

| Manufacturer:        | Quest Technologies, Inc.<br>55 Chastain Road Northwest, Suite 100<br>Kennesaw, Georgia 30144 USA                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Applicant:           | SIP Technologies, LLC<br>72070 Highway 1077<br>Covington, Louisiana 70433 USA                                                                                                                                                                                                                                                                                                                                                                                              |
| Product Description: | The Neo3 system consists of 2 boards housed in separate enclosures - Controller Board, High Voltage 03 Generator Board.                                                                                                                                                                                                                                                                                                                                                    |
|                      | The Controller board includes a microcontroller, LCD display,<br>keypad, Low voltage power supply, relay for controlling power<br>to a water cooler and power switches for controlling power to<br>the air pump and 03 generator circuit located in the High<br>Voltage 03 Generator board.                                                                                                                                                                                |
|                      | The High Voltage Generator board consists of an air pump<br>and a 10 KV pulse generator circuit. Using the keypad on the<br>controller board, a user can program the times and the<br>intervals for ozone generation. At the programmed times, the<br>microcontroller applies power signals to the air pump and the<br>ozone generator via a 3- conductor cable. The power signals<br>turn on the high voltage and the air pump on the High Voltage<br>03 Generator board. |
|                      | The high voltage creates a corona across a glass tube through<br>which air is pumped. In the first step, the oxygen molecules in<br>the glass tube are broken into 2 atoms (2 0) by the corona. In<br>the second step, each of these highly reactive atoms<br>combines with an oxygen molecule to produce an ozone<br>molecule (03). The Ozone thus produced is dissolved in water<br>inside a cooler using a diffuser.                                                    |
|                      | During normal operation, the SIP/Neo3 ozonator turns on at a<br>user programmed time and runs for a certain duration entered<br>by a user using the 3 keys on the front panel. Please see the<br>User's manual for details on programming. The Ozone<br>generated is pumped into a water cooler.                                                                                                                                                                           |
|                      | The main controller board is equipped with a 10 A fuse on                                                                                                                                                                                                                                                                                                                                                                                                                  |

the 110/220 VAC supply voltage.

| Operating<br>Voltage/Frequency: | 230V/50 Hz                                                                                                                                                                                                                                                                           |  |  |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Equipment Under Test:           | SIP NEO3 <sup>1</sup><br>Model: SIP NEO3*                                                                                                                                                                                                                                            |  |  |
|                                 | *Denotes actual model tested as worst-case representative of product family that includes the following: SIP-OS-1001, SIP-OS-1002, SIP-OS-1003, SIP NEO3.                                                                                                                            |  |  |
|                                 | <sup>1</sup> SIP is a trademark of SIP Technologies, LLC.                                                                                                                                                                                                                            |  |  |
| Equipment Category:             | Information Technology Equipment                                                                                                                                                                                                                                                     |  |  |
| Measurement Location:           | F2 Labs in Middlefield, Ohio. Site description and attenuation data are on file with the Certification and Engineering Bureau, Industry Canada, Site Number 4730B-1.                                                                                                                 |  |  |
| Measurement Procedure:          | All measurements were performed according to Industry<br>Canada outlined in Interference-Causing Equipment Standard<br>for Digital Apparatus, ICES-003, Issue 6:2016 for Information<br>Technology Equipment. A list of the measurement equipment<br>is included with the test data. |  |  |
|                                 | <b>Canadian Standards Association Standard CAN/CSA-CISPR</b><br><b>22-10</b> , Information technology equipment — Radio disturbance<br>characteristics — Limits and methods of measurement                                                                                           |  |  |
|                                 | <b>ANSI C63.4</b> , American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 $GHz^{2}$ (latest published edition)                                                             |  |  |

### Applicable Rules: ICES-003, Issue 6:2016 for Class A IT Equipment\*

\*Test results do not include radiated emissions, at request of client.

Product Received: December 19, 2017

Testing Completed: March 22, 2018

Summary of Results: In Compliance (with design changes noted in Exhibit II of this Test Report)\*

\*Test results do not include radiated emissions, at request of client.

