

FlashRunner 2.0
Series

High-Performance,

Standalone In-System
Programmers

Programmer’s Manual

Revision 2.8 — July 2020

Copyright © 2017 SMH Technologies

2

We want your feedback!

SMH Technologies is always on the lookout for new ways to
improve its Products and Services. For this reason,
feedback, comments, suggestions or criticisms, however
small, are always welcome.

SMH Technologies S.r.l.
via Giovanni Agnelli, 1
33083 Villotta di Chions (PN) Italy
E-mail (general information): info@smh-tech.com
E-mail (technical support): support@smh-tech.com
Web: http://www.smh-tech.com

Important
SMH Technologies reserves the right to make improvements to FlashRunner, its documentation and software routines, without
notice. Information in this manual is intended to be accurate and reliable. However, SMH Technologies assumes no
responsibility for its use; nor for any infringements of rights of third parties which may result from its use.
SMH TECHNOLOGIES WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF
PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
Trademarks
SMH Technologies is the licensee of the SofTec Microsystems trademark.
All other product or service names are the property of their respective owners.

Command Reference

3

Contents

1 BEFORE STARTING .. 8

1.1 IMPORTANT NOTICE TO USERS .. 8
1.2 GETTING TECHNICAL SUPPORT .. 9

2 SYSTEM SETUP/UPGRADE .. 10

2.1 SOFTWARE SETUP ... 10
2.2 WHAT YOU NEED TO START ... 11
2.3 CONNECTION SETUP .. 12
2.4 FIRMWARE UPDATE .. 17

3 FLASHRUNNER 2.0 WORKBENCH.. 19

3.1 OVERVIEW .. 19
3.2 OPENING WINDOW ... 20
3.3 TOP TOOLBAR .. 22
3.4 LEFT TOOLBAR .. 23
3.5 PROJECT SETUP .. 24
3.6 PRODUCTION CONTROL ... 25
3.7 PROJECT EDITOR ... 28
3.8 WIZARD .. 29

3.8.1 Introduction page ... 30
3.8.2 Channel selection page... 31
3.8.3 Device selection page ... 32
3.8.4 FRB Management page .. 33
3.8.5 Communication settings page .. 34
3.8.6 Delay settings page .. 35
3.8.7 Powering settings page .. 35
3.8.8 Additional parameters page ... 35
3.8.9 Command settings page ... 35
3.8.10 Additional commands page ... 35
3.8.11 Finish page ... 35

3.9 ENCRYPT FRB .. 36
3.10 ADVANCED FILE MANAGER ... 37
3.11 TERMINAL .. 39
3.12 LOG ... 40
3.13 MEMORY MAP TOOL .. 42
3.14 PIN MAP TOOL .. 43

FlashRunner 2.0 Workbench

4

3.15 ADVANCED FRB MANAGER .. 44
3.15.1 Add data to FRB: import from source file..................................... 46
3.15.2 Add data to FRB: Fill Data / Variable Data 47
3.15.3 Edit FRB block ... 48

4 FLASHRUNNER 2.0 COMMANDS ... 50

4.1 OVERVIEW ... 50
4.1.1 Host Mode .. 50
4.1.2 Standalone Mode.. 51

4.2 COMMAND SYNTAX ... 51
4.2.1 Sending a Command ... 51
4.2.2 Receiving the Answer .. 53
4.2.3 Numeric Parameters ... 54

4.3 COMMAND SUMMARY ... 54
4.4 COMMAND REFERENCE .. 58

4.4.1 Command Documentation Conventions ... 58
4.4.2 CLRERR .. 59
4.4.3 CLRLOG ... 60
4.4.4 DELAY .. 61
4.4.5 DYNMEMCLEAR .. 62
4.4.6 DYNMEMSET ... 63
4.4.7 DYNMEMSET2 ... 64
4.4.8 DYNMEMSETW ... 65
4.4.9 DYNMEMSETW2 ... 66
4.4.10 FRBREADCRC .. 67
4.4.11 FSCRC ... 68
4.4.12 FSEXIST ... 69
4.4.13 FSGETCONTROL .. 70
4.4.14 FSLS .. 71
4.4.15 FSLS2 .. 72
4.4.16 FSRM .. 73
4.4.17 FSSETCONTROL .. 74
4.4.18 GETDATE .. 75
4.4.19 GETENGSTATUS.. 76
4.4.20 GETIP .. 77
4.4.21 GETFREEMEM .. 78
4.4.22 GETLOGLEVEL ... 79
4.4.23 GETVPROG ... 80
4.4.24 HELP ... 81

Command Reference

5

4.4.25 ISMEMENOUGH ... 82
4.4.26 ISPANELMODE ... 83
4.4.27 LISTLIC .. 84
4.4.28 LOADDRIVER .. 85
4.4.29 LOGIN .. 86
4.4.30 LOGOUT ... 87
4.4.31 REBOOT ... 88
4.4.32 RLYCLOSE ... 89
4.4.33 RLYOPEN .. 90
4.4.34 RUN .. 91
4.4.35 RSTENGSTATUS .. 92
4.4.36 SETADMINPW .. 93
4.4.37 SETDATE... 94
4.4.38 SETDIO ... 95
4.4.39 SETIP .. 96
4.4.40 SETLOGLEVEL ... 97
4.4.41 SETMUX ... 98
4.4.42 SETPANELMODE .. 99
4.4.43 SGETENG .. 100
4.4.44 SGETERR .. 101
4.4.45 SGETSN .. 102
4.4.46 SGETVER .. 103
4.4.47 SGETVERALGO ... 104
4.4.48 SGETVERALGOLIST ... 105
4.4.49 SPING ... 106
4.4.50 TCSETDEV... 107
4.4.51 TCSETPAR ... 108
4.4.52 TESTVPROG .. 109
4.4.53 TPCMD ... 110
4.4.54 TPEND .. 111
4.4.55 TPSETDUMP ... 112
4.4.56 TPSETSRC ... 113
4.4.57 TPSTART ... 114
4.4.58 UNLOADDRIVER ... 115
4.4.59 VOLTAGEMONITOR ... 116

5 PROJECTS ... 118

5.1 EXECUTION AND TERMINATION ... 121
5.1.1 Standalone project execution ... 121

FlashRunner 2.0 Workbench

6

5.1.2 Remote projects execution ... 121
5.1.3 Projects Termination ... 122

5.2 PROJECT-SPECIFIC DIRECTIVES ... 122
5.3 LOGGING ... 122
5.4 COMMENTS ... 123
5.5 CONDITIONAL SCRIPTING .. 123

6 SERIAL NUMBERING ... 126

6.1 INTRODUCTION ... 126
6.2 COMMAND SYNTAX ... 126
6.3 EXAMPLE ... 127
6.4 WORD ADDRESSING .. 128
6.5 USING DYNAMIC MEMORY WITHOUT FRB .. 129

7 DATA PROTECTION SYSTEM .. 130

7.1 USER MANAGEMENT .. 130
7.2 FRB ENCRYPTION .. 131

8 FLASHRUNNER 2.0 INTERFACE LIBRARY .. 132

8.1 OVERVIEW ... 132
8.2 FLASHRUNNER 2.0 INTERFACE LIBRARY ... 132
8.3 INSTALLATION ... 133
8.4 INTERFACE LIBRARY REFERENCE ... 133

8.4.1 Using the Interface Library Functions ... 133
8.4.2 Return Values of the Interface Library Functions............................ 134
8.4.3 Unicode Functions... 134
8.4.4 Application examples .. 135
8.4.5 Function Reference for FR 2.0 ... 136
8.4.6 FR_CloseCommunication .. 136
8.4.7 FR_GetAnswer .. 137
8.4.8 FR_GetFile ... 138
8.4.9 FR_GetLastErrorMessage ... 140
8.4.10 FR_OpenCommunication ... 141
8.4.11 FR_SendCommand ... 142
8.4.12 FR_SendFile .. 143

9 FRB CONVERTER ... 145

10 VOLTAGE MONITOR .. 148

Command Reference

7

10.1 INTRODUCTION .. 148
10.2 COMMAND SYNTAX .. 149
10.3 COMPUTATIONAL LOAD ... 153
10.4 MEASUREMENT PROCESS .. 153
10.5 ERROR TYPES .. 155

11 FLASHRUNNER 2.0 INTERNAL MEMORY ... 156

12 TROUBLESHOOTING ... 157

12.1 PROJECT EXECUTION FAILURES .. 157

FlashRunner 2.0 Workbench

8

1 Before Starting

i

Note: an updated version of FlashRunner System
Software is available on the SMH Technologies
website (www.smh-tech.com). Please check it
before continuing to read this documentation.

1.1 Important Notice to Users

While every effort has been made to ensure the accuracy of all
information in this document, SMH Technologies assumes no
liability to any party for any loss or damage caused by errors or
omissions or by statements of any kind in this document, its
updates, supplements, or special editions, whether such errors
are omissions or statements resulting from negligence,
accidents, or any other cause.

Command Reference

9

1.2 Getting Technical Support

i

Note: Keep FlashRunner 2.0 always in a well-
ventilated area in order to prevent product
overheating, which could affect product
performance and, if maintained for a long time, it
could damage product hardware components.

SMH Technologies is continuously working to improve
FlashRunner firmware and to release programming algorithms
for new devices. SMH Technologies offers a fast and
knowledgeable technical support to all of its customers and is
always available to solve specific problems or meet specific
needs.

To get in touch with SMH Technologies, please refer to the
contact information below.

Phone: +39 0434 421111
Fax: +39 0434 639021
Technical Support: support@smh-tech.com

mailto:support@smh-tech.com

FlashRunner 2.0 Workbench

10

2 System Setup/Upgrade

2.1 Software Setup

The FlashRunner system software setup installs all required
components to your hard drive. These components include:

▪ FlashRunner 2.0 Workbench software;
▪ Command-line utilities and Interface Library;
▪ Documentation in PDF format.

To install the FlashRunner system software:

▪ Check the latest “System Software” package for

FlashRunner 2.0 on SMH Technologies website;
▪ Follow the on-screen
▪ Instructions in order to install the System Software.

To launch FlashRunner 2.0 Workbench under Microsoft
Windows®, select Start → Programs → SMH Technologies →
FlashRunner 2.0 → FlashRunner 2.0 Workbench.
Then click on File → Connect menu item in order to connect to
FlashRunner 2.0. If the icon will change to “plugged state”, your
product has been connected successfully.

i

Note: to install the FlashRunner system software
you must log in as Administrator.

Command Reference

11

2.2 What you need to start

FlashRunner 2.0 supports several devices. In order to program
a specific device, you will need the following:
▪ A driver file (.so);
▪ A license file (.lic);
▪ An FRB file (.frb);
▪ A project file (.prj);

Driver files are dynamic libraries that contain routines needed to
program a set of specific devices. SMH Technologies releases
daily updates in order to support new devices, so when you
request a new device, you'll often receive also an updated
version of the driver.

License files are text files that contain a CRC key that binds
together your specific FlashRunner 2.0 (by using its unique
serial number) with your target device. There are different
license types: license for a single target device, license for a
single-family, license for a silicon manufacturer. Please ask
SMH Technologies Sales Team for more information.

FRB file is the FlashRunner proprietary file format used to store
customer firmware. There is a specific tool available from
FlashRunner 2.0 Workbench, called FRB Manager, described
on ch 3.15.

Project files are text files containing all the necessary
information for setting your programming session. They contain
some static information regarding the device, all user-
configurable parameters and all commands which will be
executed on the target device. FlashRunner 2.0 Workbench has
a tool, Project Wizard, described in chapter 3.7 which allows
users to create a project from scratch only using graphical

FlashRunner 2.0 Workbench

12

items. Once created, a project could be modified by simply
editing it with a text editor.
All files are stored in the user data path which can be found or
changed on Tools → Settings menu items, “Paths” tab.

On the SMH Technologies website (www.smh-tech.com) you
can check the full supported device list.

In order to program a specific device a specific license file
for the couple “device and programmer” (identified by its
serial number) must be purchased.

In addition, you can order a shared license, which binds a
specific device to more serial numbers (up to 10
programmers can be included inside a license). Doing this,
a single file could be installed in more programmers and
enable them to program a specific target device.

You can purchase a license through our direct channel by
writing to our Sales Office: sales@smh-tech.com or, if you
bought FlashRunner from an SMH distributor, please contact
him. Once bought a license you'll receive a package with a
license file and a driver file, which must be copied to your
FlashRunner 2.0 product.

2.3 Connection setup

FlashRunner 2.0 Workbench can control programmer in Host
mode (via USB or Ethernet connection), or in Standalone
mode (via Control Connector) which can select and run a
specific project stored in its internal storage memory. For first
use and, to connect it to FlashRunner 2.0 Workbench, you'll
have to use FlashRunner 2.0 in Host mode.

http://www.smh-tech.com/
mailto:sales@smh-tech.com

Command Reference

13

Ethernet LAN connection settings:

By default, FlashRunner 2.0 IP address is 192.168.1.100, with
SUBNET MASK 255.255.255.0 and gateway 192.168.1.1. After
the first time connection you will be able to change this setting
using SETIP command (see ch 4.4.37).

i

Note: LAN connector area reaches more than 50°
degrees when connected to the host. Keep
FlashRunner 2.0 always in a well-ventilated area to
prevent product overheating, which could affect
product performance and, if maintained for a long
time, it could damage product hardware
components.

Please use ethernet cable included in FlashRunner 2.0 box and
connect it to your switch or directly to your host pc. Once
connected, the red cross in the network connections icon
related to your network card should disappear.

If host pc and FlashRunner 2.0 are connected through a router,
please be sure that they are running in the same subnet: host

Example of disconnected network card

FlashRunner 2.0 Workbench

14

pc IP address must be included between 192.168.1.1 and
192.168.1.254 address range.

If your pc and FlashRunner 2.0 are directly connected, you'll
need to set a static IP on network card used for connecting host
pc with FlashRunner 2.0. Please open the network card settings
window and use the following:

▪ IP ADDRESS: 192.168.1.X (where X is whatever number
from 1 up to 254 except 100, which is FlashRunner IP)

▪ SUBNET MASK: 255.255.255.0

▪ GATEWAY: 192.168.1.100

Command Reference

15

FlashRunner 2.0 Workbench is configured by default to connect
to 192.168.1.100 FlashRunner 2.0 IP address. If you'll need to
change FlashRunner 2.0 IP address you can easily update also
FlashRunner 2.0 Workbench settings using Tool → Settings
menu item.

USB CONNECTION SETTINGS – WINDOWS® PROCEDURE:

Once connected USB cable, please check on Device Manager
→ Ports (COM & LPT) if you can find USB Serial Port (COMX).
Where X is an integer number If not, please click Action →
Scan for hardware changes.

Once found this item, please sign which COM port has been
assigned to FlashRunner and use it to setup FlashRunner 2.0
Workbench software: please click on Tools → Settings, click on

FlashRunner 2.0 Workbench

16

“Serial” connection type and put COMX value inside Port
textbox.

USB CONNECTION SETTINGS – LINUX PROCEDURE:

Please check with dmesg command which device node has
been assigned to FlashRunner 2.0. Usually Linux assigns
ttyUSBX (where X is an integer number) device node. Please
check under /dev folder if your user has write/read privileges on
/dev/ttyUSBX device node. If not, please add it through chmod.
Please open FlashRunner 2.0 WorkBench Tools → Settings,
select Serial Connection Type and fill Port textbox with
/dev/ttyUSBX.

