

535 # 3

Remedial Investigation Report

Carter-Lee Lumber Company Site Indianapolis, Indiana

Remedial Investigation

WA 49-5LBD / Contract 68-W8-0040 December 20, 1994 May 1995

This document has been prepared for the U.S. Environmental Protection Agency under Contract No. 68-W8-0040. The material contained herein is considered as enforcement confidential and is not to be disclosed to, discussed with, or made available to any person or persons for any reason without the prior expressed approval of a responsible official of the U.S. Environmental Protection Agency.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 5 77 WEST JACKSON BOULEVARD CHICAGO, IL 60604-3590

REPLY TO THE ATTENTION OF:

HSR-6J

June 1, 1995

Mr. David Carter Carter-Lee Lumber Co. 1621 W. Washington St. Indianapolis, IN 46222

Dear Mr. Carter:

As we discussed yesterday, I am enclosing a copy of the Remedial Investigation Report for the Carter-Lee Lumber Company Superfund Site. This report outlines the results of the field work that occurred in 1992 and 1993. By copy letter, I am also providing a copy of this report to the public repository at the Hawthorn Community Center. In addition, at your instructions, I shipped a copy of this report via overnight mail to S. Andrew Bowman, yesterday evening. I intend to either visit or correspond with community members in the near future. As you know, the next step in the process is to respond to the conditions we have identified at the site. I will keep you apprised of the schedule.

Thank you for your cooperation with this matter. If you have any questions, I can be reached at (312)886-7576.

Sincerely,

Deborah L. Orr Remedial Project Manager

Printed on Recycled Paper

cc: Bill Bolen, CFS Art Garceau, IDEM w/attachment Dale Cira, CH2M Hill S. Andrew Bowman, McHale, Cook & Welch Hawthorn Community Center w/attachment Record Center w attachment

Contents

Acronyms and Initialisms iv Executive Summary vii 1.0 Introduction 1-1 1.1 Purpose of Report 1-1 1.2 Site Background 1-1 1.2.1 Site Description 1-1 1.2.2 Site History 1-1 1.2.3 Previous Investigations 1-2 1.3 Report Organization 1-3 2.0 Site Investigation Approach 2-1 2.1.3 Nonitoring well Installation 2-2 2.1.4 Monitoring Well Sampling 2-3 2.1.5 Water Level Measurements 2-3 2.1.6 Surveying 2-3 2.1.7 Groundwater Users Survey 2-3 2.2.2 Groundwater Users Survey 2-3 2.2.1 Groundwater Users Survey 2-3 2.2.2 Groundwater Users Survey 2-3 2.2.3 Offsite Soil Sampling 2-4 2.2.4 Water Level Measurements 2-4 2.2.5 Historical Data Review 2-4 2.2.6 Ecological Investigation 2-				Page
1.0 Introduction 1-1 1.1 Purpose of Report 1-1 1.2 Site Background 1-1 1.2.1 Site Description 1-1 1.2.2 Site History 1-1 1.2.3 Previous Investigations 1-2 1.3 Report Organization 1-3 2.0 Site Investigation Approach 2-1 2.1 Phase 1 Investigation 2-1 2.1.1 Soil Borings and Sampling 2-2 2.1.2 Groundwater Grab Sampling 2-2 2.1.3 Monitoring Well Installation 2-2 2.1.4 Monitoring Well Sampling 2-3 2.1.5 Water Level Measurements 2-3 2.1.6 Surveying 2-3 2.2.1 Groundwater Users Survey 2-3 2.2.2 Groundwater Sampling 2-4 2.2.3 Offsite Soil Sampling 2-4 2.2.4 Water Level Measurements 2-4 2.2.5 Historical Data Review 2-4 2.2.6 Ecological Investigation 2-6 3.0 P		Acr	onyms and Initialisms	iv
1.1Purpose of Report1-11.2Site Background1-11.2.1Site Description1-11.2.2Site History1-11.2.3Previous Investigations1-21.3Report Organization1-32.0Site Investigation Approach2-12.1Phase 1 Investigation2-12.1.1Soil Borings and Sampling2-12.1.2Groundwater Grab Sampling2-22.1.3Monitoring Well Installation2-22.1.4Monitoring Well Sampling2-32.1.5Water Level Measurements2-32.1.6Surveying2-32.2Phase 2 Investigation2-32.2.1Groundwater Sampling2-42.2.3Offsite Soil Sampling2-42.2.4Water Level Measurements2-42.5Historical Data Review2-42.6Ecological Investigation2-63.0Physical Characteristics and Site Setting3-13.1Site Topography3-13.2Land Use3-13.3Geology3-23.3.1Regional Geology3-23.4.1Regional Hydrogeology3-33.5Groundwater Uses3-3		Exe	cutive Summary	vii
1.1 Purpose of Report 1-1 1.2 Site Background 1-1 1.2.1 Site Description 1-1 1.2.2 Site History 1-1 1.2.3 Previous Investigations 1-2 1.3 Report Organization 1-3 2.0 Site Investigation Approach 2-1 2.1 Phase 1 Investigation 2-1 2.1.1 Soil Borings and Sampling 2-1 2.1.2 Groundwater Grab Sampling 2-2 2.1.3 Monitoring Well Installation 2-2 2.1.4 Monitoring Well Sampling 2-3 2.1.5 Water Level Measurements 2-3 2.1.6 Surveying 2-3 2.1.1 Groundwater Sampling 2-4 2.2.2 Phase 2 Investigation 2-3 2.2.1 Groundwater Sampling 2-4 2.2.2 Offsite Soil Sampling 2-4 2.2.3 Offsite Soil Sampling 2-4 2.4 Water Level Measurements 2-4 2.5 Historical Data Review 2-4 2.6 E	1.0	Intr	oduction	1-1
1.2.1 Site Description 1-1 1.2.2 Site History 1-1 1.2.3 Previous Investigations 1-2 1.3 Report Organization 1-3 2.0 Site Investigation Approach 2-1 2.1 Phase 1 Investigation 2-1 2.1 Phase 1 Investigation 2-1 2.1.1 Soil Borings and Sampling 2-2 2.1.3 Monitoring Well Installation 2-2 2.1.4 Monitoring Well Sampling 2-3 2.1.5 Water Level Measurements 2-3 2.1.6 Surveying 2-3 2.1.7 Groundwater Users Survey 2-3 2.2 Phase 2 Investigation 2-3 2.2.1 Groundwater Users Survey 2-3 2.2.2 Groundwater Sampling 2-4 2.2.3 Offsite Soil Sampling 2-4 2.2.4 Water Level Measurements 2-4 2.2.5 Historical Data Review 2-4 2.2.6 Ecological Investigation 2-6 3.0 Physical Characteristics and Site Setting 3-1		1.1		
1.2.1 Site Description 1-1 1.2.2 Site History 1-1 1.2.3 Previous Investigations 1-2 1.3 Report Organization 1-3 2.0 Site Investigation Approach 2-1 2.1 Phase 1 Investigation 2-1 2.1 Phase 1 Investigation 2-1 2.1.1 Soil Borings and Sampling 2-2 2.1.3 Monitoring Well Installation 2-2 2.1.4 Monitoring Well Sampling 2-3 2.1.5 Water Level Measurements 2-3 2.1.6 Surveying 2-3 2.1.7 Groundwater Users Survey 2-3 2.2 Phase 2 Investigation 2-3 2.2.1 Groundwater Users Survey 2-3 2.2.2 Groundwater Sampling 2-4 2.2.3 Offsite Soil Sampling 2-4 2.2.4 Water Level Measurements 2-4 2.2.5 Historical Data Review 2-4 2.2.6 Ecological Investigation 2-6 3.0 Physical Characteristics and Site Setting 3-1		1.2	1 1	
1.2.2 Site History 1-1 1.2.3 Previous Investigations 1-2 1.3 Report Organization 1-3 2.0 Site Investigation Approach 2-1 2.1 Phase 1 Investigation 2-1 2.1.1 Soil Borings and Sampling 2-1 2.1.2 Groundwater Grab Sampling 2-2 2.1.3 Monitoring Well Installation 2-2 2.1.4 Monitoring Well Sampling 2-3 2.1.5 Water Level Measurements 2-3 2.1.6 Surveying 2-3 2.1.7 Groundwater Sampling 2-4 2.2.1 Groundwater Sampling 2-4 2.2.2 Groundwater Sampling 2-4 2.2.3 Offsite Soil Sampling 2-4 2.2.4 Water Level Measurements 2-4 2.2.5 Historical Data Review 2-4 2.2.6 Ecological Investigation 2-6 3.0 Physical Characteristics and Site Setting 3-1 3.1 Site Topography 3-1 3.2 Land Use 3-1 3.3 Geology 3-2 3.4 Hydrogeology 3-3 3.5 Groundwater Uses 3-3 3.4.1 Regional Hydrogeology 3-3 3.5 Groundwater Uses				
1.2.3 Previous Investigations 1-2 1.3 Report Organization 1-3 2.0 Site Investigation Approach 2-1 2.1 Phase 1 Investigation 2-1 2.1 Phase 1 Investigation 2-1 2.1.1 Soil Borings and Sampling 2-1 2.1.2 Groundwater Grab Sampling 2-2 2.1.3 Monitoring Well Installation 2-2 2.1.4 Monitoring Well Sampling 2-3 2.1.5 Water Level Measurements 2-3 2.1.6 Surveying 2-3 2.1.1 Groundwater Users Survey 2-3 2.2.2 Groundwater Sampling 2-4 2.2.3 Offsite Soil Sampling 2-4 2.2.4 Water Level Measurements 2-4 2.2.5 Historical Data Review 2-4 2.2.6 Ecological Investigation 2-6 3.0 Physical Characteristics and Site Setting 3-1 3.1 Site Topography 3-1 3.2 Land Use 3-1 3.3 Geology 3-2 3.4 Hydrogeology 3-3 3.5 ite Geology 3-3 3.4.1 Regional Hydrogeology 3-3 3.5 Groundwater Uses 3-3				
1.3 Report Organization 1-3 2.0 Site Investigation Approach 2-1 2.1 Phase 1 Investigation 2-1 2.1.1 Soil Borings and Sampling 2-1 2.1.2 Groundwater Grab Sampling 2-2 2.1.3 Monitoring Well Installation 2-2 2.1.4 Monitoring Well Sampling 2-3 2.1.5 Water Level Measurements 2-3 2.1.6 Surveying 2-3 2.1.7 Groundwater Users Survey 2-3 2.2.1 Groundwater Users Survey 2-3 2.2.2 Groundwater Sampling 2-4 2.2.3 Offsite Soil Sampling 2-4 2.2.4 Water Level Measurements 2-4 2.2.5 Historical Data Review 2-4 2.2.6 Ecological Investigation 2-6 3.0 Physical Characteristics and Site Setting 3-1 3.1 Site Topography 3-1 3.2 Land Use 3-1 3.3 Geology 3-2 3.3.1 Regional Geology 3-2 3.4.1<			•	
2.1 Phase 1 Investigation 2-1 2.1.1 Soil Borings and Sampling 2-1 2.1.2 Groundwater Grab Sampling 2-2 2.1.3 Monitoring Well Installation 2-2 2.1.4 Monitoring Well Sampling 2-3 2.1.5 Water Level Measurements 2-3 2.1.6 Surveying 2-3 2.1 Groundwater Users Survey 2-3 2.2 Groundwater Sampling 2-4 2.2.1 Groundwater Sampling 2-4 2.2.2 Groundwater Sampling 2-4 2.2.3 Offsite Soil Sampling 2-4 2.2.4 Water Level Measurements 2-4 2.2.5 Historical Data Review 2-4 2.2.6 Ecological Investigation 2-6 3.0 Physical Characteristics and Site Setting 3-1 3.1 Site Topography 3-1 3.2 Land Use 3-1 3.3 Geology 3-2 3.3.1 Regional Geology 3-2 3.3.2 Site Geology 3-2 3.3.1 Reg		1.3		
2.1 Phase 1 Investigation 2-1 2.1.1 Soil Borings and Sampling 2-1 2.1.2 Groundwater Grab Sampling 2-2 2.1.3 Monitoring Well Installation 2-2 2.1.4 Monitoring Well Sampling 2-3 2.1.5 Water Level Measurements 2-3 2.1.6 Surveying 2-3 2.1 Groundwater Users Survey 2-3 2.2 Groundwater Sampling 2-4 2.2.1 Groundwater Sampling 2-4 2.2.2 Groundwater Sampling 2-4 2.2.3 Offsite Soil Sampling 2-4 2.2.4 Water Level Measurements 2-4 2.2.5 Historical Data Review 2-4 2.2.6 Ecological Investigation 2-6 3.0 Physical Characteristics and Site Setting 3-1 3.1 Site Topography 3-1 3.2 Land Use 3-1 3.3 Geology 3-2 3.3.1 Regional Geology 3-2 3.3.2 Site Geology 3-2 3.3.1 Reg	2.0	Site	Investigation Approach	2-1
2.1.1 Soil Borings and Sampling 2-1 2.1.2 Groundwater Grab Sampling 2-2 2.1.3 Monitoring Well Installation 2-2 2.1.4 Monitoring Well Sampling 2-3 2.1.5 Water Level Measurements 2-3 2.1.6 Surveying 2-3 2.1.7 Phase 2 Investigation 2-3 2.2 Phase 2 Investigation 2-3 2.2.1 Groundwater Users Survey 2-3 2.2.2 Groundwater Sampling 2-4 2.2.3 Offsite Soil Sampling 2-4 2.2.4 Water Level Measurements 2-4 2.2.5 Historical Data Review 2-4 2.2.6 Ecological Investigation 2-4 2.2.6 Ecological Investigation 2-4 3.1 Site Topography 3-1 3.2 Land Use 3-1 3.3 Geology 3-2 3.3.1 Regional Geology 3-2 3.3.2 Site Geology 3-2 3.3.1 Regional Geology 3-3 3.4.1 Regional Hydrogeo				
2.1.2 Groundwater Grab Sampling 2-2 2.1.3 Monitoring Well Installation 2-2 2.1.4 Monitoring Well Sampling 2-3 2.1.5 Water Level Measurements 2-3 2.1.6 Surveying 2-3 2.1.7 Groundwater Users Survey 2-3 2.2 Phase 2 Investigation 2-3 2.2.1 Groundwater Users Survey 2-3 2.2.2 Groundwater Sampling 2-4 2.2.3 Offsite Soil Sampling 2-4 2.2.4 Water Level Measurements 2-4 2.2.5 Historical Data Review 2-4 2.2.6 Ecological Investigation 2-6 3.0 Physical Characteristics and Site Setting 3-1 3.1 Site Topography 3-1 3.2 Land Use 3-1 3.3 Geology 3-2 3.3.1 Regional Geology 3-2 3.4.1 Regional Hydrogeology 3-3 3.4.2 Site Hydrogeology 3-3 3.5 Groundwater Uses 3-3				
2.1.3 Monitoring Well Installation 2-2 2.1.4 Monitoring Well Sampling 2-3 2.1.5 Water Level Measurements 2-3 2.1.6 Surveying 2-3 2.1.7 Phase 2 Investigation 2-3 2.2 Phase 2 Investigation 2-3 2.2.1 Groundwater Users Survey 2-3 2.2.2 Groundwater Sampling 2-4 2.2.3 Offsite Soil Sampling 2-4 2.2.4 Water Level Measurements 2-4 2.2.5 Historical Data Review 2-4 2.2.6 Ecological Investigation 2-6 3.0 Physical Characteristics and Site Setting 3-1 3.1 Site Topography 3-1 3.2 Land Use 3-1 3.3 Geology 3-2 3.3.1 Regional Geology 3-2 3.2 Site Geology 3-2 3.4.1 Regional Hydrogeology 3-3 3.4.2 Site Hydrogeology 3-3 3.5 Groundwater Uses 3-3			0 1 0	
2.1.4 Monitoring Well Sampling 2-3 2.1.5 Water Level Measurements 2-3 2.1.6 Surveying 2-3 2.2 Phase 2 Investigation 2-3 2.2.1 Groundwater Users Survey 2-3 2.2.2 Groundwater Sampling 2-4 2.2.3 Offsite Soil Sampling 2-4 2.2.4 Water Level Measurements 2-4 2.2.5 Historical Data Review 2-4 2.2.6 Ecological Investigation 2-6 3.0 Physical Characteristics and Site Setting 3-1 3.1 Site Topography 3-1 3.2 Land Use 3-1 3.3 Geology 3-2 3.3.1 Regional Geology 3-2 3.3.2 Site Geology 3-3 3.4.1 Regional Hydrogeology 3-3 3.4.2 Site Hydrogeology 3-3			· ·	
2.1.5 Water Level Measurements 2-3 2.1.6 Surveying 2-3 2.2 Phase 2 Investigation 2-3 2.2.1 Groundwater Users Survey 2-3 2.2.2 Groundwater Sampling 2-4 2.2.3 Offsite Soil Sampling 2-4 2.2.4 Water Level Measurements 2-4 2.2.5 Historical Data Review 2-4 2.2.6 Ecological Investigation 2-6 3.0 Physical Characteristics and Site Setting 3-1 3.1 Site Topography 3-1 3.2.1 Historical Land Use 3-1 3.2 Land Use 3-1 3.3.1 Regional Geology 3-2 3.3.2 Site Geology 3-2 3.4.1 Regional Hydrogeology 3-3 3.4.2 Site Hydrogeology 3-3 3.5 Groundwater Uses 3-3			-	
2.2 Phase 2 Investigation 2-3 2.2.1 Groundwater Users Survey 2-3 2.2.2 Groundwater Sampling 2-4 2.2.3 Offsite Soil Sampling 2-4 2.2.4 Water Level Measurements 2-4 2.2.5 Historical Data Review 2-4 2.2.6 Ecological Investigation 2-4 2.2.6 Ecological Investigation 2-6 3.0 Physical Characteristics and Site Setting 3-1 3.1 Site Topography 3-1 3.2 Land Use 3-1 3.2.1 Historical Land Use 3-1 3.3 Geology 3-2 3.3.1 Regional Geology 3-2 3.3.2 Site Geology 3-2 3.4.1 Regional Hydrogeology 3-3 3.4.2 Site Hydrogeology 3-3 3.5 Groundwater Uses 3-3				
2.2Phase 2 Investigation2-32.2.1Groundwater Users Survey2-32.2.2Groundwater Sampling2-42.2.3Offsite Soil Sampling2-42.2.4Water Level Measurements2-42.2.5Historical Data Review2-42.2.6Ecological Investigation2-63.0Physical Characteristics and Site Setting3-13.1Site Topography3-13.2Land Use3-13.3Geology3-23.3.1Regional Geology3-23.3.2Site Geology3-23.4.1Regional Hydrogeology3-33.5Groundwater Uses3-3			2.1.6 Surveying	
2.2.2Groundwater Sampling2-42.2.3Offsite Soil Sampling2-42.2.4Water Level Measurements2-42.2.5Historical Data Review2-42.2.6Ecological Investigation2-63.0Physical Characteristics and Site Setting3-13.1Site Topography3-13.2Land Use3-13.2.1Historical Land Use3-13.3Geology3-23.3.1Regional Geology3-23.3.2Site Geology3-23.4Hydrogeology3-33.4.1Regional Hydrogeology3-33.5Groundwater Uses3-3		2.2		
2.2.3 Offsite Soil Sampling2-42.2.4 Water Level Measurements2-42.2.5 Historical Data Review2-42.2.6 Ecological Investigation2-63.0 Physical Characteristics and Site Setting3-13.1 Site Topography3-13.2 Land Use3-13.2.1 Historical Land Use3-13.3 Geology3-23.3.1 Regional Geology3-23.3.2 Site Geology3-23.4 Hydrogeology3-33.4.1 Regional Hydrogeology3-33.5 Groundwater Uses3-3			2.2.1 Groundwater Users Survey	2-3
2.2.4 Water Level Measurements2-42.2.5 Historical Data Review2-42.2.6 Ecological Investigation2-63.0 Physical Characteristics and Site Setting3-13.1 Site Topography3-13.2 Land Use3-13.2.1 Historical Land Use3-13.3 Geology3-23.3.1 Regional Geology3-23.3.2 Site Geology3-23.4 Hydrogeology3-33.4.1 Regional Hydrogeology3-33.5 Groundwater Uses3-3			2.2.2 Groundwater Sampling	2-4
2.2.5Historical Data Review2-42.2.6Ecological Investigation2-63.0Physical Characteristics and Site Setting3-13.1Site Topography3-13.2Land Use3-13.2.1Historical Land Use3-13.3Geology3-23.3.1Regional Geology3-23.3.2Site Geology3-23.4Hydrogeology3-33.4.1Regional Hydrogeology3-33.5Groundwater Uses3-3			2.2.3 Offsite Soil Sampling	2-4
2.2.6 Ecological Investigation2-63.0 Physical Characteristics and Site Setting3-13.1 Site Topography3-13.2 Land Use3-13.2.1 Historical Land Use3-13.3 Geology3-23.3.1 Regional Geology3-23.3.2 Site Geology3-23.4 Hydrogeology3-33.4.1 Regional Hydrogeology3-33.5 Groundwater Uses3-3			2.2.4 Water Level Measurements	2-4
3.0 Physical Characteristics and Site Setting 3-1 3.1 Site Topography 3-1 3.2 Land Use 3-1 3.3.1 Historical Land Use 3-1 3.3 Geology 3-1 3.3.1 Regional Geology 3-2 3.3.2 Site Geology 3-2 3.4 Hydrogeology 3-3 3.4.1 Regional Hydrogeology 3-3 3.5 Groundwater Uses 3-3			2.2.5 Historical Data Review	2-4
3.1 Site Topography 3-1 3.2 Land Use 3-1 3.2.1 Historical Land Use 3-1 3.3 Geology 3-1 3.3 Geology 3-2 3.3.1 Regional Geology 3-2 3.3.2 Site Geology 3-2 3.4 Hydrogeology 3-3 3.4.1 Regional Hydrogeology 3-3 3.4.2 Site Hydrogeology 3-3 3.5 Groundwater Uses 3-3			2.2.6 Ecological Investigation	2-6
3.1 Site Topography 3-1 3.2 Land Use 3-1 3.2.1 Historical Land Use 3-1 3.3 Geology 3-1 3.3 Geology 3-2 3.3.1 Regional Geology 3-2 3.3.2 Site Geology 3-2 3.4 Hydrogeology 3-3 3.4.1 Regional Hydrogeology 3-3 3.4.2 Site Hydrogeology 3-3 3.5 Groundwater Uses 3-3	3.0	Physic	cal Characteristics and Site Setting	3-1
3.2.1 Historical Land Use3-13.3 Geology3-23.3.1 Regional Geology3-23.3.2 Site Geology3-23.4 Hydrogeology3-33.4.1 Regional Hydrogeology3-33.4.2 Site Hydrogeology3-33.5 Groundwater Uses3-3				
3.3 Geology 3-2 3.3.1 Regional Geology 3-2 3.3.2 Site Geology 3-2 3.4 Hydrogeology 3-3 3.4.1 Regional Hydrogeology 3-3 3.4.2 Site Hydrogeology 3-3 3.5 Groundwater Uses 3-3		3.2	Land Use	3-1
3.3.1 Regional Geology 3-2 3.3.2 Site Geology 3-2 3.4 Hydrogeology 3-3 3.4.1 Regional Hydrogeology 3-3 3.4.2 Site Hydrogeology 3-3 3.5 Groundwater Uses 3-3			3.2.1 Historical Land Use	3-1
3.3.1 Regional Geology 3-2 3.3.2 Site Geology 3-2 3.4 Hydrogeology 3-3 3.4.1 Regional Hydrogeology 3-3 3.4.2 Site Hydrogeology 3-3 3.5 Groundwater Uses 3-3		3.3	Geology	3-2
3.4 Hydrogeology 3-3 3.4.1 Regional Hydrogeology 3-3 3.4.2 Site Hydrogeology 3-3 3.5 Groundwater Uses 3-3				
3.4.1 Regional Hydrogeology 3-3 3.4.2 Site Hydrogeology 3-3 3.5 Groundwater Uses 3-3			3.3.2 Site Geology	3-2
3.4.1 Regional Hydrogeology 3-3 3.4.2 Site Hydrogeology 3-3 3.5 Groundwater Uses 3-3		3.4	Hydrogeology	3-3
3.5 Groundwater Uses				
3.5 Groundwater Uses				
			Groundwater Uses	3-3
		3.6	Ecology	3-4

Page

4.0 Nature and Extent of Contamination	4-1
4.1 Soil Analytical Results	4-1
4.1.1 Organics	4-1
4.1.2 Inorganics	4-2
4.1.3 Statistical Comparative Analysis	4-3
4.2 Groundwater Analytical Results	4-3
4.2.1 Organics	4-4
4.2.2 Inorganics	4-4
5.0 Contamination and Fate Transport	5-1
5.1 Data Evaluation and Identification of CPCs	5-1
5.1.1 Soil CPCs	5-1
5.1.2 Groundwater	5-3
5.2 Potential Routes of Migration	5-4
5.2.1 Soils	5-4
5.2.2 Groundwater	5-5
5.2.3 Surface Water	5-6
5.3 Migration Routes Considered	5-6
5.4 Extent of Migration	5-6
6.0 Baseline Risk Assessment	6-1
6.1 Introduction	6-1
6.2 Human Health Risk Assessment	6-2
6.2.1 Toxicity Assessment	6-3
6.2.2 Exposure Assessment	6-5
6.2.3 Health Risk Characterization	6-9
6.2.4 Ubiquitous Nature of PAHs in Urban Settings	6-12
6.3 Uncertainty Factors	6-14
6.3.1 General Assumptions	6-14
6.3.2 Uncertainties	6-14
7.0 Summary and Conclusions	7-1
7.1 Summary of Results	7-1
7.2 Data Limitations	7-3
7.3 Conclusions	7-3
7.4 References	7-4

Appendix A.	Technical Memorandums
Appendix B.	Data Tables and Data Validation Technical Memorandums
Amandin C	Uselth Dick Estimation Tables

Appendix C. Health Risk Estimation Tables Appendix D. Chain-of-Custody/Traffic Reports

Tables

-

.

Numb	er	F			ws Ige
1-1	Soil Analytical Results of Samples Collected by EPA/FIT 1985		•		1-2
2-1	Soil Samples Collected for Chemical Analyses	• •	•		2-1
4-1 4-2 4-3	Statistical Summary Table for Organics in Soil		•	4	4-2
5-1 5-2 5-3 5-4 5-5 5-6	Chemicals of Potential Concern—Inorganics in Soil	••••			5-2 5-2 5-2 5-2 5-3 5-3 5-3
6-1 6-2 6-3 6-4 6-5 6-6 6-7	Potential Exposure Pathways	 	· ·	6- 6- 6- 6-	-11 -11 -11 -11 -14

Figures

1-1 [.] 1-2	Vicinity Map 1-1 Site Map 1-1
2-1	Phase 1 Offsite Soil Sample Locations 2-1
2-2	Monitoring Well and Onsite Soil Sample Locations
2-3	Phase 2 Offsite Soil Sample and Monitoring Well Locations
3-1	Cross Section Locations
3-2	Geologic Cross Section A to A' 3-2
3-3	Geologic Cross Section B to B' 3-2
3-4	Geologic Cross Section C to C' 3-2
3-5	Water Table Surface Map for Marion County
3-6	Water Table Surface Map

MKE10013CC4.WP5

Acronyms and Initialisms

___.

ARAR	Applicable or Relevant and Appropriate Requirements
ATSDR	Agency for Toxic Substances and Disease Registry
AWQC	Ambient Water Quality Criteria
bgs	below ground surface
BOD	Biological Oxygen Demand
BRAP	Baseline Risk Assessment Plan
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CLL	Compensation, and Endonity Act Carter-Lee Lumber
CLP	Contract Laboratory Program
COD	Chemical Oxygen Demand
CPC	chemicals of potential concern
CRL	Central Regional Laboratory
CSL	Close Support Laboratory
CWA	Clean Water Act
DQO	Data Quality Objective
EDMS	Environmental Database Management System
EPA	Environmental Protection Agency
FS	Feasibility Study
FSP	Field Sampling Plan
ft d	feet/day
gpd ft	gallons day/foot
Has	Health Advisories
HEAST	Health Effects Summary Tables
HSP	Health and Safety Plan
IDEM	Indiana Department of Environmental Management
IDNR	Indiana Department of Natural Resources
IRIS	Integrated Risk Information System
MCL	Maximum Contaminant Level
MCLG	Maximum Contaminant Level Goals
MEK	Methyl Ethyl Ketone
NAAQS	National Ambient Air Quality Standards
NCP	National Contingency Plan
NESHAPS	National Emission Standards for Hazardous Air Pollutants
NPL	National Priority List
ODW	Office of Drinking Water
OSHA	Occupational Safety and Health Administration
OSWER	Office of Solid Waste and Emergency Response
PARCC	precision, accuracy, representativeness, completeness, and comparability
PCB	polychlorinated biphenyl
PPE	Personal Protective Equipment
PRP	potentially responsible party
QA	quality assurance
QAPP	Quality Assurance Project Plan

QC	quality control
RA	remedial action
RAGS	Risk Assessment Guidance for Superfund
RCRA	Resource Conservation and Recovery Act
RfD	reference dose
RI	Remedial Investigation
RME	Reasonable maximum exposure
SP	Sampling Plan
SARA	Superfund Amendments and Reauthorization Act
SDWA	Safe Drinking Water Act
SPCS	Superfund Project Control System
SVOC	semivolatile organic compound
TĄL	Target Analyte List
TCL	Target Compound List
TCLP	Toxicity Characteristic Leaching Procedure
TOC	Total Organic Carbon
USGS	U.S. Geological Survey
VOC	volatile organic compound
WQC	water quality criteria
yd ²	square yard
yd ³	cubic yard

MKE100155A5.WP5

.

Executive Summary

Purpose

A remedial investigation (RI) was performed by CH2M HILL at the Carter-Lee Lumber (CLL) Company site in Indianapolis, Indiana, for the purpose of determining the nature and extent of the potential contamination and to help focus future efforts at remediation, should it be determined that it is necessary. The work assignment (WA) to perform this RI was received by CH2M HILL on April 9, 1992.

Site Background

The CLL facility is primarily used as a commercial lumber yard and it is located in an industrialized area of Indianapolis, Indiana. CLL has been retailing lumber at this location since 1873. The portion of the site evaluated in this RI is a 4-acre parcel at the southern portion of the property. This portion of the site was previously owned by others, including the Penn Central Corporation, and sold to CLL in 1979 for expansion. During 1971 and 1972, the property was leased by several different commercial waste hauling companies that used it for industrial waste product disposal.

Materials disposed of at this site during this period reportedly included neutralized calcium ferrosulfate (spent sulfuric acid pickling liquor) used in metal plating operations, an oily filter cake, and a red liquid that may have been metal plating sludge or other material. A small batch operation used by CLL to treat wood products using pentachlorophenol was later identified as possibly contributing to the site contaminants.

During earth moving activities for construction at the site, red soil was encountered, excavated, and placed into a trench. During a later activity, the red soil was respread over an area about 220 by 250 feet in the southeast corner of the site, where it is currently located.

Previous Investigations

Preliminary investigations performed by the EPA's field investigation team (FIT) contractor focused on the red soil. Analytical results from samples of the red soil indicated the presence of heavy metals and organic polynuclear aromatic hydrocarbons (PAHs). The metals and PAHs detected are shown in the table below.

Contaminants Detected in Red Soil by EPA/FTT				
Heavy Metals Polynuclear Aromatic Hydrocarbons				
Arsenic	Phenanthrene			
Cadmium	Di-n-butylphthalate			
Chromium	Fluoroanthene			
Copper	Pyrene			
Lead	Benzo[a]anthracene			
Mercury	Chrysene			
Nickel	Benzo[b,k]fluoroanthene			
Cyanide	Benzo[a]pyrene			

Investigation Approach

CH2M HILL developed an investigation approach to evaluate the nature and extent of contaminants in site soil and groundwater media. The RI also considered the highly industrialized nature of the community wherein the CLL site is located, by collecting and analyzing offsite soil samples. The field work was performed in two phases from November 1992 to September 1993. During Phase 1, surface and subsurface onsite soil samples were collected, five monitoring wells were installed, and 18 of 21 offsite soil samples (one of which was a replicate) were collected. During Phase 2, 2 groundwater sample collection rounds were conducted and 3 offsite soil samples (one of which was a replicate) were collected.

Twelve soil borings were drilled onsite and three onsite drainage areas were sampled. From those locations, 35 discrete soil samples were collected. Soil samples were analyzed for the following parameters:

- Volatile organic compounds (VOCs)
- Semivolatile organic compounds (SVOCs)
- Pesticides/herbicides/PCBs
- Metals
- Cyanide

Twenty-one offsite soil samples were collected from the upper 6 inches of soil in areas representing nearby residential lawns, street boulevards, proximate to railroad tracks (which are prevalent in the area); and vacant urban lots. The objective of this sampling was to identify the effect the ubiquitous urban and industrial setting would have in comparison to concentrations of site-related contamination. The offsite soil samples were analyzed for SVOCs and metals at all locations. In some samples, VOCs, pesticides, herbicides, PCBs, and cyanide were also analyzed.

Groundwater was monitored by drilling and installing five monitoring wells onsite. Each well was sampled during three quarterly episodes to gather information on the effects from the source materials on groundwater and to evaluate potential seasonal variability. Samples collected were analyzed for the same list of parameters as onsite soil samples.

Groundwater users were surveyed in July and August 1993 to evaluate the potential effects of production well pumping from within a 1-mile radius of the CLL site. Water well records for the area of concern were obtained from state and local agencies and reviewed. A site reconnaissance was made to supplement and to help verify the accuracy of information obtained during the data review.

To better evaluate the nature and pervasiveness of the industrial influence in the area, a historical data review was performed. This review consisted of obtaining and studying archival aerial photography, historical Sanborn Insurance maps, and searching available databases for information on environmental permits and underground storage tanks in the vicinity of the site.

An ecological investigation of the CLL site and immediate vicinity was performed in October 1993. The purpose of this investigation was to provide a basis to qualitatively evaluate the potential ecological effects of contaminants associated with the historic waste disposal practices.

Site Setting

The CLL site is paved with asphalt except for the southeast corner of the property which is covered with a 6-inch layer of compacted gravel. The setting is urban/industrial and the site is surrounded by industry including the Westinghouse Air Brake Company (now abandoned), General Motors Coach Division manufacturing plant, Ford Motor Company, and Chrysler Motor Company. The area is served by an extensive network of railroad tracks and the site is bordered on the east and south by Conrail railroad tracks. Eagle Creek is approximately 0.5 mile southwest and the White River is about 1 mile east of the site.

The CLL site is relatively flat, with a slight slope to the southeast. There is no active surface water drainage off the property. Railroad berms cut off any surface drainage off the property. Surface water tends to pond at the southeast corner of the property and infiltrate through the sandy soil beneath the site.

The site geology is characterized by a series of fill layers from about 12 inches below ground surface to 15 to 20 feet. The fill material varies across the site, but consists of sandy gravel and clayey silty sand with miscellaneous debris including bricks, concrete and wood. Some areas of the site are filled with black dense sand similar to a foundry sand mixed with what appeared to be fly ash.

The unconfined, shallow water table was encountered at about 20 to 25 feet below ground surface. Typically, groundwater flows toward the southeast. Through the well users

survey, a cone of depression was identified southeast of the site which may influence the groundwater flow direction in the vicinity of the site. Most of the wells within 1 mile of the site are used exclusively for manufacturing processes. Marion County occasionally supplements its municipal water supply with groundwater pumped from the same sandy aquifer that extends beneath at the site. The municipal wellfield is located about 7 miles south of the CLL site. Several residential wells have been identified within the 1-mile radius. However, results of the groundwater users survey indicate these wells have either been abandoned, or are no longer used.

The findings of the October 1993 ecological investigation indicate that the ecological characteristics of the CLL property and the immediate vicinity are consistent with urban abandoned lands. Vegetative cover is restricted to narrow borders and the sparse plant communities are predominantly composed of weedy species typical of disturbed lands. There were no sensitive or high-value ecological habitats identified in the area during the ecological investigation. The ecological investigation is described in more detail in Technical Memorandum No. 3 in Appendix A.

Nature and Extent of Site Contaminants

Findings of the soil investigation indicated the presence of the same contaminants identified previously by the FIT contractor across much of the study area. The contaminants included PAH and other SVOC compounds at depths typically ranging from 4 to 8 feet below the ground surface. Several pesticides were also detected in soil samples. Concentrations of SVOCs and heavy metals were in the range consistent with the FIT contractor's results. The distribution of the SVOC compounds was generally consistent with the presence of the red soil and with the black cinder sand fill material.

Background soil samples were collected to compare the ubiquitous concentrations of SVOCs and metals in the area with those found onsite. A statistical comparative analysis was performed on the full data set. The results of that comparison indicate the SVOCs and metals are widely distributed in the background area, including in residential lawns, along street boulevards, near railroad tracks (which are prevalent in the area), and on vacant urban lots. The results of the analysis indicate that statistically there is no significant difference between the SVOC and heavy metal concentrations found onsite compared with those found offsite.

Groundwater below the site was monitored for three-quarters: November 1992, June 1993, and September 1993. The results of analyses from these sampling events indicate there may be low concentrations of some SVOC compounds, including phenol, phenanthrene, di-n-butylphthalate, pyrene, and bis(2-ethylhexyl)phthalate. The compounds were detected in one of the three sampling events and at low concentrations. Low concentrations of arsenic and cyanide were detected in several site monitoring wells during one event. Beryllium was detected at low concentrations in two events. Several pesticides were detected at varying concentrations and with little consistency across the sampling events.

Fate and Transport

Volatilization of some contaminants to the air is possible if present at the soil surface; however, most contaminants were detected well below ground surface. Volatilization is not considered a transport mechanism because there is a well-maintained asphalt cover or at least 6 inches of compacted gravel over the entire site.

Fugitive dust emissions are not considered a transport mechanism at this site because there is a well-maintained asphalt and gravel cover over much of the site. The portion of the site that is not covered in asphalt has very low concentrations of contaminants and as such, is not a significant source of contaminant emissions.

Infiltration of rainwater to groundwater is a potential transport mechanism that could leach contaminants from deeper soil layers to the water table. The deeper soil layers consisting of silty sand or clayey sand layers 4 to 8 feet below ground surface are less likely to release contaminants because the contaminants are more tightly sorbed to the soil. In addition, the gravel cover reduces rainwater infiltration.

Currently, the contaminants detected at the CLL site have not migrated beyond the source areas identified in the preliminary investigations, i.e., the trench area and respread red soil area. Based on the analytical results of the sample intervals, soil appears to be potentially contaminated at depths of 4 to 8 feet below ground surface and occasionally near the surface. Because fill material exists at the 4- to 8-foot-depth interval, contamination may have originated in the fill material brought to the site either before or after the spraying of pickle liquor occurred. It is also possible the pickling liquor was moved to deeper locations through more recent earth moving activities. Review of the RI findings does not indicate there has been significant contaminant migration to the water table or offsite. Surface run-off enters the drainage swales along the southern and eastern site boundaries and drains to a low area in the southeast corner of the site. The railroad beds to the south and east of the site are elevated about 6 to 8 feet above the surrounding ground surface and act as a barrier to surface runoff offsite. The surface waters tend to pond at this point and infiltrate to the subsurface.

Offsite concentrations of SVOC and metals, primarily because of the industrial nature of the area, are often higher than those detected onsite. The sources of contaminants detected offsite are ubiquitous and cannot be traced solely to site activity, based on the information obtained during this investigation.

Risk Assessment

The risk assessment was performed to evaluate current occupational, future occupational, and future residential health risks. Because the typical depth of excavation during construction is 10 feet, soil samples collect at depths of 10 feet or less were used in the risk assessment.

Using EPA risk assessment guidances and procedures, many of the chemicals of potential concern (CPCs) previously identified for the site have been eliminated from further consideration in this risk assessment (RA) primarily because their concentrations did not differ significantly between offsite and onsite samples. This does not imply the CPCs previously identified do not pose some risk. However, the concentrations of most CPCs onsite represent the same or lower potential risk than concentrations of these same CPCs found offsite in background samples. The CPCs evaluated quantitatively in this RA include:

- Heptachlor in site soil
- Arochlor-1254 (PCB) in site soil
- Alpha BHC in groundwater
- 4.4'-DDT in groundwater

There are no known exposures to contaminants for a current occupational receptor, primarily because the site is covered either in asphalt or 6 inches of compacted gravel and top soil. The noncarcinogenic cumulative hazard index estimated for soil exposure or groundwater exposure in a future occupational receptor setting is less than one, indicating negligible potential for adverse health effects. The excess lifetime cancer risk for future occupational soil exposures is 2×10^{-7} , which is outside the lower end of the target range of 10^{-4} to 10^{-6} for acceptable cancer risk, according to EPA guidance.

For future residential receptors, the noncarcinogenic cumulative hazard index estimated for soil and groundwater exposure is less than 1, indicating negligible potential adverse health effects. The estimate of cumulative excess lifetime cancer risk for future residential soil exposures is 1×10^{-6} , which is at the lower limit of the EPA acceptable cancer risk range. The cumulative excess lifetime cancer risk for residential groundwater exposures is 3×10^{-7} , which is outside the lower end of the EPA target range for acceptable cancer risk.

Conclusions

The distribution of site-related contaminants has been defined adequately for soil and groundwater to develop a feasibility study (FS) of appropriate remedial or removal alternatives. The quality control criteria for laboratory samples have been met, according to the requirements of the EPA's evaluation criteria and guidelines.

The decision to pursue delisting, based on the nature and extent of contamination identified and on results of the risk assessment must be made consistent with EPA policy. Should remedial measures be further considered, preliminary remediation goals (PRGs) will be developed as the first task of the FS.

Potential remedial or control measures that may be considered for this site include:

- Using institutional controls, such as deed restrictions on the future use of the site should it be sold
- Placing an asphalt cap over the remaining portion of the site not currently capped, including drainage swales
- Initiating source control measures such as excavation and removal of soils contaminated with PAHs and heavy metals with transport and disposal to a special waste or hazardous waste landfill
- Initiating source control measures using in situ stabilization method

Groundwater does not appear to be affected to a point where active treatment would be reasonable. Source control of the contaminated soils above the water table would likely achieve significant reductions in long-term risk to potential receptors from groundwater.

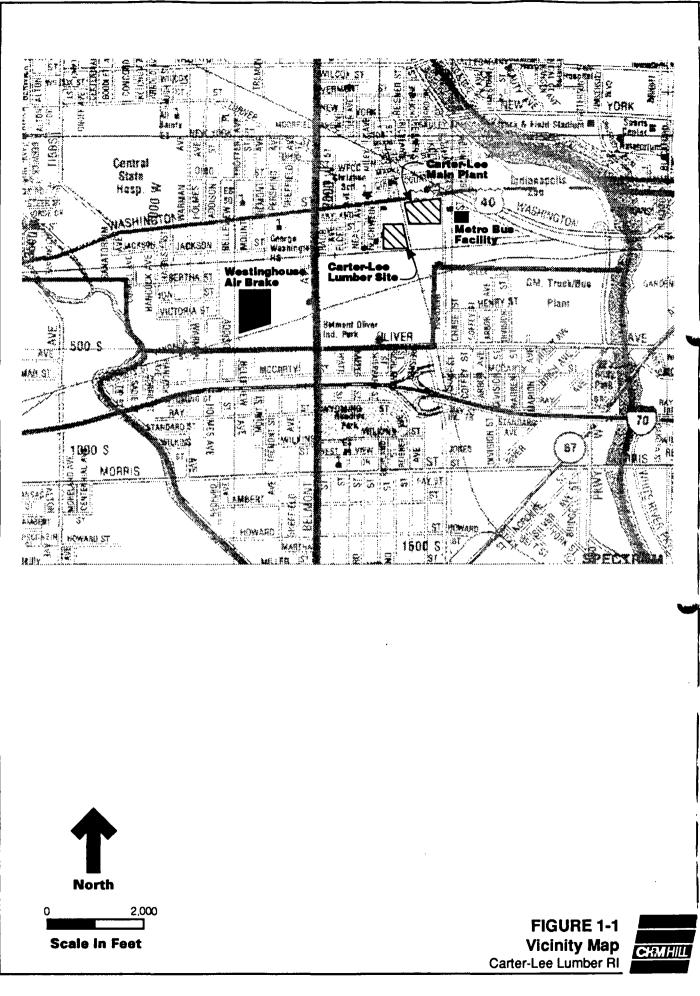
MKE10013CC3.WP5

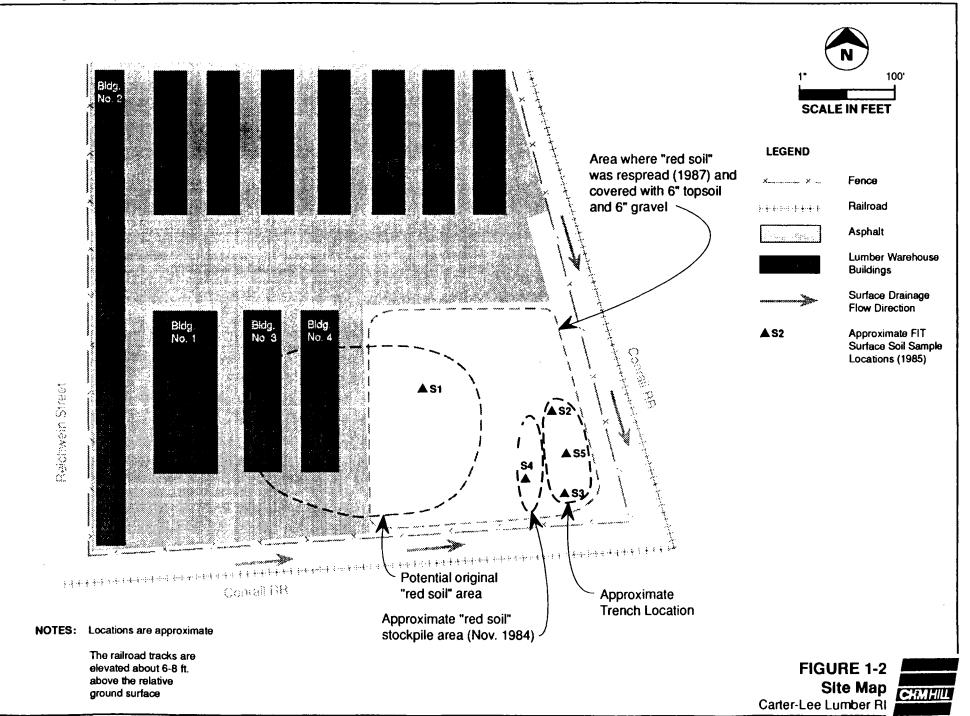
Section 1.0 Introduction

1.1 Purpose of Report

The U.S. Environmental Protection Agency (EPA) contracted CH2M HILL to perform a remedial investigation (RI) as part of WA No. 49-5LBD to CH2M HILL on April 9, 1992, for the Carter-Lee Lumber (CLL) Company site. This RI report satisfies Task 5.2 of the Statement of Work included in the WA. The purpose of this report is to summarize the results of Phases 1 and 2 of the investigation. This information will be used to develop relevant and appropriate recommendations for site action, including a feasibility study (FS) to evaluate potential remedial actions.

1.2 Site Background


1.2.1 Site Description


The CLL site is located at 1621 West Washington Street in Indianapolis, Indiana (Marion County, Center Township; see Figure 1-1). The site is directly south of the parcel of land that contains the original main plant and offices of the CLL company. The site investigated is about 4 acres in size. It is bordered on the west by Reichwein Avenue, to the south and east by Conrail railroad tracks, and to the north by CLL's original property (Figure 1-2). Eagle Creek is about 0.5 mile southwest of the site and the White River is about 1 mile to the east. The regional topography is relatively flat and ranges in topographic relief from about 745 feet above mean sea level 2.75 miles west of the site to about 705 feet at the White River about 1 mile east of the site. The site is also relatively flat.

Lumber and materials are stored on the site in three sheds (Building Nos. 1, 3, and 4). The site is paved with asphalt except for the southeast corner, which is covered with compacted gravel. Drainage swales run parallel to the eastern and southern site boundaries to collect runoff from the southern portion of the site (Figure 1-2). Conrail railroad tracks are elevated along the eastern and southern boundaries as much as 6 to 8 feet above the site elevation. Surface runoff from the tracks possibly contributes drainage to the swales along the site boundaries. The southeast corner of the property is the lowest elevation point on the site, and is believed to be a surface runoff collection area for the site and portions of the Conrail tracks.

1.2.2 Site History

The site was previously owned by the Penn Central Corporation and sold to Carter-Lee Lumber Company in 1979 to expand operations. Beginning in 1969, Penn Central Company, a predecessor to Penn Central Corporation, leased the site to Unver Trucking GLE66616.RI.RI. Fig. 1-1 Vic Map 12.94 12:28-94 mji

Company, and Unver and its lessees later entered into various lease agreements with Central Lime Corporation, R&V Trucking, and R&V Services. The lessees used the area to land apply neutralized calcium ferrosulfate (spent sulfuric acid pickling liquor) from various reported manufacturers in the area including Ford Motor Company, Chrysler Corporation, General Motors (Delco Electronics and Detroit Diesel Allison), and LTV Steel (Jones and Laughlin Steel). Reports from interviews conducted by the EPA with representatives of these parties confirmed that neutralized metal plating sludge and pickling liquor had been hauled to the site by Central Lime and others.

During the period from 1971 to 1972, tankers from Central Lime, et al., sprayed a red liquid onto the property immediately south of the original CLL property. A neighbor, **Example 1**, reported observing the red liquid being sprayed during this time period. She also reported that she had collected some "red soil" from the spray area, believing it to be beneficial as a soil amendment for her vegetable garden.

Other as yet unsubstantiated claims of dumping at the site were also reported by witnesses. Those witnesses mention railroad cars draining liquid into ditches immediately adjacent to the tracks on the south side of the site and disposal of oily filter cakes.

.

16.um

From the middle 1940s until 1985, CLL operated a small quantity, batch-load wood preserving operation immediately offsite, north of the northeast corner of the site. The small, single-batch operation used consumer-grade pentachlorophenol (Woodlife).

In 1981, CLL began developing the site to expand its lumber storage capacity. At that time, the site was cleared and a trench was excavated at the southeast corner to place debris and brush. This was done to enable paving and construction of the site. The excavation contractor reported the trench to be 10-feet-deep by 30-feet-wide by 70-feet-long (Figure 1-2).

In 1983, a 1- to 6-inch-thick layer of red soil was encountered during clearing for the construction of Building No. 3. In 1984, during constitution of Building No. 4, more red soil was encountered. The red soil encountered in 1983 and 1984 was collected and stockpiled near the trench dug in 1981 (Figure 1-2).

In 1987, CLL respread the stockpiled red soil over an area covering about 220 by 250 feet at the southeast corner of the property (Figure 1-2). The volume of red soil has been estimated to be 80 cubic yards. The material was covered with 6 inches of top soil and 6 inches of gravel, and represents the current condition of the site.

1.2.3 Previous Investigations

In 1985, the FIT contractor collected soil samples from areas representative of the former trench, stockpiled red soils, and the reported original red sludge application area (Figure 1-2). The analytical results from those samples indicated the presence of heavy metals and SVOC compounds. The compounds and maximum concentrations reported are listed in the table below:

Table 1-1 Soil Analytical Results of Samples Collected by EPA/FIT 1985			
Compound	Maximum Concentration		
SVOCs (µg/kg) Phenanthrene Di-n-butylphthalate Fluoranthene Pyrene Benzo[a]anthracene Chrysene Benzo[b&k]fluoranthene Benzo[a]pyrene	$2,400 \\ 4,100 \\ 3,000 \\ 3,100 \\ 2,100 \\ 1,300 \\ 2,100-2,600 \\ 1,600$		
Metals (mg/kg) Arsenic Cadmium Chromium Copper Lead Mercury Nickel Cyanide	40 8.2 319 93 137 0.17-0.24 121 0.95-1.2		

Following the FIT investigations, the site was scored using the Hazard Ranking System (HRS). The HRS report indicated that the potential exists for the groundwater to be affected by the materials present at the site. The aquifer is used as a supplemental water supply from a location about 7 miles downgradient from CLL for the City of Indianapolis. A preliminary health assessment conducted by the Agency for Toxic Substances and Disease Registry (ATSDR) in February 1989 indicated that the site is a concern because of potential effects on the groundwater and concern for potential dermal contact should the soil be disturbed.

1.3 Report Organization

This RI report summarizes the results of the subsurface investigations conducted at the CLL site in November 1992 and June, August, and September 1993. An overview of the sampling and analyses performed is presented in Section 2.0. A description of the site physical characteristics is presented in Section 3.0. The analytical results are summarized in Section 4.0. A discussion of contaminant fate and transport is presented in

Section 5.0. The findings and a description of the assumptions used in performing a risk assessment for the site is presented in Section 6.0. Section 7.0 presents the conclusions reached based on the data collected in this RI.

MKE10013C9E WP5

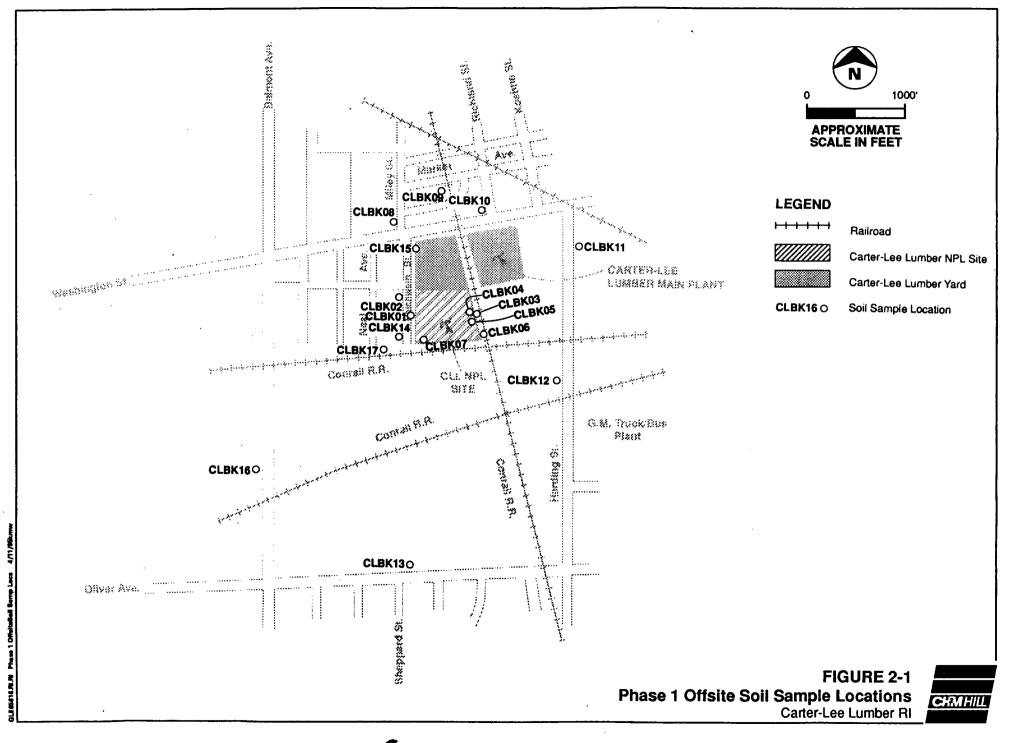
Section 2.0 Site Investigation Approach

2.1 Phase 1 Investigation

A detailed description of work performed during the Phase 1 site investigation is presented in Appendix A, Technical Memorandum No. 1. A brief summary of the work performed is presented below.

2.1.1 Soil Borings and Sampling

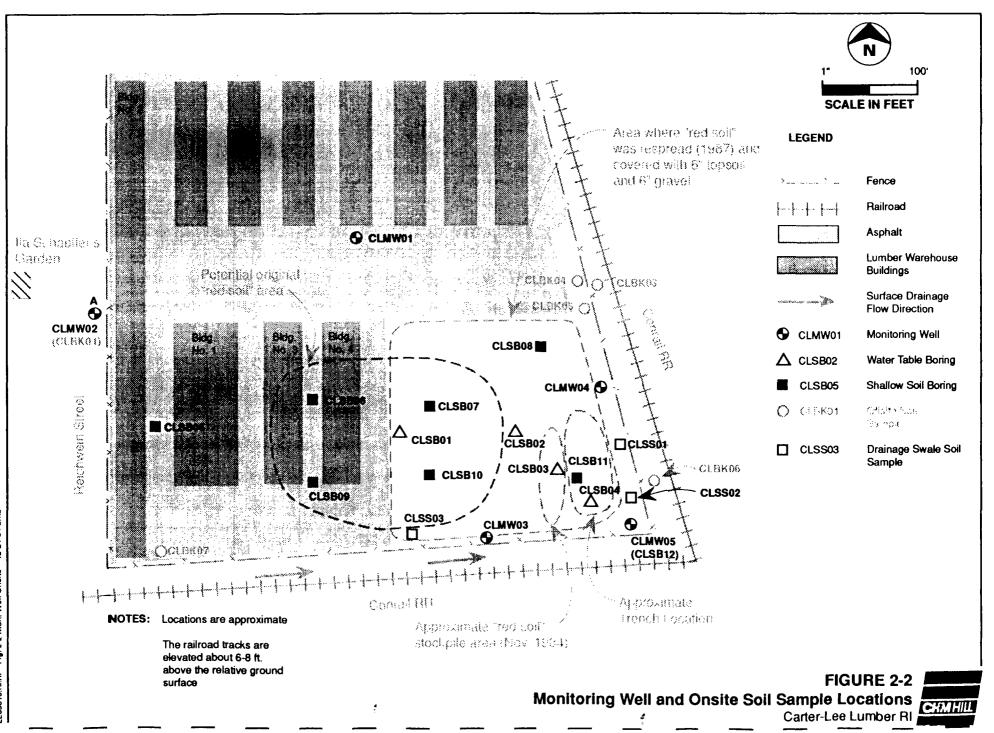
Soil samples were collected from onsite and offsite locations to evaluate concentrations of potential contaminants. Samples were collected from the surface and at various depth intervals, depending on specific locations. Shallow soil samples were collected using stainless steel hand augers. Deeper soil samples were collected from split-spoon samplers advanced with hollow-stem augers.


2.1.1.1 Offsite Soil Sampling

In November 1992, 15 offsite soil samples (CLBK01, CLBK02, CLBK04, CLBK05, and CLBK07 to CLBK17; refer to Figure 2-1) were collected to compare the concentrations of potential site contaminants with site conditions. Samples were collected from locations within 1/2 mile of the CLL site from locations representing nearby residential settings, city streets and intersections, railroad lines, and vacant urban properties (Table 2-1). Although CLBK04, CLBK05, and CLBK07 are on the CLL property, the borings were located upgradient of the red soil area and site-related potential source areas. Therefore, those borings were considered "offsite."

The samples were collected from the upper 0- to 0.5-foot depth interval with a stainless steel soil auger. The samples collected were submitted to an EPA contract laboratory program (CLP) laboratory. The offsite samples were analyzed for SVOCs and metals. Since the primary focus of offsite analysis was for metals and PAHs only, selected samples were analyzed for VOCs, pesticides, PCBs, and cyanide (Table 2-1). The CLP laboratories used during Phases 1 and 2 of the remedial investigation are listed in Table TM1-1 in Technical Memorandum No. 1 (Appendix A).

2.1.1.2 Onsite Soil Sampling


Drainage Swale Soil Samples. Soil samples numbers CLSS01 to CLSS03 (Table 2-1) were collected from three locations in the drainage swales bordering the site on the east and south (Figure 2-2). Two soil samples were collected at each location: one from the 0- to 0.5-foot depth interval and one from the 0.5- to 1-foot depth interval. The samples were collected using a stainless steel hand auger and were submitted to a CLP laboratory for analysis of VOCs, SVOCs, metals, cyanide, pesticides, and PCBs (Table 2-1).

.

			Soil Samples Collected for Chemical Analyse	5	
Carter-Lee Lumber					
Boring Location	Sample Depth Interval (ft)	Date	Parameters	Description/Location	
Onsite:					
CLSB01	0-2	11/6/92	VOCs, SVOCs, Pesticides/PCBs, metals, cyanide	Water table boring	
	6-8				
	18-20				
CLSB02	0-2	11/6/92	VOCs, SVOCs, Pesticides/PCBs, metals, cyanide	Water table boring	
	4-6				
	18-20				
CLSB03	0-2	11/5/92	VOCs, SVOCs, Pesticides/PCBs, metals, cyanide	Water table boring	
	8-10				
	16-18				
CLSB04	4-6	11/4/92	VOCs, SVOCs, Pesticides/PCBs, metals, cyanide	Water table boring	
	8-10				
	14-16				
CLSB05	0-2	11/6/92	VOCs, SVOCs, Pesticides/PCBs, metals, cyanide	Shallow onsite boring	
·	2-4	. <u>.</u>			
CLSB06	0-2	11/6/92	VOCs, SVOCs, Pesticides/PCBs, metals, cyanide	Shallow onsite boring	
	2-4		VOCs, SVOCs, Pesticides/PCBs, metals, cyanide		
CLSB07	0-2	11/6/92	VOCs, SVOCs, Pesticides/PCBs, metals, cyanide	Shallow onsite boring	
CLSB08	0-2	11/6/92	VOCs, SVOCs, Pesticides/PCBs, metals, cyanide	Shallow onsite boring	
CLSB09	0-2	11/6/92	VOCs, SVOCs, Pesticides/PCBs, metals, cyanide	Shallow onsite boring	
	2-4				
CLSB10	2-4	11/6/92	VOCs, SVOCs, Pesticides/PCBs, metals, cyanide	Shallow onsite boring	
	4-6				
CLSB11	3-5	11/5/92	VOCs, SVOCs, Pesticides/PCBs, metals, cyanide	Shallow onsite boring	
CLSB12	0-1.5	11/4/92	VOCs, SVOCs, Pesticides/PCBs, metals, cyanide	Deep onsite boring in	
	8-10			Drainage swale	
CLSS01	0-0.5	11/3/92	VOCs, SVOCs, Pesticides/PCBs, metals, cyanide	Drainage swale	
	0.5-1				
CLSS02	0-0.5	11/3/92	VOCs, SVOCs, Pesticides/PCBs, metals, cyanide	Drainage swale	
	0.5-1				
CLSS03	0-0.5	11/3/92	VOCs, SVOCs, Pesticides/PCBs, metals, cyanide	Drainage swale	
	0.5-1				
	16-18		<u></u>		
Offsite:	0.2	11/5/02	VOC SVOC Deticide (DCD sectors sectors	Deep effitte basis slave Deisburgis Start	
CLBK01	0-2 6-8	11/5/92	VOCs, SVOCs, Pesticides/PCBs, metals, cyanide	Deep offsite boring along Reichwein Street	
				west of site	
CLBK02	0-0.5	11/3/92		Residential lawn west of site across Reichwein Stree	
CLBK02 CLBK03	0-0.5	9/22/93	VOCs, SVOCs, Pesticides/PCBs, metals	Near railroad tracks NE of site	
CLBK03 CLBK04	0-0.5	11/3/92	VOCs, SVOCs, Pesticides/PCBs, metals	Upgradient of CLL drainage swale NE of site	
CLBK04 CLBK05	0-0.5	11/3/92	VOCs, SVOCs, Pesticides/PCBs, metals	CLL drainage swale upgradient of red soil area	
CEDRUJ	0-0.5	1113174		NE of site	
CLBK06	0-1	9/22/93	VOCs, SVOCs, Pesticides/PCBs, metals	Near railroad tracks E-SE of site	
CLBK00	0-0.5	11/3/92	VOCs, SVOCs, Pesticides/PCBs, metals	CLL drainage swale upgradient of red soil area	
CLDNV/	0-0.2	11/3/74	roca, 5 roca, i calleluca roba, illelula	to the west	
CLBK08	0-0.5	11/3/92	SVOCs, metals	Grassy right-of-way near Miley Street	
CLBK08 CLBK09	0-0.5	11/3/92	SVOCs, metals	Near railroad tracks north of site	
CLBK09 CLBK10	0-0.5	11/3/92	SVOCs, metals	Grassy area near Washington Street	
CLBK11	0-0.5	11/3/92	SVOCs, metals	Adjacent to Harding Street east of site	
CLBK12	0-0.5	11/3/92	SVOCs, metals	Grassy right-of-way near Harding Street	
CLBK12	0-0.5	11/3/92	SVOCs, metals	Grassy right-of-way near Oliver Avenue	
CLBK15	0-0.5	11/3/92	SVOCs, metals	Grassy right-of-way near Reichwein Street	
CLBK14 CLBK15	0-0.5	11/3/92	SVOCs, metals	Grassy right-of-way near Reichwein Street	
CLBK15 CLBK16	0-0.5	11/3/92	SVOCs, metals	Grassy right-of-way near Belmont Avenue	
CLBK10 CLBK17	0-0.5	11/3/92	SVOCs, metals	Near railroad tracks west of site	

.

Shallow Soil Borings. Seven soil borings (CLSB05 to CLSB11) were completed and sampled to evaluate the distribution of potential contamination across the site (Figure 2-2). The borings were advanced to their target depths (Table 2-1) using 4.25-inch, hollow-stem augers. The samples were submitted to a CLP laboratory and analyzed for VOCs, SVOCs, metals, cyanide, pesticides, and PCBs.

Deep Soil Borings. Five soil borings (CLSB01 to CLSB04 and CLSB12) were advanced to the water table to evaluate the vertical extent of soil contamination in each area of concern (i.e., the original red soil area, the stockpile area, the trench, and the surface runoff seepage area). The soil boring locations are shown in Figure 2-2). The borings were advanced to their target depth (Table 2-1) using 4.25-inch, O.D. hollow-stem augers and were continuously sampled using 3-inch, O.D. split-spoons.

Three soil samples from each boring were submitted for analysis. One sample was collected from just below ground surface, one midway between ground surface and the water table, and one just above the water table. The samples were submitted to a CLP laboratory and analyzed for VOCs, SVOCs, metals, cyanide, pesticides, and PCBs.

2.1.2 Groundwater Grab Sampling

To obtain information to help characterize groundwater quality in the area in which the red soil had been spread, screening level groundwater grab samples were collected from four borings: CLSB01, CLSB02, CLSB03, and CLSB04 (Figure 2-2).

The borings were completed to their target depths. Grab samples were collected from within the augers using a stainless steel bailer. A minimum of three volumes of standing water was purged before sampling. Purge water was collected in 55-gallon drums and stored onsite pending disposal.

Grab samples were submitted to a CLP laboratory and analyzed for VOCs, SVOCs, metals, cyanide, pesticides, and PCBs. Metals samples were field filtered. Specific sampling details are presented in Technical Memorandum No. 1 in Appendix A.

2.1.3 Monitoring Well Installation

Five monitoring wells were installed at the locations shown in Figure 2-2. Wells CLMW01 and CLMW02 were installed to provide water quality data from an upgradient location. Wells CLMW03, CLMW04, and CLMW05 were installed to represent downgradient conditions.

The wells were constructed with 2-inch Schedule 40 PVC riser with a 10-foot length of 0.010-inch, factory-slotted PVC screens. Specific monitoring well construction details are presented in Technical Memorandum No. 1 in Appendix A.

2.1.4 Monitoring Well Sampling

After monitoring wells were installed, groundwater samples were collected from the five wells using a stainless steel bailer. Before sampling began, a minimum of five well volumes were purged from each well. The purge water was contained in 55-gallon drums and stored onsite pending disposal. The groundwater samples were submitted for analysis of the same parameters as the grab samples (Table 2-1).

2.1.5 Water Level Measurements

Groundwater levels were measured before groundwater sampling began. Water level measurements were taken with an electric water level indicator.

2.1.6 Surveying

The soil borings and monitoring wells were located by United Surveying, Inc., of Indianapolis, Indiana. Horizontal locations were surveyed to the nearest foot. Ground elevations for the borings and the top of well casings were surveyed to the nearest 0.01 foot. Indiana Flood Control and Water Resources Commission bench marks were used for vertical control. The property fenceline was used for horizontal control.

2.2 Phase 2 Investigation

2.2.1 Groundwater Users Survey

In summer 1993, a groundwater users survey was conducted to evaluate whether wells pumping within a 1-mile radius of the CLL site may affect groundwater flow in the vicinity of the site.

Water well records for the area of concern were obtained from the Indiana Department of Natural Resources (IDNR). The completeness of such records is questionable because they are submitted to the state from private well drilling companies. The records were reviewed to identify industrial, public, and private water supplies. The Indianapolis Water Works Company was contacted for any additional information on industrial and public water supplies within the area of concern.

Well owners were contacted and questioned by a CH2M HILL representative regarding well use, pumping schedules, pumping rates, and well abandonment. A site visit to supplement and verify the well information search data was conducted on Monday, August 16, 1993, by two CH2M HILL representatives. The site visit helped to identify current well owners within the 1-mile radius who were not previously surveyed. The current owner or status of each property was noted. Some property owners were spoken with directly and asked questions about the status of the well(s) on their property.

The groundwater users survey questions are detailed in Technical Memorandum No. 2 in Appendix A.

2.2.2 Groundwater Sampling

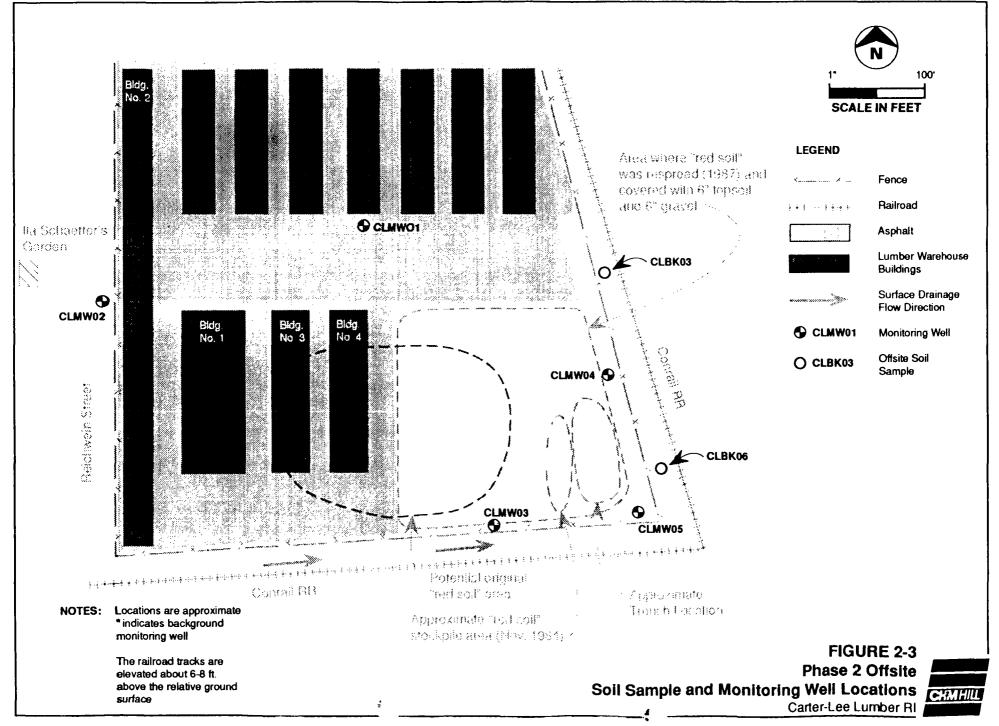
Two additional rounds of groundwater sampling were conducted in 1993 (June and September). Samples collected in June were submitted to a CLP laboratory for analysis of VOCs, SVOCs, metals, cyanide, pesticides, and PCBs. The September samples were submitted to the CLP laboratory for analysis of the same parameters as well as the following treatment parameters:

- Total organic carbon
- Chemical oxygen demand
- Alkalinity
- Chloride
- Total dissolved solids
- Total suspended solids
- Hardness

The analytical results for the treatment parameters would be important should groundwater remediation be necessary. Those parameters help in evaluating the transport mechanisms and treatment potential of groundwater.

2.2.3 Offsite Soil Sampling

Two offsite soil samples (CLBK03 and CLBK06 from Conrail property) were originally planned to be collected in Phase 1 to help evaluate effects the adjacent Conrail railroad tracks may have had on the site. Because access could not be obtained in Phase 1, those samples were collected in Phase 2 in September 1993 at the approximate locations shown in Figure 2-3. The samples were collected from the upper 12-inches using a stainless steel hand auger. The samples were submitted to a CLP laboratory for analysis of VOCs, SVOCs, metals, cyanide, pesticides, and PCBs.


2.2.4 Water Level Measurements

Three rounds of groundwater level measurements were taken in 1993. Groundwater levels were measured in June, August, and September. The data was used to assess groundwater flow directions.

2.2.5 Historical Data Review

A historical data review was conducted to evaluate the nature and pervasiveness of the industrial influence on the area surrounding the site. The review also served to support consideration of an industrial setting scenario in evaluating risks posed by site-related contaminants.

GLE65616.RI.RI Fig. 2-3 Phase 2 Offsite 12-21-94 LML

The industrial nature of the area was documented by reviewing Sanborn insurance maps, historic aerial photography, and a search of applicable government databases obtained through Environmental Data Resources, Inc. (EDR). Aerial photos were subcontracted by EDR through National Aerial Resources.

2.2.5.1 Aerial Photography

Aerial photographs for the years 1941, 1950, 1957, 1962, 1978, 1986, and 1993 were obtained. Each photograph depicts the CLL site and surrounding areas at various scales and degrees of resolution. A comparison was made between each subsequent year's photograph to document industrial, construction, and demolition activity over time.

2.2.5.2 Sanborn Insurance Maps

Sanborn insurance maps are used to depict commercial and industrial structures, as well as residential areas. To aid in tracking the industrial development surrounding the site, maps were obtained and reviewed for the years of 1898, 1915, 1950, and 1956. The 1898 map was compared with that for 1915 and 1915 was compared with 1950, and so on, to document the area's development over time. This review supplemented the aerial photography review by providing data for the years before air photograph coverage was used.

2.2.5.3 Government Records Database Search

An EDR-Radius SearchTM Report was obtained for the area surrounding the CLL site. The report is the result of a radius search identifying sites within a 1-mile radius from the target property. The report is a screening tool that locates sites with potential or existing environmental liabilities. The EDR report included:

- Three maps—One displaying sites reported in high-liability government databases (i.e., NPL, RCRIS-TSDF, CERCLIS, SHWS, AND SWF/LS); one displaying sites reported in low liability government databases (i.e., LUST, RCRIS-Generator, UST, ERNS, TRIS, TSCA, HMIRS, FINDS, and PADS (Figure 2); and one working map of smaller scale to use as a base map
- A map review summary listing the database searched and the corresponding number of sites found in each database for areas consisting of search radii less than 1/8 mile, 1/8 to 1/4 mile, 1/4 to 1/2 mile, and 1/2 to 1 mile
- A map review table listing information specific to each site having some form of environmental liability found within each search radius

• A summary list of "orphan" properties having some type of environmental liability, but with insufficient address information

2.2.6 Ecological Investigation

An ecological investigation of the site was conducted as part of Phase 2. The objective of the investigation was to provide a basis for qualitative evaluation of potential ecological effects of contaminants associated with the abandoned disposal area. The scope of the investigation was limited to a general characterization of existing ecological conditions of the site and surrounding area, and an identification of overt signs of adverse effects on terrestrial and aquatic communities. This level of investigation was considered appropriate for the current phase of the RI/FS investigation, based on existing knowledge of site conditions.

Ecological characterization of the site consisted of a 1-day visit on October 5, 1993, to document the current biological communities in the project area.

The perimeter of the previous disposal area on the CLL site was walked and visible species recorded. The area south of the property was also examined because this area represented potential wildlife habitat in the immediate vicinity of the site. Information on rare, threatened, and endangered species inhabiting the site was obtained through an information request to the IDNR Division of Nature Preserves. The ecological investigation is described in more detail in Technical Memorandum No. 3 in Appendix A.

MKE10013C9F WP5

Section 3.0 Physical Characteristics and Site Setting

3.1 Site Topography

The CLL site is within the commercial and industrial center of Indianapolis. The region is relatively flat and ranges in topographic relief from about 750 feet msl above mean sea level 2.75 miles west of the site to about 705 feet msl at the White River (about 1 mile east of the site). The CLL site is paved with asphalt except for the southeast corner, which is covered with compacted gravel. Drainage swales run parallel to the eastern and southern site boundaries (Figure 1-2) and collect surface runoff from the site. The southeast corner is the lowest elevation point on the site at an elevation of 691 feet.

3.2 Land Use

A map of the CLL site and surrounding area is presented in Figure 1-1. Immediately south of the site is the Westinghouse Air Brake Company (WABCO), currently under investigation by the Indiana Department of Environmental Management (IDEM) as a possible state-lead hazardous waste site. Land use west of the site is a mixture of abandoned, former industrial, and residential properties. The area east of the site is the former location of Indiana Battery Recycling, also previously investigated by IDEM as a potential hazardous waste site. This property has been redeveloped as a metropolitan bus terminal. Other manufacturing properties in the immediate vicinity include General Motors Coach Division, Ford Motor Company, and Chrysler Corporation. The site is also bordered on the south and east by the Conrail Company (a successor to Penn Central Transportation Company) railroad tracks.

3.2.1 Historical Land Use

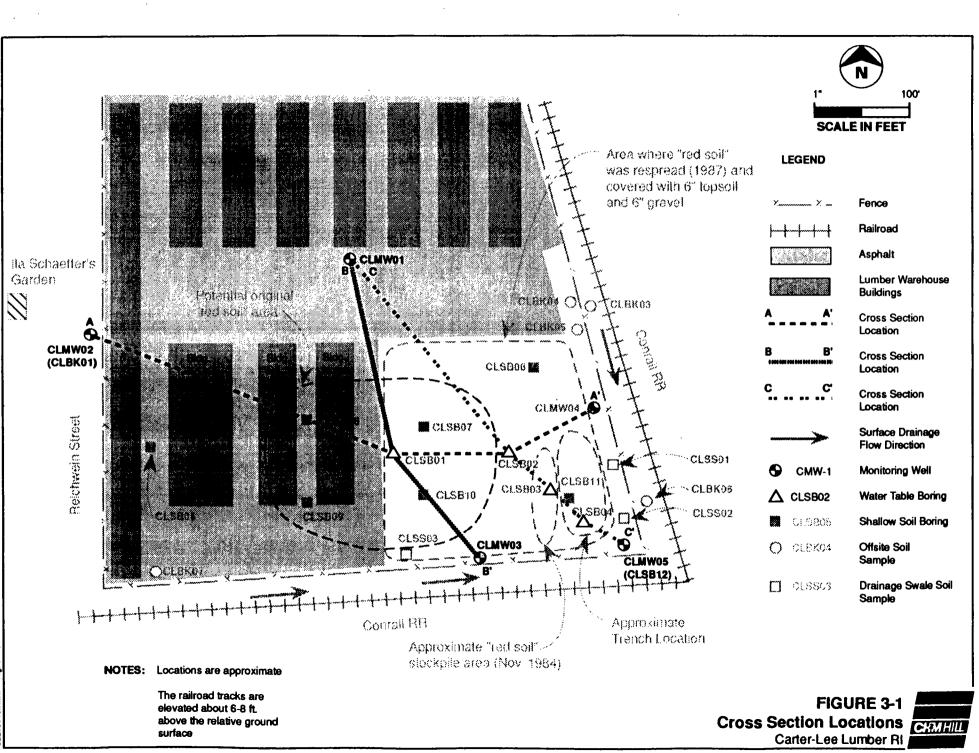
Surrounding land use has historically been associated with heavy industry and can be classified as urban industrial. The historical data review of aerial photos, government record databases, and Sanborn Insurance maps substantiated both historically and currently that the area surrounding the site is primarily industrial and that construction and demolition have also been a large part of the history of the area. The EDR-Radius Map Report described 38 or more properties within a 1-mile radius of the site having some form of environmental liability.

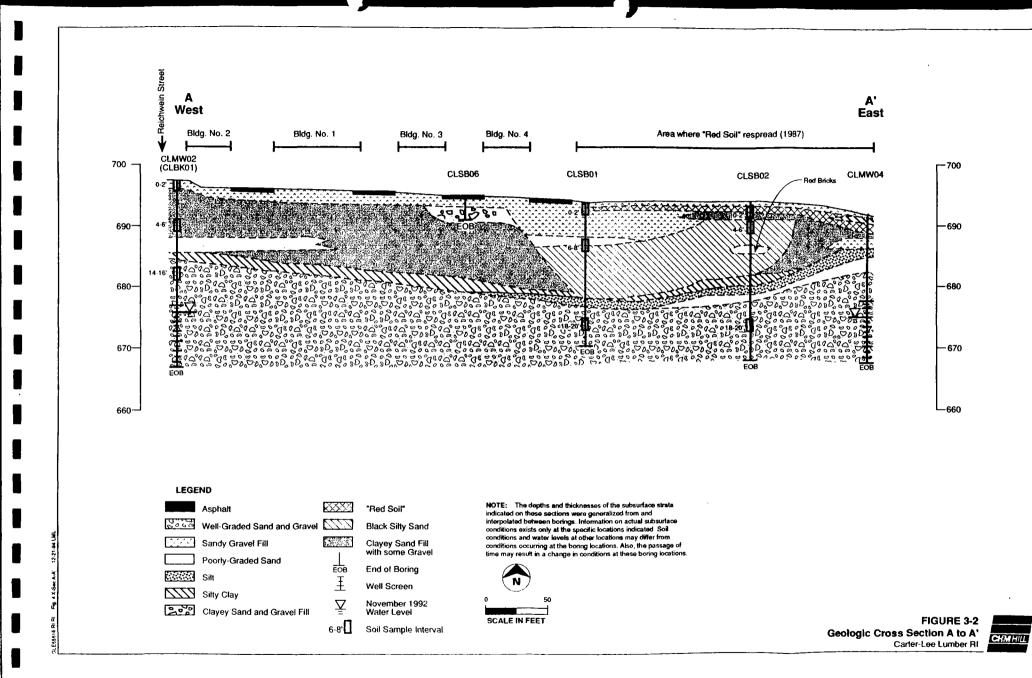
3.3 Geology

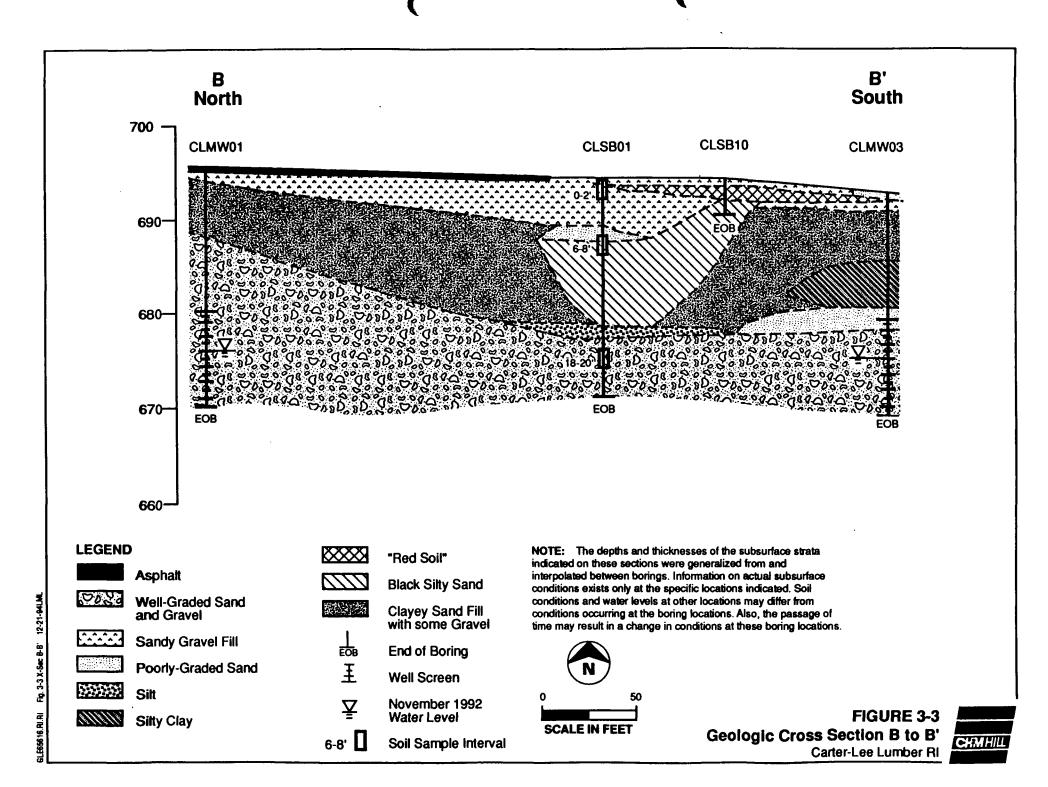
3.3.1 Regional Geology

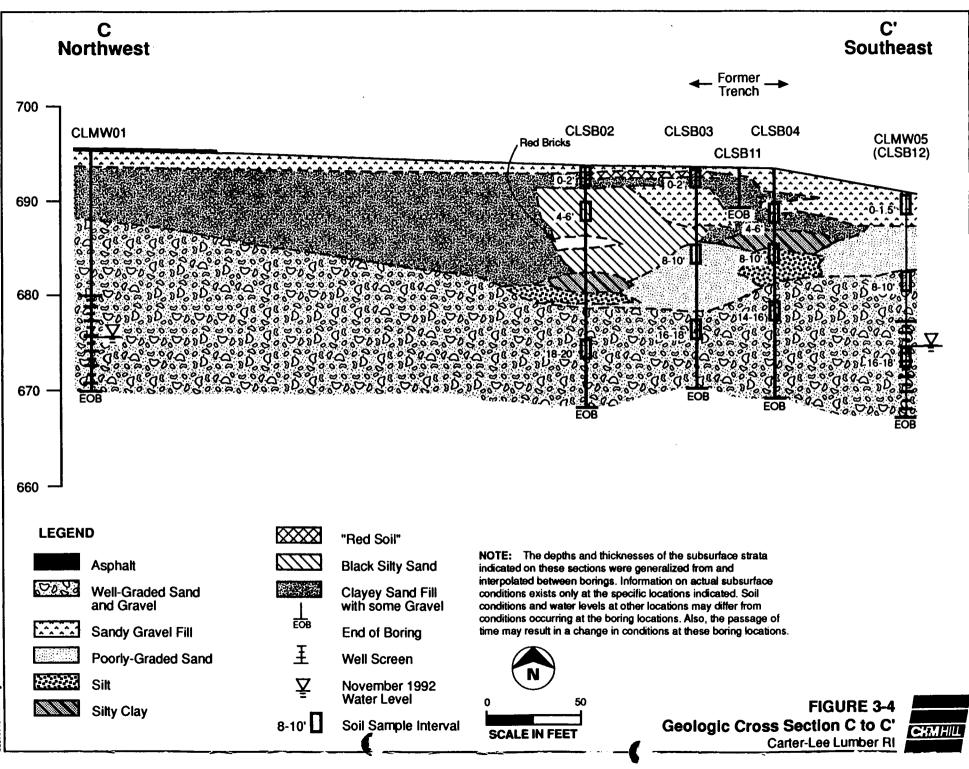
An extensive sand and gravel outwash deposit lies beneath the region. The coarsegrained outwash extends along the White River and is about 6.5 miles wide from east to west. Discontinuous silt and clay deposits are numerous. At the outer edges of the outwash, the deposits intergrade with deposits of glacial till (Smith 1983).

