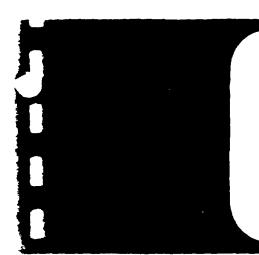
ARCS V



Remedial Activities at Uncontrolled Hazardous Waste Sites in Region V

SEPA United States Environmental Protection Agency

h0000058

REMEDIAL INVESTIGATION REPORT

Volume 2

ONALASKA MUNICIPAL LANDFILL Onalaska, Wisconsin

WA 01-5LL5.0 / Contract No. 68-W8-0040

December 22, 1989

REMEDIAL INVESTIGATION REPORT

Volume 2

ONALASKA MUNICIPAL LANDFILL Onalaska, Wisconsin

WA 01-5LL5.0 / Contract No. 68-W8-0040

December 22, 1989

GLT913/064.50-3

Appendix A SITE CHRONOLOGY

.

.

ι.

.

GLT913/035.50-1

Appendix A SITE CHRONOLOGY

1969

June 1 Town of Onalaska licensed by the Wisconsin Department of Natural Resources (DNR) to operate an 11-acre landfill (License No. 507), previously used as a gravel pit.

1970

July 7 Daily landfill operation reports through the end of July identify Outers Laboratories as depositing paper, wood, oil, and some drums at the site. Operation reports also dentify disposal of refuse from private citizens and trash and rubbish collection services.

1971

January 22 The DNR receives complaint concerning open burning of Outers Laboratories industrial wastes.

January 26 The DNR prohibits all open burning at Onalaska landfill; records indicate Outers Laboratories submitted solvent waste for incineration at the Onalaska site.

February 22 The DNR, in a letter to Outers Laboratories, suggests Outers' liquid waste be deposited in a designated area, covered immediately and compacted. Outers also suggested a lockable gate be installed at the site entrance.

August 31 The DNR claims operation of site is not in conformance with the Wisconsin Solid Waste Disposal Standards. All open burning was prohibited except clean wood, which could be burned in an area with restricted access. Metallic cleaner was to be dumped in a separate area and covered immediately.

May 25 Ordinance adopted by Town Board states landfill is to be used freely by town residents, and with written permit by nonresidents, commercial garbage and trash haulers.

1972

August 22 The DNR inspects site for locational conformance and determines if the site meets the locational requirements of the Wisconsin Standards.

1973

March 19 The DNR indicates that the Town of Onalaska had difficulty covering waste because a school and an industry (unnamed) dumped waste daily. The DNR reminded town of waste burning restrictions.

1974

October 15 Relicensing and Inspection Report names City of Onalaska, Town of Medary, and Town of Campbell as also using site.

Solvent reportedly dumped in a separate area at rate of approximately 500 gallons/2 weeks.

A DNR inspector observes leachate, deposition of unauthorized wastes (unspecified), open burning (unspecified), and monitoring wells in use.

1975

July 23 The DNR asks Town of Onalaska to identify the "acid and industrial chemicals" listed on license application as accepted by township from local industry for immediate burial.

772

July 26 Township reports the material is naphtha, a "standard solvent" used as a cleaning fluid, and says the site receives approximately 2,500 gallons/month. The DNR later determines material was from Outers Laboratories.

August 14 The DNR recommends Outers Laboratories find alternative methods to dispose of naphtha waste.

September 12 Outers Laboratories submits waste review form to the DNR claiming 90 percent of waste was generated by a metal cleaning process that contained naphtha and toluene and remaining 10 percent from paint and spray gun cleaning and machine shop cleaning fluids.

1976

April 16 Outers Laboratories informs the DNR that disposal of liquid waste at Onalaska Landfill has ceased.

June 17 The DNR cites need for a site engineering study because the presence of highly permeable sand and gravel soils on site and evidence of periodic high groundwater occurrences suggest waste material deposited in landfill might generate leachate that will affect groundwater quality.

1977

July 21 Town of Onalaska reports to the DNR that Bill's Pumping Service is dumping rinsing material from a can manufacturing company in La Crosse at a rate of approximately 600 gallons a week.

1978

February 9 The DNR issues an order to the township to submit a report of infield site conditions. The DNR finds Onalaska Landfill is not in compliance with Wisconsin solid waste codes. Violations are cited because site is operating without surface water drain control; site is located in area of permeable soils; site is operated without proper engineering plans and specifications.

April 17 In-field conditions report by Warzyn is submitted to the DNR. Conclusions recommend phased abandonment of the site because of downgradient groundwater contamination.

May 21 DNR inspection says township no longer receives canning wastes.

June 1 Meeting is held with the DNR and Warzyn to discuss in-field conditions report for Onalaska Landfill; concludes that monitoring well water levels should be determined monthly for 1 year and water quality analyses should be monitored quarterly.

Organic odor detected in soil samples from monitoring levels B-4 and B-3A.

The DNR agrees to phased abandonment proposal.

June 27 The DNR's Standard Hydrogeologic Review identifies St. Francis Hospital, Continental Can of La Crosse, Metallics, and Outers Laboratories as commercial refuse site generators. Continental Can is listed as major source of nonresidential refuse at the site.

Hydrogeologic review also indicates an average of 1 foot between the groundwater and refuse pile. Reported seasonal fluctuations in water levels causes waste to be in contact with groundwater for extended periods of time.

October 19 Warzyn submits Plan of Operation and Phased Abandonment Plan. Suggested the site continue to operate until grades are reached where surface water drainage is acceptably achieved. Abandonment proposed in three phases: November 1, 1978; October 1, 1979; and May 30, 1980, followed by a 2-foot cap and 6 inches of topsoil.

1979

May 1 Warzyn reports two sources of final cover material for landfill that meet DNR standards.

Warzyn water quality report concludes Onalaska Landfill is affecting groundwater quality as indicated by observed levels of chloride, total hardness, and conductivity.

May 4 The DNR issues plan approval and orders landfill closure by September 30, 1979.

October 1 Landfill license application lists Modern Clean-Up as a major waste hauler for Onalaska township. Mid-State Exterminators reportedly used to control landfill pests. Open burning occurs once every 2 months.

1980

May 30 The DNR modifies order to close landfill. Changes closure date to September 30, 1980.

December 11 A DNR memorandum reports copper wire was salvaged from transformers on the landfill site and identified Trempealeau Electric as a possible source.

1981

October 19 The DNR classifies Onalaska landfill as an open dump because of improper closure.

1982

January 20 The DNR informs Miller of plans to construct a replacement well.

July 15 Miller's attorney investigates Miller well water quality.

July 22 Final cap placed over the landfill. Cap seeding delayed until September 1, 1982.

September 7 The DNR samples monitoring wells and private wells for compliance with drinking water standards and for organic contamination.

November 5 The DNR recommends that well Nos. 4 and 2 and Miller's well be abandoned and replaced with new wells. Suggests increased monitoring and sampling for barium, manganese, and organic compounds.

November 12 Miller receives \$25,000 in damages from lawsuit against Outer Laboratories.

1983

January 14 Medary Well Drilling begins drilling a new, deeper well for Cecil Miller.

January 20 The DNR says transformer oil was either dumped on the ground or used to burn insulation off the copper wire.

May 2 An EPA Potential Hazardous Waste Site Inspection Report is submitted.

June 16 A National Priorities List Score Sheet is submitted.

1984

September Onalaska Landfill is placed on the NPL with hazard ranking of 42.97.

September 25 Tech Law, Inc., Fairfax, Virginia, submits draft report to the EPA identifying PRPs.

1986

September 24 Consent order negotiation meeting held with Town of Onalaska. Phased study approach to RI/FS is proposed.

1987

July 31 Town of Onalaska is named PRP by EPA.

October 9 In a Consent Order Negotiation Meeting, the Town of Onalaska proposed \$108,000 to do a preliminary investigation at the site. The town would not sign an open ended consent order without a monetary cap and asked to be released from liability for the site if RI/FS costs exceeded \$500,000. The town proposed that the EPA fund the remainder of the study if the cost exceeds that amount.

November 4 Deadline for consent order agreement. The EPA could not commit to a mixed funding settlement for an RI/FS. EPA would conduct the RI/FS.

1988

March 28 The U.S. EPA issues a procurement request order for funding an RI/FS.

GLT913/036.50

Appendix B CHARACTERISTICS OF CHEMICALS DEPOSITED ONSITE

-

GLT913/035.50-2

Appendix B CHARACTERISTICS OF CHEMICALS DEPOSITED ONSITE

NAPHTHA (VM & P)

Composed of 40 to 80 percent aliphatic hydrocarbons, 25 to 50 percent naphthenic hydrocarbons, 0 to 10 percent benzene, and 0 to 20 percent other aromatic hydrocarbons. Derived from petroleum?

Observable Characteristics:

Watery liquid Colorless Gasoline-like odor

Physical and Chemical Properties:

Flash point: 103°F Boiling point (1 atm): 266-311°F Specific gravity: 0.84 Latent heat of vaporization: 103-150 Btu/lb Heat of combustion: 18,200 Btu/lb Immiscible in water, components slightly soluble in water

NAPHTHA (Stoddard solvent)

Contains paraffins, naphthenes, alkylbenzenes, with a trace of benzene. Derived from petroleum.

Observable Characteristics:

Watery liquid Colorless Gasoline-like odor

Physical and Chemical Properties:

Flash point: 103°F Boiling point (1 atm): 320-390°F Specific gravity: 0.78 Latent heat of vaporization: 103-150 Btu/lb Heat of combustion: 18,200 Btu/lb Immiscible in water, components slightly soluble in water

NAPHTHA (High Flash)

A coal tar derivative consisting of a mixture of aromatic hydrocarbons, principally toluene, xylene, cumene, and possibly benzene (depending on grade).

Observable Characteristics:

Watery liquid Color - Crude - dark straw-colored Refined - water-white Hydrocarbon-like odor (like benzene, toluene, and xylene) Produces irritating vapor

Physical and Chemical Properties:

Flash point: 107°F Boiling point (1 atm): 200-500°F Specific gravity: 0.86-0.88 Latent heat of vaporization: 101 Btu/lb Heat of combustion: 18,200 Btu/lb Immiscible in water, components slightly soluble in water

MINERAL SPIRITS

A naphtha composed of a fraction slightly lower in boiling point than Stoddard solvent (names are often used interchangeably). Fraction contains paraffins, naphthenes, olefins and aromatics.

Observable Characteristics:

Watery liquid Colorless Gasoline-like odor

Physical and Chemical Properties:

Flash point: 105-140°F, depending on grade Boiling point (1/atm): 310-395°F Specific gravity: 0.78 Latent heat of vaporization: not available Heat of combustion: not available Immiscible in water, components slightly soluble in water

Solvosol (aka Mineral Spirits)

Ethanol (ethyl alcohol) used as a solvent for resins, oils, hydrocarbons, surface, cleaning preparations, surface coatings, etc.

Observable Characteristics:

Colorless, limpid, volatile liquid Pungent taste Ethereal, vinous odor

Physical Chemical Properties:

Flash point: 55°F Boiling Point: 173°F Specific gravity: 0.816 Miscible in Water

TOLUENE (Toluol)

Methylbenzene (C_7H_8)

Observable Characteristics:

Mobile liquid Colorless Distinct aromatic odor, milder than benzene

Physical and Chemical Properties:

Flash point: 40°F Boiling point: 110°F Specific gravity: 0.866 Immiscible in water, components slightly soluble in water

ASPHALTUM

A dark brown to black oily liquid or semiliquid bituminous material resulting from the distillation of petroleum. Consists largely of asphaltic hydrocarbons which is a mixture of paraffinic and aromatic hydrocarbons and heterocyclic compounds containing sulfur, nitrogen, and oxygen. Aka residual oil, liquid asphalt, black oil, petroleum tailings and residuum.

Observable Characteristic:

Oily liquid to semiliquid Dark brown to black color Tarry odor Physical and Chemical Properties:

Flash point: 300-550°F Boiling point: not pertinent Specific gravity: 1.11 at 50°C (liquid) Molecular weight range--290 to 630 Immiscible in water, components slightly soluble in water

PAINT FORMULAS

Proprietary formulas. Solvent components include high-flash petroleum and toluene. Substance is not water soluble.

SYNTHETIC LUBRICANT (PTL-1009)

Amine soap with chemical lubricity and extreme pressure additives.

Observable Characteristics:

Clear fluid Mild odor

Physical and Chemical Properties:

Flash point: 220°F Boiling point: 206°F Specific gravity: 1.08 pH_{2%soln}: 7.2 Saponification value: 24.8 Neutralization No.: 26.45 mg KOH/g Cloud point: 60°F Soluble in water

BARIUM

A silver white metallic element. A secondary mineral constituent in carbonate sedimentation rocks of barite. Barium compounds used in many commercial processes. Barium is not very mobile in soils because it forms water insoluble salts and is unable to form soluble complexes with humic and fulvic materials. In an aquatic environment, solubility of barium is controlled by the solubility product of barium carbonate.

The properties of barium compounds vary with specific compounds. A few selected compounds are shown with their physical/chemical properties listed:

	Berium	Barium Carbonate	Barium Chloride	Barium Oxide	Barium Sulfide	Barium Suifate
Chemical Formula	Ba	BaCO ₃	BaC12	BaO	BaS	BaSo ₄
Molecular Weight	137	1 97	208	1 53	1 69	233
Physical State	Silver White Solid	White Crystal/ Powder	White Solid	Colo riess Crystals	In Aqueous Solution	Colo riess Solid
Boiling Point	1 63F°C	N/A	156°C	2,000°C	-	
Melting Point	730°C		960°C	1,923°C		1,580°C
Density (g/cm ³)	3.5	4.43	3.9	5.72	4.25	4.5
Vapor Pressure	1.810 x 10 ⁻⁵ mmHg	N/A	N/A	N/A	N/A	N/A
Water Solubility (mg/l)	decomposes	2 (20°C)	31 (O°C)	3.5 (20°C)	decomposes	

.

e,

GLT913/065.50

•

Appendix C CAP INVESTIGATION

GLT913/035.50-3

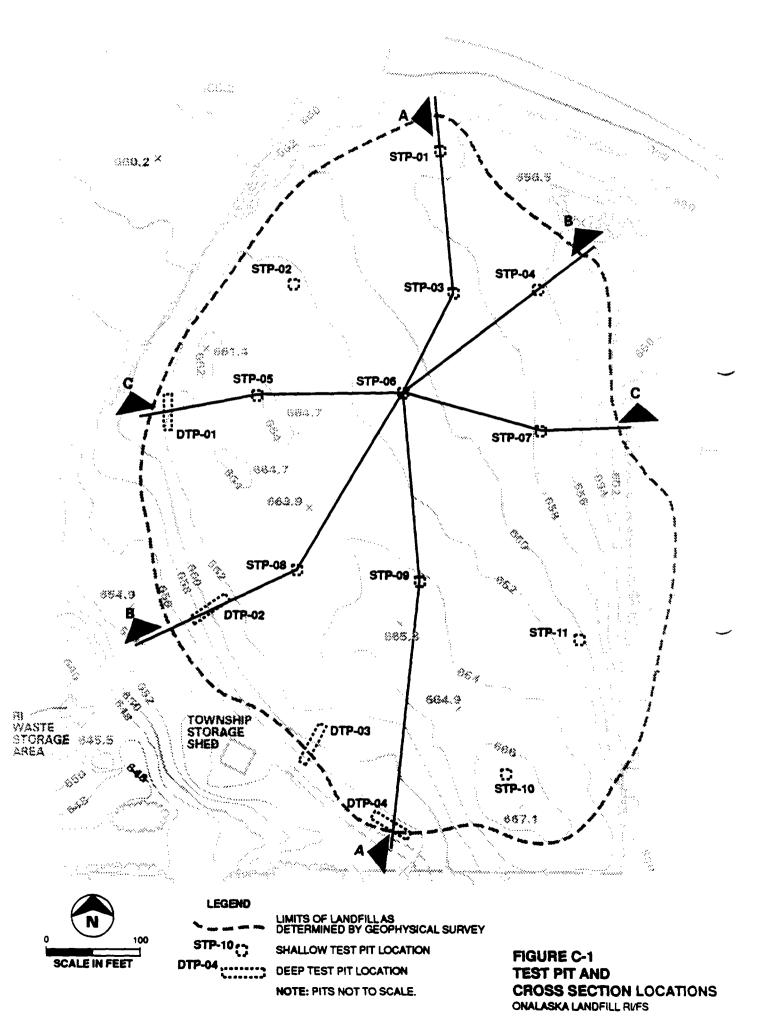
.

Appendix C CAP INVESTIGATION

INTRODUCTION

The cap investigation at the Onalaska Landfill was conducted in two stages according to the scope of Task F1, Subtask FS--Cap Investigation. The first was conducted on April 19 and 20, 1989; the second between May 1 and 3, 1989. The objectives of this investigation were to:

- Determine the permeability of the existing cap soils to evaluate the magnitude of precipitation infiltration
- o Determine engineering properties of the cap soils to evaluate their susceptibility to damage from freezing/thawing and desiccation and to evaluate the magnitude of damage that has occurred because of freezing and thawing, desiccation, and root damage


During the first stage of the cap investigation, 11 shallow test pits (STP-01 through STP-11) were excavated through the cap to characterize the thickness of the cap and physical properties of the cap soil. Depths of the shallow test pits ranged from 2.5 to 5 feet. Soil samples, consisting of Shelby tubes and bag samples, were taken at each location for geotechnical analysis. A total of 13 Shelby tube (3-inch thin walled sampler) samples were taken in accordance with ASTM D 1587. At least one Shelby tube was pushed at each test pit location. At locations STP-02 and STP-06, two tubes were pushed. At least one bag sample was taken at each test pit location. Two bag samples were taken at STP-01, STP-03, and STP-04.

Test pit locations are shown in Figure C-1. Test pit logs are included as Attachment C-1. Sample intervals are shown on the test pit logs. In addition to the shallow test pits, four deep test pits were excavated, as shown on Figure C-1, as part of the Task FI, Subtask FI-Solvent Disposal Area Investigation. Deep test pit wall logs were also used to aid in cap characterization; they are included in Appendix H, Source Area and Test Pit Investigation.

The following persons were onsite specifically for the first stage of the cap investigation:

Field Team Member	Affiliation	Responsibility
Chris Lawrence	CH2M HILL	Field Team Leader/ Test Pit Logging
Jeff Salerno	Exploration Technologies, Inc.	Backhoe Operator
Dave Cruise	Exploration Technologies, Inc.	Helper

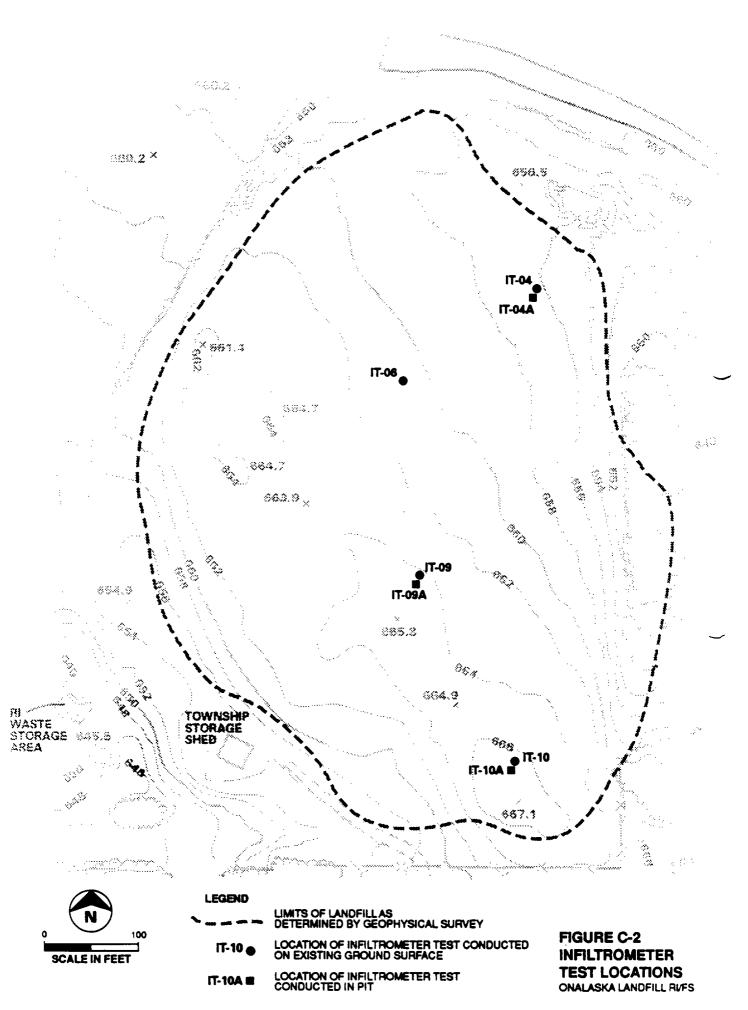
Geotechnical laboratory testing was performed by Warzyn Engineering, Inc., of Madison, Wisconsin.

During the second stage of the cap investigation, double-ring infiltrometer tests were conducted to quantify the in situ permeability of the cap. In situ densities and moisture contents of the cap were also measured. Seven double-ring infiltrometer tests were performed. Infiltrometer test locations are shown in Figure C-2. Infiltrometer test locations were chosen based on information derived from shallow test pit excavations, and are roughly adjacent to selected test pits. Density and moisture tests were performed at ground surface on 100 foot centers across the site and at selected locations in pits 1 to 1.5 feet underground. Density and moisture tests were performed to characterize the uniformity of the site soils and the durability of the existing cap.

The following persons were onsite specifically for the second stage of the cap investigation.

Field Team Member	Affiliation	Responsibility
Chris Lawrence	CH2M HILL	Field Team Leader/ Cap Evaluation
Paul Boersma	CH2M HILL	Cap Evaluation

SHALLOW TEST PIT EXCAVATION, SAMPLING, AND TESTING


PURPOSE

Shallow test pits were excavated to determine the thickness and material properties of the existing landfill cap. Material from or near the test pits was sampled and tested to:

- o Classify the soil in accordance with the Unified Soil Classification System
- o Determine the in situ permeability and other engineering properties of the soil
- o Characterize the moisture-density relations of the soils to provide a baseline from which to evaluate the extent of damage from freeze and thaw, desiccation, and root damage
- o Determine the permeability of recompacted cap soil

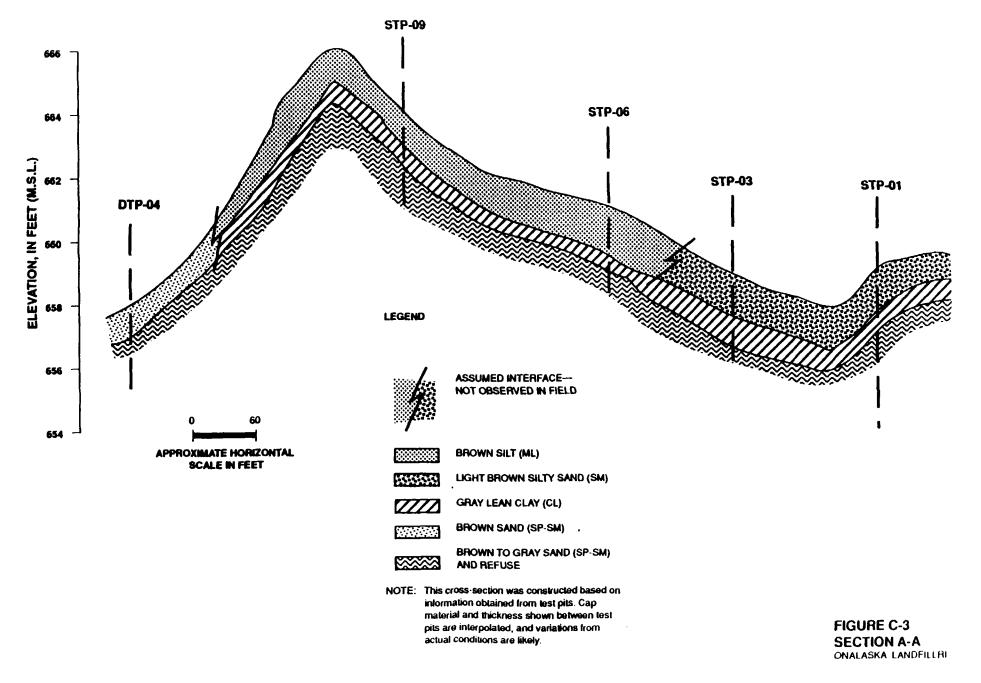
FIELD PROCEDURES

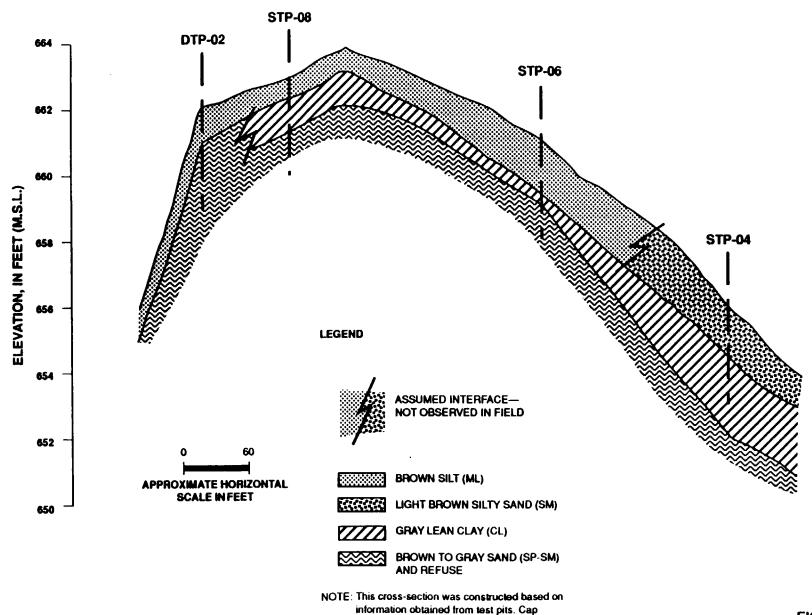
Test pits were excavated using a JD-310A wheel-mounted backhoe/loader. The backhoe, operator, and helper were provided by Exploration Technologies, Inc. (ETI), an environmental services firm based in Madison, Wisconsin.

Test pits were approximately 3 feet long by 2 feet wide. The actual depth of each test pit is shown on the test pit logs. Test pits were excavated in passes approximately 12 inches deep. Test pit soil was classified by a CH2M HILL geotechnical engineer in accordance with ASTM D 2487 during excavation. All cover material was assumed to be uncontaminated and was stockpiled on the ground surface adjacent to the test pit. Excavation continued through the entire thickness of the cap. In all cases, the cap was underlain by sand. Excavation was discontinued when sand was encountered. In two cases (STP-03 and STP-04) refuse was encountered. Soil containing refuse was not stockpiled on the ground surface, but was instead held in the bucket of the backhoe until the hole was backfilled. Test pits were backfilled in the reverse order they were excavated using the backhoe. Backfilled soil was tamped using the backhoe bucket.

Air in the breathing zone was continuously monitored during excavation and backfilling using an HNu photo-ionization device and an MSA explosimeter. No readings above background were observed during excavation of any of the 11 shallow test pits.

Shelby tubes were 30 inches long by 3 inches in diameter. Shelby tubes were pushed from the surface to their full depth and extracted using the backhoe. A special head, provided by ETI, allowed the tube to be pulled using the teeth on the backhoe bucket. Holes left by the Shelby tubes were backfilled using dry concrete. After the Shelby tubes were withdrawn, the ends were packed with damp newspaper and plastic caps were taped into place. Bag samples, consisting of 10 to 20 pounds of soil placed in double-lined plastic bags, were taken from material excavated from the test pits. Soil samples were transported to the Warzyn Soils Lab in Madison by ETI. The Shelby tube samples were transported vertically in a cushioned box.

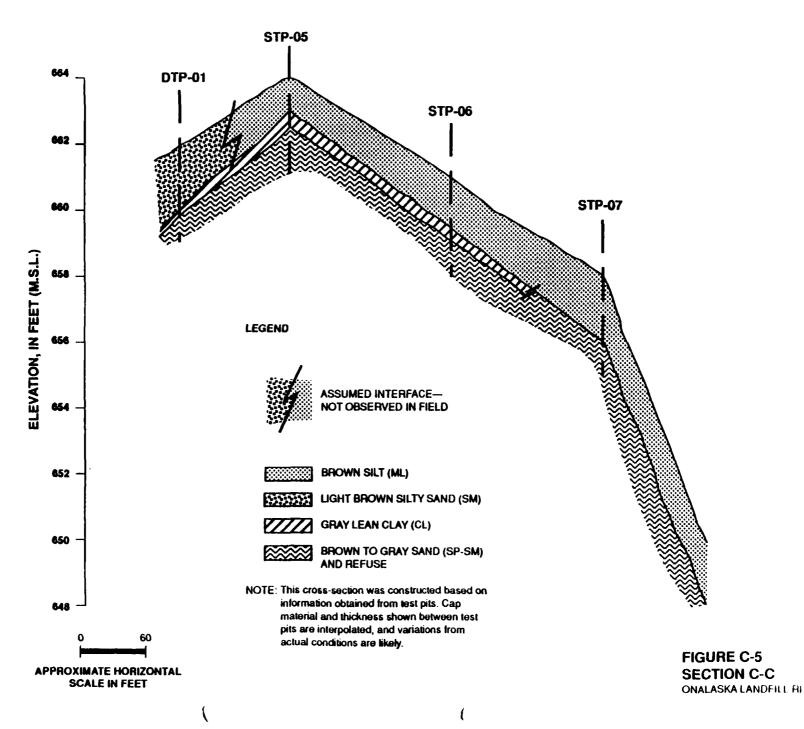

TEST PIT EXCAVATION SUMMARY


Test pits were excavated in reverse order starting with STP-11 and ending with STP-01. Test pits STP-11 through STP-05 were excavated on April 19, 1989, and test pits STP-04 through STP-01 were excavated on April 20, 1989.

Test pit logs are presented in Attachment C-1. Classifications shown in the logs have been adjusted from the field classifications based on the results of laboratory and infiltrometer testing. Figures C-3 through C-5 show cross sections of the cap based on the test pit logs. Cross section locations are shown on Figure C-1. Table C-1 summarizes material types and thicknesses encountered at each test pit.

LABORATORY TESTING SUMMARY

Soil samples taken from the cap were assumed to be uncontaminated and nonhazardous, so precautions during testing were considered unnecessary. Soil samples from each location were analyzed for grain size, Atterberg limits, density, and permeability. Two moisture-density relation tests were performed on bag samples taken from STP-04. With the exception of one flexible-wall



material and thickness shown between test

pits are interpolated, and variations from

actual conditions are likely.

FIGURE C-4 SECTION B-B ONALASKA LANDHILL RI

Table C-1 TEST PIT LOG SUMMARY

Location	interval Below Ground Surface (in)	Soil Color	Summary (a) Classification	USCS (a) Classification	Comments
STP-01	0 - 16 16 - 24 >24	Light brown Gray Brown	Silty sand Lean clay Med. to fine sand	SM CL SP-SM	
STP-02	0 - 30 > 30	Brown to gray Brown	Lean clay Med. to fine sand	CL SP-SM	
STP-03	0 - 8 8 - 20 > 20	Light brown Gray Brown	Silty sand Lean clay Med. to fine sand	SM CL SP-SM	SP-SM contained refuse including medical waste
STP-04	0 - 18 18 - 48 >48	Light brown Gray Brown	Silty sand Lean clay Med. to fine sand	SM CL SP-SM	SP-SM contained refuse
STP-05	0 - 12 12 - 18 > 18	Brown Gray Brown	Silt Lean clay Med. to fine sand	ML CL SP-SM	
STP-06	0 - 19 19 - 24 >24	Brown Gray Brown	Silt Lean clay Med. to fine sand	ML CL SP-SM	
STP-07	0 - 24 >24	Brown Gray	Silt Fine sand	ML SP-SM	
STP-08	0 - 8 8 - 20 >20	Brown Gray Brown	Silt Lean clay Med. to fine sand	ML CL SP-SM	
STP-09	0 - 12 12 - 20 >20	Brown Gray Gray	Silt Lean clay Fine sand	ML CL SP-SM	
STP-10	0 - 12 - >	Brown Gray Gray	Silt Lean clay Fine sand	ML CL SP-SM	
STP-11	0 - 12 12 - 20 >20	Brown Gray Gray	Silt Lean clay Fine sand	ML CL SP~SM	
DTP-01	0 - 24 24 - 26 > 26	Brown to gray Gray Brown	Silty sand Lean clay Med. to fine sand	SM CL SP~SM	Refuse observed below 12"
DTP-02	0 - 12 >12	Brown Brown	Silt Med. to fine sand	ML SP-SM	Refuse observed below 24"
DTP-03	> 0	Brown to gray	Med. to fine sand	SP-SM	Refuse observed below 36"
DTP-04	> 0	Brown	Med. to fine sand	SP-SM	Refuse observed below 12"

⁽a) The classifications are based on the results of laboratory testing. Samples from every test pit were not laboratory classified, however, soils which were visual observed to be similar to those which were laboratory tested have been given the same classification.

permeability test performed on a recompacted specimen taken from STP-04, permeability tests were performed on undisturbed samples taken from the Shelby tubes.

Soil plasticities of many of the samples were lower than anticipated, resulting in deviations from the testing proposed in the original Work Plan. Rigid-wall permeability tests were performed on samples that were not plastic enough to be extruded and trimmed for flexible-wall permeability testing. Shrinkage limit tests were not expected to provide any useful information and were omitted. With the exception of the permeability tests, laboratory tests were performed in accordance with appropriate ASTM standards. No ASTM standards are available for the types of permeability tests performed. Permeability tests were conducted in accordance with COE EM 1110-2-1906, Appendix VII.

Laboratory analyses were performed on Shelby tube samples taken adjacent to shallow test pits STP-01, STP-02, STP-04, STP-06, STP-07, STP-08, STP-10, and STP-11 and on a bag sample taken from STP-04. Samples to be analyzed were chosen based on visual inspection of sample type and condition. Results of laboratory testing are summarized in Table C-2. Detailed results of laboratory analysis are presented in Attachment C-2.

INFILTRATION TESTING

PURPOSE

Infiltration testing was performed to provide information that would allow orderof-magnitude permeability estimates to be made and to aid in characterization and comparison of different soil types used to construct the existing cap.

FIELD PROCEDURES

Infiltrometer testing was conducted in general accordance with ASTM D 3385, Standard Test Method for Infiltration Rate of Soils in Field Using Double-Ring Infiltrometers. The double-ring infiltrometer method consists of driving two open cylinders, one inside the other, into the ground, partially filling the rings with water, and then maintaining the water at a constant level. The volume of water added to the inner ring to maintain the water level constant is the measure of the volume of water that infiltrates the soil. The volume infiltrated during timed intervals is converted to an incremental infiltration velocity. The maximum steady state infiltration velocity is equivalent to the infiltration rate.

Testing was performed using infiltrometer rings constructed from well casing, 55gallon drums, and/or stovepipe. Water used for infiltration testing was taken directly from the Black River and brought to the site in 6-gallon jugs.

For tests conducted underground, a pit large enough to allow placement of the infiltrometer rings was excavated to the interface of the first underlying soil layer. The surface of the underlying soil layer was then leveled, and testing proceeded as described below.

Sample	Sample Interval in Shelby Tube (a) (in)	Description	Laboratory USCS Classification	Natural Moisture Content (%)	Dry Density (pcf)	Permeability (cm/sec)	Type of Permeability Test	Liquid Limit	Plastic Index	Maximum (b) Dry Density (pc1)	Optimum (b) Moisture (%)
STP-01	10 - 18	Brown, silty, fine to med. SAND; little clay, trace gravel	SM	11.5	118.0	0.000049	Rigid-wall	NP	NP		
STP-02B	7 - 13	Brown, lean CLAY, trace sand	CL	22.5	102.9	0.0000032	Flexible-wall	30	9		
STP-04	12 - 17	Brown, silty, fine to med. SAND; little clay	SM	15.0	113.0	0.000024	Rigid-wall	NP	NP	120	11
STP-06A	9 - 14	Brown silt, some sand, little clay	ML	15. 6	113.4	0.000002	Flexible-wall	19	1		
STP-068	1 - 6	Gray SILT, some sand, little clay	ML	18.6	108.6	0.0000011	Flexible-wall	21	2		
STP-07	2 - 6	Brown SILT, little sand and clay	ML	22.2	95.0	0.000062	Flexible-wall	22	2		
STP-08	1 - 7	Gray SILT, some sand, little clay	ML	19.6	106.0	0.0000046	Flexible-wall	21	1		
STP-10	1 - 6	Brown, fine to med. SAND, trace silt and clay	SP-SM	7.2	103.5	0.00068	Rigid-wall	NP	NP		
STP-10	15 - 19	Gray-brown SILT, some clay, little sand	ML	22.5	100.2	0.00000055	Flexible-wall	26	4		
STP-11	14 - 19	Brown, silty, fine to med. SAND; little clay	SM	13.4	115.8	0.0000063	Rigid-wall	NP	NP		
STP-04	18 - 48 (Bag Sample)	Brown, lean CLAY, little sand	CL	19.4	103.7	0.0000043(c)	Flexible-wall	30	10	112	14

Table C-2 RESULTS OF LABORATORY TESTING

(a) Zero inches is bottom of tube.

(b) Maximum Dry Density and Optimum Moisture Content were determined in accordance with ASTM D 698. Tests were performed on bag samples taken while excavating test pits.

-t

(c) Permeability test was performed on a trimmed moisture density specimen.

{

Infiltrometer rings constructed from well casing or 55-gallon drums were set by driving them into place with a sledge hammer. Rings constructed from stovepipe were too fragile to be driven into place and were set into place by excavating a narrow trench with a screwdriver, pouring powdered bentonite into the trench, forcing the ring into place, and backfilling and tamping the trench around the ring.

Equipment constraints and the slow soil infiltration properties required that some deviations from the ASTM procedure be made during testing. Deviations from the ASTM procedure included the following:

- o The ASTM procedure requires that the rings be driven or pushed into place, not trenched as previously described.
- o The ASTM procedure requires the ratio between the diameters of the inner and outer ring be at least two. The actual ratio was less than two for some tests.
- o The ASTM procedure requires that the level of water (head) in the rings be no greater than 6 inches. During the first test no changes in water level were observed at a head of 6 inches over a period of 4 hours. Water levels in subsequent tests were increased to provide heads as high as 15 inches.

Water levels were measured using either a 1-foot ruler fastened to the inside of the ring, or a series of marks etched onto the inside of the ring. Constant heads were maintained by adding water to the rings at various time intervals. Records were kept of the time and volume of added water. Lengths of time the tests were run ranged from 23.5 hours to 46.8 hours. Table C-3 presents a summary of test parameters and calculated infiltration rates.

After an infiltration test was completed, the rings were bailed and removed from the soil. After the rings were removed, a trench approximately 6 inches wide was dug along the centerline of the rings to observe the wetting front in the soil. Dye (green or red food coloring) was added to the inner ring water in Tests IT-4, IT-6, IT-9 and IT-10A to aid in the determination of the depth of wetting front.

Trenches and pits resulting from infiltrometer testing were backfilled by hand. A layer of powdered bentonite, approximately 1 inch thick, was placed in each pit before backfilling.

TESTING SUMMARY

Infiltration tests were numbered to correspond with the shallow test pit they were adjacent to. Infiltration tests IT-4, IT-6, IT-9, and IT-10 were conducted on the ground surface adjacent to shallow test pits STP-04, STP-06, STP-09, and STP-10, respectively. Tests IT-4A, IT-9A, and IT-10A were conducted 1 to 1.5 feet underground and adjacent to shallow test pits STP-04, STP-09, and STP-10,

	Depth Below	inner	Ring		Outer Ring		Height of Water	Infiltration	Estimated Depth of	Estimated	Estimated
Location	Ground Surface	Туре	0.D. (In)	I.D. (in)	Туре	I.D. (in)	in Rings (in)	Rate (cm/sec)	Wetting Front (in)	Gradient (in/in)	Permeability (cm/sec)
iT-4	0"	Well Casing	10.75	10.25	Well Casing	15.38	11	0.0001	3.0	4.7	0.000021
IT-4A	18″	Stove Pipe	10.25	10.00	55-gal Drum	22.50	10	0.000002	0.5	21.0	0.0000001
IT-6	0"	Stove Pipe	10.25	10.00	55-gal Drum	22.50	15	0.0001	3.0	6.0	0.000046
IT-9	0"	Well Casing	12.75	12.00	55-gal Drum	22.50	10	0.00005	3.5	3.8	0.000013
IT-9A	12"	Stove Pipe	10.25	10.00	55-gal Drum	22.50	12	0.00003	0.5	25.0	0.0000012
IT-10	0"	Well Casing	10.75	10.25	Well Casing	15.38	6	0.000022	2.5	3.4	0.0000073
IT-10A	12″	Well Casing	14.00	13.38	55-gal Drum	22.50	10	0.000014	3.0	4.3	0.0000032

Table C-3 INFILTRATION TEST SUMMARY

t i

1

.

respectively. Tests IT-9, IT-10, and IT-10A were started on May 1, 1989, and tests IT-4, IT-4A, IT-6, and IT-9A were started on May 2, 1989.

Incremental infiltration rates were computed using the following formula:

$$\mathbf{R} = \mathbf{V}/(\mathbf{A} \mathbf{x} \mathbf{t})$$

where:

R	=	incremental infiltration rate (cm/s)
V	=	volume of water added to maintain a constant head (cc)

- A = cross sectional area of inner ring or annular space between rings (cm²)
- t = time elapsed since head was last adjusted (s)

Average infiltration rates were computed as a logarithmic average of representative incremental infiltration rates taken after the test had been running for a minimum of 24 hours.

Average infiltration rates were computed using the following formula:

$$R_{AVG} = INV \log_{10} \left[(\log_{10}R_1 + \log_{10}R_2 + \ldots + \log_{10}R_{N-1} + \log_{10}R_N)/N \right]$$

where:

R _{AVG}	Ξ	average infiltration rate
R _N	=	incremental infiltration rate
N	=	number of terms averaged

Permeability values are considered to be order-of-magnitude estimates because gross assumptions concerning hydraulic boundary conditions had to be made. Estimated permeabilities of the soils at each test location were computed using the following formula:

 $k = R_{AVG}/i$

where:

k = permeability (cm/s)

 R_{AVG} = average infiltration rate (cm/s)

i = Hydraulic gradient (cm/cm)

i = Hydraulic gradient (cm/cm)

where:

H = Hydraulic head (cm)

= Height of water in infiltration ring

L = Length of drainage path (cm)

= Depth of wetting front

A brief description of each infiltration test is given below, including the method used to determine the depth of wetting front for each individual test. The depth of saturation referred to in the descriptions is the depth to which excess moisture (excess relative to surrounding and underlying soil) was visually observed.

Test IT-4

Test IT-4 was conducted using rings constructed from well casing. The inner ring had an inner diameter of 10.25 inches and an outer diameter of 10.75 inches. The outer ring had an inner diameter of 15.38 inches. Rings were driven 6 inches into the ground. Soil at the surface was brown silty fine to medium sand. A water level of 11 inches was maintained in the rings during testing. Two ounces of green food coloring were added to the inner ring. The test was run for 28.3 hours. An average infiltration rate of 1.0×10^{-4} cm/s was computed based on the last three incremental infiltration rates measured in the inner ring.

A trench was excavated through the area after the test was completed. Green dye was clearly visible to a depth of 3 inches underground across the area of the inner ring. The depth to which dye was visible appeared to correspond with the depth of saturation and the depth of the root mat. Green dye was also visible along individual deep roots paths to a depth of 6 inches. The depth of wetting front was assumed to be 3 inches based on the presence of the dye and depth of saturation. The permeability of the soil was estimated to be 2.1×10^{-5} cm/s.

Test IT-4A

Test IT-4A was conducted using an inner ring constructed from stove pipe and an outer ring constructed from a steel 55-gallon drum. The inner ring had an inner diameter of 10 inches and an outer diameter of 10.25 inches. The outer ring had an inner diameter of 22.5 inches. The test was conducted in a pit excavated to 18 inches underground at the interface between the brown silty fine to medium sand surface layer and the underlying gray lean clay layer. The rings were placed 6 inches into the gray lean clay layer. A water level of 10 inches was maintained in the rings during testing. The test was run for 29.8 hours. An infiltration rate of 2.2 x 10^{-6} cm/s was the only rate measured in the inner ring.

A trench was excavated through the area after the test was completed. The depth of wetting front was assumed to be 0.5 inches based on the depth of saturation. The permeability of the soil was estimated to be 1.0×10^{-7} cm/s.

Test IT-6

Test IT-6 was conducted using an inner ring constructed from stove pipe and an outer ring constructed from a steel 55-gallon drum. The inner ring had an inner diameter of 10 inches and an outer diameter of 10.25 inches. The outer ring had an inner diameter of 22.5 inches. Rings were placed 4 inches underground. Soil at the surface was brown silty fine to medium sand. A water level of 15 inches was maintained in the rings during testing. Two ounces of green food coloring were added to the inner ring. The test was run for 25.4 hours. An average infiltration rate of 1.0 x 10^4 cm/s was computed based on the last three incremental infiltration rates measured in the inner ring.

A trench was excavated through the area after the test was completed. Green dye was visible along individual deep root paths to a depth of 9 inches, but the depth of saturation appeared limited to the top 3 inches. The depth of wetting front was assumed to be 3 inches based on the depth of saturation. The permeability of the soil was estimated to be 4.6×10^{-5} cm/s.

Test IT-9

Test IT-9 was conducted using an inner ring constructed from well casing and an outer ring constructed from a steel 55-gallon drum. The inner ring had an inner diameter of 12 inches and an outer diameter of 12.75 inches. The outer ring had an inner diameter of 22.5 inches. Rings were placed 6 inches underground. Soil at the surface was brown silt. A water level of 10 inches was maintained in the rings during testing. Two ounces of red food coloring were added to the inner ring. The test was run for 46.8 hours. An average infiltration rate of 5.0 x 10^{-5} cm/s was computed based on the last six incremental infiltration rates measured in the inner ring.

A trench was excavated through the area after the test was completed. No red dye was visible in the excavation. The depth of wetting front was assumed to be 3.5 inches based on the depth of saturation. The permeability of the soil was estimated to be 1.3×10^{-5} cm/s.

Test IT-9A

Test IT-9A was conducted using an inner ring constructed from stove pipe and an outer ring constructed from a steel 55-gallon drum. The inner ring had an inner diameter of 10 inches and an outer diameter of 10.25 inches. The outer ring had an inner diameter of 22.5 inches. The test was conducted in a pit excavated to 12 inches underground at the interface between the brown silt surface layer and the underlying gray lean clay layer. The rings were placed 6 inches into the gray lean clay layer. A water level of 12 inches was maintained in the rings during testing. The test was run for 29.9 hours. An average infiltration rate of 3.0×10^{-5} cm/s was computed based on the last two incremental infiltration rates measured in the inner ring.

A trench was excavated through the area after the test was completed. The depth of wetting front was assumed to be 0.5 inches based on the depth of saturation. The permeability of the soil was estimated to be 1.2×10^{-6} cm/s.

Test IT-10

Test IT-4 was conducted using rings constructed from well casing. The inner ring had an inner diameter of 10.25 inches and an outer diameter of 10.75 inches. The outer ring had an inner diameter of 15.38 inches. Rings were driven 5 inches into the ground. Soil at the surface was brown silt. A water level of 6 inches was maintained in the rings during testing. The test was run for 23.5 hours. An infiltration rate of 2.2×10^{-5} cm/s was the only rate measured in the inner ring.

A trench was excavated through the area after the test was completed. The depth of wetting front was assumed to be 2.5 inches based on the depth of saturation. The permeability of the soil was estimated to be 7.3 x 10^{-6} cm/s.

Test IT-10A

Test IT-10A was conducted using an inner ring constructed from well casing and an outer ring constructed from a steel 55-gallon drum. The inner ring had an inner diameter of 13.38 inches and an outer diameter of 14 inches. The outer ring had an inner diameter of 22.5 inches. The test was conducted in a pit excavated to 12 inches underground at the interface between the brown silt surface layer and the underlying gray lean clay layer. The rings were placed 6 inches into the gray lean clay layer. A water level of 10 inches was maintained in the rings during testing. Two ounces of red food dye were added to the inner ring. The test was run for 46.2 hours. An average infiltration rate of 1.4E-5cm/s was computed based on the last four incremental infiltration rates measured in the inner ring.

A trench was excavated through the area after the test was completed. The depth of wetting front was assumed to be 3 inches based on the depth of saturation. The permeability of the soil was estimated to be 3.2×10^{-6} cm/s.

NUCLEAR DENSITY AND MOISTURE TESTING/VISUAL INSPECTION

PURPOSE

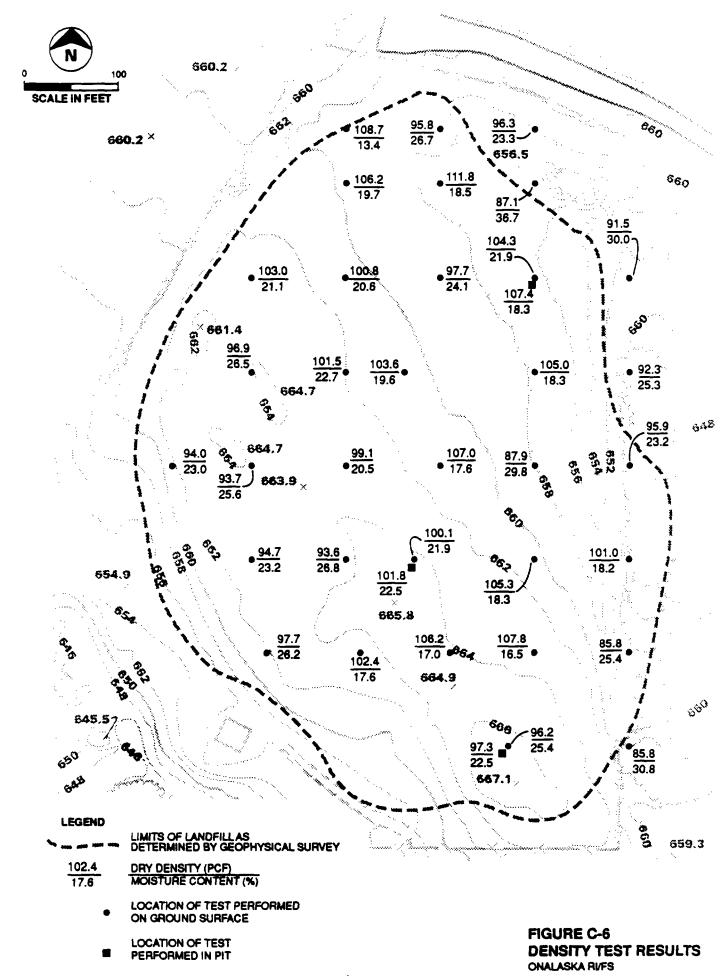
Nuclear density and moisture tests were performed to aid in characterization of cap soil and determine extent of damage from freeze and thaw and desiccation. Nuclear testing was selected because it was rapid and allowed a large number of tests to be performed across the site.

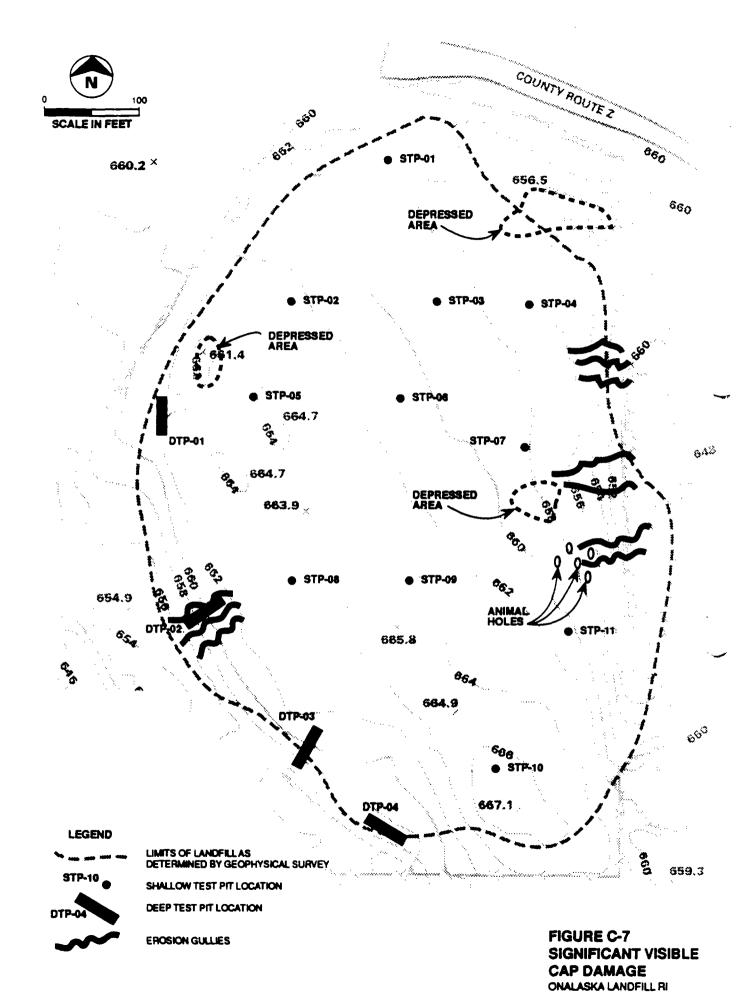
FIELD PROCEDURES

Density and moisture tests were conducted using a Troxler 3411 Nuclear Density Gage. Tests were conducted in accordance with ASTM D 2922, Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth) and ASTM D 3017, Water Content of Soil and Rock in Place by Nuclear Methods. Two tests, one with the source rod 6 inches deep and one with the source rod 12 inches deep, were conducted at each location. At three locations (STP-04, STP-09, and STP-10), density and moisture tests were performed on the underlying gray lean clay layer. These tests were conducted in the pits excavated for infiltrometer rings. The pits provided a minimum of 8 inches clearance on each side of the gauge. Holes drilled for density testing were backfilled with powdered bentonite.

Density and moisture tests were performed on a 100-foot grid across the site. While density testing, the site was visually inspected for depressions, erosional gullies, soft or wet zones, ruts, and animal holes.

DENSITY AND MOISTURE TESTING/VISUAL INSPECTION SUMMARY


Density test locations and results are shown in Figure C-6. Nuclear moisture test results for tests performed in pits are typically high because of the moisture in the side walls of the pit. For tests taken in pits, dry densities were computed based on the nuclear wet density and the average laboratory moisture content for the soil type being tested. Maximum dry densities were obtained from the moisture-density relation test performed during the laboratory analysis. In situ densities obtained from laboratory analysis of Shelby tube samples are also included in the figure.


Figure C-7 shows areas where significant cap damage or features were observed. Animal holes observed along the east side of the site appeared, from the surface, to extend more than 2 feet underground. Erosional gullies as deep as 1 foot were also observed on the east side of the site. A 6-inch depression approximately 15 feet in diameter was observed near Station 4+00N, 5+00E.

EVALUATION OF PRECIPITATION INFILTRATION

PROCEDURES

Table C-4 summarizes results of laboratory and infiltrometer tests together. Soils with similar properties have been grouped together and average engineering property values (e.g., permeability, density, and moisture content) have been computed for each soil type. Permeabilities estimated from infiltrometer testing were only used to compare soil types and were not included in the determination of average permeability values. Soils used to construct the cap can be classified into three categories: lean clay (CL), silt (ML), and silty sand (SM).

GLO65550.RI FIG C-7 10-26-89

1

Table C-4 SUMMARY OF RESULTS OF LABORATORY AND INFILTRATION TESTS

Ę

Location	Laboratory Description	Laboratory USCS Classification	Moisture Content (%)	Dry Density (pcf)	Permeability (cm/sec)	Liquid (a) Limit	Plastic (a) Index	Comments
STP-01	Brown, silty, fine to med. sand; little clay, trace gravel	SM	11.5	118.0	0.000049	NP	NP	
STP-04	Brown, silty, fine to med. sand; little clay	SM	15.0	113.0	0.000024	NP	NP	
IT-4 IT-6		SM SM			0.000021 0.000046			Field classification Field classification
STP-11	Brown, silty, fine to med. sand; little clay	SM	13.4	115.8	0.00000063	NP	NP	Permeability value is considered outlying and is not inicuded in average
AVERAGE			13.3	115.6	0.000034			Based on results of standard proctor (ASTM D698) maximum dry density for this material is 120 pcf and optimum moisture content is 11%
STP-06	Brown silt, some sand, little clay	ML	15.6	113.4	0.000002	19	1	
STP-06	Gray siit, some sand, little clay	ML	18.6	108.6	0.0000011	21	2	
STP-07	Brown silt, little sand and clay	ML	22.2	95 .0	0.000062	22	2	Sample is considered outlying and values are not included in averages
STP-08	Gray silt, some sand, little clay	ML	19.6	106.0	0.0000046	21	1	
T-9 T-10	·	ML ML			0.000013 0.0000073			
AVERAGE			17.9	109.3	0.0000021	21	2	

Table C-4 SUMMARY OF RESULTS OF LABORATORY AND INFILTRATION TESTS

Location	Laboratory Description	Laboratory USCS Classification	Moisture Content (%)	Dry Density (pc1)	Permeability (cm/sec)	Liquid (a) Limit	Plastic (a) Index	Comments
STP-02 IT-4A IT-9A	Brown lean clay, trace sand	CL CL CL	22.5	102. 9	0.00000032 0.0000001 0.000001	30	9	Samples all border on classification as a CL-ML. Because the exhibit relatively similar properties they have been grouped together. Sample
STP-10	Gray-brown silt, some clay, little sand	ML CL	22.5	100.2	0.00000055 0.0000032	26	4	from STP-04 was recompacted and values from STP-04 are not included in averages.
STP-04	Brown, lean clay, little sand	CL	19.4	103.7	0.0000043	30	10	
AVERAGE			22.5	101.5	0.00000042	28	7	Based on results of standard proctor (ASTM D698) maximum dry density for this material is 113 pcf and optimum moisture content is 14%
STP-11	Brown, silty, fine to med. sand; trace silt and clay	SP- SM	7.2	103.5	0.00068	NP	NP	

١

l

÷

(a) NP = non-plastic

The three soil types are similar except for varying sand content and the lean clay and the silty sand both border on classifications as a silt. Sand content ranges from 57 percent by weight in the silty sand to 6 percent by weight in the lean clay. For the purposes of this cap investigation, soil from STP-10 that was classified as a gray silt (ML) was grouped with soil from STP-2 that was classified as a lean clay (CL) because it was closer to lean clay in terms of visual appearance, grain size, Atterberg limits, and permeability than it was to other silt encountered at the site.

A precipitation infiltration analysis was performed for each thickness and soiltype combination encountered during excavation of test pits. The infiltration analysis was initially performed using both the Wisconsin Department of Natural Resources Water Balance Program and the Hydrologic Evaluation of Landfill Performance (HELP) Model. Both models use simplifying assumptions and have limitations that must be considered when reviewing the results.

The WDNR Water Balance Analysis Program applies procedures that have been developed from water balance computational methods originally published by Thornthwaite and Mather (ref.), adapted by Fenn, Hanley and Degeare (ref.), and detailed by Kmet (ref). These methods do not account for retardation of percolation due to the inclusion of a low permeability barrier layer and increased runoff from saturation of soil over a barrier layer.

The HELP Model was designed for comparison of candidate landfill caps and uses assumptions not appropriate for this analysis. The inappropriate assumptions include:

- o The drainage rate out of a segment (vertical percolation soil layer) cannot be limited by the permeability of the segment below it.
- o The barrier layer is always saturated and percolation through it is controlled by the head acting on it.
- o No evapotranspiration can occur from the barrier layer.

Neither method accounts for either runoff from an adjacent area draining onto the area being analyzed or for infiltration through channels such as cracks or animal burrows.

An extensive parametric study was conducted using both models. No correlation was seen between the models, and the WDNR model did not appear to recognize a low permeability barrier as a deterrent to infiltration. It was concluded that the assumptions made by the HELP Model were more appropriate for this investigation than those made by the WDNR Model; therefore, only the HELP Model was used for the precipitation infiltration evaluation.

Table C-5 summarizes input parameters and the results of the HELP Model analysis. The soil profiles (soil type and thickness) input to the model were developed from the shallow test pit logs and laboratory soil classifications. Soil

Ą

Table C-5 RESULTS OF H.E.L.P. MODEL ANALYSIS

					HELP In			Surface		
Location	Soil Type (USCS)	Layer (a) Type	Layer Thickness (in)	Porosity (vol/vol)	Field Capacity (vol/vol)	Wilting Point (vol/vol)	Permeability (cm/sec)	Moisture Content (vol/vol)	Percolation Through Cap (in/yr)	Area Assumed Represented by Test Pit (sq ft)
STP-01	SM SM CL SP-SM	VP VP BR VP	3 13 8 8	0.473 0.381 0.406 0.351	0.222 0.193 0.309 0.071	0.104 0.104 0.210 0.033	0.00068 0.000034 0.00000042 0.00068	0.244 0.244 0.371 0.120	1.10	20,000
STP-02 \	SM	VP	3	0.473	0.222	0.104	0.00068	0.244	0.25	27,000
	CL	VP	15	0.406	0.309	0.210	0.0000042	0.371		
	CL	BR	12	0.406	0.309	0.210	0.00000042	0.371		
	SP-SM	VP	8	0.351	0.071	0.033	0.00068	0.120		
STP-03	SM	VP	3	0.473	0.222	0.104	0.00068	0.244	1.90	16,000
	SM	VP	5	0.381	0.193	0.104	0.000034	0.244		
	CL	BR	12	0.406	0.309	0.210	0.00000042	0.371		
	SP-SM	VP	8	0.351	0.071	0.033	0.00068	0.120		
STP-04	SM	VP	3	0.473	0.222	0.104	0.00068	0.244	0.88	19,000
	SM	VP	15	0.381	0.193	0.104	0.000034	0.244		
	CL	BR	30	0.406	0.309	0.210	0.00000042	0.371		
	SP-SM	VP	8	0.351	0.071	0.033	0.00068	0.120		
STP-05	SM	VP	3	0.473	0.222	0.104	0.00068	0.244	0.74	19,000
	ML	VP	9	0.41	0.247	0.135	0.0000021	0.313		
	CL	BR	6	0.406	0.309	0.210	0.00000042	0.371		
	SP-SM	VP	8	0.351	0.071	0.033	0.00068	0.120		
STP-06	SM	VP	3	0.473	0.222	0.104	0.00068	0.244	0.91	20,000
	SM	VP	16	0.381	0.193	0.104	0.000034	0.244		
	CL	BR	5	0.406	0.309	0.210	0.0000042	0.371		
	SP-SM	VP	8	0.351	0.071	0.033	0.00068	0.120		

(

í

Table C-5 RESULTS OF H.E.L.P. MODEL ANALYSIS

ų.

					HELP In			Surface		
Location	Soli Type (USCS)	Layer (a) Type	Layer Thickness (in)	Porosity (vol/vol)	Field Capacity (vol/vol)	Wilting Point (vol/vol)	Permeability (cm/sec)	Moisture Content (vol/vol)	Percolation Through Cap (in/yr)	Area Assumed Represented by Test Pit (sq ft)
STP-07	SM	VP	3	0.473	0.222	0.104	0.00068	0.244	2.30	29,000
	ML	VP	9	0.41	0.247	0.135	0.000062	0.313		
	ML	BR	12	0.41	0.247	0.135	0.000062	0.313		
	SP-SM	VP	8	0.351	0.071	0.033	0.00068	0.120		
STP-08	SM	VP	3	0.473	0.222	0.104	0.00068	0.244	1.80	22,000
-	SM	VP	11	0.381	0.193	0.104	0.000034	0.244		••••
	ML	BA	6	0.41	0.247	0.135	0.0000021	0.313		
	SP-SM	VP	8	0.351	0.071	0.033	0.00068	0.120		
STP-09	SM	VP	3	0.473	0.222	0.104	0.00068	0.244	0.73	25,000
	ML	VP	9	0.41	0.247	0.135	0.0000021	0.313		
	CL	BR	8	0.406	0.309	0.210	0.0000042	0.371		
	SP-SM	VP	8	0.351	0.071	0.033	0.00068	0.120		
STP-10	SM	VP	3	0.473	0.222	0.104	0.00068	0.244	0.73	29,000
	ML	VP	9	0.41	0.247	0.135	0.0000021	0.313		
	CL	BR	8	0.406	0.309	0.210	0.0000042	0.371		
	SP-SM	VP	8	0.351	0.071	0.033	0.00068	0.120		
STP-11	SM	VP	3	0.473	0.222	0.104	0.00068	0.244	0.73	34,000
	ML	VP	9	0.41	0.247	0.135	0.0000021	0.313		
	CL	BR	8	0.406	0.309	0.210	0.00000042	0.371		
	SP-SM	VP	8	0.351	0.071	0.033	0.00068	0.120		
DTP-01	SP-SM	VP	8	0.351	0.071	0.033	0.00068	0.120	4.10	15,000
	SM	BA	12	0.381	0.193	0.104	0.000034	0.244		
	SP-SM	VP	8	0.351	0.071	0.033	0.00068	0.120		

				<u> </u>	HELP IN	put Parameters	s			Surface
Location	Soli Type (USCS)	Layer (a) Type	Layer Thickness (in)	Porosity (vol/vol)	Field Capacity (vol/vol)	Wilting Point (vol/vol)	Permeability (cm/sec)	Moisture Content (vol/vol)	Percolation Through Cap (in/yr)	Area Assumed Represented by Test Pit (sq ft)
DTP-02	SM	VP	3	0.473	0.222	0.104	0.00068	0.244	5.80	19,000
	ML	VP	3	0.41	0.247	0.135	0.0000021	0.313		
	ML	BR	6	0.41	0.247	0.135	0.0000021	0.313		
	SP-SM	VP	8	0.351	0.071	0.033	0.00068	0.120		
DTP-03	SM	VP	3	0.473	0.222	0.104	0.00068	0.244	1.40	15,000
	SM	VP	21	0.381	0.193	0.104	0.000034	0.244		
	SM	BR	12	0.381	0.193	0.104	0.000034	0.244		
	SP-SM	VP	8	0.351	0.071	0.033	0.00068	0.120		
DTP-04	SM	VP	3	0.473	0.222	0.104	0.00068	0.244	4.00	6,000
	SM	VP	5	0.381	0.193	0.104	0.000034	0.244		
	SM	BR	4	0.381	0.193	0.104	0.000034	0.244		
	SP-SM	VP	8	0.351	0.071	0.033	0.00068	0.120		
Average li	nfiltration Ra	te (weighted	by area)					**	1.60	
Total Area	 l									315,000

•

÷.

.

Table C-5 RESULTS OF H.E.L.P. MODEL ANALYSIS

(a) VP denotes vertical percolation layer, BR denotes barrier layer.

NOTE: Depth of evaporative zone is 20 inches.

profiles input to the model were adjusted from the test pit logs based on the results of laboratory and infiltrometer testing. While laboratory classification tests were not performed on soil samples taken from every test pit, soils that were observed to be similar to those laboratory tested, based on appearance and infiltration rate, were assigned the laboratory classification. Permeabilities and moisture contents input for each soil type were the average values presented in Table C-4.

The HELP Model was designed for parametric analysis; therefore, it was necessary to make assumptions common to all soil profiles to be able to compare the results. The following assumptions were made for each soil profile analyzed.

- The top layer of each soil was assumed to be 3 inches of silty sand, regardless of what was encountered in the field. This was done to account for the higher permeability expected in this area because of the presence of roots.
- o The HELP Model assumes that a barrier layer is always saturated, and that no evapotranspiration can occur from it. Therefore each profile analyzed was assumed to have a barrier layer to allow the model to make consistent assumptions. Labeling a layer as a barrier does not affect the soil layer type or permeability (i.e., if the soil profile observed in the field consisted entirely of silty sand, the barrier would consist of silty sand also).
- The cap was assumed to be underlain by 8 inches of fine sand. Percolation into the waste mass was assumed to be equal to percolation from the bottom of the sand layer.

SUMMARY OF RESULTS

The results of the infiltration study can be summarized as follows:

- o The results of the infiltration analysis show annual infiltration rates to range from 0.25 inches per year in areas capped with 2 feet of clay to 5.8 inches per year in areas capped with 1 foot of silt. The average infiltration rate, weighted based on the area of the cap assumed to be represented by each test pit, is 1.6 inches per year or 860 gallons per day across the 7.2-acre cap.
- o The HELP Model indicates that infiltration is greatest in areas where the cap is thinnest (DTP-02 and DTP-04). This is because of the thin evaporative zone recognized by the model. The actual evaporative zone may extend through the cap into the waste mass; in these cases, the volume of percolation through the cap may not correspond directly to the volume of leachate produced.
- o The HELP Model computes percolation through a barrier layer assuming saturated flow. Percolation is directly related to the

hydraulic head acting above the barrier layer. The actual effectiveness of a clay or silt layer as a barrier is greatly reduced because no lateral drainage layer is included above it, thereby allowing large hydraulic heads to build. The decreased effectiveness is accentuated by the model because of the conservative assumption that the barrier is always saturated.

- 4) The HELP Model indicated that a thick (> 24 inches) silty sand (SM) layer was nearly as effective a deterrent to infiltration as silt (ML) and clay (CL layers. This is most likely because of assumptions made by the HELP Model, particularly that the barrier layer is always saturated and that no evapotranspiration can occur from it. Because the silty sand is at least one order of magnitude more permeable than the silt or clay, it is likely that infiltration through areas of the cap constructed from sand is greater than through areas of the cap constructed from silt or clay.
- 5) The infiltration analysis was performed based on microscopic soil properties. Infiltrometer and laboratory testing did not account for macroscopic cap features such as large cracks, erosion gullies, or animal holes. It is likely that, at least in localized areas, precipitation infiltration through these features is much greater than reported here.

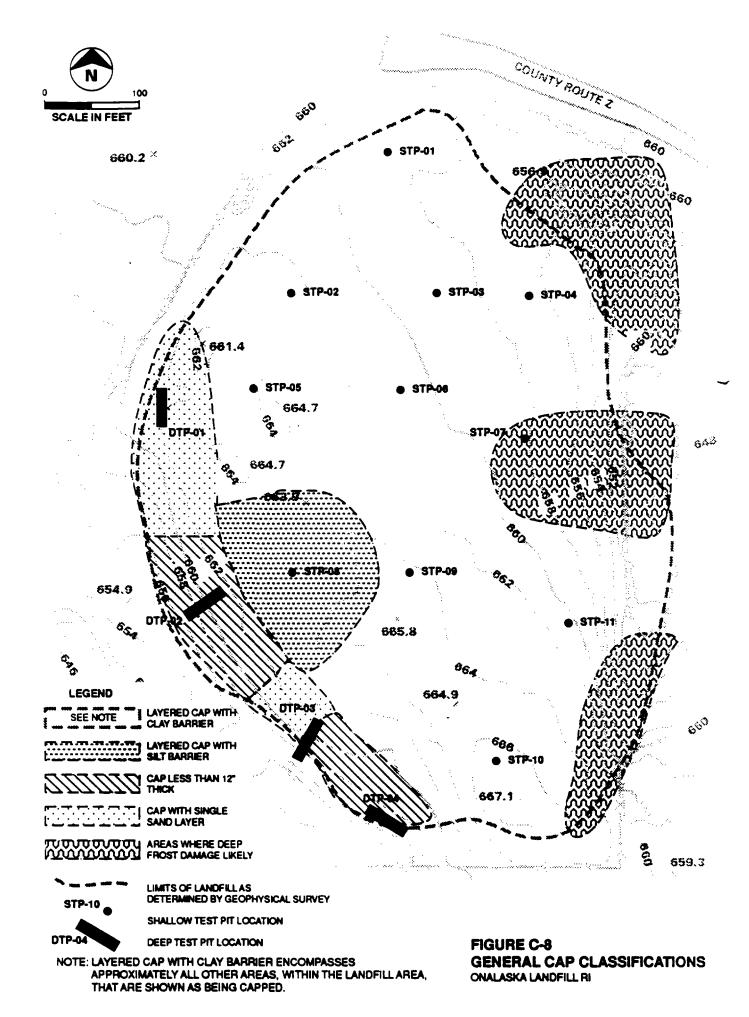
FREEZE AND THAW, DESICCATION, AND ROOT DAMAGE EVALUATION

Mechanical stresses, such as those resulting from freeze and thaw, desiccation, and root damage, increase void space within soil, increasing its permeability and decreasing its effectiveness as a cap. When a saturated soil freezes, the soil volume increases 3 to 5 percent, creating mechanical stresses. This phenomenon is termed frost action. Under certain conditions, water near the top of the capillary zone freezes in progressively growing lenses causing substantially higher volume changes. This phenomenon is termed frost heave. The three conditions necessary for frost heave to occur are a frost susceptible soil, freezing conditions, and a water supply. The most frost susceptible soils tend to be silts. Cap soil used at the site has been laboratory classified as silt, clay, sand bordering on classification as a silt. Reported depths of frost in the area range from 3.5 to 6 feet (Sowers et al.). Assuming a minimum depth of frost of 3.5 feet, the entire thickness of the cap would usually be subjected to freezing conditions. Generally, large frost heaves will occur only if a constant supply of groundwater is available. However, the cap cross section observed during test pitting was not uniform, and the potential for perched water in the silt over the clay barrier is likely in some areas. This would provide a source of water that would allow frost heave to occur. However, the magnitude of the frost heave would be limited by the volume of perched groundwater.

As previously described, two soil samples, one silty sand (SM) and one lean clay, were tested for moisture-density relationship (Standard Proctor, ASTM D 698). The silty sand had a maximum dry density of 120 pcf at an optimum moisture content of 11 percent. The lean clay had a maximum dry density of 112 pcf at

an optimum moisture content of 14 percent. No moisture density test was performed on the silt (ML) but for the purposes of this report, it was assumed to have a maximum dry density of 116 pcf (the average of the sand and clay maximum densities).

Surface nuclear density tests indicate that the top foot of material has loosened to a point where it is as low as 73 percent of maximum dry density. The cap is assumed to have an original dry density of 90 percent of maximum dry density. This is a common construction compaction requirement and is usually readily attainable in the field. Actual compaction requirements during cap construction are not known. Loosening can be attributed to root damage, frost action, and desiccation damage. In most cases, material tested over 1 foot underground had a dry density of 90 percent or more of the maximum dry density determined in the laboratory analysis.


Areas of low density coincided with areas of high moisture content, indicating that frost heave, as described above, may be occurring. One silt specimen taken from a Shelby tube sample obtained approximately 19 inches underground in the area of STP-07 had a dry density of 95 pcf (81 percent of maximum dry density) indicating that deep frost damage could have occurred in some areas. This specimen had a permeability an order of magnitude higher than other silt specimens. Areas where deep frost damage ("deep" meaning frost damage greater than 1 foot underground) is indicated by excessive (excessive relative to the soil type and other moisture tests) surface soil moisture contents. This can be attributed to the depth from which the moisture specimen was obtained. All laboratory samples were taken from at least 15 inches underground surface. Testing was conducted in early May, and it is likely that the ground surface was still saturated from snow melt.

CAP INVESTIGATION SUMMARY AND CONCLUSIONS

Based on the results of field testing, laboratory testing and precipitation infiltration analysis, the cap has been divided into five general classes:

- o Single sand layer cap greater than 12 inches thick
- o Layered cap greater than 12 inches thick with clay barrier
- o Layered cap greater than 12 inches thick with silt barrier
- o Layered cap greater than 12 inches thick with evidence of frost damage in the silt barrier
- o Single layer sand or silt cap less than 12 inches thick

Figure C-8 shows the cap sectioned into these five classes. Interfaces between cap classes were interpolated based on test pit locations and were not observed in the field.

Areas of particular concern where infiltration may be greater include those where the cap is less than 12 inches deep, constructed from a single sand layer, or has been affected by frost damage at depth. Areas which are 12 inches or less thick are of particular concern. The precipitation infiltration analysis shows them to provide the least effective barrier to precipitation infiltration and they provide minimal coverage to prevent direct human or animal contact with the waste.

While the Help Model indicates that areas of the cap constructed using silty sand are as effective limiting precipitation infiltration as areas of the cap constructed using clay or silt, this is based on a number of limiting assumptions, as discussed previously. Because the permeability of the silty sand is at least one order of magnitude greater than the silt or clay at the site it is likely that infiltration through these areas is excessive relative to other areas of the cap.

Increased permeability can be explained by loosening and fracturing of the soil from frost action. The cap in the area of STP-07 appears to have been significantly damaged to depth by frost action or frost heave. The permeability of the silt in this area has been tested to be an order of magnitude greater than similar silt located elsewhere at the site and two times greater than silty sand at the site. It is likely that infiltration through areas damaged at depth by frost action or frost heave is substantially greater relative to the rest of the site.

During the visual inspection of the cap erosion gullies, animal holes, and animal holes in erosion gullies were found in some areas. The volume of precipitation infiltration through animal holes in these areas may be more than infiltration through the soil.

The WDNR requires existing landfills to be closed with a minimum 2-foot thick clay cap plus a 1.5- to 2.5- foot thick soil cover layer. Clay used in the cap must contain a minimum of 50 percent material by weight that passes the Number 200 sieve and have a saturated hydraulic conductivity of 1×10^{-7} cm/s or less. The silty sand encountered at the site does not meet the particle size requirement, and none of the material encountered on the site has been shown to have a saturated hydraulic conductivity of 1×10^{-7} cm/s. Therefore, the existing landfill cap is substandard relative to current State requirements.

GLT913/040.50

Attachment C-1 TEST PIT LOGS

GLT913/035.50-14

-

TEST PIT LOG LEGEND:

SAMPLE TYPE:

B - BAG SAMPLE ST - SHELBY TUBE

NOTES:

- 1. THE TEST PIT LOGS AND RELATED INFORMATION DEPICT SUBSURFACE CONDITIONS ONLY AT THE SPECIFIC LOCATIONS AND DATE INDICATED. SOIL CONDITIONS AND WATER LEVELS AT OTHER LOCATIONS MAY DIFFER FROM CONDITIONS OCCURRING AT THESE BORING AND/OR TEST PIT LOCATIONS. ALSO, THE PASSAGE OF TIME MAY RESULT IN A CHANGE IN THE CONDITIONS AT THESE LOCATIONS.
- 2. TEST PITS WERE LOGGED IN THE FIELD BY A CH2M HILL ENGINEERING GEOLOGIST OR GEOTECHNICAL ENGINEER. SAMPLES WERE EXAMINED AND VISUALLY CLASSIFIED IN APPROXIMATE ACCORDANCE WITH ASTM D2488.
- 3. SOIL DESCRIPTIONS PRESENTED IN THESE LOGS ARE A SUMMARY OF FIELD LOGS, VISUAL CLASSIFICATIONS AND LABORATORY TESTS.
- 4. LABORATORY TEST RESULTS PRESENTED ON THESE LOGS ARE RESULTS OF TESTS PERFORMED ON SHELBY TUBE SAMPLES. SHELBY TUBES WERE PUSHED AS FAR AS 5 FEET AWAY FROM THE TEST PITS AND VERTICAL INTERVALS DO NOT ALWAYS CORRELATE. TEST RESULTS ARE SHOWN ADJACENT TO THE TYPE OF SOIL TESTED, AND ARE NOT NECESSARILY AT THE SHELBY TUBE INTERVAL TESTED.

TEST PIT LOG LEGEND

CHM/					PROJECT NUMBER GLO65550.FI.FS	STP-01	NUMBER SHEET	1 OF	1
PROJE	ст	Onala	iska l	Municipal Landfill RI/FS		3+80E, 74	FIT LOG	GER <u>C.</u> La	wrence
ELEVA			0.46	658 ft ± INT JD 310-A	CONTRACTO	R <u>E.T.I.</u>		D 4/20/8	
	ATION				APPROX. DIMENSI	ONS: Length_			ium Depth3 ft
30	SAL	APLE		SOIL DES	SCRIPTION			COMMENTS	, ,
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND	NUMBER	SOIL NAME, COLOR, MOISTUR RELATIVE DENSITY OR CONSI SOIL STRUCTURE, MINERALO USCS GROUP SYMBOL	STENCY,	SYMBOLIC LOG	DIFFICULTY IN EXC RUNNING GRAVEL COLLAPSE OF WAL DEBRIS ENCOUNT GRADATIONAL CO INSTRUMENTATIO	CONDITION, LS, SANDHEA	VE, SEEPAGE, SAND
1.0'	0	B-1	ST-1 (0'-2')	<u>SILTY SAND</u> Fine sand, light brown, m	oist, medium dense (SM)		BEGIN EXCAN Wc = 11.5% Dry Density = 1 K = 4.9 x 10 ⁻⁵ cr	118 PCF	- 09:25
2.0' —	2.0'	-B-2		LEAN CLAY, gray, mois	ut, suiff (CL)				_
	2.3'			POORLY GRADED SAN brown, moist, loose to me					
3.0' —				END TEST PIT @ 3' B.C	J.S.		FINISH BACK	FILLING 10	:00
4.0' —									-
5.0 —									-

PROJECTNUMBER

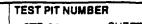
TEST PIT NUMBER SHEET 1 OF

GLO65550.FLFS

STP-02

TEST PIT LOG

1


					~		DATE EXCAVATED	4/20/89		
ER		AND	DAT	E Not encountered	APPROX. DIME	NSIONS: Lengt	<u>3 ft</u> Width <u>2 ft</u>	Maximum Depth	<u>3 ft</u>	
=L	SAN	IPLE		SOIL DESC	RIPTION		Ci	OMMENTS		
SUMPACE (F1)	INTERVAL	TYPE AND	NUMBER	SOIL NAME, COLOR, MOISTURE C RELATIVE DENSITY OR CONSIST SOIL STRUCTURE, MINERALOGY USCS GROUP SYMBOL	ENCY.	1 DG SYMBOLIC	DIFFICULTY IN EXCAVATION, RUNNING GRAVEL CONDITION, COLLAPSE OF WALLS, SAND HEAVE, DEBRIS ENCOUNTERED, WATER SEEPAGE, GRADATIONAL CONTACTS, TESTS AND INSTRUMENTATION			
	0			LEAN CLAY, brown to gra	y, moist, stiff (CL)		BEGIN EXCAVA	TION at 08:55		
_		8-1	ST-1A, ST-1B (0'-2')				Wc = 22.5% LL = 30 PI = 9 Dry Density = 102 K = 3.2 x 10 ⁻⁷ cm/			
-+	2.0'									
	2.5'									
				POORLY GRADED SAND brown, moist, loose to medi		id.				
)'				END TEST PIT @ 3' B.G.S			FINISH BACKFI	LLING @ 9:20		
)) _										
), —						_				

CHM/	<u>/// [</u>				PROJECT NUMBER GLO65550.FI.FS	TEST PIT		OF 1		
					GLO65550.FI.F5	STP-03				
						TEST	PIT LOG			
PROJE	ст	Onals	<u>uska</u>	Municipal Landfill RI/FS		4+00E, 6-	00NLOGGER_	C. Lawrence		
	TION			INT JD 310-A	CONTRACTO	OR <u>E.T.I.</u>		4/20/89		
	RLEVEL				APPROX. DIMENS	ONS: Length_	- —			
2	SAN	APLE		SOIL DES	SCRIPTION		CON	IMENTS		
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND	NUMBER	SOIL NAME, COLOR, MOISTUR RELATIVE DENSITY OR CONSI SOIL STRUCTURE, MINERALO USCS GROUP SYMBOL	STENCY,	SYMBOLIC LOG	DIFFICULTY IN EXCAVATION, RUNNING GRAVEL CONDITION, COLLAPSE OF WALLS, SAND HEAVE, DEBRIS ENCOUNTERED, WATER SEEPAGE, GRADATIONAL CONTACTS, TESTS AND INSTRUMENTATION			
	0	B-1		SILTY SAND, fine sand, medium dense (SM)	light brown, moist,		BEGIN EXCAVATI	ON @ 08:20		
	0.7'		<u>ନ୍</u>	LEAN CLAY, gray, mois	at stiff (CL)	<u> </u>	Grav silty clay layer	ranged from 0.5' to 1.5'		
1.0' -	1.2'	B-2	ST-1 (0'-2				thick along east pit w			
	1.4		S	POORLY GRADED SAM						
2.0' -	2.0						Excavated material c	contained what		
3.0'								is which read "T&G Bags",		
				END TEST PIT @ 3' B.C	3.S.		FINISH BACKFILL	ING @		
4.0' -										
5.0 -										

CHI	111	11

BRA IRACHUMACE
PROJECTNUMBER

GLO65550.FI.FS

STP-04 SHEET 1 OF

1

- -

TEST PIT LOG

PROJE				Municipal Landfill RI/FS			+00E, 6-		C. Lawrence	
				NTJD 310-A	CONTR	ACTOR_E	<u>.T.L</u>		4/20/89	
	ATION				APPROX. DIA	ENSIONS	Leagth	_DATE EXCAVATED 3 ftWidth _ 2 ft		5 ft
		_								
DEPTH BELOW SURFACE (FT)	INTERVAL		+	SOIL DESC SOIL NAME, COLOR, MOISTURE RELATIVE DENSITY OR CONSIST SOIL STRUCTURE, MINERALOG' USCS GROUP SYMBOL	CONTENT, TENCY,		LOG SYMBOLIC	CON DIFFICULTY IN EXCAVAT RUNNING GRAVEL CON COLLAPSE OF WALLS, S DEBRIS ENCOUNTERED GRADATIONAL CONTAC INSTRUMENTATION	DITION, ANDHEAVE, WATERSEEPAGE	
	0	B-1	2)	<u>SILTY SAND</u> , fine sand, li medium dense (SM)	ght brown, moist,			BEGIN EXCAVATI Wc = 15.0%		
1.0'	1.5'		ST-1 (0'-2')	LEAN CLAY, gray, moist,	stiff (CT)			Dry Density = 113.0 K = 2.4 x 10 ⁻³ cm/se		
2.0'	2.0'									
		B-2								
3.0' —										-
	4.0'									
4.0'	4.0		L	POORLY GRADED SAN brown, moist, loose to med				Refuse observed in e	excavated material	
5.0'				END TEST PIT @ 5.0' B.C	J.S.			FINISH BACKFILL	ING @ 08:15	

CHM /	///				PROJECT NUMBER GLO65550.FI.FS	STP-05	NUMBER SHEET	1	OF	1	
	CT			Municipal Landfill RI/FS		2+00E, 5-		GGER_	C. Lawr	ence	
	ATION					_DATE EXCAVAT		4/19/89			
VATER	LEVEL				APPROX. DIMENSI	ONS: Length_	<u>3 ft</u>			Depth	<u>2.5</u>
DEPTH BELOW SURFACE (FT)	INTERVAL	INPE AND	+	SOIL DES SOIL NAME, COLOR, MOISTURE RELATIVE DENSITY OR CONSIS SOIL STRUCTURE, MINERALOG USCS GROUP SYMBOL	CONTENT,	LOG SYMBOLIC	DIFFICULTY IN E RUNNING GRAVI COLLAPSE OF W DEBRIS ENCOUN GRADATIONAL C INSTRUMENTAT		IMENTS ION. DITION, AND HEAVE , WATER SEI TS, TESTS A	EPAGE.	
	0			<u>SILT</u> , brown, moist, firm t	o stiff (ML)		BEGIN EXC.				
1.0'	1 <u>.0'</u>		(02')								
	1.5'	B-1	ST-1	LEAN CLAY, gray, moist	, stiff (CL)						
				POORLY GRADED SAN moist, loose to medium de		•					
2.0' —	2.0'		L			_					
		<u> </u>		END TEST PIT @ 2.5' B.	G.S.		FINISH BAC	KFILL	ING @ 16	:55	
3.0' —											
4.0'						_					
5.0'											
							ł				

снм/	111				PROJECT NUMBER	TEST PIT	NUMBER		
					GLO65550.FI.FS	STP-06		1 OF	1
						TEST	PIT LOG		
				Municipal Landfill RI/FS		3+60E.5	+00NLO	GGER <u>C. L</u>	awrence
	ATION			NT			DATE EXCAVAT	ED4/19	/89
ATER	ALEVEL	AND	DAT	E Not encountered	APPROX. DIMENS	IONS: Length_	<u>3 ft</u> Width	<u>2 ft</u> Maxim	num Depth3 ft
	SAN	IPLE		SOIL DES	CRIPTION			COMMENTS	3
UEPTIN BELUW SURFACE (FT)	Image: Solid Structure Alternative Densit Image: Solid Structure Solid Structure Image: Solid Structure Solid Structure		SOIL NAME: COLOR, MOISTURI RELATIVE DENSITY OR CONSIL SOIL STRUCTURE, MINERALOO USCS GROUP SYMBOL	STENCY,	LOG	DIFFICULTY IN ED RUNNING GRAVE COLLAPSE OF W DEBRIS ENCOUN GRADATIONAL C INSTRUMENTATI	EL CONDITION, ALLS, SANDHEA ITERED, WATER IONTACTS, TEST	VE, SEEPAGE, 'S AND	
	0			<u>SILT</u> , brown, moist, firm	to stiff (ML)		BEGIN EXC	AVATION @	15:55
0' —	1.6		ST-1A, ST-1B (0'-2')				Wc = Dry Density = LL = PI =	ST-1A 15.6% = 113.4 PCF 19 1	<u>ST-1B</u> 18.6% 108.6 PCF 21 1
	1.0	8-1		LEAN CLAY, gray, mois	t, stiff (CL)			2.0 x 10 ⁻⁶ cm/se	c 1.1 x 10 ⁻⁴ cm/se
	2.0'								
2.0' —				POORLY GRADED SAN moist, loose to medium de	D, medium to fine, brown mse (SP)	La			_
3.0' —			 	END TEST PIT @ 3.0' B	G.S.		FINISH BAC	KFILLING @	16:15
4.0' -						_			_
5.0'									-

СНМ/					PROJECT NUMBER	TEOT DIT	Million				
					GLO65550.FI.FS	STP-07	NUMBER SHEET	1	OF	1	
						, -	PIT LOG				
						·····					
	CT TION			Municipal Landfill RI/FS	LOCATIONCONTRACTOR	5+00E, 4 3 E.T.L		IGER	<u>C. Lawr</u>	ence	
EXCAV		EQUI	PME				DATE EXCAVAT		4/19/89		
· · · · · · · · · · · · · · · · · · ·	RLEVEL				APPROX. DIMENSIC	NS: Length_	<u>3 ft</u> Width 2		Maximum	Depth	3 ft
ðĒ	SAN		-+	SOIL NAME, COLOR, MOISTURE	CRIPTION	-					
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND	NUMBER	RELATIVE DENSITY OR CONSIS SOIL STRUCTURE, MINERALOO USCS GROUP SYMBOL	STENCY,	LOG LOG	DIFFICULTY IN EXCAVATION, RUNNING GRAVEL CONDITION, COLLAPSE OF WALLS, SAND HEAVE, DEBRIS ENCOUNTERED, WATER SEEPAGE, GRADATIONAL CONTACTS, TESTS AND INSTRUMENTATION			EPAGE. ND	
	0		-	<u>SILT</u> , mostly brown with stiff (ML)	some gray zones, moist,		BEGIN EXCA	VATIO	N @ 15::	30	
1.0'	2.0'	B-1	ST-1	POORLY GRADED SAN loose to medium dense (S	1D. fine, gray, dry to moist, P)		Wc = 22.2% Dry Density = LL = 21 PI = K = 6.2 x 10 ⁻⁵	2	F		
3.0' —				END TEST PIT @ 3.0' B			FINISH BACI			.50	
4.0' —					-						_
5.0'					-						-
5.0*					-						

 PROJECT NUMBER
 TEST PIT NUMBER

 GLO65550.FI.FS
 STP-08
 SHEET 1
 OF 1

TEST PIT LOG

<u></u> _					<u></u>						
PROJE		<u>Onala</u>	<u>iska</u> .	Municipal Landfill RI/FS	LOCATION	ACTOR E	+50 <u>E, 3+</u> T.I.	<u>00N</u> LO	DGGER_	C. Lawrence	
		EQUI	PME	NT				DATE EXCAVA	TED	4/19/89	
ATEF	LEVEL	AND	DAT	E Not encountered	APPROX. DIM	ENSIONS:	Length_	<u>3 ft</u> Width	<u>2 ft</u>	_Maximum Depth_	<u>3 ft</u>
3 F	SAN	IPLE		SOIL DES	CRIPTION					MENTS	
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND	NUMBER	SOIL NAME, COLOR, MOISTURE RELATIVE DENSITY OR CONSIS SOIL, STRUCTURE, MINERALOG USCS GROUP SYMBOL	TENCY, Y.		DIFFICULTY IN EXCAVATION. RUNNING GRAVEL CONDITION. COLLAPSE OF WALLS, SANDHE DEBRIS ENCOUNTERED, WATE GRADATIONAL CONTACTS, TES INSTRUMENTATION		ITION, NDHEAVE, WATERSEEPAGE, S,TESTSAND		
	0			SANDY SILT, brown, more	ist, firm to stiff (ML)			BEGIN EXC	CAVATIO	ON@15:10	
	0.7'							Wc = 19.6% Dry Density LL = 21 PI	= 100.0 1 = 1		
			5	LEAN CLAY, gray, moist,	soff (CL)			$K = 4.6 \times 10^{-10}$) ⁻⁶ cm/sec		
1.0' —		B-1	ST-1 (0'-2')								_
	<u>1.7'</u>										
				POORLY GRADED SAN brown, moist, loose to med							
	2.0'										
2.0' -	2.0										
		ł						•			
		ţ									
3.0' -				END TEST PIT @ 3.0' B.0	J.S.			FINISH BA	CKFILLI	NG @ 15:25	
				-						•	
I											
4.0'											
			,								
5.0'											
			;								
1											
	L			l							

CHM ,					PROJECT NUMBER GLO65550.FI.FS	TEST PIT	NUMBER SHEET 1 OF 1	
						TEST	PIT LOG	
-	- second		_	Municipal Landfill RI/FS		<u>3+80E, 3+</u>	00N LOGGER C. Lawrenc	e
				INT JD 310-A	CONTRACTO	OR <u>E.I.I.</u>	DATE EXCAVATED 4/19/89	
	ATION				APPROX. DIMENS	IONS: Length		poth 3 f
		MPLE			SCRIPTION		COMMENTS	
DEPTH BELOW SURFACE (FT)	MTERVAL	TYPE AND		SOIL DER SOIL NAME, COLOR, MOISTUR RELATIVE DENSITY OR CONSI SOIL STRUCTURE, MINERALO USCS GROUP SYMBOL	E CONTENT, STENCY,	106 SYMBOLK	DIFFICULTY IN EXCAVATION, RUNNING GRAVEL CONDITION, COLLAPSE OF WALLS, SAND HEAVE, DEBRIS ENCOUNTERED, WATER SEEPA GRADATIONAL CONTACTS, TESTS AND INSTRUMENTATION	 NGE,
	0			SANDY SILT. brown, ma	bist, firm to stiff (ML)		BEGIN EXCAVATION @ 14:50	
1.0' —	1.0'	 	-1 (0'-2')	LEAN CLAY, gray, mois	i, suff (CL)			
	1.7	ā	ST	POORLY GRADED SAI	ND. fine, dry to moist.			
2.0' -	2.0'			loose to medium dense (S				
3.0' —		-		END TEST PIT @ 3.0' B	.G.S.		FINISH BACKFILLING @ 15:05	
4.0' —								
5.0' —								

PROJECT NUMBER TEST PIT NUMBER GLO65550.FI.FS STP-10 SHEET OF 1 1 **TEST PIT LOG** Onalaska Municipal Landfill RI/FS 4+80E, 1+00N LOCATION LOGGER C. Lawrence PROJECT_ CONTRACTOR_E.T.I. ELEVATION 666 ft ± JD 310-A DATE EXCAVATED 4/19/89 EXCAVATION EQUIPMENT_ Not encountered APPROX. DIMENSIONS: Length_ WATER LEVELAND DATE <u>3 ft</u> _Width <u>2 ft</u> Maximum Depth 3 ft SAMPLE SOIL DESCRIPTION **COMMENTS** DEPTH BELOW SURFACE (FT) DIFFICULTY IN EXCAVATION, RUNNING GRAVEL CONDITION, COLLAPSE OF WALLS, SAND HEAVE, DEBRIS ENCOUNTERED, WATER SEE PAGE, GRADATIONAL CONTACTS, TESTS AND INSTRUMENTATION SYMBOLIC LOG SOIL NAME, COLOR, MOISTURE CONTENT, TYPE AND NUMBER RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, **NTERVAL** USCS GROUP SYMBOL 0 SANDY SILT, brown, moist, firm to stiff (ML) **BEGIN EXCAVATION @ 14:20** <u>م</u> Wc = 22.5%1.0' ė 1.0' Dry Density = 100.2 PCF ST-1 LEAN CLAY, gray, moist, stiff (CL) LL = 26 PI = 4 $K = 5.5 \times 10^{-7} \text{ cm/sec}$ ġ. 2.0 2.0' Wc = 7.2%POORLY GRADED SAND, fine, gray, dry to Dry Density = 103.5 PCF moist, loose to medium dense (SP) $K = 6.8 \times 10^4 \text{ cm/sec}$ 3.0 END TEST PIT @ 3.0' B.G.S. FINISH BACKFILLING @ 14:45 4.0' 5.0'

CHM/	////				GLO65550.FI.FS	T	EST PIT	NUMBER SHEET	1 0	F 1	
					02003330.FI.F3					F 1	<u> </u>
							EST	PIT LOG		_	
				Municipal Landfill RI/FS			5+50E, 2-	+50 <u>N</u> LOG	GER <u>C</u>	. Lawrenc	e
	TION			NTJD 310-A	CONTRA	CTOR_I	<u>E.T.I.</u>	DATE EXCAVATE		/19/89	
	ALEVEL				APPROX. DIME	NSIONS:	Length_			ximum Der	oth3 ft
S ⊂	SAN	IPLE		SOIL DES	CRIPTION		COMMENTS				
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND	NUMBER	RELATIVE DENSITY OR CONSIS	DIL NAME, COLOR, MOISTURE CONTENT, LATIVE DENSITY OR CONSISTENCY, DIL STRUCTURE, MINERALOGY, SCS GROUP SYMBOL		SYMBOLIC LOG	DIFFICULTY IN EXC RUNNING GRAVEL COLLAPSE OF WAL DEBRIS ENCOUNTI GRADATIONAL CO INSTRUMENTATIO	AVATION, CONDITION LS, SANDH ERED, WAT NTACTS, TE N	N. IEAVE. ERSEEPAC ESTS AND	3E.
	0			SANDY SILT, brown, mo	ist, firm to stiff (ML)			BEGIN EXCA	VATION (@ 13: 50	
1.0'	1.0'		ST-1 (0'-2')					Wc = 13.4% Dry Density = 1 K = 6.3 x 10 ⁻¹ c			_
	1.7	B-1	ST-1	<u>LEAN CLAY</u> , gray, moist	, sar (CL)						
				POORLY GRADED SAN moist, loose to medium de							
2.0' -						·					
2.01-					-						
3.0' -				END TEST PIT @ 3.0' B.	G.S.			FINISH BACK	FILLING	@ 14:15	
4.0' -											_
5.0' -											

·····

Attachment C-2 GEOTECHNICAL LABORATORY DATA

GLT913/035.50-15

•

.

Constituenty, Roman, etc.
 Constituenty, Roman, etc.
 Constituenty, etc.
 Constituenty, etc.
 Constituenty, etc.
 Constituenty, etc.
 Constituenty, etc.

June 5, 1989 13410.12

Exploration Technology, Inc. 1402 Emil Street Madison, WI 53713

Attention: Mr. Tom Ruda

Re: Geotechnical Laboratory Test Results Onalaska Municipal Landfill Cover Onalaska, Wisconsin CH2M Hill Job # GL065550.FI.FS

Dear Mr. Ruda:

As requested, we have completed laboratory soil testing on the 13, 3-in. diameter Shelby tube samples and 11 bag samples that you delivered to us on April 20, 1989. Testing was performed in general accordance with CH2M Hill's letter of April 17, 1989. As instructed, each sample which was tested for permeability also had the following laboratory tests performed: natural moisture content, grain size distribution (including a hydrometer analysis for samples with more than about 10% passing the No. 200 sieve), and dry unit weight.

