

October 28, 1994

# RECEIVED 

OCT 311994
SPED BRANCH REGION VII

Mr. Darrell Sommerhauser, SPFD
U.S. EPA Region VII

726 Minnesota Avenue
Kansas City, KS 66101

Re: Supplemental Request for Information, Second Street Subsite Hastings Groundwater Contamination Site Hastings, Nebraska

Dear Mr. Sommerhauser:
I enclose herewith the response of the City of Hastings to the Supplemental Request for Information on the Second Street subsite which was sent to us by letter dated September 1, 1994. We have indicated at several places in the response, that we are continuing to investigate the matter ourselves; and we will supplement this response as information becomes available.

If you have any questions, please do not hesitate to contact us.

Very truly yours,
Niclail $C$ Sullivan $/ j$
$\begin{gathered}\text { Michael E. Sullivan } \\ \text { City Attorney }\end{gathered}$

MES /ti
29.04.41

Enclosures

# RESPONSE TO INFORMATION REQUEST DATED SEPTEMBER 1, 1994 SECOND STREET SUBSITE HASTINGS GROUNDWATER CONTAMINATION SITE HASTINGS, NEBRASKA 

1. Please describe the history of the City's ownership of the property located at 109 West 2nd Street, which is known as the Second Street Subsite (the "Subsite") of the Hastings Groundwater Contamination Site in Hastings, Nebraska. The response to this question should include documents in the City's possession related to the City's ownership and activities at the Subsite. In addition, the response to this questions should include the following information:
a. the date the City acquired the Subsite;

Answer:
The deed conveying the site to the City was signed on March 30, 1942 and filed on March 31, 1942.
b. historical documents in the City's possession which address the property transfer referred to in the City's letter of September 17, 1992;

## Answer:

Deed conveying the property, and newspaper articles. Copies of these were included with the City's letter of September 17, 1992.
c. a description of the types of activities carried out by the City at the Subsite since its acquisition;

Answer:
The City took possession of the site on or about April 1, 1942. The City occupied the office building on the site in connection with operation of the natural gas distribution system. The City demolished existing structures between 1942 and 1950. A large gas holder and one smaller gas holder were removed from the site by Olson Construction of Lincoln in February, 1948. The large chimney was removed in February, 1950.

Construction on the building presently used as the police station began in the spring of 1948 and was completed in the summer of 1949. The building was initially occupied by the gas department from the time of
completion until 1954, when that department was moved to another location. The Hastings Police Department moved into the building in 1957, and has continuously occupied the building since that time.

It appears that a dog kennel was constructed on the property in 1961, and that it was replaced with an animal shelter and kennel constructed in 1976. An electrical substation was constructed in 1969 in the southeast corner of the site.
d. a copy of the appraiser's report prepared for the City of Hastings prior to purchase of the old Gas Works property;

## Answer:

Enclosed is a copy of the report of F. E. Devlin.
e. a description of the property's condition at the time of purchase by the City;

Answer:
To the best of the City's knowledge, there were a number of buildings upon the property as shown and described in the photographs and insurance drawings included with the letter sent to EPA on September 17, 1992. The insurance drawing for 1930 which was provided to EPA with the letter of September 17, 1992, shows a crude oil pit. We have heard that it was a common practice to dump coal tar into the crude oil pit or possibly even into some type of well on the premises. We will attempt to identify the sources of this information and supplement this response accordingly.
f. the names of persons consulted regarding your response to question 1 e ;

Answer:
The information is the results of research conducted by the following persons:

Barbara Bramblett
City Administrator
220 North Hastings Ave.
Hastings, NE 68901
(402) 461-2309
J. Roger Coffman

1019 North St. Joseph Ave.
Hastings, NE 68901
(402) 463-1405

Michael E. Sullivan
City Attorney
747 North Burlington
Suite 305
Hastings, NE 68901
(402) 462-2119

Marvin Schultes, Manager Hastings Utilities 1228 North Denver Avenue
Hastings, NE 68901
(402) 463-1371
g. a description of the structures remaining at the site at the time of the City's purchase;

## Answer:

See the answer to 1 e above.
h. names and addresses of any individuals who can provide eye-witness accounts of site conditions at the time the City purchased the property;

## Answer:

We do not currently have the names or addresses of any individuals who can provide eye witness accounts of site conditions. We will attempt to identify people who can do so, and supplement this response accordingly.
i. names and addresses of any former employees who worked at the site during demolition activities conducted by or for the City;

## Answer:

We have not identified any living former employees who worked at the site during demolition activities.
j. names and addresses of contractors hired to demolish structures or perform site preparation for construction. Examples would include the contractor(s) who worked on the electrical power substation and contractors who constructed the buildings on the site.

Answer:
(i) One large gas holder and one small gas holder was demolished in February, 1948 by Olson Construction of Lincoln, Nebraska.
(ii) The electrical power substation was constructed by Crawford Electric of North Platte in 1969.
(iii) The current police station structure was constructed by Hemple Construction of Hastings in 1948 and 1949. A copy of a release dated

November 13, 1950, which pertains to that project, is attached. Hemple Construction is no longer in existence.
(iv) The animal shelter and kennel were constructed by Dick Looye Construction of Hastings in 1976. That company has subsequently been sold to Rosch Commercial Builders, 214 South Burlington Avenue, Hastings, Nebraska 68901, phone number 402-463-8886.
k. documents explaining work performed by the contractors listed in response to question 1 j .

## Answer:

All of the documents in the possession of the City were forwarded to EPA with the letter of September 17, 1992.
2. Please provide a description and/or any available documents relating to the activities carried out at the Subsite by any previous owners prior to the City's purchase of the Subsite property.

## Answer:

The Hastings Gas Light Company was formed by C. R. Miller in 1885 for the purpose of operating a coal gasification plant. The company experienced financial difficulty, and Hastings Gas Company was formed for the purpose of taking over the operation in 1890.

Initially, gas was manufactured from coal. However, in 1908, there was a changeover to oil.

In 1925, Central Power Company of Grand Island acquired ownership of the facility. The company converted the system to natural gas on September 20, 1931.

In 1941, Consumers Public Power District acquired all of the assets of Central Power Company. It is not clear from our review of records and newspaper articles whether the Hastings gas system was included in this acquisition.

Central Power Company conveyed title to the subject real estate to Fred Grosser on January 7, 1941. Mr. Grosser and his wife conveyed the property to the City by deed executed March 30, 1941.
3. Please provide any financial documents (such as operating budgets, documents reflecting sources and amounts of revenue, etc.) which show the amount of revenue or other
funds generated annually by the City and where those funds will be spent. Please provide documents from the last three years and any documents projecting future revenues or expenditures. Please include a narrative describing the revenue generation and budget process and estimating the City's environmental expenditures for the entire period, including any projected expenditures for the Second Street Subsite.

Answer:
Attached hereto are the following documents:
a. City of Hastings Annual Budget 1992-1993
b. City of Hastings Annual Budget 1993-1994
c. City of Hastings Annual Budget 1994-1995
d. City of Hastings Budget and Financial Practices
e. Environmental Expenditures
4. Please describe in general what support the City could provide in lieu of funding, to assist in the performance of the cleanup at the Second Street Subsite. Support services could include the provision of utilities, equipment and manpower to assist in the construction and operation and maintenance of any future response action. It is understood that additional information is needed regarding the type of response action to be constructed to thoroughly answer this question. However, in general, it is anticipated that equipment will be installed at the Subsite to extract contaminated soil gas and groundwater and contain the groundwater so that further migration of contamination is minimized. EPA anticipates that operation and maintenance of this response action will be necessary over an extended time frame.

Answer:
The City could provide:
a. Personnel and equipment for operations and maintenance activities, including upkeep and maintenance, sampling, servicing of equipment, security, and the like.
b. Day to day project management of remediation activities consisting of supervision, record keeping, and reporting.
c. Utilities at the site.

## ENVIRONMENTAL EXPENDITURES

Over the past 10 years, the City's environmental expenditures have been massive. Types of expenditures include construction and operational costs to comply with mandates of the Clean Water Act, the Safe Drinking Water Act, and the Clean Air Act. These mandates have increased the costs of providing municipal water, sewer, and electric utilities, and are reflected in utility rates paid by consumers.

Hastings residents and businesses, and City departments are further financially impacted by the Community Right To Know provisions of SARA Title III.

On October 1, 1994, City landfill fees were increased from $\$ 5.00 / 100$ e yard $^{3}$ and $\$ 5.25 /$ compact yard ${ }^{3}$ to $\$ 9.00 /$ yard $^{3}$ to offset increased operational and construction expenses required by federal subtitle $d$ landfill regulations.

Clearly, the City of Hastings as a governmental unit and its residents and businesses have experienced substantial increases in the amount of dollars required for environmental programs.

The City of Hastings General Fund has also been required to re-prioritize municipal programs and activities to make funds available for Superfund related activities. This required an allocation of staff and fiscal resources to become familiar with the Superfund law and its programs as well as technical and engineering assessments of our local situation.

The City has funded participation in an SVE Pilot Program and RI/FS reports.
Estimates for the requested period are as follows:

|  | Estimated Actual <br> Expense FY 1992-93 | Estimated Actual <br> Expenses FY 1993-94 | Budget <br> FY 1994-95 |
| :--- | :---: | :---: | :---: |
| Transaction <br> Costs | $\$ 15,621$ | $\$ 13,179$ | $\$ 12,000$ |
| Technical <br> Consultants | $\$ 112,744$ | $\$ 266,799$ | $\$ 203,000$ |
| Fax/Phone <br> Communications | $\$ 1,354$ | $\$ 14$ | $\$ 1,000$ |

In addition travel expenses have been incurred for City officials to attend EPA-related meetings, and considerable staff resources have been devoted to Superfund matters.

No funds have been identified in the 94-95 Annual Budget for Second Street activities. Funds were included to complete the City's commitments to EPA regarding other sub-sites.

The City has requested that the Nebraska Department of Health conduct an air quality investigation of the Police Station Building.
-

## CITY OF HASTINGS

## BUDGET AND FINANCIAL PRACTICES

The City keeps its books and accounting records in accordance with generally accepted accounting procedures (GAAP) for governments. This method is called fund accounting and is very different from accounting presentations used by business.

## A Fund is the Basic Accounting Entity

A fund is:

- An accounting entity
- With a self balancing set of accounts
- Recording cash and al other resources together with all related liabilities
- Which are segregated for the purpose of carrying on specific activities or achieving specific objectives in accordance with special regulations or restrictions.

From time to time the City creates new funds to meet current needs. When a fund has satisfied its purpose and is no longer needed, it is closed.

Three Main Categories of Funds
Governmental Funds - are those funds that typically finance most City operations. The measurement focus is on determination of financial position and changes in financial position rather than upon net income.

Proprietary Funds - used to account for the City's operations that are similar to those of a private business. The measurement focus is on net income.

Fiduciary Funds - used to account for resources held by a government in a trustee capacity. They are custodial in nature and measure someone elses resources.

The City of Hastings Fund Types are as follows:

## GOVERNMENTAL FUNDS

General Fund - is the general operating fund of the City. It is used to account for all resources not required to be accounted for in another fund. It is the largest fund, and accounts for most City services and departments. Governments should maintain only one general fund.

Special Revenue Funds - are used to account for the proceeds of specific revenue sources that are legally restricted to expenditures for specific purposes.

Capital Projects Funds - used to account for resources restricted for major capital outlays and projects other than those financed by proprietary funds, special assessments and trust funds. The proceeds from a bond issue to build a bridge (etc.) would be accounted for here. The debt service for bonds would not be accounted for here.

Debt Service Funds - used to account for resources used to repay the principal and interest on general purpose long term debt.

Special Assessment Funds - used to account for the financing of public improvements against which special assessments will be levied and the receipts of special assessment levies when paid.

## PROPRIETARY FUND

Enterprise Funds - used to account for operations that are financed and accounted for similar to business enterprises.

## FIDUCIARY FUNDS

Agency Funds - are funds that the City is the custodian for, with the assets belonging to someone other than the City.

Trust Funds - account for resources held by the City that have been provided through a trust agreement.
Individual Funds of the City of Hastings
General Fund
Special Revenue Funds
Street Fund
Community Redevelopment Fund (CRA)
Museum Fund
Community Development Block Grant Fund
Business Improvement District (BID) Fund
Municipal Infrastructure Redevelopment Fund (MIRF)
Drug Control Grant Fund
IMAX Fund
Keno Community Betterment Fund
Library Grant Fund
Natural Disaster Fund
Capital Projects Funds
Capital Projects Fund
1993 BAN Fund
1994 BAN Fund
1995 BAN Fund
Debt Service Funds
Various Purpose Fund
Special Assessment Fund
Enterprise Funds
Landfill Fund
Agency Funds
Self-Insured Health FundCity Pension Fund
Trust Funds
Cemetery Perpetual Care Fund
Perpetual Housing Rehabilitation Loan Fund
Economic Development Revolving Loan Fund

Each fund has its own sources of revenue and authorized expenditures. Although the City adopts one master budget, each fund is budgeted separately.