The EUT complies with the EMC requirements when manufactured identically as the unit tested in this report, including any required modifications and/or Manufacturer's Statement. Any changes to the design or build of this unit subsequent to this testing may deem it non-compliant.

M.M.

Evaluation Conducted by:

Michael Toth, EMC Lab Manager

**Reviewed by:** 

Ken Littell, Director of EMC & Wireless Operations

Note: Complies/Does Not Comply criteria are based upon the following condition: Where the results are compared to published test standard or manufacturer specified limits, the Complies or Does Not Comply opinion is considered without applying the stated measurement of uncertainty.

This report shall not be duplicated except in full without the written approval of F2 Labs.

Reports noted as a revision replace all previously issued reports and/or antecedent report revisions issued under this job number.

# **Table of Contents**

| I.   | Test Procedure and Data Calculation | 4  |
|------|-------------------------------------|----|
| II.  | EUT Configuration and Cables        | 6  |
| III. | Conducted Emissions                 | 8  |
| IV.  | Photographs                         | 13 |
| V.   | Modifications                       | 14 |
| VI.  | Labeling                            | 15 |

### **Document History**

| Document Number         | Description                                                                                          | Issue Date     | Approved<br>By |
|-------------------------|------------------------------------------------------------------------------------------------------|----------------|----------------|
| F2LQ9812A-05E           | First Issue                                                                                          | April 25, 2018 | K. Littell     |
| F2LQ9812A-05E<br>Rev. 1 | Revision of<br>manufacturer's<br>name, addition of<br>trademark<br>information at client<br>request. | May 15, 2018   | K. Littell     |
|                         |                                                                                                      |                |                |

# <u>Exhibit I</u>

## Test Procedure and Data Calculation

#### Test Item Condition:

The equipment to be tested was received in good condition.

#### Testing Algorithm:

EUT was set up in a normal operating mode, with device powered on and supplying power to a water cooler. The highest emissions were recorded in the data tables.

#### **Conducted Emissions:**

The equipment was installed on a non-conductive surface 10 cm above a GRP. Power was provided to the EUT through a LISN bonded to a 3 x 2 meter ground plane. The LISN and peripherals were supplied power through a filtered AC power source. The output of the LISN was connected to the input of the receiver via a transient limiter, and emissions in the range 150 kHz to 30 MHz were measured. The measurements were recorded using the quasi-peak and average detectors as directed by the standard, and the resolution bandwidth during testing was 9 kHz. The raw measurements were corrected to allow for attenuation from the LISN, transient limiter and cables. All data for conducted emissions can be found in Exhibit III.

#### Uncertainty Budget:

The uncertainty in EMC measurements arises from several factors which affect the results, some associated with environmental conditions in the measurement room, the test equipment being used, and the measurement techniques adopted.

The measurement uncertainty budgets detailed below are calculated from the test and calibration data and are expressed with a 95% confidence factor using a coverage factor of k=2. The Uncertainty for a laboratory are referred to as *U*lab. For Radiated and Conducted Emissions, the Expanded Uncertainty is compared to the *U*cispr values to determine if a specific margin is required to deem compliance.

| Ulab                                                |                         |                         |
|-----------------------------------------------------|-------------------------|-------------------------|
| Measurement Range                                   | Combined<br>Uncertainly | Expanded<br>Uncertainty |
| Radiated Emissions <1 GHz @ 3m                      | 2.54                    | 5.07dB                  |
| Radiated Emissions <1 GHz @ 10m                     | 2.55                    | 5.09dB                  |
| Radiated Emissions 1 GHz to 2.7 GHz                 | 1.81                    | 3.62dB                  |
| Radiated Emissions 2.7 GHz to 18 GHz                | 1.55                    | 3.10dB                  |
| AC Power Line Conducted Emissions, 150kHz to 30 MHz | 1.38                    | 2.76dB                  |
| AC Power Line Conducted Emissions, 9kHz to 150kHz   | 1.66                    | 3.32dB                  |

/ / . .

