALS - Available as 4' x 8' sheet: Lead or felt paper used as backing to provide sound transmission loss. For acoustical data see Table 43. Temperature range: 200°F. - 2. Available in 20/S 100' long and 24", 26" or 48" wide. - 3. Resistant to all chemicals except hydrofluoric acid. Temperature range: -50°F to 200°F. - 4. Numbers in the brackets refer to frequencies of 100 Hz and 2400 Hz respectively. - 5. STC of the tile is 46. Random hole pattern of the facing. - 6. Maximum width 69". Available in sizes; 30" x 24", 36" x 60", 30" x 36", and 30" x 48". - Available as rolls, sheets, die cut parts. Temporature range: -40°F to 250°F. Good chemical resistance. - 6. Special mounting method used for the test (simulated as a stretched flat hung curtain). - 9. Flameproof. - 10. Hung in simulation of draped 100% fullness curtain. - 11. Tested and evaluated according to ASTM C384-58. - 12. Temperature Range: -65°F to 250°F, resistance to fuels, oils, and alkalis. - 13. Tested and evaluated according to ASTM C423-60T. - 14. Derived from Graph. - 15. Meats ASTM 1692 and U.L. 94 Flame Spread. - 16. Tested and evaluated according to ASTM C423-66. ## TABLE 12 FOAM/BARRIER/FOAM Some products
which perform a dual function of sound absorption and sound transmission reduction are listed. The composite product is a sandwich form with the barrier material in the center. Figures 12A and 12B show two such products with protective facings added on one side of each product. Figure 12A shows a product with lead septum and Figure 12B shows a product with vinyl septum. Both lead and vinyl are good sound barriers. Foam layers provide sound absorption and can also provide vibration insulation if necessary. Figures 12A and 12B show products where foam on one side is used to absorb sound and foam on the other side acts as a vibration damping layer or spacer. When the product is glued to a vibrating component, foam on one side floats the septum away from the component and the foam on the other side absorbs the incident sound energy. For this reason foam/barrier/foam products are often used to line the inside surfaces of machinery enclosures. Sound absorption coefficients and transmission loss for some of the products listed in this table can be found in Tables 6, 8 and 9. The companies (by numbers shown in Section II) with products listed in Table 12 are: 12, 18, 36, 65, 111, 149, 156, 157, 160, 184. Figure 12A Foam/Lead/Foam Composite with Plastic Facing Figure 12B Foam/Viny1/Foam Composite with Tedlar Surface ## GLOSSARY The outside surface of the specimen. In general the side facing the sound source $% \left(1\right) =\left\{ 1\right\} =\left$ Facing: The other outside surface of the specimen. In general the side not facing the sound source $% \left\{ 1,2,\ldots ,n\right\}$ Backing: Core: The region between the facing and the backing ## TABLE 12 FOAM/BARRIER/FOAM | Description | Application | Company | Product | |---|---|------------|---| | Sandwich combination of 1" of foam,
1 1b/sq ft (1/64") Sheald, and 1"
of foam with a plastic facing. The
facing protects the foam against oil
and other fluids. (For transmission
loss see Table 8.) | Can be bonded to steel plywood, aluminum and used in enclosures, housing, screens, etc. | 36 | Sheald Noise Control
Product II | | Rubber base, mat material between form. Available in different sizes. Nos. 125, 225, 425 have 1/2", 1", and 2" form pieces respectively. Rubber base mat weight 1 lb/qq ft. (For sound barrier property see Table 18, for sound absorption information see Table 6, 8.) | Blocks and absorbs noise close to the source, | 65 | Acousta-Damp
125, 225, 425 | | Two layers of foam with a sheet of 0.6 pound lead foil between them. 1/6" foam on one side, 1/2" foam on the other side. Available in 48" x 24" x 3/4" size. SFB-1 has radiard finish, SFB-1T has Tedlar finish. | Used to line lightweight enclosures. The 1/4" foam can be cemented to the inside of the enclosure to separate the foil from the enclosure wall. | 156 | Barrier sheets with
lead septum (SFB-1/
SFB-1T) | | Standard sheet size 36"x56". Different foam thicknesses and 1 or 2 lb/ ag ft lead insulators. Flat or convoluted surface faces with thickness range of 1/4" to 2-1/2" available, pressure-sensitive backing available, resistant to solvents. Temperature range from 80°F to 450°F. | Used in any application where sound transmission and sound absorption are required. | 157 | Fosm/Lead/Fosm
insulation | | Two layers of flexible foom with 1 lb/sq ft floating lead septum, Self-extinguishing. Dust free and nontoxic. (For transmission loss information see Table 8.) Hushcloth IV has an extra layer of .004" vinyl facing which is impervious to oil or moisture. | In industrial problem areas and linings of office equipment etc. Where absorption and barrier properties are required. | 184 | Hushcloth III and IV | | Two layers of flexible foam with 1 1b/sq ft floatrap lead septum. Self-extinguishing, dust free and nontoxic. (For transmission loss information see Table 8.) Hushcloth IV has an extra layer of vinyl facing which is impervious to oil and moisture. | In industrial problem areas
and linings of office equip-
ment etc. where absorption
and barrier properties are
required | 18 | Hushcloth III and IV | | l or 2 lb/sq ft filled vinyl
septum between acoustical foams of
various thicknesses. Available in
rolls or pads in various configura-
tions. | In enclosure linings, pipe
and duct wrapping, open plan
partitions, etc. | 111
149 | Sound/Eaze, TL-Alpha | | 1 1b/sq ft loaded urethane clastomer between two foam layers, Pressure sensitive adhesive on one side optional. Other side protected against foreign elements by Aluminized Mylar film. Foam thicknesses available are 1/4", 1/2", 3/4", 1". | Machinery enclosures and interior cab linings, | 198 | Tufcote Noise Barrier
Series 104 | | Acoustic mass laminated to $1/4$ ", $1/2$ ", or $1/2$ " of 4100 foam on one side and $1/4$ " of 4100 foam on other side. | Application for vibration isolation, damping, sound absorption and barrier. | 12 | Acoustic Laminates
Nos. 9505, 9510, 9550. | ## TABLE 13 LEAD Lead products and the transmission loss data for some of them are listed. Lead is a dense material and is comparatively inexpensive. Also a thin lead sheet effectively simulates a limp mass. These considerations make it a very useful barrier material. Usually lead is used in combination with other materials which provide sound absorption, create a floating lead septum away from a vibrating surface, or simply cover up the exposed lead surfaces. Table 9 shows the noise reduction achieved by the lead products in combination with foam. Transmission losses of other lead products specially used as curtains are shown in Table 36. Transmission losses of some lead-fiberglass composites are shown in Table 11. The companies (by numbers shown in Section II) with products listed in Table 13 are: 16, 21, 28, 36, 129, 165, 166, 180. TABLE 13 LEAD Transmission Loss (decibels) 125 Hz 160 Hz 200 Hz 250 2500 250 Product 3 fc x 75 fc lead/vinyl sheet. Lend/vinyl 166 sheet .035 18 7 9 10 10 11 12 13 14 16 18 19 21 23 23 25 26 Lead loaded viny1. - 18 13 [13] 14 [13] 15 [18] 21 [23] 27 [30] 32 0.50 28 Lead ¥ Nonreinforced material with pulverized lead core sandwiched between two layers of vinyl, 22 16 17 18 24 30 35 0.75 Lead loaded vinyl. 22 16 [16] 17 [16] 18 [22] 24 [26] 30 [33] 35 0.75 28 Lead X Nonreinforced material with pulverized lead core sandwiched between two layers of vinyl. NMC Lead X 129 Sheeting 28 22 23 25 31 35 42 1.50 Lead loaded vinyl. 28 22 [22] 23 [23] 25 [28] 31 [33] 35 [40] 42 1.50 Nonreinforced material with pulverized lead core sandwiched between two layers of vinyl. NMC Lead X 129 sheeting 34 26 28 30 35 41 Lead loaded vinyl. 34 26 [26] 28 [28] 30 [32] 35 [38] 41 [44] 46 3 Rolled foil with 42 tin, 42 antimony and 92% load. Available in thicknesses ranging from .0025" to .006", 16 Plain lead foil 5 Rolled lead sheet available in .007", .008", and .009" thicknesses. .007 -16 Heavy sheet lead 5 1/64 -Continuously cast lead sheet 21 Acoustilead Sheald plenum Continuously cast lead sheet 19* 24* 25* barrier and 36 cailing blankets 6,7 ^{*}See Footnote No. 7. #### TABLE 13 LEAD (Concl) ## Transmission Loss (decibels) | | | | *************************************** | | | | | | | |-----------------------|-----|--------|--|---------|------------------|------|-----|--|-------| | Thickness
(inches) | STC | 125 Hz | 200 hs 250 hs 250 hs 250 hs 400 hs 500 hs 630 hs 1000 hs 11250 hs 1250 hs 2500 hs 2500 hs 3159 hs 3159 hs | 4000 Bz | Weight
lb/ft2 | Lab. | Co. | Product | Foot- | | 1/64 | | 11* | Continuously cast lead sheet 19* 24* 25* 32* | 29 | * 2 | G&H | 36 | Sheald plenum
barrier and
ceiling blankets | 6,7 | | 1/64 | - | 11* | Continuously cast lead sheet 19* 24* 25* 32* | 29 | 3 | G&H | 36 | Sheald plenum
barrier and
ceiling blankets | 6,7 | | .002
.010 | - | | Foil laminated to .015" thick backing board (waterproof bristol) | | .72 | - | 16 | X-ray foil
laminated | | | .016 | - | | Medium-strength lead alloy
sheet/strip, widths up to
14" in coil form, 4' wide
in sheets | | 1 | - | 165 | STM 3165 | В | | .016 | - | | High-strength lead alloy
sheet/Etrip, widths up to
14" in coil form, 4' wide
sheet/place available on
custom basic | | 1 | | 165 | STM 6205 | 8 | | | - | | 48" x 120" maxiumim size | | ,625
to 8 | - | 180 | Lead veneer getal | 5 | See Footnote No. 7. #### FOOTNOTES FOR TABLE 13 LEAD - 1. Tested and evaluated according to ASTM E90-70. - 2. Tested and evaluated according to E413-70T. - 3. Temperature Range from -38°F to 170°F. - 4. Tested and Evaluated according to E90-61T - 5. Temperature Range to 300°F. - 6. Available in 3 sizes: $36' \times 3' \times 1/64''$ (1 $1b/\xi r_2^2$), $78' \times 3' \times 1/64''$ (2 $1b/\xi r_2^2$), $12' \times 3' \times 1/64''$ (3 $1b/\xi r_2^2$), - Data represents difference in attenuation of 0.6 lb/ft² coiling board with and without Sheald materials. Cailing board STC was increased from 18 to 46 by using this plenum barrier. (Data derived from graph.) - 8. Temperature Range to 125°F. - Numbers in the brackets refer to 175, 350, 700, 1400, 2800 Hz respectively. Lead X supplied in rolls. Can be attached to walls or hung on overhead tracks to provide sound reduction enclosures. ## TABLE 14 MASTIC Mastic products are listed. Their pliability ranges from flexible to semirigid. They are
heavyweight products used as sound barrier or damping materials in automobiles, hollow core doors, appliances, etc. The companies (by numbers shown in Section II) with products listed in Table 14 are: 81, 86, 118. #### **GLOSSARY** The outside surface of the specimen. In general the side facing the sound source $% \left(1\right) =\left\{ 1\right\} =\left$ Facing: The other outside surface of the specimen. In general the side not facing the sound source $% \left(1\right) =\left\{ 1\right\} 1\right\}$ Backing: Core: The region between the facing and the backing Creped Kraft: Crinkled, strong paper Any of various quick-drying pasting cements. For sound barrier application this is usually a dense flexible asphalted product. Mastic: TABLE 14 MASTIC | Transmissio | - 1000 / | land balat | |-------------|----------|------------| | 10400018810 | n Loui u | Jeci Delai | | | | | _ | | _ | | | - DW | | | | • • | | 100 | 10/ | | | | | | | | | |--------------------|--------------|-----|---------|--------|--------|---|-------------|------------|------------------|-----------|------------|-------------|------------|------------|---------|---------|---------|---------|------------------|------------------------|-----|----------------------------|---------------| | Thickness (inches) | | 716 | 125 :42 | 160 Hz | 200 35 | | | ₹ 007 | 200 Ez | 630 42 | 至 008 | 1000 Hz | 1250 Hz | 1600 Hz | 2000 Hz | 2500 Hz | 3150 Hz | 4000 Hz | Weight
1b/ft2 | Lub. | Co, | Product | Foot-
note | | 0.12 | 20 - | , | 14 | 15 | 15 | F16 | xíb
14 | | | | | 35 | 34 | 37 | 33 | 34 | 40 | 41 | 1.0 | cr | 81 | #619 | | | 0.12 | :0 - | | 19 | 20 | 19 | | m f
20 | | | | | | | | 34 | 36 | 41 | 41 | 1.0 | CT | 81 | #623 | 5 | | 0.12 | ie 1 | | 10 | ., | | Cre
KW-
lit
are | | -10
32 | 0 в
х 4
sq | hee
fr | t w
tra | ith
nsm | Ami
aai | ber
1on | - | 15 | 36 | 19 | 1 | RAL
TL73-195 | 118 | KW Series
-003-100 | , | | 0.12 | : 3 4 | , | 10 | 11 | | | ped | kr | afc | , m | aet | ic 1 | tis: | BU0 | ; | 2, | 30 | 20 | 1 | 1013-133 | 110 | -003-200 | 4 | | 0,62 | 5 2 | 7 | 13 | 14 | 15 | are
17 | a'-
17 | 32
19 | вп
21 | Ě 5
24 | 28 | 30 | 32 | 35 | 38 | 41 | 45 | 46 | 1.3 | RAL
TL73-196 | 118 | KW Series
-003-100 | 4 | | | | | | | | Man
siz
wid
60"
pres
and
file | bac | 0 8 | en: | ήĖΙ | .ve | adh | esi | ve | , | | | | | | | | | | - | 26 | 1 | 2 | | | 32 | | 4 | .3 | | : | 14 | | ć | 52 | | (| 57 | • | CCH
GL-1T | 86 | Acousti-pad
L24-80(100) | 2 | | | 42 | • | :3 | | | Man
of p
cre
12 | pad
pad | kri
kri | ft
La | re,
4s | bac
as | kin
fac | 40
R 8 | 1b
ind | | | | 5 B | , | G&H | 0.5 | Vconati-baq | | | - | 42 | • | | | | | . For | | 18 | | | ¥8
 1⊾ | | | | | - |) 5 | 1 | GL-10ST | 86 | L-134-10b | 1 | | | | | | | - | Mone
of r
cres
12 |)ea | KE | ΙĘΕ | 48 | Dac | KID | g a | nd | • | | | | | G&H | | Acousti-pad | | | • | 49 | 2 | 5 | | • | 43 | | 4 | 9 | | 5 | 4 | | .5 | 4 | | 5 | 8 | 1 | GL-8ST | 86 | L-134-100 | 1 | | | | | | | | danı
of s
rep
12 1 | ıas t
ed | ic
kra | cor
ft | 0,
48 | usi
bac | ng
kin | 40
8 8 | lb
nd | 1 | | | | | G&II | | Acousti-psd | | | • | 51 | 2 | 9 | | 4 | 15 | | 5 | 0 | | 5 | 4 | | 5 | 4 | | 6 | 0 | • | GL-9ST | 86 | L-134-100 | 1 | | | | | | | ï | ianu
iard
ide
ros
ros | sur | OLC
6 B | os
ens | of
iti | iac
Ve | 1ng
adhi | 8 A | nd | | • | | | aried
onsicie | G&H
1969-
s 1973 | 86 | Acousti~pad | 1 | | | | | | | | lan t | ic | cre | pad | kr | a£t | : | | | | | | | 5-2 | | 116 | KK Series
plain kraft | 3 | | | - | | | | : | las t | ic | jut | e | | | | | | | | | . : | 5-2 | • | 118 | KJ Series
creped kraft | | #### FOOTNOTES FOR TABLE 14 MASTIC - 1. Tested and evaluated according to ASTM E90-66T. Used in construction industrial. - 2. Tested and evaluated according to ASTM E90-66T. Also tested for insertion loss (rating 24.4). - 3. Used extensively in automotive industry for sound deadening. - Tested and evaluated according to ASTM E90-70, E413-70T. Used in automotive industry for sound deadening. - Maximum use temperature is of the order of 180°F. Can be used in hollow core doors, appliances, etc. ## TABLE 15 MASTIC WITH COTTON Mastic products with cotton paddings are listed. Resinated cotton is added to mastic to provide vibration damping and to avoid direct contact between mastic and other surfaces in certain cases. Like mastic products, these products also have pliability ranging from flexible to semirigid and can be used in door or wall cavities, enclosures, etc., to increase the transmission loss of existing structures. The companies (by numbers shown in Section II) with product listed in Table 15 are: 81, 86, 118. #### **GLOSS ARY** The outside surface of the specimen. In general the side facing Facing: the sound source Backing: The other outside surface of the specimen. In general the side not facing the sound source The region between the facing and the backing Core: Creped Kraft: Crinkled, strong paper Any of various quick-drying pasting cements. For sound barrier application this is usually a dense flexible asphalted product Mastic: #### TABLE 15 MASTIC WITH COTTON | | | | | | | | | | | - | | | | | ", • | ••• | | | | | | | |-----------------------|-----|--------|-------|--------|-------------------------|------------------|--------------|---------------|------------|-----------|------------------|-----------|-----------|-----------|---------|---------|---------|------------------|--|-----|------------------------------|-------| | 9. | | | | | Ţ | FAN | 101 | 961 | on | Los | a (| dec | 1be | 15) | | | | | | | | | | Thickness
(inches) | STC | 125 Ez | 160 独 | 200 32 | 250 % | 31.5 11.2 | 400 Hz | 500 Hz | 630 Hz | 800 Hz | 1000 Hz | 1250 Hz | 1600 Hz | 2000 Hz | 2500 Hz | 3150 25 | 4000 Hz | Waight
1b/ft2 | | Co. | Product | Foot- | | | | | | | Cre | ped | kı | aft | | ast | ic, | A | d | | _ | | | | | | | | | | | | | | lam | Lna | ted | CO | tto | n f | ibe | r p | nd | 21 | 25 | A.O | 41 | 1.05 | cr | 81 | #620 | 10 | | .35 | 22 | 15 | 13 | 15 | 15 | 13 | 10 | ro | 24 | 30 | ,, | 33 | 50 | ر د | 3, | 40 | ٠. | ,1,0, | ٠. | • | ***** | | | 3/8 | 25 | 14 | | | l 1
gra
din
17 | b/s
m r
B, | ès1 | nat | ed | cot | wit
con
30 | , ba | 28
1d- | 34 | | | 42 | - | 66H
GL-4T | 86 | Accust1-pad
L-24-60(100) | 1,2,7 | | •,- | | | | | loa | vy | Kra | Et: | sto | ek
m/i | , 1/ | '8" | ma: | 5-
[n- | | | | | GGH
GL-1ST
2ST,3ST,
GL-22ST,
25ST, | | Acousti-ped
L-160-100-A | | | 3/8 | | | | | | d c | | | | | | | | | | | | 1 | 31ST | 86 | (The Centurion) | 6,8 | | 0.5 | 25 | 20 | 21 | 21 | 1/4 | Ped
er
17 | hic
pad | k r | re
esi | .nat | ed | cot | : C OI | | 55 | 56 | 57 | • | CT | 81 | #643 | | | 5/8 | 27 | 13 | 14 | 15 | | ped
Ina
17 | ted | CO | tto | n | | | | 38 | 41 | 45 | 46 | 1.3 | TL73-196 | 118 | Sound Deadener
KA-204-100 | 3,9 | | | | | | | l li
grad
ding | b/se | ą fi
esin | t m
nati | ast
ed | íc
cot | wit | h 8 | 5 | | | | | | G&H | | Acousti-pad | | | 7/8 | 26 | 9 | | | 16 | | | 22 | | | 28 | | | 36 | | | 44 | - | GL-5T | 86 | 1-24-75(100) | 1,2 | | - | • | | | | Chi; | pbo
i c | erd
ott | , m | 48 C | ic, | 40 | d r | esi | n- | | | | - | • | 118 | CA Series
Sound Deadener | 4 | | | • | | | 1 | 1 11
thic | k . | 8 | Bt.en
E un | aat
n r | ic
esi | wit
nat | h 1
ed | /4" | • | | | | - | GLH
GL-GST
GL-11ST | 86 | Acousti-psd
L-02-60(100) | 5 | ## FOOTNOTES FOR TABLE 15 MASTIC WITH COTTON - Has pressure sensitive or creps Kraft paper backing. Can be cut to specification. Standard sizes available are 30" x 24", 30" x 36", 30" x 48", 36" x 60". Maximum width is 69". Temperature range: -20°F to +200°F. - Humidity range to 100%. Can be used in walls, floors, callings. An approximate transmission loss due to the insertion of the mastic product was determined from a chart supplied by the company. - 3. Mastic weight ranges from 0.5 lb to 2.0 lb/sq ft 28 to 100 gram reminated cotton used in the KA Series. - Various compositions available in the GA series 0.5 lb to 2.0 lb/sq ft meatic 28 to 100 grsm resinated cotton. - 5. The results of the tests show that when L=02-60(100) was applied to both sides of an assembly, the STG of the assembly was increased from 35 dB to 47 dB, 1.a., by 12 dB. - 6. GL-18T, 28T, 38T were made on one specific assembly. One layer of Acousti-pad increased STC by 3 dB. and two layers of Acousti-pad increased STC by 6 dB. GL-22ST, 25BT, and 31ST were made on another assembly. In this case, addition of one layer of Acousti-pad resulted in 6 dB gain in STC white the addition of two layers of Acousti-pad increased the STC by 9 dB. - 7. Insertion loss rating is 24.8 decibels. - 8. The test procedure conforms to ASTM E-90-66T. - 9. The test procedure conforms to ASTM E-90-70, ASTM E-413-70T. - 10. Maximum temperature is of the order of 180°F. Can be used in hollow core doors, appliances, atc. ## TABLE 16 GLASS AND PLASTIC Sound transmission losses of glass panels, glass products with plastic inner layer, and glass panels separated by an air space are listed. The additions of a plastic inner layer or an air space provide increased thermal as well as acoustical insulation. The products are arranged in the order of increasing thicknesses ranging from 1/8 inch to 3-1/8 inches with the greater thicknesses reflecting the measured thicknesses due to air spaces. Table 33 shows the transmission losses of windows and it can be seen that the sound transmission loss values shown in Table 16 are comparable to the sound transmission loss of windows of equal thicknesses, and using a similar glass panel system. The companies (by numbers shown in Section II) with products
listed in Table 16 are: 40, 47, 55, 61, 85, 115, 138, 148, 152. ## TABLE 16 CLASS AND PLASTIC ## Transmission Loss (decibels) | | | | | | | | | | | -,, | | | | + > 0 | , | | _ | | | | | | | |----------|--------------------|------|--------|--------|--------|--------------------|-----------|-----------|------------------|------------|------------|------------|-----------|-----------|---------|----------|---------|---------|------------------------------|-----------------|-----|---------------------------------|---------------| | | Thickness (inches) | STC | 125 Rt | 160 Hz | 200 Hz | 250 Hz | 315 Hz | 400 Hz | 200 Hz | 630 Hz | 2H 008 | 1000 Hz | 1250 Hz | 1600 Hz | 2000 Hz | 2500 Hz | #1 051E | 4000 Hz | Weight
1b/ft ² | Lab, | Ço, | Product | Foot-
note | | | 1/4 | 27 | 16 | 18 | 18 | Pla
of
17 | CAB | C 4 | cry | Lic | ρl | ast | 10 | ahc | ec | 33 | 35 | 35 | 1.45 | KAL
1481-1 | 148 | Plexiglas | 1,9,10 | | | 1/4 | 32 | 26 | 27 | | Two
wit
26 | h 0 | .01 | 5" 1 | thi | ck | But | aci | të | COL | ů, | 35 | 39 | 3,3 | RAL
TL71-157 | 61 | Laminated Acous-
tical Glass | 2,9,10 | | . | 1/4 | 33 | 27 | 28 | | Two
witi
27 | n 0. | 04 | 5" (| thi | ck | Bu t | aci | tě | COL | | 36 | 40 | 3,5 | RAL
TL71-158 | 61 | Laminated Acous-
tical Glass | 4,9,10 | | | 1/4 | 34 | 29 | 27 | | Two
wit
28 | 1 0, | 01 | 5" (| :h1 | ck | Buta | ci | tě | COT | | 37 | 40 | 3,3 | RAL
TL71-273 | 61 | Laminated Acous-
tical Glass | 2,9,10 | | | 1/4 | 34 | 26 | 24 | | Two
wit:
27 | h D | .03 | 0" | th1 | ck | Bu E | aci | tē | cor | œ. | 37 | 39 | 3,3 | RAL
TL72-43 | 61 | Laminated Acous-
tical Glass | 3,9,10 | | | 1/4 | 34 | 28 | 26 | 27 | Two
wit
28 | 28 | 29 | 29
29 | 32
32 | 24 | But: | 37 | te
38 | 38 | e.
38 | 37 | 38 | 3.3 | RAL
TL71-277 | 61 | Laminated Acous-
tical Glass | 3,9,10 | | | 1/4 | 34 | 27 | 28 | 29 | | 30 | 31 | 0" f
31 | :h1:
33 | :k
34 | Buti
35 | 35 | 35 | cor | е, | 38 | 41 | 3.6 | RAL
TL71-159 | 61 | Laminsted Acous-
tical Glass | 5,9,10 | | | 1/4 | 34 | 29 | 30 | 31 | Glad
Buty
34 | 741
33 | 35 | 35 | 18
35 | /ar
35 | 33 | 34 | 38 | | 45 | 46 | | - | ral | 115 | Architectural
Saflex | 11 | | | 1/4 | . 35 | 27 | 27 | 27 | Two
with
29 | 0.
29 | 04:
30 | 30
30 | h1c
33 | :k
34 | Suta
35 | 37 | 39 | 60 | | 38 | 38 | 3.5 | RAL
TL71-274 | 61 | Laminated Acous-
tic Glass | 4,9,10 | | | 1/4 | 35 | 28 | 27 | 28 | ivo
vith
28 | 0.
28 | 045
30 | 31 | hic
33 | k I
35 | 36 | c‡(
37 | 38 | 37 | | 36 | 38 | 3.5 | RAL
TL71-275 | 61 | Laminated Acous-
tic Glass | 9,10 | | | 1/4 | 36 | 28 | 27 | 28 | TWO
VI th
29 | 0°. | 090
30 | 31 | h1c
33 | k I
35 | uta
37 | ci: | ā c
40 | OF | | 39 | 38 | 3.8 | RAL
TL71-276 | 61 | Laminated Acous-
tical Glass | 5,9,10 | | | 9/32 | 36 | 27 | | č | . 64
30 | 5" | pla | nat
sti
32 | ed
C C | gla | 36 | WIC | n | 38 | | | 40 | - | RAL
TL66-315 | 47 | Soundtropane 36 | 14 | ## TABLE 16 GLASS AND PLASTIC (Contd) ## Transmission Loss (decibels) | | | | 1 4 224 7 114 | **** | 14 (UUCIDE | 110/ | | | | | | |--------------------|-----|------------------|----------------------|---|-------------------------------|--|-----------------|-----------------|-----|--|------------| | Thickness (inches) | STC | 125 Hz
160 Hz | | | 1003 Kz
1253 Kz
1603 Kz | 2003 Hz
2503 Hz
3150 Hz
4009 Hz | Weight
1b/ft | Lab, | Ço. | Product | Foot- | | 9/32 | 35 | [24][28] | Textured
(29](30) | viscoela
[31](33] | stic inte
[35][35] | rlayer.
[35][34] [3 | 8] 3.2 | RAL
TL66-315 | 55 | Soundtropane | 12,15 | | 9/32 | 36 | (25][28] | with spe | lazing un
ors of gl
cially de
tronspar
[33][35] | eigned in | tertoyers | 9] 3.4 | RAL
TL65-27 | 85 | Acousta-pane 36 | 13,15 | | 9/32 | 36 | 27 25 2 | 0.060" p | rs of 1/8
lastic co
D 31 33 3 | re. | ich
9 41 41 41 30 | 3 3.7 | RAL
TL72-9 | 152 | Shatterproof
sound control
glass | 9,10 | | 9/32 | 36 | | 28 | Class
33 | 36 | 35 | - | - | 115 | Hushlite | | | 9/32 | 36 | [29][26] | 9/32" 2-
[29][31] | ply lamina
[32][34] | iced Hushi
[36][37] | lice.
[39][37] [38 | ıj - | RAL
TL66-244 | 115 | Hushlite | 13,15 | | 3/8 | 36 | 31 30 31 | | th 0.045"
3 34 36 34 | | cora.
5 40 43 46 48 | 6,6 | RAL
TL71-156 | 61 | Laminated Acous-
tic Glass | 7 | | 1/2 | 30 | 21 21 24 | sheets.
ture. | ast acryl
Plain sur
26 28 31 | face atru | | 2.9 | KAL
1481-1 | 148 | Plexiglas | 1,9,
10 | | 1/2 | 37 | 29 28 30 | 0.045" Bu | a of 1/4'
tacite co
32 34 36 | re. | ch
40 43 45 47 | 6.2 | RAL
TL72-42 | 61 | Laminated Acous-
tic Glass | 6,9,
10 | | 1/2 | 37 | | 0.030" Bu | a of 1/4"
tacite co | ra, | ch
30 42 44 48 | 6.2 | RAL
TL72-41 | 61 | Laminated Acoustic Glass | 9,10 | | 1/2 | 37 | | 0.045" Bu | s of 1/4"
tacita co
34 36 36 | rė, | eh
40 43 45 47 | 6,2 | RAL
TL71-154 | 61 | Laminated Acous-
tic Glass | 6
9,10 | | 1/2 | 37 | | 0.090" Bu | 8 of 1/4"
tacite co
35 35 36 | rē, | ch
40 41 45 47 | 6.4 | RAL
TL71-164 | 61 | Laminated Acous-
tic Glass | 7 | | 1/2 | 39 | | viscoelas | textured;
tic inter:
35 37 38 | layer, | ao 32 45 47 | 6,4 | RAL
TL67-219 | 47 | Soundtropane-40 | 11 | ### TABLE 16 GLASS AND PLASTIC (Contd) | | | | | | | | T | ran: | ami. | sai. | on I | ,081 | (d | eci | .be1 | s) | | | _ | | ١. | | | | |---|-----------|----------|-----|--------|--------|------------|-----------------|-----------|-----------------|-------------------|-----------|------------|-----------------------|-----|------|---------|---------|--------|------------|-----------------|------------------|-------|--|---------------| | | Thickness | (locnes) | STC | 125 82 | 160 1= | 200 tz | 250 152 | 315 1-2 | 74 007 | 500 Fz | 24 DE9 | 800 Hz | | | | 2000 Hz | 2500 Hz | 3150 % | 4000 32 | Weight
lb/ft | Lab. | Co | , Product | Foot-
note | | | 1/3 | 2 39 |) | 31 | 29 | (| 0,04 | 511 | pla | sti | .c c | oro | gla
38 | | | | 43 | 45 | 47 | 6.8 | RAL
TL72-10 | 5 152 | Shatterproof
Sound Control
Glass | 9,10 | | | 1/2 | 2 40 |) : | 30 | | 1 | /2" | p1 | ato | gl | .888 | | | | | | | | | - | • | 115 | Hushlite | | | | 1/2 | · - | ţ | 31][: | 32) | | -pl
34][| | | ")
38][| | | ted
40][4 | _ | | | 41] | (| [46] | 6.7 | RAL
TL66-293 | 3 85 | Acousts-pane 40 | 13,15 | | | 9/1 | 6 36 | : | 30 2 | 28 : | 1 | /4" | 41 | ٠, : | 3/ L | ٥ ا | şla: | Buta
18.
39 4 | | | 18 : | 35 4 | 40 | <i>6</i> 0 | 6.4 | RAL
TL71-165 | 61 | Laminated Acous | • , | | | 9/1 | 6 37 | 3 | 12 3 | 11 ; | | | | | | | | 1 1 a
0 c c | | | 2 4 | 6 4 | 6 | 49 | 7.6 | RAL
TL71-155 | 61 | Laminated Acous | ., | | _ | 3/4 | 42 | 3 | 3 3 | 2 3 | 0, | .045 | i" t | las | tic | : co | re, | | | | | 7 4 | 9. | 50 1 | 10.2 | RAL
TL72-104 | 152 | Shatterproof
Sound Control
Glass | 9,10 | | | 3/4 | 43 | 3 | 3 | | | /4"
15 | pla | | g1 <i>a</i>
0 | 6.8 | 4 | 3 | | 4 | 1 | | | | | - | 115 | Hushlite | | | | 3/4 | 43 | [3 | 4][3: | 5] | gl | p l y
16)[3 | - 81 | ngl | le
e g
1](4 | lag | ing | 1 am:
un:
3][4] | lt. | | 1}[4 | 5) | Į: | 50] | 10. 1 | RAL
11.66-294 | 85 | Acousta-psnu 43 | 13,15 | | | 3/4 | 43 | 3 | 1 | | ٥, | P1y
045
7 | "la
"p | min
las
3 | cic | d g | las
re, | a wi
O | Leh | 4. | 5 | | : | 50 | - | RAL | 47 | Soundtropane 43 | 14 | | | 1 | 32 | 25 | 5 26 | 5 2 | pΙ | as C | ic : | cor | В. | | | eryl
2 28 | | . 34 | 36 | 5 4(| 0 4 | 6 | 5.82 | KAL
1481-1 | 148 | Plexiglas | 9,10 | | | | | | | | Twa
Wil | o la
th l | ye: | a | Ē. | L/4
pa | p) | lato | gl | .086 | ı | | | | | RAL | -,- | _ | 3110 | | | 1 | 31 | 25 | 25 | 22 | | | | | | | | 35 | | 29 | 31 | . 33 | 3 | 6 | 6.2 | 71-166 | 61 | l" thermal
insulating glass | 9,10 | | | ı | 32 | 19 | 18 | 18 | 811 | . st | ace | h | | | | 35 | | 30 | 29 | 32 | | | | ССН | | Architectural
Saflex | 11 | | | 1 | 38 | 30 | 29 | 26 | | | | | | | | spa
38 | | | 40 | 41 | . 4 | 4 | - T | RAL
L71-252 | 138 | Twindow | R.9 | #### TABLE 16 GLASS AND PLASTIC (Concl) #### Transmission Loss (decibels) | Thickness
(inches) | STC | 125 3± 160 the 200 the 250 the 250 the 400 the 630 the 1000 the 1000 the 2500 the 2500 the 2500 the 3150 the 4000 the 4000 the 4000 the 4000 the 4000 the 5000 50 | Weight
1b/ft2 | Lab. | Co. | Product | Foot-
note | |-----------------------|-----
--|------------------|-----------------|-----|----------------------------------|---------------| | ı | 39 | Glass | - | - | 85 | Insulated Acousta pane I 39 | | | 1-1/4 | 42 | Glase | - | | 85 | Insulated Acousta pane I 42 | | | 1-3/4 | 45 | Glass | - | | 8,5 | Insulated Acous-
ts pane I 45 | | | 2-9/16 | 42 | Glass with 2" air apace.
32 33 35 38 40 42 43 43 43 44 42 41 41 41 43 46 | | RAL
TL66-172 | 40 | Polarpane Corp. | 13 | | 3-1/8 | 49 | Glass | - | - | 85 | Insulated Acous-
ts pane I 49 | | #### FOOTNOTES FOR TABLE 16 GLASS AND PLASTIC - Temperature range to 200°F, 0 to 100% humidity, a combustible thermoplastic. Lower esters, aromatic hydrocarbons, phenols, aryl halides, aliphatic acids and alkyl poly halides usually have a solvent action. - Test report Nos. TL71-157 and TL71-273 present TL for the same product when rested using slightly different mounting procedures. - Test report Nos. TL72-43 and TL71-277 present TL for the same product when tested using slightly different mounting procedures. - Test roport Nos. TL71-158 and TL71-274 present TL for the same product when tested using slightly different mounting procedures. - Test report Nos. TL71-159 and TL71-276 present TL for the same product when tested using slightly different mounting procedures. - Test report Nos. TL71-154 and TL72-42 present TL for the same product when tested using slightly different mounting procedures. - 7. Nonstandard test. - 8. Temperature range: -35° to 135°F, excellent resistance to chemicals. - 9. Meets ASTM E90-70. - 10. Mests ASTM E413-701. - 11. Conforms to ASTM E90-66T. - 12. Conforms to ASTM E90-61T. - 13. Conforms to ASTM E90-61T and ASARP-224.19-1957. - 14. Conforms to E90-66. - Numbers in brackets refer to one-third octave center frequencies of 125, 175, 250, 350, 500, 700, 1000, 1400, 2000, 2800, 4000 Nz, respectively. # TABLE 17 SPRAY-ON MATERIAL (BARRIER) Spray-on materials used to increase the sound transmission loss of a system, usually by spraying the product in the cavity of an existing structure are listed. Two spray compounds which reduce the structureborne noise by damping the structure are also listed in the table. It should be noted that the transmission losses shown in the table are for the composite assembly described in the table and as such they include the transmission loss provided by the boards used in the assembly. The spray-on materials effectively stop the sound leaks and increase the acoustic resistance of the cavities in which they are sprayed. The companies (by numbers shown in Section II) with products listed in Table 17 are: 24, 119, 127, 175. #### CAUTION THE TRANSMISSION LOSS VALUES INCLUDE THE TRANSMISSION LOSS OF THE PARTITION USED. ## TABLE 17 SPRAY-ON MATERIAL (BARRIER) Transmission Loss (decibels) | | | Transmission Loss (decibels) | | |---------------------|-----|--|--| | Thickness* (inches) | STC | 125 hz
166 fz
200 hz
220 hz
230 hz
400 hz
500 tz
630 fz
1000 fz
1250 fz
1250 fz
1250 fz
1250 fz
1250 fz
1250 fz
1250 fz | Weight Foot-
lb/ft Leb. Co. Product note | | 3 | 48 | K-13 sprayed on interior of dry wall partition, faced on both aides with 5/8" thick gypsum board, 1-5/8" metal studa. 24 31 35 36 39 43 47 50 52 53 55 52 51 53 55 | Dry wall partition RAL filled with 1,2 6.3 TL69-171 127 K-13 | | 5 | 49 | K-13 sprayed between layers of 5/8" gypsum board, 3-5/8" metal stude | Dry wall partition RAL filled with 6 6.6 TL69-173 127 K-13 | | 8 | 54 | Staggarad wood studs, double
layer.of 5/8" gypsum board,
K-13 spray on material, single
5/8" gypsum board other side.
34 38 41 45 48 51 52 53 55 56 58 58 57 57 58 60 | Dry well partition RAL filled with 12,2 TL70-120 127 K-13 1 | | • | 40 | K-13 sprayed between 5/8" layer of gypsum board and 1/2" plywood with 5/8" gypsum board on other side, 23 23 22 29 38 34 35 40 44 46 49 49 42 43 48 51 | Dry wall partition filled with the TL70-116 127 K-13 1 | | - | 41 | K-13 sprayed between layers 1/2" thick gypsum board. 21 20 26 33 37 38 40 44 45 49 52 54 53 51 52 54 | Dry wall partition filled with 6.3 TL69-131 127 K-13 1,2 | | • | 52 | 2" x 4" wood stude spaced 46"
o.c., K-13 sprayed to interior
of assembly.
32 36 37 42 47 48 51 52 55 57 38 57 54 54 56 59 | Dry wall partition RAL filled with - TL69-130 127 K-13 1,2 | | • | | Spray fiber for walls or parti-
tions. Non-crystalline, Refrac-
tory fibers and binders provide
thermal and acoustical resistance.
Does not contain asbestos. | 175 CAFCO | | • | • | Viscoelastic compound, Can be applied with apray, brush, or roller. Reduces resonance response on panels and structures. | IDS spray-
able damping
material | | • | | Synthetic resin. Dispersion in water, sprayed or brushed on vibrating plates (dried spray should be 2% thick masses of plate) to reduce structure borne noise. Density - 80 lb/ft. | 24 Antiphon
D-444 | ^{*}Thickness and weight refers to the overall structure, #### FOOTNOTES FOR TABLE 17 SPRAY-ON MATERIAL (BARRIER) - 1. Tested and evaluated according to ASTN E90-66T. - 2. Tested and evaluated according to recommended practice ASARP-224.19-1957. # TABLE 18 OTHER BARRIER AND DAMPING MATERIALS The products which for one reason or another could not be included in Tables 13 through 17 are listed. These include products made from loaded vinyl, glass fibers, asbestos fabric, felt, cork, aluminum, etc. It should be noted that some of the flexible sheet-like products listed in the table can be used as sound barrier curtains with appropriate provision for hanging (see also Table 36 for products listed as sound barrier curtains). Some of the products listed in Table 18 are specially designed to be used in high temperature or other hostile environments and they are better suited to the job than the more commonly used sound barrier material under those circumstances. The products are listed in the order of their thicknesses without regard to their potential uses. All products are good sound barriers and they can be used in a variety of situations. The companies (by numbers shown in Section II) with products listed in Table 18 are: 12, 38, 41, 45, 52, 54, 65, 72, 79, 81, 94, 107, 111, 132, 149, 155, 161, 166. ## CAUTION TRANSMISSION LOSS VALUES MAY HAVE BEEN SUBSTANTIALLY INCREASED DUE TO THE MATERIAL ON WHICH THE PRODUCT WAS MOUNTED. WHEN THE TEST SPECIMEN DESCRIPTION IS NOT CLEARLY SHOWN IN THE TABLE, THE MANUFACTURER MAY BE CONTACTED IF NECESSARY. ### GLOSSARY Facing: The outside surface of the specimen. In general the side facing the sound source Backing: The other outside surface of the specimen. In general the side not facing the sound source Core: The region between the facing and the backing Loaded: Foreign substance added to the base material Leaded or Lead was added to the base material -- usually fabric type Lead Loaded: materials -- to increase the sound transmission loss TABLE 18 OTHER BARRIER AND DAMPING MATERIALS | | Transmission Loss (decibels) |-----------------------|------------------------------|----|----|--------|--------------|--------|------------|-----------|--------|--------|---------------|------|---------|---------|--------|---------|---------|----|--------------|-----------|------------------|----------|----------------------------------|---------------| | Thickness
(Inches) | STC | | - | 160 H: | 200 Hz | 250 Hz | 315 Hz | 400 Hz | 500 H: | 630 Hz | 800 Hz | | 1250 32 | 1600 32 | | Z500 #z | 3150 Hz | | Weig
lb/f | the
e2 | Lab. | Co, | Product | Foot-
note | | | | | | | | | gla | 3 8 | wit | h | laa | d-f | 111 | ed | vin | y1 | | | | | | - 1 | | | | .012 | - | - | | |
COS | 8 | ng | | 16 | | | 18 | | | 20 | | | 26 | .20 | 8 | - | 54 | 30 oz/sq yd
Dura-Sonic | 1,2 | | | | | | | Fib | | glae
ng | 8 | wie | h 1 | eac | i-f | 111 | be | vin | y L | | | | | | | 60 oz/są yd | | | .025 | - | | | | 1 | 3 | | | 12 | | | 18 | | | 22 | | | 28 | ,41 | 6 | - | 54 | Dura-Sonic | 1,2 | | | | | | | V i n | y1 | los | de | dв | hee | c | | | | | | | | | | RAL | 45 | | | | .025 | 13 | 1 | | | | 5 | | | 10 | | | 15 | | | 22 | | | 27 | .3 | | KAL | 72 | Custifilm 3R | 7,10 | | | | | | | Nyl
Wit | | | | | oat | ed | on | bot | h | s i de | 8 | | | | | RAL | | | | | .025 | 19 | 8 | | 3 | 9 1 | 1 1 | 11 1 | 3 | 14 | 16 | 18 | 20 | 23 | 24 | 27 | 28 | 30 | 31 | .45 | • | TL72-79 | 41 | Chem-Tone | 5,7 | | | | | | | Fibe | arg | las | 6 (| con | ted | wí | th | lea | d : | load | ed | | | | | | | | | | .030 | 21 | 12 | 10 | | ving
1 1: | | .3 1 | 5 1 | 6 | 18 | 20 | 21 | 23 | 25 | 27 | 29 | 31 | 32 | ,48 | , | RAL
TL71-198 | 45
72 | Coustifab
CC-488-B | 3,7 | | | | | | 1 | Loac | led | vi | ny 1 | L wi | Eth | Be | ta | gla | 88 | fil | or | | | | | 17.43 | | | | | .037 | 19 | 5 | | | 9 |) | | 1 | .5 | | | 21 | | | 27 | | | 33 | ,50 | 1 | KAL
1083-1-71 | . 72 | KNC-50 | 11 | | | | | | | Leac | 1 v | iny | 1 | | | | | | | | | | | | | RAL | | Sound Stopper
Material, Stock | ما | | -037 | 20 | 9 | 8 | 1 | 0 12 | 2 1 | 2 1 | 4 1 | 15 | 17 | 19 | 20 | 22 | 24 | 26 | 27 | 28 | 30 | .44 | • | TL72-232 | 155 | Material , Stoc
0 15-12949 | ٦ , | | | | | | 1 | Load | ed | vi | nyl | | | | | | | | | | | | | | 45 | Coustifilm | | | .04 | 21 | 8 | | | 12 | ! | | 1 | .5 | | | 20 | | | 24 | | | 30 | ,50 | k | KAL, | 72 | 5 and 5R | 7,10 | | | | | | Į | Lead
glas | 1 | oad
fab | ed
r1c | Nec | pro | 9.7. 0 | co | at 1 | ng | on · | | | | | | RAL | | | | | .045 | 21 | 11 | 11 | 13 | 2 13 | 1 | 4 1 | 1 | 6 1 | .в 2 | 20 : | 21 | 22 | 23 | 24 | 25 | 26 | 27 | .50 | | 150 | 94 | s/8050g | 7,12 | | .05 | • | | | | Roge | | | rd | pap | er | fa | lt, | ពន្យ | artq | lt | | | | 0,14 | c | π | 81 | #263 -
Saturated Folt | 25,26 | | | | | | F | iba | rg. | laă: | ı w | ith | 10 | ad | 10: | adec | ιv | inv | 1 | | | | | | | | | | .055 | 24 | 15 | 13 | | 16 | _ | | | | | | | | | - | | 34 | 36 | .87 | R | AL. | 45
72 | Coustifab
CC-488-C | 3,7 | | | | | | ı | oad. | 1 | oado | d : | Neo | pre | ne | ÇD. | at í t | ıg | ло | | | | | | | | | | | .055 | 25 | 13 | 14 | | 11 aa
16 | | | | | 1 2 | 4 2 | 25 2 | 27 2 | 8. | 30 : | 31. | 32 | 34 | .71 | | AL
3-149 | 94 | s/8075¢ | 7,12 | | | | | | F | 'iba | rg: | lass | W | ith | le | ad | fil | llec | ίv | iny: | ι | | | | | | | | | | .06 | 25 | 12 | 12 | ٥ | 18 | tñį | 8 | | | | | | | | - | | 35 | 36 | .84 | | AL
3-48 | 54 | 120 cz/sq yd
Dura-Sonic | 1,4,7 | | | | | | , | *** | 1. | | .a . | | | | | | | d 64 | 1- | | | | | | | | | | .06 | 26 | 12 | 13 | | .ead
18 | | | | | - | | | | | | | 34 | 35 | 1 | TL7 | AL
2-212 | 149 | Sound/Eaze
TLB-L | 7 | #### TABLE 18 OTHER BARRIER AND DAMPING MATERIALS (Coned) | | | Transmission Loss (decibels) | _ | |--------------------|-----|--|---| | Thickness (inches) | STC | 125 Hz 160 Hz 200 Hz 250 Hz 315 Hz 400 Hz 500 Hz 1000 Hz 1000 Hz 1000 Hz 2500 Hz 2500 Hz 2500 Hz 2500 Hz | | | .064 | 25 | Leaded vinyl
13 14 15 16 17 18 20 22 24 26 27 29 31 33 34 35 | RAL Stock No. 15-
35 .70 TL73-67 155 13949 7 | | ,065 | 26 | Reinforced leaded vinyl product
13 13 15 18 17 19 20 24 26 27 28 31 32 34 35 37 | RAL 149 Sound/Eaze 13,
17 1 TL70-234 111 TLB/G 15,16 | | .072 | 27 | Loaded vinyl with Beta glass fiber 15 17 21 28 33 37 | KAL 45
37 1 1083-1-71 72 KNC-100 14 | | .077 | 11 | Regenerated paper felt, asphalt saturated 5.5 5.5 5.5 5.5 5.5 5.6 9 14 23 26 24 20 21 - 28 | #236
28 ,25 CT 81 Saturated folt 25 | | .080 | 27 | Loaded vinyl sheet
15 19 21 28 33 37 | 45 Coustifilm
17 1 RAL 72 10 and 10R 7,10 | | .080 | - | Regenerated paper felt, asphalt saturated | #441N
.18 CT 81 Saturated Felt 25,26 | | .084 | 27 | Lead loaded asbestos fabric
15 16 17 18 19 20 22 24 26 28 29 31 33 35 35 36 | RAL 71.73-148 94 S/8100 7,12 | | . 10 | 13 | Regenerated paper felt
7 7 7 7 7 8 11 16 25 28 26 32 23 - 30 | 0 .32 CT 81 Saturated felt 25 | | .125 | 26 | Loaded Vinyl, unsupported film
12 13 15 18 19 20 20 23 25 27 30 32 35 37 39 40 | RAL 149 Sound/Eazo
0 1 TL73-82 111 TLB-M 7 | | 1/8 | 48 | Cork attached to gypsum board
32 43 49 61 57 65 | KAL Dodge 1462 Sound | | . 145 | 35 | Lead loaded neoprene coating on asbestos fabric 23 23 25 25 27 28 30 32 34 35 38 39 40 42 44 45 | RAL 5 2.5 11.73-144 94 S/8266 7,12 | | .145 | 39 | Lead loaded vinly with woven asbestos 15 22 27 28 34 37 40 44 47 49 51 51 53 54 55 56 | RAL
5 2.4 TL73-145 94 8266 7 | | .15 | 12 | Two-ply asphalt saturated felt
6 7 6 7 7 6 8 10 16 27 31 28 24 28 - 33 | #329D
1 ,40 CT 61 Saturated folt 25 | | . 155 | 32 | Lead loaded neoptene coating on asbestos fabric 20 21 23 24 24 25 27 29 31 32 34 36 37 39 41 43 | RAL: 1.5 TL73-147 94 S/8150 7,12 | TABLE 18 OTHER BARRIER AND DAMPING MATERIALS (Contd) | | | | | | Tra | nsı | isai | on | Los | a (| dec | ibe | ls) | | | | | | | | | |-----------------------|-----|------|--------|-------------------|-------------------|------------------|-----------------------|-------------|------------|-------------|--------------|-----------|---------------------|-----------|---------|---------|------------------------------|-----------------|----------|---|--------------| | Thickness
(inches) | STC | _ | 160 Hz | | 250 Hz | | 24 00S | 630 Hz | 2H 008 | 1000 Hz | 1250 Hz | 1600 Hz | 2000 Hz | 2500 Hz | 3150 Hz | 4000 Hz | Weight
1b/ft ² | Lab. | Ço. | Product | Foot- | | 1,26 | 39 | 15 1 | : | 2 la | tyere | ۹, ۱ | 1" #
5 38 | ir i | вра | ce | | | | 55 | 56 | 57 | 1.8 | RAL
TL73-146 | 94 | 8150,8266 | 7 | | 2.05 | 35 | 7 | 1 | falt | : | | high
4 15 | | | | | | | | 10 | 10 | 3.0 | IATL | 38 | Carney sound attenuation blankets | 7,18 | | 2,50 | - | 29 3 | | | | | sula
1 46 | | | 52 | 53 | 55 | 51 | 43 | 44 | 46 | - | СТ | 132 | OCF #551 | 7
17,19 | | 2.50 | - | 33 3 | | | | | glas
3 55 | | | | | 62 | 62 | 55 | 47 | 56 | - | ст | 132 | OCF #551 | 7
17,19 | | 3 | 40 | 23 2 | | | | | 1200
1 12'
5 39 | | | | | | | | 63 | 65 | 2.3 | RAL
TL71-281 | 79 | Forty-eight
N-1200 block
insulation | 7
8 ;21 | | 3 | 40 | 22 2 | | | | | elt :
on lo | | | | | | 57 | 59 | 61 | 64 | 1,44 | RAL
TL71-282 | 79 | Forty-eight
CG felt
insulation | 9,22 | | 3 | 42 | 22 2 | 4 2 | on 1
25 3 | 6 ga
0 34 | 3 | | eel
44 | 47 | 54 | 56 | 59 | 60 | 62 | 63 | 65 | 2.2 | RAL
TL71-280 | 79 | Forty-eight
ETR insulation | 20,23 | | | 20 | 11 | 6 | ilea
ora
1 | | rat | 15
15 | cent | :, 1 | 20 | e v | ın | 91
26 | | | 32 | .50 | - | 45
72 | Coustiview 5 | | | - | 26 | 12 1 | × | 3 | 6" s | hee | | | | | | | | | 37 | 37 | 0.91 | RAL
TL73-49 | 54 | 4848 Vinyl
fiberglass foam | 1,4,7 | | | | | R
£ | ubh
osm
/2" | or b
lay
to | ase
ers
2" | mat
. Th | : wi | th
nes | one
In I | ang | e; | wo | | | | | | | | | | • | • | 18 | | | inat | | 23
of | ast | est | 26 | , al | .umi | 32
Lnus | ١, | | 36 | - | CT | 65 | Acousta-Damp | 6 | | • | - | 11 | | nd : | 0 | - | 21 | | | 28 | | | 31 | | | 35 | - | • | 107 | IC Sound barrier | . | | - | 26 | 12 | Ь | omb
uill
1 | t•in | 1on
fa | vir
bric
20 | ıyl
C CC | coa
rd. | ted
Th | l si
ilck | de
nes | wite
1. ae
31 | :h
:2" | | 8¢ | | CT | 65 | ATD 150 | 27 | | _ | _ | 28 | ô | TD
, 12 | " th | bon
i ck | ded | to | | gau
42 | ge | | 2el | | | 54 | • | ст | 65 | ATD 150 | 27 | #### TABLE 18 OTHER BARRIER AND DAMPING MATERIALS (Concl) | _ | | | Trans | mission l | .oss (dec | ibels) | | | | | | | |-----------------------|-----|--------|---|----------------------------|------------------------------|--------------------|-------------------------------|------------------|------|-----|---------------------------|---------------| | Talckness
(Inches) | 510 | 125 Hz | 150 Hz
200 Hz
2:10 Hz
31.5 Hz | 21 009
21 009
21 007 | 800 Hz
1000 Hz
1250 Hz | 1500 Hz
2000 Hz | 2500 Hz
3150 Hz
4000 Hz | Weight
Ib/It/ | Lab. | Co. | Product | Foot-
note | | | | | 0.12" thic | | bonded | to | | | | | | | | - | - | 24 | 28 | 32 | 38 | 43 | 50 | - | CT | 65 | ATD 150 | 27 | | | | | 0.12" thic | taal | | _ | | | | | | ٥. | | - | • | 23 | 27 | 31 | 37 | 42 | 49 | - | cr | 65 | ATD 150 | 27 | | | | | 0.12" chic
18 gauge e | tesl | | | | | | | | | | • | - | 22 | 26 | 30 | 36 | 41 | 48 | • | CT | 65 | ATD 150 | 27 | | | | | 0.12" thic
20 gauge s | | bonded | EP | | | | | | | | - | - | 20 | 24 | 28 | 34 | 39 | 46 | - | CT | 65 | ATD 150 | 27 | | - | - | | Hardboard control | partition | s for so | und | | • | - | 166 | Superwood
Hardboard | | | | - | | Feit wool
natural or
Temperatur
200°F, Thi
1/6" to 1" | manmade
e range 8 | fibers.
rom -80 | to | | - | - | 161 | Wool or
synthetic felt | | | - | - | | Grey suppor | ted lead | impregn | ated vi | nyl | 0.3 | - | 12 | Acoustic Mass-Si | F | ### FOOTNOTES FOR TABLE 18 OTHER BARRIER AND DAMPING MATERIALS - Available in three thicknesses .012", .025", .050" and designated as 30 oz. Dura-Sonic, 60 oz. Dura-Sonic, and 120 oz. Dura-Sonic respectively. 30 and 60 oz. Dura-Sonic available in 25 yd. long rolls 120 oz. Dura-Sonic supplied in 15 yd. long rolls, Width 48". Temperature range: 0° 200°F. Self-extinguishing. Impervious to water and perroleum. Available in various colors. Can be out to any shape or size. Con be bonded to
acoustic foem to provide sound absorption. - Acoustic data extracted from a plot of sound attenuation vs. frequency. Test conditions and standards unknown. - 3. Nominal width 38". Other sizes available. - 4. Nominal thickness of 120 oz. Dura-Sonic is 0.05". The test specimen measured 0.06". - Also available with 1/4" thick foam. Supplied in 54" wide rolls of 25 yd. length. Other thicknesses and fabrics such as Dacron or glass fabric available. - 6. Data derived from graph. - 7. Tested and evaluated according to ASTM E90-70 and ASTM E413-70T. - 8. Temperature range: to 1200°F, - 9. Temperature range: to 650°f. - 10. Temperature range: -40° to 200°F, resistant to most soids, including alkalies and greass. - 11. Tested and evaluated according to ASTM E90-70, does not crack at low temperatures, self-extinguishing. - Temperature range: -20° to 400°F, self-extinguishing, resistant to acids, alkalies, greese, and corrosive chemicals. - 13. Tested and evaluated according to ASTM E90-66T. - 14. Tested and evaluated according to ASTM E90-70, - 15. Tested and evaluated according to ASARP 224.19-1957. ### FOOTNOTES FOR TABLE 18 OTHER BARRIER AND DAMPING MATERIALS (Concl) - 16. Temperature range: -50° to 200°F. Resistant to chemicals, self-extinguishing. - 17. Fiberglass noise barrier batts in a specific wall construction will change STC by 7 db and Tt. values in each of the 1/3 octave bands will change as below 33 35 37 42 47 53 56 59 59 60 62 62 55 47 50 - 18. Temperature range: -50° to 500°F. Relative humidity range: 30% to 90%. Flame spread 25. - Data from graph, fiberglass noise barrier batts raised STC by 7 db when installed in special wall construction. - 20. Temperature range: to 1000°F. - 21. Tested and evaluated according to ASTM C-612, class 4; semi-rigid thermal and accounties block insulation 1600°F refraction fibers, bonded with intermediate temperature binders good to 1200°F. Asbastos from . Bead on ateam generators, vessels and equipment in refineries and chemical plants, and other applications requiring insulation over 1200°F. Water repellant and incombustible. 1-36 thicknesses available. - 22. Resilient spum, high temperature refractory fibers with felted binders laminated to form durable, efficient, semi-rigid insulation. Water repellant, chemically stable. Applications on structural insulation (ships), heating equipment, cold storage lockers. Rated incombustible, Class A-60, (Coast Guard Approval No. 164.007/1/0). Available in 1-4" thicknesses. - Tested and evaluated according to ASTM C-262; C-612: Class 4; C-553, Type III, Class F-2, asbestos free, water repellant and incombustible. Used as accountical or thermal insulation for power generators, boilars, ducts, breachings, petroleum chemical process equipment. Thicknesses: 1-4". - 24. Tested and evaluated according to ASTH E90-61T, available in 48 x10 rolls. - 25. Available as rolls, sheets, or die cut parts. Maximum temperature 350°F. - 26. In the tests conducted by the manufacturer, the transmission losses in 1/3 octave bands were measured as follows: | 1/3 octave center frequency, Hz | 25 | 50 | 100 | 200 | 400 | 800 | All pas | |------------------------------------|----|-----|-----|-----|-----|-----|---------| | For #441N - Transmission loss, dB: | 0 | 4 | 6 | 5 | 4 | 1-1 | 15 | | For #263 - Transmission loss, dB: | 0 | 2.1 | 2.9 | 2.5 | 2 | 5.5 | - | 27. Weight of ATD 150 is 1 lb/ft2, #### TABLE 19 UNIT ABSORBERS Sound absorption inside a room can be increased by adding unit absorbers specially designed for this purpose. These units are easy to install and they are available in various forms, e.g., baffles, freestanding room dividers, drums, panels, blocks, etc. Figures 19A, 19B, and 19C show three different types of absorbers. Figure 19A shows a panel type absorber which can be mounted flush with the ceiling or wall and still have six sides exposed to the sound field. This type of panel should be mounted as patches on the walls separated from each other. Figure 19B shows a drum type of absorber which should be hung as close to the noise source as possible. Figure 19C shows a baffle type of absorber which can be hung along the length and breadth of a ceiling inside a production plant or an auditorium. The amount of sound energy absorbed by a particular unit absorber is proportional to the area exposed to the incident sound energy and for this reason many absorbers are suspended from ceilings using wires to expose all surfaces to the sound field. For efficient usage, they should be placed as close to the noise source as practical. Table 19 shows sound absorption in Sabins/unit for various products. Sabins/unit is a more applicable unit for products of this nature because of their differences in shapes and sizes. The companies (by numbers shown in Section II) with products listed in Table 19 are: 18, 59, 107, 116, 119, 127, 128, 129, 132, 137, 183. #### CAUTION ABSORPTION DATA PRESENTED ARE TOTAL ABSORPTION FOR EACH ITEM (SABINS/UNIT). THE TERM UNIT REFERS TO THE MANUFACTURER'S STANDARD SIZE UNIT AS DESCRIBED IN THE TABLE. FOR EXPLANATION OF SABINS SEE SECTION I-3.1.1. Figure 19A Panel Type Absorber Unit with Six Sides Exposed to Sound Figure 19B Drum Type Absorber Unit with Built-in Eyelet for Hanging Figure 19C Baffle Type Absorber Unit Hanging from a Stretched Wire | | | _ | | | | TABI | E 19 | N TIKU | BSORBE | rs | | | | |---|-----------------------------------|--|-------------------------------|--|--|--|--|--------|--------|-----------------|-----|-------------------------------------|-----------------| | | | £ | | | | | | | | | | | | | | # #c | . " "S | | Absorp | tion ir | Sabin | s/Unit | | | | | | | | | counting
Thickness
(taches) | 2 2 E | 莊 | 꿃 | ž | 142 | # | 꾶 | | | | | | | | rounting
Thickness
(inches) | Average
Sabins
per Unit
(250 - 2000 | 125 | 230 | 500 | 1003 | 2000 | 700° | Weight | Lab. | Co. | Product | Foot-
note | | | | | Pros | sure mo
red with
d vinyl
48"x1-1
48" and | lded gl | ass fi | bers | | | KAL | | | - 17 | | | 1-1/2 | 7.5 | 1.2 | 2,9 | 6.2 | 10.3 | 10,8 | 10.2 | .5 | 1183-
1-71-R | 129 | Functional noise
control baffles | 8,15 | | | | | boar
cibl
comp | 48"x1=1
da wrap
a washa
lota wi
suspensi | ped in
ble pla
th moun | a nonc
stic f
ting h | ilm.
ardwara | | | | | | | | | 1-1/2 | 10.2 | 2.1 | 5.9 | 9.8 | 13.3 | 11.6 | 7.6 | .56 | CT | 132 | Noise stop baffles | | | | | | cove
Stan
but
avai | sure mol
red with
dard siz
12x24, 1
1able. | n perfo
te of 2:
L2x48 a | rated
4"x48"
nd 24x | vinyl.
kl-1/2",
24 | | | | | Functional noise | | | | 1-1/2 | 10.8 | 4.3 | 6.6 | 9.8 | 13.3 | 13.6 | 10.8 | .5 | KAL | 129 | control baffles | 9,15 | | | - 1-17 | | 3/4" with rigi with velv rubb | 52-1/2";
aquare
1" thic
d board
ponels
at fabri
ar on 1; | steel
ck 3/4#
fiberg
of was
lc over
/10" pe | tubing
C.F.