Command Reference

17

2.4 Firmware Update

Please, note that the procedure below is referred to the latest
version of GUI WorkBench.

In order to update FlashRunner 2.0 simply follow these steps:

1. Please connect to FlashRunner 2.0 using the "Connect"

button at the top left of GUI WorkBench.

2. Click here to get the latest FlashRunner 2.0 firmware.

3. Click to "Update OS" in the GUI WorkBench, like in the
image below.

4. Then select the file "update.tgz” that you just downloaded.
The GUI WorkBench will transfer the file and it will ask to
reboot the FlashRunner 2.0.

5. Please, connect again to FlashRunner 2.0 using "Connect"
button at the top left of GUI WorkBench.

6. Open Terminal tool available on GUI WorkBench and send
on “Master” channel (selectable by toolbar on the bottom-
right side) “FPGASTATICVER” command.

http://www.smh-tech.com/support-a-downloads/download-area/func-startdown/78/

FlashRunner 2.0 Workbench

18

7. If FPGASTATICVER command answer is less than “8”, you
need to manually reboot the FlashRunner 2.0 two more
times by doing a power cycle.

8. Please, check here to get the latest FlashRunner 2.0 setup,
to get the latest GUI WorkBench version, updated
documentation and related tools. Please remember to
uninstall the previous FlashRunner 2.0 setup before
installing the new one.

http://www.smh-tech.com/support-a-downloads/

Command Reference

19

3 FlashRunner 2.0 Workbench

3.1 Overview

FlashRunner 2.0 Workbench is a simple application for PC
which is able to communicate with FlashRunner 2.0 and
perform the following operations:

1. Create new projects;
2. Run projects and monitor programmer status;
3. Create FRB binary files;
4. Copy projects, FRB, drivers and licenses from/to

programmer;
5. Update OS;
6. Retrieve log.

FlashRunner 2.0 Workbench is compatible with all Microsoft
Windows® operating systems and with Linux operating system.

FlashRunner 2.0 Workbench

20

3.2 Opening window

Once you run FlashRunner 2.0 Workbench you'll see a window
like the one in the figure below. It's designed with a top toolbar,
a left toolbar and a central area that contains the recent
projects.
From this window, you can create a new project or open an
existing one.

Command Reference

21

After opening a project, the opening window will change and
you will see the project details. The new window will be like the
one in the figure below.
This window has still the same toolbars and a central area
composed of 3 tabs:
1. Project Setup: this tab gives a review of all settings of the

current project.
2. Production Control: this tab monitors the on-going

programming session.
3. Project Editor: this tab allows the user to manually edit the

project from an advanced text editor.

FlashRunner 2.0 Workbench

22

3.3 Top toolbar

From left to right, the top toolbar provides the following features:

1. Connect button: connect/disconnect from FlashRunner 2.0

and review connection status.
2. Send configuration button: send project and FRB to

FlashRunner 2.0.
3. Update database: download the latest version of the

data.xml file, which contains all the info of the supported
devices.

4. Working mode: set the working mode of FlashRunner 2.0.

5. Send button: click to send projects, FRBs, drivers, licenses

and OS updates.
6. Get button: click to get projects, FRBs, drivers, licenses

and logs.

Command Reference

23

3.4 Left toolbar

The left toolbar shows the most important features of
FlashRunner 2.0 Workbench at a sight.

 Create project wizard. See ch 3.7

 Edit actual / existing project

 Load project

 Settings

 FRB encryption. See ch 3.9

 Show device list

 Advanced File Manager. See ch 3.10

 Terminal. See 3.11

 Log. See 3.12

 Download Production Report

FlashRunner 2.0 Workbench

24

3.5 Project setup

After creating or opening a project, you will see a review of all
the project settings. Moreover, you will get also information
about connections and wirings, they are also available on the
Pin Map Tool described in ch 3.14.
It is also possible to export this page in PDF.

Command Reference

25

3.6 Production Control

After opening a project, into Production Control tab will be
loaded a widget for each channel defined inside the project.
Each widget contains the following labels:
1. Device: shows the target device name defined for that

channel.
2. Binary File: shows FRB file defined for that channel.

FlashRunner 2.0 Workbench

26

3. Run button: the button which starts the project only on that
single channel.

4. Prog. Time: shows the total execution time for that channel.
5. N° of PASS: shows the number of successful project

executions for that channel.
6. N° of FAIL: shows the number of failed project executions

for that channel.
7. Status: label which reports actual channel status. There are

four possible states:
a. Pass: last project execution completed successfully

and the channel is idle.
b. Fail: last project execution failed and the channel is

idle.
c. Idle: the channel is waiting for project execution.
d. Busy: The channel is running a project.

On the right side of Production Control there are 5 sections:

1. Send Project to FlashRunner: this button sends the PRJ

file and FRB files to FlashRunner 2.0.

2. General Information:
a. Project Name: shows the project name currently

loaded.
b. Operator Name: shows the operator name (the user

can insert it there).

3. Channels Information:

a. N° of Runs: shows the total number of executions
considering each channel separately.

b. N° of PASS: shows the total number of successful
executions considering each channel separately.

c. N° FAIL: shows the total number of failed executions
considering each channel separately.

Command Reference

27

4. Project Information:
a. N° of Cycles: shows the total number of project

executions.
b. N° Cycles PASS: shows the total number of

successful project executions.
c. N° Cycles FAIL: shows the total number of failed

project executions.
d. PASS Percentage: shows the actual pass

percentage over the total number of project
executions.

e. Avg. Cycle Time: shows the average time of project
executions.

f. Max. Cycle Time: shows the maximum time of
project executions.

g. Min. Cycle Time: shows the minimum time of project
executions.

h. Last Cycle Time: shows the time of the last project
execution.

i. Clear All: this button will reset all the shown values.

5. Control Room: this section lets the user control the project

executions. It is possible to launch a single project
execution or to launch a stress test with multiple
consecutive executions. Stress test mode can be launched
with some additional settings:

a. Sync. Channels: this option, if enabled, synchronize
the start of the project on all the channels (default
case), otherwise each channel will run separately.

b. Limited to: this option sets a limit to the number of
project executions.

FlashRunner 2.0 Workbench

28

3.7 Project Editor

Into the Project Editor tab, the user can find a built-in text editor
which can be used to manually edit the project file.
This editor has a syntax analyzer that helps the user to avoid
mistakes and simplify the recognition with different colors.
When saving a project, a warning could appear if there are
some unrecognized commands and they can be easily noticed
because these commands are underlined in red.

Command Reference

29

3.8 Wizard

FlashRunner 2.0 collects all the user settings related to the
programming sessions in text files called “projects”. Inside each
project, you'll find a set of commands (all rows beginning with
“#” character are commands, see ch 4.4.58) which, of course,
could be sent one by one through our interface library, through
the serial port or through “Terminal” tool of FlashRunner 2.0
Workbench. Having a single file including all these settings
however brings several benefits to users, which they could save
on a single file all the settings needed to program a specific
device and running a complete programming cycle with only
one click.

Wizard tool is one of the most innovative features of
FlashRunner 2.0 Workbench and lets users create a complete
working project using only graphic items. A set of wizard pages
will guide users toward all the specific device settings. Once
completed, a project file will be created inside the FlashRunner
2.0 data folder (which can be found or changed on Tools →
Settings menu items, “Paths” tab) and must be uploaded to
FlashRunner 2.0 before executing it.

FlashRunner 2.0 Workbench

30

3.8.1 Introduction page

You can create a new project using File → New Project. The
first wizard page will let you set the project file name.

Command Reference

31

3.8.2 Channel selection page

Next page, Channel selection, will let you define channels set
for which the following settings will apply.

If FlashRunner 2.0 Workbench is connected to the PC, you'll
have a set of checkboxes enabled depending on how many
channels are enabled on FlashRunner 2.0.
If you leave unticked some checkboxes, at the end of the
wizard you'll have the chance to start over and set up all the
remaining undefined channels.

FlashRunner 2.0 Workbench

32

3.8.3 Device selection page

This page will let you select which target device you want to
program for channels defined on the last page. Remember that
each device needs its library, wrote in “Driver” column, make
sure to have this library, in case ask SMH Technologies
technical support at support@smh-tech.com for an updated
version.

mailto:support@smh-tech.com

Command Reference

33

3.8.4 FRB Management page

As you can see in the figure, in the FRB management page,
you'll find some options about FRB usage. First, you can
choose the source:

• Standard FRB setup: this will let you select a source file
and convert it with just a single click.

• Advanced FR setup: this will open a new window that
will let you manage advanced features about FRB file.

• Use only dynamic memory: this won’t create any FRB
file, it will only use the dynamic memory.

• No FRB setup: this will set no FRB files.

FlashRunner 2.0 Workbench

34

The “Standard FRB setup” is the fastest way of achieving
source file to FRB conversion: simply select the source. FRB
will be created and saved in the standard user data folder with
the same filename as the selected source file.
You can also select an existent FRB: in this case, in place of
conversion, the tool will read FRB and load its content.

The “Advanced FRB setup” is a powerful tool to create an
FRB file (i.e. FlashRunner Binary file) which will contain all the
source files (more than one are allowed) needed to program
target device with your firmware. You can reach this tool via
Project Wizard or by selecting Tools → FRB Manager. There's
an important difference between these two paths: converting an
FRB through the Project Wizard will let you create an FRB
using selected target device memory addresses as reference,
using it through Tools → FRB Manager it doesn't. Moreover,
once created the FRB file, Project Wizard will define an address
map which will filter programming commands available.
FRB management is described in detail on ch 3.15.

It is also possible to set the advanced option “Ignore blank
page”: this allows FlashRunner 2.0 to skip pages without any
data different from the blank value. Sometimes this feature can
improve flashing times, according to the device characteristics.

On the bottom of the page the user can also open and check
the memory map of the selected device. The Memory map tool
is described in detail on ch 3.13.

3.8.5 Communication settings page

This page allows the user to choose the communication
protocol, the protocol frequency and other settings about the
target device's internal clock.

Command Reference

35

3.8.6 Delay settings page

This page allows the user to set the power-up and power-down
timings and the timings about the signals on the reset line.
On this page the user can also choose the working mode of the
reset line between open-drain and push-pull.

3.8.7 Powering settings page

This page allows the user to set the values of VPROG0 and
VPROG1 and their tolerance values.
On this page it’s also possible to set the relay barrier usage.

3.8.8 Additional parameters page

This page contains some additional parameters related to the
device which can be set by the user.

3.8.9 Command settings page

This page contains the standard commands related to the
memory regions of the device. Some commands may be
disabled according to the FRB file chosen.

3.8.10 Additional commands page

This page contains some additional commands related to the
device which can be set by the user.

3.8.11 Finish page

From this page, the user can choose if the project is concluded
or if there are other target devices to add to the project.

FlashRunner 2.0 Workbench

36

3.9 Encrypt FRB

An existing FRB could be encrypted through FlashRunner 2.0
Workbench software. You simply have to click on the Encrypt
FRB button of the left toolbar (see ch 3.4) and choose the FRB
file you want to encrypt. FlashRunner 2.0 will provide a new file
in the same folder, with the same filename and .frs extension,
which is the encrypted version of the original FRB.
If you have a project which uses the original FRB file and you
want to substitute it with its encrypted version, please modify
the project file with the project editor at the #TPSETSRC
command line. Then send both the project and FRS file to
FlashRunner 2.0.
The encryption method implemented is AES256.

i

Note: once encrypted, the FRB file can't be
decrypted anymore.

Command Reference

37

3.10 Advanced file manager

Advanced File Manager is an easy tool for updating or
retrieving files to/from connected FlashRunner 2.0. On the left
side you'll find your local resources, on the right side you'll find
FlashRunner 2.0 resources, in which only five folders are
available and are shown as tabs.
As the names suggest, project files (.prj) must be copied in
“Project” folder, drivers (.so) must be copied in “Drivers” folder,
licenses (.lic) must be copied in “License” folder, FRB files must
be copied in “FRB” folder, the log file is available in “Log” folder.
Once clicked a file from your local resources, please select a
destination folder and then click “Send” button. Vice versa,
select a file from FlashRunner 2.0 folder and click “Get” button.

FlashRunner 2.0 Workbench

38

On the bottom of the right side you can also see the memory
usage of your FlashRunner 2.0:

• Total memory: the amount of memory contained on the
partition of the SD card.

• Memory used: the amount of memory that is currently
used by user data.

• Memory free: the amount of memory that is unused.

• Percentage: percentage of memory used by user data.

• Log.txt size: size of the log file, this can grow up to
200MB, then it will be automatically resized, but 200MB
are always pre-allocated.

• Available memory: the amount of memory that can be
used by user data. This is different from “Memory free”
because it also considers the 200MB of the log file.

Command Reference

39

3.11 Terminal

Host pc interacts with FlashRunner 2.0 via synchronous serial
communication. Host send commands and receive answers, for
detailed information regarding communication syntax and
available commands please see ch 4.
On the top left side of the window a label will show you which
channel is selected. To send a command, write it inside the
editable combo box at its right, finally, click the “Send” button. If
you want to send a command to all channels simply click the
“Send all” button. If you want to change the channel, please,
select it with the button toolbar at the bottom right side.
Please note that the “#” character will be automatically added, if

not entered.
On the left side, you have a list of buttons to quickly send the
most common commands.

FlashRunner 2.0 Workbench

40

3.12 Log

The Real-Time Log feature shows the complete tracking of
FlashRunner 2.0. activity.
“Communication” tab will show full communication based on
received commands, while “Channel communication” will filter
out communication by single channel. You can select a channel
by using the bottom right toolbar. “Log” tab will show all
operation executed by FlashRunner 2.0, including commands
included in project files. Each row is composed with the
following syntax:

<channel>|<log level>|<timestamp>|---<command sent>
<channel>|<log level>|<timestamp>|<command answer>

Example:

01|2|200331-16:28:10.437|---#TPCMD VERIFY F S

01|1|200331-16:28:12.306|Time for VERIFY F S: 1.87 s

01|2|200331-16:28:12.306|>|

Command Reference

41

Log Level is a number from 1 up to 6 and define logging
verbosity level. Level 1 is the most concise, level 6 is the more
verbose. You can change log verbosity with SETLOGLEVEL
command (check ch 3.12).

Timestamp shows in which moment a command has been
executed. Syntax used for timestamp is:
<year><month><day>-<hour>:<min>:<sec>.<millisec>

For each command sent there could be one or more answer
lines.
It is also possible to hide timestamp by unticking the “Show
Datetime” check box.

FlashRunner 2.0 Workbench

42

3.13 Memory Map tool

This tool show the memory map of each device included into
the project. The interface is very simple and contains a lot of
useful informations about the memory of the device.

Command Reference

43

3.14 Pin Map Tool

PinMap tool is a handy feature that helps users to do cable
wirings from the target device to FlashRunner 2.0 ISP
connector. Clicking on one of the channels available in list will
load a table on the right side of the window, which lists all
signals involved for device connection on that specific channel.
Once clicked, related pins will become coloured and clicking on
one of them will highlight the related signal in the signals table.
Please note that FlashRunner 2.0 has one or two ISP
connectors based on product version: FlashRunner 2.0
versions with 8 or less active channels will have only one ISP
connector, FlashRunner 2.0 with more than 8 active channels
will have two ISP connector. Please pay attention to the
connector indication on top of signals table: first 8 channels are
related to the master board connector, channel 9 up to 16 are
related to the slave board connector.

