Barr Engineering Company 4700 West 77th Street • Minneapolis MN 55435-4803 Phone 952-832-2600 • Fax 952-832-2601 • www.barr.com

00000000

Minneapolis, MN · Hibbing MN · Duluth MN · Ann Arbor MI · Jefferson City MO

EPA Region 5 Records Ctr.

September 2, 2003

Sonia Vega
On-Scene Coordinator
U.S. Environmental Protection Agency, Region 5
Emergency Response Branch
520 Lafayette Road North
St. Paul, MN 55155-4194

Re: Preliminary Analytical Data – UNVALIDATED
Laboratory Batch Number – E2300499
Docket No. V-W-'03-748
St. Regis Paper Company Site – Cass Lake, Minnesota

Dear Ms. Vega:

In accordance with your request and in an effort to provide analytical data as as received, enclosed are the most recently received data sheets from Columbia Analytical Services for samples collected in August 2003 in compliance with the UAO issued to International Paper for the St. Regis Paper Company Superfund Site in Cass Lake, MN. It is important to note that these data sheets contain unvalidated data that has not been subjected to quality assurance review and, as such, is not suitable for use in support of any decision making process. Validated data will be provided at a later date in accordance with the schedule outlined in the Order.

If you have any questions concerning this information, please contact me at (952)832-2876 or Tom Ross of International Paper at (901)419-3899.

Sincerely

Thomas D. Mattison Project Coordinator

cc: Tim Drexler, U.S. EPA – RPM (w/ attachment) \checkmark

Tom Ross, IP (w/ attachment)

Form 1

CLIENT ID.

PCDD/PCDF ANALYSIS DATA SHEET Use for Sample and Blank Results

H25-26 0-4

Lab Name: Columbia Analytical Services Episode No.:

Lab Code: CAS SDG No.: Method: 8290 Lab Sample ID: E2300499-001A

Client Name: BARR ENGINEERING Sample Wt/Vol: 13.255 g or mL:

Matrix (Aqueous/Solid/Ash): Solid Initial Calibration Date: 08/05/03

Sample Receipt Date: 08/08/03 Instrument ID: 705

Ext. Date: 08/13/03 GC Column: DB-5

Ext. Vol(ul):20.0 Inj. Vol(ul):1.0 Sample Data Filename: B15550#9

Analysis Date: 18-AUG-03 Time: 17:39:40 Blank Data Filename B15550#2

Dilution Factor: 1 Cal. Ver. Data Filename: B15549#1

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Moisture/Lipid: 10.13

	CONCENTRATION	DETECTION	Qual.	ION ABUND.	RRT	MEAN
ANALYTE	FOUND	LIMIT	TIDA	RATIO (2)	(2)	RRF
	•	4.0		7		
2,3,7,8-TCDD	0.554	0.130	J.	0.85	1.000	0.97
1,2,3,7,8-PeCDD	7.988	0.133		1.58	1.000	0.93
1,2,3,4,7,8-HxCDD	24.097	0.155	4. A.	1.16	0.998	1.00
1,2,3,6,7,8-HxCDD	107.760	0:133		1.24	1.000	1.16
1,2,3,7,8,9-HxCDD	49.055	05,148, 4	7	1.21	1.009	1.04
1,2,3,4,6,7,8-HpC	DD 3557. 550	5.598	E	1.05	1.079	093
OCDD	35056. 413	0.518	E	0.87	1.172	1.00
2,3,7,8-TCDF	1.65	A 0: 114	С	0.75	1.000	0.91
1,2,3,7,8-PeCDF	<u> 8.21</u>	1.039		1.62	1.001	0.89
2,3,4,7,8-PeCDF	.9.694	1.065		1.60	1.025	0.87
1,2,3,4,7,8-HxCDF	143 957	5.641		1.26	1.000	1.14
1,2,3,6,7,8-HxCDF	32,185	5.244		1.31	1.004	1.22
1,2,3,7,8,9-HxCDF	31/371	7.590		1.26	1.041	0.85
2,3,4,6,7,8-HxCDE		6.416		1.28	1.017	1.00
1,2,3,4,6,7,8-HpC	F 849.206	3.605	E	1.04	1.000	1.40
1,2,3,4,7,8,9-HpCI	79.605	5.396		1.04	1.039	0.93
OCDF	3335.163	0.617	E	0.89	1.004	1.14
Total Tella-Dioxi	is 1.735	0.130				
Total Penta Dioxi		. 0.133				
Total Hexa-Dioxins	548.324	0.133				
Total Hepta-Dioxin	ıs 6976.685	5.598				
Total Tebra-Furans	9.510	0.114				
Total Penergyrans	229.318	1.065				
Total Hexa-Furans	1909.050	5.244				
Total Hepta-Furans	3557.684	3.605				
(1) Qualifiers: See	flag definiti	ons.				

⁽²⁾ RRTs and ion ratios are specified in Tables 11 and 8, Method 8290. 8290F1

Form 3

	OXICITY EQUIVALENCE (T) Blank Results with Values < D		
Lab Name: Columbia Analytical Service	S		Chient ID:
Lab Code: CAS Client Name: Barr Engineering	8290 Sample V		E230(299-001A)
Matrix (Solid/Aqueous/Waste/Ash/Tissu	•	Initial Calibration	Date: \$2,52003
Sample Receipt Date: 8/8/2003 Ext. Date: 8/13/2003		Instrument ID: GC Column ID:	70S db5
Analysis Date: 8/18/2003	Vol (uL 1.0	Sample Filename:	B15350#9
Analysis Time: 17:39:40	a la la	Blank Data Filenar	
Dilution Factor: Concentration Units (pg/L or ng/Kg dry w		on Verification Filenar Solids/Lipids, %:	me: B15549#1
Concentation omis (pg E of ng Kg try v	reight). ing kg	30 husi Lipius, 70.	
Detection		TE	F-ADJUSTED
	DL/2 CONCENTRATION		CENTRATION
2,3,7,8-TCDD		1.0	0.55
1,2,3,7,8-PeCDD	7.99	1.0	7.988
1,2,3,4,7,8-HxCDD	24.10	0.1	2. 41
1,2,3,6,7,8-HxCDD	10.76	0.1	10.78
1,2,3,7,8,9-HxCDD	2,06	0.1	4 91
1,2,3,4,6,7,8-HpCDD	3557.55	0.01	35 .58
OCDD	35056.41	0.0001	3 51
2,3,7,8-TCDF	136	0.1	0.14
1,2,3,7,8-PeCDF	8.21	0.05	0. 41
2,3,4,7,8-PeCDF	9.69	0.5	.4. 85
1,2,3,4,7,8-HxCDF	143.96	0.1	14.40
1,2,3,6,7,8-HxCDF	32.19	0.1	3.22
1,2,3,7,8,9-HxCDF	31.77	0.1	3.18
2,3,4,6,7,8-HxCDF	2 56.26	0.1	5.63
1,2,3,4,6,7,8-HpCDF	849 .21	0.01	3 249
1,2,3,4,7,8,9-HpCDP	79 .61	0.01	0 .80
OCDF	3335.16	0.0001	033
		Total TEQ:	107.15

(1) World Health Organization (WHO) adopted Toxicity Equivalence Factors (TEFs) taken from: Van der Berg, et.al; Toxicity Equivalence Factors (TEFs) for PCBs, PCDDs/PCDFs for Humans and Wildlife, Environmental Health Perspective 106:775-792 (1998.)

Note: Non-delected values are reported as one-half the detection limit (DL/2.)

The 2,3,7,8-TCDF value is reported from the confirmed, db-225, column.

Form 1

CLIENT ID

PCDD/PCDF ANALYSIS DATA SHEET
Use for Sample and Blank Results F27-29 0-4

Lab Name: Columbia Analytical Services Episode No.

Lab Code: CAS SDG No.. Method. 8290 Lab Sample ID: E2300499-0027

Client Name: BARR ENGINEERING Sample Wt/Vol: 11.119 g or mL: g

Matrix (Aqueous/Solid/Ash): Solid Initial Calibration Date: 08705/03

Sample Receipt Date: 08/08/03 Instrument ID: 705

Ext. Date: 08/13/03 GC Column:DB-5

Ext. Vol(ul):20.0 Inj. Vol(ul):1.0 Sample Data Filename: B1=552#3

Analysis Date: 18-AUG-03 Time: 23:36:23 Blank Data Filename: B15552#2

Dilution Factor: 1 Cal. Ver. Data Filename: B15550#12

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Moisture/Lipid: 4.27

	CONCENTRATION	DETECTION	Qual.	ION ABUND.	RRT	MEAN
ANALYTE	FOUND	LIMIT	(1)	RATIO (2)	(2)	RRF
2,3,7,8-TCDD	2.751	0.263		0.72	1.001	1.00
1,2,3,7,8-PeCDD	68.132	0 506		1.65	1.001	0.97
1,2,3,4,7,8-HxCDD	259.848	³ <u>€</u> 0.472		1.23	0.998	1.04
1,2,3,6,7,8-HxCDD	2127.183	⁻' `0 ⁺ <u>-4</u> 25	E	1.24	1.000	1.15
1,2,3,7,8,9-HxCDD	635.314	0+432	E	1.24	1.008	1.13
1,2,3,4,6,7,8-HpC	DD 40753.677	34.58 6	E	1.00	1.079	1.00
OCDD	190847.234	3.4.883	E	0.93	1.172	1.04
2,3,7,8-TCDF	32.4 39 .	25 2	C	0.78	1.001	0.92
1,2,3,7,8-PeCDF	<u>4</u> 10.641	7.007		1.62	1.000	0.94
2,3,4,7,8-PeCDF	V113 .354	6.841		1.57	1.025	0.96
1,2,3,4,7,8-HxCDF	9 95 , 229 🚡	🖫 17.991	E	1.30	1.000	1.33
1,2,3,6,7,8-HxCDF	232 647	· 17.614		1.27	1.003	1.36
1,2,3,7,8,9-HxCDF	4.0 684	24.881		1.37	1.039	0.96
2,3,4,6,7,8-HxCD	366,171	20.052		1.27	1.017	1.20
1,2,3,4,6,7,8-Нр	9833.653	20.803	E	1.05	1.000	1.45
1,2,3,4,7,8,9-HpC	DF 864.082	29.243	E	1.05	1.038	1.03
OCDF	599 40.553	2 172	E	0.88	1.004	1.35
Total Tetra-Dioxi		0.263				
Total Penta Dioxi		0.506				
Total Hexa-Drowins		0.425				
Total Hepta-Dioxii		34.586				
Total Tebra-Furans		0.252				
Total Penta Furans		6.841				
Total Hexa-Furans	7250.670	17.614				
Total Hepta-Furans		20.803				
(1) Qualifiers: See	e flag definitı	ons.				

⁽²⁾ RRTs and ion ratios are specified in Tables 11 and 8, Method 8290. 8290F1

Form 3

	PCDD/PCDF TO					
	Use for Sample and	Blank Results	with Values < De	etection Limit (DL)	Client ID:
Lab Name: Colum	bia Analytical Service	es				F2-2004
Lab Code: CAS		8290	L	ab Sample ID:	≟ E 23	00 49 9-002 A
Client Name:	Barr Engineering	n Marin (All Traver (All Berry (Li Phone your Till	Sample W	t/Vol:	111111111111111111111111111111111111111	
Matrix (Solid/Aqu	eous/Waste/Ash/Tissu	ıe): Solid		Initial Calib	ation Date:	8/5/2003
Sample Receipt Da	te: 8/8/2003			Instrum ent I	D: ₹	70S
Ext. Date:	8/13/2003			GC Columb	ID ₂	db5
Ext. Vol (uI 20.0	Inj.	Vol (uL 1.0				
Analysis Date:	8/18/2003			Sample Filer	name:	B15552#3
Analysis Time:	23:26:23		Ç.	Blank Data I	Filename:	B15552#2
Dilution Factor:			Calibration	n Venification I	ilename:	B15550#12
Concentration Units	s (pg/L or ng/Kg dry v	veight): ng/Kg		Solids/Lipids	s, %:	427
	Detection				TEF-AD	JUSTED
PARAMETER	Limit (DL)	DL/2 CO	CENTRATION	TEF (1)	CONCEN	TRATION
2,3,7,8-TCDD				1.0	2	75
1,2,3,7,8-PeCDD			68.13	1.0	68.	132
1,2,3,4,7,8-HxCDD			259.85	0.1	25	.98
1,2,3,6,7,8-HxCDD		The state of	212718	0.1	217	2.72
1,2,3,7,8,9-HxCDD			655.31	0.1	63	.53
1,2,3,4,6,7,8-HpCD	D 🔏		40753.68	0.01	405	7.54
OCDD			190847.23	0.0001	19	.08
2,3,7,8-TCDF			26.00	0.1	2.	60
1,2,3,7,8-PeCDF			110.64	0.05	5. S	53
2,3,4,7,8-PeCDF		**	T113.35	0.5	#: \#56	
1,2,3,4,7,8-HxCDF			995.23	0.1 ខ្ញុំ	99	.52
1,2,3,6,7,8-HxCDF			232 .65	0.1	≟j. 23	.26
1,2,3,7,8,9-HxCDF			40.68	0.1	133 34 4	07
2,3,4,6,7,8-HxCDF		a di	366.17	0.1	::-:36	
1,2,3,4,6,7,8-HpCD	F		983 3.65	0.01	298	.34
1,2,3,4,7,8,9-HpCD			864.08	0.01	8.	64
OCDF	THE PARTY OF THE P		599 40.55	0.0001	: :: 5.	99
				Total TEQ:	114	0.99

(1) World Health Organization (WHO) adopted Toxicity Equivalence Factors (TEFs) taken from: Van der Berg, et.al; Toxicity Equivalence Factors (TEFs) for PCBs, PCDDs/PCDFs for Humans and Wildlife, Environmental Health Perspective 106:775-792 (1998.)

Note: Non-detected values are reported as one-half the detection limit (DL/2.)

The 2,3,7,8-TCDF value is reported from the confirmed, db-225, column.

CLIENT ID

Form 1

PCDD/PCDF ANALYSIS DATA SHEET

Use for Sample and Blank Results F27-29 4-12

Lab Name: Columbia Analytical Services Episode No.:

Lab Code: CAS SDG No.: Method: 8290 Lab Sample ID: E2300499-0031

Client Name: BARR ENGINEERING Sample Wt/Vol: 10.669 q or mL:

Matrix (Aqueous/Solid/Ash): Solid Initial Calibration Date: 08/05/03

Sample Receipt Date: 08/08/03 Instrument ID: 705

Ext. Date · 08/13/03 GC Column:DB-54

Ext. Vol(ul).20.0 Inj. Vol(ul):1.0 Sample Data Filename: B25552#7

Analysis Date: 19-AUG-03 Time: 03:00:08 Blank Data Filename: B15552#2

Dilution Factor: 1 Cal. Ver. Data Filename: B15550#12

Concentration Units (pg/L or ng/Kg dry weight) ng/Kg % Moisture/Lipid: 14.20

•	CONCENTRATION	DETECTION	Qual.	ION ABUND.	RRT	MEAN
ANALYTE	FOUND	LIMIT	THE STATE OF THE S	RATIO (2)	(2)	RRF
2,3,7,8-TCDD	1.621	0.263		0.70	1.001	1.00
1,2,3,7,8-PeCDD	31.990	0.728		1.57	1.001	0.97
1,2,3,4,7,8-HxCDD	123.327	0.962		1.21	0.998	1.04
1,2,3,6,7,8-HxCDD	752.528	0.867	Æ	1.26	1.000	1.15
1,2,3,7,8,9-HxCDD	242.369	0.881		1.26	1.009	1.13
1,2,3,4,6,7,8-HpCD	25142.433	21.015	E	1.02	1.079	1.00
OCDD	157051 836	3.082	E	0.93	1.172	1.04
2,3,7,8-TCDF	7.652	4.02300	C	0.80	1.001	0.92
1,2,3,7,8-PeCDF	4 63.59 7	6.061		1.57	1.000	0.94
2,3,4,7,8-PeCDF	64.835	5.917		1.73	1.025	0.96
1,2,3,4,7,8-HxCDF	459, 990 🤻	24.951		1.29	1.000	1.33
1,2,3,6,7,8-HxCDF	128 298	24.430		1.30	1 003	1.36
1,2,3,7,8,9-HxCDF	* * * *	34.507	U	*	*	0.96
2,3,4,6,7,8-HxCDR	229,307	27.810		1.28	1.016	1.20
1,2,3,4,6,7,8-нред	6308.981	19.986	E	1.06	1.000	1.45
1,2,3,4,7,8,9-HpCD	447.453	28.095		1.15	1.038	1.03
OCDF	363,77.517	5.866	E	0.89	1.004	1.35
Total Terra-Dioxing	4.306	0.263				
Total Penta Dioxin	111.481	0.728				
Total Hexa-Broxins	2746.821	0.867				
Total Hepta-Dickins		21.015				
Total Tetra-Finans	51.629	0.300				
Total Penta Forans	1685.717	5.917				
Total Hexa-Furans	4151.581	24.430				
Total Hepta-Furans	30589.640	19.986				
(1) Qualifiers: See	flag definiti	ons.				

⁽²⁾ RRTs and ion ratios are specified in Tables 11 and 8, Method 8290. 8290F1

Form 3

PCDD/PCDF TOXICITY EQUIVALENCE (TEQ) SUMMARY Use for Sample and Blank Results with Values < Detection Limit (DL)

Lab Name Columbia Analytical Services

Lab Code CAS	₹* 829	0	Lab Sample ID	E2300399-003A
Client Name	Barr Engineering		Sample Wt/Vol	0.669
Matrix (Solid/Aqu	neous/Waste/Ash/Tissue)	Solid	Initial Calibrati	on Date: \$ 30/2003
Sample Receipt Da	ite 8/8/2003		Instrum ënt D	70S
Ext Date	8/13/2003		GC Column ID	db5
Ext. Vol (uI 20 0	Inj Vol (u	L 1 0		
Analysis Date	8/19/2003		Sample Filenar	ne B15552#7
Analysis Time	3-00:08		Blank Data File	ename B15552#2
				>
Dilution Factor			Calibration Ventication File	name B15550#12

	Detection				TEF-ADJUSTED
PARAMETER	Limit (DL)	DL/2	CONCENTRATION	TEF (1)	CONCENTRATION
2,3,7,8-TCDD			162	1 0	1.62
1,2,3,7,8-PeCDD		2 h	31 99	10	^ 31 99
1,2,3,4,7,8-HxCDD		7	123.33	0 1	12.33
1,2,3,6,7,8-HxCDD		***	702-53	0 1	75.25
1,2,3,7,8,9-HxCDD	. Pro	•	2 2 37	0 1	24.24
1,2,3,4,6,7,8-HpCDD		- The second	- ± 5142 43	0 01	251 42
OCDD	400 400 		157051 84	0 0001	15 71
2,3,7,8-TCDF			5 _{.60}	0 1	0.56
1,2,3,7,8-PeCDF			63 60	0 05	3.18
2,3,4,7,8-PeCDF			64.84	0 5	32.42
1,2,3,4,7,8-HxCDF			459 99	0 1	46.00
1,2,3,6,7,8-HxCDF			128 30	0 1	12.83
1,2,3,7,8,9-HxCDF	34.507.	§ 17 254	- 17.25	0 1	1.73
2,3,4,6,7,8-HxCDF		F.	- (229 31	0 1	22. 93
1,2,3,4,6,7,8-HpCDF			6308 98	0 01	63 09
1,2,3,4,7,8,9-HpCDF			447 45	0 01	4.47
OCDF	402.47		3 <u>63</u> 77 52	0 0001	, `affin 3:64
	.			Total TEQ	: 603.41

(1) World Health Organization (WHO) adopted Toxicity Equivalence Factors (TEFs) taken from Van der Berg, et al. Toxicity Equivalence Factors (TEFs) for PCBs, PCDDs/PCDFs for Humans and Wildlife, Environmental Health Perspective 106 775-792 (1998)

Note Non-detected values are reported as one-half the detection limit (DL/2)

The 2,3,7,8-TCDF value is reported from the confirmed, db-225, column

Form 1

CLIENT ID

PCDD/PCDF ANALYSIS DATA SHEET
Use for Sample and Blank Results J29-3

J29-30 0-4

Lab Name: Columbia Analytical Services Episode No..

Lab Code: CAS SDG No.: Method: 8290 Lab Sample ID: E2300499-004A

Client Name: BARR ENGINEERING Sample Wt/Vol: 17.682 gor mL:

Matrix (Aqueous/Solid/Ash): Solid Initial Calibration Date: 08/05/03

Sample Receipt Date: 08/08/03 Instrument ID: 705

Ext. Date: 08/13/03 GC Column.DB-54

Ext. Vol(ul):20.0 Inj. Vol(ul):1.0 Sample Data Filename: B15552#4

Analysis Date: 19-AUG-03 Time: 00:27:21 Blank Data Filename: B15552#2

Dilution Factor: 1 Cal. Ver. Data Filename: B15550#12

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Moisture/Lipid: 27.75

ANALYTE FOUND LIMIT IT RTIO (2) (2) RRF 2,3,7,8-TCDD		CONCENTRATION	DETECTIO	r Qual.	ION ABUND.	RRT	MEAN
1,2,3,7,8-PeCDD	ANALYTE	FOUND	LIMIT	(1)	RATIO (2)	(2)	RRF
1,2,3,7,8-PeCDD							
1,2,3,4,7,8-HxCDD		1.696		A A			
1,2,3,6,7,8-HxCDD		46.175		100		1.000	0.97
1,2,3,7,8,9-HxCDD 388.579 6 851 1.23 1.008 1.13 1,2,3,4,6,7,8-HpCDD 44776.835 25.109 E 1.02 1.079 1.00 OCDD 203283 378 3.486 E 1.00 1.173 1.04 2,3,7,8-TCDF 16.995 0.412 C 0.81 1.001 0.92 1,2,3,7,8-PCDF 423.408 3.877 1.52 1.001 0.94 2.3,4,7,8-PCDF 140.406 3.785 1.56 1.025 0.96 1,2,3,4,7,8-HxCDF 13 929 28.853 E 1.28 1.000 1.33 1,2,3,6,7,8-HxCDF 26.935 28.249 1.32 1.003 1.36 1,2,3,7,8,9-HxCDF 459.978 32.158 E 1.27 1.017 1.20 1,2,3,4,6,7,8-HxCDF 159.978 32.158 E 1.27 1.017 1.20 1,2,3,4,6,7,8-HxCDF 13422.956 25.148 E 1.06 1.000 1.45 1,2,3,4,7,8,9-HpCDF 1181.881 35.352 E 1.06 1.038 1.03 CCDF 182.718 0.752 Total Pents Dioxins 5044.637 0.838 Total Hexa-Duoxins 5044.637 0.838 Total Hexa-Duoxins 5044.637 0.838 Total Hexa-Furans 116.211 0.412 Total Pents Furans 2490.251 3.785 Total Hexa-Furans 8468.187 28.249 Total Heya-Furans 53717.586 25.148	1,2,3,4,7,8-HxCDD	166.244	∡ \$ 0.929	45	1.21	0.998	1.04
1,2,3,4,6,7,8-HpCDD 44776.835 25.109 E 1.02 1.079 1.00 OCDD 203283 76 3.486 E 1.00 1.173 1.04 2.3,7,8-TCDF 16.995 8.412 C 0.81 1.001 0.92 1.2,3,7,8-PeCDF 123.408 3.877 1.52 1.001 0.94 2.3,4,7,8-PeCDF 120.406 3.785 1.56 1.025 0.96 1.2,3,4,7,8-HxCDF 137 929 28.853 E 1.28 1.000 1.33 1.2,3,6,7,8-HxCDF 261935 28.249 1.32 1.003 1.36 1.2,3,7,8,9-HxCDF 63.88 39.902 1.08 1.039 0.96 2.3,4,6,7,8-HxCDF 459.78 32.158 E 1.27 1.017 1.20 1.2,3,4,6,7,8-HpCDF 13422.956 25.148 E 1.06 1.000 1.45 1.2,3,4,7,8,9-HpCDR 1181.881 35.352 E 1.06 1.038 1.03 CCDF 76529.737 2 641 E 0.88 1.004 1.35 Total Teira-Digins 9.900 0.554 Total Hexa-Digins 5044.637 0.838 Total Hexa-Digins 5044.637 0.838 Total Hepta-Digins 82564.666 25.109 Total Teira-Firans 2490.251 3.785 Total Hexa-Firans 2490.251 3.785 Total Hexa-Firans 8468.187 28.249 Total Hepta-Firans 53717.586 25.148	1,2,3,6,7,8-HxCDD	1593.983	0.838	E	1.23	1.000	1.15
OCDD 203283 178 3 486 E 1.00 1.173 1.04 2.3.7,8-TCDF 16.995 0 172 C 0.81 1.001 0.92 1.2,3,7,8-PeCDF 12.40 3.877 1.52 1.001 0.94 2.3,4,7,8-PeCDF 10.406 3.785 1.56 1.025 0.96 1.2,3,4,7,8-HxCDF 13.929 28.853 E 1.28 1.000 1.33 1.2,3,6,7,8-HxCDF 268 935 28.249 1.32 1.003 1.36 1.2,3,7,8,9-HxCDF 63 88 39.902 1.08 1.039 0.96 2.3,4,6,7,8-HxCDF 459 38 32.158 E 1.27 1.017 1.20 1.2,3,4,6,7,8-HyCDF 13422.956 25.148 E 1.06 1.000 1.45 1.2,3,4,7,8,9-HyCDF 1181.881 35.352 E 1.06 1.038 1.03 CCDF 10.529.737 2 641 E 0.88 1.004 1.35 Total Tetra-Diotas 9.900 0.554 Total Penta Dioxins 182.718 0.752 Total Hexa-Diotains 5044.637 0.838 Total Hepta-Diotains 82564.666 25.109 Total Penta Dioxins 182.718 0.752 Total Hexa-Furans 116.211 0.412 Total Penta Dioxins 82564.666 25.109 Total Hexa-Furans 8468.187 28.249 Total Hepta-Furans 8468.187 28.249 Total Hepta-Furans 53717.586 25.148	1,2,3,7,8,9-HxCDD	388.579	0.851		1.23	1.008	1.13
2,3,7,8-TCDF 16.995 0 4T2 C 0.81 1.001 0.92 1,2,3,7,8-PeCDF 123.409 3.877 1.52 1.001 0.94 2,3,4,7,8-PeCDF 140.406 3.785 1.56 1.025 0.96 1,2,3,4,7,8-HxCDF 13.929 28.853 E 1.28 1.000 1.33 1,2,3,6,7,8-HxCDF 269.935 28.249 1.32 1.003 1.36 1,2,3,7,8,9-HxCDF 63.88 39.902 1.08 1.039 0.96 2,3,4,6,7,8-HxCDF 13422.956 25.148 E 1.27 1.017 1.20 1,2,3,4,6,7,8-HpCDF 13422.956 25.148 E 1.06 1.000 1.45 1,2,3,4,7,8,9-HpCDF 1181.881 35.352 E 1.06 1.038 1.03 CCDF 70529.737 2 641 E 0.88 1.004 1.35 Total Pentan Dioxida 182.718 0.752 Total Hexa-Daoxins 5044.637 0.838 Total Hepta-Daoxins 5044.637 0.838 Total Hepta-Daoxins 82564.666 25.109 Total Tetra-Furans 116.211 0.412 Total Pentan Dioxida 182.718 0.752 Total Hexa-Furans 8468.187 28.249 Total Hepta-Furans 8468.187 28.249 Total Hepta-Furans 53717.586 25.148	1,2,3,4,6,7,8-HpCD	D 44776.835	25.1 09	E	1.02	1.079	1.00
1,2,3,7,8-PeCDF	OCDD	203283 378	3.486	E	1.00	1.173	1.04
2,3,4,7,8-PeCDF	2,3,7,8-TCDF	16.995	2.0.412	С	0.81	1.001	0.92
2,3,4,7,8-PeCDF	1,2,3,7,8-PeCDF	A23.408	3.877		1.52	1.001	0.94
1,2,3,4,7,8-HxCDF		140.406	3.785		1.56	1.025	0.96
1,2,3,6,7,8-HxCDF 261 935 28.249 1.32 1.003 1.36 1,2,3,7,8,9-HxCDF 63 88 39.902 1.08 1.039 0.96 2,3,4,6,7,8-HxCDF 459 978 32.158 E 1.27 1.017 1.20 1,2,3,4,6,7,8-HpCDF 13422.956 25.148 E 1.06 1.000 1.45 1,2,3,4,7,8,9-HpCDF 1181.881 35.352 E 1.06 1.038 1.03 CCDF 70629.737 2 641 E 0.88 1.004 1.35 Total Tetra-Dickins 9.900 0.554 Total Penta-Dickins 5044.637 0.838 Total Hepta-Dickins 82564.666 25.109 Total Tetra-Furans 116.211 0.412 Total Penta-Firans 2490.251 3.785 Total Hexa-Furans 8468.187 28.249 Total Hepta-Furans 53717.586 25.148	1,2,3,4,7,8-HxCDF	1372, 929	28.853	E	1.28	1.000	1.33
1,2,3,7,8,9-HxCDF 63 288 39.902 1.08 1.039 0.96 2,3,4,6,7,8-HxCDF 459 378 32.158 E 1.27 1.017 1.20 1,2,3,4,6,7,8-HpCD 13422.956 25.148 E 1.06 1.000 1.45 1,2,3,4,7,8,9-HpCDR 1181.881 35.352 E 1.06 1.038 1.03 CCDF 70529.737 2 641 E 0.88 1.004 1.35 Total Tetra-Diokins 9.900 0.554 Total Penta Dioxins 182.718 0.752 Total Hexa-Diokins 5044.637 0.838 Total Hepta-Dioxins 82564.666 25.109 Total Tetra-Furans 116.211 0.412 Total Penta Firans 2490.251 3.785 Total Hexa-Turans 8468.187 28.249 Total Hepta-Furans 53717.586 25.148		2 <i>6</i> 1.935	28.249		1.32	1.003	1.36
2,3,4,6,7,8-HxCDF 459 93 32.158 E 1.27 1.017 1.20 1,2,3,4,6,7,8-HpCDF 13422.956 25.148 E 1.06 1.000 1.45 1,2,3,4,7,8,9-HpCDF 1181.881 35.352 E 1.06 1.038 1.03 CCDF 70629.737 2 641 E 0.88 1.004 1.35 Total Tetra-Dickins 9.900 0.554 Total Penta Dioxids 182.718 0.752 Total Hexa-Dickins 5044.637 0.838 Total Hepta-Dickins 82564.666 25.109 Total Tetra-Finans 116.211 0.412 Total Penta Turans 2490.251 3.785 Total Hexa-Furans 8468.187 28.249 Total Hepta-Furans 53717.586 25.148		63 288	39.902		1.08	1.039	0.96
1,2,3,4,6,7,8-HpcD 13422.956 25.148 E 1.06 1.000 1.45 1,2,3,4,7,8,9-HpcDF 1181.881 35.352 E 1.06 1.038 1.03 CCDF 70529.737 2 641 E 0.88 1.004 1.35 Total Tetra-Digins 9.900 0.554 Total Penta Dioxins 182.718 0.752 Total Hexa-Dioxins 5044.637 0.838 Total Hepta-Dioxins 82564.666 25.109 Total Tetra-Firans 116.211 0.412 Total Penta Dirans 2490.251 3.785 Total Hexa-Furans 8468.187 28.249 Total Hepta-Furans 53717.586 25.148			32.158	E	1.27	1.017	1.20
1,2,3,4,7,8,9-HpCDR 1181.881 35.352 E 1.06 1.038 1.03 CCDF 70629.737 2 641 E 0.88 1.004 1.35 Total Tetra-Dickins 9.900 0.554 Total Penta Dickins 182.718 0.752 Total Hexa-Dickins 5044.637 0.838 Total Hepta-Dickins 82564.666 25.109 Total Tetra-Firans 116.211 0.412 Total Penta Turans 2490.251 3.785 Total Hexa-Furans 8468.187 28.249 Total Hepta-Furans 53717.586 25.148		13422.956	25.148	E	1.06	1.000	1.45
CCDF 70629.737 2 641 E 0.88 1.004 1.35 Total Tetra-Dictas 9.900 0.554			35.352	E	1.06	1.038	1.03
Total Tetra-Dictas 9.900 0.554 Total Penta Dioxins 182.718 0.752 Total Hexa-Dioxins 5044.637 0.838 Total Hepta-Dioxins 82564.666 25.109 Total Penta Firans 116.211 0.412 Total Penta Firans 2490.251 3.785 Total Hexa-Furans 8468.187 28.249 Total Hepta-Furans 53717.586 25.148			2 641	E	0.88	1.004	1.35
Total Penta Dioxins 182.718 0.752 Total Hexa-Dioxins 5044.637 0.838 Total Hepta-Dioxins 82564.666 25.109 Total Jera-Furans 116.211 0.412 Total Penta Sprans 2490.251 3.785 Total Hexa-Furans 8468.187 28.249 Total Hepta-Furans 53717.586 25.148		混乱》					
Total Penta Dioxins 182.718 0.752 Total Hexa-Dioxins 5044.637 0.838 Total Hepta-Dioxins 82564.666 25.109 Total Tetra-Futans 116.211 0.412 Total Penta Sprans 2490.251 3.785 Total Hexa-Furans 8468.187 28.249 Total Hepta-Furans 53717.586 25.148	Total Tetra-Dickin	s 9.900	0.554				
Total Hexa-Dioxins 5044.637 0.838 Total Hepta-Dioxins 82564.666 25.109 Total Herra-Firans 116.211 0.412 Total Penta Turans 2490.251 3.785 Total Hexa-Furans 8468.187 28.249 Total Hepta-Furans 53717.586 25.148			0.752				
Total Hepta-Dioxins 82564.666 25.109 Total Hepta-Furans 116.211 0.412 Total Penta Turans 2490.251 3.785 Total Hexa-Furans 8468.187 28.249 Total Hepta-Furans 53717.586 25.148			0.838				
Total Penta Furans 116.211 0.412 Total Penta Furans 2490.251 3.785 Total Hexa Furans 8468.187 28.249 Total Hepta-Furans 53717.586 25.148			25.109				
Total Penta Surans 2490.251 3.785 Total Hexa Furans 8468.187 28.249 Total Hepta-Furans 53717.586 25.148			0.412				
Total Hexa-Furans 8468.187 28.249 Total Hepta-Furans 53717.586 25.148			3.785				
Total Hepta-Furans 53717.586 25.148							
•							
(1) Qualifiers: See flag definitions.			ons.				

(2) RRTs and ion ratios are specified in Tables 11 and 8, Method 8290. 8290F1

Form 3

	PCDD/PCDF T Use for Sample an		-		,		, <u></u>	2 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
	•					,	Che	nt ID
Lab Name. Colum	ibia Analytical Servi	ces					1292	
Lab Code: CAS	الواسد الما المارسونات المارسونات المارسونات المارسونات المارسونات المارسونات المارسونات المارسونات المارسونات المارسونات المارسونات المارسونات المارسونات المارسونات المارسونات المارسونات المارسونات المارسونات المارسونات	829	0		b Sample ID	É É	30 0 99 -	0047
Client Name.	Barr Engineering			Sample Wt	/Vol·	7,68		
Matrix (Solid/Aqu	eous/Waste/Ash/Tis	sue)	Solid -		Initial Cali	bration Date		2003
Sample Receipt Da	ite 8/8/2003				Instrument	TD OF	4.46.74	70S
Ext Date:	8/13/2003				GC Colum	n dd .	-#	db5
Ext Vol (uI 20 0	4 44 2 mt 1 4.	ıj Vol (ul	L10		M. Jan			
Analysis Date	3/19/2003	•			Sample File	ename	B155	52#4
Analysis Time	0:27:21			A	Blank Data	•	B1'55	
•	The Mark of the Control of the Contr							~ ~
Dilution Factor				Calibration	Verification	Filename	B1555	0#12
Concentration Unit	s (pg/L or ng/Kg dry	weight)	ng/Kg		Solids/Lipi	ds, %		27.75
		,	Á		/	,	·	**
	Detection			N. T.		TEE A	DILICAE	:D
DADAL CETED		DT /2	COSTUTE	TRATION	TEE(1)		DJUSTE	
PARAMETER	Limit (DL)	DL/2	CONGEN	IKATION	TEF (1)	CONCE	NTRATI	UN
2,3,7,8-TCDD					10	A. C	1 .70	
1,2,3,7,8-PeCDD		• .	46	1857	10	4	6. 175	
1,2,3,4,7,8-HxCDD)		THE RESERVE AND THE PERSON NAMED IN	24	0 1	. e . th. 40-	6 .62	
1,2,3,6,7,8-HxCDD		~ '1;	The second	3.98	0 1	~	59 40	
1,2,3,7,8,9-HxCDD			THE REAL PROPERTY.	.58	0 1	10000000000000000000000000000000000000	8 .86	
1,2,3,4,6,7,8-HpCD	4.502		120 447	6 84	0.01	运 第二4	4 77	
OCDD			2032	83 38	0 0001		20 .33	
2,3,7,8-TCDF	¥ A		13	.76	0 1		138	
1,2,3,7,8-PeCDF			12	3 41	0 05		6.17	
2,3,4,7,8-PeCDF		V	14	.41	0.5		70.20	
1,2,3,4,7,8-HxCDF			137	2.93	0.1	7 TO F1	<u>3</u> 7 29	
1,2,3,6,7,8-HxCDF			i = 26	94	0 1		6 .19	
1,2,3,7,8,9-HxCDF		6	63	.29	0 1		6 .33	
2,3,4,6,7,8-HxCDF		7	45	.97	0.1		1 €.00	
1,2,3,4,6,7,8-HpCD	F		Y. 300 %	2 96	0 01	THE PART	34 23	
1,2,3,4,7,8,9-HpCI	Ferri		-46	1 88	0.01	- Park 1	(<u>1</u> .82	
OCDF	A CONTRACTOR OF THE PARTY OF TH		7062	9 74	0 0001	- All	7 :06	
					Total TEQ	: 1	77.52	

(1) World Health Organization (WHO) adopted Toxicity Equivalence Factors (TEFs) taken from Van der Berg, et al, Toxicity Equivalence Factors (TEFs) for PCBs, PCDDs/PCDFs for Humans and Wildlife, Environmental Health Perspective 106 775-792 (1998)

Note Non-detected values are reported as one-half the detection limit (DL/2)

The 2,3,7,8-TCDF value is reported from the confirmed, db-225, column

Form 1

CLIENT ID. PCDD/PCDF ANALYSIS DATA SHEET

Use for Sample and Blank Results 127-29 0-4

Lab Name: Columbia Analytical Services Episode No.:

Lab Code: CAS SDG No.: Method: 8290 Lab Sample ID: E2300499-005A

Client Name: BARR ENGINEERING Sample Wt/Vol: 11.316 grant mL: g

Matrix (Aqueous/Solid/Ash): Solid Initial Calibration Date: 08/05/03

Sample Receipt Date: 08/08/03 Instrument ID: 705

Ext. Date: 08/13/03 GC Column:DB-54

Ext. Vol(ul):20.0 Inj. Vol(ul):1.0 Sample Data Filename: BT5552#5

Analysis Date: 19-AUG-03 Time: 01:18:16 Blank Data Filename: B15552#2

Dilution Factor: 1 Cal. Ver. Data Filename: B15550#12

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Moisture/Lipid: 15.06

	CONCENTRATION	DETECTION	Qual.	ION ABUND.	RRT	MEAN
ANALYTE	FOUND	LIMIT	* ELY	RATIO (2)	(2)	RRF
2,3,7,8-TCDD	3.564	0.569		0.81	1.001	1.00
1,2,3,7,8-PeCDD	54.371	0.838		1.59	1.000	0.97
1,2,3,4,7,8-HxCDD	178.610	0.970	- A.S.	1.24	0.998	1.04
1,2,3,6,7,8-HxCDD	1058.343	0.874	Æ	1.26	1.000	1.15
1,2,3,7,8,9-HxCDD	354.764	0.888		1.26	1.009	1.13
1,2,3,4,6,7,8-HpCD	D 31453.667	24.837	E	1.03	1.079	1.00
OCDD	189089 .520c	4.704	E	0.93	1.173	1.04
2,3,7,8-TCDF	11.52	7 0 3 2 1	C	0.80	1.001	0.92
1,2,3,7,8-PeCDF	95.503	3.212		1.63	1.000	0.94
2,3,4,7,8-PeCDF	96.931	3.136		1.60	1.025	0.96
1,2,3,4,7,8-HxCDF	766, 538	31.784	E	1.32	1.000	1.33
1,2,3,6,7,8-HxCDF	219.845	31.119		1.29	1.003	1.36
1,2,3,7,8,9-HxCDF	41.879	43.956		1.24	1.039	0.96
2,3,4,6,7,8-HxCD	351,808	35.425		1.28	1.017	1.20
1,2,3,4,6,7,8-Hpen	7918.921	24.316	E	1.05	1.000	1.45
1,2,3,4,7,8,9-HpCD	F 639.858	34.182	E	1.06	1.038	1.03
OCDF	43463.478	2.516	E	0.89	1.004	1.35
	31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Total Tetra-Dioxin	g 13.017	0.569				
Total Penta Dioxin		0.838				
Total Hexa-Dioxins		0.874				
Total Hepta-Dioxin		24.837				
Total Tetra-Furins	80.749	0.321				
Total Penta Furans		3.136				
Total Hexa-Furans						
Total Hepta-Furans		24.316				
(1) Qualifiers: See						

⁽²⁾ RRTs and ion ratios are specified in Tables 11 and 8, Method 8290. 8290Fl

Form 3

	PCDD/PCDF Tuse for Sample as		•	, -	,		er en
	Ose for Bample at	M MIBIC DI	csuns with v	aides - Deie	ection Limit	(DL)	€Chent ID
Lab Name Colum	ibia Analytical Servi	ces					12729.0-4
Lab Code CAS		` 8290)	Lal	b Sample ID		30 0499- 005A
Client Name	Barr Engineering			Sample Wt	-	31	G A
Materia (Solid/Am)	ieous/Waste/Ash/Tis)	0-1:4		T1 C-181		050000
Sample Receipt Da	in her continue o	isue)	Solid _		Instrum ent	bration Date ID	70S
Ext Date	8/13/2003				GC Colum		db5
Ext. Vol (uI 20 0		nj Vol(uL	.10		- · - ·		acresses as on
Analysis Date Analysis Time	8/19/2003 1:18:16			Λŧ	Sample File Blank Data		B15552#5 B15552#2
Analysis Time	" i'40\in				Diank Data	Phename	- Φ13332π2
Dilution Factor				Calibration	Verification	Filename	B15550#12
Concentration Unit	s (pg/L or ng/Kg dry	z weight)	ng/Kg		Solids/Lipi	ds %	- 13.06
		, weight)		y "V)		a 5, 70	
	5						n r romen
	Detection						DJUSTED
PARAMETER	Limit (DL)	DL/2	CONCEN	TRATION	TEF (1)	CONCE	NTRATION
2,3,7,8-TCDD				503 THE	10	1	3.56
1,2,3,7,8-PeCDD			, `` <u>.</u> 54.	37 3	10		4.371
1,2,3,4,7,8-HxCDD)	*	178	461	0 1	元的产行	7.86
1,2,3,6,7,8-HxCDD		t.	Toring the state of the state o	8.34	0 1	一种系统	25 83
1,2,3,7,8,9-HxCDD			VIA 434	76	0 1	3	S 48
1,2,3,4,6,7,8-HpCI	7.2		745	3.67	0 01	3	Î 4 .54
OCDD				89 52	0 0001		8.91
2,3,7,8-TCDF	** **		8.1	93	0 1) 1.89
1,2,3,7,8-PeCDF			95.	.50	0 05		78
2,3,4,7,8-PeCDF			96.	.93	0 5	多数4	8.47
1,2,3,4,7,8-HxCDF		~ ~ ~	₹ . 766	54	0 1		6 .65
1.2,3,6,7,8-HxCDF			219	85	0 1	-1-5.2	1.98
1,2,3,7,8,9-HxCDF		₹ 4 3x8	,41.	.88	0 1	25	4. 19
2,3,4,6,7,8-HxCDF		Ÿ		81	0 1		<u>క</u> ్త.18
1,2,3,4,6,7,8-HpCD	F L		791	3 92	0 01		9 .19
1,2,3,4,7,8,9-HpCL	- Cr. 254 5 455		~_639	86	0 01	12-23-3	5.40
OCDF			4346	3 48	0 0001	William Fig	4_35
					Total TEQ	: 83	32.63

(1) World Health Organization (WHO) adopted Toxicity Equivalence Factors (TEFs) taken from. Van der Berg, et al., Toxicity Equivalence Factors (TEFs) for PCBs, PCDDs/PCDFs for Humans and Wildlife, Environmental Health Perspective 106 775-792 (1998)

Note Non-detected values are reported as one-half the detection limit (DL/2)

The 2,3,7,8-TCDF value is reported from the confirmed, db-225, column.

Form 1

CLIENT ID.

PCDD/PCDF ANALYSIS DATA SHEET
Use for Sample and Blank Results

I26-27 0-4

Lab Name: Columbia Analytical Services Episode No.:

Lab Code: CAS SDG No.: Method: 8290 Lab Sample ID: E2300499-006

Client Name: BARR ENGINEERING Sample Wt/Vol: 10.774 g_or mL:

Matrix (Aqueous/Solid/Ash): Solid Initial Calibration Date: 08/05/03

Sample Receipt Date: 08/08/03 Instrument ID: 70\$

Ext. Date: 08/13/03 GC Column:DB-5

Ext. Vol(ul):20.0 Inj. Vol(ul):1.0 Sample Data Filename: B15552#6

Analysis Date: 19-AUG-03 Time: 02:09:13 Blank Data Filename B15552#2

Dilution Factor: 1 Cal. Ver. Data Filename: B15550#12

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg % Moisture/Lipid: 18.39

	CONCENTRATION	DETECTION	ÇQual.	ION ABUND.	RRT	MEAN
ANALYTE	FOUND	LIMIT	(i)	RATIO (2)	(2)	RRF
2,3,7,8-TCDD	*	0.459	U	*	*	1.00
1,2,3,7,8-PeCDD	9.682	0.644	A. A	1.66	1.001	0.97
1,2,3,4,7,8-HxCDD	33.454	0.673	A-	1.42	0.998	1.04
1,2,3,6,7,8-HxCDD	186.024	0,607		1.23	1.000	1.15
1,2,3,7,8,9-HxCDD		0.617		1.26	1.009	1.13
1,2,3,4,6,7,8-HpCI	D 5493.547	6.145	E	1.03	1.078	1.00
OCDD	49994 .899 2	2.166	E	0.87	1.171	1.04
2,3,7,8-TCDF	2.206	0.241	С	0.76	1.000	0.92
1,2,3,7,8-PeCDF	£19.506	2.024		1.63	1.001	0.94
2,3,4,7,8-PeCDF	7.275	1.976		1.73	1.025	0.96
1,2,3,4,7,8-HxCDF	157. 673	10.443		1.28	1.000	1.33
1,2,3,6,7,8-HxCDF	41 100	10.225		1.30	1.003	1.36
1,2,3,7,8,9-HxCDF*		14.443	U	*	*	0.96
2,3,4,6,7,8-HxCDR	62 760	11.640		1.25	1.017	1.20
1,2,3,4,6,7,8-Hpc	1239.497	4.582	E	1.05	1.000	1.45
1,2,3,4,7,8,9-HpCI	100.831	6.441		1.08	1.038	1.03
OCDF	4542.115	6.317	E	0.89	1.004	1.35
Total Tetra-Dioxir	*	0.459	υ			
Total Penta Dioxin	41.510	0.644				
Total Hexa-Dioxins	732.167	0.607				
Total Hepta-Droxin	s 10318.979	6.145				
Total Weara-Furans	9.937	0.241				
Total Penta Rurans	412.219	1.976				
Total Hexa-Furans	2430.140	10.225				
Total Hepta-Furans	5425.383	4.582				
(1) Qualifiers: See	flag definiti	ons.				