lass,
hable
3/4"
rf. ma | filled
semi-
covered
nylon
foam
sonite. | 70.4 | | KAL 20 | 192 | Plenscape curved | 15.10 | | | - 1-1/7 | 38.9 | 17.7 | 74.7 | 34.2 | 43.9 | 48.7 | 39,4 | • | K37-1-72 | 183 | CR-GAR | 15,18 | | | | | aoni
Laya | | eichad i
Sam 1/2 | etween
and | i two
L" thick | | | | | | | | | - 1-3/4 | 9.44 | 2,7 | 6.0 | 10.6 | 11.0 | 10.0 | 10.0 | .375 | CT | 119 | Unit sound absorber | 10 | | | _ | | on c | /2"x16"x | tches | | | | _ | | | | | | | - 2 | - | 0.2 | 0.8 | 1.6 | 1.6 | 1,5 | 1,3 | 2 | RAL | 137 | Gadcoustic II | 1,15 | | | | | on c | /2"x16"x
enter re | ctangle | 28 | | | _ | | | | | | • | - 2 | - | 0.2 | 0.8 | 2.0 | 2.2 | 1,8 | 1.2 | 2 | RAL | 137 | Geocoustic II | 2,15 | | | | | | /2"x16"x
inter pe | | | | | | | | | | | | 2 | - | 0.2 | 0.7 | 2.0 | 2.2 | 2.0 | 1.7 | 2 | RAL | 137 | Geocoustic II | 3,15 | | | | | OR CE | 2"x16"x:
ntor pa | tches | | | | | | | | | | • | 2 | • | 0.2 | 0.6 | 2.6 | 2,4 | 2.2 | 1.8 | 2 | RAL | 137 | Geocoustic II | 4,15 | | | g n in | | wrapp | quare; ;
thicknot
backing
ad all a | ides. | <i>a</i> urtac | e vinyl | n a | | OCRL | | | | | - | 2-3/8 | • | 0.39 | 1.18 | 2.64 | 2.84 | 2.51 | 2.27 | .16 | 35261-3 | 116 | Vicracoustic Blocks | 5,16 | | | | Hz) | ì | | TA | BLE 19 | UNIT | ABSORI | BERS (| Concl) | | | | |-----------|-----------------------|---|----------------------|----------------------------|---|-----------------------------|----------------------------------|--------|----------------|---------------|-----|--------------------------------|---------------| | | 99 | | | Absorpt | ion in | Sabins | Unit | | | | | | | | ting | hes) | ns
Unit | Ä | 1 | ¥ | Hz | Hz | # | | | | | | | Hount ing | Thickness
(inches) | Average
Sabins
per Unit
(250 - 2000) | 125 | 250 | 8 | 1000 | 2000 | 6007 | Weigh
1b/ft | Lab. | Co. | Product | Foot-
note | | | - - | | of 2
boar | "thic
d back | knesš: ' | 3/8" pi
h surfa | las core
irticle
ice vinyl | | | OCRL | | | | | - | 2-3/6 | - | 0.37 | 1,29 | 2.92 | 3.37 | 2.91 | 2.4 | 6 ,16 | | 116 | Vicracoustic Blocks | 6,16 | | | | | of 2
boar
wrap | " thic
d back
ped al | knesä;
ing wir
I sidos | 3/8" pa
h surfa
· | ice vinyl | L | | OCRL | | | | | - | 2-3/8 | - | 0.43 | 1.31 | 3,41 | 3.92 | 3,41 | 2.7 | 9 .16 | 35261-3 | 116 | Vicracoustic Blocks | 7,16 | | | | | cold
with
gere | rolle
3/32"
d cent | . Fabrid
d steel
holes d
ers. V-1
a depti | perfor
on 5/32
ridged | on 6" | | | | | | | | - | 3 | - | 4.7 | 17.6 | 30.9 | 27.8 | | 21. | 7 - |
CKAL
691-4 | 59 | Eckoustic
Functional Panels | 11,15 | | - | 1-1/2
3-1/2 | | 0.32 | 0.60 | 1.43 | 2.36 | 2.32 | 2.4 | ı - | CAH | 128 | Tectum Sound Blocks | 17 | | - | 1-1/2
3-1/2 | 1.91 | 0.38 | 0.62 | 1.56 | 2.77 | 2.68 | 2.6 | 7 - | G&H | 128 | Tectum Sound Blocks | 17 | | | | | mold | ed fib | 24" long
erglas j
acreen. | rotact | ders of
ed by a | | | KAL | | | | | • | - | - | 1,4 | 4.1 | 7.6 | 8.5 | 8.1 | 7.3 | - | A71-162 | 18 | Acoustubes | 12,15 | | | | | of pr | dasure | r x 24"
molded | glaas | cylinder
fibers, | • | | KAL | | Functional | | | - | • | 7.4 | 3.7 | 5.8 | 7.1 | 8.2 | 8.4 | 10.0 | • | 1128-1-71 | 129 | Sound absorbers | 13,15 | | | | | | | r × 24 ^{ff}
molded | | cylind | ers | | | | Drum Round | | | • | • | - | 6.0 | 8.0 | 8.0 | 10.0 | 11.0 | 11.5 | - | CL | 107 | Absorbers | 14,15 | | | | | | | als of !
lightwo | | llulose
vetal lat | th. | | | | | | | - | • | - | | 17.1 | 30.0 | 39.7 | 41.6 | 41.6 | - | CT | 127 | K-13 Panel Systems | 15 | #### FOOTNOTES FOR TABLE 19 UNIT ABSORBERS - Inorganic, incombustible sound absorbing units. Temperature range to 100°F. Relative humidity range to 100 percent. Resistant to all common chemicals except HF and strong alkalis. Machanical fastener on adhesive mounting. - 2. Same as Footnote 1 except mounted in 16" on center rectangles. - 3. Same as Footnote 1 except mounted in 24" on center patches. - 4. Same as Footnote 1 except mounted in 32" on center patches. - Unit sound absorbers. Laminar composite of perforated Vicrtex vinyl wall covering. Class B flame spread. Normal interior temperature and humidity ranges. Available in many patterns and colors. Excellent resistance to stain. - 6. Same as Footnote 5 except 50 percent coverage. - 7. Same as Footnote 5 except 70 percent coverage. - All flat exposed surfaces are covered with unperforated textured vinyl. Ends covered with PVC channel finish. Two hooks on upper edge for hanging. Noncombustible, temperature range to 200°F. Relative humidity range to 100 percent. - 9. Same as Footnote 8 except covered with perforated vinyl. - Temperature range to 150°F. Relative humidity range to 95 percent. NRC based on surface area of 16 ft² per panal. - 11. Panels filled with Owens-Corning type 701 industrial insulation wrapped in 1 mil plastic. - 12. Temperature range to 350°F. Relative humidity to 100 percent. Flame spread; 20. Good resistance to petroleum and alkalis. - All exposed surfaces protected by a white fiber mesh. Units are moisture repelling, dustproof, and incombustible. - 14. All exposed surfaces are protected with rainforcing mesh. - 15. Test procedure conforms to ASTM C423-66. - AM specification No. 11 Acoustical absorbers as published by the Acoustical & Insulating Materials Association, Feb. 1972. - AIMA Procedure, mounting spaces 24" on center. Temperature range: 150°F. Flame spread: 20, Resistant to chemicals. - 18. Use in normal room temperature and humidity. # TABLE 20 WALL TREATMENTS AND FACINGS Facings in the form of panels, boards, ctc., which can be mounted on the walls to increase the sound absorption and thus improve the acoustic characteristics of the room are listed. The facings are made from a variety of materials and are available in various pleasing colors and surface textures. Figure 20A shows one such product with decorative facing backed by sound absorptive sheet and fibers. The facings can be mounted on a wall in a variety of ways. Figure 20B shows two simple mounting techniques. The table is subdivided into five parts representing five different thickness regions. This has been done because low frequency absorption is dependent upon the thickness of the absorbing material, and allows a comparative assessment of one material's potential for absorption relative to other materials, with the same general characteristics. - 20A Wall treatments 1 inch to 1-1/2 inches thick - 20B Wall treatments 2 inches to 2-1/2 inches thick - 20C Wall treatments 3 inches to 3-3/4 inches thick - 20D Wall treatments 4 inches to 4-1/2 inches thick - 20E Wall treatments 5 inches to 7 inches thick The companies (by numbers shown in Section II) with products listed in Table 20 are: 6, 10, 57, 59, 73, 82, 104, 105, 106, 111, 116, 128, 129, 132, 147, 151, 172, 178, 181. #### CAUTION - ABSORPTION COEFFICIENTS MAY EXCEED 1.0. FOR A COMPLETE DISCUSSION OF THESE VALUES SEE SECTION 1-3.1.2. - 2. THE NUMBERS LISTED UNDER THE "MOUNTING" COLUMN REFER TO THE AIMA STANDARD MOUNTINGS DESCRIBED IN SECTION 1-3.1.3 AND ILLUSTRATED IN FIGURE 1-11. # TYPES OF SOUND ABSORPTION MOUNTINGS MATERIAL MOUNTED ON 1"X 3"12" O.C WOOD STRIPPING MATERIAL APPLIED DIRECTLY TO CONCRETE SURFACE Figure 20A Vinyl Faced, Sound Absorbent Wall Covering Figure 20B Typical Mounting of Sound Absorbent Materials #### **GLOSSARY** Facing: The outside surface of the specimen. In general the side facing the sound source $% \left\{ 1\right\} =\left\{ =\left$ The other outside surface of the specimen. In general the side not facing the sound source $% \left\{ 1,2,\ldots,n\right\}$ Backing: The region between the facing and the backing Core: Lath: Thin lightweight structure used as groundwork for plastering, mounting tiles, etc. It may be in a form of gypsum board, perforated metal wire cloth, thin wood strips, etc. TABLE 20A WALL TREATMENTS AND FACINGS (1 INCH TO 1-1/2 INCH THICKNESS) | | | | | Absorp | tion | Couffic | ionts | | | | | | | |----------|-----------------------|------|----------|----------------|----------|---------------------|--------------------|--------|--------|----------------|-----|----------------------------------|-------| | th. | es) | | ž | ž | 돴 | ¥ | HZ | 뷡 | • | | | | | | Kounting | Thickness
(inches) | ЖЗС | 125 1 | 250 F | 500 % | 8 | 2000 | 0007 | Densit | | • | m - 4 | Foot- | | 2: | HO | * | <u> </u> | - 24 | <u> </u> | <u> </u> | 7 | 3 | 1b/fc | Lab. | Co, | Product | note | | | | | | Paint
and i | ed fir | nish. I
nic bind | lood f | | | | | | | | 2 | 1 | .40 | .08 | .14 | | .57 | ,59 | .63 | | G&H | 128 | Tectum
Interior Panels | 2 | viπyl w
s fiber | | ocing, | | CKAL | | | | | 2 | 1-1/8 | .80 | .27 | .72 | .87 | .82 | .74 | .70 | 8.45 | 711-48 | 116 | Vicracouatic type A | 6,17 | | | | | | n., | 1 61 | | | | | | | | | | | | | | Paint
and i | | ile bind | lood fi
lers co | | | | | Tectum | | | 4 | 1 | .40 | ,07 | ,12 | . 24 | .44 | . 70 | .54 | | G&H | 128 | Interior Panela | 2 | | | | | | Matal | 1 ach | facing | | | | | | | | | 4 | 1 | , 55 | ,24 | .30 | .57 | .69 | . 70 | | 2 | - | 6 | Faced rigid sound control boards | metal f | | | | | | Faced rigid sound | | | 4 | 1 | .65 | .27 | .35 | ,68 | .77 | .76 | ,71 | 3 | • | 6 | control boards | | | | | | | Perfo | rated | metal f | acing | | | | | Faced rigid sound | | | 4 | 1 | .70 | ٠ 33 , | ,40 | .76 | ,91 | .77 | .73 | 4 | • | 6 | control boards | | | | | | | Minar | 1 F1b | er boar | d | | | | | | | | 4 | 1 | .75 | ,11 | ,30 | .72 | .97 | .97 | 1,01 | 4 | RAL
A72-106 | 57 | MT-board #4 | 5,17 | | | | | | | 3 | e i | | | | | | | - ' | | 4 | 1 | .75 | .33 | .45 | .81 | facing
.88 | .78 | | 4 | | 6 | Faced rigid sound control board | | | ., | _ | *** | | • | ••• | • | ••- | | · | | - | | | | | | | | , | | er boar | | | | RAL. | | | | | 4 | 1 | .75 | . 10 | .29 | .73 | .97 | .97 | 1,00 | 6 | A73-110 | 57 | MT - board #6 | 5,17 | | | | | | Minera | 1 fib | er boar | d | | | RAL | | | | | 4 | 1 | .75 | .11 | .28 | .73 | .97 | .98 | .98 | 8 | A72-114 | 57 | MT - board #8 | 5,17 | | | | | | 144 | | er boar | | | | | | | | | 4 | 1 | .75 | ,12 | .31 | .74 | .98
.98 | .99 | 1.00 | 10 | RAL
A72-118 | 57 | MT - board #10 | 5,17 | | | | | | | | | | | | | | | • | | | | | | Metal | | | | | | | _ | Faced rigid sound | | | 4 | 1 | .80 | ,35 | .51 | . 89 | .93 | .87 | | • | - | 6 | control boards | | | | | | | | | vinyl w | | | | | | | | | | | | | facing | core | id glass | | | | CKAL | | | | | 4 | 1-1/8 | .80 | .24 | .59 | .91 | . 85 | .79 | .75 | 8,45 | 711-29 | 116 | Victacoustic type A | 6,17 | | | | | | Daines | a fin | ish. W | and Fr | have | | | | | | | | | | | inorga | nic b | inders (| core | | | | | Tectum | _ | | 8 | 1 | .80 | .18 | .53 | .96 | . 90 | .71 | .90 | - | Gáll | 128 | Interior Panels | 2 | TABLE 20A WALL TREATMENTS AND FACINGS (1 INCH TO 1-1/2 INCH THICKNESS) (Concl) | M. | ss | | | Absort | rtion C | coeffic | Lents | | | | | | | |----------|-----------------------|------|------|--------|--------------------|-------------------|----------------|-------|-------------------|----------------|-----|--------------------------------------|---------------| | Mounting | Thickness
(inches) | | - ZH | ZH. | Z. | 74 | 2 | Ηz | | | | | | | Ĕ | 걸볕 | es . | | | | | | | 0 | | | | F | | ğ | Ææ | NRC | 125 | 250 | 500 | 1000 | 2000 | 4000 | Density
1b/fr3 | Lab. | Co. | Product | Foot-
note | | | | | | P6 | | | | | | | | | | | | | | | rigie | oraceu
d glasa | fiber | wall fac | :ing, | | CKAL | | | | | 8 | 1-1/8 | .80 | .33 | .74 | . 90 | .83 | .73 | . 72 | 8.45 | 711-49 | 116 | Vicracoustic type A | 6,17 | ral wool | | | | | Panacoust Acoustical | | | - | 1 | - | .08 | . 36 | .44 | .59 | .71 | .47 | - | KAL | 129 | Panels | 1,17 | | | | | | Wood | with m | dneral | wool | | | | | | | | | 1 | _ | .20 | . 38 | .46 | .60 | .74 | .54 | - | KAL | 129 | Panacoust Acoustical
Panals | 1,17 | | | _ | | | | | , | ••• | ••• | | | ••• | ••- | | | | | | | | nermal | insulat | ting | | | | | | | | | | | | wool | | 00 | ac | 0.5 | | | 122 | orter. | 3,4,
17 | | - | 1 | ,65 | .11 | . 33 | . 70 | .80 | .86 | .85 | - | CT | 132 | OCWT | 17 | | | | | | 1" 70 | 3 fibe | rglas d | ore alo | no | | | | | 3 4 | | - | 1 | .70 | ,06 | .20 | .65 | .90 | . 95 | .98 | 3 | CT | 132 | OCWT | 3,4,
17 | 1"
nu | ibby de
board | sign, g | lass | | | | | | | | _ | 1 | .75 | .04 | .21 | .73 | .99 | .99 | .90 | - | CT | 132 | OCWT | 3,17 | | | | | - | | | | | | | | | | • | | | | | | Glass | cloth | | 1 | | | | | Rigid sound control | | | - | 1 | .80 | .77 | .57 | .84 | . 93 | ,75 | .51 | - | • | 6 | boards | | | | | | | With | rigid i | board b | acking, | | | | | | | | | | | | fabri | c glass | a facin | ig . | | | | | Faced rigid sound | | | - | 1 | ,90 | .75 | .91 | .86 | . 93 | .79 | .50 | • | • | 6 | control boards | | | | | | | 111 70 | 3 With | 1/8" = | agboard | | | | | | | | | | | | facin | | .,. , | | | | | | | | | • | 1-1/8 | .55 | .09 | .35 | .99 | .58 | .24 | .10 | • | CT | 132 | OCM | 3,17 | | | | | | 111 70 | 2 | 1768 - | egboard | | | | | | | | | | | | facin | B
7 ATCU | 1/4" p | eRopato | | | | | | | | - | 1-1/4 | .60 | .08 | ,32 | .99 | 76 | . 34 | . 12 | - | CT | 132 | OCWT | 3,17 | 1/4" | ermal i
pegboar | insulat
d faci | ing woo!
ng | ı | | | | | | | - | 1-1/4 | .60 | .08 | .41 | ,99 | .82 | .26 | .32 | - | CT | 132 | OCWT | 3,17 | n proto | | _ | | | RAL | | Si-lock noise | | | • | 1-3/8 | , 80 | .11 | ,29 | .86 | ,99 | .97 | .67 | 1.79 | A72-217 | 102 | control panels L-21 Acoustical Liner | | | | | | | Perfor | rated m | etal f | acina | | | | | with IW 21A exterior | | | | 1-1/2 | .90 | .36 | | 1.15 | .97 | .71 | .51 | | RAL
A71-152 | 106 | panels (Type L-21
Acousti-wall) | 7,17 | | | | | - | | | | | | | | | • | - | | | | | | 1" unj | ainted | lines | r design | ١, | | | | | | | _ | _ | .65 | .03 | .17 | cloth | .87 | .96 | .96 | | CT | 132 | OCWT | 3,17 | | - | - | | | | | , , , | 174 | | - | ٠. | | | -,-, | TABLE 20B WALL TREATMENTS AND FACINGS (2 INCH TO 2-1/2 INCH THICKNESS) | | w 15. | | | Absor | ption | Coeffi | cienta | | | | | | | |-----|----------------------|------|------|-------------------|----------------|---------------------|------------------|------|--------|------------------|-------|----------------------------------|--------------| | , | Thickess
(inches) | | 귚 | Hz | Hz | H. | # | HZ . | | | | | | | j | 22 | O | | | | 8 | | 8 | Denait | | | | P | | _ { | 8 #3 | NAC | 125 | 250 | 500 | ន្ន | 2000 | 9 | 1b/ft | 3 Lab. | Co. | Product | Foot
Note | | | | | | 1/2"
with | glass
2" of | fiber
rigid | facing
fibers | las | | | | · | | | 2 | 0.1/0 | 0# | | core | 00 | 74 | | 70 | | OCRL | | Ulana sanahia Buas i | | | 2 | 2-1/8 | .85 | .57 | 98 | , 92 | .76 | .71 | .78 | 8.4 | 5 35261- | 2 116 | Vicracoustic Type A | , 0 | | | | | | Perf | orated | masoni | te fac | ing | | | | - 1 | | | 2 | 2-1/2 | .90 | .43 | .88 | .99 | .92 | .81 | .81 | 4 | - | 6 | Faced rigid sound control boards | 10 | Meta: | l lath | facing | 5 | | | | | Faced rigid sound | | | 4 | 2 | .75 | .38 | .49 | . 84 | .91 | .76 | | 2 | - | 6 | Faced rigid sound control boards | | | | | | | | _ | | | | | | | | | | | _ | | 4.0 | | | metal | _ | | _ | | | Faced rigid sound control boards | | | 4 | 2 | .80 | .44 | .61 | .96 | .93 | .77 | .86 | 3 | - | 6 | CONCLOT DOSLGR | | | | | | | Miner | -1 ff | ber boa | rd | | | | | | | | 4 | 2 | .85 | .28 | .58 | .88 | 1.01 | 1.00 | 1.00 | 4 | RAL
A72-107 | 57 | MT - board #4 | 5,17 | | | - | | | | | | • | | • | | | | -, | | | | | | Miner | al fi | ber boa | rd | | | RAL | | | | | 4 | 2 | .85 | .27 | .60 | .88 | 1.01 | 1.02 | 1,01 | 8 | A72-116 | 57 | MT - board #8 | 5,17 | ber bos | _ | | | RAL | | | | | 4 | 2 | .85 | .29 | .58 | ,88 | 1,01 | 1.01 | 1,00 | 6 | A72-111 | 57 | MT - board #6 | 5,17 | | | | | | Metal | lath. | facing | , | | | | | | | | 4 | 2 | .90 | .54 | | 99 | .99 | ,88 | | 4 | - | 6 | Faced rigid sound control beards | | | | | | | - | | | • • • | | • | | - | 04115101 BUDING | | | | | | | Metal | 14th | facing | 1 | | | | | Faced rigid sound | | | 4 | 2 | .90 | .55 | .79 | . 99 | , 99 | .91 | | 6 | - | 6 | control boards | | | | | | | | | | | | | | | | | | | _ | | | Musli | | - | | | | | | Faced rigid sound | | | 4 | 2 | .90 | .62 | .85 | . 99 | .99 | .86 | | - | • | 6 | control boards | • | | | | | | Miner | al fi | ber boa | rd | | | | | | | | 4 | 2 | , 90 | .31 | .61 | . 90 | 1.02 | 1.03 | 1.04 | 10 | RAL
A72-199 | 57 | MT - Board #10 | 5 | 1/8" g | lass : | fiber fa
berglas | icing w | ith | | | | | | | 4 | 2-1/8 | . 85 | .47 | | .89 | .77 | .75 | .76 | 8.45 | OCRL.
35261-2 | 116 | Vicracoustic Type A | 6 | | • | ,- | • | • | | | ••• | | | | | | | - | | | | | | 41 x 8 | Long | lamina | ited wo | od | | | | | | | | | | | fiber
forste | board | with or | e per- | | | | | | | | 4 | 2-1/4 | .65 | . 27 | | .51 | .77 | . 89 | .84 | | KAL
1306~1−72 | 129 | NMC Laminated Panel | | | | , | | | | | | | | | ·- · ·- | | | | | | | | | Ambosto | oa pap | er faci | .ng | | | | | Faced rigid sound | | | 1. | 2-1/2 | 85 | 47 | 41. | 00 | 90 | 74 | 80 | • | | 4 | | | TABLE 20B WALL TREATMENTS AND FACINGS (2 INCH TO 2-1/2 INCH THICKNESS) (Contd) | | | | | Absor | ption : | Cosffic | ionto | | | | | | | |----------|-----------------------|------|-------|-----------------------|------------------------------------|------------------------------|--|-----------------|-------------------|---------------|-----|-------------------|--------| | Ħ | les. | | 됬 | #
| Hz | HZ | ΉZ | ¥2 | | | | | | | Hounting | Thickness
(inches) | SEC. | 125 1 | 250 1 | 500 \$ | 1000 | 2000 | 4000 | Density
1b/ft3 | Lab. | Co. | Product | Foot- | | | | | | t" ai:
unpai | r apac | e cora | with 1" | | 20,110 | | | | | | - | 2 | .75 | .04 | ,26 | .78 | .99 | .99 | .98 | - | CT | 132 | OCWT | 3,17 | | | | | | solid | steel | steel f
backin
L core | | | | | | Modular Noise | | | - | 2 | .84 | .26 | .63 | . 87 | .97 | .88 | .75 | - | - | 82 | Control Panels | | | | | | | cold
with
glas | rolle
vibro
e or m
ded ma | d steal
-damper
ineral | facing,
backin
; core
wool wi | of
th | | | | Standard | | | - | 2 | . 85 | .29 | .60 | .95 | . 99 | .87 | . 80 | - | - | 111 | Noiseguard Panels | | | | | | | l" u
desi;
faci | gn, gl | ed 703
ess clo | with li
th boar | near
d | | | | | | | - | 2 | .90 | .18 | .71 | .99 | , 99 | .99 | .99 | • | cr | 132 | OCWT | 3,17 | | | | | | 2" Ti | nermal | insulat | ing woo | 1 only | ٧. | | | | | | - | 2 | .90 | . 25 | .64 | ,99 | .97 | .88 | . 92 | - | CT | 132 | OCMI | 3,8,17 | | | | | | 1" 11 | ermal
lear o | esign . | ting wo
glass | ol wi | ch | | | | | | - | 2 | .90 | .23 | .72 | , 99 | .99 | ,99 | .99 | • | CT | 132 | OCWI | 3,17 | | | | | | vaniz
perfo | ed sta | ol with
backir | facing,
123 per
18 insu | rcent
lating | 3 | KAL
1180-1 | | Samco Equipment | 9,17 | | - | 2 | .90 | .40 | .75 | .94 | .97 | .99 | .96 | - | 71R | 151 | Housing Panel | | | | | | | 211 7 | በጌ ፑናኤ | orglas | กสโซ | | | | | | | | - | 2 | . 95 | .16 | .76 | .99 | .99 | ,99 | .99 | - | CT | 132 | OCWT | 3 | | | | | | 2" 7
ted | 03 wit
metal | h perfo
facing | ra- | | | | | | | | - | 2 | . 95 | .18 | ,73 | . 99 | .99 | .97 | . 93 | • | CT | 132 | OCWT | 3,8 | | | | | | | | h 1" nu
cloth | bby de-
board | ı | | | | | | | - | 2 | . 95 | .25 | .76 | .99 | .99 | .99 | .97 | • | CT | 132 | OCWT | 3 | | | | | | 2" T
wool | hermal
only | insula | ting | | | | | | | | - | 2 | . 95 | .25 | .75 | .99 | . 99 | ,99 | ,99 | - | CT | 132 | OCWT | 3 | TABLE 20B WALL TREATMENTS AND FACINGS (2 INCH TO 2-1/2 INCH TRICKNESS) (Concl) | | | | | oedA | rpt1on | Coeffic | ilents | | | | | | | |---------|----------------------|------|--------|-------------|-------------------|--------------------------------|----------|-----------|-------------------------------|------|-----|---------|---------------| | Hamtina | Thickner
(inches) | NRC | 125 Rz | 250 Hz | 500 Hz | 1000 Hz | 2000 Hz | 4000 Hz | Density
Ib/ft ³ | Lab. | Co. | Product | Foot-
note | | | | | | Waa | d with | l insula
1" nubl
ch boar | by desi | gn, | | | | | | | • | . 2 | .95 | ,26 | .75 | .99 | .99 | . 99 | . 99 | - | CT | 132 | OCWT | 3 | | | | | | 2"
wit | thermal
h 1/4" | inaula
pegboar | ating wa | ool
ng | | | | | | | - | 2-1/4 | .70 | .26 | .89 | .99 | .58 | .26 | .17 | - | cr | 132 | OCWT | 3,17 | | | | | | 2" :
fac | 703 wit
ing | h 1/4" | hegpour | d | | | | | | | - | 2-1/4 | .75 | . 26 | 97، | .99 | .66 | .34 | , 14 | - | CI | 132 | OCWT | 3,17 | | | | | | Fibe | rglas | 703 | | | | | | | | | - | 2-1/4 | . 85 | .30 | ,69 | .94 | ,92 | .92 | .98 | - | CT | 132 | OCWT | 17.18 | TABLE 20G WALL TREATMENTS AND FACINGS (3 INCH TO 3-3/4 INCH THICKNESS) | | | | | Absor | ption | Conffic: | Lents | | | | | | | |----------|-----------------------|-------|--------|------------------------|-----------------------------|--------------------------------|--------------------|---------|-------------------|---------------|-----|----------------------------------|-------| | Mounting | Thickness
(inches) | istic | 125 Hz | 250 Bz | 500 Hz | 1000 Hz | 2000 Hz | ZH 00C7 | Density
ib/ft3 | y Lab. | Ĉυ, | Product | Foot- | | | | | | | forated | metal | | | | | | | | | 4 | 3 | .90 | .68 | .78 | .99 | ,94 | .86 | .80 | 3 | - | 6 | Faced rigid sound control facing | | | | | | | Hine | ral fi | ber boar | rd | | | RAL | | | | | 4 | 3 | .95 | .45 | .85 | 1.03 | 1.04 | 1.02 | .98 | 4 | A72-106 | 57. | MT - board #4 | 5,17 | | | | | | Perf
faci | orated | metal | | | | | | Faced rigid sound | | | 4 | 3 | .95 | .69 | .91 | .99 | ,99 | .91 | .82 | 4 | - | 6 | control board | | | | | | | Mine | ral fi | ber boar | rd | | | RAL | | | | | 4 | 3 | .95 | .47 | .85 | 1.03 | 1.04 | 1.03 | 1.00 | 6 | A72-112 | 57 | MT - board #6 | 5,17 | | | | | | Mine | ral fi | ber boar | rd | | | RAL | | | | | 4 | 3 | .95 | .47 | .86 | 1.04 | 1.05 | 1.04
| 1.04 | 8 | A72-115 | 57 | MT - board #8 | 5,17 | | | | | | Minos | ral fil | or boar | d | | | | | | | | 4 | 3 | .95 | ,49 | .87 | 1.05 | 1.05 | | 1.05 | 10+ | RAL
A72-12 | 57 | MT - Board Ø10 | 5,17 | | | | | | unpa. | inted . | ce core
Linear d
1 board | lesian, | 11 | | | | | | | - | 3 | .85 | .17 | .40 | .94 | 99 | .97 | .99 | - | CT | 132 | OCHT | 3,17 | | | | | | Perfe
faci | orated
ng | met al | | | | | | Faced rigid sound | | | - | 3 | . 85 | .55 | .58 | .95 | .90 | .79 | .80 | 2 | - | 6 | control boards | | | | | | | solic | orated
i shoet | steel f
backin | acing, | | | | | 40 to 4 co co 4 c | | | - | 3 | . 95 | . 60 | 97 | . 97 | .93 | .91 | .78 | - | - | 82 | Modular noise
control panels | | | | | | | 3" Th
wool | ermal
only | insulat: | ing | | | | | | | | • | 3 | , 95 | .46 | , 99 | .99 | , 99 | . 99 | .99 | - | • | 132 | OCWT | 3,17 | | | | | | 2" Th
with
glass | ermal
1 unp
cloch | insulati
minted
board | ing wool
linear | L | | | | | | | - | 3 | , 95 | .48 | .99 | . 99 | . 99 | . 99 | . 99 | - | CT | 132 | OCWT | 3,17 | | | | | | 2" 70
glass | 3 with
cloth | l" nubl | y desig | m, | | | | | | | - | 3 | . 95 | .50 | , 99 | .99 | .99 | .99 | .97 | - | CT | 132 | OCHT | 3 ,17 | | | | | | 2" The
Wool w | ermal :
with 1'
cloth | naulati
nubby
board | ng
design, | , | | | | | | | - | 3 | .95 | , 51 | .99 | .99 | ,99 | . 97 | . 95 | - | CT | 132 | OCHT | 3,17 | TABLE 20C WALL TREATMENTS AND FACINGS (3 INCH TO 3-3/4 INCH THICKNESS) (Concl) | _ | , w | | | Abso | rption | Coeffic | ienta | | | | | | | |----------|------------------------|------|--------|-----------------------|------------------|--------------------|-------------------|---------|------------------|------|-----|---------------|------------| | Mounting | Thickness
(fr.ches) | NRC | 125 Hz | 250 Hz | 500 Hz | 1003 Hz | 2003 Hz | 4003 Hz | Weight
1b/fc3 | Lab. | Co. | Product | Foot- | | | | | | Fibe | rglas c | ore onl | У | | | | | | | | • | 3 | .95 | .53 | .99 | .99 | , 99 | . 99 | .99 | - | CT | 132 | OCWT - 3" 703 | 3,17 | | | | | | 2" 7
line
board | ar deal | l" unp
gn, gla | ainted
88 clot | :h | | | | | | | - | 3 | , 95 | . 59 | .99 | .99 | .99 | .99 | . 99 | - | CI | 132 | OCWT | 3,17 | | | | | | 3" T
with | hermal
1/4" p | insulat
egboard | ing wool | 1 | | | | | | | • | 3-1/4 | .70 | . 53 | .99 | .97 | ,51 | , 32 | .16 | - | СT | 132 | OCWT | 3,
4,17 | | | | | | 3" 7 | 03 with | 1/4" p | ogboard | : | | | | | | | - | 3-1/4 | .75 | .49 | .99 | .99 | ,69 | .37 | .15 | - | CT | 132 | OCWI | 3,17 | | | | | | Paper
sula | r faced | acoust
berglas | ic in- | | | | | | | | • | 3-1/2 | .80 | .38 | .96 | .99 | .68 | .47 | . 35 | - | CL | 132 | OCWT | 17,18 | | | | | | Fiber | glas | 4cousti | insul | a- | | | | | | | - | 3-1/2 | .95 | .34 | .80 | .99 | .97 | .97 | .92 | • | CT | 132 | OCWT | 17,18 | | | | | | 3-1/2 | " fibe: | rglas t | acking | | | | | | | | - | 3-1/2 | .95 | .67 | .99 | .99 | .99 | _ | ,98 | - | CT | 132 | ocwr | 17 | | | | | | 3-1/2
glas | " | r faced
pegboar | fiber- | | | | | | | | • | 3-3/4 | .60 | .50 | .99 | .70 | .41 | .38 | .27 | • | CT | 132 | OCWT | 17,18 | | | | | | Fiber
sulat | glas a | coustic | in- | d | | | | | | | - | 3-3/4 | .70 | .45 | .99 | .87 | .41 | .30 | , 14 | - | cr | 132 | OCWT | 17,18 | TABLE 20D WALL TREATMENTS AND FACINGS (4 INCH TO 4-1/2 INCH THICKNESS) | ** | 2_ | | | Absor | ption | Coeffic | lents | | | | | | | |----------|-----------------------|------|--------|--------------|-----------------------------|---|----------------|---------|-------|----------------|-----|-------------------------------|------------| | Noweting | Thickness
(inches) | NAC | 125 Hz | 250 Hz | 500 Hz | 1000 Hz | 2000 Hz | ZH 0007 | Densi | ty
3 Lab. | Ca. | Product | Foot- | | | | | | | | | | -4 | 1b/ft | 1 1445. | | 1100ger | notes | | 4 | 4 | .95 | .61 | | 1,17 | 1.06 | 1.03 | .98 | 4 | RAL
A72-109 | 57 | MT - board #4 | 5,17 | | 4 | 4 | .95 | .63 | Min
1,10 | eral f:
1.17 | ber bos
1.06 | 1.04 | .99 | 6 | RAL
A72-113 | 57 | MT - board #6 | 5,17 | | | | | | Min | oral fi | ber boa | rd | | | | | | | | 4 | 4 | .95 | .65 | 1.11 | 1.18 | 1.07 | 1.05 | 1.06 | 8 | RAL
A72-117 | 57 | MT - board 08 | 5,17 | | | | | | Min | 1 61 | ber boa | | | | | | | | | 4 | 4 | .95 | .66 | 1.12 | 1.18 | 1.07 | | 1.06 | 10 | RAL | 57 | MT - board #10 | 5,17 | | | | | | Soli
Sour | d meta
d dead | motal
l backi
aning m | ng, - | | | | | | | | 4 | 4 | .95 | .76 | .99 | .99 | .99 | .90 | . 84 | _ | RAL
A62-242 | 6 | Metal sound
control panels | 13,19 | | | | | | Soli | d meta
d dead | metal
l backi
ening m | ng. T | | | RAL | | Motal | | | 4 | 4 | .95 | .76 | .99 | .99 | . 99 | .90 | .89 | - | A62-242 | 6 | Acoustic Panels | 13 | | | | | | Core | : min | rforate
heet pe | 1 | | | KAL
1184-1- | 101 | Sona-guard panols | | | 4 | 4 | , 95 | . 87 | .97 | .98 | .96 | .96 | .99 | 5.55* | 71 | 181 | on concrete | 17,20 | | | | | | glas | inted
8 clot | e core
linear
h board | design, | | | | | | | | • | 4 | .85 | . 19 | .53 | .99 | . 99 | . 92 | .99 | - | CT | 132 | OCML | 3,17 | | | | | | Poly | uratha | ne core | | | | | | | | | - | 4 | .95 | . 36 | | 1.03 | .97 | .94 | . 83 | 2-1/2 | * cr | 10 | Acousta Panels | 20 | | | | | | Soli
low | d face
freque | damped
ncy atte | for
nuation | n | | OKAL | | flored Custon | | | - | 4 | .95 | .51 | 1,10 | 1.12 | 1.06 | 1.05 | .93 | - | 694-10 | 59 | Panel System
type HD or CD | 12,17 | | | | | | only | | inaulst | ing wo | | | | | | | | - | 4 | . 95 | .57 | .99 | .99 | .99 | . 99 | .99 | - | CT | 132 | OCWT | 3,17 | | | | | , | 8a1v
237 | enized
perfor:
Lation | steel b
steel w
stion fa
materia | ich
cing | • | | KAL
1180-2- | | Semco Equipment | G | | • | 4 | .95 | .75 | . 93 | .99 | .98 | .99 | .99 | 4.85* | 71R | 151 | Housing Panel | 9
17,20 | Weight in 1b/ft2 TABLE 20D WALL TREATMENTS AND FACINGS (4 INCH TO 4-1/2 INCH THICKNESS) (Contd) | | 99 | | | Absor | ption | Conffi | ients | | | | | | | |----------|-----------------------|------|-----|-------------------------|----------------------------|--|--|------------------------|-----------------|--------|-----|---------------------------------|----------------| | ä | hes) | | ä | ¥ | - ZH | 2 H | 캺 | 뷡 | | | | | | | Mounting | Thickness
(inches) | NEC | 125 | 250 | 505 | 1000 | 2000 | 0007 | Dunsit
1b/ft | ¥ Lab. | Co. | Product | Foot-
notes | | | | | | Faci
Back | | 8 ga. m
22 ga m | | | | | | | | | | | | | Core | ; min | eral wo | POT | | | RAL | | | 11,
17,20 | | • | 4 | .95 | .58 | 1.05 | 1.11 | 1.07 | 1.05 | . 96 | 6* | A72-33 | 147 | Acoustical Panel | 17,20 | | | | | | Stand | dard p
rptive | anel wi
face | th one | | | CKAL | | Panel System | | | - | 4 | .95 | .71 | 1.14 | 1.16 | 1.06 | 1,04 | 1,13 | - | 691-6 | 59 | Cype H or C | 17,12 | | | | • | | 1 U | hermal
ubby d
h boer | ealgn, | ting wo | ol | | | | | | | • | 4 | . 95 | .71 | .99 | .99 | .99 | .99 | . 92 | • | CT | 132 | OCWI | 3,17 | | | | | | 3" 70
line
board | ar dea | " unpai
ign, gl | nted
ams clo | ch | | | | | | | • | 4 | . 95 | .75 | .99 | .99 | .99 | , 99 | , 97 | - | CT | 132 | OCWT | 3,17 | | | | | | មព គ្ ង: | inted . | insula
linear
h board | ting wo
design, | 01 | | | | ř | | | • | 4 | . 95 | •77 | , 99 | .99 | .99 | . 99 | .99 | - | CT | 132 | OCWT | 3,17 | | | | | | 3-3/3
steel
backi | 2" hol
sheel
ng: gl | es with
vibrod | acing,
cold r
lamper f
mineral
al, cor | olled
acing
wool | <u>&</u> | | | Srandard | | | • | 4 | .95 | •77 | .99 | .99 | .99 | .93 | .77 | - | | 111 | Noiseguard Panels | | | | | | | | 3 - 1"
board | | design, | glass | • | | | | | | - | 4 | .95 | .88 | .99 | . 99 | .99 | .93 | .98 | - | CT | 132 | OCWT | 3,17 | | | | | | 4" 70 | 3 Fibe | rglas | | | | | | | | | | 4 | .95 | .99 | .99 | .99 | .99 | .98 | .98 | - | CT | 132 | OCWT | 3,17 | | | | | | Calva:
23 pe: | nized
rcent
&, ins | sceel t
sceel w
perfors
ulating | tion | 1 | | RAL | | | | | • | 4 | .95 | .58 | 1.05 | 1.11 | 1.07 | 1.05 | .96 | 5.8* | A72-33 | 129 | NMC Acquatical Panel | 17,20 | | | | | | solid | ateel | steel f
backin
l core | acing,
S: | | | | | | | | - | 4 | .96 | .70 | .99 | .99 | , 99 | . 94 | .83 | - | | 82 | Modular Noise
Control Panels | | TABLE 20D WALL TREATMENTS AND FACINGS (4 INCH TO 4-1/2 INCH THICKNESS) (Concl) | | 4 | | | Absor | ption | Coeffic | Lents | | | | | | | |----------|-----------------------|-----------|-----|--------------------------------|--------------------------------------|---|------------------------------|-------------|---------|---------|-----|--------------------|-------------| | Mounting | Thickness
(inches) | | H | Ħ | Hz | 2H | Ħ | H 7 | | | | | | | Ē | 22 | KRC | 125 | 250 | 500 H | 1000 | 2000 | 000 | Density | ı | | | Foot- | | ₹. | 22 | <u> 2</u> | | - 23 | - 65 | | | | lb/ft3 | Lab. | Co. | Product | notes | | | | | | back: | orated
ing; f:
cora | facing
iberglas | and
insul | n- | | | | | 14 | | | 4 | 1.10 | .63 | 1.09 | 1.17 | 1.08 | 1.03 | .97 | 5.1* | RAL | 172 | Uni-housing Panels | 14
17,20 | | | | | | Perfo
with
and p
chan | rated
lines
protect
nel com | | acing
sulati
ructur | 1 | | RAL | | HS Սոլ-housing | | | - | 4 | 1.10 | .63 | 1.09 | 1.17 | 1.08 | 1.03 | .97 | - | A71-3 | 178 | Panal | 16,17 | | | | | | solid | i stee | steel f
l backin
ill in t | 8 . | e. | | CKAL | | | | | | 4 | 1.10 | .89 | 1.20 | 1.16 | 1.09 | 1.01 | 1,03 | 5.B9* | 661-17 | 104 | Noishield Panel | 15,20 | | | | | | 4" TI
With | herma1
1/4" ; | insulat
pegboard
| ing wo | | | | | | | | - | 4-1/ | 4 .70 | .70 | .99 | .94 | .58 | .37 | . 1.9 | - | CT | 132 | OCWT | 3,17 | | | | | | | 0 n | h 1/4" r | _ | | | | | | | | | 4-1/ | 4 .75 | .80 | .99 | .99 | .71 | .38 | .13 | _ | ст | 132 | OCWT | 3,17 | | • | | 4 1,2 | | ••• | | ••• | | | _ | | | | _ ,•. | | | | | | 3" of | #703
m boat | rated a
les on
space:
fibergl
d glued | 5/8".
as. 5/8 | 3 '' | | RAL | | | | | - | 4-1/4 | .95 | .64 | 1.15 | 1,13 | 1.02 | .98 | .99 | - | A71-102 | 73 | Sound Wall | 17 | | | | | | with | 1" nub | r faced
by desig
facing. | ın, gla | less
ss | | | | | | | - | 4-1/2 | .95 | .66 | .99 | .99 | .98 | .99 | .95 | - | CT | 132 | OCMI | 17,18 | | | | | | poard | racin | | | | | | | | | | - | 4-1/2 | .95 | .66 | .99 | .99 | .96 | .99 | .99 | - | CT | 132 | OCWT | 17,18 | | | | | | 3-1/2
tion
glass | " fibe
with 1
cloth | rglass :
" nubby
 boord : | insula-
design
facing. | ,
), | | | | | | | - | 4-1/2 | .95 | .67 | .99 | . 99 | .99 | . 99 | .90 | - | CT | 132 | OCWI | 17,18 | | | | | | | | d linear
board | | | | | | | | | - | 4-1/2 | .95 | .66 | .99 | . 99 | .99 | ,99 | .97 | | CT | 132 | OCWT | 17,18 | TABLE 20E WALL TREATMENTS AND FACINGS (5 INCH TO 7 INCH THICKNESS) | | | | | Absorp | rion C | coffici | lents | | | | | | | |----------|-----------------------|------|--------|---------------------------|-----------------|-------------------------------|--------------------|-----------------|-------------------------------|------|-----|---------|-------| | Mounting | Thickness
(inches) | NAC | 125 Hz | 250 Hz | 500 Hz | 2H (1001 | 2000 Hz | 4000 Hz | Density
1b/ft ² | Lab. | Co. | Product | Foot- | | | ••• | | | ፈጥ ተዜ | armai | insulat
d linea | Ing woo | l wit | | | | · | | | | | | | glass | clock | board | | | | | | | 2 12 | | - | 5 | .95 | .77 | ,99 | .99 | . 99 | . 99 | .99 | • | CT | 132 | DCML | 3,17 | | | | | | 4" Th | ermal | insulat | ing woo | l wit | h | | | | | | | 5 | .95 | .79 | .99 | .99 | iign, gl
,99 | .99 | .98 | | CT | 132 | OCWT | 3,17 | 5" The | ermal . | insulat | ing woo | 1 | | | | | | | • | 5 | . 95 | .83 | .99 | .99 | .99 | . 99 | .99 | • | CT | 132 | OCWT | 3,17 | | | | | | 4" 70 | 3 - 1" | unpain | ted lin | oar | | | | | | | | 5 | .95 | .87 | desig | n, gla
.99 | es clot | h board
.99 | .99 | _ | CT | 132 | OCWT | 3,17 | | - | , | .22 | .07 | . 77 | .,,, | . 77 | • • • • | • • • • | - | | *** | | -1 | | | | | | | 3 with
cloth | 1" nub | by desi | gn | | | | | | | | 5 | .95 | .88 | '33 | .99 | .99 | .99 | .96 | | CT | 132 | OCWT | 3,17 | | | | | | | | | | | | | | | | | | | .95 | 0.6 | 5" 70
.99 | 3 F1ba
,99 | rglas
.99 | .99 | .99 | | cr | 132 | OCHT | 3,17 | | | 5 | .93 | . 95 | . 23 | ,,,, | • 77 | .,, | ••• | | ٠. | *** | | -,-, | | | | | | 5" The
1/4" | rmali
nlvwoo | nsulati
d facin | ng wool | with | | | | | | | _ | 5-1/4 | .70 | .78 | .99 | .89 | .63 | .34 | .14 | - | CT | 132 | oowr | 3,17 | | | | | | | | • 4411 = | | | | | | | | | | | | | board | | 1/4" p | eg- | | | | | | | | • | 5-1/4 | .75 | .98 | .99 | .99 | .71 | .40 | .20 | - | CT | 132 | OCWT | 3,17 | | | | | | 5" A1r | 808ce | core wi | th 1" un | vaint | ed | | | | | | | _ | | | linear | r desig | n, glas | s cloth | post | i | CT | 132 | ocwr | 3,17 | | • | 6 | .90 | .41 | .73 | .99 | .98 | .94 | .97 | - | GI. | 132 | CONT | ~ 141 | | | | | | 6" f1 | | as back | ing | | | | | | | | - | 6 | .95 | .67 | .99 | .99 | .99 | .99 | .98 | - | CT | 132 | OCWI | 17,18 | | | | | | 5" The
1" ung
glass | ermal i | inaulat:
i linea:
board | ing woo
r desig | 1 wit
n, | h | | | | • | | - | 6 | .95 | .87 | .99 | .99 | .99 | .99 | .99 | • | CT | 132 | OCMT | 3,17 | | | | | | | 3 with
cloth | 1 ^H nubi | by desi | gn, | • | | | | | | - | 6 | .95 | .92 | .99 | .99 | .99 | .99 | .99 | - | CT | 132 | OCWT | 3,17 | | | | | | 5" The
1" pub | rmal i | insulati
ign, gla | ing woo | l wit
h boar | h
:d | | | | | | - | 6 | .95 | .92 | .99 | 99 | .99 | .99 | | • | CT | 132 | OCMI | 3,17 | | | | | | c11 m | | | _ | | | | | | | | | 6 | . 95 | . 93 | 6" The | rmal in
.99 | sulatin
.99 | 18 Wool (| 99, | _ | CT | 132 | ocwr | 3,17 | | | | | | | | | | | | | | | | TABLE 20E WALL TREATMENTS AND FACINGS (5 INCH TO 7 INCH THICKNESS) (Concl) | | | | | Absorp | tion | Coeffic: | Lents | | | | | • | | |----------|-----------------------|------|--------|------------------------|----------------------|--------------------------------|------------------|------------|-----------------|---------|------|----------------|----------------| | Mounting | Thickness
(inches) | MRC | 125 Hz | 250 Ht | 500 H± | 1000 Hz | 2000 312 | 4000 Hz | Densit
1b/ft | y Lab. | Co. | Product | Foot-
notes | | | | | | 6" 70 | 3 on1) | , | | _ | | | | , | | | - | 6 | .95 | .99 | .99 | . 99 | .99 | .99 | .99 | - | Cl | 132 | OCMI | 3,17 | | | | | | 5" 70.
desig | 3 with
n, gla | ıl" unp | ainted
h boar | lines
d | r | | | | | | - | 6 | .95 | ,99 | .99 | . 99 | .99 | .99 | .99 | - | CT | 132 | OCM | 3,17 | | | | | | Solid | met al | metal f
backin
ming ma | g. ~ | | | RAL | | Meral sound | | | 4 | 6 | , 95 | .99 | .99 | . 99 | .99 | .99 | .99 | • | A62-243 | 6 | control panels | 13,19 | | | | | | 6" The | rmali
1/4" p | nsulati
egboard | ng wool | | | | | | | | - | 6-1/4 | .70 | , 95 | .99 | . 88 | . 64 | , 36 | .17 | - | CT | 132 | OCWT | 3,17 | | | | | | 6" 70: | with | 1/4" p | egboard | ı | | | | | | | - | 6-1/4 | ,75 | . 95 | , 99 | . 98 | .69 | . 36 | .18 | • | CT | 132 | OCWT | 3,17 | | _ | 7 | .95 | , 85 | 6" 70:
glass
.99 | with
cloth
.99 | 1" nub
board
.99 | by desi | gn, | | CT | 132 | ocur | 3,17 | | | | | | | | 1" unp | | | • | | | | | | • | 7 | .95 | .86 | . 99 | . 99 | .99 | . 99 | .99 | • | CT | 132 | OCWT | 3,17 | | | | | | with 1 | l" ünp | es insu
ainted
as clot | linear | ı | | | | | | | • | 7 | .95 | .89 | .89 | .99 | .99 | .99 | .99 | - | CT | 132 | OCMT | 17,18 | | | | | | 7" unp
glass | ainte
cloth | d lines:
beard | r desig | ın , | | | | | | | - | 7 | .95 | .99 | .99 | .99 | .99 | .99 | .99 | - | CT | 132 | OCWT | 17,18 | | | | | | with 1 | l" սո ր | insulat:
#inted
ss clot) | linoar | | | | | | | | • | 7 | , 95 | . 95 | .99 | .99 | .99 | .99 | .99 | • | CT | 1.32 | OCWT | 3,17 | | | | | | with I | " nub
board | inaulat:
by desig | n, gla | 88 | | | | | | | - | 7 | . 95 | , 95 | .99 | ,99 | .99 | .99 | . 94 | - | CT | 132 | OCWT | 3,17 | ### FOOTNOTES FOR TABLE 20A, 20B, 20C, 20D, 20E WALL TREATMENTS AND FACINGS - 1. Temperature range to 120°F. Normal wood resistance. - 2. Temperature range to 150°F. Flame aprend 20. Poor resistance to chemicals. - Owons-corning walt treatment: fiberglas sound absorbent insulation. Temperature not to exceed 250°F. Series 700 core; plain, faced, and clear or black coated insulation 700, 701, 702, flexible; 703, semirigid; 704, 705, rigid. - 4. Absorption values would be unchanged for open facing such as wire mesh, matal lath, or light fabric. - 5. Temperature range to 1050°F. Flame spread not greater than 25. Typical applications include ducts, ovens, boiler walls, etc. - Interior use, flame spread class B. Perforated vicroten vinyl wall facing, rigid glass fiber core. Used for decorative sound absorbent wall panels. - 7. Inland-Ryerson type B wall panel insulation. - 8. Perforated metal facing, 24 ga, 3/32" holes, 13 percent open area. - 9. -40°F to 400°F temperature range. Flame aprend 15. - 10. Facing of perforated masonite, 3/16" diameter holes, spaced 1/2" on center. - 11. Temperature range to 600°F. Flame spread 15 UL723. - 12. C series same as H series, but has added connection system to be clamped together at joints. - 13. Inert, corrosion resistant, noncombustible, vermin-proof. - 14. Temperature range to 350°F. Facings have varying percent of open area. - 15. Temperature range to 450°F. - 16. Flame spread 10-20. - 17. Tested and evaluated according to ASTM C423-66. - 18. Not to be used over 250°F. - 19. Tested and evaluated according to ASTM 423-60T. - 20. Ascerisk indicates weight in 1bs/ft2. # TABLE 21 CEILINGS Ceiling tiles, panels, etc., and their sound absorption coefficients are listed. Ceilings provide an important sound absorption surface in a room. A variety of products are available for utilizing this ceiling surface to the best advantage. There are sound absorbing tiles or panels which have good appearance and other important features such as good light reflectance, structural integrity, and minimum fire hazard. A tremendous variety of products are available to fulfill these functions and therefore the table is subdivided into 10 parts: - 21A Textured, finely perforated or smooth mineral fiber tiles - 21B Perforated mineral fiber tiles - 21C Fissured mineral fiber tiles - 21D Cellulose fiber lay-in panels - 21E Mineral fiber lay-in panels - 21F Perforated metal panels with mineral fiber pads - 21G Perforated asbestos cement board panels with mineral fiber pads - 21H Ceiling systems - 21I Special acoustical panels and units - 21J Ceiling boards The content of each subdivision is self-explanatory. The ceiling components are available in the forms of tiles, panels, boards, perforated metal lay-in panels, fiber pads, etc., and the complete ceiling systems are also available. Figure 21 shows four commonly used ceiling tile patterns using holes or fissures to increase sound absorption. The companies (by numbers shown in Section II) with products listed in Table 21 are: 15, 29, 53, 100, 109, 128, 132, 146. #### CAUTION - 1. ABSORPTION COEFFICIENTS MAY EXCEED 1.0. FOR A COMPLETE DISCUSSION OF THESE VALUES SEE SECTION I-3.1.2. - 2. THE NUMBERS LISTED UNDER THE "MOUNTING" COLUMN REFER TO THE AIMA STANDARD MOUNTINGS DESCRIBED IN SECTION I-3.1.3 AND ILLUSTRATED IN FIGURE I-11. Figure 21 Ceiling Tile Facing Patterns for
Increased Sound Absorbence #### GLOSSARY The outside surface of the specimen. In general the side facing the sound source $% \left(1\right) =\left\{ 1\right\} =\left$ Facing: The other outside surface of the specimen. In general the side not facing the sound source $% \left\{ 1,2,\ldots,n\right\}$ Backing: Core: The region between the facing and the backing TABLE 21* CEILINGS (Textured, finely perforated or smooth mineral fiber tile) | | 4 | | | Absor | ption (| Coeffic | ients | | | | | | | |-----------|-----------------------|----------|------|------------------|----------------------------|--------------------|------------------|---------|---------------------|------|-----|------------------|-------| | Mounting | Thickness
(inches) | Ų | 5 Hz | 0 Hz | 2H 0 | 1000 Hz | 00 Hz | ZH 0007 | Density | | | | Foot- | | <u> 2</u> | EZ | E | 125 | 250 | 200 | _ 2 | 2000 | - 5 | .lb/ft ³ | Lab. | Co. | Product | note | | | | | | Availa
Felted | ble si
miner | ze 12"
al fibe | x 12"
er core | | | | | | | | 7 | 5/8 | .55 | .32 | .39 | .60 | .60 | .53 | ,41 | - | RAL | 109 | Tenutone Concord | | | | | | | Freace
Availa | or patt
ble si | ern fac
lze 12" | 1ng.
× 12" | | | | | | | | 7 | 5/8 | .55 | .56 | .60 | . 52 | .57 | .47 | . 32 | - | RAL | 132 | Acoustical Tile | 1,27 | | | | | | | | | , x 24", | .55 | | RAL. | 109 | Spintone Concord | | | 7 | 5/8 | .00 | .27 | .29 | .70 | .82 | .67 | | • | TALL | 109 | Spincone Concurs | | | | | | | Textur
Availa | ed fac | ing.
ze 12" | | | | | | | | | 7 | 5/8 | .70 | 79 | .66 | .64 | .60 | .71 | .58 | - | RAL | 132 | Acoustical Tile | 1,27 | | | | | | Availa
12" x | r faci
ble al
24", 2 | ze 12"
4" x 24 | ĭ 12", | | | | | | | | 7 | 3/4 | .65 | .58 | .65 | .59 | - 68 | .61 | .42 | - | RAL | 132 | Acoustical Tilm | 1,27 | | | | | | | | m faced
zes 12º | i.
" × 12", | | | | | | | | 7 | 3/4 | .75 | .93 | .71 | .72 | .80 | .70 | .51 | - | - | 132 | Acoustical Tile | 2,27 | ### TABLE 21B CEILINGS (Perforated mineral fiber tile) | | 2_ | | | Absorp | tion | Coeffic | ients | | | | | | | |----------|-----------------------|------|-------|-----------------------------|----------------|--------------------------------------|------------------|------|-------------------------------|---------------|-----|---------------------------------|---------------| | r in | 9.8 | | 휥 | Hz | # | Ή | # | HZ | | | | | | | Mounting | Thickness
(inches) | NRC | 125 1 | 250 1 | 500 | 1000 | 2000 | 4000 | Density
lb/ft ³ | y
Lab, | Co, | Product | Foot-
note | | | | | | | | | x 12" | | | | | | | | 1 | 5/8 | . 65 | .20 | .35 | .68 | .71 | .60 | .78 | - | RAL | 109 | Tenutone
(random drilled) | 2 | | | | | | Avail: | ble s | ize 12" | x 12" | | | | | | | | 1 | 5/8 | .70 | .09 | Felted | i mine:
.78 | ral fil
.99 | er core | .57 | | RAL | 109 | Tenutone | 2,3 | | ٠ | 5,5 | *** | ,, | •-• | | | | | | **** | | 2211444114 | -,- | | | | | | | | | x 12"
er core | | | | | | | | 1 | 5/8 | .70 | .18 | .28 | .68 | .95 | .84 | .66 | - | RAL | 109 | Tenutone | 2 ,4 | | | | | | | | vario
ige pat | | | | | | | | | 7 | 5/8 | .55 | .31 | .33 | .58 | .75 | .62 | .47 | - | RAL | 109 | Acousti-Clad
Tila (Firedika) | 2,5 | | | | | | Availa | ble si | ed fac
ze 12"
availa
icknes | × 12". | | | | | | | | 7 | 5/8 | ,60 | .69 | .59 | .62 | 64 | .54 | .32 | - | RAL | 132 | Acoustical Tile | 1,27 | | | | | | Availa | ble in | vario | us | | | | | | | | , | 5/8 | .60 | .32 | | | go pat
,81 | | .55 | _ | RAL | 109 | Acousti-Clad Tile | 2 6 | | ′ | 3/0 | .00 | .32 | .32 | ,,,, | , 01 | • * * * | ,55 | • | RAL, | 109 | diagonal perforated | 2,3 | | | | | | Perfor
over m | ated cineral | metal f
fiber
8" | tile | | | RAL | | Lay-in | | | 7 | 5/8 | .60 | .21 | .32 | .57 | .75 | .72 | .61 | - | A70-80 | 53 | Don Acoustic | 6 | | | | | | | | vario
ge pat | | | | | | Annual alad | | | 7 | 5/8 | .65 | .36 | .39 | .57 | .83 | .71 | .54 | - | RAL | 109 | Acousti-clad
S "Tile" | 2,5 | | | | | | | oral f | etal f | | | | | | | | | 7 | 5/8 | . 65 | .26 | .37 | .58 | .81 | ,78 | .66 | - | RAL
A70~84 | 53 | Lay-in
Donn Acoustic | 6 | | | | | | Tenuto | ne Fir | edika j | Tile.
" x 24" | | | | | | | | 7 | 5/8 | . 65 | .42 | pierce | d patt
.57 | ern 24
.83 | " × 24"
,78 | .62 | _ | RAL | 109 | Tenutone
Firediko Tile | 2 | | • | | * | | Availa | | | | | | | | | | | | | | | Felred | miner | al fib | er core | | | | | _ | | | 7. | 5/8 | . 70 | .52 | .43 | .66 | .95 | ,82 | .74 | - | RAL | 109 | Tenutone | 2,3 | | | | | | Tenutor
unifor
felted | n dril | led, 24 | 4" x 24" | ١, | | | | | | | 7 | 5/8 | .70 | .26 | .36 | .54 | ,92 | ,9B | . 79 | - | RAL | 109 | Tenutone Firedike | 2 | #### TABLE 21B CEILINGS (Concl) (Perforated mineral fiber tile) | | * | | | Absc | rption | Coeff | icients | | | | | | | |----------|----------------------|------|--------|----------------|---|---------------------------------------|--|----------|------------------|------|-----|-------------------|---------------| | Mounting | Thicknes
(inches) | HRC. | 125 Hz | 250 Hz | 500 Hz | 1000 112 | 2000 Hz | Z11 0007 | Density
lb/ft | | Co, | Product | Foot-
note | | | | | | | | | " × 12"
ber core | , | | | | | | | 7 | 5/8 | .75 | .44 | .50 | .65 | .90 | .92 | .67 | • | RAL | 109 | Tenutone | 2 ,4 | | | | | | Avail
Felto | able s
d mine | ral fil | " x 12"
ber core | | | | | | | | 7 | 5/8 | . 75 | ,58 | .50 | ,67 | , 92 | .91 | .72 | • | RAL | 109 | Tenutono | 2,7 | | | | | | Bizes | m perfe
able s:
12" at
avail:
ness. | prated
ize 12'
nd 12"
able w | facing,
" x 12",
x 24"
 th 3/4" | | | | | Acquetical Tile - | | | 7 | 5/8 | . 80 | .76 | .78 | .74 | . 94 | .78 | .47 | - | - | 132 | random perforated | 1,27 | | | | | | Avail
sizes | able is | n vario | ous
Cterns | • | | | | Acoust1-Clad | | | 7 | 7/8 | .50 | .42 | .38 | .45 | .56 | .65 | .52 | • | RAL. | 109 | P "Tile" | 2,5 | ## TABLE 21C CEILINGS (Fissured mineral fiber cila) | | . <u>.</u> | | | oadA | rption C | oeffici | lents | | | | | | | |----------|-----------------------|-----|--------|------------------------------------|---|------------------------------|----------------------|---------|--------|------|-----|--|---------------| | Mounting | Thickness
(inches) | NRC | 125 Hz | 250 Hz | 500 Hz | 1000 Hz | ZOCO HZ | ZH 0007 | ensity | Lab. | Co. | | Foot-
note | | | | | | Falter | minera
ble siz
24", 12 | 1 fibor | cora. | | · | | | | | | 1 | 3/4 | .65 | .05 | . 17 | .66 | .99 | . 95 | .90 | • | - | 109 | Tempertone 360 | 2 | | | | | | Nondit | i minera
rectiona
fiasure
1/4" | l rando | on. | | | | | | | | 7 | 5/8 | .60 | .27 | .30 | .54 | .74 | .79 | .77 | - | RAL | 109 | Quadrette | 2 | | • | | | | Felted
Availa
24" x
x 60" | l minera
ble size
36", 24 | 1 fiber
38 24"
" x 48" | 24"
24"
24" | | | | | | | | 7 | 5/8 | .60 | .30 | .27 | .67 | . 82 | .73 | .63 | - | RAL | 109 | Spintone DCF | 2,8 | | | | | | Availa | ble size | 3 12" x | 12" | | | | | Tempertone 360 - | | | 7 | 5/8 | .65 | .40 | .38 | .56 | .81 | .88 | .92 | - | RAL | 109 | Firedike Tile | 2 | | • | | | | Falted
Availa
24" x
× 60" | mineral
ble dize
36", 24' | fiber
 24"
 x 48", | core.
24",
24" | | | | | Spintone atandard | | | 7 | 5/8 | .65 | .29 | .29 | .49 | .81 | . 93 | .72 | - | RAL | 109 | finaured | 2 | | | | | | Felted
Availa
24" x
× 60 | mineral
ble size
36", 24" | fiber
5 24" >
x 48", | core.
