FINAL DESIGN ANALYSIS
 HETEVA IANDFILU SIIE LEFHGH COUNIY, PENNSYLVANIA
 PREPARED FOR:
 U.S. ARMY CORPS OF ENGINEERS OMAHA DISIRTCT COE PROJECT MANAGER - MR. MIGUEL CINIRON

PREPARED BY:

SIRRINE ENVIRONMENITAL CONSUTITANIS GREENVIIIE, SOUIH CAROLINA

APRII 1988
SEC JOB NO. F-1536
I. GENERAL
A. Background
B. Basic Design Analysis Criteria
C. Federal, State, and LocalEnvironmental Protection Criteriaand Environmental Permits
II. POIENITAL SEITLEMENT EVALUATION ANDCOMPACIION CONSIDERATIONS
Backup: Settlement Calculations Reference Material Utilized
III. CAP SEIECIION BACKUP
Backup: Communication Reports Preliminary Cost Comparison
IV. GRADING EVALUATION AND DRATNAGE DESIGN
Backup: Grading CalculationsDrainage Calculations
APPENDIX A: PERMITITING BACKUP
APPENDIX B: SURVEY NOTES

A. BACKGROUND

This design analysis provides the backup information used in the design of the cap and gas collection system for the final landfill cover at the Heleva Landfill Superfund site. It provides basic criteria for design decisions, project design criteria selected, and major design calculations. The following summary provides a chronology of the eventual design selected.

- Initial design efforts involved the gathering of site survey information and other pertinent data concerning the physical condition of the site.
- Based on review of previous studies and physical conditions at the site, various capping concepts were evaluated, all that would meet the intent of 40 CFR 264.310. Guidance document EPA/540/285/002, Covers for Uncontrolled Hazardous Waste Sites provides recommended guidance for capping systems and acknowledges that alternative designs can also meet the five basic requirements without the use of the "standard RCRA cap." In the course of the investigation, two major factors had to be considered. The amount of subsidence has historically been significant and based on the available information, this will be a continuing problem at the site. In addition, the initial survey of borrow material and available clay material identified no practical local areas where acceptable capping material could be expected. Historically, this has presented a problem in the Pennsylvania area. After discussions with the COE, it was determined that an initial concept design memo would be generated addressing these two problems and providing grading plan options to reduce the amount of borrow material required for general grading and minimize the loading on the landfill area. Initial investigations were also made of possible stabilization and compaction methods.
- The preliminary design information was provided to US EPA and COE for review and a meeting to discuss the options was held. Based on the information presented, US EPA requested a preliminary cost estimate (30 percent) for two options. The first involved the standard RCRA cap and the second involved an alternative design using a synthetic liner as the basic impermeable layer. After review, SEC was directed to proceed with an alternate design using the synthetic liner that would, to the degree possible, meet the following criteria:
- Provide long-term minimization of migration of liquids through the closed landfill.
- Function with minimum maintenance.
- Promote drainage and minimize erosion or abrasion of the cover.
- Accommodate settling and subsidence so that the cover's integrity is maintained.
- Have a permeability less than or equal to the permeability of any bottam liner system or natural subsoils present.

Since subsidence may be an ongoing problem, the following considerations were incorporated into the design.

- Minimize the amount of final cover above the liner so that should a repair be necessary, the area could be uncovered with a reasonable amount of effort.
- Select materials that would be sufficiently resistant to damage during construction, but provide enough expansion capability to allow for same degree of subsidence. HDPE was selected as the liner material and a synthetic drainage net. The drain net provides a reduction in the total thickness and weight of the cap system and will better maintain its integrity as a drainage
blanket then would a sand/gravel layer should local subsidence occur.
- Utilize the SEC recommended alternative for grading (Option No. 3 of the Concept Design Memo) for the site plan work.
- In addition, prior to finalizing the 30 percent design, results from the predesign study indicated areas outside the original cap designation with TCE contamination. After review of this information, EPA directed SEC to extend the limits of the cap along portions of the southern boundary.

The comments from the 30 percent design submittal were discussed and incorporated into a 95 percent design submittal. After initial review, EPA and the COE requested that the capping area be returned to the original RI/FS designation and the boundary of the cap be designed along the southern edge to allow for eventual extension of the cap. Design options were evaluated and a review meeting was held to finalize the concepts for resubmittal of the 95 percent design documents. Concerns were raised by the COE about anchoring the liner in trash or fill areas and an alternative extending the cap over the TCE area but allowing a soil venting system to be installed at a later data though the liner was formulated and selected. Evaluation of pre-installation boots being incorporated into the liner for installation of the soil vent system was investigated, but contacts with Terra-Vac indicated that the spacing would vary based on several factors. For this reason additional boots could be installed later, if required. Final design has proceeded in this manner.

B. BASIC DESIGN ANALYSIS CRITERIA

The landfill site is owned by Steven D. and Louis M. Heleva. Arthur J. Heleva and Martha Klugh own the adjacent property.

During the initial stages of the design effort, it became clear that
the final design efforts could not proceed until certain conceptual decisions were made. Certain complications occur with this site that made a conceptual submittal necessary. The existing topography across the landfill is extremely variable and significant subsidence has cocurred. Based on preliminary information, settlement will be an ongoing problem at the site. Initial concepts were addressed in the concept design memo submitted in October 1987.

The landfill cap was designed to provide long-term minimization of migration of liquids through the closed waste site. The cap was designed to conform with the following objectives of 40 CFR 264.310:

- Provide long-term minimization of migration of liquids through the closed waste site,
- Function with minimum maintenance,
- Promote drainage and minimize erosion or abrasion of the cover,
- Accommodate settling and subsidence so that the cover's integrity is maintained, and
- Have a permeability less than or equal to the permeability of any bottom liner system or natural subsoils present.

To create a cap system that minimized the migration of liquids through the closed waste site, the landfill would have to be regraded to allow runoff to be transported off the site. Initially four options were presented in the conceptual design memo issued October 30, 1987 based on the existing topography at this site. Option No. 1 involved filling the landfill site to form a dame allowing rainfall to run across the cap to either Todd Lake or the Northeast pond. A ridge would be made at the high point of the landfill near Todd Lake. A great deal of fill would have been required for this option and runoff would have been allowed to run across the cap for long distances. The second option consisted of creating a ridge in the center of the
landfill and allowing runoff to run away from the center and towards the sides of the cap. This option proved to require twice as much fill as the first option. The fourth option was to create a dome to shed runoff to the nearest cap edge. This option required five times the amount of fill that option No. 1 required. Option No. 3 was selected based on the lesser amount of fill, the ease of construction, and the reduced cost when compared with the other three options.

Option No. 3 has limited changes relative to the existing contour layout. A north-south ridge will be graded to direct runoff toward either Todd Lake or to the northwest pond. The flow that will be directed towards the northeast pond will be channeled into engineered ditches that will be lined with rip rap and tied into the landfill cap by a 60 mil HDPE liner. These ditches will discharge the runoff to the northeast pond. It is assumed that some high spots can be lowered and that some cutting into the existing landfill material can occur.

After the initial common fill is placed so that adequate slopes are attained for drainage, a 6-inch layer of select fill is placed. This select fill will not contain any organic material, any rocks larger than $\frac{1}{4}$ inch or objects that may puncture the HDPE liner. A geotextile is placed on top the select fill to provide a cushion and protection for a 60 mil HDPE liner. The 60 mil HDPE liner will be set on top of the cushion geotextile to prevent runoff from entering the refuse. A drainage net is placed on top of the HDPE membrane to allow runoff to flow off the landfill. This rigid plastic net would provide drainage as well as support for the cap system if settlement should occur. These materials have been used in similar applications several times in the past. A filter fabric is to be placed on top of the drainage layer to keep soil particles from entering the drainage net and clogging it. The top of the cap will consist of a 12-inch layer of select fill and a 6-inch layer of topsoil to allow grass to grow so that erosion of the cap can be minimized. There is 12 inches of select fill necessary because HDPE membrane manufacturers require a minimm of 12 inches of material on top of the membrane before equipment can be driven on the liner.

Due to design constraints a 3 to 5 percent slope, as required for RCRA standards, was not possible. The landfill surface would have to be lowered significantly to allow a 3 to 5 percent slope. This lowering would require a large amount of excavation into the refuse which may contain hazardous materials. Using the designed slopes it was verified that the soil loss would be an acceptable amount by utilization of the Universal Soil Loss Equation.

Through conversation with the Soil Conservation Service, the soil erosion should be less than 2 tons/acre/year using the Universal Soil Loss Equation. Carl Hellerick (215-398-4910) of the Allentown Area Soil Conservation Service supplied the regional factors for this equation. These factors include an R (rainfall) factor of 175; a K (soil type) factor of 0.28 based on a readily available topsoil for that region; a C (crop) factor of 0.02 based on grass with low maintenance; a P (farming practice) factor of 1.0 based on no conservation practices being initiated. John Case of the Greenville Soil Conservation (803-242-2756) received the plans and determined an average slope of 6 percent (for LS factor) and an average slope length of 700 feet (for LS factor). By utilizing an $L S$ chart with a slope length of 700 feet and a slope percent of 6 , the US factor is 1.8 .

The Universal Soil Loss Equation consists of the following:
$S L=(R) x(K) x(C) x(P) x(L S)$
where:

SL $=$ Soil Loss
R = Rainfall factor (175 for Allentown, PA Area)
$K=$ Soil Type Factor (0.28 for soil in Allentown Area)
$\mathrm{C}=\mathrm{Crop}$ factor (0.02 for grass with low maintenance)
$P=$ Farming Practice Factor (1.0 for no farming conservation practices being initiated)
LS $=$ Slope-length factor (1.8 for this site)

Therefore the Soil Loss is:
$S L=(175) \times(0.28) \times(0.02) \times(1.0) \times(1.8)=1.76$ tons/Acre/Year

By the utilization of the Universal Soil Loss Equation the soil loss at this site will be 1.76 tons/acre/year which is less than the 2.0 tons/acre/year that is allowable.

Before construction of the cap can occur, several items will have to be addressed. Several pieces of equipment are going to have to be relocated so that the cap construction will not be obstructed. Near the entrance to the site are junked cars and trucks. Further into the site are several cars, trucks, bulldozers, earthmovers, trailers and various other items that will have to be relocated prior to cap construction. The existing power line is to be relocated so that the pole near the building is not in the landfill. The building shown on the plans is to remain on the site. The cap was designed to avoid removal of this building at US EPA's request.

Several monitoring wells are located in the landfill capping area. These monitoring wells are to be closed per the specifications. The existing TCE area has been fenced in. This fence will be removed as will a power pole located inside the fenced TCE spill area. The onsite collection pond will have to be pumped dry prior to fill being placed in this area.

Additional survey work conducted by Sirrine Environmental Consultants revealed that the parking area, turnaround laydown area, washdown area, and trailer location, would have to be relocated to a more level area as shown on the plans. The washdown area was relocated so that only the equipment that needs to be washed will have to drive over the washdown area. The washdown area was placed between the parking lot and the turnaround area so that equipment that is to be washed will not be hindered by construction equipment and construction materials that are placed in the laydown area. The washdown area is to by made
of gravel due to the lower cost when compared to the cost of a concrete pad. Additionally when the cap is completed the laydown turnaround area and the equipment washdown area are to be removed and a gravel washdown area will be easier and cheaper to remove than one made of concrete. The equipment washdown area is a drainable wash area that directs flow to a sump. A portable pump is utilized to pump the washdown water from the sump to an above ground tank. Solids that get washed into the sump will have to be removed by hand. The ground surface where the laydown turnaround parking area, trailer location, and washdown area are located is generally flat. This area will have to be sloped to allow rumoff to drain towards the existing ditches. These two ditches will be lined with rip rap to minimize erosion. This rip rap will remain after the cap is constructed.

The other ditches that are on the cap were designed to collect the rumoff and channel it towards the offsite pond. These ditches were placed to follow the natural contours of the site. The slope of the ditches was adjusted with stair steps to keep runoff velocities low enough that the rip rap will not be disturbed. Construction of the ditches may involve excavation into the refuse. This excavation may encounter large objects such as autamobiles or appliances. Construction should be phased so that any large objects and any refuse excavated can be placed in the collection pond area prior to the fill being placed on the pond area. The ditch excavation may need to be cut deeper than shown so that suitable backfill can be placed and compacted to provide a good base for the ditches. Calculations for the ditch design are included in Section IV of the Design Analysis.

Gas vents are required to collect the methane produced under the cap and direct it to the surface. Several sources were utilized for the design of the gas vents. EPA manual 540/2-85/002, cover for Uncontrolled Hazardous Waste Sites, p. 4-46 specifies that gas vents should be placed at 30-60 feet centers. Gas vents were not placed over the collection pond due to the fact that 15-25 feet of fill are to be placed in this area. Gas vents also were not placed around the ditches because of interference with ditch placement and the high
concentration of runoff in these areas.

The gas vents are designed so that the screw on PVC riser can be removed and replaced with a manifold if the gas is to be collected and treated. The gas vents were placed 6 feet above the cap surface so that anyone visiting the site would not be overoome by methane. The vent base is grouted to provide stability. Boots and bentonite are required to prevent moisture from entering the borehole. Where the PVC protrudes through the HDPE liner, the liner has been raised above the drainage layer so that the protruding part is above the drainage layer and thus further minimizing the chance of runoff getting into the gas vent. Methane will collect in the slotted PVC and rise to the surface. Wells will be drilled after the completion of the rough grading so that all cuttings can be placed under the cap.

Settlement monuments are placed to allow settlement to be periodically checked. These monuments will be constructed so that a known elevation can be set and recorded with the screw on cap and then welded permanent.

The entire landfill cap is to be enclosed by a security fence. The entrance gate is placed so that access to the drive that leads to a barn would not be blocked. The security fence was laid out so that clearing of trees could be minimized. Most of the trees near the site are less than 10 inches with a few langer trees near Hill street.

The entire site is to be hydro-seeded. During construction an erosion control mat will be needed on slopes larger than 5 percent or in any areas that should receive this mat so as to allow a good strand of grass to grow. Silt fences will be required perpendicular to surface flow patterns.
C. FEDERAL, STATE, AND LOCAL ENVIRONMENTAL PROIECTION CRIIERIA AND ENVIRONMENTAL PERMITS

The purpose of this section is to summarize permitting requirements
for the proposed construction at the Heleva landfill cap.

A zoning permit is required by the North White Hall Township, where the landfill is located. This is the only local permit required. The cost of the permit is $\$ 0.50$ per thousand dollar cost of construction. There is a 2 -week processing time for the permit. A copy of the permit is included in Appendix A.

The following areas of state permitting regulations have to be addressed: air quality, well closures, earth disturbance, and landfill closure.

An air quality permit may be required due to the methane gas or VOC's being vented from the site. To determine whether this permit is required, a "Request for Determination of Requirement for Plan Approval" application should be submitted to the Pennsylvania Department of Envirommental Resources, Bureau of Air quality Control. If an air quality permit is required, 90 days should be allowed for processing. There is no fee at this time for air permits. A copy of the application for plan approval is included in Appendix A.