#### Ucispr

| Measurement Range                                   | Expanded<br>Uncertainty |
|-----------------------------------------------------|-------------------------|
| Radiated Emissions <1 GHz @ 3m                      | 5.2dB                   |
| Radiated Emissions <1 GHz @ 10m                     | 5.2dB                   |
| Radiated Emissions 1 GHz to 2.7 GHz                 | Under Consideration     |
| Radiated Emissions 2.7 GHz to 18 GHz                | Under Consideration     |
| AC Power Line Conducted Emissions, 150kHz to 30 MHz | 3.6dB                   |
| AC Power Line Conducted Emissions, 9kHz to 150kHz   | 4.0dB                   |

If Ulab is less than or equal to Ucispr, then:

- compliance is deemed to occur if no measured disturbance exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.

If *U*lab is greater than *U*cispr in table 1, then:

- compliance is deemed to occur if no measured disturbance, increased by (*U*lab *U*cispr), exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance, increased by (*U*lab *U*cispr), exceeds the disturbance limit.

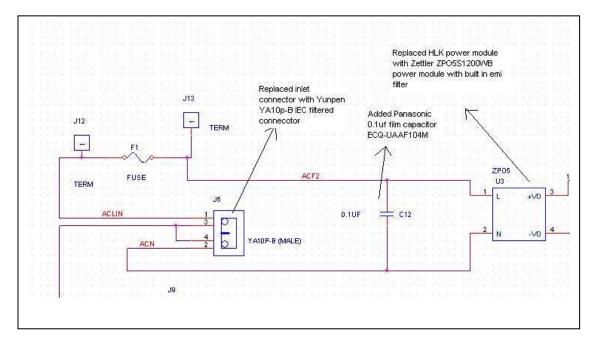
Note: Only measurements listed in the tables above that relate to tests included in this Test Report are applicable.

# <u>Exhibit II</u>

### **EUT Configuration and Cables**

#### **Equipment Under Test (EUT):**

Product Description: See page 1.


| Device                | Manufacturer      | Model Number | Serial Number  |  |
|-----------------------|-------------------|--------------|----------------|--|
| SIP NEO3 <sup>1</sup> | QUEST             | SIP NEO3*    | None Specified |  |
| SIF NEO3              | Technologies, LLC | SIF NEUS     |                |  |

<sup>1</sup>SIP is a trademark of SIP Technologies, LLC.

\*Denotes actual model tested as worst-case representative of product family that includes the following: SIP-OS-1001, SIP-OS-1002, SIP-OS-1003, SIP NEO3.

Note: The EUT tested included the following design changes made to the EUT by the manufacturer, necessary to meet Conducted Emissions requirements:

- Replaced Qualtekk 703W-00/54 connector with YA10P-B IEC filtered connector.
- Replaced HLK-5M12 power supply module with filtered Zettler ZP05S1200WB module.
- Removed common mode choke and 2200pf capacitors and added 0.1uf film capacitor.



The EUT complies with the EMC requirements when manufactured identically as the unit tested in this report, including any required modifications and/or manufacturer's statement. Any changes to the design or build of this unit subsequent to this testing may deem it non-compliant.

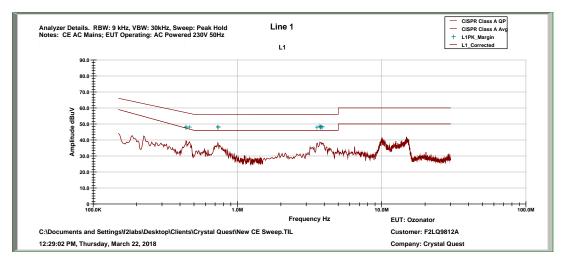
092717 Report Number: F2LQ9812A-05E Rev. 1

### Accessories (Support Equipment):

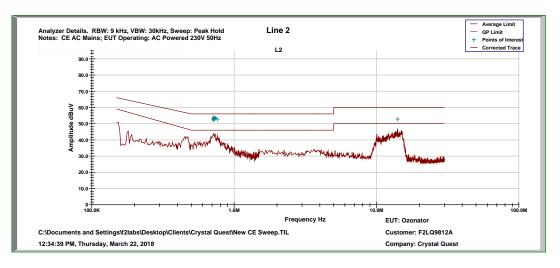
| Device       | Manufacturer                | Model Number       | Serial Number  |
|--------------|-----------------------------|--------------------|----------------|
| Water Cooler | Quest Technologies,<br>Inc. | Turbo Water Cooler | None Specified |

