
B.M.S INSTITUTE OF TECHNOLOGY & MANAGEMENT

Department of Computer Science & Engineering

LAB MANUAL

MICROPROCESSOR - HARDWARE PART (8086)

Sub Code: 15CSL48

4
th

 Semester CSE

Prepared by:

Shankar. R

Asst. Professor, CSE

BMSIT&M

Reviewed By:

Dr. G Thippeswamy

Professor & Head, CSE

BMSIT&M

15CSL48 - Microprocessor Lab Manual – Hardware Part 2

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

Programs

8. a. Design and develop an assembly program to demonstrate BCD Up-

Down Counter (00-99) on the Logic Controller Interface.

b. Design and develop an assembly program to read the status of two 8-bit

inputs (X & Y) from the Logic Controller Interface and display X*Y.

9. Design and develop an assembly program to display messages “FIRE”

and “HELP” alternately with flickering effects on a 7-segment display

interface for a suitable period of time. Ensure a flashing rate that makes it

easy to read both the messages (Examiner does not specify these delay

values nor is it necessary for the student to compute these values).

10. Design and develop an assembly program to drive a Stepper Motor

interface and rotate the motor in specified direction (clockwise or counter-

clockwise) by N steps (Direction and N are specified by the examiner).

Introduce suitable delay between successive steps. (Any arbitrary value for

the delay may be assumed by the student).

11. Design and develop an assembly language program to

a. Generate the Sine Wave using DAC interface (The output of the

DAC is to be displayed on the CRO).

b. Generate a Half Rectified Sine waveform using the DAC interface.

(The output of the DAC is to be displayed on the CRO).

15CSL48 - Microprocessor Lab Manual – Hardware Part 3

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

The 8086 Microprocessor Pin Diagram

Fig:- The 8086 Microprocessor Pin Diagram

15CSL48 - Microprocessor Lab Manual – Hardware Part 4

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

8255 Programmable Peripheral Interface (PPI)

15CSL48 - Microprocessor Lab Manual – Hardware Part 5

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

Data Bus Buffer

This three-state bi-directional 8-bit buffer is used to interface the 8255 to the system data bus.
Data is transmitted or received by the buffer upon execution of input or output instructions by
the CPU. Control words and status information are also transferred through the data bus
buffer.

Read/Write and Control Logic

The function of this block is to manage all of the internal and external transfers of both Data
and Control or Status words. It accepts inputs from the CPU Address and Control busses and
in turn, issues commands to both of the Control Groups.

(CS) Chip Select. A "low" on this input pin enables the communication between the 8255 and

the CPU.

(RD) Read. A "low" on this input pin enables 8255 to send the data or status information to the
CPU on the data bus. In essence, it allows the CPU to "read from" the 8255.

(WR) Write. A "low" on this input pin enables the CPU to write data or control words into the
8255.

(A0 and A1) Port Select 0 and Port Select 1. These input signals, in conjunction with the RD

and WR inputs, control the selection of one of the three ports or the control word register. They
are normally connected to the least significant bits of the address bus (A0 and A1).

(RESET) Reset. A "high" on this input initializes the control register to 9Bh and all ports (A, B,

C) are set to the input mode.

A1 A0 SELECTION

0 0 PORT A

0 1 PORT B

1 0 PORT C

1 1 CONTROL

Group A and Group B Controls

The functional configuration of each port is programmed by the systems software. In essence,
the CPU "outputs" a control word to the 8255. The control word contains information such as
"mode", "bit set", "bit reset", etc., that initializes the functional configuration of the 8255. Each
of the Control blocks (Group A and Group B) accepts "commands" from the Read/Write
Control logic, receives "control words" from the internal data bus and issues the proper
commands to its associated ports.

15CSL48 - Microprocessor Lab Manual – Hardware Part 6

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

Ports A, B, and C

The 8255 contains three 8-bit ports (A, B, and C). All can be configured to a wide variety of
functional characteristics by the system software but each has its own special features or
"personality" to further enhance the power and flexibility of the 8255.

Port A One 8-bit data output latch/buffer and one 8-bit data input latch. Both "pull-up" and

"pull-down" bus-hold devices are present on Port A.

Port B One 8-bit data input/output latch/buffer and one 8-bit data input buffer.

Port C One 8-bit data output latch/buffer and one 8-bit data input buffer (no latch for input).