(2) RRTs and ion ratios are specified in Tables 11 and 8, Method 8290. 8290F1

Form 3

			-	CE (TEQ) SUMMA es < Detection Limi		- col +
Lab Name Colum	bıa Analytıcal Servi	ces			يُو	Chent ID 126-27:0-4
Lab Code CAS Client Name	Barr Engineering	8 290	Sar	Lab Sample I mple Wt/Vol	D E	230 0499 -006 A
Matrix (Solid/Aqu Sample Receipt Da Ext Date Ext Vol (uI 20 0	<u>8/13/2003</u>	sue) nj Vol (uL	Solid	Initial Cal Instrumen GC Colur	And the state of	e: 38,32003 70S db5
Analysis Date Analysis Time	8/19/2003 2:09:13	- y		Sample Frank Da	lename a Filename	B15552#6 B15552#2
Dilution Factor			Cal	ibration Venficatio	n Filename	B15550#12
Concentration Units	s (pg/L or ng/Kg dry	weight)	ng/Kg	Solids/Lip	oids, %	18.39
	Detection				TEF-A	DJUSTED
PARAMETER	Limit (DL)	DL/2	CONCENTRA	TEF (1)		NTRATION
2,3,7,8-TCDD	0 459	0 230	123	10	~	0.23
1,2,3,7,8-PeCDD		<i>ፋ</i> ኤ	<u> </u>	1 0	" " " " " " " " " " " " " " " " " " "	9 682
1,2,3,4,7,8-HxCDD		\$ 4. F.	33,45	0 1	خۇسىد	3.35
1,2,3,6,7,8-HxCDD		, and the second	186.02	0 1	6 " 32 " " mar 20 m/s.	18.60
1,2,3,7,8,9-HxCDD	J. 190	3×	60 26	0 1	14 4 m	6. 03
1,2,3,4,6,7,8-HpCD	D 🐇		5493 55		Engly	54.94
OCDD			49994 90	0 0001		5. 00
2,3,7,8-TCDF	A		1.91	0 1		0 .19
1,2,3,7,8 PeCDF			19.51	0 05	C. S. S. S. S.	0 98
2,3,4,7,8-PeCDF			17.28	0 5		8. 64
1,2,3,4,7,8-HxCDF		15. V	· 157 67	0 1		L <u>5</u> .77
1,2,3,6,7,8-HxCDF		<u>.</u>	41.10	0 1	老 妻。	4-11
1,2,3,7,8,9-HxCDF	14.443	رم من المنظم ال	7.22	0 1		0.72
2,3,4,6,7,8-HxCDF		,	62 76	0 1	7.2	6.28
1,2,3,4,6,7,8-HpCD	San Transfer Service Service	£.7	1239 50			2.39
1,2,3,4,7,8,9-HpCD	F		100 83	0 01	5 %	1.01
OCDF TO			4542 12		~ > ~ 120-day	0.45
				Total TEC	Q: 1	48.36

(1) World Health Organization (WHO) adopted Toxicity Equivalence Factors (TEFs) taken from. Van der Berg, et al, Toxicity Equivalence Factors (TEFs) for PCBs, PCDDs/PCDFs for Humans and Wildlife, Environmental Health Perspective 106 775-792 (1998)

Note Non-detected values are reported as one-half the detection limit (DL/2)

The 2,3,7,8-TCDF value is reported from the confirmed, db-225, column

Form 3

CLIENT ID. PCDD/PCDF TOXICITY EQUIVALENCE SUMMARY

Use for Sample and Blank Results

I26-27 0-4

Lab Name: Columbia Analytical Services Episode No.:

Lab Code: CAS Method: 8290 Lab Sample ID: E2300499-006A

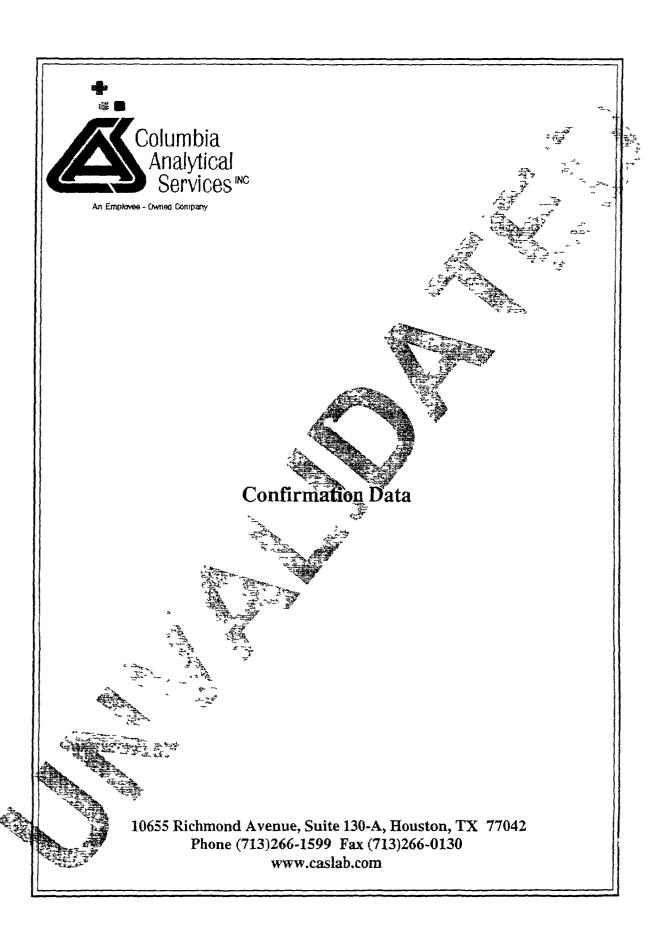
Client Name: BARR ENGINEERING Sample Wt/Vol: 10.774 g ôr mL:

Matrix (aqueous/solid/leachate): Solid Initial Calibration Date: 08/05/03

Sample Receipt Date: 08/08/03 Instrument ID: 705

Ext. Date: 08/13/03 GC Column ID: DE 5

Ext. Vol(ul):20.0 Inj. Vol(ul):1.0 Sample Data Filename: B15552#6


Analysis Date: 19-AUG-03 Time: 02:09:13 Blank Data Filename: B15552#2

Dilution Factor: 1 Cal. Ver. Data Filename: B15550#12

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg Moisture: 18.39

	CONCENTRATION	TEF (1)	TEF-ADJUSTED
			CONCENTRATION
	•		
2,3,7,8-TCDD	*	X I=O	*
1,2,3,7,8-PeCDD	9.68	ें हैं दे 0.5	4.84e+00
1,2,3,4,7,8-HxCDD	33.45	X 0.1	3.35e+00
1,2,3,6,7,8-HxCDD	186.02	X 0.1	1.86e+01
1,2,3,7,8,9-HxCDD	60.26	X 0.1	6.03e+00
1,2,3,4,6,7,8-HpCDD	5493.55	X 0.01	5.49e+01
OCDD	49994-90	X 0.001	5.00e+01
2,3,7,8-TCDF	2.21	X 0.1	2.21e-01
1,2,3,7,8-PeCDF	19.51	X 0.05	9.75e-01
2,3,4,7,8-PeCDF	17827	X 0.5	8.64e+00
1,2,3,4,7,8-HxCDF	157.67	X 0.1	1.58e+01
1,2,3,6,7,8-HxCDF	41.10	X 0.1	4.11e+00
1,2,3,7,8,9-HxCDF	*	X 0.1	*
2,3,4,6,7,8-HxCDE	62.76	X 0.1	6.28e+00
1,2,3,4,6,7,8-HPCDE	1239.50	X 0.01	1.24e+01
1,2,3,4,7,8,9-HpCDF	100.83	X 0.C1	1.01e+00
OCDF	4542.11	X 0.001	4.54e~00
	可維充		
			Total: 1.917e+02

(1) Taken from Enterim Procudures for Estimating Risks Associated with Exposure Mixtures of Chlorinated Dibenzo-p-Dioxin and -Dibenzofurans (CDDs and CDFs) and 1989 Udate (EPA/625/3-89/016, March 1989.)

CAS Houston 20-AUG-2003 Page 1

USEPA, ITD

Page 7 of 8

CAS, INC. 2378-TCDF ANALYSIS DATA SHEET Use for Sample and Blank Results CLIENT ID.

Lab Name: Columbia Analytical Services Episode No.:

Client Name: BARR ENGINEERING

Lab Sample ID: E230049

Matrix (aqueous/solid/leachate): Solid Sample Wt/Vol: 13

Sample Receipt Date: 08/08/03

Initial Calibration Date: 08/06/03

Ext. Date: 08/13/03

Instrument ID: 70S

Analysis Date: 18-AUG-03 Time: 18:40:14

GC Column ID: DB-225

Ext. Vol(ul): 20.0

Sample Data Filename: A19525#9

Inj. Vol(ul): 1.0

Blank Data Filename: A19525#3

Dilution Factor: 1

Cal Ver Data Pilename: A19525#2

Concentration Units (pg/L or ng/Kg dry eight):

% Moisture: 10.13

ION ABUND. RRT TEF CONCENTRATION RATIO

ANALYTE

FOUND(1)

0.86 1.001 0.136

2,3,7,8-TCDF

1.357

RECOV. ION ABUND. RRT SPIKE INT. STANDARD RATIO 59.32 0.78 1.06 593.20 13C-2,3,7,8-TCDF CLEANUP STANDARD

37C1-2,3,7,8-TCDI

670.68

83.83

0.99

detected.

TCDFF1

CAS Houston 21-AUG-2003 Page 1

USEPA, ITD

Page 3 of 17

CAS, INC. 2378-TCDF ANALYSIS DATA SHEET Use for Sample and Blank Results

CLIENT ID-

Lab Name: Columbia Analytical Services Episode No.:

Client Name: BARR ENGINEERING

Lab Sample ID: E2300499

Matrix (aqueous/solid/leachate): Solid

Sample Wt/Vol. 11

Sample Receipt Date: 08/08/03

Initial Calibration Date: 08706/03

Ext. Date: 08/13/03

Instrument ID: 70s

Analysis Date: 20-AUG-03 Time: 12:47:54

GC Column ID: DB-225

Ext. Vol(ul): 20.0

Sample Data Filename: A19528#4

Inj. Vol(ul): 1.0

Filename: A19528#3 Blank Data

Dilution Factor: 1

Cal Ver Data Filename: A19528#2

Concentration Units (pg/L or ng/Kg dry

FOUND(1)

% Moisture: 95.73

ANALYTE

CONCENTRATION

ION ABUND.

RATIO

2,3,7,8-TCDF

26.003

0.76

1.001 2.600

INT. STANDARD 13C-2,3,7,8-TCDF CLEANUP STANDARD

347.92

RECOV.

RATIO

ION ABUND.

RRT

34.79 Y 0.78 1.06

37C1-2,3,7,8-TCDI

512.46

FOUND (pg)

64.06

0.99

on-detected

TCDFF1

CAS Houston 21-AUG-2003 Page 1 USEPA, ITD Page 4 of 17 CLIENT ID CAS, INC 2378-TCDF ANALYSIS DATA SHEET Use for Sample and Blank Results Lab Name: Columbia Analytical Services Episode No.. Lab Sample ID: £2300499-00 Client Name · BARR ENGINEERING Matrix (aqueous/solid/leachate): Solid Sample Wt/Vol: 10 669g for mL: g Sample Receipt Date: 08/08/03 Initial Calibration Date: 08/06/03 Instrument ID. 70s Ext. Date: 08/13/03 Analysis Date: 20-AUG-03 Time: 13.22:50 GC Column ID DB-225 Sample Data Filename: A19528#5 Ext. Vol(ul): 20.0 Blank Data Filename. A19528#3 Inj. Vol(ul): 1.0 Cal. Ver Data Filename: A19528#2 Dilution Factor 1 Concentration Units (pg/L or ng/Kg dry weight): % Moisture 85.80 ION ABUND. RRT TEF CONCENTRATION ANALYTE FOUND(1) RATIO 5.596 0.70 1.001 0.560 2,3,7,8-TCDF RECOV. ION ABUND. RRT SPIKE

SPIKE CONCENT. RECOV. ION ABUND. RRI
INT. STANDARD CONCENT.(pg) FOUND(pg) % RATIO

13C-2,3,7,8-TCDF 1000 483.46 48.35 0.78 1.06

CLEANUP STANDARD 800 641.89 80.24 0.99

(1) '*' indicates non-detected.

CAS Houston 21-AUG-2003

Page 1

USEPA, ITD

Page 5 of 17

CAS, INC.

2378-TCDF ANALYSIS DATA SHEET
Use for Sample and Blank Results

Use for Sample and Blank Results

Client Name: Columbia Analytical Services

Episode No.:

Client Name: BARR ENGINERING

Lab Sample ID: E2300499-004A

Matrix (aqueous/solid/leachate): Solid

Sample Wt/Vol: 17.582g or mL: g

Sample Receipt Date: 08/08/03

Initial Calibration Date: 08/06/03

Instrument ID: 70S

GC Column ID: DB-225

Ext. Vol(ul): 20.0 Sample Data Filename: A19528#6

Inj. Vol(ul): 1.0 Blank Data Filename: A19528#3

Dilution Factor: 1 Cal Ver Data Filename: A19528#2

Concentration Units (pg/L or ng/Kg dry eight): ng/Kg % Moisture: 72.25

CONCENTRATION DETECTION O ION ABUND. RRT TEF

ANALYTE FOUND(1) EIMIT RATIO

2,3,7,8-TCDF 13.764 1.356 0.75 1.002 1.376

SPIKE CONCENT. RECOV. ION ABUND. RRT
INT. STANDARD CONCENT. (pg) FOUND(pg) & RATIO

13C-2,3,7,8-TCDF 1000 218.96 21.90 Y 0.79 1.06

CLEANUP STANDARD 37C1-2,3,7,8-TCDD 800 360.72 45.09 0.99

(1) '*' indicates hon-detected.

Ext. Date: 08/13/03

Analysis Date: 20-AUG-03 Time: 13:57:45

CAS Houston 21-AUG-2003

Page 1 USEPA, ITD

Page 6 of 17

CAS, INC.

2378-TCDF ANALYSIS DATA SHEET Use for Sample and Blank Results CLIENT ID

Lab Name: Columbia Analytical Services Episode No.:

Client Name: BARR ENGINEERING

Lab Sample ID: E2300499-005

Matrix (aqueous/solid/leachate): Solid

Sample Wt/Vol: 11.316g or mI

Sample Receipt Date: 08/08/03

Initial Calibration Date: 08/06/03

Ext. Date: 08/13/03

Instrument ID: 70S

Analysis Date: 20-AUG-03 Time: 14:32:40

GC Column ID: DB-225

Ext. Vol(ul): 20.0

Sample Data Filename: A19528#7

Inj. Vol(ul): 1.0

Blank Data Filename: A19528#3

Dilution Factor: 1

Cal. Ver Data Filename: A19528#2

Concentration Units (pg/L or ng/Kg dry Weight): ng/Kg % Moisture: 84.94

ANALYTE

CONCENTRATION FOUND(1)

ION ABUND. RRT TEF

RATIO

2,3,7,8-TCDF

8.926

0.70 1.001 0.893

INT. STANDARD

SPIKE

FOUND (pg)

ૠ RATIO

RECOV.

ION ABUND. RRT

13C-2,3,7,8-TCDF

334.76

33.48 Y 0.78

1.06

CLEANUP STANDARD

37C1-2,3,7,8-

621.01

77.63

0.99

non-detected.

TCDFF1

CAS Houston 21-AUG-2003 Page 1 USEPA, ITD Page 7 of 17 CAS, INC. 2378-TCDF ANALYSIS DATA SHEET Use for Sample and Blank Results Lab Name: Columbia Analytical Services Episode No.: Lab Sample ID £2300499 Client Name: BARR ENGINEERING Matrix (aqueous/solid/leachate): Solid Sample Wt/Vol: 10 1740 or mig Sample Receipt Date: 08/08/03 Initial Calibration Date: 08/06/03 Ext Date: 08/13/03 strument ID: 70S Analysis Date: 20-AUG-03 Time: 15:07:35 GC Column D: DB-225 Sample Data Filename: A19528#8 Ext. Vol(ul): 20.0 Inj. Vol(ul): 1.0 Blank D lename: A19528#3 Dilution Factor: 1 Cal. Ver Data Filename: A19528#2 Concentration Units (pg/L or ng/Kg dry eight) % Moisture: 81.61 ION ABUND. RRT TEF CONCENTRATION ANALYTE FOUND(1) RATIO 1.909 0.75 1.001 0.191 2,3,7,8-TCDF ION ABUND. RRT RECOV. SPIKE INT. STANDARD RATIO 59.25 0.78 1.06 13C-2,3,7,8-TCDF

695.91

86.99

(1) '*' indicates mon-detected.

CLEANUP STANDARD

37C1-2,3,7,8-TCD

TCDFF1

0.99

和30512 Chain of Custody Number of Containers/Preservative Project Manager: (H2SO4) Acid) 4700 West 77th Street General (Unpreserved) BARR Minneapolis MN 55435-4803 (952) 83265000 M CTT Total Phenol (H2SO4) Amber Acetate) Semivolatile Organic Cyanide (NaOH, Asc. Nutrients (H2SO4) Project Contact: Dissolved Metals Project Number Oil and Grease Glass m. nelson Glass, TOC (H2 SO4) Laboratory: Š. Formalin, Methane Volatile Sulfide Dioxin Collection Total Sample Remarks/ Analysis Required: Identification Date PAH PUP RUPOUF 8-5-63 1740 1.H25-26 0-4 2527-24 0-4 804 1620 3F27-29 4-12 1620 PCOD/F 840 4.129-30 0-4 5I27-29 0-4 1210 1448 J26-270-4 8. 10. 12. 13. 14. 15. 16. Sampled By: ER MTA Pennguishen By 7.00 Received by: Time 9/8/05 Date Réceived by: Relinquished By: Time Remarks: Samples Air Preight Fed. Exp Sampler Shipped VIA Air Bill Number: w - Field Copy; Pink - Lab Coordinator Distribution: White-Original Accompanies Shipment to Lab;

Barr Engineering Company 4700 West 77th Street • Minneapolis MN 55435-4803 Phone 952-832-2600 • Fax 952-832-2601 • www.barr.com

Minneapolis MN · Hibbing MN · Duluth MN · Ann Arbor MI · Jefferson City MO

September 25, 2003

Sonia Vega
On-Scene Coordinator
U S Environmental Protection Agency, Region 5
Emergency Response Branch
520 Lafayette Road North
St Paul, MN 55155-4194

Re: Validated Analytical Data
Laboratory Batch Number – E2300499
Docket No. V-W-'03-C-748
St. Regis Paper Company Site – Cass Lake, Minnesota

Dear Ms Vega:

Barr has validated the analytical data contained in the laboratory batch number(s) identified above Enclosed are the following documents related to these analytical data

- Data Summary Table(s) {Attachment A}
- Validation Summary Report(s) {Attachment B}
- Complete analytical data package(s) from Columbia Analytical Services {Attachment C}

The data summary tables include the TEQ_{DF}-WHO₉₈ values calculated using the validated data. The TEQ calculation used a value of ½ the detection limit for any congener that was not detected

All data met the data quality objectives and are useable as reported. In accordance with the Unilateral Administrative Order, on September 25, 2003 International Paper authorized Columbia Analytical Services to analyze the archived sample J29-30 4-12 for PCDD F since sample J29-30 0-4 exceeded 1 ppb TEQ_{DF}-WHO₉₈.

If you have any questions concerning this information, please contact me at (952)832-2876 or Tom Ross of International Paper at (901)419-3899.

Sincerely,

Thomas D. Mattison Project Coordinator

Thomas Met

cc: Tim Drexler, U.S. EPA ~ RPM (w/ Attachments A, B & C)

Mony Chabria and Tom Turner, U.S. EPA (w/ Attachments A & B)

Tom Ross, IP (w/ Attachment A, B & C)

Steve Ginski, IP (w/ Attachments A & B)

Rick Rothman, Bingham (w/ Attachments A & B)

Attachment A

Table 1
Validated Dioxin/Furan Concentration in Surface Soil
St. Regis Paper Company Site
Docket No: V-W-'03-C-748

(concentrations in µg/kg (ppb))

Location				7	·····	
	F27-29 0-4	F27-29 4-12	H25-26 0-4	126-27 0-4	127-29 0-4	J29-30 0-4
Date	8/6/2003	8/6/2003	8/5/2003	8/6/2003	8/6/2003	8/6/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup	 					
2,3,7,8-TCDD	0 003	0 002	0.00055 j	<0.00034	0.00079 1	0 0017 EMPC
1,2,3,7,8-PeCDD	0.068	0 032	0.008	0.004	0.021	0 046
1,2,3,4,7,8-HxCDD	0 260	0 123	0.004	0.004	0.054	0 166
1,2,3,6,7,8-HxCDD	0 963	0.274 j	0.108	0 064	0.320	3.072
1,2,3,7,8,9-HxCDD	0 295	0.242	0.049	0 022	0.112	0.389
1,2,3,4,6,7,8-HpCDD	30 852	11.364	2.344	2 496	11.694	186 701
OCDD	249.540 e	.133.473 e	22.122 e	24.152	124 075	2182.551 e
2,3,7,8-TCDF	0 026	0.006	0.001	<0.00098	0.004	0 014
1,2,3,7,8-PeCDF	0.111	0.064	0.008	0.007	0.030	0 123
2,3,4,7,8-PeCDF	0 113	0.065	0.010	0.009	0.035	0 140
1,2,3,4,7,8-HXCDF	0 723	0 460	0.144	0.061	0.308	2 625
1,2,3,6,7,8-HxCDF	0.233	0.128	0.032	0.016	0.076	0.262
1,2,3,7,8,9-HxCDF	0 041	<0.035	0.032	0.021	0.084 EMPC	0 063
2,3,4,6,7,8-HxCDF	0.366	0.229	0.056	0.026	0.129	0.887
1,2,3,4,6,7,8-HpCDF	7.167	.2 489	0.530	0.450	2.713	28.274
1,2,3,4,7,8,9-HpCDF	0.639	0.447	0.080	0.045	0.207	2.125
OCDF	29 433	14.042	1.686	1.682	12.664	132.899
TCDD, Total	0.016	0.004	0.002	<0.00034	0.003	0.010
PeCDD, Total	0 279	0.111	0.039	0.014	0.082	0.183
HxCDD, Total	7 753	2.747	0.548	0.257	1.388	5.045
HpCDD, Total	75 414	46.496	6.977	4.105	23.525	82.565
TCDF, Total	0.143	0.052	0.010	0.004	0.047	0 116
PeCDF, Total	2 648	1.686	0.229	0.154	0.759	2 490
HxCDF, Total	7.251	4.152	1.909	0.926	5.721	8 468
HpCDF, Total	34.820	30.590	3.558	2.094	13.912	53.718
				ı		
$TEQ_{DF} - WHO_{98} (ND = 1/2 DL) (1)$	0 840	0.370	0.120	0.060	0.310	3.300

Data qualifiers and footnotes:

- e estimated value. Analyte exceeds upper end of the linear calibration range
- j estimated value. Analyte concentration is below method reporting limit and above non-detect.
- EMPC estimated maximum possible concentration.
- (1) TEQ_{DF}WHO₉₈ values shown above are calculated by multiplying the validated congener concentrations by their respective toxicity equivalency factors (TEF) and summing across all congeners. The results may differ from the TEQ concentrations reported in the laboratory data package, which are based on unvalidated data from each independent sample analysis (initial or dilution), and may include congener concentrations that exceeded the specified calibration range.

Attachment B

Data Validation Report – Dioxin/Furan Laboratory Report / Batch <u>E2300499</u> Received <u>September 11, 2003</u>

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report: September 23, 2003

The data validation of the Columbia Analytical Services, Inc. (CAS) laboratory data for the dioxin and furan (CDD/CDF) analysis of the Cass Lake Removal Site Evaluation and Supplemental Assessment soil and/or groundwater samples contained in the aforementioned report is complete and detailed below.

The analytical data were reviewed in accordance with the U.S. EPA Analytical Operations/Data Quality Center (AOC) National Functional Guidelines for Chlorinated Dioxin/Furan Data Review, Draft Final dated March, 2002 (Guidelines) as specified in the Quality Assurance Project Plan (QAPP, Barr, June 2003). In addition to the Guidelines, specific SW-846 Method 8290 criteria were also considered as slight differences in some of the performance aspects exist between the documents. In general, the areas covered by the validation process include:

- Overall assessment
- Holding times, preservation and storage
- Mass calibration and mass spectrometer resolution
- Window defining mix
- Instrument stability
- Initial calibration and ongoing calibration verification
- Method blank analysis
- Laboratory control samples (ongoing precision/accuracy)
- Second column confirmation

Data Validation Report Laboratory Report / Batch <u>E2300499</u> Received <u>September 11, 2003</u>

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report: September 23, 2003

Six soil sample results are contained in this laboratory report. They are as follows:

H25-26 0-4'

F27-29 0-4'

F27-29 4-12'

J29-30 0-4'

J27-29 0-4'

J26-27 0-4'

Overall Assessment

No qualifiers were assigned to the sample results contained in laboratory report E2300499 as a result of data validation process. All data met the data quality objective (DQOs) and are useable as reported.

Holding Times, Preservation and Storage

The samples were collected August 5 and 6, 2003, cooled to 4°C and sent to the laboratory. Per the chain-of-custody and subsequent laboratory acknowledgement receipt forms, the laboratory received the samples August 8, 2003 in acceptable condition. It should be noted that discrepancies between method 8290 and the Guidelines exist for the technical extraction and analysis holding times. The Guidelines recommend that soil samples be extracted within 10 days of receipt and analyzed within 30 days. Alternately, Method 8290 and the QAPP for the project indicate that a 30 day extraction/45 day analysis holding times apply. Method 8290 also states that these holding times are only recommendations as dioxins and furans are very stable in a variety of matrices. All samples were extracted and analyzed within 30 days. No qualifiers are applied.

Mass Calibration and Mass Spectrometer Resolution

Mass calibration and mass spectrometer resolution (MC/MSR) checks are required to ensure that the mass calibration and mass spectrometer resolution is set at $a \ge 10,000$ resolving power. This resolution is confirmed at the beginning and end of every 12-hour analysis period.

It should be noted that the Guidelines contain language that refers to evaluation techniques that due to upgrades in analytical systems software, are obsolete at CAS's Houston facility. Specifically, the

Data Validation Report Laboratory Report / Batch <u>E2300499</u> Received <u>September 11, 2003</u>

St Regis Paper Company Superfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report September 23, 2003

evaluation of the resolution by the measure of deviation between the exact m/z and the theoretical m/z at less than 5 ppm has been replaced with a instrumentation function that implicitly sets the error to zero at all calibration points so there is no longer any need to use peak matching conditions to verify the exact mass. Therefore, resolving power is evaluated by close review of the resolution of PFK peak profiles where high mass ion (380 9760) and low mass ion (304 9824) are reported

CAS performed the MC/MSR at the appropriate frequency and obtained acceptable results for the PFK calibrant confirming MC/MSR at a resolving power of 10,000

Window Defining Mix

The window defining mix (WDM) is necessary to establish the appropriate switching times for the selection ion group descriptors. As stated in the Guidelines, the frequency of the WDM is once every 12 hours prior to calibration verification. However, Method 8290, Section 8 3.2 2.2. allows the laboratory, if running consecutive 12-hour shifts, to use the ending calibration verification (if all acceptance criteria are met) of the first 12-hour analysis period as the beginning calibration verification of the second 12-hour analysis period. In these cases, the WDM was analyzed after the calibration verification but still falls within the 12-hour analytical period. While the Guidelines indicate the WDM must be analyzed prior to the calibration verification sample, CAS's order of analysis for the system performance check samples did not appear to affect the overall system instrumentation and no qualifiers have been applied

CAS performed the WDM analysis for every 12-hour sample analysis period and presented the acceptable switching times for each homologue group on the corresponding Form 5s.

Chromatographic Resolution

This check is performed to ascertain the separation of closely eluting dioxin/furan isomers. This is performed using SICP (selected ion current profile) of each isomer. The criteria require that the 2.3.7.8-TCDD peak and the 1.2.3.8-TCDD peak be resolved with a valley of $\leq 25\%$ for the DB-5 column.

CAS provided summary peak to valley results as specified above on each Form 5. In each case, the ≤ 25% criterion was met. The raw chromatograms were also reviewed to confirm this information.

Data Validation Report Laboratory Report / Batch <u>E2300499</u> Received September 11, 2003

St Regis Paper Company Superfund Site - Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report September 23, 2003

Instrument Stability

Instrument stability is an important aspect of this analytical system. Ongoing calibration verification using a CS-3 standard is performed once every 12-hour period. This standard is used to evaluate the isomer retention times, ion abundance criteria, sensitivity and ongoing calibration criteria.

CAS met the requirements of the absolute retention times (RT) for the first internal standard (13C-1,2,3,4-TCDD) of \pm 15 seconds (of the initial calibration standard) and the associated >25 0 minute RT requirement for each of the 12-hour CS3 calibration verification standards. The relative retention time and ion abundance criteria were also met for each of the native and label CDD/CDFs in the ongoing CS-3 standard results

Signal-to-noise (S/N) ratios were summarized for the native and labeled CDD/CDFs were acceptable at >10.1

The relative response factor (RRF) criteria of <25% difference between CS-3 native compounds as compared to the initial calibration data was acceptable for the August 14, August 18, September 5, and September 8 analytical runs. For August 23, September 1, and August 19 analytical runs, exceedance of the 25% ending calibration verification standard criterion required the laboratory to provide the mean RRFs from the beginning and ending calibration verification analysis and those factors were then employed for quantitation, as specified in Method 8290, Section 8 3 2 4 and 7 7 4 4

While the Guidelines indicate review of the relative responses (RR), Method 8290 has no such requirement, as RR's are not used in final quantitation of sample results, therefore, no review was performed

Review of the above elements indicates a high level of instrument stability and no qualifiers are required

Initial Calibration and Calibration Verification

Satisfactory instrument calibration is crucial to ensuring the accurate qualitative and quantitative results for each of the CDD/CDF compounds. Initial calibration procedures define the linear range and mean relative response factors that will be used for sample quantitation.

Data Validation Report Laboratory Report / Batch <u>E2300499</u> Received <u>September 11, 2003</u>

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report: September 23, 2003

CAS's initial calibration summary information met all the relevant acceptance criteria including the relative responses (RRFs) of <25% for native compounds and <35% for the labeled compounds, ion abundance ratios (IARs) within +/- 15%, absolute retention times within the WDM windows, and signal-to-noise ratios of >10:1.

Calibration verification (or continuing calibration) summary information also met all relevant acceptance criteria including the frequency of the continuing calibration verifications at both the beginning and ending of each 12-hour analytical run, the RRFs %D within <25% for native compounds and <35% for labeled compounds of initial calibration, the IARs within the +/-15%, and signal-to-noise of >10:1.

Initial calibration data were inadvertently omitted from the original data package received September 11, 2003 for the 2,3,7,8-TCDF second column confirmation instrument for the initial calibration date of August 5, 2003. The laboratory compiled the missing information and it is included in the original report, however, the additional pages are not paginated. The initial calibration data met all acceptance criteria and are included in the Second Column Confirmation section of this report.

Method Blank Analyses

Laboratory method blank analyses are used to determine the existence and magnitude of contamination introduced at the laboratory.

CAS's analysis of method blank samples met all acceptance criteria. No positive concentrations were reported in the method blanks above the CRQL. Trace concentrations of OCDD and HpCDD were detected in one or more of the method blanks associated with the analytical batch. However, associated sample concentrations are far greater than the blank concentration, therefore, no data require qualification. All method blank samples were prepared and analyzed at the appropriate frequency.

Laboratory Control Samples (Ongoing Precision/Accuracy)

The laboratory is required to prepare and analyze a sample of spiked reference matrix to measure the accuracy of the analytical process/system/method.

Data Validation Report Laboratory Report / Batch <u>E2300499</u> Received September 11, 2003

St Regis Paper Company Superfund Site - Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report: September 23, 2003

CAS performed laboratory control sample (LCS) analyses at the appropriate frequency for the analytical batch. LCS results met associated acceptance criteria for percent recovery of the spiked concentrations as presented in Table 6 of Exhibit D of the Guidelines. All RRT and IARs were also acceptable in the LCS samples associated with the analytical batch indicating an in-control analytical system.

Labeled Compound Recovery (Surrogate Standard Recovery)

Because the introduced labeled compounds (CDD/CDFs) serve as the isotopic quantitative mechanism for this method, recoveries should be closely monitored for laboratory and method effectiveness.

CAS met the minimum acceptance criteria for the labeled compound recoveries as presented in Table 7 of Exhibit D of the Guidelines. These recovery windows are wider that CAS's internally generated acceptance criteria. Labeled compound recoveries qualified with a "Y" in the original data package indicate the recovery falls outside the laboratory-generated acceptance limits. None of these minor failures exceeded the Guidelines limits, therefore, no data require qualification.

Second Column Confirmation

A second column confirmation of the 2,3,7,8-TCDF isomer is required by both Methods 1613 and 8290 due to a known lack of isomer specificity for this isomer on the DB-5 or equivalent column. All operating conditions of the second column analytical system must be identical to those of the primary system.

CAS performed the second column confirmational analysis when the original analytical run had positive 2,3,7,8-TCDF detections. All performance criteria (as previously detailed above) were met prior to and during the confirmational analytical runs.

Barr Engineering Company 4700 West 77th Street • Minneapolis MN 55435-4803 Phone 952-832-2600 • Fax 952-832-2601 • www.barr.com

Minneapolis, MN . Hibbing MN . Duluth MN . Ann Arbor MI . Jefferson City MO

September 29, 2003

Sonia Vega
On-Scene Coordinator
U.S. Environmental Protection Agency, Region 5
Emergency Response Branch
520 Lafayette Road North
St. Paul, MN 55155-4194

Re: Validated Analytical Data
Laboratory Batch Number – K2305902
Docket No. V-W-'03-C-748
St. Regis Paper Company Site – Cass Lake, Minnesota

Dear Ms. Vega:

Barr has validated the analytical data contained in the laboratory batch number(s) identified above. Enclosed are the following documents related to these analytical data:

- Data Summary Table(s) {Attachment A}
- Validation Summary Report(s) {Attachment B}
- Complete analytical data package(s) from Columbia Analytical Services {Attachment C}

All data met the data quality objectives and are useable as reported. If you have any questions concerning this information, please contact me at (952)832-2876 or Tom Ross of International Paper at (901)419-3899.

Sincerely,

Thomas D. Mattison Project Coordinator

cc: Tim Drexler, U.S. EPA - RPM (w/ Attachments A, B & C)

Mony Chabria and Tom Turner, U.S. EPA (w/ Attachments A & B)

Tom Ross, IP (w/ Attachment A & B)

Steve Ginski, IP (w/ Attachments A & B)

Rick Rothman, Bingham (w/ Attachments A & B)

Attachment A

Table 2 Validated PAH/PCP Concentrations in Surface Soil St. Regis Paper Company Site Docket No: V-W-'03-C-748

(concentrations in µg/kg)

Location	F27-29 0-4	F27-29 4-12	H25-26 0-4
Date	8/6/2003	8/6/2003	8/5/2003
Lab	CAS	CAS	CAS
Solids, total, %	95.4	82.3	92.3
Carcinogenic PAHs			
Benzo(a)anthracene	280	170	95
Chrysene	620	260	130
Benzo(b)fluoranthene	680	610	120
Benzo(k)fluoranthene	500	380	120
Benzo(a)pyrene	330	380	120
Indeno(1,2,3-cd)pyrene	650	560	130
Dibenz(a,h)anthracene	88	120	22
Non-Carcinogenic PAHs			
Naphthalene	22	40	5.7
2-Methylnaphthalene	19	28	<5.1
Acenaphthylene	45	61	20
Acenaphthene	<5.1	8.3	<5.1
Fluorene	6.0	8.3	<5.1
Phenanthrene	79	74	46
Anthracene	210	330	35
Fluoranthene	430	290	190
Pyrene	460	320	200
Benzo(g,h,i)perylene	310	500	110
Pentachlorophenol	1400	2000	<210

Attachment B

Data Validation Report – PAHs and PCP Laboratory Report / Batch K2305902 Received September 12, 2003

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report: September 24, 2003

The data validation process for the Columbia Analytical Services, Inc (CAS) laboratory data for the polynuclear aromatic hydrocarbons (PAHs) and pentachlorophenol (PCP) analysis of the Cass Lake Removal Site Evaluation and Supplemental Assessment soil samples contained in the aforementioned report is complete as detailed below

The analytical data were reviewed in accordance with the U.S. EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (1999) (Guidelines) as specified in the Quality Assurance Project Plan (QAPP, Barr, June 2003). In addition to the Guidelines, specific SW-846 Method 8270 and 8000 criteria were also considered as slight differences in some of the performance aspects exist between the documents. In general, the areas covered by the validation process include:

- Overall assessment
- Holding times, preservation and storage
- Instrument performance (tuning)
- Initial calibration
- Continuing calibration verification
- Method blank analysis
- Laboratory control samples (ongoing precision/accuracy)
- Surrogate recovery
- Internal standard recovery
- Matrix spike recovery

Three soil sample results are contained in this laboratory report. They are as follows:

F27-29 4-12

F27-29 0-4

H25-26 0-4

Data Validation Report Laboratory Report / Batch K2305902 Received September 12, 2003

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report September 24, 2003

Overall Assessment

No qualifiers were assigned to the sample results contained in laboratory report K2305902 as a result of the data validation process. All data met the data quality objective (DQOs) and are useable as reported.

Holding Times, Preservation and Storage

The samples were collected on August 5 and 6, 2003 and received at the CAS Houston laboratory on August 8, 2003 with an accompanying chain-of-custody (COC) form. All samples were received intact and were properly chilled (within 2-6 °C). The samples were properly stored until shipped overnight to the CAS Kelso laboratory for PAH and PCP analysis. The samples were received on August 9, 2003 in Kelso intact and at 4 1 °C (temperature blank). No sample identification discrepancies are noted.

GCMS Instrument Performance Check

All instrument performance checks (tunes) run during the analysis of the project samples met the acceptance criteria for frequency, mass abundance, and mass ratios as listed in the CAS form 5s and associated quantitation and tune reports. Note, that the CAS tune criteria are somewhat different than those listed in the Guidelines and follow guidance from SW-846 8270. The CAS tune criteria reflect the mass spectrometer manufacturer's (Agilent) recommendations for tuning requirements for the latest generation of analytical mass spectral-based instrumentation. Section 7.3.1.2 and Table 3 of SW-846 8270C state that alternate tuning criteria may be used as long as they do not result in adversely affected method performance. The 8270-method performance criteria were not adversely affected by the use of the alternate tuning criteria. The CAS tuning criteria limits were used as the analytical instrument system tuning performance criteria for this project. The tune frequency met the method and data validation criteria.

Initial Calibration

The initial calibrations (ICALs) for PAHs and PCP instrument using selected ion monitoring (SIM) were performed on August 23 and August 29 using 8-10 concentrations levels of the target analytes. The individual and average relative response factors (RRFs) for all target analytes met the data validation requirement of >0.05. All target analytes met the <30 %RSD data validation criteria.

Data Validation Report Laboratory Report / Batch K2305902 Received September 12, 2003

St Regis Paper Company Superfund Site - Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report September 24, 2003

However, the average RSD of the RRFs for benzo(b)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene and dibenz(a,h)anthracene fell outside the method criteria of <15%RSD. Following their SOP the laboratory utilized an alternative calibration evaluation as specified in section 7 5.1 2 1 of EPA 8000B. This option allows for the calculation of the mean value of all the target analytes average RSDs and subsequent comparison to the requirement of the mean RSD being <20% The mean RSD for this initial calibration event was calculated as 7 7%, thus meeting the method criteria

The laboratory report also included results from the analysis of a second source calibration check standard, all target analytes met the laboratory's criteria of < 20% difference. There are no data validation criteria for second source standards.

Continuing Calibration Verification

All three continuing calibration verifications (analyzed August 27, 28 and September 2) met the data validation criteria for frequency and the <+25% difference RRFs from ICAL as well as the minimum RRFs of > 0.05 for all target analytes except PCP. Data from the August 28, 2003 continuing calibration show that PCP fell beyond the <+25% criteria at 26% Following the Guidelines, up to four compounds can fall beyond continuing calibration verification %D if their corresponding RRFs are >0.01 and the %D is still <40%. Therefore, no qualifiers are required.

Method Blank Analysis

The method blank was non-detect for all target analytes. The method blank sample was prepared and analyzed at the appropriate frequency.

Laboratory Control Samples

For the verification of the analytical process/system/method accuracy, the laboratory prepared two LCS samples. All spiked analyte percent recoveries met the data validation and the laboratory's internal acceptance criteria.

Surrogate Standard Recovery

All surrogate spike recoveries from the project samples met the data validation acceptance criteria. Dilution of samples F27-29 0-4' and F27-29 4-12' were required for PCP, therefore, recoveries of

Data Validation Report Laboratory Report / Batch K2305902 Received September 12, 2003

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report September 24, 2003

2,4,6-tribromophenol surrogate are not applicable. However, associated recoveries did fall within the acceptance window

Internal Standard Recovery

All internal standards were reviewed for area and retention time criteria. All internal standards from the project samples and associated quality control samples met the method and data validation criteria.

Matrix Spike Recovery

Sample H25-26 0-4' was utilized as the matrix spike and matrix spike duplicate sample. With the exception of PCP, all percent recoveries and relative percent differences (RPDs) were within the laboratory's internal control limits. However, due to concentrations of PCP just below the laboratory method reporting limit for this compound, calculated PCP percent recoveries appear to fall above the criteria in both the MS/MSD samples. If, however, the recovery calculations are performed using the estimated PCP concentration of the sample instead of the ND, percent recoveries improve to fall within acceptance limits. No analytical error is associated with this anomaly; therefore, no qualifiers are applied.

Barr Engineering Company 4700 West 77th Street • Minneapolis, MN 55435-4803

Phone. 952-832-2600 • Fax: 952-832-2601 • www.barr.com

Minneapolis, MN · Hibbing, MN · Duluth MN · Ann Arbor MI · Jefferson City, MO

October 1, 2003

Sonia Vega On-Scene Coordinator U.S. Environmental Protection Agency, Region 5 Emergency Response Branch 520 Lafayette Road North St. Paul, MN 55155-4194

Re: Validated Analytical Data
Laboratory Batch Number – K2306086, K2306177, K2306184, K2306188, K2306189,
K2306181
Docket No. V-W-'03-C-748
St. Regis Paper Company Site – Cass Lake, Minnesota

Dear Ms. Vega:

Barr has validated the analytical data contained in the laboratory batch number(s) identified above. Enclosed are the following documents related to these analytical data:

- Data Summary Table(s) {Attachment A}
- Validation Summary Report(s) {Attachment B}
- Complete analytical data package(s) from Columbia Analytical Services {Attachment C}

All data met the data quality objectives and are useable as reported. If you have any questions concerning this information, please contact me at (952)832-2876 or Tom Ross of International Paper at (901)419-3899.

Sincerely,

Thomas D. Mattison Project Coordinator

cc: Tim Drexler, U.S. EPA – RPM (w/ Attachments A, B & C)

Mony Chabria and Tom Turner, U.S. EPA (w/ Attachments A & B)

Tom Ross, IP (w/ Attachment A & B)

Steve Ginski, IP (w/ Attachments A & B)

Rick Rothman, Bingham (w/ Attachments A & B)

Attachment A

Table 2
Validated PAH/PCP Concentrations in Surface Soil
St. Regis Company Site
Docket No: V-W-'03-C-748

(concentrations in ug/kg)

Location	D25-26 0-4	D27-29 0-4	DF 8-9 0-4	DE 8 9 4-12	F 18-19 0-4	F 18-19 4-12	F24-25 0-4	F24 25 4-12	F 24-25 4 12D	Г29-30 0 4	F20 21 0 4	F 22 23 0-4	1 27 29 0 4	1 27 29 4 12
Date	8/8/2003	8/13/2003	8/8/2003	8/8/2003	8/13/2003	8/13/2003	8/13/2003	8/13/2003	8/13/2003	8/8/2003	8/15/2003	8/8/2003	8/6/2003	8 6 2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS
Dup				<u> </u>		 					 			
Car cinogenic PAHs				[1						I	
Benzo(a)anthracene	62	30	6100	5800	55	120	91	120	200	280	520	260	280	170
Chuysene	110	56	14000	8800	110	210	140	340	540	530	770	340	620	260
Benzo(b)fluoranthene	150	69	18000	9500	180	530	210	460	740	800	800	440	680	610
Benzo(k)fluoranthene	160	67	15000	8200	140	370	190	360	560	600	710	400	500	180
Benzo(a)pyrene	90	29	7700	4000	55	280	150	140	140	360	550	380	330	380
Indeno(1,2,3-cd)pyrene	170	88	4800	2300	130	410	300	330	420	730	720	700	650	5(1)
Dibenz(a,h)anthracene	24	12	930	510	21	63	43	62 _	93	110	120	87	88	120
Non-Carcinogenic PAHs								{		{			1	İ
Naphthalene	95	67	140	23	5 8	18	17	19	15	45	12	14	22	40
2-Methylnaphthalene	72	60	42	10	5 7	14	16	15	13	34	99	10	19	28
Acenaphthylene	11	6.5	550	470	9 6	29	18	17	22	72	52	75	45	61
Acenaphthene	<51	<5 ()	28	11	<5 1	< 5 0	<50	< 5 1	<5 1	7 2	<50	<51	5.1	8 3
Fluorene	<51	<50	30	19	<51	<50	< 5 0	7 8	71	9 0	< 5 ()	7 1	6.0	5.3
Phenanthi enc	26	19	180	68	12	23	54	56	011	130	68	190	79	74
Anthi acene	33	22	1400	520	29	79	78	120	160	350	63	59	210	330
Fluoranthene	130	71	2000	2900	89	150	190	200	450	570	740	660	430	290
Pyrene	120	57	6300	6900	86	170	140	140	260	53()	490	460	460	()د ا
Benzo(g,h,ı)perylene	120	56	2700	1300	74	220	180	170	200	490	400	5 3()	310	5()()
Pentachlorophenol	430	<200	< 410	210	360	270	040	1400	1900	1100	210	310	1400	2000

Table 2
Validated PAH/PCP Concentrations in Surface Soil
St. Regis Company Site
Docket No: V-W-'03-C-748

(concentrations in ug/kg)

Location	FOA-02-1-0-4	FOA-02-2-0-4	FOA-02-2-4-12	FOA-02-3-0-4	FOA-02-4-0-4	I-OA-02-5-9-4	FOA-02-6-0-4	FOA-02-6-4-12	65-1	GS-ID	1125-26 0-4	J27-29 0 4
Date	8/12/2003	8/12/2003	8/12/2003	8/12/2003	8/12/2003	8/12/2003	8/12/2003	8/12/2003	8/13/2003	8/13/2003	8/5/2003	8/8/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS
Dup												
					}							
Carcinogenic PAHs	_								1	1		
Benzo(a)anthracene	850	73	24	11	83	27	40	18	250	280	95) ₍₅ ()
Chrysene	1400	110	40	16	110	39	66	24	320	360	130	710
Benzo(b)fluoranthene	930	120	39	15	92	30	52	118	290	310	120	2600
Benzo(k)fluoranthene	1200	120	35	16	92	33	48	21	290	310	120	1.700
Benzo(a)pyrene	870	86	27	11	85	25	38	121	310	340	120	1900
Indeno(1,2,3-cd)pyrene	790	120	39	111	95	32	52	23	330	380	130	1500
Dibenz(a,h)anthracene	190	19	5 6	<5 1	13	-5 ()	7 2	- 51	18	52	22	190
Non-Carcinogenic PAHs												1
Naphthalene	34	7 5	<50	<5 1	< 5 0	< 5 0	10	<51	12	11	h 7	10
2-Methylnaphthalene	28	66	< 5 0	<5 1	< 5 0	< 5 0	6 5	<51	9 4	8 8	5.1	25
Acenaphthylene	86	97	< 5 ()	<5 1	<50	< 5 0	<51	<51	12	9 7	20	120
Acenaphthene	190	<51	<50	<5 1	<50	<50	< 5 1	<51	93	20	5 !	9 7
Fluorene	96	<51	< 50	<51	< 5 0	< 5 0	<51	<5 1	12	20	5.1	16
Phenanthrene	780	35	15	<5 1	49	29	32	11	240	310	46	100
Anthracene	410	22	8 7	<51	19	5 7	6 7	<5 L	35	47	15	490
Fluoranthene	3900	160	54	12	180	61	98	39	670	700	190	700
Pyrene	2300	130	43	12	140	55	80	34	400	520	200	540
Benzo(g,h,i)perylene	610	83	27	7 ()	67	22	37	18	210	240	110	1000
Pentachlorophenol	3500	240	200	<210	<200	< 200	240	1 210	210	200	210	4(90)

Table 2
Validated PAH/PCP Concentrations in Surface Soil
St. Regis Company Site
Docket No: V-W-'03-C-748

(concentrations in ug/kg)

Location	J27-29 12-24	J27-29 4-12	NWWD-02 4-12	RES24 4-12	SW-44 0-4
Date	8/8/2003	8/8/2003	8/15/2003	8/14/2003	8/11/2003
Lab	CAS	CAS	CAS	CAS	CAS
Dup	ļ		-		
Carcinogenic PAlls		_			
Benzo(a)anthracene	<50	<51	220	12	670
Chrysene	< 5 0	6 4	240	24	950
Benzo(b)fluoranthene	< 5 0	9 7	210	18	850
Benzo(k)fluoranthene	< 5 ()	8 1	220	15	740
Benzo(a)pyrene	< 5 0	- 5 I	240	10	720
Indeno(1,2,3-cd)py rene	- 50	7 6	220	14	740
Dibenz(a,h)anthracene	~50	<51	36	< 5 ()	110
Non-Carcinogenic PAHs	:		-		ļ.
Naphthalene	< 5 0	<51	11	6.1	19
2-Methylnaphthalene	<50	<51	7 0	<50	8 8
Acenaphthylene	<5 O	< 5.1	25	<50	69
Acenaphthene	<50	<5.1	<50	<50	10
Fluorene	< 5 0	<51	<50	<50	15
Phenanthrene	<50	<51	66	25	350
Anthracene	< 5 0	<51	19	<50	110
Fluoranthene	<50	5 7	380	57	1500
Pyrene	< 5 0	5 3	310	33	1200
Benzo(g,h,i)perylene	< 50	<51	140	11	440
Pentachlorophenol	< 200	<210	< 200	< 200	850

Attachment B

Data Validation Report – PAHs and PCP Laboratory Report / Batch K2306086 Received September 19, 2003

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report: September 29, 2003

The data validation process for the Columbia Analytical Services. Inc (CAS) laboratory data for the polynuclear aromatic hydrocarbons (PAHs) and pentachlorophenol (PCP) analysis of the Cass Lake Removal Site Evaluation and Supplemental Assessment soil samples contained in the aforementioned report is complete and is detailed below

The analytical data were reviewed in accordance with the U.S. EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (1999) (Guidelines) as specified in the Quality Assurance Project Plan (QAPP, Barr, June 2003). In addition to the Guidelines, specific SW-846 Method 8270 and 8000 criteria were also considered as slight differences in some of the performance aspects exist between the documents. In general, the areas covered by the validation process include:

- Overall assessment
- Holding times, preservation and storage
- Instrument performance (tuning)
- Initial calibration
- Continuing calibration verification
- Method blank analysis
- Laboratory control samples (ongoing precision/accuracy)
- Surrogate recovery
- Internal standard recovery
- Matrix spike recovery

Seven soil sample results are contained in this laboratory report. They are as follows:

J27-29 0-4"

J27-29 12-24"

E29-30 0-4"

D25-26 0-4"

F22-23 0-4"

DE8-9 0-4"

DE8-9 4-12"

Data Validation Report Laboratory Report / Batch K2306086 Received Sintember 19, 2003

St Regis Paper Company Superfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report September 29 2003

Overall Assessment

No qualifiers were assigned to the sample results contained in laboratory report K2306086 as a result of data validation process. All data met the data quality objective (DQOs) and are useable as reported

Holding Times, Preservation and Storage

The samples were collected on August 8, 2003 and received at the CAS Houston laboratory on August 12, 2003 with an accompanying chain-of-custody (COC) form. The samples were received intact and were properly chilled (within 2-6 °C). The samples were properly stored until shipped overnight to the CAS Kelso laboratory for PAH and PCP analysis. The samples were received on August 15, 2003 in Kelso intact and at 4 3°C (temperature blank). The sample for J27-29 4-12' was inadvertently not included with this shipment, it was shipped to Kelso on August 19, 2003 and is reported under separate cover (K2306188).