24",
24" | | | | | | | | 7 | 5/8 | .65 | .26 | .33 | .57 | .83 | .84 | .79 | - | RAL | 109 | Spincone 360 | 2,9 | | | | | | Faltod
Availa
24" x
x 60" | mineral
bla siza
36", 24" | fiber
s 24" x
x 48", | 24",
24", | | | | | | | | 7 | 5/8 | .65 | . 27 | .28 | .65 | .83 | .77 | . 85 | - | RAL | 109 | Spintone 720 | 2,10 | | | | | | Felted | ble size
pineral | fiber | core | | | | | Tenutone Omni -
small non-direction | | | 7 | 5/8 | .65 | . 32 | .35 | .54 | .83 | .85 | .83 | • | RAL | 109 | al fisaures | 2 | | | | | | Availa: | ed facin | ~12" x | | | | | | | | | 7 | 5/B | .80 | .71 | . 87 | .66 | ,85 | .82 | .58 | • | - | 132 | Acoustical Tile | 1,27 | | | | | | Fine fi | ble size
issured
l fibers
itious b | core of
blende
inders | : | | | | | | | | 7 | 3/4 | .55 | . 33 | .41 | ,45 | .59 | ,59 | .81 | - | - | 128 | Travacoustic C Tile | 1,11 | # TABLE 21C CEILINGS (Contd) (Fissured mineral fiber tile) | | | | | Absor | ption Co | effici | ente | | | | | | | |----------|-----------------------|-----------|------|---------------------------------------|---|-----------------------------|----------------------|------|------------------------------|------|------|---|-------------| | Mounting | Thickness
(inches) | | Hz | 报 | # | 2H 0 | O Hz | 뷮 | ensity | | | | Foot- | | , ž | 픈플 | NRC | 125 | 250 | 500 | 1000 | 2000 | 7007 | enaity
lb/ft ³ | Ļab. | _Co. | Product | note | | | | | | Availa | le size | 12" × | 12" | | | | | Fire Shield | | | 7 | 3/4 | . 65 | .36 | .51 | .52 | .71 | .83 | .88 | • | - | 128 | Travacoustic C Tile | 1,11 | | | | | | Cora o
blender
bindar
tila | ble size
f minera
d with c | il fibe
ementi
se fis | rs
tious
sured | | | | | Travaçoustic C Tilas | | | 7 | 3/4 | ,65 | .41 | .50 | .52 | .69 | . 85 | . 94 | - | RAL | 128 | (cumulus pattern) | 1,11 | | | | | | Frago
Availat
12" x 2
sizes. | r style
bla in 1
24", 24' | facing
2" x 1
x 24" | żн, | | | | | | | | 7 | 3/4 | .65 | .58 | .65 | .59 | .68 | .61 | .42 | - | - | 132 | Acoustical Tile | 1,27 | | | | | | Availat
Falted | olo sizo
mineral | 12"
x
fiber | 12". | | | | | Tempertone DCF -
small directional | | | 7 | 3/4 | .65 | .32 | .39 | .74 | .74 | .78 | .91 | • | RAL | 109 | controlled fissures | 1 | | | | | | | le size
minoral | | | | | | | | | | 7 | 3/4 | .65 | .42 | .42 | .70 | .91 | .86 | .97 | - | RAL | 109 | Tempertone 360 | 1,12 | | | | | | Felted
Availab | mineral
le size | fiber
12" x | core.
24" | | | | | Permacouaçio Firedik
Tile - standaro | a | | 7 | 3/4 | .65 | 44 | .44 | .56 | .78 | .89 | .85 | • | RAL | 109 | fissured | 1 | | | | | | Nondire | mineral
ectional
actorn
x 23-3 | . rando | cors. | | | | | | | | 7 | 3/4 | .65 | . 29 | .33 | .59 | •77 | .81 | .80 | - | RAL | 109 | Quadrette | | | | | | | AvaiJab | la size | 12" + | 12" | | | | | | | | 7 | 3/4 | .70 | .44 | .41 | .65 | ,83 | .85 | .91 | - | G&H | 128 | Travacoustic C Tiles fissured ATN pattern | 11,17 | | | | | | | fibera
cementi | | ıd | | | | | Transcourses C #11a- | 1 11 | | 7 | 3/4 | .70 | .43 | ,39 | .63 | .88 | .89 | .96 | • | G&H | 128 | Travacoustic C Tiles cumulus - ATN | 17*** | | | | | | Pri naussa | d acous | | | | | | | | | | 7 | 3/4 | .70 | .50 | .54 | .55 | .77 | .89 | .88 | - | CSH | 128 | Travacoustic C Tiles
fissured pattern | 1,11, | | | | .65
to | | acousti
12" uni
non dire | mineral
c tiles
formly d
ctional | 12" x
Hapers
flast | res | | | | | | 2,13,
24 | | 7 | 3/4 | .75 | .40 | .42 | .74 | .83 | .B2 | .96 | - | - | 109 | Tempertone 720 | 24 | # TABLE 21C CEILINGS (Concl) (Fissured mineral fiber tile) | | | м _ | | | Abso | rption | Conffic | ients | | | | | | | |---|----------|-----------------------|-----|--------|------------------------------|-----------------------------|------------------|--------------|---------|------------------------------|------|-----|-------------------|---------------------| | _ | Mounting | Thickness
(inches) | NRC | 125 Hz | 250 Hz | 500 Hz | 1000 Hz | 2000 Hz | 7H 0007 | ensity
lb/fc ³ | Lab, | Co. | Product | Poot-
note | | | | | .70 | - | acquat
24 fi
rough | minera
ic tile
saured | s 12"
extra | x | | | | 109 | Permacoustic | 2,13,
24 | | | 7 | 3/4 | .80 | . 55 | .61 | .57 | .81 | .98 | .95 | - | - | ţuş | extra rough | 24 | | | | | .70 | | Cast m
x 24 | inerel
etander | fibers
d fiss | 12"
ured | | | | | Permacoustic - | 2 12 | | | 7 | 3/4 | .80 | .53 | . 62 | .60 | .83 | .95 | .98 | • | • | 109 | standard fissured | $\frac{2}{24}^{13}$ | | | | | | | Fissure
able is
and 12 | ed faci
n sizes
x 24" | ng. A | /ail-
12" | | | | | | | | | 7 | 3/4 | .85 | .66 | .88 | .70 | .90 | .87 | .64 | - | - | 132 | Acoustical Tile | 1,27 | ### TABLE 21D CEILINGS (Cellulose fiber lay-in panels) | | | | | Absor | ption C | oeffic: | ients | | | | | | | |----------|----------------------|-----|--------|-----------------------------|------------------------|-------------------|---------|---------|--------------------------|----------|-----|-----------------------|--------| | Hounting | Thicknes
(inches) | NRC | 125 Hz | 250 Hz | 500 Hz | 1000 Hz | 2000 Rz | 7H Deni | aicy
/fc ³ | Lab. | Co. | Product | Foot- | | | | | | Textur
fibers
binder | ed pane
and in
s | ls wit | h wood | | | <u>-</u> | | | 1,11, | | 7 | 1 | .40 | .37 | .41 | .26 | .37 | .48 | .67 | - | CPH | 128 | Tectum Ceiling Panels | 17 | | | | | | | ed pane
and in | | | | | | | • | 1,11, | | 7 | 1-1/2 | .45 | .40 | .41 | .28 | .45 | .66 | .76 | - | Céll | 128 | Tectum Ceiling Panels | | | | | | | Texture
fibers
binder | ed pane
and in | la wid
organic | n wood | | | | | | 1.11 | | 7 | 2 | .50 | .43 | .46 | .34 | .53 | .70 | .77 | - | G&H | 128 | Tectum Cailing Panels | i) ''' | ## TABLE 21E CRILINGS (Mineral fiber lay-in panels) | | | | | | Absor | ption C | oeffici | ents | | | | | | | |---|----------|-----------------------|------------------|-----|-------------------------------------|---|-----------------------------|-------------------------|-----------|------------------|---------|-----|---|-------------| | | Mornting | Thickness
(inches) | •• | ¥ | 7.11 | - Hz | O Hz | ## 0 | £
Qner | ai tu | | | | Foot- | | | ž | ಕತ | Ĕ | 125 | 250 | 20 | 1000 | 2000 | S Der | /ft ³ | Lab. | Co. | Product | noca | | | | | | | Unpaint | od Line | ar pot | arn | | | | | Nikaaalaa Assassissi | | | | 2 | 1 | .80 | .13 | .87 | ,85 | .99 | .99 | .97 | - | - | 132 | Fibergian Acoustical
Ceiling Board | 27 | | | | | | | Linear | patter
faced | n glasi | | | | | | Fiberglas Acoustical | | | | 4 | 1 | .70 | .07 | .24 | .66 | . 95 | .99 | .95 | - | - | 132 | Ceiling Board | 27 | | | | | | | Nubby
cloth | pattern
faced | glasa | | | | | | Fibergles Acoustical | | | | 4 | 1 | .70 | .06 | .25 | .68 | .97 | .99 | .92 | - | - | 132 | Ceiling Board | 27 | | | | | | | Unpair
glass | ted Lin | ear pat | tern | | | | | Fiberglas Acoustical | | | | 4 | 1 | .70 | .08 | .24 | .68 | .91 | .96 | .94 | • | - | 132 | Cailing Board | 27 | | | | | | | | ed patt
faced p | | 16 8 | | | | | Fibergles Acoustical | | | | 4 | 1 | .75 | -10 | .27 | .75 | .99 | .99 | .84 | • | • | 132 | Ceiling Board | 27 | | | 4 | 1-1/2 | .90 | .37 | 0.024"
stucco
on Fib
50" x | alumin
emboss
erglas
12 | um, whi
ed, lai
pads. | te
d
.92 | .93 | | | 15 | Alpro Noise
Control Panels | | | | 4 | 1-1/2 | .90 | | or par | l lay-i
hals of
and le | varying | La
3 | | | RAL | 15 | Alpro Cailing
and Wall Panels | 14,15 | | | 7 | 1/8 | .50
to
.60 | .53 | Avail | 24" x 2
or 46" x
able wit
r, or Fi | ch Aant | Ε. | .69 | - | | 109 | Sculptured Fiberglas
Acoustishell (Flat)
Panels | 24 | | | | • | .70 | | with ! | essed gl
24" x 24
Reveal E
rn faci | age or | ers.
silable
Flat | | | | | Sculptured Fibergias | | | | 7 | 1/8 | .80 | .66 | .84 | .65 | .76 | .79 | .78 | - | - | 109 | Profile Panels | 24 | | | , | 5/8 | .45
to
.55 | .18 | Minera
panel, | l fiber
smooth | lay-ir
surfec | .40 | .26 | | • | 109 | Particle-Gard
LPC Firedike | 2,24 | | | 7 | 3/0 | . 22 | 110 | ,,,, | ••• | , | • | | | | | | • | | • | 7 | 5/B | .45 | ,18 | Minora
panal,
.33 | 1 fiber
emooth
.62 | lay-in
surfac | .44 | .26 | - | - | 109 | Particle-Gard
LPC Firedike | | # TABLE 21E CEILINGS (Contd) Odineral fiber lay-in panels) | | . s | _ | | Abao | rption | Coeffi | cients | | | | | | | |---|-----------|------|------|---|--------|----------------------------------|--------|------|--------------------------|-------|-----|-------------------------------|---------------| | Ę | Ş | , | Hz | 뷡 | H | Ä | H X | # | | | | | | | | Thickness | , j | | 250 1 | 200 1 | 1000 | 2000 | 7000 | Density
<u>l</u> b/ft | Lab. | Co | . Product | Foot-
note | | | | | | | , text | r lay-1
ured mi | | | | | | | 1 11 | | 7 | 5/8 | ,50 | .30 | .34 | •53 | .64 | .52 | .38 | • | CEIL | 128 | Solitude Panals | 1,11,
17 | | | | | | panols | , text | r lay-i
ured mid
, fire- | | | | | | Si vachial d | 1 11 | | 7 | 5/8 | ,50 | ,29 | .36 | .59 | .56 | .45 | . 37 | - | GSH | 128 | Fireshield
Solitude Panels | 1,11, | | | | | | ponela | , vent | r lay-i
ilating
pattern | | | | | | Fireshield | 1 11 | | 7 | 5/8 | .55 | .40 | ,36 | .59 | . 72 | .55 | .31 | - | G&II | 128 | Solitude Panels | 1,11, | | | | | | panels
naedle | vent | | | | | | | | 1,11,
17 | | 7 | 5/8 | .55 | .50 | .40 | .60 | . 74 | .55 | .37 | - | CG:11 | 128 | Solitude Panels | 17 | | 7 | 6.40 | | 20 | panela,
perf. | MR Fir | r lay-in
ared mic
reshield | ro- | 20 | | ar. | | MR Fireshield | 1,11, | | • | 5/8 | . 55 | .28 | .32 | .61 | . 75 | .52 | .39 | - | C&H | 128 | Solitude Panels | 16,17 | | | • | | | Mineral
panela,
pattern | fiast | lay-ir
irod | 1 | | | | | | 1.11. | | 7 | 5/8 | ,60 | .29 | .32 | -59 | .76 | .73 | .70 | · - | G&H | 128 | Solitude Panels | 1711, | | | | | | Mineral
panels,
fissure | venti | lating, | | | | | | Fire Shield | 1.11. | | 7 | 5/8 | .60 | . 54 | .43 | .60 | .79 | .69 | , 50 | - | G&H | 128 | Solitude Panels | 1,11, | | | | | | Mineral
panels,
fissure | venti. | lating. | | | | | | | 1.11. | | 7 | 5/8 | .60 | .39 | .43 | .59 | .77 | .63 | .49 | • | CEH | 128 | Solitude Panels | 1,11, | | | | | | Mineral
panels,
pattern
shield | needle | perf | | | | | | MR Fireshiald | 1.11. | | 7 | 5/8 | .60 | , 2B | .33 | .51 | .79 | .75 | .57 | - | G&H | 128 | Solitude Panels | 1,11, | | | | | | Mineral
panels,
pattern. | fissu | ad | | | | | | MR Shield | 1.11. | | 7 | 5/8 | .60 | .28 | .32 | .56 | .76 | .66 | .61 | • | Céli | 128 | Solitude Panels | 1,11, | TABLE 21E CEILINGS (Contd) (Mineral fiber lay-in panels) | 80 | 82 | | | Absor | ption | Coeffic | lents | | | | | | | |-----------|-----------------------|-----------|-------|--|--------------------|----------------------------------|-------|--------------|--------------------|------|-----|---------------------------------------|------------------| | Founting | Thickness
(Inches) | | 21. | 22 | Hz | 142 | H2 | - | | | | | | | Ę | 51 | 3,4 | 125 3 | 250 3 | 500 1 | 7,000 | 2,000 | _ | ensity | | | | Foot- | | <u> 2</u> | HO | S | - 13 | | й | | _8_ | 07 | lb/rt ³ | Lab. | Co. | Product | note | | | | | | panela | , fiss | r lay-i:
urod, po
directio | 95- | | | | | | | | 7 | 5/8 | .60 | .27 | ,30 | .69 | .81 | .70 | .66 | - | G&H | 125 | Solitude Panels | 1,11, | | | | .60 | | | l fibe | r lay-in | 1 | | | | | | | | 7 | 5/8 | .70 | .28 | .28 | .52 | .87 | .83 | .58 | | _ | 109 | Spintone -
pierced pattern | 2,24 | | | | .60
to | | | | r lay-ir
ured Fir | | | | | | | | | 7 | 5/8 | .70 | . 25 | ,26 | ,52 | .91 | .87 | .78 | - | - | 109 | Firedike -
fissured panels | 2,24 | |
 | | | pone la | , fissi
sted Fi | : lay-in
urod and
ireshiel | | | | | | Fireshield | ŕ | | 7 | 5/8 | .65 | .30 | .34 | .50 | . 84 | .91 | .88 | - | G&H | 128 | Solitude Panels | 1,11, | | 7 | 5/8 | .60
to | .33 | Mineral
panels,
dike
.35 | l fiber
, pierc | lay-in
od Fire | • | | | | 100 | Firedike | | | ' | 3/6 | ./0 | | | .34 | ,90 | .81 | .57 | • | - | 109 | Pierced Panels | 2,24 | | | | | | forated | needl
patte | rn' | | | | | | | 1,11, | | 7 | 5/8 | .65 | . 34 | .38 | .65 | . 90 | .63 | . 55 | - | G&H | 128 | Solitude Panels | 17 | | | | | | Mineral
panels,
shield | fiasu
patter | red Fire
n | | | | | | Fire Shield | 1,11, | | 7 | 5/8 | .70 | .58 | .46 | .59 | . 85 | .87 | . 84 | - | CAH | 128 | Solitude Panels | 17 | | | | | | Mineral
panels,
forated
Fireshi | needle
patte: | per- | | | | | | Pinachia | 1 11 | | 7 | 5/8 | .70 | . 34 | .36 | .71 | .95 | .74 | .65 | - | G&H | 128 | Fireshield
Solitudo Panels | 1,11, | | | | | | | | | | | | | | • | | | 7 | 5/8 | .80 | . 85 | Pin per | .64 | .84 | .90 | .89 | - | - | 132 | Fiberglas Acoustical
Ceiling Board | 17, 18
27, 28 | | | | | | Fissure | d vinyl | l facing | | | | | | Fiberglas Acquatical | 17.18. | | 7 | 5/8 | .85 | .61 | .88 | .69 | ,90 | .96 | .82 | - | - | 132 | Ceiling Board | 27,28 | | _ | 5.10 | | | Frescor | | • | | | | | | Fiberglas Acoustical | 17,18,
27,28 | | 7 | 5/8 | .85 | .67 | . 39 | .68 | .88 | .98 | .81 | - | • | 132 | Ceiling Board | 27,28 | # TABLE 21E CEILINGS (Contd) (Hinoral fiber lay-in panels) | | 65 | | | qroadA | tion Co | effici | enca | | _ | | | | | |----------|-----------------------|-----|------|---------------------------|-------------------------------|-------------------|------------|---------|-------------------|------|-----|---------------------------------------|-------------------| | Mounting | Thickness
(inches) | ı, | 2 HZ |) Hz | 211 0 | DAO RZ | 000 Hz | ZH 0067 | . | _ | | | | | ž. | £೮
 | NRC | 125 | 250 | \$00 | _ <u>\$</u> | | 67 | Density
1b/ft3 | Lab. | Ca. | Product | Foot-
note | | | | | | Fresc | ar viny | l faci | ng . | | | | | Fiberglas Acoustical
Ceiling Board | 17 18 | | 7 | 5/8 | •85 | .60 | .85 | .68 | .88 | .92 | .79 | • | - | 132 | Ceiling Board | 27,28 | | | | | | | orforate | | _ | | | | | Fiberglas Acoustical | 17,18, | | 7 | 5/8 | .85 | ,63 | .87 | .68 | -88 | .98 | .80 | - | - | 132 | Ceiling Board | 27,28 | | | | | | Textu | red faci | ng | | | | | | Fiberglas Acquarical | 17.18. | | 7 | 5/8 | .85 | .63 | .90 | .68 | .90 | ,96 | .91 | • | - | 132 | Fiberglas Acoustical
Cailing Board | 27,28 | | | | | | Vinyl,
24" x
std. (| Fissur
24" x 5 | /6* | | | | | | | | | 7 | 5/8 | .85 | .62 | .66 | .70 | .90 | .94 | .80 | • | - | 132 | Fiberglas Acquatical
Ceiling Board | 17, 18,
27, 28 | | | | | | Vinvl. | , Textur | ad | | | | | | | | | 7 | 5/8 | .85 | .65 | .88 | •72 | .86 | .93 | .98 | - | - | 132 | Fiberglas Acoustical
Ceiling Board | 27,28 | | | | | | Film f | aced So | no- | | | | | | | | | 7 | 3/4 | .30 | .36 | board, | unperfo | orated
.26 | .46 | .33 | _ | _ | 132 | Fiberglas Acoustical
Cailing Board | 17,18
27 | | ′ | 3/4 | .10 | 140 | *34 | ••• | .20 | . 40 | | - | • | 112 | CELLING DOWLD | -, | | | | | | Fisaur
panels | ed ATN | pattor | n | | | | | Travacoustic C - | 1 11 | | 7 | 3/4 | .70 | .28 | .32 | .66 | .89 | .91 | .97 | - | Cell | 128 | Tonico Panels | 1,11, | | | | | | with a | sl fiber
cement
; fissu | lika | dod | | | | | Travacoustic C - | 1 11 | | 7 | 3/4 | .70 | .46 | .59 | .54 | .76 | .92 | .93 | - | C&H | 128 | Tonico Panela | 1,11, | | | | | | with a | l fiber
cement | lika | | | | | | | | | 7 | 3/4 | .70 | .28 | .30 | ,64 | .91 | .90 | -89 | • | CEH | 128 | Travacoustic C -
Tonico Panels | 1,11, | | | | | | Fissur
48" x | ed faci | ng. Si | iza | | | | | | | | 7 | 1 | .85 | .49 | .79 | .75 | .97 | .98 | .76 | - | - | 132 | Fiberglas Acoustical
Cailing Board | 18,27 | | | | | | Textur | ed facts
8" x 48 |]g. | | | | | | | | | 7 | 1 | .85 | .72 | .70 | 8" × 48" | .98 | .94 | .64 | - | _ | 132 | Fiberglas Acoustical
Cailing Board | 18,27 | | | | | | | | c | | | | | | | | | | | | | Size 4 | r style
8" x 48' | TACINE | 5+ | | | | | Fiberglas Acoustical | | | 7 | 1 | .85 | .60 | .85 | .73 | .93 | .94 | .79 | • | - | 132 | Cailing Board | 18,27 | | | | | | Film f
perfor
x 48" | aced Sor
ated, at | oboard
Ize 48' | ļ , | | | | | Dibanalas Assessi | | | 7 | 1 | .85 | .69 | . 84 | .73 | .92 | .83 | .67 | - | - | 132 | Fiberglus Acoustical
Ceiling Board | 18,27 | ### TABLE 21E CEILINGS (Concl) Offineral fiber lay-in penels) | | ₩. | 83 | | | Absor | pt1on | Cooffi | cients | | | | | | | |---|----------|----------------------|-----|--------|-------------------------------|-------------------------------|--------------------|------------------|-------------|------------------------------|------|-----|---------------------------------------|---------------| | | Hounting | Thickner
(inches) | NRC | 125 Hz | zi 052 | 500 Hz | 1000 Hz | 2000 Hz | | onsity
lb/ft ³ | Lab. | Co. | Product | Poot-
note | | | | | | | Textur
cloth
48" x | facing | . Size | 36 | | | | | Ethornia travala | | | | 7 | 1 | .90 | .68 | .91 | . 75 | . 97 | .99 | .96 | - | • | 132 | Fiberglas Acoustical
Ceiling Board | 18,27 | | | | | | | Nubby
facing
and 48 | . Size | 16 48" | сloth
ж 48" | | | | | | | | ; | 7 | 1 | ,90 | .69 | •95 | .74 | .98 | .99 | .99 | - | - | 132 | Fiberglas Acoustical
Cailing Board | 18,27 | | | | | | | Linear
cloth
48" x | patte:
facing
48" and | rn gles
Sizo | 18
18
196" | | | | | Fiberglas Acquetical | | | | 7 | 1 | .90 | ,68 | ,93 | 75 | .98 | . 7.99 | .99 | • | - | 132 | Cailing Board | 18,27 | | | | | | | Pin-pe
Size 4 | rforate
8" x 4 | ed fact | ing. | | | | | W/ham-1 4 4 1 | | | • | 7 | 1 | .90 | .61 | .84 | .76 | .97 | .99 | .98 | • | - | 132 | Piberglas Acquetical
Ceiling Board | 18,27 | | | | | | | Unpain
glass
48 x | ted Lis
cloth 1
48" and | meer pe
facing. | ttern
Size | | | | | Fiberglas Acoustical | | | 7 | , | 1 | .90 | .69 | .94 | .75 | .98 | .99 | .9 9 | - | - | 132 | Ceiling Board | 18,27 | | | | | | | White :
aluminu
and fil | ım 0.02 | 4" thi | eđ
ck | | | | | Alpro Noise | | | 7 | 1- | 1/2 | .95 | .79 | .97 | .87 | 1.02 | 1.05 | .95 | - | - | 15 | Control Panels | | TABLE 21F CEILINGS (Parforated metal panels with mineral fiber pads) | | ~ #_ | | | Abso | rption (| Coeffic | ients | | | | | | | |--|-----------------------|-----|-----|-------------------------------------|---|--------------------------------|---------------------------|------|-------------------------------|-------|-----|------------------------------------|-------| | - | es) | | 71 | ä | ž. | 7.
1. | 215 | 13 | | | | | | | , de la companya l | Thickness
(inches) | MRC | | 250 1 | 500 | 1000 | 2000 | 4000 | Density
15/fc ³ | Lab. | Co. | Product | Foot- | | | | | | board | rated un
with pe
face pa | rforate | main-
d | | | | | David According | | | 7 | 5/8 | ,65 | .44 | .47 | .50 | .77 | .76 | .71 | 1.44 | RAL | 53 | Donn Acoustic
Cailing Panels | 19 | | | | | | | nield ac
panels | ouatic | | | | | • | | 1.11. | | 7 | 1-9/16 | .85 | .85 | .76 | .82 | .96 | -79 | .69 | • | G&H | 128 | Acousti-metal Panels | 1,11, | | | | | | | hield ac
, needl | | metal | | | | | Fireshield | 1.11. | | 7 | 1-9/16 | .85 | .91 | .79 | .88 | .99 | .79 | .60 | - | G&H | 128 | Fireshield
Acousti-metal Panels | 17 | | | | | | | nield ac | | | | | | | Fireshield | 1.11. | | 7 | 1-9/16 | .90 | .81 | .89 | .93 | .99 | .77 | .80 | • | CEH | 128 | Fireshield
Acousti-metal Panels | 17 | | | | | | | ic metal | | ٥, | | | | | | 1,11, | | 7 | 1-9/16 | .90 | .70 | .97 | .83 | .99 |
.91 | .70 | • | C&H | 128 | Acousti-metal panels | 17 | | | 1-0/16 | 00 | 70 | needle | ic metal | | s,
.82 | .60 | _ | G&H | 128 | Acousti-metal panels | 1,11, | | 7 | 1-9/16 | .90 | .73 | .93 | .81 | ,94 | .02 | .00 | • | UGITI | 140 | wonner-mear haners | | | | | | | Acoust
diagon | ic meta:
al 1740 | | | | | | 120 | Acoust1-metal panels | 1,11, | | 7 | 1-9/16 | .95 | ,66 | .95 | .03 | .99 | .99 | .89 | - | C611 | 128 | vconstr-morer benera | | | | | | | Acoust | ic mata:
al 1105 | | | | | | | Acousti-metal panels | 1,11, | | 7 | 1-9/16 | .95 | .67 | ,96 | .82 | .99 | .93 | .77 | • | G&H | 128 | vcoffer-up tor honora | •1 | | | | | | Acquat
diagon
gypsum | ic metal
al 1105
board | l panel
with l
backing | | | | | | | 1,11, | | 7 | 2-1/16 | .75 | .23 | .39 | .93 | .99 | .79 | .71 | - | G&H | 128 | Acousti-metal panels | 1/ | | | | | | Main t
(.015
perfor
insula | ees, par
ateel) ;
ated. 1
tion | ralina p
rigidiz
" fiber | panela
ed and
glass | | | | | | | | 7 | 2-1/4 | .75 | ,52 | .82 | .56 | .78 | .87 | .85 | 1.09 | RAL | 53 | Paraline Panels | 20 | | | | | | Main t
(,015
insula | oos, ps:
steel) 2
tion | " F160; | rg raaa | | | | | | | | 7 | 2-3/4 | .65 | .75 | .83 | .73 | .70 | .40 | .43 | 1,29 | RAL | 53 | Paraline Panels | 20 | | | | | | Main t
(.015
perfor | ees, par
ateel) r
ated | raline prigidiza | panela
od and | | | | | | _ | | 7 | 2-3/4 | .90 | .67 | . 94 | .76 | .94 | ,96 | .90 | 1.27 | RAL | 53 | Paraline panels | 20 | # TABLE 21G CEILINGS (Perforated asbestos coment board panels with mineral fiber pads) | | | * - | | | Abs | orption | Coeff | icients | | | | | | | |---|----------|-----------------------|------|------|---------------------------|--|-------------------------------|--------------------|------|---------|------|-----|-------------------|--------------------| | | Mounting | Thickness
(inches) | | # | 2 | # | 7.H | HZ | #¥ | • | | | | | | | ă | 7,0 | , SE | | 250 } | | 1000 | 2000 | 4000 | Density | | | | Foot- | | - | ž | p: | Ž | 1 2 | | 200 | 2 | 20 | - 2 | lb/ft3 | rap. | Ço, | Product | note | | | | | | | binde | tos fiber with a | sound | absorb- | | | | | Parforated | 1.11. | | ; | 5 | ı | .60 | .09 | .31 | . 56 | .93 | .68 | •23 | - | Cen | 128 | Asbestos Panels | 1,11, | | | | | .55 | | | tos ceme
n panoli | | | | | | | Perforated | | | | 5 1 | -3/16 | .65 | .09 | .31 | . 56 | ,93 | .68 | .23 | - | - | 128 | Transite Panels | 24 | | | | | | | binde
sorbe
pada. | tos fibe
r with a
nt miner
Randon | ound a | nb-
ber | | | | | | 1,11,
17 | | | 7 | 3/16 | .65 | .52 | .80 | .59 | .61 | .55 | -39 | • | C&H | 128 | Asbestibel Panels | 17 | | | | | | | bindo
sorbo
pada, | tos fibe
r with s
nt mines
Unifor | ound
of fil
m pat | ab-
bar
tern | | | | , | | 1,111, | | 7 | t | 3/16 | .75 | .94 | .89 | .66 | 172 | ,65 | .51 | • | C62(| 128 | Asbastibal Panels | 17 | | _ | | | | | binde
sorbe
pada, | tos fibe
r with a
nt miner
Random | ound a
al fil
pacte | ob-
orn | | | | | Parforated | 1, ¹¹ , | | 7 | | 1 | .60 | .60 | .69 | .49 | .64 | ,54 | -32 | • | C&H | 128 | Asbestos Panels | 17 | | | | | | | binde
sorbe
pads. | tos fibe
r with s
nt miner
Unifor | ound a
al fil
m pot | er
en | | | ar | 100 | Perforated | 1,11,
17 | | 7 | | 1 | .65 | .75 | .66 | . 67 | .75 | ,65 | .44 | • | Gáli | 128 | Asbestos Panels | 17 | | | | | | | binda:
sorba:
pada. | tos fibe
r with s
nt miner
Random | ound a
al fib
patte | ib=
ser
sen | | | | | Perforated | 1,11, | | 7 | 1. | -1/2 | .70 | .69 | .78 | .65 | .75 | .56 | .35 | • | Cen | 128 | Ashestos Panels | 14 | | | | | | | binde:
sorbe:
pads. | tos fibe
r with s
nt miner
Unifor | ound a
al fit
m patt | ib-
ier
iern | | | | | Perforated | 1,11,
17 | | 7 | | 2 | .80 | .93 | .61 | . 86 | .96 | .65 | •45 | • | G&II | 128 | Ashestos Panels | 17 | | | | | .75 | | lay-in | os cemer
panals | | | | | | | Per for a ted | | | 7 | 2= | 3/16 | .85 | .93 | .81 | .86 | .96 | .65 | .45 | • | - | 109 | Transite Panels | 24 | | | | | | | binder
sorben
pada. | os fiber
with so
t minera
Uniform | ound al
11 £160
1 patto | b-
er
ern | | | | | Perforated | 1,111, | | 8 | : | 2 | .75 | , 18 | .55 | ,98 | .98 | .58 | .44 | • | CEH | 128 | Asbestos Panels | 17 | ## TABLE 21H CEILINGS (Cailing systems) | | | | | Absor | ption (| Coeffic | ianta | | | | | | | |------------|-----------------------|-----|------|--|------------------------------------|--------------------|-----------------|------|--------|------|----------|--------------------|-------| | Mounting | . <u>9</u> .6 | | Æ | Hz | Hz | # | 2 | | | | | | | | 폌 | 25 | | | | | | | | ensity | | | | Foot- | | _ <u>£</u> | Thickness
(inches) | MRC | 125 | 250 | 200 | 1000 | 2000 | | 1b/ft3 | Lab. | Co. | Product | note | | | | | | acoust | lds alu
ical s
loy alu | ystems. | | | | | <u>-</u> | Reynolds | | | 7 | 1 | - | .41 | .59 | -63 | .65 | .74 | .71 | - | RAL | 146 | Acoustical Systems | 21 | | | | | | facins | patter
or Pa
cloth
48" an | inted L | inear | | | | | Mondrien | | | 7 | 1 | .90 | .69 | .95 | .74 | .98 | .99 | .99 | ٠. | - | 132 | Ceiling System | 2,27 | | | | | | acous t | lds alu
ical si
loy alui | ys toma. | | | | | | Reynolds | | | 7 | 1-1/2 | - | .59 | .75 | .74 | .80 | .81 | .80 | - | RAL | 146 | Acoustical Systems | 21 | | | | | | wool a | n with
nd with
both | ı a PVC | glass
cover- | | | | | | | | 7 | 1-3/4 | .65 | .49 | .72 | .65 | .79 | .37 | . 19 | - | RAL | 100 | Luxalon | 22 | | | | | | Luxalo
with 1
board | n alum
703 | inum ce
duct li | iling
ner | | | | | | | | 7 | 1-3/4 | .70 | . 72 | .82 | . 72 | .75 | .41 | , 29 | .65 | RAL | 100 | Luxsion | 22 | | | | | | acouat | ds alum
ical sy
oy alum | e cams | | | | | | Reynolds | | | 7 | 2 | • | .71 | .85 | .84 | .88 | .87 | .87 | - | RAL | 146 | Acoustical Systems | 21 | | | | | | minera | n alumi
1 wool
il blac | wrappoo | | | | | | | | | 7 | 2 | .70 | .65 | .84 | .76 | .73 | .37 | ,20 | .66 | RAL | 100 | Luxa 1on | 20,22 | | | | | | Euxalor
minoral
with 2
woven to one | oz bla
Fabric | insular
ek non- | ion | | • | | | | | | 7 | 2 | .70 | . 64 | .83 | .71 | .77 | ,40 | .33 | .66 | RAL | 100 | Luxa Ion | 20,22 | ## TABLE 211 CEILINGS (Special acoustical panels and units) | | | | | Abs | orption | Conffi | ients | | | | | | | |----------|---------------------|------------------|--------|-----------------------|--------------------|---------------------------|------------------|---------|--------|----|-----|----------------------|-------| | Mounting | Thickne
(inches) | NRC | 125 Hz | 250 Hz | 500 Hz | 1000 Hz | ZNOO HZ | ZH 0007 | Densit | | Co. | Product | Foot- | | 2 | 1-3/16 | .65 | . 22 | . 35 | .77 | . 94 | .60 | .41 | 1.7 | CT | 109 | Marine Acoustic Unit | 23 | | 7 | 1-3/16 | .70 | .67 | .72 | .64 | .75 | ,63 | .45 | 1.7 | CT | 109 | Marine Acoustic Unit | 23 | | 7 | 1~1/2 | .75
to
.85 | .69 | Embos
fiber
.87 | sad vin
glass l | yl-face
ay-in p
.91 | d
ene1
.68 | .49 | | _ | 109 | Spanacouatic Panels | 24 | (Ceiling boards) | | . =. | | | Abac | rption | Coeff1 | cients | | | | | | | |------------------|--------------------|------|-------|--------------|---------------------------------------|----------------------|----------|------------|--------------------|------------|------|--------------------------------------|------------| | 7
5
5
6 | Thickness (10ches) | | 22 | 75 | # # # # # # # # # # # # # # # # # # # | H | Ħ | 2 | • | | | | | | Ę | 1 2 2 | 25.0 | 125 1 | 50 3 | | 웃 | 2030 | 4000 | Density | , | | | Foot- | | <u>.</u> | <u> </u> | 里 | - 27 | 23 | - 6g | <u> </u> | 8_ | - 07 | lh/ft ³ | Lab. | Co. | Product | note | | | | | | Film | faced po | rigrat | ed Sono |) • | | | | | | | | | | | 24" x | . Sizes
48" 2 | | ,fi | | | | | Fiberglas Acoustica | | | 7 | 3/4 | .80 | . 94 | .75 | .78 | ,89 | .80 | .70 | - | - | 132 | Cailing Board | 18,27 | | | | | | _ | | 6 | .4 | | | | | | _ | | _ | | 0.5 | | | or patt
71, | .90 | .96 | .85 | _ | | 132 | Fiberglas Acoustics
Coiling Board | 18,27 | | 7 | 3/4 | .85 | .56 | .88 | ./1 | . 70 | .50 | .00 | | | | 442-146 | | | | | | | Fissu | red pat | tern f | eing | | | | | Fiberglas Acoustica | 1 | | 7 | 3/4 | .85 | .83 | .79 | .75 | .97 | .87 | .58 | - | - . | 132 | Cuiling Board | 18,27 | | • | | | | | | 1 | 1 | | | | | | | | | | | | facing | r patter
g. Sizer
48" | 24" x | 24" | , | | | | | | | _ | | | ne | 24" x
.84 | 48"
.79 | .91 | .93 | .87 | | | 132 | Fiberglas Acoustica
Ceiling Board | 18,27 | | 7 | 3/4 | .85 | .85 | , 64 | ./, | .,,, | .,, | , | | | | | | | | | | | Taxtu | red pat | tern E | ecing | | | | | Fiberglas Acoustica | 1 | | 7 | 3/4 | .85 | .76 | ,73 | .78 | .92 | .92 | .83 | - | - | 132 | Ceiling Board | 18,27 | | | | | | | | • | | | | | | | | | | | | | facin | patter
B. Sizo
48" | 1 24 ¹¹ 3 | 5 24" at | nd | | | | | | | _ | | | .89 | 24" x | .83 | .97 | .99 | .91 | | _ | 132 | Fiberglas Acoustica
Cuiling Board | 1
18,27 | | 7 | 3/4 | .90 | .09 | • | | | | .41 | - | • | 1,72 | Culting boats | 10,27 | | | | | | facin: | erforate
R | d patt | ern | | | | | | | | 7 | 3/4 | .90 | .68 | ,89 | .76 | ,93 | .99 | .97 | _ | - | 132 | Fiberglas Acquatica
Cailing Board | 1
18,27 | | | | | | | | | | | | | | | ,-, | | | | | | Textu | red pac | ern gl | 905 | | | | | | | | | | | | x 24 | facing | × 48 | 24 | | | | | Pilemales de la la | _ | | 7 | 3/4 | •95 | .76 | .93 | .83 | .99 | .99 | .94 | - | - | 132 | Fiberglas Acoustica
Cailing Board | 1 18,27 | | | | | | | | | | | | | | _ | | | | | .70 | | | ed viny
Las pan | | đ | | | | | | | | 7 | 3/4 | .80 |
.69 | .80 | .71 | .68 | .68 | .43 | _ | _ | 109 | Spans Coustic Panel | - 14 | | | | | | | | | | . 13 | | = | , | obsta constre tattat: | 5 24 | | | | | | Paral | ine mair | toes | and | | | | | | | | | | | | board. | nted 5/i | cel1 | rug | | | | | | | | 7 | 1-1/2 | .65 | .36 | .30 | .53 | .83 | .84 | . 82 | 1.24 | • | 53 | Paraline Grid System | | | | | | | | | | | | 0.1 | | | • | | | _ | | _ | | 1" ris | gid poly | etyron | | | to | | | | | | _ | - | - | | TOUIS ! | POREG | | | | 1.25 | - | 29 | Syrolic | 25,26 | ## FUNITNOTES FOR TABLE 21A, 21B, 21C, 21D, 21E, 21F, 21G, 21H, 21I, 21J CEILINGS - 1. Flame spread 20. - 2. Flame spread 25. - 3. Tenutone pierced, have a random mixture of large and small perforations. - 4. Tenutone uniform drilled, regular rows of 3/10" dismeter drilled holes on 1/2" centers. - 5. Used in health and medical facilities, food preparation areas and educational facilities. - 6. Used in suspended cailing installation. - 7. Tenutons Random Drilled random mixture of 3/10" and 1/4" diameter drilled holes. - 8. Spintone DCF with small directional controlled fissures and tiny perforations. - 9. Spintone 360 with random sized and spaced nondirectional fissures with tiny perforations. - 10. Spintone 720 with small uniformly dispersed nondirectional fissures. - Temperature range to 150°F, poor resistance to chemicals. Used in callings, roofs, partitions, apot acoustical treatment. - 12. Tempertone 360 with larger random sixed and spaced nondirectional fissures. - 13. General purpose tiles. - 14. Flame apread O. - 15. Test details available on request. - 16. MR Fireshield. - 17. Standard for testing: AIMA. - 18. Not recommended for high humidity, or more than 140°F temperature or concentrated chemical fumes. - 19. Scandard for testing ASTM C423-65T. - 20. Standard for testing ASTM C423-66. - 21. Noncombustible, moisture resistant. - 22. Temperature Range: "40° to 140°F, flame spread 5, class A, incombustible. - 23. Standard for testing ASTM C-423. - 24. Standard procedure for this manufacturer is to report NRC values as a range. - 25. Temperature range: -150°F to 190°F, relative humidity 0-100%. - 26. Flame aproad self-extinguishing, is attacked by chamical solvents. - 27. The sanufacturer uses the names or description of the facing pattern to identify his products. The terms Textured, Fissured, Frescor, Pin Perforated, Textured-film faced, Random Perforated, Nubby, Painted Linear, Unpainted Linear, Random Fissured, Stonebrook, Sonoflex, Sonobeard, etc. represent different facing styles. For further information about these facing styles contact the manufacturer. - 28. Stendard available sizes are $24^{\circ\prime\prime} \times 24^{\circ\prime\prime}$, $24^{\circ\prime\prime} \times 48^{\circ\prime\prime}$, and $24^{\circ\prime\prime} \times 60^{\circ\prime\prime}$. # TABLE 22 PARTITIONS (ABSORPTION) Sound absorption coefficients for the partitions used to divide a room either temporarily or semipermanently (demountable partitions made from panels and held in place by moldings are termed semipermanent type partitions) are listed. Partitions, as opposed to curtains, are rigid and are "less easily movable". They are available in a variety of sizes, shapes, and colors. The sound absorption of the screen type partitions can significantly improve the acoustic environment of an "open" office space where many people are working in a large room. Figure 22 shows one such partition which can be easily moved to a desired place to divide a work space, provide sound absorption, and reduce interference caused by noise. Partitions and curtains as sound barrier systems are listed in Tables 36, 37 and 38. The companies (by numbers shown in Section II) with products listed in Table 22 are: 53, 62, 116. ## CAUTION - 1. ABSORPTION COEFFICIENTS MAY EXCEED 1.0. FOR A COMPLETE DISCUSSION OF THESE VALUES SEE SECTION I-3.1.2. - 2. THE NUMBERS LISTED UNDER THE "MOUNTING" COLUMN REFER TO THE AIMA STANDARD MOUNTINGS DESCRIBED IN SECTION 1-3.1.3 AND ILLUSTRATED IN FIGURE 1-11. OFFICE LANDSCAPE SCREEN- One of the Many Types of Decorative Partitions Used for Sound Control Figure 22 ## GLOSSARY The outside surface of the specimen. In general, the side facing the sound source $% \left(1\right) =\left\{ 1\right\} =$ Facing: The other outside surface of the specimen. In general the side not facing the sound source $% \left(1\right) =\left(1\right) +\left(1\right)$ Backing: Core: The region between the facing and the backing ## TABLE 22 PARTITIONS (ABSORPTION) | ** | 2_ | | | Abso | rption | Conffi | cionta | | | | | | | |-----------|-----------------------|------|--------|----------------------------------|--|---|---|------------|-------------------|---------------|-----|---------------------------------------|-------| | Mount ing | Thickness
(inches) | | 125 Hz | 250 Hz | 500 Hz | 1000 dz | 2000 lz | 4000 3z | Density
lb/ft- | Lab. | Co. | · Product | Foot- | | | | | | fibe | moldin
glass
ng & ba | gs, 2"
core wi | nels held
or "U"
rigid
lth 1/8"
of glass | | | OCRL | | Vicracoustic | | | 2 | 2-1/4 | . 85 | .57 | .98 | . 92 | .76 | .71 | .78 | 1.25 | | 116 | "Alpha" Screens | 3 | | | | | | type
fibe: | moldin;
rglass c
ng & bac | ga, 2"
core wi | nels held
or "U"
rigid
ith 1/8"
of glass | | | | | Vicracoustic | | | 4 | 2-1/4 | .85 | .47 | , 95 | . 89 | .77 | .75 | .76 | 1.25 | • | 116 | "Alpha" Screens | 3 | | 4 | 2-1/2 | .85 | .30 | panal
inau
core | ige galving, per
la, 18-s
lation t
of glass
lysthyl | rforate
gage fa
noit (i
ss fibo
lene ba | d type B
icing
"x12 [^] x96
ir sealod | ")
.41 | 4.50 | RAL
A72-72 | 62 | Channel Wall &
B-Liner Wall System | | | | | | | 20-ga
facia
perfo
(eacl | owall, in the second of se | vanized
Alvaniz
Lype "C | ted;
ed:
panel | | • | RAL | | Shado Wall & C-Liner | | | 4 | 3-1/4 | , 90 | .37 | .67 | 1,08 | 1.03 | .91 | .71 | 6.1 | A70~145 | 62 | Wall System | 1 | | | | | | with | rated a
glass i | iber i | nsulatio | n | | RAL | | | | | 7 | 3 | . 80 | . 34 | .39 | .76 | 1.08 | .96 | .83 | 5,59 | A68-191 | 53 | Acousta Wall | 2 | | | | | | .032'
Balva
C'' t
insul | mised p
anels -
ation b | oum, fa
perfora
18-ga
polt (1
pa fibe | ing of
cing of
ted type
ge
/2"x12"x
r sealed | 96")
in | | RAL | | Channel & G-Liner | | | • | 3-1/4 | .90 | .32 | .81 | 1.03 | .97 | .80 | .44 | 3.7 | A72-70 | 62 | Wall System | 1 | ## FOOTNOTES FOR TABLE 22 PARTITIONS (ABSORPTION) - 1. Test specimen size; $8^4~\times~9^4$, tested and evaluated according to ASTM C 423-66. - 2. Tested and evaluated according to ASTM C 423-66. Test specimen made from 3 panels $30" \times 96"$ and 1 panel $18" \times 96"$. Surface of each panel was perforated by 1/6" holes 7/16" on center. - For indoor use. Flame spread; Class B. Excellent resistance to stain. Tested and evaluated according to ASTM C 423-66. For further information, ase Table 20. #### TABLE 23 #### CURTAINS (ABSORPTION) Sound absorption coefficients of various products manufactured as curtains, or which can be directly used as curtains with minor modifications necessary to drape the product are listed. Sound absorption of the curtain is dependent upon the curtain material, surface texture, the backing material or medium, and the manner in which the curtain is hung. Varying the distance of the curtain from the wall or changing the test angle can change the absorption coefficients as can be seen from the table. The curtain absorption coefficients are also changed considerably when the curtain covers a different percentage of its maximum possible coverage. This is also seen in the table. The companies (by numbers shown in Section II) with products listed in Table 23 are: 3, 95, 155,
188, 192. #### CAUTION - 1. ABSORPTION COEFFICIENTS MAY EXCEED 1.0. FOR A COMPLETE DISCUSSION OF THESE VALUES SEE SECTION 1-3.1.2. - 2. THE NUMBERS LISTED UNDER THE 'MOUNTING' COLUMN REFER TO THE AIMA STANDARD MOUNTINGS DESCRIBED IN SECTION 1-3.1.3 AND ILLUSTRATED IN FIGURE 1-11. #### GLOSSARY Facing: The outside surface of the specimen. In general the side facing the sound source Backing: The other outside surface of the specimen. In general the side not facing the sound source Core: The region between the facing and the backing TABLE 23 CURTAINS (ABSORPTION) | | 107 | | | Abso | rpt1on | Conffi | cients | | | | | | | |----------|-----------------------|------|-------|---|---|---------------------------------|--------------------------------|------|----------------|-------------|-----|----------------|---------------| | ğ | ies) | | Hz | Hz | Hz | 22 | 뷮 | 꿒 | | | | | | | Younting | Thickness
(inches) | NRC | 125 1 | 250 } | 500 # | 1000 | 2000 | 4000 | Weigh
10/15 | ç
Z Lab. | Co. | Product | Foot-
note | | | | | | sing
poly
70"
soun
room
or b | le-lay
ester
wide r
d-abso | er fibe
supplie
olls, u | r
d in
sed as
urtains | | | RAL | | | | | • | .03 | . 65 | .42 | .43 | .64 | . 75 | , 86 | .93 | .12 | A73-26 | 186 | Westex FIL-44 | ı | | | | | | Poly | le-lay:
ester :
wide ri
rom wa | pr fibe
supplied
olls; to | r
d in
esced | | | RAL | | | | | - | .03 | .70 | .17 | .46 | , 63 | .80 | .76 | .78 | .12 | A73-22 | 188 | Westex FIL-44 | 1 | | | | | | fibe | rused
ing; to | red po
for so
ested 3 | and | | | RAL | | | | | - | .04 | .39 | .28 | .22 | ,34 | .45 | .55 | .71 | .04 | A73-32 | 188 | Westex FIL-9.4 | | | | | | | fine | r used | red po
for so
ested 6 | ind | | | RAL | | | | | - | .04 | ,45 | .02 | .22 | ,50 | .50 | ,52 | . 65 | .04 | A73-33 | 188 | Westex FIL-9.4 | | | | | | | 70" v
6" of | ide ro | | l in
sted | | | RAL | | | | | • | .06 | .95 | .29 | . 64 | 1,06 | 1.03 | 1.10 | 1.12 | .22 | A73-24 | 188 | Westex FIL-44 | 1 | | | | | | 70" u
30" a | eter s
ide ro
iff wal | | in
ated | | | RAL | | | | | • | .06 | .95 | , 63 | , 62 | ,86 | 1.09 | 1,28 | 1.38 | .22 | A73-25 | 188 | Westex FIL-44 | 1 | | | | | | Polye | ster s | r fiber
upplied
lls; te | in | | | RAL | | | | | • | .06 | . 95 | .29 | .71 | 1.10 | 1,27 | 1.50 | 1,66 | .22 | A73-23 | 188 | Wester FIL-44 | 1 | | | | | | polys
for a | ound da | iber us
imping | | | | RAL | | | | | 4 | .08 | , 15 | .02 | .05 | .07 | .17 | .36 | . 62 | .08 | A73-37 | 188 | Westex FIL-9.4 | | | | | | | polye
for s
teste | d G 30. | ibre us
amping; | | | | RAL | | | | | - | .08 | 65 | .45 | .41 | .59 | .72 | . 89 | 1.02 | .08 | A73-35 | 188 | Westex FIL-9.4 | | TABLE 23 CURTAINS (ABSORPTION) (Contd) | 4.0 | ₽_ | | | Absor | ption | Couffi | cients | | | | | | | |----------|-----------------------|------|------------|---------------------------|-----------------------------------|--|--------------|---------|--------|---------------|-----|----------------|---------------| | Hounting | Thickness
(inches) | NAC | 125 Hz | 250 Hz | 500 Hz | 1000 Hz | 2000 Hz | ZH 0007 | Weight | Lab. | Co. | Product | Foot-
note | | | | | <u> </u> | poly | le-lay
ester
sound
ed 6" | ered
fibre u
damping
from w | used
Bi | | | RAL | | | | | • | .08 | .69 | , 10 | .37 | .77 | .80 | .82 | .95 | .08 | A73-34 | 188 | Westex FIL-9.4 | | | | | | | fiber
wide
sound | rolls
rolls
l-abso
in; c | or nome
lied in
used a
rbing
ested 3 | 1 72" | | | ral | | | | | ~ | .08 | . 69 | .40 | .40 | , 62 | .80 | .93 | 1.10 | ,097 | A73-27 | 188 | Westex FIL-95 | 2 | | | | | | polye
for s | o-laye
ster
ound o | fiber u
lamping | sed | | | RAL | | | | | • | .08 | .73 | .36 | .49 | .67 | .79 | .97 | 1.13 | .08 | A73-36 | 188 | Wester FIL-9.4 | | | | | | | fiber
wide
from t | suppi
rolls;
vall | r nome
led in
teste | d 6" | | | RAL | | | | | - | .08 | . 75 | .15 | .42 | .83 | . 85 | .89 | .99 | .097 | A73-28 | 188 | Wester FIL-95 | 2 | | 4 | .16 | 22 | • | fiber
wide : | suppl
olls | r nome:
ied in | 72" | | | RAL | | | | | * | . 10 | , 32 | .04 | . 05 | ,14 | . 37 | .73 | 1,03 | .194 | A73-38 | 188 | Westex FIL-95 | 2 | | | | | | Fibor | auppl
olls; | r nome:
ied in
teste: | 72" | | | RAL | | | | | - | .16 | , 95 | ,23 | . 62 | 1,01 | 1.02 | 1.12 | 1.26 | . 194 | A73-29 | 188 | Westex FIL-95 | 2 | | | ., | 25 | | fiber
wide :
from v | suppl
colls;
call | r nome:
ied in
tester | 72"
1 30" | 1.52 | .194 | RAL
A73-30 | 186 | Westex FIL-95 | 2 | | - | .16 | . 95 | .53 | .57 | ,82 | 1.05 | 1.30 | 1.53 | , 174 | U17-70 | 100 | | - | | | 14 | ne. | a . | wide :
from \ | olls; | r nome;
ied in
testec | 3 60" | | | RAL | | | | | - | .16 | . 95 | .26 | . 65 | .97 | 1.21 | 1.50 | 1.80 | . 194 | A73-31 | 188 | Westex FIL-95 | 2 | TABLE 23 CURTAINS (ABSORPTION) (Contd) | 80 | 55. | | | Absor | tion | Coaffic | ients | | | | , | | | |----------|-----------------------|------|------|--|---|--|--------------------------------------|------|----------------|----------------|-----|-------------------|--------------| | ıcin | hes | | HZ | Hz | Ħ | 7HZ | Hz | K | | • | | | | | Mocneing | Thickness
(inches) | NRC | 125 | 250 : | 200 | 1000 | 2000 | 4000 | Weigh
lb/ft | t
2 Lab. | Co, | Product | Foot- | | | - | | | mingl
polyc
72
roll:
dampi | ide 17
1. Use | or fibe
supplie
yard
d for s | er
id in
long
sound | • | | RAL | | | | | 4 | . 75 | . 64 | , 03 | .13 | ,44 | .86 | 1,12 | 1,1 | B .71 | | 188 | Wostex FIL-28 | 3 | | | | | | polye | e-laye
stor u
dampi | er fibe
sed as
ing | F | | | ral. | | | 3 | | 4 | 1 | .80 | .08 | .26 | .73 | 1.08 | 1,22 | 1.17 | 7 .94 | A73-18 | 188 | Westex FIL-281 | 4 | | | | | | Sound | Abso | cbing D | raperia | В . | | | | | | | • | ı | .85 | .11 | .48 | 1.04 | ,90 | .89 | .97 | ,15 | RAL
A69-60 | 155 | Foam Curtain | 6,9 | | | 1 6 | a.e | | 72" w
rolls
dampi | ide, 1
used | r fiber
upplier
2 yd. i
for sou | a in
long
ind | | | RAL | | | | | • | 1,5 | . 95 | . 19 | .55 | 1.06 | 1.27 | 1,28 | 1,20 | .71 | A73-21 | 188 | Westex FIL-28 | 3 | | _ | .2 | .65 | ,31 | facing
angus
incomb
board | burla
burla
burlb
Eiber
Eiber
Ble: | 60" hicking op with le mine; core acoused as | of
1/2"
oral
of
ostic | ,57 | .49 | RAL
A71-142 | 192 | Workwall | 5 | | _ | | | | , | ,43 | .01 | .,, | ,,, | .43 | N/1-142 | .,_ | Dividor Screen | 3 | | | | | | fibre
dampin | used f
B | polye
or sout | nd | | | RAL | | | 3 | | 4 | 2 | . 95 | .36 | .83 | 1.21 | 1,29 | 1,28 | 1,23 | 1.86 | A73-19 | 188 | Westex FIL-281 | 4 | | | | | | as core | acoust
116 | 67" wing & bars of fit blanded as to be a second | nket | | | RAL. | | Workwall | | | • | 3 | .80 | ,31 | .56 | .87 | ,90 | .91 | , 65 | 3.35 | A72-218 | 192 | Acoustic Dividers | 5 | | | | | | Sound a | Absorb
ned fl | ing Dra | speries | | | | | | | | - | - | .45 | .04 | .26 | ٠55 | .54 | .48 | .51 | • | G&H | 3 | Acoustidrapa | 6,7 | | | | | | fully | drapo | bing D | raperies | 9 | | CC !! | 9 | to accept do | | | - | • | .65 | ,10 | .49 | .69 | .73 | .68 | .71 | - | G&H | 3, | Accustidrape | 6,8 | | _ | _ | _ | .64 | perio:
backed
core,
& memi | rated
I fibe
24-ga
orane | rgiaa 1
Be stoo
backing | , foil-
Insulati
el alota
B | | 4.0 | RAL | 95 | | | | - | - | | | .61 | .70 | .72 | .98 | 1.03 | 4.8 | A71-37 | ,, | Foldoor X12-NRC | 5 | ## FOOTNOTES FOR TABLE 23 ## CURTAINS (ABSORPTION) - 1. Sticks at 455°F,
can be flameproofed, disintegrated by 96% hydrochloric acid & boiling alkalies. - 2. Decomposes at 700°F, does not melt. - 3. Temperature Range to 300°F, melts at 482°F, can be flameproofed. - 4. Excellent resistance to bleaches, exidizing agents. - 5. Meets ASTM C423-66. - 6. Tested and evaluated according to ASTM C423-66. Plameproof. - 7. Special mounting used to simulate a stretched flat hung curtain. - 8. Special mounting used to simulate a draped 100% fullness curtain. - 9. Hung on wall with 2 inch space between wall and specimen. # TABLE 24 FLOOR COVERINGS (ABSORPTION) A few products which are used as floor coverings are listed. The small number of products listed may cause some surprise because a floor covering is usually a very important sound absorbing surface in a room. In residential applications floor coverings may play a dominant role in determining the acoustical characteristic of a room. In industrial applications, however, floors are seldom used as the primary sound absorbing surface. Ceilings are usually treated first and additional absorption is obtained through wall coverings and sound absorbing units of the types listed in Table 19. This may account for the fact that a very few floor covering products are listed in Table 24. Additional information of a generic nature about carpets and their acoustical properties is provided in Section 1-5.1.4. Carpets are also very effective in reducing the sounds generated by objects dropped on floors, footsteps, etc. This aspect of their sound control potential can be verified by studying Tables 30 and 31. The companies (by numbers shown in Section II) with products listed in Table 24 are: 12, 30, 34. ## CAUTION THE NUMBERS LISTED UNDER THE "MOUNTING" COLUMN REFER TO THE AIMA STANDARD MOUNTINGS DESCRIBED IN SECTION 1-3.1.3 AND ILLUSTRATED IN FIGURE 1-11. TABLE 24 FLOOR COVERINGS (ABSORPTION) | | | | | Absor | ption | Cooffic | ients | | | | | | | |-------------|-----------------------|-----|--------|--|---|---|----------|---------|----------------|------------------|-----|------------------------------------|-------| | Moure et ng | Thickness
(inches) | NAC | 125 #2 | 250 Hz | 260 Hz | 1000 Hz | 2000 Hz | 4000 Hz | Weigh
1b/ft | iţ
Lab. | Co. | Product | Foot- | | 4 | 1/2 | .35 | ,04 | sizes
avail | fiber
as reable in
ut pat | quired;
n rolls
terns. | | . 70 | .22 | RAL
A72-183 | 34 | Bonded "E-5"
Fiber Padding | | | 4 | | .50 | .19 | traff | t for lic area sponge | on a | r
.48 | .58 | | KAL
1466-1-73 | 10 | Years Ahead | | | • | ÷ | - | ,, | Suppo
bonde
Polyc | rted v
d to l
or fos
0" thi | inyl
/4"
a bonde | ed l | ••• | • | - | 12 | Floortite Acoustic
Matting #122 | | | | - | | | thick
acous
separ
thick
side | ors of
dead
tic ma
ated b
foam;
is pro
wear b | rubber
##
y 1/4"
one
tected | | | | | 12 | Floortite Acoustic | | # TABLE 25 ROOF DECKS (ABSORPTION) Roof decks and their sound absorption properties are listed. Sound absorption is achieved by placing sound absorbing pads behind perforated metal channels or by using a sound absorbent panel. Figure 25A shows a roof deck panel made from wood fibers, and cement. Figure 25B shows another type of roof deck where the sound absorptive fiberglass batts are laid inside the perforated channels to provide sound absorption. Roof decks may be used in relatively large office rooms, churches, schools, etc., and the additional sound absorption provided by these special acoustical designs helps reduce the reverberation time of the rooms. Roof decks are also noise barriers, and the transmission losses of some of the roof decks are shown in Table 35. The companies (by numbers shown in Section II) with products listed in Table 25 are: 13, 43, 56, 106, 120, 144, 190. #### CAUTION - 1. ABSORPTION COEFFICIENTS MAY EXCEED 1.0. FOR A COMPLETE DISCUSSION OF THESE VALUES SEE SECTION 1-3.1.2. - 2. THE NUMBERS LISTED UNDER THE "MOUNTING" COLUMN REFER TO THE AIMA STANDARD MOUNTINGS DESCRIBED IN SECTION 1-3.1.3 AND ILLUSTRATED IN FIGURE 1-11. Figure 25A Roof Deck Panel for Sound Absorption Figure 25B Acoustical Roof Deck Panel with Perforated Facing and Fiberglass Core ## GLOSSARY The outside surface of the specimen. In general the side facing the sound source Facing: The other outside surface of the specimen. In general the side not facing the sound source $% \left(1\right) =\left\{ 1\right\} 1\right\}$ Backing: Core: The region between the facing and the backing Roof Deck: A platform or a surface covering the structural framework to form a roof Reverberation Time: Defined as the time required for the sound pressure level of a room to decay 60 decibels, this quantity is an indirect measure of the total sound absorption provided by the room. TABLE 25 ROOF DECKS (ABSORPTION) | | . s | _ | | Abs | orption | Coeff | icienta | | | | | | | | |---|-----------------------|-----|-----|---|--|--|--|------|------------|------------|--------------|-----|------------------------------|---------------| | | Mounting | (S) | 2 | | # | 1 | 23 | | 2 | | | | | | | | Mounting
Thickness | | 125 | 250 | 8 | 1000 | 2000 | o c | Wei
15/ | ght
Ec? | Lab, | Co, | Product | Foot-
note | | | | | | Perli
slabs
paint | te conc | rete r | oof
base | | | | | | | | | | 3 | .75 | .17 | .50 | .99 | .69 | .82 | . 80 | 10 | , 3 A | RAL
59-70 | 56 | Parlita | 6,17 | | | | | | | ick por
-up roo
a. Thi
", 2-1/
anga .5
t shown
porex | | els wit
2" wide
1 3".
35;
5 table | h | | | RAL | | | | | 4 | 3 | .80 | .34 | .40 | .99 | ,91 | .92 | .87 | 7.4 | 46 A6 | 6-48 | 43 | Pormudeck | 1,7,17 | | | | | | 8 nown | teel ro
6 to
is for
llation | the et | king
Weight
ntire | | | | | | | | | 4 | 3 | .90 | .43 | .82 | 1.15 | .95 | .71 | .56 | 7.99 | A7 | RAL
70-83 | 106 | Inland Ryerson
type 3" NF | 4,10 | | | | | | For s
sizes
shown
insta
1-7/8 | 4-1/2" teal re 6' to is for llation " thick glass, llation | of deck
45'. k
the er
Back
Overs | cing,
leight
stire
ced with
Cornin | | | | Firis_ | | | | | 4 | 4-1/2 | .80 | .69 | .97 | 1.00 | .73 | .40 | .32 | 5.9 | A7 | 0-72 | 106 | 4-1/2" H Panel | 4,11 | | | | | | for at aizes ahown | " W Accorded to 4 | f dack
5'. W
tho en | ing,
eight | | | ı | RAL. | | 5" N Type | | | 4 | 5 | ,90 | .73 | 1,13 | 1.06 | .89 | .52 | .31 | 3.97 | A7 | 0-21 | 106 | Acoustideck | 4,12 | | | | | | deck.
deckin
Weight
entire | -1/2"
For st
g, size
shown
instal | eel ro
s 6° to
is for
lation | of
0 45'.
the | | | | RAL | | Type HF | | | 4 | 5-1/2 | .95 | .65 | 1.08 | 1.14 | .99 | .79 | .61 | 6.5 | A70 | 0-23 | 106 | Acoustidack | 4,13 | | | | | | For st
sizes
shown | " H Aco
eel roo
6' to 4
is for
lation. | f deck:
5. We: | ing,
ight | | | | RAL | | Tyne Gil | | | 4 | 6 | .85 | .83 | 1.16 | 1,06 | .68 | .49 | .46 | 6.17 | A70 |)-22 | 106 | Acoustideck | 4,14 | | | | | | For at sizes ahown | " HF Actor to 4 t | f decki
5'. We | ing,
right
rire | | | n | IAL | | Mu 6 NG | | | 4 | 6 | .95 | .68 | 1,13 | 1.11 | .95 | .78 | .58 | 7.38 | A70 | | 106 | Type 6 HF
Acoustidack | 4,13 | | | | | | deck.
decking
Weight
entire | 1/2" H
For sta
, size
shown
install | el roo
6' to
La for | 45'.
the | | | | AL. | | Тура 7.5 Н | | | 4 | 7-1/2 | .80 | .79 | 1.02 | .82 | .66 | .61 | .61 | 6,33 | A70 | | 106 | Acoustideck | 4,15 | TABLE 25 ROOF DECKS (ABSORPTION) (Contd) | | . #_ | | | Absor | peton | Coeffic | ients | | | | | | | |------------|-----------------------|------|-----|---------------------------|---|---|-------------------|------|------------------|---------------------------|-----|-----------------------------|---------------| | Ī | 5.5 | | | Ħ | 뷮 | HZ | 분 | 첉 | - | | | | | | Mormetere | Thickness
(inches) | NRC | 125 | 250 | 500 | 1000 | 2002 | 4000 | Weight
1b/ft2 | Lab, | Co, | Product | Poot-
note | | | | | | deck. | For a | HF Acou
teel ro
es 6' to
is for
llation | of
o 45'. | tira | | RAL | | Type 7.5 HF | - | | 4 | 7-1/2 | .95 | .91 | 1,23 | 1.07 | | .79 | .64 | | A70-24 | 106 | Acoustideck | 4,13 | | 4 | • | . 75 | ,26 | Parfor
with 1 | ated o
-1/2"
,93 | n wab a
deep ri
.88 | ide
bs.