This port can be divided into two 4-bit ports under the mode control. Each 4-bit port contains a
4-bit latch and it can be used for the control signal output and status signal inputs in
conjunction with ports A and B.

15CSL48 - Microprocessor Lab Manual – Hardware Part 7

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

Examples and Basics: Read these thoroughly!

1. If we want to take input and give output, then we can make any port (out of 3 ports) as input
and any other port as output port. So, as an example, let us make Port A as output and Port
B as input.

Now, fill the above table accordingly for this case. It will be 82h. Well, It’s done like this.

;PORT A as output & PORT B as input

2. If we want to get 2 outputs, no input at all, then we can make any 2 ports as output ports. So
let us make Port B as output and Port C as output.

Now, fill the table accordingly for this case. It will be 80h. It’s done like this.

;PORT B as output & PORT C as output as well.

82 means 8 2

1 0 0 0 0 0 1 0

D7 D6 D5 D4 D3 D2 D1 D0

always

1 for

I/O

mode

always

0 for

mode 0

always

0 for

mode 0

0

PORT

A

output

0

PORT

C

(upper)

output

always

0 for

mode 0

1

PORT

B input

0

PORT

C

(lower)

output

80 means 8 0

1 0 0 0 0 0 0 0

D7 D6 D5 D4 D3 D2 D1 D0

always

1 for

I/O

mode

always

0 for

mode 0

always

0 for

mode 0

0

PORT

A

output

0
PORT

C

(upper)

output

always

0 for

mode 0

0

PORT

B output

0
PORT

C

(lower)

output

15CSL48 - Microprocessor Lab Manual – Hardware Part 8

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

3. Moving on, let us make Port A as input and Port B as output.

Now, fill the table accordingly for this case. It will be 90h. It’s done like this.

; Port A as input and Port B as output.

All these are called as Control Word data. In order to use this, you must initialize your 8255.
So the following 3 lines help you in initializing 8255 PPI.

Essentially, all you need to do is give this control word (82h or 80h or 90h or whatever) to the
control word’s address. Let’s say that your control word is 82h and the address of it is 1193h.
So you should give 82h to 1193h. Technically, you need to do this.

OUT 1193H, 82H

But, the problem is you can’t give directly. So follow these steps.

Step1: MOV AL, 82H AL
Step2: MOV DX, 1193H DX
Step3: OUT DX, AL OUT

Once you decide which port is what and initialize your 8255, next task is to take input from a
port or/and give an output via some port which again depends on your requirement.

How to give input from a port? E X A M P L E

Answer: MOV DX, port address
 IN AL, DX

How to give output to a port? E X A M P L E

Answer: MOV DX, port address
 OUT DX, AL

90 means 9 0

1 0 0 1 0 0 0 0

D7 D6 D5 D4 D3 D2 D1 D0

always

1 for

I/O

mode

always

0 for

mode 0

always

0 for

mode 0

1

PORT

A input

0

PORT

C

(upper)

output

always

0 for

mode 0

0

PORT

B output

0

PORT

C

(lower)

output

MOV DX, PB

IN AL, DX

.data

PB EQU 1191H

MOV DX, PA

OUT AL, DX

.data

PA EQU 1190H

15CSL48 - Microprocessor Lab Manual – Hardware Part 9

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

8255 PPI Internal Architecture

15CSL48 - Microprocessor Lab Manual – Hardware Part 10

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

Microprocessor Hardware Interface Devices

LOGIC CONTROLLER INTERFACE (for 8a & 8b pgms)

THEORY
 The interface consists of 8 TTL buffered outputs and 8 TTL buffered
inputs. The logic state of each input/output is indicated by a corresponding

LED (ON/OFF). The inputs can be read through PORT -B and the outputs can

be controlled through PORT A. The inputs and outputs brought to 26-pin
controller. Inputs LED's are controlled through Dipswitches.

 This interface allows the user to perform experiments to understand some
of the basic programming techniques involved in a logic controller. The

software exercises could include combinational controllers, sequential

controllers, programmable counters, etc.

OPERATION.

 Logic controller module is used as an input and output device. The 26-pin
line plat ribbon cable (FRC) from the DIO card is connected to this module.

Port A pins of 8255 are connected to 8 LEDs. When the Port A is high (1),

than LED glows and when it is low (0), then LED is switched OFF. The port

B-of 8255 is connected to logic controller toggle (DIP) switch. The toggle
switch in turn is connected to an LED to indicate the state of the switch. When

the switch is opened the Led is turned OFF and when switch is closed, the

LED is ON.