GCMS Instrument Performance Check

All instrument performance checks (tunes) run during the analysis of the project sample met the acceptance criteria for frequency, mass abundance, and mass ratios as listed in the CAS Form 5s and associated quantitation and tune reports. Note, that the CAS tune criteria are somewhat different than those listed in the Guidelines and follow guidance from SW-846 8270. The CAS tune criteria reflect the mass spectrometer manufacturer's (Agilent) recommendations for tuning requirements for the latest generation of analytical mass spectral-based instrumentation. Section 7 3 1 2 and Table 3 of SW-846 8270C state that alternate tuning criteria may be used as long as they do not result in adversely affected method performance. The 8270-method performance criteria were not adversely affected by the use of the alternate tuning criteria. The CAS tuning criteria limits were used as the analytical instrument system tuning performance criteria for this project. The tune frequency met the method and data validation criteria.

Initial Calibration

The initial calibration (ICAL) for PAHs and PCP instrument using selected ion monitoring (SIM) was performed on August 23, 2003 and September 3, 2003 using 8-10 concentrations levels of the target analytes. The individual and average relative response factors (RRFs) for all target analytes

Data Validation Report Laboratory Report / Batch K2306086 Received September 19, 2003

St Regis Paper Company Superfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report September 29, 2003

met the data validation requirement of >0.05. All target analytes met the <30 % RSD data validation criteria with the exception of PCP on September 3, 2003. The average RSD of the RRFs for PCP (26.0%) did exceed the method criteria of <15% RSD, however the laboratory utilized an alternative calibration evaluation as specified in section 7.5.1.2.1 of EPA 8000B. This option allows for the calculation of the mean value of all the target analytes average RSDs and subsequent comparison to the requirement of the mean RSD being <20%. The mean RSD for this initial calibration event was calculated as 7.4% thus meeting the method criteria.

The laboratory report also included results from the analysis of a second source calibration check standard, all target analytes met the laboratory's criteria of < 20% difference. There are no data validation criteria for second source calibration verification standards.

Continuing Calibration Verification

The August 27, 2003 continuing calibration verification met the data validation criteria for frequency and the <+25% difference RRFs from the ICAL and the minimum RRF of >0.05 for all targets except dibenz(a,h)anthracene. The percent difference was -26% for this compound. This calibration verification summary is associated with a diluted analytical run of which dibenz(a,h)anthracene was not a target compound, therefore, no qualification is necessary. The September 3 and 4, 2003 continuing calibration verification met the data validation criteria for frequency and the <+25% difference RRFs from ICAL as well as the minimum RRFs of > 0.05 for all target analytes.

Method Blank Analysis

The method blank was non-detect for all target analytes. The method blank sample was prepared and analyzed at the appropriate frequency

Laboratory Control Samples

For the verification of the analytical process/system/method accuracy, the laboratory prepared two LCS samples All spiked analyte percent recoveries met the data validation and the laboratory's internal acceptance criteria

Data Validation Report Laboratory Report / Batch K2306086 Received September 19, 2003

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report September 29, 2003

Surrogate Standard Recovery

All surrogate spike recoveries from the project samples met the data validation acceptance criteria except for the sample J27-29 12-24. The laboratory re-extracted and re-analyzed the sample with similar results. The fluorene-d10 surrogate recovery fell just below the acceptance window of 43-98% at 37%. The biphenyl-d10 surrogate recovery was 15%. Because the recoveries were >10% and the fluorene-d10 recovery was nominally outside the lower acceptance criteria window of 43% and the laboratory produced similar results on the second analysis of the sample, no qualification is applied.

Internal Standard Recovery

All internal standards were reviewed for area counts and retention time criteria. All internal standards from the project sample and associated quality control samples met the method and data validation criteria except for the original analysis of sample DE8-9 0-4'. The sample was diluted and all internal standard criteria were met. The reported results are associated with the acceptable diluted analysis, therefore, no qualification is required.

Matrix Spike Recovery

The sample D25-26 0-4' served as the Matrix Spike (MS) and Matrix Spike Duplicate (MSD) sample. Matrix spike percent recoveries were greater than expected for PCP, indeno(1.2.3-cd)pyrene and benzo(g,h,i)perylene at 210%. 144%, and 126%, respectively. The associated matrix spike duplicate percent recoveries for indeno(1.2.3-cd)pyrene and benzo(g,h,i)perylene were 117% and 104%, respectively and fell within acceptance limits as did the associated RPDs. The PCP percent recovery in the matrix spike duplicate sample was 145%, still slightly above acceptance criteria. The RPD for PCP MS/MSD was acceptable as 18%. The associated LCS and LCSD sample results were acceptable indicating a slight sample matrix effect. Because this would equate to a potential high bias within the sample and because positive PCP detections were quantified, based on professional judgment no data qualifiers were applied due to the MS/MSD results.

Data Validation Report – PAHs and PCP Laboratory Report / Batch K2306177 Received September 18, 2003

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report: September 23, 2003

The data validation process for the Columbia Analytical Services, Inc. (CAS) laboratory data for the polynuclear aromatic hydrocarbons (PAHs) and pentachlorophenol (PCP) analysis of the Cass Lake Removal Site Evaluation and Supplemental Assessment soil samples contained in the aforementioned report is complete and detailed below.

The analytical data were reviewed in accordance with the U.S. EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (1999) (Guidelines) as specified in the Quality Assurance Project Plan (QAPP, Barr, June 2003). In addition to the Guidelines, specific SW-846 Method 8270 and 8000 criteria were also considered as slight differences in some of the performance aspects exist between the documents. In general, the areas covered by the validation process include:

- Overall assessment
- Holding times, preservation and storage
- Instrument performance (tuning)
- Initial calibration
- Continuing calibration verification
- Method blank analysis
- Laboratory control samples (ongoing precision/accuracy)
- Surrogate recovery
- Internal standard recovery
- Matrix spike recovery
- Overall assessment

Eight soil sample results are contained in this laboratory report. They are as follows:

D27-29 0-4" E24-25 4-12" E18-19 4-12" GS-1 E18-19 0-4" E24-25 4-12"D E24-25 0-4" GS-1D

Data Validation Report Laboratory Report / Batch K2306177 Received September 18, 2003

St Regis Paper Company Superfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report September 23, 2003

Overall Assessment

No qualifiers were assigned to the sample results contained in laboratory report K23061⁻⁻ as a result of data validation process. All data met the data quality objective (DQOs) and are useable as reported

Holding Times, Preservation and Storage

The samples were collected on August 13. 2003 and received at the CAS Houston laboratory on August 15, 2003 with an accompanying chain-of-custody (COC) form. All samples were received intact and were properly chilled (within 2-6 °C). The samples were properly stored until shipped overnight to the CAS Kelso laboratory for PAH and PCP analysis. The samples were received on August 19, 2003 in Kelso intact and at 5.7 °C (temperature blank). Some of the labels on the sample containers had field sample identifiers that did not match the identifiers listed on the COC. The identifiers written on the sample container lids did match the identifiers written on the COC form with the exception of sample GS-1 and GS-1D. These two samples had 0-4 and 0-4D respectively written on the sample container lids.

GCMS Instrument Performance Check

All instrument performance checks (tunes) run during the analysis of the project samples met the acceptance criteria for frequency, mass abundance, and mass ratios as listed in the CAS form 5s and associated quantitation and tune reports. Note, that the CAS tune criteria are somewhat different than those listed in the Guidelines and follow guidance from SW-846-8270. The CAS tune criteria reflect the mass spectrometer manufacturer's (Agilent) recommendations for tuning requirements for the latest generation of analytical mass spectral-based instrumentation. Section 7.3-1.2 and Table 3 of SW-846-8270C state that alternate tuning criteria may be used as long as they do not result in adversely affected method performance. The 8270-method performance criteria were not adversely affected by the use of the alternate tuning criteria. The CAS tuning criteria limits were used as the analytical instrument system tuning performance criteria for this project. The tune frequency met the method and data validation criteria.

Data Validation Report Laboratory Report / Batch K2306177 Received September 18, 2003

St Regis Paper Company Superfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report September 23, 2003

Initial Calibration

The initial calibration (ICAL) for PAHs and PCP instrument using selected ion monitoring (SIM) was performed on September 3, 2003 using 8-10 concentrations levels of the target analytes. The individual and average relative response factors (RRFs) for all target analytes met the data validation requirement of >0.05. All target analytes met the <30 %RSD data validation criteria. The average RSD of the RRFs for PCP (26.0%) did exceed the method criteria of <15%RSD, however the laboratory utilized an alternative calibration evaluation as specified in section = 5.1.2.1 of EPA 8000B. This option allows for the calculation of the mean value of all the target analytes average RSDs and subsequent comparison to the requirement of the mean RSD being <20%. The mean RSD for this initial calibration event was calculated as 7.4%, thus meeting the method criteria.

The laboratory report also included results from the analysis of a second source calibration check standard, all target analytes met the laboratory's criteria of < 20% difference. There are no data validation criteria for second source standards.

Continuing Calibration Verification

The September 4, 2003 continuing calibration verifications met the data validation criteria for frequency and the <+25% difference RRFs from ICAL as well as the minimum RRFs of >0.05 for all target analytes

Method Blank Analysis

The method blank was non-detect for all target analytes. The method blank sample was prepared and analyzed at the appropriate frequency.

Laboratory Control Samples

For the ventication of the analytical process/system/method accuracy, the laboratory prepared two LCS samples. All spiked analyte percent recoveries met the data validation and the laboratory's internal acceptance criteria.

Surrogate Standard Recovery

All surrogate spike recoveries from the project samples met the data validation acceptance criteria.

Data Validation Report Laboratory Report / Batch K2306177 Received September 18, 2003

St Regis Paper Company Superfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report September 23 2003

Internal Standard Recovery

All internal standards were reviewed for area and retention time criteria. All internal standards from the project samples and associated quality control samples met the method and data validation criteria.

Matrix Spike Recovery

A non-project sample was utilized for the Matrix Spike (MS) and Matrix Spike Duplicate (MSD). Since the source of the sample that was spiked was a non-project, the data has limited applicability to the project data. All percent recoveries and RPDs from the MS and MSD were within the laboratory's internal control limits.

Field Duplicate Results

Field duplicate results evaluate overall sampling and laboratory precision. Samples GS-1 and E24-25 4-12" served as the field duplicates for this submittal. The average Relative Percent Difference (RPD) for the detected compounds in samples GS-1 and GS-1D was approximately 19%. The average RPD for the detected compounds in samples E24-25 4-12" and E24-25 4-12"D was approximately 35%. Both average RPD results displayed an acceptable level of precision for the low level nature of the analytical method.

Data Validation Report – PAHs and PCP Laboratory Report / Batch K2306184 Received September 19, 2003

St. Regis Paper Company Superfund Site - Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report: September 29, 2003

The data validation process for the Columbia Analytical Services, Inc. (CAS) laboratory data for the polynuclear aromatic hydrocarbons (PAHs) and pentachlorophenol (PCP) analysis of the Cass Lake Removal Site Evaluation and Supplemental Assessment soil samples contained in the aforementioned report is complete and detailed below

The analytical data were reviewed in accordance with the U.S. EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (1999) (Guidelines) as specified in the Quality Assurance Project Plan (QAPP, Barr, June 2003). In addition to the Guidelines, specific SW-846 Method 8270 and 8000 criteria were also considered as slight differences in some of the performance aspects exist between the documents. In general, the areas covered by the validation process include:

- Overall assessment
- Holding times, preservation and storage
- Instrument performance (tuning)
- Initial calibration
- Continuing calibration verification
- Method blank analysis
- Laboratory control samples (ongoing precision/accuracy)
- Surrogate recovery
- Internal standard recovery
- Matrix spike recovery

Two soil sample results are contained in this laboratory report. They are as follows:

NWWD-02 4-12"

F20-21 0-4"

Data Validation Report Laboratory Report / Batch K2306184 Received September 19, 2003

St. Regis Paper Company Superfund Site - Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report September 29 2003

Overall Assessment

No qualifiers were assigned to the sample results contained in laboratory report K2306184 as a result of data validation process. All data met the data quality objective (DQOs) and are useable as reported

Holding Times, Preservation and Storage

The samples were collected on August 15, 2003 and received at the CAS Houston laboratory on August 16, 2003 with an accompanying chain-of-custody (COC) form. The samples were received intact and were properly chilled (within 2-6 °C). The samples were properly stored until shipped overnight to the CAS Kelso laboratory for PAH and PCP analysis. The samples were received on August 19, 2003 in Kelso intact and at 5.7°C (temperature blank).

GCMS Instrument Performance Check

All instrument performance checks (tunes) run during the analysis of the project sample met the acceptance criteria for frequency, mass abundance, and mass ratios as listed in the CAS Form 5s and associated quantitation and tune reports. Note, that the CAS tune criteria are somewhat different than those listed in the Guidelines and follow guidance from SW-846 8270. The CAS tune criteria reflect the mass spectrometer manufacturer's (Agilent) recommendations for tuning requirements for the latest generation of analytical mass spectral-based instrumentation. Section 7 3 1 2 and Table 3 of SW-846 8270C state that alternate tuning criteria may be used as long as they do not result in adversely affected method performance. The 8270-method performance criteria were not adversely affected by the use of the alternate tuning criteria. The CAS tuning criteria limits were used as the analytical instrument system tuning performance criteria for this project. The tune frequency met the method and data validation criteria.

Initial Calibration

The initial calibration (ICAL) for PAHs and PCP instrument using selected ion monitoring (SIM) was performed on September 3, 2003 using 8-10 concentrations levels of the target analytes. The individual and average relative response factors (RRFs) for all target analytes met the data validation requirement of >0.05. All target analytes met the <30 %RSD data validation criteria with the exception of PCP on September 3, 2003. The average RSD of the RRFs for PCP (26.0%) did exceed

Data Validation Report Laboratory Report / Batch K2306184 Received September 19, 2003

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report September 29 2003

the method criteria of $<15^{\circ}$ oRSD, however the laboratory utilized an alternative calibration evaluation as specified in section 7.5.1.2.1 of EPA 8000B. This option allows for the calculation of the mean value of all the target analytes average RSDs and subsequent comparison to the requirement of the mean RSD being $<20^{\circ}$. The mean RSD for this initial calibration event was calculated as 7.4%, thus meeting the method criteria

The laboratory report also included results from the analysis of a second source calibration check standard, all target analytes met the laboratory's criteria of < 20% difference. There are no data validation criteria for second source calibration verification standards.

Continuing Calibration Verification

The September 4, 5 and 6, 2003 continuing calibration verifications met the data validation criteria for frequency and the <+25% difference RRFs from the ICAL and the minimum RRF of >0.05 for all target compounds. The September 5, 2003 continuing calibration percent difference did exceed the internal laboratory criterion of 20% for dibenz(a,h)anthracene. The percent difference was 25% for this compound. This calibration verification summary is associated with a diluted analytical run of which dibenz(a,h)anthracene was not a target compound, in addition the 25% does meet the Guideline criterion, therefore, no qualification is necessary. The September 4 and 6, 2003 continuing calibration verification met the data validation criteria for frequency and the <-25% difference RRFs from ICAL as well as the minimum RRFs of > 0.05 for all target analytes

Method Blank Analysis

The method blank was non-detect for all target analytes. The method blank sample was prepared and analyzed at the appropriate frequency

Laboratory Control Samples

For the verification of the analytical process/system/method accuracy, the laboratory prepared two LCS samples. All spiked analyte percent recoveries met the data validation and the laboratory's internal acceptance criteria.

Data Validation Report Laboratory Report / Batch K2306184 Received September 19, 2003

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report September 29, 2003

Surrogate Standard Recovery

All surrogate spike recoveries from the project samples met the data validation acceptance criteria for the project samples. Percent recoveries of the terphenyl-d14 surrogate fell just above the acceptance window of 61-122 at 128%, 126% and 124% in the MSD, LCS and LCSD samples respectively. No qualification is applied to the project samples.

Internal Standard Recovery

All internal standards were reviewed for area counts and retention time criteria. All internal standards from the project sample and associated quality control samples met the method and data validation criteria.

Matrix Spike Recovery

The sample F20-21 0-4' served as the Matrix Spike (MS) and Matrix Spike Duplicate (MSD) sample for the analytical batch. Matrix spike percent recoveries were acceptable. The MSD recovery for PCP was slightly above the expected range of 70-130 at 147%. Because the LCS and LCSD sample recoveries were acceptable and the RPDs between the MS and MSD are acceptable, no qualifiers are applied.

Data Validation Report – PAHs and PCP Laboratory Report / Batch K2306188 Received September 18, 2003

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report: September 29, 2003

The data validation process for the Columbia Analytical Services, Inc. (CAS) laboratory data for the polynuclear aromatic hydrocarbons (PAHs) and pentachlorophenol (PCP) analysis of the Cass Lake Removal Site Evaluation and Supplemental Assessment soil samples contained in the aforementioned report is complete and is detailed below

The analytical data were reviewed in accordance with the U.S. EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (1999) (Guidelines) as specified in the Quality Assurance Project Plan (QAPP, Barr, June 2003). In addition to the Guidelines, specific SW-846 Method 8270 and 8000 criteria were also considered as slight differences in some of the performance aspects exist between the documents. In general, the areas covered by the validation process include:

- Overall assessment
- Holding times, preservation and storage
- Instrument performance (tuning)
- Initial calibration
- Continuing calibration verification
- Method blank analysis
- Laboratory control samples (ongoing precision/accuracy)
- Surrogate recovery
- Internal standard recovery
- Matrix spike recovery

One soil sample result set is contained in this laboratory report. It is as follows.

J27-29 4-12'

Data Validation Report Laboratory Report / Batch K2306188 Received September 18 2003

St Regis Paper Company Superfund Site - Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report September 29 2003

Overall Assessment

No qualifiers were assigned to the sample results contained in laboratory report K2306188 as a result of data validation process. All data met the data quality objective (DQOs) and are useable as reported

Holding Times, Preservation and Storage

The sample was collected on August 8, 2003 and received at the CAS Houston laboratory on August 12, 2003 with an accompanying chain-of-custody (COC) form. The sample was received intact and was properly chilled (within 2-6 °C). The sample was inadvertently not included with the first shipment to Kelso with laboratory batch number K2306086, however, it was properly stored until shipped overnight to the CAS Kelso laboratory for PAH and PCP analysis. The sample was received on August 19, 2003 in Kelso intact and at 5.7°C (temperature blank).

GCMS Instrument Performance Check

All instrument performance checks (tunes) run during the analysis of the project sample met the acceptance criteria for frequency, mass abundance, and mass ratios as listed in the CAS Form 5s and associated quantitation and tune reports. Note, that the CAS tune criteria are somewhat different than those listed in the Guidelines and follow guidance from SW-846 8270. The CAS tune criteria reflect the mass spectrometer manufacturer's (Agilent) recommendations for tuning requirements for the latest generation of analytical mass spectral-based instrumentation. Section 7.3.1.2 and Table 3 of SW-846 8270C state that alternate tuning criteria may be used as long as they do not result in adversely affected method performance. The 8270-method performance criteria were not adversely affected by the use of the alternate tuning criteria. The CAS tuning criteria limits were used as the analytical instrument system tuning performance criteria for this project. The tune frequency met the method and data validation criteria.

Initial Calibration

The initial calibration (ICAL) for PAHs and PCP instrument using selected ion monitoring (SIM) was performed on September 3, 2003 using 8-10 concentrations levels of the target analytes. The individual and average relative response factors (RRFs) for all target analytes met the data validation requirement of >0.05. All target analytes met the <30 %RSD data validation criteria. The average

Data Validation Report Laboratory Report / Batch K2306188 Received September 18, 2003

St Regis Paper Company Superfund Site - Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report September 29 2003

RSD of the RRFs for PCP (26.0%) did exceed the method criteria of <15% RSD, however the laboratory utilized an alternative calibration evaluation as specified in section 7.5.1.2.1 of EPA 8000B. This option allows for the calculation of the mean value of all the target analytes average RSDs and subsequent comparison to the requirement of the mean RSD being <20%. The mean RSD for this initial calibration event was calculated as 7.4% thus meeting the method criteria

The laboratory report also included results from the analysis of a second source calibration check standard, all target analytes met the laboratory's criteria of $< 20^{\circ}$ o difference. There are no data validation criteria for second source calibration verification standards.

Continuing Calibration Verification

The September 4, 2003 continuing calibration verification met the data validation criteria for frequency and the <+25% difference RRFs from ICAL as well as the minimum RRFs of >0 05 for all target analytes

Method Blank Analysis

The method blank was non-detect for all target analytes. The method blank sample was prepared and analyzed at the appropriate frequency

Laboratory Control Samples

For the verification of the analytical process system method accuracy, the laboratory prepared two LCS samples All spiked analyte percent recoveries met the data validation and the laboratory's internal acceptance criteria

Surrogate Standard Recovery

All surrogate spike recoveries from the project samples met the data validation acceptance criteria.

Internal Standard Recovery

All internal standards were reviewed for area counts and retention time criteria. All internal standards from the project sample and associated quality control samples met the method and data validation criteria.

Data Validation Report Laboratory Report / Batch K2306188 Received September 18 2003

St Regis Paper Company Superfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report September 29 2003

Matrix Spike Recovery

A non-project sample was utilized for the Matrix Spike (MS) and Matrix Spike Duplicate (MSD). Since the source of the sample that was spiked was a non-project, the data has limited applicability to the project data. All percent recoveries and RPDs from the MS and MSD were within the laboratory's internal control limits.

Data Validation Report – PAHs and PCP Laboratory Report / Batch K2306189 Received September 18, 2003

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report: September 29, 2003

The data validation process for the Columbia Analytical Services, Inc. (CAS) laboratory data for the polynuclear aromatic hydrocarbons (PAHs) and pentachlorophenol (PCP) analysis of the Cass Lake Removal Site Evaluation and Supplemental Assessment soil samples contained in the aforementioned report is complete and is detailed below

The analytical data were reviewed in accordance with the U.S. EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (1999) (Guidelines) as specified in the Quality Assurance Project Plan (QAPP, Barr, June 2003). In addition to the Guidelines, specific SW-846 Method 8270 and 8000 criteria were also considered as slight differences in some of the performance aspects exist between the documents. In general, the areas covered by the validation process include:

- Overall assessment
- Holding times, preservation and storage
- Instrument performance (tuning)
- Initial calibration
- Continuing calibration verification
- Method blank analysis
- Laboratory control samples (ongoing precision/accuracy)
- Surrogate recovery
- Internal standard recovery
- Matrix spike recovery

One soil sample result set is contained in this laboratory report. It is for sample:

RES 24 4-12"

Data Validation Report Laboratory Report / Batch K2306189 Received September 18, 2003

St Regis Paper Company Superfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report September 29, 2003

Overall Assessment

No qualifiers were assigned to the sample results contained in laboratory report K2306189 as a result of data validation process. All data met the data quality objective (DQOs) and are useable as reported

Holding Times, Preservation and Storage

The sample was collected on August 14, 2003 and received at the CAS Houston laboratory on August 16. 2003 with an accompanying chain-of-custody (COC) form. All samples were received intact and were properly chilled (within 2-6 °C). The sample was properly stored until shipped overnight to the CAS Kelso laboratory for PAH and PCP analysis. The sample was received on August 19, 2003 in Kelso intact and at 5.7 °C (temperature blank)

GCMS Instrument Performance Check

All instrument performance checks (tunes) run during the analysis of the project samples met the acceptance criteria for frequency, mass abundance, and mass ratios as listed in the CAS form 5s and associated quantitation and tune reports. Note, that the CAS tune criteria are somewhat different than those listed in the Guidelines and follow guidance from SW-846 8270. The CAS tune criteria reflect the mass spectrometer manufacturer's (Agilent) recommendations for tuning requirements for the latest generation of analytical mass spectral-based instrumentation. Section 7.3.1.2 and Table 3 of SW-846 8270C state that alternate tuning criteria may be used as long as they do not result in adversely affected method performance. The 8270-method performance criteria were not adversely affected by the use of the alternate tuning criteria. The CAS tuning criteria limits were used as the analytical instrument system tuning performance criteria for this project. The tune frequency met the method and data validation criteria.

Initial Calibration

The initial calibration (ICAL) for PAHs and PCP instrument using selected ion monitoring (SIM) was performed on September 3, 2003 using 8-10 concentrations levels of the target analytes. The individual and average relative response factors (RRFs) for all target analytes met the data validation requirement of >0.05. All target analytes met the <30 %RSD data validation criteria. The average RSD of the RRFs for PCP (26.0%) did exceed the method criteria of <15%RSD, however the

Data Validation Report Laboratory Report / Batch K2306189 Received September 18, 2003

St. Regis Paper Company Superfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report September 29 2003

laboratory utilized an alternative calibration evaluation as specified in section 7.5.1.2.1 of EPA 8000B. This option allows for the calculation of the mean value of all the target analytes average RSDs and subsequent comparison to the requirement of the mean RSD being <20%. The mean RSD for this initial calibration event was calculated as 7.4%, thus meeting the method criteria

The laboratory report also included results from the analysis of a second source calibration check standard all target analytes met the laboratory's criteria of $< 20^{\circ}$ o difference. There are no data validation criteria for second source standards.

Continuing Calibration Verification

The September 4, 2003 continuing calibration verifications met the data validation criteria for frequency and the <+25% difference RRFs from ICAL as well as the minimum RRFs of >0 05 for all target analytes

Method Blank Analysis

The method blank was non-detect for all target analytes. The method blank sample was prepared and analyzed at the appropriate frequency

Laboratory Control Samples

For the verification of the analytical process/system/method accuracy, the laboratory prepared two LCS samples All spiked analyte percent recoveries met the data validation and the laboratory's internal acceptance criteria

Surrogate Standard Recovery

All surrogate spike recoveries from the project sample met the data validation acceptance criteria

Internal Standard Recovery

All internal standards were reviewed for area and retention time criteria. All internal standards from the project samples and associated quality control samples met the method and data validation criteria.

Data Validation Report Laboratory Report / Batch K2306189 Received September 18, 2003

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report September 29, 2003

Matrix Spike Recovery

A non-project sample was utilized for the Matrix Spike (MS) and Matrix Spike Duplicate (MSD). Since the source of the sample that was spiked was a non-project, the data has limited applicability to the project data. All percent recoveries and RPDs from the MS and MSD were within the laboratory's internal control limits.

Data Validation Report – PAHs and PCP Laboratory Report / Batch K2306181 Received September 19, 2003

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report: September 30, 2003

The data validation process for the Columbia Analytical Services, Inc (CAS) laboratory data for the polynuclear aromatic hydrocarbons (PAHs) and pentachlorophenol (PCP) analysis of the Cass Lake Removal Site Evaluation and Supplemental Assessment soil samples contained in the aforementioned report is complete and is detailed below.

The analytical data were reviewed in accordance with the U.S. EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (1999) (Guidelines) as specified in the Quality Assurance Project Plan (QAPP, Barr, June 2003). In addition to the Guidelines, specific SW-846 Method 8270 and 8000 criteria were also considered as slight differences in some of the performance aspects exist between the documents. In general, the areas covered by the validation process include:

- Overall assessment
- Holding times, preservation and storage
- Instrument performance (tuning)
- Initial calibration
- Continuing calibration verification
- Method blank analysis
- Laboratory control samples (ongoing precision/accuracy)
- Surrogate recovery
- Internal standard recovery
- Matrix spike recovery

Nine soil sample results are contained in this laboratory report. They are as follows:

SW44 0-4" FOA-02-3 0-4" FOA-02-1 0-4" FOA-02-4 0-4" FOA-02-2 0-4" FOA-02-5 0-4" FOA-02-2 4-12" FOA-02-6 0-4"

FOA-02-6 4-12"

Data Validation Report Laboratory Report / Batch K2306181 Received Sep amber 19, 2003

St Regis Paper Company Superfund Site ~ Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report September 30, 2003

Overall Assessment

No qualifiers were assigned to the sample results contained in laboratory report K2306181 as a result of data validation process. All data met the data quality objective (DQOs) and are useable as reported.

Holding Times, Preservation and Storage

The samples were collected on August 11th and 12th, 2003 and received at the CAS Houston laboratory on August 14, 2003 with an accompanying chain-of-custody (COC) form. All samples were received intact and were properly chilled (within 2-6 °C). The samples were properly stored until shipped overnight to the CAS Kelso laboratory for PAH and PCP analysis. The samples were received on August 19, 2003 in Kelso intact and at 5.7 °C (temperature blank).

GCMS Instrument Performance Check

All instrument performance checks (tunes) run during the analysis of the project samples met the acceptance criteria for frequency, mass abundance, and mass ratios as listed in the CAS form 5s and associated quantitation and tune reports. Note, that the CAS tune criteria are somewhat different than those listed in the Guidelines and follow guidance from SW-846 8270. The CAS tune criteria reflect the mass spectrometer manufacturer's (Agilent) recommendations for tuning requirements for the latest generation of analytical mass spectral-based instrumentation. Section 7.3.1.2 and Table 3 of SW-846 8270C state that alternate tuning criteria may be used as long as they do not result in adversely affected method performance. The 8270-method performance criteria were not adversely affected by the use of the alternate tuning criteria. The CAS tuning criteria limits were used as the analytical instrument system tuning performance criteria for this project. The tune frequency met the method and data validation criteria.

Initial Calibration

The initial calibration (ICAL) for PAHs and PCP instrument using selected ion monitoring (SIM) was performed on September 3, 2003 using 8-10 concentrations levels of the target analytes. The individual and average relative response factors (RRFs) for all target analytes met the data validation requirement of >0.05. All target analytes met the <30 %RSD data validation criteria. The average RSD of the RRFs for PCP (26.0%) did exceed the method criteria of <15%RSD, however the

Data Validation Report Laboratory Report / Batch K2306181 Received September 19, 2003

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report September 30, 2003

laboratory utilized an alternative calibration evaluation as specified in section 7.5-1-2 l of EPA 8000B. This option allows for the calculation of the mean value of all the target analytes average RSDs and subsequent comparison to the requirement of the mean RSD being <20%. The mean RSD for this initial calibration event was calculated as 7 40 0, thus meeting the method criteria

The laboratory report also included results from the analysis of a second source calibration check standard, all target analytes met the laboratory's criteria of < 20% difference. There are no data validation criteria for second source standards

Continuing Calibration Verification

The September 4th and 5th, 2003 continuing calibration verifications met the data validation criteria for frequency and the <+25% difference RRFs from ICAL as well as the minimum RRFs of > 0.05 for all target analytes. The September 5th, 2003 continuing calibration verification for dibenz(a,h) anthracene fell outside the laboratory control limit of 15% D, but met the Guideline criteria of <+25% as stated above. Additionally, this continuing calibration verification run was only used to as a diluted analytical run for select samples. Dibenz(a,h) anthracene was not a target compound from this analytical run.

Method Blank Analysis

The method blank was non-detect for all target analytes. The method blank sample was prepared and analyzed at the appropriate frequency.

Laboratory Control Samples

For the verification of the analytical process/system/method accuracy, the laboratory prepared two LCS samples. All spiked analyte percent recoveries met the data validation and the laboratory's internal acceptance criteria.

Surrogate Standard Recovery

All surrogate spike recoveries from the project samples met the data validation acceptance criteria with the exception of biphenyl-d10 in sample FOA-01-2 0-4". Recovery of this surrogate was

Data Validation Report Laboratory Report / Batch K2306181 Received September 19, 2003

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report September 30, 2003

nominally outside limits of 39-97% at 31%. Following the Guidelines, one surrogate can fall outside acceptance criteria if greater than 10% therefore, no qualifiers are required.

Internal Standard Recovery

All internal standards were reviewed for area and retention time criteria. All internal standards from the project samples and associated quality control samples met the method and data validation criteria.

Matrix Spike Recovery

Sample FOA-02-6 4-12" served as the Matrix Spike (MS) and Matrix Spike Duplicate (MSD) for the analytical batch. All percent recoveries and RPDs from the MS and MSD were within the laboratory's internal control limits.

Field Duplicate Results

No field duplicates were included in this analytical batch.

Attachment C

Barr Engineering Company 4700 West 77th Street • Minneapolis, MN 55435-4803 Phone 952-832-2600 • Fax 952-832-2601 • www.barr.com

Minneapolis MN · Hibbing MN · Duluth MN · Ann Arbor MI · Jefferson City MO

October 3, 2003

Sonia Vega
On-Scene Coordinator
U.S. Environmental Protection Agency, Region 5
Emergency Response Branch
520 Lafayette Road North
St. Paul, MN 55155-4194

Re: Validated Analytical Data
Laboratory Batch Number – E2300509
Docket No. V-W-'03-C-748
St. Regis Paper Company Site – Cass Lake, Minnesota

Dear Ms. Vega:

Barr has validated the analytical data contained in the laboratory batch number(s) identified above. Enclosed are the following documents related to these analytical data:

- Data Summary Table(s) {Attachment A}
- Validation Summary Report(s) {Attachment B}
- Complete analytical data package(s) from Columbia Analytical Services {Attachment C}

The data summary tables include the TEQ_{DF} -WHO₉₈ values calculated using the validated data. The TEQ calculation used a value of $\frac{1}{2}$ the detection limit for any congener that was not detected.

All data met the data quality objectives and are useable as reported. In accordance with the Unilateral Administrative Order, on October 3, 2003 International Paper authorized Columbia Analytical Services to analyze the archived sample J25-26 0-4 for PCDD/F since the adjacent sample J26-27 0-4 exceeds 1 ppb TEQ_{DF}-WHO₉₈.

If you have any questions concerning this information, please contact me at (952)832-2876 or Tom Ross of International Paper at (901)419-3899.

Sincerely,

Thomas D. Mattison Project Coordinator

cc: Tim Drexler, U.S. EPA – RPM (w/ Attachments A, B & C)
Mony Chabria and Tom Turner, U.S. EPA (w/ Attachments A & B)

Attachment A

Privileged and Confidential Attorney-Client Communication Attorney Work Product

Table 1

Validated Dioxin/Furan Concentration in Soil St. Regis Paper Company Site Docket No.: V-W-'03-C-748

[concentration in µg/Kg (ppb)]

Location	D25-26 0-4	DE8-9 0-4	DE8-9 4-12	E29-30 0-4	F22-23 0-4	F27-29 0-4
Date	8/8/2003	8/8/2003	8/8/2003	8/8/2003	8/8/2003	8'6/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup						
					1	1
2,3,7,8-TCDD	<0 0003	<0 0006	<0 00052	0 006	0 002	0 003
1,2,3,7,8-PeCDD	0 021	0 017	0 011	0 143	0 050	0 068
1,2.3.4,7,8-HxCDD	0 049	0 067	0 046	0 438	0 143	0 260
1,2,3,6,7,8-HxCDD	0 404	0 206	0 132	1 602	0 402	0 963
1,2,3,7,8,9-HxCDD	0 135	0 130	0 090	0 748	0313	0 295 1
1,2,3,4,6,7,8-HpCDD	12 855	8 5 1 6	6 274	49 437	13 533	30 852
OCDD	133 391	55 358 e	45 773 e	428 350	133 542	249 540 e
2,3,7.8-TCDF	0 004	0 001	0 0009 EMPC	0 014	0 003	0 026
1,2.3,7.8-PeCDF	0 038	0 006	0 004	0 086	0 017	0 111
2,3,4,7,8-PeCDF	0 033	0 007	0 005	0 094	0 0 1 9	0 113
1,2,3,4,7,8-HXCDF	0 372	0 068	0 053	0617 EMPC	0 228	0 723
1,2,3,6,7,8-HxCDF	0 112	0 023	0 017	0 309	0 080	0 233
1,2,3,7,8,9-HxCDF	<0 0269	0 002	0 0016 1 EMPC	0 030	0 029	0 041
2,3,4.6,7,8-HxCDF	0 176	0 045	0 036	0 566	0 151	0 366
1,2,3,4,6,7,8-HpCDF	3 413	1 131	0 949	12 178	2 411	7 167
1,2,3,4,7.8,9-HpCDF	0 360	0 106	0 075	0 806	0 276	0 639
OCDF	12 861	5 449	4 530	58 002	11 891	29 433
TCDD, Total	0 002	<0 0006	<0 00052	0 031	0 006	0 016
PeCDD, Total	0 082	0 074	0 046	0 547	0 175	0 279
HxCDD, Total	1 766	2 062	1 151	8 027	2 704	7 753
HpCDD, Total	28 397	22 841	13 136	92 152	33 768	75 414
TCDF, Total	0 030	0 009	0 006	0 251	0 053	0 143
PeCDF, Total	0 753	0 190	0 156	3 336	0 764	2 648
HxCDF, Total	3 317	1 336	1 020	9 664	4 802	7 251
HpCDF, Total	17 592	5 412	3 816	45 124	15 592	34 820
		 			<u> </u>	
$TEQ_{DF} - WHO_{98} (ND = 1/2 DL) (1)$	0 346	0 179	0 130	1 305	0 374	0 840

Data qualifiers and footnotes:

- e estimated value. Analyte exceeds upper end of the linear calibration range
- j estimated value. Analyte concentration is below method reporting limit and above non-detect.

EMPC - estimated maximum possible concentration.

Privileged and Confidential Attorney-Chent Communication Attorney Work Product

Table 1

Validated Dioxin/Furan Concentration in Soil St. Regis Paper Company Site Docket No.: V-W-'03-C-748

[concentration in µg/Kg (ppb)]

Location	F27-29 4-12	H25-26 0-4	126-27 0-4	127-29 0-4	J26-27 0-4	J26-27 4-12
Date	8/6/2003	8/5/2003	8/6/2003	8/6/2003	8/8/2003	8/8/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup						
2,3,7.8-TCDD	0 002	0 000553	< 0 00034	0 000791	0 002	0 000554)
1,2,3,7,8-PeCDD	0 032	0 008	0 004	0 021	0 083	0 026
1,2,3,4,7.8-HxCDD	0 123	0 024	0 010	0.054	0 313	0 089
1.2.3.6,7.8-HxCDD	0 274 j	0 108	0 064	0 320	5 251	3 090
1,2,3,7,8,9-HxCDD	0 242	0 049	0 022	0 112	0 830	0 255
1,2,3,4,6,7,8-HpCDD	11 364	2 344	2 496	11 694	158 645	112 241
OCDD	133 473 e	22 122 e	24 152	124 075	1504 395 e	1406 612 e
2,3,7,8-TCDF	0 006	0 001	<0 00098	0 004	0 065	0 037
1,2.3,7,8-PeCDF	0 064	0 008	0 007	0 030	0.412	0 209
2,3,4,7,8-PeCDF	0 065	0 010	0 009	0 035	0 755	0 308
1,2.3,4,7,8-H\CDF	0 460	0 144	0.061	0 308	9 161	4 746
1,2.3.6,7.8-HxCDF	0 128	0 032	0 016	0 076	1 489	0 757
1,2.3,7,8.9-HxCDF	<0 035	0 032	0 021	0 084 EMPC	0 0 7 9	0 049
2,3,4,6,7.8-HxCDF	0 229	0 056	0 026	0 129	2 451	1 382
1,2,3,4,6.7,8-HpCDF	2 489	0 530	0 450	2 713	50 506	30 098
1,2,3,4,7.8,9-HpCDF	0 447	0 080	0 045	0 207	4 332	2 502
OCDF	14 042	1 686	1 682	12 664	209 140 e	171 091 e
TCDD, Total	0 004	0 002	<0 00034	0 003	0 027	0 009
PeCDD, Total	0 111	0 039	0 014	0 082	0 253	0 070
HxCDD, Total	2 747	0 548	0 257	1 388	12 278	5 265
HpCDD, Total	46 496	6 977	4 105	23 525	70 667	71 507
TCDF, Total	0.052	0 010	0 004	0 047	0 338	0 144
PeCDF. Total	1 686	0 229	0 154	0 759	9 483	3 986
HxCDF, Total	4 152	1 909	0 926	5 721	24 238	13 173
HpCDF, Total	30 590	3 558	2 094	13 912	47 376	42 756
		<u> </u>				
$TEQ_{DF} - WHO_{98} (ND = 1/2 DL) (1)$	0 370	0 120	0 060	0 310	4 753	2 837

Data qualifiers and footnotes:

- e estimated value Analyte exceeds upper end of the linear calibration range
- 3 estimated value Analyte concentration is below method reporting limit and above non-detect.

EMPC - estimated maximum possible concentration.

Privileged and Confidential Attorney-Client Communication Attorney Work Product

Table 1

Validated Dioxin/Furan Concentration in Soil St. Regis Paper Company Site Docket No.: V-W-'03-C-748

[concentration in µg/Kg (ppb)]

Location	J26-27 12-24	J27-29 0-4	J27-29 4-12	J27-29 12-24	J29-30 0-4
Date	8/8/2003	8/8/2003	8/8/2003	8/8/2003	8/6/2003
Lab .	CAS	CAS	CAS	CAS	CAS
Dup				!	
2,3,7.8-TCDD	<0 00016	0 002	< 0 000162	< 0 00013	0 0017 EMPC
1,2,3,7,8-PeCDD	0 0019 j	0 033	<0.00017	0 00055 j	0 046
1,2,3,4,7,8-HxCDD	0 0086 EMPC	0 071	0 00076 j	0 0014 j	0 166
1,2,3,6.7,8-HxCDD	0 189	2 426	0 009	0 043	3 072
1,2,3,7,8,9-HxCDD	0 023	0 243	0 00111	0 003	0 389
1,2,3,4.6.7,8-HpCDD	5 335	79 840 e	0 282	1 096	186 701
OCDD	52 529 e	747 571 e	2 208 e	8 740	2182 551 e
2,3,7,8-TCDF	0 004	0 010	< 0 000163	<0.0012	0 014
1,2,3,7,8-PeCDF	0 023	0 127	<0 00016	0 0016 j	0 123
2,3,4,7.8-PeCDF	0 029	0 181	0 00054 յ	0 003	0 140
1,2,3,4,7,8-HXCDF	0 252	2 798	0 008	0 036	2 625
1,2.3,6,7,8-HxCDF	0 048	0 386	0 0013 j	0 006	0 262
1,2,3,7,8,9-HxCDF	< 0 0103	0 033 EMPC	<0 00061	<0 00061	0 063
2,3,4,6,7,8-HxCDF	0 070	0 844	0 003	0 012	0 887
1,2,3,4.6.7.8-HpCDF	1 515	28 143	0 116	0 490	28 274
1,2,3,4,7,8,9-HpCDF	0 089	2 203	0 012	0 062	2 125
OCDF	9 036	154 944 e	0 624	2 748	132 899
TCDD, Total	0 001	0 018	<0 00016	< 0.00013	0 010
PeCDD, Total	0 003	0 138	<0 00017	0 001	0 183
HxCDD, Total	0 487	5 660	0 021	0 095	5 045
HpCDD, Total	9 989	66 753	0 461	2 229	82 565
TCDF, Total	0 015	0 113	<0 00016	0 004	0 116
PeCDF, Total	0 420	2 748	0 006	0 033	2 490
HxCDF, Total	2 976	11 552	0 124	0 608	8 468
HpCDF. Total	8 349	39 244	0 572	3 440	53 718
$TEQ_{DF} - WHO_{98} (ND = 1/2 DL) (1)$	0 153	2 005	0 007	0 029	3 300

Data qualifiers and footnotes:

- e estimated value Analyte exceeds upper end of the linear calibration range
- j estimated value. Analyte concentration is below method reporting limit and above non-detect.

EMPC - estimated maximum possible concentration.

Attachment B

Data Validation Report – Dioxin/Furan Laboratory Report / Batch <u>E2300509</u> Received September 22, 2003

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Data Validation Report: October 2, 2003

The data validation of the Columbia Analytical Services, Inc. (CAS) laboratory data for the dioxin and furan (CDD/CDF) analysis of the Cass Lake Removal Site Evaluation and Supplemental Assessment soil samples contained in the aforementioned report is complete as detailed below

The analytical data were reviewed in accordance with the U.S. EPA Analytical Operations Data Quality Center (AOC) National Functional Guidelines for Chlorinated Dioxin/Furan Data Review, Draft Final dated March, 2002 (Guidelines) as specified in the project-specific Quality Assurance Project Plan (QAPP, Barr, June 2003). In addition to the Guidelines, specific SW-846 Method 8290 criteria were also considered as slight differences in some of the performance aspects exist between the documents. In general, the areas covered by the validation process include:

- Overall assessment
- Holding times, preservation and storage
- Mass calibration and mass spectrometer resolution
- Window defining mix
- Initial calibration
- Instrument stability and continuing calibration verification
- Method blank analysis
- Laboratory control samples (ongoing precision/accuracy)
- Second column confirmation

Data Validation Report Laboratory Report / Batch <u>E2300509</u> Received <u>September 22, 2003</u>

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 2 2003

Eleven soil sample and one field blank results are contained in this laboratory report. They are as follows

J26-27 0-4"	J26-27 4-12"	J26-27 12-24"	J27-29 0-4"
J27-29 4-10"	J27-29 12-24"	E29-30 0-4"	D25-26 0-4"
F22-23 0-4"	DE8-9 0-4"	DE8-9 4-12"	FB-2

Overall Assessment

No qualifiers were assigned to the sample results contained in laboratory report E2300509 as a result of the data validation process. All data met the data quality objectives (DQOs) and are useable as reported.

Holding Times, Preservation and Storage

The samples were collected August 8, 2003, cooled to 4°C and sent to the laboratory. Per the chain-of-custody and subsequent laboratory acknowledgement receipt forms, the laboratory received the samples August 12, 2003 in acceptable condition and at 4°C. It should be noted that discrepancies between Method 8290 and the Guidelines exist for the technical extraction and analysis holding times. The Guidelines recommend that soil samples be extracted within 10 days of receipt and analyzed within 30 days. Alternately, Method 8290 and the QAPP for the project indicate that 30-day extraction/45 day analysis holding times apply. Method 8290 also states that these holding times are only recommendations as dioxins and furans are very stable in a variety of matrices. All samples were extracted and analyzed within 30 days. No qualifiers are applied.

Mass Calibration and Mass Spectrometer Resolution

Mass calibration and mass spectrometer resolution (MC/MSR) checks are required to ensure that the mass calibration and mass spectrometer resolution is set at a $\geq 10,000$ resolving power. This resolution is confirmed at the beginning and end of every 12-hour analysis period

It should be noted that the Guidelines contain language that refers to evaluation techniques that due to upgrades in analytical systems software, are obsolete at CASs Houston facility. Specifically, the evaluation of the resolution by the measure of deviation between the exact m/z and the theoretical m/z at less than 5 ppm has been replaced with an instrumentation function that implicitly sets the

St Regis Paper Company Superfund Site - Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 2 2003

error to zero at all calibration points so there is no longer any need to use peak matching conditions to verify the exact mass. Therefore, resolving power is evaluated by close review of the resolution of PFK peak profiles where high mass ion (380 9760) and low mass ion (304 9824) are reported

CAS performed the MC/MSRs at the appropriate frequency and obtained acceptable results for the PFK calibrant confirming MC/MSRs at a resolving power of 10,000. Note CAS used three instrument systems to analyze the project samples and provided appropriate documentation from the three systems in the raw data package. All system's documentation were evaluated during the data validation process.