There are no permits or abandonment requirements issued by the Bureau of Topographic and Geologic Survey under the Pennsylvania Water Well Drillers Licensing Act 610 of 1956. A letter of confirmation is included in Appendix A.

An earth disturbance permit will be required if more than 25 acres of land are disturbed in a contiguous project. A copy of the policy and procedure for this permit are included in Appendix A. The fee is $\$ 200$ and the processing time is approximately 90 days. The earth disturbance permits are applied for through the County Conservation District. They also will coordinate review of plans with other agencies, such as the Bureau of Water Quality Management, and others, as may be required.

The Bureau of Solid Waste Management requires a letter of approval to
be issued for a landfill closure. Chapter 75 of the Pennsylvania Solid Waste Regulations contain the applicable regulations. These regulations are in the process of being revised, with the new issue being due in March, 1988.

II. ROIENIIAL SEITIEMENT EVALLATION AND COMPACIION CONSIDERATIONS

The following section summarizes the efforts to date, conducted to evaluate the potential settlement at the site and the conceptual alternatives to reduce the risk of cap settlement. section 2.1 presents a summary of site conditions based on available information, a summary of mining activities and possible conditions of mined openings, a summary of conditions within the landfill. Section 2.2 presents a discussion of potential sources of settlement of the proposed cap at the landfill site, a discussion of the estimated magnitude of potential settlement, and mitigation possibilities for that settlement. The final section presents a summary of potential settlement at the site, the risk associated with that settlement to the proposed RCRA cap, mitigation possibilities, and recommendations for additional information that would be required to fully evaluate the final design.

A. BACKGROUND INFORMATION

The Heleva Landfill site is a 20-acre landfill located immediately west of Ormrod in North Whitehall Township, Lehigh County, Pennsylvania. The landfill consists of mixed refuse, paper, wood, and orchard wastes from the Allentown area and incudes an undetermined amount of industrial wastes including TCE's. The landfill began operation as a sanitary landfill in 1967 and apparently continued until it was ordered closed by PADER in 1981. The landfill received on the order of 250 to 350 tons/day of refuse which was placed in an abandoned open-pit mine developed in the late 1800s and early 1900s during iron-ore mining in the area. The current topography of the landfill area is flat or gently sloping, the landfill surface is weed-covered and includes irregular depressions suggesting differential settlement on the order of 2 feet or more. The landfill surface is partially covered with fine-grained soil apparently placed as a cover. This material has apparently been eroded and completely removed in same areas.

Methane gas, ground water at temperatures of approximately 100 degrees fahrenheit, and foul odors were encountered during investigations of the landfill.

The subsurface conditions at the Heleva Landfill site as revealed by existing subsurface information include:

- 1 to 2 feet of soil cover overlying,
- Approximately 30 feet of refuse fill containing layers of soil fill overlying,
$0 \quad 50$ to 120 feet of fine-grained soils described as clay, silty clay, silty sand, and clay with trace of gravel, overlying,
- Dolamitic bedrock.

The bedrock surface appears to be highly irregular and one boring encountered thin rock ledges 20 feet above the top of bedrock surface. The bedrock is soluble and the information suggests it contains solution cavities and collapse features typical of karst terrain.

Ground water generally occurs at or below the elevation of the base of the refuse fill. Therefore, ground water is generally encountered within the upper portion of the fine-grained clayey soils at the site. Ground-water contours based on well data obtained during July, 1986 suggest a ground-water gradient to the southeast across the landfill. This ground-water gradient follows a general dip of the top-of-rock surface in the same direction.

Mining activities which produced the open pit that was backfilled during operation of the landfill are described in Chapter 3 of the report by Lawler, Matusky \& Skelly Engineers. Mining in the area was for iron ore, began in the 1820s, and continued until about 1915 when it ended due to competition from other sources. Mining began as shallow surface excavations, progressed to full-fledged open-pit mining, and entered a final stage of underground mining after open-pit mining became uneconamical.

Based on existing information, it appears that mining in the immediate area of the Heleva landfill included three adjacent, open pit mines. These mines were developed over a 40-year period until the overall dimensions of the three pits were 2,000 feet long (east/west direction), 800 feet wide (north/south direction), and 90 feet deep (approximately El. 400 to 410 feet).

Underground mining was conducted fram about 1900 to 1915. Available information suggests that underground mining occurred below at least three locations of the Heleva Landfill. This information does not provide much detail regarding the mine layout, mining levels, or backfilling practices, if any. Available information suggests that underground mining was conducted on multiple levels, that drifts were approximately 7 feet high, that the interburden left between successive drifts was 5 to 6 feet, that mined openings were developed and supported with timbers and wood lagging, that drifts were developed to follow ore seams, and that the support was removed from each mining level and additional ore was removed during "retreat" fram each level.

Available information suggests that underground mining occurred below the botton of the open-pit and that vertical shafts were developed for mine access, ore removal, and ventilation. In addition, slopes were developed from the deepest mining levels to the ground surface adjacent to the open pit for access to the "washery." Finally, available figures suggest that mine spoils were dumped into the open-pit from a trestle.

No definitive information such as mine plans are available to show the location of active mined areas below the bottom of the open-pit. No information is available as to the number of levels developed along individual ore seams, the depth of the deepest drift, the depth below the bottom of the open-pit to the shallowest drift, or the type of material in which the underground mine openings were developed.

It is surmised for the purpose of this evaluation that open-pit mining operations were carried down to approximately the ground-water elevation, that underground workings extended into the fine-grained soils below El. 400 to 410 feet and possibly into underlying highly fractured dolomite. It is also surmised that active dewatering of underground mined openings was required during underground mining activities.

Finally, it is surmised that the underground mining operations were abandoned abruptly, with no reclamation or other remedial efforts because the underground mining operations were abandoned in 1915 due to campetition fram other sources.

Two general approaches are proposed for a RCRA cap for the Heleva landfill. Conceptually all the options evaluated incorporate one of these approaches. The first includes recontouring the existing ground surface such that the landfill surface slopes gently inward from the perimeter and gently northeastward to direct surface runoff toward Pond 1. This approach appears to require removal of some existing soils to achieve the desired contours below the proposed cap materials.

The second approach involves some degree of recontouring of the existing ground surface at the landfill to a mound with a high point near the center of the landfill with gentle slopes to the perimeter of the landfill and a gentle slope northeastward to direct runoff toward Pond 1. This option will require addition of up to 10 feet or more of random fill above the existing ground surface to achieve the planned final site contours.

For the purpose of this evaluation, it is assumed that the RCRA cap will be 2 to 3 feet of clay material below 1 foot of sand and gravel, below 2 feet of soil to support vegetation.

2.2 ANALYSIS OF POIENIIAL SEITITEMENT

Based on review of existing information, several sources of potential settlement of the proposed RCRA cap have been identified and include:

- Compaction of the refuse fill from surcharge loading imposed by placement of the cap materials.
- Settlement resulting fram consolidation and compaction of fine-grained soils below the refuse fill and above the bedrock.
- Settlement from collapse features or subsidence from sinkhole development in dolamite bedrock below the landfill.
- Settlement from subsidence over mined openings developed below the landfill and/or from access shafts and slopes developed for ore removal, ventilation and mine access.

The following sections include a discussion of the settlement mechanisms, an estimate of the magnitude of potential settlement, a description of means to mitigate the potential settlement, and a description of additional information that would help in further evaluating the potential settlement.

Predicting potential settlement of refuse fills is difficult because of problems obtaining geotechnical information to characterize refuse fill, and because it is difficult to predict what decamposition of the organic fraction will produce in reduction of the fill mass. Existing boring logs fram subsurface explorations in the landfill contain few descriptions of the nature of the refuse fill and almost no "blow count" information from within the refuse fill. The borings indicate that the refuse fill is generally about 30 feet thick, and contains intermediate thin soil layers presumably placed as temporary covers during landfill operation. One boring, Boring 1 , included standard penetration test data within the refuse fill. These data indicate a range of N-values of 36 to 42 blows per foot with an average of 38 blows per foot. Ground water generally occurs at or below the base of the refuse fill, however several boring logs described the refuse fill as wet in the lower portion of the fill.

A conceptual level estimate of the settlement of the refuse fill must consider potential settlement from two sources; settlement from campaction of the refuse fill from surcharge loads imposed by cap materials, and settlement from decomposition and consequent loss of volume of the organic fraction.

Settlement from compaction of the refuse fill can be estimated based on case histories and experience with similar materials reported in the literature. The potential surcharge load from the proposed RCRA cap is assumed to vary fram a maximm of 16 feet to a minimum of 6 feet of soil depending on the final approach. Based on experience from two case histories where a surcharge was added to an existing sanitary landfill, the predicted settlement from surcharge loading imposed by the proposed RCRA cap materials is as follows:

- 16 foot cap thickness - settlement of 2 to 4 feet.
- 6 foot cap thickness - settlement of 1 to 2 feet.
- Differential settlement - 2 to 3 feet.

Differential settlement may occur due to the non-hamogenous nature of the trash fill. The above determination is an estimate of potential differential settlement based on settlement data in case histories.

Settlement resulting from continued decomposition of organic materials within the refuse fill is difficult to estimate. Boring logs in the refuse fill do not describe the types and fraction percentage of various types of refuse contained within the landfill. Because methane was encountered during drilling, elevated ground-water temperatures were encountered, bad ocors were encountered, and differential settlement was observed on the existing landfill surface, active decomposition of organic materials within the landfill is apparently occurring at the present time. Typical percentages of various materials for municipal wastes include; paper 40\%, metal 10\%, food wastes 15\%, yard wastes 15\%, glass 10\%, rocks, ash and dust 4\%, plastics 3\%, cloth 2\%, and wood 1\%.

Assuming that the food wastes, yard wastes, cloth, and wood represent the fraction that will actively decompose, approximately 33 percent of the refuse fill volume will change due to decomposition. If paper is added, then 73 percent of the refuse fill volume will change due to decamposition. Information from long-term settlement of refuse landfills suggests that this mix of materials will undergo significant settlement without addition of external or surchange loads. The magnitude of this potential settlement is high, on the order of several feet, and the potential for differential settlement is high because of the non-homogenous nature of the refuse fill.

Risk of settlement of the refuse fill by the two mechanisms described above is high. Settlement is anticipated as a result of surcharge loads imposed by the proposed RCRA cap and through continued decamposition of the organic fraction of the refuse fill. Settlement potential from these two sources is high, on the order of several feet, and differential settlement potential is also high, also on the order of several feet.

Measures to mitigate this potential settlement include modification of the existing conditions within the refuse fill, and staging construction of the proposed RCRA cap such that the majority of compaction settlement occurs prior to placement of the impervious and upper sections of the cap. Possible methods to modify the existing conditions of the refuse fill in order to minimize settlement potential include:

- Removal and controlled replacement of the refuse fill
- Dynamic deep compaction.
- Grouting using a cement, sand and/or fly ash grout.

Removal and replacement of the refuse fill is considered unacceptable because it is logistically impractical to remove the refuse, store it temporarily, and place it back in the original area using controlled compaction and moisture content conditions. This option is impractical and too costly.

Dynamic deep compaction could be used to densify the existing refuse fill and therefore reduce future settlement due to surcharge loading. This method consists of dropping a heavy weight from specified heights to impart compaction energy into the ground. Although the process could densify in-place refuse material, it is not recommended because of its high cost and uncertainties associated with compaction of the organic fraction of the refuse fill. Depending on the resolution of the issue of a staged closure, this option may warrant additional consideration.

Grouting could be used to fill existing voids within the refuse fill and, if sufficient grout could be placed, to compact and densify the refuse fill. Grouting of refuse fills using cement, sand, and fly ash grouts have been effective in reducing settlements of refuse fills, particularly where the grout can be injected under confined conditions such that same compaction and densification of the refuse fill results from grout placement. Another potential advantage of grouting is that it decreases the relative percentage of organic materials within the refuse fill by adding inorganic material. Unfortunately, grouting of the entire landfill would be very costly. Complete grouting of the Heleva Landfill would require an estimated 225,000 cubic yards of grout. At an estimated $\$ 50.00$ per yard delivered into the ground, grouting the entire landfill could cost approximately 10 million dollars. For this reason, it is not presently considered feasible.

Predicting potential settlement in fine-grained soils can be done using well-established principals of soil mechanics. Consolidation of fine-grained soils results from an increase in stress within a soil mass located below the water table and occurs slowly as pore water is expelled from the soil and the soil particles compact. The amount of consolidation that occurs in a soil mass is a function of its geotecinical properties and the previous stress history of the soil.

At the Heleva Landfill, the fine grained soils are described primarily as clayey soils with a minor gravel fraction. Other descriptions include silty clay and silty sand. Previous reports indicate that the clays may be glacial till. This is important because if the soils are glacial till, they are highly over consolidated due to the large loads imposed during deposition and glacial advance. Generally, the clayey soils below Heleva Landfill occur at between El. 440 feet and 450 feet and extend 60 to 120 feet to the top of rock. Ground water occurs at between El. 405 and 430 feet, therefore all but the top 20 to 30 feet of the clayey soils are submerged. Three standard penetration tests were taken in borings which penetrated the clayey soils within the landfill area and produced N-values of 39,46 , and 52 . Generally, Standard Penetration Tests in clayey soils fram borings located beyond the perimeter of the landfill at depths of greater than 20 feet resulted in N-values of between 20 and 50. The consistency of fine-grained soils with N-values in this range would be described as stiff to hard.

Close evaluation of available information about the mining activity at the Heleva Landfill suggests that the clayey materials above El. 410 consist of mine spoils dumped into the open pit after processing at the washery. These were cumped from a trestle and no spreading or campaction is believed to have occurred during placement of this material in the open pit.

Any settlement in the clayey soils from surcharge loads imposed by the proposed RCRA cap would came fram the soils above El. 410 feet. Below E1. 410 feet, it is likely that the soils are over-consolidated from glacial activity or original topography at the site. No settlement is anticipated from the clayey soils below El. 410 feet from placement of the RCRA cap. Same settlement is possible from clayey soils above El. 410 feet due to compaction in clayey soils above the ground water or to consolidation of clayey soils below the ground water. An approximate estimate of this potential settlement is one to 6 inches. Compaction settlement of soils above ground water would occur during and inmediately after placement of cap materials. Settlement resulting from consolidation of soils below ground water would extend for a considerable period of time after placement of cap materials It is anticipated that differential settlement from this material will be small.

The risk that this settlement will ocour is high if some of the clayey materials are dumped mine spoils If all clayey materials below the landfill are "in-situ," then potential settlement is low due to the over-consolidated condition of these soils.

Measures to mitigate the potential settlement fram the fine-grained soils below the refuse fill include:

- Placement of wick drains in the clayey soils below ground water and above El 410.
- Phased construction of the proposed RCRA cap.