#### Cables:

| Cable Function  | Length | Shielded (Yes/No) |
|-----------------|--------|-------------------|
| AC Mains Input  | >3m    | No                |
| AC Mains Output | <3m    | No                |
| DC Output       | <3m    | No                |

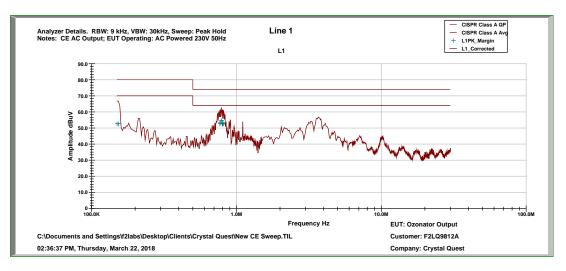

# Exhibit III

### Conducted Data


| Test Date:    | March 22, 2018   | Test Engineer:     | M. Toth |
|---------------|------------------|--------------------|---------|
| Rule:         | ICES-003 Issue 6 | Air Temperature:   | 21.0º C |
| Limit:        | Class B          | Relative Humidity: | 35%     |
| Test Results: | Complies*        | Relative numbulty. | 30%     |

\*Complies with design changes noted in Section 4.1 of this Test Report.

### AC Mains Input, Conducted Test – Line 1: 0.15 MHz to 30.0 MHz




|     | Top Discrete Measurements |                    |            |                 |                    |                   |                 |                |  |
|-----|---------------------------|--------------------|------------|-----------------|--------------------|-------------------|-----------------|----------------|--|
| No. | Conductor                 | Frequency<br>(MHz) | Detector   | Level<br>(dBµV) | Adjustment<br>(dB) | Results<br>(dBµV) | Limit<br>(dBµV) | Margin<br>(dB) |  |
| 1   | Line 1                    | 0.44               | Quasi-Peak | 24.296          | 10.448             | 34.744            | 57.062          | -22.318        |  |
|     |                           | 0.44               | Average    | 18.810          | 10.448             | 29.258            | 47.380          | -18.122        |  |
| 2   | Line 1                    | 0.44025            | Quasi-Peak | 24.874          | 10.448             | 35.322            | 57.057          | -21.735        |  |
| ~   |                           | 0.44025            | Average    | 19.895          | 10.448             | 30.343            | 47.374          | -17.031        |  |
| 3   | Line 1                    | 0.463875           | Quasi-Peak | 26.580          | 10.430             | 37.010            | 56.623          | -19.613        |  |
| 3   |                           | 0.463875           | Average    | 21.745          | 10.430             | 32.175            | 46.811          | -14.636        |  |
| 4   | Line 1                    | 0.7305             | Quasi-Peak | 25.486          | 10.336             | 35.822            | 56.0            | -20.178        |  |
| 4   |                           | 0.7305             | Average    | 19.496          | 10.336             | 29.832            | 46.0            | -16.168        |  |
| 5   | Line 1                    | 0.733875           | Quasi-Peak | 24.526          | 10.336             | 34.862            | 56.0            | -21.14         |  |
| 5   | Line i                    | 0.733875           | Average    | 19.923          | 10.336             | 30.259            | 46.0            | -15.741        |  |
| 6   | Line 1                    | 3.55875            | Quasi-Peak | 20.772          | 10.308             | 31.080            | 56.0            | -24.920        |  |
| 0   |                           | 3.55875            | Average    | 12.986          | 10.308             | 23.294            | 46.0            | -22.706        |  |
| 7   | Line 1                    | 3.7275             | Quasi-Peak | 21.577          | 10.311             | 31.888            | 56.0            | -24.112        |  |
| '   |                           | 3.7275             | Average    | 14.593          | 10.311             | 24.904            | 46.0            | -21.096        |  |
| 8   | Line 1                    | 3.76125            | Quasi-Peak | 21.922          | 10.309             | 32.231            | 56.0            | -23.769        |  |
| 0   |                           | 3.76125            | Average    | 14.484          | 10.309             | 24.793            | 46.0            | -21.207        |  |
| 9   | Line 1                    | 3.795              | Quasi-Peak | 22.029          | 10.306             | 32.335            | 56.0            | -23.665        |  |
| 9   |                           | 3.795              | Average    | 16.375          | 10.306             | 26.681            | 46.0            | -19.319        |  |
| 10  | Line 1                    | 3.8625             | Quasi-Peak | 22.515          | 10.302             | 32.817            | 56.0            | -23.183        |  |
| 10  |                           | 3.8625             | Average    | 15.107          | 10.302             | 25.409            | 46.0            | -20.591        |  |