Thickness of the outwash deposits in Marion County ranges from less than 15 to more than 300 feet (DNR 1980). Within the vicinity of the CLL site, depth to bedrock is about 120 feet and consists of Silurian and Devonian age limestones and dolomites. The bedrock surface slopes gently to the west.


3.3.2 Site Geology


Geologic information obtained from soil borings drilled during Phase 1 of the investigation was used to prepare several cross sections of the geology beneath the site. The locations of the cross sections are shown in Figure 3-1. The cross sections are presented in Figures 3-2, 3-3, and 3-4.


The cross sections indicate that much of the area in which the red soil was respread in 1987 is underlain by 12 to 16 feet of fill. The fill consists of sandy gravel; clayey, silty sand; and miscellaneous debris such as wood, concrete, and bricks. A black, dense, compact silty sand (similar in appearance to foundry sand or cinders) was encountered at borings CLSB01, CLSB02, CLSB03, and CLSB10 (see cross sections). The sand was mixed with what appeared to be fly ash. This black sand was encountered at depths of 7 to 16 feet CLSB01 and 2 to 11 feet at CLSB02. At borings, CLSB02, some wood fragments were encountered within the black sand interval. The thickness of the unit was pinched out at borings CLSB03 and CLSB10 to the west. Traces of ash were found within the upper 10 feet of soil at most borings across the site. A mothball-like odor was detected at CLSB02 when the black ash/sand unit was reached.


A thin lens of red soil (3 to 6 inches) was encountered at CLSB01 about 6 inches below ground surface and extended east to monitoring well CLMW04. The thickness of the red soil increased to about 2.5 feet at CLMW04 (Figure 3-2).

A clayey, silty, sand unit was encountered beneath the sand and gravel fill at monitoring well CLMW01 (Figures 3-2 and 3-3). This clayey sand and other fill material was also encountered within the fill area at borings CLSB02, CLSB03, CLSB04, and CLSB11. The clayey sand and fill is underlain by coarse-grained sand and gravel at depths from about 7 to 16 feet. Discontinuous silt and clay deposits above the sand and gravel unit were encountered in borings across much of the site and are consistent with the regional geology described above.

2000

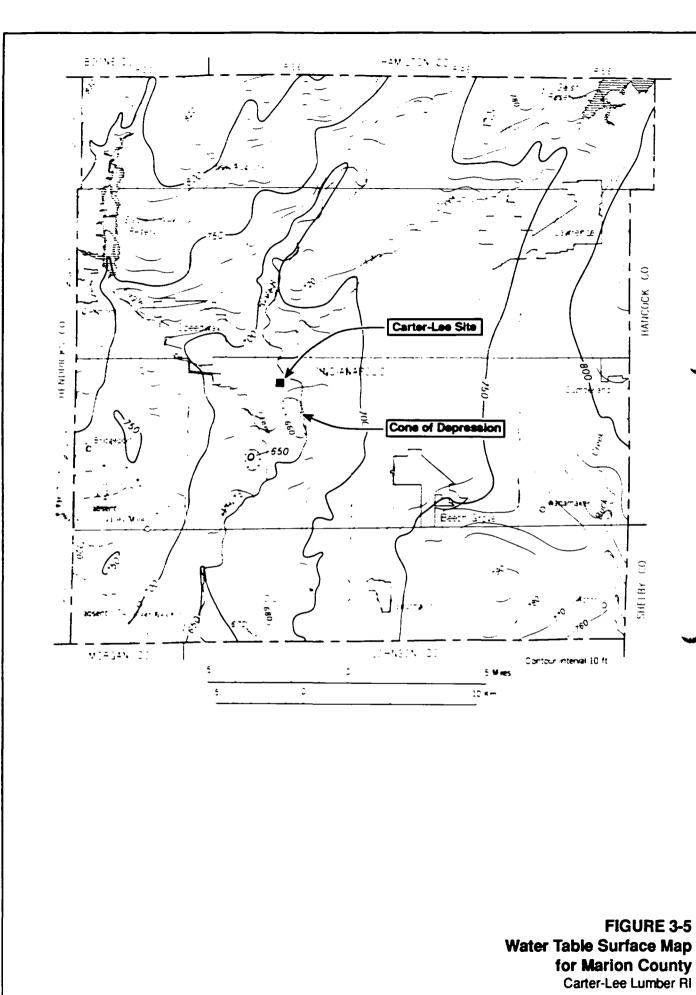
3.4 Hydrogeology

3.4.1 Regional Hydrogeology

The outwash deposits along the White River comprise the upper, unconfined aquifer. Aquifer thickness ranges from 30 to more than 80 feet. The average horizontal hydraulic conductivity is about 300 feet per day for the outwash aquifer. Wells in the outwash aquifer may produce as much as 3,000 gpm.

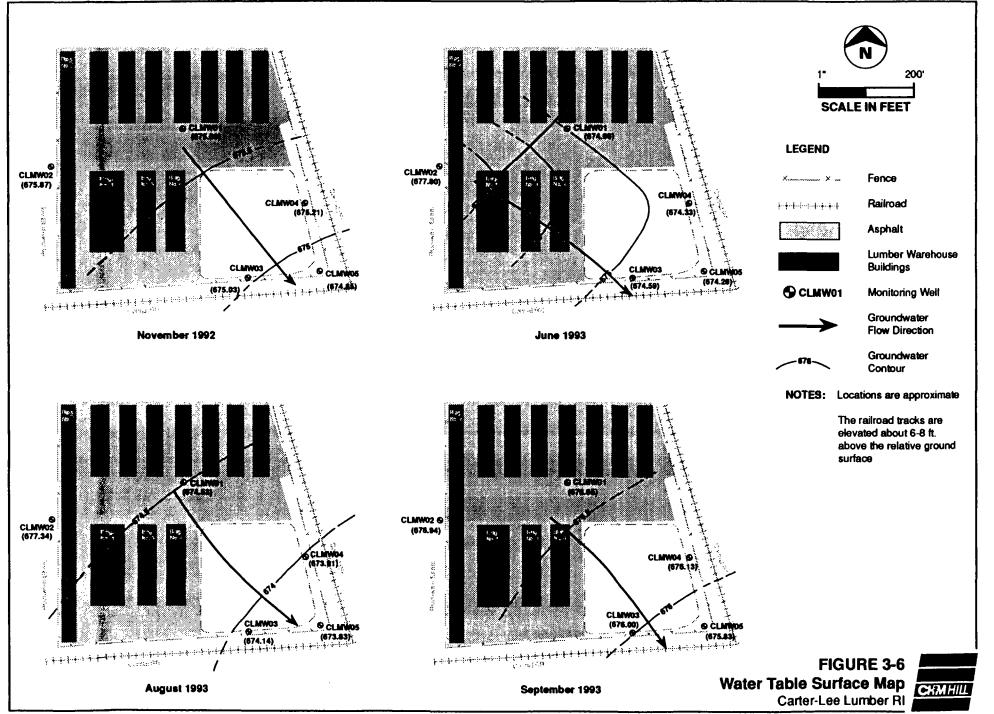
Groundwater elevations in Marion County in the upper sand and gravel aquifer range from about 830 feet in the northwestern portion of the county to less than 680 feet near the White River in the central portion of the county. A map depicting the general water table surface for Marion County is shown in Figure 3-5. The source of the map is IDNR Geological Survey Special Report 19. The map indicates regional groundwater flow in the western half of Marion County is generally to the east-southeast toward Eagle Creek and the White River. The map also indicates a depression in the water table surface occurs about 0.5 mile southeast of the site as described in Section 3.5 and shown in Figure 3-5.

3.4.2 Site Hydrogeology


Groundwater level data obtained from the five monitoring wells were used to produce water table surface maps for the site. Maps were produced for the months of November 1992, and June, August, and September 1993 (Figure 3-6).

The general direction of groundwater flow is to the southeast toward the cone of depression identified in Figure 3-5. However, in June 1993, groundwater level data indicated the presence of a groundwater divide beneath the site. During this month, the water table surface in the northern part of the site flows northeast to the White River. Groundwater beneath the southern part of the site flows toward the cone of depression southeast of the site.

3.5 Groundwater Uses


In Indianapolis, the upper sand and gravel aquifer is used for approximately 8 percent of the municipal water supply. (The communities of Lawrence and Speedway in Marion County rely almost exclusively on groundwater.) Surface water reservoirs supply the bulk of the municipal water. One wellfield is located about 7 miles south of the CLL site at Harding Street and Southport Road. The wellfield pumps a total of 6 million gallons per day (Bruns 1994). A second wellfield is located in northeastern Marion County and supplies area suburbs. By the year 2000, it is projected that 18 to 19 percent of the municipal water supply will be from groundwater (Wise-Ewing 1994).

Source: "Geology for Environmental Planning in Marion County, Indiana" IDNR Geological Survey Special Report 19, 1980.

GLE65616.RI.RI Fig. 3-6 WTbi Surf Map 12-21-94 LML

groundwater in the vicinity of the cone of depression southeast of the site (Figure 3-5). Survey responses indicated that there are no extended periods of well shutdowns at the facilities. Therefore, it is probable that these wells are contributing to the cone of depression and affecting the direction of groundwater flow beneath the site. Groundwater level data collected at the site indicated that groundwater flow direction beneath the site is generally to the southeast throughout the year. The groundwater users survey is described in detail in Technical Memorandum No. 2 in Appendix A.

3.6 Ecology

Results of the ecological characterization of the site indicated a limited number of wildlife species are present on and adjacent to the site. Current site conditions, including the presence of a paved surface and surrounding chain-link fence, significantly limit habitat quality. Plant communities within the property boundary consist of common species typical of disturbed areas.

Vegetative cover at the site is restricted to narrow borders or bands of primarily herbaceous plant species along the eastern and western perimeters. The sparse plant communities are composed of predominantly weedy species typical of waste places or disturbed lands such as road sides and old fields. Dominant species observed during the October 1993 site visit included goldenrod, evening primrose, and Queen Anne's lace. A more complete list of plant species observed in and around the site is presented in Technical Memorandum No. 3 in Appendix A. Sensitive or high-value communities such as wetlands, mature forested cover, or remnant prairie are not present within the site boundary. Gross evidence of potential contaminant effects on vegetation was not noted at the site, but physical factors, such as asphalt paving and gravel surfaces, may mask signs of contaminant effects.

Birds were the only group of wildlife species observed during the visit. In total, only three bird species (the house sparrow, house finch, and mourning dove) were seen on or in the immediate vicinity of the site. The birds may be considered common for the habitat types present and are typical species of urban or suburban landscapes. Other bird species may use the site, but habitat condition is considered to be a limiting factor. No species of mammals, reptiles, or amphibians were seen while conducting the survey. The potential exists for some common species to be present, but, as with avian species, habitat condition is expected to limit their occurrence.

Adjacent to the CLL site, narrow strips of vegetation occur in the area between the railroad tracks and the chain-link fence surrounding the site. Plant community composition is similar to the herbaceous communities present at the site. Along the east perimeter, however, small trees and shrubs such as mulberry and poplar were also present.

South of the CLL site lies a small area that represents the most significant area of potential wildlife habitat in the immediate vicinity of the site. Trees and shrubs

South of the CLL site lies a small area that represents the most significant area of potential wildlife habitat in the immediate vicinity of the site. Trees and shrubs intermixed with herbaceous plant growth are scattered about. Some areas of bare ground were also noted. Dominant tree and shrub species consisted of eastern cottonwood, tree-of-heaven, staghorn sumac, and silver maple. Those species are unevenly distributed throughout the area into clumps or irregular rows. Nonwood species in the area include goldenrods, small white aster, and honeysuckle as well as various grasses and sedges. The presence of a small area of open water and wetlands potentially increases habitat quality and the occurrence of additional wildlife species.

Gross evidence of adverse effects on the site's plant and animal communities was not apparent during the October visit. A more detailed discussion of the approach used and results of the ecological site investigation are presented in Technical Memorandum No. 3 in Appendix A.

MKE10013CA0.WP5

Section 4.0 Nature and Extent of Contamination

4.1 Soil Analytical Results

The soil analytical results are summarized in tables presented in Appendix B. Also included in Appendix B are the data validation technical memorandums. The results are summarized below.

4.1.1 Organic Compounds

4.1.1.1 Offsite

Surface soil samples were collected outside of the area of contamination investigated at the CLL site so that offsite conditions could be evaluated. Some offsite samples were collected within the CLL Company property boundary, but outside of the red soil area. All offsite sample locations are shown in Figure 2-1. Soil samples collected from CLBK01 to CLBK07 were submitted for VOC analysis. VOCs detected included methylene chloride, acetone, 2-butanone (MEK), 1,1,1-trichloroethane (1,1,1-TCA), trichloroethene (TCE), toluene, and xylene. Several compounds were detected once (MEK, TCE, and xylene). In general, VOC concentrations were near the method detection limit.

SVOCs were detected at all 17 offsite locations. Concentrations of individual constituents ranged from 21 μ g/kg at CLBK02 (naphthalene from **Sector**'s front yard) to 800,000 μ g/kg at CLBK09 (pyrene from near railroad tracks). Refer to Figure 2-1 for locations. The highest concentrations of total SVOCs detected were also detected in the soil sample collected near railroad tracks from CLBK09 at 3,521 mg/kg. Borings CLBK03, CLBK06 (Figure 2-3), and CLBK17 (Figure 2-1) were all located near railroad tracks. SVOC concentrations at those locations ranged from 23 μ g/kg fluorene at CLBK06 to 9,100 μ g/kg fluoranthene at CLBK17. SVOC concentrations in soil samples not collected near railroad tracks ranged from 21 μ g/kg at CLBK02 to 22,000 μ g/kg at CLBK05 (asphalt-stained drainage swale on CLL site; refer to Figure 2-2).

Table 4-1 lists the "urban background" range of PAHs in urban soil for those constituents for which values have been established by the Agency for Toxic Substances and Disease Registry (ATSDR). With the exception of chrysene and benzo(a)pyrene, offsite concentrations of individual PAHs were within the urban background range for PAHs in soil. However, the maximum values of PAHs detected in samples collected near railroad tracks exceeded the background ranges in urban soil in most instances.

Soil samples collected from CLBK01 to CLBK07 were submitted for pesticide and PCB analyses. Several pesticides were detected at concentrations ranging from 1.3 μ g/kg

		Statist	tical Summ Car	Table 4-1 ary Table f ter-Lee Lu	for Organi	cs in Soil			
	Med	lian	Maximu	m Value	Minimu	m Value	T-test	Statistical	Background Range in
Compound	Offsite	Onsite	Offsite	Onsite	Offsite	Onsite	(P (T < t)	Difference	Urban Soil (b)
Volatiles (jig/kg)									
Tolu cne .	60	10. 8	160	130	1.0	3.0	0.23	No	
Semi-volatiles (µg/kg)									
Naphthalene	217	214	60000	2200	21	34	0. 98	No	
2-Methyinaphthalene	227	182	60000	1400	25	28	0.62	No	
Acenaphthylene	155	128	19000	1800	24	21	0.62	No	
Acenaphthene	206	166	20000	1800	28	32	0.58	No	
Dibenzofuran	190	140	9000	1200	30	19	0.40	No	
Fluorene	1-1	143	30000	610	23	23	0.69	No	
Phenanthrene	1106	672	3*0000	6500	28	60	0.37	No	
Anthracene	303	270	70000	1200	39	45	0. 80	No	
Carbazole	232	157	49000	580	42	42	0.35	No	
Di-n-buty iphthalate	168	115	60000	1800	20	20	0.39	No	
Fluoranthene	1196	875	790000	8400	29	74	0.59	No	200 - 166,000
Pyrene	1331	1022	800000	15000	28	74	0.66	No	145 - 147.000
Benzo(a)anthracene	908	575	360000	5300	22	59	0.39	No	169 - 59,000
Chry sene	1170	631	410000	6400	35	70	0.24	No	251 - 640
bisi2-Ethylhexyliphthalate	3-9	247	14000	3600	61	<u>39</u>	0.18	No	
Di-n-octviphthalate	215	188	60000	3600	29	19	0.76	No	
Benzo[b]fluoranthene	1261	848	290000	12000	180	130	0.94	No	15.000 - 62,000
Benzo[k]fluoranthene	880	454	290000	5700	180	170	0.15	No	300 - 26,000
Benzo[a]pyrene	1019	549	360000	7800	180	58	0.22	No	165 - 220
Indeno{1.2.3-cd]pyrene	~63	327	90000	3600	140	29	0.051	No	8,000 - 61,000
Dibenz[a.h]anthracene	314	259	60000	3600	23	78	0.65	No	
Benzo(g.h.i)pery lene	620	388	140000	6200	120	84	0.30	No	900 - 47,00 ⁰
Pesticides/PCBs (µg/kg)									ן
Heptachior (a)	0 98	1.14	1.15	4.2	0.9	0.95	0.23	No	
Heptachlor epoxide	1.58	1 19	5.1	5.6	0.9	0.9	0.30	No	
4.4 -DDE (a)	1 90	2 22	2.2	46	1.8	1.7	0.47	No	
Endrin	5 13	3 09	19	15	1.8	1.7	0.11	No	
Endosulfan II	2 19	2.38	6 5	21	1.8	1.7	0.67	No	
4.4 -DDD	2 21	1 98	76	4.6	1.8	1.7	0.52	No	
Endosulf an sulfate (a)	1 90	2.20	2.2	28	1.8	1.7	0.45	No	
4.4°-DDT	38-	4.71	14	140	1.8	1.7	0.62	No	
Methoxychlor	15 30	10 -6	84	46	9	9	0.09	No	
Endrin ketone	4.50	2.41	44	33	1.8	1.7	0.21	No	
alpha-Chlordane	1.35	1.5*	4.8	24	0.9	0.9	0.69	No	
gamma-Chlordane	1.98	1.51	10	25	0.9	0.9	0.50	No	
Aroclor-1254 (a)	19 02	20 48	22	35	18	17	0.11	No	
Note									·

a. No background detections for valid statistical background computations. One-half the laboratory detection limit was used.

b Toxicological Profile for Polycyclic Aromatic Hydrocarbons. Agency for Toxic Substances and Disease Registry.

U.S. Department of Health and Human Services. December 1990.

delta-BHC at CLBK06 to 84 μ g/kg methoxychlor at CLBK03. No PCBs were detected above the method detection limit.

4.1.1.2 Onsite

Several VOCs were detected in onsite soil samples including MEK, TCE, toluene, chlorobenzene, ethylbenzene, and xylene. The majority of the detects and highest concentrations were found at borings CLSB06, CLSB09, and CLSB10 (Figure 2-2) from a depth interval of 2 to 6 feet (Table B-1, Appendix B).

Several SVOCs were detected onsite (Table 4-1). Concentrations of individual SVOCs ranged from 19 μ g/kg dibenzofuran at CLSB01 (depth interval of 0 to 2 feet) to 15,000 μ g/kg pyrene at CLSB10 (depth interval of 4 to 6 feet). In general, the greatest number of individual SVOCs detected were within the upper 8 feet of soil and above the water table. With the exception of benzo(a)pyrene, average individual PAH concentrations onsite were within or below the urban background range for PAHs as established by the ATSDR. In general, maximum individual PAH concentrations were also within or below ATSDR urban background range. The exception: chrysene and benzo(a)pyrene exceeded the ATSDR urban background range. However, their onsite concentrations as well as the concentration of other PAHs detected onsite, were below PAH concentrations detected in soil samples surrounding the CLL site.

Several pesticides were detected onsite. Concentrations ranged from below the detection limit to 140 μ g/kg at CLSB10 (4 to 6 feet below grade). PCB Arochlor-1254 was detected in three onsite soil samples (CLSS02, CLSB01, and CLSB11) in concentrations ranging from 32 to 35 μ g/kg.

4.1.2 Inorganics

4.1.2.1 Offsite

Inorganic offsite concentrations in samples were compared to typically occurring or "background" values for the eastern United States as published in the U.S. Geological Survey (USGS) Paper No. 1270 when USGS values existed (see Table 4-2). Average inorganic concentrations detected in CLL RI offsite samples were within the typical range of urban background values for the eastern United States. However, maximum concentrations for several inorganics exceeded the background values including arsenic (CLBK03), copper (CLBK04), and lead (CLBK06). Borings CLBK03 and CLBK06 were located just east of the site near the Conrail railroad tracks. Boring CLBK04 was located in the drainage swale at the site just north of (upslope from) the red soil area.

4.1.2.2 Onsite

Onsite inorganic concentrations were also compared to USGS urban background values for the eastern United States. Average inorganic concentrations onsite fell within the

	Mediun		Maximum Value		Minimun	n Value	T-test	Statistical	Background Values
Metals (mg/kg)	Offsite	Onsite	Offsite	Onsite	Offsite	Onsite	P (T < t)	Difference	for Eastern U.S. (a)
Aluminum	6726	4821	16000	14900	2740	1750	0.030	Yes*	700 - +10,00
Antimony	8.5	5.9	32.9	10.0	6.8	3.4	0.002	Yes*	
Arsenic	7 0	113	257.0	197.0	0.2	2.6	0 290	No	•01-7
Barium	70 1	43.4	198.0	328.0	14-9	1 2	0.040	Yes*	10 - 1,500
Heryllium	0.7	0.6	2.0	151.0	03	0.2	0.520	No	<[- 1
Cadmium	13	0.7	5.6	13	0.9	0.1	0.001	Yes•	• -
Calcium	30566	80737	107000	198000	2250	4460	0.001	Yes	100 - 280,00
Chromium	15.5	20.5	48.9	439.0	7.6	5 3	0 210	No	1 - 1,00
Cobalt	7 1	5.9	16.9	15.3	3.3	25	0 140	No	• 0.3 - 70
Copper	55.4	22.4	6970-0	114.0	12-1	4 1	0 010	Yes•	• 1 - 70
Iron	17564	16-158	39200	161000	7190	5030	0 7 30	No	100 - >100,000
Lead	90.5	42.8	2270.0	376-0	14.6	2 9	0.040	Yes•	-10 - 30
Magnesium	10400	17953	39400	59000	1480	605	0.048	Yes	• •
Manganese	489	468	1400	1280	252	220	0 730	No	-2 - 7,00
Mercury	0.1	0.1	0.4	0.5	0.1	0.1	0.650	No	0.01 - 3 -
Nickel	17.4	20.7	39.9	173.0	7.0	6 2	0 360	No	× 5 - 70
Potassium	975	634	2130	1250	511	169	0.001	Yes*	50 - 37,00
Selenium	0.5	0.4	4.0	3.5	0.2	0.2	0 290	No	
Silver	0.9	0.8	1.0	24	0.8	0.4	0.030	Yes*	
Sochum	133.0	104-8	1510.0	332.0	28 2	29 3	0.230	No	< 500 - 50,00
Thallium	0.3	0.2	0.5	0.5	0.2	0.1	0.005	Yes•	• •
Vanadium	22 1	15.3	45.9	88.6	10.5	53	0.010	Yes•	• 7 - 30
Z.mc	127.0	76.4	424 0	564.0	29 4	11.6	0.034	Yes•	+ 5 - 2,90
Cyanide	0.4	0.5	0.6	2 1	0.3	0.3	0.630	No	

.

published background values (Table 4-2). However, the individual sample concentration for beryllium exceeded the USGS background value at CLSB08 at a concentration of 151 mg/kg in the 0- to 2-foot sample. USGS background values for lead were also exceeded at CLSB08 at a concentration of 376 mg/kg and a depth of 0- to 2-feet and at CLSB02 at a concentration of 332 mg/kg and a depth of 4 to 6 feet.

4.1.3 Statistical Comparative Analysis

The geometric average and the maximum and minimum concentrations of each compound analyzed were calculated for each data set (i.e., the onsite soil sample set and the offsite soil sample set). Acetone and methylene chloride were not included in the statistical analysis as these compounds are common laboratory contaminants and there is no record of their historical use onsite. In addition, xylene, TCE, and chlorobenzene were not included in the statistical analyses. TCE and chlorobenzene were only detected in one sample at concentrations below laboratory detection limits. Xylene was detected both onsite and offsite at concentrations well below laboratory detection limits, and there is no record of its historical use onsite.

When a compound was reported as undetected, half of that compound's laboratory detection limit was used in the calculations. The data were then analyzed to determine whether there was a statistical difference between the onsite and offsite analytical results. The student's t-test at the 95-percent confidence level was used in the analysis. A detailed discussion of the statistical approach used as well as the statistical tables generated are presented in Technical Memorandum No. 4 in Appendix A.

4.1.3.1 Organics

Results of the Student's t-test indicated no statistical difference between offsite and onsite results for VOCs, SVOCs, and pesticides at the 95-percent confidence level.

4.1.3.2 Inorganics

The results of the Student's t-test indicates that calcium and magnesium concentrations were statistically greater onsite than offsite (Table 4-2). For the remaining inorganic compounds, the results indicated either no statistical difference between offsite and onsite results or offsite concentrations were statistically greater than onsite concentrations.

4.2 Groundwater Analytical Results

Table 4-3 is a summary table of the analytical results for both groundwater grab and monitoring well samples. The data tables and data validation technical memorandums are presented in Appendix B.

		Groen	dwater F	fable 4-3 Results Se	•	Table						
				r-Lee Lui age 1 of 2								
Station Location		CLMW 0	-		CLMW			CLMW wagradi			CLMW(
Sample Number:												
Date Sampled:	11 5 92	6-93	9/22/93	11792	6/7/93	922.93	11/6/92	6-93	922.93	11/6/92	6/7/93	9/22/93
volatiles (µg, L) Chieroform	< 10	< 10	< 10	ı	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Semivolatiles (ng L)												
Phenel	< 10	< 10	< 10	3	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Naphthalene	< 10	< 10	< 10 < 10	< 10	< 10	< 10	< 10 < 10	< 10	< 10 < 10	< 10	< 10	< 10
Diethylphthalate Phenanthrene	< 10 < 10	< 10 < 10	< 10	< 10 < 10	< 10 < 10	< 10 < 10	08	< 10 < 10	< 10	< 10 < 10	< 10 < 10	< 10 < 10
Di-n-buty iphthalate	< 10	< 10	< 10	< 10	< 10	- 10	08	< 10	< 10	< 10	< 10	< 10
Fluoranthene	< 10	< 10	< 10	< 10	< 10	< 10	< 2	< 10	< 10	< 10	< 10	< 10
Pyrene	< 10	< 10	< 10	< 10	< 10	< 10	08	< 10	< 10	< 10	< 10	< 10
best 2-Ethylhexyl)phthalate	< 10	< 10	< 10	06	< 10	< 10	I	< 10	< 10	< 10	< 10	< 10
Pesticides/PCBs (ag/L)												
alpha-BHC	< 01	< 0.05	< 0.05	< 0.1	< 0.05	0.003	< 0.1	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05
deita-BHC	< 0.1	< 0.05	0 0032	< 0 1	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05
gamma-BHC (Lindane)	< 21	< 0.05	< 0.05	< 0 1	< 0.05	0.01	< 0.1	< 0 05	< 0.05	< 0.1	< 0.05	< 0.05
Heptachior	< 91	< 0.05	< 0.05	< 01	< 0.05	0.0079	< 01	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05
Aldrm Dicidini	< 01 < 01	< 0 05 < 0 05	< 0 05 < 0 05	< 01 < 01	< 0 05 < 0 05	0.0063	< 01 < 01	< 0 05 < 0 05	< 0.05 < 0.05	< 01 < 01	< 0.05 < 0.05	< 0.05 < 0.05
Endrin	<01 <01	< 0.05	< 0.05	< 0.1	< 0.05	0.010	< 0 1	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05
Endosulfan sulfate	< 01	< 01	< 01	< 0.1	< 0.1	< 0.1	0.22	< 0.1	< 0.1	< 0.1	< 0.05	< 0.03
4.4-DDT	< 01	< 0 1	< 0.1	< 0.1	< 0.1	0 012	0.22	< 0.1	< 0 1	< 0.1	< 0.1	< 0.1
Inorganics (ng L) Aluminium	323	< 23 5	< 53 8	< 24	< 23 5	< 53 8	26.5	< 25.2	< 53 8	< 24	< 23.5	< 53.8
Arsens	<1	<23	<12	16	< 2.3	<12	13	< 2.3	<12	11	< 4.6	< 1.2
Banum	< 112	138	126	67.0	703	56 7	67.0	57.1	48.0	44.8	49.8	38.4
Bery llrum	<1	< 8	10	<1	< 81	< 1	1.1	< 1.6	<1	< 1	< 1.2	<1
Cadmium	< 4	<1-	< 2.8	< 4	< 17	< 2 8	< 4	< 1.7	< 2.8	< 4	< 1.7	< 2.8
Calcium	131000		116000		108000	101000		194000	173000	164000		
Chromium	< 3	< 5 8	< 3 7	< 3	< 5 8	< 37	< 3	< 5.8	< 3.7	< 3	< 5.8	< 3.7
Cobalt	< 5	< 38	<45	< 5	< 3.8	< 4.5	< <u>5</u> < 4	< 3.8	< <u>4.5</u> 4.6	< 5	< 3.8 < 4.2	< 4.5 < 3.6
Copper	275	< 21.3	127.0	< 6	<48	517	106	<4.8	< 18.8	23.5	< 4.8	< 18.1
Lead	14	5.5	< 5	< 1	2.3	< 5	12	1.9	< 5	<1	3.0	< .5
Magnesium	34400	33400	33400	32400	31400	32200	36800	39000	39900	40200	45000	38300
Manganese	46 *	12.2	270	78	< 18	30	224	6	10	11.6	< 1.8	< 1.6
Mercury	< 0 2	< 1	< 1	< 0.2	< 1	< 1	< 0.2	< .1	< 1	< 0.2	< 1	1. >
Nickel	119	< 6 1	< 13.2	114	< 6 1	< 13.2	89	< 6.1	< 13.2	< 5	< 6.1	< 13.2
Potassium	3840	4160	< 4390	4400	4680	< 4390	4070	3310	< 4390	4490	4250	< 4390
Selennim	14	< 3.3	< 1	30	61	1.2	1.3	< 3.3	< 1	1.8	9.2	< 1
Sodrum	42800	54000 <12	49800	31200	37200	36600	46100 10	40100 < 1.2	++200 < ~	53200 < 1	40700 < 1_2	50300 < .7
Thallrum Nanadrum	< 3	< 3.3	<47	< 3	< 3.3	<47	< 3	< 3.3	<4.7	< 3	< 3.3	< 4.7
Zinc	64	< 3.4	118	< 3	< 3.4	70	46	< 3.4	42	< 3	< 3.4	6.5
Cyanide	< 10	< 10	20	< 10	< 10	54	< 10	< 10	2.0	< 10	< 10	3.9
Treatment Parameters (mg/L)		1	1	1		1	1		4			
Alkaimay			399			295			442		i i	406
Total Organic Carbon			5.54			5.65			15.1	••		9.4
Chemical Oxygen Demand			12.7			49.2			144			93.7
Chionde			~0.9			55.1			71.8	••		72.3
Hardness, as CaCO ₃	••		651			532			827	••		569
Total Dissolved Solids			686			586			830			710
Total Suspended Solids	••	•••	2410	<u> </u>		2240	•••	••	3810			3210