## THE BUDGET PROCESS

The Annual Budget is the most important policy document adopted by the City Council. Through resource allocation, the budget establishes the program of service that will be accomplished by the City during the fiscal period. Whether the year's emphasis is on police services or streets, the budget document is the method used to designate what projects will be done, what services will be provided, and what level of service will be delivered.

The City of Hastings budget is prepared, adopted, and implemented in accordance with the State of Nebraska Budget Act.

## MULTI-PURPOSE DOCUMENT

The budget process and the subsequent adopted budget serves four purposes; planning, management, control, and communication.

Planning is the first and most critical element of the budget process. elected officials have the lead role by establishing service levels, new programs or projects, and priorities. The outcomes of the City Council's budget planning retreat are communicated to department heads in advance of the submission of deparmental budget requests.

The management element of the budget is to direct the work of the various departments of the City in conformity with the program of service established by the elected officials.

By adopting the budget the Council has made decisions on what will (and will not) be done during the year. If a capital piece of equipment was not approved in the budget, it will not be purchased. If a construction project was funded, it will be built.

Control is the use of budgeting for financial accountability. The budget sets the financial roadmap for the year, premising that if income is produced as projected and expenses are at the approved level, the City's financial condition at the end of the year will be satisfactory.

After final adoption and printing the budget document is available to the public. The budget then serves as a communication tool, informing the public of the City's annual financial roadmap and program of service.

## BUDGET FLOW CHART

"The budget starts with the Council and ends with the Council".

## Phase 1. City Council Retreat Planning Session

Participants: Mayor, City Council, City Administrator
City Council sets priorities.
City Council sets financial planning parameters: cash reserve targets, willingness to increase fees or taxes.

Develop consensus on "tone" or theme of budget. The retreat is usually held in January-February.

## Phase 2. Budget Call Issued to Department Heads by City Administrator

Participants: City Administrator, Department Heads
Budget forms are issued to department heads along with strategic guidance on what the Council thinks is important.

City Administrator provides fiscal guidance in terms of targets, and advises on general assumptions, constraints and other factors that are likely to emerge.

## Phase 3. Preparation of Budget Proposal

Participants: City Administrator, Department Heads
City Administrator prepares revenue projections for all sources of revenue.
Department Heads submit budget requests to City Administrator.
Department Heads and City Administrator review each individual deparmental budget request. Departmental goals are developed and negotiated. Budget cuts negotiated.

City Administrator evaluates City position classifications for conformity with

City Administrator evaluates City position classifications for conformity with state-mandated salary comparability requirements, and adjusts pay levels if required.

City Administrator makes further cuts necessary to balance proposed expenditures with available revenues. In this phase of the process the City Administrator takes the role of economizer. The department heads generally request for budget increases and the City Administrator has the responsibility for introducing the comprehensive view of all City needs into the budget process as well as the revenue constraint. The City Administrator is required to propose a balanced budget to the Mayor and Council.

## Phase 4. Submission of Proposed Budget to Mayor and Council

Participants: Mayor, Council, Public, City Administrator
Budget message and written detail of proposed budget submitted to Mayor and City Council.

Oral presentation made at public meeting.
Copies of proposed budget are available to the public.

## Phase 5. Council Review, Deliberation, and Modification of Budget

Participants: Mayor, Council, City Administrator, Department Heads
Council holds budget worksessions to discuss and review budget. Council asks questions and may request additional information. At Council request, department heads attend worksessions to address specific questions about departmental budget.

Council may take straw votes and add or delete items from budget.
Council conducts budget public hearing as required by law.

Phase 6. City Council Adopts Budget by Ordinance
-

Know all men by these presents, that whereas on the 25 th day of March 1948, the Glens Falls Indemnity Company a New York Corporation, with principal offices at Glens Falls, New York, extcuted as surety, a bond in the sum of $\$ 45,502.73$ for Carl J. Hempel, as principal and prime contractor, in favor of the City of Hastings, a municipal corporation, organized and existing under and by virtue of the laws of the State of Nebraska, covering the performance of a contract made and entered into by and between the said Carl J. Hempel and the said City of Hastings, Nebraska, for the construction and erection of a meter shop, office and garage building, including plumbing, heating, electrical work and power lift, in and for the said City of Hastings, Nebraska, in accordance $\because i t h$ certain specirications furnished by Glen W. Bouton, architect, employed by said City of Hastings, Nebraska; and

Whereas, there have been various and sundry dealings and transactions by and between the City of Hastines, Nebraska, its architect Glen W. Bouton, Carl J. Hempel and the Glens Falls Indemnity Company, with reference to the performance of said contract as aforesaid, the specifjcations covering the construction of said building, its appurtances and othervise; and

Whereas, disputes and differences have arisen between them, jointly and severally; and

Whereas, the said City of Hastings, Nebraska, has retained the sum of $\$ 5,134.77$ on the said contract price of $\$ 45,502.73$, which amount the said Glens Falls Indemnity Company, now claims is due and owing to it, as surety for the said Carl J. Hempel; and

Whereas, the City of Hastings, Nebraska, its architect, Glen W. Bouton and the Glens Fails Indernity Company, as surety as aforesaid, have agreed to settle all the said disputes and differences by the payment nt $\$ 2,999.82$, by the said City of Hastings, Nebraska to the said Glens Falls Indemnity Company and by the execution of this mutual release, in the manner hereinafter set forth:

NOW THEREFORE IT IS AGREED, that in gursuance of the terms of tmas release and in consideration of the sum of $\$ 3,70.82$, upon the execution hereof, paid by the City of Hastings, Nebraska, the receipt whereof the sala Glens Fails Indemnity Company, does hereby acknowledge, by and through, its attorney, Preston J. McDonnell and of the covenants berein contained, eacn of them the said City of Hastings, Nebraska and its architect Glen $V_{i}$. Bouvon does herehy acknowledge that the said Glens Falls Indemnity Company has IuAly and completely performed all the terms and conditions of the bond therein mentioned, by full satisfaction of each and every condition thereof and tne said Glens Falls Indemnity Company does hereby release the said City of Hastings, Nebraska from further obligation for payments of any additional sum or sums to the said Glens Falls Indemnity Company, as surety or to Carl J. Hempel its principal; and each of them the said City of Hastings, Nopraska, its architect Glen W. Bouton and the said Glens Falls Indemnity Company does hereby release the other, its heirs, administrators, successors and assigns from all sums of money, accounts, actions, claims and demands up to the date and execution of these presents.

IN WITNESS WHEREOF, we have hereunto set our hands at Hastings, Nebraska this 13 day of November, 1950.

Attest:


City of Hastings, Nebraska, A Municipal Corporation



## Glens Falls Indemnity. Company, A Corporation



STATE OF NEBRASKA
SS.
COUNTY OF ADAMS
)
On this 207 h day of November 1950, before me, a Notary Public in and for said county, personally appeared Carl E. Pratt, and Edward Der, Mayor and City Clerk respectively of the City of Hastings, Nebraska, a municipal corporation and they acknowledged to me that they executed the above release on behalf of the City of Hastings, Nebraska with full power and authority so to do and as their voluntary act and deed.

Witness my hand and Notarial Seal at Hastings in said county the day and year last above written.


## STATE OF NEBRASKA SS. <br> COUNTY OF ADAMS ).

On this $\mathrm{J}_{0}$ th day of November 1950, before me, a Notary Public, in and for said county, personally appeared Preston J. McDonnell, attorney in fact for the Glens Falls Indemnity Company, a corporation and he acknuwledged to me that he executed the above release on behalf of said corporalion with full power and authority so to do and as its legal representative.

Witness my hand and Notarial Seal at Hastings in said county the day and year last above written.

$\bullet$

# REPORT AND APPRAISAL 

OF THE
Hastings, nebraska gas systel

FILED NOV.2?,1039
RAYEOD L. CRCSSON CITY CIERK
Present Gas System
History of ..... Page
Description of ..... 3
Authorities Consulted ..... 4
Pipe in Mains ..... 5
Meters ..... 7
Services ..... 10
C. I. Fittings in Mains ..... 13
Steel Fittings in Mains ..... 14
Valves for Services ..... 16
Valves in Lains ..... 16
Casings under Railroad Tracks and Paving ..... 17
Special pipe and fittings used in crossing Storm Sewers ..... 17
Regulator houses, Regulators, Valves and Fittings ..... 17
Service Regulators ..... 23 ..... 23
Service Drips ..... 24
Work done since August 1,1939 ..... 25
Inventory of Material and Equipment
27
27
Store Room at Plant ..... 28
Old Boiler Room ..... 31
Basement of office ..... 32
Testing Equipment ..... 33
Trucks and Tools on Trucks ..... 34
Recapitulation ..... 36
Appraised Value of Real Estate ..... 37
Assessed Valuation of Real Estate ..... 37
Tax Paid ..... 38
Pipes in Mains fully depreciated ..... 39
Meters fully depreciated ..... 41
Service Lines fully depreciated ..... 42
Steel fittings in Mains fully depreciated ..... 44
Leakage in Mains ..... 45
Recommended Changes ..... 46 ..... $49 A$
New System
Source of Supply ..... 50
Consumption ..... 50
Design of System ..... 52
Financing of System ..... 53 ..... 54Comparison of Rates
Economics
Reverue Table (Nen System) Reverue Table (New System)
Revenue Table (Old System) Comparison of Rates ..... 56 ..... 57 ..... 58....
Income and Disbursement Table ..... 59
Degree Day Table ..... 60
Estimate of Cost ..... 6159

## September 9. 1939

To
The Heyor end Council
Hastings, Hebraska

## Gentlamen:

We sahmit herowith our report on your gas system.
We wish to express our appreciation to the following persons for their courteous essistence in preparing the appraisal:

Mr. A.E. Borden, District Manager of the Central Porer Company Mr. H.D. MeGaw. City Eagineer, Hestings
Spurrier and Food, Accoontanis, Hichita, Kansas
 Mr. Ied Brom

Bespectiqully aubmitted.


## BISTORY OF THE HASTIRGS GAS STSTEA

Ihis information was furaighed through the courtesy of Mr. A. Fi. Borden, General Hanager of the Central Pozer Company in Fastinge, Jebreake.

Mr. Dorden could recell nothing of the history of the gas system priar to 1895.
1 men named Peterson bailt the original syrtem.
Soon after 1895, bonds, ismed before thet year, which were held by persons rem eiding in the state of Maine. were pat into the hapde of attornays; fad the . mortgage on the plant was foreclosed about 2900 .

From 2900 the property was operated by these bont-holders, and ander their mansgenent wes rebuilt and converted into a coal gat plant operated under the name of the Hastings IIght and Eeat Cempany.

In 1912 it mas rebilit by the Zastings ILght and Heat Company, fich was reorganized under the name of the liastinge Ges Compang, and a modera ceriboreted Fater gas plant vas ingtalled.

The development of business ixom that time on was rlowiy but consistently upward, and in 1925 the plant was sold to the present owners, the Centrel power Compary, and operated as a water gas urstem watil Septembar, 1931, wen pataral gas ras turned lnto the aistribution gyatem.

## DKSCRIPTION OF OAS STSTEM

The gas byster is Hastings was originally deaigned to use artificial gas. The plant was located in Block 24, Johnson's Addition, at the Southeest corner of Second and Minnesota Streets. From this location lines were extended to various parts of town which were most thickly built up.

In 1931, when neturel ges was used instead of artificiel, an eightinch,high pressure, walded steel line with Dresser couplings was constructed from the main line Forth of tom, South on Kinnesota to the gas plant. An intermediate cast iron line ifth clamps on the joints vas built from the gas plent Mest on First Street to the intersection of First Street and Baltimore, thence Yorth on Baltimore to the intersection of Baltimore and Seventh Streets. A four-inch intermediate pressare line was constructed from this point to the reguletor station at Ninth and Beltimore Streets. Leading from these mains, edditionel intermediate pressure innes have been constructed; and regilator stations built to supply the low preseure system with gas.

This aystem is almost entirely low prossure. However, a few services are expplied by individual regulators.

The location and aizes of the lines, and the location of the regulator stations are shown on maps which accompany this report, and are made a part of it. GENERAL CONDIIIONS.