Because many of the samples are silty to sandy in character, changes in the testing program were made from those outlined in the April 17, 1989 letter. These revisions were discussed earlier by telephone with Chris Lawrence of CH₂M Hill, and include the following:

- Tests were performed on 11 of the 13 Shelby tube samples. Two of the bag samples were tested for standard Proctor compaction, with one of the two bags also tested for permeability at approximately 95% compaction (based on standard Proctor).
- Due to the lower soil plasticities of many of the samples than anticipated, the shrinkage limit test was not performed. Atterberg limits were not performed on samples which are nonplastic.
- 3) The lower soil plasticities also influenced specimen preparation and test parameters for the permeability tests. For example, a length-to-diameter ratio of approximately 2:1 instead of 1.5:1 was used, hydraulic gradients were in the range of 8 to 22 instead of 10 to 30, and the time intervals between readings were in some cases about 8 h instead of approximately 24 h.

Warzyn Engineering inc One Science Court University Research Poiss PO Bus 53/55 Madison, Wisconsin 53/105 (608) 277-0449

- 4) An average net confining pressure of 2 lb/sq in. was used for the flexible-wall permeability tests. The net confining pressures at the influent and effluent ends of the specimens were slightly lower and higher, respectively, than the average pressure, to create a flow condition during the "rising head/falling head" tests.
- 5) Because the spread sheets of flexible-wall permeability test data include incremental and cumulative influent and effluent flow volumes for each permeability test reading, plots of water volumes entering and leaving the specimens as a function of time have not been included.

The test results are contained in the attached Grain Size Distribution Test Reports, Moisture-Density Curve, Falling Head Permeability Test Reports and Flexible-Wall Permeability Test Laboratory Data Spread Sheets. Also enclosed are the record sheets used to visually classify the Shelby tube samples and to select portions of the tube samples for laboratory testing.

All soil samples will be stored for 30 days, at which time they will be discarded unless otherwise instructed by you.

Should you have any questions concerning these results or require additional testing, please contact us.

Sincerely,

WARZYN ENGINEERING INC.

Donald W. Arenander Geotechnical Laboratory Supervisor

•

DWA/mm1/DLN [L-S-80]

Attachments: As Stated

(c) FLEXIBLE WALL FALLING HEAD PERMEABILITY TEST RESULTS PROJECT: ONALASKA LANDFILL CH2M HILL JOB # GLO65550.FI.FS

ONALASKA, WISCONSIN

Test No.	1	
JOD NO.	13410.12	-
Date	05-26-89	-
Sheet _	1 of 3	-
		-

WARTYN ENGINEERING INC. + ONE SCIENCE COURT + UNIVERSITY RESEARCH PARK + P.O. BOX 5385 + MADISON, WISCONSIN 53705

3-INCH SHELBY TUBE

SAMPLE (a)	STP 08		STP 10		STP 06A	· · · · · · · · · · · · · · · · · · ·
RECOVERY	0-2'	·····	0-2'		0-1.7'	
	Gray SILT, Little Clay	Some Sand, (ML)	Gray-Brown Some Clay, Sand (ML)		Brown SILT Little Cla	, Some Sand, y (ML)
	INITIAL	FINAL	INITIAL	FINAL	INITIAL	FINAL
SAMPLE DIAMETER (cm)	4.95	4.94	4.96	4.94	4.97	4.95
SAMPLE AREA, A (cm ²)	19.25	19.17	19.29	19.21	19.39	19.28
SAMPLE LENGTH, L (cm)	10.11	10.09	10.11	10.09	10.03	10.00
MOISTURE CONTENT, 2	19.6	20.5	22.5	24.1	15.6	16.6
DRY DENSITY (PCF)	106.0	106.6	100.2	100.9	113.4	114.4
MAXIMUM GRADIENT	8	8	8	22	7	7
NET CONFINING PRESSURE (PSI)	2	2	2	2	2	2
	COEFFICI	ENT OF PERM	EABILITY, k	(cm/sec)	·	
RUN NO. 1	6.6 x 10 ⁻	-6	3.1 x 10 ⁻	-6	2.9 x 10 ⁻	6
2	6.7 x 10 ⁻	-6	1.3×10^{-1}	-6	3.0 x 10-	6
3	6.5 x 10 ⁻	-6	9.0 x 10	-7	2.9 x 10-	6
4	5.1 x 10 ⁻	-6	6.7 x 10 ⁻	-7	2.8 x 10-	6

FORMULA: (c)

$$K = \frac{2.3 \text{ a } L}{\text{At}} \quad \log 10 \frac{\text{ho}}{\text{h1}}$$

AVERAGE k, (cm/sec)(b)

5

6

7

8

9

10

Where a = cross-sectional area of standpipe, t = time for water level to fall from initial height, hg, to final height, h1 (All other terms are defined above)

 7.6×10^{-7}

 6.4×10^{-7}

 6.1×10^{-7}

 5.4×10^{-7}

 5.4×10^{-7}

 5.7×10^{-7}

 5.5×10^{-7}

REMARKS :

- (a) Permeability tests were performed on relatively undisturbed 3-inch diameter Shelby tube samples.
- (b) Average coefficient of permeability based on run numbers 8 through 10.

5.7 x 10-6

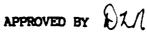
4.5 x 10⁻⁶

4.8 x 10⁻⁶

4.5 x 10-6

 4.6×10^{-6}

4.6 x 10-6


4.6 x 10-6

(c) "Rising Head/Falling Head" formula.

2

TESTED BY

CHECKED BY . DKN

 2.2×10^{-6}

 2.0×10^{-6}

 2.2×10^{-6}

 2.0×10^{-6}

 2.1×10^{-6}

 2.0×10^{-6}

 2.0×10^{-6}

(C) FLEXIBLE WALL FALLING HEAD PERMEABILITY TEST RESULTS PROJECT: ONALASKA LANDFILL CH2M HILL JOB # GL065550.FI.FS

ONALASKA, WISCONSIN

Test No	1			1
Job No.	13410.1	2		
Date	05-26-89			
	2		3	
		_ ^		J

3-INCH SHELBY TUBE

SAMPLE (a)	STP 02B		STP 06B		STP 07	
RECOVERY	0-2'		0-2'		0-1.8'	
SOIL DESCRIPTION	Brown Lean CLAY, Trace Sand (CL)		Gray SILT, Some Sand, Little Clay (ML)		Brown SILT, Little Sand & Clay (ML)	
	INITIAL	FINAL	INITIAL	FINAL	INITIAL	FINAL
SAMPLE DIAMETER (cm)	5.01	5.01	4.97	4.96	4.96	4.95
SAMPLE AREA, A (cm ²)	19.75	19.75	19.43	19.30	19.34	19.25
SAMPLE LENGTH, L (cm)	10.03	10.03	10.09	10.06	10.11	10.09
MOISTURE CONTENT, %	22.5	22.2	18.6	20.2	22.2	27.4
DRY DENSITY (PCF)	102.9	102.9	108.6	109.7	95.0	95.7
MAXIMUM GRADIENT	8	22	8	8	8	8
NET CONFINING PRESSURE (PSI)	2	2	2	2	2	2
	COEFFICI	ENT OF PERM	EABILITY, k	(cm/sec)		
RUN NO. 1	3.4 x 10-	7	1.9 x 10	6	8.2 x 10 ⁻⁵	
2	3.1 x 10-	7	1.6 x 10-	6	8.0×10^{-5}	
3	3.0 x 10-	7	1.3 x 10 ⁻⁴	6	7.6 x 10 ⁻⁵	
4.	3.3 x 10-	7	1.1 x 10 ⁻¹	6	7.4 x 10 ⁻⁵	
5	3.4 x 10 ⁻	7	1.2 x 10 ⁻¹	6	7.4 x 10 ⁻⁵	
6	3.0 x 10 ⁻¹	7	1.1 x 10 ⁻¹	6	7.2 x 10 ⁻⁵	
7	3.2 x 10-	7	1.2 x 10 ⁻¹	5	6.1 x 10 ⁻⁵	

FORMULA: (c)

$$K = \frac{2.3 \text{ a } L}{\text{At}} \quad \log 10 \quad \frac{\text{ho}}{\text{h}_1}$$

2

8

9

10

AVERAGE k, (cm/sec)(b)

3.2 x 10⁻⁷

 3.2×10^{-7}

 3.1×10^{-7}

 3.2×10^{-7}

Where a = cross-sectional area of standpipe, t = time for water level to fall from initial height, hg, to final height, h1 (All other terms are defined above)

REMARKS:

- (a) Permeability tests were performed on relatively undisturbed 3-inch diameter Shelby tube samples.
- (b) Average coefficient of permeability based on run numbers 8 through 10.

CHECKED BY

(c) "Rising Head/Falling Head" formula.

TESTED BY

 1.1×10^{-6}

 1.2×10^{-6}

 1.1×10^{-6}

<u>1.1 x 10⁻⁶</u>

 6.0×10^{-5}

 6.2×10^{-5}

6.2 x 10⁻⁵

6.2 <u>x 10-5</u>

(c) FLEXIBLE WALL FALLING HEAD PERMEABILITY TEST RESULTS PROJECT: ONALASKA LANDFILL CH2^M HILL JOB # GLO65550.FI.FS ONALASKA, WISCONSIN

Test N	lo		``
Job No	13410.1	12	_
Date _	05-22-89		_
Sheet	3	of _3	_
			_

SAMPLE BAG (a)	STP 04	·				
RECOVERY	1.5-3.5'					
SOIL DESCRIPTION	Brown Lean Little San					
	INITIAL	FINAL	INITIAL	FINAL	INITIAL	FINAL
SAMPLE DIAMETER (cm)	4.96	4.95				
SAMPLE AREA, A (cm ²)	19.35	19.24				
SAMPLE LENGTH, L (cm)	9.90_	9.87	<u></u>	<u></u>		
MOISTURE CONTENT, 3	19.4	20.6				·
DRY DENSITY (PCF) (b)	103.7	104.6				
MAXIMUM GRADIENT	8	22				
NET CONFINING PRESSURE (PSI)	2	2				
	COEFFICI	ENT OF PERM	EABILITY, k	(cm/sec)		
RUN NO. 1	4.6 x	10-7				
2	<u>4.6 x</u>	10-7				
3	4.6 x	10-7				
4	4.8 x	10-7	<u> </u>		L	
5	4.5 x	10-7	Ì			
6	4.2 x	10-7		<u></u>		
7	4.3 x					
8	4.4 x	10-7				
9	4.2 x	10-7				
10	4.3 x	10-7			L	فكمسوي جي

FORMULA: (c)

$$K = \frac{2.3 \text{ a } L}{\text{At}} \log 10 \frac{\text{ho}}{\text{hl}}$$

my (

2

AVERAGE k, (cm/sec)

Where a = cross-sectional area of standpipe, t = time for water level to fall from initial height, h0, to final height, h1 (All other terms are defined above)

REMARKS:

- (a) This permeability test was performed on remolded soil, trimmed from a standard Proctor sample. Initial percent compaction was 92.6% and the final percent compaction after consolidation was 93.4% at a confining pressure of 2 psi.
- (b) Average coefficient of permeability based on run numbers 8 through 10.

<u>4.3 x 10⁻⁷</u>

(c) "Rising Head/Falling Head" formula.

~

SA CHECKED BY

Job No. 13410 Date: 04/20/89

F ,LING HEAD PERMEABILITY TEST Warsy_ _agineering Inc., 1 Science Ct., University Research Park, PO Box 5385, Hadison, WI 53705 (608) 273-0440

PROJECT CLIENT	ONALASKA LANDFILL CH2M HILL				
SAMPLE (a)	STP 01 @ RECOVERY 0-2.0 FT				
SOIL DESCRIPTION	Brown Silty Fine-Medium SAND, Little Clay, Trace Gravel (SM)				
SAMPLE DIAMETER (cm) SAMPLE AREA,A(cm ²)	7.4 42.6				
SAMPLE LENGTH,L(cm) MOISTURE CONTENT,% DRY DENSITY (lb/cu ft) PERCENT COMPACTION	INITIAL FINAL 16.0 16.0 11.5 12.7 118.0 118.0				
I	COEFFICIENT OF RUN PERMEABILITY.k(cm/sec)				
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
AVERAGE COEFFICIENT OF PERMEABILITY = 4.9E-05 cm/sec (Based on run numbers 8 through 10)					
2.3al he FORMULA: k = logie , Where a = cross-sectional area of standpipe, At hi -t = time for water level to fall from initial height, he, to final height, he (All other terms are defined above)					
FOOTNOTES: (a) This permeability test was performed on a relatively undisturbed 3-in. diameter Shelby tube sample.					

CHECKED BY: DUA DATE: 6-2-09 APPROVED BY: DATE: 6-5-89

Job No. 13410 Date: 04/20/89

FALING HEAD PERMEABILITY TEST Warz gineering Inc., 1 Science Ct., University Research Park, PO Box 5385, Badison, NI 53785 (688) 273-8448

PROJECT CLIENT	ONALASKA LANDFILL CH2M HILL				
SAMPLE (a)	STP 04 @ RECOVERY 0-2.0 FT				
SOIL DESCRIPTION	Brown Silty Fine-Medium SAND, Little Clay (SM)				
SAMPLE DIAMETER (cm) SAMPLE AREA,A(cm ²)	7.4 42.6				
SAMPLE LENGTH, L(cm) MOISTURE CONTENT, % DRY DENSITY (lb/cu ft) PERCENT COMPACTION	<u>INITIAL</u> <u>FINAL</u> 14.0 14.0 15.0 15.5 113.0 113.0 -				
COEFFICIENT OF RUN PERMEABILITY.k(cm/sec)					
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
AVERAGE COEFFICIENT OF PERMEABILITY = 2.4E-05 cm/sec (Based on run numbers 8 through 10)					
2.3al he FORMULA: k = logis , Where a = cross-sectional area of standpipe, At h: t = time for water level to fall from initial height, he, to final height, h: (All other terms are defined above)					
FOOTNOTES: (a) This permeability test was performed on a relatively undisturbed 3-in. diameter Shelby tube sample.					

CHECKED BY: DUA DATE

WA DATE: 6-2-89 APPROVED BY: DM DATE: 6-5-89

Job No. 13410 Date: 04/20/89

PROJECT CLIENT	ONALASKA LANDFILL CH2M HILL	
SAMPLE (a)	STP 10 @ RECOVERY 0-2.0 FT	
SOIL DESCRIPTION	Brown Fine-Medium SAND, Trace Silt & Clay (SP-SM)	
SAMPLE DIAMETER (cm) SAMPLE AREA,A(cm ²)	7.4 42.6	
SAMPLE LENGTH,L(cm) MOISTURE CONTENT,% DRY DENSITY (1b/cu ft) PERCENT COMPACTION	<u>INITIAL</u> <u>FINAL</u> 14.4 14.4 7.2 19.2 103.5 103.5 -	
COEFFICIENT OF RUN PERMEABILITY, k(cm/sec)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
AVERAGE COEFFICIENT OF PERMEABILITY = 6.8E-04 cm/sec (Based on run numbers 9 through 11)		
2.3aL he FORMOLA: k = logie , Where a = cross-sectional area of standpipe, At h: t = time for water level to fall from initial height, he, to final height, h: {All other terms are defined above}		
FOOTNOTES: (a) This permeability test was performed on a relatively undisturbed 3-in. diameter Shelby tube sample.		

CHECKED BY: WWA DATE: 6-2-09

APPROVED BY: DML DATE: 6-5-89

Job No. 13410 Date: 04/21/89

WARZYN

FATALING HEAD PERMEABILITY TEST Narz. ; intering Inc., 1 Science St., Iniversity Research Park, PO Box 5385, Nadison, NI 53785 (608) 273-0440

PROJECT CLIENT	ONALASKA LANDFILL CH2M HILL
SAMPLE (a)	STP 11 @ RECOVERY 0-2.0 FT
SOIL DESCRIPTION	Brown Silty Fine-Medium SAND, Little Clay (SM)
SAMPLE DIAMETER (cm) SAMPLE AREA,A(cm ²)	7.4 42.6
SAMPLE LENGTH, L(cm) MOISTURE CONTENT, % DRY DENSITY (lb/cu ft) PERCENT COMPACTION	<u>INITIAL</u> <u>FINAL</u> 10.7 10.7 13.4 13.7 115.8 115.8
	COEFFICIENT OF RUN PERMEABILITY.k(cm/sec)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

AVERAGE COEFFICIENT OF PERMEABILITY = 6.3E-07 cm/sec (Based on run numbers 10 through 12)

6.1E-07

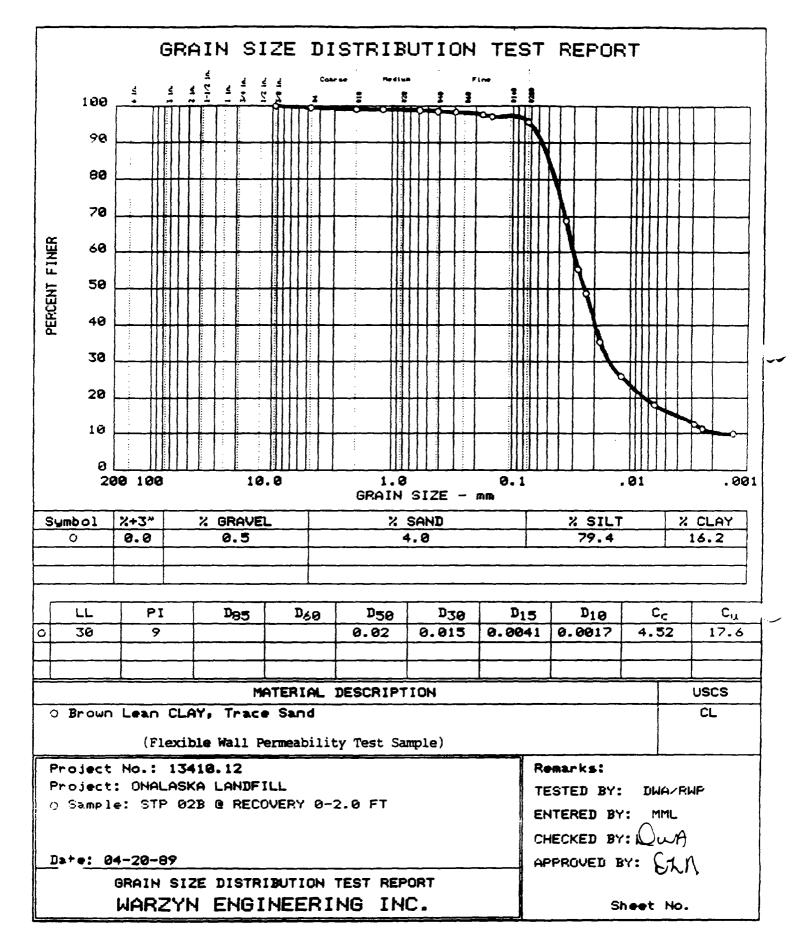
6.5E-07

6.3E-07

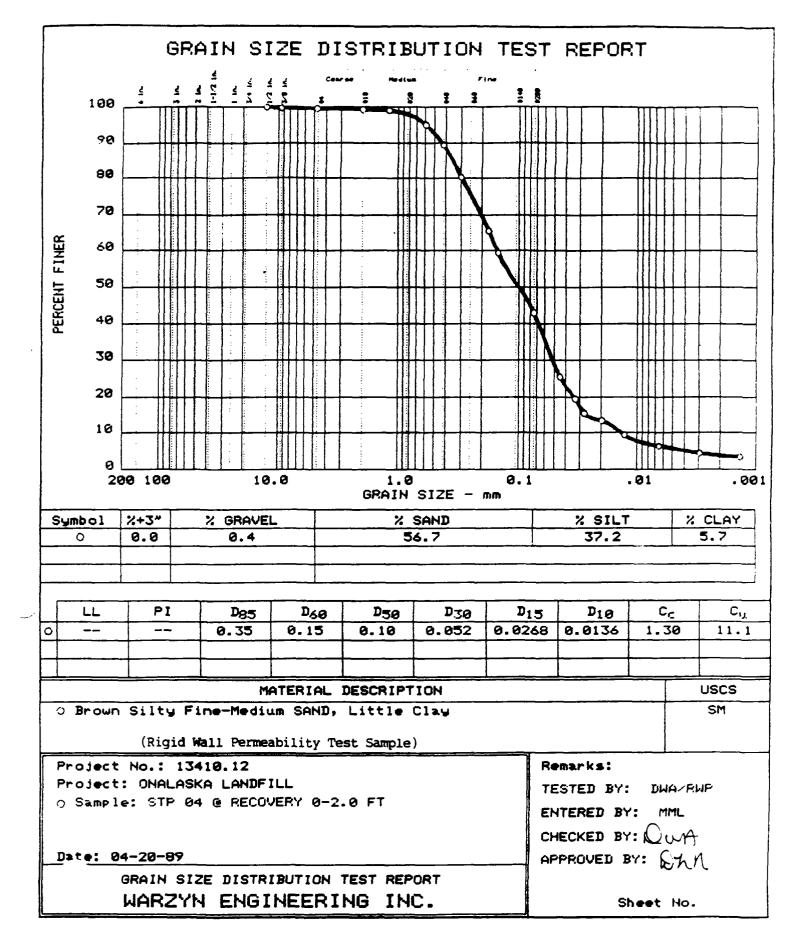
2.3aL he FORMULA: k = ----- logie -- , Where a = cross-sectional area of standpipe, At h: t = time for water level to fall from initial height, he, to final height, he (All other terms are defined above)

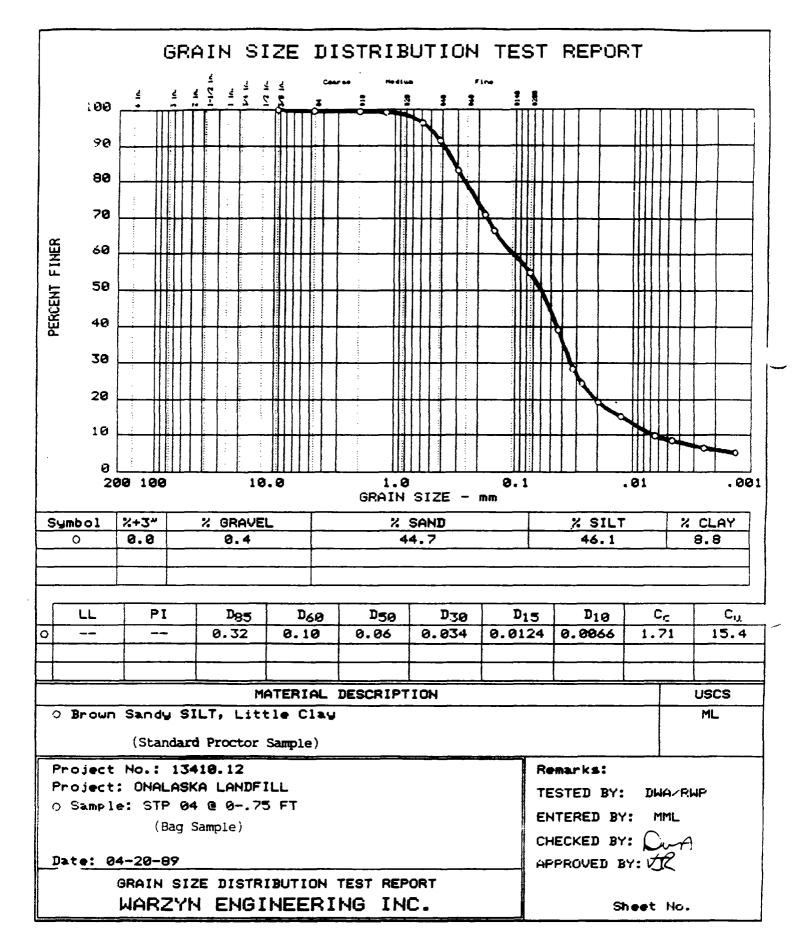

10

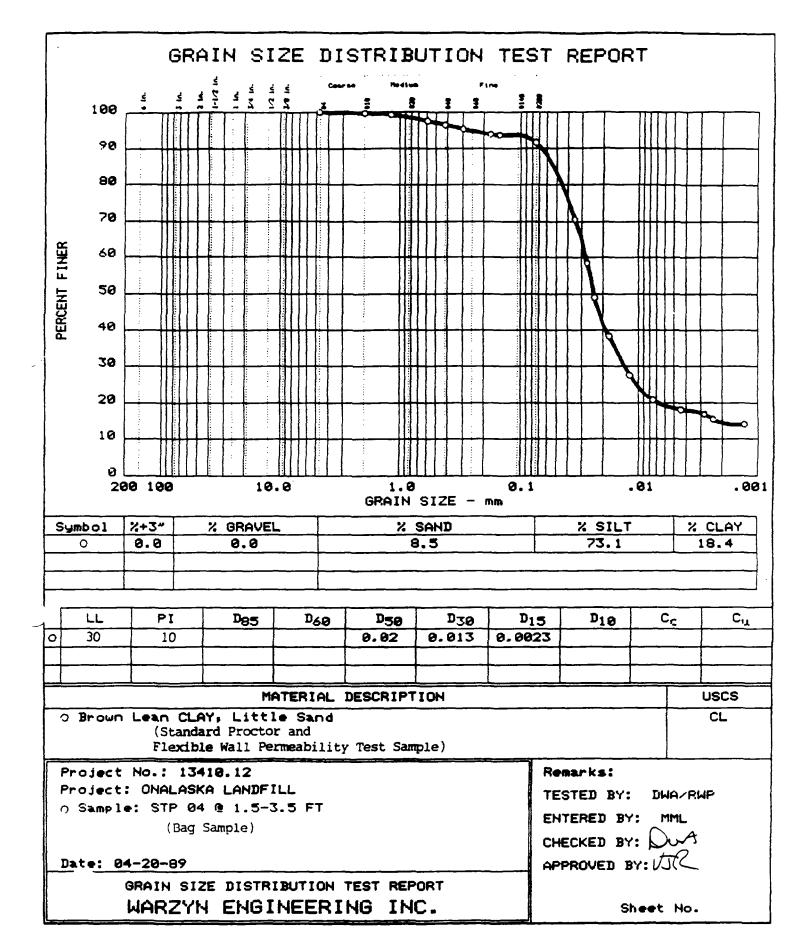
11

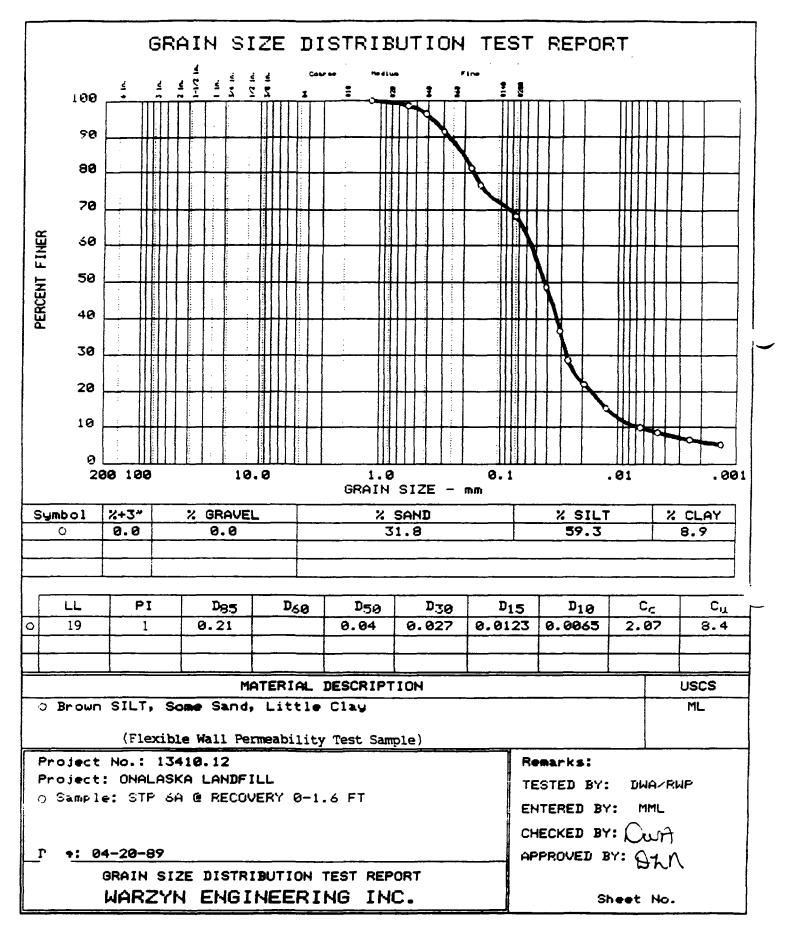

12

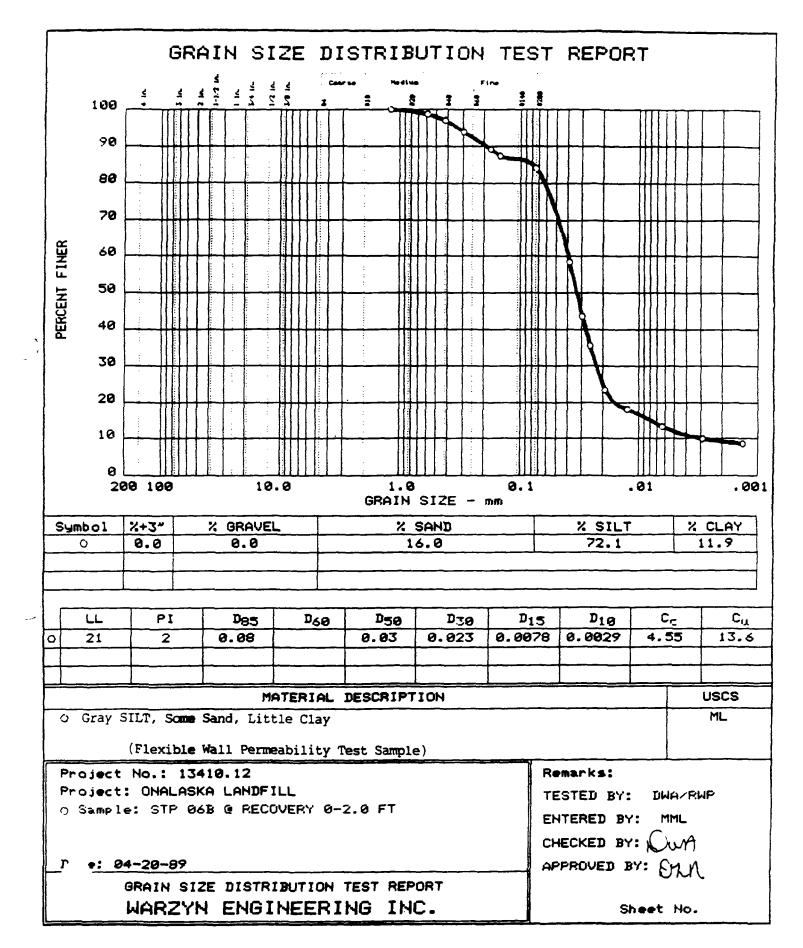
FOOTNOTES: (a) This permeability test was performed on a relatively undisturbed 3-in. diameter Shelby tube sample.

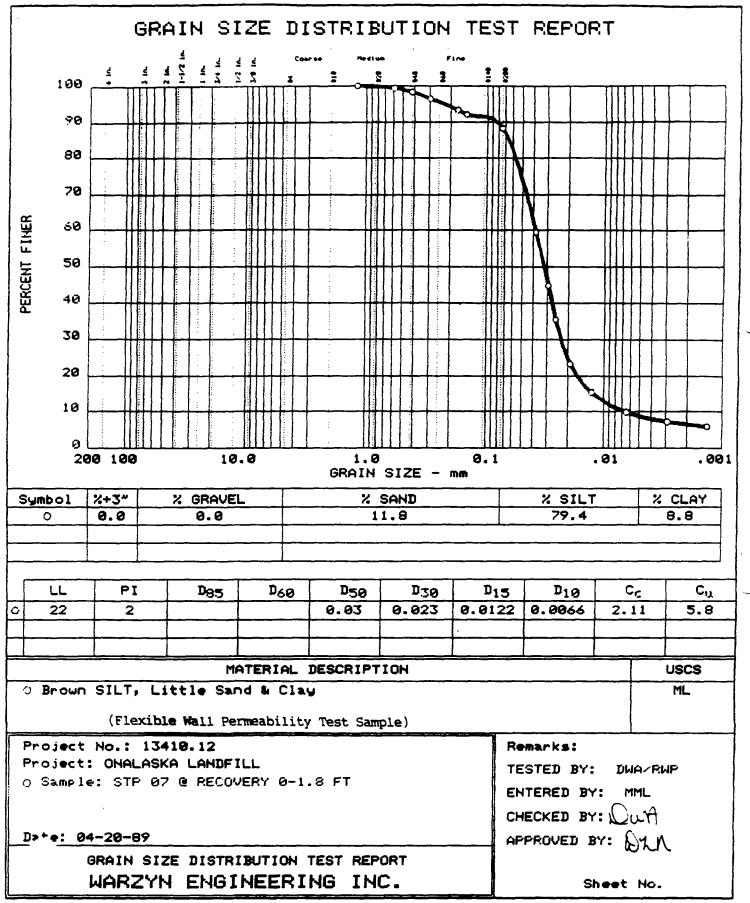

CHECKED BY: DATE: 6-2-89 APPROVED BY: DIA DATE: 6-5-89

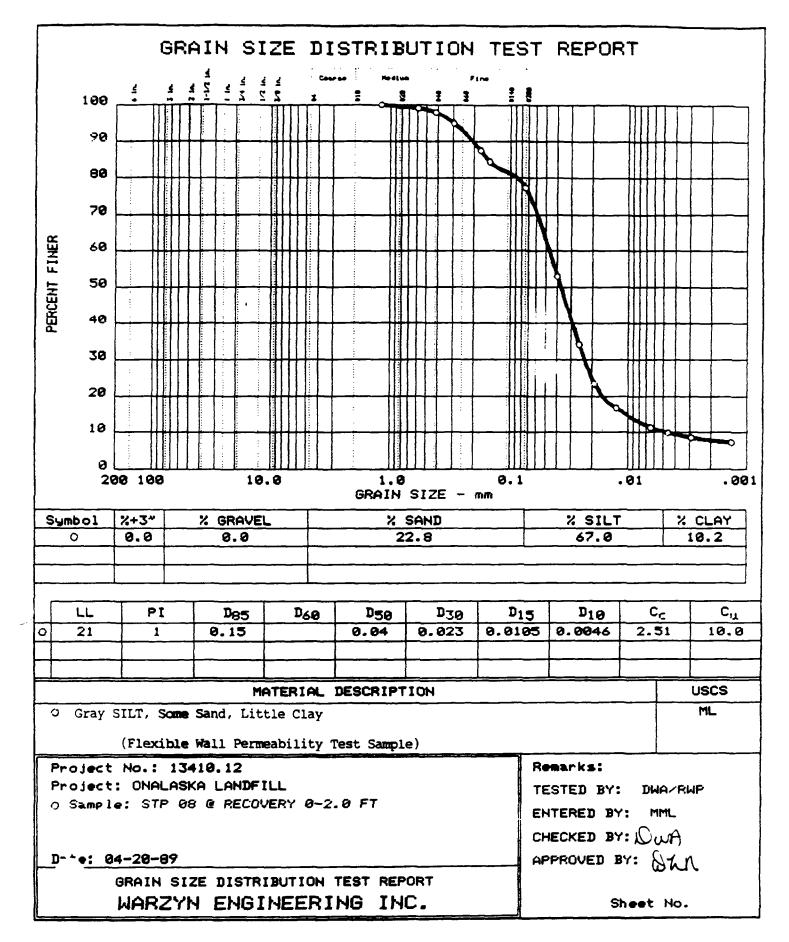


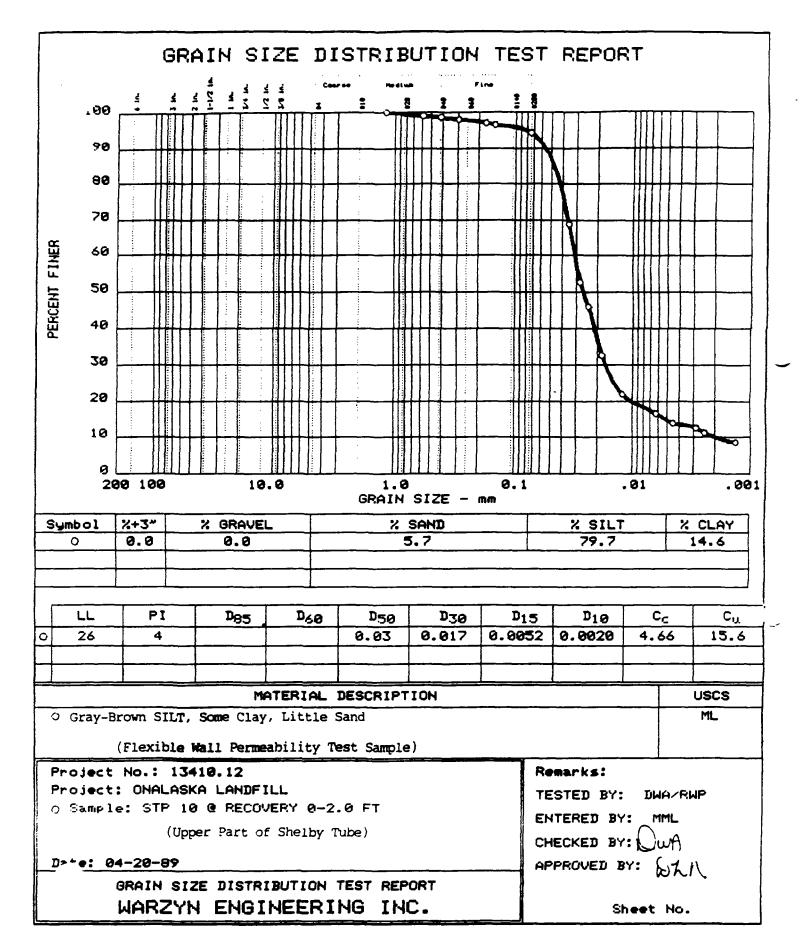

WARZYN

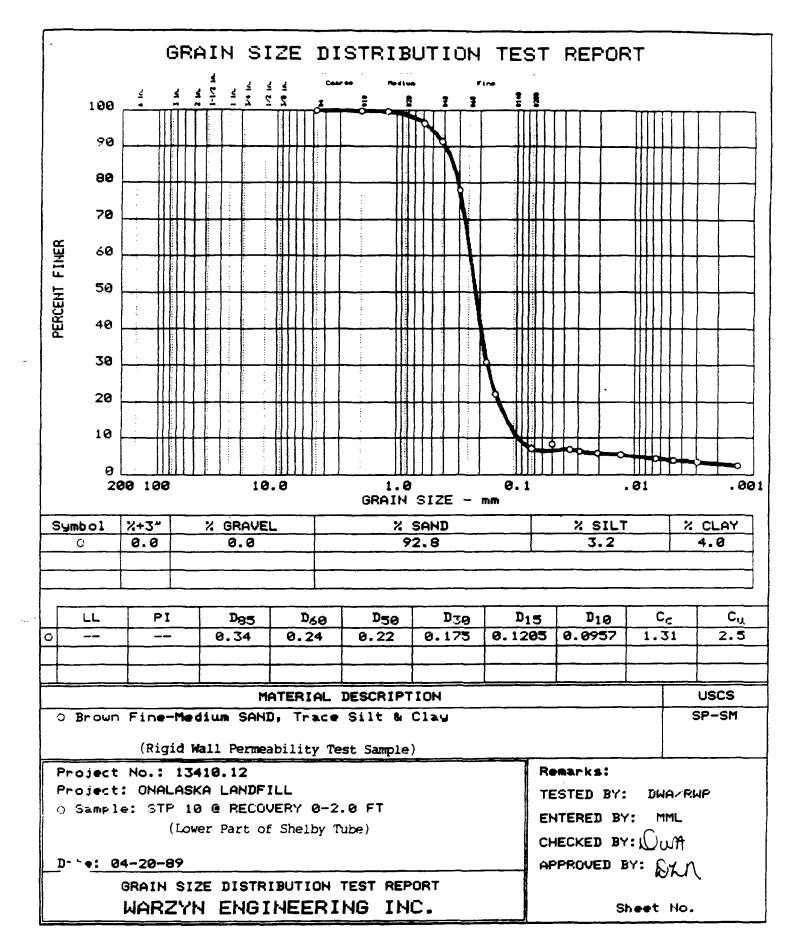


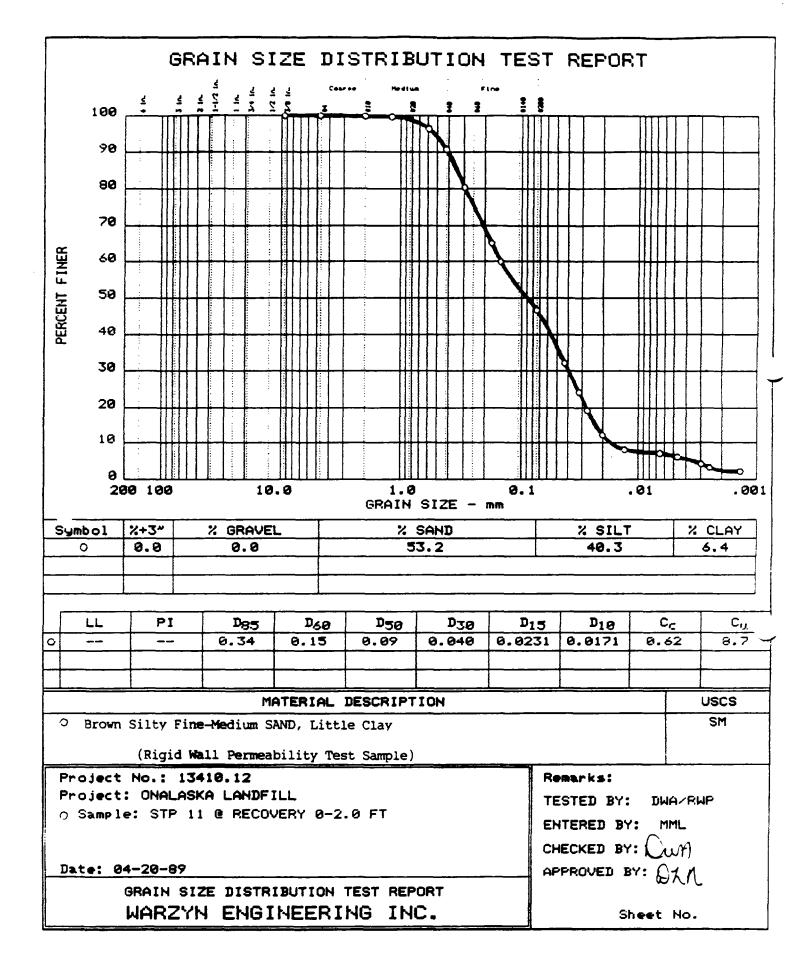

WARZYN

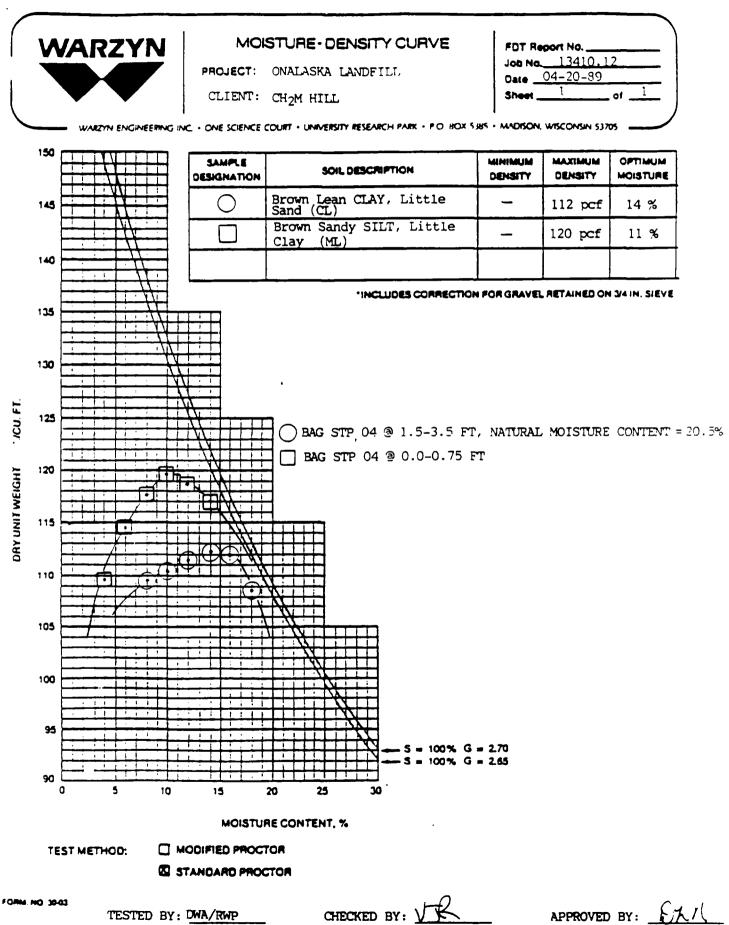












Appendix D HYDROGEOLOGY INVESTIGATION

Appendix D HYDROGEOLOGY INVESTIGATION

INTRODUCTION

This appendix describes the field procedures and presents results of the hydrogeologic investigation (Subtask FQ) of the Onalaska Municipal Landfill site RI/FS. The following activities were performed:

- o Geotechnical Boring
- o Monitoring Well Installation
- o Water Level Monitoring
- o Slug Testing

The start and finish dates for the major activities of the hydrogeologic investigation are listed below.

	Start	Finish
Geotechnical Boring	3/6/89	3/20/89
Monitoring Well Installation	3/10/89	3/30/89
Survey Elevation/Location	3/30/89	3/31/89
Groundwater Elevation	3/31/89 4/17/89 6/12/89	3/31/89 4/17/89 6/12/89
Slug Testing	4/27/89	4/27/89

All work was done or observed by CH2M HILL personnel. The overall hydrogeologic investigation was directed by Jeff Lamont. Either Kevin Olson, Jewelle Imada, or Dan Plomb was the field hydrogeologist assigned to log individual boreholes, collect samples, and monitor subcontractor activities. Drilling and monitoring well installations were subcontracted to Exploration Technology, Inc. (ETI), Madison, Wisconsin. Surveying, leveling, and the first round of groundwater elevations were measured by Dan Plomb and Kevin Olson. The second round of groundwater elevations were measured by Phil Smith and Kevin Adler/EPA. Slug testing was performed by Dan Plomb and Kevin Olson.

FIELD PROCEDURES AND RECORDS

GEOTECHNICAL AND MONITORING WELL BORINGS

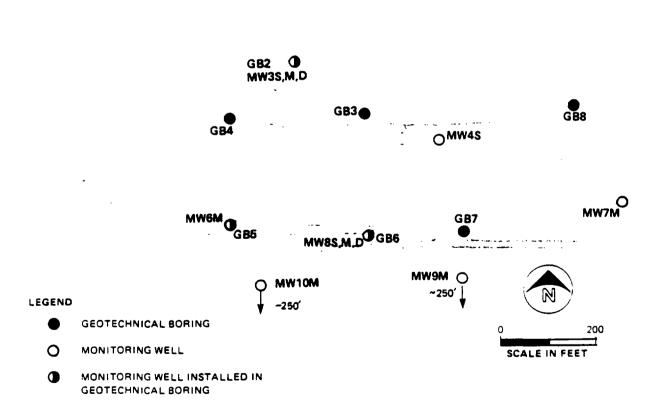
Eight geotechnical boreholes were drilled and sampled to provide information about the stratigraphy, extent of soil contamination, and preliminary water quality data. Borehole locations are shown in Figure D-1. Soil samples were collected at regular intervals for geologic logging. Soil samples were collected from select boreholes for grain-size analysis or for analysis of routine (RAS) and special (SAS) parameters as specified in the QAPP. Water samples were collected from pre-selected intervals and analyzed at the onsite laboratory for selected VOCs.

Eighteen additional boreholes were drilled for installing groundwater monitoring wells (see Figure D-1). Inasmuch as the drilling and sampling methods are identical and the observations tend to supplement information from the geotechnical borings, the monitoring well boreholes are included in the following discussion. Monitoring well construction details are presented in a later section.

Drilling

Two rigs, a CME 75 and a CME 750, and crews were provided by ETI. All boreholes were drilled by hollow-stem auger or rotary methods.

Four-and-one-quarter inch (ID) hollow-stem augers were used for medium depth (to 80 feet) borings. The lead auger was screened to allow a head of water to enter the hollow stem to minimize sand "blow" into the augers. A wooden plug was also used in the lead auger to prevent sand blow-in in monitoring well boreholes when no soil or water sampling was required during drilling.


The augering methods specified in the Work Plan were not possible below about 80 feet because of limitations of the drilling method. Sand blow-in below 80 feet became significant, which interfered with soil and water sampling. In some cases it was not possible to drive the sand-point (for water samples) past the sand in the auger stem. Below 80 feet, it was difficult to turn the augers because of loose sand caving around the auger flights. In addition, auger methods were not appropriate for drilling through layers of floating free product because of the possibility of contaminating soil and water samples taken from deeper horizons. Accordingly, rotary drilling replaced augering when appropriate.

Rotary drilling was done using a 4¹/₂-inch roller bit with a bentonite mud wash. Rotary methods were modified, as described below, to prevent spreading contaminants when drilling through the landfill or through floating naphtha and to avoid using drilling mud in zones to be screened.

Floating naphtha was encountered along the southern and western edges of the landfill. Temporary surface casing was installed in these boreholes to isolate the contaminated zone. The temporary casing was then flushed with clear water to remove contaminants from inside the casing. The flush continued until the flush

+

MW2S,M,D O

MW5S GB1

O MW1S, M

water was free of visible contamination. The borehole was then advanced with a new batch of drilling mud.

Where monitoring wells were to be built, such as at GB2, the use of drilling mud was discontinued approximately 5-feet above the intended screened zone. Casing was then installed to the bottom of the borehole and the drilling mud was flushed from the casing. The borehole was advanced to the desired depth by drilling and driving casing in 5-foot intervals using clear water. Drilling and driving casing by this method was extremely slow. In addition, a single deep borehole required all of the available 5-inch casing at the site. Because of this, the borehole for MW-8D was drilled to its final depth with mud, eliminating the need for the casing, which was being used in another borehole.

Drilling methods for each borehole are summarized in Table D-1. Additional information regarding drilling methods may be found in the Soil Boring Logs (Attachment 1), which were completed for the geotechnical borings, and in the field notebooks (stored in project files).

Soil Sampling

All soil samples were collected by driving a split-spoon soil sampler into the soil ahead of the open borehole. Normally, a 2-inch spoon was driven with a 140-pound hammer in accordance with ASTM D 1586. However, 3-inch spoons were used when analytical samples were collected to obtain the required volume for RAS and SAS samples.

Locations, depths, and geologic descriptions for all samples taken from geotechnical boreholes are given on the Soil Boring Logs (Attachment 1). For convenience as a quick reference, locations and depths for grain-size samples and analytical samples are also given on Tables D-2 and D-3. Laboratory results for the grain-size analyses are presented in Attachment 2.

Water Samples

Water samples were collected from predetermined depths in the geotechnical boreholes or from screened zones of monitoring wells. Samples were analyzed for selected VOCs in the onsite laboratory to obtain preliminary information on the distribution of VOCs in the groundwater. Analytical results from water samples from the geotechnical boreholes and initial monitoring well boreholes were used to modify, if necessary, the planned depth of the remaining monitoring wells and to evaluate the need for and location of additional monitoring wells.

Samples from geotechnical borings and the initial monitoring well boreholes were collected by driving a 2-inch-diameter, 3-foot screened sandpoint into the undisturbed soil ahead of the augers or casing. Two-inch galvanized riser connected to the sandpoint and extending to the surface formed the temporary well from which samples were taken. At least three volumes from the temporary well were removed before sampling. Samples from monitoring wells installed toward the end of the well-construction period were collected directly

Table D-1 (Page 1 of 2) SUMMARY OF DRILLING METHODS

Method

Comments

- GB1 Mud rotary to 118 feet Floating product Surface casing (5 inches) to 30 feet GB2 Flight auger (pilot hole) Floating product Installed MW-3M in borehole to 10 feet Surface casing (6 inches) to 15 feet Mud rotary to 65 feet Water rotary to 80 feet Casing (5 inches) to 80 feet GB3 Auger to 16 feet Floating product Surface casing (6 inches) to 20 feet Mud rotary to 68 feet **GB4** Auger to 60 feet Installed MW-6M in borehole GB5 Auger to 80 feet Installed MW-8M in borehole GB6 Auger to 80 feet GB7 Auger to 69 feet
- GB8 Auger to 50 feet
- MW-1S Auger to 26 feet
- MW-1M Auger to 80 feet
- MW-2S Auger to 28 feet
- MW-2M Auger to 78 feet, Wooden plug in screened lead auger
 MW-2D Auger to 18 feet
 6-inch Surface casing to 20 feet
 Mud rotary to 110 feet
- Water rotary to 139 feet 5-inch Casing to 134 feet
- MW-3S Auger to 18 feet
- MW-3M See GB-2 for details
- MW-3D Flight auger to 10 feet (pilot hole) 6-inch Surface casing to 15 feet Mud rotary to 100 feet Water rotary to 142 feet 5-inch Casing to 138 feet
- MW-4S Auger to 28 feet
- MW-5S Auger to 22 feet
- MW-6M See GB-5 for details
- MW-7M Auger to 80 feet

Table D-1 (Page 2 of 2) SUMMARY OF DRILLING METHODS

<u>Method</u>

Comments

MW-8SAuger to 24 feetMW-8MSee GB-6 for detailsMW-8DMud rotary to 138 feetMW-9MAuger to 80 feet

MW-10M Auger to 80 feet MW-11M Auger to 80 feet

MW-12SAuger to 23 feetMW-13SAuger to 25 feetMW-14SAuger to 18 feet

Drilled 3 times (well problem)

· ___

GLT913/007.WP

Table D-2 GRAIN-SIZE SAMPLE LOCATIONS

Boring Number	<u>Depth (ft)</u>
GB-1	78
GB-3	22
GB-3	39
GB-3	59
GB-4	13
GB-4	38
GB-4	55
GB-5	78
GB-8	18
GB-8	48
MW -1	20
MW-1	53
MW -1	78
MW-3	18
MW-7	30
MW-7	80

Table D-3 RAS/SAS SAMPLE LOCATIONS

Boring Number	<u>Depth (ft)</u>
G B- 1	113-117
GB-2	14
GB-2	55
GB-2	75
GB-6	20
GB-6	80
MW-1	18-22
MW- 1	53-55
MW-1	78-80
MW-2	24
MW-2	58
MW-2	75
MW-2	108

GLT913/008.WP

from the installed screen. At this point in the investigation, the need for additional wells had been established and rapid turnaround times for analytical results were not critical.

Sample locations and depths are given in Table D-4.

MONITORING WELL INSTALLATION

Well Construction

Boreholes were drilled or augered to the desired depth. Ten feet of screen and enough riser to result in 2 to 3 feet of stick-up were placed in the borehole. Wells penetrating the landfill or floating product were constructed of stainless steel. The other wells are PVC.

Depending on the drilling method, augers or 5-inch casing were then removed to allow approximately 13 feet of sand to cave around the screen to form a natural gravel pack that extended at least 3 feet above the top of the screen.

Approximately 1 foot of bentonite pellets formed a bentonite pellet seal above the gravel pack. One foot of fine-sand was added to prevent the bentonite slurry from penetrating the pellet seal. The borehole was grouted to the surface with a bentonite slurry to form an annular seal. The slurry was added using a tremie pipe that extended to within 2 feet of the fine sand.

The remaining augers or casing were removed after the grout was added. Typically, the grout would settle overnight at or near the water table (10 to 20 feet below the surface). A bentonite/cement grout was used to top off the annular seal. This, in conjunction with a 2-foot-diameter concrete pad, formed a surface seal. The concrete pad also supported the locking 6-inch diameter steel protective casing that was installed over the riser pipe. Bumper posts were installed around wells along the road and in the farm field south of the site.

Attachment 3 contains construction details for each monitoring well. Deviations from the typical construction method are noted on the diagram.

Well Development

Groundwater monitoring wells were developed by removing water from the well. Water was removed with a hand operated (BK pump) or an air-driven (QED well-development pump) positive displacement type pump. The amount of water removed was based on the clarity of the water, the amount of water added during drilling, and the volume of the riser. At least 100 gallons were removed. For deeper wells, five well volumes plus the estimated quantity of lost circulating fluid, were removed. Actual purge volumes are given in Table D-5.

Well Locations/Elevations

Well elevations were established using a tripod level and rod. All riser elevations were measured from the north side of the uncapped riser pipe unless

Table D-4 GROUNDWATER SAMPLE LOCATIONS CSL FIELD SCREENING

Boring Number Depth (ft)	Field I.D. No.
GB-1 20	MW-5S-01
GB-1 80	GB-01-01(80)
GB-1 120	GB-01 (120)
GB-3 17	GB-03-01
GB-3 60	GB-03-02
GB-4 8-11	GB-04 (8-11)
GB-4 54-57	GB-04 (54-57)
GB-5 10	GB-5 (10)
GB-5 80	GB-5 (80)
GB-6 18-21	GB-06-(18-21)
GB-6 73	GB-6M-73
GB-6 121-131	MW-8D
GB-7 22	GB-07-01
GB-7 70	GB-07-02
GB-8 18-28	GB08 (18-28)
GB-8 55-58	GB-08 (55-58)
MW-1 23	MW-1S-23 feet
MW-1 80	MW-1M-01
MW-2 28-31	MW-2S-01
MW-2 78-81	MW-2M-01
MW-2 108-111	MW-2D (108-111)
MW-3 18	MW-3S-01
MW-3 69	MW-3M
MW-4 20-30	MW04 (20-30)
MW-7 25-30	MW-7S (25-30)
MW-7 80-82	MW-7M (80-82)
MW-9 25	MW-9M (25)
MW-9 80	MW-9M (80)
MW-10 18-21	MW-10M (18-21)
MW-10 76-78	MW-10M (76-78)
MW-11 20-22	MW11M (20-22)
MW-11 76	MW11M (76)
MW-12 13-23	MW-12S
MN-13 14-24	MW-13S
MW-14 6-16	MW-145

GLT913/009.WP

Table D-5 PURGE VOLUMES FOR WELL DEVELOPMENT

Well Number	Purge Volume
MW-1S	100
MW-1M	100
MW-2S	100
MW-2M	400
MW-2D	400
MW-3S	100
MW-3M	350
MW-3D	400
MW-4S	100
MW-5S	100
MW-6M	100
MW-7M	100
MW-8S	100
MW-8M	100
MW-8D	400
MW-9M	100
MW-10M	100
MW-11M	100
MW-12S	100
MW-13S	100
MW- 14S	100

GLT913/010.WP

otherwise noted. Measuring points other than the north side of the riser are marked on the riser pipe. Ground surface elevations are measured from a representative point in the general vicinity of the well.

All elevations were tied to the National Geodetic Vertical Datum (NGVD) through the bench mark establish by Martinez, Inc., as part of the site topographic mapping. Surveyed elevations are given in Table D-6.

The location of each new monitoring well was determined by taping distances from known landmarks or based on the grid established on the site during the geophysical survey. Monitoring well locations were marked on a 1:1200 topographic site map. Monitoring well locations are also shown on Figure D-1. The topographic map is stored in the project file.

GROUNDWATER ELEVATIONS

Depth to water in the monitoring wells was measured with an electric water level indicator. Depths and elevations for March 31, April 17, June 12, and August 2, 1989, are given in Table D-7.

SLUG TESTS

A schematic diagram of the gas-displacement slug test apparatus used in the medium and deep wells is shown in Figure D-2. The apparatus allows for the depression of the water level in the well using compressed nitrogen gas. When the gas pressure in the well equilibrated with the difference in elevation head between the well and aquifer, the test was started by venting the well. Data were collected using a Campbell Scientific, Inc., Model 21X Micrologger linked to Druck pressure transducers.

The gas displacement apparatus cannot be used on wells screens that straddle the water table, as is the case for the shallow wells. Slug tests in shallow wells used the apparatus shown in Figure D-3. A hollow slug was placed in the well to displace water. The test was started by rapidly removing the slug. Data were collected using a single transducer connected to the Micrologger.

Three tests were done on each well that was tested. Raw data for each test were plotted on the graphs in Attachment 6. Data were analyzed according to the method described by Bouwer and Rice (1976) and Bouwer (1989). The average hydraulic conductivity for each well is given in Table D-8.

Table D-6 WELL ELEVATIONS

New Wells MW-1S 663.22 660.9 MW-1M 663.47 660.9 MW-2S 664.88 662.3 MW-2D 665.07 662.75 MW-3S 655.43 653.6 MW-3M 655.43 653.6 MW-3M 655.43 653.6 MW-3D 656.46 653.9 MW-4S 665.01 662.6 MW-5S 659.46 653.6 MW-3D 656.46 653.9 MW-4S 665.01 662.6 MW-5S 659.46 656.4 MW-5S 659.46 656.4 MW-6M 648.46 646.0 MW-7M 662.51 660.3 MW-8D 661.65 659.4 MW-8D 661.65 659.2 MW-9M 656.10 653.3 MW-10M 656.51 653.3 MW-10M 656.51 653.3 MW-11M 657.17 654.3 MW-12S	Well <u>Number</u>	Riser Elevation (ft)	Ground Elevation (ft)
MW-1M663.47660.9MW-2S664.88662.3MW-2M664.93662.9MW-2D665.07662.75MW-3S656.44653.7MW-3M655.43653.6MW-3D656.46653.9MW-4S665.01662.6MW-5S659.46656.4MW-6M648.46646.0MW-7M662.51660.3MW-8S661.88659.4MW-8D661.65659.2MW-8D661.65659.2MW-10M656.51653.3MW-10M656.51653.3MW-11M657.17654.3MW-12S662.95660.2MW-13S664.87661.8	New Wells		
MW-1M663.47660.9MW-2S664.88662.3MW-2M664.93662.9MW-2D665.07662.75MW-3S656.44653.7MW-3M655.43653.6MW-3D656.46653.9MW-4S665.01662.6MW-5S659.46656.4MW-6M648.46646.0MW-7M662.51660.3MW-8S661.88659.4MW-8D661.65659.4MW-9M656.10653.6MW-10M656.51653.3MW-11M657.17654.3MW-12S662.95660.2MW-13S662.95660.2MW-13S664.87661.8	MW-1S	663.22	660.9
MW-2M 664.93 662.9 MW-2D 665.07 662.75 MW-3S 656.44 653.7 MW-3M 655.43 653.6 MW-3D 656.46 653.9 MW-4S 665.01 662.6 MW-5S 659.46 656.4 MW-4S 665.01 662.6 MW-4S 665.01 662.6 MW-4S 665.01 662.6 MW-4S 665.01 662.6 MW-4S 665.01 659.4 MW-8N 662.63 659.4 MW-8N 662.63 659.4 MW-8N 662.63 659.4 MW-8D 661.65 659.2 MW-8D 656.10 653.3 MW-9M 656.51 653.3 MW-10M 656.51 653.3 MW-11M 657.17 654.3 MW-12S 662.95 660.2 MW-13S 664.87 661.8	MW-1M	663.47	
MW-2D 665.07 662.75 MW-3S 656.44 653.7 MW-3M 655.43 653.6 MW-3M 655.43 653.6 MW-3D 656.46 653.9 MW-4S 665.01 662.6 MW-5S 659.46 656.4 MW-6M 648.46 646.0 MW-7M 662.51 660.3 MW-8S 661.88 659.4 MW-8D 661.65 659.2 MW-9M 656.10 653.3 MW-10M 656.51 653.3 MW-11M 657.17 654.3 MW-12S 662.95 660.2 MW-13S 664.87 661.8	MW-2S	664.88	662.3
MW-3S 656.44 653.7 MW-3M 655.43 653.6 MW-3D 656.46 653.9 MW-3D 656.46 653.9 MW-4S 665.01 662.6 MW-5S 659.46 656.4 MW-6M 648.46 646.0 MW-7M 662.51 660.3 MW-8S 661.65 659.4 MW-8M 662.63 659.4 MW-8M 662.63 659.4 MW-8D 661.65 659.2 MW-9M 656.10 653.3 MW-10M 656.51 653.3 MW-11M 657.17 654.3 MW-12S 662.95 660.2 MW-13S 664.87 661.8	MW-2M	664.93	662.9
MW-3M 655.43 653.6 MW-3M 655.43 653.6 MW-3D 656.46 653.9 MW-4S 665.01 662.6 MW-5S 659.46 656.4 MW-6M 648.46 646.0 MW-7M 662.51 660.3 MW-8S 661.88 659.4 MW-8M 662.63 659.4 MW-8D 661.65 659.2 MW-9M 656.10 653.3 MW-10M 656.51 653.3 MW-11M 657.17 654.3 MW-12S 662.95 660.2 MW-13S 664.87 661.8	MW-2D	665.07	662.75
MW-3M 655.43 653.6 MW-3D 656.46 653.9 MW-4S 665.01 662.6 MW-5S 659.46 656.4 MW-6M 648.46 646.0 MW-7M 662.51 660.3 MW-8S 661.88 659.4 MW-8M 662.63 659.4 MW-8D 661.65 659.2 MW-9M 656.10 653.6 MW-10M 656.51 653.3 MW-11M 657.17 654.3 MW-13S 664.87 661.8	MW-3S	656.44	653.7
MW-3D656.46653.9MW-4S665.01662.6MW-5S659.46656.4MW-6M648.46646.0MW-7M662.51660.3MW-8S661.88659.4MW-8D661.65659.2MW-9M656.10653.6MW-10M656.51653.3MW-11M657.17654.3MW-13S664.87661.8	MW-3M	655.43	653.6
MW-4S 665.01 662.6 MW-5S 659.46 656.4 MW-6M 648.46 646.0 MW-7M 662.51 660.3 MW-8S 661.88 659.4 MW-8M 662.63 659.4 MW-8D 661.65 659.2 MW-9M 656.10 653.6 MW-10M 656.51 653.3 MW-11M 657.17 654.3 MW-12S 662.95 660.2 MW-13S 664.87 661.8	MW-3M	655.43	653.6
MW-5S 659.46 656.4 MW-6M 648.46 646.0 MW-7M 662.51 660.3 MW-8S 661.88 659.4 MW-8M 662.63 659.4 MW-8D 661.65 659.2 MW-9M 656.10 653.6 MW-10M 656.51 653.3 MW-11M 657.17 654.3 MW-12S 662.95 660.2 MW-13S 664.87 661.8	MW-3D	656.46	653.9
MW-6M 648.46 646.0 MW-7M 662.51 660.3 MW-8S 661.88 659.4 MW-8M 662.63 659.4 MW-8D 661.65 659.2 MW-9M 656.10 653.6 MW-10M 656.51 653.3 MW-11M 657.17 654.3 MW-12S 662.95 660.2 MW-13S 664.87 661.8	MW-4S	665.01	662.6
MW-7M662.51660.3MW-8S661.88659.4MW-8M662.63659.4MW-8D661.65659.2MW-9M656.10653.6MW-10M656.51653.3MW-11M657.17654.3MW-12S662.95660.2MW-13S664.87661.8	MW-5S	659.46	656.4
MW-8S 661.88 659.4 MW-8M 662.63 659.4 MW-8D 661.65 659.2 MW-9M 656.10 653.6 MW-10M 656.51 653.3 MW-11M 657.17 654.3 MW-12S 662.95 660.2 MW-13S 664.87 661.8	MW-6M	648.46	646.0
MW-8M 662.63 659.4 MW-8D 661.65 659.2 MW-9M 656.10 653.6 MW-10M 656.51 653.3 MW-11M 657.17 654.3 MW-12S 662.95 660.2 MW-13S 664.87 661.8	MW-7M	662.51	660.3
MW-8D 661.65 659.2 MW-9M 656.10 653.6 MW-10M 656.51 653.3 MW-11M 657.17 654.3 MW-12S 662.95 660.2 MW-13S 664.87 661.8	MW-8S	661.88	659.4
MW-9M 656.10 653.6 MW-10M 656.51 653.3 MW-11M 657.17 654.3 MW-12S 662.95 660.2 MW-13S 664.87 661.8	MW-8M	662.63	659.4
MW-10M 656.51 653.3 MW-11M 657.17 654.3 MW-12S 662.95 660.2 MW-13S 664.87 661.8	MW-8D	661.65	659.2
MW-11M 657.17 654.3 MW-12S 662.95 660.2 MW-13S 664.87 661.8	MW-9M	656.10	653.6
MW-12S 662.95 660.2 MW-13S 664.87 661.8	MW-10M	656.51	653.3
MW-13S 664.87 661.8	MW-11M	657.17	654.3
	MW-12S	662.95	660.2
MU_14S 454 10 454 9	MW-13S	664.87	661.8
LIN-140 000.19 004.0	MW-14S	656.19	654.8
<u>Old Wells</u>	Old Wells		
B-1 663.42 660.6		663.42	660.6
B-2 667.23 665.3		667.23	665.3
B-3 661.06 659.9		661.06	659.9
B-4S 656.16 655.1	B-4S	656.16	655.1
B-4D 656.62 655.0	B-4D	656.62	655.0
B-5 662.00 659.4	B-5	662.00	659.4

GLT913/011.WP

 $\overline{}$

Table D-7 GROUNDWATER ELEVATIONS IN FEET

.

Well	6/1/88	3/3	1/89	4/1	7/89	6/1	2/89	8/2	/89
Number	Elev.	Depth	Elev.	Depth	Elev.	Depth	Elev.	Depth	Elev.
<u>New Wells</u>									
MW-1S		16.87	646.35	19.13	644.10	18.48	644.25	20.88	642.34
MW-1M		17.13	646.34	19.35	644.12	19.22	644.25	21.12	642.35
MW-2S		17.82	647.06	20.33	644.55	20.16	644.72	22.11	642.77
MW-2M		19.07	645.86	20.94	643.99	20.67	644.26	22.59	642.34
MW-2D		19.61	645.46	21.05	644.02	20.79	644.28	22.81	642.26
MW-3S		11.17	645.27	12.50	643.94	12.35	644.09	14.46	641.98
MW-3M		10.12	645.31	11.58	643.85	11.36	644.07	13.35	642.08
MW-3D		11.06	645.40	12.52	643.94	12.30	644.16	14.29	642.17
MW-4S		20.19	644.82	21.16	643.85	20.90	644.11	22.82	642.19
MW-5S		13.82	645.64	15.54	643.92	15.35	644.11	17.52	641.94
MW-6M		3.21	645.25	4.83	643.63	4.66	643.80	6.55	641.91
MW-7M		18.12	644.39	18.58	643.93	18.28	644.23	20.39	642.12
MW-8S		17.15	644.73	18.15	643.73	19.93	643.95	19.91	641.97
MW-8M		17.80	644.83	18.90	643.73	18.66	643.97	20.63	642.00
MW-8D		16.84	644.81	17.89	643.76	17.65	644.00	19.63	642.02
MW-9M		11.73	644.37	12.53	643.57	12.35	643.75	13.71	642.39
MW-10M		11.71	644.80	13.07	643.44	12.93	643.58	14.22	642.29
MW-11M		13.10	644.07	13.55	643.62	13.21	643.96	15.14	642.03
MW-12S		18.43	644.52	19.14	643.81	18.87	644.08	20.90	642.05
MW-135		20.03	644.84	20.86	644.01	20.55	644.32	22.69	642.18
MW-145		11.48	644.71	13.44	642.75	13.24	642.95	15.14	641.05
<u>Old Wells</u>									
B- 1	642.61	17.76	645.66	19.28	644.14	19.03	644.39		
B-2A	642.45			23.30	643.93	23.12	644.11		
B-3A	642.42	16.09	644.97	17.20	643.86	16.93	644.13		
B-4S	642.45	11.24	644.92	12.82	643.34	12.60	643.56		
B-4D		11.20	645.92	12.75	643.87	12.58	644.04		
B-5	642.57	16.92	645.08	18.12	643.88				

.

River 642.56

GLT913/012.WP

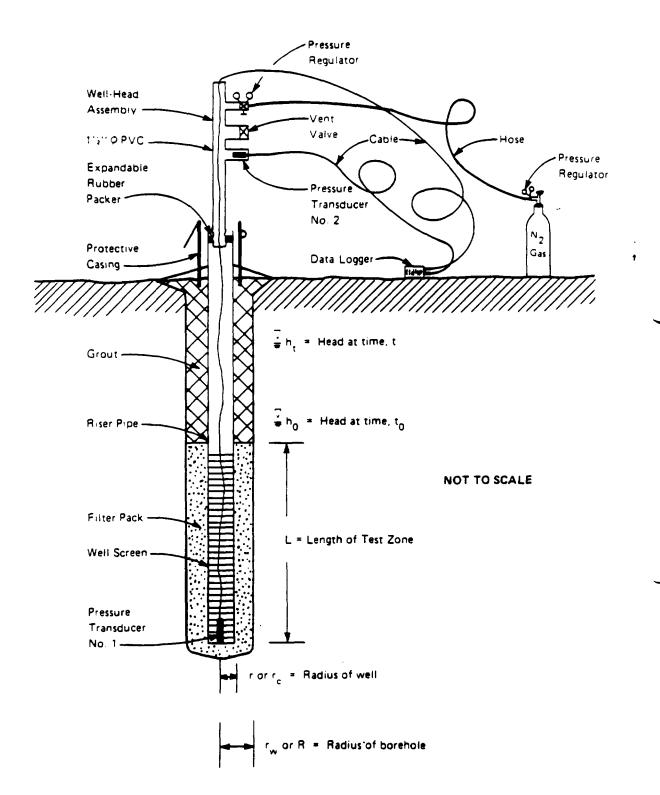
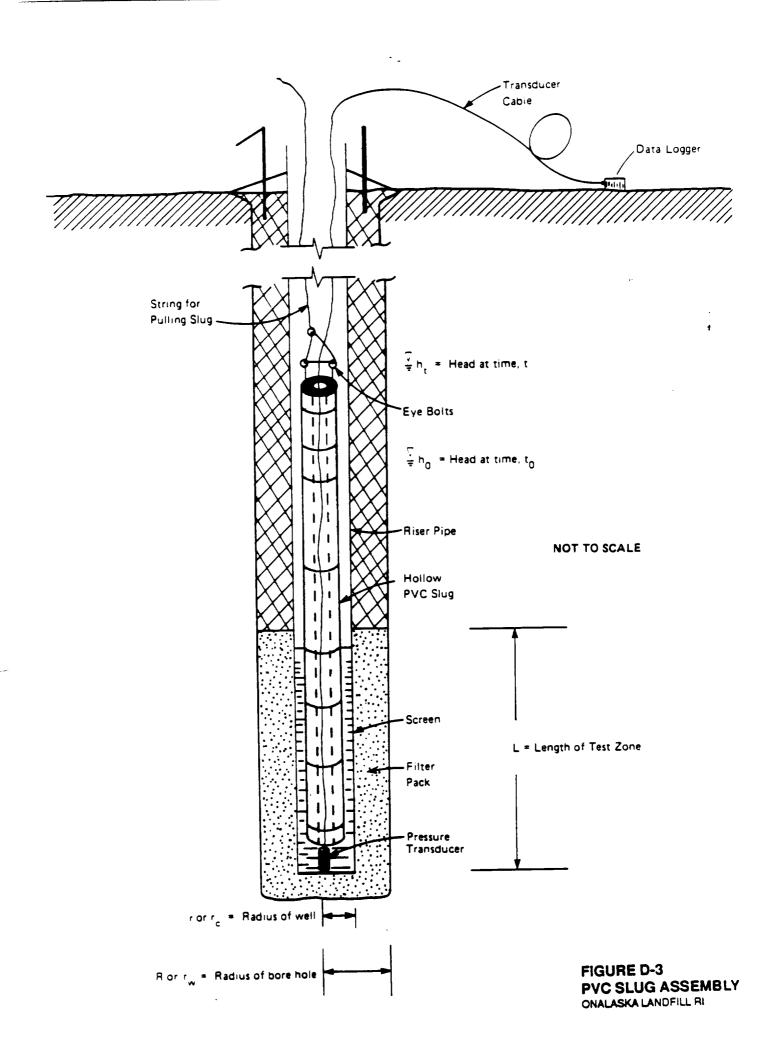



FIGURE D-2 SCHEMATIC DIAGRAM OF NITROGEN SLUG TEST ASSEMBLY ONALASKA LANDFILL RI

)

Table D-8 HYDRAULIC CONDUCTIVITY

Well <u>Number</u>	Average Hydraulic <u>Conductivity (cm/s)</u>	Number of Tests
New Wells		
MW-1S	0.04	3
MW-1M	0.04	3
MW-2M	0.03	3
MW-2D	0.03	3
MW-3M	0.03	3
MW-3D	0.06	3
MW-7M	0.03	3
MW-8M	0.03	3
MW-8D	0.002ª	3
MW-9M	0.03	3
MW-10M	0.03	3
MW-11M	0.03	3
MW-135	0.06	3
Old Wells		
B-1	0.01	4
B-2A	0.05	4
B-3A	0.01	4
B-4S	0.009	4
B-4D	0.05	2

^aHydraulic Conductivity on MW-8D is probably not representative of the aquifer. It is low most likely because of the drilling method and insufficient well development.

GLT913/013.WP

REFERENCES

Bouwer, Herman and R. C. Rice. Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers With Completely or Partially Penetrating Wells. *Water Resources Research*, Vol. 12, No. 3, June, 1976.

Bouwer, Herman. The Bouwer and Rice Slug Test--An Update. Groundwater. Vol. 27, No. 3, May-June, 1989.

GLT913/006.50

Attachment 1 GEOTECHNICAL BORING LOGS

GLT913/014.50-1

					PROJECT NUMBER GLO 65550.F1.FQ	BOAING NUMBER GB-01	SHEET 1 OF 4
СНМ	HILL					SOIL BORING L	.0G
PROJEC	T ONAL	ASKA				LOCATION SE OF	
ELEVATH	ON					(CME 750)	
					RY WITH SPLIT- SPOON SAMPLING START 3-13-89		
	<u> </u>			STANDARD		_ FINISH	
₹£		SAMPLE		PENETRATION TEST	SOIL DESCRIPTION		
DEPTH BELOW BURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	RESULTS 6"-6"-6" (N)	SOIL NAME, COLOR, MOISTURE C RELATIVE DENSITY OR CONSISTE STRUCTURE, MINERALOGY, USCS SYMBOL	CONTENT, ENCY, SOIL 5 GROUP 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
- - - 5 -		SS1	1.6	2-1-2-2	Light Brown Silty - Fine Sand	- - - - -	HNu = 0 ppm (t = 11:50)
- - - 10 -		SS2	-	4-7- 6-8	No Recovery		HNu = 0 ppm (t = 11:58)
- - - 15 -		SS3	1.0	5-7- 8 -10	Loose Medium to Coarse Sand	- - -	HNu = 8-9 ppm SS = 10-12 ppm in Borehole Note: Slight oil sheen on water from SS
- - - 20 -		SS4	0.7	4445	Loose Coarse Sand and Fine Grave	- sp	= 0 ppm in Breathing Zone = 2-3 ppm in SS
- - - 2 5 -		SS5	0. 5	10- 9-9-5	Loose Coarse Sand and Fine Grave	- - - -	Hard Drilling - Gravelly HNu = 0 ppm in Mud HNu = 2-6 ppm in Borehole = 0 ppm in Breathing Zone = 0 ppm in Mud and SS
-					Cobbles		
		SSE	0.6	7-5-7-7	Loose Coarse Sand and Fine Grave	N - SP	HNu = 1-2 ppm in Borehole = 1 ppm in SS = 0 ppm in Breathing Zone

KA				
		SOIL BORING LOG		
	GLO 65550.F1.FQ	G B- 01	SHEET	2 OF 4
	PROJECT NUMBER	SORING NUMBER		

PROJECT ONALASKA

ELEVATION_____

DRILLING CONTRACTOR __ETI (CME 750)

DRILLING METHOD AND EQUIPMENT MUD ROTARY WITH SPLIT- SPOON SAMPLING

WATER LEVEL AND DATE ______ START 3-13-89 FINISH 3-15-89 LOGGER JAI

-	!	SAMPLE		STANDARD	SOIL DESCRIPTION		COMMENTS		
DEPTH BELOW BURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6"-6"-6" (N)	SOIL NAME, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	SYMBOLIC LOG	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION		
-						4	Note: 30' Casing in Hole (t= 4:20) Drilling Rough - Gravelly Losing Water		
- 35 -		SS7	0.6	4-14-5-5	Gravelly Sand	- SP	HNu = 0 ppm in Borehole (t = 4:40)		
40 -	Ζ	SS8	0.2	6-6-8-8	Fine Gravel with Some Coarse Sand	GP	(† = 5:00)		
- - 45	Ζ	S59	0.2	14-14-16-22	Fine to Medium Gravel with Some Coarse Sand (Rock Blocking End of Spoon)	GP	HNu = 0 ppm		
-							Drilling Easier Less Gravel		
1	/	SS 10	1.0	12-14-22-16	0.2" Fine - Medium Gravel Medium Coarse Sand	SP	HNu = 0 ppm (t = 8:15)		
50 _ -	<				-		(t = 8:40) Make Another Batch of Mud		
-							HNu = 0 ppm in Mud		
- 55 -		SS11	1.3	12-15-14-28	Medium - Coarse Sand 0.5° Gravelly Sand	SP	HNu = 0 ppm (t = 9:00)		
1 1	7	5512	0.5	15-10-10-13	- Medium - Coarse Sand with Trace Fine Gravel		HNu = 0 ppm		

					PROJECT NUMBER	BORING NUM	BER		
СНМ					GLO 65550.F1.FQ	GB-01		SHEET 3 OF 4	
Crisw	SOIL BORING LOG								
PROJEC	PROJECT_ONALASKALOCATION								
ELEVATI					DRILLING CONTRACTOR	750)			
	DRILLING METHOD AND EQUIPMENT MUD ROTARY WITH SPLIT- SPOON SAMPLING WATER LEVEL AND DATE								
WAIERI	T	SAMPLE		STANDARD	SOIL DESCRIPTION				
SE				PENETRATION TEST	SOIL NAME, COLOR, MOISTURE CONTE		ŀ	DEPTH OF CASING, DRILLING RATE,	
DEPTH BELOW BURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	RESULTS 6"-5"-5" (N)	RELATIVE DENSITY OR CONSISTENCY, STRUCTURE, MINERALOGY, USCS GRO SYMBOL	SOIL UP		DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION	
- - 65		SS 13	1.5	3-1-1-1	Very Loose Medium Sand with Some Coa Sand	-	SP	(t = 1:05)	
- 70 -		SS14	0.9	12-11-14-17	Medium - Coaras Sand		SP	- HNu = 0 ppm (t = 1:22) 	
		SS15	1.7	11-1 6-13-3	Medium - Coarse Sand with Little Fine Gr	ave/	SP	HNu = 0 ppm (t = 1:50) Mix Batch of Mud	
- - 80 -		SS18	1.8	9-2-2-8	Same as Above		SP		
85 -		SS17	0.9	20-30-31-35	Brown Medium - Coarse Sand	-	SP	OVA = 0 ppm - = 1-2 ppm from SS = 4-6 ppm in Mud -	
90		SS18	-	7-1-5-13	Brown Medium - Coarse Sand with Fine (Gravel -	sp		

		Ţ
		Ţ
C	в м НIШ	
		1

ELEVATION____

PROJEC	TNUMBER	BORING NUMBER		
GLO 6	5550.F1.FQ	G B- 01	SHEET	4 OF 4

__ LOCATION _

SOIL BORING LOG

PROJECT ONALASKA

DRILLING CONTRACTOR __ ETI (CME 750)

DRILLING METHOD AND EQUIPMENT MUD ROTARY WITH SPLIT-SPOON SAMPLING

WATER LEVEL AND DATE _____

WATER LEVEL AND			START FINISH	-15-89	LOGGER JAI	
3 SA	SAMPLE STANDARD PENETRATION TEST		SOIL DESCRIPTION		COMMENTS	
DEPTH BELOW BURFACE (FT) NITERVAL	RECOVERY	TEST RESULTS 6"-5"-5" (N)	SOIL NAME, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	SYMBOLIC	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION	
95 - S	519	12-10-31-33			(t = 5:05) OVA = 40-50 ppm in Mud = 0 ppm in Breathing Zone = 0 ppm in Borehole	
100 - S	S20	13-17-25-20	Reddish Brown Silty Fine Sand with Trace Medium Sand	- - SM		
105 S	S21	11-15-19-24	0.5' Medium Fine Sand Reddlah Brown Silty Fine Sand with Trace Medium Sand	- SM	Cobbles (t = 5:40)	
110 s	522 1.1	3 2-2-11-21	Same as Above	- - SP	(t = 8:50) Hnu = 0 ppm -	
115	523 1.(3*. 55) 31- 40-33-28 17-22	Reddish Fine Sand	- - SP -	HNu = 0 ppm Take CL ^p Sample (-0.1)	
	7-21-00		END OF BORING			

					PROJECT NUMBER	BORING NU	MBER	
СНМ	ніц				GLO 65550.F1.FQ	G8-02	<u> </u>	SHEET 1 OF 3
					S	OIL BORI	NG LC	G
PROJEC		ASKA			L		EST OF	SHED, SW OF LANDFILL
ELEVATK								
					GERS TO MUD ROTARY, WATER ROTAF		20-89	LOGGER K. OLSON
		AMPLE		STANDARD	SOIL DESCRIPTION			COMMENTS
SE.			×	PENETRATION TEST RESULTS	SOIL NAME, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL		o	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS
DEPTH BELOW SURFACE (FT)	INTERVA	TYPE AND NUMBER	RECOVERY (FT)	5 -5-5" (N)	STRUCTURE, MINERALOGY, USCS GF	T, SUR HOUP	POG BYMBOLIC	AND INSTRUMENTATION
- - - - - - - - - - - - - - - - - - -		SS1 SS2 SS3 SS4 SS5	2.0 10 0.6 0.7	4-5-6-3 3-4-5-5 5-10-15-23 7-7-6-6 8-10-8-8	Medium to Coarse Sand, Brown, Moist. Sequences of Coarse Sand Grading to Medium Sand. Fineing upwerd in Appro 4" Sequences. Same, but with less Apparent Laminar Structure, Trace Fine to Medium Gravel All Slough Fine to Coarse Sand, Trace Silt and Gra Brown in Color. Same as Above	XX	ያ ያ ያ ያ ያ ያ ያ ያ ያ ያ	HNu = 0 ppm Down Hole Hnu = 0 ppm Sample Headspace 90 LEL = 0 HNu = 5 ppm in Breathing Zone Diminished to 0 ppm within 1 Min. HNu = 70 ppm on Sample Head- space 90 LEL = 10 6° Casing installed to 15' 3° Spoon (14' to 16') CLP Sample Added Mud, Flushed to 15' then Sampled. ON-6B02-16 VOAs (4 - 4oz. jare) and (8 - 8oz. jare)
- 25 -		556	0	7-7 -8-5		- - - - - - - - - - - 	SP	HNu = 0 ppm Down hole
30	LDE GL-G		<u> </u>					

CH:M	HIII				PROJECT NUMBER GLO 65550.F1.FQ	GB-02	MBER	SHEET 2 OF 3
						SOIL BORI	NG LO	XG
NEC.	T_ONAL	ASKA					EST OF	F SHED, SW OF LANDFILL
	ON				DRILLING CONTRACTOR _ ETI SERS TO MUD ROTARY, WATER ROT		H SCRE	
					START3-19-89		20-89	LOGGER K. OLSON
		SAMPLE		STANDARD	SOIL DESCRIPTION			COMMENTS
BURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	PENETRATION TEST RESULTS 6"-5"-5" (N)	SOIL NAME, COLOR, MOISTURE CI RELATIVE DENSITY OR CONSISTE STRUCTURE, MINERALOGY, USCS SYMBOL	ONTENT, NCY, SOIL GROUP	SYMBOLIC LOG	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
35	/	SS7	0.4	13-18-15-17	Sand with Gravel less than 1°	-	SP	HNu = 0 ppm on Sample Headspace. Could be mostly slough. Rig has been noisy, so could be occasional Gravel Seam in Last 10'
40 - - 45 - -		S58	0.9	12-13-11-14	Fine to Coarse Sand, Trace Gravel		ያ	HNu = 0 ppm on Sample Headspace
- 50 - - - - 55 - - - - -		559		19-27-49-21	Same as Above, Except Encountered Zone, Gravel Less than 2" at 54'	- - - - - - - - - - - - - - - - - - -	\$ ₽	3" Spoon at 55" to Collect CLP Sample (2 - 4oz. jars) for VOAs and (5 - 8oz. jars) ON-6802-55 Hinu = 0 ppm on Sample Headspace

Gravel Zones

60 L66660.DE.DE G8-02 2 8-17-49

PROJECT NUMBER BORING NUMBER GLO 65550.F1.FQ GB-02

SOIL BORING LOG

SHEET 3 OF 3

PROJECT_ONALASKA

LOCATION _ WEST OF SHED, SW OF LANDFILL

ELEVATION_____

DRILLING CONTRACTOR _____

DRILLING METHOD AND EQUIPMENT FLIGHT AUGERS TO MUD ROTARY, WATER ROTARY THROUGH SCREENED ZONE

WATER LEVEL AND DATE ____

>		SAMPLE			SOIL DESCRIPTION		COMMENTS
DEPTH BELOW BURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6"-6"-6" (N)	SOIL NAME, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	8VMBOLIC LOG	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
- - - - - - - - - - - - - - - - - - 		SS 10	0.4	21-19-16-13	Same as Above, Fine to Coarse Sand, Trace Gravel	- - - - - - -	Install 5" Casing to 65", and Flushed with Clear Water
70 - - 75 - - -	Z	SS11	0	26-30-15-16		- SP	CLP Sample Collected from 73' to Approx. 78', VOAs were Collected from Undisturbed Sample. Some of other Parameters were Collected from Undisturbed Sample and Slough that Settled out in Cased Borehole ON-GB02-75
- 80 - - - - - - - - - - - - - - - - - - -					END OF BORING		
	DE GLO	2 3 4-17-0					

C	HAL.	ΗШ	Į
			Ī

PROJECT NUMBER	SORING NUMBER
GLO 65550.F1.FQ	G B-03

SOIL BORING LOG

PROJECT ONALASKA

LOCATION _75FT WEST OF SOUTH GATE.

ELEVATION_____

DRILLING CONTRACTOR _____

DRILLING METHOD AND EQUIPMENT CME-75 HSA (4 1/2") AND MUD ROTARY WITH SPLIT-SPOON SAMPLING

WATER LEVEL AND DATE ____

____ START_______START_______START______START______START_______START_______START______START______START______START______START______START______START______START______START______START____START___START____START____START____START___START___START___START___START___START___START___START___START___START___START___START___START___START___START___START___START__START___START_

	[SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION		COMMENTS
DEPTH BELOW BURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6"-6"-6" (N)	SOIL NAME, COLOR, MOISTURE CONTENT, RELATIVE DENBITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL		DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
							HSA
	\square	ss	1.3	29-21-13	Derk Brown Silty - Fine Sand with Trace Fine Gravel	SM	No HNu Deflection
- 5 -	\square	ss	1.6	3-4-3-3	Rust Silty - Fine Sand withTrace Fine Gravel	SM	LEL = 0%
	×						-
-	Z	SS	0.6	2- 5-6- 7	Fine to Coarse Sand With Some Silt	- 8	LEL = 0%
10 -	\square	ss	1.3	8-3- 1-1	Dark Brown Fine Sand with Trace Fine Gravel		No HNu Deflection -
-	Z	ss	0.5	3-2- 2-3	Medium to Coarse Sand and Fine Gravel	8	HNu Deflection From SS 40-50ppm Borehole 10-15ppm Breathing Zone 0ppm
- 15 -		ss	0.7	2-1-1-1	Same as Above (Sample Collected for CSL)	- - 59	HNu Deflection From Borehole 30-40ppm - Breathing Zone 0ppm Last 1/2" Discolored - Grey 1 > 4
-	Z	SS	0.3	2-3-12-13	Same as Above	SP	Noted Oil-type Sheen HNu Deflection From SS 12-13ppm Borehole 20ppm Breathing Zone Oppm
20 _	\square	ss	0.5		Same as Above	- SP	Slight Discoloration HNu Deflection From Borehole 10-15ppm Breathing Zone 3-4ppm
-	$ \rightarrow $					-	Mud Rotary
-		SS01	0.8	6-11-13-19	Medium to Coarse Sand with Trace Fine Gravel	- 59	No Discoloration - OVA = 0
- 25 -		ss	1.4	30-16-20-16	Same as Above	- se	Collected Grain Size Sample . No OVA Readings -
-	Ź	ss	0.7	5-5-7-5	Same as Above	- SP	No OVA Readings
30 Lessea.F1	F0 08-03	555	0	10-13-12-11	No Recovery	-	

_		
		=
CH.	MHIL	Ţ
		ī

ELEVATION___

PROJECT NUMBER	BORING NUMBER

GLO 65550.F1.FQ

GB-03

LOCATION __

SHEET 2 OF 3

SOIL BORING LOG

PROJECT_ONALASKA

_ DRILLING CONTRACTOR __

DRILLING METHOD AND EQUIPMENT

WATER LEVEL AND DATE __

_____ START_____ FINISH ____

_____ LOGGER ____JAI

3		BAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION		COMMENTS
DEPTH BELOW BURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6"-6"-6" (N)	SOIL NAME, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	SVMBOLIC LOG	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
30	Z						
	\square	ss	0. 8	7- 8-9-23	Medium - Coarse Sand with Trace Fine Gravel	SP	-
-					Sand with some Fine Gravel		-
35 -		ss	1. 3	27-27-21-22	Medium - Coarse Sand with some Gravel - Gravely Medium Coarse Sand	SP	_
-		SS	0. 8	11-12-13-12	Medium to Coarse Sand, More Gravelly at Bottom	\$ P	OVA = 0 ppm (t = 11:15)
40 -	\square	ssoz	0. 9	11-10-10-13	- Medium to Coarse Sand with Trace Fine Gravel –	se	- OVA = 0 ppm (t = 11:40) Collected Grain Size Sample
		ss	0.8	15-21-22-24	Same as Above	SP	
- 45 -		ss	0. 9	12-13-12-12		sp	-
-	\square	ss	0. 8	10-18-20-20	Same as Above	SP	OVA = 0 ppm (t = 13:00)
- 50 -	\square	SS	1.1	10-1 5-15- 17	Same as Above	SP	-
-	Z	SS	0.9	6-10-11-18	Same as Above	SP	OVA = 0 ppm (t = 13:50)
- 55 - -	\square	ss	0.7	15-15-13-13	Same as Above	SP	
-	Z	55	1.0	18-18-16-25	Gravely Medium - Coarse Sand Fine to Medium Gravel	sø	-
60		SS	0. 9	50-48-29-20	Same as Above	SP	

CKMHI	Π

ELEVATION_

GLO	65550.F1.FQ

PROJECT NUMBER

BORING NUMBER G**B-03**

___ LOCATION ___

SHEET 3 OF 3

JAI

SOIL BORING LOG

PROJECT_ONALASKA

_ DRILLING CONTRACTOR _

DRILLING METHOD AND EQUIPMENT ___

WATER LEVEL AND DATE ___

_____ START_____ FINISH <u>3-9-89</u>___ ____ LOGGER __

3-	SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION		COMMENTS	
DEPTH BELOW BURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTB 6"-5"-5" (N)	SOIL NAME, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	SYMBOLIC LOG	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
60	\angle	ss	1.2	20-20-45-35	Same as Above Gravelly Fine - Medium Sand	SP	
- 65 - -	Ζ	ss	0.9	1 8- 14-11-10	Medium - Coarse Sand - Fine - Medium Sand	SP	- OVA = 0 ppm (t = 14:45)
	\square	ss	1.0	10-10-15-18	- Fine - Medium Sand with Trace Fine Gravel	SP	OVA = 0 ppm (t = 15:10)
70 -					END OF BORING		-
					-		-
-					-		-
-					-		
					-		-
-					-		
-					-		
-					-		-
	F0 G8-03	3 7/26/66					

					PROJECT NUMBER	BORING NUMBE	A
СКМ	НШ				GLO 65550.F1.FQ	G8-04	SHEET 1 OF 2
					SO	L BORING	LOG
PROJEC	T ONAL	ASKA					E SW OF SHED
				- 4 1/4* AUGE	DRILLING CONTRACTOR _ ETI ERS, LEAD SCREENED, SS SAMPLING WI	TU 2.2" SPLIT.	
	-					IISH	LOGGER KLO/ JJI
		SAMPLE			SOIL DESCRIPTION		COMMENTS
DEPTH BELOW BURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6'-5'-5' (N)	SOIL NAME, COLOR, MOISTURE CONTE RELATIVE DENSITY OR CONSISTENCY, S STRUCTURE, MINERALOGY, USCS GROU SYMBOL	NT, SOL UP	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
			ر ا				
-	\square	SS1	1.0	2-3-3-3	Brown Medium to Coarse Sand, Moist to V Trace Gravel (fine).	Wet, SP	HNu = 0 ppm -
-		SS2	1.2	6-4-2-2	Same, but Saturated.	- sp	HNu = 0 ppm
- U	\square	553	1.5	1-3-3-5	Same, with a Trace of Silt.	- <i>s</i> p	- HNu = 0 ppm -
- 10		554	0.2	2-1-2-1	Same	- 59	- HNu = 0 ppm (Suspect of Validity - of these First 4 readings).
-		SS5	0.8	11 -8-4-2	Same	- SP	Installed Sandpoint from 8 to 11' to - Sample, Collected CSL Sample 15=05 - 3/8/89.
	\square	SS6	1.5	2-13-15-20	Brown, Medium to Coarse Sand, Wet, Trace Gravel (up to 1*).	SP	Collected a Sample for Grain Size - Analysis, HNu = 0 ppm SS.
-		SS7	0	2-2-48	Same	- SP	A little Fine Gravel Left in Spoon.
- 20 -		558	1.0	16-15-8-12	Same, with a Slight Increase in Gravel (subangular).	- 58	- HNu = 0 ppm SS -
-		559	0. 8	40-13-5-6	Same	- 59	
	\square	SS10	1.2	21-12- 8-9	Same	- 59	HNu = 0 ppm SS
-	\square	SS11	1.8	1 2-9- 11-17	Same	- SP	
30		SS12	2.0	2-6-17-28	Same	SP	HNu = 0 ppm SS -

BORING NUMBER PROJECT NUMBER GLO 65550.F1.FQ G**B-04** SHEET 2 OF 2

SOIL BORING LOG

PROJECT ONALASKA

ELEVATION____

_____ DRILLING CONTRACTOR __

DRILLING METHOD AND EQUIPMENT

ATER L	EVEL AN	D DATE .			START FINISH	3-9-89	LOGGERKLO/JJI
3-		SAMPLE	APLE STANDARD SOIL DESCRIPTION			COMMENTS	
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6"-6"-6" (N)	SOIL NAME, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	LOG LOG	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
-		SS13	1. 5	20-15-12-25	Same	- SP	
- - 35 -	Z	SS14	2.0	3-5-13-35	Same	- SP	
-		No Sample	0	5-2-6-11			
- - 40 -	\square	SS15	2.0	5-12-3 6-50/5 *	Same	- - -	Collected a Sample for Grain-size Analysis.
-		No Sampie	0	10 -6-7-23			
45 -	\square	SS 16	2.0	7-7-14-41	Same, with Slightly Leas Gravel.	- SP	HNu = 0 ppm SS
-		SS17	1. 5	15-12-8-13	Same	- SP	HNu = 0 ppm SS
- - 50 -	\mathbb{Z}	SS18	1.0	21-10 -8-3 0	Same	- - SP	
-		No Semple	0	1 6-29- 13-13			
55 -	\mathbb{Z}	No Sampie	0	37-2 8-29-5 0		- SP	Blow Counts Reflect a Full Spoon, Not the Formation. Replaced Sediment Catcher. Collected Grain-size Sample.
-		SS 19	0. 9	16 -45-44-33	Same, Slightly More Well Graded.	- SP	Grainwest Sample. HNu = 0.2 ppm on Cuttings 4h of Blow in into Augens, Could only Shake out 4*.
60	∇	No Semple	0	2 8-69	END OF BORING		Collected a CSL Sample from Sandpoint within Auger at 53 ft.