-

	Groundwater Results Summary Table Carter-Lee Lumber													
	_	((Page 2 of 2)											
					·····	Carel Gamel								
			CLMW05-FR					Drinking						
	,	· · ·		CLGRB01			CLGRB04	Water						
11/6/92	6/7/93	9/22/93	9/22/93	11/6/92	11/6/92	11/6/92	11/4/92	MCL						
- 10	. 10	- 10	. 10	- 10										
< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	100						
						1	< 10	NA						
								NA						
								NA						
								NA						
								NA						
								NA						
							1	NA 6						
~ 10	< 10	< 10	~ 10	< 10	× 10	< 10	< 10	Ø						
	< 0.05		< 0.05	< 0.1	< 0.1	< 0.1	< 0.1	NA						
					· ·			NA						
								0.2						
								0.4						
						1		NA						
								NA						
							1	2						
								NA						
< 0.1	< 0.1	< 0.1	0.0036	< 0.1	< 0.1	< 0.1	< 0.1	NA						
					36.3		11400.0	50-200*						
					-	-		50						
								2000						
			-	_				4						
				-	-	_	1	5						
				-				NA						
-		-		-		-		100 ^c						
								NA						
-				-	-			1300						
					1			300*						
						1		15 NA						
								NA 50*						
								50+ 2						
								100						
								NA						
								50						
								NA						
								2						
< 3	< 3.3		< 4.7	< 3	< 3	< 3	46.6	NA						
< 3	< 3.4	14.3	5.4	4.6			389	5000*						
< 10	< 10	4.0	5.2	< 10	< 10	< 10	< 10	200						
		277	272					NA						
								NA						
								NA						
								NA						
		592	636					NA						
		~~~			. 1									
		664	774					NA						
	(da 11/6/92 < 10 < 0.1 < 0.2 11.4 39400 3.7 24800 < 1 < 3 < 1   	CLMW0: (downgradi           11/6/92         6/7/93           < 10	Car         CLMWUS         II/6/92 $6/7/93$ 9/22/93         II/6/92 $6/7/93$ 9/22/93 $100       100       100         100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100         $	Carters Learners (Page 2 of 2)           Carters (Page 2 of 2)	Brownewster Besutts Summer, Fasterier, Faster, Faster, Fasterier, Fasterier, Fasterier, Fasterier, Fasterier	Growware Results Summary Table Larter-Lee Lamber (downgratient)         CLMW05-Frei CLSB001         CLSB002 CLGRB00         CLSB002 CLGRB00         CLSB002 CLGRB00         CLSB002 CLGRB00           11/6/92         6/7/93         9/22/93         9/22/93         11/6/92         11/6/92         11/6/92            6/10         <10         <10         <10         <10         2             <10         <10         <10         <10         2             <10         <10         <10         <10         2             <10         <10         <10         <10         2             <10         <10         <10         <10         2            <10         <10         <10         <10         <10         <10            <10         <10         <10         <10         <10         <10            <10         <10         <10         <10         <10         <10            <10         <10         <10         <10         <10         <10           <10         <10         <	Groundwater Results Summary Table Larter-Lee Lumber (U=V=reation 1)           CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR CLMW05-FR F CLMW05-FR F CLMW05-FR CLMW05-FR CLMW05-FR F CLMW05-FR F CLMW05	Substrict Results Summer Probability of the section of the s						

^b Maximum contaminant level promulgated under U.S. EPA's Safe Drinking Water; *refers to secondary MCLs.

^c MCL for total chromium.

NA indicates not available.

.

# 4.2.1 Organics

## 4.2.1.2 Groundwater Grab Samples

No VOCs, pesticides, or PCBs were detected in the groundwater grab samples. Several SVOCs were detected: phenol, naphthalene, diethylphthalate, phenanthrene, and di-n-butylphthalate. The majority of the SVOCs were detected at CLSB02.

# 4.2.1.3 Monitoring Well Samples

Only one VOC was detected during the three sampling events. Chloroform was detected in CLMW02 at a concentration of 1  $\mu$ g/L in November 1992. The compound was not detected at any other locations or during subsequent sampling events making its November presence suspect.

Several SVOCs were detected at two wells (CLMW02 and CLMW03) during the November 1992 sampling event. CLMW02 is located upgradient of the site and CLMW03 is located downgradient. The SVOCs included phenol, phenanthrene, di-n-butylphthalate, pyrene, and bis(2-ethylhexyl)phthalate. Concentrations ranged between 0.6 and 3  $\mu$ g/L (Table 4-3). No SVOCs were detected in June 1993. One SVOC, Di-n-butylphthlate was detected at CLMW02 at a concentration of 1  $\mu$ g/L in September 1993. Detections of any individual constituents were not confirmed in multiple sampling events, making detections suspect.

No PCBs were detected above method detection limits during the three sampling events. Two pesticides were detected in groundwater during the November 1992 sampling event. Endosulfan sulfate and 4,4'-DDT were detected in CLMW03, each at a concentration of 0.22  $\mu$ g/L. No pesticides were detected in June 1993. In September 1993, several pesticides were detected at CLMW01, CLMW02, and CLMW05 (refer to Table 4-3). CLMW01 and CLMW05 each had one pesticide detect. Seven pesticides were detected at CLMW02 with concentrations ranging from 0.003 to 0.018  $\mu$ g/L (Table 4-3).

# 4.2.2 Inorganics

# 4.2.2.1 Groundwater Grab Samples

Several inorganics were detected in the grab samples (Table 4-3). The highest concentrations were detected at CLSB04 within the former trench area.

# 4.2.2.2 Monitoring Well Samples

Table 4-3 lists the inorganics detected and the corresponding concentrations. Also included in the table are the September 1993 results for treatment parameters.

Arsenic was detected at CLMW02, CLMW03, CLMW04, and CLMW05 in November 1992. Concentrations ranged between 1.1  $\mu$ g/L at CLMW04 to 1.6  $\mu$ g/L at CLMW02. Arsenic was not detected during subsequent sampling events.

Beryllium was detected at CLMW03 in November 1992 and at CLMW01 and CLMW05 in September 1993. Concentrations ranged from 1  $\mu$ g/L at CLMW01 to 2.3  $\mu$ g/L at CLMW05.

MKE10013CA1.WP5

# Section 5.0 Contamination and Fate Transport

The purpose of this section of the RI report is to describe the CPCs at the site and discuss their potential for migrating through soil and groundwater. This section is divided into a discussion of how the CPCs were identified, their migration pathways and contaminant transport potential, and the fate of the CPCs are evaluated.

## 5.1 Data Evaluation and Identification of CPCs

Identifying CPCs is based on evaluation of data generated during site investigations performed by CH2M HILL during November 1992, June 1993, and September 1993. Chemicals were detected in groundwater and subsurface soil. Section 2.0 of the RI report provides descriptions of the site investigation methodologies and Section 4.0 discusses the nature and extent of contamination.

The contaminant sources identified during past investigations included neutralized calcium ferrosulfate (spent sulfuric acid pickling liquor) used in metal plating operations, an oily filter cake, and red liquid that may have been the metal plating sludge or other material. A small batch operation to treat wood products using pentachlorophenol was later identified as possibly contributing to the site contaminants.

#### 5.1.1 Soil CPCs

Soil samples were collected at various depths (0.5 to 20 feet) from onsite and background, or offsite areas proximate to site, during the investigation. Because the typical depth of excavation during construction is 10 feet, only samples collected at 10-foot depths or less are used in the RA. The assumption is made that excavated soil will be redeposited at the surface and, thus, will be available for exposure routes.

A total of 35 onsite soil samples (3 of which are replicates) was collected from 12 subsurface soil locations and 3 swale soil locations. A subtotal of 30 onsite soil samples was taken from 10-foot depths or less and used in the RA. Of the 30 onsite soil samples, 27 samples were analyzed for priority pollutant VOCs and SVOCs. (The 3 replicates were not included in these analyses.) Metal analyses were performed for all 30 of these onsite soil samples (27 soil samples plus 3 replicates). In the case of inorganic analyses, the exception to this analytical protocol is cyanide which was analyzed for in 23 samples.

A total of 21 background soil samples (2 of which are replicates) were collected from 17 subsurface soil locations. A subtotal of 20 background soil samples were taken from 10-foot depths or less and are used in the RA. Of the 20 background soil samples, 9 samples were analyzed for priority pollutant VOCs, pesticides, and PCBs; 19 were analyzed for priority pollutant SVOCs. Metal analyses were performed for all 20 background soil samples (18 soil samples plus 2 replicates). In the case of inorganic analyses for background soil, the exception to this analytical protocol is cyanide which was analyzed in 5 samples.

Soil data reveal that 24 inorganic chemicals (Table 5-1), 8 VOCs (Table 5-2), 25 SVOCs (Table 5-3), 12 pesticides (Table 5-4), and 1 PCB congener (Table 5-4) were detected in at least one soil sample. The chemicals were evaluated to eliminate a chemical from consideration as a CPC in soil using the following criteria established by EPA:

- Low detection frequency (less than 10 percent)
- No site-specific historical use or significance
- Onsite concentration less than or equal to background concentration (employed two sample t-tests assuming equal variances; refer to Appendix A)
- Common laboratory contaminant, employing 10 × rule that states the sample results should be considered as positive results only if the concentrations in the sample exceed ten times the maximum amount detected in any blank (Risk Assessment Guidance for Superfund, Human Health Evaluation Manual, Volume I, pg. 5-16)
- Considered a micronutrient and toxicologically insignificant

Based on the above criteria, no inorganic chemicals, VOCs, or SVOCs were selected as CPCs. The criteria used to delete inorganic chemical constituents are listed in Table 5-1, VOC constituents in Table 5-2, and SVOC constituents in Table 5-3.

Only 1 pesticide, heptachlor, and 1 PCB congener, Arochlor-1254, were screened as CPCs (Table 5-4). Heptachlor was detected at a 15-percent detection frequency (4 positive detections out of 27 analyses) and all but one of the detections were at concentrations approximating the contract required detection limit. Arochlor-1254 was detected at an 11 percent detection frequency (3 positive detections out of 27 analyses) and all the detections were at concentrations approximating the contract required detections out of 27 analyses) and all the detections were at concentrations approximating the contract required detection limit. No historical information exists to indicate that heptachlor or PCBs were used at the site.

The criteria used for deleting other detected pesticides are listed in Table 5-4.

The CPCs were identified in the following soil samples (subsurface soil = sb, swale soil = ss):

			Table	5-1			
			Chemicals of Pote	ential Concern			
			Inorganics	in Soil			
			Carter-Lee	Lumber			
		Criteria Used	Total		Positive	Range of	
Chemical	Selected as	for Nonselection	Positive	Total	Detection	Positive	Background
Parameter	CPC?	(b)	Detections	Analyses	Frequency	Detections	Range (a)
Inorganics (mg/kg)							
Aluminum	no	3	30	30	100%	1,090 - 14,900	2,460 - 16,000
Antimony	no	3	11	30	37%	3.4 - 10.0	6.8 - 32.9
Arsenic	no	3	30	30	100%	2.4 - 197	0.2 - 257
Barium	no	3	30	30	100%	1.2 - 328	14.9 - 198
Beryllium	no	3	30	30	100%	0.1 - 151	0.2 - 2.0
Cadmium	no	3	30	30	100%	0.1 - 1.3	0.8 - 5.6
Calcium	no	5	30	30	100%	4,460 - 236,000	2,250 - 128,000
Chromium	по	3	30	30	100%	4.8 - 439	6.7 - 48.9
Cobalt	по	3	30	30	100%	2.2 - 15.3	3.1 - 16.9
Соррег	no	3	30	30	100%	3.7 - 114	8.3 - 6,970
lron	no	3,5	30	30	100%	5,030 - 161,000	6,570 - 39,200
Lead	no	3	30	30	100%	2.9 - 376	10.1 - 2,270
Magnesium	no	5	30	30	100%	605 - 59,000	1,480 - 39,400
Manganese	no	3	30	30	100%	204 - 1,280	252 - 1,400
Mercury	no	3	30	30	100%	0.1 - 0.5	0.1 - 0.4
Nickel	no	3	30	30	100%	2.9 - 173	6.9 - 39.9
Potassium	no	3,5	30	30	100%	169 - 1,250	433 - 2,130
Selenium	no	3	24	30	80%	0.2 - 3.5	0.2 - 4.0
Silver	no	3	30	30	100%	0.4 - 2.4	0.8 - 1.0
Sodium	no	3,5	30	30	100%	29.3 - 332	28.2 - 1,510
Thallium	no	3	23	30	77%	0.1 - 0.5 .	0.2 - 0.5
Vanadium	no	3	30	30	100%	5.3 - 88.6	8.3 - 45.9
Zinc	по	3	30	30	100%	11.6 - 564	23.1 - 424
Cyanide	no	3	23	23	100%	0.3 - 2.1	0.3 - 0.6

#### Footnotes:

(a) Background represents analytical results of soil samples taken from soil sample locations CLBK01 through CLBK17.

(b) Criteria used for deletion of a chemical from consideration as a chemical of potential concern (CPC):

1. Low detection frequency (less than 10%).

2. No historical use or significance.

3. Detected onsite concentrations statistically equivalent to or less than background concentrations.

4. Common laboratory contaminant.

5. Considered a micronutrient and toxicologically insignificant.

.

	Lable 5-2 Chemicals of Potential Concern Volatile Organics in Soil Carter-Lee Lumber												
Chemical Parameter	Selected as CPC?	Criterin Used for Nonselection (C)	Fotal Positive Detection	l otal Analyses	Positive Detection Frequency	Range of Positive Detections	Background Range (a)	Hackground Range (b)					
Volatile Organics (µg/	'kg)												
Acctone	no	2,4	14	27	\$2%	14 - 170	nondetect - 25*	not available					
2-Butanone (MEK)	no	2,4	3	27	11%	13 - 31	nondetect - 13*	not available					
Chlorobenzene	no	1,2	1	27	45%	5	nondetect	not available					
l-thylbenzene	no	2,3	3	27	11%	2	nondetect	1,000 - 5,000					
Methylene chloride	no	2,4	23	27	85%	2 - 55	nondetect - 42*	not available					
Frichloroethene	(BC)	1,2,3	1	27	456	2	nondetect - 6	not available					
loluene	no	2,1,4	18	27	67%	2 - 130	nondetect - 160*	1,000-5,000					
Xylene	no	2,3	6	27	22%	2 - 65	nondetect - 2	1,000 - 5,000					

Footnotes

(a) Background represents analytical results of soil samples taken from soil sample locations CI BK01 through CLBK07,

• indicates upper end of range is possibly representative of common laboratory contamination

(b) Background reference - "The Soil Chemistry of Hazardous Materials," James Dragun, Hazardous Materials Control Research Institute, 1988.

(c) Criteria used for deletion of a chemical from consideration as a chemical of potential concern (CPC)

1 Low detection frequency (less than 10%)

2 No historical use or significance

3 Detected onsite concentrations statistically equivalent to or less than background concentrations

4 Common laboratory contaminant

5. Considered a micronutrient and toxicologically insignificant

			Semivol	Table 5-3 s of Potential atile Organics ter-Lee Lumb	in Soil			
		Criteria Used	Total		Positive	Range of		
Chemical	Selected as	for Nonselection	Positive	Total	Detection	Positive	Background	Background
Parameter	CPC?	<u>(C)</u>	Detection	Analyses	Frequency	Detections	Range (a)	Range (b)
Semivolatile Organics (µg/l	(g)							
Acenaphthene	no	3	15	27	56%	32 - 1,800	28 - 20,000	not available
Acenaphthylene	no	3	15	27	56%	21 - 1,800	24 - 19,000	not available
Anthracene	no	3	20	27	74%	45 - 1,200	39 - 70,000	not available
Benzo(a)anthracene	no	3	23	27	85%	59 - 5,300	22 - 360,000	169 - 59,000
Benzo(a)pyrene	no	3	18	27	67%	58 - 7,800	180 - 360,000	165 - 220
Benzo(b)fluoranthene	no	3	21	27	78%	130 - 12,000	180 - 290,000	15,000 - 62,000
Benzo(g,h,i) perylene	no	3	16	27	59%	84 - 6,200	120 - 140,000	900 - 47,000
Benzo(k)fluoranthene	no	3	10	27	37%	170 - 5,700	180 - 290,000	300 - 26,00
Bis(2-ethylhexyl)phthalate	по	3,4	3	27	11%	39 - 3,600	61 - 14,000	not available
Butylbenzylphthalate	no	1,4	1	27	4%	3600.0	380	not available
Carbazole	no	3	20	27	74%	42 - 580	42 - 49,000	not available
Chrysene	по	3	23	27	85%	70 - 6,400	35 - 410,000	251 - 640
Dibenz(a,h)anthracene	no	3	5	27	19%	78 - 3,600	23 - 60,000	not available
Dibenzofuran	no	3	18	27	67%	19 - 1,200	30 - 9,000	not available
3-3' dichlorobenzidine	по	1	1	27	4%	3,600	380	not available
Diethylphthlate	no	1,4	1	27	4%	64	nondetect	not available
Di-n-butylphthlate	no	3,4	17	27	63%	20 - 1,800	20 - 60,000	not available
Di-n-octylphthlate	no	3,4	6	27	22%	19 - 3,600	29 - 60,000	not available
Fluoranthene	no	3	17	27	63%	74 - 8,400	29 - 790,000	200 - 166,000
Fluorene	no	3	18	27	67%	23 - 610	23 - 30,000	not available
Indeno(1,2,3-cd)pyrene	no	3	12	27	44%	29 - 3,600	140 - 90,000	8,000 - 61,000
2-methylnaphthalene	no	3	16	27	59%	28 - 1,400	25 - 60,000	not available
Naphthalene	no	3	13	27	48%	34 - 2,200	21 - 60,000	not available
Phenanthrene	no	3	23	27	85%	60 - 6,500	28 - 370,000	not available
Pyrene	по	3	21	27	78%	74 - 15,000	28 - 800,000	145 - 147,000

Footnotes:

(a) Background represents analytical results of soil samples taken from soil sample locations CLBK01 through CLBK17.

(b) Background reference - "Toxicological Profile for Polycyclic Aromatic Hydrocarbons," Agency for Toxic Substances and Disease Registry, December, 1990.

(c) Criteria used for deletion of a chemical from consideration as a chemical of potential concern (CPC):

1. Low detection frequency (less than 10%).

2. No historical use or significance.

3. Detected onsite concentrations statistically equivalent to or less than background concentrations.

4. Common laboratory contaminant.

5. Considered a micronutrient and toxicologically insignificant.

			Inble	5-4			
			hemicals of Pote	ntial Concern			
			Pesticides and I	*CH+ in Soil			
			Carter Lee	Lumber			
		Criterin Uned	Lotal		Positive	Range of	
hemical	Selected an	for Nonselection	Positive	Total	Detection	Positive	Background
'arameter	CPC7	(b)	Detections	Anniyses	Frequency	Detections	Range (a)
'esticides (µg/kg)							
Vipha chlordane	no	. <b>!</b>	٩	27	19%	4 5 - 24	nondetect - 4-8
iamma chlordane	no	3	4	27	15%	74 - 25	nondetect - 10
,4'-DDD	no	1,2,3	L	27	4%	4.6	nondetect - 7.6
4'-DDE	no	1,2	2	27	7%	4 3 - 46	nondetect
4'-DD1	no	2,3	14	27	52%	51 - 140	nondetect - 14
ndosulfan II	ĥo	2,1	5	27	19%	39-21	nondetect - 6.5
ndosultan sulfate	no		2	27	7%	5 2 - 28	nondetect
ndrin	no	2,3	9	27	11%	5 2 - 15	nondetect - 19
ndrin ketone	no	2,1	1	27	11%	64-11	nondetect - 44
feptachlor	yes		4	27	15%	1.9 - 4.2	nondetect
leptachlor epoxide	no	1	5	27	19%	2 - 5 6	nondetect - 5-1
Acthoxychlor	no	1,2,3	2	27	7%	18 - 46	nondetect - 84
C'Bs (µg/kg)							
rochlor 1254	yes		3	27	11%	32 - 35	nondetect

ŧ

Footnotes

(a) Background represents analytical results of soil samples taken from soil sample locations CLBK01 through CLBK07

(b) Criteria used for deletion of a chemical from consideration as a chemical of potential concern (CPC)

E. Low detection frequency (less than 10%)

2 No historical use or significance

3 Detected onsite concentrations statistically equivalent to or less than background concentrations

4 Common laboratory contaminant

5 Considered a micronutrient and toxicologically insignificant

Heptachlor

•	SS01-B	(2.6 µg/kg, ''J'' qualified)
•	SB03-1	(1.9 $\mu$ g/kg, ''J'' qualified)
•	SB11	$(4.2 \ \mu g/kg)$
٠	SB12-1	(2.2 $\mu$ g/kg, ''J'' qualified)

Arochlor-1254 (PCB)

٠	SS02-A	(34 $\mu$ g/kg, ''J'' qualified)
•	SB01-1	(35 $\mu$ g/kg, "J" qualified)
•	SB11	(32 $\mu$ g/kg, "J" qualified)

### 5.1.2 Groundwater

Groundwater data for 5 onsite monitoring wells (17 samples) were evaluated; no background groundwater samples were obtained during the site investigation. Groundwater grab sampling (4 onsite samples) was performed at the site to provide screening-level data on potential groundwater contamination. In accordance with *Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA* (EPA 1988), the grab data will not be used in the RA because field screening data are inappropriate for groundwater analysis, other than to better define chemical analysis parameters.

Groundwater data reveal that 19 inorganic chemicals (Table 5-5) and 15 organic chemicals (Table 5-6) were detected in at least one groundwater sample. Chemicals were evaluated to eliminate a chemical from consideration as a CPC in groundwater using the following criteria:

- Low detection frequency (less than 10 percent)
- No historical use or significance
- Onsite concentration less than or equal to background concentration (maximum detected onsite concentration less than or within background range cited in research literature)
- Onsite concentration less than or equal to the Drinking Water Act maximum contaminant level (MCL)
- Common laboratory contaminant, employing  $10 \times$  rule that states the sample results should be considered as positive results only if the concentrations in the sample exceed ten times the maximum amount

	Table 5-5 C'hemicals of Potential Concern Inorganics in Groundwater C'arter Lee Lumber												
('hemical Parameter	Selected as CPC7	Criteria Used for Nonselection (c)	Total Positive Detection	Total Analyses	Positive Detection Frequency	Range of Positive Detections	Background Range (n)	Drinking Water MCL (b)					
Inorganics (µg/1.)													
Aluminum	no	3,4	2	17	12%	26 5 - 32 3	5 - 1000	50 - 200*					
Amenic	no	3,4	4	17	24%	11+1.6	1 - 30	50					
Harium	no	3,4	15	17	885.	38.4 - 138	10 - 500	2,000					
Beryllium	no	3,4	1	17	18%	1 - 2 3	· 10	4					
Cadmium	no	1,3,4	1	17	645	40	· 1	5					
Calcium	no	6	17	17	100%	108,000 - 197,000	1,000 - 150,000	not available					
Copper	no	3,4	.)	17	18%	4.6 - 6.3	1 - 10	1,300					
 Iron	110	3,4,6	ĸ	17	47%	10.6 - 127	10 - 10,000	300*					
Lend	nu	3,4	9	17	53%	12-55	· 15	15					
Magnesium	110	1,6	17	17	100*6	28200 - 45,000	1,000 - 50,000	not available					
Manganese	no	3	13	17	76%	16-90	1 - 1000	50*					
Nickel	no	3,4	5	17	29%	89-119	10 - 50	100					
Polassium	no	3,6	11	17	65%.	3310 - 4,680	1,000 - 10,000	not available					
Selenium	no	3,4	11	17	65%	1.2 - 9.2	1 - 10	50					
Sodium	no	1,6	17	17	100%	24800 - 54,000	500 - 120,000	not available					
Thallium	no	3,4	2	17	12%	1-14	1 - 150	2					
Vanadium	no	1,3	1	17	6%	4 8	1 - 10	not available					
Line	no	3,4	9	17	53*6	42-143	10 - 2,000	5,000*					
Cyninde	no	4	6	17	35*.	2 - 5 4	not available	200					

Footnotes

(a) Background reference - "The Soil Chemistry of Hazardous Materials," James Dragun, Hazardous Materials Control Research Institute, 1988

(b) Maximum contaminant level promulgated under U.S. EPA's Safe Drinking Water, * refers to secondary MCLa

(c) Criteria used for deletion of a chemical from consideration as a chemical of potential concern (CPC).

I Low detection frequency (less than 10%)

2 No historical use or significance

3. Detected onsite concentration less than background concentration.

4 Detected onsite concentrations less than MCL.

S Common laboratory contaminant

6 Considered a micronutrient and toxicologically insignificant

			Organ	Table 5-6 s of Potential C ics in Groundw ter-Lee Lumb	vater			
Chemical	Selected as	Criteria Used for Nonselection	Total Positive	Total	Positive Detection	Range of Positive	Background	Drinking Water
Parameter	CPC?	(c)	Detection	Analyses	Frequency	Detections	Range (a)	MCL (b)
Volatile Organics (µg/L) Chioroform	no	1,2,4	1	17	6%	1.0	not available	100
Semivolatile Organics (µg/L) bis(2-ethylhexyl)phthalate	) 	2,4,5	2	17	12%	0.6 - 1.0	not available	6
Di-n-butylphthalate	no	2,5	2	17	12%	0.8 - 1.0	not available	not available
Fluoranthene		1	1	17	6%	1.0	not available	not available
Phenanthrene	no	1	1	17	6%	0.8	not available	not available
Phenol	no	1,2	1	17	6%	3	not available	not available
Pesticides (µg/L)	· · · · · · · · · · · · · · · · · · ·							
Aldrin	no	1.2.	1	17	6%	0.006	not available	not available
alpha BHC	yes		2	17	12%	0.001 - 0.003	not available	not available
delta BHC	no	1,2	1	17	6%	0.003	not available	not available
gamma BHC (Lindane)	no	1,2,4	1	17	6%	0.01	not available	0.2
4,4-DDT	yes		2	17	12%	0.004 - 0.012	not available	not available
Dieldrin	no	1,2	1	17	6%	0.018	not available	not available
Endosulfan sulfate	no	1,2	1	17	6%	0.22	not available	not available
Endrin	no	1,2,4	1	17	6%	0.017	not available	2
Heptachlor	no	1,2,4	1	17	6%	0.008	not available	0.4

Footnotes:

(a) Maximum contaminant level promulgated under U.S. EPA's Safe Drinking Water.

(b) Criteria used for deletion of a chemical from consideration as a chemical of potential concern (CPC):

1. Low detection frequency (less than 10%).

2. No historical use or significance.

3. Detected onsite concentration less than background concentration.

4. Detected onsite concentrations less than MCL.

5. Common laboratory contaminant.

6. Considered a micronutrient and toxicologically insignificant.

detected in any blank (Risk Assessment Guidance for Superfund, Human Health Evaluation Manual, Volume I, pg. 5-16)

• Considered a micronutrient and toxicologically insignificant

Based on the above criteria, no inorganic chemicals were selected as CPCs: the criteria used for the deletion of each inorganic chemical are listed in Table 5-5.

Only 2 organic chemicals. Alpha-BHC and 4,4'-DDT, were selected as CPCs. Both were detected at a 12 percent detection frequency (2 positive detections out of 17 analyses) and all the detections were at concentrations below the contract required detection limit. The site historical use and significance of those organic chemicals is uncertain. The only detection of Alpha-BHC is from an upgradient groundwater monitoring well. No background range or Drinking Water Act MCLs are available for comparisons. The criteria used for screening the other detected organic chemicals are listed in Table 5-6.

The identified CPCs were present in groundwater (September 1993) from 2 monitoring wells:

Alpha-BHC

٠	MW-2	$(0.003 \ \mu g/L, "J" \text{ qualified})$
•	MW-5	$(0.001 \ \mu g/L, "J" \ qualified)$

4.4'-DDT

•	MW-2	$(0.012 \ \mu g/L, "J" \ qualified)$
•	MW-5	$(0.0036 \ \mu g/L, "J" \ qualified)$

# 5.2 Potential Routes of Migration

A migration pathway defines how a contaminant moves through the environment from its source to a potential receptor. A description of the potential migration pathways that may exist at the CLL site follows. This discussion of migration routes and transport potential is primarily qualitative.

#### 5.2.1 Soils

The possible contaminant migration routes in relation to soil are:

- Migration in water along the surface
- Migration in air subsequent to volatilization

- Migration on dust particles transported by air
- Migration in water down into the unsaturated and, potentially, saturated zone

Most of the CLL site is currently covered with asphalt, as indicated in Figure 2-2. The area of the site that was the focus of this investigation is, however, covered with a compacted gravel layer about 6 inches deep that covers another 6 inches of top soil. Below this, the stratigraphy is variable because of extensive use of various fill material used and soil moved during construction activities.

Low levels of pesticides and PCB Arochlor-1254 were detected in shallow soils. The pesticides may be present as a result of termite and other pest control measures. Generally, contaminants were found in the intervals between 4 and above 8 feet below the ground in silty or clayey sand material. Contaminants may have reached this depth through migration from the surface through the upper 4 feet of soil, but were more likely deposited when fill was placed. Also, contaminants were not typically detected in soil at deeper intervals near the water table interface. The deep intervals sampled at this site are characterized by a highly permeable, well-graded sand and gravel.

Should the asphalt or compacted gravel cover present above the fill degrade through lack of maintenance, erosion could occur and contaminated surface soils could be exposed. This scenario would result in contaminant residues being released to surface drainage or to the air by wind. The contaminants detected at the deeper 4- to 8-foot intervals could begin to move with increased infiltration.

## 5.2.2 Groundwater

If contamination reaches the saturated zone, it may migrate further downgradient through the aquifer in the dissolved stage. The potential for site contaminant migration through groundwater is of concern because the City of Indianapolis relies in part on this aquifer for supplementing its drinking water supply. The unconfined aquifer is also hydraulically connected to the White River, about 4,200 feet east of the site. Groundwater at the CLL site is encountered at about 15 to 20 feet below ground surface and flows east southeast.

There is no direct evidence of migration having occurred between the contaminated soil and the groundwater. Typically, the soil at the water table interface did not have detectable or significant concentrations of CPCs (pesticides). Two of the monitoring wells (upgradient at CLMW02 and furthest downgradient at CLMW05) had detectable concentrations of pesticides. It is likely the pesticides will move onto the site's subsurface and then offsite through the groundwater.

#### 5.2.3 Surface Water

Based on the site reconnaissance, there was no existing surface water migration route from the CLL site offsite to a water body. The area investigated sloped toward the southeast and surface water drained along the south and east boundaries. Water pooled at the southeast corner of the property before it either evaporated or slowly infiltrated to the subsurface. Railroad berms prevented overland flow from leaving the site.

## 5.3 Migration Routes Considered

Volatilization is not considered a transport mechanism for this site because there is a well-maintained asphalt cover or at least 6 inches of compacted gravel cover. VOCs were not detected at levels of concern in site soil.

Fugitive dust emissions are not considered a transport mechanism at this site because there is a well-maintained asphalt cover over much of the site. The portion of the site that is not covered in asphalt is covered with 6 inches of uncontaminated, compacted gravel.

Rainwater to groundwater infiltration through the soil is a potential transport mechanism that could leach contaminants from deeper soil layers (4 to 8 feet below ground surface) to the water table. However, the deeper silty sand or clayey sand layers have a low potential for contaminant release from the site. Pesticides and PAH compounds are known to have properties that preferentially bind them to soil (especially fine-grained clay'silt) as opposed to mobilizing in groundwater systems. With the exception of the pesticides Alpha-BHC and 4.4'-DDT, contaminants have not been generally detected at intervals immediately above the water table, indicating the contaminants may be tightly sorbed to fill soil particles well above the water table and a suitable transport mechanism does not likely exist. Pesticides have been detected in upgradient groundwater and may have migrated beneath the site from that location and because of their existence in subsurface soils, could potentially contribute contaminant load to groundwater.

# 5.4 Extent of Migration

Currently, the contaminants detected at the CLL site have not migrated beyond the source areas identified in the preliminary and remedial investigations (the trench area and respread red soil area). Contaminants were detected at depths of 4 to 8 feet below ground surface and occasionally in near-surface soils. However, review of the RI findings does not indicate there has been significant migration of contaminants to the water table or offsite.

Offsite concentrations, primarily because of the industrial nature of the area, are often higher than those detected onsite. As a result, it is difficult to attribute detection of site-

related contaminants in offsite wells to migration from the site. The sources of contaminants detected offsite are ubiquitous and cannot be traced solely to site activity, based on the information obtained during this investigation.

MKE10013CA2.WP5

·

## Section 6.0 Baseline Risk Assessment

## 6.1 Introduction

This section presents the results of the Risk Assessment (RA) performed for the CLL site in Indianapolis, Indiana. The purpose of the baseline RA is to characterize the potential threat to public health from the site if no remedial actions occur (i.e., the no-action alternative). This RA estimates the potential noncarcinogenic hazards and carcinogenic risks under current land use and future land use scenarios.

To assess the risks associated with the compounds detected during the site investigation, CH2M HILL conducted this RA to estimate potential human health risks that could result from exposure to contaminants identified in the groundwater and soil. Conservative standardized regulatory exposure assumptions are used to assess reasonable maximum exposure (RME) scenarios.

The RA was performed under an occupational scenario to evaluate current and future land use because of the industrial nature of the area, industrial history of the site, and high likelihood of continued industrial use. The RA also evaluates a future residential land use scenario because of the potential for residential property development. The RA was performed according to current EPA guidelines (full citations are found in the references) including:

- Guidelines for the Health Risk Assessment of Chemical Mixtures
- Guidelines for Carcinogenic Risk Assessment
- Guidelines for Exposure Assessment
- Risk Assessment Guidance for Superfund—Human Health Evaluation Manual, Part A, Interim Final
- Standard Default Exposure Factors, Interim Guidance
- Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions
- Risk Assessment Guidance for Superfund—Human Health Evaluation Manual, Part B, Interim Final

Specific tasks performed and discussed in this report include:

- Toxicity assessment
- Exposure assessment
- Human health risk characterization
- Uncertainty analysis

## 6.2 Human Health Risk Assessment

The RA consists of four major components:

- Data evaluation and CPC identification
- Toxicity assessment
- Exposure assessment
- Health risk characterization

The first step in an RA is to identify CPCs. The identification of CPCs is the endproduct of the data evaluation process (Section 5.0). To focus remaining RA efforts, the data quality is evaluated with respect to analytical methods used, sample quantitation limits, validation qualifiers, and blank analytical results. Estimated results (i.e., data with a "J" qualifier) that met data validation requirements are used in this assessment. Data were also reviewed and eliminated on the basis of site historical information, background concentrations, essential nutrient information (i.e., micronutrients), detection frequency, and applicable or relevant and appropriate requirements (ARARs). The outcome of this evaluation identifies a set of chemicals that may be site-related.

Those chemicals from this set that have a toxicity value available through EPA are identified as CPCs to public health.

Two primary sources of toxicity values are used. The first source is the EPA Integrated Risk Information System (IRIS) database (EPA, 1993). If a toxicity value is not available through IRIS, the latest available Update of Health Effects Assessment Summary Table ([HEAST] EPA, March 1993) is used. The toxicity values used in this RA are presented as part of the health risk estimation tables contained in Appendix C.

The toxicity assessment identifies the type of hazards or health effects associated with exposure to the CPCs and describes the dose-response relationships of those chemicals.

The exposure assessment identifies potential pathways by which exposures can occur and characterizes the potentially exposed populations and the frequency and duration of exposures.

The risk characterization addresses the potential for adverse effects for each exposure setting derived from the exposure assessment. It integrates the information developed

during the toxicity and exposure assessments to estimate the potential risks to public health from exposure to site contaminants.

# 6.2.1 Toxicity Assessment

The toxicity assessment consists of two steps. The first, hazard identification, is the process of determining the adverse health effects that could result from exposure to the CPCs. The second, dose-response evaluation, quantitatively examines the relationship between the level of exposure and the incidence of adverse health effects in an exposed population.

## 6.2.1.1 Hazard Identification and Contaminant Classification

For the purpose of the RA, human health effects are divided into two broad groups: carcinogenic and noncarcinogenic; human health risks were evaluated in those terms. Chemicals were designated categorically as carcinogens, noncarcinogens, or both, based on their associated effects.

**Carcinogens**. Carcinogens are chemicals that cause or induce cancer. Carcinogenic effects demonstrate a nonthreshold response mechanism. This hypothesized mechanism for carcinogenesis is referred to as "nonthreshold." Nonthreshold is defined as any level of exposure that does not pose a finite probability, however small, of generating a carcinogenic response. The EPA has developed a carcinogen classification system that uses a weight-of-evidence approach to classify the likelihood of a chemical being a human carcinogen. Information considered in developing the classification includes human studies of the association between cancer incidence and exposure and long-term animal studies under controlled laboratory conditions. Other supporting evidence considered includes short-term tests for geotoxicity, metabolic and pharmacokinetic properties, toxicological effects other than cancer, structure activity relationships, and a potential carcinogen's physical and chemical properties. Chemicals are classified by the EPA as:

- A—Human carcinogen
- B1—Probable human carcinogen; limited human data are available
- B2—Probable human carcinogen; sufficient evidence in animals and inadequate or no evidence in humans
- C—Possible human carcinogen
- D-Not classifiable as to human carcinogenicity
- E-Evidence of noncarcinogenicity for humans

All four identified CPCs (two in soil and two in groundwater) are classified by the EPA as Class B2 carcinogens.

Noncarcinogens. Chemicals causing noncarcinogenic effects such as systemic toxins exhibit a level of exposure above 0 that can be tolerated by an organism without causing an observed health effect. It is believed that organisms have adaptive mechanisms that must be overcome before a toxic effect is manifested, that is, before there is a threshold effect. Noncarcinogenic health effects include a variety of toxic effects on body systems ranging from renal toxicity (toxicity to the kidney) to central nervous system disorders. Noncarcinogenic health effects fall into two basic toxicity categories: acute and chronic. Acute toxicity occurs after a single, typically high dose exposure and the effect is seen immediately. Chronic toxicity occurs after repeated, typically low dose exposure and the effect is seen weeks, months, or years after the initial exposure.

Heptachlor, which was detected in groundwater, and 4,4'-DDT, which was detected in soil, are both associated with noncarcinogenic health effects.

## 6.2.1.2 Dose-Response Relationships

Toxicity is directly related to the dose or concentration of the substance. This is called the dose-response relationship, and toxicity values are a quantitative expression of the dose-response relationship for a chemical. Toxicity values for noncarcinogenic effects take the form of reference doses (RfDs), and carcinogenic effects take the form of slope factors (SFs); both are specific to exposure routes. Toxicity values have been developed for oral ingestion (RfDo) and inhalation exposure (RfDi) because of the exposure route specificity. Exposure route specificity should be designated.

**Reference Doses.** The EPA RfD Work Group (U.S. EPA, 1989a) defines RfDs as follows:

The RfD is an estimate (uncertainty may span an order-of-magnitude) of a daily exposure to the human population, including sensitive subpopulations, that is likely to be without an appreciable risk of deleterious effects during a lifetime. The RfD is generally expressed in units of milligram of chemical per kilogram of body weight per day (mg/kg/day).

Slope Factors. The dose-response relationship for carcinogens is expressed as a carcinogenic potency factor or slope factor that converts estimated intakes directly to incremental lifetime cancer risk. The carcinogenic slope factor is defined as the 95-percent upper confidence limit (UCL) of the amount of risk per unit of exposure. Slope factors are presented in units of the inverse of milligrams of chemical per kilogram of body weight per day, or  $(mg/kg/day)^{-1}$ .

The data used for estimating the dose-response relationship are taken from lifetime laboratory animal studies or human epidemiological studies in which excess cancer risk

has been associated with exposure to the chemical. In animal studies, it is assumed that if a carcinogenic response occurs at the dose levels used in the study, then a response will occur at all lower doses, that is, there is no threshold effect. For practical purposes, low levels of risk cannot be measured directly, either by animal experiments or epidemiologic studies (U.S. EPA, 1989a). Use of cancer potency factors assumes that cancer risk is probable and any degree of exposure leads to some degree of risk.

The linearized multistage approach used by the EPA to estimate the carcinogenic potency factor from animal studies or human data assumes a dose-response relationship with no threshold. There is uncertainty and conservatism built into the EPA's risk extrapolation approach. The EPA has stated that cancer risks estimated by this method lead to an estimate that is "a plausible upper limit to the risk that is consistent with some proposed methods of carcinogenesis. Such an estimate, however, does not necessarily give a realistic prediction of the risk. The true value of the risk is unknown and may be as low as zero" (U.S. EPA, 1986c).

## 6.2.2 Exposure Assessment

This section identifies the means by which people, or receptors, could come into contact with contaminants from the site (U.S. EPA, 1986a) and will, either qualitatively or quantitatively, address potential exposures to contaminants according to current and future site uses. Potential human exposures identified by this analysis are then characterized and evaluated.

## 6.2.2.1 Exposure Pathway Analysis

An exposure pathway is the means by which a contaminant moves from a source to a receptor. A complete exposure pathway has five elements:

- Contaminant source
- Mechanism for contaminant release
- Environmental transport medium such as groundwater
- Exposure point or receptor location
- Feasible route of exposure such as ingestion, dermal absorption, or inhalation

Exposure may occur when contaminants migrate from the site to an exposure point (that is, a location where receptors can come into contact with contaminants) or when a receptor comes into direct contact with waste or contaminated media at the site itself. Exposure can occur if there is a way for the receptor to take in contaminants through

ingestion, inhalation, or dermal absorption of contaminated media or waste. Exposure can not occur unless the pathway is completed.

## 6.2.2.2 Characterization of Exposure Setting

The CLL site is located at the south end of the CLL Company property at 1621 West Washington Street in Indianapolis, Indiana. The property is located about 1 mile east of the White River in central Marion County. The property is enclosed by fencing to restrict access by trespassers.

The parcel that makes up the site is about 4 acres in size. The site is bordered on the west by Reichwein Street. on the south and east by Conrail railroad tracks, and on the north by the office and main plant. A drainage swale runs parallel to the eastern site boundary.

Currently, the site houses three sheds used by CLL for lumber and materials storage. The site is covered with asphalt except 1 acre at the southeast corner which was covered with 6 inches of top soil and 6 inches of gravel.

Land uses in the area proximate to the CLL site consist primarily of heavy industry, except for the west side of Reichwein Street which is developed with older, single-family residential dwellings. Immediately east and south of the site is an older industrial area containing many industrial properties such as the Westinghouse Air Brake Company and an Indianapolis Metro bus terminal which was formerly the Indiana Battery Recycling Company.

The site area is typically flat, although there is a slight downward slope towards the drainage swale in the southeast corner of the site. An extensive coarse-grained sand and gravel outwash terrace exists beneath the site. Discontinuous silt and clay deposits are numerous. The outwash extends along the White River and Eagle Rivers and Fall Creek; its width is about 6.5 miles (east to west). Within the vicinity of the site, the bedrock beneath the outwash deposits consists of Silurian and Devonian age limestones and dolomites. Depth to bedrock is about 120 feet.

The outwash deposits along the White River form the upper, unconfined aquifer. The thickness of the aquifer ranges from 30 to more than 80 feet. The limestone and dolomite formations comprise the lower aquifer. Groundwater flow beneath the site is expected to be east toward the White River and occasionally to the southeast toward a cone of depression caused by extensive groundwater pumping by area industries.

No public water supply wells are identified within a 1-mile radius of the site. Twenty-six industrial water supply wells are identified as being both within a 1-mile radius of the site and downgradient of the site (i.e., to the east or southeast of the site). Only one private water supply well is found to exist downgradient of the site and is located 1.5 miles southeast of the site on Oliver Street. All but one of the wells identified as downgradient are screened in the sand and gravel aquifer. One industrial supply well is screened in the

bedrock. Well depths are generally 60 to 100 feet for the sand and gravel wells and greater than 200 feet for the bedrock wells.

# 6.2.2.3 Identification of Potential Exposure Pathways

Exposure pathway evaluations (Table 6-1) were made on the basis of site history, analytical results of site samples, and exposure setting. Subsurface soil and groundwater are considered the sources of potential onsite exposure to CPCs.

There is no evidence of offsite migration of CPCs or subsequent offsite exposures. Surface runoff is managed by segregation into two drainage swale areas.

## 6.2.2.4 Current-Use Scenario

**Groundwater**. No potential exposure pathways are identified for the contaminants detected in the groundwater under existing land-use conditions. Groundwater beneath the site is not used as a source of water for the site. There is no evidence that contaminants have migrated offsite to downgradient, potable water supply wells. Based on those observations, it is assessed that there is no onsite or offsite exposure to groundwater CPCs under current land-use conditions.

Soil. Soil contamination is limited to subsurface soil. The subsurface soil contaminants are covered by either asphalt or 6 inches of clean topsoil plus 6 inches of gravel. This prevents direct contact with the contaminants in soil.

Under current site conditions and industrial usage, onsite workers are not expected to be exposed to subsurface soil contaminants. This is because the site is only used for lumber storage. Modifications to the site, such as trenching, which might expose the subsurface contaminants are not expected. No potential exposure pathways are identified for the contaminants detected in the subsurface soil under existing land-use conditions.

## 6.2.2.5 Future-Use Scenario

**Groundwater.** Exposures to contaminants in groundwater by an occupational receptor and an adult residential receptor were assessed under a future-use scenario. Standard exposure methodology assumes occupational receptors to be adults. Under the residential scenario, a child (6-year exposure) plus an adult (24-year exposure) integrated groundwater exposure (30-year total exposure) is evaluated.

Ingestion of groundwater and dermal absorption of contaminants in groundwater were assessed for the receptors based on the assumption that the groundwater could be used for bathing under a future-use scenario.

Groundwater assessment is performed under the future-use scenario only as a theoretical exercise and does not imply that groundwater use is being planned or projected.

Table 6-1						
		Potential	Exposure Path	ways		
Contaminant Source	Release Mechanism	Transport Medium	Exposure Point	Exposure Route	Receptor	
Groundwater	1 Direct contact	None	Onsite	la. Ingestion lb. Dermal absorption	a,b a,b	
Soil	1. Direct contact	None	Onsite	1a. Ingestion 1b. Dermal absorption	a,b a,b	
	2. Dust release	Aır	Onsite	2a. Inhalation of particulates	a,b	

.

**Soil**. Under future site conditions, onsite workers or contractors could potentially be exposed to subsurface soil CPCs when modifying the site (for example, trenching). Also, because property in an area proximate to the CLL site is used as residential sites, the RA evaluates a future residential land-use scenario. Therefore, exposure evaluations are performed for occupational and residential receptors that may incidentally ingest soil, dermally absorb CPCs in soil, and inhale soil particulates. Based on standard exposure assessment methodology, an adult is evaluated for the occupational scenario. A child is evaluated under the residential scenario because a child's large soil intake rate and small body weight put the child at greater risk compared to an adult.

### 6.2.2.6 Chemical Intake

Chemical intake is a pathway-specific exposure (defined as the contact of an organism with a chemical or physical agent) that is normalized for time and body weight. The chemical intake or normalized exposure rate is calculated using equations that include variables for exposure concentration, contact rate, exposure frequency, exposure duration, body weight, and exposure averaging time. The methodology and equations for calculating chemical intake from groundwater ingestion, dermal absorption of contaminants in groundwater, incidental soil ingestion, dermal absorption of contaminants in soil, and inhalation of contaminants in airborne soil particulates are presented in Appendix C-2. The values of the exposure variables depend on site conditions and the characteristics of the potentially exposed population. The values used are listed in the Exposure Variables Table in Appendix C-2.

The EPA *Risk Assessment Guidance for Superfund*, Part A (July 1989), states that actions at Superfund sites should be based on an estimate of the "reasonable maximum exposure" expected to occur under both current and future land-use conditions. Reasonable maximum exposure (RME) is defined as the highest exposure, or intake value, reasonably expected to occur at a site. The intent of the RME is to estimate a conservative, or well above the average exposure case that is still within the range of possibilities. Consistent with EPA methodology, exposure or intake variables that estimate a reasonable maximum exposure (EPA, 1991b) are used in this RA.

This evaluation assumes that exposure concentrations are constant over time. The conservative, steady-state approach does not reflect potential changes in contaminant concentration that are a result of environmental transport, transfer, or transformation processes. The EPA defines an RME concentration as the 95-percent UCL of the arithmetic mean concentration based on a log normal distribution. Current methodology dictates that if the UCL value is greater than the maximum detected value, the maximum detected value is used as the exposure point concentration.

Statistical analyses were performed to calculate the 95-percent UCL. When performing the statistical calculations, nondetections were considered equal to the one half of the laboratory detection limit (Appendix C-1).

Because the concentrations for positive detections of CPCs in groundwater are less than the detection limit values and there is a large percentage of nondetections, 95-percent UCLs were not used in the exposure assessment for groundwater. The maximum detected value is used as the exposure point concentration for groundwater exposures (Table C-1-2).

When evaluating soil exposures, a 95-percent UCL is used as the exposure point concentration (Table C-1-1).

The results of the chemical intake calculations are presented as part of the health risk estimation tables presented in Appendix C-4.

## 6.2.3 Health Risk Characterization

This section presents the evaluation of potential risks to human health associated with exposures to contaminants detected in soil and groundwater. The toxicity and exposure assessments are integrated to quantitate risks. The characterization of potential human health risks associated with contaminants detected at the site will focus on carcinogenic and noncarcinogenic health effects for a residential and occupational exposure setting under a future-use scenario. The estimates of risk presented assume that exposures will be constant over the exposure periods assessed (both contaminant concentrations and intake levels will be constant). A detailed description of the methodologies used in developing the human risk estimates is presented in Appendix C-3.

## 6.2.3.1 Risk Estimation Methodology for Carcinogenic Effects

The potential for carcinogenic effects is evaluated by estimating excess lifetime cancer risk. Excess lifetime cancer risk is the incremental increase in the probability of developing cancer during one's lifetime over the background probability of developing cancer if no exposure to site contaminants occurred. For example,  $1 \times 10^{-6}$  excess lifetime cancer risk means that for every 1 million people exposed to the carcinogen throughout their lifetimes (assumed to be 70 years), the average incidence of cancer is increased by one additional case. Because of the methods followed by the EPA in estimating cancer potency factors, the excess lifetime cancer risk rather than accurate representations of true cancer risk.

While synergistic or antagonistic interactions might occur between carcinogens and other chemicals at the site, there is insufficient information in the toxicological literature to predict the effects of such interactions. Therefore, consistent with EPA guidelines on chemical mixtures (U.S. EPA, 1986b), this RA treated carcinogenic risks as additive within a route of exposure.

## 6.2.3.2 Risk Estimation Methodology for Noncarcinogenic Effects

Noncarcinogenic risk is assessed by comparing the estimated daily intake of individual contaminants to their specific RfDs. To derive a hazard quotient, the estimated daily intake of each chemical in an individual route of exposure is divided by its RfD. This comparison or hazard quotient serves as a *measure of the potential* for noncarcinogenic health effects and should not be interpreted as a direct estimate of risk. If the estimated daily intake for any single chemical is greater than its RfD, there is a potential for a noncarcinogenic health risk.

A hazard index approach adopted by the EPA (U.S. EPA, 1986b) is used to assess the potential for noncarcinogenic effects posed by multiple chemicals. The method assumes dose additivity; therefore, the hazard quotients are added to provide a hazard index. When the hazard index exceeds 1, there is potential for a noncarcinogenic health risk. In this situation, the chemicals in the mixture are segregated by similar critical effect, target organ, or mechanism of toxicity to determine if there is potential for a health risk. A separate hazard index is derived for each segregated effect or mechanism. If any of the separate indices exceed 1, there is potential for that noncarcinogenic health risk.

## 6.2.3.3 Quantitative Risk Estimation

Based on the analysis of exposure pathways presented earlier in this RA, the following exposure pathways were quantitatively evaluated to estimate the potential risks:

- Future residential:
  - Ingestion of soil
  - Inhalation of soil particulates
  - Dermal absorption of soil contaminants
  - Ingestion of groundwater
  - Dermal absorption of groundwater contaminants
- Future occupational:
  - Ingestion of soil
  - Inhalation of soil particulates
  - Dermal absorption of soil contaminants
  - Ingestion of groundwater
  - Dermal absorption of groundwater contaminants

Detailed calculations of carcinogenic and noncarcinogenic risks from the potential exposures listed above are contained in Appendix C-4. A summary and discussion of the risk estimates follows.

## 6.2.3.4 Potential Health Risks to Current Occupational Receptors

There are no known exposures to contaminants for a current occupational receptor.

### 6.2.3.5 Potential Health Risks to Future Residential Receptors

The noncarcinogenic cumulative hazard index (the hazard quotient for ingestion plus the hazard quotient for inhalation plus the hazard quotient for dermal absorption) estimated for soil exposure is less than 1, indicating negligible potential for adverse health effects (see Table 6-2).

The estimate of cumulative excess lifetime cancer risk (the cancer risk from ingestion plus the cancer risk from inhalation of particulates plus the cancer risk from dermal absorption) for future residential soil exposures is  $1 \times 10^{-6}$  (Table 6-3). The cumulative cancer risk estimate is at the lower end of the EPA's target or acceptable cancer risk range of  $1 \times 10^{-4}$  to  $1 \times 10^{-6}$ .

Table 6-4 shows that the estimate of the cumulative hazard index (hazard quotient for ingestion plus hazard quotient for dermal absorption) for future residential groundwater exposures is less than 1. This indicates a negligible potential for adverse noncarcinogenic health effects.

The estimate of cumulative excess lifetime cancer risk (the cancer risk from ingestion plus the cancer risk from dermal absorption) for future residential groundwater exposures is  $3 \times 10^{-7}$  (Table 6-5). The cumulative cancer risk estimate is below the lower end of the EPA's target or acceptable cancer risk range of  $1 \times 10^{-4}$  to  $1 \times 10^{-6}$ .

### 6.2.3.6 Potential Health Risks to Future Occupational Receptors

The noncarcinogenic cumulative hazard index (the hazard quotient for ingestion plus the hazard quotient for inhalation plus the hazard quotient for dermal absorption) estimated for future occupational soil exposure is less than 1. This indicates a negligible potential for adverse health effects (see Table 6-2).

The estimate of cumulative excess lifetime cancer risk (the cancer risk from ingestion plus the cancer risk from inhalation of particulates plus the cancer risk from dermal absorption) for future occupational soil exposures is  $2 \times 10^{-7}$  (Table 6-3). The cumulative cancer risk estimate is below the lower end of the EPA's target or acceptable cancer risk range of  $1 \times 10^{-4}$  to  $1 \times 10^{-6}$ .

The estimate of the cumulative hazard index (hazard quotient for ingestion plus hazard quotient for dermal absorption) for future occupational groundwater exposures is less than 1, indicating the negligible potential for adverse noncarcinogenic health effects (Table 6-4).

Table 6-2           Summary of Noncarcinogenic Hazards in Soil						
·	Noncarcinogenic Hazard Quotient					
Land Use - Receptor	Ingestion of Soil and Inhalation of Particulates	Dermal Absorption of Contaminants	Cumulative Hazard Index	Major Contributors to Hazard		
Future Residential				no hazard		
Child	4E-05	5E-05	9E-05	(index less than 1)		
Future Occupational Adult	1E-06	2E-05	2E-05	no hazard (index less than 1)		

Exposure Assumptions :				
Exposure Scenario	Future Residential	Future Occupational		
Receptor	Child	Adult		
Body Weight (kg)	15	70		
Exposure Frequency (d/yr)	350	250		
Exposure Duration (yrs)	6	25		
Ingestion Rate (mg/day)	200	50		
Inhalation Rate (m3/day)	20	20		
Particulate Emission Rate (m3/kg)	5E+09	5E+09		
Surface Area Exposed (cm2)	2688	5434		
Soil Adherence Factor (mg/cm2)	1	1		

- - -

Table 6-3           Summary of Carcinogenic Hazards in Soil						
	Excess Lifetime Cancer Risk					
Land Use - Receptor	Ingestion of Soil and Inhalation of Particulates	Dermal Absorption of Contaminants	Cumulative Cancer Risk	Major Contributors to Risk		
Future Residential Child	2E-07	8E-07	1E-0 <del>6</del>	none		
Future Occupational Adult	3E-08	2E-07	2E-07	none		

Exposure Assumptions :					
Exposure Scenario	Future Residential	Future Occupational			
Receptor	Child	Adult			
Body Weight (kg)	15	70			
Exposure Frequency (d/yr)	350	250			
Exposure Duration (yrs)	ó	25			
Ingestion Rate (mg/day)	200	50			
Inhalation Rate (m3/day)	20	20			
Particulate Emission Rate (m3/kg)	5E+09	SE+09			
Surface Area Exposed (cm2)	2688	5434			
Soil Adherence Factor (mg/cm2)	1				

Table 6-4           Summary of Noncarcinogenic Hazards in Groundwater						
		Noncarcinogenic Haz	ard Quotient			
Land Use - Receptor	Ingestion of Groundwaer	Dermal Absorption of Contaminants	Cumulative Hazard Index	Major Contributors to Hazard		
Future Residential	7E-04	6E-07	7E-04	no hazard (index less than 1)		
Future Occupational	2E-04	4E-07	2E-04	no hazard (index less than 1)		

Exposure Assumptions :				
Exposure Scenario	Future Residential	Future Occupational		
Receptor	Child + Adult	Adult		
Body Weight (kg) Adult	70	70		
Exposure Frequency (d/yr)	350	250		
Exposure Duration (yrs) Adult	24	25		
Ingestion Rate (L/day) Adult	2	1		
Surface Area Exposed (cm2) Adult	20900	20900		
Time in Water (hrs/day)	0.25	0.25		
Body Weight (kg) Child	15			
Exposure Duration (yrs) cild	6			
Ingestion Rate (L/day) Child	1			
Surface Area Exposed (cm2) Child	8960			

- · -

Table 6-5 Summary of Carcinogenic Risks in Groundwater						
<u> </u>	Excess Lifetime Cancer Risks					
Land Use - Receptor	Ingestion of Groundwater	Dermal Absorption of Contaminants	Cumulative Cancer Risk	Major Contributors to Risk		
Future Residential	3E-1)"	5E-11	3E-0-	none		
Future Occupational	8E-08	3E-11	8E-08	none		

Exposure Assumptions:		
Exposure Scenario	Future Residential	Future Occupational
Receptor	Child - Adult	Adult
Body Weight (kg) Adult	-0	70
Exposure Frequency (d.yr)	350	250
Exposure Duration (yrs) Adult	24	25
Ingestion Rate (L day) Adult	2	I
Surface Area Exposed (cm2) Adult	20900	20900
Time in Water (hrs.day)	0.25	0.25
Body Weight (kg) Child	15	
Exposure Duration (yrs) Child	6	
Ingestion Rate (L day) Child	I	
Surface Area Exposed (cm2) Child	8960	

The estimate of cumulative excess lifetime cancer risk (the cancer risk from ingestion plus the cancer risk from dermal absorption) for future occupational groundwater exposures is  $8 \times 10^{-8}$  (Table 6-5). The cumulative cancer risk estimate is above the lower end of the EPA's target or acceptable cancer risk range of  $1 \times 10^{-4}$  to  $1 \times 10^{-6}$ .

## 6.2.4 Ubiquitous Nature of PAHs in Urban Settings

Polycyclic aromatic hydrocarbon (PAH) compounds are a group of chemicals that are formed during the incomplete combustion or burning of coal, oil and gas, garbage, or other organic substances. PAHs can be man-made or occur naturally. They are found throughout the environment in the air, water, and soil. There are over one hundred different PAH compounds. Most PAHs do not occur alone in the environment (including those found at hazardous waste sites), rather they are found as mixtures of two or more PAHs.

The PAH compounds detected in soil at the CLL site during this RI were screened from further consideration as contaminants of potential concern primarily because of their presence in site-specific background samples. Based on the statistical comparison delineated in Section 4, the concentrations of PAH compounds on the CLL site were not higher than those found in soil samples throughout the area surrounding the CLL property (offsite). The concentrations of PAH compounds onsite were also compared to concentrations typically found in urban soils in the United States. In general, maximum, onsite individual PAH compound concentrations were within or below the range identified by ATSDR as typical in urban soils (ATSDR, 1990). Two exceptions; chrysene and benzo(a)pyrene, exceeded these typical urban ranges identified by ATSDR. However, chrysene and benzo(a)pyrene did not exceed the concentrations found in soil samples surrounding the CLL site.

This comparison suggests that the CLL site does not pose a greater risk to human health or the environment than the surrounding soils in the vicinity of the site. This does not, however, suggest the PAH compounds, both onsite and offsite, do not pose some risk to potentially exposed individuals.

Individuals living near sites or areas with high levels of PAHs, such as the CLL site and industrial/urban settings, may be exposed to PAHs through inhalation of contaminated air, ingestion of contaminated food, soil, or water; and workers on the site could be dermally exposed to soils containing PAHs during onsite excavation activities.

Health Effects of PAH Compounds. The health effects of the individual PAHs are not exactly alike; that is, an individual PAH compound may exhibit greater or lesser toxicity relative to other PAHs. However, most toxicity studies have focused on the effects of mixtures of PAH compounds. Evidence indicates that mixtures of PAH compounds can pose carcinogenic and limited, noncarcinogenic adverse health effects.

Cancer in humans from PAH exposure occurs predominantly in the lung and skin following inhalation and dermal exposure, respectively, in an occupational setting. Typical occupational settings associated with PAH exposure include coke production, oil refining, roofing, coal gasification and other hydrocarbon combustion processes. Ingestion of certain PAH compounds has been shown to induce tumor generation in animals, but studies with humans are not conclusive.

Noncancer adverse health effects associated with PAH mixture exposure have been observed in animals, but generally not in humans.

Data indicate that there may be specific groups in the population that are more susceptible to the effects of PAH exposure than an average individual. These sensitive subpopulations include the unborn, people with nutritional deficiencies, people with genetic diseases that influence the efficiency of DNA-repair, and those with immunodeficiency diseases. Other subpopulations that may be susceptible to the toxic effects of certain PAH compounds include individuals with a history of excessive sun exposure, smokers, people with existing liver and skin diseases, and women—especially of child-bearing age.

Inhalation Exposure. Under current site conditions, inhalation is not considered a feasible exposure pathway for PAH compounds at the CLL site. Normally, inhalation exposure to PAH compounds occurs in an occupational setting where a process involving the combustion of coal tars, or other petroleum hydrocarbons occurs and emissions from that process can provide a mechanism for inhalation of PAHs. Inhalation of PAHs adsorbed to soil particulates is also a potential exposure route. There is not currently an industrial process or PAH contaminated surface soil at the CLL site that would create a pathway for PAH inhalation.

**Oral Exposure**. Oral exposure to PAH compounds is not likely under the current or future use scenarios projected for the CLL site. However, in an uncontrolled, industrial or residential setting, it is possible for workers or children to incidentally ingest soil or food containing PAH compounds if PAH contaminated subsurface soil is redeposited on the site surface.

**Dermal Exposure**. Dermal exposure to PAH compounds is not likely under the current or future use scenarios projected for the CLL site. Again however, in an uncontrolled, industrial or residential setting, it is possible for workers or children to directly contact soil containing PAH compounds if PAH contaminated subsurface soil is redeposited on the site surface. Redeposition of subsurface soil containing PAH compounds could occur at the CLL site during excavation activity.

## **6.3 Uncertainty Factors**

## **6.3.1 General Assumptions**

A conservative approach was taken when making assumptions that describe potential human exposures. For this RA, the site's future physical condition was assumed to be generally the same as its existing condition. The future use of the site, however, was assumed to be significantly different from its current use. The major assumptions used in this evaluation are that:

- Contaminant concentrations will remain constant during the exposure period.
- Exposure will remain constant over time.
- The intake rates and population characteristics (weight, life-span, and activities) that were selected are representative for the potentially exposed populations.
- All intake of contaminants will be from site-related exposure media and no other sources will contribute to the receptors' health risk.

## 6.3.2 Uncertainties

As a scientific activity, RA is subject to two types of uncertainty: general uncertainty related to the RA discipline and specific uncertainty related to the site being evaluated.

This evaluation is subject to uncertainty with respect to:

- Sampling and analysis
- Exposure estimation
- Toxicological assessment
- Risk characterization

Table 6-6 lists some general uncertainties for human health RA that focus on the developing and applying chemical toxicity values used in the RA process. Given the unknowns associated with toxicity measurement, the scientific development of toxicity values employs multiple safety factors to facilitate error on the conservative side and, therefore, their use may overestimate risk.

A number of site-specific factors that contribute to uncertainty and their potential effects are listed in Table 6-7. One major site-specific factor introduces uncertainty by assuming that the groundwater exposure point concentration is equal to the maximum detected value and that it would remain constant over a lifetime, thereby greatly overestimating site risk.

#### MKE10013CA3.WP5

Table 6-6 G <del>ener</del> al Uncertainty Factors				
Uncertainty Factor	Potential Effect of Uncertainty	Comment		
Use of cancer potency factors	Overestimate risks.	Potencies are upper 95th percent confidence limits derived from the linearized model. Considered unlikely to underestimate true risk.		
Risks/doses within an exposure route assumed to be additive	Over- or underestimate risks.	Does not account for synergism or antagonism.		
Toxicity values derived primarily from animal studies	Over- or underestimate risks.	Extrapolation from animal to humans may induce error due to differences in absorption, pharmacokinetics, target organs, enzymes, and population variability.		
Toxicity values derived primarily from high doses, most exposures are at low doses	Over- or underestimate risks.	Assumes linear at low doses. Tends to have conservative exposure assumptions.		
Incorporation of safety factors in development of toxicity values	Overestimate risks.	Not all toxicity values incorporate the same level of safety.		
Affect of absorption	Over- or underestimate risks.	The assumption that absorption is equivalent across species is implicit in the derivation of the critical toxicity values. Absorption may actually vary with species and age.		
Affect of applying critical toxicity values to soil exposures	Overestimate risks.	Assumes bioavailability of contaminants sorbed onto soils is the same as delivered in lab studies. Contaminants delivered in studies may be more bioavailable.		

MKE10013CBE.WP5-1

-

Table 6-7 Site-Specific Uncertainty Factors				
Uncertainty Factor	Potential Effect of Uncertainty	Comment		
Maximum detected value used for groundwater exposure point concentration	Overestimate risk.	Large number of nondetections for the chemicals of potential concern in groundwater and the low (less than required detection limit) detected concentrations do not allow calculation of an 95% upper confidence limit.		
Some exposure pathways were not quantified	No effect.	Potential health risk due to inhalation of volatilized chemicals was not quantitatively evaluated but is estimated to be negligible relative to the quantitatively assessed exposure pathways.		
Exposure assumptions	Overestimate occupational risk. Under or overestimate recreational risk.	Assumptions regarding media intake, population characteristics, and exposure patterns may not characterize exposures.		
Exposures assumed constant	Overestimate risk.	Does not account for environmental fate, transport, or transfer which may alter concentration.		
Future use of the site	Overestimate risk.	Future residential use of the site is unlikely given the highly industrialized nature of the area, even though small pockets of residential dwellings are proximate to the site.		

MKE10013CBE.WP5-2

- - -

-

#### Section 7.0 Summary and Conclusions

This section summarizes the results of the remedial investigation at the CLL site and attempts to draw conclusions from the data collected to allow decisions to be made regarding future activity and action. Conclusions about the limitations of the data and recommendations for remedial action objectives are made.

#### 7.1 Summary of Results

The contaminant sources identified during previous investigations at the site included neutralized calcium ferrosulfate (spent sulfuric acid pickling liquor) used in metal plating operations, an oily filter cake, and a "red liquid" that may have been the metal plating sludge or other material. A small batch operation to treat wood products using pentachlorophenol was later identified as possibly contributing contamination to the site. These materials were reportedly spread onto the southern portion of the CLL site during the period of 1971 to 1972 by local waste haulers. During earth moving at the site, red soil was encountered and excavated and placed into a trench onsite. During a later activity, the red soil was respread over an area about 220 by 250 feet, where it remains at this point in time.

The RI performed by CH2M HILL evaluated soil and groundwater media. Surface water and ambient air were not directly monitored in this investigation. The fact that there are no direct pathways to surface water bodies from the site was confirmed. The RI also considered the highly industrialized nature of the community wherein the CLL site is located by collecting and analyzing offsite soil samples.

Findings of the RI soil investigation indicated the presence of the same contaminants previously identified by the FIT contractor investigators across much of the study area. SVOCs, metals, and pesticide concentrations were detected in study area soil. The distribution of the SVOCs was generally consistent with the presence of the red soil and with a black, ash and sand fill material at depths of 4 to 8 feet.

The offsite soil samples were collected to statistically compare the ubiquitous concentrations of SVOCs and metals in the surrounding area with those found onsite. The analysis indicates there is no statistically significant difference between the concentrations of SVOCs and heavy metals found in soil onsite compared with those found offsite.

Currently, the contaminants detected at the CLL site have not migrated beyond the source areas identified in the preliminary investigations; i.e., the trench area and respread red soil area. Contaminants were detected in the soil at depths of 4 to 8 feet below the ground surface, probably associated with fill activity, and occasionally in near-surface

soils. However, review of the RI findings does not indicate there has been significant migration of these contaminants to the water table or offsite.

Groundwater indicated inconsistent detections of SVOCs in some monitoring wells for three sampling events. Several pesticides were detected at varying concentrations and with little consistency across the sampling events. The detection of the highest number of individual pesticides is at an upgradient location, CLMW02, and occurred only during the September 1993 sampling event. The only detection of Alpha-BHC also occurred at this upgradient location.