.51 | .29 | | RAL
A62-42 | 13 | Quiet Deck Bowman
Type B | 6 | | | | | | Steel | roof d | ecking | 6' | | | | | | | | - | 1-1/2 | .70 | .19 | .76 | 1.02 | .73 | .37 | .21 | 2.5 | RAL
A70-105 | 106 | Type B Acoustideck | 4,9 | | | | | | furnia
ends. | hed wi
Rib o
odate | in 30"
th die (
penings
l" thick | set | • | | RAL
A72-102 | | | | | - | 1-1/2 | .75 | .26 | .64 | .93 | .88 | .51 | .29 | - | A72-105 | 144 | B Quiet Dack | 2 ,6 | | - | 1-1/2 | .80 | .19 | 1" ris
Steal
to 30' | id ins
roof d | ulation
ecking (| 6'
.52 | .27 | 2.5 | RAL
A70-104 | 106 | Type S Acoustideck | 4,9 | | | | | | cion. | rigid
Steel
g 6' to | insuls | • | | | RAL. | | | · | | - , | 1-1/2 | .85 | .47 | 1.01 | 1.01 | .90 | ,53 | .24 | 2.5 | A70-103 | 106 | Type S Acoustideck | 4,9 | | | 1-5/0 | 70 | 27 | shown
instal | is for
lation. | | ire | 20 | | RAL, | | Inland-Ryerson | | | • | 1-5/8 | ,70 | .37 | .49 | ,68 | ,98 | .58 | .39 | 5.9 | A70-123 | 106 | Тура 1-5/8" М | 4,9 | | | | | | MRTRUC | ting, a
eck. 7
, 2-1/2
nge .55
shown
porex o | coustice thickness to .85 in the only. | table | | | RAL | | | | | • |
2 | .65 | .14 | . 25 | .56 | .99 | ,71 | .84 | 5.13 | A66-114 | 43 | Permedeck | 1,7,17 | | | | | | For states a shown instal | eel roo
6 to 4
Le for
Lation. | ustidec
f decki
5'. Wei
the ent | ng,
ght | | | | | | | | • | 3 | .75 | .60 | ,90 | .95 | .78 | .34 | .22 | 6.33 | - | 106 | 3" H Panel | 8 | | - | 3 | | | Acoust | ically- | treated | ribs. | | - | RAL
A72-102
A72-105 | 144 | "N" Quiet deck | | TABLE 25 ROOF DECKS (ABSORPTION) (Concl) | | | | | Absor | ption | Coeffic | iants | | | | | | | |----------|-----------------------|------|--------|--|--|--|-----------------------|---------|------------------|----------------|-----|---|-------------| | Hounting | Thickness
(inches) | NAC | 125 Hz | 250 Hz | 500 Hz | 1000 Hz | 2000 Hz | ZH 0007 | Weight
1b/ft2 | Lab. | Co. | Product | Foot- | | - | 3 | • | | 1-1/2"
NRC ra
weight
is on | , 2-1/
nge .5
shown
porex | • | 3".
 5:
 table | | • | RAI,
A66-22 | 43 | Permadeck | 1,16 | | - | 3-1/4 | . 80 | .37 | Thickr
2-1/2'
range
shown
on por | in cu | 1-1/2"
3". Ni
0.85; v
cable
ly.
.85 | RC
weight
is | .85 | 7.46 | RAL
A66-55 | 43 | Parmadack | 1,6,16 | | - | • | ,50 | | Steel (| ieck a
vot wi | yatem w
dth. | ith | | • | RAL
A69-47 | 13 | Acoustideck panel
CA-3 | 5 | | • | - | ,60 | | Steel
12" co | dock s
ver wi | ystem w
dth. | ith | | - | RAL
A69-61 | 13 | Acoustideck Panel
CA-4.5 | 5 | | | | .70 | .41 | Sizea
42' lo
backed
rigid
of 1.5 | 30" wi
ng. A
with
board
1b/ft
.82 | de, up
saembly
l"thic
insulat
2. | to
k
ion | .24 | | RAL
A62-200 | 190 | Wheeling Painted
Acoustic Metal Dag | :k 6,17 | | • | • | .75 | | BA - 24
B3A - 3 | i" covi
10" cov | or widt
ver wid | h;
th. | | - | RAL
A63-49 | 13 | Acoustideck BA
and B3A | 3 | | | | .75 | | Steel d
24" cov | eck sy
er wid | rstom wi
ith. | Lth | | - | RAL
A62-118 | 13 | Acoustideck Panel
2CFA-3 | | | - | | .75 | .48 | Sizes 3
42' lon
metal d
gloss f
insulat
.87 | ack wi | .th 1" t | o
d
hick | .27 | 1 | RAL
A62-197 | 190 | Wheeling Calvaniza
Acoustic Matal Daci | i
6 6,17 | | • | | .85 | | Steel de
24" cove | eck sy:
ir Wid | stem wi | | | | RAL
A68-175 | 1.3 | Acoustideck 20FA | | | | | • | | Precast
wood fill
ed with | era p | ressure | bond- | | | _ | 120 | Fibroplank roof
Dock panels | 8.16 | #### FOOTNOTES FOR TABLE 25 #### ROOF DECKS (ABSORPTION) - 1. Temperature range; below zero to 180°F. Flame apread; 20. - Sound absorbing elements are inert mineral fibered materials which fit in the spaces between vertical perforated webs of the deck. - 3. BA and B3A decks feature a button punchable side lap joint. - 4. Tested and evaluated according to ASTM C423-66. - 5. Tested and evaluated according to ASTM C423-58T-(Tentative method preceding approval of ASTM C423-58) . - 6. Tested and evaluated according to ASTM C423-60T. - 7. Extrapolated from Riverbank Acoustical Laboratory tests A70-72 and A70-22. - 8. Thickness range 2" to 4". 32" wide with lengths upto 12'6" weight range from 6 to 10 lbs/sq.ft. Average NRC ranges from 0.60 for 2" thick plank to 0.90 for 4" thick plank. - Deck has cells 1-1/2" deep by 1-7/8" wide on 6" centers perforated with 5/32" holes on 3/8" staggared centers, filled with an insulation batt 2-1/4" by 1-1/2". - Dack has calls 8" on center perforated with 5/32" holes on 3/8" staggered centers, filled with an insulation batt 4-3/4" by 2-1/2". - Dock has ribs 12" on center perforated with 5/32" holes on 3/8" staggered centers, filled with an insulation batt 3-1/4" by 2-1/2". - 12. Same as 11 but with batt 3" by 2-1/2". - 13. Same as 12 but with batt 8" by 2-1/2". - 14. Deck has ribs 3-1/8" wide by 6" deep on 12" centers perforated with 5/32" holes on 3/8" staggered centers, filled with an insulation batt 5" by 2-1/2". - 15. Same as 12 but with ribs 3-1/8" wide by 7-1/2" deep, filled with an insulation batt 6-1/4" by 2-1/2". - 16. Similar to Figure 25A but not necessarily with wood fibers. - 17. Deck has 2-1/8" wide by 1-1/2" deep ribs spaced on 6" centers, perforated with 5/32" heles on 3/8" staggered centers, filled with rigid insulation 2-1/2" by 1-1/2". # TABLE 26 PREFABRICATED QUIET ROOMS Quiet rooms and their noise reduction and sound absorption characteristics are listed. Quiet rooms are defined here as rooms where the undesired sound is outside the room and a desired quiet environment is maintained inside the room. This is opposite of enclosures in which case the undesired sound is inside the structure and a quiet environment outside the enclosure is the goal. Table 26 is subdivided according to the available information. Table 26A shows noise reduction. Table 26B shows sound absorption coefficients of the inside walls or panels of the quiet room, and Table 26C lists the room or booth for which the acoustic information was not available. Quiet rooms are installed to fulfill various functions. They can provide a quieter environment for a worker in a noisy factory, they can provide suitable space for audiometric testing or music recording sessions, etc. and their simplest forms as booths, can provide adequate relief from noise to make telephone calls. Figures 26A and 26B show two types of quiet rooms. Figure 26A shows a room with good visibility and adequate sound isolation and Figure 26B shows an autiometric booth with good sound isolation and adequate visibility. The companies (by numbers shown in Section II) with products listed in Table 26 are: 4, 9, 59, 82, 92, 104, 111, 119, 139, 142, 157, 164, 168, 187. ## CAUTION - 1. VALUES PRESENTED IN TABLE 26A ARE NOISE REDUCTIONS AND NOT TRANSMISSION LOSSES. SEE SECTION 1-3.6 FOR EXPLANATION OF DIFFERENCE. - NOISE REDUCTION DATA ARE SOMETIMES OBTAINED BY COMPUTATIONS BASED ON DATA FOR INDIVIDUAL PANELS WHICH ARE USED TO CONSTRUCT THE ROOM. ALSO, SPECIAL CUSTOMER OPTIONS (WINDOWS, VENTS, ETC.) MAY AFFECT THE PERFORMANCE OF A ROOM. - 3. THE NUMBERS LISTED UNDER THE "MOUNTING" COLUMN IN TABLE 26B REFER TO THE AIMA STANDARD MOUNTINGS DESCRIBED IN SECTION 1-3.1.3 AND ILLUSTRATED IN FIGURE 1-11. ABSORPTION COEFFICIENTS MAY EXCEED 1.0. FOR A COMPLETE DISCUSSION OF THESE VALUES SEE SECTION 1-3.1.2. "QUIET ROOM" FOR USE IN NOISY AREA Figure 26A Quiet Room with Good Visibility for In-Plant Use Figure 26B Portable Audiometric Test Room ### GLOSSARY Facing: The outside surface of the specimen. In general the side facing the sound source $% \left(1\right) =\left(1\right) +\left(+\left$ Backing: The other outside surface of the specimen. In general the side not facing the sound source $% \left(1\right) =\left\{ 1\right\} 1\right\}$ Core: Anechoic: Echo free The region between the facing and the backing Anechoic Wedges: Wedge-shaped sound absorbing units commonly used to create a free-field type environment ## TABLE 26A PREFABRICATED QUIET ROOMS (NOISE REDUCTION) | | | | _ | | | | No | 18 | e R | oduc | tic | on | (dec | i h | els) | | | | | | | | | |---|-----------------------|-----|-------|----|----|-------------|---|-----------------|-------------------|---------------------|-----------------|----------------------|--------------------|---------------|---|---------------------|---------|---------|----------------|------------------|-----|--|-------| | _ | Thickness
(Inches) | STC | 12 20 | | | | | | | 500 Hz | | 1000 47 | | 1600 32 | • | Z500 Hz | 3150 32 | ZH 0007 | Weigh
lb/ft | Lab. | Co. | Product | Foot- | | | | | | | | F | ort | abļ | e b | uile | din | 8. | Siz | es. | fro | (T) | | | | | | | | | | - | • | 12 | 2 | | | 18 | • | | 22 | ^ | 2 | | | 28 | | | 30 | - | AN | 164 | Model 810 | 3 | | | - | - | 16 | i | | 2 | 2" tl
sion
times
24 | UB1 | ons
2 | 1; 84 | 4 | 2 S | ,'' x | 8 | 34 | | | 37 | - | - | 111 | Noiseguard
portable office
enclosures | 9 | | | | | 27 | , | | | '' ti
'6'' 2
nsid | hic
k 7 | kne
6"
: 8 | | ."; | na 1d
Out
4" x | | ime
e c | ensi
Iime
55 | | : | 59 | | - | 111 | Noiseguard
portable office
enclosures | 9 | | | | | | | | | | | Lott | | . 1 6 | | - 10 | | | . | | | | | | | | | | - | - | 2.3 | ı | | 6 | ize:
Ize:
10 | | | labi | | ·· × | | | 45 | her | | 47 | - | KAL
1270-3-71 | 104 | Type R all
purpose room | 4 | | | | | | | | × | oce:
86' | 1 | Ιn | side | a d | imen | 108
si o | " » | : 11 | 6" | | | | | | | | | | - | - | | 28 | | | 5 | 4 | | 50 | | 59 | , | 62 | 2 | 63 | | | - | NR62-15 | 104 | 4" thick sound | 7 | | | | | | | | F | Al
Al | מט
מט
מט | 1 (2 (3 (| 85.
236
376 | 25
75
.4 | ft3
ft3 | | | | | | | | | | Noiseguard | | | | • | - | | 30 | | 3 | 9 | 41 | 3 | 53 | | 57 | | 62 | | 55 | | 35 | - | - | 111 | Audiometric Rooms | 10 | | | | | | | | 1
6
6 | le go
or di
vidti
ior
vidti | a.
ime
h, | col
nai
481 | d re
ons
i he | oll
:
eig | ed in length | 5691 | 1
52
h. | Ext
Ext
Int
44 | f
eri
e-
; | • | | | | | Audiometric | | | | - | • | 36 | | | 4: | 2 | | 4: | 5 | | 57 | | | 67 | | | 70 | • | - | 157 | Testing Booth | | | | | | | | | 1 | utai
naid | le: | - | 83"
75" | × | 105 | x i | 37" | | | | • | | RAL. | | | | | | • | • | 35 | 34 | 45 | 50 | 6 61 | 63 |) 7L |) 7B | 83 | 2 85 | 83 | 89 | 93 | 96 | 97 | 94 | - | NR72-17 | 187 | Sound Module | 8 | | | | - | 22 | 19 | | Į. | eari
naid
ntei
9 32 | e;
de; | 4 | 0" :
5" : | x 3 | '7'
'0'' | | | | 58 | 60 | 60 | • | RAL | 142 | Sound shield
rooms
series
258, class 4 | 2 | | | | _ | 15 | 22 | | £1 | " x
loor
31 | an | ıd c | eil: | Lng | i | | | | _ | 48 | 40 | | RAL
NR71-7 | 59 | Eckoustic Audio-
metric Booths | 1 | | | | | 1.7 | | | | | -4 | 0 | | -7.4 | 74 | 43 | | 41 | -, | 70 | 47 | - | 1017 4- F | 33 | MODEL WOOFILE | ٠ | ## TABLE 26A PREFABRICATED QUIET ROOMS (NDISE REDUCTION) (Contd) #### Noise Reduction (decibels) 抢 役 揖 揖 揖 揖 뵨 뵨 뵨 冠 祁 琨 琨 弨 弨 弨 125 H 160 H 200 H 200 H 250 H 400 H 630 Foot-Lab. Product note Music practice room: Inside: 6'3" x 8'9" x 7'2"; Outside: 6'11" x 9'5" x 7'10" Noise reduction inside to ourside Sound Shield Rooms, series 800 Model 802, class 3 RAL NR72-26 142 20 24 28 30 34 37 41 43 45 48 50 50 51 50 51 51 Exemination booth: Outside: 38" x 28" x 76", 4" thick; Inside: 34" x 24" x 66", 4" thick; Wall made of galvanized sheat steel with zinc alloy outer sur-face, 22 ga cold rolled steel inner surface. 38 52 RAL 168 RE-120 21 - 20 Examination booth: Outside: 42" x 18" x 70", 4" thick Inside: 38" x 32" x 60", 4" thick Wall made of galvanized sheet steel with zinc alloy outer surface, 22 ga cold rolled steel inner surface. 20 31 38 51 RE-100 168 Single wall room Sound Proof - 28 31 38 Sound shield panel system: Panels range from $24" \times 46"$ to $48" \times 144"$, 2-1/2" or 4" thick Sound Shield Rooms series 900H _ 22 33 45 60 62 RAL. 142 Outside: 4'0" x 3'8" x 91"; Inside: 3'4" x 3'0" x 78" H #4 Audiometric Test Room RAL, NR62-9 [50] [62] -104 [44] [59] - [28] Single-wall medical examination rooms. Galvanized sheet steel with zinc alloy outer surface and 22 ga cold rolled steel inner surface. Twenty-three standard sizes. Series ME-140, RE-240, RS-240, RS-250: Single Wall - 24 23 28 31 34 39 44 46 48 52 55 57 58 60 59 59 Single-wall rooms have outside dimensions from 3'0" \times 3'8" \times 7'4" to 10'0" \times 10'0" \times 7'4". Sound Shield Series 100 Class 2 - 34 29 33 36 40 43 48 54 56 57 61 63 64 65 65 66 Sound Shield Fanel System: panels range from 24" x 48" to 48" x 144", 2-1/2" or 4" thick. Includes spe-cial fasteners for interlocking Sound Shield Rooms Series 900C 36 ### TABLE 26A PREFABRICATED QUIET ROOMS (NOISE REDUCTION) (Concl) | | | | | | | Noi | se | Rec | duci | cior | 1 (| dec | the | la) | | | _ | | | | | | |-----------------------|------------------------------|---------|----|---------|--------------------------|----------------------|----------------------------|---------------------|---------------------|-------------------|----------------|----------------------------------|-------------------------|--|-----------------|---------|---------|------------------------------|----------------|-----|---|--------------| | Thickness
(inches) | Thickness
(inches)
STC | | | 200 112 | 250 Hz | 31.5 Hz | ZH 007 | ZH 005 | 630 Hz | 800 Hz | 1000 Hz | 1250 Hz | 1600 Hz | 2000 Hz | 2500 Hz | 3150 Hz | 4000 Hz | Weight
1b/ft ² | Lab. | Ço. | Product | Foot
note | | | | | | | Do | ub1 | a - w | a11 | ro | | | | | _ | | | | | | | S | | | - | - | 38 | | | 52 | | | 60 | | | 62 | | | 62 | | | 62 | - | • | 9 | Sound Proof
Rooms | | | - | - | 37 | 42 | | Ins
Out
Noi | ide
sid
so | e:4 | '11
luci | x
ior | g'9 | 5"
#1 | : 7'
× 7
de 1 | ''10
to 0 |)"
:::::::::::::::::::::::::::::::::::: | | | 101 | | RAL
NR72-27 | 142 | Sound Shield
Rooms
Series 800,
Model 802,
Glass 3 | 2 | | - | • | 52 | 45 | 52 | 0et
12 | 1110 | ns
x] | fr. | om (| 6 'O' | 0" | | 411 | x 8 | ייםי | to | , 111 | | RAL | 142 | Sound Shield
Rooms
Series 200,
Class 1 | 2 | | - | - | 49 | 46 | 55 | roc
zir
col
Two | oms,
ne a
ld r | G:
1110
1011
1-61 | alva
led
irea | enii
Dute
Ste | ed
er s
eal | sh
in
in | exa
eet
fac
ner
d a: | st
e s
su
ize: | eel
nd
rfa
B. | wi
22
co. | ga | 98 | • | RAL | 168 | Series RE-140,
RE-240, RS-240
RS-250;
Double Wall | 5 | | | | | | | Siz
Out
Inn | er. | 12
10 | 4"
0" | x l
x l | 32"
08" | × | 100
78" |]";
'. | | | | | | | | 120/4 4-44- | | | • | | [48] | | Į | 64] | | U | 79] | | [6 | 31] | | [| 79 J | | ĺ | 80] | - | RAL
NR62-10 | 104 | 1204A Audio-
metric Test Room | 6,11 | | | | f (o) | | | Inn | or, | 100 | : יים | x 11 | 08" | × | 32''
78'' | • | | | _ | a 2 1 | | RAL
NR62-16 | 104 | Schedule #60
Sound
Isolation Room | 7.11 | ## TABLE 268 FREFABRICATED QUIET ROOMS (SOUND ABSORPTION) | M | s _ | | | Abso | rption | Coeffi | cienta | | | | | | | |----------|-----------------------|------|--------|--|--|---|--|---------|----------------|-------------|-----|--|----------| | Mounting | Thickness
(inches) | NRC | 125 Hz | 250 Hz | 500 Hz | 1000 Hz | 2000 Hz | 7H 0007 | Woigh
lb/ft | t
2 Lab. | Co. | Product | Foot- | | | | | | 24" x
2-1/2
Inclu
tener | shield
panels
48" to
" or 4"
des spe
s for 1
s. Uni
" x 4". | range i
48" x
thick.
cial fa
nterloc | sys-
from
144",
s-
king | | | RAL | | | <u> </u> | | 4 | 4 | . 95 | ,73 | .96 | 1,03 | 1,02 | 1,00 | . 94 | 6.4 | A71-2 | 142 | Sound Shield Panels | 2 | | | | | | 7'6". 8yster 24" x: 2-1/2 clude for in Double 04ts1: 6'0" x 12'0" Single | ng test 4'0"x de: 4'5 Sound m: pane 48" to or 4"; se specia sterloci e-wall tde dime 3'8"x 11'4" | shield ls rang 48" x 14; thick. al fast king pa rooms h 8'0" to | panel
e from
4",
In-
eners
nels.
ave
from | | | | | Sound Shield Rooms | | | 4 | 4 | .95 | .73 | . 96 | 1.03 | 1.02 | 1.00 | .94 | 6.4 | RAL | 142 | Series 100 through
700, 900 and 25B | 2 | | | | | | 7'10".
room:
x 7'2"
x9'5"
reduct | praction: 6'3" le: 6'3" le: 6'11 Music Inside: '; Outsi x 7'10" | practic
: 6'3" x
:de: 6'1
'. Noise | 8'9"
11" | | | | | | | | 4 | 4 | , 95 | .57 | .97 | 1.09 | 1.10 | 1.08 | 1,02 | 6.4 | RAL | 142 | Sound Shield Rooms
Series 800 | 2 | | | | | | 4", P | ize 30"
erforat
face wi
sheet m | ed shed
th back | ıt . | | | RAL | | | | | - | 4 | , 95 | .57 | . 98 | 1,13 | 1.06 | 1,06 | 1.03 | 5.9 | A72-124 | 187 | Sound Module | 8 | | | | | | sheet
alloy
ga, co | made of
steel w
outer s
ld roll
rface. | ith zir
urface. | 22 | ٠ | | | | Medical Examination
Rooms, Series RE-140, | | | - | 4 | . 95 | ,40 | . 99 | .99 | ,99 | , 98 | .05 | - | RAL | 168 | -240; RS-240, -250 | 5 | | 4 | - | - | .70 | .98 | . 99 | .99 | .94 | .83 | • | • | 9 | Sound Proof Rooms | | | | | | | Facing
glass. | ize 48"
moteri
Incom
fected | al, fil
bustibl | er- | | | | | | | | - | - | . 85 | .30 | .61 | .71 | ,96 | .89 | .85 | .75 | RAL | 83 | Nonois-2 | | #### TABLE 26C PREFABRICATED QUIET ROOMS - NO DATA ## Transmission Loss (decibels) 元 621 に 000 と 1 mm に 000 に 000 と 1 mm に 000 に 000 と 1 mm に 000 Foot-Co. Product Anechoic chambers in sizes ranging from small portable model to very large rooms. Can meet cutoff from 50 to 400 Hz. The An-Ext-Oic wedges used are made from fibrous glass and are mounted to form modular units, An-Eck-Oic Chambers Steel and glass rooms for indoor or outdoors. Standard heights: 8' and 10'. Standard panel: 28" wide. Prefabricated Sound proof Rooms Oustom built anechoic test facilities. Wedges 18" to 90" long. Anechoic rooms and wedges Designed for administering in-plant hearing test-Compact Attenuates external noise levels from 23 to 66 dB over 250 to 8000 Hz range. Audiometric "T" Booth Partial, telephone enclosures. Available in different sizes and shapes. Acousti-booth Audiometric booths and acoustic enclosures in industrial plants. Made using modular panels. Acoustical rooms and Fittings Exterior dimensions: Width, 48"; Length, 96"; Height, 108". Interior dimensions: Width, 44"; Length, 92"; Height, 92". 157 Quiet Rooms Exterior dimensions: Width, 96"; Length, 96"; Height, 100:. Interior dimensions: Width, 92"; Length, 92"; Height, 92". 157 Quiet Rooms 10 Portable audiological tosting booth, weight - 650 lbs, 2½ thick "Noishiald" panels, Outside dimensions are 29" wide x 39" deep x 75" high Compact Sound booth # FOOTNOTES FOR TABLE 26A, 26B, 26C PREFABRICATED QUIET ROOMS - 1. For hearing evaluation by doctors, nurses, etc. - 2. Audiometric rooms, music practice rooms, industrial sound controls, etc. - 3. In-plant offices, audiometric booths, testing booths, clear rooms, etc. - 4. Guard houses, power plant offices, control rooms, etc. - Industrial hearing consultation programs, testing programs in clinics, hospitals, and research facilities. - 6. For testing, etc. - 7. For sound isolation. - 8. Music rooms, recording rooms, reading rooms, noise protection, etc. - Quiet office space for production supervisors in noisy factories, forging plants, field job sites, etc. - 10. Audiometric examining rooms for conducting tests of employees hearing. - 11. Bracksted data are for the octave bands 75-150, 150-300, 300-600, 600-1200, and 1200-2400 Hz. ## TABLE 27 GYPSUM BOARD WALLS The sound transmission losses of gypsum board walls are listed. Walls are the most commonly used sound barriers and their acoustic performance plays a very important part in establishing the acoustic environments in apartments and homes. Generic information about the acoustical characteristics of walls is given in Section I-5.2.3. Gypsum is the most commonly used wall material; however, walls using gypsum boards of approximately the same thicknesses (say 1/2 inch) can be erected in a variety of ways with each wall construction providing a different sound
transmission loss. Most common variables in such wall construction are the number of gypsum boards, thickness of the insulation added in the cavity, additional sound deadening boards, and different stud materials and construction. Figures 27A and 27B show two gypsum board walls and illustrate the possible complexities of internal construction. Table 27 is subdivided according to the sound transmission class (STC) of the walls for convenience of presentation. The sound transmission class ranges are: 27A, 34 to 39; 27B, 40 to 44; 27C, 45 to 49; 27D, 50 to 54; 27E, 55 and higher. It should be noted that the products listed in Table 27 may not be available from the listed manufacturer in the form that they are listed in the table. For example, a manufacturer of insulation may build and test walls with and without insulation. The results of such tests are also presented in the table because it is thought that the information may prove useful to the users. The companies (by numbers shown in Section II) with products listed in Table 27 are: 58, 97, 99, 122, 128, 132, 154, 189. #### **GLOSS ARY** Facing: The outside surface of the specimen. In general the side facing the sound source Backing: The other outside surface of the specimen. In general the side not facing the sound source Core: The region between the facing and the backing Batt: Fiber wadded in sheets Fiber glass bolt: Fiberglass roll of a given length The creating of air spaces with thin strips of wood or metal be- fore adding wall bonds or plaster A hydrated sulfate of calcium. ${\rm CaSO_4} \cdot {\rm 2H_2O}$. Used for making wall-boards, plaster of Paris, etc. Gypsum: Lath: Thin, lightweight structure used as groundwork for plastering, mounting tiles, etc. It may be in a form of gypsum board, perforated metal wire cloth, thin wood strips, etc. Screw Stud: Studs on which the wall boards are attached by screws An upright piece in a frame to which boards or laths are applied Stud: Figure 27A Gypsum Board Wall with Twin Stud Support and Insulation Figure 27B Gypsum Board Wall with Staggered Studs and Insulation #### TABLE 27A GYPSUM BOARD WALLS; STC 34-39 | | | _ | | | T | ras | umi | asi | on | Los | IB (| dec | ibe | 11a) | | | | _ | | | | | |--------------------|-----|--------|----|------------|--------------------|--------|----------------------------|------------|--------------|-------------------|---------------------|----------------|---------|---------|---------|---------|---------|------------------|----------------------|------|---|---------------| | Thickness (inches) | STC | 125 82 | | | 五 052 | 315 Hz | 400 Hz | 500 Hz | 630 Hz | ZH 008 | 2H C001 | 1250 Hz | 1600 Hz | 2000 Hz | 2500 Hz | 3150 Hz | 4000 H= | Weight
1b/ft2 | Lab. | Co. | Product | Foot-
note | | | | | | Cor
Bac | k1n | g: | 5/8
1"
str
5/8 | Cyp
ipa | yps
attn | n ri
id (| lbs ;
los
bos | ur
ur
rd | е р | late | | | | ÷ | | | Semi-solid core,
studiess, wall | 5,6,
8,23 | | 2-1/4 | 361 | 22 | 21 | . 19 | 23 | 30 | 34 | 38 | 37 | 39 | 41 | 42 | 40 | 37 | 37 | 39 | 42 | 2 7 | CT | 128 | board | 8,23 | | 2-1/2 | 36 | | | Cor | ing
ro:
:kin | | 1/2
2/1/2 | me. | cal | ec | bo.
ge bo. | cor | 'ev a | 11 | | | | 10.5 | cr | 128 | Metal edge core-
wall, studiess | 5,6,
14 | | 3-1/2 | 24 | | • | Co: | | ığ: | 2-1
ins
1,2 | /2
u1. | yp
121 | tee
on)
sum | | grd
grd | # (| | 75 | . 37 | 42 | • | cr | 119. | 1/2" Gypsum
board wall | 1,4,20 | | 3-1/2 | J | 17 | 19 | 22 | 20 | 32 | 34 | 3/ | 40 | 43 | 43 | 47 | 43 | 43 | 33 | , | 44 | • | 4. | 132 | 00010 4412 | | | 3-1/2 | 37 | 17 | 21 | Co:
Bac | | g: | 1/2
Stu
1/2
35 | de. | λb | ı c | bod | ırd | pad | | 42 | 36 | 39 | 4,22 | KAL
799-2-
69R | 58 | Demountable
wall system | 23 | | 3-3/4 | 34 | 19 | 19 | Cor | kin | B # | 5/8
Wood
5/8
29 | d a | yp. | | boa | rd | 42 | 34 | 32 | 39 | 44 | 5.14 | KAL
1421-1-
72 | 58 | Damountable
wall system | 19,20 | | 3-3/4 | 38 | 20 | 18 | Bac | kin | g; | 5/8
Ser
5/8
36 | ů, | yp | uda | ьог | ırd | | 38 | 37 | 41 | 42 | | CT . | 128 | Gypsum wallboard
acrew stud, con-
tempo wall
demountable | 5,8,
23 | | | | | | Cor | kin | g : | 5/8
2-1
(no
5/8 | /2"
in | at
yps | ee. | l et
lon
bos | rd | 6 | | | | | | | | 5/8 ^{II} Gypsum | 1,4, | | 3-3/4 | 39 | 22 | 28 | | 27
ing | | 7/1:
and | | | | | | | | 37 | 42 | 47 | | CT | 132 | board wall | 19,20 | | | | | | Cor
Bac | | | 3/8
hol:
7/10
and | n p | 101 | n l | lat I | a) | nα | | | | | | | | Gypsum lath and | | | 4-1/4 | 39 | 23 | 20 | 24 | 31 : | 34 | | 41 | 44 | 46 | 46 | 44 | | | 41 | 45 | 47 | 8 | CT | 128 | plaster, Holostud
board | 23 17, | | 4-5/8 | 38 | 20 | 23 | | king | :: | 8 cr | C | s tu
y pa | ds
um | boa | rd | 51 | 49 | 36 | 36 | 40 | 4.5 | CT | 128 | Gypsum wallboard,
Singlelayer,
acrew studa | 5,12, | ## TABLE 27A GYPSUM BOARD WALLS; STC 34-39 (Conel) | | Tr | ansmission Loss | (decibels) | | | | | | |---------------|------------------------------|--|---|-------------------------------|------------------|-------------------------|--|---------------| | | | 315 Hz
403 Hz
500 Hz
630 Hz
800 Hz | 1000 Hz
1250 Hz
1600 Hz
2000 Hz | 2500 Hz
3150 Fz
4000 Fz | Weight
1b/ft2 | Lab. Co | . Product | Foot-
note | | 4-5/8(36) 17 | Core:
Backing: | 1/2" Gypaum b
5 wood stude
1'2" Gypaum b
35] 37 [39] 4 | oard | (38) 38 | 5.3 | RAL
TL-65-
186 99 | Standard stud,
dry wall | 2,21, | | 4~5/8 39 25 | | 5/8" Gypsum t
3-5/8" steel
(no insulation
5/8" Gypsum t
9 35 41 45 48 4 | studs
m)
oosrd | 37 36 40 | • | OCRL 13 | Noise isolation
#W-S10 without
insulation | 1,14 | | 4-7/8[37] 19 | Core:
Backing: | 5/8" Gypsum b
Wood scuds
: 5/8" Gypsum b
31] 34 (37) 4 | oard | [40] 43 | å | CT 12 | Drywall, wood
stud, 5/8" fire
shield wall
board | 2,21 | | 4-7/8 39 25 | | 5/8" Gypsum b
3-5/8" steel
(no insulatio
5/8" Gypsum b
) 39 44 44 47 4 | n)
oard | 35 41 47 | - | ст 132 | 5/8" Gypsum
board wall | 1,4,20 | | | Core:
Backing: | 5/8" Gypsum b
sound deadeni
lining
Wood stude (n
facing and be
5/8" Gypsum b
sound deadeni
lining | ng board
ailed to
cking)
oard with
ng board | | | | 5/8" Gypsum
board wall with | 24 | | | Facing;
Core;
Backing; | 7 wood atuda
1/2" Cypsum b | oard | | 8 | CT 154 | Staggered stud | 2,21, | | 6-5/8 (39) 19 | [25] 30 [3 | 36] 41 [43] 4 | 8 [49] 47 | [37] 42 | 0.3 T | L65-185 99 | dry wall | 23 | ## TABLE 27B GYPSUM BOARD WALLS: STC 40-44 ## Transmission Loss (decibels) | | | • | | | | | | | _ | | | _ | _ | | | _ | | | | | | | |-----------------------|-----|--------|------|------------|----------------------|--------|-------------------------------------|---------------------|------------------|-----------------|-------------------|-------------------------|-------------------------|-----------|---------|---------|----|------------------|----------------------|-----|------------------------------------|--------------| | Thichness
(incres) | STC | 125 22 | | | | 315 Hz | 400 Hz | 500 Hz | 630 Hz | 800 Hz | 2E C001 | 1250 32 | 1600 32 | 2000 Hz | 2500 32 | 3150 32 | | Weight
1b/ft2 | Lab. | Ço. | Produce | Foot- | | H - | | - | - | 7 | ~ | ~ | 4 | | 9 | —. | | | | N | N | | -4 | 10/10- | . Fan. | LO, | Fronce | note | | | | | | Co | cing
to:
ckin; | | Ext | Fuc | ed
ed | alu | ımir
ff | ium
bet | ati | цd | | | | | | | | | | 2-3/4 | 40 | 17 | 20 | | 31 | | | | | | | | | | | 42 | 46 | - | RAL
TL68-61 | 122 | Marlite Partition System #275 | m
23 | | , | .,- | | | | | | | | | | | •• | | | ,- | | | | ••• | | | | | | | | | Fac
Cor | ing | | boa | rd | yer | wal
run | 1 p | yor
ana | l w
te. | itth | ar | ğl | e, | | | | | | | | | | | | | | BAC | kin | 5 | boa
boa | rd
rd | yer | B C | E 3 | /4 | G) | A D B I | am. | | | | | | Metal edge core-
wall, studiess | ,
5 1/ | | 3-1/4 | 40 | 29 | 28 | 29 | 31 : | 12 | 33 | 35 | 38 | 39 | 40 | 43 | 45 | 46 | 45 | 43 | 44 | 13.5 | CT | 128 | board | 5,14,
23 | | | | | | Cor | ing:
o:
kin | 3: | 1/2
2-1
1/2 | " G | yps
st
yps | um
eel
um | boa
st
bos | rd
uds
rd | | | | | | | | | 1/2" Gypsum | 1 4 | | 3-1/2 | 43 | 20 | 24 | 27 | 34 3 | 18 | 44 | 48 | 48 | 51 | 53 | 56 | 57 | 58 | 46 | 42 | 43 | • | C T | 132 | board wall | 1,4
19,20 | | | | | | Cor | • | | and | 2" | ypsi
sti | Bul. | atí | on | | | | | | | | | 1/2" Gyp#um | | | | | | | | king | | | | | | | | | | | | | | | | board wall with | 144
19,20 | | 3-1/2 | 44 | 25 | 27 | 30 | 35 4 | .3 | 47 | 50 | 51 | 53 | 55 | 57 | 58 | 59 | 50 | 44 | 46 | • | CT | 132 | insulation | 19,20 | | | | | | Cor | ing: | ;: | with
plan
Serv | n m
ee
W
K | a Cur | num
de | 3/. | 32" | Ve | nec | r | | | | | | Veneer plaster, | 5,9,
23 | | 3-3/4 | 40 | 19 | 21 | 28 | 34 3 | 8 | 40 4 | 12 | 45 | ¥7 · | 47 | 46 | 40 | 36 | 39 | 42 | 44 | - | CT | 128 | screw stud | 23 | | | | | | Cor | king | ;; } | 5/8 | G | | ım I | boa | rd | | | | | | | KAL
1421-2-
72 | | Demountable | | | 3-3/4 | 43 | 23 | 26 | ,12 | 35 3 | 15 : | 19 4 | 2 | 46 4 | 8 4 | 9 | .9 | 47 | 44 | 42 | 46 | 52 | 5.59 | 72 | 58 | wall system | 19,20 | | | | - | | Cor | king | ; | and
1/8'
1010
1/10
1/10 | 1/
G
1/ | Cyp! | co
m | at
Lati
sa: | fin
h a
nd
fin | ísh
nd
plo
ish | i
iste | r | | | | | | Gypsum lath | 5,17, | | 4-1/4 | 41 | 23 | 26 | 30 |
36 4 | 0 4 | .3 4 | 4 | 48 4 | 9 : | 50 : | 50 | 46 | 37 | 42 | 47 | 51 | 14 | ct | 128 | screw stud | 23 | | | | | | Fac | ing: | b | Dar | ď | yer: | | | | Gy | psu | m | | | | | | | | | | | | | COT | e:
king | ; 0 | -1/ | '2''
14) | ate
/er | el
of | 1/2 | ida
(| Зур | BUN | I | | | | | | Noise isolation | | | 4-3/8 4 | 44 | 28 : | 29 . | 31 | 31 3 | 3 4 | 2 4 | 6 4 | 5 4 | 9 5 | 1 5 | 12 5 | 4 | 52 | 43 | 44 | 47 | - | CT | 132 | W-S15
No insulstion | 1,8 | #### TABLE 278 GYPSUM BOARD WALLS: STC 40-44 (Contd) # Transmission Loss (decibels) 125 H 160 E 250 25 Lab. Product note Facing: 1/2" Gypsum board Core: Scraw stude Backing: 1/2" Gypsum board Gypsum wallboard, single layer, 5,13, 128 screw-studs 23 4-5/8 40 21 26 24 31 34 37 39 42 46 48 50 50 47 37 38 42 4.5 Facing: 5/8" Gypsum board Core; Hetaledge corewall panel wich angles, runner, etc. Backing: 5/8" Gypsum board 4-5/8 43 29 28 28 32 34 37 39 41 43 45 48 52 54 55 57 57 19.5 Metaledge corewall, 128 studiese board CT Facing: 1/2" Cypsum board Core; 3-5/8" stude and 2-1/2" insulation Backing: 1/2" Cypsum board 14420 4-5/8 44 29 30 35 49 41 47 52 54 56 58 60 59 60 57 40 45 132 Facing: 5/8" Gypsum board and 3-5/8" steel stud and 3-1/2" insulation Backing: 5/8" Gypsum board 5/8" Gypsum board wall with 1,4, 132 insulation 19,20 4-7/8 44 29 35 40 42 43 47 52 55 57 57 57 54 45 40 44 50 Facing: Two layers of 1/2" Gypsum board Core: Screw studs Backing: One layer of 1/2" Gypsum board Gypsum wallboard, unbalanced, 5,13, 128 screw studs 23 5-1/8 43 25 30 27 34 38 42 42 47 50 51 53 54 50 40 41 46 Facing: Two layers of 1/2" Gypsum board Core: Screw studs Backing: One layer of 1/2" Gypsum board Gypsum wallboard, unbalanced, 5,12, 128 screw stud 23 5-1/8 44 26 30 28 35 37 41 43 47 50 51 53 54 53 42 42 46 7 Facing: 5/8" Gypsum board with resilient channel Core: Wood studs Backing: 5/8" Gypsum board Noise isolation, #W-W3 without 132 insulation 1,15 3-3/8 40 27 27 29 25 30 42 42 46 49 51 53 51 42 40 44 54 6.4 Facing: 5/8" Gypsum board Core: Wood studs and furring channel Backing: 5/8" Gypsum board Drywall wood stude, fireshield, wall board, insula-tion, restliant 128 furring channel 7,23 5-3/8 43 24 24 30 36 38 40 41 44 48 48 51 50 45 42 43 49 ### TABLE 27B GYPSUM BOARD WALLS; STC 40-44 (Contd) | | T | ransmission Loss (decibels) | _ | | | |-------------|---|--|------------------|----------------|---| | | 750 Hz
760 Hz
760 Hz
770 Hz | # # # # # ·· · · · · · · · · · · · · · | Weight
1b/ft2 | Lab. Co. | Foot-
Product note | | | Facing:
Core:
Backing | : 5/8" Gypsum with sound
deadening board strips
(adhesive between these two)
Wood stud (nailed to facing
and backing)
1: 5/8" Gypsum with sound
deadening board strips
(adhesive between these two) | | | 5/8" Gypsum board | | 5-3/4 42 21 | Facing:
Core: | 5 39 44 47 49 51 54 55 48 41 46 5 5/8" Gypsum board with 1/4" sound deadening board Wood stude (nailed to facing and backing) 5/8" Gypsum board with 1/4" sound deadening board | l 8 | CT 154 | wall with board strips 24 | | 5-3/4 43 25 | 22 28 37 3 | 8 37 42 45 47 49 53 56 54 51 54 5 | 8 | CT 154 | wall with | | 6-1/8 40 25 | _ | Two layers of 5/8" Gypsum
hoard
Wood stud
: Two layers of 5/8" Gypsum
board
8 33 34 37 41 46 48 48 45 43 47 5 | . • | cr 128 | Drywall, wood
stud, double
layer fireshield
wall board 23 | | 6-1/8 41 25 | | Two layers of 5/8" Gypsum
board
Wood stud and fiberglas
Two layers of 5/8" Gypsum
board
3 34 35 38 42 47 48 49 46 44 47 51 | - (| cr 128 | Drywall, wood stud,
double layer firs-
shield wallboard,
insulation 23 | | 6-1/4 44 22 | Pacing:
Core:
Backing:
23 29 34 39 | Two layers of 5/8" Gypsum
board separated by furring
channel
Metaledge corewall
Two layers of 5/8" Gypsum
board separated by furring
channel
9 44 51 57 61 64 66 68 63 59 62 66 | 18.5 | 7 7 128 | Motaledge core-
wall, studless 5,6,
board 14,20 | | 6-3/4 42 24 | | 5/8" Gypsum board
Wood studa and horizontal
wood ribs
5/8" Gypsum board
37 38 43 45 45 47 47 42 39 43 47 | - c | T 128 | Drywall, wood
studs staggered,
fireshield
wallboard 23 | | 6-7/8 42 29 | - | 5/8" Gypsum board
Wood studs and no in-
sulation
5/8" Gypsum board
40 42 44 46 46 48 46 39 39 46 52 | 7.2 c | Γ 132 | Noise Isolation
W-W5
(no insulation) 1,15 | ### TABLE 27B GYPSUM BOARD WALLS; STC 40-44 (Concl) | | | | | | | E 411 | 107 | 181 | DE. | 401 | 9 (0 | ec. | be | 18) | | | | | | | | | |-----------------------|-----|--------|--------|------------|-------------|--------|--------|-----------------|------------|------------|--------------------|-----------|-----------|---------|---------|---------|---------|------------------|------|-----|--------------------------|---------------| | Thickness
(inches) | STC | 125 Hz | 160 Hz | ZD0 Hz | 250 Rz | 315 Hz | 400 Hz | ZH 00S | 530 Hz | 800 Hz | 1000 Hz | 1250 Hz | 1600 Hz | 2000 Hz | 2500 Hz | 3150 Hz | 7H 0007 | Weight
1b/ft2 | Lab. | Co. | Product | Foot-
note | | | | | | | cin
re: | g; | 5/ | 8 ¹¹ | Gyp | pun | ba. | ard | | | | | | | | | | | | | | | | Ba | cki | ng: | 5/ | 811 | Gyp
Gyp | eun | bo | n ed | 4 6 | cut | .9 | | | | | | Noise isolation
W-W7 | | | 9-1/4 | 43 | 34 | 33 | 38 | 35 | 37 | 49 | 47 | 51 | 53 | 54 | 56 | 54 | 45 | 39 | 45 | 54 | - | CT | 132 | (no insulation) | 1,15 | | | | | | | cin
re: | | Ch | Ase
ace | WA | 11
1-5 | boi
witi | i li | 2"
0 8 | tud | B. | | | | | | | | | | | | | ва | cki | ne: | 3-1 | 1/2 | " g
Svo | tud
aum | bra | ice | aţ | 1/ | 3 T | eig | ht | | | | Noise isolation | | | 13 | 42 | 27 | 30 | 33 | | - | | | | | | | 55 | 50 | 40 | 39 | 45 | - | CT | 132 | W-S17
(no insulation) | 1,9 | | | | | | Fa:
Co: | cin;
re; | g: | Cha | RE O | wa | 11
1-5 | bor
with
/8" | li
twi | 3 8 | tud | 8. | | | | | | | | | | | | | Ва | ckir | ıg: | 1/2 | ;;; 6 | y p | enw
Ca | at n | ird | ıeı | Ruc | | | | | | | 1/2" Gypaum | | | 13 | 43 | 30 | 31 | 37 | 40 | 40 | 45 | 47 | 46 | 49 | 51 | 53 | 56 | 50 | 39 | 40 | 47 | | CT | 132 | board wall | 19,20 | ### TABLE 27C GYPSUM BOARD WALLS; STC 45-49 | | | _ | | | 1 | ran | emi | s#1 | on 1 | Los | s (c | dec | 160 | 1s) | | | | | | | | | |-----------------------|-----|--------|--------|-------------------|------------------|------------|---------------------------------|--|---------------------------------|--------------------------|----------------------------|--------------------------|-----------------|---------------------|----------------|---------|---------|------------------|------|------|--|-------------| | Thickness
(inches) | SIC | 125 Bz | 160 Hz | | 250 Hz | 315 Hz | 400 Hz | 500 Hz | ₹H 0E9 | 800 Hz | 1000 Hz | 1250 Hz | 1600 Hz | 2000 Hz | 2500 Hz | 3150 11 | ZH 0005 | Weight
1b/fc2 | Lab. | Co. | Product | Foot- | | 3-1/2 | 45 | 23 | 29 | Co
Ba | | ពន្ធ៖ | 17 | 2" (
1/2'
sula
2" (| acio
Cypi | on
sun | bos | ard | | | | 43 | 49 | - | CT | 1.32 | 1/2" Gypsum
board wall
with insulation | 1,19,
20 | | 3-1/2 4 | 46 | 23 | 29 | Co: | | ngı | 1/ | 2" (
1/2'
1n;
2" (
53 | ypt
Typt | utic
um | bos | ırd | | | 50 | 44 | 46 | • | cr | 132 | 1/2" Gypsum
board wall
with insulation | 1,4 | | 3-1/2 4 | 17 | 24 | 29 | Bac | | ıgı | Sci
Wood
1/2 | 2" 0 | stu
Syps | ids
ium | and
wal | 1 2'
1b: | ar c | Lne:
i | | 46 | 47 | 5 | cr | 128 | Gypsum wallboard
screw stud -
contempo wall
demountable | 1,
5,8, | | 3-3/4 4 | .5 | 26 | 35 | Co: | kir | ıg: | 1n:
5/8 | 8" (
1/2"
1/2"
1418
5" (
52 | yps | ก
นแ | boa | rd | | | 41 | 45 | 51 | - | ст | 132 | 5/8" Gypsum
board wall
with insulation | 19420 | | 3-3/4 4 | 6 | 25 | | Cor
Bac | kin | g: | 3/3
2-1
fib
1/2
3/3 | 2"
 /2"
 erg

 | Kol
sc
lms
al-
Kal | -Ko
rew
Kor
-Ko | to
o w
to | pla
uda
ich
pla | wi
mi
ato | r
th
nin
r | 2*1
11.1111 | 44 | 47 | 6 | CT | 128 | Vencer plaster, | 5,9,
23 | | 4 4 | 5 | 22 | | Cor
Bac | o:
kin | E ; | 8yp
2-1
1/2
8yp | " G | yps: | ard
rew
um
rd | li:
st:
boa:
lin: | nin
uds
rd
ing | MT E | h 1 | /4' | • | 52 | | CT | 128 | Drywall, screw
stud, 1/4" Gypsur
wallboard | m
4,23 | | | | | ٠ | Pac
Cor
Bac | ing
e:
kin | :
B: | 1/2
Byp
2-1
1/2
Byp | # 6
/2"
8
sum | and
la:
ac:
and
la: | pl
th
row
pl | ast:
ot: | or
uds
er | and
and | 3/
3/ | 8"
8" | | | 12 | СТ | 120 | Lath and pleater
acrew stud,
board | | | 4-1/4 4:
4-1/4 4: | | | | Pac
Cor
Bac | ing
o:
kin | ;
8: | 1/2
8yp
2-1
1/2
8yp | " 8;
2"
/2"
" 8;
Sum | and
lat
act
and
lat | pl
th
row
pl | sete
sete | er
uds | and
and | 3/
3/ | 8"
8" | | | 12 | cr | | 3/8" Gypsum
lath wall with
sand plastor | 5,11,18,23 | ### TABLE 27C GYPSUM BOARD WALLS; STC 45-49 (Contd) | | | _ | _ | _ | | Tr | onsi | nis | sion | Lo | BB (| de | ibe | 15) | | | | | | | | | |---------------------|-----|----|----|-------------------|-----|------|----------------------|-------------------|--------------------------------------|------------|--------------|-----------|----------|----------|----------|----------|----
------------------------------|------|-----|---|---------------| | Iniches
(inches) | STC | | | ZH 041 | | | | | 4 005
4 063 | | | 1250 Hz | 1600 Hr. | 2000 Hz: | 2500 Hz: | 3150 Hr. | | Weight
1b/ft ² | Lab, | Ço. | Product | Foots
note | | 4-5/8 | 46 | 25 | 31 | | | | | | Сур
В п
Сур
9 52 | | | | | 61 | 47 | 42 | 46 | 5 | cr | 128 | Gypsum wall
board, single
layer, acrew
studs | 5,12, | | 4-5/8 | 46 | 27 | 32 | Co | ck: | lng: | . f1 | 2" | Gyp
rg1a
Gyp: | u bo | lt s
boa | rd | | | 44 | 42 | 47 | 5 | ct | 125 | Gypsum wall
board, singTo
lsyer, scraw
studa | 5,13,
23 | | 4-5/8 | 46 | 28 | 32 | | k | ng: | Gy | 5/I
par | im be | 80 | et | | 58 | 58 | 48 | 43 | 46 | • | στ | 132 | Noise isolation,
W-810, 3-1/2"
insulation | 1,14 | | | | | | Fac | | | The s | | layer | | <i>e</i> 1 | /911 | - Cu | n411 | _ | | | | | | | | | | | | | Cor | | | bo | arc | | | | | - | | | | | | | | | | | | | | | | | | £1
On | e i | glas |) be | lt. | | | | | | | | | | Gypsum wallboard
unbalanced, | | | 5-1/8 | 49 | 27 | 34 | 36 | 41 | 44 | | 48 | | 55 | 56 ! | 56 | 58 | 58 | 47 | 46 | 52 | 7 | CT | 128 | unbalanced,
screw studs | 5,13,
23 | | | | | | Fac
Cor
Bac | :0; | _ | bo
3-
fi
On | ari
5/6
boz | " sc
'81at
.eyet | rew
bo | sti
1ts | ud | and | 2" | | | | | | | Gypsum waliboard
Unbalanced, | l. | | 5-1/8 | 49 | 29 | 34 | 36 | 40 | 43 | | | 53 | 55 | 55 ! | 56 | 56 | 57 | 50 | 46 | 50 | 7 | cr | 128 | Unbalanced,
acrew atuda | 5,12,
23 | | | | | | Pac | Ĺ | g; | bo. | ard | ayet | | | | | • | m | | | | | | | | | | | | | Cor | e: | | 3- | 5/8 | " at | eol
sul | eti
etic | ide
on | ΑŢ | th | | | | | | | | | | | | | | B4c | ki | ng : | On: | a 1 | ayet | of | 1/2 | 211 (| Сур | Briti | | | | | | | Gypsum
board wall with | 4,19, | | 5-1/8 / | 49 | 34 | 37 | 40 | 43 | 46 | 49 | 52 | 54 | 56 | 56 5 | 88 | 50 : | 59 : | 52 4 | 46 | 49 | • | CI, | 132 | insulation | 20, | | | | | | Fac
Cor
Bac | e: | | Voc
fit | il
d | Gypa
ient
stud
glas
Gyps | eh.
Pai | anne
ad 3 | 1-1, | | h | | | | | | | Noise isolation,
W-W3, 3-1/2" | | | -3/8 4 | 46 | 29 | 33 | | | | | | | | | | 54 4 | 18 4 | 2 5 | 50 | 58 | 6.4 | CT . | 132 | W-W3, 3-1/2"
insulation | 1,15 | | | | | | Fac | | | Gyp | su: | Сури
п Бо | ard | | | | 1 1/ | 4" | | | | | | | | | | | | | Cor
Baci | ei: | ng; | Woo | d | Type
D bo | ր
um ի | oar | d s | /101 | 1 1/ | 4" | | | | | | Drywall, wood at | ad, | | -1/2 4 | 15 | 21 | 25 | 32 : | 36 | | | | | | | _ | | 5 5 | 1 5 | 0 | 53 | - | CT | 128 | 1/4" Cypaum wall-
board | 4,23 | #### TABLE 27C GYPSUM BOARD WALLS; STC 45-49 (Contd) | Transmi | Beion | Loss | (0 | aci | bols, |) | |---------|-------|------|----|-----|-------|---| | | | | | | | | | | | | | | | 114 | 1151(3) | . 88 | rott | 1.05 | * 1 | age | 106 | ILB) | | | | | | | | | |-----------------------|------|----|--------|---------|---------------------|--------|------------------------------|------------------|-----------------------|-------------------|------------|-------------|------------|-------------|-----------------|---------|---------|----------------|-----------|-------|----------------------------------|---------------| | Thickness
(Inches) | STC | } | 125 Hz | 160 Hz | 200 Hz | 21 VC2 | | 2H 005 | | 2H 008 | 1000 Hz | 1250 Hz | 1600 Hz | 2000 Hz | 2500 Hz | 3150 Hz | ZH 0007 | Weigh
lb/ft | ic
Lai | b, Co | . Product | Foot-
note | | | | | | F | acir | 18: | Two | | ayeı | 8 4 | of 1 | 1/2' | C | уры | ım | | | | | | | | | 5-1/ | 2 /5 | , | 0 1 | B | | ,ng; | 3-5
One
bos | 1/8
1
1rd | | af | 1/ | 2" | | | | ,, | 14 | | | | Gypsum board
wall with | 1,19, | | 3-17 | ~ 43 | _ | , | _ , | ננ נ | , ,, | 41 | 40 | 47 | 47 | 31 | 23 | 30 | 23 | 4,3 | 41 | 40 | - | c | r 15 | 4 board lining | 20 | | | | | | | acin | 8; | Two | rd | - | | | | | /psi | m | | | | | 1 | | | | | | | | | | ng: | TWO | - 14 | ıyer | | fì | /2" | C) | pau | m | | | | | | Gypsum wallboam
double leyer, | ed . | | 5-5/ | 8 46 | 2 | 8 3 | 13 | 3 35 | 41 | 43 | | 49 | 52 | 55 | 55 | 56 | 53 | 44 | 45 | 50 | 9 | CT | 18 | double layer,
9 acrew stude | 5,13,
23 | | | | | | F | cin | g: | Two | 10 | yerı | 0 | f 1 | /2" | Gy | psu | n | | | | | | | | | | | | | Co
B | re:
icki | rig; | boa:
3-5
Two
boa: | /8"
1.a | yer: | rew
1 D | 6 I | uds
/2" | Gy | psu | n | | | | | | Gypaum wallboar
double layers | d,
5,12, | | 5-5/8 | 48 | 36 | 3: | 34 | 38 | 41 | 45 4 | ¥7 | 51 ! | 33 3 | 54 | 57 : | 57 | 57 | 46 4 | 46 | 50 | 9 | CT | 126 | | 23 | | | | | | Co | cin
re:
ickir | 1g; | 5/81
8011
Wood
5/81 | id
G | doac
tudi
ypsi | leni
I
Im t | ing
odi | bod
rd s | erd
vit | 11:
h_1; | 11n;
 2 | - | | | | | Gypsum board
wall with | | | 5-3/4 | 48 | 28 | 27 | 37 | 41 | 43 | 44 4 | 8 | 50 : | 1 : | 53 5 | 55 : | 59 | 57 : | 55 3 | 57 | 60 | 8 | cr | 154 | | 24 | | | | | | Co | cing
re:
ckin | ığ; | 5/8'
sour
Wood
5/8' | d
si
G | ie ad
tuda
/psu | ení
m b | ng
oat | boa
d w | ırd
Itl | lir
n l | iÎng | š | | | RAL | | Partition wall | | | 5-7/8 | 48 | 24 | 28 | 34 | 37 | 42 | 47 5 | 1 5 | 55 5 | 8 6 | 1 6 | 2 6 | 4 (| 53 6 | 0 6 | 1 (| 54 | 7.7 | T1.70-3 | 189 | aystem | 21,22 | | | | | | Ça | cing
ra; | 1 | 5/8"
soun
Hood | d d
et
the | iead
uda
or) | eni
(a | 11 | boa
nai | rd
lec | lír
i | ing | ı | | | | | | | | | | | | Ba | ckin | g: | 5/8"
soun | ď | rpsu
lead | m b
eni | OAT
NE | d w
bos | iti
rd | lin | 2"
ine | | | | | | 5/8" Gypaum | | | 6 | 46 | 22 | 31 | 36 | 38 | | 46 4 | | | | _ | | | | _ | | 5 | 8 | cri | 154 | board wall with
board lining | 24 | | | | | | - | cing | | 5/B"
soun
lood | d č | lead | eni | กห | boa | rd | 111 | ing | | | | | | | | | | | | | Ва | ckin | g: 5 | 5/8" | Cy | psu | m b | OAF | d w | Ltl | 1,1/ | 2 ⁽¹ | | | | | | 5/8" Gypaum | | | 6 | 48 | 24 | 35 | 38 | 39 | | 47 4 | | | | _ | | | | - | | 2 | 8 | CT | 154 | board wall with
board lining | 24 | ### TABLE 27C GYPSUM BOARD WALLS; STC 45-49 (Concl) | | | _ | _ | | _ | _ | | | _ | | | | | | _ | _ | _ | _ | | | | | | |-----------------------|-----|--------|----|-----------|---------------------------|--------|--|-------------------------------|----------------------------|----------------------|--------------------------|------------------------|-------------|------------|---------------|----|----|----------|------------------------------|------|-----|---|-------| | Thickness
(inches) | SIC | 125 Hz | | | | 315 Hz | 400 Hz | 500 Hz | 630 Hz | 800 Hz | 1000 Hz | 1250 Az | 1600 Bz | 2000 Hz | 2500 Hz | | | #000 H | Weight
1b/ft ² | Lab. | Co. | Product | Foot- | | 6-1/4 | 46 | 22 | 29 | Co:
Ba | cing
re:
:kin | g: | boa
cha
Met
Two
boa
cha | rd
nne
sle
la
rd | dge
yere
eeps
1 | co
co
co
ra | ted
rew
f 5
ted | by
all
/8"
by | Gy
Eu | rri
rri | ng
m
ng | 63 | 66 | <u> </u> | 18.5 | CT | 128 | Metsledge
corewall, Stud-
less board | 546i9 | | 6-7/8 | 49 | 25 | 31 | Co
Ba | cing
ra:
ckin
40 | g: | Woo
5/8 | d a | | M W | bos | fi
rd | | - | | 51 | 5 | 9 | 7.2 | C&N | 132 | Noise isolation
W-W5 with | 1,3 | | 7-1/4 | 45 | 32 | 34 | Co
Ba | cing
re;
ckin
42 | g: | Woo
5/8 | d s | | wi
im | th
bos | fib
rd | | | | 45 | 4 | 9 | - | cī | 128 | Drywall, wood
stude staggered,
fireshield
wallboard,
insulation | 4 ,23 | | | | | | Ba | cing
ra;
ckin | g: | Dou
wit
bos
two
5/8 | ble
h 1
rd
ro
" C | ypsi | ım
F | of
und
spa
boa | woo
de
ce
rd | a de
bet | nir
Wee | ig
in | | | _ | | | | Gypaum | | | 9-1/2 | 48 | 27 | 30 | Fa
Co | 34
cing
re;
ckin | ; | 5/8
Dou
and | " G
ble
6 | ypai
roi
mil
n ti | Po
Po
Pim | bos
f w | rd
ood
hey | 80 | uds | | | 6 | 7 | 10 | CT | 154 | board wall | 24 | | 10-1/4 | 45 | 26 | 25 | | 33 | | | | | | | | 59 | 54 | 56 | 49 | | | - | OCRL | 154 | 5/8" Gypsum
board wall | 4,24 | ### TABLE 27D GYPSUM BOARD WALLS; STC 50-54 | | Tr | ansmission Loss (decibels) | | | | | |------------------------------|-----------------------------
--|-----------------------------------|-----|--|---------------| | Thickness
(inches)
STC | | 315 hr
400 hr
500 kr
630 hr
11250 hr
11000 hr
1250 hr | Weight
lb/ft ² Lab. | Ca. | Product | Foot- | | | Facing: | Two layers of 1/2" Gypsum
board | | | | | | | Core: | l" Fiberglas and furring channel | | | | | | 4
(nom.)53 | | ;: 2" Metaledge corewall panel
.7 51 55 56 57 58 59 60 60 60 62 64 | 12.5 CT | 128 | Metaledge Core-
wall studless | 5,6
14,19 | | | Facing:
Core:
Backing | 1/2" Gypsum board with 1/4" Cypsum board lining 2-1/2" screw stud with 2" glass fiber 1/2" Gypsum board with 1/4" | | | Drywall sersw | | | 4 53 | _ | Gypsum board lining
8 52 55 55 55 54 57 60 62 62 59 66 | - ст | 128 | stud, 1/4"
Gypsum
Wallboard | 4,23 | | | Facing; | | | | | | | | Core: | Screw stude (2-1/2" and | | | | | | | | glass fiber) (Cone layer of 1/2" Gypsum board | RAL | | Gypsum Wallboard
unbalanced,
screw studs | 2,5,
8,22, | | 4-1/8[52] | 34 [38] 40 [4 | 461 50 [54] 54 [56] 56 [51] 51 | 7 TI.66-66 | 128 | acrew stude | 23 | | | Facing: | Two layers of 1/2" Gypsum
board | | | | | | | Core; | 2-1/2" steel stud with
fiberglas insulation | | | | | | | Backing; | : One layer of 1/2" Gypsum
board | | | Noise isolation
W-515 with 2-1/2 | | | 4-3/8 51 | 32 34 35 43 47 | 7 52 55 56 58 58 60 61 61 54 47 51 | - cr | 132 | insulation | 1,8 | | | Facing: | 1/2" Gypsum board with 1/2" Gypsum board lining | | | | | | | Core:
Backing: | Screw stude and glass fiber
: 1/2" Gypsum board with 1/2"
Gypsum lining | RAL | | Gypsum board wal double layer, | 1,
5,8, | | 4-1/2 53 | 38 41 44 43 47 | 7 49 51 54 55 55 58 58 58 53 51 52 | 9 TL66-65 | 128 | scraw studa | 22,23 | | | Facing: | Two layers of 5/8" Gypsum
board | | | | | | | Core:
Backing: | Screw studs
Two layers of 5/8" Gypsum
hoard | | | Cypsum wallboard | • - | | 5 [50] | 28 (35) 41 (4 | 4] 48 [51] 53 [55] 53 [54] 55 | 11 Gan | 128 | double layer,
screw stude | 2,5
8,21 | | | Facing: | Two layers of 1/2" Gypsum
hoard | | | | | | | Core:
Backing: | 2-1/2" steel studs
Two layers of 1/2" Gypsum
board | | | Noise isolation
W-S16 (no | 1.8. | | 5 50 | 32 36 36 40 39 | 9 46 52 52 53 55 56 57 57 54 50 54 | - CT | 132 | insulacion) | 1,8
19,20 | #### TABLE 27D GYPSUM BOARD WALLS; STC 50-54 (Contd) # Transmission Loss (decibels) SIC 125 H 31 15 1 Lab. Product Facing: 5/8" Gypsum board Core: Wood stude, fibergles and furring channels Backing: 5/8" Gypsum board Drywall, wood studs, fireshield, wall-board, resilient 128 furring channel 2,21 5-3/8 [52] 32 [35] 44 [48] 51 [52] 56 [59] 56 [58] 59 -Facing: Two layers of 5/8" Gypsum board Core: Screw stude and mineral wool One layer of 5/8" Gypsum board Unbalanced, screw studs, Gypsum 128 wallhoard 5-1/2 [53] 31 [37] 48 [48] 56 [56] 56 [57] 56 [53] 55 9 Facing: Two layers of 1/2" Gypsum hoard Core: Screw studs and fiberglas bolts Backing: Two layers of 1/2" Gypsum board Gypsum wallboard, double layer, 5,13, screw studs 23 5-5/8 50 30 36 36 38 46 48 50 53 56 56 57 59 59 48 48 54 Facing: Two layers of 1/2" Gypsum Core: 3-5/8" screw studs, 3" fiberglas bolts Backing: One layer of 1/2" Cypsum board Gypsum wallboard, double layer, 5,12, 128 acrow studs 23 5-5/8 53 34 38 38 43 46 50 53 56 \$9 59 61 61 62 55 51 55 Facing: 5/8" Gypsum board with 1/2" Homosole sound deadening board Wood studs Backing: 5/8" Gypsum board with 1/2" Homosole sound deadening board 5/8" Gypsum board wall with sound 97 deadening boards 23 KAL 506-2-67 5-7/8 50 27 29 37 39 43 46 47 51 53 59 62 62 60 57 57 55 Facing: 5/8" Gypsum board with 1/2" sound deadoning board Wood stud and glass fiber insulation Backing: 5/8" Gypsum board with 1/2" nound deadoning board Partition wall RAL Partiti TL70-2 189 system 5-7/8 52 28 32 39 43 46 56 55 57 59 62 63 65 64 61 62 63 7.8 Facing: Two layers of 1/2" Gypsum board 3-5/8" screw studs Backing: Two layers of 1/2" Gypsum board 6-1/8 50 34 34 40 42 40 47 53 52 54 55 57 59 58 48 48 52 -Facing: Two layers of 5/8" Gypsum board Core: 3-5/8" screw stude Backing: Two layers of 5/8" Gypsum board Gypsum wallboard, double layer, 2,5, 128 screw studs 14,21 6-1/8(51) 29 [39] 41 [45] 48 [54] 53 [54] 53 [54] 57 11 ### TABLE 27D GYPSUM BOARD WALLS; STC 50-54 (Contd) | | | _ | | | ш | 12000 | | ,040 | iner | TUE | | | | | | | | | | |-----------------------|-----|--------|----------------------------------|------------|-------------------------------------|------------------------------------|-------------------------------|-------------------------------------|----------------------|-------------------|-------------------|------------|---------|---------|----------------|-----------------|-----|---|--------------------| | Thickness
(inches) |)IC | 125 Hz | 160 Hz
200 Hz | | 315 Hz | 24 005
200 Hz | 630 Hz | 800 Hz
1000 Hz | | 2H C091 | 2000 Hz | 2500 Hz | 3150 Hz | 4000 Hz | Weigh
1b/ft | nt
2 Lab. | Co, | Product | Foot- | | 6-3/16 51 | 1 : | 19 4 | Core
Baci | king | Ho
: 1/ | lo a
'2" p | nd 3
tude
last
ind 3 | er w
1/8"
and
er w
1/8" | lati
ith
lati | fil | erg | las
ì | | 56 | 12 | ст | 128 | Resilient one
side, Gypsum
lath and plaster
holostud | 5,16,
23 | | 6~5/8 50 |) 2 | 17 3 | Fact
Core
Back
4 36 4 | i;
cing | bo
Wo
ch
Tw
bo | ard
od s
anne
o la
ard | tuds
1
yers | of .