He heve made mumerous excavations to examine the pipes and fittincs: and have also examined all the excavations yich the Centred Porer Company had open, and find that the soil conditions are very good. However, there are a few places where fills have been mede or ashes have been placed in the street, but these are axceptionel.

The cast iron low pressure mains ere laid with cement joints, ezcept Where Flexd-Couple joints have been used. I dc not think that the cest iron pipe with cement joints could be subjected to a pressure of more then eight inches of water or 4.6 ounces pressure $\quad$ ithout serious leaks.

The steel pipe low pressure lines of four inches end under are threed and coupled joints, except that portion laid in the lest few jears, which have welded zoints.

The lines ere leid for a low pressure system, end it is doubtful if they could be used for intermediate pressure pithout a large anount of leakage. Each of these lines intended for intermediate pressure mould hive to be tested separetely.

The system is operated at present at three ounces pressure.

## AOTEORITIES COESULTED

```In mating this appraisal, we have consulted the following authorities:EHGINEEERING VALUATIOH, Mareton and dagData Iren APPRAISERS' AKD ASSESSORS' YANUAI. Prouty. Collins andProutyACCOUNAKIS' HABMBOOK, E.A. SeilersData from verious published reports of the Visconsin HailroadCommission


FIPB IIB Murns (Continued)


PIFB IIT MINB (Continued)


MISTBRS (Continued)


MyTmas (Contimed)


\section*{F4 :}
skertass
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 15 & &  &  & Comirim & Thatrixi & Mrowi & bilf milce & SJM & Villit & His, & Dispedmy & Mrobit &  \\
\hline , & 1 & 2009 & & & .08 & & & & & & & & \\
\hline 1 & 8 & 2000 & 20 & 12 & . 0 & 9.009 & \({ }^{2} 18\) & 20.88 & 20.4 & \% & \({ }_{80}\) & \({ }_{2606}\) & = \\
\hline & 1 & 1000
1000 & 820 & \({ }_{8}^{37}\) & -090 & - & \({ }_{21} 15\) & 88 & 8.808 & 8 & 88 & 8088 & - \\
\hline 2m/40 & 20 & \({ }_{1200}^{2000}\) & 20 & 370 & A14 & 40.90 & -25 & 85.00 & 90900 & 8 & 8 & -87\%20 & = \\
\hline 0 & 14 & 2008 & 80 & \({ }^{818}\) & -08 & 56988 & \({ }_{315}^{18}\) & 70.70 & 1440es & 8 & \(8{ }^{89}\) & 24Men & = \\
\hline 10 & \(\frac{1}{2}\) & 1200 & 80 & \({ }^{1}\) & -0 & \({ }_{8} 8.68\) & \(\stackrel{18}{18}\) & 21.10 & 17078 & 3 & 3 & 27.8 & - \\
\hline & 7 & 2000 & 20 & 20 & \(\infty\) & \({ }^{23} 908\) & . 26 & 88.80 & 61926 & & \% & Casa & \\
\hline 3/4 & \% & 200 & 80 & \({ }^{7}\) & -08 & 8, 808 & \({ }_{218}^{18}\) & 120 & 27080 & 8 & 3 & \({ }^{27}\) & \\
\hline 201/40 & 8 & 2006 & 80 & 1 & .11 & \({ }_{8} 120\) & \({ }_{15}\) & \({ }^{4180}\) & \(1{ }^{1010}\) & : & \({ }^{4}\) & \({ }_{10} 10.26\) & - \\
\hline & ! & 1008 & 80 & \({ }^{23}\) & - & 12088 & 48 & 8850 & 85.28. & 8 & 8 & 5385 & \\
\hline & ? & 1808 & 20 & 20 & \(\infty\) & 28.31 & 28 & 200es & ciele: & 8 & 8 & (2atis & \\
\hline \({ }_{10}^{1040}\) & 7 & \({ }^{2000}\) & \({ }_{20}\) & \({ }^{16}\) & -01 & \({ }_{\text {cissin }}^{80}\) & \({ }_{25}\) & 21.20 & 20.26 & 8 & 8 & 20, 26 & - \\
\hline & 8 & 1000 & & 1200 & - & 2780 & \({ }^{25}\) & 2 CH & \(4{ }^{\text {spom }}\) & 1 & 80 & 470,04 & \\
\hline 2ald & 8 & 2000 & \(\therefore 80\) & \({ }_{2}^{2087}\) & - & \({ }^{2077}\) & \({ }_{28}^{15}\) &  & 400.e98 & 8 & 80 & ce0, & - \\
\hline 12. & 4 & 2018 & 80 & 20 & \% & 156 & d & 2005 & 417005 & \% & 28 & 419\% & Es, \\
\hline 20180 & \(\infty\) & 2014 & 20 & 1,000 & 4 & 208.50 & \({ }^{25}\) & 27\%em & 40600 & & \({ }^{28}\) & 20100 & \\
\hline 2-1/4000 & 8 & 291 & \({ }_{20}^{20}\) & 19 & 18 & 14 CH & 218 & 20,08 & \(\mathrm{sam}^{808}\) & 8 & \% & \({ }^{21}\) & \(\underline{\square}\) \\
\hline & 12 & 1018 & 20 & 407 & -0 & \({ }_{86,08}\) & 15 & aios & PToce & ! & & 270 & \\
\hline \(12 / 4{ }^{0}\) & 9 & 2018 & 20 & 200 & -21 & 2860 & 18 & 85 & 69 988 & 6 & 4 & 6978 & \\
\hline \% & 1 & 298 & 20 & 8 & - 26 & 88.98 & 48 & 7808 & 12088 & 5 & 7 & 12.08 & - \\
\hline \({ }^{10} 1000\) & 8 & 1278 & 80 & 2, 2 Hess & - & 128006 & 515 & 2180 & M608: & 5 & 88 & 240.88 & - \\
\hline 202/e & 8 & 2081 & 20 & \({ }^{10}\) & dr & \({ }^{2}\) & \({ }_{21}\) & \({ }^{210} 50\) & 20.0\% & 8 & \({ }^{8}\) & \({ }_{20,82}\) & - \\
\hline & 4 & 2026 & 20 & 2,800 & \(\infty\) & 258009 & 28 & 23890 & 372008 & S & 25 & 37 mos & - \\
\hline - 120 & 8 & 2931 & 20 & \({ }^{208}\) & \({ }_{21} 11\) & 200508 & \({ }_{18} 18\) & 14.300 & 250.18 & & \({ }^{25}\) & 250012 & \\
\hline 20120 & 2 & 2014 & 20 & \({ }_{81}^{78}\) & 218 & B,08 & \({ }_{20} 8\) & \(\xrightarrow{1 / 20}\) &  & : & \% & E0, & = \\
\hline & \({ }^{28}\) & 2015 & 0 & \({ }^{518}\) & 0 & \({ }^{78.50}\) & 18 & 14 mes & soma & ! & 3 & 20405 & - \\
\hline 20 \(2 \times 2\) & \({ }^{27}\) & \({ }^{2115}\) & 20 & \(\because \quad 185\) & -18 & \(\xrightarrow{604}\) & dif & \({ }_{87}\) & 1580 & : & 4 & 120 & = \\
\hline \% & 2 & 2015 & 2 & & 016 & 8.98 & 21 & \({ }^{7}\) & 1808 & S & 3 & 12.08 & - \\
\hline \({ }_{1-1 / 4}\) & \({ }_{67} 8\) & 2018 & 20 & 8, 1,2109 & \({ }^{\infty}\) & \({ }_{208}^{108.28}\) & 818 & \({ }_{81705}^{17,085}\) & \({ }^{\text {rifers }}\) & \% & \({ }_{28}^{28}\) &  & 二 \\
\hline 201/20 & 5 & 1026 & 20 & \({ }^{208}\) & 18 & -300s & 48 & 875 &  & \% & \({ }^{3}\) & 0600 & \\
\hline \({ }^{2}\) & \({ }_{88}^{88}\) & \({ }_{1019}\) & \({ }_{80}^{20}\) & 10 & 018 & \({ }_{83} 1204\) & \({ }^{28}\) &  & 2590. & \({ }^{5}\) & \({ }^{23}\) & \({ }^{28500}\) & = \\
\hline 1-2100 & 8 & 1919 & 20 & 12.18 & 11 & 280.26 & \(\stackrel{18}{98}\) & 177.00 & 301000 & 8 & 2 & S070.06 & = \\
\hline 21/20 & 5 & 12017 & 80 & \({ }^{188}\) & \({ }^{18}\) & \({ }^{23} 1088\) & 218 & 87, \({ }^{88}\) & \({ }_{2600}\) & \% & 28 & [1.00 & - \\
\hline & 80 & 118 & 20 & 76 & \(\infty\) & \({ }^{680} 0\) & 18180 & 11.500 & 277000 &  & m & - 27000 & = \\
\hline 退 & 8 & 12020 & \({ }_{20}^{20}\) & \({ }_{21}\) & \(\stackrel{12}{18}\) & \%93.01 & 218 & 227008 & 2 mem & - & 2 & 12.es & - \\
\hline & 8 & 1218 & \({ }_{80}^{20}\) & \% & . 21. & 11.04 & \(\stackrel{18}{218}\) & \({ }_{14}^{16008}\) & 82000 & ! & 21 & 81.00 & \\
\hline
\end{tabular}
segrices (ctd.)


SERVICEB (ctd.).




\section*{CD a d a}

GAS ROA PITTIGGS IN MAIRS (Continy -
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Irsa &  &  & & ATSKIL & & & LABCR & Forlt & & \multicolumn{2}{|l|}{DSPEscturior} & \multirow[t]{2}{*}{REAMETimg} \\
\hline Chat Iron MEEInge (ctio) & 1917 &  & \(\square^{20}\) & \(\underline{.08}\) & Alount & Ick & M10tine & Valus &  & TEARS & ALVOTNT & \\
\hline & 1025 & 78 & 45 & .06 & 2.20 & .08 & 2.80 & 12.00 & 1.55 & \({ }^{28}\) & 3.65 &  \\
\hline & 1925 & 7 & 1.253 & .06 & 75.18 & .04 & 50.12 & 4280 & 1.35 & 19 & . 97 & 3.55 \\
\hline & 1924 & T & 14 & .06 & . 81 & . 04 & \({ }^{6} .58\) & 125050 & 1.85 & 18 & 26.7 & 98.69 \\
\hline \(\cdots\) : & 2980 & 78 & 1,04T & .08 & 98.82 & . 04 & 65.88 & & 1.88 & 15 & .28 & 1.18 \\
\hline - & 1927 & T8 & 281 & .08 & 16.85. & 04 & 11.24 & 28.10 & & 18 & 28.63 & 286.17 \\
\hline & 1828 & 76 & 3,251 & .06 & 195.88. & . 04 & 129.84 & 828.10 & 1.05 & 12 & 4.49. & 23.61 \\
\hline & 1820 & 78 & \({ }^{86}\) & .08 & 5.16 & . 04 & 8.4 & 8.60 & 1.35 & 10 & 47.57 & 75.78 \\
\hline & 1930 & \({ }^{18}\) & 48 & . 08 & 2.88. & 004 & 1.92 & 4.30 & 1.35 & & . 58. & 7016 \\
\hline \(\because\) & 2955 & 78 & 260 & .06 & 1.26. & -04 & \({ }^{\circ 84}\) & 2.10 & 1.385 & 8 & . 28 & 1.88 \\
\hline & 1935 & 7 & 8 & .08 & \(2{ }_{2} \mathrm{OH}_{3}\) & \(0 \cdot 0\) &  & 16 & 1.53 & 6 & 1.85 & 16.27. \\
\hline - . \({ }^{\text {a }}\) & 2935 & 7 & 258 & .08 & 14.23. & . 08 & 9.65 & \({ }^{28580}\) & 2088 & & . 18. & 5.28 \\
\hline & 2857 & 75 & 3.259 & .08 & 194.58. & 004 & 129\%56 & 828500 & 105 & 8 & \%is. & \({ }^{22.885}\) \\
\hline & 2985 & 75 & 414 & . 06 & 24.84 & .OC & 18.65 & 41.00 & 1.85 & 1 & 5. & 315926 \\
\hline & & & & & [9992.66 & & , 20004 & 5,521.10 & & & 979, & 72.311.91 \\
\hline
\end{tabular}









REOULATOR HOUBES, RBGOLATOBS, VALVES ASD PITTIBGS (Cantinued)





\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|r|}{SEATICB HBgulatcal} \\
\hline & Hix & TEMFS & & Mrame & & Tucrity & R \({ }^{\text {a }}\) & TGALT & RITE \({ }^{\text {a }}\) & MEAKS & aroum & VALIS \\
\hline guas or mpomutcr &  & U3EFS. LIFP & Quantri & valy mitce & \({ }^{18000}\) & - 1850 & 89.00 & 117800 & 8 C & \% & 68623 & 48.0 \\
\hline 6rabi & 1085 & \({ }^{12}\) & 8 & \({ }_{4}+0\) & \(3 \pm .00\) & 1.50 & 18,00 & 400 & 0 -58 & 7 & \({ }^{880}\) & 28.58 \\
\hline mollemee \({ }^{10}\) & 1988 & 12 & 23 & 7.50 & 9780 & 8.500 & 88.50 & 280,00 & 8 8058 & 6 & 48058 & 18076 \\
\hline arable 2-1/4 & 2086 & 18 & 2 & \(14 . \infty\) & 28.00 & 2.60
2000 & 8000 & 87000 & \({ }_{8}^{8088}\) & 8 & \({ }_{7} 125\) & 7 Tag \\
\hline Reltene 1 my & 2938 & 12 & , & 12.00 & 12000 & 2060
8060 & \({ }_{8000}\) & 10.40 & 8.85 & 8 & 2.98 & 18.78 \\
\hline muan \(21 / 2^{\circ}\) & 2987 & 12 & 2 & 12.08 & 12008
289000 & \({ }_{8000}\) & 88.00 & 800.00 & 0.38 & 1. & 28.75 & \(288 \times 8\) \\
\hline spragee fa & 1085 & 18 & 3 & 88000
80.00 & 240.00 & 8.80 & 24.00 & 284.00 & 6\% \({ }^{5}\) & 0 & - & 204.00 \\
\hline Boymolas \({ }^{\text {a }}\) & 200 & & & & \%7904S & & 148.50 & - 0n1-28 & & & - 104023 & - 737.73 \\
\hline
\end{tabular}
```