Снм				,		DRING NUMBER B-05	SHEET 1 OF 2	
SOIL BORING LOG								
						TION WEST EL	DE OF ACKERMAN PROPERTY	
	on G Metho			NT 4 1/4" AUGE	DRILLING CONTRACTOR			
		D DATE .			START3-20-89 FINISI	4 3-20-89	LOGGER D. PLOMB	
₹F		SAMPLE		STANDARD PENETRATION TEST	SCIL DESCRIPTION		COMMENTS	
DEPTH BELOW	NTERVAL	TYPE AND NUMBER	RECOVERY (FT)	RESULTS 6"-5"-6" (N)	SOIL NAME, COLOR, MOISTURE CONTENT RELATIVE DENSITY OR CONSISTENCY, SC STRUCTURE, MINERALOGY, USCS GROUP SYMBOL		DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION	
- - - 5 -		SS1	1.1	4-1-2-2	Dark Brown Fine Coarse Sand, with a little S Loose, and Dry. Dark Brown Medium to Coarse Sand, Loose Saturated.		HNu = 0 ppm on Borehole HNu = 0 ppm SS	
- - 10 -		SS2	1.0	2-2-2-2	Same	- - - -	HNu = 0 ppm on Borehole HNu = 0 ppm SS	
- 15 -		SS3	2.0	5-5-3-3	Same	- - SP -	HNu = 0 ppm on Borehole HNu = 0 ppm SS	
20 -	Z	S S 4	2.0	24-2 8 -7	Same, but with Occasionally Small to Large Gravel.	- - - -	HNu = 0 ppm on Borehole HNu = 0 ppm SS -	
- - 25 -		SS5	1.5	14-24-28-23	Same, but Very Danse	- - - -	HNu = 0 ppm on Borehole HNu = 0 ppm SS -	
30 Lessac		SS6	-	23-33-27-16	Same, but Very Danse	- 59		

ELEVATION.

PROJECT NUMBER	BORING NUMBER				
GLO 65550 F1 FO	GB-05	SHEET	2	OF	2

SOIL BORING LOG

3-20-89

SHEET

D. PLOMB

LOGGER

FINISH

PROJECT ONALASKA

_ LOCATION _ DRILLING CONTRACTOR_

DRILLING METHOD AND EQUIPMENT .

START_

WATER LEVEL AND DATE .

STANDARD SAMPLE SOIL DESCRIPTION COMMENTS DEPTH BELOW SURFACE (FT) PENETRATION SOIL NAME, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL TEST RESULTS DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION SYMBOLIC LOG RECOVERY (FT) TYPE AND NUMBER INTERVAL 6"-6"-6" (N) HNu = 0 ppm on Borehole HNu = 0 ppm SS **SS**7 11-11-7-7 SP 40 0.4 Same SS8 No 9-27-29-57 50 HNu = 0 ppm on Borehole Sample HNu = 0 ppm on Borahole HNu = 0 ppm SS 60 SS9 19-36-35-12 SP 0.4 Same HNu = 0 ppm on Borehole HNu = 0 ppm SS SP 70 SS10 0.3 45-19-22-13 Seme Same, but Very Dense with Increased Gravel Content HNu = 0 ppm on Borehole HNu = 0 ppm SS SP <u>SS11</u> 56-27-27-4 1.5 80 END OF BORING

Leseau,F1,F0,G8-06 2 7/24/00

СКМНШ

PROJECT NUMBER

GLO 65550.F1.FQ

BOAING NUMBER G**8-06**

SHEET 1 OF 3

SOIL BORING LOG

PROJECT ONALASKA

LOCATION _ENTRANCE TO ACKERMANS

ELEVATION _____

DRILLING CONTRACTOR _____

DRILLING METHOD AND EQUIPMENT 4 1/4* AUGERS

					START 3-19-89 FINISH	19-89	LOGGERD. PLOMB	
F.C.		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION		COMMENTS	
BURFACE (FT)	NTERVAL	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6"-6"-6" (N)	SOIL NAME, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	SYMBOLIC LOG	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION	
5	Ζ	SS 1	1.6	2-2-3-3	- - Dark Brown Fine to Coarse Sand, With a little Silt, - Dry and Loose. -	sw	HNu = 0 ppm on Borehole HNu = 0 ppm SS	
- 10	Ζ	SS2	0.9	2-3-3-5	- Dark Brown Medium to Coarse Sand, Moist and Loose -	SP	HNu = 0 ppm on Borehole HNu = 0 ppm SS	
-	Ζ	553	0.4	5-5-5-5	- Same -	SP	HNu = 0 ppm on Borshole HNu = 0 ppm SS	
- 02	<u> </u>	S S 4	1.8	10 -8-4-3	- Same, But Saluated with Occasionally some Small to Medium Gravel. -	SP	HNu = 0 ppm on Borehole HNu = 0 ppm SS	
- 25 _		SS5	1.1	1 6-17-12-5	Same -	SP	HNu = 0 ppm on Borehole HNu = 0 ppm SS	
- - 30		556	1.3_	- 10-10-12-8	Same	SP	HNu = 0 ppm on Borehole HNu = 0 ppm SS	

	PROJECT NUMBER GLO 65550.F1.FQ	BORING NUMBER GB-06	SHEET 2 OF 3
HMH IL	S	DIL BORING LOG	

_ LOCATION _

PROJECT ONALASKA

ELEVATION_

DRILLING CONTRACTOR

DRILLING METHOD AND EQUIPMENT .

D. PLOMB WATER LEVEL AND DATE START_ FINISH LOGGER STANDARD PENETRATION TEST RESULTS SAMPLE SOIL DESCRIPTION COMMENTS DEPTH BELOW BURFACE (FT) SOIL NAME, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION RECOVERY (FT) SYMBOLIC LOG TYPE AND NUMBER INTERVAL 6"-6"-6" (N) 35 Same, with an Occasional Cobble or Boulder, Very Dense. 35-42-17-13 HNu = 0 ppm on Borshole HNu = 0 ppm SS **SS7** SP 1.3 40 45 **SS8** SP HNu = 0 ppm on Borehole HNu = 0 ppm SS 51-68-80-45 Same, Cobbles are Still Present, Very Dense. 1.8 50 55 No Recovery HNu = 0 ppm on Borehole 60 / SS9 26-83-100/3* 0

СКМНІЦ

ELEVATION_

GLO 65550.F1.FQ

___START_

BORING NUMBER

SHEET 3 OF 3

SOIL BORING LOG

G**8-06**

_ LOCATION _

PROJECT ONALASKA

_ DRILLING CONTRACTOR_

DRILLING METHOD AND EQUIPMENT ____

WATER LEVEL AND DATE _

_ FINISH ______ LOGGER ___

LOGGER D. PLOMB

3.		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION		COMMENTS
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	PENETRATION TEST RESULTS 6"-6"-6" (N)	SOIL NAME, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	SYMBOLIC	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
-							
-						-	
65 - - -							
- - 70 -		SS10	0. 5	40-80-100/3*	Same, Very Dense	- SP	HNu = 0 ppm on Borehole HNu = 0 ppm SS
-						-	
- - 75 -						-	
-							
- 80	\square	SS 11	2.0		Same, Cobbles and Very Dense.	- SP	HNu = 0 ppm on Borehole HNu = 0 ppm SS
-					END OF BORING		
-						-	
-							
-	F0 G8-08		_				

					PROJECT NUMBER	BORING N	UMBER	
СНМ	ніі				GLO 65550.F1.FQ	G B-07		SHEET 1 OF 3
						SOIL BOR		XG
ROJEC		ASKA					OUTHO	F SITE ENTRANCE
					DRILLING CONTRACTORETI	CML 75)		
					WITH SPLIT SPOON SAMPLING EVE			
	EVEL AN	D DATE			START3-7-89	FINISH3-	7-89	LOGGERJAI
₹c		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION			COMMENTS
DEPTH BELOW BURFACE (FT)	4	9~	¥	TEST RESULTS	SOIL NAME, COLOR, MOISTURE CO RELATIVE DENSITY OR CONSISTEN	NTENT, ICY, SOIL	2	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS
HE I	NTERVAL		ð	87-67-67 (N)	STRUCTURE, MINERALOGY, USCS SYMBOL	GROUP	l de la	AND INSTRUMENTATION
b b b b b b b b b b b b b b b b b b b	BIN	TYPE AND NUMBER	RECOVERY (FT)				SYMBOLIC LOG	
-							1	
-	Λ				Fine Sand with some Silt			Frank to M
-		SS	1.8	33-21-17-11	Fine to Coarse Sand, Poorly Sorted w some Gravel	n u 1		Front to 3' HNu = 0
-	K							
5 -	\vdash		ļ					
J		SS	1.6	2-1-2-3	Loose Fine - Coarse Sand with Trace	Gravel	SP	LEL = 0% (t = 9:35)
-					Poorly Sorted		1	RAD = 0.05 (BKG) HNu = 0
-			ł				4	
-		SS	0.4	1-2-3-3	Same as Above		-	
-	\mathbf{k}						4	
10 -								
		SS	0.6	1-3-3-3	Medium Sand with Trace Fine Sand a Coarse Sand	nd some	SP	
-	Υ		ļ				1	
-			ļ					
-		SS		3-5-5-5	No Recovery (Cetcher Broke)		-	HNu = 0 LEL = 0%
-	<u> </u>						4	
15 -						-		
		SS	0.8	1-2-2-2	Medium Sand with Trace Fine Sand a Coarse Sand	nd some	SP	
-	<u> </u>							
-							1	
-		ઙઙ	0.7	4-3-2-2	Same as Above		1	LEL = 0% HNu = 0 pom
-	K						-	HNu = 0 ppm WiL = 17
20 ~							4	
-		SS	-		No Recovery		1	Take H ₂ 0 Sample
	K							
-] _ '	
-		SS	0.4	2-3-13-17	Medium - Coarse Sand		- SP	
	K						-	
25 -	$\overline{}$						-	
_		SS	0.7	4-3-17-18	Medium - Coarse Sand with Trace Fir	e Grevel	SP .	
	K							
-	7	[]	
•	1/	SS	-	2-3-17-37	No Recovery (Catcher Broke)		- SP	HNu = 0 ppm
	¥						1	
_ 30_				<u> </u>			1	L

LASSED F1 FQ GB-07 1 7/20/00

PROJECT NUMBER	BORING NUMBER	
GLO 65550.F1.FQ	G B-0 7	SHEET 2 OF

SOIL BORING LOG

PROJECT ONALASKA

LOCATION .

ELEVATION_

_ DRILLING CONTRACTOR __

DRILLING METHOD AND EQUIPMENT _

JAI WATER LEVEL AND DATE . START_ FINISH LOGGER STANDARD PENETRATION SAMPLE COMMENTS SOIL DESCRIPTION DEPTH BELOW BURFACE (FT) SOIL NAME, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL TEST RESULTS DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION RECOVERY (FT) SYMBOLIC LOG TYPE AND NUMBER NTERVAL 6-6-6 (Ñ) 30 SS 6-18-13-33 No Recovery 18° Drives SS 1.1 3-5-33 Medium Sand SP HNu = 0 ppm 35 0.5 13-27-33 SP SS Medium Sand and Medium Gravel Fine - Medium Gravel 0.3 SP SS 0.2 8-13-17 Medium - Fine Sand HNu = 0 ppm 40 SS 5-8-13 No Recovery SP Hard Drilling - Gravelly SS 1.3 6-25-26 Medium Sand with some Coarse Sand and SP Trace Fine Gravel 45 SS 0.7 8-10-24 Medium Sand with some Fine Gravel SP Silty Fine Sand SS 8-12-28 SP 0.4 Medium - Coarse Sand with some Fine Gravel 50 SP SS 5-13-22 Medium - Coarse Sand with Trace Fine Gravel 0.5 SS 5-5-21 No Recovery 55 Medium Send 0.8 SS 0.9 5-10-34 SP Medum - Fine Gravel n SP SS 0.9 3-17-22 Medium - Coarse Sand with some Fine Graval 60 MAD F1.FO CB-07 2 7/28/

ELEVATION____

GLO 65550.F1.FQ

PROJECT NUMBER

BORING NUMBER G**B-**07

SHEET 3 OF 3

SOIL BORING LOG

____ LOCATION _____

PROJECT ONALASKA

WATER LEVEL AND DATE _____

DRILLING METHOD AND EQUIPMENT _____

_____ DRILLING CONTRACTOR ____

______ START______ FINISH 3-7-89_____ LOGGER ___

JAI

3		SAMPLE		STANDARD	SOIL DESCRIPTION		COMMENTS
DEPTH BELOW BURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULT8 6"-6"-6" (N)	SOIL NAME, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	SYMBOLIC LOG	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
60	K	SS	0.5	13-20-32	Medium Sand with some Gravel (Last 0.2' Fine - Coarse Sand with Trace Yellowish Brown Silt)	8	
	\leq	SS	_	11-13-15	No Recovery	4	-
65 -	4	SS	0.8	4-21-34	Medium to Coarse Sand with some Fine Gravel and Trace Medium Gravel	S₽ -	-
	4	ss	1.5	14-21-57	Same as Above	SP -	-
70 -							
	4						-
						-	
						-	
						4	-
							-
							-
Lesses	FO GL-07	3 7/28/00				<u></u>	

			Ī
C	HMI	41 <u>11</u>	

GLO 66550.F1.FQ

BORING NUMBER

G**B-0**5

SHEET 1 OF 2

SOIL BORING LOG

PROJECT ONALASKA

LOCATION SE OF LANDFILL

ELEVATION_____

.

DRILLING CONTRACTOR ETI

DRILLING METHOD AND EQUIPMENT 4 1/4" AUGERS

WATER LEVEL AND DATE __

____ START_3-7-89_____ FINISH 3-8-89___

_		
_	LOGGER	KLO

3		SAMPLE		PLE STANDARD SOIL DESCRIPTION	SOIL DESCRIPTION		COMMENTS
DEPTH BELOW BURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	PENETRATION TEST RESULTS 5"-6"-6" (N)	SOIL NAME, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	SVMBOLIC LOG	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
	Ζ	SS1	1.5	32-1 8-2 0	Medium to Coarse Sand with Trace Gravel, Moist, Color=7.5 YR 5/6. Loose Below Frostline, Mostly Quartz With Pebbles and Particles of Granite, Magnetite, etc., and Glacial Outwash.	SP	Frost Down to 2 ft.
5 -	\mathbb{Z}	SS2	1.5	3-5-6	-		HNu = 0 ppm on Borehole
-	Z	SSI	0. 8	2-2-2	- Thin 1-2" Fine Send With Silt, Trace Gravel. Dark Reddish Brown, Color =7.5 YR 3/4, Moist. -	SM	
- 10 -	Ζ	S54	1.0	15-4-5	Medium to Coarse Sand, as above, but Getting Wetter.	SP	
	Ζ	SS5	0.6	7-4-5	-		
- 15 -	Ζ	SS 6	1.0	12-12-5	Medium Sand, Trace Gravel, Moist.	SP	OUA = 0 ppm on Borehole -
	Z	SS7	1.0	3-3-4	Medium to Coarse Sand, Trace Gravel, Color =7.5 YR 4/6.		-
20 -	Ζ	SS 8	0. 8	2-2-2-2	Same, but Saturated.		Collected a Grain-size Sample. □ Ξ OUA = 0 ppm on Borehole - Blind Drill to 28 ft
							-
30 	FO GB-GB	SS9	1.3	12-16-17	Same, Mostly Medium Sand with some Coarse.		

BORING NUMBER PROJECT NUMBER

G**B-0**8

SHEET 2 OF 2

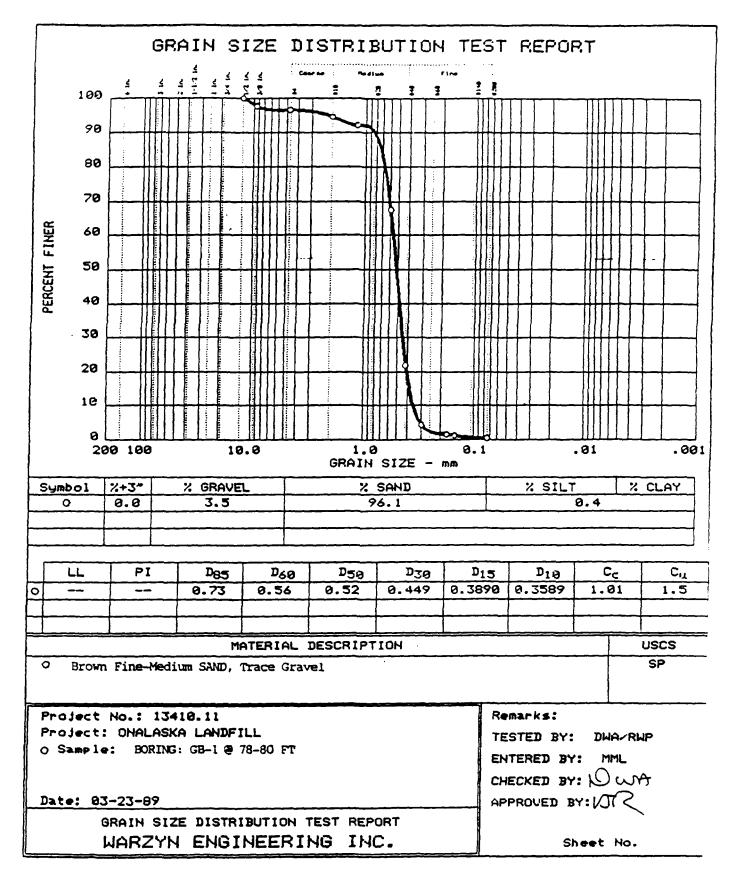
SOIL BORING LOG

___ LOCATION _____

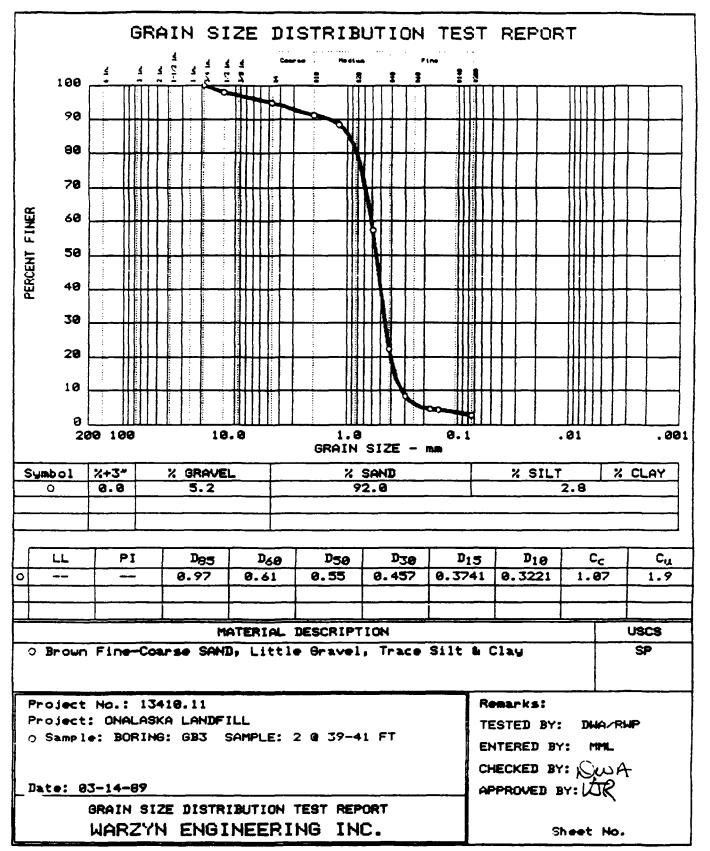
PROJECT ONALASKA

ELEVATION____

_____ DRILLING CONTRACTOR__

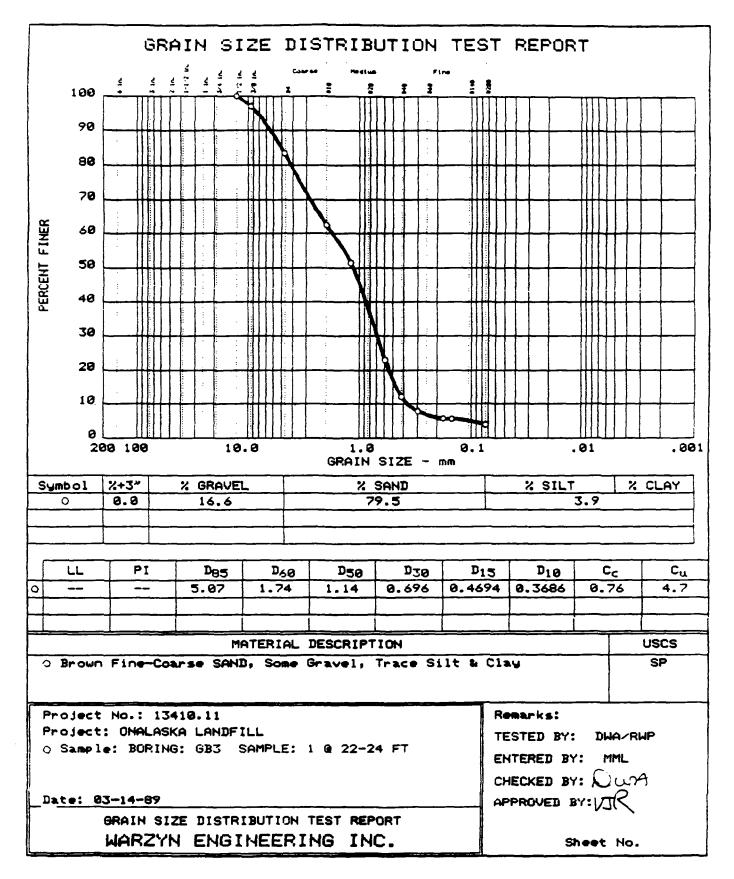

GLO 65550.F1.FQ

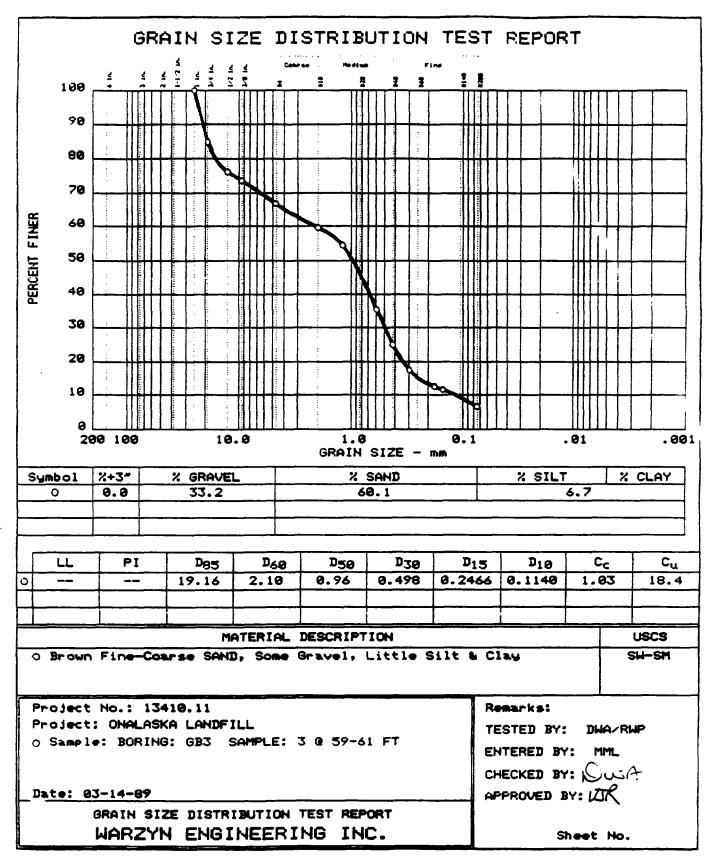
DRILLING METHOD AND EQUIPMENT


	EVEL AN				START FINISH _3-	6-89							
3-	SAMPLE			STANDARD	SOIL DESCRIPTION		COMMENTS						
DEPTH BELOW BURFACE (FT)	NTERVAL	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 5"-5"-5" (N)	SOIL NAME, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	SYMBOLIC	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION						
92	NTE			()									
-	Ζ	SS 10	1.0	11 -8-8	Same	-	OVA = 0 ppm on Borehole						
	Z	SS11	1.0	10-10-12	Same								
-	Z	SS12	1.2	12-15-10	Same		-						
- 40	Z	SS13	1.7	20-36-42	Same								
	\mathbb{Z}	SS14	2.0	7-29-29	Same, but had a 2° Subrounded Gravel Seam (Minus 3/4°) in Bottom of Spoon		-						
- 45 -	Z	SS15	1.3	12-18-10	Seme		OVA = 0 ppm on Borehole -						
-	Z	SS 16	0	15-1 6-6	No Recovery								
-	Z	SS 17	2.0	12-15-18	Same		Collected a Grain-size Sample.						
50 -						4	Drove Sandpoint to 58 ft. and Collected a CSL Water Sample.						
-					END OF BORING	1	4						
} -						1							
] -						1	1						
]	1 1						
]							
.						1							
] -													
	F0 G 1 -01												

Attachment 2 GRAIN-SIZE ANALYSES

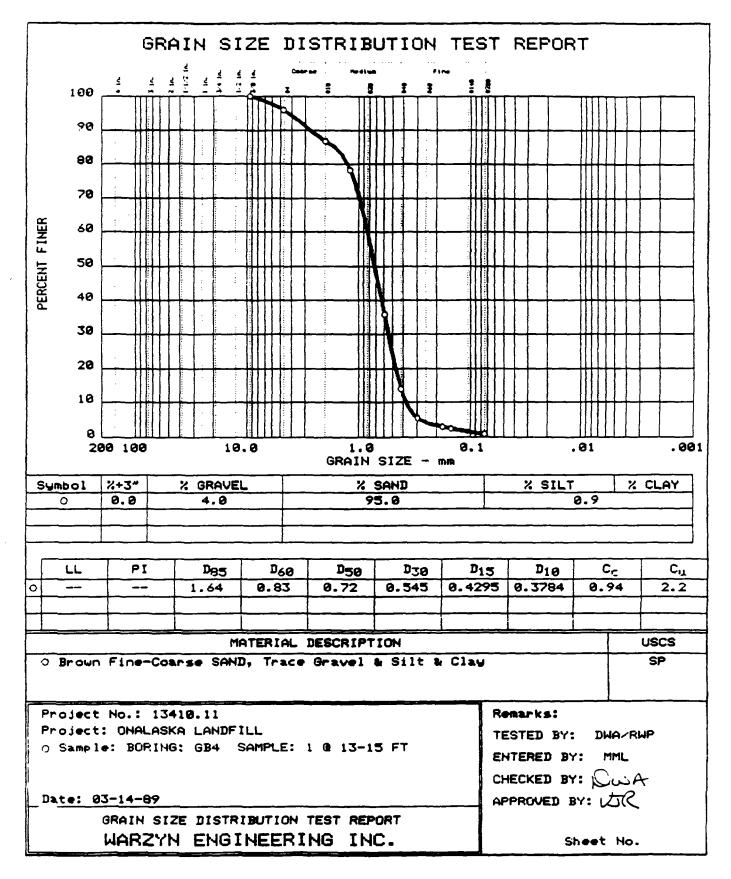
GLT913/014.50-2

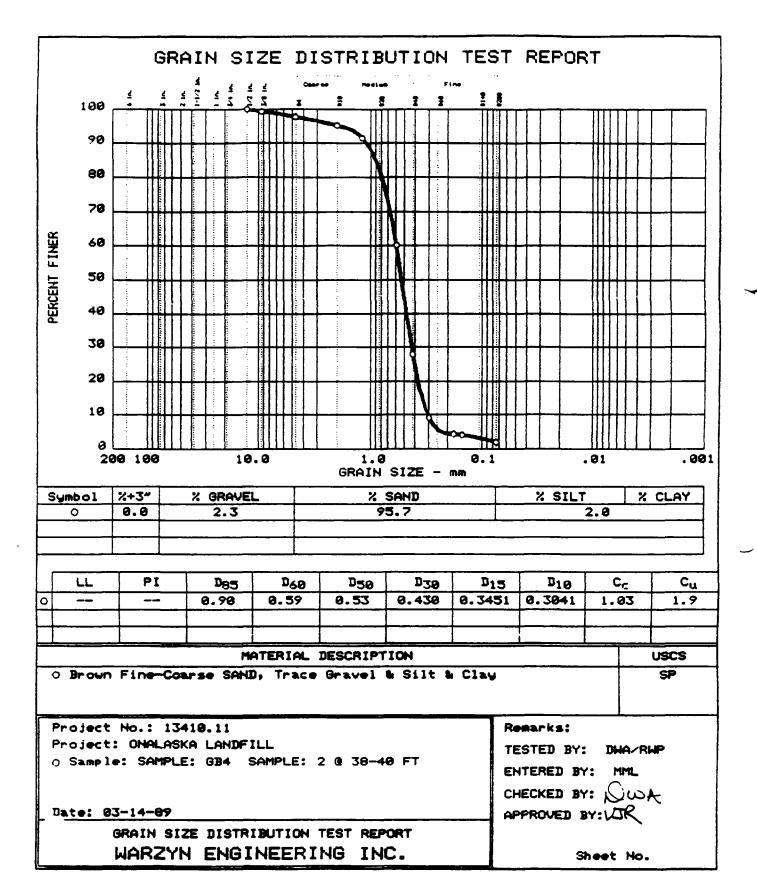


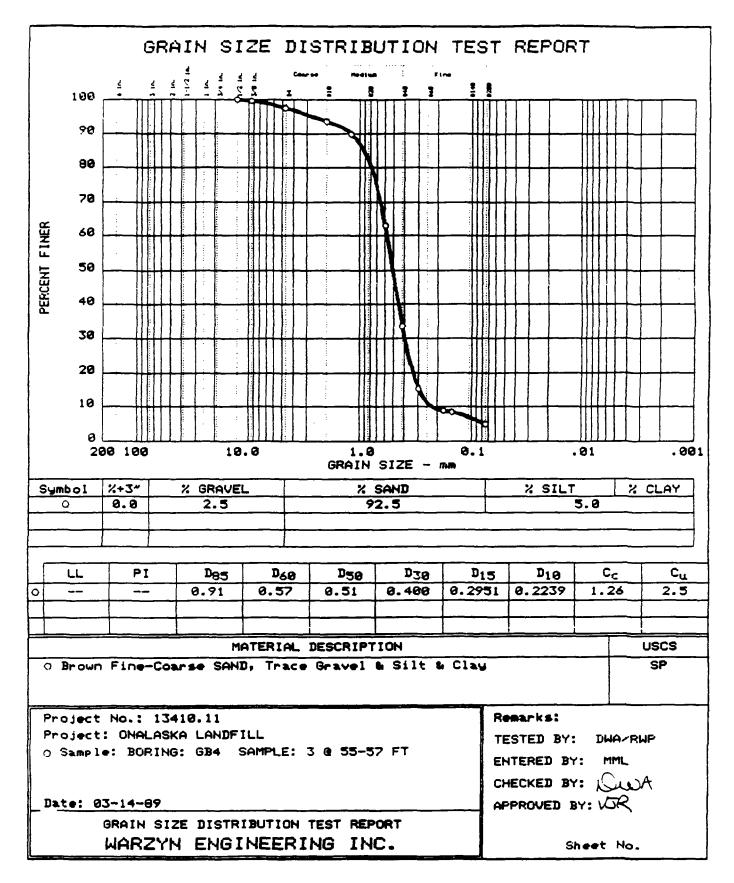


WARZYN

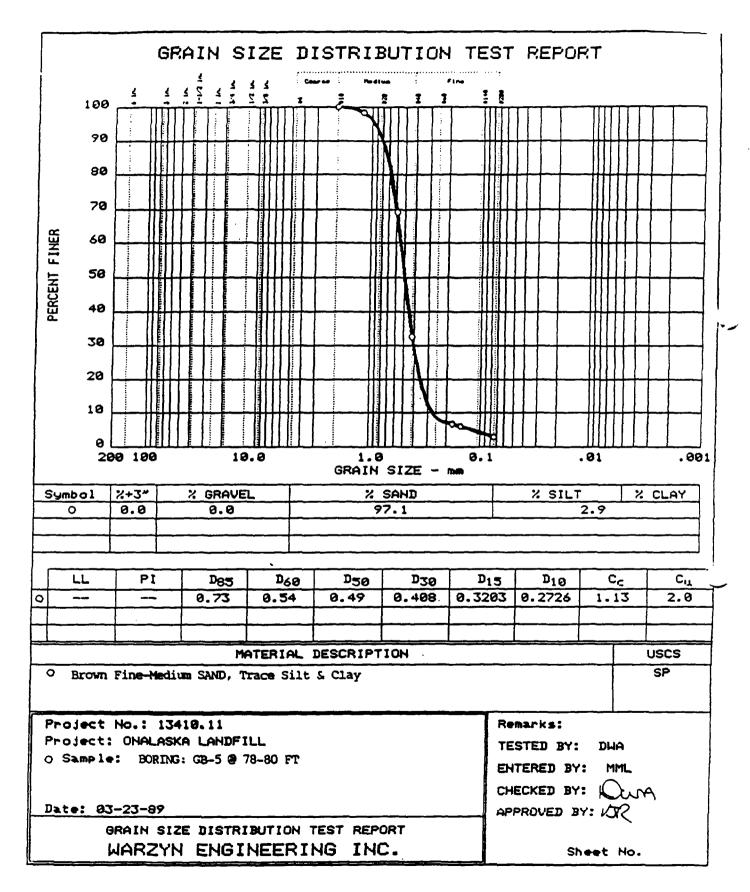
 \sim

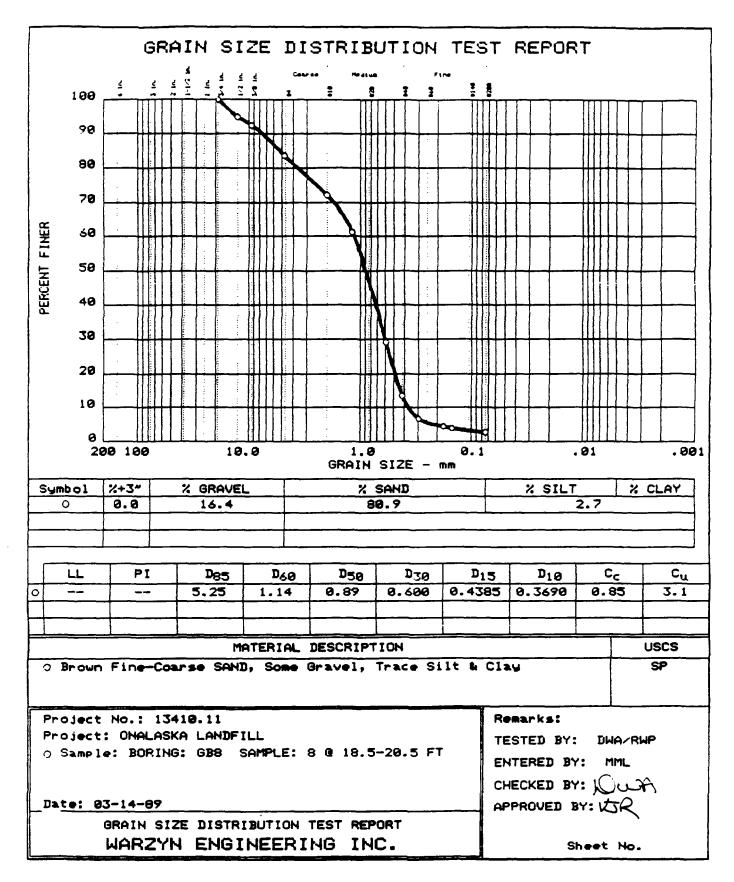


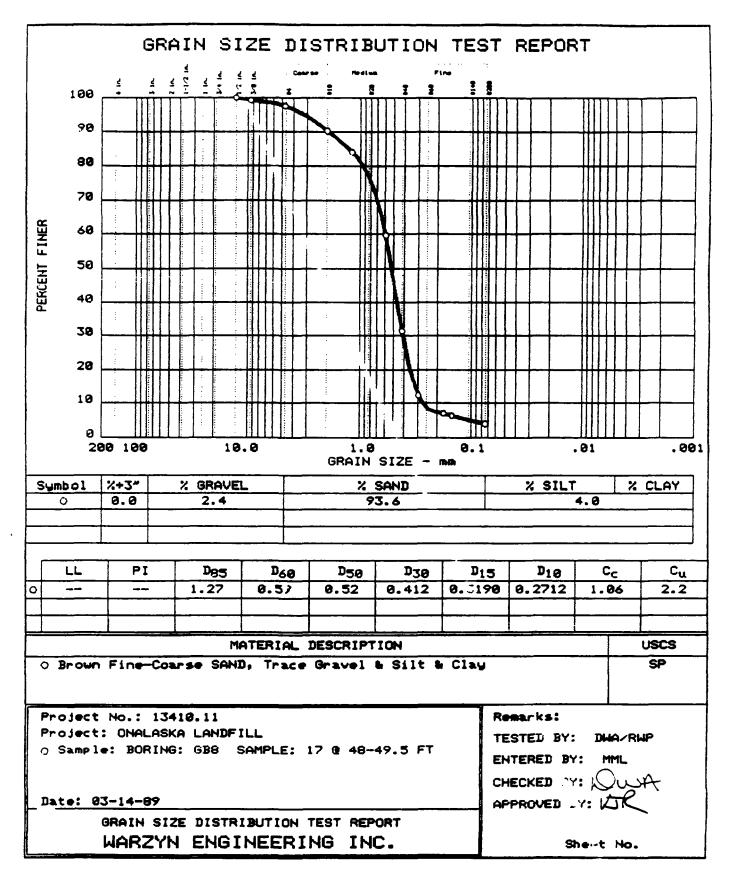


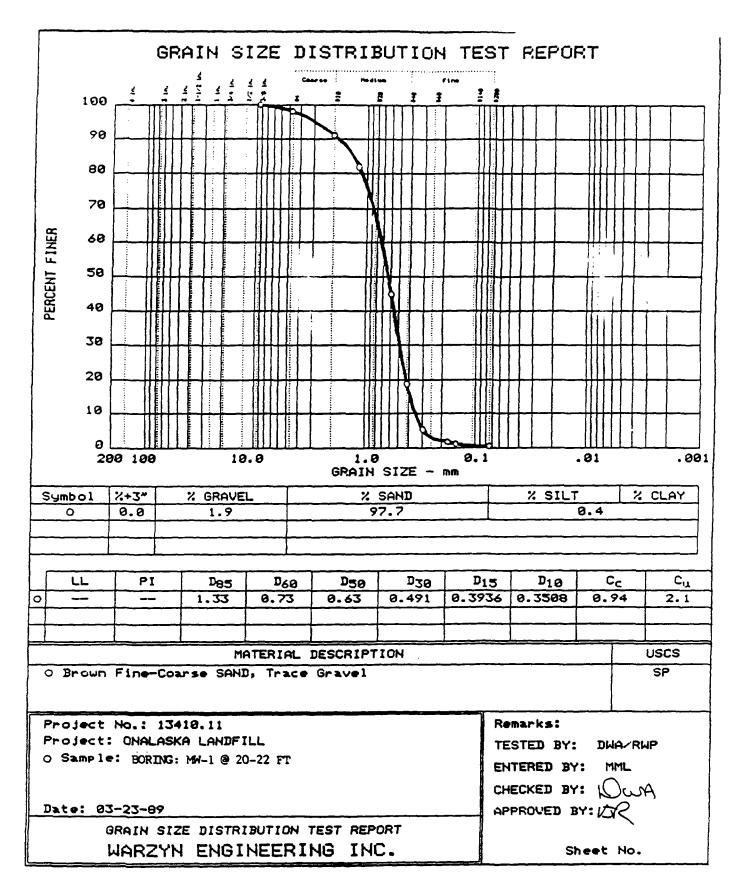


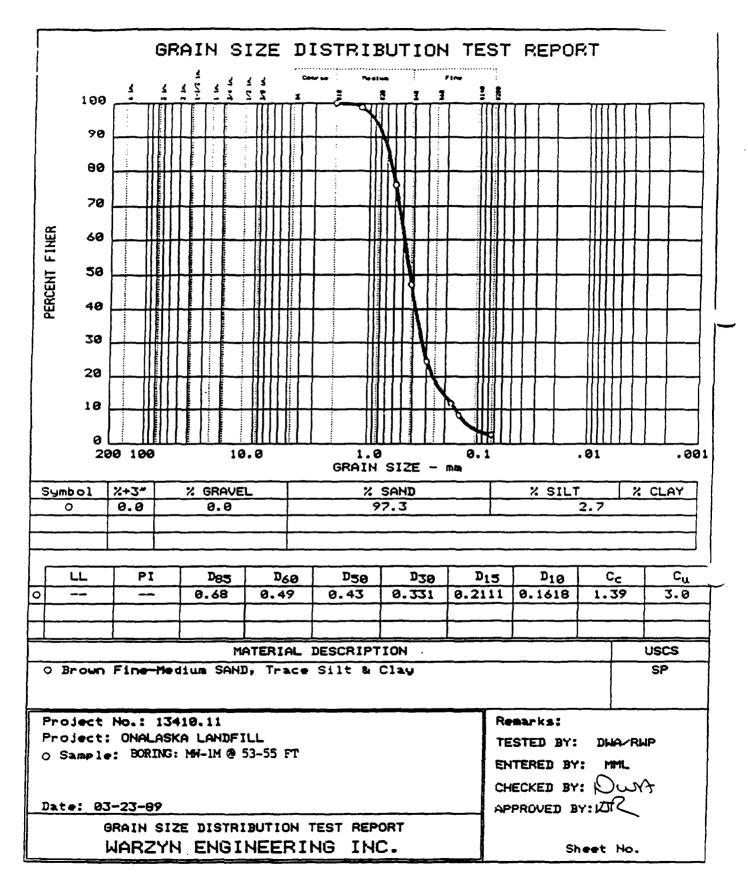
-

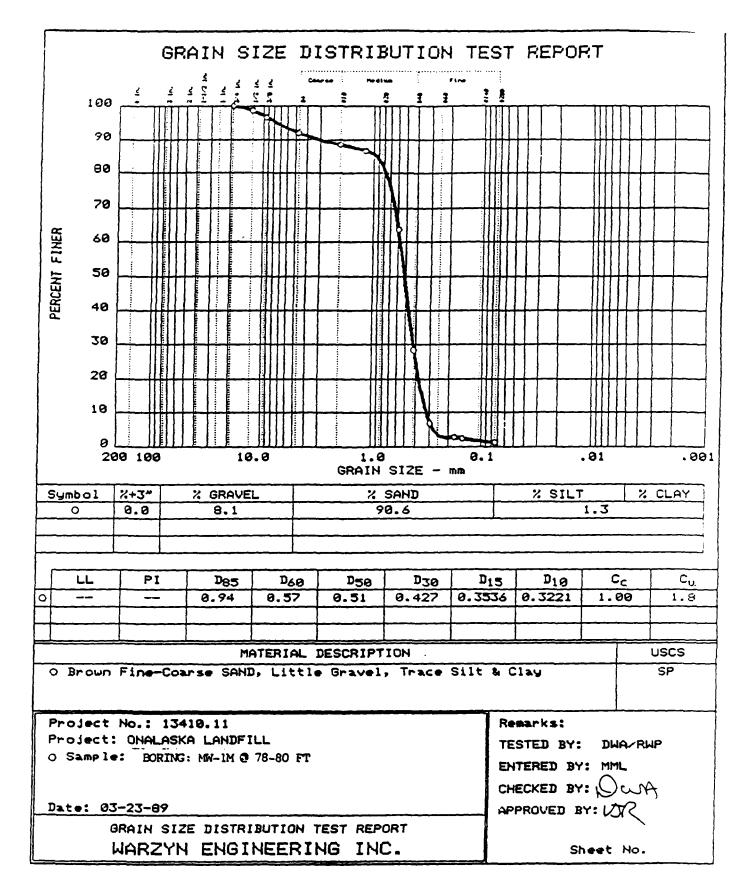




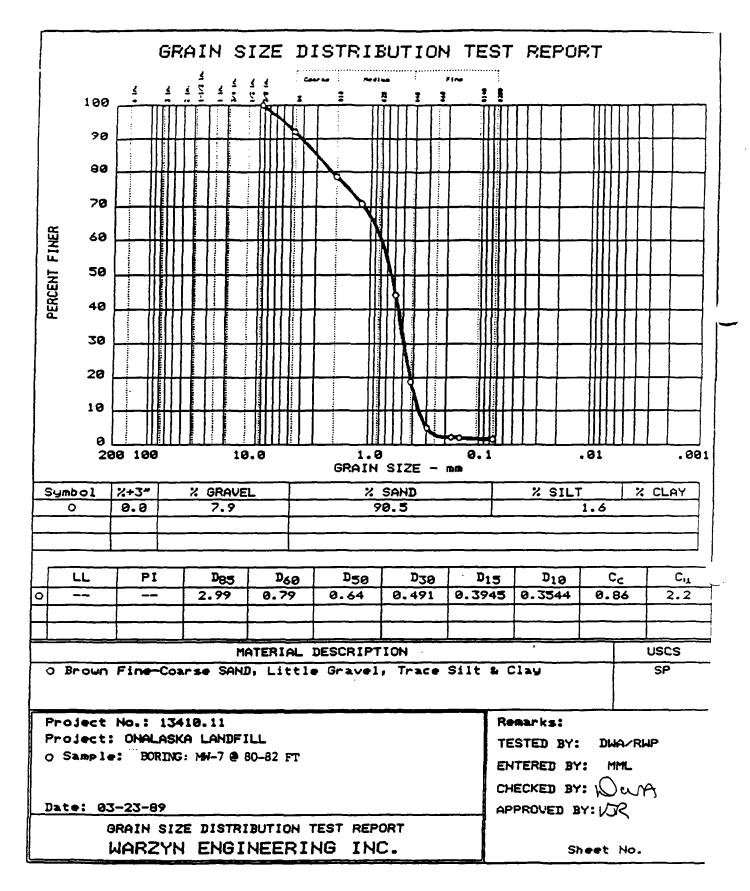


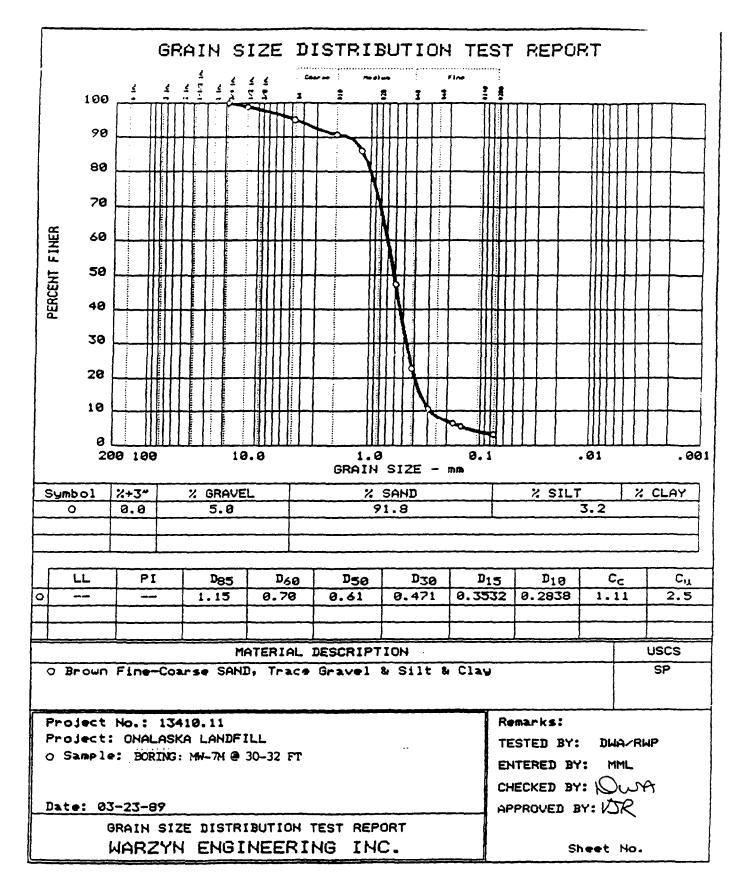


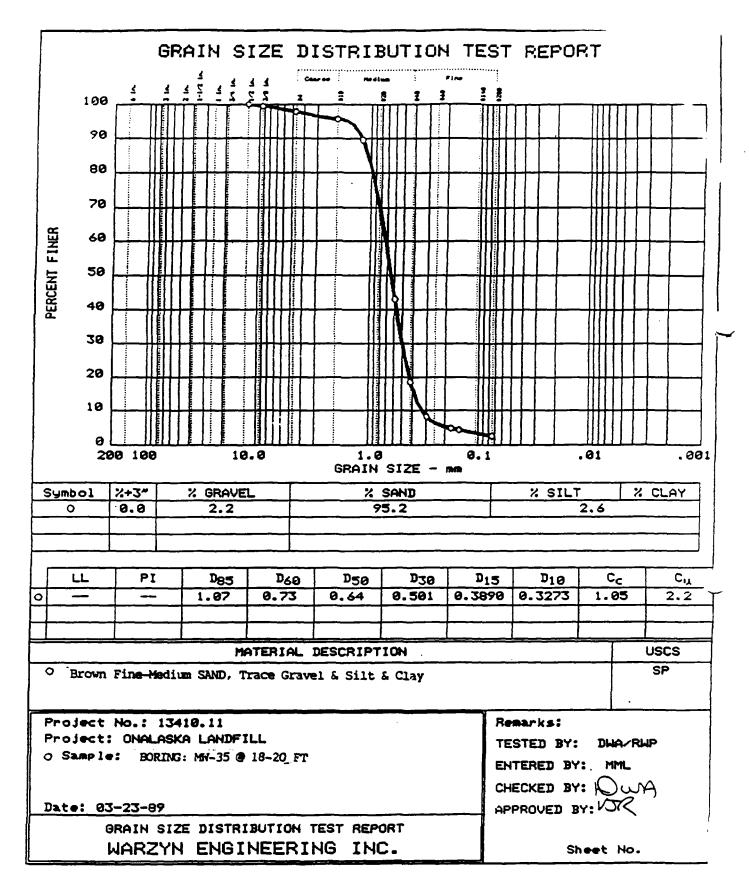




.




WARZYN

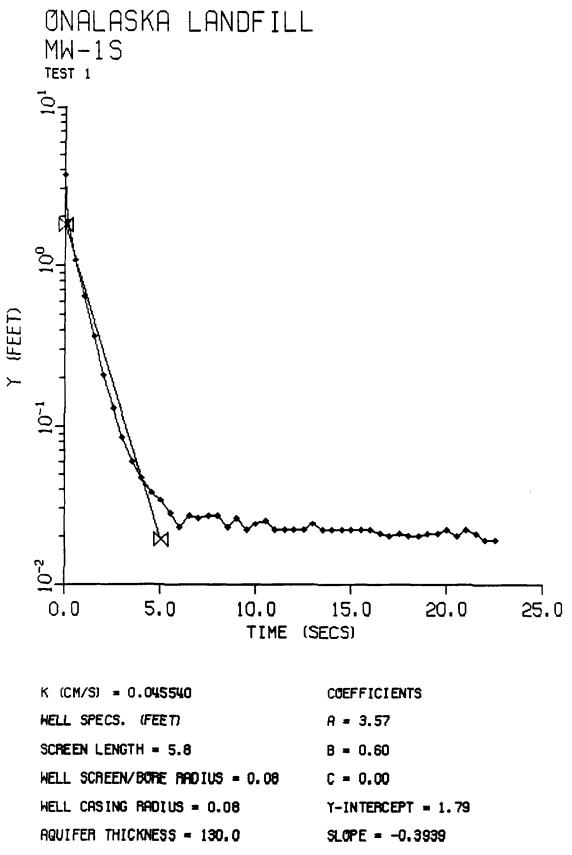


WARZYN

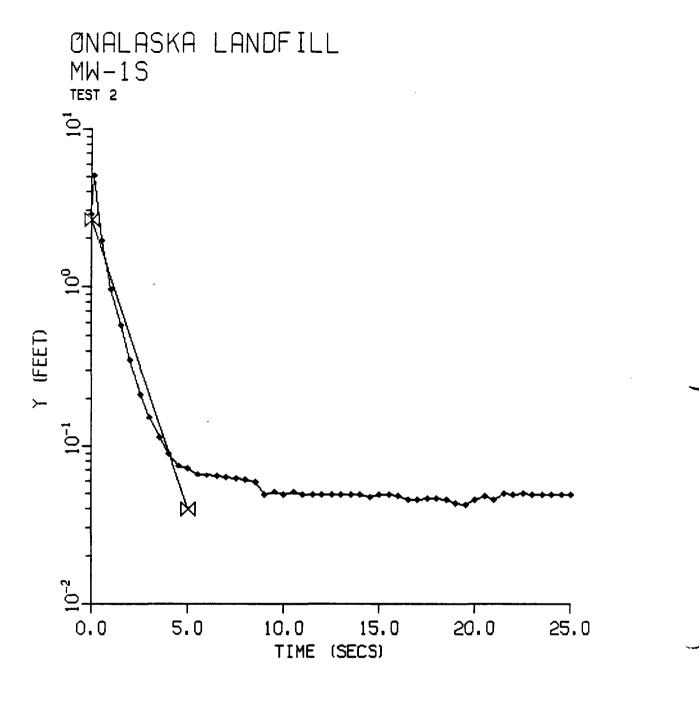
Attachment 3 GROUNDWATER MONITORING WELL AS-BUILT CONSTRUCTION DATA

.

....


SS - STANLESS STEEL

WELL CONSTRUCTION DETAILS


	INSTALLED BY	MW-18 J. Imada	MW-1M J Imada	MW-25 K. Chun	MW-2M K Chan	MW-2D K. Oluan	MW-35 J Image	MW-3M K Chan	MW-3D K Clean	MW-45 K Oluan	LIW-55 J. imedia	MW-6M D. Panta	MW-7M D Plana	MW-85 D Panto	MW- shi D Pumb	MW-60 D Pumo	MW-944 D Plants	LAW-10M D Plants	MW-11M 0 Pione	MW-125 K Olean	MW-135 K Olean	NW-145 D Plume
	DATE.	3-16-88	3-16-60	3-14-00	3-14-88	3-18-88	3-17-00	3 20 60	3 28 88	3-10-00	3-10-00	3 20-00	3-16-00	3-19-86	3-19-06	3-26-60	3-21-80	3 21 88	3 22 89	3 30 66	3 29-88	3-30-00
	ELEVATION TOP OF RIBER		663 47	65 4 8 6	884 SD	665 6 7	664 .44	665 43	164 4	005.0 1	888.48	848.48	86251	881 88	66 2 63	66 1.46	aid. 18	668 5 1	667 17	44.2 96	664 8 7	456 19
	ELEVATION GROUND BURFACE	66 1.8	46 1.0	882 .3	an <u>2</u> .9	862.8	663.7	663 0	663 B	662.6	66 .4	649.B	660 3	a60 4	668 4	(10)2	963 s	863 3	864 3	880 2	60 1 Ø	854.B
#####################################																						
	III = MATERIAL / DIAMETER	2 PVC	2 PVC	z 54	2 55	7 55	7 55	7 SS	7 53	7 55	2° 88	Z PVC	2 PVC	Z PVC	z PVG	2 PVC	Z PVC	Z PVC	Z PVC	Z' PVC	7 PVC	Z' 53
	DESCRIPTION	Conset/	Bartanta / Blatty	Comerce / Revenues	Bernanda Bary	Canada Over Bantanas/ Bany	Comuni / Bernhame	Bananta Barry	Barrante Shirty	Comert /	Cament / Banarria	Bartaraa Bury	Bartarra Burry	Granutte Bantanta	Berneren Shary	Bernarita Blaty	Bertinnes Shany	Beritaria Shary	Benerate Shary	Granuter Bentende	Granuter Bantiansia	Granuer Bantanta
	- BOREHOLE DIAMETER	167	187	18*	16*	5"	16"	5	F	167	18*	187	18 7	147	Ŧ	5	1êr	16"	167	19"	10"	18*
	TOP OF	662.0	N/A	aii 2 8	M/A	N/A	N/A	N/A	N/A		848.9	N/A	N/A	W/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	MELLET SEAL	661.0	M/A	ei2 e	N/A	N/A	64 <u>0</u> .7	N/A	N/A	edo s	648 B	N/A	N/A	662.8	N/A	N/A	N/A	N/A	N/A	452 Z	65 24	442 B
		669.0	66 1.0	86 1.0	500 D	542.7	648.7	589.8	\$30.4	848.1	647.4	587 a	588.3	660 4	808 4	\$74.2	580 3	501 B	586 3	851 2	860 B	65Q B
	r	646.0	500.3	6 47.3	583 A	538 8	648 .7	585 2	524 B	846 1	8444	5780	585 3	648 S	506.2	538 2	586 B	586 S	590 7	647 4	649 2	848 8
3 ·/###•;		638.0	see a	637 3	583 A	528.0	638.7	575 2	5148	826 .1	634 4	<u>Lais o</u>	580 J	638.8	500 3	528.2	576 A	575 5	580 7	637 4	639 2	636 6
	SOREHOLE	637.5	500.3	634 3	363.6	523 7	636.7	573 1	511.0	636 1	634 4	544 0	500.3	636.4	581 4	521 2	573 8	573.3	574 3	637.2	636.8	636.8

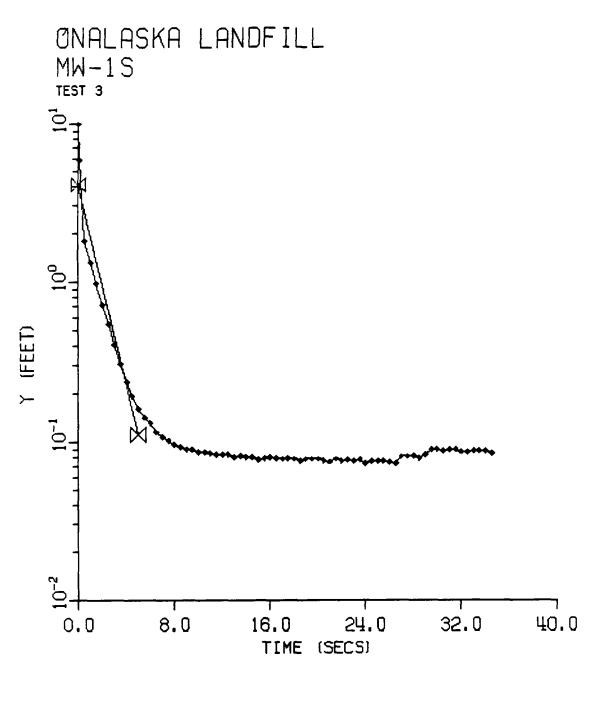
.

Attachment 4 SLUG TEST PLOTS AND ANALYSES

H (FEET) = 5.84

 K (CM/S) = 0.042155 COEFFICIENTS

 WELL SPECS. (FEET)
 A = 3.57


 SCREEN LENGTH = 5.8 B = 0.60

 WELL SCREEN/BORE RADIUS = 0.08 C = 0.000

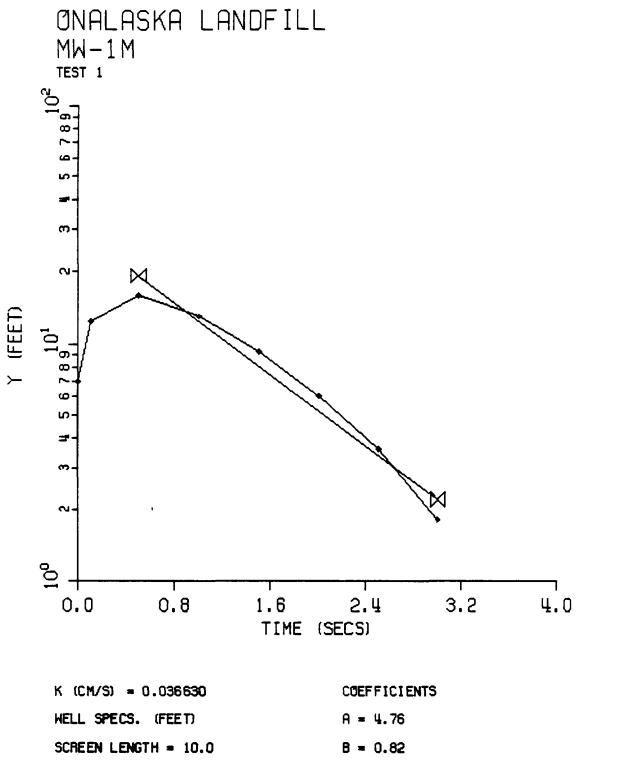
 WELL CASING RADIUS = 0.08 Y-INTERCEPT = 2.64

 AQUIFER THICKNESS = 130.0 SLOPE = -0.3647

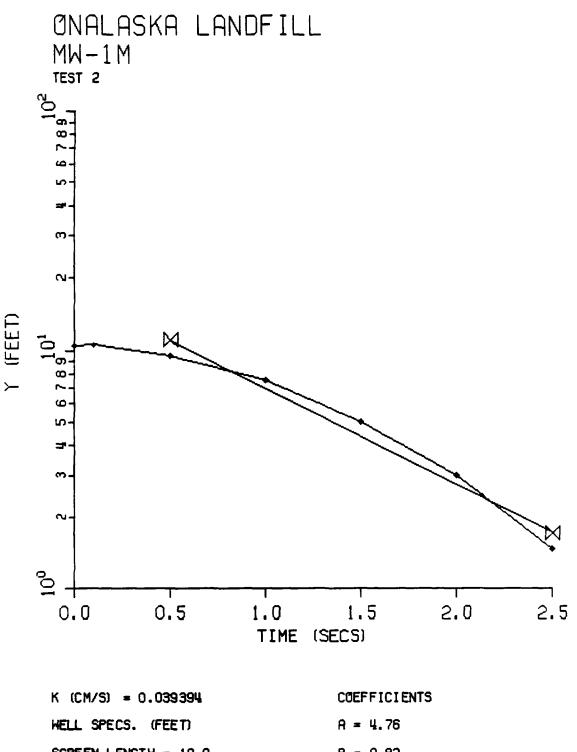
 H (FEET) = 5.84

 K (CM/S) = 0.036110
 COEFFICIENTS

 WELL SPECS. (FEET)
 A = 3.57


 SCREEN LENGTH = 5.8
 B = 0.60

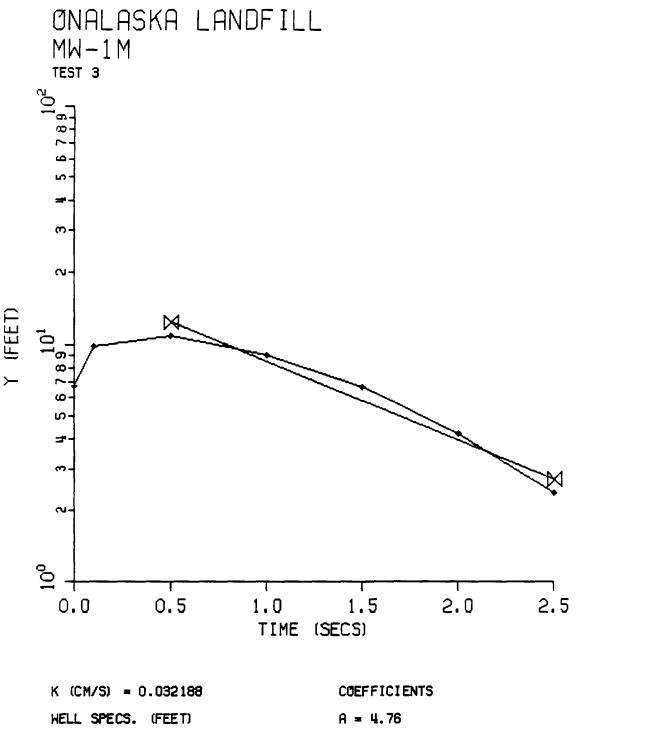
 WELL SCREEN/BORE RADIUS = 0.08
 C = 0.00


 WELL CASING RADIUS = 0.08
 Y-INTERCEPT = 4.06

 AQUIFER THICKNESS = 130.0
 SLOPE = -0.3124

 H (FEET) = 5.84

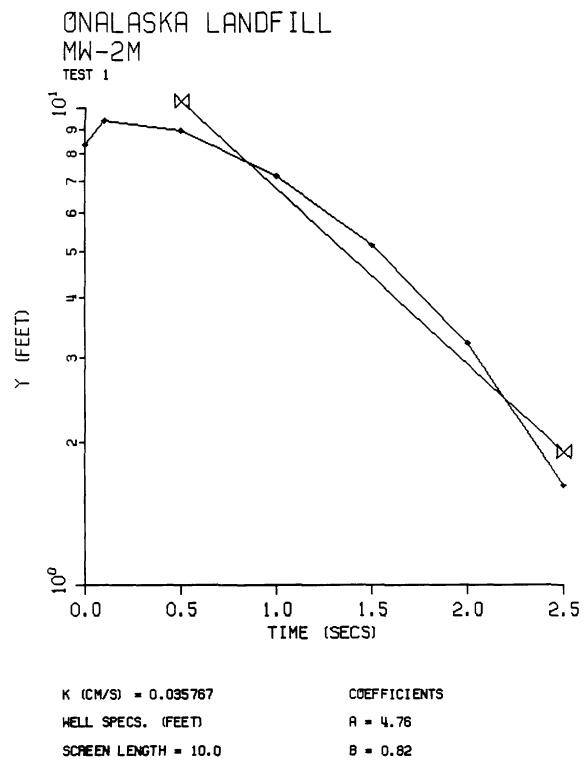
WELL SCREEN/BORE RADIUS = 0.08 C = 0.00WELL CASING RADIUS = 0.08 Y-INTERCEPT = 29.41AQUIFER THICKNESS = 130.0 SLOPE = -0.3756 H (FEET) = 55.60


 SCREEN LENGTH = 10.0
 B = 0.82

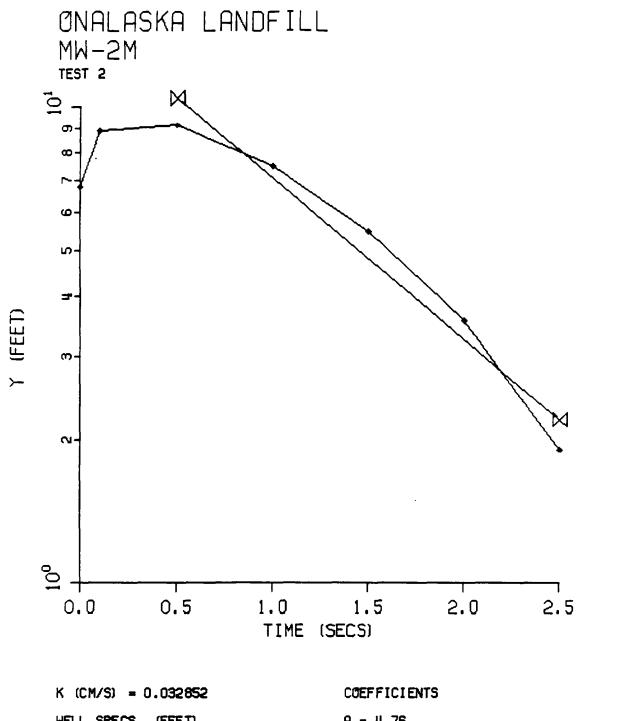
 WELL SCREEN/BORE RADIUS = 0.08
 C = 0.00

 HELL CRSING RADIUS = 0.08
 Y-INTERCEPT = 17.52

 AQUIFER THICKNESS = 130.0
 SLOPE = -0.4040


 H (FEET) = 55.60

SCREEN LENGTH = 10.0 B = 0.82WELL SCREEN/BORE RADIUS = 0.08 C = 0.00WELL CASING RADIUS = 0.08 AQUIFER THICKNESS = 130.0 H (FEET) = 55.60

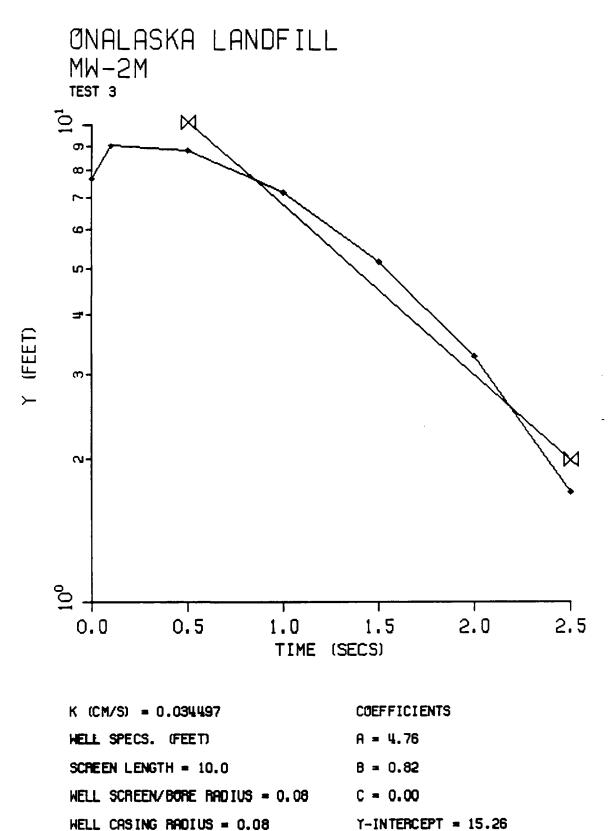

Y-INTERCEPT = 18.06

SLOPE = -0.3301

WELL SCREEN/BORE RADIUS = 0.08 C = 0.00HELL CASING RADIUS = 0.08 Y-INTERCEPT = 15.76AQUIFER THICKNESS = 130.0 H (FEET) = 55.60

SLOPE = -0.3668

 HELL SPECS. (FEET)
 A = 4.76

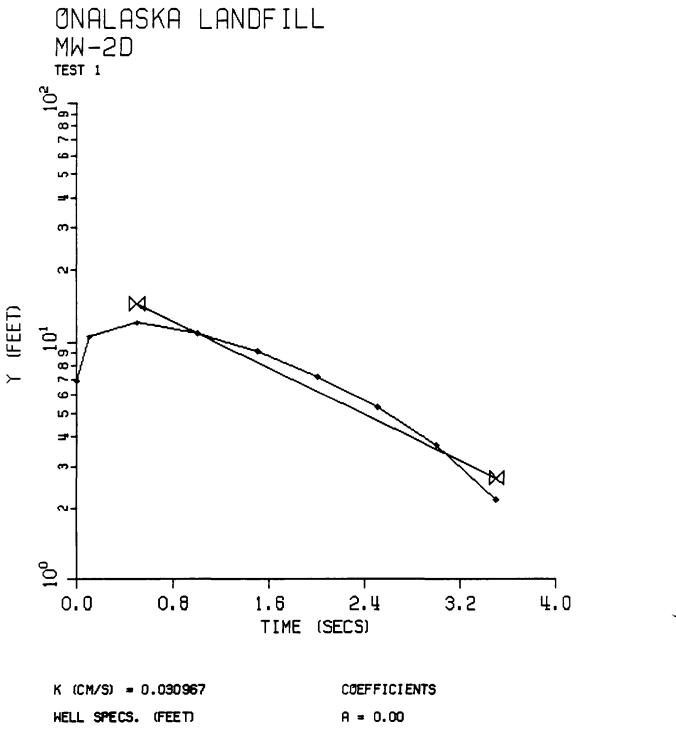

 SCREEN LENGTH = 10.0
 B = 0.82

 WELL SCREEN/BORE RADIUS = 0.08
 C = 0.00

 WELL CASING RADIUS = 0.08
 Y-INTERCEPT = 15.38

 AQUIFER THICKNESS = 130.0
 SLOPE = -0.3369

 H (FEET) = 55.60



WELL CASING RADIUS = 0.08

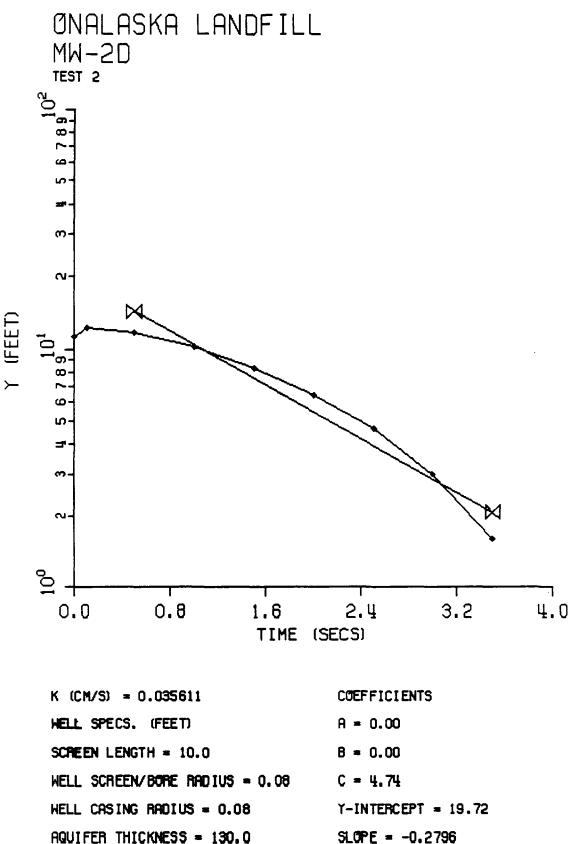
AQUIFER THICKNESS = 130.0

SLOPE = -0.3537

H (FEET) = 55.60

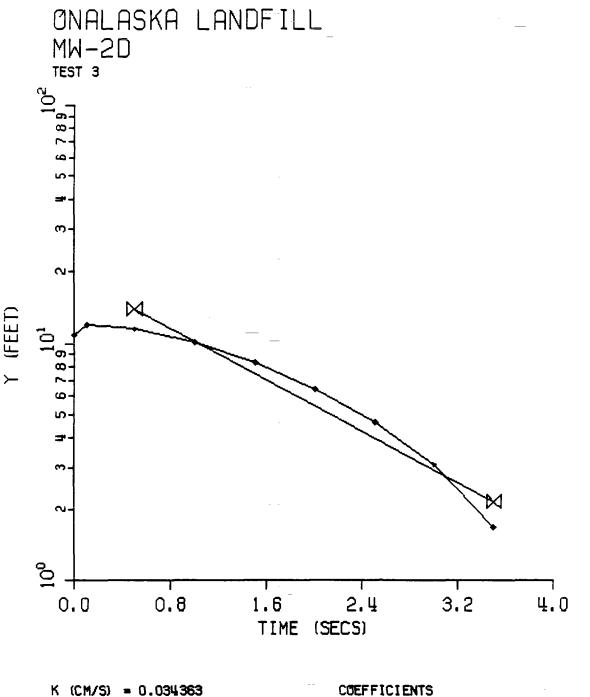
 WELL SPECS. (FEET)
 H = 0.00

 SCREEN LENGTH = 10.0
 B = 0.00

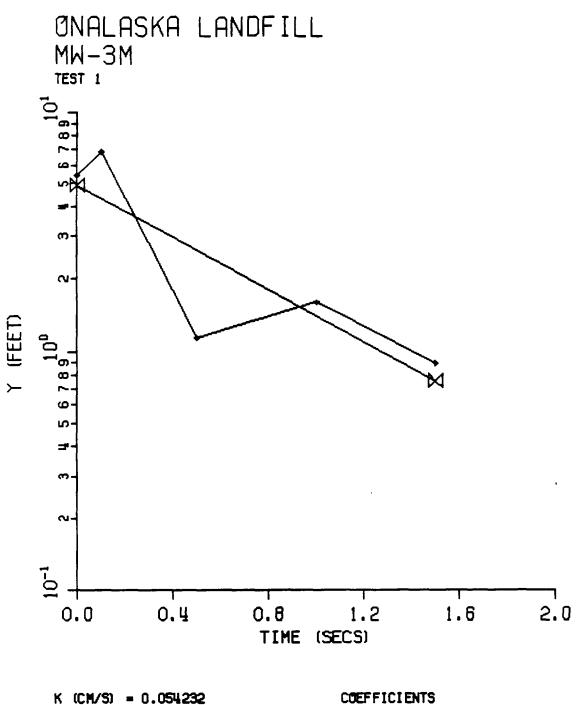

 WELL SCREEN/BORE RADIUS = 0.08
 C = 4.74

 WELL CASING RADIUS = 0.08
 Y-INTERCEPT = 19.06

 AQUIFER THICKNESS = 130.0
 SLOPE = -0.2432


 H (FEET) = 116.80
 SLOPE = -0.2432

 \smile

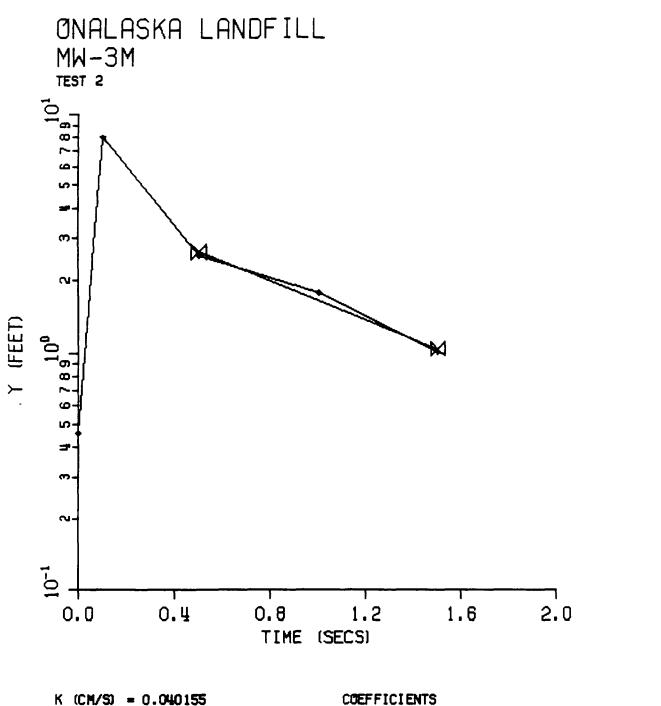


H (FEET) = 116.80

SLOPE = -0.2796

WELL SPECS. (FEET) SCREEN LENGTH = 10.0 WELL SCREEN/BORE RADIUS = 0.08 WELL CASING RADIUS = 0.08 AQUIFER THICKNESS = 130.0 H (FEET) = 116.80 COEFFICIENTS A = 0.00 B = 0.00 C = 4.74 Y-INTERCEPT = 18.95 SLOPE = -0.2698

 HELL SPECS. (FEET)
 A = 4.76


 SCREEN LENGTH = 10.0
 B = 0.82

 WELL SCREEN/BORE RADIUS = 0.08
 C = 0.00

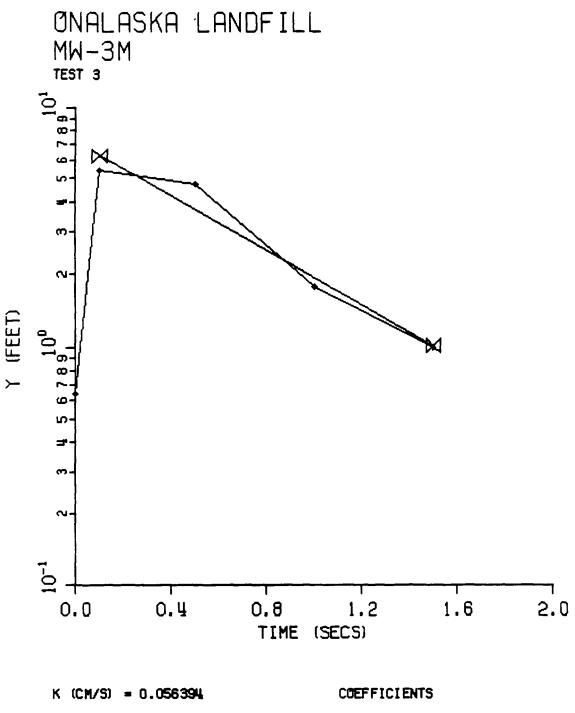
 WELL CRSING RADIUS = 0.08
 Y-INTERCEPT = 4.93

 AQUIFER THICKNESS = 130.0
 SLOPE = -0.5447

 H (FEET) = 68.20

 K (CH/S) = 0.040135
 COEFFICIENTS

 HELL SPECS. (FEET)
 A = 4.76


 SCREEN LENGTH = 10.0
 B = 0.82

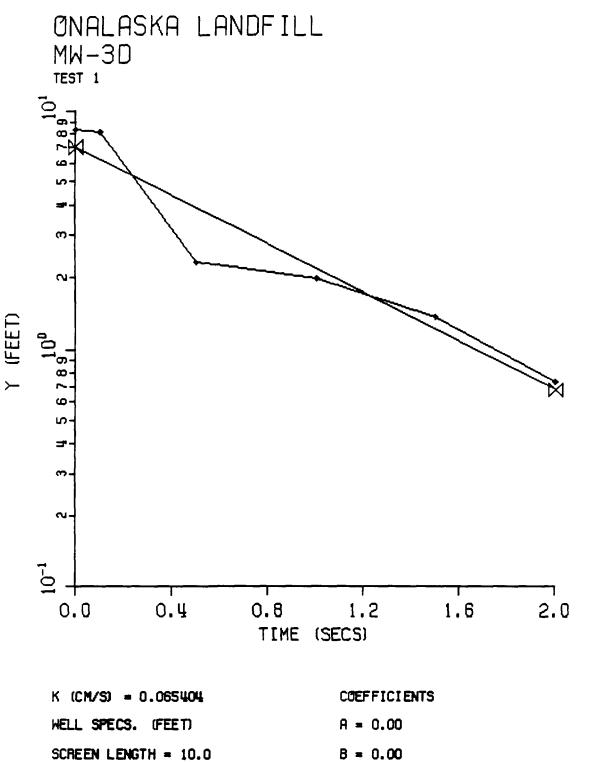
 MELL SCREEN/BORE RADIUS = 0.08
 C = 0.00

 HELL CRSING RADIUS = 0.08
 Y-INTERCEPT = 4.18

 AQUIFER THICKNESS = 130.0
 SLOPE = -0.4033

 H (FEET) = 68.20

 HELL SPECS. (FEET)
 R = 4.76


 SCREEN LENGTH = 10.0
 B = 0.82

 WELL SCREEN/BORE RADIUS = 0.08
 C = 0.00

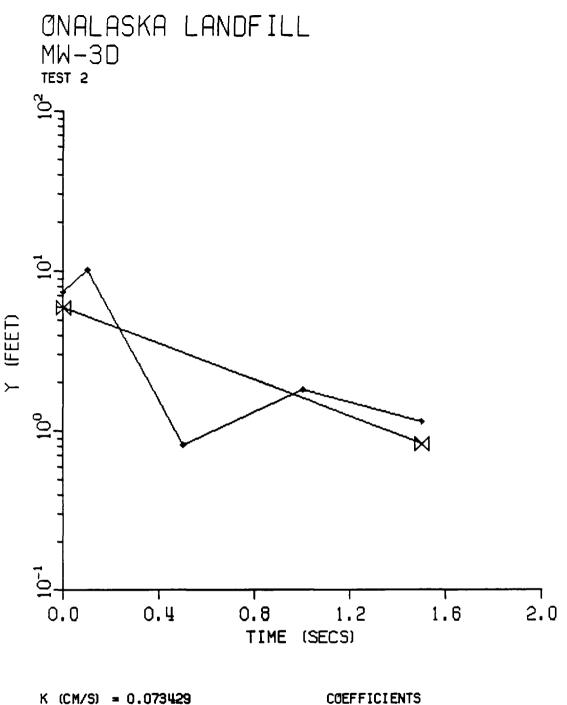
 HELL CRSING RADIUS = 0.08
 Y-INTERCEPT = 7.13

 AQUIFER THICKNESS = 130.0
 SLOPE = -0.5664

 H (FEET) = 68.20

 SCREEN LENGTH = 10.0
 B = 0.00

 WELL SCREEN/BORE RADIUS = 0.08
 C = 4.74


Y-INTERCEPT = 7.01

SLOPE = -0.5082

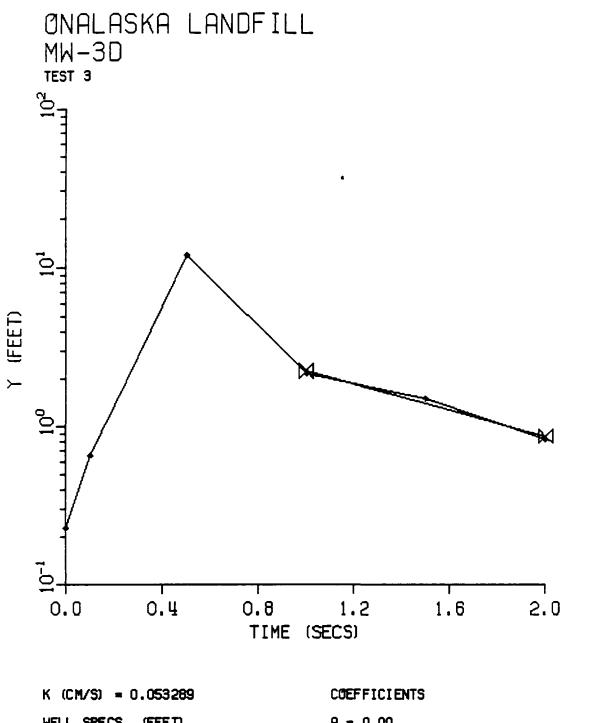
H (FEET) = 128.60

WELL CASING RADIUS = 0.08

AQUIFER THICKNESS = 130.0

 K (CH/3) = 0.073423
 COEFFICIENTS

 WELL SPECS. (FEET)
 A = 0.00


 SCREEN LENGTH = 10.0
 B = 0.00

 WELL SCREEN/BORE RADIUS = 0.08
 C = 4.74

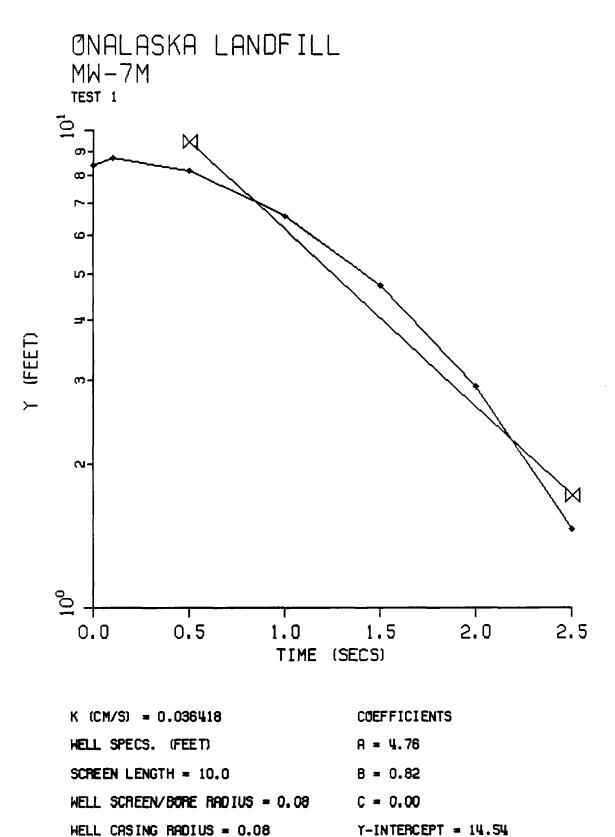
 WELL CASING RADIUS = 0.08
 Y-INTERCEPT = 5.94

 AQUIFER THICKNESS = 130.0
 SLOPE = -0.5706

 H (FEET) = 128.60
 SLOPE = -0.5706

 HELL SPECS. (FEET)
 A = 0.00

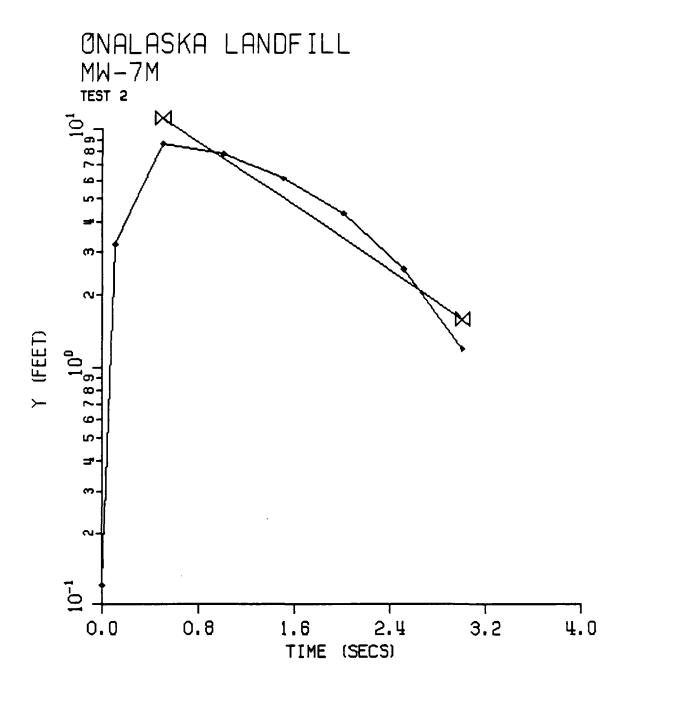
 SCREEN LENGTH = 10.0
 B = 0.00


 WELL SCREEN/BORE RADIUS = 0.08
 C = 4.74

 HELL CASING RADIUS = 0.08
 Y-INTERCEPT = 5.84

 AQUIFER THICKNESS = 130.0
 SLOPE = -0.4141

 H (FEET) = 128.60
 Y


_

WELL CASING RADIUS = 0.08 AQUIFER THICKNESS = 130.0

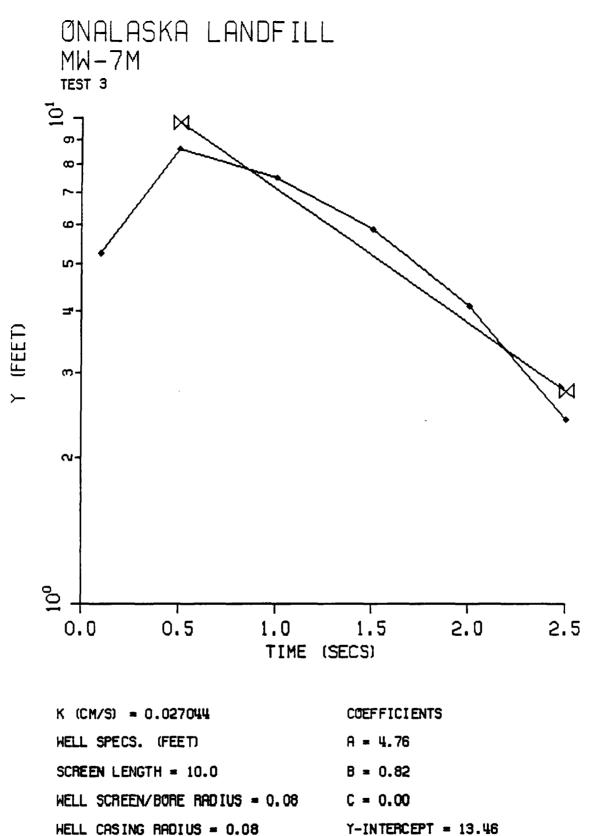
SLOPE = -0.3705

H (FEET) = 60.00

 K (CM/S) = 0.033165 COEFFICIENTS

 HELL SPECS. (FEET)
 A = 4.76

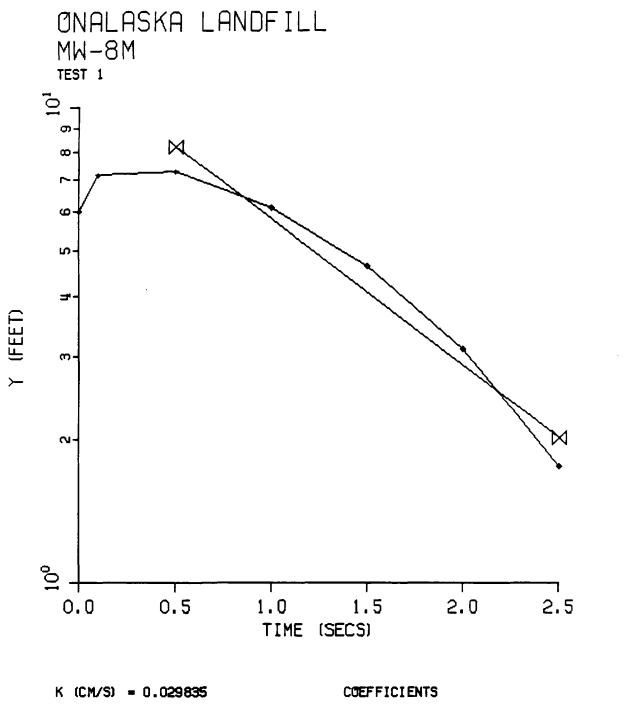
 SCREEN LENGTH = 10.0
 B = 0.82


 HELL SCREEN/BORE RADIUS = 0.08
 C = 0.00

 HELL CRSING RADIUS = 0.08
 Y-INTERCEPT = 16.38

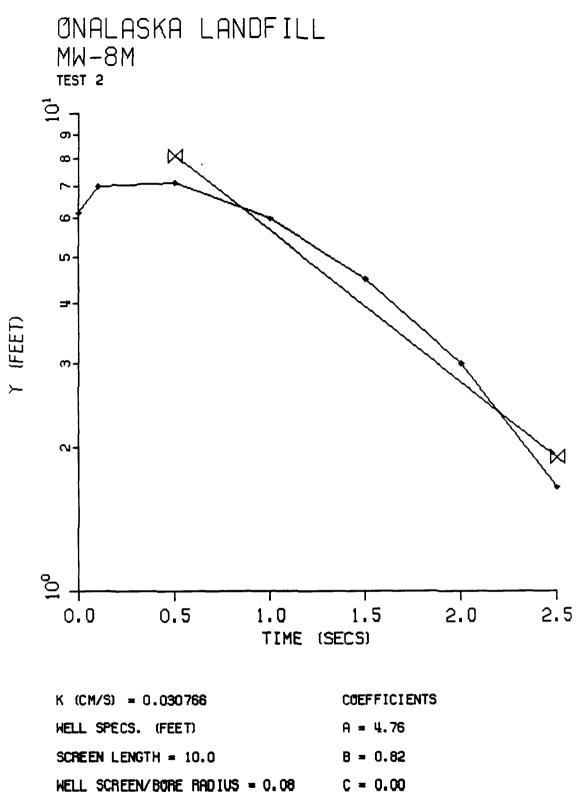
 RQUIFER THICKNESS = 130.0
 SLOPE = -0.3374

 H (FEET) = 60.00
 H


_

WELL CASING RADIUS = 0.08 AQUIFER THICKNESS = 130.0

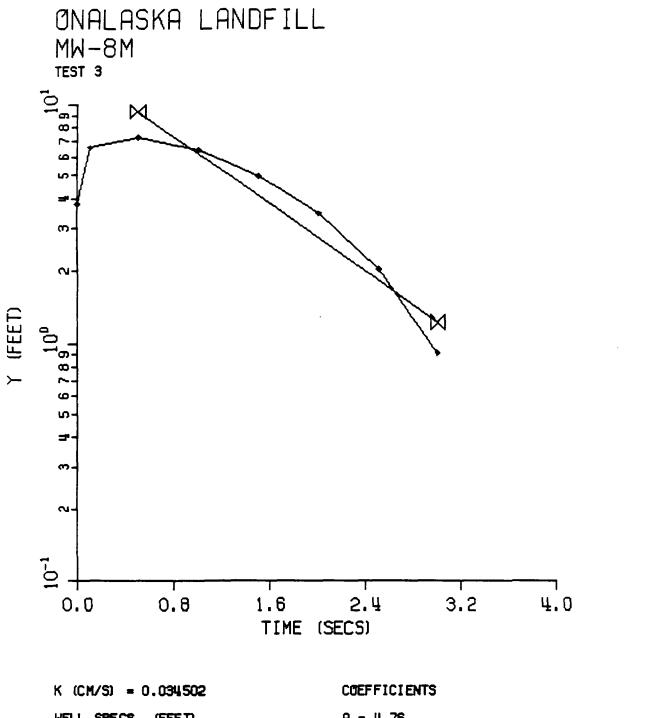
H (FEET) = 60.00


SLOPE = -0.2751

WELL SPECS. (FEET) A = 4.76SCREEN LENGTH = 10.0 B = 0.82WELL SCREEN/BORE RADIUS = 0.08 WELL CASING RADIUS = 0.08 AQUIFER THICKNESS = 130.0 H (FEET) = 56.80

C = 0.00Y-INTERCEPT = 11.72

SLOPE = -0.3053

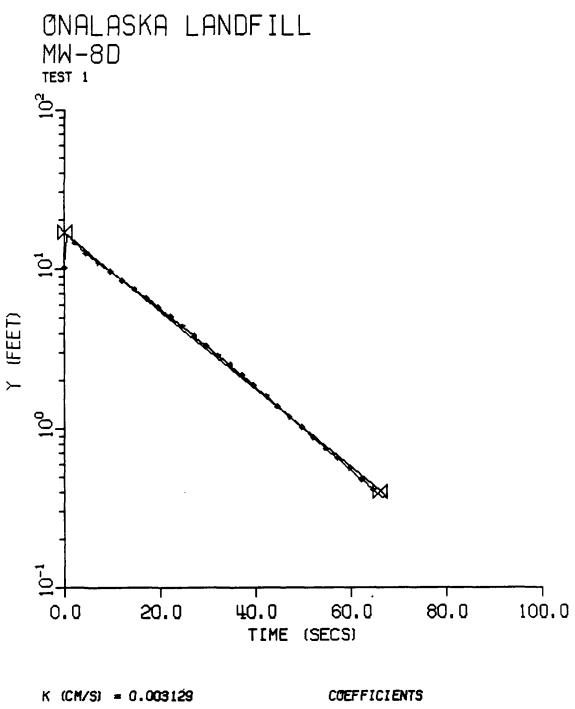

 WELL SCREEP BONE HHD IUS = 0.00
 C = 0.00

 WELL CRSING RADIUS = 0.08
 Y-INTERCEPT = 11.70

 AQUIFER THICKNESS = 130.0
 SLOPE = -0.3148

 H (FEET) = 56.80

.