15CSL48 - Microprocessor Lab Manual – Hardware Part 11

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

15CSL48 - Microprocessor Lab Manual – Hardware Part 12

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

8. a. Design and develop an assembly program to demonstrate BCD Up-Down

Counter (00-99) on the Logic Controller Interface.

.model small

initds macro
 mov ax,@data ; initializing the data segment
 mov ds,ax ; it is ds, not dx
endm

init8255 macro
 mov al,cw ; initialization of 8255 using control word
 mov dx,cr by passing 82h to control reg.
 out dx,al (to make port A as output)
endm

outpa macro
 mov dx,pa ; initialization of port A as output
 out dx,al
endm

printf macro msg
 lea dx,msg ; load the effective address to dx
 mov ah,9 ; function number is 9
 int 21h ; using dos interrupt 21h
endm

getchar macro
 mov ah,1 ; this macro takes 1 key input,
 int 21h ; its ascii value in hex stores in al
endm

exit macro
 mov ah,4ch ; to terminate
 int 21h
endm
;;;

.data

pa equ 1190h ; setting the port address for port A
 cr equ 1193h ; setting the port address for control reg
 cw db 82h ; control word is 82 (PORT A is O/P)

 select db 10,13,"select 1: up counter 2: down counter $"

 exitmsg db 10,13,"press any key to exit $"

.code
 initds ; initialize data segment
 init8255 ; initialize 8255

15CSL48 - Microprocessor Lab Manual – Hardware Part 13

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

 printf select ; print the choice
 getchar ; input the choice to AL ; or cmp al,31h

 cmp al,'1' ; if your input is 1, go to upcounter
 je upcounter
 ; or cmp al,32h
 cmp al,'2' ; if your input is 2, go to downcounter
 je downcounter

 exit ; well, upon any other input, just exit.

 upcounter:
 mov al,0 ; initial value of up counter is 0
 up:
 outpa ; display the contents of al on the interface
 call delay ; have some delay (let the user see the o/p)
 call keyboardhit ; if you press any key, then exit.
 add al,1 ; increment the count
 daa ; daa-decimal adjust after addition
 cmp al,99h ;compares with 99 in order to count till 99
 jne up ;upon adding 1, if not equal to 99, go to up
 exit ; if it crosses 99, exit.

 downcounter:
 mov al,99h ; initial value of down counter is 99
 down:
 outpa ; down counter starts
 call delay ; have some delay (let the user see the o/p)
 call keyboardhit ; if you press any key, then exit.
 sub al,1 ; decrement the count
 das ; daa-decimal adjust after subtraction
 cmp al,0 ;compares with 0 in order to count till 0
 jne down ;upon subtracting 1,if not equal to 0,go to down
 exit ; if it crosses 0, exit.

15CSL48 - Microprocessor Lab Manual – Hardware Part 14

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

delay proc

mov bx,0fffh ; do a waste job waste number of times!!!!

 outerfor:
 mov cx,0ffffh

 innerfor:
 loop innerfor
 dec bx
 jnz outerfor
 ret

delay endp

keyboardhit proc
 push ax ;save your precious ax value
 mov ah,1 ;checks if any key is pressed in between the count
 int 16h ;if you press any key, it becomes non-zero. so go
 jnz done to done and exit.

 pop ax ;if you don't press any key, it becomes zero. so
 take out your precious value and return.
 ret

done:
 exit ;so you have pressed a key, go to exit.

keyboardhit endp

end

for (bx = bignumber; bx >= 0; bx --)
{
 for(cx = bignumber; cx >= 0; cx --)
 {
 Do nothing;
 }
}

basically, keep decrementing a huge
number till zero huge number of times.

By the time, microprocessor does this
huge decrements, you can actually see
your front-end output.

15CSL48 - Microprocessor Lab Manual – Hardware Part 15

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

OUTPUT:

select 1: up counter 2: down counter

Corresponding choice output is observed on the module

NOTE:

DAA means Decimal Adjust after Addition. Let’s say AL=0. Keep

adding 1 to it. It becomes 1,2,3,,,,9, after 9 it becomes A. But we

don’t want A, we want 10. So do DAA once it crosses 9. So it will now

be 10. Now keep adding 1 to it. It becomes 11,12,13,14,,,,,19, after

19 it becomes 1A. So do DAA now because we don’t want 1A, we want

20. So in a nutshell, once AL crosses 9, adjust the decimal after

addition i.e. do DAA.

