## **SDMS US EPA Region V**

Imagery Insert Form

### **Document ID:**

165254

# Some images in this document may be illegible or unavailable in SDMS. Please see reason(s) indicated below:

Illegible due to bad source documents. Image(s) in SDMS is equivalent to hard copy.

#### Specify Type of Document(s) / Comments:

DRAWINGS, GRAPHS AND A TABLE



Includes \_\_\_\_\_ COLOR or \_\_\_\_\_ RESOLUTION variations.

Unless otherwise noted, these pages are available in monochrome. The source document page(s) is more legible than the images. The original document is available for viewing at the Superfund Records Center.

#### Specify Type of Document(s) / Comments:

|    | T  |   |  |
|----|----|---|--|
| ▏║ |    |   |  |
|    |    | 1 |  |
|    |    |   |  |
|    |    |   |  |
|    |    |   |  |
|    | n  |   |  |
|    |    |   |  |
|    | ΤI |   |  |

Confidential Business Information (CBI).

This document contains highly sensitive information. Due to confidentiality, materials with such information are not available in SDMS. You may contact the EPA Superfund Records Manager if you wish to view this document.

Specify Type of Document(s) / Comments:

| Г | <br>1 |
|---|-------|
|   |       |
|   |       |
|   |       |
|   |       |

Unscannable Material:

Oversized \_\_\_\_\_ or \_\_\_\_\_ Format.

Due to certain scanning equipment capability limitations, the document page(s) is not available in SDMS. The original document is available for viewing at the Superfund Records center.

Specify Type of Document(s) / Comments:



Document is available at the EPA Region 5 Records Center.

Specify Type of Document(s) / Comments:

0000013

100,254

Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site Remedial Investigation/Feasibility Study

**Technical Memorandum 7** 

Allied Paper, Inc. Operable Unit

Volume 1 of 7

Allied Paper, Inc./Portage Creek/ Kalamazoo River Superfund Site Kalamazoo, Michigan

August 1997



Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site Remedial Investigation/Feasibility Study

**Technical Memorandum 7** 

Allied Paper, Inc. Operable Unit

Volume 1 of 7

Allied Paper, Inc./Portage Creek/ Kalamazoo River Superfund Site Kalamazoo, Michigan

August 1997



6723 Towpath Road, P.O. Box 66 Syracuse, New York, 13214-0066 (315) 446-9120

### Disclaimer

"Disclaimer: This document was prepared by the respondents pursuant to a government Administrative Order. This document has received final acceptance from the Michigan Department of Environmental Quality. The opinions, findings, and conclusions expressed, unless otherwise noted, are those of the author and not those of the Michigan Department of Environmental Quality.

## Table of Contents

|  | Introdu                                  | ction                                                                                     | . 1-1                   |
|--|------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------|
|  | 1.1<br>1.2<br>1.3<br>1.4                 | OU Description                                                                            | . <b>1-1</b><br>. 1-3   |
|  | Investiç                                 | gation Activities                                                                         | . 2-1                   |
|  | 2.1<br>2.1.1<br>2.1.2                    | Residuals and Soil Characterization                                                       | . 2-1<br>. 2-2          |
|  | 2.1.3<br>2.1.4<br>2.1.5<br>2.1.6         | HRDLs       Former Type III Landfill         Western Disposal Area       Pilot Study Area | . 2-4<br>. 2-4<br>. 2-5 |
|  | 2.1.7<br>2.1.8<br>2.2<br>2.3             | Background Soil Samples                                                                   | . <b>2-5</b><br>. 2-5   |
|  | 2.3.1<br>2.3.2                           | Existing Monitoring Well Inventory                                                        | . 2-6<br>. 2-7          |
|  | 2.3.2.1<br>2.3.2.2<br>2.3.2.3<br>2.3.2.4 | Monitoring Well and Piezometer Installation                                               | . 2-9<br>. 2-9          |
|  | 2.3.3                                    | Sampling of Monitoring Well and Piezometer<br>Borings                                     | 2-10                    |
|  | 2.3.4<br>2.3.5<br>2.3.6<br>2.4           | Groundwater/Leachate Sampling                                                             | 2-12<br>2-12            |
|  | 2.4.1<br>2.4.2<br>2.5                    | Former Bryant Mill Pond                                                                   | 2-12<br>2-13            |
|  | 2.6<br>Investig                          | QA/QC Review of Data                                                                      | 2-14                    |
|  | 3.1                                      | Field Data                                                                                |                         |
|  | 3.1.1<br>3.1.1.1<br>3.1.1.2              | Residuals/Soil/Sediment Field Data<br>Bryant HRDL<br>Monarch HRDL<br>FRDLs                | 3-1<br>3-2<br>3-3       |
|  |                                          | Former Type III Landfill Perimeter and the Pilot<br>Study Area<br>Western Disposal Area   | 3-4                     |
|  | 3.1.2                                    | Hydrogeological Field Data                                                                |                         |

Section 1.

Section 2.

)

Section 3.

BLASLAND, BOUCK & LEE, INC.

| 3.1.2.3       In-Situ Hydraulic Conductivity Test Results       3-7         3.1.2.4       Groundwater Quality Data from Field<br>Instrumentation       3-8         3.1.2.5       Gamma-Ray Logging Results       3-8         3.1.3       Sediments Investigation       3-8         3.1.3       Former Bryant Mill Pond Sediments       3-8         3.1.3.1       Former Bryant Mill Pond Sediments       3-9         3.1.4       Residential Property Soil Sampling       3-9         3.2       Geotechnical Investigation Results       3-9         3.1       Residential Property Soil Sampling       3-9         3.1       Residential Soil Samples       3-10         3.1.1       Residuals/Soil/Sediment       3-10         3.1.2       Residuals/Soil/Sediment       3-112         3.1.3       Groundwater/Leachate       3-13         3.2.2       Groundwater/Leachate       3-13         3.2.2       Groundwater/Leachate       3-14         3.3.2.2       Groundwater/Leachate       3-15         3.3.3       TCL VOC Compounds       3-15         3.3.4       TCL SVOC Compounds       3-19         3.4.1       Residuals/Soil       3-22         3.5.1       Residuals/Soil       3-22     <                                                                                      | 3.1.2.1<br>  3.1.2.2 | Existing Monitoring Well Inventory Results          |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------|--|--|
| Instrumentation       3-8         3.1.2.5       Gamma-Ray Logging Results       3-8         3.1.3       Sediments Investigation       3-8         3.1.3.1       Former Bryant Mill Pond Sediments       3-8         3.1.3.1       Former Bryant Mill Pond Sediments       3-8         3.1.3.2       Portage Creek Sediments       3-9         3.1.4       Residential Property Soil Sampling       3-9         3.2       Geotechnical Investigation Results       3-9         3.3       Analytical Data       3-10         3.3.1       Residuals/Soil/Sediment       3-10         3.3.1.2       Residuals/Soil/Sediment       3-110         3.3.1.3       Groundwater/Leachate       3-13         3.2.2       Groundwater/Leachate       3-13         3.2.2       Groundwater/Leachate       3-15         3.3.3       TCL VOC Compounds       3-15         3.3.1       Residuals/Soil       3-15         3.3.2       Groundwater/Leachate       3-19         3.4.1       Residuals/Soil       3-19         3.4.1       Residuals/Soil       3-19         3.4.1       Residuals/Soil       3-22         3.5.1       Residuals/Soil       3-22                                                                                                                                                 |                      | In-Situ Hydraulic Conductivity Test Results         |  |  |
| 3.1.2.5       Gamma-Ray Logging Results       3-8         3.1.3       Sediments Investigation       3-8         3.1.3.1       Former Bryant Mill Pond Sediments       3-9         3.1.4       Residential Property Soil Sampling       3-9         3.1.4       Residential Property Soil Sampling       3-9         3.1.4       Residential Property Soil Sampling       3-9         3.1.4       Residential Data       3-10         3.3.1       Residential Soil Sediment       3-10         3.3.1.1       Residuals/Soil/Sediment       3-10         3.3.1.2       Residential Soil Samples       3-12         3.3.1       Residuals/Soil/Sediment       3-13         3.2.2       Pesticides       3-14         3.3.2.1       Residuals/Soil/Sediment       3-14         3.3.2.1       Residuals/Soil       3-15         3.3.3       TCL VOC Compounds       3-15         3.3.4       Residuals/Soil       3-19         3.4.1       Residuals/Soil       3-12         3.5       PCDD/PCDF       3-22         3.6       TAL Analytes       3-23         3.6.1       Residuals/Soils       3-23         3.6.2       Groundwater/Leachate       3-25                                                                                                                                          | 3.1.2.4              |                                                     |  |  |
| 3.1.3       Sediments Investigation       3-8         3.1.3.1       Former Bryant Mill Pond Sediments       3-9         3.1.3.2       Portage Creek Sediments       3-9         3.1.4       Residential Property Soil Sampling       3-9         3.2       Geotechnical Investigation Results       3-9         3.3       Analytical Data       3-10         3.3.1       Residential Soil/Sediment       3-10         3.3.1.2       Residuals/Soil/Sediment       3-10         3.3.1.3       Groundwater/Leachate       3-13         3.3.1       Residuals/Soil/Sediment       3-14         3.3.2       Pesticides       3-14         3.3.2.1       Residuals/Soil/Sediment       3-15         3.3.3       TcL vOc Compounds       3-15         3.3.3       TcL VOC Compounds       3-16         3.3.4       TCL SVOC Compounds       3-19         3.4.1       Residuals/Soil       3-19         3.4.1       Residuals/Soil       3-22         3.5.1       Residuals/Soil       3-23         3.6.2       Groundwater/Leachate       3-21         3.5.3       Residuals/Soil       3-23         3.6.4       TcL SVOC Compounds       3-23                                                                                                                                                     | 3125                 | Gamma-Ray Longing Results 3-8                       |  |  |
| 3.1.3.1       Former Bryant Mill Pond Sediments       3-8         3.1.2       Portage Creek Sediments       3-9         3.1.4       Residential Property Soil Sampling       3-9         3.2       Geotechnical Investigation Results       3-9         3.3       Analytical Data       3-10         3.1.1       Residential Soil/Sediment       3-10         3.1.1       Residuals/Soil/Sediment       3-10         3.1.2       Residuals/Soil/Sediment       3-112         3.3.1.3       Groundwater/Leachate       3-13         3.2.2       Groundwater/Leachate       3-13         3.3.1       Residuals/Soil/Sediment       3-14         3.3.2.2       Groundwater/Leachate       3-15         3.3.3       TCL VOC Compounds       3-15         3.3.3       TCL VOC Compounds       3-19         3.4.1       Residuals/Soil       3-13         3.4.1       Residuals/Soil       3-13         3.4.1       Residuals/Soil       3-22         3.5.1       Residuals/Soil       3-23         3.4.1       Residuals/Soil       3-23         3.5.1       Residuals/Soil       3-22         3.5.1       Residuals/Soil       3-22                                                                                                                                                              |                      | Sediments Investigation                             |  |  |
| 3.1.3.2       Portage Creek Sediments       3-9         3.1.4       Residential Property Soil Sampling       3-9         3.2       Geotechnical Investigation Results       3-9         3.3       Analytical Data       3-10         3.3.1       PCB       3-10         3.3.1       Residential Soil Samples       3-10         3.3.1.2       Residential Soil Samples       3-12         3.3.2       Pesticides       3-13         3.2.2       Groundwater/Leachate       3-13         3.3.2       Pesticides       3-14         3.3.2.1       Residuals/Soil/Sediment       3-14         3.3.2.2       Groundwater/Leachate       3-15         3.3.3       TCL VOC Compounds       3-15         3.3.1       Residuals/Soil       3-19         3.4.1       Residuals/Soil       3-19         3.4.2       Groundwater/Leachate       3-19         3.4.3       Residuals/Soil       3-22         3.5.1       Residuals/Soil                                                                                                                                                                           |                      |                                                     |  |  |
| 3.1.4       Residential Property Soil Sampling       3-9         3.2       Geotechnical Investigation Results       3-9         3.3       Analytical Data       3-10         3.3.1       PCB       3-10         3.3.1.1       Residential Soil Samples       3-12         3.3.1.2       Residential Soil Samples       3-12         3.3.1.3       Groundwater/Leachate       3-13         3.2.2       Festicides       3-14         3.3.2       Pesticides       3-14         3.3.2.1       Residuals/Soil/Sediment       3-14         3.3.2.2       Groundwater/Leachate       3-15         3.3.3       TCL VOC Compounds       3-15         3.3.1       Residuals/Soil       3-15         3.3.2       Groundwater/Leachate       3-16         3.4       TCL SVOC Compounds       3-19         3.4.1       Residuals/Soil       3-22         3.5.1       Residuals/Soil       3-22         3.5.1       Residuals/Soil       3-22         3.5.1       Residuals/Soil       3-22         3.5.1       Residuals/Soil       3-23         3.6.2       Groundwater/Leachate       3-23         3.6.3       Dygradient Groundwat                                                                                                                                                                   |                      | Portage Creek Sediments                             |  |  |
| 3.2       Geotechnical Investigation Results       3-9         3.3       Analytical Data       3-10         3.3.1       PCB       3-10         3.3.1       Residuals/Soil/Sediment       3-10         3.3.1.2       Residuals/Soil/Sediment       3-10         3.3.1.3       Groundwater/Leachate       3-13         3.2.2       Pesticides       3-14         3.3.2       Pesticides       3-14         3.3.2       Groundwater/Leachate       3-13         3.3.2       Groundwater/Leachate       3-14         3.3.3       TCL VOC Compounds       3-15         3.3.1       Residuals/Soil       3-15         3.3.2       Groundwater/Leachate       3-18         3.3.4       TCL SVOC Compounds       3-19         3.4.1       Residuals/Soil       3-22         3.5.1       Residuals/Soil       3-22         3.5.1       Residuals/Soil       3-22         3.5.1       Residuals/Soil       3-22         3.6.1       Residuals/Soil       3-23         3.6.2       Groundwater/Leachate       3-23         3.6.3       Lanalytes       3-23         3.6.4       TResiduals/Soils       3-23                                                                                                                                                                                             | 3.1.4                | Residential Property Soil Sampling 3-9              |  |  |
| 3.3.1       PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.2                  | Geotechnical Investigation Results                  |  |  |
| 3.3.1.1       Residuals/Soil/Sediment       3-10         3.3.1.2       Residualial Soil Samples       3-12         3.3.1.3       Groundwater/Leachate       3-13         3.3.2       Pesticides       3-14         3.3.2.1       Residuals/Soil/Sediment       3-14         3.3.2.1       Residuals/Soil/Sediment       3-14         3.3.2       Groundwater/Leachate       3-15         3.3.3       TCL VOC Compounds       3-15         3.3.1       Residuals/Soil       3-15         3.3.2       Groundwater/Leachate       3-15         3.3.3       TCL VOC Compounds       3-16         3.3.4       TCL SVOC Compounds       3-19         3.4.1       Residuals/Soil       3-19         3.4.2       Groundwater/Leachate       3-21         3.5       PCDD/PCDF       3-22         3.5.1       Residuals/Soil       3-23         3.6.2       Groundwater/Leachate       3-23         3.6.3       Upgradient Groundwater       3-27         3.6.3       Upgradient Groundwater       3-27         3.5       Summary and Conclusions       3-28         References       4-1       4-1         2-1       USEPA Contract                                                                                                                                                                   |                      |                                                     |  |  |
| 3.3.1.2 Residential Soil Samples       3-12         3.3.1.3 Groundwater/Leachate       3-13         3.2 Pesticides       3-14         3.3.2 Residuals/Soil/Sediment       3-14         3.3.2.1 Residuals/Soil/Sediment       3-14         3.3.2.2 Groundwater/Leachate       3-15         3.3.3 TCL VOC Compounds       3-15         3.3.1 Residuals/Soil       3-15         3.3.2 Groundwater/Leachate       3-18         3.4 TCL SVOC Compounds       3-19         3.4.1 Residuals/Soil       3-19         3.4.2 Groundwater/Leachate       3-19         3.4.3 Coroundwater/Leachate       3-22         3.5 PCDD/PCDF       3-22         3.5.1 Residuals/Soil       3-23         3.6.2 Groundwater/Leachate       3-23         3.6.3 Lpgradient Groundwater       3-23         3.6.4 Groundwater/Leachate       3-27         3.5 Summary and Conclusions       3-28         References       4-1         2-1 USEPA Contract Laboratory Program - Target Compound List/Target Analyte List         2-2 Summary of Remedial Investigation Residuals/Soil/Sediment Samples         2-4 Monitoring Well and Piezometer Construction Details         2-5 Summary of Remedial Investigation Groundwater/Leachate Samples         2-6 Summary of Remedial Invest                                  |                      |                                                     |  |  |
| 3.3.1.3       Groundwater/Leachate       3-13         3.3.2       Pesticides       3-14         3.3.2.1       Residuals/Soil/Sediment       3-14         3.3.2.1       Residuals/Soil/Sediment       3-14         3.3.2.1       Residuals/Soil/Sediment       3-15         3.3.3       TCL VOC Compounds       3-15         3.3.1       Residuals/Soil       3-15         3.3.2       Groundwater/Leachate       3-18         3.4.1       Residuals/Soil       3-19         3.4.2       Groundwater/Leachate       3-22         3.5.1       Residuals/Soil       3-22         3.5.1       Residuals/Soil       3-22         3.5.1       Residuals/Soil       3-23         3.6.2       Groundwater/Leachate       3-23         3.6.3       Ipgradient Groundwater       3-27         3.5       Summary and Conclusions       3-28         References       4-1         2-1       USEPA Contract Laboratory Program - Target Compound List/Target Analyte List         2-2       Summary of Remedial Investigation Residuals/Soil/Sediment Samples         2-3       Summary of Geotechnical Testing Samples         2-4       Monitoring Well and Piezometer Construction Details                                                                                                             |                      |                                                     |  |  |
| 3.3.2       Pesticides       3-14         3.3.2.1       Residuals/Soil/Sediment       3-14         3.3.2.2       Groundwater/Leachate       3-15         3.3.3       TCL VOC Compounds       3-15         3.3.1       Residuals/Soil       3-15         3.3.2       Groundwater/Leachate       3-18         3.3.4       TCL SVOC Compounds       3-19         3.4.1       Residuals/Soil       3-19         3.4.2       Groundwater/Leachate       3-21         3.5       PCDD/PCDF       3-22         3.5.1       Residuals/Soil       3-23         3.6.2       Groundwater/Leachate       3-23         3.6.3       Upgradient Groundwater       3-23         3.6.4       Residuals/Soils       3-23         3.6.5       Groundwater/Leachate       3-25         3.6.6       Residuals/Soils       3-27         3.4       Estimated Volumes of Residuals       3-27         3.5       Summary and Conclusions       3-28         References       4-1       1         2-1       USEPA Contract Laboratory Program - Target Compound List/Target Analyte List       2-2         2-3       Summary of Geotechnical Testing Samples       2-3                                                                                                                                                  |                      |                                                     |  |  |
| 3.3.2.1       Residuals/Soil/Sediment       3-14         3.3.2.2       Groundwater/Leachate       3-15         3.3.3       TCL VOC Compounds       3-15         3.3.1       Residuals/Soil       3-15         3.3.2       Groundwater/Leachate       3-18         3.4       TCL SVOC Compounds       3-19         3.4.1       Residuals/Soil       3-19         3.4.2       Groundwater/Leachate       3-21         3.5       PCDD/PCDF       3-22         3.5.1       Residuals/Soil       3-23         3.6.1       Residuals/Soil       3-23         3.6.2       Groundwater/Leachate       3-23         3.6.3       Lygradient Groundwater       3-23         3.6.4       Residuals/Soils       3-23         3.6.5       Groundwater/Leachate       3-25         3.3.6.1       Residuals/Soils       3-27         3.5       Summary and Conclusions       3-28         References       4-1         2-1       USEPA       Contract Laboratory Program - Target Compound List/Target Analyte List         2-2       Summary of Remedial Investigation Residuals/Soil/Sediment Samples         2-3       Summary of Remedial Investigation Groundwater/Leachate Samples                                                                                                                     |                      |                                                     |  |  |
| 3.3.2.2       Groundwater/Leachate       3-15         3.3.3       TCL VOC Compounds       3-15         3.3.1       Residuals/Soil       3-15         3.3.2       Groundwater/Leachate       3-18         3.3.4       TCL SVOC Compounds       3-19         3.4.1       Residuals/Soil       3-19         3.4.2       Groundwater/Leachate       3-21         3.5       PCDD/PCDF       3-22         3.5.1       Residuals/Soil       3-22         3.5.2       Groundwater/Leachate       3-21         3.5.5       PCDD/PCDF       3-22         3.6.6       TAL Analytes       3-23         3.6.1       Residuals/Soils       3-23         3.6.2       Groundwater/Leachate       3-27         3.6.3       Upgradient Groundwater       3-27         3.4       Estimated Volumes of Residuals       3-27         3.5       Summary and Conclusions       3-28         References       4-1       4-1         2-1       USEPA Contract Laboratory Program - Target Compound List/Target Analyte List       2-2         2-3       Summary of Remedial Investigation Residuals/Soil/Sediment Samples       2-4         2-4       Monitoring Well and Piezometer Constructi                                                                                                                       |                      |                                                     |  |  |
| 3.3.3       TCL VOC Compounds       3-15         3.3.3.1       Residuals/Soil       3-15         3.3.2       Groundwater/Leachate       3-18         3.3.4       TCL SVOC Compounds       3-19         3.3.4.1       Residuals/Soil       3-19         3.3.4.2       Groundwater/Leachate       3-21         3.5       PCDD/PCDF       3-22         3.5.1       Residuals/Soil       3-22         3.5.1       Residuals/Soil       3-22         3.6.1       Residuals/Soils       3-23         3.6.2       Groundwater/Leachate       3-23         3.6.3       Upgradient Groundwater       3-27         3.4       Estimated Volumes of Residuals       3-27         3.5       Summary and Conclusions       3-28         References       4-1         2-1       USEPA Contract Laboratory Program - Target Compound List/Target Analyte List         2-2       Summary of Remedial Investigation Residuals/Soil/Sediment Samples         2-3       Summary of Geotechnical Testing Samples         2-4       Monitoring Well and Piezometer Construction Details         2-5       Summary of Remedial Investigation Groundwater/Leachate Samples         2-6       Summary of Remedial Investigation Groundwater/Leachate                                                                  |                      |                                                     |  |  |
| 3.3.3.1       Residuals/Soil       3-15         3.3.3.2       Groundwater/Leachate       3-18         3.3.4       TCL SVOC Compounds       3-19         3.3.4.1       Residuals/Soil       3-19         3.3.4.2       Groundwater/Leachate       3-21         3.3.5       PCDD/PCDF       3-22         3.3.6.1       Residuals/Soil       3-23         3.3.6.2       Groundwater/Leachate       3-23         3.3.6.3       Residuals/Soils       3-23         3.3.6.4       Residuals/Soils       3-23         3.3.6.5       Groundwater/Leachate       3-25         3.3.6.1       Residuals/Soils       3-27         3.6.2       Groundwater/Leachate       3-27         3.6.3       Upgradient Groundwater       3-27         3.5       Summary and Conclusions       3-28         References       4-1         2-1       USEPA       Contract Laboratory Program - Target Compound List/Target Analyte List         2-2       Summary of Remedial Investigation Residuals/Soil/Sediment Samples         2-3       Summary of Geotechnical Testing Samples         2-4       Monitoring Well and Piezometer Construction Details         2-5       Summary of Remedial Investigation Groundwater/Leachat                                                                                   |                      |                                                     |  |  |
| 3.3.3.2       Groundwater/Leachate       3-18         3.3.4       TCL SVOC Compounds       3-19         3.3.4.1       Residuals/Soil       3-19         3.3.4.2       Groundwater/Leachate       3-21         3.5       PCDD/PCDF       3-22         3.5.1       Residuals/Soil       3-22         3.6.1       Residuals/Soils       3-23         3.6.2       Groundwater/Leachate       3-23         3.6.3       Upgradient Groundwater       3-27         3.4       Estimated Volumes of Residuals       3-27         3.5       Summary and Conclusions       3-28         References       4-1         2-1       USEPA Contract Laboratory Program - Target Compound List/Target Analyte List         2-2       Summary of Remedial Investigation Residuals/Soil/Sediment Samples         2-3       Summary of Geotechnical Testing Samples         2-4       Monitoring Well and Piezometer Construction Details         2-5       Summary of Remedial Investigation Groundwater/Leachate Samples         2-6       Summary of Remedial Investigation Groundwater/Leachate Samples         2-7       Summary of Remedial Investigation Groundwater/Leachate Samples         2-7       Summary of Remedial Investigation Groundwater/Leachate Samples <td< td=""><td></td><td></td></td<> |                      |                                                     |  |  |
| 3.3.4       TCL SVOC Compounds       3-19         3.3.4.1       Residuals/Soil       3-19         3.3.4.2       Groundwater/Leachate       3-21         3.3.5       PCDD/PCDF       3-22         3.3.6.1       Residuals/Soil       3-23         3.6.2       Groundwater/Leachate       3-23         3.6.3       Residuals/Soils       3-23         3.6.4       Residuals/Soils       3-23         3.6.5       Groundwater/Leachate       3-25         3.6.3       Upgradient Groundwater       3-27         3.4       Estimated Volumes of Residuals       3-27         3.5       Summary and Conclusions       3-28         References       4-1         2-1       USEPA Contract Laboratory Program - Target Compound List/Target Analyte List         2-2       Summary of Remedial Investigation Residuals/Soil/Sediment Samples         2-3       Summary of Geotechnical Testing Samples         2-4       Monitoring Well and Piezometer Construction Details         2-5       Summary of Remedial Investigation Groundwater/Leachate Samples         2-6       Summary of Remedial Investigation Groundwater/Leachate Samples         2-7       Summary of Field Parameters and General Water Quality Results for Groundwater/Leachate Water Samples                               |                      |                                                     |  |  |
| 3.3.4.1       Residuals/Soil       3-19         3.3.4.2       Groundwater/Leachate       3-21         3.3.5       PCDD/PCDF       3-22         3.3.5.1       Residuals/Soil       3-22         3.3.6       TAL Analytes       3-23         3.3.6.1       Residuals/Soils       3-23         3.3.6.2       Groundwater/Leachate       3-25         3.3.6.3       Upgradient Groundwater       3-27         3.4       Estimated Volumes of Residuals       3-27         3.5       Summary and Conclusions       3-28         References       4-1         2-1       USEPA Contract Laboratory Program - Target Compound List/Target Analyte List         2-2       Summary of Remedial Investigation Residuals/Soil/Sediment Samples         2-3       Summary of Geotechnical Testing Samples         2-4       Monitoring Well and Piezometer Construction Details         2-5       Summary of Remedial Investigation Groundwater/Leachate         3-26       Summary of Remedial Investigation Groundwater/Leachate         2-5       Summary of Volumes Purged and Filter Pack Materials         2-6       Summary of Remedial Investigation Groundwater/Leachate         2-7       Summary of Field Parameters and General Water Quality Results for Groundwater/Leachate Water Samples  |                      |                                                     |  |  |
| 3.3.4.2 Groundwater/Leachate       3-21         3.3.5 PCDD/PCDF       3-22         3.3.5.1 Residuals/Soil       3-22         3.3.6 TAL Analytes       3-23         3.3.6.1 Residuals/Soils       3-23         3.3.6.2 Groundwater/Leachate       3-25         3.3.6.3 Upgradient Groundwater       3-27         3.4 Estimated Volumes of Residuals       3-27         3.5 Summary and Conclusions       3-28         References       4-1         2-1       USEPA Contract Laboratory Program - Target Compound List/Target Analyte List         2-2       Summary of Remedial Investigation Residuals/Soil/Sediment Samples         2-3       Summary of Geotechnical Testing Samples         2-4       Monitoring Well and Piezometer Construction Details         2-5       Summary of Remedial Investigation Groundwater/Leachate Samples         2-6       Summary of Remedial Investigation Groundwater/Leachate Samples         2-7       Summary of Field Parameters and General Water Quality Results for Groundwater/Leachate Water Samples         2-8       Sample Delivery Group Summary         2-8       Sample Delivery Group Summary         3-1       Existing Monitoring Well Inventory                                                                                   |                      |                                                     |  |  |
| 3.3.5       PCDD/PCDF       3-22         3.3.5.1       Residuals/Soil       3-22         3.3.6       TAL Analytes       3-23         3.3.6.1       Residuals/Soils       3-23         3.3.6.2       Groundwater/Leachate       3-23         3.3.6.3       Upgradient Groundwater       3-27         3.4       Estimated Volumes of Residuals       3-27         3.5       Summary and Conclusions       3-28         References       4-1         2-1       USEPA Contract Laboratory Program - Target Compound List/Target Analyte List         2-2       Summary of Remedial Investigation Residuals/Soil/Sediment Samples         2-3       Summary of Geotechnical Testing Samples         2-4       Monitoring Well and Piezometer Construction Details         2-5       Summary of Volumes Purged and Filter Pack Materials         2-6       Summary of Remedial Investigation Groundwater/Leachate Samples         2-7       Summary of Field Parameters and General Water Quality Results for Groundwater/Leachate Water Samples         2-7       Summary of Field Parameters and General Water Quality Results for Groundwater/Leachate Water Samples         2-8       Sample Delivery Group Summary         3-1       Existing Monitoring Well Inventory                       |                      |                                                     |  |  |
| 3.3.5.1       Residuals/Soil       3-22         3.3.6       TAL Analytes       3-23         3.3.6.1       Residuals/Soils       3-23         3.3.6.2       Groundwater/Leachate       3-23         3.3.6.3       Upgradient Groundwater       3-25         3.3.6.3       Upgradient Groundwater       3-27         3.4       Estimated Volumes of Residuals       3-27         3.5       Summary and Conclusions       3-28         References       4-1         2-1       USEPA Contract Laboratory Program - Target Compound List/Target Analyte List         2-2       Summary of Remedial Investigation Residuals/Soil/Sediment Samples         2-3       Summary of Geotechnical Testing Samples         2-4       Monitoring Well and Piezometer Construction Details         2-5       Summary of Remedial Investigation Groundwater/Leachate Samples         2-6       Summary of Remedial Investigation Groundwater/Leachate Samples         2-7       Summary of Field Parameters and General Water Quality Results for Groundwater/Leachate Water Samples         2-8       Sample Delivery Group Summary         3-1       Existing Monitoring Well Inventory                                                                                                                    |                      |                                                     |  |  |
| 3.3.6       TAL Analytes       3-23         3.3.6.1       Residuals/Soils       3-23         3.3.6.2       Groundwater/Leachate       3-23         3.3.6.2       Groundwater/Leachate       3-23         3.3.6.3       Upgradient Groundwater       3-27         3.4       Estimated Volumes of Residuals       3-27         3.5       Summary and Conclusions       3-28         References       4-1         2-1       USEPA Contract Laboratory Program - Target Compound List/Target Analyte List         2-2       Summary of Remedial Investigation Residuals/Soil/Sediment Samples         2-3       Summary of Geotechnical Testing Samples         2-4       Monitoring Well and Piezometer Construction Details         2-5       Summary of Remedial Investigation Groundwater/Leachate Samples         2-6       Summary of Remedial Investigation Groundwater/Leachate Samples         2-7       Summary of Field Parameters and General Water Quality Results for Groundwater/Leachate Water Samples         2-8       Sample Delivery Group Summary         3-1       Existing Monitoring Well Inventory                                                                                                                                                                      |                      |                                                     |  |  |
| <ul> <li>3.3.6.1 Residuals/Soils</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                                                     |  |  |
| <ul> <li>3.3.6.2 Groundwater/Leachate</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                     |  |  |
| <ul> <li>3.3.6.3 Upgradient Groundwater</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                                                     |  |  |
| <ul> <li>3.4 Estimated Volumes of Residuals</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                                                     |  |  |
| <ul> <li>3.5 Summary and Conclusions</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                     |  |  |
| References       4-1         2-1       USEPA Contract Laboratory Program - Target Compound<br>List/Target Analyte List         2-2       Summary of Remedial Investigation Residuals/Soil/Sediment<br>Samples         2-3       Summary of Geotechnical Testing Samples         2-4       Monitoring Well and Piezometer Construction Details         2-5       Summary of Remedial Investigation Groundwater/Leachate<br>Samples         2-6       Summary of Remedial Investigation Groundwater/Leachate<br>Samples         2-7       Summary of Field Parameters and General Water Quality Results<br>for Groundwater/Leachate Water Samples         2-8       Sample Delivery Group Summary         3-1       Existing Monitoring Well Inventory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                                     |  |  |
| <ul> <li>2-1 USEPA Contract Laboratory Program - Target Compound<br/>List/Target Analyte List</li> <li>2-2 Summary of Remedial Investigation Residuals/Soil/Sediment<br/>Samples</li> <li>2-3 Summary of Geotechnical Testing Samples</li> <li>2-4 Monitoring Well and Piezometer Construction Details</li> <li>2-5 Summary of Volumes Purged and Filter Pack Materials</li> <li>2-6 Summary of Remedial Investigation Groundwater/Leachate<br/>Samples</li> <li>2-7 Summary of Field Parameters and General Water Quality Results<br/>for Groundwater/Leachate Water Samples</li> <li>2-8 Sample Delivery Group Summary</li> <li>3-1 Existing Monitoring Well Inventory</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                                                     |  |  |
| <ul> <li>List/Target Analyte List</li> <li>2-2 Summary of Remedial Investigation Residuals/Soil/Sediment<br/>Samples</li> <li>2-3 Summary of Geotechnical Testing Samples</li> <li>2-4 Monitoring Well and Piezometer Construction Details</li> <li>2-5 Summary of Volumes Purged and Filter Pack Materials</li> <li>2-6 Summary of Remedial Investigation Groundwater/Leachate<br/>Samples</li> <li>2-7 Summary of Field Parameters and General Water Quality Results<br/>for Groundwater/Leachate Water Samples</li> <li>2-8 Sample Delivery Group Summary</li> <li>3-1 Existing Monitoring Well Inventory</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | References           |                                                     |  |  |
| <ul> <li>List/Target Analyte List</li> <li>2-2 Summary of Remedial Investigation Residuals/Soil/Sediment<br/>Samples</li> <li>2-3 Summary of Geotechnical Testing Samples</li> <li>2-4 Monitoring Well and Piezometer Construction Details</li> <li>2-5 Summary of Volumes Purged and Filter Pack Materials</li> <li>2-6 Summary of Remedial Investigation Groundwater/Leachate<br/>Samples</li> <li>2-7 Summary of Field Parameters and General Water Quality Results<br/>for Groundwater/Leachate Water Samples</li> <li>2-8 Sample Delivery Group Summary</li> <li>3-1 Existing Monitoring Well Inventory</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-1                  | USEPA Contract Laboratory Program - Target Compound |  |  |
| <ul> <li>2-2 Summary of Remedial Investigation Residuals/Soil/Sediment<br/>Samples</li> <li>2-3 Summary of Geotechnical Testing Samples</li> <li>2-4 Monitoring Well and Piezometer Construction Details</li> <li>2-5 Summary of Volumes Purged and Filter Pack Materials</li> <li>2-6 Summary of Remedial Investigation Groundwater/Leachate<br/>Samples</li> <li>2-7 Summary of Field Parameters and General Water Quality Results<br/>for Groundwater/Leachate Water Samples</li> <li>2-8 Sample Delivery Group Summary</li> <li>3-1 Existing Monitoring Well Inventory</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                                                     |  |  |
| <ul> <li>Samples</li> <li>2-3 Summary of Geotechnical Testing Samples</li> <li>2-4 Monitoring Well and Piezometer Construction Details</li> <li>2-5 Summary of Volumes Purged and Filter Pack Materials</li> <li>2-6 Summary of Remedial Investigation Groundwater/Leachate Samples</li> <li>2-7 Summary of Field Parameters and General Water Quality Results for Groundwater/Leachate Water Samples</li> <li>2-8 Sample Delivery Group Summary</li> <li>3-1 Existing Monitoring Well Inventory</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-2                  |                                                     |  |  |
| <ul> <li>2-4 Monitoring Well and Piezometer Construction Details</li> <li>2-5 Summary of Volumes Purged and Filter Pack Materials</li> <li>2-6 Summary of Remedial Investigation Groundwater/Leachate Samples</li> <li>2-7 Summary of Field Parameters and General Water Quality Results for Groundwater/Leachate Water Samples</li> <li>2-8 Sample Delivery Group Summary</li> <li>3-1 Existing Monitoring Well Inventory</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | •                                                   |  |  |
| <ul> <li>2-5 Summary of Volumes Purged and Filter Pack Materials</li> <li>2-6 Summary of Remedial Investigation Groundwater/Leachate Samples</li> <li>2-7 Summary of Field Parameters and General Water Quality Results for Groundwater/Leachate Water Samples</li> <li>2-8 Sample Delivery Group Summary</li> <li>3-1 Existing Monitoring Well Inventory</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-3                  | Summary of Geotechnical Testing Samples             |  |  |
| <ul> <li>2-6 Summary of Remedial Investigation Groundwater/Leachate Samples</li> <li>2-7 Summary of Field Parameters and General Water Quality Results for Groundwater/Leachate Water Samples</li> <li>2-8 Sample Delivery Group Summary</li> <li>3-1 Existing Monitoring Well Inventory</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                                                     |  |  |
| <ul> <li>Samples</li> <li>2-7 Summary of Field Parameters and General Water Quality Results<br/>for Groundwater/Leachate Water Samples</li> <li>2-8 Sample Delivery Group Summary</li> <li>3-1 Existing Monitoring Well Inventory</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                                                     |  |  |
| <ul> <li>2-7 Summary of Field Parameters and General Water Quality Results<br/>for Groundwater/Leachate Water Samples</li> <li>2-8 Sample Delivery Group Summary</li> <li>3-1 Existing Monitoring Well Inventory</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-6                  |                                                     |  |  |
| 2-8 Sample Delivery Group Summary<br>3-1 Existing Monitoring Well Inventory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-7                  |                                                     |  |  |
| 3-1 Existing Monitoring Well Inventory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-8                  |                                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3-1                  |                                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3-2                  |                                                     |  |  |

Section 4.

Tables

\_

- 3-3 Vertical Groundwater Flow Gradients
- 3-4 In-Situ Hydraulic Conductivity Results
- 3-5 General Groundwater/Leachate Parameter Field Data
- 3-6 Summary of Portage Creek Sediment Core Field Data
- 3-7 Summary of Portage Creek Sediment Probing Data
- 3-8 Summary of Residential Property Soil Sampling Field Data
- 3-9 Vane Shear Test Results
- 3-10 Summary of Detected PCB Results for Residuals/Soil Samples
- 3-11 Range of Detected Concentrations for TCL Compounds in Native Soil and Residuals
- 3-12 Summary of PCB Congener Results
- 3-13 Summary of Detected PCB Results and TOC Normalized Data Portage Creek Sediment Samples
- 3-14 Summary of PCB Results for Residual Soil Samples
- 3-15 Summary of Detected PCB Results for Groundwater/Leachate Samples
- 3-16 Range of Detected Concentrations of TCL Compounds in Unfiltered Groundwater and Leachate Samples
- 3-17 Summary of Detected Pesticides Results for Residuals/Soil Samples
- 3-18 Summary of Detected Pesticides Results for Groundwater/ Leachate Samples
- 3-19 Summary of Detected TCL VOC Results for Residuals/Soil Samples
- 3-20 Summary of Detected TCL VOC Results for Groundwater/ Leachate Samples
- 3-21 Summary of Detected SVOC Results for Residuals/Soil Samples
- 3-22 Summary of Detected TCL SVOC Results for Groundwater/ Leachate Samples
- 3-23 Summary of Detected PCDD/PCDF Results for Residuals/Soil Samples
- 3-24 Summary of Detected TAL Results for Residuals/Soil Samples
- 3-25 Range of Detected Concentrations of TAL Analytes in Native Soil and Residuals Samples
- 3-26 Summary of Detected Filtered TAL and General Groundwater Quality Results for Groundwater/Leachate Samples
- 3-27 Range of Detected Concentrations of TAL Analytes in Filtered Groundwater and Leachate Samples

Figures

- 1 Index to Figures
- 2 Allied Paper, Inc., OU Study Areas
- 3 Sampling Locations
- 4 Boring Sampling and Environmental Analysis Plan
- 5 Cross-Section Plan
- 6 Geologic Cross-Section A-A'
- 7 Geologic Cross-Section B-B'
- 8 Geologic Cross-Section C-C'
- 9 Geologic Cross-Section D-D'

BLASLAND, BOUCK & LEE, INC.

- 10 Geologic Cross-Section E-E' & F-F'
- 11 Geologic Cross-Section G-G'
- 12 Geologic Cross-Section H-H'
- 13 Middle/Upper-Middle Clay Elevation
- 14 Middle/Upper-Middle Clay Thickness
- 15 Peat Thickness
- 16 Water Table Contour Map Sept. 9, 1993
- 17 Water Table Contour Map Sept. 27, 1993
- 18 Water Table Contour Map Dec. 14, 1993
- 19 Former Type 11 Landfill/FRDLs/Bryant HRDL Residuals/Soil PCB Data
- 20 Monarch HRDL Residuals/Soil PCB Data
- 21 Western Disposal Area Residuals/Soil PCB Data
- 22 Former Bryant Mill Pond Residuals/Soil PCB Data
- 23 Portage Creek Sediment PCB Data
- 24 Residual Property Soil PCB Data
- 25 Groundwater PCB Concentrations
- 26 Residuals TCL Pesticides Detections
- 27 Soil TCL Pesticides Detections
- 28 Former Type III Landfill/FRDLs/Bryant HRDL and Former Bryant Mill Pond Residuals TCL VOC Detections
- 29 Monarch HRDL Residuals TCL VOC Detections
- 30 Western Disposal Area Residuals TCL VOC Detections
- 31 Former Type III Landfill/FRDLs/Bryant HRDL and Former Bryant Mill Pond Soil TCL VOC Detections
- 32 Monarch HRDL Soil TCL VOC Detections
- 33 Western Disposal Area Soil TCL VOC Detections
- 34 Groundwater/Leachate TCL VOC Detections
- 35 Former Type III Landfill/FRDLs/Bryant HRDL and Former Bryant Mill Pond Residuals TCL SVOC Detections
- 36 Monarch HRDL Residuals TCL SVOC Detections
- 37 Western Disposal Area Residuals TCL SVOC Detections
- 38 Former Type III Landfill/Bryant HRDL/Western Disposal Area Soil TCL SVOC Detections
- 39 Monarch HRDL Soil TCL SVOC Detections
- 40 Bryant Mill Pond Soil TCL SVOC Detections
- 41 Groundwater/Leachate TCL SVOC Detections
- 42 Residuals/Soil PCDD/PCDF Detections
- 43 Former Type III Landfill/FRDLs/Bryant HRDL Residuals TAL Detections
- 44 Monarch HRDL Residuals TAL Detections
- 45 Western Disposal Area Residuals TAL Detections
- 46 Former Bryant Mill Pond Residuals/Soil TAL Detections
- 47 Former Type III Landfill/FRDLs/Bryant HRDL Soil TAL Detections
- 48 Monarch HRDL Soil TAL Detections
- 49 Pilot Study Area Soil TAL Detections
- 50 Western Disposal Area Soil TAL Detections

BLASLAND, BOUCK & LEE, INC.

- 51 Former Type III Landfill/FRDLs/Bryant HRDL and Pilot Study Area Shallow Groundwater TAL Detections
- Former Type III Landfill/FRDLs/Bryant HRDL Deep Groundwater 52 TAL Detections
- Monarch HRDL Groundwater/Leachate TAL Detections 53
- 54 Western Disposal Area Groundwater TAL Detections
- 55 Former Bryant Mill Pond Groundwater TAL Detections
- Former Type III Landfill/FRDLs/Bryant HRDL Stiff Diagrams 56
- 57 Former Bryant Mill Pond/Monarch HRDL/Western Disposal Area Stiff Diagrams

Appendices

- Α **Field Documentation** 
  - Subsurface Logbooks
  - Groundwater Sampling Field Logs
  - Groundwater Level Records
  - Well and Boring Logs
- Existing Monitoring Well Evaluation Forms В
- С QA/QC Review of Data - Summary of Precision and Accuracy Assessment
- D Data Review Reports
- E F Chain-of-Custody Forms
  - In-Situ Hydraulic Conductivity Testing Documentation
- G Gamma-Ray Logging Documentation
- Н Geotechnical Testing Documentation

### 1. Introduction

#### 1.1 OU Description

The Allied Paper, Inc. Operable Unit (Allied OU) is located along Portage Creek within the City of Kalamazoo and Kalamazoo County, Michigan (Figure 1). The OU occupies 51 acres along the Creek between Cork and Alcott Streets.

The OU consists of:

- Historical residuals and dewatering storage lagoons (HRDLs) for primary treatment of paper-making residuals (residuals);
- Former residuals decanting lagoons (FRDLs) for residuals;
- A former Type III Landfill for dewatered residuals;
- Other residuals disposal areas; and
- The former Bryant Mill Pond which received residuals in the past.

Based on previous investigations and on the presence of these various lagoons and disposal areas, the Allied OU has been divided into the following areas:

- Bryant HRDL;
- Monarch HRDL;
- FRDLs;

)

- Former Type III Landfill;
- Western Disposal Area;
- Pilot Study Area (a small area located north of the Former Type III Landfill);
- Former Bryant Mill Pond; and
- Portage Creek.

0197

Figure 2 illustrates the location of these areas at the OU. A more extensive review of the physical setting and characteristics of the Allied OU is contained in the *Description of Current Situation (DCS) Report* (Blasland & Bouck, 1992).

#### 1.2 OU Remedial Investigation Background

The Bryant Mill produced a variety of high quality paper products during its 94 years of operation. Raw materials used in the process included recycled paper, paper products that underwent a deinking process, and virgin pulp. Allied Paper, Inc. deinked and recycled waste paper at Bryant Mill A, located south of Alcott Street along the former Bryant Mill Pond (Blasland & Bouck, 1992). Process waste consisted mainly of residuals and water. The residuals contained PCB due to the presence of PCB-containing carbonless copy paper in some of the wastepaper utilized by the mills.

|                  | BLASLAND, BOUCK & LEE, INC. |  |
|------------------|-----------------------------|--|
| 840.G2 - 8/14/97 | engineers & scientists      |  |

Process waste was discharged directly into Portage Creek until the early 1950s when Allied constructed a primary treatment facility for the Monarch Mill. The facility consisted of a clarifier and an earthen-diked dewatering lagoon, now referred to as the Monarch HRDL. This area is located south of Portage Creek bordering Cork Street. Wastewater from the mill was sent to the clarifier. After clarification, the supernatant was discharged to Portage Creek, while the settled residuals were pumped to the Monarch HRDL for dewatering.

The St. Regis Paper Company installed a similar treatment system for the Bryant Mill in 1954 (Blasland & Bouck, 1992). The system consisted of the Bryant Clarifier and the earthen-diked Bryant HRDL located north of Portage Creek. The Bryant HRDL has been filled and inactive since the late 1970s.

A number of activities have been, and continue to be performed to stabilize and maintain this site including:

- Activities in the Bryant HRDL involve occasional maintenance of the perimeter dikes and construction of new surface berms in the middle of the HRDL to facilitate solidification of the residuals (Limno-Tech, Inc., 1990).
- Routine Maintenance Activities The site is maintained by staff who keep the grass mowed; remove brush, litter and trash; repair and plow roads; monitor for and correct any odor problems; monitor creek flow and blockage; and maintain buildings.
- Site Security Site access is restricted by gates and a perimeter fence with posted warning signs. In addition, every morning and evening staff tour the area to ensure site access security.
- An erosion control plan was implemented at the landfill in 1991. This included construction of a soil cap, drainage swales, stormwater retention basins, grading the landfill surfaces and seeding the landfill surface with erosion control vegetation.
- A revegetation/soil stabilization program was successfully implemented. Lagoons were seeded in 1991 and 1992 with canary reed grass to facilitate evapotranspiration on the lagoons, which has also improved the aesthetics of the area. Also, the absence of standing water in this area significantly reduced odors.
- Allied maintains the former lagoons A treatment system was installed in 1991 and stormwater which collects in the lagoons is pumped to the treatment plant and treated prior to discharge to the City of Kalamazoo WWTP.
- In December 1993, erosion control measures were completed for a 150-foot long section of the Bryant HRDL berm along the north side of Portage Creek. The erosion control effort involved clearing and grubbing, grading, liner installation, and installation of gabion baskets (rock-filled wire mesh baskets) followed by a final grading and seeding. The landfill berms are regularly monitored and maintained.
- In April 1995, berm stabilization measures were performed for a section of Monarch berm on the eastern edge of the Allied OU. The Monarch berm stabilization involved clearing, grubbing, grading, geotextile installation, gabion basket installation followed by final grading and seeding. The landfill berms are regularly monitored and maintained.

The Bryant HRDL and a series of four FRDLs occupy approximately 40 acres just north of Cork Street.

In 1966, under Act 87, Public Acts of 1965, Allied began operation of a licensed Type II landfill for dewatered residuals in the area north of the Bryant HRDL and FRDLs. The landfill was classified as Type III in 1984, then licensed under Michigan Act 641 on February 8, 1985 to receive dewatered residuals. The landfill license is no longer active.

#### 1.3 Objectives of the Remedial Investigation

The primary objective of the Allied OU Remedial Investigation (RI) is to assess the nature and extent of polychlorinated biphenyls (PCB) present in residuals, native soil, sediments, groundwater/leachate, and surface water, and the potential, if any, for threats to public health, welfare, or the environment caused by the release or threatened release of hazardous substances, pollutants, or regulated substances from the area. Corollary objectives include:

- The assessment of potential migration pathways;
- The evaluation of the potential environmental and human exposure and risk;
- The screening for the presence of other constituents on the Contract Laboratory Program (CLP) Target Compound List (TCL) and Target Analyte List (TAL);
- The collection of data necessary to prepare an endangerment assessment and to evaluate remedial alternatives; and
- The evaluation of the geotechnical properties of the dikes and residuals.

#### 1.4 Scope of the Technical Memorandum

The scope of this technical memorandum includes both the presentation of results and the preliminary findings of the OU investigation. Also included are field data, analytical data, and the results of the Quality Assurance/Quality Control (QA/QC) review of analytical data.

For comparative purposes, the historical PCB data for soils and sediment in the former Bryant Mill Pond area underwent QA/QC review, and are presented in this technical memorandum. The remainder of the historical data proposed for use in the RI will undergo QA/QC review as well. Results of the Allied OU surface water investigation, biota investigation, and wetlands assessment are included in the draft Technical Memorandum 1, which was submitted to the Michigan Department of Natural Resources (MDNR) in April 1994 (BBL, 1994).

## 2. Investigation Activities

Allied OU soil, sediment, dike material, residuals, and groundwater/leachate were evaluated by the installation of borings, monitoring wells, and piezometers, and by sampling and analysis of these media. The OU investigation activities reported in this memorandum include the following tasks:

- Residuals and Soil Characterization;
- Geotechnical Investigation;
- Hydrogeological Investigation;
- Sediments Investigation; and
- Residential Property Soil Sampling.

Field documentation for the investigation activities are included in Appendix A.

#### 2.1 Residuals and Soil Characterization

Investigative activities performed to characterize the Allied OU residuals and soil included drilling and sampling 34 borings. Although the Work Plan (Blasland & Bouck, 1993b) specified the installation of 32 borings, two additional borings (BHDL-22 and BHDL-123) were installed in the Bryant HRDL as part of the Hydrogeological Investigation, and at the request of the MDNR. These borings were installed because no residuals were found or sampled in adjacent well clusters MW-22 and MW-123.

Depending on location and access, borings were installed using hollow-stem augering, tripod-mounted driven casing, hand driven split-barrel sampling, or hand augering methods. Residuals and soil characterization activities were conducted in the Bryant HRDL, Monarch HRDL, FRDLs, Former Type III Landfill, Western Disposal Area, Pilot Study Area, and the Monarch Clarifier. Selected samples were collected and analyzed for one or more of the following parameters: PCB, CLP TCL/TAL, polychlorinated dibenzo-p-dioxins (PCDD), or polychlorinated dibenzofurans (PCDF). Table 2-1 lists the CLP TCL/TAL compounds and analytes.

Additional soil and residuals sampling was conducted as part of the Hydrogeological Investigation and Sediments Investigation as discussed in Sections 2.3 and 2.4, respectively. Field documentation for the investigation, including boring logs, are provided in Appendix A.

Table 2-2 summarizes the Residuals and Soil Characterization boring samples submitted for laboratory analysis.

#### 2.1.1 Bryant HRDL

Two soil borings, designated BLHB-1 and BLHB-2, were advanced outside the dikes forming the eastern and southern perimeter of the Bryant HRDL. BLHB-1 and BLHB-2 were advanced to collect samples of surficial soils at the base of the dikes within the Portage Creek Floodplain, and of saturated soils below the base of the dikes. Two additional soil borings, designated BHDL-22 and BHDL-123, were also installed in the Bryant HRDL in conjunction with the Hydrogeological Investigation as discussed in Section 2.3.2.2. Figure 3 displays the locations of the borings.

Borings BLHB-1 and BLHB-2 were advanced and samples collected using stainless steel hand augers in a manner consistent with the *Allied OU Field Sampling Plan* (FSP) (Blasland & Bouck, 1993c). At each boring location, two representative samples were homogenized and analyzed for PCB. The first sample was collected from the 0- to 6-inch interval, and the second sample from the 6-inch interval immediately above the water table which was encountered at a depth of 1.5 feet below ground surface (bgs) in BLHB-1 and at 1-foot bgs in BLHB-2.

Upon completion, the borings were abandoned by filling the boreholes with hydrated bentonite. The locations were flagged and subsequently surveyed for horizontal and vertical control.

Collection of QA/QC samples was done in conjunction with the collection of residuals and soil samples. The number of QA/QC samples for this purpose followed the guidelines presented in the *Quality Assurance Project Plan* (QAPP) (Blasland & Bouck, 1993d).

#### 2.1.2 Monarch HRDL

Two soil borings, designated MLHB-1 and MLHB-2, were installed along the perimeter of the Monarch HRDL within the Portage Creek Floodplain, and five borings, designated MLSS-1 through MLSS-5, were installed in the interior of the HRDL. Figure 3 illustrates the location of these borings.

The MLHB-1 and MLHB-2 borings were advanced to collect samples of the surficial soils at the base of the dike and of the saturated soils below the base of the dike. The borings were installed and sampled using a stainless steel hand auger in a manner consistent with the FSP. At each boring location, two representative samples were homogenized and analyzed for PCB. The first sample was collected from the 0- to 6-inch bgs interval in each boring. The second samples from MLHB-1 and MLHB-2 were collected from the 6-inch interval just above the water table which was encountered at a depth of 1-foot and 2 feet bgs, respectively.

Borings designated MLSS-1 through MLSS-5 were installed within the interior of the Monarch HRDL to characterize the extent of PCB within the residuals, and identify and characterize the residuals/soil interface. Borings MLSS-2 through MLSS-5 were installed using a tripod-mounted cathead and hammer to drive continuous split-barrel samples. An outer casing was driven in the boreholes to prevent collapse. Boring MLSS-1 was installed using a truck-mounted drill rig equipped with hollow stem augers to collect continuous split-barrel samples. Borings were terminated 2.5 feet below the residuals/native soil interface. The following samples were selected for analysis from each of the MLSS borings:

- One sample from the 0- to 6-inch bgs interval to be analyzed for PCB;
- One 2-foot interval sample from each 10-foot interval between 0.5 feet bgs and 6 feet above the residuals/native soil interface to be analyzed for PCB;
- Each 2-foot interval sample between 6 feet and 2 feet above the residuals/native soil interface to be analyzed for PCB; and
- A 2-foot interval sample immediately above the residuals/native soil interface and the 2-foot interval immediately below the residuals/native soil interface to be analyzed for TCL/TAL constituents.

This sampling scheme is illustrated as a representative cross-section in Figure 4.

The 0- to 6-inch bgs intervals from MLSS-1 and MLSS-3 were also analyzed for PCDD and PCDF.

Upon completion, all of the borings were abandoned by filling the boreholes with hydrated bentonite or a cement/bentonite slurry. In the MLHB-1 and MLHB-2 borings, the bentonite was poured into the boreholes and then hydrated in-place. In the MLSS borings, a cement/bentonite slurry was pumped into the boreholes as the casing or augers were removed. The locations were flagged and subsequently surveyed for horizontal and vertical control.

The collection of QA/QC samples was done in conjunction with the collection of residuals and soil samples. The number of QA/QC samples for this purpose followed the guidelines presented in the QAPP.

#### 2.1.3 HRDLs

Six borings, designated DLHB-1 through DLHB-6, were installed within the FRDLs to determine the nature and extent of their residuals. BLHB-3 was installed outside of the FRDLs in the Portage Creek Floodplain to address the MDNR's concerns regarding possible seepage from the FRDLs. BLHB-3 was placed in the vicinity of the seep that was observed in the past. The locations of the borings are shown on Figure 3.

The burings DLHB-1 through DLHB-6 were advanced using a tripod-mounted cathead and hammer and driven casing method in a manner consistent with the FSP. Continuous split-barrel samples were collected from each boring for visual classification and delineation of the residuals. Borings were terminated 2.5 feet below the residuals/native soil interface. Boring BLHB-3 was advanced using hand augering methods in a manner consistent with the FSP. The boring was terminated at the water table which was encountered 5.5 feet bgs.

The following samples were selected for analysis from each of the DLHB borings, with exceptions noted below:

- The 0- to 6-inch bgs interval to be analyzed for PCB;
- One 2-foot interval sample from each 10-foot interval between 0.5 feet bgs and 6 feet above the residuals/native soil interface to be analyzed for PCB;
- Each 2-foot interval from between 6 feet and 2 feet above the residuals/native soil interface to be analyzed for PCB; and
- A 2-foot interval sample immediately above the residuals/native soil interface and the 2-foot interval immediately below the residuals/native soil interface to be analyzed for TCL/TAL constituents.

This sampling scheme is illustrated as a representative cross-section in Figure 4.

Due to the lack of any residuals at DLHB-4 and DLHB-5, only a single soil sample was collected from these borings at the 0- to 6-inch bgs interval. The samples were homogenized and analyzed for PCB. The 0- to 6-inch bgs interval from DLHB-1, DLHB-2, and DLHB-5 were also submitted for PCDD and PCDF analysis.

In BLHB-3, the 0- to 6-inch and the 5- to 5.5-foot bgs interval samples were selected for PCB analysis. Upon completion, the boring was filled with bentonite and then hydrated in place.

Upon completion, the DLHB borings were abandoned by pumping the boreholes full with a cement/bentonite (approximately 4 percent bentonite) grout. The grout mixture was pumped into the boreholes as the driven casing was removed to ensure that the boreholes would not collapse. The borings were marked with a PVC pipe sticking up above the water surface (or at the ground surface) of the FRDLs and subsequently surveyed for horizontal and vertical control.

Collection of QA/QC samples was done in conjunction with the collection of residuals and soil samples. The number of QA/QC samples for this purpose followed the guidelines presented in the QAPP.

#### 2.1.4 Former Type III Landfill

Three borings, designated FLF-1 through FLF-3, were installed south of the former Type III Landfill. The location of these borings are shown on Figure 3. The borings were advanced using a truck-mounted or all-terrain-vehicle-mounted drill rig equipped with hollow stem augers. Continuous split-barrel samples were collected from each boring between the ground surface and 2.5 feet below the residuals/soil interface.

In accordance with the Work Plan, a soil sample from each boring was collected from the 0- to 6-inch bgs interval for PCB analysis. One residuals sample was collected from the 0- to 2-foot interval above the residuals/native soil interface, and one soil sample was collected immediately below the interface to be analyzed for PCB. In order to accommodate the MDNR's need to collect split samples for TCL/TAL parameters from residuals and soil, boring FLF-1 was sampled in accordance with the typical residuals boring sampling scheme as presented in Figure 4 and first described in Section 2.1.2.

Upon completion, the borings were abandoned by pumping the boreholes full with a bentonite/cement grout. The grout mixture was pumped into the boreholes as the augers were removed to ensure that the boreholes would not collapse. The location of the borings were flagged and subsequently surveyed for horizontal and vertical control.

Collection of QA/QC samples was done in conjunction with the collection of residuals and soil samples. The number of QA/QC samples for this purpose followed the guidelines presented in the QAPP.

#### 2.1.5 Western Disposal Area

A total of eight borings, designated WA-1 through WA-8, were drilled on the western portion of the OU to evaluate areas believed to have received residuals in the past. The location of these borings are shown on Figure 3. The borings were advanced using a truck-mounted drill rig equipped with hollow-stem augers. Continuous split-barrel samples were collected from ground surface to 2.5 feet below the residuals/native soil interface.

With some modification, the following scheme was used to select samples to be submitted for analysis:

- The 0- to 6-inch bgs interval to be analyzed for PCB;
- One 2-foot interval sample from each 10-foot interval between 0.5 feet bgs and 6 feet above the residuals/native soil interface to be analyzed for PCB;
- Each 2-foot interval sample collected from between 6 feet and 2 feet above the residuals/native soil interface to be analyzed for PCB; and
- A 2-foot interval sample immediately above the residuals/native soil interface and the 2-foot interval immediately below the residuals/native soil interface to be analyzed for TCL/TAL constituents.

This sampling scheme is illustrated as a representative cross-section in Figure 4.

Some of the sampling intervals were modified as required by field conditions or sample recovery. In addition, the 0to 6-inch *bgs* intervals from WA-2 and WA-6 were analyzed for PCDD and PCDF. Table 2-2 summarizes the samples that were actually submitted for laboratory analysis. Upon completion, the borings were abandoned by pumping the boreholes full with a bentonite/cement (approximately 4 percent bentonite) grout. The grout mixture was pumped into the boreholes as the augers were removed to ensure that the boreholes would not collapse. The location of the borings were flagged and subsequently surveyed for horizontal and vertical control.

Collection of QA/QC samples was done in conjunction with the collection of residuals and soil samples. The number of QA/QC samples for this purpose followed the guidelines presented in the QAPP.

#### 2.1.6 Pilot Study Area

Five borings, designated MA-1 through MA-5, were installed in the Pilot Study Area located near existing monitoring wells MW-2 and MW-18. The locations of the borings are shown on Figure 3. The borings were advanced using hand augering methods in a manner consistent with the FSP. The borings were advanced to a depth of approximately 4.5 feet bgs. Two samples from each boring were selected for analysis for TAL analytes including the 0- to 1.5-foot bgs interval and the 3- to 4.5-foot bgs interval.

Upon completion, the borings were abandoned by filling the boreholes with bentonite powder and then hydrating the bentonite in place. The locations of the borings were flagged and subsequently surveyed for vertical and horizontal control.

Collection of QA/QC samples was done in conjunction with the collection of residuals and soil samples. The number of QA/QC samples for this purpose followed the guidelines presented in the QAPP.

#### 2.1.7 Background Soil Samples

Two background samples were collected from boring B-7B installed immediately adjacent to MW-7B in the Western Disposal Area. Soil samples were collected at 8 to 10 feet bgs and 10 to 12 feet bgs and analyzed for TCL/TAL parameters. The samples were collected using split-barrel samplers in a manner consistent with methods described in the FSP.

Background soil samples are intended to account for naturally occurring concentrations of TAL analytes in soil horizons underlying the OU. After review of the data collected from B-7B, these sample locations do not satisfy the MDEQ's criteria for "background samples." For the purpose of this report, they will be discussed with the site (Western Disposal Area) soil data.

#### 2.1.8 Monarch Clarifier

One sample, designated MC-1, was collected from the solids remaining on the bottom of the Monarch Clarifier. The sample was collected using a hand-held dredge sampler in a manner consistent with the FSP. The sample was homogenized and analyzed for PCB.

#### 2.2 Geotechnical Investigation

Geotechnical sampling and laboratory testing were conducted to provide data for assessing the stability of the dikes and the strength and deformation characteristics of the residuals. The Geotechnical Investigation included an evaluation of piezometer information and the collection of disturbed and undisturbed samples of soil and residuals. While specific borings were targeted for collecting geotechnical data, information from the other borings and wells at the OU were used in the geotechnical evaluation as well. In particular, data from monitoring wells and piezometers were used to evaluate potentiometric surfaces for use in dike stability analysis.

Geotechnical borings (GEO-1, GEO-2, MW-22B, and MW-123B) generally were sampled continuously to their completion depth of 50 feet bgs. Breaks in the continuous sampling occurred in borings GEO-1, GEO-2, and MW-22B due to running sands or difficulties in extracting the previous sample from the borehole. All four were collected in the Bryant HRDL.

Disturbed samples collected for index testing were obtained using split-spoon samplers in selected borings, although samples were collected continuously for visual-manual classification and/or analytical testing in most boreholes. Disturbed samples for potential geotechnical testing were selected from the following boring locations: GEO-1, GEO-2, MW-2S, MW-7B, MW-20B, MW-22B, MW-122A, MW-123B, MW-127A, DLHB-1, DLHB-4, MLSS-2, and MLSS-3.

Collection of relatively undisturbed samples of soil and residuals (Shelby tubes) was attempted following ASTM D1587 procedures in the geotechnical borings (ASTM, 1993). Sample recovery was generally very poor and only four tubes were successfully collected, one from each boring. Although attempts were made in boreholes MW-120A and DLHB-2A to collect Shelby tubes of residuals, the residuals were generally very compressible and difficult to attain. Therefore, priority was given to the environmental samples for PCB or CLP TCL/TAL analysis because of the difficulty in geotechnical sampling. Field vane-shear testing was conducted in clay at boring MW-20B and in residuals at boring DLHB-2A. DLHB-2A was installed immediately adjacent to DLHB-2 for conducting vane-shear tests and to collect Shelby tubes of residuals.

Disturbed and undisturbed samples were selected for geotechnical laboratory testing. The testing program included analysis of moisture content, organic content, Atterberg Limits, specific gravity, gradation, unconsolidated-undrained (UU) triaxial shear, and one-dimensional consolidation. Table 2-3 summarizes the samples selected for geotechnical testing.

#### 2.3 Hydrogeological Investigation

The Hydrogeological Investigation included:

- Existing Monitoring Well Inventory;
- · Monitoring Well and Piezometer Installation, Construction, Rehabilitation, and Decommissioning;
- Groundwater/Leachate Sampling;
- In-Situ Hydraulic Conductivity Testing; and
- Gamma Ray Logging.

#### 2.3.1 Existing Monitoring Well Inventory

An inventory of the existing monitoring wells at the OU was completed to aid in the evaluation of the wells as potential data collection points for use during the RI. The location of the wells are shown on Figure 3.

The existing wells were inspected following procedures detailed in the FSP. Items checked include surface seal integrity, depth to groundwater, depth of well, and apparent well condition. The implementation of the inspection and evaluation of each existing well was recorded on a well inspection checklist and an Existing Monitoring Well Evaluation Form. The documentation of the existing-well inventory is presented in Appendix B.

#### 2.3.2 Monitoring Well and Piezometer Instailation, Rehabilitation, and Decommissioning

To supplement the existing groundwater monitoring network at the OU and evaluate the potential movement of water within the dikes, the following monitoring wells and piezometers were installed:

- Twelve (12) shallow monitoring wells (MW-2S, MW-8A, MW-22A, MW-120A, MW-121A, MW-122A, MW-123A, MW-124A, MW-125A, MW-126A, MW-127A, and MW-128A);
- Ten (10) deep monitoring wells (MW-7B, MW-20B, MW-22B, MW-120B, MW-121B, MW-122B, MW-123B, MW-124B, MW-125B, and MW-126B);
- One (1) residuals monitoring well (perched water) (MW-125P);
- Two (2) replacement wells (MW-12R and MW-19BR); and
- Six (6) piezometers (P-1/1C, P-2/2C, and P-3/3C).

Monitoring well and piezometer locations are shown on Figure 3. Boring logs and well construction details are included in Appendix A.

#### 2.3.2.1 Monitoring Well and Piezometer Installation

The monitoring wells were installed in two target zones: the saturated zone above the first confining layer (designated "A" wells), and the first 5 feet of the saturated zone below the first potential confining layer (designated "B" wells). In those wells where residuals were encountered, the target zone for the "A" wells was the uppermost 5 feet of saturated materials below the residuals as per MDNR direction. In those wells where residuals were not encountered, the "A" wells were constructed to straddle the water table. At some locations, a cluster of "A" and "B" wells was installed while at other locations, where a well already existed, an "A" or "B" well was installed to complete the shallow and deep cluster. Two replacement "B" wells were also installed in well clusters where the construction of the existing deep well was considered suspect.

As directed by the MDNR, saturated zones within the residuals (i.e., containing leachate) were also targeted for monitoring if the following conditions were encountered: 1) a zone at least 3 feet in thickness and at least 2 feet above the base of residuals (designated as an "R" well); or 2) a perched saturated zone (designated as a "P" well). No R-designated wells and one P-designated well (MW-125P) were installed at the Allied OU.

Three piezometer clusters (P-1/P-1C, P-2/P-2C, and P-3/P-3C) were installed on the dike of the Bryant HRDL to evaluate the potential phreatic surface and potential water movement within the dike. One piezometer in each cluster was located on top of the dike while the second piezometer at each cluster (designated with a "C") was placed on the creek-side slope of the dike.

0197840.G2 - 8/14/97

#### **Monitoring Well Construction Details**

Monitoring well construction details are summarized on Table 2-4. Table 2-5 provides information on volumes purged and the size of the filter pack material for each new monitoring well.

Monitoring wells and piezometers (except the "C" piezometers) were all installed using a truck-mounted or all-terrainvehicle-mounted drill rig equipped with 4 ¼-inch inside diameter (ID) hollow-stem augers. Continuous split-barrel samples were collected from the well and piezometer borings, except the shallow wells in new clusters, to allow for the visual classification of the materials and to collect samples for environmental and geotechnical analysis. Split-barrel samples were collected at 5-foot intervals from the shallow well borings of new clusters to verify stratigraphy.

All monitoring wells were constructed of 2-inch diameter, stainless-steel well screen (0.010-inch slot width) and appropriate length of stainless steel riser pipe. Once the completion depth was reached, the well screen (either 5- or 10-foot length), equipped with a flush-threaded end cap, was lowered through the augers to the bottom of the borehole. A flush-threaded riser pipe was added to the screen as it was lowered into the borehole. The riser pipe was allowed to stick up approximately two feet above ground surface (except the MW-123A/MW-123B cluster, as discussed later). Once the well assembly was in place, silica sand was added as a filter pack to the annular space around the well screen. The augers were lifted slowly as the sand pack was placed. The FSP stated that the sand pack should extend 2 to 3 inches above the top of the screen, however, due to subsurface stratigraphy restrictions the length of the sand pack required adjustment for some wells. These adjustments will be discussed later in this section. A 2- to 3-foot thick bentonite seal was placed on top of the sand pack. The bentonite was either added as a slurry using a tremie pipe or as bentonite chips which were hydrated in place by adding water. A cement/bentonite grout was pumped into the remainder of the annular space to the ground surface (except well cluster MW-123A/MW-123B, as discussed later).

All wells, except the MW-123A/MW-123B cluster, were completed at the surface with a locking, steel protective casing installed over the riser pipe. The riser pipe was equipped with a vented well cap. Once the grout had been allowed to set, a 2-foot diameter cement surface seal was placed around the casing. A weep hole was then drilled in the bottom of the outer casing to allow for the drainage of water.

Because of the location of the MW-123A/MW-123B cluster in the center of a narrow dike which also serves as an access road, these two wells were completed as flush-mounted wells. In these wells, the grout was brought to 1-foot bgs and the riser pipe was cut-off approximately 4-inches bgs. A galvanized curb steel box equipped with a bolted down manhole cover was grouted into place around the well head. The riser pipe was equipped with a non-vented well cap.

As directed by the MDNR and specified in the Work Plan, the shallow "A" wells in locations where residuals were encountered, targeted the uppermost 5 feet of saturated material under the residuals/native soil interface. In all "A" wells where residuals were encountered, the saturated material was detected within 0.5 feet of the interface. Because the well screen and sand pack could not cross the interface, the length of the sand pack had to be shortened so that it did not extend across the interface. In these wells, the sand pack was added just to the top of the well screen section. This modification to the FSP was discussed in the field, and the MDNR and its representatives agreed to the modification. It should be noted that the well screen section is only slotted to within 0.25 feet of each end. Therefore, bringing the sand pack to the top of the screen section still allowed for the sand pack to be 0.25 feet above the slotted portion of the screen section. In the "A" wells, dry bentonite chips were added on top of the sand pack and then hydrated in place by adding water. Tremie grouting was not used because of the possibility of washing-out some of the sand pack and allowing bentonite to contact the screen. The cement/bentonite grout was added after a minimum of one hour to allow the bentonite to hydrate.

The target zone for the "B" wells was the saturated materials below the first confining layer. A confining layer was detected at all the well cluster locations except MW-125, located in the Monarch HRDL. In this cluster, the top of the screen for the deep well was 5 feet below the bottom of the screen in the shallow well.

#### Piezometer Construction Details

Piezometer construction details are summarized on Table 2-4. Table 2-5 provides information on volumes purged and the size of the filter pack material for each new piezometer.

The piezometers placed through the top of the Bryant HRDL dike (P-1, P-2, and P-3) were installed in the same manner as the monitoring wells, except PVC well materials were used instead of stainless steel. The bottom of these piezometers were placed just above the base of the dike and were equipped with 10-foot screens. The piezometers were completed with the flush-mount assembly similar to the MW-123A/MW-123B well cluster. The piezometers installed on the slope of the dike (P-1C, P-2C, and P-3C) were constructed of a 4 foot, 1 ¼-inch diameter galvanized steel screened drive point, and appropriate length galvanized steel stand pipe. The base of the dike was estimated by using the angle of the slope and the vertical distance from the top of the dike. The drive point was hammered into place to just above the base of the dike. This modification to the FSP was necessary due to restricted access on the steep slope of the dike and was agreed upon in the field by MDNR representatives.

Two replacement wells, MW-12R and MW-19BR, were installed next to existing wells MW-12 and MW-19B because of concerns regarding the correct placement of well screen in MW-12, and concerns of a possible connection to a deeper water-bearing zone in MW-19B. These wells were installed using the same protocols as the other monitoring wells, as described above.

#### 2.3.2.2 Monitoring Well and Piezometer Development

The new groundwater monitoring wells and piezometers were developed after installation. At the direction of the MDNR, the residuals well MW-125P was not developed. Monitoring wells MW-122A, MW-122B, MW-125A, MW-125B, MW-126A, and MW-126B were developed using a Grundfos submersible pump. The remaining wells and the piezometers were developed by hand bailing because of slow recharge rates. MW-20B and MW-121B were initially surged and developed by using a water sampling pump. However, because this pump was not removing sufficient amounts of sediment, development was completed by hand bailing. All wells were first surged with a bailer to remove the majority of the sediment.

The field parameters (including pH, temperature, and specific conductance) of water purged during development were measured and recorded in the field logs as development continued using either the pump or by bailing. Field parameters were measured at intervals of approximately once each well volume. When using a pump for development, the pump was raised and lowered across the screened interval to assist in development of the entire screen length. Well development ceased when the measured parameters stabilized and the recovered water was relatively sediment free. A minimum of 10 well volumes were removed from each well during development. Table 2-5 provides the number of well volumes removed.

#### 2.3.2.3 Well Rehabilitation

Well rehabilitation completed at the OU consisted of the replacement of cement surface seals at wells with damaged or missing seals that were sampled in connection with this investigation. Surface seals were replaced or repaired on a total of 13 wells, including: MW-7, MW-8, MW-15, MW-16B, MW-16C, MW-17A, MW-17B, MW-18, MW-19C, MW-19D, MW-20, MW-21, and MW-114.

0197840.G2 - 8/14/97

#### 2.3.2.4 Well Decommissioning

Only one monitoring well was decommissioned at the OU. MW-19B was abandoned and replaced because of a concern of potential hydraulic connection between the screened interval and a lower saturated zone. The well was decommissioned by overdrilling with 6 ¼-inch ID hollow stem augers, pulling the screen and riser, and filling the borehole with a cement/bentonite slurry as the augers were withdrawn. Replacement well MW-19BR was installed adjacent to the abandoned well as described in Section 2.3.2.1.

#### 2.3.3 Sampling of Monitoring Well and Piezometer Borings

In accordance with the MDNR representative's direction, in the three wells where residuals were encountered (MW-8A, MW-120B, and MW-121B), the following samples were submitted for analysis:

- The 0- to 6-inch bgs interval to be analyzed for PCB;
- One 2-foot interval sample from each 10-foot interval between 0.5 feet bgs and 6 feet above the residuals/native soil interface to be analyzed for PCB;
- Each 2-foot interval sample from between 6 feet and 2 feet above the residuals/native soil interface to be analyzed for PCB; and,
- A 2-foot interval sample immediately above the residuals/native soil interface and the 2-foot interval immediately below the residuals/native soil interface to be analyzed for TCL/TAL constituents.

This sampling scheme is illustrated as a representative cross-section in Figure 4.

The remaining well clusters (MW-125B, MW-126A, and MW-126B) were situated in the berm and sampling at MW-125B deviated from the above plan; no surficial sample was collected from MW-125B.

As specified in the Work Plan, continuous split-barrel samples were collected from the deep wells in the new well clusters or from the new individual wells (regardless of depth). The shallow wells for each cluster were sampled at 5foot intervals to verify stratigraphy. Therefore, in the new well clusters, the majority of the samples for analysis were collected from the deep wells. However, in well cluster MW-126A/MW-126B, the TAL/TCL samples from the residuals and the native soil had to be collected from the shallow well. This deviation from the Work Plan was due to not knowing the exact location of the interface, and potentially exposing the interface too long to make the proper collection of VOC samples practical from the deep well at this location.

In those wells where no residuals were encountered (MW-7B, MW-12R, MW-19BR, MW-20B, MW-122B, MW-124B, MW-127A, and MW-128A) one sample was analyzed for PCB from each 10-foot interval between 0.5 feet bgs and 0.5 feet below the elevation of the residuals/native soil interface in the nearest boring where residuals were encountered. No samples were collected for analysis from clusters MW-22 and MW-123. Alternate borings were used for analysis at these locations as described later in this Section.

#### **Additional Soil Borings**

In accordance with a field modification to the Work Plan requested by the MDNR, no samples were collected from newly installed well clusters MW-22A/MW-22B, MW-122A, and MW-123A/MW-123B for analysis. Alternatively, the MDNR requested the drilling and sampling of two additional soil borings in the Bryant HRDL adjacent to clusters MW-

22 and MW-123 (designated BHDL-22 and BHDL-123, respectively). Boring DLHB-4 was considered sufficiently close to MW122A/MW122B to be used for analyses at this location. The borings were drilled in the same manner as those borings installed in the FRDLs (Section 2.1.3). Samples selected for analysis included the following:

- The 0- to 6-inch bgs interval to be analyzed for PCB;
- One 2-foot interval sample from each 10-foot interval between 0.5 feet bgs and 6 feet above the residuals/native soil interface to be analyzed for PCB;
- Each 2-foot interval sample from between 6 feet and 2 feet above the residuals/native soil interface to be analyzed for PCB; and,
- A 2-foot interval sample immediately above the residuals/native soil interface and the 2-foot interval immediately below the residuals/native soil interface to be analyzed for TCL/TAL constituents.

This sampling scheme is illustrated as a representative cross-section in Figure 4.

#### 2.3.4 Groundwater/Leachate Sampling

One round of groundwater samples was collected from each of the 25 new wells and from 27 selected existing wells (MW-1, MW-2, MW-3, MW-5, MW-7, MW-8, MW-11, MW-12, MW-15, MW-16B, MW-16C, MW-17A, MW-17B, MW-18, MW-19C, MW-19D, MW-20, MW-21, MW-23, MW-24, MW-25, MW-26, MW-104, MW-106, MW-108, MW-112, and MW-114). A summary of groundwater/leachate sampling is provided in Table 2-6.

Before sampling, the direction of groundwater flow was established to insure that steady-state or near steady-state flow towards Portage Creek existed. There was concern that rising water levels in the Creek could create flow reversal conditions and consequently flow would be towards the interior of the OU. The potentiometric surface elevations at wells were used to calculate the groundwater flow direction. Creek elevations at CG-1 and monitoring well potentiometric surface elevations at MW-122A were monitored twice per week for two weeks (for a total of four sets of measurements) in advance of the groundwater sampling event. As described in the Work Plan, steady-state conditions were assumed to hold after two weeks of consistent observations indicating groundwater flow toward the Creek from September 10 through September 27, 1993.

The groundwater sampling event was conducted between September 28 and October 8, 1993, approximately four weeks following the new well installations and development. In accordance with MDNR requirements, the rate at which wells were purged did not exceed 500 milliliters per minute (ml/min.) and the sampling rate did not exceed 100 ml/min. These rates were selected to reduce the amount of suspended material in the groundwater samples in an effort to obtain samples representative of the groundwater in the formation.

During the purging of the monitoring wells, field measurements including pH, temperature, and specific conductance were recorded. An initial set of measurements was taken and then repeated after each well volume was purged from the well. Once these field parameters stabilized (after a minimum of 3 well volumes had been removed or the well went dry), the groundwater samples were collected in the following order:

- Volatile organic compounds (VOCs);
- Total organic carbon (TOC);

- Semivolatile organic compounds (SVOCs);
- PCB and pesticide compounds;
- TAL metals (unfiltered);
- TAL metals (filtered);
- Cyanide;
- Nitrate and chemical oxygen demand (COD); and
- Alkalinity, sulfate, chloride, carbonate, and bicarbonate.

Both filtered and unfiltered groundwater samples were collected for TAL metals. The filtered sample was pumped through a 0.45 micron filter prior to preservation. Field parameters measured at the time of groundwater collection included temperature, pH, specific conductance, dissolved oxygen, and turbidity. These measurements are presented in Table 2-7.

#### 2.3.5 In-Situ Hydraulic Conductivity Measurements

In-situ hydraulic conductivity measurements were collected from some of the newly installed wells and piezometers. The testing was conducted in a manner consistent with methods described in the FSP.

#### 2.3.6 Gamma Ray Logging

Gamma ray logging was conducted on all of the newly installed deep wells (MW-20B, MW-22B, MW-120B, MW-121B, MW-122B, MW-123B, MW-124B, MW-125B and MW-126B) and selected existing wells (MW-11, MW-16C, MW-19D, and MW-25). Continuous gamma ray logging was conducted on all of the wells in a manner consistent with procedures described in the FSP.

#### 2.4 Sediments Investigation

The Sediments Investigation activities involved the collection of sediment samples from the former Bryant Mill Pond and along Portage Creek. The purpose of the investigation was to confirm and characterize the nature and extent of residuals and sediment in the former Bryant Mill Pond, assess the nature of stream bed armoring in Portage Creek, assess the absence or presence of PCB in the floodplain outside the fence on the eastern side of the former Bryant Mill Pond, and assess the significance of any PCB transformation processes which may be occurring in sediments and saturated floodplain soils. The activities conducted to achieve these goals included installation and sampling of 12 soil borings, collection of five stream bed samples from Portage Creek, and probing and collection of sediment cores in the stream bed of Portage Creek. Table 2-2 summarizes the sediment samples submitted for laboratory analysis.

#### 2.4.1 Former Bryant Mill Pond

A total of 12 borings (BMP-1 through BMP-12) were performed as part of the Sediments Investigation activities within the former Bryant Mill Pond. The location of the borings are shown on Figure 3.

Borings BMP-1, and BMP-3 through BMP-6, were installed along the northeastern side of the former floodplain area to further characterize the extent of the former mill pond. The borings were installed using hand augering methods in a manner consistent with the FSP. Each of the borings were terminated 2 feet below the sediment/soil interface. The sediments of the former Bryant Mill Pond are a mixture of residuals as well as mineral and organic particles from the watershed. Although the sediments contain some residuals, they will be referred to as sediments in this document. Three samples were selected for PCB analysis from each of these borings, including:

- A 0- to 0.5-foot bgs interval sample;
- A 1-foot interval sample below the sediment/soil interface; and
- A 1- to 2-foot interval sample below the sediment/soil interface.

Boring BMP-2 was installed adjacent to existing boring 12 to confirm the elevated PCB concentrations detected at this location during previous investigation activities. Therefore, this boring was advanced to a depth of 5 feet bgs. Samples of the upper 0.5 feet and each 1-foot interval were collected using hand augering methods in a manner consistent with the FSP. The 0- to 0.5-foot bgs interval, and each 1-foot interval to 5 feet from this boring, were selected and analyzed for PCB congeners and TOC. In addition, the 0- to 0.5-foot bgs and the 3- to 4-foot bgs intervals were collected for analysis of TCL/TAL constituents.

Borings BMP-7 through BMP-9 were installed in the floodplain outside of the fence on the north side of Portage Creek. These borings were installed to 1-foot or 1.5 feet bgs using hand-augering methods in a manner consistent with the FSP. The upper 0- to 0.5-foot bgs interval and the 0.5- to 1.5-foot bgs interval (BMP-8 and -9) or 0.5- to 1-foot bgs interval (BMP-7) were collected for PCB and TOC analysis.

Borings BMP-10, BMP-11, and BMP-12 were installed to sample sediments on the western side of Portage Creek in the former Bryant Mill Pond. These borings were installed by hand-driving split-barrel samplers to the boring depth in a manner consistent with the FSP. BMP-10 was advanced to 3 feet bgs, and BMP-11 and BMP-12 were advanced to 7 feet bgs. In BMP-10, the 0- to 0.5-foot bgs interval was analyzed for PCB and TOC, and the 1.5 to 3-foot bgs interval was analyzed for PCB and TOC, and the 1.5 to 3-foot bgs interval was analyzed for PCB only. In BMP-11, each 1-foot interval to 4 feet bgs, and the 2-foot interval from 5 to 7 feet bgs, were analyzed for PCB. The 0- to 1-foot bgs interval was also analyzed for TOC. In BMP-12, each 1-foot interval to 4 feet bgs and the 2-foot interval from 5 to 7 feet bgs were analyzed for PCB congeners, oil and grease, and TOC. In addition, the 0- to 1-foot bgs and the 3- to 4-foot bgs intervals were analyzed for TCL/TAL constituents.

Upon completion, the borings were abandoned by filling the boreholes with hydrated bentonite. The location of the borings were flagged and subsequently surveyed for vertical and horizontal control.

Collection of QA/QC samples was done in conjunction with the collection of residuals and soil samples. The number of QA/QC samples for this purpose followed the guidelines presented in the QAPP.

#### 2.4.2 Portage Creek

To assess the nature of stream bed armoring, sediments along the center line of Portage Creek were probed to refusal at 100-foot intervals from Cork Street to Alcott Street. The probing was conducted in a manner consistent with methods described in the FSP.

To assess the levels of PCB in the surficial sediments in contact with Portage Creek, samples were collected from five locations in the Creek. The sample locations, designated GS-1 to GS-5, are shown on Figure 3. At each location the

| 019 | 7840.G2 | ••• | 8/14 | /97 |
|-----|---------|-----|------|-----|

upper 0.5-inch of sediment was recovered using a hand-operated dredge in a manner consistent with methods described in the FSP. All five samples were analyzed for PCB.

Collection of QA/QC samples was done in conjunction with the collection of residuals and soil samples. The number of QA/QC samples for this purpose followed the guidelines presented in the QAPP.

#### 2.5 Residential Property Soil Sampling

The Residential Property Soil Sampling program was conducted in two phases. The purpose for the sampling was to assess the potential presence of PCB in the former floodplain sediments or surficial soils in or near the backyards of residents bordering Portage Creek. The initial phase of work was conducted on October 31, 1991, and consisted of the sampling of five hand-augered soil borings designated RP-1 through RP-5. From these five borings, 10 samples were analyzed for PCB. Details on the sampling procedures and results are presented in the DCS. The second phase of sampling was conducted in August and December 1993, and consisted of the collection of four surface soil samples designated BMSS-1 through BMSS-4. The locations of the samples are shown on Figure 3. Table 2-2 summarizes the soil samples from BMSS-1 to BMSS-4 that were submitted for laboratory analysis.

Borings RP-1 through RP-5 were installed near the back of the property lots and along the chain link fence adjacent to Portage Creek. All of the residential lots were located along Homecrest Avenue. Two samples were collected from each boring. The surficial soil samples were collected using a stainless steel hand auger in a manner consistent with the procedures described in the FSP. Fill material had been placed in this area and therefore the surficial samples are not representative of original floodplain materials. To obtain samples of the original floodplain material, a post hole digger was used to remove fill/rubble material which ranged from 2 to 4.5 feet thick. Once the fill/floodplain interface was reached, the stainless steel hand auger was again used to collect the sample in a manner consistent with procedures described in the FSP. Both samples from each RP boring location were analyzed for PCB.

The BMSS surface soil samples were collected on December 14, 1993. BMSS-1 and BMSS-2 samples were collected from the backyard of a house located on Norton Drive. BMSS-3 and BMSS-4 samples were collected from below the bluff on the east side of the fence. The location of all of the BMSS samples were identified based on consultation with the MDNR. The samples were each collected from a depth of 0 to 6 inches bgs using a hand auger in a manner consistent with the FSP. All four BMSS samples were analyzed for PCB.

#### 2.6 QA/QC Review of Data

Data packages for the OU underwent review and evaluation to assess overall analytical precision and accuracy. These packages include data for samples of residuals, soil, and groundwater/leachate. Analytical data, organized into 36 sample delivery groups (SDGs), were reviewed using techniques appropriate to the various media and compounds tested. Table 2-8 presents these SDGs and their associated samples and matrices.

Laboratory analyses precision was assessed by comparing the analytical results between matrix spike (MS) and matrix spike duplicate (MSD) samples for organics, and MS and laboratory duplicates for inorganics. Field duplicates were also used, and relative percent differences (RPD) were calculated for each pair of duplicate analyses. To assess the analytical method's accuracy, other indicators such as surrogate spike and blank spike recovery data were also examined.

A precision and accuracy summary, as assessed through the review of QA/QC information including MS/MSD recovery data, RPD between recoveries, matrix spike blank recovery data, field duplicate RPD calculation results, surrogate spike recovery data, blank spike recovery data, and blank contamination detection, is presented in Appendix C.

A more detailed analysis of data quality is provided in the data review reports presented in Appendix D. Also note that data review procedures are derived from applicable USEPA guidance (USEPA, 1989b; 1991a; 1991b; 1991c; and 1991d) and the QAPP.

Chain-of-Custody forms are presented in Appendix E.

*...*.

#### 3.1 Field Data

Field data collected included visual observation of subsurface materials, groundwater and surface water elevations, field instrumentation measurements (i.e., pH, specific conductance, temperature, etc.), in-situ hydraulic conductivities, and gamma-ray logging results. The materials sampled and observed during the investigation included native soil, sediment, dike materials, residuals, and groundwater/leachate. A complete set of field notes documenting the field activities and observations is provided as Appendix A.

#### 3.1.1 Residuals/Soil/Sediment Field Data

The Allied OU has been divided into eight areas based on physical characteristics and geographical location. These areas include: the Bryant HRDL, the Monarch HRDL, the FRDLs, the former Type III Landfill, the Western Disposal Area, the Pilot Study Area, Portage Creek, and the former Bryant Mill Pond (see Figure 2). Field data were collected during the Residuals and Soil Characterization, the Hydrogeological Investigation, and the Sediments Investigation, and included visual observation of subsurface materials to characterize the residuals and native soil at the OU. Field observations for each boring and well location were recorded in the subsurface logs (Appendix A). Figure 3 displays the locations of each boring and well drilled for the investigation. Eight cross-sections have also been prepared to illustrate the subsurface stratigraphy. Figure 5 illustrates the location of the cross-sections, each cross-section is individually presented on Figures 6 through 12. In addition, two contour maps of a clay underlying much of the OU (Figures 13 and 14) and one map showing the thickness of peat encountered (Figure 15) were prepared to further illustrate site stratigraphy.

The natural glacial and fluvial deposition of subsurface deposits at the OU, complicated by human alterations including the HRDLs, FRDLs, and former Type III Landfill, have resulted in a complex subsurface stratigraphy. In general, the subsurface stratigraphy consists of a clay (Figure 14), or peat zone (Figure 15) beneath the residuals, fill, or dike materials. These zones are underlain by alternating sequences of gravels, sands, silts, and clays.

The stratigraphy is complex in the immediate vicinity of Portage Creek, where fluvial deposition, as evidenced by the discontinuous nature of deposits, appears to be dominant. In the central and western portions of the OU, thicker, more continuous clay, sand, and gravel units predominate. In these areas, the peat layer was not detected.

Correlation of units between borehole locations is therefore difficult because of the interlayered, non-continuous nature of some of the deposits; however, several units were identified which appear to be continuous over a significant portion of the OU (Figure 15). One such unit is the peat layer present under the residuals, dikes, and fill materials across much of the OU. Areas across the OU where peat was not detected were in the vicinity of the MW-125 cluster, the Western Disposal Area (except in the southern portion near WA-6, WA-8, and MW-8A), in the central portion including the FRDLs, MW-19 cluster, and the former Type III Landfill, and in the MW-124 cluster located on a hill southeast of the Monarch HRDL.

Another unit consistently encountered under the peat and/or fill materials is a sand zone. This zone appears fairly continuous throughout the OU and is composed of a series of different sand units. This zone is not as evident or continuous along Portage Creek where the depositional sequence consists of interbedded, non-continuous sands, silts, and clays.

A sand and gravel zone occurs across much of the OU at an approximate elevation of 770 to 780 feet National Geodetic Vertical Datum of 1928 (NGVD). This unit was often observed to be separated from the shallow sand units by a clay unit.

The clays beneath the Allied OU consist of three separate units, described here as: upper clay, middle clay and lower clay. These clay units are typically separated by layers of silt, sand, and gravel or mixtures of these materials. The upper clay unit is discontinuous and is found lateral to fill materials in the southern portion of the OU at the perimeter of the Bryant and Monarch HRDLs (e.g., MW-111, MW-124A, and MW-124B). The clay within this unit is typically light brown to gray, wet, and contains silt. Portions of this clay unit were likely re-worked into fill material as areas were graded, as evidenced by the thin lenses of clay that were found within the fill.

The middle clay unit is also discontinuous across portions of the OU and typically underlies the areas of fill and residuals. Within the interior portion of the site (i.e., beneath the FRDLs and the Bryant HRDL) the middle clay unit lies below a peat layer (e.g., GEO-2, MW-8, and MW-11); however, this unit also interfingers with (e.g., MW-18 to MW-17B), or is replaced by, peat along a narrow band nearest Portage Creek (e.g., MW-125B, MW-121A, and MW-121B). The upper surface of this clay unit ranges from its highest elevation within the central portion of the OU to its lowest elevation near Portage Creek (Figure 13). The middle clay unit is thickest in the vicinity of the Bryant HRDL and Bryant Clarifier and thins towards Portage Creek (Figure 14).

In many areas of the site the middle clay unit can be further subdivided into an upper-middle clay and a lower-middle clay. The upper-middle clay sub-unit is found beneath fill areas and is generally lateral to or beneath peat deposits (e.g., lateral clay/peat change from MW124B to MLSS-4 and beneath peat in GEO-2). In many portions of the OU the fill areas and berms have been built on the peat or clay sub-unit (e.g., MW-17B and GEO-1). This clay sub-unit is characterized as a brown, grey, or brown-grey silty clay that sometimes contains traces or interbeds of silt, sand, or gravel. The peat layer is typically dark brown to black, moist, loose, high in organic content such as roots, and may contain varying amounts of silts, sands, and clays. This peat layer occurs in a band along Portage Creek (Figure 15).

The lower-middle clay sub-unit is found below the upper-middle clay and may be separated from it by interbeds of sands, silts, or gravels (e.g., MW-19 and MW126B). This lower-middle clay sub-unit is similar to the upper-middle clay sub-unit in character, but is more often found containing or interbedded with silt, sands, and gravels.

The lower-middle clay sub-unit is underlain by sands, silts, and gravels. These materials have been observed to be underlain by a lower clay unit (e.g., MW-19D and MW-114). Although penetrated by only a few wells, the lower clay unit is found at an elevation of approximately 750 feet and exists below the north-central part of the OU. This unit grades to a silty clay or silt nearest the former Bryant Mill Pond portion of the OU.

The following sections present a description of the subsurface materials in each of the eight areas across the OU.

#### 3.1.1.1 Bryant HRDL

To characterize the residuals, native soils, and dike materials in and around the Bryant HRDL, two soil borings (designated BLHB-1 and BLHB-2) were installed at the base of the dikes and three geotechnical borings (designated GEO-1 through GEO-3 (MW-123B)) were installed in the dike during the Residuals and Soil Characterization. One monitoring well (MW-121B) and two monitoring well clusters (designated MW-22A/MW-22B and MW-123A/MW-123B) were installed in the dike and two soil borings (designated BHDL-22 and BHDL-123) were installed within the Bryant HRDL during the Hydrogeological Investigation.

Cross-section D-D', included as Figure 9, illustrates the generalized stratigraphy through the dike. A portion of crosssection A-A', included as Figure 6, illustrates the stratigraphy under the Bryant HRDL and through the dikes.

No residuals were identified in either BLHB-1 or BLHB-2. Residuals were also not detected in GEO-2 and GEO-3 or in the two well clusters installed. Five feet of residuals were observed in geotechnical boring GEO-1 and 10 to 12 feet

of residuals were identified within the Bryant HRDL in borings BHDL-22 and BHDL-123. Typically the residuals were characterized according to the Burmister Soil Classification System, as light gray to greenish-gray, fibrous material with "little" (10 to 20 percent) clay.

Directly underlying the dike material and residuals was a peat layer ranging from 0.3 to 3 feet in thickness. The uppermiddle clay unit was encountered under the peat within the HRDL. The materials encountered in the subsurface under the upper-middle clay consisted of interlayered gravels, sands, silts, and clays. In the deep geotechnical borings GEO-1 and GEO-2 along the southern perimeter of the Bryant HRDL, the material observed was mainly sand to at least 50 feet bgs. No clay zones were encountered in GEO-1, and two thin (1 to 3 feet) clay zones were encountered in GEO-2 at 18 (upper-clay unit) and 21 feet bgs. In MW-22A/MW-22B, located between GEO-1 and GEO-2, sand was detected to 30 feet bgs. Under the sand, a 6-foot thick silt layer followed by an 8-foot thick lower-middle clay layer were identified. From 44 feet bgs to 50 feet bgs, another sand zone was encountered.

The fill materials forming the dikes consisted principally of a mixture of sands, gravels, silts, and clays. Residuals were not identified in the dikes.

#### 3.1.1.2 Monarch HRDL

To characterize the residuals, native soils, sediments, and dike materials in and around the Monarch HRDL, samples were collected continuously from two hand borings (designated MLHB-1 and MLHB-2) and five soil borings (designated MLSS-1 through MLSS-5) drilled as part of the Residuals and Soil Characterization and Sediments Characterization. Samples were also collected during the drilling of three well clusters (designated MW-124A/MW-124B, MW-125A/MW-125B/MW-125P, and MW-126A/MW-126B) installed as part of the Hydrogeological Investigation.

Geologic cross-sections E-E' and F-F', presented as Figure 10, illustrate the subsurface stratigraphy in the vicinity of the Monarch HRDL. In addition, the southern end of cross section A-A' extends across the Monarch HRDL and correlates with units from the adjacent Bryant HRDL area.

Residuals were encountered in each of the boreholes drilled in the Monarch HRDL with the exception of the MW-124A/MW-124B well cluster located upgradient of the HRDL and in MLHB-1 and MLHB-2 located at the base of the dike. Within the HRDL, residuals were detected at the surface in MLSS-2 through MLSS-5. Residuals were covered with 9 feet of fill materials at boring location MLSS-1. The depth to the base of the residuals ranged from 16 feet bgs at MLSS-1 to 24 feet bgs at MLSS-5. In general, the residuals in the Monarch HRDL were characterized according to the Burmister Soil Classification System, as light grey, fibrous material with a "trace" (<10 percent) to a "little" (10 to 20 percent) clay and a "little" sand and gravel. The residuals were also found to grade to a dark gray color with depth. Blow counts for the split-barrel samplers were low through the entire thickness of the materials and ranged from weight of hammer (WOH) to 1 to 4 blows per 6 inches.

A peat zone up to 3 feet thick was observed underlying the residuals in all of the borings and wells where residuals were encountered. The stratigraphic units underlying the peat zone were not continuous from the MW-126 cluster to the MW-125 cluster. In MW-125B, sand, and sand and gravel were logged to a depth of 52 feet bgs, and no clay units were encountered. However, in MW-126B, a 2-foot thick sand zone was encountered under the peat followed by a silt layer and a upper-middle clay layer to 26 feet bgs. From 26 feet to 32 feet bgs, the stratigraphy consists of alternating sand and lower-middle clay zones, each approximately 1 foot thick.

In MW-124A/MW-124B, 20 feet of fill materials were encountered over the native soils. Underlying the fill, a 4-foot thick sand layer was identified, followed by a 6-foot thick upper-clay zone. Under the clay, another 13-foot thick sand

layer was observed, followed by an 11-foot thick upper-middle clay zone. The remaining 6 feet consisted of alternating sand and lower-middle clay layers, which correlate with similar zones encountered in MW-126.

#### 3.1.1.3 FRDLs

To characterize the residuals, native soils, and dike materials in the FRDLs, six soil borings (designated DLHB-1 through DLHB-6) and one hand boring designated BLHB-3, were installed as part of the Residuals and Soil Characterization and Sediments Characterization. In addition, one monitoring well cluster (designated MW-122A/MW-122B) was installed in the dike surrounding the FRDLs, and one replacement well (MW-12R) was installed in the dike between the FRDLs and the Bryant HRDL as part of the Hydrogeological Investigation.

A portion of cross-section D-D', included as Figure 9, illustrates the stratigraphy within and below the dike around the FRDLs. Portions of cross-section A-A' and C-C' included as Figures 6 and 8 also illustrate the stratigraphy in the vicinity of the FRDLs.

The DLHB borings were all installed within the FRDLs. Residuals were encountered in DLHB-1, DLHB-2, DLHB-3, and DLHB-6 and ranged from 7.5 to 16 feet thick. No residuals were detected in either DLHB-4 or DLHB-5. The residuals observed within the FRDLs were typically classified according to the Burmister Soil Classification System consisting of light gray, paper fiber, with a "trace" of clay. However, the residuals were observed to vary to an equal mixture of clay and paper fibers at some locations. The residuals were generally moist and soft with most blow counts from the split-barrel samplers recorded as WOH. At boring locations DLHB-4 and DLHB-5, where no residuals were encountered, subsurface materials were composed primarily of grey to grey/green sand and gravel with increasing amounts of silt and/or clay with depth.

Based on the boreholes drilled for monitoring wells MW-122A/MW-122B and MW-12R, (installed on the dike around the FRDLs), the fill materials were observed to consist of unstratified sands, silts, and clays. The dike material extended to a depth of 18 to 19 feet bgs.

A peat unit was identified under the fill materials forming the dikes. A 6.5-foot thick middle clay followed by a 27.5foot thick alternating clay and silt unit was encountered in MW-122A/MW-122B from 21 to 55 feet bgs. Sand was encountered beneath the clay unit. A silt and clay unit was not observed beneath the peat in MW-12BR. At this location, sand and silt were detected underlying the peat to 40 feet bgs. A sand and gravel layer was encountered under the sand and silt followed by a sand and clay unit.

#### 3.1.1.4 Former Type III Landfill Perimeter and the Pilot Study Area

To characterize the residuals, native soils, and fill materials along the southeastern perimeter of the Former Type III Landfill and in the Pilot Study Area, three soil borings (designated FLF-1 through FLF-3) were installed on the southeastern margin of the landfill, and five soil cores (designated MA-1 through MA-5) were collected near the northern end of the landfill in the Pilot Study Area as part of the Residuals and Soil Investigation. In addition, one monitoring well (MW-2S) was installed in the Pilot Study Area, one monitoring well (MW-127A) was installed on the northern edge of the landfill; and one replacement monitoring well (MW-19BR) was installed on the southern edge of the landfill as part of the Hydrogeological Investigation.

Cross-sections A-A' (Figure 6), C-C' (Figure 8), and H-H' (Figure 12) illustrate the stratigraphy across the former Type III Landfill, and a portion of cross-section A-A' illustrates the stratigraphy in the Pilot Study Area.

Residuals were found in all three of the FLF borngs at thicknesses ranging from 6 to 10 feet. In FLF-1, the top portion of residuals were within 1 foot of ground surface while in FLF-2 and FLF-3 the residuals were under 10 to 11 feet of sand, silt, and clay fill material. The residuals observed in these borings were described according to the Burmister Soil Classification System as gray to dark gray, fibrous materials with a "trace" to "some" clay, and a "trace" of sand and silt. No residuals were found in the five MA borings, or the borings MW-2S, MW-127A, and MW-19BR.

Sand, silt, and gravel fill materials were observed in the shallow subsurface in cores MA-1 and MA-4. In MA-2, MA-3, and MW-5, which were installed on the fringes of the former Bryant Mill Pond, peat, sand, and silt were identified. In MW-2S, black organic silt, grading to a clay, was observed to a depth of 8 feet bgs, underlain by sand. In MW-127A, 5 feet of sand was observed overlying 5 feet of gray middle-clay.

Deeper subsurface stratigraphy underlying the former Type III Landfill and Pilot Study Area was observed during the installation of MW-19BR, and previously observed during installation of MW-16 and MW-17 well clusters and wells MW-2, MW-4, MW-12, and MW-18 (see Figure 8). In the vicinity of the MW-19 cluster, native soil encountered below the fill consisted of 5 to 10 feet of sand and gravel, followed by successive units of upper-middle clay and silt which extend to another sand unit. Under this sand, another silty lower-middle clay unit is evident at approximately 780 feet NGVD, and may be laterally continuous with middle clays and clay and silt units logged in MW-16 and the newly installed MW-122 well cluster (Figure 12). Underlying the silty clay is a sand zone that also appears to be continuous with the sands and gravels found in MW-16 and the MW-122 cluster. A lower-clay zone was encountered in MW-19C during previous investigations.

#### 3.1.1.5 Western Disposal Area

To characterize the residuals and native soils in the Western Disposal Area, eight soil borings (designated WA-1 through WA-8) were installed as part of the Residuals and Soil Characterization. One shallow (MW-8A) and three deep (MW-7B, MW-20B, and MW-120B) monitoring wells were installed as part of the Hydrogeological Investigation.

Cross-sections B-B' and G-G', presented as Figures 7 and 11, illustrate the subsurface stratigraphy across the Western Disposal Area.

Residuals were observed in all eight of the WA borings as well as in MW-7B, MW-8A, MW-20B, and MW-120B. No residuals were found in the MW-7, MW-20, and MW-21 wells. In general, 1 to 3 feet of topsoil and sand material were observed to cover the residuals in the Western Disposal Area. The residuals ranged in thickness from 4 feet in WA-4 to 20 feet in WA-5. The residuals within this area were described according to the Burmister Soil Classification System as light to dark gray fibrous materials with a "little" to "some" clay and containing a few thin sand seams.

Native soil encountered under the residuals consisted primarily of sand and gravel. A thin layer of peat was found in WA-6, WA-8, and MW-8A, immediately underlying the residuals. Deeper stratigraphic units were characterized at monitoring well locations MW-7B, MW-8B, and MW-20B. The sand and gravel unit underlying the residuals appears to be continuous throughout the Western Disposal Area. A middle sandy clay/clay unit was encountered underlying the sand and gravel unit in the southern part of the area. Another sand layer was encountered under the middle sandy clay/clay layer.

#### 3.1.2 Hydrogeological Field Data

Hydrogeological conditions at the Allied OU can be characterized by field data collected from the new and existing groundwater monitoring wells and piezometers.

Field data collected during the Hydrogeological Investigation included:

- Existing monitoring well inventory results:
- Potentiometric surface elevation depths;
- In-situ hydraulic conductivity testing data;
- Groundwater quality data as measured by field instrumentation; and
- · Gamma-ray logging results.

#### 3.1.2.1 Existing Monitoring Well Inventory Results

Each of the 27 existing wells used as data collection points during the RI, and 23 additional wells, were located and inspected for surface seal integrity, depth to groundwater, depth of well, and apparent well condition. The completed Existing Monitoring Well Inventory Forms and the Well Inspection Field Forms are included in Appendix B with pertinent data summarized in Table 3-1.

Measured well depths were compared to reported well installation depths to determine whether material had accumulated in the bottom of the wells. The accumulation of significant thickness of materials in the base of an existing well indicates the possible need to redevelop that well. In general, the data collected matched the reported information; therefore, no wells were recommended for redevelopment. The measured depth of two wells, MW-1 and MW-2, were observed to be deeper than the reported depths. These discrepancies may have been due to inaccurate well logs.

#### 3.1.2.2 Groundwater Elevation Data

The potentiometric surface elevation and the in-situ hydraulic conductivity data were used to evaluate groundwater flow rates and directions. A complete round of groundwater/surface water elevation measurements for the new and existing monitoring wells, piezometers, and creek gauge stations were recorded on September 9 and 27, and December 14, 1993 and May 16 and June 15, 1994. In addition, on September 10, 13, 16, and 21, and October 6, 1993, groundwater/surface water elevations from both MW-122A and creek gauge CG-1 were measured to determine flow direction prior to groundwater sampling. Elevation measurements are presented in Table 3-2. Field measurement logs for elevation data are presented in Appendix A.

The six newly installed piezometers were all dry upon completion. However, groundwater was observed and its level recorded in piezometers P-1, P-2, P-3, and P-3C on September 9 and December 14, 1993. P-1C and P-2C were dry during both measurement events.

Water table contour maps for the Allied OU have been generated based on water level data collected on September 9 and 27, and December 14, 1993. These contour maps are presented on Figures 16, 17, and 18, respectively. The shallow groundwater at the OU was observed to flow generally toward Portage Creek. This results in a semi-radial flow pattern from the center of the OU as the creek bends around the OU. The flow pattern is also toward the Creek on the Monarch HRDL side.

A hydraulic gradient was evident below the Monarch HRDL. The hydraulic gradient was determined by using an average of the potentiometric surface elevation data collected on September 9, September 27, and December 14, 1993 (Table 3-2) for MW-124A (812.15 ft) and MW-125A (792.66 ft) and the horizontal distance between the two well

points as measured from the site map (250 ft). This calculation [(812.15 - 792.66/250] indicates a hydraulic gradient of approximately 0.077.

The hydraulic gradient across the main portion of the OU ranges from 0.008 to 0.013. The upper value was determined by using an average of the potentiometric surface elevation data collected on September 9, September 27, and December 14, 1993 (Table 3-2) for MW-7 (800.22 ft) and MW-2S (787.81 ft) and the horizontal distance between the two well points as measured from the site map (980 ft). The result of this calculation [(800.22 - 787.81)/980] indicates a hydraulic gradient of approximately 0.013. The lower value was determined by using an average of the potentiometric surface elevation data collected on September 27, and December 14, 1993 (Table 3-2) for MW-120A. (800.59 ft) and MW-22 (794.78 ft) and the horizontal distance between the two well points as measured from the site map (760 ft). The results of this calculation [(800.59 - 794.78)/760] indicates a hydraulic gradient of approximately 0.0159 ft) and the horizontal distance between the two well points as measured from the site map (760 ft). The results of this calculation [(800.59 - 794.78)/760] indicates a hydraulic gradient of approximately 0.018.

Vertical hydraulic gradients observed at well clusters MW-7, MW-8, MW-16, MW-17, MW-19, MW-20, MW-22, MW-120, MW-121, MW-122, MW-123, MW-124, MW-125, and MW-126 were calculated from the groundwater elevation data collected on September 9 and 27, and December 14, 1993. The results of these calculations are presented on Table 3-3. The results indicate slight upward gradients in well clusters MW-8, MW-16, MW-17, MW-22, MW-121, and MW-125, and slight downward gradients in MW-19, MW-120, and MW-124. In several well clusters, including MW-7, MW-20, MW-122, MW-123, and MW-126, the gradient was downward on some occasions and then upward on other occasions. In general, a downward vertical gradient or variable gradient was identified in wells on the interior of the OU and away from the Creek such as MW-7B, MW-19, and MW-20. Upward gradients were identified in some wells along the perimeter of the OU and near the Creek including MW-22, MW-122, and MW-125. Since all of the observed vertical gradients are small in comparison to the horizontal gradients across the OU, the direction of groundwater flow is anticipated to be predominantly horizontal rather than vertical.

#### 3.1.2.3 In-Situ Hydraulic Conductivity Test Results

To evaluate the relative ability of the various materials observed in the subsurface to transmit groundwater, in-situ hydraulic conductivity tests were performed on each of the new wells. The results of the in-situ hydraulic conductivity tests indicate that the hydraulic conductivity of the various geologic units vary considerably. Table 3-4 summarizes the results and indicates a range in conductivities on the order of 1E-5 to 1E-2 centimeters per second (cm/sec). Most of the hydraulic conductivity values ranged between 1E-3 and 1E-4 cm/sec.

Documentation of the in-situ hydraulic conductivity testing is presented in Appendix F.

The lowest hydraulic conductivity value for the new wells was measured in MW-125B. Although this well is screened in sand and gravel, the unit was very dense, thus limiting groundwater flow. The highest hydraulic conductivity value of the new wells was measured in MW-120A, which is screened in a loose, coarse soil and gravel. In general (except MW-120A), values of 1E-3 and 1E-4 cm/sec were obtained from shallow wells screened directly below the residuals/soil interface. Typically, these wells crossed several units including peat zones, fine to medium sands, silty soils, and sands. Shallow wells including MW-2S, MW-127A, and MW-128A, were also screened across heterogeneous units and had hydraulic conductivity values of 1E-3 and 1E-4 cm/sec. Wells partially screened in dike materials (MW-22A, MW-122A, and MW-123A), and piezometers fully screened in the dike materials (P-1, P-2, and P-3), had hydraulic conductivity values of approximately 1E-3 cm/sec (except P-2 with a value of 1.7E-02 cm/sec, and MW-122A with a value of 9.9E-4 cm/sec). These data suggest that the dike material has hydraulic conductivities similar to native soil.

0197840.G2 - 8/14/97

#### 3.1.2.4 Groundwater Quality Data from Field Instrumentation

Table 3-5 presents general groundwater quality parameters collected using field instrumentation during groundwater sampling. Parameters measured included pH, temperature, specific conductivity, dissolved oxygen, and turbidity. Measurements of pH for all the wells ranged from 6.5 to 8.9 standard units. Water temperature in the wells ranged from 12 to 21°C. Specific conductivity values ranged from 507 microSiemens per centimeter (uS/cm) to 1,980 uS/cm. Dissolved oxygen values ranged from 0.79 mg/L to 10.27 mg/L. Turbidity values ranged from 0.65 nephelometric turbidity units (NTU) to 75.0 NTU. Field documentation is provided in Appendix A.

#### 3.1.2.5 Gamma-Ray Logging Results

Natural gamma instruments utilize the presence of naturally occurring gamma radiation in units of counts per second (cps) using a scintillation crystal. Typically, silts, clays, and shales exhibit higher cps due to their higher percentage of potassium 40 (K40). Sand, gravels, sandstones, and limestones generally exhibit low cps as they usually contain little K40.

Gamma-ray logging was conducted on nine of the newly installed "B" wells and on four of the existing wells in an attempt to correlate subsurface stratigraphy observed in borings installed during this investigation with previous subsurface investigations. The gamma logs were reviewed to determine if the gamma log data could be used to assist in correlating stratigraphy at the OU. Gamma logs were reviewed for MW-11, MW-16C, MW-19D, MW-22B, MW-25, MW-120B, MW-121B, MW-122B, MW-123B, MW-124B, MW-125B, and MW-126B. Gamma logs were depth corrected for the smaller shaft encoder wheel used during the geophysical logging, resulting in deeper gamma logs than the corresponding well depths. A correction factor of 0.81 was applied to the gamma logs that were less than 40 feet deep, and a correction factor of 0.83 was applied to gamma logs that were greater than 40 feet deep.

Of the 13 gamma logs reviewed, four logs (MW-16C, MW-19D, MW-22B, and MW-120B) displayed good correlation with the subsurface stratigraphy described on their corresponding subsurface well logs. Five gamma logs (MW-121B, MW-122B, MW-123B, MW-125B, and MW-126B) had poor correlation with corresponding subsurface well logs, and the remaining three gamma logs (MW-11, MW-25, and MW-124B) displayed no correlation with their corresponding well logs. The four gamma logs that had good correlation exhibited a substantial increase in cps which could be associated with a dense grey silty clay unit that was 8 to 10 feet thick. Generally, stratigraphic units less than 4 feet in thickness or interbedded with units having gradational contacts (silty sands and clayey sands) were not discernible on the gamma logs.

Gamma-ray logs are provided as Appendix G.

#### 3.1.3 Sediments Investigation

#### 3.1.3.1 Former Bryant Mill Pond Sediments

The former Bryant Mill Pond has been extensively sampled during previous investigations. During the recent Sediments Investigation, additional soil borings (BMP-1 through BMP-12) were installed in the former pond or on the eastern bank to confirm previous results and further define the extent of PCB-containing sediments. Boring logs for the BMP borings are included in Appendix A.

Residuals were encountered in BMP-3 and BMP-12. The residuals consisted of a mixture of gray paper fibers, clay, and silt, and ranged from 0.4 to 6 feet thick. Soil and sediment encountered in the former Bryant Mill Pond consisted

of an upper 1- to 2-foot layer of organic silt (peat) overlying dark gray silt and clay. Sand was encountered under the silt and clay in BMP-5, BMP-6, BMP-11, and BMP-12.

#### 3.1.3.2 Portage Creek Sediments

To characterize PCB levels in sediments in contact with Portage Creek on a daily basis, five surficial sediment samples (designated GS-1 through GS-5) were collected in the creek bed. In addition, the thickness and type of stream bed sediments were evaluated and described during stream sediment probing and sediment coring at 60 locations along the center line of Portage Creek.

The surficial sediments collected at GS-1 through GS-5 consisted mainly of fine to coarse sand. Organic-rich silt was also found at GS-2 and GS-3. Table 3-6 summarizes the field data collected at the GS sample locations. On the center line of the creek, where the 60 locations were probed, probe depths ranged from 0.2 to 9.0 feet bgs. Sediment cores collected from these locations were mainly fine to medium grained sands overlying organic-rich clay overlying peat deposits. Deeper cores encountered sand beneath the peat zone. Table 3-7 summarizes the field descriptions and lengths of the cores collected during this investigation.

#### 3.1.4 Residential Property Soil Sampling

Residential property soil sampling was conducted in two phases of work. The initial phase consisted of the installation of five hand augered soil borings designated RP-1 through RP-5. At these locations, the upper 0.5 feet consisted of topsoil and/or sand. Under this zone was 2 to 4.5 feet of fill material consisting of bricks, clay, and sand. Former Bryant Mill Pond area sediments were encountered under the fill at 2 to 4.5 feet boring depths. Table 3-8 summarizes the field descriptions and the samples collected.

The second phase of residential soil sampling consisted of the collection of four surface soil samples, designated BMSS-1 through BMSS-4. The surficial samples consisted of silt and sand. A summary of this field data is also presented in Table 3-8.

#### 3.2 Geotechnical Investigation Results

The geotechnical laboratory testing program included moisture contents, organic contents, Atterberg Limits, specific gravities, gradations, UU triaxial shear tests, and one-dimensional consolidation tests of soil and residuals. Appendix H includes a table which summarizes the results of the geotechnical testing and figures showing the consolidation, UU, CIU triaxial shear, and gradation test results.

Field vane-shear testing was conducted at borings MW-20B and DLHB-2A. The computed shear strengths are presented in Table 3-9. Typically, the materials at the field vane-shear testing locations identified in the Work Plan were found to be granular materials, such as sands, that were not appropriate for field vane-shear testing. The collection of Shelby tubes and/or environmental samples was given precedence over vane-shear testing at some borehole locations where vane-shear tests could not be performed.

Parameters from the laboratory testing program will be used primarily for the dike stability analyses. The residuals field and laboratory test data will be used for preliminary assessments of residuals stability and compressibility.

In general, laboratory testing was performed on three types of material--peat, clays, and residuals. The test results for each of these materials are discussed briefly below.

Two Shelby tubes of peat samples from borings GEO-1 and GEO-2 were tested. The test results indicated a wide range of organic content of 11 to 44 percent by weight for the two peat samples. The organic content is a key variable controlling the engineering behavior of peat. As a result, the water contents, specific gravity, and plasticity also vary across a wide range. The water contents tend to be lower than expected for these organic content results, but the plasticity and specific gravity are similar to expected values based on published correlations. It should be noted that these peats have been compressed by 14 to 16 feet of soil used for the dike construction, and this precompression lil:ely squeezed out water that would be present in the peat in its original state prior to filling. Only the lower organic content sample had sufficient recovery for strength or compression testing. The test results indicate higher strength and lower compressibility than would normally be associated with peat. The peats appear to have formed in a fairly sandy environment which could explain these test results.

Two clay samples from borings MW-123B and MW-127A were tested. The clays appear to vary significantly in plasticity. The sample from MW-123B would have a Unified Soil Classification System (USCS) classification of CL with a liquid limit of 28, a plasticity index of 15, and a clay content of 30 percent. The activity (Plasticity Index/Clay Content) of the sample was 0.5 which indicates a relatively inactive clay mineralogy, such as kaolinites. The sample from MW-127A would have a USCS classification of CH with a higher liquid limit of 57, a plasticity index of 37, and a clay content of 27 percent. The activity of this sample was significantly higher at 1.4 which indicates the presence of more active clay minerals such as illite. This indicates that the parent materials of these two clays are likely from different sources.

The consolidation and strength tests were performed on the lower plasticity clay and indicate the clay is stiff to very stiff with a low to moderate compressibility. This is consistent with the plasticity and water content of the sample.

The residuals typically had consistently high organic contents (35 to 60 percent by weight) and water contents (232 to 449 percent by weight) except for the two samples from boring DLHB-4 which had very low organic contents of 1.5 to 2.3 percent and water contents of 17 to 19 percent. This indicates that there are likely to be large differences in the engineering properties of residuals in the FRDLs and HRDLs.

#### 3.3 Analytical Data

Many of the reported laboratory results throughout this section have associated data qualifiers attached as required by USEPA guidelines (USEPA, 1989b; 1991a; 1991b; 1991c; and 1991d). Specifically, when a datum reported in this section is followed by a "J" the compound or analyte was positively identified; however, the numerical value reported is an estimated concentration only.

#### 3.3.1 PCB

#### 3.3.1.1 Residuals/Soil/Sediment

The results of residuals, soil, and sediment PCB analyses are summarized in Table 3-10 and Figures 19 through 23. A range of detected concentrations for TCL compounds, including total PCB, in native soil and residuals is presented in Table 3-11.

#### Bryant HRDL

PCB in surficial residuals samples in the Bryant HRDL were detected at concentrations of 0.29J mg/kg at BHDL-123 and 2.7J mg/kg at BHDL-22. A duplicate sample taken from BHDL-22 had a concentration of 0.081J mg/kg. Subsurface PCB concentrations in residuals from the Bryant HRDL ranged from 0.71J mg/kg at BHDL-123 (4 to 6 feet)

to 650 mg/kg at MW-121B (10 to 12 feet). The highest concentrations were observed at depths near the top of the residuals layer at BHDL-22 and MW-121B and near the bottom of the residuals layer at BHDL-123. PCB concentrations in underlying native soils ranged from not detected (MW-121B and BHDL-22) to 0.039J mg/kg (BHDL-123). The duplicate native soil sample of BHDL-22 had a concentration of 0.050 mg/kg although the original sample did not contain a detectable concentration of PCB. Subsurface samples of dike materials at P-1, P-2, and P-3 ranged in PCB concentration from not detected at P-3 to 35 mg/kg at P-1. Figure 19 illustrates the distribution of PCB in residuals and soil at the Bryant HRDL.

#### Monarch HRDL

PCB in surficial residuals samples ranged in concentration from not detected at MLSS-5 to 110 mg/kg at MLSS-2. The sample from MLSS-2 was the only sample with a PCB concentration greater than 20 mg/kg. PCB concentrations generally increase with depth in the residuals to approximately 60 percent of the total depth where the maximum concentration was typically observed followed by decreasing concentrations to depth. PCB concentrations in subsurface residuals ranged from 0.35 mg/kg at MLSS-5 (8 to 10 feet) to 140 mg/kg at MW-125B (14 to 16 feet). Concentrations in underlying native soil ranged from not detected at MLSS-2 and MW-126A to 0.47 mg/kg at MLSS-3. No PCB were detected in any of the samples from the upgradient well location MW-124A/MW-124B. Sample locations and PCB distribution are shown on Figure 20.

#### FRDLs

Within the FRDLs, PCB in surficial residuals samples ranged from not detected at DLHB-1 and DLHB-2 to 2.2 mg/kg at DLHB-3. Residuals were not encountered at DLHB-4 and DLHB-5. The surficial samples from DLHB-4 and DLHB-5 consisted of soils with PCB concentrations of 1.5 mg/kg at DLHB-4 and 8.0J mg/kg at DLHB-5. The areas where DLHB-4 and DLHB-5 are located are typically inundated with water. PCB concentrations in subsurface residuals ranged from not detected at DLHB-1 (2 to 4 feet) and DLHB-2 (2 to 4 feet) to 19 mg/kg at DLHB-6 (8 to 10 feet). The duplicate sample for DLHB-6 (6 to 8 feet) had a PCB concentration of 120J mg/kg. Twelve out of 15 samples with PCB detections (including duplicates) had PCB concentrations less than 10 mg/kg. PCB concentrations generally increased with depth for those locations where residuals were encountered. PCB concentrations in underlying native soils ranged from 0.093 mg/kg at DLHB-2 to 7.0 mg/kg at DLHB-6. Distribution of PCB at the FRDLs is shown on Figure 19.

#### Former Type III Landfill

PCB in surficial soils near the perimeter of the former Type III Landfill ranged from not detected at FLF-2 to 85J mg/kg at FLF-1. PCB concentrations reported in subsurface residuals samples ranged from 0.14J mg/kg at FLF-3 (14 to 16 feet) to 2,000 mg/kg at FLF-2 (20 to 22 feet). This sample was taken from residuals directly above the residuals/native soil interface. Concentrations from the subsurface soil samples ranged from not detected at FLF-3 to 2.4 mg/kg at FLF-2. PCB was detected in the soil sample from MW-127A at a concentration of 0.052J mg/kg, however, a duplicate from this location did not contain detectable concentrations of PCB. PCB was not detected in soil samples from MW-19BR at concentrations above 1 mg/kg. Distribution of PCB along the perimeter of the Former Type III Landfill is shown on Figure 19.

#### Western Disposal Area

019784

In the Western Disposal Area, surficial PCB concentrations range from  $n_{of}$  detected at WA-1 and WA-5 to 8.8 mg/kg at WA-6. Subsurface residuals ranged in concentration from not detected at WA-5 (18 to 20 feet) and WA-7 (10 to 12 feet and 16 to 18 feet) to 2,500 mg/kg at MW-120B. PCB concentrations in subsurface residuals were less than 50

| 0.G2 - | 8/14/97 |  |  |
|--------|---------|--|--|

mg/kg in 22 out of 41 samples with detections (including duplicates). Subsurface residuals concentrations are variable with no apparent trend in concentration with respect to depth. Subsurface native soil had concentrations ranging from not detected to 0.41 mg/kg at WA-7. PCB were not detected in 11 out of 17 native soil samples. Soil PCB concentrations are lower than those in the associated residuals sample. Figure 21 shows the distribution of PCB in the Western Disposal Area.

#### Former Bryant Mill Pond

PCB concentrations in the surficial soil samples in the former Bryant Mill Pond ranged from not detected at BMP-9 to 140J mg/kg at BMP-4. Nine out of 12 samples with PCB detections (including duplicates) had PCB concentrations below 50 mg/kg. No surficial residuals were evident. Subsurface residuals PCB concentrations ranged from 13 mg/kg at BMP-12 to 14 mg/kg at BMP-3. Subsurface soil PCB concentrations ranged from not detected at BMP-5, BMP-6, and MW-128A to 510J mg/kg at BMP-11. Fourteen out of 16 subsurface soil samples with PCB detections (including duplicates) had PCB concentrations below 50 mg/kg. PCB were detected at a concentration of 0.031J mg/kg in the subsurface soil sample from the 14-to 16-foot interval at downgradient well location MW-128A. PCB was not detected in the other sample from MW-128A (6 to 8 feet). Figure 22 shows the distribution of PCB in the former Bryant Mill Pond.

The present investigation of the former Bryant Mill Pond was a particularly focused one, designed to verify and expand upon the extensive data which already exist for the area. The pre-existing database includes 74 surficial samples and 222 subsurface samples. A table summarizing these results is presented in Appendix C. Appendices C and D also present the QA/QC review of the historical data, confirming the quality of these data for use in the RI. The average PCB concentration for historical surficial samples is 110 mg/kg. Subsurface samples averaged 63 mg/kg. The comparable averages for the data collected during the current investigation are 38 mg/kg in surficial samples (12 samples) and 56 mg/kg for subsurface samples (20 samples). Congener specific analyses were performed on samples from BMP-2 and BMP-12. The congener specific data is summarized in Table 3-12.

#### Portage Creek Floodplain

PCB concentrations in the five samples from the base of the dikes along Portage Creek (BLHB-1 through BLHB-3, MLHB-1, and MLHB-2), ranged from not detected at MLHB-2 and BLHB-1 to 4.3J mg/kg at BLHB-2. PCB in the Portage Creek Floodplain are reported in Table 3-10 and on Figures 13 and 20.

#### Portage Creek Sediments

PCB concentrations in the Portage Creek Sediment samples (GS-1 to GS-5) range from not detected at GS-3 to 2.0 mg/kg at GS-1. Total organic carbon (TOC) normalized PCB data range from 4.7E-6 at GS-4 to 1.2E-4 at GS-2. These results are summarized in Table-13 and on Figure 23.

#### 3.3.1.2 Residential Soil Samples

PCB concentrations in surficial soil samples taken in residential areas (RP-1 through RP-5) range from 0.025 mg/kg at RP-5 to 0.34 mg/kg at RP-4. The range in reported PCB results for the BMSS series of surficial samples ranges from not detected at BMSS-1 and BMSS-2 to 0.073 mg/kg at BMSS-4.

PCB concentrations in subsurface samples from RP-1 through RP-5 range from 0.26 mg/kg at RP-5 to 16 mg/kg at RP-2. A summary of the data for the residential samples is presented in Table 3-14 and Figure 24 illustrates the spatial distribution of these PCB results.

#### 3.3.1.3 Groundwater/Leachate

The results of PCB analyses of unfiltered groundwater/leachate samples are presented in Table 3-15 and on Figure 25. Aroclor 1016 and 1232 were used to quantify PCB present in the samples. The range of detected concentrations of TCL compounds, including total PCB, in groundwater and leachate is presented in Table 3-16.

#### Bryant HRDL

PCB were detected in unfiltered groundwater from 5 of the 13 wells sampled at the Bryant HRDL. PCB quantified as Aroclor 1016 was detected in MW-22A, MW-24, MW-25, MW-121A and MW-121B. Concentrations ranged from 0.89J ug/L at MW-24 to 3.0 ug/L at MW-25. All of these wells are located on either the interior side of the berms or within the residuals. PCB were not detected in samples from wells on the exterior of the berm-adjacent stream bank areas or from Rivulet 2. Rivulet 2 is located at the southeast corner of the Bryant HRDL. During a 1985 investigation, LimnoTech, Inc. (1990) determined that Rivulet 2 drains a groundwater spring at the base of the dike approximately 10 feet from Portage Creek.

#### Monarch HRDL

PCB were not detected in unfiltered groundwater or leachate at the Monarch HRDL.

#### FRDLs

PCB were not detected in unfiltered groundwater at the FRDLs.

#### Former Type III Landfill

PCB were detected in unfiltered groundwater from one well at the former Type III Landfill; MW-5 contained 1.2 ug/L PCB as Aroclor 1232.

#### Western Disposal Area

PCB as Aroclor 1016 were detected in unfiltered groundwater at two of seven wells in the Western Disposal Area. The sample from MW-8A contained 3.8 ug/L of PCB and the sample from MW-120B contained 4.9J ug/L of PCB (note that PCB were not detected in a duplicate sample from MW-120B). No PCB were detected in unfiltered groundwater from the two upgradient wells (MW-7 and MW-7B).

#### Pilot Study Area

PCB were not detected in unfiltered groundwater at the Pilot Study Area.

#### Former Bryant Mill Pond

PCB were not detected in unfiltered groundwater at the former Bryant Mill Pond.

# 3.3.2 Pesticides

#### 3.3.2.1 Residuals/Soil/Sediment

The results of pesticide analyses in residuals/soil/sediment are presented in Table 3-17 and Figures 26 and 27. A range of detected concentrations for TCL compounds, including pesticides, in native soil and residuals is presented in Table 3-11.

#### **Bryant HRDL**

Three pesticide compounds were detected in subsurface residuals samples from the Bryant HRDL. 4,4'-DDE was detected at concentrations ranging from 0.11J mg/kg in the duplicate sample at BHDL-22 to 0.36J mg/kg at BHDL-123. 4,4'-DDT was detected at concentrations ranging from 0.07 mg/kg at MW-121B to 0.41 mg/kg at BHDL-123. Endrin aldehyde was detected at concentrations ranging from 0.040J mg/kg at MW-121B to 0.084J mg/kg in the duplicate sample at BHDL-22.

No pesticides were detected in subsurface soil samples.

# **Monarch HRDL**

Delta-BHC, gamma-chlordane, 4,4'-DDT, and endrin aldehyde were detected in residuals samples from the Monarch HRDL. Delta BHC was detected at a concentration of 0.043J mg/kg at MW-126A. Gamma-chlordane was detected in the residuals sample at MLSS-2 at a concentration of 0.034J mg/kg. 4.4'-DDT was detected in six subsurface residuals samples at concentrations ranging from 0.067J mg/kg at MW-126A to 0.25J mg/kg at MLSS-2. Endrin aldehyde was detected at concentration of 0.047J mg/kg in the subsurface residuals sample from MLSS-5.

Aldrin, 4,4'-DDE, and endosulfan I were detected in native soil samples from the Monarch HRDL. Aldrin was detected in three native soil samples ranging in concentration from 0.0021J mg/kg in MW-125B to 0.0069 mg/kg in MLSS-3. 4,4'-DDE was also detected in two native soil samples at concentrations of 0.0023J mg/kg at MLSS-5 and 0.0047J mg/kg at MLSS-3. Endosulfan I was detected in two native soil samples, MLSS-1 at a concentration of 0.0043 mg/kg and MLSS-3 at a concentration of 0.0045J mg/kg.

# FRDLs

Pesticide compounds were detected in one residuals samp!: from the FRDLs (DLHB-2). 4,4'-DDD was detected at a concentration of 0.0088J mg/kg, and alpha BHC was detected at a concentration of 0.0093J mg/kg.

Aldrin and 4,4'-DDE were detected in subsurface soil samples at the FRDLs. Aldrin was detected in all four samples ranging in concentration from 0.0011J mg/kg at DLHB-2 to 0.0057 mg/kg at DLHB-1. 4,4'-DDE was only detected in the sample from DLHB-6 at a concentration of 0.013J mg/kg.

# Former Type III Landfill

4,4'-DDE was the only pesticide detected in residuals or soil at the Former Type III Landfill. The residuals sample from FLF-1 contained 4,4'-DDE at a concentration of 0.25J mg/kg.

#### Western Disposal Area

Eight pesticide compounds were detected in subsurface residuals samples at the Western Disposal Area. Aldrin was detected in WA-1, WA-2, and WA-3 at concentrations ranging from 0.0032 mg/kg at WA-2 to 0.070J mg/kg at WA-1. Beta-BHC was detected at a concentration of 0.0091J mg/kg at WA-5. Delta-BHC was detected at a concentration of 0.0091J mg/kg at WA-5. Delta-BHC was detected at a concentration of 0.0091J mg/kg at WA-5. Delta-BHC was detected at a concentration of 0.0091J mg/kg at WA-5. Delta-BHC was detected at a concentration of 0.0091J mg/kg at WA-5. Delta-BHC was detected at a concentration of 0.0061 mg/kg at WA-5. A,4'-DDD was detected in two samples at concentration of 0.0038J mg/kg at WA-2, 0.0048J mg/kg at WA-3, and 0.42J mg/kg at MW-8A. 4,4'-DDT was detected in four samples ranging in concentration from 0.0047J mg/kg at WA-4 to 0.17J mg/kg at WA-6. Gamma-chlordane was detected at WA-5 at a concentration of 0.0056J mg/kg and at WA-3 at a concentration of 0.0061 mg/kg. Alpha-chlordane was detected at WA-2 at a concentration of 0.0081 mg/kg.