Wick drains placed at approximately 10 foot centers would minimize the time required for clayey soils to consolidate. The cost of installing wick drains is approximately $\$ 0.50$ per square foot of treated surface area. The approximate cost for wick drains based on available ground-water data would be $\$ 250,000$. However, prior to proceeding with this option, consideration would have to be given to the contaminated nature of the extracted ground water and its ultimate disposal.

Fhased construction of the proposed RCRA cap would allow for some of the anticipated settlement to occur prior to placement of impervious cap materials. Phased construction would consist of placing a surcharge onto the landfill surface, waiting several months, monitoring the settlement, and then removing same of the surcharge and placing impervious and special cap materials.
2.2.3 Settlement from Collapse or Subsidence from Sinkhole Development in Bedrock

Settlement of RCRA cap materials could result fram collapse or subsidence fram sinkhole development in the dolanitic bedrock. Existing information suggests that the bedrock below most of the landfill area is soluble, and solution features have been identified in the general site vicinity. One boring \log ($\mathrm{FW}-4$) suggests a collapse feature or highly irregular top of rock surface as several thin rock ledges were encountered 20 feet above the top of rock. Ground-water levels within the landfill generally occur 20 to 100 feet above the top of the bedrock surface.

The amount of settlement that could result from collapse or development of a sinkhole is not prudent to estimate It is sufficient to say that development of a new sinkhole or collapse feature would potentially result in large settlement of cap materials, on the order of several feet, within a zone above and surrounding the subsurface collapse feature.

Generally, develqment of sinkholes in karst terrain are associated with changes in ground-water levels. Both an increase and decrease in ground-water levels are attributed to dramatic development of sinkholes in regions underlain by soluble rock formations. Therefore the risk of settlement from this mechanism is high only if increases or decreases in ground-water levels cocur. Increases in ground-water levels are not anticipated from anticipated future activity at the landfill site. Decreases in ground-water levels could result from well pumping to contain contaminant flow.

As suggested in the previous report, mitigation of the risk of damaging the RCRA cap due to settlement from collapse or subsidence from sinkhole development consists of placing cap materials after ground-water levels had been drawn down to any anticipated steady state levels for several months.

2.2.4 Settlement fram Subsidence Over Mined openings Below the Refuse Fill

Evaluating potential settlement fram subsidence over mined openings below the landfill is difficult because accurate mine maps are not available in the area of the landfill. Existing information suggests that earlier mining operations included underground workings below the open pit mines in the area, and seismic exploration work identified underground openings or zones of low density materials in the landfill area.

General descriptions of mining methods suggest that once the open pit mine reached El. 400 to 410 feet, mining went underground to recover deeper ore. The underground mines were developed along ore seams as multiple drifts, each approximately 7 feet high and 8 to 12 feet wide, separated by interburden of 5 to 6 feet. Access, ventilation and ore recovery was accomplished through vertical shafts or slopes. Generally, the shafts appear to have been developed within the confines of the pit, while the slopes extended from the lowest underground level to a washery at ground surface adjacent to the pit.

It is difficult to determine exactly how deep the underground workings were taken and in what materials the mined openings were developed. Existing information indicted that all shafts and underground openings were timber supported and continuously lagged. This suggests that the underground workings were developed within the clayey soils or highly fractured dolomite indicated by borings taken below the landfill material. Description of mining methods indicted that as multiple drifts were developed away fram a central access shaft along an ore seam, the openings were continuously supported using timber and wood lagging. After the drifts were fully developed, support was shot down and additional ore was robbed from the perimeter of each opening as mining retreated back to the access shaft. The deepest mined opening was described as 150 feet deep and the longest drift was described as 300 feet.

Based on the available information about underground mining below the Heleva Landfill, the potential for settlement of cap materials because of ongoing subsidence over mined openings is considered either low or high. Potential settlement is considered low if the mined openings collapsed after mining operations ceased in 1915 because wood support was removed, or because wood supports decayed. If wood supports were removed by either mechanism surface subsidence has probably already occurred and future subsidence is unlikely.

Potential settlement is considered high if mined openings have not collapsed completely and collapse could occur in the future. If this is possible, the magnitude of surface settlement above collapsed openings could range fram 0.25 to 0.75 times the height of the opening. Therefore, for three levels developed with 7 feet openings on each level, surface settlement resulting from collapse of these openings could be between 5 and 15 feet.

Mitigation of potential settlement from subsidence over mined openings, could be accomplished by finding and backfilling the openings with grout or soil mixtures. The cost of backfilling could quickly reach several million dollars because of potential for large volumes of material, and lack of control over where the material would go once injected underground.

Clearly, a better understanding of the location and current condition of mined openings within the perimeter of the landfill is required to fully assess the potential for settlement from this source.

2.3 CONCLUSIONS AND RECOMMENDATIONS

Potential settlement and differential settlements of proposed RCRA cap materials is on the order of several feet. Four separate mechanisms exist below the landfill surface that may contribute to significant future settlement of cap materials during and after placement. These mechanisms include compaction and biological degradation of refuse fill, consolidation and compaction of clayey soils between the refuse fill and the rock, settlement from collapse or subsidence from sinkhole development in the bedrock, and settlement from subsidence over mined openings developed below the landfill.

Table 1 presents a summary of the estimated magnitude of potential settlement, the timing of that settlement with respect to placement of proposed RCRA cap material, and a subjective evaluation of the risk or likelihood that the settlement will occur.

To fully design the facility, consideration should be given to supplementing the present database with the following types of information.

- Additional geotechnical information on the refuse fill and underlying clayey soils.
- Data to differentiate between clayey soils above and below El. 400 to 400 feet.
- Undisturbed samples of the clayey soils underlying the refuse fill to allow a laboratory determination of previous stress history.
- Additional information on the make-up of the refuse fill, including an estimate of organic material and the degree of biological decamposition at present.
- Location of mined openings below the landfill and to determine the current condition of mined openings.
- Same consideration may want to be given to establishing a test section on the landfill to determine the magnitude and timing of settlement resulting from placement of the maximm anticipated surcharge load associated with the proposed RCRA cap.
The table below sumarized observed settlement and time for several points measured during embankment construction.
Phase 1 Construction

$\begin{array}{c}\text { Total } \\ \text { Settlement (in.) }\end{array}$
6
21.5
34

Total
Settlement (in.)
$?$
$?$
42
CDOH SEITILEMENT OBSERVATIONS

CALCUATIGUS $\quad 1 / 14 / 97$
T. Lyman

OPJEZTNES: CONPEPTUAL LEVEL-OF EFFOKT THKUUKHOUT
1 EVALUATE SETREMUENT \& DIFFEIENTIAC SETLLEMENT POTENTTML cron placement of prorbsed recra cap.
2. DETERMINE POTENTIAC SOUREES DF SETTLEMENT
a) TKASH FILL
b) FINE-TRAINED SOLLS BELOW TRAASH FILL AND ABOVE ROCK
c) SINISHCLE DEVEIOPMENTIN ROCK.
d) SUESIDENCE FROM MINED DIENINGS BELOW BOTTOM OF OLID OPGN PIT MINE, SHAFTS 9 RAISES FROM OKE HANDLINK,
3. Estimate potential settlemavt from ench EOURLE in \#z above
4. Provide cavceptual - LEVLL cet EEIIMATES FOR passible MITIIATION MEASUKES,

* GETLEMENT POTENTIAL IN TKASH FILL:

FACTS

- TRASH FILL IS FROM SANDITAICY LANDFILL ONELFATIEN WHICH BACKFILLED AN OLD IRON ODEN PIT MINE.
- sanitary landfill is acout 30 ft thick, consists of MUNICIPAL REFUSE CNTH LAYERS OF SNL USED AS INTEKMEDIATE SAL COVERS DKKINIT LANDFILL OPEREATION
- five n-values are available from existinit infözmation (B-1) AND NDICATE A RANHE DF N-VALES FROM 36 TO 42 , ANF 38 blows WITHON:THEE 4 PFETR 17 TT OF THE TEASH FILL.
- Gikocwidwater levers in thte Sanitaney landfill are at elevation 40570430 (DATH ON VULY 7,1986). THIS COCCKESIZNNS
 WITFTA UNDEREGINKT FINEGGKANED SOILS.

MO INFOKMATION AVACLABLE ABOUT SEASONAK AKLUND WATEK FLUCTUATIUNS.

calcuation's
Ti LyMan : CAP h/ills

PotcNTIAL SURCHARIE FROM PEOPOSED CAP:

STRESS \& BASE OF CAIP:
ASGUME AKT. UNIT WEKHI OF LOILS $=125$ */AT ${ }^{3}$

$$
\sigma_{\max }=\left(125 d / T^{3}\right)(2+1+3+10 \mathrm{Fr})=\frac{2000^{\# / F T^{2}}}{1 \mathrm{TON} / F T^{2}}
$$

$$
\frac{\sigma_{B_{M N N}}=\left(125 N / F T^{3}\right)(2+1+3+0 \mathrm{FT})=\frac{750 \mathrm{~A} / \mathrm{TT}^{2}}{0 R}}{\text { NOTE: ASSUMMED }}
$$

THCKNESS OF CAP:

$$
\begin{aligned}
& \operatorname{Max}=2+1+3+10=16 \text { FT } \\
& \operatorname{MIN}=2+1+3+0=6 \text { ET }
\end{aligned}
$$

STIMATE OF POTEMTIAL SEILEMENT FRON TRASH FILL:
(1) COCORADD DEDT. OF HIGHWAYS EPPERENCE, SHERIDAN SWD AI-76 (Ry.T. LymaN pers, Lommunication Nelson Chou, Grandy Gilmore, COOH)
SETILEMENT $\cong 10 \%$ of EMBANKMENT HEIGHT.
GIVEN: TRAASH FILL ZO-30 FT THTLCK
TRASH FILL 20-30 YEALS ENO

GROCNWWATELL NEAR OK BELOW BOTTOM OF TRASH FILL. LOCATION NORTHWESTERN -METRO DENVEK, COCDIZADO
HELEVA SETLEMCNT SWGESTED ERWM AGOVE:

$$
\begin{aligned}
& \text { HELEVA SEVILEMENT SUKGESTED RTWM AONE: } \\
& \text { MAXIMUM PREDMTED SETLEMENT }=(1 / \mathrm{FT})(12 \mathrm{~N} / F T)(0.10)=19.2 \mathrm{NCHES} \\
& \text { MINIMUM PREDICTED SETLEMENT }=(6 \mathrm{FT})(12 \mathrm{~N} / \mathrm{FT})(0.10)=7.2 \mathrm{NACHES}
\end{aligned}
$$

(2) FROM CHAPTER 10 - FOUNCDITIONS ON DIFFICMLT SOILS; BRAJA M. DAS "PRINCIPLE: OF FOUNNATIOU ENGINEERING"
SETLEMENT RATE (meiers/mo) $m=.0268-0.0116 \log t$, (for fill heights ü) full complete in $1940 ; t_{1} \cong(1987-M 81)(12)=72$ montha prom 12.24 metes $M=.0268-0.0116 \log 72$
$m=0.028 \mathrm{~m} / \mathrm{mo}$
(3) FROM SOWERLS (1973), SETTLEMENT OF WASTE DISPISAL FILLS.

$$
\Delta H=\frac{\alpha H_{f}}{1+e} \log \left(\frac{t^{\prime \prime}}{t^{\prime}}\right)
$$

where: $H_{f}=$ Fill therght
$e=$ void ratio
$\alpha=$ corfficicint for settlement
$t^{\prime \prime}, t^{\prime}=$ times (nestles)

$\alpha=0.09 \mathrm{e}$ for Cinclitions provable for decompositurn
$\alpha=0.03 e$ for conditions unfavorable for dearngesition.
Assume:

$$
\begin{aligned}
& x=0.06 e \\
& A_{f}=30 \mathrm{ft}
\end{aligned}
$$

$e=1.3-7.0$ (ref. York it. al. "Terminal Develpromat ne a Run Fill Site, ASl, Gest. Ractice for Disposal If Solid wrote Materiel", 1477)

$$
\begin{aligned}
& t^{\prime \prime}=1987 \\
& t^{\prime}=1981
\end{aligned}
$$

$$
\Delta H=\frac{(0.06)(7.0)(307 t)}{1+7.0} \log 72=2.9 \mathrm{FT}
$$

 FOR DISPOSAL OE SOLID WASTE MATERIALS, 1977.
a) DATA FROM TEST SECTION: 50×9014 aka

1000 ps load applied to land fill surface
trash fill was 16 yt thick trash fill was 16 yt thick

SETLEMENT IN ONE YEAR: $2.1 \mathrm{FT}, 1.4 \mathrm{FT}, 1.25 \mathrm{FT}$ AT THULE ODSETRIATION POINTS NEAR CENTERS OF THE LOADED area.

COUCLUSIONS FROM 1-4 A LOVE RE SEIILEMENT OF TRASH FILL:

1. SETTLEMENT WIL RESULT FROM SURCHARTE LOADS impOSED EY pLACEMENT OF RCKA CAP MATERIALS
2. SITLEMENT FROM SUKCHAKLIE WILL PRZBBHBLY DCLUR RADIOM WITH THE mavaitiy of settlement complete soon after placement dethe cap.

SETTLEMENT OF TRASH FILL, CONCLUSIONS (CONTINUED)
4. Magnitude "Of settlement difficult to determine based in available leta. "Caul park" estimates of poriential settlement are.

16 jt of cap thickness - $2-4 \mathrm{pt} f$ settlement 6 ft of cap thickness $-1-2 \mathrm{ft}^{\prime} \mathrm{f}$ otbllement
5. Afferential settlement potential.
of Function of cap thickness, fill thickeners, aude variations in existing fill inditlions.
b) Potential differential settlement $-2-3$ ft.
＊SETLLEMENT POTEATIAL IN FINE－GRAINED SOILS BELOW TRASH FIU AND AFONE POCK

FAEIS
－Thicknest ranites 60－120 FT，
－almost all occurs below existiner gilounidwatex tarzle．
－desibed as clay，silty clay，trace gravel，songe shty sand
and clav． AND CLary．
－N－Values 39，4l， 52 within lanofill ；Generally 20 ＇s to 5O＇S BELOW 20 FT N HORINGS OUTSIDE LANDFILL LIMIT． BASED ON BLOW COUNTS，CLAY \＆SILT WOULD BE DESCRIBET AS VERY STIFF TO HAK－D
－shme desckiption or this sal is＂flacial till＂．
－FoEFmblity of fines avove el． 410 placeti as hyprank tailing OR BACKFILLED TAILNNIS FROM RAIL TKESTLE
IIJRCHAKGE FROM CAR：SEE PAGE？

$$
\sigma_{\text {max }}=2000 \text { d/FT } F_{T}^{2} ; \sigma_{\min }=750 H / F T^{2}
$$

ESTIMATE OF SETTLEMENT FROM CLAY
（1）IF MATETLALC IS GLACIAL TILL－DRECONSOLIDATION LOAD SHOULAS HAVE FLEN MUCH LAKGER THAN TRASH FILL PLUS SURCHAILIE FILOM CAIR． THEREFOK NO SETTLEMONT IS ANTICIPATED FRM THIS UNIT．
（2）IF MATERIAC IS NOT IILAGAL TILL－PRECONSOLIDATION LOAD OF ORIGINAL MATERIAL RETUOVED IN OPEN PIT MINE PRUBABLY ABOUT EQUAL TO TRASH FILL PLUS SURCHARTE FILOM CAP．MD SETTLEMENT ANTICIPATED．
（3）CALCVLATED SETILEMENT HF $1 \& 2$ ABOVE IGNOKED．NO DHTH AVAICABLE $E \log p$ curves，ltc．
（4）Possible SETREMENT FROW SEINIFICANT DENHTETZANG DR CAYS；GNOKED HEL THOS ANALySIS．

Cuinclusion
POTENTIAC SFTTLEMLDUT IN CLAYS BELOW TRASH FILC RNNIMAK DUE TO SURCHAKLE LOAD FROM CAP MATEILIALS－AR3O1432

CALCuLATIONS
T. byMan

* SETLEEMENT POTENTIAL FROM SQUTION CAVITIES IN WIMESTONE BIEDROCK.