Similarly, DAS – Decimal adjust after Subtraction.

15CSL48 - Microprocessor Lab Manual – Hardware Part 16

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

8b. Design and develop an assembly program to read the status of two 8-bit

inputs (X & Y) from the Logic Controller Interface and display X*Y.

.model small

initds macro
 mov ax,@data ; initializing the data segment
 mov ds,ax ; it is ds, not dx
endm

init8255 macro
 mov al,cw ; initialization of 8255 using control word
 mov dx,cr by passing 82h to control reg.
 out dx,al (to make port A as output & port B as input)
endm

inpb macro
 mov dx,pb ; initialization of port B as input
 in al,dx
endm

outpa macro
 mov dx,pa ; initialization of port A as output
 out dx,al
endm

printf macro msg
 lea dx,msg ; load the effective address to dx
 mov ah,9 ; function number is 9
 int 21h ; using dos interrupt 21h
endm

getchar macro
 mov ah,1 ; this macro takes 1 key input,
 int 21h ; its ascii value in hex stores in al
endm

exit macro
 mov ah,4ch ; to terminate
 int 21h
endm
;;;
.data
 askx db 10,13,"set value for x,then press any key $"
 asky db 10,13,"set value for y,then press any key $"

pa equ 1190h ; setting the port address for port a
pb equ 1191h ; setting the port address for port b

 cr equ 1193h ; setting the port address for control reg
 cw db 82h ; control word is 82 (PORT A is O/P, PORT B is I/P)

15CSL48 - Microprocessor Lab Manual – Hardware Part 17

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

.code
 initds
 init8255

 printf askx ; ask x
 getchar ; press any key
 inpb ; reads 1st value i.e. x, which is set
 through logic controller module, value
 will be automatically stored in al
 mov bl,al ; contents of al is copied to bl

 printf asky ; ask y
 getchar ; press any key
 inpb ; reads 1st value i.e. x, which is set
 through logic controller module, value
 will be automatically stored in al

 mul bl ; the contents of al is multiplied with contents of bl
 Result is stored in AX
 outpa

call delay

 mov al,ah

 outpa
 call delay

 exit

 delay proc

mov bx,0ffffh ; do a waste job waste number of times!!!!

 outerfor:
 mov cx,0ffffh

 innerfor:
 loop innerfor
 dec bx
 jnz outerfor
 ret

delay endp

end

for (bx = bignumber; bx >= 0; bx --)
{
 for(cx = bignumber; cx >= 0; cx --)
 {
 Do nothing;
 }
}

basically, keep decrementing a huge
number till zero huge number of times.

By the time, microprocessor does this
huge decrements, you can actually see
your front-end output.

the result of multiplication is
stored in AX reg i.e. AL will be
having first 8 bits result, AH – next
8 bits. AL is displayed first on the
output module, after some delay, rest
8 bits which are in AH is copied to
AL and then displayed on the module.

15CSL48 - Microprocessor Lab Manual – Hardware Part 18

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

SEVEN SEGMENT DISPLAY (for 9th pgm)

INTRODUCTION:

This interface provides a four digit 7-segmcnt display driven by the

output of four cascaded shift registers. Data to be displayed is transmitted

serially (bit by bit) to the interface. Each bit is clocked into the shift register

by providing a common clock through a port line (PC4 in ALS module). Thus
one port line PB0 provides the data.

 This interface allows the user to study seven segment display control

technique, code conversion methods, etc. the software exercise could include
procedures for table lookup, a variety of bit manipulation operations, etc.

CIRCUIT DECSRIPTION:

 This interface allows display of up to 4 digits. The technique adopted uses

four 8 bit serial in parallel out (SIPO) shift registers. The 8 outputs of the shift

register arc connected to the seven-segment display through register. Each
character is represented by an 8 bit 5 code and shifting is done by applying the

MSB of the code corresponding to the last digit on the right to the data input

of the 1
st
 shift register and applying a clock pulse. The next most significant

bit follows this till all the bits for that digit are exhausted. The MSB of the

next digit from the right is then fed to the data input and this process is

continued till all the digits are displayed. A total of 32 clock pulses are
required to display the four digits.

