Ventilator-Associated Events (VAE) and Hospital-acquired Pneumonia Pathophysiology, Epidemiology, and Prevention

SARAH LEWIS, MD MPH DUKE INFECTIOUS DISEASES

APRIL 24, 2023

dcasip.medicine.duke.edu

Duke Center for Antimicrobial Stewardship and Infection Prevention

Overview

Ventilator associated events

- Surveillance
- Epidemiology
- Prevention

Hospital Acquired Pneumonia

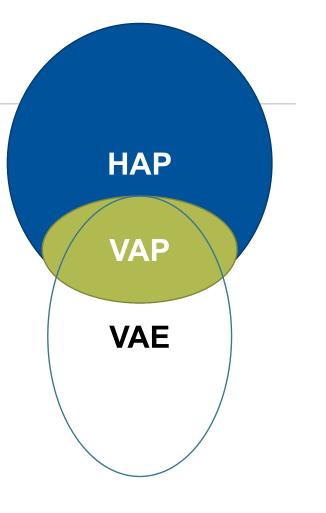
- Epidemiology
- Pathophysiology and Microbiology
- Diagnosis
- Prevention

Acknowledgements: many slides adapted from prior version of this talk by Dr. David Weber

Duke Center for Antimicrobial Stewardship and Infection Prevention

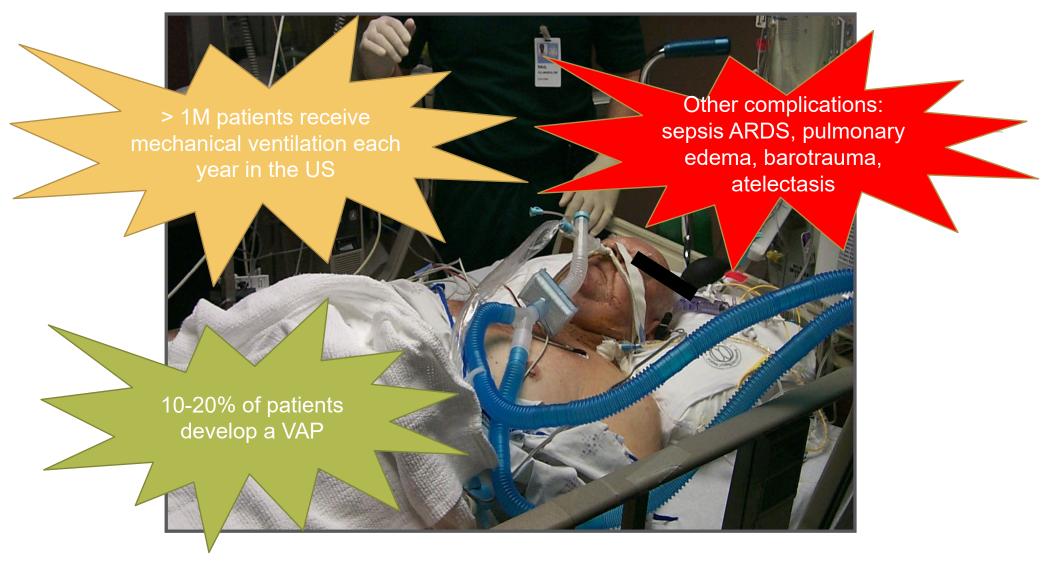
ESTIMATES OF HAIs OCCURRING IN ACUTE CARE HOSPITALS, US, 2011

Major Site of Infection	Estimated Number (%)
Pneumonia	157,500 (21.8%)
Gastrointestinal illness	123,000 (17.0%)
Urinary tract infections	93,000 (12.9%)
Primary bloodstream infections	71,900 (10.0%)
Surgical site infections from any inpatient surgery	157,000 (21.7%)
Other types of infection	118,500 (16.3%)
Estimated total number of infections in hospitals	721,800


Duke Center for Antimicrobial Stewardship and Infection Prevention Magill SS, et al. New Engl J Med 2014;370:1198

Definitions

HAP: Hospital-acquired pneumoniaVAP: Ventilator-associated pneumoniaVAE: Ventilator-associated event


Disclaimers: VAE is relatively 'new' and fewer data exist on its epidemiology, impact, and prevention relative to pneumonia

Few data in this talk include ventilator associated complications in the era of COVID-19

Duke Center for Antimicrobial Stewardship and Infection Prevention

Rackley. Respiratory Care Jun 2020, 65 (6) 832-846 / https://www.cdc.gov/nhsn/pdfs/pscmanual/10-vae_final.pdf

Overall Impact

Potential complications of mechanical ventilation

Pneumonia, acute respiratory distress syndrome (ARDS), pulmonary embolism, barotrauma, pulmonary edema, and death

Incidence

- >300,000 patients receive mechanical ventilation each year in the US
 - 10% TO 20% develop VAP
- 2011, an estimated 157,000 healthcare-associated pneumonias in US
 - 39% were ventilator-associated (VAP)

Mortality (VAP)

- Patients 15-19 years, 24%; patients <u>>85</u> years of age, 60%
- Attributable mortality ~10%