WELL SPECS. (FEET)A = 4SCREEN LENGTH = 10.0B = 0WELL SCREEN/BORE ANDIUS = 0.08C = 0WELL CRSING ANDIUS = 0.08Y-INTAQUIFER THICKNESS = 130.0SLOPEH (FEET) = 56.80

A = 4.76 B = 0.82 C = 0.00 Y-INTERCEPT = 14.02

SLOPE = -0.3530

١

 HELL' SPECS. (FEET)
 A = 0.00

 SCREEN LENGTH = 10.0
 B = 0.00

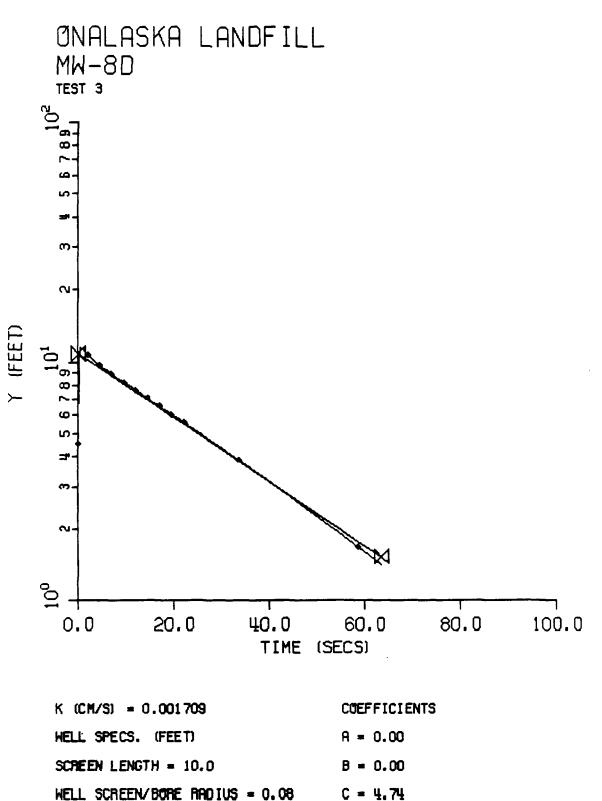
 WELL SCREEN/BORE RADIUS = 0.08
 C = 4.74

 WELL CRSING RADIUS = 0.08
 Y-INTERCEPT = 16.79

 AQUIFER THICKNESS = 130.0
 SLOPE = -0.0246

 H (FEET) = 117.10
 SLOPE = -0.0246

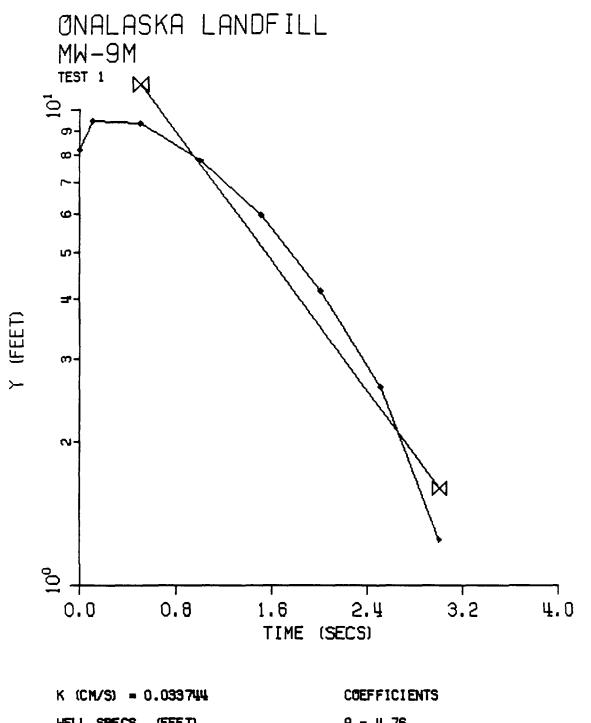
 SCREEN LENGTH = 10.0
 B = 0.00


 WELL SCREEN/BORE RADIUS = 0.08
 C = 4.74

 WELL CASING RADIUS = 0.08
 Y-INTERCEPT = 15.04

 AQUIFER THICKNESS = 130.0
 SLOPE = -0.0104

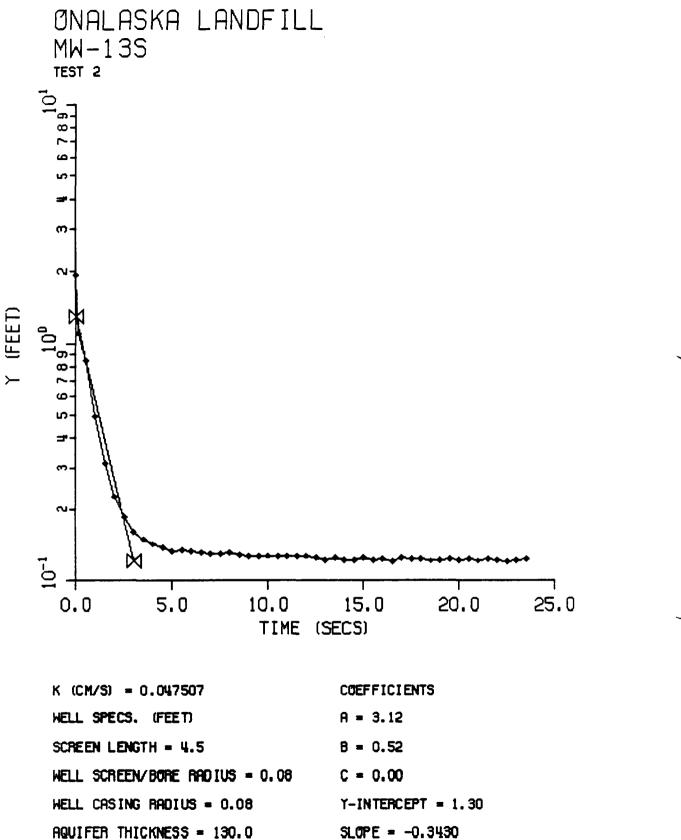
 H (FEET) = 117.10
 H (FEET) = 117.10


 \sim

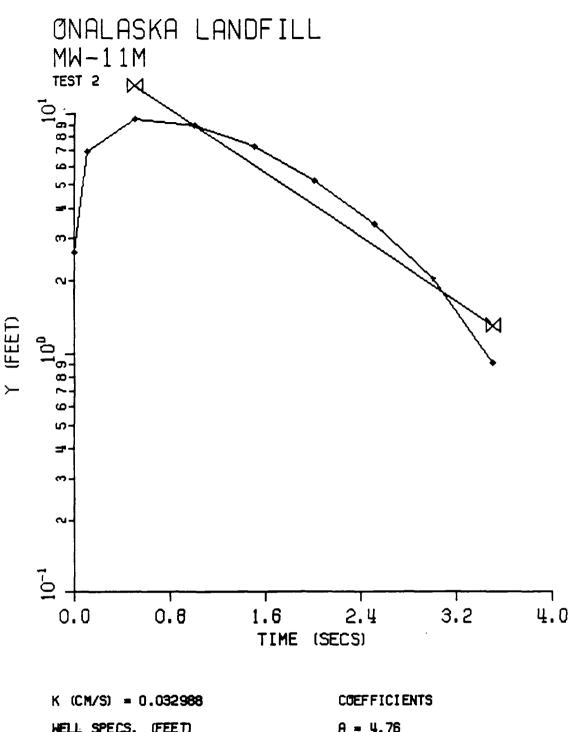
 WELL CASING RADIUS = 0.08
 Y-INTERCEPT = 10.82

 AQUIFER THICKNESS = 130.0
 SLOPE = -0.0134

 H (FEET) = 117.10



HELL SPECS. (FEET) SCREEN LENGTH = 10.0 HELL SCREEN/BORE RADIUS = 0.08 HELL CASING RADIUS = 0.08 AQUIFER THICKNESS = 130.0 H (FEET) = 66.60 COEFFICIENTS A = 4.76 B = 0.82 C = 0.00 Y-INTERCEPT = 16.72 SLOPE = -0.3397

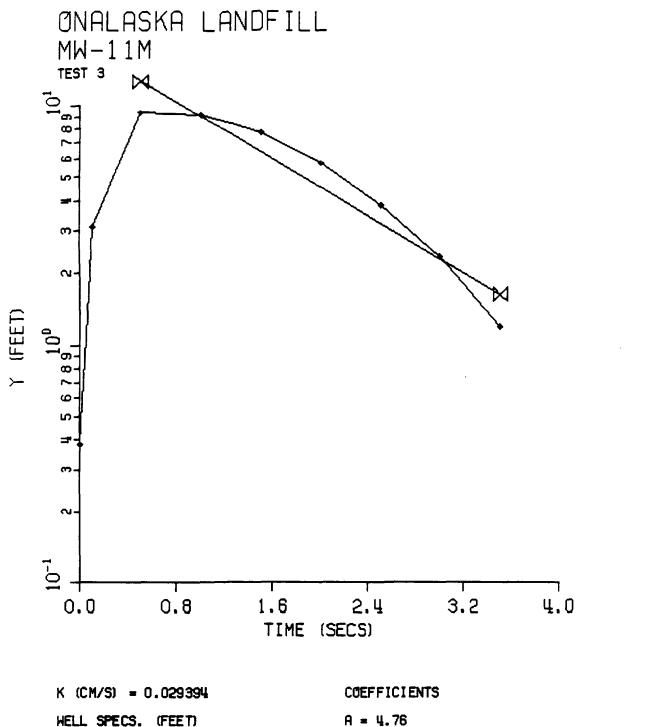

SLOPE = -0.4482

H (FEET) = 4.50

SLOPE = -0.3430

H (FEET) = 4.50

 HELL SPECS. (FEET)
 A = 4.76


 SCREEN LENGTH = 10.0
 B = 0.82

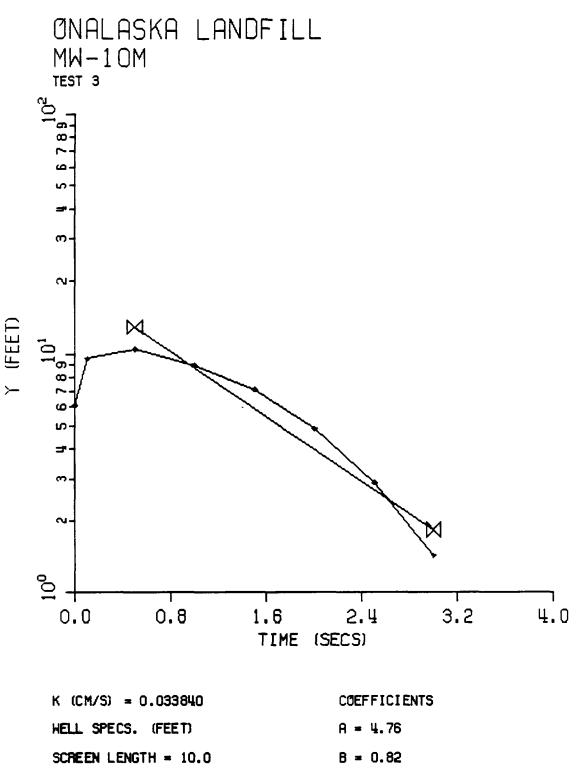
 WELL SCREEN/BORE RADIUS = 0.08
 C = 0.00

 WELL CASING RADIUS = 0.08
 Y-INTERCEPT = 19.28

 AQUIFER THICKNESS = 130.0
 SLOPE = -0.3341

 H (FEET) = 62.80
 SLOPE = -0.3341

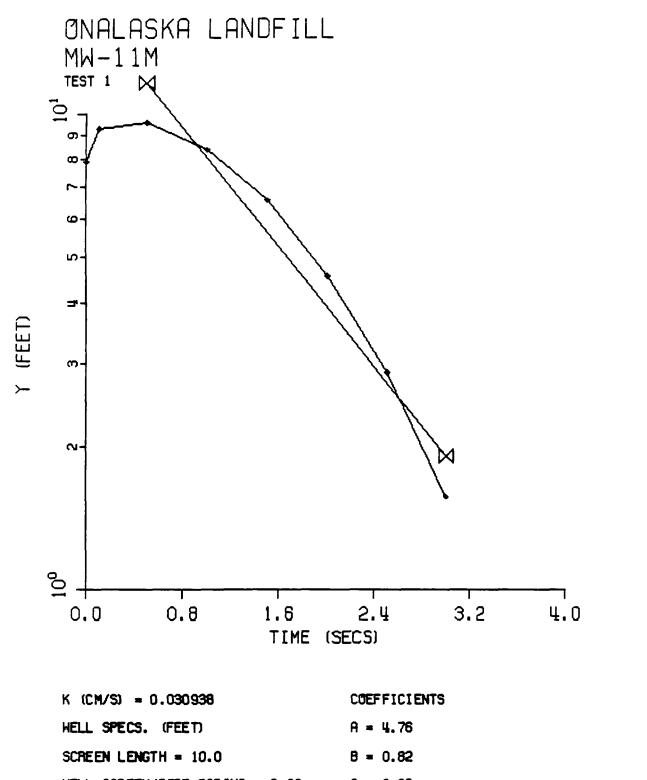
 WELL SPECS. (FEET)
 H = 4.76

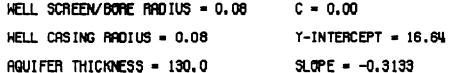

 SCREEN LENGTH = 10.0
 B = 0.82

 WELL SCREEN/BORE RADIUS = 0.08
 C = 0.00

 WELL CRSING RADIUS = 0.08
 Y-INTERCEPT = 17.94

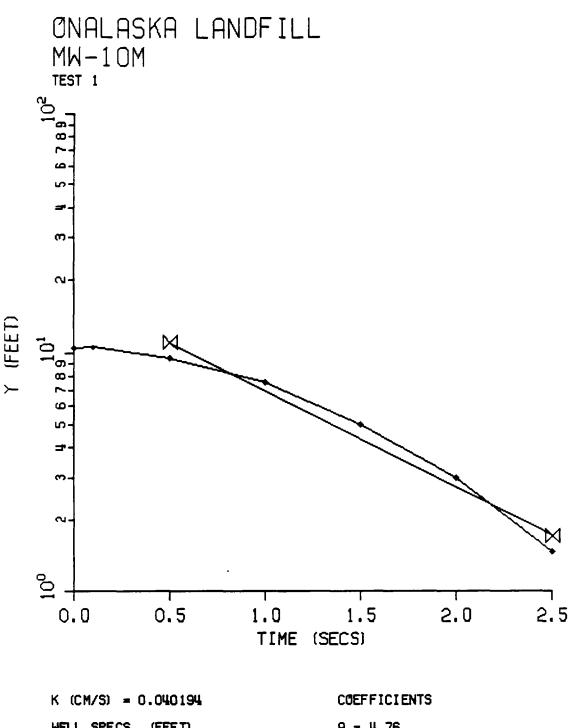
 AQUIFER THICKNESS = 130.0
 SLOPE = -0.2977


 H (FEET) = 62.80



WELL SCREEN/BORE RADIUS = 0.08 C = 0.00WELL CASING RADIUS = 0.08 Y-INTERCEPT = 19.10AQUIFER THICKNESS = 130.0

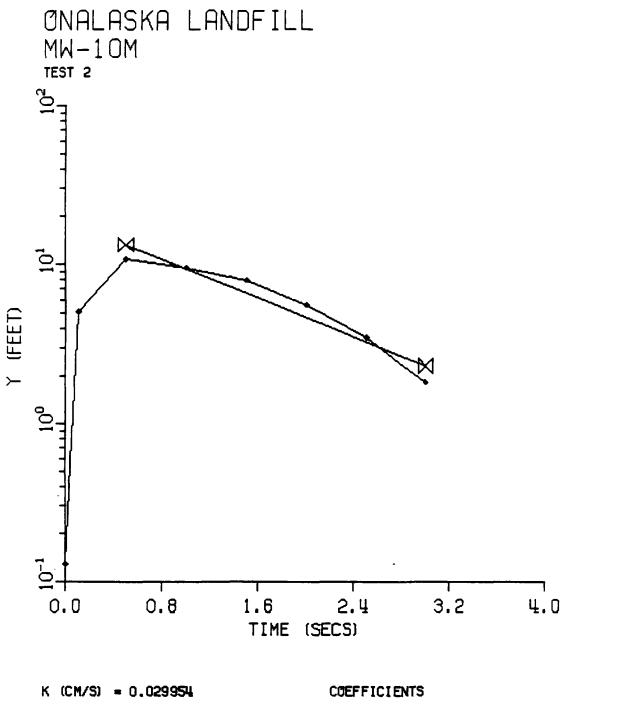
H (FEET) = 67.70


SLOPE = -0.3401

H (FEET) = 62.80

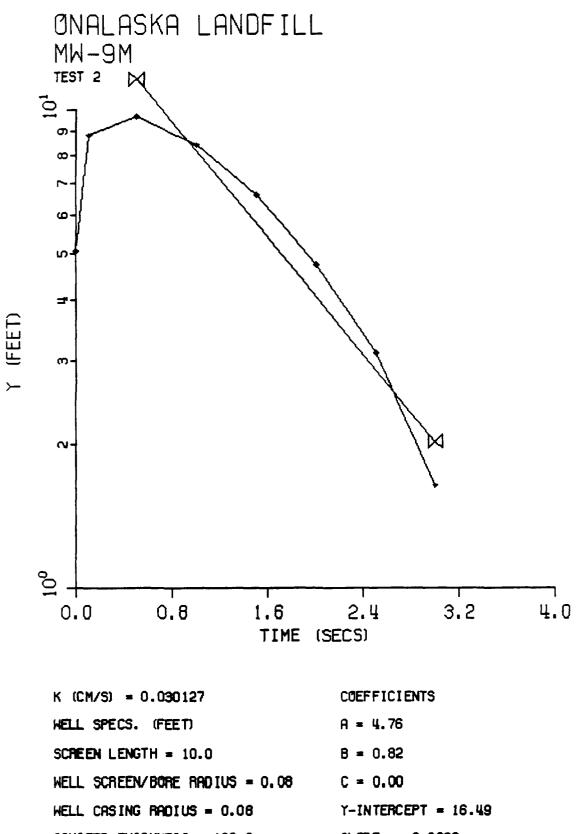
SLOPE = -0.3133

 WELL SPECS. (FEET)
 A = 4.76

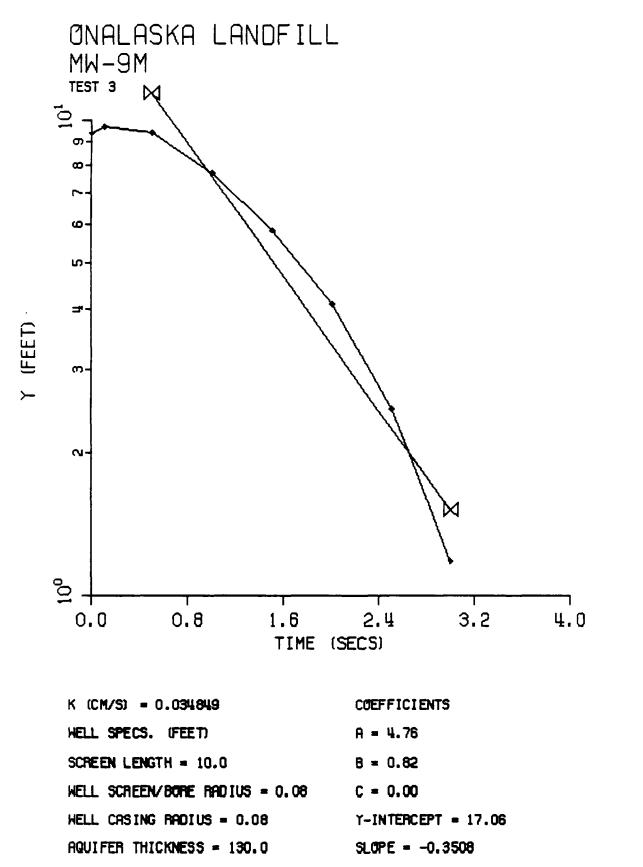

 SCREEN LENGTH = 10.0
 B = 0.82

 WELL SCREEN/BORE RADIUS = 0.08
 C = 0.00

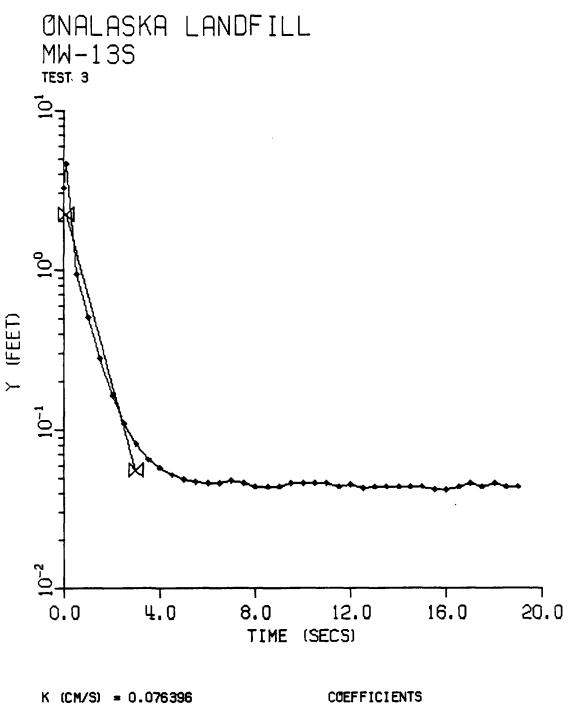
 WELL CASING RADIUS = 0.08
 Y-INTERCEPT = 17.52


 AQUIFER THICKNESS = 130.0
 SLOPE = -0.4040

 H (FEET) = 67.70



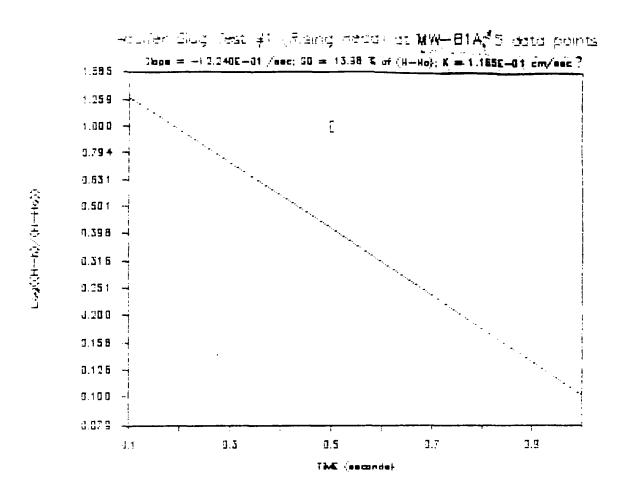
HELL SPECS. (FEET)A = 4.76SCREEN LENGTH = 10.0B = 0.82WELL SCREEN/BORE RADIUS = 0.08C = 0.00WELL CASING RADIUS = 0.08Y-INTERCEPT = 18.69AQUIFER THICKNESS = 130.0SLOPE = -0.3010H (FEET) = 67.70

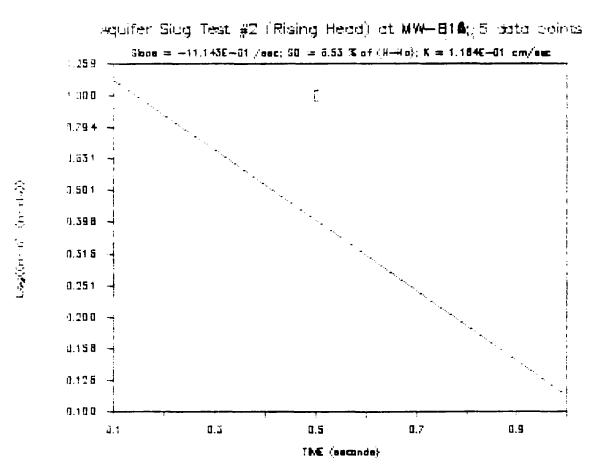

-

AQUIFER THICKNESS = 130.0 SLOPE = -0.3033 H (FEET) = 66.60

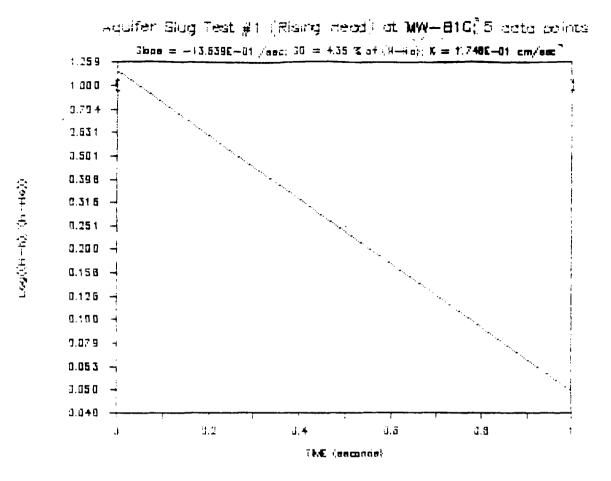
H (FEET) = 66.60

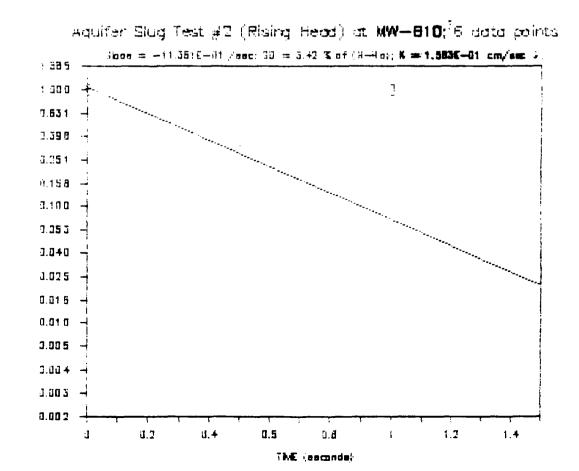
 HELL SPECS. (FEET)
 A = 3.12

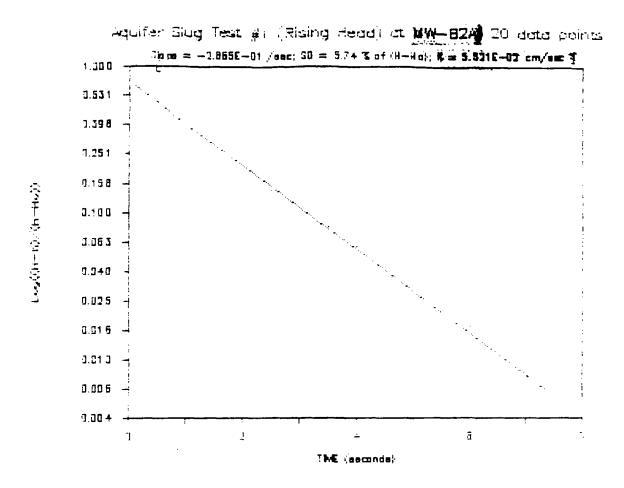

 SCREEN LENGTH = 4.5
 B = 0.52

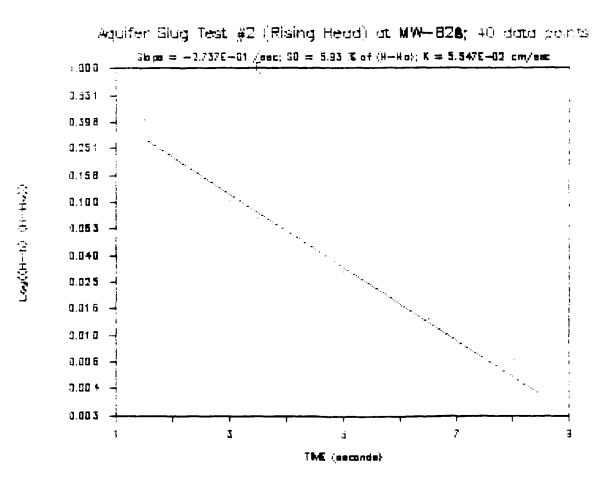

 WELL SCREEN/BORE RADIUS = 0.08
 C = 0.00

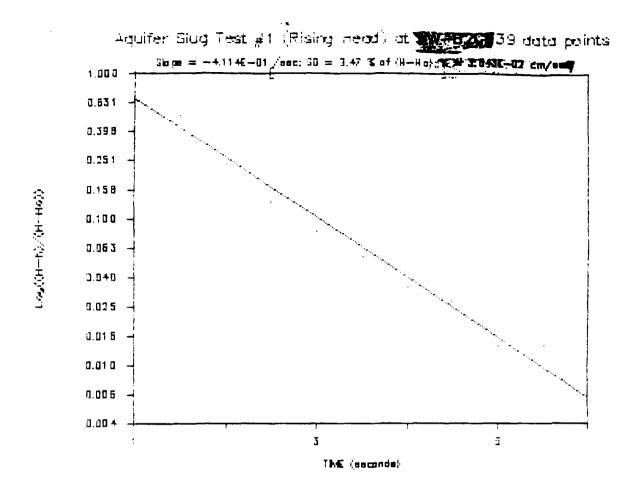
 WELL CRSING RADIUS = 0.08
 Y-INTERCEPT = 2.52

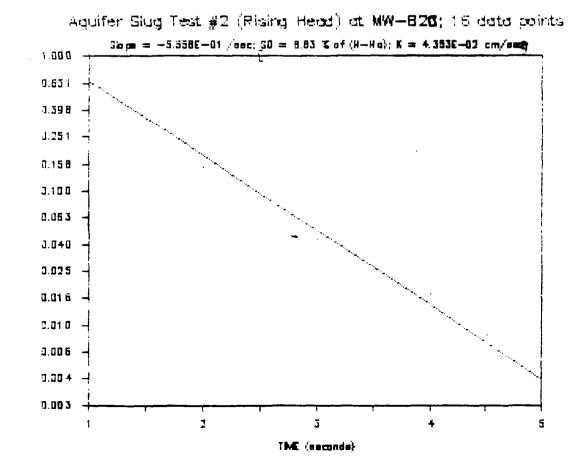

 AQUIFER THICKNESS = 130.0
 SLOPE = -0.5516


 H (FEET) = 4.50

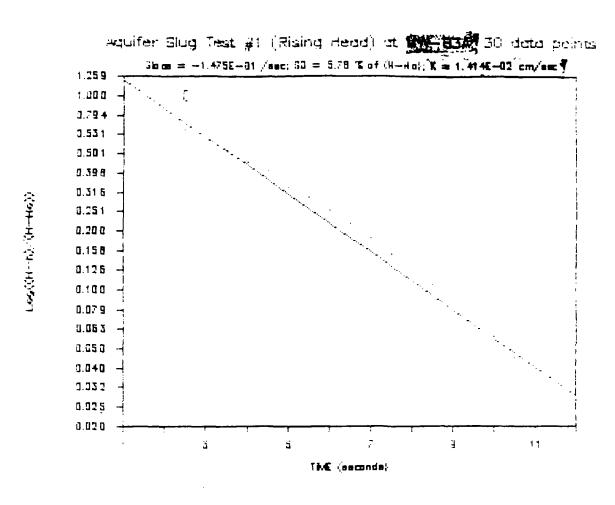


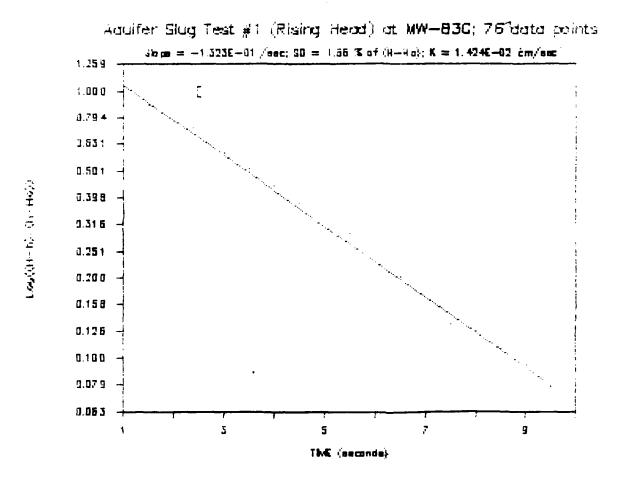

)

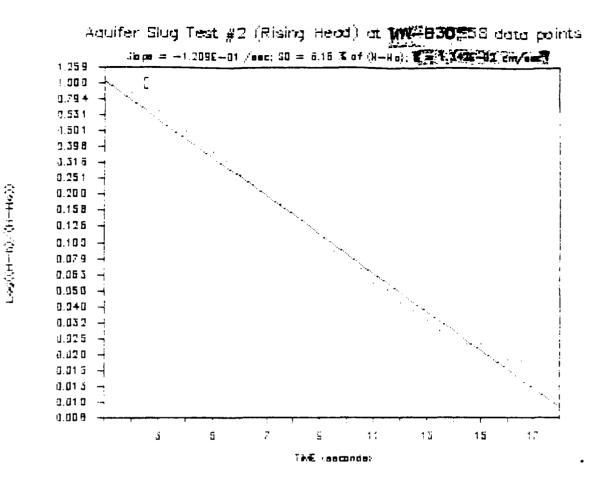


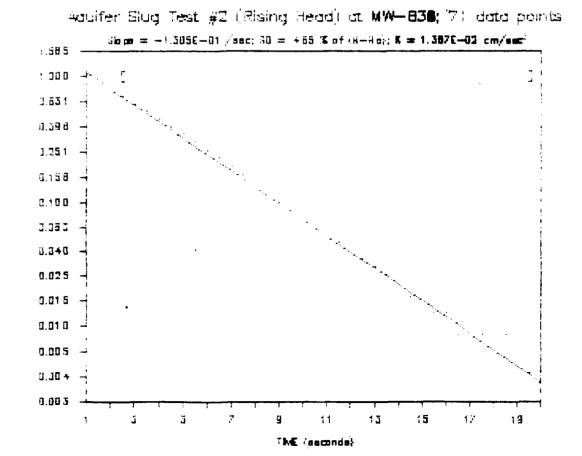


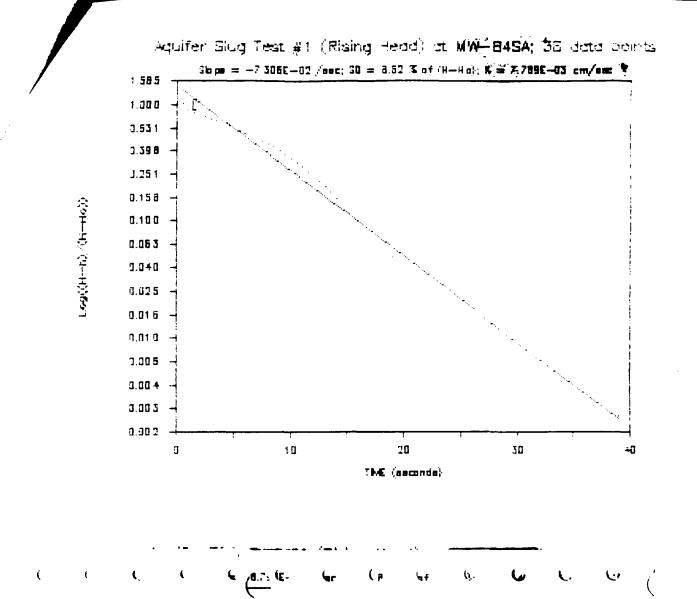
Leg((H-F)/((F-HJ))

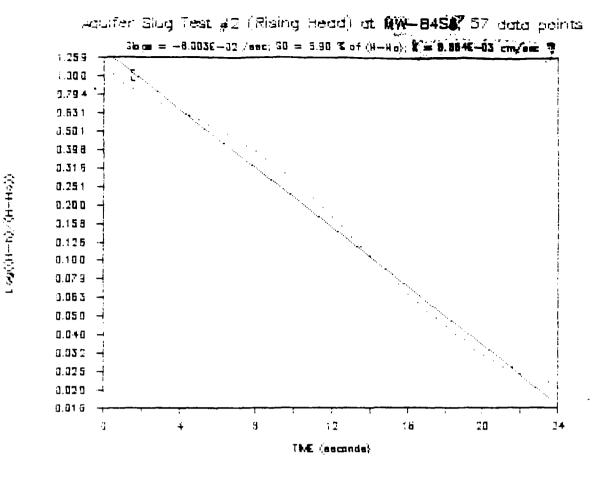


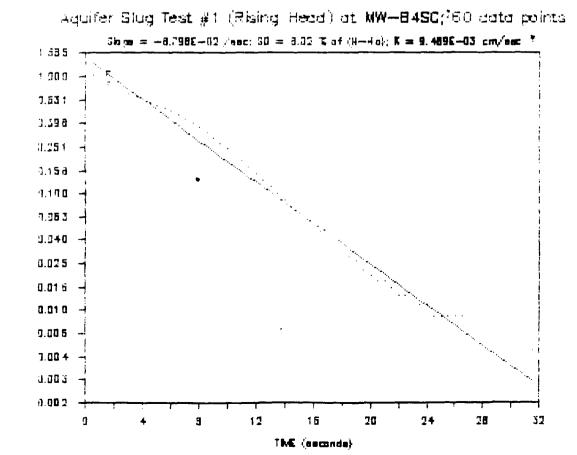


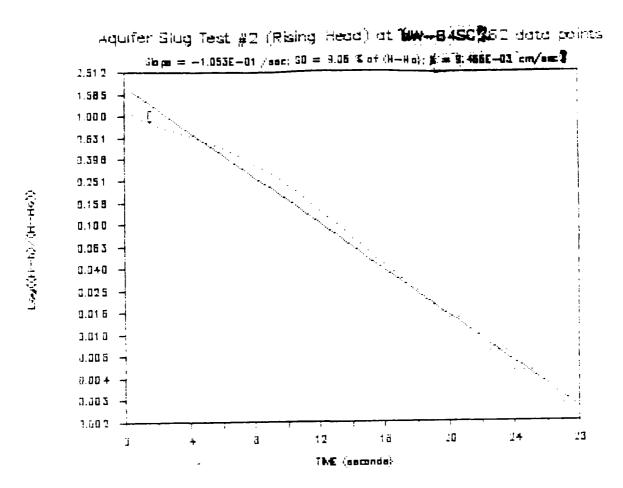


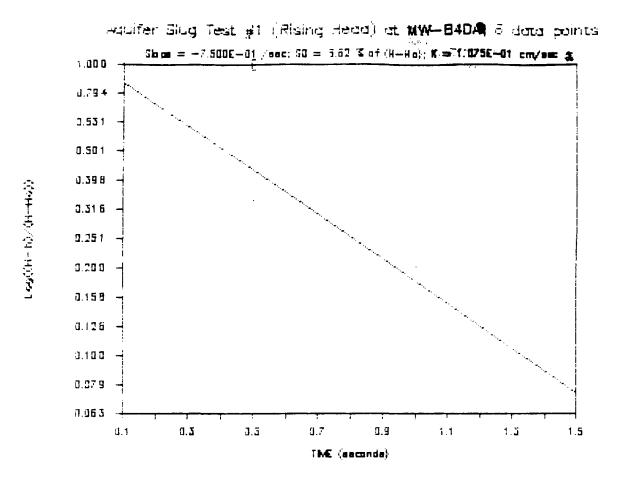


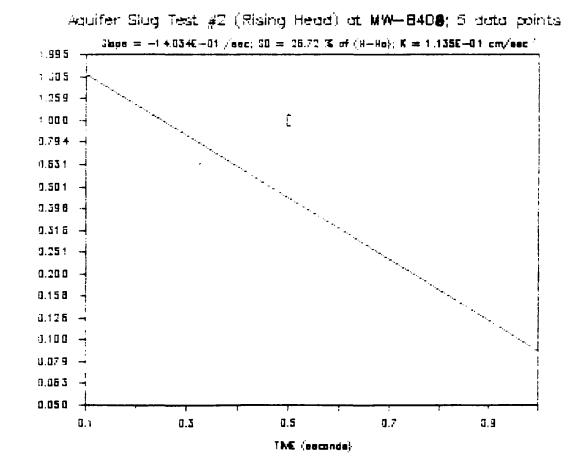


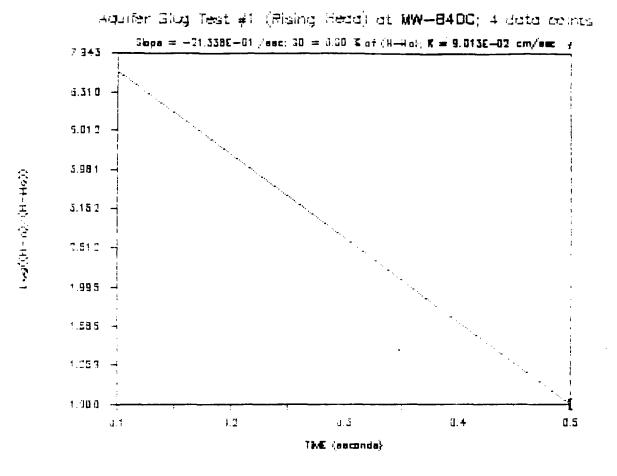


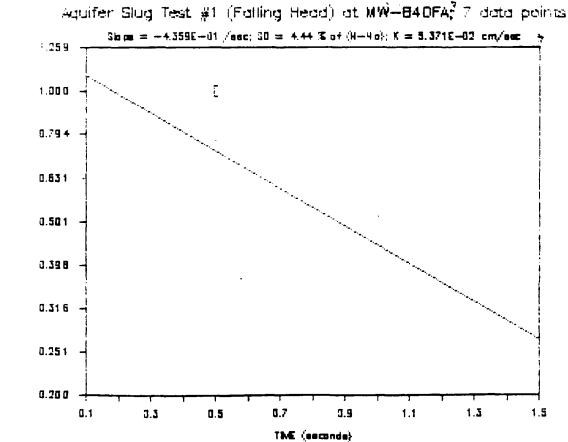

Lலு((h − h) ிர்+ H v[v


١


ł




 $\log((H-n_{12}(0)-Hu))$



Leg((H-t) (h-H2))

((он -н): (н-но))

Appendix E GEOPHYSICAL SURVEYS

-

.

GLT913/035.50-5

Appendix E GEOPHYSICAL SURVEYS

INTRODUCTION

Geophysical surveys were performed at the Onalaska landfill from October 6 to 8, 1988 by Don Johnson and Jewelle Imada of CH2M HILL. The objectives of the investigations were:

- o To determine the location, extent, and magnitude of the main drum disposal area and the location of the buried truck.
- o To map the groundwater conductivity plume extending south of the landfill.
- o To locate the "designated" solvent disposal area.

Magnetometer and electromagnetic conductivity methods were used to meet the objectives. The magnetometer survey included measurement of the earth's total magnetic field and the vertical magnetic gradient. The electromagnetic survey was performed by measuring the ground conductivity with the Geonics EM34 at 10- and 20-meter coil separations.

The magnetometer survey defined several areas of buried metal. The magnetometer interpretations were performed using the total field data. The vertical gradient data were not used because the shallow, scattered metal throughout the landfill caused excessive noise levels. The total field data are not affected as much by the scattered metal.

The electromagnetic survey was unable to detect a conductivity plume on the south side of the landfill or to identify liquid disposal pits. The electromagnetic data have been used to delineate the limit of the landfill and to estimate its thickness.

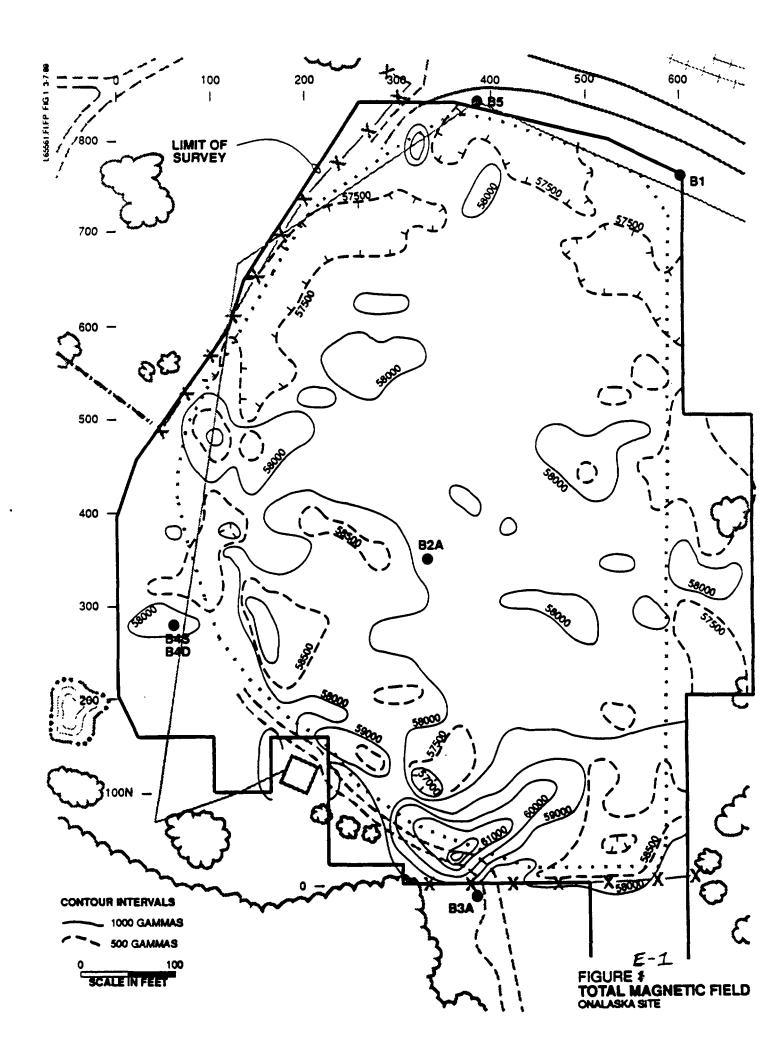
MAGNETOMETER SURVEY

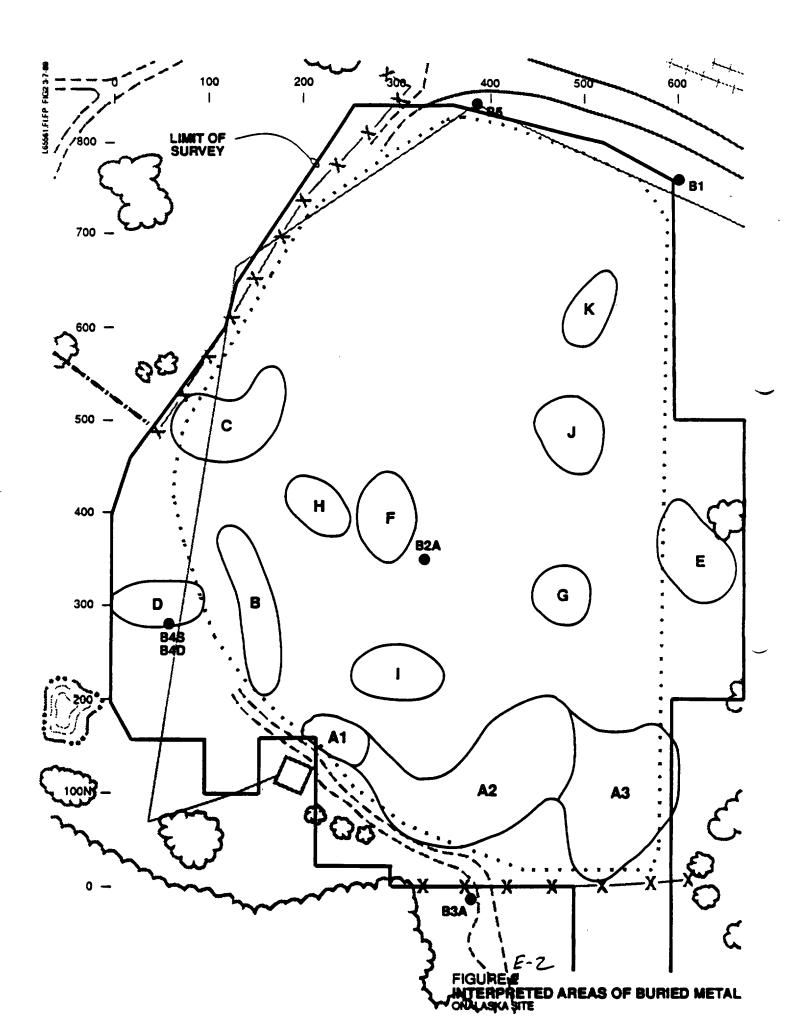
PROCEDURES

Magnetometer readings were made over a 20- by 20-foot grid across the site. The readings were made using an EDA OMNI IV magnetometer that simultaneously measured total field and vertical gradient values. A base station was located off the landfill in an area with no nearby metal, and readings were made there several times a day to determine the amount of diurnal drift in the total field. The amount of drift was small (less than 50 gammas) compared to the observed anomaly sizes (several thousand gammas) and no drift correction was performed. The vertical gradient is not affected by diurnal drift.

Data were contoured with a 500-gamma contour interval (Figure E-1). The source locations for the anomalies were interpreted from profile plots (not included) and are shown on Figure E-2. Data are tabulated in Attachment 1.

RESULTS


The site was operated as a landfill accepting domestic, commercial, and industrial wastes. Accordingly, a considerable amount of metal is scattered throughout the refuse. The scattered metal is the primary source of noise in the magnetometer data. Several areas throughout the landfill exhibit magnetic anomalies with magnitudes much stronger than the noise, and extend across several lines. These anomalies are caused by areas of fill that contain more metal than the remainder of the fill.


The approximate locations of the buried metal causing the most prominent anomalies are shown in Figure E-2. It is not possible using the magnetic data alone to determine whether the buried metal is drums or not. Additional site investigations will be necessary to establish the nature of the source. The areas of buried metal have been listed according to anomaly size (both amplitude and extent). The strongest anomalies have amplitudes on the order of 5,000 gammas. Anomalies less than about 500 gammas could not be used because they could not be distinguished from noise. Areas A, B, and C have the greatest anomalies. The remaining areas have smaller anomalies and represent smaller quantities of metal or less dense concentrations of metal. Since these areas are evident across at least two lines, they are presented here. Anomalies appearing on only one line are note discussed.

Area A

Area A the largest source area identified at the site, covering an area about 400 feet by 100 feet. It is located along the southern perimeter of the landfill. The character of the anomalies change across the area, so for descriptive purposes, Area has been divided into three subareas.

Subarea A1. The anomalies on the western end of Area A (lines 220 to 260, and possibly line 280) constitute Subarea A1. They indicate a narrower source than the remainder of Area A, probably less than 40 feet wide. Because of its dimensions, it has the best chances of being the buried tank truck. The truck, however, could be within Subareas A2 or A3 and not be identifiable.

Subarea A2. Subarea A2 extends from line 280 to line 480 and averages about 100 feet in width. The strongest magnetic anomalies encountered in the survey are included in this zone.

Subarea A3. Subarea A3 extends from line 500 to line 580. It is seen, but weakly, on line 600. The source of these anomalies is about 200 feet wide. The anomalies are about half the amplitudes of the anomalies making up Subarea A2.

Area B

Area B is located along the southwestern edge of the fill. It is about 200 feet long and 40 feet wide, and it is strongest on line 160.

Area C

Area C is located along the western edge of the landfill, but its shape does not conform to the edge of the landfill like Area B does. This source corresponds to an area of "barrels and oil seep" shown on Figure 2-4 of the work plan. A powerline crosses Area C and may be distorting the shape. The powerline does not affect all the anomalies in this area, and cannot be the source.

Area D

The source of this anomaly is probably well nest B4.

Area E

Area E extends east of what appears to be the east edge of the landfill. Minor amounts of domestic trash and rusted drums were observed in the vicinity.

Area F

A small trench identified in the July 10, 1973, aerial photo is located within Area F.

Areas G-K

Areas G through K are within the landfill. They have no distinguishing features, are small in amplitude, and are limited in extent relative to areas A through C.

ELECTROMAGNETIC SURVEY

PROCEDURES

Ground conductivity measurements were made using the Geonics EM34. Readings were made on a 40- by 40-foot grid across the site. An additional east-west line was run south of the landfill to determine if a plume could be detected. Measurements were made with the system operated in the horizontal dipole position and at both 10- and 20-meter separations between receiver and transmitter coils. Data are tabulated in Attachment 2.

Landfill thickness was estimated by comparing measured 10-meter and 20-meter electromagnetic conductivities against a set of interpretation curves (Figure E-3). The curves indicate the theoretical instrument responses over a two-layer earth. The upper layer thickness and conductivity are variable. The bottom layer is infinitely thick and at a constant conductivity of 5 mmhos/meter. The curves were generated using a program supplied by Geonics for use with its instruments.

The edge of the landfill is identified in the data where the conductivity is greater than the average background (about 5 mmhos/m). Exceptions to this are in the vicinity of the powerline which crosses the site. The edge of the landfill can also be defined by comparing the 10-meter data with the 20-meter data. The values are the same off the landfill where the ground conductivity does not change with depth. On the landfill, the fill material is more conductive than the native material beneath and the 10- and 20-meter data differ since they are seeing to different depths.

RESULTS

The 10-meter conductivity data are presented in Figure E-4. No conductivity plume was detected south of the landfill. The data collected along grid line 80 south indicates an increase in conductivity from background (about 5 mmhos/m) to 9 mmho/m. The highest conductivity along this line occurs at the powerline and the conductivity changes may be related to this feature. The 20-meter data reflect the average ground conductivity to about twice the depth as the 10-meter data. The 10-meter and 20-meter data differed by very little, indicating the instrument was seeing no differences in conductivity with depth and therefore no groundwater conductivity plume.

No features that are recognizable as liquid waste disposal areas are evident in the data. Four areas shown in Figure E-4 where localized conductivity anomalies correspond with magnetic anomalies. There is apparently sufficient metal in these locations to cause both conductivity and magnetic anomalies.

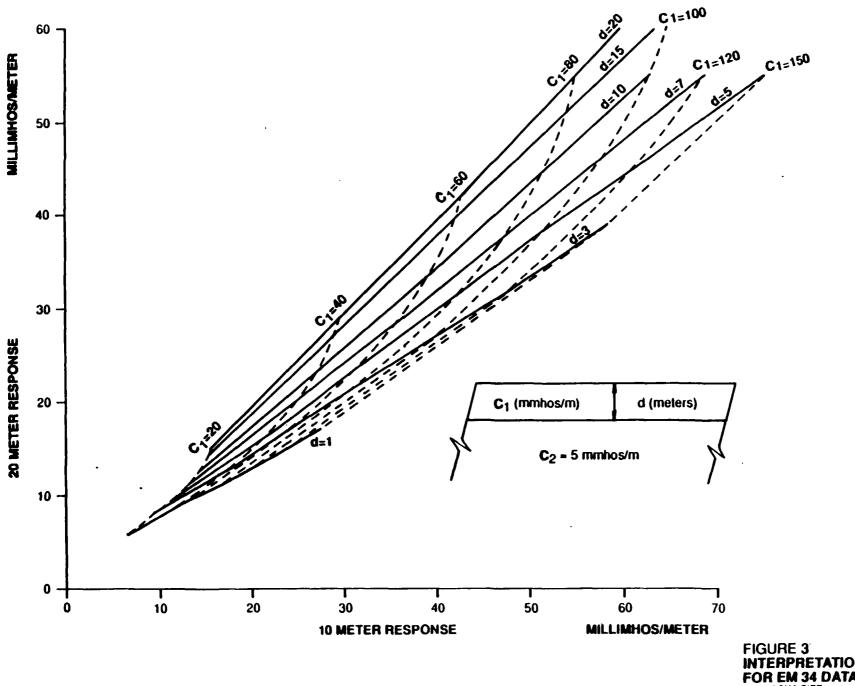
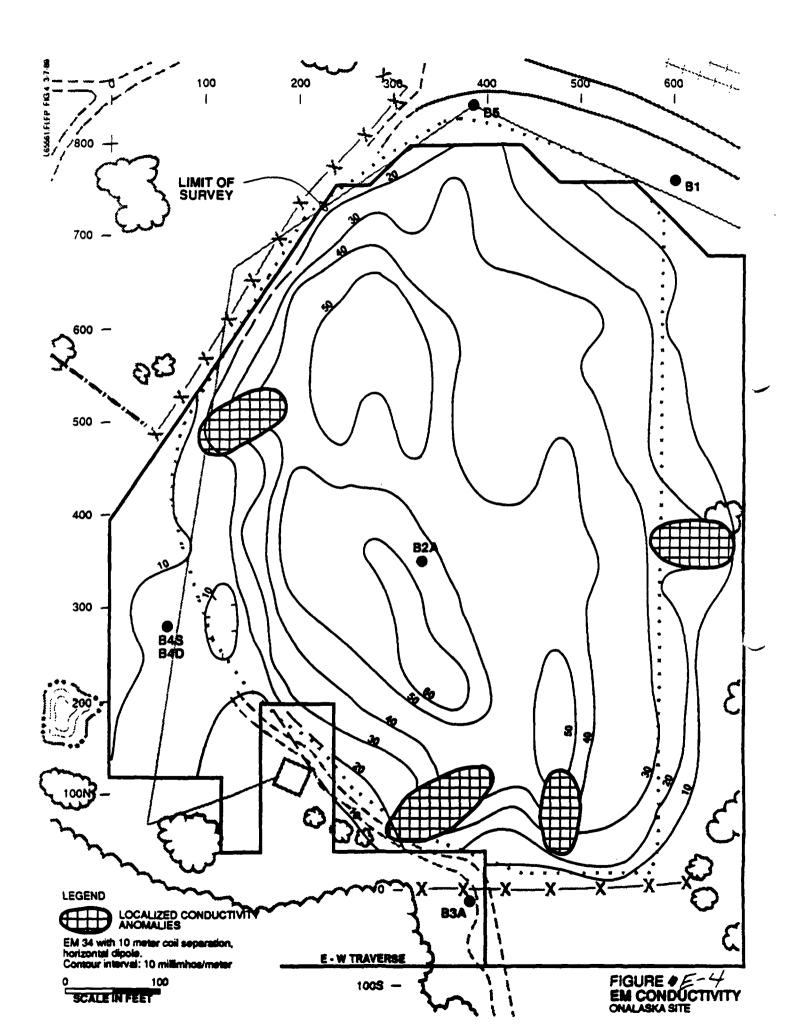
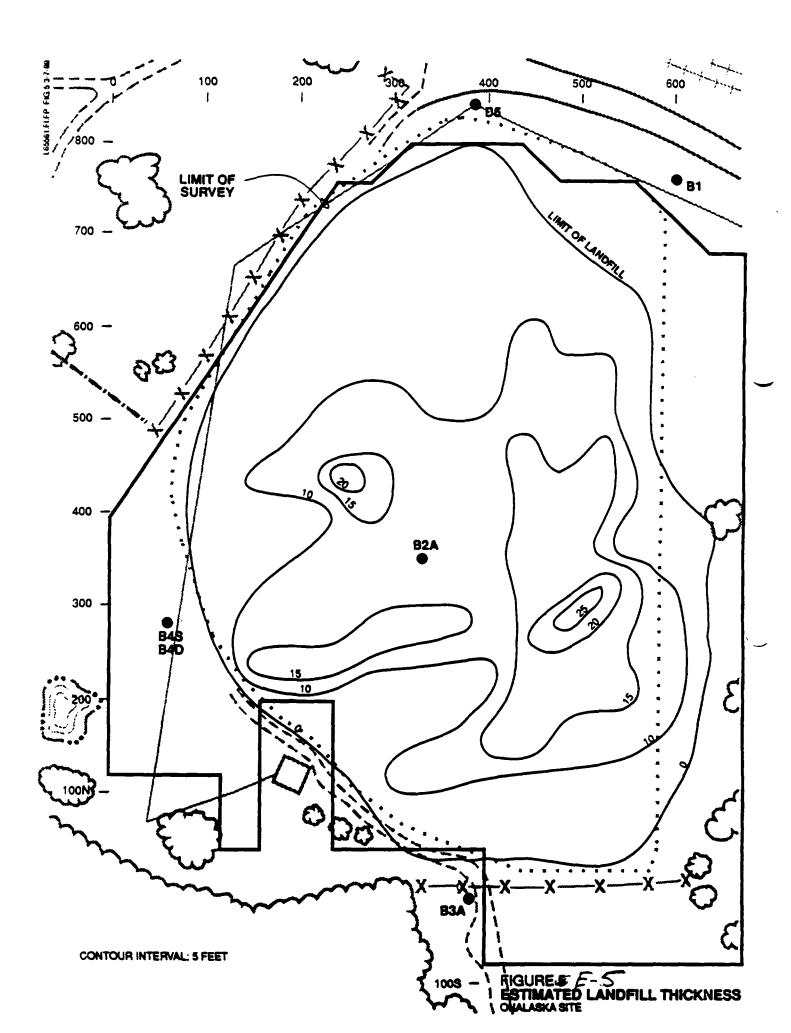



FIGURE 3 INTERPRETATION CURVES FOR EM 34 DATA ONALASKA SITE


Two lie within magnetic area A2; the others correspond to magnetic areas C and E.

The limit of the landfill and the estimated depths determined from the graph in Figure E-3 are shown in Figure E-5.

GLT913/025.50

-_--

_)

Attachment 1 MAGNETOMETER DATA

.

GLT913/039.50-1

DHAFABKA -	MACHETTE	BURNER REPLACE GLORESSOLFILLER
	PERGINE	S IN TAMMES

.

. ____

河田 4													
950 ×													
360 N													
940 N	57742	57715	57768	57746	57626	576 85							
328 N	57598	57694	57692	57504	57524	57395	57238	57151		57417			
900 N	E7531	57504	57538	53913	57411	57231	57 588	57495	57242	57300	57374	57460	57525
780 M	57524	57564	57773	59743	57249	57340	57676	57722	57380	57 352	57381	57473	57520
758 M	57 95 1	57864	57580	57603	57562	57643	57772	58174	57428	57460	57355	57108	57469
710 H	57576	57616	57381	57668	57915	57982	58931	58060	57686	57561	57429	57399	57548
720 N	57130	57313	57148	57259	57394	57619	58076	57913	57803	57546	57528	57567	57474
-00 ¥	57401	57265	57370	57553	57495	57873	57369	57687	57588	57456	57579	57531	57571
530 N	57375	57147	57189	57564	57518	57572	57602	57733	57749	\$7576	57669	57595	57383
660 M	50755	57591	57632	57494	57672	57727	57694	57759	57853	57635	57541	57385	57258
640 N	57 3 92	57351	57882	57661	57751	57890	57930	57719	57900	57841	57594	57531	57246
620 N	58112	58165	58015	57864	57736	57544	57625	57609	57825	57947	57918	57823	57650
500 N	57792	57754	57967	57806	57921	57722	57607	57609	\$7509	57545	57796	57799	58004
580 N	58371	57971	581 49	57829	57938	57927	57922	57867	57532	57300	57543	57857	57794
560 N	3459	53344	58184	58008	57956	57394	57719	57658	57658	57252	57 594	57917	57876
540 N	58210	53013	57762	57756	57388	57913	\$7775	57547	57725	57656	57594	57657	57640
520 8	53027	57945	57905	57913	57744	57935	57936	57683	57672	57352	57683	57589	57542
520 N	57937	57954	57300	57727	57500	57797	57927	57868	57735	57826	57301	57659	57576
480 N	57836	57599	57585	57549	57374	57756	577 45	57731	57650	57753	58212	58126	57903
750 N	57434	37516	57583	57660	57558	57570	57654	57668	57681	57732	58111	58256	58153
140 N	58037	57573	57468	57434	57523	57683	57599	57533	57782	57624	57873	58138	57961
420 N	57937	57615	57519	57364	57611	58009	57844	57546	57724	576 95	57753	57382	58031
120 N	53043	57180	576 66	57311	57622	57336	53010	57903	57707	576 +0	57 859	57856	576 58
380 N	58325	58271	58074	576 29	57507	57584	5761S	57 802	58112	57982	57816	5766 3	57547
360 M	58516	58705	58 383	577 58	57561	57472	57703	57891	57734	57927	57801	57599	57557
340 N	58518 582 92	58589	58 306	578 57	57 485	57555	575 96	577 30	57818	57762	576 39	57477	57536
	58252	58202	50300 58310	58162	57902	57672	57 545	57810	57847	57954	57 939	57 35 7	57783
320 N 300 M	58261	502.02 501.39	58203	58169	57901	57711	57733	57809	58046	58215	58060	58146	57966
300 N 260 N	58218 -	57954	57920	57 987	57929	57935	57767	57671	57 867	57 995	57 988	58247	58187
									57936				
260 N	58129	57993 CR240	57728	577 99	57 951	57989	576 99	57624		57 858	57735	57938	58064
240 N	58678	58218	58121	57846	57597	57628	57 490	57616	57493	57621	57581	57776	57765
229 N	58178	58462	5 8382	58251	57 944	57633	57462	57294	575 98	57442	57290	57618	57661
200 N	58 381	58718	58887	58678	58441	57653	57697	57710	57643	57590	57525	57399	57504
190 N	58 489	58306	58289	58382	58310	57869	57735	57969	578 79	57867	57863	57769	57441
150 N	58127	580 19	58122	57718	57634	57272	57676	57710	58028	579 81	58172	57980	57556
140 N	53588	591 40	58118	577 46	57917	57447	57366	57838	53159	58434	58287	58089	58289
120 N	58359	57559	58679	56306	57019	\$7003	57810	58299	58941	591 99	59136	59732	58968
100 N	57427	58959	58997	56271	56442	57185	58707	58667	59359	60070	60174	59822	58883
80 N	57384	58 949	60208	59441	58426	59530	5 9932	5 7351	60015	5 0365	5 9167	590 49	58777
50 N	57417	\$7923	603 48	61783	61 159	60539	60 304	51 585	61338	59372	58554	58811	58950
40 H	57314	57707	59313	60066	61041	61 758	62645	60479	59628	S8475	58722	58899	58882
20 N	57319	575 19	581 33	59767	6 0478	63 483	5 95 76	57386	58022	57 898	58 068	58195	58896
0				57976	58764	59319	59 055	57 852	57756	58214	58729	58529	59478
20 S													57588

050 190 300 300 340 360 790 400 470 440 460 460 500 500

.

1946<u>458</u>4 -- 49 13145 77853 -R

(HALANXA -- MA -(1941-11112) - R

	152	230	503	329	34Q	760	550	+00	120	ະນຸງ	49	:50	130
40 2 50 3 30 3													57673 57699 57712 57723

.

tolaf stero is Taafoord -- 48

	520	2±ŋ	560	789	600
702 N					
380 4					
300 M					
310 M					
329 N					
800 N	57028				
190 N	57622	37656	57730	-	
750 N	57530 57 530	57655	57679	57663	57724
710 4	57570	57554	57659	57531	57666
720 N	57544	57583	57633	57635	57602
700 N 380 N	<u>57499</u> 57309	57502 57391	57575 57 138	97574 97559	57624 57 546
câu n câu N	57157	57209	57385	57513	57485
Still M	57193	57447	57454	07465	57377
520 M	57626	57505	57645	57489	57366
500 1	57978	57750	57780	57435	57214
580 4	57927	57778	57838	57721	57313
560 N	57797	57963	58146	17925	57496
540 N	\$7633	57378	58142	56087	57580
520 N	57463	57494	57782	57901	57416
590 N	57708	57876	57968	57797	57359
*80 N	58060	58299	53078	57790	57423
450 H	58070	57889	57777	57601	57 306
140 N	58010	17825	5747 1	57302	S71 47
429 M	58011	57897	S76 5 2	57368	57090
408 N	57878	57825	57764	57 338	57610
380 N	57609	57552	57723	57 589	57 949
360 H	57739	57766	57770	57 597	52097
340 N	58171	58120	57969	57739	58241
320 N	57893	57939	57822	57510	58145
300 N	577 25	57943	58075	57755	57330
230 H	57649 .	57518	58060	58005	57442
260 N	57877	57898	57738	57706	57372
240 N	57928	57797	57647	57714	57639
220 N 290 N	57810 57734	57773 57 866	57965 57930	58129 57999	57910 57713
188 M	57389	57 587	57710	57923	57794
150 N	57382	57715	57743	58019	58006
140 M	58144	58031	58024	50115	58046
120 N	58651	58249	53563	58521	58064
100 1	58892	58272	58529	58744	58432
30 N	58443	58342	58219	58567	58572
60 N	58892	58652	58660	58664	58385
40 N	58474	58489	58530	58238	57896
20 N	58687	58996	58821	57906	57647
0	5 %95	53422	58821	57834	58311
20 5	57568	57 591	57633	57631	57635

.

1990-1999 --- **19** 1079-10512 (8

	520	ç រ ភ្ញ	168	130	000
K 3	57675	57671	57633	57675	37572
÷0 3	57693	57691	37538	57697	57687
20 B	57701	57697	57734	57698	57797
. 50 . J	57712	17791	57702	57706	57792

•

Attachment 2 ELECTROMAGNETIC CONDUCTIVITY DATA

GLT913/039.50-2

WALASKA LANDFILL

-) METER COIL SEPERATION -- HORICONTAL SIPOLES Feadures in HMMOS/meter

.

	10	- 30	-+0	ç	:]	90	120	16 0	200	240	130	528	350	•!!0	14 <u>0</u>	430	520	550	100	34D	590	-13
330 N									•••	•••		11		<u>]</u> 4	.0						•••	
760 N				•••			•••			·ŋ	ig.	24	32	23	:5	••	3	3				
713 N		•••							5	21	33	29	1]	16	10	• 7	12	10	3			
730 H								•	15	35	42	31	35	23	36	24	15	- 6	9	4	?	
5 ⁴ ũ N						•••		•]	11	44	54	42	35	74	<u>32</u>	30	24	23	11	4	4	
560 N								3	16	57	56	Sł	1 1	33	30	33	35	35	3	5	ł	
560 H		•••					; è	50	48	56	52	50	14	32	30	31	27	27	:2	5	4	
510 M	• • •		•			3	25	ŧZ	48	52	:9	- 4	¥I]	39	54	30	31	25	:3	7	Ş	-+-
4E) M						11	24	34	÷Ş	51	15	51	42	35	31	1 2	33	29	11	3	5	
÷49_∦	• • •				7	11	11	12	51	15	ià	50	44	- 15	:5	1]	34	25	12	11	7	•••
+90 N				7	7	;)	14	33	57	29	5	50	ŧo	42	1 5	45	36	33	22	14	}	••-
350 M				5	3	j	15	35	59	57	52	56	45	41	5 1	44	41	-18	21	24	-	
520 N		•••		b	12	13	3	- 1	58	51	53	62	52	42	55	49	36	38	18	÷,	ś	
230 4				7	11	13	j	29	1 6	50	51	61	56	1 2	14	16	39	34	25	3	ç	
240 N				8	10	11	11	:9	37	43	51	61	54	19	45	52	4 ()	34	24	5	\$	
200 N		•••		3	12	11	11	7	30	36	42	1 9	67	52	11	52	39	35	23	5	4	
50 N				10	14	12	ġ	ą		25	31	1 0	45	45	42	50	40	57	27	5	4	
(20 M					23	12	7	3		13	24	2?	44	-6	¥5	51	37	40	24	4	3	
30 H		•••		•••			1]	3		3	: 5	34	28	32	<u>]</u> 9	15	32	30	11	4	4	3
40) 4							13	3		3	3	19	26	3	13	20	1	23	4	4	3	
]								3						4	1	-2		2	1	2	3	3
:0 j			•••					••••	•						2	ł	4	5	5	3	3	
50 S	3	3	3	3	,	3	3	8	7	5	5	5	5	5	4	3	4	4	4	3	3	3
120 S				•••							• •••	•••			3	3	4	+	÷	3	3	
:60 5														•••	3	3	4		1	3	3	3
200 S		•••			•••			•••	~			•			1	3	1	4	4	3	3	
240 3									•••						4	4	4	5	4	3	3	3

CHALASKA LANDFILL

.

10 METER COIL SEPERATION -- HORECONTAL DIPOLES Pesdings in mithOsymeter?

	-11	30	- +0	j	19	25	10	160	190	[19	229	123	35)	:56	:43	:30	323	Saû	-30	64Q	-30	200
309 M		•••						•		•••			••						••••			
750 N	• • •								•••	10	12	.1	· 9	16	:2	3	ŝ			•••		
112.9							•			12	32	:7	25	зş	17	11	ŋ٢	3	13			
530 N				•••	• • •	•			13	22	29	13	25	17	13	15	13	11	12			
540 N								•	.33	25	35	35	20	• ?	20	18	;7	14	12		5	
100 H			· • •	•••				12	24	38	40	30	26	22	21	19	19	15	10	5	4	
550 M				•			32	23	29	36	33	35	27	22	22	29	22	16	?	5	5	
520 N					•••		32	26	30	39	35	54	28	23	23	22	24	17	10	5	5	
480 M			•••		•••	7	23	23	32	36	33	35	19	25	21	27	25	16	17	?	5	
446 H					21	:5	?י	22	35	37	37	36	13	25	19	32	26	19	14	10	6	•••
1,0 +		•••		••••	?	27	13	22	34	36	41	34	31	29	34	32	28	21	13	11	5	
160 N		•		5	19	13	١ð	25	÷0	\$ []	+2	33	33	3	13	32	29	24	11	13	5	
E23 M			•-•	5	12	Ð	ò	21	33	35	39	44	36	30	59	35	30	28	13	10	7	
099 M	•••			5	12	.9	3	21	32	53	38	16	÷?	28	31	39	23	25	;7	3	5	
, 1 0 N		•		7	13	26	:1	:5	29	32	35	\$ 3	1 3	23	34	37	31	24	18	6	5	
0 20 N		•••		9	16	:9	'3	13	20		25	41	36	53	32	38	30	25	17	5	4	
Su N		••••		}	19	16	1Ŋ	3		13	25	25	32	36	5 1	36	26	25	17	4	ŧ	
10 M	•••			ą	10	13	3	2		11	13	25	32	3	21	34	24	23	13	Ş	4	
30 M				••••			7	5		11	9	16	22	13	15	29	17	16	11	. 4	4	
49 N						•	•	3		11	6	16	29	11	!1	16	15	10	-1	4	3	
G	•••	•••			***		•	13		•••		•••		5		•••		5	2	4	3	
利号		••••									••••											
30 3	-	3	3	3	ģ	,	9	9	8	5	6	5	ĥ	5	5	5	4	4	4	3	3	3
110 S								•••		• • •		•••		•••								
50 3			•••				•••			•••					5	4	ŧ		f	3	3	3
29 0 S				•••				•••			•••		•••								••••	
248 S				••••				•••		•••					5	ł	4	3	3	3	3	3

 \sim

Appendix F SHALLOW GROUNDWATER SAMPLING

GLT913/035.50-6

.

Appendix F SHALLOW GROUNDWATER SAMPLING

INTRODUCTION

The shallow groundwater sampling investigation consisted of sampling groundwater through a narrow probe and analyzing the samples in the onsite close support laboratory. The analysis and results are discussed in Appendix G. This investigation was substituted for the soil gas survey of Subtask FT, Solvent Disposal Area Investigation, when evaluation of the initial soil gas results indicated a high degree of variability in analytical results. Also soil moisture, which reduces soil gas VOC concentrations, was high as a result of the spring thaw.

The objectives of the shallow groundwater sampling investigation were:

- o To locate the major disposal area for solvent waste within the landfill
- o To determine the extent of the floating naphtha downgradient of the landfill
- o To provide additional groundwater analytical data to aid in selecting locations for monitoring wells

The third objective was not originally an objective of the soil gas survey, but was added during the field investigation to reduce drilling costs and potentially avoid the need for an additional phase of monitoring well installations.

Sampling was conducted in two episodes, from March 19 to 21 and from March 28 to 30, 1989. The sample team leader on all days of sampling was Phil Smith. Additional samplers were:

- o Jeff LaMont on March 19 to 21, 28, and 30
- o Dan Plomb on March 28 and 29
- o Kevin Olson on March 29

FIELD PROCEDURES

Sampling was accomplished by driving a 0.625-inch O.D. stainless steel probe to about 2 feet below the water table and withdrawing a 40-ml sample with a peristaltic pump. The probe consisted of a 10-inch slotted intake tip and 2.5-foot sections of stainless steel.

A slide hammer was used to drive and remove the probe. Once the probe was at the desired depth, a 2-foot length of silicon tubing was attached to a nipple at the end of the probe. At least three probe volumes were withdrawn with the peristaltic pump prior to filling three 40-ml VOA vials. One of the vials was filled halfway for subsequent headspace analysis. The other two were filled and capped with no air bubbles. The vials were marked with the sample location and stored in a cooler. Several times per day samples were delivered to the close support laboratory for analysis of toluene, xylene, TCE, PCE, and 1,1,1-TCA.

A headspace analysis was performed in the field to provide information for sample dilution and to aid in the selection of the subsequent probe sampling locations. A half-filled VOA vial was heated for 5 minutes on the auto heater outlet. The vial lid was opened slightly to allow insertion of an HNu probe to measure organic vapors.

Field blanks were collected by drawing distilled water through the probe tip and 5 feet of pipe with the peristaltic pump. Field duplicates were taken by filling six VOA vials instead of three.

Decontamination of the probe and silicone tubing was performed at each sample location. The probe tip and each 2.5-foot section were removed and decontaminated individually. The sections were scrubbed in a solution of water and trisodium triphosplate and rinsed in distilled water; a 10 percent solution of methanol and distilled water; and again in distilled water. Silicon tubing was decontaminated by drawing at least three tubing volumes through the tubing.

RESULTS

Shallow groundwater sampling locations were selected based on HNu headspace results and laboratory testing results. Table F-1 presents the probe sampling locations, HNu headspace results, and observations during sampling.

GLT913/074.50

		Depth of			HNu	
Sample	Grið	Proble			Headspace	
Number	<u>Coordinates</u>	Tip	Date	Time	(ppm)	Observations
PB-01	160E 160N	13' 6"	3/19/89	1050	500	
PB-02	80E 90N	5'	3/19/89	1137	400	Sheen on water sample
PB-03	20W 80N	4' 3"	3/19/89	1145	50	
PB-04	80E 30N	4' 3"	3/19/89	1330	5	
PB-05	160E 30N	5' 4"	3/19/89	1340	500	Slight sheen on water sample
PB-06	Probe blank		3/19/89	1409	7	HNu reading may be due to moisture evaporation from probe
PB07	Bottle blank		3/19/89	1420	0.5	
PB-08	40W 30N	5' 10"	3/19/89	1437	55	
PB-09	80N 90N	3' 4"	3/19/89	1504	1.5	Light milky brown color
PB-10	160E 80S	4' 10 ^H	3/19/89	1534	170	Slight yellow-green color; slight foaming when shaken
PB-11	240E 70S	15" 10"	3/19/89	1605	200	Slight yellow-green color; slight foaming when shaken
PB-12	320E 80S	17' 0"	3/20/89	804	18	
PB-1 3	372E 40S	19' 6"	3/20/89	845	125	Slightly cloudy; naphtha smell during purging
PB-14	400E 160S	16' 6"	3/20/89	918	35	Yellow-green color
PB-15	570E 70S	21' 6"	3/20/89	1022	140	Slightly cloudy; foaming
PB-1 6	680E 80S	21' 0"	3/20/89	1115	1.5	
PB-1 7	600E 160S	18' 6"	3/20/89	1150	1.5	
PB-18	480E 160S	21' 0"	3/20/89	1337	260	Yellow-green color; slightly cloudy
PB- 19	0E 200N	3' 4"	3/20/89	1404	480	Yellow-green color; slightly cloudy
PB-20	40W 330N	12'6"	3/20/89	1430	60	Yellow-green color; slightly cloudy
PB-21	10E 430N	15° 6"	3/20/89	1505	260	Yellow-green color; slightly cloudy
PB-22	70E 540N	21° 0"	3/20/89	1608	6	
PB-2 3	150W 410N	14' 4"	3/20/89	1700	3	
PB-24	680E 430N	81 4 8	3/21/89	841	1	
PB-25	680E 280N	8' 0 "	3/21/89	921	1	
PB-26	655E 160N	15' 10"	3/21/89	1000	5	
PB-27	Probe blank		3/21/89	1025	1.5	
PB-28						
PB-29						

Table F-1 SHALLOW GROUNDWATER SAMPLING RESULTS

Table F-1 (Continued)

		Depth of			HNu	
Sample	Griđ	Proble			Headspace	
Number	<u>Coordinates</u>	Tip	Date	<u>Time</u>	(ppm)	Observations
PB-3 0	110E 440N	19' 0"	3/29/89	1012	400	Slight foaming
PB-31	180E 450N	21° 0"	3/29/89	1353	60	Slight foaming
PB-32	120E 530N	20° 0"	3/29/89	1435	90	
PB-33	200E 350N	21*	3/29/89			No sample obtained
PB-34	120E 350N	14º 0º	3/30/89	1107	450	
PB-35	190E 160N	13' 0"	3/30/89	1205	420	Slight foaming
PB-36	300W 400N	8'0"	3/30/89	1423	9	·
PB-37	290W 490N	4" O"	3/30/89	1450	6	
PB-38	340N 310N	5° 0"	3/30/89	1700	4	
PB-39	210W 420N	10' 4"	3/30/89	1508	3	
PB-40	210W 420N	10' 4"	3/30/89	1508	3	Field duplicate of PB-39
PB-41	210H 340N	8° 0"	3/30/89	1530	3	
PB-42	Probe blank		3/30/89	1543	0	
PB-43	300W 200N	51 6 ^W	3/30/89	1637	2	
PB-44	200W BON	8" 0"	3/30/89	1612	4	

1

(

.

GLT866/46

Appendix G CLOSE SUPPORT LABORATORY ANALYSIS

GLT913/035.50-7

Appendix G CLOSE SUPPORT LABORATORY ANALYSIS

INTRODUCTION

From March 21, 1989 to April 30, 1989, a CH2M HILL Close Support Laboratory (CSL) was deployed at the Onalaska Municipal Landfill ARCS V site in Onalaska, Wisconsin. The CSL, equipped with a Hewlett-Packard 5890A gas chromatograph in conjunction with both a flame ionization detector and electron capture detectors, was used to analyze soil and water samples for the following target compounds, which were selected based on available historical data from previous investigations at the site:

Compound	Abbreviation
1,1,1-Trichloroethane	1,1,1 -TCA
Trichloroethene	TCE
Perchloroethylene	PCE
Toluene	TOL
Xylenes	XYL

The purpose of the CSL was to provide an onsite Level II sample screening analysis with quick turnaround, and thereby allow for informed and timely field decisions on where to place monitoring wells and what samples to submit to the CLP. This technical memorandum addresses both the usability of the resultant CSL data and compliance with the project data quality objectives.

Before using the CSL analytical data, the user must be familiar with the general workings of gas chromatography (GC) methods, the QA/QC protocol incorporated in the named methods, the major influences on the GC system, and the onsite CSL operations. This memorandum provides the reader with a general understanding of gas chromatography and how GC was integrated into the Onalaska project as part of the CSL. In addition, this memorandum will address the quality control/quality assurance measures needed to assess data quality and describe how these measures were incorporated into the CSL. Finally, the memorandum focuses on the actual CSL data and discusses its usability.

ANALYTICAL APPROACH

The basic components of a laboratory gas chromatograph include the oven, column, integrator, and carrier gas. The standard GC analytical method is described below.

Prior to GC analysis, soil samples are extracted with a suitable solvent. The solvent allows for mass transfer of organics from the sample into the solvent. Once the sample has been extracted with solvent (done by physically agitating the solvent/sample mixture), the resultant extract may be used for GC analysis.

A small portion of the extract $(0.5 \ \mu l \ to \ 5 \ \mu l)$ is then injected into the injection port of the GC, where it is vaporized.

Next the carrier gas, which continuously purges the system, sweeps the sample components into the GC column. As the compounds are swept through the column, the individual compounds will begin to separate. Chromatographic separation is a function of both chemical and physical properties of the column and the sample constituents. Consequently, the individual compounds elute at different characteristic retention times. (Retention time is the time between extract injection and compound detection.) Detection occurs at the column's end by use of various detectors. The relative response by the detector is a measure of a compounds concentration. Identification and quantification of compounds are based on expected retention time and response as compared to calibration standards.

A site-specific method was developed that met project objectives for the Onalaska site. CSL staff employed standard gas chromatography methods to analyze soil samples (EPA Method 3550--Sonification Extraction and Method 8000--Gas Chromatography Analysis as found in SW846, *Test Methods for Evaluating Solid Waste*, 3rd edition, 1986). Pentane was used in conjunction with physical agitation to extract the Onalaska target compounds from the sample matrix. The extract was subsequently analyzed on a capillary gas chromatograph using an electron capture detector (ECD) for the chlorinated compounds and a flame ionization detector (FID) for the aromatic compounds. Gas chromatography with an ECD or FID is a common instrumental analysis used by laboratories for the qualification and quantification of complex mixtures.

CSL OPERATIONS

The CSL was housed in the EPA laboratory trailer. During mobilization of the CSL, the HP5890A GC with the HP3392 Integrator and the HP7673 Autosampler were interfaced and powered up. The required GC gases were then installed, and appropriate flows were established. Nitrogen (ultrapure) was chosen as the carrier gas, and air (zero grade) and hydrogen (ultrapure) were needed for the FID. The system was checked for leaks.

As mentioned earlier, both the ECD and FID detectors were used at the Onalaska CSL. The ECD is very sensitive to chlorinated compounds such as TCA, TCE, and PCE, while the FID is more appropriate for nonchlorinated aromatics such as TOL and XYL.

To record detector response, an integrator was used to electronically calculate the concentration of a compound. The presence of compounds eluting from the GC column results in a peak shaped response drawn on the integrator chart paper. The integrator integrates the area under the peak, and this area correlates to a concentration. However, many "area counts," as they are called, do not necessarily correlate to a high compound concentration because every compound responds differently to a detector. A 1 µg/ml standard of a given compound may register a large peak and many area counts by GC/FID, while a $1 \mu g/ml$ standard of another compound registers a small peak with a few area counts by GC/FID.

Calibration is required to establish gas chromatographic performance, detector response factors, and retention times for each target compound. A response factor is defined as the standard concentration of a compound divided by the area counts as produced by the integrator. For example, a 1 μ g/ml toluene standard that produces 20,000 area counts produces a response factor of 0.00005 μ g/ml per area counts.

A five-point standard calibration curve was used for the Onalaska CSL. Using 2,000 µg/ml custom standards prepared and assayed by Supelco, Inc., serial dilutions to concentrations of 2.0 µg/ml, 1.0 µg/ml, 0.2 µg/ml, 0.1 µg/ml, and 0.02 µg/ml were made for the ECD compounds and 5.0 µg/ml, 2.0 µg/ml, 1.0 µg/ml, 0.5 µg/ml, and 0.1 µg/ml for the FID compounds. All standards were prepared using Burdick & Jackson GC-Capillary Grade Pentane. Before any standards were analyzed, the pentane was analyzed by GC/FID-ECD to establish the level of purity.

A five-level calibration was performed to assess detector linearity because a detector does not respond uniformly over a wide concentration range. As a result, a good working range must be found where the detector response is linear and the subsequent response factors are relatively constant. Samples of unknown concentration are then analyzed within this working range. If a sample concentration exceeds the working range, it must be diluted and reanalyzed.

QUALITY ASSURANCE/QUALITY CONTROL AND CSL DATA VALIDATION

The Onalaska CSL analytical program involves a number of special analyses to characterize the quality of a data set. The following questionnaire presents the concerns of an environmental chemist regarding the validity of any analytical method. They are followed by QA/QC procedures that must be part of the analytical approach to address the issue of concern.

1. Is the instrument-system working?

Relevant QA/QC Procedure: Initial calibration, continuing calibration, and retention time markers

2. Is the method working?

Relevant QA/QC Procedure: Matrix spike/matrix spike duplicates

3. Are analytical results reproducible?

Relevant QA/QC Procedure: Laboratory duplicates

4. Is there a problem with laboratory cross-contamination?

Relevant QA/QC Procedure: Laboratory blanks---solvent, syringe, method

5. Is there a problem with cross-contamination due to sampling?

Relevant QA/QC Procedure: Field blanks

6. Is the sampling being performed in a reproducible fashion?

Relevant QA/QC Procedure: Field duplicates

CALIBRATION

Instrument calibration must precede any sample analysis. More specifically, instrument calibration conforming to QA/QC criteria must be demonstrated. For the Onalaska CSL, initial calibration consisted of the analysis of a series of standards. Specifically, the concentrations mentioned earlier were analyzed by GC/FID-ECD in succession. A calibration curve for each compound could then be constructed by plotting standard concentration on the abscissa and the corresponding area counts on the ordinate. The plot should show a direct relationship between the standard concentration and area counts. Between the low and high standards, the calibration curve should be linear, and hence this region defines the working linear range for the analysis. The linearity of the working range is determined by using least squares to compute the correlation coefficient from the calibration data. The correlation coefficient for a linear segment is 1.00. Standards were analyzed until the calibration curve correlation coefficients were 0.98 and better.

CONTINUING CALIBRATION

After initial calibration was completed, analysis of samples began. GC systems change with time due to factors such as column condition and changing flow rates, so it was necessary to continuously monitor the GC by continuing to calibrate. The midrange standard was analyzed periodically to determine GC performance. The Onalaska CSL SOP set a continuing calibration frequency of one in twenty, but CSL staff checked calibration more frequently to ensure the reliability of GC results.

RETENTION TIME MARKER

A retention time (RT) marker is a compound that can be used to measure retention time drift and injection reproducibility. In most cases, a solvent impurity peak is likely to be chosen as an RT marker because it exists at a specific concentration that will not change and it elutes at a characteristic retention time. Therefore, both the retention time and the area counts of the RT marker should be consistent from run to run. By monitoring the RT marker, the GC system is monitored indirectly.

SPIKED SAMPLES

Spike sample analyses are done to determine the effect of the sample matrix on the solvent extraction method and on measurement procedures. To prepare a matrix spike (MS), a known amount of compound is added to a sample, the sample is analyzed, and the amount of the spiked compound recovered is compared to the amount added.

Matrix spike analysis was performed as part of the CSL analysis. A matrix spike is a target compound added to a sample and prepared as a sample. Matrix spike samples are analyzed to evaluate matrix effects on the analytical method. Poor recoveries may be due to poor sample preparation and an inefficient extraction process, a GC system that has changed, matrix interferences, or other factors.

Percent recovery for a target compound spike is calculated by:

 $\mathbf{R} = [(\mathbf{SSR}-\mathbf{SR})/\mathbf{SA}] \times 100$

where:

SSR = spike sample result SR = sample result SA = spike added

Because of their physical/chemical characteristics, certain compounds can be readily extracted. After years of performing rigorous statistical analyses on historical data, the EPA has developed acceptable recovery ranges for TCL compounds. These ranges represent empirical benchmarks; however, they are useful in gauging the extraction efficiency of a solvent for a given compound.

Using matrix spike/matrix spike duplicate data, it is possible to construct quality control charts that illustrate the accuracy of the spike analysis. Such a control chart is constructed by plotting percent recoveries on the ordinate and dates analyzed on the abscissa. Reading the chart from left to right, the data points should cluster near the 100 recovery line.

If there is just one analyst for a project's duration, recoveries will trend closer to the 100 percent recovery line. This is because over time the analyst has honed his or her technique. Conversely, a trend may not be discernable if more than one analyst staffed the laboratory for the project's duration.

DUPLICATES

Duplicates refer to two representative aliquots from a discrete sample. Both field and laboratory duplicate samples were analyzed to determine data precision, a measure of reproducibility of the analysis. The results were then reported as relative percent difference (RPD) and were calculated by:

$$RPD = [[(D1-D2)/[(D1+D2)/2]] \times 100$$

where:

D1	=	concentration of the first duplicate
D2	=	concentration of the second duplicate

Matrix Spike Duplicates

To prepare a matrix spike duplicate (MSD), a given sample is separated into two fractions and each fraction is spiked with the same amount of known compound. There are now two samples: the matrix spike and the matrix spike duplicate.

Taken together, the percent recoveries for the MS/MSD are used to calculate the relative percent difference between the two numbers. RPD is a measure of precision. In other words, two samples derived from the same location and spiked with equal amounts of target compound should produce recoveries that are identical. In practice it is very difficult to spike two different samples with exactly equal amounts of a target compound, so it is unlikely that the two samples will be exactly the same. Consequently, the EPA has set quality control limits for RPD.

Using MS/MSD data, a quality control chart can be constructed that will graphically show the precision for the spike analysis. The control chart is constructed by plotting RPDs on the ordinate versus dates analyzed on the abscissa. Reading from left to right, the data points should cluster near the 0.0 RPD baseline.

Laboratory Duplicates

As the name suggests, laboratory duplicates are duplicates prepared in the laboratory to monitor laboratory reproducibility. To prepare a laboratory duplicate, a sample is split into two fractions and prepared and analyzed as two discrete samples. The results for the two samples should fall within certain QA/QC criteria for RPDs. Poor replication may indicate laboratory carelessness. Regardless, laboratory duplicates must be interpreted carefully since some matrixes are inherently difficult to replicate perfectly. In such cases, the QA/QC criteria may be adjusted accordingly.

Field Duplicates

Two samples collected in the field at the same location, depth, and orientation comprise a sample and a field duplicate. As might be expected, there is a great deal of variability associated with field duplicates, especially soil, because of the heterogeneous composition of the matrix.

BLANKS

A blank is a clean sample equivalent that is processed and analyzed as a sample to determine the existence and magnitude of potential contamination introduced during sampling, shipping, or analysis. The general heading of "blanks" can be separated into field blanks and laboratory blanks.

Field Blanks

Field blanks check field decontamination procedures. They are collected in the field during a sampling effort. Laboratory grade deionized water or high performance liquid chromatography (HPLC) water is used for aqueous field blanks. To prepare the field blank, the water is transferred to the sampling device (i.e., bailer) before being transferred to the sample container. The process mimics the actual groundwater sampling procedure.

Laboratory Blanks

Laboratory blanks check laboratory procedures. They can be divided into method blanks, solvent blanks, and syringe blanks.

Method Blanks. Method blanks are prepared in the laboratory as part of the analytical protocol. These blanks, prepared from HPLC grade water or washed sand, are processed along with the samples through each sample preparation and analysis step. Method blanks check possible contamination that might have been introduced during sample preparation.

Solvent Blanks. Since the analytical method used at Onalaska required a solvent extraction sample preparation, it was imperative to periodically check the solvent for contamination. This was accomplished by analyzing the solvent by GC/FID. A contaminated solvent could lead to false positives.

Syringe Blanks. All sample extracts are introduced into the GC by microliter syringes. Even though the syringe is cleaned after each injection, it is important to check the syringe for possible cross-contamination. This is accomplished by injecting syringe headspace into the GC. Syringe blanks also allow monitoring of the background signal and possible carryover caused by a previous contaminated sample.

ONALASKA CSL DATA VALIDATION/DATA ASSESSMENT

The purpose of data validation is to determine the precision and accuracy of a data set, to characterize the weaknesses of questionable data, and to determine data usability.

The Onalaska data were evaluated by assessing the QA/QC criteria described earlier. These QA/QC criteria are evaluated quantitatively when their values are specified in the analytical methods or as part of the project data quality objectives (DQOs). If values are not specified, a qualitative assessment is made using established data validation procedures and a knowledge of good laboratory procedures.

All samples were analyzed using a flame ionization detector (FID) and electron capture (ECD) detectors. The results for TOL and XYL were obtained using the FID. Due to its increased sensitivity, the ECD was used to quantify DCE, TCA, TCE, and PCE.

Overall, the data generated from the Onalaska site was determined to be good and 100 percent usable for the DQO specified in the SOW (e.g., screening analysis). All CSL data is summarized in Table 1. Appendixes A and B in project files contain the CSL computation sheets that were used to calculate concentrations; these sheets provide a record of all samples analyzed, including QA/QC samples. A discussion of the data validation parameters follows.

HOLDING TIMES

All samples and extracts were refrigerated from the time they were sampled until they were analyzed. All samples were extracted within 2 days (48 hrs) of sampling. All extracts were analyzed within 2 days (48 hrs) of extraction. These holding times are well within Contract Laboratory Program (CLP) requirements.

INSTRUMENT CALIBRATION

Response factors for each detector (flame ionization detector and electron capture detector) were calculated initially using a five-level calibration (2.0 μ g/ml, 1.0 μ g/ml, 0.2 μ g/ml, 0.1 μ g/ml, and 0.02 μ g/ml for the chlorinated compounds and levels of 5.0 μ g/ml, 2.0 μ g/ml, 1.0 μ g/ml, 0.5 μ g/ml, and 0.1 μ g/ml for the aromatics). Whenever a change was made in the system, a new initial calibration was performed.

Initial Calibration

To assess the instrument performance before the analysis of any samples, the correlation coefficient of the least squares line was calculated for each compound and the total response was considered.

Continuing Calibration

A continuing calibration standard was analyzed before each set of samples and used to calculate the concentration of the target compounds in each batch. To assess instrument stability before sample analysis, the percent difference between the response factor (RF) for the initial standard and the continuing calibration response factor was calculated. The criteria for continuing calibration RFs allowed for a +15 percent variance from the initial calibration RF. All continuing calibration criteria were met.

DETECTION LIMITS

The working ranges established for the target compounds were based on anticipated concentrations of Onalaska-derived samples. The working range for DCE, TCA, TCE, and PCE was $0.02 \mu g/ml$ to $2.0 \mu g/ml$, while the working range for TOL and XYL was $0.1 \mu g/ml$ to $5.0 \mu g/ml$. This is not to say the instrument could not detect compounds at concentrations lower than the low end standard of the working range; detection limits are a function of instrument capabilities and analytical methodologies.

The instrument detection limit (IDL) represents the lowest concentration an instrument can detect. This concentration must be discernable from background noise. The IDL represents a theoretical detection limit because one is assuming 100 percent extraction efficiency and no chemical/physical or electronic interferences. The IDL is determined by analyzing the low standard of the working range. This standard is analyzed repeatedly, and statistics are performed on the pool of standards data.

The method detection limit (MDL) represents the lowest concentration the instrument can detect for a certain methodology. Because of extraction inefficiencies and interferences, the MDL will always be greater than the IDL. To determine the MDL, matrixes are spiked with compounds at sequentially lower concentrations until the concentrations can no longer be detected. In general, the MDL is twice the IDL.

The Onalaska CSL results indicate that compounds are sometimes detected above the MDL but below the working range for the detector. In such case, compounds are qualitatively identified but quantitatively suspect because the concentrations do not fall within the working calibration range. Accordingly, these values are flagged with a "J," meaning estimated.

BLANK ANALYSIS

A blank sample containing only the extraction solvent was analyzed with each batch of samples. The amount of target compound in the blank was considered in determining whether any compound found in the sample could have come from the solvents. No blank contaminant was found at a level greater than 10 percent of the compound at the reported detection limit; therefore, no qualification of the data was necessary due to blank contamination. See Table 1 for blank sample results.

MATRIX SPIKE/MATRIX SPIKE DUPLICATES

Tables 3, 4, 5, 6, and 7 in the project files following the text summarize the recovery of compounds detected in the matrix spike and matrix spike duplicate samples. Regarding the MS/MSD samples, the recovery of target compounds was within the specified control limits set in the analytical method. In some cases the recoveries were outside of the control limits because the sample chosen to be spiked was highly contaminated. High levels of organic compound background in highly contaminated samples caused inaccuracy in the integration, and therefore quantitation, of the target compounds. Regardless, the recoveries

for the "clean" samples demonstrated the validity of the method. As for the duplicate analyses, RPDs between like samples were within QA/QC acceptable ranges.

No qualification of the data was necessary since these results do not indicate a problem with the sample matrix in the recovery of target compounds. Figures 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 in the project files graphically depict the results of the MS/MSD samples.

For an interpretation of the control charts, please refer to relevant sections of this memorandum.

CSL "GC FINGERPRINT" STUDY

According to past records, it is known that naphtha was disposed of at the Onalaska site. However, it is unclear as to the specific identity of the naphtha pollutants. In addition, soil was found to be visibly contaminated near MW14S, outside the area of suspected naphtha contamination. The area near MW14S had a diesel fuel odor. As an aside experiment, the CSL staff analyzed a number of samples of diesel fuels and attempted to match the resultant chromatograms with pure product sample chromatograms. Unfortunately, no pure product was captured for analysis and no obvious correlation was observed between the diesel fuel chromatograms and the sample chromatograms. This is not surprising given the differences between the Onalaska CSL target compounds and typical naphtha (oil variety) constituents. Figures 16 and 17 in the project files show example chromatograms.

GLT913/067.50

Units for Water - ug/ml (ppm) Units for Soil = mg/kg

Field I.D.	<u>GC RUN#</u>	<u>CSL I.D.</u>	Date Analyzed	Toluene	<u>Xylenes</u>	<u>Matrix</u>
GB-07-01	128	1	3/17/89	0.080 N	0.020 J	Water
GB-07-02	129	3	3/17/89	0.120	0.010 J	Water
GB-08 (55'-58')	130	5	3/17/89	0.040 N	BMDL	Water
GB-03-01	131	7	3/17/89	0. 690	1.12	Water
GB08 (18'-28')	134	9	3/17/89	0.040 N	BMDL	Water
GB03-02	135	11	3/17/89	0.110 N	BMDL	Water
GB04 (8'-11')	136	13	3/17/89	0.390 N	BMDL	Water
GB04 (54'-57')	137	15	3/17/89	<i>0.100</i>	0.040 J	Water
MW04 (20'-30')	139	19	3/17/89	0.110	0.060 J	Water
MW-25-01	140	21	3/17/89	0.130 N	BMDL	Water
GB-01-01 (80')	141	23	3/17/89	0.150 N	BMDL	Water
GB-01-(120')	147	27	3/18/89	0.140 N	BMDL	Water
MW-55-01	155	17	3/18/89	4.51	0.420	Water
MW-2M-01	156	25	3/18/89	BMDL	BMDL	Water
MW-18-23'	158	29	3/18/89	0.170 N	BMDL	Water
MW-2D(108'-111')	159	31	3/18/89	BMDL	BMDL	Water
MW-1M-01	160	33	3/18/89	0.030 N	BMDL	Water
MW-3S-01	161	35	3/18/89	<i>6.58</i>	0.530	Water
MW-7S(25'-30')	162	37	3/18/89	0.160 N	BMDL	Water

N = Qualitatively suspect.

J = Estimated value. Reported value is below quantitation limit.

BMDL = Below method detection limit.

Units for Water = ug/ml (ppm) Units for Soil = mg/kg

Field I.D.	<u>GC RUN#</u>	<u>CSL I.D.</u>	Date Analyzed	Toluene	<u>Xylenes</u>	<u>Matrix</u>
MW-7M (80'-82')	163	39	3/1 8/89	0.130 N	0.0 30 J	Water
MW4PS01	206	41	3/20/89	37.9 0 0 J	1.390	Water
G B-06-(18'-21')	209	43	3/20/89	0.470 J	0.010 J	Water
PB-02	213	45	3/20/89	0.440	0.020 J	Water
PB-03	214	47	3/20/89	0.420	0.010 J	Water
PB04	215	49	3/20/89	0.610 J	0.010 J	Water
PB-05	216	51	3/20/89	8.699′ J	0.950	Water
PB-06	218	53	3/20/89	0.140	0.010 J	Water
PB-08	219	55	3/20/89	0.040 J	0.020 J	Water
PB-09	220	57	3/20/89	0.050 J	BMDL	Water
PB-10	221	59	3/20/89	0.1 30	0.220	Water
PB-11	222	61	3/20/89	0.360	0. 230	Water
G B-6M -73'	224	63	3/20/89	0.190 J	BMOL	Water
PB-12	225	65	3/20/89	0.010 J	0.010 J	Wator
PB-13	227	67	3/20/89	0. 430 J	0.220	Water
PB-14	228	69	3/20/89	0.410 J	BMOL	Water
PB-16	230	73	3/20/89	0.200 J	BMDL	Water
PB -17	231	75	3/20/89	0.150 J	BMDL	Water
PB-18	233	77	3/20/89	5.570 J	0.140	Water
P8-20	236	81	3/21/89	0.140	0.110	Water
PB-21	238	83	3/21/89	3.40	0.670	Water

4/19/89

ONALASKA CSL

ſ

.