 The code corresponding to the four digits can be stored in consecutive

locations in RAM to be accessed by the output routine. A look up-table is used

to convert these characters to their corresponding output code. The codes for
the characters 0 to 9 and A to F are given in the table. With this scheme it is

possible to output any special characters as the user can very easily write the

corresponding output code.

15CSL48 - Microprocessor Lab Manual – Hardware Part 19

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

 This interface uses MAN72 Common Anode seven-segment display. I
lcnce low (0) inputs must be given to each segment to glow (ON) and high to

blank (OFF). The circuit diagram of the seven-segment display interface is

provided at the beginning.

Design of Seven-Segment Code (SSC)

O=ON, 1=OFF.
Each display has seven segment and a dot (a, b, c, d, c, f, g and h). it is as

shown in fig . For displaying any character the corresponding segment must

be given low (0) inputs.

SSC to display Hex-digits are given in the table.

Fig: Seven Segment Display

15CSL48 - Microprocessor Lab Manual – Hardware Part 20

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

15CSL48 - Microprocessor Lab Manual – Hardware Part 21

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

9. Design and develop an assembly program to display messages “FIRE” and

“HELP” alternately with flickering effects on a 7-segment display interface for a

suitable period of time. Ensure a flashing rate that makes it easy to read both the

messages (Examiner does not specify these delay values nor is it necessary for the

student to compute these values).

.model small

initds macro
 mov ax,@data ; initializing the data segment
 mov ds,ax ; it is ds, not dx
endm

init8255 macro
 mov al,cw ; initialization of 8255 using control word
 mov dx,cr by passing 80h to control reg.
 out dx,al (to make port B as output & port C as output)
endm

outpb macro
 mov dx,pb ; initialization of port B as output
 out dx,al
endm

outpc macro
 mov dx,pc ; initialization of port C as output
 out dx,al
endm

printf macro msg
 lea dx,msg ; load the effective address to dx
 mov ah,9 ; function number is 9
 int 21h ; using dos interrupt 21h
endm

exit macro
 mov ah,4ch ; to terminate
 int 21h
endm
;;;
.data
 pb equ 1191h ;setting the port address for port B
 pc equ 1192h ;setting the port address for port C
 cr equ 1193h ;setting the port address for control reg.

 cw db 80h ;80h is the value in control word 10000000, which
 makes port B as output & port C as out put
 anykeytoexit db 10,13,"press any key to exit $"

15CSL48 - Microprocessor Lab Manual – Hardware Part 22

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

 ;F I r E
 fire db 8eh,0cfh,0afh,86h

 ;H E L P
 help db 89h,86h,0c7h,8ch

.code
 initds
 init8255

 printf anykeytoexit ; displays press any key to exit

 start:
 lea si,fire ; loads the address of fire to si
 call disp_msg ; displays the contents of table form fire
 call delay

 lea si,help ; loads the address of help to si
 call disp_msg ; displays the contents of table form help
 call delay

 mov ah,1 ; checks if any key from key board is pressed
 int 16h
 jz start

 exit ; terminate program

disp_msg proc ; displaying char starts from this proc
 mov cx,4 ; count is taken 4 b'coz of 4 char in 1st string i.e. fire
 nextchar:
 mov bl,8 ; bl indicates 8 bits in single char
 mov al,[si] ; char is moved to al from si which is in

the form of 8-bit data
 nextbit:
 rol al,1 ; rotate left will sends data out bit by bit
 outpb ; sends bit by bit to output module

 push ax ; keeps copy of ax in stack b'coz next
 instruction changes it.
 mov al,00h ; clock pulse 0 given to drive the bits on
 outpc led through port c

 mov al,11h ; clock pulse 1 given to drive the bits on
 outpc led through port c

As capital R cannot be
displayed we are considering
small r (if you want R, go
ahead in terms of A - 88H)

variables FIRE & HELP contains hexa
decimal values for FIRE & HELP to
display on 7-segment display module.
You can even try displaying your name
with hexa decimal values .