Aldrin was the only pesticide compound detected in native soil samples. Four of the 12 native soil samples had detectable concentrations ranging from 0.00085J mg/kg at WA-8 to 0.013 mg/kg at WA-7.

# Former Bryant Mill Pond

Aldrin and 4,4'-DDE were the only pesticide compounds detected in subsurface residuals samples from the former Bryant Mill Pond. The sample from BMP-12 (3 to 4 feet) contained 0.14 mg/kg and 0.03 mg/kg of Aldrin, and 4,4'-DDE, respectively.

Aldrin and 4,4'-DDE were detected in the two surficial soil samples from the former Bryant Mill Pond. The concentrations of aldrin ranged from 0.69 mg/kg at BMP-12 (0 to 1 foot) to 1.1 mg/kg at BMP-2 (0 to 1 foot). 4,4'-DDE ranged in concentration from 0.12J mg/kg at BMP-12 (0 to 1 foot) to 0.33 mg/kg at BMP-2 (0 to 1 foot). 4,4'-DDT and endrin aldehyde were detected in the subsurface soil sample BMP-2 (3 to 4 feet) at concentrations of 0.12 J mg/kg and 0.071 mg/kg, respectively.

# 3.3.2.2 Groundwater/Leachate

Pesticide compounds were not detected in any of the groundwater samples from the OU. Alpha-BHC was detected at a concentration of 0.03J ug/L in the leachate sample from MW-125P. Table 3-18 summarizes these results. A range of detected concentrations of TCL compounds, including pesticides, in groundwater and leachate samples is presented in Table 3-16.

#### 3.3.3 TCL VOC Compounds

# 3.3.3.1 Residuals/Soil

VOCs were detected in both residuals and native soil. Sample concentrations are reported in Table 3-19. Figures 28 through 30 illustrate the distribution of VOCs in residuals and Figures 31 through 33 illustrate the distribution in native soil. A range of detected concentrations for TCL compounds, including VOCs, in native soil and residuals is presented in Table 3-11.

#### Bryant HRDL

Toluene was the only VOC detected in all three subsurface residuals samples collected at the Bryant HRDL. Its concentration ranged from 0.11J mg/kg at BHDL-22 to 0.93J mg/kg at MW-121B.

Acetone, carbon disulfide, 2-butanone, benzene, and xylenes were all detected in two residuals samples each. Acetone was detected at concentrations of 0.25J mg/kg at BHDL-22 and 0.47J mg/kg at BHDL-123. Carbon disulfide was detected at concentrations of 0.019J mg/kg in BHDL-22 and 0.034J mg/kg at BHDL-123. The concentrations of 2-butanone in BHDL-22 and BHDL-123 were 0.13J mg/kg and 0.34J mg/kg, respectively. Benzene was detected at concentrations of 0.032J mg/kg and 0.066J mg/kg in BHDL-22 and BHDL-123, respectively. Xylenes were detected at concentrations of 0.050J mg/kg at BHDL-22 and 0.18J mg/kg at BHDL-123. Xylenes were detected in the duplicate of BHDL-22 at a concentration of 0.090J mg/kg. Methylene chloride was detected at 0.030J mg/kg in the sample from BHDL-123.

Xylenes, acetone, benzene, 2-butanone, carbon disulfide, and toluene were also detected in the duplicate of BHDL-22 at concentrations of (mg/kg): 0.42J, 0.067J, 0.20J, 0.49J, and 0.32J, respectively.

Acetone and 2-butanone were detected in the three native soil samples. Acetone ranged in concentration from 0.033 mg/kg at BHDL-22 to 0.54J mg/kg at MW-121B. Acetone was also detected in the duplicate of BHDL-22 at a concentration of 0.028 mg/kg. The range in concentration for 2-butanone was 0.0070J mg/kg at BHDL-22 to 0.16 mg/kg at MW-121B. 2-Butanone was also detected in the duplicate of BHDL-22 at a concentration of 0.0080J mg/kg. Toluene was detected in two samples and ranged in concentration from 0.0020J mg/kg in the duplicate of BHDL-22 at a concentration of 0.0080J mg/kg. Toluene was detected in the duplicate sample of BHDL-22 at a concentration of 0.0020J mg/kg at MW-121B. Benzene was detected in the duplicate sample of BHDL-22 at a concentration of 0.0020J mg/kg and in MW-121B at a concentration of 0.016J mg/kg. Carbon disulfide was detected in MW-121B at a concentration of 0.016J mg/kg.

#### Monarch HRDL

Acetone, carbon disulfide, toluene, 2-butanone, tetrachloroethene, and xylenes were detected in two subsurface residuals samples. Reported concentrations of these VOCs in the sample from MLSS-3 are as follows: 0.46J mg/kg acetone, 0.043J mg/kg carbon disulfide, 0.92J mg/kg toluene, 0.16J mg/kg 2-butanone, 0.026J mg/kg tetrachloroethene, and 0.12J mg/kg xylenes. The subsurface residuals sample from MLSS-1 contained the same VOCs at reported concentrations as follows: 2.5J mg/kg acetone, 0.073J mg/kg carbon disulfide, 0.067J mg/kg toluene, 0.68J mg/kg 2-butanone, 0.024J mg/kg tetrachloroethene, and 0.094J mg/kg xylenes. Benzene was detected in subsurface residuals at MLSS-3 at a concentration of 0.034J mg/kg. Carbon tetrachloride was detected in MLSS-4 at a concentration of 3.8J mg/kg.

Eight compounds were detected in the native soil samples. Acetone was detected in all seven samples ranging from 0.019 mg/kg at MLSS-1 to 1.4J mg/kg in MLSS-2. Carbon disulfide and 2-butanone were detected in five samples ranging from 0.0040J mg/kg at MLSS-5 to 0.028J mg/kg at MLSS-2 for carbon disulfide and 0.013J mg/kg at MLSS-5 to 0.55J mg/kg at MLSS-2 for 2-butanone. Toluene and xylenes were also detected in five native soil samples. Toluene concentrations ranged from 0.0020J mg/kg at MLSS-1 to 0.034J mg/kg at MLSS-2. Xylenes concentrations ranged from 0.0030J mg/kg at MLSS-3. Benzene was detected in three samples. Benzene concentrations ranged from 0.0030J mg/kg at MW-126A to 0.041J at MLSS-2. Ethylbenzene was detected twice at concentrations of 0.011J mg/kg and 0.014J mg/kg in MLSS-2 and MLSS-3 respectively. 1,2-Dichloroethene was detected in one sample at a concentration of 0.0040J mg/kg at MW-126A.

#### FRDLs

Acetone, carbon disulfide, toluene, and 2-butanone were detected in each of the four subsurface residuals samples associated with the FRDLs. The highest concentrations of these compounds were observed in DLHB-2 and the lowest were observed in DLHB-6. Acetone ranged in concentration from 0.17J mg/kg to 1.3J mg/kg. However, acetone was also detected in the method blank associated with the samples from DLHB-1 and DLHB-2. Carbon disulfide was

detected at concentrations ranging from 0.0070J mg/kg to 0.043J mg/kg. Toluene ranged in concentration from 0.0050J mg/kg to 0.025J mg/kg. 2-Butanone ranged in concentration from 0.094J mg/kg to 0.71J mg/kg. 4-Methyl-2-pentanone was observed in three subsurface residuals samples ranging in concentration from 0.0080J mg/kg at DLHB-6 to 0.051J mg/kg at DLHB-2. Ethylbenzene was detected in the subsurface residuals sample from DLHB-2 and DLHB-3 at a concentration of 0.049J mg/kg and 0.011J mg/kg, respectively. Xylenes and 2-hexanone were detected in the sample from DLHB-2 at a concentration of 0.059J mg/kg and 0.041J mg/kg, respectively.

Acetone was the only VOC detected in all four native soil samples. Acetone concentrations ranged from 0.0060J mg/kg at DLHB-6 to 0.30 mg/kg at DLHB-1. Carbon disulfide was detected in three samples at a range in concentrations of 0.0010J mg/kg at DLHB-2 and DLHB-6 to 0.0030J mg/kg at DLHB-3. 2-Butanone and 1,1,1-trichloroethane were detected in DLHB-3 at concentrations of 0.0090J mg/kg and 0.0030J mg/kg, respectively. Toluene and xylenes were detected in DLHB-2 at concentrations of 0.0010J mg/kg and 0.0060J mg/kg, respectively.

#### Former Type III Landfill

Xylenes were the only VOC detected in the residuals sample adjacent to the former Type III Landfill. FLF-1 contained a xylenes concentration of 0.0090J mg/kg.

Acctone and toluene were the only VOCs detected in the native soils. FLF-1 contained concentrations of 0.0090J and 0.0030J mg/kg for acetone and toluene, respectively.

#### Western Disposal Area

Acetone, carbon disulfide, and 2-butanone were detected in nine out of 10 subsurface residuals samples each. Acetone ranged in concentration from 0.17J mg/kg at WA-7 to 2.4J mg/kg at WA-1. Carbon disulfide had concentrations ranging from 0.0060J mg/kg at WA-7 to 0.078J mg/kg at WA-4. 2-Butanone was detected at concentrations ranging from 0.028J mg/kg at WA-7 to 2.2J mg/kg at WA-1. Toluene and xylenes were detected in five samples each. Toluene ranged in concentrations from 0.0050J mg/kg at WA-7 to 0.015J mg/kg at WA-6. Xylenes were detected at concentrations ranging from 0.010J mg/kg at WA-5 to 0.22 mg/kg at WA-4. Ethylbenzene was detected in four samples ranging in concentration from 0.010J mg/kg at WA-7 to 0.032 mg/kg at WA-5. 2-Hexanone was detected in three samples ranging in concentration from 0.011J mg/kg at WA-7 to 0.29 mg/kg at WA-1. 4-Methyl-2-pentanone was detected at WA-5 and WA-2 at concentrations of 0.027 mg/kg and 0.018J mg/kg, respectively. Chloroform was detected at WA-4 and WA-3 at 0.014J mg/kg and 0.008J mg/kg, respectively. Methylene chloride was detected at WA-5 at 0.0040J mg/kg and 0.008J mg/kg, respectively. Methylene chloride was detected at WA-5 at 0.0040J mg/kg and 0.008J mg/kg, respectively. Methylene chloride was detected at WA-5 at 0.0040J mg/kg and 0.008J mg/kg, respectively. Methylene chloride was detected at WA-5 at 0.0040J mg/kg and 0.008J mg/kg, respectively. Methylene chloride was detected at WA-5 at 0.0040J mg/kg and 0.008J mg/kg, respectively. Methylene chloride was detected at WA-5 at 0.0040J mg/kg and 0.0040J mg/kg.

The most commonly detected VOC in native soils was acetone, which was detected in eight out of 12 native soil samples. Acetone concentrations ranged from 0.0030J mg/kg at WA-2 to 3.4J mg/kg at WA-6. 2-Butanone, reported in three samples, was detected at concentrations ranging from 0.21J mg/kg at MW-8A to 0.96J mg/kg at WA-6. Methylene chloride was detected in WA-2 and WA-5 at 0.0020J mg/kg and 0.0030J mg/kg, respectively. Carbon disulfide was detected in WA-6 and WA-8 at 0.013J mg/kg and 0.0080J mg/kg, respectively. Toluene was detected in WA-6 at 0.020J mg/kg and WA-8 at 0.038J mg/kg. Xylenes were detected at WA-6 and MW-8A at 0.19J mg/kg and 0.016J mg/kg, respectively. Ethylbenzene was detected in the sample from WA-6 at 0.030J mg/kg.

#### Former Bryant Mill Pond

Two VOCs were detected in the surficial soil sample from BMP-12. Aceteme was detected at a concentration of 0.027J mg/kg and toluene was detected at a concentration at 0.039 mg/kg. The surficial soil sample from BMP-2 did not contain detectable VOC.

One subsurface native soil sample was obtained at BMP-2 for TCL analyses. This sample contained acetone at a concentration of 0.046J mg/kg, carbon disulfide at 0.0040J mg/kg, 2-butanone at 0.014J mg/kg, and toluene at 0.0040J mg/kg.

The subsurface residuals samples collected from BMP-12 contained acetone, carbon disulfide, and xylenes at concentrations of 0.15 mg/kg, 0.022J mg/kg, and 0.031J mg/kg, respectively. This sample was the only residuals sample analyzed in the former Bryant Mill Pond area.

#### 3.3.3.2 Groundwater/Leachate

The results of VOC analyses in groundwater/leachate are summarized in Table 3-20 and on Figure 34. A range of detected concentrations of TCL compounds, including VOCs, in groundwater and leachate is presented in Table 3-16.

#### Bryant HRDL

Benzene and toluene were the only VOCs detected in groundwater samples from wells at the Bryant HRDL. Toluene was detected in MW-25 at a concentration of 7.0J ug/L and in MW-121B at a concentration of 1.0J ug/L. Benzene was detected only in MW-121A at a concentration of 1.0J ug/L.

#### Monarch HRDL

Tetrachloroethene, toluene, and 1,1,1-trichloroethane were detected in groundwater samples from wells at the Monarch HRDL. Tetrachloroethene was detected in MW-124B and MW-125A at concentrations of 2.0J ug/L and 3.0J ug/L, respectively. 1,1,1-Trichloroethane was detected at a concentration of 3.0J ug/L in MW-124A and MW-125B. Toluene was detected in a groundwater sample from MW-126A at a concentration of 1.0J ug/L.

Compounds detected in the leachate sample from MW-125P were 1.0J ug/L benzene, 34J ug/L 2-butanone, 2.0J ug/L carbon disulfide, 2.0J ug/L ethylbenzene, 2.0J ug/L toluene, and 10 ug/L xylenes.

#### FRDLs

VOCs were not detected in groundwater samples from wells adjacent to the FRDLs.

#### Former Type III Landfill

Benzene and methylene chloride, were detected in groundwater samples from wells at the former Type III Landfill. Benzene was detected at a concentration of 1.0J ug/L in MW-15 and MW-3, and at a concentration of 2.0J ug/L in MW-17A, MW-17B, and MW-19BR (and its duplicate). Methylene chloride was detected at a concentration of 1.0J ug/L at MW-17A.

#### Western Disposal Area

VOCs were not detected in the seven groundwater samples from wells associated with the Western Disposal Area. No VOCs were detected in the groundwater in the upgradient wells (MW-7 and MW-7B).

#### **Pilot Study Area**

Toluene was detected in groundwater samples from wells at the Pilot Study Area. Toluene was detected in the sample from MW-2S, and its duplicate, at a concentration of 2.0J ug/L.

#### Former Bryant Mill Pond

Methylene chloride, tetrachloroethene, and toluene were detected in groundwater samples from wells at the former Bryant Mill Pond. Tetrachloroethene was detected in the sample from MW-114 at a concentration of 13 ug/L. Toluene was detected in the sample from MW-108 at a concentration of 1.0J ug/L. Methylene chloride was detected at a concentration of 1.0J ug/L at MW-104.

# 3.3.4 TCL SVOC Compounds

# 3.3.4.1 Residuals/Soil

SVOCs were detected in both residuals and native soil. Sample concentrations are reported in Table 3-21. Figures 35 through 37 illustrate the distribution of SVOCs in residuals. Figures 38 through 40 illustrate the distribution of SVOCs in native soil. A range of detected concentrations for TCL compounds, including SVOCs, in native soils and residuals is presented in Table 3-11.

# Bryant HRDL

Phenanthrene was detected in the three subsurface residuals samples from the Bryant HRDL at concentrations ranging from 0.59J mg/kg at MW-121B to 7.2J mg/kg at BHDL-123. 4-Methylphenol was detected at BHDL-22 at an average concentration of 5.9J mg/kg and at BHDL-123 at 16J mg/kg. 2-Methylnaphthalene was detected at the same two locations at a concentration of 2.0J mg/kg and 21J mg/kg, respectively. Fluoranthene was detected at MW-121B at a concentration of 0.30J mg/kg. Bis(2-ethylhexyl)phthalate was detected in the duplicate sample of BHDL-22 at a concentration of 2.5J mg/kg. Bis(2-ethylhexyl)phthalate was not detected in the original sample of BHDL-22. Phenanthrene, 4-methylphenol, and 2-methylnaphthalene were also detected in the duplicate sample of BHDL-22 at concentrations of 5.0J mg/kg, 8.1J mg/kg and 5.7 mg/kg, respectively.

2-Methylnaphthalene and bis(2-ethylhexyl)phthalate were the only SVOCs detected in native soils at the Bryant HRDL. Bis(2-ethylhexyl)phthalate was detected in the original sample of BHDL-22 at a concentration of 0.076J mg/kg. Bis(2ethylhexyl)phthalate was not detected in the duplicate sample of BHDL-22. 2-Methylnaphthalene was detected in the original and duplicate samples at BHDL-22 at concentrations of 0.063J mg/kg and 0.062J mg/kg, respectively.

#### Monarch HRDL

2-Methylnaphthalene was detected in the seven subsurface residuals samples at the Monarch HRDL. The compound ranged in concentration from 0.18J mg/kg at MLSS-1 to 4.1 mg/kg at MLSS-5. 4-Methylphenol was detected in four samples at concentrations ranging from 2.1J mg/kg at MLSS-2 to 4.7J mg/kg at MLSS-4. Two samples (MLSS-1 and MW-126A) for 4-methylphenol were rejected due to quality control problems associated with poor surrogate recoveries. Naphthalene was detected at MLSS-4 at a concentration of 0.73J mg/kg and MLSS-5 at a concentration of 1.0J mg/kg. Phenanthrene was detected at MW-126A at a concentration of 0.37J mg/kg and MLSS-4 at a concentration of 0.54J mg/kg. Bis(2-ethylhexyl)phthalate was detected at concentrations of 1.3J mg/kg at MLSS-5.

Bis(2-ethylhexyl)phthalate was detected in six of the seven native soil samples at concentrations ranging from 0.031J mg/kg at MLSS-4 to 0.11J mg/kg at MLSS-5 and MW-125B. 2-Methylnaphthalene and fluoranthene were detected in three samples and ranged in concentration for 2-methylnaphthalene from 0.038J mg/kg at MLSS-5 and MW-125B. to 0.35J mg/kg at MLSS-3 and for fluoranthene 0.099J mg/kg at MW-126A to 0.45J mg/kg at MLSS-1. Naphthalene was detected at MLSS-1 at a concentration of 0.084J mg/kg.

At MLSS-1, 10 additional SVOCs were detected in native soil samples at the following concentrations (mg/kg) anthracene, 0.094J; benzo(a)anthracene, 0.21J; benzo(b)fluoranthene, 0.14J, benzo(k)fluoranthene, 0.17J; benzo(a) pyrene, 0.17J; carbazole, 0.070J; chrysene, 0.20J; naphthalene, 0.084J; phenanthrene, 0.44J; and pyrene, 0.36J. Seven of these compounds were also detected in MW-126A at the following concentrations (mg/kg): benzo(a)anthracene, 0.052J; benzo(b)fluoranthene, 0.045J; benzo(k)fluoranthene, 0.049J; benzo(a)pyrene, 0.046J; chrysene, 0.060J; phenanthrene, 0.059J; and pyrene, 0.090J.

# FRDLs

4-Methylphenol was detected in three of the four subsurface residuals samples from the FRDLs at concentrations ranging from 0.37J mg/kg at DLHB-3 to 2.7J mg/kg at DLHB-1. Phenanthrene and bis(2-ethylhexyl)phthalate were detected in two residuals samples each. Phenanthrene was detected at a concentration of 0.11J mg/kg at DLHB-6 and 1.3J mg/kg at DLHB-3. Bis(2-ethylhexyl)phthalate was detected at a concentration of 0.24J mg/kg at DLHB-6 and 1.1J mg/kg at DLHB-3. 2-Methylnaphthalene and fluorene were detected at DLHB-3 at a concentration of 2.3 mg/kg and 0.40J mg/kg, respectively. Di-n-butylphthalate was detected at DLHB-2 at a concentration of 1.0J mg/kg. Di-n-butylphthalate was also detected in the laboratory method blank. Fluoranthene was detected at DLHB-6 at a concentration of 0.058 J mg/kg.

2-Methylnaphthalene and bis(2-ethylhexyl)phthalate were the only SVOCs which were detected in more than one sample in native soils. 2-Methylnaphthalene was detected at concentrations of 0.063J mg/kg at DLHB-1 and 1.3J mg/kg at DLHB-6. Bis(2-ethylhexyl)phthalate was detected at concentrations of 0.020J mg/kg at DLHB-2 and 0.028J mg/kg at DLHB-1. Bis(2-chloroethyl)ether, phenanthrene, and fluorene were all detected at DLHB-6 at a concentration of 2.1J mg/kg, 0.34J mg/kg, and 0.18J mg/kg, respectively.

# Former Type III Landfill

2-Methylnaphthalene, phenanthrene, and bis(2-ethvlhexyl)phthalate were detected in the subsurface residuals sample from FLF-1 at the former Type III Landfill. The compounds were detected at concentrations of 2.4J mg/kg, 0.64J mg/kg, and 0.63J mg/kg, respectively.

Bis(2-ethylhexyl)phthalate was also detected in the native soil sample from this location at a concentration of 0.028J mg/kg.

# Western Disposal Area

Bis(2-ethylhexyl)phthalate was detected in seven of the 10 subsurface residuals samples from the Western Disposal Area. Concentrations ranged from 0.20J mg/kg at WA-2 to 5.4J mg/kg at WA-8. 4-Methylphenol was detected in five samples at concentrations ranging from 1.2J mg/kg at WA-3 to 38 mg/kg at WA-5. 2-Methylnaphthalene was also detected in five samples ranging from 0.50J mg/kg at MW-120B to 10J mg/kg at WA-6. Phenanthrene was detected in samples from WA-2 and MW-8A at a concentration of 0.17J mg/kg and 0.51J mg/kg, respectively. Fluoranthene and chrysene were detected at WA-2 at a concentration of 0.24J mg/kg and 0.12J mg/kg, respectively. Fluoranthene

was also detected in the laboratory method blank for WA-2. Pentachlorophenol was detected at WA-1 at a concentration of 2.8J mg/kg.

Bis(2-ethylhexyl)phthalate was detected in five of the 12 native soil samples from the Western Disposal Area at concentrations ranging from 0.057J mg/kg at WA-5 to 0.099J mg/kg at WA-7. Phenanthrene, fluoranthene, and pyrene were all detected in three samples (WA-7, MW-8A, and MW-120B). Phenanthrene concentrations ranged from 0.033J mg/kg at MW-8A to 0.31 mg/kg at WA-7. Fluoranthene ranged in concentration from 0.040J mg/kg at MW-120B to 0.094 mg/kg at WA-7. Pyrene concentrations ranged from 0.038J mg/kg at MW-8A to 0.083J mg/kg at WA-7. Chrysene, 2-methylnaphthalene, and naphthalene were detected in samples from WA-7 and MW-120B. Chrysene was detected at concentrations of 0.064J mg/kg (WA-7) and 0.024J mg/kg (MW-120B), 2-methylnaphthalene was detected at concentrations of 0.23J mg/kg (WA-7) and 0.085J mg/kg (MW-120B), and naphthalene was detected at concentrations of 0.23J mg/kg (WA-7) and 0.062J mg/kg (MW-120B). 4-Methylphenol was detected at WA-5 and MW-120B at concentrations of 0.016J mg/kg and 0.022J mg/kg, respectively. Anthracene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(a)pyrene, carbazole, and dibenzofuran were detected at WA-7 at concentrations (mg/kg) of 0.031J, 0.052J, 0.059J, 0.029J, 0.028J, 0.032J, 0.021J, and 0.10J, respectively. Di-n-butylphthalate was detected at WA-6 at a concentration of 0.049J mg/kg, but was also detected in the laboratory method blank.

#### Former Bryant Mill Pond

Three native soil samples (two surficial and one subsurface) and one subsurface residuals sample from the former Bryant Mill Pond were analyzed for SVOCs. The subsurface native soils sample from BMP-2 (3 to 4 feet) had detectable concentrations of 2,4-dimethylphenol (4.1J mg/kg), bis(2-ethylhexyl)phthalate (0.58J mg/kg), 2-methylphenol (0.51J mg/kg), 4-methylphenol (0.42J mg/kg), naphthalene (0.28J mg/kg), phenanthrene (1.4J mg/kg) and phenol (0.78J mg/kg).

In addition to the SVOCs detected in the native soil sample (BMP-2, 3 to 4 feet), the residuals sample (BMP-12, 3 to 4 feet) had detectable concentrations of benzo(b)fluoranthene (0.43J mg/kg), benzo(k)fluoranthene (0.40J mg/kg), benzo(a)pyrene (0.29J mg/kg), chrysene (0.39J mg/kg), di-n-butylphthalate (2.2J mg/kg), fluoranthene (0.72J mg/kg) and pyrene (0.59J mg/kg).

The two surface soil samples (BMP-2 and BMP-12, 0-1 foot bgs interval) both contained the respective concentrations (mg/kg) of: benzo(a)anthracene (0.18J and 0.72J), benzo(b)fluoranthene (0.40J and 1.5J), benzo(k)fluoranthene (0.40J and 1.3J), chrysene (0.37J and 1.3J), di-n-butylphthalate (0.35J and 0.43J), 2,4-dimethylphenol (0.95J and 2.3), fluoranthene (0.57J and 2.4), 2-methylinaphthalene (0.40J and 0.61J), 2-methylphenol (2.1J and 5.2), 4-methylphenol (0.42J and 1.4J), phenanthrene (0.29J and 1.2J), phenol (2.3J and 5.2) and pyrene (0.47J and 2.0). The following SVOCs were also detected in BMP-12 (0-1 foot bgs interval): anthracene (0.12J), benzo(g,h,i)perylene (0.28J), benzo(a)pyrene (0.99J), carbazole (0.14J), dibenz(a,h) anthracene (0.19J), dibenzofuran (0.11J), ideno(1,2,3-cd)pyrene (0.75J), and naphthalene (0.27J).

#### 3.3.4.2 Groundwater/Leachate

The analytical results for groundwater/leachate are summarized in Table 3-22 and Figure 41. A range of detected concentrations of TCL compounds, including SVOCs, in groundwater and leachate is presented in Table 3-16.

0197840.G2 - 8/14/97

#### **Bryant HRDL**

4-Methylphenol was the only SVOC detected in groundwater at the Bryant HRDL. Concentrations of 6.0J ug/L in the sample from MW-121B and 11 ug/L in the sample from MW-121A.

#### Monarch HRDL

Only one groundwater sample from the Monarch HRDL had detectable concentrations for any SVOC. The groundwater sample from MW-126A contained 4-methylphenol at a concentration of 8.0J ug/L.

The leachate sample from MW-125P contained 4-methylphenol at a concentration of 600 ug/L.

#### FRDLs

No SVOCs were detected in groundwater adjacent to the FRDLs.

#### Former Type III Landfill

2-Methylphenol and 4-methylphenol were detected in the groundwater sample from MW-127A at concentrations of 0.60J and 0.90J ug/L, respectively. Di-n-butylphthalate, diethylphthalate, and naphthalene were detected in the groundwater sample from MW-15 at a concentration of 1.0J ug/L, 0.70J ug/L, and 1.0J ug/L, respectively.

#### Western Disposal Area

2-Methylnaphthalene and 4-methylphenol were detected in the groundwater at the Western Disposal Area. 2-Methylnaphthalene and 4-methylphenol were detected in the sample from MW-8A at concentrations of 0.60J ug/L and 15 ug/L, respectively.

Phenol was detected in the groundwater sample from the upgradient well (MW-7B) at a concentration of 0.80J ug/L.

#### **Pilot Study Area**

No SVOCs were detected in the groundwater at the Pilot Study Area.

#### Former Bryant Mill Pond

No SVOCs were detected in the groundwater at the former Bryant Mill Pond.

#### 3.3.5 PCDD/PCDF

#### 3.3.5.1 Residuals/Soil

The residuals/soil data are summarized on Table 3-23 and Figure 42.

PCDD and PCDF were detected in surficial samples taken from three areas--Monarch HRDL, FRDLs, and Western Disposal Area.

#### Monarch HRDL

Two surficial samples were collected in the Monarch HRDL. 2,3,7,8-Tetrachlorinated dibenzo-p-dioxin (2,2,7,8-TCDD) was detected in the surficial residuals sample from MLSS-3 at a concentration of 2.6E-5 mg/kg. 2,3,7,8-Tetrachlorinated dibenzofuran (2,3,7,8-TCDF) was detected in the original samples from MLSS-1 (surficial soil) and MLSS-3 (surficial residuals) at concentrations of 4.4E-7 mg/kg and 1.8E-4 mg/kg, respectively. 2,3,7,8-TCDF was not detected in the duplicate sample from MLSS-1. Several penta-, hexa-, hepta- and octachlorinated PCDD and PCDF congeners were detected in the samples. Although the octachlorinated dibenzo-p-dioxin concentrations were generally the highest congener concentrations, this congener was also frequently detected in blanks.

## FRDLs

Both 2,3,7,8-TCDD and 2,3,7,8-TCDF were detected in the three surficial samples taken in the FRDLs at DLHB-1, DLHB-2, and DLHB-5. 2,3,7,8-TCDD ranged in concentration from 3.2E-6 mg/kg at DLHB-5 to 7.8E-6 mg/kg at DLHB-2. 2,3,7,8-TCDF ranged in concentration from 3.9E-5 mg/kg at DLHB-5 to 3.0E-4 mg/kg at DLHB-2. 2,3,7,8-TCDF was also found in the blank associated with DLHB-5. Several penta-, hexa-, and octachlorinated PCDD and PCDF were detected. The congener with the highest concentration was octachlorinated dibenzo-p-dioxin at a concentration of 0.0026 mg/kg at DLHB-5. The hepta- and octachlorinated dibenzo-p-dioxin and dibenzofuran were also detected in the associated method blanks.

## Western Disposal Area

In the Western Disposal Area, 2,3,7,8-TCDD was detected in the duplicate sample from WA-6 at a concentration of 8E-6 mg/k, however, it was not detected in the original sample. 2,3,7,8-TCDF was detected in the original sample from at WA-2 at a concentration of 2E-6 mg/kg; however, it was not detected in the duplicate sample. The highest observed congener concentration was 0.045 mg/kg for octachlorinated dibenzo-p-dioxin at WA-6.

#### 3.3.6 TAL Analytes

#### 3.3.6.1 Residuals/Soils

A summary of the TAL data for subsurface residuals and soils is presented in Table 3-24 and Figures 43 through 50. Table 3-25 presents a range of detected concentrations of the naturally-occurring elements/compounds in native soil and residuals.

#### Bryant HRDL

Eighteen TAL analytes were detected in the residuals at the Bryant HRDL. Aluminum, arsenic, barium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, vanadium, zinc, and cyanide were detected in all three samples. Nickel and sodium were detected in two samples (BHDL-22 and MW-121B). Sodium and nickel were also detected in the duplicate of BHDL-22. Potassium was detected in one sample (MW-121B). Refer to Table 3-25 for the range of detected concentration in residuals.

Twenty-two TAL analytes were detected in the native soil at the Bryant HRDL. Aluminum, arsenic, barium, beryllium, calcium, chroinium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium and vanadium were detected in all three samples and the duplicate of BHDL-22. Zinc and selenium were each detected in two samples. Results for zinc were rejected for the duplicate sample of BHDL-22 and for BHDL-123 due to QC problems associated with serial dilutions. Sodium was detected in the original and duplicate sample of BHDL-22 and antimony was detected in the

original sample of BHDL-22 but not in the duplicate. Cadmium was detected in BHDL-22 and BHDL-123. Cadmium was also detected in the duplicate of BHDL-22. Mercury, and cyanide were detected in one sample (BHDL-123). Refer to Table 3-25 for the range of detected concentrations in native soil.

#### Monarch HRDL

Twenty-one TAL analytes were detected in residuals at the Monarch HRDL. Aluminum, arsenic, barium, calcium, chromium, copper, iron, lead, magnesium, manganese, mercury, nickel, vanadium, and zinc were detected in all seven samples. Cyanide was detected in six samples. Cobalt was detected in four samples. Cadmium, potassium and sodium were each detected in two samples. Beryllium and selenium were each detected in one sample. Refer to Table 3-25 for the range of detected concentrations in residuals.

Twenty TAL analytes were detected in native soil at the Monarch HRDL. Aluminum, arsenic, barium, calcium, chromium, copper, iron, lead, magnesium, manganese, nickel, vanadium, and zinc were detected in all seven samples. Cobalt was detected in six samples. Beryllium and potassium were each detected in four samples. Mercury, selenium, and cyanide were each detected in three samples and antimony was detected in one sample (MLSS-3). Refer to Table 3-25 for the range of detected concentrations in native soil.

#### FRDLs

Fifteen TAL analytes were detected in residuals at the FRDLs. Aluminum, arsenic, barium, calcium, chromium, copper, iron, lead, magnesium, manganese, vanadium, and zinc were detected in all four samples. Nickel was detected in three samples. Potassium and selenium were each detected in one sample (DLHB-6). Refer to Table 3-25 for the range of detected concentrations in the residuals.

Nineteen TAL analytes were detected in native soil at the FRDLs. Aluminum, arsenic, barium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, vanadium, and zinc were detected in all four samples. Beryllium, selenium, and cyanide were each detected in three samples. Mercury was detected in one sample (DLHB-6). Refer to Table 3-25 for the range of detected concentrations in native soil.

#### Former Type III Landfill

Seventeen TAL analytes were detected in the residuals sample (FLF-1, 6.0-6.5 feet) at the former Type III Landfill. Aluminum, arsenic, barium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, vanadium, zinc, and cyanide were detected at FLF-1. Refer to Table 3-25 for the range of detected concentrations in the residuals.

Eighteen TAL analytes were detected in the native soil sample (FLF-1, 6.5-8.0 feet) at the former Type III Landfill. Aluminum, arsenic, barium, beryllium, calcium, chromium, cobalt, copper, iron, magnesium, manganese, mercury, nickel, potassium, selenium, vanadium, zinc, and cyanide were detected at FLF-1. Refer to Table 3-25 for the range of detected concentrations in native soil.

#### Pilot Study Area

Twenty-three TAL analytes were detected in the soil at the Pilot Study Area. Aluminum, arsenic, barium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, vanadium, and zinc were detected in all 10 samples. Beryllium, potassium, and selenium were each detected in nine samples. Mercury was detected in eight samples; cyanide was detected in seven samples; cadmium was detected in five samples; and sodium was detected in

two samples. Silver and thallium were each detected in one sample (MA-4 and MA-1, respectively). Refer to Table 3-25 for the range of detected concentrations in soil.

#### Western Disposal Area

Twenty-two TAL analytes were detected in residuals at the Western Disposal Area. Aluminum, arsenic, calcium, chromium, copper, iron, lead, magnesium, manganese, vanadium, and zinc were detected in all 10 samples. Barium was detected in eight samples. Cobalt and nickel were detected in seven samples each. Cyanide was detected in six samples and mercury was detected in five samples. Antimony, cadmium, potassium, and sodium were each detected in three samples. Beryllium was detected in two samples and selenium was detected in one sample. Refer to Table 3-25 for the ran<sub>5</sub>e of detected concentrations in residuals.

Twenty-two TAL analytes were detected in native soils at the Western Disposal Area. Aluminum, arsenic, calcium, chromium, cobalt, copper, iron, magnesium, manganese, nickel, and vanadium were detected in all 12 samples. Lead was detected in 10 samples; results for two samples were rejected (B-7B, 8.0-10.0 feet and 10.0-12.0 feet). Zinc was detected in four samples and rejected in eight samples. Results for lead were rejected due to QC problems associated with matrix spike recoveries. Results for zinc were rejected due to QC problems associated with serial dilutions. Potassium was detected in 11 samples and barium was detected in nine samples. Beryllium was detected in eight samples. Selenium was detected in five samples and sodium was detected in four samples. Cyanide and mercury were each detected in three samples. Antimony and cadmium were each detected in two samples. Refer to Table 3-25 for the range of detected concentrations in native soil.

#### Former Bryant Mill Pond

)

Twenty-one TAL analytes were detected in the native soil at the former Bryant Mill Pond. Aluminum, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, selenium, vanadium, and zinc were detected in all three samples. Cyanide was detected in two samples. Silver and mercury were detected in one sample (BMP-2, 3 to 4 feet bgs). Refer to Table 3-25 for the detected concentrations in the residuals.

Seventeen TAL analytes were detected in the residuals sample (BMP-12, 3 to 4 feet bgs) at the former Bryant Mill Pond: aluminum, arsenic, barium, cadmium, calcium, chromium, copper, iron, lead, magnesium, manganese, nickel, selenium, vanadium, zinc and cyanide. Refer to Table 3-25 for the range of detected concentrations in the residuals.

#### 3.3.6.2 Groundwater/Leachate

A summary of detected filtered TAL analytes and general groundwater quality data for groundwater/leachate samples are summarized on Table 3-26 and Figures 51 through 55. A range of detected concentrations of TAL analytes in filtered groundwater and leachate samples is presented in Table 3-27.

#### Bryant HRDL

Fourteen TAL analytes were detected in the filtered groundwater samples at the Bryant HRDL.

Barium, calcium, iron, magnesium, manganese, sodium, and zinc were detected in all 13 groundwater samples obtained at the Bryant HRDL. Potassium was detected in all the samples except for the sample from MW-26. Arsenic was detected in 11 samples and nickel was detected in 10 samples. Lead was detected in four samples. Cadmium and selenium were each detected in two samples. Copper was detected in one sample. Arsenic, barium, calcium, iron, magnesium, manganese, sodium, and zinc were detected in the sample from Rivulet 2.

#### Monarch HRDL

Thirteen TAL analytes were detected in the filtered groundwater samples at the Monarch HRDL. Barium, calcium, iron, magnesium, manganese, potassium, and sodium were detected in all six of the filtered groundwater samples from the Monarch HRDL. Zinc was detected in five samples and selenium was detected in three. Arsenic, lead, and nickel were each detected in two samples. Cadmium was detected in the duplicate of MW-126B, but not in the original.

Eleven TAL analytes were detected in the filtered leachate sample (MW-125P). Aluminum, arsenic, barium, calcium, chromium, iron, magnesium, manganese, nickel, potassium, and sodium were detected in the sample from MW-125P.

#### FRDLs

)

Ten TAL analytes were detected in the filtered groundwater samples at the FRDLs. Arsenic, barium, calcium, iron, magnesium, manganese, nickel, potassium, sodium, and zinc were detected in the two groundwater samples from the well cluster (MW-122A/B) adjacent to the FRDLs. Nickel was not detected in the duplicate for MW-122A.

#### Former Type III Landfill

Sixteen TAL analytes were detected in the filtered groundwater samples at the former Type III Landfill. Arsenic, barium, calcium, iron, magnesium, manganese, sodium, and zinc were detected in all 13 of the filtered groundwater samples from the former Type III Landfill. The result for zinc was rejected in the original sample from MW-19BR. The result for zinc was rejected due to QC problems; the concentration for the filtered sample was greater than the concentration for the total sample indicating probable laboratory contamination. Nickel was detected in 12 samples, potassium was detected in 11 samples and cobalt was detected in seven samples. Chromium, lead, and selenium were each detected in three samples. Beryllium and mercury were each detected in one sample (MW-19D and MW-17A, respectively). Chromium and cobalt were not detected in the duplicate for MW-19BR.

#### Pilot Study Area

Thirteen TAL analytes were detected in filtered groundwater samples at the Pilot Study Area. Arsenic, barium, calcium, iron, magnesium, manganese, potassium, selenium, sodium, and zinc were each detected in all three samples. Aluminum and nickel were each detected in one sample. Chromium was detected in the duplicate of MW-2S, but not in the original.

#### Western Disposal Area

Seventeen TAL analytes were detected in the filtered groundwater samples at the Western Disposal Area. Barium, calcium, iron, magnesium, manganese, potassium, and sodium were each detected in all seven groundwater samples. Arsenic and zinc were each detected in six samples and nickel was detected in five samples. Nickel was also detected in the duplicate for MW-20, but not in the original. Lead and selenium were each detected in three samples. Aluminum, beryllium, chromium, cobalt and vanadium were each detected in one sample.

#### Former Bryant Mill Pond

Fifteen TAL analytes were detected in the filtered groundwater samples at the former Bryant Mill Pond. Barium, calcium, iron, magnesium, manganese, potassium, and sodium were detected in all five of the groundwater samples from the former Bryant Mill Pond area. Zinc was detected in four samples and one sample result (MW-128A) was rejected. The result for zinc was rejected due to QC problems; the concentration for the filtered sample was greater than the concentration for the total sample indicating probable laboratory contamination. Arsenic was detected in three of the

samples. Lead, nickel, and selenium were detected in two samples each. Chromium, cobalt, and mercury, were detected in one sample each.

#### 3.3.6.3 Upgradient Groundwater

Ten TAL analytes were detected in the filtered groundwater samples from upgradient locations MW-7 and MW-7B. The upgradient filtered groundwater samples both contained detectable concentrations of arsenic, barium, calcium, iron, magnesium, manganese, sodium, and zinc. In addition, potassium was detected in the MW-7B sample and selenium was detected in the MW-7 sample.

Figures 56 and 57 present Stiff diagrams illustrating the relative concentrations of eight TAL analytes and general water quality parameters observed in the collected groundwater samples. These ions include sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), chloride (Cl), sulfate (SO<sub>4</sub>), bicarbonate (HCO<sub>3</sub>), and nitrate (NQ). The designated upgradient wells, including MW-7 and MW-7B, all display similar geo-chemical profiles as demonstrated by their associated Stiff diagrams.

#### 3.4 Estimated Volumes of Residuals

In addition to the former Bryant Mill Pond, residuals were found at the Allied OU in the Monarch HRDL, Bryant HRDL, FRDLs, the former Type III Landfill and the Western Disposal Area.

In the Bryant HRDL, residuals ranged from 10 to 12 feet thick. No residuals were found in the dike material surrounding the Bryant HRDL. The total estimated volume of residuals in the Bryant HRDL is 390,000 cy.

In the Monarch HRDL, residuals were found at the surface in the eastern end of the HRDL to a depth of up to 24 feet bgs. In the western end of the Monarch HRDL, in the vicinity of boring MLSS-1, the residuals were covered with 8 feet of soil fill material and were approximately 8 feet thick. In the dikes on the northern side of the Monarch HRDL, residuals were found from 3 to 15 feet bgs in two locations. The estimated volume of residuals in the Monarch HRDL is 170,000 cubic yards (cy).

In the FRDLs, residuals, where present, were 7 to 16 feet thick. No residuals were found in borings DLHB-4 and DLHB-5, which were installed through standing water in the northeasternmost FRDL. No residuals were found in the dike between the FRDLs and Portage Creek. The estimated volume of residuals in the FRDLs is 62,000 cy.

Borings installed on the southeastern edge of the former Type III Landfill (designated FLF-1 through FLF-3) encountered residuals ranging from 6 to 10 feet thick. At FLF-1, the residuals were within one-foot of ground surface, but in FLF-2 and FLF-3, the residuals were covered with 10 to 12 feet of fill material. Based upon the observed thickness in the FLF borings, the estimated volume of residuals in the strip between the southeastern perimeter of the former Type III Landfill and the FRDLs is 18,000 cy.

In the Western Disposal Area, residuals were found in all eight of the borings. Based on location and thickness of the residuals, the Western Disposal Area can be subdivided into three areas. The first area is in the vicinity of WA-1, WA-2, and WA-3 where the residuals are 10 to 15 feet thick and are covered with two feet of fill materials. The second area is in the vicinity of WA-4 where the residuals are approximately 4 feet thick and are covered with approximately 6 feet of soil fill. The last area is the southern end of the Western Disposal Area, including WA-5, WA-6, WA-7, and WA-8 where residuals are up to 20 feet thick and covered with 2 to 3 feet of soil fill. The total estimated volume of residuals in the Western Disposal Area is 380,000 cy.

Dike materials encountered consisted of non-stratified gravels, sands, and clays. Some residuals were encountered in the dikes (one out of 11 boring locations) around the Bryant HRDL and FRDLs. The thickness of residuals at location GEO-1 is 5 feet. On the interior side of the dikes around the Monarch HRDL, 12 feet of residuals were encountered at two locations under 2 to 3 feet of fill materials.

#### 3.5 Summary and Conclusions

The preliminary findings relevant to the investigation objectives which can be drawn from the results of this investigation are summarized as follows:

- The Allied OU encompasses an area of approximately 51 acres along the Portage Creek, between Alcott and Cork Streets in the Town of Kalamazoo, Michigan. The OU consists of the Monarch HRDL, the Bryant HRDL, the FRDLs, the former Type III Landfill, the Western Disposal Area, the former Bryant Mill Pond, and Portage Creek.
- The volume of residuals present in each area of the OU has been estimated based on the results of this and previous investigations including 170,000 cubic yards in the Monarch HRDL, 390,000 cubic yards in Bryant HRDL, 62,000 cubic yards in the FRDLs, 18,000 cubic yards along the southern perimeter of the former Type III Landfill, and 380,000 cubic yards in the Western Disposal Area. Combining the 120,000 cy previously estimated for the former Type III Landfill with the 83,000 cy of residuals and sediments of the former Bryant Mill Pond yields a total estimate of 1.1 million cy.
- The stratigraphic units most frequently observed underlying the residuals are a peat unit observed to underlay the residuals across the southern third of the Western Disposal Area, and the Bryant HRDL, the FRDLs, and the former Type III Landfill, where they border Portage Creek, and a sand unit was observed underlying the residuals across the interior portions of the FRDLs, the Type III Landfill, as well as much of the Monarch HRDL and the Western Area.
- A number of low permeability units were encountered within the subsurface at the OU including several clay units which locally appear to separate shallow water-bearing zones from deeper inter-berm zones.
- Correlation of subsurface units was particularly difficult in the vicinity of the Portage Creek. The stratigraphic units observed in the vicinity of the Creek suggest a complex depositional history including the erosion of older units followed by the re-deposition of materials in an alluvial environment. This depositional history has resulted in a complex stratigraphic sequence along the Creek.
- The direction of groundwater flow within the shallow overburden is generally toward Portage Creek, resulting in converging flow from opposite sides of the Creek. Groundwater flow across the Monarch HRDL is generally toward the north-northwest with an average horizontal gradient of approximately 0.077.
- Groundwater flow across the main portion of the Allied OU appears to be semi-radial in direction due to the fact that the Creek follows the southeastern, eastern, and northeastern border of this portion of the OU. The horizontal gradient across this main portion of the OU was observed to range from 0.013 to 0.008.
- Hydraulic conductivity values ranged from 1E-5 to 1E-2 cm/sec. Hydraulic conductivity values for most wells represent an average value for the multiple units (sands, clays, silts, peats, etc.) the well screens intersect.

- PCB concentrations in subsurface residuals were higher than those observed in surface samples. PCB concentrations in native soils underlying residuals are generally one to two orders of magnitude less than those in the overlying residuals sample.
- PCB concentrations in surface and subsurface samples from the former Bryant Mill Pond are similar to those observed in data from previous investigations. The extensive historical PCB data for Bryant Mill Pond were reviewed, and their useability for OU characterization was confirmed. The new data confirms and compliments the data from previous investigations.
- PCB were detected in eight groundwater samples collected from monitoring wells MW-5, MW-8A, MW-22A, MW-24, MW-25, MW-120B, MW-121A, and MW-121B.
- PCB were not detected in any of the groundwater samples from the wells associated with the Monarch HRDL, the FRDLs, Pilot Study Area, or the former Bryant Mill Pond. PCB were detected in samples from eight wells out of the 52 wells sampled. Of these, five of the eight wells are in the Bryant HRDL area, two wells are located in the Western Disposal Area, and one well is located near the perimeter of the former Type III Landfill.
- Residuals were not encountered in the dikes around the Bryant HRDL and the FRDLs. Residuals were encountered on the interior side of the dike around the Monarch HRDL.
- TAL inorganics concentrations in native soils underlying the residuals were generally higher than the soil samples collected from boreholes located upgradient of the residual containing areas. However, the underlying native soils typically consisted of peat or organic-rich mineral soil, while the upgradient soil samples represented sandy subsoils.
- The collection of soil and groundwater samples in the Pilot Study Area was intended to address the prior observation of elevated levels of aluminum, chromium, iron, lead, and nickel in a water sample from a shallow excavation in the area. Concentrations of the other analytes were generally two orders of magnitude lower than the results of the historical sample. The concentrations observed in soil samples were generally consistent with those observed in the samples from the native soils underlying the remainder of the OU.
- PCB was detected in surface soil samples associated with the Portage Creek Floodplain, Western Disposal Area, Monarch HRDL, former Bryant Mill Pond, Bryant HRDL, FRDLs, and the former Type III Landfill.

# 4. References

- ASTM, Annual Book of ASTM Standards, Volume 04.08, Soil and Rock, Building Stones. <u>Geotextiles</u>, (Philadelphia, PA: 1993).
- Blasland & Bouck Engineers, P.C., Allied Paper, Inc. Portage Creek Kalamazoo River Superfund Site Description of Current Situation, (Syracuse NY: July 1992).
- Blasland & Bouck Engineers, P.C., Allied Paper, Inc. Portage Creek Kalamazoo River Superfund Site Health and Safety Plan, (Syracuse, NY: June 1993a).
- Blasland & Bouck Engineers, P.C., Allied Paper, Inc. Operable Unit Remedial Investigation Focused Feasibility Study Work Plan, (Syracuse, NY: July 1993b).
  - Blasland & Bouck Engineers, P.C., Allied Paper, Inc. Operable Unit Remedial Investigation/Focused Feasibility Study Field Sampling Plan, (Syracuse, NY: July 1993c).

Blasland & Bouck Engineers, P.C., Quality Assurance Project Plan, (Syracuse, NY: July 1993d).

- Blasland, Bouck & Lee, Inc., Technical Memorandum 11-Allied Paper, Inc. Operable Unit, (Syracuse, NY: April 1994).
- Limno-Tech, Inc., Report on the HM Holdings/Allied Paper, Inc., Investigations of the Historical Residuals Dewatering Lagoons and Seeps 1 and 2, (January 1990).
- USEPA, Data Quality Objectives for Remedial Response Activities, Development Process. Office of Emergency and Remedial Response and Office of Waste Programs Enforcement, EPA/540/G-87/003, (Washington, DC: March 1987a).
- USEPA, Data Quality Objectives for Remedial Response Activities, Example Scenario. Office of Emergency and Remedial Response and Office of Waste Programs Enforcement, EPA/540/G-87/004, (Washington, DC: March 1987b).
- USEPA, "Interim Procedures for Estimating Risks Associated with Exposures to Mixtures of Chlorinated Dibenzo-p-Dioxins and Dibenzofurans (CDDs and CDFs) and 1989 Update." EPA/625/3-89/016 (March 1989a).
- USEPA, Laboratory Data Validation: Functional Guidelines for Evaluating Inorganic Analysis (Draft), Hazardous Site Evaluation Division, (October 1989b).
- USEPA, Contract Laboratory Program Statement of Work for Organics Analysis, ILM01.8 (August 1991a).
- USEPA, Contract Laboratory Program Statement of Work for Inorganics Analysis, OLM02.1 (August 1991b).
- USEPA, National Functional Guidelines for Organic Data Review (Draft), Contract Laboratory Program, (December 1990, revised June 1991c).
- USEPA, Region V Standard Operating Procedure for Validation of CLP Organic Data, Region V Central Regional Laboratory, (April 1991d).

# Tables

BLASLAND, BOUCK & LEE, INC. engineers & scientists

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT USEPA CONTRACT LABORATORY PROGRAM-TARGET COMPOUND LIST/TARGET ANALYTE LIST

| TARGET COMPOUND LIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VOCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                 |
| acetone<br>benzene<br>bromodichloromethane<br>bromoform<br>bromomethane<br>2-butanone<br>carbon disulfide<br>carbon tetrachloride<br>chlorobenzane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | chloromethane<br>dibromochloromethane<br>1,1-dichloroethane<br>1,2-dichloroethane<br>1,1-dichloroethene<br>1,2-dichloroethene (total)<br>1,2-dichloropropane<br>cis-1,3-dichloropropane<br>trans-1,3-dichloropropane                                                                                                                                                                                                                                                                                                   | methylene chloride<br>4-methyl-2-pentanone<br>styrene<br>1,1,2,2-tetrachloroethane<br>tetrachloroethene<br>toluene<br>1,1,1-trichloroethane<br>1,1,2-trichloroethane<br>trichloroethene                                                                                                                                                                         |
| chloroethane<br>chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ethylbenzene<br>2-hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vinyl chloride<br>xylenes (total)                                                                                                                                                                                                                                                                                                                               |
| SVOCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                 |
| acsnaphthene<br>acsnaphthylene<br>anthracene<br>benzo(a)anthracene<br>benzo(b)fluoranthene<br>benzo(b)fluoranthene<br>benzo(g,h,i)perylene<br>benzo(g,h,i)perylene<br>benzo(g,h,i)perylene<br>benzo(g,h,i)perylene<br>benzo(g,h,i)perylene<br>benzo(g,h,i)perylene<br>benzo(g,h,i)perylene<br>benzo(g,h,i)perylene<br>benzole<br>4-chioroantiline<br>bis(2-chioroanthyl)ether<br>4-chioro-3-methyl phenol<br>2-chioronaphthalene<br>2-chioronaphthalene<br>2-chioronaphthalene<br>2-chiorophenol<br>4-chiorophenol<br>4-chiorophenol<br>4-chiorophenol<br>4-chiorophenol<br>4-chiorophenol<br>4-chiorophenol<br>4-chiorophenol<br>4-chiorophenol<br>4-chiorophenol<br>4-chiorophenol<br>4-chiorophenol<br>4-chiorophenol<br>4-chiorophenol<br>4-chiorophenol<br>4-chiorophenol<br>4-chiorophenol<br>4-chiorophenol<br>4-chiorophenol<br>4-chiorophenol<br>4-chiorophenol<br>4-chiorophenol<br>4-chiorophenol<br>4-chiorophenol | di-n-butyiphthalate<br>1,2-dichlorobenzene<br>1,3-dichlorobenzene<br>3,3'-dichlorobenzidine<br>2,4-dichlorophenol<br>diethyl phthalate<br>2,4-dimethylphenol<br>4,6-dinitro-2-methyl phenol<br>dimethyl phthalate<br>2,4-dinitrotoluene<br>2,4-dinitrotoluene<br>2,6-dinitrotoluene<br>di-n-octyl phthalate<br>bis(2-ethlhexyl)phthalate<br>fluorene<br>hexachlorobenzene<br>hexachlorobenzene<br>hexachlorobenzene<br>hexachlorobentadiene<br>hexachlorocyclopentadiene<br>hexachlorocthane<br>indeno(1,2,3-cd)pyrene | isophorone<br>2-methylnaphthalene<br>2-methylphenol<br>4-methylphenol<br>naphthalene<br>2-nitroaniline<br>3-nitroaniline<br>4-nitroaniline<br>nitrobenzene<br>2-nitrophenol<br>4-nitrophenol<br>n-nitroso-di-n-propylamine<br>pentachlorophenol<br>phenanthrene<br>phenol<br>pyrene<br>1,2,4-trichlorobenzene<br>2,4,5-trichlorophenol<br>2,4,6-trichlorophenol |

- ...

~

#### TABLE 2-1 (Cont'd.)

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

# ALLIED PAPER, INC. OPERABLE UNIT USEPA CONTRACT LABORATORY PROGRAM-TARGET COMPOUND LIST/TARGET ANALYTE LIST

| Pesticides/PCB Compo                                                                                                                                     | bunds                                                                                                                              |                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aldrin<br>alpha-BHC<br>Aroclor - 1016*<br>Aroclor - 1221*<br>Aroclor - 1232*<br>Aroclor - 1242*<br>Aroclor - 1248*<br>Aroclor - 1254*<br>Aroclor - 1260* | beta-BHC<br>gamma-BHC (lindane)<br>delta-BHC<br>alpha-chlordane<br>gamma-chlordane<br>4,4'-DDD<br>4,4'-DDE<br>4,4'-DDT<br>dieldrin | endosulfan I<br>endosulfan II<br>endosulfan sulfate<br>endrin<br>endrin aldehyde<br>endrin ketone<br>heptachlor<br>heptachlor<br>epoxide<br>methoxychlor<br>toxaphene |
| TARGET ANALYTE LIS                                                                                                                                       | <b>T</b>                                                                                                                           |                                                                                                                                                                       |
| Metals/Other Compour                                                                                                                                     | ids                                                                                                                                |                                                                                                                                                                       |
| aluminum<br>antimony<br>arsenic<br>barium<br>beryllium<br>cadmium<br>calcium<br>chromium                                                                 | cobalt<br>copper<br>cyanide<br>iron<br>lead<br>magnesium<br>manganese<br>mercury                                                   | nickel<br>potassium<br>selenium<br>silver<br>sodium<br>thallium<br>vanadium<br>zinc                                                                                   |

References:

TCL: USEPA, 1991a.

TAL: USEPA, 1991b.

\*PCB were not included in the TCL/TAL analyses but were analyzed separately.

# ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF REMEDIAL INVESTIGATION RESIDUALS/SOIL/SEDIMENT SAMPLES

| Location               | Depth (ft) <sup>1</sup>                                                                                                                                                                | Media                                                                                                                                                                                                                                     | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                      | Analysis                                                                                                                                                                                                                            | Comments                               |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Bryant HRDL            |                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                        |
| BHDL-22                | 0 - 0.5                                                                                                                                                                                | Residuals                                                                                                                                                                                                                                 | A60690                                                                                                                                                                                                                                                                                                                                                                                                                         | PCB                                                                                                                                                                                                                                 | Duplicate (A60693                      |
|                        | 6 - 8                                                                                                                                                                                  | Residuals                                                                                                                                                                                                                                 | A60686                                                                                                                                                                                                                                                                                                                                                                                                                         | PCB                                                                                                                                                                                                                                 | +                                      |
|                        | 8 - 10                                                                                                                                                                                 | Residuals                                                                                                                                                                                                                                 | A60687                                                                                                                                                                                                                                                                                                                                                                                                                         | PCB                                                                                                                                                                                                                                 |                                        |
|                        | 10 - 12                                                                                                                                                                                | Residuals                                                                                                                                                                                                                                 | A60688                                                                                                                                                                                                                                                                                                                                                                                                                         | TCL/TAL                                                                                                                                                                                                                             | Duplicate (A60691                      |
|                        | 12 - 14                                                                                                                                                                                | Soil                                                                                                                                                                                                                                      | A60689                                                                                                                                                                                                                                                                                                                                                                                                                         | TCL/TAL                                                                                                                                                                                                                             | Duplicate (A60692                      |
| BHDL-123               | 0 - 0.5                                                                                                                                                                                | Residuals                                                                                                                                                                                                                                 | A60680                                                                                                                                                                                                                                                                                                                                                                                                                         | РСВ                                                                                                                                                                                                                                 | MS/MSD                                 |
|                        | 4 - 6                                                                                                                                                                                  | Residuals                                                                                                                                                                                                                                 | A60681                                                                                                                                                                                                                                                                                                                                                                                                                         | PCB                                                                                                                                                                                                                                 | Duplicate (A60685                      |
|                        | 6 - 8                                                                                                                                                                                  | Residuals                                                                                                                                                                                                                                 | A60682                                                                                                                                                                                                                                                                                                                                                                                                                         | PCB                                                                                                                                                                                                                                 | MS/MSD                                 |
|                        | 8 - 9.5                                                                                                                                                                                | Residuals                                                                                                                                                                                                                                 | A60683                                                                                                                                                                                                                                                                                                                                                                                                                         | TCL/TAL                                                                                                                                                                                                                             | MS/MSD                                 |
|                        | 10 - 12                                                                                                                                                                                | Soil                                                                                                                                                                                                                                      | A60684                                                                                                                                                                                                                                                                                                                                                                                                                         | TCL/TAL                                                                                                                                                                                                                             | MS/MSD                                 |
| MW-121B                | 0 - 0.5                                                                                                                                                                                | Soil                                                                                                                                                                                                                                      | A60042                                                                                                                                                                                                                                                                                                                                                                                                                         | PCB                                                                                                                                                                                                                                 |                                        |
|                        | 10 - 12                                                                                                                                                                                | Residuals                                                                                                                                                                                                                                 | A60043                                                                                                                                                                                                                                                                                                                                                                                                                         | PCB                                                                                                                                                                                                                                 |                                        |
|                        | 12 - 14                                                                                                                                                                                | Residuals                                                                                                                                                                                                                                 | A60044                                                                                                                                                                                                                                                                                                                                                                                                                         | PCB                                                                                                                                                                                                                                 |                                        |
|                        | 14 - 16                                                                                                                                                                                | Residuals                                                                                                                                                                                                                                 | A60045                                                                                                                                                                                                                                                                                                                                                                                                                         | PCB                                                                                                                                                                                                                                 | 1                                      |
|                        | 16 - 17.5                                                                                                                                                                              | Residuals                                                                                                                                                                                                                                 | A60046                                                                                                                                                                                                                                                                                                                                                                                                                         | TCL/TAL                                                                                                                                                                                                                             |                                        |
|                        | 17.5 - 19                                                                                                                                                                              | Soil                                                                                                                                                                                                                                      | A60047                                                                                                                                                                                                                                                                                                                                                                                                                         | TCL/TAL                                                                                                                                                                                                                             |                                        |
| P-1                    | 12 - 14                                                                                                                                                                                | Soil                                                                                                                                                                                                                                      | A60678                                                                                                                                                                                                                                                                                                                                                                                                                         | PCB                                                                                                                                                                                                                                 | MS/MSD                                 |
| P-2                    | 12 - 14                                                                                                                                                                                | Soil                                                                                                                                                                                                                                      | A60677                                                                                                                                                                                                                                                                                                                                                                                                                         | PCB                                                                                                                                                                                                                                 |                                        |
| P-3                    | 16 - 18                                                                                                                                                                                | Soil                                                                                                                                                                                                                                      | A60679                                                                                                                                                                                                                                                                                                                                                                                                                         | PCB                                                                                                                                                                                                                                 | 1                                      |
|                        |                                                                                                                                                                                        |                                                                                                                                                                                                                                           | A00079                                                                                                                                                                                                                                                                                                                                                                                                                         | FCB                                                                                                                                                                                                                                 |                                        |
| Monarch HRDL           |                                                                                                                                                                                        | <u></u>                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                        |
| Monarch HRDL<br>MLSS-1 | 0-0.5                                                                                                                                                                                  | Soil                                                                                                                                                                                                                                      | A60033                                                                                                                                                                                                                                                                                                                                                                                                                         | PCDD/PCDF                                                                                                                                                                                                                           | Duplicate (A60034                      |
|                        | 0-0.5<br>0-0.5                                                                                                                                                                         | Soil<br>Soil                                                                                                                                                                                                                              | A60033<br>A60035                                                                                                                                                                                                                                                                                                                                                                                                               | PCDD/PCDF<br>PCB                                                                                                                                                                                                                    |                                        |
|                        | 0-0.5<br>0-0.5<br>8-10                                                                                                                                                                 | Soil<br>Soil<br>Residuals                                                                                                                                                                                                                 | A60033<br>A60035<br>A60036                                                                                                                                                                                                                                                                                                                                                                                                     | PCDD/PCDF<br>PCB<br>PCB                                                                                                                                                                                                             | Duplicate (A60034<br>Duplicate (A60041 |
|                        | 0-0.5<br>0-0.5<br>8-10<br>10-12                                                                                                                                                        | Soil<br>Soil<br>Residuals<br>Residuals                                                                                                                                                                                                    | A60033<br>A60035<br>A60036<br>A60037                                                                                                                                                                                                                                                                                                                                                                                           | PCDD/PCDF<br>PC8<br>PC8<br>PC8<br>PC8                                                                                                                                                                                               |                                        |
|                        | 0-0.5<br>0-0.5<br>8-10<br>10-12<br>12-14                                                                                                                                               | Soil<br>Soil<br>Residuals<br>Residuals<br>Residuals                                                                                                                                                                                       | A60033<br>A60035<br>A60036<br>A60037<br>A60038                                                                                                                                                                                                                                                                                                                                                                                 | PCDD/PCDF<br>PC8<br>PC8<br>PC8<br>PC8<br>PC8                                                                                                                                                                                        |                                        |
|                        | 0-0.5<br>0-0.5<br>8-10<br>10-12<br>12-14<br>14-15.5                                                                                                                                    | Soil<br>Soil<br>Residuals<br>Residuals<br>Residuals<br>Residuals                                                                                                                                                                          | A60033<br>A60035<br>A60036<br>A60037<br>A60038<br>A60039                                                                                                                                                                                                                                                                                                                                                                       | PCDD/PCDF<br>PCB<br>PCB<br>PCB<br>PCB<br>TCL/TAL                                                                                                                                                                                    |                                        |
| MLSS-1                 | 0-0.5<br>0-0.5<br>8-10<br>10-12<br>12-14<br>14-15.5<br>15.5-18                                                                                                                         | Soil<br>Soil<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Soil                                                                                                                                                                  | A60033<br>A60035<br>A60036<br>A60037<br>A60038<br>A60039<br>A60040                                                                                                                                                                                                                                                                                                                                                             | PCDD/PCDF<br>PCB<br>PCB<br>PCB<br>PCB<br>TCL/TAL<br>TCL/TAL                                                                                                                                                                         |                                        |
|                        | $\begin{array}{r} 0-0.5\\ 0-0.5\\ 8-10\\ 10-12\\ 12-14\\ 14-15.5\\ 15.5-18\\ 0-0.5\\ \end{array}$                                                                                      | Soil<br>Soil<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Soil<br>Residuals                                                                                                                                                     | A60033<br>A60035<br>A60036<br>A60037<br>A60038<br>A60039<br>A60039<br>A60040<br>A60560                                                                                                                                                                                                                                                                                                                                         | PCDD/PCDF<br>PCB<br>PCB<br>PCB<br>PCB<br>TCL/TAL<br>TCL/TAL<br>PCB                                                                                                                                                                  |                                        |
| MLSS-1                 | $\begin{array}{r} 0-0.5\\ 0-0.5\\ 8-10\\ 10-12\\ 12-14\\ 14-15.5\\ 15.5-18\\ 0-0.5\\ 2-4\\ \end{array}$                                                                                | Soil<br>Soil<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Soil<br>Residuals<br>Residuals                                                                                                                                        | A60033<br>A60035<br>A60036<br>A60037<br>A60038<br>A60039<br>A60039<br>A60040<br>A60560<br>A60562                                                                                                                                                                                                                                                                                                                               | PCDD/PCDF<br>PCB<br>PCB<br>PCB<br>PCB<br>TCL/TAL<br>TCL/TAL<br>PCB<br>PCB                                                                                                                                                           |                                        |
| MLSS-1                 | $\begin{array}{r} 0-0.5\\ 0-0.5\\ 8-10\\ 10-12\\ 12-14\\ 14-15.5\\ 15.5-18\\ 0-0.5\\ 2-4\\ 14-16\end{array}$                                                                           | Soil<br>Soil<br>Residuals<br>Residuals<br>Residuals<br>Soil<br>Residuals<br>Residuals<br>Residuals<br>Residuals                                                                                                                           | A60033<br>A60035<br>A60036<br>A60037<br>A60038<br>A60039<br>A60040<br>A60560<br>A60560<br>A60562<br>A60568                                                                                                                                                                                                                                                                                                                     | PCDD/PCDF<br>PC8<br>PC8<br>PC8<br>PC8<br>PC8<br>TCL/TAL<br>TCL/TAL<br>TCL/TAL<br>PC8<br>PC8<br>PC8<br>PC8                                                                                                                           |                                        |
| MLSS-1                 | $\begin{array}{r} 0-0.5\\ 0-0.5\\ 8-10\\ 10-12\\ 12-14\\ 14-15.5\\ 15.5-18\\ 0-0.5\\ 2-4\\ 14-16\\ 16-18\\ \end{array}$                                                                | Soil<br>Soil<br>Residuals<br>Residuals<br>Residuals<br>Soil<br>Residuals<br>Residuals<br>Residuals<br>Residuals                                                                                                                           | A60033<br>A60035<br>A60036<br>A60037<br>A60038<br>A60039<br>A60040<br>A60560<br>A60562<br>A60568<br>A60568<br>A60569                                                                                                                                                                                                                                                                                                           | PCDD/PCDF<br>PC8<br>PC8<br>PC8<br>PC8<br>PC8<br>TCL/TAL<br>TCL/TAL<br>PC8<br>PC8<br>PC8<br>PC8<br>PC8                                                                                                                               |                                        |
| MLSS-1                 | $\begin{array}{r} 0-0.5\\ 0-0.5\\ 8-10\\ 10-12\\ 12-14\\ 14-15.5\\ 15.5-18\\ 0-0.5\\ 2-4\\ 14-16\\ 16-18\\ 18-20\\ \end{array}$                                                        | Soil<br>Soil<br>Residuals<br>Residuals<br>Residuals<br>Soil<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals                                                                                                 | A60033<br>A60035<br>A60036<br>A60037<br>A60038<br>A60039<br>A60040<br>A60560<br>A60562<br>A60568<br>A60568<br>A60569<br>A60570                                                                                                                                                                                                                                                                                                 | PCDD/PCDF<br>PCB<br>PCB<br>PCB<br>PCB<br>TCL/TAL<br>TCL/TAL<br>PCB<br>PCB<br>PCB<br>PCB<br>PCB                                                                                                                                      |                                        |
| MLSS-1                 | $\begin{array}{r} 0-0.5\\ 0-0.5\\ 8-10\\ 10-12\\ 12-14\\ 14-15.5\\ 15.5-18\\ 0-0.5\\ 2-4\\ 14-16\\ 16-18\\ 18-20\\ 20-22\\ \end{array}$                                                | Soil<br>Soil<br>Residuals<br>Residuals<br>Residuals<br>Soil<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals                                                                                    | A60033<br>A60035<br>A60036<br>A60037<br>A60038<br>A60039<br>A60040<br>A60560<br>A60562<br>A60568<br>A60568<br>A60568<br>A60569<br>A60570<br>A60571                                                                                                                                                                                                                                                                             | PCDD/PCDF<br>PC8<br>PC8<br>PC8<br>PC8<br>PC8<br>TCL/TAL<br>TCL/TAL<br>PC8<br>PC8<br>PC8<br>PC8<br>PC8<br>PC8<br>PC8<br>TCL/TAL                                                                                                      |                                        |
| MLSS-1<br>MLSS-2       | $\begin{array}{r} 0-0.5\\ 0-0.5\\ 8-10\\ 10-12\\ 12-14\\ 14-15.5\\ 15.5-18\\ 0-0.5\\ 2-4\\ 14-16\\ 16-18\\ 18-20\\ 20-22\\ 22-24\\ \end{array}$                                        | Soil<br>Soil<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals                                                     | A60033<br>A60035<br>A60036<br>A60037<br>A60038<br>A60039<br>A60040<br>A60560<br>A60562<br>A60568<br>A60568<br>A60569<br>A60570<br>A60571<br>A60571<br>A60572                                                                                                                                                                                                                                                                   | PCDD/PCDF<br>PCB<br>PCB<br>PCB<br>PCB<br>TCL/TAL<br>TCL/TAL<br>PCB<br>PCB<br>PCB<br>PCB<br>PCB<br>PCB<br>TCL/TAL<br>TCL/TAL                                                                                                         |                                        |
| MLSS-1                 | $\begin{array}{r} 0-0.5\\ 0-0.5\\ 8-10\\ 10-12\\ 12-14\\ 14-15.5\\ 15.5-18\\ 0-0.5\\ 2-4\\ 14-16\\ 16-18\\ 18-20\\ 20-22\\ 22-24\\ 0-0.5\\ \end{array}$                                | Soil<br>Soil<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals                                                     | A60033           A60035           A60036           A60037           A60038           A60039           A60040           A60560           A60568           A60569           A60570           A60571           A60572           A60540                                                                                                                                                                                            | PCDD/PCDF<br>PCB<br>PCB<br>PCB<br>PCB<br>TCL/TAL<br>TCL/TAL<br>PCB<br>PCB<br>PCB<br>PCB<br>PCB<br>TCL/TAL<br>TCL/TAL<br>TCL/TAL<br>TCL/TAL                                                                                          | Duplicate (A60041                      |
| MLSS-1<br>MLSS-2       | $\begin{array}{r} 0-0.5\\ 0-0.5\\ 8-10\\ 10-12\\ 12-14\\ 14-15.5\\ 15.5-18\\ 0-0.5\\ 2-4\\ 14-16\\ 16-18\\ 18-20\\ 20-22\\ 22-24\\ 0-0.5\\ 8-10\\ \end{array}$                         | Soil<br>Soil<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals              | A60033           A60035           A60036           A60037           A60038           A60039           A60039           A60040           A60560           A60562           A60568           A60569           A60570           A60571           A60540           A60540                                                                                                                                                          | PCDD/PCDF<br>PCB<br>PCB<br>PCB<br>PCB<br>TCL/TAL<br>TCL/TAL<br>TCL/TAL<br>PCB<br>PCB<br>PCB<br>PCB<br>TCL/TAL<br>TCL/TAL<br>TCL/TAL<br>PCDD/PCDF + PCB<br>PCB                                                                       |                                        |
| MLSS-1<br>MLSS-2       | $\begin{array}{r} 0-0.5\\ 0-0.5\\ 8-10\\ 10-12\\ 12-14\\ 14-15.5\\ 15.5-18\\ 0-0.5\\ 2-4\\ 14-16\\ 16-18\\ 18-20\\ 20-22\\ 22-24\\ 0-0.5\\ 8-10\\ 12-14\\ \end{array}$                 | Soil<br>Soil<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals              | A60033           A60035           A60036           A60037           A60038           A60039           A60039           A60040           A60560           A60562           A60568           A60570           A60571           A60572           A60540           A60545                                                                                                                                                          | PCDD/PCDF<br>PCB<br>PCB<br>PCB<br>PCB<br>TCL/TAL<br>TCL/TAL<br>TCL/TAL<br>PCB<br>PCB<br>PCB<br>PCB<br>TCL/TAL<br>TCL/TAL<br>TCL/TAL<br>PCDD/PCDF + PCB<br>PCB<br>PCB                                                                | Duplicate (A60041                      |
| MLSS-1<br>MLSS-2       | $\begin{array}{r} 0-0.5\\ 0-0.5\\ 8-10\\ 10-12\\ 12-14\\ 14-15.5\\ 15.5-18\\ 0-0.5\\ 2-4\\ 14-16\\ 16-18\\ 18-20\\ 20-22\\ 22-24\\ 0-0.5\\ 8-10\\ 12-14\\ 14-16\\ \end{array}$         | Soil<br>Soil<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals | A60033           A60035           A60036           A60037           A60038           A60039           A60039           A60040           A60560           A60562           A60568           A60570           A60571           A60572           A60540           A60543           A60544                                                                                                                                         | PCDD/PCDF<br>PC8<br>PC8<br>PC8<br>PC8<br>TCL/TAL<br>TCL/TAL<br>TCL/TAL<br>PC8<br>PC8<br>PC8<br>PC8<br>PC8<br>PC8<br>TCL/TAL<br>TCL/TAL<br>TCL/TAL<br>PCDD/PCDF + PC8<br>PC8<br>PC8<br>PC8<br>PC8<br>PC8<br>PC8<br>PC8<br>PC8<br>PC8 | Duplicate (A60041                      |
| MLSS-1<br>MLSS-2       | $\begin{array}{r} 0-0.5\\ 0-0.5\\ 8-10\\ 10-12\\ 12-14\\ 14-15.5\\ 15.5-18\\ 0-0.5\\ 2-4\\ 14-16\\ 16-18\\ 18-20\\ 20-22\\ 22-24\\ 0-0.5\\ 8-10\\ 12-14\\ 14-16\\ 16-18\\ \end{array}$ | Soil<br>Soil<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals | A60033           A60035           A60036           A60037           A60038           A60039           A60039           A60040           A60560           A60562           A60568           A60570           A60571           A60571           A60540           A60540           A60540           A60540           A60540           A60545           A60545           A60545           A60548           A60549           A60550 | PCDD/PCDF<br>PCB<br>PCB<br>PCB<br>PCB<br>PCB<br>TCL/TAL<br>TCL/TAL<br>PCB<br>PCB<br>PCB<br>PCB<br>PCB<br>TCL/TAL<br>TCL/TAL<br>TCL/TAL<br>PCDD/PCDF + PCB<br>PCB<br>PCB<br>PCB<br>PCB<br>PCB                                        | Duplicate (A6004                       |
| MLSS-1<br>MLSS-2       | $\begin{array}{r} 0-0.5\\ 0-0.5\\ 8-10\\ 10-12\\ 12-14\\ 14-15.5\\ 15.5-18\\ 0-0.5\\ 2-4\\ 14-16\\ 16-18\\ 18-20\\ 20-22\\ 22-24\\ 0-0.5\\ 8-10\\ 12-14\\ 14-16\\ \end{array}$         | Soil<br>Soil<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals | A60033           A60035           A60036           A60037           A60038           A60039           A60039           A60040           A60560           A60562           A60568           A60570           A60571           A60572           A60540           A60543           A60544           A60545           A60548                                                                                                       | PCDD/PCDF<br>PC8<br>PC8<br>PC8<br>PC8<br>TCL/TAL<br>TCL/TAL<br>TCL/TAL<br>PC8<br>PC8<br>PC8<br>PC8<br>PC8<br>PC8<br>TCL/TAL<br>TCL/TAL<br>TCL/TAL<br>PCDD/PCDF + PC8<br>PC8<br>PC8<br>PC8<br>PC8<br>PC8<br>PC8<br>PC8<br>PC8<br>PC8 | Duplicate (A60041                      |

See Notes on Page 7

#### Reference Saper, INC./PORTAGE CREEK/KALAMAZOO RIVER 4 SUPERFUND SITE

# ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF REMEDIAL INVESTIGATION RESIDUALS/SOIL/SEDIMENT SAMPLES

| Location                                | Depth (ft)                                                                                                      | Media                         | Sample ID                                                                                                        | Analysis                 | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Monarch HRDL                            | (Cont'd )                                                                                                       |                               |                                                                                                                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MLSS-4                                  | 0-0.5                                                                                                           | Residuals                     | A60520                                                                                                           | PCB AND A                | and the state of the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                         | 678                                                                                                             | Residuals                     | A60524                                                                                                           | PCB                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ter sites in                            | 12-14                                                                                                           | Residuals                     | A60527                                                                                                           | PCB                      | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         | 14-16                                                                                                           | Residuals                     | A60528                                                                                                           | PCB                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2000 a                                  | 16-18                                                                                                           | Residuals                     | A60529                                                                                                           | PCB                      | • · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $(x,y) = x_1 D + e^{X_1 D} + \Phi B$    | 18-20                                                                                                           | Ausicuals                     | A60530                                                                                                           | TCL/TAL                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | 20-22                                                                                                           | Soil                          | A60531                                                                                                           | TCL/TAL                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ML88-5                                  | MALE OHO SHARE                                                                                                  | Residuals                     | 7's #8 A60500                                                                                                    | ARTORN PCB Proves        | u seustapper un h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| e granter of the Sela                   |                                                                                                                 | In Residuals                  |                                                                                                                  | PCB                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | 12-14                                                                                                           | Residuals                     | A60507                                                                                                           | PCB                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | 18-20                                                                                                           | Residuals                     | A60510                                                                                                           | PCB MARK                 | A star and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| i di tangé 🔊 Angen                      | 20-22                                                                                                           | Residuals                     | A60511                                                                                                           | PCB                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | 22-24                                                                                                           | Residuals                     | A60512                                                                                                           | TCL/TAL                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 神魂的动。曹国和朝                               | * 21-28                                                                                                         | Sol                           | A60513                                                                                                           | TCL/TAL                  | art Construction and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MN 248                                  | 4-6                                                                                                             | Sol                           | A60102                                                                                                           | PCB                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | 12-14                                                                                                           | Soil                          | A60106                                                                                                           | PCB                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 - 200 Street Freight Street           |                                                                                                                 | No MABON WAR                  |                                                                                                                  | The Mill PCB approximate | Duplicate (A60108)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         |                                                                                                                 | SO                            |                                                                                                                  | PCB                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a section and the sec                   | 40-42                                                                                                           | Soil                          | A60110                                                                                                           | PCB                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | 54-56                                                                                                           | Soil a                        | A60111                                                                                                           | PCB                      | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| WW-105B                                 |                                                                                                                 | Residuals                     | A60024                                                                                                           | PCB                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-1258                                 | The second se | Residuals                     | A60027                                                                                                           | PCB                      | <u>A faith an air Na choise a tha an Athraigh baile</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| an Canality a                           | 14-18                                                                                                           | Residuals                     | A60028                                                                                                           | PCB                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · · ·                                   | 18-19                                                                                                           | Residuals                     | A60029                                                                                                           | TCL/TAL                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Refer 12 Sec. Pressentes                | 18-19<br>19-20                                                                                                  |                               | A60030                                                                                                           |                          | t and the states with the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MW-126A                                 | <b>14-16</b>                                                                                                    | Residuale                     | A60017                                                                                                           |                          | MS/MSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                         | 14-16                                                                                                           | Soil                          | A60018                                                                                                           |                          | MOMOU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MW126B                                  |                                                                                                                 | Soil                          | A60018                                                                                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14144-1200                              | 0-0.5                                                                                                           |                               |                                                                                                                  | PCB                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $(t, \alpha)$                           | 6-8                                                                                                             | Residuals                     | A60003                                                                                                           | PCB                      | LICENDARY CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| South the second second                 | 10-12                                                                                                           | Residuals                     | A60008                                                                                                           | PCB                      | We have been a structure of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | 12-14                                                                                                           | Residuals                     | A60007                                                                                                           | PCB                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RDLs - Aller                            | and a state of a                                                                                                | alanahista in di <b>un</b> te | and the second | and the second card the  | and and a star for a star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DLHB-1                                  | 0-0.5                                                                                                           | Residuals                     | A60589                                                                                                           | PCDD/PCDF + PCB          | When FUELS WERE WARDEN AND THE TREE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                         | 2-4                                                                                                             | Residuals                     | A60590                                                                                                           | PCB                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | 10-12                                                                                                           | Residuals                     | A60591                                                                                                           | PCB                      | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | 12-14                                                                                                           | Residuals                     | A60592                                                                                                           | PCB                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                                                                                                                 | Residuals                     |                                                                                                                  |                          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         | 14-16                                                                                                           |                               | A60593                                                                                                           |                          | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DLHB-2                                  | 16-18                                                                                                           | Soil                          | A60594                                                                                                           | TCL/TAL                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                                                                                                                 |                               | A60582                                                                                                           | PCDD/PCDF + PCB          | and the second states of the s |
| Sector A                                | 0.5 - 2                                                                                                         | Residuals                     | A60583                                                                                                           | PCB                      | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | 2-4                                                                                                             | Residuals                     | A60584                                                                                                           | PCB                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - | 4 7 6                                                                                                           | Residuals                     | A60585                                                                                                           | PCB                      | and the state of t |
|                                         | 6 - 8                                                                                                           | Residuals                     | A60586                                                                                                           | TCL/TAL                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | 8 - 10                                                                                                          | Soil                          | A60587                                                                                                           | TOL/TAL                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

See Notes on Page 7

 $(\mathcal{B}_{1N}) = (\mathcal{O}_{1N})_{1N} = (\mathcal{O}_{1N})_{1N}$ 

2797840LOB **Revision No.: 1** 

 $\Box$ 

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF REMEDIAL INVESTIGATION RESIDUALS/SOIL/SEDIMENT SAMPLES

| Location        | Depth (ft) <sup>1</sup> | Media            | Sample ID | Analysis      | Comments                              |
|-----------------|-------------------------|------------------|-----------|---------------|---------------------------------------|
| FRDLs (Cont'd.  | <b>\</b>                |                  |           |               |                                       |
| DLHB-3          | 0 - 0.5                 | Residuals        | A60595    | PCB           | <u></u>                               |
|                 | 0.5 - 2                 | Residuals        | A60596    | PCB           | MS/MSD                                |
|                 | 2-4                     | Residuals        | A60597    | PCB           |                                       |
|                 | 4 - 6                   | Residuals        | A60598    | PCB           | +                                     |
|                 | 6 - 8                   | Residuals        | A60599    | TCL/TAL       | MS/MSD                                |
|                 | 8 - 10                  | Soil             | A60600    | TCL/TAL       | MS/MSD                                |
| DLHB-4          | 0 - 0.5                 | Soil             | A60580    | PCB           |                                       |
| DLHB-5          | 0 - 0.5                 | Soil             | A60581    | PCDD/PCDF+PCB |                                       |
| DLHB-6          | 0 - 0.5                 | Residuals        | A60601    | PCB           |                                       |
|                 | 2-4                     | Residuals        | A60602    | PCB           | + · · · · · · · · · · · · · · · · · · |
|                 | 4 - 6                   | Residuals        | A60603    | PCB           | ·                                     |
|                 | 6 - 8                   | Residuals        | A60604    | PCB           | Duplicate (A60607                     |
|                 | 8 - 10                  | Residuals        | A60605    | TCL/TAL       |                                       |
|                 | 10 - 12                 | Soil             | A60606    | TCL/TAL       | 1                                     |
| MW-128          | 8 - 10                  | Soil             | A60708    | PCB           |                                       |
|                 | 16 - 18                 | Soil             | A60707    | PCB           |                                       |
|                 | 24 - 26                 | Soil             | A60695    | PCB           | · · · · · · · · · · · · · · · · · · · |
|                 | 36 - 38                 | Soil             | A60696    | PCB           |                                       |
| MW-122B         | 4-6                     | Soil             | A60079    | PCB           | Duplicate (A60080                     |
|                 | 18 - 20                 | Soil             | A60081    | PCB           | 1                                     |
| Former Type III |                         |                  |           |               |                                       |
| FLF-1           | 0 - 0.5                 | Soil             | A60094    | PCB           |                                       |
|                 | 2-4                     | Residuals        | A60095    | PCB           | MS/MSD                                |
|                 | 4-6                     | Residuals        | A60096    | PCB           | MS/MSD                                |
|                 | 6 - 6.5                 | Residuals        | A60097    | TCL/TAL       | MS/MSD                                |
|                 | 6.5 - 8                 | Soil             | A60098    | TCL/TAL       | MS/MSD                                |
| FLF-2           | 0 - 0.5                 | Soil             | A60632    | PC8           |                                       |
|                 | 20 - 22                 | <u>Residuals</u> | A60633    | PCB           | MS/MSD                                |
|                 | 20 - 22                 | <u>Soil</u>      | A60634    | PCB           |                                       |
| FLF-3           | 0 - 0.5                 | Soil             | A60635    | PCB           |                                       |
|                 | 14 - 16                 | Residuals        | A60636    | PCB           | MS/MSD                                |
|                 | 14 – 16                 | Soil             | A60637    | PCB           |                                       |
| MW-198R         | 6-8                     | Soil             | A60697    | PCB           | Duplicate (A60701                     |
|                 | 14 - 16                 | Soil             | A60698    | PCB           |                                       |
|                 | 24 - 26                 | Soil             | A60699    | PCB           | M\$/M\$D                              |
|                 | 38 - 40                 | Soil             | A60700    | PCB           |                                       |
| MW-127A         | 4 - 6                   | Soil             | A60103    | РСВ           | Duplicate (A60104                     |
| Western Dispos  |                         | 0-14             | 100000    |               | · • • •                               |
| WA-1            | 0-0.5                   | Soil             | A60064    | PCB           |                                       |
|                 | 2-4                     | Residuals        | A60059    | PCB           |                                       |
|                 | 8-10                    | Residuals        | A60060    | PCB           |                                       |
|                 | 10-12                   | Residuals        | A60061    | PCB           | · · · · · · · · · · · · · · · · · · · |
|                 | 12-13                   | Residuals        | A60062    | TCL/TAL       |                                       |
|                 | 13-14                   | Soil             | A60063    | TCL/TAL       | 1                                     |

See Notes on Page 7

.

2797840LOB Revision No.: 1

# ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF REMEDIAL INVESTIGATION RESIDUALS/SOIL/SEDIMENT SAMPLES

| Location      | Depth (ft) <sup>1</sup> | Media     | Sample ID | Analysis        | Comments                              |
|---------------|-------------------------|-----------|-----------|-----------------|---------------------------------------|
| Western Dispo | sal Area (Cont          | d.)       |           |                 |                                       |
| WA-2          | 0-0.5                   | Soil      | A60670    | PCB + PCDD/PCDF |                                       |
|               | 6-8                     | Residuals | A60671    | PCB             | Duplicate (A60672                     |
|               | 8-10                    | Residuals | A60673    | PCB             |                                       |
|               | 10-12                   | Residuals | A60674    | PCB             |                                       |
|               | 12-14                   | Residuals | A60675    | TCL/TAL         |                                       |
|               | 14-18                   | Soil      | A60676    | TCL/TAL         |                                       |
| WA-3          | 0-0.5                   | Soil      | A60664    | PCB             |                                       |
|               | 2-4                     | Residuals | A60665    | PCB             |                                       |
|               | 10-12                   | Residuals | A60666    | PCB             |                                       |
|               | 12-14                   | Residuals | A60667    | PCB             |                                       |
|               | 14-16                   | Residuals | A60668    | TCL/TAL         |                                       |
|               | 16-18                   | Soil      | A60669    | TCL/TAL         |                                       |
| WA-4          | 0-0.5                   | Residuals | A60659    | PCB             |                                       |
|               | 4-6                     | Residuals | A60660    | PCB             |                                       |
|               | 6-8                     | Residuals | A60661    | PCB             |                                       |
|               | 8-10                    | Residuals | A60662    | TCL/TAL         |                                       |
|               | 10-12                   | Soil      | A60663    | TCL/TAL         |                                       |
| WA5           | 0-0.5                   | Soil      | A60645    | PCB             | T T                                   |
|               | 2-4                     | Residuals | A60646    | PCB             |                                       |
|               | 10-12                   | Residuals | A60647    | PCB             |                                       |
|               | 18-20                   | Residuals | A60648    | PCB             | Duplicate (A60652                     |
|               | 20-22                   | Residuals | A60649    | PCB             |                                       |
|               | 22-23.5                 | Residuals | A60650    | TCL/TAL         | <u></u>                               |
|               | 23.5-26                 | Soil      | A60651    | TCL/TAL         |                                       |
| WA-6          | 0-0.5                   | Soil      | A60087    | PCB + PCDD/PCDF |                                       |
|               | 4-6                     | Residuals | A60082    | PCB             |                                       |
|               | 8-10                    | Residuals | A60083    | PCB             |                                       |
|               | 10-12                   | Residuals | A60084    | PCB             |                                       |
|               | 12-13                   | Residuals | A60085    | TCL/TAL         |                                       |
|               | 13-15                   | Soil      | A60086    | TCL/TAL         | · · · · · · · · · · · · · · · · · · · |
| WA-7          | 0-0.5                   | Soil      | A60638    | PCB             |                                       |
|               | 8-10                    | Residuals | A60639    | PCB             |                                       |
|               | 10-12                   | Residuals | A60640    | PCB             | 1                                     |
|               | 16-18                   | Residuals | A60641    | PCB             |                                       |
|               | 18-20                   | Residuals | A60642    | PCB             |                                       |
|               | 20-22                   | Residuals | A60643    | TCL/TAL         |                                       |
|               | 22-24                   | Soil      | A60644    | TCL/TAL         |                                       |
| WA-8          | 0-0.5                   | Soil      | A60653    | PCB             |                                       |
|               | 2-4                     | Residuals | A60654    | PCB             |                                       |
|               | 6-8                     | Residuals | A60655    | PCB             |                                       |
|               | 8-10                    | Residuals | A60656    | PCB             |                                       |
|               | 10-12                   | Residuals | A60657    | TCL/TAL         | +                                     |
|               | 12-14                   | Soil      | A60658    | TCL/TAL         |                                       |
| MW-78         | 4-6                     | Soil      | A60076    | PCB             | }                                     |
|               | 14-16                   | Soil      | A60077    | PCB             | +                                     |
|               | 24-26                   | Soil      | A60078    | PCB             | Not analyzed                          |

See Notes on Page 7

 $\overline{\phantom{a}}$ 

2797840LOB Revision No.; 1

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF REMEDIAL INVESTIGATION RESIDUALS/SOIL/SEDIMENT SAMPLES

| Location           | Depth (ft) <sup>1</sup> | Media            | Sample ID | Analysis                               | Comments           |
|--------------------|-------------------------|------------------|-----------|----------------------------------------|--------------------|
| Western Dispos     | sal Area (Cont'         | d.)              | ·         |                                        |                    |
| B-78               | 8-10                    | Soil             | A60702    | TCL/TAL                                |                    |
|                    | 10-12                   | Soil             | A60703    | TCL/TAL                                |                    |
| MW-8A              | 0-0.5                   | Soil             | A60105    | PCB                                    |                    |
|                    | 4-6                     | Residuals        | A60089    | PCB                                    |                    |
|                    | 8-10                    | Residuals        | A60090    | PCB                                    |                    |
|                    | 10-12                   | Residuals        | A60091    | PCB                                    |                    |
|                    | 12-12.5                 | Residuals        | A60092    | TCL/TAL                                |                    |
|                    | 12.5-14                 | Soil             | A60093    | TCL/TAL                                |                    |
| MW-20B             | 6-8                     | Soil             | A60056    | PCB ·                                  |                    |
|                    | 16-18                   | Soil             | A60057    | PCB                                    |                    |
|                    | 20-22                   | Soil             | A60058    | PCB                                    |                    |
| MW-120B            | 0-0.5                   | Soil             | A60048    | PCB                                    |                    |
|                    | 6-8                     | Residuals        | A60049    | PCB                                    | Duplicate (A60050) |
|                    | 10-12                   | Residuals        | A60051    | PCB                                    |                    |
|                    | 14-16                   | Residuals        | A60052    | PCB                                    |                    |
|                    | 16-18                   | Residuals        | A60053    | PCB                                    |                    |
|                    | 18-19                   | Residuals        | A60054    | TCL/TAL                                |                    |
|                    | 19-20                   | Soil             | A60055    | TCL/TAL                                |                    |
| Pilot Study Area   |                         |                  |           | <u></u>                                |                    |
| MA-1               | 0 - 1.5                 | Soil             | A60065    | TAL                                    |                    |
|                    | 3 - 4.5                 | Soil             | A60066    | TAL                                    |                    |
| MA-2               | 0 - 1.5                 | Soil             | A60067    | TAL                                    |                    |
|                    | 3 - 4.5                 | Soil             | A60068    | TAL                                    |                    |
| MA-3               | 01-1.5                  | Soil             | A60069    | TAL                                    |                    |
|                    | 3 - 4.5                 | Soil             | A60070    | TAL                                    |                    |
| MA-4               | 0 - 1.5                 | Soil             | A60071    | TAL                                    | MS/MSD             |
|                    | 3 - 4.5                 | Soil             | A60072    | TAL                                    |                    |
| MA-5               | 0 - 1.5                 | Soil             | A60073    | TAL                                    |                    |
|                    | 3 - 4.5                 | Soil             | A60074    | TAL                                    | Duplicate (A60075) |
| Former Bryant      | Mill Pond               |                  |           | #***#********************************* |                    |
| BMP-1              | 0-0.5                   | Soil             | A60626    | PCB                                    |                    |
|                    | 7-8                     | Soil             | A60627    | PCB                                    |                    |
|                    | 8-9                     | Soil             | A60628    | PCB                                    | MS/MSD             |
| BMP-2 <sup>2</sup> | 0-1                     | Soil             | A60621    | TCL/TAL+PCB+TOC                        | MS/MSD             |
|                    | 1-2                     | Soil             | A60622    | PCB+TOC                                |                    |
|                    | 2-3                     | Soil             | A60623    | PCB+TOC                                |                    |
|                    | 3-4                     | Soil             | A60624    | TCL/TAL+PCB+TOC                        |                    |
|                    | 4-5                     | Soil             | A60625    | PCB+TOC                                |                    |
| BMP-3              | 0-0.5                   | Soil             | A60629    | PCB                                    |                    |
|                    | 6-7                     | Residuals        | A60630    | PCB                                    |                    |
|                    | 7-8                     | Soil             | A60631    | PCB                                    |                    |
| BMP-4              | 0-0.5                   | Soil             | A60731    | PCB                                    |                    |
| • •                | 6-7                     | Soil             | A60732    | PCB                                    |                    |
|                    |                         | 1 - <del>-</del> |           | PCB                                    | I                  |

See Notes on Page 7

2797840LOB Revision No.: 1

.....

Ý

....

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF REMEDIAL INVESTIGATION RESIDUALS/SOIL/SEDIMENT SAMPLES

| Location                  | Depth (ft) <sup>1</sup> | Media     | Sample ID | Analysis                                                                                                                   | Comments                               |
|---------------------------|-------------------------|-----------|-----------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Former Bryant I           | Mill Pond (Con          | ťd.)      |           |                                                                                                                            |                                        |
| BMP-5                     | 0-0.5                   | Soil      | A60728    | PCB                                                                                                                        | 1                                      |
|                           | 5-6                     | Soil      | A60729    | PCB                                                                                                                        |                                        |
|                           | 5-6.5                   | Soil      | A60730    | PCB                                                                                                                        |                                        |
| BMP-6                     | 0-0.5                   | Soil      | A60734    | PCB                                                                                                                        | · · · · · · · · · · · · · · · · · · ·  |
|                           | 0.5-1.5                 | Soil      | A60735    | PCB                                                                                                                        |                                        |
|                           | 1.5-2.5                 | Soil      | A60736    | PCB                                                                                                                        | •••••••••••••••••••••••••••••••••••••• |
| BMP-7                     | 0-0.5                   | Soil      | A60726    | PCB + TOC                                                                                                                  | MS/MSD                                 |
|                           | 0.5-1.0                 | Soil      | · A60727  | PCB + TOC                                                                                                                  | 1                                      |
| BMP-8                     | 0-0.5                   | Soil      | A60710    | PCB + TOC                                                                                                                  |                                        |
|                           | 0.5-1.5                 | Soil      | A60711    | PCB + TOC                                                                                                                  | Duplicate (A60712                      |
| BMP-9                     | 0-0.5                   | Soil      | A60738    | PCB + TOC                                                                                                                  |                                        |
|                           | 0.5-1.5                 | Soil      | A60739    | PCB + TOC                                                                                                                  | · · · · · · · · · · · · · · · · · · ·  |
| BMP-10                    | 0-0.5                   | Soil      | A60608    | PCB + TOC                                                                                                                  | Duplicate (A60610                      |
|                           | 1.5-3.0                 | Soil      | A60609    | PCB                                                                                                                        |                                        |
| BMP-11                    | 0-1                     | Soil      | A60611    | PCB + TOC                                                                                                                  |                                        |
|                           | 1-2                     | Soil      | A60612    | PCB                                                                                                                        |                                        |
|                           | 2-3                     | Soil      | A60613    | PCB                                                                                                                        |                                        |
|                           | 3-4                     | Soil      | A60614    | PCB                                                                                                                        |                                        |
|                           | 5-7                     | Soil      | A60615    | PCB                                                                                                                        |                                        |
| BMP-12 <sup>2</sup>       | 0-1                     | Soil      | A60616    | TCL/TAL+PCB+TOC                                                                                                            |                                        |
|                           | 1-2                     | Soil      | A60617    | PCB+TOC                                                                                                                    |                                        |
|                           | 2-3                     | Soil      | A60618    | PCB+TOC                                                                                                                    |                                        |
|                           | 3-4                     | Residuals | A60619    | TCL/TAL+PCB+TOC                                                                                                            |                                        |
|                           | 5-7                     | Soil      | A60620    | PCB+TOC                                                                                                                    |                                        |
| MW-128A                   | 6-8                     | Soil      | A60704    | PCB                                                                                                                        |                                        |
|                           | 14-16                   | Soil      | A60705    | PCB                                                                                                                        |                                        |
| Portage Creek             |                         |           |           |                                                                                                                            |                                        |
| Portage Creek I<br>BLHB-1 | 0 - 0.5                 | Soil      | A60720    | PCB                                                                                                                        | 1                                      |
|                           | 1.0 - 1.5               | Soil      | A60720    | PCB                                                                                                                        |                                        |
| BLHB-2                    | 0 - 0.5                 | <u> </u>  | A60721    | PCB                                                                                                                        | MS/MSD                                 |
|                           | 0 = 0.5<br>0.5 - 1      | Soil      | A60718    | PCB                                                                                                                        |                                        |
| BLHB-3                    | 0-0.5                   | Soil      | A60713    | PCB                                                                                                                        | Duplicate (A60714                      |
|                           | 5 - 5.5                 | Soil      | A60715    | PCB                                                                                                                        | Dupicale (100/14                       |
| MLHB-1                    | 0-0.5                   | Soil      | A60722    | PCB                                                                                                                        | ╉╼╾───────────                         |
|                           | 0.5-1                   | Soil      | A60723    | PCB                                                                                                                        | <b></b>                                |
| MLHB-2                    | 0-0.5                   | Soil      | A60723    | PCB PCB                                                                                                                    | <u>+</u>                               |
|                           | 1.5-2                   | Soil      | A60725    | PCB                                                                                                                        | · · · · · · · · · · · · · · · · · · ·  |
| Portage Creek             |                         |           |           | المتحاذ الذي الذي يوني ويلي بين من المتحدين المتحدين المتحدين ويلي بين من المتحدين ويلي المتحدين ويلي بين المت<br>المتحدين |                                        |
| GS-1                      | 0-0.04                  | Sediment  | A63000    | PCB                                                                                                                        | 1                                      |
| GS-2                      | 0-0.04                  | Sediment  | A63001    | PCB                                                                                                                        |                                        |
| GS-3                      | 0-0.04                  | Sediment  | A63002    | PCB                                                                                                                        | 1                                      |
| GS-4                      | 0-0.04                  | Sodiment  | A63003    | PCB                                                                                                                        |                                        |
| <u>GS-5</u>               | 0-0.04                  | Sediment  | A63004    | PCB                                                                                                                        | Duplicate (A6300                       |

See Notes on Page 7

1

 $\tilde{\boldsymbol{\varepsilon}}$ 

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF REMEDIAL INVESTIGATION RESIDUALS/SOIL/SEDIMENT SAMPLES

| Location        | Depth (ft) <sup>1</sup> | Media     | Sample ID | Analysis | Comments |
|-----------------|-------------------------|-----------|-----------|----------|----------|
|                 |                         |           |           |          |          |
| Residential Soi | i Samples               |           |           |          | 1        |
| BMSS-1          | 0 - 0.5                 | Soil      | A60740    | PCB      |          |
| BMSS-2          | 0 - 0.5                 | Soil      | A60741    | PCB      |          |
| BMSS-3          | 0 - 0.5                 | Soil      | A60708    | PCB      |          |
| BMSS-4          | 0 - 0.5                 | Soil      | A60709    | PCB      |          |
| Monarch Clarifi | er                      |           |           |          |          |
| MC-1            | 0 - 0.2                 | Residuals | A69000    | PCB      |          |

#### Notes:

<sup>1</sup>The depth is referenced to ground surface. <sup>1</sup>Samples also analyzed for PCB congeners and oil and grease.

• \*\*

i

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF GEOTECHNICAL TESTING SAMPLES

| Boring                        | Depth <sup>1</sup><br>(ft)                                                 | Sampling<br>Method                                                               | Material                                                                   | Moisture<br>Content        | Organic<br>Content         | Atterberg<br>Limits | Specific<br>Gravity | UU<br>Triaxial | 1~D<br>Consolidation | Gradation  |
|-------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------|----------------------------|---------------------|---------------------|----------------|----------------------|------------|
| Bryant HRC                    |                                                                            |                                                                                  |                                                                            |                            |                            |                     |                     |                |                      |            |
| GEO-1                         | 8-10                                                                       | SS                                                                               | Sand/clay                                                                  | X                          |                            |                     |                     |                |                      | X          |
|                               | 16-18                                                                      | ST                                                                               | Sand/peat                                                                  | X                          | X                          | X                   | X                   | ł              |                      | <b>^ _</b> |
| GEO-2                         | 8-10                                                                       | SS SS                                                                            | Sand/silt                                                                  | Î X                        | <b>?</b>                   |                     | <u> </u>            | <u> </u>       | _ <u></u>            |            |
|                               | 10-12                                                                      | SS                                                                               | Clay/silt                                                                  | X                          |                            |                     |                     | <u> </u>       |                      |            |
| ŀ                             | 12-14                                                                      | SS                                                                               | Silt/peat                                                                  | X                          |                            |                     |                     |                |                      |            |
| F                             | 14-16                                                                      | ST                                                                               | Sand/peat                                                                  | X                          | · X                        | X                   | X                   | X              |                      | X          |
| ŀ                             | 16-18                                                                      | SS                                                                               | Peat                                                                       | X                          | <u> </u>                   | <u> </u>            | <u> </u>            | <u> </u>       |                      | <u>^</u>   |
| F                             | 18-20                                                                      | SS                                                                               | Clay/silt                                                                  | X                          |                            |                     |                     | <u> </u>       |                      |            |
| MW-22B                        | 8-10                                                                       | SS                                                                               | Residuals                                                                  | X                          | X                          | X                   |                     |                | ═┽╼╍╌┤               |            |
| MW-123B                       | 20-22                                                                      | ST                                                                               | Clay                                                                       | X                          |                            | Î Î Î               | X                   | <u>γ</u>       |                      |            |
| Monarch H<br>MLSS-2<br>MLSS-3 | B-8         B-10           12-14         2-4           10-12         12-14 | SS           SS           SS           SS           SS           SS           SS | Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals<br>Residuals | X<br>X<br>X<br>X<br>X<br>X | X<br>X<br>X<br>X<br>X<br>X |                     | x<br>x<br>x<br>x    |                |                      |            |
| FRDLs                         |                                                                            |                                                                                  |                                                                            |                            |                            | ±                   | ·                   | <u>.</u>       | <u></u>              |            |
| DLHB-1                        | 4-6                                                                        | SS                                                                               | Residuals                                                                  | <u> </u>                   | <u>X</u>                   |                     | <u> </u>            |                |                      |            |
| DLHB-4                        | 0-2                                                                        | SS                                                                               | Residuals                                                                  | X X                        | X                          |                     | <u> </u>            |                |                      |            |
|                               | 4-6                                                                        | SS                                                                               | Residuals                                                                  | X                          | X                          |                     | <u> </u>            |                |                      |            |
| MW-122A                       | 16-18<br>Vea                                                               | SS                                                                               | Peat                                                                       | <u> </u>                   | <u> </u>                   | X                   |                     | <u> </u>       | _1!                  | <u>X</u>   |
| MW-2S                         | 2-4                                                                        | SS                                                                               | Silt/organics                                                              | X                          |                            |                     |                     | ] [            |                      | -          |
|                               | 4-6                                                                        | SS                                                                               | Clay/organics                                                              | X                          |                            |                     |                     | · ·            | -1                   |            |
| <u> </u>                      | 6-7                                                                        | SS                                                                               | Organics                                                                   | X                          |                            |                     |                     | 1              | 1                    |            |
| Former Type                   |                                                                            |                                                                                  |                                                                            |                            |                            |                     |                     |                |                      |            |
| MW-127A                       | 6-8                                                                        | <u>SS</u>                                                                        | Clay                                                                       | X                          |                            | <u> </u>            | •                   | ]              | , 1                  | X          |

See Notes on Page 2

÷

2

ż

# ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF GEOTECHNICAL TESTING SAMPLES

| Boring    | Depth <sup>1</sup><br>(ft) | Sampling<br>Method | Material  | Moisture<br>Content | Organic<br>Content | Atterberg<br>Limits | Specific<br>Gravity | UU<br>Triaxial | 1D<br>Consolidation | Gredation |
|-----------|----------------------------|--------------------|-----------|---------------------|--------------------|---------------------|---------------------|----------------|---------------------|-----------|
| Western D | ispo <b>sal Area</b>       |                    |           |                     |                    |                     |                     |                | <b>.</b>            |           |
| MW-78     | 36-38                      | SS                 | Clay      | <u>X</u>            |                    | <u> </u>            |                     | l              |                     | X         |
| MW-20B    | 23.5 - 25.5                | ST                 | Peat      |                     |                    |                     |                     |                |                     |           |
|           | 26-28                      | SS                 | Clay      | X                   | X                  | Х                   |                     |                |                     | X         |
|           | 27.5-28                    | SS                 | Clay/peat | X                   |                    |                     |                     | 1              |                     | X         |

Notes:

ST - Shelby Tube (ASTM D1587).

SS - Split-spoon sampler. Depth is referenced to ground surface.

#### ALLIED PAPER, INC./PORTAGE CREEKKALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT MONITORING WELL AND PIEZOMETER CONSTRUCTION DETAILS

| Well/Piezometer  | Date<br>Installed | Date<br>Developed | Total<br>Depth (R) <sup>1</sup> | Bottom of<br>Screen (R) <sup>1</sup> | Top of<br>Screen (R) <sup>1</sup>             | Top of<br>Sand (K) <sup>1</sup> | Top of<br>Bentonite (N) <sup>1</sup>   | Formation Screened                                   |
|------------------|-------------------|-------------------|---------------------------------|--------------------------------------|-----------------------------------------------|---------------------------------|----------------------------------------|------------------------------------------------------|
| Bryant HRDL      |                   |                   |                                 |                                      |                                               |                                 |                                        |                                                      |
| MW-12R           | 08/19/93          | 08/30/93          | 41.5                            | 41.1                                 | 36.1                                          | 34.0                            | 31.0                                   | Yellow-brown sand and sill, and sand and gravel.     |
| MW-22A           | 08/12/93          | 08/26/93          | 20.1                            | 20.1                                 | 10.1                                          | 7.9                             | 5.0                                    | Brown line send, clay, peat, and gray line send      |
| MW-22B           | 08/11/93          | 09/01/93          | 48.0                            | 47.0                                 | 42.0                                          | 40.0                            | 37.0                                   | Dark gray line to medium sand.                       |
| MW-121A          | 07/26/93          | 08/27/93          | 24.0                            | 24.0                                 | 19.0                                          | 19.0                            | 16.0                                   | Gray-brown medium sand.                              |
| MW-121B          | 07/26/93          | 09/03/93          | 34.0                            | 33.6                                 | 28.0                                          | 27.0                            | 24.0                                   | Brown time to medium send and sit.                   |
| MW-123A          | 08/10/93          | 08/27/93          | 21.0                            | 21.0                                 | 11.0                                          | 9.4                             | 6.0                                    | Fill, peal, and medium sand.                         |
| MW~123B          | 08/10/93          | 09/03/93          | 32.0                            | 32.0                                 | 27.0                                          | 25.2                            | 22.0                                   | Brown line sand                                      |
| P-1              | 08/11/93          | 2                 | 18.0                            | 17.8                                 | 6.0                                           | 8.0                             | 4.0                                    | Dike insteriet - Fill                                |
| P-1C             | 08/24/93          | ~_2               | 8.0                             | 7.6                                  | 4.0                                           | *                               | *                                      | Dike material Fill                                   |
| P-2              | 08/10/93          | 2                 | 17.0                            | 16.1                                 | 6.5                                           | 4.0                             | 2.0                                    | Dike material Fili                                   |
| P-2C             | 08/24/93          | 2                 | 6.5                             | 6.1                                  | 2.5                                           | *                               | · *                                    | Dike meterial – Fill                                 |
| P-3              | 08/11/93          |                   | 18.2                            | 18.0                                 | 8.0                                           | 6.0                             | 4.0                                    | Dike meterial – Fill                                 |
| P-3C             | 08/24/93          | 2                 | 8.0                             | 7.6                                  | 4.0                                           | 3                               | *                                      | Dike material - Fill                                 |
| Ionarch HRDL     |                   |                   |                                 |                                      |                                               |                                 | •••••••••••••••••••••••••••••••••••••• |                                                      |
| MW-124A          | 08/23/93          | 09/02/93          | 36.0                            | 36.0                                 | 26.0                                          | 24.0                            | 21.0                                   | Brown line sand                                      |
| MW-1248          | 08/19/93          | 09/03/93          | 59.0                            | 59.0                                 | 54.0                                          | 52.0                            | 48.5                                   | Gray tine sand and clay.                             |
| MW-125P          | 08/23/93          | NA                | 14.9                            | 14.5                                 | 9.5                                           | 8.5                             | 4.5                                    | Residuals                                            |
| MW-125A          | 08/22/93          | 08/25/93          | 25.0                            | 24.5                                 | 19.5                                          | 19.4                            | 16.4                                   | Coarse sand, peat, and fine to oparse sand           |
| MW-125B          | 07/21/93          | 08/25/93          | 35.0                            | 34.5                                 | 30.0                                          | 28.0                            | 25.0                                   | Brown coarse sand and gravel                         |
| MW-126A          | 07/21/93          | 08/25/93          | 20.5                            | 20.5                                 | 15.5                                          | 16.5                            | 12.5                                   | Peat and brown/gray line samt.                       |
| MW-128B          | 07/21/93          | 08/25/93          | 31.5                            | 31.5                                 | 26.5                                          | 25.0                            | 23.0                                   | Brown to gray - brown line to medium send and gray o |
| RDLs             |                   |                   |                                 |                                      |                                               |                                 |                                        |                                                      |
| MW-122A          | 08/06/93          | 08/26/93          | 21.5                            | 21.5                                 | 11.5                                          | 9.4                             | 6.0                                    | Brown, line to medium sand, peat, and gray sand      |
| MW-122B          | 08/04/93          | 08/31/93          | 60.5                            | 60.3                                 | 55.3                                          | 53.2                            | 50.0                                   | Gray line sand                                       |
| ormer Type III L | andfill           |                   |                                 |                                      |                                               |                                 |                                        |                                                      |
| MW-19BR          | 08/20/93          | 08/31/93          | 39.4                            | 39.0                                 | 34.0                                          | 32.0                            | 29.2                                   | Brown sill, brown sand and gravel, and line sand     |
| MW-127A          | 08/18/93          | 09/01/93          | 0.0                             | 6.0                                  | 1.0                                           | 1.0                             | 0.5                                    | Dark brown line to medium sand                       |
| lestern Disposa  | Area              |                   |                                 |                                      |                                               |                                 |                                        |                                                      |
| MW-78            | 08/07/93          | 09/02/93          | 46.0                            | 46.0                                 | 41.0                                          | 39.5                            | 36.5                                   | Gray medium to coarse sand, and gray clay            |
| MW-BA            | 08/10/93          | 08/27/93          | 18.0                            | 18.0                                 | 13.0                                          | 13.0                            | 10.0                                   | Peat, sand, gravel, and clay.                        |
| MW-208           | 07/29/93          | 09/02/93          | 32.5                            | 32.5                                 | 27.5                                          | 26.0                            | 23.0                                   | Peat, brown/gray tine to medium sand.                |
| MW-120A          | 07/28/93          | 08/26/93          | 23.8                            | 23.5                                 | 18.5                                          | 18.2                            | 15.0                                   | Coarse sand and gravel                               |
| MW-120B          | 07/27/93          | 08/31/93          | 30.5                            | 30.5                                 | 25.5                                          | 25.5                            | 22.5                                   | Brown sand and gravel                                |
| ilot Study Area  |                   |                   |                                 |                                      |                                               |                                 | •·                                     | ••••••••••••••••••••••••••••••••••••••               |
| MW-2S            | 08/17/93          | 08/27/93          | 6.0                             | 6.0                                  | 1.0                                           | 1.0                             | 0.5                                    | Dark brown fine to medium sand, and black sit        |
| ormer Bryant M   |                   | ل                 |                                 | •                                    | <u>،                                     </u> |                                 | ····                                   |                                                      |
| MW-128A          | 08/23/93          | 08/26/93          | 21.7                            | 20.6                                 | 10.6                                          | 9.0                             | 6.0                                    | Fine to medium sand, peel, clay, and gravel          |

Notes:

<sup>1</sup>The depth is referenced to ground surface.

<sup>2</sup>Piezometers were not developed.

<sup>3</sup>Piezometers were installed as drive points. No sand pack or bentonite was used.

NA - Not applicable, wells screened in residuals were not developed as per MDNR guidance.

•

# ALLIED PAPER, INC. PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

# ALLIED PAPER, INC., OPERABLE UNIT SUMMARY OF VOLUMES PURGED AND FILTER PACK MATERIALS

|                    | Weil              | Volume of         | Well             | Volume of       |                              |
|--------------------|-------------------|-------------------|------------------|-----------------|------------------------------|
|                    | Volumes of        | Water Purced      | Volumes of       | Water Purged    |                              |
| Weil/Piezometer    | Water Purged      | Dunng Development | Water Purced     | During Sempling | Filter Peck                  |
| No.                | Dunng Development | (180)             | Dunna Sempling   | (gai)           | Material                     |
| Bryant HRDL        |                   |                   |                  |                 |                              |
| MW-11              | ·····             | ·····             | 1.12             | 20.3            | Non-netive Sand              |
| MW-12              | 1                 | 1                 | 12               | 11.5            | Non-netive Sand              |
| MW-12R             | 15.8              | 55                | 3.24             | 12              | 00-Size Mone Sand            |
| MW-22A             | 97.56             | 80                | 3.6*             | 5               | 00-Size Mone Sand            |
| MW-228             | 13.01             | 70                | 3.44             | 20              | 00-Size Mone Sand            |
| MW-23              | 13.01<br>L        | 10                | 3.2*             | 7               | Non-netve Send               |
| -24                | 1                 | 1                 | 3.1              | 4               | Non-netive Send              |
| MW-25              |                   | •                 | 1.13             | 2               | Non-native Send              |
| MW-28              | 1                 | 1                 | 3                | 4.5             | Native Sand                  |
| MW-121A            | 46.88             | , 75              | 3                | 6               | 00-Size Mone Sand            |
| MW-1218            | 11.3              | 34                | 1.23             | 4               | 00-Size Mone Sand            |
| MV-123A            | 87.82             | 50                | 3                | 1 3             | 00-Size Morie Sand           |
| MW-1238            | 11.72             | 30                | 3.4*             | 10              | 00-Size Mone Sand            |
| P-1                | 32.35             | 11                |                  |                 | 00-Size Mone Sand            |
| P-1C               | 3                 | 3                 |                  |                 | Netive Send                  |
| P-2                | 38.34             | 25                |                  |                 | 00-Size Mone Sand            |
| P-2C               | 1                 | 1 7               |                  |                 | Netve Sand                   |
| P-3 •              | 6.51              | 22                |                  |                 | 00-Size Mone Sand            |
| P-3C               | 3                 | 3                 |                  |                 | Native Sand                  |
| Monarch HROL       |                   |                   |                  |                 |                              |
| MW-124A            | 42.5              | 51                | 3.1              | 4               | 00-Size Mone Sand            |
| MW-1248            | 2.40              | 20                | 2.1              | 7               | 00-Size Mone Sand            |
| MW-125P            | 1                 | 1                 | 24               | 2.5             | 00-Size Mone Sand            |
| MW-125A            | 6.23              | 46                | 3                | 5               | 00-Size Mone Sand            |
| MW-1258            | 21.85             | 85                | 3                | 12              | 00-Size Mone Sand            |
| MW-126A            | 22.01             | 35                | 3.24             | 7               | 00-Size Mone Sand            |
| MW-1268            | 15.63             | 55                | 3.5              | 14              | 00-Size Mone Sand            |
| FROLS              |                   |                   |                  |                 |                              |
| MW-122A            | 71.43             | 55                | 3.3*             | 3               | 00-Size Mone Sand            |
| MW 1228            | 7.06              | 50                | 3                | 22              | 00-Size Mone Sand            |
| Former Type III La | ndili             |                   |                  |                 |                              |
| MW-1               | 1 1               | 1                 | 3.2              | 5.6             | Non-netive Sand              |
| MW-3               | 1 +               | 1                 | 32               | 9               | Non-native Sand              |
| MW-5               | 1                 | 1                 | 3.5              | 2.6             | Non-netive Send              |
| MW-15              | 1                 | 1                 | 3.1              | 16              | Non-netive Send              |
| MW-106             | 1                 | L 1               | 3.2              | 10              | Non-native Sand              |
| MW-10C             | 1                 | L 1               | 3                | 22              | Non-native Sand              |
| MW-17A             | i i               |                   | 13               | 2.3             | Non-netive Send <sup>4</sup> |
| MW-178             | 1                 | 1                 | 3.1              | 15.3            | Non-netive Send              |
| MW-198R            | 29.00             | 70                | 3                | 7.5             | 00-Size Morie Sand           |
| MW-19C             | 1                 | 1                 | 3.2              | 14              | Non-native Sand              |
| MW-19D             | 1                 |                   | 3.1              | 21              | Non-native Sand              |
| MW-112             | 1                 | 1                 | 3.4              | 0.0             | Native Sand                  |
| MW-127A            | 1.33              | 10                | 3.1*             | 2.5             | 00-Size Mone Sand            |
| Western Disposel   |                   |                   |                  |                 |                              |
| MW-7               | 1                 | 1                 | 32               | 7               | Non-native Sand              |
| MW-78              | 18,47             | 75                | 1.7 <sup>3</sup> | 8               | 00-Size Mone Sand            |
| MW-8               | 1                 | •                 | 3                | 7               | Non-netive Send <sup>4</sup> |
| MW-8A              | 40.24             | 40                | 3                | 5               | 00-Size Mone Sand            |
| MW-20              | 1                 | 4                 | 3.5*             | 6               | Non-native Sand              |
| MW-208             | 180.82            | 233               | 3                | 10              | 00-Size Mone Sand            |
| MW-21              |                   | 1                 | 3.1              | 5.5             | Native Sand                  |
| MW-120A            | 46.58             | 34                | 1.3              | 1               | 00-Size Mone Sand            |
| MW-1208            | 36.89             | 65                | 3.5'             | 6               | 00-Size Mone Sand            |
| Pilot Study Area   |                   |                   |                  |                 |                              |
| MW-2               |                   |                   | 4                | 6.06            | Non-netive Sand              |
| MW-28              | 37.13             | 30                | 3.3              | 2.7             | 00-Size Mone Sand            |
| MW-18              | <b>`</b>          | <b>`</b>          | 3                | 17,4            | Non-netwe Sand               |
| Former Bryent Mill | Pond              |                   |                  |                 |                              |
| MW-104             | T                 | T                 | 3                | 5.3             | Native Sand                  |
| MW-108             | · ·               | 1                 | 3.24             | 4.0             | Native Sand                  |
| MW 108             | •                 | 1                 | 3                | 5.52            | Native Send                  |
| MW-114             | •                 |                   | 3.1              | 19              | Native Sand                  |
| MW-126A            | 97.4              | 85                | 3.6              | 3               | 00-Size Morie Sand           |

••••

------

Notes: <sup>1</sup> Existing wells were not developed. <sup>1</sup> Perched wells were not developed at MDNR's request. <sup>1</sup> Plazometer dry at time of development. <sup>4</sup> Parameters not stabilized; therefore, more than three volumes were removed. <sup>3</sup> Well went dry during sampling event. <sup>4</sup> Well togs indicate that a non-native sand was used but do not specify grain size. – Groundwater from piezometers was not sampled. NA – Not applicable.

.

#### ALLIED PAPER, INC JPORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF REMEDIAL INVESTIGATION GROUNDWATER/LEACHATE SAMPLES

|                    |                                                                                                                | <b>..</b> |                      |                                        |
|--------------------|----------------------------------------------------------------------------------------------------------------|-----------|----------------------|----------------------------------------|
| Location           | Media                                                                                                          | Sample ID | Analysis             | Commenta                               |
| ryant HRDL         |                                                                                                                |           |                      |                                        |
| MW-11              | Groundwater                                                                                                    | A66008    | TCL/TAL              |                                        |
| MW-12              | Groundwater                                                                                                    | A66054    | TCL/TAL              |                                        |
| MW-12R             | Groundweter                                                                                                    | A86028    | TCL/TAL              |                                        |
| MW-22A             | Groundwater                                                                                                    | A66017    | TCL/TAL              |                                        |
| <u>MW-228</u>      | Groundwater                                                                                                    | A66018    | TCL/TAL              |                                        |
| <u>MW-23</u>       | Groundwater                                                                                                    | A66034    | TCL/TAL              |                                        |
| MW-24              | Groundwater                                                                                                    | A66009    | TCL/TAL              |                                        |
| MW-25              | Groundwater                                                                                                    | A86027    | TCL/TAL              |                                        |
| <u>MW-26</u>       | Groundwater                                                                                                    | A66015    | TCL/TAL              | MS/MSD                                 |
| <u>MW-121A</u>     | Groundwater                                                                                                    | A66013    | TCL/TAL              |                                        |
| MW-121B            | Groundwater                                                                                                    | A66014    | TCL/TAL              |                                        |
| MW-123A            | Groundwater                                                                                                    | A66025    | TCL/TAL              |                                        |
| MW-1238            | Groundwater                                                                                                    | A66026    | TCL/TAL              |                                        |
| Rivulet 2          | Groundwater                                                                                                    | A66007    | TCL/TAL <sup>1</sup> |                                        |
| Ionarch HRDL       |                                                                                                                |           | TOUTEL               |                                        |
| MW-124A            | Groundwater                                                                                                    | A66003    |                      |                                        |
| MW-1248            | Groundwater                                                                                                    | A66004    |                      |                                        |
| MW-125P            | Leachate                                                                                                       | A66016    |                      |                                        |
| MW-125A            | Groundwater                                                                                                    | A66005    |                      |                                        |
| <u>MW-1258</u>     | Groundweter                                                                                                    | A66006    | TCL/TAL              |                                        |
| MW-126A            | Groundwater                                                                                                    | A66010    |                      | Durillanta (ABB012)                    |
| MW-1265            | Groundwater                                                                                                    | A66011    | TCL/TAL              | Duplicate (A66012)                     |
| MW-122A            | Consumption 1                                                                                                  | A66033    | TCL/TAL1             | Duraliante (Add028)                    |
| MW-1228            | Groundwater<br>Groundwater                                                                                     | A66039    | TCL/TAL              | Duplicate (A66038)                     |
| former Type III Li |                                                                                                                | ACCUJY    |                      |                                        |
| MW-1               | Groundwater                                                                                                    | A66032    | TCL/TAL1             | MS/MSD                                 |
| MW-3               | Groundwater                                                                                                    | A66054    | TCL/TAL              | marmau                                 |
|                    | Groundwater                                                                                                    | A66046    | TCL/TAL              | ······································ |
|                    | Groundwater                                                                                                    | A66055    | TCL/TAL              |                                        |
| MW-108             | Groundwater                                                                                                    | A66059    | TCL/TAL              | MS/MSD                                 |
| MW-16C             | Groundwater                                                                                                    | A66058    | TCL/TAL              | Marmau                                 |
| MW~17A             | Groundwater                                                                                                    | A66056    | TCL/TAL              | ·····                                  |
| MW~178             | Groundwater                                                                                                    | A66057    | TCL/TAL              |                                        |
| MW-1988            | Groundwater                                                                                                    | A66030    | TCL/TAL              | Duplicate (A66031)                     |
| MW-19C             | Groundwater                                                                                                    | A66040    | TCL/TAL              |                                        |
| MW-190             | Groundwater                                                                                                    | A66041    | TCL/TAL              | <u> </u>                               |
| MW-112             | Groundweter                                                                                                    | A66045    | TCL/TAL              | <u> </u>                               |
| MW-127A            | Groundweter                                                                                                    | A66044    | TCL/TAL              |                                        |
| Western Disposel   | the second s |           |                      |                                        |
| MW-7               | Groundwater                                                                                                    | A66001    | TCL/TAL              |                                        |
| MW-78              | Groundwater                                                                                                    | A66000    | TCL/TAL              |                                        |
| MW-8               | Groundweter                                                                                                    | A66053    | TCL/TAL              | - <u></u>                              |
| MW-8A              | Groundwater                                                                                                    | A66052    | TCL/TAL1             |                                        |
| MW-20              | Groundwater                                                                                                    | A66049    | TCL/TAL              | Duplicate (A66050)                     |
| MW-208             | Groundwater                                                                                                    | A66051    | TCL/TAL              |                                        |
| MW-21              | Groundwater                                                                                                    | A66002    | TCL/TAL              | ······································ |
| MW-120A            | Groundwater                                                                                                    | A66020    | TCL/TAL1             |                                        |
| MW-1208            | Groundwater                                                                                                    | A66019    | TCL/TAL1             | Duplicate (A66024)                     |
| Pilot Study Area   |                                                                                                                |           | <u></u>              |                                        |
| MW-2               | Groundwater                                                                                                    | A66060    | TCL/TAL              |                                        |
| MW-25              | Groundwater                                                                                                    | A66022    | TCL/TAL              | Duplicate (A66023)                     |
| MW-18              | Groundwater                                                                                                    | A66061    | TCL/TAL              |                                        |
| Former Dryant Mi   |                                                                                                                |           |                      | <u> </u>                               |
| MW-104             | Groundwater                                                                                                    | A66037    | TCL/TAL              |                                        |
| MW-108             | Groundwater                                                                                                    | A66063    | TCL/TAL              | ·····                                  |
| MW-108             | Groundweter                                                                                                    | A66047    | TCL/TAL              | ·····                                  |
| MW-114             | Groundwater                                                                                                    | A66036    | TCL/TAL              | <u></u>                                |
|                    |                                                                                                                |           | TCL/TAL              |                                        |

#### Note:

 $^4$  Parameters also tested were pH. specific conductance, temperature, turbidity, TOC, DO, COD, TSS, HCO<sub>3</sub><sup>-</sup>, NO<sub>3</sub><sup>2-</sup>, CI<sup>-</sup>, SO<sub>4</sub><sup>2-</sup>, and CO<sub>3</sub><sup>-2-</sup>.

)

.

### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER INC. OPERABLE UNIT SUMMARY OF FIELD PARAMETERS AND GENERAL WATER QUALITY RESULTS FOR GROUNDWATER/LEACHATE WATER SAMPLES'

| Location<br>Sample ID                                                                                                                                                                                                                                                                                         |             |                   | /-11         |                                                                                 |      |                         | /- 12<br>6064             |                                                                                            |      |                  | - 12R<br>1026           |                                                                               |                   |           | /-22A<br>6017 |                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|--------------|---------------------------------------------------------------------------------|------|-------------------------|---------------------------|--------------------------------------------------------------------------------------------|------|------------------|-------------------------|-------------------------------------------------------------------------------|-------------------|-----------|---------------|-----------------------------------------------------------------------------------|
| Well Volume                                                                                                                                                                                                                                                                                                   | 1           | 2                 | 3            | Finel                                                                           | 1    | 2                       | •                         | Final                                                                                      | 1    |                  | 3                       | Final                                                                         |                   | 2         | 3             | Final                                                                             |
| Bryant HRDL                                                                                                                                                                                                                                                                                                   |             |                   |              |                                                                                 |      |                         |                           |                                                                                            |      |                  |                         |                                                                               |                   |           |               |                                                                                   |
| FIELD PARAMETERS                                                                                                                                                                                                                                                                                              |             | _                 |              |                                                                                 |      |                         |                           |                                                                                            |      |                  |                         |                                                                               |                   |           |               |                                                                                   |
| pH                                                                                                                                                                                                                                                                                                            | -           | -                 | - 1          | 7.8                                                                             | 7.17 | -                       | -                         | 7.15                                                                                       | 6.9  | 6.85             | 6.62                    | 6.94                                                                          | 6.84              | 6.98      | 6 97          | 7.05                                                                              |
| Temperature                                                                                                                                                                                                                                                                                                   | -           | -                 | -            | 13.7                                                                            | 15.8 | ~                       | -                         | 17.9                                                                                       | 14.7 | 14.7             | 14.6                    | 15.0                                                                          | 17.0              | 18.5      | 10 8          | 17.1                                                                              |
| Specific Conductance                                                                                                                                                                                                                                                                                          | -           | -                 | -            | 630                                                                             | 940  | -                       | -                         | 1190<br>10.27                                                                              | 1260 | 1300             | 1300                    | 1300                                                                          | 1120              | 1200      | 1190          | 1200                                                                              |
| Dissolved Oxygen                                                                                                                                                                                                                                                                                              |             | ]                 | i            | 3.29<br>22.4                                                                    |      |                         |                           | 10.27                                                                                      |      |                  |                         | 2.75                                                                          |                   |           |               | 2.87                                                                              |
| Turbidity                                                                                                                                                                                                                                                                                                     |             | 1                 |              | 22.9                                                                            |      |                         |                           | 0.00                                                                                       |      |                  | A                       | 26.6                                                                          | <b>I</b>          |           | 11            | 3 03                                                                              |
| Well volumes of water                                                                                                                                                                                                                                                                                         |             |                   |              | 1.1'                                                                            |      |                         |                           | 1.23                                                                                       |      |                  |                         | 32                                                                            |                   |           |               |                                                                                   |
| purged during sampling                                                                                                                                                                                                                                                                                        |             |                   |              |                                                                                 |      |                         |                           |                                                                                            |      |                  |                         | 321                                                                           |                   | ·····     |               | <u>3</u>                                                                          |
| GENERAL PARAMETERS                                                                                                                                                                                                                                                                                            | (mg/L)      |                   |              |                                                                                 |      |                         |                           |                                                                                            |      |                  |                         |                                                                               |                   |           |               |                                                                                   |
| bicarbonate                                                                                                                                                                                                                                                                                                   |             |                   | 1            | 280                                                                             |      |                         |                           | 600                                                                                        |      |                  |                         | 670                                                                           |                   |           | !             | 610                                                                               |
| chloride                                                                                                                                                                                                                                                                                                      | 1           |                   | 1            | 78<br><0.01J                                                                    |      |                         |                           | 44<br>0.04                                                                                 | 1    |                  | 1                       | 49                                                                            |                   |           | 1 1           | 11.8                                                                              |
| nitale                                                                                                                                                                                                                                                                                                        |             |                   |              | <0.01J<br>59                                                                    |      |                         |                           | 11                                                                                         | i    |                  | [                       | 2.5J                                                                          |                   |           |               | 0.48                                                                              |
| sulinte                                                                                                                                                                                                                                                                                                       |             |                   | -            | 5.2                                                                             |      |                         |                           | 18                                                                                         |      |                  |                         | 10<br>28                                                                      |                   |           |               | 73                                                                                |
| COD                                                                                                                                                                                                                                                                                                           |             |                   |              | ¥.6                                                                             |      |                         |                           |                                                                                            |      |                  |                         |                                                                               | 1                 |           |               |                                                                                   |
|                                                                                                                                                                                                                                                                                                               |             | i i               | 1            | 1                                                                               |      |                         |                           | 8.21                                                                                       |      |                  |                         | 0.8                                                                           |                   |           | 1 1           | 117                                                                               |
| TSS                                                                                                                                                                                                                                                                                                           |             |                   |              | 1<br><u>13.4</u>                                                                |      |                         | ( 22                      | 8.2<br>20                                                                                  |      |                  |                         | 9.8<br><u>39</u>                                                              |                   | L         |               |                                                                                   |
| TOC<br>TSS<br>Location<br>Sample ID                                                                                                                                                                                                                                                                           |             |                   | -22B         | 1<br><u>13.4</u>                                                                |      |                         | /-23                      |                                                                                            |      |                  | -24                     |                                                                               |                   |           | V-25<br>6027  | 11.7<br>20                                                                        |
| Location                                                                                                                                                                                                                                                                                                      | 1           |                   |              | 1<br>13.4<br>Final                                                              |      |                         |                           |                                                                                            | 1    |                  |                         |                                                                               | 1                 |           |               |                                                                                   |
| Location<br>Sample ID                                                                                                                                                                                                                                                                                         | 1           |                   | <u>1018</u>  |                                                                                 |      |                         | 9034                      | 29                                                                                         | 1    |                  | 000                     | 39                                                                            | 1                 | <u>A6</u> | 6027          | 20                                                                                |
| TSS<br>Location<br>Sample ID<br>Well Volume<br>Bryant HRDL (Cont'd.)                                                                                                                                                                                                                                          | 1           |                   | <u>1018</u>  |                                                                                 |      |                         | 9034                      | 29                                                                                         |      |                  | 000                     | 39                                                                            | 1                 | <u>A6</u> | 6027          | 20                                                                                |
| TSS<br>Location<br>Sample ID<br>Well Volume<br>Bryant HRDL (Cont'd.)<br>FIELD PARAMETERS <sup>4</sup>                                                                                                                                                                                                         | 1           | 2                 | <u>1018</u>  |                                                                                 | 7.14 |                         | 9034                      | 29                                                                                         | 1    |                  | 3                       | <u>39</u><br>Final                                                            | 1                 | <u>A6</u> | 6027          | 20                                                                                |
| TSS<br>Location<br>Sample ID<br>Well Volume<br>Bryant HRDL (Cont'd.)<br>FIELD PARAMETERS <sup>4</sup><br>pH                                                                                                                                                                                                   | 1           |                   | 3            | Firel                                                                           | 13.0 | A0<br>2<br>7.19<br>13.1 | 2034<br>2<br>7.18<br>13.9 | 29<br>Final<br>7.25<br>14.5                                                                | 1    | 2                | 000                     | 39                                                                            | 1<br>8.94<br>14.2 | <u>A6</u> | 6027          | 20                                                                                |
| TSS<br>Location<br>Sample ID<br>Well Volume<br>Bryant HRDL (Cont'd.)<br>FIELD PARAMETERS <sup>1</sup><br>pH<br>Temperature                                                                                                                                                                                    |             | 2<br>7.71         | 7.68         | Final                                                                           |      | <u>2</u><br>7.19        | 2034<br>2<br>7.18         | 29<br>Firel<br>7.25<br>14.5<br>940                                                         |      | <u>2</u><br>6.76 | <u>3</u><br><u>6.72</u> | 39<br>Final<br>6.77                                                           |                   | <u>A6</u> | 6027<br>3     | 20<br>Final<br>6 96<br>15 7                                                       |
| TSS<br>Location<br>Sample ID<br>Well Volume<br>Bryant HRDL (Cont'd.)<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance                                                                                                                                                            | 12.8        | 2<br>7.71<br>12.3 | 7.68<br>13.0 | Final                                                                           | 13.0 | A0<br>2<br>7.19<br>13.1 | 2034<br>2<br>7.18<br>13.9 | 29<br>Final<br>7.25<br>14.5<br>040<br>7.35                                                 | 13.2 | 6.76<br>13.1     | 6.72<br>13.4            | <u>39</u><br>Final<br>6.77<br>15.1<br>1250<br>2.9                             | 14.2              | <u>2</u>  | 6027<br>3<br> | Einel<br>6 96<br>15 7<br>1110<br>1.72                                             |
| TSS<br>Location<br>Sample ID<br>Well Volume<br>Bryant HRDL (Cont'd.)<br>FIELD PARAMETERS <sup>1</sup><br>pH<br>Temperature                                                                                                                                                                                    | 12.8        | 2<br>7.71<br>12.3 | 7.68<br>13.0 | Final                                                                           | 13.0 | A0<br>2<br>7.19<br>13.1 | 2034<br>2<br>7.18<br>13.9 | 29<br>Firel<br>7.25<br>14.5<br>940                                                         | 13.2 | 6.76<br>13.1     | 6.72<br>13.4            | <u>39</u><br>Final<br>6.77<br>15.1<br>1250                                    | 14.2              | <u>2</u>  | 6027<br>3<br> | 20                                                                                |
| TSS<br>Location<br>Sample ID<br>Well Volume<br>Bryant HRDL (Cont'd.)<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water                                                                                                  | 12.8        | 2<br>7.71<br>12.3 | 7.68<br>13.0 | Final<br>7.80<br>12.9<br>910<br>2.99<br>14.6                                    | 13.0 | A0<br>2<br>7.19<br>13.1 | 2034<br>2<br>7.18<br>13.9 | 7.25<br>14.5<br>940<br>7.35<br>75                                                          | 13.2 | 6.76<br>13.1     | 6.72<br>13.4            | <u>39</u><br>Fimi<br>6.77<br>15.1<br>1250<br>2.9<br>3.25                      | 14.2              | <u>2</u>  | 6027<br>3<br> | Eimal<br>6 90<br>15 7<br>1110<br>1.72<br>20 8                                     |
| TSS<br>Location<br>Sample ID<br>Well Volume<br>Bryant HRDL (Cont'd.)<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity                                                                                                                           | 12.8        | 2<br>7.71<br>12.3 | 7.68<br>13.0 | Final<br>7.80<br>12.9<br>910<br>2.99                                            | 13.0 | A0<br>2<br>7.19<br>13.1 | 2034<br>2<br>7.18<br>13.9 | 29<br>Final<br>7.25<br>14.5<br>040<br>7.35                                                 | 13.2 | 6.76<br>13.1     | 6.72<br>13.4            | <u>39</u><br>Final<br>6.77<br>15.1<br>1250<br>2.9                             | 14.2              | <u>2</u>  | 6027<br>3<br> | 20<br>Final<br>0 96<br>15 7<br>1110<br>1.72                                       |
| TSS<br>Location<br>Sample ID<br>Well Volume<br>Bryant HRDL (Cont'd.)<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS                                                  | 12.8<br>848 | 2<br>7.71<br>12.3 | 7.68<br>13.0 | Final<br>7.80<br>12.9<br>910<br>2.99<br>14.6<br>3.4                             | 13.0 | A0<br>2<br>7.19<br>13.1 | 2034<br>2<br>7.18<br>13.9 | 29<br>Firel<br>7.25<br>14.5<br>940<br>7.35<br>75<br>3.2                                    | 13.2 | 6.76<br>13.1     | 6.72<br>13.4            | <u>39</u><br>Final<br>6.77<br>15.1<br>1250<br>2.9<br>3.25<br>3.1              | 14.2              | <u>2</u>  | 6027<br>3<br> | <b>Final</b><br>6 96<br>15 7<br>1110<br>1.72<br>20 8<br>1.1 <sup>1</sup>          |
| TSS<br>Location<br>Sample tD<br>Well Volume<br>Bryant HRDL (Cont'd.)<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS<br>bloarbonate                                   | 12.8<br>848 | 2<br>7.71<br>12.3 | 7.68<br>13.0 | Final<br>7.80<br>12.9<br>910<br>2.99<br>14.6<br>3.4<br>320                      | 13.0 | A0<br>2<br>7.19<br>13.1 | 2034<br>2<br>7.18<br>13.9 | 29<br>Final<br>7.25<br>14.5<br>040<br>7.35<br>75<br>3.2<br>420                             | 13.2 | 6.76<br>13.1     | 6.72<br>13.4            | <u>39</u><br>Final<br>6.77<br>15.1<br>1250<br>2.9<br>3.25<br>3.1<br>560       | 14.2              | <u>2</u>  | 6027<br>3<br> | Einal<br>6 96<br>15 7<br>1110<br>1.72<br>20 8<br>1.1 <sup>1</sup>                 |
| TSS<br>Location<br>Sample ID<br>Well Volume<br>Bryant HRDL (Cont'd.)<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS<br>bicarbonate<br>chloride                       | 12.8<br>848 | 2<br>7.71<br>12.3 | 7.68<br>13.0 | Final<br>7.80<br>12.9<br>910<br>2.99<br>14.6<br>3.4<br>320<br>97                | 13.0 | A0<br>2<br>7.19<br>13.1 | 2034<br>2<br>7.18<br>13.9 | 29<br>Final<br>7.25<br>14.5<br>940<br>7.35<br>75<br>3.2<br>420<br>37                       | 13.2 | 6.76<br>13.1     | 6.72<br>13.4            | <u>39</u><br>Final<br>6,77<br>15.1<br>1250<br>2.9<br>3.25<br>3.1<br>560<br>78 | 14.2              | <u>2</u>  | 6027<br>3<br> | Einal<br>6 96<br>15 7<br>1110<br>1.72<br>20 8<br>1.1 <sup>1</sup><br>600<br>25    |
| TSS<br>Location<br>Sample ID<br>Well Volume<br>Bryant HRDL (Cont'd.)<br>FIELD PARAMETERS <sup>1</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS<br>bicarbonate<br>chloride<br>nitrate            | 12.8<br>848 | 2<br>7.71<br>12.3 | 7.68<br>13.0 | Final<br>7.80<br>12.9<br>910<br>2.99<br>14.6<br>3.4<br>320<br>97<br>14.5J       | 13.0 | A0<br>2<br>7.19<br>13.1 | 2034<br>2<br>7.18<br>13.9 | 29<br>Final<br>7.25<br>14.5<br>940<br>7.35<br>75<br>3.2<br>420<br>37<br>0.06J              | 13.2 | 6.76<br>13.1     | 6.72<br>13.4            |                                                                               | 14.2              | <u>2</u>  | 6027<br>3<br> | Einal<br>6 96<br>15 7<br>1110<br>1.72<br>20 8<br>1.11<br>600<br>25<br>1.27        |
| TSS<br>Location<br>Sample ID<br>Well Volume<br>Bryant HRDL (Cont'd.)<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS<br>bicarbonate<br>chloride<br>nitrate<br>suitate | 12.8<br>848 | 2<br>7.71<br>12.3 | 7.68<br>13.0 | Final<br>7.80<br>12.9<br>910<br>2.99<br>14.6<br>3.4<br>320<br>97<br>14.6J<br>67 | 13.0 | A0<br>2<br>7.19<br>13.1 | 2034<br>2<br>7.18<br>13.9 | 29<br>Firel<br>7.25<br>14.5<br>940<br>7.35<br>75<br>3.2<br>420<br>37<br>0.05<br>0.05<br>10 | 13.2 | 6.76<br>13.1     | 6.72<br>13.4            | <u> </u>                                                                      | 14.2              | <u>2</u>  | 6027<br>3<br> | Final<br>6 96<br>15 7<br>1110<br>1.72<br>20 8<br>1.1<br>800<br>25<br>1.27.<br>7.7 |
| TSS<br>Location<br>Sample ID<br>Well Volume<br>Bryant HRDL (Cont'd.)<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS<br>bicarbonate<br>chloride<br>nitrate<br>suffate | 12.8<br>848 | 2<br>7.71<br>12.3 | 7.68<br>13.0 | Final<br>7.80<br>12.9<br>910<br>2.99<br>14.6<br>3.4<br>320<br>97<br>14.5J       | 13.0 | A0<br>2<br>7.19<br>13.1 | 2034<br>2<br>7.18<br>13.9 | 29<br>Final<br>7.25<br>14.5<br>940<br>7.35<br>75<br>3.2<br>420<br>37<br>0.06J              | 13.2 | 6.76<br>13.1     | 6.72<br>13.4            |                                                                               | 14.2              | <u>2</u>  | 6027<br>3<br> | Einal<br>6 98<br>15 7<br>1110<br>1.72<br>20 8<br>1.1<br>600<br>25                 |

See Notes on Page 8

.

1

1 . .

1 ·····

.

1 1

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER INC. OPERABLE UNIT SUMMARY OF FIELD PARAMETERS AND GENERAL WATER QUALITY RESULTS FOR GROUNDWATER/LEACHATE WATER SAMPLES

| Location<br>Sample ID                                                      |                     |                     | - <b>26<sup>1</sup></b><br>015 |                                              |              |              | -121A<br>013 |                                             |                      |                      | 1218<br>014          |                                                |                      |                      | - 123A<br>3025 |                                             |
|----------------------------------------------------------------------------|---------------------|---------------------|--------------------------------|----------------------------------------------|--------------|--------------|--------------|---------------------------------------------|----------------------|----------------------|----------------------|------------------------------------------------|----------------------|----------------------|----------------|---------------------------------------------|
| Well Volume                                                                | 1                   | 2                   |                                | Final                                        | 1            |              | •            | Final                                       | 1                    | 8                    | 3                    | Finel                                          |                      | _2                   | ĩ              | Finel                                       |
| Bryant HRDL (Cont'd.)                                                      |                     |                     |                                |                                              |              |              |              |                                             |                      |                      |                      |                                                |                      |                      |                |                                             |
| FIELD PARAMETERS                                                           |                     |                     |                                |                                              |              | -            |              |                                             |                      |                      |                      |                                                |                      |                      |                |                                             |
| PH                                                                         | 7.22                | 7.23                | 7.17                           | 7.3                                          | 6.90         | 6.94         | 6.92         | 7.02                                        | 7.28                 | - 1                  | -                    | -                                              | 6.60                 | 6.64                 | 6.65           | 0.77                                        |
| Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity       | 9.5<br>827          | 10.5<br>930         | 11.6<br>930                    | 11.9<br>920<br>9.29<br>2.49                  | 13.4<br>1340 | 13.7<br>1420 | 14.2<br>1450 | 14.6<br>1480<br>2.75<br>3.56                | 14.9<br>1010         | -                    | -                    | -<br>-<br>-                                    | 19.0<br>755          | 18.8<br>754          | 18 6<br>756    | 19 0<br>732<br>2.61<br>3.89                 |
| Well volumes of water<br>purged during sampling                            |                     |                     |                                | 3.0                                          |              |              |              | 3.0                                         |                      |                      |                      | 1.2'                                           |                      |                      |                | 30                                          |
| GENERAL PARAMETERS                                                         | (mgA)               |                     |                                |                                              |              |              |              |                                             |                      |                      |                      |                                                |                      |                      |                |                                             |
| bicar bonate<br>chioride<br>nitrate<br>sulfate<br>COD<br>TOC<br>TSS        |                     |                     |                                | 310<br>82<br>0.01J<br>91<br><5<br>0.8<br>6.5 |              |              |              | 680<br>70<br>2.2J<br>11.4<br>77<br>NA<br>44 |                      |                      |                      | 540<br>47<br><0.01J<br>5.8<br>189<br>199<br>69 |                      |                      |                | 380<br>14<br>0 35J<br>5 7<br>44<br>15<br>49 |
| Location<br>Sample ID                                                      |                     | MW-                 |                                |                                              |              | PilVU<br>Add |              |                                             |                      | MW-                  |                      |                                                |                      |                      | - 124B<br>1004 |                                             |
| Well Volume                                                                | 1                   | 2                   | 8                              | Final                                        | 1            | 2            | •            | Finel                                       | 1                    | 2                    | 3                    | Final                                          | 1                    | 2                    | 3              | Final                                       |
| Brant HRDL (Cont'd.)                                                       |                     |                     |                                |                                              |              |              |              |                                             | Monarch              | HRDL                 |                      |                                                |                      |                      |                | <del></del>                                 |
| FIELD PARAMETERS                                                           |                     |                     |                                |                                              | •            |              |              |                                             |                      |                      |                      |                                                |                      |                      |                |                                             |
| pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity | 7.17<br>14.6<br>711 | 7.17<br>14.6<br>710 | 7.23<br>14.2<br>705            | 7.26<br>16.2<br>701<br>1.88<br>5.37          | -            | -<br>-<br>-  | -            | 7.19<br>10.2<br>930<br>1.81<br>1.37         | 7.17<br>15.4<br>1310 | 7.16<br>15.6<br>1290 | 7.17<br>16.0<br>1300 | 7.25<br>16 4<br>1290<br>5.08<br>9.2            | 8.93<br>15.9<br>1460 | 7.24<br>13.2<br>1530 | -              | 7.42<br>14.7<br>1560<br>4.12<br>17.6        |
| Well volumes of water<br>purged during sampling                            |                     |                     |                                | 3.4                                          | •            |              |              | 3.0                                         |                      |                      |                      | 3.1                                            |                      |                      |                | 2.1                                         |
| GENERAL PARAMETERS                                                         | (mg/L)              |                     |                                |                                              |              |              |              |                                             |                      |                      |                      |                                                |                      |                      |                |                                             |
| bicarbonate<br>chloride<br>nitrate<br>sulfate                              |                     |                     |                                | 900<br>34<br>0.39J<br>65<br>7                |              |              |              | 320<br>82<br>0.01 J<br>74<br>5.2            |                      |                      |                      | 390<br>165<br>9.0J<br>70<br>11.5               |                      |                      |                | 400<br>210<br>2.5.1<br>164<br><5            |
| COD<br>TOC                                                                 |                     | - 1                 | 1                              | 0.8                                          | 1            | 1            |              | 0.7                                         | 1                    |                      | 1                    | 1.2                                            | 1                    | 1                    | 1              | 1.3                                         |

See Notes on Page 8

i i i i

1

.

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER INC. OPERABLE UNIT SUMMARY OF FIELD PARAMETERS AND GENERAL WATER QUALITY RESULTS FOR GROUNDWATERALEACHATE WATER SAMPLES

| Location<br>Sample ID                                                                                                                                                                                                                 |                      |                               | - 125P<br>6010        |                                                                   |          | MW-    |                            |                                                                 |              | MW-  | 125B<br>1006 |                                                                         |                     |                     | - 128A<br>0010 | <u></u>                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------|-----------------------|-------------------------------------------------------------------|----------|--------|----------------------------|-----------------------------------------------------------------|--------------|------|--------------|-------------------------------------------------------------------------|---------------------|---------------------|----------------|--------------------------------------------------------------------------|
| Well Volume                                                                                                                                                                                                                           | 1                    | 2                             | 3                     | Finel                                                             | 1        | 8      | •                          | Finel                                                           | 1            | 2    |              | finel                                                                   | 1                   | _2                  | 3              | Final                                                                    |
| Monarch HRDL (Cont'd                                                                                                                                                                                                                  | .)                   |                               |                       |                                                                   |          |        |                            |                                                                 |              |      |              |                                                                         |                     |                     |                |                                                                          |
| FIELD PARAMETERS                                                                                                                                                                                                                      | <u></u>              |                               |                       |                                                                   |          |        |                            |                                                                 |              |      |              |                                                                         |                     |                     |                |                                                                          |
| рН                                                                                                                                                                                                                                    | NA                   | 5.49                          | -                     | 5.4                                                               | 6.88     | 6.85   | 8.9                        | 6.96                                                            | 7.26         | 7.29 | 7.27         | 7.32                                                                    | 8.3                 | 6.45                | 0.48           | 6.58                                                                     |
| Temperature                                                                                                                                                                                                                           | 15.8                 | 17.1                          | -                     | 14.8                                                              | 13.1     | 13.3   | 13.4                       | 12.6                                                            | 13.2         | 13.8 | 13.5         | 13.4                                                                    | 13.6                | 13.2                | 13.2           | 14.3                                                                     |
| Specific Conductance                                                                                                                                                                                                                  | 1010                 | 1.01                          | -                     | 1000                                                              | 1300     | 1310   | 1300                       | 1290                                                            | 1130         | 1120 | 1120         | 1120                                                                    | 2380                | 2100                | 2080           | 1980                                                                     |
| Dissolved Oxygen<br>Turbidity                                                                                                                                                                                                         |                      |                               |                       | 7.17                                                              |          |        |                            | 3.69<br>3.16                                                    |              |      |              | 2.29<br>10,9                                                            |                     |                     |                | 2.04<br>27.6                                                             |
| Well volumes of water                                                                                                                                                                                                                 | ╉╾╍╼╄                |                               |                       | •.71                                                              |          |        |                            | 3.10                                                            | I            |      |              | 10.0                                                                    | I                   |                     | <b>i</b>       |                                                                          |
| purged during sampling                                                                                                                                                                                                                |                      |                               |                       | 2.0 <sup>3</sup>                                                  |          |        |                            | 3.0                                                             |              |      |              | 30                                                                      |                     |                     | <b></b>        | 32                                                                       |
| GENERAL PARAMETERS                                                                                                                                                                                                                    | (mg/L)               |                               |                       |                                                                   |          |        |                            |                                                                 |              |      |              |                                                                         |                     |                     |                |                                                                          |
| bicarbonate                                                                                                                                                                                                                           |                      | T                             |                       | 380                                                               | T        | Ī      |                            | 480                                                             |              |      |              | 350                                                                     |                     | I                   |                | 820                                                                      |
| chloride                                                                                                                                                                                                                              |                      |                               |                       | 13.1                                                              |          |        |                            | 140                                                             |              |      | 1            | 141                                                                     |                     |                     |                | 93                                                                       |
| nitale                                                                                                                                                                                                                                | 1 1                  |                               | 1                     | 2.6J                                                              |          |        | - 1                        | 0.02J                                                           |              |      |              | 0.14J                                                                   |                     |                     |                | 0.90J                                                                    |
| suilate                                                                                                                                                                                                                               |                      |                               |                       | 3.4<br>930                                                        |          |        |                            | 64<br>8.3                                                       |              |      |              | 85<br>< 5                                                               |                     |                     |                | 8.9                                                                      |
| COD                                                                                                                                                                                                                                   | 1 1                  |                               |                       | 400                                                               |          |        |                            | 2.2                                                             |              |      |              | 2.3                                                                     |                     |                     |                | 240<br>174                                                               |
| TSS                                                                                                                                                                                                                                   |                      |                               |                       | 32                                                                |          |        |                            | 2.1                                                             |              |      | 1            | 1.9                                                                     |                     |                     |                | 40                                                                       |
|                                                                                                                                                                                                                                       |                      |                               |                       |                                                                   |          |        |                            |                                                                 |              |      |              |                                                                         |                     |                     |                | <u></u>                                                                  |
| Location<br>Sample ID                                                                                                                                                                                                                 |                      |                               | - <b>1268</b><br>9011 |                                                                   |          | MW     | 1 <b>268</b><br>(P)<br>012 |                                                                 |              | MW   |              |                                                                         |                     | WW<br>(Di<br>A00    |                |                                                                          |
| Well Volume                                                                                                                                                                                                                           | 1                    | 2                             | 3                     | Final                                                             | 1        | 2      | 3                          | Finel                                                           | 1            | 2    | 3            | Final                                                                   | 1                   | 2                   | 3              | Final                                                                    |
|                                                                                                                                                                                                                                       |                      |                               |                       |                                                                   |          |        |                            |                                                                 | FRDLs        |      |              |                                                                         |                     |                     | <u> </u>       | 1.1.1                                                                    |
| Month MRDL Cont'd                                                                                                                                                                                                                     | >                    |                               |                       |                                                                   |          |        |                            |                                                                 |              |      |              |                                                                         |                     |                     |                |                                                                          |
| Monarch HRDL (Cont'd)                                                                                                                                                                                                                 | ۷                    |                               |                       |                                                                   | <u> </u> |        |                            | <u>~</u>                                                        | THULS        |      |              |                                                                         |                     |                     |                |                                                                          |
| FIELD PARAMETERS                                                                                                                                                                                                                      |                      | 7 22                          | 7 21                  | 7 27                                                              | 7.16     | 7.22   | 7.21                       | 7.27                                                            |              | 7.05 | 7 03         | 7 15                                                                    | 7.03                | 7.05                | 7 03           | 7 16                                                                     |
| FIELD PARAMETERS                                                                                                                                                                                                                      | 7.16                 | 7.22                          | 7.21                  | 7.27                                                              | 7.16     | 7.22   | 7.21                       | 7.27                                                            | 7.03<br>18.2 | 7.05 | 7.03         | 7.15                                                                    | 7.03                | 7.05                | 7.03           | 7.15                                                                     |
| FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature                                                                                                                                                                                    |                      | 7.22<br>13.2<br>11 <b>6</b> 0 | 7.21<br>13.0<br>1110  |                                                                   |          |        |                            |                                                                 | 7.03         |      |              |                                                                         | 7.03<br>18.2<br>597 | 7.05<br>18.3<br>590 | 7.03           | 7.15<br>18 0<br>606                                                      |
| FIELD PARAMETERS                                                                                                                                                                                                                      | 7.16                 | 13.2                          | 13.0                  | 13.6                                                              | 12.8     | . 13.2 | 13.0                       | 13.6                                                            | 7.03         | 18.3 | 18.9         | 18.0<br>606<br>3.14                                                     | 18.2                | 18.3                | 18.0           | 18 0                                                                     |
| FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity                                                                                                                           | 7.16                 | 13.2                          | 13.0                  | 13.8<br>1110                                                      | 12.8     | . 13.2 | 13.0                       | 13.6<br>1110                                                    | 7.03         | 18.3 | 18.9         | 18.0<br>606                                                             | 18.2                | 18.3                | 18.0           | 18.0                                                                     |
| FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water                                                                                                  | 7.16                 | 13.2                          | 13.0                  | 13.6<br>1110<br>1.76<br>5.94                                      | 12.8     | . 13.2 | 13.0                       | 13.6<br>1110<br>1.78<br>5.94                                    | 7.03         | 18.3 | 18.9         | 18.0<br>606<br>3.14<br>0.65                                             | 18.2                | 18.3                | 18.0           | 18 0<br>606<br>3 14<br>0 65                                              |
| FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity                                                                                                                           | 7.16                 | 13.2                          | 13.0                  | 13.6<br>1110<br>1.76                                              | 12.8     | . 13.2 | 13.0                       | 13.6<br>1110<br>1.78                                            | 7.03         | 18.3 | 18.9         | 18.0<br>606<br>3.14                                                     | 18.2                | 18.3                | 18.0           | 18 0<br>606<br>3 14                                                      |
| FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS                                                  | 7.16<br>12.8<br>1160 | 13.2                          | 13.0                  | 13.6<br>1110<br>1.76<br>5.94<br>3.5                               | 12.8     | . 13.2 | 13.0                       | 13.6<br>1110<br>1.76<br>5.94<br>3.5                             | 7.03         | 18.3 | 18.9         | 18.0<br>606<br>3.14<br>0.65<br>3.3                                      | 18.2                | 18.3                | 18.0           | 16 0<br>606<br>3 14<br>0 65<br><u>3 3</u>                                |
| FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS<br>bicarbonate                                   | 7.16<br>12.8<br>1160 | 13.2                          | 13.0                  | 13.6<br>1110<br>1.76<br>5.94<br>3.5                               | 12.8     | . 13.2 | 13.0                       | 13.6<br>1110<br>1.76<br>5.94<br>3.5<br>390                      | 7.03         | 18.3 | 18.9         | 18.0<br>606<br>3.14<br>0.65<br>3.3<br>3.3                               | 18.2                | 18.3                | 18.0           | 16 0<br>606<br>3 14<br>0 65<br><u>3 3</u><br>3 3<br>310                  |
| FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS<br>bicarbonate<br>chloride                       | 7.16<br>12.8<br>1160 | 13.2                          | 13.0                  | 13.6<br>1110<br>1.76<br>5.94<br>3.5<br>370<br>114                 | 12.8     | . 13.2 | 13.0                       | 13.6<br>1110<br>1.78<br>5.94<br>3.5<br>390<br>116               | 7.03         | 18.3 | 18.9         | 18.0<br>606<br>3.14<br>0.65<br>3.3<br>3.3<br>320<br>8.6                 | 18.2                | 18.3                | 18.0           | 18 0<br>606<br>3 14<br>0 65<br>3 3<br>3 3<br>310<br>9 3                  |
| FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS<br>bicarbonate<br>chloride<br>nitrate            | 7.16<br>12.8<br>1160 | 13.2                          | 13.0                  | 13.8<br>1110<br>1.76<br>5.94<br>3.5<br>370<br>114<br><0.01J       | 12.8     | . 13.2 | 13.0                       | 13.6<br>1110<br>1.76<br>5.94<br>3.5<br>390<br>116<br>2.1J       | 7.03         | 18.3 | 18.9         | 18.0<br>606<br>3.14<br>0.65<br>3.3<br>3.3<br>320<br>8.6<br>0.07J        | 18.2                | 18.3                | 18.0           | 18 0<br>606<br>3 14<br><u>0 65</u><br><u>3 3</u><br>3 10<br>9 3<br>0.68J |
| FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS<br>bicarbonate<br>chicride<br>nitrate<br>sulfate | 7.16<br>12.8<br>1160 | 13.2                          | 13.0                  | 13.6<br>1110<br>1.76<br>5.94<br>3.5<br>370<br>114                 | 12.8     | . 13.2 | 13.0                       | 13.6<br>1110<br>1.78<br>5.94<br>3.5<br>390<br>116               | 7.03         | 18.3 | 18.9         | 18.0<br>606<br>3.14<br>0.65<br>3.3<br>3.3<br>320<br>8.6                 | 18.2                | 18.3                | 18.0           | 18 0<br>606<br>3 14<br><u>0 65</u><br>3 3<br>3 3<br>9 3<br>0.68J<br>8.7  |
| FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS<br>bicarbonate<br>chloride<br>nitrate            | 7.16<br>12.8<br>1160 | 13.2                          | 13.0                  | 13.6<br>1110<br>1.78<br>5.94<br>3.5<br>370<br>114<br><0.01J<br>59 | 12.8     | . 13.2 | 13.0                       | 13.6<br>1110<br>1.78<br>5.94<br>3.5<br>390<br>116<br>2.1J<br>65 | 7.03         | 18.3 | 18.9         | 18.0<br>606<br>3.14<br>0.65<br>3.3<br>3.3<br>320<br>8.6<br>0.07J<br>9.4 | 18.2                | 18.3                | 18.0           | 18 0<br>606<br>3 14<br><u>0 65</u><br><u>3 3</u><br>3 10<br>9 3<br>0.68J |

See Notes on Page 8

-

### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER INC. OPERABLE UNIT SUMMARY OF FIELD PARAMETERS AND GENERAL WATER QUALITY RESULTS FOR GROUNDWATERALEACHATE WATER SAMPLES

| Location<br>Sample ID                                                                                                                                                                                                                                                            |                      |          | -1228               |                                                                       |          |            | V-1 <sup>3</sup><br>6032  |                                                                        |                        |            | V3<br>1054 |                                                               |              |       | V-6<br>3046                            |                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|---------------------|-----------------------------------------------------------------------|----------|------------|---------------------------|------------------------------------------------------------------------|------------------------|------------|------------|---------------------------------------------------------------|--------------|-------|----------------------------------------|----------------------------------------------------------------------------|
| Well Volume                                                                                                                                                                                                                                                                      | 1                    | 2        |                     | Final                                                                 | 1        | 2          |                           | Final                                                                  | 1                      | 2          | 3          | Final                                                         |              | 2     | 3                                      | Final                                                                      |
| FRDLs (Cont'd.)                                                                                                                                                                                                                                                                  |                      |          |                     |                                                                       | Former   | Type III L | andfill                   |                                                                        |                        |            |            |                                                               |              |       |                                        |                                                                            |
| FIELD PARAMETERS                                                                                                                                                                                                                                                                 |                      |          |                     |                                                                       |          |            |                           |                                                                        |                        |            |            |                                                               |              |       |                                        |                                                                            |
| pH                                                                                                                                                                                                                                                                               | 7.04                 | 7.00     | 6.98                | 7.07                                                                  | 6.94     | 6.81       | 6.82                      | 6.76                                                                   | 6.36                   | 6.37       | 6.37       | 6.58                                                          | 6.86         | 6.86  | 6.66                                   | 6.94                                                                       |
| Temperature                                                                                                                                                                                                                                                                      | 13.8                 | 12.9     | 12.5                | 13.6                                                                  | 15.8     | 17.2       | 17.2                      | 16.7                                                                   | 14.4                   | 14.2       | 14.4       | 16.0                                                          | 14.8         | 15.0  | 14.9                                   | 10.6                                                                       |
| Specific Conductance                                                                                                                                                                                                                                                             | 826                  | 842      | 910                 | 846                                                                   | 1060     | 1050       | 1050                      | 1050                                                                   | 1240                   | 1250       | 1250       | 1240                                                          | 1440         | 1450  | 1460                                   | 1450                                                                       |
| Dissolved Oxygen                                                                                                                                                                                                                                                                 |                      |          |                     | 3.02                                                                  |          |            |                           | 1.60                                                                   |                        |            |            | 2.51                                                          |              |       |                                        | 98                                                                         |
| Turbidity                                                                                                                                                                                                                                                                        | LL                   |          |                     | 2.99                                                                  | I        |            |                           | 1.64                                                                   | l                      |            |            | 3.25                                                          |              | 1     | I                                      | 5.37                                                                       |
| Well volumes of water                                                                                                                                                                                                                                                            |                      |          |                     |                                                                       |          |            |                           |                                                                        |                        |            |            |                                                               |              |       |                                        |                                                                            |
| purged during sampling                                                                                                                                                                                                                                                           |                      |          |                     | 3.0                                                                   |          |            |                           | 3.2                                                                    |                        |            |            | 3.2                                                           |              | ····· |                                        | <u>3 6</u>                                                                 |
| GENERAL PARAMETERS                                                                                                                                                                                                                                                               | (mg/L)               |          |                     |                                                                       | I        |            |                           |                                                                        |                        |            |            |                                                               |              |       |                                        |                                                                            |
| bicarbonate                                                                                                                                                                                                                                                                      | T                    | 1        |                     | 460                                                                   |          |            |                           | 480                                                                    | 1                      |            |            | 600                                                           |              | T     | I                                      | 710                                                                        |
| chloride                                                                                                                                                                                                                                                                         |                      |          |                     | 180                                                                   | <b> </b> |            |                           | 41                                                                     |                        |            |            | 38                                                            |              |       |                                        | 47                                                                         |
| nitrate                                                                                                                                                                                                                                                                          |                      |          |                     | 0.12J                                                                 |          |            |                           | 0.05J                                                                  |                        |            |            | 0.09                                                          |              |       |                                        | 0.02 J                                                                     |
| sullate                                                                                                                                                                                                                                                                          | 1                    |          |                     | 6.0                                                                   |          |            |                           | 25                                                                     |                        |            |            | 8                                                             |              |       |                                        | 6                                                                          |
| COD                                                                                                                                                                                                                                                                              |                      |          |                     | 31                                                                    |          |            |                           | 11                                                                     |                        |            |            | 34                                                            |              |       |                                        | 28                                                                         |
| TOC                                                                                                                                                                                                                                                                              |                      |          | 1                   | 11.5                                                                  |          |            |                           | 3.1                                                                    |                        |            |            | 12.3                                                          |              | {     |                                        | 11.4                                                                       |
| TSS                                                                                                                                                                                                                                                                              |                      |          |                     | 28                                                                    |          |            |                           | 27                                                                     |                        |            |            | 48                                                            |              |       |                                        | 38                                                                         |
|                                                                                                                                                                                                                                                                                  | T                    |          |                     |                                                                       |          |            |                           |                                                                        |                        |            |            |                                                               |              |       | ···· · · · · · · · · · · · · · · · · · | <del></del>                                                                |
| Location<br>Sample ID                                                                                                                                                                                                                                                            |                      |          | /1 <b>5</b><br>1055 |                                                                       |          |            | -108 <sup>1</sup><br>0059 |                                                                        |                        | -WM<br>A00 |            |                                                               |              |       | - 17A<br>1056                          |                                                                            |
|                                                                                                                                                                                                                                                                                  |                      |          |                     |                                                                       |          |            |                           | Final                                                                  | 1                      | 2          | 3          | Final                                                         | 1            | 2     | 3                                      | Final                                                                      |
| •                                                                                                                                                                                                                                                                                | 1                    | 2        | 3                   | Final                                                                 |          | ¥!         | - <b>e</b> 1              |                                                                        |                        |            |            |                                                               |              |       |                                        |                                                                            |
| Well Yolume                                                                                                                                                                                                                                                                      | 1<br>Cort'd)         | 2        |                     | Final                                                                 | └──┹───┵ |            | £                         |                                                                        | يتبسون الغبيلار بيابية |            |            |                                                               |              |       |                                        |                                                                            |
| Well Yolume<br>Former Type III Landfill                                                                                                                                                                                                                                          | 1<br>(Cont'd.)       | 2        | 3                   | Final                                                                 |          |            |                           |                                                                        |                        |            |            |                                                               |              |       |                                        |                                                                            |
| Well Yolume<br>Former Type III Landfill<br>FIELD PARAMETERS <sup>4</sup>                                                                                                                                                                                                         |                      | <u>2</u> | <u>+</u>            |                                                                       | 6.79     | <u> </u>   | <u> </u>                  |                                                                        | 7 71                   | 7 75       | 7 67       | 7 78                                                          |              | r     |                                        |                                                                            |
| Well Yolume<br>Former Type III Landfill<br>FIELD PARAMETERS <sup>1</sup><br>pH                                                                                                                                                                                                   | 6.30                 | 6.28     | 0.43                | 0.50                                                                  | 6.79     | 6.71       | 6.79                      | 8.70                                                                   | 7.71                   | 7.75       | 7.57       | 7.78                                                          | 6.42<br>15.4 |       |                                        | 6.51                                                                       |
| Well Yolume<br>Former Type III Landfill<br>FIELD PARAMETERS <sup>1</sup><br>pH<br>Temperature                                                                                                                                                                                    | 6.30<br>14.4         | 14.0     | 6.43<br>13.7        | 0.56                                                                  | 15.9     | 16.6       | 6.79<br>16.5              | 6.70<br>19.3                                                           | 15.2                   | 15.6       | 16.4       | 18.0                                                          | 15.4         | -     | - 1                                    | 19.1                                                                       |
| Well Yolume<br>Former Type III Landfill<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance                                                                                                                                                            | 6.30                 |          | 0.43                | 6.56<br>14.4<br>1550                                                  |          |            | 6.79                      | 6.70<br>19.3<br>846                                                    |                        |            |            | 18.0<br>527                                                   |              | -     |                                        | 19.1<br>1470                                                               |
| Well Yolume<br>Former Type III Landfill<br>FIELD PARAMETERS <sup>1</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen                                                                                                                                        | 6.30<br>14.4         | 14.0     | 6.43<br>13.7        | 6.56<br>14.4<br>1550<br>2.61                                          | 15.9     | 16.6       | 6.79<br>16.5              | 8.70<br>19.3<br>846<br>1.11                                            | 15.2                   | 15.6       | 16.4       | 18.0<br>527<br>3.47                                           | 15.4         |       |                                        | 19.1<br>1470<br>2.78                                                       |
| Well Yolume<br>Former Type III Landfill<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity                                                                                                                           | 6.30<br>14.4         | 14.0     | 6.43<br>13.7        | 6.56<br>14.4<br>1550                                                  | 15.9     | 16.6       | 6.79<br>16.5              | 6.70<br>19.3<br>846                                                    | 15.2                   | 15.6       | 16.4       | 18.0<br>527                                                   | 15.4         |       |                                        | 19.1<br>1470                                                               |
| Well Yolume<br>Former Type III Landfill<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water                                                                                                  | 6.30<br>14.4         | 14.0     | 6.43<br>13.7        | 8.55<br>14.4<br>1550<br>2.61<br>2.77                                  | 15.9     | 16.6       | 6.79<br>16.5              | 6.70<br>19.3<br>846<br>1.11<br>2.45                                    | 15.2                   | 15.6       | 16.4       | 18.0<br>527<br>3.47<br>9.13                                   | 15.4         |       | -                                      | 19.1<br>1470<br>2.78<br>3.45                                               |
| Well Yolume<br>Former Type III Landfill<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling                                                                        | 6.30<br>14.4<br>1510 | 14.0     | 6.43<br>13.7        | 6.56<br>14.4<br>1550<br>2.61                                          | 15.9     | 16.6       | 6.79<br>16.5              | 8.70<br>19.3<br>846<br>1.11                                            | 15.2                   | 15.6       | 16.4       | 18.0<br>527<br>3.47                                           | 15.4         |       | -                                      | 19.1<br>1470<br>2.78                                                       |
| Well Yolume<br>Former Type III Landfill<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS                                                  | 6.30<br>14.4<br>1510 | 14.0     | 6.43<br>13.7        | 8.56<br>14.4<br>1550<br>2.61<br>2.77<br>3.1                           | 15.9     | 16.6       | 6.79<br>16.5              | 6.70<br>19.3<br>846<br>1.11<br>2.45<br>3.2                             | 15.2                   | 15.6       | 16.4       | 18.0<br>527<br>3.47<br>9.13<br><u>3.0</u>                     | 15.4         |       |                                        | 10.1<br>1470<br>2.78<br>3.45<br>1.0 <sup>3</sup>                           |
| Well Yolume<br>Former Type III Landfill<br>FIELD PARAMETERS <sup>1</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS<br>bicarbonate                                   | 6.30<br>14.4<br>1510 | 14.0     | 6.43<br>13.7        | 6.56<br>14.4<br>1550<br>2.61<br>2.77<br>3.1                           | 15.9     | 16.6       | 6.79<br>16.5              | 6.70<br>19.3<br>846<br>1.11<br>2.45<br>3.2<br>480                      | 15.2                   | 15.6       | 16.4       | 18.0<br>527<br>3.47<br>9.13<br>3.0<br>240                     | 15.4         |       |                                        | 19.1<br>1470<br>2.78<br>3.45<br>1.0 <sup>3</sup><br>730                    |
| Well Yolume<br>Former Type III Landfill<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS<br>bicarbonate<br>chloride                       | 6.30<br>14.4<br>1510 | 14.0     | 6.43<br>13.7        | 0.56<br>14.4<br>1550<br>2.61<br>2.77<br>3.1<br>820<br>42              | 15.9     | 16.6       | 6.79<br>16.5              | 6.70<br>19.3<br>846<br>1.11<br>2.45<br>3.2<br>480<br>27                | 15.2                   | 15.6       | 16.4       | 18.0<br>527<br>3.47<br>9.13<br><u>3.0</u><br>240<br>24        | 15.4         |       | = ]                                    | 19.1<br>1470<br>2.78<br>3.45<br>1.0 <sup>3</sup><br>730<br>52              |
| Well Yolume<br>Former Type III Landfill<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS<br>bicarbonate<br>chloride<br>nitrate            | 6.30<br>14.4<br>1510 | 14.0     | 6.43<br>13.7        | 6.56<br>14.4<br>1550<br>2.61<br>2.77<br>3.1<br>820<br>42<br>0.12      | 15.9     | 16.6       | 6.79<br>16.5              | 6.70<br>19.3<br>846<br>1.11<br>2.45<br>3.2<br>480<br>27<br>0.08J       | 15.2                   | 15.6       | 16.4       | 18.0<br>527<br>3.47<br>9.13<br>3.0<br>240<br>24<br>240<br>24  | 15.4         |       |                                        | 19.1<br>1470<br>2.78<br>3.45<br>1.0 <sup>3</sup><br>730                    |
| Well Yolume<br>Former Type III Landfill<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS<br>bioarbonate<br>chloride<br>nitrate<br>suitate | 6.30<br>14.4<br>1510 | 14.0     | 6.43<br>13.7        | 6.56<br>14.4<br>1550<br>2.61<br>2.77<br>3.1<br>820<br>42<br>0.12<br>7 | 15.9     | 16.6       | 6.79<br>16.5              | 6.70<br>19.3<br>846<br>1.11<br>2.45<br>3.2<br>460<br>27<br>0.06J<br>18 | 15.2                   | 15.6       | 16.4       | 18.0<br>527<br>3.47<br>9.13<br>3.0<br>240<br>24<br>0.06<br>37 | 15.4         |       | -                                      | 19.1<br>1470<br>2.78<br>3.45<br>1.0 <sup>3</sup><br>730<br>52<br>0.06<br>6 |
| Well Yolume<br>Former Type III Landfill<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS<br>bicarbonate<br>chloride<br>nitrate            | 6.30<br>14.4<br>1510 | 14.0     | 6.43<br>13.7        | 6.56<br>14.4<br>1550<br>2.61<br>2.77<br>3.1<br>820<br>42<br>0.12      | 15.9     | 16.6       | 6.79<br>16.5              | 6.70<br>19.3<br>846<br>1.11<br>2.45<br>3.2<br>480<br>27<br>0.08J       | 15.2                   | 15.6       | 16.4       | 18.0<br>527<br>3.47<br>9.13<br>3.0<br>240<br>24<br>240<br>24  | 15.4         |       |                                        | 19.1<br>1470<br>2.78<br>3.45<br>1.0 <sup>3</sup><br>730<br>52<br>0.06      |

See Notes on Page 8

~

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER INC. OPERABLE UNIT SUMMARY OF FIELD PARAMETERS AND GENERAL WATER QUALITY RESULTS FOR GROUNDWATER/LEACHATE WATER SAMPLES'

| Location<br>Sample ID                                                                                                                                                                                                     |              |      | - 1208<br>6019 |                                                                       |              | ŋ     | - 1208<br>up)<br>5024 |                                                                    |              | MW<br>00                              | /-2<br>080   |                                                                       |      |      | 29<br>X022 |                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|----------------|-----------------------------------------------------------------------|--------------|-------|-----------------------|--------------------------------------------------------------------|--------------|---------------------------------------|--------------|-----------------------------------------------------------------------|------|------|------------|---------------------------------------------------------------------------|
| Well Volume                                                                                                                                                                                                               | 1            | 2    | э              | Final                                                                 | 1            | 2     | 3                     | Final                                                              | 1            | 2                                     | 3            | Final                                                                 | 1    | 2    | 3          | Final                                                                     |
| Western Disposal Area                                                                                                                                                                                                     | (Cont'd)     |      |                |                                                                       |              |       |                       |                                                                    | Pilot Stu    | dy Area                               |              |                                                                       |      |      |            |                                                                           |
| FIELD PARAMETERS                                                                                                                                                                                                          |              |      |                |                                                                       |              |       |                       |                                                                    |              |                                       |              |                                                                       |      |      |            |                                                                           |
| pН                                                                                                                                                                                                                        | 7.02         | 6.93 | 6.89           | 7.01                                                                  | 7.02         | 6.93  | 6.89                  | 7.01                                                               | 6.53         | 6.60                                  | 6.57         | 6.60                                                                  | 6.92 | 0.86 | 6.6        | 6.75                                                                      |
| Temperature                                                                                                                                                                                                               | 14.9         | 14.7 | 14.6           | 17.4                                                                  | 14.9         | 14.7  | 14.6                  | 17.4                                                               | 14.6         | 14.7                                  | 14.7         | 16.4                                                                  | 14.8 | 15.5 | 18 3       | 18 1                                                                      |
| Specific Conductance                                                                                                                                                                                                      | 1440         | 1450 | 1460           | 1460                                                                  | 1440         | 1450  | 1460                  | 1460                                                               | 980          | 960                                   | 917          | 960                                                                   | 1000 | 1020 | 1040       | 1020                                                                      |
| Dissolved Oxygen<br>Turbidity                                                                                                                                                                                             |              |      |                | 2.16<br>8.02                                                          |              | 1     |                       | 2.18                                                               |              |                                       |              | 2.88<br>5.34                                                          |      |      |            | 8 47<br>1.63                                                              |
| Well volumes of water                                                                                                                                                                                                     | <u>∔</u> -∔  |      |                | 8.02                                                                  | L            |       | 1                     | 8.02                                                               | <b></b>      |                                       |              |                                                                       |      | I    | I          |                                                                           |
| purged during sampling                                                                                                                                                                                                    |              |      |                | 3.6                                                                   |              |       |                       | \$.5                                                               |              |                                       |              | 4.0                                                                   |      |      |            | 33                                                                        |
| GENERAL PARAMETERS                                                                                                                                                                                                        | (mgA.)       |      |                |                                                                       |              |       |                       |                                                                    |              |                                       |              |                                                                       |      |      |            |                                                                           |
| bicarbonate                                                                                                                                                                                                               | <u>гт</u>    | T    | 1              | 740                                                                   | Т            | T     |                       | 780                                                                | T            | · · · · · · · · · · · · · · · · · · · |              | 400                                                                   | r    |      | ·          | 440                                                                       |
| chioride                                                                                                                                                                                                                  |              | 1    |                | 34                                                                    |              |       |                       | 37                                                                 |              |                                       |              | 89                                                                    |      |      |            | 50                                                                        |
| nitrate                                                                                                                                                                                                                   |              |      |                | 0.09J                                                                 |              |       |                       | 0.03.                                                              |              |                                       |              | 0.1                                                                   |      |      |            | <0.01J                                                                    |
| sulfate                                                                                                                                                                                                                   | 1            |      |                | 7.8                                                                   |              |       |                       | 7.0                                                                |              |                                       |              | 28                                                                    |      |      | F          | 12                                                                        |
| COD<br>TOC                                                                                                                                                                                                                |              | 1    |                | 36<br>18.4                                                            |              |       |                       | 45                                                                 |              |                                       |              | 6                                                                     |      |      |            | 65                                                                        |
| TSS                                                                                                                                                                                                                       | 1 1          | - 1  |                | 10.4<br>R                                                             |              |       |                       | 19.2<br>R                                                          |              |                                       |              | 2.4<br>26                                                             |      |      |            | 31                                                                        |
|                                                                                                                                                                                                                           |              |      |                |                                                                       |              |       |                       | <u>n</u>                                                           |              | a server at the                       |              | <u>EVI</u>                                                            |      |      | <u></u>    | ¥!                                                                        |
| Location                                                                                                                                                                                                                  |              |      | 1~28<br>up)    |                                                                       |              | 2.614 | -18                   |                                                                    |              | -WM                                   | - 104        | T                                                                     |      | LAW. | - 106      |                                                                           |
| Sample ID                                                                                                                                                                                                                 |              | A66  | 023            |                                                                       |              |       | 061                   |                                                                    |              | A06                                   |              |                                                                       |      |      | 083        |                                                                           |
| Well Volume                                                                                                                                                                                                               |              | 2    | 3              | Finel                                                                 | 1            | 2     | 3                     | Final                                                              | 1            | 2                                     | 3            | Final                                                                 | 1    | 2    | 3          | Final                                                                     |
| Pilot Study Area (Cont'd                                                                                                                                                                                                  | L)           |      |                |                                                                       |              |       |                       |                                                                    | Former I     | Bryant Mi                             | I Pond       |                                                                       |      |      |            |                                                                           |
|                                                                                                                                                                                                                           | -            |      |                |                                                                       |              |       |                       |                                                                    | _            |                                       |              |                                                                       |      |      |            |                                                                           |
| FIELD PARAMETERS                                                                                                                                                                                                          |              |      |                |                                                                       |              |       |                       |                                                                    |              |                                       |              |                                                                       |      |      |            |                                                                           |
| FIELD PARAMETERS                                                                                                                                                                                                          | 6.92         | 6.88 | 6.8            | 6.75                                                                  | 7.05         | 7.17  | 7.25                  | 7.37                                                               | 7.45         | 7.39                                  | 7.52         | 7.60                                                                  | 7.56 | 7.58 | 7.58       | 7 67                                                                      |
| pH<br>Temperature                                                                                                                                                                                                         | 6.92<br>14.8 | 15.5 | 6.8<br>16.3    | 6.75<br>18.1                                                          | 7.05<br>13.5 | 7.17  | 7.25<br>14.1          | 7.37                                                               | 7.45<br>13.6 | 7. <b>39</b><br>14.0                  | 7.52<br>14.3 | 15.3                                                                  | 13.6 | 138  | 13 9       | 15 4                                                                      |
| pH<br>Temperature<br>Specific Conductance                                                                                                                                                                                 |              |      |                | 18.1<br>1020                                                          |              |       |                       | 15.4<br>711                                                        |              |                                       |              | 15.3<br>1050                                                          |      |      |            | 15 4<br>700                                                               |
| pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen                                                                                                                                                             | 14.8         | 15.5 | 16.3           | 18.1<br>1020<br>8.47                                                  | 13.5         | 13.8  | 14.1                  | 15.4<br>711<br>2.50                                                | 13.6         | 14.0                                  | 14.3         | 15.3<br>1050<br>9.69                                                  | 13.6 | 138  | 13 9       | 15 4<br>700<br>3 56                                                       |
| pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity                                                                                                                                                | 14.8         | 15.5 | 16.3           | 18.1<br>1020                                                          | 13.5         | 13.8  | 14.1                  | 15.4<br>711                                                        | 13.6         | 14.0                                  | 14.3         | 15.3<br>1050                                                          | 13.6 | 138  | 13 9       | 15 4<br>700                                                               |
| pH                                                                                                                                                                                                                        | 14.8         | 15.5 | 16.3           | 18.1<br>1020<br>8.47                                                  | 13.5         | 13.8  | 14.1                  | 15.4<br>711<br>2.50                                                | 13.6         | 14.0                                  | 14.3         | 15.3<br>1050<br>9.69                                                  | 13.6 | 138  | 13 9       | 15 4<br>700<br>3 56<br>10 7                                               |
| pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling                                                                                             | 14.8         | 15.5 | 16.3           | 18.1<br>1020<br>8.47<br>1.53                                          | 13.5         | 13.8  | 14.1                  | 15.4<br>711<br>2.50<br>1.14                                        | 13.6         | 14.0                                  | 14.3         | 15.3<br>1050<br>9.69<br>9.04                                          | 13.6 | 138  | 13 9       | 15 4<br>700<br>3 56                                                       |
| pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br><u>purged during sampling</u><br>GENERAL PARAMETERS                                                                | 14.8         | 15.5 | 16.3           | 18.1<br>1020<br>8.47<br>1.53<br>3.3                                   | 13.5         | 13.8  | 14.1                  | 15.4<br>711<br>2.50<br>1.14<br>3.0                                 | 13.6         | 14.0                                  | 14.3         | 15.3<br>1050<br>9.69<br>9.04<br>3.0                                   | 13.6 | 138  | 13 9       | 15 4<br>700<br>3 56<br>10 7                                               |
| pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water                                                                                                                       | 14.8         | 15.5 | 16.3           | 18.1<br>1020<br>8.47<br>1.53                                          | 13.5         | 13.8  | 14.1                  | 15.4<br>711<br>2.50<br>1.14                                        | 13.6         | 14.0                                  | 14.3         | 15.3<br>1050<br>9.69<br>9.04                                          | 13.6 | 138  | 13 9       | 15 4<br>700<br>3 56<br>10 7<br><u>3 2</u>                                 |
| pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS<br>bicarbonate<br>chioride<br>nitrate                                 | 14.8         | 15.5 | 16.3           | 18.1<br>1020<br>8.47<br>1.53<br>3.3<br>450                            | 13.5         | 13.8  | 14.1                  | 15.4<br>711<br>2.50<br>1.14<br>3.0<br>280                          | 13.6         | 14.0                                  | 14.3         | 15.3<br>1050<br>9.69<br>9.04<br><u>3.0</u><br>340                     | 13.6 | 138  | 13 9       | 15 4<br>700<br>3 56<br>10 7<br>3 2<br>290<br>45<br>0 05                   |
| pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS<br>bicarbonate<br>chloride<br>nitrate<br>suthle                       | 14.8         | 15.5 | 16.3           | 18.1<br>1020<br>8.47<br>1.53<br>3.3<br>450<br>55                      | 13.5         | 13.8  | 14.1                  | 15.4<br>711<br>2.50<br>1.14<br>3.0<br>280<br>52                    | 13.6         | 14.0                                  | 14.3         | 15 3<br>1050<br>9.69<br>9.04<br>3.0<br>340<br>55<br>0.07<br>144       | 13.6 | 138  | 13 9       | 15 4<br>700<br>3 56<br>10 7<br>3 2<br>290<br>45<br>0 05<br>37             |
| pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br><u>purged during sampling</u><br><u>GENERAL PARAMETERS</u><br>bicarbonate<br>chloride<br>nitrate<br>suthate<br>COD | 14.8         | 15.5 | 16.3           | 18.1<br>1020<br>8.47<br>1.53<br>3.3<br>450<br>55<br><0.01j<br>6<br>15 | 13.5         | 13.8  | 14.1                  | 15.4<br>711<br>2.50<br>1.14<br>3.0<br>280<br>52<br>0.06<br>47<br>5 | 13.6         | 14.0                                  | 14.3         | 15 3<br>1050<br>9.69<br>9.04<br>3.0<br>340<br>55<br>0.07<br>144<br><5 | 13.6 | 138  | 13 9       | 15 4<br>700<br>3 56<br>10 7<br><u>3 2</u><br>290<br>45<br>0 05<br>37<br>6 |
| pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS<br>bicarbonate<br>chloride<br>mitrate<br>suthe                        | 14.8         | 15.5 | 16.3           | 18.1<br>1020<br>8.47<br>1.53<br>3.3<br>450<br>55<br><0.01J<br>6       | 13.5         | 13.8  | 14.1                  | 15.4<br>711<br>2.60<br>1.14<br>3.0<br>280<br>52<br>0.06<br>47      | 13.6         | 14.0                                  | 14.3         | 15 3<br>1050<br>9.69<br>9.04<br>3.0<br>340<br>55<br>0.07<br>144       | 13.6 | 138  | 13 9       | 15 4<br>700<br>3 56<br>10 7<br>2 90<br>45<br>0 05<br>37                   |

See Notes on Page 8

1

÷

.

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER INC. OPERABLE UNIT SUMMARY OF FIELD PARAMETERS AND GENERAL WATER QUALITY RESULTS FOR GROUNDWATER/LEACHATE WATER SAMPLES'

| Location<br>Sample 1D         |           | MW-  |      |      |      | MW-  |      |       |      | MW   | -            |       |
|-------------------------------|-----------|------|------|------|------|------|------|-------|------|------|--------------|-------|
| Well Volume                   | 1         | 2    | 3    | Firm |      | 2    | 3    | Final | 1    | 2    | _ <b>ə</b> ] | Final |
| Former Bryant Mill Pond       | (Cont'd.) |      |      |      |      |      |      |       |      |      |              |       |
| FIELD PARAMETERS <sup>4</sup> |           |      |      |      |      |      |      |       |      |      |              |       |
| ρH                            | 7.77      | 7.72 | 7.75 | 7.82 | 7.6  | 7.64 | 7.57 | 7.60  | 7.19 | 7.29 | 7.25         | 7.32  |
| Temperature                   | 14.0      | 14.9 | 15.1 | 15.7 | 14.4 | 14.7 | 13.5 | 14.3  | 15.9 | 16.3 | 16.7         | 18.6  |
| Specific Conductance          | 716       | 722  | 719  | 720  | 940  | 820  | 960  | 960   | 1260 | 1230 | 1190         | 1150  |
| Dissolved Oxygen              |           |      |      | 1106 | ł.   |      |      | 9.81  |      |      |              | 9.96  |
| Turbidity                     |           |      |      | 4.66 |      |      |      | 1.24  | 1    |      | I            | 2.15  |
| Well volumes of water         |           |      |      |      |      |      |      |       |      |      |              |       |
| purged during sampling        |           |      |      | 3.0  |      |      |      | 3.1   |      |      |              | 3.6   |
| GENERAL PARAMETERS            | (mg/L)    |      |      |      |      |      |      |       |      |      |              | _     |
| bicarbonate                   |           | T    | - T  | 260  |      | T    | T    | 280   | T    | T    | T            | 420   |
| chloride                      |           |      |      | 58   |      |      |      | 80    |      |      |              | 80    |
| nitate                        |           |      | 1    | 0.05 |      |      |      | 0.76J |      |      |              | 0 17J |
| sulfate                       |           |      |      | 64   |      |      |      | 47    | 1    |      | 1            | 55    |
| COD                           |           |      |      | 6    |      |      |      | <5    |      |      |              | 7     |
| TOC                           |           |      |      | 0.8  | .    |      |      | 0.8   |      | •    |              | 1.9   |
| TSS                           |           |      |      | 3.4  |      |      |      | 0.8   |      |      |              | 1.5   |

Notes:

<sup>1</sup> Showing only the results for analytes detected above quantitation limits.

<sup>2</sup> MS/MSD of this sample was analyzed.

<sup>1</sup> Well went dry.

\*Units for field parameters are pH - Standard Units, Temperature - Degrees Celskus, Specific Conductance - microSiemens per centimeter Dissolved Oxygen - mgA, and Turbidity - Nephelometric Turbidity Units

ND - Not Detected.

COD - Chemical Oxygen Demand.

TOC - Total Organic Carbon.

TSS - Total Suspended Solids.

NA ~ Not Analyzed.

- Not recorded

Notes Explaining Data Qualifiers:

J - The analyte was positively identified; however, the associated numerical value is an estimated concentration only.

R - The sample results are rejected.

 $\sim$ 

. .

### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SAMPLE DELIVERY GROUP SUMMARY

|                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                        | Analy    | /sis                                  |                                       |            |          |
|--------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------|----------|---------------------------------------|---------------------------------------|------------|----------|
| Sample<br>Delivery Group | Sample 1D | Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Location | РСВ                                    | TCL      | TAL                                   | PCDD/<br>PCDF                         | Duplicate  | MS/MSD   |
|                          |           | in the second se | Lovanori | FUD                                    | <u>↓</u> |                                       |                                       |            | n.c/n.ce |
| 38090                    | A60018    | Eoil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MW-126A  |                                        | x        | x                                     |                                       |            |          |
| r                        | A60513    | Soll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MLSS-5   |                                        | X        | X                                     |                                       |            |          |
| F                        | A60030    | Soll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MW-125B  | ······································ | x        | ×                                     | 1                                     |            |          |
| ľ                        | A60531    | Soll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MLSS-4   |                                        | x        | ×                                     |                                       |            |          |
| F                        | A60552    | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MLSS-3   |                                        | x        | x                                     |                                       |            |          |
| F                        | A60572    | Soll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ML88-2   |                                        | ×        | ×                                     |                                       |            |          |
| F                        | A60040    | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MLSS-1   |                                        | X        | ×                                     |                                       |            |          |
| F                        | A60587    | Soll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DLHB-2   |                                        | X        | ×                                     | 1                                     |            |          |
| F                        | A60594    | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DLHB-1   |                                        | x        | ×                                     | 1                                     |            |          |
| F                        | A60047    | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MW-121B  |                                        | X        | × ×                                   |                                       |            |          |
|                          | A60055    | Soll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MW-120B  |                                        | x        | x                                     |                                       |            |          |
| F                        | A60600    | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DLHB-3   |                                        | X        | ×                                     | 1                                     | 1          | ×        |
| F                        | A60606    | Soll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DLHB-6   |                                        | x        | ×                                     | 1                                     |            |          |
| F                        | A60616    | Soll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BMP-12   |                                        | x        | ×                                     | 1                                     | 1          |          |
| F                        | A60619    | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BMP-12   | ·····                                  | X        | ×                                     | 1                                     |            |          |
|                          | A60063    | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WA-1     |                                        | x        | ×                                     | 1                                     |            |          |
|                          | A60621    | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BMP-2    |                                        | X        | ×                                     | 1                                     |            | <u>x</u> |
| 38091                    | A60001    | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MW-126B  | X                                      |          | 1                                     | 1                                     | 1          |          |
| F                        | A60580    | Soll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DLHB-4   | X                                      |          |                                       | ··· ] —                               |            |          |
| F                        | · A60581  | Soll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DLHB-5   | X                                      | 1        |                                       |                                       |            |          |
| F                        | A60035    | Soll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MLSS-1   | x                                      | ·····    |                                       | · · · · · · · · · · · · · · · · · · · |            |          |
|                          | A60042    | Soll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MW-121B  | X                                      |          |                                       |                                       |            |          |
| F                        | A60048    | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MW-120B  | X                                      |          |                                       |                                       | <b>T</b>   |          |
|                          | A60608    | Soll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BMP-10   | X                                      | t        |                                       |                                       | A60610     |          |
| F                        | A60609    | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BMP-10   | X                                      |          |                                       |                                       |            |          |
| F                        | A60611    | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BMP-11   | ×                                      | 1        | 1                                     | J                                     | 1          |          |
| . F                      | A60612    | Soll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BMP-11   | X                                      | <b></b>  | · · · · · · · · · · · · · · · · · · · | 1                                     |            |          |
| F                        | A60613    | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BMP-11   |                                        | 1        |                                       |                                       |            |          |
| F                        | A60614    | Soll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BMP-11   | X                                      | <b>†</b> | + - · · - · · ·                       |                                       | - <b>f</b> | -        |
| F                        | A60615    | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BMP-11   | ×                                      | <b></b>  | 1                                     |                                       | · · · ·    |          |
| 1                        | A60616    | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BMP-12   | ×                                      |          | · · · · · ·                           | 1                                     |            |          |
|                          | A60617    | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BMP-12   | X                                      | t        | 1                                     | 1                                     |            |          |

See Notes on Page 12

•

.

 $\sim$ 

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER INC. OPERABLE UNIT SUMMARY OF FIELD PARAMETERS AND GENERAL WATER QUALITY RESULTS FOR GROUNDWATER/LEACHATE WATER SAMPLES

| Location<br>Sample ID                                                                                                                                                                                                                                                                                                   |                      |                  | 17 B<br>3057 |                                                                                  |      |              | 198R<br>030           |                                                                                       |      | -WW-<br>(Di<br>A60 | JP)               |        |      |                                      | 19C<br>5040                         |                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|--------------|----------------------------------------------------------------------------------|------|--------------|-----------------------|---------------------------------------------------------------------------------------|------|--------------------|-------------------|--------|------|--------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------|
| Well Volume                                                                                                                                                                                                                                                                                                             | 1                    | 2                | 3            | Final                                                                            | 1    | 8            | 3                     | Final                                                                                 | 1    | 2                  | 3                 | Final  | 1    | 2                                    | 3                                   | Final                                                                                 |
| Former Type III Landfill                                                                                                                                                                                                                                                                                                | (Cont'd.)            |                  |              |                                                                                  |      |              |                       |                                                                                       |      |                    |                   |        |      |                                      |                                     |                                                                                       |
| FIELD PARAMETERS                                                                                                                                                                                                                                                                                                        |                      |                  |              |                                                                                  |      |              |                       |                                                                                       |      |                    |                   |        |      |                                      |                                     |                                                                                       |
| pH                                                                                                                                                                                                                                                                                                                      | 6.32                 | 6.31             | 0.34         | 6.52                                                                             | 6.41 | 6.43         | 6.59                  | 6.71                                                                                  | 6.41 | 0.43               | 6.59              | 0.71   | 6.87 | 6.77                                 | 67                                  | 6 8                                                                                   |
| Temperature                                                                                                                                                                                                                                                                                                             | 14.3                 | 14.5             | 14.8         | 16.4                                                                             | 14.8 | 15.0         | 15.1                  | 18.1                                                                                  | 14.8 | 15.0               | 15.1              | 18.1   | 15.7 | 16.2                                 | 15.8                                | 14 2                                                                                  |
| Specific Conductance                                                                                                                                                                                                                                                                                                    | 1420                 | 1410             | 1410         | 1410                                                                             | 1380 | 1380         | 1380                  | 1360                                                                                  | 1380 | 1380               | 1360              | 1360   | 1110 | 1100                                 | 1090                                | 1110                                                                                  |
| Dissolved Oxygen                                                                                                                                                                                                                                                                                                        |                      |                  | -            | 2.79                                                                             |      |              |                       | 2.79                                                                                  | 1    |                    |                   | 2.79   |      | - 1                                  |                                     | 3 2                                                                                   |
| Turbidity                                                                                                                                                                                                                                                                                                               |                      |                  |              | 5.49                                                                             |      |              |                       | 1.87                                                                                  |      |                    |                   | 1.87   |      |                                      | I                                   | 1.62                                                                                  |
| Well volumes of water                                                                                                                                                                                                                                                                                                   |                      |                  |              |                                                                                  |      |              |                       |                                                                                       |      |                    |                   |        |      |                                      |                                     |                                                                                       |
| purged during sampling                                                                                                                                                                                                                                                                                                  |                      | معادها والغذ الن |              | 3.1                                                                              |      |              |                       | 3.0                                                                                   |      |                    |                   | 3.0    |      |                                      |                                     | 32                                                                                    |
| GENERAL PARAMETERS                                                                                                                                                                                                                                                                                                      | (mg/L)               |                  |              |                                                                                  |      |              |                       |                                                                                       |      |                    |                   |        |      |                                      |                                     |                                                                                       |
| bicarbonate                                                                                                                                                                                                                                                                                                             | T T                  | 1                |              | 700                                                                              | 1    | T            | r                     | 660                                                                                   |      | <u> </u>           | I                 | 660    | I    | <u> </u>                             | · · · · · · · · · · · · · · · · · · | 500                                                                                   |
| chloride                                                                                                                                                                                                                                                                                                                | 1                    |                  | 1            | 47                                                                               |      | 1            |                       | 43                                                                                    | 1    |                    | 1                 | 40     |      |                                      |                                     | 38                                                                                    |
| nitrate                                                                                                                                                                                                                                                                                                                 | 1 1                  |                  | - 1          | 0.09                                                                             |      | 1            |                       | <0.01J                                                                                |      |                    | 1                 | 0.05.J |      |                                      |                                     | 0.06.                                                                                 |
| sulinte                                                                                                                                                                                                                                                                                                                 | 1 1                  |                  |              | 6                                                                                |      |              |                       | 10                                                                                    |      |                    |                   | 9.9    |      | ľ                                    |                                     | 8.3                                                                                   |
| COD                                                                                                                                                                                                                                                                                                                     | 1                    |                  |              | 28                                                                               |      |              |                       | 28                                                                                    |      |                    |                   | 27     |      |                                      |                                     | 25                                                                                    |
| ***                                                                                                                                                                                                                                                                                                                     | 1                    |                  |              | 13.4                                                                             |      |              | 1                     | 8.5                                                                                   |      | l l                |                   | 8.7    |      |                                      |                                     | 93                                                                                    |
| TOC                                                                                                                                                                                                                                                                                                                     | 1 1                  |                  |              | 13.4                                                                             | 1    |              |                       |                                                                                       |      |                    |                   |        |      |                                      |                                     |                                                                                       |
|                                                                                                                                                                                                                                                                                                                         |                      |                  |              | 61                                                                               |      |              |                       | 35                                                                                    |      |                    | in and the second | 30     |      |                                      |                                     |                                                                                       |
|                                                                                                                                                                                                                                                                                                                         |                      |                  |              |                                                                                  |      |              |                       |                                                                                       |      |                    |                   |        | <br> |                                      |                                     |                                                                                       |
| Location                                                                                                                                                                                                                                                                                                                |                      |                  | -19D         |                                                                                  |      | MW           |                       |                                                                                       |      | -ww-               |                   |        |      |                                      | V-7                                 |                                                                                       |
| TSS                                                                                                                                                                                                                                                                                                                     |                      | MW-              |              |                                                                                  |      | MW           |                       |                                                                                       |      | MW-                |                   |        |      |                                      | V-7<br>5001                         |                                                                                       |
| Location                                                                                                                                                                                                                                                                                                                |                      |                  |              |                                                                                  |      |              |                       |                                                                                       | 1    |                    |                   |        |      |                                      |                                     |                                                                                       |
| TSS<br>Location<br>Sample ID<br>Well Volume                                                                                                                                                                                                                                                                             |                      |                  |              | 61                                                                               |      |              |                       | 35                                                                                    | 1    |                    |                   | 36     |      | A60                                  | 3001<br>3                           |                                                                                       |
| TSS<br>Location<br>Sample ID<br>Well Volume<br>Former Type III Landfill                                                                                                                                                                                                                                                 |                      |                  |              | 61                                                                               |      |              |                       | 35                                                                                    | 1    |                    |                   | 36     | 1.   | A60                                  | 3001<br>3                           |                                                                                       |
| TSS<br>Location<br>Sample ID<br>Well Volume<br>Former Type III Landfill<br>FIELD PARAMETERS <sup>4</sup>                                                                                                                                                                                                                |                      | 2                | 3            | 61<br>Final                                                                      |      | 2            | 3                     | 35<br>Final                                                                           | 1    | 2                  | <u>244</u>        | 36     |      | A60<br>2<br>Disposel                 | 3<br>Area                           | 34                                                                                    |
| TSS<br>Location<br>Sample ID<br>Well Volume<br>Former Type III Landfill<br>FIELD PARAMETERS <sup>4</sup><br>pH                                                                                                                                                                                                          | 7.01                 | 2                | 6.93         | 51<br>Final<br>7.13                                                              | 7.04 | 6.98         | 045<br>3<br>7         | 35<br>Final<br>7.05                                                                   | 7.08 | 2<br>7.1           | 7.13              | 36<br> | 7.58 | A60<br>2<br>Disposel<br>7.42         | 3<br>Area<br>7.47                   | 34                                                                                    |
| TSS<br>Location<br>Sample ID<br>Well Yolume<br>Former Type III Landfill<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature                                                                                                                                                                                           | 7.01                 | 7.00<br>15.5     | 6.93<br>14.9 | 51<br>Finel<br>7.13<br>13.7                                                      | 7.04 | 6.96<br>14.1 | 048<br>3<br>7<br>14.1 | 35<br>Firpi<br>7.06<br>15.1                                                           | 13.2 | 7.1<br>14          | 7.13<br>14.2      | 30<br> | 7.58 | A60<br>2<br>Disposel<br>7.42<br>15.2 | 3<br>Aren<br>7.47<br>15.3           | 34<br>                                                                                |
| TSS<br>Location<br>Sample ID<br>Well Volume<br>Former Type II Landfill<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance                                                                                                                                                                    | 7.01                 | 2                | 6.93         | 51<br>Finel<br>7.13<br>13.7<br>1000                                              | 7.04 | 6.98         | 045<br>3<br>7         | 35<br>First<br>7.06<br>15.1<br>1310                                                   |      | 2<br>7.1           | 7.13              | 36<br> | 7.58 | A60<br>2<br>Disposel<br>7.42         | 3<br>Area<br>7.47                   | Finpi<br>7.44<br>16.6<br>706                                                          |
| TSS<br>Location<br>Sample ID<br>Well Volume<br>Former Type III Landfill<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen                                                                                                                                               | 7.01                 | 7.00<br>15.5     | 6.93<br>14.9 | 51<br>Final<br>7.13<br>13.7<br>1000<br>3.38                                      | 7.04 | 6.96<br>14.1 | 048<br>3<br>7<br>14.1 | 35<br>Final<br>7.05<br>15.1<br>1310<br>9.87                                           | 13.2 | 7.1<br>14          | 7.13<br>14.2      | 36<br> | 7.58 | A60<br>2<br>Disposel<br>7.42<br>15.2 | 3<br>Aren<br>7.47<br>15.3           | 7.44<br>7.44<br>16.6<br>700<br>1.25                                                   |
| TSS<br>Location<br>Sample ID<br>Well Volume<br>Former Type III Landfill<br>FIELD PARAMETERS <sup>1</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity                                                                                                                                  | 7.01                 | 7.00<br>15.5     | 6.93<br>14.9 | 51<br>Finel<br>7.13<br>13.7<br>1000                                              | 7.04 | 6.96<br>14.1 | 048<br>3<br>7<br>14.1 | 35<br>First<br>7.06<br>15.1<br>1310                                                   | 13.2 | 7.1<br>14          | 7.13<br>14.2      | 36<br> | 7.58 | A60<br>2<br>Disposel<br>7.42<br>15.2 | 3<br>Aren<br>7.47<br>15.3           | Finpi<br>7.44<br>16.6<br>706                                                          |
| TSS<br>Location<br>Sample ID<br>Well Volume<br>Former Type III Landfill<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water                                                                                                         | 7.01                 | 7.00<br>15.5     | 6.93<br>14.9 | 51<br>Final<br>7.13<br>13.7<br>1090<br>3.38<br>3.51                              | 7.04 | 6.96<br>14.1 | 048<br>3<br>7<br>14.1 | 7.05<br>15.1<br>1310<br>9.87<br>5.88                                                  | 13.2 | 7.1<br>14          | 7.13<br>14.2      | 36<br> | 7.58 | A60<br>2<br>Disposel<br>7.42<br>15.2 | 3<br>Aren<br>7.47<br>15.3           | 7.44<br>18.6<br>700<br>1.25<br>1.63                                                   |
| TSS<br>Location<br>Sample ID<br>Well Volume<br>Former Type III Landfill<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling                                                                               | 7.01<br>15.4<br>1090 | 7.00<br>15.5     | 6.93<br>14.9 | 51<br>Final<br>7.13<br>13.7<br>1000<br>3.38                                      | 7.04 | 6.96<br>14.1 | 048<br>3<br>7<br>14.1 | 35<br>Final<br>7.05<br>15.1<br>1310<br>9.87                                           | 13.2 | 7.1<br>14          | 7.13<br>14.2      | 36<br> | 7.58 | A60<br>2<br>Disposel<br>7.42<br>15.2 | 3<br>Aren<br>7.47<br>15.3           | 7.44<br>7.44<br>16.6<br>700<br>1.25                                                   |
| TSS<br>Location<br>Sample ID<br>Well Volume<br>Former Type III Landfill<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS                                                         | 7.01<br>15.4<br>1090 | 7.00<br>15.5     | 6.93<br>14.9 | 51<br>Final<br>7.13<br>13.7<br>1000<br>3.38<br>3.51<br>3.1                       | 7.04 | 6.96<br>14.1 | 048<br>3<br>7<br>14.1 | 35<br>Final<br>7.05<br>15.1<br>1310<br>9.87<br>5.88<br>3.4                            | 13.2 | 7.1<br>14          | 7.13<br>14.2      | 36<br> | 7.58 | A60<br>2<br>Disposel<br>7.42<br>15.2 | 3<br>Aren<br>7.47<br>15.3           | 7.44<br>7.44<br>16.6<br>7.60<br>1.25<br>1.63<br>                                      |
| TSS<br>Location<br>Sample ID<br>Well Volume<br>Former Type III Landfill<br>FiELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS<br>bicarbonate                                          | 7.01<br>15.4<br>1090 | 7.00<br>15.5     | 6.93<br>14.9 | 51<br>Finel<br>7.13<br>13.7<br>1000<br>3.38<br>3.51<br>3.1<br>540                | 7.04 | 6.96<br>14.1 | 048<br>3<br>7<br>14.1 | 35<br>Final<br>7.05<br>15.1<br>15.10<br>9.87<br>5.88<br>3.4<br>830                    | 13.2 | 7.1<br>14          | 7.13<br>14.2      | 36<br> | 7.58 | A60<br>2<br>Disposel<br>7.42<br>15.2 | 3<br>Aren<br>7.47<br>15.3           | 7,44<br>7,44<br>16,6<br>1,25<br>1,03<br>3 2<br>300                                    |
| TSS<br>Location<br>Sample ID<br>Well Volume<br>Former Type III Landfill<br>FiELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS<br>bicarbonate<br>chloride                              | 7.01<br>15.4<br>1090 | 7.00<br>15.5     | 6.93<br>14.9 | 51<br>Final<br>7.13<br>13.7<br>1000<br>3.38<br>3.51<br>3.1<br>540<br>52          | 7.04 | 6.96<br>14.1 | 048<br>3<br>7<br>14.1 | 7.06<br>15.1<br>1310<br>9.87<br>5.88<br>3.4<br>830<br>39                              | 13.2 | 7.1<br>14          | 7.13<br>14.2      | <br>   | 7.58 | A60<br>2<br>Disposel<br>7.42<br>15.2 | 3<br>Aren<br>7.47<br>15.3           | Finel<br>7.44<br>16.6<br>7.60<br>1.25<br>1.63<br>                                     |
| TSS<br>Location<br>Sample ID<br>Well Volume<br>Former Type III Landfill<br>FiELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS<br>bicarbonate<br>chloride<br>nitrate                   | 7.01<br>15.4<br>1090 | 7.00<br>15.5     | 6.93<br>14.9 | 51<br>Finel<br>7.13<br>13.7<br>1090<br>3.38<br>3.51<br>3.1<br>540<br>52<br>0.03J | 7.04 | 6.96<br>14.1 | 048<br>3<br>7<br>14.1 | 35<br>First<br>7.05<br>15.1<br>1310<br>9.87<br>5.88<br>3.4<br>830<br>39<br>0.08J      | 13.2 | 7.1<br>14          | 7.13<br>14.2      | <br>   | 7.58 | A60<br>2<br>Disposel<br>7.42<br>15.2 | 3<br>Aren<br>7.47<br>15.3           | Final<br>7,44<br>16,6<br>1,25<br>1,63<br>3,2<br>300                                   |
| TSS<br>Location<br>Sample ID<br><u>Well Yolume</u><br>Former Type III Landfill<br>FIELD PARAMETERS <sup>1</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS<br>bioarbonate<br>chloride<br>nitrate<br>sulfate | 7.01<br>15.4<br>1090 | 7.00<br>15.5     | 6.93<br>14.9 | 540<br>540<br>540<br>540<br>52<br>0.03J<br>12                                    | 7.04 | 6.96<br>14.1 | 048<br>3<br>7<br>14.1 | 35<br>First<br>7.05<br>15.1<br>1310<br>9.87<br>5.88<br>3.4<br>830<br>39<br>0.08J<br>8 | 13.2 | 7.1<br>14          | 7.13<br>14.2      | 36<br> | 7.58 | A60<br>2<br>Disposel<br>7.42<br>15.2 | 3<br>Aren<br>7.47<br>15.3           | Final<br>Final<br>7,44<br>16,6<br>7,66<br>1,25<br>1,63<br>3,2<br>3,00<br>1,00<br>0,04 |
| TSS<br>Location<br>Sample ID<br>Well Volume<br>Former Type III Landfill<br>FiELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS<br>bloarbonate<br>chloride<br>nitrate                   | 7.01<br>15.4<br>1090 | 7.00<br>15.5     | 6.93<br>14.9 | 51<br>Finel<br>7.13<br>13.7<br>1090<br>3.38<br>3.51<br>3.1<br>540<br>52<br>0.03J | 7.04 | 6.96<br>14.1 | 048<br>3<br>7<br>14.1 | 35<br>First<br>7.05<br>15.1<br>1310<br>9.87<br>5.88<br>3.4<br>830<br>39<br>0.08J      | 13.2 | 7.1<br>14          | 7.13<br>14.2      | <br>   | 7.58 | A60<br>2<br>Disposel<br>7.42<br>15.2 | 3<br>Aren<br>7.47<br>15.3           | Finel<br>Finel<br>7,44<br>18,6<br>766<br>1,25<br>1,65<br>306<br>306<br>0,34<br>40     |

See Notes on Page 8

.

.

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

# ALLIED PAPER INC. OPERABLE UNIT SUMMARY OF FIELD PARAMETERS AND GENERAL WATER QUALITY RESULTS FOR GROUNDWATER/LEACHATE WATER SAMPLES'

| Location<br>Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                               | N713<br>10000              |                                                                          |      |              | V-8                      |                                                                  |                   |              | 8A<br>1052               |                                                                         |          |             | V - 20<br>6049   |                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------|----------------------------|--------------------------------------------------------------------------|------|--------------|--------------------------|------------------------------------------------------------------|-------------------|--------------|--------------------------|-------------------------------------------------------------------------|----------|-------------|------------------|-----------------------------------------------------------------------------------------------------------|
| Well Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | 2                             | 3                          | Final                                                                    | 1    | 2            | 3                        | Final                                                            | 1                 | 2            | _3                       | Final                                                                   | 1        | 2           | 3                | Final                                                                                                     |
| Western Disposal Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Cont'd.)            |                               |                            |                                                                          |      |              |                          |                                                                  |                   |              |                          |                                                                         |          |             |                  |                                                                                                           |
| FIELD PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                               |                            |                                                                          |      |              |                          |                                                                  |                   |              |                          |                                                                         |          |             |                  |                                                                                                           |
| рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.28                 | -                             | -                          | 8.92                                                                     | 7.42 | 7.24         | 7.26                     | 7.28                                                             | 6.43              | 6.47         | 6.51                     | 6.76                                                                    | 7.12     | 7.15        | 7.12             | 71                                                                                                        |
| Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.9                 | -                             | -                          | 15.8                                                                     | 14.3 | 14.8         | 14.7                     | 16.8                                                             | 15.5              | 15.4         | 15.5                     | 20.9                                                                    | 13.5     | 13 1        | 13.4             | 17                                                                                                        |
| Specific Conductance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 641                  | -                             | -                          | 507                                                                      | 637  | 758          | 752                      | 743                                                              | 1190              | 1180         | 1170                     | 1080                                                                    | 1010     | 1000        | 1010             | 100                                                                                                       |
| Dissolved Oxygen<br>Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                               |                            | 9.54                                                                     |      |              |                          | 0.79                                                             |                   |              | 1                        | 2.78                                                                    |          |             |                  | 21                                                                                                        |
| Well volumes of water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ┥──┥                 |                               |                            | 4.12                                                                     |      |              |                          | 1.72                                                             |                   |              |                          | 2.49                                                                    |          | I           | i 1              | 27                                                                                                        |
| purged during sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                               |                            | 1.7 <sup>3</sup>                                                         |      |              |                          | 3.0                                                              |                   |              |                          | 3.7                                                                     |          |             |                  | 3                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>             |                               |                            |                                                                          |      |              |                          | 3.01                                                             |                   |              |                          |                                                                         |          |             |                  | ·                                                                                                         |
| GENERAL PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (mg/L)               | ······.                       | r <del>-</del> · - · · · r |                                                                          |      |              |                          |                                                                  |                   |              | T                        |                                                                         |          | ,           |                  |                                                                                                           |
| bicarbonate<br>chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                               |                            | 167                                                                      |      |              |                          | 240                                                              |                   |              |                          | 460                                                                     |          |             |                  | 34                                                                                                        |
| nimie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                               |                            | 95<br><0.01 J                                                            |      |              |                          | 54<br>0.22J                                                      |                   |              |                          | 0.06J                                                                   |          |             |                  | 0 07                                                                                                      |
| sulinte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                               |                            | <0.01J<br>43                                                             |      | 1            | 1                        | 38                                                               |                   |              |                          | 21                                                                      |          |             |                  | 4                                                                                                         |
| COD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                               |                            | 8.3                                                                      |      |              |                          | 6                                                                |                   |              |                          | 34                                                                      |          |             |                  |                                                                                                           |
| TOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                               |                            | 1.2                                                                      |      |              |                          | 1.2                                                              |                   |              |                          | 14                                                                      |          |             |                  | 1                                                                                                         |
| TSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                               |                            | 3.8                                                                      |      |              | 1                        | 1                                                                |                   |              |                          | 40                                                                      |          |             |                  | 2                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                    |                               | V-20                       |                                                                          |      |              |                          | 1                                                                |                   |              |                          |                                                                         |          | <del></del> | =                |                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                               |                            |                                                                          |      |              |                          |                                                                  |                   |              |                          |                                                                         |          |             |                  |                                                                                                           |
| Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                               | )up)                       |                                                                          |      | MW           |                          |                                                                  |                   | MW           |                          |                                                                         |          |             | - 120A           |                                                                                                           |
| Location<br>Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                               | 0up)<br>6050               |                                                                          |      | MW<br>AGO    |                          |                                                                  | <u> </u>          | MW<br>       |                          |                                                                         |          |             | - 120A<br>6020   |                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                    |                               | 0up)<br>6050               | Finel                                                                    |      |              |                          | Final                                                            | 1                 |              |                          | Final                                                                   | 1_       |             |                  | Final                                                                                                     |
| Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L 1                  |                               |                            | Firel                                                                    |      |              |                          | Finel                                                            | <u> </u>          |              | 002                      | . Final                                                                 | 1_       | <u>A0</u>   | 6020             | Final                                                                                                     |
| Sample ID<br>Well Volume<br>Western Disposal Area (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1<br>Cont'd.)        |                               |                            | Final                                                                    |      |              |                          | Finel                                                            | 1                 |              | 002                      | . Firel                                                                 | 1_       | <u>A0</u>   | 6020             | Final                                                                                                     |
| Sample ID<br>Well Volume<br>Western Disposal Area (<br>FIELD PARAMETERS <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>Cont'd)         |                               |                            |                                                                          | 7.22 | 2            | 1051<br>3                |                                                                  | 7.50              |              | 002                      | <u>. Final</u>                                                          | <u> </u> | <u>A0</u>   | 6020             | Firm!                                                                                                     |
| Sample ID<br>Well Volume<br>Western Disposal Area (<br>FIELD PARAMETERS <sup>4</sup><br>pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | (I<br>A6<br>3                 | 3                          | Firm)<br>7.18<br>17.5                                                    | 7.22 |              |                          | Firm!<br>7.20<br>14.3                                            | 1<br>7.50<br>15.6 | 2            | <u>3</u>                 |                                                                         | <u>+</u> | <u>A0</u>   | 6020             | 6 7:                                                                                                      |
| Sample ID<br>Well Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.12                 | (C<br>A6<br><u>3</u><br>7.15  | 7.12                       | . 7.18                                                                   |      | 7.29         | 7.20                     | 7.20                                                             |                   | 7.48         | 002<br>3<br>7.51         | 7.51                                                                    | - 1      | <u>A0</u>   | 6020             |                                                                                                           |
| Sample ID<br>Well Volume<br>Western Disposal Area (<br>FIELD PARAMETERS <sup>4</sup><br>PH<br>Temperature<br>Specific Conductance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.12                 | (C<br>A6<br>3<br>7.15<br>13.1 | 3<br>7.12<br>13.4          | 7.18<br>17.5                                                             | 13.8 | 7.29<br>14.0 | 051<br>3<br>7.20<br>14.1 | 7.26                                                             | 15.6              | 7.48<br>15.9 | 002<br>3<br>7.51<br>16.0 | 7.51                                                                    | -        |             | 3<br>3<br>-<br>- | 6 7<br>16 1<br>193<br>1.3                                                                                 |
| Sample ID<br>Well Volume<br>Western Disposal Area (<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.12                 | (C<br>A6<br>3<br>7.15<br>13.1 | 3<br>7.12<br>13.4          | 7.18<br>17.5<br>1000                                                     | 13.8 | 7.29<br>14.0 | 051<br>3<br>7.20<br>14.1 | 7.26<br>14.3<br>920                                              | 15.6              | 7.48<br>15.9 | 002<br>3<br>7.51<br>16.0 | 7.51<br>16.0<br>741                                                     | -        |             | 3<br>3<br>-<br>- | 6 7<br>15<br>193<br>1.3                                                                                   |
| Sample ID<br><u>Well Volume</u><br>Western Disposal Area (<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.12                 | (C<br>A6<br>3<br>7.15<br>13.1 | 3<br>7.12<br>13.4          | 7.18<br>17.5<br>1000<br>2.82<br>2.72                                     | 13.8 | 7.29<br>14.0 | 051<br>3<br>7.20<br>14.1 | 7.26<br>14.3<br>920<br>2.03                                      | 15.6              | 7.48<br>15.9 | 002<br>3<br>7.51<br>16.0 | 7 51<br>16 0<br>741<br>9 17<br>4 25                                     | -        |             | 3<br>3<br>-<br>- | 6 7<br>15<br>193<br>1.3<br>12                                                                             |
| Sample ID<br><u>Well Volume</u><br>Western Disposal Area (<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.12                 | (C<br>A6<br>3<br>7.15<br>13.1 | 3<br>7.12<br>13.4          | 7.18<br>17.5<br>1000<br>2.82                                             | 13.8 | 7.29<br>14.0 | 051<br>3<br>7.20<br>14.1 | 7.26<br>14.3<br>920<br>2.03                                      | 15.6              | 7.48<br>15.9 | 002<br>3<br>7.51<br>16.0 | 7.51<br>16.0<br>741<br>9.17                                             | -        |             | 3<br>3<br>-<br>- | 6 7<br>15 1<br>193                                                                                        |
| Sample ID<br>Well Volume<br>Western Disposal Area (<br>FIELD PARAMETERS <sup>4</sup><br>DH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.12<br>13.5<br>1010 | (C<br>A6<br>3<br>7.15<br>13.1 | 3<br>7.12<br>13.4          | 7.18<br>17.5<br>1000<br>2.82<br>2.72                                     | 13.8 | 7.29<br>14.0 | 051<br>3<br>7.20<br>14.1 | 7.26<br>14.3<br>920<br>2.03<br>3.42<br>3.0                       | 15.6              | 7.48<br>15.9 | 002<br>3<br>7.51<br>16.0 | 7 51<br>16 0<br>741<br>9 17<br>4 25                                     | -        |             | 3<br>3<br>-<br>- | 67<br>15<br>193<br>1.3<br><u>12</u><br>1                                                                  |
| Sample ID<br>Well Yolume<br>Western Disposal Area (<br>FIELD PARAMETERS <sup>4</sup><br>DH<br>Femperature<br>Specific Conductance<br>Dissolved Oxygen<br>Furbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS<br>bioarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.12<br>13.5<br>1010 | (C<br>A6<br>3<br>7.15<br>13.1 | 3<br>7.12<br>13.4          | 7.18<br>17.5<br>1000<br>2.82<br>2.72<br>3.5<br>340                       | 13.8 | 7.29<br>14.0 | 051<br>3<br>7.20<br>14.1 | 7.26<br>14.3<br>920<br>2.03<br>3.42<br>3.0<br>320                | 15.6              | 7.48<br>15.9 | 002<br>3<br>7.51<br>16.0 | 7 51<br>16 0<br>741<br>9.17<br>4.25<br>3.1                              | -        |             | 3<br>3<br>-<br>- | 6 7<br>15<br>193<br>1.3<br><u>12</u><br>1.2                                                               |
| Sample ID<br>Well Volume<br>Western Disposal Area (<br>FIELD PARAMETERS <sup>4</sup><br>OH<br>Femperature<br>Specific Conductance<br>Dissolved Oxygen<br>Furbidity<br>Well volumes of water<br>purged during sampling<br>GENERAL PARAMETERS<br>Disorbonate<br>Schoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.12<br>13.5<br>1010 | (C<br>A6<br>3<br>7.15<br>13.1 | 3<br>7.12<br>13.4          | 7.18<br>17.5<br>1000<br>2.82<br>2.72<br>3.5<br>3.5<br>340<br>87          | 13.8 | 7.29<br>14.0 | 051<br>3<br>7.20<br>14.1 | 7.26<br>14.3<br>920<br>2.03<br>3.42<br>3.0<br>3.0<br>3.0         | 15.6              | 7.48<br>15.9 | 002<br>3<br>7.51<br>16.0 | 7 51<br>18 0<br>741<br>9.17<br>4.25<br>31                               | -        |             | 3<br>3<br>-<br>- | 6 7<br>16<br>193<br>1.3<br>                                                                               |
| Sample ID<br>Well Volume<br>Western Disposal Area (<br>FIELD PARAMETERS <sup>4</sup><br>OH<br>Sepecific Conductance<br>Dissolved Oxygen<br>Furbidity<br>Well volumes of water<br>Surged during sampling<br>GENERAL PARAMETERS<br>Sicarbonate<br>Shoride<br>http://www.communication.com/<br>Sepecific Conductance<br>Dissolved Oxygen<br>Furbidity<br>Well volumes of water<br>Surged during sampling<br>Sepecific Conductance<br>Dissolved Oxygen<br>Furbidity<br>Well volumes of water<br>Dissolved Oxygen<br>Furbidity<br>Net volumes of water<br>Dissolved Oxygen<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbidity<br>Furbi | 7.12<br>13.5<br>1010 | (C<br>A6<br>3<br>7.15<br>13.1 | 3<br>7.12<br>13.4          | 7.16<br>17.5<br>1000<br>2.82<br>2.72<br>3.5<br>3.6<br>340<br>87<br>0.07J | 13.8 | 7.29<br>14.0 | 051<br>3<br>7.20<br>14.1 | 7.26<br>14.3<br>920<br>2.03<br>3.42<br>3.0<br>520<br>67<br>0.08J | 15.6              | 7.48<br>15.9 | 002<br>3<br>7.51<br>16.0 | 7 51<br>18 0<br>741<br>9.17<br>4.25<br>31<br>280<br>63<br><0.01J        | -        |             | 3<br>3<br>-<br>- | 0 7<br>15<br>193<br>1.3<br><u>12</u><br>1<br>109<br>2<br>2<br><0 01                                       |
| Semple ID<br>Well Volume<br>Western Disposal Area (<br>FIELD PARAMETERS <sup>4</sup><br>Def<br>Femperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity<br>Well volumes of water<br>purged during sampling<br>SENERAL PARAMETERS<br>Disarbonate<br>chloride<br>hitrate<br>sultate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.12<br>13.5<br>1010 | (C<br>A6<br>3<br>7.15<br>13.1 | 3<br>7.12<br>13.4          | 7.16<br>17.5<br>1000<br>2.82<br>2.72<br>3.5<br>340<br>87<br>0.07J<br>48  | 13.8 | 7.29<br>14.0 | 051<br>3<br>7.20<br>14.1 | 7.26<br>14.3<br>920<br>2.03<br>3.42<br>3.0<br>67<br>0.06J<br>51  | 15.6              | 7.48<br>15.9 | 002<br>3<br>7.51<br>16.0 | 7 51<br>16 0<br>741<br>9.17<br>4.25<br>3 1<br>280<br>63<br><0.01J<br>42 | -        |             | 3<br>3<br>-<br>- | 6 7<br>15<br>193<br>1.3<br>1.3<br>1.2<br>1.3<br>1.2<br>1.3<br>1.2<br>1.3<br>2<br>2<br>2<br>2<br>0 01<br>8 |
| Sample ID<br>Well Volume<br>Western Disposal Area (<br>FIELD PARAMETERS <sup>4</sup><br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.12<br>13.5<br>1010 | (C<br>A6<br>3<br>7.15<br>13.1 | 3<br>7.12<br>13.4          | 7.16<br>17.5<br>1000<br>2.82<br>2.72<br>3.5<br>3.6<br>340<br>87<br>0.07J | 13.8 | 7.29<br>14.0 | 051<br>3<br>7.20<br>14.1 | 7.26<br>14.3<br>920<br>2.03<br>3.42<br>3.0<br>520<br>67<br>0.08J | 15.6              | 7.48<br>15.9 | 002<br>3<br>7.51<br>16.0 | 7 51<br>18 0<br>741<br>9.17<br>4.25<br>31<br>280<br>63<br><0.01J        | -        |             | 3<br>3<br>-<br>- | 6 7<br>15<br>193<br>1.3<br>1.3<br>                                                                        |

See Notes on Page 8

### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SAMPLE DELIVERY GROUP SUMMARY

|                | •         |           |           |               | Anel | ysis         | ***********                             | ]                                            |                       |
|----------------|-----------|-----------|-----------|---------------|------|--------------|-----------------------------------------|----------------------------------------------|-----------------------|
| Sample         |           | Matrix    |           |               |      |              | PCDD/                                   | ]                                            |                       |
| Delivery Group | Sample ID | MATIX     | Location  | РСВ           | TCL  | TAL          | PCDF                                    | Duplicate                                    | MS/MSD                |
| 38091 (Cont'd) | A60618    | Soil      | BMP-12    | ~             |      |              |                                         |                                              |                       |
|                | A60619    | Residuals | BMP-12    | <u>×</u><br>× |      |              |                                         | <u>+</u>                                     | • ••• • • • • • • • • |
|                | A60620    | Sol       | BMP-12    | ×             |      |              |                                         |                                              |                       |
| -              | A60056    | Soll      | MW-20B    | ×             | +    |              | · <del> </del> _ · _ <del></del>        | +                                            |                       |
| -              | A60057    | Soil      | MW-20B    | ×             |      | +            |                                         | <b>+</b>                                     |                       |
| ŀ              | A60058    | Soil      | MW-20B    | ×             | +    | ┫──────      | · } · · ·                               | - <b></b>                                    |                       |
| ŀ              | A60064    | Soll      | WA-1      | ×             | +    |              |                                         | · · · · · · · · · · · · · · · · · · ·        |                       |
| ł              | A60628    | Soil      | BMP-1     | ×             | +    |              |                                         |                                              | · · · · · · · · ·     |
| 38097          | A60017    | Residuals | MW ~ 126A |               | ×    | X            |                                         | +                                            | x                     |
| 38031          | A60029    | Residuals | MW-125B   |               | 1    | <u>x</u>     |                                         |                                              | · 2 · .               |
| F              | A60039    | Residuals | MLSS-1    |               | x    | ×            |                                         | <u>+</u>                                     |                       |
|                | A60046    | Residuals | MW-121B   |               | x x  | x            |                                         | ·                                            |                       |
| F              | A60054    | Residuals | MW-120B   |               | 1 x  | <del>x</del> |                                         | ·                                            | and a second          |
| F              | A60062    | Residuals | WA-1      |               | †    | ×            |                                         |                                              |                       |
| F              | A60512    | Residuals | MLSS-5    |               | 1 x  | x            |                                         |                                              |                       |
| F              | A60530    | Residuals | MLSS-4    |               | Î x  | ×            |                                         |                                              |                       |
| F              | A60551    | Residuals | ML88-3    |               | ×    | x            |                                         |                                              | -                     |
| F              | A60571    | Residuals | MLSS-2    |               | ×    | <u>-</u>     | ·                                       |                                              |                       |
| -              | A60586    | Residuals | DLHB-2    |               | ×    | ×            |                                         | t~                                           |                       |
| F              | A60593    | Residuals | DLHB-1    |               | ×    | ×            | -                                       |                                              |                       |
| -              | A60599    | Residuals | DLHB-3    |               | ×    | x            | • • • • • • • • • • • • • • • • • • • • | 1                                            | ×                     |
| 1              | A60605    | Residuals | DLHB-6    |               | ×    | x            |                                         |                                              |                       |
| F              | A60624    | Soil      | BMP-2     |               | ×    | ×            | <b>1</b>                                | • · - · ·                                    |                       |
| 38098          | A60003    | Residuals | MW-126B   | x             | 1    | 1            | -                                       | İ .                                          |                       |
|                | A60006    | Residuals | MW-126B   | x             |      |              |                                         | <b>•</b> ••••••••••••••••••••••••••••••••••• |                       |
| F              | A60007    | Residuals | MW-126B   | x             | 1    |              |                                         |                                              |                       |
|                | A60024    | Residuals | MW-125B   | x             | 1    | <b></b>      |                                         |                                              | · · · -               |
|                | A60027    | Residuals | MW-125B   | ×             | 1    | <b>-</b>     |                                         | • • • • • • • •                              |                       |
| F              | A60028    | Residuals | MW-125B   | x             | 1    |              | •                                       | 1                                            | •                     |
| F              | A60500    | Residuals | MLSS-5    | x             | 1    | 1            | 1                                       |                                              |                       |
| F              | A60505    | Residuals | MLSS-5    | x             | 1    |              | 1                                       |                                              |                       |
| • +            | A60507    | Residuals | MLSS-5    | X             | 1    | 1            | 1                                       | 1                                            |                       |
| F              | A60510    | Residuals | MLSS-5    | x             | 1    | 1            |                                         |                                              |                       |
| l l            | A60511    | Residuals | MLSS-5    | x             |      | 1            |                                         | ľ                                            |                       |
| 1              | A60520    | Residuals | MLSS-4    | ×             | 1    | 1 .          | -                                       |                                              | •                     |

See Notes on Page 12

 $\overline{}$ 

### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

### ALLIED PAPER, INC. OPERABLE UNIT SAMPLE DELIVERY GROUP SUMMARY

.

|                 |           | 4         |          |     | Anal | vsis     |       |           |        |
|-----------------|-----------|-----------|----------|-----|------|----------|-------|-----------|--------|
| Sample          |           |           |          |     | 1    |          | PCDD/ | 1         |        |
| Delivery Group  | Sample ID | Matrix    | Location | РСВ | TCL  | TAL      | PCDF  | Duplicate | MS/MSD |
|                 |           |           |          |     |      |          | 1     |           | T      |
| 38098 (Cont'd.) | A60524    | Residuals | MLSS-4   | ×   |      |          |       |           |        |
|                 | A60527    | Residuals | MLSS-4   | x   |      |          | 1     |           | 1      |
| ľ               | A60528    | Residuals | MLSS-4   | X   | 1    |          | 1     | <b>-1</b> | ţ.     |
| F               | A60529    | Residuals | MLSS-4   | X   |      |          |       |           | 1      |
|                 | A60540    | Residuals | MLSS-3   | X   | 1    |          |       |           |        |
| F               | A60545    | Residuals | MLSS-3   | x   |      |          | 1     | A60546    | 1      |
| F               | A60596    | Residuals | DLHB-3   | x   |      |          |       | 1         | ×      |
| 38128           | A60036    | Residuals | MLSS-1   | x   |      | T        | I     | A60041    | 1      |
| F               | A60037    | Residuals | MLSS-1   | x   |      | -        | 1     |           | ſ      |
| F               | A60038    | Residuals | MLSS-1   | ×   |      |          | 1     |           | 1      |
|                 | A60548    | Residuals | MLSS-3   | X   |      | <b>_</b> |       | 1         | 1      |
| F               | A60549    | Residuals | MLSS-3   | ×   |      |          |       |           |        |
| F               | A60550    | Residuals | MLSS-3   | X   |      | <b>-</b> | 1     |           | 1      |
| F               | A60560    | Residuals | MLSS-2   | ×   | 1    |          |       | 1         |        |
|                 | A60562    | Residuals | MLSS-2   | X   |      |          |       |           | 1      |
|                 | A60568    | Residuals | MLSS-2   | X   |      | 1        |       |           |        |
|                 | A60569    | Residuals | MLSS-2   | x   |      |          |       |           | 1      |
|                 | A60570    | Residuals | MLSS-2   | X   |      | 1        | 1     |           | 1      |
|                 | A60582    | Residuals | DLHB-2   | x   |      | T        |       |           | 1      |
| -               | A60583    | Residuals | DLHB 2   | X   |      |          |       |           | Ī      |
|                 | A60584    | Residuals | DLHB-2   | X   | · ·  |          |       |           | [      |
|                 | A60585    | Residuals | DLHB-2   | X   |      |          |       |           | ]      |
|                 | A60589    | Residuals | DLHB-1   | X   |      |          |       |           | 1      |
| Γ               | A60590    | Residuals | DLHB-1   | × , |      | 1        |       |           |        |
| F               | A60591    | Residuals | DLHB-1   | x   |      |          |       |           |        |
| Γ               | A60633    | Residuals | FLF-2    | x   |      |          |       |           | ×      |
| 38188           | A60043    | Residuals | MW-121B  | x   |      | 1        | 1     | 1         |        |
|                 | A60044    | Residuals | MW-121B  | x   |      |          |       | 1         |        |
|                 | A60045    | Residuals | MW-121B  | x   |      | - J ·    | ]     |           |        |
|                 | A60049    | Residuals | MW-120B  | x   |      | 7        |       | A60050    |        |
|                 | A60051    | Residuals | MW-120B  | X   |      | 1        |       |           |        |
| Γ               | A60052    | Residuals | MW-120B  | x   |      | 1        |       |           | -      |
|                 | A60053    | Residuals | MW-120B  | ×   |      | 1        |       | 1 1       | -      |

See Notes on Page 12

 $\sim$ 

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SAMPLE DELIVERY GROUP SUMMARY

|                  |           |           |          |              | Anal                                  | ysis           |                                         | 1          |        |
|------------------|-----------|-----------|----------|--------------|---------------------------------------|----------------|-----------------------------------------|------------|--------|
| Sample           |           |           |          |              | I                                     | <u> </u>       | PCDD/                                   | 1          |        |
| Delivery Group   | Sample ID | Matrix    | Location | РСВ          | TCL                                   | TAL            | PCDF                                    | Duplicate  | MS/MSD |
| 38188 (Cont'd.)  | A60059    | Residuals | WA-1     | x            |                                       |                |                                         |            |        |
|                  | A60060    | Residuals | WA-1     | x            | <u>+</u>                              |                | +                                       |            |        |
|                  | A60592    | Residuals | DLHB-1   | x x          | 1                                     |                | -                                       | <b></b>    |        |
|                  | A60595    | Residuals | DLHB-3   | x            | · · · · · · · · · · · · · · · · · · · |                |                                         |            |        |
|                  | A60597    | Residuals | DLHB-3   | x            | +                                     |                |                                         | 1          |        |
|                  | A60598    | Residuals | DLHB-3   | x            | <u> </u>                              | -              |                                         |            |        |
|                  | A60601    | Residuals | DLHB-6   | x            | <u>+</u>                              |                |                                         |            |        |
| -4               | A60602    | Residuals | DLHB-6   | x            | t                                     |                |                                         |            |        |
|                  | A60603    | Residuals | DLHB-6   | x            | <u> </u>                              |                |                                         |            |        |
|                  | A60604    | Residuals | DLHB-6   | x            | ł                                     |                | ł ~                                     | A60607     |        |
|                  | A60636    | Residuals | FLF-3    |              | ł                                     |                | · • • · · · · · · · · · · · · · · · · · |            | ···    |
| 38292 (Congener) | A60616    | Residuals | BMP-12   | <del>x</del> | †=======                              |                |                                         |            |        |
| 38292 (Congener) | A60617    | Soil      | BMP-12   | x            | <u>+</u>                              | <b>-</b>       |                                         |            |        |
|                  | A60618    | Soll      | BMP-12   | x x          | 1                                     |                |                                         |            | ·      |
|                  | A60619    | Soll      | BMP-12   | x            | 1                                     |                |                                         |            |        |
|                  | A60620    | Soil      | BMP-12   | x            |                                       | -              |                                         |            |        |
|                  | A60621    | Soll      | BMP-2    | ×            | 1                                     |                |                                         |            | ×      |
|                  | A60622    | Soil      | BMP-2    | ×            | 1                                     |                |                                         |            |        |
|                  | A60623    | Soll      | BMP-2    | ×            |                                       |                |                                         |            |        |
|                  | A60624    | Soll      | BMP-2    | ×            | 1                                     |                |                                         |            |        |
| -                | A60625    | Soil      | BMP-2    | ×            |                                       | -              | • • • • • • • • • • • • • • • • • • • • |            |        |
| 38352            | A60076    | Soil      | MW-78    | X            | <u> </u>                              |                |                                         | <b>i</b> i |        |
| 30332            | A60077    | Soll      | MW-78    | x            | 1                                     |                |                                         |            |        |
|                  | A60078    | Soil      | MW-7B    | ×            | · · · · · · · · · · · · · · · · · · · | -              |                                         | ········   |        |
|                  | A60079    | Soil      | MW-122B  | × ×          | †                                     |                |                                         | A60080     |        |
|                  | A60081    | Soil      | MW-122B  | x            | <u>†</u>                              |                |                                         |            |        |
|                  | A60087    | Soil      | WA-6     | ×            | <u>+</u>                              |                |                                         |            |        |
|                  | A60621    | Soll      | BMP-2    | ×            | †                                     | -+ · · · · · · |                                         |            |        |
|                  | A60626    | Soil      | BMP-1    | ×            | <b>*</b>                              |                |                                         |            |        |
|                  | A60629    | Soll      | BMP-3    | x            | t                                     |                | ·                                       |            |        |
|                  | A60631    | Soll      | BMP-3    | x            | <u> </u>                              | -1             |                                         |            |        |
|                  | A60632    | Soll      | FLF-2    | x            | 1                                     | 1              |                                         |            | -      |
|                  | A60634    | Soil      | FLF-2    | ×            | <u>†</u>                              | -1             |                                         | 1          |        |

See Notes on Page 12

### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SAMPLE DELIVERY GROUP SUMMARY

|                 |           |           |          |          |          |               |                                         | T                                       |             |
|-----------------|-----------|-----------|----------|----------|----------|---------------|-----------------------------------------|-----------------------------------------|-------------|
|                 |           |           |          |          | Anal     | YSIE          |                                         | -                                       |             |
| Sample          | a 1.10    | Matrix    | Location | 800      | TO       |               | PCDD/                                   | Durallanta                              | Newer       |
| Delivery Group  | Sample ID | Mavix     | Locanon  | РСВ      | TCL      | TAL           | PCDF                                    | Duplicate                               | MS/MSD      |
|                 |           | Soll      | FLF-3    | 1        |          |               |                                         |                                         |             |
| 38352 (Cont'd.) | A60635    | Soll      | FLF-3    | ×        |          |               |                                         |                                         |             |
| . L             | A60637    | Soll      | WA-7     | ×        |          | ·             |                                         |                                         |             |
|                 | A60638    |           |          | ×        |          |               |                                         |                                         |             |
|                 | A60645    | Soll      | WA-5     | ×        |          |               |                                         |                                         |             |
|                 | A60677    | Soll      | P-2      | ×        | <b> </b> |               |                                         | · · · · · · · ·                         |             |
|                 | A60678    | Soil      | P-1      | ×        |          |               |                                         |                                         | <u>×</u>    |
|                 | A60679    | Soil      | P-3      | ×        |          |               |                                         |                                         |             |
| 38361           | A60061    | Residuals | WA-1     | X        |          |               |                                         |                                         |             |
|                 | A60082    | Residuals | WA-6     | X        | I        |               |                                         |                                         |             |
|                 | A60083    | Residuals | WA-6     | ×        |          |               |                                         |                                         |             |
|                 | A60084    | Residuals | WA-8     | X        |          |               |                                         |                                         |             |
| F               | A60822    | Residuals | BMP-2    | x        |          |               |                                         | 1                                       |             |
| F               | A60623    | Residuals | BMP-2    | X        |          |               |                                         | 1                                       |             |
| F               | A60624    | Residuals | BMP-2    | X        | 1        | 1             |                                         | <b>I</b>                                |             |
| F               | A60625    | Residuals | BMP-2    | X        |          |               |                                         |                                         |             |
| F               | A60627    | Soll      | BMP-1    | x        |          | 1             | · • · · · · · · · · · · · · · · · · · · |                                         |             |
|                 | A60630    | Residuals | BMP-3    | ×        |          |               | 1                                       | <b>1</b>                                |             |
| F               | A60639    | Residuals | WA-7     | ×        | 1        |               |                                         | · · · · · · · · · · · · · · · · · · ·   |             |
|                 | A60640    | Residuals | WA-7     | X        |          |               |                                         | 1                                       | · · · · -   |
| -               | A60641    | Residuals | WA-7     | ×        |          |               | ·                                       |                                         |             |
| F               | A60642    | Residuals | WA-7     | ×        | 1        |               |                                         | · · · · · · ·                           |             |
| -               | A60646    | Residuals | WA-5     | x        | <b></b>  | ·             |                                         |                                         |             |
|                 | A60647    | Residuals | WA-5     | ×        | <b> </b> |               | ·                                       | · · · · · · · · · · · · · · · · · · ·   | - · · • ·   |
|                 | A60648    | Residuals | WA-5     | ×        |          |               |                                         | A60652                                  | · ··· • • • |
|                 | A60649    | Residuals | WA-5     | ×        | t        | · +           |                                         |                                         |             |
|                 | A60680    | Residuals | BHDL-123 | x        | 1        | +             | · •                                     |                                         | · x         |
| 38493           | A60065    | Soll      | MA-1     | 1        | 1        | X *           |                                         |                                         | <u>-</u>    |
| 30785           | A60066    | Soil      | MA-1     | †        | 1        | X             |                                         | <b>.</b>                                | · -         |
|                 | A60067    | Soil      | MA-2     | 1        | t        | <u>^</u>      | •                                       | · • · · · · · · · · · · · · · · · · · · |             |
|                 | A60068    | Soil      | MA-2     | 1        | t        |               |                                         | 4                                       | -           |
|                 | A60069    | Soil      | MA-3     | 1        | t        | - <u>^</u>    | 1                                       | · · · · · · · ·                         | -           |
|                 | A60070    | Soil      | MA-3     | 1        | 1        | <u>-</u>      | ·                                       | · <del> </del> - · · · ·                |             |
| ŀ               | A60070    | Soil      | MA-4     | <u> </u> | 1        | +· <u>^</u> - | ·   · · · · · · · · · · ·               | <b> </b>                                |             |
|                 | A0UU/I    |           |          | 1        | £        | <u>. 1 </u>   | 1                                       | 1                                       | ×           |

See Notes on Page 12 🕗

٠

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

### ALLIED PAPER, INC. OPERABLE UNIT SAMPLE DELIVERY GROUP SUMMARY

|                 |           |                   |            |     | Anal | ysis       |               |                     |        |
|-----------------|-----------|-------------------|------------|-----|------|------------|---------------|---------------------|--------|
| Sample          | Sample ID | Matrix            | Location   | РСВ | TCL  | TAL        | PCDD/<br>PCDF | Duplicate           | MS/MSD |
| Delivery Group  | Sampa ID  | The big           | 1 poceador |     |      | <u>10+</u> |               |                     |        |
| 38493 (Cont'd.) | A60072    | Soil              | MA-4       |     |      | ×          |               |                     |        |
| 50450 (Contai)  | A60073    | Soil              | MA-5       | 1   | 1    | ×          |               |                     |        |
| ŀ               | A60074    | Soil              | MA-5       | 1   |      | ×          |               | A60075              |        |
| 38543           | A60086    | Soil              | WA-6       |     | ×    | ×          |               |                     |        |
|                 | A60093    | Soil              | MW-8A      | 1   | ×    | ×          |               | 1                   |        |
| F               | A60644    | Soil              | WA-7       | 1   | ×    | ×          |               | 1                   |        |
| • F             | A60651    | Soil              | WA-5       | 1   | ×    | ×          |               | 1                   |        |
|                 | A60658    | Soil              | WA-8       | 1   | ×    | ×          |               |                     |        |
| -               | A60663    | Soil              | WA-4       | 1   | ×    | ×          | -             | 1                   |        |
| -               | A60669    | Soll              | WA-3       |     | ×    | ×          |               |                     |        |
|                 | A60676    | Soil              | WA-2       |     | ×    | ×          |               | 1                   |        |
| F               | A60684    | Soil              | BHDL-123   |     | x    | ×          |               |                     | X      |
| 38553           | A60085    | Residuals         | WA-6       |     | ×    | x          |               | 1                   |        |
|                 | A60092    | Residuals         | MW-8A      |     | X    | • x        |               |                     |        |
| -               | A60643    | Residuals         | WA-7       |     | ×    | x          |               | 1                   |        |
| -               | A60650    | Residuals         | WA-5       |     | x    | ×          |               |                     |        |
|                 | A60657    | Residuals         | WA-8       |     | x    | ×          |               |                     |        |
| -               | A60662    | Residuals         | WA-4       |     | X    | ×          |               |                     |        |
| -               | A60668    | Residuals         | WA-3       |     | X    | ×          |               |                     |        |
| -               | A60675    | Residuals         | WA-2       |     | ×    | ×          |               |                     |        |
| -               | A60683    | Residuals         | BHDL-123   | ]   | X    | X          |               |                     | ×      |
| -               | A60688    | Residuals         | BHDL-22    |     | ×    | ×          |               | A60691              |        |
| -               | A60689    | Soil <sup>6</sup> | BHDL-22    |     | x    | ×          |               | A60692 <sup>3</sup> |        |
| 38643           | A60654    | Residuals         | WA-8       | X   | 1    | Τ          |               | T                   |        |
|                 | A60655    | Residuals         | WA-8       | X   |      | <b>_</b>   |               |                     |        |
|                 | A60656    | Residuals         | WA-8       | X   |      |            |               | 1                   |        |
| -               | A60659    | Residuals         | WA-4       | x   |      |            |               |                     |        |
| F               | A60660    | Residuals         | WA-4       | X   |      | T          |               | l i                 |        |
|                 | A60661    | Residuals         | WA-4       | X   | T    | 1          |               |                     |        |
| F               | A60665    | Residuals         | WA-3       | X   | 1    | 1 .        |               | 1                   |        |
| F               | A60666    | Residuals         | WA-3       | ×   | 1    | 1          |               | 1.                  |        |
| F               | A60667    | Residuals         | WA-3       | x   | 1    | 1          |               | 1 .                 |        |

See Notes on Page 12

ł

:

. ب

### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

### ALLIED PAPER, INC. OPERABLE UNIT SAMPLE DELIVERY GROUP SUMMARY

|                          |           |           |          |     | Anal | ysis |               |             |        |
|--------------------------|-----------|-----------|----------|-----|------|------|---------------|-------------|--------|
| Sample<br>Delivery Group | Sample ID | Matrix    | Location | РСВ | TCL  | TAL  | PCDD/<br>PCDF | Duplicate   | MS/MSD |
|                          |           |           |          |     |      |      | 1             |             |        |
| 38643 (Cont'd.)          | A60671    | Residuals | WA-2     | ×   | ļ    |      |               | A60672      |        |
|                          | A60673    | Residuals | WA-2     | ×   |      |      | 1             |             |        |
| F                        | A60674    | Residuals | WA-2     | ×   |      |      | 1             |             |        |
| -                        | A60681    | Residuals | BHDL-123 | X   |      |      | 1             | A60685      | • •    |
| Γ                        | A60682    | Residuals | BHDL-123 | ×   |      |      |               | 1           | ×      |
|                          | A60686    | Residuals | BHDL-22  | x   |      | 1    | 1             |             |        |
|                          | A60687    | Residuals | BHDL-22  | X   |      |      | - <u>-</u>    |             |        |
|                          | A60690    | Residuals | BHDL-22  | X   |      |      | 1             | A60693      |        |
| 38656                    | A60094    | Soil      | FLF-1    | X   |      | T    | 1             |             |        |
| F                        | A60102    | Soll      | MW-124B  | X   |      |      | 1             |             |        |
|                          | A60103    | Soll      | MW-127A  | x   |      | 1    | 1             | A60104      |        |
| Γ                        | A60105    | Soil      | MW-8A    | x   |      | 1    | 1             | 1           |        |
| Γ                        | A60106    | Soil      | MW-124B  | X   |      |      |               |             |        |
|                          | A60107    | Soll      | MW-1248  | X   |      |      |               | A60108      |        |
| Γ                        | A60109    | Soll      | MW-124B  | X   |      |      |               | 1           |        |
| Γ                        | A60110    | Soll      | MW-1248  | X   |      |      | 1             |             |        |
|                          | A60111    | Soll      | MW-1248  | X   |      | 1    | 1             |             |        |
|                          | A60653    | Soil      | WA-8     | x   |      |      |               |             |        |
|                          | A60664    | Soil      | WA-3     | x   |      | 1    | 1             | <b>†</b>    |        |
| -                        | A60670    | Soil      | WA-2     | x   |      | 1    |               | 1           |        |
|                          | A60695    | Soil      | MW-12R   | X   |      |      |               | f - · · · · | -      |
|                          | A60696    | Soil      | MW-12R   | X   |      |      | 1             | 1           |        |
|                          | A60697    | Soll      | MW-198R  | X   |      | 1    |               | A607012     |        |
| F                        | A60699    | Soil      | MW-198R  | X   |      | 1    | 1             |             | x      |
|                          | A60706    | Soll      | MW-12R   | x   |      |      |               |             |        |
|                          | A60707    | Soil      | MW-12R   | X   |      | 1    |               | 1           |        |
| 38770                    | A60089    | Residuals | MW-8A    | X   |      | 1    | T             |             |        |
| T I                      | A60090    | Residuals | MW-BA    | X   |      |      |               | <u></u>     |        |
|                          | A60091    | Residuals | MW-84    | X   |      | T    |               |             | -      |
|                          | A60095    | Residuals | FLF-1    | X   |      | 1    | 1             | 1           | ×      |
| 38875                    | A60098    | Soil      | FLF-1    |     | x    | ×    | ſ             | j i         |        |
|                          | A60702    | Soli      | B-7B     |     | X    | X    | 1             |             | · -    |
| F                        | A60703    | Soil      | B-7B     |     | x    | x    | 1             |             |        |
| 38880                    | A60097    | Soil      | FLF-1    |     | ×    | x    | i             | ji          | X      |

See Notes on Page 12

. . .

i

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SAMPLE DELIVERY GROUP SUMMARY

|                                       |           |           |          |     | Anal                                    | ysis |               |                 |          |
|---------------------------------------|-----------|-----------|----------|-----|-----------------------------------------|------|---------------|-----------------|----------|
| Sample<br>Delivery Group              | Sample ID | Matrix    | Location | РСВ | TCL                                     | TAL  | PCDD/<br>PCDF | Duplicate       | MS/MSI   |
| 38887                                 | A60096    | Residuals | FLF-1    | x   |                                         |      |               |                 | x        |
| 38893                                 | A60698    | Soll      | MW-1988  | x   | <u> </u>                                | 1    |               | - <b>1</b>      | ,        |
|                                       | A60700    | Soil      | MW-198R  | x   | • · · · · · · · · · · · · · · · · · · · | ·    |               |                 |          |
| F                                     | A60704    | Soil      | MW-128A  | ×   |                                         |      | 1             | -4              |          |
| ł                                     | A60705    | Soll      | MW-128A  | x   |                                         |      |               | · · ·           |          |
| -                                     | A60708    | Soll      | BMSS-3   | X   |                                         |      |               | ×               |          |
|                                       | A60709    | Soll      | BMSS-4   | x   |                                         |      |               |                 |          |
| 39680                                 | A60710    | Soil      | BMP-8    | X   | Ì                                       | 1    | 1             | +               |          |
|                                       | A60711    | Soil      | BMP-8    | X   |                                         |      |               | A60712          |          |
| f                                     | A60713    | Soil      | BLHB-3   | x   |                                         |      |               | A60714          |          |
| ľ                                     | A60715    | Soil      | BLHB-3   | x   |                                         |      |               |                 |          |
| F                                     | A60716    | Soll      | BLHB-2   | x   |                                         |      |               |                 | x        |
| F                                     | A60719    | Soil      | BLHB-2   | x   |                                         |      |               | ·· · · · ·      | <u> </u> |
| F                                     | A60720    | Soil      | BLHB-1   | x   |                                         |      | 1             | 1               |          |
| F                                     | A60721    | Soil      | BLHB-1   | X   |                                         |      | 1             | · · · · · · ·   |          |
| F                                     | A60722    | Soil      | MLHB-1   | X   |                                         | 1    |               | ····· · · · · · |          |
| -                                     | A60723    | Soli      | MLHB-1   | ×   |                                         |      |               |                 |          |
| E E E E E E E E E E E E E E E E E E E | A60724    | Soil      | MLHB-2   | X   |                                         | 1    |               | 1               |          |
| Γ                                     | A60725    | Soil      | MLHB-2   | x   |                                         | 1    |               |                 |          |
| -                                     | A60726    | Soil      | BMP-7    | X   |                                         |      |               | 1 1             | x        |
| F                                     | A60727    | Soil      | BMP-7    | X   |                                         | 1    | -             | 1 1             |          |
|                                       | A60728    | Soil      | BMP-5    | X   |                                         |      | -             | 1 1             |          |
|                                       | A60738    | Soil      | BMP-9    | X   |                                         |      |               | 1 1             |          |
|                                       | A60739    | Soil      | BMP-9    | ×   |                                         | ]    |               |                 |          |
| 39684                                 | A60729    | Soil      | BMP-5    | X   |                                         | ]    | I             | i i             |          |
| ſ                                     | A60730    | Soil      | BMP-5    | ×   |                                         |      | 1             | [ · [           |          |
|                                       | A60731    | Soli      | BMP-4    | ×   | ·                                       | 1    | [ · · · · ·   |                 |          |
| Γ                                     | A60732    | Soil      | BMP-4    | X   |                                         |      |               |                 |          |
| E E E E E E E E E E E E E E E E E E E | A60733    | Soil      | BMP-4    | X   |                                         | I    | ]             |                 |          |
| ſ                                     | A60734    | Soll      | BMP-6    | X   |                                         | Ι    | 1             | 1               |          |
| Ē                                     | A60735    | Soil      | BMP-6    | ×   |                                         | L    |               | 1 1             |          |
|                                       | A60736    | Soil      | BMP-6    | X   |                                         |      | · · ·         | 1 1             |          |

See Notes on Page 12

1 I I I I I

i

1

.

.

### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SAMPLE DELIVERY GROUP SUMMARY

|                |           |             |            |                                       | Anal      | ysis                 |                                       |                                        |           |
|----------------|-----------|-------------|------------|---------------------------------------|-----------|----------------------|---------------------------------------|----------------------------------------|-----------|
| Sample         |           |             |            | 1                                     | 1         | T                    | PCDD/                                 | 4                                      |           |
| Delivery Group | Sample ID | Matrix      | Location   | РСВ                                   | TCL       | TAL                  | PCDF                                  | Duplicate                              | MS/MSD    |
| 39721          | A66000    | Groundwater | MW-7B      |                                       |           | x <sup>i</sup>       |                                       |                                        |           |
| 50721          | A66001    | Groundwater | MW-7       |                                       | <u> </u>  | -+ <del>-</del> : -  |                                       |                                        |           |
| -              | A66002    | Groundwater | MW-21      | <u> </u>                              |           |                      |                                       |                                        | · · · · - |
| -              | A66003    | Groundwater | MW-124A    |                                       | <u> </u>  |                      | ·                                     |                                        |           |
| ŀ              | A66004    | Groundwater | MW-124B    | <u> </u>                              |           | ·   · · - 🔒 · · · ·  | +                                     |                                        |           |
| F              | A66005    | Groundwater | MW-125A    |                                       |           |                      | ·                                     |                                        |           |
| F              | A66006    | Groundwater | MW-125B    | +                                     | ·····     | +≎i –                |                                       | •••••••••••••••••••••••••••••••••••••• |           |
| F              | A66007    | Groundwater | Rivulet2   |                                       |           | - <u> </u>           |                                       | • • · · ·                              |           |
| ŀ              | A66008    | Groundwater | MW-11      | <u> </u>                              | <u> </u>  | ·∱·· - €i            |                                       | • • •                                  |           |
| ŀ              | A66009    | Groundwater | MW-24      | <u> </u>                              |           |                      |                                       | ·                                      |           |
| - F            | A66010    | Groundwater | MW-126A    | {                                     | <b> </b>  | - i <u>x</u> i       | · · · · · · · · · · · · · · · · · · · |                                        |           |
| F              | A66011    | Groundwater | MW-126B    |                                       | i         | <u> </u>             | - <b>-</b>                            | A60012                                 |           |
| ŀ              | A66013    | Groundwater | MW-121A    |                                       |           | <u> </u>             |                                       | 100012                                 | · =       |
|                | A66014    | Groundwater | MW-121B    |                                       | <u> </u>  | x <sup>1</sup>       |                                       |                                        | -         |
| F              | A66015    | Groundwater | MW-26      |                                       |           |                      | · · · · · · · · · · · · · · · · · · · |                                        | <b>_</b>  |
| -              | A66016    | Leachate    | MW-125P    |                                       |           | +                    | ·····                                 |                                        | × ×       |
| +              | A66017    | Groundwater | MW-22A     | <u> </u>                              |           | ·†                   | · · · · · · · · · · · · · · · · · · · |                                        |           |
| -              | A66018    | Groundwater | MW-22B     |                                       |           | 1 <u>x</u> i         |                                       | · · · · · · · · · ·                    |           |
| -              | A66019    | Groundwater | MW-120B    | · · · · · ·                           |           | <u> </u>             |                                       | A660245                                | -         |
| 39726          | A66000    | Groundwater | MW-78      |                                       | ×         |                      |                                       |                                        |           |
|                | A66001    | Groundwater | MW-7       |                                       | x         | <del>X</del>         | · · · ·                               | · · · ·                                |           |
| -              | A66002    | Groundwater | MW-21      | · · · · · · · · · · · · · · · · · · · | x         | · · · · <del>X</del> | 1                                     | 1                                      |           |
| -              | A66003    | Groundwater | MW-124A    |                                       | x         | · = <del>X</del>     |                                       |                                        |           |
|                | A66004    | Groundwater | MW-124B    |                                       |           | x x                  |                                       |                                        |           |
|                | A66005    | Groundwater | MW-125A    |                                       | <u> </u>  |                      |                                       | · · · · ·                              |           |
| -              | A66006    | Groundwater | MW-125B    |                                       | ×         | ×                    |                                       | 1 ····                                 |           |
| -              | A66007    | Groundwater | Rivulet2   |                                       | <u>^</u>  |                      |                                       | 1 1                                    |           |
|                | A66008    | Groundwater | MW-11      |                                       | x         | 4                    |                                       | • - •                                  |           |
| F              | A66009    | Groundwater | MW-24      |                                       | ×         | <del>X</del>         |                                       | 4 - · · · •                            |           |
| -              | A66010    | Groundwater | MW-126A    |                                       | ×         | ×                    | · · · · · ·                           | · −·                                   |           |
| F              | A66010    | Groundwater | MW-1268    |                                       | ×         |                      |                                       | AG6012                                 |           |
| -              | A66013    | Groundwater | MW-121A    |                                       | ×         |                      |                                       | 1 100012                               |           |
|                | A66014    | Groundwater | MW-1218    |                                       | × ×       | $\frac{x}{x}$        |                                       | 1 1                                    |           |
| -              | A66015    | Groundwater | MW-26      |                                       |           | 1 -                  |                                       |                                        |           |
|                | A66015    | Leachate    | MW-125P    |                                       |           | ×                    |                                       | } }                                    | ×         |
|                | 700010    | T reactigre | 1 MTT-120F | <u> </u>                              | <u>×.</u> | <u>l ×</u>           | 1 <u></u>                             | L                                      |           |

See Notes on Page 12

### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

### ALLIED PAPER, INC OPERABLE UNIT SAMPLE DELIVERY GROUP SUMMARY

|                |           |             |                 |          | Analy    |                       |                                         | T                                       | [                                      |
|----------------|-----------|-------------|-----------------|----------|----------|-----------------------|-----------------------------------------|-----------------------------------------|----------------------------------------|
| Sample         |           |             |                 |          |          |                       | PCDD/                                   | 4                                       |                                        |
| Delivery Group | Sample ID | Matrix      | Location        | PCB      | TCL      | TAL                   | PCDF                                    | Duplicate                               | MS/MSD                                 |
| 39825          | A66017    | Groundwater | MW-22A          |          | x        | ×                     |                                         |                                         |                                        |
| 00010          | A66018    | Groundwater | MW-22B          |          | x x      | x                     |                                         | - <b>{</b>                              |                                        |
| F              | A66019    | Groundwater | MW-120B         |          | x        | <b>x</b>              | +                                       |                                         |                                        |
| ŀ              | A66020    | Groundwater | MW-120A         |          | x        | <u>x</u>              | · +                                     | · • · · · · · · · · · · · · · · · · · · |                                        |
| }              | A66022    | Groundwater | MW-28           |          | x        |                       |                                         |                                         |                                        |
|                | A66025    | Groundwater | MW-123A         |          | x        | ×                     |                                         | +                                       |                                        |
| ŀ              | A66026    | Groundwater | MW-1238         |          | ×        | + <u>×</u>            |                                         | ·                                       | ···· · · · · · · · · · · · · · · · · · |
| -              | A66027    | Groundwater | MW-25           |          |          | <u> </u>              |                                         |                                         |                                        |
|                | A66028    | Groundwater | MW-12R          |          | <u>×</u> | ×                     |                                         |                                         | · ·                                    |
| -              | A66030    | Groundwater | MW-1988         |          | <u>×</u> | ×                     |                                         |                                         |                                        |
| -              |           |             | MW-190H<br>MW-1 |          | X        | ×                     |                                         |                                         |                                        |
|                | A66032    | Groundwater |                 |          | X        | <b></b>               |                                         |                                         | <u>X</u>                               |
|                | A66033    | Groundwater | MW-122A         |          | X        | <u> </u>              | 1                                       | <u> </u>                                |                                        |
| 39828          | A66020    | Groundwater | MW-120A         |          |          | ×'                    |                                         |                                         |                                        |
|                | A66022    | Groundwater | MW-28           |          |          | ×.                    |                                         | A66023                                  |                                        |
|                | A66025    | Groundwater | MW-123A         |          |          | <u>x'</u>             |                                         |                                         |                                        |
| L L            | A66026    | Groundwater | MW-1238         |          |          | ×'                    |                                         |                                         |                                        |
| · · · · ·      | A66027    | Groundwater | MW-25           | i        |          | <u>×'</u>             |                                         |                                         |                                        |
|                | A66028    | Groundwater | MW-12R          |          | L        | <u> </u>              |                                         |                                         |                                        |
|                | A66030    | Groundwater | MW-19BR         |          |          | <u>x<sup>1</sup></u>  |                                         | A66031                                  |                                        |
|                | A66032    | Groundwater | <u>MW-1</u>     |          |          | <b>x</b> <sup>1</sup> |                                         |                                         | X                                      |
|                | A66033    | Groundwater | MW-122A         |          |          | <b>x</b> 1            |                                         | A66038                                  |                                        |
| ſ              | A66034    | Groundwater | MW-23           | ~        |          | ×                     |                                         | 1                                       |                                        |
|                | A66035    | Groundwater | MW-128A         |          |          | x <sup>1</sup>        |                                         | 1                                       |                                        |
|                | A66036    | Groundwater | MW-114          |          |          | x'                    | 1                                       |                                         |                                        |
|                | A66039    | Groundwater | MW-122B         |          |          | <b>x</b> ' .          | 1                                       |                                         |                                        |
| 1              | A66040    | Groundwater | MW-19C          |          |          | 1                     |                                         | 1                                       |                                        |
| F              | A66030    | Groundwater | MW-19BR         |          |          | T XI                  |                                         | A66031                                  |                                        |
| 39885          | A66037    | Groundwater | MW-104          |          |          | <u></u>               | · /                                     | 1                                       |                                        |
|                | A66041    | Groundwater | MW-19D          | <u> </u> |          | 1 <del>-</del> 1      | • • • • • • • • • • • • • • • • • • • • |                                         |                                        |
|                | A66044    | Groundwater | MW-127A         |          |          | t                     | t ·                                     |                                         |                                        |

See Notes on Page 12

1

1

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

### ALLIED PAPER, INC. OPERABLE UNIT SAMPLE DELIVERY GROUP SUMMARY

|                |                  |             |                  |                                         | Anal                                          | ysis                                     |                                         |                                       |          |
|----------------|------------------|-------------|------------------|-----------------------------------------|-----------------------------------------------|------------------------------------------|-----------------------------------------|---------------------------------------|----------|
| Sample         |                  |             |                  |                                         |                                               |                                          | PCDD/                                   | 1                                     |          |
| Delivery Group | Sample ID        | Matrix      | Location         | РСВ                                     | TÇL                                           | TAL                                      | PCDF                                    | Duplicate                             | MS/MSD   |
|                | A00045           | Groundwater | MW-112           |                                         |                                               |                                          |                                         |                                       |          |
| 39885 (Cont'd) | A66045<br>A66046 | Groundwater | MW-5             | ••••                                    | ļ                                             | x <sup>1</sup><br>x <sup>1</sup>         |                                         |                                       |          |
| ŀ              | A66047           | Groundwater | MW-108           |                                         |                                               | x'<br>x'                                 |                                         |                                       |          |
| H              | A66049           | Groundwater | MW-20            |                                         | ·                                             | x'<br>x'                                 |                                         |                                       |          |
| -              | A66051           | Groundwater | MW-208           |                                         | <u>↓                                     </u> | × ×                                      |                                         | A66050                                |          |
| -              | A66052           | Groundwater | MW-8A            |                                         | <b></b>                                       | x <sup>1</sup>                           |                                         | · · · · · · · · · · · · · · · · · · · |          |
| ŀ              | A66053           | Groundwater | MW-8             |                                         |                                               | x <sup>1</sup>                           | 4                                       | ·                                     |          |
| -              | A66054           | Groundwater | MW-3             |                                         | ·····                                         | x.<br>x <sup>1</sup>                     |                                         |                                       |          |
| -              | A66055           | Groundwater | MW-15            | · · · - · · · · · · · · · · · · · · · · | <b> </b>                                      | x, x,                                    |                                         |                                       |          |
|                | A66055           | Groundwater | MW-15<br>MW-17A  |                                         | ·                                             |                                          |                                         |                                       |          |
|                | A66057           | Groundwater | MW-17A<br>MW-17B |                                         |                                               | <b>x</b> 1                               |                                         | · · · · · · · · · · · · · ·           |          |
|                | A66058           | Groundwater | MW-1/D<br>MW-16C |                                         |                                               | <b>X</b> 1                               |                                         | · · · · · · · · · · · · · · · · · · · |          |
| -              | A66059           | Groundwater | MW-16B           |                                         |                                               | x <sup>1</sup><br>x <sup>1</sup>         |                                         | •                                     |          |
| 39890          | A66035           | Groundwater | MW-128A          | <u></u>                                 |                                               |                                          |                                         |                                       | <u>×</u> |
| 39090          | A66036           | Groundwater | MW-114           |                                         | x<br>x                                        | ×                                        |                                         | · · · · · · · · · · · · · · · · · ·   |          |
|                | A66039           | Groundwater | MW-122B          |                                         | x                                             | × -                                      |                                         |                                       |          |
|                | A66040           | Groundwater | MW-19C           |                                         | x                                             | ×                                        | · / · · · · · · · · · · · · · · · · · · | ł                                     |          |
|                | A66041           | Groundwater | MW-19D           |                                         | x                                             | <u>×</u>                                 |                                         | · ·- ·                                |          |
| -              | A66044           | Groundwater | MW-127A          |                                         | x                                             | ×                                        | • •                                     | ·                                     |          |
|                | A66045           | Groundwater | MW-112           |                                         | x                                             | ×                                        |                                         | I                                     |          |
| -              | A66046           | Groundwater | MW-5             |                                         | X                                             | ×                                        | · • • • • • • • • • • • • • • • • • • • | · · · · · · · · · · · · · · · · · · · |          |
| +              | A66049           | Groundwater | MW-20            |                                         | x                                             | × .                                      | · · · · · · · · · · · · · · · · · · ·   | A66050                                |          |
| F              | A66051           | Groundwater | MW-20B           |                                         | x                                             | ×                                        |                                         | A00000                                |          |
| -              | A66052           | Groundwater | MW-8A            |                                         |                                               | <u> </u>                                 |                                         |                                       |          |
| F              | A66053           | Groundwater | MW-8             |                                         |                                               | ×                                        |                                         | · · ·                                 |          |
| -              | A66059           | Groundwater | MW-16B           |                                         | x                                             | ×                                        |                                         | ł ł                                   |          |
| 39948          | A66037           | Groundwater | MW-104           |                                         | x                                             |                                          |                                         | <u>  · · · · · · · · · · </u>         |          |
| 58840          | A66047           | Groundwater | MW-108           |                                         | x                                             | x                                        |                                         |                                       |          |
|                | A66054           | Groundwater | MW-S             |                                         | X                                             | <b>1</b> · · · · · · · · · · · · · · · · |                                         | <b>} -</b> · · · • ↓                  |          |
|                | A66055           | Groundwater | MW-15            |                                         | X                                             | <u>x</u> .                               | · · · · · · · · · · · · · · · · · · ·   | }-·                                   |          |
| }              | A66056           | Groundwater | MW-17A           |                                         | x                                             | x                                        | 1                                       |                                       |          |
|                | A66057           | Groundwater | MW-178           |                                         | ×                                             | X                                        |                                         |                                       | · •      |
| -              | A66058           | Groundwater | MW-16C           |                                         | <u> </u>                                      | ×                                        |                                         | • · ·                                 |          |
| -              | A66060           | Groundwater | MW-2             |                                         | ×                                             | × · · · · · · · · · · · · · · · · · · ·  | t                                       | <u></u>                               |          |
|                | A66061           | Groundwater | MW-18            |                                         | x                                             | + <u>-</u>                               | 4                                       | ł 4                                   | -        |

See Notes on Page 12

;

:

2

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

### ALLIED PAPER, INC. OPERABLE UNIT SAMPLE DELIVERY GROUP SUMMARY

| :                        |           |             |             |     | Anal     | ysis     |               |           |        |
|--------------------------|-----------|-------------|-------------|-----|----------|----------|---------------|-----------|--------|
| Sample<br>Delivery Group | Sample ID | Matrix      | Location    | РСВ | TCL      | TAL      | PCDD/<br>PCDF | Duplicate | MS/MSD |
|                          |           |             |             |     | <u> </u> | 1        | 1 1 2 2 1     |           |        |
| 39948 (Con't)            | A66063    | Groundwater | MW-106      |     | x        | x        |               |           |        |
|                          | A66064    | Groundwater | MW-12       |     | ×        | X        |               |           |        |
| 39965                    | A66060    | Groundwater | MW-2        | ×   |          |          | 7             | 1         |        |
| [                        | A66061    | Groundwater | MW-18       | X   | 1        |          |               |           |        |
|                          | A66063    | Groundwater | MW-106      | X   |          |          |               | 1         |        |
|                          | A66064    | Groundwater | MW-12       | ×   |          |          |               |           |        |
| 40261                    | A63000    | Sediment    | GS-1        | x   |          |          | 1             | 1         |        |
|                          | A63001    | Sediment    | GS-2        | x   |          |          |               |           |        |
| [                        | A63002    | Sediment    | G8-3        | X   |          |          |               |           |        |
|                          | A63003    | Sediment    | GS-4        | x   | I        |          |               |           |        |
|                          | A63004    | Sediment    | <u>GS-5</u> | ×   | I        |          | 1             | A63005    | ×      |
| 40909                    | A69000    | Residuals   | MC-1        | X   |          |          |               |           |        |
| 41293                    | A60740    | Soil        | BMS8-1      | X   | T T      | 1        | 1             | 1         |        |
|                          | A60741    | Soil        | BMSS-2      | X   | I        |          |               |           |        |
| TLI24546                 | A60540    | Soil        | ML88-3      |     |          | 1        | ×             | 1         |        |
|                          | A60581    | Soil        | DLHB-5      |     |          |          | ×             |           | •      |
| TLI24557                 | A60582    | Soll        | DLHB-2      |     | [        |          | x             |           |        |
| [                        | A60589    | Soil        | DLHB-1      |     |          | 1        | x             |           |        |
|                          | A60033    | Soil        | MLSS-1      |     |          | I        | ×             | A60034    |        |
| TL124734                 | A60087    | Soll        | WA-6        |     |          | I        | ×             | 1         |        |
| TLI24765                 | A60670    | Soll        | WA-2        |     |          | <u> </u> | ×             | 1         |        |

Notes:

<sup>1</sup>Dissolved TAL sample.