There are: 8-2-inch
26-3- ${ }^{-1}$
1-4- $\quad$ pipe drips:
and
15-20.
38-3-
14-4
7-6- ${ }^{-6 a r r e l ~ o r ~ p o t ~ a r i p s . ~}$

```

These drips were instailed at the time the system ras usine nampactured cas. and nould be of no value to the Oity neing netural gas. I cen see no reason wing the City should purchase them; and in the event the City buys the system from the Central Power Compeny, I would reconsend that the Central Poner Compeny be allowed to disconnect and keep these drips if they are of any use to theme.

He heve mede this appreisel as of August 1. Since that date the Central Power Comrany has mede thi following extensions:
 ..... 214.83





        1 - 8* Herco-Nordetrum Spur-Gear Valye
        insertad in 8-in. C.I. Ine with 2 gtyle
        40 Dreaser Couplings

                            \(\$ 1.535 .91\)
        1 Regulator house
        147.27
        \%1,683.18

\section*{INVEMPRRI OF SAT:RIAL AND EOUIPMENT ON EAND}

August 1, 1939
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\frac{1 T P I}{\text { American meter prover 5-foot }+2228}\)} & 1 & Unir & TOPAL \\
\hline & \$ & 275.00 & \$275.00 \\
\hline \(300-\frac{1}{71}\) Meter diaphrasts for fil Spragies & & . 55 & 155.00 \\
\hline 150-\#2 \# \% Spragues & & . 85 & 127.50 \\
\hline  & & 1.90 & 22.80 \\
\hline \(50-10 N \quad " \quad\) Ironclad meters & & . 75 & 37.50 \\
\hline \(50-\mathrm{Main}\) meter morks for fild Spragues & & 2.60 & 130.00 \\
\hline 30- Index movements for Sorague meters & & . 50 & 15.00 \\
\hline 12-3-dial indezes for Spregues & & . 35 & 4.20 \\
\hline 5 - 4 -dial " " " & & . 55 & 2.75 \\
\hline 1-1/2 gallon of red meter paint & & 3.50 & 5.25 \\
\hline 2-middle castings for hil Spregues & & 3.50 & 7.00 \\
\hline 1 - Top * * " * & & 1.50 & 1.50 \\
\hline 2 - Bad. \(\quad\) " & & . 80 & 1.50 \\
\hline 22-Main moverents for th Spragues & & 4.50 & 99.00 \\
\hline 3 - Falve seats for \%2 Spragues & & 2.40 & 4.20 \\
\hline 20 - Index driving movements for \({ }^{(2)}\) Spragues & & . 70 & 14.00 \\
\hline 2 - Bundles meter seal3 & & 1.00 & 2.00 \\
\hline 225 - Yumber plates (large) & & 1.25 & 281.25 \\
\hline 6 - Falre copers for t 2 Sprague meters & & 1.30 & 7.80 \\
\hline  & & 1.10 & 17.60 \\
\hline  & & 1.10 & 6.60 \\
\hline 24 - Index boxes for Sprogue meters & & . 40 & 9.00 \\
\hline 75 - Fumber pletes (sreli) & & . 05 & 3.75 \\
\hline 700- K plate sealing screvs & & . 01 & 7.00 \\
\hline 100-1" Male Iron swivels & & . 11 & 11.00 \\
\hline 100-14 Comecting nuts & & . 08 & 8.00 \\
\hline 150 - Top gasigets for fla Sprague meters & & .22 & 18.00 \\
\hline 100-* * Ironclad & & . 08 & 8.00 \\
\hline 1 - Gas circuleting beater & & 8.00 & 8.00 \\
\hline 1 - " soldering furnace & & 4.00 & 4.00 \\
\hline 1-4'x4' \(\times 2^{\prime}\) Geivanized Iron teating tank & & 25.00 & 25.00 \\
\hline 1 - Large weste can & & 2.00 & 2.00 \\
\hline 2 - Sham-lialker 2-draper 4"x6" inder and cards (Meter test records) & & 4.00 & 8.60 \\
\hline 1 - Set of meter repeir tools (Valne approx.) & & 40.00 & 40.00 \\
\hline & & & 1,409.90 \\
\hline 1 - American Gas tester \% 1602 & & & 426.50 \\
\hline & & & \$1,836.40 \\
\hline
\end{tabular}

\section*{STOBS ROOM AT PLAAT}
(North Building)
(All fittings wrought iron unless marised otheraise) (Malleable)
August 2, 1939

\begin{tabular}{|c|c|c|}
\hline 16-3" Tees & . 80 & 12.801 \\
\hline 1-31 Cross \(^{\text {a }}\) & 1.08 & 1.08 \\
\hline \(1-3^{\prime \prime}\) 际 & 1.73 & 1.73 \\
\hline 19-3n \(\mathbf{z}^{\text {2 }}\) ( Bushings & . 14 & 2.66 \\
\hline \(4-3^{\prime \prime}\left(45^{\circ}\right.\) ) Ells & .74 & 2.96 \\
\hline 6-3n \(\mathbf{x}^{\text {2 }}\) R Reducer Couplings & . 45 & 2.70 \\
\hline \(1-3^{\prime \prime} \times 2^{\text {Tee }}\) & . 91 & . 31 \\
\hline 3-3' Ccuplings & . 31 & . 93 \\
\hline 11-3 \(3^{\text {n }}\left(90^{\circ}\right.\) ) 께1s & . 62 & 6.82 \\
\hline 15-3" Minples & . 13 & 1.35 \\
\hline  & . 53 & . 53 \\
\hline 21-2 Tees & . 33 & 6.93 \\
\hline 4- \(2^{\mathbf{H}}\) R.R. Unions & . 72 & 2.88 \\
\hline 8-2 \(2^{\text {IN }}\) caps & . 20 & 1.60 \\
\hline \(15-2^{\prime \prime}\left(45^{\circ}\right)\) 5118 & .30 & 4.50 \\
\hline \(9-2^{\text {H }} \times 1-1 / 2^{\prime \prime}\) Bushings & . 07 & . 63 \\
\hline 6-2n \(\times 1-1 / 2^{\text {n }}\) Recucer Couplings & . 18 & 1.08 \\
\hline 17-2" plogs & . 05 & . 85 \\
\hline 12-2HSt. Ells & . 29 & 3.48 \\
\hline \(4-2^{\prime \prime}\left(20^{\circ}\right)\) Flls & . 25 & 1.00 \\
\hline 17-2" Nipples & . 06 & 1.02 \\
\hline \(3^{\circ}-2^{\prime \prime} \times 1-1 / 4^{\prime \prime}\) Tees & . 36 & 1.08 \\
\hline 47-1-1/2" \(\times 1-1 / 4^{\prime \prime}\) Reducing EIIs & . 17 & 7.99 \\
\hline 1-1-1/2n stop cock & 1.35 & 1.35 \\
\hline 6-1-1/2 \({ }^{\text {n }}\) Tees & . 21 & 1.26 \\
\hline 1-1-1/2" Cross & . 27 & . 27 \\
\hline 9-1-1/2' R.R. Unions & . 53 & 4.77 \\
\hline 11 - 1-1/2 \({ }^{\text {H Caps }}\) & . 11 & 1.21 \\
\hline 14-1-1/2 Ells & . 19 & 2.66 \\
\hline 6-1-1/2 \({ }^{\text {n }}\) plogs & . 04 & . 24 \\
\hline 7 - I-1/2" \(\times 1-1 / 4^{\prime \prime}\) reducer couplings & . 11 & . 77 \\
\hline 35-1-1/2 \(\mathrm{F}^{\text {T Tees }}\) & . 21 & 7.35 \\
\hline 11-1-1/2" St. 1111 s & . 18 & 1.98 \\
\hline \(9-1-1 / 2^{\text {n }}\left(90^{\circ}\right)\) Eils & .16 & 1.44 \\
\hline 18-1-1/2 \({ }^{\text {a }}\) Hipples & . 05 & . 90 \\
\hline 142-1-1/4' & . 0415 & 5.89 \\
\hline 24-1m1/4" R.R. Delons & . 40 & 9.60 \\
\hline 126-1-1/4" Tees & . 16 & 20.15 \\
\hline 10-1-1/4 \({ }^{\text {H }}\) St. mlis & . 14 & 1.40 \\
\hline \(35-1-1 / 4^{\prime \prime}\left(90^{\circ}\right)\) 3n1s & . 13 & 4.55 \\
\hline 98-1-1/4" Tapping qees & 2.00 & 196.00 \\
\hline  & .1359 & 28.67 \\
\hline 15-1-1/4 \({ }^{\text {a }}\) Couplings & . 0 S & 1.35 \\
\hline 40-1-1/4* plugs & . 03 & 1.20 \\
\hline 1-1-1/4" atop cock & .76 & . 76 \\
\hline 1-1-1/4' Crose & . 22 & . 22 \\
\hline 13-2-1/4 \({ }^{\text {n }}\) Caps & . 08 & 1.04 \\
\hline \(28-1-1 / 4^{\prime \prime}\) ( \(45^{\circ}\) ) E118 & . 15 & 3.30 \\
\hline  & . 04 & . 58 \\
\hline
\end{tabular}


\section*{INTLNTCRY OF GAMERIAL AND BOPIPMEMT ON HAND}
(OId Boiler Roon)
(All fittings and pipe steel miless marked othergise) August 3, 1939
\begin{tabular}{|c|c|c|c|}
\hline ITM & - UNIT & YOTAL & 'grand total' \\
\hline ilJ Iinaft. \(2^{\prime \prime}\) pipe & . 24 & 26.40 & \\
\hline 3,350 * " I-1/4" pipe & . 16 & 616.00 & \\
\hline  & .12 & 26.40 & \\
\hline 373 н н \(3 / 4^{\text {¢ }}\) pipe & . 10 & 37.80 & \\
\hline 105 " \({ }^{\text {a }} 3 / 8^{\prime \prime}\) & . 08 & 8.40 & \\
\hline 15A \({ }^{\text {a }}\) " \(1 / 2^{\prime \prime}\) & . 09 & 13.86 & \\
\hline 7E5 * \(2^{\prime \prime}\) steel pipe & . 16 & 120;96 & \\
\hline \(1.350{ }^{\prime \prime}{ }^{\prime \prime} 3^{\prime \prime}{ }^{\prime \prime}{ }^{\prime \prime}\) & . 30 & 567:00 & \\
\hline 42 " " 4 " " * & . 35 & 14.70 & \\
\hline 4-6" \(\mathbf{6}^{\prime \prime} 90^{\circ}\) ) Ells C.I. - weight 130 & & & \\
\hline \(2-519200\) & & & \\
\hline  & & & \\
\hline 1 - 8* C.I. tee 372 & & & \\
\hline 之-3* H11s (900) * 200 & & * & \\
\hline 1.16 & . 06 & 69:66 & \\
\hline 4-6" C.I. valve boxes & 6.50 & 26.00 & \\
\hline \(9-2^{\prime \prime}{ }^{\prime \prime}\) & 5.70 & 51.30 & \\
\hline 2-8゙ Oresser sleares & 3.60 & 7.20 & \\
\hline 1 - Marmon board & 10.75 & 10.75 & \\
\hline 1 - Mueller tapping machine & 125.00 & 125:00 & \\
\hline 3 - Lanterns & 1.00 & 9:00 & \\
\hline 8 - Flares & 1.25 & 10:00 & \\
\hline 5 - Wcodan barricades & 4.00 & 20:00 & \\
\hline 1- "Iton" chain hoist & 18.48 & 18.48 & \\
\hline C.I. Fipe outside & & \multicolumn{2}{|r|}{\$ 1,778.91} \\
\hline \multicolumn{4}{|l|}{360tin.ft. \(6^{\prime \prime}\) C.I. (150\%) bell and} \\
\hline - spizot pipe & . 85 & 308.00 & \\
\hline \multicolumn{4}{|l|}{18 " 8"C.I. (1504) bell and} \\
\hline & & & \$23107t41 \\
\hline \multirow[t]{2}{*}{10-1/2 carton 6" pipe wrepping (80.-OX-ID)} & 10.00 & \[
\begin{array}{r}
20.00 \\
105.00
\end{array}
\] & \\
\hline & & & \$2,232.41 \\
\hline
\end{tabular}

\section*{INVMTORY OF METRIAL ANO EOCIFMTAT ON HAND}

\section*{Basement of Office}

Auguat 4, 1939



\section*{TESTKNG RAULPMOTT}

1 - Hays flue gas analyzer - _ _ _ _ - - - 120.00
3-Bristol pressure reoording and indicating
\(\begin{array}{lll}1-3 & \text { LT iatric tin test meter (portable)- - - } & 255.00 \\ 15.00\end{array}\)
\begin{tabular}{rlr} 
\\
\(1-3\) & LT iatric tin test meter (Portable)- - - & 255.00 \\
\hline
\end{tabular}
1 - Bristol pressure gauge ditto of above
in use in office - ————— 85.00
1-Foxboro Recording Thermometer - - - - \(\quad 225.00\)
1 - J. そ. Gas leak detector - - . . - - - . - - \(\quad 80.00\)
I - Friz Anemometer - . . . . . . . . . . . - \(\quad 42.50\)
\[
\text { Total - - - - } 822.50
\]

Grand Total - - - \$1,083.56

TOOLS OH TRUCES
Angust 4, 1939
\begin{tabular}{|c|c|c|c|}
\hline ITEM & UNIT & 1 TOTAI & igrand porai \\
\hline \multicolumn{4}{|l|}{IIST OF TRUCES} \\
\hline 1- Vord Truck - 1/2 tin 1935 & \$ & \$ 195.00 & \\
\hline 1 - " - " " 1937 & & 400.00 & \\
\hline 1 - Dodge " - " 1934 & & 100.00 & \\
\hline 1 - P1ymouth truck - 1/2 ton - 1938 & & 475.00 & \\
\hline 1 - Chersolet \({ }^{\text {N - " }}\) - 1937 & & 400.00 & \\
\hline \multicolumn{4}{|l|}{DITCI TPINCZ, Ford 14-C531 1, \(1,570.00\) 1,570.00} \\
\hline 1 - Muller tapping machine & 125.00 & 125.00 & \\
\hline 1 - \(10^{\prime \prime}\) Rigid pips wrenches & . 92 & . 92 & \\
\hline  & 1.24 & 1.24 & \\
\hline 1-18 \({ }^{\text {N }}\) & 1.76 & 2.76 & \\
\hline  & 3.04 & 6.08 & \\
\hline 1-35R N \({ }^{\text {- }}\) - threader and dies & 15.00 & 15.00 & \\
\hline 1 - Toledo thraadar and dies (amall) & 12.85 & 12.85 & \\