(

Units for Water = ug/ml (ppm) Units for Soil = mg/kg

Field I.D.	GC RUN#	<u>CSL I.D.</u>	Date Analyzed	Toluene	<u>Xylenes</u>	<u>Matrix</u>
GB-5 (10')	239	85	3/21/89	BMDL	BMDL	Water
GB-5 (80')	240	87	3/21/89	BMDL	BMDL	Water
PB-22	241	89	3/21/89	0. 140	0.010 J	Water
PB-23	242	91	3/21/89	0.220 J	BMDL	Water
MW-10M (18'-21')	249,261	93	3/21/89	BMDL	BMDL	Water
PB-24	250,262	95	3/21/89	BMDL	BMDL	Water
PB-25	251,263	97	3/21/89	BMDL	BMDL	Water
PB-26	252,264	99	3/21/89	BMDL	BMDL	Water
PB-27	254,265	101	3/21/89	BMDL	BMDL	Water
PB-19	255	79	3/21/89	10.9 0 9	0.310	Water
MW-10M (76'-78')	257	103	3/21/89	BMDL	BMOL	Water
MW-9M (25')	258	105	3/21/89	BMDL	BMDL	Water
PB-15	259	71	3/21/89	1.0 60	0.120	Water
MW-9M (80')	266	107	3/21/89	BMÓL	BMDL	Water
MW-3M	340	109	3/28/89	0.010 J	0.020 J	Water
MW-11M (20'-22')	343	113	3/28/89	BMDL	BMOL	Water
MW-11M (76')	344	115	3/28/89	BMDL	BMDL	Water
PB-28	346	117	3/28/89	BMDL	BMDL	Water
PB-29	347	119	3/28/89	BMDL	BMDL	Water
PB-30	363	121	3/29/89	43.0 \$ \$	0.650	Water
PB-31	369	123	3/29/89	5.979 J	0.470	Water

4/19/89

Units for Water = ug/ml (ppm) Units for Soil = mg/kg

Field I.D.	GC RUN#	<u>CSL I.D.</u>	Date Analyzed	Toluene	<u>Xylenes</u>	<u>Matrix</u>
PB-32	373	125	3/29/89	5.03¢ J	0.770	Water
MW-12S	380	127	3/30/89	BMDL	BMDL	Water
MW-14S	386	129	3/30/89	BMDL	BMOL	Water
MW-13S	389	135	3/30/89	BMDL	BMDL	Water
MW-8D	390	137	3/30/89	BMDL.	BMDL	Water
PB-34	391	131	3/30/89	20.400 J	0.830	Water
PB-35	393	133	3/30/89	13.300 J	0. 766	Water
PB-37	395	139	3/30/89	BMDL	BMDL	Water
PB-39	396	141	3/30/89	BMDL	BMDL	Water
PB-40	397	143	3/30/89	BMDL	BMOL	Water
PB-38	399	145	3/30/89	BMDL	BMOL	Water
PB-41	401	147	3/30/89	BMDL	BMDL	Water
PB-42	402	149	3/30/89	BMDL	BMOL	Water
PB-43	403	151	3/30/89	BMDL	BMOL	Water
PB-44	404	153	3/30/89	BMDL	BMOL	Water
PB-45	405	155	3/30/89	BMDL	BMOL	Water
PB-46	406	157	3/30/89	0.140 J	BMOL	Water
TP-01 (CSL)	454	159	4/18/89	0.050	0.060 J	Soil
TP-02 (CSL)	456	161	4/18/89	BMDL	BMOL	Soil
TP-03 (CSL)	463	163	4/18/89	1.830	0. 39 0 J	Soil
TP-04 (CSL)	458	165	4/18/89	13.8 6 9 J	2.430 J	Soil

4/19/89

ONALASKA CSL

(

.

(

Units for Water = ug/ml (ppm) Units for Soil = mg/kg

Field I.D.	GC RUN#	<u>CSL I.D.</u>	Date Analyzed	Toluene	<u>Xviones</u>	Matrix
TP-05 (CSL)	464	167	4/18/89	BMOL	BMDL	Soil
TP-06 (CSL)	466	169	4/18/89	BMDL	BMDL	Soil
TP-07 (CSL)	. 467	171	4/18/89	9.27¢ J	BMOL	Soil
TP-08 (CSL)	469	173	4/18/89	1.1	0.670	Soil
TP-09 (CSL)	472	177	4/18/89	BMDL	BMDL	Soil
TP-10 (CSL)	474	179	4/18/89	BMDL	BMDL	Soil
TP-FB-04 (CSL)	479	181	4/19/89	BMDL	BMDL	Soil
TP-11 (CSL)	480	183	4/19/89	0.975	5. 99	Soil
TP-11-FR (CSL)	483	185	4/19/89	1.720	9.67¢ J	Soil
TP-12 (CSL)	486	187	4/19/89	BMÓL	BMDL	Soil
TP-13 (CSL)	488	189	4/19/89	0.085 J	BMDL	Soil
TP-14 (CSL)	490	191	4/19/89	BMDL	BMDL	Soil

4/19/89

TABLE 1

4-20-89

•

ONALASKA CLOSE SUPPORT LABORATORY DATA Units for Water = ug/ml (ppm) Units for Soil = mg/kg

Field I.D.	<u>GC RUN#</u>	<u>CSL I.D.</u>	Date Analyzed	<u>1.1.1-TCA</u>	<u>TCE</u>	PCE	<u>Matrix</u>
GB03-02	92	12	3/15/89	BMDL	BM DL	BMDL	Water
GB04 (8'-11')	93	14	3/15/89	BMDL	BMDL	BMDL	Water
GB04 (54'-57')	94	16	3/15/89	BMDL	BMDL	BMDL	Water
MW-5S-01	95	18	3/15/89	BMOL	BMOL	BMDL	Water
MW04 (20'-30')	96	20	3/15/89	BMDL	BMDL	BMDL	Water
MW-2S-01	97	22	3/15/89	BMOL	BMDL	BMDL	Water
GB-01-01 (80')	98	24	3/15/89	BMDL	BMOL	BMDL	Water
MW-2M-01	99	26	3/15/89	BMOL	BMOL	BMOL	Water
G B-07-01	101	2	3/15/89	0.010	BMDL	BMDL.	Water
G B0702	102	4	3/15/89	BMOL	BMDL	BMDL	Water
G B08 (55'-58 ')	103	6	3/15/89	BMDL	BMDL	BMDL	Water
GB-01 (120')	171	28	3/19/89	BMDL	BMDL	BMOL	Water
MW-18-23'	176	30	3/19/89	BMDL	BMDL	BMDL.	Water
MW2D(108'-111')	177	32	3/19/89	BMDL	BMDL	BMDL.	Water
MW-1M-01	178	34	3/19/89	BMDL	BMDL	BMDL	Water
MW-3S-01	179	36	3/19/89	0.130	0.010	BMDL	Water
MW-7S-(20'-30')	181	38	3/19/89	BMDL	BMDL	BMDL	Water
MW-7M-(80'-82')	182	40	3/19/89	BMDL	BMDL	BMDL	Water
MW4PS-01	186	42	3/19/89	0.730	0.010	BMDL	Water
G B-06(18' -21')	187	44	3/19/89	BMDL	BMDL	BMDL	Water

10-Aug-89

(

ł

PAGE # C

.

TABLE 1

4-20-89

...

ONALASKA CLOSE SUPPORT LABORATORY DATA Units for Water = ug/ml (ppm) Units for Soil = mg/kg

Field I.D.	<u>GC RUN#</u>	<u>CSL I.D.</u>	Date Analyzed	<u>1.1.1-TCA</u>	<u>TCE</u>	PCE	<u>Matrix</u>
PB-02	192	46	3/19/89	BMDL	BMDL	BMDL	Water
PB-03	193	48	3/19/89	0.008	BMDL	BMDL	Water
PB-04	195	50	3/19/89	BMDL	BMDL	BMDL	Water
PB05	196	52	3/19/89	0.050	BMDL	0.010	Water
PB-06	197	54	3/19/89	BMDL	BMDL	BMDL.	Water
PB-09	272	58	3/21/89	BMDL	BMDL.	BMDL	Water
PB-10	273	60	3/21/89	BMDL	BMDL	BMDL	Water
PB-11	274	62	3/21/89	BMDL	BMDL	BMDL	Water
GB-6M (73')	275	64	3/21/89	BMDL	BMDL	BMDL	Water
PB-12	277	66	3/21/89	BMDL	BMDL.	BMDL	Water
PB-13	278	68	3/21/89	BMDL	BMDL	BMDL	Water
PB-14	279	70	3/21/89	BMDL	BMDL	BMDL	Water
PB-16	280	74	3/21/89	0.010	BMDL	BMDL	Water
PB-17	282	76	3/21/89	0.040	BMDL	BMDL	Water
PB-18	283	78	3/21/89	BMDL	BMDL	BMDL	Water
PB-18 DUP	284	78 DUP	3/21/89	BMDL	BMDL.	BMDL	Water
PB-20	285	82	3/22/89	BMDL	BMDL	BMDL	Water
PB-21	287	84	3/22/89	0.090	BMDL	BMDL	Water
G8-5 (10')	288	86	3/22/89	BMDL	BMDL	BMDL	Water
GB-5 (80')	289	88	3/22/89	BMDL	BMDL	BMDL	Water
PB-22	290	90	3/22/89	BMDL	BMDL	BMDL	Water

ONALASKA CSL

...

TABLE 1 4-20-89 ONALASKA CLOSE SUPPORT LABORATORY DATA Units for Water = ug/ml (ppm) Units for Soil = mg/kg

Field I.D.	<u>GC RUN#</u>	<u>CSL I.D.</u>	<u>Date</u> <u>Analyzed</u>	<u>1.1.1-TCA</u>	<u>TCE</u>	PCE	<u>Matrix</u>
P B- 23	292	92	3/22/89	BMDL	BMDL	BMDL	Water
MW-10M (18-21')	293	94	3/22/89	BMDL	BMDL	BMDL	Water
PB-24	294	96	3/22/ 89	BMDL	BMDL	BMDL.	Water
PB-25	295	98	3/22/89	BMDL	BMDL	BMDL	Water
P B-26	297	100	3/22/89	BMDL	BMDL	BMDL	Water
PB-27	298	102	3/22/89	BMDL	BMDL	BMDL	Water
MW-10M (76'-78')	299	104	3/22/89	BMDL	BMDL	BMOL	Water
MW-9M (25')	300	106	3/22/89	BMDL	BMDL	BMOL	Water
MW-9M (80')	301	108	3/22/89	BMDL	BMOL	BMDL	Water
PB-08	302	56	3/22/89	BMDL	BMDL	BMDL	Water
PB-15	308	72	3/22/89	0.450	BMDL	BMDL	Water
PB-19	309	80	3/22/89	BMDL	BMDL	BMDL	Water
HOSE DISC WATER	310	112	3/22/89	BMDL	BMDL	BMDL	Water
MW-3M	311	110	3/22/89	BMDL	BMDL	BMDL.	Water
MW-11M (20'-22')	312	114	3/22/89	BMDL	BMDL.	BMDL	Water
MW-11M (76')	313	116	3/22/89	BMDL	BMDL.	BMDL	Water
PB-28	417	118	3/31/89	BMDL	BMDL	BMDL	Water
PB-29	418	120	3/31/89	BMDL	BMDL	BMDL	Water
PB-30	419	122	3/31/89	0.010 J	BMDL	BMDL	Water
PB-31	424	124	3/31/89	0.470	BMDL	BMDL	Water
PB-32	425	126	3/31/89	0.020	BMDL	BMDL	Water

10-Aug-89

ONALASKA CSL

(

•

.

(

TABLE 1 4-20-89 ONALASKA CLOSE SUPPORT LABORATORY DATA Units for Water = ug/ml (ppm) Units for Soil = mg/kg

Field I.D.	<u>GC RUN#</u>	<u>CSL I.D.</u>	<u>Date</u> Analyzed	<u>1.1.1-TCA</u>	<u>TCE</u>	PCE	<u>Matrix</u>
MW-125	426	128	3/31/89	BMDL	BMDL	BMDL	Water
MW-14S	427	130	3/31/89	BMDL	BMDL	BMDL	Water
PB-34	431	132	3/31/89	0.210	0.010	BMDL	Water
PB-35	432	134	3/31/89	0.040	BMDL	BMDL	Water
PB-38	433	136	3/31/89	BMDL	BMOL	BMOL	Water
MW-8D	434	138	3/31/89	BMDL	BMDL	BMDL	Water
PB-37	435	140	3/31/89	BMDL	BMDL	BMDL	Water
PB-39	436	142	3/31/89	BMDL	BMDL.	BMDL	Water
PB-40	437	144	3/31/89	BMDL	BMDL	BMDL	Water
PB-41	438	148	3/31/89	BMDL	BMDL.	BMDL	Water
PB-42	439	150	3/31/89	BMDL	BMDL	BMDL	Water
PB-43	440	152	3/31/89	BMDL	BMDL.	BMOL	Water
PB-44	441	154	3/31/89	BMDL	BMDL	BMDL	Water
TP-01	506	160	4/20/89	BMDL.	BMDL	BMDL	Soil
TP-02	507	162	4/20/89	BMDL	BMDL	BMDL	Soil
TP-03	508	164	4/20/89	BMDL	BMDL	BMDL	Soil
TP-04	509	166	4/20/89	BMDL	BMDL	0.010	Soil
TP-05	511	168	4/20/89	BMDL	BMDL	BMDL	Soil
TP-06	512	170	4/20/89	BMDL	BMDL	BMDL	Soil
TP-07	513	172	4/20/89	BMDL	BMDL	BMDL	Soil
TP-08	514	174	4/20/89	BMDL	BMDL	BMDL	Soil

.

TABLE 1 4-20-89 ONALASKA CLOSE SUPPORT LABORATORY DATA Units for Water = ug/ml (ppm) Units for Soil = mg/kg

Field I.D.	<u>GC RUN#</u>	<u>CSL I.D.</u>	Date Analyzed	<u>1.1.1-TCA</u>	<u>ICE</u>	PCE	<u>Matrix</u>
MW-14S (8.5')	515	176	4/20/89	BMDL	BMDL	BMDL	Soil
TP-09	516	1 78	4/20/89	BMOL	BMOL	BMOL	Soil
TP-10	517	180	4/20/89	BMOL	BMDL	BMOL	Soil
TP-FR-04	518	182	4/20/89	BMDL	BMDL	BMDL	Soli
TP-11	519	184	4/20/89	BMOL	BMDL	BMOL	Soil
TP-11-FR	520	186	4/20/89	BMDL	BMDL	BMDL	Soil
TP-12	521	188	4/20/89	BMOL	BMDL	BMDL	Soil
TP-13	522	190	4/20/89	BMDL	BMDL	BMDL	Soil

10-Aug-89

ONALASKA CSL

.

(

(

Appendix H SOURCE AREA AND TEST PIT INVESTIGATION

-

GLT913/035.50-8

~

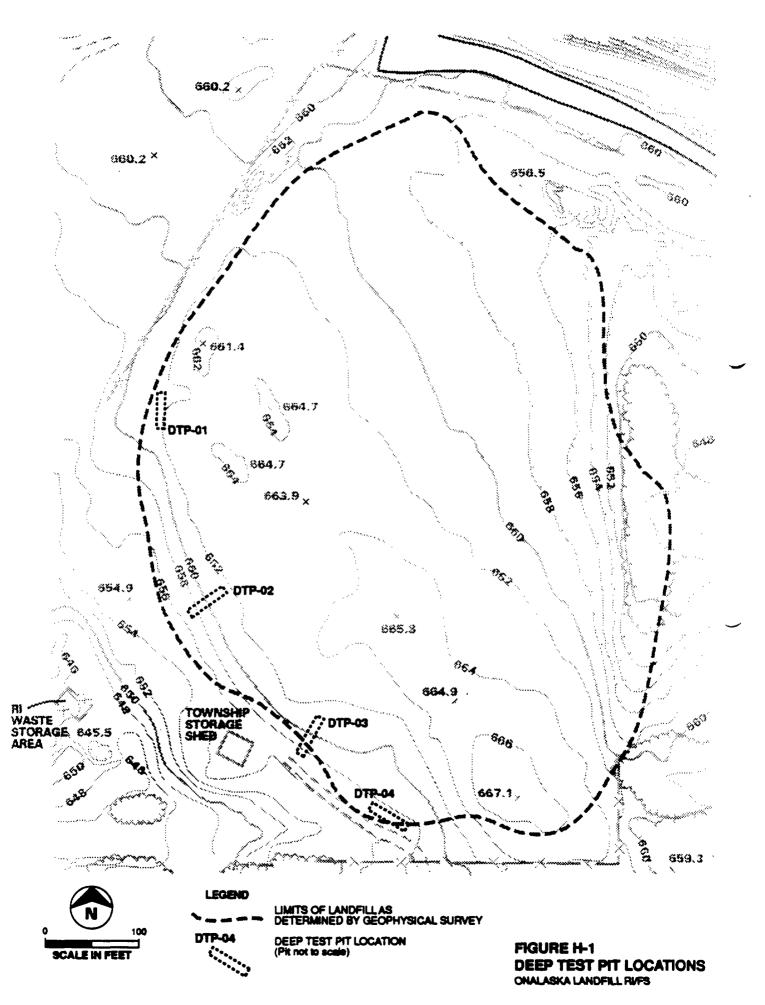
Appendix H SOURCE AREA TEST PIT INVESTIGATION

INTRODUCTION

The source area test pit investigation was conducted between April 17 and 19, 1989 to fulfill the requirements of Task FI, Subtask FT, Solvent Disposal Area Investigation. The objectives of the investigation were:

- To locate the major disposal area for the solvent waste within the landfill and to evaluate the degree of contamination in the unsaturated soils in this area
- o To obtain data important in the evaluation of soil incineration and offsite disposal
- o To locate and determine the condition of a cache of 300 drums and a 500-gallon tank truck buried at the landfill site

Four test pits were excavated to a maximum depth of 14 feet. Test pit locations were selected based on the results of the geophysical investigation and observations made during the hydrogeological investigation. Test pit locations are shown in Figure H-1.


Fourteen soil samples were taken from the test pits for analysis by the close support laboratory. Soil samples were extracted and analyzed for indicator VOCs. Sample locations are shown on the test pit logs. Based on the results of testing and visual observation, eight soil samples were submitted for CLP analysis of TCL organic and inorganic chemicals as well as total organic carbon (TOC), total organic halides (TOX), sulfur, moisture content, Btu content and EP toxicity.

The following persons were on site specifically for the source area test pit investigation:

Team Member	Affiliation	Responsibility
Jeff Lamont	CH2M HILL	Field Team Leader
Kevin Olson	CH2M HILL	Site Safety Officer
Chris Lawrence	CH2M HILL	Test Pit Logging/Sampling
Jeff Salerno	ETI	Backhoe Operator
Dave Cruise	ETI	Helper

FIELD PROCEDURES

Test pits were excavated using a John Deere JD-310A wheel-mounted backhoe loader. The backhoe, operator, and helper were all provided by Exploration

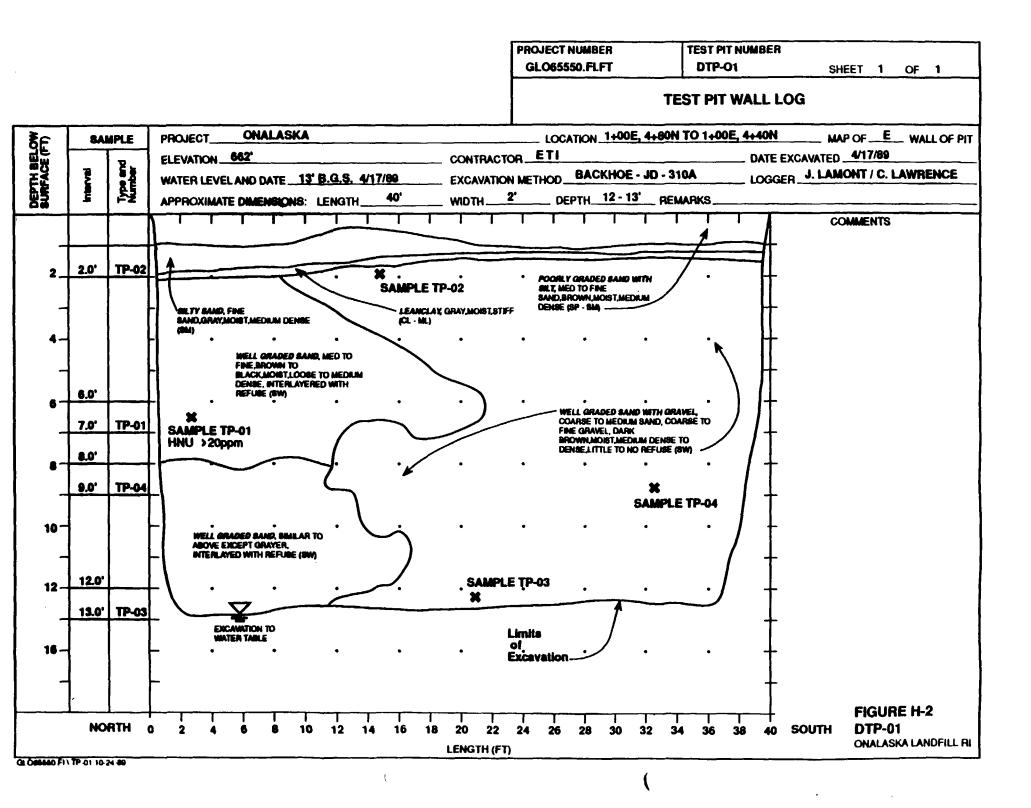
Technologies, Inc. (ETI), an environmental services firm based in Madison, Wisconsin.

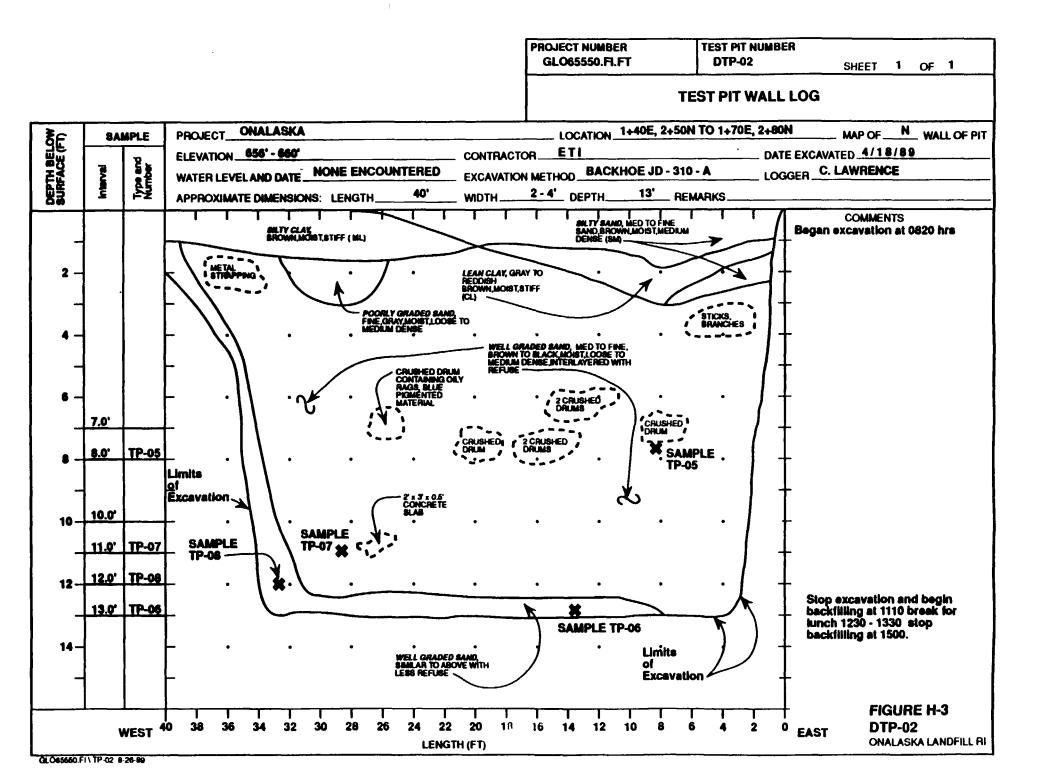
For all test pits, the top 2 feet of soil was assumed to be uncontaminated cover material and was stockpiled separately from the material encountered during further excavation. All excavated material encountered more than 2 feet below ground surface was stockpiled on a layer of 6-mil polyethylene, which was placed on the ground surface adjacent to the test pit before the start of excavation.

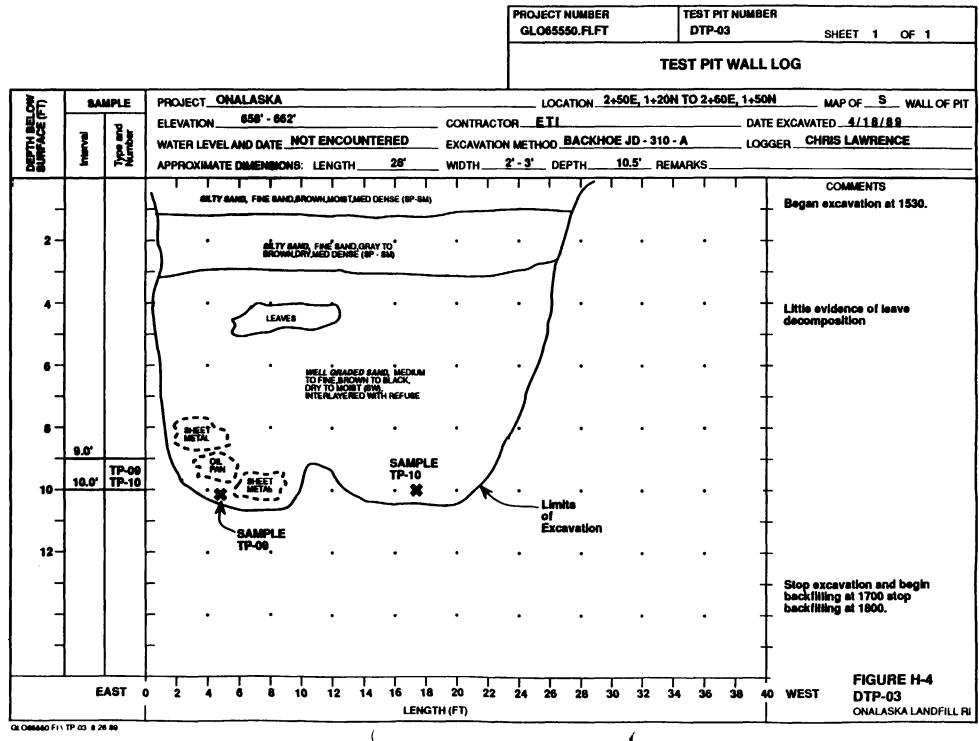
Test pits were excavated in passes approximately 12 inches deep. Uniform passes were difficult because of the nature of the waste material. The maximum depth of excavation was limited to approximately 14 feet by the reach of the backhoe. The backhoe could excavate approximately 10 linear feet of trench from one location. After the limits of excavation were reached from one location, the backhoe would move forward and excavation would continue. Test pit trenches ranged from 2 to 8 feet wide by 28 to 40 feet long. The actual dimensions of each pit are shown on the test pit logs. Each test pit was logged using the Unified Soil Classification System. Test pits were backfilled in reverse of the order by which they were excavated using the front-end loader bucket.

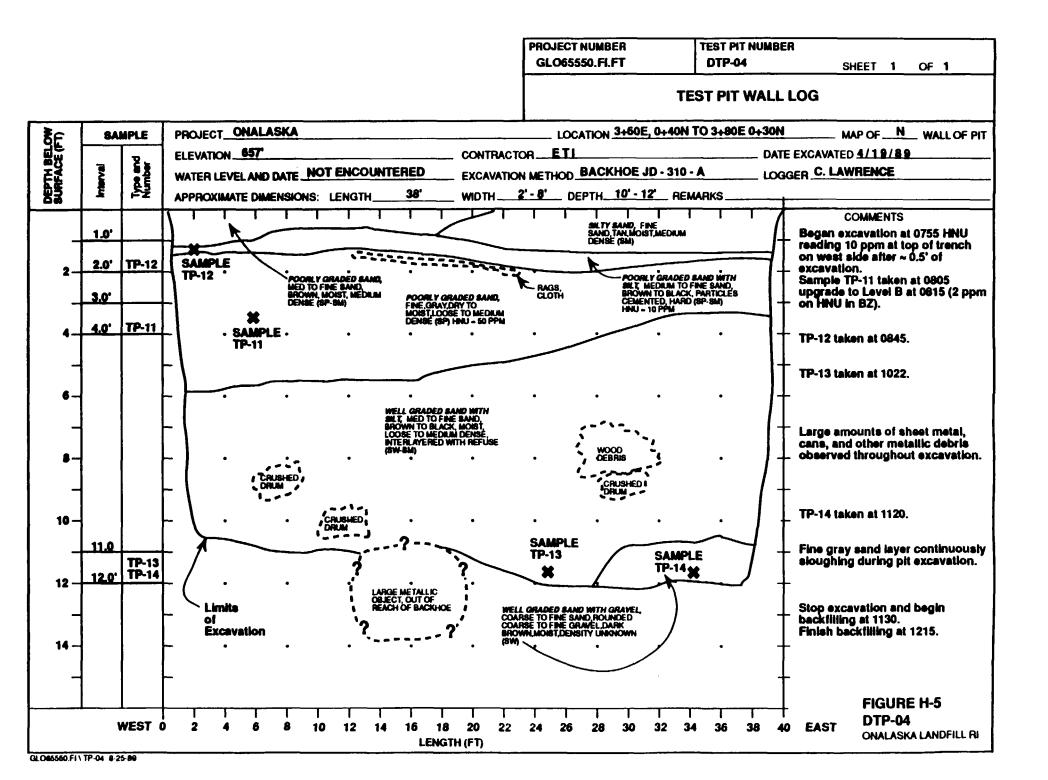
Air in the breathing zone was continuously monitored during excavation and backfilling, using an HNu photoionization device (PID). If sustained PID readings above background were observed, field team members would upgrade to level B personal protective equipment.

Fourteen soil samples were taken for analysis by the close support laboratory. Sample locations were chosen on the basis of visual observations (material changes, discolorations, or adjacent to an anomaly). Samples were also taken from the last layer of soil excavated for all test pits.


TEST PIT EXCAVATION SUMMARY


Test pit DTP-01 was excavated on April 17, test pits DTP-02 and DTP-03 were excavated on April 18, and test pit DTP-04 was excavated on April 19. A brief description of each test pit is given below. The test pits varied laterally in the types and thicknesses of material encountered, and a more accurate description of each pit is presented in the test pit wall logs (Figures H-2 through H-5).


DTP-**4**1


DTP-01 was excavated from Station 1+00E, 4+80N to Station 1+00E, 4+40N. The ground surface elevation was approximately 662 feet. The pit was approximately 40 feet long by 2 feet wide and was excavated to a maximum depth of 13 feet.

The first 12 inches of excavated material consisted of brown well-graded sand with silt. This was underlain by a layer of gray silty clayey sand, ranging in thickness from 6 inches at the south end of the pit to 12 inches at the north

end. The silty clayey sand layer was underlain by approximately 2 inches of gray silty clay.

From approximately 2 to 13 feet below ground, a well-graded sand was encountered. Sand in the north half of the pit ranged in color from brown to black to gray and was interlayered with refuse. Sand in the south half of the pit was dark brown with gravel and contained little to no refuse. The water table was encountered at approximately 13 feet. No drums were encountered. Sustained PID readings above background were observed in the breathing zone after approximately 6 feet of excavation at the north end of the pit, and field team personal protection was upgraded to level B.

Four soil samples were taken for analysis. Sample TP-01 was taken approximately 6.5 feet below ground, 2 feet from the north end of the pit. PID readings from the soil sample of over 20 ppm were observed. Sample TP-02 was taken 2 feet below ground, 15 feet from the north end of the pit; sample TP-03 was taken 12.5 feet below ground, 22 feet from the north end of the pit; and Sample TP-04 was taken 9 feet below ground, 32 feet from the north end of the pit.

DTP-02

DTP-02 was excavated from Station 1+40E, 2+50N to Station 1+70E, 2+80N. The ground surface elevation ranged from 656 feet on the west side to 660 feet on the east side. The pit was approximately 40 feet long and 2 to 4 feet wide and was excavated to a maximum depth of 13 feet.

The first 12 inches of excavated material consisted of brown silty clay on the west side of the pit, and a brown silty sand on the east side of the pit. The brown silty sand was underlain by a 6- to 12-inch layer of gray to reddish brown silty clay.

A well-graded sand was encountered approximately 2 feet to 13 feet below ground. Sand ranged in color from brown to black, and was interlayered with refuse. Sand encountered lower than 12 feet below ground appeared to contain less refuse. The water table was not encountered. Six crushed drums were excavated 6 to 8 feet below ground, 10 to 30 feet from the east wall of the pit. One drum contained oily rags and a blue pigmented material. The other drums contained no residue. No sustained PID readings above background were observed in the breathing zone.

Four soil samples were taken for analysis. Sample TP-05 was taken approximately 7.5 feet below ground, 8 feet from the east end of the pit. Sample TP-06 was taken 13 feet below ground, 14 feet from the east end of the pit; sample TP-07 was taken 11 feet below ground, 28 feet from the east end of the pit, and sample TP-08 was taken 12 feet below ground, 32 feet from the east end of the pit.

DTP-03

DTP-03 was excavated from Station 2+50E, 1+20N to Station 2+60E, 1+50N. The ground surface elevation ranged from 658 feet on the west side to 662 feet on the east. The pit was 28 feet long and 2 to 3 feet wide and was excavated to a maximum depth of 10.5 feet.

The first 36 inches of excavated material consisted of brown to gray silty clayey sand. A well-graded sand was encountered 3 to 10.5 feet below ground. Sand ranged in color from brown to black and was interlayered with refuse. The water table was not encountered. No drums were encountered, but metal debris (sheet metal, car oil pan, etc.) was excavated 8 to 10 feet below ground on the east side of the pit. No sustained PID readings above background were observed in the breathing zone.

Two soil samples were taken for analysis. Sample TP-09 was taken approximately 10 feet below ground, 4 feet from the east end of the pit and sample TP-10 was taken 10 feet below ground, 17 feet from the east end of the pit.

DTP-04

DTP-04 was excavated from Station 3+50E, 0+40N to Station 3+80E, 0+20N. The ground surface elevation was approximately 657 feet. The pit was approximately 38 feet long and 2 to 8 feet wide and was excavated to a maximum depth of 12 feet.

The first 12 inches of excavated material consisted of brown well-graded sand to silty sand. This was underlain by a 6-inch thick layer of dark brown to black cemented sand and a 2- to 4-foot layer of fine gray sand. A brown to black well-graded sand interlayered with refuse was encountered in the rest of the excavation.

Three crushed drums were excavated, and large amounts of sheet metal, cans, and other metallic debris were observed throughout the excavation. No residue was observed on the drums. The backhoe bucket struck a large metal object approximately 16 feet from the west end of the pit. The object could not be unearthed because the reach of the backhoe was not long enough. Efforts to unearth the object caused the fine gray sand to slough, increasing the width of the pit up to 8 feet in some locations. The water table was not encountered. Sustained PID readings above background were observed in the breathing zone after the first foot of excavation, and field team personal protection was upgraded to level B. Four soil samples were taken for analysis. Sample TP-11 was taken approximately 4 feet below ground, 6 feet from the east end of the pit, in the fine gray sand. PID readings of 50 ppm were observed coming off of the sample. Sample TP-12 was taken 1.5 feet below ground, 1 foot from the east end of the pit, from the layer of cemented sand. TP-13 was taken 11 feet below ground, 24 feet from the west end of the pit. TP-14 was taken 11 feet below ground, 34 feet from the west end of the pit.

GLT913/072.50

Appendix I ENVIRONMENTAL SAMPLING

GLT913/035.50-9

Appendix I ENVIRONMENTAL SAMPLING

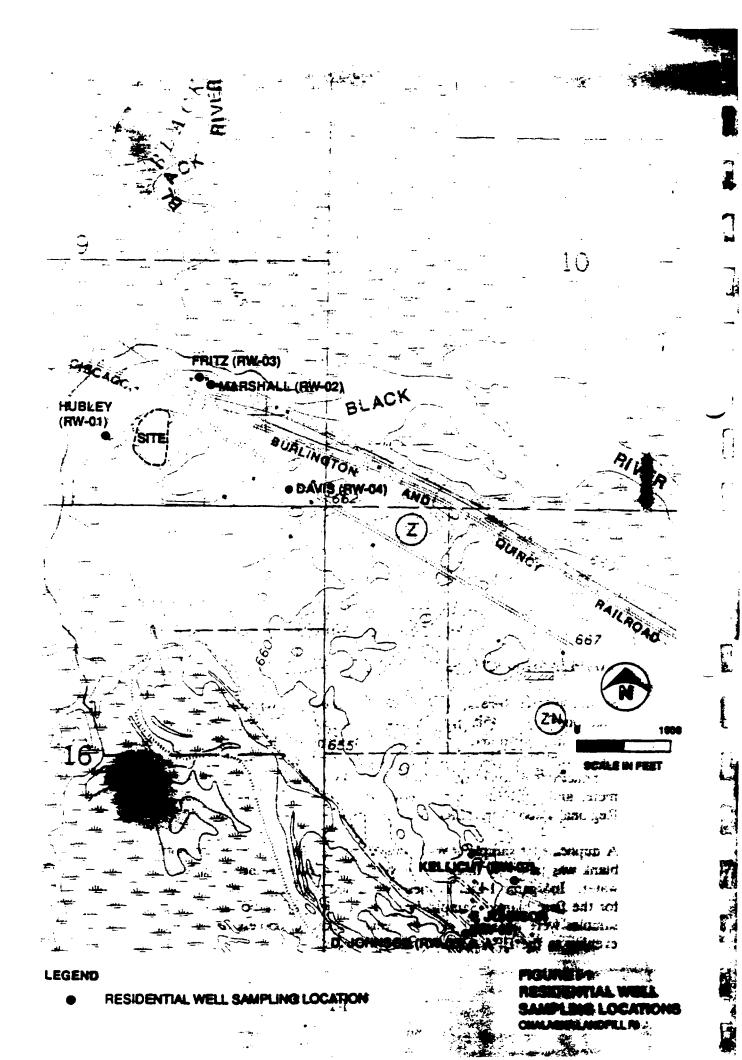
INTRODUCTION

This appendix summarizes the sampling procedures and field analytical results for residential well, monitoring well, surface water, and sediment sampling. Sampling of soils from borings is discussed in Appendix D and from test pits in Appendix H. Shallow groundwater sampling is discussed in Appendix F.

RESIDENTIAL WELL SAMPLING

PURPOSE AND SCOPE

Residential well sampling was performed to determine whether contaminants from the landfill site had migrated to surrounding residential wells. Seven residential wells were sampled on March 15, 1989 (Figure I-1). Three additional residential wells located on the property of Roy Ackerman could not be sampled because the Ackermans were gone for the winter but were sampled on April 20 as part of the monitoring well sampling. The Sportsmen's Club well could not be sampled because it was silted.


The sampling team consisted of:

- o Phil Smith, CH2M HILL/Sample Team Leader
- o Cathy Kantowski, CH2M HILL/Sample Team Member

SAMPLING PROCEDURES

Sample bottles were filled directly from faucets after allowing the water to run wide open for 10 minutes. Residents were asked if water softeners were present and sample locations were chosen upstream of water softeners, if present. Field measurement of pH was made immediately preceding sample collection. Conductivity measurements were not taken because of the unavailability of a meter and difficulties in rescheduling sample analysis at the U.S. EPA Central Regional Laboratory (CRL) in Chicago.

A duplicate of sample RW-04 was taken by filling two sets of bottles. A field blank was taken by filling VOA vials and organic sample bottles with HPLC water. Inorganic 1-liter bottles were filled with locally obtained distilled water for the field blank. Samples were stored in coolers before packaging. Once all samples were obtained, samples were packed in coolers and shipped the same evening to the EPA CRL.

The wells sampled and field results are summarized in Table I-1. Samples were analyzed at the CRL for the target organic and inorganic compounds.

MONITORING WELL SAMPLING

PURPOSE AND SCOPE

Monitoring well sampling was performed to determine the nature and extent of groundwater contamination. Twenty-one monitoring wells, five existing landfill wells, and the three residential wells on the Ackerman property were sampled from April 17 to 20. A second round of monitoring well sampling was performed from June 12 to 14.

Sampling personnel for the April sampling were:

- o Phil Smith, CH2M HILL/Sample Team Leader, Crew 1
- o Paul Boersma, CH2M HILL/Sample Team Member, Crew 1
- o Brian Laude, CH2M HILL/Sample Team Leader, Crew 2
- o Cathy Kantowski, CH2M HILL/Sample Team Member, Crew 2
- o Kevin Adler, U.S. EPA/Sample Team Member, Crew 2

Sampling personnel for the June sampling were:

- o Phil Smith, CH2M HILL/Sample Team Leader, Crew 1
- o Dorothy Hall, CH2M HILL/Sample Team Member, Crew 1
- o Paul Boersma, CH2M HILL/Sample Team Leader, Crew 2
- o Chris Lawrence, CH2M HILL/Sample Team Member, Crew 2
- o Cathy Kantowski, CH2M HILL/Sample Team Member, Paperwork
- o Brian Laude, CH2M HILL/Sample Team Member, Crew 2

SAMPLING PROCEDURES

Round 1

Water levels were taken in all wells the morning of April 17. After opening the well cap, HNu readings were taken according to the Site Safety Plan. Water levels were taken with an electric water level indicator. The indicator probe was slowly lowered until the buzzer and the light responded. The corresponding location of the indicator line flush with the top of well casing was marked and the probe was raised and lowered two more times. The depth to water was recorded and was later used to calculate purge quantity. The water level indicator probe was decontaminated between wells first with a 10 percent methanol and distilled water solution followed by a distilled water rinse.

Table I-1 RESIDENTIAL WELL SAMPLING

Sample Number	Residence	Tap Location	Sample <u>Time</u>	рН
RW-01	Ray Hubley W18672 CTH Z	Outside tap next to front door	1120	7.9
RW- 02	Tom Marshall W8616 Lytle Road	Outside tap on east side of house	1140	7.5
RW-03	Mary Fritz W8602 Lytle Road	Outside tap on east side of house	1152	7.7
RW-04	Scott Davis W8529 CTH Z	Outside tap on south side of house	1731	7.7
RW-05	Don Johnson W8451 North Shore Drive	Outside tap on each side of house	1407	7.7
R₩- 06	Fred Johnson W8463 North Shore Drive	Inside faucet in laundry room	1423	7.8
RW-07	Kathy Kellicut W8346 Homestead Drive	Outside tap next to front door	1523	8.1

.

.

(

GLT866/51

.

The thickness of the floating naphtha layer was measured in wells on or near the landfill with a clear bailer. Table I-2 identifies the wells where the clear bailer was used. The bailer was slowly lowered about 1 foot into the water table. It was withdrawn and the thickness of the floating layer recorded. The floating layer was found to be either 1/8 inch thick or absent in all wells sampled.

Dedicated teflon tubing was placed in all wells. In wells where the hydraulic lift was less than 18 feet, a peristaltic pump was used for purging the well and collecting all samples except the VOC sample. An 18-inch section of silicone tubing was secured to the teflon tubing and dedicated to the well for use in the peristaltic pump head. Wells with a hydraulic lift over 18 feet were purged and sampled with a Waterra pump from Solinist. The pump consists of a small diameter PVC check valve screwed to the bottom of the teflon tubing. Water is pumped by quickly lowering and raising the tubing. The pump achieved a pumping rate of 1 to 2 gpm.

The wells were purged of five well volumes from near the top of the water level. To remove stagnant water in the well, the tubing was temporarily raised during purging until air was drawn in and then slowly lowered.

Following purging, a glass jar was partially filled and pH, conductivity, and temperature were measured immediately as specified in the QAPP. Next, organic and SAS sample bottles were filled. The last bottle to be filled using the pumps was the 1-liter plastic bottle for the metals sample. Once filled, this sample was immediately filtered at the well through a 0.45-micron filter. The filtering pump was decontaminated with a dilute nitric acid solution and rinsed with distilled water.

VOA samples were obtained using dedicated 3-foot PVC bailers. The bailer was lowered, raised, and emptied twice before a sample was obtained. Each VOA vial was filled with a separately bailed sample. Following sampling, the bailer, nylon rope, and tubing were replaced in the well and secured to the well cap.

Duplicate samples were obtained by twice filling the number of bottles in the same manner described above. Field blanks were obtained for both sampling techniques. In each case, a 5-foot section of tubing was used with either a $1\frac{1}{2}$ foot section of silicone tubing or the PVC foot valve. HPLC water was drawn through the tube for the organic sample. Distilled water was used for the SAS and metals sample. The metals blank sample was also filtered. The VOA blank sample was obtained by pouring HPLC water into a 3-foot PVC bailer and then into the VOA vials.

Samples were stored in coolers before packaging. The samples were packaged and shipped each afternoon. Table I-2 presents field measurements for Round 1 sampling.

Table I-2 GROUNDWATER SAMPLING--ROUND 1

Well <u>Number</u>	Depth to Water Table (ft)	Water Table Elevation (feet MSL)	Water Purge Volume (gallons)	Samp) Date and		рн	Conductivity (umhos/cm ² @ 25°C)	Temperature (°C)	Pure Phase Thickness (inches)
NH1S	19.13	644.10	5.2	4/19/89	1350	7.2	385	14	
MW1H	19.35	644.12	46.0	4/19/89	1310	7.5	250	15	
MN2S	20.33	644.55	6.2	4/18/89	0840	6.8	1,500	10	0"
MH2M	20.94	643.99	50.0	4/18/89	1050	6.7	675	12	
MH2D	21.05	644.02	96.0	4/18/89	1200	7.5	270	12	
MH3S ^a	12.50	643.94	13.0	4/17/89	1511	6.6	560	11	1/8 [#]
MN3N ^a	11.58	643.85	57.0	4/17/89	1702	7.1	510	14	
MN3D ^a	12.52	643.94	109.0	4/18/89	0949	7.4	505	12	
isias	21.16	643.85	4.0	4/18/89	1425	6.7	660	13	0" sheen present
MH5S	15.54	643.92	8.6	4/18/89	1405	6.6	695	11	0"
MH6H	4.83	643.63	62.0	4/18/89	1604	7.5	380	13	
MH7H	18.58	643.93	50.0	4/18/89	1600	7.6	370	13	
MN85 ^a	18.15	643.73	5.7	4/19/89	0910	7.0	500	12	
Meish	18.90	643.73	47.0	4/19/89	1044	7.5	405	12	
Miled_	17.89	643.76	97.0	4/19/89	1421	7.5	350	13	
HN9H ^a _	12.53	643.57	55.0	4/20/89	1100	7.6	335	11	
MH10M ^a	13.07	643.44	56.0	4/20/89	0930	7.2	625	11	
M6711M	13.55	643.62	46.0	4/20/89	0940	7.4	390	11	
NN12S	19.14	643.81	5.5	4/19/89	0740	7.3	320	8	0 ^w
NW13S	20.86	644.01	4.1	4/19/89	0830	7.1	305	8	
Mi145,	13.44	642.75	10.0	4/20/89	0815	6.5	390	11	0" sheen present
HN20S			40.0	4/20/89	1200	7.2	945	12	"Old Miller" well
MN20DA			(15 mins.)	4/20/89	1040	7.2	530	11	"New Miller" well
MN215 ^d			10.0	4/20/89	1100	7.1	714	10	Ackerman Garden well
B1	19.28	644.14	13.0	4/19/89	1120	7.1	345	11	
B2	23.30	643.98	25.0	4/19/89	1030	6.8	840	12	0"
B3	17.20	643.89	9.8	4/19/89	0925	6.9	625	11	0"
B4S	12.82	643.34	7.3	4/18/89	1051	7.6	970	11	1/8"
B4D B5 ^C	12.75 18.12	643.87 643.88	32.0	4/18/89	0918	7.4	515	11	

.

^aPeristaltic pump used for sampling all components except VOCs. Blank indicates pure phase not measured. No sample obtained, well did not recharge. Residential wells on Ackerman property.

(

GLT866/52

Round 2

Water levels were taken the morning of June 12 by Paul Boersma and Chris Lawrence. The measurement procedure was the same as that for Round 1. The thickness of the naphtha layer was not measured during Round 2. An oil sheen on the purge water was noted for three wells (see Table I-2).

Purging and sampling procedures were as described for Round 1 with the following exception. In wells where the peristaltic pump was used for purging, the dedicated 18-inch silicone tubing was removed before sampling and a PVC foot valve was placed on the teflon tubing. Sampling of the well for all components other than VOCs was then performed by quickly lowering and raising the tubing. As a result all wells were sampled using the same procedure. Table I-3 presents the field measurements for Round 2 sampling.

SURFACE WATER AND SEDIMENT SAMPLING

PURPOSE AND SCOPE

Surface water and sediment sampling were performed to determine whether contaminants from the site had migrated to surface waters near the site. Twelve locations were sampled on June 12, 1989.

Sampling personnel were:

- o Phil Smith, CH2M HILL/Sample Team Leader
- o Kevin Adler, U.S. EPA/Sample Team Member

SAMPLING PROCEDURES

Surface water sampling was begun at the most downstream locations and proceeded upstream to the background sample locations. Sample bottles for surface water were filled by submerging the bottles as they filled at mid-depth in the water column. The surface water sample was collected before any sediment was disturbed.

Samples in swampy areas or areas of ponded water were taken within a few feet of the dry bank nearest the site. Samples in the main channel (SW-03, SW-05, SW-11 and SW-12) were taken within 1 foot of the eastern bank. An extra sample jar was filled with water for field measurements of pH, conductivity, and temperature. Field measurements were made within 5 minutes of sample collection. Duplicate surface water samples were taken at SW-11 and SW-12. A

Table I-3 GROUNDWATER SAMPLING--ROUND 2

Well Number	Depth to Water Table (ft)	Water Table Elevation (feet MSL)	Water Purge Volume (gallons)	Samp Date and		рн	Conductivity (unahos/cm² @ 25°C)	Temperature (°C ^a)
MU1S	18.98	644.25	5.2	6/14/89	1030	7.3	265	11
MW1M	19.22	644.25	46.0	6/14/89	1120	7.5	160	13
MW2S	20.16	644.72	9.0	6/12/89	1445	6.2	1,965	13
MW2M	20.67	644.26	50.0	6/12/89	1610	6.0	570	17
MW2D	20.79	644.28	96.0	6/12/89	1645	6.1	250	12
MH3S	12.35	644.09	13.0	6/13/89	0930	6.6	615	15
MW3M	11.36	644.07	57.0	6/13/89	0950	7.1	605	14
MW3D	12.30	644.16	110.0	6/13/89	1010	7.5	430	17
MH4S	20.90	644.11	4.0	6/13/89	0825	5.9	650	17
MU5S	15.35	644.11	9.0	6/14/89	1631	5.8	790	14
MW6M	4.66	643.80	62.0	6/14/89	0845	6.5	485	
MW7M	18.28	644.23	50.0	6/13/89	0941	6.6	320	13 14
MW8S	17.93	643,95	6,0	6/13/89	1530	7.0	540	14
MN8M	18.66	643.97	48.0	6/13/89	1500	7.6	360	15
MUSD	17.65	644.00	97.0	6/14/89	1025	6.4	350	
MUSH	12.35	643.75	56.0	6/14/89	1405	7.1	350	13
MULOH	12.93	643,58	57.0	6/14/89	1145	6.4	650	12
MW11M	13.21	643.96	53.0	6/14/89	1610	6.3	320	14
MU125	18.87	644.08	5.6	6/13/89	1128	7.1	345	12
MW13S	20.55	644.32	4.3	6/13/89	1055	6.5	240	14
HI-1145	13.24	642.95	10.0	6/14/89	0925	6.8	405	17
B1	19.03	644.39	14.0	6/13/89	1355	6.5		12
B 2	23.12	664.16	25.0	6/13/89	1500	6.3	350	18
B3	16.93	664.16	10.0	6/14/89	0825	7.0	710	16
B4S	12.60	643.56	7.0	6/13/89	1110	6.7	585	10
B4D B5	12.58	644.04	33.0	6/13/89	1120	7.3	925 550	16 15

(

.

;

^aNo sample taken. Well does not recharge.

.

GL**T866/**53

blank sample was prepared by pouring HPLC water directly into the sample jars for all samples except the metals sample. Distilled water was used for the metals blank. All surface water samples were unfiltered. Samples were preserved as described in the QAPP.

Sediment samples were obtained at the same locations as the surface water samples immediately following surface water sampling. A stainless steel spoon was used to collect sediment from the depth interval of 0 to 6 inches. Sediment was spooned into the jars until full. The jars were capped and stored in a cooler before packaging. Duplicate sediment samples were taken at locations SD-11 and SD-12. A field blank was prepared by spooning laboratory grade diatomaceous earth into sample jars. The stainless steel spoon was decontaminated with solutions of trisodium phosphate, 10 percent methanol, and distilled water between each sample.

Field measurements for the surface water and sediment samples are summarized in Table I-4.

NONAQUEOUS PHASE SAMPLING

PURPOSE AND SCOPE

Soil samples were collected from the unsaturated zone immediately above the water table (approximately 15 feet) to assess the extent and nature of nonaqueous phase contamination along the southwestern edge of the landfill. RI data indicated that nonaqueous phase contamination floating on the water table may have been smeared through the soils that come in contact with seasonal water table fluctuations. Five samples (SSB-01 through SSB-05) were collected on September 20, 1989.

Sampling personnel were:

- o Jeffrey Lamont/CH2M HILL/Sample Team Leader
- o Paul Boersma/CH2M HILL/Sample Team Member

SAMPLING PROCEDURES

Soil borings were advanced from 6 to 10 feet below ground using a "Little Beaver" power auger. The auger is powered by a cart mounted gasoline engine developed for shallow boring work.

The auger was first used to advance the borehole to its target depth for sampling. It worked well in the upper 3 to 4 feet of soil, but was quick to bind upon encountering obstructions such as sticks and rocks. When the auger could

Table I-4 SURFACE WATER AND SEDIMENT SAMPLING

Location®	<u>Coordi</u>	Inates	Description	Sample 	<u>pH_</u>	Conductivity (umhos/cm ² @ 25°C)	Temperature (°C)
SH- 01	900E	1900S	Swampy area. Water depth approx. 6".	0950	6.9	300	15.5
SM-02	500E	16005	Swampy area. Water depth approx. 12".	1010	6.5	125	19.0
SH-03	500N	17008	Main channel. Sandy sediment.	1105	7.1	117	20.0
SW-04	80E	850 S	Ponded water approx. 6" in occasional channel. Flow >0.1 cfs.	1030	7.0	125	19.0
SH- 05	480W	3108	Main channel, sandy sediment.	1330	7.0	125	19.0
SN-06	220 0	2205	Swampy area. Water depth approx. 12".	1400	6.3	190	19.0
SM –07	380W	240N	Ponded water approx. 12 ⁴ in backwater of main channel. No flow.	1430	6.5	122	20.0
SH-08	370W	330N	Ponded water approx. 6 ^N in occasional channel.	1450	6.5	166	20.0
SW-09	360W	440N	Ponded water approx, 12" in occasional channel.	1500	6.9	170	19.0
SW- 10	280W	650N	Ponded water approx. 12" in occasional channel.	1520	7.0	233	19.0
SH- 11	50W	1070N	Main channel, sandy sediment.	1640	6.9	122	20.0
SW-12	130W	1000N	Main channel, sandy sediment.	1710	7.0	122	20.0

(

.

^aSediment locations are identical to surface water locations

(

GLT866/54

no longer be advanced, a 2-inch hand auger was used. Soil samples were collected when the desired depth was reached. The hand auger was then decontaminated with a series of TSP, methanol, and distilled water rinses. After sampling was completed boreholes were filled with their cuttings. Boreholes were monitored with an HNu during and after being completed to their target depth.

Sample analysis included Total Petroleum Hydrocarbons (TPH) for SSB-01 through SSB-05, Benzene, Toluene, Ethylbenzene, and Sylenes (BTEX) compounds for SSB-02, SSB-04, and SSB-05, and the complete Target Compound List (TCL) for SSB-03 and a partial TCL for samples SSB-01 and SSB-04. Results are presented in Appendix J.

GLT913/073.50

Appendix J ANALYTICAL RESULTS AND DATA VALIDATION

GLT913/035.50-10

.

Appendix J ANALYTICAL RESULTS AND DATA VALIDATION

INTRODUCTION

This appendix presents the data validation for the Onalaska RI/FS CLP laboratory data and the analytical results (presented in Attachment A). [Note to Reviewer: Round 2 groundwater, surface water and sediment results are not included in this draft]. Data validation is the technical review of a data package as stipulated in the RI/FS Quality Assurance Project Plan.

Before the laboratory data are sent to CH2M HILL, the U.S. EPA Sample Management Office receives the data packages from the participating laboratories and distributes them to the Environmental Sciences Assistance Team (ESAT) of the Central Regional Laboratory (CRL). The ESAT reviews the data resulting from regional sampling efforts using a document that describes procedures for Contract Compliance Screening (CCS) of Contract Laboratory Program (CLP) IFB contract reports and their QC deliverables (1,2). The CCS procedures provide assessment of data in terms of both completeness and technical compliance with contract requirements. A CCS assessment worksheet, review narrative, and summarized analytical data are routed to CH2M HILL.

CH2M HILL further reviews the data using the Functional Guideline documents (3,4). The document offers guidance in laboratory data evaluation and validation. For methods not listed in the functional guidelines a procedure parallel to the guidance document was used. Data noted in the review that should be qualified are flagged with the appropriate symbol. Results for field duplicates and field blanks are also reviewed and the data further qualified. Finally, the data set as a whole is examined for consistency, anomalous results, and whether the data are reasonable for the samples involved.

The site investigation samples were analyzed for semivolatiles, volatiles, pesticides/polychlorinated biphenyls (pesticide/PCB), metals, and various wet chemistry parameters. The following discussion highlights non-compliant data and their effect on specific samples or the whole data set.

The data review results are discussed in the following order: round one sampling, round two sampling, nonaqueous phase sampling.

Qualitative Symbols (Flags)

- J = used when an analyte is present below the required detection limit or the values are estimated because QA/QC measures were not met.
- B = used when an analyte is also present in the associated laboratory blank or field sample blank as well as the sample.

R = used when the reported value is unusable because QA/QC measures were not met.

ROUND ONE SAMPLES

SEMIVOLATILE ANALYSIS

Two matters are discussed in general which were regularly noted in the data review for semivolatile analysis. They are holding times and sample reanalysis for contract compliance.

A sample prepared for analysis which exceeded the required holding times may not be representative of its original condition. The analyte concentration may have been reduced or the analyte has become non-detectable. For samples exceeding holding time criteria the data user should not use non-detectable values (i.e., values reported less than the contract required quantification limits, or CRQL) as an indication of the absence of an analyte. Additionally, analyte concentration values reported greater than CRQL may be biased low.

Often times samples are re-extracted and reanalyzed to meet CLP SOW (5) contract compliance and reported as unique samples. These analyses aid the data reviewer during evaluation of the data set; however they are not required for the end data user and are excluded from the final result tables unless they provide additional information. In this case, the reanalyses either supplement or supersede the original analysis.

Case 11542: Eight low level concentration soil samples (OTR numbers EBP00 to EBP09) were sent to CEIMIC laboratory.

Internal standard Perylene-d12 for soil sample EBP02 was above acceptance range. Analytes quantified with this internal standard are flagged J, estimated.

No target compound list (TCL) compounds were detected in field blank sample EBP06.

Field duplicate samples EBP03 and EBP04 did not contain analytes above the CRQL.

Case 11639: Seven low-level concentration soil samples (OTR numbers EBP10 to EBP16) were sent to Western Research Institute (WRI).

Field blank sample EPB10 contains the common contaminant bis(2ethylhexyl)phthalate. All samples containing this contaminant less than 10 times the field blank value are flagged B, blank contamination.

Field duplicate samples EPB11 and EBP12 do not contain analytes above the CRQL. Sample EBP11 has 2 TCL compounds less than CRQL and 10 TICS. Sample EBP12 has 2 TCL compounds less than CRQL and 17 tentatively identified compounds (TICS). No qualification of the data set was applied

based on field duplicate results. The analytes present below CRQL and the TICS suggest agreement among the field duplicate.

Case 11790: 20 low-level concentration water samples (OTR numbers EBP17 to EBP36) were sent to S-Cubed laboratory.

Holding time exceeded acceptable range for samples EBP17, EBP21RE, EBP22RE, EBP26RE, EBP28RE, EBP31RE, EBP34RE, and EBP35RE. For sample EBP17 all analyte concentrations reported above CRQL are flagged J, estimated; nondetects are unusable. Samples denoted with the -RE suffix are qualified in a following discussion.

GC/MS initial calibration and continuing calibration outliers were reported; however, samples did not contain the analytes affected by the outliers.

Acid fraction surrogate recoveries were below acceptable range for samples EBP21, EBP22, EBP26, EBP31, EBP33, EBP34, and EBP35. Re-extraction and analysis of these samples provided similar surrogate results; therefore, the surrogate recovery difficulties are attributed to matrix interference. Acid fraction analytes in these samples are flagged J, estimated; the nondetects are unusable. Only the original analyses are presented in the final sample result tables.

Acid fraction surrogate recoveries were below acceptable range for sample EBP33. EBP33 was used for the MS/MSD which also had surrogate recoveries below the acceptance range. Sample EBP33 is qualified as discussed in the preceding paragraph.

Base/neutral (BN) fraction surrogate recoveries were below acceptable range for sample EBP28. Re-extraction and analysis provided acceptable BN fraction surrogates but the acid fraction surrogates were below the acceptance range. BN fraction results from EBP28RE and acid fraction results from EBP28 are reported. All analytes greater than CRQL are flagged J, estimated and the nondetects are unusable.

Matrix spike recoveries were below acceptance range for the acid fraction compounds 4-chloro-3-methylphenol and 2-chlorophenol. In addition two other acid fraction spiking compounds were at the lower end of the acceptable range. These results are consistent with the low surrogate recoveries representative of the sample. Low recoveries of acid fraction compounds are suspected for samples reporting low surrogate recoveries and have been previously qualified. Precision criteria for 1,4-dichlorobenzene were outside of acceptable range. No qualification of the data set has been applied based on matrix spike recovery data.

No TCL compounds were reported above CRQL in field duplicate samples EBP18 and EBP19 or field duplicate samples EBP24 and EBP25.

Case 11790: 15 low-level concentration water samples (OTR numbers EBP37 to EBP41, EBP49, EBP53 to EBP58, and EBP60 to EBP62) were sent to S-Cubed laboratory.

Holding time was exceeded for sample EBP55 and all analytes reported above CRQL are flagged J, estimated. Four samples which were re-extracted due to poor surrogate performance did not meet holding time requirements and are qualified below.

Laboratory blank SBLK03 contains the common contaminant di-n-butyl phthalate. Samples associated with this blank and containing this analyte less than 10 times the blank concentration are flagged B, blank contamination.

No TCL compounds were detected in the field duplicate samples EBP56 and EBP57.

Acid fraction surrogate recoveries for samples EBP39, EBP53, EBP60, and EBP62 were below the acceptable range. These samples were re-extracted and analyzed. The reanalysis results paralleled the original results; therefore, the low recoveries are attributed to matrix influence. Only the original results are presented in the final sample concentration tables. Because of the low surrogate recoveries, results for the acid fraction compounds are not useable.

Case 11790: 10 low-level concentration soil samples (OTR numbers EPB42 to EBP48 and EBP50 to EBP52) were sent to S-Cubed.

Holding times were exceeded for the re-extraction of samples EBP43, EBP51, and EBP52. No qualification of these samples was necessary, because the original sample analyses are reported in the final sample concentration tables.

GC/MS initial calibration and continuing calibration outliers were reported; however, samples did not contain the analytes affected by the outliers.

Laboratory blanks contain TIC compounds including benzaldehyde. No TCL compounds were detected in the field blank sample EBP48. Samples containing benzaldehyde at less than 5 times the associated laboratory blank value are flagged B, blank contamination.

Sample EBP51 was re-extracted and analyzed because two acid fraction surrogates were above the acceptance range. The reanalysis produced similar results; therefore, all acid fraction compounds are flagged J, estimated.

Matrix spike analyses were performed at twice the contract specified concentration level. No qualification of the data set is applied because matrix spike recoveries were within acceptance range and the deviation is inconsequential.

Field duplicate samples EBP50 and EBP51 report similar TCL compounds but at significantly different concentrations. The analyses of these samples encountered dissimilar analytical difficulties, either surrogate or internal standard deficiencies. Differences in concentration can be explained by the deficiencies; however, the dissimilar difficulties suggests the deficiencies were an outcome of poor laboratory technique. Compounds associated with the acid fraction in field duplicate samples are flagged J, estimated. Other samples affected by the field duplicates have been previously qualified.

Internal standard performance of 1,4-dichlorobenzene-d4 was below acceptance range for samples EBP43, EBP50, and EBP52. Subsequent re-extraction and reanalysis of these sample produced similar internal standard performance results and surrogate recoveries below acceptance range. The original analysis is reported because of the unacceptable surrogate recoveries in the reanalysis. Analytes reported above CRQL and associated with 1,4-dichlorobenzene-d4 are flagged J, estimated.

VOLATILE ORGANIC ANALYSIS

Samples which contain high concentrations of TCL compounds are frequently reanalyzed using a diluted aliquot. Reanalysis of the diluted sample brings analyte concentrations within instrument calibration range but the associated laboratory blank may also contain analytes as a contaminant at the same concentration level. The analyte is present in the sample as demonstrated by the first analysis; however, the analyte would be qualified as blank contamination in the diluted analysis. In these instances, the concentration value that exceeds the calibration range is reported and qualified J, estimated.

The laboratory diluted and reanalyzed samples to determine analyte concentration within the instrument calibration range or meet contract compliance and submitted individual results for each analysis. For purposes of data end use, only one sample profile is needed. So, the multiple analyses are combined using the following guideline to use all available information and maintain consistency. First, values from the undiluted sample when the analyte was within the calibration range of the instrument are reported. Secondly, values from the greatest diluted analysis, within calibration range and not affected by qualifiers, are reported. Thirdly, any reasonable value is reported.

Case 11542: Eight low-level concentration soil samples (OTR numbers EBP00 to EBP09) were sent to CEIMIC laboratory.

Matrix spike precision data for 1,1-dichloroethane were outside of control limits. The sample set is not qualified based on the precision deficiency.

The field blank samples contained methylene chloride and acetone. Additionally, the laboratory blank analysis for VBLK01 contained acetone and 2-butanone and VBLK02 contained acetone. Samples containing methylene chloride at less than 10 times the field blank concentration and acetone or 2butanone at less than 10 times the associated laboratory blank are flagged B, blank contamination.

Case 11639: Seven low-level concentration soil samples (OTR numbers EBP10 to EBP16) were sent to Western Research Institute.

Field blank sample EBP10 contains acetone and benzene. No TCL compounds were detected in the laboratory blanks. Samples containing these contaminants

at less than 10 times the acetone value and less than 5 times the benzene value are flagged B, blank contamination.

Field duplicate samples EPB11 and EPB12 both have three TLC compounds above CRQL that meet precision criteria. Additionally, EBP11 has xylene and four low-concentration TICs, where EBP12 has three low-concentration TICS. No qualification of the data set is made based on field duplicate results.

Case 11790: 20 low-level concentration water samples (OTR numbers EBP17 to EBP36 were sent to S-Cubed laboratory.

GC/MS initial calibration and continuing calibration outliers were reported; however, samples did not contain the analytes affected by the outliers.

Toluene was found in laboratory blank VBLK01 and VBLK02 and field blank sample EBP27. Xylene was found in the field blank sample EBP27. Samples containing toluene less than 10 times their associated laboratory blank value or xylene less than 5 times the field blank value are flagged B, blank contamination.

Field duplicate samples EBP18 and EBP19 are not comparable. Sample EBP18 contains TCL compounds at concentrations greater than CRQL while sample EBP19 does not report them or reports them at concentrations much less than EBP18. Three facts suggest laboratory results for the undiluted analysis of EBP18 result from cross contamination and are not real. First, Sample EBP18 was analyzed immediately after EBP17, which contains high concentrations of volatiles, without taking steps to decontaminate the GC system. This is the source of cross contamination. Secondly, later analysis of a diluted aliquot of EBP18, when the GC system was operating free of contamination, did not contain the analyte concentrations reported in the undiluted analysis. Thirdly, field duplicate EBP19 was not consistent with the results for undiluted analysis of EBP18. For these reasons all analytes associated with the undiluted analysis of EBP18 and found in sample EBP17 (analyzed preceding EBP18) are unusable. Data from EBP19 should be used to evaluate groundwater from this well. Field duplicate samples EBP24 and EBP25 do not contain analytes above CRQL. No qualification of the data set is applied based on field duplicate data.

Case 11799: 15 low-level concentration water samples (OTR numbers EBP37 to EBP41, EBP49, EBP53 to EBP58, and EBP60 to EBP62) were sent to S-Cubed laboratory.

Surrogate recovery for 1,2-dichloroethane-d4 was 1 percent above acceptance range. No qualification was applied due to the marginal deficiency.

Toluene was present in the laboratory blanks VBLK03 and VBLK04. Field blank sample EEBP49 contains the contaminant chloroform. Samples containing the above contaminants at less than 10 times the toluene values from the associated laboratory blank and less than 5 times the chloroform value from the field blank are flagged B, blank contamination. **Case 11790:** 10 low-level concentration soil samples (OTR numbers EPB42 to EBP48 and EBP50 to EBP52) were sent to S-Cubed.

Calibration outliers were reported for acetone and xylene. Samples reporting these analytes are flagged J, estimated.

Laboratory blank VBLK01 contains methylene chloride, 2-butanone, toluene, and 10 TICs. Laboratory blank VBLK02 contains 2-butanone. Laboratory blank VBLK03, a medium level blank, contains methylene chloride and 2-butanone. The field blank sample EBP48 contains methylene chloride, carbon disulfide, 2butanone, and xylene. Samples containing methylene chloride or 2-butanone less than 10 times the value found in the field blank are flagged B, blank contamination. Samples containing carbon disulfide or xylene less than 5 times the value found in the field blank are flagged B, blank contamination. Samples associated with VBLK01 and contain toluene at less than 10 times the value reported in the blank are flagged B, blank contamination.

The matrix spike recoveries for toluene (0 percent) were below acceptance range. The unspiked sample contains 89 μ g/Kg toluene and was spiked with 50 μ g/Kg toluene. Only 49 mg/Kg was recovered. The GC system was inefficient but demonstrated an ability to recover toluene. For this reason samples containing toluene are flagged J, estimated, rather than unusable.

Field duplicate samples EBP50 and EBP51 contain the same TCL compounds but at different concentrations, a result of using different methodologies for analysis. The low-level analysis of sample EBP50 found concentrations of TCL compounds which exceeded the calibration of GC system. The sample was reanalyzed as a medium level volatile. Sample EBP51 also contained TCL compounds at levels exceeding the GC system calibration but was reanalyzed at a diluted level within the calibration range. No qualification was applied to the data set based on field duplicate sample results.

Internal standard performance was below acceptance range for sample EBP50; however, this sample was reanalyzed as a medium level and internal performance was acceptable.

PESTICIDE/PCB

Case 11542: Eight low-level concentration soil samples (OTR numbers EBP00 to EBP09) were sent to CEIMIC laboratory.

Matrix spike recoveries for heptachlor were above acceptable range. Samples reporting this compound are flagged J, estimated value.

Surrogate recovery were above acceptable range for EBP00, EPB01, EBP02, EBP04, EBP07, and EBP09. Acceptable surrogate recovery was reported in the laboratory blank. The lab blank data suggests a matrix effect was responsible for the high sample surrogate recoveries. Analytes reported greater than the CRQL in these samples are flagged J, estimated.

Case 11639: Seven low-level concentration soil samples (OTR numbers EBP10 to EBP16) were sent to Western Research Institute (WRI).

All QA/QC measures are within acceptable range and the data can be used without qualification.

Case 11790: 20 low-level concentration water samples (OTR numbers EBP17 to EBP36) were sent to S-Cubed Laboratory.

Initial calibration linearity for p,p'-DDT and Aldrin were outside acceptable range. Analyte concentrations in the data set greater than CRQL are flagged J, estimated.

Surrogate recovery for sample EBP22 was above acceptance range. No TCL compounds are reported; therefore, no qualifying flag was applied.

The MS/MSD analyses were spiked at a level 10 times greater than SOW requirements. MS recoveries were universally lower than MSD recoveries which is consistent with the surrogate recovery differences resulting in a seemingly low precision. No qualification of the data set is applied based on matrix spike data.

Case 11790: 15 low concentration water samples (OTR numbers EBP37 to EBP41, EBP49, EBP53 to EBP58, and EBP60 to EBP62) were sent to S-Cubed Laboratory.

The matrix spikes were within the acceptable range but the relative percent difference for lindane, heptachlor, and endrin were outside the acceptance range. No qualification of the data was supported by this deficiency.

Surrogate recovery for EBP61 and EBP62 was above acceptance range. No TCL compounds were detected in these samples; therefore no qualification of the data is applied.

The laboratory blank PBLK5 contains gamma BHC. No TCL compounds were reported in the field blank. All samples containing gamma BHC at less than 5 times the laboratory blank value are flagged B, blank contamination.

The chromatographic system used to quantify pesticides experienced difficulty with endrin breakdown and continuing calibration check outliers. No qualification of the data set was applied because no TCL compounds were detected in the samples.

Case 11790: 10 low-level concentration soil samples (OTR numbers EPB42 to EBP48 and EBP50 to EBP52) were sent to S-Cubed Laboratory.

The GC system experienced surrogate compound (dibutylchlorendate, or DBC) retention shifts. The acceptable limit is equal to or less than 0.3 percent and this was exceeded by no more than 0.2 percent (0.5 percent total). Using DBC for evaluation of retention shift represents a "worst case" scenario and does not infer unacceptable GC performance.

Gamma BHC was found in the laboratory blanks PBLK01, PBLK02, and field blank EBP48. Samples containing this contaminant less than 5 times the value found in the associated field blank are flagged B, blank contamination.

Surrogate recoveries (199 to 999 percent) were above acceptable range for all samples and laboratory blanks, except EBP50. The laboratory case narrative cites sample interference as the cause. All reported analytes, except those in EBP50, are flagged J, estimated.

TOTAL METALS

Case 11542: 10 low-level concentration soil samples (ITR numbers MEBC00 to MEBC09) were sent to Wilson Laboratory.

Matrix spike recoveries for lead and silver were above acceptable range. Samples containing these elements are flagged J, estimated value.

Case 11639: Seven low-level concentration soil samples (ITR numbers MEBC10 to MEBC 16) were sent to Nanco Laboratory.

Matrix spike recoveries for antimony, copper, silver, and zinc were below the acceptance range. Acceptable post-digestion matrix spike for copper (101 percent) suggests the low pre-digestion spike recovery was matrix related. Low recoveries indicate possible elevation of detection limits. All samples containing these elements are flagged J, estimated value.

The matrix spike and duplicate audits for mercury were performed on the field blank. Using the field blank does not present a true reflection of matrix influence and the bias is unknown. Therefore all mercury data reported greater than CRDL are flagged J, estimated due to unknown precision and bias.

Duplicate analysis for copper was outside of control limits. Copper results were previously qualified.

CCS reports interference of aluminum, iron, and magnesium. Samples reporting these elements are flagged J, estimated values.

Field blank sample MEBC10 was found to contain the elements aluminum, arsenic, copper, iron, lead, magnesium, mercury, and zinc. No qualification is made for the field blank because the quality of the soil for use as a blank control is unknown.

Field duplicate sample results (MEBC11 and MEBC12) compare acceptably for elements detected greater than CRDL, except copper. Copper was previously qualified.

Case 11790: 20 low-level concentration water samples (ITR numbers MEBC17 to MEBC36) were sent to Rocky Mountain Analytical Laboratory.

Matrix spike recovery for iron was above acceptance range and selenium (0 percent) was below acceptance range. Samples reporting iron are flagged J, estimated value. Samples reporting selenium greater than IDL are flagged J, estimated value, and less than CRDL are unusable.

CCS reports the Laboratory Control Sample for arsenic and selenium was below acceptance range. All samples reporting arsenic are flagged J, estimated value. Selenium was previously qualified.

The interference due to lead and arsenic was noted by the CCS. All lead results are flagged J, estimated value. Arsenic was previously qualified.

Field blank sample MEBC27 was found to contain the elements barium, calcium, iron, magnesium, manganese, potassium, and zinc. No qualification is made for the field blank because the quality of the water for use as a blank control is unknown.

Case 11790: 15 low-level concentration water samples (ITR numbers MEBC37 to MEBC41, MEBC49, MEBC53 through MEBC58, and MEBC60 through MEBC62) and 10 low-concentration soil samples (MEBC42 through MEBC48 and MEBC50 through MEBC52) were sent to Rocky Mountain Analytical Laboratory. The water and soil analyses are separated to simplify discussion.

Water Analysis

The serial dilution for zinc indicates interference. Samples containing zinc are flagged J, estimated. The preparation blank contained zinc. Samples reporting zinc at less than 5 times the amount found in the preparation blank are flagged B, blank contamination.

Field blank samples MEBC49 and MEBC55 contained lead and zinc. No qualification was made for the field blank because the quality of the water for use as a field blank is unknown.

The laboratory flagged arsenic, selenium, and thallium due to interference. Samples reporting these elements greater than CRDL are flagged J, estimated value.

Soil Analysis

Matrix spike recovery for antimony was below acceptable range and for manganese was above acceptable range. Samples do not contain antimony above the IDL; however, detection limits may be elevated due to the low recovery. Samples reporting manganese above CRDL are flagged J, estimated value.

Element interference was noted for arsenic, potassium, and thallium. Samples containing these elements are flagged J, estimated value.

The preparation blank contained zinc. Samples reporting zinc at less than 5 times the amount found in the preparation blank are flagged B, blank contamination.

Field blank sample MEBC48 contained aluminum, barium, calcium, iron, potassium, and zinc. No qualification was made for field blank contamination because the quality of the soil for use as a field blank is unknown.

Field duplicate samples MEBC50 and MEBC51 meet precision criteria for seven TCL components. Silver data does not meet precision criteria and are flagged J, due to poor precision.

Case SAS4558E: 10 low-level concentration water samples (SAS numbers 4558E35 to 4558E44) were sent to JTC Environmental Consultants.

Calibration verification outliers were below acceptance range for barium, cadmium, and lead. Laboratory Control Samples were below acceptable range for mercury and arsenic. Matrix Spike recoveries were below acceptance range for cadmium, mercury, and selenium. Matrix Spike recoveries were above acceptable range for lead. Since all analytes were detected below CRDL and flagged J, estimated, no qualification is applied.

GENERAL CHEMISTRY PARAMETERS

Review of the Special Analytical Services (SAS) chemistry parameters does not follow the form by form review used in evaluation of the organic and inorganic parameters. Instead a review procedure consisting of evaluating holding times, initial calibration or calibration verification, continuing calibration, matrix spike analyses, and blank versus sample results was implemented.

Case SAS4558E: 32 low-level concentration water samples (SAS numbers 4558E01 to 4558E16 and 4558E17 to 4558E36) were sent to Rocky Mountain Analytical Laboratory for analysis of Alkalinity, Ammonia and Nitrate + Nitrite, BOD, Chloride, COD, Oil & Grease, Sulfide, Sulfate, TOC, Total Phosphorous, TDS, and TSS.

The samples were delivered as two separate groups. For ease of discussion the two delivery groups are combined and the discussion separated by analysis type.

ALKALINTTY

Holding times were exceeded in some samples; however no qualification is applied based on the deficiency. All other QA/QC measures were met and the data can be used without qualification.

AMMONIA AND NITRATE + NITRITE

The field blank contains Nitrate + Nitrite. Samples 4558E19, E21 to E24, and E32 are flagged B, blank contamination.

BOD

The depletion of the unseeded dilution water blanks exceeded the limits for BOD. All BOD concentrations are flagged J, estimated.

Field duplicates samples 4558E07 and 4558E08 were outside acceptable precision range.

CHLORIDE

The primary SAS method was not used; instead an acceptable alternative method was performed. All data are acceptable for use.

COD

The matrix spike recovery is above acceptable range. COD data for samples 4558E18 to E21, E23, E24, E27, E28, and E32 are flagged J, estimated.

OIL AND GREASE

Holding time was exceeded for all samples. Matrix spike recovery (130 percent) was above acceptable range. The field blank contains oil and grease. All data should be flagged J, estimated. The detection limit may be elevated due to the missed holding times.

SULFATE

The primary SAS method was not used; instead an alternative method was performed. No information supports the exclusion of the data; therefore, the data are acceptable for use.

SULFIDE

Holding times were exceeded for all samples. No concentrations were reported above detection limits. All data should be considered unusable for determination of the presence or absence of sulfide.

TOC

All QA/QC measures were met and the data are acceptable for use.

TOTAL PHOSPHORUS

The lab did not use the primary SAS method; however, the method used is acceptable. All data are acceptable for use.

TSS/TDS

The field blank contained TDS and all data are flagged B, blank contamination.

Case SAS4558E: 10 low-level concentration soil samples (SAS numbers 4558E46 to 4558E55) were sent to Hazen Research, Inc., for analysis of Sulfur Content and Total Chlorine.

All QA/QC measures were met and the data are acceptable for use.

Case SAS4501E: 17 low-level concentration soil samples (SAS numbers 4501E01 to 4501E17) were sent to Keystone Environmental Laboratory for the analysis of Total Organ Carbon (TOC).

Field blank sample 4501E07 contains TOC. Sample 4501E13 and 4501E14 are flagged B, blank contamination.

Case SAS4501E: 10 low-level concentration soil samples (SAS numbers 4501E51 to 4501E60) were sent to Keystone Environmental Laboratory for the analysis of Total Organ Carbon (TOC).

Field duplicate samples 4501E57 (TOC = 447 mg/Kg) and 4501E58 (TOC = 4400 mg/Kg) show poor reproducibility. All samples are flagged J, estimated, due to the poor precision.

ROUND TWO SAMPLES

SEMIVOLATILES ANALYSIS

Case Number 12130: 20 low-concentration-level water samples (TR Numbers EBP63 TO EBP77 and EBP93 TO EBP97) were sent to S-Cubed.

Surrogate recoveries were below the acceptance range for sample EBP95. Subsequent re-extraction and analysis produced similar results suggesting interference from the matrix. The acid fraction analyte concentrations are estimated and flagged J and the non-detected acid fraction analytes are unusable.

Surrogate recoveries were below the acceptance range for the base/neutral fraction in sample EBP96. Subsequent re-extraction and analysis produced acceptable base/neutral recoveries but unacceptable acid fraction surrogate and internal standard recoveries. The deficiencies were a result of interferences from the large number of substituted benzenes present in the sample. Data from the original analysis is reported and base/neutral analytes concentrations are flagged J, estimated.

×.-

No TCL compounds were detected in the field blank sample EBP77 or field duplicate samples EBP73/74 and EBP75/76. No qualification of the data was made based on field blank or duplicate sample data.

Case Number 12130: 15 low-concentration-level soil samples (TR Numbers EBP78 to EBP92) were sent to S-Cubed.

Field Blank sample EBP92 is free of contamination.

No TLC compounds were present in field blank sample EBP92 or field duplicate samples EBP88/EBP89 and EBP90/EBP91 greater than CRQL. No qualifications of the data set are applied based on field blank or duplicate sample data.

All other QA/QC measures are acceptable and the data can be used without additional qualification.

Case Number 12130: 13 low-concentration-level water samples (TR Numbers EBP98 and EEF00 to EEF11) were sent to S-Cubed.

Extraction holding time was exceeded for sample EEF01. Analyte concentrations reported greater than CRQL are estimated and flagged J, CRQL values may be elevated for non-detected analytes.

Continuing calibration outliers affect benzoic acid in sample EEFF01. The concentration value is flagged J, estimated.

Surrogate recoveries were below the acceptance range for the acid fraction compounds in samples EEF03, EEF08, EEF10, and EEF11.

Re-extraction and analyses performed on these samples encountered similar surrogate difficulties and suggest a matrix effect condition. Acid fraction analytes reported at CRQL are unusable and analyte concentrations greater than CRQL are J, estimated.

Matrix spike analysis were above acceptance range by 7 percent for two compounds. The sample used for analysis contained eight native TCL compounds representing a difficult sample to analyze. No qualification of the data set was made on the basis of matrix recoveries.

Laboratory blank samples SBLK11 and SBLK12 contain phenol. No field blank sample was sent to the laboratory. Values for phenol are flagged B is samples reporting less than five times the amount in the associated laboratory blank.

Field duplicate samples EEF00/01 are qualitatively and quantitatively similar, except for Benzyl alcohol which differs by a factor of 10. No explanation can be given for the apparent difference. The Benzyl alcohol concentrations are estimated and flagged J in samples reporting this analyte.

Case Number 12130: 13 low-concentration-level water samples (OTR Numbers EEF12 to EEF24) were sent to S-Cubed.

Extraction holding times were exceeded for samples EEF17, EEF18, and EEF19. Analyte concentrations reported greater than CRQL are estimated and flagged J and the CRQL may be elevated for non-detected analytes.

Surrogate recoveries were below acceptance range for the acid fraction compounds in samples EEF12, EEF14, EEF20, and EEF24. Re-extraction and analyses performed on these samples encountered similar surrogate difficulties and suggest a matrix effect condition. Acid fraction extractable compound data reported at CRQL is unusable and analyte concentrations greater than CRQL are estimated and flagged J.

Matrix spike recoveries were acceptable; however, the laboratory substituted the chain of custody specified sample with EEF13. The case narrative states that analytical difficulties were experienced using EEF12. No qualification of the data set is applied based on matrix spike recovery data.

No TLC compounds greater than CRQL were detected in the field blank samples EEF22 and EEF23 or field duplicate samples EER18/EEF19. No qualifications of the data set are applied based on field blank or duplicate data.

VOLATILE ANALYSIS

Sample reanalysis was sometimes required to meet instrument calibration or contract compliance and reported as individual results. For purposes of data evaluation only one sample profile is needed. The multiple analyses are combined into one profile by using the following guideline which uses all available information and maintains consistency. First, values from the undiluted sample when the analyte was within the instrument calibration range are reported. Secondly, values from the greatest dilution within instrument calibration range and not affected by qualifiers, are reported. In the special case when analytes from reanalysis of a diluted sample are qualified with blank contamination and the analyte is present in the sample as demonstrated by the undiluted analysis the concentration value that exceeds the calibration range is reported and qualified J, estimated. Thirdly, any reasonable value is reported with qualification.

Case Number 12130: 20 low-concentration-level water samples (TR Numbers EBP63 TO EBP77 and EBP93 TO EBP97) were sent to S-Cubed.

Sample EBP97 contains toluene which may be an artifact of instrument contamination from the preceding analysis of EBP96. This is possible because sample EBP96 contains a high concentration of toluene which may cause instrument contamination. No attempt to decontaminate the instrument was performed. No qualification of sample EBP97 was applied based on the available data.

All other QA/QC measures were met and the data are acceptable.

Case Number 12130: 15 low-concentration-level soil samples (TR Numbers EBP78 to EBP92) were sent to S-Cubed.

A continuing calibration outlier affects 2-butanone in sample EBP89. The concentration value is estimated and flagged J.

Laboratory blank samples VBLK01, VBLK02, and VBLK03 contain methylene chloride. Field blank sample EBP92 contains methylene chloride and toluene. Values for methylene chloride are flagged B in samples reporting less than 10 times the amount found in the associated laboratory blank. Values for toluene are flagged B in samples reporting less than 10 times the amount found in the field blank sample.

No TCL compounds were detected at concentration levels greater than CRQL in field duplicate samples EBP90/91. The analyte 2-butanone was reported in sample EBP89, but not its duplicate EBP90. Values for 2-butanone are estimated and flagged J.

Case Number 12130: 13 low-concentration-level water samples (TR Numbers EBP98 and EEF00 to EEF11) were sent to S-Cubed.

Matrix spike recovery for toluene was above the acceptance range. No qualification of the data set is applied because the high toluene recoveries may have been influenced by contamination.

Surrogate recovery for toluene-d8 were below the acceptance range for field duplicate samples EEF00 and EEF01. These samples contain many non-TCL compounds which have obstructed the quantification of the surrogate. No qualification is applied to these samples because reanalysis of a diluted aliquot was performed with acceptable surrogate performance. Field duplicate samples EEF00 and EEF01 each contain 7 TCL compounds which exhibit acceptable precision. Ethyl benzene is present in EEF00, but not EEF01. No qualification of the data set is applied based on field duplicate data.

Laboratory blank samples VBLK15 and VBLK16 contain toluene. No field blank samples were sent to the laboratory. Values for toluene are flagged B in samples reported less than 10 times the amount found in the associated laboratory blank.

Samples EEF09, EEF10, and EEF11 contain toluene which may be the result of instrument cross contamination. Indication that contamination occurred is supported by three points. Analysis of sample EEF08 preceded the forementioned samples and contains a high concentration of toluene which may cause instrument contamination. In following sequential analysis of EEF09, EEF10, and EEF11 the toluene concentration diminishes. No attempt to decontaminate the instrument was performed.

Sample EEF02 contains toluene and xylene which may be the result of instrument contamination from the analysis of EEF01. The claim is supported for reasons similar to those indicated in the previous paragraph.

Case Number 12130: 13 low-concentration-level water samples (TR Numbers EEF12 to EEF24) were sent to S-Cubed.

All QA/QC measures are acceptable and the data are useable.

PESTICIDE/PCB ANALYSIS

Pesticide/PCB analyses were affected by non-TCL compounds eluting in the retention window of gamma-BHC. The problem is not sufficiently documented in all data packages; however, each case has suggestive information which renders gamma-BHC data unusable.

Case Number 12130: 20 low-concentration-level water samples (TR Numbers EBP63 TO EBP77 and EBP93 TO EBP97) were sent to S-Cubed.

Continuing calibration response factors for delta BHC, DDD, DDE, endrin, endrin ketone, and endosulfan were outside the acceptable limits. Analyte concentrations greater than CRQL, in all samples, are estimated based on the unstable response factors and flagged J.

Matrix spike recoveries were above the acceptable range for gamma-BHC. The high recoveries may be the result of quantification errors caused by the presence of non-TLC compounds in the gamma-BHC retention window. Dieldrin precision data were marginally outside the acceptable limits; however, no samples contain dieldrin. No qualification of the data set is applied based on matrix spike recoveries. No TCL compounds were reported for the field blank sample EBP77. Laboratory blank PBLK10 contains gamma-BHC. Values for gamma-BHC are flagged B in samples reporting less than 5 times the amount found in the laboratory blank.

No TLC compounds were reported in field duplicate samples EBP73/74. The analyte gamma-BHC was reported in field sample EBP75 but not the duplicate sample EBP76. Analytical interferences with gamma-BHC have been previously mention. No qualification of the data set is made based on field duplicate data.

Case Number 12130: 15 low-concentration-level soil samples (TR Numbers EBP78 to EBP92) were sent to S-Cubed.

The laboratory could not control instrument performance as demonstrated by retention time shifts, unstable calibration factors, and matrix spike and surrogate recoveries above acceptance range. Analyte concentration values in all samples reported above CRQL are estimated and flagged J. Data reported as non-detected are unusable.

Case Number 12130: 13 low-concentration-level water samples (TR Numbers EBP98 and EEF00 to EEF11) were sent to S-Cubed.

Extraction holding time was exceeded for sample EEF10. Analyte concentrations reported greater than CRQL are estimated and flagged J and the CRQL may be elevated for non-detected analytes.

Matrix spike recoveries, ranging 284 to 580 percent, were above the acceptable range for all spiking compounds. The high recoveries are attributed to sample specific matrix interference. No qualification of the data set is made based on matrix spike recoveries.

A field blank sample was not sent to the laboratory. No TLC compounds were reported in field duplicate samples EEF18/19. No qualification of the data set is applied based on field blank or duplicate data.

Case Number 12130: 13 low-concentration-level water samples (TR Numbers EEF12 to EEF24) were sent to S-Cubed.

Surrogate recovery was below acceptance range for sample EEF24. The data for this sample are unusable.

Extraction holding times were exceeded for samples EEF19 and EEF23. Analyte concentrations reported greater than CRQL are estimated and flagged J and CRQL may be elevated for non-detected analytes.

INORGANIC ANAYSES

Case 12130: 10 low concentration level water samples (Numbers MEBC63 through MEBC72) and 10 low concentration level soil samples (Numbers MEBC78 through MEBC87) were sent to Keystone Laboratories.

LCS analytical spike recoveries did not meet acceptance criteria for most elements. Failure to produce acceptable LCS data provides sufficient basis to reject all the analytical data to be used in a decision making process. Because some cursory information may be obtained, the data is provided for review.

Case 12130: This case contained two sample delivery groups (SDG). SDG MEWCW28 contained 1 low concentration level water sample (Number MECW28). SDG MEBC73 contains 15 low concentration level water samples (Numbers MEBC73 through MEBC77, MEBC93 through MEBC98, and MECW04 through MECW07) and 5 low concentration level soil samples (Numbers MEBC88 through MEBC92). The samples were originally sent to Keystone Laboratories then rerouted to Skinner and Sherman Laboratories after Keystone was unable to fulfill its assignment.

Water Samples (SDG MEBC73)

Water sample MEBC73 was spiked and prepared at Keystone Laboratories then rerouted to Skinner and Sherman Laboratories for analyses. Because the preparation was formed at another lab the data can be used to qualify sample MEBC73, but not the data set. Sample MEBC74, which is the field duplicate of Sample MeBC73, was prepared at Skinner and Sherman Labs and duplicated acceptably. MEBC76 was spiked, prepared, and analyzed at Skinner and Sherman and was used to evaluate spike recovery performance.

Reported values for sample MEBC73, even though they duplicate well with MEBC74, are flagged "R" because of unacceptable matrix spike recoveries.

Holding times for mercury analyses were exceeded. All reported values greater than IDL are flagged "J" and values reported less than CRDL are flagged "R".

The preparation blank contained iron, sodium, and zinc. Reported values less than 5 times the amount found in the blank are flagged "B".

Matrix interference of arsenic, selenium, and thallium were reported and the reported values flagged "J".

Samples MEBC75/76, MEBC73/74, MEBC97/98, and MECW04/05 are field duplicates. The RPDs are acceptable for all duplicate sets. Field duplicates are not used to qualify the data set.

Sediment Sample (SDG MEBC73)

Laboratory spike recoveries for lead, manganese, and thallium were below the acceptance range and flagged "J" for values reported greater than IDL and flagged "R" for values reported less than CRDL.

Duplicate RPDs results did not meet acceptance criteria for aluminum and iron. Values reported greater than IDL are flagged "J".

Sodium was found in the preparation blank and flagged "B" on sample values less than 5 times the amount found in the blank.

Samples MEBC88 and MEBC89 were field duplicates. The duplicate RPD's exceeded 35 percent for aluminum, iron, manganese, and zinc. No qualifications of the data set were made based on the field duplicates.

Water Sample (SDG MECW28)

Laboratory spike recoveries for arsenic, lead, and selenium were below acceptance range and flagged "J" for values reported greater than IDL and flagged "R" for values reported less than CRDL.

All other QA/QC measures were met and the data acceptable.

Case 12130: 20 low concentration level water samples (Numbers MECW09 through MECW27). The samples were originally sent to Keystone Laboratories then rerouted to Skinner and Sherman Laboratories after Keystone was unable to fulfill its assignment.

Water sample MECW23 was spiked and prepared at Keystone Laboratories then rerouted to Skinner and Sherman Laboratories for analyses. Because of the preparation was performed at another lab the data can be used to qualify sample MECW23, but not the data set. MECW13 was spiked, prepared, and analyzed at Skinner and Sherman and was used to evaluate spike recovery performance.

Laboratory spike recoveries were below acceptance range for arsenic and selenium in samples MECW13 and MECW23 and thallium in sample MECW23. Reported values greater than IDL are flagged "J" and reported values less than CRDL are flagged "R", except thallium in samples MECW23 which is not flagged.

Iron and zinc were found in the preparation blank. Reported values less than 5 times the amount in the blank are flagged "B".

Samples MECW26 and MECW27 are field blanks, which were found to contain elements greater than IDL. No qualification of the data set was made based on field blanks because the analytical quality of the water used is unknown.

OIL AND GREASE

Case Number SAS4668E: 31 low-concentration-level water samples (TR Numbers 4668E01 to 4668E31) were sent to National Environmental Testing, Inc.

Holding time criteria (10 days) were exceeded for all samples by 13 to 14 days. Exceeding the holding time may result in the decrease or loss of oil and grease components. Samples reporting concentration values greater than the detection limit are estimated and flagged J. Samples which report the detection limit cannot be used to evaluate the absence of oil and grease; however, gross concentrations are not expected.

NONAQUEOUS SAMPLES

Analyses of five samples (SAMPLE ID SSB01 through SSB05) were performed at the CH2M HILL Montgomery laboratory. The samples were analyzed in accordance with procedures described in the following EPA documents.

- o Test Methods for Evaluating Solid Waste (1986)
- o Method 602, EPA-600/4_82_057 (1982)
- o Method 418.2 EPA-600/ $\overline{4}_{78}$ 012 (1978)

The only deliverable was a sample result form analogous to the CLP FORM I. Data review consists of reviewing holding times, surrogate recoveries, detection limits, and laboratory blank contamination. For sample analysis using Method 602 the initial and continuing calibration data was also provided. Additional review of these data consists of checking the relative percent difference of the initial calibration response factors and response factor difference of the continuing calibration.

VOLATILE ANALYSIS (Method 8240)

Laboratory blank sample QC BLANK SM, a medium level analysis, contains chloromethane, methylene chloride, toluene, and xylenes. Laboratory blank sample QC BLANK S contains methylene chloride and acetone. Sample results reporting the common laboratory contaminants methylene chloride or toluene at less than 10 times the amount found in the associated blank are flagged B. Sample results reporting chloromethane or xylene at less than 5 times the amount found in the associated blank are flagged B.

All other QA/QC measures were met and the data are acceptable for use.

SEMIVOLATILE ANALYSIS (Method 8270)

All QA/QC measures were met and the data are acceptable for use.

PESTICIDE/PCB ANALYSIS (Method 8080)

All QA/QC measures were met and the data acceptable for use.

PURGABLE AROMATICS-BENZENE, TOLUENE, and XYLENE; BTX (Method 602)

All QA/QC measures were met and the data acceptable for use.

TOTAL PETROLEUM HYDROCARBONS-TPH (Method 418.2)

All QA/QC

measures were met and the data acceptable for use.

RESIDENTIAL WELL DATA VALIDATION

Organic Analysis

- Carbon disulfide (0.2 to 0.8 µg/l) was identified in the method and field blank. Di-n-butylphthalate (9 µg/l) pp-DDT (0.04 µg/l) were found in the field blank. Samples which contain these contaminants at concentrations less than ten times the blank pi-n-butylphthalate concentration or less than five times the blank carbon disulfide or pp-DDT concentrations are considered unusable and flagged "B."
- Mass spectral confirmation failed for several compounds including carbon disulfide (87ZCO1SO8), 2-4 Dinitrophenol (87ZCO1RO7), 4-Nitroso-DI-n-propylamine (87ZCO1SO1-SO6, RO7, DO9), Bis(2-chloroisopropyl)ether (87ZCO1SO4, SO6, RO7), Benzoic acid (89ZCO1SO5, SO8) and 4-Nitrophenol (89ZCO1SO5, SO6).

Results for these compounds are considered unusable and flagged "R."

Residential Wells

o Total of nine samples: 7 RW samples, one replicate, and one field blank

Inorganic Analysis

- Spike sample recovery for cadmium was beyond control limits for 87ZCO1SO1 and cadmium was considered estimated (J) and may be biased high.
- o Barium (68.5 µg/l), calcium (0.7 mg/l) and sodium (1.1 mg/l) were identified in the field blank. Samples which contain these contaminants at concentrations less than five times the blank concentrations are considered unusable and flagged "B."
- o Field duplicate sample differences for chromium and nickel were outside control limits and positive results for these compounds are considered estimated.