<sup>2</sup>Contained in SDG 38893.

<sup>3</sup>Contained in SDG 38543.

<sup>4</sup>Contained in SDG 39890.

<sup>5</sup>Contained in SDG 39828.

<sup>6</sup>Listed as residuals on chain-of-custody and lab reports.

1

i.

ì

;

,

.

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

| Well                | Reported Depth<br>of Well (ft) <sup>1</sup> | Measured Depth<br>of Well (ft) <sup>2</sup> | Measured Depth<br>to Water (ft) <sup>2</sup> | Surface Seal | Protective Casing<br>Integrity | Comments                              |
|---------------------|---------------------------------------------|---------------------------------------------|----------------------------------------------|--------------|--------------------------------|---------------------------------------|
| Iryant HRDL         |                                             |                                             | •                                            |              |                                |                                       |
| MW-104              | 29.7                                        | 30.30                                       | 15.38                                        | Poor         | Good                           | No inner cap.                         |
| MW-11               | <b>50.9</b>                                 | 51.45                                       | 9.79                                         | Poor         | Good                           | No inner cap.                         |
| MW-12               | 42.8                                        | 43.64                                       | 21.62                                        | Poor         | Good                           | No inner cap.                         |
| MW-134              | NA                                          | 9.24                                        | 7.44                                         | Good         | Good                           | No inner cap                          |
| MW-14 <sup>4</sup>  | NA                                          | 8.12                                        | 1.58                                         | Poor         | Poor                           | No inner cap                          |
| MW-224              | 30.2                                        | 30.37                                       | 15.58                                        | Poor         | Good                           | No inner cap                          |
| MW-23               | 29.7                                        | 29.57                                       | 16.93                                        | Good         | Good                           | Threaded cap.                         |
| MW-24               | 30.0                                        | 30.84                                       | 17.65                                        | Good         | Good                           | No inner cap                          |
| MW-25               | 30.5                                        | 30.59                                       | 20.15                                        | Poor         | Good                           | No inner cap.                         |
| MW-26               | 11.4                                        | 11.29                                       | 2.00                                         | Good         | Good                           | Threaded cap                          |
| ormer Type III      | Landfill                                    |                                             |                                              |              |                                |                                       |
| MW-1                | 50.7                                        | 46.88                                       | 35.51                                        | Good         | Good                           | No inner cap.                         |
| MW-9                | 27.3                                        | 27.46                                       | 9.75                                         | Good         | Good                           | •                                     |
| MW-44               | 24.5                                        | 24.39                                       | 10.78                                        | Poor         | Good                           | Casing 0.05' above protective casing, |
| MW-5                | 9.4                                         | 9.46                                        | 4.48                                         | Good         | Good                           | No inner cap.                         |
| MW-15               | 40.0                                        | 40.26                                       | 8.19                                         | Poor         | Good                           | No inner cap.                         |
| MW-16B              | 34.4                                        | 35.18                                       | 16.20                                        | Poor         | Good                           |                                       |
| MW-16C              | 55.5                                        | 55.69                                       | 10.93                                        | Poor         | Good                           |                                       |
| MW-17A              | 31.6                                        | 32.83                                       | 18.61                                        | Poor         | Good                           |                                       |
| MW-17B              | 48.0                                        | 49.49                                       | 18.23                                        | Popr         | Good                           |                                       |
| MW-19B <sup>4</sup> | 40.2                                        | 40.72                                       | 25.28                                        | Poor         | Good                           | Threaded cap.                         |
| MW-19C              | 53.2                                        | 53.63                                       | 26.04                                        | Poor         | Good                           | No inner cap.                         |
| MW-19D              | 66.9                                        | 68.01                                       | 26.02                                        | Poor         | Good                           | No inner cap.                         |
| MW-112              | 15.6                                        | 16.02                                       | 2.45                                         | Good         | Good                           | No inner cap.                         |
| estern Dispor       | al Area                                     |                                             |                                              |              |                                |                                       |
| MW-64               | 27.4                                        | 28.32                                       | 14.69                                        | Poor         | Poor                           | Protective casing hits riser.         |
| MW-7                | 32.6                                        | 33.01                                       | 18.95                                        | Poor         | Good                           | No inner cap.                         |
| MW-8                | 35.6                                        | 35.35                                       | 11.25                                        | Poor         | Poor                           | Casing too high, cannot close.        |
| MW-94               | 22.8                                        | 23.25                                       | 7.02                                         | Poor         | Good                           | No inner cap.                         |
| MW-20               | 24.8                                        | 25.01                                       | 14.37                                        | Poor         | Good                           | Outer casing drops when open.         |

## ALLIED PAPER, INC. OPERABLE UNIT EXISTING MONITORING WELL INVENTORY

See Notes on Page 2

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT EXISTING MONITORING WELL INVENTORY

| Well                | Reported Depth<br>of Well (ft) <sup>1</sup> | Measured Depth<br>of Well (ft) <sup>2</sup> | Measured Depth<br>to Water (ft) <sup>2</sup> | Surface Seal | Protective Casing<br>Integrity | Comments                              |
|---------------------|---------------------------------------------|---------------------------------------------|----------------------------------------------|--------------|--------------------------------|---------------------------------------|
| Western Dispo       | al Area (Cont'd.)                           |                                             |                                              |              |                                |                                       |
| MW-21               | 14.5                                        | 15.41                                       | 4.54                                         | Poor         | Good                           | No inner cap.                         |
| MW-113A4            | NA                                          | 30.18                                       | 6.25                                         | Good         | Good                           | No inner cap.                         |
| MW-11384            | 14.9                                        | 14.4                                        | 8.55                                         | Good         | Good                           | No inner cap.                         |
| TW-14               | 32.4                                        | 31.94                                       | 7.50                                         | Poor         | Good                           | 6" diameter.                          |
| TW-24               | NĄ                                          | NA                                          | NA                                           | <u>NA</u>    | NA                             | Well was welded shut.                 |
| Pilot Study Are     | •                                           |                                             |                                              |              |                                |                                       |
| MW-2                | 19.9                                        | 16.37                                       | 4.04                                         | Good         | Good                           |                                       |
| MW-18               | 38.9                                        | 39.23                                       | 3.67                                         | Poor         | Good                           |                                       |
| Former Bryant       | Mill Pond                                   |                                             |                                              |              |                                |                                       |
| MW-304              | 16.5                                        | 17.64                                       | 14.26                                        | Good         | Good                           | No inner cap.                         |
| MW-101 <sup>4</sup> | 8.2                                         | 8.18                                        | 4.85                                         | Poor         | Good                           | Threaded cap.                         |
| MW-1024             | 18.1                                        | 18.29                                       | 6.60                                         | Good         | Good                           | Threaded cap.                         |
| MW-1034             | 17.1                                        | 16.72                                       | 2.0                                          | Good         | Good                           | Threaded cap.                         |
| MW-104              | 12.0                                        | 12.25                                       | 1.63                                         | Poor         | Good                           | Threaded cap.                         |
| MW-1054             | 11.3                                        | 3                                           | 3                                            | Good         | Good                           | Cannot open, cap was rusted shut.     |
| MW-106              | 11.3                                        | 11.21                                       | 2.42                                         | Good         | Good                           | Threaded cap.                         |
| MW-1074             | 24.6                                        | 25.53                                       | 14.47                                        | Good         | Good                           | No inner cap.                         |
| MW-108              | 13.0                                        | 13.30                                       | 2.21                                         | Good         | Good                           | Threaded cap.                         |
| MW-1094             | 13.8                                        | 13.20                                       | 1.29                                         | Poor         | Good .                         | Threaded cap.                         |
| MW-1104             | 8.2                                         | 8.12                                        | 4.21                                         | Poor         | Good                           | Outer casing drops when open.         |
| MW-1114             | 15.4                                        | 15.32                                       | 0.56                                         | Poor         | Good                           | Threaded cap.                         |
| MW-114              | 45.0                                        | 45.67                                       | 6.85                                         | Poor         | Good                           | Protective casing above inner casing, |
| MW-1154             | 22.8                                        | 23.01                                       | 8.11                                         | Poor         | Good                           | No inner cap.                         |
| MW-1164             | 20.5                                        | 20.18                                       | 10.62                                        | Poor         | Good                           | No inner cap.                         |

## Notes:

<sup>1</sup>Corrected for stick-up; depth is referenced to the measuring point on the casing.

<sup>2</sup>Depth is referenced to the measuring point on the casing.

<sup>3</sup>The measurement could not be made.

<sup>4</sup>This well not sampled during this investigation.

NA - Not available.

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT GROUNDWATER/LEACHATE AND SURFACE WATER ELEVATIONS

|             | Water Level Elevation <sup>2</sup>  |          |                                        |                                         |            |          |          |          |          |                         |         |
|-------------|-------------------------------------|----------|----------------------------------------|-----------------------------------------|------------|----------|----------|----------|----------|-------------------------|---------|
| Location    | Reference<br>Elevation <sup>1</sup> | 09/09/93 | 09/10/93                               | 09/13/93                                | 09/16/93   | 09/21/93 | 09/27/93 | 10/06/93 | 12/14/93 | 05/16/94                | 6/15/94 |
| Bryant HRDL |                                     |          |                                        |                                         |            |          |          |          |          | والمراجع التفاقي التراج |         |
| MW-10       | 810.09                              | 794.79   | -                                      | <b></b>                                 | -          | <u> </u> | - 1      | - 1      | - 1      | - 1                     |         |
| MW-11       | 608.99                              | 799.07   | -                                      | - 1                                     | -          | -        | 799.20   | -        | 799.13   | -                       | -       |
| MW-12       | 809.21                              | 788.19   | -                                      | _                                       | -          | -        | - 1      | - 1      | 787.91   | -                       | _       |
| MW-12R      | 808.30                              | 788.22   | 1 –                                    | -                                       | - 1        | -        | 788.62   | _        | 786.87   |                         | 787.47  |
| MW-13       | 790.66                              | 788.08   | - 1                                    | _                                       | - 1        | -        | - 1      | - 1      | 788.28   | 788.11                  | _       |
| MW-14       | 786.79                              | 785.40   | -                                      | -                                       | -          | -        | -        | -        | 785.37   | -                       | _       |
| MW-22       | 810.35                              | 794.87   | -                                      | -                                       | -          | -        | - 1      |          | 794.70   | 794.59                  | -       |
| MW-22A      | 810.33                              | 795.43   | -                                      | -                                       | -          | - 1      | 795.79   | -        | 795.23   | 795.63                  | 794.95  |
| MW-22B      | 810.37                              | 796.23   | _                                      | _                                       | - 1        | - 1      | 796.56   | 1 –      | 796.32   | 796.58                  | 796.37  |
| MW-23       | 813.13                              | 796.25   | - 1                                    | -                                       | 1 -        | - 1      | 796.29   |          | 796.06   | 796.11                  | 795.98  |
| MW-24       | 807.63                              | 790.13   | - 1                                    | - 1                                     |            | - 1      | 790.50   | -        | 789.65   | -                       | 807.63  |
| MW-25       | 808.95                              | 789.68   | - 1                                    | -                                       | - 1        | - 1      | 789.84   | _        | 789.01   | -                       | -       |
| MW-26       | 792.10                              | 790.10   | l –                                    | -                                       | - 1        | 1 -      | 790.18   | -        | 790.06   | - 1                     | _       |
| MW-121A     | 812.42                              | 796.07   | -                                      | - ·                                     | - 1        | - 1      | 796.81   |          | 796.04   | 796.27                  | 795.64  |
| MW-121B     | 812.30                              | 796.08   | _                                      | [ _                                     | - 1        | - 1      | 797.30   | - 1      | 796.11   | 796.41                  | 795.70  |
| MW-123A     | 805.79                              | 791.86   | ] _                                    | ] _                                     | _          | ]        | 791.82   | _        | 791.67   | 793.06                  | 791.60  |
| MW-123B     | 805.59                              | 789.40   | -                                      | _                                       | -          | -        | 791.87   | -        | 790.79   | 791.89                  | 790.49  |
| P-1         | 809.49                              | 794.14   | - 1                                    | - 1                                     | - 1        | - 1      |          | _        | 802.25   | 802.75                  | -       |
| P-1C        | 801.91                              | DRY      | -                                      | -                                       | -          | - 1      | -        | _        | DRY      | DRY                     | -       |
| P-2         | 807.07                              | 794.20   | _                                      | - 1                                     | _          | -        | -        | -        | 793.79   | 794.70                  | -       |
| P-2C        | 801.53                              | DRY      | _                                      | -                                       | -          | - 1      | -        |          | DRY      | DRY                     | -       |
| P-3         | 805.82                              | 791.58   | -                                      | -                                       | <b>_</b> . | ~        | -        | -        | 791.02   | 793.08                  | -       |
| P-3C        | 799.65                              | 790.52   | -                                      | _                                       | _          | -        | -        | -        | 790.07   | 792.15                  | -       |
| Monarch HRD |                                     | <b>.</b> | •••••••••••••••••••••••••••••••••••••• | • • • • • • • • • • • • • • • • • • • • | •          | ··       | <b></b>  | •        | •••••••  | •                       |         |
| MW-124A     | 843.74                              | 812.26   | _                                      | -                                       | -          | -        | 812.99   | -        | 811.21   | 811.41                  | 810.82  |
| MW-124B     | 844.43                              | 803.74   | -                                      | -                                       | _          | -        | 805.01   | -        | 803.55   | 803.68                  | 803.43  |
| MW-125A     | 810.05                              | 792.62   | -                                      | -                                       | -          | -        | 792.72   | _        | 792.55   | 792.45                  | 792.27  |
| MW-125B     | 809.92                              | 796.34   | -                                      | _                                       | -          | -        | 797.15   | _        | 797.34   | 797.67                  | 797.62  |
| MW-125P     | 810.38                              | 801.01   | _                                      | _                                       | - 1        | - 1      | 800.84   | -        | 800 41   | 800.57                  | 800.68  |

See Notes on Page 3

.

## ALLIED PAPER, INC. /PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT GROUNDWATER/LEACHATE AND SURFACE WATER ELEVATIONS

|               |                                     |          |          |          |            | Water Lew | el Elevation   | 3        |                 |          | <u></u>        |
|---------------|-------------------------------------|----------|----------|----------|------------|-----------|----------------|----------|-----------------|----------|----------------|
| Location      | Reference<br>Elevation <sup>1</sup> | 09/09/93 | 09/10/93 | 09/13/93 | 09/16/93   | 09/21/93  |                | 10/06/93 | 12/14/93        | 05/16/94 | 6/15/94        |
| MW-126A       | 605.68                              | 795.48   | -        | _        | -          | -         | 796.57         | -        | 795.46          | 795.63   | 795.45         |
| MW-126B       | 805.18                              | 796.06   |          |          |            | _         | 796.45         | =        | 796.13          | 796.46   | 796.10         |
| FRDLs         |                                     |          |          |          |            |           |                |          | <u>_</u>        |          |                |
| MW-122A       | 806.51                              | 788.01   | 787.89   | 787.68   | 788.08     | 788.02    | 788.12         | 787.80   | 788.86          | 789.91   | 787.19         |
| MW-122B       | 806.18                              | 788.35   | _        | -        | - 1        | -         | 788.51         | -        | 788.31          | 788.37   | 788.08         |
| Former Type I | li Landfili                         |          | **,*     |          |            |           |                |          |                 |          |                |
| MW-1          | 833,19                              | 797.64   | -        |          | - 1        | _         | 797.69         | -        | 797.49          |          | 826.39         |
| MW-3          | 797.14                              | 787.14   | - 1      | _        |            | -         | 787.22         | _        | 787.06          | -        | ~              |
| MW-4          | 801.60                              | 790.82   | - 1      | - 1      | - 1        | _         | -              | -        | 790,79          | -        | · -            |
| MW-5          | 791.77                              | 787.5C   | - 1      | _        | -          | -         | 787.96         | -        | 787.81          | -        | ~              |
| MW-15         | 795.24                              | 786.71   |          | - 1      | - 1        | - 1       | 786.84         | ] _      | 786.70          | _        | -              |
| MW-16B        | 803.61                              | 787.18   | -        | - 1      | - 1        | <u> </u>  | 787.33         | _        | 787.23          | -        | ~              |
| MW-16C        | 804.14                              | 793.14   | -        | - 1      | -          | -         | 793.13         | - 1      | <b>79</b> 2.99  | -        | ~              |
| MW-17A        | 810.28                              | 791.62   | - 1      | - 1      | - 1        | -         | 791.65         | - 1      | 791.50          | 791.53   | 791.33         |
| MW-17B        | 810.07                              | 791.77   | - 1      | -        | -          | -         | 791.83         | — ·      | 791.69          | 791.73   | <b>79</b> 1.52 |
| MW 19BR       | 822.06                              | 795.89   | -        | -        | -          | -         | 797.12         | -        | 795.90          | 796.41   | 795.72         |
| MW-19C        | 822.09                              | 795.50   | -        | - 1      | -          | -         | 795.54         | -        | 795.54          | 795.81   | 795.35         |
| MW 19D        | 821.98                              | 795.40   | -        | -        | -          | -         | 795.57         | -        | 795.53          | 795.79   | <b>795.33</b>  |
| MW-112        | 791.62                              | 789.25   | -        | -        | -          | -         | 789.48         | -        | 789.28          | -        | ~              |
| MW-127A       | 791.65                              | 787.35   |          | <u> </u> | l <u> </u> |           | 787.69         |          | 7 <b>8</b> 7.58 | 787.40   | 787.10         |
| Western Dispo | sal Area                            |          |          |          |            |           |                |          |                 |          |                |
| MW-6          | 812.70                              | 798.01   | -        | —        | -          | -         | -              | _        | 797.77          |          |                |
| MW-7          | 818.94                              | 800.95   | -        | -        | -          | -         | 800.01         | -        | <b>79</b> 9.72  | 799.81   | <b>799</b> .79 |
| MW-7B         | 818.30                              | 798.64   | -        | -        | -          | -         | 800.35         | -        | 798.46          | 798.50   | <b>798</b> .54 |
| MW-8          | 810.20                              | 799.07   | -        | -        | -          | -         | 799.08         | -        | -               | 798.88   | 798.80         |
| MW-8A         | 810.74                              | 799.02   | -        | -        | -          | -         | 796.59         | -        | 798.84          | 798.82   | 798.79         |
| MW-9          | 802.97                              | 795.97   | -        | -        | -          | -         |                | -        | 795.93          | -        | ~              |
| MW-20         | 810.99                              | 796.60   | -        | -        | -          | -         | <b>796</b> .73 | -        | 796.47          | 796.50   | 796.34         |
| MW-20B        | 811.49                              | 796.46   | _        | _        | -          | -         | 796.75         |          | 796.37          | 796.49   | 796.24         |

' See Notes on Page 3

,

i

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT GROUNDWATER/LEACHATE AND SURFACE WATER ELEVATIONS

|                |                        |                     |          |          |          | Water Lev | el Elevation | .2       |          |          | <u></u>   |
|----------------|------------------------|---------------------|----------|----------|----------|-----------|--------------|----------|----------|----------|-----------|
|                | Reference              |                     |          |          | 1        |           |              |          | 1        | 1        |           |
| Location       | Elevation <sup>1</sup> | 09/09/93            | 09/10/93 | 09/13/93 | 09/16/93 | 09/21/93  | 09/27/93     | 10/06/93 | 12/14/93 | 05/16/94 | 6/15/94   |
| MW-21          | 804.25                 | 799.69              |          | -        | -        | -         | _            | -        | 799.44   | -        | —<br>—    |
| MW-113A        | 796.70                 | 790.50              | -        | -        | -        | - 1       | - 1          | ) _      | 788.19   | 790.45   | 790.51    |
| MW-113B        | 796.63                 | 788.11              | -        | -        | -        | -         | -            | -        | 790.47   | 788.40   | 788.01    |
| MW-120A        | 822.21                 | 800.32              | -        | - 1      | -        | -         | 800.77       | - 1      | 800.69   | 801.21   | 800.57    |
| MW-1208        | 821.85                 | 795.05              | <u> </u> | -        |          |           | 799.07       |          | 798.87   | 798.85   | 798.68    |
| Pilot Study Ar | <b>88</b>              |                     |          |          |          |           |              |          |          |          |           |
| MW-2           | 793.29                 | 789.25              | -        | -        | - 1      | -         | 789.31       | -        | 789.12   | 788.81   | 788.85    |
| MW-25          | 791.12                 | 787.67              | 1 -      | - 1      | -        | - 1       | 788.30       | - 1      | 787.46   | _        | 787.73    |
| MW-18          | 793.47                 | 789.74              |          |          | -        | -         | 789.92       |          | 789.72   | 789.77   | 789.72    |
| Former Bryant  | Mill Pond              |                     |          |          |          |           |              |          |          |          | <u></u> . |
| MW-30          | 796.58                 | 782.52              | -        | -        | -        | - 1       | -            | -        | 782.33   | 782.18   | 782.28    |
| MW-101         | 783.83                 | 779.15              | -        | -        | -        | - 1       | - 1          | _        | 779.38   | -        | -         |
| MW-102         | 763.64                 | 776.94              | - 1      | - 1      | -        | - 1       |              | - 1      | 776.84   | - 1      | 781.18    |
| MW-103         | 783.83                 | 781.833             | -        | -        | -        | -         | -            | _        | 781.81   | 781.33   | 781.70    |
| MW-104         | 785.75                 | 784.13 <sup>3</sup> | -        | -        | -        | -         | 784.27       | -        | 783.99   | 783.93   | 784.05    |
| MW-105         | 783.95                 | -                   | -        | -        | ~        | -         | - 1          | -        | -        | -        | -         |
| MW-106         | 783.82                 | 781.48              | -        | -        | -        | - 1       | 781.75       | -        | 781.51   | -        | -         |
| MW-107         | 797.47                 | 783.34              | -        | -        | -        | - 1       | -            | -        | 783.17   | 783.37   | 783,17    |
| MW-108         | 787.13                 | 785.11              | (        | -        | -        | -         | 785.20       | -        | -        | _        | -         |
| MW-109         | 785.44                 | 783.32              | -        | -        | - 1      | -         | -            | -        | 784.17   | 784.21   | -         |
| MW-110         | 787.57                 | 784.32              | -        | -        | -        | -         | -            | -        | 784.09   | _        | 784.27    |
| MW-111         | 787.97                 | 787.32 <sup>3</sup> | - 1      | -        | -        | -         | -            | -        | 787.35   | -        | _         |
| MW-114         | 797.48                 | 790.68              | - 1      | -        | -        | -         | 790.74       |          | 790.60   | -        | -         |
| MW-115         | 795.48                 | 787.47              | -        | -        | -        | -         | -            | -        | 787.35   | -        |           |
| MW-116         | 794.12                 | 783.55              | -        | -        | -        | -         | -            |          | 783.62   | _        | -         |
| MW-128A        | 788.65                 | 772.20              | -        |          | -        | -         | 772.61       |          | 772.37   | 772.52   | 772.32    |
| Portage Creek  |                        |                     |          |          |          |           |              |          |          |          |           |
| CG-1           | 788.85                 | - 1                 | 783.62   | 783.70   | 783.87   | 783.73    | 783.92       | 783.54   |          | [ _ ]    |           |

#### Notes:

ł

1

.

1

1

<sup>1</sup>Elevation of the top of the inner casing used as reference.

<sup>2</sup>Depth to water above ground surface.

<sup>3</sup>Elevations are expressed in units of feet above mean sea level.

-No measurement taken.

.

03 - Jul - 97

i

.

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALUED PAPER, INC. OPERABLE UNIT VERTICAL GROUNDWATER FLOW GRADIENTS

|               |                                                                                                                 | 09/09/93               |                                                                                                                 | 09/2                   | 27/93                    | 12/                    | Mean Veit.     |                           |
|---------------|-----------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|--------------------------|------------------------|----------------|---------------------------|
| Well          | <b>Midpoint<sup>1</sup></b>                                                                                     | Elevation <sup>1</sup> | Vert. Grad.3                                                                                                    | Elevation <sup>2</sup> | Vert. Grad. <sup>3</sup> | Elevation <sup>2</sup> | Vert. Grad.3   | Gradient <sup>4</sup>     |
| Bryant HRDL   |                                                                                                                 |                        |                                                                                                                 |                        |                          |                        |                |                           |
| MW-22A        |                                                                                                                 | 795.43                 | ·····                                                                                                           | 795.79                 | T                        | 795.23                 | T              | I                         |
| MW-228        | 29.33                                                                                                           | 796.23                 | -2.7E-2                                                                                                         | 798.56                 | -2.6E-2                  | 796.32                 | -3.7E-2        | -3.0E-2                   |
| MW-121A       |                                                                                                                 | 796.07                 | مر <del>المركنة المر</del> يد (                                                                                 | 798.81                 |                          | 796.04                 |                |                           |
| MW-121B       | 9.8                                                                                                             | 798.08                 | -1.0E-3                                                                                                         | 797.30                 | ~5.0E-2                  | 796.11                 | -7.1E-3        | -1.9E-2                   |
| MW-123A       |                                                                                                                 | 791.86                 |                                                                                                                 | 791.82                 |                          | 791.67                 |                |                           |
| MW-123B       | 13.6                                                                                                            | 789.40                 | +0.18                                                                                                           | 791.87                 | -3.7E-3                  | 790.79                 | +6.5E-2        | +8.0E-2                   |
| Monarch HRD   |                                                                                                                 | <u></u>                |                                                                                                                 |                        |                          | . <u></u>              |                |                           |
| MW-124A       |                                                                                                                 | 812.26                 | 1                                                                                                               | 812.99                 | T                        | 811.21                 | T              |                           |
| MW-1248       | 24.7                                                                                                            | 803.74                 | +0.35                                                                                                           | 805.01                 | +0.32                    | 803.55                 | +0.31          | +0.33                     |
| MW-125A       | and the second secon | 792.62                 |                                                                                                                 | 792.72                 |                          | 792.65                 |                |                           |
| MW-125B       | 10.6                                                                                                            | 798.34                 | -0.35                                                                                                           | 797.15                 | -0.42                    | 797.34                 | -0.44          | -0.40                     |
| MW-126A       |                                                                                                                 | 795 48                 | and the second state of the second                                                                              | 796.57                 | 1                        | 795.46                 |                |                           |
| MW-126B       | 10.9                                                                                                            | 798.08                 | -5.3E-2                                                                                                         | 796.45                 | +1.1E-2                  | 796.13                 | -6.1E-2        | -34E-2                    |
| FRDLa         |                                                                                                                 |                        | in a succession of the second seco |                        |                          |                        |                |                           |
| MW-122A       |                                                                                                                 | 788.01                 | r                                                                                                               | 788.12                 | T                        | 788.86                 | T              |                           |
| MW-122B       | 41.1                                                                                                            | 788.35                 | -8.2E-3                                                                                                         | 788.51                 | -9.6E-3                  | 788.31                 | +1.3E-2        | -1.2E-3                   |
| Former Type I | the second s  | <u></u>                |                                                                                                                 |                        |                          |                        |                |                           |
| MW-168        |                                                                                                                 | 787.18                 | 1                                                                                                               | 767.33                 | 1                        | 787.23                 | T              |                           |
| MW-16C        | 19.8                                                                                                            | 793.14                 | -0.30                                                                                                           | 793.13                 | -0.29                    | 792.99                 | -0.29          | -0.29                     |
|               |                                                                                                                 | 701.62                 |                                                                                                                 | 791.65                 | ······                   | 791.50                 |                |                           |
| MW-17B        | 18.4                                                                                                            | 791.77                 | -8.2E-3                                                                                                         | 791.83                 | ~9.7E-3                  | 791.69                 | -1.0E-2        | -93E-3                    |
| MW-19BR       |                                                                                                                 | 795.88                 |                                                                                                                 | 797.12                 |                          | 795.90                 | ╉╾╌╴╧╩┋╌╴┋╶╴╷╵ |                           |
| MW-19C        | 12.5                                                                                                            | 795.50                 | +3.1E-2                                                                                                         | 795.54                 | +1.3E-1                  | 795.54                 | +2.8E-2        | +0.3E-2                   |
| MW-19D        | 26.3                                                                                                            | 795.40                 | +1.8E-2                                                                                                         | 795.57                 | +5.8E-2                  | 795.53                 | +1.4E-2        | + 3 0E - 2                |
| Nestern Dispo | sal Area                                                                                                        |                        |                                                                                                                 |                        |                          |                        | - <u> </u>     | L                         |
| MW-7          |                                                                                                                 | 800.95                 |                                                                                                                 | 800.01                 | 1                        | 799.72                 | T              |                           |
| MW-78         | 14.4                                                                                                            | 798.64                 | +0.16                                                                                                           | 800.35                 | -2.4E-2                  | 798.46                 | +8.7E-2        | +7.4E-2                   |
| MW-8A         |                                                                                                                 | 799.02                 |                                                                                                                 | 799.13                 |                          | 798.84                 |                |                           |
| MW-8          | 17.2                                                                                                            | 799.07                 | -2.9E-3                                                                                                         | 799.08                 | +2.9E-3                  | NA                     | NA             | 0                         |
| MW-20         | <del>سە مىڭنىڭ سەر</del>                                                                                        | 796.60                 |                                                                                                                 | 796.73                 |                          | 796.47                 | +              | <del>-</del> <del>-</del> |
| MW-20B        | 9.1                                                                                                             | 796.46                 | +2.2E-2                                                                                                         | 796.75                 | -2.2E-2                  | 796.37                 | -1.1E-2        | -1.1E-2                   |
| MW-120A       |                                                                                                                 | 800.32                 |                                                                                                                 | 800.77                 |                          | 800.69                 | <u>+</u>       |                           |
| MW-120B       | 7.2                                                                                                             | 795.05                 | +0.59                                                                                                           | 799.07                 | +0.24                    | 798.87                 | +0 25          | +036                      |

#### Notes:

The distance of separation in feet of the midpoints of the screened intervals.

<sup>2</sup>Groundwater elevation in feet above mean sea level.

The vertical groundwater gradient. A \*-\* indicates an upward gradient and a \*+\* indicates a downward gradient.

<sup>4</sup>Mean of calculated gradients from September 9 and 27 and December 14, 1993.

NA - Not applicable.

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT IN-SITU HYDRAULIC CONDUCTIVITY RESULTS

| 1                    |               |                                        |                        |
|----------------------|---------------|----------------------------------------|------------------------|
| Well                 | Bouwer-Rice   | Hvorslev Time Lag                      | Hvorslev Variable Head |
|                      |               |                                        |                        |
| Bryant HRDL          |               | · · · · · · · · · · · · · · · · · · ·  |                        |
| MW-12R               | 8.0E-5        | 1.1E-4                                 | 1.1E-4                 |
| MW-22A               | 1.7E-3        | 4.7E-4                                 | 4.7E-4                 |
| MW-121A              | 2.4E-4        | 3.6E-4                                 | 3.6E-4                 |
| MW-123A              | 2.9E-3        | 8.4E-4                                 | 8.3E-4                 |
| P-1                  | 9.1E-3        | 3.0E-3                                 | 3.0E-3                 |
| P-2                  | 1.7E-2        | 5.2E-3                                 | 5.2E-3                 |
| P-3                  | 6.3E-3        | 1.9E-3                                 | 1.9E-3                 |
| Monarch HRI          | DL            |                                        | (<br>                  |
| MW-124A              | 1.0E-3        | 2.8E-4                                 | 2.8E-4                 |
| MW-125A <sup>1</sup> | 1.4E-3        | 2.2E-3                                 | 2.2E-3                 |
| MW-125B              | 4.9E-5        | 6.4E-5                                 | 6.4E-5                 |
| MW-126A              | 2.3E-5        | 3.2E-5                                 | 3.2E-5                 |
| MW-126B              | 1.4E-4        | 1.8E-4                                 | 1.8E-4                 |
| FRDLs                |               | •                                      |                        |
| MW-122A              | 9.9E-4        | 1.7E-3                                 | 1.7E-3                 |
| Former Type          | lii i andfiil | ······································ | ·····                  |
| MW-1988              | 7.4E-4        | 1.0E-3                                 | 1.0E-3                 |
| MW-127A              | 1.6E-4        | 2.8E-4                                 | 2.8E-4                 |
|                      |               |                                        |                        |
| Western Disp         |               |                                        |                        |
| MW-8A                | 3.5E-4        | 5.4E-4                                 | 5.4E-4                 |
| MW-20B               | 1.5E-3        | 2.0E-3                                 | 2.0E-3                 |
| MW-120A              | 1.2E-2        | 6.5E-3                                 | 6.5E-3                 |
| Pilot Study A        | 168           |                                        |                        |
| MW-2S                | 4.1E-4        | 7.0E-4                                 | 7.0E-4                 |
|                      |               |                                        |                        |
| Former Bryan         |               |                                        |                        |
| MW-128A              | 9.4E-3        | 2.7E-3                                 | 2.7E-3                 |

## Notes:

)

Units are in centimeters per second (cm/sec).

<sup>1</sup>Testing was performed a second time at this well. This data is from the first run.

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT GENERAL GROUNDWATER/LEACHATE PARAMETER FIELD DATA

|                    |         | Water<br>Temperature | Specific<br>Conductivity | Dissolved<br>Oxygen | Turbidity |
|--------------------|---------|----------------------|--------------------------|---------------------|-----------|
| Well No.           | pH      | 1(°C)                | (uS/cm) <sup>1</sup>     | (mg/L) <sup>3</sup> | (NTU)⁴    |
| Bryant HRDL        |         |                      |                          |                     |           |
| MW-11              | 7.4     | 12                   | 777                      | 3.29                | 22.40     |
| MW-12              | 7.2     | 18                   | 1,190                    | 10.27 <sup>5</sup>  | 6.09      |
| MW-12R             | 6.9     | 15                   | 1,300                    | 2.75                | 26.60     |
| MW-22A             | 7.1     | 17                   | 1,200                    | 2.87                | 3.03      |
| MW-22B             | 7.8     | 13                   | 910                      | 2.99                | 14.60     |
| MW-23              | 7.3     | 15                   | 940                      | 7.35                | 75.00     |
| MW-24              | 6.8     | 15                   | 1,250                    | 2.90                | 3.25      |
| MW-25              | 7.0     | 16                   | 1,110                    | 1.72                | 20.80     |
| . MW-26            | 7.3     | 12                   | 920                      | 9.29                | 2.49      |
| MW-121A            | 7.0     | 15                   | 1,480                    | 2.75                | 3.56      |
| MW-121B            | -       | -                    | -                        | -                   | -         |
| MW-123A            | 6.8     | 19                   | 732                      | 2.61                | 3.89      |
| MW-123B            | 7.3     | 16                   | 701                      | 1.88                | 5.37      |
| Monarch HRDL       |         |                      |                          |                     |           |
| MW-124A            | 7.3     | 16                   | 1,290                    | 5.08                | 9.20      |
| MW-124B            | 7.4     | 15                   | 1,560                    | 4.12                | 17.60     |
| MW-125P            | 5.0     | 20                   | 1,020                    | 7.17                | 8.71      |
| MW-125A            | 7.0     | 13                   | 1,290                    | 3.89                | 3.16      |
| MW -125B           | 7.3     | 13                   | 1,120                    | 2.29                | 10.90     |
| MW-126A            | 6.6     | 14                   | 1,980                    | 2.04                | 27.80     |
| MW-126B            | 7.3     | 14                   | 1,110                    | 1.76                | 5.94      |
| FRDLs              |         |                      |                          |                     |           |
| MW-122A            | 7.2     | 18                   | 606                      | 3.14                | 0.65      |
| MW-122B            | 7.1     | 14                   | 846                      | 3.02                | 2.99      |
| Former Type III Li | andfill |                      |                          |                     |           |
| MW-1               | 6.8     | 17                   | 1,050                    | 1.68                | 1.64      |
| MW-3               | 6.6     | 16                   | 1,240                    | 2.51                | 3.25      |
| MW-5               | 6.9     | 17                   | 1,450                    | 9.80                | 5.37      |
| MW-15              | 6.6     | 14                   | 1,550                    | 2.61                | 2.77      |
| MW-16B             | 6.7     | 19                   | 846                      | 1.11                | 2.45      |
| MW-16C             | 7.8     | 18                   | 527                      | 3.47                | 9.13      |
| MW-17A             | 6.5     | 19                   | 1,470                    | 2.78                | 3.45      |
| MW-17B             | 6.5     | 16                   | 1,410                    | 2.79                | 5.49      |
| MW-1988            | 6.7     | 18                   | 1,360                    | 2.79                | 1.87      |
| MW-19C             | 6.9     | 14                   | 1,110                    | 3.20                | 1.62      |
| MW-19D             | 7.1     | 14                   | 1,090                    | 3.38                | 3.51      |
| MW-112             | 7.1     | 15                   | 1,310                    | 9.87                | 5.88      |
| MW-127A            | 7.2     | 15                   | 1,940                    | 8.27                | 1.66      |
| Western Disposal   | Area    |                      |                          |                     |           |
| MW-7               | 7.4     | 17                   | 766                      | 1.25                | 1.63      |
| MW-78              | 8.9     | 16                   | 507                      | 9,54                | 4.12      |
| MW-8               | 7.3     | 17                   | 743                      | 0.79                | 1.72      |
| MW-8A              | 6.8     | 21                   | 1,080                    | 2.78                | 2.49      |
| MW-20              | 7.2     | 18                   | 1,000                    | 2.82                | 2.72      |
| MW-20B             | 7.3     | 14                   | 920                      | 2.03                | 3.42      |
| MW-21              | 7.5     | 16                   | 741                      | 9.17                | 4.25      |
| MW-120A            | 6.7     | 16                   | 1,930                    | 1.36                | 12.30     |
| MW-120B            | 7.0     | 17                   | 1,460                    | 2.16                | 8.02      |

(See Notes on Page 2)

**`**}

# TABLE G-5

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT GENERAL GROUNDWATER/LEACHATE PARAMETER FIELD DATA

| Well No.           | pH   | Water<br>Temperature<br>(°C) <sup>1</sup> | Specific<br>Conductivity<br>(uS/cm) <sup>2</sup> | Dissolved<br>Oxygen<br>(mg/L) <sup>3</sup> | Turbidity<br>(NTU)⁴ |
|--------------------|------|-------------------------------------------|--------------------------------------------------|--------------------------------------------|---------------------|
| Pilot Study Area   |      |                                           |                                                  |                                            |                     |
| MW-2               | 6.9  | 16                                        | 960                                              | 2.88                                       | 5.34                |
| MW-2S              | 6.8  | 18                                        | 1,020                                            | 8.47                                       | 1.53                |
| MW-18              | 7.4  | 15                                        | 711                                              | 2.50                                       | 1.14                |
| Former Bryant Mill | Pond |                                           |                                                  |                                            |                     |
| MW-104             | 7.6  | 15                                        | 1,050                                            | 9.69                                       | 9.04                |
| MW-106             | 7.7  | 15                                        | 700                                              | 3.56                                       | 10.70               |
| MW-108             | 7.8  | 16                                        | 720                                              | 11.06 <sup>5</sup>                         | 4.56                |
| MW-114             | 7.6  | 14                                        | 960                                              | 9.81                                       | 1.24                |
| MW-128A            | 7.3  | 19                                        | 1,150                                            | 9.96                                       | 2.15                |

# Notes:

)

J

<sup>1</sup> Units in degrees Celsius (°C).
<sup>2</sup> Units in microSiemens per centimeter (uS/cm).
<sup>3</sup> Units in milligrams per liter (mg/L).
<sup>4</sup> Units in nephelometric turbidity units (NTU).
<sup>5</sup> Instrument error suspected for this reading.

- No measurements collected.

1

# ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

# ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF PORTAGE CREEK SEDIMENT CORE FIELD DATA

| Location    | Depth of<br>Sediment (ft) | Sample Description (Top 6 inches)                                               | Depth of<br>Water (ft) |
|-------------|---------------------------|---------------------------------------------------------------------------------|------------------------|
| <u>G8-1</u> | >8.0                      | Dark gray brown fine sand with a lot of organic matter.                         | 2.3                    |
| <u>GS-2</u> | >8.0                      | Dark gray brown silt and fine sand with a lot of organic matter.                | 1.4                    |
| GS-3        | >3.8                      | Dark gray/black silty material with some coarse sand and moderate organic odor. | 2.2                    |
| <u>GS-4</u> | 5.2                       | Brown fine to medium sand, some coarse sand.                                    | 1.6                    |
| G\$-5       | 4.2                       | Brown fine sand with medium coarse sand and gravel.                             | 1.6                    |

1

.

\$

、

÷

# ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

# ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF PORTAGE CREEK SEDIMENT PROBING DATA

| Station | Depth of Water<br>(ft) | Sediment Probed<br>with<br>Metal Rod (ft) | Sediment Penetrated<br>with<br>Lexan® Tube (ft) | Sample Description                                                                                                                                                                                                                                            |
|---------|------------------------|-------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P0+00   | _                      | -                                         | -                                               | Alcott Street Dam                                                                                                                                                                                                                                             |
| P0+50   | 2.2                    | 9.0*                                      | 9.0*                                            | 0.0'-0.4' - Dark brown to black fine sand<br>0.4'-1.0' - Dark gray clay-like material with fine to coarse sand mixed in<br>1.0'-1.4' - Gray fine to medium sand with some gray clay-like material mixed in<br>1.4'-9.0" - Gray fine to coarse sand and gravel |
| P1+50   | 1.2                    | 5.8                                       | 4.8                                             | 0.0'-0.2' - Light brown fine sand<br>0.2'-1.0' - Brown silt and peat with a lot of gray clay-like material mixed in<br>1.0'-2.0' - Gray clay-like material, strong organic odor<br>2.0'-3.0'' - Gray-brown silt and peat material, almost clay-like           |
| P2+50   | 1.5                    | 7.0                                       | 5.0                                             | 0.0'-0.2' - Light brown fine sand<br>0.2'-2.0' - Brown silt and peat mixed with a lot of gray clay-like material<br>2.0'-3.0' - Gray clay-like material, strong organic odor<br>3.0'-5.0" - Tight gray-brown peat material                                    |
| P3+50   | 1.3                    | 4.6                                       | 4.6                                             | 0.0'-0.9' - Brown fine to medium sand<br>0.9'-2.3' - Gray clay-like material, strong organic odor<br>2.3'-3.0' - Gray-brown peat material with some gray clay-like material mixed in<br>3.0'-4.0'' - Reddish-brown peat                                       |
| P4+50   | 1.1                    | 3.5                                       | 3.5                                             | 0.0'-0.8' - Brown fine to medium sand<br>0.8'-1.5' - Gray clay-like material, strong organic odor<br>1.5'-1.9' - Gray-brown peat with some gray clay-like material mixed in<br>1.9'-3.0'' - Reddish-brown peat                                                |
| P5+50   | 1.4                    | 4.5                                       | 4.5                                             | 0.0'-0.8' - Brown fine to medium sand<br>0.8'-1.7' - Gray-brown silt and peat mixed with some gray clay-like material<br>1.7'-2.0' - Gray clay-like material, organic odor<br>2.0'-3.0'' - Reddish-brown peat                                                 |

See Notes on Page 9

.

,

### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF PORTAGE CREEK SEDIMENT PROBING DATA

| Station | Depth of Water<br>(ft) | Sediment Probed<br>with<br>Metal Rod (ft) | Sediment Penetrated<br>with<br>Lexan® Tube (ft) | Sample Description                                                                                                                                                                                                                                                            |
|---------|------------------------|-------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P6+50   | 1.9                    | 1.5                                       | 1.5                                             | 0.0'-0.6' - Brown fine sand<br>0.6'-1.5" - Brown peat with some gray clay-like material mixed in, very<br>tight material                                                                                                                                                      |
| P7+50   | 0.8                    | 3.2                                       | 1.9                                             | 0.0'-0.2' - Brown fine sand<br>0.2'-0.8' - Gray fine sand, some organic matter<br>0.8'-2.0" - Dark brown silt and peat                                                                                                                                                        |
| P8+50   | 0.8                    | 7.1                                       | 5.1                                             | 0.0'-0.5' - Gray-brown fine to medium sand<br>0.5'-1.4' - Gray fine to medium sand<br>1.4'-1.8' - Gray clay-like material with gray fine to coarse sand, organic odor<br>1.8'-2.3' - Brown peat with some gray clay-like material mixed in<br>2.3'-3.0" - Brown silt and peat |
| P9+50   | 1.0                    | 6.3                                       | 4.1                                             | 0.0'-0.4' - Gray-brown fine sand<br>0.4'-0.9' - Gray clay-like material<br>0.9'-1.6' - Brown silt and peat with some gray clay-like material mixed in<br>1.6'-2.6'' - Brown silt and peat material                                                                            |
| P10+50  | 0.8                    | 4.2                                       | 3.5                                             | 0.0'-0.7' - Brown fine to coarse sand<br>0.7'-1.0' - Gray clay-like material, organic odor<br>1.0'-1.6' - Brown peat and silt<br>1.6'-2.0'' - Gray fine sandy clay, no odor                                                                                                   |
| P11+50  | 0.7                    | 3.3                                       | 3.1                                             | 0.0'-0.4' - Brown fine sand<br>0.4'-1.6' - Gray fine to medium sand<br>1.6'-2.0' - Gray clay-like material, organic odor<br>2.0'-2.5' - Brown peat<br>2.5'-3.0'' - Gray fine sandy clay, no odor, rock on the bottom                                                          |

è

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF PORTAGE CREEK SEDIMENT PROBING DATA

| Station | Depth of Water<br>(ft) | Sediment Probed<br>with<br>Metal Rod (ft) | Sediment Penetrated<br>with<br>Lexan® Tube (ft) | Sample Description                                                                                                                                                                                                                                                                   |
|---------|------------------------|-------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P12+50  | 0.3                    | 6.7                                       | 5.3                                             | 0.0'-0.2' - Brown fine sand<br>0.2'-0.5' - Dark gray to black fine sand, some organic matter<br>0.5'-1.0' - Gray fine to medium sand<br>1.0'-1.5' - Gray clay-like material, organic odor<br>1.5'-2.0' - Brown peat<br>2.0'-2.3'' - Gray fine sandy clay - no odor, rock at 5' to 6' |
| P13+50  | 0.6                    | 6.2                                       | 4.8                                             | 0.0'-0.2' - Brown fine sand<br>0.2'-1.2' - Gray-brown fine to coarse sand<br>1.2'-1.5' - Gray clay-like material, organic odor<br>1.5'-2.2' - Brown peat<br>2.2'-3.0" - Reddish-brown peat                                                                                           |
| P14+50  | 2.5                    | 3.6                                       | 3.6                                             | 0.0'-0.8' - Brown fine sand<br>0.8'-1.3' - Gray clay-like material, organic odor<br>1.3'-2.0' - Gray-brown coarse material, some gray clay-like material mixed in<br>2.0'-2.8'' - Light brown fine sand                                                                              |
| P15+50  | 1.3                    | 5.5                                       | 5.0                                             | 0.0'-0.7' - Brown fine to medium sand<br>0.7'-2.3' - Gray clay-like material, very slight organic odor<br>2.3'-2.8' - Light brown peat<br>2.8'-3.3" - Reddish-brown peat                                                                                                             |
| P16+50  | 1.3                    | 3.2                                       | 2.0                                             | 0.0'-0.3' - Brown fine to medium sand<br>0.3'-0.5' - Dark gray fine sand<br>0.5'-0.8' - Greenish-gray clay with peat mixed in, no odor<br>0.8'-1.2' - Reddish-brown peat<br>1.2'-1.8' - Greenish-gray clay, no odor<br>1.8'-2.0'' - Greenish-gray clay with gravel                   |

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF PORTAGE CREEK SEDIMENT PROBING DATA

| Station | Depth of Water<br>(ft) | Sediment Probed<br>with<br>Metal Rod (ft) | Sediment Penetrated<br>with<br>Lexan® Tube (ft) | Sample Description                                                                                                                                                                                                                                              |
|---------|------------------------|-------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P17+50  | 1.1                    | 6.0                                       | 6.0                                             | 0.0'-1.0' - Gray-brown fine sand<br>1.0'-1.6' - Gray-brown peat<br>1.6'-2.5' - Reddish-brown peat<br>2.5'-3.0" - Gray fine to medium sand                                                                                                                       |
| P18+50  | 1.1                    | 4.9                                       | 4.7                                             | 0.0'-0.6' - Gray-brown fine to medium sand<br>0.6'-0.9' - Gray fine sand<br>0.9'-1.4' - Gray clay-like material mixed with coarse material - organic odor<br>1.4'-1.7' - Gray clay-like material mixed with peat<br>1.7'-2.5'' - Light gray fine to medium sand |
| P19+50  | 2.0                    | 4.7                                       | 4.7                                             | 0.0'-0.2' - Brown fine sand<br>0.2'-1.5' - Gray clay-like material, strong organic odor<br>1.5'-2.3" - Light gray fine sand, rock at 4.7'                                                                                                                       |
| P20+50  | 0.9                    | 3.1                                       | 2.8                                             | 0.0'-0.4' - Brown fine to coarse sand<br>0.4'-1.4' - Dark gray to black clay-like material mixed with peat, slight<br>organic odor<br>1.4'-2.0" - Light gray fine sand mixed with peat                                                                          |
| P21+50  | 1.1                    | 2.7                                       | 2.6                                             | 0.0'-0.6' - Brown fine sand<br>0.6'-1.2' - Gray fine sand mixed with some dark brown peat and some gray<br>clay-like material<br>1.2'-1.8'' - Light gray fine sand                                                                                              |
| P22+50  | 0.8                    | 5.1                                       | 5.0                                             | 0.0'-0.2' - Brown fine to medium sand<br>0.2'-1.8' - Gray-brown fine to medium sand<br>1.8'-2.5' - Brown peat mixed with gray clay-like material<br>2.5'-3.5" - Gray fine sand with some peat                                                                   |
| P23+50  | 0.6                    | 4.4                                       | 4.3                                             | 0.0'-0.5' - Brown fine to medium sand<br>0.5'-1.5'' - Gray clay-like material                                                                                                                                                                                   |

See Notes on Page 9

ې

ł

{

i.

5

1

1

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF PORTAGE CREEK SEDIMENT PROBING DATA

| Station | Depth of Water<br>(ft) | Sediment Probed<br>with<br>Metel Rod (ft) | Sediment Penetrated<br>with<br>Lexan® Tube (ft) | Sample Description                                                                                                                                                                                                                                                                                  |
|---------|------------------------|-------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P24+50  | 2.6                    | 2.4                                       | 1.7                                             | 0.0'-0.4' - Brown fine to medium sand<br>0.4'-0.7' - Gray fine sand with some gray clay-like material mixed in<br>0.7'-1.4" - Brown fine to coarse sand                                                                                                                                             |
| P25+50  | <b>0.6</b>             | 5.4                                       | 5.1                                             | 0.0'-0.4' - Brown fine to medium sand<br>0.4'-0.5' - Dark gray fine to medium sand<br>0.5'-1.5' - Gray-brown silt, some clay-like material, organic odor<br>1.5'-2.2' - Gray fine sand<br>2.2'-2.5' - Gray silt and peat<br>2.5'-3.0' - Reddish-brown peat<br>3.0'-3.5" - Brown silt with some peat |
| P26+50  | 1.5                    | 4.3                                       | 4.3                                             | 0.0'-1.0' - Brown fine to medium sand<br>1.0'-1.5' - Gray fine sand<br>1.5'-2.5' - Gray-brown silt, trace of gray clay-like material - no odor<br>2.5'-2.8'' - Brown peat and silt                                                                                                                  |
| P27+50  | 0.8                    | 6.3                                       | · 5.5                                           | 0.0'-0.6' - Brown fine to medium sand<br>0.6'-0.8' - Gray-brown fine sand<br>0.8'-1.6' - Gray-brown fine sand and peat, trace of clayey material, no odor<br>1.6'-2.7' - Reddish-brown peat<br>2.7'-3.0' - Gray fine sand<br>3.0'-3.3'' - Gray fine to medium sand and gravel                       |
| P28+50  | 1.0                    | 5.4                                       | 5.2                                             | 0.0'-0.1' - Brown fine to medium sand<br>0.1'-0.6' - Dark gray fine sand<br>0.6'-1.0' - Gray-brown peat and silt<br>1.0'-1.3' - Light gray fine sand<br>1.3'-2.3' - Reddish-brown peat<br>2.3'-2.8'' - White crumbly material                                                                       |

See Notes on Page 9

;

:

÷

٠

÷

÷

# ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF PORTAGE CREEK SEDIMENT PROBING DATA

| Station | Depth of Water<br>(ft) | Sediment Probed<br>with<br>Metal Rod (ft) | Sediment Penetrated<br>with<br>Lexan® Tube (ft) | Sample Description                                                                                                                                                                                                                                                      |
|---------|------------------------|-------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P29+50  | 0.6                    | 5.4                                       | 4.8                                             | 0.0'-0.5' - Brown fine to medium sand<br>0.5'-1.0' - Dark gray fine sand<br>1.0'-1.8' - Gray-brown peat and sitt<br>1.8'-2.1' - Brown peat<br>2.1'-2.4' - Reddish-brown peat<br>2.4'-2.7' - Brown peat<br>2.7'-3.3" - Light brown or tan fine to medium sand and gravel |
| P30+50  | 1.2                    | 4.8                                       | 4.8                                             | 0.0'-1.6' - Gray-brown fine to coarse sand<br>1.6'-2.9' - Gray-brown fine to very fine sand<br>2.9'-3.4' - Gray fine to coarse sand, some gravel<br>3.4'-4.0" - Brown peat, coarse organic material                                                                     |
| P31+50  | 1.7                    | 4.2                                       | 3.0                                             | 0.0'-1.7' - Gray-brown fine to coarse sand<br>1.7'-2.0' - Brown peat or organic layer<br>2.0'-2.5' - Light brown to tan fine to medium sand<br>2.5'-2.7" - Brown piece of wood                                                                                          |
| P32+50  | 1.3                    |                                           |                                                 | No sediment adjacent to storm water outfall                                                                                                                                                                                                                             |
| P33+50  | 0.8                    | 4.2                                       | 2.7                                             | 0.0'-0.2' - Brown fine to medium sand<br>0.2'-1.2' - Gray fine to coarse sand<br>1.2'-1.5' - Gray-brown clay-like material - organic odor<br>1.5'-1.8' - Gray-brown coarse sand<br>1.8'-2.5'' - Reddish-brown peat                                                      |
| P34+50  | 1.0                    | 1.0                                       | 1.5                                             | 0.0'-0.4' - Brown fine to medium sand<br>0.4'-0.9' - Gray fine to coarse sand<br>0.9'-1.3'' - Light gray fine sand with gravel                                                                                                                                          |
| P35+50  | 2.6                    | 2.3                                       | 1.3                                             | 0.0'-1.0' - Brown fine to coarse sand, some gravel<br>1.0'-2.0'' - Light brown fine sandy clay (native)                                                                                                                                                                 |

See Notes on Page 9

i.

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF PORTAGE CREEK SEDIMENT PROBING DATA

| Station | Depth of Water<br>(ft) | Sediment Probed<br>with<br>Metal Rod (ft) | Sediment Penetrated<br>with<br>Lexan® Tube (ft) | Sample Description                                                                                                                                                                                                                                           |
|---------|------------------------|-------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P36+50  | 17                     | 2.3                                       | 1.3                                             | 0.0'-0.3' - Brown fine to medium sand<br>0.3'-0.7' - Dark gray fine to coarse sand<br>0.7'- + - Gray cobbles and gravel                                                                                                                                      |
| P37+50  | 0.9                    | 4.1                                       | 3.8                                             | 0.0'-1.1' - Gray-brown fine to coarse sand<br>1.1'-2.0' - Reddish-brown peat<br>2.0'-2.5' - Gray fine to coarse sand<br>2.5' - Piece of wood                                                                                                                 |
| P38+50  | 0.7                    | 3.7                                       | 3.7                                             | 0.0'-0.4' - Brown fine to coarse sand<br>0.4'-1.1' - Gray fine to medium sand<br>1.1'-1.5' - Gray fine to very fine sand<br>1.5'-1.7' - Light brown fine to medium sand<br>1.7'-2.7' - Brown and reddish-brown peat<br>2.7'-3.3" - Gray fine sand and gravel |
| P39+50  | 0.7                    | 4.2                                       | 4.2                                             | 0.0'-0.5' - Brown fine to coarse sand<br>0.5'-1.7' - Gray fine to medium sand<br>1.7'-2.7' - Dark brown silt and peat<br>2.7'-3.0" - Gray fine sand and gravel                                                                                               |
| P40+50  | 1.5                    | 3.0                                       | 2.7                                             | 0.0'-0.3' - Brown fine to medium sand<br>0.3'-1.3' - Gray-brown fine sand<br>1.3'-1.8' - Dark gray fine to medium sand<br>1.8'-2.2' - Gray-brown fine to medium sand<br>2.2'-2.6'' - Brown and reddish-brown peat                                            |
| P41+50  | 1.6                    | 2.6                                       | 2.5                                             | 0.0'-1.2' - Brown fine to coarse sand<br>1.2'-1.5' - Dark brown peat<br>1.5'-2.2' - Gray fine to coarse sand, some gravel<br>2.2' - Rock                                                                                                                     |

.

### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF PORTAGE CREEK SEDIMENT PROBING DATA

| Station | Depth of Water<br>(ft) | Sediment Probed<br>with<br>Metal Rod (ft) | Sediment Penetrated<br>with<br>Lexan® Tube (ft) | Sample Description                                                                                                                                                                                            |
|---------|------------------------|-------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P42+50  | 1.4                    | 3.1                                       | . 3.1                                           | 0.0'-0.3' - Brown medium to coarse sand<br>0.3'-0.5' - Brown fine sand<br>0.5'-1.0 '- Dark gray fine sand and very fine sand<br>1.0'-1.7' - Gray fine to medium sand<br>1.7'-2.3'' - Dark brown peat and sitt |
| P43+50  | 1.0                    | 0.3                                       | 0.3                                             | 0.0'-0.3** - Brown fine to coarse sand and gravel                                                                                                                                                             |
| P44+50  | 3.6                    | 1.4                                       | 1.4                                             | 0.0'-1.2' - Brown fine to coarse sand<br>1.2' - Coarse sand and gravel                                                                                                                                        |
| P45+50  | 0.8                    | -                                         |                                                 | No sediment - adjacent to spring coming from landfill, rocks and cobbles, very fast moving water.                                                                                                             |
| P46+50  | 1.4                    | -                                         | <b></b>                                         | No sediment - adjacent to downstream end of bank stabilization, rocks and cobbles, very fast moving water                                                                                                     |
| P47+50  | 1.5                    | •                                         |                                                 | No sediment - rocks and cobbles, very fast moving water                                                                                                                                                       |
| P48+50  | 1.7                    |                                           |                                                 | No sediment - rocks and cobbles, very fast moving water                                                                                                                                                       |
| P49+50  | 1.9                    | 4.1                                       | 3.3                                             | 0.0'-0.6' - Gray-brown fine to coarse sand and gravel<br>0.8'-2.5" - Light brown fine very tight sand                                                                                                         |
| P50+50  | 1.5                    | 3.3                                       | 3.1                                             | 0.0'-2.5" - Brown and dark gray to black fine to coarse sand, some gravel                                                                                                                                     |
| P51+50  | 2.0                    | 1.0                                       | 1.0                                             | 0.0'-0.5' - Brown fine to coarse sand, some gravel<br>0.5'-1.0'' - Dark gray to black coarse sand and gravel                                                                                                  |
| P52+50  | 2.0                    | -                                         |                                                 | No sediment - rocks and cobbles, very fast moving water, adjacent to upstream bank stabilization area                                                                                                         |
| P53+50  | 1.5                    | 2.0                                       | 1.0                                             | 0.0'-1.0" - Gray-brown fine to coarse sand and gravel (adjacent to Monarch Clarifier - overhead pipes)                                                                                                        |

See Notes on Page 9

-----

### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF PORTAGE CREEK SEDIMENT PROBING DATA

| Station | Depth of Water<br>(ft) | Sediment Probed<br>with<br>Metal Rod (ft) | Sediment Penetrated<br>with<br>Lexan® Tube (ft) | Sample Description                                                                                        |
|---------|------------------------|-------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| P54+50  | 1.9                    | 2.0                                       | 2.0                                             | 0.0'-1.5" - Gray-brown fine to coarse sand and gravel                                                     |
| P55+50  | 1.5                    | _                                         |                                                 | No sediment - rocks and cobbles, very fast moving water                                                   |
| P56+50  | 2.3                    | 1.1                                       | 1.0                                             | 0.0'-0.4' - Brown fine to coarse sand and gravel<br>0.4'-1.0" - Gray-brown fine to medium sand and gravel |
| P57+50  | 1.5                    | 2.4                                       | 2.3                                             | 0.0'-1.8" - Brown and gray-brown fine to coarse sand, some gravel                                         |
| P58+50  | 2.9                    | 0.2                                       |                                                 | Coarse sand and gravel                                                                                    |
| P59+20  | _                      |                                           |                                                 | No sample - Cork Street Bridge - Twin CMP pipes                                                           |

### Notes:

- No data

+ - Limit of probing. Sediments are present below this depth.

٠

### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF RESIDENTIAL PROPERTY SOIL SAMPLING FIELD DATA

| Core   | Date<br>Drilled | Total<br>Depth (ft) <sup>1</sup> |              | Sample Description                                          |
|--------|-----------------|----------------------------------|--------------|-------------------------------------------------------------|
| RP-1   | 10/31/91        | 4.5                              | 0.0' - 0.5'  | Light brown sand with brick fragments.                      |
|        |                 |                                  | 0.5' ~ 2.8'  | Sand and bricks, groundwater at 2.8 feet.                   |
|        |                 |                                  | 4.0' - 4.5'  | Old pond sediments.                                         |
| RP-2   | 10/31/91        | 5.0                              | 0.0' - 0.5'  | Light brown sand with brick fragments, no topsoil.          |
|        |                 |                                  | 0.5' - 1.5'  | Brown medium sand mixed with brick.                         |
|        |                 |                                  | 1.5' - 4.5'  | Brown medium sand, some gravel, very little brick.          |
|        |                 |                                  | 4.5' ~ 5.0'  | Dark gray to black silt with some clay, old swamp deposits. |
| RP-3   | 10/31/91        | 4.5                              | 0.0' - 0.5'  | Topsoil/fill mixture, light brown sand and silt.            |
|        |                 | · ·                              | 0.5' ~ 1.3'  | Topsoil/fill, brown fine sand and silt.                     |
|        |                 | 1                                | 1.3' ~ 4.0'  | Light brown sand and bricks, fill material.                 |
|        |                 |                                  | 4.0' 4.5'    | Dark gray to black silt with clay, organic odor.            |
| RP-4   | 10/31/91        | 2.2                              | 0.0' - 0.5'  | Brown sand with brock fragments, very little topsoil.       |
|        |                 |                                  | 0.5' - 1.7'  | Brown sand and bricks.                                      |
|        |                 |                                  | 1.7' - 2.2'  | Dark gray to black silt and clay, organic odor.             |
| RP-5   | 10/31/91        | 3.0                              | 0.0' - 0.5'  | Brown sand and bricks.                                      |
|        |                 |                                  | 0.5' - 2.5'  | Brown sand and bricks.                                      |
|        |                 |                                  | 2.5' - 3.0'  | Dark gray to black silt with vegetation and organic odor.   |
| BMSS-1 | 12/14/93        | 0.5                              | 0.0' - 0.4'  | Dark brown silt, some fine sand - grass covered.            |
|        |                 |                                  | 0.4' ~ 0.5'  | Light brown fine sand.                                      |
| BMSS-2 | 12/14/93        | 0.5                              | 0.0' - 0.25' | Grass covered - dark brown silt, some fine sand.            |
|        |                 |                                  | 0.25' - 0.5' | Light brown fine to medium sand.                            |
| BMSS-3 | 8/26/93         | 0.5                              | 0.0' ~ 0.5'  | Light brown fine sand.                                      |
| BMSS-4 | 8/26/93         | 0.5                              | 0.0' ~ 0.5'  | Light brown fine sand.                                      |

#### Note:

:

<sup>1</sup>The depth is referenced from ground surface.

Ł

### ALLIED PAPER, INC./ PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

### ALLIED PAPER, INC. OPERABLE UNIT VANE SHEAR TEST RESULTS

|         | Depth     | Peak Strength | Residual Strength |
|---------|-----------|---------------|-------------------|
| Boring  | (ft)      | (psf)         | (psf)             |
| MW-20B  | 22 - 23.5 | 1990          | 1240              |
| DLHB-2A | 0 - 1.5   | 750           | 500               |
| DLHB-2A | 4 - 5.5   | 890           | 250               |

Note:

MW-20B installed in the Western Disposal Area. DLHB-2A installed in the FRDLs.

------

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED PCB RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location<br>Depth (ft)<br>Sample (D | BHDL - 22<br>0.00 - 0.50<br>A60690 | BHDL-22 (Dup)<br>0.00-0.50<br>A60693 | BHDL-22<br>6.00-8.00<br>A60686 | BHDL-22<br>8.00-10.00<br>A60667 | BHDL-22<br>10.00-12.00<br><u>A60688</u> | BHDL-22 (Dup)<br>10.00-12.00<br><u>A6069</u> 1 | BHDL - 22<br>12.00 - 14.00<br>A60689 | BHDL-22 (Dup)<br>12.00-14.00<br>A60692 |
|-------------------------------------|------------------------------------|--------------------------------------|--------------------------------|---------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------|----------------------------------------|
| Bryant HRDL                         |                                    |                                      |                                |                                 |                                         |                                                |                                      |                                        |
| Arodor - 1016                       | ND (0.46 U)                        | ND (0.081 UJ)                        | ND (19 U)                      | ND (7.9 U)                      | ND (0.94 U)                             | ND (0.97 U)                                    | ND (0.038 U)                         | ND (0.038 U)                           |
| Arodor – 1242                       | 2.7 J                              | 0.081 J                              | 430 DJ                         | 93                              | 11                                      | 6.9                                            | ND (0.038 U)                         | 0.050                                  |
| Arodor – 1248                       | ND (0.46 U)                        | ND (0.081 UJ)                        | ND (19 U)                      | ND (7.9 U)                      | ND (0.94 U)                             | ND (0.97 U)                                    | ND (0.038 U)                         | ND (0.038 U)                           |
| Arodor - 1254                       | ND (0.46 U)                        | ND (0.081 UJ)                        | ND (19 U)                      | ND (7.9 U)                      | 4.8                                     | 2.2                                            | ND (0.038 U)                         | ND (0.038 U)                           |
| Arodor - 1260                       | ND (0.46 U)                        | ND (0.081 UJ)                        | ND (19 U)                      | ND (7.9 U)                      | 1.4                                     | 0.83 J                                         | ND (0.038 U)                         | ND (0.038 U)                           |

| Location<br>Depth (ft)<br>Sample ID | BHDL- 123 <sup>2</sup><br>0.00-0.50<br><u>A60680</u> | BHDL - 123<br>4.00 - 6.00<br><u>A60681</u> | BHDL 123 (Dup)<br>4.006.00<br>A60685 | BHDL-123 <sup>2</sup><br>6.00-8.00<br><u>A60682</u> | BHDL - 123 <sup>2</sup><br>8.00 - 9.50<br><u>A60683</u> | BHDL- 123<br>10.00-12.00<br>A60684 | MW 12R<br>8.00 10.00<br>A60706 | MW - 12R<br>18.00 - 18.00<br>A60707 |
|-------------------------------------|------------------------------------------------------|--------------------------------------------|--------------------------------------|-----------------------------------------------------|---------------------------------------------------------|------------------------------------|--------------------------------|-------------------------------------|
| Bryant HRDL (Con                    | t'd.)                                                |                                            |                                      |                                                     |                                                         |                                    |                                |                                     |
| Arodor - 1016                       | 0.052 J                                              | ND (0.18 UJ)                               | ND (0.68 U)                          | ND (8.4 U)                                          | ND (1.8 U)                                              | ND (0.039 U)                       | ND (7.0 U)                     | ND (0.053 U)                        |
| Arodor – 1242                       | ND (0.14 U)                                          | 0.71 J                                     | 5.3 J                                | 190 DJ                                              | 170 D                                                   | 0.039 J                            | 100                            | 0.065                               |
| Arodor – 1248                       | 0.17                                                 | ND (0.18 UJ)                               | ND (0.68 U)                          | ND (8.4 U)                                          | ND (1.8 U)                                              | ND (0.039 U)                       | ND (7.0 U)                     | ND (0.053 U)                        |
| Arodor - 1254                       | 0.067 J                                              | ND (0.18 UJ)                               | ND (0.68 U)                          | ND (8.4 U)                                          | ND (1.8 U)                                              | ND (0.039 U)                       | ND (7.0 U)                     | ND (0.053 U)                        |
| Arodor - 1260                       | ND (0.14 U)                                          | ND (0.18 UJ)                               | ND (0.68 U)                          | 5.0 J                                               | 3.6                                                     | ND (0.039 U)                       | ND (7.0 U)                     | ND (0.053 U)                        |

| Location<br>Depth (ft)<br>Sample ID | MW - 12R<br>24.00 - 26.00<br><u>A60695</u> | MW - 12R<br>36.00 - 38.00<br>A60696 | MW - 121B<br>0.00-0.50<br><u>A60042</u> | MW - 121B<br>10.00 - 12.00<br><u>A60043</u> | MW - 121B<br>12.00 - 14.00<br>A60044 | MW - 121B<br>14.00 - 16.00<br>A60045 | MW - 121B<br>16.00 - 17.50<br>A60046 | MW - 121B<br>17.50 - 19.00<br>A60047 |
|-------------------------------------|--------------------------------------------|-------------------------------------|-----------------------------------------|---------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Bryant HRDL (Con                    | 1'd.)                                      |                                     |                                         |                                             |                                      |                                      |                                      |                                      |
| Arodor - 1016                       | ND (0.055 U)                               | ND (0.056 U)                        | ND (0.058 U)                            | 650                                         | ND (13 U)                            | ND (6.8 U)                           | ND (0.66 U)                          | ND (0.039 U)                         |
| Arodor – 1242                       | ND (0.055 U)                               | ND (0.056 U)                        | ND (0.058 U)                            | ND (66 U)                                   | 90                                   | • 48                                 | 27 D                                 | ND (0.039 U)                         |
| Arodor – 1248                       | ND (0.055 U)                               | ND (0.056 U)                        | ND (0.058 U)                            | ND (66 UJ)                                  | ND (13 U)                            | ND (6.8 UJ)                          | ND (0.66 U)                          | ND (0.039 U)                         |
| Arodor-1254                         | ND (0.055 U)                               | ND (0.056 U)                        | ND (0.058 U)                            | ND (66 UJ)                                  | 6.2 J                                | ND (6.8 UJ)                          | ND (0.66 U)                          | ND (0.039 U)                         |
| Aroclor - 1260                      | ND (0.055 U)                               | ND (0.056 U)                        | ND (0.058 U)                            | ND (66 U)                                   | ND (13 U)                            | 3.4 J                                | ND (0.66 U)                          | ND (0.039 U)                         |

(See Notes on Page 11)

٠

÷

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED PCB RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location<br>Depth (ft)<br>Sample ID | P-1 <sup>2</sup><br>12.00-14.00<br><u>A60678</u> | P-2<br>12.00-14.00<br><u>A60677</u> | P-3<br>16.00-18.00<br><u>A60679</u> | ML88-1<br>0.00-0.50<br>A60035 | ML88-1<br>8.00-10.00<br><u>A60036</u> | ML88 - 1 (Dup)<br>6.00 - 10.00<br>A60041 | MLSS-1<br>10.00-12.00<br><u>A</u> 60037 | MLSS1<br>12.0014.00<br>A60038 |  |  |
|-------------------------------------|--------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------|---------------------------------------|------------------------------------------|-----------------------------------------|-------------------------------|--|--|
| Bryant HRDL (Cont'd.)               |                                                  |                                     |                                     | Monarch HRDL                  |                                       |                                          |                                         |                               |  |  |
| Arodor - 1016                       | ND (3.4 U)                                       | 0.084                               | ND (0.059 U)                        | ND (0.17 U)                   | ND (7.1 U)                            | ND (7.5 U)                               | ND (7.3 U)                              | ND (2.7 U)                    |  |  |
| Arodor - 1242                       | 29                                               | ND (0.061 U)                        | ND (0.059 U)                        | ND (0.17 U)                   | 88                                    | 59                                       | 89                                      | 22                            |  |  |
| Arodor – 1248                       | ND (3.4 U)                                       | ND (0.061 U)                        | ND (0.059 U)                        | ND (0.17 U)                   | 6.6 J                                 | ND (7.5 U)                               | 7.5                                     | 1.4 J                         |  |  |
| Arodor - 1254                       | 5.7                                              | ND (0.061 U)                        | ND (0.059 U)                        | ND (0.17 U)                   | ND (7.1 U)                            | ND (7.5 U)                               | ND (7.3 U)                              | ND (2.7 U)                    |  |  |
| Arodor - 1260                       | ND (3.4 U)                                       | ND (0.061 U)                        | ND (0.059 U)                        | ND (0.17 U)                   | ND (7.1 U)                            | ND (7.5 U)                               | ND (7.3 U)                              | ND (2.7 U)                    |  |  |

| Location<br>Depth (fi)<br>Sample ID | MLSS - 1<br>14.00 - 15.50<br><u>A60039</u> | MLSS-1<br>15.50-18.00<br><u>A60040</u> | ML\$\$-2<br>0.00-0.50<br>A60560 | MLSS-2<br>2.00-4.00<br>A60562 | MLSS-2<br>14.00-16.00<br>A60568 | MLSS-2<br>16.00-18.00<br>A60569 | MLSS-2<br>18.00-20.00<br><u>A80570</u> | MLSS-2<br>20.00-22.00<br>A60571 |
|-------------------------------------|--------------------------------------------|----------------------------------------|---------------------------------|-------------------------------|---------------------------------|---------------------------------|----------------------------------------|---------------------------------|
| Monarch HRDL (C                     | ont'd.)                                    |                                        |                                 |                               |                                 |                                 |                                        |                                 |
| Arodor - 1016                       | ND (0.22 UJ)                               | ND (0.077 U)                           | ND (17 U)                       | 0.28                          | ND (1.5 U)                      | ND (7.1 U)                      | ND (7.4 U)                             | ND (1.3 U)                      |
| Arodor - 1242                       | 2.3 J                                      | R                                      | 96                              | ND (0.17 U)                   | 7.8                             | 89                              | 61                                     | 5.7                             |
| Arodor - 1248                       | ND (0.22 UJ)                               | ND (0.077 U)                           | 17 J                            | ND (0.17 U)                   | 7.5                             | ND (7.1 U)                      | ND (7.4 U)                             | ND (1.3 U)                      |
| Arodor – 1254                       | ND (0.22 UJ)                               | ND (0.077 U)                           | ND (17 U)                       | 0.25                          | 2.5                             | ND (7.1 U)                      | ND (7.4 U)                             | 4.0                             |
| Arodor - 1260                       | ND (0.22 UJ)                               | ND (0.077 U)                           | ND (17 U)                       | ND (0.17 U)                   | ND (1.5 U)                      | ND (7.1 U)                      | ND (7.4 U)                             | ND (1.3 U)                      |

| Location<br>Depth (ft)<br>Sample ID | MLSS-2<br>22.00-24.00<br><u>A60572</u> | MLSS-3<br>0.00-0.50<br><u>A60540</u> | MLSS-3<br>8.00-10.00<br><u>A60545</u> | ML88-3 (Dup)<br>8.00-10.00<br><u>А60546</u> | MLSS~3<br>12.00-14.00<br><u>A60548</u> | MLSS - 3<br>14.00 - 16.00<br>A60549 | ML89 - 3<br>16.00 - 18.00<br><u>A60550</u> | MLSS - 3<br>18.00 - 20.00<br>A60551 |
|-------------------------------------|----------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------------|----------------------------------------|-------------------------------------|--------------------------------------------|-------------------------------------|
| Monarch HRDL (C                     | ont'd.)                                |                                      |                                       |                                             |                                        |                                     |                                            |                                     |
| Arodor - 1016                       | ND (0.065 U)                           | ND (2.1 U)                           | ND (1.4 U)                            | ND (0.50 U)                                 | ND (18 U)                              | ND (2.0 U)                          | ND (1.6 U)                                 | ND (1.3 U)                          |
| Arodor - 1242                       | ND (0.065 U)                           | ND (2.1 U)                           | 4.7                                   | 4.9                                         | 120                                    | 22                                  | 4.9                                        | 7.9                                 |
| Arodor - 1248                       | ND (0.065 U)                           | 17                                   | 1.5                                   | 1.4                                         | ND (18 U)                              | 5.6                                 | 6.2                                        | ND (1.3 U)                          |
| Arodor - 1254                       | ND (0.065 U)                           | ND (2.1 U)                           | ND (1.4 U)                            | ND (0.50 U)                                 | ND (18 U)                              | ND (2.0 U)                          | 1.4 J                                      | 2.1                                 |
|                                     | ND (0.065 U)                           | ND (2.1 U)                           | ND (1.4 U)                            | ND (0.50 U)                                 | ND (18 U)                              | ND (2.0 U)                          | ND (1.6 U)                                 | ND (1.3 U)                          |

(See Notes on Page 11)

1

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED PCB RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location<br>Depth (ft)<br>Sample ID | ML 58 - 3<br>20.00 - 22.00<br>A60 <u>552</u> | ML88-4<br>0.00-0.50<br><u>A60520</u> | ML88-4<br>6.00-8.00<br><u>A60524</u> | ML88-4<br>12.00-14.00<br><u>A60527</u> | MLSS-4<br>14.00-16.00<br><u>A60528</u> | MLSS-4<br>16.00-18.00<br>A60529 | MLSS-4<br>18.00-20.00<br>A60530 | MLSS-4<br>20.00-22.00<br>A60531 |
|-------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Monarch HRDL (C                     | ont'd.)                                      | _                                    |                                      |                                        |                                        |                                 |                                 |                                 |
| Arodor - 1016                       | ND (0.074 U)                                 | ND (0.47 U)                          | ND (0.26 U)                          | 8.6                                    | ND (2.0 U)                             | ND (2.0 U)                      | ND (0.53 U)                     | ND (0.039 U)                    |
| Arodor - 1242                       | 0.38                                         | ND (0.47 U)                          | 0.29                                 | 38                                     | 32                                     | 18                              | 3.8                             | R                               |
| Arodor - 1248                       | ND (0.074 U)                                 | 3.8                                  | ND (0.26 U)                          | ND (3.7 U)                             | ND (2.0 U)                             | 4.1                             | ND (0.53 U)                     | ND (0.039 U)                    |
| Arodor - 1254                       | 0.089                                        | ND (0.47 U)                          | 0.24 J                               | ND (3.7 U)                             | 2.6                                    | ND (2.0 U)                      | 1.4                             | ND (0.039 U)                    |
| Arodor - 1260                       | ND (0.074 U)                                 | ND (0.47 U)                          | ND (0.26 U)                          | ND (3.7 U)                             | ND (2.0 U)                             | 1.1 J                           | ND (0.53 U)                     | ND (0.039 U)                    |

| Location<br>Depth (ft)<br>Sample ID | MLSS5<br>0.00-0.50<br><u>A60500</u> | MLSS-5<br>8.00-10.00<br><u>A60505</u> | ML68-5<br>12.00-14.00<br>A60507 | MLSS-5<br>18.00-20.00<br><u>A60510</u> | MLSS-5<br>20.00-22.00<br><u>A60511</u> | MLSS-5<br>22.00-24.00<br>A60512 | MLSS-5<br>24.00-26.00<br> | MW - 1248<br>4.00 - 6.00<br>A60102 |
|-------------------------------------|-------------------------------------|---------------------------------------|---------------------------------|----------------------------------------|----------------------------------------|---------------------------------|---------------------------|------------------------------------|
| Monarch HRDL (C                     | ont'd.)                             |                                       |                                 |                                        |                                        |                                 |                           |                                    |
| Arodor - 1016                       | ND (0.45 U)                         | ND (0.27 U)                           | ND (0.54 U)                     | ND (2.0 U)                             | ND (0.83 U)                            | ND (0.60 U)                     | ND (0.045 U)              | ND (0.062 U)                       |
| Arodor - 1242                       | ND (0.45 U)                         | 0.35                                  | 2.4                             | 2.9                                    | 3.1                                    | 4.6                             | 0.12 J                    | ND (0.062 U)                       |
| Arodor - 1248                       | ND (0.45 U)                         | ND (0.27 U)                           | 0.80                            | 7.5                                    | 5.6                                    | ND (0.60 U)                     | ND (0.045 U)              | ND (0.062 U)                       |
| Arodor - 1254                       | ND (0.45 U)                         | ND (0.27 U)                           | ND (0.54 U)                     | 1.2 J                                  | 1.1                                    | 1.6                             | 0.061                     | ND (0.062 U)                       |
| Arodor - 1260                       | ND (0.45 U)                         | ND (0.27 U)                           | ND (0.54 U)                     | 0.99 J                                 | 0.41 J                                 | ND (0.60 U)                     | ND (0.045 U)              | ND (0.062 U)                       |

| Location<br>Depth (ft)<br>Sample ID | MW - 124B<br>12.00 - 14.00<br>A60106 | MW 124B<br>20.00 22.00<br>A60107 | MW - 124B (Dup)<br>20.00 - 22.00<br><u>A60108</u> | MW 124B<br>36.00 38.00<br><u>A60109</u> | MW - 124B<br>40.00 - 42.00<br><u>A60110</u> | MW - 124B<br>54.00 - 56.00<br>A60111 | MW - 125B<br>8.00 - 10.00<br>A60024 | MW - 125B<br>14.00 - 16.00<br>A60027 |
|-------------------------------------|--------------------------------------|----------------------------------|---------------------------------------------------|-----------------------------------------|---------------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|
| Ionarch HRDL (C                     | ont'd.)                              |                                  |                                                   |                                         |                                             |                                      |                                     |                                      |
| Arodor-1016                         | ND (5.8 U)                           | ND (0.052 UJ)                    | ND (0.052 UJ)                                     | ND (0.055 U)                            | ND (0.055 U)                                | ND (0.061 U)                         | 1.7                                 | 37                                   |
| Aroclor - 1242                      | ND (5.8 U)                           | ND (0.052 UJ)                    | ND (0.052 UJ)                                     | ND (0.055 U)                            | ND (0.055 U)                                | ND (0.061 U)                         | 6.7                                 | 100                                  |
| Arodor - 1248                       | ND (5.8 U)                           | ND (0.052 UJ)                    | ND (0.052 UJ)                                     | ND (0.055 U)                            | ND (0.055 U)                                | ND (0.061 U)                         | ND (0.93 U)                         | ND (18 U)                            |
| Arodor - 1254                       | ND (5.8 U)                           | ND (0.052 UJ)                    | ND (0.052 UJ)                                     | ND (0.055 U)                            | ND (0.055 U)                                | ND (0.061 U)                         | ND (0.93 U)                         | ND (18 U)                            |
| Aroclor - 1260                      | ND (5.8 U)                           | ND (0.052 UJ)                    | ND (0.052 UJ)                                     | ND (0.055 U)                            | ND (0.055 U)                                | ND (0.061 U)                         | ND (0.93 U)                         | ND (18 U)                            |

(See Notes on Page 11)

4

. . .

;

1

.

1

i

4

•

.

1 . .

1

;

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED PCB RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location<br>Depth (ft)<br>Sample ID | MW - 125B<br>16.00 - 18.00<br>A60028 | MW-125B<br>18.00-19.00<br>A60029 | MW-125B<br>19.00-20.00<br>A60030 | MW - 126A<br>14.00 - 16.00 (P)<br>A60017 | MW - 126A<br>14.00 - 16.00 (8)<br>A60018 | MW - 126B<br>0.00 - 0.50<br> | MW - 126B<br>6.00 - 8.00<br>A60003 | MW - 126B<br>10.00 - 12.00<br>A60006 |
|-------------------------------------|--------------------------------------|----------------------------------|----------------------------------|------------------------------------------|------------------------------------------|------------------------------|------------------------------------|--------------------------------------|
| Aonarch HRDL (C                     | ont'd.)                              |                                  |                                  |                                          |                                          |                              |                                    |                                      |
|                                     |                                      |                                  |                                  |                                          |                                          |                              |                                    |                                      |
| Arodor - 1016                       | ND (2.4 U)                           | ND (0.91 U)                      | ND (0.038 U)                     | ND (0.91 U)                              | ND (0.062 U)                             | ND (0.060 U)                 | ND (1.6 UJ)                        | 18                                   |
| Arodor - 1016<br>Arodor - 1242      | ND (2.4 U)<br>25                     | ND (0.91 U)<br>11                | ND (0.038 U)<br>0.18             | ND (0.91 U)<br>2.3                       | ND (0.062 U)<br>ND (0.062 U)             | ND (0.060 U)<br>ND (0.060 U) | ND (1.6 UJ)<br>11 J                | 18                                   |
|                                     |                                      | ND (0.91 U)<br>11<br>ND (0.91 U) |                                  |                                          |                                          | • •                          |                                    |                                      |
| Arodor - 1242                       | 25                                   | 11                               | 0.16                             | 2.3                                      | ND (0.062 U)                             | ND (0.060 U)                 | 11 J                               | 67                                   |

| Location<br>Depth (ft)<br>Sample ID | MW - 126B<br>12.00 - 14.00<br>A60007 | DLHB-1<br>0.00-0.50<br>A60569 | DLHB-1<br>2.00-4.00<br>A60590 | DLHB-1<br>10.00-12.00<br>A60591 | DLHB-1<br>12.00-14.00<br>A60592 | DLHB-1<br>14.00-16.00<br><u>A60593</u> | DLHB-1<br>16.00-18.00<br> | DLHB - 2<br>0.00 - 0.60<br>A60582 |
|-------------------------------------|--------------------------------------|-------------------------------|-------------------------------|---------------------------------|---------------------------------|----------------------------------------|---------------------------|-----------------------------------|
| Monarch HRDL (Co                    | ont'd.)                              | FRDLs                         |                               |                                 |                                 |                                        |                           |                                   |
| Arodor - 1016                       | ND (0.73 U)                          | ND (0.092 U)                  | ND (0.17 U)                   | ND (0.11 U)                     | 0.071 J                         | ND (0.14 U)                            | 0.49                      | ND (0.078 U)                      |
| Arodor - 1242                       | 3.4                                  | NO (0.092 U)                  | ND (0.17 U)                   | 0.45                            | ND (0.14 UJ)                    | 0.60 J                                 | ND (0.039 U)              | ND (0.078 U)                      |
| Arodor - 1248                       | 1.4                                  | ND (0.092 U)                  | ND (0.17 U)                   | ND (0.11 U)                     | ND (0.14 UJ)                    | ND (0.14 U)                            | ND (0.039 U)              | ND (0.078 U)                      |
| Arodor - 1254                       | 2.3                                  | ND (0.092 U)                  | ND (0.17 U)                   | ND (0.11 U)                     | ND (0.14 UJ)                    | ND (0.14 U)                            | ND (0.039 U)              | ND (0.078 U)                      |
| Arodor-1260                         | ND (0.73 U)                          | ND (0.092 U)                  | ND (0.17 U)                   | ND (0.11 U)                     | ND (0.14 UJ)                    | ND (0.14 U)                            | ND (0.039 U)              | ND (0.078 L')                     |

| Location<br>Depth (ft)<br>Sample ID | DLHB-2<br>0.50-2.00<br><u>A6058</u> 3 | DLHB-2<br>2.00-4.00<br>A60564 | DLHB-2<br>4.00-6.00<br>A60585 | DLHB-2<br>6.00-8.00<br>A60586 | DLHB-2<br>8.00-10.00<br>A60587 | DLHB - 3<br>0.00 - 0.50<br>A60595 | DLHB-3 <sup>2</sup><br>0.50-2.00<br><u>A60596</u> | DLHB - 3<br>2.00 - 4.00<br>A60597 |
|-------------------------------------|---------------------------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------------|-----------------------------------|---------------------------------------------------|-----------------------------------|
| FRDLs (Cont'd.)                     |                                       |                               |                               |                               |                                |                                   |                                                   |                                   |
| Arodor - 1016                       | ND (0.16 U)                           | ND (0.16 U)                   | ND (0.14 U)                   | ND (0.092 U)                  | 0.093                          | ND (0.23 U)                       | ND (0.15 U)                                       | ND (0.14 U)                       |
| Arodor - 1242                       | 0.97                                  | ND (0.16 U)                   | 0.24                          | 0.21 J                        | ND (0.037 U)                   | 2.2                               | 0.97                                              | 0.094 J                           |
| Arodor - 1248                       | 0.10 J                                | ND (0.16 U)                   | ND (0.14 U)                   | ND (0.092 U)                  | ND (0.037 U)                   | ND (0.23 UJ)                      | 0.29                                              | ND (0.14 U)                       |
| Arodor - 1254                       | ND (0.16 U)                           | ND (0.16 U)                   | ND (0.14 U)                   | ND (0.092 U)                  | ND (0.037 U)                   | ND (0.23 UJ)                      | ND (0.15 U)                                       | ND (0.14 U)                       |
| Arodor ~ 1260                       | ND (0.16 U)                           | ND (0.16 U)                   | ND (0.14 U)                   | ND (0.092 U)                  | ND (0.037 U)                   | ND (0.23 U)                       | ND (0.15 U)                                       | ND (0.14 U)                       |

(See Notes on Page 11)

ś

i

:

;

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED PCB RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location<br>Depth (ft)<br>Sample ID | DLHB-3<br>4.00-6.00<br>A60598 | DLHB3 <sup>2</sup><br>6.008.00<br><u>A60599</u> | DLHB-3 <sup>2</sup><br>8.00-10.00<br><u>A60600</u> | DLHB-4<br>0.00-0.50<br>A60580 | DLHB-5<br>0.00-0.50<br><u>A60581</u> | DLHB-6<br>0.00-0.50<br>A60601 | DLHB-6<br>2.00-4.00<br>A60602 | DLHB-6<br>4.00-6.00<br>A60603 |
|-------------------------------------|-------------------------------|-------------------------------------------------|----------------------------------------------------|-------------------------------|--------------------------------------|-------------------------------|-------------------------------|-------------------------------|
| FRDLs (Cont'd.)                     |                               |                                                 |                                                    |                               |                                      |                               |                               |                               |
| Arodor - 1016                       | ND (0.17 UJ)                  | ND (0.58 U)                                     | 1.5                                                | ND (0.13 U)                   | 8.0 DJ                               | ND (0.27 UJ)                  | ND (0.19 U)                   | ND (0.090 U)                  |
| Arodor – 1242                       | 0.20 J                        | 4.5                                             | ND (0.20 U)                                        | 1.5                           | ND (0.38 U)                          | 0.31 J                        | 0.25                          | 0.37                          |
| Arodor – 1248                       | ND (0.17 UJ)                  | ND (0.58 U)                                     | ND (0.20 U)                                        | ND (0.13 U)                   | ND (0.38 U)                          | ND (0.27 UJ)                  | ND (0.19 U)                   | 0.27                          |
| Arodor - 1254                       | ND (0.17 UJ)                  | ND (0.58 U)                                     | ND (0.20 U)                                        | ND (0.13 U)                   | ND (0.38 U)                          | ND (0.27 UJ)                  | ND (0.19 U)                   | ND (0.090 U)                  |
| Arodor - 1260                       | ND (0.17 UJ)                  | ND (0.58 U)                                     | ND (0.20 U)                                        | ND (0.13 U)                   | ND (0.38 U)                          | ND (0.27 UJ)                  | ND (0.19 U)                   | ND (0.090 U)                  |

| Location<br>Depth (ft)<br>Sample ID | DLHB-6<br>6.00-8.00<br><u>A60604</u> | DLHB6 (Dup)<br>6.008.00<br>A60607 | DLHB-6<br>8.00-10.00<br><u>A60605</u> | DLHB-6<br>10,00-12.00<br>A60606 | MW - 122B<br>4.00-6.00<br><u>A60079</u> | MW - 122B (Dup)<br>4.00 - 6.00<br>A60080 | MW 122B<br>18.00 20.00<br>A60081 |
|-------------------------------------|--------------------------------------|-----------------------------------|---------------------------------------|---------------------------------|-----------------------------------------|------------------------------------------|----------------------------------|
| FRDLs (Cont'd.)                     |                                      |                                   |                                       |                                 |                                         |                                          |                                  |
| Arodor - 1016                       | ND (4.2 U)                           | 120 J                             | ND (0.44 U)                           | 6.6                             | ND (0.11 U)                             | ND (0.053 U)                             | ND (0.087 U)                     |
| Arodor - 1242                       | 14 J                                 | ND (22 U)                         | 19 D                                  | ND (0.21 U)                     | 1.1                                     | 0.28                                     | ND (0.087 U)                     |
| Arodor - 1248                       | ND (4.2 U)                           | ND (22 U)                         | ND (0.44 U)                           | ND (0.21 U)                     | 0.35                                    | 0.027 J                                  | ND (0.087 U)                     |
| Arodor - 1254                       | ND (4.2 U)                           | ND (22 U)                         | 0.48 JN                               | 0.35                            | ND (0.11 U)                             | ND (0.053 U)                             | ND (0.087 U)                     |
| Arodor - 1260                       | ND (4.2 U)                           | ND (22 U)                         | ND (0.44 U)                           | ND (0.21 U)                     | ND (0.11 U)                             | ND (0.053 U)                             | ND (0.087 U)                     |

| Location<br>Depth (ft)<br>Sample ID | FLF~1<br>0.00~0.50<br><u>A60034</u> | FLF-1 <sup>2</sup><br>2.00-4.00<br><u>A60095</u> | FLF-1 <sup>2</sup><br>4.00+6.00<br><u>A60096</u> | FLF - 1 <sup>2</sup><br>6,00 - 6.50<br><u>A6009</u> 7 | FLF-1 <sup>2</sup><br>6.50-8.00<br><u>A60098</u> | FLF - 2<br>0.00 - 0.50<br>A60632 | FLF - 2 <sup>3</sup><br>20.00 - 22.00<br>A60633 | FLF - 2<br>20.00 - 22.00<br>A60634 |
|-------------------------------------|-------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|----------------------------------|-------------------------------------------------|------------------------------------|
| Former Type III La                  | ndfill                              |                                                  |                                                  |                                                       |                                                  | •                                |                                                 |                                    |
| Arodor - 1016                       | ND (3.1 U)                          | ND (6.6 U)                                       | ND (6.6 U)                                       | ND (0.89 U)                                           | ND (0.039 U)                                     | ND (0.051 UJ)                    | ND (230 U)                                      | ND (0.57 U)                        |
| Arodor – 1242                       | ND (3.1 U)                          | 260 DJ                                           | 240 DJ                                           | 75 BD                                                 | ND (0.039 U)                                     | ND (0.051 UJ)                    | 2000                                            | 2.4                                |
| Arodor - 1248                       | 85 DJ                               | ND (6.6 U)                                       | ND (6.6 U)                                       | ND (0.89 U)                                           | 0.073                                            | ND (0.051 UJ)                    | ND (230 U)                                      | ND (0.57 U)                        |
| Arodor - 1254                       | ND (3.1 U)                          | ND (6.6 U)                                       | ND (6.6 U)                                       | ND (0.89 U)                                           | ND (0.039 U)                                     | ND (0.051 UJ)                    | ND (230 U)                                      | ND (0.57 U)                        |
| Arodor - 1260                       | ND (3.1 U)                          | ND (6.6 U)                                       | ND (6.6 U)                                       | ND (0.89 U)                                           | ND (0.039 U)                                     | ND (0.051 UJ)                    | ND (230 U)                                      | ND (0 57 U)                        |

(See Notes on Page 11)

1

2

.

1

;

1

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED PCB RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location<br>Depth (ft)<br><u>Sample ID</u> | FLF-3<br>0.00-0.50<br>A60635 | FLF-3 <sup>2</sup><br>14.00-16.00<br><u>A60636</u> | FLF-3<br>14.00-16.00<br><u>A60637</u> | MW ~ 19BR<br>6.00 ~ 8.00<br><u>A60697</u> | MW - 19BR (Dup)<br>6.00-8.00<br><u>A60701</u> | MW - 19BR<br>14.00 - 16.00<br>A60698 | MW 19BR <sup>2</sup><br>24.00 26.00<br>A60699 | MW - 19BR<br>38.00 - 40.00<br>A60700                                         |
|--------------------------------------------|------------------------------|----------------------------------------------------|---------------------------------------|-------------------------------------------|-----------------------------------------------|--------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|
|                                            |                              |                                                    |                                       |                                           |                                               |                                      |                                               |                                                                              |
| ormer type itt La                          | ndfill (Cont'd.)             |                                                    |                                       |                                           |                                               |                                      |                                               |                                                                              |
| Arodor - 1016                              | ND (0.051 U)                 | ND (0.16 U)                                        | ND (0.054 U)                          | ND (0.056 U)                              | ND (0.056 UJ)                                 | ND (0.054 U)                         | ND (0.056 UJ)                                 | ND (0.059 UJ                                                                 |
|                                            |                              | ND (0.16 U)<br>0.14 J                              | ND (0.054 U)<br>ND (0.054 U)          | ND (0.056 U)<br>0.40                      | ND (0.056 UJ)<br>0.53 J                       | ND (0.054 U)<br>0.099                | ND (0.056 UJ)<br>ND (0.056 UJ)                | 1 <b>(</b>                                                                   |
| Arodor - 1016                              | ND (0.051 U)                 |                                                    |                                       |                                           | 1 1 1                                         | · · ·                                |                                               | ND (0.059 UJ                                                                 |
| Arodor - 1016<br>Arodor - 1242             | ND (0.051 U)<br>ND (0.051 U) | 0.14 J                                             | ND (0.054 U)                          | 0.40                                      | 0.53 J                                        | 0.099                                | ND (0.056 UJ)                                 | ND (0.059 UJ<br>ND (0.059 UJ<br>ND (0.059 UJ<br>ND (0.059 UJ<br>ND (0.059 UJ |

| Location<br>Depth (ft)<br>Sample ID | MW – 127A (Dup)<br>4.00 – 6.00<br>A60104 | MW - 127A<br>4.00-6.00<br>A60103 | WA-1<br>0.00~0.50<br><u>A6064</u> | WA-1<br>2.00-4.00<br><u>A60059</u> | WA-1<br>8.00-10.00<br>A60060 | WA-1<br>10.00-12.00<br>A60061 | WA - 1<br>12.00 - 13.00<br>A60062 | WA - 1<br>13.00 - 14.00<br>A60063 |
|-------------------------------------|------------------------------------------|----------------------------------|-----------------------------------|------------------------------------|------------------------------|-------------------------------|-----------------------------------|-----------------------------------|
| Former Type III Li                  | andfill (Cont'd.)                        |                                  | Western Disposa                   | J Area                             |                              |                               |                                   |                                   |
| Arodor - 1016                       | ND (0.058 U)                             | ND (0.056 U)                     | ND (0.057 U)                      | ND (0.13 U)                        | ND (0.15 U)                  | ND (3.1 U)                    | ND (0.46 U)                       | ND (0.035 U)                      |
| Arodor – 1242                       | ND (0.058 U)                             | ND (0.056 U)                     | ND (0.057 U)                      | 0.17                               | 0.69                         | 22                            | 5.5                               | ND (0.035 U)                      |
| Aroclor - 1248                      | ND (0.058 U)                             | 0.052 J                          | ND (0.057 U)                      | ND (0.13 UJ)                       | ND (0.15 UJ)                 | ND (3.1 U)                    | ND (0.46 U)                       | ND (0.035 U)                      |
| Arodor – 1254                       | ND (0.058 U)                             | ND (0.056 U)                     | ND (0.057 U)                      | ND (0.13 UJ)                       | 0.062 J                      | ND (3.1 U)                    | ND (0.46 U)                       | ND (0.035 U)                      |
| Arodor - 1260                       | ND (0.058 U)                             | ND (0.056 U)                     | ND (0.057 U)                      | ND (0.13 U)                        | ND (0.15 U)                  | ND (3.1 U)                    | ND (0.46 U)                       | ND (0.035 U)                      |

| Location<br>Depth (ft)<br>Sample ID | WA-2<br>0.00-0.50<br>A60670 | WA - 2<br>6.00 - 8,00<br><u>A60671</u> | WA-2 (Dup)<br>6.00-8.00<br><u>A60672</u> | WA-2<br>8.00-10.00<br><u>A60673</u> | WA-2<br>10.00-12.00<br><u>A60674</u> | WA - 2<br>12.00 - 14.00<br>A60675 | WA - 2<br>14.00 - 18.00<br>A60676 | WA 3<br>0.00 0.50<br>A60664 |
|-------------------------------------|-----------------------------|----------------------------------------|------------------------------------------|-------------------------------------|--------------------------------------|-----------------------------------|-----------------------------------|-----------------------------|
| Western Disposal                    | Area (Cont'd.)              |                                        |                                          |                                     |                                      |                                   |                                   |                             |
| Arodor - 1016                       | ND (0.062 U)                | 600 DJ                                 | 0.47 J                                   | 1.6                                 | 0.094 J                              | ND (0.062 U)                      | ND (0.037 U)                      | 0.046 J                     |
| Arodor - 1242                       | 0.029 J                     | ND (14 U)                              | ND (0.079 U)                             | ND (0.11 U)                         | ND (0.13 U)                          | 0.11                              | ND (0.037 U)                      | ND (0.054 U)                |
| Arodor - 1248                       | 0.052 J                     | ND (14 U)                              | ND (0.079 U)                             | ND (0.11 U)                         | ND (0.13 U)                          | ND (0.062 U)                      | ND (0.037 U)                      | L 660 0                     |
| Arocior - 1254                      | ND (0.062 U)                | ND (14 U)                              | ND (0.079 U)                             | ND (0.11 U)                         | 0.11 J                               | ND (0.062 U)                      | ND (0.037 U)                      | ND (0.054 U)                |
| Aroclor - 1260                      | ND (0.062 U)                | ND (14 U)                              | ND (0.079 U)                             | ND (0.11 U)                         | ND (0.13 U)                          | ND (0.062 U)                      | ND (0.037 U)                      | ND (0.054 U)                |

(Seu Notes on Page 11)

.

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED PCB RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location<br>Depth (ft)<br>Sample ID | WA-3<br>2.00-4.00<br>A60665 | WA-3<br>10.00-12.00<br><u>A60666</u> | WA-3<br>12.00-14.00<br><u>A60667</u> | WA-3<br>14.00-16.00<br>A60668 | WA-3<br>16.00-18.00<br><u>A60669</u> | WA-4<br>0.00-0.50<br>A60659 | WA-4<br>4.00-8.00<br><u>A60660</u> | WA-4<br>6.00-8.00<br>A60661 |
|-------------------------------------|-----------------------------|--------------------------------------|--------------------------------------|-------------------------------|--------------------------------------|-----------------------------|------------------------------------|-----------------------------|
| Western Disposal                    | Area (Cont'd.)              |                                      |                                      |                               |                                      |                             |                                    |                             |
| Arodor-1016                         | ND (0.13 U)                 | ND (0.14 U)                          | ND (0.16 U)                          | ND (0.088 U)                  | ND (0.034 U)                         | ND (0.052 U)                | ND (0.72 U)                        | ND (0.087 U)                |
| Arodor – 1242                       | 0.058 J                     | 0.55                                 | 0.13 J                               | 0.33                          | 0.025 J                              | ND (0.052 U)                | 8.2                                | ND (0.087 U)                |
| Arodor - 1248                       | ND (0.13 U)                 | ND (0.14 U)                          | ND (0.16 U)                          | ND (0.088 U)                  | ND (0.034 U)                         | 0.24                        | ND (0.72 U)                        | 0.088                       |
| Arodor – 1254                       | ND (0.13 U)                 | ND (0.14 U)                          | ND (0.16 U)                          | ND (0.088 U)                  | ND (0.034 U)                         | ND (0.052 U)                | ND (0.72 U)                        | ND (0.087 U)                |
| Arodor - 1260                       | ND (0.13 U)                 | ND (0.14 U)                          | ND (0.16 U)                          | ND (0.088 U)                  | ND (0.034 U)                         | ND (0.052 U)                | ND (0.72 U)                        | ND (0.087 U)                |

| Location<br>Depth (ft)<br>Sample ID | WA-4<br>8,00-10,00<br>A60662 | WA-4<br>10.00-12.00<br><u>A60663</u> | WA-5<br>0.00-0.50<br>A60645 | WA-5<br>2,00-4.00<br><u>A60646</u> | WA-5<br>10,00-12.00<br><u>A60647</u> | WA - 5<br>18.00 - 20.00<br>A60648 | WA - 5 (Dup)<br>18.00 - 20.00<br><u>A6065</u> 2 | WA - 5<br>20.00 - 22.00<br>A60649 |
|-------------------------------------|------------------------------|--------------------------------------|-----------------------------|------------------------------------|--------------------------------------|-----------------------------------|-------------------------------------------------|-----------------------------------|
| Western Disposal                    | Area (Cont'd.)               |                                      |                             |                                    |                                      |                                   |                                                 |                                   |
| Arodor - 1016                       | ND (0.085 U)                 | ND (0.034 U)                         | ND (0.062 UJ)               | ND (0.12 UJ)                       | ND (0.13 UJ)                         | ND (0.11 UJ)                      | ND (0.11 UJ)                                    | ND (0 13 UJ)                      |
| Arodor – 1242                       | 0.063 J                      | ND (0.034 U)                         | ND (0.062 UJ)               | ND (0.12 UJ)                       | 0.80 BJ                              | ND (0.11 UJ)                      | ND (0.11 UJ)                                    | 0.19 J                            |
| Arodor – 1248                       | ND (0.085 U)                 | ND (0.034 U)                         | ND (0.062 UJ)               | 0.076 J                            | ND (0.13 UJ)                         | ND (0.11 UJ)                      | ND (0.11 UJ)                                    | ND (0.13 UJ)                      |
| Arodor - 1254                       | ND (0.085 U)                 | ND (0.034 U)                         | ND (0.062 UJ)               | ND (0.12 UJ)                       | ND (0.13 UJ)                         | ND (0.11 UJ)                      | ND (0.11 UJ)                                    | ND (0.13 UJ                       |
| Arodor - 1260                       | ND (0.085 U)                 | ND (0.034 U)                         | ND (0.062 UJ)               | ND (0.12 UJ)                       | ND (0.13 UJ)                         | ND (0.11 UJ)                      | ND (0.11 UJ)                                    | ND (0.13 UJ)                      |

| Location<br>Depth (ft)<br>Sample ID | WA-5<br>22.00-23.50<br><u>A60650</u> | WA-5<br>23.50-26.00<br><u>A60651</u> | WA~6<br>0.00-0.50<br>A60087 | WA-6<br>4.00-6.00<br>A60082 | WA-6<br>8.00~10.00<br><u>A60083</u> | WA-6<br>10.00-12.00<br>Ac0084 | WA-6<br>12.00-13.00<br>A60085 | WA-6<br>13.00-15.00<br>A60086 |
|-------------------------------------|--------------------------------------|--------------------------------------|-----------------------------|-----------------------------|-------------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Western Disposal                    | Area (Cont'd.)                       |                                      |                             |                             |                                     |                               |                               |                               |
| Arodor - 1016                       | ND (0.15 U)                          | ND (0.034 U)                         | ND (0.61 U)                 | ND (250 UJ)                 | ND (220 UJ)                         | ND (200 UJ)                   | ND (2.1 U)                    | ND (0.043 U)                  |
| Arodor - 1242                       | 0.25                                 | ND (0.034 U)                         | 8.8                         | 1100 BJ                     | 480 BJ                              | 800 BJ                        | 300 D                         | 0.22                          |
| Arodor - 1248                       | ND (0.15 U)                          | ND (0.034 U)                         | ND (0.61 U)                 | ND (250 UJ)                 | ND (220 UJ)                         | ND (200 UJ)                   | ND (2.1 U)                    | ND (0.043 U)                  |
| Arodor - 1254                       | ND (0.15 U)                          | ND (0.034 U)                         | ND (0.61 U)                 | ND (250 UJ)                 | ND (220 UJ)                         | ND (200 UJ)                   | ND (2.1 U)                    | ND (0.043 U)                  |
| Arodor - 1260                       | ND (0.15 U)                          | ND (0.034 U)                         | ND (0.61 U)                 | ND (250 UJ)                 | ND (220 UJ)                         | ND (200 UJ)                   | 1.3 J                         | ND (0.043 U)                  |

(See Notes on Page 11)

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED PCB RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location<br>Depth (ft)<br>Sample ID | WA-7<br>0.00-0.50<br>A60638 | WA7<br>8.0010.00<br><u>A60639</u> | WA-7<br>10.00-12.00<br>A60640 | WA-7<br>16.00-18.00<br><u>A60641</u> | WA-7<br>18.00-20.00<br><u>A60642</u> | WA-7<br>20.00-22.00<br>A60643 | WA-7<br>22.00-24.00<br>A60644 | WA-8<br>0.00-0.50<br>A60653 |
|-------------------------------------|-----------------------------|-----------------------------------|-------------------------------|--------------------------------------|--------------------------------------|-------------------------------|-------------------------------|-----------------------------|
| Nestern Disposal                    | Area (Cont'd.)              |                                   |                               | • <u> </u>                           |                                      | <u></u>                       | ·····                         |                             |
| Arodor - 1016                       | ND (0.060 U)                | ND (0.13 UJ)                      | ND (0.17 UJ)                  | ND (0.13 UJ)                         | ND (0.15 UJ)                         | ND (0.91 U)                   | ND (0.22 U)                   | ND (0.28 U)                 |
| Arodor - 1242                       | 0.072                       | ND (0.13 UJ)                      | ND (0.17 UJ)                  | ND (0.13 UJ)                         | 0.14 BJ                              | 39 D                          | 0.41                          | ND (0.28 U)                 |
|                                     | ND (0.060 U)                | 0.23 J                            | ND (0.17 UJ)                  | ND (0.13 UJ                          | ND (0.15 UJ)                         | ND (0.91 U)                   | ND (0.22 U)                   | 3.1                         |
| Arodor – 1248                       |                             |                                   | ND (0.17 UJ)                  | ND (0.13 UJ)                         | ND (0.15 UJ)                         | ND (0.91 U)                   | ND (0.22 U)                   | ND (0.28 U)                 |
| Arodor – 1254                       | ND (0.060 U)                | ND (0.13 UJ)                      |                               |                                      |                                      |                               |                               |                             |
| Arodor - 1260                       | ND (0.060 U)                | ND (0.13 UJ)                      | ND (0.17 UJ)                  | ND (0.13 UJ                          | <u>ND (0.15 UJ)</u>                  | ND (0.91 U)                   | ND (0.22 U)                   | ND (0.28 U)                 |

| Location<br>Depth (ft)<br>Sample ID | WA-8<br>2.00-4.00<br>A60654 | WA-8<br>6.00-8.00<br>A60655 | WA-8<br>8.00-10.00<br>A60656 | WA-8<br>10.00-12.00<br>A60657         | WA-8<br>12.00-14.00<br><u>A60658</u> | MW - 7B<br>4,0-6.0<br>A60076 | MW - 7B<br>14.00 - 16.00<br>A60077 | B~7B<br>8.00-10.00<br>A60702 |
|-------------------------------------|-----------------------------|-----------------------------|------------------------------|---------------------------------------|--------------------------------------|------------------------------|------------------------------------|------------------------------|
| Western Disposal /                  | Area (Cont'd.)              |                             | ······                       | · · · · · · · · · · · · · · · · · · · |                                      |                              |                                    | 1 ·                          |
| Arodor - 1016                       | ND (22 U)                   | ND (16 U)                   | ND (2.1 U)                   | ND (1.8 U)                            | ND (0.036 U)                         | ND (0.052U)                  | ND (0.055 U)                       | ND (0.034 U)                 |
| Arodor - 1242                       | 1100 DJ                     | ND (16 U)                   | 51 DJ                        | 120 D                                 | 0.042                                | ND (0.052U)                  | ND (0.055 U)                       | ND (0.034 U)                 |
|                                     | ND (22 U)                   | 260 DJ                      | ND (2.1 U)                   | ND (1.6 U)                            | ND (0.036 U)                         | ND (0.052U)                  | ND (0.055 U)                       | ND (0.034 U)                 |
| Arodor - 1248                       |                             | ND (16 U)                   | ND (2.1 U)                   | ND (1.8 U)                            | ND (0.036 U)                         | ND (0.052U)                  | ND (0.055 U)                       | ND (0.034 U)                 |
| Arodor – 1254                       | ND (22 U)                   |                             | ND (2.1 U)                   | ND (1.8 U)                            | ND (0.036 U)                         | ND (0.052U)                  | ND (0.055 U)                       | ND (0.034 U)                 |
| Arodor – 1. fi0                     | ND (22 U)                   | <u>ND (16 U)</u>            |                              | 1 1011.00                             |                                      | T 10.03501                   | 1 10 10 000 01                     |                              |

| Location<br>Depth (ft)<br>Sample ID             | B-7B<br>10.00-12.00<br>A60703                | MW 8A<br>0.00 0.50<br><u>A60105</u> | MW - 8A<br>4.00 - 6.00<br>A60069 | MW - 8A<br>8.00 - 10.00<br><u>A60090</u> | MW - 8A<br>10.00 - 12.00<br><u>A60091</u> | MW - 8A<br>12.00 - 12.50<br>A60092    | MW - 8A<br>12.50 - 14.00<br><u>A60093</u> | MW - 208<br>6.00 - 8.00<br>A60056 |
|-------------------------------------------------|----------------------------------------------|-------------------------------------|----------------------------------|------------------------------------------|-------------------------------------------|---------------------------------------|-------------------------------------------|-----------------------------------|
| Vestern Disposal                                | Area (Cont'd.)                               |                                     |                                  |                                          | T                                         | · · · · · · · · · · · · · · · · · · · | T                                         |                                   |
| Arodor - 1016                                   | ND (0.043 U)                                 | ND (0.052 U)                        | 370 DJ                           | 220 DJ                                   | ND (4.6 U)                                | ND (2.5 U)                            | ND (0.051 U)                              | ND (0.056 U)                      |
|                                                 |                                              | NO /0 050 UN                        | ND (5.9 U)                       | ND (3.3 U)                               | 330 DJ                                    | 220 D                                 | 0.081 J                                   | ND (0.056 U)                      |
| Arodor $= 1242$                                 | ND (0.043 U)                                 | ND (0.052 U)                        |                                  |                                          | 330.03                                    |                                       |                                           |                                   |
| Arodor - 1242                                   | ND (0.043 U)                                 | 0.16                                | ND (5.9 U)                       | ND (3.3 U)                               | ND (4.6 U)                                | ND (2.5 U)                            | ND (0.051 U)                              | ND (0.056 U)                      |
| Arodor - 1242<br>Arodor - 1248<br>Arodor - 1254 | ND (0.043 U)<br>ND (0.043 U)<br>ND (0.043 U) |                                     |                                  |                                          |                                           |                                       |                                           |                                   |

(See Notes on Page 11)

-----

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED PCB RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location<br>Depth (ft)<br>Sample ID | MW ~ 208<br>16.00 - 18.00<br>A60057 | Mt/-208<br>20.00-22.00<br>A60058 | MW - 120B<br>0.00-0.50<br>A60048 | MW 120B<br>6.00 8.00<br><u>A60049</u> | MW 120B (Dup)<br>6.00 8.00<br><u>A60050</u> | MW - 120B<br>10.00 - 12.00<br>A60051 | MW 120B<br>14.00 16.00<br>A60052 | MW - 120B<br>16.00 - 18.00<br>A60053 |
|-------------------------------------|-------------------------------------|----------------------------------|----------------------------------|---------------------------------------|---------------------------------------------|--------------------------------------|----------------------------------|--------------------------------------|
| Western Disposal                    | Area (Cont'd.)                      |                                  |                                  |                                       |                                             |                                      |                                  |                                      |
| Arodor-1016                         | ND (0.061 U)                        | ND (0.064 U)                     | ND (0.059 U)                     | ND (35 U)                             | ND (93 U)                                   | ND (5.7 UJ)                          | ND (220 U)                       | ND (36 U)                            |
| Arodor - 1242                       | ND (0.061 U)                        | ND (0.064 U)                     | ND (0.059 U)                     | 180                                   | 630                                         | 69 J                                 | 2500                             | 330                                  |
| Arodor - 1248                       | ND (0.061 U)                        | ND (0.064 U)                     | 0.37                             | ND (35 UJ)                            | ND (93 UJ)                                  | ND (5.7 UJ)                          | ND (220 UJ)                      | ND (36 UJ)                           |
| Arodor ~ 1254                       | ND (0.061 U)                        | ND (0.064 U)                     | ND (0.059 U)                     | ND (35 UJ)                            | ND (93 UJ)                                  | ND (5.7 UJ)                          | ND (220 UJ)                      | ND (36 UJ)                           |
| Arodor - 1260                       | ND (0.061 U)                        | ND (0.064 U)                     | 0.038 J                          | ND (35 U)                             | ND (93 U)                                   | ND (5.7 UJ)                          | ND (220 U)                       | ND (36 U)                            |

| Location<br>Depth (ft)<br>Sample ID | MW 120B<br>18.00 19.00<br>A60054 | MW - 120B<br>19.00 - 20.00<br>A60055 | BMP-1<br>0.00-0.50<br>A60626 | BMP-1<br>7.00-8.00<br>A60627 | BMP-1<br>8.00-9.00<br>A60628 | BMP-2<br>0.00-1.00<br>A60621 | BMP-2<br>3.00-4.00<br>A60624 | BMP - <b>3</b><br>0.00 - 0.50<br>A60629 |
|-------------------------------------|----------------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------------------|
| Western Disposal                    | Area (Cont'd.)                   |                                      | Former Bryant I              | All Pond                     |                              |                              |                              |                                         |
| Arodor-1016                         | ND (4.9 U)                       | ND (0.040 U)                         | 28                           | ND (5.1 U)                   | ND (1.3 U)                   | ND (1.3 U)                   | ND (0.87 U)                  | ND (0.26 U)                             |
| Arodor - 1242                       | 130 D                            | 0.15                                 | ND (7.3 U)                   | 60                           | 3.4                          | 77                           | 24 D                         | ND (0.26 U)                             |
| Arodor - 1248                       | ND (4.9 U)                       | ND (0.040 U)                         | 19                           | ND (5.1 U)                   | ND (1.3 U)                   | ND (1.3 U)                   | ND (0.87 U)                  | 1.2                                     |
| Aroclor - 1254                      | ND (4.9 U)                       | 0.021 J                              | ND (7.3 U)                   | ND (5.1 U)                   | ND (1.3 U)                   | ND (1.3 U)                   | 2.4                          | ND (0.26 U)                             |
| Arodor-1260                         | ND (4.9 U)                       | ND (0.040 U)                         | ND (7.3 U)                   | ND (5.1 U)                   | ND (1.3 U)                   | ND (1.3 U)                   | ND (0 87 U)                  | ND (0.26 U)                             |

| Location<br>Depth (ft)<br>Sample ID | BMP-3<br>6.00-7.00<br><u>A60630</u> | BMP-3<br>7.00-8.00<br><u>A60631</u> | BMP-4<br>0.00-0.50<br>A60731 | BMP-4<br>6.00-7.00<br><u>A60732</u> | BMP-4<br>7.00-7.50<br><u>A60733</u> | BMP - 5<br>0.00 - 0.50<br>A60728 | BMP-5<br>5.00-6.00<br>A60729 | BMP-5<br>5.00-6.50<br>A60730 |
|-------------------------------------|-------------------------------------|-------------------------------------|------------------------------|-------------------------------------|-------------------------------------|----------------------------------|------------------------------|------------------------------|
| Former Bryant Mill                  | Pond (Cont'd.)                      |                                     |                              |                                     |                                     | •                                |                              |                              |
| Arodor - 1016                       | ND (1.1 U)                          | ND (0.12 U)                         | ND (9.1 UJ)                  | ND (0.59 U)                         | ND (0.12 U)                         | ND (4.6 UJ)                      | ND (0.073 U)                 | ND (0.060 U)                 |
| Arodor ~ 1242                       | 13                                  | 1.1                                 | 140 J                        | 3.0                                 | 1.1                                 | ND (4.6 UJ)                      | 0.50                         | ND (0.060 U)                 |
| Aroclor ~ 1248                      | ND (1.1 U)                          | ND (0.12 U)                         | ND (9.1 UJ)                  | ND (0.59 U)                         | ND (0.12 U)                         | 61 J                             | ND (0.073 U)                 | ND (0.060 U)                 |
| Arodor ~ 1254                       | ND (1.1 U)                          | ND (0.12 U)                         | ND (9.1 UJ)                  | ND (0.59 U)                         | ND (0.12 U)                         | ND (4.6 UJ)                      | ND (0.073 U)                 | ND (0.060 U)                 |
| Aroclor ~ 1260                      | 0.94 J                              | ND (0.12 U)                         | ND (9.1 UJ)                  | ND (0.59 U)                         | ND (0.12 U)                         | ND (4.6 UJ)                      | ND (0.073 U)                 | ND (0.060 U)                 |

(See Notes on Page 11)

\$

÷

 $\smile \bigcirc$ 

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED PCB RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location<br>Depth (ft)<br>Sample ID | BMP-6<br>0.00~0.50<br>A60734 | BMP-6<br>0.50-1.50<br><u>A60735</u> | BMP-6<br>1.50-2.50<br>A60736 | BMP-7 <sup>2</sup><br>0.00-0.50<br><u>A60726</u> | BMP7<br>0.501.00<br> | BMP 8<br>0.00 0.50<br>A60710 | BMP-8<br>0.50-1.50<br>A60711 | BMP - 8 (Dup)<br>0.50 - 1.50<br>A60712 |
|-------------------------------------|------------------------------|-------------------------------------|------------------------------|--------------------------------------------------|----------------------|------------------------------|------------------------------|----------------------------------------|
| Former Bryant Mill                  | Pond (Cont'd.)               |                                     |                              |                                                  |                      |                              |                              |                                        |
| Arodor - 1016                       | ND (0.18 U)                  | ND (0.069 U)                        | ND (0.061 U)                 | ND (0.47 UJ)                                     | ND (0.22 UJ)         | ND (0.12 UJ)                 | ND (0.11 UJ)                 | ND (0.11 UJ)                           |
| Arodor – 1242                       | ND (0.18 U)                  | ND (0.069 U)                        | ND (0.061 U)                 | ND (0.47 UJ)                                     | ND (0.22 UJ)         | ND (0.12 UJ)                 | ND (0.11 UJ)                 | ND (0.11 UJ)                           |
| Arodor – 1248                       | 2.0                          | 0.15                                | ND (0.061 U)                 | 1.6 J                                            | 1.1 J                | 0.57 J                       | 1.1 J                        | 1.3 J                                  |
| Arodor - 1254                       | ND (0.18 U)                  | ND (0.069 U)                        | ND (0.061 U)                 | 2.9 J                                            | 2.2 J                | 0.43 J                       | ND (0.11 UJ)                 | ND (0.11 UJ)                           |
| Arodor - 1260                       | 0.20                         | C 028 J                             | ND (0.061 U)                 | ND (0.47 UJ)                                     | ND (0.22 UJ)         | ND (0.12 UJ)                 | 0.26 J                       | 0.42 J                                 |

| Location<br>Depth (ft)<br>Sample ID | BMP-9<br>0.00~0.50<br><u>A60738</u> | BMP-9<br>0.50-1.50<br>A60739 | BMP-10<br>0.00-0.50<br>A60608 | BMP-10 (Dup)<br>0.00-0.50<br>A60610 | BMP 10<br>1.50 3.50<br><u>A60609</u> | BMP-11<br>0.00-1.00<br>A60611 | BMP-11<br>1.00-2.00<br>A60812 | BMP-11<br>2.00-3.00<br>A60613 |
|-------------------------------------|-------------------------------------|------------------------------|-------------------------------|-------------------------------------|--------------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Former Bryant Mill                  | Pond (Cont'd.)                      |                              |                               |                                     |                                      |                               |                               |                               |
| Arodor - 1016                       | ND (0.062 UJ)                       | ND (0.060 UJ)                | 32                            | ND (1.3 U)                          | ND (3.6 U)                           | 30                            | ND (53 U)                     | ND (26 U)                     |
| Arodor – 1242                       | ND (0.062 UJ)                       | ND (0.060 UJ)                | ND (2.5 U)                    | ND (1.3 U)                          | 44                                   | ND (2.7 U)                    | 360                           | 510 DJ                        |
| Arodor - 1248                       | ND (0.062 UJ)                       | ND (0.060 UJ)                | 4.2                           | 7.3                                 | ND (3.6 U)                           | 9.5                           | ND (53 U)                     | ND (26 U)                     |
| Arodor - 1254                       | ND (0.062 UJ)                       | 0.025 J                      | ND (2.5 U)                    | ND (1.3 U)                          | 3.8 •                                | ND (2.7 U)                    | ND (53 U)                     | ND (26 U)                     |
| Arodor - 1260                       | ND (0.062 UJ)                       | ND (0.060 UJ)                | ND (2.5 U)                    | ND (1.3 U)                          | 1.4 J                                | ND (2.7 U)                    | ND (53 U)                     | ND (26 U)                     |

| Location<br>Depth (ft)<br>Sample ID | BMP-11<br>3.00-4.00<br>A60614 | BMP-11<br>5.00-7.00<br><u>A60615</u> | BMP-12<br>0.00-1.00<br><u>A60616</u> | BMP-12<br>9.00-4.00<br><u>A60619</u> | MW 128A<br>6.00-8.00<br>A60704 | MW - 128A<br>14.00 - 16.00<br>A60705 | BLHB - 1<br>0.00 - 0.50<br>A60720 | BLHB - 1<br>1.00 - 1.50<br>A60721 |
|-------------------------------------|-------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------|--------------------------------------|-----------------------------------|-----------------------------------|
| Former Bryant Mill                  | Pond (Cont'd.)                |                                      |                                      |                                      |                                |                                      | Portage Creek Fl                  | oodplain                          |
| Arodor - 1016                       | ND (1.6 U)                    | ND (5.8 U)                           | ND (1.6 U)                           | ND (0.23 U)                          | ND (0.055 U)                   | ND (0.062 U)                         | ND (0.055 UJ)                     | ND (0.056 UJ)                     |
| Arodor - 1242                       | 20                            | 46                                   | 46                                   | 13                                   | ND (0.055 U)                   | 0.031 J                              | ND (0.055 UJ)                     | ND (0.056 U.)                     |
| Arodor - 1248                       | ND (1.6 U)                    | ND (5.8 U)                           | ND (1.6 U)                           | ND (0.23 U)                          | ND (0.055 U)                   | ND (0.062 U)                         | 0.027 J                           | ND (0.056 U.)                     |
| Arodor – 1254                       | 2.8                           | ND (5.8 U)                           | ND (1.6 U)                           | ND (0.23 U)                          | ND (0.055 U)                   | ND (0.062 U)                         | ND (0.055 UJ)                     | ND (0.056 U.)                     |
| Arodor - 1260                       | 1.6                           | ND (5.8 U)                           | ND (1.6 U)                           | ND (0.23 U)                          | ND (0.055 U)                   | ND (0.062 U)                         | ND (0.055 UJ)                     | ND (0.056 U.)                     |

(See Notes on Page 11)

 $\sim$ 

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED PCB RESULTS FOR RESIDUAL S/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location<br>Depth (ft)<br>Bample ID | BLHB-2<br>0.00-0.50<br>A60716 | BLHB-2<br>0.50-1.00<br><u>A60719</u> | BLHB-3<br>0.00-0.50<br>A60713 | BLHB-3 (Dup)<br>0.00-0.50<br><u>A60714</u> | BLHB-3<br>5.00-5.50<br><u>A60715</u> | MLHB - 1<br>0.00 - 0.50<br> | MLHB-1<br>0.50-1.00<br>A60723 | MLHB-2<br>0.00-0.50<br>A60724 |
|-------------------------------------|-------------------------------|--------------------------------------|-------------------------------|--------------------------------------------|--------------------------------------|-----------------------------|-------------------------------|-------------------------------|
| Portage Creek Flo                   | bdplain (Cont'd.)             |                                      |                               |                                            |                                      |                             |                               |                               |
| Arodor-1016                         | ND (0.57 UJ)                  | ND (0.61 UJ)                         | ND (0.28 UJ)                  | ND (0.28 UJ)                               | ND (0.074 UJ)                        | ND (0.064 UJ)               | ND (0.066 UJ)                 | ND (0.059 UJ)                 |
| Arodor – 1242                       | ND (0.57 UJ)                  | ND (0.61 UJ)                         | ND (0.28 UJ)                  | ND (0.28 UJ)                               | ND (0.074 UJ)                        | ND (0.064 UJ)               | ND (0.066 UJ)                 | ND (0.059 UJ)                 |
| Arodor – 1248                       | 2.4 J                         | 4.3 J                                | 2.7 J                         | 2.0 J                                      | ND (0.074 UJ)                        | 0.086 J                     | 0.31 J                        | ND (0.059 U.J                 |
| Arodor - 1254                       | ND (0.57 UJ)                  | ND (0.61 UJ)                         | ND (0.28 UJ)                  | ND (0.28 UJ)                               | 0.29 J                               | ND (0.064 UJ)               | ND (0.066 UJ)                 | ND (0.059 UJ)                 |
| Arodor - 1260                       | ND (0.57 UJ)                  | ND (0.61 UJ)                         | ND (0.28 UJ)                  | ND (0.28 UJ)                               | 0.055 J                              | NC (0.064 UJ                | ND (0.066 UJ)                 | ND (0 059 UJ                  |

| Location<br>Depth (ft)<br>Sample (D | MLHB-2<br>1.50-2.00<br>A60725 |  |  |  |  |  |
|-------------------------------------|-------------------------------|--|--|--|--|--|
| Portage Creek Floodplain (Cont'd.)  |                               |  |  |  |  |  |
| Arodor - 1016                       | ND (0.062 UJ)                 |  |  |  |  |  |
| Arodor – 1242                       | ND (0.062 UJ)                 |  |  |  |  |  |
| Arodor - 1248                       | ND (0.062 UJ)                 |  |  |  |  |  |
| Arodor - 1254                       | ND (0.062 UJ)                 |  |  |  |  |  |
| Arodor - 1260                       | ND (0.062 UJ)                 |  |  |  |  |  |

#### Notes:

<sup>1</sup>Showing only the results for analytes detected above quantitation limit. <sup>2</sup>MS/MSD of this sample was analyzed.