Window Defining Mix

The window defining mix (WDM) is necessary to establish the appropriate switching times for the selection ion group descriptors. As stated in the Guidelines, the frequency of the WDM is once every 12 hours prior to calibration verification. However, Method 8290, Section 8 3 2 2 2 allows the laboratory, if running consecutive 12-hour shifts, to use the ending calibration verification (if all acceptance criteria are met) of the first 12-hour analysis period as the beginning calibration verification of the second 12-hour analysis period. In these cases, the WDM was analyzed after the calibration verification but still falls within the 12-hour analytical period. While the Guidelines indicate the WDM must be analyzed prior to the calibration verification sample, CAS's order of analysis for the system performance check samples did not appear to affect the overall system instrumentation and no qualifiers have been applied

CAS performed the WDM analysis for every 12-hour sample analysis period and presented the acceptable switching times for each homologue group on the corresponding Form 5

Chromatographic Resolution

This check is performed to ascertain the separation of closely eluting dioxin/furan isomers. This is performed using SICP (selected ion current profile) of each isomer. The criteria requires that the 2,3,7,8-TCDD and the 1,2,3,8-TCDD peaks (for the DB-5 column) and the 2,3,7,8-TCDF and the 2,3,4,7-TCDF peaks (for the DB-225 column) be resolved with a valley of $\leq 25\%$

St Regis Paper Company Superfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 2 2003

CAS provided summary peak to valley results as specified above on each Form 5 In each case, the ≤ 25% criterion was met. The raw chromatograms were also reviewed to confirm this information

Initial Calibration

Satisfactory instrument calibration is crucial to ensuring the accurate qualitative and quantitative results for each of the CDD/CDF compounds. Initial calibration procedures define the linear range and mean relative response factors that will be used for sample quantitation.

All of the initial calibration summary information met all the relevant acceptance criteria including the relative responses (RRFs) of <25% for native compounds and <35% for the labeled compounds, ion abundance ratios (IARs) within +/-15%, absolute retention times within the WDM windows, and signal-to-noise ratios of >10:1.

Initial calibration for the 2,3,7,8-TCDF second column confirmation instrument occurred on August 6, 2003 The initial calibration data met all acceptance criteria and is included in the Second Column Confirmation section of this report.

Instrument Stability and Continuing Calibration Verification

Instrument stability is an important aspect of this analytical system. Ongoing calibration verification using a CS-3 standard is performed once every 12-hour period. This standard is used to evaluate the isomer retention times, ion abundance criteria, sensitivity and ongoing calibration criteria. The continuing calibration verification summary information met all relevant acceptance criteria including the frequency of the continuing calibration verifications at the both beginning and ending of each 12-hour analytical run, the RRFs %D within <25% for native compounds and <35% for labeled compounds of initial calibration, the IARs within the +/-15%, and signal-to-noise of >10·1.

CAS met the requirements of the absolute retention times (RT) for the first internal standard (13C-1,2,3,4-TCDD) of \pm 15 seconds (of the initial calibration standard) and the associated >25 0 minute RT requirement for each of the 12-hour CS3 calibration verification standards. The relative retention time and ion abundance criteria were also met for each of the native and labeled CDD/CDFs in the ongoing CS-3 standard results.

Data Validation Report Laboratory Report / Batch <u>E2300509</u> Received <u>September 22, 2003</u>

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 2 2003

The relative response factor (RRF) criterion of <25% difference between CS-3 native compounds as compared to the initial calibration data was acceptable for instrument A (August 23 and August 25), for instrument C (August 22 and September 15), and for instrument B (August 17. August 18. August 22, and August 23) analytical runs. For August 23-24, (instrument B), the exceedence of the 25% ending calibration verification standard criterion required the laboratory to provide the mean RRFs (using Form 6) from the beginning and ending calibration verification analysis and the mean factors were then employed for quantitation, as specified in Method 8290, Section 8.3.2.4 and 7.7.4.4. For the calibration verification of instrument B performed on September 15, the %D RRF criteria was exceeded for 1.2,3,7,8,9-HxCDF. However the data for 1,2,3,7,8,9-HxCDF from the September 15 run on instrument B was not used, since the samples were previously run and the 1.2,3,7,8,9-HxCDF data form the original run was used for the TEF calculations. No data qualifiers were assigned to the project data

While the Guidelines indicate review of the relative responses (RR), Method 8290 has no such requirement, as RR's are not used in final quantitation of sample results, therefore, no review was performed

Review of the above elements indicates a high level of instrument stability and no qualifiers are required

Method Blank Analyses

Laboratory method blank analyses are used to determine the existence and magnitude of contamination introduced at the laboratory

CAS's analysis of method blank samples met all acceptance criteria. No positive concentrations were reported in the method blanks above the CRQL. Trace concentrations of OCDD and HpCDD were detected in one or more of the method blanks associated with the analytical batch. However, associated sample concentrations are far greater than the blank concentration, therefore, no data requires qualification. All method blank samples were prepared and analyzed at the appropriate frequency.

Data Validation Report Laboratory Report / Batch <u>E2300509</u> Received <u>September 22, 2003</u>

St Regis Paper Company Superfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 2 2003

Laboratory Control Samples (Ongoing Precision/Accuracy)

The laboratory is required to prepare and analyze a sample of spiked reference matrix to measures the accuracy of the analytical process/system method

CAS performed laboratory control sample (LCS) analyses at the appropriate frequency for the analytical batch. All LCS results met associated acceptance criteria for percent recovery of the spiked concentrations as presented in Table 6 of Exhibit D of the Guidelines. All RRTs and IARs were also acceptable in the LCS samples associated with the analytical batch indicating an in-control analytical system.

Labeled Compound Recovery (Surrogate Standard Recovery)

Because the introduced labeled compounds (CDD/CDFs) serve as the isotopic quantitative mechanism for this method, recoveries should be closely monitored for laboratory and method effectiveness

CAS met the minimum acceptance criteria for the labeled compound recoveries as presented in Table 7 of Exhibit D of the Guidelines—These recovery windows are wider that CAS's internally generated acceptance criteria. Labeled compound recoveries qualified with a "Y" in the original data package indicate the recovery falls outside the laboratory-generated acceptance limits—None of these minor failures exceed the Guidelines limits, therefore, no data requires qualification

Second Column Confirmation

A second column confirmation of the 2,3,7.8-TCDF isomer is required by both Methods 1613 and 8290 due to a known lack of isomer specificity for this isomer on the DB-5 or equivalent column. All operating conditions of the second column analytical system must be identical to those of the primary system

CAS performed the second column confirmational analysis when the original analytical run had positive 2,3,7,8-TCDF detections. All performance criteria (as previously detailed above) were met prior to and during the confirmational analytical runs.

Barr Engineering Company 4700 West 77th Street • Minneapolis MN 55435-4803 Phone 952-832-2600 • Fax 952-832-2601 • www.barr.com

Minneapolis MN · Hibbing MN · Duluth MN · Ann Arbor MI · Jefferson City MO

October 9, 2003

Sonia Vega
On-Scene Coordinator
U S Environmental Protection Agency, Region 5
Emergency Response Branch
520 Lafayette Road North
St Paul, MN 55155-4194

Re: Validated Analytical Data
Laboratory Batch Number – E2300519, K2306052, K2305943, K2306160
Docket No. V-W-'03-C-748
St. Regis Paper Company Site – Cass Lake, Minnesota

Dear Ms Vega:

Barr has validated the analytical data contained in the laboratory batch number(s) identified above. Enclosed are the following documents related to these analytical data

- Data Summary Table(s) {Attachment A}
- Validation Summary Report(s) {Attachment B}
- Complete analytical data package(s) from Columbia Analytical Services {Attachment C}

The data summary tables include the TEQ_{DF} -WHO₉₈ values calculated using the validated data. The TEQ calculation used a value of $\frac{1}{2}$ the detection limit for any congener that was not detected.

All data met the data quality objectives and are useable as reported. If you have any questions concerning this information, please contact me at (952)832-2876 or Tom Ross of International Paper at (901)419-3899.

Sincerely.

Thomas D Mattison Project Coordinator

cc: Tim Drexler, U.S. EPA – RPM (w/ Attachments A, B & C)

Mony Chabria and Tom Turner, U.S. EPA (w/ Attachments A & B)

Attachment A

Table 1

[concentration in µg/Kg (ppb)]

Location	F27-29 0-4	F27-29 4-12	H25-26 0-4	126-27 9-4	127-29 0-4	J29-30 0-4
Date	8/6/2003	8/6/2003	8/5/2003	8/6/2003	8/6/2003	8/6/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup	i				i	
2,3,7,8-TCDD	0 003	0 002	0 00055 j	< 0 00034	0 000791	0,0017 EMPC
1,2,3,7.8-PeCDD	0 068	0 032	0 008	0 004	0 021	0 046
1,2,3,4.7,8-HxCDD	0 260	0 123	0 024	0 010	1 0 054	0 166
1,2,3,6,7,8-HxCDD	0 963	0 274 j	0 108	0 064	0 320	3 072
1,2,3,7.8,9-HxCDD	0 2953	0 242	0 049	0 022	0 112	0 389
1,2,3,4,6,7.8-HpCDD	30 852	11 364	2 344	2 496	11 694	186 701
OCDD	249 540 e	133 473 e	22 122 e	24 152	124 075	2182 551 e
2,3,7,8-TCDF	0 026	0 006	0 001	<0 00098	0 004	0 014
1,2,3,7,8-PeCDF	1110	0 064	0 008	0 007	0 030	0 123
2,3,4,7.8-PeCDF	0 113	0 065	0 010	0 009	0 035	0 140
1,2,3,4,7,8-HXCDF	0 723	0 460	0 144	0 061	0 308	2 625
1,2,3,6,7,8-HxCDF	0 233	0 128	0 032	0 016	0 076	0 262
1,2,3,7.8,9-HxCDF	0 041	<0 035	0 032	0 021	0 084 EMPC	0 063
2,3,4,6,7,8-HxCDF	0 366	0 229	0 056	0 026	0 129	0 887
1,2,3,4,6,7,8-HpCDF	7 167	2 489	0 530	0 450	2 713	28 274
1,2,3,4,7,8,9-HpCDF	0 639	0 447	0 080	0 045	0 207	2 125
OCDF	29 433	14 042	1 686	1 682	12 664	132 899
TCDD, Total	0 016	0 004	0 002	< 0 00034	0 003	0 010
PeCDD, Total	0 279	0 111	0 039	0 014	0 082	0 183
HxCDD, Total	7 753	2 747	0 548	0 257	1 388	5 045
HpCDD, Total	75 414	46 496	6 977	4 105	23 525	82 565
TCDF, Total	0 143	0 052	0 010	0 004	0 047	0116
PeCDF, Total	2 648	1 686	0 229	0 154	0 759	2 490
HxCDF, Total	7 251	4 152	1 909	0 926	5 721	8 468
HpCDF, Total	34 820	30 590	3 558	2 094	13 912	53 718
$TEO_{DF} - WHO_{98} (ND = 1/2 DL) (1)$	0 840	0 370	0 120	0 060	0 310	3 300

Data qualifiers and footnotes

- e estimated value. Analyte exceeds upper end of the linear calibration range
- J estimated value. Analyte concentration is below method reporting limit and above non-detect.

EMPC - estimated maximum possible concentration.

Table 1

[concentration in µg/Kg (ppb)]

Location	D25-26 0-4	DE8-9 0-4	DE8-9 4-12	E29-30 0-4	F22-23 0-4	J26-27 0-4
Date	8/8/2003	8/8/2003	8/8/2003	8/8/2003	8/8 2003	8/8/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup			_			1
		ĺ				
2,3,7.8-TCDD	<0.0003	<0 0006	<0 00052	0 006	0 002	0 002
1.2,3,7,8-PeCDD	0 021	0 017	0 011	0 143	0 050	0.083
1,2,3,4,7,8-HxCDD	0.049	0 067	0 046	0 438	0 143	0.313
1,2,3,6.7,8-HxCDD	0 404	0 206	0 132	1 602	0 402	5 251
1,2,3,7,8,9-HxCDD	0 135	0 130	0 090	0 748	0 313	6 830
1,2,3,4,6,7,8-HpCDD	12 855	8 516	6 274	49 437	13 533	158 645
OCDD	133 391	55 358 e	45 773 e	428 350	133 542	1504 395 e
2,3,7.8-TCDF	0 004	0 001	0 0009 EMPC	0 014	0 003	0 065
1,2,3,7.8-PeCDF	0 038	0 006	0 004	0 086	0 017	0 412
2,3,4,7,8-PeCDF	0 033	0 007	0 005	0 094	0 019	0 755
1,2,3,4,7,8-HXCDF	0 372	0 068	0 053	0 617 EMPC	0 228	9 161
1.2.3.6,7.8-HxCDF	0 112	0 023	0 017	0 309	0 080	1 489
1,2,3,7,8,9-HxCDF	<0 0269	0 002	0 0016 j EMPC	0 030	0 029	0 079
2.3.4.6.7.8-HxCDF	0 176	0 045	0 036	0 566	0 151	2 451
1.2.3,4.6,7.8-HpCDF	3 413	1 131	0 949	12 178	2 411	50 506
1,2,3,4,7,8,9-HpCDF	0 360	0 106	0 075	0 806	0 276	4 332
OCDF	12 861	5 449	4 530	58 002	11 891	209 140 e
TCDD, Total	0 002	<0 0006	<0 00052	0 031	0 006	0 027
PeCDD, Total	0 082	0 074	0 046	0 547	0 175	0 253
HaCDD, Total	1 766	2 062	1 151	8 027	2 704	12 278
HpCDD, Total	28 397	22 841	13 136	92 152	33 768	70 667
TCDF, Total	0 030	0 009	0 006	0.251	0 053	0 338
PeCDF, Total	0 753	0 190	0 156	3 336	0 764	9 483
HxCDF, Total	3 317	1.336	1 020	9 664	4 802	24 238
HpCDF, Total	17 592	5 412	3 816	45 124	15 592	47 376
$TEQ_{DF} - WHO_{98} (ND = 1/2 DL) (1)$	0 346	0.179	0 130	1 305	0 374	4 753

Data qualifiers and footnotes:

- e estimated value. Analyte exceeds upper end of the linear calibration range
- j estimated value. Analyte concentration is below method reporting limit and above non-detect.

EMPC - estimated maximum possible concentration.

Table 1

[concentration in µg/Kg (ppb)]

Location	J26-27 4-12	J26-27 12-24	J27-29 0-4	J27-29 4-12	J27-29 12-24	SW-44 0-4
Date	8/8/2003	8/8/2003	8/8/2003	8/8/2003	8/8 2003	8/12/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup						<u> </u>
		<u> </u>	<u> </u>			
2,3.7,8-TCDD	ر 0 000554	< 0 00016	0 002	< 0 000162	< 0 00013	<0 00081
1,2,3,7,8-PeCDD	0 026	0 0019 j	0 033	<0 00017	0 00055 1	0 017
1.2,3,4,7.8-HxCDD	0.089	0 0086 EMPC	0 0 7 1	0 00076 1	0 00141	0.056
1,2,3,6,7,8-HxCDD	3 090	0 189	2 426	0 009	0 043	0 216
1,2,3,7,8,9-HxCDD	0 255	0 023	0 243	0 0011 1	0 003	0 105
1,2,3,4,6,7,8-HpCDD	112 241	5 335	79 840 e	0 282	1 096	8 1 1 9
OCDD	1406 612 e	52 529 e	747 571 e	2 208 e	8 740	72 045
2,3,7,8-TCDF	0 037	0 004	0 010	<0 000163	<0 0012	<0 0010
1,2.3.7,8-PeCDF	0 209	0 023	0 127	<0 00016	0 0016 j	0 008
2,3,4.7,8-PeCDF	0 308	0 029	0 181	0 00054 j	0 003	0 008
1,2,3,4,7,8-HXCDF	4 746	0 252	2 798	0 008	0 036	0 081
1,2,3,6,7,8-HxCDF	0 757	0 048	0 386	0 0013 j	0 006	0 026
1,2,3,7,8,9-HxCDF	0 049	<0 0103	0 033 EMPC	<0 00061	<0 00061	<0.016
2.3.4,6,7,8-HxCDF	1 382	0 070	0 844	0 003	0 012	0 054
1,2,3,4,6,7,8-HpCDF	30 098	1 515	28 143	0 116	0 490	0 967
1.2,3,4,7,8,9-HpCDF	2 502	0 089	2 203	0 012	0 062	0 184
OCDF	171 091 e	9 036	154 944 e	0 624	2 748	6 763
TCDD, Total	0 009	0 001	0 018	<0 00016	< 0 00013	<0 00081
PeCDD, Total	0 070	0 003	0 138	<0 00017	0 001	0 050
HxCDD, Total	5 265	0 487	5 660	0 021	0 095	0 923
HpCDD, Total	71 507	9 989	66 753	0 461	2 229	14 968
TCDF, Total	0 144	0.015	0 113	<0 00016	0 004	0 010
PeCDF, Total	3 986	0 420	2 748	0 006	0 033	0 195
HxCDF, Total	13 173	2 976	11 552	0 124	0 608	1 545
HpCDF, Total	42 756	8 349	39 244	0 572	3 440	6 775
$TEQ_{DF} - WHO_{98} (ND = 1/2 DL) (1)$	2 837	0 153	2 005	0 007	0 029	0 177

Data qualifiers and footnotes:

- e estimated value. Analyte exceeds upper end of the linear calibration range
- 1 estimated value. Analyte concentration is below method reporting limit and above non-detect.

EMPC - estimated maximum possible concentration

Table 1

[concentration in µg/Kg (ppb)]

Location	SW-7 0-4	SW-7 4-12	SW-41 0-4	SW-42 0-4	FOA-02-1-0-4	FOA-02-2-0-4
Date	8/11/2003	8/11/2003	8/11/2003	8/12/2003	8/12/2003	8/12/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup						!
						<u> </u>
2,3,7,8-TCDD	<0 00081	<0 000528	0 002	<0 000468	0 004	0 001
1,2,3,7,8-PeCDD	0 041	0 017	0 041	0 021	0 089	0 013
1,2,3,4,7,8-HxCDD	0 127	0 054	0 138	0 068	0 288	0 035
1,2,3,6,7,8-HxCDD	1 006 J	0 774 1	1 0191	0 467	0 774	0 289
1,2.3,7,8,9-HxCDD	0 334	0 165	0 348	0 192	ر 352 0	0 093
1,2,3,4,6,7,8-HpCDD	51 621	45 229	55 172	12 112	27 598	4 794
OCDD	459 098	439 818	+ 517 194 e	115 280	238 156	45 6 b
2,3,7.8-TCDF	0 007	0 005	0 013	0 005	0 008	0 006
1,2.3,7,8-PeCDF	0 023	0 018	0 041	0 019	0 049	0 026
2,3,4,7,8-PeCDF	0 034	0 026	0 064	0 024	0 060	0 031
1,2,3,4,7,8-HXCDF	0 279	0 226	0 426	0 134	0 323 j EMPC	0 300
1,2,3,6,7,8-HxCDF	0 063	0 036	0 079	0 036	0 202	0 071
1,2,3,7,8,9-HxCDF	<0 0216	<0 022	0 010	0 004	0 106 EMPC	0 007 EMPC
2,3,4,6,7,8-HxCDF	0 142	0 082	0 183	0 065	0 342	0 118
1.2,3,4,6,7,8-HpCDF	5 202	4 306	6 214	1 506	4 924	1 158
1,2,3,4,7,8,9-HpCDF	0 329 j EMPC	< 0 664	<1 040	0 187	< 0 850	0 191
OCDF	38 912	36 458	45 538	8 344	26 012	4 099
TCDD. Total	0 007	0.007	0 022	0 005	0 0 1 6	0 002
PeCDD, Total	0 208	0 094	0 223	0 114	0 269	0 049
HxCDD, Total	4 712	3 459	5 779	2 600	5 161	1 043
HpCDD, Total	81 045	69 661	99 057	32 082	33 783	12 457
TCDF, Total	0.078	0 053	0 164	0 046	0 077	0 031
PeCDF, Total	0 733	0 489	1 127	0.511	1 462	0 560
HxCDF, Total	5 757	4 649	3 168	2 720	5 208	3 822
HpCDF, Total	35 423	32 188	47 660	10 232	19 113	7 067
TEQ_{DF} - WHO ₃₈ (ND = 1/2 DL) (1)	0 878	0 713	0 974	0 282	0 721	0 189

Data qualifiers and footnotes:

- e estimated value. Analyte exceeds upper end of the linear calibration range
- 1 estimated value. Analyte concentration is below method reporting limit and above non-detect.

EMPC - estimated maximum possible concentration.

Table 1

[concentration in µg/Kg (ppb)]

	FOA-02-2-4-	T	-	<u> </u>		<u> </u>
Location	12	FOA-02-3-0-4	FOA-02-4-0-4	FOA-02-5-0-4	FOA-02-6-0-4	FOA-02-6-4-12
Date	8/12/2003	8/12/2003	8/12 2003	8 12/2003	8/12 2003	8/12/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup			Ĺ			
2250 7500	-0.000001				0 00083 j	-0.000111
2,3,7.8-TCDD	<0.000201	<0.000131	<0.000193	0 001	EMPC	<0.000111
1,2,3.7,8-PeCDD	0 006	0 003	0 008	0 014	0 010	0 000995 j
1,2,3,4,7,8-HxCDD	0 018	0 012	0 029	0 031	0 029	0 003
1,2,3,6,7,8-HxCDD	0 094	0 041	0 204	0 093	0 086	0 010
1,2,3,7,8,9-HxCDD	0 045	0 021	0 062	0 074	0 080	0 008
1,2,3,4,6,7,8-HpCDD	4 349	1 881	6 506	3 709	3 315	0 408
OCDD	41.2 b	15 875	58 9 e	32 69 b	27 0 eb	3 31 e
2,3,7,8-TCDF	<0 00066 j	0 001	1000	<0 00035	<0 00044 j	<0 000098
1,2,3,7,8-PeCDF	0 006	ر 0 0010	0 009	0 0015 j	0 0021 j	EMPC و 0 00024
2,3,4,7,8-PeCDF	0 006	0 0013 j	0 0 1 0	0 0013 j	0 0020 յ	0 00030 j EMPC
1,2,3,4,7,8-HXCDF	0 072	0 017	0 115	0 018	0 022	0 003
1,2,3.6,7,8-HxCDF	0 021	0 006	0 028	0 011	0 012	ر 0 0015
1,2,3,7,8,9-HxCDF	ر 0 002 و	ر 0002 ر	<0 00011	0 0032	<0 0013	<0 00034
2,3.4,6.7,8-HxCDF	0 035	0 011	0 050	0 025	0 022	0 0029 j
1,2,3,4,6,7,8-HpCDF	0 960	0 274	1 227	0 417	0 440	0 066
1,2,3,4,7,8,9-HpCDF	0 062	0 026	0112	0 050	0 046	0 007
OCDF	4 237	1 563	7 276	2 550	2 750	0 319
TCDD, Total	0 001	< 0 00013	<0 00019	0 006	0 021	<0 000111
PeCDD, Total	0 021	0 007	0 024	0 055	0 114	0 007
HxCDD, Total	0 402	0 181	0 694	0 488	0 698	0 063
HpCDD, Total	5 318	2 694	11 401	5 759	5 276	0 655
TCDF, Total	0 007	0 003	0 005	0 007	0 013	0 001
PeCDF, Total	0 142	0 040	0 178	0 061	0 081	0 009
HxCDF, Total	1 048	0 290	0 746	0 422	0 465	0 067
HpCDF, Total	2 834	1 174	6 0 1 5	1 745	1 788	0 265
$TEQ_{DF} - WHO_{98} (ND = 1/2 DL) (1)$	0 097	0 038	0 147	0 087	0 078	0 009

Data qualifiers and footnotes:

- e estimated value. Analyte exceeds upper end of the linear calibration range
- j estimated value. Analyte concentration is below method reporting limit and above non-detect.

EMPC - estimated maximum possible concentration.

Table 3
Validated PAH/PCP Concentrations in Groundwater
St. Regis Company Site
Docket No: V-W-'03-C-748

(concentrations in ug/L)

Location	102 Basswood	104 Norway	127 1st	15611 61st	218 Elm	233 2nd St.	514 1st St.	514 1st St.	521 1st
Date	8/9/2003	8/9/2003	8/9/2003	8/9/2003	8/9/2003	8/15/2003	8/12/2003	8/12/2003	8/9/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS
Dup								DUP	
Benzo(a)anthracene	<0 020	< 0 0 2 0	<0.020	<0.020	< 0 020	<0 020	<0 020	<0 020	< 0 020
Chrysene	<0 020	< 0 0 2 0	< 0 020	< 0 020	< 0 020	<0.020	< 0 020	<0 020	<0 020
Benzo(b)fluoranthene	<0 020	<0 020	< 0 020	<0 020	< 0 020	<0.020	<0 020	<0 020	<0.020
Benzo(k)fluoranthene	<0 020	<0.020	<0 020	<0 020	< 0 020	<0.020	<0 020	<0 020	<0.020
Benzo(a)pyrene	<0 020	< 0 020	< 0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020
Indeno(1,2,3-cd)pyrene	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020
Dibenz(a,h)anthracene	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020
Naphthalene	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020
2-Methy Inaphthalene	<0 020	<0 020	<0 020	<0 020	<0 020	<0.020	<0 020	<0 020	<0.020
Acenaphthylene	<0 020	< 0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020
Acenaphthene	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020
Fluorene	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020
Phenanthrene	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020
Anthracene	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020
Fluoranthene	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020
Pyrene	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020
Benzo(g,h,i)perylene	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020
Pentachlorophenol	< 0 60	< 0 60	< 0 60	< 0 60	<0 60 *	< 0 60	< 0 60	< 0 60	< 0 60

^{* -} estiamted value QA/QC value not met

Attachment B

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report: October 7, 2003

The data validation of the Columbia Analytical Services, Inc. (CAS) laboratory data for the dioxin and furan (CDD/CDF) analysis of the Cass Lake Remov. I Site Evaluation and Supplemental Assessment soil samples contained in the aforementioned report is complete as detailed below

The analytical data were reviewed in accordance with the U.S. EPA Analytical Operations Data Quality Center (AOC) National Functional Guidelines for Chlorinated Dioxin/Furan Data Review, Draft Final dated March, 2002 (Guidelines) as specified in the project-specific Quality Assurance Project Plan (QAPP, Barr, June 2003) In addition to the Guidelines, specific SW-846 Method 8290 criteria were also considered as slight differences in some of the performance aspects exist between the documents. In general, the areas covered by the validation process include

- Overall assessment
- Holding times, preservation and storage
- Mass calibration and mass spectrometer resolution
- Window defining mix
- Instrument stability
- Initial calibration and ongoing calibration verification
- Method blank analysis
- Laboratory control samples (ongoing precision/accuracy)
- Second column confirmation

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 7, 2003

Fourteen soil sample results are contained in this laboratory report. They are as follows

SW-7 0-4"	SW-7 4-12"	SW-41 0-4"	SW-42 0-4"	SW 44 0-4"
SW-7 4-12"D	FOA-02-1 0-4"	FOA-02-2 0-4"	FOA 02-2 4-12"	FOA-02-3 0-4"
FOA-02-4 0-4"	FOA-02-5 0-4"	FOA-02-6 0-4"	FOA-02-6 4-12"	

Overall Assessment

No qualifiers were assigned to the sample results contained in laboratory report E2300519 as a result of the data validation process. All data met the data quality objective (DQOs) and are useable as reported.

Holding Times, Preservation and Storage

The samples were collected August 11th and 12th, 2003, cooled to 4°C and sent to the laboratory. Per the chain-of-custody and subsequent laboratory acknowledgement receipt forms, the laboratory received the samples were received in acceptable condition. It should be noted that discrepancies between Method 8290 and the Guidelines exist for the technical extraction and analysis holding times. The Guidelines recommend that soil samples be extracted within 10 days of receipt and analyzed within 30 days. Alternately, Method 8290 and the QAPP for the project indicate that 30 day extraction/45 day analysis holding times apply. Method 8290 also states that these holding times are only recommendations as dioxins and furans are very stable in a variety of matrices. All samples were extracted and analyzed within 30 days. No qualifiers are applied.

Mass Calibration and Mass Spectrometer Resolution

Mass calibration and mass spectrometer resolution (MC/MSR) checks are required to ensure that the mass calibration and mass spectrometer resolution is set at a \geq 10,000 resolving power. This resolution is confirmed at the beginning and end of every 12-hour analysis period.

It should be noted that the Guidelines contain language that refers to evaluation techniques that due to upgrades in analytical systems software, are obsolete at CASs Houston facility. Specifically, the evaluation of the resolution by the measure of deviation between the exact m/z and the theoretical

St Regis Paper Company Superfund Site - Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 7 2003

m/z at less than 5 ppm has been replaced with an instrumentation function that implicitly sets the error to zero at all calibration points so there is no longer any need to use peak matching conditions to verify the exact mass. Therefore, resolving power is evaluated by close review of the resolution of PFK peak profiles where high mass ion (380 9760) and low mass ion (304 9824) are reported

CAS performed the MC/MSR at the appropriate frequency and obtained acceptable results for the PFK calibrant confirming MC/MSR at a resolving power of 10,000

Window Defining Mix

The window defining mix (WDM) is necessary to establish the appropriate switching times for the selection ion group descriptors. As stated in the Guidelines, the frequency of the WDM is once every 12 hours prior to calibration verification. However, Method 8290, Section 8 3 2 2 2 allows the laboratory, if running consecutive 12-hour shifts, to use the ending calibration verification (if all acceptance criteria are met) of the first 12-hour analysis period as the beginning calibration verification of the second 12-hour analysis period. In these cases, the WDM was analyzed after the calibration verification but still falls within the 12-hour analytical period. While the Guidelines indicate the WDM must be analyzed prior to the calibration verification sample, CAS's order of analysis for the system performance check samples did not appear to affect the overall system instrumentation and no qualifiers have been applied

CAS performed the WDM analysis for every 12-hour sample analysis period and presented the acceptable switching times for each homologue group on the corresponding Form 5s

Chromatographic Resolution

This check is performed to ascertain the separation of closely eluting dioxin/furan isomers. This is performed using SICP (selected ion current profile) of each isomer. The criteria requires that the 2,3,7,8-TCDD and the 1,2,3,8-TCDD peaks (for the DB-5 column) and the 2,3,7,8-TCDF and the 2,3,4,7-TCDF peaks (for the DB-225 column) be resolved with a valley of $\leq 25\%$

CAS provided summary peak to valley results as specified above on each of Form 5 In each case, the \leq 25% criterion was met The raw chromatograms were also reviewed to confirm this information.

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 7, 2003

Instrument Stability

Instrument stability is an important aspect of this analytical system. Ongoing calibration verification using a CS-3 standard is performed once every 12-hour period. This standard is used to evaluate the isomer retention times, ion abundance criteria, sensitivity and ongoing calibration criteria.

CAS met the requirements of the absolute retention times (RT) for the first internal standard (13C-1,2,3,4-TCDD) of \pm 15 seconds (of the initial calibration standard) and the associated >25.0 minute RT requirement for each of the 12-hour CS3 calibration verification standards. The relative retention time and ion abundance criteria were also met for each of the native and labeled CDD/CDFs in the ongoing CS-3 standard results.

Signal-to-noise (S/N) ratios were summarized for the native and labeled CDD/CDFs were acceptable at >10:1.

The relative response factor (RRF) criterion of <25% difference between CS-3 native compounds as compared to the initial calibration data was acceptable for the August 22, August 27, August 28, and September 9, analytical runs. For August 27-28 (second 12 hour run), September 3, September 4, and September 11-12 (second 12 hour run). August 23 and August 22 analytical runs, exceedence of the 25% ending calibration verification standard criterion required the laboratory to provide the mean RRFs from the beginning and ending calibration verification analysis and those factors were then employed for quantitation, as specified in Method 8290, Section 8.3.2.4 and 7.7.4.4.

While the Guidelines indicate review of the relative responses (RR), Method 8290 has no such requirement, as RR's are not used in final quantitation of sample results, therefore, no review was performed.

Review of the above elements indicates a high level of instrument stability and no qualifiers are required.

Initial Calibration and Calibration Verification

Satisfactory instrument calibration is crucial to ensuring the accurate qualitative and quantitative results for each of the CDD/CDF compounds. Initial calibration procedures define the linear range and mean relative response factors that will be used for sample quantitation.

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report: October 7, 2003

CAS's initial calibration summary information met all the relevant acceptance criteria including the relative responses (RRFs) of <25% for native compounds and <35% for the labeled compounds, ion abundance ratios (IARs) within +/- 15%, absolute retention times within the WDM windows, and signal-to-noise ratios of >10:1.

Calibration verification (or continuing calibration) summary information also met all relevant acceptance criteria including the frequency of the continuing calibration verifications at both the beginning and ending of each 12-hour analytical run, the RRFs %D within <25% for native compounds and <35% for labeled compounds of initial calibration (or alternate Form 5 used for average RRF as in Instrument Stability section), the IARs within the +/-15%, and signal-to-noise ratios of >10·1.

Method Blank Analyses

Laboratory method blank analyses are used to determine the existence and magnitude of contamination introduced at the laboratory.

CAS's analysis of method blank samples met all acceptance criteria. No positive concentrations were reported in the method blanks above the CRQL. Trace concentrations of OCDD and HpCDD were detected in one or more of the method blanks associated with the analytical batch. However, associated sample concentrations are far greater than the blank concentration, therefore, no data requires qualification. All method blank samples were prepared and analyzed at the appropriate frequency.

Laboratory Control Samples (Ongoing Precision/Accuracy)

The laboratory is required to prepare and analyze a sample of spiked reference matrix to measure the accuracy of the analytical process/system/method.

CAS performed laboratory control sample (LCS) analyses at the appropriate frequency for the analytical batch. LCS results met associated acceptance criteria for percent recovery of the spiked concentrations as presented in Table 6 of Exhibit D of the Guidelines. All RRTs and IARs were also acceptable in the LCS samples associated with the analytical batch indicating an in-control analytical system.

St Regis Paper Company Superfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 7, 2003

Labeled Compound Recovery (Surrogate Standard Recovery)

Because the introduced labeled compounds (CDD/CDFs) serve as the isotopic quantitative mechanism for this method, recoveries should be closely monitored for laborators and method effectiveness

CAS met the minimum acceptance criteria for the labeled compound recoveries as presented in Table 7 of Exhibit D of the Guidelines. These recovery windows are wider that CAS s internally generated acceptance criteria. Labeled compound recoveries qualified with a Y in the original data package indicate the recovery falls outside the laboratory-generated acceptance limits. None of these minor failures exceed the Guidelines limits, therefore, no data requires qualification

Second Column Confirmation

A second column confirmation of the 2.3,7,8-TCDF isomer is required by both Methods 1613 and 8290 due to a known lack of isomer specificity for this isomer on the DB-5 or equivalent column. All operating conditions of the second column analytical system must be identical to those of the primary system

CAS performed the second column confirmational analysis when the original analytical run had positive 2,3,7.8-TCDF detections. All performance criteria (as previously detailed above) were met prior to and during the confirmational analytical runs

Data Validation Report – PAHs and PCP Laboratory Report / Batch K2305943 Received September 24, 2003

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report: October 8, 2003

The data validation process for the Columbia Analytical Services, Inc. (CAS) laboratory data for the polynuclear aromatic hydrocarbons (PAHs) and pentachlorophenol (PCP) analysis of the Cass Lake Removal Site Evaluation and Supplemental Assessment groundwater samples contained in the aforementioned report is complete as detailed below

The analytical data were reviewed in accordance with the U.S. EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (1999) (Guidelines) as specified in the Quality Assurance Project Plan (QAPP, Barr, June 2003). In addition to the Guidelines, specific SW-846 Method 8270 and 8000 criteria were also considered as slight differences in some of the performance aspects exist between the documents. In general, the areas covered by the validation process include:

- Overall assessment
- Holding times, preservation and storage
- Instrument performance (tuning)
- Initial calibration
- Continuing calibration verification
- Method blank analysis
- Laboratory control samples (ongoing precision/accuracy)
- Surrogate recovery
- Internal standard recovery
- Matrix spike recovery

Six water sample results are contained in this laboratory report. They are as follows:

15611 61st 127 1st 218 Elm

521 1st

104 Norway

102 Basswood

St Regis Paper Company Superfund Site - Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report: October 8, 2003

Overall Assessment

No qualifiers were assigned to the sample results contained in laboratory report K2305943 as a result of data validation process. All data met the data quality objective (DQOs) and are useable as reported.

Holding Times, Preservation and Storage

The samples were collected on August 11, 2003 and received at the CAS Kelso laboratory on August 12, 2003 with an accompanying chain-of-custody (COC) form. All samples were received intact and were properly chilled (within 2-6 °C).

GCMS Instrument Performance Check

All instrument performance checks (tunes) run during the analysis of the project samples met the acceptance criteria for frequency, mass abundance, and mass ratios as listed in the CAS form 5s and associated quantitation and tune reports. Note, that the CAS tune criteria are somewhat different than those listed in the Guidelines and follow guidance from SW-846 8270. The CAS tune criteria reflect the mass spectrometer manufacturer's (Agilent) recommendations for tuning requirements for the latest generation of analytical mass spectral-based instrumentation. Section 7.3.1.2 and Table 3 of SW-846 8270C state that alternate tuning criteria may be used as long as they do not result in adversely affected method performance. The 8270-method performance criteria were not adversely affected by the use of the alternate tuning criteria. The CAS tuning criteria limits were used as the analytical instrument system tuning performance criteria for this project. The tune frequency met the method and data validation criteria.

Initial Calibration

The initial calibration (ICAL) for PAHs and PCP instrument using selected ion monitoring (SIM) was performed on August 15, 2003 using 8-10 concentrations levels of the target analytes. The individual and average relative response factors (RRFs) for all target analytes met the data validation requirement of >0.05. All target analytes met the <30 %RSD data validation criteria. The average RSD of the RRFs for PCP (21.0%) did exceed the method criteria of <15%RSD, however it meets the Guideline criteria of 25%. Following their SOP CAS utilized an alternative calibration evaluation as specified in section 7.5.1.2.1 of EPA 8000B. This option allows for the calculation of the mean value

St Regis Paper Company Superfund Site - Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report October 8 2003

of all the target analytes average RSDs and subsequent comparison to the requirement of the mean RSD being <20% The mean RSD for this initial calibration event was calculated as 60% thus meeting the method criteria

The laboratory report also included results from the analysis of a second source calibration check standard, all target analytes met the laboratory s criteria of < 20% difference. There are no data validation criteria for second source standards.

Continuing Calibration Verification

The August 20, 2003 continuing calibration verifications met the data validation criteria for frequency and the <+25% difference RRFs from ICAL as well as the minimum RRFs of > 0.05 for all target analytes except indeno(1,2,3-cd)pyrene. The laboratory reanalyzed the samples later under continuing calibration conditions that did meet acceptance criteria for indeno(1.2.3-cd)pyrene. The indeno(1,2,3-cd)pyrene sample results are quantitated from the analytical run associated with acceptable continuing calibration verification. Similarly, control criterion was exceed in subsequent continuing calibration verification standards however, the project samples analyzed in the sequence did not contain these target analytes (pentachlorophenol and pyrene) and the error equates to a potential high bias, no action/qualifiers are applied

Method Blank Analysis

The method blank was non-detect for all target analytes. The method blank sample was prepared and analyzed at the appropriate frequency

Laboratory Control Samples

For the verification of the analytical process/system/method accuracy, the laboratory prepared two LCS samples All spiked analyte percent recoveries met the data validation and the laboratory's internal acceptance criteria

Surrogate Standard Recovery

Slightly higher than expected surrogate recoveries were reported for the matrix spike and the laboratory control sample for the fluorene-d10 surrogate (102%, and 103%, respectively). The

St Regis Paper Company Superfund Site - Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report October 8, 2003

Guidelines indicate that one surrogate can fall outside acceptance criteria if >10%. Because surrogate recoveries were >10% and that the error equates to a potential high bias and the nominal degree in which the recoveries were out, no qualifiers are required. All other surrogate spike recoveries from the project samples met the data validation acceptance criteria.

Internal Standard Recovery

All internal standards were reviewed for area and retention time criteria. All internal standards from the project samples and associated quality control samples met the method and data validation criteria.

Matrix Spike Recovery

A sample from laboratory batch K2306052 served as the Matrix Spike (MS) and Matrix Spike Duplicate (MSD) for this analytical batch. All the spike and spike duplicate recoveries and RPDs met the laboratory generated acceptance criteria.

Field Duplicate Results

No field duplicate samples are associated with this analytical batch.

Data Validation Report – PAHs and PCP Laboratory Report / Batch K2306052 Received September 24, 2003

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report: October 8, 2003

The data validation process for the Columbia Analytical Services, Inc. (CAS) laboratory data for the polynuclear aromatic hydrocarbons (PAHs) and pentachlorophenol (PCP) analysis of the Cass Lake Removal Site Evaluation and Supplemental Assessment groundwater samples contained in the aforementioned report is complete as detailed below

The analytical data were reviewed in accordance with the U.S. EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (1999) (Guidelines) as specified in the Quality Assurance Project Plan (QAPP, Barr, June 2003) In addition to the Guidelines, specific SW-846 Method 8270 and 8000 criteria were also considered as slight differences in some of the performance aspects exist between the documents. In general, the areas covered by the validation process include:

- Overall assessment
- Holding times, preservation and storage
- Instrument performance (tuning)
- Initial calibration
- Continuing calibration verification
- Method blank analysis
- Laboratory control samples (ongoing precision/accuracy)
- Surrogate recovery
- Internal standard recovery
- Matrix spike recovery

Three water sample results are contained in this laboratory report. They are as follows:

514 1st St. M-1 (514 1st Duplicate) FB-1

St Regis Paper Company Superfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report October 8 2003

Overall Assessment

No qualifiers were assigned to the sample results contained in laboratory report K2306052 as a result of data validation process. All data met the data quality objective (DQOs) and are useable as reported

Holding Times, Preservation and Storage

The samples were collected on August 12-13, 2003 and received at the CAS Kelso laboratory on August 14, 2003 with an accompanying chain-of-custody (COC) form. All samples were received intact and were properly chilled (within 2-6 °C)

GCMS Instrument Performance Check

All instrument performance checks (tunes) run during the analysis of the project samples met the acceptance criteria for frequency, mass abundance, and mass ratios as listed in the CAS form 5s and associated quantitation and tune reports. Note, that the CAS tune criteria are somewhat different than those listed in the Guidelines and follow guidance from SW-846 8270. The CAS tune criteria reflect the mass spectrometer manufacturer's (Agilent) recommendations for tuning requirements for the latest generation of analytical mass spectral-based instrumentation. Section 7.3.1.2 and Table 3 of SW-846 8270C state that alternate tuning criteria may be used as long as they do not result in adversely affected method performance. The 8270-method performance criteria were not adversely affected by the use of the alternate tuning criteria. The CAS tuning criteria limits were used as the analytical instrument system tuning performance criteria for this project. The tune frequency met the method and data validation criteria.

Initial Calibration

The initial calibration (ICAL) for PAHs and PCP instrument using selected ion monitoring (SIM) was performed on August 15, 2003 using 8-10 concentrations levels of the target analytes. The individual and average relative response factors (RRFs) for all target analytes met the data validation requirement of >0.05. All target analytes met the <30 %RSD data validation criteria. The average RSD of the RRFs for PCP (21.0%) did exceed the method criteria of <15%RSD, however it meets the Guideline criteria of 25%. Following their SOP CAS utilized an alternative calibration evaluation as specified in section 7.5.1.2.1 of EPA 8000B. This option allows for the calculation of the mean value

St Regis Paper Company Superfund Site - Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report October 8 2003

of all the target analytes average RSDs and subsequent comparison to the requirement of the mean RSD being <20%. The mean RSD for this initial calibration event was calculated as 60%, thus meeting the method criteria

The laboratory report also included results from the analysis of a second source calibration check standard, all target analytes met the laboratory's criteria of < 20% difference. There are no data validation criteria for second source standards.

Continuing Calibration Verification

The August 20, 2003 continuing calibration verifications met the data validation criteria for frequency and the <+25% difference RRFs from ICAL as well as the minimum RRFs of > 0.05 for all target analytes except indeno(1,2,3-cd)pyrene. The laboratory reanalyzed the samples later under continuing calibration conditions that did meet acceptance criteria for indeno(1,2,3-cd)pyrene. The indeno(1,2,3-cd)pyrene sample results are quantitated from the analytical run associated with acceptable continuing calibration verification. Similarly, control criterion was exceed in subsequent continuing calibration verification standards however, the project samples analyzed in the sequence did not contain these target analytes (pentachlorophenol and pyrene) and the error equates to a potential high bias, no action/qualifiers are applied

Method Blank Analysis

The method blank was non-detect for all target analytes The method blank sample was prepared and analyzed at the appropriate frequency

Laboratory Control Samples

For the verification of the analytical process/system/method accuracy, the laboratory prepared two LCS samples All spiked analyte percent recoveries met the data validation and the laboratory's internal acceptance criteria

Surrogate Standard Recovery

Slightly higher than expected surrogate recoveries were reported for samples FB-1, the matrix spike and the laboratory control sample for the fluorene-d10 surrogate (99%, 102%, and 103%,

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report October 8, 2003

respectively) The Guidelines indicate that one surrogate can fall outside acceptance criteria if >10%. Because surrogate recoveries were >10% and that the error equates to a potential high bias and the nominal degree in which the recoveries were out, no qualifiers are required. All other surrogate spike recoveries from the project samples met the data validation acceptance criteria.

Internal Standard Recovery

All internal standards were reviewed for area and retention time criteria. All internal standards from the project samples and associated quality control samples met the method and data validation criteria.

Matrix Spike Recovery

The sample 514 1st St served as the Matrix Spike (MS) and Matrix Spike Duplicate (MSD) for this analytical batch. All the spike and spike duplicate recoveries and RPDs met the laboratory generated acceptance criteria.

Field Duplicate Results

Field duplicate results evaluate overall sampling and laboratory precision. Sample 514 1st St was collected in duplicate (labeled M-1). Both the native and duplicate sample concentrations were non-detect therefore, no RPD calculations were performed. These results displayed an acceptable level of precision for the low level nature of the analytical method and overall sampling procedures.

Data Validation Report – PAHs and PCP Laboratory Report / Batch K2306160 Received September 24, 2003

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report: October 8, 2003

The data validation process for the Columbia Analytical Services, Inc. (CAS) laboratory data for the polynuclear aromatic hydrocarbons (PAHs) and pentachlorophenol (PCP) analysis of the Cass Lake Removal Site Evaluation and Supplemental Assessment groundwater samples contained in the aforementioned report is complete as detailed below.

The analytical data were reviewed in accordance with the U.S. EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (1999) (Guidelines) as specified in the Quality Assurance Project Plan (QAPP, Barr, June 2003). In addition to the Guidelines, specific SW-846 Method 8270 and 8000 criteria were also considered as slight differences in some of the performance aspects exist between the documents. In general, the areas covered by the validation process include

- Overall assessment
- Holding times, preservation and storage
- Instrument performance (tuning)
- Initial calibration
- Continuing calibration verification
- Method blank analysis
- Laboratory control samples (ongoing precision/accuracy)
- Surrogate recovery
- Internal standard recovery
- Matrix spike recovery

One water sample results are contained in this laboratory report. It is as follows

233 2nd St.

St Regis Paper Company Superfund Site ~ Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report October 8, 2003

Overall Assessment

Due to low matrix spike and matrix spike duplicate and laboratory control sample percent recoveries, the result for 233 2nd St pentachlorophenol has been qualified with an "*" indicating an estimated value, QA/QC criteria not met. All data met the data quality objective (DQOs) and are useable as reported

Holding Times, Preservation and Storage

The sample was collected on August 15, 2003 and received at the CAS Kelso laboratory on August 19, 2003 with an accompanying chain-of-custody (COC) form. The sample was received intact and was properly chilled (within 2-6 °C). The sample was properly stored until shipment.

GCMS Instrument Performance Check

All instrument performance checks (tunes) run during the analysis of the project samples met the acceptance criteria for frequency, mass abundance, and mass ratios as listed in the CAS form 5s and associated quantitation and tune reports. Note, that the CAS tune criteria are somewhat different than those listed in the Guidelines and follow guidance from SW-846-8270. The CAS tune criteria reflect the mass spectrometer manufacturer's (Agilent) recommendations for tuning requirements for the latest generation of analytical mass spectral-based instrumentation. Section 7.3-1.2 and Table 3 of SW-846-8270C state that alternate tuning criteria may be used as long as they do not result in adversely affected method performance. The 8270-method performance criteria were not adversely affected by the use of the alternate tuning criteria. The CAS tuning criteria limits were used as the analytical instrument system tuning performance criteria for this project. The tune frequency met the method and data validation criteria.

Initial Calibration

The initial calibration (ICAL) for PAHs and PCP instrument using selected ion monitoring (SIM) was performed on September 3, 2003 using 8-10 concentrations levels of the target analytes. The individual and average relative response factors (RRFs) for all target analytes met the data validation requirement of >0.05. All target analytes met the <30 %RSD data validation criteria. The average RSD of the RRFs for PCP (26.0%) did exceed the method criteria of <15%RSD, however the laboratory utilized an alternative calibration evaluation as specified in section 7.5.1.2.1 of EPA

Data Validation Report Laboratory Report / Batch K2306160 Received September 24, 2003

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report October 8, 2003

8000B. This option allows for the calculation of the mean value of all the target analytes average RSDs and subsequent comparison to the requirement of the mean RSD being <20%. The mean RSD for this initial calibration event was calculated as 7.4%, thus meeting the method criteria

The laboratory report also included results from the analysis of a second source calibration check standard, all target analytes met the laboratory's criteria of < 20% difference. There are no data validation criteria for second source standards.

Continuing Calibration Verification

The September 4, 2003 continuing calibration verifications met the data validation criteria for frequency and the <+25% difference RRFs from ICAL as well as the minimum RRFs of > 0.05 for all target analytes.