Type of Infection	Infections Identified in Survey	Surveyed Patients with Type of Infection	Estimated Infections in the United States*
	no.	% (95% CI)	no. (95% CI)
All health care_associated infections			
Pneumonia	110	24.3 (20.6-28.5)	157,500 (50,800-281,400)
Surgical-site infection	110†	24.3 (20.6-28.5)	157,500 (50,800-281,400)
Gastrointestinal infection	86	19.0 (15.6-22.8)	123,100 (38,400-225,100)
Urinary tract infection	65	14.4 (11.4-17.9)	93,300 (28,100-176,700)
Primary bloodstream infection	50	11.1 (8.4-14.2)	71,900 (20,700-140,200)
Eye, ear, nose, throat, or mouth infection	28‡	6.2 (4.2-8.7)	40,200 (10,400-85,900)
Lower respiratory tract infection	20	4.4 (2.8-6.6)	28,500 (6900-65,200)
Skin and soft-tissue infection	16	3.5 (2.1-5.6)	22,700 (5200-55,300)
Cardiovascular system infection	6	1.3 (0.5-2.7)	8,400 (1200-26,700)
Bone and joint infection	5	1.1 (0.4-2.4)	7,100 (1000-23,700)
Central nervous system infection	4	0.9 (0.3-2.1)	5,800 (700-20,700)
Reproductive tract infection	3	0.7 (0.2-1.8)	4,500 (500-17,800)
Systemic infection	1	0.2 (0.01-1.1)	1,300 (0-10,900)
Fotal			721,800 (214,700-1,411,000)
nfections in non-neonatal intensive care units			
Catheter-associated urinary tract infection	25	5.5 (3.7-7.9)	35,600 (9100-78,000)
Central-catheter-associated primary bloodstream infection	11	2.4 (1.3-4.2)	15,600 (3200-41,500)
Ventilator-associated pneumonia	35	7.7 (5.5–10.5)	49,900 (13,600-103,700)
Surgical-site infections attributed to Surgical Care Improvement Project procedures∫	46	10.2 (7.6–13.2)	66,100 (18,700–130,300)
Hospital-onset infections caused by specific pathogens			
Clostridium difficile infection¶	56	12.4 (9.6–15.7)	80,400 (23,700-155,000)
MRSA bacteremia	7	1.5 (0.7-3.0)	9,700 (1700-29,600)

Duke Center for Antimicrobial Stewardship and Infection Prevention

Magill SS, et al. New Engl J Med 2014;370:1198

SURVEILLANCE: Quick Overview

dcasip.medicine.duke.edu

Duke Center for Antimicrobial Stewardship and Infection Prevention

Why do we do surveillance?

Identify deviations from the norm

Devise/implement/test strategies for quality improvement

Objective data for internal/external comparisons

Haley et al. Am J Epidemiol. 1980 ;111(5):472-85

How do we do surveillance?

CDC's **national surveillance network** for healthcare-associated infections (HAI)

Initially, participation voluntary but now facilitates mandatory reporting to states, CMS

Standardized case definitions of HAIs

- Goal is to allow 'fair' comparisons over time and between facilities

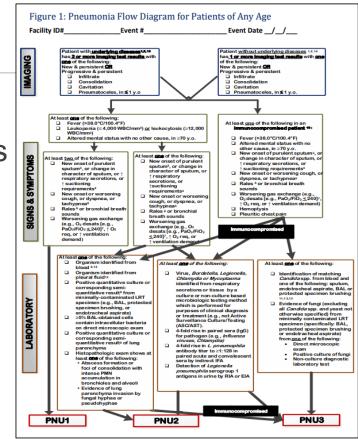
Challenges of surveillance

1) Balancing objectivity with clinical relevance

Ideally, a good target is something that:

- Can be <u>objectively</u> defined
- Is relevant
- Can be modified

Surveillance definitions do not always equal clinical definitions

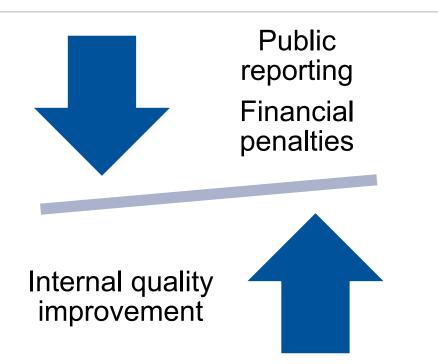

Challenges of surveillance

2) Burden of data collection

Overly burdensome or complicated algorithms

Problems with inter-rater reliability

Quality of surveillance data may suffer



https://www.cdc.gov/nhsn/pdfs/pscmanual/6pscvapcurrent.pdf

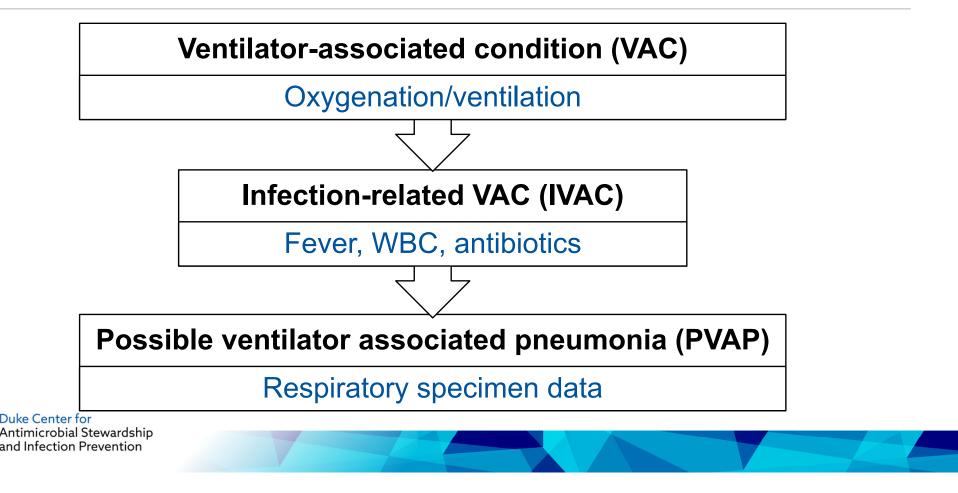
Challenges of surveillance

3) Risk adjustment

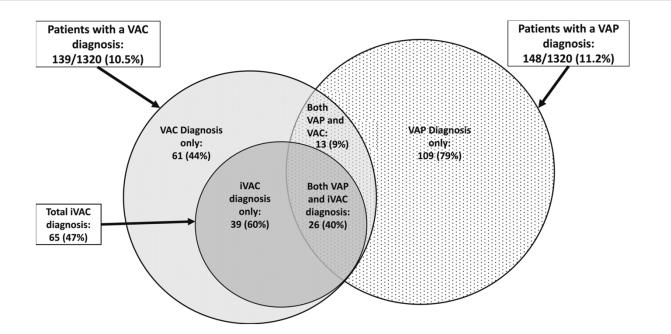
- Some patients will be more or less at risk for certain complications
- Some hospitals may treat more high-risk patients than other hospitals

Rationale for creation of VAE definition in 2014

Old ventilator-associated pneumonia (VAP) surveillance definitions: subjective and non-specific


Concerns about 'old' VAP definitions:

- Definitions prone to gaming/under-reporting
- Narrowly interpret radiographs
- Seek consensus between multiple IPs/providers
- Allow clinicians to veto surveillance determinations
- Losing sight of the value and mission of surveillance?
 - Many ICUs reporting 0 VAPs



Duke Center for Antimicrobial Stewardship and Infection Prevention Klompas Clin. Infect. Dis. 2010; 51:1123-26 Klompas Am J Infect Control 2012;40:408-10

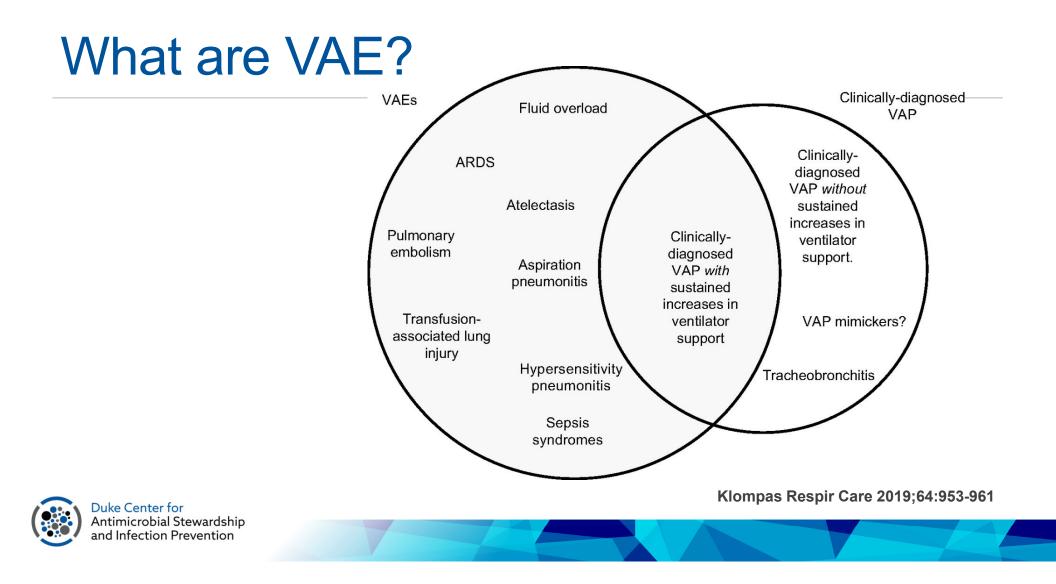
Ventilator associated events (VAE)

A paradigm shift: VAE ≠ VAP

"Only VAC and IVAC ... are intended to be possible candidates for future use in public reporting, inter-facility comparisons, and pay-for-performance programs. The VAC and IVAC definitions use criteria based on data anticipated to be available from most mechanically ventilated patients and less subject to manipulation or gaming. By contrast, the third definition tier, possible and probable VAP, was developed to be used only in internal quality improvement."

Duke Center for Antimicrobial Stewardship and Infection Prevention Magill et al. Clin Infect Dis 2013; 57(12):1742-46.

What are VAE?


- Retrospective study- 3028 patients 1996-2012 on mechanical ventilation >= 5 days
 - VAE are COMMON
 - 77% of patients with at least 1 VAC
 - 29% of patients with at least 1 IVAC
 - There are many etiologies of VAE
 - Infectious complications (not just pneumonia) common
 - Non-infectious complications not directly related to mechanical ventilation also play role