- ND Not detected.
- NA Not analyzed.

#### Notes Explaining Data Qualifiers:

- B The compound has been found in the sample as well as its asociated method blank, a comparison of sample and blank concentrations indicates the compound is likely site-related.
- D Concentration is based on a diluted sample analysis.
- N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
- J The compound was positively identified; however, the associated value is an estimated concentration only.

R - The sample results are rejected.

- U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
- UJ The compound was not detected above the reported sample quantitative limit. However, the reported limit is approximate, and may or may not, represent the actual limit of quantitation.

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

# ALLIED PAPER, INC., OPERABLE UNIT RANGE OF DETECTED CONCENTRATIONS FOR TCL COMPOUNDS IN NATIVE SOIL AND RESIDUALS

| L                                     | Range of Concentrations (mg/kg)    |                                                                                          |  |  |  |  |
|---------------------------------------|------------------------------------|------------------------------------------------------------------------------------------|--|--|--|--|
| Analyte                               | Native Soil                        | Residuals                                                                                |  |  |  |  |
| VOCs                                  |                                    |                                                                                          |  |  |  |  |
| Monarch HRDL <sup>1</sup>             |                                    |                                                                                          |  |  |  |  |
| Icetone                               | 0.019-1.4                          | ND-2.5                                                                                   |  |  |  |  |
| benzene                               | ND-0.041                           | ND-0.034                                                                                 |  |  |  |  |
| 2-butanone                            | ND-0.55                            | ND-0.68                                                                                  |  |  |  |  |
| carbon disulfide                      | ND-0.028                           | ND-0.073                                                                                 |  |  |  |  |
| carbon tetrachloride                  | ND                                 | ND-3.8                                                                                   |  |  |  |  |
| 1.2-dichloroethene                    | ND-0.0040                          | ND                                                                                       |  |  |  |  |
| sthylbenzene                          | ND-0.014                           | ND                                                                                       |  |  |  |  |
| etrachioroethene                      | ND                                 | ND-0.026                                                                                 |  |  |  |  |
| toluene                               | ND-0.034                           | ND-0.92                                                                                  |  |  |  |  |
| cylenes                               | ND-0.078                           | ND-0.12                                                                                  |  |  |  |  |
| Former Bryant Mill Pond <sup>2</sup>  |                                    |                                                                                          |  |  |  |  |
|                                       | ND-0.046                           | 0.15                                                                                     |  |  |  |  |
|                                       | ND-0.014                           | ND                                                                                       |  |  |  |  |
| cerbon disulfide                      | ND-0.0040                          | 0.022                                                                                    |  |  |  |  |
| carbon disunde<br>toluene             | ND-0.039                           | ND                                                                                       |  |  |  |  |
| kvienes                               | ND                                 | 0.031                                                                                    |  |  |  |  |
|                                       |                                    | .iQ.031                                                                                  |  |  |  |  |
| Bryant HRDL <sup>3</sup>              | 0.091 0.54                         | ND-0.47                                                                                  |  |  |  |  |
| acetone                               | 0.031-0.54                         |                                                                                          |  |  |  |  |
| benzene                               | ND-0.016                           | NO-0.066                                                                                 |  |  |  |  |
| 2-butanone                            | 0.0080-0.16                        | ND-0.34                                                                                  |  |  |  |  |
| carbon disulfide                      | ND-0.010                           | ND-0.034                                                                                 |  |  |  |  |
| methylene chloride                    | ND                                 | ND-0.030                                                                                 |  |  |  |  |
| toluene                               | ND-0.0080                          | 0.22-0.93                                                                                |  |  |  |  |
| xylenes                               | ND-0.015                           | ND-0.18                                                                                  |  |  |  |  |
| FRDLs <sup>4</sup>                    | ·= · · · · · · · · · · · · · · · · | ·                                                                                        |  |  |  |  |
| acetone                               | 0.0060-0.30                        | 0.17-1.3                                                                                 |  |  |  |  |
| 2-butenone                            | ND-0.0090                          | 0.094-0.71                                                                               |  |  |  |  |
| carbon disuifide                      | ND-0.0030                          | 0.0070-0.043                                                                             |  |  |  |  |
| sthylbenzene                          | ND                                 | ND-0.049                                                                                 |  |  |  |  |
| 2-hexanone                            | ND                                 | ND-0.041                                                                                 |  |  |  |  |
| 4-methyl-2-pentanone                  | ND                                 | ND-0.051                                                                                 |  |  |  |  |
| toluene                               | ND-0.0010                          | 0.0050-0.025                                                                             |  |  |  |  |
| 1,1,1 - trichloroethane               | ND-0.0030                          | ND                                                                                       |  |  |  |  |
| kylenes                               | ND-0.0060                          | ND-0.059                                                                                 |  |  |  |  |
| Former Type III Landfill <sup>3</sup> |                                    |                                                                                          |  |  |  |  |
| acetone                               | 0.0090                             | ND                                                                                       |  |  |  |  |
| toluene                               | 0.0030                             | ND                                                                                       |  |  |  |  |
| kylenes                               | ND                                 | 0.0090                                                                                   |  |  |  |  |
| Western Disposal Area <sup>4</sup>    |                                    | <u>ىرى يەسىمىكى بىرى بىرى بىرى ئىلىكى بىرى بىرىنىڭ مەن بىلە ۋېرى 1000 مىلە مە</u> رىپىرى |  |  |  |  |
| acetone                               | ND-3.4                             | ND-2.4                                                                                   |  |  |  |  |
| 2-butanone                            | ND-0.96                            | ND-2.2                                                                                   |  |  |  |  |
| carbon disulfide                      | ND-0.013                           | ND-0.078                                                                                 |  |  |  |  |
| chloroform                            | ND                                 | ND - 0.014                                                                               |  |  |  |  |
| cis – 1,3 – dichloropropene           | ND                                 | ND-0.014                                                                                 |  |  |  |  |
| sthylbenzene                          | ND-0.030                           | ND-0.032                                                                                 |  |  |  |  |
| 2~hexanone                            | ND -0.030                          | ND-0.29                                                                                  |  |  |  |  |
| methylene chloride                    | ND - 0.0030                        | ND-0.004                                                                                 |  |  |  |  |
| 4-methyl-2-pentanone                  | ND                                 | ND-0.004                                                                                 |  |  |  |  |
| e-memyi-2-pentanone<br>Ioluene        | ND - 0.038                         | ND-0.027<br>ND-0.015                                                                     |  |  |  |  |
|                                       |                                    |                                                                                          |  |  |  |  |
| xylenes<br>See Notes on Page 4        | <u>ND-0.19</u>                     | ND-0.22                                                                                  |  |  |  |  |

)

.

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

### ALLIED PAPER, INC., OPERABLE UNIT RANGE OF DETECTED CONCENTRATIONS FOR TCL COMPOUNDS IN NATIVE SOIL AND RESIDUALS

|                                        | Range of Concentrations (mg/kg) |           |  |  |  |  |
|----------------------------------------|---------------------------------|-----------|--|--|--|--|
| Analyte                                | Native Soil                     | Residuals |  |  |  |  |
| SVOCs                                  |                                 |           |  |  |  |  |
| Monarch HRDL <sup>1</sup>              |                                 |           |  |  |  |  |
| anthracene                             | ND-0.094                        | ND        |  |  |  |  |
| benzo(a)anthracene                     | ND-0.21                         | ND        |  |  |  |  |
| benzo(b)fluoranthene                   | ND-0.14                         | ND        |  |  |  |  |
| benzo(k)fluoranthene                   | ND-0.17                         | ND        |  |  |  |  |
| benzo(a)pyrene                         | ND-0.17                         | ND        |  |  |  |  |
| carbazole                              | ND-0.070                        | ND        |  |  |  |  |
| chrysene                               | ND-0.20                         | ND        |  |  |  |  |
| bis(2-ethylhexyl)phthalate             | ND-0.11                         | ND-3.1    |  |  |  |  |
| lucranthene                            | ND-0.45                         | ND        |  |  |  |  |
| 2-methyinaphthalene                    | ND-0.35                         | 0.18-4.1  |  |  |  |  |
| 4-methylphenol                         | ND -                            | ND-4.7    |  |  |  |  |
| nephthelene                            | ND-0.084                        | ND-1.0    |  |  |  |  |
| phenanthrene                           | ND-0.44                         | ND-0.54   |  |  |  |  |
| pyrene                                 | ND - 0.36                       | ND -0.54  |  |  |  |  |
| Former Bryant Mill Pond <sup>2,7</sup> |                                 |           |  |  |  |  |
| anthracene                             | ND-0.12                         | ND        |  |  |  |  |
| benzo(a)anthracene                     | ND-0.12<br>ND-0.72              | ND        |  |  |  |  |
|                                        |                                 |           |  |  |  |  |
| benzo(b)fluoranthene                   | 0.40-1.5                        | ND        |  |  |  |  |
| benzo(k)fluoranthene                   | 0.40-1.3                        | ND        |  |  |  |  |
| benzo(g,h,i)perviene                   | ND-0.28                         | ND        |  |  |  |  |
| benzo(a)pyrene                         | ND-0.99                         | ND        |  |  |  |  |
| carbazole                              | ND-0.14                         | ND        |  |  |  |  |
| chrysene                               | 0.37-1.3                        | ND        |  |  |  |  |
| dibenzo(a,h)anthracene                 | ND-0.19                         | ND        |  |  |  |  |
| dibenzofuran                           | ND-0.11                         | ND        |  |  |  |  |
| di-n-butyl phthalate                   | 0.35-2.2                        | ND        |  |  |  |  |
| 2,4-dimethylphenol                     | 0.95-16                         | 4.1       |  |  |  |  |
| bis(2-ethylhexyl)phthalate             | ND                              | 0.58      |  |  |  |  |
| fuoranthene                            | 0.57-2.4                        | ND        |  |  |  |  |
| indeno(1,2,3-cd)pyrene                 | ND-0.75                         | ND        |  |  |  |  |
| 2-methylnaphthalene                    | 0.40-1.2                        | 1.4       |  |  |  |  |
| 2-methylphenol                         | 2.1-28                          | 0.51      |  |  |  |  |
| 4-methylphenol                         | 0.42-7.4                        | 0.42      |  |  |  |  |
| naphthalene                            | ND-0.78                         | 0.28      |  |  |  |  |
| phenanthrene                           | 0.29-1.2                        | 1.4       |  |  |  |  |
| phenol                                 | 2.3-27                          | 0.78      |  |  |  |  |
| pyrene                                 | 0.47-2.0                        | ND        |  |  |  |  |
| Bryant HRDL <sup>3</sup>               |                                 |           |  |  |  |  |
| bis(2-ethylhexyl)phthalate             | ND-0.13                         | ND-3.6    |  |  |  |  |
| fuoranthene                            | ND                              | ND-0.30   |  |  |  |  |
| 2-methyinaphthalene                    | ND-0.063                        | ND-21     |  |  |  |  |
| 4-methyiphenol                         | ND                              | ND-16     |  |  |  |  |
| phenanthrene                           | ND                              | 0.59-7.2  |  |  |  |  |
| FRDLs <sup>4</sup>                     |                                 |           |  |  |  |  |
| bis(2 - chloroethyl)ether              | ND-2.1                          | NO        |  |  |  |  |
|                                        |                                 | ND ND     |  |  |  |  |
| di-n-butyiphthalate                    | ND ND                           | ND-1.0    |  |  |  |  |
| bis(2-ethylhexyl)phthalate             | ND-0.028                        | ND-1.1    |  |  |  |  |
| luoranthene                            | ND                              | ND-0.058  |  |  |  |  |
| lucrene                                | ND-0.18                         | ND-0.40   |  |  |  |  |
| 2-methylnaphthalene                    | ND-1.3                          | ND - 2.3  |  |  |  |  |
| 4-methylphenol                         | ND                              | ND - 2.7  |  |  |  |  |
| phenanthrene                           | ND - 0.34                       | ND-1.3    |  |  |  |  |

See Notes on Page 4

1

AND 14.4 14

### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC., OPERABLE UNIT RANGE OF DETECTED CONCENTRATIONS FOR TCL COMPOUNDS IN NATIVE SOIL AND RESIDUALS

|                                        | Range of Concentrations (mg/kg) |            |  |  |  |
|----------------------------------------|---------------------------------|------------|--|--|--|
| Analyte                                | Native Soil                     | Residuals  |  |  |  |
| SVOCs (Cont'd.)                        |                                 |            |  |  |  |
| Former Type III Landfill <sup>5</sup>  |                                 |            |  |  |  |
| bis(2-ethylhexyl)phthalate             | 0.028                           | 0.63       |  |  |  |
| 2-methylnaphthalene                    | ND                              | 2.4        |  |  |  |
| phenanthrene                           | ND                              | 0.64       |  |  |  |
| Western Disposal Area <sup>4</sup>     |                                 |            |  |  |  |
| anthracene                             | ND-0.031                        | ND         |  |  |  |
| benzo(a)anthraceno                     | ND-0.052                        | ND         |  |  |  |
| benzo(b)fluoranthene                   | ND-0.059                        | ND         |  |  |  |
| benzo(k)fluoranthene                   | ND-0.029                        | ND         |  |  |  |
| benzo(g,h,i)perviene                   | ND-0.028                        | ND         |  |  |  |
| benzo(a)pyrene                         | ND-0.032                        | ND         |  |  |  |
| carbazole                              | ND-0.021                        | ND         |  |  |  |
| chrysene                               | ND-0.064                        | ND-0.12    |  |  |  |
| dibenzofuran                           | ND-0.10                         | ND         |  |  |  |
| di-n-butyiphthalate                    | ND-0.049                        | ND         |  |  |  |
| bis(2-ethylhexyl)phthelate             | ND-0.099                        | ND-5.4     |  |  |  |
| fucranthene                            | ND-0.094                        | ND-0.24    |  |  |  |
| 2-methylnephthalene                    | ND-0.4                          | ND-10      |  |  |  |
| 4-methylphenoi                         | ND-0.022                        | ND-38      |  |  |  |
| naphthalana                            | ND-0.022<br>ND-0.23             | ND - 36    |  |  |  |
|                                        |                                 | ND-2.8     |  |  |  |
| pentachlorophenol                      | ND                              |            |  |  |  |
| phenanthrene                           | ND-0.31                         | ND-0.51    |  |  |  |
| pyrene                                 | <u>ND-0.083</u>                 | ND         |  |  |  |
| Pesticides/PCB                         |                                 |            |  |  |  |
| Monarch HRDL <sup>1</sup>              |                                 |            |  |  |  |
| eldrin                                 | ND-0.0069                       | NO         |  |  |  |
| deita-BHC                              | ND                              | ND-0.043   |  |  |  |
| gamma-chiordane                        | ND                              | ND-0.034   |  |  |  |
| 4,4'-DDE                               | ND-0.0047                       | ND         |  |  |  |
| 4,4'-DDT                               | ND                              | ND-0.25    |  |  |  |
| endosulfan I                           | ND-0.0045                       | ND         |  |  |  |
| endrin eldehyde                        | ND                              | ND-0.047   |  |  |  |
| Total PCB                              | ND-0.47                         | 0.53-140   |  |  |  |
| Former Bryant Mill Pond <sup>2,5</sup> |                                 |            |  |  |  |
| aldrin                                 | 0.14-1.1                        | ND         |  |  |  |
| 4.4'-DDE                               | 0.03-0.33                       | R          |  |  |  |
| 4.4'-DDT                               | ND                              | 0.12       |  |  |  |
| endrin aldehyde                        | ND                              | 0.071      |  |  |  |
| Total PCB                              | ND-510                          | 14-60      |  |  |  |
| Bryant HRDL <sup>3</sup>               |                                 |            |  |  |  |
| 4,4'-0DE                               | ND                              | ND-0.38    |  |  |  |
| 4.4'-DDT                               | ND                              | 0.070-0.41 |  |  |  |
| endrin aldehyde                        | ND                              | ND-0.084   |  |  |  |
| Total PCB <sup>4</sup>                 | ND - 100                        |            |  |  |  |
|                                        | <u>NU - 100</u>                 | 3.0-650    |  |  |  |
| FRDLs <sup>4</sup>                     |                                 |            |  |  |  |
| uldrin                                 | 0.0011-0.13                     | ND         |  |  |  |
| nipha-BHC                              | ND                              | ND-0.0093  |  |  |  |
| 4,4'-DDD                               | ND                              | ND-0.0088  |  |  |  |
| 4.4'-DDE                               | ND-0.013                        | ND         |  |  |  |
| Total PCB <sup>9</sup>                 | ND-7.0                          | ND-19      |  |  |  |
| Former Type III Landfill <sup>5</sup>  |                                 |            |  |  |  |
| 4.4'-DDE                               | ND                              | 0.25       |  |  |  |
| Total PCB <sup>10</sup>                | ND-2.4                          | 0.14-2,000 |  |  |  |

See Notes on Page 4

2897840LOC Revision No.: 1

.....

.....

.

#### ALLIED PAPER. INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER. INC., OPERABLE UNIT RANGE OF DETECTED CONCENTRATIONS FOR TCL COMPOUNDS IN NATIVE SOIL AND RESIDUALS

|                                    | Range of Concentrations (mg/kg) |            |  |  |  |  |
|------------------------------------|---------------------------------|------------|--|--|--|--|
|                                    | hange of Conce                  |            |  |  |  |  |
| Analyte                            | Native Soil                     | Residuels  |  |  |  |  |
| Pesticides/PC3 (Cont'd.)           |                                 |            |  |  |  |  |
| Western Disposal Area <sup>4</sup> |                                 |            |  |  |  |  |
| aldrin                             | ND-0.013                        | ND-0.070   |  |  |  |  |
| beta-BHC                           | ND                              | ND-0.0091  |  |  |  |  |
| deita — BHC                        | ND                              | ND-0.0069  |  |  |  |  |
| alpha – chlordane                  | ND                              | ND-0.0081  |  |  |  |  |
| gamma-chlordane                    | ND                              | ND-0.0061  |  |  |  |  |
| 4,4'-DDD                           | ND                              | ND - 0.020 |  |  |  |  |
| 4,4'-DDE                           | ND                              | ND-0.42    |  |  |  |  |
| 4,4'-DDT                           | ND                              | ND-0.17    |  |  |  |  |
| Total PCB                          | ND-0.41                         | ND-2500    |  |  |  |  |

Notes:

<sup>1</sup> Includes the results of samples from MLSS-1 through MLSS-5.

<sup>2</sup> Includes the results of samples from BMP-2 and BMP-12.

<sup>3</sup> Includes the results of samples from BHDL-22, BHDL-123, and MW-121B.

<sup>4</sup> Includes the results of samples from DLHB-1, DLHB-2, DLHB-3, and DLHB-6.

<sup>5</sup> Includes the results of samples from FLF-1.

<sup>6</sup> Includes the results of samples from WA-1 through WA-8, B-7B, MW-8A, and MW-120B.

<sup>7</sup> Native soil also includes surficial soil samples.

Also includes the results of samples from MW-12R, P-1, P-2, and P-3.

<sup>9</sup> Also includes the results of samples from MW-122B.

<sup>10</sup> Also includes the results of samples from FLF-2, FLF-3, MW-19BR, and MW-127A.

ND - Not detected.

R - Sample results are rejected.

2897840LOC Revision No.: 1

### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

|               | Sample               |       | Congener Concentration (mg/kg) |          |          |         |          |         |       |  |
|---------------|----------------------|-------|--------------------------------|----------|----------|---------|----------|---------|-------|--|
| Location (ft) | Total PCB<br>(mg/kg) | Di-CB | BJhT                           | Tetra-CB | Penta-CB | Hexa-CB | Hepta-CB | Octa CB |       |  |
| BMP-2         | 0 – 1                | 130   | 3.1                            | 62       | 55       | 8       | 1.5      | 0.45    | 0.0   |  |
|               | 1 - 2                | 330   | 18                             | 180      | 110      | 17      | 5        | 2       | 0.2   |  |
|               | 2 - 3                | 440   | 34                             | 230      | 140      | 23      | 6.3      | 2.3     | 0.2   |  |
|               | 3 - 4                | 37    | 2.5                            | 17       | 11       | 4.2     | 1.9      | 0.45    | 0.11  |  |
|               | 4 – 5                | 2.2   | 0.33                           | 0.85     | 0.41     | 0.23    | 0.11     | 0.19    | 0.08  |  |
| BMP-12        | 0-1                  | 38    | 1.3                            | 17       | 16       | 3       | 0.32     | 0.045   | 0.008 |  |
|               | 1 - 2                | 90    | 3.3                            | 46       | 36       | 4.8     | 0.45     | 0.043   | 0.0   |  |
|               | 2 - 3                | 36    | 2.5                            | 19       | 12       | 1.7     | 0.5      | 0.17    | 0.031 |  |
|               | 3 - 4                | 1.2   | 0.11                           | 0.48     | 0.35     | 0.12    | 0.042    | 0.075   | 0.036 |  |
|               | 5 - 7                | 6.6   | 0.41                           | 3.4      | 2.4      | 0.31    | 0.069    | 0.02    | 0.01  |  |

### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF PCB CONGENER RESULTS

Note:

CB - Chlorinated biphenyl.

.

.

### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED PCB RESULTS AND TOC NORMALIZED DATA PORTAGE CREEK SEDIMENT SAMPLES<sup>1</sup> (mg/kg)

| Location<br>Depth (inches)<br>Sample ID | GS1<br>0.0 - 0.5<br>A63000 | GS-2<br>0.0 - 0.5<br><u>A63001</u> | GS-3<br>0.0 - 0.5<br>A63002 | GS-4<br>0.0 - 0.5<br><u>A63003</u> | GS-5 <sup>2</sup><br>0.0 ~ 0.5<br>A63004 | GS-5 (Duplicate)<br>0.0 - 0.5<br>A63005 |
|-----------------------------------------|----------------------------|------------------------------------|-----------------------------|------------------------------------|------------------------------------------|-----------------------------------------|
| Aroclor 1242                            | 1.9                        | 1.3                                | ND (0.14U)                  | 0.081                              | 0.074                                    | 0.064                                   |
| Aroclor 1260                            | 0.11J                      | 0.082J                             | ND (0.14U)                  | ND (0.063U)                        | ND (0.060U)                              | ND (0.060U)                             |
| Total PCB                               | 2.0                        | 1.4                                |                             | 0.081                              | 0.074                                    | 0.064                                   |
| TOC (Percentage by Weight)              | 3.9                        | 1.2                                | 4.2                         | 0.4                                | 0.2                                      | 0.2                                     |
| TOC – Normalized PCB (g/g)              | 5.2E-5                     | 1.2E-4                             |                             | 4.7E-6                             | 3.7E-5                                   | 3.2E-5                                  |

Notes:

<sup>1</sup>Showing only the results for compounds detected above quantitation limits. <sup>2</sup>MS/MSD of this sample was analyzed.

ND - Not detected.

TOC - Total Organic Carbon.

#### Notes Explaining Data Qualifiers

U - The compound was analyzed for but not detected. The associated value is the compound quantitation limit.

J - The compound was positively identified; however, the associated numerical value is an estimated concentration only.

### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF PCB RESULTS FOR RESIDENTIAL SOIL SAMPLES

|                    |                   | l                 |
|--------------------|-------------------|-------------------|
| Location           | Sample Depth (ft) | Total PCB (mg/kg) |
| October 1991       |                   |                   |
| RP-1               | 0.0 - 0.5         | 0.072             |
|                    | 4.0 - 4.5         | 0.51              |
|                    |                   |                   |
| RP-2               | 0.0 - 0.5         | 0.15              |
|                    | 4.5 - 5.0         | 16                |
|                    |                   |                   |
| RP-3               | 0.0 - 0.5         | 0.087             |
|                    | 4.0 - 4.5         | 1.4               |
| RP-4               | 0.0 - 0.5         | 0.34              |
|                    | 1.7 - 2.2         | 0.37              |
| RP-5               | 0.0 - 0.5         | 0.025             |
|                    | 2.5 - 3.0         | 0,26              |
| August to December | 1993              |                   |
| BMSS-1             | 0.0 - 0.5         | ND                |
| BMSS-2             | 0.0 - 0.5         | ND                |
| BMSS-3             | 0.0 - 0.5         | 0.042             |
| BMSS-4             | 0.0 - 0.5         | 0.073             |

Note:

ND - Not detected.

### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED PCB RESULTS FOR GROUNDWATER/LEACHATE SAMPLES<sup>1</sup> (ug/L)

| Location<br>Sample ID | MW-1 <sup>2</sup><br>A66032 | MW-2<br>A66060 | MW-28<br>A66022 | MW-2S<br>(Dup)<br>A66023 | MW - 3<br>A66054 | MW-5<br>A66046 | MW - 7<br>A66001 |
|-----------------------|-----------------------------|----------------|-----------------|--------------------------|------------------|----------------|------------------|
| Aroclor – 1016        | ND (1.0 U)                  | ND (1.0 U)     | ND (1.0 U)      | ND (1.0 U)               | ND (1.1 U)       | ND (1.0 U)     | ND (1.1 U)       |
| Aroclor – 1232        | ND (1.0 U)                  | ND (1.0 U)     | ND (1.0 U)      | ND (1.0 U)               | ND (1.1 U)       | • 1.2          | ND (1.1 U)       |

| Location       | MW-7B      | MW - 8     | MW-8A      | MW-11      | MW-12      | MW-12R     | MW - 15    |
|----------------|------------|------------|------------|------------|------------|------------|------------|
| Sample ID      | A66000     | A66053     | A66052     | A66008     | A66064     | A66028     | A66055     |
| Aroclor – 1016 | ND (1.0 U) | ND (1.0 U) | 3.8        | ND (1.0 U) | ND (1.0 U) | ND (1.0 U) | ND (1.0 U) |
| Aroclor – 1232 | ND (1.0 U) | ND (1.0 U) | ND (1.1 U) | ND (1.0 U) | ND (1.0 U) | ND (1.0 U) | ND (1.0 U) |

| Location<br>Sample ID | MW-16B <sup>2</sup><br>A66059 | MW-16C<br>A66058 | MW-17A<br>A66056 | MW - 17B<br>A66057 | MW-18<br>A66061 | MW-19BR<br>A66030 | MW – 19BR<br>(Dup)<br>A66031 |
|-----------------------|-------------------------------|------------------|------------------|--------------------|-----------------|-------------------|------------------------------|
| Aroclor - 1016        | ND (1.0 U)                    | ND (1.1 U)       | ND (1.20 U)      | ND (1.1 U)         | ND (1.0 U)      | ND (1.0 U)        | ND (1.0 U)                   |
| Aroclor - 1232        | ND (1.0 U)                    | ND (1.1 U)       | ND (1.20 U)      | ND (1.1 U)         | ND (1.0 U)      | ND (1.0 U)        | ND (1.0 U)                   |

See Notes on Page 4

÷

### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

.

### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED PCB RESULTS FOR GROUNDWATER/LEACHATE SAMPLES<sup>1</sup> (ug/L)

| Location<br>Sample ID | MW-19C<br>A66040 | MW-19D<br>A66041 | MW-20<br>A66049 | MW-20<br>(Dup)<br>A66050 | MW-20B<br><u>A66051</u> | MW-21<br>A66002 | MW-22A<br>A66017 |
|-----------------------|------------------|------------------|-----------------|--------------------------|-------------------------|-----------------|------------------|
| Aroclor – 1016        | ND (1.1 ½)       | ND (1.0 U)       | ND (1.1 U)      | ND (1.1 U)               | ND (1.0 U)              | ND (1.0 U)      | 2.7              |
| Aroclor – 1232        | ND (1.1 U)       | ND (1.0 U)       | ND (1.1 U)      | ND (1.1 U)               | ND (1.0 U)              | ND (1.0 U)      | ND (1.0 U)       |

| Location       | MW-22B     | MW-23      | MW-24      | MW - 25    | MW-26 <sup>2</sup> | MW - 104   | MW - 106   |
|----------------|------------|------------|------------|------------|--------------------|------------|------------|
| Sample ID      | A66018     | A66034     | A66009     | A66027     | A66015             | A66037     | A66063     |
| Aroclor – 1016 | ND (1.0 U) | ND (1.0 U) | 0.89 J     | 3.0        | ND (1.0 U)         | ND (1.0 U) | ND (1.0 U) |
| Aroclor – 1232 | ND (1.0 U)         | ND (1.0 U) | ND (1.0 U) |

-----

| Location<br>Sample ID | MW-108<br>A66047 | MW-112<br>A66045 | MW-114<br>A66036 | MW-120A<br>A66020 | MW-120B<br><u>A66019</u> | MW 120B<br>(Dup)<br>A66024 | MW-121A<br>A66013 |
|-----------------------|------------------|------------------|------------------|-------------------|--------------------------|----------------------------|-------------------|
| Aroclor – 1016        | ND (1.0 U)       | ND (1.0 U)       | ND (1.0 U)       | ND (1.1 U)        | 4.9 J                    | ND (1.0 UJ)                | 2.5 J             |
| Aroclor – 1232        | ND (1.0 U)       | ND (1.0 U)       | ND (1.0 U)       | ND (1.1 U)        | ND (1.0 U)               | ND (1.0 U)                 | ND (1.0 U)        |

See Notes on Page 4

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED PCB RESULTS FOR GROUNDWATER/LEACHATE SAMPLES<sup>1</sup> (ug/L)

| Location<br>Sample ID            | MW-121B<br>A66014    | MW-122A<br>A66033                | MW-122A<br>(Dup)<br>A66038 | MW-122B<br>A66039        | MW-123A<br>A66025        | MW-123B<br><u>A66026</u> | MW-124A<br>A66003        |
|----------------------------------|----------------------|----------------------------------|----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Aroclor – 1016<br>Aroclor – 1232 | 0.99 J<br>ND (1.0 U) | ND (1.0 U)<br>N <u>D (1.0 U)</u> | ND (1.0 U)<br>ND (1.0 U)   | ND (1.0 U)<br>ND (1.0 U) | ND (1.1 U)<br>ND (1.1 U) | ND (1.0 U)<br>ND (1.0 U) | ND (1.0 U)<br>ND (1.0 U) |

| Location<br>Sample ID | MW-124B<br>A66004 | MW-125P<br><u>A66</u> 016 | MW-125A<br>A66005 | MW-125B<br>A66006 | MW-126A<br>A66010 | MW - 126B<br>A66011 | MW-126B<br>(Dup)<br>A66012 |
|-----------------------|-------------------|---------------------------|-------------------|-------------------|-------------------|---------------------|----------------------------|
| Aroclor – 1016        | ND (1.0 U)        | ND (1.1 U)                | ND (1.0 U)        | ND (1.0 U)        | ND (1.0 U)        | ND (1.0 U)          | ND (1.0 U)                 |
| Aroclor – 1232        | ND (1.0 U)        | ND (1.1 U)                | ND (1.0 U)        | ND (1.0 U)        | ND (1.0 U)        | ND (1.0 U)          | ND (1.0 U)                 |

| Location       | MW-127A    | MW-128A    | RIVULET2   |
|----------------|------------|------------|------------|
| Sample ID      | A66044     | A66035     | A66007     |
| Aroclor – 1016 | ND (1.0 U) | ND (1.1 U) | ND (1.0 U) |
| Aroclor – 1232 | ND (1.0 U) | ND (1.1 U) | ND (1.0 U) |

See Notes on Page 4

### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED PCB RESULTS FOR GROUNDWATER/LEACHATE SAMPLES<sup>1</sup> (ug/L)

#### Notes:

<sup>1</sup>Showing only the results for compounds detected above quantitation limit. <sup>2</sup>MS/MSD of this sample was analyzed. ND - Not detected.

#### Notes Explaining Data Qualifiers:

- U The compound was analyzed for but not detected. The associated value is the compound quantitative limit.
- J The compound was positively identified. However, the associated numerical value is an estimated concentration only.
- UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.

ALLIED PAPER, INC., OPERABLE UNIT RANGE OF DETECTED CONCENTRATIONS OF TCL COMPOUNDS IN UNFILTERED CHOUNDWATER AND LEACHATE SAMPLES

| Monarch HRDL <sup>1</sup> bercars 2 = butandfill bercar                                                                                                                                                                                                              |                                                | Range of Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ncentrations (ug/L)                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Monarch HRDL <sup>1</sup> bercars 2 = butandfill bercar                                                                                                                                                                                                              | Analyte                                        | Groundweter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Leachete                                                                                                         |
| Servere Alexandre Alexandr                                                                                                                                                                                                                        | VOCs                                           | in an and a constant of the tradition of the constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ang ngaké ang sarahan ang kanang k  |
| ethylbergane         A ND         ND         ND           tstrachkoroethere         4 ND-5.0         ND         ND           tstrachkoroethere         ND<-3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monerch HRDL <sup>1</sup>                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| ethylbergane         A ND         ND         ND           tstrachkoroethere         4 ND-5.0         ND         ND           tstrachkoroethere         ND<-3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | benzene                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| ethylbergane         A ND         ND         ND           tstrachkoroethere         4 ND-5.0         ND         ND           tstrachkoroethere         ND<-3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2-butandi Versenaria                           | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ÷,                                                                                                               |
| taticane     4 ND-3.0     ND       toluene     ND-1.0     2.0       ND-3.0     ND     10       Sylenes     ND-1.0     2.0       ND-3.0     ND     10       Former Bryant Mill Pond <sup>1</sup> ND-1.0     NA       Bryant Mill Pond <sup>1</sup> ND-2.0     NA       Boltane     ND-2.0     NA       Bryant Mill Pond <sup>1</sup> ND-2.0     NA       Bryant Mill Pond <sup>1</sup> ND-2.0     NA       Bryant Mill Pond <sup>1</sup> ND-1.0     NA       Bryant Mill Pond <sup>1</sup> ND-1.0     NA       Bryant Mill Pond <sup>1</sup> ND-1.0     NA       Bryant Mill Pond <sup>1</sup> ND-0.00     NA <t< td=""><td>carbon disulide</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | carbon disulide                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| bituere         ND - 1.0         2.0           ND - 3.0         ND         ND           sylenes         ND - 3.0         ND           Former Bryant Mill Pond*         ND - 1.0         NA           methylerie chloride         ND - 1.0         NA           stachorosthere         340 - 335         NA           betachorosthere         340 - 335         NA           Bryant HIPDL*         NA         NA           berzene         MA         ND - 1.0         NA           Bryant HIPDL*         NA         NA         NA           berzene         MA         ND - 1.0         NA           berzene         MA         ND - 2.0         NA           SVOCa         G. A - 0.5         MA         NA           Golanna         MA         ND - 0.0         NA           Comment JIPPARDI State         A - 0.5 <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| 1,1,1-Trichlorosthara, NO     NO       Sylense     NO       Former Bryant Mill Pond <sup>1</sup> NO       methyleris charide     NO       Istrachlorosthere     AD       Bryant MRDL <sup>3</sup> NO       berzene     AD       Bryant MRDL <sup>3</sup> AD       berzene     AD       Bryant MRDL <sup>3</sup> AD       berzene     AD       Bryant MRDL <sup>4</sup> ND       Bryant MRDL <sup>4</sup> ND       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| Former Bryant Mill Pond <sup>1</sup> MO -1.0 NA Details ND -1.0 NA Bryant MRDL <sup>3</sup> Decame ND -1.0 NA DEcame ND -1                                                                                                                                                                                                    |                                                | ND-1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                  |
| Former Bryant Mill Pond <sup>1</sup> MO -1.0 NA Details ND -1.0 NA Bryant MRDL <sup>3</sup> Decame ND -1.0 NA DEcame ND -1                                                                                                                                                                                                    | vienes                                         | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | we have a second with the second second                                                                          |
| methylerie chloride AP 2<br>Instruction outputs AP 2<br>Instruction output                                                            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| tetrachicrostherie AP 2 toluene Bryant HRDL* Bryant HRD                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA                                                                                                               |
| Bryant HRDL* borcene Former Type III Landfill* Dercene Former Type III Landfill* Dercene SVOCa Former Type III Landfill* Construction C                                                                                                                                                                                                                        | tetrachicitoethene 31 · 3                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| Bryant HPDL <sup>3</sup> berzene                                                                                                                                                                                                              | toluene                                        | proprietal a preserva de la construcción de la construcción de la construcción de la construcción de la constru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an a                                                                         |
| berzene<br>Coluene<br>Former Type III Landfill*<br>Dertenne<br>Pilot Stick Ares*<br>Pilot Stick Ares*<br>Pilot Stick Ares*<br>Pilot Stick Ares*<br>Double Charice Ares*<br>Pilot Stick |                                                | A THE REAL PROPERTY AND A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | an a                                                                         |
| Former (ype III Landfill*<br>methyleip chioride*** & AD-602<br>Pilot Stidy Area*<br>Stores***<br>Monerof (HRDL*<br>4-methylphenol<br>Former Type III Landfill*<br>Ci-n-bul/Divinger<br>Former Type III Landfill*<br>Former Type III Landfill*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | hommon                                         | ND-1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .e. AIA                                                                                                          |
| Former (ype III Landfill*<br>methyleip chioride*** & AD-602<br>Pilot Stidy Area*<br>Stores***<br>Monerof (HRDL*<br>4-methylphenol<br>Former Type III Landfill*<br>Ci-n-bul/Divinger<br>Former Type III Landfill*<br>Former Type III Landfill*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | toluene                                        | In the second second and the ND in YO was set of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  |
| Dertennis     ND-10       Pilot Si by Area <sup>5</sup> ND-20       Monerol (HRDL)     ND-20       Bryent (NDL)     ND-10       Glan-bulk (HRDL)     ND-10       A-methylphenol     ND-0.70       ND-0.80     NA       A-methylphenol     ND-0.80       ND-1.0     NA       Methylphenol     ND-0.80       ND-1.0     NA       Pestolodiese (PCB     ND-15       Moneroh HRDL <sup>1</sup> ND-20       Moneroh HRDL <sup>1</sup> ND-20       Moneroh HRDL <sup>1</sup> ND-20       ND-15     NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Former Type III Landfill <sup>6</sup>          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| Pilot Sidy Area     Anner       bituene     ND-2.0     NA       SVOCe     C.0     NA       SVOCe     SVOCe     NA       Monerol (HRDL)     ND-2.0     NA       4-methylophenel     ND-1.0     NA       Former Type III Landfill*     ND-1.0     NA       di-n-bulylophenel     ND-0.70     NA       A-methylophenel     ND-0.60     NA       A-methylophenel     ND-0.80     NA       Mestern Disposel Area*     ND-1.0     NA       Pesticides/PCB     ND-15     NA       Moneroh HRDL*     ND -0.20     NA       Stotices/PCB     ND-1.5     NA       Stotices/PCB     ND -3.0     NA       Former Type III Landfill*     ND-3.0     NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | benzene                                        | Manufacture of the set | and the second and the second second second second                                                               |
| Pilot Sidy Area     Anner       bituene     ND-2.0     NA       SVOCe     C.0     NA       SVOCe     SVOCe     NA       Monerol (HRDL)     ND-2.0     NA       4-methylophenel     ND-1.0     NA       Former Type III Landfill*     ND-1.0     NA       di-n-bulylophenel     ND-0.70     NA       A-methylophenel     ND-0.60     NA       A-methylophenel     ND-0.80     NA       Mestern Disposel Area*     ND-1.0     NA       Pesticides/PCB     ND-15     NA       Moneroh HRDL*     ND -0.20     NA       Stotices/PCB     ND-1.5     NA       Stotices/PCB     ND -3.0     NA       Former Type III Landfill*     ND-3.0     NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | methylege chloride                             | 12. AD-4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and the second |
| BYOCa     Common FileDit       4-melliomerici     ND-8.0       Bryent (MDL)     ND-8.0       4-melliomerici     ND-1.0       Former Type III Landfill*       dietry phraiate     ND-0.70       A-methylphenol     ND-0.80       ND-0.80     NA       4-methylphenol     ND-0.80       ND-0.80     NA       2-methylphenol     ND-0.80       ND-1.0     NA       4-methylphenol     ND-0.80       ND-1.0     NA       2-methylphenol     ND-0.80       ND-1.0     NA       Peetioldes/PCB     ND-0.80       Monarch HRDL1     ND-15       Monarch HRDL1     ND       Streat     ND-0.80       ND-1.0     NA       Peetioldes/PCB     ND-0.80       Monarch HRDL1     ND       Streat     ND       Streat <td>Plict Study Areas</td> <td>2.3 - 3.4</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Plict Study Areas                              | 2.3 - 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  |
| BYOCa     Common FileDit       4-melliomerici     ND-8.0       Bryent (MDL)     ND-8.0       4-melliomerici     ND-1.0       Former Type III Landfill*       dietry phraiate     ND-0.70       A-methylphenol     ND-0.80       ND-0.80     NA       4-methylphenol     ND-0.80       ND-0.80     NA       2-methylphenol     ND-0.80       ND-1.0     NA       4-methylphenol     ND-0.80       ND-1.0     NA       2-methylphenol     ND-0.80       ND-1.0     NA       Peetioldes/PCB     ND-0.80       Monarch HRDL1     ND-15       Monarch HRDL1     ND       Streat     ND-0.80       ND-1.0     NA       Peetioldes/PCB     ND-0.80       Monarch HRDL1     ND       Streat     ND       Streat <td>C.I.C.C.</td> <td>ND-2.0</td> <td>NA</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C.I.C.C.                                       | ND-2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                                                                                                               |
| Monard     HBDL       4mellionerci     ND-8.0       Bryant (MDL-6.0     ND-8.0       4mellionerci     ND-1.0       Former Type III Landfill*     ND-1.0       di-n-bulythiniate     ND-0.70       A-methylphenol     ND-0.60       ND-1.0     NA       4-methylphenol     ND-0.60       ND-1.0     NA       2-methylphenol     ND-0.60       ND-1.0     NA       4-methylphenol     ND-0.60       ND-1.0     NA       Peetloides/PCB     ND-0.60       Monarch HRDL*     ND-15       Monarch HRDL*     ND-0.30       Bryant HRDL*     ND-0.60       ND-15     NA       Peetloides/PCB     ND-0.60       Monarch HRDL*     ND-0.30       Bryant HRDL*     ND-3.0       NA     NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SVOC                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| 4 - method horse     A D - 8.0     5400       Bryent 1 MDL.     ND - 1.0     NA       4 - method y product     ND - 1.0     NA       Former Type III Landfill*     ND - 0.70     NA       dietry product     ND - 0.70     NA       2 - methylphenol     ND - 0.60     NA       4 - methylphenol     ND - 0.60     NA       4 - methylphenol     ND - 0.60     NA       4 - methylphenol     ND - 0.80     NA       4 - methylphenol     ND - 1.5     NA       Pesticides/PCB     ND - 1.5     NA       Monarch HRDL*     ND - 3.0     NA       Former Type III Landfill*     ND - 3.0     NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Meren Hilbert                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| 4-methylipping         NA           Former Type III Landfill*         ND-1.0         NA           dietryl phraiate         ND-0.70         NA           2-methyliphenol ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                | ND-AQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |
| 4-methylipping         NA           Former Type III Landfill*         ND-1.0         NA           dietryl phraiate         ND-0.70         NA           2-methyliphenol ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Brannen an |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AND FRANK AND                                                                |
| Former Type III Landfill*           di-n-bull/Utheniste         ND-1.0         NA           cleith/l phthalate         ND-0.70         NA           2-meth/libienol Microsoversion         ND-0.60         NA           4-meth/libienol Microsoversion         ND-0.60         NA           4-meth/libienol         ND-0.60         NA           Mestern Disposal Area*         ND-0.60         NA           2-meth/libienol         ND-0.60         NA           Mestern Disposal Area*         ND-0.60         NA           2-meth/libienol         ND-0.60         NA           4-meth/libienol         ND-0.60         NA           4-meth/libienol         ND-0.60         NA           4-meth/libienol         ND-1.5         NA           Pestioides/PCB         ND         0.028           Bryant HRDL*         ND-3.0         NA           Former Type III Landfill*         ND-3.0         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| Clinn-bull/Utilihaiste         ND-1.0         NA           cliethyl phthaiste         ND-0.70         NA           2-methylphenol MCC - second Ma         ND-0.60         NA           4-methylphenol         ND-0.60         NA           4-methylphenol         ND-0.90         NA           Mestern Disposel Ares <sup>4</sup> ND-0.60         NA           2-methylphenol         ND-0.60         NA           Mestern Disposel Ares <sup>4</sup> ND-0.60         NA           2-methylenol         ND-0.60         NA           4-methylenol         ND         0.028           Bryant HRDL <sup>3</sup> NA           Former Type III Landfill <sup>4</sup> NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                |
| Cleithyl phthalate         ND -0.70         NA           2 - methylphenol MCC (Sector Methyle)         ND -0.60         NA           4 - methylphenol         ND -0.60         NA           mephthalane         ND -0.90         NA           Mestern Disposal Area <sup>4</sup> ND -0.60         NA           2 - methylphenol         ND -0.60         NA           Mestern Disposal Area <sup>4</sup> ND -0.60         NA           2 - methylphenol         ND -0.60         NA           4 - methylphenol         ND -1.5         NA           Pestioldes/PCB         ND - 0.028         Bryant HRDL <sup>3</sup> Total PCB         ND - 3.0         NA           Former Type III Landfillf <sup>4</sup> Image: Sector Sect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | di-n-b. Withheiste                             | NO-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA                                                                                                               |
| 2-methylphenol         ND-0.60         NA           4-methylphenol         ND-0.90         NA           naphthalene         ND-1.0         NA           Western Disposal Area <sup>4</sup> ND-0.60         NA           2-methylinaphthalene         ND-0.60         NA           4-methylinaphthalene         ND-1.5         NA           Pestioldes/PCB         ND         0.028           Bryamt HRDL <sup>3</sup> Total PCB         NA           Former Type III Landfillf <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | diethyl phthaiate                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| A-methylphenol         ND-0.90         NA           nephthelene         ND-1.0         NA           Western Disposal Area <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-meth/timenol March - 461660, See             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA NA                                                                                                            |
| Western Disposal Ares <sup>4</sup> 2-methylnsphthalene         ND-0.80         NA           4-methylnsphthalene         ND-15         NA           Pesticides/PCB         ND-15         NA           Monarch HRDL <sup>4</sup> ND         0.028           Bryant HRDL <sup>3</sup> 0.028         ND-3.0           Total PCB         ND-3.0         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4-methylphenol                                 | ND-0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                               |
| 2-methylnaphthalene         ND-0.60         NA           4-methylnaphthalene         ND-0.50         NA           Pesticides/PCB         ND-15         NA           Monarch HRDL <sup>4</sup> ND         0.028           Bryant HRDL <sup>3</sup> 0.028         0.028           Former Type III Landfill <sup>4</sup> ND-3.0         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | naphthalene                                    | ND-1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                                                                                                               |
| A-methylphenol         ND-15         NA           Pesticides/PCB         Monarch HRDL <sup>4</sup> 0.028           Inpha-BHC         ND         0.028           Bryant HRDL <sup>3</sup> 0.028         0.028           Total PCB         ND-3.0         NA           Former Type III Landfill <sup>4</sup> 0.028         0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Western Disposal Area <sup>4</sup>             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| Pesticides/PCB           Monarch HRDL <sup>4</sup> alpha—BHC         ND           Bryant HRDL <sup>3</sup> Total PCB         ND-3.0           Former Type III Landfill <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-methylnaphthalene                            | ND-0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                               |
| Monarch HRDL <sup>4</sup><br>alpha—BHC 0.028<br>Bryant HRDL <sup>3</sup><br>Total PCB ND—3.0 NA<br>Former Type III Landfill <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4-methylphenol                                 | ND-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA                                                                                                               |
| Inpla-BHC         ND         0.028           Brywnt HRDL <sup>3</sup> 0.028         0.028           Total PCB         ND-3.0         NA           Former Type III Landfill <sup>6</sup> 0.028         0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pesticides/PCB                                 | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |
| Bryant HRDL <sup>3</sup> Total PCB ND-3.0 NA Former Type III Landfill <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Monarch HRDL <sup>4</sup>                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| Total PCB ND-3.0 NA<br>Former Type III Landfill <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | alpha-BHC                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.028                                                                                                            |
| Former Type III Landfill <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bryant HRDL <sup>3</sup>                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ······································                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total PCB                                      | ND-3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Former Type III Landfill <sup>4</sup>          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| 1011111705 ND-1.2 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total PCB                                      | ND-1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Western Disposal Area*                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ······                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total PCB                                      | ND-3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                                                                                                               |

#### Notes:

<sup>1</sup> Includes the results of samples from MW-124A, MW-124B, MW-125P (leachate), MW-125A, MW-125B, MW-126A, and MW-126B.

<sup>2</sup> Includes the results of samples from MW-104, MW-108, MW-108, MW-114, and MW-128A.

<sup>3</sup> Includes the results of samples from MW-11, MW-12, MW-12R, MW-22A, MW-22B, MW-23, MW-24, MW-25, MW-26, MW-121A, MW-121B, MW-123A, and MW-123B.

<sup>4</sup> Includes the results of samples from MW-7, MW-7B, MW-8, MW-8A, MW-20, MW-20B, MW-21, MW-120A, and MW-120B.

<sup>3</sup> includes the results of samples from MW-2, MW-2S, and MW-18.

Includes the results of samples from MW-1, MW-3, MW-5, MW-15, MW-16B, MW-16C, MW-17A, MW-17B, MW-19BR, MW-19C, MW-19D, MW-112, and MW-127A.

NA - Not applicable; no wells were installed in residuals in these areas.

ND - Not detected.

÷

·\_\_ ·

.

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED PESTICIDES RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location<br>Depth (ft) | BHDL-22<br>10.00-12.00 | BHDL-22 (Dup)<br>10.00-12.00 | BHDL-22<br>12.00-14.00 | BHDL-22 (Dup)<br>12.00-14.00 | BHDL-123 <sup>2</sup><br>8.00-9.50 | BHDL - 123<br>10.00 - 12.00 | MW-121B<br>16.00-17.50  | MW 121B       |
|------------------------|------------------------|------------------------------|------------------------|------------------------------|------------------------------------|-----------------------------|-------------------------|---------------|
| Sample ID              | A60688                 | A60691                       | A60689                 | A60692                       | A60683                             | A60684                      | A60046                  | A60047        |
| Bryant HRDL            |                        |                              |                        |                              |                                    |                             |                         |               |
| aldrin                 | ND (0.049 U)           | ND (0.050 U)                 | ND (0.0020 U)          | ND (0.0020 U)                | ND (0.094 U)                       | ND (0.0020 U)               | ND (0.034 U)            | ND (0.0020 U) |
| alpha-BHC              | ND (0.049 UJ)          | ND (0.050 UJ)                | ND (0.0020 UJ)         | ND (0.0020 U)                | ND (0.094 UJ)                      | ND (0.0020 U)               | ND (0.034 U)            | ND (0.0020 U. |
| beta – BHC             | ND (0.049 U)           | ND (0.050 U)                 | ND (0.0020 U)          | ND (0.0020 U)                | ND (0.094 U)                       | ND (0.0020 U)               | ND (0.034 U)            | ND (0.0020 U  |
| gamma-BHC (lindane)    | ND (0.049 UJ)          | ND (0.050 UJ)                | ND (0.0020 UJ)         | ND (0.0020 U)                | ND (0.094 UJ)                      | ND (0.0020 U)               | ND (0.034 U)            | ND (0.0020 U  |
| deita-BHC              | R                      | R                            | ND (0.0020 U)          | ND (0.0020 UJ)               | ND (0.094 U)                       | ND (0.0020 UJ)              | ND (0.034 UJ)           | ND (0.0020 U  |
| alpha-chlordane        | R                      | R                            | ND (0.0020 U)          | ND (0.0020 U)                | R                                  | ND (0.0020 U)               | ND (0.034 U)            | ND (0.0020 U  |
| gamma – chlordane      | R                      | ND (0.050 U)                 | ND (0.0020 U)          | ND (0.0020 U)                | R                                  | ND (0.0020 U)               | R                       | ND (0.0020 U  |
| 4,4-DDD                | R                      | ND (0.097 U)                 | ND (0.0038 U)          | ND (0.0038 U)                | ND (0.18 U)                        | ND (0.0039 U)               | ND (0.066 U)            | ND (0.0039 U  |
| 4,4-DDE                | 0.18 JN                | 0.11 JN                      | ND (0.0038 U)          | ND (0.0038 U)                | 0.36 JN                            | ND (0.0039 U)               | ND (0.066 U)            | ND (0.0039 U  |
| 4,4-DDT                | R I                    | 0.13 JN                      | ND (0.0038 U)          | ND (0.0038 U)                | 0.41                               | ND (0.0039 U)               | 0.070                   | ND (0.0039 U  |
| endosulfan i           | ND (0.049 U)           | ND (0.050 U)                 | ND (0.0020 U)          | ND (0.0020 U)                | ND (0.094 U)                       | ND (0.0039 U)               | ND (0.034 U)            | ND (0.0020 U  |
| endrin aldehyde        | ND (0.049 U)           | 0.084 JN                     | ND (0.0038 U)          | ND (0.0038 U)                | ND (0.18 U)                        | ND (0.0039 U)               | 0.040 JN                | ND (0.0039 U  |
|                        |                        | <del></del>                  |                        |                              |                                    |                             | ī —                     |               |
| Location               | MLSS-1                 | MLSS-1                       | MLSS-2                 | ML88-2                       | ML6S-3                             | MLSS-3                      | MLSS-4                  | MLSS-4        |
| Depth (ft)             | 14.00-15.50            | 15.50-18.00                  | 20.00-22.00            | 22.00-24.00                  | 18,00-20.00                        | 20.00-22.00                 | 18.00-20.00             | 20.00-22.00   |
| Sample ID              | A60039                 | A60040                       | A60571                 | A60572                       | A60551                             | A60552                      | A60530                  | A60531        |
| Monarch HRDL           |                        |                              |                        | 1                            |                                    |                             | · · · · · · · · · · · · | • · · · · •   |
| aldrin                 | ND (0.011 UJ)          | ND (0.0039 U)                | ND (0.065 U)           | ND (0.0033 U)                | ND (J.065 U)                       | 0.0069                      | ND (0.027 U)            | ND (0.0020 U) |
| alpha - BHC            | ND (0.011 UJ)          | ND (0.0039 UJ)               | ND (0.065 U)           | ND (0.0033 UJ)               | ND (0.065 U)                       | ND (0.0038 UJ)              | ND (0.027 U)            | ND (0.0020 U. |
| Deta-BHC               | ND (0.011 UJ)          | ND (0.0039 U)                | ND (0.065 U)           | ND (0.0033 U)                | ND (0.065 U)                       | ND (0.0038 U)               | ND (0.027 U)            | ND (0.0020 U  |
| amma-BHC (lindane)     | ND (0.011 UJ)          | ND (0.0039 U)                | ND (0.065 U)           | ND (0.0033 U)                | ND (0.065 U)                       | ND (0.0038 U)               | ND (0.027 U)            | ND (0.0020 U  |
| delta – BHC            | ND (0.011 UJ)          | ND (0.0039 U)                | ิ ค                    | ND (0.0033 U)                | R                                  | ND (0.0038 U)               | Ì ₽ Í                   | ND (0.0020 U  |
| alpha - chlordane      | ND (0.011 UJ)          | ND (0.0039 U)                | ND (0.065 U)           | ND (0.0033 U)                | ND (0.065 U)                       | ND (0.0038 U)               | ND (0.027 U)            | ND (0.0020 U  |
| namma – chlordana      |                        | ND (0 0039 U)                | 0.034 J                | ND (0.0033 U)                | ND (0.065 U)                       | ND (0 0038 U)               |                         |               |

|       | Dilo          |               |               |              |               |              | 1             | ••           |               | 4   |
|-------|---------------|---------------|---------------|--------------|---------------|--------------|---------------|--------------|---------------|-----|
| alphi | a – chlordane | ND (0.011 UJ) | ND (0.0039 U) | ND (0.065 U) | ND (0.0033 U) | ND (0.065 U) | ND (0.0038 U) | ND (0.027 U) | ND (0.0020 U) | l   |
| gam   | ma-chlordane  | ND (0.011 UJ) | ND (0.0039 U) | 0.034 J      | ND (0.0033 U) | ND (0.065 U) | ND (0.0038 U) | ND (0.027 U) | ND (0.0020 U) | l   |
| 4,4-  | DDD           | ND (0.022 UJ) | ND (0.0077 U) | R            | ND (0.0065 U) | ND (0.13 U)  | ND (0.0074 U) | ND (0.053 U) | ND (0.0039 U) | 1   |
| 4,4-  | DDE           | ND (0.022 UJ) | ND (0.0077 U) | R _          | ND (0.0065 U) | R            | 0.0047 JN     | ND (0.053 U) | ND (0.0039 U) | i   |
| 4.4-  | DDT           | ND (0.022 UJ) | ND (0.0077 U) | 0.25 J       | ND (0.0065 U) | 0.11 J       | ND (0.0074 U) | 0.073 J      | ND (0 0039 U) | i i |
| endo  | sultan I      | ND (0.011 UJ) | 0.0043        | ND (0.065 U) | ND (0.0033 U) | ND (0.065 U) | 0.0045 J      | ND (0.027 U) | ND (0.0020 U) | 1   |
| endr  | in aldehyde   | ND (0.022 UJ) | ND (0.0077 U) | ND (0.13 U)  | ND (0.0065 U) | ND (0.13 U)  | ND (0.0074 U) | ND (0.053 U) | ND (0.0039 U) | l   |
| endr  | in aldehyde   | ND (0.022 UJ) | ND (0.0077 U) | ND (0.13 U)  | ND (0.0065 U) | ND (0.13 U)  | ND (0.0074 U) | ND (0.053 U) | ND (0.0039 U) | ļ   |

See Notes on Page 4

1

.

i

1 1 1

.

~ `

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED PESTICIDES RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location<br>Depth (fl)<br>Sample ID                                                                                                                                                                       | MLSS-5<br>22.00-24.00<br>A60512                                                                                                                                                         | MLSS-5<br>24.00-26.00<br>A60513                                                                                                                                    | MW-1258<br>18.00-19.00<br>A60029                                                                                                                                                    | MW-1258<br>19.00-20.00<br>A60030                                                                                                                           | MW-126A<br>14.00-16.00<br>A60017                                                                                                                            | MW - 126A<br>14,00 - 16.00<br>A60018                                                                                               | DLHB 1<br>14.00 16.00<br>A60593                                                                                                                                      | DLHB - 1<br>16.00 18.00<br>A60594           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Monarch HRDL (Cont'd                                                                                                                                                                                      |                                                                                                                                                                                         |                                                                                                                                                                    |                                                                                                                                                                                     |                                                                                                                                                            |                                                                                                                                                             |                                                                                                                                    | FRDL                                                                                                                                                                 |                                             |
| aldrin                                                                                                                                                                                                    | ND (0.031 U)                                                                                                                                                                            | 0.0028 J                                                                                                                                                           | ND (0.047 U)                                                                                                                                                                        | 0.0021 J                                                                                                                                                   | ND (0.047 U)                                                                                                                                                | ND (0.0032 U)                                                                                                                      | ND (0.0072 U)                                                                                                                                                        | 0.0057                                      |
|                                                                                                                                                                                                           | ND (0.031 U)                                                                                                                                                                            | ND (0.0023 UJ)                                                                                                                                                     | ND (0.047 U)                                                                                                                                                                        | ND (0.0020 UJ)                                                                                                                                             | ND (0.047 U)                                                                                                                                                | ND (0.0032 UJ)                                                                                                                     | ND (0.0072 U)                                                                                                                                                        | ND (0.0020 U.                               |
| alpha - BHC                                                                                                                                                                                               | ND (0.031 U)                                                                                                                                                                            | ND (0.0023 U)                                                                                                                                                      | ND (0.047 U)                                                                                                                                                                        | R                                                                                                                                                          | ND (0.047 U)                                                                                                                                                | ND (0.0032 U)                                                                                                                      | ND (0.0072 U)                                                                                                                                                        | R                                           |
| beta-BHC                                                                                                                                                                                                  | ND (0.031 U)                                                                                                                                                                            | ND (0.0023 U)                                                                                                                                                      | ND (0.047 U)                                                                                                                                                                        | ND (0.0020 U)                                                                                                                                              | ND (0.047 U)                                                                                                                                                | ND (0.0032 U)                                                                                                                      | R                                                                                                                                                                    | ND (0.0020 L                                |
| gamma-BHC (lindane)                                                                                                                                                                                       | R (0.001 0)                                                                                                                                                                             | ND (0.0023 U)                                                                                                                                                      | R                                                                                                                                                                                   | ND (0.0020 U)                                                                                                                                              | 0.043 JN                                                                                                                                                    | ND (0.0032 U)                                                                                                                      | ND (0.0072 UJ)                                                                                                                                                       | ND (0.0020 L                                |
| delta-BHC                                                                                                                                                                                                 | ND (0.031 U)                                                                                                                                                                            | ND (0.0023 U)                                                                                                                                                      | ND (0.047 U)                                                                                                                                                                        | ND (0.0020 U)                                                                                                                                              | ND (0.047 U)                                                                                                                                                | ND (0.0032 U)                                                                                                                      | ND (0.0072 U)                                                                                                                                                        | ND (0.0020 L                                |
| alpha - chlordane                                                                                                                                                                                         | ND (0.031 U)                                                                                                                                                                            | ND (0.0023 U)                                                                                                                                                      | ND (0.047 U)                                                                                                                                                                        | ND (0.0020 U)                                                                                                                                              | ND (0.047 U)                                                                                                                                                | ND (0.0032 U)                                                                                                                      | ND (0.0072 U)                                                                                                                                                        | ND (0.0020 L                                |
| gamma-chlordane                                                                                                                                                                                           | ND (0.060 U)                                                                                                                                                                            | ND (0.0045 U)                                                                                                                                                      | ND (0.091 U)                                                                                                                                                                        | ND (0.0038 U)                                                                                                                                              | ND (0.091 U)                                                                                                                                                | ND (0.0062 U)                                                                                                                      | ND (0.0014 U)                                                                                                                                                        | ND (0.0039 L                                |
| 4,4-DDD                                                                                                                                                                                                   | ND (0.060 U)                                                                                                                                                                            | 0.0023 J                                                                                                                                                           | ND (0.091 U)                                                                                                                                                                        | ND (0.0038 U)                                                                                                                                              | ND (0.091 U)                                                                                                                                                | ND (0.0062 U)                                                                                                                      | ND (0.0014 U)                                                                                                                                                        | ND (0.0039 L                                |
| 4,4-DDE                                                                                                                                                                                                   | 0.096 J                                                                                                                                                                                 | ND (0.0045 U)                                                                                                                                                      | 0.12                                                                                                                                                                                | ND (0.0038 U)                                                                                                                                              | 0.067 JN                                                                                                                                                    | ND (0.0062 U)                                                                                                                      | ND (0.0014 U)                                                                                                                                                        | ND (0.0039 L                                |
| 4.4-DDT                                                                                                                                                                                                   | ND (0.031 U)                                                                                                                                                                            | ND (0.0023 U)                                                                                                                                                      | ND (0.047 U)                                                                                                                                                                        | ND (0.0020 U)                                                                                                                                              | ND (0.047 U)                                                                                                                                                | ND (0.0032 U)                                                                                                                      | ND (0.0072 U)                                                                                                                                                        | ND (0.0020 I                                |
| endosulfan I<br>endrin aldehyde                                                                                                                                                                           | 0.047 JN                                                                                                                                                                                | ND (0.0045 U)                                                                                                                                                      | ND (0.091 U)                                                                                                                                                                        | ND (0.0038 U)                                                                                                                                              | ND (0.091 U)                                                                                                                                                | ND (0.0062 U)                                                                                                                      | ND (0.0014 U)                                                                                                                                                        | ND (0 0039 1                                |
|                                                                                                                                                                                                           |                                                                                                                                                                                         |                                                                                                                                                                    |                                                                                                                                                                                     |                                                                                                                                                            | <b></b>                                                                                                                                                     |                                                                                                                                    | ······                                                                                                                                                               | <b>1</b>                                    |
| Location                                                                                                                                                                                                  | DLHB-2                                                                                                                                                                                  | DLHB-2                                                                                                                                                             | DLHB-3 <sup>2</sup>                                                                                                                                                                 | DLHB – S <sup>2</sup>                                                                                                                                      | DLHB-6                                                                                                                                                      | DLHB-6                                                                                                                             | FLF-1 <sup>2</sup>                                                                                                                                                   | FLF-12                                      |
| Location<br>Depth (ft)                                                                                                                                                                                    | 6.00-8.00                                                                                                                                                                               | 8.00-10.00                                                                                                                                                         | 6.00-8.00                                                                                                                                                                           | 8.00-10.00                                                                                                                                                 | 8.00-10.00                                                                                                                                                  | 10.00-12.00                                                                                                                        | 6.00-6.50                                                                                                                                                            | 6.50-8.00                                   |
| Location                                                                                                                                                                                                  |                                                                                                                                                                                         |                                                                                                                                                                    |                                                                                                                                                                                     |                                                                                                                                                            |                                                                                                                                                             |                                                                                                                                    |                                                                                                                                                                      | FLF 1 <sup>2</sup><br>6,50 - 8,00<br>A60098 |
| Location<br>Depth (ft)<br>Sample ID                                                                                                                                                                       | 6.00-8.00                                                                                                                                                                               | 8.00-10.00                                                                                                                                                         | 6.00-8.00                                                                                                                                                                           | 8.00-10.00                                                                                                                                                 | 8.00-10.00                                                                                                                                                  | 10.00-12.00                                                                                                                        | 6.00-6.50                                                                                                                                                            | 6.50 - 8.00<br>A60098                       |
| Location<br>Depth (ft)<br>Sample ID<br>FRDLs (Cont'd.)                                                                                                                                                    | 6.00-8.00<br>A60586                                                                                                                                                                     | 8.00-10.00                                                                                                                                                         | 6.00-8.00                                                                                                                                                                           | 8.00-10.00                                                                                                                                                 | 8.00-10.00                                                                                                                                                  | 10.00-12.00                                                                                                                        | 6,00 - 6.50<br>A60097                                                                                                                                                | 6.50 - 8.00<br>A60098                       |
| Location<br>Depth (tt)<br>Sample ID<br>FRDLs (Cont'd.)<br>aldrin                                                                                                                                          | 6.00-8.00                                                                                                                                                                               | 8.00-10.00<br><u>A60587</u>                                                                                                                                        | 6.00-8.00<br><u>A60599</u>                                                                                                                                                          | 8.00-10.00<br><u>A60600</u>                                                                                                                                | 8.00 - 10.00<br><u>A60605</u>                                                                                                                               | 10.00-12.00<br>A60606                                                                                                              | 6,00 - 6.50<br>A60097<br>Former Type II                                                                                                                              | 6.50-8.00<br>A60098                         |
| Location<br>Depth (ft)<br>Sample ID<br>FRDLs (Cont'd.)<br>aldrin<br>alpha – BHC                                                                                                                           | 6.00-8.00<br>A60586<br>ND (0.0047 U)<br>0.0093 J                                                                                                                                        | 8.00-10.00<br><u>A60587</u><br>0.0011 J                                                                                                                            | 6.00-8.00<br><u>A60599</u><br>ND (0.030 U)                                                                                                                                          | 8.00-10.00<br><u>A60600</u><br>0.023                                                                                                                       | 8.00-10.00<br><u>A60605</u><br>ND (0.023 U)                                                                                                                 | 10.00-12.00<br><u>A60606</u><br>0.13                                                                                               | 6,00 - 6.50<br><u>A60097</u><br>Former Type II<br>ND (0.046 UJ)                                                                                                      | 6,50 - 8,00<br>A60098                       |
| Location<br>Depth (ft)<br>Sample ID<br>FRDLs (Cont'd.)<br>aldrin<br>alpha – BHC<br>beta – BHC                                                                                                             | 6.00-8.00<br>A60586<br>ND (0.0047 U)                                                                                                                                                    | 8.00-10.00<br><u>A60587</u><br>0.0011 J<br>ND (0.0019 UJ)                                                                                                          | 6.00-8.00<br><u>A60599</u><br>ND (0.030 U)<br>ND (0.030 U)                                                                                                                          | 8.00-10.00<br>A60600<br>0.023<br>ND (0.010 UJ)                                                                                                             | 8.00-10.00<br><u>A60605</u><br>ND (0.023 U)<br>ND (0.023 U)                                                                                                 | 10.00-12.00<br><u>A60606</u><br>0.13<br>ND (0.011 UJ)                                                                              | 6,00 - 6.50<br><u>A60097</u><br>Former Type II<br>ND (0.046 UJ)<br>ND (0.046 U)                                                                                      | 6.50 - 8.00<br>A60098                       |
| Location<br>Depth (ft)<br><u>Sample ID</u><br>FRDLs (Cont'd.)<br>aldrin<br>alpha – BHC<br>beta – BHC<br>gamma – BHC (lindane)                                                                             | 6.00-8.00<br>A60586<br>ND (0.0047 U)<br>0.0093 J<br>ND (0.0047 U)<br>ND (0.0047 U)                                                                                                      | 8.00-10.00<br><u>A60587</u><br>0.0011 J<br>ND (0.0019 UJ)<br>R                                                                                                     | 6.00-8.00<br><u>A60599</u><br>ND (0.030 U)<br>ND (0.030 U)<br>ND (0.030 U)                                                                                                          | 8.00-10.00<br>A60600<br>0.023<br>ND (0.010 UJ)<br>R                                                                                                        | 8.00 - 10.00<br><u>A60605</u><br>ND (0.023 U)<br>ND (0.023 U)<br>ND (0.023 U)                                                                               | 10.00 - 12.00<br><u>A60606</u><br>0.13<br>ND (0.011 UJ)<br>R                                                                       | 6,00 - 6.50<br>A60097<br>Former Type II<br>ND (0.046 UJ)<br>ND (0.046 U)<br>ND (0.046 U)                                                                             | 6.50 - 8.00<br>A60098                       |
| Location<br>Depth (ft)<br>Sample ID<br>FRDLs (Cont'd.)<br>aldrin<br>alpha – BHC<br>beta – BHC<br>gamma – BHC (lindane)<br>delta – BHC                                                                     | 6.00 - 8.00<br>A60586<br>ND (0.0047 U)<br>0.0093 J<br>ND (0.0047 U)<br>ND (0.0047 U)<br>ND (0.0047 UJ)                                                                                  | 8.00-10.00<br><u>A60587</u><br>0.0011 J<br>ND (0.0019 UJ)<br>R<br>ND (0.0019 U)                                                                                    | 6.00-8.00<br><u>A60599</u><br>ND (0.030 U)<br>ND (0.030 U)<br>ND (0.030 U)<br>ND (0.030 U)                                                                                          | 8.00-10.00<br>A60600<br>ND (0.010 UJ)<br>R<br>ND (0.010 U)                                                                                                 | 8.00 - 10.00<br>A60605<br>ND (0.023 U)<br>ND (0.023 U)<br>ND (0.023 U)<br>ND (0.023 U)                                                                      | 0.13<br>0.00-12.00<br><u>A60606</u><br>ND (0.011 UJ)<br>R<br>ND (0.011 U)                                                          | 6.00 - 6.50<br>A60097<br>Former Type II<br>ND (0.046 UJ)<br>ND (0.046 U)<br>ND (0.046 U)<br>ND (0.046 UJ)                                                            | 6.50 - 8.00<br>A60098                       |
| Location<br>Depth (ft)<br>Sample ID<br>FRDLs (Cont'd.)<br>aldrin<br>alpha – BHC<br>beta – BHC<br>gamma – BHC (lindane)<br>delta – BHC<br>alpha – chlordane                                                | 6.00-8.00<br>A60586<br>ND (0.0047 U)<br>0.0093 J<br>ND (0.0047 U)<br>ND (0.0047 U)                                                                                                      | 8.00-10.00<br>A60587<br>ND (0.0019 UJ)<br>R<br>ND (0.0019 U)<br>ND (0.0019 U)                                                                                      | 6.00-8.00<br>A60599<br>ND (0.030 U)<br>ND (0.030 U)<br>ND (0.030 U)<br>ND (0.030 U)<br>ND (0.030 U)                                                                                 | 8.00-10.00<br>A60600<br>ND (0.010 UJ)<br>R<br>ND (0.010 U)<br>ND (0.010 U)                                                                                 | 8.00 - 10.00<br>A60605<br>ND (0.023 U)<br>ND (0.023 U)<br>ND (0.023 U)<br>ND (0.023 U)<br>ND (0.023 UJ)                                                     | 0.13<br>0.13<br>ND (0.011 UJ)<br>R<br>ND (0.011 U)<br>ND (0.011 U)                                                                 | 6,00 - 6.50<br>A60097<br>Former Type II<br>ND (0.046 UJ)<br>ND (0.046 U)<br>ND (0.046 U)<br>ND (0.046 UJ)<br>ND (0.046 UJ)<br>ND (0.046 U)                           | 6.50 - 8.00<br>A60098                       |
| Location<br>Depth (ft)<br>Sample ID<br>FRDLs (Cont'd.)<br>aldrin<br>alpha – BHC<br>beta – BHC<br>gamma – BHC (lindane)<br>delta – BHC<br>alpha – chlordane<br>gamma – chlordane                           | 6.00-8.00<br>A60586<br>ND (0.0047 U)<br>0.0093 J<br>ND (0.0047 U)<br>ND (0.0047 U)<br>ND (0.0047 UJ)<br>ND (0.0047 U)                                                                   | 8.00-10.00<br>A60587<br>ND (0.0019 UJ)<br>R<br>ND (0.0019 U)<br>ND (0.0019 U)<br>ND (0.0019 U)<br>ND (0.0019 U)                                                    | 6.00-8.00<br>A60599<br>ND (0.030 U)<br>ND (0.030 U)<br>ND (0.030 U)<br>ND (0.030 U)<br>ND (0.030 U)<br>ND (0.030 U)<br>ND (0.030 U)                                                 | 8.00-10.00<br>A60600<br>ND (0.010 UJ)<br>R<br>ND (0.010 U)<br>ND (0.010 U)<br>ND (0.010 U)                                                                 | 8.00 - 10.00<br>A60605<br>ND (0.023 U)<br>ND (0.023 U)<br>ND (0.023 U)<br>ND (0.023 U)<br>ND (0.023 UJ)<br>ND (0.023 U)                                     | 0.13<br>0.13<br>ND (0.011 UJ)<br>R<br>ND (0.011 U)<br>ND (0.011 U)                                                                 | 6.00 - 6.50<br><u>A60097</u><br>Former Type II<br>ND (0.046 UJ)<br>ND (0.046 U)<br>ND (0.046 U)<br>ND (0.046 UJ)<br>ND (0.046 UJ)<br>R                               | 6.50 - 8.00<br>A60098                       |
| Location<br>Depth (ft)<br>Sample ID<br>FRDLs (Cont'd.)<br>aldrin<br>alpha – BHC<br>beta – BHC<br>gamma – BHC (lindane)<br>delta – BHC<br>alpha – chlordane<br>gamma – chlordane<br>4,4 – DDD              | 6.00-8.00<br>A60586<br>ND (0.0047 U)<br>0.0093 J<br>ND (0.0047 U)<br>ND (0.0047 U)<br>ND (0.0047 UJ)<br>ND (0.0047 U)<br>ND (0.0047 U)<br>ND (0.0047 U)                                 | 8.00-10.00<br>A60587<br>ND (0.0019 UJ)<br>R<br>ND (0.0019 U)<br>ND (0.0019 U)<br>ND (0.0019 U)<br>ND (0.0019 U)<br>ND (0.0019 U)                                   | 6.00-8.00<br>A60599<br>ND (0.030 U)<br>ND (0.030 U)                                 | 8.00-10.00<br>A60600<br>ND (0.010 UJ)<br>R<br>ND (0.010 U)<br>ND (0.010 U)<br>ND (0.010 U)<br>ND (0.010 U)<br>ND (0.010 U)                                 | 8.00 - 10.00<br>A60605<br>ND (0.023 U)<br>ND (0.023 U)<br>ND (0.023 U)<br>ND (0.023 U)<br>ND (0.023 UJ)<br>ND (0.023 UJ)<br>ND (0.023 U)<br>R               | 0.13<br>0.13<br>ND (0.011 UJ)<br>R<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)<br>R                                            | 6.00 - 6.50<br><u>A60097</u><br>Former Type II<br>ND (0.046 UJ)<br>ND (0.046 U)<br>ND (0.046 UJ)<br>ND (0.046 UJ)<br>ND (0.046 UJ)<br>R<br>R                         | 6.50 - 8.00<br>A60098                       |
| Location<br>Depth (ft)<br>Sample ID<br>FRDLs (Cont'd.)<br>aldrin<br>alpha – BHC<br>beta – BHC<br>gamma – BHC (lindane)<br>delta – BHC<br>alpha – chlordane<br>gamma – chlordane<br>4,4 – DDD<br>4,4 – DDE | 6.00 - 8.00<br>A60586<br>ND (0.0047 U)<br>0.0093 J<br>ND (0.0047 U)<br>ND (0.0047 U)<br>ND (0.0047 UJ)<br>ND (0.0047 UJ)<br>ND (0.0047 U)<br>ND (0.0047 U)<br>0.0088 J<br>ND (0.0092 U) | 8.00-10.00<br>A60587<br>ND (0.0019 UJ)<br>R<br>ND (0.0019 U)<br>ND (0.0019 U)<br>ND (0.0019 U)<br>ND (0.0019 U)<br>ND (0.0019 U)<br>ND (0.0019 U)<br>ND (0.0037 U) | 6.00-8.00<br>A60599<br>ND (0.030 U)<br>ND (0.0358 U)                | 8.00-10.00<br>A60600<br>ND (0.010 UJ)<br>R<br>ND (0.010 U)<br>ND (0.010 U)<br>ND (0.010 U)<br>ND (0.010 U)<br>ND (0.010 U)<br>ND (0.010 U)<br>ND (0.020 U) | 8.00 - 10.00<br>A60605<br>ND (0.023 U)<br>ND (0.023 U)<br>ND (0.023 U)<br>ND (0.023 U)<br>ND (0.023 U)<br>ND (0.023 U)<br>R<br>ND (0.024 U)                 | 0.13<br>0.13<br>ND (0.011 UJ)<br>R<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)<br>R<br>ND (0.011 U)<br>R       | 6.00 - 6.50<br><u>A60097</u><br>Former Type II<br>ND (0.046 UJ)<br>ND (0.046 U)<br>ND (0.046 U)<br>ND (0.046 UJ)<br>ND (0.046 U)<br>R<br>R<br>ND (0.089 U)           | 6.50 - 8.00<br>A60098                       |
| Location<br>Depth (ft)                                                                                                                                                                                    | 6.00 - 8.00<br>A60586<br>ND (0.0047 U)<br>0.0093 J<br>ND (0.0047 U)<br>ND (0.0047 U)<br>ND (0.0047 UJ)<br>ND (0.0047 UJ)<br>ND (0.0047 U)<br>ND (0.0047 U)<br>0.0088 J                  | 8.00-10.00<br>A60587<br>ND (0.0019 UJ)<br>R<br>ND (0.0019 U)<br>ND (0.0019 U)<br>ND (0.0019 U)<br>ND (0.0019 U)<br>ND (0.0019 U)<br>ND (0.0037 U)<br>ND (0.0037 U) | 6.00-8.00<br>A60599<br>ND (0.030 U)<br>ND (0.058 U)<br>ND (0.058 U) | 8.00-10.00<br>A60600<br>ND (0.010 UJ)<br>R<br>ND (0.010 U)<br>ND (0.010 U)<br>ND (0.010 U)<br>ND (0.010 U)<br>ND (0.010 U)<br>ND (0.020 U)<br>ND (0.020 U) | 8.00 - 10.00<br>A60605<br>ND (0.023 U)<br>ND (0.023 U)<br>ND (0.023 U)<br>ND (0.023 U)<br>ND (0.023 U)<br>ND (0.023 U)<br>R<br>ND (0.024 U)<br>ND (0.044 U) | 0.13<br>0.13<br>ND (0.011 UJ)<br>R<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)<br>R<br>ND (0.021 U)<br>0.013 J | 6.00 - 6.50<br><u>A60097</u><br>Former Type II<br>ND (0.046 UJ)<br>ND (0.046 U)<br>ND (0.046 U)<br>ND (0.046 UJ)<br>ND (0.046 U)<br>R<br>R<br>ND (0.089 U)<br>0.25 J | 6.50 - 8.00<br>A60098                       |

See Notes on Page 4

i i e

1

÷

.

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED PESTICIDES RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location                                                                                                                                                                                                   | WA-1                                                                                                                                                                  | WA-1                                                                                                                                                                                               | WA-2                                                                                                                                                          | WA-2                                                                                                                                                                             | WA-3                                                                                                                                                                                  | WA-3                                                                                                                                                                  | WA-4                                                                                                                                                                         | WA-4                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth (ft)                                                                                                                                                                                                 | 12.00-13.00                                                                                                                                                           | 13.00-14.00                                                                                                                                                                                        | 12.00-14.00                                                                                                                                                   | 14.00-18.00                                                                                                                                                                      | 14.00-16.00                                                                                                                                                                           | 16.00-18.00                                                                                                                                                           | 8.00 10.00                                                                                                                                                                   | 10.00-12.00                                                                                                                                                                             |
| Sample ID                                                                                                                                                                                                  | A60062                                                                                                                                                                | A60063                                                                                                                                                                                             | A60675                                                                                                                                                        | A60676                                                                                                                                                                           | A60668                                                                                                                                                                                | A60669                                                                                                                                                                | A60662                                                                                                                                                                       | A60663                                                                                                                                                                                  |
| Western Disposal Area                                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                                                                    |                                                                                                                                                               |                                                                                                                                                                                  | 1                                                                                                                                                                                     |                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                                         |
| aldrin                                                                                                                                                                                                     | 0.070 J                                                                                                                                                               | ND (0.0018 U)                                                                                                                                                                                      | 0.0032                                                                                                                                                        | ND (0.0019 U)                                                                                                                                                                    | 0.0051                                                                                                                                                                                | ND (0.0017 U)                                                                                                                                                         | ND (0.0044 U)                                                                                                                                                                | ND (0.0018 U)                                                                                                                                                                           |
| alpha-BHC                                                                                                                                                                                                  | ND (0.024 U)                                                                                                                                                          | ND (0.0018 U)                                                                                                                                                                                      | ND (0.0032 U)                                                                                                                                                 | ND (0.0019 U)                                                                                                                                                                    | ND (0.0045 U)                                                                                                                                                                         | ND (0.0017 U)                                                                                                                                                         | ND (0.0044 U)                                                                                                                                                                | ND (0.0018 U                                                                                                                                                                            |
| beta-BHC                                                                                                                                                                                                   | ND (0.024 U)                                                                                                                                                          | ND (0.0018 U)                                                                                                                                                                                      | ND (0.0032 U)                                                                                                                                                 | ND (0.0019 U)                                                                                                                                                                    | ND (0.0045 U)                                                                                                                                                                         | ND (0.0017 U)                                                                                                                                                         | ND (0.0044 U)                                                                                                                                                                | ND (0 0018 U                                                                                                                                                                            |
| gamma-BHC (lindane)                                                                                                                                                                                        | I R                                                                                                                                                                   | ND (0.0018 U)                                                                                                                                                                                      | ND (0.0032 U)                                                                                                                                                 | ND (0.0019 U)                                                                                                                                                                    | ND (0.0045 U)                                                                                                                                                                         | ND (0.0017 U)                                                                                                                                                         | ND (0.0044 U)                                                                                                                                                                | ND (0.0018 U                                                                                                                                                                            |
| delta-BHC                                                                                                                                                                                                  | ND (0.024 UJ)                                                                                                                                                         | ND (0.0018 U)                                                                                                                                                                                      | ND (0.0032 U)                                                                                                                                                 | ND (0.0019 UJ)                                                                                                                                                                   | 0.0069                                                                                                                                                                                | ND (0.0017 UJ)                                                                                                                                                        | ND (0.0044 U)                                                                                                                                                                | ND (0.0018 U.                                                                                                                                                                           |
| alpha-chlordane                                                                                                                                                                                            | ND (0.024 U)                                                                                                                                                          | ND (0.0018 U)                                                                                                                                                                                      | ND (0.0032 U)                                                                                                                                                 | ND (0.0019 U)                                                                                                                                                                    | 0.0081                                                                                                                                                                                | ND (0.0017 U)                                                                                                                                                         | ND (0.0044 U)                                                                                                                                                                | ND (0.0018 U                                                                                                                                                                            |
| gamma-chlordane                                                                                                                                                                                            | ND (0.024 U)                                                                                                                                                          | ND (0.0018 U)                                                                                                                                                                                      | ND (0.0032 U)                                                                                                                                                 | ND (0.0019 U)                                                                                                                                                                    | 0.0061                                                                                                                                                                                | ND (0.0017 U)                                                                                                                                                         | ND (0.0044 U)                                                                                                                                                                | ND (0.0018 U                                                                                                                                                                            |
| 4.4-DDD                                                                                                                                                                                                    | ND (0.046 U)                                                                                                                                                          | ND (0.0035 U)                                                                                                                                                                                      | ND (0.0062 U)                                                                                                                                                 | ND (0.0037 U)                                                                                                                                                                    | 0.0067 J                                                                                                                                                                              | ND (0.0034 U)                                                                                                                                                         | ND (0.0085 U)                                                                                                                                                                | ND (0.0034 U                                                                                                                                                                            |
| 4.4-DDE                                                                                                                                                                                                    | ND (0.046 U)                                                                                                                                                          | ND (0.0035 U)                                                                                                                                                                                      | 0.0038 J                                                                                                                                                      | ND (0.0037 U)                                                                                                                                                                    | 0.0048 J                                                                                                                                                                              | ND (0.0034 U)                                                                                                                                                         | ND (0.0085 U)                                                                                                                                                                | ND (0.0034 U                                                                                                                                                                            |
| 4.4-DDT                                                                                                                                                                                                    | ND (0.046 U)                                                                                                                                                          | ND (0.0035 U)                                                                                                                                                                                      | ND (0.0062 U)                                                                                                                                                 | ND (0.0037 U)                                                                                                                                                                    | 0.0061 J                                                                                                                                                                              | ND (0.0034 U)                                                                                                                                                         | 0.0047 J                                                                                                                                                                     | ND (0.0034 U                                                                                                                                                                            |
| endosulfan i                                                                                                                                                                                               | ND (0.024 U)                                                                                                                                                          | ND (0.0018 U)                                                                                                                                                                                      | ND (0.0032 U)                                                                                                                                                 | ND (0.0019 U)                                                                                                                                                                    | ND (0.0045 U)                                                                                                                                                                         | ND (0.0017 U)                                                                                                                                                         | ND (0.0044 U)                                                                                                                                                                | ND (0.0018 U                                                                                                                                                                            |
| endrin aldehyde                                                                                                                                                                                            | ND (0.046 U)                                                                                                                                                          | ND (0.0035 U)                                                                                                                                                                                      | ND (0.0062 U)                                                                                                                                                 | ND (0.0037 U)                                                                                                                                                                    | ND (0.0088 U)                                                                                                                                                                         | ND (0.0034 U)                                                                                                                                                         | ND (0.0085 U)                                                                                                                                                                | ND (0.0034 U                                                                                                                                                                            |
|                                                                                                                                                                                                            |                                                                                                                                                                       | 1                                                                                                                                                                                                  |                                                                                                                                                               |                                                                                                                                                                                  | ·····                                                                                                                                                                                 |                                                                                                                                                                       | T                                                                                                                                                                            | T                                                                                                                                                                                       |
| Location                                                                                                                                                                                                   | WA-5                                                                                                                                                                  | WA-5                                                                                                                                                                                               | WA-6                                                                                                                                                          | WA-6                                                                                                                                                                             | WA-7                                                                                                                                                                                  | WA-7                                                                                                                                                                  | WA-B                                                                                                                                                                         | WA-8                                                                                                                                                                                    |
| Location<br>Depth (ft)                                                                                                                                                                                     | WA-5<br>22.00-23.50                                                                                                                                                   | WA-5<br>23.50-26.00                                                                                                                                                                                | WA-6<br>12.00-13.00                                                                                                                                           | WA-8<br>13.00-15.00                                                                                                                                                              | WA-7<br>20.00-22.00                                                                                                                                                                   | WA-7<br>22.00-24.00                                                                                                                                                   | WA-8<br>10.00-12.00                                                                                                                                                          | WA-8<br>12.00-14.00                                                                                                                                                                     |
|                                                                                                                                                                                                            |                                                                                                                                                                       | 1 1 1                                                                                                                                                                                              |                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                                                                                                       | 1                                                                                                                                                                     |                                                                                                                                                                              |                                                                                                                                                                                         |
| Depth (fl)<br>Sample ID                                                                                                                                                                                    | 22.00-23.50<br>A60650                                                                                                                                                 | 23.50-26.00                                                                                                                                                                                        | 12.00-13.00                                                                                                                                                   | 13.00-15.00                                                                                                                                                                      | 20.00-22.00                                                                                                                                                                           | 22.00-24.00                                                                                                                                                           | 10.00-12.00                                                                                                                                                                  | 12.00-14.00                                                                                                                                                                             |
| Depth (fl)<br>Sample ID<br>Western Disposal Area                                                                                                                                                           | 22.00-23.50<br>A60650                                                                                                                                                 | 23.50-26.00                                                                                                                                                                                        | 12.00-13.00                                                                                                                                                   | 13.00-15.00                                                                                                                                                                      | 20.00-22.00                                                                                                                                                                           | 22.00-24.00                                                                                                                                                           | 10.00 - 12.00<br>A60657                                                                                                                                                      | 12.00-14.00                                                                                                                                                                             |
| Depth (ft)<br>Sample ID<br>Western Disposal Area<br>aldrin                                                                                                                                                 | 22.00-23.50<br><u>A60650</u><br>(Cont'd.)                                                                                                                             | 23.50-26.00<br><u>A60651</u>                                                                                                                                                                       | 12.00-13.00<br><u>A60085</u>                                                                                                                                  | 13.00-15.00<br><u>A60086</u>                                                                                                                                                     | 20.00-22.00<br><u>A60643</u>                                                                                                                                                          | 22.00-24.00<br><u>A60644</u>                                                                                                                                          | 10.00-12.00                                                                                                                                                                  | 12.00 - 14.00<br>A60658                                                                                                                                                                 |
| Depth (fl)<br>Sample ID<br>Western Disposal Area                                                                                                                                                           | 22.00-23.50<br>A60650<br>(Cont'd.)<br>ND (0.0076 U)                                                                                                                   | 23.50-26.00<br><u>A60651</u><br>ND (0.0018 U)                                                                                                                                                      | 12.00-13.00<br>A60085<br>ND (0.11 U)                                                                                                                          | 13.00 - 15.00<br><u>A60086</u><br>0.0035                                                                                                                                         | 20.00-22.00<br><u>A60643</u><br>ND (0.047 U)                                                                                                                                          | 22.00-24.00<br><u>A60644</u><br>0.013                                                                                                                                 | 10.00 - 12.00<br><u>A50657</u><br>ND (0.091 U)                                                                                                                               | 12.00 - 14.00<br>A60658                                                                                                                                                                 |
| Depth (fl)<br>Sample ID<br>Western Disposal Area<br>aldrin<br>alpha-BHC<br>beta-BHC                                                                                                                        | 22.00-23.50<br>A60650<br>(Cont'd.)<br>ND (0.0076 U)<br>ND (0.0076 U)                                                                                                  | 23.50-26.00<br>A60651<br>ND (0.0018 U)<br>ND (0.0018 U)                                                                                                                                            | 12.00-13.00<br>A60085<br>ND (0.11 U)<br>ND (0.11 U)                                                                                                           | 13.00 - 15.00<br>A60086<br>0.0035<br>ND (0.0022 U)                                                                                                                               | 20,00-22.00<br><u>A60643</u><br>ND (0.047 U)<br>ND (0.047 U)                                                                                                                          | 22.00-24.00<br><u>A60644</u><br>0.013<br>ND (0.011 U)                                                                                                                 | 10.00 - 12.00<br>A60657<br>ND (0.091 U)<br>ND (0.091 U)<br>ND (0.091 U)<br>ND (0.091 U)                                                                                      | 12.00 - 14.00<br>A60658<br>0.00085 J<br>ND (0.0018 U                                                                                                                                    |
| Depth (fl)<br><u>Sample ID</u><br>Western Disposal Area<br>aldrin<br>alpha – BHC<br>beta – BHC<br>gamma – BHC (lindane)                                                                                    | 22.00 - 23.50<br><u>A60650</u><br>(Cont'd.)<br>ND (0.0076 U)<br>ND (0.0076 U)<br>0.0091 JN                                                                            | 23.50-26.00<br>A60651<br>ND (0.0018 U)<br>ND (0.0018 U)<br>ND (0.0018 U)                                                                                                                           | 12.00-13.00<br>A60085<br>ND (0.11 U)<br>ND (0.11 U)<br>ND (0.11 U)                                                                                            | 13.00 - 15.00<br>A60086<br>0.0035<br>ND (0.0022 U)<br>ND (0.0022 U)                                                                                                              | 20.00-22.00<br><u>A60643</u><br>ND (0.047 U)<br>ND (0.047 U)<br>ND (0.047 U)                                                                                                          | 22.00-24.00<br><u>A60644</u><br>0.013<br>ND (0.011 U)<br>ND (0.011 U)                                                                                                 | 10.00 - 12.00<br><u>A50657</u><br>ND (0.091 U)<br>ND (0.091 U)                                                                                                               | 12.00 - 14.00<br>A60658<br>0.00085 J<br>ND (0.0018 U<br>ND (0.0018 U                                                                                                                    |
| Depth (fl)<br><u>Sample ID</u><br>Western Disposal Area<br>aldrin<br>alpha – BHC<br>beta – BHC<br>gamma – BHC (lindane)<br>delta – BHC                                                                     | 22.00-23.50<br><u>A60650</u><br>(Cont'd.)<br>ND (0.0076 U)<br>ND (0.0076 U)<br>0.0091 JN<br>ND (0.0076 U)                                                             | 23.50-26.00<br>A60651<br>ND (0.0018 U)<br>ND (0.0018 U)<br>ND (0.0018 U)<br>ND (0.0018 U)<br>ND (0.0018 U)                                                                                         | 12.00-13.00<br>A60085<br>ND (0.11 U)<br>ND (0.11 U)<br>ND (0.11 U)<br>ND (0.11 U)<br>ND (0.11 U)<br>ND (0.11 UJ)<br>R                                         | 13.00 - 15.00<br>A60086<br>0.0035<br>ND (0.0022 U)<br>ND (0.0022 U)<br>ND (0.0022 U)<br>ND (0.0022 U)<br>ND (0.0022 U)                                                           | 20.00-22.00<br><u>A60643</u><br>ND (0.047 U)<br>ND (0.047 U)<br>ND (0.047 U)<br>ND (0.047 U)<br>ND (0.047 U)                                                                          | 22.00-24.00<br><u>A60644</u><br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)                                                                                          | 10.00 - 12.00<br>A60657<br>ND (0.091 U)<br>ND (0.091 U)<br>ND (0.091 U)<br>ND (0.091 U)<br>ND (0.091 U)                                                                      | 12.00 - 14.00<br>A60658<br>0.00085 J<br>ND (0.0018 U<br>ND (0.0018 U<br>ND (0.0018 U                                                                                                    |
| Depth (fl)<br><u>Sample ID</u><br>Western Disposal Area<br>aldrin<br>alpha – BHC<br>beta – BHC<br>gamma – BHC (lindane)<br>delta – BHC<br>alpha – chlordane                                                | 22.00-23.50<br><u>A60650</u><br>(Cont'd.)<br>ND (0.0076 U)<br>ND (0.0076 U)<br>0.0091 JN<br>ND (0.0076 U)<br>R                                                        | 23.50-26.00<br>A60651<br>ND (0.0018 U)<br>ND (0.0018 U)<br>ND (0.0018 U)<br>ND (0.0018 U)<br>ND (0.0018 UJ)                                                                                        | 12.00-13.00<br>A60085<br>ND (0.11 U)<br>ND (0.11 U)<br>ND (0.11 U)<br>ND (0.11 U)<br>ND (0.11 UJ)<br>R<br>R                                                   | 13.00 - 15.00<br>A60086<br>ND (0.0022 U)<br>ND (0.0022 U)<br>ND (0.0022 U)<br>ND (0.0022 UJ)<br>ND (0.0022 UJ)<br>ND (0.0022 U)<br>ND (0.0022 U)                                 | 20.00 - 22.00<br><u>A60643</u><br>ND (0.047 U)<br>ND (0.047 U)<br>ND (0.047 U)<br>ND (0.047 U)<br>ND (0.047 UJ)                                                                       | 22.00-24.00<br>A60644<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 UJ)                                                                                | 10.00 - 12.00<br>A60657<br>ND (0.091 U)<br>ND (0.091 U)<br>ND (0.091 U)<br>ND (0.091 U)<br>ND (0.091 UJ)                                                                     | 12.00 - 14.00<br>A60658<br>ND (0.0018 U<br>ND (0.0018 U<br>ND (0.0018 U<br>ND (0.0018 U                                                                                                 |
| Depth (fl)<br>Sample ID<br>Western Disposal Area<br>aldrin<br>alpha-BHC                                                                                                                                    | 22.00-23.50<br><u>A60650</u><br>(Cont'd.)<br>ND (0.0076 U)<br>ND (0.0076 U)<br>0.0091 JN<br>ND (0.0076 U)<br>R<br>ND (0.0076 U)                                       | 23.50-26.00<br>A60651<br>ND (0.0018 U)<br>ND (0.0018 U)<br>ND (0.0018 U)<br>ND (0.0018 U)<br>ND (0.0018 UJ)<br>ND (0.0018 UJ)                                                                      | 12.00-13.00<br>A60085<br>ND (0.11 U)<br>ND (0.11 U)<br>ND (0.11 U)<br>ND (0.11 U)<br>ND (0.11 U)<br>ND (0.11 UJ)<br>R                                         | 13.00 - 15.00<br>A60086<br>0.0035<br>ND (0.0022 U)<br>ND (0.0022 U)<br>ND (0.0022 U)<br>ND (0.0022 U)<br>ND (0.0022 U)                                                           | 20.00 - 22.00<br><u>A60643</u><br>ND (0.047 U)<br>ND (0.047 U)<br>ND (0.047 U)<br>ND (0.047 U)<br>ND (0.047 UJ)<br>R                                                                  | 22.00-24.00<br>A60644<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)                                 | 10.00 - 12.00<br>A60657<br>ND (0.091 U)<br>ND (0.091 U)<br>ND (0.091 U)<br>ND (0.091 U)<br>ND (0.091 UJ)<br>ND (0.091 UJ)<br>ND (0.091 U)                                    | 12.00 - 14.00<br>A60658<br>ND (0.0018 U<br>ND (0.0018 U<br>ND (0.0018 U<br>ND (0.0018 U<br>ND (0.0018 U<br>ND (0.0018 U<br>ND (0.0018 U                                                 |
| Depth (fl)<br>Sample ID<br>Western Disposal Area<br>aldrin<br>alpha – BHC<br>beta – BHC<br>gamma – BHC (lindane)<br>delta – BHC<br>alpha – chlordane<br>gamma – chlordane<br>4,4 – DDD                     | 22.00-23.50<br><u>A60650</u><br>(Cont'd.)<br>ND (0.0076 U)<br>ND (0.0076 U)<br>0.0091 JN<br>ND (0.0076 U)<br>R<br>ND (0.0076 U)<br>0.0056 JN                          | 23.50-26.00<br>A60651<br>ND (0.0018 U)<br>ND (0.0018 U)<br>ND (0.0018 U)<br>ND (0.0018 UJ)<br>ND (0.0018 UJ)<br>ND (0.0018 UJ)<br>ND (0.0018 U)<br>ND (0.0018 U)<br>ND (0.0034 U)<br>ND (0.0034 U) | 12.00-13.00<br>A60085<br>ND (0.11 U)<br>ND (0.11 U)<br>ND (0.11 U)<br>ND (0.11 U)<br>ND (0.11 UJ)<br>R<br>R                                                   | 13.00 - 15.00<br>A60086<br>ND (0.0022 U)<br>ND (0.0022 U)<br>ND (0.0022 U)<br>ND (0.0022 UJ)<br>ND (0.0022 UJ)<br>ND (0.0022 U)<br>ND (0.0022 U)                                 | 20.00-22.00<br><u>A60643</u><br>ND (0.047 U)<br>ND (0.047 U)<br>ND (0.047 U)<br>ND (0.047 U)<br>ND (0.047 UJ)<br>R<br>ND (0.047 U)                                                    | 22.00-24.00<br>A60644<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 UJ)<br>ND (0.011 UJ)<br>ND (0.011 U)                                               | 10.00 - 12.00<br>A60657<br>ND (0.091 U)<br>ND (0.091 U)<br>ND (0.091 U)<br>ND (0.091 U)<br>ND (0.091 UJ)<br>ND (0.091 UJ)<br>ND (0.091 U)<br>R                               | 12.00 - 14.00<br>A60658<br>ND (0.0018 U<br>ND (0.0018 U                                 |
| Depth (fl)<br>Sample ID<br>Western Disposal Area<br>aldrin<br>alpha – BHC<br>beta – BHC<br>gamma – BHC (lindane)<br>delta – BHC<br>alpha – chlordane<br>gamma – chlordane                                  | 22.00-23.50<br><u>A60650</u><br>(Cont'd.)<br>ND (0.0076 U)<br>ND (0.0076 U)<br>0.0091 JN<br>ND (0.0076 U)<br>R<br>ND (0.0076 U)<br>0.0056 JN<br>0.020                 | 23.50-26.00<br>A60651<br>ND (0.0018 U)<br>ND (0.0018 U)<br>ND (0.0018 U)<br>ND (0.0018 UJ)<br>ND (0.0018 UJ)<br>ND (0.0018 UJ)<br>ND (0.0018 U)<br>ND (0.0018 U)<br>ND (0.0018 U)                  | 12.00-13.00<br>A60085<br>ND (0.11 U)<br>ND (0.11 U)<br>ND (0.11 U)<br>ND (0.11 U)<br>ND (0.11 U)<br>ND (0.11 UJ)<br>R<br>R<br>R<br>ND (0.21 U)                | 13.00 - 15.00<br>A60086<br>ND (0.0022 U)<br>ND (0.0023 U) | 20.00 - 22.00<br><u>A60643</u><br>ND (0.047 U)<br>ND (0.047 U)<br>ND (0.047 U)<br>ND (0.047 U)<br>ND (0.047 UJ)<br>R<br>ND (0.047 UJ)<br>R<br>ND (0.047 U)<br>ND (0.091 U)            | 22.00-24.00<br>A60644<br>ND (0.011 U)<br>ND (0.022 U)                 | 10.00 - 12.00<br>A60657<br>ND (0.091 U)<br>ND (0.091 U)<br>ND (0.091 U)<br>ND (0.091 U)<br>ND (0.091 UJ)<br>ND (0.091 UJ)<br>ND (0.091 U)<br>R<br>ND (0.18 U)                | 12.00 - 14.00<br>A60658<br>ND (0.0018 U<br>ND (0.0018 U<br>ND (0.0018 U<br>ND (0.0018 U<br>ND (0.0018 U                                                                                 |
| Depth (fl)<br><u>Sample ID</u><br>Western Disposal Area<br>aldrin<br>alpha – BHC<br>beta – BHC<br>gamma – BHC (lindane)<br>delta – BHC<br>alpha – chlordane<br>gamma – chlordane<br>4,4 – DDD<br>4,4 – DDE | 22.00-23.50<br><u>A60650</u><br>(Cont'd.)<br>ND (0.0076 U)<br>ND (0.0076 U)<br>0.0091 JN<br>ND (0.0076 U)<br>R<br>ND (0.0076 U)<br>0.0056 JN<br>0.020<br>ND (0.015 U) | 23.50-26.00<br>A60651<br>ND (0.0018 U)<br>ND (0.0018 U)<br>ND (0.0018 U)<br>ND (0.0018 UJ)<br>ND (0.0018 UJ)<br>ND (0.0018 UJ)<br>ND (0.0018 U)<br>ND (0.0018 U)<br>ND (0.0034 U)<br>ND (0.0034 U) | 12.00-13.00<br>A60085<br>ND (0.11 U)<br>ND (0.11 U)<br>ND (0.11 U)<br>ND (0.11 U)<br>ND (0.11 U)<br>ND (0.11 UJ)<br>R<br>R<br>R<br>ND (0.21 U)<br>ND (0.21 U) | 13.00 - 15.00<br>A60086<br>ND (0.0022 U)<br>ND (0.0043 U) | 20.00 - 22.00<br><u>A60643</u><br>ND (0.047 U)<br>ND (0.047 U)<br>ND (0.047 U)<br>ND (0.047 U)<br>ND (0.047 UJ)<br>R<br>ND (0.047 UJ)<br>ND (0.047 U)<br>ND (0.091 U)<br>ND (0.091 U) | 22.00-24.00<br>A60644<br>ND (0.011 U)<br>ND (0.022 U)<br>ND (0.022 U) | 10.00 - 12.00<br>A60657<br>ND (0.091 U)<br>ND (0.091 U)<br>ND (0.091 U)<br>ND (0.091 U)<br>ND (0.091 UJ)<br>ND (0.091 UJ)<br>ND (0.091 U)<br>R<br>ND (0.18 U)<br>ND (0.18 U) | 12.00 - 14.00<br>A60658<br>ND (0.0018 U<br>ND (0.0036 U<br>ND (0.0036 U |

See Notes on Page 4

1

**i** .

ł

;

7

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED PESTICIDES RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location<br>Depth (ft)<br>Sample (D | B-7B<br>8.00-10.00<br>A60702 | B-7B<br>10.00-12.00<br>A60703 | MW-8A<br>12.00-12.50<br>A60092 | MW-8A<br>12.50-14.00<br>A60093 | MW-1208<br>18.00-19.00<br><u>A60054</u> | MW-120B<br>19.00-20.00<br>A60055 | BMP-2<br>0.00-1.00<br><u>A60621</u> | BMP-2<br>3.00-4.00<br>A60624 |
|-------------------------------------|------------------------------|-------------------------------|--------------------------------|--------------------------------|-----------------------------------------|----------------------------------|-------------------------------------|------------------------------|
| Western Disposal Area               |                              | Former Bryant                 | Mili Pond                      |                                |                                         |                                  |                                     |                              |
| aldrin                              | ND (0.0018 U)                | ND (0.0022 U)                 | A                              | ND (0.0026 U)                  | ND (0.25 U)                             | 0.0024                           | 1.1                                 | ND (0.045 U)                 |
| alpha-BHC                           | ND (0.0018 U)                | ND (0.0022 U)                 | ND (0.13 U)                    | ND (0.0026 U)                  | ND (0.25 U)                             | ND (0.0021 UJ)                   | ND (0.067 U)                        | ND (0.045 U)                 |
| beta-BHC                            | ND (0.0018 U)                | ND (0.0022 U)                 | ND (0.13 U)                    | ND (0.0026 U)                  | ND (0.25 U)                             | ND (0.0021 U)                    | R                                   | ND (0.045 U)                 |
| gamma-BHC (lindane)                 | ND (0.0018 U)                | ND (0.0022 U)                 | ND (0.13 U)                    | ND (0.0026 U)                  | ND (0.25 U)                             | ND (0.0021 U)                    | ND (0.067 U)                        | ND (0.045 U)                 |
| delta – BHC                         | ND (0.0018 UJ)               | ND (0.0022 UJ)                | ND (0.13 UJ)                   | ND (0.0026 UJ)                 | ND (0.25 UJ)                            | ND (0.0021 U)                    | ND (0.067 U)                        | ิ ค ์                        |
| alpha-chlordane                     | ND (0.0018 U)                | ND (0.0022 U)                 | ND (0.13 U)                    | ND (0.0026 U)                  | ND (0.25 U)                             | ND (0.0021 U)                    | ND (0.067 U)                        | ND (0.045 U)                 |
| gamma – chlordane                   | ND (0.0018 U)                | ND (0.0022 U)                 | ิ ค                            | ND (0.0026 U)                  | ND (0.25 U)                             | ND (0.0021 U)                    | ND (0.067 U)                        | ND (0.045 U)                 |
| 4,4~DDD                             | ND (0.0034 U)                | ND (0.0043 U)                 | ND (0.25 U)                    | ND (0.0051 U)                  | ND (0.49 U)                             | ND (0.0040 U)                    | ND (0.13 U)                         | ND (0.087 U)                 |
| 4,4-DDE                             | ND (0.0034 U)                | ND (0.0043 U)                 | 0.42 J                         | ND (0.0051 U)                  | ND (0.49 U)                             | ND (0.0040 U)                    | 0.33                                | <b>`</b> R <b>`</b> '        |
| 4.4-DDT                             | ND (0.0034 U)                | ND (0.0043 U)                 | ND (0.25 U)                    | ND (0.0051 U)                  | ND (0.49 U)                             | ND (0.0040 U)                    | ND (0.13 U)                         | 0.12 JN                      |
| endosulfan l                        | ND (0.0018 U)                | ND (0.0022 U)                 | ND (0.13 U)                    | ND (0.0026 U)                  | ND (0.25 U)                             | ND (0.0021 U)                    | ND (0.067 U)                        | ND (0 045 U)                 |
| endrin aldehyde                     | ND (0.0034 U)                | ND (0.0043 U)                 | ND (0.25 U)                    | ND (0.0051 U)                  | ND (0.49 U)                             | ND (0.0040 U)                    | ND (0.13 U)                         | 0.071 J                      |

| Location<br>Depth (ft)<br>Sample IL | BMP - 12<br>0.00 - 1.00<br><u>A60616</u> | BMP-12<br>3.00-4.00<br>A60619 |  |  |  |  |  |  |
|-------------------------------------|------------------------------------------|-------------------------------|--|--|--|--|--|--|
| Former Bryant MHI Pond (Cont'd.)    |                                          |                               |  |  |  |  |  |  |
| aldrin                              | 0.69                                     | 0.14                          |  |  |  |  |  |  |
| alpha-BHC                           | ND (0.085 U)                             | ND (0.012 U)                  |  |  |  |  |  |  |
| beta-BHC                            | R                                        | R                             |  |  |  |  |  |  |
| gamma-BHC (lindane)                 | ND (0.085 U)                             | ND (0.012 U)                  |  |  |  |  |  |  |
| delta-BHC                           | ND (0.085 U)                             | ND (0.012 U)                  |  |  |  |  |  |  |
| alpha – chiordane                   | ND (0.085 U)                             | ND (0.012 U)                  |  |  |  |  |  |  |
| gamma – chlordane                   | R                                        | ND (0.012 U)                  |  |  |  |  |  |  |
| 4,4-DDD                             | ND (0.16 U)                              | ND (0.023 U)                  |  |  |  |  |  |  |
| 4,4-DDE                             | 0.12 J                                   | 0.030                         |  |  |  |  |  |  |
| 4.4-DDT                             | ND (0.16 U)                              | ND (0.023 U)                  |  |  |  |  |  |  |
| endosulfan 1                        | ND (0.085 U)                             | ND (0.012 U)                  |  |  |  |  |  |  |
| endrin aldehyde                     | ND (0.16 U)                              | ND (0.023 U)                  |  |  |  |  |  |  |

#### Notes:

<sup>1</sup>Showing only the results for analytes detected above quantitation limit. <sup>2</sup>MS/MSD of this sample was analyzed. ND - Not dectected.

#### Notes Explaining Data Qualifiers:

- J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
- N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
- R The sample results are rejected.
- U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
- UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.

### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED PESTICIDES RESULTS FOR GROUNDWATER/LEACHATE SAMPLES<sup>1</sup> (ug/L)

| Location<br>Sample ID | MW-11<br>A66008 | MW-12<br>A66064 | MW-12R<br>A66028 | MW-22A<br>A66017 | MW-22B<br><u>A66018</u> | MW-23<br><u>A66034</u> | MW-24<br>A66009 |
|-----------------------|-----------------|-----------------|------------------|------------------|-------------------------|------------------------|-----------------|
| Bryant HRDL           |                 |                 |                  |                  |                         |                        |                 |
| alpha-BHC             | ND (0.050 U)    | ND (0.050 U)    | ND (0.050 U)     | ND (0.050 U)     | ND (0.050 U)            | ND (0.050 U)           | ND (0.050 U)    |

| Location<br>Sample ID | MW-25<br>A66027 | MW-26 <sup>2</sup><br>A66015 | MW-121A<br>A66013 | MW-121B<br>A66014 | MW-123A<br><u>A66025</u> | MW-123B<br><u>A66026</u> | RIVULET2<br>A66007 |
|-----------------------|-----------------|------------------------------|-------------------|-------------------|--------------------------|--------------------------|--------------------|
| Bryant HRDL (Cont'd.) |                 |                              |                   |                   |                          |                          |                    |
| alpha-BHC             | ND (0.050 U)    | ND (0.050 U)                 | ND (0.050 U)      | ND (0.050 U)      | ND (0.050 U)             | ND (0.050 U)             | ND (0.050 U)       |

| Location<br>Sample ID | MW-124A<br>A66003 | MW-124B<br>A66004 | MW-125A<br>A66005 | MW-1258<br>A66006 | MW-125P<br><u>A66016</u> | MW-126A<br><u>A66010</u> | MW-1268<br>A66011 |
|-----------------------|-------------------|-------------------|-------------------|-------------------|--------------------------|--------------------------|-------------------|
| Monarch HRDL          |                   |                   |                   |                   |                          |                          |                   |
| alpha-BHC             | ND (0.050 U)      | ND (0.050 U)      | ND (0.050 U)      | ND (0.050 U)      | 0.028 J                  | ND (0.050 U)             | ND (0.050 U)      |

| Location<br>Sample ID  | MW-126B<br>(Dup)<br>A66012 | MW-122A<br>A66033 | MW-122A<br>(Dup)<br>A66038 | MW-122B<br>A66039 | MW - 1 <sup>2</sup><br><u>A66032</u> | MW - 3<br>A66054 | MW-5<br>A66046 |
|------------------------|----------------------------|-------------------|----------------------------|-------------------|--------------------------------------|------------------|----------------|
| Monarch HRDL (Cont'd.) |                            | FRDLs             |                            |                   | Former Type I                        | II Landfill      |                |
| alpha-BHC              | ND (0.050 U)               | ND (0.050 U)      | ND (0.050 U)               | ND (0.050 U)      | ND (0.050 U)                         | ND (0.050 U)     | ND (0.050 U)   |

See Notes on Page 3

;

5

### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED PESTICIDES RESULTS FOR GROUNDWATER/LEACHATE SAMPLES<sup>1</sup> (ug/L)

| Location<br>Sample ID    | MW 15<br>A66055 | MW-16B <sup>2</sup><br>A66059 | MW~16C<br>A66058 | MW-17A<br>A66056 | MW-17B<br>A66057 | MW-19BR<br>A66030 | MW – 19BR<br>(Dup)<br>A66031 |
|--------------------------|-----------------|-------------------------------|------------------|------------------|------------------|-------------------|------------------------------|
| Former Type III Landfill | (Cont'd.)       |                               |                  |                  |                  |                   |                              |
| alpha-BHC                | ND (0.050 U)    | ND (0.050 U)                  | ND (0.060 U)     | ND (0.060 U)     | ND (0.050 U)     | ND (0.050 U)      | ND (0.050 U)                 |

| Location<br>Sample ID       | MW-19C<br>A66040 | MW-19D<br>A66041 | MW-112<br>A66045 | MW-127A<br>A68044 | MW - 7<br>A66001 | MW-78<br>A66000 | MW-8<br>A66053 |
|-----------------------------|------------------|------------------|------------------|-------------------|------------------|-----------------|----------------|
| Former Type III Landfill (C | Western Dispo    | sal Area         |                  |                   |                  |                 |                |
| alpha-BHC                   | ND (0.050 U)     | ND (0.050 U)     | ND (0.050 U)     | ND (0.050 U)      | ND (0.050 U)     | ND (0.050 U)    | ND (0.050 U)   |

| Location<br>Sample ID | MW-8A<br>A66052 | MW-20<br>A66049 | MW-20<br>(Dup)<br>A66050 | MW-20B<br>A66051 | MW-21<br>A66002 | MW-120A<br>A66020 | MW-120B<br>A66019 |
|-----------------------|-----------------|-----------------|--------------------------|------------------|-----------------|-------------------|-------------------|
| Western Disposal Ar   | ea (Cont'd.)    |                 |                          |                  |                 |                   |                   |
| alpha-BHC             | ND (0.050 U)    | ND (0.050 U)    | ND (0.050 U)             | ND (0.050 U)     | ND (0.050 U)    | ND (0.050 U)      | ND (0 050 U)      |

| Location<br>Sample ID           | MW120B<br>(Dup)<br>A66024 | MW - 2<br>A66060 | MW-2S<br>A66022 | MW - 2S<br>(Dup)<br>A66023 | MW-18<br>A66061 | MW-104<br>A66037 | MW - 106<br>A66063 |
|---------------------------------|---------------------------|------------------|-----------------|----------------------------|-----------------|------------------|--------------------|
| Western Disposal Area (Cont'd.) |                           | Pilot Study Ar   | ea              |                            |                 | Former Brya      | nt Mill Pond       |
| alpha-BHC                       | ND (0.050 U)              | ND (0.050 U)     | ND (0.050 U)    | ND (0.050 U)               | ND (0.050 U)    | ND (0.050 U)     | ND (0.050 U)       |

See Notes on Page 3

i

1

.

ų.

1

### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED PESTICIDES RESULTS FOR GROUNDWATER/LEACHATE SAMPLES<sup>1</sup> (ug/L)

| Former Bryant Mill Pond (Cont'd.) | Location  | MW-108 | MW-114 | MW-128A |
|-----------------------------------|-----------|--------|--------|---------|
|                                   | Sample ID | A66047 | A66036 | A66035  |
| Former bryant and Fond (Cont d.)  |           |        |        |         |

Notes:

<sup>1</sup> Showing only the results for compounds detected above quantitation limit.

<sup>2</sup> MS/MSD of this sample was analyzed.

ND - Not detected.

;

Notes Describing Data Qualifiers:

J - The compound was positively identified. However, the associated value is an estimated concentration only.

U - The compound was analyzed for but not detected. The associated value is the compound quantitation limit.

1

4

. .

.