FlashRunner 2.0 Workbench

44

3.15 Advanced FRB Manager

The Advanced FRB Manager is a powerful tool to create an
FRB file (i.e. FlashRunner Binary) which contains all the source
files (more than one are allowed) needed to program the target
device. You can find this tool via Project Wizard or by selecting
Tools → FRB Manager.
Attention: converting an FRB through the Project Wizard will
let you create an FRB using selected target device memory
addresses as reference, using it through Tools → FRB
Manager instead, it doesn't. Moreover, once created the FRB
file, Project Wizard will define an address map which will filter
programming commands available.

FRB Manager can convert the most common source file
formats: RAW Binary; Intel Hex and Motorola SREC.

Command Reference

45

Advanced FRB setup will enable full features to users in order
to let them compose their own FRB file. Users can import
multiple source files, edit single blocks start address and size,
remove blocks and add “fill” or “variable data” blocks.

After opening the window (see the image above), the user can
decide to create a new FRB by clicking the “New FRB” button
or to edit an existing FRB by clicking the “Open FRB” button.
After that, the buttons on the left side will be activated and the
user will be able to: add, edit, duplicate or delete a block of the
FRB. The operations to edit, duplicate or delete a block will be
active only after selecting a block from the list.

At the bottom of the window, the user can set the destination
file and launch the conversion when the work on the FRB file is
completed.

FlashRunner 2.0 Workbench

46

3.15.1 Add data to FRB: import from source file

When the user clicks the “Add” button a new window will
appear, this new window contains two tabs.

The first one is used to import data from a source file and, by
choosing this option, the user can import a source file defined
by the format selected from the list.
When choosing Intel Hex, the user should also choose the
encoding type: if data has been defined by words or by bytes. If
you are not sure about what to select, just use the “Byte
encoding” option.
Data parsing will be achieved by reading and merging all the
source file rows which define adjacent data areas, each
disjointed block will define a new data area and will be placed in
a new row (new block).

Command Reference

47

3.15.2 Add data to FRB: Fill Data / Variable Data

From the “Fill Data / Variable Data”, the user can add a new
block to FRB which contains the same value for each byte.
As you can see in the figure above, the user can set the start
address, the size and the fill value of the block.
The new block will not impact total FRB size and could also
overlap existing data.

The same procedure is valid also for variable data, in fact, the
user should just choose the value that corresponds with the
blank values of the device memory.
This will be used for dynamic content definition during target
device programming (please check ch 6 for detailed
information).

FlashRunner 2.0 Workbench

48

3.15.3 Edit FRB block

Once the user adds some data inside the new FRB file, some
data rows inside the input data table will appear. If a data block
overlapping occurs, two blocks involved are highlighted and the
user should solve the conflict or explicitly decide to leave this
conflict unresolved.
In order to modify a single data block, you need to select it on
the input data table and then click on the “Edit” button, a new
window will appear, like in the image above.

Command Reference

49

i

Data block overlapping conflicts will be solved
following this rule: the last data block (in row order)
will overwrite overlapping data of the first data
block.

From the new window, the user will be able to edit the source
start address, the target start address and the size.

If you use FRB Manager through the Project Wizard, the
memory map of the device will appear at the bottom of the
window. This helps to place the block in a proper memory
region.
If the chosen settings don’t fit any device memory regions, a
warning will appear. As a result, data blocks that don't fit any
device memory region will not be programmed at all on target
device flash memory.

Source address Setup
This text field defines the address of the source file from which
will start the block. This is only related to the source file.
The default value is the first address of the block.

Target address Setup
This text field defines from which target device address will start
block. This is the actual address from which the FlashRunner
2.0 will start programming the target device.
The default value corresponds with the source address.

Target Size Setup
This text field defines how many bytes will compose the block.
This corresponds to the number of bytes which will be
programmed on the target device by FlashRunner 2.0.
The default value is the full block length.

FlashRunner 2.0 Workbench

50

4 FlashRunner 2.0 Commands

4.1 Overview

FlashRunner is set up and controlled via ASCII-based
commands. FlashRunner can receive and execute commands
in two ways:

• Over a USB or Ethernet connection (Host mode);

• Via signals received by its “Control connector” which are
able to select and run a specific project stored in its
internal storage memory (Standalone mode).

In the first case, FlashRunner is controlled by a host system; in
the latter case, FlashRunner works in standalone mode and is
fully autonomous inside an integrated production system.

4.1.1 Host Mode

In Host mode, commands are sent from the host system to
FlashRunner:

• By using a TCP/IP command-line utility (like Termite© on
Microsoft Windows©);

• By using any programming language that is able to send
and receive data to/from a host system COM port or
Ethernet port (i.e. Microsoft Visual C++/Visual Basic,
National Instrument LabView/LabWindows, etc.) An
Interface Library is available upon which you can build
your own application (see “Projects” chapter).

Command Reference

51

Alternatively, you can use the FlashRunner 2.0 Workbench
software to send commands to the instruments.

i

Note (for TCP/IP command-line utilities):
FlashRunner 2.0 factory IP address is
192.168.1.100 and data is exchanged on port 1234.

4.1.2 Standalone Mode

In Standalone mode, FlashRunner 2.0 does not need a
connection to a host system. A group of control lines (SEL[4..0]
in the “CONTROL” Connector) determines which of the 32
available projects stored in FlashRunner 2.0 memory must be
executed.
A project is simply a text file containing a sequence of
FlashRunner 2.0 interface commands, plus some project-
specific directives. Projects are explained in detail in the ch
4.4.58.

4.2 Command Syntax

4.2.1 Sending a Command

Each command, except project-specific directives shown in
table 5.2 must start with the # character (FlashRunner 2.0

Terminal tool automatically adds this character). Each
command has different coverage, described in chapter 4.3, but
at first glance, a command could be sent to:

• Master engine

• A single site engine

• All engines (Master engine and site engines)

• All site engines

• A subset of site engines

FlashRunner 2.0 Workbench

52

A command sent to a single engine begins with # character

followed by <channel number>, followed by * character, followed

by the command name, followed by a space, followed by zero,
one or more parameters (separated by a space), a Carriage
Return character and a final Line Feed character. All parts of
the command are case sensitive. Channels' number starts from
1 up to 16 plus the master engine which is 55.
A command sent to all engines in parallel begins with #

character, followed by the command name, followed by a
space, followed by zero, one or more parameters (separated by
a space), a Carriage Return character and a final Line Feed
character.
A command sent to a subset of site engines begins with #

character followed by <engine mask>, followed by | character,

followed by the command name, followed by a space, followed
by zero, one or more parameters (separated by a space), a
Carriage Return character and a final Line Feed character,
where <engine mask> is a decimal number which identifies

bitwise channels on which command must be executed.
FlashRunner 2.0 Workbench software can send commands via
the Terminal tool, which is automatically adding #<channel

number>*, or #<channels subset bitwise mask>| prefix. Before

sending a command, please click on the bottom right side of the
window the channel for which you want to send the command.
Project files contain ENGINEMASK pseudo-command which
already defines which engines will be involved for the following
commands. For this reason, commands inside a project file
don't need channel prefix. Thus, inside a project a command
will be # character, followed by the command name, followed

by a space, followed by zero, one or more parameters
(separated by a space), a Carriage Return character and a final
Line Feed character.

Command Reference

53

4.2.2 Receiving the Answer

After receiving a command from the host system and executing
it, FlashRunner 2.0 responds with an answer string. The answer
string is composed of zero or more response characters,
followed by one result character, followed by a final Line Feed.
The character of the result is:

• > if the command has been executed successfully or

• ! if the command generated an error.

Below are two examples of answer (with and without error):

When a FlashRunner 2.0 command executes successfully,
FlashRunner 2.0 typically answers just with the engine number
followed by | character, followed by > character, see figure

above, (unless the command requires data to be returned).

FlashRunner 2.0 Workbench

54

When a FlashRunner 2.0 command generates an error,
FlashRunner 2.0 answers with an eight-digit hexadecimal error
code followed by the ! character (see figure above).

4.2.3 Numeric Parameters

Every numeric command parameter can be expressed either in
decimal or hexadecimal format. Hexadecimal numbers must be
preceded by the 0x symbol. The figure below shows three

examples of usage of the DYNMEMSET command to write two

bytes on FlashRunner 2.0 dynamic memory. These two
examples below are equivalent:

#DYNMEMSET 0x8E0400 0x2 0x00 0xFF
#DYNMEMSET 9307136 2 0 15

Numeric parameters returned by FlashRunner 2.0 as command
answer (CRC, memory data, error codes, etc.) are expressed in
hexadecimal or decimal format, depending on the case.

4.3 Command Summary

The following table summarizes all of the FlashRunner 2.0
commands. Each command is fully described in the “Command
Reference” section. The “Type” column describes if the
command will work on channel engines (“S”) or for the master
engine only (“M”).

Command Reference

55

Command Syntax Description Scriptable Type

File System Commands

CLRERR Clears the errors stack NO M + S

CLRLOG Clears the log file NO M

DELAY Stop every operation for an
interval

YES M

FSEXIST Check if a file does exist
inside FlashRunner memory

NO M

FSCRC Return the CRC32 value of a
file

NO M

FSGETCONTROL Read control interface value NO M

FSGETFILE Gets file from FlashRunner NO M

FSLS Lists files NO M

FSLS2 Lists files with more details NO M

FSRM Remove file NO M

FSSETCONTROL Set control interface value NO M

GETDATE Returns the actual
FlashRunner date/time

NO M

GETFILE Returns file from FlashRunner NO M

GETFREEMEM Show details about memory
usage

NO M

GETLOGLEVEL Gets the log verbosity level NO M + S

GETIP Returns the FlashRunner IP
address, netmask and
gateway

NO M

GETVPROG Read a power line value NO S

HELP Shows help table for a driver NO S

ISMEMENOUGH Check if there is enough
memory

NO M

ISPANELMODE Returns FlashRunner working
mode

NO M

LISTLIC Returns licenses list NO M

LOGIN Login a user account NO M

LOGOUT Logout a user account NO M

REBOOT Reboot programmer NO M

SETADMINPWD Set administrator password NO M

SETDATE Gets the actual FlashRunner
date/time

NO M

FlashRunner 2.0 Workbench

56

Command Syntax Description Scriptable Type

SETDIO Set the output state of DIO YES S

SETIP Sets up FlashRunner IP
address

NO M

SETLOGLEVEL Sets the log verbosity level NO M + S

SETMUX Drives demuliplexer NO M

SETPANELMODE Change FlashRunner working
mode

NO M

TESTVPROG Sets up a defined value on
VPROG lines

NO S

Status Commands

GETENGSTATUS Gets actual engine status NO M

SGETENG Returns the activated engines
number

NO S

SGETERR Returns detailed error
information

NO M + S

SGETSN Returns the FlashRunner
serial number

NO M

SGETVER Gets version NO M

SGETVERALGO Returns driver version NO M

SGETVERALGOLIST Gets entire driver list with
version

NO M

SPING Pings instrument NO M

RSTENGSTATUS Resets engine status NO M + S

Dynamic Memory Commands

DYNMEMCLEAR Clears dynamic memory YES S

DYNMEMSET <start addr>

<len> <data> <data> ... Defines dynamic data YES S

DYNMEMSET2 <start addr>

<len> <data stream> Defines dynamic data YES S

DYNMEMSETW <start addr>

<len> <data> <data> ...
Defines dynamic data
(word addressing)

YES S

DYNMEMSETW2 <start addr>

<len> <data stream>
Defines dynamic data
(word addressing)

YES S

FRB Management Commands

FRBREADCRC Read FRB CRC value NO M + S

Target Configuration Commands

TCSETDEV <dev setting

name> <dev setting value> Sets target device information YES S

Command Reference

57

Command Syntax Description Scriptable Type

TCSETPAR <par name> <par

value> Sets target device parameter YES S

LOADDRIVER <driver>

<silicon> <family>

<device>
Sets target device YES S

UNLOADDRIVER
Reset target before updating a
driver

YES S

RLYCLOSE Closes the specified relay YES S

RLYOPEN Opens the specified relay YES S

VOLTAGEMONITOR

<parameter> <value>
Sets working mode of the
voltage monitor

YES S

Target Programming Commands

TPCMD <command> [par1]

[par2] ... [parn]
Executes programming
command

YES S

TPEND Ends programming sequence YES S

TPSETDUMP <filename> Sets data destination YES S

TPSETSRC <filename> Sets data source YES S

TPSTART Starts programming sequence YES S

Script Execution Commands

RUN <script file> Executes the specified script NO S

Pseudo commands

ENGINE Select an engine YES S

ENGINEMASK Select an engine subset YES S

CRC CRC calculation YES S

FlashRunner 2.0 Workbench

58

4.4 Command Reference

Each FlashRunner command is listed alphabetically and
explained in the following pages.

4.4.1 Command Documentation Conventions

The following conventions are used in the documentation of
FlashRunner commands:
▪ Uppercase text indicates a command name or a command

option that must be entered as shown.
E.g. SGETVER

▪ Lowercase text between <> indicates a command

parameter name.
E.g. TPSETDUMP <filename>

▪ Lowercase text between [] indicates an optional command

parameter.
E.g. TPCMD <command> [par1] [par2] ... [parn]

▪ A vertical bar indicates a choice between two or more
command options.
E.g. TPCMD MASSERASE F|E|C

Please note that, except from examples, all the commands are
provided without the #<ch>* prefix.

Command Reference

59

4.4.2 CLRERR

Command syntax:
CLRERR

Scriptable: No

Available on: Master and site engines

Parameters:

None.

Answer data:

Success: none.
Error: none.

Description:

Clears the error stack.

Example:

#55*CLRERR
55|>

FlashRunner 2.0 Workbench

60

4.4.3 CLRLOG

Command syntax:
CLRLOG

Scriptable: No

Available on: Master engine only

Parameters:

None.

Answer data:

Success: none.
Error: the error code.

Description:

Clears the log file.

Example:

#55*CLRLOG
55|>

Command Reference

61

4.4.4 DELAY

Command syntax:
DELAY <ms>

Scriptable: Yes

Available on: Site engines only

Parameters:

ms: milliseconds to wait

Answer data:

Success: none.
Error: the error code.

Description:

Insert a <ms> delay between FlashRunner 2.0 operations.

Example:

#1*DELAY 2000
1|>

FlashRunner 2.0 Workbench

62

4.4.5 DYNMEMCLEAR

Command syntax:
DYNMEMCLEAR <start addr> <len>

Scriptable: Yes

Available on: Site engines only

Parameters:

start addr: (optional) address of the dynamic memory to start

clearing data to.
len: (optional) bytes number to clear.

Answer data:

Success: none.
Error: the error code.

Description:

Clears the data set on the dynamic memory area. In case no
parameters are set, then all dynamic memory is cleared.

Example:

#1*DYNMEMCLEAR
01|>

#1*DYNMEMCLEAR 0x0 0x10
01|>

Command Reference

63

4.4.6 DYNMEMSET

Command syntax:
DYNMEMSET <start addr> <len> <data> ... <data>

Scriptable: Yes

Available on: Site engines only

Parameters:

start addr: address of the target device to start writing data to.
len: bytes number to write (max. 16).
data: bytes to write.