REFERENCES

- 1. U.S. EPA. Contract Compliance Screening Procedures for RAS Organics Data Packages. 9/87 revision.
- 2. U.S. EPA. Contract Compliance Screening Procedures for RAS Inorganics Data Under SOW N. 787. 1988 revision.
- 3. U.S. EPA. Laboratory Data Validation Functional Guidelines for Evaluation Organics Analyses. February 1, 1988
- 4. U.S. EPA. Laboratory Data Validation Functional Guidelines for Evaluation Inorganics Analyses. July 1, 1988
- 5. U.S. EPA. Contract Laboratory Program Statement of Work for Organic Analyses. 7/87 revision.

GLT913/068.50

Attachment 1 DATA TABLES

. .

GLT913/035.50-17

•

.

	DETECTION LIAITS	Sample Location: RH01-81 Resident Name: Hubley Dote Sampled: 89-03-15 CRL Number: 892001505 Laboratory: EPA CRL	RW02-01 Mar shaili 89-03-15 892C01502 EPA CRL	RWO3-01 Frilz 89-03-15 89ZC01503 EPA CRL	RW04-04 Devis 89-03-15 892C01508 EPA Cel	FRR04-01 Devis 89-03-15 892C61D09 EPA CRL	RW05-01 D. Johnson 89-03-15 892C01504 EPA CRL	RW06-01 F. Johnson 69-03-15 692C01505 EPA CRL	8807-01 Kellicut 89-03-15 892C01506 EPA CRL	RWF8-01 Fleld Blar 89-03-15 89ZC81R07 EPA CBL
	(wg/i)									
L LALINE MEN	88.8			••			••			••
NT LOONY	2.0			••	••	•	••			
SENIC	2.6	••	18.0	•-	••	••	••	••	••	
41LM	6.0	99.9	••	344.0	20.3 B	20.7 8	44.2 8	32.4 8	35.9 8	13.7
EVLL FUR	1.0		••			••	••		••	••
il Ch	80.0	••	••		••	••				••
Oni un	0.3	0.2 j		••	••		••		••	
LCIUM	500.0	31500.0	••	60200.8	66600.0	68 100 . 0	56200.0	62300.0	46600.0	700.0
ROMJUM	●.●	11.1 J	••	••	••	10.7	••	••	••	••
BALT	6.0	••	••				••	••	••	••
PPER	6.0	12.8	••	13.5	8.0	11.3	••	7.0	9.4	
ised DE	5.8	••	••	••	••	••		••		••
	86.8	547.0		1080.0	828.0	793.0	1190.0	535.0	••	••
	2.4		••	••	••	••	••		••	••
W ALL	10.0	••	••	••	••	••	••	••	•-	
Grés I La	100.8	11600.0	••	14300.0	18000.0	18300 0	14 100 . 0	16900.0	16400.0	••
NGANESE	5.0	359.0	••	704.0	161.0	163.0	134.0	198.0		••
RCAY	0.2	0.2	••	••	••	••	0.2	-+	••	••
il VBDEM.III	15.0		••	••	••	••			••	••
CKEL	15.0	••		••	••	15.1 J	••	••	••	
TASSIL	5000.0	••	••	••		••		•-	••	••
	2.0	••	••	••		••	••			••
LVER	. .	••	••	••		••	••	••	••	••
DILA	1000.0	\$ 100 . \$	68000.0	3400.0 8	3600.0 8	3900.0 8	3700.0 8	3800 O B	4600.0 8	1100.0
all fer	2.0	••	••	••		••	••			••
TEANELIN	25.0	••	••	••	••	••	••	••	••	••
MADICA	3.0	••	••	••	••	••				••
INC	40.0	56.8	••	347.0	••	••	120.0	212.0	87.2	••

NOTES:

8 - Blank contamination

) - Estimated value

-- + Not detected at detection limit

•

	DETECTION LIMITS	Sample Location: (Resident Hame:) Date Sampled: (CRL Humber:) Laboratory: (10 ley 19-03-15 192C01501 LPA CRL	EW02-01 Mar shaii 89-03-15 89ZC01502 EPA CBL	RW03-01 Fritz 89-03-15 892C01503 EPA CRL	RW04-01 Davis 89-03-15 89ZC01508 EPA CRL	FRRW04-01 Devis 89-03-15 892C01D09 EPA CRL	8005-01 D. John son 89-03-15 892C01504 EPA CRL	RW06-01 F. Johnson 89-03-15 892C01505 EPA CRL	R#07-01 Kellicut 89-03-15 842C81506 EPA CRL	Awf8-01 Fleid Blank 89-03-15 892CD1R07 EPA CRL
ORGANIC COMPOLNES (ug/1)			••••••	•••••					••••••		
VOLATILE											
LORONE THINK	3.0						••	••	••	••	
CHORE THANE	3.0		••							••	••
AL CHARIDE	3.4		••	•-		••		••	••		
LOROETHINHE	3.0		••	••	••	••	••		••	••	••
INALENE CALORIDE	1.0		••	••		0.8 8	••	••	••	••	• •
TONE	50.0			••	••	••		••	••	••	••
BON DISULFIDE	4.3		100.0	26.0	180.0	4	170.0	170.0	110.0	130.0	0.2 8
I-DI CIE GEOL THEHE	1.0		••	••	••			••	••		••
I-DI CIL CROE WANE	1.0		••	••	••	••		••	••	••	••
2-DICLOROETHINE (TOTAL)	1.0		••	••					••		
LOBOFORA 2-DH CHLOBOE THUNE	1.0			••		£.0	1.0				••
	20.0										
. I-TEICHLOROETHANE	1.0										
BON TETRACIC OR IDE	1.0			••		••			••		
MAL ACETATE	10.0		••	••		••	••		••	••	
CINCOL CIEL OR CINE THANKE	1.0		••			••	••		••	••	••
RGL E IN	75.0		••	••	••	••	••	••	••		••
EVLON TEILE	50.0			••	••	••	••	••	••	••	••
2-BI CHLOROPROPANE	1.0		••	••	••	••	••	••	••	••	••
ANG-1, 3-DI CHLOEOPEOPENE	1.0		••	••	••	••	••	••	••	••	• •
CHLOROE THEHE	1.0		••	••	••	••	••	••	••	••	
BONOCH ORONE THINKE	1.0		••	••	••	••	••	••	••	••	
. 3- TEI CHLOROF THIME	1.0		••	••	••	••	••	••	••	••	
ittent 5-1, 3-Di CittataRaPROPEnt	1.0 1.0						••	••	••	••	
CHLOROE THAT VINAL ETHER	1.0							••			
	i.										
A MANGENE	4.0					••					
ETHAL - 2-PENTANDHE	4.4		••	••	••	••	••	••	••	••	
WACH ORGE THENE	1.0		••	••	••	••	••		••	••	
1, 3, 3- TETRACHLOROE THANK	1.0		••	••	••	••	••	••		••	••
LUENE	1.0		••	••	••	••	••	••	••	••	
ABOB INCINE	1.0		••	••	••	••		••	••	••	
MARCHE	1.0		••	••	••	••	••	••	••	••	••
ve exe Kal de	2.0 2.0			••						••	
P-JC/L EME	1.0		••	••	••	••		••	••	••	••

.

(

.

.

1

4

•

	DETECTION	Sample Location: Resident Name; Date Sampled: CRL Number; Laboratory;	Hubley 89-03-15 892C01501	RW02-01 Abrishali 89-03-15 892C01502 EPA CRL	RW03-01 Fritz 89-03-15 892C01503 EPA CRL	EW04-01 Davis 89-03-15 89ZC01508 EPA CRL	FRRW04-01 Davis 89-03-15 892C01009 EPA CRL	8005-01 D. Johnson 89-03-15 892C01504 EPA CRL	R#06-01 F. Johnson 89-03-15 892C01565 EPA CRL	RWQ7-01 Kellicut 89-03-15 892C01506 EPA CRL	Rwf8-01 field Bia 89-03-15 892CD1807 EPA CRL
RGANIC COMPOUNDS (ug/1)							•••••			•••••	
SEMIVOLATILE		•••••	•••••			••••••		••••••		••••••	
OL.				••		••					
2-CHLOROETHML)ETHER	j		••	••	••	••			••	••	••
LOROPHENOL DI CHLOROBENZENE	2		••	••	••						
DI CH. CH CB ENZEME	2		••		••	••	••	••	••		••
NL ALCOHOL DI CHLOROBENZENE	2				••		••	••			
IMA PHENOL	1		••		••	••	••				
-CHLOBOLSOPROPYL)ETHER	3		••		••	••	•-	R	••	۹.	
THULPHENOL TROSO-DI-A-PROPLYAMINE	1				•••						
DIL OR DE THANE	2		••	••	••	••	••	••	••	••	
X8ENZENE KRANE	1		••		••			••		••	
TROPHENOL	i		••		••		••	•-	••	••	••
DIAETHALPHENDL DIC ACID	,2			••		••				••	
- CHLOROE THORY) ALL THUNE				••		•			•		
DI CHLOROPHENDL	2		••	••	· ••	••		••		••	••
I-TEICHLOROBENZENE THULENE	2		••				••	••			••
ORGANILINE	ž		••	••		••		••		••	
DIL GROONTADI ENE	3				••		••	••	••	••	
.080-3-#ETHYLPHENDL DALMAPHTMALEME	1										
DE OROCYCL OPENTADI ENE	2		••	••	••	••	••	••	••	••	••
- TE I CHLOROPHENOL	2				••						
CA CHAPTINAL ENE	;		••			••	••				••
FEGANILINE	3		::	•-	••			••	••		••
INVL PHINALATE	;										
TROANIL INE	!			••				••			
APHTHEME DI MI TROPHENOL	13										
TROPHENOL	2		••	••	••	••	••				
NEOFLEAN DINI TEOTOLUENE	:										
DINI TROTOLUENE	i			••	••		••	••	••	••	••
M. PHITHALATE	:					••				• •	
LENE			••								
IBOANS LINE	3				••		••	••	••	••	
DINI TRO- 2-AE THVL PHENOL TROSODI PHENVLARI NE	13			••	••						
DROPHENNL PHENNL ETHER	2		- 9	••		••	••		••	••	
CHLOROBENZENE NCHLOROPHENDL	2								••	••	
MITHE ENE	Ī		•-		••			••		••	••
RACEME -BUTYL PHIMALATE	2		13 8	••	• •	••		• •	••	11.0	
LANTHENE	í		••								
4	2			••	••			••	••		
L BENEYL PHIDMLATE DIA JANTHEACENE	4		••					••	••		
I-E THALHEXYL)PHIHALATE	ī		2	2		••	••				••
SENE •OCTVL PHTHALATE	2		••	••	••	••	••		••		••
OLB IFLUCEANTHENES	2								••		
DIE JFLUORANTHENES	2		••	••	••	••		••	••	••	•-
OLA JPYRENE NDL 1, 2, 3-CD JPYRENE	1		••	••		••	••			••	
	5		••	••		••	••				••
NELA . HIANTHRACENE OLOHI IPERYLENE									••		

ORCANIC COMPOUND ANALYSIS OF RESIDENTIAL WELL SAMPLING (PAGE 3 OF 4)

•

Dilution factor 1.0

	DETECTION LIMITS	Sample Location: Resident Amme: Date Sampled: CRL Annher: Laboratory:	Hubley 89-83-15 892CD (581 EPA CEL	RW02-01 Mar shali 89-03-15 892C81502 EPA CRL	RWD3-01 Fritz 89-03-15 892C01503 EPA CRL	RW04-01 Davis 89-03-15 892C01586 EPA CRL	FRRW04-01 Davis 89-03-15 892C01009 EPA CRL	RUG5-01 D. Johnson 89-83-15 892C81584 EPA CRL	RW06-01 F. Johnson 89-03-15 892CD1505 EPA CRL	8W07-61 Keilicut 89-03-15 892C01506 EPA CRL	RWF8+01 Fleid 81ani 89-03-13 892C81887 EPA CRL
ORGANIC COMPOLINDS (US											
		*****************					·····				
TICIDES and PCBs											
A-BHC	0.02		••			••		••		••	
- BHIC	0.82		••	••	••	••	••	••	••	••	••
A-BHC	0.82		••	••	••	••	••	••	••	••	
-BHC (LINDANE)	0.002		••	••		••		••	**	••	
01.02	0.03		••	••	••	••	••	••		••	••
N	0.02		••	••	••	••	••	••	••	••	
CHLOR EPOKIDE	8.8 1		••	••	••	••				••	
HL FAN I	.01 10 .02		••	••	••		0.02 J	0.02 J	0.02 J	••	•-
RIN	0.01		••	••		••	••		*•		••
ot .	0.005			••	••	••	••	••	••	••	
	0.01		••	••		••	••	••	••	••	
ALFAN II	0.01		••		••	••	••	••	••	••	
200	0.02		••	••	••	••	••	••		••	••
ALFAN SALFATE	0.13		••	••	••	••	••	••	••	••	••
DT	0.02		0.03), (i 0.04 j, 8	0.04 J. B	0.02 J, B	Q.07 B		••	0.02 J, N	0.04
NYCHLOR	0.02		••	••	••	••	••	••	••	••	••
IN RETONE	0.03		••	••	••	••		••		••	
DANE	0.63		••	••	••	••	••		••		••
ment	0.25			••	••	••	••	••	••	••	••
.at-1242	0.2		••	••		••	••		••	••	••
,GR-1248	0.2			••	••	••		••	••	••	••
, ak - 1284	9.1		••	••	••	••		••	••	••	••
LOR - 1260	0.2			••	••	••	••	••	••	••	
IN ALDEINDE	0.05		••	••		••		••		••	

ORGANIC COMPOUND (PESTICIDES and PCB1) ANALYSIS OF RESIDENTIAL WELL SAMPLES (Page 4 of 4)

l

.

VES: J = Estimated value -- = Not detected at detection limit 8 = Blank contamination

•

24-001-89

VOLATILE ORGANIC COMPOUNDS -GROUNDWATER

Sample Location Sample Number	###15-01 ERP32	ANNE 15-02 EEF 15	ANN 1AL-01 EBP 37	ANNY IAN-02 EEF 16	MW1801-01 LBP27	MW1801-02 EE122	20061-01 £8P36	###81-02 EEF04	444025-01 687/18	MW025-02 E8P93	ERMW025-01 EBP 19	40071802-01 E8P49	##+1802_02 11123	AND 24 68
Date Sampled. CRL Number: Laboratory:	04-19-89 892C02518 S-CUBED	06-14-89 892C40546 5-CUBED	04-19-89 892C02513 S-CUBED	06-14-89 892C40547 S-CLBED	04-17-89 892C02R01 5-CL8ED	06 - 14 - 89 892(40804 5 - CLBED	04 14 89 892C02S15 S-CUBED	06-13-89 892(40537 5-((81))	04-17-89 892C02505 5-CU81D	06-12-89 892C40526 5-CLMED	04-17-89 892C02D05 S-CUBED	04-19-89 892C02802 5-CUBED	06-14-89 892(40K03 5-(1810	04-17 892C02 S-CU
		Round 2		Round 2		Round 2		Round 2	.	Round 2			Round 2	
MGANIC COMPOUNDS (ug/1)														
VOLATILE														
OMETHANE														
ME THANK											• •			
CHLORIDE		••	••			•-			••					
OE THANE		••												
LENE CHLORIDE	••	••	••					••		••				
NE		••					••				••			
N DISULFIDE	••	••					••	••				••		
I CHLOROE THENE	••	••			••	••	••	••	••					
CHLOROE THANE	••						••				••	••	••	
CHLOROETHENE (TOTAL)	••						••			•-		••		
OFORM			••	••	••	••	••			••		14	••	
CHLOROE THANE		••	••		•-	••			••	••			••	
NONE - TE I CHLOROE THANE													••	
V TETRACIELOR I DE														
ACETATE							••							
DI CHIL OR QUE THANE									••					
CHL GROPROPANE							••							
3-DICH GROPEOPENE				••		••	••							
ORGE THENE					••	••	•-			••				
BOCHE CROME THANE					••	••	••			••			••	
- TRICHLOROE THANE		•-	••		••					••	••			
E		••	••	••	••	••	••		5 (2 j	5 j		••	
1, 3-DI CHLOROPROPENE		••	••	••		••		••	••	••		••	••	
FORM	••	••	••		••	••		••	••	••		••	••	
NONE	••	••	••		••	-•			••	••		••	••	
ML-2-PENTANONE	••				••			••	••			••		
D'LORDE THENE 2 - TE TRACHLORDE THANE								••				••	••	
. 2+ TE TRACHLURGE TRANE		28										••		
TE CALENE														•
IENZENE						••			5 /		10			
NE														
AYLENES					220 8				66 8	42	88.8			

NOTES:

FES:
 Bank contabination
 Estimated value.
 -- + - contract required detection limit.
 Potential contaminant, see narrative.

File: W-MEVOC.NK1

24-0c1-89

Sampie Humber: Date Sampied: CRL Humber: Laboratory:	8924-02 E8P94 06-12-89 892C40527 5-CLBED gound 2	4002D-01 EBP22 04-17-89 892C02507 \$-CUBED	#8020-02 EBP95 06-12-89 892C40528 S-CUBED Bound 2	MB2-01 E8P38 04-19-89 892C02522 S-CLBED	2-02 EEF09 06-13-89 892C40538 S-CUBED Round 2	40035-01 E&P17 04-17-69 892C02501 S-CUBED	MIRO35-02 EEF00 D6-13-89 892C40523 S-CUBED Round 2	FRANO35-02 EEF01 06-13-89 892C40023 S-CUBED ROUND 2	MWF803-01 E8P55 04-20-89 892C02R04 5-CLBED	4000 344 - 0 1 E&P 30 04 - 17 - 89 892C02S02 S - CUBED	1000 3A-02 EEF02 06-13-89 892C40532 S-CUBED Round 2	MID 3D-01 EBP21 04-18-89 892C02510 S-CUBED	4000 SD-0 EEFO 06 - 13 - 8 892C4053 S - CLBEI Round (
DEGANIC COMPOLNOS (ug/1)		•••••		••••••					••••••		• • • • • • • • • • • • • • • • • • • •	••••••	
VOLATILE		••••••		••••••	•••••••••••••••••				•••••				
OR QUE THANK		··											
MORE THANK													-
ML OILGRIDE													
ORGETHINE						7 1							
MLENE CH.ORIDE													
IONE	••		••				••						
ION DISULFIDE	••					••							
DI CHLOROE THENE						15							
DI CIA GROETHINE						190	250 1	190				5 (
DI CHE ORDETHENE (TOTAL)		••				180	250 1	180	••				
ROFORA									17				
DI CHLOROETHINE		••				••	••		••		••		
ANDE	••			••		••		•-					
I - TRICHLORGE THANE	••		••			240	450 j	360 j					
ION TETRACHLORIDE	••		••		••	••	••	••		•-			
AL ACETATE	••				••	••	••	••	••		••		
ICOI CHE CEQUE THANE	••		••		••		••		••		••		
-DI CHLOBOPROPANE		••			••		••		••				
- 1, 3-DI CHLOROPROPENE		••		••		••	••		••				
CHIL ORGE THENE		••		••		11	14	13		••	••	••	
CONDCHE OROME THANE	••	••				••		••					
2-TEICHLOROETHANE	••		••		••	••		••		•-		••	
lbe	••		••	••	••	13	11	12		••	••	••	
46-1.3-DICHLOROPEOPENE		•-	••		••		••	••	•-	••	••	••	
NGFORM L'ANGINE			••		••	••	••	••	••		••		
TIMA - 2 - PENTANINE									••		••		
LACHLOBOR THENE									••	••			
2.2-TETRACIE CEQE THANE													
				19	21	8300 (20000 1	14000		140 8	230 •	160 8	
BOB CHE CHE	••					• • • • •					234		
ABENZENE		2)				210	230 (230	
			·					, ,)				
lent						2300 1	1800 -2	1700	••		62 •	450 8	-

ĺ

File: W-MINOC.WK1

-

24-0c1-89

VOLATILE ORGANIC COMPOUNDS -CROUNDWATER

Sample Location Sample Rumber Date Sampled CAL Namber Laboratory.	4003-01 E8P39 04-19-89 892C02521 S-CUBED	40083-02 EEF12 06-14-89 892C40548 S-CUBED Round 2	40745-01 E8P26 04-17-89 89ZC02503 S-CLBED	48745-02 88296 06-13-89 892C40529 S-CUBED Round 2	MMB4S-01 EBP20 04-18-89 892C02S08 5-CU8ED	100545-02 EF04 06-13-89 892C40534 S-CLBED Round 2	400040-01 16423 04-18-89 892C02S09 S-CUBED	MIG4D-02 EEf05 06-13-89 892C40531 S-CUBED Round 2	40055-01 EBP28 04-18-89 892C02511 S-CU8ED	##055-02 EEF24 Ob-14-89 #92C40543 S-CL#ED ROUND 2	MIG6M-01 EBP31 04~17-89 892C02S04 S~CUBED	MUGA-02 EEF14 06-14-89 892C40550 S-CUBED Round 2	400774-01 E6F24 04-18-69 892C02512 S-CUBED	M87A-02 E8P97 D6-13-89 892C40530 S-CLIBED Round 2
ORGANIC COMPOLINDS (UG/1)														
VOLATILE									••••					
& ORGINE THANE														
CIECINE THANE														
NYL CHLORIDE					53	45								
LOROETHANE											20	51		
THYLENE CHEORIDE														
ETONE														
INGN DISULFIDE										2 1				
1-DI CHLORDE THENE									•••					
I-DI CHLOROE THANE					760	1200	3 1	39	570	800	36	43		
2-DICHLOROETHENE (TOTAL)					260	320 1			27	21				
CROFCR4				••		,								
2-DI CHLOROE THANE									••					
AUTANENE									••					
1, 1- TE I CHLOROE THANE			5 1		3 1	3 1			,	4		••		
BON TETRACHLORIDE				••										
ML ACETATE				••	••		••							
OMOD I CHIL OROME THANE	••	••		••				••						
2-DI CHLOROPROPANE				••	••			••	••		••			
5-1.3-DICHLOROPROPENE	••						••		••		- •		••	
I CHLOROE THENE			· • •	••		••			••		••	••		
BEOBOCHE OROME THANE	••	••	••	••		••	••		••					
1. 2- TEICHLOROE THANE						••	••	••	••				••	
ant			••		10	12			7	6	••	••	•-	
NE-1, 3-BICH, GROPROPENE		••	••		••	••	•-			••		••		
2407 GBA	••	••	••		••			••				••	••	••
HEXANDAL		••					••			••		••		••
BETHML - 2 - PENTANONE		••	••	••	••	••								
TRACHLOBOE THENE	••			••	••	••	••		••	••		••		
1, 2, 2- TE TRACHLOROE THANE	••	••		••			••			••		••	•-	
LUENE	10	3 8		270	5300 J	14000 J	••		\$300	1 10 00 J	••	38	••	5
LOROBENZENE	••			::										- •
HVLBENZENE	••		42	35	160	160	31	27	160	150	••			
VRENE	••			••							••			- •
DTAL XYLENES	••		350 B	300	1300 J	1800	64 B	37	1400 j	1700	••	••	- •	

NOTES

TES: B = Blank contamination j = Estimated value. -- = 4 contract required detection limit. = = Potential contaminant. see harrative.

File: W-ANVOC.WK1

24-OC1-89

VOLATILE ORGANIC COMPOLINDS -GROUNDMATER

Sample Loca	tion	FR.0078-01	FR.007 N-02	AMPORS-01	MW085-02	MINO 8.4 - O 1	MH04A-02	AND \$0-01	ANO 80-02	MH09A-01	MH094-02	FRAND 94-02	AND 104-01	MW 104-02	AND 1 1 1 1
Sample Luca Sample Nu Date Sam	imber :	E8P25	28798 06-13-89	EBP34 04-19-89	EEF 10 06-13-89	EBP35 04-19-89	EEF11 06-13-89	E8P33 04-19-89	EEF 17 D6-14-89	EBP54 04-20-89	EEF 18 06-14-89	EEF 19 06-14-89	E8P53 04-20-89	EEF20 06-14-89	M#11#-0 EBP: 04-20-0
CRL NA Labora	tory:	892C02012 5-CLBED	89ZC40D30 S-CLBED Round 2	892C02516 5-CL8ED	892C40539 5-CL8ED Round 2	892C02517 S-CUBED	892C40S40 S-CUBED Round 2	892C02514 S-CLBED	#92C40545 S-CLBED Round 2	892C02533 5-CUBED	89ZC40542 S-CUBED Round 2	89ZC40D42 S-CLBED Round 2	892C02532 5-CL8ED	89ZC40S41 S-CUBED Round 2	892C025 5-CUB
ORGANIC COMPOUNDS (up	711														
VOLATILE					•••••			••••••					•••••		
OR ONE THANE		•												••	
ONE THINKE		••	••					••		••				••	
L CHLORIDE					••	••	••		••			••	••	••	
ROETHANE				••	••	••		••	••		••				
MLENE CHLORIDE			••	••	••					••	••	••			
ONE		••		••			• -	••	••			••	••	••	
ION DISULFIDE		••	•-	••		••		••			••	••			
DI CHLOROE THENE DI CHLOROE THENE												••			
DICHLOROETHENE (TOTAL	•														
ROFORM															
DI CHE GEOETHANE							••								
TANDNE							••		••		••				
I- TE I CHLOROE THANE		••				••	••	••			••	••		••	
ON TETRACHLORIDE			••				••	••		••	••				
AL ACETATE		••	••		••	••	••			••	•-		••		
ODI CHLORONE THANE					••	••		••	••	••	••			••	
DI CHLOROPROPANE				••	••	••		••	••	••		••	••	•-	
1. 3-DICHLOROPROPENE			••	••		••		••	••	•-	••	••	••		
CHLOROE THEME ROMOCHLOROME THANE					••							••	••		
2-TEICHLOBOETHANE															
2- HEI CHENNE HUMA															
6-1, 3-DI CHLOROPROPENE	1						- •		••						
OFGRA			••								••		••		
XANDNE		••			••	••			••			••			
THML - 2 - PENTANONE						••	•-		•-			••	••		
ACHLOROE THENE				••	••	••		••	••	••				••	
2.2-TETRACHLOROETHANE			••	••	••	••		••	••		••	••	••	••	
ENE		-•	••	••	17	••	14	••	••		••	2 6	••		
ROBENZENE			••	••	••		••	••	••		••				
			••	••	••		••	••			••				
ENE			••	••				••	••						
AL XYLENES		••	••	••		••	••								

(

.

(

NOTES: B = Blank contamination. J = Estimated value. -- e < contract required detection fluit. - Potential contaminant, see merrative.

FILE: B-ARNOC.BLL

24-0(1-89

Sample Location. Sample Number. Date Sampled. CRL Number. Laboratory	FRAMELIA-OL EBP57 04-20-89 892C02D35 S-CUBED	AMP 1 IM-02 EEF 2 I Do-14-89 892(40544 S-CUBED ROUND 2	400125-01 E8P41 04-19-89 89202519 5-00860	AW125-02 EEFD6 D6-13-89 892C40535 S-CL8ED Round 2	400135-01 EBP40 04-19-89 892(02520 5-CLBED	Mit 135-02 EEF07 D6-13-89 892(40536 S-CUBED Round 2	AM7145-D3 E8458 D4-20-89 892C02531 S-CUBED	400 J4S-D2 EEF13 06-14-89 892C40549 S-CL8ED Round 2	M#205-01 EBP60 04-20-89 892C02534 S-CUBED	ANN 200-01 EBP61 04-20-89 892C02536 S-CUBED	MW215-0 EBP62 04-20-85 892C02537 5-CU8EC
ORGANIC COMPOUNDS (ug/1)	••••••			••••••							
VOLATILE				• • • • • • • • • • • • • • • • • • • •							
L OR OME THANE	••	••		••	••	••	••	••			
DIDDLE THANE	••	••	••		••		••			••	
NYL CHLORIDE		••	••	·-	• -						-
L OR DE THANE					•-		••			•-	1
THYLENE CHLORIDE	-•			••	••					••	-
ETONE	- •				••			••		••	-
BON DISULFIDE	••	••			••			••	••	• -	•
1-DICHLOROETHENE	••	••	• -	••	••	••		• •		••	•
1-DICHLOROETHNNE	••	••		••	• •	••	••		••		49
1-DICHLOROETHENE (TOTAL)	••	••	••	• -	••			• •		••	-
OROFORM	••	••		••	••		••				
1-DI CHLOROE THANE	••	••	••	••						••	
HUTANONE	••			••							
I, I-TRICHLOROETHANE											
ROON TETRACHLORIDE							••			••	
ML ACETATE					••						-
ONODI CHE OROME THANE	••	••								• -	-
2-DI CHLOROPROPANE	••					• -					-
S-1, 3-DICHLOROPROPENE	••										
I CHE OR OF THE NE	••										
BEGROCHL GEGRE THANE	••										
1.2-TRICHLOROETHANE	••										
Alter											
NE-1, 3-DICHLOROPROPENE	••										
CHOFORA											-
HE JANGNE											-
ALTIML - 2-PENTANINE											-
TRACHE GROETHENE											-
1.2.2-TETRACHLOROETHANE											-
LUENE											-
LORGENZENE											
MIBENZENE											
											-
VEENE								••			-

FILE: W-MOVOC WELL

24-OC1-89

SEMI-VOLATILES - CROUNDWATER -

Sample Location: Sample Number Date Sampled: CRL Number: Laboratory:	40051-01 EBP36 D4-19-89 892C02515 S-CUBED	4008 1-02 EEF08 06-13-89 892C40537 S-CLBED Round 2	4007801-01 E8P37 04-17-89 892C02R01 S-CLBED	##FB01-02 EEF22 06-14-89 892C40R04 S-CUBED Round 2	MW1A-01 EBP32 D4-19-89 892C02518 S-CUBED	MW1A-02 EEF16 06-14-89 892C40547 S-CUBED Round 2	MW 15-01 E&P 32 04-19-89 892C02S18 S-CL8ED	AW15-02 EEF15 06-14-89 892C40546 S-CLBED Round 2	MB92-01 £8436 04-19-89 892C02522 S-CUBED	4062-02 EEF09 06-13-89 892C40538 S-CUBED Round 2	AWFB02-01 EBP49 04-19-89 892C02802 S-CURED	MWFB02-02 EEF23 06-14-89 892C40R03 S-CUBED Round 2	AND2D-01 18P22 04-17-89 892C02507 5-CU81D	MUO2D-07 EBP99 06-12-89 892C40520 S-CUBEC Round 2
ORGANIC COMPOUNDS (ug/1)														
SEMIVOLATILE														
NOL					••		130			38				-
S(2-CHLOROETHYL)ETHER				••	••	••								-
CHLOROPHENOL	••			••			150				· •		••	-
-DICHLOROBENZENE	••	••				••				••		••		•
I-DICHLOBOBENZENE NZYL ALCOHOL			••				62							
WEYL ALCONDI 2-DI CHLOROBENZENE														
A THALPHENCL			••							••				-
S(2-CHLOROISOPROPYL)ETHER					••	••							••	-
NE THAY PHENOL	••				••					••	••		••	-
NI TROSO-DI - #-PROPLYAMINE	••	••	••		••	••	71							•
XACHLOROE THINNE TROBENZENE	••								••					-
OPHORONE														-
NI TEOPHENDI		••			••			••		••		••		-
4-DIAL TIML PHENOL		••	••	••		••					••			-
NZOIC ACID	••	•-	••		••		••			•-	••	••	••	•
S (2 - CHLOROE THOKY) ME THANE	••		••											-
4-DI CHLOROPHENDL 2. 4-TRICHLOROBENZENE							70							
2,4+ HEIGHLUBGBERZERE PHTHALENE							/•							
CHLOROANIL INE		••		••					••					-
XACHLOROBUTADI ENE	••		••		••				••	•-		••		-
CHE CEG- 3- ME THYL PHENOL		••	••			••	120		••		••		••	-
ME THAYLANAPHTHAL ENE												••		
XACHLOBOCYCLOPENTADI ENE 4,6-TRICHLOBOPHENDL														
4, S-TRICH CROPHENDL						••								-
CHLORONAPHTHAL ENE									••				••	
NI TROAMILINE					••	••		••	••	••			••	-
METHNE PHITHALATE	••					••	••		••		•-			-
ENMPHITMLENE 6-DINITROTOLUENE						••			••	••				:
NI TEGANI LINÉ														-
ENAPHTHEME							84							-
4-DINI TROPHENOL		••	••	••								• •		-
NI TROPHENOL	••	••	••	••		••	160							-
SENEOFLEAN	••	••		••		••		••				••	••	-
4-DINI TEGTOLUENE ETHAL PHINGLATE			••				78		••					
CHEOROPHENNE PHENNE ETHER														
UCEDE			• -		••									-
IN TEGANILINE		••				••	••	••		••	••	••		-
6-DINI TRO- 2-METHYLPHENOL		••								••	••	••		-
NI TROBODI PHÉNYLANI NE BRONOPHENYL PHENYL ETHER														:
EXACH GROBENSENE														-
INTACIA CROPHENDL					••		100							
ENANTIRE ME	••		••	••	••					• •	· -		••	-
THEACENE	••	••	••		••			••	••					-
-N-BUTYL PHITHALATE	••			•-					•-		••	••		-
LORANTHENE BENE							74		••	•-				
NGUNE TVL BENEVL PHITHALATE							74							-
-DICHLOROBENZIDINE														
NZO(A JANTHRACENE	••	••	••			••		••					••	
IVSENE		•-	••		••	••			••	••		••		-
S(2-ETHALHERYL)PHITHALATE	••	••				••		••	••	••	••	••		
-N-OCTYL PHTHALATE NZO(B)FLUORANTHENES				•				••	••	••	••			-
NZO(K)FLUDKANIHENES												••	••	•
NZO(A)PYRENE									••					
DEND(1, 2, 3-CD)PYRENE					••									
BENZ (A.HJANTHRACENE		• -		••										
NZO(CHI)PERVLENE										-				

(

ICS: B = Blank contamination J = Estimated value -- = < contract required detection limit

FILE W-MMSNA WKI

24-OCL-89

SEME-VOLATILES - GROUNDWATER

Labora tory :	MN025-01 EBP 18 04-17-89 892C02505 S-CUBED	AMD225-02 28P93 06-12-89 892C40526 5-CUBED Round 2	FRANDO2S-01 E8P19 04-17-89 892C02DQ5 S-CUBED	MMO2A-01 ŁBP29 04-17-89 89ZC02S06 \$-CUBED	ANDU 2402 E8P94 06-12-89 892C40527 S-CL8ED Round 2	WWB3-01 28239 04-19-89 892002521 S-CUBED	MMB3-02 EEF 12 Ob-14-89 892C40548 S-CUBED Round 2	407803-01 18255 04-20-89 892C02804 S-CUBED	MMU3D-01 E8P21 U4-18-89 892C02510 S-CUBED	ANNO 3D- 02 EEPO3 06-13-89 892C40533 S-CUBED Round 2	MW034-01 E8P30 04-17-89 892002502 5-008ED	MN03A-02 Ett02 06-13-89 892C40532 S-CLBED Round 2	MW035-01 EBP17 04-17-89 892(02501 5 (18ED	MWUJS-0 EEFO 06-13-8 89204052 S-008E Round
ORGANEC COMPOLINDS (Ug/))		•••••		•••••	• • • • • • • • • • • • • • • •	•••••					••••••	•••••	••••	
SEMIVOLATILE														
NOL					•-			6	J	••				
(2-CHLOROETHYL)ETHER				••			••							
HLOROPHENDL - DI CHLOROBENZENE														
DI CHLOROBENZENE	2			••	••				••					-
ZYL ALCOHOL			••		••		••			••				
- DI CHLOROBENZENE ETHYLPHENOL													56 j	
(2+CHLOBOISOPROPYL)ETHER			••	••	• -				• •					
E THYLPHENOL		••	•-				••	,				• •	64 j	
I TROSO-DI - N-PROPLYAMINE													••	
I CHLOROE THANE														
HORONE	••		••	••	••			••		••				
TEOPHENOL	••		••											
DIMETHYLPHENOL LOIC ACID			·											
(2-CHLOROETHOXY) AE THANE							••							
- DI CHL OROPHENOL		••	••	••	••				••				••	
. 4 - TR I CHLOBOBENZENE			••	••			••	••		••		••		
HTHALENE HLGROANILINE										••			56 J	
ACHL OR OBUTADI ENE			••											
HLORO-3-METHYLPHENDL	••	••	••	••		••							••	
E THINL MAPHTHAL ENE			2 j		••						••	••	14 1	
ACHLOROCYCLOPENTADI ENE , 6 - TRI CHLOROPHENDL			••											
5-TRICH CROPHENOL														
HE ORONAPHITHEL ENE	••		••						••	••	••	••		
H TROANILINE			••											
ETHYL PHITHALATE NAPHITHYLENE														
-DINI TROTOLUENE			••				••					••		
ITEGANILINE		••	••		••	••			••			••	••	
NAPHTHENE - DINITEOPHENOL											•-			
TROPHENDL														-
ENZOFLEAN														
-DINITROTOLUENE	••	••	••	••		••			••		••	••	• •	-
THML PHITHALATE			••											-
HLOROPHENNL PHENYL ETHER IORENE														
TEGANILINE		••							••	••				
DINI TRO- 2- ME THYL PHENOL	••	••		••		••		••	••	••			• •	
I TROSODIPHENYLAMINE			••										••	
RONOPHENYL PHENYL ETHER ACHLOROBENZENE														
TACH OROPHENIL	••	••				••	••		••		••			-
NANTHEENE	••				• -		•-		••			•-		
HRACENE N-BUTYL PHIHALATE													 5 j	
ORANTHENE													,	
ENE			••	••						• -	••			
VI BENZYL PHTHALATE	••					••			• •			••	••	
-DICHLOROBENZIDINE ZO(A)ANTHRACENE									••					
YSENE	••													
(2-ETHYLHEXYL)PHITHALATE					7 1									
HOCTYL PHYHALATE			••			••					••		• •	
ZO(B)FLUORANTHENES ZO(K)FLUORANTHENES											••			
ZO(A)PYRENE								••						
END(1,2,3-CD)PYRENE	••	••			••				- •			••		
	••							• ·	• •	••	••			
ENZ (A . H)ANTHRACENE														

Page 2 of 5)

24-0C1-89

SEMI-VOLATILES - GROUNDWATER

Sampie Location: Sampie Namber: Onte Sampied: CRL Namber: Laboratory:	FRANO35-02 EEF01 D6-13-89 892C40D23 \$-CL&ED Round 2	40084D-01 EBP23 04-18-89 892C02S09 \$-CUBED	MIB4D-02 EEF05 D6-13-89 892C40S31 S-CUBED Round 2	100645-01 E&P20 04-18-89 892c02508 S-CUBED	ANNB45-02 EEF04 06-13-89 892C40534 5-CLBED BOUNG 2	AMI45-01 EBP26 04-17-89 892C02503 S-CUBED	4845-02 E8P96 D6-13-89 892C40529 S-CLBED Round 2	AND 55-01 EBP 28 04-18-89 892C02511 S-CUBED	MM055-02 EEF24 06-14-89 89ZC40543 5-CL8ED Round 2	MW064-01 EBP31 04-17-89 892C02504 S-CUBED	AMD6A-02 EEF14 06-14-89 89ZC40550 S-CUBED ROUND 2	467 A-01 EBP24 04 - 18 - 89 892C025 12 \$ - CUBED	40074-02 E8497 06-13-89 892C40530 S-C148ED Rowid 2	FRAW7A-01 EBP25 04-18-89 892C02D12 S-CUBED
GEGANIC COMPOUNDS (ug/1)		•••••••												
SEAIVOLATILE		••••••		••••••		• • • • • • • • • • • • • •								
NOL	•							• 1						
(2-CHLOROETHML)ETHER		•-	••				••					••		
HL OR OPHENDL		••	••		••	••			••	••				••
- DI CHLOROBENZENE - DI CHLOROBENZENE														
ZYL ALCOHOL	160					••		21	13					
- DI CHLOROBENZENE	••		••		••	••	••						••	
E THALPHENOL	91		••		17			56	30	••	••	•-		
5(2-CHLOROI SOPROPYL) E THER LE THALPHENOL	•3				41		55	1 10	40		••	••		
N TROSO-DI-R-PEOPLYAMINE														
KACHLOROE THINKE	••	••	••				••	••	••			••		
TROBENZENE	••	••			••	••	•-				••		••	
opyedrawe Ni Trophenol	••				••							••		
4-DIAETHALPHENCL	• •													
NZOIC ACID	22 j		••	20 /	10 J	••	• ;	71	11. J					••
S (2 - CHLOROE THORY) WE THANK	••	••	••	••	••			••	••	••			••	
4-01 CHE GEOPHENDL 2 , 4-TE I CHE GEOBENZENE												••		
PHTHAL ENE	43			39	45	23	20	47	51					
CHLOROANIL INE	••				••	••		••		••			••	
XACHLOROBUTADI ENE	••					••			••	••	••	••		
CHLORO-3-AETHYLPHENOL WETHYLMAPHTHALENE				14	23				15					
XACHLOROCYCLOPENTADI ENE														
4, 6-TEICHLOROPHENOL		• -	••		••			••	••	••				••
4.5-TRICHLOROPHENOL	••	••	••				••	••	••			••		
CHLORONAPHTHALENE NI TROANILINE													••	
ETHAL PHTHALATE														
ENAPHIRML ENE	••					••	••				••	••		
6-DINI TROTOLUENE		••				••					••	••		••
NI TROANI L'INE ENGPHIMENE														
4-DINI TROPHENOL														
NI TROPHENDI.	••		••	••	••	••			••			••		
BENEDFURAN		••							••			••		
4-DINI TROTOLUENE ETHAL PHALATE														
CHE OR OPHENNE PHENNE ETHER	••	••	••					••		••				
LOLDIE		••	••	••		••				••	••	••		••
NI TEGANI L'INE 6-01NI TEG-2-ME THYLPHENDL										••				
6-DIM NO-2-ALINT, PHENDL NI TROBODI PHENVLANI NE														
BEOROPHENNIL PHENNIL ETHER							••	••	••	••				
XACHLOROBENZENE				••	••			••			••			••
NTACHL GROPHENDL ENINTHE ENE			••					••						
THEACENE											••			
-N-BUTYL PHTHALATE			••				••							
LIDEANTHENE	••		••			••		• -		••				••
REME TVL BENZYL PHTMLATE						••		••	••		••			••
3-DICHLOROBENZIDINE														
NEGLADANTHEACENE	••				••									
RYSENE			••	••			•-			••		••		•-
S(2-ETHYLHEXYL)PHTHALATE					1 9		3)			••				
NEO(8) FLUERANTHENES						· ·-								
NZO(K)FLUORANTHENES	••		•-		••									
NZO(A)PYRENE		••	••				••	••		••	•-		• -	
DEND(1,2-3-CD)PYRENE BENZ(A-H)ANTHRACENE	••	••				••	-•	••	••	••	••	••		
	• •												• •	

.

l

.

(

24-0C1-89

SEMI-VOLATILES - GROUNDWATER

Sample Location Sample Aumber Date Sampled: CEL Aumber Laboratory:	EBP98 06-13-89 892C40D30 S-CUBED Round 2	MIDAD-01 EBP33 04-19-89 692C02514 S-CUBED	AW08D-02 Ett17 06-14-89 892C40545 S-CUBED Round 2	MW084-01 E8435 04-19-89 892C02517 S-CU8ED	MINDBA-02 EEFII 06-13-89 89ZC40540 S-CLBED Round 2	AMUU85-01 EBP34 04-19-89 892C02516 S-CU8ED	MNOAS-02 EEF10 06-13-89 A92C40S39 S-CUBED Round 2	AW09A-01 E8454 04-20-89 892(02533 S-CLBED	MW09M-02 EEE14 06-14-89 89ZC40542 S-CLBED Round 2	FRANO9M-02 EEF19 06-14-89 892C40042 S-CUBED Round 2	4W 10A-01 EBP53 04-20-89 892C02S32 S-CUBED	4W10A-U2 EEF20 06-14-89 89ZC40541 S-CUBED Rourid 2	₩₩/11A+01 EBP55 04-20-89 89202535 S+CU8ED	FRANVIIAQ EBPS Q4-2Q-8 892CQ2Q3 S-CIME
ORGANIC COMPOLNOS (ug/1)									•••••	•••••		•••••		
SEMIVOLATILE				••••••		•••••					•••••	••••••••••••		
NOL.														
(2-CHLOROETHYL)ETHER	••			••						••		• -		
HL OROPHENOL - DI CHL GROBENZENE									••	••	••		••	-
-DICH CHORENZENE										••				:
LAT COHOL	••	••						••				••		-
- DI CHLOROBENZENE E THYLPHENOL														
(2-CHLOROISOPROPYL)ETHER	••													
E THALPHENOL	••										••			
I TROSO-DI-N-PROPLYAMINE ACHLOROETHANE														-
ROBENZENE														
PHORONE			••		••		• -	- •			••			-
i TROPHENOL - DI METRICI, PHENOL						•••		•••						
ZOIC ACID														-
2-CHLOROE THONY HE THANE		••	••			••		••					• •	
- DI CHEQROPHENOL . 4 - TRICHEQROBENZENE														-
HTHALENE												••		-
HL OROANIL INE							••				••	••		
A CHL ORODUTAD I ÉNE HL ORO- 3- ME THYL PHENOL					••	••			••	••	••			•
E THYLNAPHTHAL ENE						•••		••	••					-
ACHE GROCVCL OPENTADI ENE		••			•-	••				••				-
, 6- TR I CHLOROPHENOL , 5- TR I CHLOROPHENOL					••	••		••	••			•-		-
HL OR GRAPHTHAL ENE														-
TROANIL INE	••			••	••	••					••			
ETHNL PHITHALATE NAPHITHNLENE	••			••	••	••					••	• •		-
-DINI TROTOLUENE														-
TEGANILINE	••	- •	••					••	••					-
NAPHTHENE -DINITEOPHENOL												- •	••	-
I TROPHENOL														
ENZOFURAN	••	••		••				••	••		••			
-DINITROTOLUENE THVL PHTHALATE						••		••						
HOROPHENML PHENYL ETHER														-
OR ENE	••	••	••	••	••	••		••			••	•-		
I TEGANILINE -DINITRO-2-METHYLPHENOL	••	••										••		•
I TROSODIPHENNI AMINE														-
RONOPHENNE PHENNE ETHER		•-		••	••		- •		••		••			-
A CHE OR OBENZENE TA CHE OR OPHENOL												••	••	
NANTHRENE		••												:
HRACENE	••		••	••					••		••			-
N-BUTYL PHTHALATE DRANTHENE											•••		••	-
EME				•-										
A BENZYL PHITHALATE							••	••			••		••	-
DI CHLOBOBENZIDINE				••							••	••	- •	•
rsene														•
(2-ETHYLHEXYL)PHTHALATE	••					••	••							-
N-OCTYL PHITHALATE 20(B)FLUORANTHENES						••		• -		••			• -	-
20(#)FLUORANTHENES								••						
ZOLA JPYRENE		••		••				• •		••				:
END(1,2,3-CD)PYRENE ENZ(A,H)ANTHRACENE	••					••		••	••			••		
ENE (A, H)ANIFRIACENE						· ·	. •	••	• •		••			-

ND165. B = Blank contamination j = Estimated value -- = < Contract required detection limit

24-001-89

SEMI-VOLATILES - GROUNDWATER

ORCANIC COMPOLINDS (Ug/1) SERI VOLATILE VENDL IS12-OTLOROFTHYL)ETHER 		20					 		· · · · · · · · · · · · · · · · · · ·
SEBI VOLATILE MENDL		 							
HE NOL		 							
S(2-CHLCROG THATL) & THER		 	 						-
3 - D (CHL GROB ENZENE									-
4-01 CAL GROUP SALE	··· ··· ··· ···	 							-
NATUL ALCONDL	••• ••• ••• ••• •••		•-						
AF THAT, PHERADL				••			•-		-
S(2-CRL GROJ SORROYL) ETHER									-
ALE THAT PRESAUL									
EXACCE CREATENANE	 					••			-
TROBENEZNÉ		••	••		••	••	••	••	-
IOPHORONE				••					-
4-0104 TIMI, PHENOL				••	÷-				-
INZORC ACIÓ		••						••	-
S(2-CHL GROUPEROL									
2. 4 - TRI CH. GROBENZENE									-
INITIDALENE	••	••				••	••	••	-
-ORL GRAANIL LINE									•
CHL GHO-3-AR THAIL PRENCL		••		••					
	••	•-					••	••	
CHACHE GROCYCL OPENTADI ENE							•-		
4. S-TRICCE.OROPHENCL CRE.ORONPHENCE.ENE CRE.ORONPHENCE.ENE METRY. PYRTHLENE S-DINI TROTOLUENE S-DINI TROTOLUENE A-DINI TROTOLUENE A-DINI TROPHENOL NI TROPHENOL NI TROPHENOL NI TROPHENOL SENETYLENE CETRYL PYRTHLENE LORENE NI TROPHENOL ETHER NI TROMH LINE NI TROMHENE NI TROMHENE NI TROMHENE SIGOROPHENOL ETHER NI TROMHENE SIGOROPHENOL ETHER SIGOROPHENOL ETHER SIGOROPHENOL RENE SIGOROPHENOL									
CH. GRONAPHTNALENE	••	••			-•	••	••	••	
NI TROMIL INE			••						
METHOR, PORTINGLATE									
6-DINN TROTOLUENE			•-	••				•-	
4-01NI TEGPHENOL NI TEGPHENOL BERZORLEAN BERZORLEAN BERZORLEAN COL GROPHENAL PRENAL ETHER COL GROPHENAL INE BROBORNEM PRENAL ETHER INTROUND LINE BROBORNEM PRENAL ETHER									
NI TROMEROL						••			
BENEZANA									
DIM TROTOLUENE ETROL PATRALATE COL GROUPENAL PREMAL ETHER COL GROUPENAL PREMAL ETHER ADDITALATE ADDITALATE ADDITALATE ADDITALATE ADDITALATE ADDITALATE ADDITALATE MITRONULINE ADDITALATE MITRONULINE MITRONULINE MITRONULINE MITRONULINE MITRONULINE MITRONULINE MITRONUENE MITRONUENENE <td-< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td-<>									
CHE GROMERANE, PHENYL ETHER LORENE IN TROMMELINE IN TROMMELINE IN TROMONIPHENYLAINEN IN TROMONIPHENYLAINEN IN TROMONIPHENYLAINER IN TROMONIPHENYLAINER IN TROMONIPHENE INTACHE GROBENZENE INTACHE GROBENZENE INTACHE GROBENZENE INTACHE GROBENZENE INTACHE GROBENZENE INTACHE GROBENZENE INTACHE GROBENZENE INTACHE GROBENZENE INTACHE GROBENZENE INTACHE INTERNE INTACHE INTERN			••						
LOR ENE									
NI TRÖMML I INE									
NI TROBODI PREMILANI NE			•-	••			••	••	
BAGROMMENT, PREMAL ETHER		••							
XACHA GROBENZENE XIACHA GROBENZIAL ENANTHERE ENANTHERE INTAL PATHALATE URBANNENE ROME JOICHA GROBENZIO JOICHA GROBENZIO JOICHA GROBENZIO NOCIA INTERIACIENE RYSENE SIZORIANTERIACIENE RYSENE									
ENAMINE ENE ITHERCENE			••		••	••			
IPHILACENE					••			••	-
							••		•
RENE		••					••		
TYL BENEYL PHITHLATE 3-01CR OROBENE DINE NZOLAJANTHRACENE RYSENE RYSENE SL2+ETMYLHEXYL)PHITHLATE	••			•				••	
3-DICH OROBENZIDINE NZOLA JANTHRACENE RYSENE RYSENE S(2-ETW/LHEXYL)PHITHALATE									
RVSENE S(2-ETHVLHEXYL)PHITHALATE	••		••	••					
S(2-ETHYLHEXYL)PHTHALATE			- •	••	••		••		
-N-OCTVL PHTHALATE									
NZO(B)FLUTRANTHENES		••	••	••			••		
NZO(K)FLUCIEANTHENES NZO(A)PYEENE								••	
DEND(1,2.3-CD)PYRENE									
BENZ(A, H)ANTHRACENE	••				••				
NZO(GHI)PERVLENE	• -		· ·		••	••	••		
165						•••••••			•••••••••
 Biank contamination Estimated value 									

.

l

L

.

24-0C1-89

PESTICIDE/PCBs - GROUNDWATER

Sample Location. Sample Number: Date Sampled. CRL Number: Laboratory	S-CLBED	MMB 1-02 Et108 06-13-89 892C40537 S-CLBED Round 2	W#F801-01 EBP27 04-17-89 892C02R01 S-CUBED	AMF801-02 Etf22 Ob-14-89 892C40R04 S-CUBED Round 2	MW IA-01 E8F37 04-19-89 892C02513 S-CUBED	MW IM-02 ELF 16 06-14-89 892C40547 S-COBED Round 2	WW IS-01 EBP32 04-19-89 892C02518 S+CU6ED	WF15-02 LEF15 D6-14-89 892C4D546 S-CCRED Round 2	8982 01 1973 04-19-89 892(02522 5-(182D	MM52-02 EEFU9 D6-13-89 892C40538 S-CUB2D Round 2	Mart 802-01 E8P49 04-19-89 892C02R02 5-CU8tD	WWF802-02 ELF23 D6-14-89 892C40R03 S-CL8ED Round 2	AWU210-01 LBP22 04-17-89 892C02507 S-CUBED	MW02D+0. E8P9 06+12-8 892C40520 S+CuBLI Round 2
ORGANIC COMPOUNDS (ug/1)			•••••••••••											
PESTICIDES and PCBs												•••••		
TA-BHC				••		· -	••							-
LTA-BHC	••		••	•••									• •	
LINA-BHC (LINDANE)		••	••						••					
PTACHLOR		••	•-	••									•••	
DEIN													• -	
PTACHLOR EPOKIDE			••				••		••					
DOSLA FAN I				••										
ELDRIN	••			••	••		• -			••		••	••	-
4-00E			••	••				••			••		••	
ORIN			••	••		••	••						• •	-
DOSULFAN 11			••	••					- •					•
4-000				••					••				••	•
DEIN ALDEHYDE			••			••				••				•
DOGLEFAN SLEFATE	0.12	,	••										• •	-
4-00T			•-	••						••	••	••	· -	-
THOXYCHLOR	••		••	••								- •	••	
DEIN KETONE	••		••	••	••		••		••		•-		• •	•
1. ORDANE	•-		••	••	••	••							• -	-
JKAPHENE	••		••	••	• -	••				• •		•-	• -	-
OCLOR - 10 16			••	••					••	••		•-	••	-
IOCLOR- 1221			••	••		• -	••	••			••		••	
laci.at-1232			••	•-							• •		••	
IOCL 08-1242	••	•-	••	••					••				••	
IOCL 08- 1248		••	•-	••	••		••						••	-
ROCL OR - 1254			•-	• -	••	••		••	••				••	-
ROCLOR-1260	••		••	••									••	-

NOTES

-- + NOT detected at

detection limit.

E = Unusable

8 = Blank contamination.

j = Estimated value

File. W-MMPCB WK1

24-0C1-89

PESTICIDE/PCBS - GROUNDWATER

Sample Location: Sample Number: Date Sampled: CRL Number: Laboratory:	S-CLBED	40024-02 EBP94 96-12-89 89ZC48527 S-CLBED Round 2	40025-01 EBP 18 04-17-89 89ZC02505 8-CLBED	FR40025-01 EBP 19 04-17-69 892C02D05 S-CUBED	892C40526 892C40526 8-CLBED Round 2	ANNE 3-01 EBP 39 04-19-89 892C02521 S-CLASED	40083-02 EEF12 Db-14-89 892C40548 S-CL8ED Round 2	AMF803-01 E8P55 D4-20-89 89ZC02R04 S-CL8ED	4000 30-0 1 EBP2 1 04- 18-89 892C025 10 S-CUBED	MN03D-02 ELF03 D6-13-89 892C40533 S-CLAED Round 2	40034-01 E8P30 04-17-89 892C02S02 S-CLBED	AMO 3A- 02 Eff 02 D6- 13- 89 89ZC40532 S-CL8ED Round 2	40035-01 E8P17 04-17-89 892C02501 S-CLBED	40035-02 EEF00 06-13-89 892C40523 5-CLBED Round 2
ORGANIC COMPOUNDS (Wg/1)														
PESTICIDES and PCBs		••••					••••••••••••••							
							·	••						
A - 8HC		••			•-	••								
TA-BHC	••	*•												-
MA-BHC (LINDANE)				••			0.02 R			6 04 R			••	0 0
TACHEOR						••								
		••	••	••			••						••	-
TACHLOB EPOXIDE	••	••	••	••			••					••	••	-
GEALFAN I	••			••			••		• -	••	••			-
LORIN		••			••	••	••		••					
- ODE	••								••			••	••	
28 IN	••			••						••		••	••	-
DELLEAN II			••	••	••		••		• -		••	••	•-	-
- 900			••	••	••		••		••					-
THIN ALDEHNDE	••	••	••	••			••			••	••			•
DOBLE FAN SLEFATE	••		••				••		•-	••	••			-
1-00T	•-	••	••		••			••						•
THERVEHL OR	••	••	••		••	••	••		••	••			••	-
DRIN KETCHE	•-			••	••			••				••	••	•
CROANE	••	••		••		••	••		•-				••	
KAPHENE								••						•
CLOR- 18 16								••		••	••	••		
DCLOR-1221			••					••	•-	••				
DCLOR-1232			••				••	••	••	••		•-	••	
DCLOR-1242												••	••	
CLOE-1248	••	••	••			••	••		••		••	••		
DCLOR - 1254					••									

(

.

NOTES:

-- + Not detected at

detection limit.

R = Unusable.

8 - Blank contamination

j + Estimated value.

File. W-AMPCB.WK1

(Page 2 of 5)

24-OC1-89

PESTICIDE/PCBS - GROUNDWATER

Sample Location: Sample Number: Date Sampled, CRL Namber: Laboratory,	AM035-02 EEF01 D6-13-89 892C40D23 S-CLBED Round 2	MB4D-01 E8P23 04-18-89 892C02S09 S-CLBED	Aus 40-02 E E E 05 Ge-13-89 B 2 C 40 S 3 F S - C LB E D Bound 2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	WH845-02 Ett04 D6-13-89 892C40534 S-CUBED Round 2	ANN 45-01 EBP26 04-17-89 892C02S03 S-CUBED	MW4S-02 EB496 06-13-89 892C40529 S-CLBED Round 2	400055-01 EBP28 D4-18-89 892C02511 S-CUBED	MW055-02 Et+24 06-14-89 892C40543 S-CUBED Round 2	MIUGA-01 EBP31 04-17-89 892C02504 S-CUBED	MUGA-02 EEF14 Q6-14-89 892C40550 S-CLBED Round 2	2007 A-01 18424 04-18-89 892C02512 S-CUBLD	NW7A-02 18497 06-13-89 892C40530 S-CUBED Round 2	F K MW7 4-0 E BP 25 04 - 18 - 89 692C02012 \$- CUBEE
ORCANIC COMPOLNOS (Mg/1)														
PESTICIDES and PCBs												••••••		•••••
	•										••			
TA-BHC							••			·-				-
LTA-BHC				•-			•-			••				-
MA-BHC (LINDANE)							0.14 8							
PTACHLOR														-
DRIN							0.06 j							
TACHLOR EPOXIDE												••		
DOSLA FAN 1							••		••	••				
ELDEIN			•-											-
4-DDE			••				••	••						-
DRIN										- •	••	••		
DOSLA FAN 11	••							• -			••			
4 - DDD		••	• -		••	0 3 8 j	I 20 J							
DRIN ALDEHNDE				••			••					•-		
DOGLEFAN SULFATE					022]		••			- •	••	••		
4-007							••							
THOXYCHE OR													• -	
DRIN KETONE		••		••		••	••				• •		• -	
LORDANE		•-		••										
KAPHENE		••	••					•-						
OCL CR - 10 16					- •			••						
DCLOR-1221								••		••				
OCL 08- 1232			••							••				
OCL.08-1242							••			••	••			-
OCL 08 - 1248				••			••							-
IOCL 08 - 1254					• -						••			
IOCL 08 - 1260														-

1

NOTES.

-- + Not detected at

detection limit.

R + Unusable

8 = Blank contamination

j + Estimated value

File W-MMPCE MK1

(Page 3 of 5)

24-0c1-89

PESTICIDE/PCBs - GROUNDWATER

Sampie Humber; Date Sampind; CEL Humber; Laboratory;	E8P96 06-13-89 892C40D30 5-CL8ED Round 2	EBP33 64-19-89 892C02514 S-CLBED	EEF 17 06-14-89 892C48545 8-CLBED Bound 2	EBP35 04-19-89 892C02517 S-CUBED	EEF11 06-13-89 892C40540 S-CUBED Round 2	EBP34 04-19-89 892C02516 S-CUBED	EEF 10 06-13-89 892C40539 S-CUBED Round 2	EBP54 04-20-89 892C02S33 S-CLBED	EEF18 06-14-89 892C40542 S-CLBED Round 2	EEF 19 06-14-89 892C40D42 S-CLBED Round 2	E&P53 04-20-89 892C02532 5-0L&ED	EEF20 06-14-89 892C40541 S-CUBED Round 2	EAP36 04-20-89 892C02535 \$-CLBED	E8P57 04-20-89 892C02D35 S-CLIBED
RGANIC COMPOLNOS (ME/1)														
PESTICIDES and PCB3				•••••			•••••		•••••			••••••		
N-BHC														
- 846		••				••			••					
A-BHC	••							••	••		••			
M-BHÇ (LINDANE)	0.02 R		••			•-	0 04 R							0.09
IACHE OR			••				••					••		••
LIN				• -					••					
TACHLOR EPOXIDE		••			•-		••		••		••		••	
BLE FAN I	••											••		
LORIN	••			••		•-						•-		
DDE		••			••		••	••		••				
LIN			••			••		••				•-		
DELL FAN II			•-	••	••		••							
000		••		••	••				••					
IN ALDEHNDE				••			••	••	••					••
BALFAN SALFATE		••		••		••		••						••
DOT	••		••					••				••		
IDAVICIL OR	••	••	••	••		••		••				••	••	
LIN KETONE	••		••				••	•-				••		
DROAME	••						••				••			
WHENE							••							••
CL GR - 18 16							••			••			••	••
CL CR - 1221						••		••		••			••	•-
CLOR- 1232				••		••		••						
CLOR- 1242	••		••	••	••		••			••	••			• -
CLOR-1248	••		••	••	••	••		•-	••	•-	••		••	••
CL CR - 1254	••	••	••					••	••	••				

.

.

(

(

NOTES:

-- + Not detected at

detection limit.

R = Unusabie.

8 = Blank contamination

j = Estimated value

File. w-wwech.wki

(Page 4 of 5)

24-0CL-89

PESTICIDE/PCBs - GROUNDWATER

Sample Location: Sample Number Date Sampled: Cit Number: Laboratory:	MIIIA-02 EEF21 D6-14-89 892C4D544 S-CLBED Round 2	###125-01 E&P41 04-19-89 892C02519 \$-CUBED	ANY 125-02 EEF06 06-13-89 892C40533 8-0LBED Round 2	AMV135-01 EBP40 04-19-89 892C02520 S-CLBED	AWF135-02 EEF07 06-13-89 89ZC40536 S-CLBED Round 2	4001145-01 18458 04-20-89 892C02531 5-CUBED	AW145-02 ££F13 06-14-89 89ZC40549 S-CL0ED Round 2	ANY 20D-01 E8P61 04-20-89 892C02S36 S-CUBED	,000/205-01 E8P60 D4-20-89 892C02534 S-CUBED	400215-01 18962 04-20-89 892C02537 S-CUBED
ORGANIC COMPOUNDS (ug/1)										
PESTICIDES and PCBs										
	•						0 01 J			
A-BHC					••			••	••	
TA-BHC			••		••	••				•-
MA-BHC (LINDANE)			Q.03 K		0 02 R					
TACHLOR	••	••								
EIN	••	••							••	
TACHLOR EPOKIDE										
OSULFAN I							••	••	••	••
LORIN	••			••	••			••	••	
-DDE			••	••	•-		••	••		
EIN .					• •	••	••	••		
OFALFAN II					••	••				
-000					••				••	
EIN ALDEHNDE	••	••			•-			•-		
OBULFAN SULFATE	••	•-							0 03)	
-001	••		••	••	•-					
HORYCHLOR			••		•-	••	••		0 05 j	
EIN KETONE				• -	••				••	
ORDANE		••	• •		••				••	• -
APHENE			••	••	••					
CLOR- 1016			••	••	••					
KLOR-1221	••				••				••	
KLOR- 1232		••				••		••		
CLOR- 1242	••		••	••	•-				••	
CLOR- 1248	••			••	• -		•-		••	
CLOR- 1254			••	••						

NOTES.

-- + NDL detected at

detection limit

e - unusable

8 - Blank contamination

j = Estimated value

FILE W-MMPCB WC1

08-NOV-89

INDEGANICS - GROUNDWATEE

Sample Locatio itE Sample Numbé Date Sample CRL Numbé Laborator	r . #E8C36 d: 04-19-89 r: 892C82554	ANDEO 1- 02 ALE CW 12 06- 13-89 89ZC40586 KEYSTONE	MWFB01-01 MEBC27 04-18-89 892C02R05 RMAL	MWF801+02 MECW26 06+14-89 892C40R07 KEYSTONE	MP0 IS-0 I MEBC32 04- 19- 89 892C02557 BMAL	MH015-02 MECW19 06-14-89 892C40595 KEVSTONE	AND 14-01 4EBC37 04-19-89 892C02558 RMAL	AMO 14-02 ALCW20 D6-14-89 892C40596 REYSTONE	MMB02-01 MEBC38 D4-19-89 892C02553 RMAL	MMB02-02 MECW13 06-13-89 89ZC40587 KEVSTONE	AMF802-01 ME8C49 04-19-89 892C02R06 RMAL	MUF802-02 MECW27 D6-14-89 892C40R08 KEYSTONE	MH025-01 ME8C18 04-18-89 892C02544 RMAL
		found 2		Round 2		Round 2		Round 2		Round 2		Round 2	
INORGANIC CHEMICALS (119/													
LUNING	119 3			54.4.3					103 J				1890
CE LADINY				••		••			••		•-	••	
RSENI C	61)	2.1 j	••	·· R	1.1	#	9.8 j	10 I J	29.2	#		R	95 j
AR I UM	275	274	A 1	10 3 1	59)	37.7 1	289	257	2010	1600		17 2)	352
ERYLLIUM	••	•-	••							••			
admi un			••		5 2	••			5 2			5 5	
ALCIUM .	35000	36500	345 1	510)	42500	36800	20900	27500	71300	6 1600	106)	791 j	46300
HE COLL I LILL	••					••	••			••			24 8
OBAL T		••		•-				••		••			813
app Ex	• -	••			54 j	••			•-	••	5.2]		# 3 J
EGN	14800	16 100	7231	45 8 B	163	69 2 B	4460	5260	79800	7 3600		45 & j	55800
EAD			••						1.8.3		2.1.)		7 6
YANIDE		••		••								• •	
AGNESIUM	6570	4890	65 5 1	44.5 (13700	13700	3380 J	3030 /	19500	16200	47.6 j	••	20600
ANGANESE	6230	7070	843		426	34-4	994	942	204	1690		613	1340
ERCURY			••										
HOLEL	641) 75)		••	••	••			·-	••			27 a j
OTASSIL	1760 () 2040 j	144 (2320 J	2680 j	1360 J	1210	8 3 8 0	7590			44600
ELENIUM	6	: R	R	1	#	#		4		#		#	#
ILVER		••	••		••							••	
ad I unit	4920 (j 3340 j	••	1840 J	4830 j	4290 /	3030 1	3230 (10900	95 10		1260 J	4 1500
MALL FUR				••					••	••			
ANDIUS	3.4.1		••		••	••	••		3.5 J	••	••		
INC	9.4.1		14.7 3	898	28.5		76		7.4 j	••	65)	968	49 8

.

(

.

NOTES:

B + Blank contamination.

J + Estimated value.

E - Unuseable data

-- + < contract required

detection limit.

•

(

File: W-MWIND.WKI

08-NOV-89

INDEGANICS - GROUNDWATER

Sample Location ITR Sample Number: Date Sampled. CRL Number:	MIC 25-02 MEBC 93 06-12-89 892C02571	FR.111025-01 MEBC 19 Q4-18-89 89ZC02D44	48028-01 #EBC29 04-18-89 892C02545	MID2M-D2 MEBC94 D6-12-89 89ZC02S88	MHD2D-01 MEBC22 04-18-89 89ZCD2546	MH02D-02 MEBC95 06-12-89 89ZC02S72	MBB03-01 MEBC39 04-19-89 892C02552	MMB03-02 MECW16 06-14-89 892C40590	MINT B03-01 MEBC55 04-20-89 892C02R08	MINO3S-01 MEBC 17 04-17-89 892C02538	MN035-02 MECW04 06-13-89 892C40580	FRANKO 35-02 ALECNO 5 Ob-13-89 892C40080	48034 01 468030 04-17-89 892002539
Labora tory .	KEYSTONE Bound 2	EMAL.	RMAL	KEYSTONE Round 2	RMAL	KEVSTONE Round 2	RMAL	KEYSTONE Round 2	RMAL	RMAL	KEYSTONE Round 2	KEYSTONE Hound 2	RMAL
INDRGANIC CHEMICALS (ug/i)													
	ر اڈ		44.1 j		25 2 1		29 4 1			47 8 j	235	362	43 5
	, ,, 									•/ • ,			• • • •
SENIC	311		19-4	18 8 1	241	331		4 4 4		19 4	24 1 1	22 1 1	68 4
RIUM	376	344	1390	989	152 1	147 1	-	469		593	439	480	2760
RYLLIUM									••	•••			
Danitan	12 6									••			
	\$9200	45500	89300	64600	33200	30800	53900	49100		53200	49300	52500	50800
ROMIUM	••	19.5						• •			••		
ALT.	19.6 /	7)						7.2		16 6 j	15 1	12 4 1	5 8
PPER	41)	67 j	• •		8.1 J						5.2 j		
ON	91300	54 100	24700	16700	473	379	4980	5060		43000	39900	42900	27 300
AD	3 8		♦ .1	1.1		1.4.3				•-	21)	193	
ANIDE	••							••					
GNES I LIII.	30800	20400	25 100	19300	12700	12000	22900	22500		14600	13700	14700	19500
NGANESE	3500	1300	972	680	1190	1120	3630	3180		3720	3670	4280	1260
RCURY	•• •	••		R	••	R	••				R	R	
OKEL	18 7 3	23.3)	7.4.3		54 J	••				19 & J	15 I J	10 A j	6 3
TASSIUM	60400	43800	1480 J	1270 1	988 J	846 j	16 100	16000		17000	15500	16500	19700
LENIUM		#	8		R	••		B		R			
LVER		••	••			••					••	••	
DIUM	60100	41400	5360	3910 J	2780 j	1850 J	7550	8 100		14200	12900	13500	5910
hi Li Ji Mi	•-			••			••	• -		•-			
INAD I UM	••	6.4 j	••	••	••	••	• -			341			
NC	68 6	140	58.4	12 4 8	99)	23 8	661		3.4	10 9 1	15 3 8	10 2 B	14 4

••••••

NOTES

8 - Blank Contamination

j = Estimaled value

R = Unuscable data

-- + < contract required

detection limit

Flie. W-MWIND WEE

08-NDV-89

INDEGANICS - GROUNDWATER

Sampia Location: (TE Sampie Munber: Date Sampied; CRL Number; Laboratory;	400 3m-02 MEC006 06-13-85 892C48581 KEVSTONE Round 2	4003D-01 468C21 94-18-89 892C02542 RMAL	AM03D-02 MECN07 06-13-89 892C40582 KEYSTQNE Round 2	MR045-01 MEBC26 Q4-18-89 892C02547 RMAL	ANNO45-02 MERC96 06-13-89 892C02577 KEYSTONE Round 2	MMB045-D3 MEBC20 Q4-18-89 892C02540 RMAL	MIB045-02 MECINO8 Ob- 13-89 892C40583 KEYSTONE Round 2	MNB04D-01 MEBC23 04-18-89 892C02541 RMAL	MHB04D-02 MECW09 06-13-89 892C40579 KEYSTONE Round 2	40055-01 AEBC28 Q4-18-89 892C02543 RAAL	ANNO5S-02 MECW25 06-14-89 89ZC40599 KEYSTONE Round 2	лиюбы-01 левс31 04-18-89 892C02548 RMAL	40064-02 MECW18 06-14-89 892C40593 KEVSTONE Round 2
INDRGANIC CHEMICALS (ug/1)													
Can I Main		21.3 J		49 5 j		36 I j	41]	43 j		70 j			
IT LUCINY						••							
SENIC	65.7 j	6.9 J	6 J	10 2	13.4 j	12 8	13)	14 7	14-3-j	• 1	411	1.1.1	#
LE FLAN	2680	1140	838	401	623	582	434	682	584	347	129 J	1370	1390
ERVELIUM		••			••				••				
LOBITUR .		••		••					••			••	
ALCIUM .	49900	77 900	59000	143000	57600	66400	108000	7 1000	63600	8 1400	49600	68800	66300
RGB I UN	••			••	•-	••			••	••	••		••
BALT	••		•-		13.4 j	14 3 j	• j			19 A J		4.9	
IPP ER		•-			••	65)	••						
ton	30 100	3560	2870	29500	25900	25 100	37900	19400	18200	57800	2020		140 8
EAD		••	• • •	••	1.3 J		11)		2			••	
rami de				••		••			••	••			••
AGHES I UN	20300	25600	19900	28500	15800	17400	26100	29200	26600	40100	12100	15800	16000
MGANESE	1160	4110	29 10	3320	2470	3050	3390	521	47 1	6890	811	4500	4250
ERCURY	6		#		R	••	••		••	•-		••	
ICKEL		6.5 j			963	17]				8.8.1		4 1 1	10 5 j
DTASSIUM	19800	20 90 j	1840 J	19 100	13900	10300	20900	1570	i 1690 j	1810 j	921 j	1080	1110
EL ENGLAN	••	#		#		•• •	k	8	k	6	R	•	#
ILVER	••			••		••			•-				
	5040	5870	4560 j	3750 j	5020	5350	3340 j	5420	4260 J	2000 j	2550 J	6630	5950
HALLILM	••				••			••					
MADILE					••		••		••		•-	••	
INC	16.5 8	9.4 J	9.2.8	15.1 3	18 j	23.9		75		31.6		67	

(

NOTES

8 + Blank contamination.

j + Estimated value

R + Unuseable data.

-- > < contract required detection limit.

-

(

File W-ANDINO.WLL

08-NOV-89

Sample Location ITR Sample Numbe Date Sample CRL Numbe Laboratory	r: MEBC24 3: 04-18-89 r: 892C02549	MIC74-02 MEBC97 06-13-89 892C02578 KEYSTONE Bound 2	FR.MN07A-01 At 8C25 04-18-89 892C02D49 RMAL	FRMM07A-02 MEBC98 06-13-89 892C02D78 KEYSTONE ROUND 2	400085-01 MEBC34 04-19-89 892C02555 RMAL	AMO85-02 AECW14 O6-13-89 892C40591 KEYSTONE Round 2	MM084-01 MEBC35 04-19-89 89ZC02556 RMAL	MWG84-02 ALCW15 06-13-89 892C40589 KEYSTONE Round 2	AMUGD-01 ALBC33 04-19-89 89ZC02559 RAAL	MN08D-02 MECW21 06-14-89 89ZC40S94 KEYSTQNE Round 2	AMO944-01 MLBC54 04-20-89 89ZC02569 RMAL	40094-02 MECW22 Ob-14-89 892C40598 KETSTONE Round 2	FRM0094-02 MECW23 06-14-89 892C40D98 KETSTONE Round 2
NDEGANIC CHEMICALS (Ug/													
III I MUIIA			1 55			813 J			••		27 B J		
LINGINY			• -		••		••		· •	• -			
ENIC	3.3.1	4.1.3	2 2 1	361		22)	••	12 3 1	32)	345	53 J	4 8 j	121
i Lik	235	216	226	218	145 j	140 j	600	454	88 Z J	87 8 J	122 J	107 j	115
YLLIUM				••	••				••			•-	
alua -									••	••			-
CIUM	49500	45000	47500	45 300	72900	63300	65000	48200	42700	41300	53900	48900	49800
CINI LIN		••			••	••			••		••		
ALT					8.7 j	961			••		••		••
PER					6.2 j		••		•-		••		
N	3140	1440	1360	1400	••	294		164 8	32.9 J	142 8	882	1030	954
0		1.3 J	311		2.7 j				••	••			151
NI DE		••			••				••	••		••	
NESTUR	11900	11100	11500	11200	25900	22600	17 200	13000	13700	13600	13200	12300	12600
IGANESE	7 18	582	682	577	5690	5270	3060	2130	2530	2480	991	729	759
CURY	••	#		#		•-							
XEL		••	61)	••	19.9 j	18 7 J	87)	1 91	51)				••
ASSIUM	1010 j	902 j	1030	969 j	2970 (3580 (1370 J	1 1220	1310 j	1240 j	1010 3	938 j	984
ENILM	•• •		A		R	#	#	: A	·- R	·- R		8	د
VER	••			• •					••				-
ni Lim	3140 j	2650 j	3440 j	2460 J	10300	/ 13900	10500	\$320	8280	5220	7390 l	2910 j	2946
IL IUM					••				••	••		••	د
ADIUM	•-	••			•-	• -	••		••				-
C	14.4 j	15 2 8	1933	36.3 8	20 2	••	13 8 1		9)		611	758	

.

8 - Blank Contamination

j = Estimated value

R = Unuscable data

-- + < contract required

detection limit.

FILE W-ANTINO. NALS

08-NDV-89

(Page 5 of 6)

INDEGANICS - GROUNDINATER

Sample Location: iTE Sample Aumber: Date Sampled: CBL Aumber: Laboratory:	MU 104-0 1 MEBC53 04-20-89 89ZC02568 RAAL	AW 194-02 MECW24 86-14-89 892C48597 KETSTONE Bound 2	AMY I IA-01 MEBC56 04-20-89 89ZC02570 RAAL	MW 1 1A-02 MECW28 06-14-89 89ZC4 1S0 1 KEYSTONE Round 2	FRAMU I 124-01 MEBC57 04-20-89 892C02070 RMAL	MN 125-01 MEBC41 04-19-89 892C02550 RMAL	MW125-02 MECW10 06-13-89 892C40584 KEVSTONE Round 2	400 135-01 MEBC40 04-19-89 892C02551 RMAL	MW135-02 MECW11 06-13-89 892C40585 KEYSTONE Round 2	MW145-01 ME8C58 04-20-89 89ZC02574 RMAL	400145-02 406CW17 96-14-89 892C40592 KEYSTONE Round 2	NW205-01 MEBC60 04-20-89 892C02571 RMAL	MW20D-01 MEBC61 04-20-89 892C02572 RMAL
NORGANIC CHEMICALS (Ng/1)													
	24 j		38.5 J	68.8.7	35. 8 j	30 6 j	j 56	55.3 j	62.2 J	28.1 j		••	26 6 j
LINDAY			••						••	••	••		
IENIC	••	#	3.6 j	12 j	4.6 j		#		3 1		#	3.5 j	
i i um	141 j	132 j	143 j	357	145 j	14.9 J	17.2 j	41.3 J	15.0 J	134 J	152 J	1280	24 B J
IAFF LOW	••	•-		••	•-	••	•-						
	••	•-	••			••			••		••	••	••
.CIUN	76606	61800	54300	77 100	54500	37 500	35500	24500	25400	4 1900	47600	111000	7 1500
i Cain i Ulla													
ALT.	••	••		17 j	••	••		•-	••				• •
Pft		••	••	463		••	••						••
R		64.4 B	1690	62900	1660		132 B	95.0 j	204 B	3670	7410	456	2210
ND	••	••	••	R		••		••	1.8 J			20)	••
UNI DE													
DIESTUR	27600	22600	12600	37800	12800	15300	14800	10200	11000	10700	12900	40100	18000
GANESE	2780	2 190	1040	5960	1050	7.5 j	••	19.1	23.6	952	1260	77 10	100
ICLEY .	••			8			••	-•		••	••		
IK EL	9.2.3	-	••		• -							56 j	••
TASS I UM	1910	1820 1	1000 j	1690 J	945 j	397 j	419 J	350 J	737 j	5720	7 150	3040 j	2450 J
ENIL	••	·· #	••		••		🗈		R		8		
ver	••	••				••							
De Las	41580	42200	3040 j	1570 J	3310)	3290 j	7410	1830 j	2360 J	12700	15 100	32600	8160
ALL FUB							••	••	••	••	••		
10.01 LBL	••		••	5.3 j		••						••	
	10.1 J	6.6 8	14 2 1	24.3 B	2.7 (9.6 J	8.2 8	5.8.1	8.8.8	5.8 J	6 8	491	12 6 1

(

.

NOTES:

8 + Blank contamination.

) = Estimated value.

R + Unuscable data.

-- + < contract required detection limit.

File: W-MWIND.WK1

08-NOV-89

INDRGANICS - GROUNDRATER

Sample Location: AW215-01 its Sample Number, At8662 Date Sampled: 04-20-89 CRL Number, 892C02573 Laboratory, RMAL

.....

INDRGANIC CHEMICALS (Ug/1)

.....

ALUMINER	••
ANTLIONY	••
ARSENIC	
BARILM	201
BERYLLIUM	
CADMIUM	••
CALCIUM	80300
CHEOMIUM	••
COBALT	431
COPPER	
IRON	160
LEAD	••
CYANIDE	·
MAGNESIUM	39400
MANGANESE	3220
MERCURY	••
NICKEL	13 A J
POTASSIUM	1990 (
SELENIUM	••
SILVER	••
SODIUM	6400
THALLIUM	•-
VANADIUN	
ZINC	10 10
6. · · · · ·	

.....

NOTES:

- 6 + Blank contamination
- j = Estimated value.
- R Unuseable data.
- -- + < contract required detection limit.

GROUNDWATER

SAMPLE LOCATION. SAMPLE NUMBER.	4558E-20	0N-4861-02 4668E-15	ON- MUFB01-01 4558E-13	CN- MVFB01-02 4668E-25	ON-M#14-01 4558E-24	GN-##18-02 4668E-24	ON-40715-01 4558E-23	CN-##15-02 4668E-23	ON-MM82-01 4558E-19	ON-MM82-02 4668E-16	ON-##7802-01 4558£-25	DN- MW1802-02 4668E-27
DATE SAMPLED.	04/19/89	86/13/89	04/18/89	06/14/89	04/19/89	06/14/89	04/19/89	06/14/89	04/19/89	06/13/89	04/19/89	96/14/89
CRL NUMBER:	892C02517	49ZC4 15 14	892C02801	89ZC4 1809	892002521	89ZC4 1523	89ZC02520	89ZC4 1522	892602516	89264 15 15	\$92C02R03	892C4 (8 10
LABORA TORY:	RAAL	Allied	BMAL	Ailied	RMAL	Ailied	RMAL	Aliied	RMAL	Allicd	RMAL	Alijed
		Round 2		Round 2		Round 2		Round 2		Round 2		Round 2
IS ANNLYSES (mg/l)												
DTAL PHOSPHORUS	0.24		••		0 13		0 13		0.03 8		0 083	
LFIDE (FILTRATES)	••		••				••					
AFIDE (FILTERS)	••		••				••					
Ð	15 2 J		••		9. 6 J		6.1		25.6 j		••	
ĸ	6.7		••		4.4		32		6.8			
55	25		••		30		68 0		145		••	
5	190 B		••		132 8		191 8		337 🛢		••	
02 + ND3	••				0 69 8		0 35		311 8		382	
0	0 33				0 30		0 19		7.1		••	
s.atibe	5 6				5 8		5.4		15.6			
AFATE	30 3				6 0		12 2					
DTAL ALKALINITY	••				▲2 1		140		293			
80	••				••		•-					
IL AND CREASE	••	05	1	• 0 4			•-	< 0.4		C 8.4	••	

(

.

(

.

NOTES:

B = Blank contamination

j = Estimated value.

-- + < detection limit

FILE: SAS_ME.WK1

(Page 1 of 6)

SPECIAL ANALYTICAL SERVICES -

CROUNDWATER

SAMPLE LOCATION: SAMPLE NUMBER: DATE SAMPLED: CRL NumBR. LABORATORY,	4558E- 10 04/17/89 892C02509 RMAL	ON-MM02D-02 4668E-03 96/12/89 892C41504 Allied Round 2	ON- 4890248-01 4558£-09 04/18/89 892C02508 RAAL	0N-0000246-02 46688E-02 06/12/89 892C41503 Ailied fround 2	06/12/89 04/17/89 892C41503 892C02507 Ailled kmai	0N-4440025-02 46688:01 06/12/89 892C4 1502 Attied Round 2	ON- FRAMO25-01 4558E-08 04/17/89 89ZC02D07 RMAL	01-40083-01 45582-18 04/19/89 892C02515 RMAL	ON-44483-02 4668E-18 06/14/89 892C41516 Ailied Round 2	ON-AMF603-01 45586-29 04/20/89 892C02R04 RMAL	0N-40003D-01 4558E-05 04/18/89 892C02505 RMAL	0N-MB03D-02 4668E-11 06/13/89 892C41S10 Alfied Round 2
ANALYSES (mg/1)												
AL PHOSPHORUS	0 017		0 013		0 11		0 11	0 21		0 019 8	0 22	
FIDE (FILTRATES)			•-					••		••		
FIDE (FILTERS)								••		••		
•	5 6		24 1		104		136	11.2.3			16 2	
:			3 8		31.6		30	4.8			5 3	
i			50		269		219	10 5				
	145		341		445		425	293 B		223	322 🖬	
+ ND3												
1			0 55		#3 5		75.7	14.3		••	0 34	
OR I DE			77		54 3		55 2	13 Q			13 5	
FATE					••		••				••	
AL ALKALINITY			316		521		525	273		••	285	
)	••		••		100 J		18 4 3					
AND GREASE		< 0 4		06)		3)		••	05)	321		07

NOTES.

8 + Blank contamination

j + Estimated value.

-- + + detection limit

File: SAS_ME WK1

SPECIAL ANALYTICAL SERVICES -

GEOLINDIA TER

SAMPLE LOCATION:	ON-1800348-91	CN+ ##034-82	014-10035-01	ON-MI035-02	QN+ FRAM035+02	QN-M845-01	014-48645-02	0H-18884D-01	0H- MB8 4D-02	ON-200845-01	CN-100845-02	CIN- #8055-4
SAMPLE NUMBER:	4558E-82	4668E- 10	4558E-01	4668E-08	46682-09	4558E-11	4668t-04	45588-04	46688-07	45548-03	46682-12	4558E-C
DATE SAMPLED:	04/17/89	06/13/09	04/17/89	06/13/89	06/13/89	64/17/89	06/13/69	04/18/89	06/13/89	04/18/89	96/13/89	84/18/
CRL MUNBER:	892C02502	#\$ZC4 1589	892C02501	#9ZC41508	89ZC4 1006	89ZC02510	89ZC4 1505	\$9ZC02504	89ZC4 1507	89ZC02503	89264 1511	842C925
LABORA TORY:	EMAL.	Allind	RMAL	Allied	Allied	RMAL	Allied	RMAL	Allied	RMAL	Allied	R.4
		Round 2		Round 2	Round 2		Round 2		tound 2		Round 2	
ANALYSES (mp/i)												
L PHOSPHORUS	8.853		0.018 8	i		0.19		0.2		9 . 12		•
IDE (FILTRATES)	••					••						
IDE (FILTERS)	••					••		••				
	23.7		55.3			56		13 7		\$7		
	4.6		12-4			21.8		3.1		16.4		2
	61.5		82			275		24 - 5		54		
	263		312			331		291		\$27		
+ NQ3	••					••		••		••		
			12 9			• 2		2 1		2.1		
DR I DE	11.6		11 6			6		4 6		5.4		
ATE	••									49.8		
L ALKAL INI TY	244		244			300		291		406		
			21 1	1		44)		••		42 1		
AND GREASE		0.45 (17 (• 1		17 (4.0.4	-	13 (

ſ

.

NOTES:

8 + Blank contamination.

j . Estimated value.

-- . . detection limit

.

1

File: SAS_MU.UKT

24-0c1-89

SPECIAL ANALYTICAL SERVICES -

CROUNDWA TER

SAMPLE LOCATION: SAMPLE NUMBER. DATE SAMPLED: CRL NUMBER:	4668E-30 06/14/89	CN- 40064-01 45586-12 64/17/89 892C82571	0%-46686-21 46686-21 06/14/89 892C41520	ON-##7#-01 45582-14 04/18/89 892C02512	0N-##74-02 4668E-05 06/13/89 89ZC41506	GN-FR/M07A-01 4558E-15 04/18/89	0N- FR4074-02 4668E-06 06/13/89 892C4 1006	0N-11006D-01 4558E-26 04/19/89 89ZC02522	0N-4668E-22 4668E-22 06/14/89 89ZC41521	0N- AND 54A-01 4558 E-22 04/19/89 692C02S19	ON- MICOBA- 02 4668E- 19 06/13/89 892C41518	0N-AB085-01 4558E-21 64/19/81 892C02518
LABORA TORY:	Allied Round 2	8.6AL	Allied Round 2	RMAL	Allied Round 2	RMAL	Ailied Round 2	RAAL	Aliied Round 2	RMAL	Allied Round 2	RAAL
ANALYSES (mg/1)												
L PHOSPHORUS				0.013 8						0 04 8		0 051
FIDE (FILTRATES)		••										-
FIDE (FILTERS)		••										•
		9.6		6 2								14
		2 6								24		5
		••				••		59 5				59
		264		185		181		209 8		270 8		34
+ N03										267 B		24
		0 17				0.1				0.13		1
10E												15
ATE								6 0				
L ALKAL INI TY		236		170		167		159		222		2
		2)				-+				••		
AND GREASE	12 1		07		(04		< 0.4		< 0.4		(04	

NOTES

6 + Blank contamination.

j + Estimted value.

-- = < detection limit

File: SAS_MW WK1

SPECIAL ANALYTICAL SERVICES -GROUNDWATER

SAMPLE LOCATION: G SAMPLE NAMBER: Date Sampled. Cril Manger: Laboratory:	4668E-17 66/13/89 89ZC41517 Allied Round 2	4556E-28 64/28/69 892C82524 RAAL	CN-40094-02 4668E-28 66/14/89 89ZC41525 Allied Round 2	014-FR40098-02 46682-29 06/14/89 892C41025 Allied Round 2	CN-MU (DA-01 4558E-27 04/20/89 892C02523 RMAL	0N-487104-02 4668E-26 06/14/89 892C41524 Allied Round 2	CN-40/114-01 4558E-30 04/20/89 89ZC02525 RuAL	04-00110-02 4668E-31 06/14/89 892C41527 Allied Round 2	0N- FRMF114-01 4558E-31 84/20/89 892C02D25 RMAL	CN-##125-01 4558E-16 04/18/89 89ZC02513 R#AL	0N-48/125-02 4068E-13 06/13/89 89ZC41512 Allied Round 2	CN-407135-01 4558E-17 84/18/89 892C02514 RMAL
AS ANALYSÉS (mg/1)												
OTAL PHISPHERUS		0.084 8	1		0 036 B		0 02 8	1		6.045 8		0.03
LEFIDE (FILTRATES)					••				•-	••		
LAFIDE (FILTERS)					••					• -		••
00		• 1			10 4 J				••	5 4		
oc					4 6							
55		••							••	54		45 5
Dis					397 🛢		213 🛙	l I	206 8	173 8		119
02 + NQ3		••								0 29		0 40
ю		••			••		••					••
HLORIDE					19.5		••		••	••		
LE FATE							•-			••		50
OTAL ALKALINITY		174			347		18 1		173	135		92 5
00							••			••		
HL AND GREASE	4 9.4	3 1 8	4 0.4	• 0 4	518			c 0.4			< 0.4	

ĺ

.

•

NOTES:

8 + Blank contamination

J + Estimated value.

-- . . detection limit

-

(

FILE: SAS_MR.WLL

24-0C1-89

SPECIAL ANALYTICAL SERVICES -

GROLINDWA TER

		<i></i>	
SAMPLE LOCATION.	ON-481135-02	ON-40145-01	ON- ## 145-02
SAMPLE MUNBER:	4668E-14	4556E-32	46686-20
DATE SAMPLED:	06/13/89	84/20/89	06/14/89
CRL NUMBER:	89ZC4 1513	892C02526	492641519
LABORA TORY:	Allied	RMAL	Allled
	Round 2		Round 2
			

SAS ANALYSES (mg/l)

.....

-

TOTAL PHOSPHORUS		0.19	
SULFIDE (FILTRATES)			
SULFIDE (FILTERS)			
COD		16 A J	
TOC		4 5	
155		28 0	
TDS		226 8	
ND2 + ND3		0 83 8	
NHG		0 26	
CHLORIDE			
SLEFATE		11 5	
TOTAL ALKALINITY		166	
60D			
OIL AND GREASE	+ D.4	168	2 j

NOTES

E = Blank contamination

j + Estimated value.

-- + < detection limit

FILE: SAS_NW WK1

(Page 6 of 6)

(24-0c1-89

.

VOLATILE	ORGANIC	COMPOUNDS	•
----------	---------	-----------	---

Sample Location.	F85801	C801-113-117	ON-FBCB02	ON-C8024-14	ON-FRG8024-14	ON-CB02#-55	ON-C8024-75	ON- CB064-20	ON- (2064-80	10-2041	1904-01	101804-01
Sample Number.	LBPQ6	£8905	EBP 10	EBPTI	EBP 12	EBP 13	EBP 14	£8P15	EBP 16	EBP42	EBP43	15748
Date Sampled:	03-15-89	03-15-89	3/20/89	3/20/89	3/20/89	3/20/89	3/20/89	3/20/89	3/20/89	04-17-89	04 - 17 - 89	04-19-89
CEL HAMBET :	892C01801	892C81585	892091801	892001501	\$92C01001	8892681502	692001503	89200 1504	69200 1505	692603535	\$92(82525	\$91(02803
Labora tory :	CEIMIC	CEIMIC	10R I	WR I	wet a	WR I	WR I	WRI	WR J	S-CUBED	S-CUBED	S-CLBED
GRGANIC COMPOUNDS (ug/kg)												
VOLATILE												
CHIL OR ONE THANE	• ••									••		
RONQUETINNE		••		••					••			
INML CHLORIDE								•-	••			
CHL GROETHANE					••					••		
NETHMLENE CHLORIDE	78	15 B		دد	35	••	10	13	23	6 8		6 B
ACE TONE	14 8	29 8	5 /	64	19 8	11.	. 314	1 26 A	35 6			
CARBON DISULFIDE		•-					••	••				5 8
I, 1-DI CHLOROE THENE				••				••		••		••
I, I-DI CHLORGE THANE			••		••				••			- •
I, 2-DICHLOROETHENE (TOTAL)	•-		••			•-			••		•-	•-
CHLOROFORM	••	••		••		••			•-		••	
1, 2-DI CHLORGE THANE	••			•-					••		••	
2 - BUTANONE	••	••			••					30 8	15 0	i i i i i i i i i i i i i i i i i i i
1, 1, I-TEICHLORGETHANE	••	••	- •			••				••		
CARBON TETRACHLORIDE		••			••		••	••		••		••
VINNL ACETATE	••	••		•-	••	••	••			••		
BROWDDI CHLOROME THANE					••	••			••			••
1, 2-DI CHLOROPROPANE		••		••	••	••		••	••			
CIS-1.3-DICHLOROPROPENE	••		••			••	••	••	••	••	••	- •
TR I CHL ORGE THEME	••	••			••	••	••	••	••	••		
DI BRONDCHLORONE THANE	••					••	••					
I, I. 2- TRICHLOROE THANE	••					••	,	,				
BENZENE			4	I			,	,	7			
TRANS-1, 3-DICHLOROPROPENE												
pe conce cela 1 - de Thryl - 2 - Pentancine	••											
1-MEXANDRE												
2 - FRE AMPRIME TE TRACHLOROE THEME												
1, 1, 2, 2- TETRACHLOROETHANE												
TOLUÊNE		5 1		5		5				290	20	
CHLOROBENZENE		• •			, .	3		, , 				
ETIMLBENZENE				••							7	
STYRENE												
TOTAL XYLENES		••		5			1			1000 (110 1	

- j + Estimated value
- ··· · · detection limit
- Date 08/16/89
- FILE S IPVUL MALE

NOTES

^{8 +} Blank contamination

(24-001-89

VOLATILE ORGANIC COMPOUNDS -

SOILS

SOILS													
Sample Location	TP07 - 0 I	1908-01	1209-01	IP 10-01	1911-01	FR 1P 1 1 - 0 1	TP 13-01	MW020-24	MWG2D-54	MW02D-75	MW02D- 108	FRAMO20-108	MWD 15+ 18+ 22
Sample Number.	ŁBP44	£8245	LBP46	tBP47	E8P50	18851	L6P52	LBPOQ	EBPO 1	EBP02	£6403	EBP04	LBP07
Date Sampled.	04-18-89	04-18-89	04-18-84	04 - 18 - 89	04-19-89	04-19-89	04-19-89	03-15-89	03-15-89	03-15-89	03-15-89	03-15-89	03-16-89
CILL NUMBER.	892(02527	892C02528	\$9ZC02529	892C02530	\$9ZC02523	892(02023	892102524	#9ZC01501	\$92C01502	89200 1503	49ZC01504	892001004	892001506
Laboratory	S-CUBED	S-CUBED	S-CUBED	S-CUBED	\$-CUBED	S-CUBED	S-CUBED	CE1#1C	CEIMIC	CEIMIC	CEIMIC	(EI#IC	CEIMIC
ORGANIC COMPOLINDS (Mg/kg)													
VOLATILE													
HE OR ONE THANK	••						••						
RONOME THANK							••		••				
INVL CHEORIDE												••	
HE OR DE THANE													
ETHYLENE CHLORIDE	4 8	4 8	78	10 .	9 1	28		97	10 8	27	. 68	18.4	67 1
CETONE	54 j	47 j		1 PC		40 (86.)	160	21 8	23 8	i 16 B	22 1	
ARBON DISLAFIDE	5 8	10 8		÷ 8	19 8	. 58							
, I-DICHLOROETHENE													
. 1-DI CHLOROE THANE													
2-DICHLORDETHENE (TOTAL)					4.1	ו כ ו	ı						••
L OROFORA						••		•-		••			
2-DI CHE ORGE THANE			••	••	••	••		• -					
BUTANENE	21 8	47 8	38	6 B		25 8	24 8	12 8	5 j			••	•-
, 1, 1-TRICHLORDETHANE					••	••			• •				••
ARBON TETRACHLORIDE		• •			••	••					••		
INVL ACETATE	• ·				••							••	••
RONOD I CHLORONE THANE			••							- •		•-	•-
. 2-DICHLOROPROPANE	••		••			••							
IS-1, 3-DICHLOROPROPENE							•-	••				••	
ILI CHLOROE THENE	••		••		4 .	1 3		•-	••			••	
I BEOBOCHE OE CHAINE			••			••		••	••	••		••	••
. 1. 2- TRICHLOROE THANE	••		••						••	••		••	
ENZENE	• •					••						••	•••
RANS-1, 3-DICHLOROPROPENE		••			•-					••		••	••
R GBOF GRA		••		••			••					••	••
-METHYL - 2-PENTANONE								••			••		••
- HE XANONE	••		••				- •						••
E TRACHLORGE THENE				••		••					••	••	
. 1.2,2-TETRACHLOROETHANE					••							••	••
OLUENE	\$7	67	70	•3	1700	770	77						
HLOROBENZENE	•-	••			•-		••			••	••	••	
THATBENZENE		34			1600	660	••			- •	••	••	-•
TYRENE	••	••											••
IOTAL XYLENES	540 8	600 8	360 8	90 8	24000	5600	I	3)					••

NOTES.

6 + Blank contamination

j + Estimated value

-- a - detection limit

Date 08/16/89

(24-0c1-89

VOLATILE ORGANIC COMPOUNDS -

50115

-----Sample Location: MH01M-78-80 MH01M-53-55 E8P08 EBPO9 Sample Number: 03-16-89 Date Sampled: 03-16-89 CRL Number: 892C01508 892C0 1507

CEIMIC

CEIMIC

Labora tory :

ORGANIC COMPOUNDS (US/kg)

.....