\hline 1 - jipe cutter 1/4" to \(2^{\prime \prime}\) & 3.37 & 3.37 & \\
\hline 1 - protin snips & 1.25 & 1.25 & \\
\hline 1 - -1stol grip hack sam & 1.00 & 1.00 & \\
\hline 1 - urace and bits & 3.50 & 3.50 & \\
\hline 3 - socket wrenches & 6.80 & 20.40 & \\
\hline 4 - jeints & . 25 & 1.00 & \\
\hline 2-ameil chisels & . 25 & . 50 & \\
\hline 8-tile spedes & 1.55 & 12.40 & \\
\hline 6 - logs handled shovels & 1.40 & 8.40 & \\
\hline 1-12\% sledge & 2.06 & 2.06 & \\
\hline 3 - candiding hamaers & 1.21 & 3.63 & \\
\hline 4 - Ianterns & 1.00 & 1.00 & \\
\hline 3-Eicirs & 1.25 & 3.76 & \\
\hline  & 1.75 & 1.75 & \\
\hline \(1-10\) & 1.75 & 1.75 & \\
\hline 1 - chain Fice & 6.00 & 6.00 & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{SERVICS TEUCKS (Service men tools and equipment) 237.61}} \\
\hline & & & \\
\hline 4 - pistol grip hacksars & 1.00 & 4.00 & \\
\hline 4 - chaln pipe vices & 6.00 & 21.00 & \\
\hline 4-10n pipe wrenchos & . 92 & 3.68 & \\
\hline \(4-14^{\text {¢ }}\) & 1.24 & 4.96 & \\
\hline 4-18 \({ }^{\prime \prime}\) & 1.76 & 7.04 & \\
\hline 4-㐌3 pipe cutters & 3.77 & 13.48 & \\
\hline 4 - small Toledo pipe threaders and dies & 12.85 & 51.40 & \\
\hline 4-4' ladders & 1.25 & 5.00 & \\
\hline
\end{tabular}

4 - pr. tin snips
4 - cenlling hemers

Smeller hand tools (screwdivers, Slash lights, atc.)

\begin{tabular}{|c|c|c|}
\hline ITEM & NETV VALUE & RE:AAIMING VALUE \\
\hline Pipe in Kains & 143,389.18 & 59,832.21 \\
\hline Meters & 43,244.67 & 27,948.04 \\
\hline Service Regulators & 921.98 & 737.73 \\
\hline Service Lines & 31,046.22. & 13,276.58 \\
\hline Cast Iron Fittings in Mains & 3,321.10 & 2,341.81 \\
\hline Steel 11. & 938.52 & 356.91 \\
\hline Valves in Service Lines & 287.06 & 203.47 \\
\hline Valves in Mains & 1,'119.10 & 707.39 \\
\hline Casing under Railroads and Paving & 1,192.50 & 848.19 \\
\hline Special Pipe \& Fittings used in Storm Sewer Crossings & 1,115.65 & 787.13 \\
\hline Regulator buildings, Regulators, Piping and Valves & 6,544.94 & 5,278.09 \\
\hline Drips & ------- & \\
\hline Work completed since August 1, 1939 & 1,683.18 & 1,683.18 \\
\hline Total & \$234,804.10 & \$114,000.73 \\
\hline Plus 5\% for Engineering and Superintendents & 11,740.21 & 5,700.04 \\
\hline Inventory of Materials & & 10,206.22 \\
\hline Value of Real estate owned by Central Power Company. & & 12,750.00 \\
\hline Total & \$246,544.31 & \$142,656.99 \\
\hline
\end{tabular}

A comittee eppointed by the yaycr appraised the total real estata and improvements of the Central Power Compang at \$12,750.

\section*{ASSESSED FALTAAIOH OP RTAI ESTATE}
(1) All of Block \#24, Johnson's AdCition, Festings, Mebraska Located on this land is the regulator house listed as Second and Minnetota Streeta, the old mamiactured gas plant building with equipment removed, and one other building. The buildings vith the exception of the regulator bouse are used for storing equipment and merchandige, with the emeption of one room which is used as meter test and storage room. There are two holders located on this block also, both of which are in very poor ghape.


 Ine regulator house insted as Ninth and Baltimore Streste Is located on the rear of this lot. Assessed Faluation of this land 11ster an \(\ldots \ldots \ldots \ldots \ldots\). \(\quad 35.00\) Improvementa not 2isted.
(3) The total essessed value on personal proparty of the Central


POTAL TAE PAIT IN COUYTY BY CEXMRAL POTER COAPAYY


TOPAL TEX PAID IA CITY BI CERTHAL POTEN COAPANI


\section*{PIPD IN MAITS MUITY DEPRECIATH}

The following quentities of pipe in mains have been fully depreciated but mey have some value.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & 1729x & itear acgitrmo & 1 & GDANTITT \\
\hline 4-1/2" & O.D. & Steel & 1900 & & 5,480 \\
\hline 3-1/2" & * & - & , & & 7,660 \\
\hline \(\cdots\) & \(\cdots\) & \({ }^{\prime}\) & 1901 & & 1.320 \\
\hline n & . & " & 1908 & & 1,340 \\
\hline n & n & n & 1909 & & 1,390 \\
\hline " & - & n & 1910 & & 720 \\
\hline n & \% & , & 1911 & & 1,422 \\
\hline - & \% &  & 1912 & & 105 \\
\hline n & * & \% & 1914 & & 430 \\
\hline - & - & * & 1915 & & 4,185 \\
\hline * & , & \(\cdots\) & 2916 & & 9,375 \\
\hline ! & " & " & 1917 & & 8,541 \\
\hline 2-1/2 & I.D. & \% & 1918 & & 5,070 \\
\hline \(2-3 / 8^{\prime \prime}\) & O.D. & \% & 1910 & & 555
2,735 \\
\hline \(\cdots\) & \% & " & 1903 & & 2,740
440 \\
\hline - & \% & - & 1905 & & 1.544 \\
\hline - & \(\cdots\) & \% & 1906 & & 1,280 \\
\hline . & ! & , & 1907 & & 800 \\
\hline " & , & \(\cdots\) & 1909 & & 380 \\
\hline " & \# & " & 1910 & & 3,050 \\
\hline " & " & H & 1917 & & 920 \\
\hline  & " & \% & 1912 & & 3,945 \\
\hline  & - & , & 1914 & & 1,530 \\
\hline - & \% & * & 1915 & & 1,228 \\
\hline n & - & " & 1916 & & 5,044 \\
\hline \% & * &  & 1917 & & 4,366 \\
\hline 1-1/2" & I.D. & - & 1918 & & 1,510 \\
\hline * & * & n & 1905 & & 520 \\
\hline - & \(\cdots\) & - & 1911 & & 250 \\
\hline \(\cdots\) & " & \(\cdots\) & 1912 & & 150 \\
\hline \% &  & \% & 1915 & & 110 \\
\hline 1-1/40 & - & n & 1916 & & 730 \\
\hline 1-1/4 & , & \% & 1918 & & 219 \\
\hline \(\stackrel{.}{n}\) & - & n & 1905 & & 200 \\
\hline * & & " & 1917 & & +45 \\
\hline
\end{tabular}

Most of these ines are laid in the older part of town where, if gas is used univergally for heating, the consumption will be high and it mould not be safe to nse tham for intermediate pressure system, so they will be very ilttle value to the City. Many of these lines are lald under paving and it will be quite expensive to repair them if leeks occur. I do not think a main amaller than 2-3/8" has any value, as they will not carry enough ges.

METERS FULLT DEPABCIATEW
There are 147 meters which have passed the age of depreciation, as follows:
TKAR ACQJIRED
\begin{tabular}{lr}
1899 & 4 \\
1900 & 1 \\
1903 & 3 \\
1904 & 7 \\
1905 & 8 \\
1906 & 4 \\
1907 & 10 \\
1908 & 7 \\
1909 & 103
\end{tabular}

I do not think thet a meter that has been in service for noro than 30 yearg hes much value. These meters have been nsed for artificial gas and may have deposits of gim in them. If the: City burs this plant fran the Central Power Comcery, I would recommend that the latter be allowed to retain all meters 30 years old or older, and that the city replace these with new meters.

\section*{SRRYIC: LIIES FULY DEPRCYETHD}

The following quantities of service line are fully depreciated, and would have a very suall value.

The 3/4" and \(1^{\prime \prime}\) lines are too small to be used for unch of a ineating load. Hany of these lines are laia over paving and it is inpossible to make inspection of them. Due to the fact that they are under paving, it would be quite expensive to repair them.

The service lines have been most difficult to plece a value on, for the reason the the records are not quite as complete as they ware in the case of other items.



\section*{STEUH FITTITGS IN MAINS FMIT DKPPECLAYM}

The follozing ilst of steel fittings in mains heve been folly deprecieted. These are smali items.
\begin{tabular}{|c|c|c|}
\hline ITEM & 1 Imar ACGITRD & 1 gravtict \\
\hline \(2^{\prime \prime} \mathrm{T}-8\) & 1910 & 5 \\
\hline 2"19-8 & 1916 & 1 \\
\hline \(3{ }^{\prime \prime}\) т-8 & 1910 & 33. \\
\hline 3" T-8 & 2911 & 1 \\
\hline \(3^{412} 8\) & 1916 & 6 \\
\hline \(3^{n} \times 3^{n} \times 2^{n} 1 \times 8\) & 2909 & 94 \\
\hline \(2^{\text {n }}\) Crosses & 1809 & 13 \\
\hline 2* & 1910 & 2 \\
\hline \(2^{\prime \prime}\) & 1918 & 1 \\
\hline \(2^{\prime \prime}\) & 1917 & 1 \\
\hline 3 \({ }^{1}\) & 1909 & 56 \\
\hline 3" \({ }^{1}\) & 1911 & V \\
\hline \(3^{* *}\) & 1915 & 2 \\
\hline 3" & 1918 & 5 \\
\hline 3" * & 1919 & 2 \\
\hline 4" & 1909 & 5 \\
\hline 2" \(45^{\circ}\) bends & 1910 & + \\
\hline 3" 1 " & 1910 & 6 \\
\hline 3" & 1911 & 7 \\
\hline
\end{tabular}

\section*{IRARAGE II MAINS}

It is impossible for us to determine the exact leakage in the maing. Mr. Borden has furnizhed us with a record of gas purchased, gas solit and ges unaccounted for from August, 1937, to July, 1939, table of which is given horemith:
\begin{tabular}{|c|c|c|c|c|}
\hline Month & \[
\begin{gathered}
\text { Ges } \\
\text { Purchased } \\
\text { M.C.P. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Gas } \\
& \text { Sold } \\
& \text { M.C.F. }
\end{aligned}
\] & ```
    G48
Onaccounted
    for
    M.C.F.
``` & Percent \\
\hline \(193 \%\) & & & & \\
\hline Augast & 9,203 & 8,254 & 949 & \\
\hline Sopt. & 10,503 & 8,550 & 1,953 & \\
\hline Oct. & 16,866 & 11.851 & 5,015 & \\
\hline Hov. & 24,386 & 20,844 & 3,542 & \\
\hline \[
\begin{aligned}
& \text { Dec. } \\
& 1988
\end{aligned}
\] & 30,900 & 29,339 & 1,511 & \\
\hline Jan. & 32,687 & 28,687 & 4,000 & \\
\hline Feb. & 33,968 & 31,555 & 2,413 & \\
\hline Mar. & 22,133 & 25,151 & 3,018 & \\
\hline April & 20,802 & 21,360 & 888 & \\
\hline Mas & 16,414 & 17,073 & 659 & \\
\hline Jone & 12,891 & 12,864 & 27 & \\
\hline 3 OLy & 9,936 & 9,314 & 622 & \\
\hline POTAL & 240,689 & 234,842 & 18,847 & 6.58 \\
\hline Argast & 9,944 & 8,939 & 1,005 & \\
\hline Sept. & 12,571 & 10,069 & 2,502 & \\
\hline Oct. & 13,928 & 11,144 & 2,784 & \\
\hline Mov. & 26,670 & 21,111 & 5,559 & \\
\hline \[
\begin{aligned}
& \text { Dec. } \\
& 1939
\end{aligned}
\] & 28,843 & 26,623 & 2,220 & \\
\hline Jan. & 31,337 & 30,181 & 1,156 & \\
\hline Pab. & 37,28.4 & 35,669 & 1,555 & \\
\hline Marct & 24,565 & 20,116 & 4,551 & \\
\hline April & 25,582 & 24,210 & 1,372 & \\
\hline May & 12,258 & 15,689 & 3,431 & \\
\hline Jone & 11.550 & 11,189 & 361 & \\
\hline Joly & 10,321 & 10,188 & 133 & \\
\hline TOTAL & 244,793 & 234, 128 & 10,665 & 4.36 \\
\hline
\end{tabular}