Answer data:

Success: none.
Error: the error code.

Description:

Writes len bytes to the dynamic memory starting at address addr.

For devices which defines size in words (check it out on Memory Map
tool of FlashRunner WorkBench), see the command DYNMESETW.
Dynamic memory is a special memory area (embedded in the
FlashRunner electronics) which is typically used for storing temporary,
variable data (e.g. serial numbers) before programming it to the target
device. Dynamic memory retains its contents only as long as
FlashRunner is powered. Both hexadecimal and decimal digits are
accepted. More DYNMEMSET can be sent defining different memory
areas.
Please refer to chapter 6 for a detailed description.

Example:

#1*DYNMEMSET 0x0000 4 0x00 0x01 0x02 0x03
01|>

FlashRunner 2.0 Workbench

64

4.4.7 DYNMEMSET2

Command syntax:
DYNMEMSET2 <start addr> <len> <data stream>

Scriptable: Yes

Available on: Site engines only

Parameters:

start addr: address of the target device to start writing data to.
len: number of bytes to write (See the description

below for the maximum value supported).
data stream: bytes stream to write defined by hexadecimal

digits.

Answer data:

Success: none.
Error: the error code.

Description:

Writes len bytes to the dynamic memory starting at address addr.
Devices which defines size in words (check it out on Memory Map tool
of FlashRunner WorkBench), see the command DYNMESETW2.
Dynamic memory is a special memory area (embedded in the
FlashRunner electronics) which is typically used for storing temporary,
variable data (e.g. serial numbers) before programming it to the target
device. Dynamic memory retains its contents only as long as
FlashRunner is powered. More DYNMEMSET can be sent defining
different memory areas.
Like all commands, the maximum number of characters for a line is
1024. This means that, depending on the first part of the command,
len cannot be higher than 500.

Please refer to chapter 6 for a detailed description.

Example:

#1*DYNMEMSET2 0x0000 4 AB123402
01|>

Command Reference

65

4.4.8 DYNMEMSETW

Command syntax:
DYNMEMSETW <start addr> <len> <data> ... <data>

Scriptable: Yes

Available on: Site engines only

Parameters:

start addr: address of the target device to start writing data to.
len: words number to write (max. 16).
data: words to write.

Answer data:

Success: none.
Error: the error code.

Description:

Writes len words to the dynamic memory starting at address addr.
This command is only for devices which defines size in words (check
it out on Memory Map tool of FlashRunner WorkBench), for other
devices see the command DYNMESET. More DYNMEMSET can be
sent defining different memory areas.
Please refer to chapter 6 for a detailed description.

Example:

#1*DYNMEMSETW 0x0000 4 0x2301 0x6745 0xAB89 0xEFCD
01|>

FlashRunner 2.0 Workbench

66

4.4.9 DYNMEMSETW2

Command syntax:
DYNMEMSETW2 <start addr> <len> <data stream>

Scriptable: Yes

Available on: Site engines only

Parameters:

start addr: address of the target device to start writing data to.
len: number of words to write (See the description

below for the maximum value supported).
data stream: words stream to write defined by hexadecimal

digits.

Answer data:

Success: none.
Error: the error code.

Description:

Writes len words to the dynamic memory starting at address addr.
This command is only for devices which defines size in words (check
it out on Memory Map tool of FlashRunner WorkBench), for other
devices see the command DYNMESET2. More DYNMEMSET can be
sent defining different memory areas.
Like all commands, the maximum number of characters for a line is
1024. This means that, depending on the first part of the command,
len cannot be higher than 500.

Please refer to chapter 6 for a detailed description.

Example:

#1*DYNMEMSETW2 0x0000 4 0123456789ABCDEF
01|>

Command Reference

67

4.4.10 FRBREADCRC

Command syntax:
FRBREADCRC

Scriptable: No

Available on: Master and site engines

Parameters:

None.

Answer data:

Success: none.
Error: the error code.

Description:

Returns CRC value stored inside FRB file. CRC value is calculated
based on every FRB byte. Must be preceded by TPSETSRC
command

Example:

#1*#TPSETSRC 128_512.frb
01>
#1*FRBREADCRC
01|CE95C071
01>

FlashRunner 2.0 Workbench

68

4.4.11 FSCRC

Command syntax:

FSCRC <type> <filename>

Scriptable: No

Available on: Master engine only

Parameters:

type: filetype you want to transfer: could be

PRJ|LIB|FRB|LIC|LOG.
filename: file to be used to calculate the CRC32.

Answer data:

Success: the CRC32 value.
Error: the error code.

Description:

Calculate and return the CRC32 of a file.
The settings used to calculate the CRC32 are:

• Input reflected = off;

• Result reflected = off;

• Initial value = 0;

• Final xor value = 0.
For FRB files it just read the value from its header.

Example:
#55*FSCRC LIB libdefault.so

55|CRC = 0x39153D78

55|>

Command Reference

69

4.4.12 FSEXIST

Command syntax:
FSEXIST <type> <filename>

Scriptable: No

Available on: Master engines only

Parameters:

type: filetype you want to transfer: could be

PRJ|LIB|FRB|LIC|LOG.
filename: file to retrieve.

Answer data:

Success: none.
Error: the error code.

Description:

Check if a file of a specific file type does exist in FlashRunner storage
memory or not.

Example:

#55*FSEXIST PRJ test.prj
55|>

FlashRunner 2.0 Workbench

70

4.4.13 FSGETCONTROL

Command syntax:
FSGETCONTROL

Scriptable: No

Available on: Master engine only

Parameters:

None.

Answer data:

Success: none.
Error: the error code.

Description:

Retrieves the read value from the lines belonging to control connector

Example:

#55*FSGETCONTROL
55|Start line read value is: 1
55|Control lines read value is: 31
55|>

Command Reference

71

4.4.14 FSLS

Command syntax:
FSLS <type>

Scriptable: No

Available on: Master engine only

Parameters:

type: directory you want to list: could be

PRJ|LIB|FRB|LIC|LOG.

Answer data:

Success: the current directory contents.
Error: the error code.

Description:

Lists the contents of the current directory in the FlashRunner and their
size in bytes.

Example:

#55*FSLS PRJ
55|ATXMEGA128A4.prj - 1019
55|teridian.prj - 770
55|atxmega.prj - 1036
55|test.prj - 1067
55|>

FlashRunner 2.0 Workbench

72

4.4.15 FSLS2

Command syntax:
FSLS2 <type>

Scriptable: No

Available on: Master engine only

Parameters:

type: directory you want to list: could be

PRJ|LIB|FRB|LIC|LOG.

Answer data:

Success: the current directory contents.
Error: the error code.

Description:

Lists the contents of the current directory in the FlashRunner, their
size in bytes and the timestamp (GMT) of their last change.

Example:

#55*FSLS PRJ
55|ATXMEGA128A4.prj - 1019 - 743849183
55|teridian.prj - 770 - 1334997983
55|atxmega.prj - 1036 - 1348562783
55|test.prj – 1067 - 1569746783
55|>

Command Reference

73

4.4.16 FSRM

Command syntax:

FSRM <type> <filename>

Scriptable: No

Available on: Master engine only

Parameters:

type: filetype you want to transfer: could be

PRJ|LIB|FRB|LIC.
filename: file to remove.

Answer data:

Success: none.
Error: the error code.

Description:

Removes a file stored in the host system to FlashRunner.
The user can also use the “*” character as filename, this will remove
all files from the selected folder.
To remove the log file, please use the command CLRLOG.

Example:
#55*FSRM PRJ test.prj
55|>

FlashRunner 2.0 Workbench

74

4.4.17 FSSETCONTROL

Command syntax:

FSSETCONTROL <signal name> <signal value>

Scriptable: No

Available on: Master engine only

Parameters:

signal name: could be BUSY|CH1|CH2...|CH16.
signal value: could be OFF|ON for BUSY signal or

OFF|PASS|FAIL for CH1...|CH16 channels.

Answer data:

Success: none.
Error: the error code.

Description:

Sets a signal belonging to control connector to a defined value.
PASS is low logic level, FAIL is high logic level.

Example:
#55* FSSETCONTROL CH1 PASS
55|>

Command Reference

75

4.4.18 GETDATE

Command syntax:
GETDATE

Scriptable: No

Available on: Master engine only

Parameters:

None.

Answer data:

Success: current date.
Error: the error code.

Description:

Returns the current date set on FlashRunner.
Date format is <sec> <min> <hour> <date> <month> <year>.
<hour> is in 24-hour time format settings.

Example:

#55*GETDATE
55|current date: 8 4 15, 18.39.22
55|>

FlashRunner 2.0 Workbench

76

4.4.19 GETENGSTATUS

Command syntax:
GETENGSTATUS

Scriptable: No

Available on: Master engine only

Parameters:

None.

Answer data:

Success: current date.
Error: the error code.

Description:

Returns the actual engines status. The answer is composed by 16
characters, one for each channel starting from left, and value could be
“P”, “R”, “F” or “-”. “P” character stays for PASS status and means that
last programming on this channel passed successfully. “R” character
stays for RUN status and means that channel is still executing
commands. “F” character stays for FAIL status and means that last
programming on this channel failed, “-” character means that on this
product, this channel is not enabled. At power up state, there is one
more status, represented by “_” character, which means “idle state”,
so selected channel never executed any command since power up.

Example:

#55*GETENGSTATUS
55|P_______--------
55|>

Command Reference

77

4.4.20 GETIP

Command syntax:
GETIP

Scriptable: No

Available on: Master engine only

Parameters:

None.

Answer data:

Success: none.
Error: the error code.

Description:

Returns FlashRunner IP address, network and gateway

Example:
#55*GETIP
55|IP: 192.168.1.137
Netmask: 255.255.255.0
Gateway: 192.168.1.1
55|>

FlashRunner 2.0 Workbench

78

4.4.21 GETFREEMEM

Command syntax:
GETFREEMEM

Scriptable: No

Available on: Master engine only

Parameters:

None.

Answer data:

Success: memory usage details.
Error: the error code.

Description:

This command shows memory usage details.
Total size doesn’t correspond to the SD memory, it’s just the size of
the partition dedicated to the user data.
Usable memory is the amount of memory available considering that
the log.txt file can reach at maximum 200MB. If the log file reach that
size, then it’s cropped and the oldest logs are removed.

Example:

#55*GETFREEMEM

55|Total size: 1356.6 MB

55|Memory used: 677.1 MB

55|Memory free: 609.5 MB

55|Percentage: 53%

55|log.txt size: 0.9 MB

55|Usable memory: 410.3 MB

55|>

Command Reference

79

4.4.22 GETLOGLEVEL

Command syntax:
GETLOGLEVEL

Scriptable: No

Available on: Master and site engines

Parameters:

None.

Answer data:

level: log verbosity level. It's a number within [1-6] range

Description:

Returns the log verbosity level. Lower numbers mean more verbosity
on log file.

Example:

#55*GETLOGLEVEL
55|1

55|>

FlashRunner 2.0 Workbench

80

4.4.23 GETVPROG

Command syntax:
GETVPROG

Scriptable: No

Available on: Site engines only

Parameters:

vprog line: vprog line to read for the selected channel. Could

be 0|1.

Answer data:

Success: current voltage read value.
Error: the error code.

Description:

Returns the read value for the selected VPROG line in mV.

Example:

#1*GETVPROG 0
01|VPROG0=50
01|>

Command Reference

81

4.4.24 HELP

Command syntax:
HELP <lib_name.so>

Scriptable: No

Available on: Site engines only

Parameters:

lib_name.so: library name for which help table has to be shown

Answer data:

Success: help table.
Error: the error code.

Description:

Returns help table, which contains commands description

Example:

#1*HELP libpic16.so
TPCMD MASSERASE <F|E|C>
TPCMD ERASE <F> <start_addr> <size>
TPCMD BLANKCHECK <F|E|I|W> or BLANKCHECK <F|E|I|W>

<start_addr> <size>
TPCMD PROGRAM <F|E|I|W> or PROGRAM <F|E|I|W>

<start_addr> <size>
TPCMD VERIFY <F|E|I|W> <R> or VERIFY <F|E|I|W> <R>

<start_addr> <size>
TPCMD READ <F|E|I|W> <start_addr> <size>
TPCMD DUMP <F|E|I|W> <start_addr> <size>
TPCMD RUN or TPCMD RUN <delay(sec)>
TPCMD CONNECT
TPCMD DISCONNECT
01|>

FlashRunner 2.0 Workbench

82

4.4.25 ISMEMENOUGH

Command syntax:
ISMEMENOUGH <size_kB>

Scriptable: No

Available on: Master engine only

Parameters:

size_kB: Size (kB) of memory to be checked if it is available

Answer data:

Success: YES or NO.
Error: the error code.

Description:

Returns YES or NO if the size of memory asked is available.
Attention: the parameter must be expressed in kilobytes.

Example:

#55*ISMEMENOUGH 1024

YES

55|>

#55*ISMEMENOUGH 1048576

NO

55|>

Command Reference

83

4.4.26 ISPANELMODE

Command syntax:
ISPANELMODE

Scriptable: No

Available on: Master engine only

Parameters:

None.

Answer data:

Panel mode: the status of panel mode. It can be ON, OFF, 2, 3
or 4.

Description:

Returns the status of panel mode.

Example:

#55*ISPANELMODE
55|PANEL MODE OFF
55|>

#55*ISPANELMODE

55|PANEL MODE 2

55|>

FlashRunner 2.0 Workbench

84

4.4.27 LISTLIC

Command syntax:
LISTLIC

Scriptable: No

Available on: Master engines only

Parameters:

Answer data:

Success: license list.
Error: the error code.

Description:

Returns the stored license list.

Example:

#55*LISTLIC

R7F7010274.lic

License type: DEVICE. Only R7F7010274 is activated

Serial Number: 20027

Creation Date: 14.04.2016

Expiration Date: 9999/12/31

Algorithm Name: librh850.so

Manufacturer: RENESAS

Device Code: R7F7010274

STM32F103CB.lic

License type: DEVICE. Only STM32F103CB is activated

Serial Number: 20058 20059

Creation Date: 21.06.2018

Expiration Date: 9999/12/31

Algorithm Name: CORTEX

Manufacturer: STMICROELECTRONICS

Device Code: STM32F103CB

55|>

Command Reference

85

4.4.28 LOADDRIVER

Command syntax:

LOADDRIVER <driver name> <silicon name> <family

name> <device name>

Scriptable: Yes

Available on: Site engines only

Parameters:

driver name: driver filename which supports the selected device.
silicon name: silicon producer name which supports the selected

device.
family name: family name which supports the selected device.
device name: name of the selected device.

Answer data:

Success: none.
Error: the error code.

Description:

Load the driver and check the license.

Example:

#1*#LOADDRIVER libfsl_e.so STMICROELECTRONICS SPC58

SPC584B70
01|>

FlashRunner 2.0 Workbench

86

4.4.29 LOGIN

Command syntax:

LOGIN <user> <password>

Scriptable: No

Available on: Master engine only

Parameters:

user: username, you can choose between ADMIN|USER
password: USER has dummy password (any value accepted),

ADMIN has dummy password until changed with
SETADMINPW command

Answer data:
Success: none
Error: the error code

Description:

Login a user, which has different command set enabled.