FACTS:

- kakst teizrain of old collapse featurzes recognized in the area.
- most of the landpill underlain by beekmantound LMEOTONE.
- ghanidwater levels in landfill area generzally 50-100 FT AEONE EEDROCK SUILFACE.
- ONE BOKWKT LOR (FW-4) INDICATED POCK LEDKZS IN A ZONE AEOUT 20 FT AISOVE TOP OF ROCK. THIS SUCGESTS A FOSZIBLE CAUITY OR VERY IRRERULAIL TOP OF FOCK SIUEFACE.

EvALUATION:

- Difficurt to asakin risil of sinkhole deveropment WITIIIN AREA OF THE LANDFIL.
- MOST SINKHOLE DEVELOUMCNT IS RELATED TO CHANGES IN GKOUND WATEL RESIMES WITHIN A KARIST TEKRAIN. CONCVIL WITH EXISTINE, RCPOKT, RISK 15 SIMALL UNLESS GROVNOWATLEE DRIACWNDOWAS FILOM WELL PIMPIMG.
- if a collapse fehtule existo belon the landfill ado OCCURCS AS AN AKCH IN THE CLAY, THE FOLLOWNVC, MCCHANHSMS AKE NEEDED 70 THICGER COLLANSE: (Aley, eti al., 1972, "Fround water Contarnination and sinkhole Collapue Induced by Ceaky Impoundments"

CONT FROM P.: C-
 SELIES No.S.)
"(a) excess water entering the arch materid) and so cuusing a luss of stremgith. This is by far the must common trigger.
(b) warth tremurs tausing vertical and lateral acceterations. Itur's resulting in externally aphla:d tardy lanetes tos the matermets of the arch.
 sidences associated with inming. These moventems maght be ofeegular, resultmy indilferuntial movernent which call upset the: gevoritetry of the areh.
(id) surfike: luading of vibratory nature, bar licularly where the obergy of vituratomit is great ald sustanimed."

CONCUSION
POTENTIAL POR COLLAPSE OR SUESIDLNLE FFZOM SINKHOLE deverop ment 15 moderate. difficult to evaluate DEGKEE OF RISK. RKK COUSIDEIEED LOW IF NO GHANTIE to gronndwater lavers occur.

calculations
\checkmark LAB $\quad 1 / 1 / 2 / ?$
PARE OOf 11
T. byiand

SETLEMENT POTENTiAL FROM MINED OPENINGS BELOW TRASH FIN.

FACTS:

- ming began as open pit - moved underground below THE PIT when overburdens ratio belame unezonomical.
- Ikon ore minting began in 1820
- WENT UNDERGROUND wy SLOPES \& SHAFTS IN 1900, ENDED IN 1915 EVE TO COMPETITION FROM MESABI RANGE.
- makrmum depth of open pit was 90fi at canter (el.410)
- possibility that barriers wert left in place between 3 PIT LIMITS WHICH LANDFILL OVERLIES.
- paul brown mine (collection pond aiken). dug to 70 ft ($E L 400 \mathrm{FT}$)
- Tunnels \& Shafts Supported with wood.
- multiple mining levels were developed below the butom OF THE OPEN PIT, FOLLOWING OKE VEINS.
- SKETCH SHOWS A SPOIL BANK WITHIN THE OREN PIT, THEREFOR MINE WASTE WIS DUMPED FILM A TILLSTLE IN THE OPEN PIT.
- each tunnel was aorankets al timber z supported, then surpaset
 BACK 10 THE OKE CHUTE.
- LOWEST TUNNEL wars AT A DLITH OF 150^{\prime}; 30 FT LONG.
- Found evidence of earlier uts duennas whenduldedish mo

NEVALUATTON OF POTENTIAL SVESIDENKE FKUM ASANDENED UNWETRGKLINDN MINES.
multiple levels: 5-6 FT inteiceureder'.

MINING LEVEZ OPETINKI DIMENSIONS:

POTENTIAL SCIZLES of OPENINGS:

How many lates??
What mined in?? "Clay"; LIMESTONE?

Passible Conditions.

1. MNETS OPCOUNEIS HAVE GOLLANED of SKFALE JETTLEMENT HAS AlREAIV OCcurliceto -
2. MINEDS OPENINKIS ARE STILL OPEN ANID ARLE STABLE.
3. MWED DPENAKIS AILE OPEN BUT LAN COLLAPSE DUETO INENLTASED LOAD FROM SURCHAILGE, DEWATERING-
4. MINED OPENINGS ARE OPEN BUT MAY CILAAPSC woren TIMBER SUPFIRTS ROT 4 BECOME NEFFECTIVE.
CONCLUSIONS:

- Possible setrlement e surfitce for 3 \& 4 above is several FEET IN ZONE ABUNE UNCOLLAMSEO MINED OFEZINIS.

CALKULATIONS
T. Lyratin i GAP II/19/47

CONGLUSIONS COXITINUED:

- amoorat of potential setrlement $\approx 0.7 * h$ where $h=$ heipht of mined opening. (ief: Natioinal Cole (Coard - Substitence Engmiecing thendleok)

$$
S_{\text {max }}=(7 \mathrm{ft})(5 \text { stacked drifts })(.7)=24.5 \mathrm{ft}
$$

THis is conservative and mast mepkesent an ABSOLUTE UPPER OOUND.

RATIONAL ESTIMATE OF PJTERTTAC SETILEMENT DVE TO MINED. OPENINGS IS 0 - IS FT. O ET IF OMENINCIS HAVE COLLAPSED, 15 FT IF ALL COLAPSE AFTER PLACEMENT OF TITE CAP,

COST OF MITIGATTON MEASURES - CONKLPTUAL LEVEL ESTITAATE.

1. GKOUTING-

CONCEPT-INJELT WEAK CEDIENT, CEMENT-BENTONITE, OR CEMENT-FLYASH GROUT FROM GROUND SVRFALE THROUGH VERTILAL BOKEHOLES DRILLED TO THE BOTTOM OF 7KASH FILL.

EROCEDUKE- DEILL 2-3 IN DAMETEK GKOUT HOLES, CASE WTH REMOVAGLE STEEZ CASING, INJECT GKOUNT MROMT GiZOUT PLANT O lilOUND SHZFACE IN STAGES FROM BOTTJM OF BOKEHOLE. INUECT EICH STAGE JO A HREFUSHL" CILITERIA, WITHDIIAW CASINCT THE HERGHT OF NEXT STATE AND REPEAT

TREATMAENTT AKEA- ENTTRE AREA OF OLD OPENPIT ASSUMMAED DIMENSIOVS 1400 ET $\times 700$ FT $\times 30$ FT DEEP.: AR301437
calcurations
Pare II of 11

GROUTINK (CONT).
TREATMENT VOLUME $=(1400)(700)(30)\left(1 / 27^{4}+3 / y / 3\right)=1,090,000 y 0^{3}$
AT 20% VOID RATIA
GROUT VOLUMGE $=(0.20)(1,010,000)=225,000 \mathrm{yD}^{3}$
couservatue careptual level cost for qrournky: $30-$ " $50 /$ yd ${ }^{3}$ in place.

COST FOR GMOUTNX, : 225,000 yp $\mathrm{y}^{3}=00 / \mathrm{D}^{3}=\$ 11,250,000.00$
heleva landfill calculations T. LyMan

D1010 APPENDIX

- APPENDIX -

SUPPOITTNGI INFORMATION

GENERALIZED EAST - WZMT GEOLOMK

-CTION - LOOKING NNOKTH

$\operatorname{sing} \sim \sim 150^{\circ}$ belian El. $410 \mathrm{ft}^{\prime} \mathrm{t}$.

NOTE: VERTICAL EXAKGERATION $\times 2$

DIOIO
T. LYMAN

SUMMAILY OF BLOW COUNT NHTA

TRASH FILL

CLAY, SMIYCLAY, SANO
Blows N parancy $i x_{1}$
9-26-26 52 Fw-1 med.bown silty sand alday. 30-27-19 th Fw-2 dk briwn clay, trace glavel. 14-21-18 39 "
*-2-3 5 M4B clay wi sime silt, subangular

DOLOMITE

TRASH FILL

CLAY, SILTY CLAY, SAND
Blowes A boringi $L x_{1}$
9-26-26 52 Fw-1 med.buwn silty sand d clay. 30-27-19 th fw-2 de boiwn cluy, tran glual. 14-21-18 39 ." \qquad
*3-2-3 5 M4B clay wis sime silt, subaugular.

ZOLOMITE

FOCK DATA (CONT)

100	0	MI3B JHALE	
98	10		
100	10		

$T O R \Rightarrow 42.5$.
$\begin{array}{cccc}2-3-6 & 9 & 3-4 & \text { silty clay } \\ 15-15-17 & 32 & 4\end{array}$
$\begin{array}{ccc}19-21-27 & 43 & " \quad " \\ 31-33-39 & 72 & "\end{array}$
41-48-53 101(17)

SOH DATA (LONT)

ELENT N ROKANG/ DESCRIPTION

ML ELEV.

MS ELEV.

300- Not to scale
Geologic cross section of the Heleva Landfill showing the refuse thickness and the underlying thick sequence of clay above a variable bedrock surface. Section locations on figure 1.

NOTES OF MEETING

DATE: October 14, 1987

ATTENDEES:

Colorado Department of Highways: Mr. Brandy Gilmore
Mr. Nelson Chou
Brierley \& Lyman, Inc.: Mr. Tracy Lyman

Discussion of CDOH experience with placement of a highway embankment on a closed sanitary landfill in the greater Denver area in Colorado.

Location: I-76 and Sheridan Boulevard.

Site Description:

Sanitary landfill 20 to 30 ft deep. Groundwater levels occur at or close to the bottom of the landfill.

Landfill was a sanitary landfill with municipal and industrial waste products. Drilling revealed that little decomposition of waste had occurred. Paper, rubber tires, belts and hoses, and general trash were uncovered during auger drilling through the trash.

CDOH Construction Sequence:

Placed embankment in two phases. First phase built 24 ft embankment height, waited for settlement. Second phase increased to 40 ft embankment height. Final embankment required was 30 ft , therefore second phase placed 10 ft surcharge.

observed Settlement:

Phase 1: 32 inches maximum total settlement.
Phase 2: 40 inches maximum total settlement.
Generally the trash fill behaved like a granular soil. Most of the total settlement in Phase and Phase 2 occurred during construction of the embankment. No pore pressure increase was observed within the trash fill. Lateral spreading near the base of the embankment was a maximum of 3 inches.
construction.
CDOH Settlement Observations

Settlement (in.)
$?$
$?$
42

Time
4 mos. after Phase 2 const.
4 mos. after Phase 2 const.
4 mos. after Phase 2 const.

REFERENCE MATERTAL UITITZED

AR301452
SLS
 land so that it chan be used for industrial, conmercial and residential development, it will be of great benefit to society. In order to accomplish this, the reciaimed land must have a substantial load bear-
 acceptable environmental conditions. Hence, an early stabilization
the landfill appears to be the most logical solution to the problem.

Studies conducted by a number of investigators have Indicated that
 $(4,5,14,16)$ or by preloading the site with surcharge for some time prior loading depends upon the accuracy of the prediction of the anticipated magnitude and rate of settlement of the landfill. Injection grouting, using other solid waste products like fly ash to fill the volds of
sanitary landfills, has been suggested as an alternate early stabilization technique $(13,14)$. In spite of placing the landfill material at a relatively high initial density and or stabilizing it by grouting,
 structural loads. Thus, the design and resulting performance of any

In recognition of the need to provide early stabilization of landff11 material and be able to predict the rate and magnitude of settle-
 the properties and behavioral characteristics of grouted and ungrouted refuse and imited field studies of the settlement of loaded refuse
$(8,13,14)$. Because of space 1 imitations, only those aspects of the
research relative to the settlement of refuse will be presented here.

LABORATORY STUDIES

 relative percentages of other components constant (14). The mixture
that was used in the consolidation study was designed to resemble the that was used in the consolidation study was designed to resemble the
average composition of typical refuse encountered in the United States and consisted of paper (40%), metal (10\%), food wastes (15\%), yard
 limited to two inches, except for paper, which was limited to six inches. The specimens were prepared by placing refuse in the large consolido-
meters (2 -ft. diameter and $9-i n$. deep) and compacting statically to poredord әлכм suəmy with initial bulk densitites of $400,500,600$ and 700 pounds per cubic aч,

SETTLEMENT OF REFUSE LANDFILLS

ABSTRACT

The results of laboratory and field settlement studies of household refuse are presented and analyzed. A possibie technique for stabilizing refuse landfills with the use of conventional grouting settlement studies of both stabilized and unstabilized refults are given. Jsing approaches similar to those utilized for natural soils, a settlement (rate and magnitude) prediction technique is developed for refuse landias and used with refuse behavioral parameters (both from che field loading situation. The predictions are than compared to the measured results and found to be reasonably comparable if parameters from field data are used.

 subjected to superimposed loads (e.g., buildings, embankments, etc.).
 Canim. As a result, there have been failures of structures and em-
conkments built on refuse landfills, leading to the frequent practice - of abandoning the landfill site or removing and replacing che unsuitable materials. Such practices are costiy and should not be continued if cri

${ }^{1}$ Engineer, Bechtel Power Corporation, Gaithersburg, Maryland

Associate Professor, Department of Civil Engineering, West Virginia
University, Morgantown, West Virginia 26506
Professor, Department of Civil Engineering, West Virginia University,
Morgantown, West Virginia 26506 ratio, r, was calculated as the ratio of the theoretical primary consolidation to the total compression. The caef
pression, C_{α}, were determined by computing the slope of the log timeprescent compression curves in the apparent secondary compression range. Magnitude of Settlement

The pressure-relative height relationships for various initial
ity ungrouted spectimens are shown in Figure 1. The rebound that
 tion tests can be seen in this figure. Although it is not shown in

 fmplies that refuse in a fill will not settle under its own weight un-

Although the relationship between settlement and the 108 of pres-
does not exhibit marked curvature, it is not perfectly linear. sure does not exhibit marked curvature, he 1oad increment ratio was not held constant. After unloading, the amount of settlement that took place during reloading was small until the pressure ietos maximum pressure. This is similar to the behavior exhibited by preconsolidated solls (19).
 grouted specimens, the grouted specimens also show a progressive re-
duction in settiement for a given pressure intensity with fincreasing initial density of the refuse. The non-1inear relationship between settiement and log pressure appears to persist up to relatively large pressure intensities, thus exh1biting the effect of prection of the refuse
The increase in density, resuling from compaction during pressure grouting, is considered to be an important factor controlling the behavior of the grouted refuse. The denomacted refuse
following grouting is defined as the weight of the compacter divided by the difference in the original volume of the specimen and the volume of the grout injected. Grouting experiments have indicated
(14) that this increase in density is inversely proportional to the paper content in the refuse, the initial density of the refuze, and the
volume of the refuse being grouted. The bulk densities of the refuse
 specimens were subjected to soluen by the application of concrete
tion. Initial loading was provided tion. Intial loading was provided stress varying from 46 to 50 pBf on the surface of the spectmen. This stress 18 equivalent to about
6 in . of soil cover or about 3 ft . of loose refuse. The specinens were
 specimens were sealed by means of a rubber sleeve which connected the first concrete disk to the top of the consolidometer. This allowed were then allowed to settie unt11 the rate of settlement of the grouted samples was reduced to approximately 0.001 in . per day. The rate of settlement of the grouted apecimens was chosen once this rate was es! ab11 shed two additional concrete disk were placed on the specimens.
Two more disks were placed on the refuse after the leachate was comTwo more disks were placed on the refuse after the leachate was com-
pletely drained. The sequence of load fncrement F was designed to
 of water was designed to simulate the effecte of rainfall and to create optimum conditions (13) to promote biological decomposition.