~

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED TCL VOC RESULTS FOR RESIDUALS/SOIL SAMPLES' (mg/kg)

| · · · · · · · · · · · · · · · · · · ·         | 1                     | BHDL-22               | T T                   | BHDL-22               | 1                      | T                       | Τ                          | T                     |
|-----------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|-------------------------|----------------------------|-----------------------|
| Location                                      | BHDL-22               | (Dup)                 | BHDL-22               | (Dup)                 | BHDL-1232              | BHDL-123                | MW-1218                    | MW-121B               |
| Depth (ft)                                    | 10.00-12.00           | 10.00-12.00           | 12.00-14.00           | 12.00-14.00           | 8.00~9.50              | 10.00-12.00             | 16.00-17.50                | 17 50-19.00           |
| Sample ID                                     | A60688                | A60691                | A60689                | A60692                | A60683                 | A60684                  | A60046                     | A60047                |
| Bryant HRDL                                   |                       |                       |                       |                       |                        |                         |                            |                       |
| acetone                                       | 0.25 J                | 0.42 J                | 0.033                 | 0.028 B               | 0.47 J                 | 0.070 B                 | ND (2.4 UJ)                | 0.54 J                |
| benzene                                       | 0.032 J               | 0.067 J               | ND (0.012 U)          | 0.0020 J              | 0.066 J                | ND (0.012 U)            | ND (2.4 U)                 | 0.016 J               |
| 2-butanone                                    | 0.13 J                | 0.20 J                | 0.0070 J              | 0.0080 J              | 0.34 J                 | 0.013 J                 | ND (2.4 U)                 | 0.16                  |
| carbon disulfide                              | 0.019 J               | 0.049 J               | ND (0.012 U)          | ND (0.011 U)          | 0.034 J                | ND (0.012 U)            | ND (2.4 U)                 | 0.010 J               |
| carbon tetrachloride                          | ND (0.086 UJ)         | ND (0.12 UJ)          | ND (0.012 U)          | ND (0.011 U)          | ND (0.12 UJ)           | ND (0.012 U)            | ND (2.4 U)                 | ND (0.047 U           |
| chloroform                                    | ND (0.086 UJ)         | ND (0.12 UJ)          | ND (0.012 U)          | ND (0.011 U)          | ND (0.12 U)            | ND (0.012 U)            | ND (2.4 U)                 | ND (0.047 U           |
| 1.2-dichloroethene                            | ND (0.086 UJ)         | ND (0.12 UJ)          | ND (0.012 U)          | ND (0.011 U)          | ND (0.12 UJ)           | ND (0.012 U)            | ND (2.4 U)                 | ND (0.047 U           |
| cis-1.3-dichloropropene                       | ND (0.086 UJ)         | ND (0.12 UJ)          | ND (0.012 U)          | ND (0.011 U)          | ND (0.12 UJ)           | ND (0.012 U)            | ND (2.4 U)                 | ND (0.047 U           |
| ethylbenzene                                  | ND (0.086 UJ)         | ND (0.12 UJ)          | ND (0.012 U)          | ND (0.011 U)          | ND (0.12 UJ)           | ND (0.012 U)            | ND (2.4 U)                 | ND (0.047 U           |
| 2-hexanone                                    | ND (0.086 UJ)         | ND (0.12 UJ)          | ND (0.012 U)          | ND (0.011 U)          | ND (0.12 UJ)           | ND (0.012 UJ)           | ND (2.4 U)                 | ND (0.047 U           |
| methylene chloride                            | ND (0.086 UJ)         | ND (0.12 UJ)          | ND (0.012 U)          | ND (0.011 U)          | 0.030 J                | ND (0.012 U)            | ND (2.4 U)                 | ND (0.047 U           |
| 4-methyl-2-pentanone                          | ND (0.086 UJ)         | ND (0.12 UJ)          | ND (0.012 U)          | ND (0.011 U)          | ND (0.12 UJ)           | ND (0.012 U)            | ND (2.4 U)                 | ND (0.047 U           |
| tetrachloroethene                             | ND (0.086 UJ)         | ND (0.12 UJ)          | ND (0.012 U)          | ND (0.011 U)          | ND (0.12 UJ)           | ND (0.012 U)            | ND (2.4 U)                 | ND (0.047 U           |
| toluene                                       | 0.11 J                | 0.32 J                | ND (0.012 U)          | 0.0020 J              | 0.51 J                 | ND (0.012 U)            | 0.93 J                     | 0.0080 J              |
| 1,1,1-trichloroethane                         | ND (0.086 UJ)         | ND (0.12 UJ)          | ND (0.012 U)          | ND (0.011 U)          | ND (0.12 UJ)           | ND (0.012 U)            | ND (2.4 U)                 | ND (0.047 U           |
| xylenes                                       | 0.050 J               | 0.090 J               | ND (0.012 U)          | ND (0.011 U)          | 0.18 J                 | ND (0.012 U)            | ND (2.4 U)                 | 0.015 J               |
| Location<br>Depth (ft)                        | MLS8-1<br>14.00-15.50 | MLS8-1<br>15.50-18.00 | MLS8-2<br>20.00-22.00 | MLSS-2<br>22.00-24.00 | MLS8-3<br>18.00-20.00  | MLSS-3<br>20.00-22.00   | MLSS-4<br>18.00-20.00      | MLSS-4<br>20.00-22.00 |
| Sample ID                                     | A60039                | A60040                | A60571                | A60572                | A60551                 | A60552                  | A60530                     | A60531                |
| Monarch HRDL                                  |                       |                       |                       |                       |                        |                         |                            |                       |
| acetone                                       | 2.5 BJ                | 0.019                 | ND (3.9 UJ)           | 1.4 DJ                | 0.46                   | 0.56 J                  | ND (3.8 UJ)                | 0.13                  |
| benzene                                       | ND (0.14 U)           | ND (0.013 U)          | ND (3.9 UJ)           | 0.041                 | 0.034 J                | 0.020 J                 | ND (3.8 UJ)                | ND (0.012 U           |
| 2-butanone                                    | 0.68                  | ND (0.013 U)          | ND (3.9 UJ)           | 0.55 J                | 0.16 J                 | 0.20 J                  | ND (3.8 UJ)                | ND (0.012 U           |
| carbon disulfide                              | 0.073 J               | ND (0.013 U)          | ND (3.9 UJ)           | 0.028 J               | 0.043 J                | 0.0050 J                | ND (3.8 UJ)                | ND (0.012 U           |
| cerbon tetrachloride                          | ND (0.14 U)           | ND (0.013 U)          | ND (3.9 UJ)           | ND (0.037 U)          | ND (0.17 U)            | ND (0.028 U)            | 3.8 J                      | ND (0.012 U           |
| cerpon terachionide<br>chloroform             | ND (0.14 U)           | ND (0.013 U)          | ND (3.9 UJ)           | ND (0.037 U)          | ND (0.17 U)            | ND (0.028 U)            | ND (3.8 UJ)                | ND (0.012 U           |
|                                               | ND (0.14 U)           | ND (0.013 U)          | ND (3.9 UJ)           | ND (0.037 U)          | ND (0.17 U)            | ND (0.028 U)            | ND (3.8 UJ)                | ND (0.012 U           |
| 1,2-dichloroethene<br>cis-1,3-dichloropropene | ND (0.14 U)           | ND (0.013 U)          | ND (3.9 UJ)           | ND (0.037 U)          | ND (0.17 U)            | ND (0.028 U)            | ND (3.8 UJ)                | ND (0.012 U           |
| •••                                           | ND (0.14 U)           | ND (0.013 U)          | ND (3.9 UJ)           | 0.011 J               | ND (0.17 U)            | 0.014 J                 | ND (3.8 UJ)                | ND (0.012 U           |
| ethylbenzene<br>2. hovenone                   | ND (0.14 U)           | ND (0.013 U)          | ND (3.9 UJ)           | ND (0.037 UJ          | ND (0.17 U)            | ND (0.028 UJ)           | ND (3.8 UJ)                | ND (0.012 U           |
| 2-hexanone                                    | ND (0.14 U)           | ND (0.013 U)          | ND (3.9 UJ)           | ND (0.037 U)          | ND (0.17 U)            | ND (0.028 U)            | ND (3.8 UJ)                | ND (0.012 U           |
| methylene chloride                            | ND (0.14 U)           | ND (0.013 U)          | ND (3.9 UJ)           | ND (0.037 UJ)         |                        |                         | ND (3.8 UJ)                | ND (0.012 U           |
| 4-methyl-2-pentanone                          | 0.024 J               | ND (0.013 U)          | ND (3.9 UJ)           | ND (0.037 UJ)         | ND (0.17 U)<br>0.026 J | ND (0.028 UJ)           |                            |                       |
| tetrachloroethene                             | 0.024 J               | 0.0020 J              | ND (3.9 UJ)           | 0.034 J               | 0.026 J                | ND (0.028 UJ)           | ND (3.8 UJ)                | ND (0.012 U           |
| toluene                                       | ND (0.14 U)           | ND (0.013 U)          | ND (3.9 UJ)           | ND (0.037 U)          | ND (0.17 U)            | 0.017 J<br>ND (0.028 U) | ND (3.8 UJ)<br>ND (3.8 UJ) | ND (0.012 U           |
| 1,1,1 - trichloroethane                       | 0.094 J               | 0.0060 J              | ND (3.9 UJ)           | 0.062 J               | 0.12 J                 |                         | ND (3.8 UJ)                | ND (0.012 U)          |
| xylenes                                       |                       | <u> </u>              | L 10 10 000           | <u>0.002 J</u>        | U.14 J                 | <u>0.078 J</u>          |                            | ND (0.012 U           |

See Notes on Page 5

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED TCL VOC RESULTS FOR RESIDUALS/SOIL SAMPLES' (mg/kg)

| ۱ ـ ـ ـ ۸ ـ ـ           | MLSS-5                 | MLSS-5               | MW-125B                          | MW-125B                           | MW-126A              | MW-126A               | DLHB-1       | DUHB-1      |
|-------------------------|------------------------|----------------------|----------------------------------|-----------------------------------|----------------------|-----------------------|--------------|-------------|
| Location                | MLSS-0<br>22.00-24.00  | 24.00-26.00          | 18.00-19.00                      | 19.00-20.00                       | 14.00-16.00          | 14.00-16.00           | 14.00-16.00  | 16.00-18.0  |
| Depth (ft)              | A60512                 | A60513               | A60029                           | A60030                            | A60017               | A60018                | A60593       | A60594      |
| Sample ID               | A00512                 | 1 100010             | 1 100020                         | 1 //////                          |                      | 1 700010              | 1 100393     | 1 400334    |
| Monarch HRDL (Cont'd.)  |                        |                      |                                  |                                   |                      |                       | FRDLs        |             |
| acetone                 | ND (4.0 UJ)            | 0.12                 | ND (3.3 UJ)                      | 1.1 D                             | ND (3.3 UJ)          | 0.34                  | 0.44 BJ      | 0.30        |
| benzene                 | ND (4.0 UJ)            | ND (0.015 U)         | ND (3.3 UJ)                      | ND (0.014 U)                      | ND (3.3 U)           | 0.0030 J              | ND (0.036 U) | ND (0.019 L |
| 2-butanone              | ND (4.0 UJ)            | 0.013 J              | ND (3.3 U)                       | 0.27                              | ND (3.3 U)           | 0.11                  | 0.17         | ND (0.019 l |
| carbon disulfide        | ND (4.0 UJ)            | 0.0040 J             | ND (3.3 U)                       | 0.0080 J                          | ND (3.5 U)           | 0.015 J               | 0.013 J      | ND (0.019 L |
| carbon tetrachloride    | ND (4.0 UJ)            | ND (0.015 U)         | ND (3.3 U)                       | ND (0.014 U)                      | ND (3.3 U)           | ND (0.025 U)          | ND (0.036 U) | ND (0.019 L |
| chloroform              | ND (4.0 UJ)            | ND (0.015 U)         | ND (3.3 U)                       | ND (0.014 U)                      | ND (3.3 U)           | ND (0.025 U)          | ND (0.036 U) | ND (0.019 L |
| 1.2-dichloroethene      | ND (4.0 UJ)            | ND (0.015 U)         | ND (3.3 U)                       | ND (0.014 U)                      | ND (3.3 U)           | 0.0040 J              | ND (0.036 U) | ND (0.019 L |
| cis-1,3-dichloropropene | ND (4.0 UJ)            | ND (0.015 U)         | ND (3.3 UJ)                      | ND (0.014 U)                      | ND (3.3 U)           | ND (0.025 U)          | ND (0.036 U) | ND (C.019 L |
| ethylbenzene            | ND (4.0 UJ)            | ND (0.015 U)         | ND (3.3 W)                       | ND (0.014 U)                      | ND (3.3 U)           | ND (0.025 U)          | ND (0.036 U) | ND (0.019 L |
| 2-hexanone              | ND (4.0 UJ)            | ND (0.015 U)         | ND (3.3 UJ)                      | ND (0.014 U)                      | ND (3.3 U)           | ND (0.025 U)          | ND (0.036 U) | ND (0.019 L |
| methylane chloride      | ND (4.0 UJ)            | ND (0.015 U)         | ND (3.3 U)                       | ND (0.014 U)                      | ND (3.3 U)           | ND (0.025 U)          | ND (0.036 U) | ND (0.019 L |
| 4-methyl-2-pentanone    | ND (4.0 UJ)            | ND (0.015 U)         | ND (3.3 UJ)                      | ND (0.014 U)                      | ND (3.3 U)           | ND (0.025 U)          | 0.012 J      | ND (0.019 L |
| tetrachloroethene       | ND (4.0 UJ)            | ND (0.015 U)         | ND (3.3 UJ)                      | ND (0.014 U)                      | ND (3.3 U)           | ND (0.025 U)          | ND (0.036 U) | ND (0.019 L |
| toluene                 | ND (4.0 UJ)            | ND (0.015 U)         | ND (3.3 UJ)                      | 0.0060 J                          | ND (3.3 U)           | 0.010 J               | 0.012 J      | ND (0.019 L |
| 1,1,1-trichloroethane   | ND (4.0 UJ)            | ND (0.015 U)         | ND (3.3 UJ)                      | ND (0.014 U)                      | ND (3.3 U)           | ND (0.025 U)          | ND (0.036 U) | ND (0.019 L |
| xylenes                 | ND (4.0 UJ)            | ND (0.015 U)         | ND (3.3 UJ)                      | 0.012 J                           | ND (3.3 U)           | 0.022 J               | ND (0.036 U) | ND (0.019 L |
| Location<br>Depth (ft)  | DLH8-2<br>6.00-8.00    | DLHB-2<br>8.00-10.00 | DLHB~3 <sup>1</sup><br>6.00-8.00 | DLHB-3 <sup>2</sup><br>8.00-10.00 | DLHB-6<br>8.00-10.00 | DLHB-6<br>10.00-12.00 |              |             |
| Sample ID               | A60586                 | A60587               | A60599                           | A60600                            | A60605               | A60606                |              |             |
|                         |                        |                      |                                  |                                   |                      |                       | 1            |             |
| FRDLs (Cont'd.)         | 1.3 BJ                 | 0.066                | 0.41 J                           | 0.065                             | 0.17 J               | 0.0060 J              |              |             |
| acetone                 | ND (0.12 U)            | ND (0.011 U)         | ND (0.029 U)                     | ND (0.012 U)                      | ND (0.014 U)         | ND (0.012 U)          |              |             |
| benzene                 | 0.71                   | ND (0.011 U)         | 0.13                             | 0.0090 J                          | 0.094                | ND (0.012 U)          |              |             |
| 2-butanone              | 0.043 J                | 0.0010 J             | 0.015 J                          | 0.0030 J                          | 0.0070 J             | 0.0010 J              |              |             |
| carbon disulfide        | ND (0.12 U)            | ND (0.011 U)         | ND (0.029 U)                     | ND (0.012 U)                      | ND (0.014 U)         | ND (0.012 U)          |              |             |
| carbon tetrachloride    | ND (0.12 U)            | ND (0.011 U)         | ND (0.029 U)                     | ND (0.012 U)                      | ND (0.014 U)         | ND (0.012 U)          |              |             |
| chloroform              | ND (0.12 U)            | ND (0.011 U)         | ND (0.029 U)                     | ND (0.012 U)                      | ND (0.014 U)         | ND (0.012 U)          |              |             |
| 1,2-dichloroethene      | ND (0.12 U)            | ND (0.011 U)         | ND (0.029 U)                     | ND (0.012 U)                      | ND (0.014 U)         | ND (0.012 U)          |              |             |
| cis-1,3-dichloropropene | 0.049 J                | ND (0.011 U)         | 0.011 J                          | ND (0.012 U)                      | ND (0.014 U)         | ND (0.012 U)          |              |             |
| ethylbenzene            | 0.049 J                | ND (0.011 U)         | ND (0.029 U)                     | ND (0.012 U)                      | ND (0.014 U)         | ND (0.012 U)          |              |             |
| 2-hexanone              | ND (0.12 U)            | ND (0.011 U)         | ND (0.029 U)                     | ND (0.012 U)                      | ND (0.014 U)         | ND (0.012 U)          |              |             |
| methylene chloride      | 0.051 J                | ND (0.011 U)         | ND (0.029 U)                     | ND (0.012 U)                      | 0.0060 J             | ND (0.012 U)          |              |             |
| 4-methyl-2-pentanone    |                        | ND (0.011 U)         | ND (0.029 U)                     | ND (0.012 U)                      | ND (0.014 U)         | ND (0.012 U)          | i i          |             |
| tetrachioroethene       | ND (0.12 U)<br>0.025 J | 0.0010 J             | 0.0070 J                         | ND (0.012 U)                      | 0.0050 J             | ND (0.012 U)          |              |             |
| toluene                 | ND (0.12 U)            | ND (0.011 U)         | ND (0.029 U)                     | 0.003 J                           | ND (0.014 U)         | ND (0.012 U)          |              |             |
| 1,1,1-trichloroethane   | 0.059 J                | 0.0060 J             | ND (0.029 U)                     | ND (0.012 U)                      | ND (0.014 U)         | 1 1 1                 |              |             |
| xylenes                 | 0.009 0                |                      | 10 0.020 0                       | 1 10 10:015 01                    |                      | ND (0.012 U)          |              |             |

See Notes on Page 5

\_\_\_\_

i

\$

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED TCL VOC RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location                                                                                                                                                                                                                                                                                               | FLF-12                                                                                                                                                                                                        | FLF-1 <sup>2</sup>                                                                                                                                                                                                                    | WA-1                                                                                                                                                                                                            | WA-1                                                                                                                                                                                                                                  | WA-2                                                                                                                                                                                                                     | WA-2                                                                                                                                                                                                               | e-aw                                                                                                                                                                                                                   | WA-S                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                        | 6.00-6.50                                                                                                                                                                                                     | 6.508.00                                                                                                                                                                                                                              | 12.00-13.00                                                                                                                                                                                                     | 13.0014.00                                                                                                                                                                                                                            | 12.00-14.00                                                                                                                                                                                                              | 14.00-18.00                                                                                                                                                                                                        | 14.00-16.00                                                                                                                                                                                                            |                                                                                                                                                                                                          |
| Depth (ft)                                                                                                                                                                                                                                                                                             | A60097                                                                                                                                                                                                        | A60098                                                                                                                                                                                                                                | A60062                                                                                                                                                                                                          | A60063                                                                                                                                                                                                                                | A60675                                                                                                                                                                                                                   | A60676                                                                                                                                                                                                             |                                                                                                                                                                                                                        | 16.00~18.00                                                                                                                                                                                              |
| Sample D                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                               | Aouuso                                                                                                                                                                                                                                | Actual Contract                                                                                                                                                                                                 | 1 A00005                                                                                                                                                                                                                              | A00070                                                                                                                                                                                                                   | NOUG/O                                                                                                                                                                                                             | A60668                                                                                                                                                                                                                 | A60669                                                                                                                                                                                                   |
| Former Type III Landfill                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                               |                                                                                                                                                                                                                                       | Western Dispo                                                                                                                                                                                                   | sal Area                                                                                                                                                                                                                              |                                                                                                                                                                                                                          |                                                                                                                                                                                                                    |                                                                                                                                                                                                                        |                                                                                                                                                                                                          |
| acetone                                                                                                                                                                                                                                                                                                | ND (0.017 U)                                                                                                                                                                                                  | 0.0090 J                                                                                                                                                                                                                              | 2.4 J                                                                                                                                                                                                           | ND (0.010 U)                                                                                                                                                                                                                          | 0.59 D                                                                                                                                                                                                                   | 0.0030 J                                                                                                                                                                                                           | 0.71                                                                                                                                                                                                                   | 0.0050 J                                                                                                                                                                                                 |
| benzene                                                                                                                                                                                                                                                                                                | ND (0.017 U)                                                                                                                                                                                                  | ND (0.012 U)                                                                                                                                                                                                                          | ND (0.068 U)                                                                                                                                                                                                    | ND (0.010 U)                                                                                                                                                                                                                          | ND (0.040 U)                                                                                                                                                                                                             | ND (0.010 U)                                                                                                                                                                                                       | ND (0.068 U)                                                                                                                                                                                                           | ND (0.011 U                                                                                                                                                                                              |
| 2-butanone                                                                                                                                                                                                                                                                                             | ND (0.017 UJ)                                                                                                                                                                                                 | ND (0.012 UJ)                                                                                                                                                                                                                         | 2.2 J                                                                                                                                                                                                           | ND (0.010 U)                                                                                                                                                                                                                          | 0.96 J                                                                                                                                                                                                                   | ND (0.010 UJ)                                                                                                                                                                                                      | 0.22 J                                                                                                                                                                                                                 | ND (0.011 U.                                                                                                                                                                                             |
| carbon disulfide                                                                                                                                                                                                                                                                                       | ND (0.017 U)                                                                                                                                                                                                  | ND (0.012 U)                                                                                                                                                                                                                          | 0.020 J                                                                                                                                                                                                         | ND (0.010 U)                                                                                                                                                                                                                          | 0.040                                                                                                                                                                                                                    | ND (0.010 U)                                                                                                                                                                                                       | 0.030 J                                                                                                                                                                                                                | ND (0.011 U                                                                                                                                                                                              |
| carbon tetrachloride                                                                                                                                                                                                                                                                                   | ND (0.017 U)                                                                                                                                                                                                  | ND (0.012 U)                                                                                                                                                                                                                          | ND (0.068 U)                                                                                                                                                                                                    | ND (0.010 U)                                                                                                                                                                                                                          | ND (0.040 U)                                                                                                                                                                                                             | ND (0.010 U)                                                                                                                                                                                                       | ND (0.068 U)                                                                                                                                                                                                           | ND (0.011 U                                                                                                                                                                                              |
| chloroform                                                                                                                                                                                                                                                                                             | ND (0.017 U)                                                                                                                                                                                                  | ND (0.012 U)                                                                                                                                                                                                                          | ND (0.068 U)                                                                                                                                                                                                    | ND (0.010 U)                                                                                                                                                                                                                          | ND (0.040 U)                                                                                                                                                                                                             | ND (0.010 U)                                                                                                                                                                                                       | L 0600.0                                                                                                                                                                                                               | ND (0.011 U                                                                                                                                                                                              |
| 1,2-dichloroethene                                                                                                                                                                                                                                                                                     | ND (0.017 U)                                                                                                                                                                                                  | ND (0.012 U)                                                                                                                                                                                                                          | ND (0.068 U)                                                                                                                                                                                                    | ND (0.010 U)                                                                                                                                                                                                                          | ND (0.040 U)                                                                                                                                                                                                             | ND (0.010 U)                                                                                                                                                                                                       | ND (0.068 U)                                                                                                                                                                                                           | ND (0.011 U                                                                                                                                                                                              |
| cis-1,3-dichloropropene                                                                                                                                                                                                                                                                                | ND (0.017 U)                                                                                                                                                                                                  | ND (0.012 U)                                                                                                                                                                                                                          | ND (0.068 U)                                                                                                                                                                                                    | ND (0.010 U)                                                                                                                                                                                                                          | ND (0.040 U)                                                                                                                                                                                                             | ND (0.010 U)                                                                                                                                                                                                       | ND (0.068 U)                                                                                                                                                                                                           | ND (0.011 U                                                                                                                                                                                              |
| ethylbenzene                                                                                                                                                                                                                                                                                           | ND (0.017 U)                                                                                                                                                                                                  | ND (0.012 U)                                                                                                                                                                                                                          | ND (0.068 U)                                                                                                                                                                                                    | ND (0.010 U)                                                                                                                                                                                                                          | ND (0.040 U)                                                                                                                                                                                                             | ND (0.010 U)                                                                                                                                                                                                       | ND (0.068 U)                                                                                                                                                                                                           | ND (0.011 U                                                                                                                                                                                              |
| 2-hexanone                                                                                                                                                                                                                                                                                             | ND (0.017 UJ)                                                                                                                                                                                                 | ND (0.012 U)                                                                                                                                                                                                                          | 0.29                                                                                                                                                                                                            | ND (0.010 U)                                                                                                                                                                                                                          | 0.011 J                                                                                                                                                                                                                  | ND (0.010 U)                                                                                                                                                                                                       | ND (0.068 U)                                                                                                                                                                                                           | ND (0.011 U                                                                                                                                                                                              |
| methylene chloride                                                                                                                                                                                                                                                                                     | ND (0.017 U)                                                                                                                                                                                                  | ND (0.012 U)                                                                                                                                                                                                                          | ND (0.068 U)                                                                                                                                                                                                    | ND (0.010 U)                                                                                                                                                                                                                          | ND (0.040 U)                                                                                                                                                                                                             | 0.0020 J                                                                                                                                                                                                           | ND (0.068 U)                                                                                                                                                                                                           | ND (0.011 U                                                                                                                                                                                              |
| 4-methyl-2-pentanone                                                                                                                                                                                                                                                                                   | ND (0.017 U)                                                                                                                                                                                                  | ND (0.012 U)                                                                                                                                                                                                                          | ND (0.068 U)                                                                                                                                                                                                    | ND (0.010 U)                                                                                                                                                                                                                          | 0.018 J                                                                                                                                                                                                                  | ND (0.010 U)                                                                                                                                                                                                       | ND (0.068 U)                                                                                                                                                                                                           | ND (0.011 U                                                                                                                                                                                              |
| tetrachioroethene                                                                                                                                                                                                                                                                                      | ND (0.017 U)                                                                                                                                                                                                  | ND (0.012 U)                                                                                                                                                                                                                          | ND (0.068 U)                                                                                                                                                                                                    | ND (0.010 U)                                                                                                                                                                                                                          | ND (0.040 U)                                                                                                                                                                                                             | ND (0.010 U)                                                                                                                                                                                                       | ND (0.068 U)                                                                                                                                                                                                           | ND (0.011 U                                                                                                                                                                                              |
| toluene                                                                                                                                                                                                                                                                                                | ND (0.017 U)                                                                                                                                                                                                  | 0.0030 J                                                                                                                                                                                                                              | 0.0070 J                                                                                                                                                                                                        | ND (0.010 U)                                                                                                                                                                                                                          | ND (0.040 U)                                                                                                                                                                                                             | ND (0.010 U)                                                                                                                                                                                                       | ND (0.068 U)                                                                                                                                                                                                           | ND (0.011 U                                                                                                                                                                                              |
| 1.1.1-trichloroethane                                                                                                                                                                                                                                                                                  | ND (0.017 U)                                                                                                                                                                                                  | ND (0.012 U)                                                                                                                                                                                                                          | ND (0.068 U)                                                                                                                                                                                                    | ND (0.010 U)                                                                                                                                                                                                                          | ND (0.040 U)                                                                                                                                                                                                             | ND (0.010 U)                                                                                                                                                                                                       | ND (0.068 U)                                                                                                                                                                                                           | ND (0.011 U                                                                                                                                                                                              |
| xylenes                                                                                                                                                                                                                                                                                                | L 0600.0                                                                                                                                                                                                      | ND (0.012 U)                                                                                                                                                                                                                          | 0.028 J                                                                                                                                                                                                         | ND (0.010 U)                                                                                                                                                                                                                          | ND (0.040 U)                                                                                                                                                                                                             | ND (0.010 U)                                                                                                                                                                                                       | ND (0.068 U)                                                                                                                                                                                                           | ND (0.011 U                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                          | •                                                                                                                                                                                                                  |                                                                                                                                                                                                                        |                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                                                                                                                                                                       | and the second                                                                                                |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                          | Concernance of the second s                                                                                                    |                                                                                                                                                                                                                        |                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                               | WA_A                                                                                                                                                                                                                                  | WA-5                                                                                                                                                                                                            | WA-5                                                                                                                                                                                                                                  | WA_R                                                                                                                                                                                                                     | WA_6                                                                                                                                                                                                               | 14/4 7                                                                                                                                                                                                                 | hava 7                                                                                                                                                                                                   |
| Location                                                                                                                                                                                                                                                                                               | WA-4                                                                                                                                                                                                          | WA-4                                                                                                                                                                                                                                  | WA-5                                                                                                                                                                                                            | WA-5<br>23.50-26.00                                                                                                                                                                                                                   | WA-6                                                                                                                                                                                                                     | WA-6                                                                                                                                                                                                               | WA-7                                                                                                                                                                                                                   | WA-7                                                                                                                                                                                                     |
| Depth (ft)                                                                                                                                                                                                                                                                                             | 8.00-10.00                                                                                                                                                                                                    | 10.00-12.00                                                                                                                                                                                                                           | 22.00-23.50                                                                                                                                                                                                     | 23.50-26.00                                                                                                                                                                                                                           | 12.00-13.00                                                                                                                                                                                                              | 13.00-15.00                                                                                                                                                                                                        | 20.00-22.00                                                                                                                                                                                                            | 22.00-24.00                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                          |                                                                                                                                                                                                                    |                                                                                                                                                                                                                        |                                                                                                                                                                                                          |
| Depth (ft)                                                                                                                                                                                                                                                                                             | 8.00-10.00<br>A60662                                                                                                                                                                                          | 10.00-12.00                                                                                                                                                                                                                           | 22.00-23.50<br>A60650                                                                                                                                                                                           | 23.50-26.00                                                                                                                                                                                                                           | 12.00-13.00                                                                                                                                                                                                              | 13.00-15.00                                                                                                                                                                                                        | 20.00-22.00                                                                                                                                                                                                            | 22.00-24.00                                                                                                                                                                                              |
| Depth (fl)<br>Sample ID                                                                                                                                                                                                                                                                                | 8.00-10.00<br><u>A60662</u><br>ont'd.)                                                                                                                                                                        | 10.00-12.00<br>A60663<br>ND (0.011 U)                                                                                                                                                                                                 | 22.00-23.50<br>A50650                                                                                                                                                                                           | 23.50-26.00<br><u>A60651</u><br>0.038 J                                                                                                                                                                                               | 12.00-13.00<br><u>A60065</u><br>0.34                                                                                                                                                                                     | 13.00-15.00<br><u>A60086</u><br>3.4 DJ                                                                                                                                                                             | 20.00-22.00<br>A60643                                                                                                                                                                                                  | 22.00-24.00                                                                                                                                                                                              |
| Depth (ft)<br>Sample ID<br>Western Disposal Area (Co                                                                                                                                                                                                                                                   | 8.00-10.00<br><u>A60662</u><br>ont'd.)<br>1.1<br>ND (0.088 U)                                                                                                                                                 | 10.00 - 12.00<br>A60663<br>ND (0.011 U)<br>ND (0.011 U)                                                                                                                                                                               | 22.00-23.50<br>A60650<br>0.23<br>ND (0.018 U)                                                                                                                                                                   | 23.50-26.00<br>A60651<br>0.038 J<br>ND (0.012 U)                                                                                                                                                                                      | 12.00-13.00<br><u>A60065</u><br>0.34<br>ND (0.094 U)                                                                                                                                                                     | 13.00-15.00<br><u>A60086</u>                                                                                                                                                                                       | 20.00-22.00<br>A60643<br>0.17 J<br>ND (0.030 UJ)                                                                                                                                                                       | 22.00-24.0<br>A60644                                                                                                                                                                                     |
| Depth (ft)<br>Sample ID<br>Western Disposed Area (Co<br>acetone                                                                                                                                                                                                                                        | 8.00-10.00<br><u>A60662</u><br>0nt'd.)<br>1.1<br>ND (0.088 U)<br>0.77 J                                                                                                                                       | 10.00 - 12.00<br>A80663<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)                                                                                                                                                               | 22.00-23.50<br>A60650<br>0.23<br>ND (0.018 U)<br>0.63 DJ                                                                                                                                                        | 23.50-26.00<br>A60651<br>0.038 J<br>ND (0.012 U)<br>ND (0.012 U)                                                                                                                                                                      | 12.00-13.00<br>A60065<br>0.34<br>ND (0.094 U)<br>0.096                                                                                                                                                                   | 13.00-15.00<br><u>A60086</u><br>3.4 DJ<br>ND (0.026 U)<br>0.96 DJ                                                                                                                                                  | 20.00-22.00<br>A60643                                                                                                                                                                                                  | 22.00-24.0<br><u>A60644</u><br>0.024 J<br>ND (0.015 U<br>ND (0.015 U                                                                                                                                     |
| Depth (ft)<br>Sample ID<br>Western Disposed Area (C<br>acetone<br>benzene<br>2-butanone<br>carbon disulfide                                                                                                                                                                                            | 8.00-10.00<br>A60662<br>0nt'd.)<br>1.1<br>ND (0.088 U)<br>0.77 J<br>0.078 J                                                                                                                                   | 10.00 - 12.00<br>A80663<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)                                                                                                                                               | 22.00-23.50<br>A60650<br>0.23<br>ND (0.018 U)<br>0.63 DJ<br>0.0090 J                                                                                                                                            | 23.50-26.00<br>A60651<br>ND (0.012 U)<br>ND (0.012 U)<br>ND (0.012 U)                                                                                                                                                                 | 12.00-13.00<br>A60065<br>0.34<br>ND (0.094 U)<br>0.096<br>0.015 J                                                                                                                                                        | 13.00-15.00<br><u>A60086</u><br>3.4 DJ<br>ND (0.026 U)<br>0.96 DJ<br>0.013 J                                                                                                                                       | 20.00-22.00<br>A60643<br>0.17 J<br>ND (0.030 UJ)                                                                                                                                                                       | 22.00-24.0<br><u>A60644</u><br>0.024 J<br>ND (0.015 U<br>ND (0.015 U<br>ND (0.015 U                                                                                                                      |
| Depth (ft)<br>Sample ID<br>Western Disposed Area (C<br>acetone<br>benzene<br>2-butanone<br>carbon disulfide                                                                                                                                                                                            | 8.00-10.00<br><u>A60662</u><br>0nt'd.)<br>1.1<br>ND (0.088 U)<br>0.77 J                                                                                                                                       | 10.00 - 12.00<br>A80663<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)                                                                                                                               | 22.00-23.50<br>A60650<br>ND (0.018 U)<br>0.63 DJ<br>0.0090 J<br>ND (0.018 U)                                                                                                                                    | 23.50-26.00<br>A60651<br>ND (0.012 U)<br>ND (0.012 U)<br>ND (0.012 U)<br>ND (0.012 U)<br>ND (0.012 U)                                                                                                                                 | 0.34<br>ND (0.094 U)<br>0.096<br>0.015 J<br>ND (0.094 U)                                                                                                                                                                 | 13.00-15.00<br><u>A60086</u><br>3.4 DJ<br>ND (0.026 U)<br>0.96 DJ<br>0.013 J<br>ND (0.026 U)                                                                                                                       | 20.00-22.00<br>A60643<br>0.17 J<br>ND (0.030 UJ)<br>0.028 J                                                                                                                                                            | 22.00-24.0<br>A60644<br>ND (0.015 U<br>ND (0.015 U<br>ND (0.015 U<br>ND (0.015 U<br>ND (0.015 U                                                                                                          |
| Depth (ft)<br>Sample ID<br>Western Disposed Area (C<br>acetone<br>benzene<br>2-butanone<br>carbon disulfide                                                                                                                                                                                            | 8.00-10.00<br>A60662<br>1.1<br>ND (0.088 U)<br>0.77 J<br>0.078 J<br>ND (0.088 U)<br>0.014 J                                                                                                                   | 10.00-12.00<br>A60663<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)                                                                                                                 | 22.00-23.50<br>A60650<br>ND (0.018 U)<br>0.63 DJ<br>0.0090 J<br>ND (0.018 U)<br>ND (0.018 U)                                                                                                                    | 23.50-26.00<br>A60651<br>ND (0.012 U)<br>ND (0.012 U)<br>ND (0.012 U)<br>ND (0.012 U)<br>ND (0.012 U)                                                                                                                                 | 12.00-13.00<br>A60085<br>ND (0.094 U)<br>0.096<br>0.015 J<br>ND (0.094 U)<br>ND (0.094 U)                                                                                                                                | 13.00-15.00<br><u>A60086</u><br>3.4 DJ<br>ND (0.026 U)<br>0.96 DJ<br>0.013 J<br>ND (0.026 U)<br>ND (0.026 U)                                                                                                       | 20.00-22.00<br>A60643<br>0.17 J<br>ND (0.030 UJ)<br>0.028 J<br>0.0060 J                                                                                                                                                | 22.00-24.00<br>A60644<br>ND (0.015 U<br>ND (0.015 U<br>ND (0.015 U<br>ND (0.015 U<br>ND (0.015 U<br>ND (0.015 U                                                                                          |
| Depth (ft)<br>Sample ID<br>Western Disposed Area (Cd<br>acetone<br>benzene<br>2-butanone<br>carbon disulfide<br>carbon tetrachloride<br>chloroform<br>1,2-dichloroethene                                                                                                                               | 8.00-10.00<br>A60662<br>001°d.)<br>1.1<br>ND (0.088 U)<br>0.77 J<br>0.078 J<br>ND (0.088 U)<br>0.014 J<br>ND (0.088 U)                                                                                        | 10.00-12.00<br>A60663<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)                                                                                                 | 22.00-23.50<br>A60650<br>ND (0.018 U)<br>0.63 DJ<br>0.0090 J<br>ND (0.018 U)<br>ND (0.018 U)<br>ND (0.018 U)                                                                                                    | 23.50-26.00<br>A60651<br>ND (0.012 U)<br>ND (0.012 U)<br>ND (0.012 U)<br>ND (0.012 U)<br>ND (0.012 U)<br>ND (0.012 U)                                                                                                                 | 12.00-13.00<br>A60085<br>ND (0.094 U)<br>0.096<br>0.015 J<br>ND (0.094 U)<br>ND (0.094 U)<br>ND (0.094 U)                                                                                                                | 13.00-15.00<br><u>A60086</u><br>ND (0.026 U)<br>0.96 DJ<br>0.013 J<br>ND (0.026 U)<br>ND (0.026 U)<br>ND (0.026 U)                                                                                                 | 20.00-22.00<br>A60643<br>ND (0.030 UJ)<br>0.028 J<br>0.0060 J<br>ND (0.030 UJ)<br>ND (0.030 UJ)<br>ND (0.030 UJ)                                                                                                       | 22.00-24.0<br><u>A60644</u><br>0.024 J<br>ND (0.015 U<br>ND (0.015 U                                                                                                                                     |
| Depth (ft)<br>Sample ID<br>Western Disposed Area (Cd<br>acetone<br>benzene<br>2-butanone<br>carbon disulfide<br>carbon tetrachloride<br>chloroform<br>1,2-dichloroethene                                                                                                                               | 8.00-10.00<br>A60662<br>1.1<br>ND (0.088 U)<br>0.77 J<br>0.078 J<br>ND (0.088 U)<br>0.014 J                                                                                                                   | 10.00-12.00<br>A60663<br>ND (0.011 U)<br>ND (0.011 U)                                                                                 | 22.00-23.50<br>A60650<br>ND (0.018 U)<br>0.63 DJ<br>0.0090 J<br>ND (0.018 U)<br>ND (0.018 U)<br>ND (0.018 U)<br>ND (0.018 U)                                                                                    | 23.50-26.00<br>A60651<br>ND (0.012 U)<br>ND (0.012 U)                                                                                 | 12.00-13.00<br>A60085<br>0.34<br>ND (0.094 U)<br>0.096<br>0.015 J<br>ND (0.094 U)<br>ND (0.094 U)<br>ND (0.094 U)<br>ND (0.094 U)                                                                                        | 13.00-15.00<br><u>A60086</u><br>3.4 DJ<br>ND (0.026 U)<br>0.96 DJ<br>0.013 J<br>ND (0.026 U)<br>ND (0.026 U)                                                                                                       | 20.00-22.00<br>A60643<br>ND (0.030 UJ)<br>0.028 J<br>0.0060 J<br>ND (0.030 UJ)<br>ND (0.030 UJ)                                                                                                                        | 22.00-24.0<br>A60544<br>ND (0.015 U<br>ND (0.015 U<br>ND (0.015 U<br>ND (0.015 U<br>ND (0.015 U<br>ND (0.015 U<br>ND (0.015 U                                                                            |
| Depth (ft)<br>Sample ID<br>Western Disposed Area (Cd<br>acetone<br>benzene<br>2-butanone<br>carbon disulfide<br>carbon tetrachioride<br>chloroform<br>1,2-dichloroethene<br>cis-1,3-dichloropropene                                                                                                    | 8.00-10.00<br>A60662<br>001°d.)<br>1.1<br>ND (0.088 U)<br>0.77 J<br>0.078 J<br>ND (0.088 U)<br>0.014 J<br>ND (0.088 U)                                                                                        | 10.00-12.00<br>A60663<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)<br>ND (0.011 U)                                                                                                 | 22.00-23.50<br>A60650<br>ND (0.018 U)<br>0.63 DJ<br>0.0090 J<br>ND (0.018 U)<br>ND (0.018 U)<br>ND (0.018 U)<br>ND (0.018 U)<br>ND (0.018 U)<br>0.032                                                           | 23.50-26.00<br>A60651<br>ND (0.012 U)<br>ND (0.012 U)                                                                 | 12.00-13.00<br>A60085<br>ND (0.094 U)<br>0.096<br>0.015 J<br>ND (0.094 U)<br>ND (0.094 U)<br>ND (0.094 U)<br>ND (0.094 U)<br>ND (0.094 U)<br>0.021 J                                                                     | 13.00-15.00<br><u>A60086</u><br>ND (0.026 U)<br>0.96 DJ<br>0.013 J<br>ND (0.026 U)<br>ND (0.026 U)<br>ND (0.026 U)                                                                                                 | 20.00-22.00<br>A60643<br>ND (0.030 UJ)<br>0.028 J<br>0.0060 J<br>ND (0.030 UJ)<br>ND (0.030 UJ)<br>ND (0.030 UJ)                                                                                                       | 22.00-24.0<br><u>A60544</u><br>ND (0.015 U<br>ND (0.015 U                                                      |
| Depth (ft)<br>Sample ID<br>Western Disposed Area (Co<br>acetone<br>benzene<br>2 - butanone<br>carbon disulfide<br>carbon tetrachloride<br>chloroform<br>1,2 - dichloroethene<br>cis - 1,3 - dichloropropene<br>ethylbenzene                                                                            | 8.00-10.00<br>A60662<br>1.1<br>ND (0.088 U)<br>0.77 J<br>0.078 J<br>ND (0.088 U)<br>0.014 J<br>ND (0.086 U)<br>0.014 J                                                                                        | 10.00-12.00<br>A60663<br>ND (0.011 U)<br>ND (0.011 U)                                                 | 22.00-23.50<br>A60650<br>ND (0.018 U)<br>0.63 DJ<br>0.0090 J<br>ND (0.018 U)<br>ND (0.018 U)<br>ND (0.018 U)<br>ND (0.018 U)<br>ND (0.018 U)<br>0.032<br>0.070                                                  | 23.50-26.00<br>A60651<br>ND (0.012 U)<br>ND (0.012 U)                                                 | 12.00-13.00<br><u>A60085</u><br>0.34<br>ND (0.094 U)<br>0.096<br>0.015 J<br>ND (0.094 U)<br>ND (0.094 U)<br>ND (0.094 U)<br>ND (0.094 U)<br>ND (0.094 U)<br>0.021 J<br>ND (0.094 U)                                      | 13.00-15.00<br><u>A60086</u><br>ND (0.026 U)<br>0.96 DJ<br>0.013 J<br>ND (0.026 U)<br>ND (0.026 U)<br>ND (0.026 U)<br>ND (0.026 U)                                                                                 | 20.00-22.00<br>A60643<br>ND (0.030 UJ)<br>0.028 J<br>0.0060 J<br>ND (0.030 UJ)<br>ND (0.030 UJ)<br>ND (0.030 UJ)<br>ND (0.030 UJ)                                                                                      | 22.00-24.0<br><u>A60544</u><br>ND (0.015 U<br>ND (0.015 U<br>ND (0.015 U<br>ND (0.015 U<br>ND (0.015 U<br>ND (0.015 U<br>ND (0.015 U                                                                     |
| Depth (ft)<br>Sample ID<br>Western Disposed Area (Ca<br>acetone<br>benzene<br>2-butanone<br>carbon disulfide<br>carbon tetrachloride<br>chloroform<br>1,2-dichloroethene<br>cia-1,3-dichloropropene<br>ethylbenzene<br>2-hexanone<br>methylene chloride                                                | 8.00-10.00<br>A50662<br>0nt'd.)<br>1.1<br>ND (0.088 U)<br>0.77 J<br>0.078 J<br>ND (0.088 U)<br>0.014 J<br>ND (0.088 U)<br>0.014 J<br>ND (0.088 U)<br>0.031 J<br>ND (0.088 U)<br>ND (0.088 U)                  | 10.00-12.00<br>A60663<br>ND (0.011 U)<br>ND (0.011 U)                                 | 22.00-23.50<br>A60650<br>ND (0.018 U)<br>0.63 DJ<br>0.0090 J<br>ND (0.018 U)<br>ND (0.018 U)<br>ND (0.018 U)<br>ND (0.018 U)<br>ND (0.018 U)<br>0.032<br>0.070<br>0.0040 J                                      | 23.50-26.00<br>A60651<br>ND (0.012 U)<br>ND (0.012 U)                 | 12.00-13.00<br><u>A60065</u><br>0.34<br>ND (0.094 U)<br>0.096<br>0.015 J<br>ND (0.094 U)<br>ND (0.094 U)<br>ND (0.094 U)<br>ND (0.094 U)<br>0.021 J<br>ND (0.094 U)<br>ND (0.094 U)                                      | 13.00-15.00<br><u>A60086</u><br>ND (0.026 U)<br>0.96 DJ<br>0.013 J<br>ND (0.026 U)<br>ND (0.026 U)<br>ND (0.026 U)<br>ND (0.026 U)<br>ND (0.026 U)                                                                 | 20.00-22.00<br>A60643<br>ND (0.030 UJ)<br>0.028 J<br>0.0060 J<br>ND (0.030 UJ)<br>ND (0.030 UJ)<br>ND (0.030 UJ)<br>ND (0.030 UJ)<br>ND (0.030 UJ)                                                                     | 22.00-24.0<br>A60644<br>ND (0.015 U<br>ND (0.015 U                                              |
| Depth (ft)<br>Sample ID<br>Western Disposed Area (Ca<br>acetone<br>benzene<br>2-butanone<br>carbon disulfide<br>carbon tetrachloride<br>chloroform<br>1,2-dichloroethene<br>cia-1,3-dichloropropene<br>ethylbenzene<br>2-hexanone<br>methylene chloride                                                | 8.00-10.00<br><u>A60662</u><br>onťd.)<br>1.1<br>ND (0.088 U)<br>0.77 J<br>0.078 J<br>ND (0.088 U)<br>0.014 J<br>ND (0.088 U)<br>0.014 J<br>ND (0.088 U)<br>0.014 J<br>ND (0.088 U)                            | 10.00-12.00<br>A60663<br>ND (0.011 U)<br>ND (0.011 U)                 | 22.00-23.50<br>A60650<br>ND (0.018 U)<br>0.63 DJ<br>0.0090 J<br>ND (0.018 U)<br>ND (0.018 U)<br>ND (0.018 U)<br>ND (0.018 U)<br>ND (0.018 U)<br>0.032<br>0.070<br>0.0040 J<br>0.027                             | 23.50-26.00<br>A60651<br>ND (0.012 U)<br>ND (0.012 U)                 | 12.00-13.00<br><u>A60085</u><br>0.34<br>ND (0.094 U)<br>0.096<br>0.015 J<br>ND (0.094 U)<br>ND (0.094 U)<br>ND (0.094 U)<br>ND (0.094 U)<br>ND (0.094 U)<br>0.021 J<br>ND (0.094 U)                                      | 13.00-15.00<br><u>A60086</u><br>ND (0.026 U)<br>0.96 DJ<br>0.013 J<br>ND (0.026 U)<br>ND (0.026 U)<br>ND (0.026 U)<br>0.030 J<br>ND (0.026 UJ)                                                                     | 20.00-22.00<br>A60643<br>ND (0.030 UJ)<br>0.028 J<br>0.0060 J<br>ND (0.030 UJ)<br>ND (0.030 UJ)<br>ND (0.030 UJ)<br>ND (0.030 UJ)<br>ND (0.030 UJ)<br>ND (0.030 UJ)                                                    | 22.00-24.0<br>A60644<br>ND (0.015 U<br>ND (0.015 U                               |
| Depth (ft)<br><u>Sample ID</u><br><u>Western Disposed Area (Ca</u><br>acetone<br>benzene<br>2-butanone<br>carbon disulfide<br>carbon disulfide<br>carbon tetrachloride<br>chloroform<br>1,2-dichloroptopene<br>ethylbenzene<br>2-hexanone<br>methylene chloride<br>4-methyl-2-pentanone                | 8.00-10.00<br>A50662<br>0nt'd.)<br>1.1<br>ND (0.088 U)<br>0.77 J<br>0.078 J<br>ND (0.088 U)<br>0.014 J<br>ND (0.088 U)<br>0.014 J<br>ND (0.088 U)<br>0.031 J<br>ND (0.088 U)<br>ND (0.088 U)                  | 10.00-12.00<br>A60663<br>ND (0.011 U)<br>ND (0.011 U)                                 | 22.00-23.50<br>A60650<br>ND (0.018 U)<br>0.63 DJ<br>0.0090 J<br>ND (0.018 U)<br>ND (0.018 U)<br>ND (0.018 U)<br>ND (0.018 U)<br>ND (0.018 U)<br>0.032<br>0.070<br>0.0040 J                                      | 23.50-26.00<br>A60651<br>ND (0.012 U)<br>ND (0.012 U)                 | 12.00-13.00<br><u>A60065</u><br>0.34<br>ND (0.094 U)<br>0.096<br>0.015 J<br>ND (0.094 U)<br>ND (0.094 U)<br>ND (0.094 U)<br>ND (0.094 U)<br>0.021 J<br>ND (0.094 U)<br>ND (0.094 U)                                      | 13.00-15.00<br><u>A60086</u><br>3.4 DJ<br>ND (0.026 U)<br>0.96 DJ<br>0.013 J<br>ND (0.026 U)<br>ND (0.026 U)<br>ND (0.026 U)<br>ND (0.026 U)<br>0.030 J<br>ND (0.026 U)                                            | 20.00-22.00<br>A60643<br>ND (0.030 UJ)<br>0.028 J<br>0.0060 J<br>ND (0.030 UJ)<br>ND (0.030 UJ)<br>ND (0.030 UJ)<br>ND (0.030 UJ)<br>ND (0.030 UJ)<br>ND (0.030 UJ)<br>ND (0.030 UJ)                                   | 22.00-24.00<br>A60644<br>ND (0.015 U<br>ND (0.015 U<br>ND (0.015 U<br>ND (0.015 U<br>ND (0.015 U<br>ND (0.015 U                                                                                          |
| Depth (ft)<br><u>Sample ID</u><br><u>Western Disposed Area (Ca</u><br>acetone<br>benzene<br>2-butanone<br>carbon disulfide<br>carbon disulfide<br>carbon tetrachloride<br>chloroform<br>1,2-dichloroptopene<br>ethylbenzene<br>2-hexanone<br>methylene chloride<br>4-methyl-2-pentanone                | 8.00-10.00<br><u>A60662</u><br>ont'd.)<br>1.1<br>ND (0.088 U)<br>0.77 J<br>0.078 J<br>ND (0.088 U)<br>0.014 J<br>ND (0.088 U)<br>0.031 J<br>ND (0.088 U)<br>ND (0.088 U)<br>ND (0.088 U)<br>ND (0.088 U)      | 10.00-12.00<br>A60663<br>ND (0.011 U)<br>ND (0.011 U)                 | 22.00-23.50<br>A60650<br>ND (0.018 U)<br>0.63 DJ<br>0.0090 J<br>ND (0.018 U)<br>ND (0.018 U)<br>ND (0.018 U)<br>ND (0.018 U)<br>ND (0.018 U)<br>0.032<br>0.070<br>0.0040 J<br>0.027<br>ND (0.018 U)<br>0.0070 J | 23.50-26.00<br>A60651<br>ND (0.012 U)<br>ND (0.012 U)                 | 12.00-13.00<br><u>A60065</u><br>0.34<br>ND (0.094 U)<br>0.096<br>0.015 J<br>ND (0.094 U)<br>ND (0.094 U)                 | 13.00-15.00<br><u>A60086</u><br>ND (0.026 U)<br>0.96 DJ<br>0.013 J<br>ND (0.026 U)<br>ND (0.026 U)<br>ND (0.026 U)<br>ND (0.026 U)<br>ND (0.026 U)<br>ND (0.026 U)<br>ND (0.026 U)                                 | 20.00-22.00<br>A60643<br>ND (0.030 UJ)<br>0.028 J<br>0.0060 J<br>ND (0.030 UJ)<br>ND (0.030 UJ)                  | 22.00-24.0<br><u>A60644</u><br>ND (0.015 U<br>ND (0.015 U                        |
| Depth (ft)<br>Sample ID<br>Western Disposed Area (Cr<br>acetone<br>benzene<br>2-butanone<br>carbon disulfide<br>carbon tetrachloride<br>chloroform<br>1,2-dichloroethene<br>cis - 1,3-dichloropropene<br>ethylbenzene<br>2-hexanone<br>methylene chloride<br>4-methyl-2-pentanone<br>tetrachloroethene | 8.00-10.00<br><u>A60662</u><br>1.1<br>ND (0.088 U)<br>0.77 J<br>0.078 J<br>ND (0.088 U)<br>0.014 J<br>ND (0.088 U)<br>0.014 J<br>ND (0.088 U)<br>ND (0.088 U)<br>ND (0.088 U)<br>ND (0.088 U)<br>ND (0.088 U) | 10.00-12.00<br>A60663<br>ND (0.011 U)<br>ND (0.011 U) | 22.00-23.50<br>A60650<br>ND (0.018 U)<br>0.63 DJ<br>0.0090 J<br>ND (0.018 U)<br>ND (0.018 U)<br>ND (0.018 U)<br>ND (0.018 U)<br>ND (0.018 U)<br>0.032<br>0.070<br>0.0040 J<br>0.027<br>ND (0.018 U)             | 23.50-26.00<br>A60651<br>ND (0.012 U)<br>ND (0.012 U) | 12.00-13.00<br><u>A60065</u><br>0.34<br>ND (0.094 U)<br>0.096<br>0.015 J<br>ND (0.094 U)<br>ND (0.094 U) | 13.00-15.00<br><u>A60086</u><br>ND (0.026 U)<br>0.96 DJ<br>0.013 J<br>ND (0.026 U)<br>ND (0.026 U) | 20.00-22.00<br>A60643<br>ND (0.030 UJ)<br>0.028 J<br>0.0060 J<br>ND (0.030 UJ)<br>ND (0.030 UJ) | 22.00-24.0<br>A60644<br>ND (0.015 U<br>ND (0.015 U |

See Notes on Page 5

. . . . .

÷

.

;

;

ð.

3

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED TCL VOC RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location                         | WA-8         | WA-8          | B-78          | B-78          | MW-8A       | AB-WM        | MW-120B               | MW-120B     |
|----------------------------------|--------------|---------------|---------------|---------------|-------------|--------------|-----------------------|-------------|
| Depth (it)                       | 10.00-12.00  | 12.00-14.00   | 8.00-10.00    | 10.00-12.00   | 12.00-12.50 | 12.50~14.00  | 18.00-19.00           | 19.00-20.00 |
| Sample D                         | A60657       | A60658        | A60702        | A80703        | A60092      | A60093       | A60054                | A60055      |
| Western Disposal Area (C         | cont'd.)     |               |               |               |             |              |                       |             |
| acetone                          | 0.39         | 0.58 DJ       | ND (0.010 UJ) | ND (0.011 UJ) | 0.46        | 0.77 BJ      | ND (2.1 UJ)           | 0.10 J      |
| benzene                          | ND (0.091 U) | ND (0.026 U)  | ND (0.010 U)  | ND (0.011 U)  | ND (0.11 U) | ND (0.056 U) | ND (2.1 U)            | ND (0.017 U |
| 2-butanone                       | 0.091 J      | 0.32 J        | ND (0.010 U)  | ND (0.011 U)  | 0.11 J      | 0.21         | ND (2.1 U)            | ND (0.017 L |
| carbon disulfide                 | 0.020 J      | 0.0080 J      | ND (0.010 U)  | ND (0.011 U)  | 0.028 J     | ND (0.056 U) | ND (2.1 U)            | ND (0.017 L |
| carbon tetrachloride             | ND (0.091 U) | ND (0.026 U)  | ND (0.010 U)  | ND (0.011 U)  | ND (0.11 U) | ND (0.056 U) | ND (2.1 U)            | ND (0.017 L |
| chloroform                       | ND (0.091 U) | ND (0.026 U)  | ND (0.010 U)  | ND (0.011 U)  | ND (0.11 U) | ND (0.056 U) | ND (2.1 U)            | ND (0.017 L |
| 1,2-dichloroethene               | ND (0.091 U) | ND (0.026 U)  | ND (0.010 U)  | ND (0.011 U)  | ND (0.11 U) | ND (0.056 U) | ND (2.1 U)            | ND (0.017 L |
| cis-1,3-dichloropropene          | ND (0.091 U) | ND (0.026 U)  | ND (0.010 U)  | ND (0.011 U)  | ND (0.11 U) | ND (0.056 U) | ND (2.1 U)            | ND (0.017 L |
| ethylbenzene                     | ND (0.091 U) | ND (0.026 UJ) | ND (0.010 U)  | ND (0.011 U)  | ND (0.11 U) | ND (0.056 U) | ND (2.1 U)            | ND (0.017 L |
| 2-hexanone                       | ND (0.091 U) | ND (0.026 UJ) | ND (0.010 U)  | ND (0.011 U)  | ND (0.11 U) | ND (0.056 U) | ND (2.1 U)            | ND (0.017 U |
| methylene chloride               | ND (0.091 U) | ND (0.026 U)  | ND (0.010 U)  | ND (0.011 U)  | ND (0.11 U) | ND (0.056 U) | ND (2.1 U)            | ND (0.017 L |
| 4-methyl-2-pentanone             | ND (0.091 U) | ND (0.026 UJ) | ND (0.010 U)  | ND (0.011 U)  | ND (0.11 U) | ND (0.056 U) | ND (2.1 U)            | ND (0.017 L |
| tetrachloroethene                | ND (0.091 U) | ND (0.026 UJ) | ND (0.010 U)  | ND (0.011 U)  | ND (0.11 U) | ND (0.056 U) | ND (2.1 U)            | ND (0.017 L |
| toluene                          | 0.010 J      | 0.038 J       | ND (0.010 U)  | ND (0.011 U)  | ND (0.11 U) | ND (0.056 U) | ND (2.1 U)            | ND (0.017 U |
| 1,1,1-trichloroethane            | ND (0.091 U) | ND (0.026 U)  | ND (0.010 U)  | ND (0.011 U)  | ND (0.11 U) | ND (0.056 U) | ND (2.1 U)            | ND (0.017 L |
| xylenes                          | ND (0.091 U) | ND (0.026 U)  | ND (0.010 U)  | ND (0.011 U)  | ND (0.11 U) | 0.016 J      | ND (2.1 U)            | ND (0.017 L |
|                                  | 1            |               |               |               | 1           |              | And the second second |             |
| Location                         | BMP-2        | BMP-2         | BMP-12        | BMP-12        |             |              |                       |             |
| Depth (ft)                       | 0.00-1.00    | 3.00-4.00     | 0.00-1.00     | 9.00-4.00     |             |              |                       |             |
| Sample ID                        | A60621       | A60624        | A60616        | A60619        |             |              |                       |             |
| Former Bryant Mill Pond          |              |               |               |               |             |              |                       |             |
| acetone                          | ND (0.024 U) | 0.15          | 0.027 J       | 0.046 J       |             |              |                       |             |
| benzene                          | ND (0.024 U) | ND (0.12 U)   | ND (0.029 U)  | ND (0.020 U)  |             |              |                       |             |
| 2-butanone                       | ND (0.024 U) | ND (0.12 U)   | ND (0.029 U)  | 0.014 J       |             |              |                       |             |
| carbon disulfide                 | ND (0.024 U) | 0.022 J       | ND (0.029 U)  | 0.0040 J      |             |              |                       |             |
| carbon tetrachloride             | ND (0.024 U) | ND (0.12 U)   | ND (0.029 U)  | ND (0.020 U)  |             |              |                       |             |
| chloroform                       | ND (0.024 U) | ND (0.12 U)   | ND (0.029 U)  | ND (0.020 U)  |             |              |                       |             |
| 1,2-dichloroethene               | ND (0.024 U) | ND (0.12 U)   | ND (0.029 U)  | ND (0.020 U)  |             |              |                       |             |
| cis-1,3-dichloropropene          | ND (0.024 U) | ND (0.12 U)   | ND (0.029 U)  | ND (0.020 U)  |             |              |                       |             |
| ethylbenzene                     | ND (0.024 U) | ND (0.12 U)   | ND (0.029 U)  | ND (0.020 U)  |             |              |                       |             |
| 2-hexenone                       | ND (0.024 U) | ND (0.12 U)   | ND (0.029 U)  | ND (0.020 U)  |             |              |                       |             |
| z-nexanone<br>methylene chloride | ND (0.024 U) | ND (0.12 U)   | ND (0.029 U)  | ND (0.020 U)  |             |              |                       |             |
| 4-methyl-2-pentanone             | ND (0.024 U) | ND (0.12 U)   | ND (0.029 U)  | ND (0.020 U)  |             |              |                       |             |
| erachloroethene                  | ND (0.024 U) | ND (0.12 U)   | ND (0.029 U)  | ND (0.020 U)  |             |              |                       |             |
|                                  |              |               |               |               |             |              |                       |             |

0.039

ND (0.029 U)

ND (0.029 U)

(See Notes on Page 5)

1,1,1-trichloroethane

toluene

xylenes

ND (0.024 U)

ND (0.024 U)

ND (0.024 U)

ND (0.12 U)

ND (0.12 U)

0.031 J

ł

1

· •

i :

2

0.0040 J

ND (0.020 U)

ND (0.020 U)

÷.

.

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED TCL VOC RESULTS FOR RESIDUALS/SOIL SAMPLES' (mg/kg)

Notes:

<sup>1</sup>Showing only the results for analytes detected above quantitation limits. <sup>2</sup>MS/MSD of this sample was analyzed. ND - Not Detected.

÷

#### Notes Explaining Data Qualifiers:

2

.

B - The compound has been found in the sample as well as its associated blank. A comparison of sample and blank concentrations indicates that its presence is likely site - related.

D - Concentration is based on a diluted sample analysis.

J - The compound was positively identified. However, the assolicated value is an estimated concentration only.

U - The compound was analyzed for but not detected. The associated value is the compound quantitation limit.

UJ - The compound was not detected above the reported sample quantitative limit. However, the reported limit is approximate, and may or may not represent the actual limits of quantitation.

# ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

# ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED TCL VOC RESULTS FOR GROUNDWATER/LEACHATE SAMPLES<sup>1</sup> (ug/L)

|                       |               |             |                  |            | T          | T          | T         |
|-----------------------|---------------|-------------|------------------|------------|------------|------------|-----------|
| Location              | MW-11         | MW-12       | MW-12R           | MW-22A     | MW-22B     | MW-23      | MW-24     |
| Sample ID             | <u>A66008</u> | A66064      | A66028           | A66017     | A66018     | A66034     | A66009    |
| Bryant HRDL           |               |             |                  |            |            |            |           |
| acetone               | R             | ND (10 UJ)  | ND (10 UJ)       | ND (10 U)  | ND (10 U)  | ND (10 UJ) | R         |
| benzene               | ND (10 U)     | • ND (10 U) | ND (10 U)        | ND (10 U)  | ND (10 U)  | ND (10 U)  | ND (10 U) |
| 2-butanone            | ND (10 U)     | ND (10 U)   | ND (10 UJ)       | ND (10 UJ) | ND (10 UJ) | ND (10 UJ) | ND (10 U) |
| carbon disulfide      | ND (10 U)     | ND (10 U)   | ND (10 U)        | ND (10 U)  | ND (10 U)  | ND (10 U)  | ND (10 U) |
| chioroform            | ND (10 U)     | ND (10 U)   | ND (10 U)        | ND (10 U)  | ND (10 U)  | ND (10 U)  | ND (10 U) |
| ethylbenzene          | ND (10 U)     | ND (10 U)   | ND (10 U)        | ND (10 U)  | ND (10 U)  | ND (10 U)  | ND (10 U) |
| methylene chloride    | ND (10 U)     | ND (10 U)   | ND (10 U)        | ND (10 U)  | ND (10 U)  | ND (10 U)  | ND (10 U) |
| tetrachloroethene     | ND (10 U)     | ND (10 U)   | ND (10 U)        | ND (10 U)  | ND (10 U)  | ND (10 U)  | ND (10 U) |
| toluene               | ND (10 U)     | ND (10 U)   | ND (10 U)        | ND (10 U)  | ND (10 U)  | ND (10 U)  | ND (10 U) |
| 1,1,1-trichloroethane | ND (10 U)     | ND (10 U)   | ND (10 U)        | ND (10 U)  | ND (10 U)  | ND (10 U)  | ND (10 U) |
| xylenes               | ND (10 U)     | ND (10 U)   | <u>ND (10 U)</u> | ND (10 U)  | ND (10 U)  | ND (10 U)  | ND (10 U) |
|                       |               |             |                  | T +        |            |            |           |
| Location              | MW-25         | MW-262      | MW-121A          | MW-121B    | MW-123A    | MW-123B    | RIVULET2  |
| Sample ID             | A66027        | A66015      | A66013           | A66014     | A66025     | A66026     | A66007    |
| Bryant HRDL (Cont'd.) |               |             |                  |            |            |            |           |
| acetone               | ND (10 UJ)    | R           | R                | R          | ND (10 UJ) | ND (10 UJ) | <b>R</b>  |
| benzene               | ND (10 U)     | ND (10 U)   | 1.0 J            | ND (10 U)  | ND (10 U)  | ND (10 U)  | ND (10 U) |
| 2-butanone            | ND (10 UJ)    | ND (10 UJ)  | ND (10 UJ)       | ND (10 UJ) | ND (10 UJ) | ND (10 UJ) | ND (10 U) |
| carbon disulfide      | ND (10 U)     | ND (10 U)   | ND (10 U)        | ND (10 U)  | ND (10 U)  | ND (10 U)  | ND (10 U) |
| chloroform            | ND (10 U)     | ND (10 U)   | ND (10 U)        | ND (10 U)  | ND (10 U)  | ND (10 U)  | ND (10 U) |
| ethylbenzene          | ND (10 U)     | ND (10 U)   | ND (10 U)        | ND (10 U)  | ND (10 U)  | ND (10 U)  | ND (10 U) |
| methylene chloride    | ND (10 U)     | ND (10 U)   | ND (10 U)        | ND (10 U)  | ND (10 U)  | ND (10 U)  | ND (10 U) |
| tetrachloroethene     | ND (10 U)     | ND (10 U)   | ND (10 U)        | ND (10 U)  | ND (10 U)  | ND (10 U)  | ND (10 U) |
| toluene               | 7.0 J         | ND (10 U)   | ND (10 U)        | 1.0 J      | ND (10 U)  | ND (10 U)  | ND (10 U) |
| 1,1,1-trichloroethane | ND (10 U)     | ND (10 U)   | ND (10 U)        | ND (10 U)  | ND (10 U)  | ND (10 U)  | ND (10 U) |
| xylenes               | ND (10 U)     | ND (10 U)   | ND (10 U)        | ND (10 U)  | ND (10 U)  | ND (10 U)  | ND (10 U) |

See Notes on Page 5

4

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

# ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED TCL VOC RESULTS FOR GROUNDWATER/LEACHATE SAMPLES<sup>1</sup> (ug/L)

| Location<br>Sample ID | MW-124A<br>A66003 | MW-124B<br>A66004 | MW-125P<br><u>A66016</u> | MW-125A<br>A66005 | MW-125B<br><u>A66006</u> | MW-126A<br><u>A66010</u> | MW-126B<br>A66011 |
|-----------------------|-------------------|-------------------|--------------------------|-------------------|--------------------------|--------------------------|-------------------|
| Monarch HRDL          |                   |                   |                          |                   |                          |                          |                   |
| acetone               | R                 | R                 | R                        | R                 | R                        | R                        | R                 |
| benzene               | ND (10 U)         | ND (10 U)         | 1.0 J                    | ND (10 U)         | ND (10 U)                | ND (10 U)                | ND (10 U)         |
| 2-butanone            | ND (10 U)         | ND (10 U)         | 34 J                     | ND (10 U)         | ND (10 U)                | ND (10 U)                | ND (10 U)         |
| carbon disulfide      | ND (10 U)         | ND (10 U)         | 2.0 J                    | ND (10 U)         | ND (10 U)                | ND (10 U)                | ND (10 U)         |
| chloroform            | ND (10 U)         | ND (10 U)         | ND (10 U)                | ND (10 U)         | ND (10 U)                | ND (10 U)                | ND (10 U)         |
| ethylbenzene          | ND (10 U)         | ND (10 U)         | 2.0 J                    | ND (10 U)         | ND (10 U)                | ND (10 U)                | ND (10 U)         |
| methylene chloride    | ND (10 U)         | ND (10 U)         | ND (10 U)                | ND (10 U)         | ND (10 U)                | ND (10 U)                | ND (10 U)         |
| tetrachloroethene     | ND (10 U)         | 2.0 J             | ND (10 U)                | 3.0 J             | ND (10 U)                | ND (10 U)                | ND (10 U)         |
| toluene               | ND (10 U)         | ND (10 U)         | 2.0 J                    | ND (10 U)         | ND (10 U)                | 1.0 J                    | ND (10 U)         |
| 1,1,1-trichloroethane | 3.0 J             | ND (10 U)         | ND (10 U)                | ND (10 U)         | 3.0 J                    | ND (10 U)                | ND (10 U)         |
| xylenes               | ND (10 U)         | ND (10 U)         | 10                       | ND (10 U)         | <u>ND (10 U)</u>         | ND (10 U)                | ND (10 U)         |
|                       | MW-126B           |                   | MW-122A                  |                   | γ····                    | ı                        | r                 |

| Location<br>Sample ID  | (Dup)<br>A66012 | MW-122A<br>A66033 | (Dup)<br>A66038 | MW-122B<br>A66039 | MW-1 <sup>2</sup><br>A66032 | MW-3<br>A66054 | MW-5<br>A66046 |
|------------------------|-----------------|-------------------|-----------------|-------------------|-----------------------------|----------------|----------------|
| Monarch HRDL (Cont'd.) |                 | FRDLs             |                 |                   | Former Type I               | ll Landfill    |                |
| acetone                | R               | ND (10 UJ)        | ND (10 UJ)      | ND (10 UJ)        | ND (10 UJ)                  | ND (10 UJ)     | ND (10 U)      |
| benzene                | ND (10 U)       | ND (10 U)         | ND (10 U)       | ND (10 U)         | ND (10 U)                   | 1.0 J          | ND (10 U)      |
| 2-butanone             | ND (10 U)       | ND (10 U)         | ND (10 UJ)      | ND (10 UJ)        | ND (10 UJ)                  | ND (10 UJ)     | ND (10 U)      |
| carbon disulfide       | ND (10 U)       | ND (10 U)         | ND (10 U)       | ND (10 U)         | ND (10 U)                   | ND (10 U)      | ND (10 U)      |
| chloroform             | ND (10 U)       | ND (10 U)         | ND (10 U)       | ND (10 U)         | ND (10 U)                   | ND (10 U)      | ND (10 U)      |
| ethylbenzene           | ND (10 U)       | ND (10 U)         | ND (10 U)       | ND (10 U)         | ND (10 U)                   | ND (10 U)      | ND (10 U)      |
| methylene chloride     | ND (10 U)       | ND (10 U)         | ND (10 U)       | ND (10 U)         | ND (10 U)                   | ND (10 U)      | ND (10 U)      |
| tetrachloroethene      | ND (10 U)       | ND (10 U)         | ND (10 U)       | ND (10 U)         | ND (10 U)                   | ND (10 U)      | ND (10 U)      |
| toluene                | ND (10 U)       | ND (10 U)         | ND (10 U)       | ND (10 U)         | ND (10 U)                   | ND (10 U)      | ND (10 U)      |
| 1,1,1-trichloroethane  | ND (10 U)       | ND (10 U)         | ND (10 U)       | ND (10 U)         | ND (10 U)                   | ND (10 U)      | ND (10 U)      |
| xylenes                | ND (10 U)       | ND (10 U)         | ND (10 U)       | ND (10 U)         | ND (10 U)                   | ND (10 U)      | ND (10 U)      |

See Notes on Page 5

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

# ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED TCL VOC RESULTS FOR GROUNDWATER/LEACHATE SAMPLES<sup>1</sup> (ug/L)

| Location<br>Sample ID       | MW-15<br>A66055 | MW-168 <sup>2</sup><br>A66059 | MW-16C<br>A66058 | MW-17A<br>A66056 | MW-17B<br>A66057 | MW 19BR<br><u>A66030</u> | MW - 19BR<br>(Dup)<br>A66031 |
|-----------------------------|-----------------|-------------------------------|------------------|------------------|------------------|--------------------------|------------------------------|
| Former Type III Landfill (C | ont'd.)         |                               |                  |                  |                  |                          |                              |
| acetone                     | ND (10 UJ)      | R                             | R                | ND (10 UJ)       | ND (10 UJ)       | ND (10 UJ)               | ND (10 UJ)                   |
| benzene                     | 1.0 J           | ND (10 U)                     | ND (10 U)        | 2.0 J            | 2.0 J            | 2.0 J                    | 2.0 J                        |
| 2-butanone                  | ND (10 UJ)      | ND (10 UJ)                    | ND (10 UJ)       | ND (10 UJ)       | ND (10 UJ)       | ND (10 UJ)               | ND (10 UJ)                   |
| carbon disulfide            | ND (10 U)       | ND (10 U)                     | ND (10 U)        | ND (10 U)        | ND (10 U)        | ND (10 U)                | ND (10 U)                    |
| chloroform                  | ND (10 U)       | ND (10 U)                     | ND (10 U)        | ND (10 U)        | ND (10 U)        | ND (10 U)                | ND (10 U)                    |
| ethylbenzene                | ND (10 U)       | ND (10 U)                     | ND (10 U)        | ND (10 U)        | ND (10 U)        | ND (10 U)                | ND (10 U)                    |
| methylene chloride          | ND (10 U)       | ND (10 U)                     | ND (10 U)        | 1.0 J            | ND (10 U)        | ND (10 U)                | ND (10 U)                    |
| tetrachloroethene           | ND (10 U)       | ND (10 U)                     | ND (10 U)        | ND (10 U)        | ND (10 U)        | ND (10 U)                | ND (10 U)                    |
| toluene                     | ND (10 U)       | ND (10 U)                     | ND (10 U)        | ND (10 U)        | ND (10 U)        | ND (10 U)                | ND (10 U)                    |
| 1,1,1-trichloroethane       | ND (10 U)       | ND (10 U)                     | ND (10 U)        | ND (10 U)        | ND (10 U)        | ND (10 U)                | ND (10 U)                    |
| xylenes                     | ND (10 U)       | ND (10 U)                     | ND (10 U)        | ND (10 U)        | ND (10 U)        | ND (10 U)                | ND (10 U)                    |

| Location<br>Sample ID        | MW-19C<br>A66040 | MW-19D<br>A66041 | MW-112<br>A66045 | MW-127A<br>A66044 | MW - 7<br>A66001 | MW-7B<br>A66000 | MW - 8<br>A66053 |
|------------------------------|------------------|------------------|------------------|-------------------|------------------|-----------------|------------------|
| Former Type III Landfill (Co | onťd.)           |                  |                  |                   | Western Dispo    | sal Area        |                  |
| acetone                      | ND (10 UJ)       | ND (10 UJ)       | ND (10 U)        | ND (10 U)         | R                | <b>R</b>        | R                |
| benzene                      | ND (10 U)        | ND (10 U)        | ND (10 U)        | ND (10 U)         | ND (10 U)        | ND (10 U)       | ND (10 U)        |
| 2 - butanone                 | ND (10 UJ)       | ND (10 UJ)       | ND (10 U)        | ND (10 U)         | ND (10 UJ)       | ND (10 UJ)      | ND (10 UJ)       |
| carbon disulfide             | ND (10 U)        | ND (10 U)        | ND (10 U)        | ND (10 U)         | ND (10 U)        | ND (10 U)       | ND (10 U)        |
| chloroform                   | ND (10 U)        | ND (10 U)        | ND (10 U)        | ND (10 U)         | ND (10 U)        | ND (10 U)       | ND (10 U)        |
| ethylbenzene                 | ND (10 U)        | ND (10 U)        | ND (10 U)        | ND (10 U)         | ND (10 U)        | ND (10 U)       | ND (10 U)        |
| methylene chloride           | ND (10 U)        | ND (10 U)        | ND (10 U)        | ND (10 U)         | ND (10 U)        | ND (10 U)       | ND (10 U)        |
| tetrachloroethene            | ND (10 U)        | ND (10 U)        | ND (10 U)        | ND (10 U)         | ND (10 U)        | ND (10 U)       | ND (10 U)        |
| toluene                      | ND (10 Ŭ)        | ND (10 U)        | ND (10 U)        | ND (10 U)         | ND (10 U)        | ND (10 U)       | ND (10 U)        |
| 1,1,1—trichloroethane        | ND (10 U)        | ND (10 U)        | ND (10 U)        | ND (10 U)         | ND (10 U)        | ND (10 U)       | ND (10 U)        |
| xylenes                      | ND (10 U)        | ND (10 U)        | ND (10 U)        | ND (10 U)         | ND (10 U)        | ND (10 U)       | ND (10 U)        |

See Notes on Page 5

٠

÷

;

i.

# ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

# ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED TCL VOC RESULTS FOR GROUNDWATER/LEACHATE SAMPLES<sup>1</sup> (ug/L)

| Location<br>Sample ID     | MW-8A<br>A66052 | MW-20<br>A66049 | MW-20<br>(Dup)<br>A66050 | MW-20B<br><b>A66</b> 051 | MW-21<br><u>A66002</u> | MW-120A<br>A66020 | MW-120B<br>A66019 |
|---------------------------|-----------------|-----------------|--------------------------|--------------------------|------------------------|-------------------|-------------------|
| Western Disposal Area (Co | onťd.)          |                 |                          |                          |                        |                   |                   |
| acetone                   | R               | ND (10 U)       | R                        | R                        | R                      | ND (10 U)         | ND (10 U)         |
| benzene                   | ND (10 U)       | ND (10 U)       | ND (10 U)                | ND (10 U)                | ND (10 U)              | ND (10 U)         | ND (10 U)         |
| 2-butanone                | ND (10 UJ)      | ND (10 U)       | ND (10 UJ)               | ND (10 UJ)               | ND (10 UJ)             | ND (10 UJ)        | ND (10 UJ)        |
| carbon disulfide          | ND (10 U)       | ND (10 U)       | ND (10 U)                | ND (10 U)                | ND (10 U)              | ND (10 U)         | ND (10 U)         |
| chloroform                | ND (10 U)       | ND (10 U)       | ND (10 U)                | ND (10 U)                | ND (10 U)              | ND (10 U)         | ND (10 U)         |
| ethylbenzene              | ND (10 U)       | ND (10 U)       | ND (10 U)                | ND (10 U)                | ND (10 U)              | ND (10 U)         | ND (10 U)         |
| methylene chloride        | ND (10 U)       | ND (10 U)       | ND (10 U)                | ND (10 U)                | ND (10 U)              | ND (10 U)         | ND (10 U)         |
| tetrachloroethene         | ND (10 U)       | ND (10 U)       | ND (10 U)                | ND (10 U)                | ND (10 U)              | ND (10 U)         | ND (10 U)         |
| toluene                   | ND (10 U)       | ND (10 U)       | ND (10 U)                | ND (10 U)                | ND (10 U)              | ND (10 U)         | ND (10 U)         |
| 1,1,1-trichloroethane     | ND (10 U)       | ND (10 U)       | ND (10 U)                | ND (10 U)                | ND (10 U)              | ND (10 U)         | ND (10 U)         |
| xylenes                   | ND (10 U)       | ND (10 U)       | ND (10 U)                | ND (10 U)                | ND (10 U)              | ND (10 U)         | ND (10 U)         |

| Location<br>Sample ID      | MW-120B<br>(Dup)<br>A66024 | MW-2<br>A660 <b>6</b> 0 | MW-28<br>A66022 | MW-2S<br>(Dup)<br>A66023 | MW-18<br><u>A66061</u> | MW-104<br><u>A66037</u> | MW-106<br>A66063 |
|----------------------------|----------------------------|-------------------------|-----------------|--------------------------|------------------------|-------------------------|------------------|
| Western Disposal Area (Cor | nťd.)                      | Pilot Study Area        |                 |                          |                        | Former Bryan            | t Mill Pond      |
| acetone                    | ND (10 U)                  | ND (10 UJ)              | ND (10 U)       | ND (10 U)                | ND (10 UJ)             | ND (10 UJ)              | ND (10 UJ)       |
| benzene                    | ND (10 U)                  | ND (10 U)               | ND (10 U)       | ND (10 U)                | ND (10 U)              | ND (10 U)               | ND (10 U)        |
| 2-butanone                 | ND (10 UJ)                 | ND (10 UJ)              | ND (10 UJ)      | ND (10 UJ)               | ND (10 U)              | ND (10 UJ)              | ND (10 U)        |
| carbon disulfide           | ND (10 U)                  | ND (10 U)               | ND (10 U)       | ND (10 U)                | ND (10 U)              | ND (10 U)               | ND (10 U)        |
| chloroform                 | ND (10 U)                  | ND (10 U)               | ND (10 U)       | ND (10 U)                | ND (10 U)              | ND (10 U)               | ND (10 U)        |
| ethylbenzene               | ND (10 U)                  | ND (10 U)               | ND (10 U)       | ND (10 U)                | ND (10 U)              | ND (10 U)               | ND (10 U)        |
| methylene chloride         | ND (10 U)                  | ND (10 U)               | ND (10 U)       | ND (10 U)                | ND (10 U)              | 1.0 J                   | ND (10 U)        |
| tetrachloroethene          | ND (10 U)                  | ND (10 U)               | ND (10 U)       | ND (10 U)                | ND (10 U)              | ND (10 U)               | ND (10 U)        |
| toluene                    | ND (10 U)                  | ND (10 U)               | 2.0 J           | 2.0 J                    | ND (10 U)              | ND (10 U)               | ND (10 U)        |
| 1,1,1—trichloroethane      | ND (10 U)                  | ND (10 U)               | ND (10 U)       | ND (10 U)                | ND (10 U)              | ND (10 U)               | ND (10 U)        |
| xylenes                    | ND (10 U)                  | ND (10 U)               | ND (10 U)       | ND (10 U)                | ND (10 U)              | ND (10 U)               | ND (10 U)        |

See Notes on Page 5

÷

í

4

**i** •

1

.

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED TCL VOC RESULTS FOR GROUNDWATER/LEACHATE SAMPLES<sup>1</sup> (ug/L)

| Location<br>Sample ID      | MW-108<br>A66047 | MW-114<br>A66036 | MW-128A<br>A66035 |
|----------------------------|------------------|------------------|-------------------|
| Former Bryant Mill Pond (C | ont'd.)          |                  |                   |
| acetone                    | ND (10 UJ)       | ND (10 UJ)       | ND (10 UJ)        |
| benzene                    | ND (10 U)        | ND (10 U)        | ND (10 U)         |
| 2-butanone                 | ND (10 UJ)       | ND (10 UJ)       | ND (10 UJ)        |
| carbon disulfide           | ND (10 U)        | ND (10 U)        | ND (10 U)         |
| chloroform                 | ND (10 U)        | ND (10 U)        | ND (10 U)         |
| ethylbenzene               | ND (10 U)        | ND (10 U)        | ND (10 U)         |
| methylene chloride         | ND (10 U)        | ND (10 U)        | ND (10 U)         |
| tetrachloroethene          | ND (10 U)        | 13               | ND (10 UJ)        |
| toluene                    | 1.0 J            | ND (10 U)        | ND (10 U)         |
| 1,1,1-trichloroethane      | ND (10 U)        | ND (10 U)        | ND (10 U)         |
| xylenes                    | ND (10 U)        | ND (10 U)        | ND (10 U)         |

#### Notes:

<sup>1</sup>Showing only the results for compounds detected above quantitation limits. <sup>2</sup>MS/MSD of this sample was analyzed.

MS/MSD of this sample was anal

ND - Not detected.

Notes Explaining Data Qualifiers:

- J The compound was positively identified. However, the associated numerical value is an estimated concentration only.
- R The sample results are rejected.
- U The compound was analyzed for but not detected. However, the associated numerical value is an estimated concentration only.
- UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.

1

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED SVOC RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| 1           | BHDL-22                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BHDL-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BHDL-22     | (Dup)                                                                                                    | BHDL-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Dup)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BHDL-1232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BHDL-123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MW - 121B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MW - 121B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10.00-12.00 |                                                                                                          | 12.00-14.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.00-14.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.00-9.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.00-12.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16.00 - 17.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17.50-19.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| A60688      | A60691                                                                                                   | A60689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A60692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A60683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A60684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A60046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A60047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND (9.4 U)  | ND (19 U)                                                                                                | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND (46 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (2.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND (9.4 U)  | ND (19 U)                                                                                                | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND (46 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (2.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND (9.4 U)  | ND (19 U)                                                                                                | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND (46 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (2.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND (9.4 U)  | ND (19 U)                                                                                                | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND (46 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (2.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND (9.4 UJ) | ND (19 UJ)                                                                                               | ND (0.38 UJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND (46 UJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (2.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND (0.39 UJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ND (9.4 U)  | ND (19 U)                                                                                                | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND (46 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (2.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND (9.4 U)  | ND (19 U)                                                                                                | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND (0.38 UJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND (46 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND (0.40 UJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND (2.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND(9.4 U)   | ND (19 U)                                                                                                | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND (46 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (2.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND (9.4 U)  | ND (19 U)                                                                                                | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND (46 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (2.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | ND (19 U)                                                                                                | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND (46 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (2.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | ND (19 U)                                                                                                | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND (46 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (2.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                          | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (2.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | • •                                                                                                      | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (2.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                          | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                          | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND (46 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| • •         | ND (19 U)                                                                                                | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND (46 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (2.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | • •                                                                                                      | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND (0.96 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND (0.95 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | • •                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND (0.85 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                          | 0.076 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1 · · · ·   |                                                                                                          | ND (0.38 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | • •                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | • •                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1 1         |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | • •                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | • •                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , , <i>,</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | • •                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND (0.95 UJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | • •                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND (0.95 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | • •                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                          | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 <sup>1</sup> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND (0.39 UJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | • •                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND (0.95 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | • •                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | A60688<br>ND (9.4 U)<br>ND (9.4 U)<br>ND (9.4 U)<br>ND (9.4 U)<br>ND (9.4 U)<br>ND (9.4 U)<br>ND (9.4 U) | BHDL-22         (Dup)           10.00-12.00         A60688         A60691           ND (9.4 U)         ND (19 U)           ND (9.4 U) | BHDL-22         (Dup)         BHDL-22           10.00-12.00         10.00-12.00         12.00-14.00           A60688         A60691         A60689           ND (9.4 U)         ND (19 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U) | BHDL-22         (Dup)         BHDL-22         (Dup)           10.00-12.00         10.00-12.00         12.00-14.00         A60689           A60688         A60691         A60689         A60692           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (0.38 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U) | BHDL-22<br>10.00-12.00<br>A60688         (Dup)<br>10.00-12.00<br>A60689         BHDL-22<br>12.00-14.00<br>A60689         (Dup)<br>12.00-14.00<br>A60689         BHDL-123 <sup>2</sup><br>8.00-9.50<br>A60683           ND (9.4 U)<br>ND (9.4 U)<br>ND (9.4 U)         ND (19 U)<br>ND (19 U)<br>ND (19 U)         ND (0.38 U)<br>ND (0.38 U)         ND (0.38 U)<br>ND (0.38 U)<br>ND (0.38 U)         ND (46 U)<br>ND (46 U)<br>ND (46 U)           ND (9.4 U)<br>ND (9.4 U)         ND (19 U)<br>ND (19 U)         ND (0.38 U)<br>ND (0.38 U)         ND (46 U)<br>ND (46 U)         ND (46 U)           ND (9.4 U)<br>ND (9.4 U)         ND (19 U)<br>ND (19 U)         ND (0.38 U)<br>ND (0.38 U)         ND (46 U)         ND (46 U)           ND (9.4 U)         ND (19 U)<br>ND (19 U)         ND (0.38 U)<br>ND (0.38 U)         ND (46 U)         ND (46 U)           ND (9.4 U)         ND (19 U)<br>ND (19 U)         ND (0.38 U)         ND (0.38 U)<br>ND (0.38 U)         ND (46 U)           ND (9.4 U)         ND (19 U)<br>ND (19 U)         ND (0.38 U)         ND (46 U)         ND (46 U)           ND (9.4 U)         ND (19 U)<br>ND (0.38 U)         ND (0.38 U)         ND (46 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (46 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (46 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (46 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U) | BHDL - 22         (Dup)         BHDL - 22         (Dup)         BHDL - 123 <sup>1</sup> BHDL - 123 <sup>1</sup> 10.00 - 12.00         10.00 - 12.00         12.00 - 14.00         12.00 - 14.00         8.00 - 9.50         10.00 - 12.00           A60688         A60691         A60689         A60689         A60683         A60684           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (0.38 U)         ND (46 U)         ND (0.40 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (0.38 U)         ND (46 U)         ND (0.40 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (0.38 U)         ND (46 U)         ND (0.40 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (0.38 U)         ND (46 U)         ND (0.40 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (0.38 U)         ND (46 U)         ND (0.40 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (46 U)         ND (0.40 U)         ND (0.40 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (46 U)         ND (0.40 U)         ND (0.40 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (46 U)         ND (0.40 U)         ND (46 U) | BHDL -22         (Dup)         BHDL -22         (Dup)         BHDL -123 <sup>2</sup> BH/DL -123 <sup>3</sup> BH/DL -123 <sup>4</sup> BH/DL -123 <sup>4</sup> 10.00 - 12.00         10.00 - 12.00         12.00 - 14.00         12.00 - 14.00         A60683         A60684         A60644           A60688         A60691         A60689         A60684         A60684         A60684           ND (8.4 U)         ND (19 U)         ND (0.38 U)         ND (0.38 U)         ND (46 U)         ND (6.4 U)         ND (2.2 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (0.38 U)         ND (46 U)         ND (2.2 U)         ND (2.2 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (0.38 U)         ND (46 U)         ND (2.2 U)         ND (2.2 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (6.40 U)         ND (2.2 U)         ND (2.2 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (46 U)         ND (2.2 U)         ND (2.2 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (46 U)         ND (2.2 U)         ND (2.2 U)           ND (9.4 U)         ND (19 U)         ND (0.38 U)         ND (46 U)         ND (2.2 U)         ND (2.2 U)           ND (9.4 U) |

See Notes on Page 10

- - ----

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED SVOC RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location                      | ML88-1      | MLSS-1      | MLSS-2      | ML88-2      | ML883       | MLSS-3      | MLSS-4      | MLSS-4      |
|-------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Depth (ft)                    | 14.00-15.50 | 15.50-18.00 | 20.00-22.00 | 22.00-24.00 | 18.00-20.00 | 20.00-22.00 | 18.00-20.00 | 20.00-22.00 |
| Sample ID                     | A60039      | A60040      | A60571      | A60572      | A60551      | A60552      | A60530      | A60531      |
| Monarch HRDL                  |             |             |             |             |             |             |             |             |
| anthracene                    | ND (1.4 U)  | 0.094 J     | ND (13 U)   | ND (0.64 U) | ND (13 U)   | ND (7.4 U)  | ND (5.3 U)  | ND (0.39 U) |
| benzo(a)anthracene            | ND (1.4 U)  | 0.21 J      | ND (13 U)   | ND (0.64 U) | ND (13 U)   | ND (7.4 U)  | ND (5.3 U)  | ND (0.39 U) |
| benzo(b)fluoranthene          | ND (1.4 U)  | 0.14 J      | ND (13 U)   | ND (0.64 U) | ND (13 U)   | ND (7.4 U)  | ND (5.3 U)  | ND (0.39 U) |
| benzo(k)fluoranthene          | ND (1.4 U)  | 0.17 J      | ND (13 U)   | ND (0.64 U) | ND (13 U)   | ND (7.4 U)  | ND (5.3 U)  | ND (0.39 U) |
| benzo(g,h,i)perylene          | ND (1.4 U)  | ND (1.5 U)  | ND (13 U)   | ND (0.64 U) | ND (13 U)   | ND (7.4 U)  | ND (5.3 U)  | ND (0.39 U) |
| benzo(a)pyrene                | ND (1.4 U)  | 0.17 J      | ND (13 U)   | ND (0.64 U) | ND (13 U)   | ND (7.4 U)  | ND (5.3 U)  | ND (0.39 U) |
| carbazole                     | ND (1.4 U)  | 0.070 J     | ND (13 U)   | ND (0.64 U) | ND (13 U)   | ND (7.4 U)  | ND (5.3 U)  | ND (0.39 U) |
| bis(2-choroethyl)ether        | ND (1.4 U)  | ND (1.5 U)  | ND (13 U)   | ND (0.64 U) | ND (13 U)   | ND (7.4 U)  | ND (5.3 U)  | ND (0.39 U) |
| 4 - chloro - 3 - methylphenol | R           | ND (1.5 U)  | ND (13 U)   | ND (0.64 U) | ND (13 U)   | ND (7.4 U)  | ND (5.3 U)  | ND (0.39 U) |
| 2 - chlorophenol              | ND (1.4 U)  | ND (1.5 U)  | ND(13U)     | ND (0.64 U) | ND (13 U)   | ND (7.4 U)  | ND (5.3 U)  | ND (0.39 U) |
| chrysene                      | ND (1.4 U)  | 0.20 J      | ND(13U)     | ND (0.64 U) | ND (13 U)   | ND (7.4 U)  | ND (5.3 U)  | ND (0.39 U) |
| dibenz(a,h)anthracene         | ND (1.4 U)  | ND (1.5 U)  | ND (13 U)   | ND (0.64 U) | ND (13 U)   | ND (7.4 U)  | ND (5.3 U)  | ND (0.39 U) |
| dibenzofuran                  | ND (1.4 U)  | ND (1.5 U)  | ND (13 U)   | ND (0.64 U) | ND (13 U)   | ND (7.4 U)  | ND (5.3 U)  | ND (0.39 U) |
| di-n-butyiphthalate           | ND (1.4 U)  | ND (1.5 U)  | ND(13U)     | ND (0.64 U) | ND (13 U)   | ND (7.4 U)  | ND (5.3 U)  | ND (0.39 U) |
| 2,4-dichlorophenol            | R           | ND (1.5 U)  | ND (13 U)   | ND (0.64 U) | ND (13 U)   | ND (7.4 U)  | ND (5.3 U)  | ND (0.39 U) |
| 2,4-dimethylphenol            | R           | ND (1.5 U)  | ND(13U)     | ND (0.64 U) | ND (13 U)   | ND (7.4 U)  | ND (5.3 U)  | ND (0.39 U) |
| 4,6-dinitro-2-methylphenol    | R           | ND (3.6 U)  | ND (31 U)   | ND (1.6 U)  | ND (31 U)   | ND (18 U)   | ND (13 UJ)  | ND (0.95 U) |
| 2,4-ainltrophenol             | R           | ND (3.6 U)  | ND (31 UJ)  | ND (1.6 U)  | ND (31 UJ)  | ND (18 U)   | ND (13 U)   | ND (0.95 U) |
| bis(2 - ethylhexyl)phthalate  | ND (1.4 U)  | 0.10 J      | ND (13 U)   | 0.091 J     | ND (13 U)   | ND (7.4 U)  | 1.3 J       | 0.031 J     |
| fluoranthene                  | ND (1.4 U)  | 0.45 J      | U CI JUN I  | ND (0.64 U) | ND (13 U)   | 0.37 J      | ND (5.3 U)  | ND (0.39 U) |
| fluorene                      | ND (1.4 U)  | ND (1.5 U)  | ND (13 U)   | ND (0.64 U) | ND (13 U)   | ND (7.4 U)  | ND (5.3 U)  | ND (0.39 U) |
| indeno(1,2,3-cd)pyrene        | ND (1.4 U)  | ND (1.5 U)  | ND (13 U)   | ND (0.64 U) | ND (13 U)   | ND (7.4 U)  | ND (5.3 U)  | ND (0.39 U) |
| 2 - methylnaphthalene         | 0.18 J      | ND (1.5 U)  | 2.8 J       | ND (0.64 U) | 3.4 J       | 0.35 J      | 2.7 J       | ND (0.39 U) |
| 2 - methylphenol              | R           | ND (1.5 U)  | ND (13 U)   | ND (0.64 U) | ND (13 U)   | ND (7.4 U)  | ND (5.3 U)  | ND (0 39 U) |
| 4 – methylphenol              | R           | ND (1.5 U)  | 2.1 J       | ND (0.64 U) | 2.7 J       | ND (7.4 U)  | 4.7 J       | ND (0.39 U) |
| naphthalene                   | ND (1.4 U)  | 0.084 J     | ND (13 U)   | ND (0.64 U) | ND (13 U)   | ND (7.4 U)  | 0.73 J      | ND (0.39 U) |
| 2 – nitrophenol               | R           | ND (1.5 U)  | ND (13 U)   | ND (0.64 U) | ND (13 U)   | ND (7.4 U)  | ND (5.3 U)  | ND (0.39 U) |
| 4 – nitrophenol               | R           | ND (3.6 U)  | ND (31 U)   | ND (1.6 U)  | ND (31 U)   | ND (18 U)   | ND (13 U)   | ND (0.95 U) |
| pentachlorophenol             | 8           | ND (3.6 U)  | ND (31 UJ)  | ND (1.6 U)  | ND (31 UJ)  | ND (18 U)   | ND (13 U)   | ND (0.95 U) |
| phenanthrene                  | ND (1.4 U)  | 0.44 J      | ND (13 U)   | ND (0.64 U) | ND (13 U)   | ND (7.4 U)  | 0.54 J      | ND (0.39 U) |
| phenol                        | R (1.40)    | ND (1.5 U)  | ND (13 U)   | ND (0.64 U) | ND (13 U)   | ND (7.4 U)  | ND (5.3 U)  | ND (0.39 U) |
| pyrene                        | ND (1.4 U)  | 0.36 J      | ND (13 U)   | ND (0.64 U) | ND (13 U)   | ND (7.4 U)  | ND (5.3 U)  | ND (0.39 U) |
| 2,4,5 - trichlorophenol       | R (1.40)    | ND (3.6 U)  | ND (31 U)   | ND (1.6 U)  | ND (31 U)   | ND (18 U)   | ND (13 U)   | ND (0.95 U) |
| 2,4,5 - trichorophenol        | R R         | ND (1.5 U)  | ND (13 U)   | ND (0.64 U) | ND (13 U)   | ND (7.4 U)  | ND (5.3 U)  | ND (0.39 U) |

See Notes on Page 10

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED SVOC RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location                      | ML88-5      | MLSS-5      | MW-125B     | MW-125B     | MW - 126A   | MW - 126A    |
|-------------------------------|-------------|-------------|-------------|-------------|-------------|--------------|
| Depth (ft)                    | 22.00-24.00 | 24.00-26.00 | 18.00~19.00 | 19.00-20.00 | 14.00-16.00 | 14.00-16.00  |
| Sample ID                     | A60512      | A60513      | A60029      | A60030      | A60017      | A60018       |
| Monarch HRDL (Cont'd.)        |             |             |             |             |             |              |
| anthracene                    | ND (12 U)   | ND (0.45 U) | ND (9.2 U)  | ND (0.38 U) | ND (3.6 U)  | ND (0.61 U)  |
| benzo(a)anthracene            | ND (12 U)   | ND (0.45 U) | ND (9.2 U)  | ND (0.38 U) | ND (3.6 U)  | 0.052 J      |
| benzo(b)fluoranthene          | ND (12 U)   | ND (0.45 U) | ND (9.2 U)  | ND (0.38 U) | ND (3.6 U)  | 0.045 J      |
| benzo(k)fluoranthene          | ND (12 U)   | ND (0.45 U) | ND (9.2 U)  | ND (0.58 U) | ND (S.6 U)  | 0.049 J      |
| benzo(g,h,i)perylene          | ND (12 U)   | ND (0.45 U) | ND (9.2 U)  | ND (0.38 U) | ND (3.6 U)  | ND (0.61 U)  |
| benzo(a)pyrene                | ND (12 U)   | ND (0.45 U) | ND (9.2 U)  | ND (0.38 U) | ND (3.6 U)  | 0.046 J      |
| carbazole                     | ND (12 U)   | ND (0.45 U) | ND (9.2 U)  | ND (0.38 U) | ND (3.6 U)  | ND (0.61 U)  |
| bis(2-chloroethyl)ether       | ND (12 U)   | ND (0.45 U) | ND (9.2 U)  | ND (0.38 U) | ND (3.6 U)  | ND (0.61 U)  |
| 4 - chloro - 3 - methylphenol | ND (12 U)   | ND (0.45 U) | ND (9.2 U)  | ND (0.38 U) | R           | ND (0.61 U)  |
| 2 - chlorophenol              | ND (12 U)   | ND (0.45 U) | ND (9.2 U)  | ND (0.38 U) | R           | ND (0.61 U)  |
| chrysene                      | ND (12 U)   | ND (0.45 U) | ND (9.2 U)  | ND (0.38 U) | ND (3.6 U)  | 0.060 J      |
| dibenz(a,h)anthracene         | ND (12 U)   | ND (0.45 U) | ND (9.2 U)  | ND (0.38 U) | ND (3.6 U)  | ND (0.61 U)  |
| dibenzofuran                  | ND (12 U)   | ND (0.45 U) | ND (9.2 U)  | ND (0.38 U) | ND (3.6 U)  | ND (0.61 U)  |
| di – n – butylphthalate       | ND (12 U)   | ND (0.45 U) | ND (9.2 U)  | ND (0.38 U) | ND (3.6 U)  | ND (0.61 U)  |
| 2,4-dichlorophenol            | ND (12 U)   | ND (0.45 U) | ND (9.2 U)  | ND (0.38 U) | R           | ND (0.61 U)  |
| 2,4-dimethylphenol            | ND (12 U)   | ND (0.45 U) | ND (9.2 U)  | ND (0.38 U) | R           | ND (0.61 U)  |
| 4,6-dinkro-2-methylphenol     | ND (30 UJ)  | ND (1.1 U)  | ND (22 UJ)  | ND (0.91 U) | R           | ND (1.5 U)   |
| 2,4-dinitrophenol             | ND (30 U)   | ND (1.1 U)  | ND (22 U)   | ND (0.91 U) | R           | ND (1.5 U)   |
| bis(2 - ethylhexyl)phthalate  | 3.1 J       | 0.11 J      | ND (9.2 U)  | 0.11 J      | ND (3.6 U)  | 0.034 J      |
| fluoranthene                  | ND (12 U)   | ND (0.45 U) | ND (9.2 U)  | ND (0.38 U) | ND (3.6 U)  | 0.099 J      |
| fluorene                      | ND (12 U)   | ND (0.45 U) | ND (9.2 U)  | ND (0.38 U) | ND (3.6 U)  | -ND (0.61 U) |
| indeno(1,2,3-cd)pyrene        | ND (12 U)   | ND (0.45 U) | ND (9.2 U)  | ND (0.38 U) | ND (3.6 U)  | ND (0.61 U)  |
| 2 - methylnaphthalene         | 4.1 J       | 0.038 J     | 2.0 J       | 0.038 J     | 1.3 J       | ND (0.61 U)  |
| 2 - methylphenol              | ND (12 U)   | ND (0.45 U) | ND (9.2 U)  | ND (0.38 U) | R           | ND (0.61 U)  |
| 4 - methylphenol              | 2.3 J       | ND (0.45 U) | ND (9.2 U)  | ND (0.38 U) | 8           | ND (0.61 U)  |
| naphthalene                   | 1.0 J       | ND (0.45 U) | ND (9.2 U)  | ND (0.38 U) | ND (3.6 U)  | ND (0.61 U)  |
| 2 – nitrophenol               | ND (12 U)   | ND (0.45 U) | ND (9.2 U)  | ND (0.38 U) | R R         | ND (0.61 U)  |
| 4 – nitrophenol               | ND (30 U)   | ND (1.1 U)  | ND (22 U)   | ND (0.91 U) | R           | ND (1.5 U)   |
| pentachlorophenoł             | ND (30 U)   | ND (1.1 U)  | ND (22 U)   | ND (0.91 U) | R           | ND (1.5 U)   |
| phenanthrene                  | ND (12 U)   | ND (0.45 U) | ND (9.2 U)  | ND (0.38 U) | 0.37 J      | 0.059 J      |
| phenol                        | ND (12 U)   | ND (0.45 U) | ND (9.2 U)  | ND (0.38 U) | R           | ND (0.61 U)  |
| pyrene                        | ND (12 U)   | ND (0.45 U) | ND (9.2 U)  | ND (0.38 U) | ND (3.6 U)  | 0.090 J      |
| 2,4,5 – trichlorophenol       | ND (30 U)   | ND (1.1 U)  | ND (22 U)   | ND (0.91 U) | R (0.0 0)   | ND (1.5 U)   |
| 2,4,6 - trichlorophenol       | ND (12 U)   | ND (0.45 U) | ND (9.2 U)  | ND (0.38 U) | 8           | ND (0.61 U)  |

See Notes on Page 10

**1** 

ł

.

ż

i

general and the second se

1

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED SVOC RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location                      | DLHB-1      | DLHB-1      | DLHB-2      | DLHB-2       | DLHB-S2       | DLHB-32      | DLHB-6      | DLHB-6        |
|-------------------------------|-------------|-------------|-------------|--------------|---------------|--------------|-------------|---------------|
| Depth (ft)                    | 14.00-16.00 | 16.00-18.00 | 8.00-8.00   | 8.00-10.00   | 6.00~8.00     | 8.00-10.00   | 8.00-10.00  | 10.00 - 12.00 |
| Sample ID                     | A60593      | A60594      | A60586      | A60587       | <u>A60599</u> | A60600       | A60605      | A60606        |
| FRDLs                         |             |             |             |              |               |              |             |               |
| anthracene                    | ND (2.8 U)  | ND (0.38 U) | ND (3.7 U)  | ND (0.37 U)  | ND (1.9 U)    | ND (0.79 U)  | ND (0.88 U) | ND (2.1 UJ)   |
| benzo(a)anthracene            | ND (2.8 U)  | ND (0.38 U) | ND (3.7 U)  | ND (0.37 U)  | ND (1.9 U)    | ND (0.79 U)  | ND (0.88 U) | ND (2.1 UJ)   |
| benzo(b)fluoranthene          | ND (2.8 U)  | ND (0.38 U) | ND (3.7 U)  | ND (0.37 U)  | ND (1.9 U)    | ND (0.79 U)  | ND (0.88 U) | ND (2.1 UJ)   |
| benzo(k)fluoranthene          | ND (2.8 U)  | ND (0.38 U) | ND (3.7 U)  | ND (0.37 U)  | ND (1.9 U)    | ND (0.79 U)  | ND (0.88 U) | ND (2.1 UJ)   |
| benzo(g,h,i)perylene          | ND (2.8 U)  | ND (0.38 U) | ND (3.7 U)  | ND (0.37 U)  | ND (1.9 U)    | ND (0.79 UJ) | ND (0.88 U) | ND (2.1 UJ)   |
| benzo(a)pyrene                | ND (2.8 U)  | ND (0.38 U) | ND (3.7 U)  | ND (0.37 U)  | ND (1.9 U)    | ND (0.79 U)  | ND (0.88 U) | ND (2.1 UJ)   |
| carbazole                     | ND (2.8 U)  | ND (0.38 U) | ND (3.7 U)  | ND (0.37 U)  | ND (1.9 U)    | ND (0.79 U)  | ND (0.88 U) | ND (2.1 UJ)   |
| bis(2-chloroethyl)ether       | ND (2.8 U)  | ND (0.38 U) | ND (3.7 U)  | ND (0.37 U)  | ND (1.9 U)    | ND (0.79 UJ) | ND (0.88 U) | 2.1 J         |
| 4 - chloro - 3 - methylphenol | ND (2.8 U)  | ND (0.38 U) | ND (3.7 U)  | ND (0.37 U)  | ND (1.9 U)    | ND (0.79 U)  | ND (0.88 U) | 8             |
| 2 - chlorophenol              | ND (2.8 U)  | ND (0.38 U) | ND (3.7 U)  | ND (0.37 U)  | ND (1.9 U)    | ND (0.79 U)  | ND (0.88 U) | R             |
| chrysene                      | ND (2.8 U)  | ND (0.38 U) | ND (3.7 U)  | ND (0.37 U)  | ND (1.9 U)    | ND (0.79 U)  | ND (0.88 U) | ND (2.1 UJ)   |
| dibenz(a,h)anthracene         | ND (2.8 U)  | ND (0.38 U) | ND (3.7 U)  | ND (0.37 U)  | ND (1.9 U)    | ND (0.79 U)  | ND (0.88 U) | ND (2.1 UJ)   |
| dibenzofuran                  | ND (2.8 U)  | ND (0.38 U) | ND (3.7 U)  | ND (0.37 U)  | ND (1.9 U)    | ND (0.79 U)  | ND (0.88 U) | ND (2.1 UJ    |
| di – n – butyiphthalate       | ND (2.8 U)  | ND (0.38 U) | 1.0 BJ      | ND (0.37 U)  | ND (1.9 U)    | ND (0.79 U)  | ND (0.88 U) | ND (2.1 U.)   |
| 2,4-dichlorophenol            | ND (2.8 U)  | ND (0.38 U) | ND (3.7 U)  | ND (0.37 U)  | ND (1.9 U)    | ND (0.79 U)  | ND (0.88 U) | ิต            |
| 2,4-dimethylphenol            | ND (2.8 U)  | ND (0.38 U) | ND (3.7 U)  | ND (0.37 U)  | ND (1.9 U)    | ND (0.79 U)  | ND (0.88 U) | R             |
| 4,6-dinitro-2-methylphenol    | ND (2.8 U)  | ND (0.93 U) | ND (8.9 U)  | ND (0.89 U)  | ND (4.7 U)    | ND (1.9 U)   | ND (2.1 U)  | R             |
| 2 dinitrophenol               | ND (2.8 U)  | ND (0.93 U) | ND (8.9 U)  | ND (0.89 U)  | ND (4.7 U)    | ND (1.9 U)   | ND (2.1 U)  | R             |
| bis(2 - sthylhexyl)phthalate  | ND (2.8 U)  | 0.028 J     | ND (3.7 U)  | 0.020 J      | 1.1 J         | ND (0.79 U)  | 0.24 J      | ND (2.1 UJ)   |
| fluoranthene                  | ND (2.8 U)  | ND (0.38 U) | ND (3.7 U)  | ND (0.37 U)  | ND (1.9 U)    | ND (0.79 U)  | 0.058 J     | ND (2.1 UJ)   |
| fluorene                      | ND (2.8 U)  | ND (0.38 U) | ND (3.7 U)  | ND (0.37 U)  | 0.40 J        | ND (0.79 U)  | ND (0.88 U) | 0.18 J        |
| indeno(1,2,3-cd)pyrene        | ND (2.8 U)  | ND (0.38 U) | ND (3.7 U)  | ND (0.37 U)  | ND (1.9 U)    | ND (0.79 U)  | ND (0.88 U) | ND (2.1 UJ)   |
| 2 - methylnaphthalene         | ND (2.8 U)  | 0.063 J     | ND (3.7 U)  | ND (0.37 U)  | 2.3           | ND (0.79 U)  | ND (0.88 U) | 1.3 J         |
| 2 – methylphenol              | ND (2.8 U)  | ND (0.38 U) | ND (3.7 U)  | ND (0.37 U)  | ND (1.9 U)    | ND (0.79 U)  | ND (0.88 U) | R             |
| 4 – methylphenol              | 2.7 J       | ND (0.38 U) | ND (3.7 U)  | ND (0.37 U)  | 0.37 J        | ND (0.79 U)  | 0.48 J      | ND (2.1 U.)   |
| naphthalene                   | ND (2.8 U)  | ND (0.38 U) | ND (3.7 U)  | ND (0.37 U)  | ND (1.9 U)    | ND (0.79 U)  | ND (0.88 U) | ND (2.1.UJ)   |
| 2 - nitrophenol               | ND (2.8 U)  | ND (0.38 U) | ND (3.7 U)  | ND (0.37 U)  | ND (1.9 U)    | ND (0.79 U)  | ND (0.88 U) | R R           |
| 4 – nitrophenol               | ND (6.8 U)  | ND (0.93 U) | ND (8.9 U)  | ND (0.89 UJ) | ND (4.7 U)    | ND (1.9 UJ)  | ND (2.1 U)  | R             |
| pentachiorophenol             | ND (6.8 UJ) | ND (0.93 U) | ND (8.9 UJ) | ND (0.89 U)  | ND (4.7 UJ)   | ND (1.9 U)   | ND (2.1 U)  | 8             |
| phenanthrene                  | ND (2.8 U)  | ND (0.38 U) | ND (3.7 U)  | ND (0.37 U)  | 1.3 J         | ND (0.79 U)  | 0.11 J      | 0.34 J        |
| phenol                        | ND (2.8 U)  | ND (0.38 U) | ND (3.7 U)  | ND (0.37 U)  | ND (1.9 U)    | ND (0.79 U)  | ND (0.88 U) | R             |
| pyrene                        | ND (2.8 L)  | ND (0.38 U) | ND (3.7 U)  | ND (0.37 U)  | ND (1.9 U)    | ND (0.79 UJ) | ND (0.88 U) | ND (2.1 UJ)   |
| 2,4,5 - trichiorophenol       | ND (6.8 U)  | ND (0.93 U) | ND (8.9 U)  | ND (0.89 U)  | ND (4.7 U)    | ND (1.9 U)   | ND (2.1 U)  | R             |
| 2,4,5 - trichlorophenol       | ND (2.8 U)  | ND (0.38 U) | ND (3.7 U)  | ND (0.37 U)  | ND (1.9 U)    | ND (0.79 U)  | ND (0.88 U) | R             |

See Notes on Page 10

**i** i e e i .

ì

E E

.

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

.

## ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED SVOC RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location         FLF-1 <sup>2</sup> FLF-1 <sup>2</sup> FLF-1 <sup>2</sup> Depth (ft)         6.00-6.50         6.50-6.00           Sample ID         A60097         A60098           Former Type III Landfill         Implement the sense         ND (8.8 U)         ND (0.39 U)           benzo(a)anthracene         ND (8.8 U)         ND (0.39 U)         benzo(b)fluoranthene         ND (8.8 U)         ND (0.39 U)           benzo(a)fluoranthene         ND (8.8 U)         ND (0.39 U)         benzo(a)pyrene         ND (8.8 U)         ND (0.39 U)           benzo(a)pyrene         ND (8.8 U)         ND (0.39 U)         benzo(a)pyrene         ND (8.8 U)         ND (0.39 U)           carbazole         ND (8.8 U)         ND (0.39 U)         benzo(a)pyrene         ND (8.8 U)         ND (0.39 U)           carbazole         ND (8.8 U)         ND (0.39 U)         chorophenol         ND (8.8 U)         ND (0.39 U)           chorophenol         ND (8.8 U)         ND (0.39 U)         chorophenol         ND (8.8 U)         ND (0.39 U)           dibenz(a,h)anthracene         ND (8.8 U)         ND (0.39 U)         dibenz/(a,h)anthracene         ND (8.8 U)         ND (0.39 U)           dibenz/a,h)anthracene         ND (8.8 U)         ND (0.39 U)         dibenz/(a,h)anthracene         ND (8.8 U)              |                            |            |                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------|--------------------|
| Depth (ft)         6.00-6.50         6.50-8.00           Sample ID         A60097         A60098           Former Type III Landfill         anthracene         ND (6.8 U)         ND (0.39 U)           benzo(a)anthracene         ND (6.8 U)         ND (0.39 U)           benzo(b)fluoranthene         ND (6.8 U)         ND (0.39 U)           benzo(g),hijperylene         ND (6.8 U)         ND (0.39 U)           benzo(g),hijperylene         ND (6.8 U)         ND (0.39 U)           benzo(g),hijperylene         ND (6.8 U)         ND (0.39 U)           carbazole         ND (6.8 U)         ND (0.39 U)           chorophenol         ND (8.8 U)         ND (0.39 U)           chrysene         ND (8.8 U)         ND (0.39 U)           dibenz(a,h)anthracene         ND (8.8 U)         ND (0.39 U)           di-n-butylphthalate         ND (8.8 U)         ND (0.39 U)           chitrophenol         ND (8.8 U)         ND                                                                                                  | Location                   | FLE-12     | FLF-1 <sup>2</sup> |
| Sample ID         A60097         A60098           Former Type III Landfill         anthracene         ND (6.8 U)         ND (0.39 U)           benzo(a)anthracene         ND (6.8 U)         ND (0.39 U)           benzo(b)fluoranthene         ND (6.8 U)         ND (0.39 U)           benzo(g,h,I)perylene         ND (6.8 U)         ND (0.39 U)           carbazole         ND (6.8 U)         ND (0.39 U)           benzo(g,h,I)perylene         ND (8.8 U)         ND (0.39 U)           carbazole         ND (8.8 U)         ND (0.39 U)           carbazole         ND (8.8 U)         ND (0.39 U)           chorophenol         ND (8.8 U)         ND (0.39 U)           chrysene         ND (8.8 U)         ND (0.39 U)           dibenz(a,h)anthracene         ND (8.8 U)         ND (0.39 U)           dibenzofuran         ND (8.8 U)         ND (0.39 U)           di-n-butylphthalate         ND (8.8 U)         ND (0.39 U)           2.4 -dinitrophenol         ND (21 UJ)         ND (0.39 U)           d.4.6 -dinitro - 2 - meth                                                                               |                            |            |                    |
| Former Type III Landfill           anthracene         ND (8.8 U)         ND (0.39 U)           benzo(a)anthracene         ND (8.8 U)         ND (0.39 U)           benzo(b)fluoranthene         ND (8.8 U)         ND (0.39 U)           benzo(a)anthracene         ND (8.8 U)         ND (0.39 U)           benzo(a),fluoranthene         ND (8.8 U)         ND (0.39 U)           benzo(a),pyrene         ND (8.8 U)         ND (0.39 U)           carbazole         ND (8.8 U)         ND (0.39 U)           bis(2 - chloroethyl)ether         ND (8.8 U)         ND (0.39 U)           4 - chloro - 3 - methylphenol         ND (8.8 U)         ND (0.39 U)           2 - chlorophenol         ND (8.8 U)         ND (0.39 U)           chrysene         ND (8.8 U)         ND (0.39 U)           dibenzofuran         ND (8.8 U)         ND (0.39 U)           4, 6 - dinkro - 2 - methylphenol         ND (8.8 U)         ND (0.39 U)           2, 4 - dinkrophenol         ND (8.8 U)         ND (0.39 U)           4, 6 - dinkro - 2 - methylphenol         ND (8.8 U) <t< td=""><td></td><td></td><td></td></t<>                                  |                            |            |                    |
| anthracene         ND (8.8 U)         ND (0.39 U)           benzo(a)anthracene         ND (8.8 U)         ND (0.39 U)           benzo(b)fluoranthene         ND (8.8 U)         ND (0.39 U)           benzo(g,h,l)perylene         ND (8.8 U)         ND (0.39 U)           benzo(g,h,l)perylene         ND (8.8 U)         ND (0.39 U)           benzo(a)pyrene         ND (8.8 U)         ND (0.39 U)           carbazole         ND (8.8 U)         ND (0.39 U)           carbazole         ND (8.8 U)         ND (0.39 U)           carbazole         ND (8.8 U)         ND (0.39 U)           dis(2 - chloroethyl)ether         ND (8.8 U)         ND (0.39 U)           dise(2 - chlorophenol         ND (8.8 U)         ND (0.39 U)           chrysene         ND (8.8 U)         ND (0.39 U)           dibenz(a,h)anthracene         ND (8.8 U)         ND (0.39 U)           dibenzofuran         ND (8.8 U)         ND (0.39 U)           dibenzofuran         ND (8.8 U)         ND (0.39 U)           dibenzofuran         ND (8.8 U)         ND (0.39 U)           di- n - butyiphthalate         ND (8.8 U)         ND (0.39 U)           2.4 - dinktrophenol         ND (21 UJ)         ND (0.39 U)           d.4.6 - dinktrophenol         ND (8.8 U)<                                                                               |                            |            |                    |
| benzo(a)anthracene         ND (8.8 U)         ND (0.39 U)           benzo(b)fluoranthene         ND (8.8 U)         ND (0.39 U)           benzo(g,h,l)perylene         ND (8.8 U)         ND (0.39 U)           benzo(a)pyrene         ND (8.8 U)         ND (0.39 U)           carbazole         ND (8.8 U)         ND (0.39 U)           carbazole         ND (8.8 U)         ND (0.39 U)           carbazole         ND (8.8 U)         ND (0.39 U)           disc(2 - chloroethyl)ether         ND (8.8 U)         ND (0.39 U)           4 - chloro - 3 - methylphenol         ND (8.8 U)         ND (0.39 U)           2 - chlorophenol         ND (8.8 U)         ND (0.39 U)           chrysene         ND (8.8 U)         ND (0.39 U)           dibenz(a,h)anthracene         ND (8.8 U)         ND (0.39 U)           dibenzofuran         ND (8.8 U)         ND (0.39 U)           dibenzofuran         ND (8.8 U)         ND (0.39 U)           2,4 - dinktrophenol         ND (8.8 U)         ND (0.39 U)           2,4 - dinktrophenol         ND (21 UJ)         ND (0.94 U)           2,4 - dinktrophenol         ND (8.8 U)         ND (0.39 U)           1,4 - ethylphenol         ND (8.8 U)         ND (0.39 U)           1,4 - ethylphenol <td< td=""><td>Former Type III Landfill</td><td></td><td></td></td<>                  | Former Type III Landfill   |            |                    |
| benzo(b)fluoranthene         ND (8.8 U)         ND (0.39 U)           benzo(k)fluoranthene         ND (8.8 U)         ND (0.39 U)           benzo(g,h,l)perylene         ND (8.8 U)         ND (0.39 U)           benzo(a)pyrene         ND (8.8 U)         ND (0.39 U)           carbazole         ND (8.8 U)         ND (0.39 U)           bis(2 - chloroethyl)ether         ND (8.8 U)         ND (0.39 U)           4 - chloro - 3 - methylphenol         ND (8.8 U)         ND (0.39 U)           2 - chlorophenol         ND (8.8 U)         ND (0.39 U)           chrysene         ND (8.8 U)         ND (0.39 U)           dibenz(a,h)anthracene         ND (8.8 U)         ND (0.39 U)           dibenzofuran         ND (8.8 U)         ND (0.39 U)           di-n - butylphthalate         ND (8.8 U)         ND (0.39 U)           2,4 - dinktrophenol         ND (8.8 U)         ND (0.39 U)           2,4 - dinktrophenol         ND (8.8 U)         ND (0.94 U)           2,4 - dinktrophenol         ND (8.8 U)         ND (0.39 U)           4,6 - dinktro - 2 - methylphenol         ND (8.8 U)         ND (0.39 U)           1,4.6 - dinktrophenol         ND (8.8 U)         ND (0.39 U)           2,4 - dinktrophenol         ND (8.8 U)         ND (0.39 U)                                                                    | anthracene                 |            |                    |
| benzo(k)fluoranthene         ND (8.8 U)         ND (0.39 U)           benzo(g,h,l)perylene         ND (8.8 U)         ND (0.39 U)           carbazole         ND (8.8 U)         ND (0.39 U)           carbazole         ND (8.8 U)         ND (0.39 U)           bis(2 - chloroethyl)ether         ND (8.8 U)         ND (0.39 U)           4 - chloro - 3 - methylphenol         ND (8.8 U)         ND (0.39 U)           2 - chlorophenol         ND (8.8 U)         ND (0.39 U)           chrysene         ND (8.8 U)         ND (0.39 U)           chrysene         ND (8.8 U)         ND (0.39 U)           dibenz(a,h)anthracene         ND (8.8 U)         ND (0.39 U)           dibenzofuran         ND (8.8 U)         ND (0.39 U)           di- n - butylphthalate         ND (8.8 U)         ND (0.39 U)           2,4 - dimtrophenol         ND (8.8 U)         ND (0.39 U)           2,4 - dimtrophenol         ND (21 UJ)         ND (0.94 U)           2,4 - dintrophenol         ND (8.8 U)         ND (0.39 U)           fluoranthene         ND (8.8 U)         ND (0.39 U)           fluoranthene         ND (8.8 U)         ND (0.39 U)           fluoranthene         ND (8.8 U)         ND (0.39 U)           naphthalene         2.4 J                                                                                       |                            |            |                    |
| benzo(g,h,l)perylene         ND (8.8 U)         ND (0.39 U)           benzo(a)pyrene         ND (8.8 U)         ND (0.39 U)           carbazole         ND (8.8 U)         ND (0.39 U)           bis(2 - chloroethyl)ether         ND (8.8 U)         ND (0.39 U)           4 - chloro - 3 - methylphenol         ND (8.8 U)         ND (0.39 U)           2 - chlorophenol         ND (8.8 U)         ND (0.39 U)           chrysene         ND (8.8 U)         ND (0.39 U)           dibenz(a,h)anthracene         ND (8.8 U)         ND (0.39 U)           dibenzofuran         ND (8.8 U)         ND (0.39 U)           dibenzofuran         ND (8.8 U)         ND (0.39 U)           dibenzofuran         ND (8.8 U)         ND (0.39 U)           di/- n - butylphthalate         ND (8.8 U)         ND (0.39 U)           2,4 - dinktro-2 - methylphenol         ND (8.8 U)         ND (0.39 U)           2,4 - dinktrophenol         ND (21 UJ)         ND (0.94 U)           2,4 - dinktrophenol         ND (8.8 U)         ND (0.39 U)           1,4.6 - dinktrophenol         ND (8.8 U)         ND (0.39 U)           1,4.6 - dinktrophenol         ND (8.8 U)         ND (0.39 U)           2,4 - dinktrophenol         ND (8.8 U)         ND (0.39 U)           1                                                                      | benzo(b)fluoranthene       |            |                    |
| benzo(a)pyrene         ND (8.8 U)         ND (0.39 U)           carbazole         ND (8.8 U)         ND (0.39 U)           bis(2 - chloroethyl)ether         ND (8.8 U)         ND (0.39 U)           4 - chloro - 3 - methylphenol         ND (8.8 U)         ND (0.39 U)           2 - chlorophenol         ND (8.8 U)         ND (0.39 U)           chrysene         ND (8.8 U)         ND (0.39 U)           dibenz(a,h)anthracene         ND (8.8 U)         ND (0.39 U)           dibenz(a,h)anthracene         ND (8.8 U)         ND (0.39 U)           dibenzofuran         ND (8.8 U)         ND (0.39 U)           dibenzofuran         ND (8.8 U)         ND (0.39 U)           di- n - butylphthalate         ND (8.8 U)         ND (0.39 U)           2,4 - dichlorophenol         ND (8.8 U)         ND (0.39 U)           2,4 - dinttrophenol         ND (8.8 U)         ND (0.39 U)           2,4 - dinttrophenol         ND (21 UJ)         ND (0.94 U)           2,4 - dinttrophenol         ND (8.8 U)         ND (0.39 U)           fluoranthene         ND (8.8 U)         ND (0.39 U)           fluoranthene         ND (8.8 U)         ND (0.39 U)           indeno(1,2,3 - cd)pyrene         ND (8.8 U)         ND (0.39 U)           2 - methylphenol<                                                                      |                            |            |                    |
| carbazole         ND (8.8 U)         ND (0.39 U)           bis(2 - chloroethyl)ether         ND (8.8 U)         ND (0.38 U)           4 - chloro - 3 - methylphenol         ND (8.8 U)         ND (0.39 U)           2 - chlorophenol         ND (8.8 U)         ND (0.39 U)           2 - chlorophenol         ND (8.8 U)         ND (0.39 U)           chrysene         ND (8.8 U)         ND (0.39 U)           dibenz(a,h)anthracene         ND (8.8 U)         ND (0.39 U)           dibenzofuran         ND (8.8 U)         ND (0.39 U)           di- n - butylphthalate         ND (8.8 U)         ND (0.39 U)           2,4 - dichlorophenol         ND (8.8 U)         ND (0.39 U)           2,4 - dintrophenol         ND (8.8 U)         ND (0.39 U)           4,6 - dintro - 2 - methylphenol         ND (21 UJ)         ND (0.94 U)           2,4 - dintrophenol         ND (21 UJ)         ND (0.39 U)           fluoranthene         ND (8.8 U)         ND (0.39 U)           fluoranthene         ND (8.8 U)         ND (0.39 U)           indeno(1,2,3 - cd)pyrene         ND (8.8 U)         ND (0.39 U)           2 - methylphenol         ND (8.8 U)         ND (0.39 U)           2 - methylphenol         ND (8.8 U)         ND (0.39 U)           2 - me                                                                      | benzo(g,h,i)perylene       | ND (8.8 U) |                    |
| bis(2 - chloroethyl)ether         ND (8.8 U)         ND (0.38 U)           4 - chloro - 3 - methylphenol         ND (8.8 U)         ND (0.39 U)           2 - chlorophenol         ND (8.8 U)         ND (0.39 U)           chrysene         ND (8.8 U)         ND (0.39 U)           dibenz(a,h)anthracene         ND (8.8 U)         ND (0.39 U)           dibenzofuran         ND (8.8 U)         ND (0.39 U)           dibenzofuran         ND (8.8 U)         ND (0.39 U)           di- n - butylphthalate         ND (8.8 U)         ND (0.39 U)           2,4 - dichlorophenol         ND (8.8 U)         ND (0.39 U)           2,4 - dintrophenol         ND (8.8 U)         ND (0.39 U)           4,6 - dintro - 2 - methylphenol         ND (21 UJ)         ND (0.94 U)           2,4 - dintrophenol         ND (21 UJ)         ND (0.39 U)           fluoranthene         ND (8.8 U)         ND (0.39 U)           fluoranthene         ND (8.8 U)         ND (0.39 U)           indeno(1,2,3 - cd)pyrene         ND (8.8 U)         ND (0.39 U)           2 - methylphenol         ND (8.8 U)         ND (0.39 U)           2 - methylphenol         ND (8.8 U)         ND (0.39 U)           2 - methylphenol         ND (8.8 U)         ND (0.39 U)           nap                                                                      | benzo(a)pyrene             | ND (8.8 U) |                    |
| 4 - chloro - 3 - methylphenol         ND (8.8 U)         ND (0.39 U)           2 - chlorophenol         ND (8.8 U)         ND (0.39 U)           chrysene         ND (8.8 U)         ND (0.39 U)           dibenz(a,h)anthracene         ND (8.8 U)         ND (0.39 U)           dibenz(a,h)anthracene         ND (8.8 U)         ND (0.39 U)           dibenzofuran         ND (8.8 U)         ND (0.39 U)           di- n - butylphthalate         ND (8.8 U)         ND (0.39 U)           2,4 - dichlorophenol         ND (8.8 U)         ND (0.39 U)           2,4 - dintrophenol         ND (8.8 U)         ND (0.39 U)           2,4 - dintrophenol         ND (8.8 U)         ND (0.39 U)           2,4 - dintrophenol         ND (8.8 U)         ND (0.39 U)           2,4 - dintrophenol         ND (21 UJ)         ND (0.94 U)           2,4 - dintrophenol         ND (8.8 U)         ND (0.39 U)           fluoranthene         ND (8.8 U)         ND (0.39 U)           fluoranthene         ND (8.8 U)         ND (0.39 U)           indeno(1,2,3 - cd)pyrene         ND (8.8 U)         ND (0.39 U)           2 - methylphenol         ND (8.8 U)         ND (0.39 U)           2 - methylphenol         ND (8.8 U)         ND (0.39 U)           naphthalene<                                                                      | carbazole                  | ND (8.8 U) |                    |
| 2 - chlorophenol         ND (8.8 U)         ND (0.39 U)           chrysene         ND (8.8 U)         ND (0.39 U)           dibenz(a,h)anthracene         ND (8.8 U)         ND (0.39 U)           dibenzofuran         ND (8.8 U)         ND (0.39 U)           dibenzofuran         ND (8.8 U)         ND (0.39 U)           di-n-butyiphthalate         ND (8.8 U)         ND (0.39 U)           2,4-dichlorophenol         ND (8.8 U)         ND (0.39 U)           2,4-dinitrophenol         ND (8.8 U)         ND (0.39 U)           2,4-dinitrophenol         ND (8.8 U)         ND (0.39 U)           4,6-dinitro-2-methylphenol         ND (21 UJ)         ND (0.94 U)           2,4-dinitrophenol         ND (21 UJ)         ND (0.94 U)           bis(2-ethylhexyl)phthalate         0.63 J         0.028 J           fluoranthene         ND (8.8 U)         ND (0.39 U)           fluoranthene         ND (8.8 U)         ND (0.39 U)           indeno(1,2,3-cd)pyrene         ND (8.8 U)         ND (0.39 U)           2-methylphenol         ND (8.8 U)         ND (0.39 U)           2-methylphenol         ND (8.8 U)         ND (0.39 U)           naphthalene         ND (8.8 U)         ND (0.39 U)           2-nitrophenol         ND (8.8 U) <td>bis(2 - chloroethyl)ether</td> <td>ND (8.8 U)</td> <td>ND (0.38 U)</td>       | bis(2 - chloroethyl)ether  | ND (8.8 U) | ND (0.38 U)        |
| chrysene         ND (8.8 U)         ND (0.39 U)           dibenz(a,h)anthracene         ND (8.8 U)         ND (0.39 U)           dibenzofuran         ND (8.8 U)         ND (0.39 U)           di-n-butyiphthalate         ND (8.8 U)         ND (0.39 U)           2,4-dichlorophenol         ND (8.8 U)         ND (0.39 U)           2,4-dintrophenol         ND (8.8 U)         ND (0.39 U)           4,6-dinitro-2-methylphenol         ND (8.8 U)         ND (0.39 U)           4,6-dinitrophenol         ND (21 UJ)         ND (0.94 U)           2,4-dintrophenol         ND (21 UJ)         ND (0.39 U)           fluoranthene         ND (8.8 U)         ND (0.39 U)           fluoranthene         ND (8.8 U)         ND (0.39 U)           fluoranthene         ND (8.8 U)         ND (0.39 U)           indeno(1,2,3-cd)pyrene         ND (8.8 U)         ND (0.39 U)           2-methylphenol         ND (8.8 U)         ND (0.39 U)           2-methylphenol         ND (8.8 U)         ND (0.39 U)           2-methylphenol         ND (8.8 U)         ND (0.39 U)           naphthalene         ND (8.8 U)         ND (0.39 U)           2-nitrophenol         ND (8.8 U)         ND (0.39 U)           2-nitrophenol         ND (8.8 U)                                                                                            | 4-chloro-3-methylphenol    | ND (8.8 U) | ND (0.39 U)        |
| dibenz(a,h)anthracene         ND (8.8 U)         ND (0.39 U)           dibenzofuran         ND (8.8 U)         ND (0.39 U)           di-n-butyiphthalate         ND (8.8 U)         ND (0.39 U)           2,4-dichlorophenol         ND (8.8 U)         ND (0.39 U)           2,4-dinethylphenol         ND (8.8 U)         ND (0.39 U)           4,6-dinitro-2-methylphenol         ND (8.8 U)         ND (0.39 U)           4,6-dinitrophenol         ND (21 UJ)         ND (0.94 U)           2,4-dinitrophenol         ND (21 UJ)         ND (0.94 U)           2,4-dinitrophenol         ND (21 UJ)         ND (0.39 U)           fluoranthene         ND (8.8 U)         ND (0.39 U)           fluoranthene         ND (8.8 U)         ND (0.39 U)           fluorene         ND (8.8 U)         ND (0.39 U)           indeno(1,2,3-cd)pyrene         ND (8.8 U)         ND (0.39 U)           2-methylphenol         ND (8.8 U)         ND (0.39 U)           2-methylphenol         ND (8.8 U)         ND (0.39 U)           naphthalene         ND (8.8 U)         ND (0.39 U)           2-nitrophenol         ND (8.8 U)         ND (0.39 U)           1         ND (21 U)         ND (0.94 U)           1         ND (21 U)         ND (0.39 U) <td>2 - chlorophenol</td> <td></td> <td>ND (0.39 U)</td>                                  | 2 - chlorophenol           |            | ND (0.39 U)        |
| dibenzofuran         ND (8.8 U)         ND (0.39 U)           di - n - butyiphthalate         ND (8.8 U)         ND (0.39 U)           2,4 - dichlorophenol         ND (8.8 U)         ND (0.39 U)           2,4 - dichlorophenol         ND (8.8 U)         ND (0.39 U)           2,4 - dinitro - 2 - methylphenol         ND (8.8 U)         ND (0.39 U)           4,6 - dinitro - 2 - methylphenol         ND (21 UJ)         ND (0.94 U)           2,4 - dinitrophenol         ND (21 UJ)         ND (0.94 U)           bis(2 - ethylhexyl)phthalate         0.63 J         0.028 J           fluoranthene         ND (8.8 U)         ND (0.39 U)           fluoranthene         ND (8.8 U)         ND (0.39 U)           indeno(1,2,3 - cd)pyrene         ND (8.8 U)         ND (0.39 U)           2 - methylphenol         ND (8.8 U)         ND (0.39 U)           2 - methylphenol         ND (8.8 U)         ND (0.39 U)           2 - methylphenol         ND (8.8 U)         ND (0.39 U)           naphthalene         ND (8.8 U)         ND (0.39 U)           2 - nitrophenol         ND (8.8 U)         ND (0.39 U)           4 - nitrophenol         ND (21 U)         ND (0.94 U)           pentachlorophenol         ND (8.8 U)         ND (0.39 U)                                                                                 | chrysene                   | ND (8.8 U) | ND (0.39 U)        |
| di – n – butyiphthalate         ND (8.8 U)         ND (0.39 U)           2,4 – dichlorophenol         ND (8.8 U)         ND (0.39 U)           2,4 – dichlorophenol         ND (8.8 U)         ND (0.39 U)           2,4 – dimethylphenol         ND (8.8 U)         ND (0.39 U)           4,6 – dinitro – 2 – methylphenol         ND (21 UJ)         ND (0.94 U)           2,4 – dinitrophenol         ND (21 UJ)         ND (0.94 U)           2,4 – dinitrophenol         ND (21 UJ)         ND (0.94 U)           bis(2 – ethylhexyl)phthalate         0.63 J         0.028 J           fluoranthene         ND (8.8 U)         ND (0.39 U)           fluorene         ND (8.8 U)         ND (0.39 U)           indeno(1,2,3 – cd)pyrene         ND (8.8 U)         ND (0.39 U)           2 – methylphenol         ND (8.8 U)         ND (0.39 U)           2 – methylphenol         ND (8.8 U)         ND (0.39 U)           2 – methylphenol         ND (8.8 U)         ND (0.39 U)           naphthalene         ND (8.8 U)         ND (0.39 U)           2 – nitrophenol         ND (8.8 U)         ND (0.39 U)           4 – nitrophenol         ND (21 U)         ND (0.94 U)           pentachlorophenol         ND (8.8 U)         ND (0.39 U)           phenol <td>dibenz(a,h)anthracene</td> <td>ND (8.8 U)</td> <td>ND (0.39 U)</td> | dibenz(a,h)anthracene      | ND (8.8 U) | ND (0.39 U)        |
| 2,4-dichlorophenol         ND (8 8 U)         ND (0.39 U)           2,4-dimethylphenol         ND (8 8 U)         ND (0.39 U)           4,6-dinkro-2-methylphenol         ND (8 8 U)         ND (0.39 U)           2,4-dinkrophenol         ND (21 UJ)         ND (0.94 U)           1007anthene         ND (8.8 U)         ND (0.39 U)           fluoranthene         ND (8.8 U)         ND (0.39 U)           indeno(1,2,3-cd)pyrene         ND (8.8 U)         ND (0.39 U)           2-methylphenol         ND (8.8 U)         ND (0.39 U)           2-methylphenol         ND (8.8 U)         ND (0.39 U)           2-methylphenol         ND (8.8 U)         ND (0.39 U)           4-methylphenol         ND (8.8 U)         ND (0.39 U)           naphthalene         ND (8.8 U)         ND (0.39 U)           2-nkrophenol         ND (21 U)         ND (0.39 U)           4-nkrophenol         ND (21 U)         ND (0.39 U)           phenol         ND (8.8 U)         ND (0.39 U)           phenol         ND (8.8 U)         ND (0.39 U) <td>dibenzofuran</td> <td>ND (8.8 U)</td> <td>ND (0.39 U)</td>                            | dibenzofuran               | ND (8.8 U) | ND (0.39 U)        |
| 2,4-dimethylphenol         ND (8.8 U)         ND (0.39 U)           4,6-dinitro-2-methylphenol         ND (21 UJ)         ND (0.94 U)           2,4-dinitrophenol         ND (21 UJ)         ND (0.94 U)           bis(2-ethylphenol         ND (21 UJ)         ND (0.94 U)           bis(2-ethylphenol         ND (8.8 U)         ND (0.94 U)           fluoranthene         ND (8.8 U)         ND (0.39 U)           fluoranthene         ND (8.8 U)         ND (0.39 U)           indeno(1,2,3-cd)pyrene         ND (8.8 U)         ND (0.39 U)           2-methylphenol         ND (8.8 U)         ND (0.39 U)           2-methylphenol         ND (8.8 U)         ND (0.39 U)           2-methylphenol         ND (8.8 U)         ND (0.39 U)           4-methylphenol         ND (8.8 U)         ND (0.39 U)           naphthalene         ND (8.8 U)         ND (0.39 U)           2-nitrophenol         ND (8.8 U)         ND (0.39 U)           4-nitrophenol         ND (21 U)         ND (0.94 U)           pentachlorophenol         ND (21 U)         ND (0.39 U)           phenol         ND (8.8 U)         ND (0.39 U)           phenol         ND (8.8 U)         ND (0.39 U)           phenol         ND (8.8 U)         ND (0.39 U)                                                                                               | di – n – butylphthalate    | ND (8.8 U) | ND (0.39 U)        |
| 4,6-dinkro-2-methylphenol         ND (21 UJ)         ND (0.94 U)           2,4-dinkrophenol         ND (21 UJ)         ND (0.94 U)           bis(2-ethylphexyl)phthalate         0.63 J         0.028 J           fluoranthene         ND (8.8 U)         ND (0.39 U)           fluoranthene         ND (8.8 U)         ND (0.39 U)           indeno(1,2,3-cd)pyrene         ND (8.8 U)         ND (0.39 U)           2-methylnaphthalene         2.4 J         ND (0.39 U)           2-methylphenol         ND (8.8 U)         ND (0.39 U)           2-methylphenol         ND (8.8 U)         ND (0.39 U)           2-methylphenol         ND (8.8 U)         ND (0.39 U)           1         ND (8.8 U)         ND (0.39 U)           2-methylphenol         ND (8.8 U)         ND (0.39 U)           1         ND (8.8 U)         ND (0.39 U)           2-nkrophenol         ND (8.8 U)         ND (0.39 U)           2-nktrophenol         ND (21 U)         ND (0.94 U)           pentachlorophenol         ND (21 U)         ND (0.39 U)           phenol         ND (8.8 U)         ND (0.39 U)           phenol         ND (8.8 U)         ND (0.39 U)           pyrene         ND (8.8 U)         ND (0.39 U)           2                                                                                                                  | 2,4-dichlorophenol         | ND (88U)   | ND (0.39 U)        |
| 2,4 - dinitrophenol         ND (21 UJ)         ND (0.94 U)           bis(2 - sthythexyl)phthalate         0.63 J         0.028 J           fluoranthene         ND (8.8 U)         ND (0.39 U)           fluorene         ND (8.8 U)         ND (0.39 U)           inderene         ND (8.8 U)         ND (0.39 U)           inderene         2.4 J         ND (0.39 U)           inderene         2.4 J         ND (0.39 U)           2 - methylnaphthalene         2.4 J         ND (0.39 U)           2 - methylphenol         ND (8.8 U)         ND (0.39 U)           4 - methylphenol         ND (8.8 U)         ND (0.39 U)           naphthalene         ND (8.8 U)         ND (0.39 U)           2 - nitrophenol         ND (8.8 U)         ND (0.39 U)           4 - nitrophenol         ND (21 U)         ND (0.39 U)           4 - nitrophenol         ND (21 U)         ND (0.94 U)           pentachlorophenol         ND (21 U)         ND (0.39 U)           phenol         ND (8.8 U)         ND (0.39 U)           pyrene <t< td=""><td>2,4-dimethylphenol</td><td>ND (8.8 U)</td><td>ND (0.39 U)</td></t<>                                                | 2,4-dimethylphenol         | ND (8.8 U) | ND (0.39 U)        |
| bis(2 - sthylhexyl)phthalate         0.63 J         0.028 J           fluoranthene         ND (8.8 U)         ND (0.39 U)           fluorene         ND (8.8 U)         ND (0.39 U)           indeno(1,2,3 - cd)pyrene         ND (8.8 U)         ND (0.39 U)           2 - methylnaphthalene         2.4 J         ND (0.39 U)           2 - methylphenol         ND (8.8 U)         ND (0.39 U)           4 - methylphenol         ND (8.8 U)         ND (0.39 U)           naphthalene         ND (8.8 U)         ND (0.39 U)           2 - nethylphenol         ND (8.8 U)         ND (0.39 U)           1 - methylphenol         ND (8.8 U)         ND (0.39 U)           2 - nitrophenol         ND (8.8 U)         ND (0.39 U)           2 - nitrophenol         ND (8.8 U)         ND (0.39 U)           4 - nitrophenol         ND (21 U)         ND (0.94 U)           pentachlorophenol         ND (21 U)         ND (0.39 U)           phenol         ND (8.8 U)         ND (0.39 U)           pyrene         ND (8.8 U)         ND (0.39 U)           2,4,5 - trichlorophenol         ND (21 U)         ND (0.39 U)                                                                                                                                                                                                                     | 4.6-dinkro-2-methylphenol  | ND (21 UJ) | ND (0.94 U)        |
| Initial Problem         ND (8.8 U)         ND (0.39 U)           fluoranthene         ND (8.8 U)         ND (0.39 U)           indeno(1,2,3-cd)pyrene         ND (8.8 U)         ND (0.39 U)           2-methylnaphthalene         2.4 J         ND (0.39 U)           2-methylphenol         ND (8.8 U)         ND (0.39 U)           4-methylphenol         ND (8.8 U)         ND (0.39 U)           2-methylphenol         ND (8.8 U)         ND (0.39 U)           10-methylphenol         ND (8.8 U)         ND (0.39 U)           2-nitrophenol         ND (8.8 U)         ND (0.39 U)           2-nitrophenol         ND (8.8 U)         ND (0.39 U)           4-nitrophenol         ND (21 U)         ND (0.39 U)           pentachlorophenol         ND (21 U)         ND (0.39 U)           phenol         ND (8.8 U)         ND (0.39 U)           phenol         ND (8.8 U)         ND (0.39 U)           pyrene         ND (8.8 U)         ND (0.39 U)           2,4,5-trichlorophenol         ND (8.8 U)         ND (0.39 U)                                                                                                                                                                                                                                                                                                           | 2,4-dinitrophenol          | ND (21 UJ) | ND (0.94 U)        |
| fluorene         ND (8.8 U)         ND (0.39 U)           indeno(1,2,3-cd)pyrene         ND (8.8 U)         ND (0.39 U)           2-methylnaphthalene         2.4 J         ND (0.39 U)           2-methylphenol         ND (8.8 U)         ND (0.39 U)           4-methylphenol         ND (8.8 U)         ND (0.39 U)           naphthalene         ND (8.8 U)         ND (0.39 U)           2-methylphenol         ND (8.8 U)         ND (0.39 U)           naphthalene         ND (8.8 U)         ND (0.39 U)           2-nitrophenol         ND (8.8 U)         ND (0.39 U)           4-nitrophenol         ND (21 U)         ND (0.39 U)           pentachlorophenol         ND (21 U)         ND (0.39 U)           phenol         0.64 J         ND (0.39 U)           phenol         ND (8.8 U)         ND (0.39 U)           pyrene         ND (8.8 U)         ND (0.39 U)           pyrene         ND (8.8 U)         ND (0.39 U)           2,4,5-trichlorophenol         ND (21 U)         ND (0.39 U)                                                                                                                                                                                                                                                                                                                                   | bis(2-ethylhexyl)phthalate | 0.63 J     | 0.028 J            |
| indeno(1,2,3-cd)pyrene         ND (8.8 U)         ND (0.39 U)           2-methylnaphthalene         2.4 J         ND (0.39 U)           2-methylphenol         ND (8.8 U)         ND (0.39 U)           4-methylphenol         ND (8.8 U)         ND (0.39 U)           naphthalene         ND (8.8 U)         ND (0.39 U)           2-methylphenol         ND (8.8 U)         ND (0.39 U)           naphthalene         ND (8.8 U)         ND (0.39 U)           2-nitrophenol         ND (8.8 U)         ND (0.39 U)           4-nitrophenol         ND (21 U)         ND (0.94 U)           pentachlorophenol         ND (21 U)         ND (0.39 U)           phenol         ND (8.8 U)         ND (0.39 U)           phenol         ND (8.8 U)         ND (0.39 U)           pyrene         ND (8.8 U)         ND (0.39 U)           2,4,5-trichlorophenol         ND (21 U)         ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                 | fluoranthene               | ND (8.8 U) | ND (0.39 U)        |
| 2 - methylnaphthalene         2.4 J         ND (0.39 U)           2 - methylphenol         ND (8.8 U)         ND (0.39 U)           4 - methylphenol         ND (8.8 U)         ND (0.39 U)           naphthalene         ND (8.8 U)         ND (0.39 U)           2 - nitrophenol         ND (8.8 U)         ND (0.39 U)           2 - nitrophenol         ND (8.8 U)         ND (0.39 U)           2 - nitrophenol         ND (8.8 U)         ND (0.39 U)           4 - nitrophenol         ND (21 U)         ND (0.94 U)           pentachlorophenol         ND (21 U)         ND (0.39 U)           phenol         ND (8.8 U)         ND (0.39 U)           phenol         ND (8.8 U)         ND (0.39 U)           pyrene         ND (8.8 U)         ND (0.39 U)           2,4,5 - trichlorophenol         ND (21 U)         ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | fluorene                   | ND (8.8 U) | ND (0.39 U)        |
| 2 - methylphenol         ND (8.8 U)         ND (0.39 U)           4 - methylphenol         ND (8.8 U)         ND (0.39 U)           naphthalene         ND (8.8 U)         ND (0.39 U)           2 - nitrophenol         ND (8.8 U)         ND (0.39 U)           2 - nitrophenol         ND (8.8 U)         ND (0.39 U)           4 - nitrophenol         ND (8.8 U)         ND (0.39 U)           4 - nitrophenol         ND (21 U)         ND (0.94 U)           pentachlorophenol         ND (21 U)         ND (0.94 U)           phenol         0.64 J         ND (0.39 U)           phenol         ND (8.8 U)         ND (0.39 U)           pyrene         ND (8.8 U)         ND (0.39 U)           2,4,5 - trichlorophenol         ND (21 U)         ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | indeno(1,2,3-cd)pyrene     | ND (8.8 U) | ND (0.39 U)        |
| 4 - methylphenol         ND (8.8 U)         ND (0.39 U)           naphthalene         ND (8.8 U)         ND (0.39 U)           2 - ntrophenol         ND (8.8 U)         ND (0.39 U)           4 - ntrophenol         ND (8.8 U)         ND (0.39 U)           4 - ntrophenol         ND (21 U)         ND (0.94 U)           pentachlorophenol         ND (21 U)         ND (0.94 U)           phenol         0.64 J         ND (0.39 U)           phenol         ND (8.8 U)         ND (0.39 U)           pyrene         ND (8.8 U)         ND (0.39 U)           2,4,5 - trichlorophenol         ND (21 U)         ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 - methylnaphthalene      | 2.4 J      | ND (0.39 U)        |
| naphthalene         ND (8.8 U)         ND (0.39 U)           2 - nitrophenol         ND (8.8 U)         ND (0.39 U)           4 - nitrophenol         ND (21 U)         ND (0.94 U)           pentachlorophenol         ND (21 U)         ND (0.94 U)           phenanthrene         0.64 J         ND (0.39 U)           phenol         ND (8.8 U)         ND (0.94 U)           phenol         ND (8.8 U)         ND (0.39 U)           pyrene         ND (8.8 U)         ND (0.39 U)           2,4,5 - trichlorophenol         ND (21 U)         ND (0.94 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 - methylphenol           | ND (8.8 U) | ND (0.39 U)        |
| naphthalene         ND (8.8 U)         ND (0.39 U)           2 - nkrophenol         ND (8.8 U)         ND (0.39 U)           4 - nkrophenol         ND (21 U)         ND (0.94 U)           pentachlorophenol         ND (21 U)         ND (0.94 U)           phenanthrene         0.64 J         ND (0.39 U)           phenol         ND (8.8 U)         ND (0.94 U)           phenol         ND (8.8 U)         ND (0.39 U)           pyrene         ND (8.8 U)         ND (0.39 U)           2,4,5 - trichlorophenol         ND (21 U)         ND (0.94 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 - methylphenol           | ND (8.8 U) | ND (0.39 U)        |
| 4 - ntrophenol         ND (21 U)         ND (0.94 U)           pentachlorophenol         ND (21 U)         ND (0.94 U)           phenanthrene         0.64 J         ND (0.39 U)           phenol         ND (8.8 U)         ND (0.39 U)           pyrene         ND (8.8 U)         ND (0.39 U)           2,4,5-trichlorophenol         ND (21 U)         ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | ND (8.8 U) | ND (0.39 U)        |
| 4 - nkrophenol         ND (21 U)         ND (0.94 U)           pentachlorophenol         ND (21 U)         ND (0.94 U)           phenanthrene         0.64 J         ND (0.39 U)           phenol         ND (8.8 U)         ND (0.39 U)           pyrene         ND (8.8 U)         ND (0.39 U)           2,4,5-trichlorophenol         ND (21 U)         ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 - nitrophenol            | ND (8.8 U) | ND (0.39 U)        |
| pentachlorophenol         ND (21 U)         ND (0.94 U)           phenanthrene         0.64 J         ND (0.39 U)           phenol         ND (8.8 U)         ND (0.39 U)           pyrene         ND (8.8 U)         ND (0.39 U)           2,4,5-trichlorophenol         ND (21 U)         ND (0.39 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                          |            | ND (0.94 U)        |
| phenanthrene         0.64 J         ND (0.39 U)           phenol         ND (8.8 U)         ND (0.39 U)           pyrene         ND (8.8 U)         ND (0.39 U)           2,4,5-trichlorophenol         ND (21 U)         ND (0.94 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                          |            | • •                |
| phenol         ND (8.8 U)         ND (0.39 U)           pyrene         ND (8.8 U)         ND (0.39 U)           2,4,5-trichlorophenol         ND (21 U)         ND (0.94 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                          |            | • •                |
| pyrene         ND (8.8 U)         ND (0.39 U)           2,4,5-trichlorophenol         ND (21 U)         ND (0.94 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | ND (8.8 U) | ND (0.39 U)        |
| 2,4,5-trichlorophenol ND (21 U) ND (0.94 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | · · ·      | ND (0.39 U)        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • •                        | • •        | • •                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,4,6 - trichlorophenol    | ND (8.8 U) | ND (0.39 U)        |

.