Example:
#55*LOGIN ADMIN applepie
55|>

Command Reference

87

4.4.30 LOGOUT

Command syntax:

LOGOUT

Scriptable: No

Available on: Master engine only

Parameters:

Answer data:

Success: none
Error: none

Description:

It exits from ADMIN account and get back to USER account

Example:

#55*LOGOUT

55|>

FlashRunner 2.0 Workbench

88

4.4.31 REBOOT

Command syntax:

REBOOT

Scriptable: No

Available on: Master engine only

Parameters:

Answer data:

Success: none
Error: the error code

Description:

Reboot FlashRunner 2.0

Example:
#55*REBOOT
55|>

Command Reference

89

4.4.32 RLYCLOSE

Command syntax:

RLYCLOSE

Scriptable: Yes

Available on: Site engines only

Parameters:

None.

Answer data:

Success: none.
Error: the error code.

Description:

Drives related channel signal on the Relay control connector in order
to close the circuit. Putting this command inside a project will drives
signals related to channel subset defined by ENGINEMASK pseudo-
command.

Example:

#1*RLYCLOSE
01|>

FlashRunner 2.0 Workbench

90

4.4.33 RLYOPEN

Command syntax:

RLYOPEN

Scriptable: Yes

Available on: Site engines only

Parameters:

None.

Answer data:

Success: none.
Error: the error code.

Description:

Drives related channel signal on the Relay control connector in order
to open the circuit. Putting this command inside a project will drives
signals related to channel subset defined by ENGINEMASK pseudo-
command.

Example:

#1*RLYOPEN
01|>

Command Reference

91

4.4.34 RUN

Command syntax:

RUN <project name>

Scriptable: Yes

Available on: Site engines only

Parameters:

project name: project filename to run.

Answer data:

Success: none.
Error: the error code.

Description:

Starts a project stored inside FlashRunner 2.0 and defined by its
filename.
When running a project on a channel not included in the project, the
command will be successfully executed, but you see a warning
message into the log because nothing is actually done by that
channel.

Example:

#1*RUN test.prj
01|>

FlashRunner 2.0 Workbench

92

4.4.35 RSTENGSTATUS

Command syntax:

RSTENGSTATUS

Scriptable: No

Available on: Master and site engines

Parameters:

Answer data:

Success: none.
Error: none.

Description:

Reset engine status internal value.
Sending it to the master will reset all engine statuses, while sending it
to a single site engine will just reset that single engine status

Example:

#55*RSTENGSTATUS
55|>

Command Reference

93

4.4.36 SETADMINPW

Command syntax:

SETADMINPW <password>

Scriptable: No

Available on: Master engines only

Parameters:

password: new password for ADMIN user

Answer data:

Success: none.
Error: none.

Description:

Set up new password value for ADMIN user. This command is
available only if you are logged as ADMIN account.

Example:

#55*SETADMINPW newpassword
55|>

FlashRunner 2.0 Workbench

94

4.4.37 SETDATE

Command syntax:

SETDATE <sec> <min> <hour> <date> <month> <year>

Scriptable: No

Available on: Master engine only

Parameters:

sec: set seconds.
min: set minutes.
hour: set hours in 24-hour time format.
date: set date.
month: set month.
year: set year (last two digits).

Answer data:

Success: none.
Error: the error code.

Description:

Sets the current date on FlashRunner.
Date format is <sec> <min> <hour> <date> <month> <year>.
<hour> is in 24-hour time format settings.

Example:

#55*SETDATE 51 46 21 30 11 15
55|>

Command Reference

95

4.4.38 SETDIO

Command syntax:

SETDIO <DIO_num> <logic_state> <reference_mV>

Scriptable: Yes

Available on: Site engine only

Parameters:

DIO_num: the number which indicates the DIO, from 0 to 7.
logic_state: 1 to indicate high level, 0 to indicate low level.
reference_mV: the voltage expressed in mV to be used as

reference for high level. This parameter is optional
if VPROG0 has been already set.

Answer data:

Success: none.
Error: the error code.

Description:

Sets the current DIO to output at the indicated voltage level.
In case the parameter reference_mV isn’t set and VPROG0 hasn’t

been previously set, this command returns an error.
Otherwise, if the parameter reference_mV is set and VPROG0 has

been previously set, the new voltage value is ignored.
In any case, this command doesn’t enable the output of VPROG0 line,
unless it has been previously enabled.
Attention: this command can cause problems if used for DIO lines
controlled by the driver.

Example:

#1*SETDIO 7 1 3300

01|>

FlashRunner 2.0 Workbench

96

4.4.39 SETIP

Command syntax:

SETIP <IP> <netmask> <gateway>

Scriptable: No

Available on: Master engine only

Parameters:

IP: new programmer IP address.
netmask: new programmer netmask.
gateway: new programmer gateway.

Answer data:

Success: none.
Error: the error code.

Description:

Sets the new network settings for LAN peripheral. Once executed, you
must reboot FlashRunner in order to enable new settings.

Example:

#55*SETIP 192.168.1.128 255.255.255.0 192.168.1.1
55|>

Command Reference

97

4.4.40 SETLOGLEVEL

Command syntax:
SETLOGLEVEL <level>

Scriptable: No

Available on: Master and site engines

Parameters:

level: log verbosity level. It's a number within [1-6] range

Answer data:

Success: none.
Error: the error code.

Description:

Sets the log verbosity level. Lower numbers mean more verbosity on
log file.

Example:

#55*SETLOGLEVEL 1
55|>

FlashRunner 2.0 Workbench

98

4.4.41 SETMUX

Command syntax:
SETMUX <level>

Scriptable: No

Available on: Master engine only

Parameters:

level: 0 to isolate all outputs, 1 to enable first bank, 2 to

enable second bank.

Answer data:

Success: none.
Error: the error code.

Description:

Sets demultiplexer. “0” value will isolate all outputs, “1” will enable the
first bank and “2” value will enable the second bank. This command is
used only in combination with Demultiplexer tool, available only for
FlashRunner 16 channel version.

Example:

#55*SETMUX 1
55|>

Command Reference

99

4.4.42 SETPANELMODE

Command syntax:
SETPANELMODE <level>

Scriptable: No

Available on: Master engine only

Parameters:

level: 0 to work in standard mode, 1 to enable panel

mode, 2 to enable eMMC 8bit mode, 3 to enable
NAND mode, 4 to enable NOR mode

Answer data:

Success: none.
Error: the error code.

Description:

Enable panel mode. If programmer works in panel mode you could
only load a single communication protocol for all channels. For eMMC
8bit, NAND and NOR this setting is necessary in order to program this
kind of devices.

Example:

#55*SETPANELMODE 1
55|>

FlashRunner 2.0 Workbench

100

4.4.43 SGETENG

Command syntax:

SGETENG

Scriptable: No

Available on: Site engines only

Parameters:

None.

Answer data:

Success: none.
Error: the error code.

Description:

Returns the engine instance number for the requested engine.

Example:

#1*SGETENG
01|Engine N. 0>

Command Reference

101

4.4.44 SGETERR

Command syntax:

SGETERR

Scriptable: No

Available on: Master and site engines

Parameters:

None.

Answer data:

Success: the error code stack.
Error: none.

Description:

Returns the error stack related to the last error occurred on the
selected engine.
Each line follows the rule:
ERR--><err num>|<desc>|[<src file>, <line num>,<func>]

Example:

#1*SGETERR
01|ERR-->05000007|(null)|[file ../Src/pi-

algo_api_rw.c, line 165, funct API_FrbSet()]
01|ERR-->05000007|(null)|[file ../Src/pi-algo.c,

line 350, funct cmd_TPSETSRC()]
01|ERR-->05000007|(null)|[file ../Src/cli-cmd.c,

line 305, funct cmd_RUN()]
01|>

FlashRunner 2.0 Workbench

102

4.4.45 SGETSN

Command syntax:
SGETSN

Scriptable: No

Available on: Master engine only.

Parameters:

None.

Answer data:

Success: the product serial number.
Error: none.

Description:

Returns the product serial number.

Example:

#55*SGETSN
55|1
55|>

Command Reference

103

4.4.46 SGETVER

Command syntax:

SGETVER

Scriptable: No

Available on: Master engine only.

Parameters:

None.

Answer data:

Success: The Operating System version.
Error: none.

Description:

Returns the Operating System version.

Example:

#55*SGETVER
55|2.31
55|>

FlashRunner 2.0 Workbench

104

4.4.47 SGETVERALGO

Command syntax:

SGETVERALGO

Scriptable: No

Available on: Site engine only.

Parameters:

None.

Answer data:

Success: algorithm version.
Error: none.

Description:

Returns the version of the driver indicated as parameter. Usually
answer is a 3-digit number: 2 less significant are minor release, the
other one is the major release

Example:

#1*SGETVERALGO libsermem.so
01|04.02
01|>

Command Reference

105

4.4.48 SGETVERALGOLIST

Command syntax:

SGETVERALGOLIST

Scriptable: No

Available on: Master engine only.

Parameters:

None.

Answer data:

Success: algorithm version list
Error: none.

Description:

Returns algorithm version of all drivers stored inside programmer.
Usually answer is a 3-digit number: 2 less significant are minor
release, the other one is the major release

Example:

#55*SGETVERALGOLIST
55|libsermem.so – 04.02
55|libinf_c.so – 02.03
55|libatxmega.so – 02.00
55|>

FlashRunner 2.0 Workbench

106

4.4.49 SPING

Command syntax:

SPING

Scriptable: No

Available on: Master engine only.

Parameters:

None.

Answer data:

Success: SPONG.
Error: the error code.

Description:

Pings the instrument. Used to verify whether FlashRunner is
connected to the host system and running correctly.

Example:

#55*SPING
55|SPONG

55|>

Command Reference

107

4.4.50 TCSETDEV

Command syntax:
TCSETDEV <par name> <par value>

Scriptable: Yes

Available on: Site engines only.

Parameters:

par name: parameter name.
par value: parameter value.

Answer data:

Success: none.
Error: the error code.

Description:

Sets device-specific and programming algorithm-specific device
information. This command must be sent after the LOADDRIVER

command and before a TPSTART / TPEND command block. Please

note that CRC pseudo command is a CRC number based on
TCSETDEV data and is used to prevent device info tampering. For
this reason, you can't calculate the CRC but you only can copy it from
a working project done with FlashRunner WorkBench software.

Example:

#1*TCSETDEV VDDMIN 1600
01|>

FlashRunner 2.0 Workbench

108

4.4.51 TCSETPAR

Command syntax:

TCSETPAR <par name> <par value>

Scriptable: Yes

Available on: Site engines only.

Parameters:

par name: parameter name.
par value: parameter value.

Answer data:

Success: none.
Error: the error code.

Description:

Sets device-specific and programming algorithm-specific device
parameter. This command must be sent after the LOADDRIVER

command and before a TPSTART / TPEND command block.

Example:

#1*TCSETPAR PWDOWN 20
01|>

Command Reference

109

4.4.52 TESTVPROG

Command syntax:

TESTVPROG

Scriptable: No

Available on: Site engines only.

Parameters:

vprog line: vprog line to read for the selected channel. Could

be 0|1.
mV: mV to set in output on selected vprog line for the

selected channel.
output: defines if selected vprog line is in output or only

defined internally as high reference value. Could
be ON|OFF.

Answer data:

Success: ok.
Error: none.

Description:

Sets up a defined value on vprog lines.

Example:

#1*TESTVPROG 0 3300 ON
01|>

FlashRunner 2.0 Workbench

110

4.4.53 TPCMD

Command syntax:

TPCMD <command> [par1] [par2] ... [parn]

Scriptable: Yes

Available on: Site engines only.

Parameters:

command: programming command.
par: zero or more programming command parameters.

Answer data:

Success: programming command specific.
Error: the error code.

Description:

Performs a programming operation (i.e. mass erase, program, verify,
etc.) This command must be sent within a TPSTART/TPEND

command block. Programming commands and their relative
parameters are device-specific.

Example:

#1*TPCMD PROGRAM F
01|>

Command Reference

111

4.4.54 TPEND

Command syntax:
TPEND

Scriptable: Yes

Available on: Site engine only.

Parameters:

Success: none.
Error: the error code.

Answer data:

Success: the product serial number.
Error: none.

Description:

Ends a programming block. This command must be preceded by a
TPSTART command. TPCMD commands must be sent within a

TPSTART/TPEND command block.
TPSTART / TPEND command block must be preceded by the

TCSETPAR commands required for your specific target device. The

TPEND command resets any previously set device-specific and

programming algorithm-specific parameters.

Example:

#1*TPEND
01|>

FlashRunner 2.0 Workbench

112

4.4.55 TPSETDUMP

Command syntax:

TPSETDUMP <filename>

Scriptable: Yes

Available on: Site engines only.

Parameters:

filename Name of the dump file

Answer data:

Success: none
Error: the error code.

Description:

Setup the filename which will be created on FlashRunner storage
memory once TPCMD DUMP command will be executed. As

FlashRunner executes the same project on several channels, each
channel will have its own dump file. For this reason, on filename
indicated with this command FlashRunner will apply prefix “S<chN>_”,

where chN is the channel number to which dump refers. Dump file are
raw binary files

Example:

#1*TPSETDUMP dumpfile.bin
01|>

Command Reference

113

4.4.56 TPSETSRC

Command syntax:

TPSETSRC <filename> IGNORE_BLANK_PAGE

Scriptable: Yes

Available on: Site engines only.

Parameters:

filename: name of the file in the binaries folder inside

FlashRunner
IGNORE_BLANK_PAGE: optional parameter, avoid to program FRB

pages which are filled with the blank value

Answer data:

Success: none.
Error: the error code.

Description:

Sets the source of data to be programmed and verified in subsequent
TPCMD commands.

The user can also use “DYNMEM” as filename, this special keyword
will set the FlashRunner to use only dynamic memory instead of an
FRB file.

Example:

#1*TPSETSRC test.frb
01|>

FlashRunner 2.0 Workbench

114

4.4.57 TPSTART

Command syntax:

TPSTART

Scriptable: Yes

Available on: Site engines only.

Parameters:

None.

Answer data:

Success: none.
Error: the error code.

Description:

Starts a programming block. To end a programming block, send the
TPEND command. TPCMD commands must be sent within a

TPSTART/TPEND command block.
The TPSTART command performs some internal initializations and

prepares FlashRunner to execute subsequent TPCMD commands.

Example:

#01*TPSTART
01|>

Command Reference

115

4.4.58 UNLOADDRIVER

Command syntax:

UNLOADDRIVER

Scriptable: Yes

Available on: Site engines only

Parameters:

None.

Answer data:

Success: none.
Error: the error code.

Description:

Unload the driver to remove dependencies before updating the driver.

Example:

#1*#UNLOADDRIVER
01|>

FlashRunner 2.0 Workbench

116

4.4.59 VOLTAGEMONITOR

Reference: For detailed information refer to chapter 10.

Command syntax:
VOLTAGEMONITOR <parameter>
VOLTAGEMONITOR <parameter> <value>

Scriptable: Yes

Available on: Site engines only

Parameters:

parameter: OFF pause monitoring
 value: none. –

parameter: ON start/resume monitoring
 value: (*) ERROR_EXIT exit operations on error
 value: ERROR_CONTINUE log and continue

parameter: DYN_SAMPLE dynamic sampling mode
 value: (*) ENABLED based on currently

 active channels
 value: DISABLED constant sampling rate

parameter: READ_AVERAGE print both VPROG0 and

 VPROG1 Average Values.

 value: VPROG0 print the selected line

 VPROG1 print the selected line

parameter: CLEAR_AVERAGE reset both VPROG0 and

 VPROG1 average values

 value: VPROG0 clear the selected line

 VPROG1 clear the selected line

(*) default value, if a parameter is omitted

Answer data:

Success: none.
Error: the error code.