Variables ^a	Ventilator-Associated Condition (<i>n</i> = 2,331)	Infection-Related Ventilator-Associated Complication (<i>n</i> = 869)
Number of etiologies per patient		
0	818 (35.1)	189 (21.78)
1	726 (31.2)	260 (29.9)
2	445 (19.1)	213 (24.5)
3	214 (9.2)	124 (14.3)
≥ 4	128 (5.5)	83 (9.6)
Nosocomial infections	637 (27.3)	381 (43.8)
Ventilator-associated pneumonia	339 (14.5)	240 (27.6)
Tracheobronchitis	23 (1)	12 (1.4)
Bloodstream infection	173 (7.4)	95 (10.9)
Catheter-related infection	81 (3.5)	44 (5.1)
Urinary infection	102 (4.4)	42 (4.8)
Sinusitis	5 (0.2)	4 (0.5)
Viral infection	10 (0.4)	8 (0.9)
Surgical site infections	41 (1.8)	30 (3.5)
latrogenic adverse events	322 (13.8)	137 (15.8)
Pneumothorax	37 (1.6)	23 (2.6)
Failure of planned extubation	11 (0.5)	1 (0.1)
Accidental extubation	21 (0.9)	9(1)
Self-extubation	71 (3)	19 (2.2)
Venous puncture accident	14 (0.6)	9(1)
Atelectasis	52 (2.2)	20 (2.3)
Peripheral thrombosis	36 (1.5)	18 (2.1)
Pulmonary embolism	9 (0.4)	1 (0.1)
Myocardial infarction	10 (0.4)	4 (0.5)
Cardiac arrest	43 (1.8)	24 (2.8)
Cardioversion	29 (1.2)	17 (2)
Gastrointestinal bleeding	26 (1.1)	11 (1.3)
Acute mesenteric infarction	5 (0.2)	4 (0.5)
Intestinal pseudo-obstruction	2 (0.1)	0
Transport	387 (16.6)	186 (21.4)
Fluid resuscitation	123 (5.3)	58 (6.7)

Antimicrobial Stewardship and Infection Prevention

Critical Care Medicine43(9):1798-1806, September 2015

Incidence of VAC/IVAC/VAP

1.0 Approximately 5-10% of mechanically ventilated patients develop VAEs VAP VAC WAC 0.8 Probability increases with duration of mechanical ventilation 0.6 Probability Most occur within the first week of ventilation 0.4 Approaches 80% at 30 days 0.2 Incidence varies widely among reporting hospitals and by unit type Higher among neuro, surgery, and trauma units, academic-affiliated medical centers 0.0 10 15 20 25 0 5

Critical Care Medicine 2015; 43(9):1798-1806 / Magill Crit Care Med 2016; 44(12): 2154-62 / Klompas. Infect Control Hosp Epidemiol 43(6), 687-713

Days CRITICAL CARE MEDICINE

Duke Center for Antimicrobial Stewardship and Infection Prevention Cumulative incidence curves

Relevance of VAE

Mortality:

- In-hospital mortality 38-50%
- OR 2.0 (1.3-3.2) vs. non-VAE

ICU LOS:

22 days IVAC v. 9 days non-IVAC

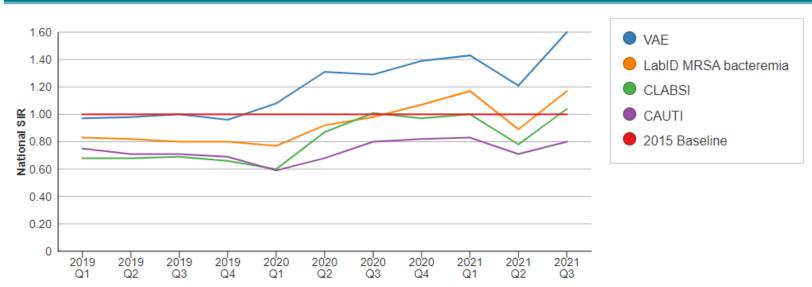
Antibiotic usage:

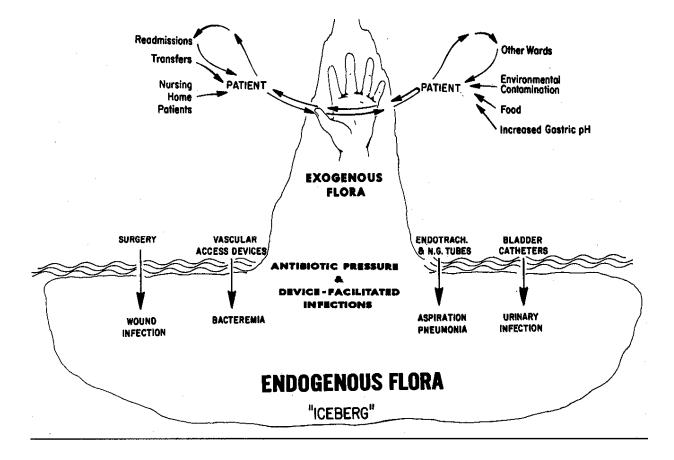
17.8 days IVAC v. 9.3 days non-IVAC

Good correlation of VAE with other quality outcomes

Klompas 2011. PLoS One. 6(3), e18062 Muscedere et al. Chest. 2013;144(5):1453-1460