The gas unaccounted for varies aharply from month to month, and the Central Porer Company has spent considerable money in the last year in treating the cast iron mains to prevent leakage.

The oniy way accurately to determine the leakage of gas would be to block off a portion of the maing, put them under pressure, and measure the leakage. This we cannot do, as all parts of the mains are in operation.

1. Discaxd all meins between the west alde of Hinnesota Avenue and the east gide of Baltimore Averue, and from the Horth alde of First atreet to the North side of 17 th street; and install net exains as shom on the plans for a nev system, conneoting to all old pipe of the required gize that lays in the right position.



Cost of ilo. 1 解 \(153,576.45\)
11. Change the portion of City south of Burlington tracks into intermediate pressure eysten as follows:
(a) Do away the ell regulatora end regulator pita.
(b) Cut 4" Low presfure inne at Denver Aveme and Firat Street from the low prescure line and tie to I. P. line on First Street and Denver Avarane.
(c) Cut 4" 10 w preseure line at Kinneeota Avenue end Firat street and tie to I. P. Iine st Pirst Street and Hinnesota Avenue.

1d) Add approximately 26,700 lin. it. of \(2^{\prime \prime}\) pipe and 845011 n . It. of \(3^{n}\) pipe to service houses not inoluded in present system. Replice \(3^{\prime \prime}\) pipe on Haetings Avenue between \(D \& E\) streets with \(3^{*}\) pipe and tie dead ende acrose G; F\& E etreets as ahom on plan lor new eysten.
(e) Inctall approximately 755 individual house regulators.
(f) Ingtall 4, 3" valves.
(E) Install 22,350 1in. ft. of n'z I安" service.
(h) iake e4 square yerds of pavint cuts.

Cost of Recomenctatisn :o. 2.


Cost of 30. 3 317, 066.20
III. Ciange the syster post of 2ast sido zoulevara and lorth of the Jurinjeinn traciss to an intermejiate system, as follows:
(a) Sit the \(4^{n}\) low pressure mein at l2th atrett anc ifinnesota Avenue ard tiaitinto the l. P. line.
(b) lut tie \(4^{n}\) Iow pressure majn at sth 3trect and isimesota Avenue end tie it into the I. \(1:\) inne.
(c) ant the \(3^{n}\) low proseure main at 5 th street and ininnenota Averue axd tie it into the I. P. inne.
(d) Cut the \(4^{\pi}\) Iom pressure main. nt 3ra Street and innnesots Aveme ard tie it into the I. F. Iine.
(e) Out the \(4^{n}\) Iow pressure wain at and stroct ond unnesota Avenue and tie it into the I. F. lise on finnerota aperue.
 Turner svenue into the main or Celiformis Aferue.
( 5 ) Install eprotinately 800 individual iouse reguitters.
(b) Replece the tmo inch lines on University Avemse from Sast Side 三oulevara to Turner Averue with inlues.
 Iast Side 3culevard with a \(3^{\prime \prime}\) Line.
 Fret ilde Boulevard sin tio ail dead ends on University Aveme, 7 th \(3 t r e e t\), 了 th \(3 t r e e t\), 5 th street end 4 th \(3 t r e e t\) into 1 t.
 and innnesotr Averue.
 and Hinneenta Averue.
(m) Inctill 5 veives.
(x) Fevine cuts involved 200 square jarde.

Cost of Recominerdation No. 3 .
\begin{tabular}{|c|c|c|}
\hline Items & a, b, c, d a e. & \$ 375.00 \\
\hline Itens & f. & 132.00 \\
\hline Item & 5 & 4,000.00 \\
\hline Item & \({ }^{\text {h }}\) & 1,672.00 \\
\hline Item & 1. & - 440.00 \\
\hline Item & j, & 1.464 .00 \\
\hline Iten & \(\underline{1}\) & 1,708.00. \\
\hline Item & 18 & - 570.00 \\
\hline Item & m, & 248.00 \\
\hline Item & I, & 784.00 \\
\hline
\end{tabular}

Total cost of lo. 3. \$11,392.00
IV. Fun a \(12^{n}\) I. F. Inse from the Buth city linits to First. Street and finnesota Avenue ard tie ixito \(8^{\prime \prime}\).
(a) 5155 11ム. ft. \(2 z^{n}\) pipe lata
\$8.968.70
Totel Cost of wo. \&. \& 6, 863.70
V. Change the section Horth of the Eurlington raackg and Fest of Baltimore Avenue into an intermediate syetem as followa:
 I. P. Iine on Baltimore Availe.
(b) Tie \(3^{n}\) line on Crine Averue betaeen Foyce and 5 th Street into line on 8 th street.
(o) alt \(3^{\prime \prime}\) line \(2 t 8 \mathrm{th}\) street and 3oltinove Avenue from low pressure and tie it to \(\overline{\text { in }}\). Ine on Baltimore Avenue.
(d) THe maing on 8 tin Street rad 7 th Street torether by laying a \(3^{\prime \prime}\) main on Barnes from 7 ti to Bth Street.
(e) Cut \(3^{n}\) Jon pressure line et 7 th Street and Baltimore Avenue and tie to 8 " I. P. Iine on Baltimore Avenue.
(i) axtend \(3^{70}\) arin on 6th 3 treet, from end to peat Lavin Averue.
(E) Cut 3" Ios presgure Inne at Bth Strect and Beltimore stemie End tie it to \(8^{\prime \prime}\) i. P. on Bnltimore Avemue.
(b) aut \(3^{*}\) Ion pressure inne at 5th Etreet end Balthorw Avenue and tie it \(80 \delta^{\prime \prime}\) I. \(F\) or Beltimore Avenue.
(1) cut \(3^{*}\) 10w preasure line at 4 th \(8 t r e e t\) and Baltimore dvenue ani tie it to \(8^{n}\) I. F. or Boitimore Averiue.
(j) Cat \(3^{\prime \prime}\) 10m pressure inne et 3rd street ond Baltimore Aveme and tie it to \(\mathrm{g}^{\mathrm{M}} \mathrm{i}\). Fo on Eeltimore Arenuo.
(k) cost \(3^{\prime \prime}\) 20mpressure line et ard street and 3oltimore AFcine anid tie \(i t\) to \(6^{\prime \prime} I\). \(\mathcal{F}\). on Brltimore Avenue.
 or. each stic of pavine:
(a) Inatail epproxiastely 409 individuel house foriatore. (B) Instail 7 - \(3^{4}\) velves.

Dost of Reconzandetion io. 5.

Itera \(a_{0}\)
Iten \(b\),
Item \(d:\)
Item \(I_{2}\)
Item 2 :

Item
* 325.00 303.00 88.00 220.00 528.00

1,848.00 2,045.00 23E.00

Tetel Cost of tio. 5.
\&5,868.00

Srand total of all ravistuas - - - - 1197.403 .35
ine portions to be turned in0 intermedsate prescure mat be isulated ehid tested to sex if 解ey 111 withatand the prageure befors ushat thes for such.

\section*{ACTUAL VALUE TO CITY OF HASTIIGG, NGBRASKA}

The appraisel report shows the total value of the property and equipment omed by the Central Power Cormpany to be \(\$ 142,056.09\) for rate making purposes. However, due to the fact, they will be a large portion of the mains in the present system that cannot be used and will be a total loss to the city, we feel the actual value, to the City of Fiastings, of the present gas distribution system owned by the Central Power Company is as follows:


The value of the useable part of the distribution system is \(\$ 83,072.98\). There is a portion of the fittings, taken in the inventory that are not new, and a portion that could not be used by the city because of their size. Therefore we would not deem it a wise investment for the city to offer the Central Power Company over \(\$ 100,000.00\) for their entire real estate, equipment and distribution system within the city limits of the City of Hastings, Nebraska.

The above offer is intended to include:
(1) All distribution mains within the city limits of Hastings Nebraska, owned by Central Power Company.
(2) All main line regulators, valves and regulator pits and houses within the city limits of Hastings, Nebraska, owned by Central Power \(C_{0}\) mpany
(3) All meters within the city limits of Hastings, Nebraska, owned by Central Power Company.
(4) All service regulators and service valves and cocks within the city limits of Hastings, Nebraska, owned by Central Power Company
(5) All services within the city limits of Hastings, Hebrasien, oumed by Central Power Company.
(6) All pipe, valves, fittings, etc., in stock exceot those smaller in size than \(1 \frac{1}{4}\) " within the city limits of Hastings, Nebraska, owned by Central Power Company.
(7) All testing equipment and gauges within the city limits of Hastings, Nebraska, owned by Central Power Company.
(8) All tools and safety equipment within the city limits of Hastings, Nebraska, owned by Central Power Company.
(9) All repair parts for meters, regulators, etc., within the city limits of Hastings, Nebraska, owned by Central Power Company.
(10) All trucks owned and operated by Central Power Company within the city limits of Hastings, Nebraska.
(11) All real estate owned by Central Power Company within the city limits of Hastings, Nebraska.
(12) All records pertaining to meters, location of meters, mains and services within the city limits of Hastings, Nebraska and owned by tine Central Power Company.