Command Reference

117

Description:

Voltage monitor is enabled by default setting VPROG (x) limits:

 #1*TCSETPAR PROG0LIMITS 50 0 0

 #1*TCSETPAR PROG1LIMITS 100 0 0

- Threshold value must be greater than 1% of VPROG

- All the described parameters below can be omitted.

Example:

#1*VOLTAGEMONITOR DYN_SAMPLE ENABLED *default
01|>
#1*VOLTAGEMONITOR DYN_SAMPLE DISABLED user choice
01|>
#1*VOLTAGEMONITOR ON ERROR_CONTINUE log the error
01|>

#1*VOLTAGEMONITOR CLEAR_AVERAGE reset values
01|> for both lines

#1*TPCMD MASSERASE F

Time for Masserase [...]

01|>

#1*VOLTAGEMONITOR READ_AVERAGE print average
01|> for MASSERASE

#1*VOLTAGEMONITOR OFF no monitoring
01|>
#1*TPCMD BLANKCHECK F

Time for Blankcheck [...]

01|>

#1*VOLTAGEMONITOR ON ERROR_EXIT exit if error
01|> is detected

#1*VOLTAGEMONITOR CLEAR_AVERAGE reset values
01|>

#1*TPCMD PROGRAM F

Time for Program [...]

01|>

#1*VOLTAGEMONITOR READ_AVERAGE print average
01|> for PROGRAM

FlashRunner 2.0 Workbench

118

5 Projects

Projects are sequences of commands collected in a text file.
This is a handy way to store all the target device information
and user settings needed to FlashRunner 2.0. Projects are
usually created with the Project Wizard tool (see ch 3.7 for
more information) and stored in the user data path folder. Once
created, a project could be edited with any text editor. Please
check the example below:

;Project generated by "FlashRunner 2.0 WorkBench 2.02"

;DEVICE: ATXMEGA32E5

;DRIVER: ATXMEGA 01.07

!ENGINEMASK 0x0000FFFF

#LOADDRIVER libatxmega.so ATMEL ATXMEGA ATXMEGA32E5

#TCSETDEV VDDMIN 1600

#TCSETDEV VDDMAX 3600

#TCSETDEV FOSCMIN 0

#TCSETDEV FOSCMAX 0

#TCSETDEV FPLLMIN 0

#TCSETDEV FPLLMAX 0

#TCSETDEV MCUID 0x2918

#TCSETDEV IDCODE 0x00000000

#TCSETDEV IDCODE_MSK 0x0FFFFFFF

#TCSETDEV CORE ATXMEGA

#TCSETDEV MEMMAP 0 F 0 0x00800000 0x00808FFF 0x00000080

0x00000080 0 0 0x0 0x0 0xFF 0x0 0

#TCSETDEV MEMMAP 1 E 0 0x008C0000 0x008C03FF 0x00000020

0x00000020 0 0 0x0 0x0 0xFF 0x0 0

#TCSETDEV MEMMAP 2 U 0 0x008E0400 0x008E040F 0x00000001

0x00000001 0 0 0x0 0x0 0xFF 0x0 0

#TCSETDEV MEMMAP 3 C 0 0x008E0200 0x008E020F 0x00000001

0x00000001 0 0 0x0 0x0 0xFF 0x0 0

#TCSETDEV MEMMAP 4 L 0 0x008F0020 0x008F002F 0x00000001

0x00000001 0 0 0x0 0x0 0xFF 0x0 0

Command Reference

119

!CRC 0x25CDA0E6

#TCSETPAR PROTCLK 15000000

#TCSETPAR PWDOWN 100

#TCSETPAR PWUP 100

#TCSETPAR RSTDOWN 100

#TCSETPAR RSTDRV OPENDRAIN

#TCSETPAR RSTUP 100

#TCSETPAR VPROG0 3300

#TCSETPAR CMODE PDI

#TPSETSRC vipcb6_test.frb

#DYNMEMSET 0x8E0400 7 0x00 0xFF 0xFF 0xFF 0xFF 0xFF 0x00

#TPSTART

#TPCMD CONNECT

#TPCMD MASSERASE C

#TPCMD BLANKCHECK F

#TPCMD PROGRAM F

#TPCMD VERIFY F R

#TPCMD BLANKCHECK E

#TPCMD PROGRAM E

#TPCMD VERIFY E R

#TPCMD PROGRAM U

#TPCMD PROGRAM L

#TPCMD DISCONNECT

#TPEND

The example above shows a simple project example that
configures a channel subset for a target device. There could be
more than one target device configured inside the same project,
requiring another commands block (starting
with !ENGINEMASK and finishing with #TPEND) which defines
the new target device settings. The channel subset involved for
a specific target device is defined by !ENGINEMASK command:
the following number will bitwise define channels involved.
Each number in base 2 defines one channel, starting from less
significative. Number value (1 or 0) defines if the channel is
selected or not. For example, !ENGINEMASK 0x1A, equals to
00011010 in binary and it means that channels 2, 8 and 9 are
selected.

FlashRunner 2.0 Workbench

120

The following section will define the target device (through
#LOADDRIVER) and all the specific device information (through
#TCSETDEV command). This section will be closed by !CRC
command: this number will prevent from altering the information
above which contain sensitive data and would compromise the
programming operation.
The next section is composed mainly of #TCSETPAR and
#TPSETSRC commands, which defines a set of user-defined
parameters (the result of Project Wizard settings). These
commands are editable and order doesn't matter.
The last section is enclosed between #TPSTART and #TPEND
commands and defines which operation will be executed on the
target device. These commands are editable, the order does
matter and we suggest not changing it once Project Wizard will
compile this file.
Commands related to single memory types have the double
syntax:

#TPCMD PROGRAM F

Will program automatically memory type areas defined by
loaded FRB file.

#TPCMD PROGRAM F 0x0 0x100

Will program memory type areas defined by command
parameters above. Target start address is 0x0, length 0x100. If
loaded FRB doesn't contain any data in this area target device
will not be programmed.

Usually double syntax is available for PROGRAM, VERIFY,

BLANKCHECK commands.

Command Reference

121

5.1 Execution and Termination

5.1.1 Standalone project execution

FlashRunner 2.0 has a control connector, a group of control
lines (SEL[4..0] in the “CONTROL” Connector, for hardware
details please refer to FlashRunner 2.0 User's Manual)
determines in binary logic a decimal number from 0 to 31 which
will execute project named project0.prj....project31.prj.
The event that triggers script execution is the START control
line becoming active (while the BUSY line is not active). This
line can be easily driven by the ATE control logic.
When FlashRunner 2.0 begins executing a project, “BUSY”
LED turns on.
The following diagram illustrates the typical temporal relations
between the various FlashRunner 2.0 control lines.

5.1.2 Remote projects execution

Additionally, projects can be manually executed in host mode.
RUN command (see ch 4.4.34) executes a specified project.

START

SEL lines are latched

Corresponding script is executed

Result LEDs are turned off Either “PASS” or “FAIL” LED is turned on

SEL[4..0]

BUSY

PASS/FAIL

Script execution
terminated

FlashRunner 2.0 Workbench

122

5.1.3 Projects Termination

Project execution ends either after FlashRunner 2.0 has
executed the last project command or immediately after the first
failing project command.

5.2 Project-Specific Directives

FlashRunner 2.0 commands contained in a project are
executed sequentially, exactly as they would be executed in
Host mode. However, projects contain additional directives (not
available in Host mode) indicated with “!” prefix which controls
how projects are executed. The following table lists these
directives.
Each directive is valid from its line forward.

Directive Syntax Description

ENGINEMASK Defines bitwise which channels are involved for the
following command section

CRC Calculate CRC of the preceding commands to avoid
specific target device data altering.

5.3 Logging

On FlashRunner 2.0, project command execution is logged.
You can check at the runtime log file (see ch 3.12) or download
the log file just by clicking the quick button on the top toolbar.

Command Reference

123

5.4 Comments

A project line may contain a comment. A comment line starts
with the “;” character, FlashRunner 2.0 will completely ignore
that line and so can be used as a comment.

5.5 Conditional scripting

With the aim of raising the flexibility and the customization of
projects, FlashRunner 2.0 implements low level commands able
to control the flow of the script’s commands.
The syntax used gets back to classical programming languages
and shall be immediately clear to all the users who are familiars
with them, because it reproduces if, then, else statement.
In fact, in “C” programming language control flow syntax is as
follows:

if (expression)

statement1
else

statement2

where the else part is optional. The expression is evaluated; if it
is true (that is if the expression has a non-zero value),
statement1 is executed. If it is false (the expression is zero) and
if there is an else part, statement2 is executed instead.1
In FlashRunner 2.0 the same goal can be achieved using the
syntax below inside any project file:

#IFERR expression
#THEN statement1

1 “The ANSI C Programming Language” 2nd ed., Brian W. Kernighan and Dennis M. Ritchie,

Prentice Hall

FlashRunner 2.0 Workbench

124

in which expression is TRUE when the command returns
“>“ character (meaning that command has been executed
successfully), or it is FALSE if the command returns an error
(with correspondent error code).

Notes:
1. Please note that syntax above can be used only inside a

script file and it’s not recognized on the command line
2. Control flows can’t be nested
3. Only one expression can be evaluated
4. Multiple statements can be executed for each case
5. If expression evaluation returns false, the error stack will be

traced in the log file. Anyway, if all the subsequent
commands will return “>”, the project will not return with an
execution error.

6. A syntax error will be returned in case the script has two
consecutive IFERR, or if there is an IFERR without a THEN
or vice versa.

Example:

The following example is an extract from a script where the
MASSERASE operation is carried out only if blank check
operation returns an error, that is the device to be programmed
is not blank.

#IFERR TPCMD BLANKCHECK F
#THEN TPCMD MASSERASE F

With this approach it is often possible to reduce project
execution time. This technique applies mostly to conditioning
target device memory-erasing only if BLANKCHECK fails.

Command Reference

125

It is also possible to include a second statement to perform the
BLANKCHECK operation one more time, just in case the first
one failed. In this way it’s possible to be sure that MASSERASE
worked, while two operations are skipped if the first
BLANKCHECK doesn’t fail.

#IFERR TPCMD BLANKCHECK F
#THEN TPCMD MASSERASE F
#THEN TPCMD BLANKCHECK F

Please refer to your driver-specific commands before
implementing conditional scripting it in your projects.

FlashRunner 2.0 Workbench

126

6 Serial Numbering

6.1 Introduction

Thanks to its built-in dynamic memory, FlashRunner 2.0
provides you with the possibility of serial numbering during
programming operations. During each programming cycle, a
host system generates a serial number and transfers it to
FlashRunner 2.0’s dynamic memory. The content of the
dynamic memory is then programmed into the target device.

6.2 Command syntax

The following example illustrates how serial numbering can be
performed.
Let’s assume that the serial number is composed of 4 bytes,
must be programmed into target device connected to channel 1,
flash starting from address 0x400, and that serial number to be
programmed is 0x55 0xAA 0x22 0xFE.
Host system transfers this serial number to FlashRunner’s
dynamic memory with the following command:

#1*DYNMEMSET 0x400 4 0x55 0xAA 0x22 0xFE

or with the following command:

#1*DYNMEMSET2 0x400 4 55AA22FE

And FlashRunner 2.0 will apply this “patch” over FRB data. You
can define more than one patch, virtually without limits (physical
limit is FlashRunner 2.0 1 GB RAM), but defined data is 16

Command Reference

127

bytes for DYNMEMSET, and a total of 512 bytes for the entire

DYNMEMSET2 command.

You can overwrite data which have been previously set in the
same addresses, FlashRunner 2.0 will automatically remove
what has been previously set and write the new data. Anyway,
we suggest using the command DYNMEMCLEAR to clear all
data before setting new data.

6.3 Example

...

#TCSETPAR RSTUP 100

#TCSETPAR VPROG0 3300

#TCSETPAR CMODE JTAG

#TPSETSRC APH_U27_varD.frb

#DYNMEMSET 0xA0604020 4 0x39 0x30 0x41 0x46

#DYNMEMSET 0xA06040A0 3 0x44 0x48 0x31

#TPSTART

#TPCMD CONNECT

#TPCMD MASSERASE D

#TPCMD BLANKCHECK D

#TPCMD PROGRAM D

#TPCMD VERIFY D R

#TPCMD MASSERASE F

#TPCMD BLANKCHECK F

#TPCMD PROGRAM F

#TPCMD VERIFY F R

#TPCMD DISCONNECT

#TPEND

APH_U27_varD.frb must contains defined region at start
address 0xA0604020 for 10 bytes size and 0xA06040A0 for 8
bytes size. If your source file doesn't cover this region please
use FRB Manager (see ch 3.15) to define it (use Advanced
FRB setup feature → Add → Variable data option).
Once defined, this data will be programmed overwriting FRB
original data, together with PROGRAM command in a single

FlashRunner 2.0 Workbench

128

step. Typically, DYNMEMSET command is not contained inside
a project but it's sent manually from connected PC host; after
that PC host can run the project with RUN command:
FlashRunner 2.0 will remember DYNAMIC data table until
DYNMEMCLEAR command execution or FlashRunner 2.0
power-on reset.

i

Note: until #DYNMEMCLEAR command, dynamic

data will be maintained during the project execution
loop

6.4 Word Addressing

Most devices don’t need this kind of commands, in fact, this
section is reserved for the devices which have a word
addressed memory.
If you intend to use dynamic memory with them, you shouldn’t
use the standard commands described in the previous sections
because they use byte addressing. You must use the following
commands which are specifically developed for this case:

#1*DYNMEMSETW 0x200 2 0xAA55 0xFE22

or with the following command:

#1*DYNMEMSETW2 0x200 2 55AA22FE

These commands are extremely similar to the standard ones,
just pay attention to the length which is in words and to the
endianness.

Command Reference

129

6.5 Using dynamic memory without FRB

Sometimes it is useful to have a very flexible solution, without
using a dummy FRB just to define the addresses of memory
where to set dynamic data. That’s why you can directly set the
dynamic memory as the source instead of an FRB file:

#TPSETSRC DYNMEM

Below you can see an example where we program and verify
only the 12 bytes defined into the dynamic memory, without
needing to generate any additional FRB file.

#TPSETSRC DYNMEM

#DYNMEMSET2 0x400120 12 E03912343484568078809A73

#TPSTART

#TPCMD CONNECT

#TPCMD PROGRAM F

#TPCMD VERIFY F R

#TPCMD DISCONNECT

#TPEND

FlashRunner 2.0 Workbench

130

7 Data Protection System

7.1 User management

User management lets users switch between two modes:
Administrator and User modes. The Administrator mode is
enabled to execute all commands, User instead has access to a
subset of all commands.
By default, FlashRunner 2.0 starts in Administration mode, if
you want to change the account, you must use the #LOGIN

command (see ch 4.4.29).
While the User account doesn't have a password (so any value
as password parameter for #LOGIN command is accepted), the

Administrator account could have a password. By default, also
Administrator account accepts any value as #LOGIN password

parameter unless you decide to set it. If you want to set the
Administrator password, please use #SETADMINPWD (See ch

4.4.36) with the following procedure:
1. Send #LOGIN ADMIN dummy

2. Send #SETADMINPWD new_password

From this moment on, if you want to login as Administrator you
must enter new_password. Once the user sets a password for

Administration mode, FlashRunner 2.0 will start in user mode.
The table below lists the FlashRunner commands available for
each user.