VOLATILE

VOLATILE			
CHLOBONETHANE			
BRONONE THANE	••		
VINAL CHLORIDE	••	••	
CHL GROE THUNE	•-	••	
METHYLENE CHLORIDE	12 8	14 B	
ACETONE	23 8	20 8	
CARBON DISLAFIDE	••		
I, 1-DI CHLOROE THENE	••		
1. 1-DI CHLOROE THANE	••	••	
1,2-DICHLOROETHENE (TOTAL)	••		
CHL OROFORM		••	
I. 2-DI CHLOROE THANE			
2-BUTANINE	2 j		
1. 1. I- TEI CHLORGE THANE		••	
CARBON TETRACHLORIDE	••	••	
VINNL ACETATE	••		
BR GuidDi Chi, GR Gill Thune	••	••	
1, 2-DI CHLOROPROPANE	••		
CIS-1, 3-DICHLOROPROPENE		••	
THE I CHILOROE THEME		••	
DI BRONOCHLOROME THANE	••		•
1. 1. 2- TRICHLOROE THUNE			
BENZENE	••	••	
TRANS- 1. 3-DI CHLOROPROPENE	••		
S& CMOF C&A			
4-BETHYL-2-PENTANONE	••		
2-HEXANDAE		••	
TE TRACHE GROE THENE		••	
I, I, J. 2- TETRACHLOROE THANE	••		
TOLUENE	••	4)	
CHLOROBENZENE	••	••	
ETHYLBENZENE	••		
STYRENE	••	••	

.....

.. ..

NOTES:

8 - Blank contamination

- j + Estimated value
- -- a c detection limit
- Date 08/16/89

TOTAL XYLENES

.

24-0c1-89

SEMI-VOLATILES - SOILS

Sample Location. Sample Number Date Sampled: Citl Number. Laboratory:	F85801 E8P06 03-15-89 892C01R01 CE1M1C	ON- C8024-14 E8P11 3/20/89 892C01501 WR1	ON-1808024-14 f8P12 3/20/89 892001001 WR1	ON- (802A-55 EBP 13 3720789 8892C01502 WR 1	ON-C802A-75 {8P14 3/20/89 892C01503 WR1	0N- G806A- 20 E8P 15 3720789 892C01504 WR 1	0N- C806A- 80 E8P 16 3/20/89 892C01505 WR I	UN-FBG802 E8P10 3720789 892C01R01 WR1	CB01-113-117 E8P05 03-15-89 892C01505 CE1M1C	1P03-01 EBP42 04-17-89 892C02525 S-CUBED	1904-01 18943 04-17-89 892002526 S-01860	1PFB04-01
CREGANIC COMPOUNDS (ug/kg)												
SEMIVOLATILE											••••••••••••	
NOL												
(2-CHLOROETHYL)ETHER			••			••						
HLOROPHENOL I-DI CHLOROBENZENE												
-DICHLOROBENZENE	••	••					••					
IZYL ALCOHOL I-DICHLOROBENZENE	••		••			••	••					
E THYLPHENOL			••			••	••	••	••			
; (2 - CHLORO I SOPROPYL) E THÈR ME THYL PHENOL							••					
ITROSO-DI-R-PROPLYAMINE					••							
ACHLOROETHANE		••					••					
TECEENZENE IPHIRONE												
H TROPHENOL		••		•-	••	••	••					••
I-DIMETHYLPHENDL									••			
S(2-CHLOROETHOKY) ALE THANE						••					• •	
4-DICHLOROPHENOL							••		•• 			
2, 4 - TRICHLOROBENZENE PHTHALENE											810	
CHLORGANIL INE	••				••						••	
XACHLORODUTAD I ENE CHLORO-3-METHYLPHENOL		••									••	
AL THYLNAPHTHAL ENE	••	÷-	••								490)	
XACHLOROCYCLOPENTADIENE	••		••				••	••	••			
4 , 6 - TR I CHL OROPHENOL 4 , 5 - TR I CHL OROPHENOL												
CHLORONAPHTHALENE	••		••	••		••			••			
NI TROANI LINE METHYL PHTHALATE								•-				
ENAPHTHYL ENE										••		
6-DINITEOTOLUENE						••						• -
NI TROANI L'INÉ ENAPHTHÈNE												
4-DINITEOPHENOL	••		••									
NI TROPHENDL BENZOFURAN												
4-DINI TROTOLUENE	••				••				••		••	••
ETHYL PHTHALATE CHLOROPHENYL PHENYL ETHER			••				••	••				
UDRENE						••			•-			
NI TROANIL INE		••										
6-DINITRO-2-METHYLPHENOL NITROSODIPHENYLAMINE												
BRONOPHENYL PHENYL ETHER	••								••	••		
XACHLOROBENZENE INTACHLOROPHENOL												
HENANTHRENE					••			••	•-			
THRACENE .	••				29							••
-N-BUTYL PHTHALATE		30	1 22	1		1	25	1				
A ENE									<u>.</u>			
/TVL BENZYL PHIMLATE 3-DICHLOROBENZIDINE									70 j			
NEG(A)ANTHRACENE		••										
RYSENE				:							·	
S(2-ETHVLHEXYL)PHTHALATE -N-OCTYL PHTHALATE		84	8 86 	6 57 	B 40	B 81	B 54 1	B 20	J 170 J	96 J	130 j	
NZO(B)FLUORANTHENES					••						••	
NZO(K)FLUORANTHENES NZO(A)PYRENE												••
DEND(1,2,3-CD)PYRENE				••				••				
							••					
BENZ (A , H)ANTHRACENE NZO(CHI)PERYLENE									• •			• -

.

24-00 L-89

SEMI-VOLATILES - SOILS

Sample Location: Sample Humber: Onte Sampled: CRL Number: Laboratory:	TP07-01 E8P44 04-18-89 892C02527 S-CLIBED	TP08-01 E8P45 04-18-89 892C02528 S-CUBED	TP09-01 E8P46 04-18-89 892C02529 S-CUBED	TP 10-01 E8P47 04-18-89 892C02530 S-CUBED	TP 11-01 E8P50 04-19-89 892C02523 S+CUBED	FRTP11-01 EBP51 04-19-89 892C02023 S-CLBED	TP 13-01 E8P52 04-19-89 892C02S24 S-CUBED	4002D-24 E8P00 03-15-89 89ZC91501 CE141C	MID2D-58 EBP01 03-15-89 892C01502 CEIMIC	MID2D-75 E8P02 03-15-89 89ZC01503 CEIMIC	AMO 2D- 108 E8P03 03- 15- 89 892C0 IS04 CE1ALC	FRIMO2D- 108 E8P04 03- 15-89 89ZC0 1004 CE IAI C	MMO15-18-2; E8P0; 03-16-8; 892C0150; CELMIC
DRGANIC COMPOLNDS (Mg/kg)													
SEMIVOLATILE	•••••	•••••							••••••				
	 							40 1			160 1		
ENOL 5 (2 - CHLOROE THML) E THER								40 j			(40)		
HLOROPHENDL									••		100 j		-
-DICHLOROBENZENE			••										
I-DICHLOROBENZENE RYL ALCONOL			••										
-DI CHLOROBENZENE		••			••	••					••		
NE THALPHENOL S(2-CHE GEOI SOPROPYL) E THER	••					••				••			•
NE THAT A PHENOL											••		-
W TROSO-DI-R-PROPLYAMINE			••	••							44 j		-
KACHL GROE THANE TROBENEENE		••	••										-
THERE AND A AND							340 1						-
NI TROPHENDI.	••	••								••			
-DIMETRAL PHENOL		••							••	••			
NEOIC ACID 5(2-CHLOROETHOKY) METHIME													
4-DICHLOROPHENOL			••	••				••					
2.4-TRICHLOROBENZENE					1490	3500				••	60 J		
Philippi Eng Chi China I Ing					1400	3300	540 J						
ACHLOBOBUTADI ENE	••					••	••	••	••			•-	
DE. ORO- 3- ME THAL PHENDL								••			95 j	••	-
NE THIVE NAPHTHALENE KACHEOROCYCLOPENTADI ENE		130 j			700 j	2300	190 3						
I. 6- TE I CHL GROPHENOL		•-		••	••	•-		••					
I.S-TRICHLOROPHENDL	••			••			••	••		••			
CHLORONAPHTHALENE NI TROANI LINE													
NETHINL PHILINGLATE				••		••							
ENLINE CHE			••			••	••				70 j	••	
S-DINI TROTOLUENE						••							
NI TROMILLINE DIMPHTHEME			••			••					••	••	
I-DINI TROPIENOL	••				••	••			••		••		
NI TROPHENOL LENEOFLEAN													-
4-DINI TROTOL LENE	••			••			••			••	••		-
ETHAL PHILMALATE				••	••		••			••	••		
CHLOROPHENNL PHENNL ETHER						120)							
NI TROAMILINE	••				••								
-DINITRO- 2- METHYL PHENOL	••		••				• •-	••	••				
NI TROBODI PHENNI, ANI NE BRONDPHENNI, PHENNI, ETHER													
KACHL ORGEENZENE	••		••	••	••						•-		
MTACHE CROPHENOL	••	••	••	••						•-	69 J		
Environe Trancene					160 /	440 j	220 /		••				
H-BUTYL PHTHALATE				••									-
ABANTHENE							170 1	••				••	
IENE IVI. BENEVIL PHIDMLATE				••			180 8				64 (۰- ۱ 	-
-DICHLOBOBENZIDINE		••											
CO(A)ANTHRACENE	••		••			••	••						
R YSENE B(2-ETHVLHEXYL)PHTHALATE	150 /		· ·-		230	850	2100					••	
-N-OCTYL PHTHALATE	150)		· ··		230 1	650	2300	5 300		1200			
NEO(B) FLUGRANTHENES	••			••	•-		•-						
NEO(K) FLUORANTHENES NEO(A) PVRENE						••	••	••					
DEND(1, 2, 3-CD) PYEENE													
BÊNZ(A,H}ANTHRACENE		••									••		
NRO(CHII)PERVLENE		••	••				••				• •		

•

.

ſ

NDTES: B = Blank contamination j = Estimated value R = Unuseable data ... = < detection limit

24-OC1-89

SEAL, WOLATHES - SOULS

Sample Location. Sample Number. Date Sampled. CRL Number: Laboratory.	NWO 1A-78-80 E8P08	MM0 14-53-55 E8P09
Date Sampled. CRL Number: Laboratory.	03-16-89 89ZC01508 CEIMIC	03-16-89 892(01507 CEIMIC
	••••••••••	•••••
ORGANIC COMPOUNDS (ug/kg)		
SEMIVOLATILE		
		••
BIS(2-CHLOROETHYL)ETHER		••
2-CHLOROPHENOL 1, 3-DI CHLOROBENZENE		
1, 4-DI CHL OBOBENZENE		••
BENZYL AFCOHDL 1, 2-DICHLOROBENZENE		
2- WE THVL PHENOL	••	
BIS(2-CHLOROISOPROPYL)ETHER		••
4 - #E TIML PHENOL N- NI TROSO- DI - N- PROPL YA#I NE		••
HEXACHLOROE THANE		
NI TROBENZENE I SOPHORONE		••
2-NI TROPHENOL		
2, 4-DIMETHYLPHENOL BENZOIC ACID		
R I S I 2 - CHL OR OF THOXY J & THANE	••	
2, 4-DI CHLOROPHENDL 1, 2, 4-TRICHLOROBENZENE		••
NAPHTIMAL ENE		••
4- CHLOROANIL INE	••	
HEXACHLOROBUTADI ENE 4-CHLORO-3-METHYLPHENDL		
2- ME THAL MAPHITHAL ENE		••
HEXACHLOROCYCLOPENTADI ENE 2.4.6-TRICHLOROPHENOL		••
2,4,5-TRICHLOROPHENOL		
2-CHLORONAPHTHALENE		
2-NI TROANILINE DIMETRICE PHILINE		
ACENAPHTHLENE	••	
2,6-DINITROTOLUENE 3-NITROANILINE		
ACENAPHITHENE	••	••
2, 4-DINI TROPHENDL 4-NI TROPHENDL	••	
DIBENZOFURAN	••	••
2. 4-DINITROTOLUENE		••
DIETHYL PHTHALATE 4-CHLOROPHENYL PHENYL ETHER		
FLUORENE		43 J
4-NI TROANI LINE 4, 6-DINI TRO-2-ME THYLPHENOL		
N-NI TROSODI PHENYLANI NE	••	•-
4-BEONOPHENYL PHENYL ETHER HEXACHLOROBENZENE		••
PENTACHLOROPHENOL	••	
PHENANTHEENE		
ANTHRACENR DI-N-BUTYL PHIMALATE		
FLUORANTHENE	••	
PYRENE BUTYL BENRYL PHTHALATE	••	••
3, 3-DICHLOROBENZIDINE	••	
BENZOLAJANTHRACENE		
CHRYSENE BIS(2-ETHYLHEXYL)PHTHALATE		
DI-N-OCTVL PHTHALATE		
BENZOLS) FLUCEANTHENES BENZOLK) FLUCEANTHENES		
BENZOEAIPYRENE	••	
INDEND(1.2,3-CD)PYTENE	••	
DIBENZ(A,H)ANTHRACENE BENZO(GHI)PERYLENE		
	• • • • • • • • • • • • • • • • • • • •	
NOTES: # + Blank contamination		
j + Estimated value		
# + unuseable data		

PESTICIDE/PCBS - SOILS

Sample Location: Sample Number: Date Sampled: CRL Number: Laboratory:	FBS801 EBP06 03-15-89 892c01R01 CEINIC	GB01-113-117 EBP05 03-15-89 89ZC01\$05 CEINIC	ON-GB02N-14 EBP11 3/20/89 892C01S01 WR1	ON-FRGB02H-14 EBP12 3/20/89 892C01D01 WR I	ON-GB02H-55 EBP13 3/20/89 8892C01S02 WRI	0N-GB02N-75 EBP14 3/20/89 892c01s03 WR1	ON-GB06M-20 EBP15 3/20/89 892C01s04 WR I	ON-GB06M-80 EBP16 3/20/89 892c01805 WR1	ON-FBGB02 EBP10 3/20/89 892C01R01 WR1
DRGANIC COMPOUNDS (ug/kg)								••••••	••••••••••
PESTICIDES and PCBs									
PNA-BNC	• ••								
TA-BNC				••					
LTA-BHC									
WA-BHC (LINDANE)		••					••		
PTACHLOR				••				••	
DRIN								••	
PTACHLOR EPOXIDE	••		••		••	••			
DOSULFAN I	••				••	••			
ELDRIN		••	••					••	
-DDE			••					••	
DRIN			••				••	• -	
DOSULFAN 11	••		••	••		••			
-D0D	••				••				
DRIN ALDENYDE				••	••				
DOBULFAN SULFATE	••						••	÷-	••
4-DDT	••			••					
THOKYCHLOR		••						••	
DRIN KETONE		••		••				••	
LORDANE XAPNENE				••				••	
DCLOR-1016									
DCLOR-1221									
CLOR-1232									
CLOR-1242			••						
CLCR-1248			••						
OCLOR-1256									
OCLOR-1260									

(

.

(

NOTES:

B = Blank contamination.

J = Estimated value.

-- = < detection limit.

File: S-PEPCB.WK1

Sample Location: Sample Number: Date Sampled: CRL Number: Laboratory:	TP03-01 EBP42 04-17-89 892C02S25 S-CUBED	TP04-01 EBP43 04-17-89 892C02S26 \$-CUBED	TPFB04-01 EBP48 04-19-89 892C02R03 S-CUBED	TP07-01 E8P44 04-18-89 89ZC02S27 S-CUBED	TP08-01 EBP45 04-18-89 892C02S28 S-CU8ED	TP09-01 EBP46 04-18-89 892C02S29 S-CUBED	TP10-01 EBP47 04-18-89 892C02S30 S-CUBED	TP11-01 EBP50 04-19-89 89ZC02S23 S-CUBED	FRTP11-01 EBP51 04-19-89 892C02D23 S-CUBED	TP13-01 EBP52 04-19-89 892C02S24 S-CUBED
ORGANIC COMPOUNDS (ug/kg)			••••••••••••							
PESTICIDES and PCBs					•	••••				
LPHA-BHC										
ETA-BHC										
ELTA-BHC										
ANNA-BHC (LINDANE)	86 B	59 B	130 B		120 B	190 B				190
EPTACHLOR										
LDRIN		•-	••			••				
EPTACHLOR EPOXIDE		••								
NDOSULFAN I		••	••							
IELDRIN					••			••		
4-DDE				28		330				25
NDRIN			•-							
NDOSULFAN II								••	••	
,4-DDD		•-		32		360		••		140
NDRIN ALDENYDE			••	••						
NDOSULFAN SULFATE		••	••					••		••
,4-DDT		••				130	**			
ETHORYCHLOR	••	•-			••	••				
NDRIN KETONE		•-			••			••	••	
HLORDANE									••	••
OXAPHENE	••									- -
ROCLOR-1016			••					••		
ROCLOR-1221			••	••		•-		••		
ROCLOR-1232		••								
ROCLOR-1242		••								
ROCLOR-1248						••				
ROCLOR-1254						••		••	••	
ROCLOR-1260										

NOTES:

.

8 = Blank contamination.

J = Estimated value.

-- = < detection limit.

File: S-P&PCB.WK1

PESTICIDE/PCBS - SOILS

Sample Location: Sample Humber: Date Sampled: CRL Humber: Laboratory:	NN02D-24 E8P00RE 03-15-89 892C01801 CEINIC	MU02D-58 EBP01 03-15-89 892C01502 CEIMIC	MW02D-75 EBP02 03-15-89 892c01s03 CEIMIC	NW02D-108 EBP03 03-15-89 892c01s04 CEINIC	FRMA02D - 108 E&P04 03 - 15 - 89 892C01D04 CE IMIC	NW015-18-22 EBP07 03-16-89 89ZC01S06 CEIMIC	NW01M-78-80 EBP08 03-16-89 892c01s08 CEINIC	MW01M-53-55 EBP09 03-16-89 89ZC01S07 CEINIC
ORGANIC COMPOUNDS (ug/kg)		••••••						
PESTICIDES and PCBs								
LPNA-BNC	·		••					
ETA-BIC								
ELTA-BNC	••	••	•-					
ANNA-BIC (LINDANE)	••						••	
EPTACHLOR				•-				
LDRIN	• •	••		••				
EPTACINLOR EPOXIDE			••			••		•-
NDOSULFAN I			••			••		
IELDRIN	••	••			••			
,4-DDE					••	•-		••
NDR I N		••			••		••	
NDOSLIL FAN II							••	
,4-000			••		**	••		
NDRIN ALDENYDE			••	••	-+			
NDOBULFAN SULFATE	••	••	••		••	••		••
,4-DDT	••				••	••		
ETHONYCHLOR	••	••	••	••		+-		
NDRIN KETONE	••	••				••		
NLORDANE CKAPHENE						••		••
ROCLOR-1016				••	••	••		••
BOCLOR-1221				••				
BOCLOR-1232								
BOCLOR-1232								
BOCLOB - 1248	••							
ROCLOR-1254								
ROCLOR-1260							••	••

(

.

(

.

NOTES:

B = Blank contamination.
J = Estimated value.

-- = < detection limit.

File: S-P&PCB.WK1

INDRGANICS - SOILS

Sample Location	1P03-01	1604-01	TPF804-01	1601-01	10-8041	TP09-01	TP 10-01	IP11-01	FR (P 1-01	TP 13-01	AMR020-24	MWU 20-58
I'R Number	. MEBC42	MEBC43	MEBC48	MEBC44	MEBC45	MEBC46	ALBC47	ALBC50	AEBC51	AEBC52	MEBC00	ALBCO1
Date Sampled	04-17-89	04-17-89	04-18-89	04-18-89	04-18-89	04-18-89	04-18-89	04-19-89	04-19-89	04-19-89	03-15-89	03-15-89
CRL Number	: 89ZC02560	892C02561	892C02807	892C02562	892C02563	89ZC02564	89ZC02565	892002566	892C02D66	89ZC02567	\$92C01509	892001510
Laboratory		EMAL	EMAL	RMAL	RMAL	RMAL	EMAL	RMAL	RMAL	RAAL	wi i son	wi i son
NDRGANIC CHEMICALS (mg/kg)												
	2980	4550	57	5130	3990	3220	3480	2610	3120	10800	17 30	1890
TLBONY				•-			•-			••		
SENI C	0.96 J	0.71 j		0 95 j	141	07)	111	0 74 J	0.75 j	17 6 J	••	••
t i cuit	27.3 j	39.5 J	0 43 j	47	36 J	29 7 J	62 3	50 8	45 6	184	••	20 🖡
LAFT FOR	•-	••	••	0.35 J		•-	0 23 1			0 29)		••
han a state		••	•-		••			•-	151	3.5	• -	
CIUM	2660	1330	43 9 1	3 100	1860	2390	7400	955 j	446)	19200	1210	6910
tgest Link	73	9.4		9.4	7 🌢	7.6	•	5.8	7.6	27 6	4 1	74
ALT	5 J	561		5.4 J	4 1	4 6 1	491	411	4.2]	6.8 J	2 4 3	4 6
PPER	10 9	14 45		14 7	10.1	11.7	10	4.9 j	7.4	217	₿ 7	7 6
	6860	8180	68.8	8290	6950	4680	6910	4860	4220	26500	5240	7040
AD	34)	21		37.9 j	9.1 J	6.7 J	170 j	41.9 j	39.8 J	274)	2.4)	• •
ANIDE GNESIUM	2260	1850	43 9 1	2400	1590	2150	4790	931.1	903 1	5960	14 10	
NGANESE	348 j	409 (• • • •	337 (242 (255 /	292)	139 J	129 /	3400 562 j	53 7	36 10 176
						••••	,					
	10	12		19.9	• •	10 2	10 1	751	7.7 1	20.6	••	7 9
TASSIUM	262	317 1	ן ננ	362 j	361 3	349	340 j	234 1	206 1	542 1		
ENIL			'	'								
VER	••		••					193	34.6	191	••	
Dium			••	• •	••							
				••								
NDILE	13-4	14 7	••	14 8	12.3	13	12 7	99)	97 j	17 7	951	12 6
NC	21.2	21	388	65 4	32 4	112	39 5	53	54 8	918		11.4

ι.

NOTES

8 + Blank contamination

j + Estimated value.

-- = < contract required

detection limit

FILE: S-IND WKL

24-0C1-89

(Page 2 of 3)

INORGANICS - SOILS

NTIACNY <	MEBC 13 03-20-89 89ZC0 1507 MANEO	FRC802M- 14 MEBC 12 03-20-89 89ZC0 1006 NANCO	GB02M- 14 MEBC 1 1 03-20-89 892C0 1506 NANCO	FBCB-02 MEBC 10 03-20-889 89ZC0 1R02 NANCO	MRO 14-53-55 ME&CO9 D3-16-89 &9ZCO 1515 Wilson	MBG 1A-78-80 MEBCO8 03-16-89 89ZC0 15 16 Will son	MNO 15- 18- 22 MEBCO7 D3- 16- 89 89ZCO 15 14 Will son	F8580 I MEBC06 03-15-89 89ZC0 IR02 Willson	CB01-113-117 MEBC05 03-15-89 892C01513 Wilson	FRANG2D- 108 AEBC04 03- 15-89 89ZC8 1D 12 Will son	MID 20- 104 MEBCO3 03- 15-89 892CB 15 12 Wilson	wi i son	Sample Location: iTR Namber: Date Sampled. CRL Namber: Laboratory:
Trianov 1.1 <													
Start I.I. III. III. <thiii.< th=""> III. III.</thiii.<>	1 2650	2490 j	2400 5	307 j	1760	1170	2260		16 19	1470	1470	1316	•
Item 16.2 j 14.1 j 15.7 18.2 j 20.3 j 15.4 j RVLLUM 0.48 j 0 RVLLUM 1.1 j 0.48 j 0 Dailon 1.1 j 1.3 0.48 j 0 Dailon 3316 4090 3460 3070 1.3 0.48 j 0 Ball - 4.5 4 4.7 7.4 3.9 j 3.6 j PPER 5.6 j 6.6 5.9 7.4 3.9 j 42.5 j 45.9 j GN 3760 4680 4580 5560 45 6000 3700 5170 6.3.2 8 5876 j ANDE													-
NULLIUM 1.1 <th1.1< th=""> 1.1 1.1 <t< td=""><td>-</td><td>• •</td><td>-</td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></th1.1<>	-	• •	-	•									
DBALMA I.1 j I.3 j I.3 j LCIUM 3316 4090 3480 3070 1850 4760 1640 3340 DOMILIN 4.5 4 4.7 7.4 3.3 3.2 9.9 BALT 7.4 3.9 3.2 9.9 PEE 5.6 j 6.6 5.9 7.4 3.9 j 42.5 j 45.9 j SDD 3760 4680 4580 5560 45 6000 3700 5170 65.3 B 5870 j NOD 1 j 1 5 j 2.5 j 2 5 j 4.7 j 1 3 j 0 8 j 0.32 j 2.4 NANDE 2.4 2.5 j 0.32 j 2.5 j 0.32 j 2.3 j 0 RCALT 1570 2120 1920 2300	•	20)	•		-					•			
Clum 3316 4090 3460 3070 1850 4700 1640 3340 IGMILMA 4.5 4 4.7 7.4 3.3 3.2 9.9 MALT 7.4 3.3 3.2 9.9 MALT 7.4 3.9 j 42.5 j 45.9 j PER 5.6 j 6.6 5.9 7.4 3.9 j 42.5 j 45.9 j NO 3760 4680 4580 5560 45 6000 3700 5170 65.3 8 670 1 NODE	•	0 47 j	-										
Continuity 4.5 4 4.7 7.4 3.3 3.2 9.9 ALT 1.6 5.6 5.9 2.8 j 22 2.6 j 3.6 j PER 5.6 j 6.6 5.9 7.4 3.9 j 42.5 j 45.9 j N 3760 4600 4560 5560 45 6000 3700 5170 65.3 8 5870 j 7 NDE 7.4 3.9 j 42.5 j 45.9 j NDE 1.5 2.5 2.5 2.5 4.7 j 3.3 j 0.65.3 8 5870 j 2.4 NDE 4.7 j 3.3 4.33 3.2 2.4 4.7 KGMESE 79.8 107 113 173		3890								-			
AAT 2.8 j 22 2.6 j 3.6 j PER 5 6 j 6.6 5 9 7 4 3 9 j 42.5 j 45 9 j IN 3760 4680 4580 5560 45 6000 3700 5170 65.3 8 5870 j 5 JO 1 j 1 5 j 2.5 j 2 5 j 4.7 j 1 3 j 10 8 j 9.32 j 2.4 JADE 4.7 j 1 3 j 10 8 j 9.32 j 2.4 JADE		1.4											
PFER 5 6 J 6 6 5 9 7 4 3 9 J 42.5 J 45 9 J IN 3760 4680 4580 5560 45 6000 3700 5170 65.3 8 5870 J 5870 J IN 3760 4 5 J 5 J 2.5 J 2 5 J 2 5 J 4.7 J 1 3 J 10 8 J 9.32 J 2.4 INN DE 4.7 J 1 3 J 10 8 J 9.32 J 2.4 INN DE		421			_								-
No 3760 4660 4580 5560 45 6000 3700 5170 65.3 6 570 1 10 1 1 5 2.5 2.5 1 4.7 1 3 10.8 1 9.32 2.4 100 1.1 1.5 2.5 2.5 1 4.7 1 3 10.8 1 9.32 2.4 100 1.5 1.5 2.5 1 4.7 1 3 10.8 1 9.32 2.4 100 1.5 1.20 1920 2300 2248 2160 1430 61.1 1 2230 j KGANESE 79.8 107 11.3 173 226 140 104 145 KGANY 8.055 0.072 j 0 XEEL 4.7 j <t< td=""><td>-</td><td>··· ,</td><td>· · · •</td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-	··· ,	· · · •				•						
ND i j i 5 j 2.5 j 2.6 j 3.5 j 2.5 j <th2.5 j<="" th=""> <th2.5 j<="" th=""> <th2.5 <="" j<="" td=""><td></td><td>7230 </td><td>· · · ·</td><td></td><td>5170</td><td></td><td></td><td>45</td><td>5560</td><td></td><td></td><td></td><td></td></th2.5></th2.5></th2.5>		7230	· · · ·		5170			45	5560				
Constraint 1570 2120 1920 2300 2240 2160 1430 61,1 2230 MCARESE 79.6 107 113 173 2246 2160 1430 61,1 2230 185 MCARESE 79.6 107 113 173 2266 140 164 185 RCLRV 276 140 164 185 RCLRV 8.655 0.672 0 CREE 4.7 j 4.7 0.3 j 4.0 j 11.6 CREAN	•	1.6	2.4	0.32 1	10 A J	131	4.7 1		251	2.5 j	151	• • •	
VCARESE 79 6 107 113 173 226 140 104 185 RCLEV 0.055 j 0.072 j 0 CREL 4.7 j 6.j 4.7 j 9.3 j 4.0 j 11.6 TASSIUM 0.3 j 4.0 j 11.6 TASSIUM 0.3 j 4.0 j 11.6 TASSIUM 0.3 j 4.0 j 11.6 TASSIUM 0.3 j 4.0 j 11.6 TASSIUM 0.1 317 j LEMNUM DIUM 223 j ALLIUM				••	••		••					'	
RCLAY 0.055 j 0.072 j 0 CKEL 4.7 j 6 j 4.7 j 9.3 j 4.0 j 11.6 TASSIUM 9.3 j 4.0 j 11.6 LEBNUM 0.055 j 0.072 j 0 LEBNUM 9.3 j 4.0 j 11.6 LEBNUM LUSE DIUM ALL LIAN	1 2350	2080 j	2230 j	61.1 J	1430	2160	2240		2300	1920	2120	1370	un.
CKEL 4 7 j 6 j 4.7 j 9.3 j 4 8 j 11.6 TASSIUM 1- 1- 1- 317 j LENNUM 1.2 j 1- 1- 1- 317 j LENNUM 1.2 j 1- 1- 1- 1- LVER 1- 1- 1- 1- 1- DIUM 1- 1- 1- 1- 1- 223 j ALLIUM 1- 1- 1- 1- 1-	111	215	185		104	140	226		173	113	167	79 A	Sŧ
TASSIUN 317 j LEBHUN 1.2 j 317 j LEBHUN 1.2 j 317 j LEBHUN 1.2 j	J 0.063	0 056 j	0.072 j	0.055 j			••					••	
LEMELAN 1.2 J	1 34	44)	••	••	11.6	4.8.3	9.3 j			4.7 j	é J	47)	
Liver			317 J				••				••	••	
DILLIN 223 j	÷-			••			••	••			1.2 J		
		••			••	••							
	-	229 j	223 j										
NADILAR 5, 11.1, 8.6, 8.3, 9.2 8, 12.4 115,													
NC 5.9 8.5 9.7 10.4 15.1 7.5 18 26.9 j 53.6 j	9.6 J 36.9	18 6	• • •								•		

l

-

NOTES:

B + Blank contamination.

j + Estimated value.

-- - < contract required

detection limit.

File: S-IND.WK1

(

24-0C1-89

•

INDEGANICS - SOILS

Sample Location	CB024-75	CB064-20	CM064-80
ilt Number	. MEBC14	MEBC 15	AEBC 16
Date Sampled	03-20-89	03-20-49	03-20-89
CRL Number	: 49ZCQ ISQ8	89ZC01509	89ZC01510
	: NANCO	NANCO	NANCO
INDRGANIC CHEMICALS (mg/kg)			
LUNINA	3680 j		J 2200
NTIMONY			
RSENIC	2 1		-
ARIUM	37.9 [•
ERYLLIUM	0.45 /		•
ADSIUN	Q.9 j		
ALCIUM	23100	1940	
(HEGIA) LIA COBALT	10 1		
	• · · · • . 1 · i		
EON	9300		
EAD	1.7	1.2	•
YANIDE			
MONESILA	12000	2630	J 2410
ANGAMESE	435	16.1	195
ERCLEY	0.15	,	•-
II CKEL	5.6]		j 3.8
ALL EXATO			
ELENIUM		••	
ILVER	••		
adium	••		••
HALLIUM		•-	
ANADIUM	15 2	10 5	J 13.6
LINC	30 5	28 5	J 56.3

......

.

.

NOTES

8 + Blank contamination

j + Estimated value

-- + < contract required detection limit

File. S-IND WLL

(Page 3 of 3)

24 -	0c t	- 89
------	------	------

SPECIAL ANALYTICAL SERVICES - SOILS								
30113		••••••			•••••			
SAMPLE LOCATION:	ON-TP03-01	ON-TP04-01	ON-TPFB04-01	ON-TP07-01	ON-TP08-01	ON-TP09-01	ON-TP10-01	ON-TP11-01
SAMPLE NUMBER:	4501E-51	4501E-52	4501E-60	4501E-53	4501E-54	4501E-55	4501E-56	4501E-57
DATE SAMPLED:	04/17/89	04/17/89	04/19/89	04/18/89	04/18/89	04/18/89	04/18/89	04/19/89
CRL NUMBER:	892002514	892C02S15	892C02R03	89zc02s16	892C02S17	892C02S18	892002519	892C02s20
LABORATORY:	KEYSTONE	KEYSTONE	KEYSTONE	KEYSTONE	KEYSTONE	KEYSTONE	KEYSTONE	KEYSTONE
		·····	••••••••••••••••••			••••••		
NS ANALYSES (mg/kg)								
x	3000 J	300 .	J 11 J	3200 J	746 J	1400 J	8600 J	447
		•••••	•••••••••••••••••••••••••••••••••••••••			•••••		
OTES:								
8 = Blank contamination.								

1

J = Estimated value.

,

File: SAS_TOC.WK1

ł

SPECIAL ANALYTICAL SERVICES -SOILS SAMPLE LOCATION: ON-FRTP11-01 ON-TP13-01 ON-MU020-24 ON-MM020-58 ON-HW020-75 ON-HM02D-108 ON-FRMW02D-108 ON-G801-113-4501E-01 4501E-03 4501E-04 4501E-05 SAMPLE NUMBER: 4501E-58 4501E-59 4501E-02 4501E-06 DATE SAMPLED: 04/19/89 04/19/89 03/15/89 03/15/89 03/15/89 03/15/89 03/15/89 03/15/89 892C01S02 892C02020 89ZC02S21 892C01S01 892C01S03 892C01S04 892C01004 892C01S05 CRL MUMBER: LABORATORY: KEYSTONE KEYSTONE KEYSTONE KEYSTONE KEYSTONE KEYSTONE KEYSTONE KEYSTONE SAS ANALYSES (mg/kg) ----TOC 4400 J 14700 J 112 156 189 147 167 394 ----

NOTES:

8 = Blank contamination.

J = Estimated value.

File: SAS_TOC.WK1

SPECIAL ANAL	LYTICAL SERVICES -								
••••	SOILS							•••••	
	SAMPLE LOCATION:	117	ON-FBSB01	ON-MN015-18-22	ON-MW01N-53-55	ON-110114-78-80	ON-6802H-14	ON - FRGB02M - 14	ON-G802N-55
	SAMPLE NUMBER:		4501E-07	4501E-08	4501E-09	4501E-10	4501E-11	4501E-12	4501E-13
	DATE SAMPLED:		03/15/89	03/16/89	03/16/89	03/16/89	03/20/89	03/20/89	03/20/89
	CRL NUMBER:		892C01R01	89ZC01S06	892C01S07	892C01S08	892001509	892C01D09	892001510
	LABORATORY:		KEYSTONE	KEYSTONE	KEYSTONE	KEYSTONE	KEYSTONE	KEYSTONE	KEYSTONE
S ANALYSE!						•••••			
13 ANALIJE:	5 (mg/kg)								
x			13.1	9990	638	284	131	391	40 B
OTES:									

8 = Blank contamination.

J = Estimated value.

File: SAS_TOC.WK1

SPECIAL AMALYTICAL SERVICES -SOILS SAMPLE LOCATION: ON-GB02H-75 ON-FBGB02 ON-G806H-20 ON-G806H-80 4501E-14 4501E-16 SAMPLE NUMBER: 4501E-17 4501E-15 DATE SAMPLED: 03/20/89 03/20/89 03/20/89 03/20/89 CRL NUMBER: 892C01511 892C01R02 892C01\$12 892C01\$13 LABORATORY: **KEYSTONE** KEYSTONE KEYSTONE KEYSTONE -----SAS ANALYSES (mg/kg) _____ TOC 19 B 13 79 156 **NOTES:**

Ĺ

B = Blank contamination.

J = Estimated value.

File: SAS_TOC.WK1

Page 4 of 4

Page 1 of 1

SPECIAL ANALYTICAL SERVICES -										
SOILS										
		••••								
SAMPLE LOCATION:	ON-TPB-01	ON-TP03-01	ON-TP04-01	ON-FBTP04-01	ON-TP07-01	ON-TP08-01	ON-TP09-01	ON-TP10-01	ON-TP11-01	ON-FRTP11-01
SAS SAMPLE NUMBER:	4558E55	4558E46	4558E47	4558E54	4558E48	4558E49	4558E50	4558E51	4558E52	4558E53
DATE SAMPLED:	04/19/89	04/17/89	04/17/89	04/19/89	04/18/89	04/18/89	04/18/89	04/18/89	04/19/89	04/19/89
CRL NUNBER:	892C40\$09	89ZC40S01	89ZC40S02	892C40R08	89ZC40\$03	89ZC40S04	892C40S05	892C40S06	892C40s07	892C40D07
LABORATORY:	HAZEN	HAZEN	HAZEN	HAZEN	HAZEN	HAZEN	HAZEN	HAZEN	HAZEN	HAZEN
AS ANALYSES (X)										••••••
	0.03	<0.01	0.10	<0.01	0.13	0.07	0.02	<0.01	0.02	<0.01
MLOR I NE			0.03	0.02	0.03	0.02	0.06	0.03	0.04	0.03

.

File: SU-CL_TP.WK1

24-001-89

Sample Location. SAS Sample Number:		1P04-01 4558E36	1PF804-01 4558E44	TP07-01 4558E37	1P08-01 4558£38	TP09-01 4558£39	1P 10 - 0 1 4558£40	TP 1 1-01 4558E4 1	FR TP 1 1-01 4558E42	TP 13-01 4558E43
Date Sampled:		64-17-89	04-18-89	04-18-89	04-18-89	04-18-89	04-18-89	04-19-89	04-19-89	04-19-89
CIL Number:		#\$ZC#2578	89ZC02806	492C02529	892C02530	892C02531	892002532	49ZC02533	492C02D33	49ZC02S34
Labora tory :	JTC	- J1C	110	J1C	JIC	110	JIC	JTC	JIC	JIC
DEGANIC CHEMICALS (mg/kg)								·····		
ENIC	6.5 j	3.7 j	2 # j	6 6 J	6.4.1	6.5 j	4 6 3	6.7 j	6.0 j	18.0
1 LBA	271.0	293.0	••	486 0	107.0	375.0	326 0	628.0	791.0	161.0
ing, è Lang.	15.1 J	25.6 J	4.8.1	77;	74 j	F1 # J	12 5 J	24.1 J		••
	17.3 j	31.9 J			11.4 J	8.9 J	14 9)	37 4 J		••
0	••	89 5 3	89.3 j	•-					•-	
CLEY	•-		••	••						
ENIL	7.0 j	6.9.1	4.1.1	341	4.2.1	4 2 1	57 ;	4.9.1	6.1.1	• •
VER		12.2 1			••		931	8.2	••	

l

(

.

NOTES

j + Estimated value.

-- - < contract required

detection limit.

FILE. EPTOK.WK1

24-0C1-89

VOLATILE ORGANIC COMPOLNOS -

SEDIMENT

Sample Location. Sample Number, Date Sampled:	ON-SD01-01 E8P78	ON-\$002-01	ON-SU03-01	ON- SD04 - 01	ON-5005-01	QN- 5006 - 0 1	UN-SD07-01	UN-SD08-01	ON-SD09-01	ON-SD10-01	0N-SD11-01	UN-FRSD11-01
		EBP79	EBPBO	EBPEI	EBP#2	EBPA3	E8P84	EBP85	LBPSS	EBP87	LBPSS	torag
	06-12-89	06-12-89	06-12-89	06-12-89	06-12-89	06-12-89	06-12-89	06-12-89	06-12-89	06-12-89	06-12-89	06-12-89
CIL Number:	892C40501	892C40502	892C40503	892C40504	892C40505	892C40506	892C40507	892040508	892C40509	892C40510	892(40521	892C40D21
Laboratory	S-CLBED	S-CLBED	S-CUBED	S-CUBED	S-CUBED	S-CULED	S-CUBED	S-CUBED	S-CUBED	S-CUBED	S-CUBED	S-CLINED
DEGANIC COMPOUNDS (ug/kg)												
VOLATILE		•••••										••••••
OR QUE THANE MOMETHANE												
ML CHLORIDE												
LOBOE THANE												
HALENE CHEORIDE	10.8		7 8	20 8		17 8	22 🕯		14.8	6 8	14 8	5
TONE												
BON DISULFIDE	••						•-					
1-DI CHLOROE THENE												
- DI CHLOROE THANE						••		••				
-DICHLOROETHENE (TOTAL)	••							••				
CROFCEA						••						
I-DICHLOROE THINK	••				••							
NJTANGNÉ	16 J			••		••	••		••		62)	••
1, 1-TRICHLOROETHANE								••				
IBON TETRACHLORIDE		••			••		••		-•			••
ML ACETATE		••				••	- •		••	••		
ONOD I CHIL OR CINE THANE		••	••				••	-•		••		
2-DI CHLOROPEOPANE			••	••			••	••		••		••
S-1, 3-DICHLOROPEOPENE								••		••		
I CHLOROE THENE						••		••				••
BROBOCHLOROBETHANE	••	••				••	••	••	••			
1, 2- TRICHLOROETHANE		••					••		••			
NZENE	••	••			••		••					••
ANS-1, 3-DI CHLOROPROPENE			••	••	••							••
amofor A	••		••		••	••	••				••	••
NETHAL - 2 - PENTANCINE	••		••		••	••					••	
HE XANDHE		••		••		••			••	••		
TEACHLOROE THENE				••	••		••	••		••		
1, 2, 2- TETEACHLOROETHANE			••									
LUENE	9.6			21 🖬	3 🛾		2 1				••	6
LOROBENZENE	••		••		••							
WLBENZENE	••		••		••	••	••	•-				
VEENE DTAL XYLENES	••				••					••		

•

8 - Blank contamination

j = Estimated value

-- + NOT detected at

detection limit

FILE W-SDVOC WLL

NOTES

24-0C1-89

VOLATILE ORGANIC COMPOLINDS -

SEDIMENT

••••••		• • • • • • • • • • • • • • • • • • • •	
Sample Location:	ON-SD12-01	ON-FRSD12-01	QN- SDFB 13-01
Sample Humber:	68/90	E8P9 I	£8P92
Date Sampled:	06-12-89	06-12-89	06-12-89
CRL Number 1	49ZC40522	892C48022	892C40R01
Labora lory :	S-CUBED	\$-0.8£D	S-CLBED

ORGANEC COMPOLINDS (ug/kg)

VOLATILE

VICATICE			
CHL OR ONE THANE			
BRONDIE THUNE		•-	
VINT CHORIDE	••		
CHL GEOETHWNE	••		
METHVLENE CHLORIDE		15 8	45 B
ACETONE		••	
CARDON DISLEFIDE	••	••	••
1, 1-DI CHLOROE THENE	••	••	
1, 1-DI CHLOROE THANE	••		
1, 2-DI CHLOBOETHENE (TOTAL)			••
CIL GROFGRA			
I, 2-DI CHLORGE THINE			••
2-BUTANDAE	••	••	••
1, 1. 1-TRICHLORGE THANE	••		••
CARBON TETRACHLORIDE	••	••	
VINNL ACETATE	••	••	
BRONDDI CHLORONE THANE		••	••
1, 2-DI CHLOROPROPANE			
CIS-1.3-DICHLOROPROPENE			
TH I CHLOROE THEME			••
DI BEGNOCHL GEORE THANE		••	
1, 1, 2-TRICHLOBOE THANE	••	••	
sentent			
TRANS-1, 3-DI CHLOROPROPENE			
BRONDFORM		••	••
4-BETHML-2-PENTANDAE			••
3-HEXANDRE		••	
TE TRACHE OR OF THEME		••	
1, 1, 2, 2- TE TRACHLORGE THANE			
TOLUENE		10 8	28
CHLOBOBENZENE		••	• •
ETHALBENZENE			
STYRENE	••	••	
TOTAL XYLENES	••	••	

••••••

NOTES

8 + Blank contamination

j . Estimated value

-- + NOT detected at detection fimit

FILE W-SUVOL MAI

.

-

(

24-0c1-89

SEMI-VOLATILES - SEDIMENT

Sample Location: Sample Namber Date Sampled CRL Namber: Laboratory:	0N-SD01-01 E8P74 06-12-89 89ZC40501 S-CUBED	ON- SD02-01 E8P79 06-12-89 89ZC40S02 S-CLBED	ON- SD03-01 E8/80 06-12-89 892C40503 S-CUBED	0N-5D04-01 E8P41 06-12-89 892C40504 S-CUBED	ON- 5005-01 EBP#2 06-12-89 #92C40505 S-CLBED	ON-SU06-01 E8P83 O6-12-89 892C40SD6 S-CUBED	ON-SD07-01 E6P84 D6-12-89 89ZC40507 S-CUBED	UN-SD08-01 E8P85 06-12-89 89ZC40S08 S-CUBED	0N- 5009-01 E8P66 D6-12-89 892C40509 S-CUBED	0N-SD10-01 E8447 06-12-89 892C40510 S-CUBED	ON-SDII-GI E8P88 U6-12-89 89ZC40521 S-CUBED	0N- FRSD11-0 EBP8 06-12-8 892C40D2 S-CUBE
EGANIC COMPOLINDS (UB/kg)												
SEALVOLATILE	•••••••			••••								
NOL							•-					•
NUL {2-CHLOBOETHYL)ETHER												-
HLOROPHENCL	••		••	••				••			••	•
- DI CHLOROBENZENE	••	••		••	••	••						•
DICHLOROBENZENE	••									••		-
IVL ALCOHOL DI CHLOROBENZENE												
THMLPHENOL				••								-
2-CHLOROISOPROPYL)ETHER	••	••	••	••			••				••	-
THATPHENOL	••	••	••	••	••					••	••	•
TROSO-DI-R-PROPLYAMINE	••					••						•
CHLOROETHANE OBENZENE												
HORONE	••											
TROPHENDL				••	••	••			•-		••	-
DI ME THAL PHENOL		••		•-		••						
DIC ACID 2-CHLOROETHOXY)AETHANE												
2- CHLOROF (HUKY) AR THINK DI CHLOROPHENDL							••					
- TEI CHLOROBENZENE		••								••		
THALENE			••	••			••	••		••	••	
OROLNEL INE				••			••					
CHLOROBUTADI ENE LORO-3-METHYLPHENOL	••											
RALMAPTINAL ENE	••	••			••					• -		
CHLOBOCYCLOPENTADI ENE	••	••			••	••	••		••	••		
- TEICHLOEOPHENOL	••	••	••		••		••	•-	••			
- TEI CHLOROPHENOL												
LORGNAPHINALENE TROANLINE												
THE PHTHALATE												
APISTIAN ENE							••	••	••		••	
DINI TROTOLUENE	••		••	••	••		••			•-	••	
TROANIL INE					••		••					
NPHTHENE DI NI TROPHENOL												
ROPHENDL	••	••	••	••						••		
ROFURAN	••	••	••	••		••			••	••		
DINI TROTOL UENE	••		••							• •		
HAL PHITHALATE LOROPHENNL PHENAL ETHER	••											
tene												
FROAMIL INE		••	••	••	••		••	••	••			
DI NI TRO-2-ME THYL PHENOL					••	•-	••		••	••		
TEGSODIPHENVLANINE				••			••			••	••	
GROPHENML PHENML ETHER CHLOROBENZENE												
ACHLOROPHENDL									••			
ANTHRENE	••	••			••	••	••	••	-•	••	••	
RACENE	••	••			• •				••		••	
-BUTYL PHITHALATE							••					
RANTHENE NE												
BENRYL PHITHALATE						••				••		
DICHLOROBENZIDINE	••		••	- •		•-			••			
DIAJANTHRACENE	••	••				••	••		••	••		
SENE	••						••					
2-ETHYLHEXYL)PHTHALATE •OCTYL PHTHALATE							••					
D(B) FLUGRANTHENES												
DIKIFLUGRANTHENES	•-	••				•-	••		••			
O(A)PYRENE	••				••	••						
ND(1,2.3-CD)PYRENE	••					••			••			
NZ (A. H)ANTHRACENE O(CHI)PERYLENE	••											
				••		••						

1

FILE W-SDBNA WKT

(Page 1 of 2)

24-0C1-89

SEMI-VOLATILES - SEDIMENT

•

Sample Location:	ON- \$012-01	ON-FRSD12-01 EBP91	QN- SDFB 13-01 E8P92
Date Samled	04-12-49	06-12-89	06-12-89
Chi Mather	892C40522	06-12-89 892C40022	892C40R01
Sampie Number: Date Sampied: CRL Number: Laboratory:	S-CUBED	S-CLOED	S-CLBED
		• • • • • • • • • • • • • • • • •	••••••••••••••••••
CECANIC COMPOLINDS (HE/LE)			
SEMIVOLATILE		••••••	
	-		
HENDL		••	
ILS(2-CHLOROETHML)ETHER		••	
- CHE.OROPHENDL	••		
, 3-DI CHLOROBENZENE , 4-DI CHLOROBENZENE			
A CONTRACTOR			
ENEVIL ALCONOL . 2-DI CILGEOBENZENE		••	••
		••	
IS(2-CHLOBOISOPBOPYL)ETHEE	••	••	
-AE WAL PHINGL			••
HNI TROBO-DI-R-PROPLYANINE			
H TROBENEENE			
SOPHERCHE - NI TROPIEMOL	••	••	••
-NI TROPHENOL		••	••
4-DIAL BAL PIENOL	••	••	
ENEDIC ACID			
4-BICHLORDE HINKY JAL HINK			
.2.4-78ICHLOBOBENZENE			
APHTHAL ENE			••
- CHLOROANILINE EXACHLOROBUTADIENE	••	••	••
EXACHE OBODUTADI ENE			••
-CHECKO-3-METHYLPHENOL			••
- METRINLINAPINT HIAL ENE EXACUL OBOCYCL OPENTAD I ENE			
. A . A- TO I CHI. GROPHENCI.	••	••	
. 4 . 5- TRICHLOROPHENOL	••		••
- CHL CRONAPHINGLENC	••		
- has Tähännel 1. Sinet	••		
HALTING PHINALATE			
			••
- 6-DINI TOGTOLLENE	••	••	
CENEPHINENE	••	••	••
. 4-01NI TROPHENOL		••	
-NI TROPHENOL NBENEOFURAN			
A-DIN THOTOLUENE			
COA GROOM BAR BARANS FINER	••		••
	••		
- MI TINIANI LINE			••
. 6-0414 WER-2-AE TIML PHENOL			
I, O-DOINT HER-2-DE HYTE MEL - MI TORSADA PHELON AMINE - MI TORSADA PHELON AMINE - MILTON AMERICAN E MACHE AND EMPENDE - MILACHE ADAMENDE			
E MACHE BREELENE			••
ENTACH. COOPHENOL	••	••	
	••	••	••
MINACENE	••	••	
H-N-OUTVL PHIDALATE			
l lailanninere 'Veële			
VTVL BENEYL PHIRMLATE		••	
, 3-0101.0108812101NE		••	
ENED(A)ANTIRACENE	••	••	••
HEYSENE	••	••	••
IS (2-ETIMLHEXYL) PHITHALATE		••	••
H-H-OCTVL PHILHALATE ENEO(8)FLLORANTHENES			••
ENEDIE FLUERANTHENES			
ENEDLA JPYRENE	••		
NDEND(1.2.3-CD)PYRENE		••	
IBENZ(A.H)ANTHRACENE		••	••
ENZO(GHI)PERVLENE			••

l

.

(

.

-- • NOt detected at detection limit

PESTICIDE/PCB - SEDIMENT

RCANIC COMPOUNDS (ug/kg) PESTICIDES and PCBs HA-BHC A-BHC A-BHC	 		 									
PESTICIDES and PCBs MA-BHC A-BHC												
HA - BHC A - BHC											•••••	
A-BHC									••	•-		
				•••								••
				••								
NA-BHC (LINDANE)	••		9.3 (49)				3 • 1		
TACHLOR											• -	
tin												•-
TACHLOR EPOXIDE												
DELL FAN I				••		• -						
LORIN		•-		••	•-							
- ODE	491		••	••				4 8 3				
LIN				••	•-		••		••	••		
DSLEFAN II				••								
- 000				••								
LIN ALDEHVDE		••							• •			
DSULFAN SULFATE	•-					••				••		••
-001	••	- •		••						••		• •
HOXYCHLOR		- •		••				••	• -	• •		
RIN KETONE	••			· ·	•-	••					••	
ORDANE		••						••	••	••		
APHENE	••				• -	• -		• •			•-	••
CLOR~ 1016	••					•-	••	- •	••	••	• -	
CLOR-1221	••						••				• -	
CLOR - 1232			••						••			••
CLOR- 1242		••		• •								••
CLOR- 1248				••		••						••
CLOR~ 1254	••									••		••

NOTES

-- + NDL detected at

detection limit.

j + Estimated value.

File. W-SDPCB.WK1

24-061-89

PESTICIDE/PCB - SEDIMENT

ON-SDF813-01	ON-185012-01	ON-5012-01	Sample Location:
E8P92	E8P91	68790	Sample Number:
06-12-89	96-12-89	06-12-89	Date Sampled:
892C40R01	892048022	892C40522	CRL Number.
S-CUBED	5-0.860	S-CLBED	Labora tory :

DEGANIC COMPOLNOS (Mg/kg)

PESTICIDES and PCB1

ALPHA-BHC		••	••
BETA-BHC	••		
DEL TA-BHC	••	••	
GAIMA-BHC (LINDANE)	••	4.1 J	
HEPTACHLOR			••
ALDEIN		••	••
HEPTACHLOR EPOXIDE			••
ENDOSALFAN 1		••	
DIELORIN		••	
4.4-DDE		••	••
ENDEIN	••	••	••
ENDOBLE FAN 11		••	••
4.4-000		••	
ENDEIN ALDEHYDE	-•		•
ENDOBLE FAN SLE FATE	••		
4.4-DDT	••		
ALE THORYCHLOR	••	••	••
ENDEIN KETONE	••	••	
CHE ORDANE		••	••
TOKAPHENE	••	••	
AROCLOR- 1016	••	•-	
ABOCLOR-1221	••	••	••
ABOCLOR- 1232	••	••	••
ARGCLON-1242	•-	••	••
AROCLOR- 1248			••
ARGCLOR-1284	••	••	
ARGCLOR-1260	••	••	

(

۱

.

NOTES:

-- • Not detected at detection limit. J = Estimated value.

File: W-SOPCE.WK1

INDRGANICS - SEDIMENTS

Sample Location: ITE Sample Number:	SD01-01 MEBC78	SD02-01 #EBC79	SD03-01 MEBC80	5004-01 MEBC&I	SDO5-01 ALBC82	5006-01 MEBC83	SD07+01 #EBC84	SD08-01 #E8C85	SD09-01 #EBC86	5010-01 MEBC87	SD11-01 MEBC88	FRSD11-01 Mt8C89	SD12-01 MEBC90
Date Sampled	06-12-89	06-12-89	06-12-89	06-12-89	06-12-89	06-12-89	06-12-89	06-12-89	06-12-89	06-12-89	06-12-89	06-12-89	06-12-89
CRL Number.	89ZC40551	892C40552	89ZC40553	892C40554	892C40563	892C40564	892C40565	892040566	892C40567	892C40568	892C40575	892(40075	892C40576
Labora tory .	KEYSTONE	KEYSTONE	KEYS IONE	KEYSTONE	KEYS TONE	KEYSTONE	K EYSTONE	KEYSTONE	KEYS TONE	KEYSTONE	SKINER	SKINER	SKINER
NORGANIC CHEMICALS (mg/kg)													
. Can I Munn	4560 E	7080 R	2870 R	3420 R	11100 R	7070 R	998 R	11000 R	696 R	9050 R	2060 j	783 j	3260
IT LACINY	R	•- R	#	R	R	R	#	·• R	#	#		••	
SENIC	3 K	2.4 R	178	2.2 R	7.8 R	2 4 R	1.6 R	34 R	8	2 6 K	141	••	1
A I LIN	86.7 R	73.2 R	39 5 R	60 R	108 R	76 2 R	13 7 R	135 R	748	109 R	29 9 J	10 2 j	
RYLLIUM	0.23 R	0 44 R	0.24 R	•• 8	0 77 R		·- R	0 75 R	8	0 62 R			••
Can I Can	8	#	#	8	8		8	8	** #	R			
LCIUM	3300 E 9.5 R	1300 E	1010 R	1140 R 7.1 R	1690 R 20 5 R		404 R 2.6 R	2680 R 24 2 R	279 R 2 3 R	2560 R 19.4 R	1170 j 3.6	371 j 0.94 j	
RGM ILM MALT	9.3 R R	13.5 R 5.6 R	4.5 8	7.1 K 5 R	-			24 2 K 8 1 R	8	6.1 R	311	14	
2006 E	9.1 8	10.6 R	478	5 8				17 2 8	2.3 8	10 9 R	6.9		, , , , , , , , , , , , , , , , , , , ,
ION	8010 R	10200 R	6420 E	8490 R		10200 R	2510 R	14400 R	1650 R	13600 B	4370 (1810 1	
END	13.3 R	15 7 R	528	6 5 R		7.8 R	0.78 R	24 R	0 46 R	17 2 R	2 4 1	1 1	
QNESIUM	1180 R	1730 R	848 R	942 R	2280 R	1970 R	340 R	2590 R	222 R	237G R	802 J	278 1	1390
MCANES E	64 3 R	210 K	186 R	516 R	340 R	125 E	111 R	189 R	43.6 R	293 R	191)	82.2.3	302
ER CUR Y	#	#	#	🗈	•• 🛚	#	8	8	8	8			
CKEL	8	13 7 R	8	928	21 5 R	11.6.8	4	16.7 R	8	14 B R	35 j		57
DTASSIUM	8	527 R	🕯	8	922 R	780 R	·• R	1200 R	🖬	964 R	229 j	85.9 J	334
EL ENHLIM	#	R	#	#	R	🕯	·- R	•• R	#	#	0 6 j	0 54 1	
ILVER	R	R	R	#	·• R		#	·• #	#	#	••	••	
OD I LIN	R	38 3 R	8	R	45 J R		8	79 I R	#	53 5 R	34 1 8	25 1 8	
HALL JUM	R	8	•	0 74 R			·- R		·- R	·- R	R	1	
ANADI UK	22 R	. 23 R	11 R	10 4 8			448		4 8	27 2 R	53)	251	
INC	42.2 R	43 2 R	26 R	37 R	65 R	53 4 R	11 1 8	106 R	10 2 R	51 5 R	20 2	8.6	21.5

NOTES:

8 + Blank contamination

j + Estimated value

R = Unuscable data

-- + < contract required

detection limit

File: W-SDIND.WK1

(Page 1 of 2)

08-NOV-89

INDRGANICS - SEDIMENTS

Sample Location:	18CD13.4-	
Sample Location. ITE Sample Number:		
Date Sample:		
	89ZC40D76	
Laboratory.		SKINER
INDRGANIC CHEMICALS (mg/kg)		
si cuist Palum	5360 j	274
INT LOONY		
ASENI C	1.6 j	0 88
AR I UM	67	4.6
HER YEL I LAN	••	
CADINIUM		••
CALCIUM	2500	1400
Dritt Gill I Lik	10.2	10 2
COBALT	5.6 j	••
COPPER	7.5	
iðan	11300 J	143
LEAD	6 1	
IA GNES I UN	1820	79.5
IANGANESE	459 j	1.9
MERCLEY		••
NI CK EL	● J	
POTASSILIA	562 (
SELENIUM		
SILVER		
SODI LIN	82 4 8	
THALL FUR	8	
WNADIUM	16.2	19 3
LINC	36.6	1.3

(

NOTES:

8 - Blank contamination.

) + Estimated value.

R + Unuseable data.

-- + < contract required detection limit.

File: W-SDIND.WK1

.

(

24-0C1-89

VOLATILE ORGANIC COMPOUNDS -

SURFACE WATER

Sample Location Sample Number	ON- SWU (- 0) E8P6 3	0N- SW02-0 (EBP64	0N-5103-01 EBH65	0N- 5WU 4 - 0 1 EBP66	0N- SW05-0 I £8P67	UN+ SWU6- U 1 EBP64	UN-\$W07-01 EBP69	0N- 5WU8- 0 I EBP7U	ON- 5809 - 0 1 EBP7 1	ON-5810-01 EBP72	ON-5W11-01 EBP73	UN FRSWEE-DE LBP74
Date Sampled	06-12-89	06-12-89	06-12-89	06-12-89	06-12-84	06-12-89	06-12-89	06-12-89	06-12-89	06-12-89	06-12-89	06-12-89
Citi Number	892040511	892040512	892040513	892040514	892040515	892040516	892C40517	892640518	892(40519	892C40520	892140524	892640024
Labora lory.	S-CUBED	S-CUBED	S-CUBED	S-CUBED	S-CUBED	S-CUBED	S-CUBED	S-CUBED	S-CUBED	S-CUBED	S-CUBED	S-CUBED
ORGANIC COMPOLNDS (ug/kg)	· · · · · · · · · · · · · · · · · · ·		•••••					•••••			•••••	
••••	•••••••••••••••••••••••••••••••••••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		••••••				• • • • • • • • • • • • • • • • • • • •	••••••	
VOLATILE												
LOROME THANE		••										
GROBE THANE		••	••							••		
NYL CHLORIDE								••	·-			
LOROE THANE					• -			••	••			
THYLENE CHLORIDE						••						
ETONE	••		••				••					
ROON DISULFIDE	••	•-		••								••
I-DI CHLOROE THENE	••	••						• -				
1-DI CHLOROE THANE							•-					
2-DICHLOROETHENE (TOTAL)	••								••			
LOROFORM					••	••						
2-DICHLOROETHANE												
BUTANONE 1, 1+ TELCHLOROE THANE		••	••									••
ABON TETRACHLORIDE												
NYL ACETATE												
ONODI CHE GEGNE THANE												
2-DICHLOROPROPANE							• •					
S-1.3-DICHLOROPROPENE		••										
I CHLOROE THENE										••		
BROMOCHE OR ONE THANE				•-								
1, 2- TE I CHLOROE THANE												
NZENE				••								
ANS+1,3-DICHLOROPROPENE		••					• -					
Omof cital		••			•-			••				
NETHYL - 2-PENTANONE						••						
HE XANDNE				-•				•-				
TRACHLOBOE THENE		••	••	••								
1.2.2-TETRACHLOROETHANE		••				••	••					
LUENE	••	••				••	··	••				••
LOROBENZÊNÊ	•-	••										• ·
HYLBENZENE		••					••					
YRENE	•-						••			••		
TAL XYLENES	••		••				• -			••	• -	

NOTES

B = Blank contamination

E = Estimated value

-- + Nul detected at

detection limit

24-0c1-89

VOLATILE ORGANIC COMPOUNDS -

SUBFACE WATER

ON- SWE8 13-01	ON-FRSW12-01	QN- SW12-01	Sample Location:
EBP77	£8276	EBP75	Sample Number:
06-12-89	06-12-89	04-12-89	Date Sampled:
89ZC40R02	892C40025	892C40525	CRL Number.
S-CUBED	S-CLBED	S-CUBED	Laboratory

GRGANIC COMPOLINDS (ug/kg)

.....

VOLATILE

WLATILE			
CHL OR QUE THANE			
AR OR ONE THINK		••	
VINAL CHLORIDE			
CALOROETHINE			
AETIMLENE CALORIDE			
ACETONE			
CARBON DISULFIDE			
1. I-DICHLORGE THENE			
1, 1-DI CHLORGE THIME			
1, 2-DICHLOBOETHENE (TOTAL)			
CILOBOFORA		••	
1, 2-DI CHLOROE THANE			
2-BL/TANENE			
1, 1, 1-TRICHLORGETHANE			
CARBON TETRACHLORIDE			
VINNL ACETATE	••		• -
BEQUIDI CHE OROME THANE		••	
1.2-DI CHLOROPROPANE	•-		
CIS-I, 3-DICHLOROPROPENE	••	••	- •
TR I CHLORGE THENE		••	
DI BRONDCHLORONE THANE	••	••	
I. I. 2- TRICHLOROE THANE	••	••	
BENEENE	••	••	
TRANS- 1, 3-DI CHLOROPEOPENE	••		
beandfala	*-	••	••
4-mETHML-2-PENTANONE			••
2-HEXANCHE		••	
TE TRACHE ORGE THENE			
1.1.2.2-TETRACHLOROETHANE		••	
TOLUENE		••	••
CHLOROBENZENE		••	••
ETHYLBENZENE			••
STYREME		••	
TOTAL XYLENES		••	

NOTES.

•

8 - Blank contamination

E . Estimated value

-- = NOT detected at detection limit

File. W-SWVOC WKI

(

24-Oct-89

SEMI-VOLATILES - SURFACE WATER

ORCANIC COMPOLINDS (Ug/1) SEAN VOLATILE YHENOL IS(2-CHLOROFHYL)ETHER					······································						
SEAI VOLATILE INTOL SEAI VOLATILE INTOL								··· ··· ··· ··· ··· ··· ··· ···			
ENDL								··· ··· ··· ··· ··· ··· ··· ···			
5(2-CH, OR DE HAYR.) E HAR.								··· ··· ··· ··· ··· ··· ··· ···			
3-DICHEOROBENZENE NZYL ALCOHOR ENZENE NZYL ALCOHOR ENZENE 2-DICHEOROBENZENE 2-DICHEOROFENZENE SIZ-CHEOROFENZENE SIZ-CHEOROFENZENE NITROSO-DI-n-PROPELYAAINE NITROSO-DI-n-PROPELYAAINE NITROSO-DI-n-PROPELYAAINE NITROSO-DI-n-PROPELYAAINE NITROSO-DI-N-PROPELYAAINE NITROSO-DI-N-PROPELYAAINE NITROSO-DI-N-PROPELYAAINE SIZ-CHEOROFENZE NITROSO-DI-N-PROPELYAAINE SIZ-CHEOROFENZE SIZ-CHEOROFENZE SIZ-CHEOROFENZE SIZ-CHEOROFENZE COROROANILINE SIZ-CHEOROFENZENE COROROANILINE SIZ-CHEOROFENZENE COROROANILINE SIZ-CHEOROFENZENE COROROANILINE SIZ-CHEOROFENZENE SIZ-CHEOROFENZENE SIZ-CHEOROFENZENE SIZ-CHEOROFENZENE SIZ-CHEOROFENZENE SIZ-CHEOROFENZENE SIZ-CHEOROFENZENE SIZ-CHEOROFENZENE SIZ-CHEOROFENZENE SIZ-CHEOROFENZENE SIZ-CHEOROFENZENE SIZ-CHEOROFENZENE SIZ-CHEOROFENZENE SIZ-CHEOROFENZENE SIZ-CHEOROFENZENE SIZ-CHEOROFENZENE SIZ-CHEOROFENZENE SIZ-CHEOROFENZENE SIZ-DINITROCHEOROFENZENE SIZENFYTINELENE SIZENFYTINENE SIZENFYTINELENE SIZENFYTINENE -					· · · · · · · · · · · · · · · · · · ·		··· ··· ··· ··· ··· ··· ··· ··· ··· ··			···	
4 - DI CHE OR OB ENZ ENE						······································	··· ··· ··· ··· ··· ··· ···		··· ··· ··· ··· ···		
NZYL ALCONDE						······································			··· ··· ··· ··· ···		
2-DI CHL GROB ENZENE AE THYL PHENDA THYL PHENDA AE THYL PHENDA AE THYL PHENDA AE THYL PHENDA HI TROSO-10PREOPYL JE THER AE THYL PHENDA HI TROSO-10PREOPYL JE THER ACTEL GROE THANKE 			··· ··· ··· ··· ··· ··· ··· ··· ··· ··	··· ··· ··· ··· ··· ···	· · · · · · · · · · · · · · · · · · ·	······································					- - - - - - - - - -
BILL THE TRADE BILL THE TRADE ACTIVEL PREVAL ACTIVE PREVAL IN TROSOLO SOPROPYL JE THER TACTUE PREVAL TROSE NEL TO PREOPLYMAINE TACTUE PREVAL TROSE NEL TO PREOPLYMAINE TROSE NEL TO PREOPREOPLYME TROSE NEL TO PREOPLYMAINE TROSE NEL TO PREVAL TROSE NEL TO PREVAL TROSENT PREVAL PREVAL TROSENT -					· · · · · · · · · · · · · · · · · · ·	······································					- - - - - - - -
AE THAT PHENDL					· · · · · · · · · · · · · · · · · · ·	··· ·· ·· ·· ··			 	 	- - - - -
NIT ROSO-DI PROPL VAALINE VACHE GROETHANE TROBENZENE IROBENZENE IROBENZENE A-DIAR TIMT, PHENOL S(2-CHLOROE THANKE A-DIAR TIMT, PHENOL S(2-CHLOROE THANKE A-DIAR TIMT, PHENOL S(2-CHLOROE THANKE S(2-CHLOROE THANKE S(2-CHLOROE THANKE S(2-CHLOROE THANKE CREGORAHINELINE CREGORAHINELINE CREGORAHILINE CREGORAHICIALE	······································				· · · · · · · · · · · · · · · · · · ·					 	-
SACCE OR OF THANE	······································				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			 	- - -
TROBENZENE			··· ··· ··· ··· ···		· · · · · · · · · · · · · · · · · · ·		· · · · · · ·		••• •• ••	••• •• ••	•
NIT TROPHENCI.	··· ·· ·· ·· ·· ·· ··	· · · · · · · · · · · · · · · · · · ·	··· ··· ··· ··· ···	··· ··· ··· ··· ···	· · · · · · · · · · · · · · · · · · ·	 	 	· · · · · · · · · · · · · · · · · · ·		 	
4-DIAR THYN PHENDL NZOIC ACID NZOIC ACID SZOIC ACID CETHOXY JAE THANE 4-DICH DROPHENDL 4-DICH DROPHENDL CHL DROATLENE CETHONE CHL DROATLENE CETHONE CHL DROATLENE CETHONE CHL DROATLENE CETHONE CHL DROATLENE CETHONE CHL DROATLENE CETHONE A. 5-TR ICH, DROPHENDL A. 5-TR ICH, DROPHENDL CHL DROATLENE CETHONE A. 5-TR ICH, DROPHENDL CHL DROATLENE CETHONE A. 5-TR ICH, DROPHENDL CHL DROATLENE CETHONE MITROANILINE CETHONE MITROANILINE CETHONE CHL DROATLENE CETHONE CHL DROATLENE CETHONE CHL DROATLENE CETHONE CHL DROATLENE CETHONE NITROATLENE CETHONE CETHONE NITROATLENE CETHONE CETHONE CETHONE CETHONE PHENDL CETHONE CETHONE CETHONE CETHONE CHL CETHONE CETHONE CETHONE CETHONE CHL CETHONE CETHONE CETHONE CETHONE CHL CETHONE CETHONE CETHONE CETHONE CETHONE CETHONE CETHONE CETHONE CETHONE CETHONE CETHONE CETHONE CETHONE CETHONE CETHONE CETHONE CETHONE CETHONE C	··· ·· ·· ·· ·· ··	••• ••• ••• ••• ••• ••• ••• ••• •••		··· ··· ···			· · · · · · · · · · · · · · · · · · ·		•••		-
NZDIC ACID			··· ··· ··· ···	··· ··· ···	 			••			
S(2-CHLOROG THONY) JAE THANE			··· ··· ··· ··· ···	 	 						
4-DicCHL DECEMENDL				 							
MITHALENE	 		 							••	•
CHE ORIGANIL LINE	 	 						••		••	-
XACHO GROBUTADI ENE	 										
CHL 016-3-AE THYL PHENDL											
XACHE.ORDEVILOPENTADIENE 4. S-TRICOROPHENDL 4. S-TRICOROPHENDL 4. S-TRICOROPHENDL 4. S-TRICOROPHENDL 4. S-TRICOROPHENDL 4. S-TRICOROPHENDL CHLOROPHENDL A. TRICANIL INE MITROANIL INE S-DINITRO A-DINITROL A-DINITROLUENE A-DINITROLUENE GRUCOPHENDL BENZOFUENL GRUCOPHENDL NITROANIL INE GRUCOPHENNL PHENYL ETHER NITROANIL INE SCALOROBENL PHENYL ETHER NITROSODIPHENYL PHENYL ETHER NITROSODIPHENYL PHENYL ETHER NITROSODIPHENYL ETHER NITROSODIPHENYL PHENKL SACHOLORORENZENE NITROSODIPHENKL PHENKL SACHOLORORENZENE				••		••	••				
A. 5-TRICOLOROPHENDL A. 5-TRICOLOROPHENDL A. 5-TRICOLOROPHENDL A. 5-TRICOLOROPHENDL CHCROMPETTALENE NITROANILINE ENAPHTINLENE RITANDATINLENE NITROANILINE ENAPHTINLENE NITROANILINE NITROANILINE RITANDATINE NITROANILINE ENDINITROLUENE BROZOFILIAN 4-DINITROTOLUENE CRUBOHENDL MITROANILINE BROZOFILIAN MITROANILINE MITROANILINE Schoophenyl, Phenyl Phenol ADINITROOROPHEND MITROANILINE Schoophenyl, Phenyl Ethel MITROANILINE ACOLOROPHENDL MITROANILINE					••	••	••		••		•
4. S-TRICOLOROPHENDL CRE OROMPHTMALENE NI TROANILINE BALTMYL PYTIPALATE BALTMYL PYTIPALATE SHAPYTIPYL NE S-DINITOOLUENE NI TBOAPHENDL NI TBOAPHENDL NI TBOAPHENDL BENZOPHENDL BENZOPHENDL BENZOPHENDL BENZOPHENDL BENZOPHENDL STRUENE NI TROANILINE S-DINITROSOIPHENYL FINER NI TROANILINE SACHD.OROBENZENE BALONOTRENE PHENYL ETHER NI TROANILINE SACHD.OROBENZENE				••							-
CHLOROMAPHTPHLENE CHLOROMAPHTPHLENE ALTPHTPHLINE ALTPHTPHLENE ENAPHTPHLENE 											
NI TROANILINE		• •									-
EMARPHITML ENE 6-DINI TROTOL UENE 8-DINI TROTOL UENE EMARPHIME EMARPHIME BENZOFULINE BENZOFULINE GODINI TROTOL UENE CIL COPPENDL BENZOFULINE GODINI TROTOL UENE CIL COPPENDL ETHER UOR ENE MI TROSODI PHENYL PHENYL ETHER BORGOPHENYL PHENYL ETHER NI TROSODI PHENYL PHENYL ETHER S-DINI TROSODI PHENYL ARI NE BORGOPHENYCH, PHENYL ETHER MI TROSODI PHENYL PHENENL SCHACH, CROBIENZ HERACENE HERACENE HERACENE HERACENE HERACENE HERACENE HERACENE HERACENE HERACENE	••	••	••			••	••				-
6-DINI TROTOLUENE INI TROTOLUENE ENAPHTHÉNE ENAPHTHÉNE ENAPHTHÉNE A-DINI TROPHÉNOL BERZOFURAN BERZOFURAN BETRUL PHTMALATE INI TROSODIPHÉNYE ARINE	••	••	••			•-	••			••	•
NITBOANILINE ENAPHTHENE ENAPHTHENE 4-DINITBOPHENOL BERZOFURAN 4-DINITBOTHENOL BERZOFURAN 4-DINITBOTOLUENE CRIGOPHENNE MITBOANILINE MITBOANITHENE MITACHURANYI MITACHURANYI MITACHURANYI MITACHURANYI <t< td=""><td></td><td>••</td><td></td><td></td><td>••</td><td>••</td><td>••</td><td></td><td></td><td></td><td></td></t<>		••			••	••	••				
ENN PHTNENE 4 - DI NI TROPHENOL NI TROPHENOL BERZOPUEAN 4 - DI NI TROPHENOL BERZOPUEAN COLON TROUBLENE COLON TROUBLENE COLON TROUBLENE COLON TROUBLENE COLON TROUBLENE COLON TROUBLENE NI TROSOD IPHENNE PHENOL S-DINI TRO-2- NE TEN'L PHENOL ROMOPHENNENT PHENNE ETHER SACOLOR COLONERAZENE CHARACENE CHARACENE					• •						
NI TROPHENDL BERZOPULIAN 6 - DINI TROTOL UENE ETHYL PHTRALATE CRI, GROPHENDL ETHYL ETHER UDR ENE NI TROANILLINE 6 - DINI TRO 2 - AE THYL PHENDL 8 - DINI TROSODIPHENYL ARINE 8 - DINI TROSODIPHENYL PHENDL 8 - DINI TROSODIPHENYL THENER 8 - DINI TROSODIPHENYL PHENDL 8 - DINI TROSODIPHENYL PHENDL 8 - DINI TROSODIPHENT 8 - DINI TROSODIPHENDL 17 - RACENE		••									-
BERZOPUEAN	••	••	••			••					
4-DINI TROTOLUENE ETHYL PHTHALATE CR, GLOPHENYL PHENYL ETHER UDRENE NI TROADINE PHENYL ETHER MITROADINE								• •		- •	
12 THOL PHITHALATE											-
-CHL ROPHENYL PHENYL	••				••						
NITRONILINE 6-DINITRO-2-aETHYLPHENDL NITROSOIPHENYLANINE BROMOHENYL PHENYL ETHER SCHLOROPHENYL FIHEN MTACHLOROPHENYL PHENYL ETHER WTACHLOROPHENYL PHENYL ETHER WTACHLOROPHENYL PHENYL ETHER WTACHLOROPHENYL PHENYL ETHER WTACHLOROPHENZE WTACHLOROPHENZE WTACHLOROPHENZE UDIANTHENE VERMENTHENE VERMENTHENE VERMENTHENE VERMENTHENE	••	••		••			• •	••			-
6-DIN TRO-2-AE THAL PRENDL NI TROSCOLPHENAL AAI NE BROKOPHENAL PARINE THER SACAR OR OB ENZENE EMANTHERNE EMANTHERNE UDBANTHERNE UDBANTHERNE RENE 		••			••			••	••	••	-
NI TROSODI PHENYL AAINE BROMOPHENYL PYENYL ETHER SKACHE, OR ORPHENZE INTACHE, OR ORPHENZE INTACHENE -INTBACENE -INTBACENE -INTBACENE -INTBACENE -INTBACENE -INTBACENE -INTBACENE							••		••		-
BROWOMENTL_PTHENTL_ETHER XXACHE.ORGBENZENE XTACAL.ORGBENZENE EXAMPLEXENE EXAMPLEXENE INTRACENE INTRACENE UDIANTIMENE UDIANTIMENE REME											
INTACHE GROPHENDE EENANTHERNE ITHEACENE I-N-BUTYL PHITHALATE LUGEANTHENE REINE	••		••			••		••			-
#FMAITHRENE TTRACENE BUTYL PHTFALATE UDRANTHRNE RENE	••		••	••					••		-
THRACENE -N-BUTYL PHTHALATE LORANTHENE REME				••		••					-
-N-BUTYL PHITHALATE UORANTHENE RENE										••	-
UORANTHÈNE RENÉ						••					
			••					••		••	-
			••		••	••			••		-
TYL BENZYL PHTHALATE 3-DICHLOROBENZIDINE											-
3-DI CHLOROBENZ I DI NE NZO (A) ANTHRACENE											-
RYSENE	• -										
5(2-ETHYLHEXYL)PHTHALATE		••		••	••	•-	••	••			
N-OCTVL PHTHALATE	• •		••			••	••	••	••		-
NZO(B)FLUORANTHENES NZO(K)FLUORANTHENES						••			••	••	
NEDIK IFLUGKAN IFRENES NZO(A)PYRENE										••	-
DEND(1.2.3-CD)PYRENE	•••										
BENZ(A.H)ANTHRACENE ··	•• •• ••			••				• -	••		
NZO(GHI)PERVLENE	··· ··		••	••		• •				- •	

File W-SWENA MKI

24-0C1-89

FACE WATER

Sample Location: Sample Location: Date sampled: CRL Namber: Laboratory:	E8P75 06-12-89 89ZC40525 5-CUBED	EBP76 06 - 12 - 89 89ZC40D25 S+CUBED	EBP77 06-12-89 892C40R02 S-CLBED
ORGANIC COMPOLNOS (US/1)	•••••		
SEAIVOLATILE			
	-		
HENOL IS(2-CHLOROETHML)ETHER			
- CHLOROPHENOL			••
, 3-DI CHLOBOBENZENE , 4-DI CHLOBOBENZENE			
ENZYL ALCONOL	••	••	
, 2-DI CHLOROBENZENE - METIMA PHENDL	••	•-	
IS12-CHLOROISOPROPYL)ETHER			
- METHALPHENDL - NI TROBO-DI - 8 - PROPLYAMINE			
EXACHE OBOE THINKE		••	
i TROBENZENE SCHICRONE		••	
- NI TROPHENOL			•-
, 4-DI METHYLPHENDL ENZOIC ACID			
IS(2-CHLORGETHORY) WE THANK			
, 4-DI CHLOROPHENDL , 2, 4-TEI CHLOROBENZENE			
, 2, 4+ HEI CHLUKUBENCENE APHTHALENE			
-CPE.ORGANILLINE			
EXACHLORODUTADI ENE • CHLORO- 3- METHYLPHENOL			
- NETHYLMAPHTHALENE			
EXACHLOROCYCLOPENTADI ENE . 4. 6- TRI CHLOROPHENOL			
. 4. 5- TE I CHL OROPHENOL - CHL OROMPHITML ENE			••
- CHLOROMAPHITHALENE - NI TEGANI LINE			
AND THAT PHILMALATE		••	••
CENNPHINALENE A-DIM TRATOLLENE			
. 6-DINITROTOLLENE -NITROANILINE	••	••	••
CENNPHTHEME , 4-DI MI TROPHENDI.			•••
- M TROPHENOL	••	••	
18énEOFURAN . 4-01 NI TROTOLUENE	••	••	
HETHML PHIMMLATE			••
-CHLOROPHENNL PHENVL ETHER			••
- NI TEGANI LINE		••	
. 6- DINI TEO- 2- AL TINI PHENOL			
-BROMOPHENNI, PHENNI, ETHER	••	••	
EXACHLOBOBENZENE ENTACHLOBOPHENCL		••	
HENNARD ENE	••	••	
NTHRACENE			
LURANTHENE			
VRENE			
UTVL BENZYL PHTHALATE			
ENZO(A)ANTHRACENE	••		
HRYSENE 18(2-ETHMLHEXYL)PHITHALATE	•••		
I-N-OCTYL PHTHALATE		••	
ENZO(8) FLUCRANTHENES ENZO(8) FLUCRANTHENES			
ENZO(A)PYRENE			••
NDEND(1,2,3-CD)PVRENE HBENZ(A,H)ANTHRACENE		••	
ENZO(CHI)PERVLENE			
ADIES E + Estimated value + Not detected at detection limit			

i

ί

.

24-0c1-89

PESTICIDE/PCBS - SURFACE WATER

Sample Number: Date Sampled. CRL Number Laboratory	0N-SW01+01 E8P63 06-12-89 89ZC40S11 S-CLBED	0N- SW02- 0 1 EBP64 06- 12-89 892C40512 S-CLBED	0N-SW03-01 E8P65 06-12-89 892C40513 S-CUBED	GN-SW04-01 18966 06-12-89 892C40S14 S-CU8ED	ON- SW05-01 EBP67 Q6-12-89 892C40515 S-CUBED	QN- 5806-01 18968 06-12-89 892C40516 5-CUBED	DN- SW07 - 0 1 EBP69 06 - 12 - 89 89ZC 40S 17 S - CLBED	0N- SW08-01 EBP70 06-12-89 892C40516 S-CUBED	ON- SW09-01 EBP71 Ob-12-89 892C40519 S-CUBED	0N-5W10-01 £8P72 06-12-89 892<40520 S-CUBED	0N-SWII-01 E8P73 06-12-89 892C40524 S-CUBED	UN- FRSW11-0 EBP7- 06 - 12-84 892C40024 S- CUBE
GANIC COMPOUNDS (Ug/kg)												
PESTICIDES and PCBs											•••••••	
A-BHC	•••••••••••••••••••••••••••••••••••••••									•-		
- BHC						•-						
A-BHC					• -	0 01)						
A-BHC (LINDANE)	••	0 04 B		0 06 8			0 03 8			0 07 8		
A CHLOR			••			••					••	
IN					••	•-		••				-
ACHLOR EPOXIDE	•-			••		••						-
SULFAN I						••				••		-
DRIN	••	••						•-				
DDE	••	••				••			••	••		-
IN				••			••					-
SLAFAN II	••			••	••		••					-
DOD		••	••	••	••	••		••				
IN ALDEHYDE		••		••			••	•-				-
SULFAN SULFATE	••	••	••			••	••					-
DDT	••	•-	••		••							
OKYCHLOR	••		••	••	••		••				••	-
IN KETONE	••		••	••								•
RDANE	••			•-								-
PHENE							••			••	••	-
LOR-1016			••			• •		••				
LOR-1221			••						••			-
Lat - 1232	•• .	••			• -					••		
LQB-1242		••			••					••		-
LOR-1248				••				••				-
LOR- 1254				••							••	

NOTES.

-- + NDL detected at

detection limit

8 - Blank contamination

j = Estimated value

File W-SWPCB WKI

24-001-89

.

PESTICIDE/PCBS - SURFACE WATER

	•••••	• • • • • • • • • • • • • • • • • •	
Sample Location:	ON-SW12-01	QN- FRS#12-01	ON-SWEB 13-0 (
Sample Number:	E8P75	E8P76	EBP77
Date Sampled:	86-12-89	06-12-89	06-12-89
CRL Number :	89ZC48525	492640025	892C40802
Labora tory :	S-CLBED	\$-CL8ED	S-CUBED
			•••••

GREANIC COMPOLNOS (ug/kg)

PESTICIDES and PCBs

***************************************	••		
ALPHA-BHC	••		
BETA-BHC	••		
DELTA-BHC			
GAINA-BHC (LINDANE)	0.09 8		••
HEPTACHLOR	••	••	
ALDRIN		••	
HEPTACHLOR EPOXIDE	••	••	••
ENDOSLE FAN I	••	•-	••
DIELDEIN	••	••	
4.4-DDE	••	••	
ENDEIN		••	
ENDOQUL FAN 11	••	••	
4.4-000	••	••	••
ENDEIN ALDEHNDE	••	••	
ENDORAL FAN SAL FATE			••
4.4-001	••		••
at There are		••	••
ENDRIN KETGNE			••
CHLORDANE		••	
TOKAPHENE			
AROCLOR - 1016			
AROCLOR - 1221	••		
ABOCLOR- 1232	••		
AROCLOR- 1242	••		
AROCLOR- 1248		••	
AROCLOR - 1254			
ABOCLOR- 1260	••		

(

(

NOTES:

-- + NDL detected at

detection limit.

B + Blank contamination.

j + Estimated value.

File: W-SWPCB WK1

08-NDV-89

INDRGANICS - SURFACE WATER

Sample Location	5001-01	SW02-01	SW03-01	5004-01	5805-01	2M06-01	5w07-01	SW08-01	SW09-01	SW10-01	SW11-01	FRSWILLOI	SW12-01
itik Sample Number	MEBC63	MEBC64	MEBCD5	MEB(66	MEBC67	MEBCOB	MEBC69	MEBC70	MEBC71	ALBC72	MEBC73	#t8c74	#18(75
Date Sampled	06-15-99	06-12-89	06-12-89	06-12-89	06-12-89	06 - 12 - 89	06-12-89	06-12-89	06-12-89	06-12-89	06-12-89	06-12-89	06-12-89
CRL Number	492C40555	892C40556	89ZC40557	692C40558	892040559	892C40560	892C40561	892C40562	892C40569	89ZC4D57D	892C40573	\$92(40D73	892040574
Laboratory	KEYSTONE	KEYSTONE	KEYSTONE	KEYSTONE	KEYSTONE	KEYSTUNE	KEYSTONE	KEYSTONE	KEYSTONE	KEYSTONE	SKINNER	SKINNER	SKINNER
INDRGANIC CHEMICALS (ug/I)													
. UIR I PALINA	74000 R	2450 R	460 R	\$300 R	382 R	96 3 K	606 R	777 R	237 R	76 8 K	397 K	602	7 29
TIMONY	#	R	·· R	k	R	R	R	R	8	R	·• R		
SENIC	R	R	·· R	-	t	R	-• R	R	R	6 I R	•• R		
AR FLAM	2470 R	96 4 R	31 3 R	133 K	31 R	637 R	52 R	69 6 R	53 5 R	74 # R	33 I B	71 11	31
RYLLIUM	6.3 R	·· R	R	R	R	·· R	·- R	#	·· k	R	5 - R	•-	•
	7.1 8	R	K	-	#	8	R	•• R	1	8	R		-
ALCIUM	123000 R	13800 R	12200 R		12800 R	20800 8	17000 R	17200 R	20500 R	27600 R	13400 R	15900	1290
	98.4 R	8			8	8	R	R		#	8		-
DBAL T	51 R	8	8		#	8	8	8	R	#	· · R		-
DPPER LON	119 R 230000 R	13 4 R 12200 R	9 I R 2030 R	R 14500 R	20 8 R 1930 R	16 5 R 10200 R	16 1 R	6 9 R 10700 R	8 8 R 3430 R	R	8		
EAD	230000 K	12200 R	R	5 8 R	R	27 8	8420 R 2.4 8	14 8	15 8	\$260 R	2060 R	\$370	234
IND INDESTUR	32500 R	4840 8	4750 R		4990 R	7 150 R	6350 R	6180 R		9820 E	5260 R	1.ቆ j 5040	5 10
INGANESE	2350 8	2020 R			194 R	1930 8	516 R	1540 R		3430 R	176 R	176	16
ERCLRY	8		8		8		8			1		8	
ICLEL	101 R	R	•• •	8	•• •	R		·· 8	8	8		"	
DTASSIUM	6820 R	3420 R	1870 R	4160 8	1920 R	3980 R	2620 R	2440 R	56 10 R	3770 R	2200 R	2110 j	212
ELENIUM	#	R	t	R	k	R	#	#	R	R	27 R		
ILVER	R	6 I R	8 6 R	8	R	#	5 8 R	#	#	·- #	·- R		
DD i Ula	3280 R	2430 R	2420 R	27 10 R	2510 R	2820 R	2770 R	3090 R	2540 R	2420 B	2690 R	2540)	360
HALLIUM	8	#	•• A	·- R	R	·- #	R	R	·· #	·- R	R		
ANADIUM	416 R	14 B R	8	25 6 R	R	6 J R	6 9 R	6 9 R	R	R	R		
INC	923 R	32 2 R	12 I R	56 3 R	17 8 R	28 5 R	18.6 E	22 J R	15 I R	8 9 R	16 R	10 3 8	9

.

NOTES:

8 • Blank contamination

j + Estimated value

R = Unuscable data

-- + < contract required

detection limit

FILE W-SWIND WK1

(Page 1 of 2)

08-NDV-89

INDRGANICS - SURFACE WATER

..... Sample Location: FRSW12-01 SWF813-01 ITE Sample Number: MEBC76 MEBC77 Date Sampled. 06-12-89 06-12-89 CRL Number: 892C40074 892040805 Laboratory: SKINNER SKINNER INDEGANIC CHEAICALS (US/1) -----ALUBINUS 610 ••• ANTIADNY - -•• ABSENIC •• - -BAR ILM 30.7 j - -BERYLLIUM --••• CADELUE •• CALCIUM 13000 --CHEGAILA --•• COBAL T • • • • COPPER ••• 4.8.1 180N 2360 22 9 8 LEAD 2.2 1 2.7 1 MONESIUM 5110 - -MANGANESE - -169 MERCLEY -- 8 -- 8 MICKEL ----POTASSIUM 2150) - -SEL ENILUS •• --•• SILVER - -SODIUM 2640 J 64 5 8 THALLIUM --- -WINNER --••

.....

13.1.8

11.5 8

1

NOTES:

ZINC

6 - Blank contamination

) - Estimated value

R - Unuseable data.

-- + < contract required

detection limit

FILE: U-SWIND.WCI

Appendix K RISK ASSESSMENT METHODOLOGY

GLT913/035.50-11

Appendix K RISK ASSESSMENT METHODOLOGY

EXPOSURE ESTIMATION

Exposure is defined as the contact of an organism with a chemical or physical agent. In this assessment, exposure is normalized for time and body weight. Exposure normalized for time and body weight is termed "intake." Chemical intake is expressed as mg chemical/kg body weight/day.

GENERIC ESTIMATION OF INTAKE

Equation K-1 presents a generic equation for calculating chemical intake:

 $I = (C \times CR \times EF \times ED) + (BW \times AT)$ (K-1)

where:

I	=	Chemical intake (mg/kg body weight/day)
С	=	Chemical concentration (e.g., mg/l)
CR	=	Contact rate (e.g., liters/day)
EF	=	Exposure frequency (days/year)
ED	=	Exposure duration (years)
BW	=	Body weight (kg)
AT	=	Averaging time (days)

Carcinogens

A lifetime average intake (or chronic daily intake) of the chemical is estimated for carcinogens. This acts to prorate the total cumulative intake over a lifetime. An averaging time of 75 years is used for carcinogens.

Intake can change over a lifetime as body weight, contact rate, exposure frequency, and chemical concentrations change. Equation K-1 can be modified to address this issue:

$$I = (1/AT) \sum_{i=1}^{M} (C_i \times CR_i \times EF_i \times ED_i) + BW_i$$
 (K-2)

where:

Ι	=	Chronic daily intake of the chemical (mg/kg body weight/day)
AT	=	Averaging time (days)
C _i	=	Chemical concentration in i th time period (e.g., mg/l)
CR _i	=	Contact rate in i th time period (e.g., liters/day)
EF	=	Exposure frequency in i th time period (days/year)
M	=	Number of time periods
ED	=	Exposure duration in i th time period (years)
$\mathbf{BW}_{\mathbf{i}}$	=	Body weight in i th time period (kg)

U.S. EPA typically assumes a constant body weight (typically 70 kg) in estimating lifetime cancer risk. This assumption would alter equation K-2 to yield the following:

$$I = \frac{1}{(AT+BW)} \sum_{i=1}^{M} (C_i \times CR_i \times EF_i \times ED_i)$$
(K-3)

Noncarcinogens

The chemical intake of noncarcinogens is estimated over the appropriate exposure period or averaging time. The averaging time selected depends on the toxic endpoint being assessed.

This assessment evaluated exposure to noncarcinogenic systemic toxicants. For systemic toxicants, intakes are calculated by averaging intakes over the period of exposure. The averaging time typically used is no longer than a year. In this assessment, it was conservatively assumed that the averaging time was a day. Therefore, equation K-1 can be simplified to:

$$I = (C \times CR) + (BW)$$
 (K-4)

where:

I	#	Chemical intake (mg/kg body weight/day)
С	=	Chemical concentration (e.g., mg/l)
CR	=	Contact rate (e.g., liters/day)
BW	=	Body weight (kg)

MEDIUM-SPECIFIC INTAKES

The following sections present the methodology for estimating intake from specific environmental media.

Intake--Drinking Water

An equation for calculating chemical intake through ingestion of drinking water is presented below:

$$I = (CW \times IR \times EF \times ED \times CF) + (BW \times AT)$$
 (K-5)

where:

Ι	=	Chemical intake (mg/kg body weight/day)
CW	=	Chemical concentration in water (µg/l)
IR	=	Ingestion rate (liters/day)
EF	=	Exposure frequency (days/year)
ED	=	Exposure duration (years)
CF	=	Conversion factor $(10^{-3} \text{ mg/}\mu\text{g})$
BW	=	Body weight (kg)
AT	=	Averaging time (days)

Intake--Soil Ingestion

An equation for calculating chemical intake through ingestion of soil or sediment is presented below:

$$I = (CS \times IR \times EF \times DF \times ED \times CF) + (BW \times AT)$$
 (K-6)

where:

Ι	=	Chemical intake (mg/kg body weight/day)
CS	=	Chemical concentration in soil (µg/kg)
IR	2	Ingestion rate (grams/day)
EF	#	Exposure frequency (days/year)
DF	#	Desorption factor (assume 100%)
ED	=	Exposure duration (years)
CF	=	Conversion factor $(10^{-3} \text{ mg/}\mu\text{g x } 10^{-3} \text{ kg/}\text{g})$
BW	=	Body weight (kg)
AT	=	Averaging time (days)

Intake--Dermal Contact, Water

An equation for calculating chemical intake through dermal absorption of chemicals in water is presented below:

I = $(CW \times SA \times PC \times ET \times EF \times ED \times CF) + (BW \times AT)$ (K-7)

where:

Ι	=	Chemical intake (mg/kg body weight/day)
CW	=	Chemical concentration in water (µg/l)
SA	=	Surface area (cm ²)
PC	=	Permeability of water (cm/hr)
ET	=	Exposure time per day (hour/day)
EF	=	Exposure frequency (days/year)
ED	=	Exposure duration (years)
CF	=	Conversion factor (volumetric for water and unit conversion- 10^{-3} l/cm ³ x 10^{-3} mg/µg)
BW	=	Body weight (kg)
AT	=	Averaging time (days)

CARCINOGENIC RISK ESTIMATION

For carcinogens, risks are estimated as the incremental probability of an individual developing cancer over a lifetime as a result of exposure to a potential carcinogen. The cancer potency factor or slope factor (SF) converts estimated daily chemical intakes averaged over a lifetime of exposure directly to incremental risk.

To estimate risks from exposure to carcinogens, the following is needed:

- o Chronic daily intake of the chemical
- o Carcinogenic potency factor

ESTIMATING CANCER RISKS CAUSED BY EXPOSURE TO A SINGLE CARCINOGEN

The one-hit equation can be used to describe excess lifetime cancer risk from exposure to a carcinogen. This model can be described by the following:

$$Risk = 1 - exp^{-(SF \times CDI)}$$

where:

Risk	=	Excess lifetime cancer risk as a unitless probability
exp	=	the exponential (2.71828)
SF	=	Slope factor or cancer potency factor (mg/kg/day) ⁻¹
CDI	=	Chronic daily intake averaged over a lifetime (mg/kg/day)

. . .

(K-8)

Where the risks are low (Risk $< 10^{-3}$), it can generally be assumed that the dose-response relationship will be in the linear low-dose portion of the multistage model dose-response curve. Under this assumption, the slope factor is a constant and risk is directly related to intake. This can be described by:

 $Risk = SF \times CDI$ (K-9)

ESTIMATING CANCER RISKS CAUSED BY EXPOSURE TO MULTIPLE CARCINOGENS

Exposure situations may involve the potential exposure to more than one carcinogen. To assess the potential for carcinogenic effects posed by exposure to multiple carcinogens, it is assumed in the absence of information on synergistic or antagonistic effects that carcinogenic risks are additive. This approach is based on the EPA's Guidelines for Health Risk Assessment of Chemical Mixtures (U.S. EPA 1986d) and the EPA's Guidelines for Cancer Risk Assessment (U.S. EPA 1986a).

For estimating cancer risks from exposure to multiple carcinogens from a single exposure route, the following equation is used:

$$Risk_{T} = \sum_{i=1}^{N} Risk_{i}$$
(K-10)

where:

Risk _T _	Total cancer risk from route of exposure
$Risk_i =$	Cancer risk for the i th chemical

NONCARCINOGENIC RISK ESTIMATION

COMPARISON OF INTAKE TO REFERENCE DOSE

The potential for noncarcinogenic health effects from exposure to a contaminant is evaluated by comparing an exposure level over a specified time period with a reference dose (RfD) for a similar time period. This ratio of exposure to toxicity is called a hazard quotient and is described below:

$$HQ = E + RfD$$
 (K-11)

where:

HQ	=	Noncancer hazard quotient
E	=	Exposure level (or intake in mg/kg/day)
RfD	Ξ	Reference dose (mg/kg/day)

This comparison can be interpreted as follows:

HQ ≧ 1	Potential for health effects	(K-12)
HQ < 1	Health effects not anticipated	(K-13)

HAZARD INDEX APPROACH

Exposure situations may involve the potential exposure to more than one chemical. To assess the potential for noncarcinogenic effects posed by multiple chemicals, a "hazard index" approach can be used. This approach, which is based on EPA's Guidelines for Health Risk Assessment of Chemical Mixtures (U.S. EPA 1986d), assumes dose additivity and sums the ratios of the daily intakes of individual chemicals to their reference doses. This sum is called the hazard index (HI).

$$HI = E_1/RfD_1 + E_2/RfD_2 + ... E_1/RfD_i$$
 (K-14)

where:

HI	-	Hazard index
E,	=	Daily intake of the i th chemical (mg/kg/day)
RfD _i	Ξ	Reference dose of the i th chemical (mg/kg/day)

When the hazard index exceeds unity, it is a numerical indicator of the transition between acceptable and unacceptable exposure levels and there may be concern for potential health effects. Any single chemical with an estimated daily intake greater than the corresponding reference dose will cause the hazard index to exceed unity.