### AC Mains Input, Conducted Test – Line 2: 0.15 MHz to 30.0 MHz

|     | Top Discrete Measurements |                    |            |                 |                    |                   |                 |                |  |
|-----|---------------------------|--------------------|------------|-----------------|--------------------|-------------------|-----------------|----------------|--|
| No. | Conductor                 | Frequency<br>(MHz) | Detector   | Level<br>(dBµV) | Adjustment<br>(dB) | Results<br>(dBµV) | Limit<br>(dBµV) | Margin<br>(dB) |  |
| 1   | Line 2                    | 0.721616           | Quasi-Peak | 30.005          | 10.338             | 40.343            | 56.0            | -15.657        |  |
|     | Line z                    | 0.721616           | Average    | 24.639          | 10.338             | 34.977            | 46.0            | -11.023        |  |
| 2   | Line 2                    | 0.7305             | Quasi-Peak | 30.371          | 10.336             | 40.707            | 56.0            | -15.293        |  |
| ~   | Line 2                    | 0.7305             | Average    | 24.650          | 10.336             | 34.986            | 46.0            | -11.014        |  |
| 3   | Line 2                    | 0.733875           | Quasi-Peak | 30.523          | 10.336             | 40.859            | 56.0            | -15.141        |  |
| 3   |                           | 0.733875           | Average    | 24.715          | 10.336             | 35.051            | 46.0            | -10.949        |  |
| 4   | Line 2                    | 0.73725            | Quasi-Peak | 30.429          | 10.335             | 40.764            | 56.0            | -15.236        |  |
| 4   | Line 2                    | 0.73725            | Average    | 24.220          | 10.335             | 34.555            | 46.0            | -11.445        |  |
| 5   | Line 2                    | 0.760875           | Quasi-Peak | 28.903          | 10.331             | 39.234            | 56.0            | -16.77         |  |
| 5   |                           | 0.760875           | Average    | 23.468          | 10.331             | 33.799            | 46.0            | -12.201        |  |
| 6   | Line 2                    | 14.0212            | Quasi-Peak | 27.846          | 10.682             | 38.528            | 60.0            | -21.472        |  |
| 0   | Line 2                    | 14.0212            | Average    | 16.622          | 10.682             | 27.304            | 50.0            | -22.696        |  |