Method Blank Analysis

The method blank was non-detect for all target analytes. The method blank sample was prepared and analyzed at the appropriate frequency

Laboratory Control Samples

For the verification of the analytical process/system/method accuracy, the laboratory prepared two LCS samples. All spiked analyte percent recoveries met the data validation and the laboratory's internal acceptance criteria with the exception of pentachlorophenol. The percent recovery was lower than expected at 48%. The laboratory's narrative indicates that the acceptance window of 70-130% is temporary and default. CAS noted that they have insufficient data points available to generate final calculated statistical control limits and these percent recoveries were consistent and within the historical range expected for the procedure. Following Guidelines, the data are qualified accordingly in the data tables.

Surrogate Standard Recovery

All surrogate spike recoveries from the project samples met the data validation acceptance criteria.

Data Validation Report Laboratory Report / Batch K2306160 Received September 24, 2003

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report October 8, 2003

Internal Standard Recovery

All internal standards were reviewed for area and retention time criteria. All internal standards from the project sample and associated quality control samples met the method and data validation criteria.

Matrix Spike Recovery

The sample 233 2nd St served as the Matrix Spike (MS) and Matrix Spike Duplicate (MSD). The percent recoveries were lower than expected at 52% and 55%. The RPD was acceptable at 4%. However, because the same variability exists in the laboratory control sample, the corresponding sample result is qualified as "*" indicating an estimated value as QA/QC criteria was not met. All percent recoveries and RPDs from the MS and MSD were within the laboratory's internal control limits.

Field Duplicate Results

No field duplicate samples were associated with this analytical batch.

Barr Engineering Company
4700 West 77th Street • Minneapolis, MN 55435-4803
Phone 952-832-2600 • Fax 952-832-2601 • www.barr.com

Minneapolis MN · Hibbing MN · Duluth MN · Ann Arbor MI · Jefferson City MO

October 22, 2003

Sonia Vega On-Scene Coordinator U.S. Environmental Protection Agency, Region 5 Emergency Response Branch 520 Lafayette Road North St. Paul, MN 55155-4194

Re: Validated Analytical Data
Laboratory Batch Number – E2300523
Docket No. V-W-'03-C-748
St. Regis Paper Company Site – Cass Lake, Minnesota

Dear Ms. Vega:

Barr has validated the analytical data contained in the laboratory batch number(s) identified above. Enclosed are the following documents related to these analytical data:

- Data Summary Table(s) {Attachment A}
- Validation Summary Report(s) {Attachment B}
- Complete analytical data package(s) from Columbia Analytical Services {Attachment C}

The data summary tables include the TEQ_{DF} -WHO₉₈ values calculated using the validated data. The TEQ calculation used a value of $\frac{1}{2}$ the detection limit for any congener that was not detected.

All data met the data quality objectives and are useable as reported.

If you have any questions concerning this information, please contact me at (952)832-2876 or Tom Ross of International Paper at (901)419-3899.

Sincerely,

Thomas D. Mattison Project Coordinator

Thomas Mit

cc: Tim Drexler, U.S. EPA – RPM (w/ Attachments A, B & C)
Mony Chabria and Tom Turner, U.S. EPA (w/ Attachments A & B)

Attachment A

Table 1

[concentration in µg/Kg (ppb)]

Location	F27-29 0-4	F27-29 4-12	H25-26 0-4	126-27 0-4	127-29 0-4	J29-30 0-4
Date	8/6/2003	8/6/2003	8/5/2003	8/6/2003	8/6/2003	8/6/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup		<u> </u>				
					ļ	
2,3,7,8-TCDD	 0 003	0 002	0 00055 j	<0 00034	0 000791	0 0017 EMPC
1,2,3,7,8-PeCDD	 0 068	0 032	0 008	0 004	0 021	0 046
1,2,3,4,7,8-HxCDD	 0 260	0 123	0 024	0 010	0 054	0 166
1,2,3,6,7,8-HxCDD	 0 963	0 274 j	0 108	0 064	0 320	3 072
1,2,3,7,8,9-HxCDD	 0 295 յ	0 242	0 049	0 022	0 112	0 389
1,2,3,4,6,7,8-HpCDD	30 852	11 364	2 344	2 496	11 694	186 701
OCDD	249 540 e	133 473 e	22 122 e	24 152	124 075	2182 551 e
2,3,7,8-TCDF	0 026	0 006	0 001	<0 00098	0 004	0 014
1,2,3,7,8-PeCDF	0 111	0 064	0 008	0 007	0 030	0 123
2,3,4,7,8-PeCDF	0 113	0 065	0 010	0 009	0 035	0 140
1,2,3,4,7,8-HXCDF	0 723	0 460	0 144	0 061	0 308	2 625
1,2,3,6,7,8-HxCDF	0 233	0 128	0 032	0 016	0 076	0 262
1,2,3,7,8,9-HxCDF	0 041	<0 035	0 032	0 021	0 084 EMPC	0 063
2,3,4,6,7,8-HxCDF	0 366	0 229	0 056	0 026	0 129	0 887
1,2,3,4,6,7,8-HpCDF	7 167	2 489	0 530	0 450	2 713	28 274
1,2,3,4,7,8,9-HpCDF	0 639	0 447	0 080	0 045	0 207	2 125
OCDF	29 433	14 042	1 686	1 682	12 664	132 899
TCDD, Total	0 016	0 004	0 002	<0 00034	0 003	0 010
PeCDD, Total	0 279	0 111	0 039	0 014	0 082	0 183
HxCDD, Total	7 753	2 747	0 548	0 257	1 388	5 045
HpCDD, Total	75 414	46 496	6 977	4 105	23 525	82 565
TCDF, Total	0 143	0 052	0 010	0 004	0 047	0 116
PeCDF, Total	2 648	1 686	0 229	0 154	0 759	2 490
HxCDF, Total	7 251	4 152	1 909	0 926	5 721	8 468
HpCDF, Total	34 820	30 590	3 558	2 094	13 912	53 718
TEO_{DF} - WHO ₂₄ (ND = 1/2 DL) (1)	0 840	0 370	0 120	0 060	0 310	3 300

Data qualifiers and footnotes:

- e estimated value. Analyte exceeds upper end of the linear calibration range
- 3 estimated value. Analyte concentration is below method reporting limit and above non-detect

EMPC - estimated maximum possible concentration.

Table 1

[concentration in µg/Kg (ppb)]

Location	D25-26 0-4	DE8-9 0-4	DE8-9 4-12	E29-30 0-4	F22-23 0-4	J26-27 0-4
Date	8/8/2003	8/8/2003	8/8/2003	8/8/2003	8/8/2003	8/8/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup						
2,3,7,8-TCDD	<0 0003	<0 0006	<0.00052	0 006	0 002	0 002
1,2,3,7,8-PeCDD	0 021	0 017	0 011	0 143	0 050	0 083
1,2,3,4,7,8-HxCDD	0 049	0 067	0 046	0 438	0 143	0 313
1,2,3,6,7,8-HxCDD	0 404	0 206	0 132	1 602	0 402	5 251
1,2,3,7,8,9-HxCDD	0 135	0 130	0 090	0 748	0 313	0 830
1,2,3,4,6,7,8-HpCDD	12 855	8 516	6 274	49 437	13 533	158 645
OCDD	133 391	55 358 e	45 773 e	428 350	133 542	1504 395 e
2,3,7,8-TCDF	0 004	0 001	0 0009 EMPC	0 014	0 003	0 065
1,2,3,7,8-PeCDF	0 038	0 006	0 004	0 086	0 017	0 412
2,3,4,7,8-PeCDF	0 033	0 007	0 005	0 094	0 019	0 755
1,2,3,4,7,8-HXCDF	0 372	0 068	0 053	0 617 EMPC	0 228	9 161
1,2,3,6,7,8-HxCDF	0 112	0 023	0 017	0 309	0 080	1 489
1,2,3,7,8,9-HxCDF	<0 0269	0 002	0 0016 j EMPC	0 030	0 029	0 079
2,3,4,6,7,8-HxCDF	0 176	0 045	0 036	0 566	0 151	2 451
1,2,3,4,6,7,8-HpCDF	3 413	1 131	0 949	12 178	2 411	50 506
1,2,3,4,7,8,9-HpCDF	0 360	0 106	0 075	0 806	0 276	4 332
OCDF	12 861	5 449	4 530	58 002	11 891	209 140 e
TCDD, Total	0 002	<0 0006	<0 00052	0 031	0 006	0 027
PeCDD, Total	0 082	0 074	0 046	0 547	0 175	0 253
HxCDD, Total	1 766	2 062	1 151	8 027	2 704	12 278
HpCDD, Total	28 397	22 841	13 136	92 152	33 768	70 667
TCDF, Total	0 030	0 009	0 006	0 251	0 053	0 338
PeCDF, Total	0 753	0 190	0 156	3 336	0 764	9 483
HxCDF, Total	3 317	1 336	1 020	9 664	4 802	24 238
HpCDF, Total	17 592	5 412	3 816	45 124	15 592	47 376
$TEQ_{DF} - WHO_{98} (ND = 1/2 DL) (1)$	0 346	0 179	0 130	1 305	0 374	4 753

Data qualifiers and footnotes

- e estimated value. Analyte exceeds upper end of the linear calibration range
- J estimated value Analyte concentration is below method reporting limit and above non-detect

EMPC - estimated maximum possible concentration

Table 1

[concentration in µg/Kg (ppb)]

Location	J26-27 4-12	J26-27 12-24	J27-29 0-4	J27-29 4-12	J27-29 12-24	SW-44 0-4
Date	8/8/2003	8/8/2003	8/8/2003	8/8/2003	8/8/2003	8/12/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup						
	<u> </u>					
2,3,7,8-TCDD	0 000554 j	<0 00016	0 002	<0 000162	<0 00013	<0 00081
1,2,3,7,8-PeCDD	0 026	0 0019 j	0 033	<0 00017	0 000551	0 017
1,2,3,4,7,8-HxCDD	0 089	0 0086 EMPC	0 071	0 00076 1	0 0014 j	0 056
1,2,3,6,7,8-HxCDD	3 090	0 189	2 426	0 009	0 043	0 216
1,2,3,7,8,9-HxCDD	0 255	0 023	0 243	ر 0 0011	0 003	0 105
1,2,3,4,6,7,8-HpCDD	112 241	5 335	79 840 e	0 282	1 096	8 1 1 9
OCDD	1406 612 e	52 529 e	747 571 e	2 208 e	8 740	72 045
2,3,7,8-TCDF	0 037	0 004	0 010	<0 000163	<0 0012	<0 0010
1,2,3,7,8-PeCDF	0 209	0 023	0 127	<0 00016	ر 0 0016	0 008
2,3,4,7,8-PeCDF	0 308	0 029	0 181	ر 000054	0 003	0 008
1,2,3,4,7,8-HXCDF	4 746	0 252	2 798	0 008	0 036	0 081
1,2,3,6,7,8-HxCDF	0 757	0 048	0 386	ر 0 0013	0 006	0 026
1,2,3,7,8,9-HxCDF	0 049	<0 0103	0 033 EMPC	<0 00061	<0 00061	<0 016
2,3,4,6,7,8-HxCDF	1 382	0 070	0 844	0 003	0 012	0 054
1,2,3,4,6,7,8-HpCDF	30 098	1 515	28 143	0 116	0 490	0 967
1,2,3,4,7,8,9-HpCDF	2 502	0 089	2 203	0 012	0 062	0 184
OCDF	171 091 e	9 036	154 944 e	0 624	2 748	6 763
TCDD, Total	0 009	0 001	0 018	<0 00016	<0 00013	<0 00081
PeCDD, Total	0 070	0 003	0 138	<0 00017	0 001	0 050
HxCDD, Total	5 265	0 487	5 660	0 021	0 095	0 923
HpCDD, Total	71 507	9 989	66 753	0 461	2 229	14 968
TCDF, Total	0 144	0 015	0 113	<0 00016	0 004	0 010
PeCDF, Total	3 986	0 420	2 748	0 006	0 033	0 195
HxCDF, Total	13 173	2 976	11 552	0 124	0 608	1 545
HpCDF, Total	42 756	8 349	39 244	0 572	3 440	6 775
$TEQ_{DF} - WHO_{94} (ND = 1/2 DL) (1)$	2 837	0 153	2 005	0 007	0 029	0 177

Data qualifiers and footnotes

- e estimated value Analyte exceeds upper end of the linear calibration range
- 1 estimated value Analyte concentration is below method reporting limit and above non-detect

EMPC - estimated maximum possible concentration

Table 1

[concentration in µg/Kg (ppb)]

Location	T	SW-7 0-4	SW-7 4-12	SW-41 0-4	SW-42 0-4	FOA-02-1-0-4	FOA-02-2-0-4
Date		8/11/2003	8/11/2003	8/11/2003	8/12/2003	8/12/2003	8/12/2003
Lab		CAS	CAS	CAS	CAS	CAS	CAS
Dup							
·							
2,3,7,8-TCDD		<0 00081	<0 000528	0 002	<0 000468	0 004	0 001
1,2,3,7,8-PeCDD		0 041	0 017	0 041	0 021	0 089	0 013
1,2,3,4,7,8-HxCDD		0 127	0 054	0 138	0 068	0 288	0 035
1,2,3,6,7,8-HxCDD		1 006 յ	ر 774 0	ر 1 019	0 467	0 774	0 289
1,2,3,7,8,9-HxCDD		0 334	0 165	0 348	0 192	່ 0 352 ງ	0 093
1,2,3,4,6,7,8-HpCDD		51 621	45 229	55 172	12 112	27 598	4 794
OCDD		459 098	439 818	517 194 e	115 280	238 156	45 6
2,3,7,8-TCDF		0 007	0 005	0 013	0 005	0 008	0 006
1,2,3,7,8-PeCDF		0 023	0 018	0 041	0 019	0 049	0 026
2,3,4,7,8-PeCDF		0 034	0 026	0 064	0 024	0 060	0 031
1,2,3,4,7,8-HXCDF		0 279	0 226	0 426	0 134	0 323 j EMPC	0 300
1,2,3,6,7,8-HxCDF		0 063	0 036	0 079	0 036	0 202	0 071
1,2,3,7,8,9-HxCDF		<0 0216	<0 022	0 010	0 004	0 106 EMPC	0 007 EMPC
2,3,4,6,7,8-HxCDF		0 142	0 082	0 183	0 065	0 342	0 118
1,2,3,4,6,7,8-HpCDF		5 202	4 306	6 214	1 506	4 924	1 158
1,2,3,4,7,8,9-HpCDF		0 329 j EMPC	<0 664	<1 040	0 187	<0 850	0 191
OCDF		38 912	36 458	45 538	8 344	26 012	4 099
TCDD, Total		0 007	0 007	0 022	0 005	0 016	0 002
PeCDD, Total		0 208	0 094	0 223	0 114	0 269	0 049
HxCDD, Total		4 712	3 459	5 779	2 600	5 161	1 043
HpCDD, Total		81 045	69 661	99 057	32 082	33 783	12 457
TCDF, Total		0 078	0 053	0 164	0 046	0 077	0 031
PeCDF, Total		0 733	0 489	1 127	0 511	1 462	0 560
HxCDF, Total		5 757	4 649	3 168	2 720	5 208	3 822
HpCDF, Total		35 423	32 188	47 660	10 232	19 113	7 067
$TEQ_{DF} - WHO_{98} (ND = 1/2 DL) (1)$		0 878	0 713	0 974	0 282	0 721	0 189

Data qualifiers and footnotes

- e estimated value Analyte exceeds upper end of the linear calibration range
- j estimated value Analyte concentration is below method reporting limit and above non-detect

EMPC - estimated maximum possible concentration

Table 1

[concentration in µg/Kg (ppb)]

Location	FOA-	02-2-4-12	FOA-02-3-0-4	FOA-02-4-0-4	FOA-02-5-0-4	FOA-02-6-0-4	FOA-02-6-4-12
Date	8/12/2	003	8/12/2003	8/12/2003	8/12/2003	8/12/2003	8/12/2003
Lab	CAS		CAS	CAS	CAS	CAS	CAS
Dup							
2,3,7,8-TCDD	<0.00	0201	<0 000131	<0 000193	0 001	0 00083 j EMPC	<0.000111
1,2,3,7,8-PeCDD	0 006	·	0 003	0 008	0 014	0 010	0 000995 j
1,2,3,4,7,8-HxCDD	0 018		0 012	0 029	0 031	0 029	0 003
1,2,3,6,7,8-HxCDD	0 094		0 041	0 204	0 093	0 086	0 010
1,2,3,7,8,9-HxCDD	0 045		0 021	0 062	0 074	0 080	0 008
1,2,3,4,6,7,8-HpCDD	4 349		1 881	6 506	3 709	3 315	0 408
OCDD	41 2		15 875	589e	32 69	27 0 e	3 31 e
2,3,7,8-TCDF	<0.00	066 յ	0 001	0 001	<0 00035	<0 00044 j	<0 000098
1,2,3,7,8-PeCDF	0 006		ر 0010 و	0 009	ر 0 0015 ر	0 0021 j	0 00024 j EMPC
2,3,4,7,8-PeCDF	0 006		0 0013 յ	0 010	0 0013 j	0 0020 j	0 00030 j EMPC
1,2,3,4,7,8-HXCDF	0 072		0 017	0 115	0 018	0 022	0 003
1,2,3,6,7,8-HxCDF	0 021		0 006	0 028	0 011	0 012	0 0015 j
1,2,3,7,8,9-HxCDF	0 002]	0 002 j	<0 00011	0 0032	<0 0013	<0 00034
2,3,4,6,7,8-HxCDF	0 035		0 011	0 050	0 025	0 022	0 0029 յ
1,2,3,4,6,7,8-HpCDF	0 960		0 274	1 227	0 417	0 440	0 066
1,2,3,4,7,8,9-HpCDF	0 062		0 026	0 112	0 050	0 046	0 007
OCDF	4 237		1 563	7 276	2 550	2 750	0 319
TCDD, Total	0 001		<0 00013	<0 00019	0 006	0 021	<0.000111
PeCDD, Total	0 021		0 007	0 024	0 055	0 114	0 007
HxCDD, Total	0 402		0 181	0 694	0 488	0 698	0 063
HpCDD, Total	5 318		2 694	11 401	5 759	5 276	0 655
TCDF, Total	0 007		0 003	0 005	0 007	0 013	0 001
PeCDF, Total	0 142		0 040	0 178	0 061	0 081	0 009
HxCDF, Total	1 048		0 290	0 746	0 422	0 465	0 067
HpCDF, Total	2 834	-	1 174	6 015	1 745	1 788	0 265
							2.000
$TEQ_{DF} - WHO_{98} (ND = 1/2 DL) (1)$	0 097		0 038	0 147	0 087	0 078	0 009

Data qualifiers and footnotes:

- e estimated value. Analyte exceeds upper end of the linear calibration range
- J estimated value. Analyte concentration is below method reporting limit and above non-detect.

EMPC - estimated maximum possible concentration.

Table 1

[concentration in µg/Kg (ppb)]

Location		NWWD-04 0-4	NWWD-05 0-4	RES16A 0-4	RES16B 0-4	RES24 0-4	RES 24 4-12
Date		8/14/2003	8/14/2003	8/14/2003	8/14/2003	8/14/2003	8/14/2003
Lab		CAS	CAS	CAS	CAS	CAS	CAS
Dup							
2,3,7,8-TCDD		<0 00029	<0 0002	0 0007 J EMPC	<0 0004	<0 0009	<0 0003
1,2,3,7,8-PeCDD		0 002 j	0 0012 j EMPC	0 017	0 005	0 004	0 001 j
1,2,3,4,7,8-HxCDD		0 006 EMPC	0 0031 EMPC	0 052	0 013	0 008	0 004
1,2,3,6,7,8-HxCDD		0 035	0 017	0 344	0 061	0 028	0 014
1,2,3,7,8,9-HxCDD		0 017	0 0091	0 125	0 034	0 019	0 008
1,2,3,4,6,7,8-HpCDD		0 929	0.550	10 281	1 511	0 975	0 447
OCDD		8 519	4 652 e	101 918 e	14 372	7 553	3 657 e
2,3,7,8-TCDF		<0 00097	<0 0004	0 003	<0 0009	<0 0009	<0 0003
1,2,3,7,8-PeCDF		0 002 J EMPC	0 0006 J EMPC	0 025	ر 0 003	<0 0009	<0 0006
2.3,4,7,8-PeCDF		0 002 j	ر 0 0010	0 028	0 004	<0 0008	<0 0006
1,2,3,4,7,8-HXCDF		0 027	0 010	0 292	0 039	0 010	0 007
1,2,3,6,7,8-HxCDF		0 008	0 0040	0 081	0 015	0 004	<0 005
1,2,3,7,8,9-HxCDF		0 005	0 002 j	0 057	0 010	<0.003	<0 007
2,3,4,6,7,8-HxCDF		0 014	0 0061	0 130	0 025	<0.003	<0 006
1,2,3,4,6,7,8-HpCDF	T	0 296	0 128	2 972	0 449	0 187	0 110
1,2,3,4,7,8,9-HpCDF	1	0 022	0 009	0 229	0 033	0 013	<0 004
OCDF		1 131	0 457	10 816 e	1 556 e	0 733	0 385
TCDD, Total		0 012	0 0004	0 003	<0 0004	<0 0009	<0 0003
PeCDD, Total		0 024	0 009	0 066	0 018	0 015	0 006
HxCDD, Total		0 178	0 097	1 340	0 338	0 180	0 088
HpCDD, Total		2 085	1 059	19 424	3 353	1 650	0 889
TCDF, Total		0 006	0 003	0 034	0 022	0 002	0 002
PeCDF, Total		0 065	0 029	0 613	0 166	0 033	0 034
HxCDF, Total		0 431	0 176	4 797	0 703	0 206	0 172
HpCDF, Total		1 217	0 488	12 789	1 704	0 750	0 393
$TEQ_{DF} - WHO_{96} (ND = 1/2 DL) (1)$	+	0 0283	0 0143	0 287	0 0482	0 0243	0 0121

Data qualifiers and footnotes:

- e estimated value. Analyte exceeds upper end of the linear calibration range
- j estimated value. Analyte concentration is below method reporting limit and above non-detect.

EMPC - estimated maximum possible concentration.

Table 1

[concentration in µg/Kg (ppb)]

Location	RES 28 0	-4 RES28 0-4D	SWD-01 0-4	SWD-02 0-4	SWD-03 0-4	SWD-04 0-4
Date	8/14/2003	8/14/2003	8/14/2003	8/14/2003	8/14/2003	8/14/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup						
1.2 T.O. TICODO	<0.0002	0 0000	0.0000	0.0004	0.0004	2 2225
2,3,7,8-TCDD		<0.0008	0 0008 1	<0.0004	<0.0004	<0.0005
1,2,3,7,8-PeCDD	0 002 j	0 003 j	0 003	0 004	0 008	0 004
1,2,3,4,7,8-HxCDD	0 006	0 008	0 006	0 010	0 011	0 009
1,2,3,6,7,8-HxCDD	0 032	0 029	0 019	0 035	0 043	0 027
1,2,3,7,8,9-HxCDD	0 016	0 016	0 016	0 026	0 032	0 024
1,2,3,4,6,7,8-HpCDD	1 145	0 990	0 471	1 175	0 891	0 736
OCDD	9 748 e	9 166	3 169 e	9 804	7 074	5 350
2,3,7,8-TCDF	<0 0004	<0 0009	0 0006 յ	ر 00007	0 004	<0 0007
1,2,3,7,8-PeCDF	ر 0 002 و	<0 0009	ر 0009 0	0 002 j EMPC	EMPC ر 0 0017	ر 001 <u>0</u>
2,3,4,7,8-PeCDF	0 002 j	<0 0008	ر 0 002 و	0 003	0 015	ر 0 002 و
1,2,3,4,7,8-HXCDF	0 021	0 020	0 008	0 015	0 024	0 010
1,2,3,6,7,8-HxCDF	0 006 EM	PC 0 006 EMPC	0 006	0 008	0 030	0 005
1,2,3,7,8,9-HxCDF	0 006	<0 006	ر 0 002 و	0 003 3	0 009	0 002 յ
2,3,4,6,7,8-HxCDF	0 013	0 009	0 011	0 016	0 080	0 009
1,2,3,4,6,7,8-HpCDF	0 262	0 270	0 115	0 211	0 220	0 156
1,2,3,4,7,8,9-HpCDF	0 017	0 021	0 007	0 015	0 017	0 011
OCDF	0 969	0 948	0 303	0 899	0 754	0 573
TCDD, Total	<0 0002	<0 0008	0 001	0 004	0 004	<0 0005
PeCDD, Total	0 011	0 006	0 012	0 022	0 052	0 025
HxCDD, Total	0 174	0 180	0 127	0 219	0 346	0 218
HpCDD, Total	1 970	1 904	0 885	2 058	1 766	1 498
TCDF, Total	0 007	<0 0009	0 026	0 053	0 266	0 016
PeCDF, Total	0 064	0 058	0 148	0 211	1 571	0 071
HxCDF, Total	0 355	0 344	0 223	0 344	1 064	0 205
HpCDF, Total	1 010	1 091	0 321	0 825	0 780	0 542
						
$TEO_{DF} - WHO_{98} (ND = 1/2 DL) (1)$	0 0289	0 0265	0 0182	0 0324	0 0508	0 0234

Data qualifiers and footnotes:

- e estimated value Analyte exceeds upper end of the linear calibration range
- 1 estimated value Analyte concentration is below method reporting limit and above non-detect

EMPC - estimated maximum possible concentration

Table 1

[concentration in µg/Kg (ppb)]

Location	SWD-05 0-4	D20-21 0-4	D27-29 0-4	E11-13 0-4	E13-15 0-4
Date	8/14/2003	8/13/2003	8/13/2003	8/13/2003	8/13/2003
Lab	CAS	CAS	CAS	CAS	CAS
Dup					
2,3,7,8-TCDD	<0 0003	0 005	0 001	0 003	<0 0002
1,2,3,7,8-PeCDD	0 002 j	0 105	0 026	0 061	0 010
1,2,3,4,7,8-HxCDD	0 004	0 334	0 083	0 170	0 025
1,2,3,6,7,8-HxCDD	0 020	2 314	0 406	1 368	0 274
1,2,3,7,8,9-HxCDD	0 014	0 756	0 186	0 401	0 067
1,2,3,4,6,7,8-HpCDD	0 908	72 773	13 044	51 460	9 581
OCDD	5 516	519 390 e	115 856	493 923 e	98 013 e
2,3,7,8-TCDF	ر 00007	0 020	0 007	0 005	<0 0007
1,2,3,7,8-PeCDF	0 001 j	0 081	0 040	0 039	0 005
2,3,4,7,8-PeCDF	0 001 j	0 113	0 050	0 041	0 005
1,2,3,4,7,8-HXCDF	0 007	1 034	0 343	1 323	0 290
1,2,3,6,7,8-HxCDF	0 003	0 252	0 096	0 200	0 040
1,2,3,7,8,9-HxCDF	<0 002	0 020	<0 007	<0 000856	<0 001
2,3,4,6,7,8-HxCDF	0 005	0 432	0 160	0 386	0 072
1,2,3,4,6,7,8-HpCDF	0 108	12 966	3 285	12 807	2 720
1,2,3,4,7,8,9-HpCDF	0 006	0 981	0 250	1 514	0 455
OCDF	0 430	62 855	11 740	58 715	13 455
TCDD, Total	0 002	0 023	0 013	0 017	0 001
PeCDD, Total	0 017	0 340	0 094	0 208	0 039
HxCDD, Total	0 148	7 190	1 739	4 413	0 886
HpCDD, Total	1 844	34 277	21 470	37 461	17 735
TCDF, Total	0 019	0 123	0 034	0 086	0 016
PeCDF, Total	0 050	2 180	0 950	1 040	0 161
HxCDF, Total	0 136	6 584	5 123	5 772	4 504
HpCDF, Total	0 356	10 551	12 616	26 249	15 195
$TEQ_{DF} - WHO_{95} (ND = 1/2 DL) (1)$	0 0193	1 610	0 361	1 180	0 229

Data qualifiers and footnotes:

- e estimated value Analyte exceeds upper end of the linear calibration range
- J estimated value Analyte concentration is below method reporting limit and above non-detect

EMPC - estimated maximum possible concentration

Table 1

[concentration in µg/Kg (ppb)]

Location	T	E18-19 0-4	E18-19 4-12	E24-25 0-4	E24-25 4-12	E24-25 4-12D	GS-1
Date		8/13/2003	8/13/2003	8/13/2003	8/13/2003	8/13/2003	8/13/2003
Lab		CAS	CAS	CAS	CAS	CAS	CAS
Dup							
				<u> </u>			
2,3,7,8-TCDD		0 001	ر 0007 0	0 0007 j	0 0004 j	0 0006 j	<0 0002
1,2,3,7,8-PeCDD		0 036	0 014	0 015	0 010	0 011	0 0009 j
1,2,3,4,7,8-HxCDD		0 100	0 046	0 050	0 039	0 040	0 002 j EMPC
1,2,3,6,7,8-HxCDD		0 517	0 303	0 489	0 625	0 516	0 008
1,2,3,7,8,9-HxCDD		0 230	0 099	0 097	0 094	0 101	0 006
1,2,3,4,6,7,8-HpCDD		17 327	9 884	15 946	18 757	15 029	0 236
OCDD		131 712	96 380 e	173 869	196 286	153 060 e	1 760
2,3,7,8-TCDF		0 002	0 001	0 006	0 005	0 006	<0 0002
1,2,3,7,8-PeCDF		0 033	0 008	0 057	0 092	0 076	<0 0002
2,3,4,7,8-PeCDF		0 013	0 008	0 046	0 051	0 054	<0 0002
1,2,3,4,7,8-HXCDF		0 168	0 094	0 488	0 629	0 510	<0 005
1,2,3,6,7,8-HxCDF		0 061	0 030	0 115	0 164	0 179	0 002 j EMPC
1,2,3,7,8,9-HxCDF		<0 0003	<0.0005	0 015	0 038	0 036	<0 005
2,3,4,6,7,8-HxCDF		0 113	0 062	0 182	0 246	0 274	ر 003 0
1,2,3,4,6,7,8-HpCDF		3 061	1 418	4 221	5 503	4 360	0 047
1,2,3,4,7,8,9-HpCDF		0 253	0 133	0 338	0 555	0 379	0 003 j
OCDF		15 518	7 294	13 069	14 100	11 844	0 125
TCDD, Total		0 005	0 011	0 015	0 003	0 003	<0 0002
PeCDD, Total		0 096	0 039	0 069	0 025	0 030	0 005
HxCDD, Total		2 011	1 138	1 615	1 720	1 879	0.043
HpCDD, Total		23 016	18 291	27 647	25 001	25 404	0 414
TCDF, Total		0 026	0 012	0 037	0 026	0 030	0 001
PeCDF, Total		0 438	0 204	0 800	0 890	0 927	0 030
HxCDF, Total		3 181	1 816	8 491	4 449	10 762	0 046
HpCDF, Total		11 554	7 110	16 143	17 161	17 821	0 153
$TEQ_{DF} \cdot WHO_{94} (ND = 1/2 DL) (1)$		0 386	0 208	0 409	0 494	0 423	0 006

Data qualifiers and footnotes:

- e estimated value. Analyte exceeds upper end of the linear calibration range
- j estimated value. Analyte concentration is below method reporting limit and above non-detect.

EMPC - estimated maximum possible concentration.

Table 1

[concentration in µg/Kg (ppb)]

Location	GS-1D	RES39 0-4	RES40 0-4
Date	8/13/2003	8/13/2003	8/13/2003
Lab	CAS	CAS	CAS
Dup			
2,3,7,8-TCDD	<0 0001	0 0004 1	0 0005 j EMPC
1,2,3,7,8-PeCDD	0 0006 j	0 004	0 009
1,2,3,4,7,8-HxCDD	լ 0 001 յ	0 009	0 027
1,2,3,6,7,8-HxCDD	0 005	0 028	0 101
1,2,3,7,8,9-HxCDD	0 004	0 023	0 068
1,2,3,4,6,7,8-HpCDD	0 134	0 671	2 958
OCDD	0 971	5 292	25 606
2,3,7,8-TCDF	<0 0006	<0 001	0 001
1,2,3,7,8-PeCDF	<0 0002	0 0009 յ	0 003
2,3,4,7,8-PeCDF	<0 0002	ر 0001 و	0 004
1,2,3,4,7,8-HXCDF	<0 003	0 009	0 036
1,2,3,6,7,8-HxCDF	<0 003	0 005	0 015
1,2,3,7,8,9-HxCDF	<0 003	<0 0003	0 005
2,3,4,6,7,8-HxCDF	<0 003	0 008	0 024
1,2,3,4,6,7,8-HpCDF	0 028	0 160	0 632
1,2,3,4,7,8,9-HpCDF	<0.001	0 011	0 036
OCDF	0 100	0 612	3 174
TCDD, Total	0 001	0 000	0 004
PeCDD, Total	0 003	0 018	0 051
HxCDD, Total	0 033	0 177	0 601
HpCDD, Total	0 247	1 515	6 737
TCDF, Total	0 001	0 009	0 026
PeCDF, Total	0 007	0 049	0 165
HxCDF, Total	0 024	0 192	0 865
HpCDF, Total	0 099	0 595	2 483
$TEQ_{DF} - WHO_{98} (ND = 1/2 DL) (1)$	0 004	0 022	0 079

e - estimated value Analyte exceeds upper end of the linear calibration range EMPC - estimated maximum possible concentration

Attachment B

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Data Validation Report: October 16, 2003

The data validation of the Columbia Analytical Services, Inc. (CAS) laboratory data for the dioxin and furan (CDD/CDF) analysis of the Cass Lake Removal Site Evaluation and Supplemental Assessment soil samples contained in the aforementioned report is complete and is detailed below.

The analytical data were reviewed in accordance with the U.S. EPA Analytical Operations/Data Quality Center (AOC) National Functional Guidelines for Chlorinated Dioxin/Furan Data Review, Draft Final dated March, 2002 (Guidelines) as specified in the Quality Assurance Project Plan (QAPP, Barr, June 2003). In addition to the Guidelines, specific SW-846 Method 8290 criteria were also considered as slight differences in some of the performance aspects exist between the documents. In general, the areas covered by the validation process include:

- Overall assessment
- Holding times, preservation and storage
- Mass calibration and mass spectrometer resolution
- Window defining mix
- Initial calibration
- Instrument stability and continuing calibration verification
- Method blank analysis
- Laboratory control samples
- Second column confirmation
- Matrix Spikes

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report: October 16, 2003

Thirteen soil sample and two water sample results are contained in this laboratory report. They are as follows:

D27-29 0-4"	D20-21 0-4"	E18-19 0-4"	E18-19 4-12"
E13-15 0-4"	E11-13 0-4"	E24-25 0-4"	E24-25 4-12"
E24-25 4-12D"	E24-25-ER	GS-1	GS-1D
RES39 0-4"	RES40 0-4"	RES39-ER	

Overall Assessment

No qualifiers were assigned to the sample results contained in laboratory report E2300523 as a result of data validation process. All data met the data quality objectives (DQOs) and are useable as reported.

Holding Times, Preservation and Storage

The samples were collected August 13, 2003, cooled to 4°C and sent to the laboratory. Per the chain-of-custody and subsequent laboratory acknowledgement receipt forms, the laboratory received the samples August 15, 2003 in acceptable condition and at 4°C. It should be noted that discrepancies between method 8290 and the Guidelines exist for the technical extraction and analysis holding times. The Guidelines recommend that soil samples be extracted within 10 days of receipt and analyzed within 30 days. Alternately, Method 8290 and the QAPP for the project indicate that a 30-day extraction/45 day analysis holding times apply. Method 8290 also states that these holding times are only recommendations as dioxins and furans are very stable in a variety of matrices. All samples were extracted and analyzed within 30 days. No qualifiers are applied.

Mass Calibration and Mass Spectrometer Resolution

Mass calibration and mass spectrometer resolution (MC/MSR) checks are required to ensure that the mass calibration and mass spectrometer resolution is set at $a \ge 10,000$ resolving power. This resolution is confirmed at the beginning and end every 12-hour analysis period.

It should be noted that the Guidelines contain language that refer to evaluation techniques that due to upgrades in analytical systems software, are obsolete at CASs Houston facility. Specifically, the evaluation of the resolution by the measure of deviation between the exact m/z and the theoretical

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report: October 16, 2003

m/z at less than 5 ppm has been replaced with a function of instrumentation that implicity sets the error to zero at all calibration points so there is no longer any need to use peak matching conditions to verify the exact mass. Therefore, resolving power is evaluated by close review of the resolution of PFK peak profiles where high mass ion (380.9760) and low mass ion (304.9824) are reported.

CAS performed the MC/MSRs at the appropriate frequency and obtained acceptable results for the PFK calibrant confirming MC/MSRs at a resolving power of 10,000. Note: CAS used three instrument systems to analyze the project samples and provided appropriate documentation from the three systems in the raw data package. All system's documentation were evaluated during the data validation process.

Window Defining Mix

The window defining mix (WDM) is necessary to establish the appropriate switching times for the selection ion group descriptors. As stated in the Guidelines, the frequency of the WDM is every 12 hours prior calibration verification. However, Method 8290, Section 8.3.2.2.2. allows the laboratory, if running consecutive 12-hour shifts, to use the ending calibration verification (if all acceptance criteria is met) of the first 12-hour analysis period as the beginning calibration verification of the second 12-hour analysis period. In these cases, the WDM was analyzed after the calibration verification but still falls within the 12-hour analytical period. While the Guidelines indicate the WDM must be analyzed prior to the calibration verification sample, CAS's order of analysis for the system performance check samples did not appear to affect the overall system instrumentation and no qualifiers have been applied.

CAS performed the WDM analysis for every 12-hour sample analysis period and presented the acceptable switching times for each homologue group on the corresponding Form 5s.

Chromatographic Resolution

This check is performed to ascertain the separation of closely eluting dioxin/furan isomers. This is performed using SICP (selected ion current profile) of each isomer. The criteria require that the 2,3,7,8-TCDD peak and the 1,2,3,8-TCDD peak be resolved with a valley of $\leq 25\%$ for the DB-5 column.

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment.

Date of Report: October 16, 2003

CAS provided summary peak to valley results as specified above on each of the Form 5s. In each case, the $\leq 25\%$ criterion was met. The raw chromatograms were also reviewed to confirm this information.

Initial Calibration

Satisfactory instrument calibration is crucial to ensuring the accurate qualitative and quantitative results for each of the CDD/CDF compounds. Initial calibration procedures define the linear range and mean relative response factors that will be used for sample quantitation.

For the primary analytical systems (Instrument B and C), the initial calibration summary information met all the relevant acceptance criteria including the relative responses (RRFs) of <25% for native compounds and <35% for the labeled compounds, ion abundance ratios (IARs) within +/- 15%, absolute retention times within the WDM windows, and signal-to-noise ratios of >10:1.

Initial calibration for the 2,3,7,8-TCDF second column confirmation instrument (Instrument A) occurred on August 6, 2003. The initial calibration data met all acceptance criteria and is included in the Second Column Confirmation section of this report.

Instrument Stability and Continuing Calibration Verification

Instrument stability is an important aspect of this analytical system. Ongoing calibration verification using a CS-3 standard is performed for every 12-hour period. This standard is used to evaluate the isomer retention times, ion abundance criteria, sensitivity and ongoing calibration criteria. The continuing calibration verification summary information met all relevant acceptance criteria including the frequency of the continuing calibration verifications at the both beginning and ending of each 12-hour analytical run, the RRFs %D within <25% for native compounds and <35% for labeled compounds of initial calibration, the IARs within the +/-15%, and signal-to-noise of >10:1.

CAS met the requirements of the absolute retention times (RT) for the first internal standard (¹³C-1,2,3,4-TCDD) of ± 15 seconds (of the initial calibration standard) and the associated >25.0 minute RT requirement for most of the 12-hour CS3 calibration verification standards. However, occasionally, the RT for the first internal standard falls outside this 15 second criteria. It should be noted that the 15 second criteria is not specific to Method 8290. All the RTs for internal standards in

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report: October 16, 2003

each CS-3 standards fell within the switching time window as defined by the WDM and each CS-3 standard recorded acceptable percent recoveries therefore, using professional judgment as stated in the Guidelines, no data are qualified based on these RT deviations. The relative retention time and ion abundance criteria were also met for each of the native and label CDD/CDFs in the ongoing CS-3 standard results.

The relative response factor (RRF) criteria of <25% difference between CS-3 native compounds as compared to the initial calibration data was acceptable for all instrument A runs. For the instrument B runs on August 20, 21, the criteria were met. For the instrument B run on September 13, the criteria were not met. For the instrument C runs on August 28, 31, September 12, 19, the criteria were met. For the instrument C runs on August 23, 27, 29, September 13, the criteria were not met. For the runs where the criteria were exceeded, the data package contained the appropriate documentation (form 6a & 6b), which was then validated. Note: The exceedances of the 25% ending calibration verification standard criteria required the laboratory to provide the mean RRFs (using form 6) from the beginning and ending calibration verification analysis and the mean factors were then employed for quantitation, as specified in Method 8290, Section 8.3.2.4 and 7.7.4.4. No data qualifiers were assigned to the project data.

While the Guidelines indicate review of the relative responses (RR), method 8290 has no such criteria, as RR's are not used in final quantitation of sample results, therefore, no review was performed.

Review of the above elements indicates a high level of instrument stability and no qualifiers are required.

Method Blank Analysis

Laboratory method blank analyses are used to determine the existence and magnitude of contamination introduced at the laboratory.

CAS prepared 6 method blank samples during the analysis of the project samples. Three method blanks were non-detect for all target analytes. Three method blanks had a detection of OCDD (1.6 – 2.5 ng/kg) - but below the project required quantitation limit of 5.0 ng/kg. The trace concentrations

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report: October 16, 2003

of OCDD were within common laboratory practice levels of OCDD. All method blank samples were prepared and analyzed at the appropriate frequency.

Laboratory Control Samples (Ongoing Precision/Accuracy)

The laboratory is required to prepare and analyze a sample of spiked reference matrix for measures of accuracy of the analytical process/system/method.

CAS performed laboratory control sample (LCS) analyses at the appropriate frequency for the analytical batch. All seven sets of LCS results met associated acceptance criteria for percent recovery of the spiked concentrations as presented in Table 6 of Exhibit D of the Guidelines. All RRT and IARs were also acceptable in the LCS samples associated with the analytical batch indicating an in-control analytical system.

Labeled Compound Recovery (Surrogate Standard Recovery)

Because the introduced labeled compounds (CDD/CDFs) serve as the isotopic quantitative mechanism for this method, recoveries should be closely monitored for laboratory and method effectiveness.

CAS met the minimum acceptance criteria for the labeled compound recoveries as presented in Table 7 of Exhibit D of the Guidelines. However, these recovery windows are wider that CAS's internally generated acceptance criteria. Labeled compound recoveries qualified with a "Y" in the original data package indicate the recovery falls outside the laboratory-generated acceptance limits. None of these minor failures exceeded the Guidelines limits; therefore, no data requires qualification.

Second Column Confirmation

A second column confirmation of the 2,3,7,8-TCDF isomer is required by both Methods 1613 and 8290 due to a known lack of isomer specificity for this isomer on the DB-5 or equivalent column. All operating conditions of the second column analytical system must be identical to those of the primary system.

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report: October 16, 2003

CAS performed the second column confirmational analysis when the original analytical run had positive 2,3,7,8-TCDF detections. All performance criteria (as previously detailed above) were met prior to and during the confirmational analytical runs.

Matrix Spike Recoveries

Sample RES40 0-4" was used for a MS and MSD spike sample. Due to the high native concentration of OCDD, OCDF, and 1,2,3,4,6,7,8-HpCDD in the sample relative to the spiked level, the matrix spike recovery could not be accurately determined. All other spike recoveries were within the laboratory control limits of 50-150%.

Barr Engineering Company 4700 West 77th Street • Minneapolis MN 55435-4803

Phone 952-832-2600 • Fax 952-832-2601 • www.barr.com

Minneapolis MN · Hibbing MN · Duluth MN · Ann Arbor MI · Jefferson City MO

October 23, 2003

Sonia Vega
On-Scene Coordinator
U S Environmental Protection Agency, Region 5
Emergency Response Branch
520 Lafayette Road North
St Paul, MN 55155-4194

Dear Ms. Vega.

Barr has validated the analytical data contained in the laboratory batch number(s) identified above. Enclosed are the following documents related to these analytical data:

- Data Summary Table(s) {Attachment A}
- Validation Summary Report(s) {Attachment B}
- Complete analytical data package(s) from Columbia Analytical Services {Attachment C}

The data summary tables include the TEQ_{DF} -WHO₉₈ values calculated using the validated data. The TEQ calculation used a value of $\frac{1}{2}$ the detection limit for any congener that was not detected.

All data met the data quality objectives and are useable as reported. In accordance with the Unilateral Administrative Order, on October 3, 2003 International Paper authorized Columbia Analytical Services to analyze the archived samples C11-12 4-12, A17-19 4-12, A19-20 4-12, AB3-4 4-12, A5-6 4-12, C4-5 4-12, A6-7 0-4, A6-7 4-12 and D10-11 0-4 for PCDD/F since the adjacent or overlying sample exceeds 1 ppb TEQ_{DF}-WHO₉₈.

If you have any questions concerning this information, please contact me at (952)832-2876 or Tom Ross of International Paper at (901)419-3899

Sincerely,

Thomas D. Mattison Project Coordinator

Thomas O Methon

cc: Tim Drexler, U.S. EPA – RPM (w/ Attachments A, B & C)
Mony Chabria and Tom Turner, U.S. EPA (w/ Attachments A & B)

Attachment A

Table 1

[concentration in µg/Kg (ppb)]

Location	F27-29 0-4	F27-29 4-12	H25-26 0-4	126-27 0-4	127-29 0-4	J29-30 0-4
Date	8/6/2003	8/6/2003	8/5/2003	8/6/2003	8/6/2003	8/6/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup						
2,3,7,8-TCDD	0 003	0 002	0 00055 j	<0.00034	0 000791	0 0017 EMPC
1,2,3,7,8-PeCDD	0 068	0 032	0 008	0 004	0 021	0 046
1,2,3,4,7,8-HxCDD	0 260	0 123	0 024	0 010	0 054	0 166
1,2,3,6,7.8-HxCDD	0 963	0 274 j	0 108	0 064	0 320	3 072
1,2,3,7,8,9-HxCDD	0 295 j	0 242	0 049	0 022	0 112	0 389
1,2,3,4,6,7,8-HpCDD	30 852	11 364	2 344	1 2 496	11 694	186 701
OCDD	249 540 e	133 473 e	22 122 e	24 152	124 075	2182 551 e
2,3,7,8-TCDF	0 026	0 006	0 001	<0 00098	0 004	0 014
1.2,3,7,8-PeCDF	0 111	0 064	0 008	0 007	0 030	0 123
2.3,4,7,8-PeCDF	0 113	0 065	0 010	0 009	0 035	0 140
1,2,3,4,7,8-HXCDF	0 723	0 460	0 144	0 061	0 308	2 625
1.2,3,6,7.8-HxCDF	0 233	0 128	0 032	0 016	0 076	0 262
1,2,3,7,8,9-HxCDF	0 041	<0 035	0 032	0 021	0 084 EMPC	0 063
2.3,4,6,7,8-HxCDF	0 366	0 229	0 056	0 026	0 129	0 887
1,2,3,4,6,7,8-HpCDF	7 167	2 489	0 530	0 450	2 713	28 274
1,2,3,4,7,8,9-HpCDF	0 639	0 447	0 080	0 045	0 207	2 125
OCDF	29 433	14 042	1 686	1 682	12 664	132 899
TCDD, Total	0 016	0 004	0 002	<0 00034	0 003	0 010
PeCDD, Total	0 279	0 1 1 1	0 039	0 014	0 082	0 183
HxCDD, Total	7 753	2 747	0 548	0 257	1 388	5 045
HpCDD, Total	75 414	46 496	6 977	4 105	23 525	82 565
TCDF, Total	0 143	0 052	0 010	0 004	0 047	0 116
PeCDF, Total	2 648	1 686	0 229	0 154	0 759	2 490
HxCDF, Total	7 251	4 152	1 909	0 926	5 721	8 468
HpCDF, Total	34 820	30 590	3 558	2 094	13 912	53 718
					1	
$TEQ_{DF} - WHO_{98} (ND = 1/2 DL) (1)$	0 840	0 370	0 120	0 060	0 310	3 300

Data qualifiers and footnotes

- e estimated value Analyte exceeds upper end of the linear calibration range
- J estimated value Analyte concentration is below method reporting limit and above non-detect

EMPC - estimated maximum possible concentration

Table 1

[concentration in µg/Kg (ppb)]

Location	D25-26 0-4	DE8-9 0-4	DE8-9 4-12	E29-30 0-4	F22-23 0-4	J26-27 0-4
Date	8/8/2003	8/8/2003	8/8/2003	8 8/2003	8/8/2003	8/8/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup						
2,3,7.8-TCDD	<0 0003	<0 0006	<0 00052	0 006	0 002	0 002
1,2,3,7,8-PeCDD	0 021	0 017	0 011	0 143	0 050	0 083
1,2,3,4,7.8-HxCDD	0 049	0 067	0 046	0 438	0 143	0 313
1,2,3,6,7,8-HxCDD	0 404	0 206	0 132	1 602	0 402	5 251
1,2,3,7,8,9-HxCDD	0 135	0 130	0 090	0 748	0 313	0 830
1,2,3,4,6,7,8-HpCDD	12 855	8 516	6 274	49 437	13 533	158 645
OCDD	133 391	55 358 e	45 773 e	428 350	133 542	1504 395 e
2,3,7.8-TCDF	0 004	0 001	0 0009 EMPC	0 014	0 003	0 065
1,2,3,7,8-PeCDF	0 038	0 006	0 004	0 086	0 017	0.412
2,3,4,7,8-PeCDF	0 033	0 007	0 005	0 094	0 019	0 755
1,2,3,4,7,8-HXCDF	0 372	0 068	0 053	0 617 EMPC	0 228	9 161
1,2,3,6,7,8-HxCDF	0 112	0 023	0 017	0 309	0 080	1 489
1,2,3,7,8,9-HxCDF	<0 0269	0 002	0 0016 j EMPC	0 030	0 029	0 079
2,3,4,6,7,8-HxCDF	0 176	0 045	0 036	0 566	0 151	2 451
1,2,3,4,6,7,8-HpCDF	3 413	1 131	0 949	12 178	2 411	50 506
1,2,3,4,7,8,9-HpCDF	0 360	0 106	0 075	0 806	0 276	4 332
OCDF	12 861	5 449	4 530	58 002	11 891	209 140 e
TCDD, Total	0 002	<0 0006	<0 00052	0 031	0 006	0 027
PeCDD, Total	0 082	0 074	0 046	0 547	0 175	0 253
HxCDD, Total	1 766	2 062	1 151	8 027	2 704	12 278
HpCDD, Total	28 397	22 841	13 136	92 152	33 768	70 667
TCDF, Total	0 030	0 009	0 006	0 251	0 053	0 338
PeCDF, Total	0 753	0 190	0 156	3 336	0 764	9 483
HxCDF, Total	3 317	1 336	1 020	9 664	4 802	24 238
HpCDF, Total	17 592	5 412	3 816	45 124	15 592	47 376
$TEQ_{DF} - WHO_{98} (ND = 1/2 DL) (1)$	0 346	0 179	0 130	1 305	0 374	4 753

Data qualifiers and footnotes:

- e estimated value. Analyte exceeds upper end of the linear calibration range
- J estimated value. Analyte concentration is below method reporting limit and above non-detect.