Impact of COVID-19 Pandemic on VAEs

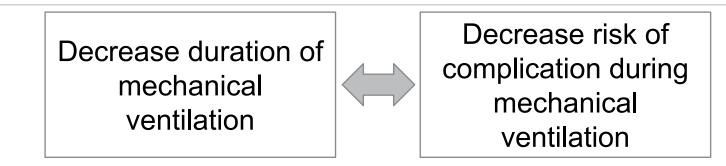



Figure 1. Quarterly National SIRs for Select HAI Types, 2019-Q1 - 2021-Q3

https://www.cdc.gov/hai/data/portal/covid-impact-hai.html

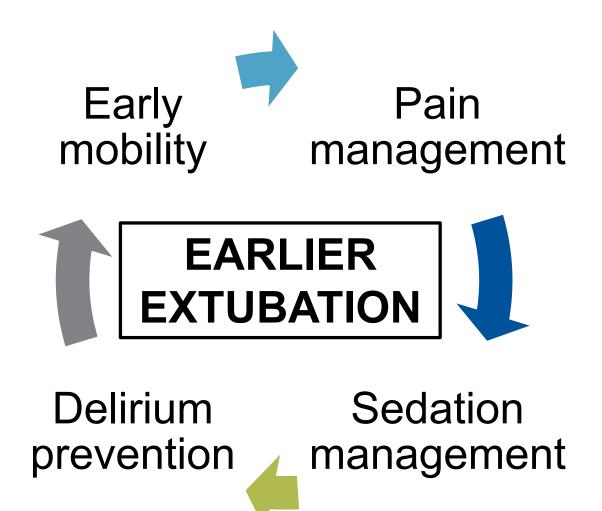
Approach to prevention

Understanding the hazards of the ICU



Duke Center for Antimicrobial Stewardship and Infection Prevention

Weinstein RA. Am J Med 1991;91(suppl 3B):180S


Approach to prevention

- Understand that these 2 aspects of prevention are intimately related
- Look for opportunities to standardize and improve process measures that are likely to benefit many patients

Evidence-based prevention approaches

 Possible (evidence from observational studies alone and/or inconsistent evidence from randomized controlled trials) Probable (evidence from randomized controlled trials and/or meta-analyses) 	Duration of Ventilation	Pneumonia	Atelectasis	ARDS	Fluid Overload
Minimize sedation	↓	1	\bigcup		
Paired SATs and SBTs	↓	\bigcup			
Early mobility	↓	\mathbb{I}	1		
Low tidal volume ventilation	1	↓	↓	↓	
Conservative fluid management	↓	\mathbb{I}		\mathbb{I}	↓
Conservative transfusion thresholds	1	↓		↓	↓

Am J Respir Crit Care Med, 2015. PMID 26398835

Sedation management

Sedatives and analgesics are mandatory in most mechanically ventilated patients

Overuse of analgesics/sedating medications may impair ventilator weaning, resulting in prolonged intubation, mechanical ventilation, and ICU stay

Recommendation:

Nurse-driven assessments and protocols to target sedation to a monitored sedation goal

Daily spontaneous awakening trials in appropriate patients*

Duke Center for Antimicrobial Stewardship and Infection Prevention DeGrado et al. J Pain Res. 2011;4:127-134

Goal-directed analgesia/sedation management

- 1) Measure and document pain and sedation level using validated, objective criteria
 - Pain: Behavioral Pain Scale (BPS)
 - Sedation: Richmond-Agitation Sedation Scale (RASS)
- 2) Implement nurse-driven protocols to target adequate analgesia and light sedation
- 3) Screen for and treat delirium

DeGrado et al. J Pain Res. 2011;4:127-134 / Am J Health-Syst Pharm. 2013;70:53-8.

Preventing VAEs: Wake up and Breathe

Quality improvement collaborative

12 ICUs participated in initiative: nurse-led daily SAT and SBT for all eligible patients

Klompas et al. AJRCCM. 2015;191(3):292-301

Criteria for Spontaneous Awakening Trial

SAFETY SCREEN

No active seizures No alcohol withdrawal No agitation No paralytics No myocardial ischemia Normal intracranial pressure

SAT FAILURE

Anxiety, agitation, pain Respiratory rate > 35/min Oxygen saturation < 88% Respiratory distress Acute cardiac arrhythmia

Duke Center for Antimicrobial Stewardship and Infection Prevention www.icudelirium.org

Criteria for Spontaneous Breathing Trial

SAFETY SCREEN

No agitation Oxygen saturation >=88% FiO2 <=50% PEEP <= 7.5 cm H2O No myocardial ischemia No vasopressor use Inspiratory efforts

SBT FAILURE

Respiratory rate > 35/min Respiratory rate < 8/min Oxygen saturation < 88% Respiratory distress Mental status change Acute cardiac arrhythmia

Duke Center for Antimicrobial Stewardship and Infection Prevention www.icudelirium.org

Preventing VAEs: Wake up and Breathe

Participating units


- Improved performance of daily SAT when indicated (14 to 77%)
- Improved performance of SBTs when indicated (49 to 75%)
- Improved proportion of SBTs performed with sedatives off (6 to 87%)

Decreased mean duration of mechanical ventilation by 2.4 (95% CI 1.7-3.1) days

Decreased ICU LOS by 3.0 (95% CI 1.6-4.3) days

Duke Center for Antimicrobial Stewardship and Infection Prevention Klompas Am J Respir Crit Care Med 2015; 191(3): 292-301

ABCDEF Bundle

www.icudelirium.org

- A: Assess, Prevent, Manage Pain
- **B**: Both Spontaneous Awakening Trials and Spontaneous Breathing Trials
- C: Choice of Analgesia and Sedation
- D: Delirium: Assess, Prevent, and Manage
- E: Early Mobility and Exercise
- **F**: Family Engagement and Empowerment

Duke Center for Antimicrobial Stewardship and Infection Prevention

What VAEs are and are not

	What They Are	What They Aren't
Intent	Surveillance concept	Clinical diagnosis
Surveillance	Objective and reproducible	Sensitive/specific for VAP
Etiology	Many potential causes including non-infectious ones	Proxy for pneumonia
Morbidity	Highly morbid	Not benign
Prevention strategy	 Re-think prevention bundles: Minimize sedation Early mobility Low tidal volume ventilation Conservative fluid management 	Not fully preventable by traditional bundles