The CPCs chosen for evaluation of potential transport include the pesticide Heptachlor and Arochlor-1254 (PCB) in soil: and the pesticides Alpha-BHC and 4.4'-DDT in groundwater. While other contaminants exist in the soil and groundwater at the site, their presence was not considered further in the risk assessment because there is not a significant difference between onsite and offsite concentrations, or for another basis described previously. PCBs and pesticides are not very mobile compounds in terms of water transport, so it is unlikely that PCBs will transport from the soil to groundwater. Also, it is not apparent that the groundwater pesticides evaluated in the RA were contributed by the CLL site.

Groundwater and soil pathways were considered for each of the following exposure scenarios:

- Current Occupational Receptors
- Future Occupational Receptors
- Future Residential Receptors

There are no known exposures to contaminants for a current occupational receptor, primarily because the site is well covered either in asphalt or 12 inches of compacted gravel and top soil. The noncarcinogenic cumulative hazard index estimated for soil exposure or groundwater exposure in a future occupational receptor setting is less than one, indicating negligible potential for adverse health effects. The excess lifetime cancer risk for future occupational soil exposures is  $2 \times 10^{-7}$ , which is outside the lower end of the EPA's target range of  $10^{-4}$  to  $10^{-6}$  range for acceptable cancer risk.

For future residential receptors, the noncarcinogenic cumulative hazard index estimated for soil and groundwater exposure is less than one, indicating negligible potential adverse health effects. The estimate of cumulative excess lifetime cancer risk for future residential soil exposures is  $1 \times 10^{-6}$ , which is at the lower limit of EPA's acceptable cancer risk range. The cumulative excess lifetime cancer risk for residential groundwater exposures is  $3 \times 10^{-7}$ , which is below the lower end of the EPA's target range for acceptable cancer risk.

### 7.2 Data Limitations

The data collected during this remedial investigation have been designed with the intent of conducting a preliminary investigation to determine if the site should be considered further for remediation or other site controls. The distribution of site-related contaminants has been defined adequately for soil and groundwater to develop a feasibility study (FS) or engineering evaluation/cost analysis (EE/CA) of appropriate remedial or removal alternatives. The quality control criteria for laboratory samples have been met, per the requirements of the U.S. EPA's evaluation criteria and guidelines.

#### 7.3 Conclusions

The decision to pursue delisting, based on the nature and extent and results of the risk assessment, must be made consistent with EPA regional policy. Should remedial measures be further considered, preliminary remediation goals (PRGs) would be developed to assist in establishing the remedial action objectives and would be performed as the first task of an FS.

If considered by EPA, potential remedial or control measures that may be feasible for this site include:

- Use of institutional controls, such as deed restrictions on the future use of the site should it be sold.
- Placement of an asphalt cap over the remaining portion of the site not currently capped.
- Source control measures using excavation and removal of soils contaminated with PAHs and heavy metals with transport and disposal to a special waste or hazardous waste landfill.
- Source control measures using in situ stabilization.
- Groundwater does not appear to be affected to a point where active treatment would be reasonable. In fact, current onsite soil CPCs are not the same compounds identified as groundwater CPCs. Source control of the contaminated soils above the water table would likely achieve significant reductions in long-term risk to potential receptors.

#### 7.4 References

Bruns, Tom. Hydrogeologist for Indianapolis Water Works. Phone communication. March 17, 1994.

Indiana Department of Natural Resources. Geology for Environmental Planning in Marion County, Indiana. Geological Survey Special Report 19. 1980.

Smith. Barry S. Availability of Water from the Outwash Aquifer, Marion County, Indiana. U.S.G.S. Water-Resources Investigations Report 83-4144. 1983.

Bruns, Tom. Hydrogeologist for Indianapolis Water Works. Phone communication. March 17, 1994.

U.S. Environmental Protection Agency. 1986a. Guidelines for Estimating Exposure. *Federal Register* 51: 34042-45. September 24, 1986.

<u>1986</u>. Guidelines for Carcinogenic Risk Assessment. Federal Register 51: 32992-34013. September 24, 1986

------. 1991a. Health Effects Summary Tables. Annual FY 1991. OERR 9200.6-303 (90-3). December 1991.

———. 1991b. Standard Default Exposure Factors. Interim Guidance. OSWER Directive 9285.6-03. March 1991.

——. 1991c. Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions. OSWER Directive 9355.0-03. April 1991.

———. Integrated Risk Information System: Background Information. U.S. EPA Integrated Risk Information System Database. Cincinnati, Ohio. Office of Research and Development. 1992.

Wise-Ewing, Laura. Indianapolis Planning Commission. Phone communication. October 10, 1994.

MKE10013CA8.WP5

# Appendix A TECHNICAL MEMORANDUMS

and the second second

_____

PREPARED FOR: U.S. EPA Region 5

PREPARED BY: Laura Peterson/CH2M HILL

DATE: December 27, 1994

SUBJECT:Carter-Lee LumberPhases I and II Remedial InvestigationSoil Boring, Monitoring Well Installation, Water LevelMeasurements, and Groundwater Sampling

**PROJECT:** GLE65616.RI.RI

#### Introduction

This memorandum documents and describes the field activities associated with the soil boring, monitoring well installation, water level measurements, and groundwater sampling efforts. ATEC Associates, Inc., of Indianapolis, Indiana, was contracted directly by CH2M HILL to perform the drilling services. Analytical services were provided by an EPA contract laboratory program (CLP) laboratory. Surveying services were provided by United Surveying, Inc., of Indianapolis, Indiana.

#### Shallow Soil Boring (Hand Auger) Procedures

Sixteen offsite shallow soil samples (CLBK02 to CLBK17) were collected to compare the concentrations of potential site contaminants with surrounding site conditions. Sampling locations are shown in Figures 2-1 and 2-3 in Section 2.0 of this report. One soil sample was collected from each location. Soil samples were collected from the 0- to 1-foot depth interval at borings CLBK03 and CLBK06. At the remaining sample locations, soil samples were collected from the 0- to 0.5-foot depth interval.

Onsite soil samples (CLSS01, CLSS02, and CLSS03) were collected from three locations in the drainage swales bordering the site on the east and south (Figure 2-2 in Section 2.0). Two soil samples were collected at each location: one from the 0- to 0.5-foot depth interval and one from the 0.5- to 1-foot depth interval.

A decontaminated, 4-inch hand auger was used to collect the shallow soil samples. The hand auger was advanced at about 6-inch intervals. A decontaminated, stainless steel spoon was used to transfer the soil from inside the auger barrel to the sample jars.

Filled sample jars were placed on ice in a cooler pending overnight delivery to a CLP laboratory. Table TM1-1 lists the CLP laboratories used during Phases 1 and 2 of the

Table TM1-1 CLP Laboratories Carter-Lee Lumber						
Sampling Event Date Parameters CLP Laboratory Address						
Phase :	Nov 1992	RAS Organic	Southwest Laboratories of Oklahoma			
		RAS Inorganic	Silver Valley Laboratories	Kellogg, ID		
Phase 2	Jun 1993	RAS Organic	Pace Laboratories	Lenexa, KS		
		RAS Inorganic	Skinner & Sherman Labs	Waltham, MA		
	Sept 1993	RAS Organic	Ross Analytical Services	Strongsville, OH		
		RAS Inorganic	ITMO St. Louis Laboratory	Earth City, MO		
		SAS Hardness	Vegas Analytical Laboratories	Las Vegas, NV		
		RAS Alkalinity, SO4, Chloride,				
		TOC. TSS. COD	Silver Valley Laboratories	Kellogg, ID		

.

-

TECHNICAL MEMORANDUM NO. 1 Page 2 December 27, 1994 GLE65616.RI.RI

remedial investigation. Soil samples collected from CLSS01 to CLSS03 and CLBK01 to CLBK07 were analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), metals, cyanide, pesticides, and PCBs. Soil samples collected from CLBK08 to CLBK17 were analyzed for SVOCs and metals only. Sample custody procedures and documentation used were those developed by the National Enforcement Investigation Center (NEIC).

## **Deep Soil Borings and Sampling Procedures**

Thirteen borings (CLSB01 to CLSB12 and CLBK01) were drilled to provide stratigraphic and hydrogeologic information as well as chemical soil characteristics. Figure 2-2 in Section 2 of the report shows the soil boring locations. A mobile B-61 truck-mounted rig with 4.25-inch-I.D. hollow-stem augers (HSAs) was used to advance the soil borings.

Borehole cuttings were placed in 55-gallon drums supplied by ATEC. The drums were labeled with the sample location and contents (e.g., water or soil). The filled drums were moved to the southeast corner of the site pending disposal.

#### Soil Sampling

The borings were continuously sampled at 2-foot intervals. Where soil samples were collected for chemical analyses, a 3-inch O.D. split spoon was used. Where soil samples were not collected for chemical analyses, a standard 2-inch O.D. split spoon was used. Immediately after the spoon was opened, the soil sample was field screened for VOCs using an HNu photoionization detector. The samples were logged by the onsite CH2M HILL hydrogeologist. A United Soils Classification System (USCS) field classification was recorded for each soil type observed. Soil properties such as relative moisture content, color, density or consistency, soil structure, and mineralogy were also recorded. The HNu field screening results were also recorded. Copies of the soil boring logs are in Attachment A1-1. For borings in which monitoring wells were not installed, the borehole was abandoned using bentonite chips.

Soil samples were collected for chemical analyses from the 13 borings. Samples were collected from 3 depth intervals at CLBK01 and CLSB01 to CLSB04. One soil sample was collected from borings CLSB07, CLSB08, and CLSB11. Two soil samples were collected from borings CLSB05, CLSB06, CLSB09, and CLSB10. Sample intervals are listed in Table 2-1 in Section 2.0 of this report.

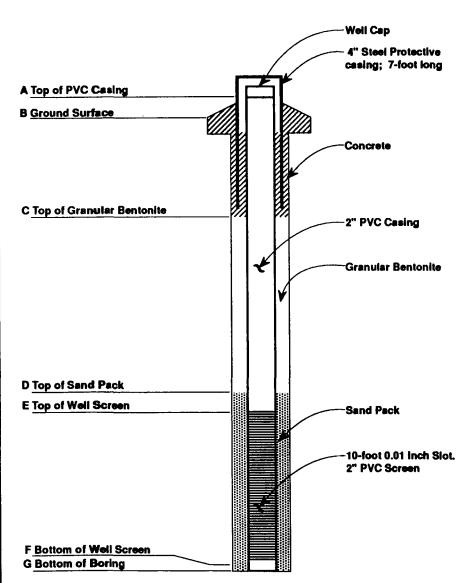
Filled sample jars were placed on ice in a cooler pending overnight delivery to a CLP laboratory (Table TM1-1). The samples were analyzed for VOCs, SVOCs, metals,

TECHNICAL MEMORANDUM NO. 1 Page 3 December 27, 1994 GLE65616.RI.RI

cyanide, pesticides, and PCBs. Chain-of-custody procedures and documentation used were those developed by the NEIC.

## **Monitoring Well Installation**

Five monitoring wells were installed at the locations shown in Figure 2-2 in Section 2. Wells CLMW01 and CLMW02 were installed to provide water quality data from an upgradient location. Wells CLMW03, CLMW04, and CLMW05 were installed to represent downgradient conditions.


The wells were constructed with 2-inch Schedule 40 PVC riser with a 10-foot length of 0.010-inch factory-slotted PVC screen that intercepted the water table. Following screen and riser installation, a medium-grained sand pack was placed in the annulus of the borehole to a height of about 2 feet above the top of the screen. Fine sand was placed to a height of 2 feet above the filter pack. Granular bentonite was placed above the sand pack to a height of 4 feet bgs. The wells were completed with a concrete surface seal. CLMW02 was completed as a flush-mount. The remaining 4 wells were completed with 4-inch-diameter, locking, steel-protective casing. An expanding well cap was placed on the riser pipe. Monitoring well construction details are shown in Figure TM1-1.

#### **Monitoring Well Development**

The completed wells were developed by ATEC using a suction pump until the pumped water was substantially free of sediment. Between 75 and 155 gallons of water were purged from the wells. The purged water was contained in sealed 55-gallon drums. The drums were labeled and moved to a central onsite location.

### Water Level Measurements

Groundwater levels were measured before groundwater sampling began in November 1992. Water level measurements were taken with an electric water level indicator. Three additional rounds of groundwater level measurements were taken in June, August, and September 1993. The data was used to assess groundwater flow directions. Groundwater elevations are shown below in Table TM1-2.



Monitoring Weli	A	B	С	D	E	F	G
CLMW01	697.18	695.18	691.18	682.15	678.15	668.15	667.65
CLMW02*	696.56	697.14	693.14	681.14	677.14	667.14	666.64
CLMW03	694.33	692.55	688.55	681.55	677.55	667.55	667.05
CLMW04	694.04	691.91	687.91	681.91	677.91	667.91	667.41
CLMW05	692.63	<del>69</del> 0.72	686.72	681.72	677.72	667.72	667.22

Elevations are in feet and are referenced to MSL. *CMW-2 is a flush mount.





#### TECHNICAL MEMORANDUM NO. 1 Page 4 December 27, 1994 GLE65616.RI.RI

Table TM1-2 Water Level Data								
Well No.	Ground Elevation	11/92	6/93	8/93	9/93			
CLMW01	695.18	675.68	674.96	674.53	676.65			
CLMW02	697.14	675.87	677.80	677.34	676.94			
CLMW03	692.55	675.03	674.59	674.14	676.00			
CLMW04	691.91	675.21	674.33	673.91	676.13			
CLMW05	690.72	674.85	674.28	673.83	675.83			
Note: Ele	vations are	in feet and	are refer	enced to	MSL.			

## **Groundwater Sampling Procedures**

## **Monitoring Well Sampling**

The five monitoring wells were sampled following development during the period of November 4 to 7, 1992. A second round of sampling was conducted on June 6, 1993, and a third round of sampling on September 22, 1993. The depth to water and total well depth were measured to determine the well volume. At least five well volumes were purged with a stainless steel bailer before sampling. Purge water was collected in buckets and transferred to 55-gallon drums. The drums are being stored onsite pending disposal.

One groundwater sample was collected from each well during each round of sampling. Metals samples were filtered in the field. Following sample collection, sample bottles were stored on ice in a cooler pending overnight delivery to a CLP laboratory (Table TM1-1). Groundwater samples were analyzed for VOCs, SVOCs, metals, cyanide, pesticides, and PCBs. Samples collected in September 22, 1993, were also analyzed for the following treatment parameters:

- Alkalinity
- Chemical oxygen demand
- Chloride

TECHNICAL MEMORANDUM NO. 1 Page 5 December 27, 1994 GLE65616.RI.RI

- Hardness
- Total organic carbon
- Total dissolved solids
- Total suspended solids

NEIC documentation and chain-of-custody procedures were used for sample collection and routing.

#### Groundwater Grab Sampling

----

Groundwater grab samples were collected from four soil borings (CLSB01, CLSB02, CLSB03, and CLSB04). The borings were completed to their target depths. Grab samples were collected from within the augers using a stainless steel bailer. The augers were purged of about 3 volumes of standing water before sampling. The samples were submitted for analysis of the same parameters as the monitoring well samples. Metals samples were field-filtered.

#### **Equipment Decontamination**

A temporary decontamination pad was set up in the southeast corner of the site. The sides of the pad were bermed to contain the rinsate. The rinsate was transferred to 55-gallon drums and stored onsite pending disposal.

The drill rig, augers, and sampling equipment were steam-cleaned upon arrival at the site. The augers and sampling equipment were steam-cleaned between boreholes. Split-spoon sampling equipment, hand augers, stainless steel trowels and spoons, and bailers were decontaminated between samples by washing with a solution of trisodium phosphate detergent followed by a tap water rinse, a 10-percent methanol rinse, and a final distilled water rinse.

#### Documentation

Field measurements and descriptions made during the field work were recorded in the field log book.

TECHNICAL MEMORANDUM NO. 1 Page 6 December 27, 1994 GLE65616.RI.RI

## Surveying

Coordinates and elevations for the monitoring wells and soil borings CLSB01 to CLSB04 were established during the week of November 8, 1992. Vertical locations for the wells were surveyed to the nearest 0.01 foot. Indiana Flood Control and Water Resources Commission bench marks were used for vertical control. Horizontal locations for the wells and soil borings were surveyed to the nearest foot. The property fenceline was used for horizontal control. Survey data for the monitoring wells is provided in Figure TM1-1.

MIKE10013CC5 WP5

# ATTACHMENT A1-1 SOIL BORING LOGS

----

.

СКМНІШ

SHEET	/	OF 🏒
-	SHEET	SHEET /

## SOIL BORING LOG

	NG METH			PMENT Mol	START 11/3/92 FINISH 11/	3/92 LOGGER L. Peterson
Š₽					SOIL DESCRIPTION	COMMENTS
DEPTH BELOW SURFACE (FT)	NTERVAL	NUMBER AND TYPE	RECOVERY (FT)	PENETRATION TEST RESULTS 6"-6"-6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING. DRILLING RATE. DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION HNM BE = 0.2 ppm
<u>1</u>	0,0		1.5	3 <b>2.8-6 - 3</b> (14)	Upper 1" asphalt Sanly Gravel (GW). Gray Dry. 1" Loose. Clayey SAND. (SC). DK. brown. Moist Mrd. dense. Bottom 3 inches is asphalt and cinders	start boring @ 1615 (FILL)
	2.4		08	3-2-4-5 (G)	Sandy CLAY (CL). DK brown. Moist. Soft.	(FILL)
- - -	y.4		0	4-y-y-5 (8)	No Recovery	
- - -	6.8		1.7	3-7-7-8 (14)	Clayey SAND (SC). DK. brown. MDist. <u>G'll"</u> Well-Gradod Sand (SW). Gray. Dry med dense, Much gravel —	
- - 0'	8-10		/.8	5-7-9- <b>8</b> (16)	Same (SW), Gray-brown, Moist: Rounded and subongula gravel as large as 1" in diameter	r.
۔ ی'	در. 10		1.3	(8)	Same (SW), Trace orange _ mottling. Loose,	
_	۲		1.2	6-10-14-14 (24)	Same (SW), Med dense-	
14' 15 5'	-14-16		1.6	7-10-10-9 (20)	Same (SW). Very moist. Bottom 4" a fine-medium	

CHANHILL

PROJECT NUMBER E-065616 FO.FS BORING NUMBER

SHEET 2 OF 2

## SOIL BORING LOG

PROJECT Carter-Lee Lumber LOCATION North-central end of site.							
ELENAT	-			-	DRILLING CONTRACTOR ATEC		
			o Equi	PMENT (1)0	bu B-Lei		
WATER	LEVELS	<u></u>			START 11/3/92 FINISH	3/92 LOGGER L. Peterson	
NC 10		SAMPLE		STANDARD	SOIL DESCRIPTION	COMMENTS	
DE PTH HLLG SURFACE (F	IN LE ELVAL	HAAL ONV	HECOVEHY (E1)	PENETRATION RESULTS	SOIL NAME USCS GROUP SYMBOL COLOR MOISTURE CONTENT RELATIVE DENSITY OR CONSISTENCY SOIL STRUCTURE MINERALOGY	DEPTH OF CASING DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION	
					poorly-graded sand.	-	
ج ج	کا س		1.9	11-15-14-16 (29)	Same (SW) Much rounded _ and subangular gravel _		
	8-20		1	9-12-13-12 (25)	Same (sw). T.p. wet.		
	20-22		1.8	;9 (21)	Same (SW). Wet.		
-			3	5-7-9-14 (16)	Same (SW) Rock fragments in t.p		
26				(دد)	Same (SW),		
28			ιÇ	9-11-17-12 (82)	Same (SW). upper 4" a coarse, pooring-graded sand Bottom 2" a fire pooring graded sand with - some site and black horizontal bands EOB@27.5'	EOB @ 1711 -	
					-		

					PROJECT NUMBER GLOGS616 FO FN CLBKO	
СКМН	ί <b>μ</b>					
<u></u>					SOIL BORI	
PROJEC ELEVATIO DRILLINO WATER L	ON G METH	IOD AN		PMENT M	DRILLING CONTRACTOR ATEC ob. (e B-6), YYY" ASA, 3" Sp START 11/5/92 FINISH 11/	Reichwein St. 1.+-spoon 5102 LOCCER / Paters
		SAMPLE		STANDARD	SOIL DESCRIPTION	COMMENTS
DEPTH BELOW SURFACE (FT)	INTERVAL	NUMBER AND TYPE	RECOVERY (FT)	PENETRATION TEST RESULTS 6"-6"-6" (N)	SOIL NAME. USCS GROUP SYMBOL. COLOR. MOISTURE CONTENT. RELATIVE DENSITY OR CONSISTENCY. SOIL STRUCTURE. MINERALOGY	DEPTH OF CASING. DRILLING RAT DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION HNU BG = 0.2 ppm
-	0-2	01	1.5	9-8-5-5 (13)	Sand and gravel Fill (GW). Brown Moist: Looke. Some asphalt. <u>1</u> Sanly CLAY (CL). DK. brown. Moist Medium: Some silt and gravel. Some Coal.	Start Boring @ 1030 HNU = BG
	2-4		J.2	4-4-4-4	Same(CL).	HNu=t
4				(8)		
	ય-७		ר./	2-2-3-3 (5)	than above, some black mottling. Some fine sand in bottom inch	H Nu = i
	8-ی	02	18	3.3.2.5	Sandy CLAY (CL), DK. Brown. Moist. Soft.	HNu = B
8 -				(5)		
-	8-10		ι۶	6-5-4-3 (9)	Poorly-graded, fine SAND (SP). Dark	HNN
10					brown. Moist Loose . Some gravel - Same (SP)	
-	10.12		7. إ	3.2.3.4 (5)	Sandy Silly CLAY (CL). DK. brown. 11' Maist. St. Ef Some gravel. 11'6" Weil-graded SAND and Gravel (SW-GW). Brown Moist. Loose	HNN = E
	12-14		۱۹	8-11-18-19 (29)	Same (SW-GW). Sand gets a - b.t finer is buttom 10 inches A thin orange hor.zontal band about 6 inches from the	Haun = G
14		03		12.18.91-23	Sama (Sul-Ca) Cra Langu	

CHAMHILL

#### PROJECT NUMBER

-LOUSGIG FOFW

BORING NUMBER CLBHOI (CMW.2) SHEET 2

OFZ

#### SOIL BORING LOG

Carter-Lee Lumber PROJECT

LOCATION Reichwein St

ELE .ATION

OR LUNG METHOD AND EQUIPMENT

³⁴ رچ

28

50

: 9

DRILLING CONTRACTOR

1-EC

LOGGER L. Peterson 11/5/92 WATER LEVELS STARE 11/5/92 FINISH SAMPLE STANDARD PENETRATION TEST RESULTS COMMENTS A01€ SOIL DESCRIPTION SOIL NAME USCS GROUP SYMBOL COLOR MOISTURE CONTENT RELATIVE DENSITY OR CONSISTENCY SOIL STRUCTURE MINERALOGY ž DEPTH OF CASING DRILLING RATE. DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION DE PTH BU HINNIN HALL N II RVA HECOVE 61-61-61 N 62 = 0 2 ppm Same (SW-GW). Sand is coarser 16 17-17 21 9 tran above Gravel is larger-up to 2" in diameter Much orange ۲ - ر matting. Pork fragments (34) 18 Pooring graded SAND (SP). Brown 13-11-14-16 viery moist mid dense some gravel mis para nor control stripe about 1.7 18-20 1" from to (25) 20 Same (SP). T.p is wet 13-13 15-23 2 22.23 (28) 22 Same (SP) A 2" Coarse sand and I wan using a d' splitsp gravel ense about 2" from t.p. 15 الا. رړ 1.2.3.1 Bottom 2" has some silt. Wet - ____ (25) 23'10" We'l-groded sond (SW) brown. wet red sense . Some gravel. مد او 9.0.3.14 18 Fore sit (23) weil-graded soril and gravel

(Swi-Gw) Brown Wet Migh dance. -8-1-.3 Snamel up to indiamater Sand is conser than above

Porry-groded SAND (SD) from Tis dance Train gravel unit wet Silt One course sand lince 6" from the 2 Another coarse sond lease 6" from top-



PROJECT NUMBER BORING NUMBER GLOGSGIG. FOFS CLEROB (CM

CLEKOB (CMW-3) SHEET 1 OF 2

•

## SOIL BORING LOG

		Larte.	c-Le	e Lumber		uth-central end of site
					DRILLING CONTRACTOR ATEC	$a_1 = a_1 + sa_{a_1a_2}$
						192 LOGGER L Peterson
(FT)		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS
DEPTH BEL	VTERVAL	NUMBER AND TYPE	RECOVERY (FT)	6"-6"-6" (N)	SOIL NAME, USCS GROUP SYMBOL. COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING. DRILLING RATE. DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION
<u></u>	<u> </u>	Z			Clayey SAND (SC). DK. brown. Moist	HNUBG = 0 2 ppm
<u> </u>	0-2		1.5	3-6-23-23 (29)	Clayey SAND (SC). DK. brown. Moist Med dense. A 2" layey of red clayey - soil about 1 ft. from fip. Much rounded gravel. Gravel Fill (GW). Gray. Dry. Loose. Sime red brick and concrete fragments Trace Clay. Some sand.	1600 - Start boring (FILL)
ייי  יו ס	2-4		0	6-4-4-6 (87	No Recovery	
- - -	y-6		0.75	3-3.43-5 (46)	Clayey SAND and Gravel (SC-GC). DK brown - black. Moist: Dense. Some red brick. Rock fragment: _ -	(FILL)
80	6-8		1.2	0-7-6-3 (13)	Cloyeg SAND (SC) Black. Moist. Loose, Some gravel. Trace coal - <u>Cinder</u> <u>7'4"</u> Silty Clay. (CL). Orange, Moist. Soft.	
	Q-10		0.75	3-1-2-2 (3)	Same (CL). Trace light brown and light gray mottling	
-	10-12		0		No Recovery	
	12-14		/.4	3-7.5-5	Clay (CL) Gray Moist Stiff. Some silt. 12'8"	
				رور)	Poorly- gradel SAND (SP). Brown Moist Loose Some Grange Mottling Trace gravel.	
-	14-16		55.0	9-13-6-5 (19)	Well-graded gravel and sand. (Gw-sw). Brown. Moist Med. donse	

САНИ		PROJECT NUMBER GLOGS616.FO.FS	BORING NUMBER	SHEET	2 05
	Ī	S		G	
PROJECT	Corter-Lee Lum			central en	& of sit
ELE .ATIO	M				
			<u></u> .		
DRILLING	METHOD AND EQUIPMENT				_
DRILLING		START 11/2/92			Peterson

Ž-		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS
DEPTH BLLOW SURFACE (ET)	INTE RVAL	NUMBER AND TYPE	HECOVERY (F1)		SOIL NAME: USCS GROUP SYMBOL: COLOR MOISTURE CONTENT: RELATIVE DENSITY OR CONSISTENCY: SOIL STRUCTURE: MINERALOGY	DEPTH OF CASING DRILLING RATE. DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
16					-	-
-	-16-18		,	6-9-10-11 (19)	Weil-graded SAND (SW). Brown. Wet Med.deme,Much gravel. Some orange vicettling	-
18	مر ، ہ		0		N's Recovery	-
20	- 	-	د'	يد 19 11-2 (33)	Well-graded SAND (SW) Brown. Join Dense. Much gravel Some rack fragmonts in tip. Trace sitt Trace clay in upper le inches	
	الا در -		15	ور.ب	Same, but no trace of	-
-	- 24-24	•	~	11-14 18 T? (32)	5ame -	- -  -
	-				26' E0B@26' - - -	Eob @ 725
	-				_! _	



PROJECT NUMBER GLOGSGIG FOFS CMW-4 SHEET 1 OF2

## SOIL BORING LOG

		1 . 1		·	-	
		arte	<u>c- Lee</u>	e Lumber	A	st - Central portion of site.
ELEVAT		100 11				
					bile B-61, 414" HSA, 2" Sp) START 11/3/92 FINISH 11/	
						3/92 LOGGER L: Peterson
DEPTH BELOW SURFACE (FT)				STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS
CE BE	JA I	щų	/ER	TEST RESULTS	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS.
PTH RFA	NTERVAL	NUMBER AND TYPE	RECOVERY (FT)	6"-6"-6"	OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	TESTS AND INSTRUMENTATION
SUI	<u> </u>	2× Z V	H H H H H	(Ň)		Hale BE = 0.3 ppm
					Santy Gravel Fill (GW). Gray, 5" Moist. 1005e.	Start boring @ 1247
	0.2		1.5	6-3.6-2	Clayey SAND (SC) DK brown Moist	(FILL)
-				(9)	Loose . Some sitt and gravel. 8"	
-					Sandy CLAY ( CL ) Brick red. Moist - Stiff Trace gravel Some gold mortling some black cinders.	
a'						
	ł			5-5-6-6	Same, but more gravely with _ Orange Mottling. Medium.	-
-	2-4			2-2-0-0		
				(11)	3'7'	
4'					Clayey SAND (SC). DK brown. Mo.st	
					Well-graded SAND (SW). DK. brown.	
-	1				Moist. Loose . much gravel	
1 -	4.6		1.5	4-4.4-6	—	-
-	ľ			(8)	_	
6					6	
	1			}	Clayey SILT (mL), DK. brown.	
	ļ, .		0.9	3-2.3.6	Moist. Loose	
	68					
8'	1			(5)	_	_
10-					Silty SAND (SM). Light Gray	
-				2-6-5	Moist Loose Poorly graded . Very	
-	8-10		2	5-5-5	fine. Trace Clay -	
-				(10)	0	
10'						-
_	1				Poorly-graded, fre SAND (SP).	
			1.6	3-3-3-3	Gray-brown, Moist Loose some	
	10-13		0.1		Orange mott 1. ng	
- ا	1		ĺ	(6)	-	
1 <u>.</u>	<del> </del>	<u> </u>	<u> </u>	+	-	
	4			a	Gravelly SAND (SW). Brown-gray_	-
-	12-14		/	5-13-11-9	Moist Med dense Subangular gravel. Up to 1" in diameter.	
	-			(24)	-	
14'					_	
	,		1.5	4-8-27 22	Poorly-graded, fine sand (SP)	
100	14.16		1.5	(35)	Brown. Moist. Dense some gravel. One this horizontal prange str.p	
15.3		L	ł			BEV 11/89 FORM D158



PROJECT NUMBER	8	ORING NUMBER			
ماہ 5م جے	FOFS	Cmw-4	SHEET	2	~

## SOIL BORING LOG

Carter Lee Lumber PROJECT LOCATION ELE . AT ON DRILLING CONTRACTOR DRILLING METHOD AND EQUIPMENT LOGGER L. Peterson START 11/3/92 11/3/02 WATER LEVELS FINISH SAMPLE STANCARD PENETRATION FEST RESULTS COMMENTS SOIL DESCRIPTION 801 10 10 Σ SOIL NAME, USCS GROUP SYMBOL, COLOR MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE MINERALOGY DEPTH OF CASING IDRILLING RATE. DRILLING FLUID LOSS TESTS AND INSTRUMENTATION DUPTH RELE H HEIMUN INTE FIVA R COVE 61 61 61 N 5 4 forces a savo (sw) crown-grey Marrie dance ... 7.7.12.14 Same (Sw). Wet Med dense. 7 10-18 Gravel Somewhat smaller and (19)  $\nabla$ a of more rounded ŝ Same (Sw). اهر کا S 0 13.16-22 (29) 20 4.61215 Same (Sw) Med dense ń ^{ندر .} مړ 0 (18) ンン Same (SW). Gravel a b.+ 2.0.5 arger than above up to " 18 أيو.ود (25) in diameter 506 @ 1340 21 21 EDB

<b>CH3M HIL</b>	Ì.

PROJECT NUMBER BORING NUMBER OFX CLSBIZ (CMW-5) SHEET GLO65616.FO.FS

# SOIL BORING LOG

PROJECT Carter-Lee Lumber SE corner of s.ta LOCATION DRILLING CONTRACTOR ATEC ELEVATION DRILLING METHOD AND EQUIPMENT Mobile B-61, 4 14 HSA, 3" split-spoon LOGGER L. Peterson START 11/4/92 11/4/92 WATER LEVELS FINISH COMMENTS SAMPLE DEPTH BELOW SURFACE (FT) SOIL DESCRIPTION STANDARD PENETRATION RECOVERY (FT) TEST SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE. DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION NUMBER AND TYPE RESULTS NTERVAI 6"-6"-6" MINERALOGY (N)HNU BG = 0.2 ppm Sandy Gravel (Gw) Gray. Moist. Start boring @ 1035 mil dinse. Some gray Clay. C(56/30) 1.5 1 1 0.2 8-8.9-7 Well-graded SAND (SW). Brown. Moist. med dence, much gravel some black -Cinders throughout, t= 1038 HNu = BG (רי) 2 Same (SW) 1.7 7-3-4-4 2-4 3'4" Poorly-graded, fine SANTO (SP). 3'4" Brown, moist. LOOSE, A 115" layer of black cinders about 7" from tip. Trace gravel Trace orange mottling HNU= BG (7)Same (SP). No gravel or orange HNN= BG 1.6 6.4.4.5 4-6 mottim (8) 6 Same (SP). Med. dense. HNU = BG 1.8 6-7.9.20 6-8 8'  $(\mathbf{w})$ 8 Gravelly SAND (SP-G)Brown. Moist. Gravel as large as 11/2" in diameter. 10-581207 8.10 HNu= BG 18.35-45-68 t: 1058 1.7 Rounded and subangular. Trace black cinder. 2 (80) 10 Same (SP.G.W). Gravel as large as 35-56.83.07 ANN = BG 2" in diameter 2 10-12 (139)12 Sand and gravel (SP - GW). Brown 19-33.08.39 moist. Very dense. Trace sit in HNU= BG 12-14 J lower foot Large gravel - up to 3" in diameter. (61)M Well graded SAUD and Gravel 14-16 1.3 (SW-GW). Brown. Moist. Very dense. 24.42.41.37 HNu: BG 15.5 Some Silt (83)

ପଥା	ніЦ					GLOGSUIGFOFS CM	
						SOIL BOR	ING LOG
PROJE: ELEVAT DRILL'N			-	Lee A		DRILLING CONTRACTOR ATEC	SE corner of steins
	LEVELS		=			START 11/4/92 FINISH 11/	1/92 LOGGER L Poterse COMMENTS
DEPTHELOW SURFACE (ED)	INTE RVAL	NUMBER AND TYPE	HE COVERY (FT)	STANCA PENETRA TEST RESULT 61.61.6 N	· :: • • • • • • • • • • • • • • • • • •	SOLE DESCHARTION SOLE NAME USCS GROUP SYMBOL COLOR MOISTURE CONTENT RELATIVE DENSITY OR CONSISTENCY SOIL STRUCTURE WINERALOGY	DEPTH OF CASING DRILLING RAT DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
	1u-1 ^Q	(1,1 <b>6</b> ,10)	1.2	33-34-3 ( Се	**	Same (Sw.Gw) Frazel not as ange and more rounded wet. Yellow-brown.	- - - HNU= BG- - <del>V</del>
-	<b>fi</b> . 30			د.ءد مو آون )	1	Jame (SW-GW). Some I" nor.contel Orange Str.pes.	- - - -
-	20-29		1.5	9-12-18-	<b>9</b>	same (sw-Gw). Sank sfner rear t.p. some silt No crange bands. 21'9"	-
-	22.24		. 5	1072.18. (30)		Lie'i graded SAND (SW), Brown and grand mod dense villany 2000 Form gravel. Some Solt	E38 @ 115!
-					- <b></b>	Est @ 24'	
-							-
						-	-
.					;		

PROJECT NUMBER GLOGSGIG.FO.FS

СНЯМНИЦ

# SOIL BORING LOG

BORING NUMBER

CLSB01

PROJE	 ст (	arte	r-Le	e Lunber		te where red so. 1 spread
ELEVAT					DRILLING CONTRACTOR ATEC	
DRILLIN	IG METH		D EQUI	PMENT M	ob. 6 B-61, 4'14" ASA, 3" split	spoon
WATER	LEVELS	S			START 11/6/92 FINISH 11/6	192 LOGGER L. Peterson
		SAMPLE	E	STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS
DEPTH BELOW SURFACE (FT)	NTERVAL	MBER D TYPE	RECOVERY (FT)	TEST RESULTS 6"-6"-6"	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE,	DEPTH OF CASING. DRILLING RATE. DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION
BEI	1 Z		Е ГТ	(N)	MINERALOGY	HNU BG = 0.2 ppm
	0-9	01	1.9	39-15-15-28 (30)	Conce sand and gravel FILL (SW-GW) DX: brown and gray Dry. Dense. Some silt Bottom (6" has some clay. Red soil (ense (1") about 8" from- top.	Begin boring @ 1230 HNN = BG _ -
- - -	2-4		1	37-78-20-16 (98)	Same (SW-GW). Some red brick fragments in bottom 2 inches some clay -	HNu = BG
	4-6		1.3	21-9-9-6 (18)	Same (SW.GW). Much fly ash. Some red brick fragments, med dense. Not as much gravel. Silo" Poorly graded SAND (SP) Brave. SI ghtly mount.	
- - - 8	68	02	1.5	29·37.95·6b	Some gravel. Same (SP) Black discoloration. Sith sand (SM). Black. Dry Dense. Much black material. fly ash? Some gravel.	
	8-10		1	15-7-18-23	Same (Sm). Much fly ash. Bottom 6" has red brick fragments and pieces of wood.	HNN = BC -
	10-12		15	- /0D -130 -95- <b>86</b>	Same (sm). Soil very hard and _ dry. Compressed. 6" from top was 6" of rock fragments -	Black Slight odor Compressed cinders? - Compressed Creasate? Have - 0.1 ppm -
	12-14		1	42.25.9-9	Same. (sm). Very Compressed. Hard. Horizontal fractures Trace gravel. Wood fragments on top -	- HNu = 0.05 ppm _ -
19	14-16		1	7-7.8-9	Same (Sm) wool fragments Horizontal fractures	- 4Nu: 36 -

C A A A A A A A A A A A A A A A A A A A	PROJECT NUMBER GLOGSGIG FOFS	BORING NUMBER CLSB01	SHEET	2	OF 🎝
	S	OIL BORING LOG			

Carter-Lee Lumber PROJECT

LOCATION Central

ELEVATION

DRILLING CONTRACTOR

ATEC

DRILLING METHOD AND EQUIPMENT

	LEVELS				START 11/6/42 FINISH 11/	6/92 LOGGER L. Peterson
<b></b>	<b>T</b>	SAMPLE	E	STANDARD	SOIL DESCRIPTION	COMMENTS
DEPTHELOW SURFACE (ET)	INILIAN	HAAT CINE	HE COVERY (F1)	STANDARD PENETRATION EST RESULTS 616161	SOIL NAME, USCS GROUP SYMBOL, COLOR MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING DRILLING RATE, DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
76 	r6-18		.6	۲۹-29-13-13 (۲۵-)	15'8- 5 atra SILT (ML) Gray Mo.st. Dence 5 atra SILT (ML) Gray Mo.st. Dence 	- - 
	در ₈	03	г	13-12-14-14 (20)	Sarra (sw-Gw) - -	- - - -
-					- Blad Drilled -	
	-			-	- - -	- - 
					- - - - - - - -	

СКМ	HILL

PROJECT NUMBER GLOGSUIG.FO.FS CLSBOZ SHEET) OF 2

# SOIL BORING LOG

PROJECT Carter-Lee Lumber LOCATION Site Where red soil spread ELEVATION DRILLING CONTRACTOR ATEC DRILLING METHOD AND EQUIPMENT Mobile B-61, 414" HSA 3" split-spoon WATER LEVELS _______ START 11/6/92 FINISH 11/6/92 LOGGER L. Peterson

ſ	LOW (FT)		SAMPLE STANDARD		STANDARD STANDARD		COMMENTS		
	DEPTH BELO SURFACE (F	INTERVAL	NUMBER AND TYPE	RECOVERY (FT)	PENETRATION TEST RESULTS 6"-6"-6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION HNU BG = O.2 PPM		
	- - 2	6-2	01	1.5	21 8-15-23 (23)	Sant and grovel Fill (SW-GW). Gray Dry Loose, "" S. Ity CLAY (CL). DK. red. Dry St. Ff. Silty, sandy CLAY (CL). DK. brown. Dry. St. Ff. Some gravel. Some black _ Cinder. Some red Soil.	Start boring @ 0730 (FILL) HAVE BG -		
		ə.4		09	23-24-12-12 (36)	Silty SawD (sm). Black Dry. Loose_ Black cinders. Some large gravel Chunks of wood - Black. Railroad ties ?	Slight odor Like mothballs. (FILL)		
		4-6	02	],5	(14)	Same (Sm). Lots of black pieces of wood.	Mothball Odor. Creosote ?- (FILL) HNU=0.1 ppm -		
-	-	6-8		1.9	)8·44-35·24 (79)	Same (SM) Bed brick fragments. Silly fine Stud (SM) Black Dry	HNU = 0.2 ppm (Black material) - (FILL) -		
	-	8-10		1.5	17-24-30-34 (54)	Same (sm) some chuncis of Coal -	(FILI) NNU=BG Fly Ash ?		
	 - - -	10-12		1.2	9.7-8-10 (15)	Same (SM) 11' S.Ity CLAY (CL). DK brown SI.Gntly mo.st. Stiff Some fine Sand	(FILL) HNU=BG		
		12.14		1	7-6-13-19 (19)	Same (CL) Clayer SILT (ML). L+. Gray Slighty Moist. Mediatrice Some /t. orange mottling J3'9" Silhy SAND (SM) DK. Grown Slightly Moist	HNU = BG-		
	-	14-16		1.6	19-20-23 39 (43)	some gravel med dence _ sing moist	HNU-BG -		

CHAMHILL

PROJECT NUMBER GLOGSUIG FO.FS BORING NUMBER CLSBOZ

OF 2 SHEET 🔍

# SOIL BORING LOG

Corter Lee Lumber PROJECT LOCATION DRILLING CONTRACTOR ATEC

ELE-ATION

Gravel Area siture red soil sprea

DRILLING METHOD AND EQUIPMENT

WATER LEVELS

START 1.16/92 FINISH 11/1/91 DEGER & Peterson

WATER	LEVERS	S			START 11/4/92 FINISH 11/2	191 LOGGER	L Peterson
₹0 10 10		SAMP		STANCARD PENETRATION	SOIL DESCRIPTION	ССММЕ	NTS
DEPTHENTO	IN I FIVAL	HALL CINV	HLCOVENY (FT)	-E -	SOL NAME USCS GROUP SYMBOL COLOR MOISTURE CONTENT RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE MINERALOGY	DEPTH OF CASING DRILLING FLUID LO TESTS AND INSTRU	SS
14					-		-
- - - 18	ی ۱۹۹۹ را		, -	(46)	Same (SP-GW) much orange mothing in bottom 6 inches - frain fragments large gravel -		4Nn= 0.1 pp
	18-20	03	19	)3 14-20-17 (34)	- Well graded Sank and gravel (Sw-Gu) Much Drange Mottling. Bottom le" 15 Wet		- - +Nu = BG -
-							
- 65 - -					Blind Drilled _		-
- ' و رو 					-	FOR @ 0815	-
<u>~</u>					EOB		-
					-		-
_							
					-		· -
-	1	1			-		-

					PROJECT NUMBER	BORING NU				-
СКМ	-1111				GLOGSGIG. FO FS	CLS	<u>B03</u>	SHEET	<u> </u>	OF a
					S		IG LOG			
PROJECT <u>Carter-Lee Lumber</u> LOCATION ELEVATION DRILLING CONTRACTOR ATEC										
DRILLING METHOD AND EQUIPMENT Mobile B-lel 4 14" ASA, 3" Spl. + Spoon NATER LEVELS START 11/5/92 FINISH 11/5/92 LOGGER L PLEURSON										
8€		SAMPLE	Ξ	STANDARD PENETRATION	SOIL DESCRIPTION			COMMEN	ITS	
DEPTH BELOW SURFACE (FT)	INTERVAL	NUMBER AND TYPE	RECOVERY (FT)	TEST RESULTS 6"-6"-6" (N)	SOIL NAME, USCS GROUP SYMBO MOISTURE CONTENT, RELATIVE OR CONSISTENCY, SOIL STRUCT MINERALOGY	DENSITY URE.	DRILLING TESTS AN	F Casing. D Fluid Loss Id Instrum - = 0. a	S. IENTATIC 0 eve	
	0-9	01	1.3	(aver	Upper H" a sand and gravel FI Kray, Dry. Loose. 1"Shale la Sandy Silty CLAY. DK brown red (red soil). Dry. Med. Stif gravel. Sandy, Silty CLAY (RD). DK b Slighty most Med. Stiff, some	yer at top! - and ex. f. Some - 1'6"	(Begin bor (FILL)	ing @ 1	650 HNU =	ßG
	2-4		1	8-15- langer	Sandy gravel (Gw). DK b Med. dense. Coal fragments 15 1" in diametri. Red brick f	one chunk	(FIL	>	Halu-	BG

Sand and rocks (GW). Gray. Dry.

Very fine sulty sand (Sm) DK brown to black. Dry. Loose. Bottom 3"

Same only brown with some black

Fine, Poorly graded SAND (SP) Brown Moist Loose Some

28-33-50-

8-5-5-6

(10)

4-4-6-5

(10)

5-5-6-4

Cid

4.5-5-7

(10)

9-7-8-13

(15)

26

Loose

Spec Ks.

Silt

foot.

Same (SP).

same (59).

6.7

0.9

1.3

1.7

1.8

(FILA)

q

ç

10

12

14

4-6

6.8

8-10 02

10-12

12-11

4-16

HNU = BG

HNU: BG

HNU : BG

How BG

Same (SP). Some orange

banding about 3" from tip Sand is a bit Coarser in bottom

14'9"

<b>CH34</b> HIL	J

#### BORING NUMBER PROJECT NUMBER

5-26503 FO.FS 215603

SHEET 🔔

OFZ

# SOIL BORING LOG

Carter-Lee Limper PRCJECT

LOCATION Former site of red soil stockpile

ELE . ATION

CHILLING CONTRACTOR ATEC

DRILLING METHOD AND EQUIPMENT MODE & B-64, 4'14" HSA 3" Sp). + spoon

WATER	LE.ELS	5			START 11/5)92 FINISH 11	15/92 DOGER LPeterson
Š.		SAMPL		57410490	SCIL DESCRIPTION	COMMENTS
OFPTH BELC SUBLACE (F	INTE RVAL	HAAL GNV	HECOVERY (FT)	PENETEAT ON RESULTS 61 61 61 N	SDIL NAME USCS GROUP SYMBOL COLOR MOISTURE CONTENT RELATIVE DENSITY OR CONSISTENCY SOIL STRUCTURE WINERALOGY	DEPTH OF CASING DRILLING RATE. DRILL NG FLUID LOSS. TESTS AND INSTRUMENTATION
	11.10				Poor y. graded, gravely SAND (SP.GW). Brown gray. Mo.st. Heldenie Gravel - is rounded and up to 241 dismoter	HML-BG_
	6- ^R	03	2	27 24-5	Same (SP-GW) Large grand - "up to 242" Rock fragments. Traces- of cock?	ר ק _
18	<del></del>				Same (SP-GW) I' orange horizonter	1
-	₁ 9.⊅0		5		Well are dod SAND and Grand (Sw-Gw)	<u> </u>
<i>ä</i> 0	<u> </u>			·	Brack, grow, and brown Wet. Some SILT_ isory arsted med corse SAND (SA) DK brown Wet. Trace gravel. Somes. HT	-  
-					-	-
-					3. a Drilled	-
235					ə 3.s'	EOB at 1735
-					EOB	-
-					-	
-				-	-	_
-					-	
-					-	
					-	-
-					-	
-					-	

E	MHILL

# SOIL BORING LOG

PROJ	ECT (	larte	r.Le	e Lumbe		te of former trench
ELEVA	ATION				DRILLING CONTRACTOR ATEC	
DRILL	ING METH	HOD AN	ID EQUII	PMENT MOY	D. & B-61, J'4" HSA, 3" Spl.+	
	R LEVELS	S		· · · · · · · · · · · · · · · · · · ·	START 11/4/92 FINISH 11/14	192 LOGGER 2 Peterson
DEPTH BELOW SURFACE (FT)	·	SAMPLI	E <del>7 \</del> -	STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS
UELL S	AL A	щų	(ER)	TEST RESULTS	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY	DEPTH OF CASING, DRILLING RATE,
PTH RFA	NTERVAL	NUMBER AND TYPE	RECOVER) (FT)	6"·6"·6"	OR CONSISTENCY, SOIL STRUCTURE. MINERALOGY	DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION
SU	<u> </u>	NA		(N)		NNUBG = 0.2 ppm
	_				Sandy Gravel (GW), Gray, Dry.	Start boring @ 1447
	-0-2			13-11.15-53	Med. Jense. 3-inch rock -	(FILL)
	0-		0.3	(26)		
2	1				-	-
					Clayey SAND (SC-CL). DK brown.	-
-				42.13-19.43	moist? med dense	(FILL) NNU : BG
	2-4		//	(32)	Sandy Gravel (Gw), Gray Dry Dense,	(FILL) , where are a
	-			()_)		_
4					Sandy Clay (CL-SC). Die brawn Monst. Mediur Some "Red Sonl" present	
	-				Same (CL-SC). Some gravel, _	
1 .	4-6	01	1.3	27-7-15-16	brick fragments, black Cinders .	(FILL) HNU: BG
				(22)	Some fine roots. Some black	_
6					Streaking -	
					Silty CLAY (CL). DK brown.	
}	6-8		1	10-12-5-8	Moist Very Stiff Black Streaks	HNN= BG.
				(اح)	Horizontal fractures. Trace five roots Some very fine sand in bottom _	
8	-  ·			(-,)	a inches	
<u> </u>	+				Clayer SILT (ML). L+ gray Mu, +	-
	-				Very dense. much orange mottling	-
	-8-10	02	2	4.6.6.8	Black streaks. Some snail shells-	HNU=BG_
	-			(۱۵)	`	-
10			<b> </b> -		Same (mL) 10'4"	
1	4		-		1 <u>0'4''</u>	_
ł	- 10-12		1.9	4-7-28-44	SILT (ML). It gray moist Dense	HNU=BG_
				(35)	Some orange motting and	,
12					Poorly-graded SAND (SP) Brown Moist Dense. Much rounded gravel, rock fragments. Orange nor. zontal banding	_
	]					
-	-1			16-56-119-118	Poorly-graded sand and gravel (SP. Gue Brown Mout Dense Much oronge	HNN - BG
{	12-14		1.5		hor. zontal banding. Gravel up to -	
	1			(175)	2-, edges in diameter -	-
<u>`</u>	-		+		-	-
	-14-16	03	1.6	69-55-65-32	Same (SP-GW). No orange banding T.p is wet	-
15.5		l	L	(120)		

					PROJECT NUMBER BORING NU GLO 65616.FO.FS CL	umber 5804	SHEET	2	of J		
CHAN					SOIL BORI	SOIL BORING LOG					
PROJEC ELEVAT	04			Lee Lur	BRILLING CONTRACTOR ATEC	Former	Trench		J		
WATER					START 11/4/92 FINISH 11/4	192	OGGER L-	Reters	501		
₹.		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION		COMMENT	S			
DEPTHER LOW SUBRACE (ET)	IVAH HINI	HIAL GNV	HE COVERY (ET)	61-61-61 N	SOIL NAME, USCS GROUP SYMBOL, COLOR MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY SOIL STRUCTURE MINERALOGY	DR:LL'N	DF CASING DR G FLUID LOSS ND INSTRUME		ATE.		
- 16 - -	k-18		1.5		Pooring graded SAND (SP). Brown. Wet: Smaller and less grave( Than above. A 1-inch well-graded	- - F			- - -		
<u>K</u>					Sard lense about 1 ft. from trp_	-			-		
					- Blad Dr.11ed	-			-		
-					-	-			- - -		
		i :			-	_			_		
235					23.5	EOB O	e 1550		_		
-					F08 	-			-		
-					- - -	-			-		
					-  -						
-					-	-			-		

11/4/92 2'-4' Same Very dense. Bortoon 008" has large gray grand and a 3" red bruck Sugment 1448- Complete sampling @ CLSB09 Nok: Call ected samples @ 0-2 Nok: Call ected samples @ 0-2 Nok: Call ected samples @ 0-2 Nok: Call ected samples @ 0-2 2-4' 1455: Begin sampling @ CLSB09 Nok: Samples @ 0-2 2-4' 140; for CLSB06 Nok: Samples Corlected from 0-2' 140; for CLSB06 D-0 ft - Sand and grand Bill. A 3" sitty flog lone about 8" from		
- <u>Lipe Trace red Scul near lonse</u> Red brick frag monts. Veny dense. <u>2-4' - Veny dense</u> gravel Black. Laver 6" more Lipis P NE corner CLSEBS 4 107-1 CLSEBS 4 107-1 Lipis P NE corner Lipis P NE c	has large gray grund and a 3" red brick Gagment - 1448- Complete sumpling @ CLSB09- Note: Callected samples @ 0-2' 2-4' - 1455- Begin Sampling @ CLSB06 - 1455- Begin Sampling @ CLSB06 - 2-4' - 1455- Begin Sampling @ CLSB06 - 2-4' - 2-4'	ISS7 Complete Sampling @ CLSBOK ISIS BEDM Snompling @ CLSBOS ISas Complete Ennpling @ CLSBOS Log for CLSBOS 200 for CLSBOS

11) 0 19.2 11/6/92 1405 - Begin sampling @ CLSB07 Lug (pr CL5607 tok 0. y" - Sandy, silly, gravel fill Gray Dry and \$1 H. Black and all bish med dense 4 - 12" - Silly Sand, DK. biour. Dry, Drive. AN Brunh Claby tor 1'-114" - CUAY. Red Moist Still Sume sitt en grapping in the start Sand I to black and sund 1'4"-2' - Well graded sand + ground (sw w) Albandoond based to dustade DK brown Dense Dry. fome black Cinders. Bandy Salnhalinh 19-143-1809 2'-2'6" - Same (Sw Gw). Much black winder 2'6" - 3' - Grovel and sand barge ruck Islandy From CL\$1808 fragments Gray. Dry 1411 - Complete sampling Abandoning hole Apr CK\$Bd8 Note: Collected one sample @ q=2+1. pit = Sandy = prover = 111 + A + NW 1329 Countr 

11/16/93			11/6/92
2 orbers. Write Cont	Can't Find benchmark of st. Will try to locate Surveyor Will Want to bract so get paid hourly ar than a lump sum.	1334 - Setting up Ge 1345 : Complete berr Sampled to Mate: Samples collect	4 Ca CL SB10.
1120 - Complete bor	ende abardonment @ CLSB02	Log for CLSB/D D-G/1- Sand	a provid Gill, Gray
i 1130-Thru deconni	Ŋ	Q' Y" - 514	1. Cansi (Spi) DK. Braun
1135- Setting up @	CLSBOI		Logse Bone black kinders.
1145 Break for /u	nch		site Very Strike, yellow
1218- Back on 5	<i>le</i>		ng 14 Sanki (Smi)-Black: Dry,
1230 Begn borne	a CLSBOI.		Denke: Some Gravel.
<u> </u>	ng to 25 FI @ CLSBOI		
Nole: Samples collec CLSB0101 CLSB0102 CLSB0103	0-2' Grain Size, T 6-8' Grain Size, To		
			Pace = 2.8.5+

<u>CP</u>	THILL

PROJECT NUMBER	BORING NUMBER			
3-065010 FO FS	j_5511	SHEET	/	OF /

# SOIL BORING LOG

PROLECT Carter-Lee Lumber

LOCATION Former site of trench

ELEVATION.

OF LING CONTRACTOR A -EC

CRILING WETHOD AND EDU PMENT MODILY B-61, 444, 31 Spiller Spool MATER LEVELS START 11/5/92 FINISH 11/5/92 LOGGER & Poterson

No E		SAMP_		5741,0480 851,578,170,	SOIL DESCRIPTION	COMMEN	TS
P DV BIO.	INTERVAL	HALL CINV	HI COVERY (E1)		SO'L NAME USCS GROUP SYMBOL COLOR MOISTURE CONTENT RELATIVE DENSITY OR CONSISTENCY SOIL STRUCTURE MINERALOGY	DEPTH OF CASING D DRILL NG FLUID LOSS TESTS AND INSTRUM HAVE BG = 0.2	5. ENTATION
	ر م		ł	(25) (25)	Sondy a gravel fill (Swi-Gu) upper 6 inchet haver 6" is clausey silty, - ara-elly. SAND (sc-Ch). Some red sol one bits of coal. Red brick fragmonts. Moist. Med dense	Begin boing at	
	۴-۴		÷ ?	5-23-4-4 (38)		(FIL)	Hm=BG
<u>4</u>		<b>S</b> 1	n.5		Same (SC-cL) A lot of red bren fragments	53: 52mple Ca 3-5 ft	lected from -
6				John sel	Esb	ESE @ 1635	-
-					- 		-
-					-		-
-				-	-		-
					- - -		-
_					-		-
-					- - -		· _
-					-		-

PREPARED FOR: U.S. EPA Region 5

PREPARED BY: Sandy Feher/CH2M HILL

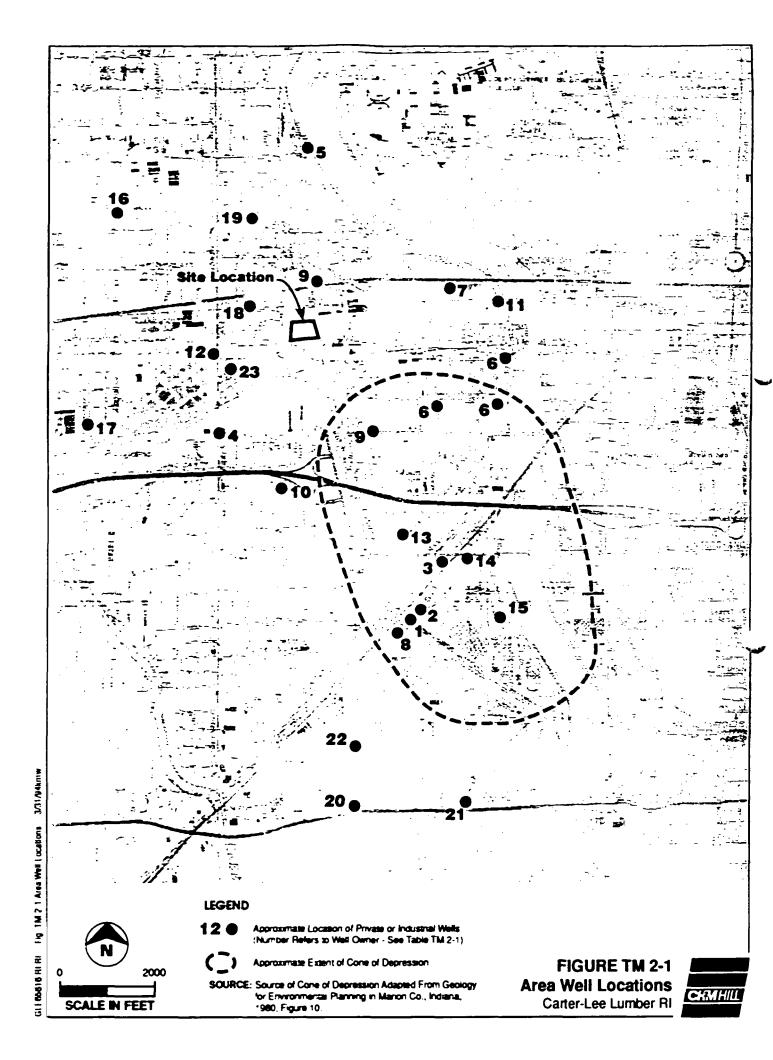
**DATE:** April 1, 1994

SUBJECT: Carter-Lee Lumber Groundwater Users Survey

**PROJECT:** GLE65616.DE.GS

# Introduction

A groundwater users survey was conducted to evaluate whether pumping schedules for wells within a 1-mile radius of the site may affect groundwater flow in the vicinity of the site. The survey was conducted using the following process:


- Review of existing, State of Indiana, well files
- Introductory letter sent to identified well owners
- Followup telephone call to owner
- Personal visit to the location of the well if necessary

# Data Gathering

Water well records for the area of concern were obtained from the Indiana Department of Natural Resources. The records were reviewed to identify industrial, public, and private water supplies. The Indianapolis Water Works Company was contacted for any additional information on industrial and public water supplies within the area of concern.

No public water supply wells are situated within a 1-mile radius of the Carter-Lee Lumber site. Fifty industrial supply wells were identified within 1 mile of the site. Of those 50 wells, 26 wells were identified as possibly being downgradient of the site (to the east and southeast of the site). Figure TM2-1 depicts locations of wells for which information was gathered during the survey. The number at each location corresponds to the well owner name and address given in Table TM2-1.

Well owners were contacted and were asked several questions by a CH2M HILL representative. The questions pertained to well use, pumping schedules, pumping rates, and well abandonment. Survey questions are included as Attachment A2-1.



			Table TM2-1						
		Supr	ly Wells in Vicinity o	of CLL Site					
			Carter-Lee Lumb	er					
 No.	Well Owner	Well Address	Well Use	Well Depth (feet)	Screen Diameter (inches)	Top of Screen (BGS)	Bottom of Screen (BGS)	Aquifer	Average Well Yield 1991
<u>10.</u>	Belt RR Stockyards	Kentucky Avenue & Stock Street	Industrial	75.0	30	(BGS)	(BG8)	SG	<u>(gpm)</u>
2	Curtiss-Wright Corporation	Kentucky Avenue & Stock Street	Industrial	70.0	18	55.0	70.0	SG	
2	Curtiss-Wright Corporation	Kentucky Avenue & Stock Street	Industrial	70.0	18	55.0	70.0	SG	
3	Eli Lilly & Company	Nordyke Avenue	Industrial	60.0	18	55.0	60.0	SG	
3	Eli Lilly & Company	Morris Street	Industrial	91.0	18	71.0	91.0	SG	500
3	Eli Lilly & Company	Morris Street	Industrial	60.0	18	45.0	60.0	SG	
3	Eli Lilly & Company	Morris Street	Industrial	65.0	18	45.0	65.0	SG	600
3	Eli Lilly & Company	Morris Street	Industrial	68.0	10	45.0	05.0	SG	1961
4	Queens Group Indiana	620 S. Belmont	Industrial	118.5	10	98.5	118.5	SG	1901
5	Illinois Cereal Mills	1730 W. Michigan	Industrial			78.5		SG	
5	Illinois Cereal Mills	1730 W. Michigan	Industrial	340.0	12			BR	
5	Illinois Cereal Mills	1730 W. Michigan	Industrial	93.0				SG	
5	Illinois Cereal Mills	1730 W. Michigan	Industrial	180.0	12			SG	26
6	GM Truck	White River Parkway	Industrial	81.0	18	61.0	81.0	SG	57
6	GM Truck	White River Parkway	Industrial	84.8	18	59.8	84.8	SG	57
6	GM Truck	White River Parkway	Industrial	78.3	18	53.3	84.8 78.3	SG	
6	GM Truck	Henry & Morris	Industrial	65.0	18	45.0	78.3 65.0	SG	
7	Indianapolis Zoo	1025 W. Washington Street	Residential	55.0	4	45.0	65.0	SG	
8	Indianapolis Stockyards	1501 Kentucky Avenue	Industrial	101.5	12	80.5	101.5	SG	
8 9	Industrial Anodizing	1436 W. Oliver	Residential	51.0	3.5			SG	
9	Industrial Anodizing		Industrial	93.0	8			SG	
9	Industrial Anodizing	1610 W. Washington Street	Industrial	93.0	8				55
9 10	Mrs. Norma Turner	1610 W. Washington Street	Residential	50.0	8			SG	
		750 S. Shephard Street			-			SG SG	
	Indianapolis Zoo	W. Maryland & White River Parkway	Industrial	59.5				SG	
11	Indianapolis Zoo	W. Maryland & White River Parkway	Industrial	52.0				SG	
12	Link-Belt Company	220 S. Belmont	Industrial	120.0		100.0	120.0	SG	
12	Link-Belt Company	220 S. Belmont	Industrial	125.0	2	107.8	122.8	SG	
12	Link-Belt Company	220 S. Belmont	Industrial	123.5		103.5	123.5	SG	
12	Link-Belt Company	220 S. Belmont	Industrial	121.0	18	101.0	121.0	SG/BR	
12	Link-Belt Company	220 S. Belmont	Industrial	111.0	10	91.0	111.0	SG	
12	Link-Belt Company	220 S. Belmont	Industrial	117.0	18	97.0	117.0	SG	
12	Link-Belt Company	220 S. Belmont	Industrial	121.0	26	91.0	121.0	SG	
12	Link-Belt Company	220 S. Belmont	Industrial	123.0	18	113.0	123.0	SG	
12	Link-Belt Company	220 S. Belmont	Industrial	438.0				BR	

•

	Table TN12-1 Supply Wells in Vicinity of CLL Site Carter Lee Lumber								
	Well Owner	Well Address	Well Use	Well Depth (feet)	Nerren Diameter (Inches)	Top of Serven (BGS)	Bottom of Screen (BGS)	Aquifer	Average Well Vield 1991 (gpm)
13	Amphibious Construction	1012 Division Street	Industrial	288.0				İBR	
14	Marmon Motor Car Company	1101 W. Morris	Industrial	70•			••	so	
15	National Starch & Chemical	1515 Drover	Industrial	90.0	18			SG	600
15	National Starch & Chemical	1515 Drover	Industrial	<b>X</b> 6 0	18	••	· .	so	600
15	National Starch & Chemical	1515 Drover	Industrial	82.0	18		• •	so	600
15	National Starch & Chemical	1515 Drover	Industrial	86.0	30		• •	SO	700
15	National Starch & Chemical	1515 Drover	Industrial	96.0	30		••	80	1000
15	National Starch & Chemical	1515 Drover	Industrial	88.0	16		• •	SO	800
16	Natl Maileable & Steel Castings	546 N. Holmes	Industriai	94.0	12	790	94.0	SO	
16	Nati Maileable & Steel Castings	546 N Holmes	Industrial	89.0			••	SO	••
16	Natl Mallcable & Steel Castings	546 N. Holmes	Industrial			• • •	••	SG	••
16	Natl Mallcable & Steel Castings	546 N. Holmes	Industrial	106.0	12	86.0	106.0	so	••
17	Oxide & Chemical	560 S. Harris	Industrial	56.0	×			SG	••
18	Paul Wain Drugs	2051 W. Washington Street	Residential	56 0	6	1	••	SO	••
19	Polar Ice Company	2231 ynn Street	Industrial	103.0			••	SG	• •
19	Polar Ice Company	223 Lynn Street	Industrial	103.0		83.0	103.0	SG	• •
20	Ronald P. Harding Paving	1500 W. Raymond Street	Industrial	82.0	8	710	82.0	SG	••
21	Royster Company	1050 N. Raymond Street	Industrial	64.0		49.0	64 ()	SG	••
22	Thompson Poultry	2001 S. Harding Street	Industrial	65.0	8	55.0	65.0	so	
	Indianapolis Regional Recycling	217 S. Belmont	Industrial	110.0	10		• •	SO	

SG indicates Sand and Gravel Aquiter

BR indicates Bedrock Aquifer

Sources Indiana DNR Well Logs

Indiana DNR Well Registration Forms

(

**TECHNICAL MEMORANDUM NO. 2** Page 2 April 1, 1994 GLE65616.DE.GS

A followup to the survey questions, where needed, was made by telephone. Telephone numbers for the 23 well owners identified from well records were obtained from the following sources:

- Indianapolis telephone information service (317) 555-1212
- Secretary of State Corporations Division (317) 232-6582
- Indiana Chamber of Commerce (317) 464-2200
- St. Louis Library-Main Branch, reference department (314) 241-2288
- Ben Davis Conservancy District (317) 241-2941

The search for phone numbers produced 11 numbers out of 23 well owners. Of the 11 numbers obtained, only 6 produced successful correspondence. The remaining 5 numbers were either assigned to businesses no longer in operation, or that had no knowledge of the well(s) in question.

# Site Visit

A site visit was conducted on Monday, August 16, 1993, by two CH2M HILL representatives to supplement the well information search. The site visit helped to identify current well owners within the 1-mile radius who were not previously identified or surveyed. The current owner and/or the status of each property was noted. Some property owners were spoken to directly and asked questions about the status of the well(s) on their property.

The site visit produced responses from five well owners not previously surveyed and provided additional information on wells from owners contacted prior to the site visit. Water levels from monitoring wells on the site were also taken during this site visit.

# **Survey Results**

Eleven well owners were contacted by phone and/or site visit. Their survey responses are in Table TM2-2.

The well owners surveyed have wells screened in the sand and gravel aquifer. Eli Lilly and Company, is the largest groundwater user of the well owners surveyed, pumping from 126 million gallons (mg) to 225 mg/month. The site visit indicated that 6 of the 23 properties originally described in Table 3 of the *Preliminary Site Investigation Report* (CH2M HILL, May 1992) are now owned by Eli Lilly and Company. Correspondence with Eli Lilly demonstrated that the wells on these properties have either been abandoned or are out of use, or their existence was unknown.

	Table TM2-2									
	Survey Responses									
Map No.	Well Owner	Response								
		Three wells pump continuously at a total average rate of								
3	Eli Lilly & Company	225 mg month (max) and 126 mg month (min).								
:0	Norma Turner	No pumping for 5 years.								
		Wells do not pump continuously; about 3.7 mg month								
9	Industrial Anodizing	on average.								
		Five of six wells pump continuously: 2 mgd on average:								
		one well pumps 290.000 g day on holidays (total = 69								
		mg month); also owns well at 1050 W. Raymond Street								
15		which pumps 20 mg month on average.								
	General Motors North American Truck	One well pumps continuously: to 2 to 3 mg month in								
6	Platform	summer and 1 mg month in winter.								
12	Link-Belt Co.	All wells sealed between 1991 and 1992.								
	Indianapolis Zoo (formerly Kingan &									
	Company and Grocer's Supply									
- 11	Company)	Well is no longer in use, but has not been abandoned.								
	Queens Group Indiana, Inc. (formerly									
4	Engineering Metal Products)	Well is no longer in use; abandoned in summer 1989.								
		One of four wells is still in use. It pumps continuously								
		at 1 mg month, but is shut down on holidays. In 6								
	Illinois Cereal Mills, Inc. (formerly	months (March 1994), well pumping rate will be								
5	Evans Milling Company)	reduced to 1,000 gal month.								
	Indianapolis Regional Recycling)	Well has not been used since 1983; has not been								
23	formerly Westinghouse Air Brake)	abandoned.								
	Amphibious Construction, Inc.	The well has not been used for at least 5 years; has been								
13	(formerly Liquid Carbonic)	abandoned.								

٠

TECHNICAL MEMORANDUM NO. 2 Page 3 April 1, 1994 GLE65616.DE.GS

National Starch and Chemical is the second largest groundwater user pumping a total of 89 mg/month on average. In addition, both General Motors Truck Platform and Industrial Anodizing pump large quantities of groundwater from their wells. Illinois Cereal Mills pumps the least amount of groundwater at 1 mg/month. None of the parties surveyed indicated that their wells are shut down for significant periods of time during a given year.

# Conclusions

Four out of five facilities pumping groundwater fall within the cone of depression southeast of the site (Figure TM2-1). Survey responses indicated that there are no extended periods of well shutdowns at these facilities. It is probable that these wells from Industrial Anodizing, Eli Lilly and Company, National Starch and Chemical, and General Motors Truck are contributing to the cone of depression and are affecting the direction of groundwater flow beneath the site.

MKE10013CC7.WP5

ATTACHMENT A2-1 GROUNDWATER USERS SURVEY QUESTIONS

# Attachment A2-1 Carter-Lee Lumber Company Site Groundwater Users Survey Indianapolis, Indiana

- 1. Are your water wells currently in use?
- 2. Which wells are/are not in operation?
- 3. Do the well(s) in operation pump continuously?
- 4. If you answered no to No. 3, how often do they pump?
- 5. Are there extended periods when the well(s) are not pumping (estimate months/days)?
- 6. What are the approximate pumping rates of the wells in operation, and for what period(s) of time are the rates maintained?

.

7. Have the well(s) no longer in operation been abandoned?

#### MKE10013CD6.WP5

-

CHAMHILL

PREPARED FOR: Environmental Protection Agency Region V
PREPARED BY: Jack Dingledine/CH2M HILL
DATE: April 1, 1994
SUBJECT: Results of the Ecological Site Investigation at the Carter-Lee Lumber Site, Indianapolis, Indiana
PROJECT: GLE65616.F2.FB

# Introduction

An ecological investigation of the Carter-Lee Lumber Superfund site in Indianapolis, Indiana, was conducted as part of the Phase 1 Remedial Investigation/Feasibility Study (RI/FS) of the site. The objective of the investigation was to provide a basis for qualitative evaluation of potential ecological impacts of contaminants associated with the abandoned disposal area. The scope of the investigation was limited to a general characterization of existing ecological conditions of the site and surrounding area, and an identification of overt signs of adverse impacts on terrestrial and aquatic communities. This level of investigation was considered appropriate for the current phase of the RI/FS investigation, based on existing knowledge of site conditions.

This technical memorandum summarizes the results of the onsite characterization conducted on October 5, 1993. Additional supporting information relative to the evaluation such as data on the nature and extent of contaminants of concern, as well as fate and transport mechanisms will be provided in appropriate sections of the RI report. The results of the qualitative ecological investigation may serve as a basis for future ecological investigations at CLL, if additional information on site contamination suggests further studies are warranted.

### **Assessment Approach**

Available guidance on ecological risk assessments currently proposes a phased approach to project execution that typically includes site characterization, a preliminary screening assessment, a determination for the need for further study, and an assessment report (U.S. EPA 1992). Results of the ecological site characterization described below will provide a basis for the preliminary screening assessment when combined with other RI project components such as an evaluation of contaminant fate and transport.

Ecological characterization of the site consisted of a 1-day visit to document the current biological communities in the project area. In addition, contacts to state agencies were

TECHNICAL MEMORANDUM NO. 3 Page 2 April 1, 1994 GLE65616.F2.FB

made to identify historical information on the presence of rare, threatened and endangered species.

A CH2M HILL ecologist conducted a 1-day walk over of the site and surrounding area on October 5, 1993. The purpose of the site visit was to identify the major plant and animal communities in the project area and record any overt signs of possible adverse impacts on the environment. The identification of potential impact was intended as a gross evaluation, limited to obvious signs such as plant stress, sediment/soil staining, etc.

The perimeter of the previous disposal area on the site was walked and visible species recorded. The area south of the property was also examined, as this area represented potential wildlife habitat in the immediate vicinity of the site. Major plant communities were identified and a list of dominant plant species prepared. Sensitive species or habitats were noted, but in-depth surveys were not conducted during the site visit. Photographs of the site were also taken during the site visit.

The scheduled survey was not intended to produce a comprehensive assessment of species present or habitat condition. Surveys were conducted in October during a time period when wildlife activity and abundance may not be as great as other times of the year. Although wildlife species were expected to be present, activity levels, particularly for avian species, are typically less in October than that during the breeding season. In addition, by fall some avian species may have left the site for southern winter habitats.

# Results

# The CLL Property

The CLL Company property lies within the city of Indianapolis, Indiana. The site is an active lumber yard located in an area of other urban retail, industry and residential development. The area of potential contamination lies in the south eastern corner of the property, and is currently being used for lumber storage. The majority of the area of concern is paved and the entire site is surrounded by chain-link fencing.

# Major Plant Communities

Vegetative cover at the Carter-Lee Lumber site is restricted to narrow borders or bands of primarily herbaceous plant species along the eastern and western perimeter (See attached photographs). The sparse plant communities are composed of predominantly weedy species typical of disturbed lands such as road sides and old fields. Dominant species observed during the October site visit include golden rod (*Solidago spp.*), evening primrose (*Oenother biennis*), and Queen Anne's lace (*Daucus carota*). A more complete list of plant species observed in and around the site is presented in Table 1. The presence of the paved surface and the current level of disturbance relating to lumber yard operation are factors which appear to influence habitat condition. Gross evidence of potential contaminant effects on vegetation was not noted at the site, but physical factors may mask signs of contaminant effects.

Sensitive or high value communities such as wetlands, mature forested cover or remnant prairie are not currently present within the site boundary.

Table 1							
Plant Species Observed in and Around the Carter-Lee Lumber Site							
Common Name Scientific Name							
Woody Species							
Eastern Red Cedar	Juniperus virginiana						
Mulberry	Morus spp.						
Eastern Cottonwood	Populus deltoides						
Tree-of-Heaven	Ailanthus altissima						
Staghorn Sumac	Rhus typhina						
Silver Maple	Acer saccharinum						
Willow	Salix spp.						
Nonwoody Species							
Queen Anne's Lace*	Daucus carota						
Teasel	Dipsacus sylvestris						
Late Goldenrod*	Solidago gigantea						
Bittersweet Nightshade*	Solanum dulcamara						
Common Ragweed*	Ambrosia artemisiifolia						
Common Mullen*	Verbascum thapsus						
Small White Aster*	Aster vimineus						
Common-Sunflower*	Helianthus annuus						
Black Knapweed*	Centaurea nigra						
Common Evening Primrose*	Oenother biennis						
Polkweed	Phytolacea americana						
Honeysuckle	Lonicera spp.						
Common Cattail	Tyhpa latifolia						
Japanese Knotweed	Polygonum cuspidatum						
Smartweed	Polygonum spp.						
Giant Reed	Phragmites communis						
Poison Ivy	Rhus toxicodendron						
*Observed on the Carter-Lee Site							

TECHNICAL MEMORANDUM NO. 3 Page 4 April 1, 1994 GLE65616.F2.FB

# Wildlife Observations

Wildlife species present at the site were recorded by an ecologist during the course of the October site visit. Weather conditions on the day of the survey were good and were not considered a factor in the number of species observed.

Birds were the only group of wildlife species observed during the visit. In total, only 3 bird species were seen on or in the immediate vicinity of the site. These included the house sparrow (*Passer domesticus*), the house finch (*Carpodacus mexicanus*) and the mourning dove (*Zenaida macroura*). All of the species observed may be considered common for the habitat types present and are typical species of urban or suburban landscapes. All of the species are also granivorous/omnivorous ground foragers. This species characteristic may increase the potential for contaminant exposure if contaminants are present at the ground surface. Other bird species may utilize the site, but habitat condition is considered to be a limiting factor.

No species of mammals, reptiles or amphibians were seen while conducting the survey. The potential exists for some common species to be present, but as with avian species, habitat condition is expected to limit their occurrence. The presence of the chain-link fencing around the perimeter of the property also limits wildlife presence, particularly for larger mammals.

Table 2           Wildlife Species Observed in and Around the Carter-Lee Lumber Site		
Common Name	Scientific Name	
Mallard	Anas platyrhynchos	
Blue Jay	Cvanocitta cristata	
Black-capped Chickadee	Parus atricapillus	
Grey Catbird	Dumetella carolinensis	
American Robin	Turdus migratorius	
Mourning Dove*	Zenaida macroura	
House Sparrow*	Passer domesticus	
Song Sparrow	Melospiza melodia	
House Finch*	Carpodacus mexicanus	
American Goldfinch	Carduelis tristis	
*Observed on the Carter-Lee Lumber Site		

TECHNICAL MEMORANDUM NO. 3 Page 5 April 1, 1994 GLE65616.F2.FB

# **Surrounding Areas**

# Major Plant Community Types

Predominant land use types surrounding the Carter-Lee Lumber site are a mixture of urban residential and industrial/business retail. The area in the southeastern corner of the Carter-Lee Lumber property is immediately bordered to the east and south by railroad tracks. Narrow strips of vegetation occur in the area between the tracks and the chain-link fence surrounding the site. Plant community composition in these borders is similar to the herbaceous communities present on the site. Along the eastern perimeter, however, small trees and shrubs such as mulberry (*Morus spp.*) and poplar (*Populus spp.*) are also present.

South of Carter-Lee Lumber lies a small area that is characteristic of a second growth or old field successional community. This location represents the most significant area of potential wildlife habitat in the immediate vicinity of the site. Microtopography is variable over the area and debris and other refuse are scattered throughout. Evidence of the placement of fill material is also present, suggesting previous land disturbance. The dominant plant community consists of scattered trees and shrubs intermixed with herbaceous plant growth. Some areas of bare ground were also noted. Dominant tree and shrub species consist of eastern cottonwood (*Populus deltoides*), tree-of-heaven (*Ailanthus altissima*), staghorn sumac (*Rhus typhina*), and silver maple (*Acer saccharinum*). These species are unevenly distributed over the area into clumps or irregular rows. Nonwoody species of the area include goldenrods, small white aster (*Aster vimineus*) and honeysuckle (*Lonicera spp.*) as well as various grasses and sedges.

Within the eastern and southeastern portion of this area, open surface water was observed. Areas of open water were fringed with emergent vegetation (e.g., cattails (*Typha latifolia*)) and willows (*Salix spp.*) that extended away from the open water. The exact extent of the open water/wetland area was not determined during the site visit. Evidence was present to suggest the degree of open water may fluctuate with season.

# Wildlife Observations

Wildlife observations in areas surrounding the Carter-Lee Lumber site focused on the area south of the site, as this location represented the most significant area of potential habitat.

Observations made while surveying this location were again limited to avian species. A total of 10 bird species were observed, including the American robin (*Turdus migratorious*) and the mallard (*Anas platyrhynchos*) (Table 2). Similar to the onsite

TECHNICAL MEMORANDUM NO. 3 Page 6 April 1, 1994 GLE65616.F2.FB

observations, the species identified in the area may be considered typical for the present habitat type and condition. In contrast, however, the greater extent and structure of the habitat, as well as the presence of wetlands increases the probability that other species may use the area than were observed during the October site visit. A greater use by bird species during the migratory season may also occur for similar reasons.

Mammals, reptiles or amphibians were not seen on the area south of teh CLL site. Habitat type and condition, however, suggests a potential for the occurrence of wildlife such as small mammals. Larger mammals like the cottontail (*Slyvilagus floridanas*), ground hog (*Marmota monax*) and raccoon (*Procyon lotor*) may also occur. Mammals larger than fur bearers or small game are less likely due to the size of the area and the type of surrounding land use. Reptiles and amphibians, which were not observed, are expected to potentially occur in the wetlands or other areas of open surface water.

# Sensitive or Critical Habitats

Information on rare, threatened and endangered species inhabiting the site was obtained through an information request to the Indiana Department of Natural Resources, Division of Nature Preserves. A copy of the response is provided in Attachment I. The Division of Nature Preserves maintains a database on state and federal rare, threatened and endangered species in Indiana, as well as information on the presence of high quality natural communities and natural areas. The information request on species and communities of concern revealed no records of occurrence within a 1-mile radius of the CLL site. Although this information does not preclude the occurrence of rare, threatened or endangered species from the site, their presence is considered unlikely due to the lack of historical information and the current habitat and land use conditions.

Wetlands may also be considered sensitive habitats, due to their function and value within the landscape. A wetland delineation using the three parameter approach as described in the current wetland delineation manual (U.S. Corps of Engineers 1987) was not conducted, but plant community composition and evidence of hydrology typical of wetlands suggested wetlands are located in the area south of the site. These areas appeared to consist of palustrine emergent or scrub/shrub communities.

# Conclusions

Results of the ecological characterization of the CLL site in Indianapolis, Indiana, indicated a limited number of wildlife species are present on and adjacent the site. Current site conditions including the presence of a paved surface and surrounding chainlink fence, significantly limit habitat quality. Plant communities within the property TECHNICAL MEMORANDUM NO. 3 Page 7 April 1, 1994 GLE65616.F2.FB

boundary consist of common species typical of disturbed areas. The site is located within an urban area of similar retail/industrial development.

The most significant area of potential wildlife habitat occurs adjacent to the southern site boundary. Wildlife and plant communities in this area are also limited, but a number of avian species were observed during the site visit. The presence of a small area of open water or wetland potentially increase habitat quality and the occurrence of additional wildlife species.

Gross evidence of adverse impacts on the plant and animal communities of the site was not apparent during the October visit. If additional investigation reveals contaminant concentrations and exposure pathways that may pose a threat to terrestrial or aquatic organisms, a more detailed characterization of existing communities may need to be conducted.

# References

U.S. Army Corps of Engineers. Wetland Delineation Manual. Technical Report Y-87-1. Washington, D.C. 100 pp. 1987.

U.S. Environmental Protection Agency. Developing a Work Scope for Ecological Assessments. ECO Update, Vol. 1:4. EPA Pub. 9345.0-051. Washington, D.C. 15 pp. 1992.

MKE10013CC8.WP5

# ATTACHMENT A3-1 AGENCY CORRESPONDENCE

-

.



#### INDIANA DEPARTMENT OF NATURAL RESOURCES

Division of Nature Preserves 402 W. Washington St., Rm. 267 Indianapolis, Indiana 46204 317-232-4052

October 15, 1993

Mr. Jack Dingledine, Environmental Scientist CH2M HILL 1 Dayton Centre, Suite 1400 1 South Main Street Dayton, OH 45402-1828

Dear Mr. Dingledine:

DEGEIWE DOCT 18 1993 CHEM HILL

PATRICK R. RALSTON, DIRECTOR

I am responding to your request for information on the endangered, threatened, or rare (ETR) species and high quality natural communities and natural areas documented from a one mile radius of Carter Lee Lumber NPL site, Indianapolis, Indiana. The Indiana Natural Heritage Data Center has been checked and no ETR species and significant areas are documented in this one mile radius.

The information I am providing does not preclude the requirement for further consultation with the U.S. Fish and Wildlife Service as required under Section 7 of the Endangered Species Act of 1973. You should contact the Service at their Bloomington, Indiana office.

> U.S. Fish and Wildlife Service 620 South Walker St. Bloomington, Indiana 47403-2121 (812)334-4261

At some point, you may need to contact the Department of Natural Resources' Environmental Review Coordinator so that other divisions within the department have the opportunity to review your proposal. For more information, please contact:

> Patrick R. Ralston, Director Department of Natural Resources attn: Stephen H. Jose Environmental Coordinator Division of Fish and Wildlife 402 W. Washington Street, Room W273 Indianapolis, IN 46204 (317)232-4080

"EQUAL OPPORTUNITY EMPLOYER"

(*)

Please note that the Indiana Natural Heritage Data Center relies on the observations of many individuals for our data. In most cases, the information is not the result of comprehensive field surveys conducted at particular sites. Therefore, our statement that there are no documented significant natural features at a site should not be interpreted to mean that the site does not support special plants or animals.

Due to the dynamic nature and sensitivity of the data, this information should not be used for any project other than that for which it was originally intended. It may be necessary for you to request updated material from us in order to base your planning decisions on the most current information.

I have enclosed an invoice for \$30.00 to cover the cost of the request.

Thank you for contacting the Indiana Natural Heritage Data Center. You may reach me at (317)232-4052 if you have any questions or need additional information.

Sincerely,

Romatic P. Kellminh for Michell Martin Herry

Michelle Martin Hedge Indiana Natural Heritage Data Center

enclosure: invoice

2

ATTACHMENT A3-2 PHOTOGRAPHS OF THE PROJECT AREA

MKE10013CAA.WP5-6

•

Attachment A3-2 Photo Log (October 1993)		
Photo No.	Description	
1	Looking southeast toward southeast corner of site and well CLMW05.	
2	Looking south along eastern drainage swale. Note darkened gravel within swale.	
3	Looking west along southern property boundary.	
4	Looking southeast toward well CLMW05 and Conrail railroad tracks.	
5	Looking northwest toward pole barns. Area where red soil spread in foreground.	
6	Vegetated area across railroad tracks south of CLL site and adjacent to Westinghouse Air Brake facility.	
-	Same as above	
8	Same as above.	
9	Same as above	
10	Same as above	
11	Same as above.	
12	Same as above.	
13	Same as above	
14	Looking east along Conrail railroad tracks. CLL site is to the north.	
15	Looking southeast along Conrail railroad tracks to the south of the CLL site.	

-

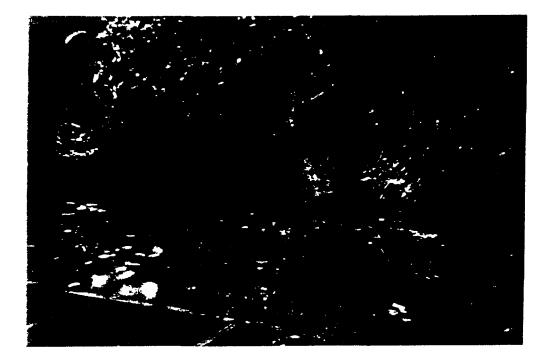
ð
































CHAMHILL

PREPARED FOR: U.S. EPA Region 5

PREPARED BY: Laura Peterson/CH2M HILL

DATE: December 27, 1994

SUBJECT:Statistical Comparison of Onsite versus Offsite Constituent<br/>Concentrations for the Carter-Lee Lumber Remedial Investigation

**PROJECT:** GLE65616.RI.RI

## Introduction

This technical memorandum describes the statistical methods and assumptions used to determine whether or not concentrations of onsite soil constituents were statistically different than those detected offsite. Offsite soil samples were collected both off the CLL Company property and on the property, but away from the site where red soil had been spread in the past (A complete description is found in Section 1.0).