EMPC - estimated maximum possible concentration

Table 1

[concentration in µg/Kg (ppb)]

Location	J26-27 4-12	J26-27 12-24	J27-29 0-4	J27-29 4-12	J27-29 12-24	SW-44 0-4
Date	8/8/2003	8/8/2003	8/8/2003	8/8/2003	8/8/2003	8/12/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup						
						<u> </u>
2,3,7,8-TCDD	0 000554 j	<0 00016	0 002	< 0 000162	<0.00013	<0 00081
1,2,3,7.8-PeCDD	0 026	0 0019 j	0 033	< 0 00017	0 00055 j	0 017
1,2,3,4,7,8-HxCDD	0 089	0 0086 EMPC	0 071	0 000761	0 0014 j	0 056
1,2,3,6,7,8-HxCDD	3 090	0 189	2 426	0 009	0 043	0 216
1,2,3,7,8,9-HxCDD	0.255	0 023	0 243	0 0011 j	0 003	0 105
1,2,3,4,6,7,8-HpCDD	112 241	5 335	79 840 e	0 282	1 096	8 119
OCDD	1406 612 e	52 529 e	747 571 e	2 208 e	8 740	72 045
2,3,7,8-TCDF	0 037	0 004	0 010	< 0 000163	<0 0012	<0 0010
1,2,3,7,8-PeCDF	0 209	0 023	0 127	<0 00016	ر 0 0016	0 008
2,3,4,7,8-PeCDF	0 308	0 029	0 181	0 00054 j	0 003	0 008
1,2,3,4,7,8-HXCDF	4 746	0 252	2 798	0 008	0 036	0 081
1,2,3,6,7,8-HxCDF	0 757	0 048	0 386	0 0013 j	0 006	0 026
1,2,3,7,8,9-HxCDF	0 049	<0 0103	0 033 EMPC	<0 00061	<0 00061	<0.016
2,3,4,6,7,8-HxCDF	1 382	0 070	0 844	0 003	0 012	0 054
1,2,3,4,6,7,8-HpCDF	30 098	1 515	28 143	0 116	0 490	0 967
1,2,3,4,7,8,9-HpCDF	2 502	0 089	2 203	0 012	0 062	0 184
OCDF	171 091 e	9 036	154 944 e	0 624	2 748	6 763
TCDD, Total	0 009	0 001	0 018	<0 00016	< 0 00013	<0 00081
PeCDD, Total	0 070	0 003	0 138	< 0 00017	0 001	0 050
HxCDD, Total	5 265	0 487	5 660	0 021	0 095	0 923
HpCDD, Total	71 507	9 989	66 753	0 461	2 229	14 968
TCDF, Total	0 144	0 015	0 113	<0 00016	0 004	0 010
PeCDF, Total	3 986	0 420	2 748	0 006	0 033	0 195
HxCDF, Total	13 173	2 976	11 552	0 124	0 608	1 545
HpCDF, Total	42 756	8 349	39 244	0 572	3 440	6 775
$TEO_{DF} - WHO_{98} (ND = 1/2 DL) (1)$	2 837	0 153	2 005	0 007	0 029	0 177

Data qualifiers and footnotes:

- e estimated value. Analyte exceeds upper end of the linear calibration range
- J estimated value Analyte concentration is below method reporting limit and above non-detect.

EMPC - estimated maximum possible concentration.

Table 1

[concentration in µg/Kg (ppb)]

Location	SW-70-4	SW-7 4-12	SW-41 0-4	SW-42 0-4	FOA-02-1-0-4	FOA-02-2-0-4
Date	8/11/2003	8/11/2003	8/11/2003	8/12/2003	8/12/2003	8/12/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup						
_2,3,7.8-TCDD	<0 00081	<0 000528	0 002	<0 000468	0 004	0 001
_1,2,3,7,8-PeCDD	0 041	0 017	0 041	0 021	0 089	0 0 1 3
_1,2,3,4,7,8-HxCDD	0 127	0 054	0 138	0 068	0 288	0 035
1,2,3,6.7,8-HxCDD	ر 1 006 و	07741	ر 1 019 ر	0 467	0 774	0 289
1,2,3,7,8,9-HxCDD	0 334	0 165	0 348	0 192	0 352 յ	0 093
1,2,3,4,6,7,8-HpCDD	51 621	45 229	55 172	12 112	27 598	4 794
OCDD	459 098	439 818	517 194 e	115 280	238 156	45.6
2,3,7,8-TCDF	0 007	0 005	0 013	0 005	0 008	0 006
1,2,3,7,8-PeCDF	0 023	0 018	0 041	0 019	0 049	0 026
2,3,4,7,8-PeCDF	0 034	0 026	0 064	0 024	0 060	0 031
1,2,3,4,7,8-HXCDF	0 279	0 226	0 426	0 134	0 323 J EMPC	0 300
1,2,3,6,7,8-HxCDF	0 063	0 036	0 079	0 036	0 202	0 071
1,2,3,7,8,9-HxCDF	< 0 0216	<0 022	0 010	0 004	0 106 EMPC	0 007 EMPC
2,3,4,6,7,8-HxCDF	0 142	0 082	0 183	0 065	0 342	0 118
1,2,3,4,6,7,8-HpCDF	5 202	4 306	6 214	1 506	4 924	1 158
1,2,3,4,7,8,9-HpCDF	0 329 J EMPC	<0 664	<1 040	0 187	<0 850	0 191
OCDF	38 912	36 458	45 538	8 344	26 012	4 099
TCDD, Total	0 007	0 007	0 022	0 005	0 016	0 002
PeCDD, Total	0 208	0 094	0 223	0 114	0 269	0 049
HxCDD, Total	4 712	3 459	5 779	2 600	5 161	1 043
HpCDD, Total	81 045	69 661	99 057	32 082	33 783	12 457
TCDF, Total	0 078	0 053	0 164	0 046	0 077	0 031
PeCDF, Total	0 733	0 489	1 127	0 511	1 462	0 560
HxCDF, Total	5 757	4 649	3 168	2 720	5 208	3 822
HpCDF, Total	35 423	32 188	47 660	10 232	19 113	7 067
		ļ				ļ
$TEQ_{DF} - WHO_{98} (ND = 1/2 DL) (1)$	0 878	0 713	0 974	0 282	0 721	0 189

Data qualifiers and footnotes

- e estimated value Analyte exceeds upper end of the linear calibration range
- J estimated value. Analyte concentration is below method reporting limit and above non-detect.

EMPC - estimated maximum possible concentration

Table 1

[concentration in µg/Kg (ppb)]

Location	FOA-02-2-4-12	FOA-02-3-0-4	FOA-02-4-0-4	FOA-02-5-0-4	FOA-02-6-0-4	FOA-02-6-4-12
Date	8/12/2003	8/12/2003	8/12/2003	8/12/2003	8/12/2003	8/12/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup		1				
		1			1	
2.3,7.8-TCDD	<0 000201	<0 000131	<0 000193	0 001	0 00083) EMPC	<0 000111
1,2,3,7,8-PeCDD	0 006	0 003	0 008	0 014	0 010	0 000995 j
1,2,3,4,7,8-HxCDD	0 018	0 012	0 029	0 031	0 029	0 003
1,2,3,6,7,8-HxCDD	0 094	0 041	0 204	0 093	0 086	0 010
1,2,3,7,8,9-HxCDD	0 045	0 021	0 062	0 074	0 080	0 008
1,2,3,4,6,7.8-HpCDD	4 349	1 881	6 506	3 709	3 315	0 408
OCDD	41 2	15 875	58 9 e	32 69	2~0 e	3 31 e
2,3,7,8-TCDF	<0 00066 j	0 001	0 001	<0 00035	<0 000441	<0 000098
1,2,3,7.8-PeCDF	0 006	ر 0 0010	0 009	0 0015 j	0 0021 J	0 00024 j EMPC
2,3,4,7,8-PeCDF	0 006	0 0013 j	0 010	ر 0 0013 ر	ر 0020 و	0 00030 j EMPC
1,2,3,4,7,8-HXCDF	0 072	0 017	0115	0 018	0 022	0 003
1,2,3,6,7,8-HxCDF	0 021	0 006	0 028	0 011	0 012	0 0015 j
1,2,3,7,8,9-HxCDF	0 002 j	0 002 j	<0 00011	0 0032	<0 0013	<0 00034
2,3,4,6,7,8-HxCDF	0 035	0011	0 050	0 025	0 022	ر 0029 0
1,2,3,4,6,7,8-HpCDF	0 960	0 274	1 227	0 417	0 440	0 066
1,2,3,4,7,8,9-HpCDF	0 062	0 026	0 1 1 2	0 050	0 046	0 007
OCDF	4 237	1 563	7 276	2 550	2 750	0 319
TCDD, Total	0 001	<0 00013	<0 00019	0 006	0 021	<0.000111
PeCDD, Total	0 021	0 007	0 024	0 055	0 1 1 4	0 007
HxCDD, Total	0 402	0 181	0 694	0 488	0 698	0 063
HpCDD, Total	5 3 1 8	2 694	11 401	5 759	5 276	0 655
TCDF, Total	0 007	0 003	0 005	0 007	0 013	0 001
PeCDF, Total	0 142	0 040	0 178	0 061	0 081	0 009
HxCDF, Total	1 048	0 290	0 746	0 422	0 465	0 067
HpCDF, Total	2 834	1 174	6 015	1 745	1 788	0 265
$TEQ_{DF} - WHO_{98} (ND = 1/2 DL) (1)$	0 097	0 038	0 147	0 087	0 078	0 009

Data qualifiers and footnotes:

- e estimated value. Analyte exceeds upper end of the linear calibration range
- j estimated value. Analyte concentration is below method reporting limit and above non-detect.

EMPC - estimated maximum possible concentration.

Table 1

[concentration in µg/Kg (ppb)]

Location	NWW D-04 0-4	NWWD-05 0-4	RES16A 0-4	RES16B 0-4	RES24 0-4	RES 24 4-12
Date	8/14/2003	8/14/2003	8/14/2003	8/14/2003	8/14/2003	8/14/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup						
2,3,7,8-TCDD	<0 00029	<0.0002	0 0007 j EMPC	<0 0004	< 0.0009	< 0 0003
1,2,3,7.8-PeCDD	0 002 J	0 0012 J EMPC	0 017	0 005	0.004	ر 0 001 ر
1,2,3,4,7,8-HxCDD	0 006 EMPC	0 0031 EMPC	0 052	0 013	0 008	0 004
1,2,3,6,7,8-HxCDD	0 035	0 017	0.344	0 061	0 028	0 014
1,2,3,7,8,9-HxCDD	0 017	0 0091	0 125	0 034	0 019	0 008
1,2,3,4,6,7,8-HpCDD	0 929	0 550	10 281	1 511	0 975	0 447
OCDD	8 5 1 9	4 652 e	101 918 e	14 372	7 553	3 657 e
2,3,7,8-TCDF	<0 00097	<0 0004	0 003	<0 0009	< 0 0009	< 0 0003
1,2,3,7,8-PeCDF	0 002 J EMPC	0 0006 j EMPC	0 025	ر 0003 ر	<0 0009	<0 0006
2,3,4,7,8-PeCDF	0 002 1	0 0010 j	0 028	0 004	<0 0008	<0 0006
1,2,3,4,7,8-HXCDF	0 027	0 010	0 292	0 039	0 010	0 007
1,2,3,6.7,8-HxCDF	0 008	0 0040	0 081	0 015	0 004	<0 005
1,2,3,7,8,9-HxCDF	0 005	0 002 j	0 057	0 010	<0 003	<0 007
2,3,4,6,7,8-HxCDF	0 014	0 0061	0 130	0 025	<0 003	<0 006
1,2,3,4,6,7,8-HpCDF	0 296	0 128	2 972	0 449	0 187	0 110
1,2,3,4,7.8,9-HpCDF	0 022	0 009	0 229	0 033	0 013	<0 004
OCDF	1 131	0 457	10 816 e	1 556 e	0 733	0 385
TCDD, Total	0 012	0 0004	0 003	<0 0004	<0 0009	<0 0003
PeCDD, Total	0 024	0 009	0 066	0 018	0 015	0 006
HxCDD, Total	0 178	0 097	1 340	0 338	0 180	0 088
HpCDD, Total	2 085	1 059	19 424	3 353	1 650	0 889
TCDF, Total	0 006	0 003	0 034	0 022	0 002	0 002
PeCDF, Total	0 065	0 029	0 613	0 166	0 033	0 034
HxCDF, Total	0 431	0 176	4 797	0 703	0 206	0 172
HpCDF, Total	1.217	0 488	12 789	1.704	0 750	0.393
$TEQ_{DF} - WHO_{90} (ND = 1/2 DL) (1)$	0 0283	0 0143	0 287	0 0482	0 0243	0 0121

Data qualifiers and footnotes:

- e estimated value. Analyte exceeds upper end of the linear calibration range
- j estimated value. Analyte concentration is below method reporting limit and above non-detect.

EMPC - estimated maximum possible concentration.

Table 1

[concentration in µg/Kg (ppb)]

Location	RES 28 0-4	RES28 0-4D	SWD-01 0-4	SWD-02 0-4	SWD-03 0-4	SWD-04 0-4
Date	8/14/2003	8/14/2003	8/14/2003	8/14/2003	8/14/2003	8/14/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup						
2,3,7,8-TCDD	< 0 0002	<0 0008	0 0008 1	<0 0004	<0 0004	<0 0005
1,2,3,7,8-PeCDD	ر 0002 و	ر 0 003 ر	0 003	0 004	0 008	0 004
1,2,3,4,7,8-HxCDD	0 006	0 008	0 006	0 010	1100	0 009
1,2,3,6,7,8-HxCDD	0 032	0 029	0 019	0 035	0 043	0 027
1,2,3,7,8,9-HxCDD	0 016	0 016	0 016	0 026	0 032	0 024
1,2,3,4,6,7,8-HpCDD	1 145	0 990	0 471	1 175	0 891	0 736
OCDD	9 748 e	9 166	3 169 e	9 804	7 074	5 350
2,3,7,8-TCDF	<0 0004	<0 0009	0 0006 J	ر 7 0000 و	0 004	<0 0007
1,2.3,7,8-PeCDF	ر 0002 ر	<0 0009	ر 00009	0 002 j EMPC	0 0017 j EMPC	ر 0 001
2,3,4,7,8-PeCDF	ر 0 002 ر	<0 0008	ر 0 002	0 003	0 015	0 002 3
1,2,3,4,7,8-HXCDF	0 021	0 020	0 008	0 015	0 024	0 010
1,2,3,6,7,8-HxCDF	0 006 EMPC	0 006 EMPC	0 006	0 008	0 030	0 005
1,2,3,7.8,9-HxCDF	0 006	<0 006	0 002 j	0 003 j	0 009	0 002 j
2,3,4,6,7,8-HxCDF	0 013	0 009	0 011	0 016	0 080	0 009
1,2,3,4,6,7.8-HpCDF	0 262	0 270	0 115	0 211	0 220	0 156
1,2,3,4,7,8,9-HpCDF	0 017	0 021	0 007	0 015	0 017	0 011
OCDF	0 969	0 948	0 303	0 899	0 754	0 573
TCDD, Total	<0 0002	<0 0008	0 001	0 004	0 004	<0 0005
PeCDD, Total	0 011	0 006	0 012	0 022	0 052	0 025
HxCDD, Total	0 174	0 180	0 127	0 219	0 346	0 218
HpCDD, Total	1 970	1 904	0 885	2 058	1 766	1 498
TCDF, Total	0 007	<0 0009	0 026	0 053	0 266	0 016
PeCDF. Total	0 064	0 058	0 148	0 211	1 571	0 071
HxCDF, Total	0 355	0 344	0 223	0 344	1 064	0 205
HpCDF, Total	1 010	1 091	0 321	0 825	0 780	0 542
TEQ _{DF} - WHO ₃₈ (ND = 1/2 DL) (1)	0 0289	0 0265	0 0182	0 0324	0 0508	0 0234

Data qualifiers and footnotes:

- e estimated value. Analyte exceeds upper end of the linear calibration range
- 1 estimated value. Analyte concentration is below method reporting limit and above non-detect.

EMPC - estimated maximum possible concentration.

Table 1

[concentration in µg/Kg (ppb)]

Location	SWD-05 0-4	D20-21 0-4	D27-29 0-4	E11-13 0-4	E13-15 0-4	E18-19 0-4
Date	8/14/2003	8/13/2003	8 13/2003	8/13/2003	8/13/2003	8/13/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup					1	
					1	
2,3,7,8-TCDD	<0.0003	0.005	0 001	F00 0	<0 0002	0 001
1,2,3,7,8-PeCDD	0 002 j	0 105	0 026	0 061	0 010	0 036
1,2,3,4,7,8-HxCDD	0 004	0 334	0 083	0 170	0 025	0 100
1,2,3,6,7,8-HxCDD	0 020	2 314	0 406	1 368	0 274	0 517
1,2,3,7,8,9-HxCDD	0 014	0 756	0 186	0.401	0 06-	0 230
1,2,3,4,6,7,8-HpCDD	0 908	72 773	13 044	51 460	9 581	17 327
OCDD	5 5 1 6	519 390 e	115 856	493 923 e	98 013 e	131 712
2,3,7,8-TCDF	ر 00007	0 020	0 007	0 005	<0 0007	0 002
1,2,3,7,8-PeCDF	ر 0 001	0 081	0 040	0 039	0 005	0 033
2,3,4,7,8-PeCDF	ر 0 001	0 113	0 050	0 041	0 005	0 013
1,2,3,4,7,8-HXCDF	0 007	1 034	0 343	1 323	0 290	0 168
1,2,3,6,7,8-HxCDF	0 003	0 252	0 096	0 200	0 040	0 061
1,2,3,7,8,9-HxCDF	<0 002	0 020	<0 007	<0 000856	<0.001	<0 0003
2,3,4,6,7,8-HxCDF	0 005	0 432	0 160	0 386	0 072	0 113
1.2.3.4.6.7.8-HpCDF	0 108	12 966	3 285	12 807	2 720	3 061
1,2,3,4,7,8,9-HpCDF	0 006	0 981	0 250	1 514	0 455	0 253
OCDF	0 430	62 855	11 740	58 715	13 455	15 518
TCDD, Total	0 002	0 023	0 013	0 017	0 001	0 005
PeCDD, Total	0 017	0 340	0 094	0 208	0 039	0 096
HxCDD, Total	0 148	7 190	1 739	4 413	0 886	2 011
HpCDD, Total	1 844	34 277	21 470	37 461	17 735	23 016
TCDF, Total	0 019	0 123	0 034	0 086	0 016	0 026
PeCDF, Total	0 050	2 180	0 950	1 040	0 161	0 438
HxCDF, Total	0 136	6 584	5 123	5 772	4 504	3 181
HpCDF, Total	0 356	10 551	12 616	26 249	15 195	11 554
						
$TEQ_{DF} - WHO_{98} (ND = 1/2 DL) (1)$	0 0193	1 610	0 361	1 180	0 229	0 386

Data qualifiers and footnotes:

- e estimated value Analyte exceeds upper end of the linear calibration range
- J estimated value. Analyte concentration is below method reporting limit and above non-detect

EMPC - estimated maximum possible concentration

Table 1

[concentration in µg/Kg (ppb)]

Location	E18-19 4-12	E24-25 0-4	E24-25 4-12	E24-25 4-12D	GS-1	GS-1D
Date	8/13/2003	8/13/2003	8/13/2003	8/13/2003	8/13/2003	8/13/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup						
2.3,7,8-TCDD	ر 0 0007	0 0007 1	0 0004 j	0 0006 1	< 0 0002	< 0 0001
1,2,3,7,8-PeCDD	0 014	0 015	0 010	0 011	ر 9000 0	ر 0006 و
1,2,3,4,7,8-HxCDD	0 046	0 050	0 039	0 040	EMPC ر 0 002	ر 001 0
1,2,3,6,7.8-HxCDD	0 303	0 489	0 625	0 516	0 008	0 005
1,2,3,7,8,9-HxCDD	0 099	0 097	0 094	0 101	0 006	0 004
1,2,3,4,6,7,8-HpCDD	9 884	15 946	18 757	15 029	0 236	0 134
OCDD	96 380 e	173 869	196 286	153 060 e	1 760	0 971
2.3,7,8-TCDF	0 001	0 006	0 005	0 006	<0 0002	< 0 0006
1,2,3,7,8-PeCDF	0 008	0 057	0 092	0 076	<0 0002	<0 0002
2,3,4,7,8-PeCDF	0 008	0.046	0 051	0 054	<0 0002	<0 0002
1,2,3,4,7,8-HXCDF	0 094	0 488	0 629	0 510	<0 005	< 0 003
1,2,3,6,7,8-HxCDF	0 030	0 115	0 164	0 179	0 002 j EMPC	< 0 003
1,2,3,7,8,9-HxCDF	<0 0005	0 015	0 038	0 036	<0 005	< 0 003
2,3,4,6,7,8-HxCDF	0 062	0 182	0 246	0 274	0 003 j	< 0 003
1,2,3,4,6,7,8-HpCDF	1 418	4 221	5 503	4 360	0 047	0 028
1,2,3,4,7,8,9-HpCDF	0.133	0 338	0 555	0 379	0 003 j	< 0 001
OCDF	7 294	13 069	14 100	11 844	0 125	0 100
TCDD, Total	0 011	0 015	0 003	0 003	<0 0002	0 001
PeCDD, Total	0 039	0 069	0 025	0 030	0 005	0 003
HxCDD, Total	1 138	1 615	1 720	1 879	0 043	0 033
HpCDD, Total	18 291	27 647	25 001	25 404	0 414	0 247
TCDF, Total	0 012	0 037	0 026	0 030	0 001	0 001
PeCDF, Total	0 204	0 800	0 890	0 927	0 030	0 007
HxCDF, Total	1 816	8 491	4 449	10 762	0 046	0 024
HpCDF, Total	-7 110	16 143	17 161	17 821	0 153	0 099
		1				
$TEQ_{DF} - WHO_{98} (ND = 1/2 DL) (1)$	0 208	0 409	0 494	0 423	0 006	0 004

Data qualifiers and footnotes:

- e estimated value. Analyte exceeds upper end of the linear calibration range
- j estimated value. Analyte concentration is below method reporting limit and above non-detect.

EMPC - estimated maximum possible concentration.

Table 1

[concentration in µg/Kg (ppb)]

	RES39 0-	<u> </u>	<u> </u>	T]
Location	4	RES40 0-4	\\\\D-01 0-4	\WW D-02 0-4	NWW D-02 4-12	NWWD-03 0-4
Date	8/13/2003	8/13/2003	8/15/2003	8/15/2003	8 15 2003	8/15/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup			<u> </u>		1	1
2,3,7,8-TCDD	0 0004 j	0 0005 j EMPC	<0 0003	0 0004 j EMPC	<0 0002	<0 00009
1,2,3,7,8-PeCDD	0 004	0 009	0 001 j	0 007	0 001 j	0 0008 j
1.2.3.4,7.8-HxCDD	0 009	0 027	0 003 EMPC	0 017	0 002 3	0 003
1.2.3.6,7.8-HxCDD	0 028	0 101	0.011	0 051	0 009	0 012
1.2,3,7,8.9-HxCDD	0 023	0 068	0 007	0.041	0 006	0 005
1,2,3,4,6,7,8-HpCDD	0 671	2 958	0 349	1 390	0 269	0 381
OCDD	5 292	25 606	2 651 e	9 956 e	2 066 e	3 356 e
2.3,7,8-TCDF	<0.001	0 001	<0 0009	<0 0005	<0 0006	<0 0006
1,2,3,7,8-PeCDF	0 0009 j	0 003	< 0 0003	0 001 j	ر 2000 ر	ر 0009 و
2,3,4,7,8-PeCDF	0 001 j	0 004	0 0008 j EMPC	ر 0 001	0 0005 j EMPC	0 001 j
1,2,3,4,7,8-HXCDF	0 009	0 036	0 006 EMPC	0 013	0 005	0 011
1,2,3,6,7.8-HxCDF	0 005	0 015	0 002 J EMPC	0 006	ر 0 002 ر	0 003
1,2,3,7,8,9-HxCDF	<0 0003	0 005	0 0007 j EMPC	0 001 j	ر 0 002 ر	0 003
2,3,4,6,7,8-HxCDF	0 008	0 024	0 004	0 010	0 004	0 004
1.2,3,4.6.7.8-HpCDF	0 160	0 632	0 069	0 299	0 059	0 1 1 0
1,2,3,4,7,8,9-HpCDF	0 011	0 036	0 004	0 017	0 006	0 008
OCDF	0 612	3 174	0 233	1 182	0 228	0.400
TCDD, Total	0 000	0 004	0 001	0 001	<0 0002	0 000
PeCDD, Total	0 0 1 8	0 051	0 008	0 025	0 003	0 005
HxCDD, Total	0 177	0 601	0 077	0 273	0 047	0 058
HpCDD, Total	1 515	6 737	0 688	2 696	0 476	0 682
TCDF, Total	0 009	0 026	0 008	0 007	0 003	0 003
PeCDF, Total	0 049	0 165	0 029	0 055	0 018	0 022
HxCDF, Total	0 192	0 865	0 090	0 301	0 090	0 144
HpCDF, Total	0 595	2 483	0 230_	1 086	0 226	0 456
$TEQ_{DF} - WHO_{98} (D = 1/2 DL) (1)$	0 022	0 079	0 010	0 040	0 008	0011

Data qualifiers and footnotes

e - estimated value Analyte exceeds upper end of the linear calibration range

3 - estimated value. Analyte concentration is below method reporting limit and above non-detect.

EMPC - estimated maximum possible concentration

Table 1

[concentration in µg/Kg (ppb)]

Location	\WWD-06 0-4	\\\\D-07 0-4	RES38 0-4	120-21 0-4	B2-3-0-4	AB3-4-0-4
Date	8/15/2003	8/15/2003	8/15/2003	8/15/2003	8'26/2003	8/26/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup						
2.3,7,8-TCDD	<0 0003	<0.0003	<0 0003	0 001	0.003	0 010
1,2,3,7,8-PeCDD	0 001 j	EMPC ر 0 0009	0 002 j	0 024	0 055	0 162
1,2,3,4,7,8-HxCDD	0 003	0 002 j EMPC	0 004 EMPC	0 070	0 150	0 525
1,2,3,6,7,8-HxCDD	0 015	0 010	0 019	0 292	0 619	2 558
1,2,3,7,8.9-HxCDD	0 006	0 006	0 012	0 183	0 380	0 904 յ
1,2,3,4,6,7,8-HpCDD	0 401	0 284	0 504	11 694	24 965	77 805
OCDD	2 960 e	2 148 e	3 55 e	79 825 e	212 795	765 367 e
2,3,7,8-TCDF	<0 0005	<0 0009	<0 0007	0 002	<0 0009	0 006
1,2,3,7,8-PeCDF	0 002 j	0 0006 j EMPC	0 001 j EMPC	0 010	0 011	0 067
2,3,4,7,8-PeCDF	ر 0 002 ر	0 0008 j EMPC	0 002 j	0 010	0 014	0 076
1,2,3,4,7,8-HXCDF	0 015	0 006	0 016	0 096	0 145	1 368
1,2,3,6,7,8-HxCDF	0 004 EMPC	ر 002 و	0 008	0 043	0 066	0 373
1,2,3,7,8,9-HxCDF	0 003 J EMPC	ر 001 0	0 004	0 018	0 020	0 138 EMPC
2,3,4,6,7,8-HxCDF	0 006	0 004	0 012	0 077	0 081	0 610
1,2,3,4.6,7.8-HpCDF	0 082	0 064	0 158	2 182	3 910	18 777
1,2,3,4,7,8,9-HpCDF	0 005	0 004	0 014	0 136	0 193	1 823
OCDF	0 152	0 187	0 321	7 118	20 694	93 716
TCDD, Total	<0 0003	0 001	0 000	0 005	0 015	0 064
PeCDD, Total	0 004	0 003	0 010	0 088	0 254	0 571
HxCDD, Total	0 077	0 060	0 104	1 469	3 354	9 284
HpCDD, Total	0 778	0 562	0 905	15 922	38 273	83 990
TCDF, Total	0 004	0 004	0 013	0 022	0 069	0 213
PeCDF, Total	0 041	0 021	0 082	0 322	0 533	1 962
HxCDF, Total	0 179	0 090	0 286	1 932	3 525	9 338
HpCDF, Total	0 279	0 206	0 528	5 378	14 299	44 082
$TEQ_{DF} - WHO_{98} (ND = 1/2 DL) (1)$	0 013	0 008	0 018	0 257	0 526	1 93

Data qualifiers and footnotes:

- e estimated value. Analyte exceeds upper end of the linear calibration range
- J estimated value Analyte concentration is below method reporting limit and above non-detect

EMPC - estimated maximum possible concentration

Table 1

[concentration in µg/Kg (ppb)]

Location		AB4-5-0-4	AB4-5-4-12	C3-4 0-4	C3-4 4-12	TH-1-0-4	A5-6-0-4
Date		8/26/2003	8 26/2003	8/26/2003	8/26/2003	8 26/2003	8/26/2003
Lab		CAS	CAS	CAS	CAS	CAS	CAS
Dup						1	
						1	
2.3.7.8-TCDD		0 024	0 002	0 005	0 001 j	₹00003	0 004 EMPC
1,2,3,7,8-PeCDD		0 317	0 024	0 092	0 033	< 0 0003	0 078
1,2,3,4,7,8-HxCDD		1 377	0 077	0 235	0 116	< 0 0004	0 248
1,2,3,6.7.8-HxCDD		⁷ 616	0.610	1 869	0 464	0 002 j	1 259
1,2,3,7,8,9-HxCDD	_[_[2 309	0 200	0 555	0 228	0 0007 J EMPC	0 527
1,2,3,4,6,7,8-HpCDD		262 189 e	23 993	53 631	16 405	0 086	50 122
OCDD		2728 565 e	238 989	461 755	125 080	0 832	454 858
2,3,7,8-TCDF		0 035	0 004	0 011	0 004	<0 0002	0 006
1,2.3,7,8-PeCDF		0 236	0 020	0 049	0 022	< 0 0003	0 040
2,3,4,7,8-PeCDF		0 224	0 019	0 043	0 018	< 0 0003	0 039
1,2,3,4,7,8-HXCDF		3 066	0 206	0 448	0 137	0 0007 j	0 443
1,2,3,6,7.8-HxCDF		0 778	0 048	0 151	0 055	0 0005 j EMPC	0 132
1,2,3,7,8,9-HxCDF		0 618 EMPC	0 037	0 080	<0.059	<0 0004	0 076
2,3,4,6,7,8-HxCDF	T	1 647	0 096	0 273	0 109	0 001 j EMPC	0 247
1,2,3,4,6,7,8-HpCDF		54 610	3 932	9 074	2 657	0 014	8 513
1.2.3,4,7.8.9-HpCDF		5 443	0 276	0 569	0 215	<0 0009	0 612
OCDF		351 915	26 731	44 226	13 720	0 081	48 655
TCDD, Total		0 133	0 009	0 050	0 004	<0 0003	0 018
PeCDD, Total		1 053	0 072	0 361	0 147	, <0 0003	0 267
HxCDD, Total		23 219	2 106	5 675	1 994	0 008	4 357
HpCDD, Total		170 123	38 090	64 496	24 311	0 153	55 495
TCDF, Total		0 468	0 028	0 090	0 043	<0 0002	0 075
PeCDF, Total		4 844	0 339	1 115	0 548	<0 0003	0 751
HxCDF, Total		20 466	1 435	4 319	3 370	0 023	3 599
HpCDF, Total		88 689	17 479	27 110	12 562	0 062	25 998
$TEQ_{DF} - WHO_{98} (ND = 1/2 DL) (1)$		5 74	0 473	1 17	0 365	0 002	1 04

Data qualifiers and footnotes:

- e estimated value. Analyte exceeds upper end of the linear calibration range
- j estimated value. Analyte concentration is below method reporting limit and above non-detect

EMPC - estimated maximum possible concentration.

Table 1

{concentration in µg/Kg (ppb)}

Location	A5-6-4-12	C4-5-0-4	C5-6-0-4	A7-8-0-4	AC8-9-0-4	AC9-10-0-4
Date	8/26/2003	8'26/2003	8/26/2003	8/26/2003	8/26/2003	8/26/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup		ļ				
		1				
2,3,7,8-TCDD	0 002	0 006	0 003	0 003	0 003	0 003
1.2,3,7,8-PeCDD	0 042	0 093	0 053	0 046	0.05	0 061
1,2,3,4,7,8-HxCDD	0 130	0 246	0 156	0 155	0 172	0 199
1,2,3,6,7,8-HxCDD	1 709	1 755	1 019 յ	0 826	0 609	0 612
1,2,3,7,8,9-HxCDD	0 437	0 535	0 379	0 323	0 301	0 330
1,2,3,4.6,7,8-HpCDD	65 723	69 309	38 464	29 459	21 457	25 202
OCDD	583 647 e	681 493 e	333 568	267 751 e	190 148	199 105
2.3.7.8-TCDF	0 014	0 021	0 008	0 007	0 003	0 004
1,2,3,7,8-PeCDF	0 061	0 135	0 041	0 034	0 021	0 021
2,3,4,7,8-PeCDF	0 065	0 104	0 038	0 037	0 022	0 023
1.2.3,4.7,8-HXCDF	0 544	0 829	0 323	0 516	0 254	0 236
1,2,3,6,7,8-HxCDF	0 125	0 259	0 100	0 114	0 074	0 073
1,2,3,7,8,9-HxCDF	0 121 EMPC	0 234	0 079	0 109	<0 075	<0 065
2,3,4,6,7,8-HxCDF	0 256 EMPC	0 453 EMPC	0 199 EMPC	0 206	0 139 EMPC	0 167
1,2,3,4,6,7,8-HpCDF	9 238	13 570	6 217	5 996	3 781	4 352
1,2,3,4,7,8,9-HpCDF	0 704	0 941	0 351	0 496 յ	0 334	0 351
OCDF	65 537	75 893	36 028	30 233	21 819	26 545
TCDD, Total	0 003	0 030	0 013	0 011	0 013	0 023
PeCDD, Total	0 123	0 367	0 186	0 149	0 198	0 215
HxCDD, Total	5 547	5 467	3 602	3 122	2 822	2 769
HpCDD, Total	80 623	66 563	56 113	48 004	41 192	39 236
TCDF, Total	0 054	0 131	0 043	0 044	0 046	0 062
PeCDF, Total	1 119	1 876	0 639	0 807	0 674	0 743
HxCDF, Total	3 987	7 392	2 782	7 324	2 174	2 417
HpCDF, Total	35 981	12 860	25 395	25 523	19 549	18 306
$TEO_{DF} - WHO_{98} (ND = 1/2 DL) (1)$	1 23	1 51	0 790	0 684	0 508	0 563

Data qualifiers and footnotes:

- e estimated value. Analyte exceeds upper end of the linear calibration range
- 1 estimated value. Analyte concentration is below method reporting limit and above non-detect

EMPC - estimated maximum possible concentration.

Table 1

[concentration in µg/Kg (ppb)]

Location	BNSF-1-0-4	BNSF-2-0-4	BNSF-3-0-4	B\SF-4-0-4	BNSF-5-0-4	B\SF-6-0-4
Date	9/5/2003	9/5/2003	9/5/2003	9/5 2003	9 5 2003	9 5 2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup			<u> </u>		<u> </u>	
		ļ				
2,3,7,8-TCDD	0 0009 j	9 002	0 002	0.00031	0 0004 • EMPC	0 0002 1
1,2,3,7,8-PeCDD	0 002 j EMPC	0 016	0 009	0.004	0.006	0 0008 j EMPC
1.2,3,4,7,8-HxCDD	0 004	0 033	0 015	0 009	0 015	0 0006 ე
1,2,3,6,7,8-HxCDD	0 011	0 077	0 048	0.032	0 054	0 003
1,2,3,7,8,9-HxCDD	0 009	0 067	0 034	0 018	0 029	0 002 1
1,2,3,4,6,7,8-HpCDD	0 271	2 303	1 321	0 972	1 946	0 063
OCDD	2 2278 e	14 799	9 989	7 409	16 279	0 551
2,3,7,8-TCDF	<0 0001	<0 0008	0 001	< 0 0007	<0 0008	<0 001
1,2,3,7,8-PeCDF	ر 00003 و	0 002 1	0 002 յ	0 001 1	0 002 1	<0 00007
2.3,4,7,8-PeCDF	0 0003 j EMPC	0 003 յ	0 004	0 003 1	0 003 j	0 0008 1
1,2,3,4,7,8-HACDF	0 004	0 024	0 022	0 013	0 022	ر 0002 و
1,2,3,6,7,8-HxCDF	0 002 j	0 012	0 008	0 008	0 009	0 0006 յ
1,2,3,7,8,9-HxCDF	0 0004 j	0 002 յ	0 004	0 004 EMPC	<0 0005	<0 0001
2,3,4,6,7,8-HxCDF	0 003	0 021	0 014	0 015	0 017	0 001 j
1,2,3,4,6,7,8-HpCDF	0 054	0 391	0 259	0 228	0 358	0 014
1,2,3,4.7,8,9-HpCDF	0 003	0 027	0 019	0 013	0 025	0 001 j EMPC
OCDF	0 193	1 411	0 896	0 734	1 534	0 049
TCDD, Total	0 001	0 005	0 027	0 007	0 003	0 010
PeCDD, Total	0 010	0 080	0 088	0 021	0 035	0 013
HxCDD, Total	0 090	0 577	0 307	0 199	0 284	0 018
HpCDD, Total	0 533	3 499	2 291	1 888	3 360	0 133
TCDF, Total	0 003	0 025	0 029	0 068	0 032	0 005
PeCDF, Total	0 020	0 162	0 118	0 243	0 144	0 013
HxCDF, Total	0 077	0 589	0 397	0 337	0 443	0 023
HpCDF, Total	0 183	1 296	0 928	0 768	1 412	0 047
$TEQ_{DF} - WHO_{98} (ND = 1/2 DL) (1)$	0 010	0 072	0 045	0 029	0 047	0 003

Data qualifiers and footnotes

- e estimated value Analyte exceeds upper end of the linear calibration range
- 1 estimated value Analyte concentration is below method reporting limit and above non-detect

EMPC - estimated maximum possible concentration

Table 1

[concentration in µg/Kg (ppb)]

Location	A10-11-0-4	A10-11-4-12	A11-12-0-4	A11-12-4-12	412-14 0-4	A12-14-4-12
Date	8/27/2003	8/27/2003	8/27/2003	8 27/2003	8/27/2003	8/27/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup						
2.3,7,8-TCDD	0 003	0 002	0 004 EMPC	0 003	0 004	0 002 EMPC
1,2,3,7,8-PeCDD	0 060	0 018	0 074	0 042	0 085	0 048
1,2,3,4,7,8-HxCDD	0 209	<0 0005	0 276	0 165	0 325	0 191
1,2,3,6,7,8-HxCDD	0 891 j EMPC	0.511	i 186 j	1 214	1 222 j	0 737
1,2,3,7,8,9-HxCDD	0 389	0 145	0 354 j EMPC	0 288	0.513	0 339
1,2,3,4,6,7,8-HpCDD	28 075 EMPC	21 501	38 511	47 267	37 526	27 216
OCDD	310 616	222 669	329 111	421 893 e	328 469	227 847
2,3,7,8-TCDF	0 007	0 002	0 004	0 003	0 005	0 003
1,2,3,7,8-PeCDF	0 033	0 011	0 031	0 021	0 036	0 021
2,3,4,7.8-PeCDF	0 038	0 012	0 033	0 021	0 038	0 023
1,2,3,4,7,8-HXCDF	0 433	0 239	0 415	0 344	0 444	0 331
1,2,3,6,7,8-HxCDF	0 1 1 2	0 044	0 119	0 083	0 138	0 087
1,2,3,7,8,9-HxCDF	<0 003	<0 002	<0 005	<0 003	< 0 005	<0 012
2.3,4,6,7,8-HxCDF	0 193	0 098	0 426	0 121	0 266	0 182
1.2.3,4.6.7.8-HpCDF	7 583	5 007	6 957	8 639	6 991	4 960
1,2,3,4,7,8,9-HpCDF	0 491	0 396	0 399 و EMPC	0 526	0 594	0 507
OCDF	22 534 EMPC	28 480	35 373	45 752	32 917	23 863
TCDD, Total	0 020	0 002	0 009	0 016	0 022	0 020
PeCDD, Total	0 230	0 056	0 212	0 131	0 278	0 139
HxCDD, Total	4 239	1 772	3 100	3 131	4 609	3 116
HpCDD, Total	60 929	34 191	55 329	47 336	56 427	48 335
TCDF, Total	0 064	0 023	0 070	0 046	0 076	0 042
PeCDF, Total	0 882	0 277	0 917	0 535	1 008	0 597
HxCDF, Total	3 172	1 645	3 410	2 429	3 785	2 522
HpCDF, Total	25 231	23 655	25 960	22 973	24 648	24 292
TEO _{DE} - WHO ₉₈ (ND = 1/2 DL) (1)	0 702	0 425	0 869	0 889	0 888	0 602

Data qualifiers and footnotes

- e estimated value. Analyte exceeds upper end of the linear calibration range
- j estimated value Analyte concentration is below method reporting limit and above non-detect

EMPC - estimated maximum possible concentration

Table 1

[concentration in µg/Kg (ppb)]

Location	A17-19-0-4	A19-20-0-4	A20-22-0-4	A20-22-4-12	A27-28-0-4	C11-12-0-4
Date	8/27/2003	8/27/2003	8/27/2003	8/27/2003	8/27/2003	8/27/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS
Dup		<u> </u>				
				1		
2,3.7,8-TCDD	0 003	0 006 EMPC	0 007	0 003	0.005	0 004
1,2,3,7,8-PeCDD	0 086	0 161	0 130	0 068	0 113	0 071
1,2,3,4,7,8-HxCDD	0 245	0 484	0 406	0.235	0 404	0 279
1,2,3,6,7,8-HxCDD	2 576	2 330	1 083 j	1 621	1 565	1 621
1,2,3,7,8,9-HxCDD	0 554	ر 936 و	0 382 j EMPC	0 567	0 459 յ	0.519
1,2,3,4,6,7,8-HpCDD	95 976	71 289	33 180	61 901	50 051	60 551
OCDD	769 523 e	527 177 e	264 190	489 042	441 714	536 045 e
2,3,7,8-TCDF	0 005	0 010	0 008	0 011	0 012	0 008
1,2,3,7,8-PeCDF	0 029	0 050	0 049	0 049	0 060	0 048
2,3,4,7,8-PeCDF	0 033	0 058	0 053	0 070	0 059	0 054
1,2,3,4,7,8-HXCDF	0 356	0 474	0 544 j	ر 653 ر	0 481	0 515
1,2,3,6,7,8-HxCDF	0 104	0 194	0 138 j EMPC	0 150	0 186	0 128
1,2,3,7,8,9-HxCDF	0 047 EMPC	0 023	<0 150	<0 121	<0 102	<0 005
2.3,4.6,7,8-HxCDF	0 264	0 399	0 430	0 311 EMPC	0 485	0 267
1,2,3,4,6,7,8-HpCDF	12 120	11 104	6 072	9 525	6 704	9 889
1,2.3,4,7,8,9-HpCDF	0 631	1 119	0 464 յ	07151	0 572 j	0 832
OCDF	86 279	59 734	26 901	60 364	35 866	64 587
TCDD, Total	0 018	0 038	0 049	0 052	0 039	0 022
PeCDD, Total	0 254	0 506	0 428	0 220	0 440	0 253
HxCDD, Total	7 367	8 524	6 280	6 578	8 789	5 220
HpCDD, Total	85 726	79 750	54 913	64 726	65 223	59 701
TCDF, Total	0 061	0 128	0 115	0 092	0 107	0 078
PeCDF, Total	0 910	1 996	1 741	1 528	1 916	1 083
HxCDF, Total	3 507	6 273	6 163	5 003	5 925	3 811
HpCDF, Total	35 925	40 408	9 759	12 118	10 563	8 954
$TEQ_{DF} - WHO_{98} (ND = 1/2 DL) (1)$	1 70	1 578	0 899	1 250	1 136	1 21

Data qualifiers and footnotes:

- e estimated value. Analyte exceeds upper end of the linear calibration range
- J estimated value. Analyte concentration is below method reporting limit and above non-detect.

EMPC - estimated maximum possible concentration.

Table 1

[concentration in µg/Kg (ppb)]

Location	C12-14-0-4	C23-24-0-4	FOA1-Comp1 0-4	FOA1-Comp2 0-4	FOA1-Comp2 4-12	FOA1-Comp3
Date	8/27/2003	8/27/2003	8/27/2003	8 27/2003	8/27/2003	8/27/2003
Lab	CAS	CAS	CAS	CAS	4 4-12 27/2003 AS CAS 0003 0 0006 EMPC 0053 0 025 161 0 082 467 0 301 339 0 180 585 8 456 17 461 83 484 004 004 0 003 021 0 019 017 0 016 207 0 294 088 0 089 0 086 <0 002 180 0 151 205 1 873 383 0 322 305 6 957 023 0 001 2251 0 091 729 1 555 1 883 2 1 195	CAS
Dup					<u> </u>	
2.3.7.8-TCDD	0 002 EMPC	0 0009 1 EMPC	0.006	0.003	0.0006 i EMPC	1 0 001
1,2,3,7,8-PeCDD	0 064	0.024	0 090	0 053	+	0 019
1,2,3,4,7,8-HxCDD	0 247	0.078	0 283	0 161	+	0 059
1,2,3,6,7,8-HxCDD	0 843 1	0 273	0 804	0 467		0 234
1,2,3,7,8,9-HxCDD	0 443	0 164	0 540	0 339	+	0 105
1,2,3,4,6,7,8-HpCDD	29 690	6 065	25 518	11 585	+	7 295
OCDD	246 315	52 209	232 814	107 461		69 005
2,3,7,8-TCDF	0 005	0 001	0 005	0 004	+	0 003
1,2,3,7,8-PeCDF	0 028	<0.011	0 020	0 021	0 019	0 014
2,3,4,7,8-PeCDF	0 030	<0.011	0 024	0 017	0 016	0 017
1,2,3,4,7,8-HXCDF	0 308	0 096	0 230	0 207	0 294	0 205
1,2,3,6,7,8-HxCDF	0 094	0 038	0 097	0 088	0 089	0 051
1,2,3,7,8,9-HxCDF	<0 006	<0 002	<0 078	<0 086	<0 002	0 004 EMPC
2,3,4,6,7,8-HxCDF	0 205	0 069	0 228	0 180	0 151	0 095
1,2,3,4,6,7,8-HpCDF	4 973	1 250	3 601	2.205	1 873	1 703
1,2,3,4.7,8,9-HpCDF	0 471	0 165	0 513	0 383	0 322	0 168
OCDF	25 663	4 946	16 893	9 305	6 957	6 207
TCDD, Total	0 010	0 005	0 053	0 023	0 001	0 004
PeCDD, Total	0 227	0 095	0 435	0 251	0 091	0 084
HxCDD, Total	3 828	1 374	5 144	2 729	1 555	1 238
HpCDD, Total	51 472	17 098	44 669	33 883	21 195	16 466
TCDF, Total	0 057	0 028	0 077	0 059	0 034	0 025
PeCDF, Total	0 749	0.411	0 947	0 948	0 678	0 443
HxCDF, Total	2 690	2 769	3 002	4 938	4 256	3 062
HpCDF, Total	21 778	8 274	4 932	14 836	10 458	7 750
$TEQ_{DF} - WHO_{98} (ND = 1/2 DL) (1)$	0 676	0 181	0 653	0 368	0 260	0 204

Data qualifiers and footnotes:

- e estimated value. Analyte exceeds upper end of the linear calibration range
- j estimated value. Analyte concentration is below method reporting limit and above non-detect.