### AC Mains Output, Conducted Test – Line 1: 0.15 MHz to 30.0 MHz

|     | Top Discrete Measurements |           |            |        |            |         |        |         |
|-----|---------------------------|-----------|------------|--------|------------|---------|--------|---------|
| No. | Conductor                 | Frequency | Detector   | Level  | Adjustment | Results | Limit  | Margin  |
|     |                           | (MHz)     |            | (dBµV) | (dB)       | (dBµV)  | (dBµV) | (dB)    |
| 1   | Line 1                    | 0.15      | Quasi-Peak | 55.119 | 11.555     | 66.674  | 80.0   | -13.326 |
|     |                           | 0.15      | Average    | 50.526 | 11.555     | 62.081  | 70.0   | -7.919  |
| 2   | Line 1                    | 0.153375  | Quasi-Peak | 52.040 | 11.497     | 63.537  | 80.0   | -16.463 |
|     |                           | 0.153375  | Average    | 41.897 | 11.497     | 53.394  | 70.0   | -16.606 |
| З   | Line 1                    | 0.767625  | Quasi-Peak | 46.107 | 10.330     | 56.437  | 74.0   | -17.563 |
|     |                           | 0.767625  | Average    | 38.995 | 10.330     | 49.325  | 64.0   | -14.675 |
| 4   | Line 1                    | 0.771     | Quasi-Peak | 50.028 | 10.329     | 60.357  | 74.0   | -13.643 |
|     |                           | 0.771     | Average    | 45.365 | 10.329     | 55.694  | 64.0   | -8.306  |
| 5   | Line 1                    | 0.7845    | Quasi-Peak | 49.216 | 10.327     | 59.543  | 74.0   | -14.46  |
| 5   |                           | 0.7845    | Average    | 41.580 | 10.327     | 51.907  | 64.0   | -12.093 |
| 6   | Line 1                    | 0.787875  | Quasi-Peak | 50.218 | 10.326     | 60.544  | 74.0   | -13.456 |
| 0   |                           | 0.787875  | Average    | 46.726 | 10.326     | 57.052  | 64.0   | -6.948  |
| 7   | Line 1                    | 0.798     | Quasi-Peak | 45.946 | 10.323     | 56.269  | 74.0   | -17.731 |
| '   |                           | 0.798     | Average    | 42.401 | 10.323     | 52.724  | 64.0   | -11.276 |
| 8   | Line 1                    | 0.801375  | Quasi-Peak | 50.454 | 10.321     | 60.775  | 74.0   | -13.225 |
|     |                           | 0.801375  | Average    | 45.019 | 10.321     | 55.340  | 64.0   | -8.660  |
| 9   | Line 1                    | 0.80475   | Quasi-Peak | 48.244 | 10.320     | 58.564  | 74.0   | -15.436 |
|     |                           | 0.80475   | Average    | 43.848 | 10.320     | 54.168  | 64.0   | -9.832  |
| 10  | Line 1                    | 0.814875  | Quasi-Peak | 46.324 | 10.315     | 56.639  | 74.0   | -17.361 |
|     |                           | 0.814875  | Average    | 41.522 | 10.315     | 51.837  | 64.0   | -12.163 |



### AC Mains Output, Conducted Test – Line 2: 0.15 MHz to 30.0 MHz

| Top Discrete Measurements |           |                    |            |                 |                    |                   |                 |                |
|---------------------------|-----------|--------------------|------------|-----------------|--------------------|-------------------|-----------------|----------------|
| No.                       | Conductor | Frequency<br>(MHz) | Detector   | Level<br>(dBµV) | Adjustment<br>(dB) | Results<br>(dBµV) | Limit<br>(dBµV) | Margin<br>(dB) |
| 1                         | Line 2    | 0.7575             | Quasi-Peak | 53.659          | 10.332             | 63.991            | 74.0            | -10.009        |
|                           |           | 0.7575             | Average    | 49.001          | 10.332             | 59.333            | 64.0            | -4.667         |
| 2                         | Line 2    | 0.760875           | Quasi-Peak | 50.370          | 10.331             | 60.701            | 74.0            | -13.299        |
|                           |           | 0.760875           | Average    | 45.366          | 10.331             | 55.697            | 64.0            | -8.303         |
| 3                         | Line 2    | 0.771              | Quasi-Peak | 52.685          | 10.329             | 63.014            | 74.0            | -10.986        |
|                           |           | 0.771              | Average    | 47.057          | 10.329             | 57.386            | 64.0            | -6.614         |
| 4                         | Line 2    | 0.774375           | Quasi-Peak | 53.103          | 10.328             | 63.431            | 74.0            | -10.569        |
|                           |           | 0.774375           | Average    | 48.421          | 10.328             | 58.749            | 64.0            | -5.251         |
| 5                         | Line 2    | 0.77775            | Quasi-Peak | 47.437          | 10.328             | 57.765            | 74.0            | -16.24         |
|                           |           | 0.77775            | Average    | 41.078          | 10.328             | 51.406            | 64.0            | -12.594        |
| 6                         | Line 2    | 0.7845             | Quasi-Peak | 50.362          | 10.327             | 60.689            | 74.0            | -13.311        |
|                           |           | 0.7845             | Average    | 46.884          | 10.327             | 57.211            | 64.0            | -6.789         |
| 7                         | Line 2    | 0.787875           | Quasi-Peak | 54.508          | 10.326             | 64.834            | 74.0            | -9.166         |
| '                         |           | 0.787875           | Average    | 50.341          | 10.326             | 60.667            | 64.0            | -3.333         |
| 8                         | Line 2    | 0.79125            | Quasi-Peak | 51.429          | 10.325             | 61.754            | 74.0            | -12.246        |
| 8                         |           | 0.79125            | Average    | 46.806          | 10.325             | 57.131            | 64.0            | -6.869         |
| 9                         | Line 2    | 0.801375           | Quasi-Peak | 52.618          | 10.321             | 62.939            | 74.0            | -11.061        |
|                           |           | 0.801375           | Average    | 49.488          | 10.321             | 59.809            | 64.0            | -4.191         |
| 10                        | Line 2    | 0.80475            | Quasi-Peak | 53.115          | 10.320             | 63.435            | 74.0            | -10.565        |
|                           |           | 0.80475            | Average    | 47.999          | 10.320             | 58.319            | 64.0            | -5.681         |