snd
of : | fur
5/8" | ri:
G) | ig
/pau | a | 53 | 57 | • | ст | 128 | Drywall, wood
stud, double
layer fireshield
wallboard, in-
aulation, resili
ent furring
channel | | | 6-5/8 54 | . 3 | 23 | | i
ing | bo
Wo
and
Two | ard
od s
d fu
o la
ard | tuds
rrin
yors | of :
3-:
8 ch
of :
7 58 | 1/2"
enne
5/8" | fi
la
Cy | ber
(on
pau | gla
e e | 1de | | • | cr | 132 | Drywall, wood
stud, double
layer fireshield
wallboard, in-
sulation, resili
ent furring
channel | | | 6-7/8 52 | 3 | 0 31 | Faci
Core
Back
3 43 4 | ing; | in:
5/t | ulai
B" G | tuds
tion
ypau | m bos
and
m bos
4 54 | fib
ird | _ | | 54 : | 56 | 58 | 7.2 | G&H | 132 | Noise isolation
W-W5 with
insulation | 1,15 | | 7-3/4 [50] | 29 |) (3 | Facis
Cores
Backs
4] 40 | ng: | Woo
1/2
Bou | nd d
d st
"Gy
nd d | ende
uds
psur
ende | ning | boz
rd w
boz | rd
/Ltl
 rd | ı 1/ | 2" | : | 57 | 8 | RAL
TL65-200 | 99 | Staggered stud/
dry well with
sound deadening
board | 2, ²¹ , | | 7-7/8 50 | 27 | 30 | Core:
Backi | ng: | #00
5/8
#04 | nd d
d at
Gy
nd d | eade
uds
psum
oado | ning | boa
rd w
boa | rd
Let
rd | ı 1/ | 2" | 0 6 | 50 | 8.5 | RAL
TL70-4 | 189 | 5/8" Gypsum board
wall with sound
deadening boards | | | 8 51 | 31 | . 35 | Core:
Backi | ng; | boa
Woo
Two
boa | rd
d st
lay
rd | uds
ers | | /8" | Gyp | aum |
| 5 5 | 59 | - | ст | 128 | Dry wall, wood
studs, staggered
double layer fire
shield wallboard | 23 | | 8 53 | 35 | 39 | Pacin
Core:
Backi
45 45 | ng: | boa:
Wood
fibi
Two
boa: | rd
d att
ergl:
lay:
rd | ude -
es
ers | | 1-1/
'8'' | 2"
Gyp | នបញ | o 5: | 3 5 | 7 | - | ст | 128 | Dry wall, wood
studs staggered,
double layer fire
shield wallboard
insulation | 23 | ## TABLE 27D GYPSUM ROARD WALLS; STC 50-34 (Gonc1) | Thickness | nchet) | 보 | H2 | 2 2 | # | 고 1 | 돲 | 祖是 | 2# 0 | | | # # | | | | | | | |-----------|--------|-------|------|-----------------------------|---------------------|---|--|---|----------------------------|--------------|-----------|-----------|------|----------------|--------|-----|--|---------------| | 급 | = } | 125 | 160 | 200 | 315 | 200 | 630 | 1000 | 1250 | | | 2500 | 4000 | Weigh
lb/ft | Ž Lab. | Co, | Product | Foot-
note | | | | | | Pacing
Care:
Backin | g: : | Deciba
Doubla
5/8" (
Deciba | in l
ro
lypsi
in l | w of t
um boo
ining | ood
ard | stu
with | da
1/ | 2" | | | | | Dry wall, wood
studs, Deciban | 2.8. | | 8-1 | 2 [53 |] 31 | [37 | } 43 | [49] |] 43 | [58 |) 61 | [61 | 3 6 | 4 (| 641 | 65 | - | G&H | 128 | board | 2.8,
2i | | | 40 | | ; | Pacing
Core:
Backin | 0
1
1
8; 5 | ouble
part)
poard
insula
5/8" G | in to the state of | m pot | ood
und
avi
rd | den
den | den
nd | 5"
(ng | | | | | 5/8" Gypaum
board wall | | | 9-1 | /2 50 | 27 | 33 | 38 40 4 | 41 4 | 5 48 | 52 5 | 53 57 | 59 (| 51 6 | 15 | 7 60 |) | 10 | cr | 154 | with insulation | 24 | | | | | (| Pacing:
Core:
Backing | e
s
D | 111en
Sund
Souble | t ch
dead
row | m boq
iannel
lening
of w
m boa | nne
bot | l 1/2
ird | | | | | | | 5/8" Gypsum | | | 9-3 | /4 50 | 32 3 | 31 3 | 6 38 4 | 6 4 | 8 53 | 57 5 | 7 61 | 64 6 | 5 60 | 3 4 | 9 51 | 56 | 10 | CT | 154 | | 24 | | | | | (| Facing
Core:
Backing | 1
D | esili
2" s
ouble | ont | im bod
chann
I dead
of w
im bod | el a
lenit | ng bi | oar
is | d | | | | | 5/8" Gypsum | | | 10-1 | /4 53 | 31 | 33 : | 39 41 4 | 5 4 | 9 54 | 57 6 | 0 64 | 67 6 | 8 61 | B 6 | 5 69 | 73 | 10 | CŢ | 128 | hoard wall | 24 | | | | | | Facing:
Core: | b | oard | - | of l | | | | | | | | | | | | | | | | Backing | ь | oard | | of l | | • • | | | | | | | Drywall, wood
studs, double
layer (1/2") fir | re . | | 10-1 | /4 54 | 31 : | 36 4 | 1 41 4 | | | | | | 3 64 | . 5 | 9 57 | 62 | - | CT | 128 | shleid wallboard | 1 23 | | | | | Co | scing:
ore:
scking: | Ch
ap
3- | ase w
ace
1/2
ud br | all
1-5/
one
ace | boar
with
'8" tw
layer
at 1/ | 12"
o at
ins
3 pc | uda
ulai | io | n, | | | | | Noise insulation
W-S17 with 3-1/2' | , 1, | | 13 | 52 | 33 37 | 7 39 | 42 46 | 50 | 53 5. | 5 57 | 59 6 | 0 62 | 61 | 50 | 48 | 54 | - | OCRL | 154 | insulation | 9
19,20 | | | | | C | ocing:
ore:
ocking: | 6)
3-
(8) | iase w
1/21
tud b | a11
1-5/
one | boar
with
'8" tw
layer
at m | 12"
o st
ind | uds
sula | 10 | n | | | | | 1/01/ 0 | | | 13 | 53 | 34 40 | | L 43 47 | | | | | | 62 | 51 | 50 | 55 | - | OCRL | 154 | 1/2" Gypsum
board wall | 1,19,
20 | ### TABLE 27E GYPSUM BOARD WALLS; STC 55 and HIGHER | | | _ | _ | | | | | | | |-----------------------|------|--------|-----|------------------|---|-----------------------|------|--|-----| | Thickness
(inches) | STC | 125 24 | | | 400 Hz
500 Hz
1000 Hz
1000 Hz
1000 Hz
2000 Hz
2500 Hz
2500 Hz
2500 Hz | Weight
1b/ft2 Lab. | Co. | Foo
Product not | | | | | | • | Facing: | Two layers of 1/2" Gypsum | | - | | _ | | | | | | Core;
Backing | board
2-1/2" steel stud with
2-1/2" insulation
Two layers of 1/2" Gypsum
board | | | Noise isolation,
W-516 with 2-1/2 1, | | | 5 | 58 | 35 | 39 | 44 49 5. | 3 57 60 59 61 62 63 64 64 59 55 57 | - cr | 132 | W-S16 with 2-1/2" 1, insulation 19 | ,20 | | | | | | Facing:
Core: | Two layers of 1/2" Gypsum
board
3-5/8" steel stud with 3"
insulation | | | | | | | | | | Backing | Two layers of 1/2" Gypsum | | | - 1-11 - 1 1 | | | 6-1/8 | 3 56 | 40 | 44 | 46 48 5 | 2 56 59 58 60 60 61 63 62 55 52 57 | - cr | 132 | 1/2" Gypsum 1.1
board wall 19 | 20 | | | | | | Facing:
Core: | 5/8" Gypsum board
Double row of wood studs
and 3-1/2" fiberglas in-
sulation | | | Votes tuel etten | | | | | | | | 5/8" Gypsum board | | | Noise isolation,
W-W7 with 3-1/2" | | | 9-1/4 | 55 | 34 | 39 | 44 44 4 | 3 53 51 55 57 59 61 63 58 54 60 65 | - ст | 132. | insulation | | | | | | | Facing:
Core; | 5/8" Gypsum board
Double row of wood studs
and 9" fiberglas insulation
5/8" Gypsum board | | | Notae taslahtan | | | | | | | | | | | Noise isolation
W-W7 with 9" | | | 9-1/4 | . 58 | 43 | 43 | 3 45 48 5 | 1 55 54 57 59 60 62 64 62 59 63 55 | 7.1 CT | 132 | insulation 1,1 | 15 | | | | | | Facing: | Two layers of 5/8" Gypsum
board | | | | | | | | | | Backing | Double row of wood studs
and 3-1/2" fiberglas
Two layers of 5/8" Gypsum
board | | | Dry wall, wood
studs, double
layer fire shield | | | 10-34 | 57 | 37 | 39 | 45 47 49 | 52 55 57 60 63 66 67 67 65 66 67 | - ст | 128 | wallboard 23 | | | | | | | Facing:
Core: | 1/2" Gypsum board
Chase wall with 12" core
space, 1-5/8" two studs,
9-1/2" insulation, stud
braces at midheight | | | | | | | | | | | 1/2" Gypsum board | | | Noise isolation
W-S17 with 9-1/2" 9, | 19, | | 13 | 55 | 38 | 42 | 44 45 47 | 54 54 56 59 61 63 65 62 53 51 57 | - cr | 132 | insulation 20 | , - | | | | | | Facing: | Two layers of 1/2" Gypsum
board | | | | | | | | | | Core: | Chase wall with 12" core space, 1-5/8" two studs, three layers of 3-1/2" insulation, stud braces at midheight | | | | | | | | | | Backing: | One layer of 1/2" Gypsum | | | | | | 13-1/2 | 50 | 42 | 45 | 47 59 52 | board
55 57 59 62 62 64 66 66 57 56 61 | - ст | 132 | 1/2" Gypsum 1,1
hoard wall 20 | 9, | | *7-44 | ,, | 44 | ٠,, | Facing: | Two layers of 1/2" Gypsum | - 41 | *34 | nourd watt 20 | | | | | | | Cors; | board Chase wall with 12" core space, 1-5/8" two studs, three layors of 3-1/2" in- sulation, stud braces at midheight | | | | | | | | | | Backing: | Two layers of 1/2" Gypsum
board | | | 1/0H a | | | 14 | 60 | 43 | 48 | 48 50 52 | 55 57 58 61 62 65 66 67 59 59 67 | - ст | 132 | 1/2" Gypsum 1,1
board wall 20 | 3 | #### FOOTNOTES FOR TABLE 27A, 27B, 27C, 27D, 27E #### GYPSUM BOARD WALLS - 1. Data were provided in a graphical form. - Bracketed data are for 175, 350, 700, 1400, 2800 Hz respectively. The bracketed[STC], given for these data, is an average of frequencies rather than an actual STC. - 3. STC range. - 4. Approximate thickness as computed from the sketches of the product. - 5. Nonloadbearing wall. - 6. Not to be used in humid environment. - 7. Resilient furring channels on both sides do not increase transmission loss. - 8. Recommended maximum height: 12'0" - 9. Recommended maximum height; 10'0" - 10. Recommended maximum height: 8'6" - 11. Recommended maximum height: 13'6" - 12. Recommended maximum height: 17'3" - 13. Recommended maximum height: 20'5" - 14. Recommended maximum height: 16'0" - 15. Recommended maximum height: 14'0" - 16. Recommended maximum height: 22'0" - 17. Recommended maximum height: 15'0" - 18. Planter must set within a maximum of 3 hrs. - 19. Tested and evaluated according to ASTM
E90-70. - 20. Tested and svaluated according to ASTH E413-70T. - 21. Tested and avaluated according to ASTM E90-61T. - 22. Tested and evaluated according to ASARP Z-24,19-1957. - 23. Tested and avaluated according to ASTM E90-66T. - 24. Tested and evaluated according to AMA 1-II-1967. ### TABLE 28 STEEL WALLS The sound transmission losses of wall constructions where sheet steel is a major component of the wall system are listed. These walls are available with insulation placed inside the cavities to reduce sound transmission. Figure 28 shows the internal details of one specific steel wall partition. The classification between semipermanent partition and wall is not always clear and therefore Table 38 should also be referred to for additional products which can be compared directly with the products listed in Table 28. The companies (by numbers shown in Section II) with products listed in Table 28 are: 62, 182. Figure 28 A Section through a Steel Partition ### GLOSSARY Gypsum: A hydrated sulphate of Calcium. CaSO4 2H20. Used for making wall-boards, plaster of Paris, etc. ### TABLE 28 STEEL WALLS | | | | | | T | ran | ami: | ssio | n Lo | HB (| dec | ibe | la) | | | | | | | | | |-------------------|-----|--------|--------|-----------|--------------------|----------------|-------------------|----------------------|-----------------------------------|-------------------|------------------|----------------------|----------------------|------------|---------|---------|------------------|----------------|-----|-----------------------------|---------------| | Thichese (inches) | STC | 125 Hz | 7H 09T | 200 Hz | 250 Hz | 31.5 Hz | 400 Hz | | 630 Hz
800 Hz | | 1250 Hz | 1630 Hz | 2000 Hz | ZH 005Z | 3150 Hz | ZH 0004 | Weight
1b/ft2 | | Co. | Product | Foot-
note | | | | | | 1 | | lati | | | e an | | | | | _ | | | | RAL | | Monoline wall | 1. | | 2-1/4 | 39 | 15 | 23 | | | | | | | | | | 48 | 46 | 46 | 49 | 4.46 | TL73-104 | 182 | Partition | 12, | | | | | | st
rc | ilfi
ock
oel | ne:
vo: | :8 0 | f 14
.nou! | lbs,
ga.
Latio | | eel | . an | d
20 | ga | • | | | GEN | | Twinline DF-410 | | | 2-1/4 | 40 | 18 | | | 34 | | | 37 | | 39 |) | | 45 | | | 44 | 5,0 | VMP 76-ST | 182 | Partition | 2 | | | | | | of | 14 | ga. | . # | tecl | lbe,
Land
) ga | l ro | clcw | 901 | in | sul | ers | | | G&H | | Corporate | 3 , | | 2-1/4 | 41 | 17 | | | 34 | | | 39 | | 42 | | | 46 | | | 43 | 5,13 | VMP 54-ST | 182 | MS-454 | 4 | | 1 | | | | B-
20 | lye
ge | thy
C | len
alv | ngi
eba
eniz | 8. C
88 a
88 a | rib
ind
tee | ers
cha
l. | nnel | LW | 111 | | | | RAL | | Chennel Wall
and B-Liner | 1,
2,
6 | | 2-1/2 | 29 | 16 | 14 | 1,6 | 19 | 20 | 23 | 25 2 | 7 29 | 31 | 34 | 36 | 35 | 34 | 36 | 34 | 4,5 | TL72-68 | 62 | Wall System | 6" | | 3-1/4 | | 10 | 16 | 0-
20 | lin
lye
ga | thy | wit
len
alv | h gl
a ba
aniz | a, G
ass
ass a
ad s | fib
ind
tee | ers
cha
1. | 50)
ឯពងៈ | l w | 111 | | ٨. | . . | RAL | 62 | Channel wall
and C-liner | 1. | | 3-1/4 | 33 | 10 | 10 | 10 | 20 | 23 | 20 | 49 3 | 3 30 | 30 | 41 | 42 | 40 | 40 | 43 | 43 | 4,7 | TL72-66 | 02 | Wall System | 0 | | | | | | an
ho | lin
d l
th | er
t
sea | wit
hic
led | h gl
k gl | a. G
ass
ass
poly
ga. | min
fib
eth | era
er
ylo | l fi
inac
ne t | ibe:
ilat
iage | e e
lor | ì | | | 7 | | Channel wall | 1, | | 3-1/4 | 40 | 22 | 23 | | | | | _ | | | | | | | | 57 | 5.6 | RAL
TL72-81 | 62 | and C-liner
Wall System | 2;
6 | | | | | | C-l | Lini
Po: | or t
lye | witi
thy | ۱ gl | n. C
aas
bag
1. | fib | ers | 608 | ıled | ı | ga | | | RAL | | Shadowall | 3, | | 3-1/4 | 44 | 20 | 23 | 30 : | 35 : | 39 4 | 44 4 | 8 5 | 0 53 | 54 | 55 | 54 | 52 | 51 | 51 | 53 | 6.1 | TL70-231 | 62 | Wall System | 6' | | | | | | wit
20 | ga | 5/8
1. C | αľv | pour
an L | ad a | ard
Stoc | and
1 S | had | aas
lowa | 11. | | | | | | Shadowall
and C-liner | 3, | | 4-3/4 | 46 | 24 2 | 3 | 3 T 3 | 0 3 | 9 4 | 4 4 | 9 53 | 34 | 25 | 20 | 20 . | 3/ 3 | 37 | 5/ | 24 | 11 | RAL | 62 | Wall System | 6 | ### FOOTNOTES FOR TABLE 28 STEEL WALLS - 1. Tested and evaluated according to ASTM & 90-70 - 2. Tested and evaluated according to ASTM E 413-70T - 3. Tested and evaluated according to ASTM & 90-66T - 4. Tested and evaluated according to ASTM RM-14-4 - 5. Tested and evaluated according to ASARP-224.19-1957 - 6. "B-liner" "C-liner" Manufacturer's description ### TABLE 29 MASONRY WALLS The sound transmission losses of masonry walls are listed. These are load-carrying walls made from blocks or structural tiles, and consequently they are heavier than those shown in Tables 27 and 28. Figure 29 shows a masonry wall made from concrete blocks. Masonry walls provide good sound attenuation and poor sound absorption. The sound absorption can, however, be increased by using blocks with cavities open to the sound field. Sound absorption provided by some block designs is shown in Table 5. The companies (by numbers shown in Section II) with products listed in Table 29 are: 25, 31, 89, 102, 141, 162, 186. Figure 29 A Masonry Wall with Plaster ### TABLE 29 MASONRY WALLS | Transmissi | on la | //- | -16-1-1 | |------------|-------|-----|---------| | | | | | | | | | | | 11.0 | maa | TDE | נוטו | 140 H | 8 (| aec | LDE | 18) | | | | | | | | | |-----------------------|-----|--------|-------|--------------|---|------------------------------------|-------------------------------------|-------------------------------------|------------------------------|--------------------------|---------------------|-------------------------|---------|---------|---------|---------|------------------------------|-----------------|-----|---|-------------------| | Thickness
(Inches) | STC | 125 Hz | | | 250 Hz | | | | 800 Hz | 1000 Hz | 1250 Hz | 1600 Hz | 2000 Hz | 2500 Hz | 3150 Hz | 4000 Hz | Weight
1b/ft ² | Lab. | Co. | Product | Foot- | | 3,75 | 43 | 35 | [35] | 8 | 5-3/
iber
laze
7 [3 | gla
d t | ile | with
Eac | ing | r£ | orat | ed | 53 | [54 | 1) | 55 | 23.75 | TL59-112 | 25 | Sound bar | 1,4,
5,6, | | 3.75 | 46 | | | P.4 to 0 | /16"
utty
utal
ural
n ba
ason | 8 60
61
6k | at
x 1
ay
of 1 | faci
6" c
tile
wall | ng
era | wi
Ma
No
ad | :h c
: st
pla | ore | 8 O | £ | | | 31 | RAL
TL63-24 | 162 | Starkustic sound
absorbing glazed
tile | ²5 ⁴ • | | 3.75 | 46 | 40 (| 40} | ()
() | cous
truc
3-3/
sed
2 [40 | tur
4 ii
4 ii | о) :
x 5:
a m: | faci
1/1
sson | ng
6 ⁹ | ₩a] | le
1-3
1 p | rod | luct | |) | 58 | 35 | RAL
TL60-83 | 162 | SCR acoustils | 1,4,
5,6, | | - 6,0 | 43 | 38 [| 37] | b
1
(: | wo c
ase
ason
ight
50%;
:1); | pai
ry
woi
Way
no | nt
wal
ght
lite
pla | faci
1 (8
con
3 &
18 te | ng
ere
san | 6
te
d | 6")
blo
ggr | of
cks
egq
t o | n b | ack | | 56 | 26 | KAL
365-3-66 | 141 | Soundhigx
Type A | 2,5,
6,7 | | | | | | b
P
b | wo c
ase
ason
roud
lock
ggre
r pa | pai
ry
foo
s w
gat | nt
wal
t So
ith
e () | faci
1 (8
ound
Way
1:1) | ng
xi
blo
lic
no | 611
X 1 | re
(6")
lype | ο£ | | | | | | KAL | | Soundblox | 2 4. | | -6.0 | 47 | 38 [| 41) | 3 | 8 [4 | 3] | 44 | [48 |]. | 51 | [56 | 1 | 58 | [53 |] | 58 | 28 | 365-3-66 | 141 | Type A | 6,7 | | | | | | p. (| wo e | pain
ry t
foot
a w
agi | nt i
wall
t so
ith
gres | aci
(8
und
Way
yate | ng
 xl
blo
lit | cor
6"x
x t
e e | 6")
ype
and | E
B | • | | | | | KAL | | Sbundblox | 2,5,6 | | - 6.0 | 48 | 39 [| 42] | 3. | 9 [4 | 1] | 49 | [51] | 1 : | 53 | [55 |) | 60 | [56 |) | 58 | 30 | 365-2-66 | 141 | Туре "В" | 2,3,0 | | - | - | | | Co | ner | ete | blo | cks | aπ | d c | onc | ret | e b | ric | kε, | | - | - | 31 | | 3 | | - | - | | | | ner | | | | | Ċŧ | o E | var | iou | 18 | | | - | • | 89 | | | | - | - | | | Me | 180N; | ry ı | mit | B 0 | E al | 11, | 8 1 z | 85, | | | | | - | - | 186 | Weblits | | | • | - | | | Ma | sonz | уb | ric | ks s | ind | ы | ocke | ١. | | | | | - | - | 102 | Auto claved
Waylite concrete
mesonry unit | 11 | #### FOOTNOTES FOR TABLE 29 #### MASONRY WALLS - 1. Tested and evaluated according to ASTM E90-55. - 2. Tested and evaluated according to ASTM E90-61T. - 3. Tested and evaluated according to ASTM E90-66T. - 4. Tested and evaluated according to ASA 2.24.19-1957. - 5. "STC" number is a nine frequency average, not a true STC. - Data in brackets obtained in the one-third octave bands centered at 175, 350, 700, 1400 and 2800 Hz. - Temperature range: to 400°F, sero flame apread, resistance same as concrete. Surface density is actually total weight of face block unit. - 8. Resistant to all chemicals except hydrofluoric acid. Temperature range: -50° to 2000°F. - 9. 280 random holes, - 10. 322 random holes in face. - 11. Various shapes of block with thicknesses of 2", 4", 6", 8", 10", 12". Volume density range 80 to 150 lb/cu ft. Temperature range to 2000 F. ### TABLE 30 CONCRETE FLOORS Sound transmission losses of concrete floors and sound pressure levels generated in the rooms below when the floors were tapped by standard tapping machines are listed. These sound pressure levels are indicative of the floors effectiveness in reducing annoyance caused in a room by movement of people and furniture on the floor above the room. The test procedure to measure sound pressure level and the impact insulation class are explained fully in Section I-3.4. Concrete floors are typically heavy and provide a good transmission barrier but they are
efficient transmitters of tapping sounds. The tapping sound transmission can be reduced significantly by using carpets, pads, and insulation filled cavities. The table shows two sets of data for each product. The upper data set shows sound transmission class and transmission losses, and the lower data set shows the impact insulation class and the impact sound pressure level generated by a tapping device. Figure 30 shows a floor assembly of concrete slab covered with various layers to create a "finish floor". It should be noted that the product listed in the table may not be a floor assembly itself but the floor was tested with the product as a part of the assembly and the data are therefore presented in this table. The companies (by numbers shown in Section II) with products listed in Table 30 are: 74, 78, 121, 132, 159. #### CAUTION - 1. TWO SETS OF DATA ARE PRESENTED FOR EACH PRODUCT. LOWER SET OF DATA REPRESENTS SOUND PRESSURE LEVEL GENERATED BY A TAPPING MACHINE AND THE IMPACT INSULATION CLASS OF THE FLOOR. SEE SECTION I-3.4 FOR EXPLANATION. - THE PRODUCT LISTED IN THE TABLE MAY ONLY BE A FLOOR ACCESSORY BUT IT WAS TESTED IN A FLOOR SYSTEM AND HENCE IS LISTED IN THIS TABLE. Figure 30 Concrete Subfloor with a Finish Floor Cover ### GLOSSARY Wood Joists: Parallel timbers that support the planks of a floor Standard Carpet and Pad: 44 oz per square yard Gro-Point carpet with 40 oz per square yard hair felt pad (see discussion in Subsection I-4.1.4) ### TABLE 30 CONCRETE FLOORS | | | _ | | | _: | | | | | , | | | | +-, | | | | | | | | | |-----------------------|---------------|-----|-----|-----------------|------------|------------|------------|-------------|------------|-----|-------------|---------------------|------------|----------|------|------|------------|--------|---------|-----|----------------------------------|-------| | Thickness
(inches) | | | Sou | ınd | Pro | asu | re | Lo | ve l | fı | om | Tap | -1 | | | | | | | | | | | Ħặ | IIC/STC | .13 | Ŋ | N | Ŋ | Ņ | 첫 | М. | Ţ | 1 | Ħ | H | 丑 | ₽ | 丑 | 뷮 | 丑 | | | | | | | 43 | Š | 125 | 160 | 200 | 220 | Ŋ | 007 | 200 | 630 | 800 | 1000 | 1250 | 1600 | 2000 | 2500 | 3150 | 4000 | Weight | | | 1 | Foot. | | H_ | Ħ | 2 | 36 | 2 | 23 | H | 3 | Š | 9 | ä | Ħ | 7 | ä | 7 | 7 | ~ | 4 | 1b/ft2 | rap. | Co. | Product 1 | note | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | S | eve
lab | n II
86 | i-a
× | tro
24 | 88 J | fle | XIC | ore | | | | | | | | | | | | | 45 | 33 | 35 | | | | | , | | | - | . 53 | 56 | 5 5 7 | 58 | 60 | 60 | | | | | 1.2. | | | | | | | | | | | | | | | _ | | | | | | CKAL | | Hi-stress | 3,4, | | 6 | 23 | 0.3 | 6/ | 70 | 70 | 70 | 12 | 74 | 75 | /3 | " | 77 | 76 | 1 / 8 | 18 | 7, | 74 | • | 6612-1 | 74 | Flexicore slabs | 5,7 | | | | | | s | avai | a H. | 1-a | tre | 8 1 | £1e | xíc | ore | | | | | | | | | | | | | | | | Ð | l ab | 9 6 | " oc | 24 | " X | 9 | 6" | for | mod | | | | | | | | | | | | | | | 4 | 4 o | z, (| Car | et. | and | 14 | Oʻ0 | 8 C4 | fel | t | | | | | | | | | | | , . | | | • | | | ore | | | | | | | ٠. | | | ,, | | | | Hi-stress | . 1. | | | 45 | 30 | 32 | 33 | 30 | 3/ | 41 | 40 | 48 | 32 | 34 | 56 | 29 | 60 | 6.3 | 65 | 62 | | CKAL | | Floxicore
Blabs with | 4:5: | | 6 | 69 | 47 | 47 | 46 | 42 | 40 | 36 | 35 | 31 | 26 | 24 | 23 | 18 | .17 | 15 | 15 | 14 | - | 6612-2 | 74 | Carpet and pad | 6,7 | | | | | | _ | S | labi | 1 H: | 1-51
X | F 01 | , x | je | X10 | ora
lonj | 2 | | | | | | | | | | | | | | | £ | or my | ed 4 | a ho | ri | ton t | :al | pa: | rtii | tio | п. | | | | | | | | | | | | | | h: | Lock | (8 Z | րթի | iec | ! to | | | 8 V | | | | | | | | | | | | | | | | | | | nd e | | | | | | | | | | | | | | Hi-stress | | | | 46 | 35 | 35 | 36 | 38 | 38 | 42 | 43 | 46 | 48 | 51 | 54 | 56 | 58 | 41 | 64 | 55 | | CKAL | | Flexicore
slabs with | 1,2, | | 6-1/2 | 48 | 60 | 63 | 67 | 66 | 67 | 66 | 66 | 64 | 60 | 58 | 55 | 53 | 51 | 49 | 45 | 41 | • | 6612-4 | 74 | Parquet blocks | 5,7 | S | ver | H | i-at | ree | e f | le | kiç | ore | el. | abs | | | | | | | | | | | | | | b
b | 'x | 24' | al | 9't | " L | 10 | 3 . I | orm
one | it | a
ibe | r | | | | | | | | | | | | | b | ard | ps | nel
fla | .B 1 | /2 ' | X | 41 | dood
X &
ad C | 1 | Wer | e e | | | | | | | | | | | | | ъ: | lock | a 1 | ./2" | ' x | 911 | x S |)" 1 | de re | 4 | | ied | | | | | | Hi-stress
Flexicors slabs | | | | | | | | | | | | | | | nesi | | | | ۷. | 4 B | | | | Surfaced | | | | 45 | | | | | - | | | | | | 56 | | | | | | | CKAL | | with word fiber
board and Oak | 3,4 | | 7 | 49 | 60 | 64 | 68 | 68 | 70 | 69 | 66 | 64 | 60 | 54 | 47 | 42 | 37 | 33 | 30 | 28 | - | 6612-3 | 74 | Parquet floors | 5,7 | 6' | re | Sur | fac | ed
e f | con
100 | cri | ee
T | sla
vo l | ib
Lavi | ors | | | | | | | | | | | | | | 1. | /4" | par | tic | :10 | boa | ırd | on | fil
Vir | æř | | | | | | | | Noise | | | 50 | J - 52 | | | t | Lla | out | fac | e. | .ujı t | | | V 21 | ıγ | | | | | | OCF No. | | Isolation F-C5 | | | 7-1/4 | 52 | 71 | 71 | 69 | 67 | 63 | 58 | 55 | 50 | 47 | 44 | 41 | 37 | 34 | | | | - | FIT-13 | 132 | With Vinyl
Tile Surface | 8.9 | • | | | | | | 6 ¹¹ | re | inf | orc | ed , | COR | cre | te, | ala
Wo | ь
1 е | /n# | | | | | | | | | | | | | | 1/ | 4" | par. | tic | le | boa | rd | on | £1b | ori | 3 Las | 55 | | | | | | | | | E O | -52 | | | | isa
r£a | | op | 004 | ru, | re | ızqu | ie t | £1f | ,181 | 1 | | | | CT | | Noise Isolation | | | 1-1/4 | | 66 | 70 | | | | 61 | 55 | 51 4 | 47 | 43 | 40 | 36 | 32 | | | | • | OCF No. | 132 | F-C5 with
Parquet surface | \$10 | | ,-1,4 | ,, | gu | 74 | 90 | 74 | ., | O. | در | | ~, | -7-3 | 40 | Ju | | | | | | E T1-74 | | terdage satiste | 0 1 2 | ### TABLE 30 CONCRETE FLOORS (Contd) | | | | | | | Tras | lami | 881 | on | Los | . (| dec | Lba | 18) | | | | | | | | | |---|----------------------|---------|--------------|-----|--|------------------------------|-----------------------------------|-----------------------|---------------------------|-------------------------------|--------------------------------|-------------------------|------------------|-----------------|------------|------|------|------------------------------|-----------------|-----|---|---------------| | | 3 6 | | Soun | d | Pres | suri | ı | .οva | 1 1 | ron | | · | | | | | | | | | | | | | 불립 | iic'src | 出 | | 4 4 | | | ħ | 7 | Ŧ | O H | # 0 | # | 72. | | | 4 | | | | | | | • | Thickess
(Inches) | 110 | 125 | | 200 | 315 | 400 | 500 | 630 | 80 | 1000 | 1250 | 1600 | 2000 | 2500 | 3150 | 4000 | Weight
1b/ft ² | Lab, | Co, | Product | Foot-
note | | | 8 | 70 | 50 4 | 6 / | Fiv
wid
to
flo
dep
bon
was
bas
sta | or.
th tel
tel
e pa | Jo
vith
ttur
int
rd c | te
he
ed
. I | men
bot
and
mpo | t a
ton
pa
cc
and | rou
rou
int
mea
pa | t f
eil
ed
eur | or
ing
wit | ri
ri
h l | id
(de) | × | *** | 45 | RAL
IN-68∼5 | | Prestressed
Acoustical Spar
(No topping)
with atandard | 2,4, | | | • | 70 | 4 در | | ** ** | . J; | 7 40 | 30 | 23 | در | 27 | 23 | 43 | . 10 | • | y | | 43 | 14-66-3 | 159 | Carpet and pad | 2,0,14 | | | | 1.0 | a: a | | Seve
6" :
hor:
cove | orac | hai | r f | alt | pα
.go | d. | τpο | c a | Dη | | | | | | | H1-stress | l,2, | | | | 46 | 34 3 | | | | | | | | | | | | | /0 | | | ÇKAL | | Fidxicore | ٦ Δ. | | | 8 | 73 | 46 4 | 7 4 | 10 40 | 38 | 10 | 24 | 28 | 25 | 23 | 23 | 17 | 10 | | | | 51.8 | 6612-11 | 74 | Slabs with
Carpet and pad | 7* ′ | | | | | | | Seve
8" >
hori | n i
24
zon | ire
X | tra
9'
pa: | es
6" :
rti | fle
lon
tio | xic
g f | ore | al
d | abs
a | | | | | | | | | | | | 47 | 34 3 | 3 3 | 9 39 | 39 | 44 | 46 | 48 | 51 | 53 | 55 | 57 | 59 | 63 | 65 | 64 | | CKAL | | 8" Hi-stress | 1,2, | | | 8 | 28 | 64 6 | 6 6 | 5 67 | 68 | 69 | 71 | 70 | 71 | 73 | 75 | 76 | 75 | 74 | 72 | 72 | 57 | 6612-12 | 74 | Flexicore slabs | 5,6,7 | | | | | | | Same
Spair
#1.51
211 | id oc | k h
Lth | 011 | ow (| cor
bo | a c | one | ret | 0 | | | | | I ATL | | Pro strosmod | 10. | | | 8 | 50 | 32 3 | 5 3 | 19:38 | 41 | 43 | 47 | 49 | 52 | 52 | 53 | 52 | 57 | 60 | 62 | 63 | 50 | 5-346-1 | 159 | Pre stressed
Concrete Plank | 11,15 | | | | | | | Seve
Eore
Surf
Oak | od
ace | a h
d w | ori:
ith | y
zoni
1/2 | 24
41 | ''x
pa:
lam: | 9'e
rtic
inat | 6"
Elo | n. | | | | | | | 8" Hi-stress | | | | | 49 | 34 3 | 4 4 | 0 41 | 42 | 44 | 46 | 48 | 52 | 55 | 57 | 60 | 64 | 67 | 70 | 70 | | CKAL | | Flexicore
slabs with | 1,2, | | | 8 - 1/2 | 47 | 6 6 6 | 7 6 | 7 67 | 68 | 67 | 69 | 66 | 64 | 61 | 59 | 55 | 50 | 45 | 42 | 42 | 57.6 | | 74 | Ook surface | 5.7 | | | | | | | Save
fore
Surf | ed
ace
a s | ah
dw
top | ori:
ith | 7/1 | 6'- | ea: | rtit
berg | t a | n.
98 | | | | | | | 8º Hi-stress | | | | | 47 | 32 30 | | plyw
17 37 | | | 46 | 49 | 52 | 55 | 57 | 61 | 64 | 67 | 69 | 70 | | | | Flexicore slabs
with fiberglass | 1,2, | | | 8-15/16 | • | 62 6 | | | | | | | | | | | | | | | 58.9 | CKAL
6612-13 | 74 | board and
Plywood surface | 3.4. | | | | - | | | | | | | | | | | | | | | _, | | , . | • • | | ~•• | | | | | | | Seve
form
Surf
nois
1/8"
soli | ed a
ace:
8 a:
Ma: | e ho
i wa
i op
i on i | ri:
th
boo | 7/1
1/1
ird,
boa | sl.
6"
tw | fit
fit | rtit
erg
Layo | iot
las | af
of | | | | | | | 8º Ni⊷stroas | | | | | 51
 34 32 | | | | - | | | | 57 | 59 | 63 | 66 | 69 | 73 | 7.3 | | 0217 | | Flexicore slabs
with fiberglass | 1,2, | | | 9-1/4 | 55 | 63 65 | 6 | 5 61 | 59 | 52 | 48 | 43 | 38 | 34 | 30 | 27 | 24 | 19 | 14 | 13 | 59.7 | CKAL
6612-18 | 74 | board, Masonite
board, and tile | 3,4,
5,7 | ### TABLE 30 CONCRETE FLOORS (contd) | | | | | | | Trá | ពន្ធព | 186 | Lon | Los | 13 (| dec | ibe | 15) | | | | | | | | | |-----------------------|----------|-----|----------|-----------------------|--------------------------|-------------------------|-------------------------|------------------------|------------------|-------------------------------|-------------------|-------------------|--------------------------|-----------------------------|----------|---------|--------------|--------|-----------------|-----|--|--------------| | ess
es) | 9 | | 11114 | | | | | | | Ero | N | | Lny
HZ | Ma | | ne
H | THZ | | | | | | | Thickness
(inches) | IIC/STC | £ | | | _ | | | - | | H00 H | _ | 1250 # | 1600 1 | 2000 1 | 2500 F | | 8 | Woight | | | | Foot- | | £. | Ξ | 125 | 160 | 250 | 250 | 3.5 | - | | φ. | 8 | <u> </u> | 7 | 2 | 2 | - 52 | <u></u> | - | 1b/ft2 | Lab. | Ço. | Product | note | | | | | | £ | or | aci | a l | hor: | zor
1 | 24
172
1/2 | l .p/ | rti
f c | ciono | n.
ret | e
ad, | | | | | | 8" Hi-stress
Flexicore slabs | 1,2, | | | 45 | | | | | | | | | | | | | 63 | 3 66 | 69 | 69 | | CKAL | | with concrete
topping. Standa | 3,4, | | 9-1/2 | 76 | 42 | 44 | 36 | 3. | 3: | 3 31 | L 27 | 24 | . 19 | 17 | 16 | 9 | • | - | - | - | 75.3 | 6612-20 | 74 | carpet and pad | 7 | | | | | | £ | or | ed | a i | ori | zon | 24
1211
211 | . pa | rei | tic | n,
r | so] | id | | | | | 8" Ni-stress
Flexicore slabs | | | | 47 | | | | | | | | | | | | | | | | 70 | | CKAL | | with wood
fiber board, | 1,2, | | 9-1/2 | 54 | 62 | 64 | 65 | 64 | 63 | 60 | 56 | 52 | 48 | 45 | 40 | 36 | 30 | 26 | 20 | 18 | 59.6 | 6612-17 | 74 | plywood, & tile | 3,4,
5,7 | | | | | | f t f | orm
ion
ibe
uil | ed
r b
din | the
Sur
oar | ho
fac
d,
ape | riz
ed
asp | 24
ont
wit
hal
nd | al
h l
t f | par
/2"
elt | ti-
wo | ૦ ૧ | | | | | | | 8" high stress
Flexicore alaba
with wood fiber | . , . | | 9-1/2 | 50
54 | | 34
63 | | | | | | | | | | | | | | | 58.5 | CKAL
6612-16 | 74 | board, asphalt
felt, and oak
blocks | 3.4, | | J-2/4 | J-1 | - | 05 | - | • | ••• | - | • | | | 7, | | | ٠, | | | | 2.7,2 | | , | | ~,, | | | | | | Si | orm
orf
ois
oph | ed
ace
6 A
61t | A h
d w
top
50 | ori
ith
boo | 7/
4rd
4te | 24
tal
16"
d f | Pa:
/2"
clt | er
pl | tio
gla
ywo
ild | od
Ing | | | | | | | 8" Hi-stress
Flexicare
slabs with | | | | 49 | 28 | 31 | 38 | 40 | 41 | 45 | 47 | 49 | 52 | 54 | 57 | 60 | 64 | 67 | 69 | 70 | | CKAL | | fiberglass boar
plywood, asphal
felt and tile. | d, 1,2, | | 10 | 55 | 63 | 65 | 63 | 62 | 61 | 54 | 51 | 47 | 41 | 33 | 27 | 23 | 18 | 12 | - | • | 59.7 | 6612-14 | 74 | felt and tile. | 5,7 | | | | | | CO | ncr | 656 | pl | ank | • | ho1 | | | | | | | | | | | | | | 10 | 50
29 | 37 | | | | | | | | | | | | | | | | | CKAL
7312-03 | 78 | 10" Stresscore | 2,3
4,10 | | | 2, | 63 | 0.5 | 05 | 40 | ′~ | uo | uy | 03 | 1 | 70 | | /4 | ,, | 12 | ′- | 70 | 64 | /312-03 | 70 | 10. 2628880058 | 4,10 | | | | | | f
S
n
a
p | orm | ed
acc
a s
alt | a h | ori | z en | 16"
16"
1 d f | pa | rc1 | tio | n.
ss
od,
ing
k | | | | | | | 8" Hi-stress
Flexicore slabs
with fiborglass | | | | 51 | | 35 | | | | | | | | | | | | | | | | CKAL | | board, asphelt
felt, and Oak | 1,2, | | 10 | 55 | 63 | 64 | 63 | 62 | 62 | 56 | 52 | 48 | 45 | 40 | 37 | 32 | 29 | 23 | 18 | 15 | 59.6 | 6612-15 | 74 | blocks | 5,7 | | | | | | 1 |) RC | un | ler. | lani
Layı | ς B1 | , h
urf
t a | AÇ EK | l w | Ĺth | e, | | | | | | | | | | | 50 | | 34 | | | | | | | | | | | | | | | | CKAL | | 10" Stresscore
with underlay- | 2,3,
4,5, | | 10-1/4 | 35 | 60 | 63 | 65 | 64 | 65 | 68 | 67 | 68 | 69 | 67 | 68 | 71 | 70 | 66 | 65 | 65 | 60 | 7312-04 | 78 | ment and tile | 10 | ### TABLE 30 CONCRETE FLOORS (Contd) | | | | | * | tan | PLINT | 981 | on | 누마님 | B (| aec | tbe | TB) | | | | | |---|---------|-----|-----|-------|-----|-------|-----|----|-----|------|------|------|------|------|------|------|---| | E - | | So | und | Près | sur | 0 | Lev | ol | fre | m 1 | ap | ing | , Mc | chi | na | | • | | i e | 27.0 | 냺 | 블 : | £ £ | £ | 꿆 | H | Ä | 뷮 | | ¥ | | | 뇠 | 겊 | Η̈́ | | | Thickness
(inches) | IIC/57C | 523 | 160 | 250 | | | | | | 1000 | 1250 | 1600 | 2000 | 2500 | 3150 | 4000 | ļ | | | | | | | | | _ | | _ | | | | | | | | _ | | Soven slabs 8" x 24" x 9'6" formed a horizontal partition. Surfaced with 1 1/2" concrete topping, 1/2" wood fiber board, and 1/2" laminated Oak blocks. | 49 | 38 | 35 | 38 41 | 41 | .44 | 47 | 40 | 5. | 2 5 | 5 51 | 3 6 | L 61 | 5 69 | 97 | 17 | 1 | | Thickner
(inches | IIC/STC | 125 11- | | | 250 Hz. | 315 Hz | | 500 Hz | | 1000 Hz | 1250 Hz | 1600 Hz | 2000 Hz | 2500 Hz | 3150 Hz | 4000 Hz | Weight
1b/ft ² | Lab. | Co. | Product | Foot-
note | |---------------------|--------------|---------|-----|----------------------|-----------------------------------|-------------------------------|----------------------------|----------------------|--------------------------------|--|-------------------|----------------------------------|--------------------------------|---------|----------------|---------|------------------------------|-----------------|-----|--|----------------| | 10-1 | 49
L/2 5: | | | ;
;
5 38 | form
Surf
copp
ind
41 | ed
aco
ing
1/2
41 | a ho
d wi
1/
1 la | th the mine | ont
1 1
woo
ace
49 | 24"
a1 p
/2"
d fi
d Oa
52 5 | eon
ber
k b | iti
cre
bo.
loci
8 6 | on.
te
ard
ks.
1 6 | 5 69 | | | | CKAL
6612+22 | 74 | 8" Hi-stress
Flexicore slabs
with concrete
topping, wood
fiber board
and Oak blocks | 1,2, | | | 49 | 38 | 36 | £:
5:
5:
5: | rme
rf:
pp: | d a
cod
ng,
ply | hor
wit
1/2
wood | 120
h 1 | nca
-1/
ood
nd | 4" ;
1 pe
2" c
fit
80 g | onc
er
ev | tio
ret
boa
iny | | | 72 | 72 | | CKAL | | 8" Hi-stress
Flexicore slabs
with concrete
topping, wood
fiber board | 1,2, | | 11 | 55 | 59 | 63 | 14
Wi | "T | zile
Zile
he i | cio | n co
reto | one: | 9 44
rete
pppi
floo | jo
ng. | ist | e
nís | 19 | 12 | 9 | 77.1 | | 74 | plywood, & tile | | | 16 | 54 | 39 | 40 | 42
14
wi
fa | 45
" T | 49 4
2 1 6
Was | 47 S | o s:
n c:
ret: | 2 5
onc: | rote
pppi
ng c | jo
ng, | Lat:
Su: | 8
r = | 62 | 65 | 68 | 75 | RAL | 121 | Reference floor | 4,10,
12,15 | | 20 | 57
24 | 47 | 46 | 14 | " T | - K ec | rio | D C(| onei | 2 55
rete
oppin | ia: | | | 65 | 67 | 71 | 125 | RAL | 121 | Floating floor
mounts | 4d512 | | 21 | 61
68 | 44 | 45 | fl | oat:
ank: | ing | pro | crat | tor | 100 | r wi | | | 80 | 82 | 87 | 125 | RAL | 121 | Floating
Floor Mounts | 4,5
10,12 | | ** | , u | | | wi
ai
in | ch 2
r sp
g co | 2" c | one:
. St
ote | rece | i Ca | ete
ppir
was
with | 40 | i"
Elc | ac- | | | | 123 | RAL. | *** | . 2002 , 100012 | 10,12 | | 21 | 76
68 | 57 | 55 | _ | | | - , | _ | | 88 | | | | lOl | 104 | 105 | i
125 | RAL | 121 | Floating
Floor Mounts | 5,10
12,13 | | | 61 | 44 | , E | ali
fla | th 2 | ng
ng | oner
, su
cone | ete
rfa
ret | ce
e f | ete
ppin
was
loor | g ₄ | 2" | | 70 | 9 <i>6</i> . 4 | an | | | | | | | 22 | 68 | 44 | 43 | +3 4 | ŧa 3 | 4 3 | אכ ט | 02 | 93 | 68 | 12 | ,, | 15 | /9 (| 94 ' | 70 | 125 | RAL | 121 | Floating
Floor Mounts | 10,12 | #### TABLE 30 CONCRETE FLOORS (Contd) | | | | | | Tr | OTIS | miss | ion | Los | a (| dac | lbel | a) | | | _ | | | | | | |-----------------------|----------|--------|--------|---|--------------------------|-------------------------|------------------------------|-------------------------------------|--------------------------------------|--------------------------|----------------------|------------------------------|-----------|--------|----------|--------|----------------|-----------------|-----|---|----------------------| | 8 € | ņ | S | our | d Pr | 08 <i>8</i> | ure | Le | eve l | | -1 | | | | | lne
| ¥ | | | | | | | Thickness
(inches) | IIC/STC | 125 Hz | 160 Hz | | | | 400 Hz | | 300 Hz | 1000 H | 1250 Hz | | 2002 H2 | 2500 H | 3150 H | 4000 H | Weigh
lb/ft | t
2 Lab. | Co. | Product | Foot-
note | | - | | | | 14"
with
air
ing
prot | apa
con | ' cı
ICU
ICU | eta . | ete
rfac | top: | pin
aa | ga i | 2"
floa | ıt- | 3 | | | | | | | | | 22 | 79
68 | 60 : | 58 4 | 65 69 | 75 | 74 | , 80 | 85 | 86 | 88 | 93 9 | 96 1 | 01: | 104 | 105 | 5 10 | 6
125 | RAL | 121 | Floating Floor
Mounts | 40 ⁵ ,12, | | | | | | 14"
with
spac
fill
conc
prot | o £ | 11
uri | ner
led (
lace
loo: | ete
with
was | 757
757 | in
fl | g, i
lass
cati | l" a
fi
ng | ir
ber | • | | | | | | Floating Floor | 4,512 | | 22 | 82 | 59 6 | 1 6 | 58 73 | 79 | 76 | 83 | 86 | 88 8 |
39 | 95 9 | 7 9 | 7 1 | 00 | 104 | 106 | 125 | RAL | 121 | Mounts | 13,15 | | 23 | 63
68 | 47 4 | | 14" with air ing floo prob the | apa
con
r m
lem | ce,
cre
oun
wa | nere
Suite i
its. | rfac
floo
Fla:
rcou | topi
e wa
r fl
nkir
nter | in
loai
loai
gu | ting
nois
dur | loa
loa
on
e
ing | . EN | | 35 9 | 92 | 125 | RAL
TL71-152 | 121 | Floating floor
mounts. Mason
type FSN-1336
with type EAPM-
7640 neoprene
clements. | 10,12 | | | | | | 14" with air ing prot deci show | apa
con
ect
bel | co,
cre
ion | te i | ete
rfac
floo
erea
ered | topp
e wa
r. !
sod | in
la
ST
Ch | kin
C by | loa
B
17
18 | | ١, | | | | | | | | | 23 | 80
68 | 62 5 | 9 (| 57 72 | 77 | 74 | , 80 | 86 | B7 8 | 38 | 92 9 | 5 9 | 9 1 | 01 : | 107 | 105 | 125 | RAL | 121 | Floating
Floor Mounts | 10,12,
13 | | | | | | 14"
with
air
ing
prot | 2"
apa
con | ce, | au
de i | ete
rfac | top: | oin: | 8, 4 | "
loa | - | | | | | | | | | | 24 | 63
69 | 47 4 | •7 | 46 50 | 54 | . 5 | 7 60 | 62 | 65 | 69 | 73 | 75 7 | 77 1 | 80 | 86 | 91 | 125 | RAL | 121 | Floating
Floor Mounts | 4,5
10,12 | | | | | | 14"
with
air
ing
prot | 2"
apa
con | ce,
ce, | nere
sur
te f | fac | opp
w | is ? | 4 | "
10a | t-
ng | | | | | | | | | | 24 | 82
69 | 63 6 | 16 | 6 72 | 78 | 77 | 82 | 87 (| 36 B | 7 9 | 91 9 | 3 9 | 7 10 | 01 1 | LO3 | 104 | 125 | RAL | 121 | Floating Floor
mounts | 10,12
13 | #### FOOTNOTES FOR TABLE 3D #### CONCRETE FLOORS - 1. Tested and evaluated according to ASTM E90-61T, specifications. - 2. Tosted and evaluated according to ISO R140 specifications (see Section V-3: ASTM E492-73T). - First row of numbers designates sound transmission loss, second row designates impact sound pressure levels. - 4. IIC computed using: IIC = INR + 51. - '5. Approximate thickness computed from sketches of the product. - 6. Carpat and pad thicknesses not included in overall thickness. - 7. Joints between sections were granted from top and caulked on underside. - 8. STC estimated. - 9. Data were provided in graphical form. - 10. Tosted and evaluated according to ASTM E90-70 specifications. - 11. Tested and evaluated according to ASTM RM-14-4 specifications. - 12. Tested and evaluated according to ASTM E413-70T specifications. - 13. Flanking protection was provided by building a complete secondary room within the source room. - 14. Specimen tested for impact insulation only. - 15. Specimen tested for sound transmission loss only. ### TABLE 31 WOOD FLOORS Wood floors or the floor materials when they were tested in wood floor assemblies are listed. The word "wood floor" is loosely interpreted here to include floors which have wood as their basic structural material. The description supplied with each listing gives more accurate information about the floor assemblies. The table shows sound transmission losses of the assemblies tested and the sound pressure levels generated in the rooms below when the floors were tapped by standard tapping machines. These sound pressure levels are indicative of the effectiveness of the floors in reducing the annoyance caused in a room by movement of people and furniture on the floor above the room. The test procedure to measure the sound pressure level and the impact insulation class are explained fully in Section I-3.4. The floors listed in this table are, in general, lighter than those listed in Table 30. The table shows two sets of data for each product. The upper data set shows the sound transmission class and the sound transmission losses, and the lower data set shows the impact insulation class and the sound pressure levels generated by a tapping device. It should be noted that the product listed in the table may not be a floor assembly itself but the floor was tested with the product as a part of the assembly and the data are therefore presented in this table. The companies (by numbers shown in Section II) with products listed in Table 31 are: 132, 171, 189. #### CAUTION - 1. TWO SETS OF DATA ARE PRESENTED FOR EACH PRODUCT. LOWER SET OF DATA REPRESENTS SOUND PRESSURE LEVEL GENERATED BY A TAPPING MACHINE AND THE IMPACT INSULATION CLASS OF THE FLOOR. SEE SECTION I-3.4 FOR EXPLANATION. - 2. THE PRODUCT LISTED IN THE TABLE MAY ONLY BE A FLOOR ACCESSORY BUT IT WAS TESTED IN A FLOOR SYSTEM AND, HENCE IS LISTED IN THIS TABLE. Figure 31 A Floor with Wood Support Structure and a Carpet Cover ### GLOSSARY Joists: Parallel structural members that support the floor. Standard Carpet and Pad: 44 oz per square yard Gro-Point carpet with 40 oz per square yard hair felt pad. (see discussion in Subsection I-4.1.4). ### TABLE 31 WOOD FLOORS | | | | | | , | Tra | ınam: | lasio | n Los | s (| decil | e1 | a)_ | | | | | | | | | |-----------------------|----------|--------------|-----|---------|--------------------------------------|----------------------------|---|---|---|--|--------------------------------------|----------|------|----|---------|---|---------|---------------------------|-----|---|---------------------| | 5.0 | | _ | Sol | ınd | Pro | 8 8 | ure | Lov | el fr | | | | | | | | | | | | | | Thickness
(inches) |)S1C | H | | | | | | | 7 7 | 72 | | | | | 2 S | | Mod abo | - | | | B4 | | <u> </u> | 110/51 | 125 | 160 | 5 | 250 | 316 | 2 8 | 500 | 89 | 1000 | 1250 | | 2000 | 2 | 3150 | 4 | Weigh) | Lab. | Co, | Product | Foot•
note | | | 51 | • | _ | • | on | FE | p. | Res | floor | c ci | ianna
ianna | 1 | 14 | | | | , | CT | | Noise isolation
F-W24 (with | | | 12 | 58 | 63 | 62 | 57 | 52 | 48 | 43 | 38 | | | | | | | | | - | OCF. No
F1-19-68 | | lightweight car
end pad) | oat 3.5. | | | | | | | to | | Res | 1111 | floor
builywood
4 ozj
nt ci | ann | cl w | Len | ,,,, | | | | | | | Notice to Justine | | | 12 | 51
70 | 48 4 | - | -
43 | 30 | - | - | -
15 | | | | | | | | | | CT
OCF No. | 100 | Noise isolation
F-W24 (with
lightweight car | | | 42 | ,, | 40. | ••• | | | | | | | | | | | | | | _ | F1-18-68 | 132 | and pad) | 6,5 | | | | | | | with
sou
ply
vit
Res | th
md
wo
nyl | glander der der der der der der der der der | e fi
'B' p
ideni
inder
cor c
cha
card | flor
ber :
lywood
ng bo
layme
over:
nnel
on bo | inau
d,
erd
int,
ing
tto | la-
i i'
and
on to
h 5/i | | | | | | | | | | | | 12½ | 58
55 | 36 4
61 5 | 2 4 | 13 i | 47 4
61 9 | 9 | 52 5 | 5 58 | 61 6 | 67 | 0 71 | 71 | 70 | 74 | 78 | | | RAL
TL70-72 | | Vinyl finish | 2.3. | | 144 | 33 | DT 3 | , (| ,,, | 01 3 | ,, | 28 3 | 3 30 | 47 4 | 4 3 | 9 36 | 37 | 37 | 32 | 25 | | 10.8 | IN70-11 | 189 | floor | -3-1 | | | | | | | wition des wood floor Ross | n
de
der
or
11 | glas
ning
sles
laym
cov
ient | plyword per , erin; chan | flood,
ood,
rd, 1
5/8"
and v
g on
mel | nau
pl
iny
top
and
too | 1#-
#9µnd
Ywood
1
*5/8" | | | | | | | | | | | | 13½ | | | | | | | | | 61 6
46 4 | | | | | | | | 11.6 | RAL
TL70-61
IN70-9 | 189 | Vinyl finish
floor with
wood sleaper | 2,3,
4,5,
7,8 | | | | | | | 2"
wit
tio
fib
of
and | x h eri | 10"
3½"
5/
14#
1091
Res | wood
fiber
6" p:
e bos
ticle | floorglas
lywoo
ird,
bos
stos
it ch | r jo
e ii
d, 1
2 1
d
rd
rd | oist
nsula
7/16"
tyers | - | | | | | | | | | - : | | 14 | 51
52 | -
72 | | | -
71 | | 6 | -
5 | | -
:7 | | -
43 | | | -
38 | | - | CT
OCF No.
F1-12-68 | 132 | Noise
isolation
F-W26 (vinyl
tile surface) | 5,9 | #### TABLE 31 WOOD FLOORS (Contd) | | | | | | T | ran | ami | ខេត្ត | on | Los | B (| dec | ibe | 18) | | | | | | | | | |----------------------|----------|-------|----------|------|--------------------------------|--|-----------------------|----------------------------|------------------------|--|-----------------------------|---------------------------------|------------------|-----------|------|----------|----------|------------------|---------------------|-------|----------------------------|----------------------| | \$ _ | | _ | Sou | nd | Pro | 3 6 L 1 | re | Lo | vel | fr | om | Tap | pir | ıg b | ach | ina | · · | | | | | | | ÄÄ | Ę | # | 1 | 4 | 盐 | 뷮 | # | 丑 | 퐯 | ¥ | 4 | 丑 | # | 7 | -11 | # | # | | | | | | | Thichess
(inches) | TIC/STC | 125 1 | | 2002 | 250 | 315 | 400 | 200 | 0 | 800 | 100 | 1250 | 1600 | 2000 | 2500 | 3150 | 4000 | Weight
1b/fc2 | | • | Tu. 1 | Foot. | | F- | _ H | | <u> </u> | ~ | | | | | 6 | | | | | | ~ | <u> </u> | <u>*</u> | 10,112 | Lab. | Ço, | Product | note | | | 51 | | | | Pa:
Rei | x
th
on.
ber
trque
sil | pa
ot
len | fin
t c | ieh
han | on
onel | to | p.
th | ነ።
}" | !- | | | | | ст | | Noise isolation | | | 14 | 53 | 70 | | | 68 | | | 63 | | | 57 | | | 43 | | 38 | | _ | OCF No.