Duke Center for Antimicrobial Stewardship and Infection Prevention Michael Klompas Respir Care 2019;64:953-961

Tips for establishing a VAE surveillance and prevention program

Establish a multidisciplinary collaboration with intensivists, respiratory therapists, infection prevention

- Review the surveillance definitions and goals of the surveillance
- Frame VAE as an objective measure of 'harm' in ventilated patients with many etiologies, and not solely an infection-related outcome
- Agree on best practices to prevent ventilator harm and track performance of these processes (SBT/SAT, delirium assessment, pain management)

PNEUMONIA

dcasip.medicine.duke.edu

Pneumonia and VAE Surveillance: Current state for many IP programs

	PNEU	VAE
Surveillance	 Selectively performed on cases of BSI in patients with central venous catheters to determine if criteria met for secondary attribution (all programs) 	 Performed on all patients on mechanical ventilation > 4 days
Clinical relevance	 Poor correlation between clinical and surveillance definitions of pneumonia 	 Not specific for an individual clinical presentation – represents a large group of conditions
Prevention	Hand hygiene, avoid ventilation when possible, early mobility, pain/sedation management, elevate head of bed, minimize unnecessary devices, antibiotic stewardship	

Non-ventilator- associated HAP (NVHAP): Recent call to action

Clinical Relevance

- 1% of all hospitalized patients develop NVHAP
- Crude mortality 15-30%
- Extends LOS up to 15 days
- Increases antibiotic utilization
- Increases risk for readmissions

Munro, S., Baker, D., Giuliano, K., Sullivan, S., Haber, J., Jones, B., . . . Klompas, M. (2021). Nonventilator hospital-acquired pneumonia: A call to action: Recommendations from the National Organization to Prevent Hospital-Acquired Pneumonia (NOHAP) among nonventilated patients. *Infection Control & Hospital Epidemiology, 42*(8), 991-996

Non-ventilator- associated HAP (NVHAP): Recent call to action

ssue 61 | September 2021

Preventing non-ventilator hospital-acquired pneumonia

Issue:

It's estimated that one in every 100 hospitalized patients will be affected by non-ventilator hospital-acquired pneumonia (NVHAP). While NVHAP is a significant patient safety and quality of care concern, it is not currently recognized as one of the National Database of Nursing Quality indicators for which hospitals are held accountable; nor is it one of the conditions that the Centers for Medicare & Medicaid Services (CMS) requires hospitals to report to the Centers for Disease Control & Prevention (CDC) National Healthcare Safety Network; and it is not integrated into the CMS current pay-for-reporting or performance programs.¹ As a result, this leaves NVHAP a health care-acquired condition without national tracking or accountability, and, most likely, is unaddressed by health care organizations.

Quick Safety Alert: Preventing non-ventilator hospital-acquired pneumonia. The Joint Commission. 2021: 61. https://www.jointcommission.org/resources/news-and-multimedia/news/2021/09/new-quick-safety-on-preventing-nvhap/

Non-ventilator- associated HAP (NVHAP): Recent call to action

Current Gaps

No current surveillance definition or methodology

Big questions

- How can we improve the reproducibility, relevance, and efficiency of surveillance for HAP?
- Do we fully understand the mechanism of NVHAP to inform prevention strategies?
- What are the best-performing interventions to prevent NVHAP?

In absence of data

and Infection Prevention

- Promote early mobility
- Screen for and manage dysphagia to reduce risk of aspiration
- Decrease risk of hospital transmission of respiratory viruses
- Perform regular oral care

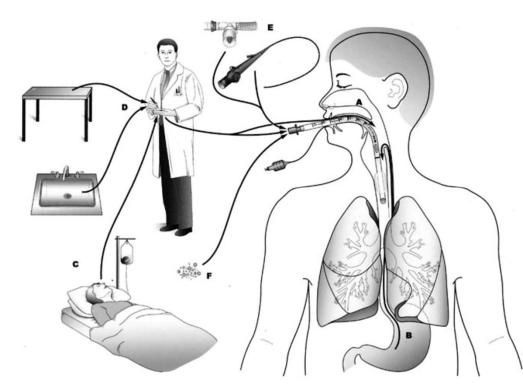
Munro, S., Baker, D., Giuliano, K., Sullivan, S., Haber, J., Jones, B., . . . Klompas, M. (2021). Nonventilator hospital-acquired pneumonia: A call to action: Recommendations from the National Organization to Prevent Hospital-Acquired Pneumonia (NOHAP) among nonventilated patients. *Infection Control & Hospital Epidemiology, 42*(8), 991-996 Antimicrobial Stewardship

Pneumonia **Clinical definition**

Combination of the following:

- Fever
- Leukocytosis
- Purulent sputum
- Radiographic infiltrates
- Change in oxygenation
- + / Positive microbiologic culture from respiratory tract

