
CS 161 x86/C/GDB Cheat Sheet

Number Representation

To begin, recall that 1 byte is equal to 8 bits, and 1 word
is equal to 4 bytes (32 bits). In this class, we do
everything in a 32-bit address space. Thus, every
address can be written using 1 word of memory.

One hexadecimal digit has sixteen possible values (0-9,
A-F). To add/subtract addresses in hex, just use Python.

>>> hex(0x10 + 0x11) 	 // '0x21'

C Memory Layout

1. Code: contains machine code (x86
instructions).

2. Static: contains static variables &
constants declared outside
functions.

3. Heap: contains space for variables
allocated using "malloc" - starts at
low addresses & grows up.

4. Stack: contains function frames &
local variables. Starts at high
addresses and grows down.

x86 Registers

EBP = "base pointer" (top of current stack frame)

ESP = "stack pointer" (bottom of current stack frame)

EIP = "instruction pointer" (current x86 instruction)

x86 Calling Convention

In C, the CPU executes a series of steps before and after
every function call. This procedure is referred to as
"calling convention," and the steps are as follows.

Remember, push refers to adding something to the
stack, and pop refers to removing something.

1. Push arguments onto the stack (reverse order).

2. Push the old EIP onto the stack. This value becomes

the RIP (Return Instruction Pointer).

3. Move EIP to the first instruction of the function.

4. Push the old EBP onto the stack. This value becomes

the SFP (Saved Frame Pointer).

5. Move the EBP down to ESP to start a new frame.

6. Move the ESP down to allocate space for local vars.

7. Execute the function.

8. Move the ESP up to the EBP.

9. Pop the SFP and move the EBP to that value.

10. Pop the RIP and move the EIP to that value.

11. Remove arguments from the stack.

These steps can also be written using x86 notation and
summarized into function prologues and epilogues.

Function Prologue (Steps 2-4)

push %ebp	 // save previous frame

mov %esp %ebp	 // start new frame

sub $X %esp	 // move ESP down by X

Function Epilogue (Steps 8-10)

add $X %esp	 // move ESP up by X

pop %ebp	 // pop SFP and store in EBP

ret	 	 // pop RIP and go there

Stack Diagram Reminders

1. We draw our diagrams such that the top is higher
addresses, and the bottom is lower addresses.

2. Each row is typically one word.

3. The size of addresses and integers is one word.

4. When we declare buffers, we allocate one or more

rows. When we write into them, we start at the lowest
address (bottom-right) and work our way left and up
(towards higher
addresses).

5. Local variables declared
later are at lower memory
addresses, except for
members of a struct (see
example to right).

GDB Tutorial & Shortcuts

On the CS 161 Project 1 VM, we use ./debug-exploit
to open GDB with our program. Here are a few helpful
commands we can use to debug.

layout split 	 // show code

r	 	 // run program

b [LINE | FN]	 // break at line/function

n	 	 // continue to next line (step over)

s	 	 // continue to next line (step in)

c	 	 // continue to next breakpoint

finish	 	 // continue to end of function

p [VAR]		 // print the value of a variable

p &[VAR]	 // print the address of a variable

x/nwx [VAR]	 // print "n" words of memory starting

	 	 at VAR in hex.

x/nwx [VAR]	 // print "n" words of memory starting

	 	 at VAR in hex.

info registers // display current ESP/EBP/EIP

info frame 	 // display location of SFP/RIP

refresh 	 // re-render the screen

We often use "x/..." to help us compare stack diagrams to
the actual stack. For example, "x/16wx buf" will display 16
words of memory starting at buf.

Whereas "n" and "s" both continue to the next line, "n"
steps over function calls while "s" steps into functions.

If we want to step out of a function that we've stepped
into, we can use "finish" to do so.

To find the address of the SFP and RIP, we can use "info
frame" and look specifically at the "Saved Registers"
section for the Saved EBP and EIP, respectively. To find
the value of the RIP, look at the "Saved EIP" section.

To count the space between a buffer and the RIP:

1. Identify the address of the RIP.

2. Identify the address of the buffer.

3. Subtract the two addresses.

This is the value of the
RIP of the current frame.

When this function
completes, the CPU will
jump to the instruction at

stored at this address.

The "B" indicates that we
have a breakpoint set at

this line number. The arrow
">" points to the next line
that the CPU will execute.

The addresses that you see
here are the addresses that
these instructions reside at.

Remember, this is in the
code section of memory.

These values indicate the
addresses of the SFP and
RIP, respectively. We often
use the address of the RIP
to do our buffer overflow

math.

This is the instruction
pointer (EIP) - it points to
the address of the next

instruction to be executed.

"Info Frame" in GDB

If things look a little wonky
for whatever reason (e.g.
text is out of place, or you
resized the GDB window),
use the refresh command
to re-render the screen!