> Following completion of the intitisl loading sequence, all but the rebound was recorded. At the end of the rebound period, the spectimen ${ }_{a l}$ consolidation tests. An automatically-controlled hydraulic ram aystem was utilized for the lond applications. Each increment of load was sustained until the rat
approximately 2 hours.

Settlement data from the initial loading and consolidation testr
used to prepare graphs showing the variation in relative spectmen were used to prepare gion an the log of the applifed pressure. In these
helght as a function of the
reaphs, the variation in the height of the apecimen, H, corresponding to graphs, the variation in the height of the apecimen, , corresponding to
the particular pressure, σ, was computed by comparing the sample thickness at the end of that load Increment with the Intitial thickness of the c_{s}, somewhat sim1lar to the compression index, c_{c}, was determined by computing the average slope of the pressure-relative helght graph between two selected pressures using the following expression:
AR301454

The coefficient of settlement， C_{s} ，for both grouted and ungrouted specimens（Figure in the initial density of the sample．However，the pressure crease over which this C_{s} value is determined appears to be significant． This is evidenced by a comparison of the magnitude of settlement be－ ssure intensities，higher initial density specimens wili experience less settlement than the lower initial density specimens．However，
higher initial density specimens experience greater settlement after
the pressure intensity has exceeded a certain critical value．Perhaps， the reason for this behavior is the effect of compaction on compression．

 material that was discussed by Taylor（17）．
sooptrumprads peznoz8 pue paznox8un xoj santen so jo uosfiedmos \forall not readily show the advantage of grouting．However，a study of Fig－
 that this beneficial effect is tied directly to the increase in density caused by grouting．Thus，if grout injection does not result in a dramatic results． ＊

Figures 2 and 3 show typical time－compression graphs from loăd
ane 600 pcy un－ increments applied during the consolidation test on the 600 pcy un－
grouted and grouted specimens．The rate of compression was found to brouted and grouted specimens．Nendent upon the pressure－increment ratio，the intensity of pressure，and the duration over which the previous load was sustained
 fall almost directly over the curve for 4.183 taf ．An almost 1 inear

 to note that the time rate of compression curves shown in Figures 2 and 3 resemble some of those described by Barden and Berry（2）for shaped such as these，it is not meaningful to calculate the coefficient of consolidation using curve fitting procedures based on the Terzaghi observation would lead to the belief that the Terzaghi theory alone cannot be used to predict the time rate of settlement of refuse．How－

 (sotnu!w) จu! 1

(se\&nu!u) aw!

SOLID WASTE MATERIALS

ever, it is informative to compare the calculated values of c_{v} and r, determined by Taylor's square root of time fitting method, for the various tests on ungrouted specimens. Although the data are scattered, the values of $c \mathrm{c}$ generally tend to decrease with 1 ncreasing levels of stress, and there 1 s some indication that the value of c_{v} tends to increase with increasing initial density. The variation in the values of r is generally less pronounced than that of c_{v} values at stresses over 1.0 tsf. The r values generally tend to anticipated, the appification of a high load-increment ratio at relatively low stress tended to produce relatively high primary compression ratios. Although the highest density specimen produced the highest \mathbf{r}
values. there does not appear to be a consistent, well-def ned variavalues, there does not appear to be consistent, well-def ined varla

The values of the coefficient of secondary compression, C_{α}, are also presented in 1 inure 4 . It can be seen that, in general, there remarkably 11 ttle variation in c_{α} with pressure and initial density.
However, the lowest values of c_{α} did correspond to the lowest loadincrement ratio, and there was a general increase in C_{α} with pressure for the 400 pcy specimen. On the average, these C_{α} values indicate reported by Sowers (16) for "conditions unf avorable to decomposition" and substantially lower than those for "conditions favorable to decomposition." It is felt that the relatively brief duration of the load-
ing period in the laboratory was such that the effects of biological decomposition did not significantly influence the rate of secondary compression. Thus, one might be led to expect that higher values of reported values of C_{α} for field conditions that were generally lower than those observed in the laboratory.

Although the lowest density (highest vold ratio) ungrouted specimen produced the highest values of C_{α}, the data were not sufficiently
definitive to positively confira Sowers ${ }^{(16)}$ suggestion that higher initial void ratios result in higher rates of secondary compression.
 those specimens whose density was increased by grouting (compare Figure
2 and 3). The first phase of the field studies involved the construction of two experimental cells (10 ft square and 5 ft deep) and the development
of suitable techniques to collect data on settlement and environmental of suitable techniques to collect data on settiement end environmental
factors. The cellis were filled with household refuse and covered with approximately 21 inches of so11. The initial bulk densities of the
refuse fills were 347 pcy (Ce11 No. 1) and 242 pcy (Cell No. 2). The cell with the lower initial density (Cell No. 2) was grouted by injecting a fly ash slurry under pressure. A total of
ash was injected. The average water content of the grout was found to be 103 percent. Although a maximum grouting pressure of 30 psi was portion of the grouting operation. Data were collected pertaining to
(SADP) $0 w!1$
 placement of the soil cover resulted in immediate settlements of 0.590 feet and 0.834 feet for Cells No. 1 and No. 2, respectively. Additionoperation, because of the increased compressibility of the paper in the refuse as its water content was increased. A graphical representation of the subsequent time settlement data is presented in Figure 5 . In order to illustrate the relative effect of the grouting, the settlements and that caused by grouting.
Figure 5 shows that the grouted cell settled much faster than the ungrouted cell for some time after grouting. As noted above, the process of grouting supplied additional water to the refuse, making it settlement in the grouted cell showed a gradual decrease whereas the rate of settlement in the ungrouted cell showed an increase. The anicude of secrlement of the small grouted experimental cell, at the ungrouted cell. Seasonal rainfall was found to increase the rate
of settlement, which is consistent with the observations made by to influence the rate of settlement. The reduction in the getrlement rate shown in Figure 5 between about 200 and 300 days coincided with the coldest and driest months of the year and the greatly increased
 temperatures) are known to provide optimal conditions for promoting bacteriological and chemical decomposition (13). Thus, these resulta those environmental factors which control the process of biological decomposition can play in important role in controlling the settlement
The settlement data for the ungrouted cell are shown as a function
the log of time in Figure 6. If che abierrations, resulting from of the $10 g$ of time in Figure 6 . if che abberrations, resulting fro
variations in environmental factors, are neglected (dashed line in Figure 6), then the settlement log-time curve is concave downward.
This does not agree with the results obtained in the laboratory studies, where the secondary compression curves were essentially linear. The curve is typical of what might be expected for sofl subjected to a
low load-increment ratio $(9,10,11,19)$. However, in this instance, the low load-increment ratio ($9,10,11,19$). However, in this instance, the
average load increment ratio was about 5.6 .
 sections (nearly 40 ft square and 18 ft deep) which were installed at monitor gettlement. One of the test sections was grouted by injecting nearly 37 cons of fly ash at approximately 100 percent water content. The grout was injected without the application of any pressure and
moved freely under gravity. The size of the voids in the refuse in the two field demonstrations was much larger than in the laboratory pecimens. Although this led to large grout takes, it did not result
 sures. Failure to build up higher grouting pressures result.
of effectiveness in compacting the refuse during grouting.

The behavior of these test sections was similar to that of the
smaller test cells, in that the rate of settlement of the grouted sec-
tion decreased to one half of the rate of settlement of the ungrouted
section at the end of 2 years, thus indicating faster stabilization as
a result of grouting. However, both the magnitude and rate of the
observed settlement were lower than might have been expected on the
basis of the laboratory studies and experience with the smaller test
cells.
 subjected to loading, and the settlement data were collected by means

 $f 111$ was estimated to be 1000 psf. The refuse was approximately 10 feet thick. The time-settlement data obtained from three locations
 is approximately twice as much as that on either end, both the rate
 near the ends of the fill. Although it could not be determined exactiy how many years the refuse had been in place prior to loading, it is

 exert a significant influence on the settlement behavior.

The settlement data shown in Figure 7 are replotted as a function of the log of time in Figure 8. Again, the resulting settlement curves are concave downward. This behavior is very much the same as
that experienced in the smail test cells. In this instance, the average load-increment ratio varied from about 4.0 for the fill beneath settlement platforms No. 1 and 3 to about 8.0 for the fill beneath type of log time-settlement behavior, and this suggests that much more laboratory and field research will be required before the compression

SEttlement prediction

 fills, either under their own weight or external loading, is presently scarcity of reliable data upon which to base settiement theories. The
 (sfop) ow!
 (s/op) ew!

II!?puo7 Iodio!unw

(sKop) ew! 1

AR301460

(14 bs/suot) 0 - ojnssedd

597
in terms of the initial dry density of the refuse, Y_{d}. The result is approximated by a straight line up to a stress of about 3 cons/sq.ft.
For comparative purposes, the linear relationship shown in Figure 10 was used with Equation 3 to estimate the settlements in the small ungrouted cest cell. The initial dry density of the refuse at the Morgantown Hunicipal Landfill was estimated, based on a knowledge of placoment and compaction procedures. The results of these computations are shown in Table 1 . It can be seen that the estimated settlements, based upon laboratory data, are not unceasonable. fuse was initially placed and the present overbarden pressure, σ_{0}. Hopefully, additional research will improve the reliability of such estimates.
Table 1 - Comparison of Measured and Estimated Settlements

Rate of Settlement
In order to obtain some insight into the problem of the prediction
of the race of settlement of loaded refuse, a number of prediction of the rate of settlement of loaded included Terzaghi's theory (18), an extension of Terzaghi's theory to account for secondary compression
 for Zimerman's model (21), which was specifically designed to repre-
 havior of soils. For comparison purposes, these theories were used to predict the time-settiement behavior of the toaded refre at in one case, the time serlement predicgantown municipal landfill. In one case, the the laboratory studies, and in the second case the predictions were based on parameters derived from the field data. Typical results for the two cases are shown in were presented by Rao (14).

In general, these comparisons show thet the predictions based on laboratory test resulte are not good. On the other hand, the timesetclement predictions, based on fleid daca, are remarkably good both Gibson and Lo's theory and the extension of Terzaghis theory.

3. Brunner, D. R. and Keller, D. J., "Sanitary Landfill Design and Operation," Report, No. SW. 65 ts, U.S. Environmental Protection
4. Chang, J. C. and Hannon, J. B., "Settlement Performance of Two Test Highway Embankments on Sanitary Landfill, New Horizons in Construction Materials, Envo Publishing Co., Lehigh Valley, PA,
 eers, Geotechnical Section, January, 1971.

7. Gibson, R. E. and Lo, K. Y., "A Theory of Consolidation for Soils Exhibiting Secondary Compression," ACTA Polytechnica Scandinavica, 296/1961, Ci 10.
8. Glover, R. L., Bacteriological Aspects of the Stabilization of Sanitary Landfills by Injection Grouting of Fly Ash, Thesis mubMorgantown, WV, 1972.
" Journal of the Soil Mechanics and Foundations Division, American
Society of Civil Engineers, Vol. 90, No. SM 5, 1964, Pp. 133-155.
 Consolidation Test," Proceedings, The Fifth International Con-
ference on Soil Mechanics and Foundation Engineering, I, 1961,

- ¢р

12. Merz, R. C. and Stone, R., "Landfili Settlement Rates," Public
 ion Grouting of Fly Ash, Thesis submitted to the Graduate School
of West Virginia University, Morgantown, WV, 1974.
13. Rao, S. K., Prediction of Settlement in Landfills for Foundation
characteristics are more important than the prediction method as long as the method properly accountr for primary and secondary compression. Again, this indicates the need for aditiement behavior.

CONCLUSIONS

 tics of household refuse are dependent upon such factors as stress ssure. Field studies indicated the importance of environmental factors (rainfall and temperature), which effect biological decomposition, on the rate and magnitude of setclement.

Both laboratory and field studies of grout stabilization of refuse suggest that favorable results can be obtained if adequate confinement Is present so that compaction of the refuse will occur during guices time. Additional field studies are necessary to develop grouting
techniques that will produce favorable conditions for compaction.

Reasonable predictions of the magnitude and rate of settlement of refuse landfills can be made using the methods and data presented In the paper. However, the settlement parameters should be obtained methods, as well as establish more reliable refuse settlement parameters, furcher field and laboratory studies are warranted.

acknonledgements

 who have given technical, financial, and/or moral support to the work Babcock, Monongahela Power Company; Ronald Morrison, American Electric Power Service Corporation; Donald Gilmore, Morgantown Energy Research Center, ERDA; John Faber, Nacional Ash Associarion; William Morton, Highway Materials, Inc.; the U.S. Environmental Protection Agency;
the City of Morgantown, WV; and the Regional Research Institute and the Department of Civil Engineering of West Virginia University, are particularly appreciated.