F1-13-68 | 132 | F-W26 (parquet
surface) | 5,9 | | • | 47 | | 32 | 35 | 14
3/4
and
Ros | " T
4" (
d 1,
s 11;
p s ut | n p | Jo
woo
vi
t c | nan
d, | nal | vit
unc
la
vi | .cn | 2/6 | i
nent | ; | | | | | | au. 1100, | 2,3, | | 16¥ | 45 | | | | 71 | | | | | | | | | | | | | | CKAL
7212-04 | 171 | Trus Joist | Ψiδ, | | | 52 | 24 | 38 | 38 | Ply
Vit | laye
tent
wood
und
nyl
it o | lor
ti | ion
lay:
la :
nna | neni | ank
dat
top
wit
n b | ic
nd
R
h 5 | iay
1/8
1/8
/8"
om. | 3/4
era
1- | • | . 63 | 67 | 68 | | CKAL | | | 2,3, | | 16k | 51 | | | | 65 | | | | | | | | | | | | | - | 7212-03 | 171, | Trus Joist | Jig, | | • | 48 | | | | 3/4
and
Res
Syp
37 | 41 | ent
bo | p1
p1
c
arc
49 | 51 | d of the last t | in
or
orti | pape
top
th | er,
5/8
52 | n | 47 | 52 | 56 | 7 5 | RAL
TL70-48 | 171 | True Joist | 2,3,
4,5,
7,8, | | 16 k | 62 | 50 | 42 | 36 | 34 | 30 | 26 | 24 | 19 | . 17 | 14 | 11 | 12 | | | | | 7.5 | IN70-7 | • , , | TEGS WOLFE | 12 | | | | | | | 1-3
sta
top
bot | tom | rd
E | car
ByP | pet
sun | ek: | ing
nd p
narc | and
pad
l or | on
1 | | | | | | | | | • | | • 41 | 42 | | | | 35 | | | | | | | | | | | | 71 | 0 4 | KAL | 171 | mani sadan | 2,3,
4,7 | | 161 | 58 | | | | - | Tri | us
fi
rd
Res | Joi
car
ili
bo | et
de
pet
ent | ca
ick:
ai
ci | vicy
ing
id p
namr | wi
and
ad
lel | th
on
wit | th | | | 20 | 8.8 | 858-1-70 | •,• | Trus Joist | 41/ | | 16k | 48
65 | | | | 38 :
31 : | | | | | | | 0.) | οĐ | 12 | /1 | 11 | 14 | 8.9 | KAL
858-3-70 | 171 | Trus Joist | 2,3,
4,7 | | ••• | | 7.5 | ٠, | | | | | | | | •• | | | | | | | 0,7 | 220 0 10 | | | .,, | # TABLE 31 WOOD FLOORS (Contd) | | | | | _ | | Tra | nan | 150 | ilon | Lo | 68 | (dec | the | ela) | , | | | | | | | | |-----------------------|----------|------------|----|---|--------------------------|---------------------------------|-------------------------|------------------|---------------------------|-----------------------|-----------------------------------|-------------------------------------|--------------------------|------------|------------|-----------|---------|------------------|--------------------------|-----|------------|----------------------| | Thickness
(inches) | IIC/STC | 125 117 02 | H. | å | ! # | | | 1 1 | F F | 1 1 | 1 4 | | 10091 | 뷮 | 2500 11 21 | 3150 Ht a | 4000 Hz | Weight
lb/ft2 | Lab. | Co. | Product | Poot-
note | | | | | | | DI
Wi | ich
ich
ich
ich
ich | 5/
5/ | and
R
8" | 3/4
ard
emi
gyp | ca
lia
sum | rpe
nt
bo | roc
r de
t ar
chan | ick
nd j
na:
on | ing | , | | | | | | | 5 .3. | | 164 | 50
65 | | | | | | | | 8 5
9 1 | | | 1 65 | 61 | 3 72 | ? 75 | 75 | 75 | 9.7 | 858-5-70 | 171 | Trus Joist | 4,5, | | | | | | | S /
E /
E /
Ite | d i | pli
eli
m
in (| ywo
E
eon | od
and
crei
chai | 15
5/
te
nne | 8 ¹¹ 1
on 1
1 41 | esp
esp
esc
op. | ica
1ca | 1 | | | | | | | | | | | 53
69 | | | | | | | | 4 5
B 1 | | | 60 | 5 5 (| 3 52 | 52 | 55 | 65 | | RAL
TL70-1 | | | 2,3 | | 16¥ | 33 | | | | | | | | | | | 61 | 64 | 69 | 70 | 63 | 56 | 11.9 | IN70-3
IN70-2 | 171 | Trus Joist | 13. | | | | | | | 15
ma | ber
lb
sti | in
as
cal | phi
phi | lati
ilte
/psu | d i | elt
onc | 2"
/4"
rate
nal
boo | pl
nd | 5/7
5/7 | ~- | | | | | | | | | 164 | 60
72 | | | | | | | | 10 | | | 70 | 70 | 65 | 63 | 69 | 77 | 12.3 | RAL
TL70-9
IN70-4 | 171 | Trus Joiet | 2,3,
4,7,
8,12 | | | | | | | 57 | 6 0 , | gy p | sur | bo | ard | on | y wind hing hel | to | Ď, | | | | | | | | 2 2 | | 16 | 48
41 | | | | 37 | 39 | 43 | 45 | 47 | 50 | 51 | 52
56 | 52 | 49 | | | | | CKAL
7212-01 | 171 | Trus Joint | 4;10, | | | | | | | and
Rea
By F | 11: | Len
b | pl
t c | d
ywo
han
d o | od
nel | un
on
wi | | r, | | | | | | DAT. | | | 2.4 | | 16 <u>5</u> | 49
65 | 28
49 | | | | | | | | | | 57 | 58 | 58 | 54 | 56 | 62 | 9.0 | RAL
TL70-53
IN70-8 | 171 | Trus Joint | 2,3
4.7
8,12 | | 3 | 52 | 34 | 37 | | Fit
Fit
cha
boa | und
ori
one
one | ler
ng
le | on
and
bot | to | 18 1
18 1 | nd A
Res | wind
3
aye
111
sum | ra,
arq
ent | uet | | 67 | 69 | | CKAL | | | ?,3 _A | | 167 | 51 | | | | | | | | | | | 42 | | | | | | - | 7212-02 | 171 | Trus Joist | ii. | ### TABLE 31 WOOD FLOORS (Concl) | | | | | | T | ranı | em L | aaid | on I | Logi | (| deci | be | la) | | | | | | | | | |-----------------------|--|-----|--------------|-----|-------------------------------|------------------|--------------------------|-------------------|-------------------|--------------|---------|----------|---------|------|------|-------------|------|-----------------|-------------------------------|-----|------------|----------------------| | i a | | 5 | our | đ | Pres | gui | co | Le | va l | fr | DΠ | Tap | pin | g M | ach | ine | | | | | | | | Thickness
(inches) | ric/src | # | 첉 | # | # | Ħ | Ņ | Ħ | 弁 | 扫 | ZH C | 0
| 된
0 | ZH 0 | 끂 | 7H D | 祖 | | | | | | | 결권 | IIC, | 125 | 160 | 200 | 250 | 315 | 400 | 500 | 630 | 800 | 1000 | 1250 | 1600 | 2000 | 2500 | 3150 | 4000 | Weight
1b/ft | Lab. | Co. | Product | root. | | | | • | | | ply
wei
Res | woo
ght | ed a
co
ent
yps | nd
ner | l-!
ote
ant | 5/8'
10 6 | l
to | th | :
:- | | | | | - | | | | | | 171 | 58
80 | | | | | | | | | | | | 66
9 | 65 | 64 | 69 | 74 | - | RAL
TL70-44
IN70-6 | 171 | True Joiet | 2,3,
4,7,
8,12 | | | 18" Trus Joist cavity with 3" fiberglass insulation. 1-1/8" plywood plus standard carpat and pad on top. Rea- ilient channel with 5/8" sypaum board on bottom. | | | | | | | | | | | | | | | 1 2 | | | | | | | | 193 | 47
69 | 28 | [3:
[5: | • | 38 | [4]
[4 | • | | (49)
(43) | | | 57
34 | • | 64 | - | 3] 6
10] | 4 | • | KAL
224-36-65
224-35-65 | 171 | Trus Joist | 1,2,
14,15 | | | | | | | 18"
5/8
and
on
on | " p
st
top | lyu
and | ood
ard
5/8 | . 1 | -5/ | '8'''
 CON | cre | te, | • | | | | KAL | | | | | | 46 | | - | | | - | | , | * | | | - | | | - | | | _ | 224-38-65
224-37-65 | 171 | Trus Joist | 1,2, | | 20¥ | 62 | | [63 | ı | | (48 | ı) | Ĺ | 39] | | | 33) | l | | (2 | 2 J | | • | 444-7/-03 | | Trus ootst | 4,15 | #### FOOTNOTES FOR TABLE 31 #### WOOD FLOORS - 1. Tested and evaluated according to ASTM E90-61T specifications. - 2. Tested and evaluated according to ISO R140 specifications. - First row of numbers designate sound transmission loss, second row designates impact sound pressures in receiving room. - 4. IIC computed using: IIC INR + 51. - 5. Approximate thickness computed from sketches of the product. - 6. Carpet and pad thicknesses not included in overall thickness. - 7. Tested and evaluated according to ASTM E90-66T. - 8. Tested and evaluated according to ASARP-224.19-1957. - 9. Data were provided in graphical form. - 10. Tested and evaluated according to ASTM E90-70 specifications. - 11. Tested and evaluated according to ASTM E413-70T specifications. - 12. Impact noise rating performed with standard carpst and pad. - Bottom row of numbers for impact test using floor loaded with additional 10 lh/ft² without carper and pad. - Transmission loss numbers in brackets are for one-third octave bands with center frequencies of 175, 350, 700, 1400, and 2800 Hs, respectively. - Impact sound pressure levels in brackets are at 150, 300, 600, 1200, 2400, and 4800 Hz, respectively. # TABLE 32 Doors and their sound transmission losses are listed. The table illustrates the ranges of thicknesses and sound transmission classes available in doors. The thicknesses range from 1-3/8 inch to 11 inches and the sound transmission classes range from 13 to 65 for the doors listed in the table. Steel and wood are the most commonly used door materials. Acoustical insulation in the door cavities and good acoustical seal around the edges are essential for better performance. Improper seal around the edges of even the thickest door will result in very low sound transmission loss and therefore extreme care should be taken to ensure that a positive seal exists between the door frame and the door. Many sealing arrangements are possible. Most common is the gasket type seal. Figure 32, however, shows an "active" seal which is inflated by 15 psi air. This figure shows only one of the many other types of door, frame, and seal designs. The table is subdivided in two parts for convenience. Table 32A lists doors with thicknesses less than 2 inches. Table 32B lists doors with thicknesses greater than 2 inches, and the doors for which the thickness was not given. The companies (by numbers shown in Section II) with products listed in Table 32 are: 23, 55, 59, 63, 70, 96, 101, 104, 108, 112, 114, 117, 123, 124, 126, 131, 136, 145, 156, 157, 176, 189. Figure 32 A Cross Section of a Door and Its Frame ### GLOSSARY The outside surface of the specimen. In general the side facing the sound source $% \left(1\right) =\left\{ 1\right\} =\left$ Facing: The other side surface of the specimen. In general the side not facing the sound source $% \left(1\right) =\left\{ 1\right\} =\left\{$ Backing: The region between the facing and the backing Core: # TABLE 32A DOORS (Loss than 2" thick) | | | | | | | | _ | | | | | • | | , | | | | | | | | | |--|-----|-----|------|------|------------|--------------|-----------|-------------|-----------|------------|---------|-----------|---------|---------|---------|---------|---------|----------------|-----------------|-----|--|-------| | Thickness (inches) | , L | | _ | | 200 Hz | 250 Hz | 315 Hz | _ | | | 2H C001 | _ | 1600 Hz | 2000 Hz | 2500 Bz | 3150 Hz | 4000 Hz | Weigh
16/ft | | Ço. | Produc t | Foot- | | 18 Ga, Steel - 7'2" x 3'
weighing 84 lbs and having | 1-3/8 | 13 | 1 | 3 (| 10} | £ | lat | BU | rfac | 90 8 | tru | ctur | e. | - | 13 | [12 | 2] | 13 | 3,9 | C&H
DSP-4ST | 70 | R 3072-M Fenestra | 1,8 | | | | | | | | Ga | | | | | 2" x | 3' | | | | | | | | | | | | 1-3/8 | 25 | 19 | 7 (| L5] | | | | | | | 29 | [27 | 7] | 22 | [25 | 1 | 25 | 3.9 | G&H
DSP-3ST | 70 | R 3072-M Fenestra | 1,8 | | | | | | | | | | | | | /4" : | | | | | | | | RAL | | Amweld 1500 | | | 1-3/8 | 32 | 21 | 5 24 | 2 | 7 2 | 6 2 | 7 2 | 7 2 | 8 30 | 3 | 1 32 | 32 | 21 | 32 | 35 | 38 | 40 | 3.4 | T1.69-249 | 23 | scries | 4,24 | | 1-3/8 | 33 | 22 | | 71 | | or | | | | | 20 | | | ~~ | | | •• | | CEN | | | | | 1-3/6 | ډد | 22 | · L | 7 1 | 4 | 1 (. | 311 | J | 0 [3 | 17.] | 38 | [34 | 1 | JZ | Į 10 | 1 | 33 | 4,6 | DSP-2ST | 70 | R 3072-M Fenestra | 1,8 | | | | | | | F0 | cin;
2" ; | 8 o | f l | 6 Ga | i. E | itee! |
as | | | | | | | | | | | | 1-3/4 | 14 | 18 | [1 | 3] | CO | ro | | | | | 16 | | 1 | 13 | [13 |] | 13 | 5.4 | G&H
DSP-9ST | 70 | F6C 4072-M
Fenestra | 1,8 | | | | | | | | | | | ioor | | 35 3 | 1/4" | , | | | | | | | | | | | 1-3/4 | 19 | 14 | 15 | 18 | | 83 3
3 18 | | | 22 | 23 | 23 | 23 | 21 | 18 | 16 | 16 | 19 | 4.1 | RAL
TL71-136 | 123 | Perma strait door
Plastic laminated | 5,9 | | | | | | | Fa | ខ្ពុំព្ | g ç | f 2 |) Ga | s | tea: | L | | | | | | | | | | | | | | | | | 88 | CO | r o | | | | | | | | | | | | G&H | | | | | 1-3/4 | 24 | 1.5 | [1 | 7] | 20 |) [2 | 26) | 29 | (3 | 1] | 30 | [26 |] : | 23 | [26 | 1 | 23 | 3.9 | DSP-6ST | 70 | Fenestra | 1,8 | | | | | | | Par | eing | g o | £ s | ceel | ر
ا | acki | ពិទ្ធ | /911 | | | | | | | | | | | 1-3/4 | 2/. | 25 | 10 | ٠. | នក | d ec | วนถ | d at | ten | uat | ion | cor | e. | | 7.43 | 1 | | | RAL | 145 | Republic steel | • • • | | 2-3/4 | | | | ٠, | • | , , _ | • • • | | | . 1 | 2.5 | [30 | , . | += | . 43 | J | 44 | • | TL66-139 | 145 | doors - series 634 | 2,10 | | | | | | | and | i at | 80 | hane
Lau | fo
rfa | am
Cen | 48 c | ore
7- | 1/4' | ı | | | | | | | | | | 1-3/4 | 27 | 22 | 22 | | | 2'8"
5 25 | | 2 2 8 | 29 | 29 | 28 | 28 2 | 24 2 | 23 : | 32 3 | 37 | 37 | - | RAL
TL71-312 | 114 | Therma-Tru
entry system | 5,11 | | | | | | | Woo | od d | loo | r - | 7' : | × 3 | ŀ | | | | | | | | RAL. | | STC 28 Door | | | 1-3/4 | 28 | 23 | 25 | 24 | 28 | 28 | 29 | 27 | 27 | 26 | 25 : | 26 2 | 8 3 | 0 3 | 2 2 | 4 | 32 | 4.8 | TL69-364 | 176 | System | 3,12 | | 1 2 16 | 20 | 22 | 01 | | | | | | | | 3' x | - | | | | | | | RAL | | Porma Strait doors | | | 1-3/4 | 4 D | 44 | 44 | | | | | | | | 26 2 | 40 2 | 5 2 | 0 2 | . a J | U 3 | 14 | 5.1 | TL71-182 | 123 | wood veneered | 5,9 | | | | | | | Fac
7'2 | ing
" x | 4 | 18 | Ga | , 8 | teel | | | | | | | | CEII | | F 6 C4072-M | | | 1-3/4 | 29 | 21 | [23 |] | 22 | [26 | 5] | 32 | { 24 | 1 | 32 [| 29] | 2 | 8 [| 31) | 2 | 7 | 4.65 | G&H
DSP+5ST | 70 | Fenestra | 1,8 | #### TABLE 32A DOORS (Contd) (Loss then 2" thick) | | Transmission Loss (decibals) |-----------------------|------------------------------|--------|------------|--------|------------------------------|------------|--------|-----------|--------------|-------------|---------|------------------|--------------------|-----|---------------------|---------|------------------|-----------------|-----|---|---------------| | Thickness
(inches) | STC | 125 Hz | | 200 Hz | | 315 112 | ZH 005 | S00 Hz | 630 Hz | 2H 009 | 1000 Hz | | 1600 Hz
2000 Hz | | 2500 Hz
31.50 Hz | 7000 Hz | Weight
1b/ft2 | Lab. | co. | Product | Foot-
note | | 1-3/4 | 30 | 25 | [26 |) | 7'2'
27 | ' × | 4 | | (37 | | 35 | (30 |] 28 | 3 [| [32] | 30 | 6,8 | G&N
DSP-7ST | 70 | F 6 C4072-M
Fenestra | 1,8 | | 1 3/4 | 30 | ,21 | (25 | 1 | Fac:
7'2'
25 | " × | 4 | | Ga. | | | (30) | 33 | ı (|]
 36 | 31 | 5.4 | G&H
DSP-89T | 70 | F 6 C4072-M
Fenestra | 1,8 | | 1-3/4 | 30 | 26 | [25 | | Soun
with
35-3
27 | /41 | ze l | 83. | 11 68 | Ces | 1 | [30] |] 29 |) (| [30] | 33 | - | RAL
TL63-136 | 145 | Republic steel
doors - series 634 | 1,10 | | 1-3/4 | 31 | 26 | [25 | | Sout
with
28 | ; 8 | tee | 1 4 | ur E | ice | В | e
[34] |] 3,1 | l [| [31] | 36 | - | RAL
TL63-137 | 145 | Republic steel
doors - series 634 | 2,10 | | 1-3/4 | 32 | 22 | [22 | | Sour
with
35-3 | /4 | ' x | 83 | 1/8 | ica: | 9 | [36] | 32 | ! [| 32} | 38 | • | RAL
TL66-140 | 145 | Republic steel
doors - series 634 | 2,10 | | 1-3/4 | 33 | 20 | [24 | | Sour
with
35-3
27 | /4 | oc. | 83 | 11 fz
1/8 | lcei
 '' | • | e
[34] | 33 | | (10) | 38 | 3.9 | RAL
TL66-140 | 145 | Republic steel
doors - series 634 | 2,10 | | 1-3/4 | 33 | 28 | 28 | | | ./8'
30 | 30 | 29 | 30 | 31 | 33 | 33 3 | | . 3 | 17 38 | 35 | 4.6 | RAL
TL69-290 | 23 | Amweld 1-3/4"
1500 series door | 4,13 | | 1-3/4 | 35 | 32 | [31 | ij | 14 (
2'11
29 | -3, | 4 | | | | | /4" :
[42] | | ı [| [43] | 48 | 6.8 | RAL
TL63-160 | 131 | Overly acoustical
door - 1-3/4"
single glazed | 1
1 | | 1-3/4 | 35 | 20 | [29 | | Soun
with
35-3
26 | /4 | × | 83. | ır fe | ica: | 5 | 6
[43] | } 45 |) ; | 45] | 46 | • | RAL
TL66-13B | 145 | Republic steel
doors - series 634 | 2,10 | | 1-3/4 | 36 | 28 | 28 | 29 | | 31 | 33 | 33 | 34 | 35 | 35 | 37 3 | 37 36 | i 3 | 18 38 | 38 | 6.7 | RAL
TL69-226 | 145 | STC 36 door
system | 3,12 | | 1-3/4 | 36 | 34 | (31 | | Weys
high
hard
35-7 | W00 | d a | uri
83 | Ace | 8 | *1E; | d
h
[-] | 31 | 8 [| :-1 | 40 | 6,7 | RAL
TL64-182 | 169 | Sound reterdent
door Woyerhauser | 14 | | 1 = 3/4 | 36 | 29 | 29 | | Mata
79-1 | /6 | • | | | | | | 33 35 | ; 3 | 17 39 | 39 | 6,7 | RAL
TL69-293 | 23, | Amwald 1-3/4"
3500 series door | 4,15 | #### TABLE 32A DOORS (Contd) (Less than 2" thick) | | | | | | | | Erai | nemi | Lesi | nn. | [.og | . (| dec | 160 | 10) | | | | | | | | | | |---------------------|------------|-----
----------|----------|----------|------------------------|------------------------|--------------------------------------|----------------|----------------------|------------------------|-----------|--------------|----------|----------|----------|----------|----------|------------|------------|-----------------|-----|---------------------------|-------| | Thickness (factors) | | STC | 125 24 | | • | | | 7H 007 | 24 QQS | E30 Hz | 300 Nz | 1000 Hz | 1250 Hz | 1600 ftz | 2000 班 | 平 0052 | 3150 Hz | ZH 0007 | Wei
16/ | ght
ft2 | Lab. | Co. | Product | Foot- | | 1-3/ | 4 | 37 | 28 | 5 24 | 27 | Voc
Lan | iina
iina
iina | | 33 | ar
*
35 | 7 ¹ 4
36 | st1 | C | 39 | 40 | 40 | 40 | 42 | 2 5.1 | | RAL
TL71-183 | 123 | Perma strait door | в 5,9 | | 1-3/ | 4 | 37 | 29 | 28 | | E11
pap
6'1 | -99
8r
16
1-3 | -1A
cor
C4.
/4" | S h
CR
X | 1 ch
S at
2 '1 | 18
15
1'' | Ga
sce | 8 | 35 | 35 | 39 | 42 | 45 | 21 | , | RAL
TL69-168 | 63 | Sound Sentry door | r 3 | | 1-3// | . : | 38 | 25 | 26 | | 35- | 3/4 | ₩00
X
37 | 83 | -3/ | | 35 | 39 | 40 | 42 | 45 | 44 | 46 | 6,1 | | RAL
TL71-66 | 145 | 38 STC Sound door | 4 | | 1-3/4 | , 1 | 40 | 20 | 25 | 33 | 36 | 38 | 39 | 39 | 40 | 42 | 43 | 41 | 40 | 41 | 42 | 42 | 49 | 6 | • | RAL
FL73-41 | 63 | 3' x 7' Door | 5 | | 1-3/4 | 41 | ם | 33
30 | 30
30 | 32 | 33 | 34 | 36
36 | 38 | 39 4 | 41 4 | 12 4 | 43 (
41 (| 44
42 | 44
43 | 43
43 | 43
42 | 44
43 | 6.7 | τ | RAL
1,69-258 | 176 | STC 40 Door syste | m 16 | | 1-3/4 | 41 | 1 3 | 11. | (30 | ni
ti | ta
ivi
ici
11 | l c
ng
ng
-3/ | flui
onsi
18 (
4" y
1 43 | ru
a.
2 | stic
sto | m
le1
-3/4 | | 47 | 1 49 |) | (50 |] 5 | 5 | 7.4 | T | RAL
L63-155 | 131 | Overly Acoustical | 1,25 | | | | | | | ir
Ot | ta. | lc | glaz
zing
onst
y re
16 0 | ruc | lus | bh
n. | all
In | DW | • | | | | | | | | | | ., | | 1-3/4 | 41 | . 2 | 4 ! | [29] | | | | | | | | | | | i (| 48 | 5 | 0 | 11.3 | T | RAL
166-287 | 131 | Overly Acoustical
Door | 1,25 | | 1-3/4 | 42 | 2 | 6 2 | 5 2 | 4' | G6
★
2 3 | 8' | 2 41 | | | - | . 41 | . 41 | ۱4: | 4 | 5 40 | 5 4 | 7 | 7.9 | | KAL
104-7 | 131 | Overly Acoustical
Door | 3,17 | | 1-3/4 | 42 | 25 | 25 | 32 | 35 | -3/ | 4" | ota)
x 8:
49 | 3-3 | /4" | 41 | 44 | 48 | 51 | 53 | 53 | 53 | | 8.1 | | AL
70-98 | 117 | Sound Door | 4,1B | | 1~3/4 | 43 | 24 | 29 | 36 | 83- | 5/1 | B" : | etal
k 35
45 | -3 | 4" | 44 | 43 | 41 | 42 | 44 | 48 | 49 | | 9,3 | TL | RAL
68-282 | 96 | Hollow metal doors | 4 | #### TABLE 32A DOORS (cone1) (Less than 2" thick) Transmission Loss (decibels) 16 Ga. steel facing 16 Ga. steel core with rust inhibiting paint surfaces - 3'6" x 7'6" 1-7/0 27 20 23 26 23 26 24 24 22 22 26 26 29 30 32 33 34 4 Door Size - 7' x 3' 3' x 7' 1-3/4 1-3/4 1-3/4 - 35 38 35 39 44 46 50 50 52 52 50 52 56 57 56 56 8.6 ### 125 Ha 160 16 Product Co. Single glazed door with 16 Ga. steel facing 6'11-1/2" x 2'11-3/4" 6'11-1/2" x 2'11-374" RAL Overly Acoustical 1-3/4 43 25 [29] 38 [37] 39 [40] 42 [45] 48 [50] 52 11.3 TL66-286 131 Door 1 Double glazed door (up to 300 sq.in, glazing) RAL Overly Acoustical 1-3/4 44 25 [27] 37 [38] 40 [41] 44 [46] 51 [54] 57 11.3 TL66-281 131 Door 1 Acoustical fire door with 16 Ga. Steel facing 6'11 3/4" x 2'11 3/4" RAL Overly Acoustical TL63-188 131 poor 1 1-3/4 45 35 (38) 42 [42] 45 [46] 47 [46] 45 (48) 50 9.5 Single glazed door with 16 Ga. steel surface 6'11-1/2" x 2'11-3/4" 0-11-1/2" x 2'11-3/4" RAL Overly Acoustical 1-3/4 45 25 [31] 38 [40] 41 [43] 45 [47] 49 [50] 52 11.3 TL66-285 131 Door 1 Double glazed door with 16 Ga. steel facing 6'11-1/2" x 2'11-3/4" 1-3/4 46 25 [29] 38 [40] 41 [44] 47 [50] 53 [54] 56 11.3 Tl66-284 131 Door 1 Masonry core with metal facing - 80-1/4" x 33-3/4" RAL TL61-227 104 Industrial door 1-3/4 47 33 [36] 44 [43] 44 [47] 50 [53] 55 [55] 54 7.7 Plywood door - 7' x 3' RAL TL68-243 176 STC49 Door system 3,12 1-3/4 49 33 35 38 41 44 45 47 48 48 50 51 52 53 53 54 53 9.2 Timeblandhigh density core with hardwood aurfaces 35-7/8" x 83-3/4" 1-3/4 51 36 [39] 44 [48] 49 [52] 51 [-] 55[-] RAL TL64-183 189 Sound Retardant Door Weyerhauser 14 62 . RAL Overly Acoustical TL66-188 131 Door 1.7 136 Acqueta Door 112 Kriegersonic Munchhausen Acoustical wood door #### TABLE 32B DOORS (Greater than 2" thick) | | | _ | | | | | | _ | | | _ | _ | _ | _ | | | _ | | | | | | |----------------------|-----|--------|----|----|------------------|-----------------------------------|----------------|----------|---------------------|-----------------|-----------|-----------|---------|---------|---------|---------|---------|------------------|-----------------|-----|-------------------------------------|---------------| | Thichess
(inches) | STC | 125 Hz | | | | - FE | 400 Hz | 2H 005 | F30 Hz | Ŧ 008 | 2H C001 | 1250 Hz | 1600 Hz | 2000 Hz | 2500 Hz | 3150 Hz | 4000 Hz | Weight
1b/ft2 | Lab. | Ca. | Product | Foot-
note | | 2-1/8 | 27 | 20 | 24 | | | d w
26 | | | | | | | | 31 | 32 | 34 | 35 | 4 | • | 126 | Munchhauser Acoustical wood door | 3 | | 2-1/4 | 42 | 37 | [3 | 7] | 36" | ble
h h
x
(38 | ard
84" | MOO | h d
d # | ur f | ACO | 6 | | 45 | [- |) | 40 | | RAL
TL61-194 | 189 | Weyerhauser Sound
Retardent Door | 1 14 | | 2-1/2 | 51 | 43 | [4 | | 6'1
49 | Ga.
1-1
[52 | /8"
!) | *
48 | 2'1
(51 | 1-1
[] | 1/1
55 | [56 | 6] | 57 | {5 | 5) | 44 | 21.9 | RAL
TL63-212 | 131 | Overly Acoustical
Door | ı | | 2-1/2 | | 26 | 32 | | fac | onr
ing
42 | • | 86* | 3/8 | " × | 40 | -3/ | | 52 | 54 | 55 | 56 | 7.5 | RAL
TL70-188 | 104 | Cam-Seal door | 4,19 | | 2-5/8 | 37 | 24 | 28 | | | dwor
28 | | | | | | | 38 | 41 | 43 | 46 | 46 | 9 | - | 126 | "Shermlore" Dual
Panel Door | 3 | | 2-5/8 | 40 | 28 | 28 | 32 | 6'1 | 33 | ĸ 9 | '5" | | | | | 43 | 44 | 43 | 42 | 44 | | RAL
TL67-34 | 101 | #873 Acoustical
Door | 4,20 | | 2-5/8 | 43 | 26 | 35 | 35 | | d ₩
35 | | | | | | | | 48 | 52 | 53 | 51 | 9 | | 126 | "Shermlore" Dual
Panel Door | 3 | | 3 . | 50 | 34 | [4 | 1] | | G4.
* 3
[45 | | | | _ | 52 | [5 | 6 } | 56 | [5 | 6] | 55 | 14,9 | HAL
TL61-226 | 104 | Industrial door | 1,19 | | 3 | 55 | 39 | 42 | 44 | | r s:
49 | | | | | | | | 60 | 60 | 57 | 58 | 25,β | RAL
TL68-317 | 108 | Jami sonic | 3 | | 4 | 43 | 35 | [3 | 6] | 7'4 | 6" -
-3/4
(37 | •" | x 7 | \$te:
11-
[42 | -1/ | 4" | | | 47 | [4 | 5] | 45 | 34 | RAL
TL65-181 | 131 | Overly Acoustical
Blast Door | 1,22 | | 4 | 52 | 43 | 45 | | ins
84-
47 | ped
ula:
ket:
1/4'
49 | ing
x
51 | 32
51 | 50
50 | dwa
Fa
51 | 54 | ānd
55 | 54 | 52 | 52 | 52 | 50 | 19,1 | RAL
TL71-294 | 108 | Jamisonic | | | 4 | 53 | 32 | 40 | 44 | int
7'3 | Ge.
erna
-9/1
47 | 11:
6" | X. | ein:
3 '8 . | Eor
1/ | ced
B" | | • | 61 | 62 | 62 | 63 | 23 | RAL
TL67-3 | 131 | Overly Acoustical
Door | 3 | #### TABLE 32B DOORS (Concl) (Greater than 2" thick) | | | | | | | Tre | 11181 | nis | sic | on L | CSS | . (| deci | be | | ,_ | | | | , | | | | | |-----------------------|------------|------|---------|-----|----------------------------|--------------------------------|-------------------|-----------------------|-------------------------------|---|-----------------|------------------|-------------|----|---------|---------|----------|-----|---|------------------|-----------------|-----|----------------------------------|-----------| | Thickness
(inches) | STC | | 17.5 H; | 307 | 200 #: | ų, | ii | áĬ | 7H 005 | <u>.</u> | 4H 008 | | Hz | 뀵 | 2000 Hz | 2500 Hz | 3150 11: | | | Weight
16/ft2 | Lab, | Co, | Product | Foot- | | 4 | | 38 | 3 [2 | 9] | me
84 | tol | 4 | 8C1 | ng | e wi | | 49 | [52 |] | 52 | [3 | 4] | 5: | 5 | 14.8 | RAL
TL59-57 | 104 | Industrial door | 21 | | 6 | 49 | 36 | š [3 | 7] | 8h
£e
18
£a
45 | 00t
1:1
Co
cos
-1/ | 1n4 | er
eet
eet
x | eri
as
al
act
84. | rame
11 w
cor
she
1 si
1/2
[48] | e v
et
de | it
su | nd
h |) | 57 | [6 | 1] | 6 | ı | | NBS
654 | 59 | TEC Sound Poors | 6 | | 7 | 61 | . 46 | i 48 | 50 | in:
ga
84 | ske
•7/ | ati
tir
8" | on
g
x | , h
às
37" | | war | | and | 65 | 65 | 66 | 65 | 62 | ! | 28.9 | TL70-123 | 108 | Jamisonic | 3,23 | | 8 | 60 | 38 | 43 | 48 | | | | | | fac:
1/2'
58 6 | | | 64 6 | 58 | 68 | 71 | 71 | 74 | | 45 | CKAL
704-4 | 131 | Overly Acoustics | l
3,17 | | 10 | 63 | 47 | 50 | 52 | Integral
84-
53 | iula
kei
7/8
56 | ici
in
3" | on,
8 2
9 6 | 15
17''
1 (| abso | var
3 (| e ë
54
Eng | ind
66 6 | 65 | 64 | 65 | 65 | 6.5 | i | 36 | RAL
TL70-122 | 108 | Jamisonic | 3,23 | | 10 | 6 5 | 48 | 50 | 53 | 84- | 7/8 | ιп, | g a | 1- | ardw
core
3/4"
64 6 | • | | ma
68 6 | 59 | 66 | 68 | 73 | 74 | , | 37 | RAL
TL70-121 | 108 | Jamisonic | 3,23 | | 10-1/2 | 62 | 50 | (5: | | air
fac | ing | ac: | 51 | 16
1-: | | X | 2 | 1
11-3 | | | [66 | 5] | 70 | , | 17,6 | RAL
TL63-182 | 131 | Overly Acoustical
Door | . 1 | | 11 1/4 | 63 | 50 | [45 | | | | | | | '6"
67] | | | | 7 | 0 | 72 | ĵ | 74 | | - | C&H
DSP-1ST | 70 | Fenestra | 1,8 | | • | 48 | 34 | { 37 | | | | | | | d oo
46] | | 1 (| 52] | 4 | 8 (| 51 | 1 | 54 | | 8 | RAL
TL63-34 | 124 | Miller Sliding
Glass Doors | ı | | - | - | | | | Wood
door
33 | d p | art
Ize
74" | ic | le
- 3 | ьра:
10" : | rd, | 4" | | | | | | | | 45 | - | 55 | Duraflake Door
Core | • | | - | - | | | | | | - | | | | | | | | | | | | | - | • | 156 | Ventilation Syste
Door Panel | ıs. | | - | - | | | | Flus | | | | | | | | | | | | | | | • | - | 157 | Single leaf Acous
tical doors | 26 | | - | - | | | 1 |)oor
win |
w: | th
n1 | ri
y | gh. | t oi | ıt | ٠ | | | | | | | | • | - | 157 | Double leaf acous
tical doors | 27 | ### FOOTNOTES FOR TABLE 12A, 32B - Tested according to ASTM E90-61T and data in brackets refer to the frequencies centered at 175, 350 700, 1400, 2800 Hz. - Special nonstandard test used for comparison with specimen measured by the standard method. Transmission loss values of the modified specimen are estimated. Data in brackets refer to the frequencles 125, 175, 250, 350, 500, 700, 1000, 1400, 2000, 2000, and 4000 Hz. The void between the door panel and its frame were scaled on both sides with Dussenl, a caulking type material. - 3. Tested and evaluated according to ASTM E90-66T. - 4. Tested and evaluated according to ASTM E90-66T and ASA 224.19-1957. - 5. Tested and evaluated according to ASTM E90-70 and E413-70T. - Data in brackets correspond to half-octave frequency bands centered at 175, 350, 700, 1400, 2800 Hz respectively. ASARP 224.19-1957 Was the standard used. - 7. Flush acoustical fire door with UL labels B, G. D & E. - 8. Can be designed to fit any door opening. - 9. Maximum size 5' wide x 12' high. Temperature range: 300°F to 1500°F. Flame spread 25 to 200. - 10. Different sizes and types are available. For interior use, - 11. Exterior entry system. Temperature range: -40°F to 125°F. - 12. Resistance to chemicals depends upon face finish. Interior use. - 13. Interior or exterior door. Temperature range: -60° to 150°F. Flame spread 5. - 14. Tested according to ASTM E90-61T and data in brackets refers to frequency bands centered at 175, 350, 700, and 1400 Hz. Interior doors, made to order. - For use in UL stairwall doors where codes require a minimum 450° temperature rise label. Temperature range: -50° to 250°F. Flame apread 10. Resistant to chemicals. - 16. For interior use. Resistance to chamicals depends on face finish. Numbers in upper row indicate transmission loss obtained when door bottom is sealed with sloped threshold instead of automatic drop seal. - 17. Fire resistant. - 18. Temperature range: 20° to 150°F. Standard sizes up to 4' x 8'. - 19. Maximum temperature 450°F. Flame Spread≤25. - 20. Available for single and part of swing, single and center parting, horizontal slide applications. - 21. Data in brackets correspond to frequency bands centered at 175, 350, 700, 1400, and 2800 Hz. ASTM E80-55 and ASA 224.19-1957 were the standards used. Maximum temperature 450 f. Flame spread \leq 25. - 22. Blast resistance of 72 lb/in2. - 23. Temperature range: 0° to 150°F. Relative humidity: 0 to 100%. - 24. Temperature range: -60° to 150°F. - 25. Door and louver size varies. - 26. Single leaf acoustical door dimensions: ``` Flush surface; 36" x 60"; weight 165 lbs Flush surface; 36" x 72"; weight 195 lbs Flush surface; 36" x 94"; weight 205 lbs Flush surface; 36" x 96"; weight 225 lbs Flush surface; 48" x 60"; weight 225 lbs Flush surface; 48" x 72"; weight 225 lbs Flush surface; 48" x 96"; weight 225 lbs Flush surface; 48" x 96"; weight 225 lbs Flush surface; 48" x 96"; weight 275 lbs ``` 27. Double leaf scoustical door dimensions: ``` With right out swing only: Flush surface; 72" x 60"; weight 330 lbs With right out swing only: Flush surface; 72" x 72"; weight 390 lbs With right out swing only: Flush surface; 72" x 84"; weight 410 lbs With right out swing only: Flush surface; 72" x 96"; weight 410 lbs With right out swing only: Flush surface; 72" x 60"; weight 450 lbs With right out swing only: Flush surface; 96" x 60"; weight 390 lbs With right out swing only: Flush surface; 96" x 72"; weight 450 lbs With right out swing only: Flush surface; 96" x 94"; weight 450 lbs With right out swing only: Flush surface; 96" x 94"; weight 550 lbs With right out swing only: Flush surface; 96" x 96"; weight 550 lbs ``` ## TABLE 33 ; Sound transmission losses of window assemblies ranging in overall thicknesses from 1/4 inch to more than 5 inches are listed. Various types of windows, e.g., pivoted, dual glazed, laminated glass, venetian blind; and plastic windows, etc., are presented in the table. Figure 33 illustrates a dual glazed window. Simple windows are usually the "weak links" in the sound isolation of rooms and buildings, but it is possible to select windows with high sound transmission losses to make the interiors of the buildings reasonably quiet. In the buildings at airports the selection of windows will determine to a large extent the interior noise levels. In such instances entirely sealed, dual glazed windows with a large airspace between the plates provide acceptable sound attenuation as can be seen from the table. The companies (by numbers shown in Section II) with products listed in Table 33 are: 1, 14, 17, 42, 49, 66, 71, 110, 124, 163, 185. #### DUAL GLAZING Two panels of glass enclosing a 25/8" Air space reduce transmission of Sound, heat and cold. Figure 33 Dual Glazed Window #### GLOSSARY Facing: The outside surface of the specimen. In general the side facing the sound source Backing: The other outside surface of the specimen. In general the side not facing the sound source Core: The region between the facing and the backing Glazed Window: A window furnished with glass Dual Glazed Window: A window furnished with two glass panes | | | Thichness
(inches) | STC | 125 Hz | | | ZA 152 | | 7H C07 | 500 Hz | 630 Hz | 800 Hz | 1000 Fz | 1250 1-2 | 1600 12 | 2000 13 | 2500 Hz | 3150 112 | 4000 Fz | Weigh
1b/fc | Ç Lab. | Ça | , Product | Foot-
note | |---|----------|-----------------------|-----|--------|----|----------------|------------------|--|-------------------|------------------|--------------|----------------------|-------------|-----------------|---------|---------|---------|----------|---------|----------------|------------------|-----|-------------------------------------|---------------| | 1 | _ | 1/4 | 29 | 25 | • | | Vo
1/
29 | 4" F | al
lat | piv
e
33 | ote | d v | vinc
36 | iow | | 26 | | | 35 | 4.5 | RAL
TL62-254 | 17 | Single plate
window | 1,4 | | | | 1/4 | 31 | 19 | | 24 | вр
26
La | mina | on
28
ted | 30
. sy | 31
ate | 32
5 w | 33
11 Ch | 34 | 32 | 29 | 28 | 31 | 34 | 4.0 | RAL
TL 71-333 | 1 | Scries 375 DH-A3 | 3,5 | | | | 0.49 | 35 | 27 | 23 | 27 | p1
ap | asti
ates
scim
30 | en | 14' | × | 91 | tea | | 35 | 38 | 42 | 45 | 48 | 6.7 | RAL
Tl68-59 | 110 | Core system with
laminated glass | 2 | | 2 | - | 1/2 | 40 | 23 | 26 | 29 | 8 | 2" 1
× 1
35 | 5' | tes | t a | pec | ine | | 40 | 47 | 47 | 49 | 52 | 6,0 | RAL
TL71-129 | 163 | Starline series | 6 | | | | 1 | 33 | 27 | | | 1/4
spe
28 | tic
" pi | lati | e.
37 | -//- | × | <u> </u> | spa
tes | ca
t | 31 | | | 35 | 7.1 | RAL
TL62-255 | 17 | Venetian blind
window | 1,4 | | | | 2-3/8 | 45 | 30 | | | BOY | minu
ning
erat
ce v
wide | idd
idti
X | bν | 1. | //8'
:iat
th r | ' A | ĹT | | 44 | | | 54 | | RAL
TL66-173 | 14 | Venetian Blind window | 1,4 | | | | 2-7/16 | 42 | 21 | 24 | 30 | con
2" | rmal
trol
spac
36 3 | br
e, | 1cl
3/1
1/ | .6"
" | d
pla
la | iun
ite, | | 46 | 46 | 47 | 48 | 49 | 7.1 | RAL
TL70-255 | 110 | Sun Control window | 2,4 | | | | 2-1/2 | 37 | 13 | 20 | 24 | 25 | | or
3 3 | 8 C 2 | inaa
17 4 | 0 4 | 812 | .7 4 | 49 | 49 . | 50 | 51 | 43 | s | RAL
TL69-244 | 49 | DEVAC Model 650
with 1/8" plate | 2,4 | | | | 2-5/8 | 41 | 23 | 25 | 2 . | win
gla | 1 gl
ela,
m) a
ea,
dow
6 a
'6" | had
ect
lon | l L
Lon | in | wn
sul
12 | ati
wi | ng
de
mer | ι, | 44 | 42 | 42 | 47 | 6.0 | TL71-128 | 163 | Series 325 window panel combination | | #### TABLE 33 WINDOWS (Contd) | | | | | | | | | | T | rans | mi | 8810 | n I | LOBE | (| dec | ibe | ls, |) | | | _ | | | | | | | |----------------|-----|-----------|----------|------|------|--------|--------|------------------|--------------------|------------|-------------------|------------------------|------------------|---------------------------|---------------------|------------|---------|---------|---------|----------|---------|---|--------------|----------|-----------------|----|---|---------------| | | | Thickness | (inches) | STC | | 125 Hz | 160 Hz | 200 Hz | 250 Hz | 315 Hz | | 500 Hz | 630 Hz | 800 Hz | 1000 Hz | 1250 Hz | 1600 Hz | 2000 Hz | 2500 H= | 31.50 Hz | 4000 Hz | | Weig
1b/f | ht
t² | Lab. | Co | , Product | Poot-
note | | | 3- | - 2 | -3/ | 4 4 | 0 2 | 72 | !7 : | 0
8
8 | illo
pac
o 6 | y. | 174
174
248 | m a
4"
P
tom | nd
pla
lat | 606
te,
d s | 3
2-
5
tan | 1/4
ize | n
d | 38 | 4 | 1 4 | 7 5 | 1 | 7.1 | 7 | RAL
[L69-236 | 49 | Devac Model 660 | 2,4 | | | | 2 | -3/ | ۵ ۵. | 4 2 | na | | 8 | 120 | 8, 3 | 3'8 | " X | 5' | ow,
aca
nd i
9". | | | | | | | | | 7.4 | | . RAL | | Devac Model 650 | | | | | - | | • | | , , | | p: | | gla
, 2 | | 4 ra4 | i mata | nt.1 | 1/4 | 4" | | 44 | 4: | > 52 | • | 3 | 7.6 | 1 | 169-246 | 49 | with 1/4" plate. | 2,4 | | 4 | _ | 3-1 | 1/1 | 6 4 | 0 28 | | | | 34
ua1 | gla | | 18
 wt | _ | 2 - | | | | 40 | | | 41 | 3 | 7.6 | T | RAL
L62-256 | 17 | Ameleo window = 3 | 1,4 | | | | | | | | | | pl
Ma
11 | nea | niz
r d | Bas
e 4
ine | 6,
10
8'2
noi | uni
on | Max
10 | | | | | , | / | | | | | KAL | | Park 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | 3- | 1/8 | 27 | 18 | 24 | 4 2 | Sa | ine | a a | abo | ve. | ķ | 42
leat | her | | 28 | 30 | 31 | 31 | 36 | | • | 12 | 47-1-71 | 17 | Dual glazed wind
basic unit | 3 | | | | 3 -1 | /8 | 37 | 20 | 25 | 5 2: | ha
po | und | nin
• | g 8 | ea l | ing | non
co
8 4 | m - | 1 | 38 | 35 | 40 | 46 | 45 | | - | 124 | KAL
47-3-71 | 17 | Dual glazed win-
dow, sealed | 3 | | | ; |
3-1, | /8 | 38 | 25 | 27 | 28 | pπ | cke | d i | nto | to | pο | iber
fut | ıΙt | ٠ | | 44 | 46 | 51 | 53 | | | | KAL
7-5-71 | 17 | Dual glazed win-
dow, packed with
fiberglass | 3 | | | | | | | | | | Sai
ne
pis | me d
opro | as : | abo
se | ve. | ¥ | ith
om | | | | | | | | | | | 3-71 | •• | | 3 | | | ; | 3-1, | /8 | 38 | 25 | 26 | 30 | 32 | | 35 | 36 | 35 | 33 | 33 | 3 | 7 4 | 2 4 | 3 4 | .5 | 49 | 52 | | - | 124 | KAL
7-5-71 | 17 | Dual glazed win-
dow with partial
neoprene seals. | 3 | | | 3 | 1-1/ | 8 | 38 | 24 | 27 | 30 | ing
of | als
g se
fro | on
ale | to: | n b | on. | har
tom | der
hal | Ē | 3 4 | 44 | 6 | 50 . | 55 | | - 1 | | KAL
7-6-71 | 17 | Dual glazed win-
dow with neoprene
and non-hardening
sealer. | 3 | | ς - | . 3 | -1/ | 8 : | 39 | 23 | 27 | 29 | eea | ıla | al1 | ar | oun | d. | opr | | | 4 4 | 5 4 | 7 : | 51 : | 54 | • | | | KAL
7-7-71 | | Dual glazed win-
dow with neoprene
and non-hardening
sealer. | 3 | #### TABLE 33 WINDOWS (Concl) | • - | | | | | | 1 | ranı | sm1 | a a í | on I | .00 | . (| lec | íbe | 16) | | | | | | | | | |-----------------------|------------|----|----|-----|---------------------|--------------------------|-------------------------------------|-----------------|-----------------|--------------------------|------------------|-----------------|---|------|------------------|------|------|------|--------------------|---------------------------|------|---|---------------| | E 5 | | • | # | -N | Æ | 뷮 | 걾 | 솶 | 갶 | Ŧ | 겊 | ij | 升 | 7. | ૠ | 봙 | ¥ | 뷮 | | | | | | | Thickness
(inches) | STC | | | 160 | 200 H | 250 H | | 400 H | 500 H | | 800 H | 100 | 1250 | 1600 | 2000 | 2500 | 3150 | 7000 | Weig
1b/f | ht
E ² Lab. | Co. | Product | Poot-
pote | | 3-1/8 | 39 | 23 | 25 | 2 | 8 | 0A) | 9 48
6 8
32 | 11 | arc | ound | | • | | 43 | 43 | 46 | 50 | 54 | • | KAL
1247-8-71 | 17 | Dual glazed win-
dow with neoprene
seals all around, | 3 | | 3-1/8 | 41 | 24 | 27 | 2 | 86
86
9 3 | eal
eal
eal | | wic
ca
38 | р,
про
39 | piv
ion-
und
41 | har
40 | den
40 | in: | | 45 | 47 | 52 | 55 | - | KAL
1247-9-71 | 17 | Dual glared win-
dow with neoprene
and non-hardening
sealer. | | | 3-1/8 | 43 | 25 | 27 | 2 | p
h | er:
oti
er:
our | | er
des
ng | sea
w: | oled
Lth
olin | non
g c | 1-
:om- | | 52 | 51 | 52 | 55 | 58 | | KAL
1247-2 - 71 | 17 | Dual glazed win-
dow with non-hard
ening sealer on
both sides. | i-
3 | | 3-1/8 | 43 | 25 | 27 | 2 | ir
co
bi | n Bu
on b
l i n | | Lon | ver | nd e
neti | el E
an | ! | | 50 | 50 | 51 | 54 | - 55 | | KAL
1247-10-71 | . 17 | pual glazed win-
dow with thermal
insulation and
venetian blind. | 3 | | 4-7/32 | : 4A | 34 | | | 81 | ize | e, : | X | 5†
46 | | iiua | 51 | 32 ¹
/4 ¹
/4 ¹ | | 48 | | | 54 | 8 | RAL
TL63-34 | 124 | Dual glazed win-
dow with aluminum
frame. AUD-0-FEN | 1,4 | | 4-7/16 | 48 | 27 | 32 | 34 | pi
pi
sr
3 | lat
lat
7 4 | | 5'
1.
1 | 9P,#
45 | с а ,
х 5 | ·3/
·3"
52 | 16"
te
56 | s t
58 | | 56 | 53 | 51 | . 60 | 7 | RAL
TL71-242 | 49 | Devac Model 720 | 3,5 | | 4-1/2 | 40 | | | | p: | lze | al a
ant
s.
cart | P1
oon | exi | gla | . 0 | r | | | | | | | 8.6 | RAL
TL71-309 | 42 | ISOCOUSTIC | 6 | | 4-9/16 | 52 | 35 | 39 | 43 | 47 | 7 5 | | ра:
:0 | 53 | 55 : | 54 : | 55 | 5 3 | | 50 | 50 | 55 | 55 | | RAL
TL71-71 | 71 | Acquatical window wall. | 3 | | 5-3/16 | 48 | 27 | 33 | 36 | вþ | 80 | gla
a 4
imen
1 4 | ١. | | | | | _ | | 54 | 54 | 55 | 59 | 9 | RAL
TL72-156 | 49 | Devac Model 650
with wide airspace | 3,5 | | | 45 -
50 | | | | pi
se
ai | pa: | gla
es o
rate
pace
lata | ا أ | y
Y | te (| lai
72 | T 2' | #O | | | | | | 6.5 -
10 | • | 66 | Duml glazed
window. | | | | | | | | at:
and | ion
d t | wa 1
Ia b.
Iypoi
Ass | E 4 | pig
pla | hta
In | or
or | hic
lar | kne
iine | to | es)
d)
eco | з, | | | _ | | 185 | Custom sound
Windows 40005 seri | es. | #### FOOTNOTES FOR TABLE 33 #### WINDOWS - 1. Tested and avaluated according to ASTM E90-61T, - 2. Tested and evaluated according to ASTM R90-66T. - 3. Tested and evaluated according to ASTM E90-70. - . Tested and avaluated according to ASARP-224.19-1957. - 5. Tested and svaluated according to ASTM E413-70T. - 6. Data reported for comparison only on standard test. - 7. Window and panels contain gasket and stops and cap boad on weather side. ## TABLE 34 SUSPENDED CEILINGS -- SOUND ATTENUATION FACTOR Ceiling systems and their sound attenuation factors are listed. Figure 34 shows the test facility required to measure sound attenuation factors. The wall between the noise source room and the receiving room should be a much better sound barrier when compared to the ceiling system undergoing the test. This will result in the acoustic propagation as indicated by the arrows, and the test result will reflect the attenuation provided by the ceiling. Properly measured sound attenuation factors report the sound insulation or sound barrier characteristics of ceiling systems as actually installed. Between two rooms separated by a good sound barrier wall, and having a common plenum, the noise reduction is mainly dependent upon the sound attenuation provided by the common, suspended ceiling. This table may therefore be used on an approximate basis to compare the performances of wall partitions and ceilings. The companies (by numbers shown in Section II) with products listed in Table 34 are: 5, 6, 109, 128. Figure 34 AIMA Approved Test Setup to Measure Sound Attenuation Factors of Ceilings ### TABLE 34 SUSPENDED CEILINGS -- SOUND ATTENUATION FACTOR | | | | | Att | enu | at1 | on | Fac | tor | 8 | (| dec | 1 be | ls) | _ | | | | | | | | | |--------------------|-----|--------|------------|----------------------|-------------------|-----------------------------|-------------------|----------------------|------------------|----------------------|--------------|-------------------|-------------------|-------------------|---------|---------|---------|------------|------------------|------|-----|---|---------------| | Thickness (inches) | STC | या ५८१ | 7E0 HE | ZII 00Z | 250 Hz | 312 Hz | 400 Hz | | | 800 Hz | 2H C001 | 1250 Hz | 1600 Hz | 2000 Hz | 2500 Hz | 3150 Hz | 4000 Hz | | Densit
1h/ftJ | | Co, | Product | Foor-
note | | 5/8 | 36 | 50 | | a
P | f w
vai | ral
ash
lub
cic | le
C | lo v
wit | ing. | /1
1 s | acr | yli
bba | e.
blo | Al
ac | ry. | | | | | G&H | | | | | 3/8 | 90 | 28 | 34 | M
d
v | ine
ire
iny | ral
cti
1 a | fi
one
cry | iber
sl f | E1 | le
sh
Al: | wi
of | th
wa | a n
sha
11a | on-
ble
ble | ! | | , , | 3 1 | | Gan | 128 | Solitude panels | 1 | | 5/8 | 36 | 30 | 39 | 38 | 30 | | 31 | | | | | | | | | 52 | 2 47 | 1 | 5 | Сън | 128 | Fire shield
solitude panels | 2,3 | | 5/8 | 39 | 30 : | 37 : | a | ile | wii
lic
29 | th
pl | a f
ast | ini
ic. | .sh | ο£ | BC. | rub | bab | la | - 54 | 56 | . 1 | 5 | G&H | 128 | MR Fire shield
splitude panels | 1 | | | | | | d.
V | iro
iny
ith | rol
ctic
l ac
ing. | ona
Cry
Bct | l £ | ini | sh
Als | o£ | wa: | sha
11a | ble
ble | | | | | | | | Fire shield soli
tude panels, Mic | ro | | 5/8 | 40 | 31 3 | 39 3 | | | 30 3
cure | | | | | | | | | | 56 | 56 | 1 | 5 | G&H | 128 | perforated bat-
teries. | 1,2, | | 5/8 | 40 | 32 3 | 19 3 | 40 | ry] | wit
lic
193 | pl. | ast | ic, | | | | | | | 56 | 54 | 1: | 5 | Cáil | 128 | MR Solitude pane
fissured pattern | 1s 1,2, | | | | | | o i | e wa
Milail | al
eha
abl | bl. | e vi
Hiti | iny I | l a | cry | 110 | | Ale | 10 | ic | | | | | | Solitude panels | 1,2, | | 5/8 | 40 | 31 3 | 7 3 | | | | | | | | | | | | | 55 | 57 | 1! | 5 | G&H | 128 | non-directional | 3′-' | | 5/8 | 40 | 30 3 | 8 3 | ti
ac | le
ryl | ura
wit
ic
9 3 | h 4 | s fi | lnia
lc. | ih a | Þ | SCI | ubl | ab 1 | .e | 51 | 46 | 15 | i | G&H | 128 | MR fire shield so
itude panels need
perforated patter | lle 1,2, | | | | | | vi
wi | rec
nyl | al
tio
ac
a s | nal
ryl
cri | L fi
lic.
ibba | nis
A
ble | h c | É | was
vai | hat
lat | lo | | | | | | | | Solitude panels | | | 5/8 | 40 | 30 30 | 6 3 | | | | | | _ | 9 4 | 3 4 | +6 | 48 | 52 | 51 | 52 | 50 | 15 | · | G&H | 128 | needle perforated
pattern | 3,2, | | | | | | di
vi
wi
pl | nyl
th | al
tio
ac
ac
ic | ry:
cru | l fi
lic.
ubba | nis
A
ible | ih c
ilso
i ac | f
a
ry | was
vai
lic | lat | la
le | | | | | | | | Fire shield soli-
tude panels fis- | 1,2, | | 5/ 8 | 41 | 35 4 | 0 4 | Mi | ner | 2 3
al
aha | fil | er | til | .e . | ıi t | h a | fi | nia | h | 58 | 57 | 15 | ; | Cah | 128 | sured pattern | 3,-, | | 5/8 | 41 | 30 30 | 6 3 | av
4c | ail
ryl | abl
ic : | ple
ple | isti
Isti | C C | oat | ini | oab | le | | | 53 | 54 | 15 | | Cah | 128 | Solitude panels
fissured pattern | 1,2, | #### TABLE 34 SUSPENDED CEILINGS -- SOUND ATTENUATION FACTOR (Contd) | | | | | | | AE | can | uac | 100 | FA | cto | r.a | (de | : Lbe | ls | <u> </u> | | _ | | | | | | |------------|-----|----|-----|--------|-------------------|--------------------------|---------------------------|-------------------------|-------------------------|-----------------|------------------------------|------------------
-------------------------------------|------------|----------------|----------|---------|---------|-------------------|------|------|---|---------------| | Thickness | STC | | _ | 160 Hz | Z00 Hz | 250 Hz | 315 112 | 400 Hz | | | 830 Ez | ZH COCI | 1250 Hz | 1600 Hz | 2300 Hz | 2500 Hz | 3150 Hz | 4000 Hz | Density
15/ft3 | Lab, | Çc. | Product | Foot-
note | | 1/2
5/8 | • | 2 | 8 | • | | 876
81 <i>0</i>
30 | 640
68 | fil | ubai
ber
3 | fi! | to r
Leme | ein
nts
42 | | ced | 45 | | | 41 | • | G&H | 6 | Vinyl rock gypsu
ceiling panel | m
1,4 | | 5/8 | 37 | 2 | 9 : | 36 | | fis | er. | 68 | in | a i | 111 | ed | m a
min
41 | eta | 1 | 50 | 52 | 53 | • | G&H | 109 | Quadrette | 5 | | 5/8 | 42 | 2 | 8 2 | 9 | 37 | 32 | 31 | 36 | 37 | 39 | 40 | 44 | £11
44
plet | 49 | 50 | 51 | 52 | 55 | • | - | 109 | Spintone standard | i 5 | | 5/8 | 42 | 3 | 1 3 | 6 | ě | imo
11t | 11 | mi
per | for | re
ati | of I | lari | 44
44 | and | | 57 | 58 | 59 | • | | 109 | Spintone pierced | 5 | | 5/8 | 42 | 31 | . 3 | 8 ; | 7
0
37
F | and
ire
30 | for
29 | si
ion
ati
35 | zed
al
ons
35 | an
Eis
38 | d sp
Sura
41
Eibe | 43
r t | tile
ed r
vith
46 | 48 | ny
51
th | | 55 | 56 | | | 109 | Spintone 360 | 5 | | 5/8 | 42 | 26 | 36 | 6 . | d | ire | CC | Loni | 01. | fis | urs | | 46 | | | | 57 | 59 | - | • | 109 | Spintone - 720 | 5 | | 5/8 | 42 | 30 | 41 | 0 4 | | | | | | | | | 11e
44 | | 53 | 55 | 58 | 60 | - | • | 109 | Temperatone 360 firedike tile | 5 | | 5/8 | 42 | 30 | 3! | 9 4 | | | | | | | | | 11e
49 | | 57 | 55 | 55 | 58 | - | - | 109 | Temperatone fire-
dike pierced
pattern. | . 5 | | 5/8 | 42 | 30 | 38 | 3 3 | | | | | | | | | 11e
48 | | 54 | 55 | 56 | 58 | - | - | 109 | Firedike panels
pierced pattern | 5 | | 5/8 | 42 | 29 | 38 | 3 3 | 7 | 31 | 29 | 34 | 34 | 37 | 39 | 43 | 11o
46 | 50 | 52 | 53 | 55 | 58 | - | - | 109 | Firedika panela
fissured pattern | 5 | | 5/8 | 42 | 33 | 43 | 5 | 9 : | 32 | 32 | 36 | 37 | 39 | 40 | 42 | ila
46 | 54 : | 55 | 56 | 56 | 57 | - | - | 1.09 | Acqusti-clad
Delta Pattern | • | | 5/8 | 47 | 34 | 42 | : 4 | 1 : | 34 | 36 | 41 | 43 | 46 | 49 : | 53 | ile
54 | 57 : | | 57 | 56 | 57 | - | • | 109 | Particle grad
LPC firedike | 5 | | 3/4 | 28 | 25 | 33 | 3: | fi
pl
wi | ni
1e
th | h :
l ci
a :
lng | tio
is
ost
scr | us
a w
ing
ubb | Bin
hit | dar.
e fa
Also
e vi | lete
nete | will
Star
ory
vail
L pl | ap-
abl | d
e
ic | 15 : | 39 4 | .4 | 15 | Сен | 128 | Travacoustic-c-
tiles cumulus
pattern | 1,6 | TABLE 34 SUSPENDED CEILINGS -- SOUND ATTENUATION FACTOR (Contd) | | | | | A | ter | nuat | Lon | F | ic t | re | (| dec | ib | ela) | | | | | | | | | |-----------------------|-----|--------|----|---------------|---------------------------------|---|-----------------------------|-------------------------|-------------------|---------------------------|-------------------|---------------------------|-------------------|------------------|--------|---------|---------|-------------------------------|------|-----|---|---------------| | Thickness
(inches) | STC | 125 Rr | | | | ı, | 400 Hz | 200 Hz | 2H 0E9 | 2H 008 | 2001 Hz. | 1250 Hz | 1600 Hz | 2000 Hz | 2500 胚 | 3150 14 | 7000 1분 | Density
1b/fc ³ | Lab. | Ca. | Product | Foot-
note | | | | | | | cam
fin
pli
wit | eral
enti
ish
ed o
h a
ting | icio
in
cont
act | aus
a 1 | bi.
hi | nde:
La | F.
Éac | St | and
v a | ard
Io- | | | | | | | Pireshield Trava-
coustic-c-tiles | 1,3, | | 3/4 | 29 | 28 | 34 | 32 | 24 | 23 | 24 | 24 | 24 | 26 | 27 | 29 | 32 | 36 | 38 | 41 | 41 | 15 | G&H | 128 | fissured pattern. | 6'-' | | | | | | | cem
fin
pli
with | eral
enti
ish
ed c
h a
ting | is
is
oat | a t | bit
hit | nde: | r.
Eac | Sta | end
v a | lard
D- | c | | | | | | Travacoustic-c-
tiles fissured | | | 3/4 | 31 | 28 | 34 | | | | | 26 | 27 | 29 | 29 | 31 | 34 | 40 | 43 | 48 | 53 | 15 | CEH | 128 | pattern. | 1,3,
6 | | | | | | 1 | eeme
fin:
plic
with | eral
enti
ish
ed c
h a
ting | tic
is
ost | us
a v
ing | bir
vhi:
S, | ide: | e.
Fact | Str | nd
/ a
 la | ard
p.
ble | 2 | | | | | | Travacoustic-c- | | | 3/4 | 36 | 31 | 37 | | | 29 | | 31 | 33 | 33 | 35 | 39 | 44 | 49 | 52 | 54 | 54 | 15 | GAR | 128 | tiles Abbay
pattern. | 1,3,
6 | | 3/4 | 37 | 31 | 39 | | | t mi
26 | | | | | | 39 | 44 | 50 | 54 | 59 | 60 | • | - | 109 | Permacoustic
standard fissures | 5 | | 3/4 | 38 | 26 | 32 | 1 | ini
ini
lie
vith | eral
enti
Leh
ed co
ed co
ed co
ed co | tio
is
ost
scr | ud
a w
ing
ubb | bin
hic | der
e i
Als
e v | act
o a
iny | Sta
ory
vai | ndi
1a: | erd
bla | | 42 | 44 | 15 | G&H | 128 | Travacoustic-c-
tonico panels
cumulus ATN
pattern. | 1,2 | | | | | | 0 4 55 0 | ini
11e
1th | eral
mtii
lah :
id co
i a i | tio
is
oat | us
ing
ubb | bin
hit
abl | der
e f
Als
e v | act
o a
iny | Sta
ory
vai
1 p | nde
loi
lac | ole
tic | | ,. | | 16 | | 128 | Travacouatic-c-
tonico panels | 1,2 | | 3/4 | 39 | 23 | 34 | × 0 0 0 0 0 0 | ine
eme
ini
lie
ith | ral
intii | fil
tion
la d
pati | ber
ua l
ua l | # b
in
hic | len
der
e f | ded
ect | wi
Sta
ory
val | th
nda
ap | rd
ole | | 43 | 44 | +3 | G&II | 120 | fissured ATN Travacoustic-c- | | | 3/4 | 40 | 32 | 39 | | | ing.