See Notes on Page 10

ì

1

÷.

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED 8VOC RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location                      | ¥-AW        | WA-1         | WA-2        | WA-2          | WA-3        | WA-3         | WA-4       | WA-4          |
|-------------------------------|-------------|--------------|-------------|---------------|-------------|--------------|------------|---------------|
| Depth (ft)                    | 12.00-13.00 | 13.00-14.00  | 12.00-14.00 | 14.00-18.00   | 14.00-16.00 | 16.00-18.00  | 8.00~10.00 | 10.00 ~ 12.00 |
| Sample ID                     | A60062      | A60063       | A60675      | <u>A60676</u> | A60668      | A60669       | A60662     | A60663        |
| Western Disposal Area         |             |              |             |               |             |              |            |               |
| anthracene                    | ND (3.7 U)  | ND (0.35 U)  | ND (2.0 U)  | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U)   |
| benzo(a)anthracene            | ND (3.7 U)  | ND (0.35 U)  | ND (2.0 U)  | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U)   |
| benzo(b)fluoranthene          | ND (3.7 U)  | ND (0.35 U)  | ND (2.0 U)  | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U)   |
| benzo(k)fluoranthene          | ND (3.7 U)  | ND (0.35 U)  | ND (2.0 U)  | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U)   |
| benzo(g,h,i)perylene          | ND (3.7 U)  | ND (0.35 U)  | ND (2.0 U)  | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U)   |
| benzo(a)pyrene                | ND (3.7 U)  | ND (0.35 U)  | ND (2.0 U)  | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U)   |
| carbazole                     | ND (3.7 U)  | ND (0.35 UJ) | ND (2.0 U)  | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U)   |
| bis(2-chloroethyl)ether       | ND (3.7 U)  | ND (0.35 U)  | ND (2.0 U)  | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U)   |
| 4 - chloro - 3 - methylphenol | ND (3.7 U)  | ND (0.35 U)  | ND (2.0 U)  | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U)   |
| 2-chlorophenol                | ND (3.7 U)  | ND (0.35 U)  | ND (2.0 U)  | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U)   |
| chrysene                      | ND (3.7 U)  | ND (0.35 U)  | 0.12 J      | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U)   |
| dibenz(a,h)anthracene         | ND (3.7 U)  | ND (0.35 U)  | ND (2.0 U)  | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U    |
| dibenzofuran                  | ND (3.7 U)  | ND (0.35 U)  | ND (2.0 U)  | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U    |
| di – n – butylphthalate       | ND (3.7 U)  | ND (0.35 U)  | ND (2.0 U)  | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U    |
| 2,4-dichlorophenol            | ND (3.7 U)  | ND (0.35 U)  | ND (2.0 U)  | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U    |
| 2.4-dimethylphenol            | ND (3.7 U)  | ND (0.35 U)  | ND (2.0 U)  | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U    |
| 4,6-dinitro-2-methylphenol    | ND (8.9 U)  | ND (0.84 U)  | ND (4.9 UJ) | ND (0.88 U)   | ND (21 UJ)  | ND (0.83 U)  | ND (20 UJ) | ND (0.82 U    |
| 2,4-dinitrophenol             | ND (8.9 U)  | ND (0.84 U)  | ND (4.9 UJ) | ND (0.88 UJ)  | ND (21 U)   | ND (0.83 UJ) | ND (20 U)  | ND (0.82 UJ   |
| bis(2 - ethylhexyl)phthalate  | 0.44 J      | ND (0.35 U)  | 0.20 J      | ND (0.36 U)   | 1.7 J       | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U)   |
| fluoranthene                  | ND (3.7 U)  | ND (0.35 U)  | 0.24 BJ     | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U)   |
| fluorene                      | ND (3.7 U)  | ND (0.35 U)  | ND (2.0 U)  | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U)   |
| indeno(1,2,3-cd)pyrene        | ND (3.7 U)  | ND (0.35 U)  | ND (2.0 U)  | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U    |
| 2 - methylnaphthalene         | 0.54 J      | ND (0.35 U)  | ND (2.0 U)  | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U    |
| 2 - methylphenol              | ND (3.7 U)  | ND (0.35 U)  | ND (2.0 U)  | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U)   |
| 4 – methylphenol              | ND (3.7 U)  | ND (0.35 U)  | 1.5 J       | ND (0.36 U)   | 1.2 J       | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U)   |
| naphthalene                   | ND (3.7 U)  | ND (0.35 U)  | ND (2.0 U)  | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U    |
| 2 - nitrophenol               | ND (3.7 U)  | ND (0.35 U)  | ND (2.0 U)  | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U)   |
| 4 – nitrophenol               | ND (8.9 U)  | ND (0.84 U)  | ND (4.9 U)  | ND (0.88 U)   | ND (21 U)   | ND (0.83 U)  | ND (20 U)  | ND (0.82 U)   |
| pentachlorophenol             | 2.8 J       | ND (0.84 U)  | ND (4.9 U)  | ND (0.88 U)   | ND (21 U)   | ND (0.83 U)  | ND (20 U)  | ND (0.82 U)   |
| phenanthrene                  | ND (3.7 U)  | ND (0.35 U)  | 0.17 J      | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U)   |
| phenol                        | ND (3.7 U)  | ND (0.35 U)  | ND (2.0 U)  | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0 34 U    |
| pyrene                        | ND (3.7 U)  | ND (0.35 U)  | ND (2.0 U)  | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U)   |
| 2,4,5 - trichlorophenol       | ND (8.9 U)  | ND (0.84 U)  | ND (4.9 U)  | ND (0.88 U)   | ND (21 U)   | ND (0.83 U)  | ND (20 U)  | ND (0.82 U)   |
| 2,4,6 – trichlorophenol       | ND (3.7 U)  | ND (0.35 U)  | ND (2.0 U)  | ND (0.36 U)   | ND (8.7 U)  | ND (0.34 U)  | ND (8.5 U) | ND (0.34 U)   |

See Notes on Page 10

1

ł

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED SVOC RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location                          | WA-6        | WA-5         | WA-6        | WA-6         | WA-7        | WA-7        | WA-8        | WA-8        |
|-----------------------------------|-------------|--------------|-------------|--------------|-------------|-------------|-------------|-------------|
| Depth (ft)                        | 22.00-23.50 | 23.50-26.00  | 12.00-13.00 | 13.00-15.00  | 20.00-22.00 | 22.00-24.00 | 10.00-12.00 | 12.00-14.00 |
| Sample ID                         | A60650      | A60651       | A60085      | A60066       | A60643      | A60644      | A60657      | A60658      |
| Vestern Disposal Area (Cont'o     | 1.)         |              |             |              | <u>.</u>    |             |             |             |
| anthracene                        | ND (25 U)   | ND (0.34 U)  | ND (24 U)   | ND (0.44 U)  | ND (30 U)   | 0.031 J     | ND (12 U)   | ND (0.36 U) |
| benzo(a)anthracene                | ND (25 U)   | ND (0.34 U)  | ND (24 U)   | ND (0.44 U)  | ND (30 U)   | 0.052 J     | ND (12 U)   | ND (0.36 U) |
| benzo(b)fluoranthene              | ND (25 U)   | ND (0.34 U)  | ND (24 U)   | ND (0.44 U)  | ND (30 U)   | 0.059 J     | ND (12 U)   | ND (0.36 U) |
| benzo(k)fluoranthene              | ND (25 U)   | ND (0.34 U)  | ND (24 U)   | ND (0.44 U)  | ND (30 U)   | 0.029 J     | ND (12 U)   | ND (0.36 U) |
| benzo(g,h,i)perylene              | ND (25 U)   | ND (0.34 U)  | ND (24 U)   | ND (0.44 U)  | ND (30 U)   | 0.028 J     | ND (12 U)   | ND (0.36 U) |
| benzo(a)pyrene                    | ND (25 U)   | ND (0.34 U)  | ND (24 U)   | ND (0.44 U)  | ND (30 U)   | 0.032 J     | ND (12 U)   | ND (0.36 U) |
| carbazole                         | ND (25 U)   | ND (0.34 UJ) | ND (24 U)   | ND (0.44 UJ) | ND (30 U)   | 0.021 J     | ND (12 U)   | ND (0.36 U) |
| bis(2 - chloroethyl)ether         | ND (25 U)   | ND (0.34 U)  | ND (24 U)   | ND (0.44 U)  | ND (30 U)   | ND (0.43 U) | ND (12 U)   | ND (0.36 U) |
| 4 - chioro - 3 - methylphenol     | ND (25 U)   | ND (0.34 U)  | ND (24 U)   | ND (0.44 U)  | ND (30 U)   | ND (0.43 U) | ND (12 U)   | ND (0.36 U) |
| 2 - chiorophenol                  | ND (25 U)   | ND (0.34 U)  | ND (24 U)   | ND (0.44 U)  | ND (30 U)   | ND (0.43 U) | ND (12 U)   | ND (0.36 U) |
| chrysene                          | ND (25 U)   | ND (0.34 U)  | ND (24 U)   | ND (0.44 U)  | ND (30 U)   | 0.064 J     | ND (12 U)   | ND (0.36 U) |
| dibenz(a,h)anthracene             | ND (25 U)   | ND (0.34 U)  | ND (24 U)   | ND (0.44 U)  | ND (30 U)   | ND (0.43 U) | ND (12 U)   | ND (0.36 U  |
| dibenzofuran                      | ND (25 U)   | ND (0.34 U)  | ND (24 U)   | ND (0.44 U)  | ND (30 U)   | 0.10 J      | ND (12 U)   | ND (0.36 U  |
| di-n-butylphthalate               | ND (25 U)   | ND (0.34 U)  | ND (24 U)   | 0.049 BJ     | ND (30 U)   | ND (0.43 U) | ND (12 U)   | ND (0.36 U  |
| 2,4-dichlorophenol                | ND (25 U)   | ND (0.34 U)  | ND (24 U)   | ND (0.44 U)  | ND (30 U)   | ND (0.43 U) | ND (12 U)   | ND (0.36 U  |
| 2,4-dimethylphenol                | ND (25 U)   | ND (0.34 U)  | ND (24 U)   | ND (0.44 U)  | ND (30 U)   | ND (0.43 U) | ND (12 U)   | ND (0.36 U  |
| 4.6-dinitro-2-methylphenol        | ND (60 U)   | ND (0.34 U)  | ND (58 U)   | ND (1.0 U)   | ND (73 U)   | ND (1.0 U)  | ND (29 UJ)  | ND (0.87 U. |
| 2,4-dinitrophenol                 | ND (60 U)   | ND (0.34 U)  | ND (58 U)   | ND (1.0 U)   | ND (73 U)   | ND (1.0 U)  | ND (29 U)   | ND (0.87 U. |
| bis(2 - ethylhexyl)phthalate      | ND (25 U)   | 0.057 J      | 2.0 J       | ND (0.44 U)  | ND (30 U)   | 0.099 J     | 5.4 J       | ND (0.36 U  |
| fluoranthene                      | ND (25 U)   | ND (0.34 U)  | ND (24 U)   | ND (0.44 U)  | ND (30 U)   | 0.094 J     | ND (12 U)   | ND (0.36 U  |
| fluorene                          | ND (25 U)   | ND (0.34 U)  | ND (24 U)   | ND (0.44 U)  | ND (30 U)   | ND (0.43 U) | ND (12 U)   | ND (0 36 U  |
| indeno(1,2,3-cd)pyrene            | ND (25 U)   | ND (0.34 U)  | ND (24 U)   | ND (0.44 U)  | ND (30 U)   | ND (0.43 U) | ND (12 U)   | ND (0.36 U  |
| 2 - methylnaphthalene             | ND (25 U)   | ND (0.34 U)  | 10 J        | ND (0.44 U)  | ND (30 U)   | 0.40 J      | 3.5 J       | ND (0.36 U  |
| 2 - methylphenol                  | ND (25 U)   | ND (0.34 U)  | ND (24 U)   | ND (0.44 U)  | ND (30 U)   | ND (0.43 U) | ND (12 U)   | ND (0.36 U  |
| 4 – methylphenol                  | 38          | 0.016 J      | 1.7 J       | ND (0.44 U)  | 12 J        | ND (0.43 U) | ND (12 U)   | ND (0.36 U  |
| naphthalene                       | ND (25 U)   | ND (0.34 U)  | ND (24 U)   | ND (0.44 U)  | ND (30 U)   | 0.23 J      | ND (12 U)   | ND (0.36 U  |
| 2 – nitrophenol                   | ND (25 U)   | ND (0.34 U)  | ND (24 U)   | ND (0.44 U)  | ND (30 U)   | ND (0.43 U) | ND (12 U)   | ND (0.36 U  |
| 4 – nitrophenol                   | ND (60 UJ)  | ND (0.83 U)  | ND (58 UJ)  | ND (1.0 U)   | ND (73 UJ)  | ND (1.0 U)  | ND (29 U)   | ND (0.87 U  |
| entachlorophenoi                  | ND (60 U)   | ND (0.83 U)  | ND (58 U)   | ND (1.0 U)   | ND (73 U)   | ND (1.0 U)  | ND (29 U)   | ND (0.87 U  |
| phenanthrene                      | ND (25 U)   | ND (0.34 U)  | ND (24 U)   | ND (0.44 U)  | ND (30 U)   | 0.31 J      | ND (12 U)   | ND (0.36 U  |
| •                                 | ND (25 U)   | ND (0.34 U)  | ND (24 U)   | ND (0.44 U)  | ND (30 U)   | ND (0.43 U) | ND (12 U)   | ND (0 36 U  |
| phenol                            | ND (25 U)   | ND (0.34 U)  | ND (24 U)   | ND (0.44 U)  | ND (30 U)   | 0.083 J     | ND (12 U)   | ND (0.36 U  |
| pyrene<br>2.4.5 – trichlorophenol | ND (60 U)   | ND (0.83 U)  | ND (58 U)   | ND (1.0 U)   | ND (73 U)   | ND (1.0 U)  | ND (29 U)   | ND (0.87 U  |
| 2,4,5 – trichlorophenoi           | ND (25 U)   | ND (0.34 U)  | ND (24 U)   | ND (0.44 U)  | ND (30 U)   | ND (0.43 U) | ND (12 U)   | ND (0.36 U  |

See Notes on Page 10

;

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED SVOC RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/ky)

| B-7B<br>8.00-10.00<br><u>A60702</u><br>A.)<br>ND (0.34 U)<br>ND (0.34 U)<br>ND (0.34 U)<br>ND (0.34 U) | B-7B<br>10.00-12.00<br>A60703<br>ND (0.43 U)<br>ND (0.43 U)                                                                                                                                                                                                                                                                                                                                                       | MW - 8A<br>12.00 - 12.50<br><u>A60092</u><br>ND (5.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MW-8A<br>12.50-14.00<br><u>A60093</u><br>ND (0.53 U)   | MW - 120B<br>18.00 - 19.00<br><u>A60054</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW - 120B<br>19.00 - 20.00<br>A60055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A60702<br>.)<br>ND (0.94 U)<br>ND (0.94 U)<br>ND (0.94 U)                                              | A60703<br>ND (0.43 U)<br>ND (0.43 U)                                                                                                                                                                                                                                                                                                                                                                              | A60092<br>ND (5.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A60093                                                 | A60054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.)<br>ND (0.34 U)<br>ND (0.34 U)<br>ND (0.34 U)                                                       | ND (0.43 U)<br>ND (0.43 U)                                                                                                                                                                                                                                                                                                                                                                                        | ND (5.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A60055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ND (0.94 U)<br>ND (0.94 U)<br>ND (0.94 U)                                                              | ND (0.43 U)                                                                                                                                                                                                                                                                                                                                                                                                       | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND (0.53 U)                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND (0.34 U)<br>ND (0.34 U)                                                                             | ND (0.43 U)                                                                                                                                                                                                                                                                                                                                                                                                       | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND (0.53 U)                                            | 1 10 11 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND (0.34 U)                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        | ND (1.6 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                        | ND /0 4910                                                                                                                                                                                                                                                                                                                                                                                                        | ND (5.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND (0.53 U)                                            | ND (1.6 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND (0.34 U)                                                                                            | ND (0.43 U)                                                                                                                                                                                                                                                                                                                                                                                                       | ND (5.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND (0.53 U)                                            | ND (1.6 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1 · · · · · · · · · · · · · · · · · · ·                                                                | ND (0.43 U)                                                                                                                                                                                                                                                                                                                                                                                                       | ND (5.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND (0.53 U)                                            | ND (1.6 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND (0.34 U)                                                                                            | ND (0.43 U)                                                                                                                                                                                                                                                                                                                                                                                                       | ND (5.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND (0.53 U)                                            | ND (1.6 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (0.40 UJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ND (0.34 U)                                                                                            | ND (0.43 U)                                                                                                                                                                                                                                                                                                                                                                                                       | ND (5.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND (0.53 U)                                            | ND (1.6 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND (0.34 UJ)                                                                                           | ND (0.43 UJ)                                                                                                                                                                                                                                                                                                                                                                                                      | ND (5.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND (0.53 UJ)                                           | ND (1.6 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND (0.34 U)                                                                                            | ND (0.43 U)                                                                                                                                                                                                                                                                                                                                                                                                       | ND (5.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND (0.53 U)                                            | ND (1.6 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (0.40 UJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ND (0.34 U)                                                                                            | ND (0.43 U)                                                                                                                                                                                                                                                                                                                                                                                                       | ND (5.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND (0.53 U)                                            | ND (1.6 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND (0.34 U)                                                                                            | ND (0.43 U)                                                                                                                                                                                                                                                                                                                                                                                                       | ND (5.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND (0.53 U)                                            | ND (1.6 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND (0.34 U)                                                                                            | ND (0.43 U)                                                                                                                                                                                                                                                                                                                                                                                                       | ND (5.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND (0.53 U)                                            | ND (1.6 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.024 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND (0.34 U)                                                                                            | ND (0.43 U)                                                                                                                                                                                                                                                                                                                                                                                                       | ND (5.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND (0.53 U)                                            | ND (1.6 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND (0.34 U)                                                                                            | ND (0.43 U)                                                                                                                                                                                                                                                                                                                                                                                                       | ND (5.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND (0.53 U)                                            | ND (1.6 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND (0.34 U)                                                                                            | ND (0.43 U)                                                                                                                                                                                                                                                                                                                                                                                                       | ND (5.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND (0.53 U)                                            | ND (1.6 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND (0.34 U)                                                                                            | ND (0.43 U)                                                                                                                                                                                                                                                                                                                                                                                                       | ND (5.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND (0.53 U)                                            | ND (1.6 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND (0.34 U)                                                                                            | ND (0.43 U)                                                                                                                                                                                                                                                                                                                                                                                                       | ND (5.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND (0.53 U)                                            | ND (1.6 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND (0.83 U)                                                                                            | ND (1.0 U)                                                                                                                                                                                                                                                                                                                                                                                                        | ND (12 UJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND (1.3 U)                                             | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND (0.97 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND (0.83 U)                                                                                            | ND (1.0 U)                                                                                                                                                                                                                                                                                                                                                                                                        | ND (12 UJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND (1.3 U)                                             | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND (0.97 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.070 J                                                                                                | 0.073 J                                                                                                                                                                                                                                                                                                                                                                                                           | 9.1 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.074 J                                                | 0.28 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND (0.34 U)                                                                                            | ND (0.43 U)                                                                                                                                                                                                                                                                                                                                                                                                       | ND (5.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.053 J                                                | ND (1.6 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.040 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND (0.34 U)                                                                                            | ND (0.43 U)                                                                                                                                                                                                                                                                                                                                                                                                       | ND (5.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND (0.53 U)                                            | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND (0.34 U)                                                                                            | ND (0.43 U)                                                                                                                                                                                                                                                                                                                                                                                                       | ND (5.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND (0.53 U)                                            | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND (0.34 U)                                                                                            | ND (0.43 U)                                                                                                                                                                                                                                                                                                                                                                                                       | 4.1 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND (0.53 U)                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.085 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND (0.34 U)                                                                                            | ND (0.43 U)                                                                                                                                                                                                                                                                                                                                                                                                       | ND (5.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • • •                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND (0.34 U)                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                   | ND (5.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • • •                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.022 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND (0.34 U)                                                                                            | ND (0.43 U)                                                                                                                                                                                                                                                                                                                                                                                                       | ND (5.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · ·                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.062 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND (0.34 U)                                                                                            | ND (0.43 U)                                                                                                                                                                                                                                                                                                                                                                                                       | ND (5.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        | · /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                   | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • •                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND (0.97 UJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                        | • • •                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • •                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND (0.97 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                        | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                           | 0.51 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.033 J                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.070 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                   | ND (5.2 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| · · ·                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • •                                                    | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.058 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| • • • •                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND (0.97 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| • •                                                                                                    | · · ·                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • • •                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND (0.40 U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                        | ND (0.34 U)<br>ND (0.34 U) | ND         (0.34 U)         ND         (0.43 U)           ND         (0.34 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | ND         (0.34 U)         ND         (0.43 U)         ND         (5.2 U)         ND         (0.53 U)           ND         (0.34 U)         ND         (0.43 U)         ND         (5.2 U)         ND         (0.53 U)           ND         (0.34 U)         ND         (0.43 U)         ND         (5.2 U)         ND         (0.53 U)           ND         (0.34 U)         ND         (0.43 U)         ND         (5.2 U)         ND         (0.53 U)           ND         (0.34 U)         ND         (0.43 U)         ND         (5.2 U)         ND         (0.53 U)           ND         (0.34 U)         ND         (0.43 U)         ND         (5.2 U)         ND         (0.53 U)           ND         (0.34 U)         ND         (0.43 U)         ND         (5.2 U)         ND         (0.53 U)           ND         (0.34 U)         ND         (0.43 U)         ND         (5.2 U)         ND         (0.53 U)           ND         (0.34 U)         ND         (0.43 U)         ND         (5.2 U)         ND         (0.53 U)           ND         (0.34 U)         ND         (0.43 U)         ND         (5.2 U)         ND         (5.3 U)           ND </td <td>ND         (0.34 U)         ND         (0.43 U)         ND         (5.2 U)         ND         (0.53 U)         ND         (1.6 U)           ND         (0.34 U)         ND         (0.43 U)         ND         (5.2 U)         ND         (0.53 U)         ND         (1.6 U)           ND         (0.34 U)         ND         (0.43 U)         ND         (5.2 U)         ND         (0.53 U)         ND         (1.6 U)           ND         (0.34 U)         ND         (0.43 U)         ND         (5.2 U)         ND         (0.53 U)         ND         (1.6 U)           ND         (0.34 U)         ND         (0.43 U)         ND         (5.2 U)         ND         (0.53 U)         ND         (1.6 U)           ND         (0.34 U)         ND         (4.3 U)         ND         (5.2 U)         ND         (0.53 U)         ND         (1.6 U)           ND         (0.34 U)         ND         (5.2 U)         ND         (0.53 U)         ND         (1.6 U)           ND         (0.43 U)         ND         (5.2 U)         ND         (0.53 U)         ND         (1.6 U)           ND         (0.34 U)         ND         (0.2 U)         ND         (0.53 U)         ND&lt;</td> | ND         (0.34 U)         ND         (0.43 U)         ND         (5.2 U)         ND         (0.53 U)         ND         (1.6 U)           ND         (0.34 U)         ND         (0.43 U)         ND         (5.2 U)         ND         (0.53 U)         ND         (1.6 U)           ND         (0.34 U)         ND         (0.43 U)         ND         (5.2 U)         ND         (0.53 U)         ND         (1.6 U)           ND         (0.34 U)         ND         (0.43 U)         ND         (5.2 U)         ND         (0.53 U)         ND         (1.6 U)           ND         (0.34 U)         ND         (0.43 U)         ND         (5.2 U)         ND         (0.53 U)         ND         (1.6 U)           ND         (0.34 U)         ND         (4.3 U)         ND         (5.2 U)         ND         (0.53 U)         ND         (1.6 U)           ND         (0.34 U)         ND         (5.2 U)         ND         (0.53 U)         ND         (1.6 U)           ND         (0.43 U)         ND         (5.2 U)         ND         (0.53 U)         ND         (1.6 U)           ND         (0.34 U)         ND         (0.2 U)         ND         (0.53 U)         ND< |

÷

See Notes on Page 10

.

 $\sim$ 

;

~

.

. 1

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED SVOC RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location                      | BMP-2       | BMP-2      | BMP-12     | BMP-12     |
|-------------------------------|-------------|------------|------------|------------|
| Depth (ft)                    | 0.00-1.00   | 8.00-4.00  | 0.00-1.00  | 3.00-4.00  |
| Sample ID                     | A60621      | A60624     | A60616     | A60619     |
| Former Bryant Mill Pond       |             |            |            |            |
| anthracene                    | ND (3.2 U)  | ND (2.5 U) | 0.12 J     | ND (5.9 U) |
| benzo(a)anthracene            | 0.18 J      | ND (2.5 U) | 0.72 J     | ND (5.9 U) |
| benzo(b)fluoranthene          | 0.40 J      | ND (2.5 U) | 1.5 J      | 0.43 J     |
| benzo(k)fluoranthene          | 0.40 J      | ND (2.5 U) | 1.3 J      | 0.40 J     |
| benzo(g,h,l)perylene          | ND (3.2 U)  | ND (2.5 U) | 0.28 J     | ND (5.9 U) |
| benzo(a)pyrene                | ND (3.2 U)  | ND (2.5 U) | 0.99 J     | 0.29 J     |
| carbazole                     | ND (3.2 UJ) | ND (2.5 U) | 0.14 J     | ND (5.9 U) |
| bis(2 - chloroethyl)ether     | ND (3.2 U)  | ND (2.5 U) | ND (1.6 U) | ND (5.9 U) |
| 4 - chloro - 3 - methylphenol | ND (3.2 U)  | ND (2.5 U) | ND (1.6 U) | ND (5.9 U) |
| 2-chlorophenol                | ND (3.2 U)  | ND (2.5 U) | ND (1.6 U) | ND (5.9 U) |
| chrysene                      | 0.37 J      | ND (2.5 U) | 1.3 J      | 0.39 J     |
| dibenz(a,h)anthracene         | ND (3.2 U)  | ND (2.5 U) | 0.19 J     | ND (5.9 U) |
| dibenzofuran                  | ND (3.2 U)  | ND (2.5 U) | 0.11 J     | ND (5.9 U) |
| di – n – butyiphthalate       | 0.35 J      | ND (2.5 U) | 0.43 J     | 2.2 J      |
| 2,4-dichlorophenol            | ND (3.2 U)  | ND (2.5 U) | ND (1.6 U) | ND (5.9 U) |
| 2,4-dimethylphenol            | 0.95 J      | 4.1        | 2.3        | 16         |
| 4,6-dinkro-2-methylphenol     | ND (7.8 U)  | ND (6.0 U) | ND (4.0 U) | ND (14 U)  |
| 2.4-dintrophenol              | ND (7.8 U)  | ND (8.0 U) | ND (4.0 U) | ND (14 U)  |
| bis(2 ethylhexyl)phthalate    | ND (3.2 U)  | 0.58 J     | ND (1.6 U) | ND (5.9 U) |
| fluoranthene                  | 0.57 J      | ND (2.5 U) | 2.4        | 0.72 J     |
| fluorene                      | ND (3.2 U)  | ND (2.5 U) | ND (1.6 U) | ND (5.9 U) |
| indeno(1,2,3-cd)pyrene        | ND (3.2 U)  | ND (2.5 U) | 0.75 J     | ND (5.9 U) |
| 2 - methyinaphthalene         | 0.40 J      | 1.4 J      | 0.61 J     | 1.2 J      |
| 2 - methylphenol              | 2.1 J       | 0.51 J     | 5.2        | 28         |
| 4 - methylphenol              | 0.42 J      | 0.42 J     | 1.4 J      | 7.4        |
| naphthalene                   | ND (3.2 U)  | 0.28 J     | 0.27 J     | 0.78 J     |
| 2-ntrophenol                  | ND (3.2 U)  | ND (2.5 U) | ND (1.6 U) | ND (5.9 U) |
| 4 - nitrophenol               | ND (7.8 U)  | ND (6.0 U) | ND (4.0 U) | ND (14 U)  |
| pentachlorophenol             | ND (7.8 U)  | ND (6.0 U) | ND (4.0 U) | ND (14 U)  |
| phenanthrene                  | 0.29 J      | 1.4 J      | 1.2 J      | 0.53 J     |
| phenol                        | 2.3 J       | 0.78 J     | 5.2        | 27         |
| pyrene                        | 0.47 J      | ND (2.5 U) | 2.0        | 0.59 J     |
| 2,4,5-trichlorophenol         | ND (7.8 U)  | ND (6.0 U) | ND (4.0 U) | ND (14 U)  |
| 2,4,6-trichlorophenol         | ND (3.2 U)  | ND (2.5 U) | ND (1.6 U) | ND (5.9 U) |

See Notes on Page 10

i i

i.

ŝ

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED 8VOC RESULTS FOR RESIDUALS/SOIL SAMPLES' (mg/kg)

#### Notes:

<sup>1</sup> Showing only the results for analytes detected above quantitation limits.

<sup>2</sup> MS/MSD of this sample was analyzed.

ND - Not Detected.

#### Notes Explaining Data Qualifiers:

B - The compound has been found in the sample as well as its associated blank, a comparison of sample and blank concentrations indicates that its presence is likely site - related.

- J The compound was positively identified. However, the associated value is an estimated concentration only.
- R The sample results are rejected.
- U The compound was analyzed for but not detected. The associated value is the compound quantitation limits.
- UJ The compound was not detected above the reported sample quantitative limit. However, the reported limit is approximate, and may or may not represent the actual limit of quantitation.

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

# ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED TCL SVOC RESULTS FOR GROUNDWATER/LEACHATE SAMPLES<sup>1</sup> (ug/L)

| Location<br>Sample ID  | MW-125P<br>A66016 | MW-125A<br>A66005 | MW-125B<br>A66006 | MW-126A<br>A66010 | MW-126B<br>A66011 | MW~126B<br>(Dup)<br>A66012 | MW-122A<br><u>A66033</u> | MW-122A<br>(Dup)<br>A66038 |
|------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------|--------------------------|----------------------------|
| Monarch HRDL (Cont'd.) |                   |                   |                   |                   |                   |                            | FRDLs                    |                            |
| di-n-butylphthalate    | ND (500 U)        | ND (10 U)         | ND (10 U)         | ND (41 U)         | ND (10 U)         | ND (10 U)                  | ND (10 U)                | ND (10 U)                  |
| diethyl phthalate      | ND (500 U)        | ND (10 U)         | ND (10 U)         | ND (41 U)         | ND (10 U)         | ND (10 U)                  | ND (10 U)                | ND (10 U)                  |
| 2-methylnaphthalene    | ND (500 U)        | ND (10 U)         | ND (10 U)         | ND (41 U)         | ND (10 U)         | ND (10 U)                  | ND (10 U)                | ND (10 U)                  |
| 2 - methylphenol       | ND (500 U)        | ND (10 U)         | ND (10 U)         | ND (41 U)         | ND (10 U)         | ND (10 U)                  | ND (10 U)                | ND (10 U)                  |
| 4 – methylphenol       | 600               | ND (10 U)         | ND (10 U)         | 8.0 J             | ND (10 U)         | ND (10 U)                  | ND (10 U)                | ND (10 U)                  |
| naphthalene            | ND (500 U)        | ND (10 U)         | ND (10 U)         | ND (41 U)         | ND (10 U)         | ND (10 U)                  | ND (10 U)                | ND (10 U)                  |
| phenol                 | ND (500 U)        | ND (10 U)         | ND (10 U)         | ND (41 U)         | ND (10 U)         | _ ND (10 U)                | ND (10 U)                | ND (10 U)                  |

| Location<br>Sample ID | MW-122B<br>A66039 | MW-1 <sup>2</sup><br>A66032 | MW-3<br>A66054 | MW-5<br>A66046 | MW-15<br><u>A68055</u> | MW-16B <sup>2</sup><br>A66059 | MW-16C<br>A66058 | MW-17A<br>A66056 |
|-----------------------|-------------------|-----------------------------|----------------|----------------|------------------------|-------------------------------|------------------|------------------|
| FRDLs (Cont'd.)       |                   | Former Type                 | II Landfill    |                |                        |                               |                  |                  |
| di-n-butylphthalate   | ND (10 U)         | ND (10 U)                   | ND (10 U)      | ND (10 U)      | 1.0 J                  | ND (10 'J)                    | ND (10 U)        | ND (10 U)        |
| diethyl phthalate     | ND (10 U)         | ND (10 U)                   | ND (10 U)      | ND (10 U)      | 0.70 J                 | ND (10 U)                     | ND (10 U)        | ND (10 U)        |
| 2-methylnaphthalene   | ND (10 U)         | ND (10 U)                   | ND (10 U)      | ND (10 U)      | ND (10 U)              | ND (10 U)                     | ND (10 U)        | ND (10 U)        |
| 2-methylphenol        | ND (10 U)         | ND (10 U)                   | ND (10 U)      | ND (10 U)      | ND (10 U)              | ND (10 U)                     | ND (10 U)        | ND (10 U)        |
| 4 - methylphenol      | ND (10 U)         | ND (10 U)                   | ND (10 U)      | ND (10 U)      | ND (10 U)              | ND (10 U)                     | ND (10 U)        | ND (10 U)        |
| naphthalene           | ND (10 U)         | ND (10 U)                   | ND (10 U)      | ND (10 U)      | 1.0 J                  | ND (10 U)                     | ND (10 U)        | ND (10 U)        |
| phenol                | ND (10 U)         | ND (10 UJ)                  | ND (10 U)      | ND (10 U)      | ND (10 U)              | ND (10 U)                     | ND (10 U)        | ND (10 U)        |

See Notes on Page 5

i

.

j,

\_/

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

# ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED TCL SVOC RESULTS FOR GROUNDWATER/LEACHATE SAMPLES<sup>1</sup> (ug/L)

| Location<br>Sample ID      | MW - 17B<br>A66057 | MW-19BR<br>A66030 | MW-19BR<br>(Dup)<br>A66031 | MW-19C<br>A66040 | MW-19D<br>A66041 | MW-112<br>A66045 | MW-127A<br>A66044 |
|----------------------------|--------------------|-------------------|----------------------------|------------------|------------------|------------------|-------------------|
| Former Type III Landfill ( | Cont'd.)           |                   |                            |                  |                  |                  |                   |
| di-n-butylphthalate        | ND (10 U)          | ND (10 U)         | ND (10 U)                  | ND (10 U)        | ND (10 U)        | ND (10 U)        | ND (10 U)         |
| diethyl phthalate          | ND (10 U)          | ND (10 U)         | ND (10 U)                  | ND (10 U)        | ND (10 U)        | ND (10 U)        | ND (10 U)         |
| 2-methylnaphthalene        | ND (10 U)          | ND (10 U)         | ND (10 U)                  | ND (10 U)        | ND (10 U)        | ND (10 U)        | ND (10 U)         |
| 2-methylphenol             | ND (10 U)          | ND (10 U)         | ND (10 U)                  | ND (10 U)        | ND (10 U)        | ND (10 U)        | 0.60 J            |
| 4 – methylphenol           | ND (10 U)          | ND (10 U)         | ND (10 U)                  | ND (10 U)        | ND (10 U)        | ND (10 U)        | 0.90 J            |
| naphthalene                | ND (10 U)          | ND (10 U)         | ND (10 U)                  | ND (10 U)        | ND (10 U)        | ND (10 U)        | ND (10 U)         |
| phenol                     | ND (10 U)          | ND (10 UJ)        | ND (10 U)                  | ND (10 U)        | ND (10 U)        | ND (10 U)        | ND (10 U)         |

| Location<br>Sample ID | MW-7<br>A66001 | MW-7B<br>A66000 | MW-8<br>A66053 | MW-8A<br>A66052 | MW-20<br>A66049 | MW-20<br>(Dup)<br>A66050 | MW-20B<br>A66051 | MW-21<br>A66002 |
|-----------------------|----------------|-----------------|----------------|-----------------|-----------------|--------------------------|------------------|-----------------|
| Western Disposal Area |                |                 |                |                 |                 |                          |                  |                 |
| di-n-butylphthalate   | ND (10 U)      | ND (10 U)       | ND (10 U)      | ND (10 U)       | ND (10 U)       | ND (10 U)                | ND (10 U)        | ND (10 U)       |
| diethyl phthalate     | ND (10 U)      | ND (10 U)       | ND (10 U)      | ND (10 U)       | ND (10 U)       | ND (10 U)                | ND (10 U)        | ND (10 U)       |
| 2 - methylnaphthalene | ND (10 U)      | ND (10 U)       | ND (10 U)      | 0.80 J          | ND (10 U)       | ND (10 U)                | ND (10 U)        | ND (10 U)       |
| 2 – methylphenoi      | ND (10 U)      | ND (10 U)       | ND (10 U)      | ND (10 U)       | ND (10 U)       | ND (10 U)                | ND (10 U)        | ND (10 U)       |
| 4 – methylphenol      | ND (10 U)      | ND (10 U)       | ND (10 U)      | 15              | ND (10 U)       | ND (10 U)                | ND (10 U)        | ND (10 U)       |
| naphthalene           | ND (10 U)      | ND (10 U)       | ND (10 U)      | ND (10 U)       | ND (10 U)       | ND (10 U)                | ND (10 U)        | ND (10 U)       |
| phenol                | ND (10 U)      | 0.80 J          | ND (10 U)      | ND (10 U)       | ND (10 U)       | ND (10 U)                | ND (10 U)        | ND (10 U)       |

See Notes on Page 5

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

# ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED TCL SVOC RESULTS FOR GROUNDWATER/LEACHATE SAMPLES<sup>1</sup> (ug/L)

| Location<br>Sample ID    | MW-120A<br>A66020 | MW-120B<br>A66019 | MW120B<br>(Dup)<br>A66024 | MW-2<br>A66060 | MW-28<br>A66022 | MW-2S<br>(Dup)<br>A66023 | MW-18<br>A66061 |
|--------------------------|-------------------|-------------------|---------------------------|----------------|-----------------|--------------------------|-----------------|
| Western Disposal Area (C | Cont'd.)          |                   |                           | Pilot Study A  | 18 <b>8</b>     |                          |                 |
| di-n-butylphthalate      | ND (10 U)         | ND (10 U)         | ND (10 U)                 | ND (10 U)      | ND (10 U)       | ND (10 U)                | ND (10 U)       |
| diethyl phthalate        | ND (10 U)         | ND (10 U)         | ND (10 U)                 | ND (10 U)      | ND (10 U)       | ND (10 U)                | ND (10 U)       |
| 2-methylnaphthalene      | ND (10 U)         | ND (10 U)         | ND (10 U)                 | ND (10 U)      | ND (10 U)       | ND (10 U)                | ND (10 U)       |
| 2-methylphenol           | ND (10 U)         | ND (10 U)         | ND (10 U)                 | ND (10 U)      | ND (10 U)       | ND (10 U)                | ND (10 U)       |
| 4 – methylphenol         | ND (10 U)         | ND (10 U)         | ND (10 U)                 | ND (10 U)      | ND (10 U)       | ND (10 U)                | ND (10 U)       |
| naphthalene              | ND (10 U)         | ND (10 U)         | ND (10 U)                 | ND (10 U)      | ND (10 U)       | ND (10 U)                | ND (10 U)       |
| phenol                   | ND (10 U)         | ND (10 U)         | ND (10 U)                 | ND (10 U)      | ND (10 U)       | ND (10 U)                | _ ND (10 U)     |

| Location<br>Sample ID   | MW-104<br>A66037 | MW-106<br>A66063 | MW-108<br>A66047 | MW-114<br>A66036 | MW-128A<br>A66035 |
|-------------------------|------------------|------------------|------------------|------------------|-------------------|
| Former Bryant Mill Pond |                  |                  |                  | <u> </u>         |                   |
| di-n-butylphthalate     | ND (10 U)         |
| diethyl phthalate       | ND (10 U)         |
| 2-methylnaphthalene     | ND (10 U)         |
| 2 - methylphenol        | ND (10 U)         |
| 4 – methylphenol        | ND (10 U)         |
| naphthalene             | ND (10 U)         |
| phenol                  | ND (10 U)         |

See Notes on Page 5

.

•

1

;

1. C. B. C. L. C. F. S. S. F. S. J.

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED TCL SVOC RESULTS FOR GROUNDWATER/LEACHATE SAMPLES<sup>1</sup> (ug/L)

#### Notes:

1

<sup>1</sup>Showing only the results for analytes detected above quantitation limits. <sup>2</sup>MS/MSD of this sample was analyzed. ND - Not Detected.

## Notes Expalining Data Qualifiers:

ł

;

- J The compound was positively identified. However, the associated numerical value is an estimated concentration only.
- U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
- UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.

4

. 1

× .

3 g

i i

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED PCDD/PCDF RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location                                        | ML88-1        | MLSS-1 (Dup)   | MLSS-3           | DLH8-1        | DLHB-2         | DLHB-5         |
|-------------------------------------------------|---------------|----------------|------------------|---------------|----------------|----------------|
| Depth (ft)                                      | 0.00-0.50     | 0.00-0.50      | 0.000.50         | 0.00-0.50     | 0.00-0.50      | 0.00-0.50      |
| Sample ID                                       | <u>A60033</u> | A60034         | A60540           | A60589        | A60582         | A60581         |
| Monarch HRDL                                    |               |                |                  | FRDLs         |                |                |
| 2,3,7,8-Tetrachlorinated dibenzo-p-dioxin       | ND (2.0E-7 U) | ND (3.0E-7 U)  | 2.6E-5           | 3.6E-6        | 7.8E-6         | 3.2E-6         |
| 1,2,3,7,8-Pentachlorinated dibenzo-p-dioxin     | ND (4.0E-7 U) | ND (5.0E-7 U)  | 6.7E-6           | ND (2.0E-7 U) | ND (3.4E-6 UJ) | ND (1.4E-6 U)  |
| 1,2,3,4,7,8-Hexachlorinated dibenzo-p-dioxin    | ND (5.0E-7 U) | ND (5.0E-7 U)  | ND (2.3E-5 UJ)   | ND (3.0E-7 U) | ND (1.1E-6 U)  | ND (2.3E-6 U)  |
| 1,2,3,6,7,8-Hexachlorinated dibenzo-p-dioxin    | ND (4.0E-7 U) | ND (4.0E-7 U)  | 3.1E-4           | 4.5E-6        | 8.7E-5         | 1.3E-5         |
| 1,2,3,7,8,9-Hexachlorinated dibenzo-p-dioxin    | 2.7E-6        | 2.0E-6 PR      | 1.3E-4 PR        | 3.0E-6        | 4.7E5          | 8.1E-6         |
| 1,2,3,4,6,7,8-Heptachlorinated dibenzo-p-dioxin | 3.2E6 B       | 2.2E-6 B       | 6.9E-3 B         | 7.5E-6 B      | 1.1E-4 B       | 2.2E-4 B       |
| Octachlorinated dibenzo-p-dioxin                | 1.7E-5 B      | 1.0E-5 B       | 3.1E-2 B,S       | 5.7E-5 B      | 7.4E-4 B       | 2.6E-3 B       |
| 2,3,7,8-Tetrachlorinated dibenzofuran           | 4.4E-7        | ND (3.1E-7 UJ) | 1.8E-4 B         | 1.2E-4        | 3.0E-4         | 3.9E-5 B       |
| 1,2,3,7,8-Pentachlorinated dibenzofuran         | ND (2.0E-7 U) | ND (3.0E-7 U)  | 5.4E-6           | 2.8E6         | 2.7E-6         | 1.0E-6         |
| 2,3,4,7,8-Pentachlorinated dibenzofuran         | ND (2.0E-7 U) | ND (3.0E-7 U)  | 8.9E-6           | 2.5E-6        | 4.3E6          | ND (1.9E-6 UJ) |
| 1,2,3,4,7,8-Hexachlorinated dibenzofuran        | ND (3.0E-7 U) | ND (4.0E-7 U)  | 1.9E-5           | ND (2.0E-7 U) | 1.1E6          | 2.8E-6         |
| 1,2,3,6,7,8-Hexachlorinated dibenzofuran        | ND (3.0E-7 U) | ND (3.0E-7 U)  | 8.8E-6           | ND (1.0E-7 U) | ND (6.0E-7 U)  | ND (1.2E-6 U)  |
| 2,3,4,6,7,8-Hexachlorinated dibenzofuran        | ND (4.0E-7 U) | ND (3.0E-7 U)  | 1.9E-5 B,PR      | ND (2.0E-7 U) | ND (1.0E-6 U)  | ND (1.6E-6 U)  |
| 1,2,3,7,8,9-Hexachlorinated dibenzofuran        | ND (4.0E-7 U) | ND (4.0E-7 U)  | ND (7.7E-6 UJ,E) | ND (2.0E-7 U) | ND (8.0E-7 U)  | ND (1.8E-6 U)  |
| 1,2,3,4,6,7,8-Heptachlorinated dibenzofuran     | 2.1E-6 B      | ND (9.6E-7U)   | 4.4E-4 B         | ND (2.0E-7 U) | 6.6E-6 B       | 1.5E-5 B       |
| 1,2,3,4,7,8,9-Heptachlorinated dibenzofuran     | ND (5.0E-7 U) | ND (5.0E-7 U)  | 2.9E-5           | ND (3.0E-7 U) | ND (1.3E-6 U)  | ND (2.8E-6 U)  |
| Octachlorinated dibenzofuran                    | 3.6E-6 B      | ND (1.2E-6 U)  | 1.3E-3 B         | ND (3.0E-7 U) | 3.1E-5 B       | 4.1E-5 B       |

See Notes on Page 2

1

#

**i** . . .

i

v

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

# ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED TAL RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location<br>Depth (ft)<br>Sample ID | MLSS-1<br>14.00-15.50<br>A60039 | MLSS-1<br>15.50-18.00<br>A60040 | MLSS-2<br>20.00-22.00<br>A60571 | MLSS-2<br>22.00-24.00<br>A60572 | MLSS-3<br>18.00-20.00<br><u>A60551</u> | MLSS-3<br>20.00-22.00<br>A60552 | MLSS-4<br>18.00-20.00<br> | MLSS-4<br>20.00-22.00<br>A60531 |
|-------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------------|---------------------------------|---------------------------|---------------------------------|
| Monarch HRDL                        |                                 |                                 |                                 |                                 |                                        |                                 |                           |                                 |
| aluminum                            | 5800                            | 4900                            | 7000                            | 430                             | 7200                                   | 11000                           | 4500                      | 2600                            |
| antimony                            | ND (9.1 U)                      | ND (20 U)                       | ND (22 U)                       | ND (19 U)                       | ND (21 U)                              | 25                              | ND (32 U)                 | ND (6.0 U)                      |
| arsenic                             | 3.2                             | 7.8 J                           | 1.8 B                           | 44 J                            | 1.5 B                                  | 27 J                            | 1.5 B                     | 1.5 BJ                          |
| barium                              | 25 B                            | 150                             | 430                             | 64 B                            | 210                                    | 360                             | 550                       | 31                              |
| beryllium                           | 0.17 B                          | ND (0.37 U)                     | ND (0.40 U)                     | ND (0.34 U)                     | ND (0.38 U)                            | 0.58 B                          | ND (0.58 U)               | 0.14 B                          |
| cadmium                             | ND (0.51 U)                     | ND (1.1 U)                      | 1.3 B                           | ND (1.1 U)                      | ND (1.2 U)                             | ND (1.0 U)                      | ND (1.8 U)                | ND (0.34 U)                     |
| calcium                             | 30000                           | 14000                           | 8100                            | 140000                          | 3500                                   | 19000                           | 23000                     | 16000                           |
| chromium                            | 7.4                             | 5.8                             | 79                              | 4.1                             | 100                                    | 46                              | 82                        | 5.8                             |
| cobalt                              | 1.7 B                           | 3.2 B                           | 4.0 B                           | 5.1 B                           | 3.7 B                                  | 5.4 B                           | ND (3.6 U)                | 2.1 B                           |
| copper                              | 25                              | 5.9 B                           | 56                              | 3.4 B                           | 47                                     | 77                              | 34                        | 3.9                             |
| iron                                | 5100                            | 11000                           | 2100                            | 17000                           | 1200                                   | 27000                           | 1000                      | 5300                            |
| lead                                | 15                              | 18                              | 460                             | 0.33 B                          | 550                                    | 120                             | 390                       | 2.9                             |
| magnesium                           | 5500                            | 1700 B                          | 1400 B                          | 2500                            | 670 B                                  | 4800                            | 640 B                     | 4100                            |
| manganese                           | 200                             | 290                             | 40                              | 350                             | 40                                     | 260                             | 43                        | 86                              |
| mercury                             | 0.060 B                         | ND (0.090 U)                    | 0.55                            | ND (0.090 U)                    | 1.6                                    | 3.3                             | 2.0                       | ND (0.050 U)                    |
| nickel                              | 5.3 B                           | 5.3 B                           | 7.6 B                           | 3.5 B                           | 5.3 B                                  | 13 B                            | 9.1 B                     | 5.5                             |
| potassium                           | 260 B                           | 460 B                           | ND (330 U)                      | ND (280 U)                      | ND (320 U)                             | ND (280 U)                      | ND (480 U)                | 230 B                           |
| selenium                            | 0.43 B                          | ND (0.64 UJ)                    | ND (0.90 U)                     | 0.95 BJ                         | ND (0.58 U)                            | 0.76 BJ                         | ND (0.66 U)               | ND (0.26 UJ)                    |
| silver                              | ND (1.0 U)                      | ND (2.3 U)                      | ND (2.4 U)                      | ND (2.1 U)                      | ND (2.3 U)                             | ND (2.0 U)                      | ND (3.6 U)                | ND (0.66 U)                     |
| sodium                              | 240 B                           | ND (390 U)                      | 760 B                           | ND (360 U)                      | ND (400 U)                             | ND (350 U)                      | ND (610 U)                | ND (110 U)                      |
| thallium                            | ND (0.37 U)                     | ND (1.1 U)                      | ND (1.6 U)                      | ND (0.80 U)                     | ND (1.0 U)                             | ND (1.1 U)                      | ND (1.1 U)                | ND (0.45 U)                     |
| vanadium                            | 8.5 B                           | 11 B                            | 8.7 B                           | 12 B                            | 8.4 B                                  | . 23                            | 5.4 B                     | 7.6                             |
| zinc                                | 96                              | 24                              | 240                             | 5.7 B                           | 200                                    | 180                             | 450                       | 14                              |
| cyanide                             | ND (0.10 U)                     | ND (0.17 U)                     | 15                              | ND (0.14 U)                     | 2.3                                    | 1.8                             | 6.5                       | ND (0.080 U)                    |

See Notes on Page 10

.

# ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED TAL RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location<br>Depth (ft)<br>Sample ID | MLSS-5<br>22.00-24.00<br>A60512 | MLSS-5<br>24.00-26.00<br>A60513 | MW-125B<br>18.00-19.00<br>A60029 | MW-125B<br>19.00-20.00<br>A60030 | MW~126A<br>14.00-16.00<br>A60017 | MW-126A<br>14.00-16.00<br>A60018 | DLHB-1<br>14.00-16.00<br>A60593 | DLHB-1<br>16.00-18.00<br>A60594 |
|-------------------------------------|---------------------------------|---------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------|---------------------------------|
| Monarch HRDL                        | (Cont'd)                        |                                 |                                  |                                  |                                  |                                  | FRDLs                           |                                 |
| aluminum                            | 4700                            | 1100                            | 6200                             | 4600                             | 8900                             | 13000                            | 15000                           | 2000                            |
| antimony                            | ND (24 U)                       | ND (9.3 U)                      | ND (17 U)                        | ND (6.4 U)                       | ND (21 U)                        | ND (17 U)                        | ND (15 U)                       | ND (7.9 U)                      |
| arsenic                             | 1.3 B                           | 3.1 J                           | 1.7 B                            | 2.7 J                            | 1.8 B                            | 9.2 J                            | 1.1 B                           | 0.70 BJ                         |
| barium                              | 490                             | 69                              | 68                               | 98                               | 110                              | 610                              | 44 B                            | 11 B                            |
| beryllium                           | ND (0.43 U)                     | ND (0.17 U)                     | ND (0.30 U)                      | 0.18 B                           | ND (0.38 U)                      | 0.95 B                           | ND (0.28 U)                     | ND (0.14 U)                     |
| cadmium                             | ND (1.3 U)                      | ND (0.52 U)                     | ND (0.95 U)                      | ND (0.36 U)                      | 1.6 B                            | ND (0.93 U)                      | ND (0.86 U)                     | ND (0.44 U)                     |
| calcium                             | 14000                           | 23000                           | 860 B                            | 40000                            | 2200                             | 29000                            | 5400                            | 20000                           |
| chromium                            | 86                              | 5.2                             | 85                               | 13                               | 69                               | 17                               | 14                              | 4.8                             |
| cobalt                              | ND (2.6 U)                      | ND (1.0 U)                      | 3.4 B                            | 3.1 B                            | ND (2.3 U)                       | 6.9 B                            | ND (1.7 U)                      | 1.6 B                           |
| copper                              | 44                              | 11                              | 77                               | 6.4                              | 54                               | 20                               | 95                              | 5.4                             |
| iron                                | 1200                            | 6300                            | 1000                             | 8300                             | 1200                             | 15000                            | 2400                            | 3100                            |
| lead                                | 370                             | 9.7                             | 400                              | 4.9                              | 410                              | 27                               | 17                              | 2.5                             |
| magnesium                           | 600 B                           | 2000                            | 390 B                            | 9800                             | 610 B                            | 3400                             | 560 B                           | 11000                           |
| manganese                           | 39                              | 65                              | 23                               | 220                              | 24                               | 360                              | 8.8                             | 84                              |
| mercury                             | 1.8                             | 0.26                            | 1.1                              | ND (0.040 U)                     | 0.59                             | 0.090 B                          | ND (0.080 U)                    | ND (0.040 U)                    |
| nickel                              | 8.2 B                           | 2.2 B                           | 7.9 B                            | <b>8.8</b>                       | 3.7 B                            | 14                               | 5.0 B                           | 4.1 B                           |
| potassium                           | ND(360 U)                       | ND (140 U)                      | ND (250 U)                       | 310 B                            | 420 B                            | 560 B                            | ND (230 U)                      | 340 B                           |
| selenium                            | ND (0.98 U)                     | ND (0.22 UJ)                    | ND (0.58 U)                      | ND (0.29 UJ)                     | ND (0.74 U)                      | 0.53 BJ                          | ND (0.51 U)                     | 0.20 BJ                         |
| silver                              | ND (2.6 U)                      | ND (1.0 U)                      | ND (1.9 U)                       | ND (0.71 U)                      | ND (2.3 U)                       | ND (1.8 U)                       | ND (1.7 U)                      | ND (0.87 U)                     |
| sodium                              | ND (450 U)                      | ND (180 U)                      | ND (320 U)                       | ND (120 U)                       | ND (400 U)                       | ND (320 U)                       | ND (290 U)                      | ND (150 U)                      |
| thallium                            | ND (1.7 U)                      | ND (0.38 U)                     | ND (1.0 U)                       | ND (0.50 U)                      | ND (1.3 U)                       | ND (0.92 U)                      | ND (0.88 U)                     | ND (0.35 U)                     |
| vanadium                            | 4.9 B                           | 4.0 B                           | 7.3 B                            | 14                               | 10 B                             | 28                               | 19                              | 6.2 B                           |
| zinc                                | 250                             | 20                              | 320                              | 20                               | 140                              | 72                               | 220                             | 14                              |
| cyanide                             | 7.4                             | 0.10 B                          | 2.6                              | 0.97                             | 5.3                              | ND (0.14 U)                      | ND (0.16 U)                     | 0.70                            |

See Notes on Page 10

# ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED TAL RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location<br>Depth (ft)<br>Sample ID | DLHB-2<br>6.00-8.00<br>A60586 | DLHB-2<br>8.00-10.00<br>A60587 | DLHB-3 <sup>2</sup><br>6.00-6.00<br><u>A60599</u> | DLHB-3 <sup>2</sup><br>8.00-10.00<br>A60600 | DLHB6<br>8,00-10.00<br><u>A60605</u> | DLHB-6<br>10.00-12.00<br><u>A60606</u> | FLF-1 <sup>2</sup><br>6.00-6.50<br><u>A60097</u> | FLF-1 <sup>2</sup><br>6.50-8.00<br>A60098 |
|-------------------------------------|-------------------------------|--------------------------------|---------------------------------------------------|---------------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------------------|-------------------------------------------|
| FRDLs (Cont'd.)                     |                               |                                |                                                   |                                             |                                      |                                        | Former Type                                      | III Landfill                              |
| aluminum                            | 10000                         | 4700                           | 11000                                             | 5600                                        | 3000                                 | 4400                                   | 7400                                             | 6500                                      |
| antimony                            | ND (20 U)                     | ND (9.5 U)                     | ND (17 U)                                         | ND (6.1 U)                                  | ND (9.4 U)                           | ND (11 U)                              | ND (13 UJ)                                       | ND (9.1 UJ)                               |
| arsenic                             | 0.80 B                        | 1.9 BJ                         | 1.3 B                                             | 3.6 J                                       | 0.51 B                               | 24 J                                   | 4.5                                              | 2.2                                       |
| barium                              | 17 B                          | 22 B                           | 21 B                                              | 29                                          | 13 B                                 | 51                                     | 180                                              | 41                                        |
| beryllium                           | ND (0.36 U)                   | 0.21 B                         | ND (0.30 U)                                       | 0.18 B                                      | ND (0.17 U)                          | 0.22 B                                 | ND (0.23 U)                                      | 0.24 B                                    |
| cadmium                             | ND (1.1 U)                    | ND (0.53 U)                    | ND (0.93 U)                                       | ND (0.34 U)                                 | ND (0.53 U)                          | ND (0.63 U)                            | ND (0.73 U)                                      | ND (0.51 U)                               |
| calcium                             | 2500                          | 59000                          | 23000                                             | 66000                                       | 29000                                | 120000                                 | 48000                                            | 1300                                      |
| chromium                            | 9.6                           | 9.9                            | 12                                                | 12                                          | 6.2                                  | 15                                     | 37                                               | 9.5 J                                     |
| cobalt                              | ND (2.2 U)                    | 3.3 B                          | ND (1.8 U)                                        | 4.1 B                                       | ND (1.0 U)                           | 2.4 B                                  | 3.6 B                                            | 3.9 B                                     |
| copper                              | 28                            | 7.5                            | 54                                                | 15                                          | 18                                   | 9.1                                    | 31                                               | 4.1 B                                     |
| iron                                | 1600                          | 8900                           | 2000                                              | 12000                                       | 1700                                 | 16000                                  | 9000                                             | 8500                                      |
| lead                                | 12                            | 3.5                            | 19                                                | 7.1                                         | 4.9                                  | 31                                     | 150 J                                            | R                                         |
| magnesium                           | 580 B                         | 23000                          | 730 B                                             | 35000                                       | 2400                                 | 65000                                  | 17000                                            | 1500                                      |
| manganese                           | 11                            | 240                            | 39                                                | 380                                         | 40                                   | 620                                    | 190 J                                            | 200 J                                     |
| mercury                             | ND (0.10 U)                   | ND (0.050 U)                   | ND (0.070 U)                                      | ND (0.050 U)                                | ND (0.060 U)                         | 0.080 B                                | 0.75                                             | 0.070 B                                   |
| nickel                              | ND (3.0 U)                    | 9.2                            | 3.3 B                                             | 9.7                                         | 2.6 B                                | 6.6 B                                  | 8.3 B                                            | 66B                                       |
| potassium                           | ND (300 U)                    | 1100                           | ND (250 U)                                        | 630                                         | 170 B                                | 700 B                                  | 430 B                                            | 300 B                                     |
| selenium                            | ND (0.75 U)                   | ND (0.30 UJN)                  | ND (0.41 U)                                       | 0.48 BJ                                     | 0.29 B                               | 0.38 BJ                                | ND (0.21 UJ)                                     | 0.22 BJ                                   |
| silver                              | ND (2.2 U)                    | ND (1.0 U)                     | ND (1.8 U)                                        | ND (0.67 U)                                 | ND (1.0 U)                           | ND (1.2 U)                             | ND (1.4 U)                                       | ND (1.0 U)                                |
| sodium                              | ND (380 U)                    | ND (180 U)                     | ND (310 U)                                        | ND (120 U)                                  | ND (180 U)                           | ND (210 U)                             | ND (250 U)                                       | ND (170 U)                                |
| thallium                            | ND (1.3 U)                    | ND (0.52 UJW)                  | ND (0.70 U)                                       | ND (0.38 UJ)                                | ND (0.47 U)                          | ND (0.47 U)                            | ND (0.37 U)                                      | ND (0.37 U)                               |
| vanadium                            | 15 B                          | 13                             | 13 B                                              | 16                                          | 4.9 B                                | 22                                     | 17                                               | 15                                        |
| zinc                                | 57                            | 19                             | 160                                               | 36                                          | 31                                   | 21                                     | 74                                               | 18                                        |
| cyanide                             | ND (0.21 U)                   | 0.22 B                         | ND (0.13 U)                                       | ND (0.090 U)                                | ND (0.090 U)                         | 0.65                                   | 1.8                                              | 0.070 B                                   |

See Notes on Page 10

+

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

# ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED TAL RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location<br>Depth (ft)<br>Sample ID | WA-1<br>12.00-13.00<br>A60062 | WA-1<br>13.00-14.00<br>A60063 | WA-2<br>12.00-14.00<br>A60675 | WA-2<br>14.00-18.00<br>A60676 | WA-3<br>14.00-16.00<br>A60668 | WA-3<br>16.00-18.00<br>A60669 | WA-4<br>8.00-10.00<br><u>A60662</u> | WA-4<br>10.00-12.00<br>A60663 |
|-------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------------|-------------------------------|
| Nestern Disposi                     | al Area                       |                               |                               |                               |                               |                               |                                     |                               |
| aluminum                            | 8900                          | 2100                          | 12000                         | 1900                          | 12000                         | 2300                          | 9800                                | 1200                          |
| antimony                            | ND (15 U)                     | ND (5.3 U)                    | 14                            | 6.5 BJ                        | ND (21 U)                     | ND (8.1 UJ)                   | ND (18 U)                           | ND (8.2 UJ)                   |
| arsenic                             | 2.7 B                         | 2.3 J                         | 2.3 B                         | 2.0                           | 1.3 B                         | 7.5                           | 1.7 B                               | 2.3                           |
| barium                              | 13 B                          | 13 B                          | 12 B                          | 7.9 BJ                        | ND (16 U)                     | 8.3 BJ                        | ND (14 U)                           | ND (6.4 U)                    |
| beryllium                           | ND (0.28 U)                   | 0.12 B                        | ND (0.18 U)                   | 0.12 B                        | ND (0.37 U)                   | 0.15 B                        | ND (0.32 U)                         | ND (0.15 U)                   |
| cadmium                             | ND (0.86 U)                   | 0.61                          | ND (0.56 U)                   | ND (0.36 U)                   | ND (1.1 U)                    | ND (0.45 U)                   | 1.4 BJ                              | 0.58 B                        |
| calcium                             | 3000                          | 79000                         | 10000                         | 67000                         | 920 B                         | 75000                         | 920 B                               | 27000                         |
| chromium                            | 8.7                           | 6.2                           | 19                            | 4.9                           | 14                            | 7.9                           | 13                                  | 4.7                           |
| cobalt                              | ND (1.7 U)                    | 1.9 B                         | 1.8 B                         | 2.7 B                         | ND (2.3 U)                    | 2.2 B                         | 2.1 B                               | 1.1 B                         |
| copper                              | 59                            | 5.3                           | 28 J                          | 7.1 J                         | 48 J                          | 5.6 J                         | 50 J                                | 3.6 BJ                        |
| iron                                | 1700                          | 5500                          | 7700                          | 7900                          | 4200                          | 7100                          | 3600                                | 4300                          |
| lead                                | 18                            | 3.1                           | 12                            | 3.2                           | 12                            | 5.9                           | 7.8                                 | 2.6                           |
| magnesium                           | 700 B                         | 29000                         | 2300                          | 21000                         | ND (310 U)                    | 29000                         | ND (270 U)                          | 6000                          |
| manganese                           | 33                            | 180                           | 41                            | 350 J                         | 11                            | 220 J                         | 12                                  | 70 J                          |
| mercury                             | 1.3                           | 0.19                          | ND (0.060 UJ)                 | ND (0.040 U)                  | ND (0.12 UJ)                  | ND (0.040 U)                  | ND (0.090 UJ)                       | ND (0.040 U)                  |
| nickel                              | ND (2.3 U)                    | 5.2                           | 5.4 B                         | 6.2                           | ND (3.1 U)                    | 5.7 B                         | ND (2.7 U)                          | 4.2 B                         |
| potassium                           | 250 B                         | 310 B                         | ND (150 U)                    | 300 B                         | ND (300 U)                    | 300 B                         | ND (270 U)                          | 150 B                         |
| selenium                            | ND (0.73 U)                   | 0.19 BJ                       | ND (0.56 U)                   | ND (0.19 U)                   | ND (0.54 U)                   | ND (0.16 UJ)                  | ND (0.60 U)                         | ND (0.19 U)                   |
| silver                              | ND (1.7 U)                    | ND (0.59 U)                   | ND (1.1 U)                    | ND (0.70 U)                   | ND (2.3 U)                    | ND (0.89 U)                   | ND (2.0 U)                          | ND (0.90 U)                   |
| sodium                              | ND (290 U)                    | ND (100 U)                    | 210 B                         | 130 B                         | ND (390 U)                    | ND (150 U)                    | ND (340 U)                          | ND (160 U)                    |
| thallium                            | ND (1.3 U)                    | ND (0.33 UJ)                  | ND (0.98 U)                   | ND (0.49 UJ)                  | ND (0.94 U)                   | ND (0.41 UJ)                  | ND (1.0 U)                          | ND (0.50 U)                   |
| vanadium                            | 11 B                          | 8.1                           | 12                            | 10                            | 13 B                          | 9.1                           | 11 B                                | 5.4 B                         |
| zinc                                | 180                           | 12                            | 49                            | R                             | 110                           | R                             | 140                                 | R                             |
| cyanide                             | ND (0.22 U)                   | ND (0.060 U)                  | ND (0.10 U)                   | ND (0.060 U)                  | ND (0.13 U)                   | 0.10 B                        | ND (0.20 U)                         | ND (0.080 U                   |

See Notes on Page 10

đ

.

# ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

# ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED TAL RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

|                 | T                | 1             |             |              |              | T            | <u> </u>    | i            |
|-----------------|------------------|---------------|-------------|--------------|--------------|--------------|-------------|--------------|
| Location        | WA-5             | WA-5          | WA-6        | WA-6         | WA-7         | WA-7         | WA-8        | WA-8         |
| Depth (ft)      | 22,00-23.50      | 23.50-26.00   | 12.00-13.00 | 13.00-15.00  | 20.00-22.00  | 22.00-24.00  | 10.00-12.00 | 12.00-14.00  |
| Sample ID       | A60650           | A60651        | A60085      | A60086       | A60643       | A60644       | A60657      | A60658       |
| Western Disposa | l Area (Cont'd.) |               |             |              |              |              |             |              |
| aluminum        | 13000            | 980           | 11000       | 10000        | 16000        | 3300         | 6600        | 2900         |
| antimony        | ND (12 U)        | ND (5.6 UJ)   | ND (17 U)   | ND (6.9 UJ)  | ND (16 U)    | 14 J         | 11          | ND (10 UJ)   |
| arsenic         | 1.8 B            | 1.1 B         | 1.8 8       | 4.4          | 2.2 B        | 15           | 5.9         | 5.5          |
| barium          | 28 B             | ND (4.3 U)    | 170         | 66 J         | 47 B         | 57 J         | 130         | 23 BJ        |
| beryllium       | ND (0.21 U)      | ND (0.10 U)   | ND (0.30 U) | 0.44 B       | ND (0.28 U)  | 0.29 B       | 1.2         | 0.41 B       |
| cadmium         | ND (0.66 U)      | ND (0.31 U)   | 1.7 J       | ND (0.38 U)  | ND (0.87 U)  | ND (0.55 U)  | ND (0.49 U) | ND (0.57 U)  |
| calcium         | 5900             | 39000         | 15000       | 32000        | 3600         | 32000        | 11000       | 75000        |
| chromium        | 17               | 3.2           | 55          | 16           | 17           | 7.6          | 25          | 8.3          |
| cobalt          | ND (1.3 U)       | 0.93 B        | 8.4 B       | 6.8 B        | 2.6 B        | 3.8 B        | 5.8 8       | 2.2 B        |
| copper          | 47 J             | 2.2 BJ        | 62 J        | 12 J         | 50 J         | 11 J         | 41 J        | 15 J         |
| iron            | 4900             | 3700          | 8600        | 11000        | 7600         | 12000        | 4600        | 58000        |
| lead            | 9.8              | 1.4           | 120         | 5.8          | 17           | 17           | 35          | 5.0          |
| magnesium       | 740 B            | 9200          | 5000        | 12000        | 390 B        | 10000        | 1500        | 28000        |
| manganese       | 25               | 76 J          | 370         | 400 J        | 32           | 240 J        | 76          | 500 J        |
| mercury         | ND (0.10 UJ)     | ND (0.040 UN) | 0.38 J      | ND (0.050 U) | ND (0.13 UJ) | ND (0.040 U) | 0.14 BJ     | ND (0.050 U) |
| nickel          | 4.9 B            | 3.4 B         | 17          | 15           | 3.3 B        | 9.4          | 12          | 10           |
| potassium       | ND (180 U)       | 150 B         | ND (250 U)  | 1100         | ND (230 U)   | 400 B        | 150 B       | 420 B        |
| selenium        | ND (0.50 U)      | ND (0.11 U)   | ND (0.44 U) | 0.29 BJ      | ND (0.49 UJ) | 1.1          | ND (0.42 U) | ND (0.13 UJ) |
| silver          | ND (1.3 U)       | ND (0.61 U)   | ND (1.8 U)  | ND (0.76 U)  | ND (1.7 U)   | ND (1.1 U)   | ND (0.95 U) | ND (1.1 U)   |
| sodium          | ND (220 U)       | ND (100 U)    | 560 B       | 350 B        | ND (290 U)   | ND (190 U)   | 220 B       | 220 B        |
| thallium        | ND (0.87 U)      | ND (0.29 U)   | ND (0.76 U) | ND (0.55 UJ) | ND (0.84 U)  | ND (0.52 U)  | ND (0.73 U) | ND (0.35 UJ) |
| vanadium        | 19               | 4.2 B         | 16 B        | 29           | 14 B         | 13           | 16          | 39           |
| zinc            | 79               | R             | 270         | R            | 100          | R            | 180         | R            |
| cyanide         | 0.29 B           | 0.080 B       | 2.1         | ND (0.10 U)  | 0.36 B       | 0.42 B       | 0.68 B      | ND (0.070 U) |

See Notes on Page 10

.

i i

# ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

# ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED TAL RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location<br>Depth (ft)<br>Sample ID | B-7B<br>8.00-10.00<br>A60702 | B-7B<br>10.00-12.00<br>A60703 | MW-8A<br>12.00-12.50<br>A60092 | MW-8A<br>12.50-14.00<br>A60093 | MW-120B<br>18.00-19.00<br>A60054 | MW-120B<br>19.00-20.00<br>A60055 | MA-1<br>0.00-1.50<br> | MA-1<br>3.00-4.50<br>A60066 |
|-------------------------------------|------------------------------|-------------------------------|--------------------------------|--------------------------------|----------------------------------|----------------------------------|-----------------------|-----------------------------|
| Vestern Dispos                      | al Area (Cont'd.)            |                               |                                |                                |                                  |                                  | Pilot Study A         | rea                         |
| aluminum                            | 940                          | 1100                          | 11000                          | 9100                           | 13000                            | 4000                             | 2000                  | 6000                        |
| antimony                            | ND (10 UJ)                   | ND (8.2 UJ)                   | 15 B                           | ND (13 UJ)                     | ND (13 U)                        | ND (8.7 U)                       | ND (9.1 U)            | ND (8.3 U)                  |
| arsenic                             | 2.6                          | 2.8                           | 1.7 B                          | 1.8 B                          | 1.8 B                            | 6.5 J                            | 3.5                   | 65                          |
| barium                              | ND (7.7 U)                   | 6.9 B                         | 94                             | 100 J                          | 100                              | 66                               | 15 B                  | 1000                        |
| beryllium                           | ND (0.18 U)                  | ND (0.15 U)                   | 0.28 B                         | 0.54 B                         | ND (0.23 U)                      | 0.62 B                           | 0.18 B                | 6.7                         |
| cadmium                             | ND (0.56 U)                  | ND (0.46 U)                   | 2.0 J                          | ND (0.74 U)                    | ND (0.71 U)                      | ND (0.49 U)                      | ND (0.51 U)           | ND (0.46 U)                 |
| calcium                             | 3100                         | 900                           | 4200                           | 13000                          | 15000                            | 7400                             | 28000                 | 7400                        |
| chromium                            | 2.8 J                        | 4.0 J                         | 27                             | 16                             | 31                               | 9.6                              | 5.7                   | 8.6                         |
| cobalt                              | 1.3 B                        | 2.2 B                         | 7.1 B                          | 4.8 B                          | 6.4 B                            | 3.2 B                            | 2.5 B                 | 7.5 B                       |
| copper                              | 3.1 B                        | 3.7 B                         | 55 J                           | 13 J                           | 48                               | 17                               | 6.8                   | 32                          |
| iron                                | 3200                         | 4900                          | 3500                           | 10000                          | 5100                             | 8200                             | 7100                  | 6600                        |
| lead                                | R                            | R                             | 57                             | 11                             | 62                               | 35                               | 14                    | 7.8                         |
| magnesium                           | 1400                         | 500 B                         | 2100                           | 5800                           | 4000                             | 1700                             | 6800                  | 1400                        |
| manganese                           | 78 J                         | 89 J                          | 43                             | 65 J                           | 64                               | 150                              | 180                   | 51                          |
| mercury                             | ND (0.050 U)                 | ND (0.060 U)                  | 0.17 J                         | 0.11 BJ                        | 0.24                             | 0.23                             | ND (0.040 U)          | 0.060 B                     |
| nickel                              | 2.8 B                        | 3.7 B                         | 9.0 B                          | 13                             | 17                               | 7.6                              | 5.4 B                 | :2                          |
| potassium                           | 220 B                        | ND (120 U)                    | ND (200 U)                     | 640 B                          | 270 B                            | 360 B                            | 230 B                 | 760 B                       |
| selenium                            | ND (0.22 U)                  | ND (0.24 U)                   | ND (0.43 U)                    | 1.2 B                          | 0.40 B                           | 1.1 BJ                           | ND (0.17 U)           | 0.81 B                      |
| silver                              | ND (1.1 U)                   | ND (0.90 U)                   | ND (1.5 U)                     | ND (1.4 U)                     | ND (1.4 U)                       | ND (0.96 U)                      | ND (1.0 U)            | ND (0.91 U)                 |
| sodium                              | ND (190 U)                   | ND (160 U)                    | ND (260 U)                     | 360 B                          | ND (240 U)                       | ND (170 U)                       | ND (170 U)            | 330 B                       |
| thallium                            | ND (0.38 U)                  | ND (0.41 U)                   | ND (0.74 U)                    | ND (0.65 U)                    | ND (0.50 U)                      | ND (0 62 U)                      | ND (0.45 U)           | 0.77 B                      |
| vanadium                            | 3.7 B                        | 6.3 B                         | 15                             | 33                             | 12 B                             | 13                               | 7.2 B                 | 32                          |
| zinc                                | 8.3                          | 13                            | 270                            | R                              | 190                              | 60                               | 20                    | 13                          |
| cyanide                             | ND (0.080 U)                 | ND (0.10 U)                   | 1.7                            | ND (0.12 U)                    | 1.2                              | ND (0.090 U)                     | ND (0.070 U)          | 0.53 B                      |

See Notes on Page 10

1

.....

# ALL'ED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

# ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED TAL RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| Location<br>Depth (ft) | MA-2<br>0.00-1.50 | MA-2<br>3.00-4.50 | MA-3<br>0.00-1.50                     | MA-3<br>3.00-4.50 | MA-4 <sup>2</sup><br>0.00-1.50 | MA-4<br>3.00-4.50 | MA-5<br>0.00-1.50 | MA-5<br>3.00-4.50 |
|------------------------|-------------------|-------------------|---------------------------------------|-------------------|--------------------------------|-------------------|-------------------|-------------------|
| Sample ID              | A60067            | A60068            | A60069                                | A60070            | A60071                         | A60072            | A60073            | A60074            |
| Pilot Study Area       | (Cont'd.)         |                   | · · · · · · · · · · · · · · · · · · · |                   |                                |                   |                   |                   |
| aluminum               | 11000             | 12000             | 13000                                 | 1300              | 3800                           | 5000              | 10000             | 19000             |
| antimony               | ND (39 U)         | ND (26 U)         | ND (13 U)                             | ND (19 U)         | ND (9.9 U)                     | ND (8.4 U)        | ND (15 U)         | ND (27 U)         |
| arsenic                | 13                | 14                | 6.3                                   | 11                | 7.9                            | 9.5               | 17                | 13                |
| barium                 | 560               | 220               | 300                                   | 330               | 90                             | 150               | 280               | 400               |
| beryllium              | ND (0.70 U)       | 0.53 B            | 0.69 B                                | 0.69 B            | 1.8                            | 1.7               | 0.75 B            | 0.79 B            |
| cadmium                | ND (2.2 U)        | 3.8               | 0.97 B                                | 1.8 B             | ND (0.56 U)                    | ND (0.47 U)       | 2.4               | 3.2               |
| calcium                | 49000             | 21000             | 41000                                 | 63000             | 3400                           | 12000             | 54000             | 20000             |
| chromium               | 94                | 100               | 21                                    | 31                | 5.9                            | 22                | 56                | 130               |
| cobalt                 | 10 B              | 7.4 B             | 7.4 B                                 | 6.8 B             | 5.0 B                          | 5.9 B             | 6.2 B             | 8.9 B             |
| copper                 | 81                | 140               | 24                                    | 53                | 17                             | 150               | 58                | 160               |
| iron                   | 66000             | 10000             | 17000                                 | 14000             | 4000                           | 13000             | 22000             | 13000             |
| lead                   | 440               | 710               | 63                                    | 170               | 10                             | 66                | 280               | 930               |
| magnesium              | 2100 B            | 3200              | 5600                                  | 3400              | 450 B                          | 4000              | 6100              | 3500              |
| manganese              | 310               | 130               | 700                                   | 280               | 31                             | 96                | 370               | 290               |
| mercury                | 2.1               | 6.6               | 0.84                                  | 3.1               | ND (0.060 U)                   | 0.35              | 1.6               | 2.1               |
| nickel                 | 19 B              | 9.4 B             | 14                                    | 11 B              | 9.9                            | 24                | 12 B              | 14 B              |
| potassium              | ND (580 U)        | 1100 B            | 830 B                                 | 700 B             | 400 B                          | 420 B             | 630 B             | 1100 B            |
| selenium               | 0.73 B            | 1.1 B             | 0.41 B                                | 1.1 B             | 0.86 B                         | 1.8               | 0.78 B            | 0.98 B            |
| silver                 | ND (4.3 U)        | ND (2.8 U)        | ND (1.5 U)                            | ND (2.0 U)        | ND (1.1 U)                     | 1.5 B             | ND (1.6 U)        | ND (3.0 U)        |
| sodium                 | ND (730 U)        | ND (480 U)        | ND (250 U)                            | ND (350 U)        | ND (190 U)                     | 180 B             | ND (280 U)        | ND (510 U)        |
| thallium               | ND (1.6 U)        | ND (1.6 U)        | ND (0.54 U)                           | ND (0.76 U)       | ND (0.58 U)                    | ND (0.54 U)       | ND (0.73 U)       | ND (1.1 U)        |
| vanadium               | 25 B              | 14 B              | 28                                    | 22                | 21                             | 19                | 22                | 22 B              |
| zinc                   | 480               | 270               | 120                                   | 140               | 31                             | 130               | 410               | 390               |
| cyanide                | 0.51 B            | 1.0 B             | ND (0.13 U)                           | 0.38 B            | ND (0.12 U)                    | 0.17 B            | 0.90 B            | 1.0 B             |

See Notes on Page 10

# ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

# ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED TAL RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

| r                |             | ſ                  |             |             |              |
|------------------|-------------|--------------------|-------------|-------------|--------------|
| Location         | MA-5 (Dup)  | BMP-2 <sup>2</sup> | BMP-2       | BMP-12      | BMP-12       |
| Depth (ft)       | 3.00-4.50   | 0.00-1.00          | 3.00-4.00   | 0.00-1.00   | 3.00-4.00    |
| Sample ID        | A60075      | A60621             | A60624      | A60616      | A60619       |
| Pilot Study Area | (Cont'd.)   | Former Byran       | t Mill Pond |             |              |
| aluminum         | 19000       | 11000              | 11000       | 17000       | 5500         |
| antimony         | ND (31 U)   | ND (17 U)          | ND (13 U)   | ND (23 U)   | ND (32 U)    |
| arsenic          | 13          | 12 J               | 9.5         | 26 J        | 11 J         |
| barium           | 310         | 120                | 850         | 180         | 110 B        |
| beryllium        | 0.67 B      | 0.40 B             | 0.37 B      | 0.56 B      | ND (0.58 U)  |
| cadmium          | 3.5         | 3.6                | 3.7         | 6.9         | 17           |
| calcium          | 26000       | 3000               | 27000       | 19000       | 8300         |
| chromium         | 150         | 120                | 210         | 62          | 98           |
| cobalt           | 10 B        | 3.5 B              | 11 B        | 7.1 B       | ND (3.5 U)   |
| copper           | 190         | 140                | 280         | 130         | 130          |
| iron             | 14000       | 5600               | 8800        | 24000       | 8600         |
| lead             | 1100        | 1200               | 1400        | 340         | 610          |
| magnesium        | 3900        | 1100 B             | 2300        | 6400        | 2200 B       |
| manganese        | 290         | 51                 | 170         | 600         | 180          |
| mercury          | 0.25 B      | ND (0.080 U)       | 2.6         | ND (0.10 U) | 4.5          |
| nickel           | 14 B        | 5.3 B              | 11          | 18 B        | 6.0 B        |
| potassium        | 474 B       | 260 B              | 280 B       | 630 B       | ND (480 U)   |
| selenium         | 0.91 B      | 0.83 BJ            | 1.6 B       | 1.4 BJ      | 1.4 BJ       |
| silver           | ND (3.4 U)  | ND (1.8 U)         | 2.1 B       | ND (2.5 U)  | ND (3.5 U)   |
| sodium           | ND (580 U)  | ND (310 U)         | ND (250 U)  | ND (430 U)  | ND (610 U)   |
| thallium         | ND (0.96 U) | ND (0.89 U)        | ND (1.1 U)  | ND (1.3 U)  | ND (1.5 U)   |
| vanadium         | 23 B        | 19                 | 16          | 28          | 11 B         |
| zinc             | 400         | 260                | 470         | 540         | 840          |
| cyanide          | 1.4 B       | <u>0.70 B</u>      | 6.1         | ND (0.18 U) | <u>1.2 B</u> |

See Notes on Page 10

6

,

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED TAL RESULTS FOR RESIDUALS/SOIL SAMPLES<sup>1</sup> (mg/kg)

#### Notes:

<sup>1</sup> Showing only the results for analytes detected.

<sup>2</sup> MS/MSD of this sample was analyzed.

ND Not Detected.

Notes Explaining Data Qualifiers:

# B-The reported value was obtained from a reading less than the contract required detection limit (CRDL) but greater than or equal to the instrument detection limit (IDL).

J - The analyte was positively identified; however, the associated numerical value is an estimated concentration only.

# - R - The sample results are rejected

U-The analyte was analyzed for but not detected. The associated value is the analyte CRDL.

UJ - The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.

# ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC., OPERABLE UNIT RANGE OF DETECTED CONCENTRATIONS FOR TAL ANALYTES IN NATIVE SOIL AND RESIDUALS

•

|                                        | Range of Concentrations (mg/kg) |              |  |  |  |  |  |
|----------------------------------------|---------------------------------|--------------|--|--|--|--|--|
| Analyte                                | Native Soil                     | Residuals    |  |  |  |  |  |
| Monarch HRDL <sup>1</sup>              |                                 |              |  |  |  |  |  |
| aluminum                               | 430-13,000                      | 4,500-8,900  |  |  |  |  |  |
| antimony                               | ND-25                           | ND           |  |  |  |  |  |
| arsenic                                | 1.5-44                          | 1.3-3.2      |  |  |  |  |  |
| barium                                 | 31-610                          | 25-550       |  |  |  |  |  |
| beryllium                              | ND-0.95                         | ND-0.17      |  |  |  |  |  |
| muim                                   | ND                              | ND-1.3       |  |  |  |  |  |
| calcium                                | 14,000-140,000                  | 860-30,000   |  |  |  |  |  |
| chromium                               | 4.1-46                          | 7.4-100      |  |  |  |  |  |
| cobalt                                 | ND-6.9                          | ND-4.0       |  |  |  |  |  |
| copper                                 | 3.4-77                          | 25-77        |  |  |  |  |  |
| cyanide                                | ND-1.8                          | ND-15        |  |  |  |  |  |
| iron                                   | 5,300-27,000                    | 1,000-5,100  |  |  |  |  |  |
| lead                                   | 0.33-120                        | 15-550       |  |  |  |  |  |
| magnesium                              | 1,700-9,800                     | 390-5,500    |  |  |  |  |  |
| manganese                              | 65-360                          | 23-200       |  |  |  |  |  |
| mercury                                | ND-3.3                          | 0.06-2.0     |  |  |  |  |  |
| nickel                                 | 2.2-14                          | 3.7-9.1      |  |  |  |  |  |
| potassium                              | ND-560                          | ND-420       |  |  |  |  |  |
| selenium                               | ND -0.95                        | ND-0.43      |  |  |  |  |  |
| sodium                                 | ND                              | ND-760       |  |  |  |  |  |
| vanadium                               | 4.0-28                          | 4.9-10       |  |  |  |  |  |
| Zinc                                   | 5.7-180                         | 96-450       |  |  |  |  |  |
|                                        | 5.7 - 100                       | 30-400       |  |  |  |  |  |
| Former Bryant Mill Pond <sup>2,8</sup> | C 500 17 000                    | 11.000       |  |  |  |  |  |
| aluminum                               | 5,500-17,000                    | 11,000       |  |  |  |  |  |
| arsenic                                | 11-26                           | 9.5          |  |  |  |  |  |
| barium                                 | 110-180                         | 850          |  |  |  |  |  |
| beryllium                              | ND-0.56                         | 0.37         |  |  |  |  |  |
| cadmium                                | 3.6-17                          | 3.7          |  |  |  |  |  |
| calcium                                | 3,000-19,000                    | 27,000       |  |  |  |  |  |
| chromium                               | 62-120                          | 210          |  |  |  |  |  |
| cobait                                 | ND-7.1                          | 11           |  |  |  |  |  |
| copper                                 | 130-140                         | 280          |  |  |  |  |  |
| cyanide                                | ND-1.2                          | 6.1          |  |  |  |  |  |
| iron                                   | 5,600-24,000                    | 8,800        |  |  |  |  |  |
| lead                                   | 340-1,200                       | 1,400        |  |  |  |  |  |
| magnesium                              | 1,100-6,400                     | 2,300        |  |  |  |  |  |
| manganese                              | 51-600                          | 170          |  |  |  |  |  |
| mercury                                | ND-4.5                          | 2.6          |  |  |  |  |  |
| nickel                                 | 5.3-18                          | 11           |  |  |  |  |  |
| potassium                              | ND-630                          | 280          |  |  |  |  |  |
| selenium                               | 0.83-1.4                        | 1.6          |  |  |  |  |  |
| silver                                 | ND                              | 2.1          |  |  |  |  |  |
| vanadium                               | 11-28                           | 16           |  |  |  |  |  |
| zinc                                   | 260840                          | 470          |  |  |  |  |  |
| Bryant HRDL <sup>3</sup>               |                                 |              |  |  |  |  |  |
| aluminum                               | 5,000-8,700                     | 7,100-15,000 |  |  |  |  |  |
| antimony                               | ND-7.7                          | ND           |  |  |  |  |  |
| arsenic                                | 1.5-5.6                         | 0.85-3.2     |  |  |  |  |  |
| barium                                 | 61-390                          | 120-240      |  |  |  |  |  |
| beryllium                              | 0.18-0.46                       | ND           |  |  |  |  |  |

See Notes on Page 4

2597840LOC Revision No.: 1

.

# ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

# ALLIED PAPER, INC., CPERABLE UNIT RANGE OF DETECTED CONCENTRATIONS FOR TAL ANALYTES IN NATIVE SOIL AND RESIDUALS

| Analyte                               | Range of Concentrations (mg/kg) |              |  |
|---------------------------------------|---------------------------------|--------------|--|
|                                       | Native Soil                     | Residuals    |  |
| Bryant HRDL <sup>3</sup> (Cont'd.)    |                                 |              |  |
| cadmium                               | ND-0.91                         | ND           |  |
| calcium                               | 2,400-7,100                     | 7,400-11,000 |  |
| chromium                              | 8.4-25                          | 57-150       |  |
| cobalt                                | 1.2-5.7                         | 2.6-9.2      |  |
| copper                                | 1.8-24                          | 50-88        |  |
| cvanide                               | ND-0.16                         | 1.1-82       |  |
| iron                                  | 7,700-21,000                    | 820-2,600    |  |
| lead                                  | 4.0-22                          | 300-810      |  |
| magnesium                             | 1,600-2,800                     | 900-2.000    |  |
| manganese                             | 45-3,200                        | 16-53        |  |
| mercury                               | ND-0.070                        | 1.0-4.8      |  |
| nickel                                | 3.1-18                          | ND-4.4       |  |
| potassium                             | 290-910                         | ND-400       |  |
| selenium                              | ND-0.35                         | ND           |  |
| sodium                                | ND-270                          | ND-1,200     |  |
| vanadium                              | 11-28                           | 11-19        |  |
| zinc                                  | 17                              | 250-550      |  |
| FRDLs <sup>4</sup>                    |                                 |              |  |
| aluminum                              | 2,000-5,600                     | 3,000-15,000 |  |
| arsenic                               | 0.7-24                          | 0.5-1.3      |  |
| barium                                | 11-51                           | 13-44        |  |
|                                       |                                 | ND           |  |
| beryllium                             | ND-0.22                         |              |  |
|                                       | 20,000-120,000                  | 2,500-29,000 |  |
| chromium                              | 4.8-15                          | 6.2-14       |  |
| cobait                                | 1.6-4.1                         | ND           |  |
| copper                                | 5.4-15                          | 18-95        |  |
| cyanide                               | ND0.70                          | ND           |  |
| ron                                   | 3,100-16,000                    | 1,600-2,400  |  |
| lead                                  | 2.5-31                          | 4.9-19       |  |
| magnesium                             | 11,000-65,000                   | 560-2,400    |  |
| manganese                             | . 84–620                        | 8.8-40       |  |
| mercury                               | ND-0.080                        | ND           |  |
| nickel                                | 4.1-9.7                         | ND - 5.0     |  |
| potassium                             | 340-1,100                       | ND-170       |  |
| selenium                              | ND-0.48                         | ND-0.29      |  |
| vanadium                              | 6.2-22                          | 4.9-19       |  |
|                                       | 14-36                           | 31-220       |  |
| Former Type III Landfill <sup>5</sup> |                                 |              |  |
| aluminum                              | 6,500                           | 7,400        |  |
| arsenic                               | 2.2                             | 4.5          |  |
| barium                                | 41                              | 180          |  |
| beryllium                             | 0.24                            | ND           |  |

See Notes on Page 4

.

. ---

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC., OPERABLE UNIT RANGE OF DETECTED CONCENTRATIONS FOR TAL ANALYTES IN NATIVE SOIL AND RESIDUALS

|                                             | Range of Concentrations (mg/kg) |              |
|---------------------------------------------|---------------------------------|--------------|
| Analyte                                     | Native Soil                     | Residuals    |
| Former Type III Landfill <sup>s</sup> (Cont | 'd.)                            |              |
| calcium                                     | 1,300                           | 48,000       |
| chromium                                    | 9.5                             | 37           |
| cobait                                      | 3.9                             | 3.6          |
| copper                                      | 4.1                             | 31           |
| cyanide                                     | 0.070                           | 1.8          |
| ron                                         | 8,500                           | 9,000        |
| ead                                         | R                               | 150          |
| mangesium                                   | 1,500                           | 17.000       |
| manganese                                   | 200                             | 190          |
| mercury                                     | 0.070                           | 0.75         |
| nickel                                      | 6.6                             | 8.3          |
| potassium                                   | 300                             | 430          |
| selenium                                    | 0.22                            | ND           |
| vanadium                                    | 15                              | 17           |
| ZINC                                        | 18                              | 74           |
| Western Disposal Area <sup>6</sup>          |                                 |              |
| aluminum                                    | 940-10,000                      | 6,600-16,000 |
| antimony                                    | ND-14                           | ND-15        |
| arsenic                                     | 1.1-15                          | 1.3-5.9      |
| barium                                      | ND-100                          | ND-170       |
| beryllium                                   | ND-0.62                         | ND-1.2       |
| cadmium                                     | ND-0.61                         | ND-2.0       |
| calcium                                     | 900-79.000                      | 920-15,000   |
| chromium                                    | 2.8-16                          | 8.7-55       |
| cobait                                      | 0.93-6.8                        | ND-8.4       |
| copper                                      | 2.2-17                          | 28-62        |
| cyanide                                     | ND-0.42                         | ND-2.1       |
| iron                                        | 3,200-58,000                    | 1,700-8,600  |
| ead                                         | 1.4-35                          | 7.8-120      |
| magnesium                                   | 510-29,000                      | ND-5,000     |
| manganese                                   | 65-500                          | 11-370       |
| mercury                                     | ND-0.23                         | ND-1.3       |
| nickel                                      | 2.8-15                          | ND-17        |
| potassium                                   | ND-1,100                        | ND-270       |
| selenium                                    | ND-1.2                          | ND-0.4       |
| sodium                                      | ND-360                          | ND-560       |
| vanadium                                    | 3.7-39                          | 11-19        |
| zinc                                        | 8.3-60                          | 49-270       |
| Pilot Study Area <sup>7,8</sup>             |                                 |              |
| aluminum                                    | 1,300-19,000                    | NA           |
| arsenic                                     | 3.5-65                          | NA           |
| barium                                      | 15-1,000                        | NA           |
| beryllium                                   | ND-6.7                          | NA           |
| cadmium                                     | ND-3.8                          | NA           |
| calcium                                     | 3,400-63,000                    | NA           |
| chromium                                    | 5.7-140                         | NA           |

See Notes on Page 4

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC., OPERABLE UNIT RANGE OF DETECTED CONCENTRATIONS FOR TAL ANALYTES IN NATIVE SOIL AND RESIDUALS

|                                           | Range of C   | oncentration | s (mg/kg) |   |
|-------------------------------------------|--------------|--------------|-----------|---|
| Analyte                                   | Native Soil  | 1            | Residuals |   |
| Pilot Study Area <sup>7,8</sup> (Cont'd.) |              |              |           |   |
| cobalt                                    | 2.5-10       |              | NA        |   |
| copper                                    | 6.8-180      | -            | NA        | ; |
| cyanide                                   | ND-1.2       |              | NA        |   |
| iron                                      | 4,000-66,000 |              | NA        |   |
| lead                                      | 7.8-1,000    |              | NA        |   |
| magnesium                                 | 450-6.800    |              | NA        |   |
| manganese                                 | 31-700       |              | NA        |   |
| mercury                                   | ND-6.6       |              | NA        |   |
| nickel                                    | 5.4-24       | 1 -          | NA        |   |
| potassium                                 | ND-1,100     |              | NA        | , |
| selenium                                  | ND-1.8       |              | NA        | - |
| silver                                    | ND-1.5       |              | NA        | 1 |
| sodium                                    | ND-330       |              | NA        |   |
| thallium                                  | ND-0.77      |              | NA        | 1 |
| vanadium                                  | 7.2-32       |              | NA        |   |
| zinc                                      | 13-480       |              | NA        |   |

## Notes:

. .

<sup>1</sup> Includes the results of samples from MLSS-1 through MLSS-5, MW-125B, and MW-126A.

<sup>2</sup> Includes the results of samples from BMP-2 and BMP-12.

<sup>3</sup> Includes the results of samples from BHDL-22, BHDL-123, and MW-121B.

<sup>4</sup> Includes the results of samples from DLHB-1 through DLHB-3.

<sup>s</sup> includes the results of samples from FLF-1.

<sup>6</sup> Includes the results of samples from WA-1 through WA-8, B-7B, MW-8A, and MW-120B.

<sup>7</sup> Includes the results of samples from MA-1 through MA-5.

<sup>8</sup> Native soils also include sufficial soil samples.

NA - Not applicable.

ND - Not detected.

R - Sample results are rejected.

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED FILTERED TAL AND GENERAL GROUNDWATER QUALITY RESULTS FOR GROUNDWATER/LEACHATE SAMPLES<sup>1</sup>

| Location<br>Sample ID | MW-11<br>A66008 | MW-12<br>A66064                       | MW-12R<br>A66028 | MW-22A<br>A66017 | MW-22B<br>A66018 | MW-23<br>A66034 | MW-24<br>A66009 |
|-----------------------|-----------------|---------------------------------------|------------------|------------------|------------------|-----------------|-----------------|
| Bryant HRDL           |                 | 1                                     | 1 100020         | 1 700011         | 1                |                 | 1 10003         |
| TAL Parameters (ug)   | A \ 3           |                                       |                  |                  |                  |                 |                 |
| IAL Falameters log    |                 | T                                     | Ϊ                | 1                | T                |                 | T               |
| aluminum              | ND(45 U)        | ND(45 U)                              | ND(45 U)         | ND(45 U)         | ND(45 U)         | ND(45 U)        | ND(45 U)        |
| arsenic               | ND(1.2 Ú)       | 15                                    | 34 J             | 6.6 B            | 3.0 B            | ND(0.99 U)      | 24              |
| barium                | 67 B            | 280                                   | 220              | 400              | 100 B            | 210             | 500             |
| bervilium             | ND(0.30 U)      | ND(0.30 U)                            | ND(0.30 U)       | ND(0.30 U)       | ND(0.30 U)       | ND(0.30 U)      | ND(0.30 U)      |
| cadmium               | ND(3.3 U)       | ND(3.3 U)                             | ND(3.3 U)        | 4.5BJ            | ND(3.3 U)        | ND (3.3 U)      | 4.0 BJ          |
| calcium               | 71000           | 160000                                | 140000           | 220000           | 120000           | 120000          | 130000          |
| chromium              | ND(2.5 U)       | ND(2.5 U)                             | ND(2.5 U)        | ND(2.5 U)        | ND(2.5 U)        | ND (2.5 U)      | ND(2.5 U)       |
| cobalt                | ND(4.9 U)       | ND(4.9 U)                             | ND(4.9 U)        | ND(4.9 U)        | ND(4.9 U)        | ND (4.9 U)      | ND(4.9 U)       |
| copper                | ND(3.7 U)       | 7.3B                                  | ND(3.7 U)        | ND(3.7 U)        | ND(3.7 U)        | ND (3.7 U)      | ND(3.7 U)       |
| iron                  | 340             | 14000                                 | 8000             | 12000            | 2300             | 6300            | 26000           |
| lead                  | 1.1 B           | ND(0.79 UJ)                           | 1.0 BJ           | ND(0.80 U)       | ND(0.80 U)       | 0.98 BJ         | 0.90 B          |
| magnesium             | 33000           | 50000                                 | 62000            | 20000            | 34000            | 38000           | 53000           |
| manganese             | 55              | 130                                   | 75               | 1100             | 170              | 130             | 250             |
| mercury               | ND(0.070 U)     | ND(0.070 U)                           | ND(0.070 U)      | ND(0.070 U)      | ND(0.070 U)      | ND (0.070 U)    | ND(0.070 U      |
| nickel                | 11 B            | 15 B                                  | 7.0 B            | 7.5 B            | 18 B             | 5.2 B           | ND(4.1 U)       |
| potassium             | 1700 B          | 3100 B                                | 3000 B           | 3800 B           | 1300 B           | 1300 B          | 1500 B          |
| selenium              | ND(0.79 U)      | 2.8 BJ                                | 1.1 BJ           | ND(0.80 UJ)      | ND(0.80 UJ)      | ND (0.79 UJ)    | ND(0.80 UJ      |
| sodium                | 22000           | 25000                                 | 69000            | 14000            | 11000            | 25000           | 34000           |
| vanadium              | ND(3.3 U)       | ND (3.3 U)                            | ND(3.3 U)        | ND(3.3 U)        | ND(3.3 U)        | ND (3.3 U)      | ND(3.3 U)       |
| zinc                  | 220             | 1500                                  | 33               | 170              | 19 B             | 680             | 920             |
|                       |                 | · · · · · · · · · · · · · · · · · · · |                  |                  | •                |                 |                 |
| eneral Parameters     | (mg/L)          | r                                     | T                | <b>_</b>         | Y                | <b>.</b>        |                 |
| bicarbonate           | 280             | 600                                   | 670              | 610              | 320              | 420             | 560             |
| chloride              | 78              | 44                                    | 49               | 12               | 97               | 37              | 78              |
| COD                   | 5.2             | 18                                    | 28               | 21               | <5               | 26              | 22              |
| nitrate               | <0.010 J        | 0.040                                 | 2.5J             | 0.48.1           | 15J              | 0.060J          | <0.010J         |
| sulfate               | 59              | 11                                    | 10               | 73               | 67               | 16              | 8.0             |
| TOC                   | 1.0             | 8.2                                   | 9.8              | 12               | 0.70             | 4.0             | 5.9             |
| TSS                   | 13              | 29                                    | 39               | 26               | 44               | 35              | 48              |

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED FILTERED TAL AND GENERAL GROUNDWATER QUALITY RESULTS FOR GROUNDWATER/LEACHATE SAMPLES<sup>1</sup>

| Location           | MW-25       | MW-26 <sup>2</sup> | MW-121A                                 | MW-121B     | MW-123A     | MW-123B     | RIVULET2   |
|--------------------|-------------|--------------------|-----------------------------------------|-------------|-------------|-------------|------------|
| Sample ID          | A66027      | A66015             | A66013                                  | A66014      | A66025      | A66026      | A66007     |
| Bryant HRDL (Co    | nt'd )      |                    |                                         |             |             |             |            |
| TAL Parameters (ug |             |                    |                                         |             | <u> </u>    |             |            |
|                    |             | T                  |                                         | 1           | [           | T           | 1 · ·      |
| aluminum           | ND(45 U)    | ND(45 U)           | ND(45 U)                                | ND(45 U)    | ND(45 U)    | ND(45 U)    | ND(45 U)   |
| arsenic            | 38          | 2.2 B              | 130                                     | 20          | 36          | 2.4 B       | 1.7 B      |
| barium             | 133 B       | 89 B               | 360                                     | 220         | 170 B       | 140 B       | 96 B       |
| beryllium          | ND(0.30 U)  | ND(0.30 U)         | ND(0.30 U)                              | ND(0.30 U)  | ND(0.30 U)  | ND(0.30 U)  | ND(0.30 U) |
| cadmium            | ND(3.3 U)   | ND(3.3 U)          | ND(3.3 U)                               | ND(3.3 U)   | ND(3.3 U)   | ND(3.3 U)   | ND(3.3 U)  |
| calcium            | 120000      | 120000             | 150000                                  | 150000      | 120000      | 110000      | 120000     |
| chromium           | ND(2.5 U)   | ND(2.5 U)          | ND(2.5 U)                               | ND(2.5 U)   | ND(2.5 U)   | ND(2.5 U)   | ND(2.5 U)  |
| cobalt             | ND(4.9 U)   | ND(4.9 U)          | ND(4.9 U)                               | ND(4.9 U)   | ND(4.9 U)   | ND(4.9 U)   | ND(4.9 U)  |
| copper             | ND(3.7 U)   | ND(3.7 U)          | ND(3.7 U)                               | ND(3.7 U)   | ND(3.7 U)   | ND(3.7 U)   | ND(3.7 U)  |
| iron               | 7000        | 1300               | 33000                                   | 29000       | 21000       | 1700        | 1500       |
| lead               | ND(0.79 UJ) | ND(0.79 U)         | ND(0.80 UJ)                             | ND(0.80 U)  | ND(0.80 U)  | ND(0.80 U)  | ND(0.79 U) |
| magnesium          | 51000       | 31000              | 66000                                   | 59000       | 14000       | 31000       | 32000      |
| manganese          | 52          | 220                | 340                                     | 340         | 1000        | 120         | 300        |
| mercury            | ND(0.070 U) | ND(0.070 U)        | ND(0.070 U)                             | ND(0.070 U) | ND(0.070 U) | ND(0.070 U) | R          |
| nickel             | 53          | ND(4.1 U)          | ND(4.1 U)                               | 130         | 13 B        | 4.7 B       | ND(4.1-U)  |
| potassium          | 12000       | ND(730 U)          | 1400B                                   | 3500 B      | 3700 B      | 1100 B      | ND(730 U)  |
| selenium           | ND(0.79 UJ) | ND(0.79 UJ)        | ND(0.80 UJ)                             | ND(0.80 U)  | ND(0.80 U)  | ND(0 B0 U)  | ND(0.79 UJ |
| sodium             | 33000       | 22000              | 66000                                   | 21000 J     | 16000       | 5000 J      | 23000      |
| vanadium           | ND(3.3 U)   | ND(3.3 U)          | ND(3.3 U)                               | ND(3.3 U)   | ND(3.3 U)   | ND(33U)     | ND(3.3 U)  |
| zinc               | 3300        | 270                | 31                                      | 7.5 B       | 78          | 29          | 4.2B       |
|                    | <u></u>     |                    |                                         |             |             | di si sa sa | <u> </u>   |
| General Parameters | s (mg/L)    |                    | • · · · · · · · · · · · · · · · · · · · | <b></b>     |             |             | •          |
| ••••               |             | 010                |                                         | 5.00        | 000         |             | 000        |
| bicarbonate        | 600         | 310                | 680                                     | 540         | 380         | 300         | 320        |
| chloride           | 25          | 82                 | 70                                      | 47          | 14          | 34          | 82         |
| COD                | 42          | <5.0               | 77                                      | 170         | 44          | 7           | 5.2        |
| nitrate            | 1.3J        | 0.010J             | 2.2J                                    | <0.010J     | 0.35J       | 0.39J       | <0.010J    |
| sulfate            | 7.7         | 91                 | 11                                      | 5.8         | 5.7         | 65          | 74         |
| TOC                | 13          | 0.80               | NA                                      | 200         | 15          | 0.80        | 0.70       |
| TSS                | 46          | 6.5                | 44                                      | 69          | 49          | 6.2         | 50         |

:

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED FILTERED TAL AND GENERAL GROUNDWATER QUALITY RESULTS FOR GROUNDWATER/LEACHATE SAMPLES<sup>1</sup>

| Location          | MW-124A           | MW-124B      | MW-125P     | MW-125A                               | MW-1258     | MW-126A     | MW-1268    |
|-------------------|-------------------|--------------|-------------|---------------------------------------|-------------|-------------|------------|
| Sample ID         | A66003            | A66004       | A66016      | A66005                                | A66006      | A66010      | A66011     |
| Monarch HRDL      |                   |              |             |                                       |             |             |            |
| AL Parameters (up | 2/L) <sup>3</sup> | T            |             | · · · · · · · · · · · · · · · · · · · |             |             | <b>1</b>   |
| aluminum          | ND(45 U)          | ND(45 U)     | 1100        | ND(45 U)                              | ND(45 U)    | ND(45 U)    | ND(45 U)   |
| arsenic           | ND(1.2 U)         | ND(1.2 U)    | 26          | ND(1.2 U)                             | 4.8 B       | ND(1.2 U)   | 1.2 B      |
| barium            | 67 B              | 80 B         | 230         | 270                                   | 100 B       | 930         | 190 B      |
| bervilium         | ND(0.30 U)        | ND(0.30 U)   | ND(0.30 U)  | ND(0.30 U)                            | ND(0.3 U)   | ND(0.30 U)  | ND(0.30 U) |
| cadmium           | ND(3.3 U)         | ND(3.3 U)    | ND(3.3 U)   | 3.6 BJ                                | ND(3.3 U)   | R A         | ND(3.3 U)  |
| calcium           | 150000            | 140000       | 130000      | 160000                                | 130000      | 280000      | 140000     |
| chromium          | ND(2.5 U)         | ND(2.5 U)    | 7.1 B       | ND(2.5 U)                             | ND(2.5 U)   | ND(2.5 U)   | ND(2.5 U)  |
| cobalt            | ND(4.9 U)         | ND(4.9 U)    | ND(4.9 U)   | ND(4.9 U)                             | ND(4.9 U)   | ND(4.9 U)   | ND(4.9 U)  |
| copper            | ND(3.7 U)         | ND(3.7 U)    | ND(3.7 U)   | ND(3.7 U)                             | ND(3.7 U)   | ND(3.7 U)   | ND(3.7 U)  |
| iron              | 64 B              | 200          | 86000       | 640                                   | 1700        | 25000       | 2600       |
| lead              | 1.7 BJ            | ND (0.80 UJ) | ND(0.80 U)  | ND(0.79 UJ)                           | 1.0 BJ      | ND(0.80 U)  | ND(0.80 U) |
| magnesium         | 35000             | 42000        | 17000       | 39000                                 | 36000       | 45000       | 37000      |
| manganese         | 46                | 300          | 1900        | 470                                   | 300         | 1700        | 220        |
| mercury           | ND(0.070 U)       | ND(0.070 U)  | ND(0.070 U) | ND(0.070 U)                           | ND(0.070 U) | ND(0.070 U) | ND(0.070 U |
| nickel            | 120               | 23 B         | 20 B        | ND(4.1 U)                             | ND(4.1 U)   | ND(4.1 U)   | ND(4.1 U)  |
| potassium         | 3300 B            | 8700         | 2600 B      | 2600 B                                | 1400 B      | 5200        | 3800B      |
| seienium          | 2.3 BJ            | 1.2 BJ       | ND(0.80 U)  | ND(0.79 UJ)                           | ND(0.80 UJ) | ND(0.80 UJ) | ND(0.60 UJ |
| sodium            | 76000             | 130000       | 24000       | 59000                                 | 51000       | 48000       | 34000      |
| vanadium          | ND(3.3 U)         | ND(3.3 U)    | ND(3.3 U)   | ND(3.3 U)                             | ND(3.3 U)   | ND(3.3 U)   | ND(3.3 U)  |
| zinc              | 180               | 7.7 B        | ND(3.1 U)   | 3.4 B                                 | 17 B        | 110         | ND(3.1 U)  |
|                   | (mail)            |              |             |                                       | <u></u>     |             |            |
| eneral Parameters |                   |              | <u> </u>    | 1                                     | T           | 1           | 1          |
| bicarbonate       | 390               | 400          | 380         | 480                                   | 350         | 820         | 370        |
| chloride          | 170               | 210          | 13          | 140                                   | 141         | 93          | 110        |
| COD               | 12                | <5.0         | 930         | 8.3                                   | <5.0        | 240         | 8.4        |
| nitrate           | 9.0J              | 2.5J         | 2.6J        | 0.020J                                | 0.14J       | 0.90J       | <0.010J    |
| sulfate           | 70                | 160          | 3.4         | 54                                    | 85          | 8.9         | 59         |
| TOC               | 1.2               | 1.3          | 400         | 2.2                                   | 2.3         | 170         | 6.2        |
| TSS               | 6.4               | 28           | 32          | 2.1                                   | 1.9         | 46          | 6.1        |

See Notes on Page 10

•

.

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED FILTERED TAL AND GENERAL GROUNDWATER QUALITY RESULTS FOR GROUNDWATER/LEACHATE SAMPLES<sup>1</sup>

|                        | MW-126B     | <u> </u>      | MW-122A      |             | Υ                 | T                        | T                |  |
|------------------------|-------------|---------------|--------------|-------------|-------------------|--------------------------|------------------|--|
| Location               | (Dup)       | MW-122A       | (Dup)        | MW-122B     | MW-1 <sup>2</sup> | MW-3                     | MW-5             |  |
| Sample ID              | A66012      | <u>A66033</u> | A66038       | A66039      | A66032            | A66054                   | A66046           |  |
| Monarch HRDL (Cor      | nt'd.)      | FRDLs         |              |             | Former Type II    | Former Type III Landfill |                  |  |
| TAL Parameters (ug/L)  | 2           |               |              |             |                   |                          |                  |  |
|                        | NDUEL       |               |              |             |                   | NDUELD                   |                  |  |
| aluminum               | ND(45 U)    | ND(45 U)      | ND(45 U)     | ND(45 U)    | ND(45 U)          | ND(45 U)                 | ND(45 U)         |  |
| arsenic                | 1.7 B       | 30 J<br>100 B | 25           | 79          | 60 J              | 83                       | 20               |  |
| barium                 | 200 B       |               | 100 B        | 200         | 210               | 190 B                    | 250              |  |
| beryllium              | ND(0.30 U)  | ND(0.30 U)    | ND(0.30 U)   | ND(0.30 U)  | ND(0.30 U)        | ND(0.30 U)               | ND(0.30 U)       |  |
| cadmium                | 4.8 BJ      | ND (3.3 U)    | ND(3.3 U)    | ND(3.3 U)   | ND (3.3 U)        | ND(3.3 U)                | ND(3.3 U)        |  |
| calcium                | 140000      | 110000        | 100000       | 100000      | 140000            | 150000                   | 180000           |  |
| chromium               | ND(2.5 U)   | ND (2.5 U)    | ND(2.5 U)    | ND(2.5 U)   | 2.8 B             | ND(2.5 U)                | 3.4 B            |  |
| cobalt                 | ND(4.9 U)   | ND (4.9 U)    | ND(4.9 U)    | ND (4.9 U)  | 5.6 B             | ND(4.9 U)                | ND(4.9 U)        |  |
| copper                 | ND(3.7 U)   | ND (3.7 U)    | ND(3.7 U)    | ND (3.7 U)  | ND (3.7 U)        | ND(3.7 U)                | ND(3.7 U)        |  |
| iron                   | 2600        | 8200          | 7800         | 11000       | 13000             | 23000                    | 21000            |  |
| lead                   | ND(0.80 U)  | ND (0.60 U)   | ND(0.80 U)   | ND(0.60 U)  | ND (0.80 UJ)      | ND(0.60 U)               | 0.95 B           |  |
| magnesium              | 38000       | 13000         | 13000        | 45000       | 36000             | 47000                    | 56000            |  |
| manganese              | 220         | 810           | <b>78</b> 0  | 230         | 250               | 91                       | 1000             |  |
| mercury                | ND(0.070 U) | ND (0.070 U)  | ND(0.070 U)  | ND(0.070 U) | ND (0.070 U)      | ND(0.070 U)              | ND(0.070 U)      |  |
| nickel                 | ND(4.1 U)   | 4.3 B         | ND(4.1 U)    | 14 B        | 6.9B              | 5.7 B                    | 7.9B             |  |
| potassium              | 3500B       | 3700 B        | 3500 B       | 3500 B      | 2100 B            | 5100                     | 4700 B           |  |
| selenium               | 0.95 BJ     | ND (0.60 UJ)  | ND (0.80 UJ) | ND(0.80 U)  | 1.2 BJ            | ND(1.1 UJ)               | ND(1.1 UJ)       |  |
| sodium                 | 34000       | 11000         | 10000        | 31000       | 24000             | 44000                    | 50000            |  |
| vanadium               | ND(3.3 U)   | ND (3.3 U)    | ND(3.3 U)    | ND(3.3 U)   | ND (3.3 U)        | ND(3.3 U)                | ND(3.3 U)        |  |
| zinc                   | ND(3.1 U)   | 9.2 B         | 13 B         | 25 J        | 910               | 510                      | 110              |  |
|                        | <u> </u>    |               |              |             | <u> </u>          | <b>.</b>                 | dina ang sisan a |  |
| General Parameters (rr | ng/L)       |               |              |             |                   |                          |                  |  |
|                        |             |               |              | 1           |                   | 1                        |                  |  |
| bicarbonate            | 390         | 320           | 310          | 480         | 480               | 600                      | 710              |  |
| chloride               | 120         | 8.6           | 9.3          | 190         | 41                | 36                       | 47               |  |
| COD                    | 13          | 23            | 32           | 31          | 11                | 34                       | 28               |  |
| nitrate                | 2.1J        | 0.070J        | 0.68J        | 0.12J       | 0.050J            | 0.090                    | 0.020J           |  |
| sulfate                | 66          | 9.4           | 8.7          | 6.0         | 25                | 8.0                      | 6                |  |
| TOC                    | 5.8         | 9.2           | 9.0          | 12          | 3.1               | 12                       | 11               |  |
| TSS                    | 7.1         | 19            | 18           | 28          | 27                | 48                       | 38               |  |

See Notes on Page 10

,

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERPUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED FILTERED TAL AND GENERAL GROUNDWATER QUALITY RESULTS FOR GROUNDWATER/LEACHATE SAMPLES<sup>1</sup>

| Location<br>Sample ID | MW-15<br>A66055   | MW16B <sup>2</sup><br>A66059          | MW-16C<br>A66058 | MW-17A<br>A66056                      | MW17B<br>A66057 | MW-19BR<br>A66030 | MW-198R<br>(Dup)<br>A66031            |
|-----------------------|-------------------|---------------------------------------|------------------|---------------------------------------|-----------------|-------------------|---------------------------------------|
| Former Type III L     | andfill (Cont'd.) | <u>_</u>                              |                  |                                       |                 |                   |                                       |
| TAL Parameters (ug    | g/L) 3            |                                       |                  |                                       |                 |                   |                                       |
|                       |                   |                                       |                  |                                       | NOVELD          | NDUCID            |                                       |
| aluminum              | ND(45 U)          | ND(45 U)                              | ND(45 U)         | ND(45 U)                              | ND(45 U)        | ND(45 U)          | ND(45 U)                              |
| arsenic               | 60                | 69                                    | 1.4 B            | 160                                   | 140             | 46 J              | 47 J                                  |
| barium                | 260               | 460                                   | 100 B            | 280                                   | 280             | 200 B             | 190 B                                 |
| beryllium             | ND(0.30 U)        | ND(0.30 U)                            | ND(0.30 U)       | ND(0.30 U)                            | ND(0.30 U)      | ND(0.30 U)        | ND(0.30 U)                            |
| cadmium               | ND(3.3 U)         | ND(3.3 U)                             | ND(3.3 U)        | ND(3.3 U)                             | ND(3.3 U)       | ND (3.3 U)        | ND (3.3 U)                            |
| calcium               | 200000            | 110000                                | 71000            | 180000                                | 180000          | 170000            | 170000                                |
| chromium              | ND(2.5 U)         | ND(2.5 U)                             | ND(2.5 U)        | ND(2.5 U)                             | ND(2.5 U)       | 3.0 B             | ND (2.5 U)                            |
| cobalt                | 7.3 B             | ND(4.9 U)                             | ND(4.9 U)        | 14 B                                  | 8.2 B           | 5.2 B             | ND (4.9 U)                            |
| copper                | ND(3.7 U)         | ND(3.7 U)                             | ND(3.7 U)        | ND(3.7 U)                             | ND(3.7 U)       | ND (3.7 U)        | ND (3.7 U)                            |
| iron                  | 30000             | 11000                                 | 280              | 27000                                 | 29000           | 22000             | 21000                                 |
| lead                  | ND(0.60 U)        | ND(0.60 U)                            | ND(0.60 U)       | ND(0.60 U)                            | ND(0.60 U)      | 0.85 B            | ND (0.80 U)                           |
| magnesium             | 59000             | 36000                                 | 27000            | 53000                                 | 49000           | 47000             | 46000                                 |
| manganese             | 90                | 53                                    | 52               | 78                                    | 200             | 420               | 420                                   |
| mercury               | ND(0.070 U)       | ND(0.070 U)                           | ND(0.070 U)      | 0.090 B                               | ND(0.070 U)     | ND (0.070 U)      | ND (0.070 U                           |
| nickel                | 12 B              | 4.6 B                                 | ND(4.1 U)        | 31 B                                  | 13 B            | 14 B              | 12 B                                  |
| potassium             | 7000              | 3500 B                                | ND(730 Ú)        | 6300                                  | 6700            | 4300 B            | 4800 B                                |
| selenium              | ND(1.1 UJ)        | ND(1.1 UJ)                            | ND(1.1 UJ)       | ND(1.1 UJ)                            | ND(1.1 UJ)      | 1.7 BJ            | 1.28                                  |
| sodium                | 58000             | 32000                                 | 9200             | 56000                                 | 49000           | 55000             | 55000                                 |
| vanadium              | ND(3.3 U)         | ND(3.3 U)                             | ND(3.3 U)        | ND(3.3 U)                             | ND(3.3 U)       | ND (3.3 U)        | ND (3.3 U)                            |
| zinc                  | 100               | 940                                   | 950              | 2400                                  | 1900            | R                 | 29 J                                  |
| ieneral Parameters    | ; (mg/L)          | · · · · · · · · · · · · · · · · · · · | ······           | · · · · · · · · · · · · · · · · · · · | ·····           | · · · ·           | · · · · · · · · · · · · · · · · · · · |
| bicarbonate           | 820               | 460                                   | 240              | 730                                   | 700             | 660               | 660                                   |
| chloride              | 42                | 27                                    | 24               | 52                                    | 47              | 43                | 40                                    |
| COD                   | 50                | 22                                    | 6                | 50                                    | 28              | 28                | 27                                    |
| nitrate               | 0.12              | 0.060J                                | 0.060            | 0.090                                 | 0.090           | <0.010J           | 0.050J                                |
| sulfate               | 7                 | 18                                    | 37               | 6.0                                   | 6.0             | 10                | 9.9                                   |
| TOC                   | 20                | 8.8                                   | 1.0              | 18                                    | 13              | 8.5               | 8.7                                   |
| TSS                   | 66                | 20                                    | 5.9              | 59                                    | 51              | 35                | 36                                    |

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED FILTERED TAL AND GENERAL GROUNDWATER QUALITY RESULTS FOR GROUNDWATER/LEACHATE SAMPLES'

| Location<br>Sample ID | MW-19C<br>A66040 | MW-19D<br>A66041 | MW-112<br>A66045 | MW-127A<br>A66044 | MW7<br>A66001 | MW-7B<br>A66000 |
|-----------------------|------------------|------------------|------------------|-------------------|---------------|-----------------|
| Former Type III La    |                  |                  | 1                | 1                 | Western Dispo |                 |
| TAL Parameters (ug    |                  | <u> </u>         |                  |                   | Twestern Lisp |                 |
| TAL Falameters (09    |                  | Т                | 1                | T                 |               | <b>—</b>        |
| aluminum              | ND(45 U)         | ND(45 U)         | ND(45 U)         | ND(45 U)          | ND(45 U)      | ND(45 U)        |
| arsenic               | 48 J             | 37               | 46               | 15                | 1.6B          | 2.3B            |
| barium                | 130 B            | 110 B            | 200 B            | 590               | 75 B          | 54 B            |
| beryllium             | ND(0.30 U)       | 0.32 B           | ND(0.30 U)       | ND(0.30 U)        | ND(0.30 U)    | ND(0.30 U)      |
| cadmium               | ND(3.3 U)        | ND(3.3 U)        | ND (3.3 U)       | ND(3.3 U)         | ND(3.3 U)     | ND(3.3 U)       |
| calcium               | 140000           | 130000           | 160000           | 210000            | 93000         | 26000           |
| chromium              | ND(2.5 U)        | ND(2.5 U)        | ND(2.5 U)        | ND(2.5 U)         | ND(2.5 U)     | ND(2.5 U)       |
| cobalt                | 5.9 B            | ND(4.9 U)        | 7.8 B            | ND(4.9 U)         | ND(4.9 U)     | ND(4.9 U)       |
| copper                | ND(3.7 U)        | ND(3.7 U)        | ND(3.7 U)        | ND(3.7 U)         | ND(3.7 U)     | ND(3.7 U)       |
| iron                  | 17000            | 7100             | 23000            | 36000             | 76 B          | 32 B            |
| lead                  | ND(0.80 UJ)      | 2.5 B            | ND(0.59 U)       | ND(0.60 UJ)       | ND(0.60 U)    | ND(0.80 U)      |
| magnesium             | 49000            | 51000            | 53000            | 72000             | 30000         | 13000           |
| manganese             | 210              | 180              | 580              | 1600              | 38            | 44              |
| mercury               | ND(0.070 U)      | ND(0.070 U)      | ND(0.070 U)      | ND(0.070 U)       | ND(0.070 U)   | ND(0.070 U)     |
| nickel                | 9.0 B            | 5.0 B            | 12 B             | 17 B              | ND(4.1 U)     | ND(4.1 U)       |
| potassium             | 3200 B           | ND(730 U)        | 3600 B           | 830 B             | ND(720 U)     | 24000           |
| selenium              | 1.5 BJ           | ND(1.1 UJ)       | ND(1.1 UJ)       | ND(1.1 UJ)        | 1.0 BJ        | ND(0.60 UJ)     |
| sodium                | 31000            | 45000            | 43000            | 140000            | 35000         | 50000           |
| vanadium              | ND(3.3 U)        | ND(3.3 U)        | ND(3.3 U)        | ND(3.3 U)         | ND(3.3 U)     | ND(3.3 U)       |
| zinc                  | 2300             | 2100             | 2800             | 3.5 B             | 680           | 6.5 B           |
|                       | (                |                  |                  |                   | 1             |                 |
| General Parameters    | (mg/L)           | ····             | 1                | T                 |               | 1 <sup></sup>   |
| bicarbonate           | 560              | 540              | 630              | 880               | 300           | 170             |
| chloride              | 38               | 52               | 39               | 95                | 110           | 95              |
| COD                   | 25               | 10               | 21               | 41                | <5.0          | 8.3             |
| nitrate               | 0.060J           | 0.030.1          | 0.080.1          | 0.010J            | 0.34J         | <0.010J         |
| sulfate               | 8.3              | 12               | 8.0              | 49                | 48            | 43              |
| TOC                   | 9.3              | 4.5              | 7.9              | 15                | 0.60          | 1.2             |
| TSS                   | 34               | 17               | 37               | 73                | 0.80          | 3.8             |

See Notes on Page 10

1

٠

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED FILTERED TAL AND GENERAL GROUNDWATER QUALITY RESULTS FOR GROUNDWATER/LEACHATE SAMPLES'

| Location<br>Sample 1D | MW-8<br>A66053 | MW-8A<br>A66052 | MW-20<br>A66049 | MW-20<br>(Dup)<br>A66050 | MW20B<br>A66051 | MW-21<br>A66002 | MW-120A<br>A66020 |
|-----------------------|----------------|-----------------|-----------------|--------------------------|-----------------|-----------------|-------------------|
| Western Disposal      | Area (Cont'd.) |                 |                 |                          |                 |                 |                   |
| TAL Parameters (ug    |                |                 |                 |                          |                 |                 |                   |
|                       |                | ND(45 U)        | ND(45 U)        |                          |                 |                 | 56 B              |
| aluminum              | ND(45 U)       | 4.8 B           | 25              | ND(45 U)                 | ND(45 U)        | ND(45 U)        | 7.38              |
| arsenic               | ND(1.2 U)      | 160 B           | 540             | 28<br>480                | 27<br>230       | 2.3 B<br>92 B   | 660               |
| barium                | 56 B           |                 | 0.32 B          | 1                        |                 |                 |                   |
| beryllium             | ND(0.30 U)     | ND(0.30 U)      |                 | ND(0.30 U)               | ND(0.30 U)      | ND(0.30 U)      | ND(0.30 U)        |
| cadmium               | ND(3.3 U)      | ND(3.3 U)       | ND(3.3 U)       | ND(3.3 U)                | ND(3.3 U)       | ND(3.3U)        | ND(3.3 U)         |
| calcium               | 80000          | 130000          | 110000          | 99000                    | 110000          | 92000           | 300000            |
| chromium              | ND(2.5 U)      | ND(2.5 U)       | ND(2.5 U)       | ND(2.5 U)                | ND(2.5 U)       | ND(2.5 U)       | 6.8 B             |
| cobalt                | ND(4.9 U)      | 8.1 B           | ND(4.9 U)       | ND(4.9 U)                | ND(4.9 U)       | ND(4.9 U)       | ND(4.9 U)         |
| copper                | ND(3.7 U)      | ND(3.7 U)       | ND(3.7 U)       | ND(3.7 U)                | ND(3.7 U)       | ND(3.7 U)       | ND(3.7 U)         |
| iron                  | 76 B           | 22000           | 7900            | 7800                     | 5500            | 820             | 40000             |
| lead                  | 1.6 B          | ND(0.6 U)       | ND(0.59 U)      | ND(0.60 U)               | 1.6 B           | ND(0.80 U)      | ND(0.80 U)        |
| magnesium             | 30000          | 49000           | 32000           | 29000                    | 33000           | 29000           | 53000             |
| manganese             | 74             | 1500            | 240             | 220                      | 160             | 430             | 670               |
| mercury               | ND(0.070 U)    | ND(0.070 U)     | ND(0.070 U)     | ND(0.070 U)              | ND(0.070 U)     | ND(0.070 U)     | ND(0.070 U)       |
| nickel                | ND(4.1 U)      | 9.4 B           | ND(4.1 U)       | 4.2 B                    | 30 B            | ND(4.1 U)       | 7.8B              |
| potassium             | 2000 B         | 2800 B          | 2500 B          | 2000 B                   | 1700 B          | 1300 B          | 7200              |
| selenium              | ND(1.1 UJ)     | ND(1.1 UJ)      | ND(1.1 UJ)      | ND(1.1 UJ)               | ND(1.1 UJ)      | 1.4 BJ          | 3.8 BJ            |
| sodium                | 31000          | 49000           | 48000           | 44000                    | 39000           | 27000           | 20000             |
| vanadium              | ND(3.3 U)      | ND(3.3 U)       | ND(3.3 U)       | ND(3.3 U)                | ND(3.3 U)       | ND(3.3 U)       | 7.3 B             |
| zinc                  | 360            | 24              | 830             | 560                      | 18 B            | 59              | 40                |
| General Parameters    | (mg/L)         | I               | I               | 1                        | 1               | ] =             | 1                 |
| bicarbonate           | 240            | 460             | 340             | 340                      | 320             | 280             | 1100              |
| chloride              | 54             | 68              | 85              | 87                       | 67              | 83              | 22                |
| COD                   | 6.0            | 34              | 5.0             | <5.0                     | <5.0            | 6.2             | 67                |
| nitrate               | 0.22J          | 0.060J          | 0.070J          | 0.070J                   | 0.080J          | <0.010J         | <0.010J           |
| sulfate               | 38             | 21              | 48              | 48                       | 51              | 42              | 8.8               |
| TOC                   | 1.2            | 14              | 1.6             | 1.2                      | 1.4             | 0.60            | 22                |
| TSS                   | 1.0            | 40              | 21              | 20                       | 14              | 2.6             | 19                |

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED FILTERED TAL AND GENERAL GROUNDWATER QUALITY RESULTS FOR GROUNDWATER/LEACHATE SAMPLES'

| Location            | MW-120B        | MW-120B<br>(Dup) | MW-2                   | MW-25       | MW-2S<br>(Dup)                         | MW-18       |
|---------------------|----------------|------------------|------------------------|-------------|----------------------------------------|-------------|
| Sample ID           | <u>A66019</u>  | A66024           | A66060                 | A66022      | A66023                                 | A66061      |
| Western Disposal    | Area (Cont'd.) |                  | <b>Pilot Study Are</b> | 88          |                                        |             |
| TAL Parameters (ug/ | <u>(</u> ) '   |                  |                        |             |                                        |             |
|                     |                |                  |                        |             |                                        |             |
| aluminum            | ND(45 U)       | ND(45 U)         | ND(45 U)               | 45 B        | ND(45 U)                               | ND(45 U)    |
| arsenic             | 59             | 62               | 40                     | 2.2 BJ      | 2.4 BJ                                 | 1.9 B       |
| barium              | 540            | 550              | 690                    | 310         | 310                                    | 85 B        |
| beryllium           | ND(0.30 U)     | ND(0.30 U)       | ND(0.30 U)             | ND(0.30 U)  | ND(0.30 U)                             | ND(0.30 U)  |
| cadmium             | ND (3.3 U)     | ND(3.3 U)        | ND(3.3 U)              | ND(3.3 U)   | ND(3.3 U)                              | ND(3.3 U)   |
| calcium             | 190000         | 190000           | 120000                 | 130000      | 130000                                 | 90000       |
| chromium            | ND(2.5 U)      | ND(2.5 U)        | ND(2.5 U)              | ND(2.5 U)   | 2.6 B                                  | ND(2.5 U)   |
| cobalt              | ND(4.9 U)      | ND(4.9 U)        | ND(4.9 U)              | ND(4.9 U)   | ND(4.9 U)                              | ND(4.9 U)   |
| copper              | ND(3.7 U)      | ND(3.7 U)        | ND(3.7 U)              | ND(3.7 U)   | ND(3.7 U)                              | ND(3.7 U)   |
| iron                | 28000          | 29000            | 12000                  | 15000       | 15000                                  | 750         |
| lead                | ND(0.79 U)     | 0.90 BJ          | ND(0.79 U)             | ND(0.79 U)  | ND(0.80 U)                             | ND(0.80 U)  |
| magnesium           | 58000          | 59000            | 33000                  | 31000       | 31000                                  | 32000       |
| manganese           | 240            | 240              | 500                    | 190         | 190                                    | 35          |
| mercury             | ND(0.070 U)    | ND(0.070 U)      | ND(0.070 U)            | ND(0.070 U) | ND(0.070 U)                            | ND(0.070 U) |
| nickel              | 10 B           | 11 B             | ND(4.1 U)              | 7.6 B       | 5.58                                   | ND(4.1 U)   |
| potassium           | 7500           | 8500             | 3400 B                 | 3700 B      | 4100 B                                 | 860 B       |
| selenium            | ND(0.79 UJ)    | 2.0 BJ           | 1.9 BJ                 | 1.1 B       | 1.3 BJ                                 | 14B         |
| sodium              | 29000          | 29000            | 33000                  | 28000       | 28000                                  | 23000       |
| vanadium            | • ND(3.3 U)    | ND(3.3 U)        | ND(3.3 U)              | ND(3.3 U)   | ND(3.3 U)                              | ND(3.3 U)   |
| zinc                | ND(3.1 U)      | ND(3.1 U)        | 430                    | 3.8 B       | 13 B                                   | 69          |
|                     | <u></u>        |                  |                        |             | ************************************** | 4 <u></u>   |
| General Parameters  | (mg/L)         |                  | <b>_</b>               |             |                                        |             |
|                     |                |                  |                        |             |                                        | I           |
| bicarbonate         | 740            | 780              | 400                    | 440         | 450                                    | 280         |
| chloride            | 34             | 37               | 69                     | 50          | 55                                     | 52          |
| COD                 | 36             | 45               | 6                      | 8           | 15                                     | 5           |
| nitrate             | 0.090J         | 0.030J           | 0.10                   | <0.010 J    | <0.010 J                               | 0.060       |
| sulfate             | 7.8            | 7.0              | 26                     | 12          | 6.0                                    | 47          |
| TOC                 | 18             | 19               | 2.4                    | 6.5         | 6.6                                    | 0.70        |
| TSS                 | R              | <u> </u>         | 26                     | 31          | 32                                     | 1.9         |

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED FILTERED TAL AND GENERAL GROUNDWATER QUALITY RESULTS FOR GROUNDWATER/LEACHATE SAMPLES'

| Location<br>Sample ID | MW104<br>A66037 | ₩₩106<br>A66063 | MW-108<br>A66047 | MW-114<br>A66036                        | MW~128A<br>A66035 |
|-----------------------|-----------------|-----------------|------------------|-----------------------------------------|-------------------|
|                       |                 |                 | 1 700011         | /////////////////////////////////////// | 1                 |
| Former Bryant M       |                 |                 |                  |                                         |                   |
| TAL Parameters (up    | <u>/u;</u>      | <b></b>         | 1                |                                         | T                 |
| aluminum              | ND (45 U)       | ND(45 U)        | ND(45 U)         | ND(45 U)                                | ND(45 U)          |
| arsenic               | 16              | 21              | ND(1.2 U)        | ND(0.99 U)                              | 1.8 BJ            |
| barium                | 310             | 190 B           | 110B             | 120 B                                   | 100 B             |
| beryllium             | ND(0.30 U)      | ND(0.30 U)      | ND(0.30 U)       | ND(0.30 U)                              | ND(0.30 U)        |
| cadmium               | ND(3.3 U)       | ND(3.3 U)       | ND(3.3 U)        | ND(3.3 U)                               | ND(3.3 U)         |
| calcium               | 130000          | 94000           | 87000            | 100000                                  | 140000            |
| chromium              | ND(2.5 U)       | ND(2.5 U)       | ND(2.5 U)        | ND(2.5 U)                               | 3.5 B             |
| cobalt                | 5.5 B           | ND(4.9 U)       | ND(4.9 U)        | ND(4.9 U)                               | ND(4.9 U)         |
| copper                | ND(3.7 U)       | ND(3.7 U)       | ND(3.7 U)        | ND(3.7 U)                               | ND(3,7 U)         |
| iron                  | 9200            | 4500            | 1200             | 130                                     | 420               |
| lead                  | 1.3 B           | ND(0.80 U)      | ND(0.60 U)       | 1.1 B                                   | ND(0.80 UJ)       |
| magnesium             | 2800            | 30000           | 29000            | 33000                                   | 25000             |
| manganese             | 620             | 64              | 69               | 29                                      | 220               |
| mercury               | ND(0.070 U)     | 0.13 B          | ND(0.070 U)      | ND(0.070 U)                             | R                 |
| nickel                | ND(4.1 U)       | ND(4.1 U)       | ND(4.1 U)        | 5.2 B                                   | 38 B              |
| potassium             | 2800 B          | 770 B           | 800 B            | 1600 B                                  | 3100 B            |
| selenium              | ND(1.1 UJ)      | 1.5 BJ          | ND(1.1 UJ)       | ND(0.79 U)                              | 1.6 BJ            |
| sodium                | 37000           | 15000           | 23000            | 41000                                   | 66000             |
| vanadium              | ND(3.3 U)       | ND (3.3 U)      | ND(3.3 U)        | ND(3.3 U)                               | ND(3.3U)          |
| zinc                  | 770             | 260             | 330              | 220                                     | R                 |
|                       |                 |                 |                  |                                         |                   |
| eneral Parameters     | (mg/L)          | r               | ·····            | I                                       | ·····             |
| bicarbonate           | 340             | 290             | 260              | 280                                     | 420               |
| chloride              | 55              | 45              | 58               | 89                                      | 80                |
| COD                   | <5.0            | 6.0             | 6.0              | <5.0                                    | 7.0               |
| nitrate               | 0.070           | 0.050           | 0.050            | 0.75.1                                  | 0.17J             |
| sulfate               | 140             | 37              | 54               | 47                                      | 55                |
| TOC                   | 2.2             | 1.3             | 0.80             | 0.60                                    | 1.9               |
| TSS ·                 | 22              | 13              | 3.4              | 0.80                                    | 1.5               |

#### ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC. OPERABLE UNIT SUMMARY OF DETECTED FILTERED TAL AND GENERAL GROUNDWATER QUALITY RESULTS FOR GROUNDWATER/LEACHATE SAMPLES<sup>1</sup>

#### Notes:

- <sup>1</sup> Showing only the results for analytes detected above quantitation limits.
- <sup>2</sup> MS/MSD of this sample was analyzed.
- <sup>3</sup> Samples were pumped through a 0.45 micron filter before TAL analysis.
- ND Not Detected.
- COD -- Chemical Oxygen Demand.
- TOC Total Organic Carbon.
- TSS Total Suspended Solids.
- NA Not Analyzed.