SIONTAG3T4

SOLID W'ASTE MATERIALS
15. Sowers, G. F., "Foundation Problems in Sanitary Landfil1s," Journal of the Sanitary Engineering Division, Amer ican Society
of Civil Engineers, Vol. 94 , No. SA 1, 1968, pp. 103-116.
n
16. Sowers, G. F., "Settlement of Waste Disposal Fills," Proceedings, The Eighth International Conference of Soil Mechanics and Foundation Engineering, Moscow, 1973, Pp. 207-210.
17. Taylor, D. W., "Research on Consolidation of Clays," MIT Publication from the Department of Civil Engineering, Publication No.
82, Cambridge, Mass., August, 1942 .
18. Terzagh1, K., Theorerical Soil Mechanics, John Wiley and Sons,
19. Wahls, H. E., "Analysis of Primary and Secondary Consolidation," Journal of the Soil Mechaniss and Foundation division, American
Society of Civil Engineers, Vol. 88, No. SM 6, 1962, pp. 207-231. 20. Yen, B. C. and Scanlon, b., "Sanitary Landfill Settlement Rates," of Civil Engineers, Vol. 101, No. GT5, May, 1975, pp. 475-487. 21. 21mmerman, R., A Mathematical Model for Solid Waste Settlement,
22. Zoino, W. S., "Stabilizing Landfills with Surcharge," Paper Utilization of Sanitary Landfill as a Foundation for Transportation Facilities, Washington, D.C., Jan. 23, 1974.

SETTLEMENT OF WASTE DISPOSAL FILLS

TASSEMENT UES RERBLAIS DES TERRES

GEORGE F. SOWERS, Consultont, Low Engineering Testing Company, Allanta (U.S.A.)

SYNOPSIS. Haste disposal fills are becoming the najor mechanism for disposing of materials unsuitable for other purposes, including garbage, household refuse, construction debris and industrial wastes. Settlement of such organic-mineral conplexes occurs through four mechanisms: (1) consolidation or vold ratio reduction, (2) biochemical decomposition, (3) physico-chemical, and (4) ravelling of soll into large voids. The author's studies show that settlement is similar to that of peats: large initial consolidation, liftle or no hydrodynamic and substantial secondary compression. The compression index C_{C} is approximately proportional to the initial void ratio and increases with the organic content of the fill.

Decomposition and disintegration are reflected in the rate of secondary compression. For derobic moist conditions above the water table the secondary is three times as great as for anerobic below a stagnant water table. The rate of ravelling cannot be expressed analytically at present. Settlenent can be reduced by conpaction, preloading, and controlling the environuental factors favorable to decomposition.

intruduction

Land filling has becone the major method for disposing of solid wastes in the USA. Two purposes are served: (1) rid the community of waste that cannot be economically recycled or consunved, and (2) fill in low areas of land to provide usable space. In the past such waste disposal fills have been considered suitable only for green areas or parks. The increasing scarcity of land in urban areas is naking it necessary to build structures above such fills. Data on the engineering properties of such filis is lacking. The engineering problems involved have been sumarized by Sowers (1968). These include bearing capacity, settlement, gas production, leachate production, corrosion of buried materials, and difficult construction. The present paper presents quantitative data on settiement that the author has accumilated.

IMPORTANCE OF SETTLEMENT

Settlement is the key to the use of waste disposal fills. Because potential settlements are large, they control the design of roads, parking lots, and lighter structures supported on shallow foundations. Noreover, when deep foundations are employed, the continuing fill settlenent is critical because explosive gas can collect in the enlarging gap between the fill surface and the supported floor. If the ground floor is fill-supported, the differential settlement betweeri the pile and ground-supported components can be danaging. For example, both problens are developing simultaneously at a large restaurant whose site is underlain by an old sanitary land fill. The ground floor and the partitions resting on it sag downward
from the pile-supported exterior wall and wethane is accumulating below the floor adjacent to the wall. Disaster could occur from either structural collapse or explosion.

the nature of wasie disposal fills

Waste is as heterogeneous as the nodern industrialurban complex that produces it. It consists of anything that cannot be further used or recycled economically; thus, its composition varies from commenty to community, and from nation to nation. The principal ingredients are given in lable 1.

The density varies greatly from 200 lb . per cu. yd. (120 kg per $\mathrm{cu} . \mathrm{m}$) to 500 lb . per cu. yd. (300 kg per cu . III) as delivernd to the fill, depmining on the anount of metal and debris. Alter compaction the densities may be more than 1000 lb . per cu. yd. (600 kg per cu. iil). Moisture contents range from 10 to 50 per cent and average specific gravity of solids from 1.7 to 2.5. Iypical void ratios are between 15 uncollpacted and 2 well-compacted.

Two extreure forms of decomposition are utilized: the open dump and the encapsulated "sanitary land fill". Fig. 1. The former is heterogeneous, accumulating at randon ar, dumped, possibly allowed to burn, and finally covered with soil to control odors, rats, and flies. The true santtary land fill is spread in layers, compacted, and then covered with soil after each days filling. Each cell may be 10 to 25 ft . (3 to 8 mi) thick, 50 ft . (16 mi) wide, and 100 to 200 ft. (30 to 60 m) long, covered with 1 m of soll.

Material	Iypichl Percenlage	Charocteristics As Fill
Garbage: Food Waste	10-20	Wre. Ferments and decays readily; Compersible, we.it.
Paper, Cloth	10-40	Gry to dimp, thecays and burns, compressible.
Lawn and Garden Refuse: Grass, Brush, Stunvs	10-20	Damp. Ferments, decays, and burns.
Plastic	1-2	Dry: Compressible, decay resistant but may burn.
Hollow Metal: Cans, Orums, Refrigerotors, Auto Bodies, Bad Springs	5-15	Dry. Corrodiable and crushable.
Hassive Metal: Castings, Kettle Bottoms, Auto Batteries	1	Dry. Slightly corrudable, rigid.
Rubber: Tires, Trimmings	5-10	Dry. Resilient, burnable, compressible but uncrushable, decay resistant.
Glass	5-15	Ory. Crustiable and compressible, decay resistant.
Lumber from Denolition	0-5	Dry. Crushable, compressible, decays and burns, some interlocking strength.
Rubble: Brick, Concrete, Stone, Soil from Demnlitions	0-10	Oamp. Crushable, erodable, decay resistant.
Ashes, CInders, Chemlcal Wastes*	0-5	Danm. Soli-like: Compressible, active chemically and partially soluble.

* Does not include separate industrial waste-disposal fills.

mechanisms or settlement

A number of mechanisms are responsible for the settlement:

1. Mechanical: Distortion, bending, crushing and reorientation of the materials, similar to Uie consolidation of organic soils.
2. Ravelling: The erosion or sifting of fine materials into the voids between larger particles.
3. Physico-Chemical Change: Corrosion, oxidation and combustion.
4. Bio-Chemical Decay: Fementation and decay, both a robic and anerubic.
5. Interaction: Methane from bio-chemical decay may support conbustion, ignited spontaneously from the heat of decay. Organic acids from decay may produce corrosion; volume changes from consolidation may trigger ravelling.

Of these mechanisurs, only the first is load related and can be analyzed in terms of the stiesses involved. The other mechanisms are related to the environment: air. moisture, and tenmerature. A waste fill is dynamic, changiny with the environment and partially creating its own environment. For example, temperatures $60^{\circ} \mathrm{F}$ (33 C) above anbient are common during biochemical decay. Decay utilizes moisture and the oxygen in the air voids to form carbon dioxide; when the oxygen is depleted, methane is produced which is poisonous and inflamable. Saturation of the fill inhibits decay, because the bacteria are eventually destroyed by the products of their own growth.

amount of settlemcnt

The usual laboratory tests for consulidation are meaningless with such heterogeneous materials of such varied particle sizes. Instead, large scale pilot
celli, 3 to 6 ft. (l to $?$ in) in dianselor and the behavior of actuol fills mist bo analyzed for meaningful duta. Ihare are limited (stoll, isll) (Merz and Stone, 1962) (Law, Various lules). However, tentative conclusions can be drawn which are useful in predicting settlements.

1. The nerenanical settlement occurs rapidly with little or no pore pressure build-up. The initial and primary phase are complete in less than 1 nonth.
$1.5 \mathrm{FT}=1 / 2 \mathrm{M}$

a. RUBBISH DUMP: UNCONTROLLED PLACEMENT, NO COMPACTION

b. SANITARY LANDFILL: SPREAD AND COMPACTED IN LAVERG 6 to lo FI gR 7 TO 3 M THICK ,
 OR 2 IO G M IIICK ONILY
fli. 1 romstrucitom or warif olsposal fills
2. The relation of stress to settiement duriny the first month ran be expressed by the well-known equation:
3. The compression index, C_{C} is related to the initial void ratio, as shown in Fig. 2. Here is a considerable variation in C_{c} for any value of e . Ilin higher values are for fills containing large amounts of garbage, wood, brush, and tin cans; the lower values are for the less resilient materials. The upper limit for peat soils is also shown; the maximum C_{C} for peat is about one-third greater than the maximan observed for waste fills.
4. The amount of ravelling or combustion settlement cannot be predicted.

RAIE OF SETTLEMENI

Settlement of the waste fills continues at substantial rates as can be seen from Fig. 3. This is the conbination of nechanical secondary compression, physi-co-chemical action, and bio-chemical decay. When there has been no drastic change in the environment the settlement-log time relationship is more or less linear, similar to secondary compression of soils. The settlement carr be expressed by:

$$
\begin{equation*}
\Delta e=-\alpha \log \left(t_{2} / l_{1}\right) \tag{i}
\end{equation*}
$$

where \propto is a coefficiont analogous to C_{C}. The limited data available indicate that $c x$ is a function of
4 the void ratio, Fig. 4. For any given void ratio there is a large range in x, related to the potential for physico-chemical and bio-chemical decay. The value is high if the organic content subject to decay is large and the enviromment is favorab)le: (waim,
 air into the fill). the value is lone for ukil inmet. materials and in unfavoruble envirommenls. Kknr ir search and data are necessary before the relotionship can be defined nore closely.

The rate of settlamenl prolucid by ravellimy and eanbustion is erratic. Hovinurnt generilly uccins in sudden episodes of varyiny maynitude tullewing prommers sive deterioration. Deterioration is reldted tis environmental changes. These include rapid chaugrs in ground water, flooding due to torrential rainfall or

FIG. 2 COMPRESSIIILITY OF WASIE DISPOSAL FILLS

 RLFUSE NUO BUILUIHG DEBRIS
broken woter pipes, and drylng and eyposure to air from making excavations in the soil cover or the fill.

minimizing setilemamt

The ultimatre self.iment ir relitind i.f filme initial void ratio and the envioumental contitions favorable to deterioration, decay, ravelling and combustion. Because void ratio or initial density is related to the initial-primary settlement as well as secondary compression, densification offers an element of control over potential settlement.

Some ferin of compaction is employed with the controll. od, meaprulbted lills. lher tratbed lractor with a

 30 tons with luys similar to the shorpisloot roller but larger are very effective in compacting fill in lifts 6 to 8 ft . (2 to 2.5 m) thick, fig. 5. The 40 to 50 un ruhber firmi rollor is elfoctive in layers that are 10 ft . (1 m) lhirt initially.

Examples of ther rurface settilement or derrification protuced He slown in Fig. 6 . The dala include rollers of fron lit to 50 tons; thore lave been normalized considering the effertive dejuth of compaction hared on lhre wlina's expri irmet. lirey shew consideralle vatiotiens in nffectivermes. of ecmipmetion: a maximun campdelion ol 15 per cent and aminimum of 2 per cont. The higher degrars of compaction may includer some lintrind displacement of lime fill. The

 Resilienl materials such as old tires do not densify under any amounts of rolling.

If the roller is ton heavy a beoring copacity failure will result. If a very wol rill irs oupscted, a tomporary pare pu'sisurn build-up redises the strength ond bearing culuarity sufficientiy thot shear failure, lateral displarment and loosening will occur. Only firld trest: ran shem the outimum roller weight and rate of rolling, for any given situation.

Prelouding with fill can reduce potential settlement

FIG. 4 SECONDARY COMPRESSION OF WASTE FILLS
in the same way as it is effective with organic clays and deats. Because of high penmeability and partial saturation, the initial-primary settlement is virtually comblete in a month or two. The secondary is so great, however, that it determines the preload periods.

Environmental control offers intriguing possibilities for minimizing continuing settlement from ravelling and bio-chemical action. Flooding the fill, with no opportunity for water circulation, may bring decomoosition to a halt when the products of decomposition inhibit further bio-chmaical action. Knepimin the fill try can have a similar effect. both have been achieved in test fills encapsulated in plastic. Chemical control of decomposition is a possible future development.

conclusions

Waste fills are being used increasingly for structural support. Settlenents can be so great that they generally control structural design. Techniques for predicting settlement and ne thods for minimizing settlement have been coupiled from scattered largescale pilot tests and full size instrumented fills.

1. Ihre total inctlounent for the firit menth can be
 vaid intio: r_{0} U.is ro lon lill. low in orymic matter to $\mathrm{c}_{\mathrm{c}}=0.55$ eo lor fills high in organic natter.
2. Comtimuiny seltlenkent is annlomous to secondary combessian and is also ielated lo dire enviomiknt for bio-chemical decily. line rinte cambe bexpessod by $\dot{\gamma}=0.03 e_{0}$ for conditions mintavomble to decay to $\mathfrak{x}=0.09$ eo for conditions laverable to decay.
3. Erlthement can be minimized by flll compaction, preioading and possibly by enviroment control.
4. Compaction is uost effective during the first 8 to 12 passes.

Ack Hown I deis.st itis

The data in this paper have been accumulated from many sources. Mr. Uonald York, Engineer of Soils, The Port of New York Authority and Mr. C. M. Kennedy.

FIG. 6 COMPACfION Of WNiIT HILL; BY 12 TON ROLLERS IH , FI OR I.' M LITIS AHO 30-50 TON RUIIEKE IN B-10 FI OR $3 .,-3$ H l.IFIS (HUABER of ilesi arlas shown ill shaved zones)

Vice President of Engineerinl, Law Engineering Testing Company deserve special lisults for making data available.

REFERLNCES

MRR, R.C. ind ilome, R., (19ri2), "I.andfill Settlement

SOWLRS, (i.I . . (1968), "「rundalioun Prublems In Sanitary Landfills", juminial of thi sMilitary enganeering diviSION, Pruceedings ASCE, Vol. 94, Ho. SAI, p. 103-116.

STOLL, U.W., (1971), "Pechanical Properties of Milled Trash", HEETING PREPRINT 1319, ASCE, New York.

FIG. 5 COMPACTOR FOR SOLID WASTES

SETTLEMENT OF WASIE DISPOSAL FIILS

tassement ues remblals des terres

GEORGE F. SOWERS, Consultant, Law Enginearing Testing Company, Atlanto (U.S.A.)

SYNOPSIS. Waste disposal fills are becoming the major mechanism for disposing of materials unsuitable for other purposes, including garbage, household refuse, construction deuris and industrial wastes. Settlement of such organic-mineral complexes occurs through four mechanisms: (1) consolidation or void ratio reduction, (2) biochemical decomposition, (3) physico-chemical, and (4) ravelling of soil into large voids. The author's studies show that settlement is similar to that of peats: large initial consolidation, little or no hydrodynamic and substantial secondary compression. The compression index C_{c} is approximately proportional to the initial void ratio and increases with the organic content of the fill.