Clinical judgment

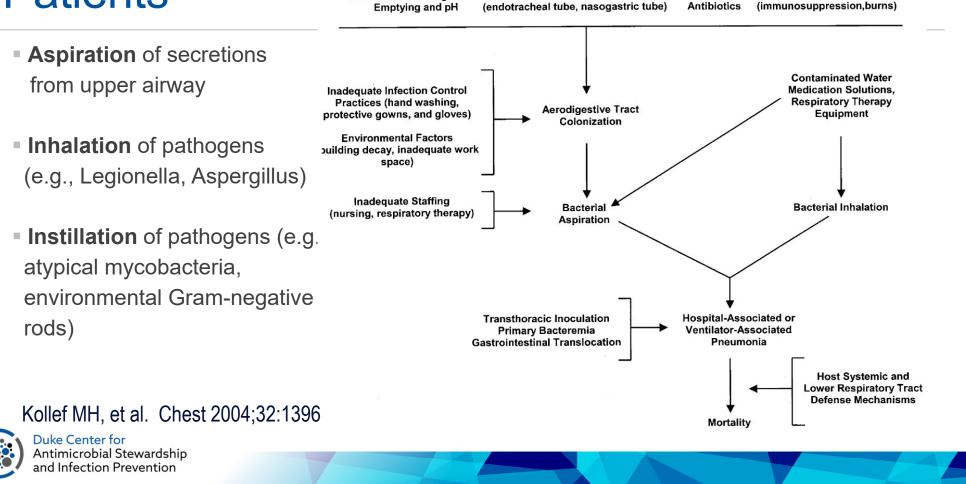

Things that may look like pneumonia:

- **ARDS**
- **Pulmonary edema**
- Pulmonary hemorrhage
- Aspiration pneumonitis
- Pulmonary embolism
- **Drug** reaction
- Underlying lung disease exacerbation

Healthcare-Associated Pneumonia (HAP) Pathogenesis

Aerodigestive tract colonization

•


- Colonization of the aerodigestive tract may occur endogenously (A and B) or exogenously (C through F)
- **Exogenous** colonization may result in primary colonization of the oropharynx or may be the result of direct inoculation into the lower respiratory tract during manipulations of respiratory equipment (D), during using of respiratory devices (E), or from contaminated aerosols (F).

Antimicrobial Stewardship and Infection Prevention

Safdar et al. Respir Care 2005;50(6):725-739

Pathogenesis of Pneumonia in Hospitalized Patients Medications Altering Gas Emptying and pH Invasive Devices with Biofilm (endotracheal tube, nasogastric tube) Prior Antibiotics (immunosuppression, burns)

VAP: RISK FACTORS

Host-related risk factors	Intervention-related risk factors
Medical history and underlying illness Male gender Extreme age Prior central nervous system disorder Immunocompromised Acute underlying diseases Emergent surgery Neurosurgery Thoracic surgery Cardiac surgery Burns Re-intervention Acute severity factors Organ system failure index of at least 3 Acute renal failure Acute respiratory distress syndrome ECMO, intra-aortic support Ulcer disease	Peri-operative transfusion of blood products Duration of the mechanical ventilation Reintubation Supine head position in patients receiving enteral nutrition Antibiotic therapy ^a Enteral nutrition Absence of subglottic secretion drainage ^b Intra-hospital transports Continuous sedation, use of paralytic agents Nasogastric tubes Tracheostomy Frequent ventilator circuit changes Intracuff pressure of less than 20 cm H ₂ O

Adapted from 2,35–38. ^aAntibiotic therapy protects from early-onset pneumonia due to susceptible bacteria but is a risk factor for late-onset pneumonia due to more resistant organisms. ^bProtective impact of subglottic secretion drainage is mainly demonstrated for cardiac surgery patients. ECMO, extra-corporeal membrane oxygenation.

Timsit J-F, et al. F10000Research 2017, 6

HAP/VAP pathogens

Determinants of pathogens

- Setting
- Prior antibiotic use
- Duration of hospitalization
 - Early (<5 days): S. pneumoniae, H. influenzae, MSSA</p>
 - Late (<u>></u>5 days): *P. aeruginosa*, MRSA, Gram (-) bacilli
- ICU stay
- Colonization

MICROBIOLOGY

Community acquired aspiration	Hospital acquired aspiration	Inhalational	Hematogenous
 Haemophilus influenzae Streptococcus pneumoniae Oropharyngeal streptococci and anaerobes 	 Oropharyngeal streptococci and anaerobes Enterobacteriaceae Pseudomonas 	 Fungi Legionella Viruses Mycobacteria 	 Staph aureus (common) Enterobacteriaceae (uncommon)

Methods to Confirm a Microbiologic Diagnosis

Note: microbiologic diagnosis is not required clinically

Blood cultures

Pleural fluid analysis & cultures (if parapneumonic effusion present)

Tissue diagnosis (rare)

Non-bronchoscopic

Endotracheal aspiration (common)

Bronchoscopic techniques (pursued when treatment failure, concern for atypical pathogen such as fungus, immunocompromised, or non-infectious etiology)

Protected specimen brush (PSB)

Bronchoalveolar lavage (BAL)

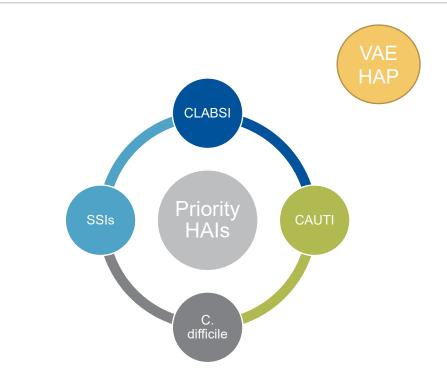
Preventing HAP/VAP: An Important Target for Antimicrobial Stewardship