EMPC - estimated maximum possible concentration.

Table 1

[concentration in µg/Kg (ppb)]

	FOA1-	FOA1-	FOA1-
Location	Comp4 0-4	Comp5 0-4	Comp6 0-4
Date	8/27′2003	8/27/2003	8/27/2003
Lab	CAS	CAS	CAS
Dup			
2,3,7,8-TCDD	<0.0008	<0 0009	<0 0007
1,2,3,7,8-PeCDD	0 010	0 010	0 012
1,2,3,4,7,8-HxCDD	0 030	0 031	0 037
1,2,3.6.7,8-HxCDD	0 204	0 331	0 220
1,2,3,7,8,9-HxCDD	0 066	0 076	0 073
1,2.3,4.6,7,8-HpCDD	3 770	5 977	4 856
OCDD	41 396	59 337	49 678
2,3,7,8-TCDF	<0 0008	0 005	0 003
1,2,3,7,8-PeCDF	0 014	0 032	0 015
2.3.4,7.8-PeCDF	0 020	0 034	0 015
1,2,3,4,7,8-HXCDF	0 240	0 241	0 157
1,2,3,6,7,8-HxCDF	0 055	0 065	0 045
1.2,3,7,8,9-HxCDF	0 035	<0 008	<0 004
2.3.4,6,7,8-HxCDF	0 095	0 090	0 077
1,2,3,4,6,7,8-HpCDF	1 013	1 534	1 131
1,2,3,4,7,8,9-HpCDF	0 158	0 217	0 156
OCDF	3 523	10 052	5 355
TCDD, Total	<0 0009	<0 0009	<0 0007
PeCDD, Total	0 030	0 027	0 036
HxCDD, Total	0.755	1 012	0 834
HpCDD, Total	11 858	18 445	13 463
TCDF, Total	0 004	0 014	0 005
PeCDF, Total	0 346	0 545	0 309
HxCDF, Total	2 833	3 995	2 663
HpCDF, Total	7.417	16 179	8 854
$TEQ_{DF} - WHO_{98} (ND = 1/2 DL) (1)$	0 147	0 197	0 149

Data qualifiers and footnotes:

- e estimated value. Analyte exceeds upper end of the linear calibration range
- j estimated value. Analyte concentration is below method reporting limit and above non-detect.

EMPC - estimated maximum possible concentration.

Table 2

Validated Dioxin/Furan Concentration in Groundwater St. Regis Paper Company Site Docket No: V-W-'03-C-748

(concentrations in pg/L)

Location	316 GRANT UTLEY
Date	8/26/2003
Lab	CAS
Dup	
Exceedance Key	
2.3,7,8-TCDD	<3 153
1,2,3,7,8-Dioxin penta	<3 333
1,2,3,4,7,8-Dioxin, hexa	<2 667
1,2,3,6,7,8-Dioxin, hexa	<2 253
1,2,3,7,8,9-Dioxin, hexa	<2 413
1,2,3,4,6,7,8-Dioxin, hepta	<2 870
Dioxin octa	<9 400
2,3,7,8-TCDF	<4 086
1,2,3,7,8-Dibenzofuran, penta	<1 958
2.3,4,7,8-Dibenzofuran, penta	5 031 J EMPC
1,2,3,4,7,8-Dibenzofuran, hexa	<1.825
1,2,3,6,7,8-Dibenzofuran, hexa	<1 691
1,2,3,7,8,9-Dibenzofuran, hexa	<2 290
2,3,4,6,7,8-Dibenzofuran, hexa	<1 993
1,2,3,4,6,7,8-Dibenzofuran, hepta	<1 801
1,2,3,4,7,8,9-Dibenzofuran, hepta	<2.557
Dibenzofuran octa	<3 712
Dioxin tetra, Total	36 961
Dioxin penta, Total	59 171
Dioxin, hexa, Total	<2.253
Dioxin, hepta, Total	<2 870
Dibenzofuran tetra, Total	<2 554
Dibenzofuran penta, Total	5 499
Dibenzofuran, hexa, Total	5.193
Dibenzofuran, hepta, Total	<1.801
$TEQ_{DF} - WHO_{98} (ND = 1/2 DL) (1000000)$	6 81

Data qualifiers and footnotes:

- e estimated value. Analyte exceeds upper end of the linear calibration range
- j estimated value. Analyte concentration is below method reporting limit and above non-detect. EMPC estimated maximum possible concentration.
- (1) TEQ_{DF}-WHO₉₈ values shown above are calculated by multiplying the validated congener concentrations by their respective toxicity equivalency factors (TEF) and summing across all congeners. The results may differ from the TEQ concentrations reported in the laboratory data package, which are based on unvalidated data from each independent sample analysis (initial or dilution), and may include congener concentrations that exceeded the specified calibration range.

Table 3
Validated PAH/PCP Concentrations in Surface Soil
St. Regis Company Site
Docket No: V-W-'03-C-748

Location	A12-14 0-4	A20-22 0-4	A20-22 4-12	A27-28 0-4			BNSF-1-0-4	BNSF-2-0-4	BNSF-3-0-4	BNSF-4-0-4	BNSF-5-0-4	BNSF 6-0-4	(23-24 0-4	C3-4 0-4	(3 4 4-12
Date	8/27/2003	8/27/2003	8/27/2003	8/27/2003	8/26/2003		9/5/2003	9/5/2003	9/5/2003	9/5/2003	9/5/2003	9/5/2003	8/27/2003	8/26/2003	8/26/2003
Lab	CAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS	(15
Solids, %	93 9	94 6	94 9	94 0	95 0	93 8	97 2	94 4	92 5	95 4	92 7	97 1	94 3	85 3	916
Carcinogenic PAHs		-						-							
Benzo(a)anthracene	380	240	93	310	110	99							1100	480	(320)
Chrysene	700	640	210	740	230	170							1200	720	440
Benzo(b)fluoranthene	700	720	380	1100	260	230							1300	750	370
Benzo(k)fluoranthene	540	530	230	1200	200	150		 					1300	660	370
Benzo(a)pyrene	300	290	110	540	110	120				ļ			1300	620	400
Indeno(1,2,3-cd)pyrene	420	580	320	950	190	220							1300	840	370
Dibenz(a,h)anthracene	95	110	71	260	33	35							230	130	50
Non-Carcinogenic PAHs	-					<u> </u>									
Naphthalene	78	190	140	63	64	19							23	74	23
2-Methylnaphthalene	89	200	190	75	59	19						<u>'</u> -	17	58	17
Acenaphthylene	57	62	26	130	22	23	j				}	1	160	110	14
Acenaphthene	<50	8 0	7 5	10	<43	<4 3			\	-			41	6.1	4.4
Fluorene	5 1	11	10	9 4	<41	<43							61	9 6	4.5
Phenanthrene	120	220	170	170	130	54					-	-	800	290	200
Anthracene	170	220	140	380	61	73				\			260	200	58
Fluoranthene	800	530	190	410	320	190							2500	950	710
Pyrene	610	450	210	430	230	170							2100	850	680
Benzo(g,h,i)perylene	300	480	290	730	120	150							1200	620	280
Pentachlorophenol	1200	1500	7300	2600	2500	5400	<200 *	<200 *	<200 *	- 200 *	< 200 *	< 200 *	200	2800	930

Table 3

Validated PAH/PCP Concentrations in Surface Soil
St. Regis Company Site
Docket No: V-W-'03-C-748

Location	D25-26 0-4	D27-29 0-4	DE8-9 0-4	DE8-9 4-12	E18 19 0-4	L18-19 4-12	F 24-25 0 4	£24-25 4-12	E29-30 0-4	F22-23 0 4	F27-29 0 4	F27-29 4-12	FOA 02-1-0-4	FOA 02 2 0 4
Date	8/8/2003	8/13/2003	8/8/2003	8/8/2003	8/13/2003	8/13/2003	8/13/2003	8/13/2003	8/8/2003	8/8/2003	8/6/2003	8/6/2003	8/12/2003	8/12/2003
Lab	CAS	CAS	CAS	CAS	CAS	(AS	CAS	CAS	CAS	CAS	CAS	CAS	CAS	'CAS
Solids, %	98	98	97 2	96 4	97 3	95 5	98 9	86 5	97 7	97 4	95 4	82 3	918	98 6
Carcinogenic PAHs						_		-			-			
Benzo(a)anthracene	62	30	6100	5800	55	120	91	120	280	260	280	170	850	73
Chrysene	110	56	14000	8800	110	210	140	340	530	340	620	260	1400	110
Benzo(b)fluoranthene	150	69	18000	9500	180	530	210	460	800	440	680	610	930	120
Benzo(k)fluoranthene	160	67	15000	8200	140	370	190	360	600	400	500	380	1200	120
Benzo(a)pyrene	90	29	7700	4000	55	280	150	140	360	380	330	380	870	86
Indeno(1,2,3-cd)pyrene	170	88	4800	2300	130	410	300	330	730	700	650	560	790	120
Dibenz(a,h)anthracene	24	12	930	510	21	63	43	62	110	87	88	120	190	19
Non-Carcinogenic PAHs													-	İ
Naphthalene	9 5	6 7	140	23	5 8	18	17	19	45	14	22	40	34	7 5
2-Methylnaphthalene	7 2	60	42	10	5 7	14	16	15	34	10	19	28	28	6.6
Acenaphthylene	11	6.5	550	470	96	29	18	17	72	75	45	61	86	9 7
Acenaphthene	<51	<50	28	11	<5 1	<50	<5 0	<51	7 2	<51	<5	8 3	190	5.1
Fluorene	~51	<50	30	19	<5 1	<50	<50	7 8	9 0	7 1	6 0	8 3	96	< 5
Phenanthrene	26	19	180	68	12	23	54	56	130	190	79	74	780	35
Anthracene	33	22	1400	520	29	79	78	120	350	59	210	330	410	22
Fluoranthene	130	71	2000	2900	89	150	190	200	570	660	430	290	3900	160
Pyrene	120	57	6300	6900	86	170	140	140	530	460	460	320	2300	130
Benzo(g,h,l)perylene	120	56	2700	1300	74	220	180	170	490	530	310	500	610	83
Pentachlorophenol	430	<200	<410	210	360	270	940	1400	1100	310	1400	2000	3500	240

Table 3
Validated PAH/PCP Concentrations in Surface Soil
St. Regis Company Site
Docket No: V-W-'03-C-748

****	FOA-02-2-4-12		FOA-02-4-0-4		F()A-02-6-0-4	FOA-02-6-4-12				FOA1-Comp3 0 4
i	8/12/2003	J	8/12/2003	8/12/2003	8/12/2003	8/12/2003	8/27/2003	8/27/2003	8/27/2003	8/27/2003
Lab	CAS	CAS	CAS	CAS	CAS	(AS	CAS	CAS	CAS	CA5
Solids, %	96 5	85 2	99 2	98 8	97 7	97 5	94 8	95 9	96 0	93 9
Carcinogenic PAHs		_	-							
Benzo(a)anthracene	24	11	83	27	40	18	380	190	12	460
Chrysene	40	16	110	39	66	24	590	310	20	610
Benzo(b)fluoranthene	39	15	92	30	52	18	670	680	28	2000
Benzo(k)fluoranthene	35	16	92	33	48	21	550	530	24	1500
Benzo(a)pyrene	27	[11	85	25	38	21	500	440	11	1400
Indeno(1,2,3-cd)pyrene	39	11	95	32	52	23	560	500	22	1400
Dibenz(a,h)anthracene	5 6	<5 1	13	<5 0	7 2	<5 1	100	96	<5 1	550
Non-Carcinogenic PAHs			-							
Naphthalene	<50	<5 1	<50	<50	10	<51	44	26	9 5	44
2-Methylnaphthalene	<50	<51	<50	<50	6.5	-51	41	24	6 7	18
Acenaphthylene	< 5 0	<5 1	< 5 0	<50	<51	<51	64	39	< 5.1	170
Acenaphthene	<50	<5 1	< 5 0	<50	<51	<51	15	<50	-51	12
Fluorene	<50	<5 1	<50	<50	<5 1	<51	12	< 5 0	<51	10
Phenanthrene	15	<5 1	49	29	32	[11	180	44	11	86
Anthracene	8 7	<51	19	5 7	67	<5 1	220	110	14	390
Fluoranthene	54	12	180	61	98	39	650	180	20	410
Pyrene	43	12	140	55	80	34	540	260	21	420
Benzo(g,h,i)perylene	27	70	67	22	37	18	480	310	17	1000
Pentachlorophenol	< 2 00	<210	<200	<200	240	< 210	2800	540	<210)	460

Table 3 Validated PAH/PCP Concentrations in Surface Soil St. Regis Company Site Docket No: V-W-'03-C-748

Location	FOA1-Comp4 0-4		FOA1-Comp6 0-4	GS-1	H25-26 0-4	J27-29 0-4	J27-29 12-24	I .		RI 524 4 12		1H 104
	8/27/2003	8/27/2003	8/27/2003	8/13/2003		8/8/2003	8/8/2003		8/15/2003	8/14/2003	8/11/2003	8/26/2003
Lab	CAS	CAS	CAS	(AS	CAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS
Solids, %	94 9	94 6	94 8	97 9	92 3	96 6	85 9	96 2	96	98 7	84	91 2
Carcinogenic PAHs												
Benzo(a)anthracene	70	77	32	250	95	260	<50	<5 1	220	12	670	
Chrysene	100	190	72	320	130	710	<5 0	6 4	240	24	950	
Benzo(b)fluoranthene	130	65	96	290	120	2600	<5 ()	9 7	210	18	850	
Benzo(k)fluoranthene	130	61	74	290	120	1700	< 5 0	8 1	220	15	740	
Benzo(a)pyrene	88	5 9	38	310	120	1900	<5 0	<5 1	240	10	720	
Indeno(1,2,3-cd)pyrene	120	27	78	330	130	1500	<5 ()	7 6	220	14	740	
Dibenz(a,h)anthracene	35	77	21	48	22	490	<50	<51	36	-50	110	l I
Non-Carcinogenic PAHs												
Naphthalene	21	<50	36	12	5 7	40	<5 0	<5 1	H	61	19	İ
2-Methylnaphthalene	22	<50	38	9 4	<51	25	< 5 0	<5 1	7 0	< 5 0	8 8	
Acenaphthylene	18	60	11	12	20	120	< 5 0	<5 1	25	< 5 ()	69	
Acenaphthene	<50	5 5	<50	9 3	<5 1	9 7	< 5 0	<5 1	<5 ()	<5 ()	10	
Fluorene	<50	11	<50	12	<5 1	16	<50	<5 I	<5 0	< 5 0	15	
Phenanthrene	44	<50	32	240	46	100	< 5 0	<5 1	66	25	350	
Anthracene	47	33	35	35	35	490	<50	<51	19	<50	110	
Fluoranthene	140	910	66	670	190	700	<5 0	5 7	380	57	1500	
Pyrene	130	410	61	400	200	540	<50	5 3	310	13	1200	
Benzo(g,h,i)perylene	110	22	66	210	110	1000	<5 0	<5 1	140	11	440	
Pentachlorophenol	380	7000	450	<210	210	7400	<200	<210	200	200	850	180

⁻⁻ Not analyzed

^{*} I stimated value, QA/QC criteria not met

Table 3

- -- Not analyzed
- Estimated value, QA/QC criteria not met

Table 4 Validated PAH/PCP/PCB Concentrations in Groundwater St. Regis Company Site

Docket No: V-W-'03-C-748

Location	102 Basswood	104 Norway	127 1st	15611 61st	218 Elm	233 2nd St.	316 GRANT UTLEY	514 1st St.	521 1st
Date	8/9/2003	8/9/2003	8/9/2003	8/9/2003	8/9/2003	8/15/2003	8/26/2003	8/12/2003	8/9/2003
I.ab	CAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS
					 				
Carcinogenic PAHs	_				-				
Benzo(a)anthracene	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020 h	<0 020	<0 020
Chrysene	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020 h	<0 020	<0.020
Benzo(b)fluoranthene	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020 h	<0.020	<0.020
Benzo(k)fluoranthene	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020 h	<0.020	<0.020
Benzo(a)pyrene	~0 020	<0 020	<0 020	<0.020	<0 020	<0 020	<0 020 h	<0.020	<0.020
Indeno(1,2,3-cd)pyrene	<0.020	<0 020	<0 020	<0 020	<0 020	<0.020	<0.020 h	<0.020	<0.020
Dibenz(a,h)anthracene	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020 h	<0.020	<0.020
`` * = =		-				•	-	•	
Non-Carcinogenic PAHs									
Naphthalene	<0.020	<0 020	<0 020	<0 020	<0.020	<0 020	<0 020 h	< 0.020	<0 ()2()
2-Methylnaphthalene	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020 h	<0.020	CO 020
Acenaphthylene	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020 h	<0.020	-0 020
Acenaphthene	<0 020	<0 020	<0 020	<0 020	<0 020	<0.020	<0 020 h	<0.020	<0.020
Fluorene	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020 h	<0.020	<0 ()2()
Phenanthrene	<0 020	<0 020	<0 020	<0.020	<0 020	<0 020	<0 020 h	<0.020	<0.020
Anthracene	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020 h	<0.020	<0 020
Fluoranthene	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020 h	<0.020	<0 020
Pyrene	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	< 0 020 h	<0.020	<0.020
Benzo(g,h,i)perylene	<0 020	<0 020	<0 020	<0 020	<0 020	<0 020	< 0 020 h	<0.020	<0.020
D. Assiltan band	< 0 60	<0.60	<0.60	<0.60	<0.60	<0.60 *	<0 99 h*	<() 60)	<0.60
Pentachlorophenol	< 0.60	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0 00	~0 00	0 00	000	~0 99 H	0.00	V 00
PCB-1016							<0.20 h		
PCB-1221	l						< 0.39 h	1 	-
PCB-1232]			1			<0.20 h	-	1
PCB-1242							- 0 20 h	· -	
PCB-1248]						< 0 20 h		-
PCB-1254							<0.20 h		
PCB-1260	<u></u>						<0.20 h		

- -- Not analyzed
- * Estimated value, QA/QC criteria not met
- h Holding time not met

Table 5 Validated PAH/PCP/PCB Concentrations in IDW Water

St. Regis Company Site Docket No: V-W-'03-C-748

(concentrations in ug/L)

Location	RINSE WATER IDW
Date	9/5/2003
Lab	CAS
2,3,7,8-TCDD	<5.142
1,2,3,7,8-Dioxin penta	<5.486
1,2,3,4,7,8-Dioxin, hexa	19.812 j
1,2,3,6,7,8-Dioxin, hexa	108.929
1,2,3,7,8,9-Dioxin, hexa	30.376
1,2,3,4,6,7,8-Dioxin, hepta	2040.515
Dioxin octa	14346.009 e
2,3,7,8-TCDF	<5.520
1,2,3,7,8-Dibenzofuran, penta	9.586 j
2,3,4,7,8-Dibenzofuran, penta	10.345 j
1,2,3,4,7,8-Dibenzofuran, hexa	55.411
1,2,3,6,7,8-Dibenzofuran, hexa	11.689 ј
1,2,3,7,8,9-Dibenzofuran, hexa	19.332 j EMPC
2,3,4,6,7,8-Dibenzofuran, hexa	19.910 j EMPC
1,2,3,4,6,7,8-Dibenzofuran, hepta	302.639
1,2,3,4,7,8,9-Dibenzofuran, hepta	41.210
Dibenzofuran octa	1749.133
Dioxin tetra, Total	<5.142
Dioxin penta, Total	<5.486
Dioxin, hexa, Total	374.427
Dioxin, hepta, Total	3504.988
Dibenzofuran tetra, Total	<5.520
Dibenzofuran penta, Total	160.980
Dibenzofuran, hexa, Total	628.791
Dibenzofuran, hepta, Total	1469.843
$\underline{\text{TEQ}_{DF}} - \text{WHO}_{98} \text{ (ND = 1/2 DL) (1000000)}$	63.2
Carcinogenic PAHs	<u> </u>
Benzo(a)anthracene	0.041
Chrysene	0.60
Benzo(b)fluoranthene	<0.20
Benzo(k)fluoranthene	<0.20
Benzo(a)pyrene	<0.20
Indeno(1,2,3-cd)pyrene	<0.20
Dibenz(a.h)anthracene	<0.20
Non-Carcinogenic PAHs	
Naphthalene	0.24
2-Methylnaphthalene	0.15
Acenaphthylene	0.14
Acenaphthene	0.17
Fluorene	0.058
Phenanthrene	0.30
Anthracene	0.33
Fluoranthene	0.36
Pyrene	0.36
Benzo(g,h,i)perylene	<0.20
Pentachlorophenol Page 1 of 2	51 *

10/23/2003 1:24 PM

P:\23\11\005\UAO - 2003\Valid_PAH_Summ_water_102303.xls

Table 5 Validated PAH/PCP/PCB Concentrations in IDW Water St. Regis Company Site

Docket No: V-W-'03-C-748

(concentrations in ug/L)

Location	RINSE WATER IDW
Date	9/5/2003
Lab	CAS
]	

Data qualifiers and footnotes:

- e estimated value Analyte exceeds upper end of the linear calibration range
- J estimated value Analyte concentration is below method reporting limit and above non-detect
- * Estimated value, QA/QC criteria not met

EMPC - estimated maximum possible concentration

Attachment B

Data Validation Report – Dioxin/Furan Laboratory Report / Batch: E2300560 Received: October 15, 2003

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Data Validation Report: October 23, 2003

The data validation of the Columbia Analytical Services, Inc (CAS) laboratory data for the dioxin and furan (CDD/CDF) analysis of the Cass Lake Removal Site Evaluation and Supplemental Assessment soil samples contained in the aforementioned report is complete as detailed below

The analytical data were reviewed in accordance with the U.S. EPA Analytical Operations/Data Quality Center (AOC) National Functional Guidelines for Chlorinated Dioxin/Furan Data Review, Draft Final dated March, 2002 (Guidelines) as specified in the Quality Assurance Project Plan (QAPP, Barr, June 2003). In addition to the Guidelines, specific SW-846 Method 8290 criteria were also considered as slight differences in some of the performance aspects exist between the documents. In general, the areas covered by the validation process include

- Overall assessment
- Holding times, preservation and storage
- Mass calibration and mass spectrometer resolution
- Window defining mix
- Initial calibration
- Instrument stability and continuing calibration verification
- Method blank analysis
- Laboratory control samples
- Second column confirmation
- Matrix Spikes

St Regis Paper Company Superfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 23 2003

Fifteen soil and one water sample results are contained in this laboratory report. They are as follows

B2-3 0-4"	AB3-4 0-4"	AB4-5 0-4"	AB4-5 4-12"	C3-4 0-4"
C3-4 4-12"	TH-1 0-4"	A5-6 0-4"	A5-6 4-12"	A5-6 4-12D"
A5-6 0-4 ER	C5-6 0-4"	C4-5 0-4"	47-8 0-4 "	AC8-9 0-4"
AC9-10 0-4"				

Overall Assessment

No qualifiers were assigned to the sample results contained in laboratory report E2300560 as a result of data validation process. All data met the data quality objectives (DQOs) and are useable as reported

Holding Times, Preservation and Storage

The samples were collected August 26, 2003, cooled to 4°C and sent to the laboratory. Per the chain-of-custody and subsequent laboratory acknowledgement receipt forms, the laboratory received the samples August 28, 2003 in acceptable condition and at 4°C. It should be noted that discrepancies between method 8290 and the Guidelines exist for the technical extraction and analysis holding times. The Guidelines recommend that soil samples be extracted within 10 days of receipt and analyzed within 30 days. Alternately, Method 8290 and the QAPP for the project indicate that a 30-day extraction/45 day analysis holding times apply. Method 8290 also states that these holding times are only recommendations as dioxins and furans are very stable in a variety of matrices. All samples were extracted and analyzed within 30 days. No qualifiers are applied

Mass Calibration and Mass Spectrometer Resolution

Mass calibration and mass spectrometer resolution (MC/MSR) checks are required to ensure that the mass calibration and mass spectrometer resolution is set at a \geq 10,000 resolving power. This resolution is confirmed at the beginning and end of every 12-hour analysis period.

It should be noted that the Guidelines contain language that refer to evaluation techniques that due to upgrades in analytical systems software, are obsolete at CASs Houston facility. Specifically, the evaluation of the resolution by the measure of deviation between the exact m/z and the theoretical m/z at less than 5 ppm has been replaced with a function of instrumentation that implicity sets the

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report: October 23, 2003

error to zero at all calibration points so there is no longer any need to use peak matching conditions to verify the exact mass. Therefore, resolving power is evaluated by close review of the resolution of PFK peak profiles where high mass ion (380.9760) and low mass ion (304.9824) are reported.

CAS performed the MC/MSRs at the appropriate frequency and obtained acceptable results for the PFK calibrant confirming MC/MSRs at a resolving power of 10,000. Note: CAS used three instrument systems to analyze the project samples and provided appropriate documentation from the three systems in the raw data package. All system's documentation were evaluated during the data validation process.

Window Defining Mix

The window defining mix (WDM) is necessary to establish the appropriate switching times for the selection ion group descriptors. As stated in the Guidelines, the frequency of the WDM is every 12 hours prior to calibration verification. However, Method 8290, Section 8.3.2.2.2. allows the laboratory, if running consecutive 12-hour shifts, to use the ending calibration verification (if all acceptance criteria are met) of the first 12-hour analysis period as the beginning calibration verification of the second 12-hour analysis period. In these cases, the WDM was analyzed after the calibration verification but still falls within the 12-hour analytical period. While the Guidelines indicate the WDM must be analyzed prior to the calibration verification sample, CAS's order of analysis for the system performance check samples did not appear to affect the overall system instrumentation and no qualifiers have been applied.

CAS performed the WDM analysis for every 12-hour sample analysis period and presented the acceptable switching times for each homologue group on the corresponding Form 5s.

Chromatographic Resolution

This check is performed to ascertain the separation of closely eluting dioxin/furan isomers. This is performed using SICP (selected ion current profile) of each isomer. The criteria requires that the 2,3,7,8-TCDD peak and the 1,2,3,8-TCDD peak be resolved with a valley of $\leq 25\%$ for the DB-5 column.

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report: October 23, 2003

CAS provided summary peak to valley results as specified above on each of the Form 5s. In each case, the $\leq 25\%$ criterion was met. The raw chromatograms were also reviewed to confirm this information.

Initial Calibration

Satisfactory instrument calibration is crucial to ensuring the accurate qualitative and quantitative results for each of the CDD/CDF compounds. Initial calibration procedures define the linear range and mean relative response factors that will be used for sample quantitation.

For the primary analytical systems (Instrument B and C), the initial calibration summary information met all the relevant acceptance criteria including the relative responses (RRFs) of <25% for native compounds and <35% for the labeled compounds, ion abundance ratios (IARs) within +/- 15%, absolute retention times within the WDM windows, and signal-to-noise ratios of >10:1.

Initial calibration for the 2,3,7,8-TCDF second column confirmation instrument (Instrument A) occurred on August 6, 2003. The initial calibration data met all acceptance criteria and is included in the Second Column Confirmation section of this report.

Instrument Stability and Continuing Calibration Verification

Instrument stability is an important aspect of this analytical system. Ongoing calibration verification using a CS-3 standard is performed for every 12-hour period. This standard is used to evaluate the isomer retention times, ion abundance criteria, sensitivity and ongoing calibration criteria. The continuing calibration verification summary information met all relevant acceptance criteria including the frequency of the continuing calibration verifications at the both beginning and ending of each 12-hour analytical run, the RRFs %D within <25% for native compounds and <35% for labeled compounds of initial calibration, the IARs within the +/-15%, and signal-to-noise of >10:1.

CAS met the requirements of the absolute retention times (RT) for the first internal standard (13 C-1,2,3,4-TCDD) of \pm 15 seconds (of the initial calibration standard) and the associated >25.0 minute RT requirement for most of the 12-hour CS3 calibration verification standards. However, occasionally, the RT for the first internal standard falls outside this 15 second criteria. It should be noted that the 15 second criteria is not specific to Method 8290. All the RTs for internal standards in

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report⁻ October 23, 2003

each CS-3 standards fell within the switching time window as defined by the WDM and each CS-3 standard recorded acceptable results all other quality control aspects (i.e., ion abundance, analyte response, instrument sensitivity) therefore, using professional judgment as stated in the Guidelines, no data is qualified based on these RT deviations. The relative retention time and ion abundance criteria were also met for each of the native and label CDD/CDFs in the ongoing CS-3 standard results.

The relative response factor (RRF) criteria of <25% difference between CS-3 native compounds as compared to the initial calibration data was acceptable for all instrument A runs. For the instrument B runs on September 8, 11, and 22 the criteria were not met. For the instrument C runs on September 24 the criteria was not met. All other ongoing calibration verification data yielded acceptable results. For the runs where the criteria were exceeded, the data package contained the appropriate documentation (Form 6a & 6b), which was then validated. Note: The exceedances of the 25% ending calibration verification standard criteria required the laboratory to provide the mean RRFs (using Form 6) from the beginning and ending calibration verification analysis and the mean factors were then employed for quantitation, as specified in Method 8290, Section 8.3.2.4 and 7.7.4.4. No data qualifiers were assigned to the project data.

While the Guidelines indicate review of the relative responses (RR), method 8290 has no such criteria, as RR's are not used in final quantitation of sample results, therefore, no review was performed.

Review of the above elements indicates a high level of instrument stability and no qualifiers are required.

Method Blank Analysis

Laboratory method blank analyses are used to determine the existence and magnitude of contamination introduced at the laboratory.

CAS prepared 6 method blank samples during the analysis of the project samples. Three method blanks were non-detect for all target analytes. Three method blanks had a detection of OCDD but below the project required quantitation limit of 5.0 ng/kg. The trace concentrations of OCDD were

St Regis Paper Company Superfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 23, 2003

within common laboratory practice levels of OCDD All method blank samples were prepared and analyzed at the appropriate frequency

Laboratory Control Samples (Ongoing Precision/Accuracy)

The laboratory is required to prepare and analyze a sample of spiked reference matrix for measures of accuracy of the analytical process/system/method

CAS performed laboratory control sample (LCS) analyses at the appropriate frequency for the analytical batch. All seven sets of LCS results met associated acceptance criteria for percent recovery of the spiked concentrations as presented in Table 6 of Exhibit D of the Guidelines All RRT and IARs were also acceptable in the LCS samples associated with the analytical batch indicating an in-control analytical system

Labeled Compound Recovery (Surrogate Standard Recovery)

Because the introduced labeled compounds (CDD/CDFs) serve as the isotopic quantitative mechanism for this method, recoveries should be closely monitored for laboratory and method effectiveness

CAS met the minimum acceptance criteria for the labeled compound recoveries as presented in Table 7 of Exhibit D of the Guidelines However, these recovery windows are wider that CAS's internally generated acceptance criteria. Labeled compound recoveries qualified with a "Y" in the original data package indicate the recovery falls outside the laboratory-generated acceptance limits. None of these minor failures exceeded the Guidelines limits, therefore, no data requires qualification

Second Column Confirmation

A second column confirmation of the 2,3,7,8-TCDF isomer is required by both Methods 1613 and 8290 due to a known lack of isomer specificity for this isomer on the DB-5 or equivalent column. All operating conditions of the second column analytical system must be identical to those of the primary system.

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 23, 2003

CAS performed the second column confirmational analysis when the original analytical run had positive 2,3,7,8-TCDF detections. All performance criteria (as previously detailed above) were met prior to and during the confirmational analytical runs

Matrix Spike Recoveries

Sample C3-4 4-12" was used for a MS and MSD spike sample. Due to the high native concentration of some of the target analytes in the sample relative to the spiked level, the matrix spike recovery could not be accurately determined. In cases where the native concentration is not as high spike recoveries were within the laboratory control limits of 50-150%.

Data Validation Report – Dioxin/Furan Laboratory Report / Batch: E2300584 Received: October 16, 2003

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Data Validation Report: October 23, 2003

The data validation of the Columbia Analytical Services, Inc (CAS) laboratory data for the dioxin and furan (CDD/CDF) analysis of the Cass Lake Removal Site Evaluation and Supplemental Assessment soil samples contained in the aforementioned report is complete as detailed below

The analytical data were reviewed in accordance with the U.S. EPA Analytical Operations/Data Quality Center (AOC) National Functional Guidelines for Chlorinated Dioxin/Furan Data Review, Draft Final dated March, 2002 (Guidelines) as specified in the Quality Assurance Project Plan (QAPP, Barr, June 2003). In addition to the Guidelines, specific SW-846 Method 8290 criteria were also considered as slight differences in some of the performance aspects exist between the documents. In general, the areas covered by the validation process include:

- Overall assessment
- Holding times, preservation and storage
- Mass calibration and mass spectrometer resolution
- Window defining mix
- Initial calibration
- Instrument stability and continuing calibration verification
- Method blank analysis
- Laboratory control samples
- Second column confirmation
- Matrix Spikes

Data Validation Report Laboratory Report / Batch <u>E2300584</u> Received <u>October</u> 16, 2003

St Regis Paper Company Superfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 23 2003

Seven soil sample and two water sample results are contained in this laboratory report. They are as follows

BNSF-6	0-4"	BNSF-6 0-4D"	BNSF-6 0-4"ER	BNSF-5	0-4"
BNSF-4	0-4"	BNSF-3 0-4"	BNSF-2 0-4"	BNSF-1	0-4"

Rinsate Water

Overall Assessment

No qualifiers were assigned to the sample results contained in laboratory report E2300584 as a result of data validation process. All data met the data quality objectives (DQOs) and are useable as reported

Holding Times, Preservation and Storage

The samples were collected September 5, 2003, cooled to 4°C and sent to the laboratory. Per the chain-of-custody and subsequent laboratory acknowledgement receipt forms, the laboratory received the samples September 9, 2003 in acceptable condition and at 4°C. It should be noted that discrepancies between method 8290 and the Guidelines exist for the technical extraction and analysis holding times. The Guidelines recommend that soil samples be extracted within 10 days of receipt and analyzed within 30 days. Alternately, Method 8290 and the QAPP for the project indicate that a 30-day extraction/45 day analysis holding times apply. Method 8290 also states that these holding times are only recommendations as dioxins and furans are very stable in a variety of matrices. All samples were extracted and analyzed within 30 days. No qualifiers are applied

Mass Calibration and Mass Spectrometer Resolution

Mass calibration and mass spectrometer resolution (MC/MSR) checks are required to ensure that the mass calibration and mass spectrometer resolution is set at $a \ge 10,000$ resolving power. This resolution is confirmed at the beginning and end of every 12-hour analysis period.

It should be noted that the Guidelines contain language that refer to evaluation techniques that due to upgrades in analytical systems software, are obsolete at CASs Houston facility. Specifically, the evaluation of the resolution by the measure of deviation between the exact m/z and the theoretical m/z at less than 5 ppm has been replaced with a function of instrumentation that implicitly sets the

Data Validation Report Laboratory Report / Batch <u>E2300584</u> Received <u>October 16, 2003</u>

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 23, 2003

error to zero at all calibration points so there is no longer any need to use peak matching conditions to verify the exact mass. Therefore, resolving power is evaluated by close review of the resolution of PFK peak profiles where high mass ion (380 9760) and low mass ion (304 9824) are reported

CAS performed the MC/MSRs at the appropriate frequency and obtained acceptable results for the PFK calibrant confirming MC/MSRs at a resolving power of 10,000. Note CAS used three instrument systems to analyze the project samples and provided appropriate documentation from the three systems in the raw data package. All system's documentation were evaluated during the data validation process.

Window Defining Mix

The window defining mix (WDM) is necessary to establish the appropriate switching times for the selection ion group descriptors. As stated in the Guidelines, the frequency of the WDM is every 12 hours prior to calibration verification. However, Method 8290, Section 8.3 2 2.2. allows the laboratory, if running consecutive 12-hour shifts, to use the ending calibration verification (if all acceptance criteria are met) of the first 12-hour analysis period as the beginning calibration verification of the second 12-hour analysis period. In these cases, the WDM was analyzed after the calibration verification but still falls within the 12-hour analytical period. While the Guidelines indicate the WDM must be analyzed prior to the calibration verification sample, CAS's order of analysis for the system performance check samples did not appear to affect the overall system instrumentation and no qualifiers have been applied.

CAS performed the WDM analysis for every 12-hour sample analysis period and presented the acceptable switching times for each homologue group on the corresponding Form 5s

Chromatographic Resolution

This check is performed to ascertain the separation of closely eluting dioxin/furan isomers. This is performed using SICP (selected ion current profile) of each isomer. The criteria requires that the 2,3,7,8-TCDD peak and the 1,2,3,8-TCDD peak be resolved with a valley of $\leq 25\%$ for the DB-5 column.

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 23, 2003

CAS provided summary peak to valley results as specified above on each of the Form 5s. In each case, the $\leq 25\%$ criterion was met. The raw chromatograms were also reviewed to confirm this information

Initial Calibration

Satisfactory instrument calibration is crucial to ensuring the accurate qualitative and quantitative results for each of the CDD/CDF compounds. Initial calibration procedures define the linear range and mean relative response factors that will be used for sample quantitation.

For the primary analytical systems (Instrument B and C), the initial calibration summary information met all the relevant acceptance criteria including the relative responses (RRFs) of <25% for native compounds and <35% for the labeled compounds, ion abundance ratios (IARs) within +/-15%, absolute retention times within the WDM windows, and signal-to-noise ratios of >10:1.

Initial calibration for the 2,3,7,8-TCDF second column confirmation instrument (Instrument A) occurred on August 6, 2003. The initial calibration data met all acceptance criteria and is included in the Second Column Confirmation section of this report.

Instrument Stability and Continuing Calibration Verification

Instrument stability is an important aspect of this analytical system. Ongoing calibration verification using a CS-3 standard is performed for every 12-hour period. This standard is used to evaluate the isomer retention times, ion abundance criteria, sensitivity and ongoing calibration criteria. The continuing calibration verification summary information met all relevant acceptance criteria including the frequency of the continuing calibration verifications at the both beginning and ending of each 12-hour analytical run, the RRFs %D within <25% for native compounds and <35% for labeled compounds of initial calibration, the IARs within the +/-15%, and signal-to-noise of >10.1.

CAS met the requirements of the absolute retention times (RT) for the first internal standard (13 C-1,2,3,4-TCDD) of \pm 15 seconds (of the initial calibration standard) and the associated >25.0 minute RT requirement for most of the 12-hour CS3 calibration verification standards. However, occasionally, the RT for the first internal standard falls outside this 15 second criteria. It should be noted that the 15 second criteria is not specific to Method 8290. All the RTs for the internal

Data Validation Report Laboratory Report / Batch <u>E2300584</u> Received <u>October 16, 2003</u>

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 23 2003

standards in each CS-3 standard fell within the switching time window as defined by the WDM and each CS-3 standard recorded acceptable results all other quality control aspects (i.e., ion abundance, analyte response, instrument sensitivity) therefore using professional judgment as stated in the Guidelines, no data is qualified based on these RT deviations. The relative retention time and ion abundance criteria were also met for each of the native and label CDD/CDFs in the ongoing CS-3 standard results.

The relative response factor (RRF) criteria of <25% difference between CS-3 native compounds as compared to the initial calibration data was acceptable for all instrument A runs. For the instrument B run on August 18, the criteria were not met, a form 6 was provided. For the instrument C run on September 19, the criteria were not met, a form 6 was provided. For the instrument C runs on August 22, and October 2, the criteria were met. For the runs where the criteria were exceeded, the data package contained the appropriate documentation (form 6a & 6b), which was then validated. Note: The exceedances of the 25% ending calibration verification standard criteria required the laboratory to provide the mean RRFs (using form 6) from the beginning and ending calibration verification analysis and the mean factors were then employed for quantitation, as specified in Method 8290, Section 8.3.2.4 and 7.7.4.4 No data qualifiers were assigned to the project data.

While the Guidelines indicate review of the relative responses (RR), method 8290 has no such criteria, as RR's are not used in final quantitation of sample results, therefore, no review was performed.

Review of the above elements indicates a high level of instrument stability and no qualifiers are required.

Method Blank Analysis

Laboratory method blank analyses are used to determine the existence and magnitude of contamination introduced at the laboratory

CAS prepared 3 method blank samples during the analysis of the project samples. One of the method blanks (aqueous) was non-detect for all target analytes. Two method blanks (solid) had a detection of OCDD (2.324 – 3.411 ng/kg) - but below the project required quantitation limit of 5.0 ng/kg. One method blank (solid) had a detection of OCDF at 0.719 ng/kg. The trace concentrations of OCDD

Data Validation Report Laboratory Report / Batch: <u>E2300584</u> Received: <u>October 16</u>, 2003

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report: October 23, 2003

and OCDF were within common laboratory practice levels of OCDD/OCDF. All method blank samples were prepared and analyzed at the appropriate frequency.

Laboratory Control Samples (Ongoing Precision/Accuracy)

The laboratory is required to prepare and analyze a sample of spiked reference matrix for measures of accuracy of the analytical process/system/method.

CAS performed laboratory control sample (LCS) analyses at the appropriate frequency for the analytical batch. All five sets of LCS results met associated acceptance criteria for percent recovery of the spiked concentrations as presented in Table 6 of Exhibit D of the Guidelines. All RRT and IARs were also acceptable in the LCS samples associated with the analytical batch indicating an incontrol analytical system.

Labeled Compound Recovery (Surrogate Standard Recovery)

Because the introduced labeled compounds (CDD/CDFs) serve as the isotopic quantitative mechanism for this method, recoveries should be closely monitored for laboratory and method effectiveness.

CAS met the minimum acceptance criteria for the labeled compound recoveries as presented in Table 7 of Exhibit D of the Guidelines. However, these recovery windows are wider that CAS's internally generated acceptance criteria. Labeled compound recoveries qualified with a "Y" in the original data package indicate the recovery falls outside the laboratory-generated acceptance limits. None of these minor failures exceeded the Guidelines limits; therefore, no data requires qualification.

Second Column Confirmation

A second column confirmation of the 2,3,7,8-TCDF isomer is required by both Methods 1613 and 8290 due to a known lack of isomer specificity for this isomer on the DB-5 or equivalent column. All operating conditions of the second column analytical system must be identical to those of the primary system.

Data Validation Report Laboratory Report / Batch <u>E2300584</u> Received <u>October 16, 2003</u>

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 23, 2003

CAS performed the second column confirmational analysis when the original analytical run had positive 2,3,7,8-TCDF detections. All performance criteria (as previously detailed above) were met prior to and during the confirmational analytical runs.

Matrix Spike Recoveries

No matrix spike data was provided in the report. However, the report case narrative indicated that the matrix spike associated with the analytical samples had high native concentrations of dioxins/furans therefore many recoveries were outside the acceptance criteria.

Data Validation Report – Dioxin/Furan Laboratory Report / Batch: E2300528 Received: October 3, 2003 (Revision rec'd 10/7/03)

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Data Validation Report: October 23, 2003

The data validation of the Columbia Analytical Services, Inc (CAS) laboratory data for the dioxin and furan (CDD/CDF) analysis of the Cass Lake Removal Site Evaluation and Supplemental Assessment soil samples contained in the aforementioned report is complete as detailed below

The analytical data were reviewed in accordance with the U S EPA Analytical Operations/Data Quality Center (AOC) National Functional Guidelines for Chlorinated Dioxin/Furan Data Review, Draft Final dated March, 2002 (Guidelines) as specified in the Quality Assurance Project Plan (QAPP, Barr, June 2003). In addition to the Guidelines, specific SW-846 Method 8290 criteria were also considered as slight differences in some of the performance aspects exist between the documents. In general, the areas covered by the validation process include:

- Overall assessment
- Holding times, preservation and storage
- Mass calibration and mass spectrometer resolution
- Window defining mix
- Initial calibration
- Instrument stability and continuing calibration verification
- Method blank analysis
- Laboratory control samples
- Second column confirmation
- Matrix Spikes

St Regis Paper Company Superfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 23, 2003

Nine soil and one water sample results are contained in this laboratory report. They are as follows

RES38 0-4" NWWD-06 0-4" NWWD-01 0-4" NWW D-07 0-4"

NWWD-02 0-4" NWWD-02 4-12" I20-21 0-4" NWWD-03 0-4"

NWWD-06 0-4"D NWWD-06 ER

Overall Assessment

No qualifiers were assigned to the sample results contained in laboratory report E2300528 as a result of the data validation process. All data met the data quality objectives (DQOs) and are useable as reported

Holding Times, Preservation and Storage

The samples were collected August 15, 2003, cooled to 4°C and sent to the laboratory. Per the chain-of-custody and subsequent laboratory acknowledgement receipt forms, the laboratory received the samples August 16, 2003 in acceptable condition and at 4°C. The laboratory misinterpreted one of the samples I20-21 0-4" as F20-21 0-4" upon log in. This has been corrected in the data tables and documented in the original report. It should be noted that discrepancies between method 8290 and the Guidelines exist for the technical extraction and analysis holding times. The Guidelines recommend that soil samples be extracted within 10 days of receipt and analyzed within 30 days. Alternately, Method 8290 and the QAPP for the project indicate that a 30-day extraction/45 day analysis holding times apply. Method 8290 also states that these holding times are only recommendations as dioxins and furans are very stable in a variety of matrices. All samples were extracted and analyzed within 30 days. No qualifiers are applied.

Mass Calibration and Mass Spectrometer Resolution

Mass calibration and mass spectrometer resolution (MC/MSR) checks are required to ensure that the mass calibration and mass spectrometer resolution is set at a \geq 10,000 resolving power. This resolution is confirmed at the beginning and end of every 12-hour analysis period

It should be noted that the Guidelines contain language that refer to evaluation techniques that due to upgrades in analytical systems software, are obsolete at CASs Houston facility. Specifically, the evaluation of the resolution by the measure of deviation between the exact m/z and the theoretical

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 23, 2003

m/z at less than 5 ppm has been replaced with a function of instrumentation that implicitly sets the error to zero at all calibration points so there is no longer any need to use peak matching conditions to verify the exact mass. Therefore, resolving power is evaluated by close review of the resolution of PFK peak profiles where high mass ion (380 9760) and low mass ion (304 9824) are reported.

CAS performed the MC/MSRs at the appropriate frequency and obtained acceptable results for the PFK calibrant confirming MC/MSRs at a resolving power of 10,000. Note: CAS used three instrument systems to analyze the project samples and provided appropriate documentation from the three systems in the raw data package. All system's documentation were evaluated during the data validation process.

Window Defining Mix

The window defining mix (WDM) is necessary to establish the appropriate switching times for the selection ion group descriptors. As stated in the Guidelines, the frequency of the WDM is every 12 hours prior to calibration verification. However, Method 8290, Section 8.3.2.2.2. allows the laboratory, if running consecutive 12-hour shifts, to use the ending calibration verification (if all acceptance criteria are met) of the first 12-hour analysis period as the beginning calibration verification of the second 12-hour analysis period. In these cases, the WDM was analyzed after the calibration verification but still falls within the 12-hour analytical period. While the Guidelines indicate the WDM must be analyzed prior to the calibration verification sample, CAS's order of analysis for the system performance check samples did not appear to affect the overall system instrumentation and no qualifiers have been applied.

CAS performed the WDM analysis for every 12-hour sample analysis period and presented the acceptable switching times for each homologue group on the corresponding Form 5s.

Chromatographic Resolution

This check is performed to ascertain the separation of closely eluting dioxin/furan isomers. This is performed using SICP (selected ion current profile) of each isomer. The criteria requires that the 2,3,7,8-TCDD peak and the 1,2,3,8-TCDD peak be resolved with a valley of \leq 25% for the DB-5 column.

St Regis Paper Company Superfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 23, 2003

CAS provided summary peak to valley results as specified above on each of the Form 5s. In each case, the $\leq 25\%$ criterion was met. The raw chromatograms were also reviewed to confirm this information

Initial Calibration

Satisfactory instrument calibration is crucial to ensuring the accurate qualitative and quantitative results for each of the CDD/CDF compounds. Initial calibration procedures define the linear range and mean relative response factors that will be used for sample quantitation.

For the primary analytical systems (Instrument B and C), the initial calibration summary information met all the relevant acceptance criteria including the relative responses (RRFs) of <25% for native compounds and <35% for the labeled compounds, ion abundance ratios (IARs) within +/- 15%, absolute retention times within the WDM windows, and signal-to-noise ratios of >10.1

Initial calibration for the 2,3,7,8-TCDF second column confirmation instrument (Instrument A) occurred on August 6, 2003 The initial calibration data met all acceptance criteria and is included in the Second Column Confirmation section of this report

Instrument Stability and Continuing Calibration Verification

Instrument stability is an important aspect of this analytical system. Ongoing calibration verification using a CS-3 standard is performed for every 12-hour period. This standard is used to evaluate the isomer retention times, ion abundance criteria, sensitivity and ongoing calibration criteria. The continuing calibration verification summary information met all relevant acceptance criteria including the frequency of the continuing calibration verifications at the both beginning and ending of each 12-hour analytical run, the RRFs %D within <25% for native compounds and <35% for labeled compounds of initial calibration, the IARs within the +/-15%, and signal-to-noise of >10.1

CAS met the requirements of the absolute retention times (RT) for the first internal standard (¹³C-1,2,3,4-TCDD) of ± 15 seconds (of the initial calibration standard) and the associated >25 0 minute RT requirement for most of the 12-hour CS3 calibration verification standards. However, occasionally, the RT for the first internal standard falls outside this 15 second criteria. It should be noted that the 15 second criteria is not specific to Method 8290. All the RTs for internal standards in

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 23, 2003

each CS-3 standards fell within the switching time window as defined by the WDM and each CS-3 standard recorded acceptable results all other quality control aspects (i.e., ion abundance, analyte response, instrument sensitivity) therefore, using professional judgment as stated in the Guidelines, no data is qualified based on these RT deviations. The relative retention time and ion abundance criteria were also met for each of the native and label CDD/CDFs in the ongoing CS-3 standard results.