#### Notes Explaining Data Qualifiers:

- B The reported value was obtained from a reading less than the contract required detection limit (CRDL) but greater than or equal to the instrument detection limit (IDL).
- J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
- R The sample results are rejected.

6

- U The analyte was analyzed for but not detected. The associated value is the analyte CRDL.
- UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

## ALLIED PAPER, INC., OPERABLE UNIT RANGE OF DETECTED CONCENTRATIONS OF TAL ANALYTES IN FILTERED GROUNDWATER AND LEACHATE SAMPLES

|                                      | Range of Concentrations (ug/L) |                                       |  |  |  |  |
|--------------------------------------|--------------------------------|---------------------------------------|--|--|--|--|
| Analyte                              | Groundwater                    | Leachate                              |  |  |  |  |
| Nonerch HRDL                         |                                |                                       |  |  |  |  |
| luminum                              | ND                             | 1,100                                 |  |  |  |  |
| rsenic                               | ND - 4.8                       | 26                                    |  |  |  |  |
| arium                                | 67 - 930                       | 230                                   |  |  |  |  |
| admium                               | ND-3.6                         | ND                                    |  |  |  |  |
| alcium                               | 130,000-280,000                | 130,000                               |  |  |  |  |
| chromium                             | ND                             | 7.1                                   |  |  |  |  |
| ron                                  | 64-25,000                      | 86,000                                |  |  |  |  |
| bad                                  | ND-1.7                         | ND                                    |  |  |  |  |
| nagnesium                            | 35,000-45,000                  | 17,000                                |  |  |  |  |
| nanganese                            | 46-1.700                       | 1,900                                 |  |  |  |  |
| nickel                               | ND-120                         | 20                                    |  |  |  |  |
| otassium                             | 1,400-8,700                    | 2,600                                 |  |  |  |  |
| <b>Jelenium</b>                      | ND-2.3                         | ND                                    |  |  |  |  |
| iodium ·                             | 34,000-130,000                 | 24,000                                |  |  |  |  |
| sinc                                 | ND-180                         | ND                                    |  |  |  |  |
| Former Bryant Mill Pond <sup>2</sup> |                                |                                       |  |  |  |  |
| rsenic                               | NÖ-21                          | NA                                    |  |  |  |  |
| barium                               | 100-310                        | NA                                    |  |  |  |  |
| alcium                               | 87,000-140,000                 | NA                                    |  |  |  |  |
| chromium                             | ND-3.5                         | NA                                    |  |  |  |  |
| cobait                               | ND-5.5                         | NA                                    |  |  |  |  |
| ron                                  | 130-9.200                      | NA                                    |  |  |  |  |
| eed                                  | ND-1.3                         | NA                                    |  |  |  |  |
| nanesium                             | 25.000-30.000                  | NA                                    |  |  |  |  |
| nanganese                            | 29-620                         | NA                                    |  |  |  |  |
| mercury                              | ND-0.13                        | NA                                    |  |  |  |  |
| nickel                               | ND-38                          | NA                                    |  |  |  |  |
| otesium                              | 770-3,100                      | NA                                    |  |  |  |  |
| seienium                             |                                | NA                                    |  |  |  |  |
| seieniem<br>sodium                   | ND-1.6                         | NA                                    |  |  |  |  |
| zinc                                 | 15,000-66,000                  | NA                                    |  |  |  |  |
|                                      | 220-770                        |                                       |  |  |  |  |
| Bryant HRDL <sup>1</sup>             | NO 400                         |                                       |  |  |  |  |
| rsenic                               | ND-130                         | NA                                    |  |  |  |  |
| perium                               | 67-500                         | NA                                    |  |  |  |  |
| cadmium                              | ND-4.5                         | NA                                    |  |  |  |  |
| zalcium                              | 71,000-220,000                 | NA                                    |  |  |  |  |
| copper                               | ND-7.3                         | NA                                    |  |  |  |  |
| ron                                  | 340-33,000                     | NA                                    |  |  |  |  |
| eed                                  | ND-1.1                         | NA                                    |  |  |  |  |
| nagnesium                            | 14,000-66,000                  | NA                                    |  |  |  |  |
| nanganese                            | 52-1,100                       | NA                                    |  |  |  |  |
| nickel                               | ND-130                         | NA                                    |  |  |  |  |
| otassium                             | ND-12,000                      | NA                                    |  |  |  |  |
| <b>seieniu</b> m                     | ND-2.8                         | NA                                    |  |  |  |  |
| sodium                               | 5,000-69,000                   | NA                                    |  |  |  |  |
| zinc                                 | 4.2-3,300                      | NA                                    |  |  |  |  |
| FRDLs                                |                                | · · · · · · · · · · · · · · · · · · · |  |  |  |  |
| rsenic                               | 28-79                          | NA                                    |  |  |  |  |
| parium                               | 100-200                        | NA                                    |  |  |  |  |
| calcium                              | 100,000-110,000                | NA                                    |  |  |  |  |
| ron                                  | 8.000-11.000                   | NA                                    |  |  |  |  |
| nagnesium                            | 13,000-45,000                  | NA                                    |  |  |  |  |
| nanganese                            | 230-800                        | NA                                    |  |  |  |  |
| rickel                               | ND-14                          | NA                                    |  |  |  |  |
| xotassium                            | 3.500-3.600                    | NA                                    |  |  |  |  |
| iodium                               | 11,000-31,000                  | NA NA                                 |  |  |  |  |
| inc                                  | 11-25                          | NA                                    |  |  |  |  |

See Notes on Page 2

 $\tilde{\boldsymbol{\boldsymbol{\omega}}}$ 

.

## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE

#### ALLIED PAPER, INC., OPERABLE UNIT RANGE OF DETECTED CONCENTRATIONS OF TAL ANALYTES IN FILTERED GROUNDWATER AND LEACHATE SAMPLES

|                                       | Range of Concern | trations (ug/L) |
|---------------------------------------|------------------|-----------------|
| Analyte                               | Groundwater      | Leachate        |
| Former Type III Landfill <sup>3</sup> |                  |                 |
| arsenic                               | 1.4-160          | NA              |
| barium                                | 100-590          | NA I            |
| beryllium                             | ND-0.32          | NA              |
| calcium                               | 71,000-210,000   | NA              |
| chromium                              | ND-3.4           | NA I            |
| cobait                                | ND-14            | NA              |
| iron                                  | 280-36,000       | NA              |
| lead                                  | ND-2.5           | NA              |
| magnesium                             | 27,000-72,000    | NA              |
| manganese                             | 52-1,600         | NA              |
| mercury                               | ND-0.090         | NA              |
| nickel                                | ND-31            | ` <b>NA</b>     |
| potassium                             | ND-8,300         | NA              |
| selenium                              | ND-1.5           | NA              |
| acdium                                | 9,200-140,000    | NA              |
| zinc                                  | 3.5-2,800        | NA              |
| Western Disposal Area <sup>6</sup>    |                  |                 |
| aluminum                              | ND-56            | NA              |
| arsanic                               | ND-61            | NA              |
| berium                                | 54-650           | NA              |
| bervilium                             | ND-0.24          | NA              |
| celcium                               | 26.000-300.000   | NA              |
| chromium                              | ND-6.8           | NA              |
| cobalt                                | ND-8.1           | NA              |
| iron                                  | 32-40.000        | NA              |
| leed .                                | ND-1.6           | NA              |
| magnesium                             | 13,000-59,000    | NA              |
| manganese                             | 38-1.500         | NA              |
| nickel                                | ND-30            | NA              |
| potassium                             | ND - 24.000      | NA              |
| seienium                              | ND-3.8           | NA              |
| sodium                                | 20.000-50.000    | NA              |
| venedium                              | ND-7.3           | NA              |
| zinc                                  | ND-830           | NA              |
| Pilot Study Area <sup>7</sup>         |                  |                 |
| aluminum                              | ND-34            | NA              |
| arsenic                               |                  | NA NA           |
|                                       | 1.9-40           |                 |
| berium                                | 85~690           | NA              |
| calcium                               | 90,000-130,000   | NA              |
| chromium                              | ND-1.9           | NA              |
| iron                                  | 750-15,000       | NA              |
| magnesium                             | 31,000-33,000    | NA              |
| mangenese                             | 35-500           | NA              |
| nickel                                | ND-13            | NA              |
| potassium                             | 860-3,900        | NA              |
| selenium                              | 1.2-1.9          | NA              |
| sodium                                | 23,000-33,000    | NA              |
| zinc                                  | 8.4-430          | NA              |

#### Notes:

)

<sup>1</sup> Includes the results of samples from MW-124A, MW-124B, MW-125P (leachate), MW-125A, MW-125B, MW-126A, and MW-126B.

<sup>2</sup> includes the results of samples from MW-104, MW-106, MW-108, MW-114, and MW-128A.

<sup>3</sup> Includes the results of samples from MW-11, MW-12, MW-12R, MW-22A, MW-22B, MW-23, MW-24, MW-25, MW-26, MW-121A, MW-121B, MW-123A, and MW-123B.

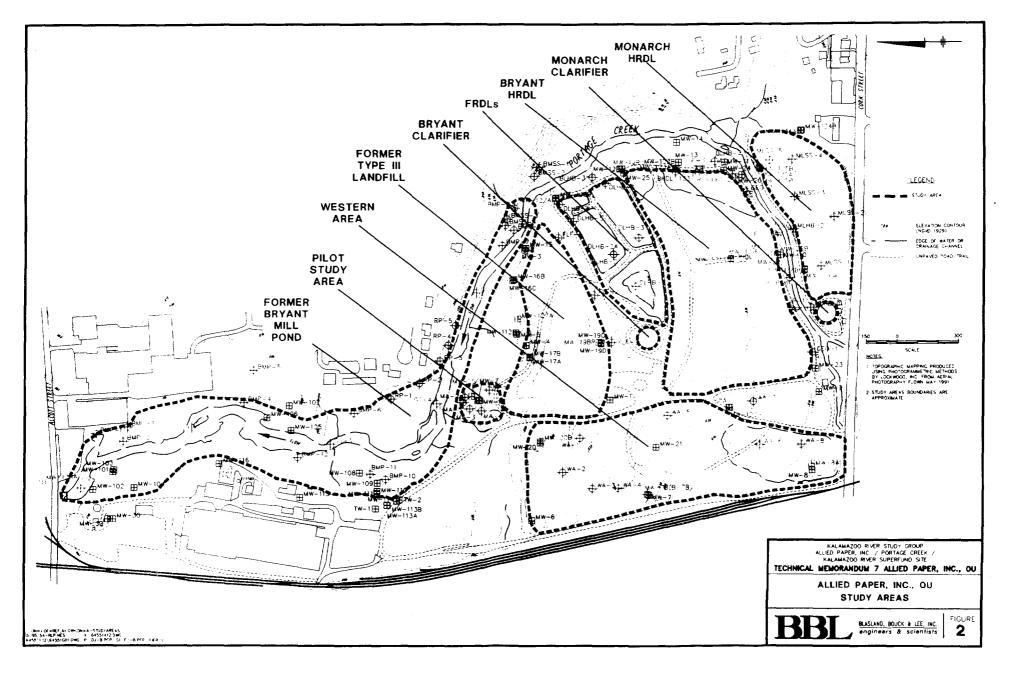
<sup>4</sup> Includes the results of samples from MW-122A and MW-122B.

<sup>3</sup> Includes the results of samples from MW-1, MW-3, MW-5, MW-15, MW-16B, MW-16C, MW-17A, MW-17B, MW-19BR, MW-19C, MW-19D, MW-112, and MW-127A.

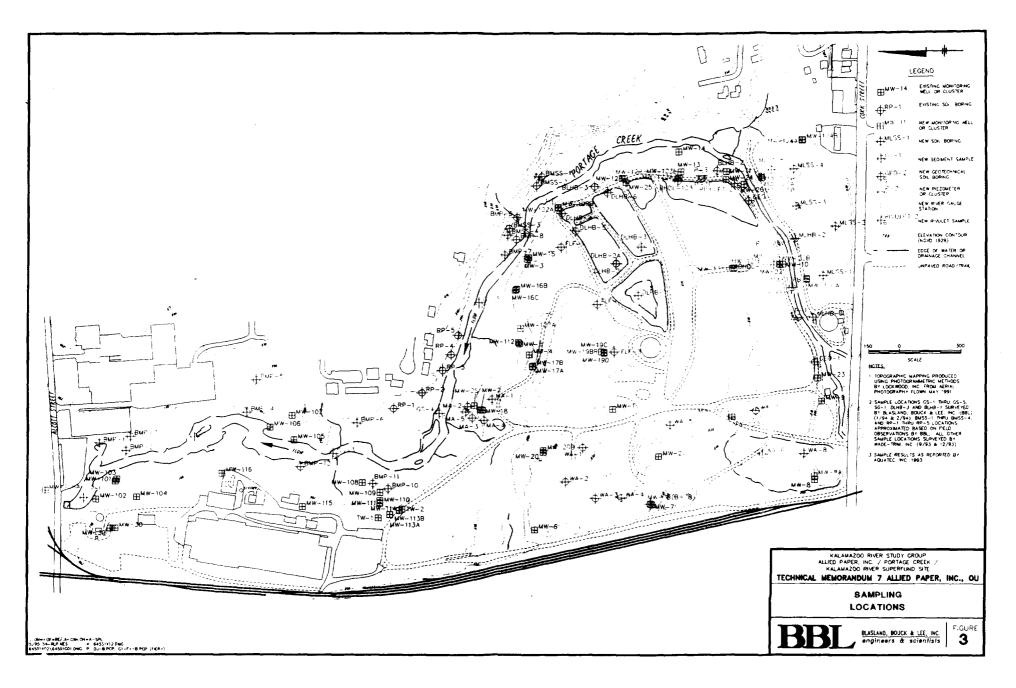
Includes the results of samples from MW-8, MW-8A, MW-20, MW-20B, MW-21, MW-120A, and MW-123B.
Includes the results of samples from MW-2, MW-2S, and MW-18.

NA - Not applicable; no wells were installed in residuals in these areas.

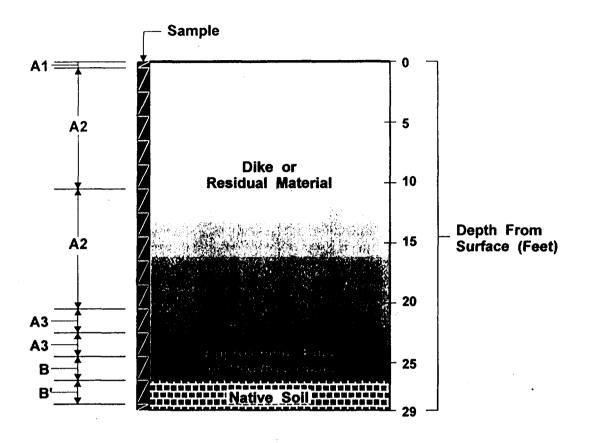
ND - Not detected.


# Figures

.


BLASLAND, BOUCK & LEE, INC. engineers & scientists




(



11.5







# LEGEND

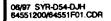
Two-foot split-barrel sample collected for visual classification and standard penetration resistance testing

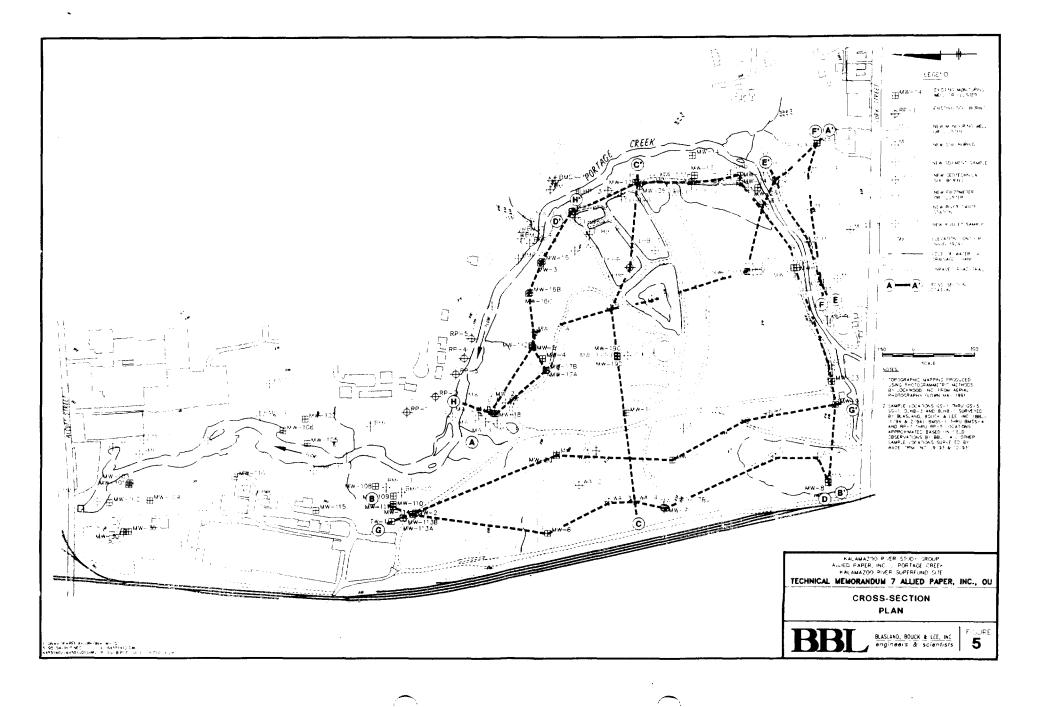
- A1: A 0-to-6-inch sample analyzed for PCBs at all borings; and PCDDs and PCDFs at B1-2, B2-2, and B3-1.
- A2: A 2-foot split-spoon sample will be taken every 10-feet and analyzed for PCBs.
- A3: A 2-foot residuals sample analyzed for PCBs.
- B: A 2-foot residuals sample analyzed for CLP TCL/TAL.
  - B': A 2-foot native soil sample analyzed for CLP TCL/TAL.

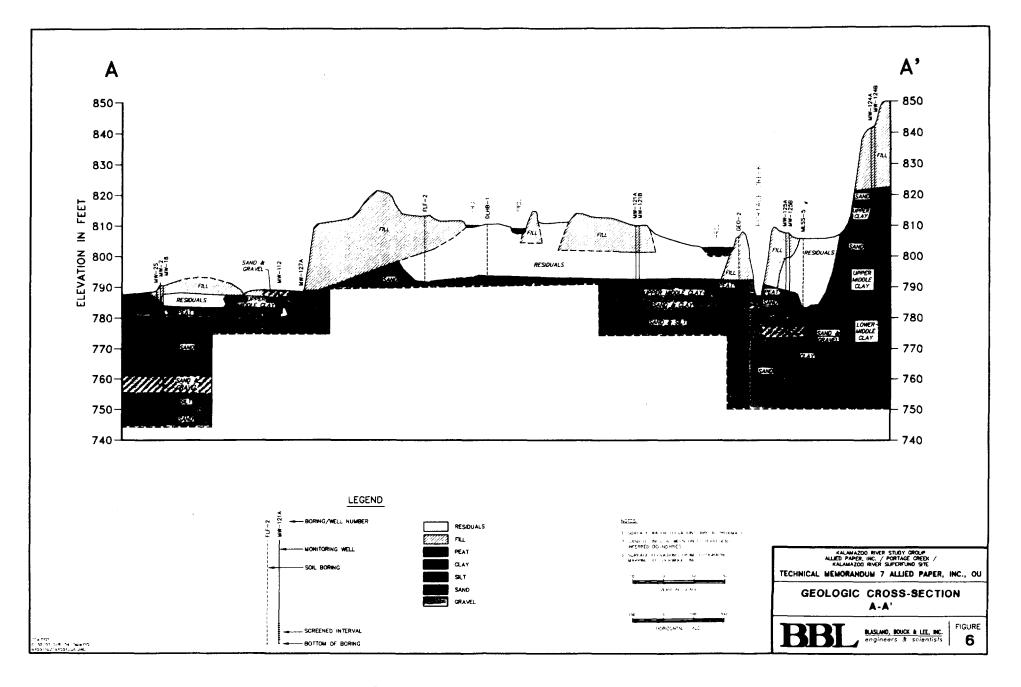
## NOTES:

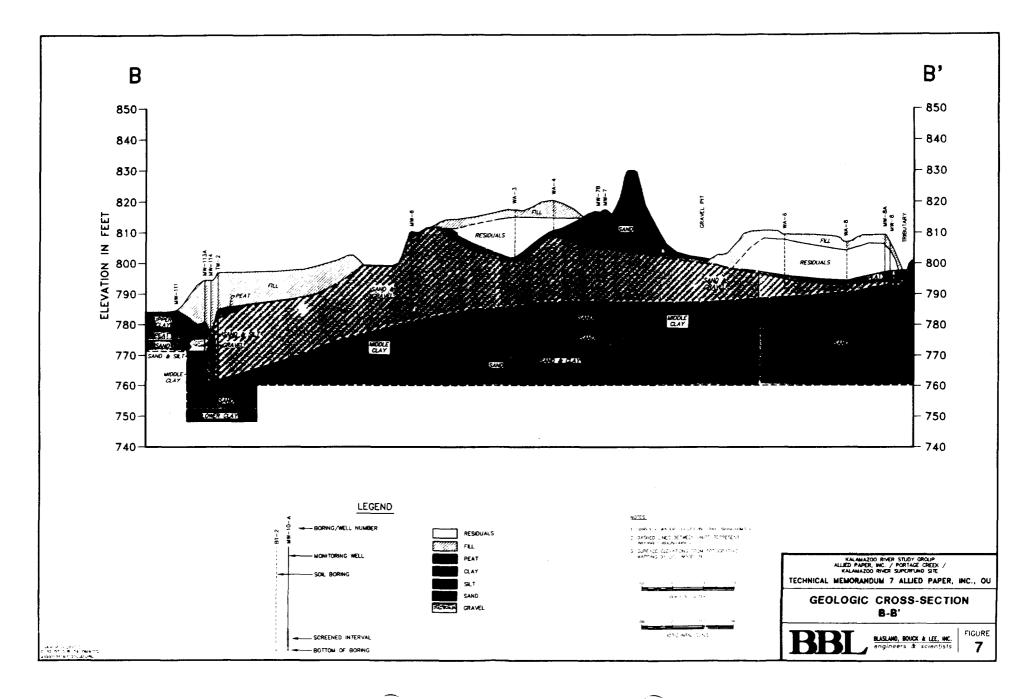
- 1. This plan applies to both borings and monitoring wells.
- 2. The base of residuals or dike are approximate and may not be representative of the actual conditions.

KALAMAZOO RIVER STUDY GROUP ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE TECHNICAL MEMORANDUM 7 ALLIED PAPER, INC. OU

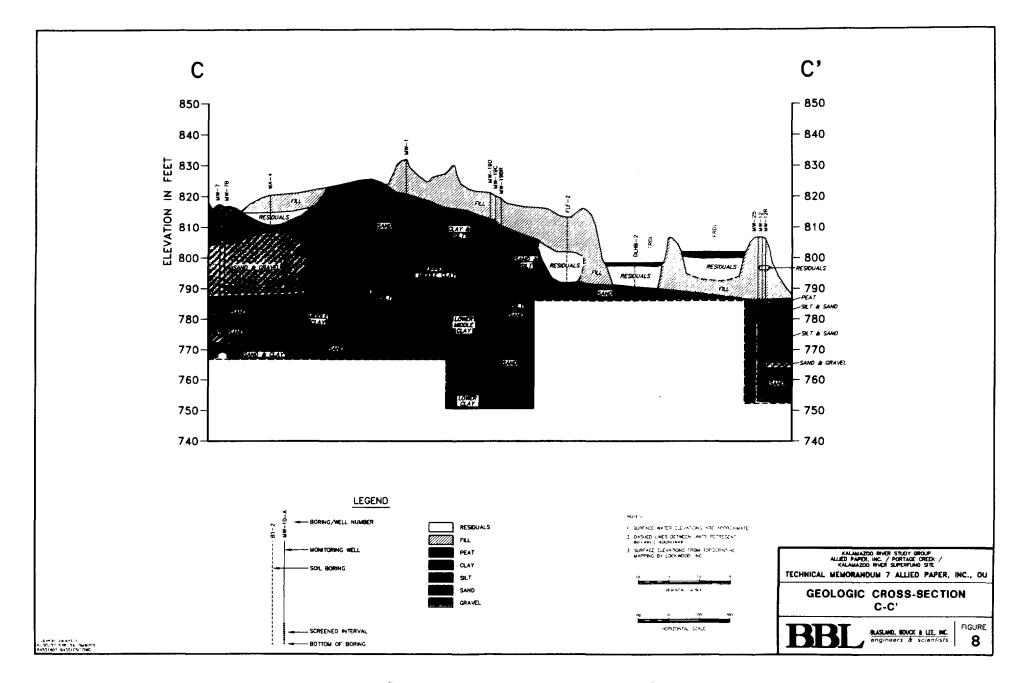

# BORING SAMPLING AND ENVIRONMENTAL ANALYSIS PLAN


BLASLAND, BOUCK & LEE, INC.

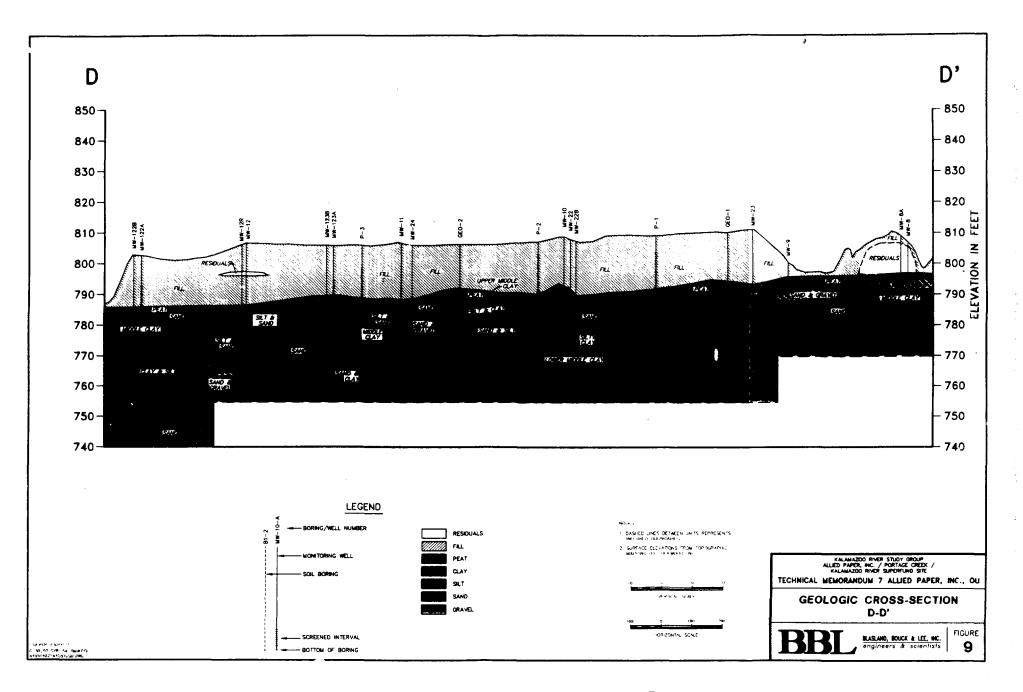

engineers & scientists


FIGURE

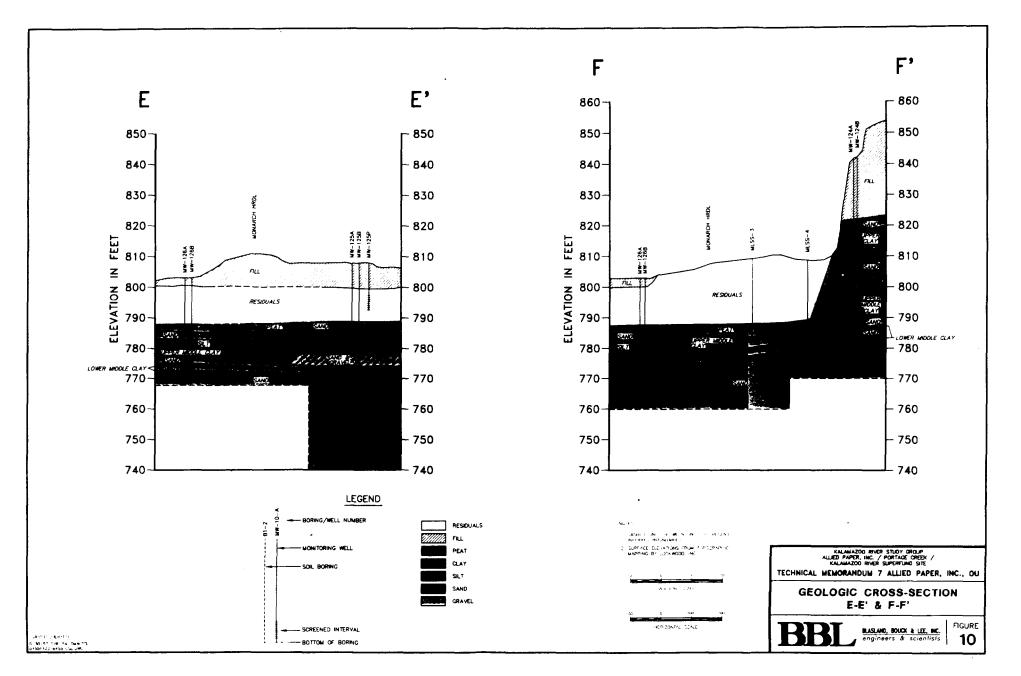
4





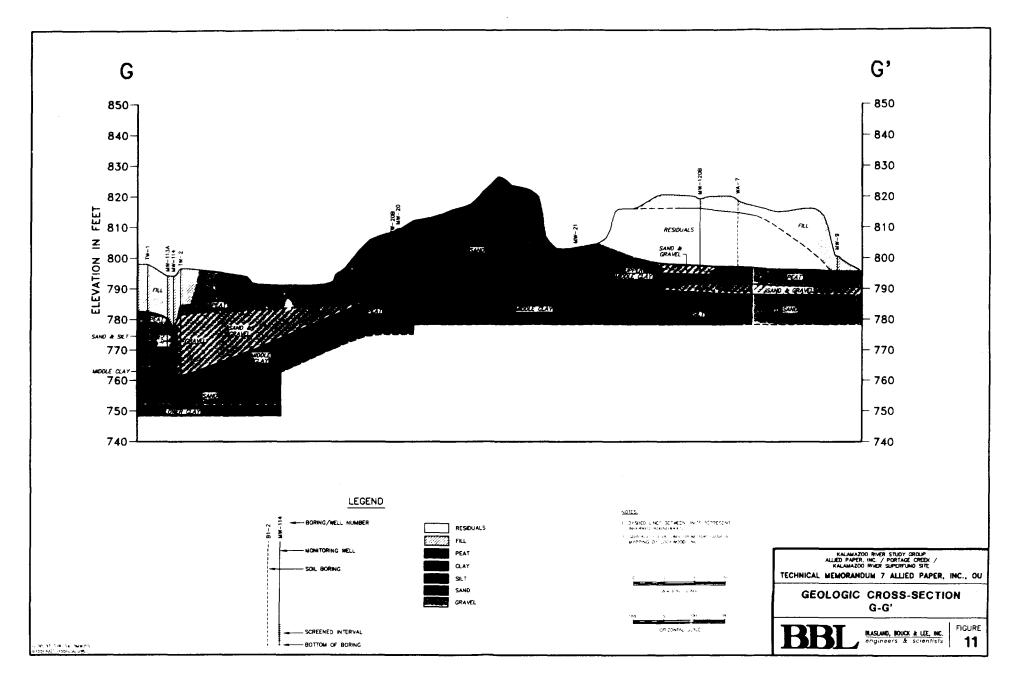




:



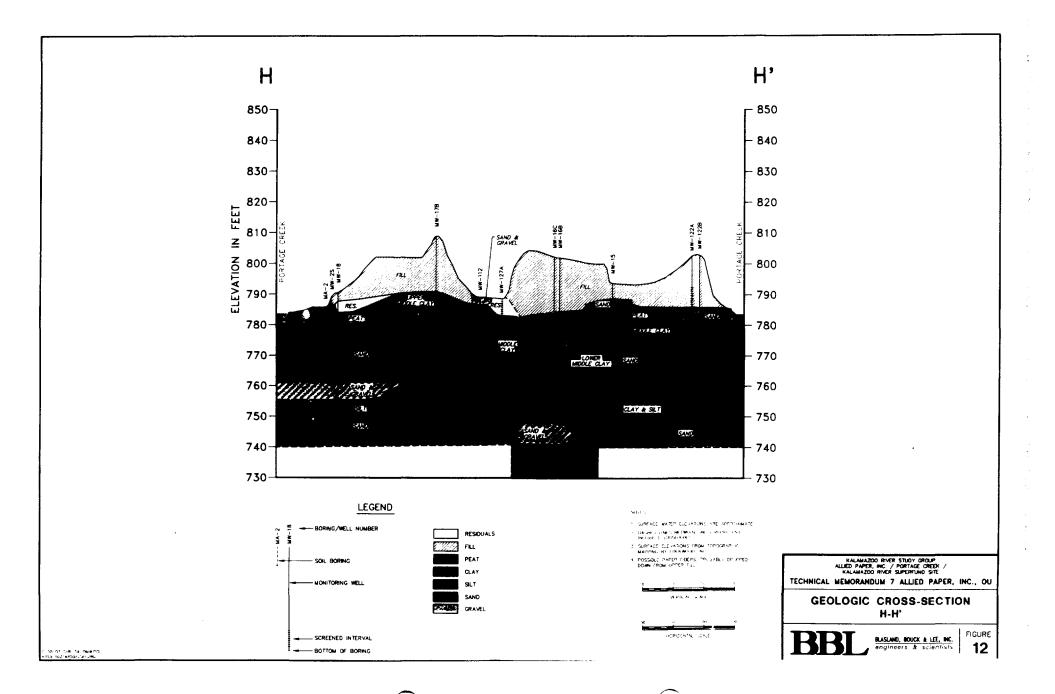
 $\bigcirc$ 



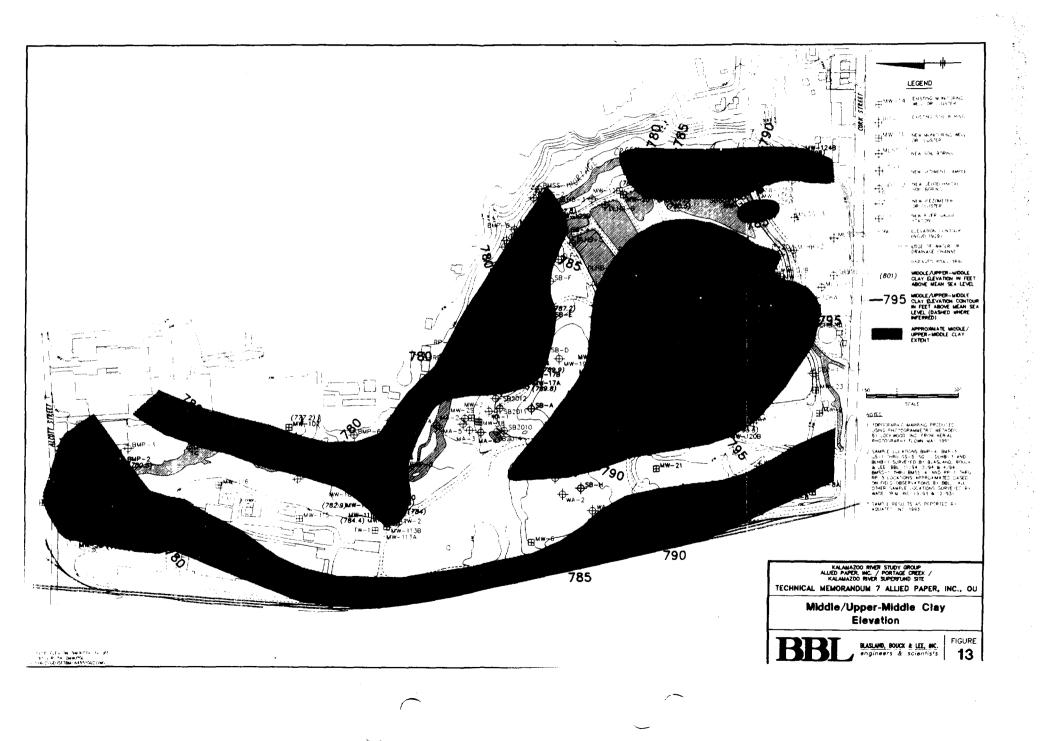

 $t \to t$ 

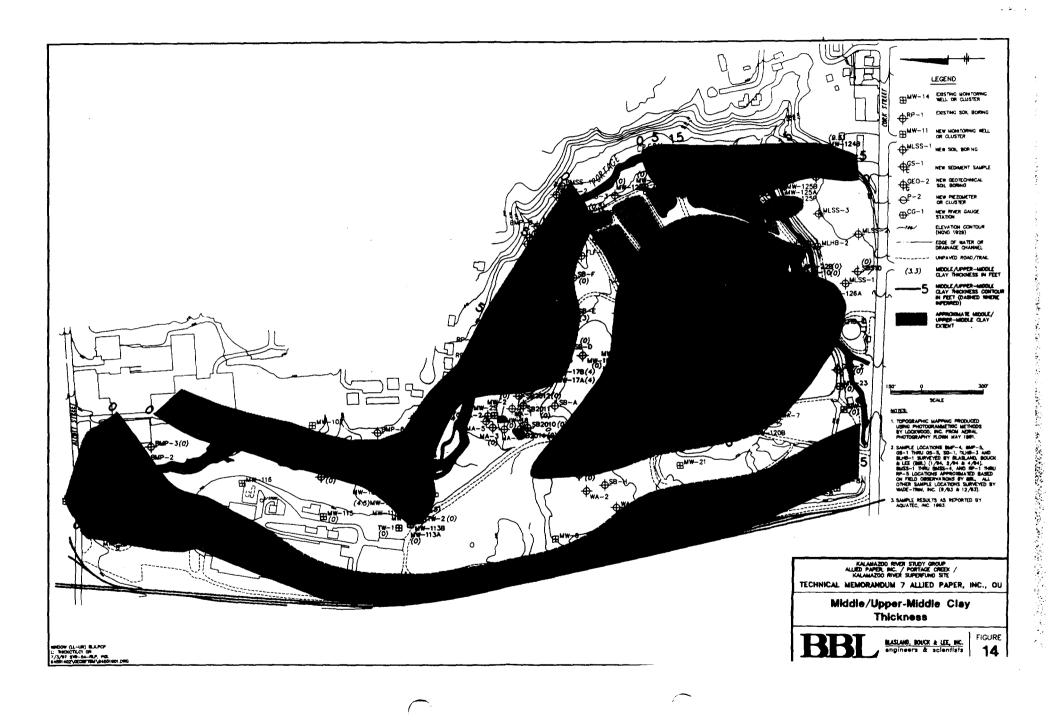


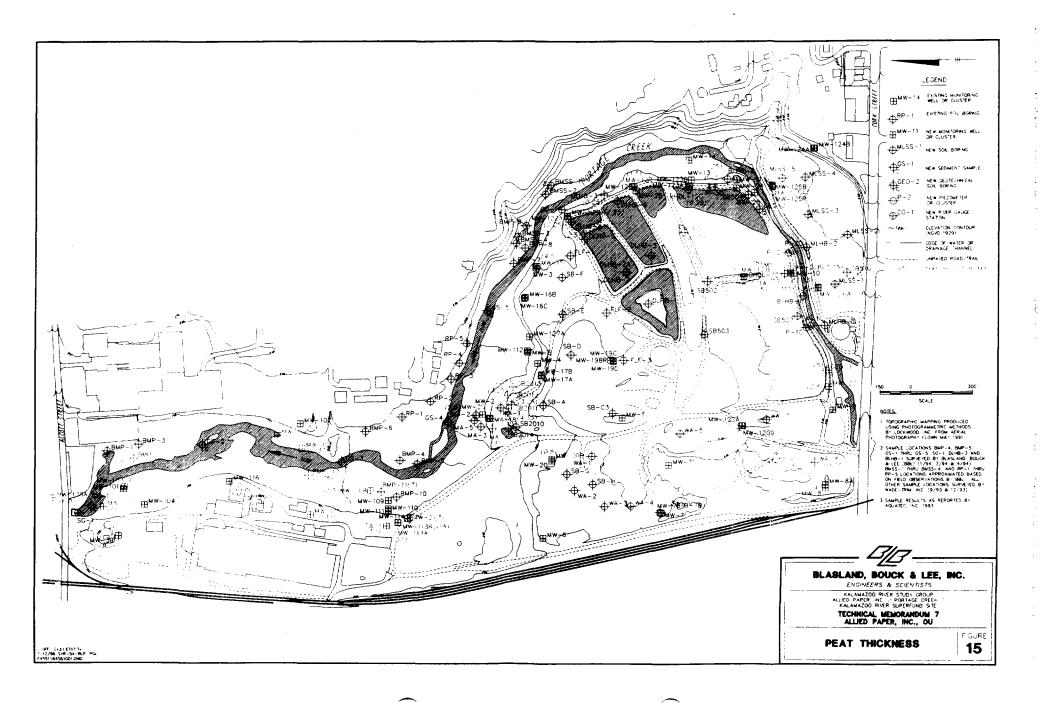
 $\frown$ 

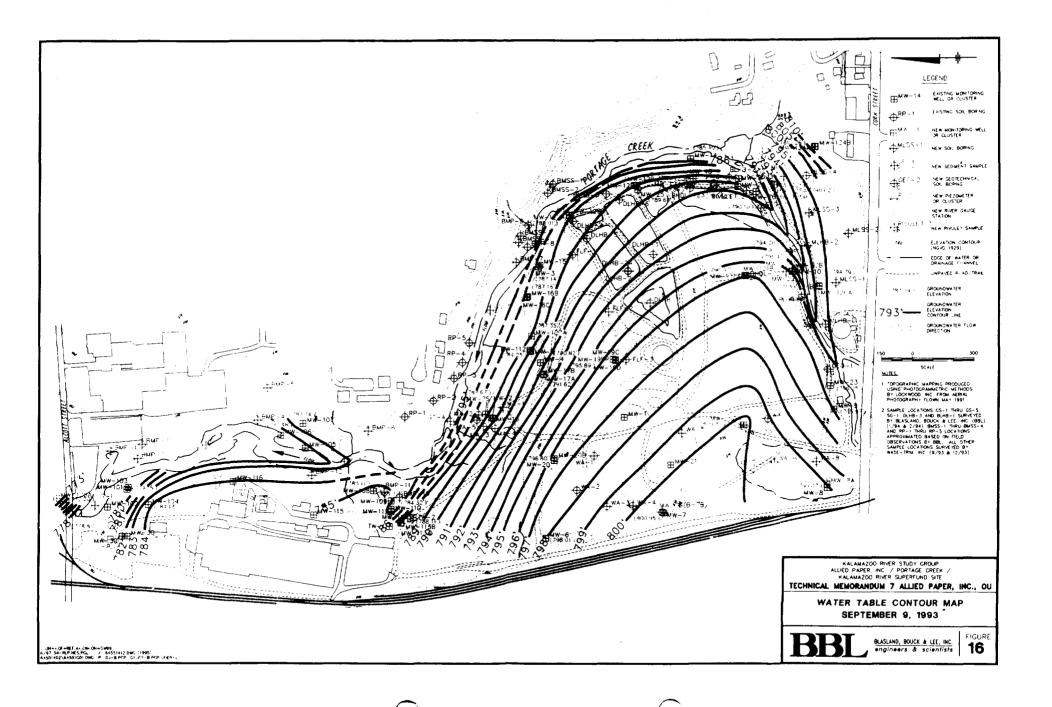

 $\widehat{}$ 

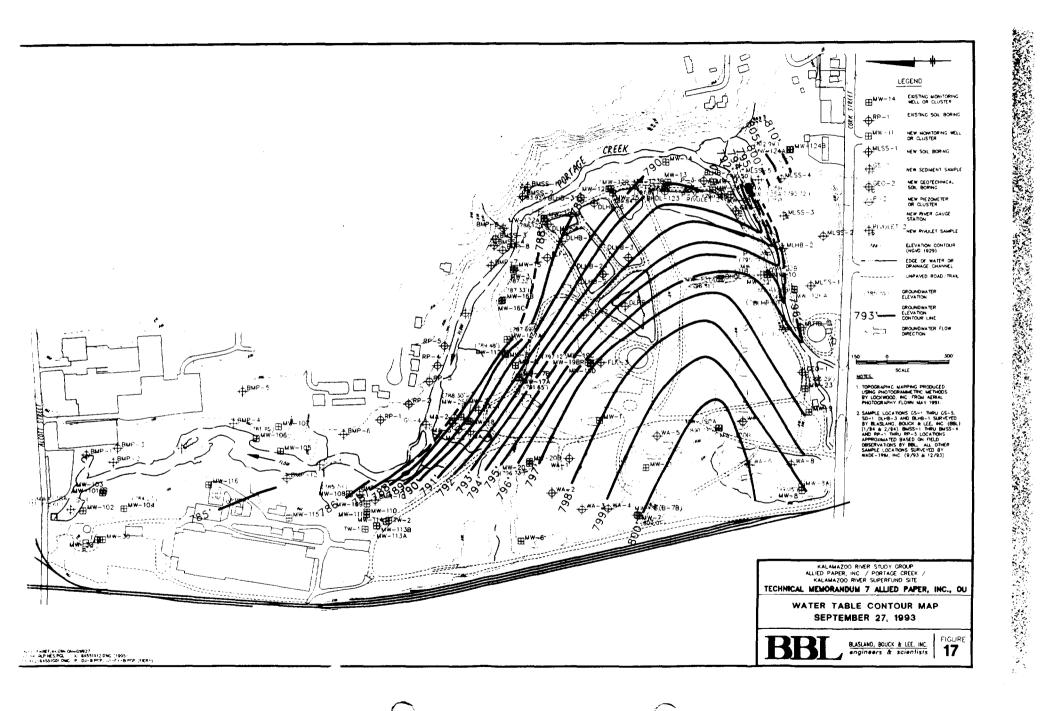
· ·

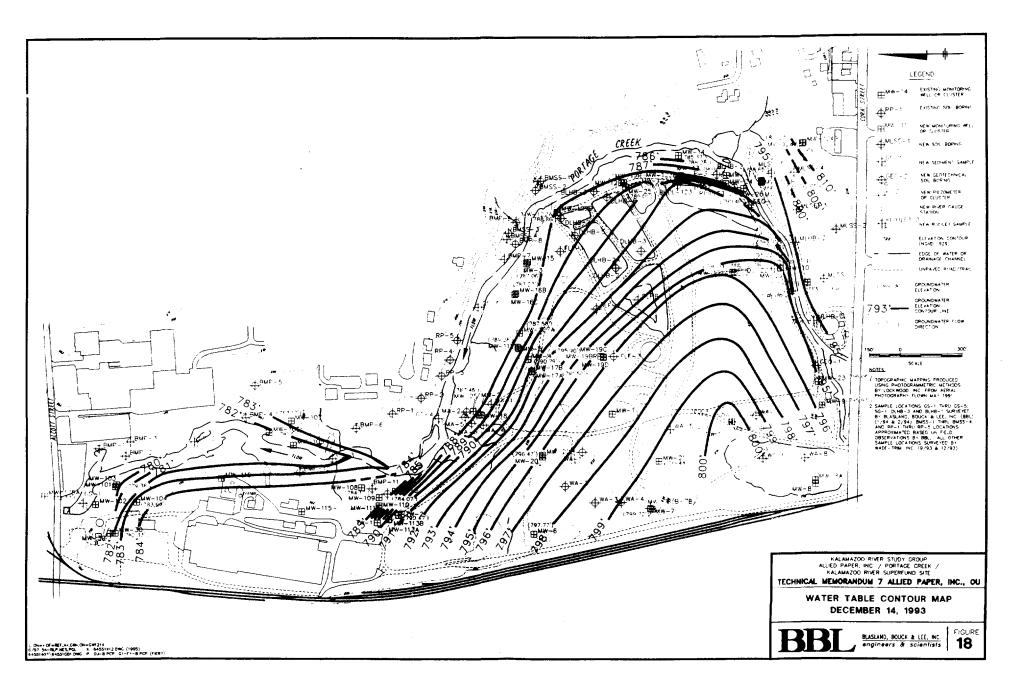




 $\widehat{}$ 


\_





.





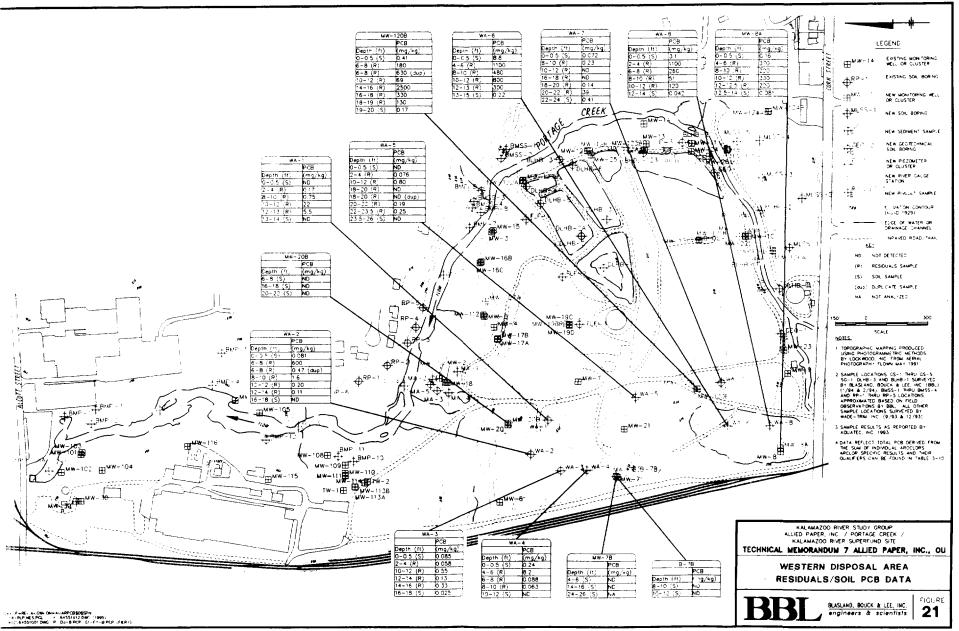




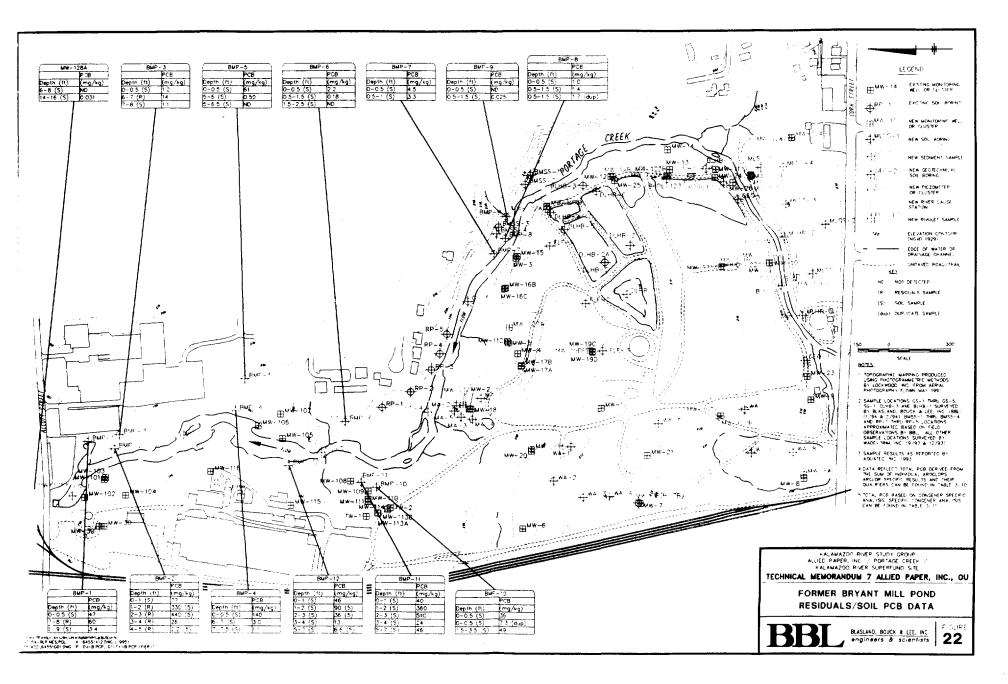


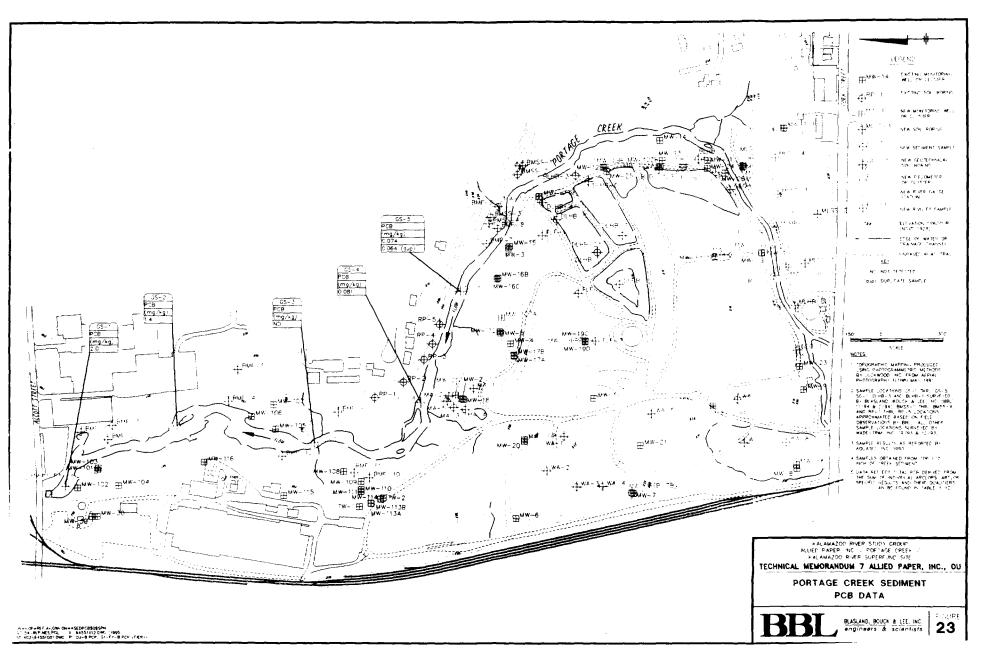




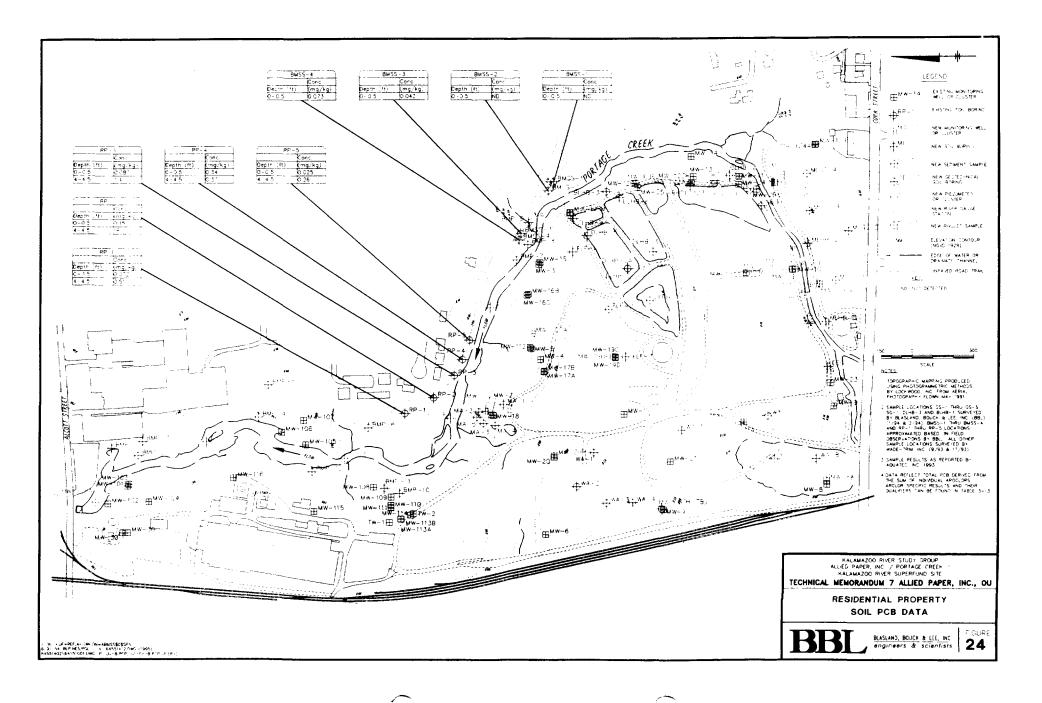




-

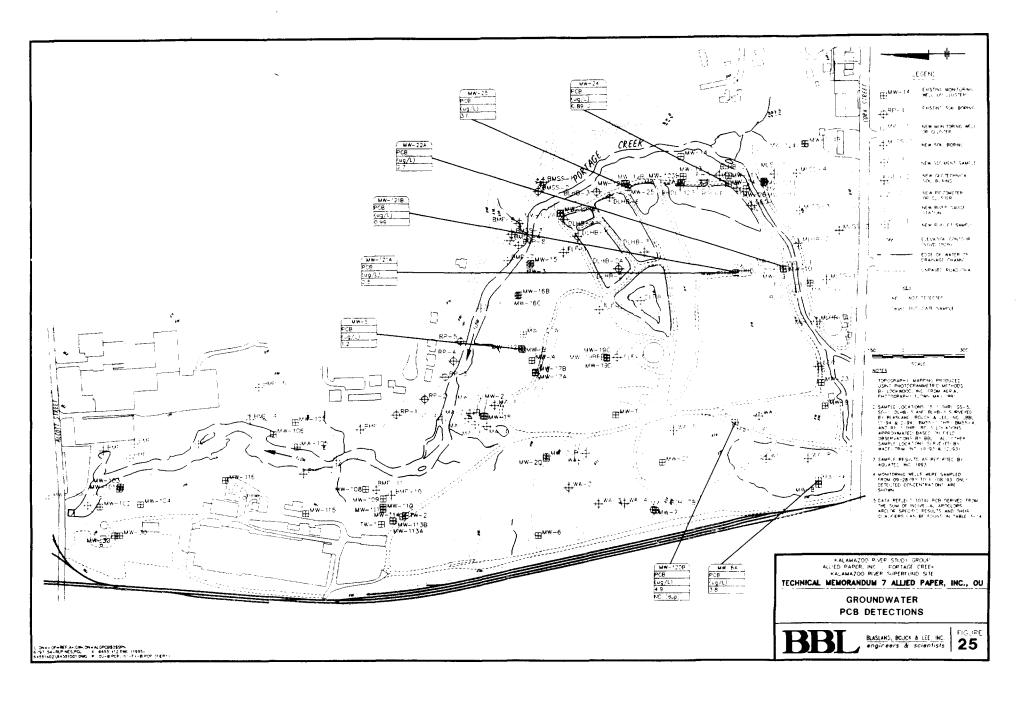

-

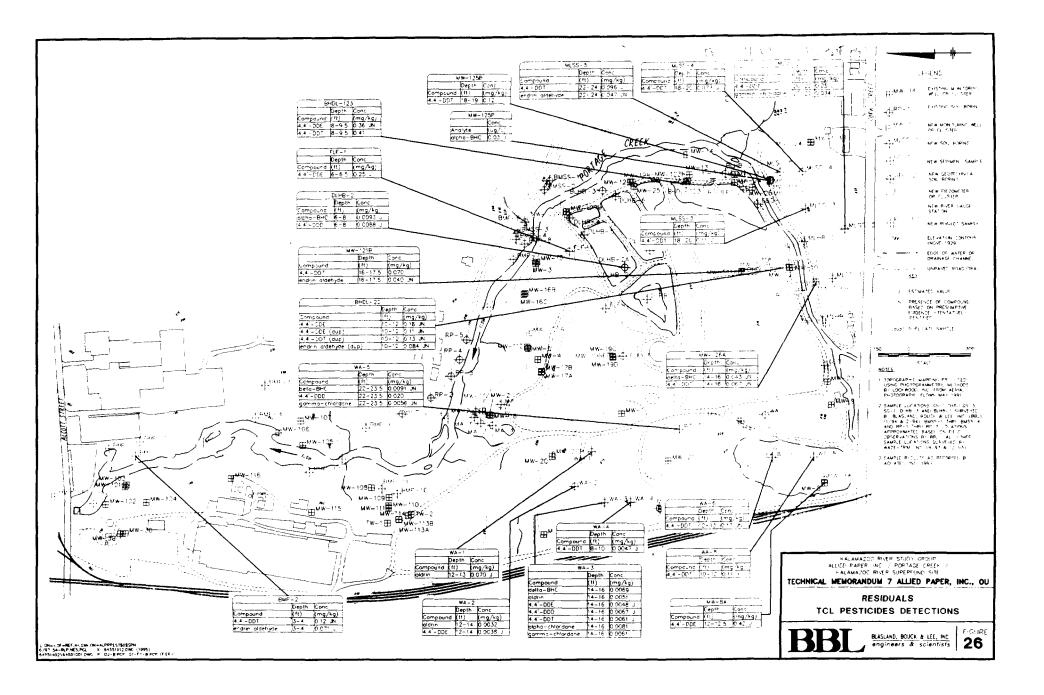


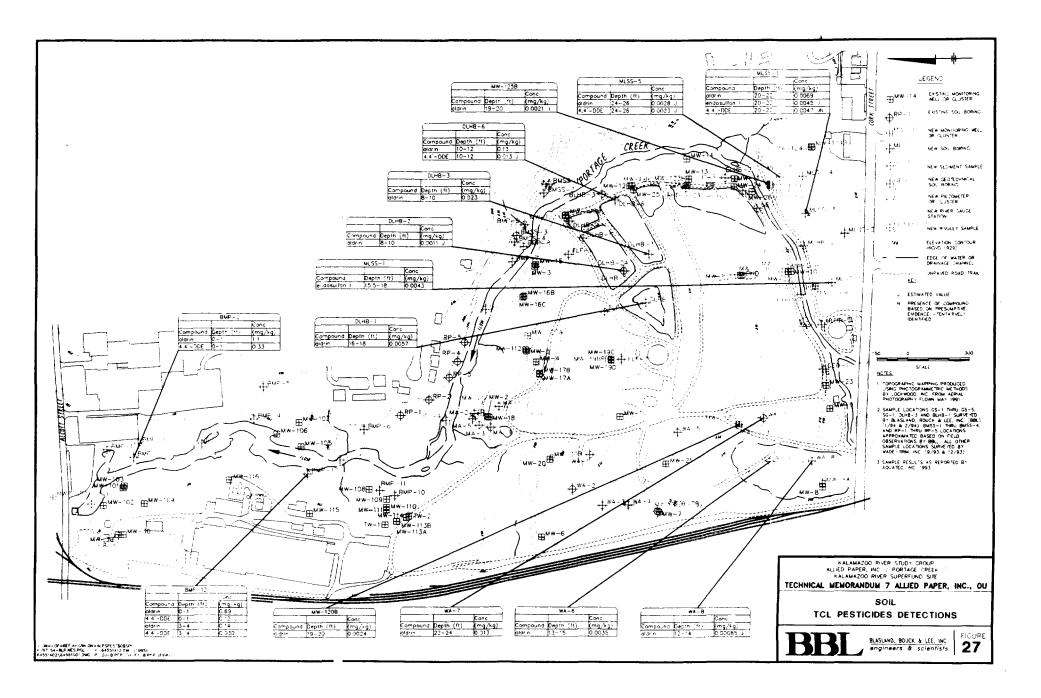

· \_\_\_\_\_

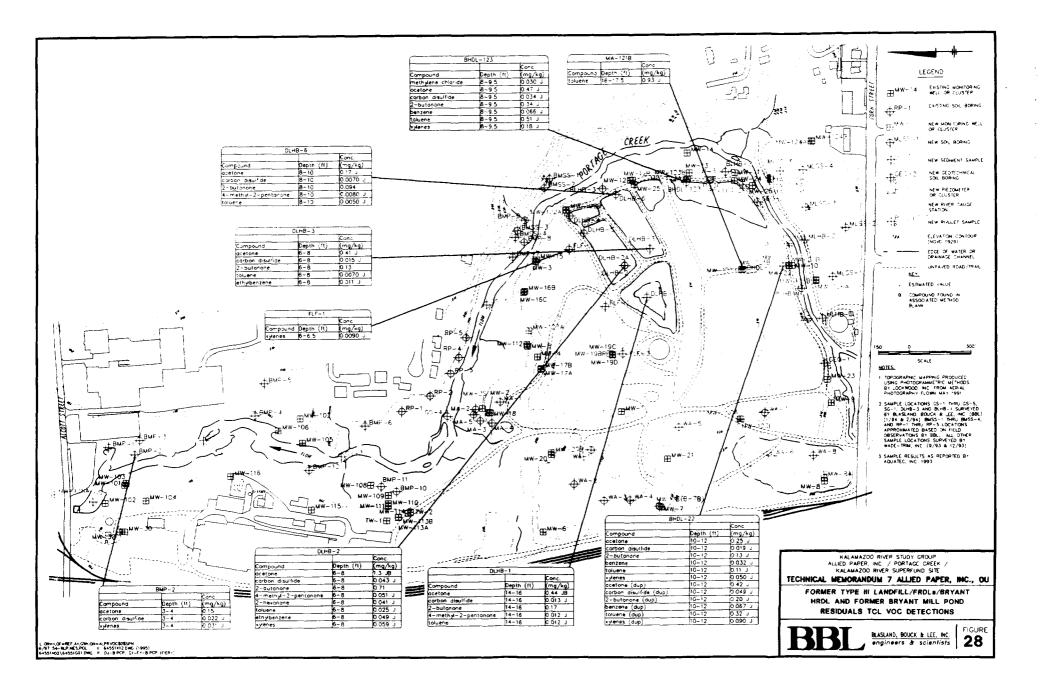


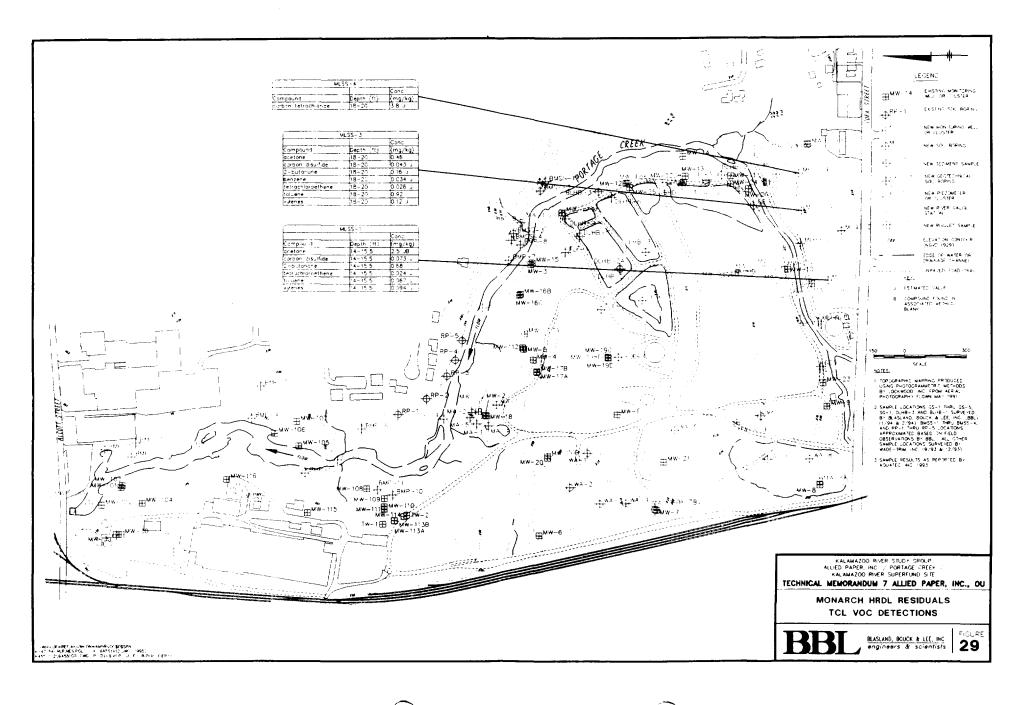

1997 - C  $\mathbf{\hat{v}} \in$ 

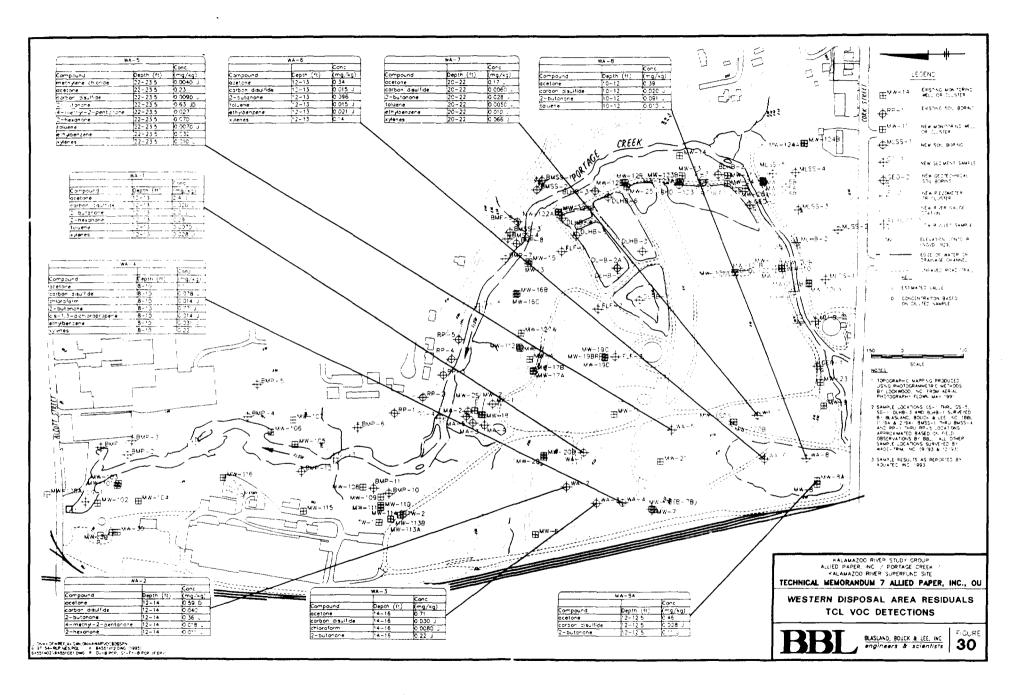


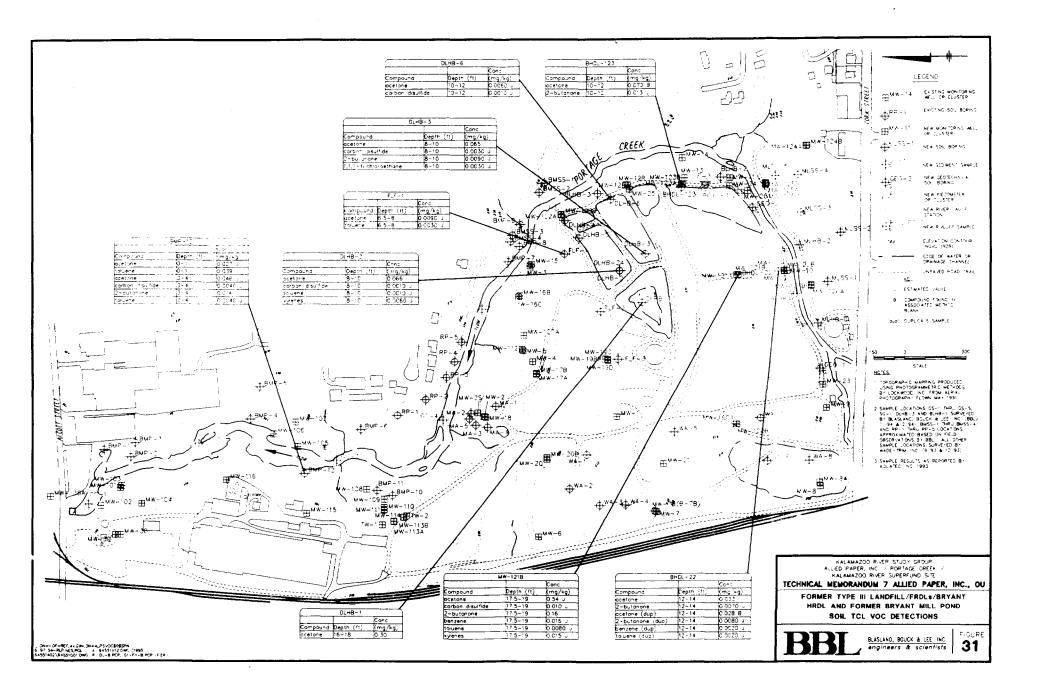



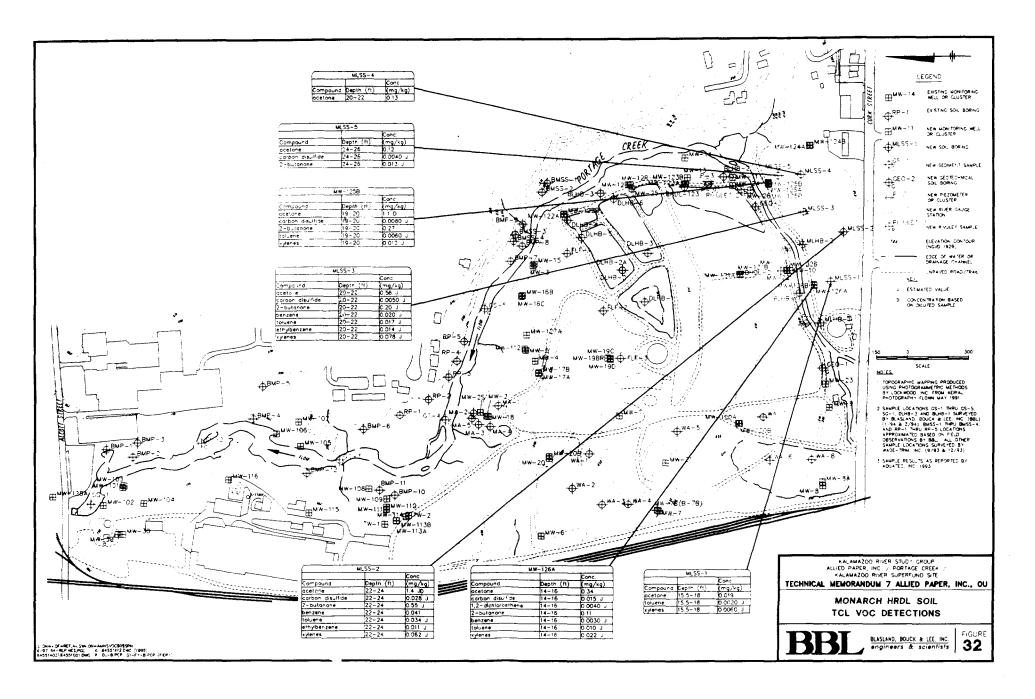


. ....

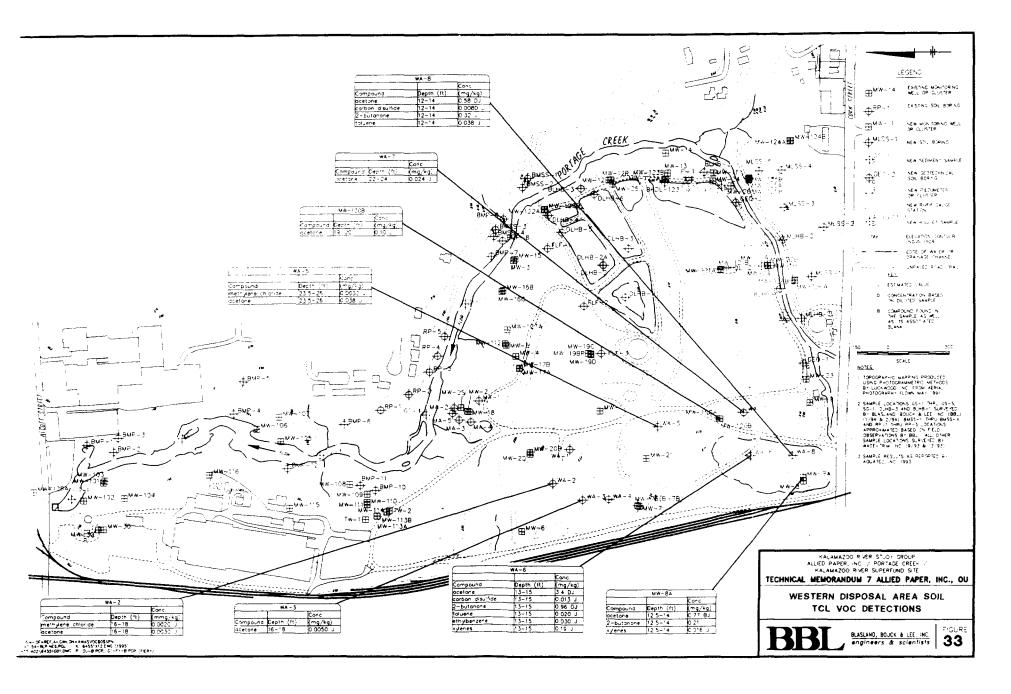


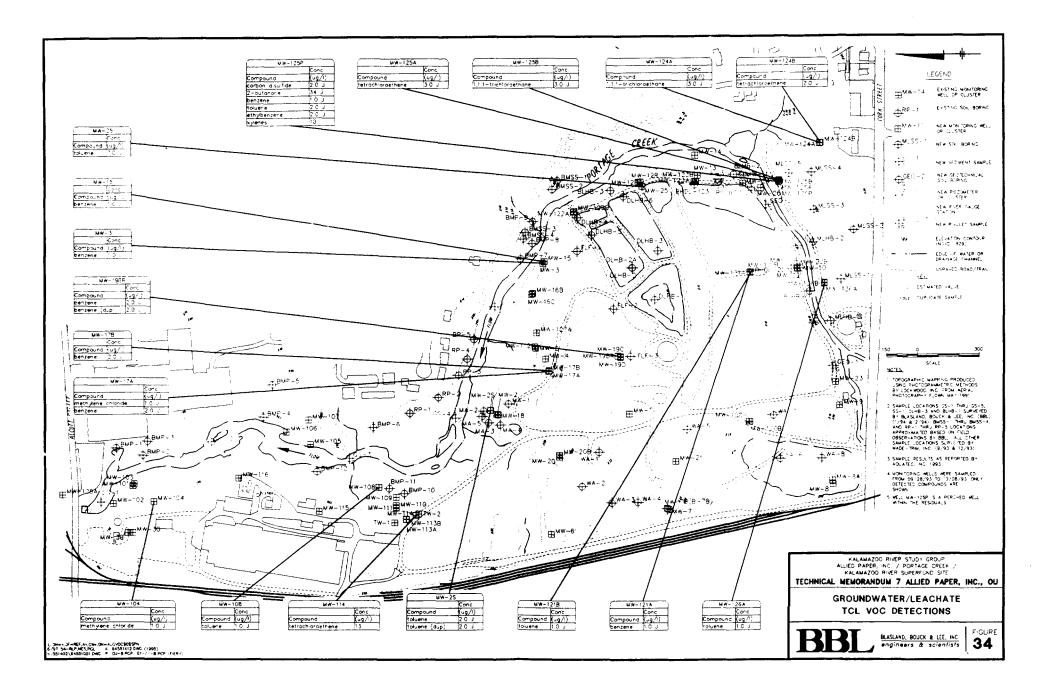


 $\sim$ 



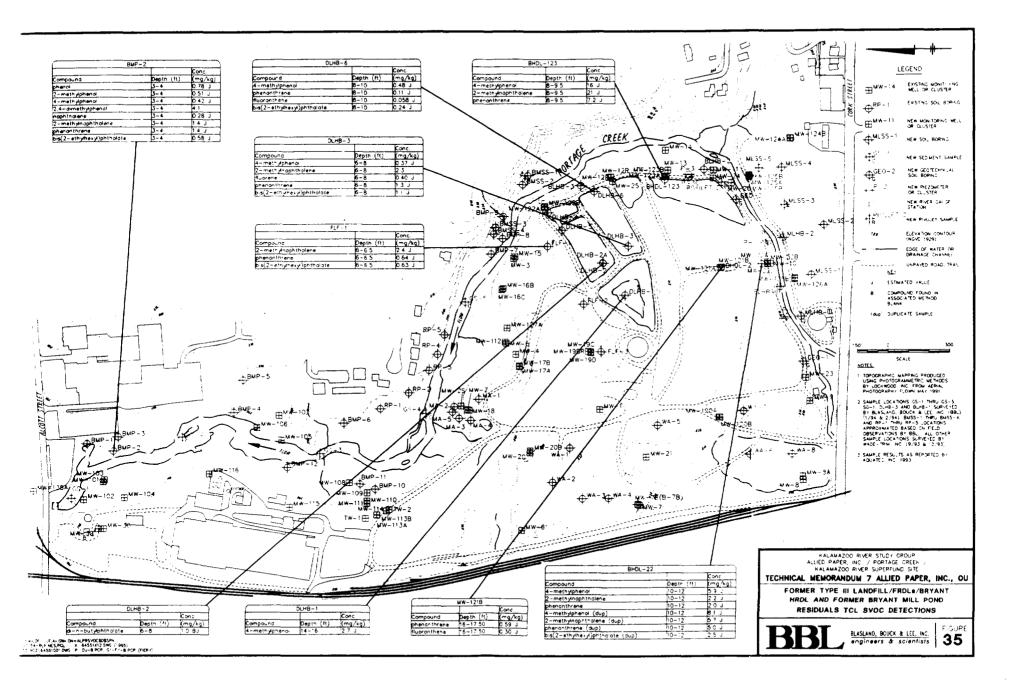



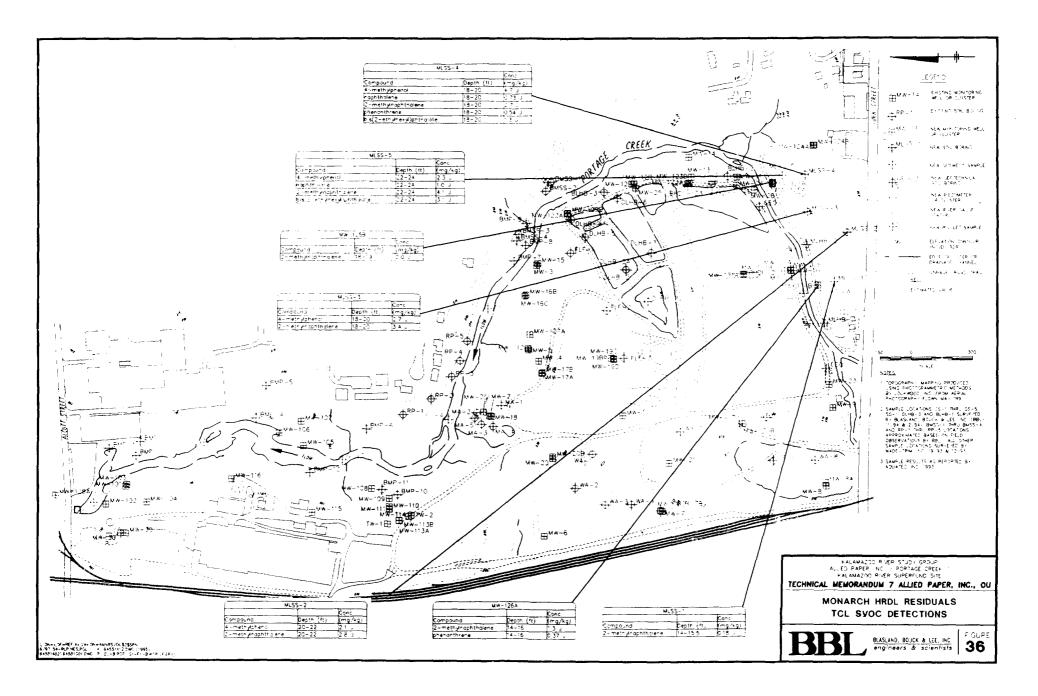



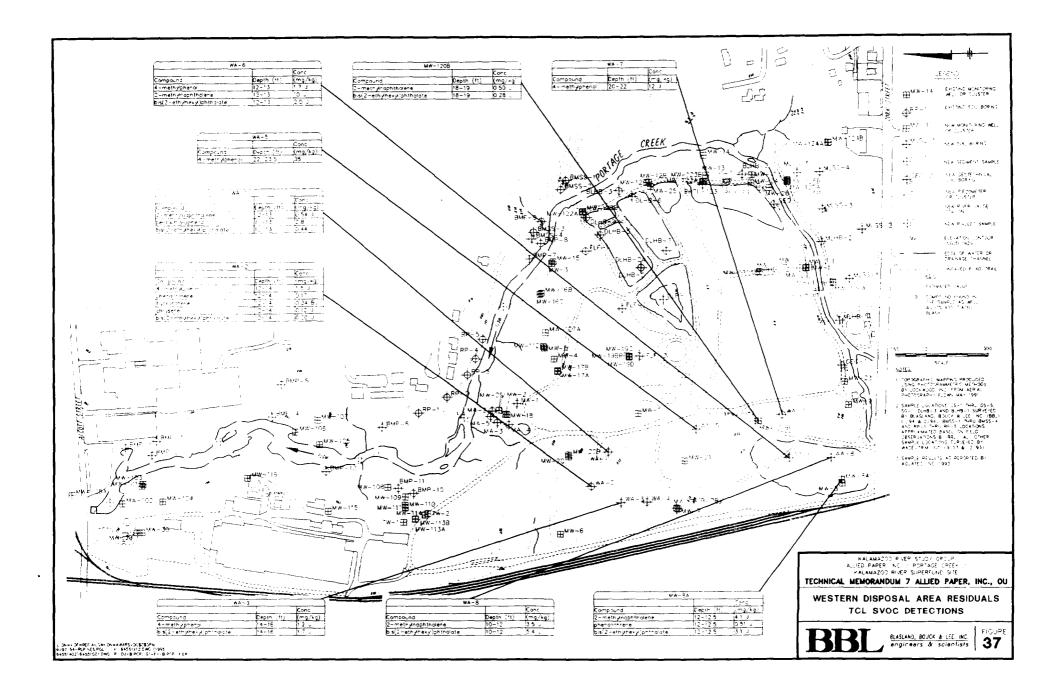





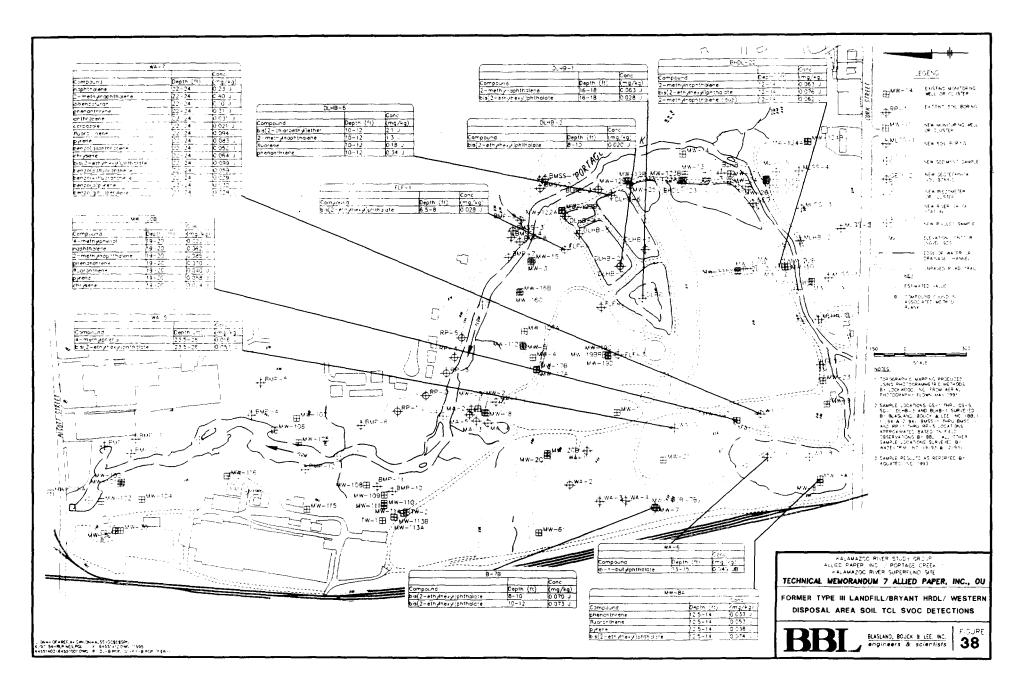



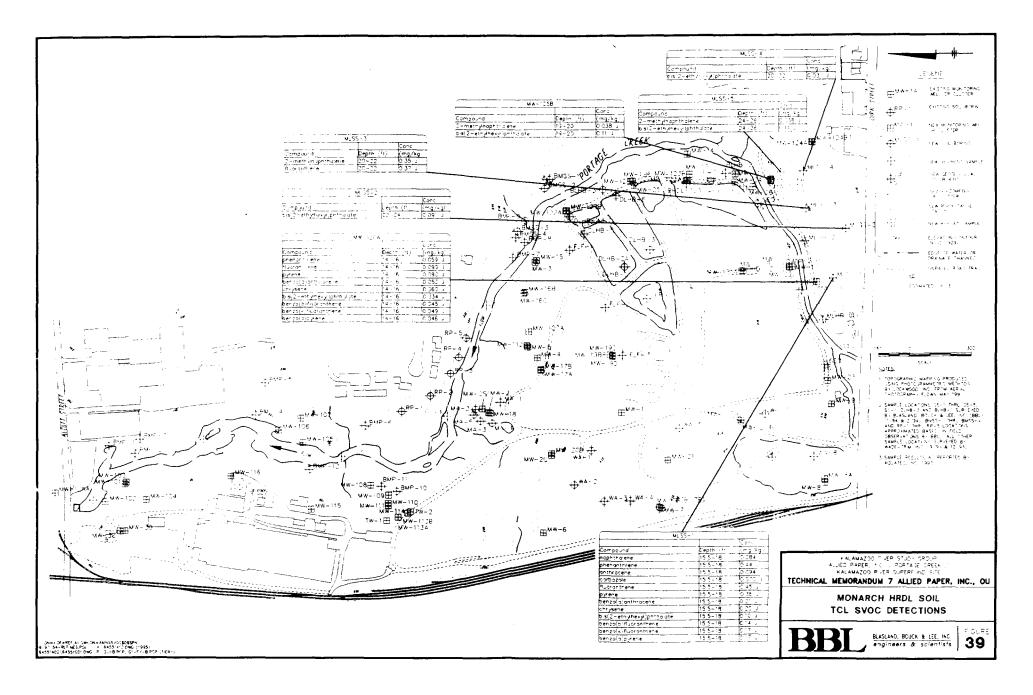


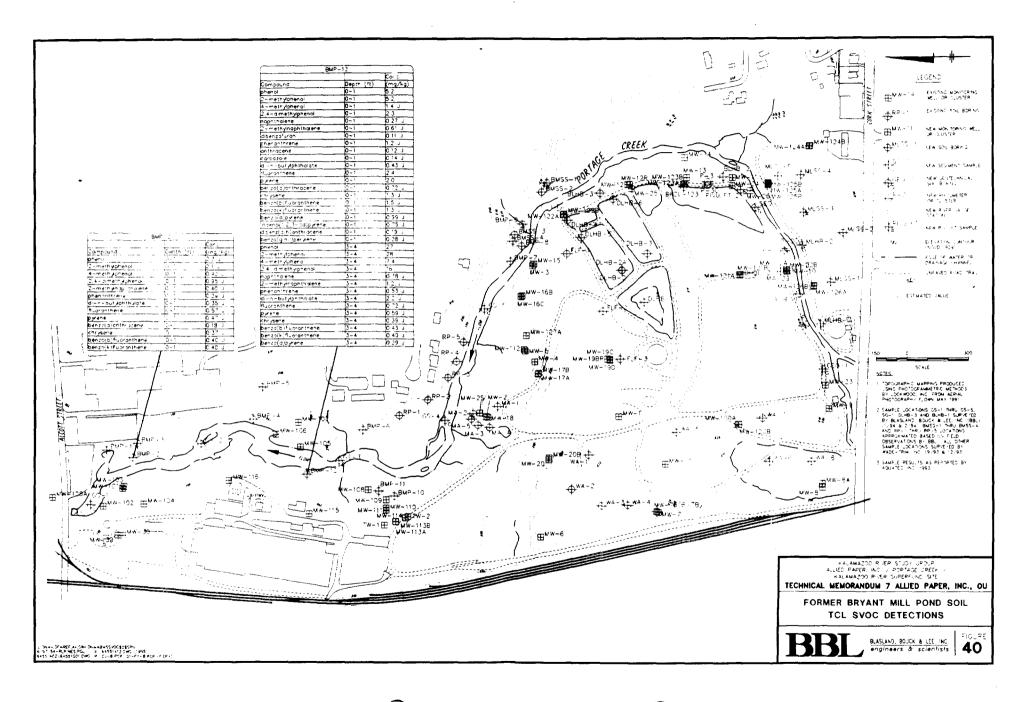

ς.

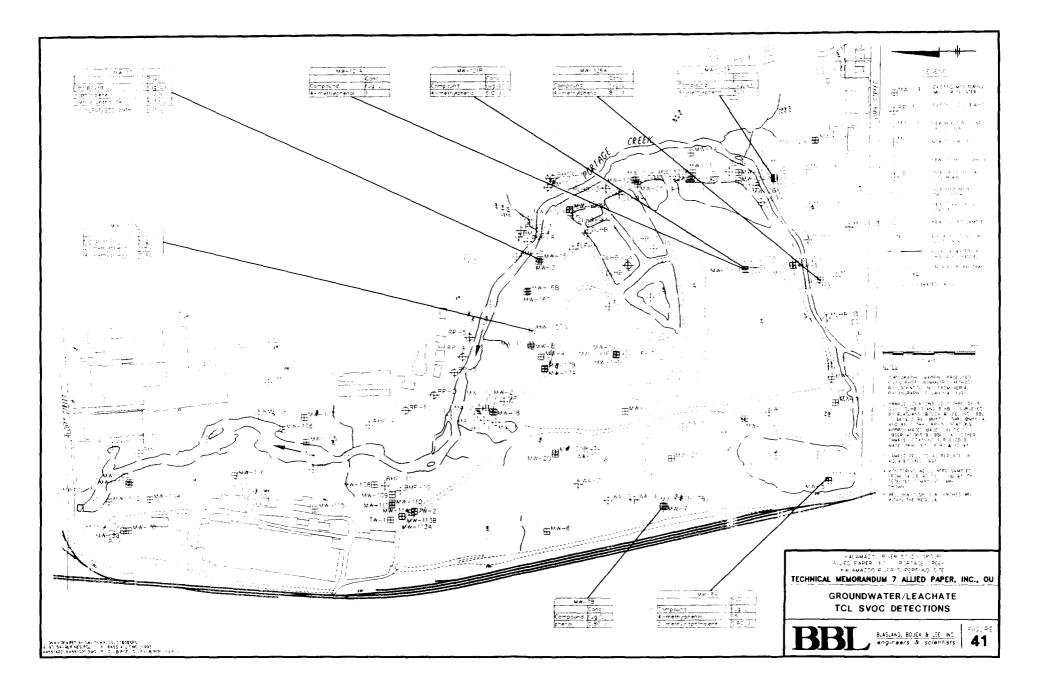


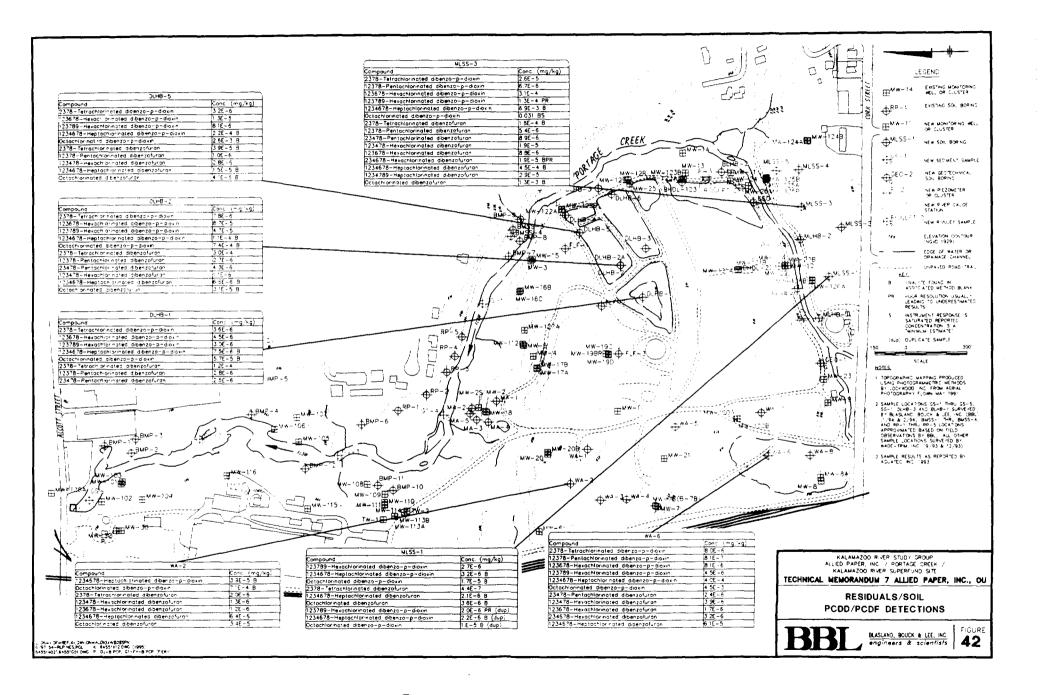


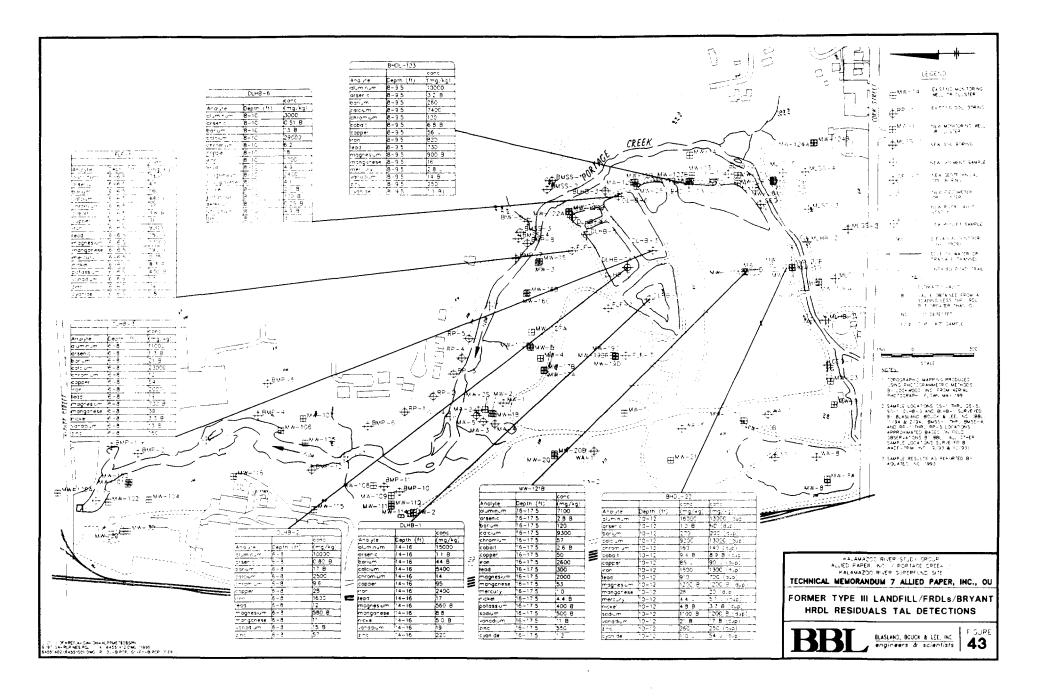


 $\sim$ 

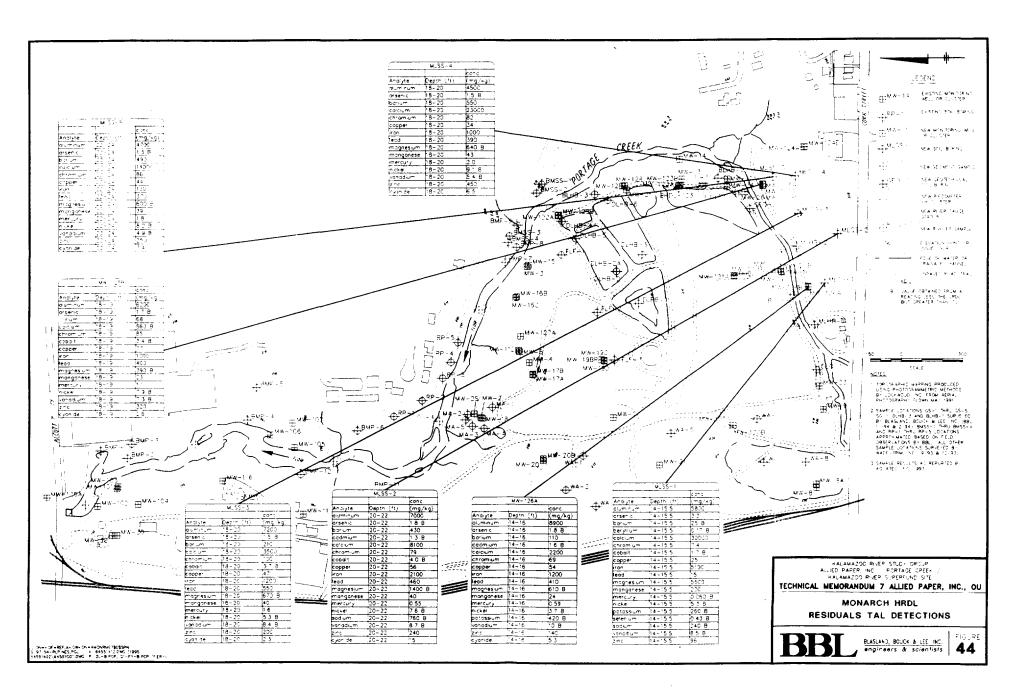



,





 $\frown$ 

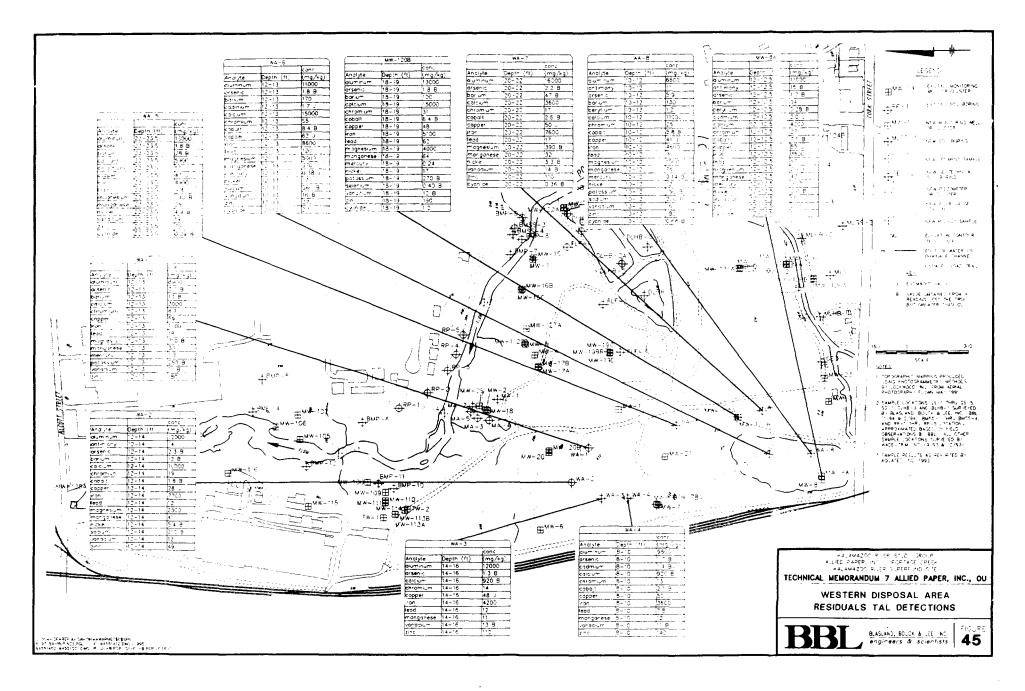


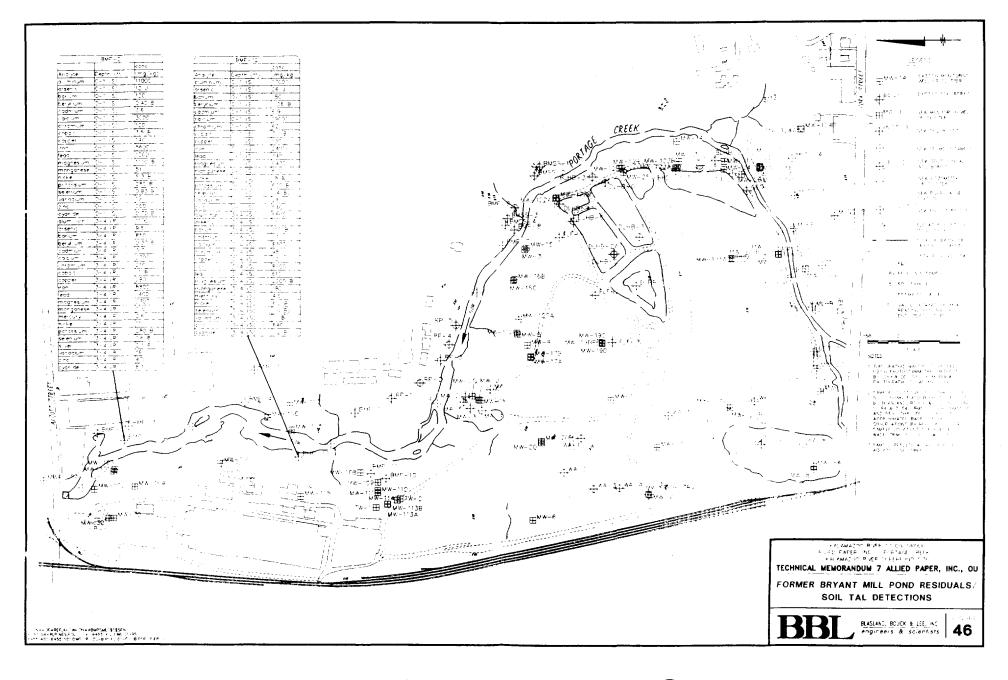


 $\frown$ 

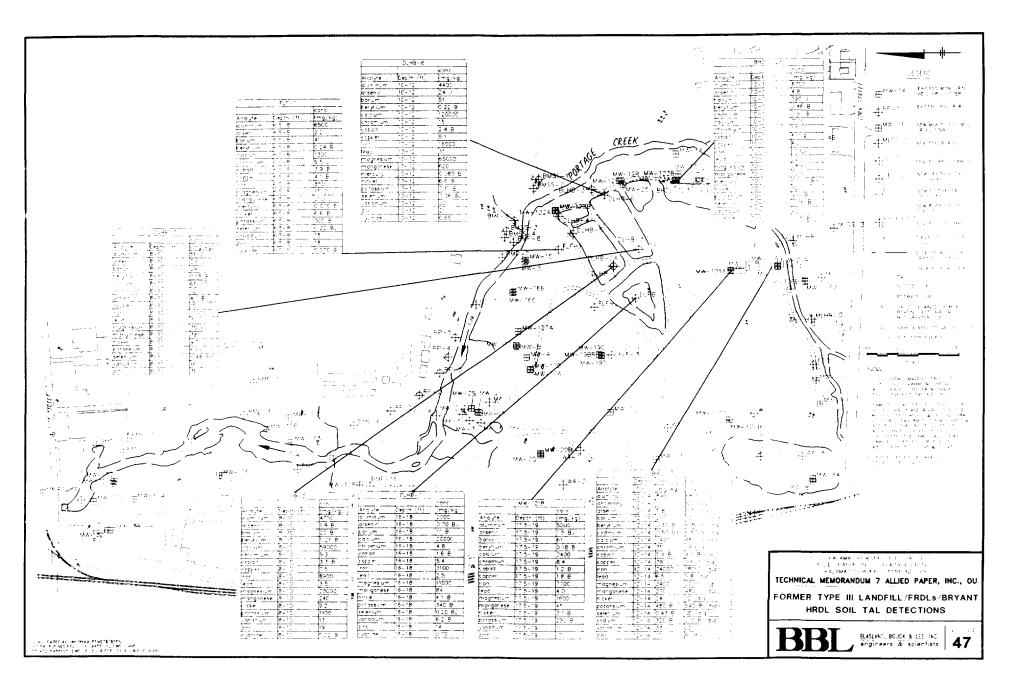




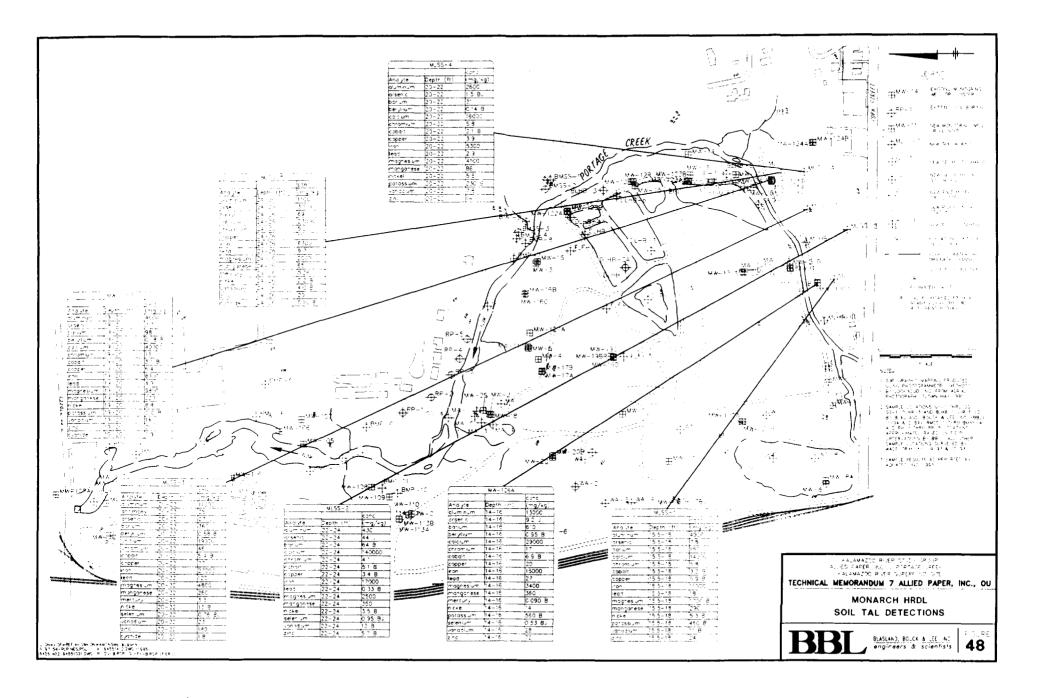


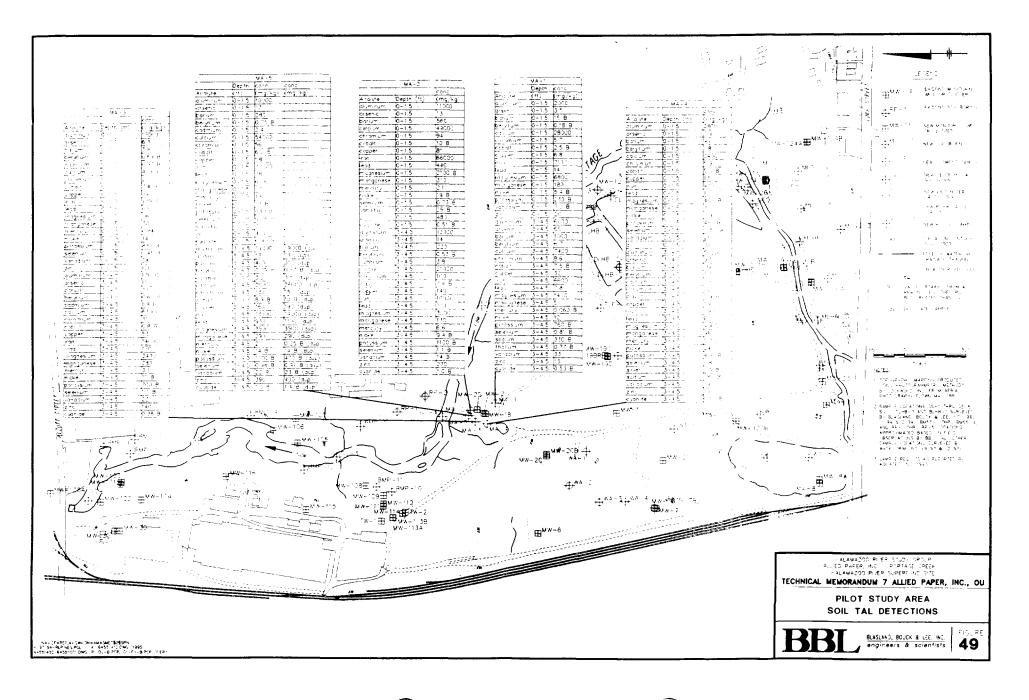


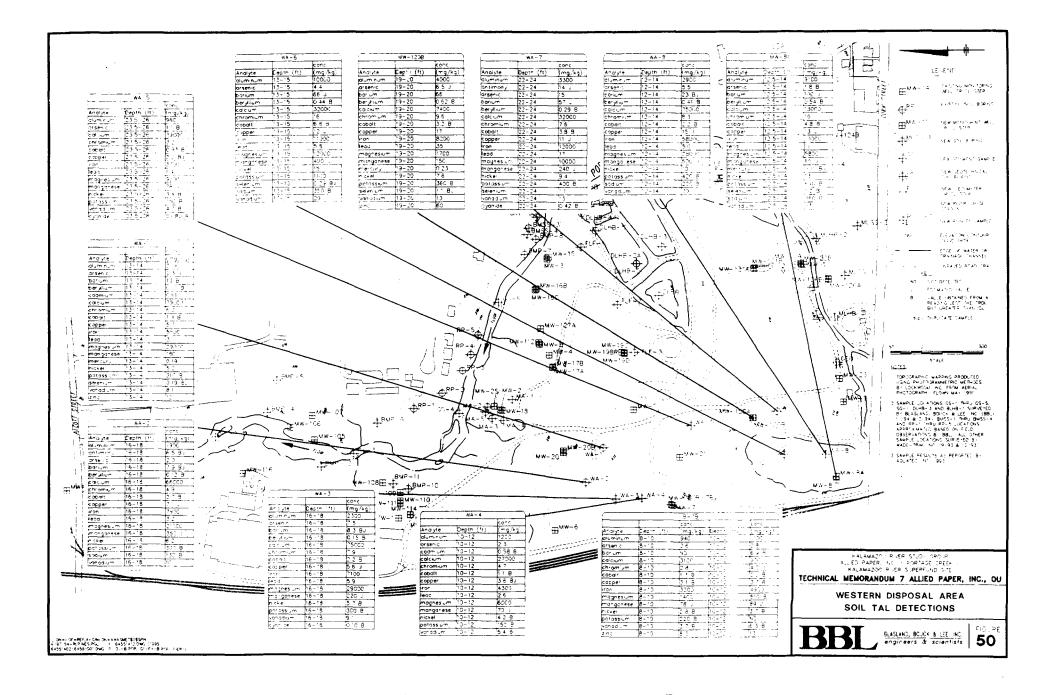


f v

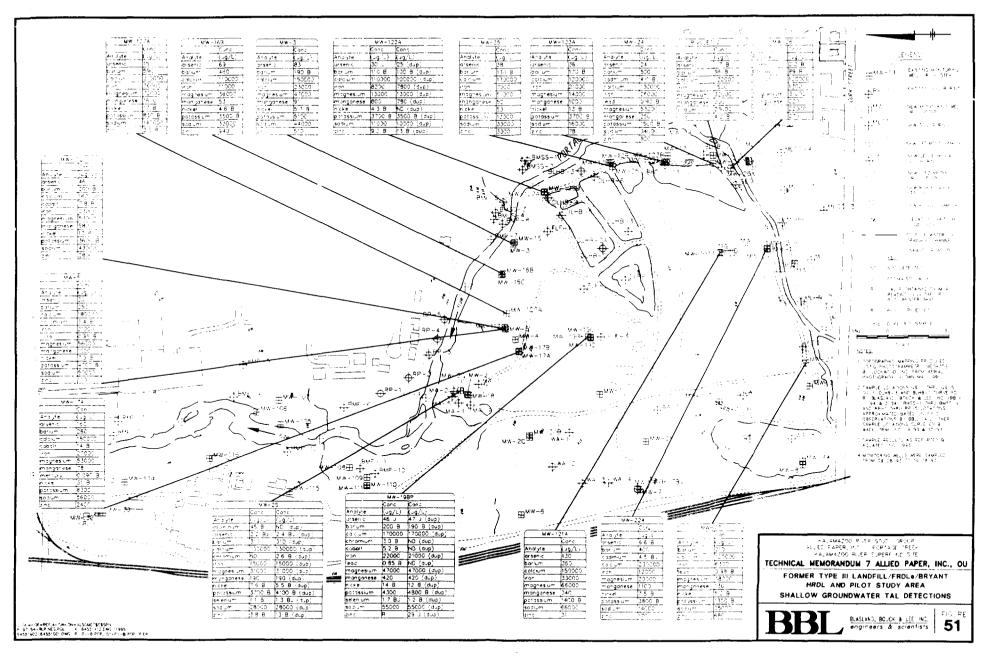
-

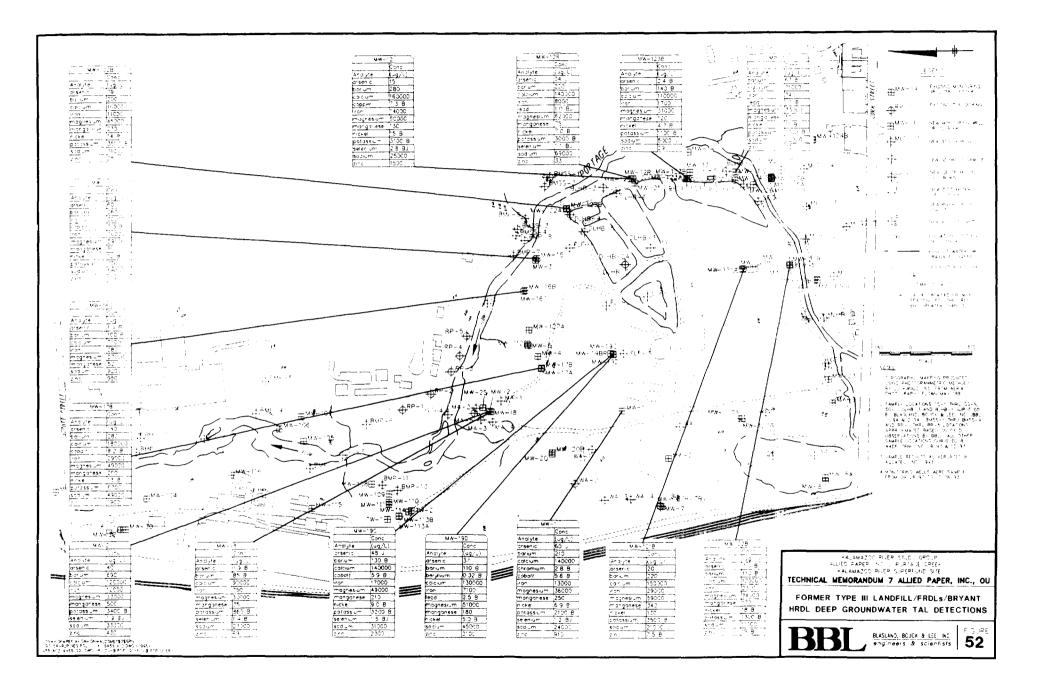

 $\sim$ 

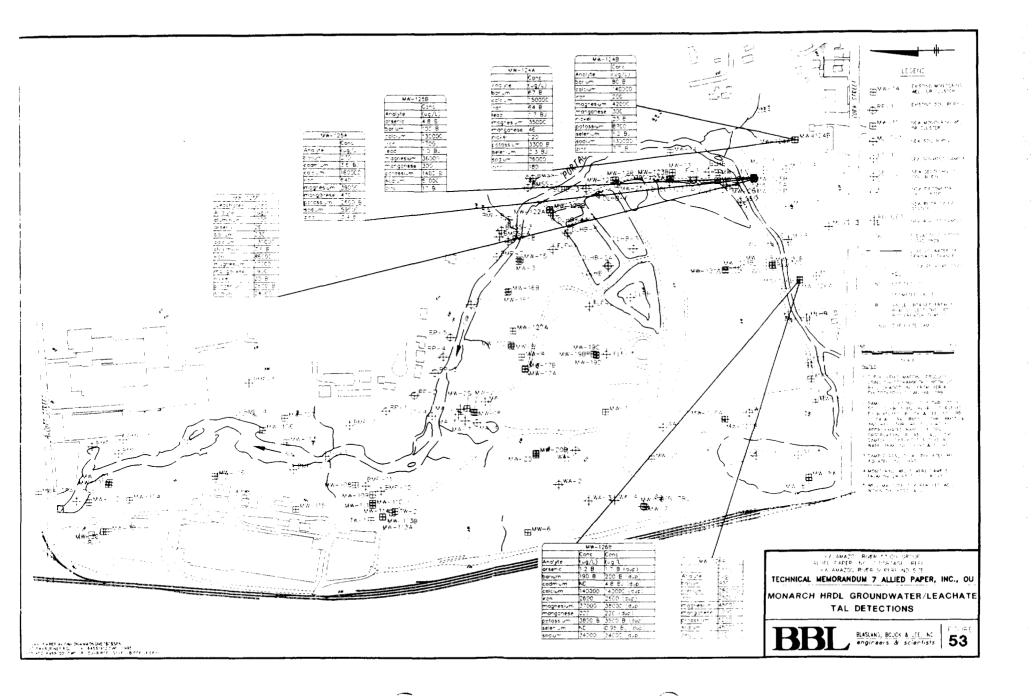


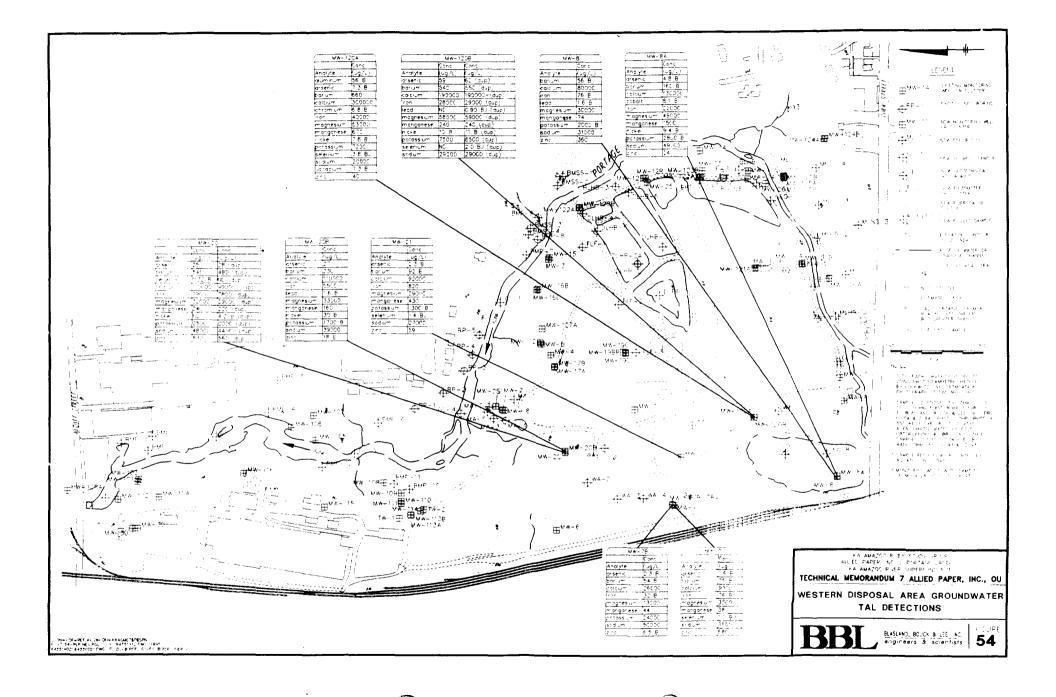


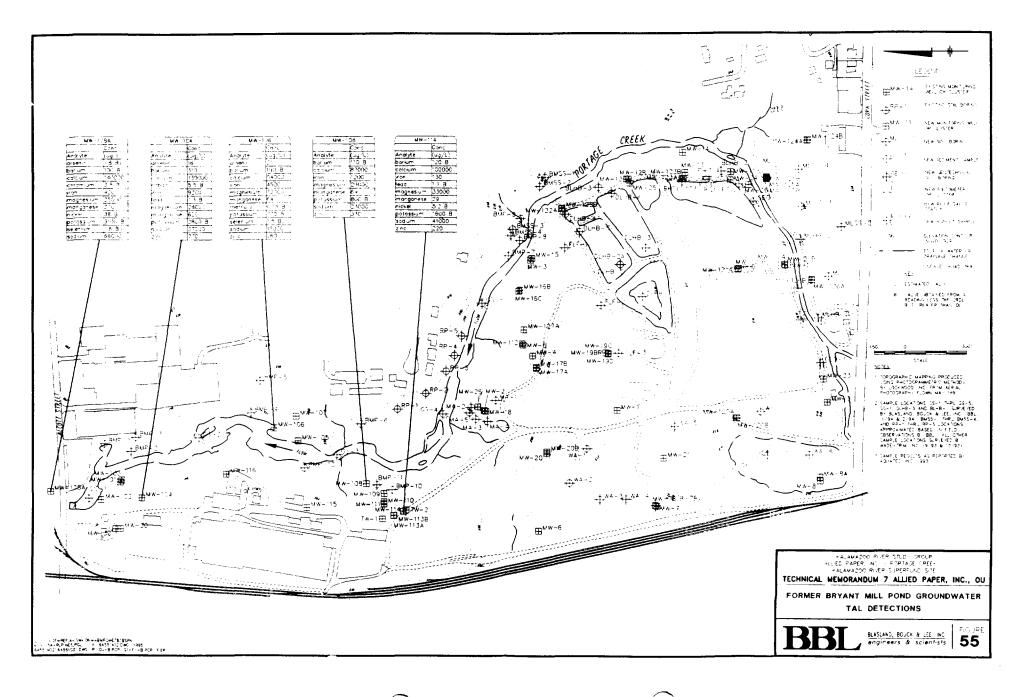





÷

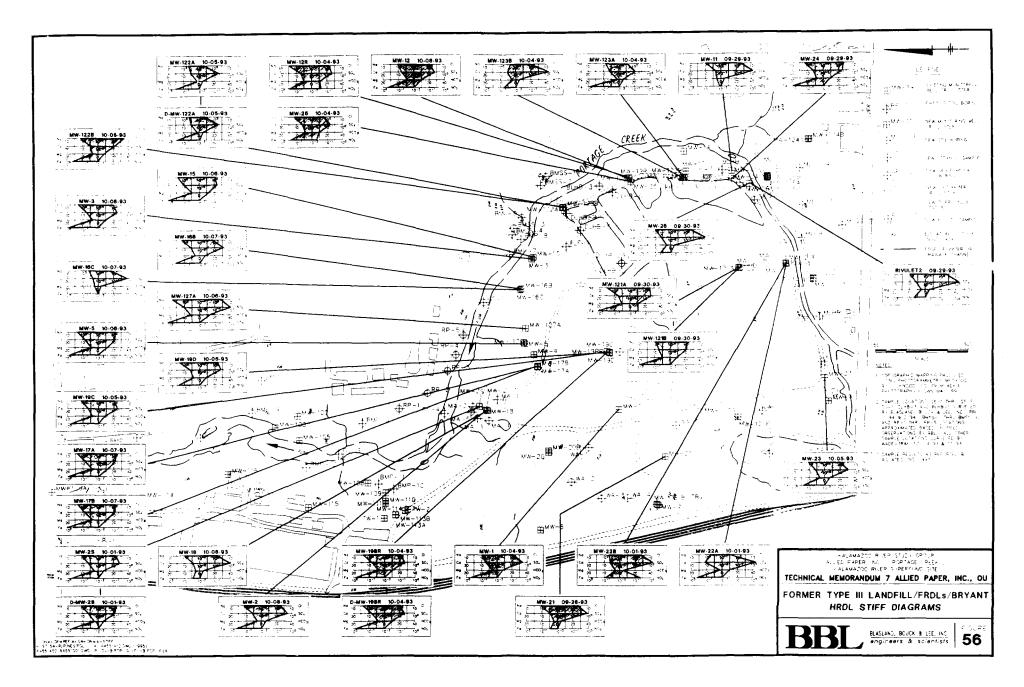




.

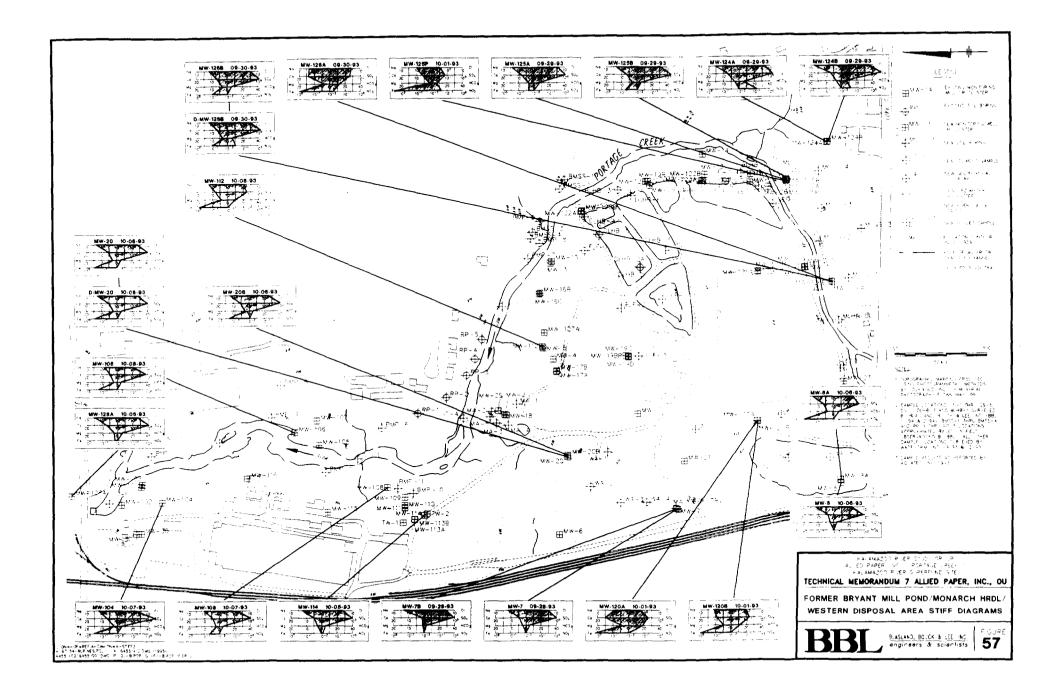









**.** .



 $\widehat{}$ 

<u>\_\_\_\_</u>