## **Methodology and Assumptions**

The following assumptions were made during the statistical analysis:

- The environmental data are distributed log normally
- A constituent that was not detected at the method reporting limit was assumed to exist at half that limit when it was detected in at least one other sample within a sample data set.
- A constituent with an estimated "J" qualifier was used and counted at full value.
- • A constituent with a rejected "R" qualifier was not used in any of the calculations.

Offsite and onsite data sets were compared to each other using an F-test (to determine equality of variances) and unequal variance or equal variance t-test (for comparison of means). If the probability (P) for the F-test was less than or equal to 0.05 (meaning P was greater than 95 percent that the variances were unequal), the t-test assuming unequal variances was run. If P was greater than 0.05 (meaning the probability was less than 95 percent that the variances were unequal), the equal variance t-test was run.

TECHNICAL MEMORANDUM NO. 4 Page 2 December 27, 1994 GLE65616.RI.RI

If P for the t-test was greater than 0.05 (meaning the probability was less than 95 percent that the means were statistically different), the onsite data were not considered statistically different than the offsite data. If P was less than or equal to 0.05 (meaning the probability was greater than 95 percent that the means were statistically different), the onsite data were considered statistically different than offsite data.

Table TM4-1 summarizes the median, maximum, and minimum concentrations of constituents in both onsite and offsite soil samples. The results of the t-test are included in the table. For the statistical comparison, an onsite or offsite background constituent that was not detected at the method reporting limit was assumed to exist at half the limit when it was detected in at least one other sample within a sample data set. For these cases, the median and maximum concentrations shown in Tables 4-1 and 4-2 in Section 4 of the report may be greater than the actual concentrations reported because of a high method reporting limit.

## Conclusions

Results of the t-test indicated no statistical difference between offsite and onsite results for VOCs. SVOCs, and pesticides. For inorganics, statistical results indicated that calcium and magnesium concentrations were statistically greater onsite than offsite. For the remaining inorganic compounds, the results indicated either no statistical difference between offsite and onsite results, or offsite concentrations were statistically greater than onsite concentrations.

MKE10013CC9 WP5

		Tabl	e TM4-1					
	Stat	istical Sum	mary Table	for Soil				
		Carter-	Lee Lumber	•				
		(Pag	e 1 of 2)					
	Med	lian	Maximu	m Value	Minimu	m Value	T-test	Statistical
Compound	Offsite	Onsite	Offsite	Onsite	Offsite	Onsite	( <b>P</b> ( <b>T</b> < t)	Difference
Volatiles (ug/kg)								
Toluene	6.0	10.8	160	130	1.0	3.0	0.23	No
Semi-volatiles (ug/kg)								
Naphthalene	217	214	60000	2200	21	34	0.9 <b>8</b>	No
2-Methylnaphthalene	227	182	60000	1400	25	28	0.62	No
Acenaphthylene	155	128	19000	1800	24	21	0.62	No
Acenaphthene	206	166	20000	1800	28	32	0.58	No
Dibenzofuran	190	140	9000	1200	30	19	0.40	No
Fluorene	171	143	30000	610	23	23	0.69	No
Phenanthrene	1106	672	370000	6500	28	60	0.37	No
Anthracene	303	270	70000	1200	39	45	0.80	No
Carbazole	232	157	49000	580	42	42	0.35	No
Di-n-butylphthalate	168	115	60000	1800	20	20	0.39	No
Fluoranthene	1196	875	790000	8400	. 29	74	0.59	No
Pyrene	1331	1022	800000	15000	28	74	0.66	No
Benzo[a]anthracene	908	575	360000	5300	22	59	0.39	No
Chrysene	1170	631	410000	6400	35	70	0.24	No
bis(2-Ethylhexyl)phthalate	379	247	14000	3600	61	39	0.18	No
Di-n-octylphthalate	215	188	60000	3600	29	19	0.76	No
Benzo[b]fluoranthene	1261	848	290000	12000	180	130	0.94	No
Benzo[k]fluoranthene	880	454	290000	5700	180	170	0.15	No
Benzo[a]pyrene	1019	549	360000	7800	180	58	0.22	No
Indeno[1,2,3-cd]pyrene	763	327	90000	3600	140	29	0.051	No
Dibenz[a,h]anthracene	314	259	60000	3600	23	78	0.65	No
Benzo[g,h,i]perylene	620	388	140000	6200	120	84	0.30	No
Pesticides/PCBs (ug/kg)								
Heptachlor (a)	0.98	1.14	1.15	4.2	0.9	0.95	0.23	No
Heptachlor epoxide	1.58	1.19	5.1	5.6	0.9	0.9	0.30	No
4,4'-DDE (a)	1.90	2.22	2.2	46	1.8	1.7	0.47	No
Endrin	5.13	3.09	19	15	1.8	1.7	0.11	No
Endosulfan II	2.19	2.38	6.5	21	1.8	1.7	0.67	No
4,4'-DDD	2.21	1.98	7.6	4.6	1.8	1.7		No
Endosulfan sulfate (a)	1.90	2.20	2.2	28	1.8	1.7	0.45	No
4,4'-DDT	3.87	4.71	14	140	1.8	1.7	0. <b>62</b>	No
Methoxychlor	15.30	10.76	84	46	9	9	0. <b>09</b>	No
Endrin ketone -	4.50	2.41	44	33	1.8	1.7	0.21	No
alpha-Chlordane	1.35	1.57	4.8	24	0.9	0.9	0.69	No
gamma-Chlordane	1.98	1.51	10	25	0.9	0.9	0.50	No
Aroclor-1254 (a)	19.02	20.48	22	35	18	17	0.11	No

.

Table TM4-1 Statistical Summary Table for Soil Carter-Lee Lumber															
	(Page 2 of 2)														
	Med	lian	Maximu	m Value	Minimu	m Value	T-test	Statistical							
Compound	Offsite	Onsite	Offsite	Onsite	Offsite	Onsite	( <b>P</b> ( <b>T</b> < t)	Difference							
Metals (mg/kg)															
Aluminum	6~26	4821	16000	14900	2740	1750	0.030	Yes*							
Antimony	8 5	5.9	32.9	10.0	6.8	3.4	0.002	Yes*							
Arsenic	~0	113	257.0	197.0	0.2	2.6	0.290	No							
Banum	<b>-</b> 03	43.4	198.0	328.0	14.9	1.2	0.040								
Beryllium	0 -	06	2.0	151.0	0.3	0.2	0.520								
Cadmium	13	0.7	5.6	1.3	0.9	0.1	0.001	Yes*							
Calcium	30566	80737	107000	198000	2250	4460	0.001	Yes							
Chromium	15.5	20 5	48.9	439.0	7.6	5.3	0.210	No							
Cobait	-1	5.9	16.9	15.3	3.3	2.5	0.140	No							
Copper	55.4	22.4	6970.0	114.0	12.1	4.1	0.010	Yes*							
Iron	17564	16458	39200	161000	<b>~</b> 190	5030	0.730	No							
Lead	90.5	42.8	2270.0	376.0	14.6	2.9	0.040	Yes*							
Magnesium	10400	17953	39400	59000	1480	605	0.048	Yes							
Manganese	489	468	1400	1280	252	220	0.730	No							
Mercury	01	0.1	0.4	0.5	0.1	0.1	0.650	No							
Nickel	1~4	20.7	39.9	173.0	<b>-</b> .0	6.2	0.360	No							
Potassium	975	634	2130	1250	511	169	0.001	Yes*							
Selenium	0.5	0.4	4.0	3.5	0.2	0.2	0.290	No							
Silver	09	08	1.0	2.4	0.8	0.4	0.030	Yes*							
Sodium	133.0	104.8	1510.0	332.0	28.2	29.3	0.230	No							
Thallium	03	0.2	0.5	0.5	0.2	0.1	0.005	Yes*							
Vanadium	22.1	15.3	45.9	88.6	10.5	5.3	0.010	Yes*							
Zinc	12-0	76.4	424.0	564.0	29.4	11.6	0.034	Yes*							
Cyanide	04	0.5	0.6	2.1	0.3	0.3	0.630	No							

Nores

a. No background detections for valid statistical background computations. One-half the detection limit

was used

Indicates offsite concentration is statistically higher than onsite concentration

## APPENDIX B DATA TABLES AND DATA VALIDATION TECHNICAL MEMORANDUMS

の記録す

ATTACHMENT B-1 DATA VALIDATION TECHNICAL MEMORANDUMS

				C	Table 8-1 water Organic Anal arter-Lee Lumber Novembar 1997	ytical Results				
	tation Location: ample Number: Date Sampled:	CLBK01-1 ELG33 11-5-92	CLBK01-2 ELG34 11-5-92	CLBK01-3 ELG35 11-5-92	November 1992 CLBK02 ELG11	CLBK04 ELG14	CLEKUS ELG15	CLBK07 ELG13	CLBK08 ELG01	CLBK09 ELG02
	Media:	Soil	Soil	Soil	Soil	Soli	Soil	Soil	Soil	Soil
Volatiles Chloromethane	Units µg/L	13 UJ	12 U	H U	11 U		11 U			
Bromomethane	μ <b>g</b> /L	13 UJ	12 U	ii Ū	11 U	น บ	11 U	11 Ŭ		
Vinyl Chloride	μ <b>g</b> /L	13 UJ	12 U	11 U	11 U	11 U	11 U	11 U		
Chloroethane	μg/L	13 UJ	12 U	11 U	11 U	11 U	11 U	11 U	-	
Méthylene Chloride Aceione	μ <b>g/</b> L μ <b>g/</b> L	14 J 13 UJ	12 U 12 U	9 J 11 U	12 19	14 11 U	42 11 U	12 16		
Carbon Durulfide	μ <b>g</b> /L μ <b>g</b> /L	13 10	12 U	11 0	กับ	11 U	11 Ŭ	11 U		
1.1-Dichloroethese	μ <b>g/</b> [_	13 UJ	12 U	11 U	11 U	11 U	H U	11 U		
1.1-Dichloroethane	μ <b>g</b> /L	13 UJ	12 U	11 U	11 U	11 U	11 U	11 U		
1.2-Dichloroethene (tou Chloroform		13 UJ 13 UJ	12 U 12 U	11 U 11 U	11 U 11 U	11 U 11 U	11 U 11 U	11 U 11 U		
1.2-Dichloroethane	μg/L μg/L	13 UJ	12 U	11 U	11 U	11 U	11 U	11 0		
2-Butanone (MEK)	μg/L	13 UJ	12 U	11 U	11 U	11 U	11 U	11 U		
1.1.1 Trichloroethane	μ <b>g</b> /L	13 UJ	12 U	11 U	11 UJ	11 U	11 UJ	11 U		
Carbon Tetrachloride	μg/L	13 UI 13 UI	12 U 12 U	11 U 11 U	11 UJ 11 UJ	11 U 11 U	11 UJ 11 UJ	11 U 11 U		
Bromodichloromethane 1.2-Dichloropropane	μg/L μg/L	13 UJ	12 U	11 U	11 UJ	11 U	11 UJ	11 U		
cus-1,3-Dichloropropens		13 UJ	12 U	11 U	11 UJ	11 U	11 0	11 U		
Trichloroethene	μg/L	13 UJ	12 U	11 U	11 UJ	ม บ	11 UJ	11 U		
Dibromochloromethane	µg/L	13 UJ	12 U	11 U	11 UJ	11 U	11 UJ	11 U		
1.1,2-Trichloroethane	μg/L	13 UJ	12 U	11 U	11 UJ	11 U	11 UJ	11 U		
Benzene trans-1,3-Dichloroprope	μg/L ne μg/L	13 UI 13 UI	12 U 12 U	11 U 11 U	<i>נט וו</i> נט וו	11 U 11 U	11 UI 11 UI	11 U 11 U		
Bromoform	ае μg/L μg/L	13 UJ	12 U	11 U	11 U	11 U	11 UJ	11 U		
4-Methyl-2-Pentsnone	μg/L	13 UJ	12 U	11 U	11 UJ	າ ຫ	11 UJ	11 00		
2 Hexanone	μ <b>g/</b> L	13 UJ	12 U	11 U	11 UJ	11 UJ	11 UJ	11 UJ		
Tetrachioroethene	μ <b>g/</b> L	13 UJ	12 U	11 U	11 UJ	11 UJ	11 UJ	11 UJ		
1,1,2,2-Tetrachioroetha		13 UJ	12 U 12 U	11 U 6 J	11 UJ 5 J	11 UJ	11 U	11 UJ		
Toluene Chlorobenzene	μ <b>g</b> /L μg/L	160 J 13 UJ	12 U 12 U	6 J 11 U	្រ បរ រោយ	11 UJ 11 UJ	2 J 11 UJ	1 J 11 UJ		
Ethylbenzene	μg/L	13 UJ	12 U	11 U	11 0	11 UJ	រេយ	11 03		
Styrene	μ <b>g</b> /L	13 UJ	12 U	11 U	11 UJ	11 UJ	נט וו	11 UJ		
Xylene (muxed)	μα/L	13 UJ	12 U	11 U	11 UJ	11 UJ	2 1	11 UI		
Semivolatiles	Units	440 U	390 U	350 U	370 U	360 U	3700 UJ	370 U	390 U	120000 U
Phenol bis(2-chloroethyl)ether	μg/L μg/L	440 U 440 U	390 U 390 U	350 U	370 U	360 U	3700 UJ	370 U	390 U	120000 U
2-Chlorophenol	μg/L	440 U	390 U	350 U	370 U	360 U	3700 UJ	370 U	390 U	120000 1
1.3 Dichlorohenzene	µg/L	440 U	390 U	350 U	370 U	360 U	3700 UJ	370 U	390 U	120000 t
1.4-Dichlorohenzene	HB/L	440 U	390 U	350 U	370 U	360 U	3700 UJ	370 U	390 U	120000 1
1.2-Dichlorobenzene	μ <b>g</b> /L μg/L	440 U 440 U	390 U 390 U	350 U 350 U	370 U 370 U	360 U 360 U	3700 UJ 3700 UJ	370 U 370 U	390 U 390 U	120000 t 120000 t
2-Methylphenol 2.2'-oxybis(1-Chloropro		440 U	390 U	350 U	370 U	360 U	3700 UJ	370 U	390 U	120000 U
+ Methylphenol	μg/L	440 U	390 U	350 U	370 U	360 U	3700 UJ	370 U	390 U	120000 L
N-Nitroso-di-n-propylar	nune μg/L	440 Ŭ	390 U	350 U	370 U	360 U	3700 UJ	370 U	390 U	120000 U
Hexachloroethane	μg/L	440 U	390 U	350 U	370 U 370 U	360 U	3700 UJ	370 U	390 U	120000 U
Nitrobenzene Isophorone	μg/L μg/L	440 U 440 U	390 U 390 U	350 U 350 U	370 U 370 U	360 U 360 U	3700 UJ 3700 UJ	370 U 370 U	390 U 390 U	120000 U 120000 U
2-Nitrophenol	μg/L	440 U	390 U	350 U	370 U	360 U	3700 UJ	370 U	390 U	120000 U
2.4-Dimethylpherol	μg/L	440 U	390 U	350 U	370 U	360 U	3700 UJ	370 U	390 U	120000 U
bis(2-Chloroethoxy)met		440 U	390 U	350 U	370 U	360 U	3700 UJ	370 U	390 U	120000 L
2.4-Dichlorophenol	μg/L	440 U 440 U	390 U 390 U	350 U 350 U	370 U 370 U	360 U 360 U	3700 UJ 3700 UJ	370 U 370 U	390 U 390 U	120000 U 120000 U
1.2.4-Trichlorobeazene Naphthalene	μg/L μg/L	440 U 40 J	390 U	350 U	21 J	360 U	2900 J	370 U 35 J	390 U	120000 L
4-Chloroaniline	μ <b>g</b> /L	440 U	390 U	350 U	370 U	360 U	3700 UJ	370 U	390 U	120000 1
Hexachlorobutadiene	µg/L	440 U	390 U	350 U	370 U	360 U	3700 UJ	370 U	390 U	120000 L
4 Chloro-3-methylphen		440 U	390 U	350 U	370 U	360 U	3100 UI	370 U	390 U	120000 1
2-Methylnaphthalene	μ <b>g</b> /L	53 J 440 U	390 U 390 U	350 U 350 U	29 J 370 U	25 J 360 U	2400 J 3700 UJ	27 J 370 U	390 U 390 U	120000 U 120000 U
Hexachiorocyclopentad 2.4.6-Trichlorophenoi	ien.e μg/L μg/L	440 U	390 U	350 U	370 U	360 U	3700 UJ	370 U	390 U	120000 U
2.4.5-Trichlorophenol	µ <b>г</b> /L	1100 U	940 U	850 U	890 U	870 U	9100 UJ	900 U	940 U	310000 L
2-Chloronaphthalene	μ <b>g</b> /L	440 U	390 U	350 U	370 U	360 U	3700 UJ	370 U	390 U	120000 L
2-Naroanilate	µg/L	1100 U	940 U 300 U	850 U	890 U	870 U	9100 UJ	900 U	940 U	310000 U
Dimethylphthalaid Acenaphthylene	μ <b>ε/</b> L. με/L	440 U 440 U	390 U 390 U	350 U 350 U	370 U 370 U	360 U 360 U	3700 UJ 590 J	370 U 54 J	390 U 26 J	120000 U 19000 J
2.6-Dinitrotoluene	µ∎/Ն	440 U	390 U	350 U	370 U	360 U	3700 UJ	370 U	390 U	120000 U
3-Nitroaniline	µg/L	1100 U	940 U	850 U	890 U	870 U	9100 UJ	900 U	940 U	310000 U
Accamphthene	μg/L	28 J	390 U	350 U	40 J	360 U	1700 J	56 J	390 U	20000 J
2.4-Dimitrophenol	μ <b>ε</b> /L	1100 U 1100 U	940 U 940 U	850 U 850 U	890 U 890 U	870 U 870 U	9100 UJ 9100 UJ	900 U 900 U	940 U	310000 U
4-Nitophenol Dibenzofuran	μ <b>ε/L</b> με/L	30 1	390 U	350 U	41 J	360 U	9100 UJ 1800 J	900 U 38 J	940 U 390 U	310000 U 9000 J
2,4-Dinstrotoiuene	μ <b>ε</b> /L	440 U	390 U	350 U	370 U	360 U	3700 UJ	370 U	390 U	120000 U
Diethylphthalate	μg/L	440 U	390 U	350 U	370 U	360 U	3700 UJ	370 U	390 U	120000 U
4-Chlorophenyl-phenyl	ether μg/L	440 U	390 U	350 U	370 U	360 U	3700 UJ	370 U	390 U	120000 U
Fluorese	μ <b>g/L</b>	42 J	390 U 940 U	350 U 850 U	47 J 890 U	360 U 870 U	3500 J 9100 UJ	58 J 900 U	390 U	30000 J
4-Nitroaniline 4.6-Dinatro-2-methylph	μg/L noi μg/L	1100 U 1100 U	940 U 940 U	850 U	890 U	870 U 870 U	9100 UJ	900 U 900 U	940 U 940 U	310000 U 310000 U
4.0-Dimiro-2-methylph N-Nitrosodipheaylamia		440 U	390 U	350 U	370 U	360 U	3700 UJ	370 U	390 U	120000 U
4-Bromophenyl-pbenyle		440 U	390 U	350 U	370 U	360 U	3700 UJ	370 U	390 U	120000 U
Hexachiorobenzese	M&L	440 U	390 U	350 U	370 U	360 U	3700 UJ	370 U	390 U	120000 U
Penuchloropheaol	μ <b>g</b> /L	1100 U	940 U	850 U	890 U	\$70 U	9100 UJ	900 U 700	940 U	310000 U
Phenanthrene Anthracene	μg/L.	500 84 J	390 U 390 U	350 U 350 U	260 J 57 J	28 J 360 U	22000 4900 J	780 160 J	62 J 390 U	370000 70000 J
Carbazoie	μ <b>g/L</b> μ <b>g/L</b>	44 J	390 U	350 U	42 J	360 U	2000 J	76 J	390 U	49000 J
Di-a-butyiphthalase	με/L με/L	440 U	390 U	350 U	370 U	360 U	3700 UJ	20 J	390 U	120000 U
Fluoranthene	μ <b>g/L</b>	550	29 J	350 U	370	43 J	18000	1300	150 J	790000
Рутеве	μ <b>g</b> /L	430 J	28 J	350 U	300 J	72 J	20000	1400	180 J	\$00000
Butylbenzylphthalate	μ <b>g</b> /L	440 U	390 U	350 U	370 U	360 U	3700 UJ	370 U	390 U	120000 U
3.3'-Dichlorobenzidine Benzojajanthracese	μg/L μg/L	440 U 270 J	390 U 390 U	350 U 350 U	370 U 240 J	360 U 22 J	3700 UJ 87/00 J	370 U 660	390 U 180 J	120000 U 360000
Chrysene	με/L	300 J	390 U	350 U	360 3	22 J 35 J	8/00 J 9100 J	700	210 J	410000
bus(2-Ethylhexyl)phtha		61 J	230 J	28 J	\$10 B	360 U	3700 UJ	\$30 B	390 U	14000 J
Di-n-octylphthalase	μ <b>g/</b> L	32 J	35 J	35 J	370 U	360 U	3700 UJ	370 U	390 U	120000 U
Benzo(b)thuoranthene	μ <u>8</u> /L μ <u>8</u> /L	280 J 200 J	390 U 390 U	350 U 350 U	310 J 240 J	360 U 360 U	5400 J 5900 J	660	240 J 190 J	290000 290000

					Table B-1 Ivator Organic An Inter-Loc Lamba		•				
					Sector 1992				_		
	Nadan Locatair Sampie Namber Das Samiat	CLARAFT ELGS 11-5-15	CLINUF-2 ELGM 11-5-12	ELGM 11-5-42	ELGII	ELGH		ELGE	ELCIS	ELGOI	ELG12
	Mandan.	5-4	540	5-4	Sad	Seil		Seal	Seal	Seil	Seil
lan - data	C						_				
interior a preterior	46.1-	. ن <b>د</b>	<b>•••</b> •	1.0	. u <u>r</u> .	(NBC)	•	MONIC .	542		360000
angeans		.4.	<b>*</b>	• M2	160	360		F100 -	-00	210 1	40000
) idential A.S. (Maldiana and A	- <b>1</b>	440	2 <b>1</b> 0	150	340C L	360	1.	17 OCT	270 C	<b>C</b> 1	120000
MEAN S.J., DERVIEW			۳۹۵ (	156	1.1	Yes	·	2.130	10 :	[40] J	140000
Autodas PCAs	Curio -					13	:	:• :	:• :		
1966 <b>en</b> al	an t	11	::	14 1	19 1			19 U 18 U	19 L 19 C		
neus à cit.	- <b>4</b>	<b>1</b> 1	• •		19 L	1.8	: :	•••••	19 L 19 Č		
antas dicitiC		13		1.8 L 1.8 L	19 L 10 T	1.1	1	19 U 19 U			
panana 2000 Custana					• • •		•	• •			
- LEGELAL DE LEGE	- <b>1</b>	13	• •	19 U	1.9	1.8 1.9	U T	19 I 19 I	19 U		
Autorn .	- <b>1</b>	23 1		1.8 1 1.8 1	10 1	11	i i	1.	19 U 19 U		
anyour there exists and	ang C.	18.1	1 : 1 :	1.8 L 1.9 V	19	11 1	1	1.	19 U 19 U		
Condemonal Street	14 L	11 i	2 1 34 1	1.1	19 1	• -	1	3	19 C 37 C		
. Including	- <b>1</b>	44 1	24 L 34 1		3.6 l 3.6 l	7.6 3.6	i T		• •		
4 30E	44.5	44 1		14 L 15 U					3.7 C		
	- <b>1</b>	1 <b>1</b> 1	50 L 30 L		3.6 L 3.6 L	3.6	ť	37 U 65 I	11 I 3* U		
patental ling I		44 1		34 1			ř	3	• •		
4 F 000	<b>46</b> -	44 .	54 T	35 L	3.6 l	3.6			3 C		
menuting sutain	- <b>4</b>	44 1	54 U	95 U	3.6 L	3.6		1 .	37 C		
KE DOT	44	•••••	11 E	3.5 1	3.6 U	3.6	•	1 1	15 J		
Marilton arwithour	- <b>-</b>	21 5	. 16	18 1	19 L	18	۱.	19 U	19 U		
	an L	44 1	34 U	25 V	36 U	3.5	1		3." U		
SHEER MARKINGS	uş L	44 1	34 U	95 U	3.6 U	34	U.	57 E	3." U		
and the character of the second	ليهد . ا	13 1	•	:# T	19 U	1.8	ι	1.7	19 U		
anno-Suran	تا بهد	13 1	::	14 U	1.9 U	1.8		19 12	1.9 U		
and applicable	L ⊒ود	230 1	300 1	180 U	:•0 U	190	t.	190 T	190 U		
Activities - 114	- Jac	<b>44</b> 1	<b>9</b> 1	15 U	36 U	36	ĩ.	r 1	3" U		
Actual Carl	- 1 Be	<b>#</b> 1	<b>N</b> 1	<b>•</b> • •	<b>14</b> U	نہ ا		<b>76</b> C	7 U		
Arman . 172	- 1 Be	<b>44</b> 1	<b>M</b> U	25 L	36 1	<b>X6</b>	1	<b>7</b> 1	97 U		
Amour	ag C	A4 🙏	M 1	25 U	36 U	<del></del>		<b>r</b> 1	7" U		
tesos 114	ag L	<b>44</b> (	9 L	35 1	36 1	36	1	<b>F</b> 1	7 U		
Amour 1254	ag L	A4 T	94 T	75 1	M 1	36	1	7 V	9" U		
American . 1993		44 1	<b>M</b> 1	16 7	<b>36</b> 1	<b>M</b>	1	<b>m</b> t	97 C		

					Table B-1	deal P at			-	
			S		nter Organic Anal; rter-Lee Lumber	rucal Kentits				
	ion Location:	CLBKIO	CLBKIT	CLBKIZ	CLBK13	CLBK14	CLBK15	CLBKIG	CLBK17	CLSS01-A
San	nple Number: Inte Sampled:	ELG03	ELG04	ELG05	ELG06	ELG07	ELGOS	ELG09	ELG10	ELG18
	Media:	Soil	Soil	Soil	Soil	Soil	Søil	Soil	Sol	Soil
olatiles	Units μg/L									13
romomethane	μg/L									13
/myl Chloride Thloroethane	μ <b>g/L</b> μ <b>g/L</b>									13 13
dethylene Chionde	μ <b>g/</b> L.									13
ceione	pg/L									14
arbon Disulfide	μ <u></u> g/Լ μ <u>g</u> /Լ									13
.1-Dichloroethase	μg/L									13
2-Dichloroethene (total)	µg/Ղ µg/Ղ									13 13
hloroform 2-Dichloroethage	µք/∟									13
-Butanone (MEK)	μ <b>g/L</b>									13
. I. i. Trichloroethane Carbon Tetrachloride	μg/L μg/L									13 13
arone reusenoque	μg/L									13
2-Dichloropropane	µg/L									13
u-1,3-Dichloropropene	µց/Ն µց/Ն									13 13
bibromochloromethane	μg/L									13
1.2-Trichloroethane	µg/L									13
Senzene rans-1.3-Dichloropropene	µg/Լ µg/Լ									13 13
molomor	µg∕L									13
Methyl-2-Pentanone	µg/L									13
l-Hexanone Fetrachloroethene	μ <b>ց/</b> Լ μ <b>ց/</b> Լ									13 13
,1,2,2-Tetrachioroethane	μ <b>g</b> /L									13
oluene	µg/L									3
Thlorobenzene Ethylbenzene	μ <b>g/</b> L μg/L									13 13
біутере	μg/L									13
(viene (muxed)	µg/L									13
Semivolatiles Phenol	— Cnits με/L	380 U	370 U	380 U	350 U	390 U	350 U	360 U	370 U	440
os(2-chloroethyl)ether	μ <b>g</b> /L	380 U	370 U	380 U	350 U	390 U	350 U	360 U	370 U	440
2 Chlorophenol	μg/L	380 U	370 U	380 U	350 U 350 U	390 U 390 U	350 U 350 U	360 U 360 U	370 U 370 U	440 440
1.3-Dichlorobenzene 1.4-Dichlorobenzene	μg/L μg/Ն	380 U 380 U	370 U 370 U	380 U 380 U	350 U 350 U	390 U 390 U	350 U	360 U	370 U	440
1,2-Dichlorohenzene	µg/L	380 U	370 U	380 U	350 U	390 U	350 U	360 U	370 U	440
2 Methylphenol	μg/L ne) μg/L	380 U 380 U	370 U 370 U	380 U 380 U	350 U 350 U	390 U 390 U	350 U 350 U	360 U 360 U	370 U 370 U	440 440
2,2' oxybis(1-Chloropropa 4-Meihylphenol	ue) μg/L μg/L	380 U	370 U	380 U	350 U	390 U	350 U	360 U	370 U	440
N-Nitroso-di-n-propylami	ne μg/L	380 U	370 U	380 U	350 U	390 U	350 U	360 U	370 U	440
Hexachloroethane Nurobenzene	µg/Ն µg/Ն	380 U 380 U	370 U 370 U	380 U 380 U	350 U 350 U	396) U 390) U	350 U 350 U	360 U 360 U	370 U 370 U	440 440
Isophorone	μg/L	380 U	370 U	380 U	350 U	390 U	350 U	360 U	370 U	440 1
2-Nitrophenol	µ <b>g</b> /L	380 U	370 U	380 U	350 U	390 U	350 U	360 U	370 U	440 1
2,4-Dimethylphenol his(2-Chloroethoxy)metha	µg/L տա∈ µg/L	380 U 380 U	370 U 370 U	380 U 380 U	350 U 350 U	390 ປ 390 ປ	350 U 350 U	360 U 360 U	370 U 370 U	440 1 440
2,4 Dichlorophenol	μ <b>g</b> /L	380 U	370 U	380 U	350 U	390 U	350 U	360 U	370 U	440
1.2.4-Trichlorobenzene Naphthalene	μg/Ն μg/Ն	380 U 170 J	370 U 67 J	380 U 100 J	350 U 350 U	390 U 100 J	350 U 200 J	360 U 150 J	370 U	440
4-Chloroamline	μg/L μg/L	380 U	370 U	380 U	350 U	390 U	350 U	360 U	260 J 370 U	34 440
Hexachlorobutadiene	μ <b>g/L</b>	380 U	370 U	380 U	350 U	390 U	350 U	360 U	370 U	440
4-Chloro-3-methylpheaol 2-Methylnaphthalene	μg/L μg/L	380 U 180 J	370 U 100 J	380 U 220 J	350 U 350 U	390 U 160 J	350 U 160 J	360 U 140 J	370 U 420	440 28
Hexachlorocyclopentadien		380 U	370 U	380 U	350 U	390 U	350 U	360 U	420 370 U	440
2,4,6-Trichlorophenol	µg/L	380 U	370 U	380 U	350 U	390 U	350 U	360 U	370 U	440
2,4,5-Trichlorophenol 2-Chlorosaphthalene	μ <b>g/L</b> μ <b>g/L</b>	930 U 380 U	890 U 370 U	930 U 380 บ	860 U 350 U	940 U 390 U	860 U 350 U	880 U 360 U	890 U 370 U	1100 440
2-Nitroanline	μ <b>ք</b> /Ը	930 U	890 U	930 U	860 U	940 U	860 U	580 U	890 U	1100
Dimethylphthalate	μg/L	380 U	370 U	380 U	350 U	390 U	350 U	360 U	370 U	440
Aceusphthylene 2,6-Dinitrotoluene	μ <b>ց/Լ</b> μ <u>ց</u> /Լ	260 J 380 U	24 J 370 U	41, J 380 U	48 J 350 U	390 U 390 U	300 I 350 U	340. I 360 U	390 370 U	59 440 1
3-Netroaniline	μ <b>g</b> /L	930 U	890 U	930 U	<b>860</b> U	940 U	860 U	580 U	<b>890</b> U	1100
Aceasphthese	μ <b>g</b> /L	230 J	60 J	380 U	350 U	28 J	300 J	700	340 J	57
2,4-Dinitrophenol 4-Natophenol	μ <b>ց/</b> Լ μ <b>ց/</b> Ն	930 U 930 U	890 U 890 U	930 U 930 U	860 U 860 U	940 U 940 U	860 U 860 U	\$80 U 880 U	890 U 890 U	1100 T 1100 T
Dibeuzofuran	µ <b>g∕</b> L	140 J	43 J	380 U	350 U	82 J	290 3	450	190 J	41
2.4-Dimtrotoluene	μ <b>g/L</b> π/L	380 U 380 U	370 U 370 U	380 U 380 U	350 U 350 U	390 U 390 U	350 U 350 U	360 U 360 U	370 U	440 1
Diethylphthalate I-Chlorophenyl-phenyleth	μ <b>ց/</b> Լ ∝r μ <u>g</u> /L	380 U 380 U	370 U 370 U	380 U 380 U	350 U	390 U 390 U	350 U	360 U 360 U	370 U 370 U	440 1 440 1
luorene	µց/Ն	260 J	38 J	39 J	350 U	390 U	470	840	160 J	67
-Nitroamline	μ <u>g</u> /L	930 U	890 U	930 U	860 U	940 U	860 U	880 U	890 U	1100
,6-Dintro-2-methylpheno I-Nitrosodiphenylanuine	N μg/L μg/L	930 U 380 U	890 U 370 U	930 U 380 U	860 U 350 U	940 U 390 U	860 U 350 U	880 U 360 U	890 U 370 U	1100 U 440 U
-Bromophenyl-phenylethe	ar μg/L	380 U	370 U	380 U	3 <b>50</b> U	390 U	350 U	360 U	370 U	440 0
fexachlorobenzene Pentachlorophenol	μg/L 	380 U 930 U	370 U 890 U	380 U 930 U	350 U	390 U	350 U	360 U	370 U	440 U
Penanthrene	μ <b>g/L</b> μ <b>g/L</b>	930 U 3000	890 U 660	930 U 1000	860 U 170 J	940 U 560	860 U 2500	880 U 9400 D	890 U 5000 D	1100 U 900
Aathraceac	μ <b>μ</b> /L	630	160 J	180 J	39 J	83 J	680	1400	790	210
Carbezole Dian betyinkthelete	μ <b>ε/</b> L.	550	78 J	65 J	350 U	64 J	370	1200	470	99
Di-n-butylphthalate Fluoranthean	µ∎/Լ µ∎/Լ	110 J 2700	150 J 950	82 J 830	47 J 320 J	28 J 630	350 U 2300	41 J 2800	370 U 9100 D	23 1400
Рутенс	μ <b>g/L</b>	3100 E	1000	810	320 J 400	630 710	2300 5600 D	12000 D	7600 D	1300
Butylocazylphthalate	μ <b>g</b> /L	3 <b>80</b> UJ	370 U	380 U	350 U	390 U	350 U	360 U	370 U	440 U
3,3'-Dichlorobenzidine Benzojajanthracene	μ <u>⊈</u> /Լ μ <u>ք</u> /Լ	360 UJ 1900 J	370 U 5/U	380 U 560	350 U 310 J	390 U 380 J	350 U 2800	360 U 6300 D	370 U 5200 D	440 U 940
Uhrystat	μ <b>g</b> /L	3000 J	/90	670	400	570	3600 D	/100 D	5900 D	870
bis(2-Ethylnexyl)phthalate	։ µ <b>ք/</b> Լ µ <b>ք/</b> Լ	620 J 380 U	370 U 370 U	380 U 380 U	350 U 350 U	640 390 U	350 U 350 U	450 B 360 U	860 370 U	440 t 440 t
Di-n-octylphthalate										

i.

				ده ۲	Table B-1 der Organic Analy tar-Lee Lember reacher 1992					
	Radion Localizati Secondo National Data Secondos	ELGIS	ELGH	ELOIS	ELCH	ELGI7	ELGUE	ELGIP	ELGIO	ELC
	Viele	اسک	<b></b>	Seal	يسو	Seal	54	يسو	Seal	s
Tange dailes	τ									
Secon Apress	46 -		·*•.	46.	310 2		_13K	540K J	4400 U	6
asterna		_'#£	444	<b>A.</b> U	.90	5 T	1400	5 <b>300</b> D	:u er:	e
Concellant (militeraceme	44 ⁶	: <b>*X</b>		<b>*</b> 1	23 3	<b>29C</b>	500	<b></b>	130	
The second of the second second	44 -		· · · ·	<u> </u>	210 .	24	.200			6
Future VCh										
anto LEC	يهد ا									:
heras 3.80	44 -									-
anta 3280	44.5									-
ميريانين 336 متحمي	-4 <u>-</u>									
. Territor Taker										
Autor III	انغد بانغد									
fagtaction speciality Federalities (	معد ا معد ا									
Canadima -	140 C									
LANNACE	40 - 41 -									
in a luce Enviro	40 - 40 -									
Internation I	40 - 41 -									
44.000	180 L									
Francisco subser	40 -									
44.007	- 100 -									
Martin Freihilt	անը՝։									
Endern Steamer	40 - 40 -									
	440 L									
ante - Justine	440 - 440 -									
Contrast - Number										
	40									2
Apactor 114	49 - 49 -									-
Araciar 221	240 C 240 C									
Arachar 111	249 - L 248 L									
Armone 114										
Aractor 14	- 44 - -									
Arman 144										
Aristian (196										

1 a

			Sa	il and Groundwate		tical Results				
	tion Location:	CLSS01-B	CLSS02-A		r-Lee Lunaber ember 1992 CLSS03-A	CLSS03-B	CLSS64	CLSB01-1	CLSE01-2	CLSB01-3
Set	mple Number: Date Sampled:	ELG19	ELG21 11-3-92	ELG22 11-3-92	ELG17	ELG16	ELG31 11-4-92	ELG50 11-6-92	ELG52 11-6-92	ELG54 11-6-92
Volatiles	Media: Units	Soil	Soil	Soil	Soll	Soil	Soil	Soil	Soll	Soil
Chloromethane Bromomethane	μg/L μg/L	12 U 12 U	11 U 11 U	11 U 11 U	11 U 11 U	14 U 14 U	12 U 12 U	11 U 11 U	11 UJ 11 UJ	11 U 11 U
Vinyl Chloride	μg/L	12 U	u u	11 U	11 U	14 U	12 U	u u	ເບ	11 U
Chloroethane Methylene Chloride	μg/L μg/L	12 U 34	11 U 19	11 U 4 J	11 U 36	14 U 15	12 U 8 J	11 U 11 U	11 UJ 38 J	11 U 3 J
Acetone	μg/L μg/L	12 U	11 U	11 U	11 U	14 U	12 U	11 U	170 J	61
Carbon Disulfide	µg/L	12 U	11 U	11 U 11 U	11 U 11 U	14 U 14 U	12 U 12 U	11 U 11 U	11 UJ	11 U 11 U
1,1-Dichloroethene 1,1-Dichloroethane	μg/L μg/L	12 U 12 U	11 U 11 U	11 U 11 U	11 U 11 U	14 U 14 U	12 U 12 U	11 U	11 UJ 11 UJ	
1,2-Dichloroethene (total)	μg/L	12 U	11 U	11 U	11 U	14 U	12 U	11 U	11 UJ	11 U
Chloroform 1,2-Dichloroethane	μg/L μg/L	12 U 12 U	11 0	11 U 11 U	11 U 11 U	14 U 14 U	12 U 12 U	11 U 11 U	11 UJ 11 UJ	11 U 11 U
2-Butanone (MEK)	μą/L	12 U	11 U	11 U	n u	14 U	12 U	11 U	11 UJ	n u
1.1,1-Trichloroethane Carbon Tetrachloride	μg/L μg/L	12 UJ 12 UJ	11 U 11 U	11 U 11 U	11 U 11 U	14 U 14 U	12 UJ 12 UJ	11 U 11 U	11 UJ 11 UJ	11 U 11 U
Bromodichloromethane	μg/L	12 (J)	11 U	11 U	нU	14 U	12 UJ	11 U	11 UJ	11 U
1,2-Dichloropropane	μg/L 	12 UJ 12 UJ	11 U 11 U	11 U 11 U	11 U 11 U	14 U 14 U	12 UJ 12 UJ	11 U 11 U	11 UJ 11 UJ	11 U 11 U
cis-1,3-Dichloropropene Trichloroethene	μg/L μg/L	12 UJ	11 U	2 J	11 U	14 U	12 UJ	11 U	11 UJ	11 U
Dibromochloromethane	μg/L	12 UJ	11 U	11 U	11 U	14 U	12 UJ	11 U	11 UJ	11 U
1,1,2-Trichloroethane Benzene	μ <u>ց</u> /Լ μ <u>ց</u> /Լ	12 UJ 12 UJ	11 U 11 U	11 U 11 U	11 U 11 U	14 U 14 U	12 UJ 12 UJ	11 U 11 U	11 UJ	11 U 11 U
trans-1,3-Dichloropropens	μ <b>g</b> /L	12 UJ	11 U	11 U	11 U	14 U	12 UJ	11 U	11 UJ	11 U
Bromoform 4-Methyl-2-Pentanone	μg/L μg/L	12 UJ 12 UJ	11 U 11 U	11 U 11 U	11 U 11 UJ	14 U 14 U	12 UJ 12 UJ	11 U 11 U	11 UJ 11 UJ	11 U 11 U
2-Hexagone	με/Ն με/Ն	12 UJ	11 U	11 U	11 UJ	14 U	12 UJ	11 U	LI UJ	11 U
Tetrachioroethene 1,1,2,2-Tetrachioroethane	μg/L	12 UJ 12 UJ	11 U 11 U	11 U 11 U	11 UJ 11 UJ	14 U 14 U	12 UJ 12 UJ	11 U 11 U	11 UJ 11 UJ	11 U 11 U
Toluene	μg/L μg/L	12 UJ 12 UJ	11 U	4 J	11 UJ	14 U	12 UJ 5 J	11 U	t 8	5 J
Chloronenzene	μg/L	5 J	11 U	11 U	11 UJ	14 U	12 UJ	11 U	11 UJ	11 U
Ethylbenzene Styrene	μg/L μg/L	12 UJ 12 UJ	11 U 11 U	11 U 11 U	11 UJ 11 UJ	14 U 14 U	12 UJ 12 UJ	11 U 11 U	11 UJ 11 UJ	11 U 11 U
Xylene (mixed)	μ <b>g/</b> L	12 UJ	<u>11 U</u>	11_U	11 UJ	14 U	<u>4</u> J	<u> </u>	11 UJ	<u> </u>
Semivolatiles Phenoi	Units µg/L	390 U	370 U	360 U	370 U	450 U	400 U	360 U	3600 U	350 U
bis(2-chloroethyl)ether	μg/L	390 U	370 U	360 U	370 U	450 U	400 U	360 U	3600 U	350 U
2 Chlorophenol	µg/L µg/L	390 U 390 U	370 U 370 U	360 U 360 U	370 U 370 U	450 U 450 U	400 U 400 U	360 U 360 U	3600 U 3600 U	350 U 350 U
1.3-Dichlorobenzene 1.4-Dichlorobenzene	μg/L	390 U	370 U	360 U	370 U	450 U	400 U	360 U	3600 U	350 U
1.2 Dichlorohenzene	μg/L	390 U	370 U	360 U	370 U 370 U	450 U 450 U	400 U	360 U 360 U	3600 U	350 U 350 U
2-Methylphenol 2,2:oxybis(1-Chloropropa	μg/L (ne) μg/L	390 U 390 U	370 U 370 U	360 U 360 U	370 U	430 U 450 U	400 U 400 U	360 U	3600 U 3600 U	350 U 350 U
4-Methylphenol	μg/L	390 U	370 U	360 U	370 U	450 U	400 U	360 U	3600 U	350 U
N-Nitroso-di-a-propylamu Hexachloroethane	ae μg/L μg/L	390 U 390 U	370 U 370 U	360 U 360 U	370 U 370 U	450 U 450 U	400 U 400 U	360 U 360 U	3600 U 3600 U	350 U 350 U
Nitrobenzene	μg/L	390 U	370 U	360 U	370 U	450 U	400 U	360 U	3600 U	3 <b>50</b> U
Isophorose 2-Nitrophesol	μg/L μg/L	390 U 390 U	370 U 370 U	360 U 360 U	370 U 370 U	450 U 450 U	400 U 400 U	360 U 360 U	3600 U 3600 U	350 U 350 U
2.4 Dimethylphenol	μ <b>g</b> /L	390 U	370 U	360 U	370 U	450 U	400 U	360 U	3600 U	350 U
bis(2-Chloroethoxy)metha		390 U 390 U	370 U 370 U	360 U 360 U	370 U 370 U	450 U 450 U	400 U 400 U	360 U 360 U	3600 U 3600 U	350 U 350 U
2,4-Dichlorophenol 1,2,4-Trichlorobenzene	μg/L μg/L	390 U	370 U	360 U	370 U	450 U	400 U	360 U	3600 U	350 U
Naphthalene	µg/L	65 J	260 J	360 U	38 J	140 J	87 J	360 U	3600 U	350 U
4-Chicroaniline Hexachiorobutadiene	μg/L μg/L	390 U 390 U	370 U 370 U	360 U 360 U	370 U 370 U	450 U 450 U	400 U 400 U	360 U 360 U	3600 U 3600 U	350 U 350 U
4-Chloro-3-methylphenol	µg/L	390 U	370 U	360 U	370 U	450 U	400 U	360 U	3600 U	350 U
2 Methylpaphthalene Hexachlorocyclopentadiei	μα/Ն νε μα/Ն	47 J 390 U	360 J 370 U	360 U 360 U	34 J 370 U	380 J 450 U	140 J 400 U	360 U 360 U	240 J 3600 U	350 U 350 U
2,4,6-Trichlorophenol	µш,/L.	390 U	370 U	360 U	370 U	450 U	400 U	360 U	3600 U	350 U
2,4,5-Trichloropheaol 2-Chloronaphthalene	μg/L μg/L	950 U 390 U	910 U 370 U	880 U 360 U	890 U 370 U	1100 U 450 U	960 U 400 U	880 U 360 U	8700 U 3600 U	850 U 350 U
2-Chioromaphinalene 2-Nitroaniline	μ <b>ε</b> /L	950 U	910 U	880 U	890 U	1100 U	400 U 960 U	580 U	8700 U	850 U
Dimethylphthalate	μg/L	390 U 110 J	370 U 150 J	360 U 360 U	370 U 35 J	450 U 110 J	400 U 400 U	360 U	3600 U	350 U
Acenaphunylene 2,6-Dinapotoluene	μg/L μg/L	110 J 390 U	370 U	360 U 360 U	35 J 370 U	450 U	400 U 400 U	22 J 360 U	3600 U 3600 U	350 U 350 U
3-Nitroanilae	μ <b>g/L</b>	950 U	910 U	880 U	890 U 85 J	1100 U	960 U	880 U	8700 U	850 U
Acenaphthene 2.4-Dimurophenol	<b>μg/L</b> μg/L	140 J 950 U	36 J 910 U	360 U 880 U	85 J 890 U	32 J 1100 U	400 U 960 U	35 J 880 U	3600 U 8700 U	350 U 850 U
4-Nitophenoi	µg/L	950 U	910 U	880 U	890 U	1100 U	960 U	880 U	8700 U	850 U
Dibenzofuran 2,4-Dimigrotoluene	μ <u>ε</u> /Έ. με/Έ.	100 J 390 U	110 J 370 U	360 U 360 U	55 J 370 U	93 J 450 U	55 ) 400 U	19 J 360 U	220 J 3600 U	350 U 350 U
Diethylphthalate	μg/L	64 J	370 U	360 U	370 U	450 U	400 U	360 U	3600 U	350 U
4-Chlorophenyl-phenylet Fluorene	νατ μg/L μg/L	390 U 190 J	370 U 49 J	360 U 360 U	370 U 83 J	450 U 42 J	400 U 400 U	360 U 34 J	3600 U 230 J	350 U 350 U
4-Nitroaniline	µք/Ն µք/Ն	950 U	910 U	880 U	890 U	1100 U	400 U 960 U	880 U	230 J \$700 ປ	850 U
4,6-Dinitro-2-methylphen	ol μg/L	950 U	910 U	880 U	890 U	1100 U	960 U	880 U	8700 U	850 U
N-Nstrosodiphenylamme 4-Bromophenyl-phenyleth	μց/L er μց/L	390 U 390 U	370 U 370 U	360 U 360 U	370 U 370 U	450 U 450 U	400 U 400 U	360 U 360 U	3600 U 3600 U	350 U 350 U
Hezachiorobenzene	µg/L	390 U	370 U	360 U	370 U	450 U	400 U	360 U	3600 U	350 U
Pentachiorophenol Phenanihrene	ж <b>а</b> /L µg/L	950 U 2000	910 U 750	880 U 60 J	890 U 1100	1100 U 660	960 U 310 J	880 U 410	8700 U 1900 J	850 U 850 U
Asthraceae	μg/L μg/L	520	170 J	360 U	230 J	150 J	39 J	110 J	420 J	350 U
Carbazole Dise.butwinkthalate	μ <b>g</b> /L .	240 J	60 J	360 U	81 J 20 J	94 J 30 J	400 U	42 J 27 J	290 J 3600 U	350 U 350 U
Di-s-butylphthalate Fluoraathene	µղլ/Լ µղլ/Լ	390 U 2600	44 J 990	360 U 74 J	20 J 1400	30 J 1000	40 J 290 J	770	1600 J	850 U
Ругеве	μg/L	2600	990	74 J	1800	970 J	280 J	750	4100 J	350 U
Butylbenzylphthalate 3,3'-Dichlorobenzidine	μ <b>ε/</b> L με/L	390 U 390 U	370 U 370 U	360 U 360 U	370 U 370 U	450 UJ 450 UJ	400 U 400 U	360 U 360 U	3600 J 3600 J	350 U 350 U
Beazojajanthracene	μg/1.	1800	/10	59 3	/90	/30 J	160 J	400	1500 1	350 U 350 U
Chrysene bis(2-Ethylhexyl)phthalas	μα/L ¢ μα/L	1800 390 U	800 370 U	/U J 360 U	/40 370 U	810 J 450 U	220 J 250 J	390 360 U	2100 J 3600 J	350 U 350 U
Di-a-octylpathalate	μ <b>ε</b> /L	390 U	370 U	360 U	370 U	450 UJ	60 J	19 J	3600 J	350 U
Beazo(b)thorasthese.	μg/L	1200 J	1600	360 U	680	1100 3	180 J	470	3600 J	350 U

					Table B-1					
				Sail and Granades		rand Reads				
					ter-Lee Leester					
	Nation Location:		CLORDA		CLSSID-A	OAN 1	CLASS 1	-	CLS 11-1	CL5101-3
	Sumply Sumber	ELGI	ELGH	DCD	ELGI"	ELGH	ELGH	ELCS.	ELGS2	ELG54
	Date Suspiral		11-3-42	11-3-92			11-4-92	11-6-92	11-6-92	11-4-92
	Media	<u> </u>		<u>Sed</u>	Suit	<u>Seil</u>	Seil .	Seil	Seil	Seil
والمتحدثين والمتحدثين والمتحدث	( <b>1</b>									
and the subscript	4 <b>6</b> -	. 43L . 23L	5 A. Nation	10 . 10 .	10 400	300 - 450 -	AL .	1948 <u>.</u>	1000	350 L
anderstern i 2003-sateligeretente Derenanste auto-anterfestationetente			1940 - 1 1941 - 1			450 12	400	3642 . 1662	3600 J 3600 J	350 U 350 U
ланны аланныкан Бала да., ратчан	- 40 - 40				250	400 .	400		9600 I 3600 J	150 U
Canadan PCIn			<u> </u>							
anno 3HC		: :	1.8.5	:9 t	1 <b>9</b> 1	23.1	::	19 12	L8 C7	11 0
	4		1.1		19 U	23 1		19 0	14 17	1.1 0
antas a HKC			14 1	:• 1	191	2.3 1	1.0	19 0	18 17	1.8 0
anna diff Lanaa		: :	: • :	:• :	191	2.3 1	::	18 C	18 01	18 0
"argingchi af	-	24 :	10 11	:• 1	191	23 17	11 1	t• t	18 11	18 0
4.07.0		: :	1 🕈 t	19 1	191	23 T	1 1	13 C	18 U	18 0
-		15 :	:• :	:• t	: 1	23 U	15	14 U	11 UI	18 0
in the last of the	1.0	: :	:•:	:• U	19 1	2.3 U	2 ::	19 U	14 U	18 0
Clumente	and to	54 <u>(</u>	5 T 1	76 l	37.2	45.11	4 12	3.6 C	36 U	3.5 0
4 F 00E	-1 Be	5 <b>4</b> 1	· · ·	• <b>6</b> 1	37 1	45.11	<b>.</b>	36 C	3.6 UJ	3.5 U
1.0 <b>0</b> 4		5.8.5	1.5	54	17 J	15	4 U	36 U	36 UI	3.5 U
internation I	and to	59 C	97 t	3.6 1	39 J	4.5 U	4 0	36 U	3.6 UI	3.5 U
4 000	- <b>1</b>	5 <b>1</b> -	111	¥4 1	37 10	4.5 12	4 12	35 C	36 UJ	3.5 U
and the second	40 L	54 C	37 11	36 U	37 1	4.5 U	4 11	36 C	36 UJ	3.5 U
44.007	44	5 <b>8</b> 1	1 ° 1	5 a 1	37.1	4.5 1	<b>46</b> 2	5° 1	42-1	35 U
Methons within	AB L	<b>x</b> :	14 t	19 L'	:• 1	29 U	20 U	19 C	46 J	18
and name		** :	17.1	76 t	37 U	45 U	4 1	36 C	15 1	3.5 U
Lastra white-te		¥4 1	· · :	7.6 U	37 1	4.5 U	4 U	5.6 U	3.6 UI	35 U
and the second sec		LS :	19.1	19 U	12 3	23 U	1000 E	19 C	14 UI	1.8 U
persona Disentange	- <b>1</b>		:•:	:• :	23	23 U	79 E	19 U	1.8 UJ	1.8 U
" st.gillenge	∎L	22 1	190 t.	190 V	190 1	230 1	200 U	190 C	180 U	1 <b>80</b> U
Anadam-1016	a∎⊑	<b>H</b>	7" t	36 U	77 1	45 12	🐠 U	36 U	36 U	35 U
Academ	4 <b>0</b> -	<b>E</b> 1	<b>16</b> 1	74 **	*4 L	●1 1 ¹	81 U	74 C	73 U	71 U
Aradam-1252	46 -		<b>r</b> :	₩ 1.	77 V	45 L	🛋 U	36 U	36 U	35 U
Arashir (141	40°-	-	<u>r</u> .	<b>W</b> 1	<b>T</b> 1	45 1	🕿 T	36 U	36 C	35 U
kenner 1. 4	46	<b>%</b> (	3 <b>-</b> 1	₩ 1	7" V	45 1	<b>#</b> 1	36 U	36 U	35 U
Acresist 1254	48 <u>1</u>	94 <u>1</u>	<b>M</b> 1	<b>W</b> 1	<u>.</u>	45 U	<b>4</b> 0 I	35 1	₩ Ľ	35 U
Acadom 1260		NG .	· · ·	¥ 1		45.1	🔄 🗰 🙄	<u>&gt; 10</u>	36 U	_35 U

			Soil	and Groundwater		ical Results				
	Location:	CLS802-1	CLSB02-2		Lee Lamber mber 1992 CLSB03-1	CLSB03-Z	CLSB03-3	CLSB04-1	CLSB04-2	CLSB04-3
Sample	Number: Sampled:	ELG44 11-6-92	ELG45 11-6-92	ELG46	ELG40 11-5-92	ELG41 11-5-92	ELG43 11-5-92	ELG27 11-4-92	ELG28 11-4-92	ELG29 11-4-92
Volatiles	Media: Units	Soil	Soil	Sail	Soit	Soil	Sail	Soil	Soll	Sail
Chloromethane Bromomethane	μg/L μg/L	11 UJ 11 UJ	12 UJ 12 UJ	11 U 11 U	11 U 11 U	11 U 11 U	10 U 10 U	11 U 11 U	12 U 12 U	10 U 10 U
Vinyi Chionde	μg/L	11 UJ	12 UJ	11 U	υ	11 U	10 U	11 U	12 U	10 U
Chioroethane Methylene Chioride	μℊ/Լ μℊ/Լ	11 UJ 33 J	12 UJ 31 J	11 U 11 U	11 U 22	11 U 7 J	10 U 10 U	11 U 12	12 U 7 J	10 U 10 U
Acetone	µg/L	11 UJ	12 UJ	11 U	31	11 U	10 U	23	27	10 U
Carbon Disulfide 1.1-Dichloroethene	μg/L μg/L	11 UJ 11 UJ	12 UJ 12 UJ	11 U 11 U	11 U 11 U	11 U 11 U	10 U 10 U	11 U 11 U	12 U 12 U	10 U 10 U
1,1-Dichloroethane	μg/L	11 UJ	12 UJ	11 U	11 U	11 U	10 U	11 U	12 U	10 U
1,2-Dichioroethene (total) Chloroform	μg/L μg/L	11 UJ 11 UJ	12 UJ 12 UJ	11 U 11 U	11 U 11 U	11 U 11 U	10 U 10 U	11 U 11 U	12 U 12 U	10 U 10 U
1.2-Dichloroethane	μg/L	11 UJ	12 UJ 12 UJ	11 U 11 U	11 U	11 U	10 U 10 U	11 U 11 U	12 U 12 U	10 U 10 U
2-Butanone (MEK) 1,1,1-Trichloroethane	μg/L μg/L	11 UJ 11 UJ	12 UJ		11 U 11 UJ	11 U 11 U	10 U	11 U	12 U	10 U
Carbon Tetrachloride	µg/L	11 UJ 11 UJ	12 UJ 12 UJ	11 U 11 U	11 UJ 11 UJ	11 U 11 U	10 U 10 U	11 U 11 U	12 U 12 U	10 U 10 U
Bromodichioromethase 1,2-Dichloropropane	µg/L µg/L	11 W	12 UJ	11 U	11 01	11 U	10 U	11 U	12 U	10 U
cis-1,3-Dichloropropene	µg/L	11 UJ 11 UJ	12 UJ 12 UJ	11 U 11 U	11 UJ 11 UJ	11 U 11 U	10 U 10 U	11 U 11 U	12 U 12 U	10 U 10 U
Trichloroethene Dibromochloromethane	μg/L μg/L	11 03	12 UJ	11 U	11 UJ	11 U	10 U	11 U	12 U	10 U
1,1,2-Trichloroethane Benzene	μg/L.	11 UJ 11 UJ	12 UJ 12 UJ	11 U 11 U	11 UJ 11 UJ	11 U 11 U	10 U 10 U	11 U 11 U	12 U 12 U	10 U 10 U
trans-1,3-Dichloropropene	μg/Լ μg/Լ	រេ ហ	12 UJ	11 U	11 03	11 U	10 U	11 U	12 U	10 U
Bromoform 4-Methyl-2-Pentanone	μg/L μg/L	11 UJ 11 UJ	12 UJ 12 UJ	11 U 11 U	11 UJ 11 UJ	11 U 11 U	10 U 10 U	11 U 11 U	12 U 12 U	10 U 10 U
2-Нехалове	μ <b>g</b> /L	11 UJ	12 UJ	11 U	11 UJ	11 U	10 U	11 U	12 U	10 U
Tetrachloroethene 1.1.2.2-Tetrachloroethane	μg/L μg/L	11 UJ 11 UJ	12 UJ 12 UJ	11 U 11 U	11 UJ	ຳນ 11 ປ	10 U 10 U	11 U 11 U	12 U 12 U	10 U 10 U
Toluese	μ <b>g</b> /L	6 I	12 UJ	11 U	11 UJ	5 J	4 J	5 J	4 J	5 J
Chlorobenzene Ethylbenzene	μg/L. μg/L	11 UJ 11 UJ	12 UJ 12 UJ	11 U 11 U	11 UJ 11 UJ	11 U 11 U	10 U 10 U	11 U 11 U	12 U 12 U	10 U 10 U
Styrene	µg/L	11 UJ	12 UJ	11 U	11 UI	11 U	10 U	11 U	12 U	10 U
Xylene (mixed) Semivolatiles	µg/L. Units	11 UJ	65 J	11_U	11 UJ	11 U	10 U	<u> </u>	12 U	4 J
Phenol	µg/L	380 U	390 U 390 U	350 U 350 U	360 U	370 U	340 U 340 U	370 U 370 U	410 U	340 U
bis(2-chloroethyl)ether 2-Chlorophenol	μg/L μg/L	380 U 380 U	390 U 390 U	350 U	360 U 360 U	370 U 370 U	340 U 340 U	370 U 370 U	410 U 410 U	340 U 340 U
1.3-Dichlorobenzene	μg/L	380 U	390 U 390 U	350 U 350 U	360 U	370 U	340 U 340 U	370 U 370 U	410 U 410 U	340 U
1.4-Dichlorobenzene 1.2-Dichlorobenzene	μg/L μg/L	380 U 380 U	390 U	350 U	360 U 360 U	370 U 370 U	340 U 340 U	370 U	410 U	340 U 340 U
2-Methylphenol	μg/L μg/L	380 U 380 U	390 U 390 U	350 U 350 U	360 U 360 U	370 U 370 U	340 U 340 U	370 U 370 U	410 U 410 U	340 U 340 U
2.2'-oxybis(1-Chloropropane) 4-Methylphenol	μg/L μg/L	380 U	390 U	350 U	360 U	370 U	340 U	370 U	410 U	340 U
N-Natroso-di-n-propylamine Hexachloroethane	μg/L μg/L	380 U 380 U	390 U 390 U	350 U 350 U	360 U 360 U	370 U 370 U	340 U 340 U	370 U 370 U	410 U 410 U	340 U 340 U
Nitrobenzene	μ <b>g</b> /L	380 U	390 U	350 U	360 U	370 U	340 U	370 U	410 U	340 U
Isophorone 2-Nurophenol	μg/L μg/L	380 U 380 U	390 U 390 U	350 U 350 U	360 U 360 U	370 U 370 U	340 U 340 U	370 U 370 U	410 U 410 U	340 U 340 U
2,4-Dimethylphenol	μg/L	380 U	390 U	350 U	360 U	370 U	340 U	370 U	410 U	340 U
bis(2-Chloroethoxy)methane 2,4-Dichlorophenol	μg/L μg/L	380 U 380 U	390 U 390 U	350 U 350 U	360 U 360 U	370 U 370 U	340 U 340 U	370 U 370 U	410 U 410 U	340 U 340 U
1,2,4-Trichlorobenzene	μ <b>g</b> /L	380 U	390 U	350 U	360 U	370 U	340 U	370 U	410 U	340 U
Naphthalene 4-Chloroamline	μg/L μg/L	110 J 380 U	710 390 U	350 U 350 U	360 U 360 U	370 U 370 U	340 U 340 U	230 J 370 U	410 U 410 U	340 U 340 U
Hexachlorobutadiene	µg/L	380 U	390 U	350 U	360 U	370 U	340 U	370 U	<b>410</b> U	340 U
4-Chloro-3-methylphenol 2-Methylnaphthalene	μg/Լ. μg/Լ,	380 U 170 J	390 U 520	350 U 350 U	360 U 360 U	370 U 370 U	340 U 340 U	370 U 180 J	410 U 410 U	340 U 340 U
Hexachlorocyclopentadiene	μg/L	380 U	390 U 390 U	350 U	360 U	370 U	340 U	370 U	410 U	340 U
2,4,6-Trichlorophenol 2,4,5-Trichlorophenol	μ <b>g/L</b> μg/L	380 U 920 U	940 U	350 U 860 U	360 U 870 U	370 U 910 U	340 U 830 U	370 U 890 U	410 U 990 U	340 U 820 U
2-Chloronaphthalene 2-Nitroaniline	MER	380 U 920 U	390 U 940 U	350 U 860 U	360 U 870 U	370 U 910 U	340 U 830 U	370 U 890 U	410 U 990 U	340 U 820 U
Dimethylphthalate	μg/L μg/L	380 U	3 <b>90</b> U	350 U	360 U	370 U	340 U	370 U	410 U	340 U
Acenaphthylene 2.6-Distroioluene	μg/L μg/L	240 J 380 U	100 J 390 U	350 U 350 U	24 J 360 U	370 U 910 U	340 U 830 U	42 J 370 U	410 U 410 U	340 U 340 U
3-Nitroaniline	HEAL	920 U	940 U	860 U	870 U	370 U	340 U	890 U	990 U	820 U
Acenaphthene 2.4-Dinitrophenol	µg/L µg/L	64 J 920 U	360 J 940 U	350 U 860 U	97 J 870 U	370 U 910 U	340 U 830 U	270 J 890 U	410 U 990 U	340 U 820 U
4-Nitophenol	μg/L	920 U	940 U	860 U	870 U	910 U	830 U	890 U	990 U	820 U
Dibenzofuran 2.4-Dimitrotoluene	µg/L µg/L	130 J 380 U	350 J 390 U	350 U 350 U	56 J 360 U	370 U 370 U	340 U 340 U	180 J 370 U	410 U 410 U	340 U. 340 U
Diethylphthalate	µg/L	3 <b>80</b> U	390 U	350 U	360 U	370 U	340 U	370 U	410 U	340 U
4-Chloropheayl-pheaylether Fluorese	μg/L μg/L	380 U 83 J	390 U 400	350 U 350 U	360 U 99 J	370 U 370 U	340 U 340 U	370 U 270 J	410 U 410 U	340 U 340 U
4-Nitroaniliae	μ <b>g</b> /L	920 U	940 U	860 U	870 U	910 U	830 U	890 U	990 U	820 U
4,6-Disitro-2-methylphesol N-Nitrosodiphesylamise	μg/L μg/L	920 U 310 U	940 U 390 U	860 U 350 U	870 U 360 U	910 U 370 U	830 U 340 U	890 U 370 U	990 U 410 U	820 U 340 U
4-Bromophenyl-phenylether	μg/L	380 U 380 U	390 U 390 U	350 U 350 U	360 U 360 U	370 U 370 U	340 U 340 U	370 U 370 U	410 U 410 U	340 U 340 U
Hexachlorobenzene Pentachlorophenol	μġ/L μg/L	920 U	940 U	860 U	870 U	910 U	830 U	<b>890</b> U	990 U	820 U
Phenaothrene Anthracene	μg/L	1100 310 J	1600 560	350 U 350 U	870 230 J	86 J 370 U	340 U 340 U	2600 640	410 U 410 U	340 U 340 U
Carbazole	μg/L μg/L	110 J	120 J	350 U	97 J	370 U	340 U	270 J	410 U	340 U
Di-n-butylphthalate Fluoranthene	μ <b>g/L</b>	32 J 2700	33 J 1200	31 J 350 U	360 U 1100	370 U 140 J	340 U 340 U	370 U 2600	410 U 410 U	340 U 340 U
Рутеле	μg/L. μg/L.	3700 D	1200	350 U	1100	120 J	340 U	2600	410 U	340 U
Butylbenzyiphthalme 3.3'-Dichlorobenzidine	μ <b>ε</b> /L	380 U 380 U	390 U 390 U	350 U 350 U	360 U 360 U	370 U 370 U	340 U 340 U	370 U 370 U	410 U 410 U	340 U 340 U
Benzojajanthracene	μ <b>g/L</b> μg/L	1900	570	350 U	680	72 1	340 U	1700	410 U	340 U
Chrysene bis(2-Ethylhezyl)phthalate	μg/L. μg/L	2100 380 UJ	580 390 U	350 U 350 U	680 39 J	79 J 370 U	340 U 340 U	1800 370 U	410 U 410 U	340 U 340 U
Di-a-octylphthalate Benzolbithuoranthene	μ <b>g</b> /L	380 UJ	390 U	350 U	360 U	370 U	340 U	21 J	410 U	340 U
I THE REAL POST DUCKNESS	µg/L	2700 DJ	490	350 U	920 J	130 J	340 U	2400	410 U	340 U

					Table B-1					
			5	al and Ground-se		recui Randha				
·,	Nation Location	CLASSIC T	CLUB A	CLANCE	CLSR8-1	CLS B-1	CLASS OF	CLSS III	CLSHH-I	CLARKE
	Sample Support	ELGH	ELG46	ELCA	ELGO	ELG41	ELC-G	ELCT	ELC28	ELG2
	Duse Sumplish	114-52	11-4-92		11-5-92	11-5-42	11542	11-4-72	11-4-92	11-4-97
	Mandan.	Sud	Seal _	Sed	Suit	<u></u>	<u> </u>	<u>Seel</u>	Seil	Sei
Surgerstation .	Casta									
Sectors a presente	44 S	1.00 1982 - 1	4K. 121	990 U 190 U	5.3L'	54 2 29 2	544 544	1900 3-12 - C	410 L 410 L	340 340
- Indenies	r agti agti	540 LT		150 U		370 1		570	410 0	340
Sector (2.2., person	44 44 - 1	-		35		710 1		76	410 (	340
Parameter Ville										
anna 380		: :	: :	:# 1	18-1	19 1	:4 2	14 5	21 0	1.8
With BRC	an L		: :	1.1	18 1	19 Ú	: 1 1	:+ :	21 0	18
antes derif.			2 :	1.1	18 1	19 1	:3 1	:4 0	21 0	1.8
manna 3:30 Ladane				11.1	18 1	19 1	14 1	14 0	21 U	1.8
Contraction of		: -	: •	:s t	10 3	19 1	14 11	19 1	21 0	18
Autor			: :	:3 1	18 l	19 U	14 U	10 U	21 U	: 5
Contractions reported		::	: :	; s t	56 3	19 1	18 11	24	21 C	1 8
Enderstation		: :	:	, <b>s</b> t	18 1	19 T	14 1	14 0	21 U	1.8
Clesion	44	5 <b>4</b> 1	<b>14</b> (	3.5 T	3.6 1	37 U	54 V	37.5	41 U	3.4
AF DOE	ag L	54 C	<b>34</b> 1	75 C	36-1	37 U	54 2	37 0	41 U	3.4
Langua		3.8 5	34 1	15 t	6.2	37 1	34 U	::	41 U	34
Equipanettine 12	44.5	5 <b>8</b> 1	34 1	35.1	36 U	17 11	54 t	17 U	41 U	34
44 000	ag L	N# 1	34 1	15 (	3.6 U	97 V	34 1	3.7 C	41 U	34
incontine suffer	ang L	54 1	52	15 1	3.6 L	37 U	34 V	5* U	41 U	34
44-007		:: :	14 1	<u>15</u> 1	<b>£</b> 1	37 U	34 U	<b>14</b> 2	41 U	34
Methodewalter	Jac L	<b>x</b> :	<b>x</b> 1	18 T	18 L	19 U	18 U	19 C	21 U	18
Lautens eenange	ag E	34 L	<u>64</u> ;	35 V	36 U	37 L	34 U	37 C	41 U	34
Enders automate	- 1 B	54 L	34 1	25 U	36 L	37 1	34 U	17 U	41 0	34
ante-Caurtane		: :	2 1	:s :	35 E	19 U	18 U		21 U	1.8
parameter - Chemistration		::	: .	18 L	40 E	19 U	18 U	2	21 U	1.8
T : Rugillerige	ALC: N	28	<b>300</b>	180 U	1 <b>80</b> U	190 U	190 U	190 C	210 C	180
Armone 116	ang C	<b>S</b> 1	<b>14</b>	25 1	36 l	37 U	54 U	3° C	41 U	34
Aracher	- 14 L		<b>1</b>	- 1	ורי	<b>76</b> Ľ	<b>T</b>	54 C	10 U	69
Amount 1272	Jan L	4	74	35 T	🗙 U	37 L	54 U	<b>r</b> C	41 U	34
Activation 1142	Jan L	<b>1</b>	<b>24</b>	ля <u>с</u>	36 U	<b>F</b> U	54 U	<b>F</b> C	41 U	34
Acocoar 1148	- 48 L	ч.	N .	** :	<b>36</b> U	7 U	54 U	デビ	41 U	<u>,4</u>
Amount 124	AL .		14 · ·	15	36 U	37 U	54 U	T 11	41 U	34

			S		Table B-1 ter Organic Analy	tical Results				
					ter-Lee Lamber ovember 1992 CLSB06-2					
	ation Location: ample Number:	CLSB05-1 ELG55	CLSB05-2 ELG56	CLSB06-1 ELG58	CLSB06-2 ELG57	CLSB07 ELG59	CLSB08 ELG60	CLSB09-1 ELG61	CLSB09-2 ELG62	CLSB10-1 ELG63
_	Date Sampled:	11-6-92	11-6-92	11-6-92	11-6-92	11-6-92 Soil	11- <b>6-92</b> Soil	11-6-92	11-6-92 Soil	11-6-92 Soil
Volatiles	Media: Units	Soft	Soll	Soil	Soil		<u> </u>	Soil		
Chloromethane Bromomethane	μg/L μg/L	12 U 12 U	11 U 11 U	13 UJ 13 UJ	11 U 11 U	11 U 11 U	11 U 11 U	11 U 11 U	11 U 11 U	17 U 17 U
Viayl Chlonde	μ <b>g</b> /L.	12 U	11 U	13 UJ	11 U	11 U	11 U	11 U	11 U	17 U
Chloroethane Methylene Chloride	µg/L µg/L	12 U 12 U	11 U 11 U	13 UJ 3 J	11 U 2 J	11 U 6 J	11 U 55 J	11 U 11 U	11 U 14 B	17 U 4 J
Acetone	μ <b>g</b> /L	12 U	19	160 J	150	11 U	48 B	45 B	130 J	160
Carbon Disulfide	μg/L	12 U 12 U	11 U 11 U	13 UJ 13 UJ	11 U 11 U	11 U 11 U	11 U 11 U	11 U 11 U	11 U 11 U	17 U
I,I-Dichloroethene 1,1-Dichloroethane	μg/L μg/L	12 U 12 U	11 U	13 UJ	11 0	11 U 11 U	11 U 11 U	11 U	11 U 11 U	17 U 17 U
1.2-Dichloroethene (total	i) μg/L	12 U	11 U	13 UJ	11 U	11 U	11 U	11 U	11 U	17 U
Chloroform 1.2-Dichloroethane	μ <b>g/L</b> μg/L	12 U 12 U	11 U 11 U	13 UJ 13 UJ	11 U 11 U	11 U 11 U	11 U 11 U	11 U 11 U	11 U 11 U	17 U 17 U
2-Butanone (MEK)	μ <b>g</b> /L	12 U	11 U	13 UJ	31	11 U	11 U	11 U	14 B	17 U
1,1,1-Trichloroethane Carbon Tetrachlonde	μg/L μg/L	12 U 12 U	11 U 11 U	13 UJ 13 UJ	11 U 11 U	11 U 11 U	11 U 11 U	11 U 11 U	11 U 11 U	17 U 17 U
Bromodichioromethane	μ <b>g</b> /L	12 U	11 U	13 UJ	11 U	ົ່າ ບັ	11 U	11 U	11 U	17 U
1,2-Dichloropropage	μ <b>g</b> /L	12 U	11 U	13 UJ	11 U 11 U	11 U 11 U	11 U 11 U	11 U 11 U	11 U 11 U	17 U
cis-1,3-Dichloropropene Trichloroethene	μg/L μg/L	12 U 12 U	11 U 11 U	13 UJ 13 UJ	11 U 11 U	11 U	11 U 11 U		11 U	17 U 17 U
Dibromochloromethane	μ <b>g/L</b>	12 U	11 U	13 UJ	11 U	11 U	11 U	11 U	11 U	17 U
1,1,2-Trichloroethane Benzene	μg/L μg/L	12 U 12 U	11 U 11 U	13 UJ 13 UJ	11 U 11 U	11 U 11 U	11 U 11 U	11 U 11 U	11 U 11 U	17 U 17 U
trans-1,3-Dichloroprope		12 U	11 U	13 UJ	11 U	11 U	11 U	11 U	11 U	17 U
Bromoform	μg/L	12 U 12 U	11 U 11 U	13 UJ 13 UJ	11 U 11 U,	11 U 11 U	11 U 11 U	11 U 11 U	11 U 11 U	17 U 17 U
4-Methyl-2-Pentanone 2-Hexanone	μ <b>g/</b> Ľ. μg/Ľ.	12 U 12 U	11 U 11 U	13 UJ 13 UJ	11 U. 11 U	11 U	11 UJ		11 U	17 U 17 U
Tetrachloroethene	μg/L	12 U	11 U	13 UJ	11 U	11 U	11 UJ	11 U	11 U	17 U
1.1.2.2-Tetrachloroethan Toluene	не μg/L. μg/L.	12 U 5 J	11 U 11 U	13 UJ 72 J	11 U 41	11 U 130	11 UJ 110 J	11 U 5 J	11 U 85	17 U 29
Chlorobenzene	μ <b>g</b> /L	12 U	11 U	13 UJ	11 U	11 U	11 UJ	11 U	11 U	17 U
Ethylbenzene Styrene	μg/L μg/L,	12 U 12 U	11 U 11 U	13 UJ 13 UJ	11 U 11 U	11 U 11 U	2 J 11 UJ	11 U 11 U	2 J 11 U	17 U 17 U
Xyleve (mixed)	μg/L.	12_U	11 U	13 UJ	11 Ŭ	11 U	6 1	11 U	3 J	17 U
Semivolatiles	Units	380 U	350 U	420 U	380 U	1100 U	360 U	1100 U	1100 U	560 U
Phenol bis(2-chloroethyl)ether	μg/L. μg/L.	380 U	350 U	420 U	380 U	1100 U	360 U	1100 U	1100 U	560 U
2 Chlorophenol	μ <b>g</b> /Γ_	380 U	350 U	420 U	380 U	1100 U	360 U	1100 U	1100 U	560 U
1.3-Dichlorobenzene 1.4-Dichlorobenzene	μg/L μg/L	380 U 380 U	350 U 350 U	420 U 420 U	380 U - 380 U	1100 U 1100 U	360 U 360 U	1100 U 1100 U	1100 U 1100 U	560 U 560 U
1.2-Dichlorobenzene	μg/L	380 U	350 U	420 U	380 U	1100 U	360 U	11 <b>00</b> U	1100 U	560 U
2-Methylphenol 2.2'-oxybis(1-Chloroprop	μg/L panc) μg/L	380 U 380 U	350 U 350 U	420 U 420 U	380 U 380 U	1100 U 1100 U	360 U 360 U	1100 U 1100 U	1100 U 1100 U	560 U 560 U
4-Methylphenol	μg/L	380 U	350 U	420 U	380 U	1100 U	360 U	1100 U	1100 U	560 U
N-Nitroso-di-n-propylam		380 U 380 U	350 U 350 U	420 U 420 U	- 380 U 380 U	1100 U 1100 U	360 U 360 U	1100 U 1100 U	1100 U 1100 U	560 U 560 U
Hexachloroethane Nitrobenzene	μg/L μg/L	380 U	350 U	420 U	380 U	1100 U	360 U	1100 U	1100 U	560 U 560 U
lsophorone	μg/L	380 U	350 U	420 U	380 U	1100 U	360 U	1100 U	1100 U	560 U
2-Nitrophenol 2.4-Dimethylphenol	µg/Լ µg/Լ	380 U 380 U	350 U 350 U	420 U 420 U	380 U 380 U	1100 U 1100 U	360 U 360 U	1100 U 1100 U	1100 U 1100 U	560 U 560 U
his/2-Chloroethoxy)meth	ane µg/L	380 U	350 U	420 U	380 U	1100 U	360 U	1100 U	1100 U	560 U
2.4-Dichlorophenol 1.2.4-Trichlorobenzene	μg/L. μg/L.	380 U 380 U	350 U 350 U	420 U 420 U	380 U 380 U	1100 U 1100 U	360 U 360 U	1100 U 1100 U	1100 U 1100 U	560 U 560 U
Naphihalene	μg/L	380 U	350 U	420 U	42 J	110 J	360 U	11 <b>00</b> U	350 J	560 U
4-Chloroaniline	μ <b>g/L</b> ,	380 U 380 U	350 U 350 U	420 U 420 U	380 U 380 U	1100 U 1100 U	360 U 360 U	1100 U 1100 U	1100 U 1100 U	560 U 560 U
Hexachlorobutadiene 4-Chloro-3-methylpheno	μg/L N μg/L	380 U	350 U	420 U	380 U	1100 U	360 U	1100 U	1100 U	560 U
2-Methylnaphthalene	μ <b>g/</b> [_	380 U	350 U	420 U	49 J	130 J	360 U	1100 U	190 J	560 U
Hexachlorocyclopentadi 2,4,6-Trichlorophenoi	enc μg/l, μg/L	380 U 380 U	350 U 350 U	420 U 420 U	380 U 380 U	1100 U 1100 U	360 U 360 U	1100 U 1100 U	1100 U 1100 U	560 U 560 U
2.4.5-Trichlorophenol	μ <b>g/</b> L	930 U	840 U	1000 U	920 U	2700 U	870 U	2600 U	2700 U	1400 U
2-Chloronaphthalene 2-Nitroamline	μg/Ն μg/Ն	380 U 930 U	350 U 840 U	420 U 1000 U	380 U 920 U	1100 U 2700 U	360 U 870 U	1100 U 2600 U	1100 U 2700 U	560 U 1400 U
Dimethylphthalate	μ <u>ε</u> /ጊ	380 U	350 U	420 U	380 U	1100 U	360 U	1100 U	1100 U	560 U
Acenaphthylene 2.6-Dimitroioluene	μ <b>ε/</b> L μ <b>ε/</b> L	380 U 380 U	350 U 350 U	29 J 420 U	21 J 380 U	170 J 1100 U	360 U 360 U	1100 U 1100 U	49 J 1100 U	560 U 560 U
3-Nitroaniline	μ <b>g/</b> L	930 U	840 U	1000 U	920 U	2700 U	870 U	2600 U	2700 U	1400 U
Acenaphtheac 2.4-Disstrophenol	μ <b>ε/</b> L μ <b>ε/L</b>	380 U 930 U	350 U 840 U	420 U 1000 U	45 J 920 U	1100 U 2700 U	360 U 1870 U	250 J 2600 U	530 J	560 U
4-Nitophenol	μ <b>η</b> /L	930 U 930 U	840 U 840 U	1000 U	920 U 920 U	2700 U 2700 U	870 U	2600 U 2600 U	2700 U 2700 U	1400 U 1400 U
Dibenzofuran	μ <b>g/</b> L	380 U	840 U	420 U	44 J 380 U	100 J	360 U	120 J	360 J	560 U
2,4-Dimtrotoluene Diethylphthalate	µք/Լ µք/Լ	380 U 380 U	840 U 840 U	420 U 420 U	380 U 380 U	1100 U 1100 U	360 U 360 U	1100 U 1100 U	1100 U 1100 U	560 U 560 U
4-Chlorophenyl-phenyle	aher µg/L	380 U	840 U	420 U	380 U	1100 U	360 U	1100 U	1100 U	560 U
Fluorene 4-Nitronnuline	µ <b>ց/Ն</b> µ <b>ց/Ն</b>	380 U 930 U	840 U 840 U	23 J 1000 U	40 J 920 U	85 J 2700 U	360 U 870 U	240 J 2600 U	610 J 2700 U	560 U 1400 U
4,6-Dinitro-2-methylphe	aol μg/L	930 U	840 U	1000 U	920 U	2700 U	870 U	2600 U	2700 U	1400 U 1400 U
N-Nitrosodiphenylamiae		380 U	840 U	420 U	380 U	1100 U	360 U	1100 U	1100 U	560 U
4-Bromophenyl-phenyle Hexachlorobenzene	ther μg/ໂ. μg/ໂ.	380 U 380 U	840 U 840 U	420 U 420 U	380 U 380 U	1100 U 1100 U	360 U 360 U	1100 U 1100 U	1100 U 1100 U	560 U 560 U
Pentachiorophenoi	μ <b>ε</b> /L	930 U	840 U	1000 U 200 I	920 U	2700 U	870 U	2600 U	2700 U	1400 U
Phenanthrene Anthracene	μg/L μg/L	380 U 380 U	840 U 840 U	300 J 83 J	590 150 J	1000 J 260 J	95 J 360 U	2800 740 J	4200 1200	340 J 320 J
Carbazole	μg/L	380 U	840 U	50 J	130 J	86 J	360 U	240 J	570 J	62 1
Dr-a-butyiphthalate Fluorsatheae	μ <b>g/</b> L	380 U 380 U	21 J 350 U	420 U 830	29 J 1200	1100 U 2400	21 J 150 J	1100 U 3500	1100 U 4600	560 U 650
Рутеве	µք/Ն µք/Ն	380 U 380 U	350 U 350 U	830 630	880	2400 6300 J	150 J 280 J	5500 6200 J	4600 8700 J	1100 J
Butylbenzylphthalate	μ <b>ε</b> /L	380 U	350 U	420 U	380 U	1100 UJ	360 UJ	11 <b>00</b> UJ	11 <b>00</b> UJ	560 UJ
3.3'-Dichlorobenzidine Benzo(ajanthracene	μ <b>g/L</b> μg/L	380 U 380 U	350 U 350 U	420 U 330 J	380 U 430	1100 UJ 2100 J	360 UJ 94 J	1100 UJ 2100 J	1100 UJ 2600 J	560 UJ 330 J
Chrysens	μ <b>g/</b> L	380 U	350 U	410 J	580	2500 J	120 J	2100 J	2800 J	440 J
bus(2-Ethylhexyl)phthal Di-n-octylphthalate		380 U 22 J	350 U 350 U	420 U 420 U	380 U 380 U	1100 UJ	360 UJ	1100 UJ 1100 U	1100 UJ 1100 UJ	560 UJ 560 UJ
1	μ <b>g/L</b>					1100 UJ	55 J			
Beazo(b)fluoranthene Beazo(k)fluoranthene	μ <u>ε</u> /L με/L	380 U	350 U	840	890	47/00 J	230 J	3400 J	4100 J	/30 J

.

					Table B-1					
					water Organic Ann	istant Reads				
				c	aver-Lee Leening					
	Value Locales		10.0		CLARKER 1992			0.0	(1.51.7.5)	0.500
	Same Same	ELGS	ELG64	ELGE	ELGS7	ELGS	11.64	ELGN	ELG42	ELG63
	Date Semated	11-4-92	114-92	11-4-12	11-6-92	11-4-92	114.47	114-92	11-6-92	114-92
	Vinter	Seal	54	See	5	Seil	5	544	5-1	Suit
	Capita .									
National Sector	44.5	1984. ·	· · · ·	×4	64C)	_###	ЗК.	11 <b>30</b> .	2000	350
nomu		чы		424 .	180 - 2	110C		11 <b>.X</b> (1	1100 U	560
) in the state of		79C 1	150 1	15 C	<b>19</b> C	1100 12	360 17	102 0	11 <b>00</b> CI	560
HERE ALL PROVIDE	461	MR:	55 <b>8</b>	42.	<b>300.</b> L	34081	360 1.	1500	1900 1	
unicates FCIs	Casto -				• •					
name 329C	46 <u>-</u>	÷ :	18 1		1	19 V	11 1	1# U	1.9 C	2.9
na int	ang L	::	:4 1	<u>.</u>	2 1	19 U	1.9 1	1.8 U	19 U	29
inter MRC	46 L		11 1		2 1	19 U		14 U	19 0	29
anna 380 Lanna			1.8 1		2 1	19 U		18 U	19 0	29
and the second secon	ang Lu		: • :		2 U	19 1	18 1	18 U	19 0	29
Luicus -	-45 L		: 4 1		<b>2</b> U	14 1		1# U	19 U	29
workships admittable	46 L	: :	: <b>1</b> .	12 V	2 3	1.9 1	14 2	1# U	19 0	29
and and the l	AB C	11	: <b>.</b> .	22 t	2 1	19 U		18 C	19 U	29
Character	- <b>46</b> T	3# C	35.1	42 (	38 11	7* V	3.5 1	3.6 17	17 U	56
LE OCE	40.5	5 <b>8</b> (	12.1	42 1	43.2	37 1	74 U	3.6 C	3.7 U	56
20000	and to be	34 1	15.1	42 1	3 <b>8</b> C	37 0	3.6 U	3.5 C	3.7 C	5.6
annulas I	46 -	34 1	32.5	42 1	38 U	4.5 2	3.4 U	35 U	3.7 U	5.6
k# 000		3.8 1	3.5 T	42 1	46 J	37 U	3.6 1	35 U	3.7 U	56
semulae sular	40 L	18.1	15 1	42 1	3 <b>8</b> (	37 U	34 C	34 U	37 U	56
14 007	J∉L	18 C	35 1	42 1	6.6 J	1 <b>2</b> J	:2	5.1	3.7 U	5.6
Matthew willow	4 <b>4</b> C	<b>z</b> :	:1	<b>=</b> ::	20 U	19 U	18 U	18 U	19 U	29
and the second	AN L	54.5	35.1	42.1	34 U	37 U	3.6 U	3.6 U	17 U	56
india di Maria	48 L	5 <b>8</b> T	35 C	41 1	94 U	3* U	3.5 U	3.6 C	37 C	5.6
and the Constant	48.5	::	:# 1	22 1	2 1	19 U	18 8	18 U	L9 U	2.9
and the second sec	44.5	::	11 1	22 1	2 U	19 🙄	18 U	18 U	L9 U	2.9
14.43 <b>10010</b>	461	200	:#0 1	22	200 1	290 1	2 <b>80</b> 1	:#2 U	190 U	290
leraciaer . 111	and to	<b>N</b> 1	35 C	C 1	38 U	17 U	<b>36</b> C	56 C	37 U	56
erneter . 221	49 L	<b>- 1</b>	•: :	🖬 T.	<del>-</del> ι	<b>76</b> 1	<b>7</b> 1	- <b>-</b> - C	74 U	110
Acresian . 272	48.5	<b>14</b> (	<b>15</b> *	<b>C</b> 1	થા હ	77 L	🗙 🙄	36 C	37 U	56
Acrocute 1242	44.5	<b>14</b>	16 -	<b>C</b> 1	<b>34</b> U	3° 1	₩ C	16 U	37 U	56
tencur . 148	44 L	78 -	16 .	42 1	34 U	77 l	※ U	₩ U	37 C	56
Amount 1254	45	54 1	15 1	<b>C</b> :	34 1	7° 1	<b>₩</b> 11	86 C	37 C	56
landur (M)	A. 10	10	15 -	<b>c</b> ·	28 1	<b>2</b> 1	M 11	₩ t.	37 L	56

			Soil :	and Groundwater O Carter-La	le B-1 Franic Analytical Ro re Lumber ber 1992	esulta			
	tation Location: ample Number: Date Sampled: Media:	CLSB10-2 ELG64 11-6-92 Sail	CLSBI1 ELG38 11-5-92 Soil	CLSB12-1 ELG23 11-4-92 Soli	CLSB12-2 ELG24 11-4-92 Soll	CLSB12-3 ELG26 11-4-92 Soli	CLMW01-FR ELG36 11/5/92 Water	CLMW01 ELG37 11-5-92 Water	CLMW02 ELG68 11-7-92 Water
Volatiles	Units	11 UJ		12 U				10 U	_
Chioromethane Bromomethane	μg/L μg/L	11 03	11 U	12 U	10 U 10 U	11 U 11 U	10 U 10 U	10 U	10 10
Vinyl Chloride	μ <b>g</b> /L	11 UJ	H U	12 U	10 U	11 U	10 U	10 U	10
Chloroethane	μ <b>g/</b> L	11 07	11 U	12 U	10 U	11 U	10 U	10 U	10
Methylene Chloride	μ <b>g</b> /L	24 B 46 BJ	21 11 U	10 J 12 U	4 J	3 J	10 U	10 U 10 U	10
Aceione Carbon Disulfide	μg/L μg/L	46 BJ 11 UJ	11 U	12 U 12 U	16 10 U	11 U 11 U	10 U 10 U	. 10 U	10 10
1,1-Dichloroethene	μg/L	11 UJ	11 U	12 U	10 U	11 U	10 U	10 U	10
1,1-Dichloroethane	μ <b>g/</b> L	11 03	11 U	12 U	10 U	11 U	10 U	10 U	10
1,2-Dichloroethene (tota		11 UJ	11 U	12 U	10 U 10 U	11 U	10 U	10 U	10
Chloroform 1,2-Dichloroethane	μ <b>g/L</b> μg/L	11 UJ 11 UJ	11 U 11 U	12 U 12 U	10 U 10 U	11 U 11 U	10 U 10 U	10 U 10 U	1 10
2-Butanone (MEK)	μα/Ե μα/L	13 B	11 0	12 U	10 U	11 U	10 U	10 U	10
1,1,1-Trichloroethane	με/L	11 UJ	11 UJ	12 U	10 U	11 U	10 U	10 U	10
Carbon Tetrachlonde	μ <b>g</b> /L	11 UJ	11 UJ	12 U	10 U	11 U	10 U	10 U	10
Bromodichloromethane 1,2-Dichloropropane	µg/L µg/L	11 UJ 11 UJ	11 UJ 11 UJ	12 U 12 U	10 U 10 U	11 U 11 U	10 U 10 U	10 U 10 U	10 10
1,2-Dichloropropene		11 03	11 01	12 U	10 U	11 0	10 U	10 U	10
Trichloroetheae	μg/L	11 UJ	11 UJ	12 U	10 U	11 U	10 U	10 U	10
Dibromochloromethane	μg/L	11 UJ	11 UJ	12 U	10 U	11 U	10 U	10 U	10
1,1,2-Trichioroethane	μg/L	11 UJ	11 UJ	12 U	10 U	11 U	10 U	10 U	10
Benzens trans.1.3.Dichloroprote	μg/L me μg/L	נט וו נט וו	11 បរ 11 បរ	12 U 12 U	10 U 10 U	11 U 11 U	10 U 10 U	10 U 10 U	10 10
trags-1,3-Dichloroprope Bromoform	me μg/L μg/L	11 03	11 UJ	12 U	10 U 10 U	11 U	10 U	10 U 10 U	10
4-Methyl-2-Pentanone	μ <u>η</u> σε μ <u>η</u> σε	11 07	11 03	12 U	10 U	11 U	10 U	10 U	10
2-Hexanone	μ <b>g</b> /L	11 UJ	11 UJ	12 U	10 U	11 U	10 U	10 U	10
Tetrachloroethese	μ <u>ε</u> /ί.	11 03	ແຫ	12 U	10 U	11 U	10 U	10 U	10
1,1,2,2-Tetrachloroethan Toluene		11 UJ 130 J	11 UJ 11 UJ	12 U 9 J	10 U 6 J	11 Ú 2 J	10 U 10 U	10 U 10 U	10 10
Toluene Chlorobenzene	μg/L μg/L	130 J 11 UJ	11 UJ	12 U	6 J 10 U	· 11 U	10 U 10 U	10 U 10 U	10 10
Ethylheazene	μ <u>ε</u> /L μ <u>ε</u> /L	2 J	11 05	12 U	10 U	11 U	10 U	10 U	10
Styrene	µg/L	11 03	11 UJ	12 U	10 U	11 U	10 U	10 U	10
Xylene (mixed)	µg/L	7 J	11 UI	5 J	2 J	<u>11 U</u>	10 U	10 U	10
Semivolatiles	Units	1900 UJ	740 11	280 11	740 11	160 11	10 11	10.11	•
Phenol bis(2-chloroethyl)ether	µք/Ն µք/Ն	1900 UJ	740 U 740 U	380 U 380 U	340 U 340 U	350 U 350 U	10 U 10 U	10 U 10 U	3 10
2-Chiorophenol	μg/L	1900 UJ	740 U	380 U	340 U	350 U	10 U	10 U	10
1.3-Dichlorobenzene	μg/L	1900 UJ	740 U	380 U	340 U	350 U	10 U	10 U	10
1.4-Dichlorohenzene	μ <b>g</b> /L	1900 UJ	740 U	380 U	340 U	350 U	10 U	10 U	10
1.2.Dichlorobenzene	μ <b>g/</b> L	1900 UI	740 U	380 U	340 U	350 U	10 U	10 U	10
2-Methylphenol	μg/L	1900 UJ 1900 UJ	740 U 740 U	380 U 380 U	340 U 340 U	350 U 350 U	10 U 10 U	10 U 10 U	10 10
2,2'-oxybis(1-Chloropro 4-Methylphenol	pane) μg/L μg/L	1900 UJ	740 U	380 U	340 U	350 U	10 U	10 U	10
N-Nuroso-di-a-propylan		1900 UJ	740 U	380 U	340 U	350 U	10 U	10 U	10
Hexachioroethane	μg/L	1900 UJ	740 U	380 U	340 U	3 <b>50</b> U	10 U	10 U	10
Nitrobenzene	μ <b>g/L</b>	1900 UJ	740 U	380 U	340 U	350 U	10 U	10 U	10
lsophorone 2-Nitrophenol	μg/L μg/L	1900 UJ 1900 UJ	740 U 740 U	380 U 380 U	340 U 340 U	350 U 350 U	10 U 10 U	10 U 10 U	10 10
2,4-Dimethylphenol	µց/Ն.	1900 UJ	740 U	380 U	340 U	350 U	10 U	10 U	10
bis(2-Chloroethoxy)met		1900 UJ	740 U	380 U	340 U	350 U	10 U	10 U	10
2,4-Dichlorophenol	μg/L	1900 UJ	740 U	380 U	340 U	350 U	10 U	10 U	10
1,2,4-Trichlorobenzene	μg/L	1900 UJ	740 U	380 U	340 U	350 U	10 U	10 U	10
Naphthalene 4-Chloroaniline	μg/L μg/L	2200 J 1900 UJ	1800 740 U	380 U 380 U	340 U 340 U	350 U 350 U	10 U 10 U	10 U	10 10
Hexachlorobutadiene	μg/L	1900 UJ	740 U	380 U	340 U	350 U	10 U	10 U	10
4-Chloro-3-methylphene		1900 UJ	740 U	380 U	340 U	350 U	10 U	10 U	10
2-Methylnaphthalene	μ <b>g/</b> L	1400 J	550 J	62 J	340 U	350 U	10 U	10 U	10
Hexachiorocyclopentadi	ene µg/L	1900 UJ	740 U	380 U	340 U	350 U	10 U	10 U	10
2,4,6-Trichlorophenol 2,4,5-Trichlorophenol	μg/L μg/L	1900 UJ 4500 UJ	740 U 1800 U	380 U 930 U	340 U 830 U	350 U 860 U	10 U 25 U	10 U 25 U	10 25
2-Chlorosaphthaiene	µg/L µg/L	1900 UJ	740 U	380 U	340 U	350 U	10 U	10 U	10
2-Nitroaniline	μ <u>ε</u> /-2 με/L	4500 UI	1800 U	930 U	830 U	860 U	25 U	25 U	25
Dimethylphthalate	μ <b>g/L</b>	1900 UJ	740 U	380 U	340 U	350 U	10 U	10 U	10
Acesaphthylese	<b>µg/L</b>	550 J	740 U	380 U	340 U	350 U	10 U	10 U	10
2.6-Dimitrotoluene 3-Nitronniline	µg/Г. µg/L	1900 UJ 4500 UJ	740 U 1800 U	380 U 930 U	340 U 830 U	350 U 860 U	10 U 25 U	10 U 25 U	10 25
Acenaphthene	дел. με/L	270 J	410 J	380 U	340 U	350 U	10 U	10 U	10
2,4-Dinstrophenol	μ <b>g</b> /L	4500 UJ	1800 U	930 U	830 U	<b>860</b> U	25 U	25 U	25
4-Nitophenol	μ <b>g/</b> L	4500 UJ	1800 U	930 U	830 U	860 U	25 U	25 U	25 0
Dibenzofuran 2.4-Dinjtrotohiene	μ <b>g/L</b>	1200 J 1900 UJ	270 J 740 U	34 J 380 U	340 U 340 U	350 U 350 U	10 U 10 U	10 U 10 U	10 1
Diethylphthalaie	µք/Լ µք/Լ	1900 UJ	740 U	380 U	340 U	350 U	10 U	10 U	10 T 10 T
4-Chlorophenyl-phenyk		1900 UJ	740 U	380 U	340 U	350 U	10 U	10 U	10 1
Fluoreae	μ <b>g/L</b> .	230 J	430 J	380 U	340 U	350 U	10 U	10 U	10
4-Nitronguliae	μg/L	4500 UJ	1800 U	930 U	830 U	860 U	25 U	25 UJ	25
4.6-Dinitro-2-methylphe		4500 UJ	1800 U	930 U	830 U	860 U	25 U	25 UJ	25
N-Nitrosodiphenylamus 4-Bromophenyl-phenyle		1900 UJ 1900 UJ	740 U 740 U	380 U 380 U	340 U 340 U	350 U 350 U	10 U 10 U	10 UJ 10 UJ	10 10
4-Bromopnenyi-pnenyic Hexachlorobenzene	uner μg/L μg/L	1900 UJ	740 U 740 U	380 U	340 U 340 U	350 U 350 U	10 U	10 UJ	10 1
Peauchloropheaol	μ <b>ε</b> /L	4500 U)	1800 U	930 U	830 U	860 U	25 U	25 UJ	25
Phenanthrene	μ <b>g</b> /L	6500 J	3200	360 J	340 U	350 U	10 U	10 UJ	10
Anthraceae	<b>μ</b> <u>и</u> /L.	910 J	960	45 J	340 U	350 U	10 U	10 UJ	10 1
Carbazole Di-a-butylobthalata	μ <b>g/</b> L	580 J 100 J	510 J 740 U	380 U 380 U	340 U 340 U	350 U 350 U	10 U 10 U	10 UJ 10 UJ	10 U 10 U
Di-a-butylphthalate Fluorantheae	и <u>д</u> /Լ µд/Լ	8400 J	5000	380 U 250 J	340 U 340 U	350 U 350 U	10 U 10 U	10 UI	10 1
Рутеве	µգյ/Ը	15000 J	4200 J	210 J	340 U	350 U	10 U	10 UJ	10
Butylbenzylphthalate	μ <b>g</b> /L.	1900 UI	740 U	380 U	340 U	350 U	10 U	10 UJ	10 1
3,3-Dichlorobenzidine	μ <b>g/L</b>	1900 UJ	740 U	380 U	340 U	350 U	10 U	10 UJ	10 1
Benzojajanthracene	μ <b>ε</b> /L	5300 J	2400	200 J	340 U	350 U	10 U	10 03	10
Chryseac hiel? Ethylhevyl mhthei	μg/L. 	6400 J 1900 UJ	2600 290 J	220 J 380 U	340 U 340 T	350 U 150 U	10 U	10 UJ	10
bis(2-Ethylhexyl)phthal D7-n-octylphthalate	ան μg/Ն μg/Ն	1900 UJ 1900 UJ	290 J 100 J	380 U 380 U	340 U 340 U	350 U 350 U	10 U 10 U	10 UJ 10 UJ	U.6 J 10 J
Benzo(bjiluoraathene	µg/∟	12000 1	2400	360 J	340 U 340 U	350 U 350 U	10 U	10 01	10
Benzo(k)fluoranthene	μ <b>ε</b> /L	5700 J	2000	380 U	340 U	350 U	10 U	10 UJ	10

			Sa	l and Grunndrener () Carter-L	er Lamber				
	Mattern Locations	0.3883		CLAND 4	CLS811-2	CLERKS-	CAN HERE		CLAWE
		ELGAN	ELGH	ELGES	ELGH	ELGM	ELGN	ELG37	ELGE
	Date Second	11442	115-12	11-4-92	11-4-92	11-4-92	115/92	11-5-92	11-7-92
	Made	5-01	5	Seal	Suil	<u></u>	W alter	Water	Water
لماد الم	Tem								
Section & prevent	44	18.A	.:	1902 2	34K' L	356	12 L	10 CI	10 L
morest		528	••	. •	<b>44</b> (	3.5	¥ .	10 K.I	10 L
Criterica automotivation de		254 1	<b>.</b>	340 1	340 1	350	10 0	10 11	10 U
Section y_3_spectrum	ang Sa	2.44	4.5	. A	<u> </u>		12	(U 1 1	10 1
Nanodas PCIn	Casta								
auna 3:07	40 L	.* 11		::	18 l	14 U	0.25 1.7	4.05 UI	005 U
hassa- à 390	40	14,11	1.4	::	1.8 V	18 1	325 13	225 UI	005 U
anta deit		14 11	14 1	:::	18 U	14 U	128 C	105 UI	005 t
panna 380 Ladan		14,51	1 • 11	::	16 10	14 U	D25 17	0.05 UI	005 t
-ingleschung	- <b>1</b>	1 • T.	41	22 3	.# t	14 3	125 17	-1 <b>05</b> (1	0 Q5 L
A.(0=1)	- an -	. • 11	14 1	2 1	1 🛛 1	18 U	6.05 LT	2.05 U	005 U
anglation mathematic		. • 1.	4	::	18 U	14 V	625 UI	105 UI	-005 t
Englants (Engl				::	18 U	18 V	625 CC	2.05 UI	005 0
Designer		· · · :	, - ·	3 <b>8</b> 1	54 L	32 V	21 13	21 UI	01 (
4.4 - OOE		🖷 I	• • •	5 M C	34 L	3.5 V	a: 13	21 (1	01 0
inter		9 * 13	51 I	1:::	34 U	35 C	21 🖂	01 (7	<b>0.1</b> ť
Endersation 2		:: :	41	3 B C	34 V	3.5 U	31 17	11 UI	01 0
44-000		11 12	· · ·	21.1	34 U	3.5 1	a: (J	ai (1	0.1 U
Indonesiting sattane		<b>3</b> :	· · ·	54 C	74 U	3.5 1	21 17	a: (7	01 (
44 307		:40 🖂	4 :	24 1	34-1	3.5 C	11 12	01 UI	01 (
Methodewattion	40.5	3 13	:• :	2: :	18 U	38 T	25.17	0.5 UI	0.5 U
Tradition destander		n :	ý • 1	11.2	34 U	3.5 U	21 13	ar tr	01 U
Taulture anderbrede		1. 13		78.1	34 1	15 T	B1 13	ai 17	01 0
and the Australian		14 12	4.5		111	13 2	125 13	0.05 (1)	0.05 1
		14 12	1		1.8 1	11 1	345 13	0.05 U	0.05 U
				200	180 L	180	5 13	5 17	5 0
American 115			r ·	34	34.2	35 1	10	iu	10
Amour 121			-4	<b>.</b>	 πο τ΄		: 3	: 0	2 0
Aradan . 252	40 - 40 -		**		34 [	26 2	: :::	i (1	10
Ameter 1342	40	÷	· ·			35 1	: 17	1.07	10
American 144	40 - 40 -	<b>**</b> • •	· ·	54 - L 54 - L		35 1	:3	1 11	10
American . 254	- 18 -		-1	<b>u</b> .	94 U	72 - 95 1	: 5	10	10
Apricial 204	46 - 10 -		2.	4	54 L 14 1	17 15 V	1 1	10	10

.....

. _

				iwater Organic Analy Carter-Lee Lumber November 1992	tjeni Results			
Samp	n Location: le Number: e Sampled:	CLMW03 ELG66 11-6-92	CLMW04 ELG47 11-6-92	November 1992 CLMW05 ELG65 11-6-92 Weter	CLGREOI ELG51 11-6-92	CLGRB02 ELG49 11-6-92	CLGRB03 ELG48 11-6-92 Water	CLGRB04 ELG30 11/4/92 Water
Volatiles	Media: Units	Water	Water	Water	Water	Water		
Chloromethane Bromomethane	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 10
Vinyl Chloride	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10
Chloroethane	μ <b>g/</b> L	10 U	10 U	10 U	10 U	10 U	10 U 10 U	10
Methylene Chloride Accione	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 10
Carbon Disulfide	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10
1,1-Dichloroethene	μg/L	10 U	10 U	_ 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 10
1.1-Dichloroethaac 1,2-Dichloroethene (total)	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U	10 U	10 U	10
Chloroform	μ <b>g</b> /L	10 U	10 U	10 U	10 U	10 U	10 U	10
1,2-Dichloroethane	μg/L.	10 U	10 U	10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 10
2-Butanone (MEK) 1,1,1-Trichloroethane	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U	10 U	10
Carbon Tetrachloride	μ <b>g</b> /L	10 U	10 U	10 U	10 U	10 U	10 U	10
Bromodichioromethane	μg/L	10 U	10 U	10 U	10 U	10 U	10 U 10 U	10 10
1,2-Dichloropropane cis-1,3-Dichloropropene	μ <b>g/L</b> μ <b>g/L</b>	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U	10
Trichloroethene	μ <b>g</b> /L	10 U	10 U	10 U	10 U	10 U	10 U	10
Dibromochloromethane	μg/L	10 U	10 U	10 U	10 U	10 U 10 U	10 U 10 U	10
1,1,2-Trichloroethane Benzene	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 10
Benzene Irans-1,3-Dichloropropene	μg/L μg/L	10 U	10 U	10 U 10 U	10 U	10 U	10 U	10
Bromoform	μ <b>g</b> /L	10 U	10 U	10 U	10 U	10 U	10 U	10
4-Methyl-2-Pentanone	μg/L.	10 U	10 U	10 U	10 U	10 U	10 U 10 U	10 10
2-Hexanone Tetrachloroethene	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10
1,1,2,2-Tetrachloroethase	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10
Toluene	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10
Chlorobenzese Ethylbenzene	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	. 10
Eurynoen zene Styrene	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10
Xylene (mixed)	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10
Semivolatiles Phenol	Units μg/L	10 U	10 U	10 U	 10 U	2 J	1 J	10
Phenol bis(2-chloroeihyl)ether	μg/L μg/L	10 U	10 U 10 U	10 U	10 U	10 U	10 U	10
2-Chlorophenol	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10
1.3 Dichlorobenzene	μg/L	10 U	10 U	10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 10
I.4-Dichlorobenzene I.2-Dichlorobenzene	μg/L. μg/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U	10 U	10 U	10
2-Methylphesol	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10
2.2'-oxybis(1-Chloropropane	) µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10
4-Methylphesol N. Nuroso, di apropulamina	μg/L 	10 U 10 U	10 U 10 U	- 10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 10
N-Nitroso-di-n-propylamine Hexachloroethane	μg/L μg/L	10 U	10 U 10 U	10 U	10 U	10 U	10 U	10
Nitrobenzene	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10
Isophorone	µg/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 10
2-Nitrophenol 2,4-Dimethylphenol	μg/L μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10
bis(2.Chloroethoxy)methane	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10
2.4 Dichlorophenol	μg/L	10 U	10 U	10 U	10 U 10 U	10 U 10 U	10 U 10 U	10
1,2,4-Trichlorobenzene Naphthalene	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U	2 J	10 U	10 10
4-Chloroaniline	μ <b>g</b> /L	10 U	10 U	10 U	10 U	10 U	10 U	10
Hexachiorobutadiene	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10
4-Chloro-3-methylphenol 2-Methylnaphthalene	µց/Ն µց/Ն	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10
2-Methymaphicalene Hexachlorocyclopentadiene	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10
2.4.6 Trichlorophenol	μ <b>g/</b> L	10 U	10 U	10 U	10 U	10 U	10 U	10
2,4,5-Trichloropheaol 2-Chlorosaphthalese	µց/Լ µց/Լ	25 U 10 U	25 U 10 U	25 U 10 U	25 U 10 U	25 U 10 U	25 U 10 U	25 10
2-Chlorosaphihalene 2-Nitroaniline	μg/L μg/L	25 U	25 U	25 U	25 U	25 U	25 U	25
Dimethylphihalate	μ <b>g/L</b>	10 U	10 U	10 U	10 U	10 U	10 U	10
Acenaphthylene 2.6-Dimiratoluene	μ <u>α</u> /Լ μα/Լ	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 10
3-Nitroaniline	μαց/Ը μαց/Ը	25 U	25 U	25 U	25 U	25 U	25 U	25
Accamphthene	μ <b>g</b> /L	10 U	10 U	10 U	10 U	10 U	10 U	10
2.4-Dinitrophenol	µg/L	25 U 25 U	25 U 25 U	25 U 25 U	25 U 25 U	25 U 25 U	25 U	25
4-Nitophenol Dibenzofurns	μg/L μg/L	25 U 10 U	25 U 10 U	23 U 10 U	10 U	25 U 10 U	25 U 10 U	25 10
2.4-Dimitrotoluene	μ <b>g</b> /L	10 U	10 U	10 U	10 U	10 U	10 U	10
Diethylphthaiste	μ <b>g/</b> L	10 U	10 U	10 U	10 U	0.9 J	10 U	10
4-Chlorophesyl-phenylether Fluorese	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 10
4-Nitroanline	μ <u>η</u> /L	25 U	25 U	25 U	25 U	25 U	25 U	25
4.6-Dinitro-2-methylphenol	μg/L	25 U	25 U	25 U	25 U	25 U	25 U	25
N-Nitrosodiphenylamune 4. Bromonhenyl-thenylather	μg/L. 	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U	10 U	10
4-Bromophenyl-phenylether Hexachlorobenzene	μ <b>g/L</b> μg/L	10 U 10 U	10 U 10 U	10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 10
Penuchiorophenoi	μ <b>g/L</b>	25 U	25 U	25 U	25 U	25 U	25 Ŭ	25
Phenanthread	μ∎/Ն	0.8 3	10 U	10 U	10 U	0.6 J	10 U	10
Anthraceae Carbazole	μ <b>ε/</b> L. 	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 10
Di-a-butylphthalate	μg/L μg/L	0.8 J	10 U	10 U	1 1	1 1	0.9 J	0.5
Fluoraathene	μg/L	1 J	' 10 U	10 U	10 U	10 U	10 U	10
Pyrene Burdhan 1 bat 1	μ <b>g</b> /L	0.8 J	10 U	10 U	10 U	10 U	10 U	10
Butylbeazylphthalate 3,3'-Dichlorobeazidine	μ <b>g/L</b> . με/Ι	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U	10 U 10 U	10 10
Benzojajanthracene	μg/L. μg/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10
Chrysene	µg/L	10 U	10 U	າບ	10 U	10 U	10 U	10
bis(2-Ethylhexyl)phthalate	μg/L up/l	1 J 10 J	10 U	10 U	10 U	10 U	10 U	10
Di-a-octyiphthalate Beazo(b)filuoraathene	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 10
Benzo(k)fluoranthene	μαμ/L	10 U	10 U	10 U	10 U	10 U	10 U	10

1

				Table 3-1				
			Said and Ground	Hainer Organice Annal	teres in the states			
				www.Lee Lember				
				Summer 1992		_		
	in Locaios	ELGH	ELGC		CLGTH		CLCLDLD	CLAUM
Seat		114-72	11+12	ELG45 11-4-12	ELG51 11-4-92	ELG-0 11-6-92	ELG-8 11-4-92	ELG30 11/492
	Vinde	W star	N and	11-4-72 Water	11-4-92 Weater	11-4-92 Water	11-4-72 Water	Water
Section Approximate	-4-			ίμ.	່າຍີ່		:	10 0
Sectors Carlor Sectors		÷		มีปี เ	20 6		14 1	10 1
Delenger auf annahmanner		:: :	.: :	10 t	10 1	17 T	10 C	10 1
Section g. S per visitor	44	:.	<b>:.</b> .	10 U	11 L	<b>1</b>	12 0	10 1
Automatica PCIn	Lasta							
nome BHC	44.5	125 11	125 17	0.05 UJ	0.25 U	125 V	125 UI	0.05 t
New BHK	46	1.25 1.1	125 12	0.05 t'J	0.25 U	12 V	12 CI	a.es (
anta 3.8C		1.25 1.1	125 17	005 U	0 05 V	12 C	2.25 CT	0.05 t
panana déli Latan	- <b>-</b>	1.25 1.1	1 25 1 7	105 UJ	0.05 1	125 0	112 CI	a 05 (
TITE ACTION	44	125 11	125 17	0.05 UJ	0 Œ 1.'	125 1	12 U	0.05 (
Lutra		125.11	:25 ::	C.05 (1)	0.05° U	125 0	125 CT	0.05 t
September spontalit	44.2	125 11	1.25 1.7	0.05 113	0 😅 T	125 V	125 UI	0.05 t
advantations :		125 12	124 11	່ວກະເປ	0 05 U	12 C	1.25 CT	0.05 t
Comunication	46.5	11 11	2: 11	23 LJ	21 V	2: 2	11 UI	<b>a</b> i t
A K ODE	- <b>1</b>	2: 1:	2:12	01 UI	51 U	:: ::	41 UI	ait
inen .	48.	1: 1 <b>:</b>	2: 11	01 17	B: 1	<b>1</b> 1 1	1: UI	ait
inemetine I	44.5	11 17	2: 11	61 UJ	61 V	2: 7	21 U	άι τ
4.4 000	4	1: 11	2: 12	01 U)	51 L	1: C	21 11	ai t
Enternative within	- 10 C	12 :	11 12	01 U)	ai t	11 V	11 CT	01 0
44 007		1: 1:	1: 17	01 []	01 U	21 1	21 01	arc
Menthum wething		1.1	1.5 1.1	05 UJ	05 U	2.5 12	25 UI	0.5 t
Laura enuer		1: 17	2: 1:	51 UJ	21 U	61 C	11 17	<b>a</b> 1 (
Eastern andreterne		1: 11	11 17	01 tJ	01 U	51 U	41 CI	<b>a</b> 1 (
antine-Characterist		125 11	125 17	0.05 UJ	0.05° U	125 C	3.45 UI	0.05 t
anime - Description	46	125 12	125 12	0.05 11	0.05 1	625 U	205 UT	0.05 1
. Standiller der		• • •	• :::	5.12	5 U	5 1	5 11	5 t
Ametian 1014		:		1.13	1 1	: :	1.17	
Armong 1221	44		: :::	2 13	:::		: ::	2 1
Acadam 1272				1 1 2	1 2	:::	1.03	1.0
America				: : : :	1 1		: 17	11
Amazar . 148				1 11	1 2		: 01	
Amount 1254	40			1 1 1			: ::	1 1
Annan							10	1 1

g

								Carter-Lee Novembe	r 1992								
	Station Location: Sample Number:	CLBK01-1 MEKA33	CLBK01-Z MEKA34	CLBK01-3 MEKA35	CLBK02 MEKA11	CLBK02-FR MEKA12	CLBK04 MEKA14	CUBK05 Meka15	CLBK07 MEKA13	CLBK08 MEKA02	CLBK09 MEKA01	CLBK10 MEKA03	CLBKI1 MEKA04	CLBR12 MEKAQ5	-CLBK13 MEKA06	CLBK14 MEKA07	CLBR15 MEKA06
	Date Sampled: Media:	11-5-92 Soll	11-5-92 Soli	11-5-92 Soil	11-3-92 Soil	11-3-92 Soil	11-3-92 Soil	11-3-92 Soil	11-3-92 Seil	11-3-92 Soli	11-3-92 Soil	11-3-92 Soil	11-3-92 Soil	11-3-92 Soil	11-3-92 Soil	11-3-92 Soli	11-3-92 Sell
Metals	Units													· · · · · · · · · · · · · · · · · · ·			
Aluminum	mg/kg	6980	6120	2460	9310	11000	2880	7090	8830	10100	6540	12400	7220	8310	2820	16000	7\$20
Antimony	mg/kg	7.7 UJ	7.6 U		7 UI		6.9 UJ	7.5 UJ	7.2 UJ	7.5 UJ	7.9 UJ	7.3 UJ	7.6 UJ	7.5 UJ	6.8 UJ	7.3 UJ	7.3
Arsenic	mg/kg	14.2 J	5.7	1 2.9 J	4.8	3.6	6.9	8.9	0.26 B	6.4	9.9	0.23 UJ	0.24 UJ	9.5	7	12.3	4
Barium	mg/kg	70.6 0.91	81.2 0.57	15.1	108	97.4	17.5	68.2	55.5 0.61	90.8 0.63	128 0.75	114	91.7	85.2	14.9	198	62.6
Beryllium Cadmium	mg/kg	0.91	0.57	0.21	0.64 0.87	0.7 0.94	0.23	0.51 0.94	0.91	0.03	5.6	0.82	0.95	1.2	0.25	5.2	0.46
Calcium	mg/kg mg/kg	13900 J	2250	128000	64600	J 3150 J	107000 J	77400 J	12500 J	54800 J	3.6 42800 I	0.92 19900 J	0.95 30400 J	31200 J	0.85 106000 J	13700 J	0.92 44400
Chromium	mg/kg mg/kg	10.2	9.7	6.7	16.6	1 14.8 J	9.5 1	48.9 }	12300 J	14.4 ]	15.6 1	19900 J 35.2 J	15.3 J	18.5 J	7.6 1	29.3 /	10.7
Cobalt	mg/kg	7.1	7.2	3.1	16.9	8.3	3.6	7.1	6.4	7.2	4.8	9.8	6.5	1.3	3.3	15.1	6.4
Copper	mg/kg	20.2	12.1	8.3	21.2	18.7	6970	84.6	26.3	27.2	73.5	55.1	51.9	98.9	13.2	54.9	26.7
Iron	mø/kg	12900	11300	6570	18800 1	I 14300 J	7190 J	20300 J	17100 J	16100 J	11900 1	21900 J	36400 J	18800 J	7890 J	33800 J	12000
Lend	mg/kg	50.4 J	19	J 10.1 J	18.4	57.1 J	30.2 J	176 J	16.6 J	42.2 J	493 J	191 J	94.1 J	230 J	14.6 J	151 J	150
Magnesium	mg/kg	4000 J	1480	J 30600 J	22800	1950	39400	16500	4080	17000 J	17700 J	8590 J	5760 J	11300 J	31100 J	4350	10600
Manganese	mg/kg	569 J	798	J 464 J	1400	721	276	484	379	592 J	353 J	769 J	837 J	469 J	252 J	646	302
Mercury	mg/kg	0.12	0.12	0.11	0.11	0.12	0.11	0.38	0.11	0.12	0.2	0.16	0.14	0.27	0.11	0.13	0.11
Nickel	mg/kg	15.9	10.8	6.9	21.4	14.4	11	21.2	14.3	14.9	27.8	26.3	14.6	20.1	7	33.3	19.5
Potassium	mg/kg	836	692	433	1730	1190	566	1050	947	1490	511	1610	793	984	546	2130	815
Selenium	mg/kg	0.38 J	0.24 U		0.22 U.		0.22 J	0.28 J	0.23 UJ	0.36 J	1 1	0.24 J	0.24 J	0.82 J	0.35 J	0.68 J	0.43
Silver	mg/kg	0.96	0.95	0.84	0.87	0.94	0.86	0.94	0.91	0.93	0.99	0.92	0.95	0.94	0.85	0.91	0.92
Sodium	mg/kg	89.8	28.2	99.8	117	58.2	105	165	47.9	94.8	140	108	268	178	115	1510	217
Thallium	mg/kg	0.29 J	0.29	J 0.26 J	0.27	0.23	0.26 J	0.29 J	0.23 UJ	0.26 J	0.3 J	0.23	0.26 J	0.26 J	0.21	0.42 J	0.25
Vanadium	mg/kg	29.2	18.8	8.3	30.2	31.3	10.7	26.7	25.2	25.8	17.7	32.9	35.1	22.8	10.5	45.9	15.1
Zinc	mg/kg	85.9	43.8	23.1	69.9	72.9	66.2	118	124	82.2	424	164	241	190	29.4	129	183
Cyanide	mg/kg	0.6	0.6	0.53						NA	NA	NA	NA	NA	NA	NA	NA

MKE/DP41_028.XLS

Page 1 of 4

GLE65616.RI.RI

												Soil a	and Gr	Table roundwater Ins Carter-Te Novemb	organic Ar 1 Jamber	alytical	Results										
	Niation Locations Nample Numbers Date Nampleds Niedias	CLBR16 MERA09 33-3-92 NoII		CLBR17 MEKA10 J1-3-92 Soli		CL3301-Å MEKA16 J1-3-92 Noil		CLANUT-B MEKA19 JJ-3-92 Noll		CT3S02-A MEKA21 11-3-92 Noll		A-FR KA 20 J - 1-92 Nati		11.3.92-8 MKKA22 JJ-3-92 Koll	CL380 MEK/ 11-3	17			CLINIG MIKKAJI SJ-4-92 Noll	t	T.T.GRALT		T (,) (RO) ()	(*)28802-1 MICKA44 }}-8-92 Hull	CEJUBUZ-2 MKKA46 23-5-92 Holi		CLAIM
i al e	Unlis																										
111 619 619	mg/kg	6120		8860		4570		6900		1150		NONS / 11		1450		10	5580		6820		44163	6880	2010	4400	11400		
li mu n y	mg/hg	11 1	11	74 1	UI -	12	tu tu	78 0	1	11 0	1			69 11		1 11		01	11	UT .	* 6	11	1 11	71 00	16		
#Bi+	marka	112				17.8		10.2		11	,	/ N 41		43 1		4	67		10	1	11.1	11.2	61	174 7	11 8	1	
ium yllium	mgAg	0.52		6/ /		61 () 48		/5.8		11.1		41		0.25	20		46		111		28		11 8	10	1/1		
/1104095 Million	ացձը			0.91		0.4		0/		0.16		0.60		016	0		011		0 /0		0.51	04	0.27	0.62			
	mg/hg	0.9 //100		11/00		122000		10 WH 2 1 BCXCXC1		0.89		17 BH 14400		96600	1940	1			2.2		01	0.44	0.42	0.91	11		
ium	mg/hg		1		-		-		1	102000			1				72000		\$000	,	947(X)	129000	19002	83600	28,700		1