32 : | | 37 | 39 | 39 | 40 | 42 | 46 | 49 | 51 | 52 | 54 | 15 | C&H | 128 | tiles comulus
ATN pattern | 1,3,
6 | | 3/4 | 41 | 31 | 39 | 0 4 4 40 | ema
ini
lie
ith
pat | ral
ntit
sh i
d co
a a
ing. | iou
le é
ati | is
Lng | bin
hic
bbl | der
e fi
lis
e V | ection at | Star
ory
vai
1 p | nda
ap
lab | rd
le
tic | 53 | 53 | 52 | 15 | G&H | 128 | Travacoustic-c-
tiles fissured
ATN pattern. | 1,3, | | 3/4 | 42 | 30 | 38 | đ | nel
ire | ed and and and and and and and and and an | nii
nal | orn
f: | oly
Løsi | di | ipa: | FAC | i n | 011 - | 56 : | 55 | 55 | | | 109 | Temperatone 720 | 5 | #### TABLE 34 SUSPENDED CEILINGS -- SOUND ATTENUATION FACTOR 'Concl) | _ | | , , | | | | Att | อกุน | act | on. | Fac | tor | a (| dec | ibe | ls) | | | | | | | | |---------|----|------|-----|-------|-------------------|-------------------------------------|-------------------|--------------------------|-------------------|------------------|------------|--------------------|------------|-----------|---------|----------|---------|------------------|--------|-----|--|------------------| | Thiches | | | | 70 Hz | | | | | 630 Ez | 300 Hz | 1000 Hz | 1250 Hz | 1600 Ez | 2000 Hz | 2500 Hz | 31.50 Hz | 4000 Hz | Denaity
1b/fc | Lab. | Ço. | Product | Foot-
note | | | | ٠ | | | £1.6 | edí
dur
er, | | | | | | | | | | | | | | | | | | 3/4 | 42 | 28 | 3 | 36 | 29 | 29 | 36 | 36 | 38 | 41 | 42 | 42 | 44 | 46 | 46 | 46 | 47 | - | - | 109 | Quadrette | 5 | | | | | | | a f | | ed r | ainc | ra. | £ | lbe: | r t: | Lle | • | | | | | | | Temperatone DCF | | | 3/4 | 42 | 29 | 36 | 40 | 33 | 33 | 38 | 38 | 41 | 42 | 46 | 48 | 53 | 57 | 52 | 53 | 57 | - | • | 109 | small fissures | 5 | | 3/4 | 47 | 31 | 39 | | non | ge :
-d!:
36 | eci | ion | a1 | fis | BUI | res. | | | 54 | 56 | 57 | | | 109 | Temperatone-360
Non-directional
fissures | | | | | | | | | led | | | | | | | | | | - | - | | | | | | | 7/8 | 47 | 30 | 37 | | | 34 | | | | | | | | 56 | 58 | 59 | 60 | • | - | 109 | Acousti-clad'p'
diagonally perfo | rated | | | | | | 1 | dir
vin
vit | eral
ecti
yl a
h a
otic | ons
ery
ser | lic
Lic
ubb
ati | ini
abl
ng, | sh
Ala
e a | of
ory | was
Ivai
lic | hal
Lat | le
le | | | | | | | Fire shield
Solitude panels | 1,2, | | • | 40 | 30 | 38 | | | 31 | | | | | | | | | | 58 | 58 | 15 | C&H | 128 | Needle perforation | on 3 | | | | | | ć | 0.0 | fora
elec
25"
akad | tro
or | gal
0.0 | văn
32" | ižo
al | d a
umi | tae
num | 10 | r | 1 | | | | | | Acqueti metal | 1 2 | | - | 48 | 30 | 38 | 35 | 39 | 44 | 43 | 43 - | .9 | 51 | 57 | 54 | | | | | | - | GAN | 128 | pans 1105 | } ;}, | | | | | | ţ: | ne ta | fora
1 p
2rgl | An | бас | ked | ani
wi | zed
th | 4.7 | .01
5 1 | 6"
b/£ | ::3 | | | | ઉઠ્યા | | | | | - | • | 25 | [2 | 6] 2 | .5 | [35 |] 3 | 5 [4 | 40] | 4 |] 6 | 50] | 5 | 6 | [61 |] 6 | 3 | | C-5 FT | 5 | Acousti Coilings | 1,9 | | | | | | 77 | e t a | oral | an, I | ac | ed | ni:
wi: | ed
:h (| 0.75 | .01
5 1 | 6"
6/£ | 3ء | | | | | | | | | • | - | 26 [| 27] | | | 29] | | | | 29 | [: | 38] | 4 | 3 [| 48] | 50 | | - | • | 6 | Asbestos faced
Rigid boards | 1,9 | #### FOOTNOTES FOR TABLE 34 #### SUSPENDED CEILINGS -- SOUND ATTENUATION FACTOR - 1. Tested according to AIMA two room procedure 1-II. - 2. AIMA Mounting CE: Continuous over partition with exposed T system, - 3. Temperature Range: up to 150°F. Flame spread: 20. Poor resistance to chemicals. - 4. Flame spread AMA Class A, SS-A-118b class 25. - 5. Flame apread: 25. - 6. AIMA Mounting CCT: Continuous over partition with concealed T spline suspension system. - 7. AIMA Mounting ICX: Interrupted over partition using Z bars for a suspension system. - 8. Tested with 1/2" gypsum board backing. - 9. Numbers in brackets refer to center frequencies of 177, 354, 707, 1414, and 2828 Hz respectively. # TABLE 35 ROOF DECKS (BARRIER)
The sound transmission losses of roof decks are listed. Roof decks with thicknesses ranging from 1-1/2 inches to 7-1/2 inches made from steel panels of different thicknesses are shown in the table. The roof decks can also provide good sound absorption as can be seen from Table 25. Figure 25B appearing with Table 25 shows a roof deck design which provides good sound absorption and transmission loss. The company (by number shown in Section II) with products listed in Table 35 are: 106, 120. Figure 35 Roof Deck TABLE 35 ROOF DECKS (BARRIER) | | | _ | Transmi | saion | Loss (de | cibal | s) | | | | | | |-----------------------|-----|-------|-----------------|-----------------|---------------------|-------|-------|------------------------------|------|-----|--------------------------------------|-------| | 3.5 | | £ | 첉 | H | 井 | 윒 | H | | | | | | | Thickness
(inches) | STC | 125 1 | 250 1 | 58 | 1000 | 2000 | 4,000 | Weight
1b/ft ² | Lab. | Co, | Product | Foot- | | | | | Steel | roof | decking |) | | | | | | | | 1-1/2 | 45 | 29 | 22 ga
38 | 8e
45 | 48 | 49 | 49 | - | - | 106 | Type S
Acoustideck | 1 | | 1 1/0 | | 22 | 22 ga | ge | decking, | | 40 | | | | Туре В | | | 1-1/2 | 45 | 29 | 38 | 45 | 48 | 49 | 49 | • | - | 106 | Acoustideck | 1 | | | | | 20 ga | ВG | decking | | | | | | Type S and B | | | 1-1/2 | 46 | 30 | 39 | 46 | 49 | 50 | 50 | • | • | 106 | Acoustideck | 1 | | | • | | Steel
18 gas | roof
ge | decking, | | | | | | Type S and B | | | 1-1/2 | 47 | 31 | 40 | 47 | 50 | 51 | 51 | - | - | 106 | Type S and B
Acoustideck | 1 | | | | | Steel
20-18 | roof
gaga | decking | | | | | | | | | 1-5/8 | 49 | 33 | 42 | 49 | 52 | 53 | 53 | - | - | 106 | Type 1-5/8" NF | 1 | | | | | Steel
18-18 | roof
gage | decking, | | | | | | | | | 1-5/8 | 50 | 34 | 43 | 50 | 53 | 54 | 54 | - | • | 106 | Type 1-5/8" NT | 1 | | | | | 16-1B | gaze | decking, | | | | | | | _ | | 1-5/8 | 52 | 36 | 45 | 52 | 55 | 56 | 56 | - | - | 106 | Type 1-5/8" NP | 1 | | | | | 20 gaş | 36 | docking, | | | | | | Type 3" H&N | | | 3 | 46 | 30 | 39 | 46 | 49 | 50 | 50 | - | - | 106 | Acoustidack | 1 | | | | | Steel
20 gag | roof
30 | decking, | | | | | | Тура 3" Н&М | | | 3 | 48 | 30 | 39 | 46 | 49 | 50 | 50 | - | - | 106 | Acoustideck | 1 | | | | | combin | ation | decking,
16 gage | and | | | | | Type 3 ⁸ H
16 gage and | | | 3 | 50 | 34 | 20-18
43 | 844e. | 53 | 54 | 54 | - | | 106 | Type 3" NF 20-18
Acoustideck | 1 | | | | | Steel | roof | dačking, | | | | | | | • | | 3 | 52 | 35 | 18-18
45 | 52 | 55 | 56 | 56 | • | - | 106 | Type 3" NF
Acquetideck | 1 | | - | - | | Steel | roof | dacking, | | | | | | | • | | 4-1/2 | 47 | 31 | 20 gag
40 | .e
47 | 50 | 51 | 51. | _ | | 106 | Type 4-1/2" H
Acquatidock | 1 | | | •• | | Stee1 | roof | decking, | • | | | | | | • | | 4-1/2 | 49 | 33 | 18 gag
42 | 49 | 52 | 53 | 53 | - | - | 106 | Type 4-1/2" H
Acoustideck | 1 | | | | | Stool | roof | dacking, | | | | | | | | | 4-1/2 | 50 | 3.4 | 20 gage
43 | o
50 | 53 | 54 | 54 | _ | _ | 106 | Type 4-1/2" HP | | | 1- | 20 | J17 | 42 | 10 | 2.3 | 24 | 34 | - | • | TÓĐ | Acoustideck | 1 | | | | | 7 | CABL | E 35 | ROOF | DECKS | (BARRIES | R) (Con | c1) | | | |-----------------------|-----|-----|----------------------------------|--------------|--------------------------------|------------|-------|------------------|---------|-----|---|---------------| | :- | | | Transmiss | ion | Loss (dec | ibala |) | | | | | | | in a second | | # | 24 | 2 H | H | H2 | ΉZ | | | | | | | Thickness
(inches) | STC | 125 | 250 | 8 | 1000 | 2000 | 4000 | Weight
1b/ft2 | Lab. | ರಂ. | Product | Foot-
note | | | | | Steel : | | decking, | | | | | | m 11 | | | 4-1/2 | š1 | 35 | 44 | 51 | 54 | 55 | 55 | - | • | 106 | Type II
Acoustideck | 1 | | | | | Steel 1
18-18 g | roof
gage | dacking, | | | | | | Type 4-1/2" iF | | | 4-1/2 | 52 | 36 | 45 | 52 | 55 | 56 | 56 | - | - | 106 | Acoustideck | 1 | | | | | Steel 1
16-18 g | | decking, | | | | | | Type 4-1/2" HF | | | 4-1/2 | 53 | 37 | 46 | 53 | 56 | 57 | 57 | - | - | 106 | Acoustideck | 1 | | | | | 18 gage | | dacking, | | | | | | Тура б" Н | | | 6 | 50 | 34 | 43
Stanl + | 50 | 53
dacking | 54 | 54 | - | - | 106 | Acoustideck | 1 | | 6 | 52 | 36 | 16 gage
45 | 52 | decking,
55 | 56 | 56 | _ | | 106 | Type 6"
Acoustideck | 1 | | | | | Steel r | oof (| decking
and 18-18 | | | | | | Type 6" UP and | | | 6 | 53 | 37 | 16-18 g:
46 | 53 | and 18-18
56 | gaga
57 | 57 | - | • | 106 | Type 6" HF and
NF 16-18, 18-18
gage Acoustideck | ı | | | | | Steel r | of : | decking, | | | | | | | | | 6 | 54 | 38 | 16-16 ga
47 | 54 | 57 | 58 | 58 | - | - | 106 | Type 6" HF 16-16
gage Acoustideck | 1 | | | | | Steel re | of i | decking, | | | | | | m 7. 1 / 20 st 10 | | | 7-1/2 | 51 | 35 | 44 | 51 | 54 | 55 | 55 | • | • | 106 | Type 7-1/2" H 18
gaga Acqueridock | 1 | | | | | Steel ro
16 gage | of a | iecking.
18-18 gas | je. | | | | | Type 7-1/2" H 16 g | ,ago | | 7-1/2 | 53 | 37 | 46 | 53 | 56 | 57 | 57 | • | • | 106 | gage Acoustidack | 1 | | | | | Steel ro
18 gage | of c | iocking, | | | | | | Type 7-1/2" HF 16-
gage and 16-16 gag | 18 | | 7-1/2 | 54 | 38 | 47 | 54 | 57 | 58 | 58 | - | - | 106 | Acquetidack | 1 | | 3 - | | | Planks f
floors, | | oof decks | • | | 18 | | 120 | A73-4
Acoustiplank | 2 | | | | | Cast tex
wood fib
portland | ers | d slabs o
bonded wi
pont | f
th | | 6 to 8 | | 120 | A70-130
Fibroplank | 2,3 | #### FOOTNOTES FOR TABLE 35 ROOF DECKS (BARRIER) The transmission losses of the Inland Ryerson roof decks were estimated from tests made at Riverbank Acoustical Laboratory; Test Nos. TL72-112, TL72-48, TL72-2. STC values are based on 7.5 lb/ft² built up roof. Weight range of the acoustidecks is 2-5 lb/ft². ^{2.} Size 3" x 15" x 120". ^{3.} Thicknesses of 2", 2-1/2", 3", 3-1/2", and 4". Width 32". Length up to 12'6". Flame Spread 15. #### TABLE 36 #### CURTAINS (BARRIER) Transmission losses of curtain systems are listed. It is often necessary to isolate a moderately noisy environment from the surrounding less noisy area. A sound barrier curtain can provide enough attenuation in some cases to make it an economical and convenient arrangement. Figure 36 shows a sound barrier curtain system with a guide rail for ease of opening and closing the curtains. Usually the curtains are made from lead or leadfilled vinyl. It should be noted that not all possible curtain materials are listed in this table. It is possible to fabricate a curtain from many of the materials listed in Tables 6 through 15 and Table 18. The barrier curtain also may have sound absorbent facing on one side or both sides. It should be further noted that most of the curtains were tested free hanging in a test opening with their edges sealed to the sides of the opening by means of a dense flexible mastic. In industrial applications however, the sides of the curtains are usually not sealed, relying only on their overlap for a seal. Sound absorption coefficients of some of the curtains are shown in Table 23. The companies (by numbers shown in Section II) with products listed in Table 36 are: 6, 12, 27, 45, 59, 72, 155. Figure 36 Sound Barrier Curtain Hanging from a Guide Rail #### GLOSSARY Lead Loaded: Lead was added to the fabric type material to increase its sound transmission loss. TABLE 36 CURTAINS (BARRIER) Transmission Loss (decibels) | | | | | | | | | | | | | | | | | | | _ | | | | | | |--------------|-----------------------|-----|--------|--------|------------------|-------------|---------------------|--------|------------|---------------------|--------|-----------|----------------|-----|----------|---------|----------|---------|------------------|-------------------------|----------|---|----------------| | | Thirkness
(inches) | STC | 125 Hz | 2H 09I | | 250 Hz | | ZH C07 | 500 Hz | | 800 Hz | 1000 Hz | 1250 Hz | | 2002 Hz | 2500 Hz | 31.53 Hz | ZH C007 | Weight
1b/ft2 | | Co. | Product | Foot-
note | | | .008 | - | 13 | 13 | 5 ho |)] | 10 <i>t</i> | | 15 | 18 | 19 | 22 | 23 | 24 | 27 | 28 | 30 | 32 | . 5 | | 12 | Airtex Acoustic
Ourtain Mass 505
Sheet lead | 5,11 | | √ | ,016 | - | 18 | 19 | | i I | 1es
23 | | 26 | 26 | 28 | 29 | 31 | 33 | 35 | 36 | 38 | 40 | 1 | RAL | 12 | Airtex Acoustic
Curtain Mass 510
Sheet lead | 8,11 | | | .032 | 17 | 10 | В | Nyl
ing
12 | f | bas
ont | . ar | d 1 | ack | : | 1 | - | | | | 26 | 28 | .25 | RAL
TL71-172 | 27 | NYCO-18 | 2,12,
13,14 | | | .032 | 17 | 10 | 8 | San
pen
12 | e id | | | | | | ١. | ' | | ļ | 23 | 24 | 26 | .25 | RAL
TL71-173 | 27 | NYCO-18 | 2,14,
15 | | | .033-
.040 | 19 | 5 | | Lea
for | id
Cec | oad
wi | th | vir
bet | yl
a-g | las | er:
s: | al
abr | ic | n-
27 | | | 33 | .50 | - | 45
72 | KNC-50 Curtains | 4 | | | .037 | 20 | 9 | 8 | 10 | 12 | 12 | 14 | 15 | 17 | 19 | 20 | 22 | 24 | 26 | 27 | 28 | 30 | 0,44 | RAL
TL72-232 | 155 | Yound
Stopper lead
Vinyl Curtain | 12,13 | | -> | ,064 | 25 | 13 | 14 | 15 | 16 | 17 | 18 | 20 | 22 | 24 | 26 | 27 | 29 | 31 | 33 | 34 | 35 | 0.76 | RAL
TL73 -6 7 | 155 | Leaded Vinyl
Curtain | 12,13 | | | .070-
.075 | 27 | 15 | 15 | for | ce. | load
i wi | Lth | be | ta-s | glas | 15 | fab: | ric | ŧ. | 35 | 35 | 37 | 1 | KAL
1083-1-71 | 45
72 | KNC-100 Curtains | 7,12 | | √ | ,100 | - | 27 | 28 | Un
29 | | ed
33 | | | | 37 | 35 | 36 | 36 | 37 | 38 | 39 | 41 | . 1 | - | 12 | Airtex Acoustic
Curtain Mass 550
Dead rubber | 9 | | \sim | .125 | - | 14 | 14 | Ba
16 | 1 1 | a f
21 | | 1 | 4 | | 29 | 31 | 32 | 34 | 36 | 36 | 38 | 1 | RAL | 12 | Airtex Acoustic
Curtain Mass 520
Barium vinyl | 6,11 | | | - | 19 | 11 | 8 | 81 | des. | gla
wi
11 | th
: | .aa | d £ | 111 | qd | htu | y1 | i . | 24 | 24 | 26 | .50 | - | 111 | Noiseguard
flexible acous-
tical curtains | 3 | | ~ | - | 28 | 12 | 15 | | | rei:
21 | | | | | | | | | 37 | 39 | 40 | 1,5 | K AL | L29 | NMC
Curtain system | 12 | | | - | - | | (13 | gl | 46# | fil:
fai
(13) | br1 | vi
r | nyl
ein
(16) | for | eh
em | nt
(22 | | | (28 |) | (33) | .50 | - | 6 | Sound Guard
noise control
curtains | 16 | | | - | - | | 16 | gl | da a | fil:
fai
(16) | pr re | vi: | nyl
oln:
(20) | COL | em | w
nE
(25 | | | (31) |) | (36) | ,75 | - | 6 | Sound Guard
noise control
curtains | 16 | #### TABLE 36 CURTAINS (BARRIER) (Concl) #### Transmission Loss (decibals) | Thickness
(inches) | STC | 125 Hz
160 Hz | - | 250 Hz | 315 Hz | 400 1lz | 500 Hz | 630 Hz | ZH 008 | 1000 Hz | 1250 Hz | 1600 Hz | 2000 Hz | 2500 Hz | 3150 312 | 4000 Hz | Weight
lb/ft2 | Lab. | Ca. | Product | Foot-
note | |-----------------------|-----|------------------|-----|------------|--------|-------------|-----------|--------|--------|---------|---------|---------|---------|---------|----------|---------|------------------|------|-----|------------------------------|---------------| | | | | Po | lyu | rat | han | e f | oam | fu | a ed | to | DO | lvu | Inv | 1 | | | _ | | | | | • | - | 15 | _ | | | | | | | | | • | | • | | 37 | 1.1 | CT | 59 | Acoust idrape | 10 | | | | | | iss
inf | | | | nyl | wi | ch | wov. | en | gle | 88 | | | | | | Sound Guard
noise control | | | - | - | (22 |) | 23 | (23 | 1 | | (26) |) | | (32) |) | | (37 |) | (44) | 1.5 | - | 6 | curtains | 16 | | | | | Ma | ss
inf | fil: | led
enci | vii
ic | nyl | wi | th ' | WOV | en | g 1 a | 8 B | | | | | | Sound Guard | | | - | - | (26 |) | 28 | (28) |) | | (32) | i | | (36) |) | | (36) |) | (47) | 3 | • | 6 | curtains | 16 | | | | | Re | riu | m f | 111 | ad s | en tu | ,1 1 | sie: | h te | an. | יתו | er | nf | | | | | Airtex Acoustic | | | - | - | | en. | bos: | øed | le | tch | er e | ind | bo | ttor | n 1 | ayo | ro | f | | - | - | 12 | Curtain
Mass 525 | 1,11 | #### FOOTNOTES FOR TABLE 36 CURTAINS (BARRIER) - 28" wide rolls, sheets, and custom fabricated parts and curtain systems. Temperature range: 0 to 180°F. Numidity: 0 to 100 percent. Sulf-extinguishing. Layers of urethane foam thicker than 1/4" available by custom laminating. - 2. Designed as required. Anti-static, abrasion resistant, washable and flome retardant. - Can be found to have partial enclosures and total enclosures for noisy places. Necessary equipment for suspending curtains is also made. Flame resistant, moisture proof, rotproof and mildew resistant. - 4. For use where noise level is low and application is not critical. Standard size: 50° wide by 60° long roll. - Can be formed or draped to any contour. Haximum width: 36". Maximum length; 72' roll. Temperature range: 0 to 400°F. Humidity: 0 to 100 percent. Nonburning. - 6. Temperature range: 0 to 180°F. Humidity: 0 to 100 percent. Self-extinguishing. - 7. 50" wide x 60' long roll. - Haximum width; 36". Maximum longth: 36' roll. Temperature range; 0 to 130°F. Humidity: 0 to 100 percent. Nonburning. Can be formed or draped to any contour. - 9. Maximum width: 54". Maximum length: 72" sheet. Temperature range: 0 to 130°F. Humidity: 0 to 100 percent. Self-extinguishing. - Type 250 5/16", Type 500 9/16". Supplied in sheets 54" wide by up to 20' long. Self-extinguishing. Temperature range: -20° to +200°F. Gasoline, oil and abrasion resistant. - 11. May be cut to rectangular sheets, die cut to irregular patterns, and laminated to open or closed call flexible foams and/or pressure sensitive adhesives on one or two surfaces. - 12. Tested and evaluated according to ASTM E90-70. - 13. Tested and evaluated according to ASTM E413-70T. - 14. Two curtains (each .032" thick) were used here to form a barrier. Separation between curtains was 28". - 15. Data were obtained for comparison purposes only. - 16. Numbers in parentheses were obtained at the following frequencies: 150, 350, 600, 1200, 2400, 4800, respectively. # TABLE 37 OPERABLE PARTITIONS Operable partitions, defined here as room dividers which are less flexible than curtains but which can still be easily folded or extended by the room occupants, are listed. Usually the operable partitions are suspended from an overhead track and they ride on rolling bearings for ease of operation. Many shapes and configurations are available. Figure 37 shows one type of operable partition where the rectangular leaves can be stacked together to open the partition. The table contains a brief description of each partition and shows the transmission losses measured according to the standard procedures referred to in the footnotes. The companies (by numbers shown in Section II) with products listed in Table 37 are: 95, 98, 101, 134, 167, 179. Figure 37 A Manually Operable Partition #### TABLE 37 OPERABLE PARTITIONS | | | _ | | | T | ran | ami. | 651 | on 1 | 80, | B (| dec: | ibe | 1s) | | | | | | | | | |-----------------------|-----|--------|------|--------|---------------------------------|---|---------------------------------------|--|--------------------------------------|------------------------------------|---------------------------------------|----------------------------------|------------------------|--|------------------|---------|--------|------------------|-----------------|-----|---------------------------------------|---------------| | Thickness
(Inches) | STC | 125 Hz | | 200 Hz | 250 Hz | 315 Hz | 2H C07 | 500 Hz | 630 Hz | 800 Hz | 1000 Hz | 1250 3z | 1600 az | 2000 Hz | 2500 ₹2 | 3150 42 | ₹ 0007 | Weight
1b/ft2 | Lab. | Co. | | Foot- | | | | | *** | | hir
exi | re,
Igo
Erus | fac
i w: | | dua | th v | woo
vall | u b
iv | ene
nyl | or | | | | | RAL | | | - | | 13/16 | 25 | 13 | 20 | 19 | plo | d p | ari
c 1 | tie]
lam! | le d
Inat | oro | an | pro: | ssu
ing | re
ad | | 28 | 28 | 3.0 | TL69-3 | 134 | Scale/8 | 2 | | 17/16 | 29 | 19 | 21 | 19 | 23
Woo | 23 | 24 | 26 | 27 | 29 | 29 | 28 | 30 | | | 32 | 32 | 4.2 | RAL
TL69-238 | 134 | Scale/12 | | | 2-1/4 | 38 | 15 | 22 | 27 | boa
3/4
two
ass
pan | er
rd
rd
on
emb | nsu
lam
per
top
ly
an | lateri
ina
ati
of
3/4
d f | ion
ng
ted
ng
pa
'' c | of
of
cle
nol
lea | .27
Wester | on
20 l
ood
ince
ind | fr.
fr.
hoo | ame:
d-
ami:
e-
ad :
twee | rg, | מ | 45 | 4,9 | RAL
TL71-151 | 179 | 700 series
folding wall | 2 | | | | | | | Woo ins out lam cle and cle flo | ula
er
ina
ara
he
ara
or, | tio
cov
tod
nce
ad
nce | n b
eri
to
be
tri | etw
ng
wo
twe
m a
twe | een
of
od
en
sse
en | fra
27
fra
top
mbl
pan | ame
O h
min
o f
y | arc
g.
p.
5/6 | ibor
5,
ine i
3" | 17d
/8"
.s | | | | RAL . | | 702 Series | | | 2-1/4 | 36 | 14 | 19 | 26 | 31 | 3,5 | 37 | 37 | 38 | 40 | 41 | 41 | 41 | 41 | . 41 | . 41 | 43 | 4,2 | TL71-11 | 179 | folding wall | 3 | | 2-1/4 | 40 | 17 | 26 | 29 | 168
8 ce
32 | a1 | COB | t f | ram | Э, | - | | | | | 46 | 47 | 4.9 | RAL
TL70-225 | 95 | wall series | 3 | | 2-1/4 | 41 | 18 | 25 | | 168'
ate:
32 | 8 1 1 | COR | t fi | r A CR | а, | | | | | | 46 | 45 | 5.2 | RAL
TL69-200 | 95 | Foldout folding
wall series One | 3 | | 3 | 38 | 14 | 19 | | #240
to d
dard | per
i al | um | inun | n ba | 41i | igl. | e ui | nit | - | ÄCA | n÷ | 40 | • | RAL
0T67-8 | 101 | #380 folding wall
with #240 panels | | | 3 | 40 | 18 | 24 : | þ | inyl
oard
29 | 1. | | | | | | | | 46 | 46 | 43 | 44 | 6.0 | RAL
OT71-5 | 98 | Hufcor
Series 7610 | 2 | #### TABLE 37 OPERABLE PARTITIONS (Contd) | Transmission | Loss (| (1 | ec | 11 | re! | 5 | • | |--------------|--------|----|----|----|-----|---|---| |--------------|--------|----|----|----|-----|---|---| | Thickness
(inches) | STC | 125 Hz | 160 Hz | 200 Hz | 250 Hz | 315 Hz | 400 Hz | 500 Hz | 7H 0E9 | 500 Hz | 71 (001 | 1250 Hz | 1600 Hz | 2000 Hz | 2500 Hz | 3150 Hz | ZH 0007 | Weight
1b/ft ² | | Co, | Product | Foot-
note | |-----------------------|-----|--------|--------|--------|---------------------|-------------------------|-------------------|------------|-------------------|-------------------|------------|------------|------------|---------|---------|---------|---------|------------------------------|---------------|-----|-----------------------------------|---------------| | | | | | _ | Ste | al i | sur | fac | 9 83 | yps: | um ! | boat | rd, | | | _ | | | DAT | | Hufcor | | | 3 | 41 | 21 | 25 | 26 | 30 | 32 | 37 | 40 | 41 | 43 | 44 | 46 | 48 | 47 | 46 | 44 | 46 | 6,6 | of9f-3 | 98 | Series 7610 | 2 | | 3 | 43 | 22 | 31 | 28 | 024 . | rd.
35
5 v: | 42
lny: | 43
1 cc | 44
.ve: | 45
ed | 46
թаг | 48
1016 | 47
4, 1 | nin | | | 46 | 6.4 | RAL
OT71-4 | 98 | Hufcor
Sories 7630 | 2 | | | | | | | dar | i al | lumi | เทษก | a ba | 110 | Aut | COM | itio | b | | •- | | | | | | | | 3 | 43 | 25 | 30 | | tom
41 | • | | | | | | - | | | 46 | 45 | 41 | | RAL
OT68-1 | 101 | #380 Folding wal with #245 panels | | | - | | | | | | | | | | | | | | | | | | | - | | | | | • | | 26 | 20 | | Sta | | | | | | | | | | | | | ~ ~ | RAL | | Hufcor | | | 3 | 44 | 20 | 32 | 30 | 14 | 38 | 42 | 45 | 45 | 43 | 40 | 47 | 49 | 45 | 47 | 44 | 47 | 7.2 | OT71-7 | 98 | Series 7630 | 2 | | 3 | 45 | 22 | 31 | • | #tar
auto
eal | ndar
mat
ga
41 | d a
ic
iske | bot
t. | 11nu
10s
46 | m t
1 pr
47 | 45 | ure
44 | 44 | | 47 | 49 | 50 | - | RAL
OT68-2 | 101 | #380 folding wal with #245 panels | |
 | | | | | bo a | ıyl
ırd, | cla | d s | ur£ | #CB | pa | rti | cle | • | | | | | RAL | | llufcor | | | 3-5/8 | 38 | 16 | 21 | 2: | 28 | 32 | 36 | 40 | 41 | 42 | 41 | 42 | 43 | 4. | 39 | 4 | 45 | 5.8 | 0170-8 | 98 | Series 8510 | 2 | | 3-5/8 | 39 | 17 | 24 | 24 | bo <i>a</i>
28 | | 36 | 39 | 40 | 42 | 42 | 44 | 45 | 47 | 43 | 1 41 | 46 | 5,8 | RAL
0T71-7 | 98 | Hufcor
Series 8310 | 2 | | | | | | | | yl
rd. | EAD | rıc | нц | rta | CB | EAC | K | | | | | | RAL | | llufcor | | | 3-5/8 | 39 | 20 | 21 | 2. | 29 | 32 | 35 | 39 | 41 | 40 | 40 | 41 | 43 | 45 | 42 | 39 | 44 | 6,2 | OT70-5 | 98 | Series 8510 | 2 | | 3-5/8 | 39 | 23 | 23 | 23 | 30 | | 37 | 41 | 42 | 41 | 40 | 40 | 40 | | 38 | 44 | 47 | 7.3 | RAL
0170-3 | 98 | Hufcor
Series 8510 | 2 | | | | | | | pou | yl
rd. | C 1 A | 4 2 | urr | ACB | a ի | art | ici | e | | | | | RAT, | | Hufcor | | | 3_5/8 | 43 | 20 | 27 | 33 | 39 | 40 | 44 | 44 | 45 | 44 | 41 | 42 | 43 | 47 | 45 | 47 | 50 | 6.2 | OT70-6 | 98 | Series 8500 | 2 | | 3-5/8 | 43 | 27 | 32 | | Sta
39 | | | | | • | | | | 40 | 42 | 46 | 47 | 7.7 | RAL
0172-2 | 98 | Hufcor
Series 8530 | 2 | ### TABLE 37 OPERABLE PARTITIONS (Contd) | | | | | | | | | | | | | - • | | | | | | | | | | | | |-----------------------|-----|---------|------|----|-------------|--------------------|-----------------|-------------------|-------------------|-----------------------------|-------------------|-------------------|---------|---------|---------|---------|----------|-----------|----------------|-----------------|-----|---------------------------------|-------| | Thickness
(inches) | STC | 125 11. | - | | | | 315 Hz | 7H 005 | 500 Hz | 630 Hz | 2H 008 | 1000 Hz | 1250 Hz | 1600 Hz | 2000 Hz | 2500 Hz | 3150 112 | 4000 Hz | Weigh
1b/ft | t
Lab. | Ço. | Product | Foot- | | 3-5/8 | 44 | 2 | 2 29 | 3 | b | oarı | 4. | | | 8U
46 | | | | | 4 | 49 | 9 49 | 9 48 | 6,6 | RAL
OT70+4 | 98 | Nufcor
Series 8530 | 2 | | 3-5/8 | 45 | 21 | L 30 | 3: | be | OBT | ð, | | | 8u: | | | | | 49 | 4! | 9 46 | 3 49 | 6.2 | RAL
OT71-6 | 98 | Hufcor
Series 8330 | 2 | | 3~5/8 | 48 | 25 | 35 | 3 | Ъ | oarı | 1, | | | au: | | | | | 51 | . 52 | : 53 | 3 55 | 8.0 | RAL
OT71-8 | 98 | Hufcor
Series 8350 | 2 | | 5-1/2 | 36 | 12 | 17 | 21 | st | :001 | . c | OFE | ı | 42 | | | | | | | | :
1 49 | 3,0 | RAL
0172-3 | 98 | Nufcor
Series 3500 | 2 | | 5 - 1/2 | 39 | 15 | 19 | | ba
of | ard | - 1
 | imi
L c | nat | | to | bol | th (| ald | | 46 | 47 | 48 | 3,8 | RAL
0T72-2 | 98 | Hufcor
Saries 4500 | 2 | | 5-1/2 | 41 | 17 | 20 | | ьo | ard | 12 | ımi
l c | nat | | to | bot | h a | s}d | | 46 | 46 | 48 | 4.4 | RAL
0T72-1 | 98 | Hufcor
Sarias 4800 | 2 | | • | 36 | 17 | 23 | 1 | COI
WOO | re,
od v
und | pa
ven
da | ne
lee:
mp: | l f
r a
ing | wo
ace
nd
ma
aa | d w
bac
ter | ith
ked
ial | wi | th. | | 40 | 38 | 38 | 4.4 | RAL
TL59-129 | 134 | Sonic wall/66 | 2 | | * | 37 | 15 | 19 | : | a te
imp | oel
pre | ្នូកខ | te | 1 1 | in
ack
ine:
36 | ed ' | WIT | h v | 1113 | 1 | | 50 | 51 | 4.8 | RAL
TL71-316 | 95 | X8 foldoor
Sound Guard | 2 | | - | 38 | 17 | 21 | | a to
imp | eel
pre | 80 a | te | a b | in
ack
ine
38 | ed
T | wit | h v | iny | 11 | | 51 | 51 | 5.4 | RAL
TL71-232 | 95 | X8 Foldoor super
Sound guard | 2 | | - | 39 | 20 | 21 | : | s to | eel
preg | 8 1
3 n 2 | tec | 1 1 | in
acki
ine:
43 | ed
r | w1Ĉ | h v | in | 1 | _ | 52 | 53 | 5.1 | RAL
TL72-5 | 95 | X12 Foldoor super | 2 | | | 39 | 19 | 24 | 1 | l rof | el
pres | 01
30A | a te | 1 1 | in :
ack
ine: | ad (| WĹĊ | h v | iny | 1 | - | 51 | 51 | 6.1 | RAL
TL71-256 | 95 | X16 Foldoor super | 2 | #### TABLE 37 OPERABLE PARTITIONS (Concl) #### Transmission Loss (decibels) | | | | - | |-----------------------|----------------|--|---| | Thickness
(inches) | STC | 125 h. 160 h. 200 2000 2 | 표
S Waight Foot-
9 lb/ft Lab, Co. Product note | | | 40 | Vinyl Esbric in facing & backing
steel slats backed with vinyl
impregnated liner.
20 23 26 28 30 36 38 44 48 48 48 50 51 53 53 | RAL X12 Foldoor super
54 5.8 TL72-23 95 sound guard 2 | | - | 40 | Lamination of wood particle core,
layers of asbestos folt membrane
backed fiber insulation. Faced
and backed pressure plastic
laminate clad panels.
20 26 26 28 31 33 35 39 42 43 45 45 45 46 46 4 | RAL
46 6.0 TL69-40 134 Sonic wall/88 2 | | • | 41 | Vinyl fabric in facing and backing
steel alats backed with vinyl
impregnated liner.
22 24 26 29 32 34 37 42 45 46 48 49 51 52 54 5 | RAL. 55 6.24 TL71-210 95 Sound guard 2 | | - | 42 | Fabric covered panels; 46" wide
and one panel 21" wide, all x
102-1/2" high.
22 27 31 34 34 36 40 41 42 42 44 47 49 50 48 4 | RAL Foldoor falding
49 5.3 TL72-210 95 walls sories two 2 | | - | 46 | Fabric covered panels; Two-26 1/2" wide and One 29" wide, all x 103-1/2" high. 31 33 36 37 40 42 43 44 46 46 48 50 49 48 47 5 | RAJ. Foldoor Ealding
50 - TL72-238 95 walls series Three 2 | | | 37
38
41 | Folding partions and doors. Two or three layers of lead- filled vinyl on each side of frame. VL-8 has 3 layers lead-filled vinyl plus glass fiber blanket each side. | Curtain Models:
2.5 VL-2
3.0 VL-6
3.5 167 VL-8 | #### FOOTHOTES FOR TABLE 37 #### OPERABLE PARTITIONS - Automatic bottom pressure seal gasker, internal with vinyl strip overhead trim section, fitted with standard automatic top pressure soal, - 2. Tested and avaluated according to ASTM E90-70. - 3. Tested and avaluated according to ASTM E90-66T. # TABLE 38 SEMIPERMANENT PARTITION ASSEMBLIES Semipermanent partition assemblies defined here as partitions or walls which can be erected or demounted on site, such that the component panels, etc., can be reused, are listed. These are not operable partitions in the sense that, though they can be moved from the site, they cannot be folded or extended as a room divider on a routine basis. In other words the partitions are treated here as semipermanent walls which completely close off two adjoining spaces. The table is divided in three parts on the basis of the materials used in the partitions: - 38A Metal-faced gypsum board partitions - 38B Vinyl-faced gypsum board partitions - 38C Vinyl-faced plywood partitions The companies (by numbers shown in Section II) with products listed in Table 38 are: 53, 84, 101, 104. #### **GLOSS ARY** Facing: The outside surface of the specimen. In general the side facing the sound source Backing: The other outside surface of the specimen. In general the side not facing the sound source Core: The region between the facing and the backing Gypsum: A hydrated sulphate of Calcium. CaSO4 · 2H2O. Used for making wallboards, plaster of Paris, etc. Stud: An upright piece in a frame to which wallboards are applied ## TABLE 38A SEMIPERMANENT PARTITION ASSEMBLIES (Metal faced gypsum board partitions) | | | | | | | B## 2. | | | 2080 | (66) | ** 1** | 1107 | | _ | | | | | | | |-----------------------|-----|--------|------------------------|------------------------------|------------------------------|-------------------------------------|-----------------|----------------------------|--|-----------------------|----------------------------|------------|--------|---------|---------|-----------------|-----------------|-----|---------------------------------|---------------| | Thichness
(inches) | STC | | 150 Hz | | 315 Hz | ZH 007 | 200 Hz | 630 Hz | 800 Hz | | 1600 Hz | | 2500 班 | 3150 Hz | 4000 Hz | Waight
1h/fc | Lab. | Co. | Product | Foot-
note | | | | | m
P | tude
otel
ost | cl
cov | tud
ad p
ers | ex
pan | ten
els | te m
eion
, hor | eyc | tud
omb | Et. | lle: | ٠, | | | RAL
| | Unitized Wall | | | 3 | 36 | 15 20 | P.
Bi | urti
Yp#u
Chor | tio
m b | n id
Odro
Cess | s mu
d, (| ede
Cru:
Les | of sader | eta
et | l c
uda
ire | lad
and | | 40 | 36 | 5,1 | TL71-21 | 53 | Partition | 1,2 | | 3 | 39 | 24 24 | 29 | ոd թ
32 | ane:
34 : | 10.
37 4 | 40 4 | 41 4 | 40 36 | 35 | 40 | | 47 | 49 | 49 | 6.9 | RAL
TL68-117 | 53 | Crusader metal
Partition | 1 ' | | 3 | 40 | 1.7 23 | pic
a i
ho
mi | tal
ud
ney
nor | erac
cont
al i
gask | udø,
ek.
b £1
£1be
ket1 | met
11c
r | ud:
:41
:r, | ta mas
s ext
clad
post
llati | ens:
par
cor | ion
tel:
ver:
so: | and | 50 | 48 | 47 | 5,1 | RAL
TL71-18 | 53 | Unitized
Partition
System | 1,2 | | 3 | 41 | 27 26 | Ti | ypau
id o
iere
id p | m b
thei
ia
ane | oarc
2" | co.
thi | Crui
isoi
lck
bai | of sader
ries
insuse of | at
as
lat
ce | uda
Laqu
Lan | in
in | เกอไ | | 49 | 6.9 | KAL
TL68-123 | 53 | Grusader metal
Partition | 1 | | 3 | 44 | 27 29 | me
st | tol
udo
Iqui | cli
and
rod, | ad g
d ot | hei | um
ac | made
boar
cess | d, d | ru | 1Ą | | 49 | 49 | 7.0 | RAL
TL68-124 | 53 | Crusader metal
Partition | 1 | | | | | 2:
1: | Th | fac
ornu
vity | ced
ifib
/ an | gy:
d o | WI. | of 3
pan
pped
r ac | ela.
in: | ul | atio | ıq. | | | | | | Commenter | | | 3 | 45 | 21 28 | 33 | 38 4 | 45 5 | iO 5 | 1 5 | | 4 54
of m | | | | | 48 | 50 | 8,2 | RAL
TL71-22 | 53 | Crusader
Partition | 1,2 | | | | | at
in | paun
uda | 1 P.E
1 Cy | nol:
The | e s
Toa | nap)
fib | ped i | into
11 | mo
ins | tal
ula | tio | n | | | Day | | 32" module | | | 3 | 45 | 21 28 | 33 | 38 4 | 15 5 | 0 5 | 15 | 3 5 | 4 54 | 53 | 51 | 48 | 48 | 48 . | 50 | 8,2 | RAL
TL71-22 | 53 | Dividing wall | 1,2 | # TABLE 38A SEMIPERMANENT PARTITION ASSEMBLIES (Concl) (Metal faced gypsum board partitions) | _ | | | | | | Tran | smi | 0.01 | Lon | Los | 8 (| dec | Lbe | 18 | <u> </u> | | | | | | | | | |-----------------------|-----|----|-------|-----------------------------|--------------------------------|------------------------------|-------------------------|------------------------------|---|-------------------------|----------------|-----------------------------|----------------|-----------------|----------|---------|------------|---|--------|----------------|-----|---|------------| | Thickness
(Inches) | STC | | # 091 | | | | 400 Hz | 500 Hz | £30 Hz | 2H 009 | 1001 Hz | 1250 Hz | 1600 H | 2000 H: | 2500 H: | 3150 #= | | Woigh
16/Ec | t
2 | Lab, | Co. | Product | Foot- | | 4 | 43 | 24 | (2 | P: | ene:
urf:
nd : | ls w
acos
£111 | riti
We
ed
Pod | i ho
eldo
wii
ling | made
Bavy
ad t
th a
3 ma
[46 | gr
co a
co
tet | ug
a
mb: | e st
teel
inat
ls, | ee
f | l
ram | £ | 2} | 54 | 8,25
(Panel
only) | s | | 104 | fracwall | 4,5,8 | | 4 | 48 | 38 | [3: | pr
at
at | nel
irfi
id i | ls w
aces
Eill
i im | ith
we
ed
ped | lde
vit
ling | nade
navy
ed t
th a
ma
[47] | ga
co
co
tor | uge
mb | s st
teel
inst
ls. | ee
fr
io | L
Cam
L O | f | B] | 49 | 8.25
(Panel:
only)
17.7
Total | | RAL
64-273 | 104 | Tracwall | 2,3
4,5 | | 5 | 42 | 19 | 25 | of
Cr
or | ces
me
usa
ios | s o
tel
der | fai
sti | ne
ced
uda
qui | wit
mid
By:
and
red. | a 1
802
1 o | n b
the | oard
oard
r ad | is, | 65. | | 46 | 4 8 | 6.7 | TL | RAL
.70-127 | 53 | Crusader 5" Laboratory wall (Access one sid | ia) 1 | | · | - | | | Pa
ac
wa
fa
sti | rti
ces
11 :
ced | tion
6 or
is c | n Wa
n bi
soni | all
oth | wit
mote
mord | h des | of | ent: | al | | | 70 | 70 | ••• | | | 33 | Crusader 5" | 10, I | | 5 | 43 | 19 | 28 | 30 :
Pa | 33 3 | 36 4 | 0 4 | a11 | . WĹ
Bld | th
e o | e c | ont | ral | L | | 47 | 49 | 6,7 | | RAL
70-129 | 53 | Laboratory wall
(Access both si | | | 5 | 46 | 23 | 30 | £1 | d o | the | 6#
E & | cce | me
r a
ula
seo: | tio
ria | n 1 | n c | oqu | ir | ad. | 48 | 50 | 6.7 | TI | RAL
.70-108 | 53 | Crusader 5"
Laboratory wall
(Access one sig | i
ie) 1 | | | | | | to
on | ba
ba | ck v | wit
of 1 | h2
bona | cor
ade:
"tl | ter | na f | 1ber | eck
C | 1 | | | | | | RAL | | Crusader 6" | | | 6-1/8 | 52 | 28 | 36 | PΛ | * F1 | tion | | a11 | cor
wall
s, 1 | | . ra | ٥f | | | 56 | 58 | 60 | 8,6 | | 71-30 | 53 | Double Wall | 6,7 | | | 37 | 15 | 19 | 24
Po | 26
**** | 29 3 | 33 : | 36 . | 37 4 | 0 | 2 · | 45 é | 6 | 42 | | 45 | 48 | 6,7 | | RAL
72-116 | 53 | Single line
Unitized wall | 6,7 | | | 41 | 1 | B 20 | an
in | d 1
en | ds a | nic | k t | wall
1/4'
ecar
hero
se c | naf: | lbe
in 1 | r i | idu | Ĭat | 1or | | 3 54 | 6.8 | TL. | RAL
72-117 | 53 | Single line
Unicized wall | 6,7 | | | | | | of
wa
as | e-a
ac
11b
re-
erm | eel
oard
quit
afil | mble
par
ibred | ed
nel
eck
an
in | ia
wali
s, 1
er
d i | L u
L / 4' | li
Im | a ma
ypau
ypau | un
ees | | | | | | | | | | | | • | 43 | 19 | 24 | | | nt11
36 | | | | 48 | 49 | 51 | 53 | 54 | 55 | 5. | 5 5: | 6,9 | TI. | RAT.
72-115 | 53 | Single wall
Unitized wall | 6,7 | ### TABLE 38B SEMIPERMANENT PARTITION ASSEMBLIES (Viny1 faced gypsum board partitions) | | | - | | | _ | | | | | | | _ | | | | | | | | | | | |--------------------|------|--------|----------------|--------------------------|----------------------------|--------------------------------------|-------------------------|---------------------|-------------------------|------------------------------|--------------------------|------------------|-------------------|------------------|----------|----------|---------|------------------|-----------------|-----|---|-------| | Thickness (inches) | STC | 125 Hz | 160 Hz | | 250 Hz | 315 Ez | ZH C05 | 200 Hz | 630 Hz | 800 Hz | 1000 Hz | 1250 Hz | 1500 Hz | 2000 Hz | 2500 Hz | 31.50 Hz | 4000 Hz | Weight
1b/ft2 | Lab, | Co. | | Foot- | | | | | | and | vere
1 ar | tion
ad g | yp: | um | wa]
on | llb:
in | par | d p | ano | 10 | 1 | | | | | | | | | 2-3/ | 4 40 | 20 | 23 | | | | | | | | 42 | 44 | 47 | 46 | 42 | 39 | 40 | 4.6 | G&H
OBR-1ST | 84 | Quick change
Movable Partitio | n 6,7 | | 2-3/ | 4 42 | 18 | 23 | вут | ula | ion
wa
tic
38 | llb
n i | oar
n t | d p | CA | ole
/it; | and | i a | | 43 | 42 | 43 | 4,6 | G&H
OBR-2ST | 84 | Quick Change
Movable
Partition | 6,7 | | 3 | 37 | 20 | 25 | vir
fil
oti | yl
erg
er
rat | ion
fac
las
acc
lo | ed
s i
ess
doc | gyp
nau
ori | lat
es. | lor
I | arc
a
h | is,
id | | 38 | 40 | 41 | 42 | 2,01 | RAL
FL70-8 | 53 | Crusader
Modular Drywall
System with
Operable Door | 1,2 | | | | | | 48'
cov
joi
Var | ere
nte | ion
dul
d g
, i | 68
yps
nsu
stu | of
un
lat | 1/2
boa
ion
an | rd,
it | in
ai | l
ag | ger
Pav | ed
ity
oss | <u>:</u> | | | | RAL | | Vanguard | | | 3 | 40 | 16 | 21 | BOO
Eyl
In: | rti
dule
sul
udo | tion tion as con ation and red, | of l | 111
1/2'
1 (c | is
v: | mai
Lny:
non
Lty | de
1 c
jo | of
ove
int | 46'
red
s). | ı
I | 47 | 44 | 48 | 4.8 | TL71-180 | 53 | Partition | 6,7 | | 3 | 40 | 17 : | 20 | | • | | | 3 4 | 5 4 | В | 48 - | 4В | 49 | 49 | 45 | 43 | 46 | 4.8 | RAL
FL71-181 | 53 | Vanguard
Partition | 6,7 | | 3 | 41 | 17 : | 21 | bos
car
acc | iule
rd
/ity
:es/ | tion
(6)
(6)
(7)
(6) | /2'
pau
ang
ee | m);
uar | nyl
ir
d s | l co
isu:
itu:
jui: | ove
lat
ds:
red | rad
Ion
an | in | ı | 46 | 43 | 46 | 4,8 | RAL
TL71-190 | 53 | Vanguard
Partition | 6.7 | | - | | -, . | - - | Par
cla
l =7 | t1t | ion
yps
th | wa
um
ick | 11
boa | is
rd;
ber | mac
er
gla | ie (
rua: | f
ide: | vin
c s | y1
tud
ati | s;
on | ,- | | 744 | | ,, | | w., r | | 3 | 41 | 17 2 | 4 | | | | 7 4 | 2 4 | 5 4 | 7 4 | 9 : | 0 | 51 | 52 | 51 | 48 | 48 | 5,2 | RAL
TL69-279 | 53 | Crusader Modular
Drywall System | 1,2 | # TABLE 388 SEMIPERMANENT PARTITION ASSEMBLIES (Concl) (Vinyl faced gypsum board partitions) | b | | | | |---|--------------------|------------------------------------|-------| | Thi chness src (fuches) src (fuches) src | | | Foot- | | Partition wall is made of vinyl alad sypsum board; Crumader studs; | | | | | 2" thick fiberglass insulation in cavity and other accessories as | | | | | required, 3 44 20 27 30 35 34 33 43 45 47 49 49 51 51 50 47 47 5.2 | RAL
TL69-232 53 | Grusader Modular
Drywall System | 1.2 | | | | | | | Partition wall consists of 48" modules of 5/8" vinyl covered | | | | | sypsum board, #taggered joints Vanguard studs and other access- | | | | | ories as required. | RAL | Vanguard | | | 3-1/4 37 13 17 23 26 30 35 39 39 44 46 45 47 41 33 44 49 5.6 | TL71-187 53 | Partition | 6,7 | | Partition wall is made of vinyl | | | | | covered gypsum board (common loints) insulation in the cavity | | | | | and other sccessories as required.
3-1/4 42 19 23 24 29 37 41 44 46 47 47 47 48 47 45 48 49 2.54 | RAL
TL71-185 53 | Vanguard
Partition | 6.7 | | | | | -,, | | Partition wall is made of 24"
modules of 5/8" vinyl covered | | | | | gypsum board with insulation.
Vanguard studs and other sccoss- | | • | | | ories as required. | RAL 53 | Vanguard Wall | | | -1/4 43 19 25 31 36 40 44 46 48 48 48 48 48 48 45 46 49 6.0 | TL71-189 | Partition | 5,7 | | Partition wall is made of 1/2" | | | | | thick gypsum panels screwed onto metal stud framing. | Der | mi nominio | | | 42 26 33 40 47 50 40 4.55 1 | RAL
TL62-18 53 | DW Partition with 3" studs 2 | 2,3 | | Partition is made of stude: | | | | | 1/2" gypaum board panels, anap
in battens, 1-1/2" thick | | | | | glass fiber insulation and
other accessories as required, | | | | | 43 19 23 30 35 38 42 45 47 47 46 45 46 47 46 43 44 4.40 | RAL
TL68-104 53 | Crusader
4c Partition 1 | ı | ### TABLE 38C SEMIPERMANENT PARTITION ASSEMBLIES (Vinyl faced plywood partitions) #### Transmission Loss (decibels) | Thickness
(inches) | STC | 125 Hz | | | 250 Hz | | 400 Hz | | 2H OC8 | 1000 Hz | 1250 Hz | 1600 Hz | 2000 Hz | 2500 Hz | 3150 Hz | ZH 0007 | Weight
1b/fc2 | Lab. | Co. | Product | Foot- | |-----------------------|------|--------|------|-------------------|---------------------|-----|----------------------|-----|------------|---------|---------|---------|---------|---------|---------|---------|------------------|-----------------|-----|---|----------| | 1-9/16 | 5 23 | 16[| [19] | thi
Acc
hor | lek
Just
Jayo | p1) | wood
ore p
cor | boa | rde | hec | Lth | 1 | 2 | 20[| 24] | 27 | 2 | RAL
TL65-218 | 101 | Air wall
Portable
and Movable
Partitions | 2
3,4 | | 2 | 38 | 19[| | whi
wic
gla | ch
h v | iny | wal
aint
1, w | ο£ | 1/4
a c | ore | lvv | fi | ber | ove | | 51 | 3,1 | RAL
TL65-219 | 101 | Air Wall
Portable
and Movable
Partitions | 2
3,4 | #### FOOTNOTES FOR TABLE 38A, 38B, 38C #### SEMIPERMANENT PARTITION ASSEMBLIES - 1. Tested and evaluated according to ASTM E90-66T. - 2. Tosted and evaluated according to ASARP-224.19-1957. - 3. Tested and evaluated according to ASTM E90-61T. - Numbers in brackets refer to one-third octave bands with center frequencies: 175, 350, 700, 1400, and 2800 Hz respectively. - 5. Metal facing. Basic material not given. - 6. Tested and evaluated according to ASTM E90-70. - 7. Tested and evaluated according to ASTH E413-70T. - Numbers given are noise reduction data obtained from a test performed on a field installation by an independent accountical consultant using the two-room method. # TABLE 39 PREFABRICATED SOUND BARRIER PANELS Prefabricated sound barrier panels are listed. These panels can be used in machinery enclosures, walls, facings, etc. They are usually composite products using sound barrier materials for facing and backing and a sound absorbent material in the core. The exposed surfaces of the panels are available in different colors, textures, and materials to suit the requirements of a specific application. The companies (by numbers shown in Section II) with products listed in Table 39 are: 10, 15, 35, 45, 55, 59, 73, 82, 87, 93, 104, 106, 109, 111, 116, 119, 129, 142, 147, 151, 156, 157, 169, 172, 173, 181. #### GLOSSARY Facing: The outside surface of the specimen. In general the side facing the sound source Backing: The other outside surface of the specimen. In general the side not facing the sound source Core: The region between the facing and the backing Septum: A layer that separates two surfaces #### TABLE 39 PREFAURICATED SOUND BARRIER PANELS | | | _ | | Transmission Loss (decibels) |-----------------------|-----|------|--------|------------------------------|-----------|--------------------------|------------|--------------------|----------|------------|------------------|--------------------|-------------------|-----------|---------|---------|---------|------------------|-------------------|-----|-----------------------------------|---------------| | Thickness
(inches) | STC | | 2H C7T | | | | 400 Hz | 2H 005 | ZH 009 | 2H 008 | 1(10) Hz | 1250 Hz | 1600 Hz | 2000 Hz | 2500 Hz | 3150 Hz | 4C00 Hz | Weight
1b/ft2 | | Co. | Product | Foot-
note | | 7/8 | 26 | 2 | 1 21 | . 18 | | ghtv
22 | | | - | | | 26 | 29 | 33 | 34 | 35 | 36 | 1.7 | CT | 109 | J-M Marinice
Panels 23 MV-2 | 1 | | 7/8 | 28 | 24 | 21 | . 22 | | 11kh | | • | | | 26 | 26 | 29 | 34 | 36 | 36 | 37 | 2.6 | СT | 109 | J-M Marinite
Panels 36 MV-2 | 1 | | 1-1/2 | - | [12] |) | [] | Po
ali | lyun
umin | um | hand
fac
20] | e ce | ; bc | wi
orh
24] | 810 | les | 2"
19] | | [| 20) | 1.5 | СŤ | 10 | Dualice Panel | 2
11 | | | | | | | 22
fa | and
ga.
cing | Ę | erfo
16 | ga. | al v | ac
at
old | l co
eol
rol | ore
she
lle | eec
d | | | | | | | Standard Noise- | | | 2 | - | 24 | • | | 32 | | | 40 | - | | 49 | | | 53 | | | 58 | • | - | 111 | guard Panels | 12 | | 2 | - | 16 | i | | Ma
20 | chir | ner | 7 er
26 | e le | sur | 78 1
32 | panı | els | 39 | | | 41 | | | 82 | Modular Noise-
Control Panel | | | 2 | • | 36 |) | | Le
Bt | ad a
eel | epi
on | bot
45 | wii
h | ide | 16 :
57 | ga. | | 67 | | | 70 | 6 | - | 157 | Sound Control
Panels | 3 | | 2 | 38 | 26 | 23 | 26 | 18
22 | sula
ga.
ga.
29 | 81 | eel | fa
wi | cin
th | 237 | bac
Pe | k i | ls
Fat | | | 60 | 4,52 | KAL
1180-3-71R | 151 | Semco Equipment
Housing Panels | 4,21 | | | | | | | Pat | rd p
rfor
cing | ate
; ! | d l
ack | aqu | ere | d t | nard | bos | rd | | | | | | | NMC Laminated | | | 2-3/8 | 28 | 15 | 20 | 24 | | 25 | | | 26 | 28 | 28 | 24 | 28 | 29 | 31 | 38 | 42 | 5.75 | KAL
1306-2-72 | 129 | Noise Control
Panels | 5 | | 3 | - | 26 | | | Mac
30 | ch1p | | en
35 | clo | | с Р
43 | ane | | 49 | | | 53 | - | - | 82 | Modular Noise
Control Panel | | | 4 | 37 | 16 | | | Wit | erg
h 2
rfor | 0 g
Ato | a. : | ste | el
a. : | fac | ing | ;
bac | kin
53 | B | | 58 | 5.1 | RAL
TL71-37 | 172 | Uni-Housing
Panels | 21,22 | | | | • | | | faç | ga.
e ar | nd : | baci | king | 3 | | | | | | | | | RAL | | | | | 4 | 38 | 23 | 21 | 23 | 25 | 27 3 | ı. | 14 4 | +1 4 | .7 4 | 19 |) i | 3 : | 54 | 55 | 54 | 54 | 7.5 | TL72-49 | 104 | 4" Septum Panol | 21 | #### TABLE 39 PREFABRICATED SOUND BARRIER PANELS (Contd) | | | | | | Tra | imer | sai | on I | .086 | (de | cib | ela) | | | | | | | | | | | | | |-----------------------|-----|---------|---------|--------|----------------------------------|------------|-------------|-----------|-------------|----------------|------------|------|---------|---------|---------|------------------|----------------|-----|-----------------------------------|-------|--|--|--|--| | Thickness
(inches) | STC | 125 Ile | 71: 09T | 200 Hz | 250 dz
315 Hz | 400 3z | 500 Ez | 530 Hz | 2F. 008 | 1000 Hz | | | 2500 Hz | 3150 #± | 4000 Hz | Weight
1b/ft2 | Lab. | Co. | Product | Foots | | | | | | 4 | 38 | 14 | 19 | 22 | Fibe
stee
27 3 | l Ľa | CO . | and | bac | ckin | 3 | | 5 5 | 5 5 | 7 58 | 5,25 | RAL
TL71-62 | 87 | Sound Panel | 21 | | | | | | | | | | | Fibo
with
20 gr
back: | 18
1, p | ga. | ate | eal | fact | lng, | 3 | | | | | RAL | | Not - Nove to - | | | | | | | 4 | 40 | 19 | | | 27 | _ | 40 | | | 53 | | 5 | 3 | | 63 | 5.5 | TL71-327 | 172 | Uni-Housing
Panel | 6,21 | | | | | | 4 | 40 | 23 | 22 | 26 | Miner
metal
backi
29 30 | . Ea | einj | д дз | nd 2 | 22 да | ı, m | leta | L | 55 | 5 57 | 6 | RAL
TL72-18 | 147 | Acquatical Panel | 7,21 | | | | | | | | | | | fiber
perfo | al t | d a | cing | st f
Z | acin | g | | | | | | | | Modular | | | | | | | 4 | 42 | 21 | 22 | 28 | 35 38 | 38 | 42 | 44 | 43 | 42 | | 45 | , | | 50 | 6,2 | CT | 119 | Acoustical Panel | 8 | | | | | | 4 | 42 | 18 | 25 | | 20 ga
facin
mylar
32 37 | g &
Ins | bac | kir
B | ig w | ith | 4 m | | 54 | 56 | 5.57 | 5,25 | RAL
TL71-61 | 93 | Sound Panel | 41 | | | | | | • | - | | | | | | | ,,, | | ., ., | - | | | - | | ,,,, | -2711-41 | ,, | double range | 21 | | | | | | | 4.5 | • | • | •• | Miner
metal
metal | fa: | cki
cki | g &
ng | per | fore | ited | | | | | | RAL | | NMC Acoustical | | | | | | | 4 | 43 | 24 | 28 | 29 | 31 36 | 38 | 40 | 43 | 44 | 46 4 | 7 4 | 8 49 | 50 | 53 | 3 53 | 9.1 | TL67-1 | 129 | Panel | 9,23 | | | | | | | | | | | Insul
with
22 ga | 10 g | 38.