### **Test Equipment Used:**

| Equipment Type    | Asset<br>Number       | Manufacturer    | Model                            | Serial<br>Number | Calibration<br>Due Date |  |
|-------------------|-----------------------|-----------------|----------------------------------|------------------|-------------------------|--|
| Temp/Hum. Rec.    | CL119                 | Extech          | RH520                            | H005869          | Dec. 28, 2018           |  |
| Transient Limiter | CL102                 | Hewlett Packard | 11947A                           | 3107A03325       | Mar. 8, 2019            |  |
| Software:         | Tile Version 3.4.B.3. |                 | Software Verified: Mar. 22, 2018 |                  |                         |  |
| Spectrum Analyzer | CL147                 | Agilent         | E7402A                           | MY45101241       | Nov. 16, 2018           |  |
| LISN              | CL181                 | Com-Power       | LI-125A                          | 191226           | June 24, 2018           |  |
| LISN              | CL182                 | Com-Power       | LI-125A                          | 191225           | June 24, 2018           |  |

Client: Quest Technologies, Inc. Model(s): SIP NEO3

# Exhibit IV

# Photographs

### **Conducted Emissions**

### **AC Mains Input**



**AC Mains Output** 



# <u>Exhibit V</u>

# Modifications

No modifications were made to the EUT that contained the design changes outlined in Exhibit II of this Test Report.

# Exhibit VI

# Labeling of Equipment

It will be the responsibility of the manufacturer or importer to permanently affix the appropriate label prior to marketing in Canada for equipment manufactured in Canada; and prior to importation into Canada for imported equipment.

The presence of the label on the equipment represents the manufacturer's or importer's Self-Declaration of Compliance (SDoC) to the appropriate Industry Canada rule. Each unit of an equipment model shall bear a label indicating the model's compliance with that rule.

The label shall be permanently affixed to the equipment or displayed electronically and its text must be clearly legible. When the dimension of the device is too small or it is otherwise not practical to place the label on the equipment, the label shall be placed in a prominent location in the user manual supplied with the equipment. The user manual may be in an electronic format and must be readily available.

The minimum requirements for labeling of models complying with the technical requirements are detailed in Section 8 of ICES-003 Issue 6/ICES-001, Issue 4, as applicable.

Manu. Model Device complies with CAN ICES-3*(A)/NMB-3(A)*\*

\*Insert either "A" or "B" but not both to identify the applicable Class of ITE/ISM/Digital Device.

For example, if the EUT is determined to be Class A, then the minimum label requirement shall be displayed as follows: CAN ICES-3(A)/NMB-3(A) or ICES-1(A)/NMB-1(A), as applicable. If Class B, then the minimum label requirement shall be displayed as follows: CAN ICES-3(B)/NMB-3(B) or ICES-1(B)/NMB-1(B), as applicable.