neninen N	matha	11 9	,	11.2	1	41	'	99.5	1			107 17	1	51		1 1	14 8	'	12.1		119	10.9		49 1	22.6		
	marka	25.4		119		25.6		12		22		29.9		147		9	14		-		41	19.1		41			
<b>14</b> 1	mg/kg	13000		21400		(9900) / 10		41 00		77 1100		4100		14 /		NO J	10 9 14100		40-1 11900		21 9 50/00		117 9060	19 2 28600	20-4 20200		
,	mgAg	110		69 1	-	112	-	44700	:	14 2 ···	. '	58.7	:	144 1		1 1	14800		1100			15200	4.2		112		
te sium	matha	26100	-	11400	-	50100	'	1/1	,	\$7600	:	587 26100	•	26100 1	170		19900		2190		69 J   J00	34500	4 2 5 1 00	100 1000 J	112		
4 M F 84	т <u>е</u> ћ <u>е</u> теће	194	:	112	,	404		6//		119	: .	401		220 1		19	114		/11	1	//6	600	212	/10 /	411		
Lif y	mg/sg mg/sg	011	'	012		0.41		041		0.26	,	011		011	0		011		0.24	'	0.065	0.051	0.013	021	011	,	
	mg/Lg mg/Lg	11		19.7		141		10.1		11		15.5		12		9	111		16		612	179	/9	39.4	123		
	mgAg	10		964		115		192		40.5		110		111			993		1010		118	1020	180	141	1150		
ium	mana	0.45		0.92		0 17		0		0.14		0.22 0		022 10		 14 I	0.17	ı.	0.51	t t	a 11	0.14	0.24	014 1	12	1	
	mette	0.9	•	0.91	•	0.9	•	0.98	•	0 89	•	0.00		0 80			0 19	•	0.97	•	01	0.44	0.42	0.41	0.94	•	
-m	mente	121		421		1 19		157		112		127		VN 8		01	110		62 1		64.1	104	147	41 /	112		
	mente	0.13		0.45		0.44	1	0.45	1	0.22 1	u -	0.29	1	0.22 11	-	24 J	017	1	0.12	1	0.27	0.22	0 101	023 10	0.41	,	
4.0111	mgAg	17		26.7		16.4		18.2		117		19		14			18.1		21.1		12.1	20.4		157	12.1		
	mg Ag	220		130		90.2		1/4		49.6		16.5		27.4		24	12.6		307		4/ 1	49.1	219	267	564		
nido	mata	NA		NA										-					0.61		0.111	0.275	0 /61	0 17	0 19		

Page 2 of 4

cit Batara Ri Ri

										Table B-2 andwater Inorgan Carter-Lee Lui November 19	nber 92								
	Station Location: Sample Number: Date Sampled: Media:	CLSB03-1 MEKA40 11-5-92 Soil	CLSB03-2 MEKA41 11-5-92 Soli	CLSB03-2- MEKA 11-5	42	CLSB03-3 MEKA43 11-5-92 Sofi	CLSB04-1 MEKA27 11-4-92 Soil	CL3804-2 MEKA28 11-4-92 Soli		CLSB04-3 MEKA29 11-4-92 Soll	CT.SB05-1 Soli	CLSB05-2	CLSE06-1 Soft	CLSB06-2	CLSB07	CLSB08	CLSB09-T Soil	CLSB09-2 Soil	CLSBI0-1
letals	Units						••••••												
lumaum	mg/kg	4230	5510	67		2920	5190	6480		1960	14900	2320	\$260	6350	7140	6080	4830	6480	2860
stimosy	mg/kg	7.7 UJ	7.3		.J UJ	6.7 UJ	7.2 UJ		UJ	6.8 UJ	10	3.4	3.6	3.8	3.5	3.5	3.5	3.6	5.5
rsenic	mg/kg	8.2 J	5.7		7 1	7.9 J	5.2 J	5.7	J	24 J	197	5.3	8. 1	15.9	8.7	88.9	6.6	7.8	123
arium	mg/kg	48.7	72.6	7		17.6	68.4	161		8.6	115	14.1	47.3	84.5	35.9	1.2	55.2	67.4	13.3
eryllium	mg/kg	0.41	0.42	0.		0.28	0.43	0.44		0.25	1.2	0.3	0.68	0.65	0.49	151	0.54	0.91	0.57
admium	mg/kg	0.96	0.91	0.		0.84	0.9	1		0.89	0.48	0.42	0.45	1.1	0.43	0.44	0.44	0.46	0.07
alcium	mg/kg	125000	38800	144	0	120000	97100 J	161000		236000	4460	163000	51400	71200	76200	54600	71200	103000	198000
hromium	mg/kg	97	8.2	10	.3	11	10.2	9.2		4.8	50.4	6.3	63.3	19.6	13.6	22.3	11.9	19.2	439
obait	mg/kg	6.9	4.7	(	.3	4.2	4.6	4.9		2.4	14.1	4.4	15.2	6.9	7.4	8.1	5.7	6.5	15.3
Copper	mg/kg	24.4	11.4	16	.5	13.4	20.7	10.4		5.2	114	10.5	21	39.4	19.1	75.2	20.3	19.3	21.7
roa	mg/kg	44900	11100	132	0	8940	10000	13600		5150	161000	7700	28900	15400	12400	32900	10400	13900	143000
.ead	mg/kg	88.5	19.1	J 19	8 J	6.5 J	69.6	8.5	1	5.4 J	19.7	6	24.7	137	18.4	376	59.2	65.9	19.4
Asgnesium	mg/kg	16700 J	6830	J 37	io j	38400 J	23900 J	14000	3	30600 J	3640	42200	17000	24900	24100	16000	25100	16800	605
Anganese	mg/kg	608 J	495	1 6	56 J	428 I	430 J	554	1	271 1	1020	382	1280	517	431	494	314	369	1080
Aercury	mg/kg	0.21	0.11	0.	21		0.19	0.12		0.11	0.06	0.06	0.06	0.45	0.06	0.42	0.06	0.25	0.08
lickel	mg/kg	39.6	10.6	13	.6	12.7	13.7	11.7		6.5	56.5	10.3	97.2	16	173	16.1	14.5	15.7	111
otassium	mg/kg	480	635	8	12	624	643	534		607	1250	475	760	948	969	786	647	1020	169
elenium	mg/kg	2.4 UJ	0.23	0.	13 J	0.35 J	0.23 UJ	0.37	J	0.23 J	0.28	0.36	0.28	0.45	0.33	0.68	0.32	0.39	3.5
ilver	mg/kg	0.96	0.91	0.	2	0.84	0.9	1		0.85	1.9	0.42	0.45	0.46	0.43	0.44	0.44	0.46	2.4
odium	mg/kg	99.8	50.2		18	134	104	94.1		142	. 132	142	59.6	93.4	96.3	197	116	201	29.3
haitium	mg/kg	0.45 J	0.25	J 0.	34 J	0.21 UJ	0.23 UJ	0.25	UJ	0.21 UJ	0.12	0.21	0.12	0.12	0,11	0.11	0.11	0.12	0.36
anadium	mg/kg	12.8	13.3		17	11.1	146	15.2		7.6	88.6	9.4	21.8	20	20.2	24.7	15.6	24.2	5.3
inc	mg/kg	86.7	39.7	5	7	31.5	91.9	41.2		14.5	178	23.6	195	128	48.4	354	78.3	79.6	23.3
Syanide	mg/kg	0.62	0.57	0.	57	0.52	0.56	0.62		0.53	0.3	0.26	0.28	0.29	0.27	0.28	0.27	0.57	0.42

MKE/DP41_028.XLS

GLE65616.RI.RI

					50	il and Groundwater 1 Carter-j	ble B-2 Joorganic Analytical   Lee Lumber wher 1992	Reaulta								
	Sistim Localism Sample Number: Date Sampledi Media:	C1.5818-2	CTRBT MEKAM JJ-8-92 Nati	CT3812-1 MEKA23 J1-4-92 Nell	CT.8812-2 MEKA24 11-4-92 Nati	CTXWIZ-2-PR MKKA25 11-4-92 Noll	CTABIZ-3 MEKA26 11-4-92 Soll	CLMW03 MEKA37 11-5-92 Water	CLMW02 MKKA68 11-7-92 Water	CEMW03 MEKA66 JJ-6-92 Water	CI,MW04 MEKA47 33-6-92 Water	CLMW66 MFKA46 JJ-6-92 Water	CLARENT MEKASI 11-4-92 Water	CLGREDI MEKA49 33-6-92 Water	CT.CR853 MKKA48 13-6-92 Water	CT.CP185 MKKA34 33-4-92 Water
Metale	Unito															
Alumiaum	ng/kg	4870	5010	2110	1750	2180	1090	12 1	<21	26 5	<21	<21	<29	16 1	29.7	1140
Antimumy	me/kg	11	71 10	72 UI	67 (	ט דר ט		11 e 12	-12	- 12	< 12	< 12	<12	<12	<12	<12
Artenic	ացքեց	24	19.1 1	13 A J	16	J 24	1 20.4	J <1	1.6	11	11	11	<1	۲۱	<1	10 1
listum	marka	44 9	158	2/9	24.7	29.1	84	e112	67	67	44 B	68.1	816	68.2	BN 1	251
lt er yllisum	mefte	0.1	0.17	0.29	0.21	0 22	0.22	•1	«I	11	-1	-1	-1	11	<i< td=""><td>1.</td></i<>	1.
admuum	me/kg	0.41	0 89	0.9	0.84	0.69	0 86	×4	<4	-4	-4	-4	<b>4</b>	c4	e4	
i alı ium	mafaa	99700	96600	1580000 1	141000	1 82190	1 2016000	1 11000	117000	1.8.1003	164000	19 (1903)	112000	446883	199000	
homium	me/hg	11.1	11.2	26.1	6	5.0	11	• 1	«1	•1	≤1	<b>«1</b>	e 1	-1	<1	
Coheli	mg/Ag	19	11	11	2.6	21	22	-1	-1	• 1	-1	4٩	« <b>1</b>	12.2	22 9	
Coggues	ng/kg	28 1	1/2	18.2	4.1	41	17	<4	e4	-4	-4	×4	×4	<4	×4	
leem	ma/1.6	11100	8 CHB(11C)	0110	50.50	1160	8400	16.1	< <b>6</b>	10.6	21 1	11.0	142	176	1790	
اندم ا	mg/hg	50.4	161	8/4	29	1 18	J 14	J 14	e1	12	4 ا	12	-1	<1	1	
Magnesium	marka	17500	15600 J	59000 J	10,100	1 24000	1 42700	1 14400	12400	16800	402(11)	10800	11(00)	11500	18100	
Manganese	me/kg	117	NR2 I	tat i	170	1 255	1 214	3 18.1	/ 1	224	11.6	90 6	838	128	1010	
Meeting	mg/kg	0.15	0.42	0.12	01	011	011	+01	•01	•01	×0.2	<b>≈0</b> 2	+0 J	-01	+O 2	
Nickel	me/kg	22.6	14 L		61	11	1 4	* 1	11.4	1 4	<b>د ۱</b>	11.4	14	<1	114	65
Pertanation	mg/Lg	841	080	481	242	386	2(00)	1840	4400	4070	4490	1940	4120	4460	4670	616
Selanum	mg/kg	0.14	0.12 1	01 /	021 L			9 14	1	11	1.0	17	11	21	2.5	2
Nilver	mg/kg	0.41	0 89	0.9	0.14	0.89	0 <b>5</b> 6	×4	×4	<b>c4</b>	44	e4	×4	< 4	<4	
Yoshiam	ms/h s	116	120	130	1.14	78 V	135	42800	11200	46100	11200	24800	41100	49400	49100	4780
Ihallium	mg/kg	0 11	022 11	071 01	0.21	u 22	0.71	÷1	14	1	<1	<1 ×1	<1	< 1	<‡>	
Vanadium	ng Ag	15.8	112	91	16	8.4	13	4 ک	c 1	e 1	41	• 1	« 1	4 ک	<1	
/384	mg/Lg	119	149	110	11.6	16.1	111	<1	<1	4 6	<1	«1	4.6	# 1	24 9	
Cyanide	mgAg	0.54	0.16	0.17	21	0 14	0.54	<10	<10	<10	< 10	₹10	< 10	<10	<10	<10

Page 4 of 4

CH JIMMATA RJ RJ

					G	Groundwater A	le B-3 aniytical Rom 1993	يا ته						
Sample Collec Laboratory Sample Idea		Water 6/7/93 ESG01	Water 6/7/93 ESG02	Water 6/7/93 ESG03	Water 6/7/93 ESG 56		water 6/7/93 ESG61	Water 6/7/93 ESG62	Water 6/7/93 ESG63	Water 6/7/93 MERE24	Water 6/7/93 MERE25	Water 6/7/93 MERE26	Water 6/7/93 MERR27	Waler 6/7/93 MEREO
Field Sample Iden	tification:	MW-01	MW-02	MW-03	TB-01	MW-M	MW-05	FB-01	TB-02	MW-01	MW-92	MW-03	MW-04	<u>MW-0</u>
olatile Organic hioromethane	Unite µg/L	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ					
romomethane uryi Chloride	ущг/L µщг/L	נט סו נט סו	10 UJ 10 UJ	10 UJ 10 UJ	10 UJ 10 UJ	10 UJ 10 UJ	10 UJ 10 UJ	10 UJ 10 UJ	10 UJ 10 UJ					
hioroethane	μg/L	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ					
ethylene Chloride colone	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U					
arbon Dusulfide	HE/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U					
1-Dichloroethene 1-Dichloroethene	μ <b>γ</b> /L. μγε/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U					
2-dichloroethene (total)	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U					
doroform 2-Dichloroethane	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U					
Butanone	HE/L	10 UI	10 UJ	10 UJ	10 UJ	10 U	10 UJ	10 UJ	10 UJ					
I,1-Trichloroethane	με/L με/L	10 U 10 U	10 U 10 U	LO U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U					
romodichloromethane	µg∕L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U					
2-Dichloropropane 1,3-Dichloropropene	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U					
ichloroethene	μ <b>g/L</b>	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U					
bromochloromethane 1.2-Trichloroethane	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U					
tilizené	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U					
na-1,3-Dichloropropene romoform	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U					
Methyl-2-pentanone	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U					
Hexanone rtrachloroethene	µg/L µg/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U					
1.2.2-Tetrachloroethane	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U					
oluene hiorobenzene	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U					
hyibenzene Yrene	<b>щ/L</b> щ/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U					
yiene (totai)	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U					
mivolatile Organic mol	Undes µg/L	10 U	10 U	10 U		10 U	10 U	10 U						
s(2-Chloroethyl)ether	μ <b>g</b> /L	10 U	10 U	10 U		10 U	10 U	10 U						
Chiorophenol 3-Dichlorobenzene	щк/L щк/L	10 U 10 U	10 U 10 U	10 U 10 U		10 U 10 U	10 U 10 U	10 U 10 U						
4-Dichlorobenzene	μą/L	10 U	10 U	10 U		10 U	10 U	10 U						
2-Dichlorobenzene Methylphenol	<b>µg/L</b> µg/L	10 U 10 U	10 U 10 U	10 U 10 U		10 U 10 U	10 U 10 U	10 U 10 U						
2-oxybia(1-Chloropropane)	μų/L	10 U	10 U	10 U		10 U	10 U	10 U						
Methylphenol -Nitroso-di-n-propylamme	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U		10 U 10 U	10 U 10 U	10 U 10 U						
exachioroethane	μ <b>g</b> /L	10 U	10 U	10 U		10 U	10 U	10 U						
itrobenzene ophorone	μą/L μą/L	10 U 10 U	10 U 10 U	10 U 10 U		Ю U 10 U	10 U 10 U	10 U 10 U						
Nurophenol	μg/L	10 U	10 U	10 U		10 U	10 U	10 U						
4-Dimethylphenol s(2-Chloroethoxy)methane	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U		10 U 10 U	10 U 10 U	10 U 10 U						
4-Dichlorophenol	µg/L	10 U	10 U	10 U		10 U	10 U	10 U 10 U						
2,4-Trichlorobenzene apihalene	μg/L   μg/L	10 U 10 U	10 U 10 U	10 U 10 U		10 U 10 U	10 U 10 U	10 U						
Chloroanime	µg/L	10 U	10 U	10 U		10 U	10 U 10 U	10 U 10 U						
iexachiorobutadiene -Chioro-3- methylphenol	µg/L µg/L	10 U 10 U	10 U 10 U	10 U 10 U		10 U 10 U	10 U	10 U						
-Methylnaphihaiene	μg/L	10 U 10 U	10 U 10 U	10 U 10 U		10 U 10 U	10 U 10 U	10 U 10 U						
exachlorocyclopentaduene .4.6-Trichlorophenoi	не/L не/L	10 U	10 U	10 U		10 U	10 U	10 U						
.4.5-Trichlorophenol -Chloropaphthalene	μg/L μg/L	25 U 10 U	25 U 10 U	25 U 10 U		25 U 10 U	25 U 10 U	25 U 10 U						
Nitroauline	μ <b>g</b> /L	25 U	25 U	25 U		25 U	25 U	25 U						
Amethylphihalase Acenaphihylene	με/Ն με/Ն	10 U 10 U	10 U 10 U	10 U 10 U		10 U 10 U	10 U 10 U	10 U 10 U						
6-Dimensioluene	μ <b>g</b> /L	10 U	10 U	10 U		10 U	10 U	10 U						
- Nitroenline Accusphibene	ալլ/Լ µզլ/Լ	25 U 10 U	25 U 10 U	25 U 10 U		25 U 10 U	25 U 10 U	25 U 10 U						
2,4-Dimerophenol	μ <b>ε</b> /L	25 U	25 U	25 U		25 U	25 U	25 U						
4-Nitrophenal Dibenzofaran	μ <b>ε/L</b> με/L	25 U 10 U	25 U 10 U	25 U 10 U		25 U 10 U	25 U 10 U	25 U 10 U						
2,4-Dinstrotolaene	HE/L	10 U	10 U	10 U		10 U	10 U	10 U						
4-Chlorophenyl-phonylether Dorbylphthalate	μg/L μg/L	10 U	10 U 10 U	10 U 10 U		10 U 10 U	10 U 10 U	10 U 10 U						
Fluorene	μg/L	10 U	10 U	10 U		10 U	10 U	10 U						
4-Nitroanulane 6,6-Danaco-2-Methylphenol	μα/L μα/L	25 U 25 U	25 U 25 U	25 U 25 U		25 U 25 U	25 U 25 U	25 U 25 ປ						
1,6-Danaro-2-Methylphenol N-Nitrosodiphenylamase	μg/L μg/L	100	25 U 10 U	25 U 10 U		25 U 10 U	23 U 10 U	25 U 10 U						
-Bromophenyl-phonylether	μη/L	10 U	10 U	10 U		10 U	10 U	10 U						
iczachiorobenzene entachiorophenol	μ <b>ε</b> /L με/L	10 U 25 U	10 U 25 U	10 U 25 U		10 U 25 U	10 U 25 U	10 U 25 U						
homothrene	ug/L	10 U	10 U	10 U		10 U	10 U	10 U						
atbracene Intozoie	μ <b>ε/L</b>	10 U	10 U	10 U 10 U		10 U 10 U	10 U	10 U						
X-a-Becylpisthaluin	μg/L μg/L	10 U 10 U	10 U 10 U	10 U		10 U	10 U 10 U	10 U 10 U						
Personal Action of Actiono	µg/L	10 U	10 U	10 U		10 U	10 U	10 U						
bey tibes zy ipitche ( ste	με/L με/L	10 U 10 U	10 U 10 U	10 U 10 U		10 U 10 U	10 U 10 U	10 U 10 U						
3.3-Dichlorobenzidine	HE/L	10 U	10 U	10 U		10 U	10 U	10 U						
Benzio(s)andersonne Chrysenae	µg/L	10 U	10 U	10 U 10 U		10 U	10 U	10 U						
bas(2-othylhexy))philiplaise	μημ/L μημ/L	10 U 10 U	10 U 10 U	10 U		10 U 10 U	10 U 10 U	10 U 10 U						
Di a octyiphtnisse Bensu(b)flacemeterne	µg/L	10 U	10 U	10 U		10 U	10 U	10 U						
Senan(k)finoranthenn	µg/L µg/L	10 U 10 U	10 U 10 U	10 U 10 U		10 U 10 U	10 U 10 U	10 U						
Benzo(a)pyrone	µg/L	10 U	10 U 10 U	100		10 U 10 U	10 0	10 U 10 U						
Indeno(1,2,3-od)pyrene Dibenzo(a,h)anthracene	μg/L μg/L	10 U	10 U	10 U		10 U	10 U	10 U						
Beam(g,h,i)perylene	μg/L. μg/L	10 U 10 U	10 U 10 U	10 U 10 U		10 U 10 U	10 U 10 U	10 U 10 U						
alpha-BHC beta-BHC	μg/L	0.05 U	0.05 U	0.05 U		0.05 UJ	0.05 U	0.05 U						
deita-BHC	μg/L μg/L	0.05 U 0.05 U	0.05 U	0.05 U		0.05 UJ	0.05 U	0.05 U						
serme-BHC (Lundane)	μη/L	0.05 U	0.05 U 0.05 U	0.05 U 0.05 U		0.05 UJ 0.05 UJ	0.05 U 0.05 U	0.05 U 0.05 U						

_____

MKE/DP41_019.XLS

•

.

Page 1 of 2

						Tal Ground-Tal	ie 8-3 autoticul Rea	-						
						Jun	1993	-						
	Mutrix	W alar	***	Water		N star	er Legeber Traine	-	W ator	W star		Weiter	Water	Water
	discos Date		674D ESCIE	ernis ESC48	ESG56	6740 1364	6/7/83 ESC41	6/743	677753	4/793 ME30204	6/3/93	4/7/93 MEDE26	47/93 MERE27	6/7/93 MEREN
Laboratury Sample Padd Sample I			NW-4C	101-10	TB-41	VT-44	NALE	ESG42 FIL-41	E9643 13642	METERS	MERCES MW-42	WW-43	NW-M	WW-46
and the Organic	Lun							7	13944		<u></u>			
ingland line	and the	1251	1251	: 25 1		325 17	0.01 1	C.05 U						
	and the	1.15 1	1.25 1	1.25		2.25 13	6.05 U	1.05 U						
ingtention openants	Juge L	::::	1.25	1.25		0.05 17	0 05 U	5.05 C						
adamatin (	age C	1.24 1	1.25	1.251		1.05 171	0.05 L'	6.05 U						
) and the	.a∎L	:.:	:::	1:1		11 13	61 U	D 1 L'						
4 COE	.a∎L		1:1	1:1		a : UI	ast	6 I U						
	Jap L		111	1.1		2123	010	0 1 U						
interaction I	ang L	: :	111			2117	010	01 U						
4 CCC	unge L	1.1	1:1	1:1		2:13	01U 01U	61 U 61 U						
A CET	ung C.		:::	1:1		0117 0117	011 011	61U 61U						
in a calification of the second s	لوس انوس	1.1	1.5	191		45 CJ	010	41 C 45 C						
	agrit.		1.1 1.1	1.1		251	0.50	03 U 01 U						
	ang L		1.1	1:1		1:17	611	010						
and Constitute	ang t		1.5	1251		3.05 13	0.05 U	L.05 U						
ana - Ciantan	ug L	1251	1.25 1	125 1		1.05 1.3	0.05 L	0.05 U						
skaji kaler	Jes L	• :	51.	51		513	5 U	5 U						
and the second sec	ung⊮L		1.1	: 1		: 17	10	: r						
andian	ung ⊑	::	- ::	21		:13	21	210						
and the second	Jape L	. :	::	::		: 17	1 U	1 U						
endine	an L	.:	::	::		113	11	11						
and an and a second	ag L		: •	: -		: 13	11	1 U						
-24 Maria - 24	ung L.			: 1		: 17	11	1 U 1 U						
	<u></u>					_:13	<u> </u>							
	Jac L									257	350	25.2 U	23.5 U	23.5
										1790	:-90	179 U	17.9 U	179
	and to									200	200	200	4.6 U	23
	ang t									130 3	11.5	5.11	49.8 1	55 6
and the second	and L									2.4 U	2.81 U	1.6 0	120	1.6
ainem.	an t									:	170	L7 U	1.7 U	17
	- <b>1</b>									136065	130000	194000	179000	140000
	age L									50 U	54 C	5.8 U	5.8 U	58
and the second se	<u>а</u> н С.									3.8 U	3.1 U	ມເ	3.8 U	31
	ang L									42 0	420	420	4.2 U	4.2
ant And	age L									23 U 13	4.8 U 23 I	4.8 U 1.9 J	4.8 U 3 J	11.9
and Augmenium	مورد. اروند									33400	31466	1.9 1	45000	21200
Angenetic .	ացը։ ացը ն									:223	14 U	5.7 1	1.1 U	18
	ագրե ազրե									110	ei C	010	010	01
	ang L									610	410	610	610	6.1
	ang t									4369.1	4688 J	3310 J	4250 1	3170
										33 (3	613	រមួយ	9.2 J	5
- inter	an C									3.8 U	3.8 U	18 U	34 U	3.8
- tut	ang L									54000	37300	40100	40700	34000
Tagi sam.	Jet.									12 03	L2 U		1203	1.2
	ant.									3.3 U	13 U	500	ມເ	3.3
										34 U	14 U	14 U	34 U	3.4
A MERINE	ang t									36 U	16 U	10 U	10 (*	10

					Soll and	Groundwat Septem	ie B-4 ier Anniytic ber 1993	al Results						
Field Sample Identificatio Laboratory Sample Identificatio Matri Sample Collection Da	A: 1:	CMW-1 EKJ61 Water 9/22/93	CMW-2 EKJ62 Water 9/22/93	CMW-3 EKJ63 Water 9/22/93	CTB01 EKJ64 Water 9/22/93	Carter-La CFB01 EKJ65 Water 9/22/93	CMW-4 EKJ66 Water 9/22/93	CMW-5 EKJ68 Water 9/22/93	CMW-S-FR EKJ67 Water 9/22/93	CTB02 EKJ69 Water 9/22/93	CLBK03 EK176 Soil 9/22/93	CLBK03-FR EKJ71 Soll 9/22/93	CLBK06 EK172 Soll 9/22/93	C M
Volatile Organic	e: Units	712473	112045	9/12/93	1/2/193	9/2093	WI1193	1/22/93	W 21/93	W 1493	74493	71273		
Chloromethane Bromomethane	μą/L μą/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	11 U 11 U	11 U 11 U	12 U 12 U					
Vinyl chloride	μą/L	10 U	10 0	10 U	10 U	10 U	11 U	11 U	12 U					
Chloroethane	µg/L	10 U	10 U	10 U	10 U	10 U	11 U	11 U	12 U					
Methylene chloride Acetone	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U	2 J 10 U	2J 10U	10 U 10 U	10 U 10 U	10 U 10 U	1 J 10 U	15 11 U	12 25 B	15 12 U	
Carbon disulfide	µg/L	10 U	10 U	10 U	10 U	10 U	11 U	11 U	12 U					
1.1-Dichloroethene 1.1-Dichloroethane	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	11 U 11 U	11 U 11 U	12 U 12 U					
1,2-Dichloroethene (total)	µg/L	10 U	10 U	10 U	10 U	10 U	11 U	11 U	12 U					
Chloroform 1,2-Dichloroethane	με/Li με/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	11 U 11 U	11 U 11 U	12 U 12 U					
2-Butanone	μą/L	10 U	10 U	10 U	10 U	10 U	11 U	1 1	12 U					
1,1,1-Trichloroethane	μg/L	10 U 10 U	10 U	10 U 10 U	10 U	10 U	10 U	10 U	10 U	10 U	4 J	3 J 11 U	2 J 12 U	
Carbon tetrachlonde Bromodichloromethane	μք/L: μք/L	10 U	10 U 10 U	10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	11 U 11 U	11 U	12 U	
1.2-Dichioropropane	μ <b>ε</b> /L	10 U	10 U	10 U	10 U	10 U	11 U	11 U	12 U					
cu-1,3-Dichloropropene Trichloroethene	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U	U 01 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	11 U [] U	11 U 11 U	12 U 6 J	
Dibromochloromethane	µg/L	10 U	10 U	10 U	10 U	10 U	11 U	11 U	12 U					
1,1,2-Trichloroethane Benzene	μg/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	11 U 11 U	11 U 11 U	12 U 12 U					
Benzene trans-1,3-Dichloropropene	μ <b>ε/L</b> με/L	10 U 10 U	10 U 10 U	10 U	10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	11 U 11 U	11 U	12 U 12 U	
Bromoform	µg/L	10 U	10 U	- 10 U	10 U	10 U	11 U	11 U	12 U					
4-Methyl-2-pentanone 2-Hexanone	με/L∶ με/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	11 U 11 U	11 U 11 U	12 U 12 U					
Tetrachloroethene	µg/L	10 U	10 U	10 U	11	1 J	10 U	10 U	10 U	L J	11 U	11 U	12 U	
1,1,2,2-Tetrachioroethane Toluene	µg/L	10 U 10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11 U	11 U 11 U	12 U 12 U	
Chlorobenzene	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	11 U 11 U	11 U	12 U					
Ethylbenzene	μg/L	10 U	10 U	10 U	10 U	10 U	11 U	11 U	12 U					
Styrene Xylene (total)	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	11 U 11 U	11 U 11 U	12 U 12 U					
Semivolatile Organic	Units					·						_		
Phenol bis(2-Chloroethyl)ether	µg/L µg/L	10 U 10 U	10 U 10 U	10 U 10 U		10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U		390 U 390 U	360 U 360 U	390 U 390 U	
2-Chlorophenol	µg/L	10 U	10 U	10 U		10 U	10 U	10 U	10 U		390 U	360 U	390 U	
1,3-Dichiorobenzene 1,4-Dichiorobenzene	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U		10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U		390 U 390 U	360 U 360 U	390 U 390 U	
1,2-Dichlorobenzene	μg/L	10 U	10 U	10 U		10 U	10 U	10 U	10 U		390 U	360 U	390 U	
2-Methylphenol 2,2'-oxybu(1-Chloropropane)	μg/L	10 U 10 U	10 U 10 U	10 U 10 U		10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U		390 U 390 U	360 U 360 U	390 U 390 U	
4-Methylphenol	μg/L μg/L	10 U	10 U 10 U	10 U		10 U 10 U	10 U	10 U 10 U	10 U 10 U		390 U 390 U	360 U	390 U	
N-Nitroso-da-n-propylamine	μg/L	10 U	10 U	10 U		10 U	10 U	10 U	10 U		390 U	360 U	390 U 190 U	
Hexachloroethane Nurobenzene	<u>μ</u> g/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U		1 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U		390 U 390 U	360 U 360 U	390 U 390 U	
Isophorone	μg/L	10 U	10 U	10 U		10 U	10 U	10 U	10 U		390 U	360 U	390 U	
2-Nitrophenol 2,4-Dimethylphenol	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U		10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U		390 U 390 U	360 U 360 U	390 U 390 U	
bus(2-Chloroethoxy)methane	µg/L	10 U	10 U	10 U		10 U	10 U	10 U	10 U		390 U	360 U	390 U	
2,4-Dichlorophenol 1,2,4-Trichlorobenzene	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U		10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U		390 U 390 U	360 U 360 U	390 U 390 U	
Naphthalene	μg/L	10 U	10 U	10 U		10 U	10 U	10 U	10 U		630	260 J	270 J	
4-Chloroaniine Hexachlorobutadiene	μg/L μg/L	10 U 10 U	10 U 10 U	10 U		10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U		390 U 390 U	360 U 360 U	390 U 390 U	
4-Chloro-3-methylphenol	μg/L	10 UJ	10 UJ	10 UJ		10 UJ	10 UJ	10 UI	10 UJ		390 U	360 U	390 U	
2-Methyinaphihalene Hexachiorocyclopeniadaene	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U		10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U		700 390 U	350 J 360 U	390 J 390 U	
2,4,6-Trichlorophenol	μ <b>ε/</b> L	10 U	10 U	10 U		10 U	10 U	10 U	10 U		390 U	360 U	390 U	
2.4.5 Trichtorophenol 2-Chloronaphthalene	и <b>д/L</b>	25 U 10 U	25 U 10 U	25 U 10 U		25 U 10 U	25 U 10 U	25 U 10 U	25 U 10 U		940 U 390 U	880 U 360 U	950 U 390 U	
2-Nitroanilme	μg/L μg/L	25 U	25 U	25 U		25 U	25 U	25 U	25 U		940 U	880 U	950 U	
Dumethyliphthalaite Accryaphthylene	μg/L	10 U	10 U 10 U	10 U 10 U		10 U 10 UJ	10 U	10 U	10 U 10 UJ		390 U	360 U	390 U	
2,6-Dinstrotoluene	μ <b>g/L</b> μg/L	10 U 10 U	10 U 10 U	10 U 10 U		10 UJ 10 U	10 UJ 10 U	10 UJ 10 U	10 U 10 U		140 J 390 U	32 J 360 U	44 J 390 U	
3-Nitroaniline Acenaphthene	μg/L	25 U	25 U	25 U		25 U	25 U	25 U	25 U		940 U	880 U	950 U	
2.4-Dunirophenol	μ <b>g/L</b> μg/L	10 UJ 25 U	10 UJ 25 U	10 UJ 25 U		10 UJ 25 U	10 UJ 25 U	10 UJ 25 U	10 UJ 25 U		390 U 940 U	360 U 880 U	390 U 950 U	
4-Nitrophenol Dibenzofuran	με/L	25 U 10 U	25 U 10 U	25 U 10 U		25 U 10 U	25 U 10 U	25 U 10 U	25 U		940 U	880 U	950 U	
2,4-Dintrotoluene	μ <b>ε/L</b> με/L	10 U 10 U	10 U 10 U	10 U 10 U		10 U	10 U 10 U	10 U	10 U 10 U		350 J 390 U	150 J 360 U	180 J 390 U	
Dethyipishalate	μ <b>g</b> /L	10 U	10 U	10 U		10 U	10 U	10 U	10 U		390 U	360 U	390 U	
4-Chiorophenyi-phenyiether Fluorene	μg/L μg/L	10 U 10 U	10 U 10 U	10 U 10 U		10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U		390 U 411 J	360 U 35 J	390 U 23 J	
4-Nitroaniline	μg/L	25 U	25 U	25 U		25 U	25 U	25 U	25 U		940 U	880 U	950 U	
4.6-Dinitro-2-methylphenol N-Nitrosodiphenylamme	μg/L μg/L	25 U 10 U	25 U 10 U	25 U 10 U		25 U 10 U	25 U 10 U	25 U 10 U	25 U 10 U		940 U 390 U	880 U 360 U	950 U 390 U	
4-Bromophenyi-phanyiether	HE/L	10 U	10 U	10 U		10 U	10 U	10 U	10 U		390 U	360 U	390 U	
Hexachlorobename Pentachlorophenol	με/L με/L	10 U 25 U	10 U 25 U	10 U 25 U		10 U 25 U	10 U 25 U	10 U 25 U	10 U 25 U		390 U 260 J	360 U 220 J	390 U 950 U	
Phenerathene	με/L με/L	10 U	10 U	10 U		10 U	10 U	10 U	10 U		1700	800	\$10	
Anthracene	μg/L	10 U	10 U	10 U		10 U	10 U	10 U	10 U		220 J 210 J	100 J 95 J	80 J 74 J	
Di-n-butytphthalate	μg/L μg/L	10 U 10 U	10 U 1 J	10 U 10 U		10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	•	300 J	91 J	49 J	
Flooranthene	µg/L	10 U	10 U	10 U		10 U	10 U	10 U	10 U		2200	890 620 B	870	
Pyrene Batylbenzylphthalate	μg/L μg/L	10 UJ 10 U	10 UI 10 U	10 U 10 U		10 UJ 10 U	10 UJ 10 U	10 UJ 10 U	10 UJ U 01		1500 B 390 U	620 19 360 U	640 B 390 U	
3,3-Dichlorobenzidine	μημ/L	10 U	10 U	10 U		10 U	10 U	10 U	10 U		390 U	360 U	390 U	
Benzo(a)anthracene Chrysens	μ <b>g/L</b> .	10 U	10 U 10 U	10 U 10 U		0.4 J 0.3 J	10 U	10 U	10 U 10 U		1200 1800	450 740	440 670	
bis(2-Ethylhexyl)phthalate	μg/L μg/L	10 U 10 U	10 U	10 U 10 U		0.3 J 10 U	10 U 10 U	10 U 10 U	10 U		390 U	360 U	390 U	
Di-n-Octyl phthalate	μg/L	10 U	10 U	10 U		0.3 J	10 U	10 U	10 U		29 J	360 U	390 U 1200	
Benzo(b)fluoranthene Benzo(k)fluoranthene	μ <b>ε</b> /Լ μ <b>ε</b> /Լ	10 U 10 U	10 U 10 U	10 U 10 U		10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U		4000 2000	1400 820	1200	
Benzo(a)pyrene	μ <b>g</b> /L	10 U	10 U	10 U		10 U	10 U	10 U	10 U		1900	620	440	
Indeno(1,2,3-cd)pyrene	μg/L. μg/L	10 U 10 U	10 U 10 U	10 U 10 U		10 U 10 U	10 U 10 U	10 U	10 U		1200	490 150 J	350 J 120 J	
Dibeuzo(a,h)anthracene								10 U	10 U		400			

·

.

				Sel and	Tabl Crossedware Searces	ar Analytic	i Randu						
					Care-La	e Lauter							CMW.
Point Sample Scientification Lateratory Sample Mantification	CMNI.; EKJM	ELLIC	CHAR-1 EICIO	CTINI EX.M		CMO-4 EXCM4	CONTR-S ( EXCHI	CMW-S-FR EKL67	CTIN2 EXCHP	CLINERS EK/74		CLEEN EX/72	MEZH
Marra.	W star	R star	W star	V star	Water	N and T	N star		N star	Sel	Set	Set	Weter
Supple Collection Date	*2347	12173	12343	12010	12273	97273	9/23/93	12270	122703	1200	97293	9/22/93	W22/9
Presidenter Patione Las	pi												
ann diff. ann ann ann ann ann ann ann ann ann an	1.15 1.7	1.005 0	145 12			0.05 17	0.05 10			:) 🖸	:2 8	1.1 B	
ana 2680 ap 1.	12 17	125 12	125 13			0.05 173	0.05 10			:+ 13	1.9 UJ	2 01	
ana dell'		125 13	125 13			0.05 13	0.05 UI			13 UI	:9 យ	2 0	
anna diff Looper ag L		13: 1	125 13			0.05 10	0.05 17			15 12	L9 UJ	13.1	
		1.30734-1	125 13			0.05 17	0.05 17			មេច	L9 (J	2 0	
laine agt. Tagailte annair agt.		1.15 1.1	125 13			0.05 10				30 F 51 J	19 UI 41 J	2.9 1	
		1.29 1.7	141 11			0.05 17				:9 03	19 (3	20	
նառումը։՝ դրե Ռոհանդա հարե		11:1 1	1: 17		21 13		63 13			517	36 13	4 11	
A COE ASI		1: 12	4:13		2:17		1110			11 13	16 (3	4 13	
inter apt		12:* :	11 17		1: U	01 17	01 13			31 13	12 1	11 J	
աստասեա 1 աժատանան		1: 17	1:17		11 11	01 U	61 17				36 (3	4 UI	
14 CCC	1: 17	1:12	11 13		B1 U2	01 17	51 17			11 12	34 LT	76 3	
Jage antime antime	1: 17	1:12	1:13		01 UI	51 UJ		a: 13		11 13	36 UJ	4 UJ	
ieann ant	1: 17	11:2 :	4: 13		ងរ បា	b) U)	61.53	3.0036 J		и п	13-1	14 J	
Automation up!	15.17	15.17	15 13		45 UI	0.5 UI	05 17			ងព	<b>H</b> 1	65 J	
Japa antena antena	1:17	1:17	1: 13		ai U	01 U	ា ដ			44 J	<b>34</b> J	15 J	
Eastana sekataraka sept.		1: 17	71 23		01 UI	01 🖾	01 to			ם ע	34 U	4 UI	
1. and a second se	115 12	125 17	145 17		0.05 17		0.05 UI			19 U	34 1	48.1	
and the second		125 11	1.25 1.7		0.05 17		0.25 13			12.1	1 04	65 1	
and and and		5 12	5 12		5 13	5 (7	: 12			26 13	190 UI	200 UI 40 UI	
Test 114 april		: ::	1 13		1 10	1 13	112			9 10 10 10 10 10 10 10 10 10 10 10 10 10	<b>x</b> U	40 CJ 80 CJ	
andar 2011 and		: ::	1 13		:0	ះប រប	םי טו			្រ រដ្ឋា	ារប ងបោ	40 UI	
tenden 202 ange Tenden 202 ange		: ::	1.5		10	10	10			30	3 CT	40 13	
antin Jak agt			1 11		10	10	10				ន៍បា	40 11	
ance LSt age		1.17	1 17		10	របា	10			និច	ន៍ជ័	40 UI	
ance 200 second		: : :	1 17		1 11	i 17	: 5			3	<b>N</b> U	40 UJ	
Artain and Crussele Lun									_				
unan													53.8
Jac Hennik													39.4
umaa agt													12
ana ay t													136
ierdaan													L
anna ar													2.4
aonan ant													116000
Dentanati Japit Jamant Jamit													3.7 4_5
													4.3
հացաշ հայն բամ հայն													127
													0.5
ատա արև նարտություն երկ													33400
tayana yat													27
tecum apt													0.1
summer and													13.2
namen art.													4390
annan agt													1
iver at													3.4
andaan ay ta													49800
haliam ag (													0.7
													4.7
ina agt Japan an I													11.8
Annale				- <b>-</b>	- P1								
Uning the second se													
Carner, Jose Carpenie													
Dennes Dryge Dennes and													
Channel and													
Santana a CaCO? and													
looks Tes Deservet													
Series, Tree Surgemented													

138 AC

ł

	·						Table B-4								
							Table B-4 undwater Analyt September 1993								
Field Sample Identification:		CMW-2	CMW-3	CMW-4	CMW-5	Cart	rter-Lee Lumbe	M	R CLBK06	CMW-1	CMW-2	CMW-3	CMW-4	CMW-5	CMW-5-FT
Laboratory Sample Identification:		MEZ960 Water	MEZ961	MEZ#62	ME2964	ME2963	ME2966	ME2965	ME2967	20848-01	20848-02	20648-03	20648-04		
Matrix: Sample Collection Date:		9/22/93	Water 9/22/93	Water 9/22/93	Water 9/22/93	Water 9/22/93	Soil 9/22/93	Soil 9/22/93	Soil 9/22/93	Water 9/22/93	Water 9/22/93	Water 9/22/93	Water 9/22/93	Water 9/22/93	Water 9/22/93
Volatile Organic	Units														
Chloromethane Bromomethane	μg/L μg/L	i													
Vinyl chlonde	µg/L	i													
Chloroethane	µg/L	i													
Methylene chloride Acetone	μg/L μg/L	(													
Carbon dusulfide	μg/L	(													
1,1-Dichloroethene 1,1-Dichloroethene	μg/L μg/L	ı													
1,2-Dichloroethene (total)	μg/L	ı													
Chioroform	µg/L	1													
1.2-Dichloroethane 2-Busanone	μg/L μg/L	I.													
1,1,1-Trichloroethane	μg/L	i -													
Carbon tetrachloride Bromodichloromethane	μg/L μg/L	1													
1,2-Dichloropropane	µg/L	i													
cus-1.3-Dichloropropene	µg/L	í .													
Trichloroethene Dibromochloromethane	μg/L μg/L	1													
1,1,2-Trichloroethane	µg/L	í .													
Benzene trans-1.3-Dechloromonene	µg/L	1													
trans-1,3-Dichloropropene Bromoform	µg/L µg/L	t													
4-Methyl-2-pentanone	μg/L	1													
2-Heumone Tetrachloroethene	µg/L µg/L	í .													
1,1,2,2-Tetrachloroethane	µg/L	í .													
Totuene Chlorobenzene	H&/L	t													
Ethylbenzene	μg/L μg/L	ŧ													
Styrene	µg/L	t							÷						
Xylene (total) Semivolatile Organic	µg/L Units						<u> </u>								<u> </u>
Phenol	μg/L	1													
bis(2-Chloroethyl)ether 2-Chlorophenol	μg/L μg/L	i													
1.3-Dichlorobenzene	µg/L	ı													
1.4-Dichlorobenzene 1.2-Dichlorobenzene	μg/L μg/L	í.													
2-Methylphenol	μg/L	1													
2.2'-oxybis(1-Chloropropane)	µg/L	(													
4-Methylphenol N-Nitroso-di-n-propylamme	μg/L μg/L	I.					-								
Hexachioroethane	µg/L	I.													
Nitrobenzene Isophorone	μ <b>g/L</b> μg/L	1													
2 Nitrophenol	µg/L	1													
2.4-Dimethylphenol bu(2-Chloroethoxy)methane	μg/L μg/L	1													
2.4-Dichlorophenol	μg/L	(													
1.2.4-Trichlorobenzene Naphthalene	μg/L μg/L	(		•											
4-Chloroaniline	μg/L	(													
Hexachlorobutadame 4-Chloro-3-methylphenol	μ <b>ε/L</b> με/L	(													
2-Methylnaphthalene	µg/L	i													
Hexachlorocyclopentadaene 2.4,6-Trichlorophenol	μg/L μg/L	i -													
2,4,5-Trichlorophenol	μg/L	1													
2-Chloronaphthalene 2-Nitroanulme	μ <b>g/L</b>														
Dumethylphthalate	μg/L μg/L	1													
Acenaphthylene	μg/L														
2,6-Dunitrotoluene 3-Nitroundune	μą/L μg/L	1													
Acenaphthene	µg/L	1													
2,4-Dunstrophenol 4-Nitrophenol	μą/L μą/L														
Dibenzofaran	µg/L	1													
2.4-Dimetrotolinene Diethylphthalate	μg/L μg/L														
4-Chlorophanyl-phanylether	µg/L														
Fluorene 4-Nitromuline	μg/L μg/L	1													
4,6-Dinatro-2-methylphenol	Hg/L														
N-Nitrosodiphenylamane	µg/L	i -													
4-Bromophenyl-phanyisther Hexachiorobename	με/L με/L														
Pentachlorophonol	µg/L	1													
Phonenthrone Amhracone	με/L με/L	1													
Carbazole	µg/L	F													
Di-n-butylphthalast Fluoranthene	με/L με/L	ł													
Ругене	µg/L														
Butylbenzylphthalate	µg/L														
3,3-Dichlorobanzadina Benzo(a)anthracana	μg/L μg/L														
Chrysene	ME/L														
bis(2-Ethylhexyl)phthalate Di-n-Octyl phthalate	µg/L														
Di-n-Octyl phthalate Benzy(b)fhorranthane	μg/L μg/L	1													
Benzo(k)fluoranthane	µg/L														
Benato(a)pyrame Indento(1,2,3-cd)pyrone	μ <b>g/L</b> μ <b>g/L</b>														
Dibenzo(a,h)anthraoans	µg/L														
Benzio(g.b.i)perylene	HE/L	-													

.

ł

				:	Sall and Groups	Cable B-4 Iwatar Analy Iazabar 1993	acal Ramita							
					Cana	-Lee Lembs								
Post franzis Islandikasian	CMW-2		CMP#-4	CMP-1			CLILLO-FR		C3(14-1	CM/W-2	COM-3	C34W-4	CMW-5 HIMLAS	CMW-5-
normery Sampie Montilization: Materix		WE2044	VE2NC Water	NE2N4	MEZNO Water	NEE2N4 See	ME2N6 Sell	ME2N7 Sel	300-00-01 N 1007	30040-42 Water	300-03-03	Water	Water	Water
fample Collectors Date:	*2293	121	¥2240	92293	¥2393	100	*2010	¥2240	92393	92393	12275	9/22/73	9/22/93	9/22/93
pantin'n Palitin	Leiter											· · · · ·		
	ug/L+													
- ARC	ug L													
nas-866 (Lodine) Rectine	agrt. agrt													
	ag/L													
na. Mandalar ayan kale	ang t													
	up C													
sullege														
202	and L													
<b>a</b>	لعد L													
insta I Joo	and the													
CCC Insular subar	ang C													
	agt. agt:													
	ang t													
La interior	agr.													
ine addrete	ر مع <i>د</i>													
	and L													
and the second second	and the second s													
ingilianse and a second														
	ag L													
	ant.													
	an L													
	ang L													
108 (24	Jet.													
100 (100 (100 (100 (100 (100 (100 (100	Jeft													
risis and Crounde	Late				91 1		2740	4940						
	.agt. 554.5 agt. 554.5		94 1 94 1	534 L 294 L		35800 19 ⁻ 7 J	274400	4940						
	ացե 294 է ացե 12 է					250	79.3.3	211.2						
	angle said		34.4			**	c3 1	934						
- ins	upt.			2.9 3		69.2	( مون	12.3						
ârşışı:	unit 18.5	24 1	14-1	4 :	18 L	۰.	:	:•						
KCTUETT	.art. 1.30€	1.000	19006	300.00	137000	36500 1	ROMOD 1	51600 2						
For Filman	and the second		171	7. :		22 3	300 J	36 J						
test .	ang L L L		42 1	45.		8.6 2	58 3	-11						
	ացե հեր։ ացե հեր։	4.9 C 18.8 L	3 a. 1. 18 a. 1.	43 I 112 I		175 J 90200 J	82.1 J 22960 J	30480 J						
n mt	and it.	11 1	111	19 1		367 3	146.3	2270.3						
	401 S200	-	36 358	33:3	73000	10-10 J	14000 1	1000						
	արե ե։	94.1.7	14 1	41.1		MEJ	200 3	774 1						
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	- 11 L	1:1	1:1	1: C	&1 U	6.3	0.23	D 18						
3.et	ագրել էել է	.12 1	.32 1	02.1		39 Ø J	12.2 7	30.1 7						
	ag/L 4390 1		4290 1	4346 1		2060 U	0 <b>050</b> U	1130 C						
	anti ili anti ili			::		1.8.1 0.922 L	23 J 683 U	4 :						
	and the t	3 A 1. A43306	5.4 T. 90.900	<u>) 4 1</u> 60#00	34 U 42360	302 L ;177 J	1981 J	0.06 L 212 J						
al an	Jun 1		1		1 LTU	6 <b>36</b> 3	0.25 1	1.52						
	ته السر			41		177	23.9	214						
-	and the second	42 :	<b>52</b> 1	- 243 C	54-1	310 3	163 J	228.3						
anair			54.2	4 :		2.52.1	4.27 J	0.25 2						
sera Cassairy Parameters	Lauta													
									399	295	4C	406	372	373
eten, Tana Departe	таріі. — 1								554 2 127 3	545 J 492 J	15.1 J 144 J	940 J 93.7 J	7.34 J 98.4 J	7 54 77.8
harman. Dergen Dessand hannle	ացք. ողքե								12) 72.9	25.1	144.J TJ	72.3	94L4 J 61.9	67.7
alian a Califit	ngt.								15	9C	827	569	51.9 592	636
inter 1 mail Dissources	angl.								586	566	839	710	664	774

PREPARED FOR: U.S. EPA REGION V

PREPARED BY: David L. Shekoski/CH2M HILL

DATE: January 6, 1993

SUBJECT: Validation of Organic Data for Soil for the Carter-Lee Lumber Site in Indianapolis, Indiana

PROJECT: GLO65616.F0.SM

Included in this validation narrative are the analytical results for 20 soil samples submitted to Southwest Laboratories of Oklahoma under the E.P.A. Contract Laboratory Program. The samples were collected from November 4th through November 7th, 1993 from the Carter-Lee Lumber site in Indianapolis, Indiana. Analysis was performed under Case 19093.

Included in this SDG are samples ELG01-29, ELG31, ELG33-35, ELG38 and ELG40-45.

#### Qualifiers

The analytical Data from the Carter-Lee Lumber site are reported with the following qualifiers:

- U Indicates that the compound is not present above the CRDL.
- J Indicates that the result is an ESTIMATED VALUE. The reported concentration is above the analytical detection limit but below the Contract Required Detection Limit (CRDL) for the associated compound, OR associated QA/QC parameters are outside the acceptable limits.
- **B** Indicates that the reported analyte was found in an associated blank as well as in the sample. It warns the data user of the possibility/probability of contamination.
- **D** Indicates that the associated analyte was **diluted** and reanalyzed. It warns the data user that discrepancies between concentrations reported may be due to dilution.
- E Identifies the compounds whose concentrations exceeded the calibration range of the GC/MS. The presence of this qualifier in the validated data

MEMORANDUM Page 2 April 1, 1994

summary indicates that the required dilution/reanalysis was not performed. Data flagged with an E is unsubstantiated.

No qualifier means that the data are acceptable for all intended uses.

## Holding Time

All volatile samples were analyzed within the 14 day technical holding time. The semivolatile and pesticide/PCB samples were extracted within the required 14 days and analyzed within the 40 day limit.

## GC/MS Tuning

The GC/MS tuning (as reported by internal EPA initial performance review) complied with the mass list and ion abundance criteria for all samples.

The GC resolution check mixtures for the pesticide/PCB fraction were within the acceptable range.

## Calibration

The response factors, changes in response factors and relative deviations were evaluated for the initial and continuing calibrations of the volatile and extractable TCL organic standards. For the volatiles and semi-volatiles, the %Relative Standard Deviation (%RSD) for the initial calibration should be less than or equal to 30%, and the continuing calibration %Difference (%D) should be less than or equal to 25%. For pesticides/PCBs, the %D between calibration factors should be 15% or less (20% for compounds being confirmed). The following calibration outliers for the associated detected compounds have been identified:

#### Volatiles

- The initial calibration %RSD was outside the acceptable limits for 2-Hexanone (41%) for sample ELG21.
- The continuing calibration %D was outside the acceptable limits for 2-Hexanone (33%) for samples ELG23, ELG29, ELG31, ELG31RE.

- The continuing calibration %D was outside the acceptable limits for Acetone (26%), 1,2-Dichloroethane (30%), 2-Hexanone (28%) and 1,1,2,2-Tetrachloroethane (26%) for samples ELG33, ELG35, ELG38, ELG40, ELG44, ELG45.
- The initial calibration %RSD was outside the acceptable limits for 2-Hexanone (41.3%) for samples ELG11, ELG12, ELG13, ELG15, ELG16, ELG17, ELG19, ELG20.
- The continuing calibration %D was outside the acceptable limits for 2-Hexanone (33.3%) for samples ELG12MS, ELG14RE, ELG15RE.

## Semi-volatiles

- The continuing calibration %D was outside the acceptable limits for 2-Nitrophenol (28%), 2,4-Dinitrophenol (43%) and 2-4-Dinitrotoluene (37%), 4-Nitroaniline (28%), 4,6-Dinitro-2-methylphenol (72%), and Benzo[k]fluoranthene (36%) for samples ELG44, ELG45.
- The continuing calibration %D was outside the acceptable limits for 2,2'-Oxybis(chloro-propane) (46%), 2,4,5-Trichlorophenol and 2,4-Dinitrophenol (42%), 4,6-Dinitro-2-methylphenol (55%), Di-n-octal phthalate (34%), Benzo[k]fluoranthene (31%) and 2,4,6-Tribromophenol (54%) for sample ELG44DL.
- The continuing calibration %D was outside the acceptable limits for Hexachlorocyclopentadiene (34%), 4-Nitroaniline (33%), Di-n-butyl phthalate (26%), 3,3-Dichlorobenzidene (37%), Di-n-octyl phthalate (60%) and Benzo[b]fluoranthene (38%) for samples ELG33, ELG34, ELG35, ELG40, ELG41, ELG42, ELG43.
- The continuing calibration %D was outside the acceptable limits for 2,2'Oxybis(1-chloro-propane) (30%), Butylbenzyl phthalate (48%), 3,3'-Dichlorobenzidine (37%), bis(2-Ethylhexyl)phthalate (32%) and Di-noctyl phthalate (38%) for sample ELG38.
- The continuing calibration %D was outside the acceptable limits for 2,4-Dinitrophenol (27%), bis(2-Ethylhexyl)phthalate (30%), Di-n-octyl phthalate (27%) and Indeno[1,2,3-cd)pyrene (33%) for samples ELG21, ELG22, ELG23, ELG24, ELG25, ELG26, ELG27, ELG28, ELG29.

- The continuing calibration %D was outside the acceptable limits for 2,2'-Oxybis(1-chloro-propane (43.7%), and 2,4-Dinitrophenol (33.7%) for sample ELG03.
- The continuing calibration %D was outside the acceptable limits for Hexachlorocyclopentadiene (48.8%), and 2,4-Dinitrophenol (34.7%) for samples ELG02MS, ELG02MSD, ELG10DL.
- The continuing calibration %D was outside the acceptable limits for 2,4-Dimethylphenol (33.0%), 4-Chloroaniline (34.6%),
   Hexachlorocyclopentadiene (49.2%), 2,4-Dinitrophenol (26.4%), 3,3-'Dichlorobenzidine (26.5%), Di-n-octyl phthalate (34.2%),
   Benzo[b]fluoranthene (27.1%) and Benzo[k]fluoranthene (37.1%) for samples ELG18, ELG19, ELG20, ELG03DL, ELG08DL.
- The continuing calibration %D was outside the acceptable limits for 4-Chloroaniline (32.7%), 2-Methylnaphthalene (35.4%), 2,4-Dinitrophenol (55.8%) and 4,6-Dinitro-2-methylphenol (34.4%) for samples ELG02, ELG11, ELG13, ELG14, ELG15RE, ELG16RE, ELG17.

# Pesticides/PCBs

• The initial calibration %RSD was outside the acceptable limits for Alpha-BHC (25%) and 4,4'-DDT (28%) for samples ELG44, ELG45.

In samples with calibration outliers, all positively identified outlier compounds are considered ESTIMATED and flagged "J".

## <u>Blanks</u>

This data group contained no field (equipment) blanks or volatile trip blanks.

For the contaminants present in blanks, the following rules were applied:

• If a compound is present in an associated blank but not in the sample, no action is taken.

M E M O R A N D U M Page 5 April 1, 1994

- If a blank contaminant is present in a sample below the Contract Required Detection Limit (CRDL) and less than 5 times the blank contamination (10 times the blank for Methylene chloride, Acetone, 2-Butanone, Toluene and common phthalates, all common laboratory contaminants), the CRDL is reported for those compounds and flagged "U". For the sake of simplicity, a listing of affected samples is not included in this narrative since the net effect is that the compound in the sample would still be treated as "not detected".
- If a blank contaminant is present in a sample below the CRDL and more than 5 times the blank contamination (10 times the blank for common laboratory contaminants), the concentration is reported for those compounds and flagged "J".
- If a blank contaminant is present in a sample **above** the CRDL but is less than 5 times the blank contaminant (10 times the blank for common laboratory contaminants), the sample concentration reported by the laboratory is retained, but is flagged "B".
- If a blank contaminant is present in a sample above the CRDL and greater than 5 times the blank contaminant (10 times the blank for common laboratory contaminants), the sample concentration reported by the laboratory is retained without qualifiers.

# Volatiles

No volatiles were detected in any of the associated volatile method blanks.

## Semi-volatiles

• **bis(2-Ethylhexyl)phthalate** was detected below the CRDL and less than 10 times the concentration found in the blank, therefore the reported concentration was replaced with the CRDL and flagged "U" in samples ELG21, ELG22, ELG24, ELG27, ELG28, ELG29, ELG44, ELG44DL, ELG45.

• **bis(2-Ethylhexyl)phthalate** was detected below the CRDL but greater than 10 times the concentration found in the blank, therefore the concentration is retained but is considered ESTIMATED and flagged "J" in sample ELG31.

Bis(2-Ethylhexyl)phthalate and Di-n-octylphthalate were detected in semi-volatile method blank SBLK1.

- **Bis(2-ethylhexyl)phthalate** was detected below the CRDL and less than 10 times the concentration found in the blank, therefore the reported concentration was replaced with the CRDL and flagged "U" in samples ELG01, ELG04, ELG05, ELG06, ELG08,
- Bis(2-ethylbexyl)phthalate was detected above the CRDL and more than 10 times the concentration found in the method blank. The concentrations were retained and reported without qualifiers in samples ELG03, ELG07, ELG10.
- Bis(2-ethylhexyl)phthalate was detected above the CRDL and less than 10 times the concentration found in the method blank. The concentrations were retained but are considered to be the results of contamination and flagged "B" in sample: ELG09

Bis(2-Ethylhexyl)phthalate and Di-n-octylphthalate were detected in semi-volatile method blank SBLK3.

- Bis(2-ethylhexyl)phthalate was detected below the CRDL and less than 10 times the concentration found in the blank, therefore the reported concentration was replaced with the CRDL and flagged "U" in samples ELG03DL, ELG08DL, ELG09DL, ELG14, ELG15RE, ELG16, ELG16RE, ELG17, ELG18, ELG19, ELG20.
- **Bis(2-ethylhexyl)phthalate** was detected above the CRDL and less than 10 times the concentration found in the method blank. The concentrations were retained but are considered to be the results of contamination and flagged "B" in samples ELG11, ELG12, ELG13.

# Pesticides/PCBs

No pesticides/PCB method blank contamination was reported.

# Surrogate Recoveries

#### Volatiles

For the volatile fraction, data are qualified if one or more surrogate recoveries are outside the acceptable QC range. The following samples fall into that category:

- Surrogate recovery for compound **1,2-Dichloroethane-d4** was reported below the acceptable limits (70-121) in sample ELG33 (69).
- Surrogate compound Toluene-d8 was reported above the acceptable limits (84-138) in sample ELG20 (144).

All positive volatile detections in this samples are considered ESTIMATED and flagged "J". All non-detects are flagged "UJ".

#### Semi-volatiles

For the semi-volatile fraction, data are qualified if two or more surrogate recoveries are outside the acceptable QC range.

• All semi-volatile surrogate recoveries were within the acceptable QC range.

## Pesticides/PCBs

• Surrogate recovery for compound **Decachlorobiphenyl** was reported below the acceptable limits (60-150) in sample **ELG25MS** (50).

High pesticide/PCB recoveries were observed for **Decachlorobiphenyl** on column DB-608 for samples **ELG15** and **ELG19**. All positive results in these samples are considered ESTIMATED and flagged "J" due to high bias and co-eluting interferences.

## **Internal Standards**

Internal standard peak areas and retention times (as reported by internal EPA review) were within the acceptable range for all semi-volatile samples with the following exceptions:

MEMORANDUM Page 8 April 1, 1994

#### <u>Volatiles</u>

The internal standard area counts for 1,4-Difluorobenzene (IS1) were outside the acceptable limits in samples ELG33, ELG33RE, ELG42, ELG44, ELG45, ELG45RE.

The internal standard area counts for Chlorobenzene-d5 (IS2) were outside the acceptable limits in samples ELG31, ELG31RE, ELG33, ELG33RE, ELG38, ELG40, ELG40RE, ELG42, ELG42RE, ELG44, ELG44RE, ELG45, ELG45RE.

The internal standard area counts for 1,4-Dichlorobenzene-d4 (IS3) were outside the acceptable limits in samples ELG23, ELG23RE, ELG31, ELG31RE, ELG33, ELG33RE, ELG38, ELG38RE, ELG40, ELG40RE, ELG42, ELG42RE, ELG44, ELG44RE, ELG45, ELG45RE.

The internal standard area counts for Bromochloromethane were outside the acceptable limits in samples ELG20, ELG20RE.

The internal standard area counts for 1,4-Diflourobenzene were outside the acceptable limits in samples ELG11, ELG14RE, ELG15, ELG19, ELG20RE.

The internal standard area counts for Chlorobenzene-d5 were outside the acceptable limits in samples ELG11, ELG11RE, ELG12MS, ELG13, ELG13RE, ELG14, ELG14RE, ELG15, ELG15RE, ELG17, ELG17RE, ELG19, ELG19RE, ELG20, ELG20RE.

All positive volatile detections are considered ESTIMATED and flagged "J", and all nondetects are flagged "UJ" for the compounds associated with each internal standard.

#### Semi-volatiles

The internal standard area count for Perylene-d12 (IS6) was outside the acceptable QC limits for sample ELG44.

The internal standard area counts for Chrysene-d12 (IS5) and Perylene-d12 (IS6) were outside the acceptable QC limits for sample ELG44DL.

- The internal standard area counts for ALL INTERNAL STANDARDS were outside the acceptable QC limits for sample ELG15.
- The internal standard area counts for Chrysene-d12 (IS5) was outside the acceptable QC limits for samples ELG03.

- The internal standard area counts for **Perylene-d12** (IS6) was outside the acceptable QC limits for sample **ELG02MS**, **ELG15RE**, and **ELG16RE**.
- The internal standard area counts for Chrysene-d12 (IS5) and Perylened12 (IS6) were outside the acceptable QC limits for samples ELG12MSD and ELG16.

All positive semi-volatile detections are considered ESTIMATED and flagged "J", and all non-detects are flagged "UJ" for the compounds associated with each internal standard.

## **Field Duplicates**

ELG25 is a field duplicate of ELG24. ELG25 is a field duplicate of ELG24.

All compounds reported above the detection limits agree within a %D of 12.5%.

Since there are no specific criteria for organic duplicate comparison, no action is taken based on sample/duplicate relative performance.

## Matrix Spike/Matrix Spike Duplicates

#### Volatiles

The volatile MS/MSD spike recoveries and %RPD results were within the acceptable limits except for the %RPD for **1,1-Dichloroethene** (23%) in the <u>matrix spike duplicate</u> of **ELG12**, which was above the upper limit criteria (22%).

#### Semi-volatiles

Sample ELG38 was used for semi-volatile matrix spike/matrix spike duplicate analyses

The semi-volatile MS/MSD spike recoveries and %RPD results were within the acceptable limits except for the %Recovery for **Pyrene** and **4-Nitrophenol** in the <u>matrix spike</u> AND <u>matrix spike duplicate</u>, which was below the %Recovery lower limit criteria for **pyrene** (3 and -43, respectively with a QC range of 35-142) and above the upper limit criteria for **4-Nitrophenol** (145 and 131 respectively with a QC range of 11-114). There is no **4-Nitrophenol** reported in this sample, so no action is taken. **Pyrene** is reported at a concentration of 4200, which is considered ESTIMATED and flagged "**J**" due to potential low bias.

For sample ELG02, the semi-volatile MS/MSD spike recoveries and %RPD results were within the acceptable limits except for the %Recovery for Pyrene (-881%) in the matrix spike and Phenol (101% recovery and 52%RPD), 1,4-Dichlorobenzene (43%RPD), N-Nitroso-di-n-propylamine (48%RPD), 1,2,4-Trichlorobenzene (46%RPD), 4-Chloro-3-methylphenol (43%RPD), Acenaphthene (63%RPD), 4-Nitrophenol (64%RPD), 2,4-Dinitrotoluene (61%RPD), Pentachlorophenol (60%RPD) and Pyrene (-500% recovery and 55%RPD) in the matrix spike duplicate.

For sample ELG12, the semi-volatile MS/MSD spike recoveries and %RPD results were within the acceptable limits except for the %Recovery for 4-Nitrophenol (125%) in the matrix spike and 4-Nitrophenol (134% recovery), 2,4-Dinitrotoluene (91% recovery) and Pyrene (37%RPD) in the matrix spike duplicate.

Since the results between the two matrix spikes and matrix spike duplicates do not display good correlation, it cannot be assumed that the recovery and precision problems associated with these samples are universally applied throughout this analytical group. Since pyrene is not detected in unspiked ELG02 but sufficient evidence exists to suggest low bias, the non-detected Pyrene in flagged "UJ" in this sample.

# Pesticides/PCBs

Sample ELG25 and ELG38 were used for the pesticide/PCB matrix spike/matrix spike duplicate analyses.

The pesticide/PCB MS/MSD spike recoveries and %RPD results were within the acceptable limits except for the relative % difference in sample ELG25 for Heptachlor and Dieldrin, which were above the RPD upper limits for these compounds. The reported RPDs were 34 and 41, respectively, with respective upper QC limits of 31 and 38. The positive Heptachlor result is considered ESTIMATED and flagged "J" and the non-detected Dieldrin detection limit is flagged "UJ" due to poor precision in this sample.

Sample ELG38 matrix spike results are within the acceptable QC range.

The Functional Guidelines do not provide action criteria for qualifying data based on matrix spike/Matrix spike duplicate outliers alone.

# General Pesticide/PCB Performance

The difference between columns for 4,4'-DDT is greater than 25% for detected concentrations, therefore this compound is considered ESTIMATED and flagged "J" due

to poor precision in samples ELG22, ELG23, ELG27, ELG31, ELG33, ELG38, ELG45.

The difference between columns for **Heptachlor** is greater than 25% for detected concentrations, therefore this compound is considered ESTIMATED and flagged "J" due to poor precision in samples ELG23, ELG31, ELG40.

The difference between columns for **alpha-Chlordane** is greater than 25% for detected concentrations, therefore this compound is considered ESTIMATED and flagged "J" due to poor precision in samples ELG27, ELG31DL, ELG38, ELG40DL.

The difference between columns for Endrin is greater than 25% for detected concentrations, therefore this compound is considered ESTIMATED and flagged "J" due to poor precision in samples ELG33, ELG38, ELG40, ELG40DL.

The difference between columns for **Heptachlor epoxide** is greater than 25% for detected concentrations, therefore this compound is considered ESTIMATED and flagged "J" due to poor precision in sample ELG40.

The difference between columns for Endrin ketone is greater than 25% for detected concentrations, therefore this compound is considered ESTIMATED and flagged "J" due to poor precision in samples ELG45.

The difference between columns for Endrin is greater than 25% for detected concentrations, therefore this compound is considered ESTIMATED and flagged "J" due to poor precision in samples ELG13, ELG17, ELG18, ELG20.

The difference between columns for 4,4'-DDT is greater than 25% for detected concentrations, therefore this compound is considered ESTIMATED and flagged "J" due to poor precision in ELG13, ELG20.

The difference between columns for Endosulfan II is greater than 25% for detected concentrations, therefore this compound is considered ESTIMATED and flagged "J" due to poor precision in samples ELG15, ELG17, ELG19.

The difference between columns for Heptachlor epoxide is greater than 25% for detected concentrations, therefore this compound is considered ESTIMATED and flagged "J" due to poor precision in samples ELG17, ELG18.

The difference between columns for alpha-Chlordane is greater than 25% fo. CHAHHLL concentrations, therefore this compound is considered ESTIMATED and flagged "J" due to poor precision in samples ELG17, ELG18, ELG19.

The difference between columns for gamma-Chlordane is greater than 25% for detected concentrations, therefore this compound is considered ESTIMATED and flagged "J" due to poor precision in sample ELG18.

.

PREPARED FOR: U.S. EPA REGION V

PREPARED BY: David L. Shekoski/CH2M HILL

**DATE:** January 6, 1993

SUBJECT: Validation of Organic Data for Groundwater for the Carter-Lee Lumber Site in Indianapolis, Indiana.

PROJECT: GLO65616.F0.SM

Included in this validation narrative are the analytical results for 15 water samples submitted to Southwest Laboratories of Oklahoma under the E.P.A. Contract Laboratory Program. The samples were collected from November 4th through November 7th, 1993 from the Carter-Lee Lumber site in Indianapolis, Indiana. Analysis was performed under Case 19093.

Samples included in this SDG are ELG30, ELG32, ELG36-37, ELG39, ELG46-65, and ELG69-71.

#### Qualifiers

The analytical Data from the Carter-Lee Lumber site are reported with the following qualifiers:

- U Indicates that the compound is not present above the CRDL.
- J Indicates that the result is an ESTIMATED VALUE. The reported concentration is above the analytical detection limit but below the Contract Required Detection Limit (CRDL) for the associated compound, OR associated QA/QC parameters are outside the acceptable limits.
- **B** Indicates that the reported analyte was found in an associated blank as well as in the sample. It warns the data user of the possibility/probability of contamination.
- D Indicates that the associated analyte was **diluted** and reanalyzed. It warns the data user that discrepancies between concentrations reported may be due to dilution.

E Identifies the compounds whose concentrations exceeded the calibration range of the GC/MS. The presence of this qualifier in the validated data summary indicates that the required dilution/reanalysis was not performed. Data flagged with an E is unsubstantiated.

No qualifier means that the data are acceptable for all intended uses.

## Holding Time

All volatile samples were analyzed within the 14 day technical holding time. The semivolatile and pesticide/PCB samples were extracted within the required 14 days and analyzed within the 40 limit.

# **GC/MS Tuning**

The GC/MS tuning (as reported by internal EPA initial performance review) complied with the mass list and ion abundance criteria for all samples.

The GC resolution check mixtures for the pesticide/PCB fraction were within the acceptable range.

## **Calibration**

The response factors, changes in response factors and relative deviations were evaluated for the initial and continuing calibrations of the volatile and extractable TCL organic standards. For the volatiles and semi-volatiles, the %Relative Standard Deviation (%RSD) for the initial calibration should be less than or equal to 30%, and the continuing calibration %Difference (%D) should be less than or equal to 25%. For pesticides/PCBs, the %D between calibration factors should be 15% or less (20% for compounds being confirmed). The following calibration outliers for the associated detected compounds have been identified:

Volatiles

• The continuing calibration %D was outside the acceptable limits for Chloromethane (26.1%), Bromomethane (26.1%), Chloroethane (28.2%), Carbon disulfide (27.9%) and 2-Butanone (31.2%) for samples ELG68 and ELG69.

- The continuing calibration %D was outside the acceptable limits for Acetone (29.0%) and 2-Butanone (35.3%) for sample ELG71.
- The continuing calibration %D was outside the acceptable limits for Chloroethane (36.2%) and Acetone (45.6%) for samples ELG60, ELG60RE, ELG61, ELG62, ELG64, ELG64RE.
- The continuing calibration %D was outside the acceptable limits for Acetone (26.2%), 1,2-Dichloroethane (29.9%), 2-Hexanone (26.1%) and 1,1,2,2-Trichloroethane (25.8%) in sample ELG53.

# Semi-Volatiles

- The continuing calibration %D was outside the acceptable limits for 4-Chloroaniline (32.7%), 2-Methylnaphthalene (35.4%) and 2,4-Dinitrophenol (55.8%) for sample ELG37RE.
- The continuing calibration %D was outside the acceptable limits for 2-Nitrophenol (28.1%), 2,4-Dinitrophenol (43.0%) and 2,4-Dinitrotoluene (37.1%) for samples ELG46, ELG50, ELG53, ELG54.
- The continuing calibration %D was outside the acceptable limits for 2-Nitrophenol (27.5%), 2,4,5-Trichlorophenol (39.3%), 2,4-Dinitrophenol (52.3%) and 2,4-Dinitrotoluene (29.1%) for samples ELG55, ELG58, ELG60.
- The continuing calibration %D was outside the acceptable limits for 2-,2'-Oxybis(1-chloro-propane) (46.5%), 2,4,5-Trichlorophenol (33.1%) and 2,4-Dinitrophenol (42.1%) for samples ELG52, ELG52RE, ELG59, ELG59RE, ELG61, ELG62, ELG63, ELG64RE.

# Pesticides/PCBs

- The initial calibration %RSD was outside the acceptable limits for Alpha-BHC (24.6%) and 4-4'-DDT (27.7%) for sample ELG46.
- The continuing calibration %RSD was outside the acceptable limits for 4,4'-DDT (27.0%) for samples ELG63, ELG64DL and ELG50.

MEMORANDUM Page 4 April 1, 1994

In these samples, all positively identified outlier compounds are considered ESTIMATED and flagged "J".

## <u>Blanks</u>

ELG32, ELG67 and ELG71 are volatile trip blanks, and ELG69 is a field (equipment) blank.

For the contaminants present in blanks, the following rules were applied:

- If a compound is present in an associated blank but not in the sample, no action is taken.
- If a blank contaminant is present in a sample below the Contract Required Detection Limit (CRDL) and less than 5 times the blank contamination (10 times the blank for Methylene chloride, Acetone, 2-Butanone, Toluene and common phthalates, all common laboratory contaminants), the CRDL is reported for those compounds and flagged "U". For the sake of simplicity, a listing of affected samples is not included in this narrative since the net effect is that the compound in the sample would still be treated as "not detected".
- If a blank contaminant is present in a sample above the CRDL but is less than 5 times the blank contaminant (10 times the blank for common laboratory contaminants), the sample concentration reported by the laboratory is retained, but is flagged "B".
- If a blank contaminant is present in a sample above the CRDL and greater than 5 times the blank contaminant (10 times the blank for common laboratory contaminants), the sample concentration reported by the laboratory is retained without qualifiers.

With the application of these guidelines, the following results have been qualified:

#### **Volatiles**

• Methylene chloride was detected below the CRDL and less than 10 times the concentration found in associated daily trip blanks and in samples:

ELG39, ELG48, ELG49, ELG51, ELG65, ELG68. The reported concentrations were replaced with the CRDL and flagged "U".

• Acetone was detected above the CRDL but less than 10 times the concentration found in the associated trip blanks, therefore the reported concentrations are flagged "B".

Methylene chloride, Acetone and 2-Butanone were detected in volatile method blank VBLK3.

- In samples ELG60, ELG60RE, ELG64 and ELG64RE, Methylene chloride was detected above the CRDL and more than 10 times the concentration found in the blank, therefore the reported concentrations were retained and without qualifiers.
- In sample ELG61, Methylene chloride was detected below the CRDL and less then 10 times the concentration found in the blank, therefore the reported concentration was replaced with the CRDL and flagged "U".
- In sample ELG62, Methylene chloride was detected above the CRDL but less than 10 times the concentration reported in the blank, therefore the reported concentration is reported and flagged "B".
- In samples ELG60, ELG60RE, ELG61, ELG64 and ELG64RE, Acetone was detected above the CRDL but less than 10 times the concentration reported in the blank, therefore the reported concentration was retained and flagged "B".
- In sample ELG62, Acetone was detected above the CRDL and more than 10 times the concentration reported in the blank, therefore the reported concentration was retained without qualifiers.
- In samples ELG60 and ELG61, 2-Butanone was detected less than the CRDL and less than 10 times the concentration found in the blank, therefore the reported concentration was replaced with the CRDL and flagged "U".
- In samples ELG62, ELG64 and ELG64RE, 2-Butanone was detected above the CRDL and less than 10 times the concentration found in the blank, therefore the reported concentration was retained and flagged "B".

M E M O R A N D U M Page 6 April 1, 1994

## Semi-volatiles

• Di-n-butylphthalate was detected below the CRDL in method blank SBLK4 (0.7ug/l). This compound was also detected below the CRDL in samples ELG68 and ELG69. The reported concentrations were replaced with the CRDL and flagged "U".

**Bis(2-ethylhexyl)phthalate** was detected in semi-volatile method blank SBLK1. All samples included in this SDG reported positive detections for this compound.

• Bis(2-ethylhexyl)phthalate was detected below the CRDL and less than 10 times the concentration found in the blank, therefore the reported concentration was replaced with the CRDL and flagged "U" in samples ELG46, ELG50, ELG53-61, ELG61RE, ELG63, ELG63RE.

# Pesticides/PCBs

• No target analytes were found in the water method blanks, the instrument method blanks or the field blank.

# Surrogate Recoveries

# Volatiles

- Surrogate compound Toluene-d8 was reported above the acceptable limits (84-138) in samples ELG60RE (141) and ELG64 (143).
- Surrogate compound 1,2-Dichlorotethane-d4 was reported above the acceptable limits (70-121) in sample ELG58RE (124).

All volatile positive detections in the samples are considered ESTIMATED and flagged "J". All non-detects are flagged "UJ".

## Semi-volatiles

For the semi-volatile fraction, data are qualified if two or more surrogate recoveries are outside the acceptable QC range.

• Surrogate compounds 2-Fluorobiphenyl and Terphenyl-d14 were reported above the acceptable limits (30-155 and 18-137, respectively) for samples

ELG64 (125 and 185 respectively) and ELG64RE (127 and 196 respectively).

Semi-volatile surrogate recovery for 2-Chlorophenol-d4 in sample ELG37RE (31) is outside the acceptable range for this compound (33-110).

All semi-volatile positive detections in the samples are considered ESTIMATED and flagged "J". All non-detects are flagged "UJ".

#### Pesticides/PCBs

Low pesticide/PCB recoveries were observed for Decachlorobiphenyl for samples ELG30, ELG36, ELG37, ELG47, ELG48, ELG65.

Low pesticide/PCB recoveries were also observed for Decachlorobiphenyl and Tetrachloro-m-xylene in sample ELG66.

Low pesticide/PCB recoveries were observed for **Decachlorobiphenyl-2** for sample ELG52.

High pesticide/PCB recoveries were observed for Tetrachloro-m-xylene-2 in sample ELG64DL.

High pesticide/PCB recoveries were observed for Decachlorobiphenyl-1&2 and Tetrachloro-m-xylene-1&2 for sample ELG64.

In the above samples, all positive detections are considered estimated and flagged "J", and all non-detects are flagged "UJ".

#### **Internal Standards**

#### Volatiles

The internal standard area counts for Bromochloromethane were outside the acceptable limits in samples ELG52, ELG52RE, ELG58, ELG64RE.

The internal standard area counts for 1,4-Diflourobenzene were outside the acceptable limits in samples ELG52, ELG52RE, ELG53RE, ELG58, ELG60, ELG60RE, ELG64RE.

MEMORANDUM Page 8 April 1, 1994

The internal standard area counts for Chlorobenzene-d5 were outside the acceptable limits in samples ELG52, ELG52RE, ELG53, ELG58, ELG58RE, ELG60, ELG60RE, ELG64, ELG64RE.

All positive volatile detections are considered ESTIMATED and flagged "J", and all nondetects are flagged "UJ" for the compounds associated with each internal standard.

Semi-volatiles

Internal standard peak areas and retention times (as reported by internal EPA review) were within the acceptable range for all semi-volatile samples with the following exceptions:

- ELG37RE where the area count was low for internal standard IS3 (Acenaphthene-d10). Since no detections were observed in the analytes associated with this internal standard, all associated analytes are flagged "UJ".
- ELG37 and ELG37RE where the area counts were low for IS4 (Phenanthrene-d10). Under this condition, all positive detects associated with this internal standard are considered ESTIMATED and flagged "J", and all non-detects are flagged "UJ".

The internal standard area counts for Chrysene-d12 and Perylene-d12 were outside the acceptable QC limits for samples ELG52, ELG52RE, ELG59, ELG59RE, ELG60, ELG60RE, ELG61, ELG61RE, ELG62, ELG62RE, ELG63, ELG63RE, ELG64 and ELG64RE.

All positive semi-volatile detections are considered ESTIMATED and flagged "J", and all non-detects are flagged "UJ" for the compounds associated with each internal standard.

## Field Duplicates

ELG36 is a field duplicate of ELG37. No compounds were detected in either sample.

ELG53 is a field duplicate of ELG52.

Since there are no specific criteria for organic duplicate comparison, no action is taken based on sample/duplicate relative performance.

## Matrix Spike/Matrix Spike Duplicates

#### Volatiles

The volatile MS/MSD spike recoveries and %RPD results were within the acceptable limits except for the %RPD for Toluene in the <u>matrix spike duplicate</u> of ELG65, which was below the lower limit criteria.

#### Semi-volatiles

The semi-volatile MS/MSD spike recoveries and %RPD results were within the acceptable limits except for the %Recovery for 4-Nitrophenol, 2,2-Dinitrotoluene and **Pentachlorophenol** in the <u>matrix spike</u> and <u>matrix spike duplicate</u> of ELG65 which was below the lower limit criteria.

Pesticides/PCBs

All matrix spike/matrix spike duplicate criteria are acceptable.

The Functional Guidelines do not provide action criteria for qualifying data based on matrix spike/Matrix spike duplicate outliers alone.

PREPARED FOR: U.S. EPA REGION V

PREPARED BY: David L. Shekoski/CH2M HILL

**DATE:** January 11, 1993

SUBJECT: Validation of Inorganic Data for Soil for the Carter-Lee Lumber Site in Indianapolis, Indiana.

PROJECT: GLO65616.F0.SM

Included in this validation narrative are the analytical results for 20 soil samples submitted to SVL Analytical, Inc. under the E.P.A. Contract Laboratory Program. The samples were collected from the Carter-Lee Lumber site in Indianapolis, Indiana. Analysis was performed under Case 19093.

This SDG contains the analytical results for samples MEKA01-29, MEKA31, MEKA33-35, MEKA38, MEKA40-46, MEKA50, MEKA52-64.

#### Qualifiers

The analytical Data from the Carter-Lee Lumber site are reported with the following qualifiers:

- U Indicates that the compound is not present above the CRDL.
- J Indicates that the result is an ESTIMATED VALUE. The reported concentration is above the analytical detection limit but below the Contract Required Detection Limit (CRDL) for the associated compound, OR associated QA/QC parameters are outside the acceptable limits.

No qualifier means that the data are acceptable for all intended uses.

#### Holding Time

No criteria for holding time in soils has been established.

#### **Blanks**

For the contaminants present in blanks, the following rules were applied:

- If a compound is present in an associated blank but not in the sample, no action is taken.
- If a blank contaminant is present in a sample **above** the CRDL but is less than 5 times the blank contaminant, the sample concentration reported by the laboratory is considered ESTIMATED and flagged "J".
- If a blank contaminant is present in a sample above the CRDL and greater than 5 times the blank contaminant, the sample concentration reported by the laboratory is retained without qualifiers.

# Blanks - ICP

• The preparation blank contained Potassium (494.5 ug/l). All positive results <5 times the concentration found in the blank are considered ESTIMATED

M E M O R A N D U M Page 4 April 1, 1994

• The duplicate audit RPD for Calcium was outside the acceptable QC limit (37.1%). This compound was detected in the following samples, therefore all reported Calcium is considered ESTIMATED and flagged "J" due to poor precision: MEKA01-20.

The <u>GFAA</u> duplicate audits were within the acceptable QC range with the following exceptions:

- The duplicate audit RPD for Arsenic is outside the acceptable QC limits (49.7%). Since all samples reported positive detections for Arsenic, <u>ALL</u> Arsenic results are considered ESTIMATED and flagged "J" due to poor precision.
- The duplicate audit RPD for Lead is outside the acceptable QC limits (44.5%). Since all GFAA samples reported positive detections for Lead, <u>ALL</u> Lead results are considered ESTIMATED and flagged "J" due to poor precision in the following samples: MEKA21, MEKA22, MEKA24, MEKA25, MEKA26, MEKA28, MEKA29, MEKA33, MEKA34, MEKA35, MEKA41, MEKA42, MEKA43.

## Matrix Spike Recovery

# flagged "J" due to high bias in the following samples: MEKA01, MEKA03-05, MEKA07-10, MEKA15-16, MEKA18-20.

All GFAA matrix spike recoveries are within the acceptable QC limits EXCEPT:

- Arsenic had a matrix spike recovery of 29.9%. All Arsenic results are considered ESTIMATED and flagged "J" due to low bias.
- The matrix spike %R for Selenium (70.2%) is below the lower acceptable limit (75-125%). All positive results are considered ESTIMATED and flagged "J" due to low bias and interference in the following samples: MEKA46, MEKA50, MEKA53, MEKA54, MEKA55, MEKA56, MEKA57, MEKA58, MEKA59, MEKA60, MEKA61, MEKA62, MEKA63, and MEKA64. Non-detects are flagged "UJ" due to possible elevation of the detection limit in sample MEKA52.
- The matrix spike %R for Selenium (60.0%) is below the lower acceptable limit (75-125%). All non-detects are flagged "UJ" due to possible elevation of the detection limit in samples MEKA11, MEKA13, MEKA20.

# **GFAA Interference**

Positive results for Selenium are considered ESTIMATED and flagged "J" in the following samples due to interference: MEKA21, MEKA23, MEKA28, MEKA29, MEKA31, MEKA33, MEKA35, MEKA38, MEKA42, MEKA43, MEKA44, MEKA45.

This compound is flagged "UJ" in the following samples due to interference: MEKA22, MEKA24, MEKA25, MEKA26, MEKA27. MEKA34, MEKA40, MEKA41.

Positive results for Thallium are considered ESTIMATED and flagged "J" in the following samples due to interference: MEKA31, MEKA33, MEKA34, MEKA35, MEKA40, MEKA41, MEKA42, MEKA45.

This compound is flagged "UJ" in the following samples due to interference: MEKA21, MEKA22, MEKA23, MEKA24, MEKA25, MEKA26, MEKA27, MEKA28, MEKA29, MEKA38, MEKA43, MEKA44.

Arsenic results are flagged "UJ" in samples MEKA03-04 due to low bias and interference.

Thallium results are flagged "UJ" in sample MEKA13 due to interference.

PREPARED FOR: U.S. EPA REGION V

PREPARED BY: David L. Shekoski/CH2M HILL

**DATE:** January 11, 1993

SUBJECT: Validation of Inorganic Data for Groundwater for the Carter-Lee Lumber Site in Indianapolis, Indiana

PROJECT: GLO65616.F0.SM

Included in this validation narrative are the analytical results for 15 water samples submitted to SVL Analytical, Inc. under the E.P.A. Contract Laboratory Program. The samples were collected from the Carter-Lee Lumber site in Indianapolis, Indiana. Analysis was performed under Case 19093.

This SDG contains the analytical results for samples MEKA30, MEKA36-37, MEKA47-49, MEKA51, MEKA65-66, MEKA68-69.

## Qualifiers

The analytical Data from the Carter-Lee Lumber site are reported with the following qualifiers:

- U Indicates that the compound is not present above the CRDL.
- J Indicates that the result is an ESTIMATED VALUE. The reported concentration is above the analytical detection limit but below the Contract Required Detection Limit (CRDL) for the associated compound, OR associated QA/QC parameters are outside the acceptable limits.

No qualifier means that the data are acceptable for all intended uses.

# **Holding Time**

All samples met the required holding time for inorganic water sample analysis.

## <u>Blanks</u>

For the contaminants present in blanks, the following rules were applied:

- If a compound is present in an associated blank but not in the sample, no action is taken.
- If a blank contaminant is present in a sample **above** the CRDL but is less than 5 times the blank contaminant, the sample concentration reported by the laboratory is considered ESTIMATED and flagged "J".
- If a blank contaminant is present in a sample above the CRDL and greater than 5 times the blank contaminant, the sample concentration reported by the laboratory is retained without qualifiers.

With the application of these guidelines, the following results have been qualified:

Sample MEKA69 is a field (equipment) blank. This sample contained Barium (1.5 ug/l), Calcium (110 ug/l) and Magnesium (57.4 ug/l). No samples were affected due to the application of the "5 times" rule.

# Blanks - ICP

Akuminum was detected at 28.548 ug/l in the preparation blank. All positive results in the following samples are less than five times the concentration found in the blank, and are considered ESTIMATED and flagged "J" due to contamination: MEKA37, MEKA48, MEKA49, MEKA66, MEKA69.

Iron was detected at 6.975 ug/l in the preparation blank. All positive results in the following samples are less than five times the concentration found in the blank, and are considered ESTIMATED and flagged "J" due to contamination: MEKA36, MEKA37, MEKA47, MEKA47, MEKA65, MEKA66, MEKA69.

Sodium was detected at 77.479 ug/l in the preparation blank. The positive result in the following sample is less than five times the concentration found in the blank, and are considered ESTIMATED and flagged "J" due to contamination: MEKA69.

Thallium was detected at 1.4 ug/l in the continuing calibration blank. The positive results in the following samples are less than five times the concentration found in the blank, and are considered ESTIMATED and flagged "J" due to contamination: MEKA68, MEKA69.