15CSL48 - Microprocessor Lab Manual – Hardware Part 23

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

 pop ax ; copy is retrieved from stack

 dec bl ; decrements the bit count
 jnz néxtbit ; repeats until bit count becomes 0

 inc si ; si is pointed to next char
 loop nextchar ; automatically decrements char count (cx)

 ret ; returns the control to called instruction
disp_msg endp

delay proc

mov bx,0ffffh ; do a waste job waste number of times!!!!

 outerfor:
 mov cx,0ffffh

 innerfor:
 loop innerfor
 dec bx
 jnz outerfor
 ret

delay endp

end

OUTPUT ON THE MODULE:

for (bx = bignumber; bx >= 0; bx --)
{
 for(cx = bignumber; cx >= 0; cx --)
 {
 Do nothing;
 }
}

basically, keep decrementing a huge
number till zero huge number of times.

By the time, microprocessor does this
huge decrements, you can actually see
your front-end output.

15CSL48 - Microprocessor Lab Manual – Hardware Part 24

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

STEPPER MOTOR INTERFACE (for 10th program)

 Data acquition and control represents the most popular applications of

Microprocessor . Stepper motor control is a very popular application of control

area, as stepper motors are capable of accepting pulses directly from the

microprocessor and move accordingly.

 There are several areas of stepper motor applications like instrumentation,

computer peripherals and machine tool drives. Tiny stepper motors are used in

quartz analog electronics watches for driving the second, minute and hour hands.

These motors operate directly within the button cells used in these electronic

watches. Bigger stepper motors are used for driving the hands of slave clocks on

railway platforms, bus stations, offices, factories , etc computer peripherals form

an important areas of stepper motor applications. Card readers/punches, papers

tape readers/punches, teleprinters and teletypes represents the first application's

areas of stepper motors. Digital X-Y plotters and dot matrix printer's uses

stepper motors for driving the arm and pen, and the paper respectively. Stepper

motors find application in line printers to drive the paper advance mechanism.

Floppy disks and hard/Winchesters disks have their magnetic reading/writing

heads positioned by stepper motors.

 Then main applications areas of stepper motor are in Numerical Control

(NC) systems for machine tools. Here they are utilized for driving the cutting

tool along x, y, z directions. Another applications in this area is the co-ordinate

table. Indexing mechanisms used in muItistation machine tools employ stepper

motors for moving either work piece or cutting tools.

SPECI FICATION OF THE STEPPER MOTOR USED

 The stepper motor is reversible one with a torque of 3 kgcm. The power

requirement is +5DC @1.2 A current per winding at full torque. The step angle

is 1.8 degree i.e. tor the every single ex itatiou, the motor shafts rotates by 1.8

degree. for the motor to rotate one full revolution, number of steps required is

200. The stepper motor used has four stator windings which are brought out

through colored wires terminated at a 4 pin polarized female connector.

15CSL48 - Microprocessor Lab Manual – Hardware Part 25

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

15CSL48 - Microprocessor Lab Manual – Hardware Part 26

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

10. Design and develop an assembly program to drive a Stepper Motor interface

and rotate the motor in specified direction (clockwise or counter-clockwise) by N

steps (Direction and N are specified by the examiner). Introduce suitable delay

between successive steps. (Any arbitrary value for the delay may be assumed by

the student).

.model small

initds macro
 mov ax,@data ; initializing the data segment
 mov ds,ax ; it is ds, not dx
endm

init8255 macro
 mov al,cw ; initialization of 8255 using control word
 mov dx,cr by passing 82h to control reg.
 out dx,al (to make port A as output)
endm

outpa macro
 mov dx,pa ; initialization of port A as output
 out dx,al
endm

exit macro
 mov ah,4ch ; to terminate
 int 21h
endm

;;;
.data
 pa equ 1190h ;One is Enough-setting the port address for port A
 cr equ 1193h
 cw db 82h ; 82h is the value in control word 10000010, which
 makes port A as output port
 steps db 200 ;step count
.code
 initds
 init8255

 mov al,88h ; setting value in al 88=10001000
 mov bx,steps ; taking count as 200 into BX

 rotate:

 outpa ; perform rotation on port A
 call delay ; have some delay in between the steps.