:ael | st. | ool
icki | faci
ng | ng · | | | | | | KAL | | Samco Equipment | | | | | | | 4 | 43 | 26 | 27 | 29 | 32 34 | 37 | 38 | 43 | 47 | 51 5 | 4 5 | B 60 | 64 | 65 | 67 | 4.58 | 1180-4-71R | 151 | Housing Panel | 4,21 | | | | | | | | | | | l8 ga
facin
steel | g &
bac | 22
kin | ga, | ga | lvan | ize | | | | | | KAL | | Vibrasonics | | | | | | | 4 | 44 | 20 | 26 | 31 | 34 35 | 39 | 42 | 46 | 52 | 56 5 | 9 6: | 2 66 | 69 | 71 | 71 | 6,01 | 1233-1-71 | 181 | Sona-Guard Panel | 10,21 | | | | | | 4 . | 46 | 28 | 30 | | Wall
33 38 | • | | 46 | 50 . | 54 5 | 6 56 | 5 57 | 58 | 58 | 56 | 11.9 | RAL
TL72-64 | 142 | Music Practice
Room Wall Panel | 21,22 | | | | | | | | | | | Machi | nero | er. | c1c | aur. | . 00 | 101 | | | | | | | | | | | | | | | 4 | - | 34 | | | 42 | - | 48 | | | 59
59 | | 69 | | | 73 | - | • | 82 | Modular Noise
Control Panels | | | | | | | 4 | | | | | Foamed
core v | ≀1 th | ga | lva | nize | lyure
id st | tha
oel | ne | | | | - | CT | | Sound Control
Enclosure Panel | | | | | | #### TABLE 39 PREFABRICATED SOUND BARRIER PANELS (Contd) | | | _ | Transmission Loss (decibels) | | | | | | | | | | | | | | | | | | |-----------------------|-----|--------|------------------------------|------------------|--------------------|------------------------------
--|------------------|-----------|---------------------|------------------|-----------------|-------------------|---------|---------|-----------------|-----------------|-----|---------------------------------|--------------| | Thickness
(Inches) | STC | 125 Hz | | 250 Hz | | | 500 Hz
630 Hz | | | | 1600 Hz | | 2500 Hz | 3150 Hz | ZH 0007 | Weight
lb/ft | Lab. | Co. | Product | Foot• | | | | | | Ģ | las: | 8 DI | mir
ga | 1era | l w | 100 | co | re |
ı | | | | | | | | | 4 | | 27 | | 39 | aci | ng a | 5 16 | ga. | 8t | ool | ba | cki
58 | ng | | 62 | - | - | 11 | Standard Noise
1 Guard Panel | 12 | | | | | | 1 | 6 ga | 1. B | teel
ckin | fai | cinį | g & | 22 | ga. | | | | | | | | | | 4 | - | [23] | | [30] | | (4 | - | • | [51] |) | | [59] |) | ŀ | 58] | 6.3 | RAL
TL66-120 | 10- | 4 4" Noishield Pa | nel 13,24 | | | | | | 1 | 6 ga | 1. S | teel | £ac | ing | 3 & | 22 | ga, | | | | | | | | | | 4 | - | [28] | | [34] | | [4 | ekin
Oj | · | 48] |) | (| [56] | | ſ | 62] | 7.5 | RAL
TL66-122 | 104 | 4" Noise-Lock
Panel | 13,24 | | | | | | P | olyu | reti | hane
Osuri | cor | о р | ane | ı | | | | | | | | | | | 4 | - | 12 | | 20 | | 36 | | | 37 | | | 31 | | | 42 | 2,5 | CT | 10 | Acoustic Panel | 2 | | | | | | D | ecor | ati | ve p | nel | | | | | | | | | | | 4" Noishield | | | 4 | - | 7 | | 11 | | 12 | 2 | | 13 | | | 14 | | | 12 | 9.1 | CT | 104 | Louver Model-R | 23 | | 12-1/4 | 60 | 42 44 | 46 | 9°
8'
51 5 | a1:
1th
2' | rapa
pana
buil
4 56 | ace de la constante cons | 3/1
pan
61 | 6Pr
e1 | efai
ste
baci | bri
el
kin | cat
fac
g | ed
Ing
68 f | 8. | 70 | 15.6 | RAL
TL72-205 | 169 | Noisecon-12 | 21 | | | | | | 27 | ga. | g a | ane
lvan
galv | izad | st | eel. | £z | octo | ğ., | | | | | | | | | - | 25 | 23[| 22] | | [24] | | 25[2 | | | [29 | | | [31 | | 42 | 2.4 | RAL
TL63-236 | 35 | F-103 | 14
16,25 | | | | | | Ga
& 1 | lvan
back | izec | d st | eo l | fac | ing | : | | | | | | | | | | | - | 32 | 28[| 35 J | | [32] | _ | 32[34 | 1) | 34 | [3 3 |] | 30 | 29 |) | 32 | - | RAL
TL61-64 | 55 | Monopanl | 15,
16,25 | | | | | | ext | teri | or | ner p | | | | | - | | | | | RAL | | | | | • | 34 | 18 | 19 22 | 2 22 | 23 2 | 27 3 | 30 34 | 37 | 38 | 38 | 39 | 41 | 44 | 47 | 51 | 5,27 | TL71-248 | 106 | L-21 Acoustiwall | 21 | | - | 44 | 26 | | S ot
33 | ind-f | | of ro | oon | 94n
48 | els | | 57 | | | 61 | - | CKAL
694-11 | 59 | Panel Systems
Series HS & CS | 23 | | | 45 | 25 2 | 16 30 | Per | | | l ate
5 48 | | | | | | 60 | 61 | 63 | 7.2 | RAL
TL71-146 | 73 | Sound Control
Panol | 21 | | | | | | | | | | | | | | | | ٠. | | 7.4 | | | | 41 | | • | 49 | 30 2 | 9 35 | 501
40 | | | 1-fa
7 49 | | • | | 51 | 53 | 55 | 56 | 57 | 10,4 | RAL
TL71-147 | 73 | Sound Control
Panel | 21 | #### TABLE 39 PREFABRIGATED SOUND BARRIER PANELS (Concl) | | | | | | T | ran | sm£ | 081 | on l | Los | B (| dec | ibe | 1s) | | | _ | | | | | | |-----------------------|-----|--------|--------|--------|-------------------------------|--------------|------------|------------|-------------------|------------------|-------------------|------------------|-------------------|--------------|---------|---------|---------|------------------------------|----------------|-----|--------------------------------|---------------| | Thickness
(inches) | STC | 125 Hz | 160 Hz | 200 Nz | 250 Hz | 315 Hz | 400 Hz | 24 OOS | 630 Hz | B00 Hz | ZH C001 | 1250 Hz | 1600 Hz | 2000 Hz | 2500 Hz | 3150 Hz | 4000 Hz | Weight
1b/ft ² | Lab, | Co. | Product | Foot-
note | | - | • | | | | Pre | icom
iels | bc | nde | d t | 0 | lad | £11
400 | d
d | gla | 88 | | | - | - | 45 | Kinetic
Isolation Panel | 17 | | - | - | 19 | | | sou
30 | ndp | | f e
39 | nc 1 | | re
50 | par | noli | 58 | | | 60 | | CKAL
694-12 | 73 | Panel Systems,
Series H & C | 18 | | - | - | | | | Pan
sys | | | r a | | | | | | | | | | - | • | 173 | Acoustic Panels | | | - | - | 34 | | į | MLn.
18 :
6 2:
5 te: | ga,
De | ga
ac | lva | niz: | ed
ate | ste | al | fac | ins | i
i | | 73 | - | - | 82 | Modular Noise
Control Panel | 19 | | - | - | | | 1 | Rig
Per
3/8 | id a | gla
ate | d v
icl | fib
iny
a b | er
1 f
oar | cor
ací
d E | e w
ng
ack | det
and
dng | :
!
}• | | | | • | - | 116 | Victacoustics
Type C & D | 20 | | - | - | | | | Cor:
for:
fac: | atec | a | pan
lum | els
inur | us
m O | ing
r s | pe
tee | r- | | | | | - | • | 15 | Alpro Sigma
Panels | | ## FOOTNOTES FOR TABLE 39 PREFABRICATED SOUND BARRIER PANELS - 3'x8', 4'x8', or 4'x10' sizes in various finishes. Flame spread: 0. Fuel contribution: negligible. - 2. Temperature range: -40° to 180°F. - Sizes range from 36"x60" to 48"x96". Weight range: 90 lbs to 200 lbs, Available with soundabsorptive perforation on one or both sides. - 4. Temperature range: -40° to 400°F. Flame apread: 15. - 5. Temperature range up to 125°F; combustible. Perforated side has NRC of .65. - 6. Temperature range up to 350°F; sizes 36" wide, 6' and 12' longths. - 7. Temperature range up to 600°F. Flame spread 15 UL 723. Sizes up to 48"x144". - 8. Sizes: 2' and 3' widths, 4' to 12' lengths. Temperature range up to 250°F. Flame spread: 15. - 9. Temperature range up to 500°F. Good resistance to chemicals. Perforated side has NRC of .95. - Temperature range: 0° to 1300°F. Flame spread: 15. Resistant to most chemicals. Sizes 1,2, 3, or 4 ft wide panels cut to desired lengths. - Numbers shown in brackets [] correspond to active bands 75-150, 150-300, 600-1200, 1200-2400, and 2400-4800 Hz. - 12. Heighte: 8', 10', and 12'. Widths: 3' and 4'. Thicknesses: 2'' and 4''. - Tamperuture range up to 450°F. Flame spread: 25. Various standard and custom sizes available. - 14. Used in walls and roofs of Butler buildings. Maximum temperature difference: 120°F. Self-extinguishing. 3' panel coverage. Maximum length 32'. #### FOOTNOTES FOR TABLE 39 (Concl) #### PREFABBLICATED SOUND BARRIER PANELS - Used as wall panel in Butler buildings. Maximum temperature difference: 120°F. Flame spread: 10-20. 1' panel coverage. Maximum length; 60°. - Numbers in the brackets show transmission loss at frequencies 175, 350, 700, 1400, and 2800, respectively. - 17 . 4'x4' or 4'x8' panels. - 18. Width 2', 3', or 4'. Length 4' to 12'. C series is same as N, but has an added connection system to clamp the panels together. - Scandard sizes 2' to 4' wide; 6', 8', 10', and 12' long. Custom sizes available. Weight 16 to 18 lb/ft3. - 20. Maximum width 4'. Maximum length 10'. Weight 15 to 75 lb/ft3. - 21 . Tested and evaluated according to ASTM E90-70. - 22. Tested and evaluated according to ASTM E413-70T. - 23. Tested and evaluated according to ASTM E90-66T. - Numbers shown in brackets correspond to octave hands 90-180, 180-355, 355-710, 710-1400, 1400-2800 and 2800-5600. - 25. Tested and evaluated according to ASTM E90-61T. ### TABLE 40 ENCLOSURES Some enclosures and their effect on sound transmission are listed. An enclosure is defined here as a covering that attenuates the sound emanating from the inside of the enclosure as opposed to the "quiet room" where the unwanted noise originates in the surroundings exterior to the enclosing room. It is usually difficult to provide meaningful information about the enclosures because the performance depends on how the enclosure was designed to fit around a particular machine and the sizes of the openings which may have been made in the enclosure for the machine operation requirements. In the case of existing machinery, total or partial enclosures are often the most economical solution to the noise control problem. These enclosures can be custom designed to suit particular requirements by using many of the materials listed in Tables 6 through 18 and/or the panels
listed in Table 39. Figure 40 shows a panel composed of many layers. Each layer has been placed for a specific task. The panel can be mounted on a machine to create an effective enclosure. The companies (by numbers shown in Section II) with products listed in Table 40 are: 9, 48, 59, 68, 82, 88, 155. Figure 40 Construction Details of Typical Enclosure Panel #### CAUTION VALUES PRESENTED ARE NOISE REDUCTIONS AND NOT TRANSMISSION LOSSES. SEE SECTION I-3.6 FOR EXPLANATION OF DIFFERENCES. #### TABLE 40 ENCLOSURES | | | | Noise Reduction (decibals) | | | | | |-----------------------|-----|--------|---|-----------|-----------------------|------|---| | Thickness
(inches) | STC | 125 Hz | | 3150 Hz | Weight Lab. | Co. | Foot-
Product note | | • | _ | 9 6 | Free standing enclosure. 72" x 96" x 84" high, Leaded vinyl supported by metal frame. 6 7 9 11 13 16 19 21 21 19 21 2 | 23 26 26 | RAL
- NR72-1 | 155 | Sound scopper and free 1,2 standing enclosure 5 | | - | - | 11 8 | Free standing enclosure. 72" x 96" x 84" high. Leaded vinyl supported by metal frame. 7 10 10 14 16 19 19 20 20 21 22 2 | 2 22 23 | RAL
- NR72-2 | 155 | Super Sound
Stopper free 1,2
standing enclosure 5 | | - | | 15 | 7' x 7' x 7' 2-1/4" thick enclose
19 27 35 34 | ire
38 | - GJP-21T | - 88 | INE Noise
Enclosure 3,6 | | - | - | 2 | Fiberglass and vinyl enclosure 4 6 6 8 | 12 | 1W/2-32
- LW-72-32 | 68 | Flexi
View Sound
Encapsulation 4,7 | | - | • | | Sound proof rooms and chambers | | | 59 | Custom designed
enclosures
and chambers | | - | | | Enclosures for turbines | | | 9 | Gas turbines
silencers | | - | • | | Sound proof rooms, Modules are 28" wide and 8' to 10' high. | | | 82 | GAC Sound
Proof rooms | | - | - | | Aluminum sound panel enclosures. | | | 82 | 750 KH Gas
Turbine Module | | - | - | | Engine Test cell enclosures. | | | 82 | Model 1260
jet engine
test cells | | - | | | Custom made enclosures for office equipment. | | - <i>-</i> | 48 | Noise isolation | ### FOOTNOTES FOR TABLE 40 #### ENCLOSURES - 1. Tomted and evaluated according to ASTM E 335-67T. - 2. Tested and evaluated according to ASTM E 90-70. - 3. Tested and evaluated according to ASTM E 335-71. - 4. Tested and evaluated according to ANSI S1,2-1962 - 5. Numbers given are noise reduction data. - 6. Numbers given are insertion loss data. Contact manufacturer for specific test details. - 7. Acoustic data are derived from sound power measurements with and without FGA Flexi-View Noise Guard Shield. ## TABLE 41 FLOOR COVERINGS -- TAPPING MACHINE DATA Floor coverings and their effects on noise generated by objects dropped on the floors and by footsteps, etc., are listed. The table shows sound pressure levels generated in the room below by the tapping machine with the products placed on the floor assemblies. All the tests reported in the table were conducted in accordance with ISO Recommendation 140 of 1960. Usually a floor covering does not have much effect on the sound transmission class of the floor assembly but it has a tremendous effect on impact insulation class of the floor-ceiling assembly. Tables 30 and 31 may be referred to for more detailed information on this point. The companies (by numbers as shown in Section II) with products listed in Table 41 are: 12, 44, 52, 55, 97, 143. #### CAUTION THE VALUES SHOWN ARE SOUND PRESSURE LEVELS GENERATED IN A ROOM BELOW WHEN THE STANDARD TAPPING MACHINE WAS OPERATED ON THE FLOOR COVERING. SEE SECTION I-3.4 FOR FURTHER EXPLANATION. TABLE 41 FLOOR COVERINGS -- TAPPING MACHINE DATA | = ~ | | So | und | Pro | eur | o L | evel | s fr | oπ | Тарр | ing | Mac | hir | 10 | | | | | | | | |-----------------------|-----|------|-----|--------------------------------------|--------------|-------------|------------------------------------|-------------|-------------|----------------------------|-----------------------------------|--------------|------|------|------|----------------|---------|-----------------|-----|---------------------------------------|---------------| | e e e | | # | Ŧ | # | 최 : | ¥ ! | Ħ Ħ | # | | 보
보 | | | 4 | 盐 | Ħ | | | | | | | | Thickness
(inches) | IIC | 125 | 160 | | | 9 | | | 68 | 1050 | 168 | 2000 | 2500 | 3150 | 4000 | Weigh
16/ft | 15
2 | Lab. | Co. | Product | root-
note | | | | | | Eoas | n bø | arl
cki | ayer
ng, | fac
03" | ing | O
best | 911 v | iny | 1 | | | | | | | · · · · · · · · · · · · · · · · · · · | | | .14 | 49 | 65 | 64 | 66 (| ٥ | | | | | | | | | 23 | | ,47 | 1 | KAL
286 2M2 | 44 | Poerless | 1,2 | | | | | | Sup | olie
La o | d i | n 2'
ork | wid | ex | 187 | ' 10 | ng | | | | | | 11.49 | | 1/62 Bedoe | | | .25 | - | [71 | 1 | 76 | | 6 | | | 53 | | 38 | 9 | | 33 | | • | 3 | KAL
72-2-66 | 52 | 1462 Dodge
cork tiles | 9,3, | | | | | | long | lie
ro | 118 | of | wid
cush | o X
Lone | 45 '
od v | to
inyl | 90¹ | | | | | | | | | | | .28 | 53 | 64 | 63 | 64 6 | | - | 1 57 | 50 | 40 3 | 38 3 | 8 35 | 27 | 21 | 16 | | .633 | 12 | KAL
286-3-72 | 44 | Monogram | 1,4 | | | | | | Supp | lie
. l | d 11
/4" | n 48' | " x | 100
th 3 | ' ro' | lls
til | of
e | | | | | | KAL | | 1462 Dodge | 1.5. | | .375 | - | [69] | J | 71 | | 59 | 9 | • | 43 | | 37 | • | | 32 | | • | 37 | 72-1-66 | 52 | cork tiles | 1.5.
9 | | | | | | Homa | Bote | 9 01 | cons
two
trpst | ı laş | yara | ı o£ | 15/3
5/8 | 2" | | | | | | KAL | | | | | 15/32 | 59 | 62] | 1 | 57] | | [44 | - | | 35 } | | [26 | 3 | | (27 |) | - | L | 188-2-64 | 97 | Carpet board | 1.12 | | | | | | Wood
wood
pad | jo
, 1 | ist
5/32 | floa
2" He | or c | onst
ote | ruci
ove: | tion
r ca | pl
rpe | y- | | | | | KAL | | | 1,6, | | 15/32 | 65 | 49 | 46 | 40 3 | 3 32 | 2 29 | 28 | 25 | 21 1 | 8 17 | 7 17 | 18 | 18 | 17 | | 25* | 79 | 90-6-69 | 97 | Carper board | 9'-' | | | | | | | - | | Bote | | | cone | | | | | _ | | | KAL | | | | | 15/32 | 70[| 50] | • | [43] | | [39 | ני | [3 | 12] | | [25 |] | | (30 |] | - | L-1 | 188-1-64 | 97 | Carpet board | 1,13 | | | | | | 1/2"
with | Doc
3/1 | ige
ige | cork
Dodg | a C | pli
las | ed o | on r | 011 | | | | | | KAL | | 1462 Dodge cork | 1,7, | | 11/16 | • | [66] | | 65 | | 60 |) | 9 | 1 | | 38 | | | | 31 | - | 34 | 6-1-66 | 52 | & cork tiles | 9''' | | | | | | 1" D
3/16 | odge
Do | dge | rk s | upp! | iied
le | on | rol | 16 1 | /iti | 1 | | | | KAL. | | 1462 Dodge cork | 1 9 | | 13/16 | - | [74] | | 68 | | 55 | | | 2 | | 28 | | | | | - | 34 | 6-2-66 | 52 | & cork tiles | 9,0, | | | | | | F100
1-11
carp
1/2"
3" r | et p
chi | .ck | ng p
ick
on w
Gyps
bat | um b | jol
ost | sta,
d ce | 1111 | olat
18 a | nd | | | | | | | | | | 1-11/32 | 59[| 56] | Į. | 46] | | (3 | | | 28) | | • | | ' | | | - | 37 | KAL
0-12-66 | 97 | Floor decking | 1,14 | | | | | | Ploo
trus
floo
resi | r de
lien | CKI
C | ng,
hann | carp
els | ec
wit | -1/2
Hom
and
h 1/ | 1 x8
14 x 0
1 p a d
2 11 | ,
: a | | | | | | | | | | | 1-11/32 | 65 | 45 | | Cyps | מימוט | oar | d ce | 111n | 8. | | | | | | | - | 85 | KAL
8-4-70 | 97 | Floor decking | 1,9,
10 | | | | | | Floo
wood
Home
and
5/8" | joi | # t | floo | r wi | ch
ine | 1-11 | /32 | | | | | | | | | | | | 1-11/32 | 68 | 48 - | | | | | | | | | | | | | | - | 79 | KAL
0-2-69 | 97 | Floor decking | 1,9,
11 | * Density in lb/ft3 #### TABLE 41 FLOOR COVERINGS -- TAPPING MACHINE DATA (Concl) #### Sound Pressure Levels from Tapping Machine | Thickness
(inches) | 110 | 125 Hz | 160 Hz | 200 Hz | 250 Pz | 315 Hz | 400' Hz | 50¢ Hz | 630 Hz | \$00 Hz | 1000 Hz | 1250 Hz | 1600 Hz | 2000 Hz | 2500 Hz | 3150 Bz | 4000 Hz | Weight
1h/ft2 | Lab. | Co. | | Foot. | |-----------------------|-----|--------|--|----------------------------------|--------|--------|---------|--------|--------|---------|---------|---------|---------|---------|------------|---------|---------|------------------|------|-----|------------------|-------| | 3/8-
3/4 | - | | 48" x 96" wood panel board under-
layment | | | | | | | | | | | | r - | | | 47 | - | 55 | Duraflaka floor | | | - | - | | Provides impact noise reduction | | | | | | | | | | | | | | | - | - | 143 | rCA Rubber floor | ing | | | | | | Floor mattings for cabs, tractor | | | | | | | | | | | ďa | | | - | | 12 | Airtex Flourite | 15 | #### FOOTNOTES FOR TABLE 41 #### PLOOR COVERINGS -- TAPPING MACHINE DATA - 1. Conforms to ISO-R-140-1960 (see Section V-3 under ASTM E492-73T). - 2, Temperature range: 60°F to 110°F. Relative Humitidy: 10 to 95 percent. Flame spread: 36. - INR = -2 for sound control in apartments, offices, motels, homes, etc. Bracketed number is for 100 Hz. - 4. Temperature range: 60°F to 100°F. Relative humidity: 10 to 95 percent. Flame apread: 46. - 5. INR o +2 for sound control in apartments, offices, motels, homes, etc. Bracketed number is for 100 Hz. - 6. INR +14, used with a variety of flooring materials to deaden impact noise, - 7. INR = +6. Bracketsd number is for 100 Hz. - 8. INR -1. Bracksted number is for 100 Hz. - 9. In accordance with FHA 750. - INR = +14. Temperature range: -20°F to 100°F. Relative Humidity range: 30 to 90 percent. Flame apread: Class D. - INR = +17. Temperature range: -20°F to 100°F. Relative humidity range: 30 to 90 percent. Flame apread: Class D. Density of Homasote = 25 lb/ft³. - 12, INR = +8. Bracketed numbers are for octave bands: 75 150, 150 300, 300 600, 600-1200, 1700-2400, 2400-4800 Hz, respectively. - 13. INR = +19. Bracketed numbers are for octave pands: 75 150, 150 300, 300 600, 600 1200, 1200 2400, 2400 4800 Hz respectively. Temperature
range: -20°F to 100°F. Relative humidity: 30 to 90 percent. Flame spread: Class D. - 14. INR = +8. Bracketed numbers are for octave band centered frequencies of 75 150, 150 300, 300 600, 600 1200 Hz, respectively. Temperature range: -20°F to 100°F. Relative humidity range: 30 to 90 percent. Flame spread; Class D. - 15. A composite assembly of Airtex Floor tile Number 125, two layers of 0.1" thick Airtex accoustic mass 550 asparated by a 1/4" layer of Airtex Polycor foam 6152 and a wear surface of supported vinyl resulted in transmission reduction of 40 dB or more above 500 Hz in the laboratory test. The matting has temperature range up to 180°F and is self-extinguishing. See Table 42 for Airtex transmission loss data. ### TABLE 42 FLOOR COVERINGS -- TRANSMISSION LOSS DATA Floor coverings and the sound transmission losses of floor systems that include the mentioned floor coverings are listed. It should be emphasized that the transmission losses shown are for the complete assembly and not for the products alone. The products are, however, effective sound barriers and have considerable effects on sound attenuation provided by the assemblies. The companies (by numbers shown in Section II) with products listed in Table 42 are: 12, 97. #### GLOSSARY A platform or a surface covering the structural framework to form a floor Floor Deck: A hydrated sulphate of calcium ${\rm CaSO_4\cdot 2H_2O}$. Used for making boards, plaster of Paris, etc. Gypsum: Wood Joist: Parallel timbers that support the planks of a floor #### TABLE 42 FLOOR COVERINGS -- TRANSMISSION LOSS DATA #### Transmission Loss (decibels) | | | | | | | run | nmr | SPT | on . | LON! | 3 (1 | uec | the | T B) | | | | | | | | | | |--------------------|-----|--------|----|---------------------------------|-----------------------------------|--|--------------------------------|------------------------------|--|---------------------------|-----------------------|----------------------------|------------------|-----------------|---------|---------|---------|----------------|-------------------|-----|-----|---------------------------|--------------| | Thickness (inches) | STC | 125 Hz | | | | 315 152 | ZH C07 | 200 Hz | 2H 0E9 | 800 Hz | 100f Hz | 1250 Hz | 1600 Hz | 2000 Hz | 2500 Hz | 3150 Hz | 4000 Hz | Weigh
lb/ft | ž Lal | ·. | co. | Product | Foot- | | 15/32 | 42 | 19 | [2 | Ho
P1 | mas
ywo
x 4 | jois
ote
od,
and
[42 | on
car
d 4 | pet
X | 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | yer
. P | ad c | EW | 5/8
5 8 | ize | | 3) | 64 | - | KA
1216
64 | -1- | 97 | Homesore
Carpet Board | 1,2 | | 15/32 | 48 | 36 | 27 | pl
re
bo
12 | sil
ard
-1/ | jois
od,
ien c
2" 1
38 | Hon
ch
loc
ong | 1486
1486
1486
1486 | te,
uls
eil
8 | vi
ing
vid | th
pr | Gy [
Ine | oad
Sau
Lw | ,
(1)
(8) | 67 | 71 | 73 | - | KA1
L790
69 | -7- | 97 | Homnsoto
Carpet Board | 3,4 | | 1-11/32 | 4.0 | | 40 | F1
Re
Gy: | od
cor
sil:
psur
le : | cei
Jois
dec
Lent
n bo
in 1 | kin
ch
ard | loo
g
ann
ce
4" | car
als
ili
thi | pot
vi
ng;
ckn | an
th
al
oss | тив
1/2
.80 | av. | o
nil | • | 71 | 72 | | KAI
858- | .3- | 97 | Floor Decking | 3,5 , | | | | | | Fli
Win
Hor
and
5/8 | oor
ro j
masc
i pa | cei
ois
ce :
id, : | lin
t f
flo
res
um | loo
or
ili
boa | ane
r w
dec
ent
rd | l li
ith
king
ch | 2-1
1-
g. | /2 '
11 /
car
cls | X
32'
pet | β';
: | | | | _ | KAL
790-3 | | -, | Номивоте | 3,5, | | 1-11/32 | 49 | 34 | JI | F10 | par | celi
2" I
and | lin
Ham | g ра | ana | 1 12
flor | 2-1 | /2 ' | n 8 | ı'; | 68 | 12 | 76 | • | 69 | | 97 | Floor Dacking | 6 | | 1-11/32 | 50 | 41 | | Ewo
)
Lan | sen
39
sina | 1018 | BCB
] 4 | 47
BUDT | [52
 |] <u> </u> | 53
V£1 | (56
nv1 |]
bo | 62
nde | - | 1 | 68 | - | 370-1
60 | 3- | 97 | Homasote
Floor Decking | 1,2, | | | - | 22 | | chi
bon
Mas | ori
ded | 152
ne f
00 d
28 3 | 100
lead | xibi
o" (| lo i | foan | ı wi | nic
.ex | h i | ous | t Lc | | 51 | - | I ATL | 1 | 12 | Airtux Plourite | 7 | | | | | 1 | ACI
COL
S I | n of
ustf
seps
tex | Plu
40
c M
rate
Pol | asa
ad
ydo | 55
by
r f | ckn
O d
a 1
oam | ess
cad
/4"
61: | or
ru
la
52 | A1
bbs
yer
clo | rti
rti
ol | hat
L ce | : | | | | | | | | | | | - | 27 3 | Ì | op' | lay | 6 3 | of. | aup) | por | ted | vi: | ny 1 | ٠ | | 5 5 | 3 : | 51 | • | I ATL | 1 | 2 | Airtex flooring | 7 | #### FOOTNOTES FOR TABLE 42 #### FLOOR COVERINGS -- TRANSMISSION LOSS DATA - 1. Tested and evaluated according to ASTM E90-61T. - 2. Bracketed numbers correspond to 175, 350, 700, 1400, and 2800 Hz respectively. - 3. Tested and evaluated according to ASTM E90-66T. - 4. Used with a variety of flooring materials to deaden impact noise and for floor comfort. - 5. Temperature range: -20° to 100°F; flame apread; Class D; relative humidity range: 30% to 90% - Used in homes, gardens, and low-rise apartments; motels, nursing homes as subflooring and sound deadening resilient carpet pad. - Temperature range; to 180°F; relative hamidity range; "normal"; Flame spread; self extinguishing; frequency data rounded off to nearest whole number. Used in floors of cabs, tractors, construction. ### TABLE 43 PIPE LAGGINGS Pipe laggings and the acoustic properties of some of the products are listed. Pipe laggings can effectively reduce the ambient noise levels if the pipe and fluid generated noise is of high amplitude compared to the other ambient noise. Pipe laggings consist essentially of a decoupling element and a "floating" barrier where the decoupling element stops the pipe vibrations from driving the barrier material. Thermal properties and ease of application are the important criteria in the selection of the most suitable lagging. The table provides necessary information about most of the listed products. Figure 43 shows a typical application of pipe lagging where duct tapes are used to attach the lagging to the pipe. The table is subdivided into four parts because the acoustic information provided by the manufacturers was not of the same type: - 43A Transmission loss - 43B Sound pressure level reduction - 43C Noise reduction - 43D No data The companies (by numbers shown in Section II) with products listed in Table 43 are: 2, 36, 45, 57, 72, 79, 127, 156, 157. #### CAUTION - VALUES PRESENTED IN TABLE 43B ARE SOUND PRESSURE LEVEL REDUCTIONS. SEE SECTION I-3.5 FOR EXPLANATION. - VALUES PRESENTED IN TABLE 43C ARE NOISE REDUCTIONS. SEE SECTION I-3.6 FOR EXPLANATION. ## SOUND-BARRIER PIPE TREATMENT Figure 43 Pipe Laggings for Noise Control ## GLOSSARY Lagging: Strip or sheet of nonconducting material wrapped around a pipe to reduce sound (and heat) transmission Refractory: Able to withstand high temperatures. Heat resistant TABLE 43A FIFE LAGGINGS -- TRANSMISSION LOSS | | | | | | τ | ran | em1 | ssi | on 1 | Los | s (| dec. | ibe | ls) | | | | | | | | | |-----------------------|-----|--------|--------|---------------------------|---------------------|--------------------|------------------|--------------------|-------------|---------------------|-------------------|-----------------|------------|-----------|-------------|---------|---------|------------------------------|---------|----------|--|---------------| | Thickness
(inches) | STC | 125 Hz | 160 Hz | 200 Hz | 250 Hz | 315 Hz | 2H C07 | ZH 00S | 630 Hz | 800 Hz | 1000 Hz | 1250 Hz | 7H 0091 | 2300 Hz | 2500 Hz | 3150 Hz | 7H 0007 | Weight
lb/ft ² | Lab. | Co. | Product | Foot-
note | | 1 | _ | 18 | | er | (30 | of v | : 50 | 5"): | ; 26 | g | ١. ١ | at i | on
nin | lay
um | - | | 40 | .75 | CT | 157 | Weather proof
ecoustical pipe
valve covering |
- &
5 | | 1 | | 22 | | Mad
er
and | | of v | ibi
56
dan | uhtt | ion
; 26 | in:
i ga
laya | F | ati
alur | on
Aln | lay
um | - | | ,, | , | CIT. | 157 | Weather proof | | | • | · | 22 | | | er | (36 | "× | : 56 | ۳). | 26 | ĢΑ | alu | on
imi- | 35 | | | 43 | I | CT | 157 | Weatherproof | | | 1 | • | 24 | | | 26 | d m | 400 | 29 | milit | | 35 | ,61 | | 40 | | | 46 | 2 | CT | 157 | and valve covering Weatherproof | 5 | | 1 | | | | Mad
Lay
num | le o
'er
n an | Ε ν
(36
d m | ibr
×
ass | at 1
56
da | mp1 | ing
26 | ola
6A
lay | etic
, al | n
umi | L- | | | | 3 | СТ | 157 | acoustical pipe
and
valve covering | 5 | | 1 | | | | Mad
lay
num | or | (36 | " x | 56 | ۳), | 26 | бΑ, | , al | n
umi | l- | | | | 5 | СТ | 157 | Weatherproof
acoustical pipe
and
valve covering | :
5 | | 1 | - | | | lay | er | f v
(36
id п | ۳, | < 5€ | 5"), | , 26 | 64 | . a | n
Lum | i- | | | | 5.6 | τ₽93-94 | 157 | Weatherproof
acoustical pipe
and
valve covering | 5 | | 1 | • | | | 143 | /ar | f v
(36
id m | ۳, | c 56 | S"), | , 26 | 64 | , a | on
Lum | 1- | | | | 6 | CT | 157 | Weatherproof
acoustical pipe
valve covering | a & | | 1-1/2 | | 11 1 | | 14"
.04
supj | | | | | | | | | | | 55 | 57 | 57 | .5 | RAL | 45
72 | Coustifilm 5 | 1,2,
3,4 | | 1-1/2 | | 15 1 | | 14"
.04 | fil
in
plic | er
t | la
ilel
n | 88 .
k C
50" | and
ous | ifi
20 |) 1
lm-
/d. | дув
5;
го | rs
11s | of | | | | 1 | RAL | 45
72 | Coustifilm 5 | 1,2,3,4 | | 1-1/2 | | 19 2 | | 1½"
of
supp
21 2 | 04
11 | in. | n : | 11cl
50" | x C | oust
30) | lf
d | ilm
rol | 5;
18. | | 53 (| i5 | 65 | 1.5 | RAL | 45
72 | Constifilm 5 | 1,2, |
TABLE 43B PIPE LAGGINGS -- SOUND PRESSURE LEVEL REDUCTION Sound Pressure Level Reduction | Thickness (inches) | STC | 125 EE | 160 Hz | 200 Hz | 250 Hz: | 315 RE | 7H C07 | 500 Hz | 2H 0E9 | 800 Hz | 1000 Hz | 1250 Fz | 1600 Ez | 2000 Hz | 2500 Hz | 3150 Hz | 4000 Ez | Weight
16/ft ³ | Leb. | Ço. | Product | Poot-
note | |--------------------|-----|--------|--------|-------------------------|-------------------|-------------------|--------------|---------------------|----------------------------|--------------|-------------------------|-----------------------------|-----------|------------|-------------------|---------|---------|------------------------------|-----------------|-----|-----------------------------|---------------| | 1-1/2 | | o | ٥ | hea
ere
Ava
up | t r
d w
ila | es:
it:
bl: | laca
1 .(| ពេក
116
1 (1) | org
" cc
11 a
36" | tan:
Itai | ic
uga
nda
ng. | oger
bind
ted
rd p | ier
nl | umi
e s | ov-
num
ize | 5 | . 21 | 10 | RAL.
NR72-30 | 57 | Epitherm 1200 | 8, | | 1-1/2 | • | Ū | U | Min
hea
ere | era
t r | l f | ibe
sta | r (| olen
org | dec
ani | t to
le l | og et | he
lar | r w | ich
ov- | | , 31 | | RAL | • | Epitholia 1200 | | | 2 | - | 4 | ۵ | 5 | 5 | 7 | 10 | 16 | 17 | 17 | 18 | 25 | 24 | 30 | 38 | 27 | 31 | 10 | NR72-31 | 57 | Epitherm 1200 | 8, | | | | | | pol
fal | yet
C. | hy l | ene | LVA! | ombi
Llak | nec
le | tw b
in | ted
th
4 | le:
× | ad
8 ' | Еy | | | | | | K-13 Acoustica | 10, | | • | - | | | [7] | | £ | 16] | | į | 19] | ł | (| 32 | 1 | | (36 |] | 2.5 | CT | 127 | blankets | | | | | | | | vet | hla | ne
Lr | C 01 | bin'x | ed
g i | wit
sh | a le
cot: | дd
1. | fe. | | | _ | | | | K-13 Acquecical | 10, | | - | • | | | [6] | | 1 | 20] | | [| 23] | | ί | 39 |] | 1 | [42 |] | • | CT | 127 | Blankets | 11 | | | | | | K-1:
nesi | 3,
1 | ¢wo
n 4 | la
× | yer
8 | sh | eut | а. | | | | | | | _ | CT | 127 | K-13 Acoustical
Blankets | . 10 | | - | • | | | [5] | | ſ | ė J | | ſ | 9) | | [| 12 | } | 1 | 15 | 1 | | | +67 | 4-4 | | | | | | | K-1: | 3,
5 1 | two
n 4 | , la | ye: | a,
sh | 1,5 | 5" (
:#. | tota | 1 | chi | ck- | | | | | | K-13 Acquatical | | | - | - | | | [5] | | | [1 | Oj | | [12 | 1 | | [19 | 9] | | ľ | 21] | - | CT | 127 | Blankets | 10 | | | | | | K-1: | 3.
* i | two
11 4 | , la | yer
8 | B) | 2.5
aot |)'' (| ota | 1 | t hi | ck- | | | | | | K-13 Acoustical | | | • | - | | | [5] | | | [1 | נס | | [15 |] | | 22 | 2) | | [| 30 J | - | CT | 127 | Blankets | 10 | TABLE 43C PIPE LAGGINGS -- NOISE REDUCTION | _ | | | | Nois | 10. X | edu | cti | On (| deci | (bels) | | | | | | | | | | |-----------------------|-----|--------|--------|----------------------------------|------------------|-----------------|-------------------|-------------------------|-----------|--------------------|------|---------|---------|---------|-----------------|----------------|-----|--------------------------------------|----------------| | Thickness
(inches) | STC | 125 Hz | 160 Hz | 200 Hz
250 Hz | 315 ftz | 400 Hz | 500 Hz | 630 Hz
800 Hz | | 1250 Hz
1600 Hz | | 2500 Bz | 3150 Hz | ZH 2007 | Weight
16/ft | | Ça, | Product | Foot-
note | | 1 | • | 0 | 0 | roll:
0 0 | ied
ar
0 | id a | 1 25
shee
0 | 0 5 | .83
5 | 16/ft
8 10 | | 10 | 16 | 22 | - | CT | 2 | Thermazip | 6,
7,8 | | 1 | - | 0 | 0 | form
and
0 0 | sup
shee | pl:
ets
2 | Lad
S | acket
in 25
10 12 | 12 | 17 17 | | 17 | 21 | 28 | .5 | CT | 2 | Thermazip | 6;
7;8 | | 1 | - | 1 | ٥ | foam
and s
2 4 | sup
ihee
5 | pli
te
5 | .ed
8 | | ft.
17 | roll
22 22 | | 24 | 29 | 31 | 1.0 | СТ | 2 | Thermaxip | 6
7,8 | | 2 | - | 0 | 0 | 22 mi
auppl
secti
sheet | | | | | | | 17 | 18 | 21 | 27 | • | СТ | 2 | Thermazip | 6
7.8 | | 2 | • | 0 | 2 | Refacted 1 | vinj
10 | 12 | 20 V | er
21 25 | 20 | 32 29 | 32 | | 32 | 37 | 9 | RAL
NR72•19 | 79 | Forty Eight
MF pips
insulation | 8,12,
13 | | 2 | - | 0 | 3 | Refra | 20V | ir
L4 I | 13 2 | 6 26 | 20 | 33 31 | 32 | 30 : | 32 | 37 | 9 | RAL
NR72-11 | 79 | Forty
Bight MF
insulation | 8
12,13 | | 3 | - | .5 | 3 | Refrac
lead v
2 8 | iny
13 | 12
12 | 15 | r
25 25 | 21 | 35 29 | 33 | | 31 | 36 | 9 | RAL
NR72-12 | 79 | Forty
Right MF
insulation | 8,12
13,14 | | 3 | - | 0 | 5 | 1e4d o | 14 | 14 | 13 | 25 28 | 22 | 36 30 | 33 | 31 | 32 | 38 | 9 | RAL
NR72-13 | 79 | Forty
Might MF
insulation | 8,12,
13,14 | | 4 | - | 0 | 4 | Refractions
10nd | viny
12 | /l c
13 | 12 | r
27 27 | 23 | 36 30 | | 30 | 32 | 37 | 9 | RAL
NR72-14 | 79 | Forty
Eight HF
insulation | 8,12,
13,14 | | 4 | - | 0 | 3 | 4" th
lead
0 8 | ving
11 | y1 (
14 | 17 | 27 27 | 7 22 | 36 3 | 1 34 | 30 | 33 | 38 | 9 | RAL
NR72-15 | 79 | Forty Eight
MF pipe
insulation | 8,12,
13,14 | | 1 to | - | .5 | 0 | segme
pipe
0 5 | nta | ula | mat
E101 | faced | i mi | neral | 4 17 | 15 | 15 | 18 | 9 | - | 79 | Forty Eight
MF pipe
Insulation | 8,12,
13,14 | ## TABLE 43C PIPE LAGGINGS -- NOISE REDUCTION (Concl) ## Noise Reduction (decibels) | Thickness
(inches) | STC | 125 Bz | 160 Hz | | 250 Hz | 315 Hz | 7H 907 | 500 82 | 2H 0E9 | ZH 008 | 1000 Hz | 1250 Hz | 1600 Hz | 2000 Hz | 2500 32 | 3150 142 | 4000 Hz | Weight
lb/ft ³ | Lab. | Co. | Product | Foot-
note | |-----------------------|-----|--------|--------|----------|--------|-------------------|--------|--------|------------|-----------|-------------|---------|---------|---------|---------|----------|---------|------------------------------|------|------|--------------------------------------|-------------------| | 1 to | | 4 | 2 | #6 | gmot | 1 1
1 1
5 | l m | At : | fac
nsu | ed
lat | fel
ion | ted | | 33 | 28 | 31 | 32 | 9 | • | 79 | Porty Eight
MF pipe
Insulation | 12,13,
14,15 | | 1 ₄ to | - | 3 | 0 | na
mi | ginor | la
tal
il p | ip. | 1 L | fac
18u | ed
Lat | fel
ion | ted | | 22 | 22 | 23 | 26 | 9 | | 79 , | Forty Right
MF pipe
Insulation | 12,13,
14,15 | | 1 ₄ to | • | 1 | 2 | 80 | men | 1a
1 p
2 | . m/ | 1 | 18u | lat | fol:
Lon | ted | | 26 | 24 | 27 | 29 | 9 | - | 79 | Forty Eight
MF pipe
Insulation | 12 .13,
14 .15 | #### TABLE 43D PIPE LAGGINGS -- NO DATA #### Transmission Loss (decibels) | | | | transmission form (necideta) | | | | | |-----------------------|-----|--------|---|---|------|-----|--| | Thickness
(inches) | STC | 125 Et | | | Lab. | Co. | Foot-
Product note | | | | | Combines SFB-I barrier with a heavy aluminum jacket using a special quick lock joint and clamp to provide jacket insulation 4", 6", 8", 10", 12", custom sizes available. | • | CT | 156 | Soun Jac
for pipe
trestment
SFJ-I (11") | | | • | | Combines SFB-I barrier with a heavy aluminum jacket using a special quick lock joint and clamp to provide jacket insulation 4", 6", 8", 10" 12", custom sizes available. | - | CT | 156 | Soun Jac
pipe treatment
SFJ-I-90° (ELLS) | | - | • | | Combines SFB-I barrier with a heavy aluminum jacket using a special quick lock joint and clamp to provide jacket insulation 4", 5", 8", 10", 12", custom sizes available. | - | CT | 156 | Soun Jac
pips treatment
SPJ-T (Tees) | | | - | | fibergles or rock wool with sheeld jacket. | - | cr | 36 | Shoald | ## FOOTNOTES FOR TABLE 43A, 43B, 43C, 43D ### PIPE LAGGINGS - 1. Installation through use of knife or scissors and pressure sensitive tape. - 2. Tested and evaluated according to ASTM E90-70. - 3. Tested and evaluated according to ASTM E413-70T. - 4. Temperature range: -50°F to 450°F, self-extinguishing per 191 FRD. Spec. method 5903. - 5. Service temperature: -80 °F to 450 °F, nonburning, self-extinguishing, waterproof. Used to attenuate the sound of oil or gas pipe lines. - 6. Temperature range: 0 $^{\circ}\text{-150}\,^{\circ}\text{F}_{*}$ relative humidity range: 0 to 100 %. - 7. May be installed with silicon resilient tube, pressure sensitive tape 2" by 3/4" wide. - 8. Tested and evaluated according to ASTM 2336-71. - 9. Installed in similar manner to other rigid type pipe insulations. Good alkaline resistance. - 10. Temperature less than 200°F. Use insulator between pipe and blankets. Bracketed numbers are for the old octave bands: 150-300, 300-600, 600-1200, 1200-2400, and 2400-4800 Hz. - 11. Lead multilayer test. - 12. Good up to 1200 P, asbestos free - 13. Installation procedure: wrap around pipe covering, grooved to fit sizes up to 36". - 14. Can be used on 14" flanged pipes also. - 15. Tested and evaluated according to ASTM 2336-67T. ## TABLE 44 OTHER MATERIALS Products which are not routinely used as sound control materials, but are ones that have some special properties which make them suitable for use in certain applications, are listed. These products perform as sound barriers, sound absorbers, or both in some cases. The description and the applications shown in the table should provide enough information to determine the potential of the product in any specific application. The companies (by numbers shown in Section II) with products listed in Table 44 are: 7, 12, 22, 32, 37, 45, 50, 52, 55, 67, 72, 76, 80, 87, 90, 91, 94, 103, 113, 133, 134, 150, 174, 177, 180, 188. #### TABLE 44 OTHER MATERIALS | Description | Application | Company. | Product | |---
---|----------|--------------------------------------| | Extruded UHM polymer. Self-lubri-
cating. Noise-deadening property. | Conveyor guide belts. | 174 | Ultra-Wear Rail | | Aluminum 6 copper material. Temper-
ature range to 900°F. Relative
humidity range: 0-100%. Flame
apread: none. | Attenuation for high-temperaturapplication. | re 37 | A-LUM-O | | #9306 30-mesh ground rubber when mixed with concrete provides additional sound attenuation as compared to conventional concrete mix. | Wall construction. | 177 | Rubber | | Expanded closed-cell foam neoprone rubber. Thickness: from 1/8" to 1-1/2". | Reduces noise when it aliminates metal to metal contact, | 12 | Lockcell Neoprene | | Open-cell synthetic foam rubber with an integral skin on top & bottom surfaces. | Reduces noise when it elimi-
nates metal to metal contact. | 12 | Sponge Rubber | | Rubber linings. Can be applied on matal, wood, concrete, fabric, or cured rubber. Can be pressure-bonded using cement. | Noise abatement & abrasion resistance. Used in convayors, hoppers, etc. | 87 | Acousta Lining | | Open-cell sponge sheets, soft medium or hard. Thickness range: 1/4" to 1°. Widtha: 36° & 48°. | Noise damping in machinery & enclosures. | 91 | Herco Sponge Rubber
Sheets | | Sintered stainless steel made from 8μ to 4 mils diameter fibers. | High temperature sound absorption. Also air tool exaust noise reduction. | 32 | Felt Metal
Fiber Metal | | Any combination of sheet metals
(i.e., electro-galvanized steel,
stainless, or aluminum) for con-
strained layer damping, elastomeric
bond 10 to 20% of overall thicknesses.
Temp. range to 300°F. Nonflammable. | Hoppers, conveyors, tote boxes, office machines, motor mounts, vibration control components, etc. | 180 | Mute-meta 1 | | Steel sheet perforated with thousands of tiny holes placed over 6" layers of fiborglas. | Steel soundproof enclosures,
Exhaust silencers, intake
silencers. | 50 | Perforated
Stainless Steel Sheets | | Glass ceramic meterial in honeycomb
or matrix geometry. Available on
cost-plus basis. Volume density
varies from 20 1b/fc3 to 40 1b/fc3.
Survives thermal shocks. | Sound absorption at temperatures to 2000°F, | 133 | CER-VIT | | Ultrahigh molecular weight, high-
density polyethylene, 35-mesh product.
.939 gram/cc. | Noise reduction in bearings, goars, slide rails, etc. | 174 | LS 501 | | Acoustical plaster. Available in 2.25 cubic feet sacks. | Interior brown cost for machine application. Provides sound absorption to the panel or wall. | 113 | Hy Lo | | Refibered and recycled wood-based celluloric loose-fill type insulation available in 20 lb bags. Temperature range: -50° to 180°F. UL-listed flame sprgad: 35. Density: 2.5 lb/ft². | For pneumatic installation into wall & ceiling cavities for thermal & accustical insulation. | 103 | Home Comfort Insulation | #### TABLE 44 OTHER MATERIALS (Coned) | Description | Application | Соприлу | Product | |--|--|----------|--| | Shoot lead bonded to other motal aheets (aluminum, stainlass, etc.) | Barrier panels, doors, pipe
coverings, unclusates, etc.
in multiple layers, can
achieve STC 65. | 180 | Lead-Veneermetal | | Foam with oil- & grease-resistant
PVC facing. Available in 1/2" & 1"
thicknesses. Can be cut or formed
into different sizes and shapes. | Tough, durable absorber for interiors of vehicles, railroad cars, etc. | 45
72 | Cousti-Headliner | | Foam with perforated vinyl covering.
Available in 54" wide, 60' long rolls.
Various thicknesses available. Pen-
sity: 2 lb/fe². Temporature range:
-40° to 200°F. Resistant to flames. | Cab liner for on- 6 off-road
vehicles. Has NRC of .50 for
1" chickness. | 150 | Perforated Vinyl/Pyrall | | Lightweight concrete. Incombustible. Temporature range: to 1100°C. Supplied in crude tons or sold in cubic feet. | Sound absorption with thermal insulation, | 22 | Audex Vermiculite | | Standard roll size 48"x100'.
Different roll & file thicknesses
available. | Sound control in apartments, hotels, homes, etc. Provides sound attenuation & impact insulation. | 52 | Dodge 1462 Sound
Deadening Cork & Tiles | | Supplied in rolls or skeins. Fine, medium, and coarse fibers with diameters ranging from .0006" to .0015" available. | Sound absorption. Also fil-
tering of liquids & air.
Provides thermal insulation. | 80 | Glass Fiber & Wool | | Specially-coated heavyweight cloth. Thickness: 3/10". | Sound barrier. Also absorbs sound. | 94 | Ashestos Cloth FH-2829F | | Core stock, 48"x96" size, Custom sizes available, | Furniture core stock. Also used in wall panets, partitions cabinets, etc. | 55 | Duraflake | | Fiber polyester. Temperature range: to 300 F. In rolls .040" thick. 11.6 lb/ft2. | Noise reduction by sound damping. | 188 | Westex II | | Fiber polyester 3/4" thick, | Noise reduction by sound damping. | 188 | FIL-28 | | Fiber nomex. Supplied in rolls 72" wide, .08" thick. | Sound-absorbing curtain requiring flame resistance. | 188 | Westex FIL-95 | | Fiber polyester. Supplied in rolls 70" wide, .06" thick. | Sound-absorbing curtains, portable room dividers, accustical panels. | 188 | Westex FIL-44 | | 1" thick pink foam rubber bonded to
outer 1/8" layer of perforated gray
foam rubber. Available in 3/8" &
1/8" thicknesses also. | Sound absorption. NRC for 1-1/8" thick pad is .52. | 67 | Anechoic Pad | | Aluminum & stainless steel sheets. | Sound control. | 134 | Sound Control
Perforated Material | | Perforated materials, steel, aluminum, plastic, etc. | Sound control. | 90 | Perforated Materials | | Perforated sheet bonded to aluminum honeycomb. | Noise cowls, air inlets
for jet aircraft engines. | 50 | Perforated aluminum sheets | ## TABLE 44 OTHER MATERIALS (Concl) | Description | Application | Company | Product | | |--|----------------------|---------|-----------------------|--| | Silicone earmold. Putty can be molded quickly in the shape of human ear cavity using a non-sticky harderner. | Hearing protection. | 7 | Adcomold soft plastic | | | Ceramic tiles in various colors and | On walls and floors. | 76 | Ceramic tile | | ## TABLE 45 GASKETS, SEALANTS, AND SEALING TAPES Products which are very essential to the performances of sound barrier systems and materials are listed. A very good sound barrier system would be rendered ineffective by a small noise leak. The products listed in the table can be used in a variety of ways to stop such noise leaks. Meaningful acoustic information cannot be provided for such products as the performance depends upon the manner and the place of application. The companies (by numbers shown in Section II) with products listed in Table 45 are: 12, 26, 33, 45, 72, 130, 140, 157, 170. ## TABLE 45 GASKETS, SEALANTS, AND SEALING TAPES | Description | Application | Соправу | Product | |---|--|----------|--| | Gasketing is applied with 3M 4693 adhesive to steel, aluminum, a wood in cove between door frame 6 stop. | Improves transmission losses through door openings, windows & machinery enclosures. | 45
72 | Cousti-Gasket | | Supplied in 5-gallon drums & quart
cartridges. Temperature range: -40°
to 158°F. | For dry-wall construction & cracks in ceiling & floor. Also around protrusions through wall | | Tremco Acoustical
Sealant | | Any quantity & size available to suit a particular application. Temperature range: -67° to 450°F. | For door seals & gasketing. | 140 | Pneuma-Seal | | #9600 Sur-round surface-mounted threshold seal. Various sizes. | For door & threshold sealing against sound, light, & sir. | 33 | #9600 Sur-round
Threshold Seal | | #9602 half-mortised threshold seal.
Available in various sizes. | For door & threshold sealing against sound, light, & air, | 33 | #9602 Sur-round
Threshold Susl | | #9606 Sur-round adjustable door seal, 1/4" adjustable range. | To be applied to existing door
stop as a scalant against
sound, light, & weather. | 33 | 99606 Sur-round
Adjustable Door Seal | | #9610 half-mortised threshold seal, quallable in various sizes. | For door and threshold scaling against sound, light, & air. | 33 | #9610 Threshold Seal | | #9501 full-mortised threshold seal,
available in various sizes. Does
not interfere with kick or armor
plates. | Provides positive sealing for control of sound, light, air, & weather. | 33 | 09601 Sur-round
Threshold Seal | | #9603 Sur-round door seal cannot be used with existing stop or rebbeted frames. 3/8" adjustable range. | Sealant against sound, light, air, & weather in door threshold applications, | 33 | #9603 Sur-round
Adjustable Door Seal | | Acoustic tape 1" & 2" widths, .008" thick. Temperature range to 250°F. Relative humidity range: 0 to 100%, nonburning. | Sealing cracks & holes against sound leakage. | 12 | Airtex Acoustic Tape
\$505 | | Acoustic tape 1" & 2" widths, .016" thick. Wider rolls by special order. | Scaling cracks & holes against sound leakage. | 12 | Airtex Acoustic Taps
#510 | | Acoustic tape, temperature range: -65° to 266°F, Chemicals, moisture, & fungus resistant. | Weatherstrip & seal
for sound, vibration, dust, light, etc. | 26 | Series 5A Arlon
Polyurethane Tape | | Foam construction tape. Temperature range: -20° to 200°F. Resists absorption of water & other fluids. | Applied under & over plates,
behind dry-wall or plaster, to
fill cracks & isolate sound
between walls; replaces bead
caulking. | 26 | Series 6A-V8 Arlon
Foam Construction Tape | | Closed-call sponge gasketing scalant tape. Available with pressure-sensitive backing. Available heavy-duty, custom-made, die-cut to size. | Prevent sound leaks & dampen vibration. | 157 | Sponge Gasketing Tape | | Separate spring-activated hinged
leaves for each door. 7' & 8'
heights only. | Positive scaling at the meeting stiles of pairs of doors. Applied to inside. | 33 | #9611 Automatic Inter-
locking Astrogal | TABLE 45 GASKETS, SEALANTS, AND SEALING TAPES (Concl) | Description | Application | Сопрапу | Product | | | |--|--|---------|---|--|--| | #9605 overlapping Astragel, applied
to active leaf on the outside, does
not interfere with flush bolts. | Provides positive scaling at
the meeting stiles of pairs
of doors. | 33 | 49605 Overlapping
Astragel | | | | #9604 T-type astragel applied to
the leading edge of inactive leaf.
Stop & seal unit on inside for
security. | Provides positive scaling at
the meeting stiles of pairs
of doors. | 33 | ∉9604 T-type Astragel | | | | Sealants. | Used in wall partition system | 130 | Norseal | | | | Scalant 1/8" to 1/2" thickness.
Temperature range: -30° to 160°F.
Humidity: 0 to 100%. Excellent
resistance to weather 6 oxidation. | Used to stop perimeter sound
looks in wall partition
systems. | 130 | Noracal V730 | | | | PVC foam sealant. Available in 1/16" to 3/8" thickness, 1/4" to 54" rolls. Temperature range: -20° to 160°F. Humidity: 0 to 100%. Resists weather & oxidation. | Used to stop perimeter sound leaks in wall partition systems. | 130 | Norseml V780 | | | | 2.5 mil.cross-laminated polyethylene. | Applied to foam surfaces to protect them from wear, dirt, oil, moisture etc. | 12 | Protective Conting 767 | | | | 1.0 mil, urethane. | Protects foam from liquids and dirt. | 12 | Protective Coating 762 | | | | 1.5 mil, urethane, | Protects foam from liquids and dire. | 12 | Protective Conting 763 | | | | 4.0 mil. cross-laminated polyethylene sheating. 1/2" thickness. Extremely good puncture & tear resistance. | Enclosures & environments where foam may be contaminated | 12 | Protective Film 768 | | | | Cross-laminated polyethylene sheeting.
2" thickness. Extremely good puncture
& tear resistance. | Enclosures & environments where foam may be contaminated. | 12 | Protective Film 768 | | | | Pressure-sensitive adhesives. | Adhesives for mounting foam materials | 12 | 9415, 9417, 9419, 9420,
9421, 9430, & 9431 | | | | Foam tapes. | Vibration isolation | 12 | Foam Tapes | | | ## TABLE 46 SPECIAL APPLICATION PRODUCTS Miscellaneous products, their description, and application are listed. All products listed have the potential to reduce noise, but they have very specific areas of application and are therefore not presented in the preceding tables. The description and the application of each product provides sufficient information to allow the user to decide whether the product is suitable for the intended use, in which case further information can be obtained from the manufacturer. The companies (by numbers shown in Section II) with products listed in Table 46 are: 8, 15, 19, 20, 39, 46, 55, 64, 106, 109, 157, 158, 193. #### TABLE 46 SPECIAL APPLICATION PRODUCTS | Description | Application | Company | Product | |---|--|-------------|---------------------------------------| | Available in nominal sizes of $2^{\circ} \times 2^{\circ}$ or $4^{\circ} \times 4^{\circ}$. Thickness 1-3/16". Weight: 1.7 lb/ft ² . | As decorative, sound-absorbing
fire-resistant ceilings aboard
ships NRC of .70 for Pounting | , 109
7. | Marine Acoustic Unit | | Fiberglas material. Size: 2' x 3'
Other sizes up to 5' long. Density:
3 lb/ft ³ . Thickness range: 3/4" to 2' | Lightweight marine insulation. | 109 | J-M Hullboard | | One or more cylinders attached at right angles to stack with outside and closed. | Placed in stocks after the fans. Reduced noise radiation from stacks into the surroundineighborhood. | 64
18 | Sound Attenuator for Stacks | | Seal edges of doors and panels to prevent accustic leaks. | Miscellaneous seals for doors, windows, panels, etc. | 193 | Zero Compresso-matic | | Wood particle board sound barrier material. Density: 45 to 50 lb/ft ³ . Sizes: 48" x 144" & 48" x 168". | For mobile home decking.
STC = 25. | 55 | Duraflake Mobildeck | | Chairs made from a variety of foam and upholstering materials. | Sound Absorption in music halls opers houses etc. | ı, 20 | Audicorium Chairs | | $4^{\prime\prime}$ vane with $1\frac{1}{2}$ lb. density fiberglas in 24 gauge galvanized steel, | Reduces duct noise | 158 | Souther Acoustic
type turning vane | | Door stops, latches, etc. for sound
barrier doors. The hardware design
is adjustable to compensate for door
usere, building settlement, and
sealing material compression. | Sound-insulating door systems. | 8 | Door Hardware | | Upholstered chairs provide sound absorption. | Auditoriums, theatres, etc. | 19 | Auditorium Seating | | Furring channel for walls. Applied horizontally against backing material. A section without a "contact" leg provides resiliency. | Wall construction. | 39 | Resiliant Furring
Channel | | Steel tube with sound-absorbent core material & helically wound, wear-rosistant steel liner. | Silencing screw machines. | 46 | Silent Stock Tubes | | Shoot material. Standard size: 22"x22"x3/32". | For leveling so that mounts & pads can be used, | 157 | Shim Stock Sheets | | Long-span corridor panels made from aluminum or steel with different perforation patterns. | Sound absorption can be obtained by placing mineral wool or fiberglass batt in the panels. | 15 | ALPRO Sigma Panela | | Calvanized steel, primed or finish-
painted. Available in 4' to 30'
lengths. Density range: 2 to
4 lb/ft², | Sound barrier for wall construction. | 106 | Type L21 Acoustiwall | # TABLE 47 GENERAL BUILDING MATERIALS AND FURNISHINGS Sound absorption data of some generic types of commonly used materials and furnishings are listed. This information will be useful in assessing or predicting the acoustical characteristic of a room or an area. TABLE 47 ### COEFFICIENTS OF GENERAL BUILDING MATERIALS AND FURNISHINGS Complete tables of coefficients of the various materials that normally constitute the interior finish of rooms may be found in the various books on architectural acoustics. The following short list will be useful in making simple calculations of the reverberation in rooms. | nacini in musing similar carematima is o | 110 10101110 | 1411011 111 1 | D. F. I. I. I. I. | | | | |--|--------------|---------------|-------------------|------------|---------|-----------------| | Materials | Coefficients | | | | | | | | 125 Hz | 250 llz | 500 Hz | zH 0001 | 2000 Hz | 4000 112 | | Brick, unglazed | .03 | .03 | .03 | 104 | .05 | .07 | | Brick, unglazed, painted | .01 | ,01 | .02 | .02 | .02 | .03 | | Carpet, heavy, on concrete | .02 | .06 | .14 | .37 | .60 | .65 | | Same, on 40 oz hairfelt or foam | 0.0 | | | • | | | | rubber | .08 | .24 | .57 | .69 | .71 | .73 | | Same, with impermeable latex
backing on 40 oz hairfelt or | | | | | | | | foam rubber | .08 | .27 | .39 | .34 | .48 | .63 | | Concrete Block, coarse | .36 | .44 | .31 | .29 | .39 | .25 | | Concrete Illock, painted | .10 | .05 | .06 | .07 | .09 | .08 | | Fabrica | | | , | *** | *** | 100 | | Light velour, 10 oz per sq yd, | | | | | | | | hung straight, in contact with wall | .03 | .04 | .11 | .17 | .24 | .35 | | Medium velour, 14 oz per są yd. | 0.7 | | 40 | | =0 | 4.0 | | draped to half area | .07 | .31 | .49 | .75 | .70 | .60 | | Heavy velour, 18 oz per sq yd,
draped to hulf area | .14 | .35 | .55 | .72 | -70 | .65 | | Floors | | , | , | | •,- | ,00 | | Concrete or terrazzo | .01 | .01 | ,015 | .02 | .02 | .02 | | Linoleum, asphalt, rubber or cork | | | | | | | | tile on concrete | .02 | .03 | .03 | .03 | .03 | .02 | | Wood | ,15
.04 | .11
.04 | .10
.07 | .07
.06 | .06 | .07 | | Wood parquet in asphalt on concrete | ,04 | ,U-1 | .07 | ,00 | .06 | .07 | | Glass Large panes of heavy plate glass | .18 | .06 | .04 | .03 | .02 | .02 | | Ordinary window glass | .35 | .25 | .18 | .12 | .07 | .04 | | Gypsum Board, 1/2" nailed to 2x4's | | | **** | • | | , | | 16" o.c. | 29 | ,10 | .05 | .04 | .07 | ,09 | | Marble or Glazed Tile | .01 | .01 | .01 | .01 | .02 | .02 | | Openings | | | | | | | | Stage, depending on furnishings | .25 — .75 | | | | | | | Deep balcony, upholatered scats | .50 — 1.00 | | | | | | | Grilla, ventilating | .15 — .50 | | | | | | | Plaster, gypsum or lime, smooth
finish on tile or brick | .013 | .015 | .02 | .03 | .04 | ,05 | | Plaster, gypsum or lime, rough finish | .040 | .010 | 104 | 100 | ,04 | ,03 | | on lath | .14 | .10 | .06 | .05 | .01 | .03 | | Same, with smooth finish | .14 | 10 , | | .04 | .04 | .03 | | Plywood Paneling, 34" thick | .28 | 22 | .17 | .09 | .10 | .11 | | Water Surface, as in a swimming pool | .008 | ,008 | .013 | .015 | .020 | .025 | | Air,
Sabias per 1000 cubic feet @ 50% RH | | | | .9 | 2,3 | 7,2 | | With paniss het roug ennie ieer (it) 20% trit | | | | 17 | درن | 61 2 | #### ABSORPTION OF SEATS AND AUDIENCE Values given are in Sabins per square foot of seating area or per unit | | 125 IIz | 250 Hz | 500 liz | 1000 Hz | 2000 Hz | 4000 Hz | |--|---------|--------|---------|---------|---------|---------| | Audience, seated in upholstered seats,
per sq ft of floor area | .60 | .74 | .88 | .96 | .93 | .85 | | Unoccupied cloth-covered upholstered seats, per sq ft of floor area | .49 | ,66 | .80 | .88 | .82 | ,70 | | Unoccupied leather-covered uphol-
stered scats, per sq ft of floor area | .44 | .54 | ,60 | .62 | .58 | ,50 | | Wooden Pews, occupied, per sq ft of
floor area | .57 | .61 | .75 | .86 | ,91 | .86 | | Chairs, metal or wood scats,
each, unoccupied | .15 | .19 | .22 | .39 | .38 | .30 | Reprinted Courtesy AIMA HEW Publication No. (NIOSH) 75-165 U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service Center for Disease Control National Institute for Occupational Safety and Health TECHNICAL INFORMATION