# **Blanks - GFAA**

M E M O R A N D U M Page 3 April 1, 1994

Selenium was detected at 1.837 ug/l in the preparation blank. All positive results in the following samples are less than five times the concentration found in the blank, and are considered ESTIMATED and flagged "J" due to contamination: MEKA30, MEKA36, MEKA37, MEKA47, MEKA48, MEKA49, MEKA51, MEKA65, MEKA66, MEKA68.

## **ICP and GFAA Duplicate Audits**

The duplicate audit acceptable QC range is:

• For sample concentrations greater than five times the CRDL, the RPD must be between 80-120% for water, and 65-135% for soil

<u>OR</u>

• For sample concentrations less than five times the CRDL, the duplicate concentration must be +/- the CRDL for water or two times the CRDL for soil.

All ICP and GFAA duplicate audits were within the acceptable limits.

## Matrix Spike Recovery

The acceptable QC range for matrix spike recovery is 75-125%.

All matrix spike recoveries are within the acceptable QC limits EXCEPT:

#### GFAA matrix spike recovery

Selenium had a matrix spike recovery of 73%. This compound is considered ESTIMATED and flagged "J" due to low bias in the following samples: MEKA48, MEKA51, MEKA66. This compound is flagged "UJ" in the following sample due to possible elevated detection limit: MEKA61.

## **GFAA Interference**

Positive results for Lead are considered ESTIMATED and flagged "J" in the following samples due to interference: MEKA36, MEKA37, MEKA48, MEKA65, MEKA66. This compound is flagged "UJ" in the following samples due to interference: MEKA47, MEKA49, MEKA51, MEKA68.

TO:	U.S. EPA Region 5			
FROM:	Dan MacGregor/CH2M HILL			
DATE:	August 26, 1993			
SUBJECT:	Analytical Data Assessment for the June 1993 Sampling Event, Carter-Lee Lumber, Indianapolis, Indiana			

#### Introduction

PROJECT: GLO65616.F2.SM

The data and results from five monitoring well samples, one field blank sample, and two trip blank samples were assessed to verify the correctness and completeness of the data validation performed by Lockheed/ESAT. These samples were reviewed for volatile, semivolatile, chlorinated pesticides and PCBs, and metals analysis. These samples were analyzed through the federal Contract Laboratory Program (CLP) following their program specific analytical procedures.

The data assessment was performed by comparing the analytical data and results with the data quality limits described in U.S. EPA <u>Laboratory Data Validation Functional Guidelines for</u> <u>Evaluating Organic Analyses</u>, 1988 revision, and the U.S. EPA. <u>Laboratory Data Validation</u> <u>Functional Guidelines for Evaluating Inorganics Analyses</u>, 1988 revision.

# **Volatile Organic Analyses**

The volatile organic data, generally met the functional guideline control limits, with the exception of several compounds having calibration outliers. Lockheed suggests that all compound results associated with calibration outliers be qualified as estimated in quantity. But as a result of no volatile compounds being detected at a concentration equal to or greater than their method detection limit, the only compound result qualified was 2-butanone which had a relative response (RSP) factor below control limits. 2-Butanone's reporting limit has been qualified as estimated and flagged with "UJ."

An unidentified compound was found in the field samples and corresponding laboratory blank and QA/QC samples. This peak eluted at a retention time close to that of chloromethane, bromomethane, vinyl chloride, and chloroethane. To address the potential of compound interference, the reporting limit for these four compounds has been qualified as estimated and flagged with a "UJ."

#### Semivolatile Organic Analyses

The semivolatile organic data, generally met the functional guideline control limits, several compounds exceeded calibration control limits. Lockheed suggests that all compound results associated with calibration outliers be qualified as estimated in quantity. But as a result of no semivolatile compounds being detected at a concentration equal to or greater than their method detection limit, and all RSP factor being within control limits data qualification was deemed unnecessary.

The validation of the semivolatile data was found to be thorough and complete. No validation discrepancies were noted.

## Chlorinated Pesticide/PCB Analyses

The pesticide/PCB data contained several problem areas. Lockheed's data validation comments should be followed in all but two of the problem areas. The first was that several pesticides had calibration relative percent differences (RPDs) greater than control limits. Lockheed recommended the reporting limits for these compounds be qualified as estimated, but no compounds were detected at a concentration equal to or greater than the method reporting limit, so in this reviewers opinion data qualification was not required.

Secondly, the recoveries for the surrogate standard, decachlorobiphenyl were below control limits for all field samples, on both columns. The other surrogate, tetrachloro-m-xylene, was recovered with in control limits for all the field samples except MW-04, where it was below control limits. Lockheed suggested that all the reporting limits for these samples be qualified as estimated, but since no pesticides or PCBs were detected at a concentration equal to or greater than the method reporting limit the reporting limits for only MW-04 were qualified as estimated and flagged with "UJ."

## **Inorganic Metals**

The inorganics data contained several problem areas. Lockheed's data validation comments should be followed in all but one of the problem areas. The continuing calibration and preparation blanks contained low concentrations of beryllium. Lockheed recommended qualifying the positive analytical results as estimated and flagging them with a "J." It is felt that a more representative way of handling this is to raise the reporting limit for beryllium to the concentration of blank contamination in each sample and qualifying the sample result as not detected, flagged "U."

## Conclusion

The organic and inorganic analytical result are acceptable as reported, with qualifiers as previously discussed. Copies of the analytical results are attached.

# References

.

- 1. U.S. EPA. <u>Laboratory Data Validation Functional Guidelines for Evaluating Organic</u> <u>Analyses</u>. 1988 revision.
- 2. U.S. EPA. Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses. 1988 revision.

# TECHNICAL MEMORANDUM

PREPARED FOR: U.S. EPA Region 5

PREPARED BY:	Lori Bootz/CH2M HILL Dong-Son Pham/CH2M HILL
DATE:	January 26, 1994
SUBJECT:	Review of September 1993 Analytical Data Carter-Lee Lumber
PROJECT:	GLE65616.F2.SM

#### Introduction

Data review was performed on 9 water samples and 3 soil samples for Case Number 20848. Only summary forms and data reports were reviewed (no raw data). The EPA's data validation case narratives were reviewed and verified by checking the summary forms. Changes in data qualifiers were made in some instances. These changes and comments are noted below.

#### **Organics Review**

Water Samples Sample holding times and instrument tuning specifications were within limits for all analyses. The instrument calibrations met specified limits with the exception of the SVOC calibration which contained some outliers. However, the compounds which were out of range were not detected in any samples and no action was taken.

Method blanks showed no significant contamination problems. The SVOC method blank detected two common phthalate compounds, diethyl phthalate and bis(2-ethylhexyl) phthalate, at concentrations below their reporting limits (0.5 and 1 ug/L respectively). These compounds were detected in some samples below the reporting limit and appear to be the result of contamination. These compounds were qualified as non-detected. The VOC field and trip blank detected methylene chloride (2 ug/L) and tetrachloroethene (1 ug/L) at low concentrations. These compounds were not detected in any samples so no action was taken.

The SVOC MS/MSD showed low recoveries for 4-chloro-3-methylphenol, acenaphthene and pyrene. These compounds were not detected in any samples. The data were qualified as estimated, nondetect ("UJ").

1

The DCB surrogate standard recovery was below QC limits for all pesticide samples. Therefore, all samples were qualified estimated ("J") for detects or estimated, nondetect ("UJ") for all compounds below the reporting limit.

Several pesticide compounds were reported at concentrations well below the reporting limit for water samples. The sensitivity of the pesticide method may allow for the reporting of false positives at low concentration levels (i.e. less than one-tenth of the reporting limit). Inquiries were made regarding the EPA validation review process used to confirm the laboratory reported data. The EPA Task Monitor (Pat Churilla) agreed to check the raw data and chromatograms to verify whether the results can be reported with a high degree of certainty. After examination of the data, the EPA Task Monitor's opinion was that only the result for alpha-BHC in sample EKJ67 should be changed to undetected ("U") because the value is likely the result of instrument noise. All other pesticide results were considered valid.

Soil Samples Sample holding times and instrument tuning specifications were within limits for all analyses. The instrument calibrations met specified limits with the exception of some VOC and SVOC outliers. However, the compounds which were out of range were not detected in any samples and no action was taken.

The VOC method blank detected acetone at a concentration of 2 ug/L. Acetone is a common laboratory contaminant. Samples which showed concentrations for acetone less than 10X the amount measured in the blank sample were qualified as blank-contaminated ("B"). The SVOC method blank detected bis(2-ethylhexyl) phthalate (a common laboratory contaminant) as well as phenol, 1,4-dichlorobenzene, 1,2,4-trichlorobenzene, 4-chloro-3-methylphenol, acenaphthene, and pyrene. These compounds were suspected to be contamination from the matrix spike samples. Samples which showed concentrations for these compounds less than 5X the amount measured in the blank sample were qualified as blank-contaminated ("B"). The pesticide method blank detected alpha-BHC and delta-BHC at low concentrations. Samples which showed concentrations for these compounds less than 5X the amount measured in the blank sample were qualified as blank-contaminated ("B").

The pesticide MS/MSD showed low recoveries for heptachlor and aldrin. These compounds were qualified in all samples as estimated ("J") or estimated, nondetect ("UJ").

The DCB surrogate standard recovery was above QC limits for pesticide samples CLBK03, CLBK03-FR and CLBK03-FR MS/MSD. Therefore, all samples were qualified estimated ("J") for detects or estimated, nondetect ("UJ") for all compounds below the reporting limit.

#### **Inorganics Review**

A limited review was performed given the contents of the data package provided. The following were not included in the review: holding times, calibrations, serial dilution, and LCS/ICS performance. The above were reviewed as documented by the EPA data validation QC Exception Summary Report provided in the data packages.

It should be noted that the data validation performed by EPA did not include documentation of FORM 1 data sheets with the qualifiers noted in the narrative. The data sheets were marked-up accordingly in this review.

Water Samples This review concurs with the EPA data validation with the exception of qualification of Cadmium (Cd) samples. The CCB contains Cd (3.2 ug/L). The Cd result for CMW-5 was qualified as blank-contaminated ("B").

Beryllium was detected in two water samples at concentration levels approaching the method reporting limits. While beryllium was not measured and reported in the laboratory blanks associated with the samples, the source of beryllium contamination is unknown. Because of the possibility of interferences being incorrectly identified as target analytes by the atomic absorption methodology, positive identification of the beryllium cannot be made. The reported concentrations are therefore estimated ("J").

Soil Samples Lead and arsenic were detected at relatively high levels in the soil samples. Inquiries were made regarding the EPA validation review process used to confirm the laboratory reported data. According to the EPA Task Monitor the raw data was examined to verify the correct calculation of the sample results reported by the laboratory. Digestion logs, instrument printouts, strip charts, etc. were compared to the reported sample results.

The soil field duplicate analyses were reviewed for comparability. Poor field precision was noted for arsenic, calcium, chromium, copper, iron, lead, magnesium, nickel and zinc. While the EPA Region 5 SOP for validation of CLP inorganic data states field duplicates are evaluated with the same acceptance criteria as the laboratory generated duplicates, it is expected that soil duplicate results will have greater variance than water matrices due to difficulties associated with collecting identical field samples. As required, the above metals were qualified as estimated ("J") in the soil samples.

#### Conclusion

The data for organic and inorganic analyses were acceptable except as discussed above.



and the second 
1

たちないの



#### Appendix C - 1

#### Statistical Analyses of Data for Chemicals of Potential Concern

Section 1. Soil

Section 2. Groundwater

Footnotes to tables:

Min - minimum detected value Max - maximum detected value Mean - mean of natural log (ln) transformed values Std Dev - standard deviation of ln transformed values Ln - Natural log H Value - Based on one sided upper confidence level of 0.95 UCL 95% - 95% upper confidence limit in normal space value Est. Mean - Estimation of the mean of the log normal distribution in normal space value

					•	Table C-1 ire Point Co arter-Lee Li	ncentration						
						Media - Se	oil						
		<u></u>		Log	Minimum	Maximum	Log Based						
	Total	Positive	Detection	Based	Detected	Detected	Standard		Corr.	Mean	UCL	UCL	
Parameter	Analyses	Detections	Frequency	Mean	Value	Value	Deviation	H Value	Factor	Estimation	(trans)	95% (a)	
Heptachlor	27	4	15%	0.15	0.90	4.20	0.38	1.8717	2.2E-01	1.24	3.6E-01	1.43	(b) µg/kg
PCBS (Arochlor 1254)	27	3	11%	3.01	16.00	35.00	0.21	1.7513	3.0E+00	20.71	3.1E+00	22.27	(c) µg/kg

•

Footnotes:

a. EPA risk assessment guidance indicates that when estimating a reasonable maximum exposure (RME) the exposure point concentration should be set equal to

the upper 95th percentile confidence limit (UCL 95%) of the arithmetic mean; however; if the UCL exceeds the maximum detected value,

then the exposure point concentration should be set to the maximum detected value.

b. The exposure point concentration for heptachlor is set equal to the UCL 95% because it is less than the maximum detected value of 4.2 µg/kg.

c. The exposure point concentration for Arochlor 1254 is set equal to the UCL 95% because it is less than the maximum detected value of 35 µg/kg.

					Tab	le C-1-2							
					Exposure Pol	Int Concentra	tion						
					Media - (	Groundwater							
					Carter-	Lee Lumber							
				Log	Minimum	Maximum	Log Based						
	Total	Positive	Detection	Based	Detected	Detected	Standard		Corr.	Mean	UCL	UCL	
Parameter	Analyses	Detections	Frequency	Mean	Value	Value (b)	Deviation	H Value	Factor	Estimation	(trans)	95% (a)	
Alpha BHC	17	2	12%	-4.00	0.001	0.03	0.91	2.523	-3.6E+00	0.03	-3.0E+00	0.05	(c) μg/L
4,4-DDT	17	2	12%	-3.23	0.004	0.05	0.71	2.258	-3.0E+00	0.05	-2.6E+00	0.08	(d) µg/L

Footnotes:

a. EPA risk assessment guidance indicates that when estimating a reasonable maximum exposure (RME) the exposure point concentration should be set equal to

the upper 95th percentile confidence limit (UCL 95%) of the arithmetic mean; however; if the UCL exceeds the maximum detected value,

then the exposure point concentration should be set to the maximum detected value.

b. The concentrations for positive onsite detections for both chemical parameters are less than 1/2 of the detection limit;

therefore the maximum detected value in this statistical table actually refers to a 1/2 detection limit value.

c. The exposure point concentration for alpha BHC is set equal to the maximum detected value of 0.003 µg/L.

d. The exposure point concentration for 4,4-DDT is set equal to the maximum detected value of 0.012 µg/L.

Chemical Intake Estimation Methodology

-

# **Chemical Intake Estimation Methodology**

Intake variables were selected to estimate the RME and were derived from EPA guidance documents except as described below. A typical adult body weight of 70 kg and a child (< 6 years) body weight of 15 kg is assumed (EPA, 1991, Standard Default Exposure Factors).

Averaging times are dependent on the assessed toxic effect. For carcinogenic health effects, the total cumulative dose of the contaminant is prorated over an averaging time of an entire life-span, which is assumed to be 70 years. For noncarcinogenic health effects, the averaging time is equal to the exposure duration. Reflecting residential parameters prescribed by EPA directive, the exposure duration for incidental ingestion of soil is equal to 6 years for a residential child exposure. For residential receptors, the exposure frequency used is 350 days per year. The exposure duration for an future occupational adult is 25 years at an exposure frequency of 250 days per year.

The incidental soil ingestion rates are 0.2 gm/day for a residential child and 0.05 gm/day for an occupational adult. The groundwater ingestion rates are 2 L/day for a residential adult and 1 L/day for an occupational adult. Inhalation contaminants in airborne particulates by an adult laborer is assessed based on an inhalation rate of 20 m³/workday for an 8-hour workday. The inhalation rate used for the conservative evaluation of exposures for a residential child is 20 m³/day, though estimates in the 5 to 10 m³/day may be more accurate.

The 90th percentile of total body surface area is used as the total surface area for both adult (20,900 cm²) and child (8,960 cm²) exposure calculations (U.S. EPA, January 1992, Dermal Exposure Assessment: Principles and Applications). Based on estimates developed by McKone and Layton, it is assumed that soil contact-dermal exposure occurs at the hands, arms, legs, neck, and head, with approximately 26 percent (adults and trespassers) or 30 percent (children) of the total body surface area exposed (McKone and Layton. Screening the Potential Risks). The percentage of the total body surface area that is assumed to be submerged is 100 percent (15 min/day) for bathing/showering with groundwater.

The soil to skin adherence factor for all receptors is 1 mg per square centimeter of exposed skin: Soil contact-dermal absorption values (i.e., absorption efficiency factor) for most organic chemicals range from 10 to 25 percent of the soil concentration in dermal contact with the receptor. (Ryan, E. A. et al., Assessing Risk from Dermal Exposure). Because of the moderate to high volatility of the compounds assessed the lower end of the range (10 percent) was used in the exposure assessment if a chemical specific value could not be found in the literature.

The permeation rates of organic contaminants in aqueous solution are chemical-specific and are calculated based on EPA dermal exposure guidance cited above. The particulate emission factor were calculated using standard default parameter values listed in RAGS Part B since site specific values were not available.

The specific methodology used to estimate the contaminant intake for the exposure pathways selected for this quantitative assessment is presented as equations which are described below:

A. Groundwater Ingestion

$$I = (CW * IR * EF * ED)/(BW * AT)$$

Where:

I	=	chemical intake (mg/kg body weight-day)
CW	=	chemical concentration in water (mg/L)
IR	=	ingestion rate (L/dy)
EF	=	exposure frequency (dys/yr)
ED	=	exposure duration (yrs)
BW	=	body weight (kg)
AT	=	averaging time (dys)

B. Incidental Soil Ingestion

$$I = (CS * IR * EF * ED * CF)/(BW * AT)$$

Where:

Ι	=	chemical intake (mg/kg body weight-day)
CS	=	chemical concentration in soil (µg/kg soil)
IR	=	ingestion rate (gm/dy)
EF	=	exposure frequency (dy/yr)
ED	=	exposure duration (yr)
CF	÷	conversion factor (1E-6)
BW	=	body weight (kg)
AT	=	averaging time (dvs)

C. Dermal Absorption of Contaminants Sorbed to Soils

I = (CS * SA * AF * ABF * EF * ED * CF)/(BW * AT)

Where:

I	=	chemical intake (mg/kg body weight-day)
CS	=	chemical concentration in soil ( $\mu$ g/kg dry wt)
SA	=	surface area exposed (cm ² /event)
AF	=	adherence factor (g/cm ² )

ABS	=	absorption efficiency factor (%)
EF	=	exposure frequency (events/yr)
ED	=	exposure duration (yrs)
BW	=	body weight (kg)
AT	=	averaging time (dys)
С	=	conversion factor (1E-8)

D. Dermal Absorption of Contaminants in Water

$$I = (CW * SA * S * PC * ET * EF * ED * CF)/(BW * AT)$$

Where:

.

.

I	=	chemical intake (mg/kg body weight-day)
SA	=	total body surface area (cm ² )
S	=	percent surface area submerged (%)
PC	=	dermal permeability constant (cm/hr)
ET	=	exposure time (hr/dy)
EF	=	exposure frequency (dys/yr)
ED	=	exposure duration (yrs)
CF	=	volumetric conversion factor $(1 \text{ L}/1,000 \text{ cm}^3)$
BW	=	body weight (kg)
AT	=	averaging time (dys)

## E. Inhalation of Contaminants Sorbed to Airborne Soils

I = (C * IR * ABF * EF * ED * 1/PEF)/(BW * AT)

Where:

Ι	=	chemical intake (mg/kg body weight-day)
С	=	chemical concentration in soil (mg/kg dry wt)
IR	=	inhalation rate (m ³ /dy)
ABS	=	absorption efficiency factor (assumed 100%)
EF	=	exposure frequency (events/yr)
ED	=	exposure duration (yrs)
BW	=	body weight (kg)
AT	=	averaging time (dys)
PEF	=	particulate emission factor $(4.63 \times 10^9 \text{ m}^3/\text{kg})$

MKE10013CB9.WP5

Table C-2-1		
Exposure Variables		
Parameter		Used to Determine e Maximum Exposure
General Conditions	1	
Body Weight		
Adult	70 1	kg
Child < 6 yr.	15 1	-
Ingestion of Soil		
Ingestion Rate		
Adult Occupational - Future	0.05	
Child < 6 yr - Residential	0.2	g/day
Exposure Frequency (EF)	250	
Adult Occupational - Future Child < 6 yr - Residential		events/yr
Exposure Duration (ED)	350 6	events/yr
Adult Occupational - Future	25 y	/T
Child < 6 yr - Residential	6 1	
Averaging Time		
Noncancer Risk - Adult	25 y	
Noncancer Risk - Child < 6 yr	6 y	/r
Cancer Risk - All Receptors	70 y	/ <b>r</b>
Inhalation of Soil Particulates		
Inhalation Rate Adult Occupational - Future	20 0	cu. meters/day
Child < 6 yr - Residential		cu. meters/day
Exposure Frequency (EF)	20 0	u. meters day
Adult Occupational - Future	250 e	events/yr
Child < 6 yr - Residential		events/yr
Exposure Duration (ED)		•
Adult Occupational - Future	25 y	/T
Child $< 6$ yr - Residential	6 y	/ <b>r</b>
Averaging Time		
Noncancer Risk - Adult	25 y	
Noncancer Risk - Child < 6 yr	6 y	
Cancer Risk - All Receptors	70 y	/r
Dermal Absorption of Chemicals in Soil		
Total body surface area (90th percentile)	20000	
Adult Child < 6 vr	20900 c 8960 c	
Child < 6 yr Exposed body surface area	8900 0	
Adult (26% of total)	5434 0	·m?
Child $< 6$ yr (30% of total)	2688	
Soil to skin adherence factor	2000	,111 <i>2</i> -
All receptors	1 1	ng/cm2
Dermal Absorption Factor		
Organics	10%	(or chemical specific)
Inorganics	N/A	(•••••••••••••••••••••••••••••••••
Exposure Frequency (EF)		
Adult Occupational - Future	250 e	events/yr
Child < 6 yr - Residential		events/yr
Exposure Duration (ED)		÷
Adult Occupational - Future	25 y	/ <b>r</b>
Child < 6 yr - Residential	6 y	۲r/r
Averaging Time		
Noncancer Risk - Adult	25 y	ſ
Noncancer Risk - Child < 6 yr	6 y	ſ
Cancer Risk - All Receptors	70 y	r

.

.

.

Exposure Variables		
	_	
Parameter		e Used to Determine ble Maximum Exposure
Ingestion of Chemicals in Drinking Water (Groundwater)		
Ingestion Rate		
Adult Occupational - Future	1	l/day
Adult - Residential	2	l/day
Exposure Frequency (EF)		
Adult Occupational - Future	250	events/yr
Adult - Residential	350	events/vt
Exposure Duration (ED)		
Aduit Occupational - Future	25	ут
Adult - Residential	30	ут
Averaging Time		
Noncancer Risk - Adult Occupational	25	ут
Noncancer - Adult Residential	30	ут
Cancer Risk - Adult Occupational/Residential	70	ут
Dermal Absorption of Chemicals in Groundwater		•
Total body surface area (90th percentile)		
Adult - Future occupational and residential	20900	cm2
Exposed body surface area (area submerged)		
Adult - Future occupational and residential	20900	cm2
(100% submerged)		
Dermal Permeability Constant		
Organics	Chemical	Specific
Inorganics	N/A	•
Exposure Time		
Adult - Future occupational and residential	0.25	hr/d
Exposure Frequency (EF)		
Adult Occupational - Future	250	events/vt
Adult - Residential		events/vt
Exposure Duration (ED)		
Adult Occupational - Future	25	VT
Adult - Residential	30	•
Averaging Time		
Noncancer Risk - Adult Occupational	25	NT
Noncancer - Adult Residential		yr (
Cancer Risk - Adult Occupational/Residential		NT ST

Health Risk Estimation Methodology

.

.

## **Carcinogenic Risk Estimation**

For carcinogens, risks are estimated as the incremental probability of an individual developing cancer over a lifetime as a result of exposure to a potential carcinogen. The cancer potency factor or slope factor (SF) converts estimated daily chemical intakes averaged over a lifetime of exposure directly to incremental risk.

To estimate risks from exposure to carcinogens, the following data is needed:

- Chronic daily intake of the chemical
- Carcinogenic potency factor

## Estimating Cancer Risks Caused by Exposure to a Single Carcinogen

Where the risks are low (risk  $< 10^{-3}$ ), it can generally be assumed that the dose-response relationship will be in the linear low-dose portion of the multistage model dose-response curve. Under this assumption, the slope factor is a constant and risk is related directly to intake. This can be described by:

 $Risk = SF \times CDI$ 

Where:

Risk	=	Excess lifetime cancer risk as a unitless probability
SF	=	Slope factor or cancer potency factor (mg/kg/dy) ⁻¹
CDI	=	Chronic daily intake averaged over a lifetime (mg/kg/dy)

## Estimating Cancer Risks Caused by Exposure to Multiple Carcinogens

Exposure situations may involve the potential exposure to more than one carcinogen. To assess the potential for carcinogenic effects posed by exposure to multiple carcinogens, it is assumed in the absence of information on synergistic or antagonistic effects that carcinogenic risks are additive. This approach is based on *Guidelines for Health Risk* Assessment of Chemical Mixtures (U.S. EPA 1986b) and Guidelines for Cancer Risk Assessment (U.S. EPA 1986c).

For estimating cancer risks from exposure to multiple carcinogens from a single exposure route, the following equation is used:

$$Risk_{T} = \sum_{i=1}^{N} Risk_{i}$$

Where:

Risk _T	=	Total cancer risk from route of exposure
Risk _i	=	Cancer risk for the i th chemical
N	=	Number of chemicals

## Noncarcinogenic Risk Estimation

## **Comparison of Intake to Reference Dose**

The potential for noncancer health effects from exposure to a contaminant is evaluated by comparing an exposure level over a specified time period with a reference dose (RfD) for a similar time period. The reference dose is an estimate of a daily exposure to the human population that is likely to be without an appreciable risk of deleterious effects during a lifetime. This ratio of exposure to toxicity is called a hazard quotient and is described as:

$$HQ = E \div RfD$$

Where:

HQ	=	Noncancer hazard quotient
Ε	=	Exposure level (or intake in mg/kg/dy)
RfD	=	Reference dose (mg/kg/dy)

This comparison can be interpreted as follows:

$HQ \ge 1$	Potential for health effects
$HQ \leq 1$	Health effects not anticipated

## Hazard Index Approach

Exposure situations may involve the exposure to more than one chemical. To assess the potential for noncarcinogenic effects posed by multiple chemicals, a "hazard index" approach can be used. This approach, which is based on *Guidelines for Health Risk* Assessment of Chemical Mixtures (U.S. EPA 1986b), assumes dose additivity and sums the hazard quotients of the individual chemicals. This sum is called the hazard index (HI):

$$HI = E_1/RfD_1 + E_2/RfD_2 + \dots E_i/RfD_i$$

Where:

HI	=	Hazard index
E _i	=	Daily intake of the i th chemical (mg/kg/dy)
RfD _i	=	Reference dose of the i th chemical (mg/kg/dy)

When the hazard index exceeds 1, it indicates unacceptable exposure levels and potential health effects. If any single chemical's estimated daily intake is higher than its reference dose, the hazard index will be greater than 1.0. For multiple chemical exposures, the hazard index can exceed 1 even if no single chemical exposure exceeds the reference dose for that chemical. The assumption of additivity is most properly applied to chemicals that induce the same effect by the same mechanism or in the same target organ. If the hazard index is near or exceeds 1, the chemicals in the mixture are segregated by critical effect or target organ and separated indexes are derived for each effect or target organ. If any of these separate indexes exceed 1, then there may be a concern for potential health effects. Chemicals that are essential nutrients are excluded from the index when in the range of essentiality.

MKE10013CBC.WP5

## Health Risk Estimation Tables

Section 1 2	Surface Soil Surface Soil	<u>Table</u> C-4-1 C-4-2	Future Residential Ingestion and Inhalation Future Residential Dermal Absorption
3	Surface Soil	C-4-3	Future Occupational Ingestion and Inhalation
4	Surface Soil	C-4-4	Future Occupatio Dermal Absorption
5	Groundwater	C-4-5	Future Residential Ingestion
6	Groundwater	C-4-6	Future Residential Dermal Absorption
7	Groundwater	C-4-7	Future Occupational Ingestion
8	Groundwater	C-4-8	Future Occupational Dermal Absorption

,

Section 1

Soil / Future Residential / Ingestion & Inhalation

السيا

		Table C-4-1							
Carter-Lee Lumber									
Media - Soil									
	Land Us	e: Residential - F	uture Use						
	Exposure Routes: In	gestion and Inha	lation of Particul	ates					
	Exposure Point			Oral Slope	Inhalation Siope	Oral	inheletion		
Chemical	Concentration in Soll (mg/kg)	Cancer Risk	Noncancer Hezard Quotlent	Factor (mg/kg/ day)	Factor (mg/kg/ day}	RfD (mg/kg/ day)	RfD (mg/kg/ day)		
Heptachlor	1.43E-03	7.1E-09	3.7E-05	4.5	4.5	0.0005	0.0005		
PCBs (Arochlor 1254)	2.23E-02	1.9E-07		7.7	7.7				

Cumulative Risk/Hazard

2.0E-07 3.7E-05

Exposure Assumptions:	
Exposure Setting	Future Residential
Receptor	Child
Body Weight (kg)	15
Averaging Time - Cancer risk (yr)	70
Averaging Time - Noncancer risk (yr)	6
Exposure Frequency (d/yr)	350
Exposure Duration (yr)	6
Soil Ingestion Rate (mg/day)	200
Inhalation Rate (m3/day)	20
Particulate Emission Factor (m3/kg)	5E + 09

a. Sources of Toxicity Values:

IRIS - Integrated Risk Information System. U.S. EPA .

HEAST - Health Effects Assessment Summary Tables - Quarterly Summary, U.S. EPA.

.

Section 2

Soil / Future Residential / Dermal Absorption

~

			Carte	able C-4-2 r-Lee Lum 1edia - Soil	ber						
			Land Use: Ro Exposure Rou								
Chemical	Exposure Point Concentration in Soil (mg/kg)	Cancer Risk	Noncancer Hazard Quotlent	Oral Slope Factor (mg/kg/ day)	Oral RfD (mg/kg/ day)	Oral Absorption Efficiency (%)	Adjusted Oral Slope Factor (mg/kg/ day)	Adjusted Oral RfD (mg/kg/ day)	Dermal Absorption Efficiency (%)	(Cancer Effects) Absorbed Dose (mg/kg/day)	(Noncancer Effects) Absorbed Dose (mg/kg/day)
Heptachlor PCBs (Arochlor 1254)	1.43E-03 2.23E-02	5E-08 8E-07	5E-05	4.5 7.7	0.0005	100 100	4.5 7.7	0.0005	10 6	1.06E-08 9.88E-08	2.46E-08

.

.

.

Cumulative Risk/Hazard

5E-05

8E-07

Exposure Assumptions:	
Exposure Setting	Future Residential
Receptor	Child
Body weight (kg)	15
Surface area (cm2)	8960
Percent exposed (**)	30
Soil to skin adherence factor (mg/cm2)	i.
Days per week exposed	7
Weeks per year exposed	50
Exposure frequency (days/yr)	350
Exposure duration (yrs)	30
Years in lifetime	70
Noncancer Averaging Time (days)	10950

a. Sources of Toxicity Values:

IRIS - Integrated Risk Information System. U.S. EPA.

HEAST - Health Effects Assessment Summary Tables - Quarterly Summary. U.S. EPA.

Section 3

Soil / Future Occupational / Ingestion & Inhalation

-

		Table C-4-	-3				
		Carter-Lee Lu	ımber				
		Media - So	)il				
	Land Use: O	ccupational/Ind	lustrial - Future I	Use			
	Exposure Routes:	Ingestion and I	Inhalation of Par	ticulates			
· · · · · · · · · · · · · · · · · · ·	Exposure Point Concentration		Noncancer	Oral Slope Factor	Inhalation Slop <del>c</del> Factor	Oral RfD	Inhalation
Chemical	in Soil (mg/kg)	Cancer Risk	Hazard Quotient	(mg/kg/ day)	ractor (mg/kg/ day)	(mg/kg/ day)	RfD (mg/kg/ day)
Heptachlor	1.43E-03	1.1E-09	1.4E-06	4.5	4.5	0.0005	0.0005
PCBs (Arochlor 1254)	2.23E-02	3.0E-08	1	7.7	7.7		

Cumulative Risk/Hazard

3.1E-08 1.4E-06

Exposure Assumptions:	
Exposure Setting	Future Occupational
Receptor	Adult
Body Weight (kg)	70
Averaging Time - Cancer risk (yr)	70
Averaging Time - Noncancer risk (yr)	25
Exposure Frequency (d/yr)	250
Exposure Duration (yr)	25
Soil Ingestion Rate (mg/day)	50
Inhalation Rate (m3/day)	20
Particulate Emission Factor (m3/kg)	5E+09

a. Sources of Toxicity Values:

IRIS - Integrated Risk Information System. U.S. EPA .

HEAST - Health Effects Assessment Summary Tables - Quarterly Summary. U.S. EPA.

٠

Section 4

Soil / Future Occupational / Dermal Absorption

I

#### Table C-4-4 Carter-Lee Lumber Media - Soil

,

			Exposure Ro	ute: Dern	nal Absor	ption					
	Exposure			Oral			Adjusted	Adjusted		(Cancer	(Noncancer
	Point			Slope	Orai	Oral	Oral Slope	Oral	Dermai	Effects)	Effects)
	Concentration		Noncancer	Factor	RID	Absorption	Factor	RſÐ	Absorption	Absorbed	Absorbed
	in Soil	Cancer	Hazard	(mg/kg/	(mg/kg/	Efficiency	(mg/kg/	(mg/kg/	Efficiency	Dose	Dose
Chemical	(mg/kg)	Risk	Quotient	day)	day)	(%)	day)	day)	(%)	(mg/kg/day)	(mg/kg/day)
Heptachlor	1.43E-03	1E-08	2E-05	4.5	0.0005	100	4.5	0.0005	10	2.72E-09	7.60E-09
PCBs (Arochlor 1254)	2.23E-02	2E-07		7.7		100	7.7		6	2.55E-08	

#### Land Use: Occupational/Industrial - Future Use Exposure Route: Dermal Absorption

Cumulative Risk/Hazard

2E-07 2E-05

Exposure Assumptions:	
Exposure Setting	ture Occupational
Receptor	Adult
Body weight (kg)	70
Surface area (cm2)	20900
Percent exposed (%)	26
Soil to skin adherence factor (mg/cm2)	1
Days per week exposed	5
Weeks per year exposed	50
Exposure frequency (days/yr)	250
Exposure duration (yrs)	25
Years in lifetime	70
Noncancer Averaging Time (days)	9125

a. Sources of Toxicity Values:

IRIS - Integrated Risk Information System. U.S. EPA.

HEAST - Health Effects Assessment Summary Tables - Quarterly Summary. U.S. EPA.

Section 5

Groundwater / Future Residential / Ingestion

Sec. 10

	Carte	able C-4-5 r-Lee Lumber oundwater			
Ľ	and Use: Residential C Exposure	Child thru Adult - FU Route: Ingestion	JTURE USE		
Chemical	Exposure Point Concentration in Groundwater (mg/L)	Cancer Risk	Non-cancer Hazard Quotient	Oral Slope Factor (mg/kg/	Oral RfD (mg/kg/
Alpha BHC	3.00E-06	2.2E-07		day) 6.3	day)
4,4'-DDT	1.20E-05	4.8E-08	0.0007	0.34	0.0005
Cumulative Risk/Hazard		2.7E-07	0.0007	ı	
EXPOSURE ASSUMPTIONS					
Exposure Setting		Future Residential			
Receptor		Child thru Adult			
Body Weight (kg) - Adult		70			
Body Weight (kg) - Child		15			
Averaging Time - Cancer risk (yr)		70			
Averaging Time - Noncancer risk (yr)		30			
Exposure Frequency (d/yr)		350			
Exposure Duration (yr) - Total		30			
Exposure Duration (yr) - Child		6			
Exposure Duration (yr) - Adult		24			
Daily Water Ingestion Rate (I/day) - Child		1			
Daily Water Ingestion Rate (I/day) - Adult		2			

a. Sources of Toxicity Values:

IRIS - Integrated Risk Information System. U.S. EPA

HEAST - Health Effects Assessment Summary Tables - Quarterly Summary. USEPA

Section 6

Groundwater / Future Residential / Dermal Absorption

 $\checkmark$ 

				(		e Lumber							
						awater l thru Adult Dermal Abso		USE					
· · · · · · · · · · · · · · · · · · ·	Exposure	· · · ·		Oral			Adjusted	Adjusted					
	Point		Non-cancer	Slope	Oral	Oral	Oral Slope	Oral		Lifetime	Lifetime		
	Concentration	Cancer	Hazard	Factor	RſD	Absorption	Factor	RſD	Permeability	Average	Average	Daily Intake	Wate
	in Groundwater	Risk	Quotient	(mg/kg/	(mg/kg/	Efficiency	(mg/kg/	(mg/kg/	Constant	Media Intake	Chemical Intake	(DI)	Intake
Chemical	(mg/L)		1	day)	day)	ĺ	day)	day)	(cm/hr)	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)	l/kg/da
Alpha BHC	3.00E-06	9E-12		6.3E+00		1	6.3		0.016	4.92E-04	IE-12	3E-12	IE-03
4,4'-DDT	1.20E-05	4E-11	6E-07	0.34	0.0005	1	0.34	0.0005	0.330	1.02E-02	IE-10	3E-10	2E-02

E

Cumulative Risk/Hazard 5E-11 6E-07

EXPOSURE ASSUMPTIONS	
Exposure Setting	Future Residential
Receptor	Child thru Adult
Body weight (kg) - adult	70
Body weight (kg) - child	15
Surface area (cm2)	20900
Surface area (cm2)	8960
Percent submerged	100
Time in water (hrs/day)	0.25
Number of days per week	7
Number of weeks per year	50
Exposure frequency (days/yr)	350
Exposure Duration - total	30
Exposure Duration - child	6
Exposure Duration - adult	24
Years in lifetime	70
Noncancer Averaging Time (days)	10950

a. Sources of Toxicity Values:

IRIS - Integrated Risk Information System. U.S. EPA

HEAST - Health Effects Assessment Summary Tables - Quarterly Summary. USEPA

Section 7

Groundwater / Future Occupational / Ingestion

-

# Table C-4-7

#### Carter-Lee Lumber Media - Groundwater

#### Land Use: Occupational/Industrial - Future Use

#### Exposure Route: Ingestion

Chemical	Exposure Point Concentration in Groundwater (mg/L)	Cancer Risk	Noncancer Hazard Quotient	Oral Słope Factor (mg/kg/ day)	Oral RfD (mg/kg/ day)
Alpha BHC	3.00E-06	6.6E-08		6.3	
4,4'-DDT	1.20E-05	1.4E-08	0.0002	0.34	0.0005

Cumulative Risk/Hazard	8.0E-08	0.0002
Exposure Assumptions:		
Exposure Setting	Future Occupational	
Receptor	Adult	
Body Weight (kg)	70	
Averaging Time - Cancer risk (yr)	70	
Averaging Time - Noncancer risk (yr)	25	
Exposure Frequency (d/yr)	250	
Exposure Duration (yr)	25	
Daily Water Ingestion Rate (1/day)	1	

a. Sources of Toxicity Values:

IRIS - Integrated Risk Information System. U.S. EPA.

HEAST - Health Effects Assessment Summary Tables - Quarterly Summary. U.S. EPA.

Section 8

Groundwater / Future Occupational / Dermal Absorption

#### Table C-4-8

.

#### Carter-Lee Lumber Media - Groundwater

#### Land Use: Occupational/Industrial - Future Use Exposure Route: Dermal Absorption

						Route: Derma							
	Exposure			Oral			Adjusted	Adjusted					
	Point			Slope	Oral		Oral Slope	Oral		Lifetime	Lifetime		
	Concentration		Noncancer	Factor	RſD	Oral	Factor	RſD	Permeability	Average	Average	Daily Intake	Water
	in Groundwater	Cancer	Hazard	(mg/kg/	(mg/kg/	Absorption	(mg/kg/	(mg/kg/	Constant	Medía Intake	Chemical Intake	(DI)	Intake
Chemical	(mg/L)	Risk	Quotient	day)	day)	Efficiency	day)	day)	(cm/hr)	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)	i/kg/day
Alpha BHC	3.00E-06	6E-12		6.3E+00		1	6.3		0.016	2.93E-04	9E-13	2E-12	8E-04
4,4'-DDT	1.20E-05	2E-11	4E-07	0.34	0.0005	1	0.34	0.0005	0.330	6.04E-03	7E-11	2E-10	2E-02

#### Cumulative Risk/Hazard

3E-11 4E-07

Exposure Assumptions:	
Exposure Setting	uture Occupational
Receptor	Adult
Body weight (kg)	70
Surface area (cm2)	20900
Percent submerged	100
Time in water (hrs/day)	0.25
Number of days per week	5
Number of weeks per year	50
Exposure frequency (days/yr)	250
Number of years exposed	25
Years in lifetime	70
Noncancer Averaging Time (	9125

a. Sources of Toxicity Values:

IRIS - Integrated Risk Information System. U.S. EPA.

HEAST - Health Effects Assessment Summary Tables - Quarterly Summary. U.S. EPA.

# APPENDIX D CHAIN-OF-CUSTODY/ TRAFFIC REPORTS

918

~ 学術、教教書を書いて裏いてきとう

1. A.

の一般でいい

記憶

1. Project Code A		703 9	557-2490 FTS 5	rolection Agency le Management Office VA 22313 57-2490 Sampling Co.		acking List/Chain of C		SETP	2		·	
			5		11/079		6. Sample Description		7. Preser			
432(21 Regional Information			Sampler (Nan	C+12171+ILL	Aifbill Nur		(Enter	• •	(Enter in Column C)			
			PARON			2148095	in Column A	,	1.00			
Non-Superfund Progr	am		Sampler Sign		5. Ship To	KI BUTJ	1. Surface Wa 2. Ground Wa		1. HCI 2. HNO	3		
			Clara F	the	AATS	5	3. Leachate 4. Rinsate		3. NAH			
Site Name		<b>_</b>	3. Type of Act	ivity Remedial Removal	11700 4	UEST ALBANT, SC	LITE P 5. Soil/Sedime	ent	4. H2SO4 5. NAOH			
Curter Lee	1	• " -	SF Reme		BROMEN	BRROW, OK	6. Óil 7. Waste		6. Othe Spe	r (SAS) cifv)		
City, State	Sit	e Spill ID		BA BEM	11	74012	8. Other		7. Ice only N. Not preserved			
INDIANOPLIS		30	ST SSI FED LSI		ATT. M	ISSY HAMBY	(Specify)		. N. NOT	preserved	1	
Sample	A	в	с	D	E	F	G	1	Н	1	J	
Numbers	Matrix Enter	Conc Low	Preserv- ative	Analysis	Sample used for	Regional Specific Tracking Number	Station Location		o/Day/ ar/Time	Sampler Initials	Desigi Field	
	from	Med	Used		spike	or Tag Number	Identifier		ample ollection	initials		
159BE-01	Box 6	High	from Box 7		and/or duplicate				Mection		1.08	
	-	L	N	TOC	NA	5-077709	CI SAAUAD-1	1104	192 14:20	AND		
ELLGAT UI	5	<u>し</u> し	N				CL580402-1	+			523	
2 ELG 11-02 5 ELG 13-03	5	5	N	TOC	NA	5-077744	CL 5130302				527	
-3.ELG 15-05	2		14	TOC	NI4	5-077753	CL5BØ303-	111090	12 11:41	with	525	
4		<u> </u>			·		<u> </u>			<u> </u>		
5			+								+	
6								· · · · · · · · · · · · · · · · · · ·			·	
7			+							<u> </u>		
8												
9	ļ	ļ										
10						<u> </u>				<u> </u>	1	
Shipment for SAS complete? ( Y/N)	Си	STOR	IT SEA	L # 3593	/ 35	94						
Delegenshed by (C)		<u>-</u>	Data / T	ID		CUSTODY RECORD		Dets (T)	no Decel	ad hur /C	lanatura)	
Relinquished by: (Si	ynature)	·   ;	Date / Time	Received by: (Signa		Relinquished by		Date / Tir	THE HOCOLV	ed by: (S	ignature)	
(lara atm	~	11/0	0 4/92 A:5	0 Uml	tr	lurt	tru 111	05/92 1	19:00			
Relinquished by: (Si	gnature)		Date / Time	Received by: (Signa	ature)	Relinquished by	r: (Signature)	Date / Tir		ed by: (S	ignature)	
			1				<u>ا</u>	1				
Received by: (Signa	iture)		Date / Time	Received for Labora (Signature)	atory by:	Date / Time	Remarks is cu	stody sea	l intact? Y/N/	none		
			ļ									
EPA Form						Split Samples	Accepted (Signa	ture)				

7

f

	<b>C</b> EP/		act Caboraior PO Boa	SErs-ronmental P 9 Program Samp • 818 Alexandria 557 2490 - ETS 5	ile Management Cittice VA_(2,2113)	Speci	al Analytica	I Service		1909 98E	3/50	= 1 2	
	1 Project Gode	Account (		•	[Sampling Co		npped Carner		1	· · · ·	/		
	732C.21 Regional Information	<b>X</b>		5 Sampler (Nar	CH2MHZLL	11/06/	92 FEY	6 Sample Descriptio (Enter in Column		7 Proso (Enter	ivative in Colun	ın (`)	
	Non Superlund Prog	ram		AARON I Sampler Sign		5 Ship To	5048416660	2 1 Surface V 2 Ground V 3 Leachate	Vator	1 HCI 2 HNC 3 NAH	SO <b>4</b>		
	tsite Name			3 Type of Act			WEST MLBAN	2 4 Rinsate 2 5 Soil/Sedu	nent	4 1155 5 NAC	н.		
	CARLER LEE L City, State INDIANAPOLIS		8 • Špill ID 3 0	SF PA PRP PA ST SSI FED LSI	RIFS CLEM RA REMA O&M OIL NPLD UST	BROKE	ain NAROW, OK 1issy Humby	6 Oil 7 Waste 8 Other (Specify	•)	(Spe 7 100	ir (SAS) i <i>cify)</i> preserved preserved	t	
İ	Sample Numbers	A Matrix Enter	B Conc Low	C Preserv- ative	() Analysis	E Sample used for	F Regional Specific Tracking Number	G Station Location	Yu	i H lo/Day/ lar/Time Gampto	i Sampter Initials	J Designated Field QC	
- (	15985-04	from Box 6	Med High	Used from Box 7		spike and/or duplicate	or Tag Number	i i i i i i i i i i i i i i i i i i i		bliection	ļ		
یک ہے۔	- Big Mioy A	5	1 4	$\sim$	TOL			CL 50#202-1	11/06/9	12 07:50	m	9.70	
	375485 05	<u>' </u>	<u>+                                    </u>	N	TOL	1 M3/m	ר ט <i>רררט-צ</i> ס	CL 5130203-	1-11/041	~ <i>\$6:44</i>	nr.	113/m32 1	FIR
	47598E-06	5		N	706	NA	5-077804	CL SBOID	2-11/06/9	2 14:10	np	sai	1
	575485-07	5		$\nu$	TUC	DUP	5-077805					pup/ou	1
X D18	6												
	8						-						
C A A A A A A A A A A A A A A A A A A A	9										-		
ري	10								1				}
	Shipment for SAS complete? (SIN)	Cu	57001	- SEAL	- # 3547 - 578								
							F CUSTODY RECORD	1					,
	Relinquished by (S	ignature) A		Date / Time	Received by: (Signa	nturø)	Relinquished by	r: (Signaturø)	Date / Tir	ne Receiv	red by∶_ <i>(S</i>	ignature)	
	Relinquished by: (S	In - Ignature)	140	492 19 · 00 Date / Time	O Received by: (Signa	ature)	Relinquished by	y: (Signaturθ)	Date / Tir	ne Receiv	red by: (S	Signature)	
	Received by: (Sign	ature)		Date / Time	Received for Labora	itory by:	Date / Time	Remarks is	custody sea	l intact? Y/N/	none		
					(Signature)								
	EPA Form		I	I	I	_	Split Samples	Accepted (Sig	nature)				
		1ello	10.64					Decr 1					

	<b>≫</b> E	P/		United S Intract Lab	States En oratory F O Box 8 703-557	nvironme ⁹ rogram 18 Alexa 7-2490	ntal Pro Sample ndria, V/ FTS 557	tection Ag Manager A 22313 7-2490	ency nent Of	fice	& Chain	nic Traff of Cust	tody F	Record	SAS N (if applic SE 7	able)		Case No. 19013
	1. Project Cod	le A	Account	t Code	2	. Regio	No.	Samplin	g Co.	ŀ	4. Date Shippe			/	6.	Preser-		7. Sample
	932020					5	C	СН2М	HIL		10/04/19					vative (Enter in	1	Description (Enter
	Regional Inform	mation			S	ampler	(Name	リ			Airbill Number					Column D		in Column A)
								PET	RI		<u>6352</u>	14910	73		1	. HCI		1. Surface Water
	Non-Superfun	d Progr	am			ampler : Inc	a f	2st	-		5. Ship To SOUTH UI			•	м з	. HNO3 . NaHSO₄ . H₂SO₄		2. Ground Water 3. Leachate 4. Rinsate
	Site Name			···-	jš.	Type o	f Activi	ty ^{Rem} RIFS RD RA	edial	Removal	1700 WI		BUNY			. H ₂ SO ₄ . Other (Specify)		5. Soil/Sediment 6. Oil (High only)
	Curter	Lee.	.Lu	mber	, Is	FZ	Remedia	RD		MA	BROKE	N ARI	RUW	OK 74012		. Ice onlý	'}	7. Waste (High only) 8. Other
	City, State			ite Spill	IN S		001		0	<u>հ Լ</u> լ	ATTAL V	1.	- 4	1 /		I. Not preserved	- L	(Specity)
	IMPIANAP	NIS,	<u> </u>	BD				NPLD		эт []	ATTN: Y	lissy	<u> </u>			·		·····
s¢ı	CLP Sample Numbers	A Enter #	B Conc. Low	Type:	D Preser vative		RAS Ar	nalysis	High	Tracki	F nal Specific ng Number	G Statio Locat		H Mo/Day/ Year/Time	l Sampl Initial	s   CLP In	org.	K Enter Appropriate Qualifier for Designated Field QC
502	(from labels)	from Box 7	Med High	Comp./ Grab	from Box 6	VOA	BNA	Pest/	only ARO/ TOX	or Tag	, Numbers	Numt	ber	Sample Collection		Samp.	Nō.	B = Blank S = Spike D = Duplicate PE = Perform, Eval. = Not a QC Sample
=1601	MEKHOR	<b>₩</b> 5	1	6	N		X			5-0-	17603	CLBKS	\$8-6	11/03/1992-09:2	5 100	MEKK	102	-
ELGOZ	MEKNELA	5	L	G	N		X				17605	CLBKS		11/03/992-09				-
=1603K	MEK A03	5	L	G	N		γ				7606	CLBKS	•	11/03/92 -09:				-
544	ELG 04	5	L	G	N		Х				7609	CIBKS	11-1	11/2 10:	15 A	MER	901	<u> </u>
5 <i>⊄5</i>	ELG05	5	4	G	N		X			5-0'	17611	CLBKS	12-1	11/03/92 10:	30 A4	2 MEKA	05	-
5\$6	ELG06	5	L	G	N		X			5-07	7613	CLBKS	13-1	11/03/92 10	45 Ar	MEK	AO(	~
s¢ 7	ELGOT	5	L	G	N		X			507	7614	CLBK	314-1	11/03/92 11:	os Ar	D MEKC	197	
S Ø B	ELGOB	5	5	6	IN		X			5-07	7616	CLBIS	515-1	11/03/72 11:1	B Ar			~
5\$9	ELG09	5	L	G	N		X			5-07	7618	CLBKS	516-1	11/03/92 11:				
510	ELGO	5	L	G	N		Х			5-07	1620	CLBK S	317-1	11/03/92 11:	40 AF			~
	Shipment for ( complete? ( Y		Page	1 of 7	_	ample u	ised fo	r a spik	e and/	or duplica	ate Ac	ditional San	npler Sigr	natures		n of Custor	-1	
		////								•					35	43 /	/ 3	544
											CHAIN OF CU							
	Relinquished	by: (Si In	gnature 		De   /03/		њ 1 <i>С</i> О	Receiv		(Signati	ure)	Relinquist	/////		Date /	Time  R <i> 7:0</i> 0	eceive	ed by: <i>(Signature)</i>
	Relinquished	by: (Si	gnature			ate / Tim	10			: (Signati	ure)	Relinquist			Date /	Time R	eceive	ed by: <i>(Signature)</i>
						1												
	Relinquished	by: <i>(Si</i> į	gnature	9)	Da	Date / Time Received for Laborator (Signature)				bry by:	Date / Time Remarks Is c			ustody s	eal intact?	Y/N/n	one	
	EPA Form 9110 DISTRIBUTION Blue - Region C	:								-		Split Sam		Accepted (Sigi Declined	nature)			

SEE REVERSE FOR ADDITIONAL STANDARD INSTRUCTIONS 0 021165

ð

(

**Organic Traffic Report** SAS No United States Environmental Protection Agency Contract Laboratory Program Sample Management Office PO Box 618 Alexandria, VA 22313 Case No (if applicable) & Chain of Custody Record ヨピリシ SET 703 557 2490 FTS 557 2490 (For Organic CLP Analysis) Date Shipped Carrier 1. Project Code Account Code Region No | Sampling Co. 7. Sample 6. Prosor-Moy92 Arbill Number Description (x e x) vative 5 732020 CHZMHILL (Enter (Enter in Sampler (Name) **Regional Information** ìn Column A) Column D) (,352149192 HARON PETRI 1. Surface Water 1. HCI 5. Ship TO SOUTHWE LABS OF OKLAHOMA 2. Ground Water 2. HNO3 Non-Superfund Program Sampler Signature, 3. Leachate 3 NaHSO4 4. Rinsate 4. H2SO4 5. Soil/Sediment 3. Type of Activity Remadual Rem Pre RIFS CLEM SF Remadual RD REMA 1700 LUEST ALDANT, SULTE C 5. Oiher Removal Site Name 6. Oil (High only) (Spealy) BRUKEN ARROW OK THOIZ 7. Waste (High only) 6. Ice only Carter Lee humber 8. Other REM N. Not Site Spill ID City, State ATTN: Misay Hamby (Specify) ST SSI 08M preserved BORA India na polis, FED ZN Ε G С D A 8 1 к CLP Mo/Day/ **RAS Analysis Regional Specific** Enter Appropriate Qualifier Enter Sample Preser Sampler Corresp. Conc Station Sample Year/Time CLP Inorg Tracking Number Location Initials for Designated Field OC . Low Type vative High only Numbers or Tag Numbers Sample Samp. No Med Comp Number from from B = Blank S = Spile D = Duplicate (from Collection Grab Box 7 High Box 6 VOA BNA Pest labels) ARO/ PE - Perform Eval PCB TOX - - Not a OC Sample 5-077626-8 CLBKS02-1 11/03/92 13.15 S-077626-8 CLBM 302-FR-1 11/03/92 13'15 190 MERAL ELGII ..... SIL 5 L G N × X X 5 G AP ELGIZ DIL 5 MEKA 12 Pup M X × X Page 1 of 2 Sample used for a spike and/or duplicate Shipment for Case Additional Sampler Signatures Chain of Custody Seal Number complete? (Y/N) 3543 CLBKSO2 FRAT PUP 3544 CHAIN OF CUSTODY RECORD Date / Time Received by: (Signature) Relinquished by: (Signature) Received by: (Signature) Relinquished by: (Signature) Date / Time 917,00 0 3/12 / 7:00 Relinquished by: (Signature) Date / Time /Date / Time Received by: (Signature) Relinquished by: (Signature) Received by: (Signature) Remarks Is custody seal intact? Y/N/none Date / Time Received for Laboratory by: Relinguished by: (Signature) Date / Time (Signature) Split Samples (Signature) Accepted EPA Form 9110-2 (Rev. 5-91) Replaces EPA Form (2075-7), previous edge in which may be used DISTRUCTION ٦nf ~d

€ F	P/	Cor	United htract Lab P	States Er oratory P O Box 81	nvironme Program 18 Alexa	ental Prot Sample andria, V/	ection A Manage A 22313	gency ment Of	^{nce} & Chain	nic Traffic Re of Custody F	Record	SAS No. (il applicab	le)	Case No. 14 (9 4 - 3
1. Project Cod		Account		703-557	-2490	FTS 557	-2490 Samplir	ng Co.	4. Date Shipp	$\begin{array}{c} \text{r Organic CLP Analysis} \\ \text{ed Carrier} \\ \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline $	)		reser- ative	7. Sample Description
932C20 Regional Inform				c		(Name	<u>2H2p</u>	14 ZL				(E	nter in	(Enter
negional inon	nation			1	•	•		1 -					lumn D)	in Column A)
Non-Superfun	d Progr	am		S	ampler Lan	Signatu	Ire Put	RI 6352149193 5. Ship To SOWTH WEST LITBS OF OKLITH				4 3.N	1CI 1NO3 1aHSO4 1 ₂ SO4	1. Surface Water 2. Ground Water 3. Leachate 4. Rinsate
Site Name Carter Le	 	. 18 1901		ls	SF 🖂	Remedia	RIFS	r ire	Removal 1700 L	VEST HLBA - HRROW O	MY SUITEC	5. 0	Dther (Specify) Ice only	5. Soil/Sediment 6. Oil (High only) 7. Waste (High only
City, State		s	Site Spill BD	U Is	PAP	PA SSI LSI	RA   O&M   NPLD		;""	lissy Ham	·	N.	Not preserved	8. Other (Specity)
CLP Sample Numbers	A Enter #	B Conc. Low	C Sample Type:	D Preser vative		E RAS Ar		High	F Regional Specific Tracking Number	G Station Location	H Mo/Day/ Year/Time	l Sampler Initials	CLP Inorg.	K Enter Appropriate Qualifi for Designated Field QC
(from labels)	from Box 7	Med High	Comp./ Grab	from Box 6	VOA	BNA	Pest/ PCB	only ARO/ TOX	or Tag Numbers	Number	Sample Collection		Samp. No.	B = Blank S = Spike D = Duplicate PE = Perform. Eval. — = Not a QC Sample
E4613	5	L	G	N	X	X	X		5-077631-3	CLBKSØ7-1	11/03/92 13:40	AP	MEKA13	-
ELG/4	5	L	G	N	X	Y	X		5-077634-6	CLBKSØY-1		SAP	MERAIY	-
ELGIS	5	L	G	N	X	X	X		5-077639-41	CLBKS05-1	11/03/92 14:10	NAP	MEKAIS	-
ELG16	5	C	6	N	X	X	X		5-077643-5	CL5503B-1		SAP	MEKA16	
ELG17	5	L	G	N	X	X	X		5-077647-9	KL5503A-1	11. 11	OAP	MEKA17	-
ELGIB	5	L	G	N	X	X	X		5-077651-3	KLSSØ1A-1	1/03/92 15:20	PAP	MEKA 18	-
ELG 19	5	L	G	N	X	X	X		5-077655-7	CLSSO/B-1	11/03/92 153	140		MSMSD
ELG20	5	L	G	N	X	X	X		5-077659-61	CLSS PFR-1	11/03/92 16:10		MEKA20	
ELG21	5	L	G	N	X	X	X		5-077663-65				MEKN21	-
ELG22	5	L	5	N	X	X	X		5-1077667-9	CLS502B-1			MEKAZZ	
Shipment for ( complete? ( Y	Case /N)	Page	1 of _/				-	e and/	or duplicate A 5 20 = DUP	dditional Sampler Sig			of Custody Se	
									CHAIN OF C	USTODY RECORD				
Relinquished		1			$\frac{1}{22}$			ved by:	(Signature)	Relinquished by: (				red by: <i>(Signature)</i>
Relinquished	by: (Si	gnature	9)	Da	ate / Tin	n9	Receiv	ved by:	(Signature)	Relinquished by: (		Date / Tir		ved by: <i>(Signature)</i>
Relinquished	by: <i>(Si</i>	gnature	9)	Da	ate / Tir	ne	Receiv (Signa		Laboratory by:	Date / Time	Remarks Is cu	stody sea	l intact? Y/N/	none
						-	(							
EPA Form 9110 DISTRIBUTION		5-91) R	eplaces	EPA For	m (2075	5-7), prev	vious ec	lition w	hich may be used	Split Samples	Accepted (Signa	nture)		
Blue - Region C	Сору Р	ink - Sk	NO Copy	White	e-Lab	Copy fo	r Retur	n to Re	gion Yellow - Lab		Declined			

٠

E

CET DEVENEE COR ADDITIONAL STANDARD INSTRUCTIONS

ŝ

	<b>P</b> E	P/	<b>∖</b> c∞	United ntract Lab p	States En oratory P O Ros 81 703 557	vironme rogram 8 Aleza 2490	ntal Prot Sample Indria, VA	Anage Manage 22313	<b>gency</b> ment Of	📽 🛛 & Chải	anic Traffic Re n of Custody F for Organic CLP Analysis	Record	SAS No. (if applicat		Case No. 19093
-	1. Project Cod 732(20	, ,	Accoun	t Code			n No S		-	4. Date Ship		2	V	reser ative Enter in	7. Sample Duscription (Enter
1	Regional Infor	mation			S	mpler	(Name	)		Arbil Numb		and a second second second second second second second second second second second second second second second		plumn D)	in Column Aj
•	Non-Superlun	d Progr	am				RUN Signatu		·IRT	5. Ship To 1700 W	GST ALBANY S		W4 2. 3. 4.	HCI HNO3 NaHSO4 H2SO4	1. Surface Water 2. Ground Water 3. Leachate 4. Rinsate
•	Site Name City ter :L : City, State	ce L		ber Site Spill			Pier Pier Remedia PA SSI	RIFS	- AE	M -	ARROW, OK		6. N.	Oiher <i>(Specily)</i> Ice only Not preserved	5. Soll/Sediment 6. Oil (High only) 7. Weste (High only 8. Other (Speally)
ļ	INDIANOPLY	5, I	N	BD	F	ÉDÍ	LSI	NPLD		TTN://	IISSY HAM	BY	L		
	CLP Sample Numbers	'A Enter #	Low	Туре	vative	 	E RAS Ar	alysis	High	F Regional Specific Tracking Number	G Station Location	H Mo/Day/ Year/Time	l Sampler Initials	CLP Inorg	K Enter Appropriate Qualifi for Designated Field QC
	(fróm labels)	from Box 7	Med High	Comp / Grab	from Box 6	VOA	BNA	PesV PCB	only ARO/ TOX	or Tag Numbers	Number	Sample Collection		Samp. No.	B - Blank B - Spike D - Dupicate PE - Perform Lival — - Not a OC Sample
.21	ELG 23	5	12	G	N	×	×	$\times$		5-077670-2	261301201-1	11/04/42 104	AP	MEKED3P	
د د	ELG,24	5	L	G	N	×.	×	×			6 CLSB1202-1			MERA 24	
لدد	ELG25	5	4	G.	N	X	X	X			CLS01202FR-			MEKH 25	Dup
•	ELG26	5	L	Ġ	N ·	X	X	X		507683-5	CLSB1203-1	11/04/92 1115	AP	MEKA26	
24	ELG27	5	L	G	N	X	X	×			8 CL 500401-1			MEKA21	7 -
15	ELG2B	5	L	G	N	X	X	X			SCLSBOY \$2-			MEKA2E	
16	elG29	5	L	6	P	: X	×	X	]	5-07-7645-1	1 KL SB04037	11/04/92.14	p AP		
27	ELG30	2	1. 5	G	11	X	ŀ.X.	X		5-077-700-	3 CLORD	04-1 11/04/921	the pe	MEKAS	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
<b>3</b> 51	ELG31	5	L	G	P	X	X	X	1	5-077705-7	CL: 5304-1	11/04/92	170 A		1
214	ELG 32	• •	L	5		X	01			5.077708	CLBLK-DI-				8
	Shipment for ( complete? ( Y		Page	1 of	- Iz		1		le and/	or duplicate	Additional Sampler Sig	natures	Chain 359	of Custody Se	3600
			ļ		E	ig 2	5 1	oup)		<u> </u>			P= /	/ / .=	
	Relinquished	by: (S	anaturi	•)	Da	te / Tin	ne 1-		ed by:	(Signature)	Relinquished by: (	Signature)	Date / Ti	me Recei	ved by: (Signature)
	Para	~//			11/04	4 1	9:00			(orginal or of					1 1
	Relinquished	by: (Si	gnatur	1	De	te/Tin	ne		/ed by:	(Signature)	Relinquished by:	Signature)	Date / Ti	me Recei	ved by: <i>(Signature)</i>
	Relinquished	by: <i>(Si</i>	ignatur	•)	Da	te7 Tin	ne J	Recei (Signi	ved for a <i>ture)</i>	Laboratory by:	Date / Time	Remarks Iscu	l ustody sea	l al Intact? Y/N	/none
	l	<u>`</u>		1		I	·	[		· ····	Split Samples	Accepted (Signa	ature)	· ·	
	EPA Form 9110 DISTRIBUTION		5-91) R	eplaces	EPA Forr	n (2075	-7), prev	vious ed	iltion w	hich may be used		Def 3d	,		

-

			United	States En	vironme	ntal Pro	tection A	gency			nic Traffic Re		S/	AS No. applicab	SET :	2	Case No.
VE	P		United ntract Lab P	Oratory P O Box 81 703-557	rogram 8 Alexa -2490	Sample Indria, V FTS 55	Manage A 22313 7-2490	ment Ol	TICO	& Chain	of Custody I Organic CLP Analysis	Record		7 <i>5</i> 9			19093
1. Project Coc	v et	Accoun	t Code	2.	-	n No.	Samplir	ng Co.		4. Date Shipp	ed Carrier			6. P	reser-		7. Sample
932(20				1	5		ะหมก	1HZLL	_	11/05/92	(FEY)			v	ative		Description
Regional Infor	mation			Sa	ampler	(Name		J		Airbill Number					Enter li olumn :		in Column A
				μ	ARC	DN P	ETR	Т		635)	148073			1 1	HCI		1. Surface Wat
Non-Superfun	d Progr	am				Signat		<u> </u>		5. Ship To				2.1	HNO3		2. Ground Wat
					An	al.	etn	مر			WEST LABS		orn	3.1	NaHSO H2SO4	94	3. Leachate 4. Rinsate
Site Name		•		3.	Туре с	of Activ	ty Rer	nedial	Removal			ITE C		5. 0	Other		5. Soil/Sedime 6. Oil (High on
Canter h	no.h	umb		· s	F 🖂	Remedi	PRD ■			BROKEN A	RROW OK	4012		6.	(Specif		7. Waste (High
City, State			Site Spill		8P[]		RA		ЕМ 🗔				Í	Ν.	Not		8. Other (Specify)
ZUDZANOPLIS	, IN		BD	13	ĖD 🗀	LSI	O&M		šт 🖯	ATTN: Mi	ssy Hamby	(		ł	preserv	σu	
CLP	A Enter	B Conc.	C Sample	D Preser-		E RAS A			Beak	F onal Specific	G Station	H Mo/Day/	s	l ampler	Corr	J resp.	K Enter Appropriate Q
Sample Numbers	#	Low	Type:	vative	<u> </u>	r	Γ	High	Track	ing Number	Location	Year/Time		nitials	CLP	lnorg.	for Designated Fiel
(from labels)	from Box 7	Med High	Comp./	from Box 6	VOA	BNA	Pest/	only	1	g Numbers	Number	Sample Collection	n		Samp	D. INO.	. B = Blank S = Spil D = Duplicate
labels							PCB	ARO/ TOX	1								PE = Perform. Eva = Not a QC Sam
ELG 33	5	2	6	N	X	X	X		5-077	711-3	CLBK0101-1	11/05/92	09145	AP	MER	A 33	-
ELG34	5	L	G	N	X	X	X		5-0 <b>1</b>	711-7	CLBKØ102-1	11/05/m	235	AP		A 34	
ELG 35	5	5	G	M	X	X	X		5-077	719-21	CLBK0103-1	11/05/92 10		AP		A 35	-
ELG 36	2	L	6	1	X	X	X			124-7	CLGWØ1-FR-			AP		A 36	Dup
EL6 37	2	L	G	1	X	X	Х			7730-3	CLGW01-1	11/05/92			MEKI		
ELG 38	5		6	N	X	X	X		5-07	1735-7	CLSB11-1	11/05/92	16:30	AP			ms/msp
ELG 39	2	L	G	1	X				5-07	7738-9	CLB1K-02-1	11/05/92	17100	AP	NK		в
ELG 40	5	1	G	N	X	X	X		5-07	17741-3	C1513 \$30-1-1	11/05/92	17:00	AP	MEI	(A 40	-
ELG 41	5	4	6	N	X	X	X		5-07	17746-8	CL3BØ30	11/05/92	17:20	AR	ME	ISA 4	1-
ELG YZ	5	に	G	N	$\overline{\mathbf{x}}$	X	X		5-07	1749-51	CL5B030ZFR	11/05/92	17:19	5 174	MEI	IXA4	DUP
Shipment for		Page	1 of 🚽	L Si	ample	used fo	r a spil	e and/	or duplic	ate A	dditional Sampler Sig		- 1	Chain d	of Custo		al Number
complete? ( Y	/N)			(G		36	- DUR	XE	LG 31	3 mamsd)				359	18/	· .	3597
۰ <u>ــــــــــــــــــــــــــــــــــــ</u>		• - <u></u> -		<u> </u>	<u>t</u> 8	42	J			CHAIN OF CU	ISTODY RECORD		J		-/-		
Relinquished	by: (Si	gnaturi	5	Da	te / Tin	ne	Receiv	ved by:	(Signa	ture)	Relinquished by:	Signature)	Da	ate / Th	me	Receiv	ed by: (Signature)
XIAn.	The c		4	Alland	a 11	<b>9</b> :00	]						1	ļ			
Relinquished	hv: /Si	anaturi	m	1 6-	/2 / / te / Tin			ved hv	(Signa	(uro)	Relinquished by:	(Signature)		ate / Tir	me	Receiv	ed by: (Signature)
	-,. (0)	y. a.u.	-,	Ua				- ou uy.	Joigna			Signatur 8/		۲۱۱۱ ، سند ۱		100014	Congrature)
Relinquished	by: (Si	gnatur	9)	Da	te / Tin	ne	Recei	ved for	Laborat	ory by:	Date / Time	Remarks	ls custo	dy sea	l intact	? Y/N/r	none
					1		(Signa	ature)									
l				··			l		<u>.</u>		Split Samples	Accepted (S	Signatur				

.

----

	ЗE	PA	<b>∖</b> ∽	United I ntract Lab	States En oratory P O Box 81 703 557	ivironme rogram 8 Aleza 2490	ntal Pro Sample ndria, V/ F1S 55/	A 22313 Vanage A 22313 V 2490	gency meni O	fice	& Chăl	n of C	affic Re ustody I CLP Analysi	Record	(if applicat	7598E	Case No. 1709 <b>3</b>
	1. Projuct Coc 732 C 20		Accoun	t Code		5	-			ILL	4. Date Ship	2 F	u .	• •	(i	reser- ative Inter in	7. Sample Description (Enter
	Regional infor Non-Superfun		rem		Se	Impler	- On Signati	Pe-	_		Airbill Numb 635 5. Ship To South	214	8\$77 Labso	FOKGherma	1.1	blumn D) HCI HNO3 NaHSO4 H∋SO4	in Column A) 1. Surface Water 2. Ground Water 3. Leachate 4. Rinsate
	Site Name Conter L City, State Edicinar			ber Site Spill BD	3. - S ID S		Pre- Remedu PA	NIFS RIFS RD RA OAM		EM []			Hamby	f Oklahemen , surte C K 74012	N.	Other (Speaty) Ice only Not preserved	5. Soll/Sediment 6. Oil (High only) 7. Waste (High only) 8. Other (Specify)
	CLP Sample Numbers (from labels)	A Enter from Box 7	B Conc. Low	C Sample Type Comp / Grab	D Preservative from Box 6	VOA	RAS A		High only ARO/ TOX	Regio Traci	F Dhal Specific King Number Ig Numbers		G Station ocation lumber	H Mo/Day/ Year/Time Sample Collection	i Samplei Initials		K Enter Appropriate Qualifie for Designated Field OC B = Blank S = Spike D = Duplicate PE = Pentum E val — Not a OC Sample
36	ELG43	5	L	6	N	X	X	×		5-07	1757-6	CLSE	¢3¢3-1	1/05/42 17:4	N ALO	<i>МЕКА 43</i>	
	Shipment for complete? ( Y		Page	1 of		ample i	used fo	     a spik	e and	) /or dupli	cate	Additional	Sampler Sig	natures	Chain	of Custody Se	al Number
	I		I		ł							CUSTODY	RECORD		1		
	Relinquished	11	1		1	10 / Tin		Receiv	ed by	: (Signa			uished by:	(Signature)	Date / Ti	me Recolu	ved by: (Signature)
	Relinquished				7 6.	te / Tin	ne	Receiv	/ed by	: (Signa	iture)	Relind	quished by:	(Signature)	Date / Ti	me Recei	ved by: <i>(Signature)</i>
	Relinquished	by: <i>(S</i>	ignaturi	B)	Da	ite / Tin	ne ⁻	Recei (Signa		Labora	tory by:		ate / Time	Remarks Isc	l ustody sea	 al intact? Y/N/	Inone
	EPA Form 9110		. 5-91) R	eplaces	EPA For	ı n (2075	-7), pre	i		which ma	y be used	Split S	Samples	]Accepted (Sign	ature)		· ··

ç

€EP.		United S ntract Labo PC	703-557	-2490	-IS 557	-2490			& Chai	n o For Or	c Traffic Re f Custody F rganic CLP Analysis	lecor		SAS No. (if applicat 759	ole)		Case No. 19093
1. Project Code するこここの Regional Informatio	Account n	t Code	Sa	Region 5 Impler	(Name	CH2	тня		4. Date Ship 11/06/92 Airbill Numb 6352	) er	Fey			, i	Preser- vative Enter in plumn [	, ) .	7. Sample Description (Enter in Column A)
Non-Superfund Pro Site Name Ciuntren Leve City, State INNZ (App) 25,	- her	nler BD	3. ID SI	т 🗔	Signati Pre- Remedia PA SSI LSI	RIFS RD RA O&M NPLD			5. Ship To SOUTH 1700 L BROKEN	WE NE MRI	57 LABS of ST ALBAN 20W, OK 54 Hamby	Y, 90	LITEC	2. 3. 4. 5. 6. N.	HCI HNO3 NaHSO, H2SO4 Other <i>(Specify</i> Ice only Not preserve	y) (	1. Surface Water 2. Ground Water 3. Leachate 4. Rinsate 5. Soil/Sediment 6. Oil (High only) 7. Waste (High on 8. Other (Specify)
CLP A Sample Ente Numbers from (from Box labels)	Low Med	C Sample Type: Comp./ Grab	D Preser- vative from Box 6		E RAS Ar BNA	alysis	High only ARO/ TOX	Track	F onal Specific ing Number g Numbers		G Station Location Number	Mo Yea Sa	H /Day/ /Time mple ection	l Sample Initials		norg.	K Enter Appropriate Quali for Designated Field Q B = Blank S = Spike D = Duplicate PE = Perform. Eval. — = Not a OC Sample
ELG 44 5	L	G	N	Χ	X	X			759-61		LS100201-1	1/06/97			MEKI	9 <i>44</i>	
ELG 45 5	<u> </u>	\$	N	X	<u>×</u>	<u>×</u>			764-6	- 1			207:92		MEKI		
ELG 46 5	L	G	N_	X	X	×			169-71				12 080				ms/mso
ELG 414 2		ତ	1/	X	X	<u> </u>			174-7		<u>LGW04-1</u>	11/06/9	2 09:41		MEKI	'	
ELG 48 2	14	G	1	X	<u>X</u>	X			180-3		LGB003-1		08:2		MEKI		
ELG 49 2		Ø	1	X	X	X			1786-9		LGRBØ2-1		09:00				
ELG 30 5		Ģ	N	×	X	X			17790-2	<u> </u>	L SB0101-1		12:30	AP	MEIS		J
ELG 51 2		G	1	X	×	×		5-07	7796-9		LSE CIGROO	<u>-1</u>	14:30	np	MEK	A51	
Shipment for Case complete? (Y/N)	Page	1 of		ample u - G-M 7 6		<u> </u>	e and/	or duplic			ional Sampler Sigr	hatures		Chain 35 4		1	al Number 5 4 6
Relinquished by:	Signature	"		te / Tim			ed by:	(Signal			ODY RECORD	Sionature	<u> </u>	Date / Ti	me II	Receiv	ed by: <i>(Signature)</i>
ana Pe	tin	- /	106/4	2 19	1:00			( <i>e</i> . <i>y</i> , <i>e</i> .					,				
Relinquished by: (	Signature	"	Dat	te / Tim	θ	Receiv	ved by:	(Signal	ture)	F	Relinquished by: (	Signatur	)	Date / Ti	me	Receiv	ed by: (Signature)
Relinquished by: (	Signature	<i>א</i>	Da	te / Tim	19	Receiv (Signa	ved for sture)	Laborat	ory by:		Date / Time	Rema	rks Is cu	stody sea	al intact?	? Y/N/r	DONE
EPA Form 9110-2 (Re DISTRIBUTION: Blue - Region Copy	-	-		•								Accepte Declined	1				

(

SEP/		United States act Laborator PO Bos	Environmi y Program L 818 Alexa 557 2490	andria, V/	A 22313	TY LOffice	& Chain	of Custody F of Custody F	lecord	SAS No. (Il applicable 759		Савя No 19093
732620	Account (		2 Regio	on No S	Sampling C C H2MH:		4. Date Shippe	Carrier F54		6. Pi Vi (E	ative nter in	7. Sample Description (Enter
Rugional Information			Sampler AAR Sampler	UN I	PETKI		Airbill Number 63521 5. Ship To SOLL THE WO	48106	OKLINHOMM GUITCC	1,  - 2,  - 3, N 4,  -	1NO3 1aHSO4 12SO4	in Column A) 1. Surface Water 2. Ground Water 3. Leachate 4. Rinsate 5. Sol/Fod/most
Site Name Contr. Lee City, State ZUOZANAPOLZS	Site	• Spill ID BO	ST	of Activit Pro- Remedia PA SSI LSI	RIFS RD RA O&M		BROKEN Y	,	4017	6. N.	Diher (Speaty) ce only Not resorved	5. Soi/Sediment 6. Oil (High only) 7. Waste (High only) 8. Other (Specily)
CLP A Sample Enter Numbers (from Box 7	B Conc S Low Med C	C D Samplu Pret Type vat Comp / tro Grab Bo:	wr Ive m	E RAS Ar BNA	Pest AP	ah Traci	F onal Specific king Number ig Numbers	G Station Location Number	H Mo/Day/ Year/Time Sample Collection	1 Sampler Initials	J Corresp. CLP Inorg. Samp. No.	K Enter Appropriate Qualifier for Designated Field QC B = Biank S = Spike D = Dupkosie PE = Perkum E vial — Not a QC Serrote
ELG 52 5 ELG 53 5 ELG 53 5 ELG 57 5 ELG 55 5 ELG 57 5 ELG 57 5 ELG 57 5 ELG 57 5 ELG 57 5 ELG 59 5 ELG 59 5 ELG $60$ 5 Shipment for Case complete? ( $Y/N$ )		$\frac{1}{2}$	× × × × × × × × × × × × × × × × × × ×	X X X X X X X X X X X X X X X X X X X	× × × × × × × × × × × × × × × × × × ×	5-0 5-0 5-0 5-0 5-0 5-0 5-0 5-0	17807-9 17811- <b>3</b> 17815-14 17818-20 17823-5 17826-8 17836-2 17836-4 17838-40	CL SBØ142-1 CL SBØ103 FR-1 CL SBØ103-1 7 CL SBØ5-1 CL SBØ50-1 CL SBØ60-1 CL SBØ60-1 CL SBØ60-1 CL SBØ60-1 CL SBØ60-1 CL SBØ7-1 CL SBØ9-1 SBØ9-1 Sditional Sampler Sign	14:1 14:2 14:2 15:0 15:10 15:0 15:0 14:40 15:00	AP AP AP AP AP AP AP AP AP AP	MEKA 59 MEKA 55 MEKA 50 MEKA 58 MEKA 58 MEKA 59 MEKA 60 ME/14 61 11 Cuetogy Se	- Dup Ms/msD - - -
I ND	1		۲ 					ISTODY RECORD	<b>e</b> t i i i	I	· . ·	
Relinquished by: (S Relinquished by: (S	str	T- 11/0	Date / Th 6/92 / 1 Date / Th	9: <i>0</i> 0		by: (Signa by: (Signa		Relinquished by: (		Date / Tin Date / Tin		ed by: (Signature) red by: (Signature)
Relinquished by: (S	Signature)		Date / Til	me	Rəcəivəd (Signatur	for Labora e)	tory by;	Date / Time	Remarks is cu	istody sea	Intact? Y/N/	none
L EPA Form 9110-2 (Rev DISTRIBUTIONI	v. 5-91) Rep	places EPA I	] Form (207	5-7), pre	vious editio	on which ma	y be used		े Accepted (Signa Def ad	ature)		- <u>-</u> ··· ··- · ·

93ZC20       5       CH2M HILL       II/06/92       FEX       valive       Description         Regional Information       Sampler (Name)       Airbill Number       Airbill Number       Column D)       1. HCl       1. Surface W         Non-Superfund Program       Sampler Signature       6352/148/06       1. HCl       1. HCl       1. Surface W         Site Name       Sampler Signature       5. Ship To South west Labsof ok/Ahena       3. NaHSO4       4. H2SO4         Site Name       3. Type of Activity       Remedial RD       Removal       1.400       9. Surface W         Cater Loa       Low ber       Site Spill ID       SF       Remedial RD       REMAR       BaokaN Arrow, OK       7401 7       N. Not Specify)         City, State       Site Spill ID       ST       SSI O&M       OBM       OIL       ATTN:       MissY HAmby       Sampler Corresp.       Enter Appropriate for Designate F         Sample       Enter Appropriate for Box 7       Box 6       VOA       BNA Pest ARO       Preser       Number       Sampler Corresp.       Enter Appropriate for Designate F         Cater Loa       Cum ber       F       G       MorDay/       Year/Time       Sampler Corresp.       Cater Appropriate for Designate F         Sample       Enter Appropriat	<b>S</b> EF		Contract La	PO Box 8 703-55	7-2490	Sample ndria, V/ FTS 557	Manage 22313 -2490	ment Off		& Chair	nic Traff	tody F	<b>lecord</b>		SAS No. (Il applicat 759	ole)		Case No. 19093
Regional Information       Sampler (Mang)       Aribit Number       Column D)       In Column D)         Non-Superfund Program       Simpler Signature       6 3 5 2.14 81 066       I. HO       I. Surtase V         Non-Superfund Program       Sampler Signature       S. SNP To South West Albany / Suife C       I. HO       I. Surtase V         Ste Name       Strep of Activity Prevation       Reveal       Reveal       Provide V       I. Surtase V         City, State       Ste Spin ID       State Spin ID       Strep of Activity Prevation       Reveal       State Spin ID       State Appropriate P       State Approprin Approprin Appropriate P       State Appro	1. Project Code	Acco	unt Code									FΧ			V	ative		Description
Non-Superfund Program       Sampler Signature       5. Ship To South west Labsof CK/k hand       2. HN030         Site Name       3. Type of Activity       Permetal       Permetal <td></td> <td>ition</td> <td><u></u></td> <td>. 5</td> <td>11</td> <td>•</td> <td></td> <td>· · ·</td> <td></td> <td></td> <td></td> <td>ide</td> <td> ,</td> <td></td> <td></td> <td></td> <td>,  </td> <td>ìn Column A</td>		ition	<u></u>	. 5	11	•		· · ·				ide	,				,	ìn Column A
Cate       Low		Program			Sampler S	Signatu	P~	_		5. Ship To 5	outhwe Nast A	st Lak I banv	. Suite	C	2. 3. 4.	HNO3 NaHSO₄ H₂SO₄		2. Ground Wate 3. Leachate 4. Rinsate 5. Soil/Sedimer
CLP Sample Numbers       Cher Low Low (rom labels)       Construction Free Low (rom labels)       Preser Free Number       Regional Specific or Tag Number       Satisfic Location Number       Mu/Day/ Year/Time Sample Collection       Sampler CLP Indig.       Enter Appropriate for Designated Sample Collection         ELG (2)       5       L       5       N       X       X       5-077842-4       CLS (b (2)       5       Collection       Free Number       Sample Collection       Sample Sample       Enter Appropriate for Designated F         ELG (2)       5       L       6       N       X       X       5-077842-4       CLS (b (2)       5       Collection       Sample Sample       Sample Collection       Sample Sample       Sample Sam	Cater Loa		Site Spil	I ID		Pre- Remedia PA	RIFS RD RA 0&M			BRoker	N Arrow	,0K	7401	7	6. N.	(Specify) Ice only Not		6. Oil (High onl) 7. Waste (High 8. Other (Spedfy)
ELG(2)       5       L       SN       X       X       X       5-077842-4       LLSØg90-1       11/06/92.15:25       OM MEKA(2 -         ELG(2)       5       L       G       N       X       X       5-077846-8       CLSØg9-1       11/06/92.15:25       OM MEKA(2 -         ELG(2)       5       L       G       N       X       X       5-077850-2       LLSØ10-1       11/06/92.15:27       MMEKA(6 -         ELG(2)       5       L       G       N       X       X       5-077850-2       LLSØ10-1       11/06/92.15:27       MMEKA(6 -         ELG(2)       L       G       1/       X       X       5-077850-2       LLSØ10-1       11/06/92.15:20       MMEKA(6 -         ELG(2)       L       G       Z       X       X       5-077874-5       LLSØ-7       15:10       MMEKA(6 -         ELG(2)       L       G       Z       X       S-077874-5       LLSX.03-1       18:00       MMEKA(6 -         ELG(2)       L       G       Z       X       S-077874-5       LLSX.03-1       18:00       MMEKA(6 -         Shipment for Case       Completer (Vit)       No       Secondet Signatures       Additional Sampler Signatures	CLP Sample Numbers (from	A B nter Cor # Lo rom Me	ic. Sample V Type: d Comp.	Prese vativ from	e		Pest/	only ARO/	Tracki	ng Number	Stati Locat	ion	Mo/[ Year/ San	)ay/ Time ple	l Samplei Initials	CLP In	org.	K Enter Appropriate Ou for Designated Field B = Blank S = Spike D = Ouplicate PE = Perform. Eval.
ELG GY 5       G       M       X       X       X       Soft 1850-2       LSB 10 D111/0C/912-15-27       MP/MEKACH         ELG G5       M2       L       G       1/       X       X       Soft 70850-2       LSB 10 D111/0C/912-15-27       MP/MEKACH         ELG G5       M2       L       G       1/       X       X       Soft 70858-Cf       CLB 1005-ms 1       1/100 /912-15-27       MP/MEKACH         ELG G5       M2       L       G       1       X       X       Soft 70859-71       CLMW 05-1       1/5-10       MP/MEKACH         ELG G7       Q       L       G       1       X       X       Soft 70874-5       CLB 1003-1       1/5-10       MP/MEKACH         ELG G7       Q       L       G       1       X       Soft 70874-5       CLB 1003-1       1/8:00       MP/MEKACH         Shipment for Case       Page 1 of       Sample used for a spike and oncluplicate       Additional Sampler Signatures       Chain of Custody Seal Number       355// 355 2         Chain of Custody 71/9-100       ELG G7 12-12-14/15       CHAIN OF CUSTODY RECORD       Date / Time       Received by: (Signature)       Date / Time       Received by: (Signature)       Date / Time       Received by: (Signature)	ELG62	5 L	G	N	X	X		101	5-07	7842-4	CLSBO	\$90-1	11/06/	92 15	25 DT	MEKA	762	
ELG65       B2       G       1/       X       X       X       5-077858-67 CLB1W05-m51       1/40 pp mEKy4.65 m3/m         ELG66       2       L       G       2       X       X       Sorr1868-71       CLMW03-1       15:10 pr       MEKy4.65 m3/m         ELG66       2       L       G       2       X       X       Sorr1868-71       CLMW03-1       15:10 pr       MEKy4.65 m3/m         ELG66       2       L       G       2       X       X       Sorr1874-5       CLB1K03-1       15:10 pr       MEKy4.65 m3/m         Shipment for Case       C       Z       X       Sorr1874-5       CLB1K03-1       18:02 pr       MEKy4.65 m3/m       B         Shipment for Case       Page 1 of _2       Sample used for a spike and/or cluplicate       Additional Sampler Signatures       Chain of Custody Seal Number         Sorr187(YN)       ELG 65 m3/m       Mathematicate       Additional Sampler Signatures       Chain of Custody Seal Number         NO       ELG 605 m3/m       Mathematicate       Sorr17874-5       CLB1K07       Sorr187-5       CLB1K07-5         NO       ELG 605 m3/m       Mathematicate       Mathematicate       Sorr1787-5       CLB1K07-5       Sorr1787-5       CLB1K07-5       Sorr1787-5		5 L	. G		X	X	¥		5-07					-				
EUG 66 2 L G Z X X X SOTT 869-71 CLMW03-1       15:10 M ME/Succe-         ELG 67 2 L G Z X       5-077874-5 CL15LK03-1       18:00 MP ME/Succe-         Shipment for Case completer (YNN)       Page 1 of 2       Sample used for a spike and/or duplicate       Additional Sampler Signatures       Chain of Custody Seal Number         Shipment for Case completer (YNN)       Page 1 of 2       Sample used for a spike and/or duplicate       Additional Sampler Signatures       Chain of Custody Seal Number         Shipment for Case completer (YNN)       Page 1 of 2       Sample used for a spike and/or duplicate       Additional Sampler Signatures       Chain of Custody Seal Number         Solit Signature)       Date / Time       Received by: (Signature)       Relinquished by: (Signature)       Date / Time       Received by: (Signature)         Relinquished by: (Signature)       Date / Time       Received by: (Signature)       Relinquished by: (Signature)       Date / Time       Received by: (Signature)         Relinquished by: (Signature)       Date / Time       Received by: (Signature)       Relinquished by: (Signature)       Date / Time       Received by: (Signature)         Relinquished by: (Signature)       Date / Time       Received by: (Signature)       Relinquished by: (Signature)       Date / Time       Received by: (Signature)         Relinquished by: (Signature)       Date / Time       Received for Laboratory by: (Signature) </td <td></td> <td></td> <td></td> <td></td> <td>X</td> <td></td> <td>X</td> <td></td> <td>5-07</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>·</td>					X		X		5-07									·