Command
Unsecured
Mode

Secured Mode
(Administrator)

SETADMINPWD - ⚫
CLRLOG - ⚫

Command Reference

131

7.2 FRB encryption

Each FRB could be encrypted using the FlashRunner 2.0
Workbench tool (See ch 3.97.2).
This feature will produce a new file, with .frs extension, which is
the encrypted version of the original file. New .frs file can't be
encrypted anymore.
To use it, please, upload .frs to FlashRunner 2.0 (using
Advanced File Manager, see ch 3.10) and change #TPSETSRC

filename extension on the related project, finally upload the
project to FlashRunner 2.0.

FlashRunner 2.0 Workbench

132

8 FlashRunner 2.0 Interface
Library

8.1 Overview

This chapter deals with interfacing FlashRunner 2.0 with PC
applications written by the user. This chapter assumes you
have already read the previous sections of this manual and got
acquainted with the instrument.

8.2 FlashRunner 2.0 Interface Library

FlashRunner 2.0 Interface Library is a DLL which includes all of
the functions that allow you to set up a communication channel
with the instrument and send commands to FlashRunner 2.0.
Dynamic-link libraries (DLL) are modules that contain functions
and data. A DLL is loaded at run time by its calling modules
(.exe or .dll). When a DLL is loaded, it is mapped into the
address space of the calling process.
FlashRunner 2.0 Interface Library contains Visual C++ written
routines and can be used to interface the instrument from
within, for example, a Microsoft Visual C++ or Visual Basic
application, as well as any other programming language that
supports the DLL mechanism. For details on how to call DLL
functions from within your application, please refer to your
programming language’s documentation.

Command Reference

133

8.3 Installation

Before to start working with the FlashRunner Interface Library,
you must set up your system with all the required files and
drivers. The files to be installed, into your application’s
directory, are:

▪ The “FR_COMM.dll” (this file must also be redistributed

with your application);
▪ For Visual C++ only: the “FR_COMM.lib” and

“FR_COMM.h” files (you must include these files in your
project);

▪ For Visual Basic only: the “FR_COMM.bas” file (you must
include this file in your project).

These files are automatically installed by the System Software
setup (in your installation path).

8.4 Interface Library Reference

8.4.1 Using the Interface Library Functions

When you control FlashRunner 2.0 within your own application,
you will typically follow the steps indicated below:

• Open a communication channel with the instrument.
The FR_OpenCommunication() function must be called prior

to any other Interface Library function.

• Send commands to the instrument and read answers
back.
Use the FR_SendCommand() and FR_GetAnswer() functions

to send a command and receive the answer sent back by
the instrument, respectively.

FlashRunner 2.0 Workbench

134

• Transfer files to/from FlashRunner 2.0.
Two dedicated functions, FR_SendFile() and

FR_GetFile(), allow you to transfer a file from the PC to

FlashRunner 2.0 and vice-versa, respectively.
The FR_SendFile() function is typically used to upload a

binary file to the instrument, while the FR_GetFile()

function is typically used to download a log file to the PC.

• Close the communication channel with the instrument.
This is done by the FR_CloseCommunication() function.

8.4.2 Return Values of the Interface Library Functions

Most of the FlashRunner 2.0 Interface Library functions return
an unsigned long value which indicates whether the function

was successfully executed (return value = 0) or not (return

value other than 0). In the latter case it is possible to get
extended error information by calling the function
FR_GetLastErrorMessage().

8.4.3 Unicode Functions

Every Interface Library function comes in two versions, an
ASCII version and a Unicode version. ASCII function names
end with A, while Unicode function names end with W. For
example, the FR_SendCommand() function is available as an

ASCII version as:

FR_COMM_ERR WINAPI FR_SendCommandA (FR_COMM_HANDLE

handle, const char *command);

and as a Unicode version as:

FR_COMM_ERR WINAPI FR_SendCommandW (FR_COMM_HANDLE

handle, const wchar_t *command);

Command Reference

135

8.4.4 Application examples

Application examples for Visual C and Visual Basic are
provided in the local installation path.

FlashRunner 2.0 Workbench

136

8.4.5 Function Reference for FR 2.0

8.4.6 FR_CloseCommunication

Include file:
#include “FR_COMM.h”

Function prototypes:

 FR_COMM_ERR WINAPI FR_CloseCommunicationA

(FR_COMM_HANDLE handle);
 FR_COMM_ERR WINAPI FR_CloseCommunicationW

(FR_COMM_HANDLE handle);

Parameters:

handle: handle of communication. This is the value

returned by the FR_OpenCommunication()

function.
Return value:

0: the function was successful.
Other than 0: an error occurred. Call the

FR_GetLastErrorMessage() function to get

extended error information.

Description:

Closes the communication link with the instrument.

Command Reference

137

8.4.7 FR_GetAnswer

Include file:
#include “FR_COMM.h”

Function prototypes:

 FR_COMM_ERR WINAPI FR_GetAnswerA

(FR_COMM_HANDLE handle,

char *answer,

unsigned long maxlen,

unsigned long timeout_ms);
 FR_COMM_ERR WINAPI FR_GetAnswerW

(FR_COMM_HANDLE handle,

wchar_t *answer,

unsigned long maxlen,

unsigned long timeout_ms);

Parameters:

handle: handle of communication. This is the value

returned by the FR_OpenCommunication()

function.
answer: the buffer that will receive the answer (\0

terminated) of the instrument.
maxlen: maximum number of characters to receive (must

be less than or equal to the answer buffer length).
timeout_ms: timeout, in milliseconds, after which the function

returns even if a complete answer has not been
received.

Return value:

0: the function was successful.
Other than 0: an error occurred. Call the

FR_GetLastErrorMessage() function to get

extended error information.

Description:

Receives the answer sent by FlashRunner 2.0 to the PC, in response
to the FR_SendCommand() function. A FR_GetAnswer() function

should always follow a FR_SendCommand() function.

FlashRunner 2.0 Workbench

138

8.4.8 FR_GetFile

Include file:

#include “FR_COMM.h”

Function prototypes:

 FR_COMM_ERR WINAPI FR_GetFileA

(FR_COMM_HANDLE handle,

const char *protocol,

const char *src_filename,

const char *dst_path,

const char *filetype,

FR_FileTransferProgressProc

progress);
 FR_COMM_ERR WINAPI FR_GetFileW

(FR_COMM_HANDLE handle,

const wchar_t *protocol,

const wchar_t *src_filename,

const wchar_t *dst_path,

const wchar_t *filetype,

FR_FileTransferProgressProc

progress);

Parameters:

handle: handle of the communication. This is the value

returned by the FR_OpenCommunication()

function.
protocol: transfer protocol. Must be “YMODEM”.
src_filename: name of the file to be retrieved from FlashRunner

2.0, e.g. "test.prj.
dst_path: local path where to save the file.
filetype: could be FRB|PRJ|LIC|LOG|LIB.
progress: address of a callback function which will receive

the progress status of the file transfer operation. If
not used, set this parameter to NULL.

Return value:

0: the function was successful.

Command Reference

139

Other than 0: an error occurred. Call the

FR_GetLastErrorMessage()function to get

extended error information.

Description:

Retrieves a file from FlashRunner 2.0 and stores it in a specified local
path.

FlashRunner 2.0 Workbench

140

8.4.9 FR_GetLastErrorMessage

Include file:
#include “FR_COMM.h”

Function prototypes:

 void WINAPI FR_GetLastErrorMessageA

(char *error_msg,

unsigned long string_len);
 void WINAPI FR_GetLastErrorMessageW

(wchar_t *error_msg,

unsigned long string_len);

Parameters:

error_msg: buffer that will receive the error message.
string_len: length of the buffer.

Return value:
none.

Description:

Most of the FlashRunner 2.0 Interface Library functions return an
unsigned long value which indicates whether the function was

successfully executed (return value = 0) or not (return value other

than 0). In the latter case it is possible to get extended error
information by calling the function FR_GetLastErrorMessage()

function.

Command Reference

141

8.4.10 FR_OpenCommunication

Include file:
#include “FR_COMM.h”

Function prototypes:

 FR_COMM_HANDLE WINAPI FR_OpenCommunicationA

(const char *port,

const char *settings);
 FR_COMM_HANDLE WINAPI FR_OpenCommunicationW

(const wchar_t *port,

const wchar_t *settings);

Parameters:

port: communication port. Must be “LAN” for Ethernet

communication “COMx” for USB communication,
where “x” is the number of the used port.

settings: IP address and port for Ethernet communication

(e.g. “192.168.1.100:1234”), baudrate for

USB (e.g. “115200”)
Return value:

>0: handle of the communication.
NULL: an error occurred. Call the

FR_GetLastErrorMessage() function to get

extended error information.

Description:

Creates a communication link with the instrument. Returns a
communication handle that must be used by successive FlashRunner
2.0 Interface Library function calls.

FlashRunner 2.0 Workbench

142

8.4.11 FR_SendCommand

Include file:
#include “FR_COMM.h”

Function prototypes:

 FR_COMM_ERR WINAPI FR_SendCommandA

(FR_COMM_HANDLE handle,

const char *command);
 FR_COMM_ERR WINAPI FR_SendCommandW

(FR_COMM_HANDLE handle,

const wchar_t *command);

Parameters:

handle: handle of the communication. This is the value

returned by the FR_OpenCommunication()

function.
command: string containing the FlashRunner command.

Return value:
0: the function was successful.
Other than 0: an error occurred. Call the

FR_GetLastErrorMessage() function to get

extended error information.

Description:

Sends a command to FlashRunner. To get the command answer, use
the FR_GetAnswer() function.

Command Reference

143

8.4.12 FR_SendFile

Include file:

#include “FR_COMM.h”

Function prototypes:

 FR_COMM_ERR WINAPI FR_SendFileA

(FR_COMM_HANDLE handle,

const char *protocol,

const char *src_filename,

const char *dst_path,

FR_FileTransferProgressProc

progress);
 FR_COMM_ERR WINAPI FR_SendFileW

(FR_COMM_HANDLE handle,

const wchar_t *protocol,

const wchar_t *src_filename,

const wchar_t *dst_path,

FR_FileTransferProgressProc

progress);

Parameters:

handle: handle of the communication. This is the value

returned by the FR_OpenCommunication()

function.
protocol: transfer protocol. Must be “YMODEM”.
src_filename: name of the file (inclusive of the path) to be sent to

FlashRunner, e.g.
"C:\\MYBINARIES\\FLASH1.FRB".

dst_path: could be FRB|PRJ|LIC|LOG|LIB.
progress: address of a callback function which will receive

the progress status of the file transfer operation. If
not used, set this parameter to NULL.

Return value:

0: the function was successful.
Other than 0: an error occurred. Call the

FR_GetLastErrorMessage() function to get

extended error information.

FlashRunner 2.0 Workbench

144

Description:

Sends a file from the PC to a specified path of FlashRunner 2.0.

Command Reference

145

9 FRB Converter

This section explains how to use the frbconverter.exe tool

from a terminal or a batch script.

The parameters that can be used are:

• -input input_file_name

which defines the input file and path. It can be used
multiple times to use multiple input files.

• -format input_file_format

which defines the format of the input file. It must be used
for each input file. Supported formats are:

o bin – for binary files.

o hex – for Intel Hex files.

o s19 – for Motorola SREC files.

• -output output_file_name

which defines the output file name and path.

• -offset offset_value

which defines an offset and that can be used only for
binary files.

Some examples of typical usage below:

• frbconverter.exe -input in.hex -format hex

-output out.frb

This simple command converts the in.hex file into

out.frb.

FlashRunner 2.0 Workbench

146

• frbconverter.exe -input first.s19 -format

s19 -input second.bin -format bin -output

out.frb

This command converts the first.s19 and

second.bin file into out.frb.

• frbconverter.exe -input input.bin -format

bin -offset 0x200 -output out.frb

This command converts the input.bin file with an

offset of 0x200 into out.frb.

It is also possible to set zones with variable data into the FRB to
be used for dynamic data. This can be done by setting as input
variable and defining the parameters below:

• -start_addr address_value

which defines the start address of the variable data.

• -size size_value

which defines the size of the variable data.

Some examples of typical usage with variable data below:

• frbconverter.exe -input variable

-start_addr 0x1000 -size 0x10 -output

out.frb

This command defines a variable data from 0x1000 to

0x100F into out.frb.

• frbconverter.exe -input input.bin -format

bin -offset 0x10 -input variable -

start_addr 0x0 -size 0x10 -output out.frb

This command converts the input.bin file with an

offset of 0x10 preceded by 0x10 bytes of variable data

into out.frb.

Command Reference

147

A simple batch file can be created with the following code:

set FRBCONVERTER=C:\Program Files (x86)\SMH

Technologies\FlashRunner2\frbconverter.exe

set INPUT_FILE=C:\Users\rertolupi\Desktop\myFile.s19

set OUTPUT_FILE=C:\Users\rertolupi\Desktop\myFile.frb

call "%FRBCONVERTER%" -input "%INPUT_FILE%" -format s19

-output "%OUTPUT_FILE%"

FlashRunner 2.0 Workbench

148

10 Voltage Monitor

10.1 Introduction

Voltage Monitor is a new operative system feature implemented
starting from version 2.32/3.02 of the OS that keeps constantly
measured the voltage level of the two VPROG lines available for

each channel and runs in the background regardless of driver,
device or number of channels in use.

The basic operating principle is that if an under-voltage or over-
voltage level is detected caused by exceeding both the negative
or positive boundary threshold any ongoing flashing operation
can be interrupted.

Options to control operations are available therefore the
monitoring can be paused or resumed by user commands that
can be inserted in the file script, as well as the error can be
detected to exit immediately or continue the overall flashing
process and log.

Voltage Monitor can be activated without specifying any type of
command or parameter. The process starts checking the power
level after the activation of the VPROG line just after ending the

Power-up delay defined during the Project Wizard Creation and
stops before the power is turned off.

If any voltage error is identified, the monitor sends a signal to
the operating system which will immediately disable both VPROG

lines and terminate the execution of the running procedure.
After disabling VPROG lines digital lines will stop also, resulting

Command Reference

149

in a variable timeout error return during the currently executed
command.

10.2 Command syntax

Voltage monitor is enabled by setting voltage limits control
check of the two VPROG lines (0 or 1) via Workbench

software or scripting parameters as described below:

#TCSETPAR PROG(x)LIMITS <thr> <prm2> <prm3>

parameters explanation:

 (x) 0 or 1: specifies the VPROG line

 <thr> threshold in mV of the error detection for VPROG.

Threshold must be equal or greater than 1% of VPROG(x)

Example: VPROG0 = 3300mV

minimum threshold value allowed: 33mV

Note: parameter <prm2> and parameter <prm3> are not involved with

Voltage Monitor.