Decomposition and disintegration are reflected in the rate of secondary compression. For aerobic moist conditions above the water table the secondary is three times as great as for ancrobic below a stagnant water table. The rate of ravelling cannot be expressed analytically at present. Settlenent can be reduced by compaction, preloading, and controlling the environmental factors favorable to decomposition.

INTRUDUCTION

Land filling has become the major method for disposing of solid wastes in the USA. Two purposes are served:
(1) rid the community of waste that camot be economically recycled or consunled, and (2) fill in low areas of land to provide usable space. In the past such waste disposal fills have been considered suitable only for green areas or parks. The increasing scarcity of land in urban areas is making it necessary to build structures above such fills. Data on the engineering properties of such fills is lacxing. The engineering problems involved have been sumularized by Sowers (1968). These include bearing capacity, settlement, gas production, leachate production, corrosion of buried materials, and difficult construction. The present paper presents quantilative data on settlement that the author has accumulated.

IMPORTANCE OF SETTLEMENT

Settlement is the key to the use of waste disposal fills. Because potential settlements are large, they control the design of roads, parking lots, and iighter structures supported on shallow foundations. Noreover, when deep foundations are employed, the continuing fill settlement is critical because explosive gas can collect in the enlarging gap between the fill surface and the supported floor. If the ground floor is till-supported, the differential settlement betweer. the pile and ground-supported components can be damaging. For example, both problems are developing simultaneously at a large vestaurant whose site is underlain by an old sanitary land fill. The ground floor and the partitions resting on it sag downward
from the pile-sumorted exterior wall and methane is accurnulating below the floor adjacent to the wall. Disaster could occur from either structural collapse or explosion.

THE NATURE OF WASIE UISPOSAL FILLS

Waste is as heterogeneous as the nodern industrialurban complex that produces it. It consists of anything that cannot be further used or recycled economically; thus, its composition varies from commenty to commulity, and from nation to nation. The principal ingredients are given in Table 1.

The density varies greatly from 200 lb . per cu. yd. (120 kg per cu. m) to 500 lb . per cu. yd. (300 kg per cu. m) as delivered to the fill, depending on the anount of metal and debris. Alter compaction the densities may be more than 1000 lb . per cu. yd. (600 kg per cu . III). Hoisture contents range from 10 to 50 per cent and average specific gravity of solids from 1.7 to 2.5. Iypical void ratios are between 15 uncompacted and 2 well-compacted.

Two extreme forms of decomposition are utilized: the open dump and the encapsulated "sanitary land fill", Fig. 1. The former is heterogeneous, accumulating at random ar dumped, possibly allowed to burn, and finally covered with soil to control odors, rats, and flies. The true sanitary land fill is spread in layers, compacted, and then covered with soil after cach days 1 illim. Fach crill may be 10 to 25 ft . (3 to 8 mit) Lhick, 50 it. (16 m) wide, and 100 to 200 ft. (30 im to 60 m) long, covered with 1 m of soil.

Material	Iypic.ll rercenlagi	Chinucteristics As Fill
Garbage: Food Waste	10-70	Wret. Firmumit, mind dencays readily: Com-
		Mr.siblr, wr.tt.
Paper, Cloth	10-40	Diy to dimys, dec.iys and burns, compress. ible.
Lawn and Garden Refuse: Grass, Brush, Stumps	10-20	Vanp. Ferments, decays, and burns.
Plastic	1-2	Dry: Compressible, decay resistant but may burn.
Hollow Metal: Cans, Drums, Refrigerators, Nuto Bodies, Bed Springs	5-15	Dry. Corrodable and crushable.
Massive Metal: Castings, Kettle Bottoms, Auto Batteries	1	Dry. Slightly corrudable, rlgid.
Rubber: Tires, Trimmings	5-10	Dry. Resilient, burnable, compressible but uncrushable, decay resistant.
Glass	5-15	Ory. Crushable and compressible, decay resistant.
Lumber from Demolition	$0-5$	Ory. Crushable, crmpressible, decays and ξ^{4}
Rubble: Brick, Concrete, Stone, Soil from Demblitions	0-10	Damp. Crushable, erodable, decay resistant.
Ashes, Clnders, Chemical Wastes*	0-5	Damp. Soli-like: Compicssible, active chemicaliy and partially soluble.

* Does not include separate industrial waste-disposal fills.

MECHANISMS Of SLITLEMLENT

A number of mechanisms are responsible for the settlement:

1. Mechanical: Distortion, bending, crushing and reorientation of the materials, similar to the consolidation of organic solls.
2. Ravelling: The erosion or sifting of fine materials into the voids between larger particles.
3. Physico-Chemical Change: Corrosion, oxidation and combustion.
4. Bio-Chemical Decay: Fenmentation and decay, both a robic and anerubic.
5. Interaction: Methane from bio-chemical decay may support combustion, ignited spontaneously from the heat of decay. Organic acids from decay may produce corrosion; volune changes from consolidation may trigger ravelling.

Of these mechanisms, only the first is load related and can be analyzed in terms of the stiesses involved. The other mechanisus are related to the environment: air, moisture, and tenperature. A waste fill is dynamic, chaming with the enviromment and partially creating its conn enviroment. For example, temmeritures $60^{\circ} \mathrm{F}$ (33C) above anbient are connon during biochemical decay. Decay utilizes moisture and the oxygen in the air voids to form carbon dioxide; when the oxygen is depleted, methane is produced which is poisonous and inflammable. Saturation of the fill inhibits decay, because the bacteria are eventually destroyed by the products of their own growth.

AMOLNT OF SETTLEACNT

The usual laboratory tests for consulidation are meaningless with such heterogeneus materinls of such varied particle sizes. Instead, large scale pilnt
cellr. 3 to 6 (t. (1 to 7 mis in linumiter and the behivior of actual fille, miel be matyoed for meaningful dala. lhere are limited (stoll, 1971) (Merz and Stone, 1962) (Law, Various llabes). However, tentative conclusions can be drawll which are useful in predicting settlements.

1. The nerehanical set.thment orcurs rapidly with little or no pore pressure build-up. Ihe initial and primary phase are complete in less than 1 nonth.
$1.5 \mathrm{FT}=1 / 2 \mathrm{M}$

a. RUBBISH DUMP: IMCOHIROLLED PLACEMENT, NO COMPACIIOA

b. SANITARY IANDFILL: SPREAD AND COMPACTED IN
 fHenssialeb will "oll. IH CELLS 6 TO 20 fT OP 210 6 H IHIT.K Unily
HA, I romsImucilon of wirif DISPOSAL FILLS
2. The relation of stress to settlement during lise first month ran be expressed by the well-knowll effudtion:

$$
\begin{equation*}
\Delta \mathrm{e}=-c_{c} \log \frac{\sigma_{u}^{\prime}}{\sigma_{u}^{\prime}}+\frac{\Delta 0}{} \tag{1}
\end{equation*}
$$

3. The compression index, C_{6} is relaterl to the inttial void ratio, as shown in Fig. 2. There is a considerable variation in ic for any value of e. lln higher values are for fills containing large amounts of garbage, wood, brush, and tin cans; the lower values are for the less resilient materials. The upper limit for peat soils is also shown: the maximum C_{C} for peat is about one-third greater than the maximum observed for waste fills.
4. The amount of ravelling or combustion settlement cannot be predicled.

RAIE OF SETTLEMLNT

Settlement of the waste fills continues at substantial rates as can be seen from Fig. 3. This is the combination of mechanical secondary compression. physi-co-chemical action, dna bin-chemical decay. Wlicn there has been no drastic change in the environment the settlement-log time relationship is more or less linear, similar to secondary compression of soils. The settlement can be expressed by:

$$
\Delta e=-\alpha \log \left(t_{2} / L_{1}\right)
$$

where α is a coefficient analoyous to C_{c}. The limit4 ed data available indicate that α is a function of
\& the void ratio, Fig. 4. For any given void ratin there is a large range in ix , related to the polential for physico-chellical and bio-chemical decay. The value is high if the organic content subject to decay is large and the enviromment is favormble: (warm, moist, with fluctuating wilur tahlo lhat pung liw.h
 thaterials and in unfavorahile enviromments. Hon.. search and data are necessary before the relotion,hip can be defined nore closely.

The rate of settloment produced by wivellint and canbustion is erratic. Novinnent grmeratly mime in sudden episodes of varyimimumitude lollmind frombere sive deterioration. weterioration is relatod tis environmental changes. These include rapid cnallyrs in ground water, flooding dile to torrential raintail or

FIG. 2 COMPRESSIHILITY UF WASIE DISPOSAL FIIIS

 RLFUSE NHU BUILUIHG UEBRIS
broken woler pipes, and dryiny and erposure to air from making excavations in the suil cover or the fill.

MINIHIZING SETILTMINT

 ratio and the enviramental comalimin favorable to deterioration, decav, ravelling und cumastion. Because void ratio or initial density is related to the initial-primary settlement as well as secondary compression, densification offers an elmment of control over potential settlement.

Some form of compaction is employed with the controll. ed, Mramalatmidilr. Hun theol limelor with a

 30 tons with luys ;imilar to the ehmopislont roller but larger are very effective in compacting lill in lifts 6 to 8 ft. (2 to 2.5 m) thick, fia. 5 . The 40 to 50 ton whom firodrolfor is effuliver in layers that ate lo it. (1 im) thitr inilially.
[xamilos al the rut fice qpetlemat or armification Hoduced 11 a show in Fig. G. The dhla include collers af from lato 50 tons: those lave been normalized cumficming the offerlive duplh of compaction
 able valintion; in "lfeclivamers al tanforion: a
 2 pur cont. The highor dreye mers of compuction may in-

 Resilient materials such as old tires do not densify under any amounts of rolling.

If the roller is too heavy a bearing capacity failure will result. Il a vary wre fill is , ompheted, a tcmporay pore possurn build-i" colures the strength and beariny cabrily suffitiontly that shear failure, lateral displarmmont and looscnimy will occur. Only
 rate of rolling, lor any given situotion.

Preloadiny with fill can vedus protential settlement

FIG. 4 SECONDARY COMPRESSION OF WASIE FILLS

In the sane way as it is effective with oryanic clays and peats. Because of high permeability and partiol saturacion, the initial-primary settlement is virtually conidete in a month or two. lhe secondary is so great, however, thal it determines the preload periods.

Environmental control offers intriguing possibilities for minimizing continuing settlenment from ravelling and bio-chemical action. Flooding the fill, with no opportunity for water circulation, may bring decomoosition to a halt when the products of decrmposition finibit further bio-chemical action. Fieering the lill try can have a similar eflect. Both have bern achieved in test fills encapsulated in plastic. Chemical control of decomposition is a possible future development.

CONCLUSIONS

Waste fills are being used increasingly for structural support. Settlements can be so great that they generally control structural design. Techniques for predicting settlement and methods for minimizing settlement have beell compiled from scattered largescale pilot tests and full size instrumented fills.

1. Jhe total irettemunt fer llir firit. nemth can be

 maller to lc: 0.55 eo for fills high in organic matter.
2. Comtimuing settlement is malmons to secondary commersixim and is also iclaled lo the enviromment for bio-chomical decay. lhe lilte cant he expriessed by $\therefore=0.03 \mathrm{Fo}$ for conditions untavirabla to decay to $x=0.09$ eo for conditions lavandile to decay.
3. 'rilloment can be minimized by fill compaction, prelodding and possibly by environment control.
4. Compaction is most effective during the first 8 to 12 passes.

The data in this paper have been accumalated from many sources. Mr. Donald York, lingineer of Soils, The Port of New York Authority and Mr. C. M. Kennedy,

 RUIIIK' IA B-10 FI OR ?.J-3 IS IIFIS (HUMBER of IESI mblas shown ill shaved zomes)

Vice President of Engineerim, Lis fngjneering Testing Company dosirve spocial Lhunts for miking data availble.

REFERLNCES

M RT. R.C. imil flomi, R., (lM,?), "l.mafill rettlement

 Landfills", JUHMIAL OF MHR SANII ARY ENCINEERIHG DIVISION, PJUOCELUIHLS ASCE, Vol. 94, No. SAI, p. 103-116.

STOLL, U.H., (1971), "Pkechanical Properties of Milled Trash", 悔EIING PREPRINT 1319, ASCE, New York.
rig. 5 COMPACTOR FOR SOLID WASTES

Principles of Foundation Engineering
 Braja M. Das

Civil Engineering Department The University of Texas at El Paso

Por b: Reinforcement

The reinforcement should be provided for the total uplift load-that is, 1252 kN (assuming that dead load and live load are zero). So, the area of steel

$$
A_{1}=\frac{U}{\left(\frac{\text { yield point of steel }}{\text { factor of safety }}\right)}
$$

The preceding factor of safety may be taken as 1.25 . The yield point of steel ≈ 275 $\mathrm{MN} / \mathrm{m}^{2}\left(\approx 40,000 \mathrm{ll} / \mathrm{in} .^{2}\right)$. Hence, the area of steel

$$
A_{1}=\frac{1252}{\left(\frac{275 \times 10^{2}}{1.25}\right)}=5.69 \times 10^{-3} \mathrm{~m}^{2}=5.69 \times 10^{3} \mathrm{~mm}^{2}\left(8.82 \mathrm{in.}^{2}\right)
$$

Part c: Check for Bearing Capacity
Assume $U=0$.

$$
\text { Dead load + live load }=600+300=900 \mathrm{kN}
$$

Downward load per unit area $=\frac{900}{\left(\frac{\pi}{4}\right)\left(D_{b}^{2}\right)}=\frac{900}{\left(\frac{\pi}{4}\right)(1.25)^{2}}=733.4 \mathrm{kN} / \mathrm{m}^{2}$
Net bearing capacity of the soil under the bell $=q_{m}=$

$$
c_{u} N_{c}=450(6.14)=2763 \mathrm{kN} / \mathrm{m}^{2}
$$

Hence, factor of safety against bearing capacity failure

$$
=\frac{2763}{733.4}=3.77>3-\mathrm{O} . \mathrm{K} .
$$

Sanitary Landfill

10.12

Sanitary Landfills-General
Sanitary landfills provide a way to dispose of refuse on land without causing danger to public health. Almost all countries use sanitary landfills with varying degrees of success. The refuse disposed in sanitary landfills can contain materials like wood, paper, and fibrous wastes or demolition wastes like bricks and stones. The refuse is dumped and compacted at frequent intervals and then covered with a layer of soil (Figure 10.14). In the compacted state, the average unit weight of the refuse may vary between $5-10 \mathrm{kN} / \mathrm{m}^{3}$. A typical city in the United States, with a population of one million, can generate about 3.8×10^{6} m^{3} of compacted landfill material per year.

As property value continues to increase in densely populated areas, it becomes more and more tempting to construct structures over sanitary landfills. In some instances, a visual site inspection may not be enough to detect an old sanitary landfill. However, construction of foundations over sanitary landfills is

Chapler 40 Foundations on Difficult Soils

Figure 10.14 Schematic diagratn of sanitary landfill in progress
generally problematic because of poisonous gases such as methane, excessive settlement, and low inherent bearing capacity. Few studies are available on this topic. Based on the information available, the next two sections will discuss scttlement and bearing capacity problems associated with sanitary landfills.