ELS 67 Q       L       S       Z       X       5-077874-5       CL51K03-1       L       18:00       WHEN NA       B         Shipment for Case complete? (YN)       Page 1 of 2       Sample used for a spike and/or duplicate       Additional Sampler Signatures       Chain of Custody Seal Number         No       ELG (c5=M2/M2O)       CHAIN OF CUSTODY RECORD       355// 355 2         Relinquished by: (Signature)       Date / Time       Received by: (Signature)       Date / Time       Received by: (Signature)         Relinquished by: (Signature)       Date / Time       Received by: (Signature)       Relinquished by: (Signature)       Date / Time         Relinquished by: (Signature)       Date / Time       Received by: (Signature)       Relinquished by: (Signature)       Date / Time         Relinquished by: (Signature)       Date / Time       Received by: (Signature)       Relinquished by: (Signature)       Date / Time         Relinquished by: (Signature)       Date / Time       Received tor Laboratory by:       Date / Time       Received by: (Signature)         Relinquished by: (Signature)       Date / Time       Received for Laboratory by:       Date / Time       Received by: (Signature)         Solit Samples.       Date / Time       Received for Laboratory by:       Date / Time       Solit Samples.       Sonature) <td></td> <td></td> <td></td> <td></td> <td>X</td> <td>X</td> <td>X</td> <td></td> <td>5-07</td> <td>7858-6</td> <td>TCLANW</td> <td>05-m 5</td> <td></td> <td></td> <td></td> <td></td> <td>54 G</td> <td>5 m3/m5</td>					X	X	X		5-07	7858-6	TCLANW	05-m 5					54 G	5 m3/m5
Shipment for Case complete? (Y/N)       Page 1 of       Sample used for a spike and/or duplicate       Additional Sampler Signatures       Chain of Custody Seal Number         Shipment for Case complete? (Y/N)       Page 1 of       Sample used for a spike and/or duplicate       Additional Sampler Signatures       Chain of Custody Seal Number         No       E C (cs = m3(m32))       CHAIN OF CUSTODY RECORD       355// 355 2         Relinquished by: (Signature)       Date / Time       Received by: (Signature)       Date / Time         Relinquished by: (Signature)       Date / Time       Received by: (Signature)       Date / Time       Received by: (Signature)         Relinquished by: (Signature)       Date / Time       Received by: (Signature)       Date / Time       Received by: (Signature)         Relinquished by: (Signature)       Date / Time       Received by: (Signature)       Date / Time       Received by: (Signature)         Relinquished by: (Signature)       Date / Time       Received for Laboratory by:       Date / Time       Remarks       Is custody seal intact? Y/N/none         Split Samples       Custody Seal Intact? Y/N/none       Split Samples       Custody Seal Intact? Y/N/none						<u>×</u>	X											
complete? (Y/N) NO       E LG (55-M3/M3O) (ELS (07 /BLM/K))       355//355 2.         CHAIN OF CUSTODY RECORD         Relinquished by: (Signature)       Date / Time         Received by: (Signature)       Date / Time       Received by: (Signature)         Relinquished by: (Signature)       Date / Time       Received by: (Signature)       Date / Time         Relinquished by: (Signature)       Date / Time       Received by: (Signature)       Date / Time         Relinquished by: (Signature)       Date / Time       Received for Laboratory by:       Date / Time       Remarks       Is custody seal Intact? Y/N/none         Split Samples       Colspan="4">Complete (Signature)	ELGGA	2 1	<u>-   G</u>	12	<u> </u>		·		5.07	7874-	CLBL	K03-	1 - Ke	18:0	20 101	P 19951	"N	AB
complete? (Y/N) NO       E LG (55-M3/M3O) (ELS (07 /BLM/K))       355//355 2.         CHAIN OF CUSTODY RECORD         Relinquished by: (Signature)       Date / Time         Received by: (Signature)       Date / Time       Received by: (Signature)         Relinquished by: (Signature)       Date / Time       Received by: (Signature)       Date / Time         Relinquished by: (Signature)       Date / Time       Received by: (Signature)       Date / Time         Relinquished by: (Signature)       Date / Time       Received for Laboratory by:       Date / Time       Remarks       Is custody seal Intact? Y/N/none         Split Samples       Colspan="4">Complete (Signature)															- <u> </u>			
complete? ( Y/N) No       E LG (65-m3/m30) (ELS (67 / BLH/K))       355//355 2.         CHAIN OF CUSTODY RECORD         Relinquished by: (Signature)       Date / Time         Relinquished by: (Signature)       Date / Time       Received by: (Signature)       Date / Time         Relinquished by: (Signature)       Date / Time       Received by: (Signature)       Date / Time       Received by: (Signature)         Relinquished by: (Signature)       Date / Time       Received by: (Signature)       Date / Time       Received by: (Signature)         Relinquished by: (Signature)       Date / Time       Received for Laboratory by:       Date / Time       Remarks       Is custody seal Intact? Y/N/none         Solit Samples       Colate / Construct       Solit Samples       Construct       Signature)																		
complete? (Y/N) NO       ELG (5-m3/m30) (ELS (07 BLAMS)       355//3552         CHAIN OF CUSTODY RECORD         Relinquished by: (Signature)       Date / Time         Received by: (Signature)       Date / Time       Received by: (Signature)         Relinquished by: (Signature)       Date / Time       Received by: (Signature)       Date / Time         Relinquished by: (Signature)       Date / Time       Received by: (Signature)       Date / Time         Relinquished by: (Signature)       Date / Time       Received by: (Signature)       Date / Time         Relinquished by: (Signature)       Date / Time       Received for Laboratory by:       Date / Time       Remarks       Is custody seal Intact? Y/N/none         Split Samples       Colarature)       Split Samples       Colarature)       Split Samples       Split Samples									·.									
CHAIN OF CUSTODY RECORD         Relinquished by: (Signature)       Date / Time       Received by: (Signature)       Date / Time       Received by: (Signature)         Mathematication       11/06/92 /9:00       Date / Time       Received by: (Signature)       Date / Time       Received by: (Signature)         Relinquished by: (Signature)       Date / Time       Received by: (Signature)       Date / Time       Received by: (Signature)         Relinquished by: (Signature)       Date / Time       Received for Laboratory by:       Date / Time       Remarks       Is custody seal intact? Y/N/none         Relinquished by: (Signature)       Date / Time       Received for Laboratory by:       Date / Time       Remarks       Is custody seal intact? Y/N/none         Solit Samples       Characteria       Signature)       Signature)       Solit Samples       Signature)	complete? (Y/N		ge 1 of	2	ELG	65	misz	mor	シーン	ate A	dditional Sar	npler Sigr	natures		1		-	
MMM       II/06/92 /9:00         Relinquished by: (Signature)       Date / Time         Received for Laboratory by:       Date / Time         Remarks       Is custody seal intact? Y/N/none         Split Samples       Split Samples	////	L				29_0		1251		CHAIN OF C	JSTODY RE	CORD			_ <u></u>	11		
Relinquished by:       (Signature)       Date / Time       Received by:       (Signature)       Date / Time       Received by:       (Signature)         Relinquished by:       (Signature)       Date / Time       Received for Laboratory by:       Date / Time       Remarks       Is custody seal Intact?       Y/N/none         Relinquished by:       (Signature)       Date / Time       Received for Laboratory by:       Date / Time       Remarks       Is custody seal Intact?       Y/N/none         Split Samples       Capature)       Split Samples       Capature)       Split Samples       Split Sample	Relinquished by	; (Signat			1		Receiv	ved by:	(Signat	ure)	Relinquist	ned by: (a	Signature)		Date / Ti	me Ri	eceive	nd by: <i>(Signature)</i>
Relinquished by:       (Signature)       Date / Time       Received for Laboratory by:       Date / Time       Remarks       Is custody seal intact?       Y/N/none         Split Samples       Split Samples       Split Samples       (Signature)	Relinquished by	: (Signat					Receiv	ved by:	(Signat	ure)	Relinquist	ned by: (	Signature)		Date / Ti	me R	eceive	d by: (Signature)
(Signature)						<b>1</b>									1			
EPA Form 9110-2 (Rev. 5-91) Replaces EPA Form (2075-7), previous edition which may be used Split Samples Accepted (Signature)	Relinquished by	: (Ślgnai	ure)	C	Date / Tim	ne i:			Laborato	pry by:	Date	/ Time _	Remark	s Is cu	stody sea	I Intact?	Y/N/n	one
DISTRIBUTION:		(Rev. 5-91	Replaces	EPA Fo	 prm (2075	-7), pre	vious e	dition wi	hich may	be used	Split Sam		•	(Signa	ture)			

. . . .-

SEE DEVERSE FOR ADDITIONAL STANDARD INSTRUCTIONS

Ē

			United htract Lab	States F orntory (	nvironme Program	intal Prot Samole	tection A Manage	gency meni Ol	Org	anic Traffic Re		SAS No. (if applicati	He)	Case No
VE		-	p	O Box 6 703 55	18 Aleza 7 2490	FTS 557	A 22313 2490			n of Custody I for Organic CLP Analysis	necord	759	<b>8</b> E.	19093
1. Project Coc するまにこの Regional Infor		Account	t Code	S	Pilogio 5 iampler	(Name	CHŻI U.	-	4. Date Ship $I \subseteq h/d^2/9$	ped Carrier 2 (FEX)	and to make a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the stat	v (E	ruser ative Inter in blumn D)	7 Sample Description (Enter in Column A)
Non-Supertun	d Progr	am			n n k iampier			TR	5 Ship To	38823 EST LABS OF O JEST ALBANY,	KLAHOMA	2.1	HCI HNOJ NaHSO4 H2SO4	1. Surface Water 2. Ground Water 3. Leachate 4. Rinsate
Site Name					. Type c	Pre	RIFS			ARROW, OK	74017	5. (	Other (Specity)	5. Soil/Sediment 6. Oil (High only)
<u>Curter L</u> Cliy, State INDIANOPC		s	BD	ID F	ST 🛄	PA SSI	RD RA O&M NPLC			lissy Hamb		N.	ice only Not preserved	7. Waste (High or 8. Other (Specily)
CLP Sample Numbers (Irom labels)	A Enter # from Box 7	8	C Sample Type Comp / Grab	D Preser vative from Box 6	•	E RAS Ar BNA		High	F Regional Specific Tracking Number or Tag Numbers	G Station Location Number	H Mo/Day/ Year/Time Sample Collection	I Sampler Initials	J Corresp. CLP Inorg. Samp. No.	K Enter Appropriate Qual for Designated Field ( 8 - Black - 8 - Spike 0 - Duplicate
				1			PCB	ARO/ TOX				110.01		PE = Pertorm Eval = Not a OC Sample
ELG 68 ELG 69	22		G G	1		X	X	l	5-071976-9 5-077984-7	CL MUD2-1 CL APEBLK-1	11/01/92 8:3	-1 ·	МЕКА 68 МЕХЛ 69	
ELG TU	2		Ğ	1		Ŷ	×			HELMWØ5-1-			MERAZ	1
ELG 71	2		Ğ	Ī	×				5-07782-3	CL BLKØY-1	1		MERAPE NA	
			(											
Shipment for ( complete? ( Y			1 of _/	 -  s	Bample ( ELS	used fo 71-71	ir a spil Bl. HP	   //	or duplicate	Additional Sampler Sig	natures	Chain Chain	of Custody Se 90 / 3	aal Number 8589
	•				_					CUSTODY RECORD			1- 1	
Relinquished					ate / Tin /92 / (			ved by:	(Signature)	Relinquished by: (	'Signature)	Date / Th	me Recei	ved by: <i>(Signature</i> )
Relinquished	by: (Si	ignature	)		// <u>∠</u> ]/C ate/Tin 		Receiv	ved by	(Signature)	Relinquished by:	(Signature)	Date / Th	me Recei	ved by: <i>(Signature)</i>
Relinquished	by: (Si	ignature	9)	Da	ate / Tin	ne	Recei (Signa		Laboratory by:	Date / Time	Remarks is cu	istody sea	  lˈintact? Y/N/	(none
EPA Form 9110	)-2 (Rev.	5-91) R	eplaces	EPA Foi	, rm (2075	i-7), pre	vious e	dy' n w	hich may be used	Split Samples	Accepted (Signi	ature)		· _ · · · · · · · · · · · · · · · · · ·

Ó

	<b>V</b> EF	7	Con	United tract Lab P	States E loratory O Box 6 703-55	Program Program 318 Ale 57-2490	nental n San xandri FTS	Protect ple M a, VA 557-2	ction Ag anager 22313 2490	pency ment Of	lice	& Cha	in o	ic Traffic of Custody organic CLP Ana	/ Reco		SAS f (if appl SE7	cable)	Case 19	No. 093
	1. Project Code	e A	Account	Code	2. Re	gion N	0.	Sa	ımplin	g Co.		4. Date Shi		Carrier				Preser-	7. Sam	
	932020					5		c/	12ml	yzL	L	11/04/9	2	(F57)				vative Enter In	Des (Ent	cription ter
ľ	Regional Inform	nation			Samp	oler (Na	ame)				· · · _ · · ·	Airbill Num	ber				-	olumn D)		olumn A)
					IAA	ROM	V	PE	TRI	-	:	635:	214	19182	•	<b>~</b>	1.	HCI HNO3		Inface Water
	Non-Superfund	Progr	am			ler Sig						5. Ship To				,	3.	NaOH		round Water achate
					Un	na	13	2h	~ <u>`</u>			SILVE	ER V	IALLY LAC	BORATO	ries,	zuc 4.	H ₂ SO ₄ K ₂ CR ₂ O	4, Ri	nsate
	Site Name	<u></u>			3.	Туре о		vity	Remedi		emoval	ONE	GOV	ERNMENT	GUL	сH	6.	Ice only Other	6, Oi	bil/Sediment I (High only)
	CARTER Les	e Lui	mber		SF		Pre- Remed		5° 🖂		Ă .	KELL	ØGG	S, IN	838	27	1	(Spedify,	7 W	aste (High only)
	City, State		Site	Spill ID	PF ST				ЪMЕ	REM  OIL						51	N	. Not preserve		Specify)
	INDIANOPLIS	5, 214	1 P	3 BD	FE		LSIL			JUST		ATTN:	KEI	VIN BOU	<u>)7H</u>					
l	CLP	A Enter	<b>B</b>	C Sample	D		1 1		nalysi		Basias	F al Specific	[	G	Mo	H Day/	l Sampler	J Corres		K propriate Qualifier
	Sample Numbers	#	Low	Type:	vative		-11	Low Co only		High only	Trackin	a Number		Station Location	Year	/Time	Initials	CLP Or	g.   for Desi	ignated Field QC
	(from	from Box 7	Med High	Comp./ Grab	from Box (		<b>P</b>	è e	- Bei	ģ	or Tag	Numbers		Number		nple sction		Samp. N	0 - 0	Blank S = Spike D = Duplicate
	labels) MEK A02					Total Total	ð	ž ž	윤   pH	Conduo									I PE	- Perform, Eval. Not a QC Sample
	EW605-NO	5	L	6	N	X					5-07	7601	CLI	BK308-1	11/03/4	12-09-25	pro	ELGO		
	MEKAOI	5	L	G	N	X					5.07			35509-1			T	ELGO		
	MEKA03	5	L	ତ	N	X	Π									, 09:40		ELGO		· ·
	MEKAOY	5	L	G	N	X	$\square$								11/03/9			ELGO		
	MEKAOS	5	L	G	N	X						71610	T	BKS12-1	11/03/9		T	ELGO		<u></u>
	MEKA06	5	L	6	N	X						17612	CL	BKS13-1	11/03/4	12 10:45	1	ELGO		
	MEKAOT	5	4	6	Ň	X			-			7615	C'L	BK514-1	11/03/9	12 10:05	AP	ELGO	2-17	
	MEKAOB	5	4	G	N	X ا						7617	CLI	BK515-1	1/03/	12 11:18	AP	ELGO	28 -	
	MEKA09	15	L	G	N	X					507	7619	CL	BK5/6-1	1/03/9	r 11:30	AP	ELGO	9 -	
	MEKA	5	L	6	Ν	X						17621	CLI	BK517-1	11/03/9	2 /1140	AP	ELGI		
201	Shipment for C		Page	1 of _2		Sample	9 U\$8	d for	a spik	e and/	or duplic	ate	Add	tional Sampler	Signature	S ,		-	ody Seal Num	
	complete? (Y/	N)				÷ .	•											3399	1/34	00
			<u> </u>									CHAIN OF	CUST	ODY RECORD	)				/	
	Relinquished t	oy: (Si	gnature	<i>y</i>	Ď	ate / T	ime	٦T -	Receiv	ed by:	(Signal	ture)	1	Relinquished by	: (Signal	ure)	Pate /	Time	Received by:	(Signature)
	alara F.	to	,		Malaz	lan 1	17.	~//	101	I	h			MARIN	0 F		Waylas	15:00		
	Relinquished t	ov: (Si	anature	,,,	D	771/ ate / T	<u>/ (</u> ime	24	<u>A.W</u> Receiv	ed by:	(Signal	ture)		<u>AMA1</u> Relinquished by	I: (Sianat		Date		Received by:	(Sianature)
		- / · (	<b>.</b>		_	121		ſ		,	10.9.		1	· · · · · · · · · · · · · · · · · · ·				1	,,	
									, 										·	
	Relinquished t	by: (Sl	gnature	)	D	ate / T	ime		Receiv <i>Signa</i>		Laborat	ory by:		Date / Time	Re	marks is	custody	seal intact	? Y/N/none	-
	EPA Form \$110		5-91) R	apiacee			75-61	Drev		dition -	which me	v he used		Split Samples		ted (Sig	nature)			
	DISTRIBUTION:													· · ·	·					
	Green - Region	Copy	Pink -	SMO Co	py W	hite - I	Lab C	opy f	or retu	rn to R	egion \	fellow - Lab	Ĺ		Decli	190				

**n**'

-----

horo-1

.

<b>E</b>	P/	•		703 557	2490	5 FT	3 557 2	1490	Agency ement Of 3	hce	& Cha	ganic Traffic In of Custody For Inorganic CLP And	y Record	SAS I (IT appl Se T	(cable)	Case No. 19093
Project Coc	<b>se</b> /	locount	Code	2. Reg	ion I	No.	S	ampi	ing Co,		4. Date Shi	pped Carrier			Preser- vative	7. Sample Description
922020				C.	5		-	i2M	HILL		11/0472	([EY]		_ (	Enter In	(Enter
Regional Infor	mation			Sample	•						Airbil Num				olumn D) HCl	in Column A)
Non-Supertun	d Progr	am		AAK Sampi La	COA or Si ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	gnatu m	?E7/ ₩• /	ez Oz	~~		5. Ship To SILV	21491 <u>82</u> Er VALL)	LABORADRIE	- 2. 3. ()7(4)	HNO3 NaOH H2SO4 K2CR2O7	1. Surface Water 2. Ground Water 3. Leachate 4. Rinsate
Site Name Carter Lu City, State Indianop49	e f	unb Sile S B	Spill ID	3. T SF PRI ST FE		Pro					KELLO	OVERNMENT GL GG IN B KEVIN BOO	3837	6. 7.	Ice only Other (Specify) Not preserved	5. Soll/Sediment 6. Oll (High only) 7. Waste (High only) 8. Other (Specify)
CLP Sample Numbers (from labels)	A Enter # from Box 7	B Conc. Low	C Sample Type: Comp./ Grab	D Preservative from Box 6	Mot		RAS A	one	-	Trackin	F al Specific Number Numbers	G Station Location Number	Н	' I Sampler Initials	J Corresp. CLP Org. Samp. No.	K Enter Appropriate Qualifie for Designated Field QC 8 - Blank 8 - Spike 0 - Dupkotie PE - Perform, Eval - Not a OC Bampie
MEIKA II	5	4	G	N	x					5-07	7625	CLBKSØ2	11/03/92 13:15	AP	ELGII	-
meika 12	5	L	Ğ	N	X					5-07	7629	CLBK502 CLBK502+R-1	1/05/92 13:15	AP	ELG 12	DUP
			or									· · · · · · · · · · · · · · · · · · ·				
Shipment for	i Case	Page	1 01 _2	<b> </b>   8	i i amp	l I le uși	d for	a sp	ike and/	1 or dupli	ale	Additional Sampler	Signatures	Chi	ain of Custod	ly Seal Number
complete? ( Y	'/N)			/	•				up)				•		399/	3400
		_		!V	<u>ובו</u>	K A	14	V				CUSTODY RECORI	· · - · - ·	_1		
Retinguished	. 77	r n		,		Time 17:0	L	$\mathbf{n}$	lived by:	1	ture)	Reliaquished by	: (Signature)	1 ,	15:00	eceived by: (Signature)
Relinquished	by: (SI	gnature	)	/ 7 _{Di}	nte /	Time		Rece	lved by:	(Signa	ture)	Relinquished by	y: (Signature)	Date	/ Time R	eceived by: (Signature)
Relinquished	by: (Sl	gnature	Ŋ	Di	<b>kt⊕ /</b> `	Time		Rece (Sigi	nived for nature)	Labora	tory by:	Date / Time	Bemarks is	custody	seal intact?	Y/N/none
EPA Form 911	0-1 (Rev	5-91) A	episcas	EPA Fo	rm (2	075-6	), prev	lous	edition v	which ma	y be used	Split Samples	Accepted (Sig	nature)		
DISTRIBUTIO	•	, .							turn (		,		Decility			

1-duay

<b>S</b> E	PA	Cor	United htract Lab	States En oratory P O Box 81 703-557	ivironin rogram 8 Alex -2490	ental Sar andri FTS	Prote nple N ia, VA 5 557-1	ction lanag 2231 2490	Agenci ement 3	y Offici	8	& Cha	iin o	ic Traffic f Custod organic CLP An	y R	ecord		SAS N (if appli SE 7	cable)		Case No. 19093
1. Project Cod	e A	ccoun	t Code	2. Reg		_	S	ampl	ing C			4. Date Shi	ipped	Carrier	aly 515	l	<u> </u>		Preser- vative	. 7	7. Sample Description
937020 Regional Inform	nation			Sample	•	•			2 MH	IL	<u>د</u>	Airbill Num	nber	(FEY)					Enter in plumn D)		(Enter In Column A)
Non-Superfun	d Progra	am		AAR Sample				RI	<u> </u>			5. Ship To SILV	ER	<u>4918</u> VALLT L	ABI			2. 3. 4.	HCI HNO3 NaOH H2SO4 K2CR2O7		1. Surface Water 2. Ground Water 3. Leachate 4. Rinsate
Site Name Carter L City, State Indianoplis		Site S	Spill ID	SF		Pre PA SSI SI		SM PLD		LEM EMA EM		のれぼ Kell Attn:	00	VERNMER G, IN Vin B	83	837	H	6. 7.	Ice only Other (Specify) Not preserved		5. Soil/Sediment 6. Oli (High oniy) 7. Waste (High oniy) 8. Other <i>(Specify)</i>
CLP Sample Numbers (from labels)	A Enter # from Box 7	B Conc. Low Med High	C Sample Type: Comp./ Grab	1 Juneth Lan	Meta		Nitrate/ Nitrite Com Com	onc.	sis High vino Coudro Coudro	_   T	Frackin	F al Specific g Number Numbers		G Station Location Number		H Mo/Day/ Year/Tim Sample Collection	8	l Sampler Initials	J Corresp CLP Org Samp. No	i.   1	K nter Appropriate Qualifie or Designated Field QC B = Biank S = Spike D = Duplicate PE = Perform, Eval. — = Not a QC Sample
MEKA12	5	L	6	N	X			_						K507-1.		1	13:40		ELG 13	-	
MEKA14	5	L	G_	N	X	+		-+-				7637		BKS\$4-1	11/0	3/12	14:05		ELGILI		
MEKA15	5	5	G	N	X			_				7638		<u>BK 505-1</u>	<u> 1/0</u>		14:10		ELG15		<u> </u>
MEKA16	5	L	lg_	N_	X			_		_Þ	1077	642	<u>CL</u>	<u>SSØ3B-</u>	1410	3/92	14:09	· AP	E1016		
MERAIT	5	2	<u>G</u>	<u>N</u>	X	$\perp$				_5	5-07	7646	CL	<u>55Ø3A</u>	1/1/4				ELG17	<u> </u>	
MEKAIO	5	L	6	N_	X					5	<u>i-07</u>	7650	CL.	<u>55 ØIA-I</u>	Vi/	23/92	15:20	AP	ELG 18		
MEKA19	5	L	6	N	X						207	7654_	CL	SSØIB-1	11	3/12 1	15:30	AP	ELG)		smso)
MEKALO	5	<u> </u>	G	N	X			·		5	5-07	7658	CL	55\$217-FI	2 M	53/92	16:10	APP	ELG2	2 0	4p
MEKA21	5	L	G	N.	X						5-07	7662	CL	35\$2A-1		23/92	16:a	pp	ELG2	1 -	-
MEKA22	5	2	6	N	X							7666	CL	5¢2B-1	117	13/92	16:20	AP	EL627	2 .	-
Shipment for ( complete? ( Y	Case /N)	Page	1 of					•		nd/or	duplic	ate		tional Sampler	Sign			Cha	in of Custo $398$		al Number 397
Balloquishad	by: /Si		<u>.</u>	, 	to / Ti			2000	ivod k					ODY RECOR Rejinquished b		icontrol	· _ [`-	Date /	Time 1	Pacal	ad by: /Signature)
1/1	ellinguished by: (Signature) Date / Time Received by: Lana Letter 11/03/92 17:00 (lan F.													Min K	, is It			10492		Hacan	red by: <i>(Signature)</i>
Relinquished	by: (Si	gnatur	9)	/ / Da	te / Ti	me :		Rece	ived t	by: (	(Signat	ture)		Relinquished b	y: <i>(</i> S	ilgnature)		Date /	Time	Receiv	ved by: <i>(Signature)</i>
Relinquished	by: <i>(Sl</i>	gnatur	9)	Da	ite / Ti	me		Rece (Sigr	ived f ature	for La	aborate	ory by:		Date / Tim	0	Remark	is is c	custody i	seal intact?	Y/N/	none
EPA Form 9110	)-1 (Rev.	5-91) F	leplaces	EPA For	m (20)	75-6)	, prev	lóus	editio	n wh	ich may	y be used		Split Samples			(Sigr	nature)			
DISTRIBUTION Green - Region	: Copy	Pink -			ít <b>e</b> - 1	ah C	ony f	or ***	urn te	a A+-	ulon ¥	allow - I ab				Decilned					
Copy for Retui		<b>•</b>		-,									L								1 040450

SFF REVERSE FOR ADDITIONAL STANDARD INSTRUCTIONS

€

	<b>≫</b> El	PA	<b>\</b> cor	United tract Lab P	States En oratory P O Box 81 703 557	rogram 8 Aleza 2490	ntal Pri Sampli ndria, \ FTS 5t	Mana /A 223 /7-2490	n Agency gemeni ( 13	Office	& Cha	In d	of Custody	Record	SAS I (II appl	NO. Icabie)	Case 1 19 (	NO. 293
	1. Project Cod	• /	looouni	Code	2. Reg	ion No		Samp	oling Co		4. Date Sh	•••				Preser-	7. Sam	
	937020					5		CHZ	MHZL	L	11/04/92	۲	( F 5-+)			vative Enter in	(Enti	ription er
	Regional Inform	mation			Sample	•					Arbil Num					olumn D)	In Co	olumn A)
					AAA	<u>'QN</u>	PET	RZ			635	<u>21'</u>	49182			HCI HNO3		1ace Water
	Non-Supertun	d Progr	am		Sample	or Sign	nture f	2	$\sim$					ORATORIES, 3	1/r. 4.	NaOH H2SO4 K2CR2O	3. Lea 4. Rin	
	Site Name				3. T	ype of i				Removal				TGULCH	6.	Ice only Other	6. 01	VSediment (High only)
	Cancer Les	Lu	nber		SF		Pre- Hnedial	RIFS RD	- AE		KEL	LO	GG,ID	83837		(Spedity)	7. Wa 8. Oth	ste (High only)
	City, State		Site S	Spill ID	PRF ST			RĂ O&M		M□				1 2020	N	preserved		pedly)
	ZYOJAYUYLZS	, ×N.	DI	)	FEC			NPLD			ATTN:	KE.	VIN BOO	<u>7</u> H	<u> </u>			
1	CLP Sample Numbers (Irom	# from	Low Med	C Sample Type: CompJ	from	Metala	Low	S Anal Conc mly	High only	Trackle	F nal Specific ng Number Numbers		G Station Location Number	H Mo/Day/ Year/Time Sample	l Sampler Initials	Corresp CLP Or Samp. N	i. for Desig	K propriate Qualifier gnated Field QC enk 8 = Spike
	labels)	Box 7	High	Grab	Box 6				рн 8					Collection			I PE.	Ouplicate     Perform, Eval     tot a QC Sample
580	MEKA23	5	L	G	N	X	X			5-07	1673	CL	981201-1	11/04/92 10:40	AP	E16 2	3	
581	MERA24	5	L	G	N	$ \mathbf{x} $	X			5-07	7677	CL	501202-1	11/04/42 NOO	AP	EL6 24	1	
DBI	MEKA25	5	L	G	N	X	X			5-07				11/04/12 11:00		ELG2	Dup	
	MERAZC	5	ι	G	N	X	X							11/04/92 11/15		E1G20	p -	
	MEKA27	5	L	6	N	X	X							11/04/92 14:00		ELG2'		
	MEKA28	5	L	Ġ	N	X	<b>x</b>							1/04/92 14:20		ELG 28		
	MEKA29	5	L	6	N	lÿ   −		Ì						11/04/42 14:3		EIGZ		
	MEKA 30		L	6	2/3	Îχ	<u>×</u> _			5.0	77698-9	Icu	6 RB04-1	11/04/92 172	ono	ELG		
	MEIKA 31	5	L L	G	M	x								11/04/92 17:0		ELGJ		
,		1		-		ΪI	r I							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1.1	
	Shipment for (	Case	Page	1 of	s	ample (	used f	or a s	i i pike and	ı 1/or dupli	cate	Add	Itional Sampler 8	Signatures	'   Chi	in of Cust	ody Şeal Numi	ber
	complete? (Y	/N} Ni	_		6	EKA	25	<u>^</u> "	)			1	-	-	3	395	/3390	
	L	•	ļ		(न		~				CHAIN OF	I CUS			1		/	
	Relinguished	by: (Si	gnature	) I	Da	ite / Tin	10	Rec	eived by	: (Signe			Relinquished by		Date	/ Time	Received by:	(Signature)
	Clar	m/	),t	n-	11/04/	42 18	7:0											
	Relinquished			)	De	ite / Tin	10	Rec	elved b	y: (Signi	nturo)		Relinquished by	: (Signature)	Date	/ Time	Received by:	(Signature)
	Relinquished	by: <i>(Sl</i>	gnature	Ŋ		ite / Tin (*	10	Rec (Sig	elved fo (nature)	or Labora	tory by:		Date / Time	Remarks is	custody	seal Intact	Y/N/none	
	EPA Form \$110		5-91) 6			I m (207)	i-6). pr	eviou	edition	which m	ev be used		Split Samples	Accepted (Si	gnature)	-		
	DISTRIBUTION	l:	•	-					(		-		(					

1-0.04

••

									· · · · · · · · · · · · · · · · · · ·												
		Con	United tract Lab P	States E loratory F	nvironn ^o rograf	nental n Sar	Protect	ction A	gency ment C	Office	Inor	ganic Tra	ffic	Repor	t	if appl	No. SE7 licable)		Case		
		1	P	703-557	7-2490	FTS	5 557-2	2490				For Inorganic Cl	LOO) P Ana	ysis)		75	98E		19	093	
1. Project Code		ccount	Code	2. Reg	-	о.		mplin	-		1.7	ipped Carrier		<b>`</b>			Preser- vative		7. Samp	ole ription	
932620				<u> </u>	5			Han	1HZI		11/05/	92 (F	EΥ	)		_ (	Enter In		(Ente	ər	
Regional Inform	ation			Sampl	•								<u></u>				olumn D HCl	"		olumn A)	
Non Supportund	Droom			Samp	RO	<u>N</u>	PE	7R	Ţ		635	21480	28.	7		2.	HNO3			face Water und Water	
Non-Superfund	Frogra	am					$\mathcal{D}_{\mathcal{A}}$	t			5. Ship To	R VALLY	- NBC	ORATON	RIES Z	4.	NaOH H ₂ SO ₄		3. Lea 4. Rin	chate	
Site Name				3. T	ype o	i Acti	vitv	Remed	 iel	Removal	ONE G	OVERNMEN	r G	LLCH		j 3.	K2CR2O Ice only	77	5. Soil	/Sediment	
	1.	ام ما	-	SF	Lead	Pre	- RI	FS 🔽			KELLO	GG, IN	83	837		7.	Other (Specify		7. Wa	(High only) ste (High only	,
CARTER Lee City, State	hu		Spill ID	i PR	P[]	PA []			REI	M 🗖 I		I				N	. Not	·	8. Oth	er pecify)	
THOTANOPLE	5.71	BI		ST FE		SSI _SI					ATTN:	KEYIN E	300	ТН			preserve	d	10	,,,,,	
CLP	Å Enter	В	C Sample	D		<b>—</b>	RASA			Book	F mal Specific	G Station		H Mo/	H Dav/	l Sampler	J Corres			K rearlete Oueli	liar
Numbers	#	Low	Type:	مناهميد	INNOLO	_	Low Co only		High only	Track	ing Number	Location		Year/	Time	initials	CLP Or	р.   i rg.	for Desig	ropriate Quali inated Field C	Ĉ
(from )	from Box 7	Med High	Comp./ Grab	from Box 6		nide	Nitrate/ Nitrite	ŝ	ŝ.	or Ta	g Numbers	Number			nple Iction		Samp, t	No.	B = BI D	ank ⁽ S = Spike - = Duplicate	
					101	δ	żż	클 pł	18Ē	`									PE = 	• Duplicate Perform, Eval. ot a QC Sample	
MEKA33	5	L	6	N	X	<u> </u>				5-0'	οιγη	CLBKØIØI	-/ :	11/05/9	2 0945	AP	ELS 3	3	-		
MEKA 34	5	L	6	N	X	X				5-0	17714	CLBK0102	-	11/05/92	10:35	NP	ELG 3	4 -			
MEKA 35	5	1	G	N,	X	X			1	5-0'	17718	CL BKOID		11/05/9	2 10:45	AP	ELG 3	5-			
MEKA 36	2	5	G	3/3	X	X					77722-3	KLGWQ1-1	K-1	11/05/9	2 15:20	AP	ELG 3	61	Dyp_		
MEKA37	2	L	6	2/3	+0+	X					17728-9	CLGWQ.		11/05/	12 1512	1212	ELG 3	7			
MEKA 38	5	2	6	N	X	X				5-01	<u>n97</u>	CLSBII-	/	lilos/1	2 16:30	pp	FLG 3	BI	<u> 15/ms</u>	0	
MERA 40	5	L_	G	N	X	X			1	5-0	<u>077740</u>	Ch 3003	à1-1	11/05/	72 17:a	m	ELG	40			
MEKAHI	5	Ľ	F	N	12	X					11145	CL 5Bd	302-	11/05/	92 170	prop	ELG-			<u> </u>	
MEILA 42	5	L	6	N	X	X					77152	CLS 80302				1	ELG-	<u>/-</u>	рир		. <u> </u>
MEKA43	5	<u> </u>	G	N	X.	X					<u>77757</u>	CL3B030					E1G-4		-		
Shipment for C complete? (Y/I	850 N)	Page	1 of					•	•	Vor dup		Additional Sa	mpler S	Signatúres	5		un of Cus	r			
						_			р)(	<u>Meka</u>	38 ms/m	Ъ				35	95	<u> </u>	35 9	6	
					NEIL				J			CUSTODY RE									<u> </u>
Relinquished b		nature			ate / Ti			leceiv	ed by	r: (Sign	ature)	Relinquis	hed by	: (Signati	ure)	Date /	Time	Rece	ived by:	(Signature)	
1. llra	N	QUF	ū ]	11/05	92/	8:e	0											l.			
Relinquished b			,	De	ate / T	me	F	leceiv	ed by	r: (Sign	ature)	Relinquis	hed by	: (Signat	ure)	Date /	Time	Rece	ived by:	(Signature)	
Relinquished b	y: (Sig	nature	)		ate / T	me	F	Recelv Signa	ed to	r Labor	atory by:	Date	/ Time	Rer	narks is	custody	seal intac	t? Y/N	/none		
			-			:	{	orgina					1								
EPA Form 9110-	1 /Par	6-01\ D				78.4			dition			Spilt Sam	ples r		ted (Sid	nature)					
DISTRIBUTION:		0-91) R	ahiscas	EFA 70	rm (20	19-0)	' biaai		aitiQN	MINCU U	iay de USOC		····· [	·							
Green - Region		Pink - S	SMO Co	DV WI	nite - I	ab C	opy fo	or retu	rn to í	Region	Yellow - Lab		Į	] Declir	ned						

. .

Green - Region Copy Pink - SMO Copy White - Lab Copy for return to Region Yellow - Lab

L CEE DEVERSE FOR ADDITIONAL STANDARD INSTRUCTIONS

• • • • • • • •

Loro,

																		2
		D	∖ cor	United tract Lab	States En loratory Pi O Box 81	nooiv margor	ental P Samp	olectio le Mani	n Agen Igemer	icy nt Office			ic Traffic			SAS N (If appli	NO. Section	
	VE			P	O Box 81 703 657	8 Alex 2490	endrie FTS 5	VA 22 57-249	0 0				organic CLP Ana		ora	79	598E	19093
	1. Project Cod	ie i	Account	Code	2. Reg	Ion No			pling (		4. Date Sh	ipped	Carrier				Preser-	7. Sample
	932020					2		ĊН	2n	I HIL	L 11/Ø6/	92	(Fex)		·	. (	rative Enter In	Description (Enter
	Regional Infor	mation			Sample			نه ا			Airbill Nur		18\$84	50484	16671		olumn D) HCl	In Column A)
ļ	··· • ·····						Pe	1			635	21	1040			2.	HNO3	1. Surface Water 2. Ground Water
	Non-Supertun	d Prog	m		Sample	n Sign		lu		<u> </u>	5. SNP TO Silver	61	ky Labora	icei	es, Inc	4.	NaOH H2SO4 K2CR2O7	3. Leachate 4. Rinsate 5. Soll/Sediment
	Site Name	1.	./		3. T)	rpe of	Activit Pr+	y A.			one (	- 0 V	ernment		:h		Ice only Other	6. Oil (High only)
	Carter	<u></u>					lemedia				Ke 11 og	9,	IN 831	831			(Spedity)	7. Waste (High only) 8. Other
1	City. State	ls I		Spill ID SD	ST FEC		isi[	RA O&M NPL(		AEM DIL JST	ATTN:	Kei	in Barth				Not preserved	(Spedity)
	CLP '	<b>_</b> A	B	C	D	6		S Ana			F gional Specific		G Station	Ma	H /Day/	1 Sampler	J Corresp.	K Enter Appropriate Qualifier
	Sample Numbers	Enter	Low	Sample Type:	vative	Metal		w Conc only	Higi only	Tra	cking Number		Location	Yea	r/Time	Initials	CLP Org.	for Designated Field QC
	(from labels)	from Box 7	Med High	Comp / Grab	from Box 6		0		pH 2	or	Tag Numbers		Number		imple lection		Samp. No.	B = Blank B = Spike D = Ouplicate PE = Perform. Eval. 
576	MEKA 44	5	4	6	N	X	X				77758	CL	5190201-1	ulocia	2 07:45	AP	EUS 44	-
	MEKA45	5	ĩ	G	N	X	x			1	77 <b>9</b> 63		500202-1		07:50	RP	ELG 45	-
	MEKAYG	5	L	G	N	X	X		1	1	0777768	1	500203-1		08:00			ms/mso
	MERA 47	2	L	G	3/2		X				7772-3		GU104-1		09:40	1	ELG 47	~
	MEKA 48	12	L	G	3/2	X	X				77778-9		GR803-1	] [ ]	08:20	I	ELG YB	-
	MEKA49	2	L	Ğ	3/2	X	X						6 RB02-1		09:00		ELG 49	
	MEKA 50	5	L	G	Ń	X.	X	Ì			077793		SBØ/Ø1-1		12:30	190	ELG 50	-
	MEKA 51	2	L	6	3/2	X	X						GROØI-1	1	14:30	AP	ELS 51	
, ,									11	ſ	· · · · · · · · · · · · · · · · · · ·							
																	·	
	Shipment for complete? ( Y		Page	1 of	_ 8	Imple	used	lor a e	ipike a	and/or d	uplicate	Add	itional Sampler	Signatur	D1			y Seal Number
		₩′	}		(M	IEKI	946	, - n	12/n	n <i>50</i> )						35	54 <b>9</b> /	3550
					-				•	-			TODY RECORD					
	Relinquished					te / Th	-		peived	i by: <i>(Sl</i>	gnature)		Relinquished by	r: (Signa	iture)	Date /	Time (Ri	eceived by: (Signature)
	lan	1/0	ln	-	106	21	9:0	d										
	Relinquished				/ De	te / Ti	me		ceived	by: (Si	gnature)		Relinquished by	r: (Signa	ture)	Date	Time R	eceived by: (Signature)
															[			
	Relinquished	by: <i>(S</i>	ignaturi	•)	Da	1● / Ti	mē		celved gnatur		oratory by:		Date / Time	Re	emarks is	custody	seal intact?	Y/N/none
															<u></u> .			
	EPA Form \$11	0-1 (Rev	. <b>5-9</b> 1) P	lepiaces	EPA For	m (207	/5-6), p	reviou	e editi	lon whici	n may be used		Split Samples		pted (Sig	nature)		
			<b>D</b> lai		r '''h		h 0-			.(	n Yollow Lab		I	Decl	inef			

norg-1

:4

<b>P</b> E	P/	Cor	United htract Lab	States Er poratory P O Box 81 703-557	rogran Rogran 18 Ale	nental n Sar xandri ETS	Prote nple M a, VA	ction / lanag 2231	Agency ement O 3	Office	&	Inor Cha	gan in o	ic Traffic of Custo organic CLP A	c Re dy F	eport Record	(if a	s No. pplicable 598			Case	No. 9093
1. Project Coc	A et		t Code	2. Reg		_			ing Co.		4. D	ate Shi	ipped	Carrier	maysi	<u>sj</u>		Pres		17	/ . Sam	
937.C21				Ž	5		10	H2	MHZ	u		05/		FEY	e			vativ (Ente	/8		Desc	cription
Regional Infor	mation			Sample								III Núm		L				Colun			(Ent In C	olumn A)
				AA	RO	N	PE	-7/	(I		5	048	416	671				1. HCI 2. HNC	23	1		face Water
Non-Superfun	d Progr	am		Sample	er Sig	natu	^{re}	2	~	-	5. S	hip To			BORT	ORIES, I	VC	3. NaC 4. H ₂ S	0H 50₄			ound Water achate sate
Site Name	<u> </u>			3. Ty	ype o	f Acti	vity	Reme	diel I	Removal				Anmen 7				5. K ₂ C 6. Ice	only		5. Soi	I/Sediment (High only)
Canter L City, State	el	Site	Spill ID	SF PRF ST		Pre Reme PA [ SSI]	_] R/								-	937		N. Not	edity)		7. Wa 8. Oth	ste (High only)
Indinvapol			$\mathcal{D}$	FEC	ᆜ	LSIL		PLDL	_ <u>]</u> US1	ŗ□		ATTN:	Ke	VIN B	007	r / <del>/</del>						
CLP Sample Numbers (from labels)	A Enter # from Box 7	B Conc. Low Med High	C Sample Type: Comp./ Grab	D Preser- vative from Box 6	Meta		Nitrate/ Nitrite Nitrite	onc.	Sis High Only All All High Could Could No High All All All All All All All All All Al	Trac	F onal Sp king Nu ag Num	Imber		G Station Location Number		H Mo/Day/ Year/Time Sample Collection	Samp Initia	ls   CL	J orresp. _P Org. mp. No	.   10	r Desig B = Bi D	K propriate Qualifie gnated Field QC ank S = Spike = Diplicate Perform, Eval. kd a QC Sample
MEKA 51	5	L	G	N	X	Х				5-6	m	300	CL	SBØ102	-1 ///	06/92 H.	to Ar	2 EL	G 5;	z ~		
MEKA 53	5	L	G	N	X	X				5-1	1778	06	cis	BOILOD FR-	., '	1 14:	io ap		<u>G 5</u>		ųр	
MEKA54	5	2	G	N	X	X				5-0	778			SBO103-		14:	30 AK				3/1	nso)
MEKA55	5	L	G	N	Y	X				5-0	77B	14		5005-1		14:	95 AF	) El	6 5 5	5 -	_	
MEKA56	5	L	G	N	X	X				5-0	778	21_	CL	SB05D	-	1 151	DO VAR		. ઉંકા			
MEKA57	5	L	G	N	X	X				5-0	178	22	CL	SBOGD		15:10	o Ar	EL	<u>G 5</u> ^	7 - 17		
MEKA 58	5	L	6	N	X	X				5-0	778	29	a	SBO(0-1		1510	5 AK	EL	<u>65</u>	8-		
MEKA59	5	L	G	N	X	X		4		5-0	778	33	CL	5B07-1	·	14:4	OAP	EL	G 5'	1-19		
MEKA 40	5	L	G	N	X	X				5.	077	837	CL	5608-1		15:0			660	2 -		
MERAGI	5	L	ତ	N	X	X					077			SBØ9-	, ] ]	- 15:20			GG			
Shipment for complete? ( Y	Case (/N) N	Page	1 of	z s n	ample NEK	a use	d for 3-	a spi DU	ke and	/or du	olicate	-ms/	Addi SO)	tional Sample	er Sigi		C	hain of	Custo	dy Sea	i Numt 555	
														TODY RECO			+···2··					
Relinquished	IN A			1/06/4	110 / T		- 1	Recei	ived by	r: (Sigi	nature)			Relinquished	by: (	Signature)	Dat	e / Tim	e F	lecelve?	d by:	(Signature)
Relinquished	by: (Si	gnaturi			ute / T			Rece	lved by	r: (Slg	nature)			Relinquished	by: (	Signature)	Dat	ie / Tim	<b>9</b> F	Receive	d by:	(Signature)
Relinquished	by: (Si	gnatur	₽)	De	ate / T	ime			ived fo lature)	r Labo	ratory t	by:		Date / Ti	me	Remarks	Is custor	ty seal i	Intact?	Y/N/n	one	:
EPA Form 911	0-1 (Rev.	5-91) F	Replaces	EPA For	rm (20	75-6)	, prev	lous	edition	which	may be	used		Split Sampler	•	Accepted (	Signature	<i>y</i>				
DISTRIBUTION Green - Region	4:					-					•					Declined						
Sigel - Hellio				FJ 111				~			191101		L.			DOITIONAL ST						*~ * - 7

ł

T

	<b>₽</b> E	P/	<u>م</u> د.	United tract Lat	States En loratory Pi O Box 81 703 557	vironm ogram 8 Ales 2490	ental Sam andriu FTS	Protect ple Ma VA 2 557-24	ion Age 1909 2313 190	ency Ient Of	fice	& Cha	aIn (	of Custody	Reco		SAS M (11 appli 75		Case No. 19093
l	1. Project Co	xte	Account	Code	2. Reg	-	0.					4. Date Sh	••					Preser-	7. Sample Description
	92221					5		C	121	H	111	11/06/9		FEX				Enter In	(Enter
	Regional Info	rmation			Sample	•	•	<b>n</b>		-		Arbil Num		416671				olumn D) HCl	In Column A)
ļ	No. 0			<b></b>				PET	<u>(K</u> .	L				71067			2.	HNO3	1. Surface Water 2. Ground Water
	Non-Supertu	ina Prog	ram		Sample			<u>P</u>	~			5. Ship To Silver		ALLEY LAB	6R ATC	RIFS	TAK S	NaOH H2SO4 K2CR2O7	3. Leachate 4. Rinsate 5. Sol/Sediment
	Sile Name Carter	Lee	Lum	ber		/p● 0/ ↓ • • • • •	-		s 🖂					vernment				Ice only Other (Spedity)	6. Oil (High only) 7. Waste (High only)
$\tau$	City, State		Site	Spill ID	PRF ST				мE			Kelloe Attn:		, IN KEVIN BO	938. MI	57	N.	Not preserved	8. Other (Specify)
L	ndianapri CLP	<b>A</b>	B Conc.	С	FEC D	(	1 6		alysi		Benico	F al Specific	, 	G Station	<u>етр</u> н Мо/С		I Sampler	J Corresp.	K Enter Appropriate Qualifier
	Sample Numbers (from	from Box 7	Low Med	Type: Comp / Grab	vative from	Meta		only		\$; 3	Trackir	Numbers		Location Number	Year/ Sam Colle	Nme Iple	Initials	CLP Org. Samp. No.	for Designated Field QC B = Blank B = Splite
	labels)	1		ł	Box 6		8	žž (	B pH	N CONTRACTOR						· <u> </u>			D = Duplicaté PE = Partorm, Eval. — = Not a OC Bampie
	MEKA 6	-	L	6	N	X	X						1	38090-1				FIG 62	
515	MERAU		4	G	N	r	2								11/04/9			ELG62	
	MERAG		1	G	N,	X	X	- [		1				SBIOD-1		92 15:2	7 1910	Ere Cr	(
	MERAL		L	G	2/3	X	X				5-0	17854-	10	LMWØ5M	7.1	14:0	to An	ELG 65	ms/msp
s10	MERAU	62	L	G	2/3	X	1			ļ	5-0	178 TA-	3 C	L MWQ3-1	مل	- 151	p m	ELG 6	-
	ł				1								1		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
					Ì									İ					
									}	1									
				1															
	Shipment fo complete? (		Page	1 of _7	- 6	mple ) E ) '		d lor 65	spike P	and/ 3/1	for dupli かった	ジ	Ad	ditional Sampler 5	Signatures			ain of Custod $553/$	y Seal Number 3554
			1		I							CHAIN OF	I F CUI	STODY RECORD	)			······································	
	Relinquishe	d by: (S	Signatur	•		te / Ti 6_1_/			ecelvi	ed by:	: (Signa	iture)		Relinquished by	: (Signatu	r•)	Date /	Time Re	eceived by: (Signature)
	Relinquishe	d by: (5	Signature		11/\$6 De	72 / 10 / T	9-D Ime		ecelvi	ed by:	: (Signa	iture)		Relinquished by	: (Signatu	n•)	Date /	Time Ri	eceived by: (Signature)
	Belinguisha	d by: /	Signatur	<u>م</u> ا	Da	ñō / T	ime		BCBIV	ed for	Labora	tory by:		Date / Time	{Ren	nerke is	custody i	seal Intact?	Y/N/none
	Relinquishe	u uy. (i	Jyneide	-,				6	Signa	ture)							·		
	EPA Form 9			Peoleces	EDA For		75.61	J		lition	which m			Split Samples	] Accep	ted (Sig	nature)		
	DISTRIBUTI	-	DI-1							(		-, V lah			 Declin	•			

	<b>≫</b> E	PA	Cor	United htract Lab	States Er oratory P O Box 81 703-557	rograi 18 Ale 2-2490	mente m Sa exand FT	al Prote Imple I ria, VA S 557	ection Mana 223 -2490	a Age gemi 13	ency ent Of	fice	& Cha	i <b>in</b> (	nic Traffic of Custod norganic CLP And	v R	ecor	d	SAS I (if appl 75		E	Case No. 19093	
	1. Project Coo 932021 Regional Infor		Accoun	t Code	2. Reg Sample	5		0		-	Co.		4. Date Sh 11/07/2 Airbill Num	ippeo 12	$ (F \in Y) $				6. 1	Preser- vative Enter in olumn D		7. Sample Description (Enter in Column A)	
	Non-Superfur Site Name Canter L City, State		Lume	<u>ber</u> Spill ID	A MA Sample 3. T SF PRI ST	ype c	of Ac Pr Rem PA [		Rer IIFS D		CLE REM REM		5. Ship To SエムVE	r v Sov	$\frac{388223}{14LLY LAB}$ ERN MENT (	OR	CH	د, ۶	2. 3. 4. 5. 6. 7.	HCI HNO3 NaOH H2SO4 K2CR2C Ice only Other (Specify . Not	0	1. Surface Water 2. Ground Water 3. Leachate 4. Rinsate 5. Soil/Sediment 6. Oil (High only) 7. Waste (High or 8. Other (Specify)	אןג)
519	INDIAU CLP Sample Numbers (from labels)	IS, I Enter from Box 7	В	C Sample Type: Comp./ Grab	FEI D Preser- vative	Met	als		Conc. Ily	ysis Hi	Conduc Aug	Trackir	ATTN: F nal Specific ng Number Numbers	KE	G Station Location Number	<u>א ד</u>	H Mo/Da Year/Ti Samp Collect	me le	I Sampler Initials	CLP O Samp. I	ip. rg. No.	K Enter Appropriate Qu for Designated Field B = Blank S = Spik D = Dupikate PE = Perform. Eval. Not e OC Sampi	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	EKA68	2	L	6		X	X					1			ma 02-1		7/92	B:30		EGt*	68	-	
қф6 -	MEKA69	2		6		X		,					<u>1982-3</u> <del>1876-7</del>	1	EBLK-1		· · · ·	9:00		ELG		E& BLANK	
			{- <b>-</b>			<u> </u>	ſ	$\uparrow$	+			501				17	049	2 10:00	1 KBP		0	- 1015	
		-				$\left\{ \right\}$		$\left[ - \right]$					· · · ·	-									
																	_						
													i										
			ļ	ļ		$\downarrow$		<u> </u>					<u>-</u>					· · · · · · · · · · · · · · · · · · ·	<u> </u>	ļ			
			<u> </u>						1		<u> </u>						_			<u> </u>			
	Shipment for complete? () YES	Case (/N)	Page	1 of	\$	ampi	8 US	ed to	1 8 8	pike	and/	or dupli	cate	Ada	ditional Sampler	Signa	atures			ain of Cus 591	stody	Seal Number 3592	
						<u>`</u>	±	·,		_				CUS	STODY RECOR						_		
	Relinquished	by:_(S V_el	A	9) /	Da	nte / 1 92   ,		1	Rec	eive	id by:	(Signa	iture)		Relinquished by	y: (S	ignatur	9) 	Date	/Time	Re	celved by: (Signature)	
	Relinquished	by: (S	ignatur	9) 	f De	nte / 1	lime	-	Rec	eive	d by:	(Signa	iture)		Relinquished b	y: (S	ignatur	θ)	Date	/ Time	Re	celved by: <i>(Signature)</i>	<u> </u>
	Relinquished	by: <i>(S</i>	Ignatur	8)	De	ate / 1	Time		Rec (Sig	eive	ed for ure)	Labora	tory by:		Date / Time	 •	Rema	urks is	custody	seal Intac	t? Y	//N/none	
	EPA Form 913 DISTRIBUTIO Green - Regio Conv. for Retu	N: n Copy	Pink -			-							•		Split Samples		Decline	di	gnature)	STRUCTIO	NS		

horp-

- Contact tab	Statics Exconnental Protection Agency ocatory Program Sample Management Office O flow (1) # Alexandria: VA-22313	Inorganic Traffic Report & Chain of Custody Record	SAS No (Papplicable)	Case No 20160
1Project CodeAccount Code1Project CodeAccount Code $(1, j, j, l)$ Project CodeAccount Code $(1, j, j, l)$ Project CodeProject CodeNon Superlund ProgramSate Spill IDSate NameSate Spill IDCarler Loc Loc Loc Spill IDTrultionact pols, JWBDCTPAStateSate Spill IDTrultionact pols, JWBDCTPAStateSampleUninteesImmHantiesImmIDIstee Spill IDIdBate ConeStateSampleComImmIDIstee Spill IDIDFormIDComIDBate 2IDMerre 24IDMerre 24IDMERE 24IDMERE 24IDMERE 25IDMERE 2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(For Inorganic CLP Analysis) 4 Date Shipped Carner (6-7-93 Fed EX Airbill Number 7324703234 5 Ship to 5K:nner + Sherman Labs, Inc. 300 Second Ave, Waltham, Mass. Od254 AHn: Richard Purdy AHn: Richard Purdy Mo/Day/ Station Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Number Num	6 Prosol vative (Enterin Column D) 1 H(J 2 HNO3 3 NaOH 4 H2SO4 5 K2CH2O7 6 Ice only 7 Other (SAS) (Specily) N Not preserved 1 J Sampler Corresp CLP Org Samp No CLP Org Samp No CLP Org Samp No	2 Of GO 2 Sample Description (Enter in Column A) 1 Suitace Water 2 Ground Water 3 Loachate 4 Rinsate 5 Soil/Sediment 6 Oil (SAS) 7 Waste (SAS) 8 Other (SAS) 8 Other (SAS) 8 Other (SAS) 1 Designated Field OC
136 MERE24 2 Low Grab 136 MERE26 2 Low Grab 131 MERE27 2 Low Grab 131 MERE27 2 Low Grab 131 MERE27 2 Low Grab 130 MERE08 2 Low Grab 130 MERE08 2 Low Grab 130 MERE08 2 Low Grab 130 MERE08 2 Low Grab 130 MERE08 2 Low Grab	3 X 5-10 ス X 5-10 ス X 5-10 ス X 5-10 ス X 5-10 Sample used for a spike and/or duplic MERE 24 (ms/msb); MER	E08 Dupa)	$\begin{array}{c c} E \leq 603 \\ P \\ P \\ P \\ P \\ P \\ F \leq 660 \\ P \\ P \\ P \\ P \\ P \\ P \\ P \\ P \\ P \\ $	
Relinquished by (Signature) Face) Pater Relinquished by (Signature) Received by (Signature)	Date / Time Received by: (Signal Date / Time Received by: (Signal Date / Time Received for Laborate (Signature)	CHAIN OF CUSTODY RECORD         ture)       Relinquished by: (Signature)         ture)       Relinquished by: (Signature)		ived by (Signature) aved by (Signature) Vinone
EPA Form 9110-1 (Rev. 5-91) Replaces ( DISTRIBUTION Green - Region Copy - Sink - SMO Cop	EPA Form (2075-6), previous edition which may	y be used Split Samples [] Accepted (Sign.	ature)	

500

<b>\$</b> E	P/	Cor	United dract Lab P	States F oratory O Box 6 703 55	nvironi Progra I18 Alt 7 2490	menta m Sa exand ) FT	al Prote Imple I ria, VA S 557	223 2490	Agen gemer 13	cy n Offic	ce	& Cha	ganic Traff in of Custo For Inorganic CLP	dy I	Record	SAS I (il appl	No. licable)	С	ase No 20160
1 Project Con <u> <u> </u> </u>	<b>2</b>	Accoun	Code		5		c	-	iling ( M	Co.	L		ipped Carrier 3 FED				Preser- vative Enter in olumn D		Sample Description (Enter in Column A)
Non-Supertur Site Name Carter-L City, State	nd Progr	unb Site S	-	4. Typ SF SF ST	e of A	gnat uctivit Pre- aemed A		Rem Rem	Ter odial	CLE REM REM OIL		733 5. Ship To SKir 300 Wa	102470323 Iner + Sher Second Itham, M har, Richard	mai Ave 255	. 02254	1. 2. 3. 4. 5. 6. 7.	HCI HNO3 NaOH H2SO4 K2CR2O Ice only Other (SAS) <i>(Specity,</i> Not	7	1. Surface Water 2. Ground Water 3. Leachate 4. Rinsate 5. Soil/Sediment 6. Oil (SAS) 7. Waste (SAS) 8. Other (SAS) <i>(Specily)</i>
CLP Sample Numbers (from labels)	A Enter # from Box 7	в	C Sample Type Comp / Grab	FED D Prese vative from Box 6	Met	E · als	RAS	w ic.	ysis Higt	· · ·	Region Trackir	F F al Specific g Number Numbers	G G Station Location Number		+/	I Sampler Initials	Corresp CLP Or Samp. N	p. g.	K Designated Field QC
MEREO8	3		GRAB GRAB	T		×						285 <b>8</b> 12856	CMW05 CMW05	6	-7-93  7 5 ↓	lp lp	ESGL V	1	
																· · · · · · · · · · · · · · · · · · ·			
Shipment for complete?	Case N)	Page	1 of	S	ample	euse	ed for	a sp	oike a	ind/or	duplic	al <del>o</del>	Additional Samp	er Sig	natures	Cha	ain of Cust	ody Seal 1	
Relinquished	by (Sig	gnature	,	,	ate / T			Rece	eived	by: (	(Signal		CUSTODY RECO		Signature)	Date /			by: (Signature)
Relinquished	by (Sig	gnature	5	<u>////</u>	43/ ate / T	/92 ime		Rece	eived	by: (	Signal	lure)	Relinquished	lby: (	'Signature)	Date /	Time	Received	by: (Signature)
Received by:	(Signa	lure)		Da	ate / T	ime			eived nature		aborati	ory by:	Date / T	me	Remarks is c	custody s	seal intact	? Y/N/nor	e
	(Sıgna	lure)		Di	ate / T	ime		Rece (Sigr	eived nature	for L	aborate	ory by:		me	Remarks Is c				

1 11/1/18

				United Intract Lat	States Er oratory P	vironini	ental Pro Sample	ntection A	gency Mency	Hico			nic Traffic Re		SAS N (if appli			Слен No
	VE	27	-	I	30 Hos #1	B Aless	apdoa A E15.55	A 22313	1		& Cha	ain (For	Organic GLP Analysis	Hecora				20160
	1 Project Co 137(77) Regional Info	).	Accour	nt Cod#	R	Cy or	1	Samplir CH37	-	ILL	4 Date Sh	nippe / <del>?</del> : nb <b>er</b>	d Carrier 3 Fed E	×		Press vativ (Ente Colum	0 7 1/1	7 Sample Description (Enter in Column A)
	Non Supertur	nd Prog	ram		5,		u ra Signal L ()-	Poto	r 5 0	^	5. Ship To	,	Laboratori			1. HCI 2. HNO 3. NaH!	SO4	1 Surface Water 2 Ground Water 3 Leachate
	Site Name	,				՝ Լոավ	} }.⊈ 6f Activ Pre } fterrent	PIES		Hense LEM EMA	94	00	8 Loiret E	Blud,		4, H2S( 5, Oihe <i>(Spi</i> 6 - Icu c	n verty)	4. Rinsate 5. Soil/Sediment 6. Oil (High only) 7. Waste (High only)
	Carter City, State Tud.anap			m ber Site Spill , IDD		н <del>Р</del> Т   -	PA SSI LSI		- H 0	EM			exa, Kansa Jane Bolin	-		N. Not		8. Other (Specify)
ы	CLP Sample Numbers (from Tabels)	A	B Conc Low Med High	C Sample Type Comp /	vativa	VOA	HASA	nalysis Pest/ PCB	High only ARO/ TOX	Tracl or Tr	F onal Specifi king Numbe ag Numbers	or	G Station Location Number	H Mo/Day/ Year/Time Sample Collection	l Samp Initia	is CL	J forresp. P Inorg. Imp. No.	K Enter Appropriate Ocalifi for Designated Field OC B = Nante 5 = 1 pila D = Depleate Pf = Partein 1 vie - Not a CC Schope
14.24	FSG01	2	Low	Grab	1	X	1			5-1-	18980-1	81	CMWOL	6-7-93 13	20 20	m	EREAY	
11	LSGOI	ג.	Γ.	Gril	N		іх.				8982		Cmwol	6/1/13 13		2.		
ויג'	ESGOI	J.	Low	Crit	N			X		5-17	8983		Cmwoj	6-7-93 13	00 80	2	$\checkmark$	
	ESGON	2	Lou	Grab	1	X				5.17	8985-8	24	Cmwoz	6/1/93 13	1 2 P		EREAS	
	FSGUD.	<u>,,</u>	Low	Gub			X.			4	18979		CMWOZ	6-7-9313			·	· · · · · · · · · · · · · · · · · · ·
	FSGOL	2	Low	Grab	N		<b> </b>	X.			18984		Cmwoa	6-7-93 13	45 4	2	¥	· · · · · · · · · · · · · · · · · · ·
	1:5603	. <del>.</del>	Low	ineb	<u> </u>	X					8993.9		Cmwo 3	6.7-93 150		<u> </u>	ERE 24	Mº/MSD_
		-5	Low	Grut	I		X				<u>8989-9</u>		Cmwo3	6-7-93 15		<u>د  </u>		ms Ims P
	E5603	<u></u>	Low	Grub	N_			X			8991-9		Cmwo3	6-7-93 13		<del>.</del>	V.	ms/msi)
KOI	E5656	8	Low		] <u> </u>		l	l	Ι.	5-0	7732		CTBOI	6-7-9315	30 00	-		Trip Blank
	Shipment for complete?	2N)	Mage	1 of _				(m		vor duplik SD)		Ad	ditional Sampler Sig	natur <b>es</b>	Cha			al Number 1, 3802
	Relinquished	1		T				161710				CU	STODY RECORD				"lo	and have the state of the
	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	$\cap$				le / Tin		Pleceiv	ea by	. (Signa	tur <b>e</b> )		Relinquished by: (	Signature)	Date /	UITTO	11000	ed by: <i>(Signature)</i>
	aune	Fel			6/7/	F319	00											
	Relinquished	by: (Si	gnaturi	9)	Da	і● / Тіл 	<b>ne</b>	Receiv	ed by	: (Signa	ture)		Relinquished by: (	Signature)	Date /	Time	Receiv	red by: <i>(Signature)</i>
	Relinquished	by: <i>(Si</i> j	gnaturi	9)	Dai	 niT \ ei 	ne	Receiv (Signa		Labora	ory by:		Date / Time	Remarks is	custody s	eal inta	act? Y/N/r	none
	EPA Form 9110	.2 (Pav	5.91) P	enlacee (		1 1 (2075	.7\		ltion	hich	. he used		Split Samples	Accepted (Sig	nature)	~		·
	DISTRIBUTION	:	link ⁻		- 'sta		- <i></i> , pr <b>e</b>		(					Deg 1				

	ЗE	P	<b>\</b> c₀	United ntract Lat F	PO Box 8	nvironme Program 318 Alexa 57-2490	indria, V.	A 22313	igency ment Ol	fice	Orgai & Chain	nic Traff of Cust				AS No. applicab	e)	Case No	o. 5160
	1. Project Cox	,	Accoun	t Code		2. Regio		•	-		4. Date Shippe	d Carrier					reser-		ample
	937C2	2			[#	Legior	$\nabla$	Cliai	n H	IL	6/7/93	l Fe	d. E	×			ative ' <i>nter in</i>		escription Inter
	<b>Regional Infor</b>				S	Sampler	(Name	)			Airbill Number						lumn D)		Column A)
						Lau	ira 1	Pater	son		734	24703	524S	_		1. F	ICI	1. S	Surface Water
	Non-Superfur	nd Prog	ram		s	Sampler	Signat	ure			5. Ship To					2. F	INO3		Ground Water .eachate
				•		$\rightarrow$	A (-	eter	Jn	>	Pace	Labor	atori	e 5			laHSO4 l2SO4		Rinsate
	Site Name		• •			3. Type o	Activi	ty Rer	medial	Removal		8 Loire				5. (	Diher		Soil/Sediment Dil (High only)
	Carter	Lea	Lum	ber		SF 🕅	Pre- Remedia	RIFS						64219		6.	<i>(Specity)</i> Ice only	j 7. V	Vaste (High only)
	City, State			Site Spill		PRP	PA [	RA	T RE			,				N.	Not		Other (Specify)
	Indianape	us, I		BD	1.			O&M		ज्ञ 🗄	ATTN: 🏷	uane B	oline			٩	reserved		(0) 00)/
	CLP Sample	A Enter #	B Conc. Low	C Sample Type:	D Prese vative		RAS AI				F nal Specific ng Number	G Static Locati		H Mo/Day/ Year/Time		l ampler nitials	J Corresp. CLP Inorg.		K propriate Oualifier signated Field QC
TA -	Numbers (from labels)	from Box 7	Med High	Comp./ Grab	from Box 6	. ]	BNA	Pest/ PCB	High only ARO/ TOX	or Taç	g Numbers	Numb		Sample Collection			Samp. No.	PE	Blank S = Spike D = Duplicate = Perform, Eval Not a QC Sample
504	ESGWO	2	Low	Grub	1	X				15-	122843-40	Cmw	04	6/7/93 16	15	la	MEREZT		
5:54	ESGUO	2	Low	Grub				X			2842	Cmw		6/7/93 14		Da		1	
50A	ESGUO	2	low	Grab	/		X				2841	Cinu		10/1/93/		la	V	1	
505	ESGWI	2	1.	Grab		X		!			2851-59			6-7-9310			MEREOS	τ <u>γ</u>	Dupe
-	ESGUI			Grub			×				847-30	N		10-7-93 17		le_	1		Dupe_
	ESGWI	2	Low	Grat	1			×	1		2849-50			•	715	12		1 ;	Dupe
RUQ	ESGUN	8	Low	Piar	1	X			†·		2861-62			6-7-93 17		la.	¥	Fiel	
KOJ	ESGUL	8	Low	,	N		X				22859	CFBO		6-7-931		In.			
ROZ	ESGUA	8	Low	1	N	·   · · · ·	12-	×			2860	CFB		6-7-93 17		P2		-	V
Roj	FSG63	8	Low		1	X				· · · · · · · · · · · · · · · · · · ·	12865			6-7-93 17		la		TOOL	Blank
1.1=0	Shipment for	Case	Page	1 of	Í	Sample I	used fo	r a spik	e and/	or duplica		ditional Sam					f Custody Se	al Numbe	er
	complete?	<b>∕</b> N)				•				icate							3803		
	L								<u> </u>		CHAIN OF CU		080				· · ·		
	Relinquished	by: (S	ianature	9)	Da	ate / Tin	าย	Receiv	/ed by:	(Signati		Relinquish		Signature)	Da	ite / Tin	ne Recei	ved by: (S	Signature)
	Y C			·						(e.g.i.a.i		1.0				1			
		elei	h	>	6/71	1931	900												
	Relinquished	by: <i>(S</i>	ignature			ate / Tin			ved by:	(Signati	Jre)	Relinquish	ed by: (S	Signature)	Da	ite / Tin	ne Recei	ved by: (S	Signature)
								Deel		1				Domosko - G				10000	
	Relinquished	<b>ру: (</b> S	ignature	9)	Di	ate / Tin	IA	(Signa	ved tor ature)	Laborato	огу бу:	Date /	lime	Remarks Is	5 CUSIO	uy seal	intact? Y/N	HOHE	

ł

EPA Form 9110-2 (Rev. 5-91) Replaces EPA Form (2075-7), previous edition which may be used

DISTRIBUTION: Blue - Region Copy Pink - SMO Copy White - Lab Copy for Return to Region Yellow - Lab

CEE DEVERSE FOR ADDITIONAL STANDARD INSTRUCTIONS

Declined

(Signature)

0 Ö

1

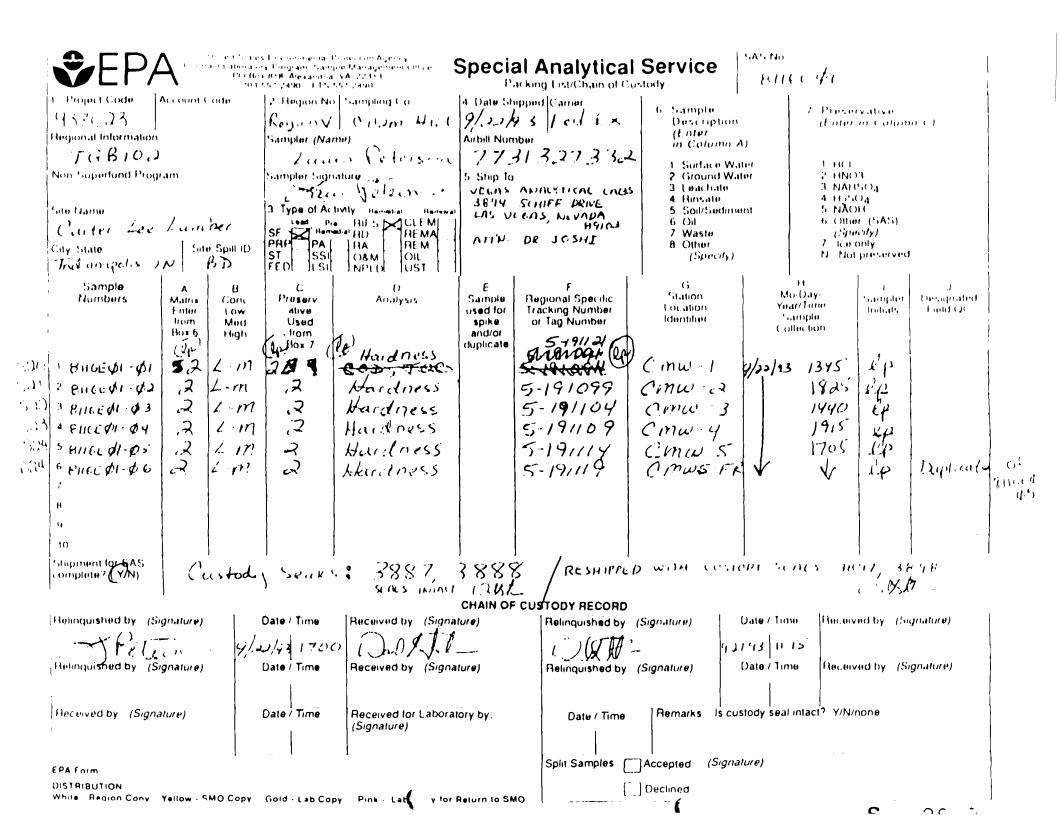
Split Samples Accepted

	÷Е	PA	<b>\</b>	United ntract Lab P	States Er oratory P O Bos B1 703-557	ivironme Pogram 18 Alexa 12490	intal Prot Sample Indria, V/ ETS 557	ection A Manage V 22313 V 2490	ment ()l	🖤 🛛 & Chải	anic Traffic Re n of Custody F or Organic CLP Analysis	Record	SAS No (il applicab	4a)	Case No Jallon
	1 Project Col 137CQ Regional Infor	2	Accour	it God <b>u</b>		5	n No   9  ( (Name	Chan	-	4 Date Ship し レーマーク Airbill Numb	pud Carrier 3 FF.D. EX		ě	tosot aliva nter in plumn D)	7 Sample Description (Enter in Column A)
	Non Supertur	nd Progi	am		S	nniplur N	A PE Signali	$\mathcal{S}$	Tr.	5. Ship To PACE	24703245 LABORATORI		2 F 3 h 4, F	1C1 (NO3 NaHSO4 (2SO4	1 Surface Water 2 Ground Water 3 Leachate 4 Rinsate 5 Soil/Sediment
ĺ	Site Name CARTER- City, State			Site Spill	p		PA SSI	HIFS		MA LENE	S WIRET BUN =XA, KANSAS DUANE BOLINE	66319	6. N.	Other <i>(Specify)</i> Ice only Not preserved	6. Oil (High only) 7. Waste (High only) 8. Other (Specity)
) ЛП С	INDIANAF CLP Sample Numbers (from labels)	A	LNI B Conc Low Med High	Тура	a l		ERAS Ar		High only ABO/	F Fagional Specific Tracking Number or Tag Numbers	G Station Location Number	H Mo/Day/ Year/Time Sample Collection	l Sampier Initials	J Corresp. CLP Inorg. Samp. No.	K Enter Appropriate Qualifier for Designated Field QC B = Bank S = Spike D = Dapleate Pf = Parker Evel - Not a QC Sample
	ESGUI ESGUI ESGUI ESGUI		(nu)	GRAB GRAB GRAB GRAB	I N	×	×	×		5-122853 5-1228854 5-122848 5-122850	CMW05FR	6-7-93 1715 V 6-7-93 1715 6-7-93 1715	lp	MERELOY MERELOY	· · · · ·
											_		· · ··		
	Shipment for complete?	Case ON)	Page	 1 of	S(	ample u	used fo	r a spik	e and/	or duplicate	Additional Sampler Sig	natures		of Custody Se 1803 , 3	
		_									USTODY RECORD			·	
	Relinquished	cc()	6.21	1	6/7/		900		·	(Signature)	Relinquished by: (		Date / Tir		ved by: <i>(Signature)</i>
	Relinquished	oy: '(Si	gnaturi	<i>")</i>	Ua	te / Tirr	19	HOCON	ea py:	(Signatur <b>e</b> )	Relinquished by: (	Signalure)	Date / Tin	THE   110CO	ved by: <i>(Signature)</i>
	Relinquished	by: <i>(Si</i>	gnaturi	9)	Da	te / Tim	ne	Receiv <i>(Signa</i>		Laboratory by:	Date / Time	Remarks is cus	stody sea	l intact? Y/N	/nonë
I		2 (Bas	5.011 D	 		)	.7)		Illion	hich may be used	Split Samples	I Accepted (Signa	ture)		· _ · · · · · · · · · · · · · · · · · ·
	DISTRIBUTION	:	-						1	men may be used		Decly 1			

		Inorganic Traffic Report	SAS No.	Case No.
	d States Environmental Protection Agency Iboratory Program Sample Management Office PO Box 818 Alexandria, VA 22313 703-557-2490 FTS 557-2490	& Chain of Custody Record	(if applicable)	20848
. Project Code Account Code	2. Region No. Sampling Co.	(For Inorganic CLP Analysis) 4. Date Shipped Carrier	6. Preser	7. Sample
932023	Region V CHam HILL	9/22/93 Fed EX	vative (Enter in	Description (Enter
Regional Information	Sampler (Name)	Airbill Number	Column D)	in Column A)
TGB102	Laura Peterson	7731327376	1. HCI 2. HNO3	1. Surface Water
Non-Superfund Program	Sampler Signature	5. Ship To ITMO St. Louis Laborat	3. NaOH	2. Ground Water 3. Leachate 4. Rinsate
Site Name Carter-Lee. Lumber	3. Type of Activity Remedial Removal Lead Pre- RIFS CLEM SF Remedial RD REMA	13715 Rider Trail North	6. Ice only 7. Other	5. Soll/Sediment 6. Oil (High only) 7. Waste (High only)
Dity, State Site Spill IE Endianapolis, IN BD		Earth City, mo 63045 ATTN: Bob Cowart	N. Not preserved	8. Other (Specify)
CLP A B C Sample Enter Conc. Samp # Low Type		F G H I Specific Station Mo/Day/ Number Location Year/Time	Initials CLP Org.	K Enter Appropriate Qualifier for Designated Field QC
(from Box 7 High Grat		lumbers Number Sample Collection	Samp. No.	B = Blank S = Spike D = Duplicate PE = Perform. Eval. = Not a QC Sample
MEZ959 2 Low Gra	2 X 5-19	1026 CMW-1 9/22/93134.	SP EKJGI	
MEZ959 2 Low Gra			SLR EKSGI	
MEZ940 2 200 Gra		036 CMW-2 1825	la EKSLOZ	
MEZ940 2 Low Gra			la EKS42	
MEZ961 2 Low Gra	┈╪╼╌╼╾╌╪╼╪╌╌ <b>╀╌</b> ╪╾╌╴┼┈╾┼╌╴┼╼╾ _┉ ╷ <b>╼</b> ╧╌ <u></u> ╶╶	038 CMW-3 1440	lp EK563	
MEZ961 2 Low Gra		1039 CMW-3 1440	la EKJU3	
MEZ962 2 Low Gro		1048-50 Cmw-4 1925		Electric metales
	43 X 5-1910	┉╧┺╍╍╍┟╍╍╄┹╍╼┲╄╍╍┍╂╍╍┺┲┉┉┉┉┉		stra Volume for ms/ms D
	<del>╺┤─╺──┤╶┼╶_╎Ҝ╡──┤╴┼┈┼──┤[╤]┈╴</del> С╴ [╤]			Extra Volume for ms/ms
MEZ963 2 Low Gra.			lo EKS67	Duplicate of ME
MEZGU3 2 Low Gra. Shipment for Case Page 1 of_		1054 CMW-5-FR V V te Additional Sampler Signatures	Chain of Custody S	Duplicate of ME
complete? (Q/N)	mE2962 (MS/MSD) ME2963 (Dupticate) (14	9130193		, 3886
		HAIN OF CUSTODY RECORD		
Relinquished by: (Signature)	Date / Time Received by: (Signatu 9/22/93 1700	re) Relinquished by: (Signature)	Date / Time Rece	vived by: (Signature)
Relinquished by: (Signature)	Date / Time Received by: (Signatu	re) Relinquished by: (Signature)	Date / Time Rece	vived by: (Signature)
Relinquished by: <i>(Signature)</i>	Date / Time Received for Laborato (Signature)	ry by: Date / Time Remarks Is	s custody seal intact? Y/N	V/none
DISTRIBUTION:	s EPA Form (2075-6), previous edition which may		gnature)	- 0.00u

SEE REVERSE FOR ADDITIONAL STANDARD INSTRUCTIONS 12/10/70

	Contract La	Allow Program Sample Management Office     8       PO Box 818 Allexandria, VA 22313     8       PO Box 818 Allexandria, VA 22313     8       2 Region No.     Sampling Co.       2 Region No.     Sampling Co.       4. D.     9/2       Sampler (Narre)     Alroit       1 Aurra     Petersorv       Sampler Signature     5. S       3. Type of Activity Hernedial Removal     73       SF Prematial RD     RA       PRP     RA       ST     SSI       O&M     OIL       ARA     ALL	Inorganic Traffic Report Chain of Custody Record (For Inorganic CLP Analysis) all Shipped Carrier 22/93 Fed EX Ill Number 7731327376 The St Louis Laboratory 715 Rider Trail North arth City, MO 63045 TTN: Bob Cowart	5. Ice only 7. Other	Case No. $\mathcal{R} \subset \mathcal{S} \not \mathcal{L} \mathcal{S}$ 7 Sample Description (Enter in Column A) 1 Surface Water 2. Ground Water 3. Leachate 4. Rinsate 5. Soil/Sediment 6. Oil (High only) 7. Waste (High only) 8. Other (Specify)
лА 140	CLPABCSampleEnterConc. SampleNumbers#LowType(fromfromMedComp(labels)Box 7HighGrab	/ trom 8 8 8 0 or Tag Num	mber Location Year/Time I	I J ampler Corresp. Initials CLP Org. Samp. No.	K Enter Appropriate Oualifier for Designated Field QC B = Blank S = Spike D = Duplicate PE = Perform Eval — Not a QC Sample
205 200 200 200 200 201 201 201	MEZ964 2 Low Grad MEZ964 2 Low Grad MEZ966 5 L Com MEZ965 5 L Com MEZ965 5 L Com MEZ965 5 L Com MEZ967 5 L Com MEZ967 5 L Com MEZ967 5 L Com	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	184 CL BK03.FR	EK368 EK370 EK370 EK370 EK370	DUP OF MEZILLA
	Shipment for Case complete? (Y/N) Page 201	I     I     I     I        Sample used for a spike and/or duplicate       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I       I     I     I       I     I     I       I     I     I       I     I     I       I     I     I       I     I     I       I     I     I       I     I     I       I     I     I       I     I     I       I     I     I       I     I     I       I     I     I       I     I       I	•	Chain of Custody .388.5	Seal Number 3886
	Relinguished by: (Signature)	CHA Date / Time [Received by: (Signature)	IN OF CUSTODY RECORD Reilinguished by: (Signature)	Date / Time Re	ceived by: (Signature)
	20-				
	Relinquished by: (Signature)	9/حد/9 Date / Time Received by: (Signature)	Relinquished by: (Signature)	Date / Time Re	ceived by: <i>(Signature)</i>
	Relinquished by: <i>(Signature)</i>	Date / Time Received for Laboratory b (Signature)		ustody seal intact? Y	//N/none
	EPA Form 9110-1 (Rev. 5-91) Replace DISTRIBUTION:	s EPA Form (2075-6), previous edition which may be u		atur <del>o</del> )	- ė
		npy White - Lab Copy for return to Rea . Yellow	- I =b Declined		


<b>S</b> EPA	Contract La	I Stales Envi boratory Pro PO Box 818 703 557-2	oronmental P Igram Samp Alexandria 1490 FTS 5	rotection Agency le Management Office VA: 22313 57:2490	Specia P	al Analytica acking List/Chain of C	I Service	SAS NO	0848	Y	
932023	ount Code	Ĉ.	ainn V	Sampling Co CITZYN HILL-	9/22/	193 Fed Ex	6. Sample Description (Enter	n	7. Preserv (Enter in		n CJ
Regional Information $TGBI02$		Sar	npler (Nan Laurc	e feterson	Airbill Nun	31327343	in Column		1 HCI		
Non-Superlund Program Site Name Carter - Lee- City. State Findianapolis, 11	Site Spi	San 3. 1 <i>R</i> ( SF II ID PR	npler Signa <u> <u> <u> </u> /u></u>	Alure Mity Remodul Removal RIFS CLEM RA REM O&M OIL NPLD UST	5. Ship To SVL 1 One C Kelloc		2. Ground W 3. Leachate 4. Rinsate 5. Soil/Sedin 6. Oil 7. Waste 8. Other (Specify)	later nent	2. HNO3 3. NAHSO 4. H ₂ SO ₄ 5. NAOH 6. Other <i>(Specil</i> 7. Ice on N. Not pr	(SAS) <i>(y)</i> Iy	
Sample Numbers Ma Er	A I atrix Co nter Lo om M	B onc F ow led igh	C Preserv- ative Used from Box 7	D Analysis	E Sample used for spike and/or duplicate	F Regional Specific Tracking Number or Tag Number	G Station Location Identifier	H- Mo/E Year/ Sam Colled	Day/ S Time pple ction	l Sampler Initials	J Designa Field C
1.20848-01 6	2 2	'-m	4	Toc, COD		5-191091	CmW-1	9/22/9	3 1345 1	2p	
2		┨	N	Alkalin. ty		5-191092		_ <u>_</u>		lp-	
3		$\left\{ \dots \right\}$	N	Chloride.		5-191093				10	
4 V			$\mathcal{N}$	TDS TSS		5-191095	$\frac{V}{Cmin=2}$		1825	0	
520548-02			4	TOC, COD		5-191096	Cmw-2		1000	212	
		┦	$\Lambda$	Aikalin ty		5-191097				4-	
		<u>∤</u> ∤	N	Chloride	ł	5-191098					
		<u>}</u>	N	TDS, TSS			V		V	<u>L</u> 2	<b>↓</b>
9 20848-C-3	7		4	TOC, COD		5-191101	<u>Cmui-3</u>	+	1440	Rf2	ŧ
Shipment for SAS		dy S	N lis .	Alkalinity 3893,	3894		¥		<b>V</b> 1.	<u>.                                    </u>	L
Relinquished by (Signal	turol	Data	Time	Received by: (Signa		CUSTODY RECORD	(Signatura)	Date / Time	Received	1 hv: /\$"	anatural
> Peterm		9/2018				Relinquished by:					
Relinquished by: (Signa	ture)	Date	e / Time	Received by: (Signa	ture)	Relinquished by	: (Signature)	Date / Time	Received	d by. <i>(Si</i>	gnature)
Received by (Signature	)	Date	e / Time	Received for Laborat (Signature)	lory by:	Date / Time	Remarks Is c	ustody seal int	lact? Y/N/no	ne	
EPA Form		·	*			Split Samples	Accepted (Sign	nature)			

.

## 8 022890

1 Project Gode	<b>N</b> ACCOUNT C.	7017	İBNB Alesandra 257 çaluo ETsr 5	<b>VA</b>	• Р.	al Analytica acking List/Chain of C apped Carrier		,	いちワト	
Hegional Information				CHOM HILL		193 Feel Cx	6 Sample Description (Enter in Column		7. Preservative (Enter in Colu	mn ()
I G B / C. Non Supertund Progr Site Name Carter - Lee City State Inducarapeters,	am /	ber- Spill ID		c felerson ature w.c. veteron IMIY Hammadia Hammadi RIFS MCLEMI 1	5 Ship To SVL A One C Hello	31 3.27 34 Anakylicki , Tre Suvenment G gg , ID 838 Blake John	3 1 Surface W, 2 Ground W, 3 Leachate 4 Rinsate 4 Rinsate 5 Sol/Sedim 6 Oil 7 Waste 8 Other	alor stor om	1 HCT 2 HNO3 3 NAHSO4 4 HSSO4 5 NAOH 5 Other (SAS) (Specify) 7 Ice only N Not preserve	ict
Sumple Numbers	A Matrix Enter from Box 6	B Coni Low Med High	C Preserv ative Used from Box 7	() Analysis	E Sample Used for spike and/or duplicate	F Regional Specific Tracking Number or Tag Number	G Station Location Identifier	H Mo/L Yeat/ Sam Collec	Say/ Sample Firme Fortcals ple	r Designated Field QC
1 20848 C13 2 20848-04 4 5 7 20848-05 8 9 10			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Chloride TDS, 755 TOC, COD Alkal, nity Chloride TDS, 755 ToC, COD Alkalnidy Chloride TDS, TSS		5-19110 3 5-191105 5-191106 5-191107 5-191108 5-1911108 5-191110 5-191112 5-191112 5-191113 5-191113	Conjuiry Conjuiry Convers	ند:/ریـ/۱ ۱۹ ۱۹ مد/۱۹ ۱۹ مد/۹	Part La La La La La La La	
Shipment lor 6AS complete? (Y/N)	6	estin	a) Secale	52 3893	38	(94				
(Reinquished by - (Si	anahwal	1	Date / Time	Received by Signa		CUSTODY RECORD	(Signature)	Date / Time	Rocaived by (	Signature)
$\sim 10$	 	9/2	ンター17200 Date / Time	,	·	Relinguistred by		Date / Time	Rucoved by (	
Received by Signa	-		 Date / Time	Received for Labora (Signature)	lory by.	Date / Time	Remarks Is cu	istody seal in	laci [†] Y/N/non#	

1 Project Code	Account (		2. Region No	557 2490 Sampling Co	Pa 4. Date Sh	al Analytica acking List/Chain of ( hipped Carrier	Custody	·		084							
J3ZC23			Ruyion V	CHOM HILL	Hom HLL 9/00/93 Fed EX 6 Sample Description							7. Preservative (Enter in Column C)					
Regional Informatic		· · · · · · · · · · · · · · · · · · ·	Sampler (Nai	me)	Airbill Nun	hber		nter Column A)	Ì								
TGBIC			Laura		77.	31327343	1. S	urface Water		1 HCI				ĺ			
Non-Superfund Pro	ogram		Sampler Sign	lature 🚬	5. Ship To			round Water eachate		2. HNO 3. NAH							
			Main		ISVLI	Analytical, Th	ΛC  · 4. H	insate		4. H2S0	04			ĺ			
Site Name			Lead Pr	tivity Remodual Removal RIFS CLEM dial RD REMA	One 6	Sovernment G	$nleh_{6.0}^{5.5}$				r (SAS)						
Carter L					Kelloo	9 ID 83	837 ^{7.}	/aste )ther		(Spe 7 Ice (							
City, State Findian upolis		e Spill ID BP	PRP PA ST SSI FED LSI	O&M OIL NPLD UST		Blake Johns		(Specity)			préserveo	d 					
Sample Numbers	A Matrix Enter from Box 6	B Conc Low Med High	C Preserv- ative Used from Box 7	D Analysis	E Sample used for spike and/or duplicate	F Regional Specific Tracking Number or Tag Number	G Stat Loca Ident	ion tion	H Mo/Da Year/Ti Samp Collect	me le	l Sampler Initials	Desig Field	J nated I QC				
120848-00	22	Lm	4	TOC, COD	duplicate	5-19/116	Conus	-5-FR 9	12/03	1705	le-	Duply	inte	C			
2		<u>+ − </u> <u>\</u> −−	N	Alkalinity		5-19/117		5 1 14			l'a-	ecyen		2			
3			N	Chloride		5-19/118					lh	+					
4		N	N	TDS, TSS		5-19/120				,	RC		1	1			
5 <b>Y</b>		<b></b>	1.	1,1,2,1,2,2	<b>├-</b> ₩		Y		¥			1	<i></i>	1			
6		1	†		<u> </u>		<u> </u>							1			
7							· · · · - · ·					1		1			
8					t		••••••					1		1			
9		·									••	1		1			
10											•			1			
Shipment for SAS complete? (Y/N)	(	Justul	y Seal.	\$ 3893	3894	L	I				I	.1		1			
				, ,	CHAIN OF	CUSTODY RECORD	)							7			
Relinquished by:	'Signature)		Date / Time	Received by: (Signa	ture)	Relinquished by	: (Signature	) Dat	e / Time	Receiv	ed by∶ <i>(S</i> i	ignature)	)				
MATI	Ma	9/0.	0/4170	0						5							
Relinquished by	'Signature)		Date / Time	Received by: (Signa	ture)	Relinquished by	: (Signature	) Dat	e / Time	Receiv	ed by: (S	ignature)	)				
Received by (Sig	nature)		Date / Time	Received for Labora (Signature)	lory by:	Date / Time	Remar	ks Is custod	ly seal inta	 ct? Y/N/r	none						



	<b>€</b> E	P/	<u>_</u> د.	United Intract Lat F	States E oratory f O Box 8 703-557	^p rogram 18 Alexa	ental Pro Sample Indria, V. FTS 553	Manage A 22313	Agency ement O 3	ffice	Org & Cha	an in	nic Traffic Re of Custody F Organic CLP Analysis	por Rec	t ord	SAS (if ap	No. plicab	ie)	Case No. 20848
	1. Project Con 937.C. Regional Infor TG	3 mation		nt Code	ƙ	ampler	(Name	<u>CH</u>	um,	412L son	4. Date Shi タノュュノ Airbill Numl	ppe 9-5 ber	d Carrier	E>		-	v (E Co	reser- ative Inter in Ilumn D)	7. Sample Description (Enter in Column A)
	Non-Superfun Site Name Carter- City, State Fnd iuncipe	id Progr - Lee	ram 2 4 ii	m be	3 10 10	ampler	Signation Pro- Pro- Parendia PA SSI LSI	ty Rei RIFS RIFS RD RA O&M NPLC		Removal EM MA M	5. Ship To Ross 164 Stroi	Д, З : ngs	nalytical Se B Foltz Ind sville, OH Taig Caldo	ruii dus 4		Kury	3. N 4. H 5. C 6. N.	ICI INO3 VaHSO4 I2SO4 Diher (Specify) Ice only Not Preserved	1. Surface Water 2. Ground Water 3. Leachate 4. Rinsate 5. Soil/Sediment 6. Oil (High only) 7. Waste (High only 8. Other (Specify)
ETH NO	CLP Sample Numbers (from labels)	A Enter # from Box 7	B Conc. Low Med High		D Preser vative from Box 6		E RAS Ar BNA		High only	Track	F nal Specific ing Number g Numbers		G Station Location Number		H Mo/Day/ Year/Time Sample Collection		l npler ials	J Corresp. CLP Inorg. Samp. No.	K Enter Appropriate Oualifi for Designated Field OC B = Blank S = Spike D = Duplicate PE = Perform, Eval. = Not a OC Sample
SUS	EKJUI	2	Low	Grub	1	X				5-19	71028-5	29	Cmw-1	8/2	12/23 134	15 4	2	MEZ459	
公兄	EKJUI	く		Grab			$\times$			5-19	1030		Cmui-1	,		Űŕ	2	ME2959	
EC-8	EKSGI	2	Low	Grab	$\mathbb{N}$			X		5-19	1031		Cmw-1		$\checkmark$	le		MEZ459	
909	EK562	2		Grat		X				5-19	71032-3	33	Cmw-2		1825	- le	2	ME 2440	
5.9	EKSUR	ス		Grab			X			5-19	1034		Cmw-2			2.	e	MEZQ60	
203	EKJUL			Grab				X		5-1	91035	-	CMW-2			Z		MEZYLOC	
SIL	EKJ63	ų	-	Grab	1	X				5-19	1040-4	11	Cmw-3	_	1440	) R	2	MEZYGI	
SIC	EKJ63	2	Γ.	Grab	N		X			5-19	1042		C.m.w.3			l		MEZYUI	
510	EK563	2	Low	Grab	N			X		.5-	9104-	3	Cinw-3			Ê	2	MEZ961	
RUL	EKJGY	2	Low		1	X				5-1	91044	1	CTBOI			le le	-		Trip Blank
	Shipment for complete? (Y	Çase VN)	Page	1 of	2 s	ample (	used fo	r a spik	ke and/	or duplic			ditional Sampler Sign	ature	95	Ch		f Custody Se 889	
												cus	STODY RECORD						
	Relinquished		-	· (	Da    גנ/ ו	te / Tim	(	Receiv	ved by:	(Signat	urə)		Relinquished by: (5	Signa	turø)	Date	/ Tin	ne Receiv	ed by: <i>(Signature)</i>

E

Relinquished by: (Signature)	Date / Time	Received by: (Signature)	Relinquished by: (Signature)	Date / Time	Received by: (Signature)		
Relinquished by: (Signature)	Date / Time	Received for Laboratory by: (Signature)	Date / Time Remarks	Is custody seal intac	st? Y/N/none		
EPA Form 9110-2 (Rev. 5-91) Replaces	EPA Form (2075-7)	revious edition which may be used	Split Samples Accepted	(Signature)			

EPA Form 9110-2 (Rev. 5-91) Replaces EPA Form (2075-7), previous edition which may be used DISTRIBUTION:

Blue - Region Copy Pink - SMO Copy White - Lab Copy for Return to Region Yellow - Lab

SEE REVERSE FOR ADDITIONAL STANDARD INSTRUCTIONS A 162

ð

Declined

Contract La	States Environmental Protection Agency sciatory Program Sample Management Office PO Box 818 Alexandria: VA: 22313 - 201 557:2490 - E15:557:2490	Organic Traffic Re & Chain of Custody (For Organic CLP Analysi	Port SAS N Record s)		
Project Code Account Code 32005 Regional Information	P. Rugion No   Sampling Co Reg. un ∨   (142111-1414) Sampliji (Namu)	Airbill Number		Preser 7 Sample Valive Description (Enter in (Enter Column D) in Column A)	
TGB102 Non Superlund Program Site Name Curte - Les Lurn ber City, State Site Spil Indécomption, 121 67	ID ST SSI ORM OIL FED LSI NPLD UST	5. Ship to Ross Analybrack	Services dustrial Pring 4 4141360	1     HCi     1     Surface Water       2     HNO3     2     Ground Water       3     NaHSO4     3     Leachate       4     Hissite     4     Rinsate       5     Other     5     Soil/Sediment       (Specify)     6     Oil (High only)       5     Ice only     7     Waste (High only)       5     Ice only     7     Waste (High only)       6     Not     8     Other       9     resorved     (Specify)	
CLP     A     B     C       Sample     Enter     Conc     Sample       Numbers     #     Low     Type       (from     from     Med     Comp /       Labels)     Box /     High     Grab	vative from Box 6 VOA BNA Pust/ ARO/ PCB TOX	gional Specific Station icking Number Location Tag Numbers Number	H F Mo/Day/ Samp Year/Time Initia Sample Colliection	Is CLP Inorg Simp. No B+Barin S+typical D+Dupleate Ff = Furtherm Live - Flat a OC-tempor	
EKSUS 8 1.000 EKSUS 8 1.000	1 X X 5 N X 5 N 5	191045-46 CFBCI 191047 CFBCI 191048 CFBCI	1/22/22/22/00 20 24 24 24 24 26 26	Freier Blan Freier Blan Keler Blan	) p   ] p   s=
Shipment for Gase Page 1 of complete? (Y/N)	Sample used for a spike and/or dup			n of Custody Seal Number 38S2, 3820つ	
Relinquished by: (Signature)	Date / Time Received by: (Sig	CHAIN OF CUSTODY RECORD (Relinguished by: )	(Signature)   Date /	Time (Received by (Signature)	1
	בטרן באלי (Signation of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the s				
Relinquished by: <i>(Signature)</i>	Date / Time Received for Labor (Signature)	atory by: Date / Time	Remarks Is custody s	eal intact? Y/N/none	
EPA Form 9110-2 (Rev. 5-91) Replaces	EPA Form (2075-7), previous edition which m	say be used Split Samples	Accepted (Signature)		
DISTRIBUTION:	(	r	] De <b>(</b> d		

<b>S</b> FP		l States En boratory Pi PO Box 81	ivironme rogram 8 Alexa	intal Pro Sample Indria, V	tection Ag Managen A 22313	iency nent Offi	lice	Orgai & Chain	nic Traffic Re of Custody F r Organic CLP Analysis	port Reco	ord		AS No. Lapplicat		Case N	10. 0848
		703-557-	-2490	FTS 55	7-2490					5)					a	0378
1. Project Code	Account Code				Samplin	-		. Date Shippe		-				reser-		ample
937C23			egior		CHa	un k		9/22/9-				ative Enter in	Description (Enter			
Regional Information		Sa	ampler,	(Name	"	1	A	irbill Number	_					olumn D)	ìn	Column A)
TG-BIOZ	2		7	aur	a Pe	ter.	1		32738C	)			1.1	HCI		Surface Water
Non-Superfund Pr	ogram	Sa	$\sim$	Signati	()	ton		i.ship To Russ An	alytical Ser Foltz Fodus Wille, OH	vices	, INC		3. 1	HNO3 NaHSO4 HoSO4	3. L 4. F	Bround Water Beachate Binsate
Site Name		3.	Туре с	of Activi	ty Rem		Removal	16433	FoI+2 Indus	brial	PKW	1	5. (	H2SO4 Other		Soil/Sediment Dil (High only)
Carter-Le	e Lumber	s	F 🖂	Pre- Remedia	RIFS		MA	Stronas	wille OH 4	4413	36 '	'	6.	<i>(Specily)</i> Ice only	7. V	Vaste (High only)
City, State	Site Spil		RP		]RA [		м 🛄 –						N.	Not		Other (Specify)
India napolis,	IN BD	FE	ÉD⊟	LSI	O&M NPLD		T 🗐	attn: C	raig Caldu	ell				preserved		(•••••••))
CLP A	B C	D		E				F	G		н		1	J	1	ĸ
Sample Ent		Preser-		RAS Ar	-		Region	al Specific g Number	Station Location		Mo/Day/ ear/Time		Sampler Initials	Corresp.		propriate Qualifie
Numbers from	n   Med  Comp./					High only	or Tag	Numbers	Number		Sample		minais	Samp. No.		Blank S=Spike
labels) Box	7 High Grab	Box 6	VOA	BNA	Pest/ PCB	ARO/ TOX					ollection				PE	D = Duplicate = Perform, Eval. Not a QC Sample
EKJUL 2	LowGrat		$ \times $				5-191	057-62	Cmw-4	9/2	2/93 19	125	lp	MEZ960	Extra.	Volume for MS
EKS64 0	1	1 - 1		X				43-64	Cmw-4		•		la	MEZ945		
EKJUL 2		1			X			105-66	Cinw-4		١	J_ İ	la.	MEZGLed	1	
EK208 2	1.		X							1-1	170		le-	MEZ96		
		1 1		X			5-191	067-68		┼─╂	_, <u>,,</u>		lp-			
									Cmw.5		<u></u>			MEZ96		
EKJ68 2				<u> </u>				91070		┼─┼	}-	+	le_	ME296		
EKJ672	Low Grat	1	X					071-72	COWS-FR			-+	lp_	ME296	1	plicate-0
EKJL7 2	Low Grat			$\mathbf{X}$			5-19	1073	CMW-5-FR	<b></b>			lp_	MEZ96	₽[	
EK367 2		$\sim N$			X		5-1	71074	Cmw-5-FR	V V	- V		lp	ME290		
EK569 8			X				5-19	11075	CTB02				la	-	Tri	p Blank
Shipment for Gase	Page 1 of	L Sa	imple u	used fo	r a spike	and/o	or duplicat	e Ad	Iditional Sampler Sign	natures	3		Chain	of Custody Se	al Numbe	ər
complete? (Y/N)		Ë	K36	6 (n	ns/m Daet	caz		59/30/93				ł		3891	3892	
	·	I <b>F</b>		- <i>L</i> L	Dup	ILMA			STODY RECORD			ł.				
Relinquished by:	(Signature)	Dat	te / Tim	10	Receive	ed by:	(Signatur	θ)	Relinquished by: (	Signati	Jre)	D	ate / Tir	ne Recei	/ed by: (	Signature)
× Pete	in	9/22/9	2 1	700												
Relinquished by:			te / Tim	9	Receive	əd by:	(Signatur	e)	Relinquished by: (	Signat	ure)	D	ate / Tir	ne Recei	ved by: (	Signature)
Relinquished by:	(Signature)	Dat	le / Tirr	10	Receive	ed for L	Laborator	v by:	Date / Time	Rer	narks Is	s custo	ody sea	Lintact? Y/N	none	
					(Signati			, .,.					,			
					• •				Split Samples	Accep	ted (Si	ignatu	re)			
EPA Form 9110-2 (R	ev. 5-91) Replaces	EPA Form	n (2075-	-7), prev	rious edit	tion wh	lich may b	e used		•		<b>.</b>	,			
DISTRIBUTION:	Pink - SMO Copy	. White	- Lab	Conv fo	r Return	to Real	ion Yelic	w.l.nb		Declin	ed					

.

f

É

SEE REVERSE FOR ADDITIONAL STANDARD INSTRUCTIONS 0 250500

**Organic Traffic Report** SAS No Case No. United States Environmental Protection Agency Contract Laboratory Program Sample Management Office PO Box 818 Alexandria: VA 22313 (if applicable) & Chain of Custody Record (For Organic CLP Analysis) 20848 703 557 2490 115 557 2490 4 Date Shipped Carrier Project Code 2 Region No Sampling Co. Account Code 6 Prosor 7 Sample Fed EX 9/22/93 Reyon V CHOM NILL Description vativa (132(23 (Enter in (Enter Airbill Number **Regional Information** Sampler (Name) in Column A) Column ()) Laura feterson 7731327380 TGBIDD Surface Water 1. HCL 2. Ground Water Non Superfund Program Sampler Signature 5. Ship To 2 HNO3 3.1 unchate Ross Analytical Services, Inc 16433 Foltz Industrial PRay 3. NaHSO4 Faun tterm 4 Rinsate 4. H2SO4 3. Type of Activity Hernedial Hern and Pie RIFS CLEM SF Hernedial RD REMA PRP PA RA REMA ST CLEM 5. Soil/Sediment 5. Other Hernoval Site Name 6. Oil (High only) (Specity) 6 Ice only Carter Lee Lumber 7. Waste (High only) Strongsuille, OH 44136 8. Other N. Not City, State Site Spill ID (Speaty) ST 1ssi ATTN: Craig Caldwell ] O8 M [ OIL preserved Indianapolis, IN FEDITISI NPLD UST κ CLP A С D G **RAS Analysis Regional Specific** Mo/Day/ Enter Conc Sample Prese Station Sampler Corrusp Inter Appropriate Qualifier Sample Year/Time Tracking Number CLP Inorg. for Designated Field QC Location Initials Low Typu vative Numbers High or Tag Numbers Sample Samp. No. Med from Comp / Number from B = Hank S = Spha (from only Collection BOX 6 VOA Box 7 High Grab D = Duplemin BNA Pest (...toofs) ARO/ PE + Pertarm Eval PCB TOX - Not a QC Sample 5-191076-77 CLBK03 19/22/83 RIO 2/2 ENJ70 5 L Gung  $\mathcal{N}$ X ME2946 5-191078 CLBK03 5-19108182 CLBK03-FR 1210 Lp 5-191083 CLBK03-FR 1210 Lp 5-191083 CLBK03-FR 1210 Lp 5-191086-87 CLBK06 1135 Lp L..  $\times$ EK5 70 5 N  $\times$ ME 2966 Komp L. 5 EKJ71 X ME2445 DUI OF LEYE  $\mathcal{N}$ Kemp (113 5 EK571  $\mathbf{X}$ N mezquist land of the star Х Comp 5 1-EKSON SIL N Х ME296 5-191088 C+BKOG 1135 5 Х 1.1 EKJ72 lr-ME 294 -nin ( Sample used for a spike and/or duplicate ( ) Additional Sampler Signatures Page 1 of 2 Chain of Custody Seal Number Shipment for-Gase complete?( Y/N) EKJ71 (CLBKOJ-FR) akoby 3891, 3892 CHAIN OF CUSTODY RECORD Relinquished by: (Signature) Date / Time Received by: (Signature) Relinquished by: (Signature) Date / Time [Received by: (Signature) 9/22/931700 Relinguished by: (Signature) Date / Time Received by: (Signature) Relinquished by: (Signature) Date / Time Received by: (Signature) Date / Time Remarks Is custody seal intact? Y/N/none Received for Laboratory by: Relinquished by: (Signature) Date / Time (Signature) Split Samples Accepted (Signature) EPA Form 9110-2 (Rev. 5-91) Replaces EPA Form (2075-7), previous edition which may be used DISTRIBUTION: Deor Bit- Begion Conv. Pink 540 Copy. White - 1 th Copy for Return to enton. Vallow - Lab

ð