#TCSETPAR PROG0LIMITS <thr> 0 0 VPROG0 threshold limit

#TCSETPAR PROG1LIMITS <thr> 0 0 VPROG1 threshold limit

#TCSETPAR VPROG0 <mV> VPROG0 Output Level

#TCSETPAR VPROG1 <mV> VPROG1 Output Level

The under-voltage error is detected using the formula:
 UVerr = Is Vsampled < (VprogSet minus Vthreshold)

The over-voltage error is detected using the formula:
 OVerr = Is Vsampled > (VprogSet plus Vthreshold)

FlashRunner 2.0 Workbench

150

The error detected is reported in the Real-Time log of the
channel in which it occurs.
Error types are described later in the paragraph 10.5.

Optional commands:

#VOLTAGEMONITOR DYN_SAMPLE <value>

Parameter/values explanation:

<value> ENABLED *default

Dynamic Sampling mode is enabled by default and the
time of the sampling point of each channel is dynamically
adjusted to always achieve the best available sampling rate.

If the measurement is paused for any channel, the
dynamic sampling algorithm (if not disabled by the user)
compensates by increasing the sampling time in the other
channels to reach the maximum frequency available. The
sampling sequence may change due to internal task
scheduling but all the channels are equally sampled.

<value> DISABLED

Fixed sampling time is obtained by disabling the Dynamic
Sampling Algorithm, and can be calculated multiplying the
minimum sampling time per channel (300uS) with the
number of channels in which the monitor is activated and the
number of the power supplies to control.

S.T. = 300uS * 8 channels * (vprog0=1) = 2.4mS ~ 400Hz

Command Reference

151

(continued)

#VOLTAGEMONITOR ON <value>

<value> ERROR_CONTINUE

The voltage monitor is enabled and keeps constantly
monitored the subsequent operation. If an error is detected it
is logged and the flashing process continues.

<value> ERROR_EXIT (default)

Monitoring is restarted for the current operation and forces
an exit of the current command execution if an error is
detected.

#VOLTAGEMONITOR OFF

Monitoring can be paused (if not necessary for the next
operation)

#VOLTAGEMONITOR CLEAR_AVERAGE <value/no value>

<no value>

reset the average value already calculated for both lines

<value> VPROG0

<value> VPROG1

clear data for the selected line only.

#VOLTAGEMONITOR READ_AVERAGE <value/no value>

<no value>

print in the Realtime Log terminal both VPROG0 and

VPROG1 average values of the sampled data starting from

the beginning of operations or the last CLEAR_AVERAGE

command.

<value> VPROG0

<value> VPROG1

print the read average value for the selected line

FlashRunner 2.0 Workbench

152

Usage:
#TPCMD VOLTAGEMONITOR CLEAR_AVERAGE

[…]

#TPCMD VOLTAGEMONITOR READ_AVERAGE

Commands can be added to the script to read the voltage value
measured during the same operation.

Script Example:

[…]

#TCSETPAR PROG0LIMITS 50 0 0

#TCSETPAR VPROG0 3300

[…]

#VOLTAGEMONITOR ON ERROR CONTINUE log only

#TPCMD VOLTAGEMONITOR CLEAR_AVERAGE reset measure

#TPCMD MASSERASE F start operation

#TPCMD VOLTAGEMONITOR READ_AVERAGE log measure

#VOLTAGEMONITOR OFF no monitoring

#TPCMD BLANKCHECK F start operation

#VOLTAGEMONITOR ON ERROR_EXIT error detection

#TPCMD VOLTAGEMONITOR CLEAR_AVERAGE reset measure

#TPCMD PROGRAM F start operation

#TPCMD VOLTAGEMONITOR READ_AVERAGE log measure

#VOLTAGEMONITOR OFF no monitoring

#TPCMD VERIFY F R start operation

[…]

Command Reference

153

10.3 Computational load

Voltage Monitoring has a computation load that may reflect in
5% - 7% increase of the overall programming time measured on
a 16 channels system.

10.4 Measurement Process

The measurement process starts as soon as VPROG is activated

and stable in the output line and continues until VPROG is shut

down.

The sampling frequency is proportional to the number of
channels currently active and its value is approximately 3.3KHZ
when only 1 channel of VPROG0 is monitored.

If both VPROG0 and VPROG1 lines are monitored simultaneously

the sampling time increases to 600us and the sampling
frequency is approximately 1.6KHz.

For 8 channels of VPROG0 monitored only, the sampling

frequency is about 400Hz and for 16 channels it is about
200Hz. If VPROG0 and VPROG1 are both monitored, the sampling

rate for 16 channels is approximately 100Hz per channel.

FlashRunner 2.0 Workbench

154

Sampling sequence for 8ch of VPROG0, 300uS per sample:

Sampling sequence for 8ch of VPROG0+VROG1, 300uS per sample:

Sampling sequence for 8ch of VPROG0, 300uS per sample, only odd
channels are monitored:

Threshold limits:

Command Reference

155

10.5 Error Types

#TCSETPAR PROG0LIMITS 50 0 0

#VOLTAGEMONITOR ON ERROR_CONTINUE

Example of under-voltage detection and log:

[VoltageMonitorPoll] ch:1, * VProg0 Under Voltage ERROR:

2061mV->3300mV, [@ms: 1224]

- 2061mV: the level measured,

- 3300mV: the reference

- [@ms: 1224]: elapsed time from start of operation

→ task continue.

[VoltageMonitorPoll] ch:1, * VProg0 Over Voltage ERROR:

4180mV->3300mV, [@ms: 1551]

- 4180mV: the level measured,

- 3300mV: the reference

- [@ms: 1551]: elapsed time from start of operation

→ task continue.

#VOLTAGEMONITOR ON ERROR_EXIT

[VoltageMonitorPoll] ch:1, * VProg0 Under Voltage ERROR:

2148mV->3300mV, [@ms: 56075]

!*! -> Exit Signal detected [10]: VMError -6 Address

0x000002dc. Process expiring...

!*! -> Disabling VPROG0...

!*! -> Disabling VPROG1...

[VMErrorStatusCond] threadStatusCond[0] = TD_ERROR

VoltageMonitor has terminated the execution of command:

#TPCMD MASSERASE F

|ERR--0400001D|Voltage Monitor Error

detected|[file ../Src/voltageMonitor.c, line 456, funct

VMSignalError()]

FlashRunner 2.0 Workbench

156

11 FlashRunner 2.0 Internal
Memory

FlashRunner 2.0 has an internal memory storage which collects
all the data, files, information regarding your projects. Its
memory is an SD card which comes by default with 64GB size.
This value can be increased up to 256GB.
If you need to increase the memory size of an already
purchased product please contact your distributor
If you want to purchase a new product with an already
increased memory storage, please notify that to your distributor
at ordering time.
Approved SD cards for FlashRunner 2.0 products are signed
below:

64GB Lexar microSDXC. Cod: LSDMI64GBBEU633A

128 GB Kingston MicroSDXC. Cod: DCG2/64GB

256 GB Micron MicroSDHC. Cod: MTSD256AHC6MS-1WT

Command Reference

157

12 Troubleshooting

This section collects a set of troubleshooting techniques to
program successfully your device with FlashRunner 2.0.

i

Note: Keep FlashRunner 2.0 always in a well-
ventilated area in order to prevent product
overheating, which could affect product
performance and, if maintained for a long time, it
could damage product hardware components.

12.1 Project execution failures

If you are executing a project and FlashRunner 2.0 answers to
project execution with FAIL please open the Real Time Log
tool, described in chapter 3.12. Click on the Log tab, click on
the Clear button, Run again project and check related error
description. Usually a failure on “Connect” command execution
means that FlashRunner 2.0 and target device are not correctly
communicating.

1. Please check that project is set for the exact device

mounted on your board
2. Please check cable wirings using the PinMap tool described

in chapter 3.14.
3. Verify you are running the correct channel
4. Verify that all connections have been wired correctly using a

tester:
a. check which test point/connector pin implements

function described on the PinMap tool and verify the

FlashRunner 2.0 Workbench

158

continuity test point/connector pin and FlashRunner
2.0 ISP connector pin. You may find useful target
board schematics and target board test point map.

b. Did you confuse RX signal with TX signal? Is the
soldering rugged?

c. Check which device pin is connected to each test
point/connector pin. Check continuity between the
device pin and FlashRunner 2.0 ISP connector.

d. Does each signal they have passive components in
between that could cause interference? If
capacitance or resistor are needed on some lines
(check it on device datasheet) verify that they have
been designed on your board under specification.

5. Is the board powered up correctly? If you are using
FlashRunner VPROG1, please try with an external power
supply. Does current absorption reach a realistic value? (at
least 30mA)

6. If you are using an external power supply, be sure that
FlashRunner 2.0 GND line is coupled with the external
supplier GND line.

7. If you are using FlashRunner 2.0 VPROG0 line together
with an external supply, be sure that the VPROG0
reference is the same as the one defined by target board
design reference.

8. If you are using FlashRunner 2.0 VPROG1 line, you must
be sure that board current absorption is less than
FlashRunner model maximum current level supported.
Please check FlashRunner 2.0 User's Manual to get
maximum current absorption on VPROG0 and VPROG1

9. Has this board been already programmed? Firmwares
could affect device startup, please try always with a device
in erased state.

10. Is there a watchdog active on the board? If yes please
check how to disable it.

Command Reference

159

11. Try slowing down communication frequency to the lowest
value accepted (100kHz usually is available)

12. Try increasing PWUP, PWDOWN, RSTUP, RSTDOWN
values

13. GND reference must not float
14. Please use an oscilloscope to check if signals are affected

by “glitches”, if they are present try to compensate by
putting a small capacitance between this signal and GND

15. Signals must have a specific time frame for rising edge and
falling edge. Check on datasheet which are these
constraints and check if they are satisfied. If not, put a
power-up resistor (resistor between GND and VPROG0) or
a power-down resistor.

16. Remember that cable wirings must be the shortest as
possible. Try reducing their length, especially if they are
more than 30 cm long and always use twisted and shielded
cables.

In case of assistance need please open the Real Time Log tool,
described in chapter 3.12. Click on the Log tab, click on the
Clear button, Run again project, check related error description.
Contact support@smh-tech.com attaching this error log in your
email together with SGETVER command answer (please check
chapter 3.11 and 4.4.46 for more information)

mailto:support@smh-tech.com

	1 Before Starting
	1.1 Important Notice to Users
	1.2 Getting Technical Support

	2 System Setup/Upgrade
	2.1 Software Setup
	2.2 What you need to start
	2.3 Connection setup
	2.4 Firmware Update

	3 FlashRunner 2.0 Workbench
	3.1 Overview
	3.2 Opening window
	3.3 Top toolbar
	3.4 Left toolbar
	3.5 Project setup
	3.6 Production Control
	3.7 Project Editor
	3.8 Wizard
	3.8.1 Introduction page
	3.8.2 Channel selection page
	3.8.3 Device selection page
	3.8.4 FRB Management page
	3.8.5 Communication settings page
	3.8.6 Delay settings page
	3.8.7 Powering settings page
	3.8.8 Additional parameters page
	3.8.9 Command settings page
	3.8.10 Additional commands page
	3.8.11 Finish page

	3.9 Encrypt FRB
	3.10 Advanced file manager
	3.11 Terminal
	3.12 Log
	3.13 Memory Map tool
	3.14 Pin Map Tool
	3.15 Advanced FRB Manager
	3.15.1 Add data to FRB: import from source file
	3.15.2 Add data to FRB: Fill Data / Variable Data
	3.15.3 Edit FRB block

	4 FlashRunner 2.0 Commands
	4.1 Overview
	4.1.1 Host Mode
	4.1.2 Standalone Mode

	4.2 Command Syntax
	4.2.1 Sending a Command
	4.2.2 Receiving the Answer
	4.2.3 Numeric Parameters

	4.3 Command Summary
	4.4 Command Reference
	4.4.1 Command Documentation Conventions
	4.4.2 CLRERR
	4.4.3 CLRLOG
	4.4.4 DELAY
	4.4.5 DYNMEMCLEAR
	4.4.6 DYNMEMSET
	4.4.7 DYNMEMSET2
	4.4.8 DYNMEMSETW
	4.4.9 DYNMEMSETW2
	4.4.10 FRBREADCRC
	4.4.11 FSCRC
	4.4.12 FSEXIST
	4.4.13 FSGETCONTROL
	4.4.14 FSLS
	4.4.15 FSLS2
	4.4.16 FSRM
	4.4.17 FSSETCONTROL
	4.4.18 GETDATE
	4.4.19 GETENGSTATUS
	4.4.20 GETIP
	4.4.21 GETFREEMEM
	4.4.22 GETLOGLEVEL
	4.4.23 GETVPROG
	4.4.24 HELP
	4.4.25 ISMEMENOUGH
	4.4.26 ISPANELMODE
	4.4.27 LISTLIC
	4.4.28 LOADDRIVER
	4.4.29 LOGIN
	4.4.30 LOGOUT
	4.4.31 REBOOT
	4.4.32 RLYCLOSE
	4.4.33 RLYOPEN
	4.4.34 RUN
	4.4.35 RSTENGSTATUS
	4.4.36 SETADMINPW
	4.4.37 SETDATE
	4.4.38 SETDIO
	4.4.39 SETIP
	4.4.40 SETLOGLEVEL
	4.4.41 SETMUX
	4.4.42 SETPANELMODE
	4.4.43 SGETENG
	4.4.44 SGETERR
	4.4.45 SGETSN
	4.4.46 SGETVER
	4.4.47 SGETVERALGO
	4.4.48 SGETVERALGOLIST
	4.4.49 SPING
	4.4.50 TCSETDEV
	4.4.51 TCSETPAR
	4.4.52 TESTVPROG
	4.4.53 TPCMD
	4.4.54 TPEND
	4.4.55 TPSETDUMP
	4.4.56 TPSETSRC
	4.4.57 TPSTART
	4.4.58 UNLOADDRIVER
	4.4.59 VOLTAGEMONITOR

	5 Projects
	5.1 Execution and Termination
	5.1.1 Standalone project execution
	5.1.2 Remote projects execution
	5.1.3 Projects Termination

	5.2 Project-Specific Directives
	5.3 Logging
	5.4 Comments
	5.5 Conditional scripting

	6 Serial Numbering
	6.1 Introduction
	6.2 Command syntax
	6.3 Example
	6.4 Word Addressing
	6.5 Using dynamic memory without FRB

	7 Data Protection System
	7.1 User management
	7.2 FRB encryption

	8 FlashRunner 2.0 Interface Library
	8.1 Overview
	8.2 FlashRunner 2.0 Interface Library
	8.3 Installation
	8.4 Interface Library Reference
	8.4.1 Using the Interface Library Functions
	8.4.2 Return Values of the Interface Library Functions
	8.4.3 Unicode Functions
	8.4.4 Application examples
	8.4.5 Function Reference for FR 2.0
	8.4.6 FR_CloseCommunication
	8.4.7 FR_GetAnswer
	8.4.8 FR_GetFile
	8.4.9 FR_GetLastErrorMessage
	8.4.10 FR_OpenCommunication
	8.4.11 FR_SendCommand
	8.4.12 FR_SendFile

	9 FRB Converter
	10 Voltage Monitor
	10.1 Introduction
	10.2 Command syntax
	10.3 Computational load
	10.4 Measurement Process
	10.5 Error Types

	11 FlashRunner 2.0 Internal Memory
	12 Troubleshooting
	12.1 Project execution failures