The itemized statement above is intended to include all real estate, improvements, equipment, etc. owned by the Central Power Company within the city limita of Hastings, Nebraska, except their merchandise such as furnaces, stoves, water heaters and their repairs and accessories, the small fittings below \(1 \frac{1}{4}\) in size and the office equipment and supplies, such as desks, chairs, adding machines, files, stationery, etc.

\title{


}

To the Leyor and Council, Hastines, liebraska.

Gentlewen:-
Fe hersfith subuit you our report on the proposed huncizel Gas gyeten, ticr mhich it mil be necessary to inveat the sun of f388,000.00. This Feport containe various teablee, eeparately heaced, and is subulvided into portions treating
 expex.se to your citizene, besce on the exietirg fremchise rates as compered with rates proposed for hunicipel gaes and ar entimate of inirencias to retire the investrient in the construotion of
the plant.

\section*{Source of supply}

The \(O_{1}\) ty of Hzetings can obtrin gas from a pipe ilne which mould bo constructed for that purpose from the gis flelde in Keneas oz ficids in oklahoss minch has been investigated by your eac comattee.

Consupmation
In morishe up our annatization of the oost of your gas systen, we have ansamed that the city would be able to secure 3559 duaestic and amall business comicctions, together .itin the poser plex.t, churches, echools, laree industifal companies, no givituls, court houac ond the jost office, rlso the coninerical coniections nuci as tila olarke Fotel, Penney (ginary, indsett


The \(355 S\) domeatic ard gmell busiress uaers have been divided into the following clasifiontione in accordance with the irizTmation geined from the prelininary guvey.


Table :io. 1 conitained in the bact of this report ghows the estimated amount of gas used month by month for one customer in each clessification and the revenue from seme. It also shows the total yearly consumption for one customer in each classificetion end tine yearly revenue from same.

The percurtages shown for the anounts of ges used each month ses derived Pron calculating the degree days, woth by montin for the last ifve yearg, to talimg these results and takine theif ayerage and deoreasing these amounts a sirall degree to elloz for other then heating gas.

From the classification on yage fl and the reants in table II the total yearly domestic and siali businese conounption ard reverue for the city of Hastinys was figured as follova:


Tue ejove table wiche thet the roje doneatic and susil bubiress places flll use \(302,5034,000\) cublc feet per ycar and it can ba sold to tincus at tue followile rate, first two thousend
 10,000 at \(\hat{4} 30\) per thousand.
 the light plant and city buildines that can be eold at cost or r. 18 per thouserd. The amount tist rould be used ras complled frem coal data.

There wil also be \(155,116,600\) oubic feet per year used by counarical houses, okurches, schools ajd institutions and can be sold at a profit of t.05 per thousend or a rate of \(\% .23\) per thouserd. The linge perit of tinis consurption data mas compiled from coal deta, the balance was eatimited.

The total of the three amounts ehove ghows the total estimate congumption of lastings to be \(1,097,310,200\) cubic fect annually.

\section*{Design of syatem}

In desifring your distribution syetem, me have anoma an intormediate prescure lise \(12^{*}\) in diameter from the south oity ilinits to jinimesota Averue and the all oy forth of first otreet. from here 1 t extends North on irinnesota Avonue to izth ytreot ard Slong 12 th Street to the power plant as a \(10^{\circ}\) inne. An internediate pressure line \(8^{\circ}\) in size aterting from tine \(12^{\prime \prime}\) interm mediate pressure ine on Minuesots arenue, oxtende rest in the alley noriti of First street to Zurilngton Areaue, thence qest on Frist sitreet to Balthave averue, thence liortin on Baltimore ivenue to Minth Street, therce iast elerg \(i\) th Street to Bellevue Averue and thence liortin on Bellerue Avenue to 12 th street, thence iast along l2th stroet correctixit into the \(10^{N}\) at the power plant. in 8 finterneuiate pressure inne aleo serven tine inoppital, auditorium ana tice lerge builuinga along Haztines averue. A \(\mathrm{G}^{*}\) intermediate prescure line sieo runs to the fiestiues College and a \(3^{\prime \prime}\) intermediete pressure line to the alcott and lictigfellon schools. These intermeniate preseure lines form a belt aroind tue city ard bice tio cinef source of suply. Heguletors are connected intc these 1ritermediate pressure lines at positione best anited to fead the iow preseure sybtem mind oh fill serve a large rejority of the consumers. These reguletore are so interconnected thet if it is necesgary to ghut donn one yegulator stat ion for repelis the syaten mil function efficientiy without it. The intermediate iresgare line will carry between five and fifty pounds pressure dependizg uper the cossupption derand. The 10 V pressuro marins mil oaryy inom four to twelve ounce preseure. All mains have been placed in alleys riaere cosbiole end where it is neoeseery to lay the mains on pared 5 treete tiey keve been placed on each side of the peving in the pericinge.

Fe have provided an irterraciate preacure systam for the jortion of the inty Jouth of the cisk railrond trecisa, and each
 The houges are mani mud farther aport in this eection of tio city and Je is unt acen it \(a\) wise inveatrant to jarovide a loa 포escure grotea tuera.

Our efthanto 1 b based crtizely on wey relced pipe and the


\section*{Fliaxciate tine ay atem.}

An Fe have stated in an eeriler portion of tula regort wo are egtineting the conesmition of the jrobrile ooriocted demostic era small luainear loed as 6f3, 554.000 cubic leet per year. Te
 finctitutíninl zomand comaricel lobd will be appraxizetely I5S, 116, 300 cubio faet per yeer. The poter plerit erif city



Mividitif the total dowestio evi mall businese inoone of
 of Bet ,554,000 tu extive at the averese pride pald for gas by tinpee conmumera.



Averze siacone to City = 0.087 per thousand
 نusiriens cex roula de


Tae poter plent ard city baildines sould uge
\[
375,335,300 \text { no } 25011 t \ldots \ldots, \ldots-000,050,00
\]

Tre gea ueed by izietitutisial ent incugtrial concerns hae beex eatiznted ac \(155,113,600\) cubic feet to be eeld at
O. Di grofit per s
\[
\text { 125,115,500 } \times 0.05
\]
 operatilis cost approximately as follows:
\begin{tabular}{|c|c|c|c|c|}
\hline & Genteral lianager & ,2,300.00 & per & year \\
\hline 3 & Sicter jieaders & 2,400.00 & & , \\
\hline 3 & Service men & 4,500.00 & * & n \\
\hline 1 & jain foreman & 2,000.00 & \(\cdots\) & \(\square\) \\
\hline 3 & jatci laborers & 3. 240.00 & * & \({ }^{\prime}\) \\
\hline 2 & Office olerks & 2,400.00 & " & * \\
\hline & Incidental & 1,860.00 & * & \\
\hline
\end{tabular}

A total expense of \(620,000,00\) per year.
Deductine this from the total gross earninge leaves a net of approxixately \(\mathrm{Q} 52,023.57\) for financing.

As Ee all kow, it will take most of the firat year to accomplish the conneoting of geryices before the eystera will be opersting ueaterto the potential load.

We are therefore mang allosences for this and figuring your income for the first year at one hall of the total eateinated yearly income of \(\$ 36,011.76\) and the second year as \(2 / 3\) of the total yearly estimated income or \(\mathrm{S}_{\mathrm{i}} 45,015.72\).

The cost of the \(日 y\) etem-is estiasted at \(\$ 388,000.00\) which can be retired in 15 years at \(3 ; 1\) interest as sinem in table ja, contained in the back of this report end atill leave a comfortable proiit for the city as ehomi in table fis contained at the baois of this report.

\section*{Economics}

As stata beiore from tables dos. 4 and 5 घe have anown that this syeten cab be paid for in 15 yeara end make a substemtial profit for the city. Also se have shomit vill ave tio citizens a substantial amount on their ges bills as siom in tables itos. 1. 2 and 3.

Teble :io. O shows the number of desree days contained in eech month for the years 1934, '35, '33, '37 asd 1938. It also sinows the total degree day of oach year and the per cent of degree days contained in each month averaged over the inve years. The per cent used for conmuption of gas per month is ehown slightiy loner than the per cent of degree days per month because the consumption percentige is for the total ess used and sot for beating gas alone.

He feel that in view of the experience of other cities such
 operate their muicipal ges distribution systems, that this report is most conservative.

Me rif to call the attention of the citizens of Hastings to the fact that there will be a large amont of hard labor involved in the construction of such a gyster. The mpecificat10ns will require that permanent residents of the city of Hastinge be employed ea far es posaible. This alll help your unemployment at a tige shen thay need 1t most.
 steps to put this inprovement under fey as ze deca it a very valuable one.


September 11, 1939

TABLE NO. 1


\footnotetext{
Table showing gas consumed month by month and roveme from admeor onp individuat in each olassification uaing ratest

\section*{First two thousand 1,00}

Hext eight thousand e\%. 35 per thousand
All over ten thousand \(\$ .30\) per thousand
}
56.


TABLE NO. 2


Table shoring ghs consumed month by month and revenue from same for one individual in each
classifioation using existing rates.

Comparison of existing rate and proposed nunicipal rate at Hastinge.

Proposed Municipal rates. First 2000 1.00 Mext 8000 (3) \(\$ 35\) per \({ }^{2}\).
All over 10,000 \%. 30 per

Minumum rate per month \$1.00 for 2000 cubio feet

Exiating Rates
First Next Next 3000 Next 5000 Next 40,000
All over 50,000 .75 Uinimum rate per month .75 for 500 cubic feet.
\begin{tabular}{|c|c|c|c|c|}
\hline Amount of Gas & \[
\begin{aligned}
& \text { : Cost at } \\
& : \text { existing } \\
& : \text { rate } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { :Cost at } \\
& \text { :Municipal } \\
& \text { :Rate } \\
& \hline
\end{aligned}
\] & Saving & \\
\hline Firgt Five Hundred & \[
\begin{gathered}
75 \\
\text { minimum }
\end{gathered}
\] & \[
\begin{gathered}
1.00 \\
\text { minimum }
\end{gathered}
\] & & . 20 \\
\hline Flyst Thousand & 1.23 & \(\therefore i, 00\) & .23 & 8 \\
\hline First Two Thoussnd & 2,18 & 121200 & 1.18 & 2.03 \\
\hline & & min! & & 2.76 \\
\hline First Three Thousand & 2.98 & 1:35 & 1.63 & 3.53 \\
\hline First. Four Thousand & 3.78 & 1.70 & 2.08 & 4.26 \\
\hline First Five Thousand & 4.58 & 2.05 & 2.53
4.28 & 7.28 \\
\hline First Ten Thousand & 8.08
10.58 & 3.80
5.30 & 4.28
5.28 & 9.78 \\
\hline First Pifteen Thousand & 10.58 & 5.30 & 5. 28 & 12.28 \\
\hline Pirst Twenty Thousand & 13.08
15.58 & 8.80
8.30 & 7.28 & 14.78
14.7 \\
\hline First Twenty-five Thousand & 15.58
18.08 & 9.80 & 8.28 & \(14: 9\) \\
\hline First Thirty Thousand & 20.58 & 11:30 & 9,28 & 1674 \\
\hline First Porty Thousand. & 23.08 & 12:80 & 10,28 & 工 \\
\hline Firgt Forty Five Thousand & 25:58 & 14. 30 & 11.28 & \\
\hline First Fifty Thousand & 28.08 & 15.80 & 12.03 & \\
\hline First Seventy Pive Thousand & 39.33 & 23. 30 & 19.78 & \\
\hline First Hundred Thousand & 50.58 & 60.80 & 34.78 & \\
\hline
\end{tabular}

TABLE MO. 4
Table showing Bond Retirement \(\$ 388,000.00\) to beretired in 14 years ( \(3 \%\) interest