For multiple chemical exposures, the hazard index can exceed unity even if no single chemical exposure exceeds the reference dose for that chemical. The assumption of additivity is most properly applied to chemicals that induce the same effect by the same mechanism or in the same target organ. If the hazard index is near or exceeds unity, the chemicals in the mixture are segregated by critical effect or target organ and separated indices are derived for each effect or target organ. If any of these separate indices exceed unity, then there may be a concern for potential health effects. Chemicals that are essential nutrients are excluded from the index when in the range of essentiality.

GLT913/038.50

Appendix L RISK ASSESSMENT DATA TABLES

GLT913/035.50-12

Table L-1 SOURCE/PLUME AREA MONITORING WELL RI SAMPLE DATA ONALASKA SITE

NONCARCINOGENS Chemical	Detection (a) Limit Values	MW02S-01 Concentration (ug/l)	MW02M-01 Concentration (ug/l)	MW02D-01 Concentration (ug/l)	MW03S-01 Concentration (ug/l)	MW03M-01 Concentration (ug/l)	MW04S-01 Concentration (ug/l)	MW05S-01 Concentration (ug/l)
Barium	200	352	1390	152	593	2760	401	347
Benzoic acid	50	25	25	25	23	25	25	71
Chromium	10	24.8	5	5	5	5	5	5
Copper	25	8.3	12.5	8.1	12.5	12.5	12.5	12.5
1,1-Dichloroethane	5	2.5	2.5	2.5	190	2.5	2.5	570
1.1-Dichloroethene	5	2.5	2.5	2.5	15	2.5	2.5	2.5
Ethylbenzene	5	5	2.5	2	210	2.5	42	160
Lead	5	7.6	8.1	2.5	2.5	2.5	2.5	2.5
Manganese	15	1340	972	1190	3720	1260	3320	6890
2-Methylphenol	10	5	5	5	56	5	5	58
4-Methylphenol	10	5	5	5	64	5	5	110
Naphthalene	10	5	5	5	56	5	23	47
Nickel	40	27.8	7.4	5.4	19.8	6.3	20	8.8
Phenol	10	5	5	5	6	5	5	5
Toluene	5	2.5	2.5	2.5	8300	2.5	530	8300
1,1,1-Trichloroethane	5	2.5	2.5	2.5	240	2.5	2.5	2.5
Vanadium	50	8.1	25	25	3.4	25	25	25
Xylenes	5	2.5	2.5	2.5	2300	2.5	2.5	1400
Zinc	20	49.8	58.4	9.9	10.9	14.4	15.1	31.6

CARCINOGENS	Detection Limit Values	MW02S-01 Concentration (ug/l)	MW02M-01 Concentration (ug/l)	MW02D-01 Concentration (ug/l)	MW03S-01 Concentration (ug/l)	MW03M-01 Concentration (ug/l)	MW04S-01 Concentration (ug/l)	MW05S-01 Concentration (ug/l)
Arsenic	10	9.5	19.4	2.4	19.4	68.4	10.2	
Benzene	5	5	2.5	2.5	13	2.5	2.5	7
DDD	0.10	0.05	0.05	0.05	0.05	0.05	0.38	0.05
1,4 Dichlorobenzene	10	2	5	5	5	5	5	5
1,1-Dichloroethane	5	2.5	2.5	2.5	190	2.5	2.5	570
1,1-Dichloroethene	5	2.5	2.5	2.5	15	2.5	2.5	2.5
Trichloroethene	5	2.5	2.5	2.5	11	2.5	2.5	2.5

.

Table L-1 SOURCE/PLUME AREA MONITORING WELL RI SAMPLE DATA ONALASKA SITE

NONCARCINOGENS Chemical	MW08M-01 Concentration (ug/l)	MW08S-01 Concentration (ug/l)	MW08M-01 Concentration (ug/l)	MW08D-01 Concentration (ug/l)	MW21S-01 Concentration (ug/l)	Average (a Concentration) Highest Detected
Barium	1370	145	600	88.2	201	699.93	2760.00
Benzoic acid	25	25	25	25	25	28.67	71.00
Chromium	5	5	5	5	5	6.65	24.80
Copper	12.5	6.2	12.5	12.5	12.5	11.26	12.50
1,1-Dichloroethane	36	2.5	2.5	2.5	490	108.83	570.00
1.1-Dichloroethene	2.5	2.5	2.5	2	2.5	3.50	15.00
Ethylbenzene	2.5	2.5	2.5	2.5	2.5	36.38	210.00
Lead	2.5	2.7	2.5	2.5	2.5	3.41	8.10
Manganese	4500	5690	3060	2530	3220	3141.00	6890.00
2-Methylphenol	5	5	5	5	5	13.67	58.00
4-Methylphenol	5	5	5	5	5	18.67	110.00
Nachthalene	5	5	5	5	5	14.25	56.00
Nickel	8.1	19.9	8.7	5.1	13.4	12.56	27.80
Phenol	5	5	5	5	5	5.08 *	6.00
Toluene	2.5	2.5	2.5	2.5	2.5	1429.38	8300.00
1,1,1-Trichioroethane	2.5	2.5	2.5	2.5	2.5	22.29	240.00
Vanadium	25	25	25	25	25	21.79	25.00
Xylenes	2.5	2.5	2.5	2.5	2.5	310.42	2300.00
Zinc	6.7	20.2	13.8		1010	104.15	1010.00

CARCINOGENS Chemical	MW06M-01 Concentration (ug/l)	MW08S-01 Concentration (ug/l)	MW08M-01 Concentration (ug/l)	MW06D-01 Concentration (ug/l)	MW21S-01 Concentration (ug/l)	Average	Highest Detected
Arsenic	1.1	5	5	3.2	5	13.05	68.40
Benzene	2.5	2.5	2.5	2.5	2.5	3.96	13.00
DDD	0.05	0.05	0.05	0.05	0.05	0.08 •	0.38
1,4 Dichlorobenzene	5	5	5	5	5	4.75	5.00
1,1-Dichloroethane	36	2.5	2.5	2.5	490	108.83	570.00
1,1-Dichloroethene	2.5	2.5	2.5	2.5	2.5	3.54 *	15.00
Trichloroethene	2.5	2.5	2.5	2.5	2.5	3.21	11.00

(a) One-half CLP detection limit value used where compound was not detected for determination of Average (Arithmetic Mean) Concentration Values.

NOTE: *** indicates compound detected in less than 10% of monitoring wells, hence compound not

required for estimation of risk.

ſ

Table L-2 TEST PIT RI SOIL SAMPLE DATA ONALASKA SITE

Chemical	Average Concentration ug/kg	Highest Detected Concentration ug/kg
Acetone	39.87	88
Arsenic	4380	. 17600
Barium	93010	184000
bis(2-Ethylhexyl)phthalate	462	2300
Cadmium	2620	3500
Chromium	10360	27600
Copper	37660	217000
DDD	71.5	360
DDE	52.87	330
DDT	23.25	130
Ethylbenzene	206.68	1600
Isophorone	64	340
Lead	68000	274000
Manganese	323000	562000
Naphthalene	609.37	3500
Nickel	14170	20600
Pyrene	43	170
Toluene	299.25	1700
Trichloroethene	2.68	4
Vanadium	15450	17700
Xylenes	3140.3	24000
Zinc	157788	918000

Chemical	U.S. EPA Carcinogen Classification	Carcinogenic Potency Factor (kg-day/mg)	Source (a	MW02D-01 Concentration ug/l	Lifetime Average Chemical Intake mg/kg/day	Excess Lifetime Cancer Risk		Lifetime Average Chemical Intake mg/kg/day	Excess Lifetime Cancer Risk
Arsenic	•	1.75	U.S. EPA	2.4	6.857E-05	1E-04	19.4	5.543E-04	1E-03
Benzene	A	0.029	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
DDD	B2	0.24	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
1,4 Dichlorobenzene	82	0.024	HEAST		0.000E+00	0E+00		0.000E+00	0E+00
1,1-Dichloroethane	С	0.091	HEAST		0.000E+00	0E+00		0.000E+00	0E+00
1,1-Dichloroethene	С	0.6	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
Trichloroethene	B 2	0.011	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
SUM OF RISKS		······································				1E-04			1E-03
SUM of RISKS W/O As						0E+00			0E+00

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Daily Water Intake (liters/day)	2
Body Weight (kilograms)	70
Number of days/week exposed	7
Number of weeks/year exposed	52
Number of years exposed	70
Lifetime Average Water Intake	0.029
(liters/kg body wt./day)	

(a) Sources of Cancer Potency Factors: IRIS - Integrated Risk Information System, U.S. EPA 1988.

HEAST - Health Effects Assessment Summary Tables--Quarterly Summary, U.S. EPA 19 89.

U.S. EPA - U.S. EPA 1988a.

.

Table L-3 EXCESS LIFETIME CANCER RISK **GROUNDWATER INGESTION EXPOSURE ONALASKA SITE**

Chemical	U.S. EPA Carcinogen Classification	Carcinogenic Potency Factor (kg-day/mg)	Source	MW02S-01 Concentration (a) ug/l	Lifetime Average Chemical Intake mg/kg/day	Excess Lifetime Cancer Risk	MW03S-01 Concentration ug/l	Lifetime Average Chemical Intake mg/kg/day	Excess Lifetime Cancer Risk
Arsenic	A	1.75	U.S. EPA	9.5	2.714E-04	5E-04	19.4	5.543E-04	1E-03
Benzene	A	0.029	IRIS	5	1.429E-04	4E-06	13	3.714E-04	1E-05
DDD	B2	0.24	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
1,4 Dichlorobenzene	B2	0.024	HEAST	2	5.714E-05	1E-06		0.000E+00	0E+00
1,1-Dichloroethane	С	0.091	HEAST		0.000E+00	0E+00	190	5.429E-03	5E-04
1,1-Dichloroethene	С	0.6	IRIS		0.000E+00	0E+00	15	4.286E-04	3E-04
Trichloroethene	B2	0.011	IRIS		0.000E+00	0E+00	11	3.143E-04	3E-06
SUM OF RISKS						5E-04			2E-03
SUM of RISKS W/O As						6E-06			8E-04

.

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Daily Water Intake (liters/day)	2
Body Weight (kilograms)	70
Number of days/week exposed	7
Number of weeks/year exposed	52
Number of years exposed	70
Lifetime Average Water Intake	0.029
(liters/kg body wt./day)	

(a) Sources of Cancer Potency Factors: IRIS – Integrated Risk Information System, U.S. EPA 1988.
 HEAST – Health Effects Assessment Summary Tables--Quarterly Summary, U.S. EPA 19 U.S. EPA – U.S. EPA 1988a.

Chemical	U.S. EPA Carcinogen Classification	Carcinogenic Potency Factor (kg-day/mg)	Source	MW03M-01 Concentration ug/l	Lifetime Average Chemical Intake mg/kg/day	Excess Lifetime Cancer Risk	MW04S-01 Concentration ug/l	Lifetime Average Chemical Intake mg/kg/day	Excess Lifetime Cancer Risk
Arsenic	A	1.75	U.S. EPA	68.4	1.954E-03	3E-03	10.2	2.914E-04	5E-04
Benzene	A	0.029	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
DDD	B2	0.24	IRIS		0.000E+00	0E+00	0.38	1.086E-05	3E-06
1,4 Dichlorobenzene	B2	0.024	HEAST		0.000E+00	0E+00		0.000E+00	0E+00
1,1-Dichloroethane	С	0.091	HEAST		0.000E+00	0E+00		0.000E+00	0E+00
1,1-Dichioroethene	C	0.6	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
Trichloroethene	B2	0.011	iRIS		0.000E+00	0E+00		0.000E+00	0E+00
SUM OF RISKS		····		 		3E-03			5E-04
SUM of RISKS W/O As				 		0E+00			3E-06

.

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Dally Water Intake (liters/day)	2
Body Weight (kilograms)	70
Number of days/week exposed	7
Number of weeks/year exposed	52
Number of years exposed	70
Lifetime Average Water Intake	0.029
(liters/kg body wt./day)	

(a) Sources of Cancer Potency Factors: IRIS – Integrated Risk Information System, U.S. EPA 1988. HEAST – Health Effects Assessment Summary Tables---Quarterly Summary, U.S. EPA 19 U.S. EPA - U.S. EPA 1988a.

Table L-3 EXCESS LIFETIME CANCER RISK **GROUNDWATER INGESTION EXPOSURE ONALASKA SITE**

Chemical	U.S. EPA Carcinogen Classification	Carcinogenic Potency Factor (kg-day/mg)	Source	MW05S-01 Concentration (a)	Lifetime Average Chemical Intake mg/kg/day	Excess Lifetime Cancer Risk	MW06M-01 Concentration ug/l	Lifetime Average Chemical Intake mg/kg/day	Excess Lifetime Cancer Risk
Arsenic	Α	1.75	U.S. EPA	8	2.286E-04	4E-04	1.1	3.143E-05	5E-05
Benzene	٨	0.029	IRIS	7	2.000E-04	6E-06		0.000E+00	0E+00
DDD	B2	0.24	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
1,4 Dichlorobenzene	82	0.024	HEAST		0.000E+00	0E+00		0.000E+00	0E+00
1,1-Dichloroethane	С	0.091	HEAST	570	1.629E-02	1E-03	36	1.029E-03	9E-05
1,1-Dichloroethene	С	0.6	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
Trichloroethene	B2	0.011	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
SUM OF RISKS	······································				······································	2E-03			1E-04
SUM of RISKS W/O As						1E-03			9E-05

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Daily Water Intake (liters/day)	2
Body Weight (kilograms)	70
Number of days/week exposed	7
Number of weeks/year exposed	52
Number of years exposed	70
Lifetime Average Water Intake	0.029
(liters/kg body wt./day)	

(a) Sources of Cancer Potency Factors:

IRIS - Inlegrated Risk Information System, U.S. EPA 1988. HEAST - Health Effects Assessment Summary Tables--Quarterly Summary, U.S. EPA 19

U.S. EPA - U.S. EPA 1988a.

				MW07M-01			MW08D-01		ĺ
Chemical	U.S. EPA Carcinogen Classification	Carcinogenic Potency Factor (kg-day/mg)	Source (a	a) Concentration	Lifetime Average Chemical Intake mg/kg/day	Excess Lifetime Cancer Risk	Concentration ug/l	Lifetime Average Chemical Intake mg/kg/day	Excess Lifetime Cancer Risk
Arsenic	Α	1.75	U.S. EPA	3.3	9.429E-05	2E-04	3.2	9.143E-05	2E-04
Benzene	Α	0.029	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
DDD	B 2	0.24	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
1,4 Dichlorobenzene	B 2	0.024	HEAST		0.000E+00	0E+00		0.000E+00	0E+00
1,1-Dichloroethane	С	0.091	HEAST		0.000E+00	0E+00		0.000E+00	0E+00
1,1-Dichloroethene	C	0.6	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
Trichloroethene	B2	0.011	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
SUM OF RISKS	~			·····		2E-04			2E-04
SUM of RISKS W/O As						0E+00			0E+00

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Daily Water Intake (liters/day)	2
Body Weight (kilograms)	70
Number of days/week exposed	7
Number of weeks/year exposed	52
Number of years exposed	70
Lifetime Average Water Intake	0.029
(liters/kg body wt./day)	

(a) Sources of Cancer Potency Factors:

IRIS – Integrated Rick Information System, U.S. EPA 1988. HEAST – Health Effects Assessment Summary Tables—Quarterly Summary, U.S. EPA 19 U.S. EPA – U.S. EPA 1988a.

Chemical	U.S. EPA Carcinogen Classilication	Carcinogenic Potency Factor (kg-day/mg)	Source (a	MW09M-01 Concentration ug/l	Liletime Average Chemical Intake mg/kg/day	Excess Lifetime Cancer Risk	MW11M-01 Concentration	Lifetime Average Chemical Intake mg/kg/day	Excess Lifetime Cancer Risk
Arsenic	Α	1.75	U.S. EPA	5.3	1.514E-04	3E-04	4.1	1.171E-04	2E-04
Benzene	A	0.029	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
DDD	B2	0.24	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
1,4 Dichlorobenzene	B 2	0.024	HEAST		0.000E+00	0E+00		0.000E+00	0E+00
1,1-Dichloroethane	C	0.091	HEAST		0.000E+00	0E+00		0.000E+00	0E+00
1,1-Dichloroethene	С	0.6	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
Trichloroethene	B2	0.011	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
SUM OF RISKS						3E-04			2E-04
SUM of RISKS W/O As						0E+00			0E+00

î.

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Daily Water Intake (liters/day)	2
Body Weight (kilograms)	70
Number of days/week exposed	7
Number of weeks/year exposed	52
Number of years exposed	70
Lifetime Average Water Intake	0.029
(liters/kg body wt./day)	

(a) Sources of Cancer Potency Factors:

IRIS - Integrated Risk Information System, U.S. EPA 1988. HEAST - Health Effects Assessment Summary Tables--Quarterly Summary, U.S. EPA 19 U.S. EPA - U.S. EPA 1988a.

.

Chemical	U.S. EPA Carcinogen Classification	Carcinogenic Potency Factor (kg-day/mg)	Source (a	MW20S-01 Concentration ug/l	Lifetime Average Chemical Intake mg/kg/day	Excess Lifetime Cancer Risk	MW21S-01 Concentration ug/i	Lifetime Average Chemical Intake mg/kg/day	Excess Lifetime Cancer Risk
Arsenic	A	1.75	U.S. EPA	3.5	0.000E+00	0E+00		0.000E+00	0E+00
Benzene	A	0.029	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
DDD	B 2	0.24	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
1,4 Dichlorobenzene	82	0.024	HEAST		0.000E+00	0E+00		0.000E+00	0E+00
1,1-Dichloroethane	С	0.091	HEAST		0.000E+00	0E+00	490	0.000E+00	0E+00
1,1-Dichloroethene	С	0.6	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
Trichioroethene	B2	0.011	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
SUM OF RISKS						0E+00			0E+00
SUM of RISKS W/O As						0E+00			0E+00

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Daily Water Intake (liters/day)	2
Body Weight (kilograms)	70
Number of days/week exposed	7
Number of weeks/year exposed	52
Number of years exposed	70
Lifetime Average Water Intake	0.029
(liters/kg body wt./day)	

(a) Sources of Cancer Potency Factors: IRIS - Integrated Risk Information System, U.S. EPA 1988. HEAST - Health Effects Assessment Summary Tables--Quarterly Summary, U.S. EPA 19 U.S. EPA - U.S. EPA 1988s.

Table L-4 COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RID) WATER INGESTION EXPOSURE

	Reference		MW02S-01	Daily Intake			MW02M-01	Daily Intake		
	Does (RID)		Concentration	(Di)		intake Exceeds	Concentration	(DI)		Intake Exceeds
Chemical	mg/kg/day	Source (a)	Ngu	mg/kg/day	DI/RID	Reference Dose?	Ngu	mg/kg/day	DI/RID	Reference Dose?
Barium	0.05	IRIS	352	0.0101	0.201	NO	1390	0.0397	0 794	NO
Benzoic acid	4	IRIS		0.0000	0.000	NO	, 	0.0000	0 000	NO
gamma BHC (lindane)	0.0003	IRIS		0.0000	0.000	NO		0.0000	0 000	NO
bis(2-othylhoxyl)phthalate	0.02	IRIS		0.0000	0.000	NO		0.0000	0 000	NO
Cadmium	0.0005	HEAST		0.0000	0.000	NO		0.0000	0 000	NO
Chromium VI	0.005	IRIS	24.8	0.0007	0.142	NO		0.0000	0 000	NO
Copper	0.037	HEAST	8.3	0.0002	0.006	NO		0.0000	0 000	NO
1,1-Dichloroethane	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichloroethene	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Ethylbenzene	0.1	IRIS	5	0.0001	0.001	NO		0.0000	0.000	NO
Leed	0.0014	HEAST	7.6	0.0002	0.155	NO	8.1	0.0002	0.165	NO
Manganese	0.22	HEAST	1340	0.0383	0.174	NO	972	0.0278	0.126	NO
2-Methylphenol	0.5	IRIS		0.0000	0.000	NO	-	0.0000	0.000	NO
4-Methylphenol	0.5	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Naphthalene	0.4	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Nickel	0.02	(b)	27.8	0.0008	0.040	NO	7.4	0.0002	0.011	NO
Phenol	0.04	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Toluene	0.3	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
1,1,1-Trichloroethane	0.09	IRIS		0 0000	0.000	NO		0.0000	0.000	NO
Vanadium	0.007	HEAST	8.1	0.0002	0.033	NO		0.0000	0.000	NO
Xylenes	2	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Zinc	0.2	HEAST	49.8	0.0014	0.007	NO	58.4	0.0017	0.008	NO
Hazard Index (Sum of DVRtD)					0.760				1,105	

.

.

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Exposed Individual	Adult
Water Intake (liters/day)	2
Body Weight (kilograms)	70

(a) Sources of RfDs:

1

IRIS – Integrated Risk Information System. U.S. EPA 1988.

HEAST - Health Effects Assessment Summary

Tables - Quarterly Summary, U.S. EPA 1989.

	Reference		MW02D-01	Daily Intake			MW03S-01	Daily Intake		
	Dose (RD)		Concentration	(DI)		intake Exceeds	Concentration	(D))		Intake Exceeds
Chemical	malkalday	Source (a)	Ngu	mg/kg/day	DVRID	Reference Dose?	ugA	mg/kg/day	DI/RID	Reference Doge?
Barium	0.05	IRIS	152	0.0043	0.087	NO	693	0.0109	0.339	NO
Benzolo acid	4	IRIS		0.0000	0.000	NO	23	0.0007	0.000	NO
gamma BHC (lindane)	0.0003	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
bie(2-ethylhexyl)phthalate	0.02	IRIS	-	0.0000	0.000	NO		0.0000	0.000	NO
Cadmium	0.0005	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Chromium VI	0.005	IRIS		0.0000	0.000	NO	-	0.0000	0.000	NO
Copper	0.037	HEAST	8.1	0.0002	0.006	NO	-	0.0000	0.000	NO
1,1-Dichloroethane	0.000	IRIS	_	0.0000	0.000	NO	190	0.0054	0.603	NO
1,1-Dichloroethene	0.009	IRIS		0.0000	0.000	NO	15	0.0004	0.048	NO
Ethylbenzene	0.1	IRIS	2	0.0001	0.001	NO	210	0.0080	0.060	NO
Load	0.0014	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Manganese	0.22	HEAST	1190	0.0340	0.155	NO	3720	0.1063	0.483	NO
2-Methylphenol	0.5	IRIS		0.0000	0.000	NO	56	0.0016	0.003	NO
4-Methylphenci	0.5	IRI8		0.0000	0.000	NO	64	0.0018	0.004	NO
Nephthelene	0.4	HEAST		0.0000	0.000	NO	56	0.0016	0.004	NO
Nickel	0.02	(b)	5.4	0.0002	0.008	NO	19.8	0.0006	0.028	NO
Phenol	0.04	IRIS	_	0.0000	0.000	NO	6	0.0002	0.004	NO
Toluene	0.3	IRIS		0.0000	0.000	NO	8300	0.2371	0.790	NO
1,1,1-Trichloroethane	0.09	IRIS		0.0000	0.000	NO	240	0.0089	0.076	NO
Vanadium	0.007	HEAST		0.0000	0.000	NO	3.4	0.0001	0.014	NO
Xylenes	2	IRIS		0.0000	0.000	NO	2300	0.0657	0.033	NO
Zinc	0.2	HEAST	9.9	0.0003	0.001	NO	10.9	0.0003	0.002	NO
Hazard Index (Sum of DVRID)					0.257	······································			2.491	

l

.

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Exposed individual	Adult
Water inteks (liters/day)	2
Body Weight (kilograms)	70

(a) Sources of RIDs:

.

IRIS - Integrated Risk Information System.

U.8. EPA 1968.

HEAST - Health Effects Assessment Summary

Tables - Quarterly Summary, U.S. EPA 1989.

(

(b) Nickel value base on nickel-equiple salts.

•

	Reference		MW03M-01	Daily Intake			MW04S-01	Daily Intake		
	Does (RID)		Concentration	(DI)		Intake Exceeds	Concentration	(DI)		Intake Exceeds
Chemical	mg/kg/day	Source (a)	սց/	mg/kg/day	DI/RID	Reference Dose?	Ngu	mg/kg/day	DI/RID	Reference Does?
Barium	0.05	IRIS	2760	0.0789	1.577	YES	401	0.0115	0 229	NO
Benzoic acid	4	IRIS		0.0000	0.000	NO		0.0000	0 000	NO
gamma BHC (lindane)	0.0003	IRIS		0.0000	0.000	NO		0.0000	0 000	NO
bis(2-sthylhexyl)phthalate	0.02	IRIS		0.0000	0.000	NO		0.0000	0 000	NO
Cadmium	0.0005	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Chromium VI	0.005	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Copper	0.037	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichloroethane	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichloroethene	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Ethylbenzene	0.1	IRIS		0.0000	0.000	NO	42	0.0012	0.012	NO
Lead	0.0014	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Manganese	0.22	HEAST	1260	0.0360	0.164	NO	3320	0.0949	0.431	NO
2-Methylphenol	0.5	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
4-Methylphenol	0.5	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Naphthalene	0.4	HEAST		0.0000	0.000	NO	23	0.0007	0.002	NO
Nickel	0.02	(b)	6.3	0.0002	0.009	NO		0.0000	0.000	NO
Phenol	0.04	IRIS		0.0000	0.000	NO	- -	0.0000	0.000	NO
Toluene	0.3	IRIS		0.0000	0.000	NO	530	0.0151	0.050	NO
1,1,1-Trichloroethane	0.09	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Vanadium	0.007	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Xylenes	2	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Zinc	0.2	HEAST	14.4	0.0004	0.002	NO	15.1	0.0004	0.002	NO
Hazard Index (Sum of DI/RfD)			~		1.752				0.727	

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Exposed Individual	Adult
Water Intake (liters/day)	2
Body Weight (kilograms)	70

(a) Sources of RfDs:

IRIS – Integrated Risk Information System. U.S. EPA 1988. HEAST – Health Effects Assessment Summary

Tables - Quarterly Summary, U.S. EPA 1989.

	Reference		MW05S-01	Daily Intake			MW06M-01	Daily intake		
	Does (FID)		Concentration	(DI)		intake Exceeds	Concentration	(DI)		intake Exceeds
Chemical	malkaiday	Source (a)	Ngu	mg/kg/day	DI/RID	Reference Does?	ugA	mg/kg/day	DVRID	Reference Does?
Berium	0.05	IRIS	347	0.0099	0.198	NO	1370	0.0391	0.783	NO
Benzois acid	4	IRIS	71	0.0020	0.001	NO		0.0000	0.000	NO
gamma BHC (lindane)	0.0003	IRIS	_	0.0000	0.000	NO		0.0000	0.000	NO
bis(2-ethylhexyl)phthalate	0.02	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Cadmium	0.0005	HEAST	_	0.0000	0.000	NO	_	0.0000	0.000	NO
Chromium VI	0.005	IRIS	<u> </u>	0.0000	0.000	NO		0.0000	0.000	NO
Copper	0.037	HEAST		0.0000	0.000	NO	-	0.0000	0.000	NO
1,1-Dichlorosthane	0.009	IRIS	570	0.0163	1.810	YES	36	0.0010	0.114	NO
1,1-Dichlorosthene	0.009	IRIS	_	0.0000	0.000	NO		0.0000	0.000	NO
Ethylbenzene	0.1	IRIS	160	0.0046	0.046	NO		0.0000	0.000	NO
Lead	0.0014	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Manganese	0.22	HEAST	6890	0.1969	0.895	NO	4500	0.1286	0.584	NO
2-Methylphenol	0.5	IRIS	58	0.0017	0.003	NO		0.0000	0.000	NO
4-Methylphenol	0.5	1 RI 8	110	0.0031	0.006	NO		0.0000	0.000	NO
Naphthalene	0.4	HEAST	47	0.0013	0.003	NO		0.0000	0.000	NO
Nickel	0.02	(b)	8.8	0.0003	0.013	NO	. 8.1	0.0002	0.012	NO
Phonol	0.04	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Toluene	0.3	IRIS	8300	0.2371	0.790	NO		0.0000	0.000	NO
1,1,1-Trichloroethane	0.09	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Vanadium	0.007	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Xylenes	2	IRIS	1400	0.0400	0.020	NO		0.0000	0.000	NO
Zinc	0.2	HEAST	31.6	0.0009	0.005	NO	6.7	0.0002	0.001	NO
Hazard Index (Sum of DVRfD)					3.789		·		1.494	

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Exposed individual	Adult
Water Inlake (liters/day)	2
Body Weight (kilograms)	70

(a) Sources of RIDs:

IRIS – Integrated Risk Information System. U.S. EPA 1988. HEAST – Health Effects Assessment Summary Tables – Quarterly Summary. U.S. EPA 1989.

Table L-4 COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RID) WATER INGESTION EXPOSURE

	Reference		MW07M-01	Daily Intake			MW08S-01	Daily Intake		
	Does (RID)		Concentration	(DI)		Intake Exceeds	Concentration	(DI)		Intake Exceeds
Chemical	mg/kg/day	Source (a)	ug/l	mg/kg/day	DVRID	Reference Dose?	ug/l	mg/kg/day	DIVRID	Reference Dose?
Barium	0.05	IRIS	235	0.0067	0.134	NO	145	0.0041	0 083	NO
Benzoic acid	4	IRIS		0.0000	0.000	NO		0.0000	0 000	NO
gamma BHC (lindane)	0.0003	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
bis(2-sthylhexyl)phthalate	0.02	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Cadmium	0.0005	HEAST		0.0000	0.000	NO		0.0000	0 000	NO
Chromium VI	0.005	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Copper	0.037	HEAST		0.0000	0.000	NO	6.2	0.0002	0.005	NO
1,1-Dichloroethane	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichloroethene	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Ethylbenzene	0.1	IRIS		0.0000	0.000	NO.		0.0000	0.000	NO
Lead	0.0014	HEAST		0.0000	0.000	NO	2.7	0.0001	0.055	NO
Manganese	0.22	HEAST	718	0.0205	0.093	NO	5690	0.1626	0.739	NO
2-Methylphenol	0.5	IRIS		0.0000	0.000	NO	***	0.0000	0.000	NO
4-Methylphenol	0.5	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Naphthalene	0.4	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Nickel	0.02	(b)		0.0000	0.000	NO	19.9	0.0006	0.028	NO
Phenol	0.04	IRIS		0.0000	0.000	NO	~	0.0000	0.000	NO
Toluene	0.3	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
1,1,1-Trichloroethane	0.09	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Vanadium	0.007	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Xytenes	2	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Zinc	0.2	HEAST	14.4	0.0004	0.002	NO	20.2	0.0006	0.003	NO
Hazard Index (Sum of DI/RID)					0.230				0.913	

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Exposed Individual	Adult
Water Intake (liters/day)	2
Body Weight (kilograms)	70

(a) Sources of RfDs:

IRIS – Integrated Risk Information System. U.S. EPA 1988. HEAST – Health Effects Assessment Summary Tables – Quarterly Summary U.S. EPA 1989.

Table L-4 COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RID) WATER INGESTION EXPOSURE

	Reference		MW08M-01	Daily Intake			MW08D-01	Daily Intake		{
	Does (RID)		Concentration	(DI)		Intake Exceeds	Concentration	(DI)		intake Exceeds
Chemical	malkakley	Source (a)	Ngu	mg/kg/day	DI/RID	Reference Dose?	ugA	mg/kg/day	DVRID	Reference Does?
Barium	0.05	IRIS	600	0.0171	0.343	NO	88.2	0.0025	0.050	NO
Benzoic acid	4	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
gamma BHC (lindane)	0.0003	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
bie(2-ethylhexyl)phthalate	0.02	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Cadmium	0.0005	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Chromium VI	0.005	IAIS	-	0.0000	0.000	NO		0.0000	0.000	NO
Соррег	0.037	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichloroethane	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichloroethene	0.009	IRIS	-	0.0000	0.000	NO		0.0000	0.000	NO
Ethylbenzene	0.1	IRIS	_	0.0000	0.000	NO	_	0.0000	0.000	NO
Lead	0.0014	HEAST	-	0.0000	0.000	NO		0.0000	0.000	NO
Manganese	0.22	HEAST	3060	0.0874	0.397	NO	2530	0.0723	0.329	NO
2-Methylphenol	0.5	IRIS	_	0.0000	0.000	NO		0.0000	0.000	NO
4-Methylphonol	0.5	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Naphthalene	0.4	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Nickel	0.02	(b)	8.7	0.0002	0.012	NO	5.1	0.0001	0.007	NO
Phenol	0.04	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Taluene	0.3	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
1,1,1-Trichloroethane	0.09	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Vanadium	0.007	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Xylenes	2	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Zinc	0.2	HEAST	13.8	0.0004	0.002	NO	9	0.0003	0.001	NO
Hazard Index (Sum of DI/RID)					0.755				0.388	

(

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Exposed Individual	Adult
Water Intake (liters/day)	2
Body Weight (kilograms)	70

(a) Sources of RIDs:

IRIS – Integrated Risk Information System. U.S. EPA 1988. HEAST – Health Effects Assessment Summary Tables – Quarterly Summary. U.S. EPA 1989.

	Reference		MW09M-01	Daily Intake		(MW10M-01	Daily Intake		
	Does (RID)		Concentration	(DI)		intake Exceeds	Concentration	(DI)		Intake Exceeds
Chemical	mg/kg/day	Source (a)	Ngu	mg/kg/day	DIVRID	Reference Dose?	Ngu	mg/kg/day	DVRID	Reference Does?
Barium	0.05	IRIS	122	0.0035	0.070	NO	141	0.0040	0.081	NO
Benzoic acid	4	IRIS	~	0.0000	0.000	NO		0.0000	0.000	NO
gamma BHC (lindane)	0.0003	IRIS	_	0.0000	0.000	NO		0.0000	0.000	NO
bis(2-sthylhexyl)phthalate	0.02	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Cadmium	0.0005	HEAST	_	0.0000	0.000	NO		0.0000	0.000	NO
Chromium VI	0.005	IRIS		0.0000	0.000	NO	_	0.0000	0.000	NO
Copper	0.037	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichloroethane	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichloroethene	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Ethylbenzene	0.1	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Leed	0.0014	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Manganese	0.22	HEAST	991	0.0283	0.129	NO	2780	0.0794	0.361	NO
2-Methylphenol	0.5	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
4-Methylphenol	0.5	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Naphthalene	0.4	HEAST	-	0.0000	0.000	NO		0.0000	0.000	NO
Nickel	0.02	(b)		0.0000	0.000	NO	9.2	0.0003	0.013	NO
Phenol	0.04	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Toluene	0.3	IRIS		0.0000	0.000	NO	_	0.0000	0.000	NO
1,1,1-Trichloroethane	0.09	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Vanadium	0.007	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Xylenes	2	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Zinc	0.2	HEAST	6.1	0.0002	0.001	NO	10.1	0.0003	0.001	NO
Hazard Index (Sum of DI/RID)					0.199	,,			0.456	

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Exposed Individual	Adult
Water Intake (liters/day)	2
Body Weight (kilograms)	70

(a) Sources of RIDs:

IRIS - Integrated Risk Information System. U.S. EPA 1988. HEAST - Health Effects Assessment Summary

Tables - Quarterly Summary, U.S. EPA 1989.

(b) Nickel value base on nickel-soluble salts.

.

1

Table L-4 COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RfD) WATER INGESTION EXPOSURE

	Reference		MW11M-01	Daily Intake			MW12S-01	Daily Intake		
	Does (RID)		Concentration	(DI)		Intake Exceeds	Concentration	(DI)		Intake Exceeds
Chemical	mpikgiday	Source (a)	Ngu	ing/kg/day	DI/RID	Reference Dose?	Ngu	mg/kg/day	DI/RID	Reference Does?
Barium	0.05	IRIS	143	0.0041	0 082	NO	14.9	0.0004	0.009	NO
Benzoic acid	4	IRIS	-	0.0000	0.000	NO		0.0000	0.000	NO
gamme BHC (lindane)	0.0003	IRIS	-	0.0000	0.000	NO		0.0000	0.000	NO
bis(2-ethylhexyl)phthalate	0.02	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Cadmium	0.0005	HEAST	-	0.0000	0.000	NO		0.0000	0.000	NO
Chromium VI	0.005	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Copper	0.037	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichloroethane	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichloroethene	0.009	IRIS	-	0.0000	0.000	NO		0.0000	0.000	NO
Ethylbenzene	0.1	IRIS	→	0.0000	0.000	NO	_	0.0000	0.000	NO
Land	0.0014	HEAST	-	0.0000	0.000	NO	_	0.0000	0.000	NO
Manganese	0.22	HEAST	1040	0.0297	0.135	NO	7.5	0.0002	0.001	NO
2-Methylphenol	0.5	IRIS	· · · · ·	0.0000	0.000	NO		0.0000	0.000	NO
4-Methylphenol	0.5	IRIS		0.0000	0.000	NO	·	0.0000	0.000	NO
Naphthalene	0.4	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Nickel	0.02	(b)		0.0000	0.000	NO	, <u> </u>	0.0000	0.000	NO
Phenol	0.04	IRIS		0.0000	0.000	NO	_	0.0000	0.000	NO
Toluene	0.3	IRIS	-	0.0000	0.000	NO		0.0000	0.000	NO
1,1,1-Trichloroethane	0.09	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Vanadium	0.007	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Xylenes	2	IRIS		0.0000	0.000	NO		0,0000	0.000	NO
Zino	0.2	HEAST	14.2	0.0004	0.002	NO	9.6	0.0003	0.001	NO
Hazard Index (Sum of DI/RID)					0.219		<u></u>		0.011	

1

1

1

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Exposed Individual	Adult
Water Intake (liters/day)	2
Body Weight (kilograms)	70

(a) Sources of RfDs:

IRIS - Integrated Risk Information System. U.S. EPA 1968. HEAST - Health Effects Assessment Summary Tables - Quarterly Summary, U.S. EPA 1969.

(b) Nickel value base on nickel-soluble salts.

(Page 8 of 11)

	Reference	1	MW13S-01	Daily Intake		1	MW14S-01	Daily Intake		
	Dose (RID)		Concentration	(Di)		Intake Exceeds	Concentration	(Dł)		Intake Exceeds
Chemical	mg/kg/day	Source (a)	ugA	mg/kg/day	DI/R/D	Reference Does?	Ngu	mg/kg/day	DVRD	Reference Does?
Barium	0.05	IRIS	11.3	0.0003	0.008	NO	134	0.0038	0.077	NO
Benzoic acid	4	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
gamma BHC (lindane)	0.0003	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
bie(2-ethylhexyl)phthalate	0.02	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Cadmium	0.0005	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Chromium VI	0.005	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Copper	0.037	HEAST	_	0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichloroethane	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichlorosthene	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Ethylbenzene	0.1	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Lead	0.0014	HEAST		0.0000	0.000	NO	~~	0.0000	0.000	NO
Manganese	0.22	HEAST	19.1	0.0005	0.002	NO	952	0.0272	0.124	NO
2-Methylphenol	0.5	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
4-Methylphenol	0.5	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Naphthalene	0.4	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Nickel	0.02	(b)	_	0.0000	0.000	NO		0.0000	0.000	NO
Phenoi	0.04	IRIS	-	0.0000	0.000	NO		0.0000	0.000	NO
Toluene	0.3	IRIS	_	0.0000	0.000	NO		0.0000	0.000	NO
1,1,1-Trichloroethane	0.09	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Vanadium	0.007	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Xylenes	2	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Zinc	0.2	HEAST	5.8	0.0002	0.001	NO	5.8	0.0002	0.001	NO
Hazard Index (Sum of DI/RID)	·				0.010				0.201	

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Exposed Individual	Adult
Water intake (liters/day)	2
Body Weight (kilograms)	70

(a) Sources of RfDs:

IRIS - Integrated Risk Information System U.S. EPA 1988. HEAST - Health Effects Assessment Summary Tables - Quarterly Summary U.S. EPA 1989

Table L-4 COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RfD) WATER INGESTION EXPOSURE

	Reference		MW20S-01	Daily Intake			MW20D-01	Daily Intake		
	Does (RID)		Concentration	(DI)		Intake Exceeds	Concentration	(DI)		Intake Exceeds
Chemical	mg/kg/dey	Source (a)	Jon	mg/kg/day	DIARID	Reference Doee?	Ngu	mg/kg/day	DVRID	Reference Does?
Berium	0.05	IRIS	1280	0.0366	0.731	NO	24.8	0.0007	0.014	NO
Benzoic acid	4	IRIS	—	0.0000	0.000	NO		0.0000	0.000	NO
gamma BHC (lindane)	0.0003	IRIS	·	0.0000	0.000	NO		0.0000	0.000	NO
bis(2-sthylhexyl)phthalate	0.02	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Cadmium	0.0005	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Chromium VI	0.005	IRIS	_	0.0000	0.000	NO		0.0000	0.000	NO
Copper	0.037	HEAST	_	0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichloroethane	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichlorosthene	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Ethylbenzene	0.1	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Load	0.0014	HEAST	2	0.0001	0.041	NO		0.0000	0.000	NO
Manganese	0.22	HEAST	7710	0.2203	1.001	YES	100	0.0029	0.013	NO
2-Methylphenol	0.5	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
4-Methylphenol	0.5	1818	_	0.0000	0.000	NO		0.0000	0.000	NO
Naphthalene	0.4	HEAST	-	0.0000	0.000	NO		0.0000	0.000	NO
Nickel	0.02	(b)	5.6	0.0002	0.008	NO		0.0000	0.000	NO
Phonol	0.04	IRIS								
Tokiene	0.3	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
1,1,1-Trichloroethane	0.09	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Venedium	0.007	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Xylenes	2	IRIS	-	0.0000	0.000	NO		0.0000	0.000	NO
Zino	0.2	HEAST	491	0.0140	0.007	NO		0.0000	0.000	NO
Hazard Index (Sum of DI/RfD)					1.789	· · · · · · · · · · · · · · · · · · ·			0.027	

{

•

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Exposed Individual	Adult
Water Intake (litere/day)	2
Body Weight (kilograms)	70

(a) Sources of RIDs:

IRIS – Integrated Risk Information System. U.S. EPA 1988. HEAST – Health Effects Assessment Summary Tables – Quarterly Summary. U.S. EPA 1989.

Table L-4 COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RID) WATER INGESTION EXPOSURE

	Reference			MW21S-01 Concentration	Daily Intake (Di)		intake Exceeds
O t	Does (RID)	0			•••		
Chemical	mg/kg/day	· · · ·	a)	Ngu	mg/kg/day	DIVRID	Reference Dose?
Barium	0.05	IRIS		201	0.0057	0.115	NO
Benzoic acld	4	IRIS			0.0000	0.000	NO
gamma BHC (lindane)	0.0003	IRIS			0.0000	0.000	NO
bie(2-ethylhexyl)phthalate	0.02	IRIS			0.0000	0.000	NO
Cadmium	0.0005	HEAST			0.0000	0.000	NO
Chromium VI	0.005	IRIS			0.0000	0.000	NO
Copper	0.037	HEAST		·	0.0000	0.000	NO
1,1-Dichloroethane	0.009	IRIS		490	0.0140	1.556	YES
1,1-Dichloroethene	0.009	IRIS			0.0000	0.000	NO
Ethylbenzene	0.1	IRIS		·	0.0000	0.000	NO
Lead	0.0014	HEAST			0.0000	0.000	NO
Manganese	0.22	HEAST		3220	0.0920	0.418	NO
2-Methylphenol	0.5	IRIS			0.0000	0.000	NO
4-Methylphenol	0.5	IRIS			0.0000	0.000	NO
Naphthaiene	0.4	HEAST			0.0000	0.000	NO
Nickel	0.02	(b)		13.4	0.0004	0.019	NO
Phenol	0.04	IRIS					
Toluene	0.3	IRIS			0.0000	0.000	NO
1,1,1-Trichloroethane	0.09	IRIS			0.0000	0.000	NO
Vanadium	0.007	HEAST			0.0000	0.000	NO
Xylenes	2	IRIS			0.0000	0.000	NO
Zinc	0.2	HEAST		—	0.0000	0.000	NO
Hazard Index (Sum of DVRI	D)					2.108	

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Exposed Individual	Adult
Water Intake (liters/day)	2
Body Weight (kilograms)	70

(a) Sources of RIDs:

IRIS - Integrated Risk Information System. U.S. EPA 1988.

HEAST - Health Effects Assessment Summary

Tables - Quarterly Summary, U.S. EPA 1989.

Chemical	U.S. EPA Carcinogen Classification	Carcinogenic Potency Factor (kg-day/mg)	Source (MW02D-01 Concentration a) ug/i	Lifetime Average Chemical Intake mg/kg/day	Excess Lifetime Cancer Risk	MW02M-01 Concentration ug/l	Lifetime Average Chemical Intake mg/kg/day	Excess Lifetime Cancer Risk
Arsenic	Α	1.75	U.S. EPA	2.4	5.786E-08	1E-07	19.4	4.677E-07	8E-07
Benzene	A	0.029	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
DOD	B2	0.24	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
1,4 Dichlorobenzene	82	0.024	HEAST		0.000E+00	0E+00		0.000E+00	0E+00
1,1-Dichloroethane	С	0.091	HEAST		0.000E+00	0E+00		0.000E+00	0E+00
1,1-Dichloroethene	С	0.6	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
Trichloroethene	B 2	0.011	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
SUM OF RISKS						1E-07			8E-07
SUM of RISKS W/O As						0E+00			0E+00

(

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Water Absorption Rate (mg/cm2/hr)	0.5
Body Weight (kilograms)	70
Surface area (cm2)	18000
Percent submerged	0.75
Time in water (hr)	0.25
Number of days/week exposed	7
Number of weeks/year exposed	52
Number of years exposed	75
Years in lifetime	75
Lifetime Average Water Intake	0.00002
(liters/kg body wt./day)	

(a) Sources of Cancer Potency Factors: IPIS – Integrated Risk Information System, U.S. EPA 1988. HEAST – Health Effects Assessment Summary Tables, U.S. EPA 1989.

U.S. EPA - U.S. EPA 1968a.

Table L-5 **EXCESS LIFETIME CANCER RISK GROUNDWATER DERMAL ABSORPTION EXPOSURE** ONALASKA SITE

Chemical	U.S. EPA Carcinogen Classification	Carcinogenic Potency Factor (kg-day/mg)	Source	(a)	MW02S-01 Concentration ug/l	Lifetime Average Chemical Intake mg/kg/day	Excess Lifetime Cancer Risk	MW03S-01 Concentration ug/l	Lifetim e Ave rage Chemical Intake mg/kg/day	Excess Lifetime Cancer Risk
Arsenic		1.75	U.S. EPA		9.5	2.290E-07	4E-07	19.4	4.677E-07	8E-07
Benzene		0.029	IRIS		5	1.205E-07	3E-09	13	3.134E-07	9E-09
DOD	B2	0.24	IRIS			0.000E+00	0E+00		0.000E+00	0E+00
1,4 Dichlorobenzene	82	0.024	HEAST		2	4.821E-08	1E-09		0.000E+00	0E+00
1,1-Dichloroethane	С	0.091	HEAST			0.000E+00	0E+00	190	4.580E-06	4E-07
1,1-Dichloroethene	С	0.6	IRIS			0.000E+00	0E+00	15	3.616E-07	2E-07
Trichloroethene	B2	0.011	IRIS			0.000E+00	0E+00	11	2.652E-07	3E-09
SUM OF RISKS							4E-07			1E-06
SUM of RISKS W/O As							5E-09			6E-07

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Water Absorption Rate (mg/cm2/hr)	0.5
Body Weight (kilograms)	70
Surface area (cm2)	18000
Percent submerged	0.75
Time in water (hr)	0.25
Number of days/week exposed	7
Number of weeks/year exposed	52
Number of years exposed	75
Years in lifetime	75
Lifetime Average Water Intake	0.00002
(liters/kg body wt./day)	

(a) Sources of Cancer Potency Factors:

IRIS - Integrated Risk Information System, U.S. EPA 1988. HEAST - Health Effects Assessment Summary Tables, U.S. EPA 1989. U.S. EPA - U.S. EPA 1988a.

Table L-5 **EXCESS LIFETIME CANCER RISK GROUNDWATER DERMAL ABSORPTION EXPOSURE ONALASKA SITE**

Chemical				MW03M-01			MW04S-01		1
	U.S. EPA Carcinogen Classification	Carcinogenic Potency Factor (kg-day/mg)	Source	Concentration	Lifetime Average Chemical Intake mg/kg/day	Excess Lifetime Cancer Risk	Concentration ug/l	Lifetime Average Chemical Intake mg/kg/day	Excess Lifetime Cancer Risk
Arsenic	Α	1.75	U.S. EPA	68.4	1.649E-06	3E-06	10.2	2.459E-07	4E-07
Benzene	Α	0.029	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
DOD	B2	0.24	IRIS		0.000E+00	0E+00	0.38	9.161E-09	2E-09
1,4 Dichlorobenzene	B 2	0.024	HEAST		0.000E+00	0E+00		0.000E+00	0E+00
1,1-Dichloroethane	С	0.091	HEAST		0.000E+00	0E+00		0.000E+00	0E+00
1,1-Dichloroethene	С	0.6	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
Trichloroethene	B2	0.011	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
SUM OF RISKS			·		· · · · · · · · · · · · · · · · · · ·	3E-06			4E-07
SUM of RISKS W/O As						0E+00			2E-09

ł

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Water Absorption Rate (mg/cm2/hr)	0.5
Body Weight (kilograms)	70
Surface area (cm2)	18000
Percent submerged	0.75
Time in water (hr)	0.25
Number of days/week exposed	7
Number of weeks/year exposed	52
Number of years exposed	75
Years in lifetime	75
Lifetime Average Water Intake	0.00002
(liters/kg body wt./day)	

(a) Sources of Cancer Potency Factors: IRIS - Integrated Risk Information System, U.S. EPA 1988. HEAST - Health Effects Assessment Summary Tables, U.S. EPA 1989.

(

U.S. EPA - U.S. EPA 1988a.

Table L-5 **EXCESS LIFETIME CANCER RISK GROUNDWATER DERMAL ABSORPTION EXPOSURE** ONALASKA SITE

Chemical	U.S. EPA Carcinogen Classification	Carcinogenic Potency Factor (kg-day/mg)	Source (MW05S-01 Concentration ug/l	Lifetime Average Chemical Intake mg/kg/day	Excess Lifetime Cancer Risk	MW06M-01 Concentration ug/l	Liletime Average Chemical Intake mg/kg/day	Excess Lifetime Cancer Risk
Arsenic	A	1.75	U.S. EPA	8	1.929E-07	3E-07	1.1	2.652E-08	5E-08
Benzene	A	0.029	IRIS	7	1.687E-07	5E-09		0.000E+00	0E+00
DDD	B 2	0.24	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
1,4 Dichlorobenzene	82	0.024	HEAST		0.000E+00	0E+00		0.000E+00	0E+00
1,1-Dichloroethane	C	0.091	HEAST	570	1.374E-05	1E-06	36	8.679E-07	8E-08
1,1-Dichloroethene	C	0.6	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
Trichloroethene	B 2	0.011	IRIS		0.000E+00	0E+00		0.000E+00	0E+00
SUM OF RISKS						2E-06			1E-07
SUM of RISKS W/O As						1E-06			8E-08

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Water Absorption Rate (mg/cm2/hr)	0.5
Body Weight (kilograms)	70
Surface area (cm2)	18000
Percent submerged	0.75
Time in water (hr)	0.25
Number of days/week exposed	7
Number of weeks/year exposed	52
Number of years exposed	75
Years in lifetime	75
Lifetime Average Water Intake	0.00002
(liters/kg body wt./day)	

 (a) Sources of Cancer Potency Factors: IRIS – Integrated Risk Information System, U.S. EPA 1988.
 HEAST – Health Effects Assessment Summary Tables, U.S. EPA 1989. U.S. EPA - U.S. EPA 1988a.

Chemical	U.S. EPA Carcinogen Classification	Carcinogenic Potency Factor (kg-day/mg)	Source	(a)	MW07M-01 Concentration ug/l	Liletime Average Chemical Intake mg/kg/day	Excess Lifetime Cancer Risk	MW08D-01 Concentration	Lifetime Average Chemical Intake mg/kg/day	Excess Lifetime Cancer Risk
Arsenic	A	1.75	U.S. EPA		3.3	7.955E-08	1E-07	3.2	7.714E-08	1E-07
Benzene	Α	0.029	IRIS			0.000E+00	0E+00		0.000E+00	0E+00
DDD	82	0.24	IRIS			0.000E+00	0E+00		0.000E+00	0E+00
1,4 Dichlorobenzene	B 2	0.024	HEAST			0.000E+00	0E+00		0.000E+00	0E+00
1,1-Dichloroethane	С	0.091	HEAST			0.000E+00	0E+00		0.000E+00	0E+00
1,1-Dichloroethene	С	0.6	IRIS			0.000E+00	0E+00		0.000E+00	0E+00
Trichloroethene	B2	0.011	IRIS			0.000E+00	0E+00		0.000E+00	0E+00
SUM OF RISKS							1E-07			1E-07
SUM of RISKS W/O As							0E+00			0E+00

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Water Absorption Rate (mg/cm2/hr)	0.5
Body Weight (kilograms)	70
Surface area (cm2)	18000
Percent submerged	0.75
Time in water (hr)	0.25
Number of days/week exposed	7
Number of weeks/year exposed	52
Number of years exposed	75
Years in lifetime	75
Liletime Average Water Intake	0.00002
(liters/kg body wt./day)	

(a) Sources of Cancer Potency Factors: IRIS – Integrated Risk Information System, U.S. EPA 1988, HEAST – Health Effects Assessment Summary Tables, U.S. EPA 1989. U.S. EPA – U.S. EPA 1988a.

(

Table L-5 EXCESS LIFETIME CANCER RISK **GROUNDWATER DERMAL ABSORPTION EXPOSURE ONALASKA SITE**

					MW09M-01			MW11M-01		
	U.S. EPA Carcinogen	Carcinogenic Potency Factor			Concentration	Lifetime Average Chemical Intake	Excess Lifetime	Concentration	Lifetime Average Chemical Intake	Excess Lifetime
Chemical	Classification	(kg-day/mg)	Source	(a)	ug/i	mg/kg/day	Cancer Risk	ug/l	mg/kg/day	Cancer Risk
Arsenic	A	1.75	U.S. EPA		5.3	1.278E-07	2E-07	4.1	9.884E-08	2E-07
Benzene	Α.	0.029	IRIS			0.000E+00	0E+00		0.000E+00	0E+00
DDD	B2	0.24	IRIS			0.000E+00	0E+00		0.000E+00	0E+00
1,4 Dichlorobenzene	82	0.024	HEAST			0.000E+00	0E+00		0.000E+00	0E+00
1,1-Dichloroethane	С	0.091	HEAST			0.000E+00	0E+00		0.000E+00	0E+00
1,1-Dichloroethene	С	0.6	IRIS			0.000E+00	0E+00		0.000E+00	0E+00
Trichloroethene	B2	0.011	IRIS			0.000E+00	0E+00		0.000E+00	0E+00
SUM OF RISKS							2E-07			2E-07
SUM of RISKS W/O As							0E+00			0E+00

,

.

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Water Absorption Rate (mg/cm2/hr)	0.5
Body Weight (kilograms)	70
Surface area (cm2)	18000
Percent submerged	0.75
Time in water (hr)	0.25
Number of days/week exposed	7
Number of weeks/year exposed	52
Number of years exposed	75
Years in lifetime	75
Lifetime Average Water Intake	0.00002
(liters/kg body wt./day)	

(a) Sources of Cancer Potency Factors: IRIS – Integrated Risk Information System, U.S. EPA 1988. HEAST – Health Effects Assessment Summary Tables, U.S. EPA 1989.

U.S. EPA - U.S. EPA 1988a.

Table L-5 EXCESS LIFETIME CANCER RISK **GROUNDWATER DERMAL ABSORPTION EXPOSURE** ONALASKA SITE

Chemical	U.S. EPA Carcinogen Classification	Carcinogenic Potency Factor (kg-day/mg)	Source	MW20S- Concentral		Lifetime Average Chemical Intake mg/kg/day	Excess Lifetime Cancer Risk	MW21S-01 Concentration ug/l	Lifetime Average Chemical Intake mg/kg/day	Excess Lifetime Cancer Risk
Arsenic	A	1.75	U.S. EPA		3.5	0.000E+00	0E+00		0.000E+00	0E+00
Benzene	Α	0.029	IRIS			0.000E+00	0E+00		0.000E+00	0E+00
DDD	B2	0.24	IRIS			0.000E+00	0E+00		0.000E+00	0E+00
1,4 Dichlorobenzene	B 2	0.024	HEAST			0.000E+00	0E+00		0.000E+00	0E+00
1,1-Dichloroethane	С	0.091	HEAST			0.000E+00	0E+00	490	0.000E+00	0E+00
1,1-Dichloroethene	С	0.6	IRIS			0.000E+00	0E+00		0.000E+00	0E+00
Trichloroethene	B2	0.011	IRIS			0.000E+00	0E+00		0.000E+00	0E+00
SUM OF RISKS							0E+00			0E+00
SUM of RISKS W/O As							0E+00			0E+00

1

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Water Absorption Rate (mg/cm2/hr)	0.5
Body Weight (kilograms)	70
Surface area (cm2)	18000
Percent submerged	0.75
Time in water (hr)	0.25
Number of days/week exposed	7
Number of weeks/year exposed	52
Number of years exposed	75
Years in lifetime	75
Lifetime Average Water Intake	0.00002
(liters/kg body wt./day)	

(a) Sources of Cancer Potency Factors:

IRIS - Integrated Risk Information System, U.S. EPA 1988. HEAST - Health Effects Assessment Summary Tables, U.S. EPA 1989. U.S. EPA - U.S. EPA 1988a.

	Reference	ł	MW02S-01	Daily Intake			MW02M-01	Daily Intake		1
	Dose (RID)		Concentration	(DI)		Intake Exceeds	Concentration	(DI)		Intake Exceeds
Chemical	mg/kg/day	Source (a)	ug/l	mg/kg/day	DI/RID	Reference Dose?	ug/l	mg/kg/day	DI/RID	Reference Dose?
Barium	0.05	IRIS	352	0.0008	0.017	NO	1390	0.0034	0 067	NO
Benzoic acid	4	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
gamma BHC (lindane)	0.0003	IRIS		0.0000	0.000	NO	-	0.0000	0 000	NO
bis(2-ethylhexyl)phthalate	0.02	IRIS		0.0000	0.000	NO		0.0000	0 000	NO
Cadmium	0.0005	HEAST		0.0000	0.000	NO		0 0000	0 000	NO
Chromium VI	0.005	IRIS	24.8	0.0001	0.012	NO		0.0000	0.000	NO
Copper	0.037	SPHEM	8.3	0.0000	0.001	NO		0.0000	0.000	NO
1,1-Dichloroethane	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichloroethene	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Ethylbenzene	0.1	IRIS	5	0.0000	0.000	NO		0.0000	0.000	NO
Leed	0.0014	SPHEM	7.6	0.0000	0.013	NO	8.1	0.0000	0 014	NO
Manganese	0.22	SPHEM	1340	0.0032	0.015	NO	972	0.0023	0.011	NO
2-Methylphenol	0.5	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
4-Methylphenol	0.5	IRIS	-	0.0000	0.000	NO		0.0000	0.000	NO
Nephthalene	0.4	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Nickel	0.02	(b)	27.8	0.0001	0.003	NO	7.4	0.0000	0.001	NO
Phenol	0.04	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Taluene	0.3	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
1,1,1-Trichloroethane	0.09	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Vanadium	0.007	HEAST	8.1	0.0000	0.003	NO		0.0000	0 000	NO
Xylenes	2	IRIS		0.0000	0.000	NO		0.0000	0 000	NO
Zinc	0.2	HEAST	49.8	0.0001	0.001	NO	58.4	0.0001	0.001	NO
Hazard Index (Sum of DI/	RfD)				0.064		• • • • • • • • • • • • • • • • • • • •		0.093	

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Exposed Individual	Adult
Water absorption rate(mg/cm2/hr)	0.5
Body Weight (kilograms)	70
Surface area (cm2)	18000
Percent submerged	75
Time in water	0.25
Water intake (l/kg-day)	0.0024

(a) Sources of RfDs:

IRIS - Integrated Risk Information System. U.S. EPA 1988

HEAST - Health Effects Assessment Summary

Tables - Quarterly Summary, U.S. EPA 1989

Table L-6 COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RID) DERMAL ABSORPTION EXPOSURE

	Reference	ł	MW02D-01	Daily Intake			MW03S-01	Daily Intake		{
	Does (RID)		Concentration	(DI)		Intake Exceeds	Concentration	(DI)		Intake Exceeds
Chemical	mg/kg/day	Source (a)	ug/l	mg/kg/day	DVRID	Reference Dose?	ug/l	mg/kg/day	DVRID	Reference Dose?
Barkum	0.05	IRIS	152	0.0004	0.007	NO	593	0.0014	0.029	NO
Benzoic acid	4	IRIS		0.0000	0.000	NO	23	0.0001	0.000	NO
gamma BHC (lindane)	0.0003	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
bis(2-othythexyl)phthalate	0.02	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Cadmium	0.0005	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Chromium VI	0.005	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Copper	0.037	SPHEM	8.1	0.0000	0.001	NO		0.0000	0.000	NO
1,1-Dichloroethane	0.000	IRIS		0.0000	0.000	NO	190	0.0005	0.051	NO
1,1-Dichloroethene	0.000	IRIS		0.0000	0.000	NO	15	0.0000	0.004	NO
Ethylbenzene	0.1	IRIS	2	0.0000	0.000	NO	210	0.0005	0.005	NO
Lead	0.0014	SPHEM		0.0000	0.000	NO		0.0000	0.000	NO
Manganese	0.22	SPHEM	1190	0.0029	0.013	NO	3720	0.0000	0.041	NO
2-Methylphenol	0.5	IRIS		0.0000	0.000	NO	56	0.0001	0.000	NO
4-Methylphenol	0.5	IRIS	·	0.0000	0.000	NO	64	0.0002	0.000	NO
Naphthalene	0.4	HEAST		0.0000	0.000	NO	56	0.0001	0.000	NO
Nickel	0.02	(b)	5.4	0.0000	0.001	NO	19.8	0.0000	0.002	NO
Phenoi	0.04	IRIS		0.0000	0.000	NO	0	0.0000	0.000	NO
Toluene	0.3	IRIS		0.0000	0.000	NO	8300	0.0200	0.067	NO
1,1,1-Trichloroethane	0.09	IRIS		0.0000	0.000	NO	240	0.0008	0.006	NO
Vanadium	0.007	HEAST		0.0000	0.000	NO	3.4	0.0000	0.001	NO
Xylanas	2	IRIS		0.0000	0.000	NO	2300	0.0055	0.003	NO
Zinc	0.2	HEAST	9.9	0.0000	0.000	NQ	10.9	0.0000	0.000	NO
Hazard Index (Sum of DI/RI	D)				0.022	i I			0.210	1

T.

1

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Exposed individual	Adult
Water absorption rate(mg/cm2/hr)	0.5
Body Weight (kilograms)	70
Surface area (cm2)	18000
Percent submerged	75
Time in water	0.25
Water intake (Vkg-day)	0.0024

(a) Sources of RIDs:

IRIS - Integrated Risk Information System. U.S. EPA 1988. HEAST - Health Effects Assessment Summary

Tables - Quarterly Summary, U.S. EPA 1989.

	Reference	l l	MW03M-01	Daily Intake			MW04S-01	Daily Intake		1
	Dose (RfD)		Concentration	(DI)		Intake Exceeds	Concentration	(DI)		Intake Exceeds
Chemical	mg/kg/day	Source (a)	ug/l	mg/kg/day	DVRfD	Reference Dose?	ug/l	mg/kg/day	DI/RID	Reference Dose?
Barium	0.05	IRIS	2760	0.0067	0.133	NO	401	0.0010	0.019	NO
Benzoic acid	4	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
gamma BHC (lindane)	0.0003	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
bie(2-ethylhexyl)phthalate	0.02	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Cadmium	0.0005	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Chromium VI	0.005	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Copper	0.037	SPHEM		0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichloroethane	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichloroethene	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Ethylbenzene	0.1	IRIS		0.0000	0.000	NO	42	0.0001	0.001	NO
Load	0.0014	SPHEM		0.0000	0.000	NO		0.0000	0.000	NO
Manganese	0.22	SPHEM	1260	0.0030	0.014	NO	3320	0.0080	0.036	NO
2-Methylphenol	0.5	iris	-	0.0000	0.000	NO		0.0000	0.000	NO
4-Methylphenol	0.5	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Nephthalene	0.4	HEAST		0.0000	0.000	NO	23	0.0001	0.000	NO
Nickel	0.02	(b)	6.3	0.0000	0.001	NO		0.0000	0.000	NO
Phenol	0.04	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Tokiene	0.3	IRIS		0.0000	0.000	NO	530	0.0013	0.004	NO
1,1,1-Trichloroethane	0.09	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Vanadium	0.007	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Xylenes	2	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Zino	0.2	HEAST	14.4	0.0000	0.000	NO	15.1	0.0000	0.000	NO
Hazard Index (Sum of DI/Rfl	D)				0.148				0.061	· · · · · · · · · · · · · · · · · · ·

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Exposed Individual	Adult
Water absorption rate(mg/cm2/hr)	0.5
Body Weight (kilograms)	70
Surface area (cm2)	18000
Percent submerged	75
Time in water	0.25
Water intake (l/kg-day)	0.0024

(a) Sources of RfDs:

IRIS - Integrated Risk Information System. U.S. EPA 1988.

HEAST - Health Effects Assessment Summary

Tables - Quarterly Summary, U.S. EPA 1989.

	Reference	1	MW05S-01	Daily Intake			MW06M-01	Daily Intake		1
	Dose (RfD)	1	Concentration	(DI)		Intake Exceeds	Concentration	(DI)		Intake Exceeds
Chemical	mg/kg/day	Source (a)	Ug/I	mg/kg/day	DVRID	Reference Dose?	ug/l	mg/kg/day	DIAID	Reference Dose?
Barium	0.05	IRIS	347	0.0008	0.017	NO	1370	0.0033	0.066	NO
Benzoic acid	4	IRIS	71	0.0002	0.000	NO		0.0000	0.000	NO
gamma BHC (lindane)	0.0003	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
bis(2-sthylhexyl)phthalate	0.02	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Cadmium	0.0005	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Chromium VI	0.005	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Copper	0.037	SPHEM		0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichloroethane	0.009	IRIS	570	0.0014	0.153	NO	36	0.0001	0.010	NO
1,1-Dichloroethene	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Ethylbenzene	0.1	IRIS	160	0.0004	0.004	NO		0.0000	0.000	NO
Lead	0.0014	SPHEM		0.0000	0.000	NO	_	0.0000	0.000	NO
Manganese	0.22	SPHEM	6890	0.0166	0.075	NO	4500	0.0108	0.049	NO
2-Methylphenol	0.5	IRIS	58	0.0001	0.000	NO		0.0000	0.000	NO
4-Methylphenol	0.5	IRIS	110	0.0003	0.001	NO		0.0000	0.000	NO
Naphihalone	0.4	HEAST	47	0.0001	0.000	NO		0.0000	0.000	NO
Nickel	0.02	(b)	8.8	0.0000	0.001	NO	8.1	0.0000	0.001	NO
Phonoi	0.04	1818		0.0000	0.000	NO		0.0000	0.000	NO
Toluene	0.3	IRIS	8300	0.0200	0.067	NO		0.0000	0.000	NO
1,1,1-Trichloroethane	0.09	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Vanadium	0.007	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Xylenes	2	IRIS	1400	0.0034	0.002	NO		0.0000	0.000	NO
Zinc	0.2	HEAST	31.6	0.0001	0.000	NO	6.7	0.0000	0.000	NO
Hazard Index (Sum of DI/Rf	D)				0.320				0.126	<u> </u>

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Exposed Individual	Adult
Water absorption rate(mg/cm2/hr)	0.5
Body Weight (kilograms)	70
Surface area (cm2)	18000
Percent submerged	75
Time in water	0.25
Water intake (l/kg-day)	0.0024

(a) Sources of RfDs:

IRIS – Integrated Risk Information System. U.S. EPA 1988. HEAST – Health Effects Assessment Summary

Tables - Quarterly Summary, U.S. EPA 1989.

(b) Nickel value base on nickel-soluble salts.

.

	Reference		MW07M-01	Daily Intake			MW08S-01	Daily Intake		1
	Dose (RID)		Concentration	(DI)		Intake Exceeds	Concentration	(DI)		Intake Exceeds
Chemical	mg/kg/day	Source (a)	ug/l	mg/kg/day	DI/RfD	Reference Dose?	ug/l	mg/kg/day	DI/RID	Reterence Dose?
Barium	0.05	IRÍS	235	0.0006	0.011	NO	145	0.0003	0.007	NO
Benzoic acid	4	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
gamma BHC (lindane)	0.0003	IAIS		0.0000	0.000	NO		0.0000	0 000	NO
bie(2-ethylhexyl)phthalate	0.02	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Cadmium	0.0005	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Chromium VI	0.005	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Copper	0.037	SPHEM		0.0000	0.000	NO	6.2	0.0000	0 000	NO
1,1-Dichloroethane	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichloroethene	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Ethylbenzene	0.1	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Leed	0.0014	SPHEM		0.0000	0.000	NO	2.7	0.0000	0.005	NO
Manganese	0.22	SPHEM	718	0.0017	0.008	NO	5890	0.0137	0.062	NO
2-Methylphenol	0.5	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
4-Methylphenol	0.5	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Nephthelene	0.4	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Nickel	0.02	(b)		0.0000	0.000	NO	19.9	0.0000	0.002	NO
Phenoi	0.04	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Toluene	0.3	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
1,1,1-Trichloroethane	0.09	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Vanadium	0.007	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Xylenes	2	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Zinc	0.2	HEAST	14.4	0.0000	0.000	NO	20.2	0.0000	0.000	NO
Hazard Index (Sum of DI/F	RfD)				0.019				0.077	

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Exposed Individual	Adult
Water absorption rate(mg/cm2/hr)	0.5
Body Weight (kilograms)	70
Surface area (cm2)	18000
Percent submerged	75
Time in water	0.25
Water intake (l/kg-day)	0.0024

(a) Sources of RIDs:

IRIS - Integrated Risk Information System. U.S. EPA 1988.

HEAST - Health Effects Assessment Summary Tables - Quarterly Summary, U.S. EPA 1989.

	Reference	1	MW08M-01	Daily Intake			MW06D-01	Daily Intake		1
	Dose (RfD)		Concentration	(DI)		Intake Exceeds	Concentration	(DI)		Intake Exceeds
Chemical	mg/kg/day	Source (a)	ug/l	mg/kg/day	DVRID	Reference Dose?	ug/l	mg/kg/day	DI/R/D	Reference Dose?
Barium	0.05	IRIS	600	0.0014	0.029	NO	88.2	0.0002	0.004	NO
Benzoic acid	4	IRIS		0.0000	0 000	NO	-	0.0000	0.000	NO
gumma BHC (lindane)	0.0003	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
bie(2-ethylhexyl)phthaiale	0.02	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Cadmium	0.0005	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Chromium Vi	0.005	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Copper	0.037	SPHEM		0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichloroethane	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichioroethene	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Ethylbenzene	0.1	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Lead	0.0014	SPHEM	+=	0.0000	0.000	NO		0.0000	0.000	NO
Manganese	0.22	SPHEM	3060	0.0074	0.034	NO	2530	0.0061	0.028	NO
2-Methylphenol	0.5	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
4-Methylphenol	0.5	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Naphthalene	0.4	HEAST		0.0000	0.000	NO	_	0.0000	0.000	NO
Nickel	0.02	(b)	8.7	0.0000	0.001	NO	5.1	0.0000	0.001	NO
Phonai	0.04	IRIS	<u> </u>	0.0000	0.000	NO		0.0000	0.000	NO
Taluene	0.3	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
1,1,1-Trichloroethane	0.09	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Vanadium	0.007	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Xylenes	2	IRIS	-	0.0000	0.000	NO		0.0000	0.000	NO
Zine	0.2	HEAST	13.8	0.0000	0.000	NO	9	0.0000	0.000	NO
Hazard Index (Sum of DI/Rf))				0.064	,,			0.033	

ſ

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Exposed Individual	Adult
Water absorption rate(mg/cm2/hr)	0.5
Body Weight (kilograms)	70
Surface area (cm2)	18000
Percent submerged	75
Time in water	0.25
Water intake (Vkg-day)	0.0024

(a) Sources of RfDs:

IRIS - Integrated Risk Information System. U.S. EPA 1988. HEAST - Health Effects Assessment Summary Tables - Quarterly Summary. U.S. EPA 1989.

	Reference		MW09M-01	Daily Intake			MW10M-01	Daily Intake		l l
	Dose (RfD)	[Concentration	(DI)		Intake Exceeds	Concentration	(DI)		Intake Exceeds
Chemical	mg/kg/day	Source (a)	l/gu	mg/kg/day	DI/RID	Reference Dose?	Ug/1	mg/kg/day	DI/RID	Reference Dose?
Barium	0.05	IRIS	122	0.0003	0.006	NO	141	0.0003	0.007	NO
Benzoic acid	4	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
gamma BHC (lindane)	0.0003	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
bie(2-ethylhexyl)phthalate	0.02	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Cadmium	0.0005	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Chromium VI	0.005	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Copper	0.037	SPHEM		0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichloroethane	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichloroethene	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Ethylbenzene	0.1	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Leed	0.0014	SPHEM		0.0000	0.000	NO		0.0000	0.000	NO
Manganese	0.22	SPHEM	991	0.0024	0.011	NO	2780	0.0067	0.030	NO
2-Methylphenol	0.5	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
4-Methylphenol	0.5	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Naphthalene	0.4	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Nickel	0.02	(b)		0.0000	0.000	NO	9.2	0.0000	0.001	NO
Phenol	0.04	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Toluene	0.3	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
1,1,1-Trichloroethane	0.09	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Vanadium	0.007	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Xylenes	2	IRIS	~~	0.0000	0.000	NO		0.0000	0.000	NO
Zino	0.2	HEAST	6.1	0.0000	0.000	NO	10.1	0.0000	0.000	NO
Hazard Index (Sum of DI/RfD))				0.017				0.038	

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Exposed Individual	Adult
Water absorption rate(mg/cm2/hr)	0.5
Body Weight (kilograms)	70
Surface area (cm2)	18000
Percent submerged	75
Time in water	0.25
Water intake (l/kg-day)	0.0024

(a) Sources of RfDs:

IRIS – Integrated Risk Information System. U.S. EPA 1988, HEAST – Health Effects Assessment Summary Tables – Quarterly Summary. U.S. EPA 1989.

Table L-6 COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RID) DERIMAL ABSORPTION EXPOSURE

	Reference		MW11M-01	Daily Intake		l l	MW12S-01	Daily Intake		1
	Dose (RfD)		Concentration	(DI)		Intake Exceeds	Concentration	(DI)		Intake Exceeds
Chemical	mg/kg/day	Source (a)	ug/l	mg/kg/day	DI/RID	Reference Dose?	ug/l	mg/kg/day	DI/RID	Reference Dose?
Barium	0.05	IRIS	143	0.0003	0.007	NO	14.9	0.0000	0.001	NO
Benzoic acid	4	IRIS		0.0000	0.000	NO		0.0000	0 000	NO
gamma BHC (lindane)	0.0003	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
bie(2-ethylhexyl)phthalate	0.02	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Cadmium	0.0005	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Chromium VI	0.005	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Copper	0.037	SPHEM	—	0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichloroethane	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichloroethene	0.009	IRIS		0.0000	0.000	NO	—	0.0000	0.000	NO
Ethylbenzene	0.1	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Lead	0.0014	SPHEM		0.0000	0.000	NO	_	0.0000	0.000	NO
Manganese	0.22	SPHEM	1040	0.0025	0.011	NO	7.6	0.0000	0.000	NO
2-Methylphenol	0.5	IAIS	-	0.0000	0.000	NO		0.0000	0.000	NO
4-Methylphenol	0.5	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Naphthalene	0.4	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Nickel	0.02	(b)	-	0.0000	0.000	NO		0.0000	0.000	NO
Phenol	0.04	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Toluene	0.3	IRIS		0.0000	0.000	NO	-	0.0000	0.000	NO
1,1,1-Trichloroethane	0.09	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Vanadium	0.007	HEAST	-	0.0000	0.000	NO	-	0.0000	0.000	NO
Xylenee	2	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Zinc	0.2	HEAST	14.2	0.0000	0.000	NO	9.6	0.0000	0.000	NO
Hazard Index (Sum of DI/Rfl	D)				0.018				0.001	

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Exposed Individual	Adult
Water absorption rate(mg/cm2/hr)	0.5
Body Weight (kilograms)	70
Surface area (cm2)	18000
Percent submerged	75
Time in water	0.25
Water intake (Vkg-day)	0.0024

(a) Sources of RIDs:

IRIS - Integrated Risk Information System.

U.S. EPA 1968.

HEAST - Health Effects Assessment Summary Tables - Quarterly Summary, U.S. EPA 1989.

(b) Nickel value base on nickel-soluble salts.

Table L-6 COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RfD) DEFIMAL ABSORPTION EXPOSURE

	Reference		MW13S-01	Daily Intake			MW14S-01	Daily Intake		1
	Dose (RfD)		Concentration	(DI)		Intake Exceeds	Concentration	(DI)		Intake Exceeds
Chemical	mg/kg/day	Source (a)	ug/i	mg/kg/day	DI/R/D	Reference Dose?	ug/l	mg/kg/day	DI/RfD	Reference Dose?
Barium	0.06	IRIS	11.3	0.0000	0.001	NO	134	0.0003	0.006	NO
Benzoic acid	4	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
gamma BHC (lindane)	0.0003	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
bis(2-ethylhexyl)phthalate	0.02	IRIS		0.0000	0.000	NO	-	0.0000	0.000	NO
Cadmium	0.0005	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Chromium VI	0.005	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Copper	0.037	SPHEM		0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichloroethane	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
1,1-Dichloroethene	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Ethylbenzene	0.1	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Lead	0.0014	SPHEM		0.0000	0.000	NO		0.0000	0.000	NO
Manganese	. 0.22	SPHEM	19.1	0.0000	0.000	NO	952	0.0023	0.010	NO
2-Methylphenol	0.5	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
4-Methylphenol	0.5	IAIS		0.0000	0.000	NO		0.0000	0.000	NO
Naphthalene	0.4	HEAST	-	0.0000	0.000	NO		0.0000	0.000	NO
Nickel	0.02	(b)		0.0000	0.000	NO		0.0000	0.000	NO
Phenol	0.04	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Toluene	0.3	IAIS	-	0.0000	0.000	NO		0.0000	0.000	NO
1,1,1-Trichloroelhane	0.09	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Vanadium	0,007	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Xyienes	2	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Zinc	0.2	HEAST	5.8	0.0000	0.000	NO	5.8	0.0000	0.000	NO
Hazard Index (Sum of DI/	'RfD)				0.001				0.017	

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Exposed Individual	Adult
Water absorption rate(mg/cm2/hr)	0.5
Body Weight (kilograms)	70
Surface area (cm2)	18000
Percent submerged	75
Time in water	0.25
Water intake (l/kg-day)	0.0024

(a) Sources of RIDs:

IRIS - Integrated Risk Information System. U.S. EPA 1988.

HEAST - Health Effects Assessment Summary Tables - Quarterly Summary, U.S. EPA 1989.

(b) Nickel value base on nickel-soluble salts.

Table L-6 COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RID) DERMAL ABSORPTION EXPOSURE

	Reference	ł	MW20S-01	Daily Intake			MW20D-01	Daily Intake		
	Dose (RID)	ł	Concentration	(DI)		Intake Exceeds	Concentration	(DI)		Intake Exceeds
Chemical	mg/kg/day	Source (a)	1/gu	mg/kg/day	DI/RID	Reference Dose?	ug/l	mg/kg/day	DI/RID	Reference Dose?
Barium	0.05	IRIS	1280	0.0031	0.062	NO	24.8	0.0001	0.001	NO
Benzoic acid	4	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
gamma BHC (lindane)	0.0003	IRIS		0.0000	0.000	NO	-	0.0000	0.000	NO
bie(2-othythexyi)phthalate	0.02	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Cedmium	0.0005	HEAST		0.0000	0.000	NO	-	0.0000	000.0	NO
Chromium Vi	0.005	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Copper	0.037	SPHEM		0.0000	0.000	NO		0.0000	0.000	NO
1.1-Dichloroethane	0.009	IRIS	—	0.0000	0.000	NO		0.0000	0.000	NO
1.1-Dichloroethene	0.009	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Ethylbenzene	0.1	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Lead	0.0014	SPHEM	2	0.0000	0.003	NO		0.0000	0.000	NO
Manganess	0.22	SPHEM	7710	0.0186	0.084	NO	100	0.0002	0.001	NO
2-Methylphenal	0.5	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
4-Methylphenol	0.5	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Nephihalene	0.4	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Nickel	0.02	(b)	5.8	0.0000	0.001	NO		0.0000	0.000	NO
Phenol	0.04	IAIS		0.0000	0.000	NO		0.0000	0.000	NO
Toluene	0.3	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
1,1,1-Trichicrosthane	0.00	IRIS		0.0000	0.000	NO		0.0000	0.000	NO
Vanadium	0.007	HEAST		0.0000	0.000	NO		0.0000	0.000	NO
Xylenee	2	iAIS		0.0000	0.000	NO		0.0000	0.000	NO
Zinc	0.2	HEAST	491	0.0012	0.008	NO	_	0.0000	0.000	NO
Hazard Index (Sum of DI/Rfl))				0.156				0.002	

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Exposed Individual	Adult
Water absorption rate(mg/cm2/hr)	0.5
Body Weight (kilograms)	70
Surface area (cm2)	18000
Percent submerged	75
Time in water	0.25
Water Intake (Vkg-day)	0.0024

(a) Sources of RfDs:

IRIS - Integrated Risk Information System, U.S. EPA 1988. HEAST - Health Effects Assessment Summary Tables - Quarterly Summary, U.S. EPA 1989.

(b) Nickel value base on nickel-soluble salts

Table L-6 COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RID) DERMAL ABSORPTION EXPOSURE

Chemical	Reference Dose (RID) mg/kg/day	Source (a)	MW21S-01 Concentration ug/l	Daily Intake (DI) mg/kg/day	DI/R fD	Intake Exceeds Reference Dose?
		IRIS	201	0.0005	0.010	NO
Barium Benzoic acid	0.05	IRIS		0.0000	0.000	NO
	• • • • •					
gamma BHC (lindane)	0.0003	IRIS		0.0000	0.000	NO
bic(2-othylhexyl)phthalate	0.02	IRIS		0.0000	0.000	NO
Cadmium	0.0005	HEAST		0.0000	0.000	NO
Chromium VI	0.005	IRIS		0.0000	0.000	NO
Copper	0.037	SPHEM		0.0000	0.000	NO
1,1-Dichloroethane	0.009	IRIS	490	0.0012	0.131	NO
1,1-Dichioroethene	0.009	IRIS		0.0000	0.000	NO
Ethylbenzene	0.1	IRIS	-	0.0000	0.000	NO
Lead	0.0014	SPHEM	~-	0.0000	0.000	NO
Manganese	0.22	SPHEM	3220	0.0078	0.035	NO
2-Methylphenol	0.5	IRIS		0.0000	0.000	NO
4-Methylphenol	0.5	IRIS		0.0000	0.000	NO
Naphthalene	0.4	HEAST		0.0000	0.000	NO
Nickel	0.02	(b)	13.4	0.0000	0.002	NO
Phenol	0.04	IRIS		0.0000	0.000	NO
Toluene	0.3	IRIS		0.0000	0.000	NO
1,1,1-Trichloroethane	0.09	IRIS		0.0000	0.000	NO
Vanadium	0.007	HEAST		0.0000	0.000	NO
Xylenes	2	IRIS		0.0000	0.000	NO
•						
Zinc	0.2	HEAST		0.0000	0.000	NO

Hazard Index (Sum of DI/RfD)

0.178

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential			
Exposed Individual	Adult			
Water absorption rate(mg/cm2/hr)	0.5			
Body Weight (kilograms)	70			
Surface area (cm2)	18000			
Percent submerged	75			
Time in water	0.25			
Water intake (l/kg-day)	0.0024			

(a) Sources of RIDs:

IRIS – Integrated Risk Information System. U S. EPA 1988. HEAST – Health Effects Assessment Summary

Tables - Quarterly Summary U.S. EPA 1989

(b) Nickel value base on nickel-soluble saits

٠

Table L-7 EXCESS LIFETIME CANCER RISK WATER INGESTION – MEAN MONITORING WELL CONCENTRATIONS ONALASKA SITE

Chemical	U.S. EPA Carcinogen Classification	Carcinogenic Potency Factor (kg-day/mg)	Source (a)	Average (b) Concentration (ug/l)	Lifetime Average Chemical Intake (mg/kg/day)	Excess Lifetime Cancer Risk
Arsenic	A	1.75	HEAST	13.05	3.729E-04	7E-04
Benzene	Α	0.0 29	IRIS	3.96	1.131E-04	3E-06
1,1-Dichloroethane	С	0.091	HEAST	10 8.83	3.109E-03	3E-04
SUM OF RISKS					· <u> </u>	9E-04
SUM of RISKS W/O A	us (d)				<u></u>	3E-04

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Daily Water Intake (liters/day)	2
Body Weight (kilograms)	70
Number of days/week exposed	7
Number of weeks/year exposed	52
Number of years exposed	70
Lifetime Average Water Intake (liters/kg body wt./day)	0.0 29

(a) Sources of Cancer Potericy Factors:

IRIS - Integrated Risk Information System. U.S. EPA 1988. HEAST - Health Effects Assessment Summary Tables - Quarterly Summary. U.S. EPA 1989

(b) Average = Arithmetic Mean Value for groundwater monitoring well data for compounds detected in greater than 10% of 12 source/downgradient monitoring wells.

(c) Highest detected concentration in 12 source/downgradient monitoring wells.

(d) Arsenic detected above background concentration at one well only (MW03M), hence this value is most representative of excess lifetime cancer risk.

Table L-8 COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RfD) WATER INGESTION EXPOSURE ONALASKA SITE

Chemical	Reference Dose (RfD) (mg/kg/day)	Source	Average (b) Concentration (a) (ug/l)	Daily Intake (Di) (mg/kg/day)	Di/RfD	Intake Exceeds eference Dose?
Barium	0.05	IRIS	699.93	0.0200	0.400	NO
Benzoic acid	4	IRIS	28.67	0.0008	0.000	NO
Copper	0.037	d	11.26	0.0003	0.009	NO
1,1-Dichloroethane	0.009	IRIS	108.83	0.0031	0.345	NO
Ethylbenzene	0.1	IRIS	36.38	0.0010	0.010	NO
Lead	0.0014	HEAST	3.41	0.0001	0.070	NO
Manganese	0.22	HEAST	3141	0.0897	0.408	NO
2-Methylphenol	0.5	IRIS	13.67	0.0004	0.001	NO
4-Methylphenol	0.5	IRIS	18.67	0.0005	0.001	NO
Naphthalene	0.4	HEAST	14.25	0.0004	0.001	NO
Nickel	0.02	с	12.56	0.0004	0.018	NO
Toluene	0.3	IRIS	1429.38	0.0408	0.136	NO
Vanadium	0.007	HEAST	21.79	0.0006	0.089	NO
Xylenes	2	IRIS	310.42	0.0089	0.004	NO
Zinc	0.2	HEAST	104.15	0.0030	0.015	NO
Hazard Index (Sum of I	DI/RfD)				1.507	<u></u>

EXPOSURE ASSUMPTIONS

Exposure Setting	Residential
Exposed Individual	Adult
Water Intake (liters/day)	2
Body Weight (kilograms)	70

(a) Sources of Cancer Potency Factors:

IRIS - Integrated Risk Information System. U.S. EPA 1988. HEAST - Health Effects Assessment Summary Tables - Quarterly Summary. U.S. EPA 1989

(b) Average = Arithmetic Mean Value for groundwater monitoring well data for compounds detected in greater than 10% of 12 source/downgradient monitoring wells.

(c) Nickel value based on nicklessoluble salts

(d) Copper RfD based on proposed MCLG. See HEAST.

Table L-9 **EXCESS LIFETIME CANCER RISK** DERMAL ABSORPTION OF CONTAMINANTS IN GROUNDWATER **ONALASKA SITE**

Chemical	U.S. EPA Carcinogen Classification	Cancer Potency Factor (kg–day/mg)	Source (a)	Average Concentration ug/I	Lifetime Average Chemical Intake mg/kg-day	Excess Lifetime Cancer Risk
Arsenic	Α	2	(C)	13.05	3.146E-07	6E-07
Benzene	Α	0.029	IRIS	3.96	9.546E-08	3E-09
1,1-Dichloroethane	B2	0.091	HEAST	108.83	2.624E-06	2E-07
SUM OF RISKS						9E-07

EXPOSURE ASSUMPTIONS

Exposure Setting	
Exposed Individual	
Water absorption rate (mg/cm2/hr)	0.5
Body weight (kg)	70
Surface area (cm2)	18000
Percent submerged	0.75
Time In water (hrs/day)	0.25
Number of days per week	7
Number of weeks per year	52
Number of years exposed	75
Years in lifetime	75
Lifetime average media intake	0.0000241
(Vkg body wt./day)	

(a) Cancer potency values based on ingestion. Sources of cancer potency factors: IRIS - Integrated Risk Information System. U.S. EPA 1988. HEAST - Health Effects Assessment Summary Tables. U.S. EPA 1989

(b) Average - Arithmetic mean for groundwater MW da MW data for compounds detected in > 10% of MWs f 13 source/downgradient MWs

ſ

(c) Based on Risk Assessment Council unit risk of 5x10-5(ug/l)-1. U.S. EPA 1988.

Table L-10 COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RfD) DERMAL ABSORPTION OF CONTAMINANTS IN GROUNDWATER **ONALASKA SITE**

Chemical	Reference Dose (RfD) mg/kg-day	Source (Average Concentration a ug/l	Daily Intake (DI) mg/kg-day	Hazard Quotient DI/RfD	Does Intake Exceed RfD?
Barium	0.05	IRIS	699.93	0.0017	0.034	NO
Benzoic acid	4	IRIS	28.67	0.0001	0.000	NO
Copper	0.037	d	11.26	0.0000	0.001	NO
1,1-Dichloroethane	0.009	IRIS	108.83	0.0003	0.029	NO
Ethylbenzene	0.1	IRIS	36.38	0.0001	0.001	NO
Lead	0.0014	HEAST	3.41	0.0000	0.006	NO
Manganese	0.2	HEAST	3141	0.0076	0.038	NO
2-Methylphenol	0.5	IRIS	13.67	0.0000	0.000	NO
4-Methylphenol	0.5	IRIS	1 8.67	0.0000	0.000	NO
Naphthalene	0.4	HEAST	14.25	0.0000	0.000	NO
Nickel	0.02	c	12.56	0.0000	0.002	NO
Toluene	0.3	IRIS	1429.38	0.0034	0.011	NO
Vanadium	0.007	HEAST	21.79	0.0001	0.008	NO
Xylenes	2	IRIS	310.42	0.0007	0.000	NO
Zinc	0.2	HEAST	104.15	0.0003	0.001	NO
Hazard Index (Sum of	DI/RfD) =	·			0.131	

Hazard Index (Sum of DI/RfD) =

EXPOSURE ASSUMPTIONS

Exposure Setting Exposed Individual	Reside ntial Adult
Water absorption rate (mg/cm2/hr)	0.5
Body weight (kg)	70
Surface area (cm2)	18000
Percent submerged	75
Time in water (hrs/day)	0.25
Water Intake (I/kg-day)	0.002411

(a) Based on ingestion RfDs. Sources of RfDs: IRIS - Integrated Risk Information System. U.S. EPA 1988. HEAST - Health Effects Assessment Summary Tables. U.S. EPA 1989

(b) Average = Arithmetic mean for groundwater MW data for compounds detected in >10% of 12 source/downgradient MW.

(c) Nickel value base on nickel-soluble salts.

(d) Copper RID based on proposed MCLG. See HEAST.

Table L-11 EXCESS LIFETIME CANCER RISK TRESPASS SOIL INGESTION EXPOSURE ONALASKA SITE

Chemical	U.S. EPA Carcinogen Classification	Cancer Potency Factor (kg-day/mg)	Source (a)	Average Concentration ug/kg	Lifetime Average Chemical Intake mg/kg-day	Excess Lifetime Cancer Risk
Arsenic	A	2	c	4380	6.385E-08	1E-07
bis(2-Ethylhexyl)phthalate	B2	0.014	IRIS	462	6.735E-09	9E-11
DDD	B2	0.24	IRIS	71.5	1.042E-09	3E-10
DDE	82	0.34	IRIS	52.87	7.707E-10	3E-10
DDT	82	0.34	IRIS	23.25	3.389E-10	1E-10
Trichloroethene	82	0.011	IRIS	2.68	3.907E-11	4E-13
SUM OF RISKS						1E-07
SUM OF RISKS W/O As						7E-10

EXPOSURE ASSUMPTIONS

Exposure setting	Trespass
Soil ingestion rate (g/day)	0.1
Body weight (kg)	70
Number of days/week exposed	2
Number of weeks/year exposed	26
Number of years exposed	5
Years in lifetime	70
Lifetime average soil intake	0.000015
(g/kg body weight per day)	

(a) Sources of Cancer Potency Factors:

IRIS - Integrated Risk Information System. U.S. EPA 1988.

(b) Based on Risk Assessment Council unit risk of 5x10-5(ug/l)-1. U.S. EPA 1988.

~~

Table L-12 COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RfD) TRESPASS SOIL INGESTION EXPOSURE ONALASKA SITE

Chemical	Reference Dose (RfD) mg/kg-day	Source (a)	Average Concentration ug/kg	Daily Intake (DI) mg/kg-day	Hazard Quotient DI/RfD	Does Intake Exceed RfD?
Acetone	0.1	IRIS	39.87	0.0000	0.000	NO
Barium	0.05	IRIS	93010	0.0003	0.005	NO
bis(2-Ethylhexyl)phthalate	0.02	IRIS	462	0.0000	0.000	NO
Cadmium	0.0005	HEAST	2620	0.0000	0.015	NO
Chromium VI	0.005	IRIS	10360	0.0000	0.006	NO
Copper	0.037	d	37660	0.0001	0.003	NO
DDT	0.0005	IRIS	23.25	0.0000	0.000	NO
Ethylbenzene	0.1	IRIS	206.68	0.0000	0.000	NO
Isophorone	0.15	IRIS	64	0.0000	0.000	NO
Lead	0.0014	HEAST	68000	0.0002	0.139	NO
Manganese	0.2	HEAST	323000	0.0009	0.005	NO
Naphthalene	0.4	HEAST	609.37	0.0000	0.000	NO
Nickel	0.02	с	14170	0.0000	0.002	NO
Pyrene	0.003	HEAST	43	0.0000	0.000	NO
Toluene	0.3	IRIS	299.25	0.0000	0.000	NO
Vanadium	0.007	HEAST	15450	0.0000	0.006	NO
Xylenes	2	IRIS	3140.3	0.0000	0.000	NO
Zinc	0.2	HEAST	158000	0.0005	0.002	NO
Hazard Index (Sum of DI/RfD)					0.1834	

EXPOSURE ASSUMPTIONS

Exposure setting	Trespass
Exposed individual	Child(10 yrs)
Soil intake (grams/day)	0.1
Body weight (kilograms)	35

(a) Sources of RIDs:

IRIS - Integrated Risk Information System. U.S. EPA 1988. HEAST - Health Effects Assessment Summary Tables. U.S. EPA 1989

(b) Cyanide value based on free cyanide.

(c) Nickel value base on nickel-soluble salts.

(d) Copper RfD based on proposed MCLG. See HEAST.

Table L-13 EXCESS LIFETIME CANCER RISK RESIDENTIAL SOIL INGESTION EXPOSURE ONALASKA SITE

Chemical	U.S. EPA Carcinogen Classification	Cancer Potency Factor (kg-day/mg)	Source (a)	Average (b) Concentration ug/kg	Lifetime Average Chemical Intake (mg/kg-day)	Excess Lifetime Cancer Risk
Arsenic	A	2	с	4380	6.257E-06	1E-05
bis(2-Ethylhexyl)phthalate	B2	0.014	IRIS	462	6.600E-07	9E-09
DDD	82	0.24	IRIS	71.5	1.021E-07	2E-08
DDE	82	0.34	IRIS	52.87	7.553E-08	3E-08
DOT	82	0.34	IRIS	23.25	3.321E-08	1E-08
Trichloroethene	B2	0.011	IRIS	2.68	3.829 E-09	4E-11
SUM OF RISKS						1 E-05
SUM OF RISKS W/O A	3					7E-08

EXPOSURE ASSUMPTIONS

Exposure setting	Residential
Soil ingestion rate (g/day)	0.1
Body weight (kg)	70
Number of days/week exposed	7
Number of weeks/year exposed	52
Number of years exposed	75
Years in lifetime	75
Lifetime average soil intake	0.0014
(g/kg body weight per day)	

(a) Sources of Cancer Potency Factors:

IRIS - Integrated Risk Information System. U.S. EPA 1988.

(b) Carcinogenic PAHs based on benzo[a]pyrene. Benzo[a]pyrene potency from Amblent Water Quality Criteria Document. U.S. EPA 1980.

(c) Based on Risk Assessment Council unit risk of 5x10-5(ug/l)-1. U.S. EPA 1988.

Table L-14 COMPARISON OF ESTIMATED DAILY INTAKE TO REFERENCE DOSE (RfD) RESIDENTIAL SOIL INGESTION EXPOSURE ONALASKA SITE

Chemical	Reference Dose (RfD) mg/kg-day	Source (a)	Average Concentration ug/kg	Daily Intake (DI) mg/kg-day	Hazard Quotient DI/RfD	Does Intake Exceed RfD?
Acetone	0.1	IRIS	39.87	0.0000	0.000	NO
Barium	0.05	IRIS	93010	0.0012	0.025	NO
bis(2-Ethylhexyl)phthalate	0.02	IRIS	462	0.0000	0.000	NO
Cadmium	0.0005	HEAST	2620	0.0000	0.070	NO
Chromium VI	0.005	IRIS	10360	0.0001	0.028	NO
Copper	0.037	d	37660	0.0005	0.014	NO
DOT	0.0005	IRIS	23.25	0.0000	0.001	NO
Ethylbenzene	0.1	IRIS	206.68	0.0000	0.000	NO
Isophorone	0.15	IRIS	64	0.0000	0.000	NO
Lead	0.0014	HEAST	68000	0.0009	0.648	NO
Manganese	0.2	HEAST	323000	0.0043	0.022	NO
Naphthalene	0.4	HEAST	609.37	0.0000	0.000	NO
Nickel	0.02	с	14170	0.0002	0.009	NO
Pyrene	0.003	HEAST	43	0.0000	0.000	NO
Toluene	0.3	IRIS	299.25	0.0000	0.000	NO
Vanadium	0.007	HEAST	15450	0.0002	0.029	NO
Xylenes	2	IRIS	3140.3	0.0000	0.000	NO
Zinc	0.2	HEAST	158000	0.0021	0.011	NO
Hazard Index (Sum of D	I/RfD)	<u>,</u> .			0.8556	

Hazard Index (Sum of DI/RfD)

EXPOSURE ASSUMPTIONS

Exposure setting	Trespass
Exposed individual	Child(toddler)
Soil intake (grams/day)	0.2
Body weight (kilograms)	15

(a) Sources of RfDs:

IRIS - Integrated Risk Information System. U.S. EPA 1988. HEAST - Health Effects Assessment Summary Tables. U.S. EPA 1989

(b) Cyanide value based on free cyanide.

(c) Nickel value base on nickel-soluble salts.

(d) Copper RfD based on proposed MCLG. See HEAST.