Pathogen	Incidence and resistance trends
MRSA	Rate in VAP: 12–42% ^a
	Rate of methicillin resistance is decreasing: 1.4–82% ^b
Pseudomonas aeruginosa	Rate in VAP: 21–61% especially for the second episode of VAP ^a
	MDR/XDR rates as high as 38–46% with 8–20% susceptible only to colistin [12–14]
	Meropenem with >10% increase in resistance in North America with susceptibility across all classes of antimicrobials at 60–71% [10]
Enterobacteriaceae	Rate in VAP: 5–19.1% with rising rates of resistance to all classes of antimicrobials ^a [9,10,13]
	Rates of ESBL of 40% in Asia [9]
Acinetobacter spp.	Rate in VAP: 4.8–36.5% (highest in Latin America and Asia) [9,10,13]
	MDR rate as high as 80% and XDR 50% with 30% susceptible only to colistin [9,10,13]
	Meropenem and doripenem with >10% increase in resistance [10], colistin-resistant cases reported [15]

Abbreviations: ESBL, extended spectrum β -lactamases; MDR/XDR, multidrug resistant/extremely drug resistant; MRSA, methicillin-resistant *Staphylococcus aureus*; SA, *Staphylococcus aureus*; VAP, ventilator-associated pneumonia.

Duke Center for Antimicrobial Stewardship and Infection Prevention

Guillamet CV, Kollef MH. Curr Opin Crit Care 2015;21:430-8


SHEA/ IDSA/ APIC 2022 Prevention of VAE and Pneumonia Guidelines

Klompas. Infect Control Hosp Epidemiol 2022 *43*(6), 687-713

Category	Rationale	Intervention	Quality of Evidence
Essential practices	Good evidence that the intervention decreases the average duration of mechanical ventilation, length of stay, mortality, and /or costs. Benefits likely outweigh risks.	Avoid intubation and prevent reintubation • Use high-flow nasal oxygen or noninvasive positive pressure ventilation (NIPPV) as appropriate whenever safe and feasible ^{91–93,96,99}	HIGH
		Minimize sedation ^{105,106} • Avoid benzodiazepines in favor of other agents ¹⁰⁶ • Use a protocol to minimize sedation ¹¹⁰ • Implement a ventilator liberation protocol ¹¹³	MODERA
		Maintain and improve physical conditioning ^{113,120-123}	MODERA
		Elevate the head of the bed to 30-45°125,388-390	LOW ^a
		Provide oral care with toothbrushing but <i>without</i> chlorhexidine ^{126,127}	MODERA
		Provide early enteral vs. parenteral nutrition ¹³¹	HIGH
		Change the ventilator circuit only if visibly soiled or malfunctioning (or per manufacturers' instructions) ³⁹¹⁻³⁹⁴	HIGH
Additional approaches	Good evidence that the intervention improves outcomes in some populations, but may confer some risk in others.	Use selective oral or digestive decontamination in countries and ICUs with low prevalence of antibiotic- resistant organisms ^{128,134,135}	
	May lower VAP rates but insufficient data to determine impact on duration of mechanical ventilation, length of stay, or mortality.	Utilize endotracheal tubes with subglottic secretion drainage ports for patients expected to require >48-72 hours of mechanical ventilation ³⁹⁵	MODER/
		Consider early tracheostomy144	MODER
		Consider postpyloric rather than gastric feeding for patients with gastric intolerance or at high risk for aspiration ^{131,147}	MODER/
Generally not	Inconsistently associated with lower VAP rates and no impact or negative impact on duration of mechanical ventilation, length of stay, or mortality.	Oral care with chlorhexidine ^{75,128-130,150}	MODER
recommended		Probiotics	MODER
		Ultrathin polyurethane endotracheal tube cuffs ¹⁶⁵⁻¹⁶⁷	MODER
		Tapered endotracheal tube cuffs ¹⁶⁹	MODER
		Automated control of endotracheal tube cuff pressure ^{170,171,174,175}	MODER/
		Frequent cuff-pressure monitoring ¹⁷⁶	MODER
		Silver-coated endotracheal tubes ¹⁷⁸	MODER
		Kinetic beds ¹⁸⁰	MODER
		Prone positioning ^{181,183,a}	MODER
		Chlorhexidine bathing ^{184–186,a}	MODER
	No impact on VAP rates, average duration of mechanical ventilation, length of stay, or mortality. ^a	Stress-ulcer prophylaxis ^{190,191,193}	MODER
		Monitoring residual gastric volumes ¹⁹⁴	MODER
		Early parenteral nutrition ¹⁹⁵	MODER
No	No impact on VAP rates or other patient outcomes, unclear impact on costs.	Closed endotracheal suctioning systems ¹⁹⁷⁻¹⁹⁹	MODER

Where does VAE/VAP/HAP prevention fit in?

IMPORTANCE OF VAE PREVENTION

- Correlates with important outcomes of mortality, length of stay
- Key prevention strategies provide many layers of benefit for patients
- Strong correlation with antimicrobial utilization
 - Prevent MDROs
 - Decrease C. difficile rates

Antimicrobial Stewardship and Infection Prevention

Summary

VAE definitions are based on objective criteria

Infectious and non-infectious conditions will be identified as VAEs

Many VAE are believed to be preventable complications

Optimize pain management, sedation, delirium, early mobilization

VAE and HAP are common and highly correlated with healthcare utilization, morbidity, and antimicrobial utilization

Growing interest in NVHAP as a target for prevention – stay tuned

QUESTIONS

dcasip.medicine.duke.edu