Fnd Year : Unpaid Bonds: Principal: Interest : Total :
\begin{tabular}{rrrrr}
1 lst & \(388,000.00\) & & \(11,640.00\) & \(11,640.00\) \\
3nd & \(388,000.00\) & & \(11,640.00\) & \(11,640.00\) \\
3rd & \(388,000.00\) & & \(11,640.00\) & \(11,640.00\) \\
4 th & \(388,000.00\) & & \(11,640.00\) & \(11,640.00\) \\
5 th & \(349,200.00\) & \(38,800.00\) & \(11,640.00\) & \(50,440.00\) \\
6 th & \(310,400.00\) & \(38,800.00\) & \(10,476.00\) & \(49,376.00\) \\
7 th & \(271,600.00\) & \(38,800.00\) & \(9,312.00\) & \(48,112.00\) \\
8 th & \(232,800.00\) & \(38,800.00\) & \(8,148.00\) & \(46,948.00\) \\
9 th & \(194,000.00\) & \(38,800.00\) & \(6,984.00\) & \(45,784.00\) \\
10 th & \(155,200.00\) & \(38,800.00\) & \(5,820.00\) & \(44,620.00\) \\
11 th & \(116,400.00\) & \(38,800.00\) & \(4,656.00\) & \(43,456.00\) \\
12 th & \(77,600.00\) & \(38,800.00\) & \(3,492.00\) & \(42,293.00\) \\
13 th & \(38,800.00\) & \(38,800.00\) & \(2,328.00\) & \(41,128.00\) \\
14 th & & \(38,800.00\) & \(1,164.00\) & \(39,964.00\)
\end{tabular}

15th

TABLE 20.5
Fnd Fear :Grose Income: Total EPense
\begin{tabular}{rrrr}
1 st & \(36,011.78\) & \(31,640.00\) & \(4,371.78\) \\
2nd & \(48,015.72\) & \(31,640.00\) & \(30,747.50\) \\
3rd & \(72,023.57\) & \(31,640.00\) & \(61,131.07\) \\
4th & \(72,023.57\) & \(31,640.00\) & \(101,514.64\) \\
5 th & \(72,033.57\) & \(70,440.00\) & \(103,098.21\) \\
6th & \(72,023.57\) & \(69,376.00\) & \(105,845.78\) \\
7 th & \(72,023.57\) & \(68,112.00\) & \(109,757.35\) \\
8th & \(72,023.57\) & \(66,948.00\) & \(114,832.93\) \\
9 th & \(72,023.57\) & \(65,784.00\) & \(121,072.49\) \\
10 th & \(72,023.57\) & \(64,620.00\) & \(138,476.06\) \\
11 th & \(72,023.57\) & \(63,456.00\) & \(137,043.63\) \\
12 th & \(72,023.57\) & \(62,292.00\) & \(146,775.20\) \\
13 th & \(72,023.57\) & \(61,128.00\) & \(157,670.77\) \\
14 th & \(72,023.57\) & \(59,964.00\) & \(169,730.34\) \\
15 th & \(72,023.57\) & \(20,000.00\) & \(321,753.91\)
\end{tabular}

Ho allowance has been made for increase in gas after the first two years. The actual total new profit to the city after 15 years mould be the amomt in the gas fund at that time minus taxes that would have been pald by the Gas Company in the 15 years wioh amounts to between \(\$ 4000.00\) and \(\$ 5000.00\) per year.

TABLE NO. 6
Number Degree Days
\begin{tabular}{lrrrrrr} 
& \(: 1934\) & 1935 & 1936 & 1937 & 1938 \\
\cline { 2 - 4 } & 1025 & 1149 & 1401 & 1627 & 1113 \\
Febr. & 925 & 832 & 1510 & 1087 & 978 \\
Mar. & 811 & 609 & 667 & 909 & 389 \\
Hov. & 667 & 895 & 798 & 786 & 694 \\
Dec. & 1206 & 1075 & 1089 & 1061 & 1015 \\
Total & 4634 & 4560 & 5465 & 5465 & 4189
\end{tabular}

Percent of Degree Days Per Konth

Jan.
Febr.
Mar.
Nov.
Dec.
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1934 & 1935 & 1938 & 1937 & 1938 & : 5 yr, average \\
\hline 32.28 & 25.20 & 25,84 & 29.68 & 26.56 & 25.84 \\
\hline 19.98 & 18.25 & 27.47 & 19.89 & 33.35 & 21.78 \\
\hline 17.50 & 13.36 & 12.30 & 16.63 & 9.30 & 13.80 \\
\hline 14.38 & 19.63 & 14.60 & 14.38 & 16.57 & 15.91 \\
\hline 26.03. & 33.57 & 19.93 & 19.41 & 24.23 & 22.83 \\
\hline
\end{tabular}

\section*{Estimate of liew System}
(1) Furnishing pipe, laying pipe, Helding pipe, backfilling trench, etc., approximately
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline (a) & 5,155 & 11n. & ft. & 12" & pipe \({ }^{\text {c }}\) & \$1.74 & 18,969.70 \\
\hline (b) & 5,725 & " & " & \(10^{\prime \prime}\) &  & 1.48 & 8,473.00 \\
\hline (c) & 37,420 & " & \(\cdots\) & \(8{ }^{\text {8 }}\) & \(\cdots\) & 1.11 & 41,536.20 \\
\hline (d) & 5,465 & * & - & 8 & \(\cdots\) & 1.31 & 7,159.15 \\
\hline (e) & 73,225 &  & \(\cdots\) & \(6^{\prime \prime}\) & * & 0.79 & 57,847.75 \\
\hline (1) & 53,180 & " & - & \(4^{\prime \prime}\) & " & 0.61 & 32,439.80 \\
\hline (g) & 97,245 & \({ }^{*}\) & * & 30 & " & 0.44 & 43,787.80 \\
\hline (h) & 75,825 & \(\cdots\) & * & 2\% & * & 0.30 & 23,747,50 \\
\hline
\end{tabular}
\(\$ 221,960.90\)
(2) Furnighing pipe, laying pipe, Helding pipe, backfilling trench, etc. approximately the following services.
\(\begin{array}{lllllll}\text { (a) } & 400 & \text { Lin. } & \text { ft. } & \text { 4" pipe e } & 0.61 \\ \text { (b) } & 500 & n & n & 3^{n} & n & 0.44 \\ \text { (c) } 10,000 & n & n & 2^{n} & n & 0.30 \\ \text { (d) } 140,910 & n & n & 1 \frac{1}{4} & n & 0.20\end{array}\)
\(\begin{array}{r}244.00 \\ 220.00 \\ 3,000.00 \\ 38,183.00 \\ \hline\end{array}\)
\(31,646.00\)
(3) Furnishing material and constructing complete 14 regulator and regulator pits.
(a) 5 regulator pits with 6" \(\times 6^{\prime \prime}\)
(b) \(\quad\) Tegulators 9 regulator pits with \(4^{n} \times 4^{n}\) regulatore e \(\$ 500.00\)

3,500.00
4,500.00 8,000.00
(4) Funishing and osetting of th valve boxes complete

(5) Furni shing and setting complete.
\begin{tabular}{|c|c|c|c|}
\hline (a) & 703 - \(0_{0}\) meters o \$11.65 & \$8,189.95 & \\
\hline (b) & 2544 - \#1 © 15.00 & 38,160.00 & \\
\hline (c) & 1163 - 校 - 23.00 & 26,749.00 & \\
\hline (d) & 41 - 423 年 80.00 & 3,280,00 & \\
\hline (e) & \(2-43\) * 100.00 & 200.00 & \\
\hline (1) & 7 - \# 4 , 186.78 & 1,307.46 & \\
\hline (E) & 1 - Wide range-orifce meter for power plant & 250.00 & 78,136.41 \\
\hline
\end{tabular}
(6) Furnishing and installing complete
(a) \(1196-1 \frac{1^{n}}{}{ }^{n}\) service regulators.
(b) 16 injeotor type B \#1 \(\$ 4.50\)

(d) 3-2 balance type I egulators
(e) - -3 balance type regulator 0 150,00 6,733:00
(7) Kaling 4124 Felded serviae comectionse 2.00 8,248.00
(8) Cutting and replacing 2220 square yards of paving \(0 \$ 2.80\)

6,216.00
(9) Tunneling


Comparison of Amounts of Pipe in IIew proposed system and the present existing system.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Size of Pipe \\
a
\end{tabular} & Lin. fit. in the existing system & Lin. ft. in ner proposed system \\
\hline \(2 \frac{1}{4}\) & 2,849 & Hone \\
\hline 1 \(\frac{10}{2 n}^{\underline{n}}\) & 3,037 & Hone \\
\hline 2" & 59,593 & 75,825 \\
\hline 2 \(\frac{1}{2}\) & 555 & None \\
\hline 3" & 117,382 & 97,245 \\
\hline 4" & 33,057 & 53,180 \\
\hline \(8{ }^{8}\) & 13,271 & 78.285 \\
\hline 8 & 18,064 & 42,885 \\
\hline \(10^{7}\) & 265 & 5,725 \\
\hline 12* & 390 & 5,155 \\
\hline
\end{tabular}

Pipe in new nains changed to equivalent of \(3^{\circ}\) pipe
\begin{tabular}{|c|c|c|c|}
\hline I & of \(2^{\prime \prime}=.44\) & feet of \(3^{\prime \prime}\) & in capaoity \\
\hline 1 & of \(3^{\circ \prime}=1.00\) & " \(3^{\text {" }}\) & 1. \\
\hline 1 & of \(4^{\text { }}\) = 1.77 & ( \(3^{\prime \prime}\) & * \\
\hline 1 & of \(6^{\prime \prime}=4.00\) & - \({ }^{\text {n }}\) & \(\cdots\) \\
\hline 1 & of \(8^{\prime \prime}=7.11\) & - \({ }^{\prime \prime}\) & - \\
\hline 1 & of 10"三 11.11 & - \(\quad 3^{n}\) & - \\
\hline 1 & of 12"= 15.99 & - \({ }^{\text {a }}\) & - \\
\hline
\end{tabular}


Total \(3^{n}\) equivalent of
new system
\(\frac{968,582.30}{5280}=\quad 183.44\) miles

Fipe in present aystem changed to equivalent of \(3^{\prime \prime}\) pipe


Comparison of Amounts of Pipe in Niew proposed system and the present existing system.
\begin{tabular}{|c|c|c|}
\hline Size of Pipe q & Lin. ft. in the existing system & Lin. ft. in new proposed system \\
\hline . \(1 \frac{1}{4}{ }^{\prime}\) & 2,849 & None \\
\hline 1 \({ }^{\text {in }}\) & 3,037. & None \\
\hline \(2^{10}\) & 59,593 & 75,825 \\
\hline \(2{ }^{\frac{1}{2}}\) & 555 & None \\
\hline 31 & 117,382 & 97,245 \\
\hline \(4^{\text {i }}\) & 32,057 & 53,180 \\
\hline \(6{ }^{11}\) & 13,271 & 73,225 \\
\hline \(8{ }^{10}\) & 18,064 & 42,885 \\
\hline \(10^{18}\) & 265 & 5,725 \\
\hline \(12^{\text {¹ }}\) & 290 & 5,155 \\
\hline
\end{tabular}

Pipe in new mains changed to equivalent of \(3^{\prime \prime}\) pipe

\begin{tabular}{r}
\(75,825 \times 0.44 \equiv 33,363.0\) \\
\(97,245 \times 1.00 \equiv 97,245.0\) \\
\(53,180 \times 1.77=94,128.6\) \\
\(73,225 \times 4.00 \equiv 292,900.0\) \\
\(42,885 \times 7.11 \equiv 304,912.4\) \\
\(5,725 \times 11.11 \equiv 63,604.8\) \\
\(5,155 \times 15.99=82,428.5\) \\
\hline
\end{tabular}

Total \(3^{\prime \prime}\) equivalent of new system

968,582.30 lin. \(\mathrm{It}_{\mathrm{t}}\)
\(\frac{968,582.30}{5280}=183.44 \mathrm{miles}\)

Pipe in present system changed to equivalent of \(3^{\prime \prime}\) pipe
\begin{tabular}{|c|c|c|c|}
\hline 2849 & \(x 0.17\) & \(=\) & 484.3 \\
\hline 3039 & \(x 0.28\) & = & 850.9 \\
\hline 59,593 & X 0.44 & \(=\) & 26,220. 3 \\
\hline 555 & \(\times 0.59\) & E & 383 \\
\hline 117,382 & \(x \quad 1.00\) & = & 117,382 \\
\hline 32,057 & x 1.77 & = & 56,740.9 \\
\hline 13,271 & \(x 4.00\) & \(=\) & 53,084.0 \\
\hline 18,064 & \(\times 7.11\) & ㄹ & 128,435.0 \\
\hline 265 & x 11.11 & = & 2,944.2 \\
\hline 290 & \(\times 15.99\) & = & \[
\frac{4,637.1}{391,162.3}
\] \\
\hline 391 & 162.3 & \(=\) & 74.08 m \\
\hline
\end{tabular}```