The relative response factor (RRF) criteria of <25% difference between CS-3 native compounds as compared to the initial calibration data was acceptable for all instrument A runs. For the instrument B runs on September 3 and 13, the criteria were not met. For the instrument C runs on September 3, and 13, the criteria were not met. For the instrument C runs on August 30, 31, September 1, and 9 the criteria were met. For the runs where the criteria were exceeded, the data package contained the appropriate documentation (Form 6a & 6b), which was then validated. Note: The exceedances of the 25% ending calibration verification standard criteria required the laboratory to provide the mean RRFs (using Form 6) from the beginning and ending calibration verification analysis and the mean factors were then employed for quantitation, as specified in Method 8290, Section 8.3.2.4 and 7.7.4.4. No data qualifiers were assigned to the project data.

While the Guidelines indicate review of the relative responses (RR), method 8290 has no such criteria, as RR's are not used in final quantitation of sample results, therefore, no review was performed.

Review of the above elements indicates a high level of instrument stability and no qualifiers are required.

Method Blank Analysis

Laboratory method blank analyses are used to determine the existence and magnitude of contamination introduced at the laboratory.

CAS prepared 6 method blank samples during the analysis of the project samples. Three method blanks were non-detect for all target analytes. Three method blanks had a detection of OCDD but below the project required quantitation limit of 5.0 ng/kg. The trace concentrations of OCDD were

St Regis Paper Company Superfund Site - Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 23, 2003

within common laboratory practice levels of OCDD All method blank samples were prepared and analyzed at the appropriate frequency

Laboratory Control Samples (Ongoing Precision/Accuracy)

The laboratory is required to prepare and analyze a sample of spiked reference matrix for measures of accuracy of the analytical process/system/method

CAS performed laboratory control sample (LCS) analyses at the appropriate frequency for the analytical batch. All seven sets of LCS results met associated acceptance criteria for percent recovery of the spiked concentrations as presented in Table 6 of Exhibit D of the Guidelines. All RRT and IARs were also acceptable in the LCS samples associated with the analytical batch indicating an in-control analytical system.

Labeled Compound Recovery (Surrogate Standard Recovery)

Because the introduced labeled compounds (CDD/CDFs) serve as the isotopic quantitative mechanism for this method, recoveries should be closely monitored for laboratory and method effectiveness

CAS met the minimum acceptance criteria for the labeled compound recoveries as presented in Table 7 of Exhibit D of the Guidelines However, these recovery windows are wider that CAS's internally generated acceptance criteria. Labeled compound recoveries qualified with a "Y" in the original data package indicate the recovery falls outside the laboratory-generated acceptance limits. None of these minor failures exceeded the Guidelines limits; therefore, no data requires qualification.

Second Column Confirmation

A second column confirmation of the 2,3,7,8-TCDF isomer is required by both Methods 1613 and 8290 due to a known lack of isomer specificity for this isomer on the DB-5 or equivalent column. All operating conditions of the second column analytical system must be identical to those of the primary system.

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report: October 23, 2003

CAS performed the second column confirmational analysis when the original analytical run had positive 2,3,7,8-TCDF detections. All performance criteria (as previously detailed above) were met prior to and during the confirmational analytical runs.

Matrix Spike Recoveries

Sample NWWD-03 0-4" was used for a MS and MSD spike sample. Due to the high native concentration of OCDD, OCDF, and 1,2,3,4,6,7,8-HpCDD in the sample relative to the spiked level, the matrix spike recovery could not be accurately determined. All other spike recoveries were within the laboratory control limits of 50-150%.

Data Validation Report – Dioxin/Furan Laboratory Report / Batch: E2300570 Received: October 18, 2003

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Data Validation Report: October 23, 2003

The data validation of the Columbia Analytical Services, Inc. (CAS) laboratory data for the dioxin and furan (CDD/CDF) analysis of the Cass Lake Removal Site Evaluation and Supplemental Assessment soil samples contained in the aforementioned report is complete as detailed below

The analytical data were reviewed in accordance with the U S EPA Analytical Operations Data Quality Center (AOC) National Functional Guidelines for Chlorinated Dioxin Furan Data Review, Draft Final dated March, 2002 (Guidelines) as specified in the Quality Assurance Project Plan (QAPP, Barr, June 2003) In addition to the Guidelines, specific SW-846 Method 8290 criteria were also considered as slight differences in some of the performance aspects exist between the documents. In general, the areas covered by the validation process include

- Overall assessment
- Holding times, preservation and storage
- Mass calibration and mass spectrometer resolution
- Window defining mix
- Initial calibration
- Instrument stability and continuing calibration verification
- Method blank analysis
- Laboratory control samples
- Second column confirmation
- Matrix Spikes

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report: October 23, 2003

Twenty-three soil and one water sample results are contained in this laboratory report. They are as follows:

A10-11 0-4"	A10-11 4-12"	A11-12 0-4"	A11-12 4-12"	C11-12 0-4"	
A12-14 0-4"	A12-14 4-12"	C12-13 0-4"	A17-19 0-4"	A17-19 4-12"	C23-24 0-4"
A17-19 0-4D	A17-19 0-4ER	A19-20 0-4"	A20-22 0-4"	A20-22 0-4"	A27-28 0-4"
FOA1COMP1	0-4"	FOA1COMP2	0-4"	FOA1COMP3	0-4"
FOA1COMP4	0-4"	FOA1COMP5	0-4"	FOA1COMP5	4-12"
FOA1COMP6	0-4"				

Overall Assessment

No qualifiers were assigned to the sample results contained in laboratory report E2300560 as a result of data validation process. With the exception of sample FOA1-COMP5 4-12", all data met the data quality objective (DQOs) and are useable as reported. Data reported for FOA1-COMP5 4-12" is invalid due to an error during sample check in. One jar of sample FOA1-COMP5 0-4" was incorrectly bar-coded as FOA1-COMP5 4-12" and used for analysis. This data will be used as another field duplicate sample and will be evaluated with the overall quality control samples during detailed quality control sample data assessment. The correct sample for FOA1-COMP5 4-12" is being analyzed and will be reported under separate cover.

Holding Times, Preservation and Storage

The samples were collected August 27, 2003, cooled to 4°C and sent to the laboratory. Per the chain-of-custody and subsequent laboratory acknowledgement receipt forms, the laboratory received the samples August 29, 2003 in acceptable condition and at 4°C. It should be noted that discrepancies between method 8290 and the Guidelines exist for the technical extraction and analysis holding times. The Guidelines recommend that soil samples be extracted within 10 days of receipt and analyzed within 30 days. Alternately, Method 8290 and the QAPP for the project indicate that a 30-day extraction/45 day analysis holding times apply. Method 8290 also states that these holding times are only recommendations as dioxins and furans are very stable in a variety of matrices. All samples were extracted and analyzed within 30 days. No qualifiers are applied.

St Regis Paper Company Superfund Site - Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 23, 2003

Mass Calibration and Mass Spectrometer Resolution

Mass calibration and mass spectrometer resolution (MC/MSR) checks are required to ensure that the mass calibration and mass spectrometer resolution is set at a ≥ 10.000 resolving power. This resolution is confirmed at the beginning and end of every 12-hour analysis period.

It should be noted that the Guidelines contain language that refer to evaluation techniques that due to upgrades in analytical systems software, are obsolete at CASs Houston facility. Specifically, the evaluation of the resolution by the measure of deviation between the exact m/z and the theoretical m/z at less than 5 ppm has been replaced with a function of instrumentation that implicity sets the error to zero at all calibration points so there is no longer any need to use peak matching conditions to verify the exact mass. Therefore, resolving power is evaluated by close review of the resolution of PFK peak profiles where high mass ion (380 9760) and low mass ion (304 9824) are reported

CAS performed the MC/MSRs at the appropriate frequency and obtained acceptable results for the PFK calibrant confirming MC/MSRs at a resolving power of 10,000. Note CAS used three instrument systems to analyze the project samples and provided appropriate documentation from the three systems in the raw data package. All system's documentation were evaluated during the data validation process.

Window Defining Mix

The window defining mix (WDM) is necessary to establish the appropriate switching times for the selection ion group descriptors. As stated in the Guidelines, the frequency of the WDM is every 12 hours prior to calibration verification. However, Method 8290, Section 8.3.2.2.2. allows the laboratory, if running consecutive 12-hour shifts, to use the ending calibration verification (if all acceptance criteria are met) of the first 12-hour analysis period as the beginning calibration verification of the second 12-hour analysis period. In these cases, the WDM was analyzed after the calibration verification but still falls within the 12-hour analytical period. While the Guidelines indicate the WDM must be analyzed prior to the calibration verification sample, CAS's order of analysis for the system performance check samples did not appear to affect the overall system instrumentation and no qualifiers have been applied.

St Regis Paper Company Superfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 23 2003

CAS performed the WDM analysis for every 12-hour sample analysis period and presented the acceptable switching times for each homologue group on the corresponding Form 5s

Chromatographic Resolution

This check is performed to ascertain the separation of closely eluting dioxin/furan isomers. This is performed using SICP (selected ion current profile) of each isomer. The criteria requires that the 2,3,7,8-TCDD peak and the 1,2,3,8-TCDD peak be resolved with a valley of $\leq 25\%$ for the DB-5 column

CAS provided summary peak to valley results as specified above on each of the Form 5s. In each case, the \leq 25% criterion was met. The raw chromatograms were also reviewed to confirm this information

Initial Calibration

Satisfactory instrument calibration is crucial to ensuring the accurate qualitative and quantitative results for each of the CDD/CDF compounds. Initial calibration procedures define the linear range and mean relative response factors that will be used for sample quantitation

For the primary analytical systems (Instrument B and C), the initial calibration summary information met all the relevant acceptance criteria including the relative responses (RRFs) of <25% for native compounds and <35% for the labeled compounds, ion abundance ratios (IARs) within +/- 15%, absolute retention times within the WDM windows, and signal-to-noise ratios of >10:1.

Initial calibration for the 2,3,7,8-TCDF second column confirmation instrument (Instrument A) occurred on August 6, 2003. The initial calibration data met all acceptance criteria and is included in the Second Column Confirmation section of this report.

Instrument Stability and Continuing Calibration Verification

Instrument stability is an important aspect of this analytical system. Ongoing calibration verification using a CS-3 standard is performed for every 12-hour period. This standard is used to evaluate the isomer retention times, ion abundance criteria, sensitivity and ongoing calibration criteria. The continuing calibration verification summary information met all relevant acceptance criteria

St Regis Paper Company Sunerfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 23, 2003

including the frequency of the continuing calibration verifications at the both beginning and ending of each 12-hour analytical run, the RRFs %D within <25% for native compounds and <35% for labeled compounds of initial calibration, the IARs within the +/-15%, and signal-to-noise of >10.1

CAS met the requirements of the absolute retention times (RT) for the first internal standard (\$^{13}\$C-1,2,3,4-TCDD) of \pm 15 seconds (of the initial calibration standard) and the associated >25 0 minute RT requirement for most of the 12-hour CS3 calibration verification standards. However, occasionally, the RT for the first internal standard falls outside this 15 second criteria. It should be noted that the 15 second criteria is not specific to Method 8290. All the RTs for internal standards in each CS-3 standards fell within the switching time window as defined by the WDM and each CS-3 standard recorded acceptable results all other quality control aspects (i.e., ion abundance, analyte response, instrument sensitivity) therefore, using professional judgment as stated in the Guidelines, no data are qualified based on these RT deviations. The relative retention time and ion abundance criteria were also met for each of the native and label CDD/CDFs in the ongoing CS-3 standard results.

The relative response factor (RRF) criteria of <25% difference between CS-3 native compounds as compared to the initial calibration data was acceptable for all instrument A runs. For the instrument B runs on September 11, 16, 15, and 29 the criteria were not met. For the instrument C run on October 1 the criteria was not met. All other ongoing calibration verification data yielded acceptable results. For the runs where the criteria were exceeded, the data package contained the appropriate documentation (Form 6a & 6b), which was then validated. Note. The exceedances of the 25% ending calibration verification standard criteria required the laboratory to provide the mean RRFs (using Form 6) from the beginning and ending calibration verification analysis and the mean factors were then employed for quantitation, as specified in Method 8290, Section 8.3.2.4 and 7.7.4.4. No data qualifiers were assigned to the project data.

While the Guidelines indicate review of the relative responses (RR), method 8290 has no such criteria, as RR's are not used in final quantitation of sample results, therefore, no review was performed.

Review of the above elements indicates a high level of instrument stability and no qualifiers are required.

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report: October 23, 2003

Method Blank Analysis

Laboratory method blank analyses are used to determine the existence and magnitude of contamination introduced at the laboratory.

CAS prepared 11 method blank samples during the analysis of the project samples. Four method blanks were non-detect for all target analytes. Six of the method blanks had detections of OCDD but all were below the project required quantitation limit of 5.0 ng/kg. One method blank sample had a trace detection of OCDF as well. The trace concentrations of were within common laboratory practice levels. None of the positive concentrations adversely affect the sample data as sample concentrations are far greater than any positive blank detections. All method blank samples were prepared and analyzed at the appropriate frequency.

Laboratory Control Samples (Ongoing Precision/Accuracy)

The laboratory is required to prepare and analyze a sample of spiked reference matrix for measures of accuracy of the analytical process/system/method.

CAS performed laboratory control sample (LCS) analyses at the appropriate frequency for the analytical batch. All five sets of LCS results met associated acceptance criteria for percent recovery of the spiked concentrations as presented in Table 6 of Exhibit D of the Guidelines. All RRT and IARs were also acceptable in the LCS samples associated with the analytical batch indicating an incontrol analytical system.

Labeled Compound Recovery (Surrogate Standard Recovery)

Because the introduced labeled compounds (CDD/CDFs) serve as the isotopic quantitative mechanism for this method, recoveries should be closely monitored for laboratory and method effectiveness.

CAS met the minimum acceptance criteria for the labeled compound recoveries as presented in Table 7 of Exhibit D of the Guidelines. However, these recovery windows are wider that CAS's internally generated acceptance criteria. Labeled compound recoveries qualified with a "Y" in the original data package indicate the recovery falls outside the laboratory-generated acceptance limits. None of these minor failures exceeded the Guidelines limits; therefore, no data requires qualification

St Regis Paper Company Superfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 23 2003

Second Column Confirmation

A second column confirmation of the 2,3,7,8-TCDF isomer is required by both Methods 1613 and 8290 due to a known lack of isomer specificity for this isomer on the DB-5 or equivalent column All operating conditions of the second column analytical system must be identical to those of the primary system.

CAS performed the second column confirmational analysis when the original analytical run had positive 2,3,7,8-TCDF detections. All performance criteria (as previously detailed above) were met prior to and during the confirmational analytical runs.

Matrix Spike Recoveries

Sample FOA1-COMP2 0-4" was used for a MS and MSD spike sample. Due to the high native concentration of some of the target analytes in the sample relative to the spiked level, the matrix spike recovery could not be accurately determined. In cases where the native concentration is not as high, spike recoveries were within the laboratory control limits of 50-150%.

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report: October 23, 2003

The data validation of the Columbia Analytical Services, Inc. (CAS) laboratory data for the dioxin and furan (CDD/CDF) analysis of the Cass Lake Removal Site Evaluation and Supplemental Assessment groundwater sample contained in the aforementioned report is complete as detailed below.

The analytical data were reviewed in accordance with the U.S. EPA Analytical Operations/Data Quality Center (AOC) National Functional Guidelines for Chlorinated Dioxin/Furan Data Review, Draft Final dated March 2002 (Guidelines) as specified in the project-specific Quality Assurance Project Plan (QAPP, Barr, June 2003). In addition to the Guidelines, specific SW-846 Method 8290 criteria were also considered as slight differences in some of the performance aspects exist between the documents. In general, the areas covered by the validation process include:

- Overall assessment
- Holding times, preservation and storage
- Mass calibration and mass spectrometer resolution
- Window defining mix
- Instrument stability
- Initial calibration and ongoing calibration verification
- Method blank analysis
- Laboratory control samples (ongoing precision/accuracy)
- Second column confirmation

One groundwater sample result is contained in this laboratory report. It is as follows:

316 Grant Utley

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 23 2003

Overall Assessment

Due to OCDD concentrations in the corresponding laboratory method blank sample, the 316 Grant Utley OCDD sample concentration is considered false positive and has been adjusted accordingly in the data summary table. No qualifiers were assigned to the sample results contained in laboratory report E2300569 as a result of the data validation process. All data met the data quality objective (DQOs) and are useable as reported

Holding Times, Preservation and Storage

The sample was collected August 26, cooled to 4oC and sent to the laboratory. Per the chain-of-custody and subsequent laboratory acknowledgement receipt forms, the laboratory received the samples August 29, 2003 in acceptable condition. It should be noted that discrepancies between Method 8290 and the Guidelines exist for the technical extraction and analysis holding times. The Guidelines recommend that soil samples be extracted within 10 days of receipt and analyzed within 30 days. Alternately, Method 8290 and the QAPP for the project indicate that 30 day extraction/45 day analysis holding times apply. Method 8290 also states that these holding times are only recommendations as dioxins and furans are very stable in a variety of matrices. All samples were extracted and analyzed within 30 days. No qualifiers are applied

Mass Calibration and Mass Spectrometer Resolution

Mass calibration and mass spectrometer resolution (MC/MSR) checks are required to ensure that the mass calibration and mass spectrometer resolution is set at $a \ge 10,000$ resolving power. This resolution is confirmed at the beginning and end of every 12-hour analysis period.

It should be noted that the Guidelines contain language that refers to evaluation techniques that due to upgrades in analytical systems software, are obsolete at CASs Houston facility. Specifically, the evaluation of the resolution by the measure of deviation between the exact m/z and the theoretical m/z at less than 5 ppm has been replaced with an instrumentation function that implicitly sets the error to zero at all calibration points so there is no longer any need to use peak matching conditions to verify the exact mass. Therefore, resolving power is evaluated by close review of the resolution of PFK peak profiles where high mass ion (380.9760) and low mass ion (304.9824) are reported.

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 23, 2003

CAS performed the MC/MSR at the appropriate frequency and obtained acceptable results for the PFK calibrant confirming MC/MSR at a resolving power of 10,000.

Window Defining Mix

The window defining mix (WDM) is necessary to establish the appropriate switching times for the selection ion group descriptors. As stated in the Guidelines, the frequency of the WDM is once every 12 hours prior to calibration verification. However, Method 8290, Section 8.3.2.2.2. allows the laboratory, if running consecutive 12-hour shifts, to use the ending calibration verification (if all acceptance criteria are met) of the first 12-hour analysis period as the beginning calibration verification of the second 12-hour analysis period. In these cases, the WDM was analyzed after the calibration verification but still falls within the 12-hour analytical period. While the Guidelines indicate the WDM must be analyzed prior to the calibration verification sample, CAS's order of analysis for the system performance check samples did not appear to affect the overall system instrumentation and no qualifiers have been applied.

CAS performed the WDM analysis for every 12-hour sample analysis period and presented the acceptable switching times for each homologue group on the corresponding Form 5.

Chromatographic Resolution

This check is performed to ascertain the separation of closely eluting dioxin/furan isomers. This is performed using SICP (selected ion current profile) of each isomer. The criteria requires that the 2,3,7,8-TCDD and the 1,2,3,8-TCDD peaks (for the DB-5 column) and the 2,3,7,8-TCDF and the 2,3,4,7-TCDF peaks (for the DB-225 column) be resolved with a valley of $\leq 25\%$.

CAS provided summary peak to valley results as specified above on each of Form 5. In each case, the $\leq 25\%$ criterion was met. The raw chromatograms were also reviewed to confirm this information.

Initial Calibration

Satisfactory instrument calibration is crucial to ensuring the accurate qualitative and quantitative results for each of the CDD/CDF compounds. Initial calibration procedures define the linear range and mean relative response factors that will be used for sample quantitation.

St Regis Paper Company Superfund Site - Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report October 23 2003

For the primary analytical system (instrument C) CAS's initial calibration summary information (performed May 22, 2003) met all the relevant acceptance criteria including the relative responses (RRFs) of <25% for native compounds and <35% for the labeled compounds, ion abundance ratios (IARs) within +/- 15%, absolute retention times within the WDM windows, and signal-to-noise ratios of >10.1.

Initial calibration for the 2.3.7,8-TCDF second column confirmation instrument (instrument A) occurred on August 6, 2003 The initial calibration data met all acceptance criteria and is included in the Second Column Confirmation section of this report

Instrument Stability and Continuing Calibration Verification

Instrument stability is an important aspect of this analytical system. Ongoing calibration verification using a CS-3 standard is performed once every 12-hour period. This standard is used to evaluate the isomer retention times, ion abundance criteria, sensitivity and ongoing calibration criteria.

CAS met the requirements of the absolute retention times (RT) for the first internal standard (13C-1,2,3,4-TCDD) of \pm 15 seconds (of the initial calibration standard) and the associated >25 0 minute RT requirement for each of the 12-hour CS3 calibration verification standards. The relative retention time and ion abundance criteria were also met for each of the native and labeled CDD/CDFs in the ongoing CS-3 standard results.

Signal-to-noise (S/N) ratios were summarized for the native and labeled CDD/CDFs were acceptable at >10:1.

The relative response factor (RRF) criterion of <25% difference between CS-3 native compounds as compared to the initial calibration data was acceptable for instrument C (September 10) and for instrument A (September 11) analytical runs. No qualifiers were assigned to the project data.

While the Guidelines indicate review of the relative responses (RR), Method 8290 has no such requirement, as RR's are not used in final quantitation of sample results, therefore, no review was performed.

Review of the above elements indicates a high level of instrument stability and no qualifiers are required.

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report: October 23, 2003

Method Blank Analyses

Laboratory method blank analyses are used to determine the existence and magnitude of contamination introduced at the laboratory.

The method blank sample was prepared and analyzed at the appropriate frequency. The method blank sample associated with this project sample had a positive OCDD concentration of 45.010 pg/L. This concentration of OCDD is below the CRQL of 50 pg/L. The associated sample concentration of 9.3 pg/L would indicate that it is likely a false positive result due to the ubiquitous nature of OCDD and the high blank concentration (as compared to the sample result). The sample result has been adjusted accordingly in the data summary table. It is represented as <9.4 pg/L.

Laboratory Control Samples (Ongoing Precision/Accuracy)

The laboratory is required to prepare and analyze a sample of spiked reference matrix to measure the accuracy of the analytical process/system/method.

CAS performed laboratory control sample (LCS) analyses at the appropriate frequency for the analytical batch. The LCS results met associated acceptance criteria for percent recovery of the spiked concentrations as presented in Table 6 of Exhibit D of the Guidelines. All RRTs and IARs were also acceptable in the LCS samples associated with the analytical batch indicating an in-control analytical system.

Labeled Compound Recovery (Surrogate Standard Recovery)

Because the introduced labeled compounds (CDD/CDFs) serve as the isotopic quantitative mechanism for this method, recoveries should be closely monitored for laboratory and method effectiveness.

CAS met the minimum acceptance criteria for the labeled compound recoveries as presented in Table 7 of Exhibit D of the Guidelines as well as CAS's own, more stringent recovery windows. No data requires qualification due to labeled compound recoveries.

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Report: October 23, 2003

Second Column Confirmation

A second column confirmation of the 2.3,7,8-TCDF isomer is required by both Methods 1613 and 8290 due to a known lack of isomer specificity for this isomer on the DB-5 or equivalent column. All operating conditions of the second column analytical system must be identical to those of the primary system.

CAS performed the second column confirmational analysis when the original analytical run had positive 2,3,7,8-TCDF detections. All performance criteria (as previously detailed above) were met prior to and during the confirmational analytical runs.

Matrix Spike Recoveries

No matrix spike summary information was reported for this data package. It was likely a non-project sample that was utilized, therefore, would have limited applicability to the project results.

Data Validation Report – PAHs and PCP Laboratory Report / Batch K2306717 Received: October 3, 2003

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report: October 23, 2003

The data validation process for the Columbia Analytical Services, Inc (CAS) laboratory data for the polynuclear aromatic hydrocarbons (PAHs) and pentachlorophenol (PCP) analysis of the Cass Lake Removal Site Evaluation and Supplemental Assessment soil samples contained in the aforementioned report is complete as detailed below

The analytical data were reviewed in accordance with the U.S. EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (1999) (Guidelines) as specified in the Quality Assurance Project Plan (QAPP, Barr, June 2003). In addition to the Guidelines, specific SW-846 Method 8270 and 8000 criteria were also considered as slight differences in some of the performance aspects exist between the documents. In general, the areas covered by the validation process include:

- Overall assessment
- Holding times, preservation and storage
- Instrument performance (tuning)
- Initial calibration
- Continuing calibration verification
- Method blank analysis
- Laboratory control samples (ongoing precision/accuracy)
- Surrogate recovery
- Internal standard recovery
- Matrix spike recovery

Thirteen soil sample results are contained in this laboratory report. They are as follows:

A12-14 0-4" A20-22 0-4" A20-22 4-12" C23-24 0-4" A27-28 0-4" FOA1-COMP1 0-4" FOA1-COMP2 0-4" FOA1-COMP2 4-12" FOA1-COMP6 0-4" FOA1-COMP6 0-4"

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report. October 23, 2003

Overall Assessment

No qualifiers were assigned to the sample results contained in laboratory report K2306717 as a result of data validation process. With the exception of sample FOA1-COMP5 0-4", all data met the data quality objective (DQOs) and are useable as reported. Data reported for FOA1-COMP5 0-4" is invalid due to an error during sample check in. One jar of sample FOA1-COMP5 4-12" was incorrectly bar-coded as FOA1-COMP5 0-4" and sent to Kelso from Houston for analysis. This data will be used as another field duplicate sample and will be evaluated with the overall quality control samples during detailed quality control sample data assessment.

Holding Times, Preservation and Storage

The samples were collected on August 27, 2003 and received at the CAS Houston laboratory on August 29, 2003 with an accompanying Chain-of-Custody (COC) form. All samples were received intact and were properly chilled (within 2-6 C). The samples were then shipped overnight to the CAS Kelso laboratory for semivolatile analysis (PAHs and PCP) and were received on September 4, 2003 intact and at 2.9 C (temperature blank). A discrepancy between one of the samples received and the chain of custody record was noted on the cooler receipt and preservation form. The laboratory was contacted to resolve the discrepancy. The laboratory discovered that upon sample check in, one jar for sample FOA1-COMP5 0-4" was mislabeled FOA1-COMP5 4-12 and sent to Kelso. Kelso noted that while both sample containers read FOA1-COMP5-4-12" and none read FOA1-COMP5 0-4", they defaulted to Houston's numeric bar-code and proceeded with the analysis. Data reported as FOA1-COMP5-0-4" incorrect/invalid and is being removed from the final data set. The correct fraction of sample is being reanalyzed by both Kelso and Houston and will be reported under separate cover.

GCMS Instrument Performance Check

All instrument performance checks (tunes) run during the analysis of the project samples met the acceptance criteria for frequency, mass abundance, and mass ratios as listed in the CAS form 5s and associated quantitation and tune reports. Note, that the CAS tune criteria are somewhat different than those listed in the USEPA CLP National Functional Guidelines for Organic Data Review (NFG) and the SW-846 8270 method. The CAS tune criteria reflect the mass spectrometer manufacturer's (Agilent) recommendations for tuning requirements for the latest generation of analytical mass

St Regis Paper Company Superfund Site - Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report October 23, 2003

spectral-based instrumentation. Section 7 3 1.2 and Table 3 of SW-846 8270C state that alternate tuning criteria may be used as long as they do not result in adversely affected method performance. The 8270-method performance criteria were not adversely affected by the use of the new tuning criteria. The CAS tuning criteria limits were used as the analytical instrument system tuning performance criteria for this project. The tune frequency met the method and data validation criteria.

Initial Calibration

The Initial Calibration (ICAL) for PAHs and PCP by Selected Ion Monitoring (SIM) was performed on September 13 and 19, 2003 using 7-10 concentrations levels of the target analytes. The individual and average relative response factors (RRFs) for all target analytes met the data validation requirement of >0.05. All target analytes met the <30 %RSD data validation criteria. The average RSD of the RRFs for PCP (22.7 and 19.6%) did exceed the method criteria of <15%RSD, however the laboratory utilized an alternative calibration evaluation as specified in section 7.5.1 2.1 of EPA 8000B. This option allows for the calculation of the mean value of all the target analytes average RSDs and subsequent comparison to the requirement of the mean RSD being <20%. The mean RSD for this initial calibration event was calculated as 7.4%, thus meeting the method criteria.

The laboratory report also included results from the analysis of a second source calibration check standard; all target analytes met the laboratory's criteria of < 20% difference. There are no data validation criteria for second source standards.

Continuing Calibration Verification

The September 19,20, and 22, 2003 continuing calibration verifications met the data validation criteria of <+25% difference and RRFs (> 0.05) for all target analytes. The September 17 and 18, 2003 continuing calibration verifications met the data validation criteria of <+25% difference and RRFs (> 0.05) for all target analytes except Indeno(123-cd)pyrene. However all data reported for this compound came from the September 19, 20, or 22, 2003 analytical runs.

Method Blank Analysis

The method blank was non-detect for all target analytes. The method blank sample was prepared and analyzed at the appropriate frequency.

St Regis Paper Company Superfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report October 23, 2003

Laboratory Control Samples

For the verification of the analytical process/system method accuracy, the laboratory prepared two LCS samples All spiked analyte percent recoveries met the data validation and the laboratory's internal acceptance criteria

Surrogate Standard Recovery

The matrix spike associated with the project samples had two surrogate standards and the laboratory control sample had one surrogate standard exceed laboratory criteria. Since the majority of matrix spike values and all laboratory control sample spike values met all percent recovery criteria, it does not appear these exceedances adversely affected the data. All remaining surrogate spike recoveries from the project samples met the data validation acceptance criteria.

Internal Standard Recovery

All internal standards were reviewed for area and retention time criteria. All internal standards from the project samples and associated quality control samples met the method and data validation criteria.

Matrix Spike Recovery

A project sample (FOA1-Comp2 4-12") was utilized for the Matrix Spike (MS) and Matrix Spike Duplicate (MSD. All percent recoveries and RPDs from the MS and MSD were within the laboratory's internal control limits.

Field Duplicate Results

No field duplicate samples were contained in this submittal.

Data Validation Report – PAHs and PCP Laboratory Report / Batch K2306923 Received October 14, 2003

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report: October 23, 2003

The data validation process for the Columbia Analytical Services, Inc. (CAS) laboratory data for the polynuclear aromatic hydrocarbons (PAHs) and pentachlorophenol (PCP) analysis of the Cass Lake Removal Site Evaluation and Supplemental Assessment soil samples contained in the aforementioned report is complete as detailed below.

The analytical data were reviewed in accordance with the U.S. EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (1999) (Guidelines) as specified in the Quality Assurance Project Plan (QAPP, Barr, June 2003). In addition to the Guidelines, specific SW-846 Method 8270 and 8000 criteria were also considered as slight differences in some of the performance aspects exist between the documents. In general, the areas covered by the validation process include:

- Overall assessment
- Holding times, preservation and storage
- Instrument performance (tuning)
- Initial calibration
- Continuing calibration verification
- Method blank analysis
- Laboratory control samples (ongoing precision/accuracy)
- Surrogate recovery
- Internal standard recovery
- Matrix spike recovery

Six soil and one water sample results are contained in this laboratory report. They are as follows:

BNSF-6 0-4"

BNSF-6 0-4"D

BNSF-5 0-4"

BNSF-3 0-4"

BNSF-2 0-4"

BNSF-1 0-4"

RINSATE WATER

St Regis Paper Company Superfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report October 23, 2003

Overall Assessment

Qualifiers indicated PCP estimated concentrations, were assigned to the sample results contained in laboratory report K2306923 as a result of data validation process. However, the data still meets the data quality objective (DQOs) and are useable as qualified.

Holding Times, Preservation and Storage

The samples were collected on September 5, 2003 and received at the CAS Houston laboratory on September 6, 2003 with an accompanying chain-of-custody (COC) form. All samples were received intact and were properly chilled (within 2-6 °C). The samples were properly stored until shipped overnight to the CAS Kelso laboratory for PAH and PCP analysis. The samples were received on September 10, 2003 in Kelso intact and at 4.5 °C (temperature blank). All samples were received in good condition and consistent with the COC.

GCMS Instrument Performance Check

All instrument performance checks (tunes) run during the analysis of the project samples met the acceptance criteria for frequency, mass abundance, and mass ratios as listed in the CAS form 5s and associated quantitation and tune reports. Note, that the CAS tune criteria are somewhat different than those listed in the Guidelines and follow guidance from SW-846 8270. The CAS tune criteria reflect the mass spectrometer manufacturer's (Agilent) recommendations for tuning requirements for the latest generation of analytical mass spectral-based instrumentation. Section 7.3.1.2 and Table 3 of SW-846 8270C state that alternate tuning criteria may be used as long as they do not result in adversely affected method performance. The 8270-method performance criteria were not adversely affected by the use of the alternate tuning criteria. The CAS tuning criteria limits were used as the analytical instrument system tuning performance criteria for this project. The tune frequency met the method and data validation criteria.

Initial Calibration

The initial calibration (ICAL) for PAHs (water only) and PCP instrument using selected ion monitoring (SIM) was performed on September 13, 2003 and September 19, 2003 and September 29, 2003. The individual and average relative response factors (RRFs) for all target analytes met the

St. Regis Paper Company Superfund Site ~ Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report: October 23, 2003

data validation requirement of >0.05. All target analytes met the <30 %RSD data validation criteria. The average RSD of the RRFs for PCP did exceed the method criteria of <15%RSD for each calibration. However, the laboratory utilized an alternative calibration evaluation as specified in section 7.5.1.2.1 of EPA 8000B. This option allows for the calculation of the mean value of all the target analytes average RSDs and subsequent comparison to the requirement of the mean RSD being <20%. The mean RSD for this initial calibration event was calculated as 5.7% for the September 19, 2003 calibration, 5.6% for the September 13, 2003 calibration, and 6.3% for the September 29, 2003 calibration, thus meeting the method criteria.

The laboratory report also included results from the analysis of a second source calibration check standard, all target analytes met the laboratory's criteria of < 20% difference. There are no data validation criteria for second source standards.

Continuing Calibration Verification

The September 19, 20, 22 and 29, 2003 continuing calibration verifications (CCV) met the data validation criteria for frequency and the <+25% difference RRFs from ICAL as well as the minimum RRFs of > 0.05 for all target analytes. The indeno (1,2,3-cd) pyrene results for the CCV on September 17, 2003 exceeded the % RSD criteria (33%). This was not a factor for the project samples as only PCP was analyzed on September 17, 2003. The PCP CCV for September 27, 2003 exceeded % RSD criteria (27%). All associated samples were qualified and should be considered estimated.

Method Blank Analysis

Both method blanks (soil and water) were non-detect for all target analytes. The method blanks samples were prepared and analyzed at the appropriate frequency.

Laboratory Control Samples

For the verification of the analytical process/system/method accuracy, the laboratory prepared four LCS samples, two corresponding to the soil analysis and two corresponding to the water analysis. PCP fell below laboratory criteria for LCS sample percent recovery in both the LCS and LCS duplicate associated with the water sample and the LCS associated with the soil samples. All

St Regis Paper Company Superfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report October 23 2003

associated data has been qualified as estimated. All remaining spiked analyte percent recoveries met the data validation and the laboratory's internal acceptance criteria.

Surrogate Standard Recovery

All surrogate spike recoveries from the project samples met the data validation acceptance criteria

Internal Standard Recovery

All internal standards were reviewed for area and retention time criteria. All internal standards from the project samples and associated quality control samples met the method and data validation criteria.

Matrix Spike Recovery

A non-project sample was utilized for the Matrix Spike (MS) and Matrix Spike Duplicate (MSD). Since the source of the sample that was spiked was a non-project, the data has limited applicability to the project data. All percent recoveries for PCP from the MS and MSD fell below the laboratory's internal control limits. All PCP results for the project samples have been qualified. Several PAH MS/MSD results fell outside laboratory acceptance criteria, however the results for acenaphthene, fluorene, phenanthrene and fluoranthene are not applicable as the native concentration was greater than four times the spiked amount. In addition to these compounds, anthracene and pyrene also fell below laboratory acceptance criteria. Since the LCS data and calibration data for the PAHs fell within laboratory acceptance criteria, no PAH data was qualified based on the MS/MSD results.

Field Duplicate Results

Field duplicate results evaluate overall sampling and laboratory precision. Samples BNSF-6 0-4" and BNSF-6 0-4"D served as the field duplicates for this submittal. Both the sample and the duplicate were non-detect for the target parameters.

Data Validation Report – PAHs and PCP Laboratory Report / Batch K2306727 Received: October 2, 2003 (Revision rec'd 10/7/03)

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report: October 23, 2003

The data validation process for the Columbia Analytical Services, Inc (CAS) laboratory data for the polynuclear aromatic hydrocarbons (PAHs) and pentachlorophenol (PCP) analysis of the Cass Lake Removal Site Evaluation and Supplemental Assessment soil samples contained in the aforementioned report is complete as detailed below.

The analytical data were reviewed in accordance with the U.S. EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (1999) (Guidelines) as specified in the Quality Assurance Project Plan (QAPP, Barr, June 2003). In addition to the Guidelines, specific SW-846 Method 8270 and 8000 criteria were also considered as slight differences in some of the performance aspects exist between the documents. In general, the areas covered by the validation process include:

- Overall assessment
- Holding times, preservation and storage
- Instrument performance (tuning)
- Initial calibration
- Continuing calibration verification
- Method blank analysis
- Laboratory control samples (ongoing precision/accuracy)
- Surrogate recovery
- Internal standard recovery
- Matrix spike recovery

Six soil sample results are contained in this laboratory report. They are as follows:

C3-4 0-4"

C3-4 4-12"

TH-1 0-4"

A5-6 0-4"

A5-6 4-12"

A5-6 0-4"D

St Regis Paper Company Superfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report October 23 2003

Overall Assessment

No qualifiers were assigned to the sample results contained in laboratory report K2306727 as a result of data validation process. All data met the data quality objective (DQOs) and are useable as reported

Holding Times, Preservation and Storage

The samples were collected on August 26, 2003 and received at the CAS Houston laboratory on September 4, 2003 with an accompanying chain-of-custody (COC) form. All samples were received intact and were properly chilled (within 2-6 °C). The samples were properly stored until shipped overnight to the CAS Kelso laboratory for PAH and PCP analysis. The samples were received on September 4, 2003 in Kelso intact and at 2.9 °C (temperature blank). Some of the labels on the sample containers had field sample identifiers that did not match the identifiers listed on the COC. The identifiers written on the sample container lids did match the identifiers written on the COC.

GCMS Instrument Performance Check

All instrument performance checks (tunes) run during the analysis of the project samples met the acceptance criteria for frequency, mass abundance, and mass ratios as listed in the CAS form 5s and associated quantitation and tune reports. Note, that the CAS tune criteria are somewhat different than those listed in the Guidelines and follow guidance from SW-846 8270. The CAS tune criteria reflect the mass spectrometer manufacturer's (Agilent) recommendations for tuning requirements for the latest generation of analytical mass spectral-based instrumentation. Section 7.3.1.2 and Table 3 of SW-846 8270C state that alternate tuning criteria may be used as long as they do not result in adversely affected method performance. The 8270-method performance criteria were not adversely affected by the use of the alternate tuning criteria. The CAS tuning criteria limits were used as the analytical instrument system tuning performance criteria for this project. The tune frequency met the method and data validation criteria.

Initial Calibration

The initial calibration (ICAL) for PAHs and PCP instrument using selected ion monitoring (SIM) was performed on September 13, 2003 using 5 concentrations levels of the target analytes. The individual and average relative response factors (RRFs) for all target analytes met the data validation

St Regis Paper Company Superfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report October 23, 2003

requirement of >0.05 All target analytes met the <30 %RSD data validation criteria. The average RSD of the RRFs for PCP did exceed the method criteria of <15%RSD, however the laboratory utilized an alternative calibration evaluation as specified in section 7.5.1.2.1 of EPA 8000B. This option allows for the calculation of the mean value of all the target analytes average RSDs and subsequent comparison to the requirement of the mean RSD being <20%. The mean RSD for this initial calibration event was calculated as 5.7%, thus meeting the method criteria.

The laboratory report also included results from the analysis of a second source calibration check standard; all target analytes met the laboratory's criteria of < 20% difference. There are no data validation criteria for second source standards.

Continuing Calibration Verification

The September 15 and 16, 2003 continuing calibration verifications met the data validation criteria for frequency and the <+25% difference RRFs from ICAL as well as the minimum RRFs of > 0.05 for all target analytes. The September 17, 2003 continuing calibration verification met the data validation criteria with the exception of the %D for indeno (1, 2, 3-cd) pyrene. The %D exceeded the <25% criteria (33%) for this compound. Two dilutions of project samples were analyzed on September 17, only for final quantitation of fluroanthene. Since indeno (1, 2, 3-cd) pyrene was not quantified with the analytical batch in question, the data is usable as reported

Method Blank Analysis

The method blank was non-detect for all target analytes. The method blank sample was prepared and analyzed at the appropriate frequency.

Laboratory Control Samples

For the verification of the analytical process/system/method accuracy, the laboratory prepared two LCS samples. All spiked analyte percent recoveries met the data validation and the laboratory's internal acceptance criteria.

St Regis Paper Company Superfund Site - Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report October 23, 2003

Surrogate Standard Recovery

The matrix spike associated with the project samples had two surrogate standards and the laboratory control sample had one surrogate standard exceed laboratory criteria. Since the majority of matrix spike values and all laboratory control sample spike values met all percent recovery criteria, it does not appear these exceedances adversely affected the data. All remaining surrogate spike recoveries from the project samples met the data validation acceptance criteria.

Internal Standard Recovery

All internal standards were reviewed for area and retention time criteria. All internal standards from the project samples and associated quality control samples met the method and data validation criteria.

Matrix Spike Recovery

All percent recoveries and RPDs from the MS and MSD were within the laboratory's internal control limits, with the exception of the matrix spike recovery for indeno (1, 2, 3-cd) pyrene and pentachlorophenol. The recovery for indeno(1.2,3-cd) pyrene was slightly above the laboratory criteria of 33-133% at 135%. Since the matrix spike duplicate and laboratory control sample percent recoveries met established criteria for this compound, it is unlikely that this affected the project samples and therefore, no data are qualified. The pentachlorophenol concentrations in the native sample (A5-6-4-12) was greater than four time the spiked concentration, therefore the pentachlorophenol spike results are not applicable

Field Duplicate Results

Field duplicate results evaluate overall sampling and laboratory precision. Samples A5-06-0-4 and A5-06-0-4D served as the field duplicates for this submittal. The average Relative Percent Difference (RPD) for the detected compounds was approximately 15.2%. These average RPD results displayed an acceptable level of precision for the low level nature of the analytical method.

Data Validation Report – PAHs, PCP and PCB Laboratory Report / Batch K2306721 Received: October 18, 2003

St. Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report: October 23, 2003

The data validation process for the Columbia Analytical Services, Inc. (CAS) laboratory data for the polynuclear aromatic hydrocarbons (PAHs), pentachlorophenol (PCP) and polychlorinated biphenyls (PCB) analysis of the Cass Lake Removal Site Evaluation and Supplemental Assessment groundwater sample contained in the aforementioned report is complete as detailed below.

The analytical data were reviewed in accordance with the U.S. EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (1999) (Guidelines) as specified in the Quality Assurance Project Plan (QAPP, Barr, June 2003). In addition to the Guidelines, specific SW-846 Method 8270, 8082 and 8000 criteria were also considered as slight differences in some of the performance aspects exist between the documents. In general, the areas covered by the validation process include:

- Overall assessment
- Holding times, preservation and storage
- Instrument performance (tuning)
- Initial calibration
- Continuing calibration verification
- Method blank analysis
- Laboratory control samples (ongoing precision/accuracy)
- Surrogate recovery
- Internal standard recovery
- Matrix spike recovery

One groundwater sample results are contained in this laboratory report. It is as follows:

316 Grant Utley

St Regis Paper Company Superfund Site - Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report October 23 2003

Overall Assessment

Data qualifiers were assigned to the sample results contained in laboratory report K2306721 as a result of data validation process. All samples were extracted past their analytical holding times to do laboratory shipping errors. In addition, PCP initial calibration, laboratory control sample and matrix spike/matrix spike results did not meet laboratory criteria. The PCB analysis was performed following EPA Method 8082 and met all the method requirements. Since the Guidelines are based on a combination of Methods 8081 and Method 8082, several review items included in the Guidelines are not applicable to PCB analysis.

All data met the data quality objective (DQOs) and are useable with qualification

Holding Times, Preservation and Storage

The samples were collected on August 26, 2003 and received at the CAS Houston laboratory on September 2, 2003 with an accompanying chain-of-custody (COC) form. All samples were received intact and were properly chilled (within 2-6 °C). The samples were properly stored until shipped overnight to the CAS Kelso laboratory for PAH/PCP and PCB analysis. The samples were received on September 10, 2003 in Kelso intact and at 2.9 °C (temperature blank). Some of the labels on the sample containers had field sample identifiers that did not match the identifiers listed on the COC. The identifiers written on the sample container lids did match the identifiers written on the COC. As the samples were received at the Kelso laboratory past the analytical holding times for extraction, the holding times were not met. All analytical data were qualified and should be considered potentially biased low.

GCMS Instrument Performance Check

All instrument performance checks (tunes) run during the analysis of the project samples met the acceptance criteria for frequency, mass abundance, and mass ratios as listed in the CAS form 5s and associated quantitation and tune reports. Note, that the CAS tune criteria are somewhat different than those listed in the Guidelines and follow guidance from SW-846 8270. The CAS tune criteria reflect the mass spectrometer manufacturer's (Agilent) recommendations for tuning requirements for the latest generation of analytical mass spectral-based instrumentation. Section 7.3.1.2 and Table 3 of SW-846 8270C state that alternate tuning criteria may be used as long as they do not result in

St Regis Paper Company Superfund Site – Cass Lake, Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report: October 23, 2003

adversely affected method performance. The 8270-method performance criteria were not adversely affected by the use of the alternate tuning criteria. The CAS tuning criteria limits were used as the analytical instrument system tuning performance criteria for this project. The tune frequency met the method and data validation criteria.

Initial Calibration

The initial calibration (ICAL) for the PAH and PCP instrument using selected ion monitoring (SIM) was performed on September 13, 2003 and the PCB instrument was calibrated on September 8, 2003. The individual and average relative response factors (RRFs) for all target analytes met the data validation requirement of >0.05. All target analytes met the <30 %RSD data validation criteria with the exception of PCP. The average RSD of the RRFs for PCP (26.0%) did exceed the method criteria of <15%RSD, however the laboratory utilized an alternative calibration evaluation as specified in section 7.5.1.2.1 of EPA 8000B. This option allows for the calculation of the mean value of all the target analytes average RSDs and subsequent comparison to the requirement of the mean RSD being <20%. The mean RSD for this initial calibration event was calculated as 5.6%, thus meeting the method criteria.

The laboratory report also included results from the analysis of a second source calibration check standard; all target analytes met the laboratory's criteria of < 20% difference with the exception of PCBs. The second PCB column (used for confirmation purposes) failed this 20% criterion. All data were quantified with the original column. There are no data validation criteria for second source standards.

Continuing Calibration Verification

The September 19, 2003 continuing calibration verification %RSD was above acceptance criteria for PCP. All associated data were qualified. All remaining CCVs met the data validation criteria for frequency and the <+25% difference RRFs from ICAL as well as the minimum RRFs of > 0.05 for all target analytes.

St Regis Paper Company Superfund Site – Cass Lake Minnesota Removal Site Evaluation and Supplemental Assessment

Date of Validation Report October 23 2003

Method Blank Analysis

The method blank was non-detect for all target analytes. The method blank sample was prepared and analyzed at the appropriate frequency

Laboratory Control Samples

For the verification of the analytical process/system/method accuracy, the laboratory prepared one LCS sample. The LCS results for PCP fell below laboratory acceptance criteria. All associated data were qualified. All remaining spiked analyte percent recoveries met the data validation and the laboratory's internal acceptance criteria.

Surrogate Standard Recovery

All surrogate spike recoveries from the project samples met the data validation acceptance criteria.

Internal Standard Recovery

All internal standards were reviewed for area and retention time criteria. All internal standards from the project samples and associated quality control samples met the method and data validation criteria.

Matrix Spike Recovery

A non-project sample was utilized for the Matrix Spike (MS) and Matrix Spike Duplicate (MSD). Since the source of the sample that was spiked was a non-project, the data has limited applicability to the project data. The percent recoveries for PCP fell below laboratory acceptance criteria. All associated data were qualified. All remaining percent recoveries and RPDs from the MS and MSD were within the laboratory's internal control limits.

Field Duplicate Results

No field duplicates were included with this data package.