15CSL48 - Microprocessor Lab Manual – Hardware Part 27

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

 ror al,01
 dec bx
 jnz rotate

 exit ; once the count becomes 0, call exit macro

delay proc

 mov dx,00ffh
 outer:
 mov cx,0ffffh
 inner:
 loop inner
 dec dx
 jnz outer
 ret

delay endp
 end

OUTPUT:

Stepper motor is rotated clock wise and anti clock wise according to the step

size

Formula to find step angle:

 360 360

Step angle = = = 1.8 ˚

 Rp * Sp 50*4

Rp --- no of rotor poles

Sp --- no of stator poles

clockwise direction- rotate
right contents of al, i.e.
10001000 is rotated towards
right by 1 bit. This makes the
stepper motor to rotate clock
wise direction. Then decrement
the count and repeat the
rotation process till it becomes
00 (200 times you rotate)

For anti-clockwise rotation, do rotate AL towards
left by 1 bit.

i.e
ROL AL,01

15CSL48 - Microprocessor Lab Manual – Hardware Part 28

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

DUAL DAC INTERFACE (for 11a & 11b programs)

INTRODUCTION

 The Dual DAC interface can be used to generate different interesting

waveforms using microprocessor. These are two eight-bit digital to analog
converters provided based all DAC 0800. The digital inputs to these DAC's

arc provided through the port A and port B of 8255 used as output ports. The

analog output from the DAC is given to operational amplifiers which act as
current to voltage converters.

DESCRIPTION OFTHE CIRCUIT

 The port A and port B of 8255 programmable peripheral interfaces are

used as output ports. The digital inputs to the DAC s are provided through the
port A and port B of 8255. The analog outputs of the DAC s are connected to

the inverting inputs of the opamps 741 which act as current to voltage

converters. The outputs from the opamps are connected to pins marked Xout
& Yout at which the waveforms are observed on a CRO. The reference

voltage for the DAC s is derived from an on-board voltage regulator 723. it

generates a voltage of about 8V. The offset balancing of the opamps is done

by making use of the two 10K pots provided. The output waveforms are
observed at Xout & Yout on an oscilloscope.

15CSL48 - Microprocessor Lab Manual – Hardware Part 29

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

15CSL48 - Microprocessor Lab Manual – Hardware Part 30

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

11a. Generate the Sine Wave using DAC interface (The output of the DAC is to be

displayed on the CRO).

.model small

initds macro
 mov ax,@data ; initializing the data segment
 mov ds,ax ; it is ds, not dx
endm

init8255 macro
 mov al,cw ; initialization of 8255 using control word
 mov dx,cr by passing 82h to control reg.
 out dx,al (to make port A as output)
endm

outpa macro
 mov dx,pa ; initialization of port A as output
 out dx,al
endm

printf macro msg
 lea dx,msg ; load the effective address to dx
 mov ah,9 ; function number is 9
 int 21h ; using dos interrupt 21h
endm

exit macro
 mov ah,4ch ; to terminate
 int 21h
endm
;;;
.data
 pa equ 1190h ;One is Enough-setting the port address for port A
 cr equ 1193h
 cw db 82h ; 82h is the value in control word 10000010, which
 makes port A as output port

 table db 80H,96H,0ABH,0C0H,0D2H,0E2H,0EEH,0F8H,0FEH,0FFH;+ve 1st half
 db 0FEH,0F8H,0EEH,0E2H,0D2H,0C0H,0ABH,96H,80H ;+ve 2nd half
 db 69H,54H,40H,2DH,1DH,11H,07H,01H,00H ;-ve 1st half
 db 01H,07H,11H,1DH,2DH,40H,54H,69H,80H ;-ve 2nd half

 anykeytoexit db 10,13,"PRESS ANY KEY TO EXIT $"

 .code

 initds
 init8255

Look at the conversion table
at the end of this program.
Then you will understand
these

15CSL48 - Microprocessor Lab Manual – Hardware Part 31

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

 printf anykeytoexit ;or you can use 25h

 start:
 mov cx,37 ;count value is taken 37 bcz the table
 contains 37 values
 lea si,table ; table address is loaded to si
 back:
 mov al,[si] ;the contents of si is moved to al i.e. single
 value of table is moved
 outpa ; moved value is sent to hardware module
 through port a
 call delay
 inc si ; si is pointed to the next value of table
 loop back ; loop repeats until all the contents of table
 is moved (till cx becomes 0)

 mov ah,1
 int 16h ; checks if any key is pressed in keyboard. if

jz start you haven't, then go to start

 exit ; if you press any key, just call exit macro

delay proc
 mov bx,0fffh ; note: single loop delay is enough
 inner:
 dec bx
 jnz inner ; you can’t use CX as it is used to

hold the count (37)
 ret
delay endp

end

OUTPUT:

15CSL48 - Microprocessor Lab Manual – Hardware Part 32

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

conversion table for producing sin wave

Formula V=128*128 sin θ

+ve Values -ve Values

θ sinθ v=128+(128*sinθ) Hex θ sinθ v=128+(128*sinθ) Hex

0 0 128 80h 0 0 128 80h

10 0.1736 150.22 96h -10 -0.1736 105.78 69h

20 0.342 171.78 0Abh -20 -0.342 84.22 54h

30 0.5 192.00 0C0h -30 -0.5 64.00 40h

40 0.6428 210.28 0D2h -40 -0.6428 45.72 2Dh

50 0.766 226.05 0E2h -50 -0.766 29.95 1Dh

60 0.866 238.85 0Eeh -60 -0.866 17.15 11h

70 0.9397 248.28 0F8h -70 -0.9397 7.72 07h

80 0.9848 254.05 0Feh -80 -0.9848 1.95 01h

90 1 255.00 0FFh -90 -1 255.00 0FFh

15CSL48 - Microprocessor Lab Manual – Hardware Part 33

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

11b. Generate a Half Rectified Sine waveform using the DAC interface. (The output

of the DAC is to be displayed on the CRO).

.model small

initds macro
 mov ax,@data ; initializing the data segment
 mov ds,ax ; it is ds, not dx
endm

init8255 macro
 mov al,cw ; initialization of 8255 using control word
 mov dx,cr by passing 82h to control reg.
 out dx,al (to make port A as output)
endm

outpa macro
 mov dx,pa ; initialization of port a as output
 out dx,al
endm

printf macro msg
 lea dx,msg ; load the effective address to dx
 mov ah,9 ; function number is 9
 int 21h ; using dos interrupt 21h
endm

exit macro
 mov ah,4ch ; to terminate
 int 21h
endm
;;;

.data
 pa equ 1190h ;One is Enough-setting the port address for port A
 cr equ 1193h
 cw db 82h ; 82h is the value in control word 10000010, which
 makes port A as output port

 table db 80H,96H,0ABH,0C0H,0D2H,0E2H,0EEH,0F8H,0FEH,0FFH;+ve 1st half
 db 0FEH,0F8H,0EEH,0E2H,0D2H,0C0H,0ABH,96H,80H ;+ve 2nd half
 db 80H,80H,80H,80H,80H,80H,80H,80H,80H ;all zeros (T-OFF)
 db 80H,80H,80H,80H,80H,80H,80H,80H,80H ;all zeros (T-OFF)

 anykeytoexit db 10,13,"PRESS ANY KEY TO EXIT $"

 .code

 initds
 init8255

Look at the conversion
table at the end of this
program. Then you will
understand these

This is

the

only

change

in this

pgm

15CSL48 - Microprocessor Lab Manual – Hardware Part 34

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

 printf anykeytoexit ;or you can use 25h

 start:
 mov cx,37 ;count value is taken 37 bcz the table
 contains 37 values
 lea si,table ; table address is loaded to si
 back:
 mov al,[si] ;the contents of si is moved to al i.e. single
 value of table is moved
 outpa ; moved value is sent to hardware module
 through port a
 call delay
 inc si ; si is pointed to the next value of table
 loop back ; loop repeats until all the contents of table
 is moved (till cx becomes 0)

 mov ah,1
 int 16h ; checks if any key is pressed in keyboard. if

jz start you haven't, then go to start
 exit ; if you press any key, just call exit macro

 delay proc
 mov bx,0fffh ; note: single loop delay is enough
 inner:
 dec bx
 jnz inner ; you can’t use CX as it is used to hold the

count (37) in our above program

 ret
delay endp

end

OUTPUT:

15CSL48 - Microprocessor Lab Manual – Hardware Part 35

All rights reserved @ Shankar R, Asst. Professor, Dept of CSE, BMSIT&M

Converssion table for producing sin wave

Formula V=128*128 sin θ

θ sinθ v=128+(128*sinθ) Hex

0 0 128 80h

10 0.1736 150.22 96h

20 0.342 171.78 0ABh

30 0.5 192.00 0C0h

40 0.6428 210.28 0D2h

50 0.766 226.05 0E2h

60 0.866 238.85 0EEh

70 0.9397 248.28 0F8h

80 0.9848 254.05 0FEh

90 1 255.00 0FFh

********** All the best guys! **********