10.13

Settlement of Sanitary Landfills

Sanitary landfills undergo large continuous settlements over a long period of time. Yen and Scanlon (1975) have documented the settlement of several landfill sites in California. Based on their analysis, the settlement rate after the completion of the landfill (Figure 10.15) can be expressed as

$$
\begin{equation*}
m=\frac{\Delta H_{f}}{\Delta t} \tag{10.17}
\end{equation*}
$$

where $\mathrm{in}^{\prime}=$ settlement rate

$$
H_{f}=\text { maximum height of the sanitary landfill }
$$

Based on several field observations, the following empirical correlations for the settlement rate have been determined (Yen and Scanlon, 1975).

$$
\begin{align*}
& m=0.0268-0.0116 \log t_{1} \begin{array}{l}
\text { (for fill heights ranging } \\
\text { from } 12-24 \mathrm{~m})
\end{array} \\
& m=0.038-0.0155 \log t_{1} \begin{array}{l}
\text { (for fill heights ranging } \\
\text { from } 24-30 \mathrm{~m})
\end{array} \\
& m=0.043-0.0183 \log t_{1} \text { (for fill heights greater } \\
& \text { than } 30 \mathrm{~m} \text {) }
\end{align*}
$$

where m is in $m /$ month and t_{1} is the median fill age, in months. 'ihe medium fill age can be defined as (Figure 10.15)

$$
\begin{equation*}
t_{1}=t-\frac{t_{c}}{2} \tag{10.21}
\end{equation*}
$$

Figure 10.15 Settlement of sanitary landfills
where $t=$ time from the beginning of landfill
$t_{c}=$ time for completion of the landfill ${ }^{-}$
ind
sal the

Equations (10.18), (10.19), and (10.20) were based on field data from landfills for which the value of t_{c} varied from 70 to 82 months. To get an idea of the approximate length of time required for a sanitary landfill to undergo complete settlement, consider Eq. (10.18). For a fill of height of 12 m and $t_{c}=72$ months

$$
m=0.0268-0.0116 \log t_{1}
$$

or

$$
\log t_{1}=\frac{0.0268-m}{0.0116}
$$

If $m=0$ (that is, for zero settlement rate), the $\log t_{1}=2.31$, or $t_{1} \approx 200$ months. Thus, the settlement of the fill will continue for a period of $t_{1}-t_{c} / 2=200-36=164$ months (≈ 14 years) after its completion. This is a fairly long time. This calculation shows that one must pay close attention to the settlement of foundations constructed on sanitary landfills.

A comparison of Eqs. (10.18) to (10.20) for rates of settlement shows that the value of m increases with the increase of the height of the fill. However, for fill heights greater than about 30 m , the rate of settlement should not be much different than that from Eq. (10.20). This is because decomposition of the organic matter close to the surface is mainly the result of anaerobic environment. For deeper fills, the decomposition is slower. Hence, for fill heights greater than about 30 m , the rate of settlement does not accelerate any faster than those that are about 30 m in height.

Sowers (1973) has also proposed a relation for calculation of the settlement of a sanitary landfill:

$$
\Delta H=\frac{\alpha H_{f}}{1+e} \log \left(\frac{t^{\prime \prime}}{t^{\prime}}\right)
$$

where $H_{f}=$ height of the fill
$e=$ void ratio
$\alpha=$ a coefficient for settlement
$t^{\prime \prime}, t^{\prime}=$ times (see Figure 10.15)

$$
\Delta H=\text { settlement between times } t^{\prime} \text { and } t^{\prime \prime}
$$

The coefficients α are between the following limits

$$
\begin{equation*}
\alpha=0.09 e \text { (for conditions favorable to decomposition) } \tag{10.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha=0.03 e \text { (for conditions unfavorable to decomposition) } \tag{10.24}
\end{equation*}
$$

Equation (10.22) is similar to the equation for secondary consolidation settlement.
10.14

Bearing Capacity of Foundations on Sanitary Landfills

Shallow foundations constructed on sanitary landfills with a compacted sonl cover may fail in two ways (Sowers, 1968): by punching shear, or by rotational shear, as shown in Figure 10.16. Punching shear failure (Figure 10.16a) occur, when the width of the foundation, B, is relatively small compared to the thichness of the soil cover, D_{C}. However, when the thickness of the soil cover is relatively small compared to the foundation width and where the strength of ths. soil cover is low, rotational shear failure may occur (Figure 10.16b). The allowable bearing capacity of shallow foundations for light residential or office buildings over sanitary landfills should not be greater than about $20-40 \mathrm{kN} / \mathrm{m}^{2}$.

Sometimes the allowable bearing capacity of shallow foundations cam be increased by increasing the thickness of the compacted soil cover such that $D_{c} \geq 1.5-2 B$. Note, however, that this excess weight of the fill and the crinpaction process may eventually increase the ultimate setllement of the sta. ture.

When the fill is relatively homogencous and light structures are constrin:ed over it, the settlement pattern will be somewhat like that in Figure 10.16\%. However, when the fill is nonhomogeneous in nature with irregular hard zones. such as boulders, the settlement is nonuniforin, as shown in Figure 10.10d. Serious damage to structures is usually caused by this type of settlement.

In several instances, the use of continuous foundations, such as that shown in Figure 10.5, may help reduce the differential settlement problem. If the estimated settlement of a structure is not tolerable, or heavier structures are to be built, pile or drilled-pier foundations are alternatives. In this case, it will ire

Problems

Figure 10.16 low foundatio
necessary t may corrod tions are u beams to al slab will be

Problems

10.1 Refer to Figu of $\boldsymbol{\gamma}_{\|}$(in $k \boldsymbol{N}_{1 / 3}$ soils are liket
10.2 A collapsible. overburden F . was subjectec: pressure of the soil in the fiel
10.3 An expansives soil is 14.5%,is soil upron satu:
10.4 Repeat Proble are the

The eventual capping option will depend on the grading option selected and if the closure will be handled on a phased approach. Regardless of the final selection, the capping options proposed must meet basic regulatory criteria.

The final cover should be designed and constructed to provide longterm minimization of migration of liquids through the closed waste site.

The effort at this site should comply with applicable and relevant standards of other statutes besides CERCLA. For capping options, this means that at a minimum, RCRA technical guidance contained in 40 CFR 264.310 should be met. To conform with this guidance the following objectives should be met by the final cover design:

[^0]- Vegetated top cover
- Middle drainage layer
- Low permeability bottan layer
- $\geq 20 \mathrm{mil}$ synthetic - upper component (may be optional)
- ≥ 2 foot clay layer - lower camponent

The following guidance elements provided by EPA will be applied to this option:

- Vegetated Top Cover

- minimum 24 in. thick
- should support vegetation that minimizes erosion without continued maintenance
- planted with persistent species - no roots that will penetrate beyond the vegetative and drainage layers
- top slope, after settling and subsidence, of between 3-5\%if > 5\% use USDA Universal Soil Loss Equation to demonstrate a soil loss of <2.0 tons/acre/yr.
- surface drainage system capable of conducting runoff across cap with no problems
- Middle Drainage Iayer
o minimm 12 in. thick if granular material
- saturated conductivity not less than $1 \times 10^{-3} \mathrm{~cm} / \mathrm{sec}$
- bottan slope of at least 2 percent
- designed to prevent clogging - overlain by a graded granular or synthetic fabric filter
o discharge flows freely

- upper component:

0 at least 20 mil synthetic (may be optional)
o bedding layer at least 6-feet thick - no coarser than unified soil classification system sand (sp)
o final upper slope at least 2\%
o be located wholly below the average depth of frost penetration in the area of interest

- lower component:
o at least 2 feet of soil compacted to a saturated conductivity of not more than $1 \times 10^{-7} \mathrm{~cm} / \mathrm{sec}$
o soil emplaced in lifts not exceeding 6 inches before compaction

This is the basis for the standard type cap and it will be viewed as an option into final design in its typical form. It is presently anticipated that the upper layer would consist of a 2-foot thick layer of topsoil placed above the drainage layer. The entire cover area would then be revegetated for erosion control. Fertilizer will be added to the topsoil at the rate of 700 pounds per acre and the area would be seeded with appropriate grass seed.

The middle drainage layer can consist of a basic gravel layer. Internal transport collectors are not anticipated at this time. This is partially due to the potential settlement problems. Beyond the standard gravel drainage blanket, the use of a synthetic drainage net product or composite system will be evaluated. For the final bottom layer, the options presently being carried into final design are two feet of campacted clay, 3 feet of compacted clay, or a properly bedded synthetic liner. At a minimum, High Density Polyethylene (HDPE) is being maintained as a synthetic material. Other materials are being considered but preference at this stage of the project is for use of HDPE. As a final option, a camposite system of clay and synthetics is being retained for evaluation prior to final design.

Due to the nature of the settlement problems at the site, consideration must be given to options beyond the standard cap. These will be discussed further at the review meeting to be conducted in November. The guidance does allow for "alternative designs" capable of meeting the five regulatory requirements. It appears that if initial compaction cannot achieve an acceptable base then a phased type program will be required. In this system, an initial cap would be placed to meet the basic requirement of reducing infiltration through the landfill. Since same damage to this initial system through settlement would be anticipated, it is assumed that a cap of a more temporary nature than the standard RCRA cap would be used.

Three options are presently being considered for this type of cap. These include a "repairable" clay capping system, the use of a HDPE liner with expansion folds designed in, and finally a reinforced type asphalt material. Initially a self-supporting fabric structure type cover was also considered but the costs support system and anchoring at such an irregular sit precludes it from additional considerations. some type of stabilized soil is also being considered as a temporary cover for the liner option.

The reinforced asphalt material under consideration consists of asphalt and a norwoven polypropylene fabric. The nonwoven polypropylene fabric to be used is "Petromat," which is manufactured by the Phillips Fibers Corporation. This layer of asphalt and Petromat can be installed to follow the shape, contour, slope, etc. of the base material to provide for a final surface slope of 2% in all direction across the landfill site. This material has traditionally been used to repair cracked roadbeds. For closure projects the system generally consists of a base course followed by a $\frac{1}{4}$-inch asphalt cement course serving as a stabilizing and support layer. An asphalt emulsion sealant is then applied to the asphalt cement course and the fabric rolled onto this surface. A second asphalt emulsion layer is then applied to the top surface at the same rate. A chip seal (small grave) will then be placed on this emulsion layer at a rate of 25 pounds per square yard. Because of the durability of the chip seal surface, very little maintenance is required, and erosion of the surface can be eliminated.

These options will be presented in greater detail at the review meeting and the eventual selection may be tied to the grading option selected.

Ms. Hogle said a 1 -foot minimum of soil or sand is required before equipment can be driven on the membrane. The recommended dozers for earth work over the membrane is a John Deere 350 or Caterpillar D-3.

Name Jackie Boostram	Project No. F-1536
Company National Seal	Date 3/7/88 Time 9:00
Address Galesburg, Illinois	[X] Telephone Conversation
	[] Office Conversation
Telephone No. 800/323-3820	Re: HDPE Verification of
Recorded By Jon Caime	60 mil Thickness

40 mil - Too thin, can go through when welding
60 mil - Modules of elasticity 80 K psi
80 mil - Modules of elasticity 80K psi

* Tensile at yield and tensile strength equal

Puncture Resistance
$\begin{array}{lr}60 \mathrm{mil} & 90 \text { pounds } \\ 80 \mathrm{mil} & 110 \text { pounds }\end{array}$
Hydrostatic Resistance
$60 \mathrm{mil} 450 \# / \mathrm{sq}$. inches
$80 \mathrm{mil} 650 \# / \mathrm{sq}$.inches
"Generally caps are 40 mil , but suggests 60 mil due to welding problem."
Name

\qquad
Elon Thompson, Jr.
Project No. F-1536
Company Gundle Lining Date $2 / 12 / 88$ Time

\qquad
Address Houston, Texas
[X] Telephone Conversation
[] Office Conversation
Re: Heleva Landfill
Telephone No. 800/435-2008
Recorded By Bill Cannon
Mr. Thompson said that a 1-foot minimum layer of sand over the membrane would be required before a small, wide-tracked dozer could be driven over the membrane.
If drainage net is used, then still a 1-foot layer of fill dirt or top soil is required before the fill can be worked, and they recommend that 18-inch final thickness be called for, for the total thickness of soil above the membrane.

Name \qquad Project No. F-1536

Company Gundle Lining Date 3/11/88 Time 10:00
\qquad [X] Telephone Conversation
[] Office Conversation
Re: HDPE Trenching
Telephone No. 800/435-2008 \qquad
\qquad
Recorded By Jon Caime \qquad
\qquad

4 feet - 5 feet minimum distance from edge of landfill for:
V trench - liner system can move through trench trench - would not allow movement of liner

Name Jackie Boostrom	Project No. $\mathrm{F}-1536$
Company National Seal	Date 3/7/88 Time 9:00
Address Galesburg, Illinois	[X] Telephone Conversation
	[] Office Conversation
Telephone No. 800/323-3820	Re : HDPE Capping TCE Area
Recorded By Jon Caime	at a Later Date

- Leave overlap to come back with; leave 4 feet - 6 feet
- Anchor trench
- Lay plywood on top of liner (treated)
- 1 foot of material

Name Bob Trexler	Project No. F-1536
Company Gundle Lining	Date 3/29/88 Time 9:45
Address Houston, TX	[X] Telephone Conversation
	[] Office Conversation
Telephone No. 800-435-2008	Re: Soil Vent Cap TCE Area
Recorded By W. Jon Caime	and Redrill Later

Can come back and drill through HDPE to put in soil vents. Must clean existing HDPE before welding new HDPE or boots on or around soil vents.

Name Elon Tompson, Jr.	Project No. F-1536
Company Gundle Lining	Date 3/7/88 Time 11:00
Address Houston, TX	[X] Telephone Conversation
	[] Office Conversation
Telephone No. 800-435-2008	Re : Confirmation of 60 mil
Recorded By Jon Caime	HDPE

* Don Hildebrant *

20 mil	- May have problem welding
40 mil	- \quad No problem when welding
60 mil	- Gives additional strength as gets thicker mil HDPE
	- Same elongation
	- Same tensile yield and tensile strength

Thickness Difference:

- puncture resistance, tear resistance, and added seam strength as thicker mil HDPE
- 60 mil is as easy as 80 mil to install and costs about the same

Name
Elon Tompson, Jr. \qquad Project No. $F-1536$

Company Gundle Lining
Address Houston, TX Date $3 / 7 / 88$ Time 11:30
[X] Telephone Conversation
[] Office Conversation
Re: HDPE Capping TCE Area at a Later Date

Can always weld later on.

- Geotextile - keeps liner clean 3 feet - 4 feet
- 4 feet X 8 feet plywood protects when digging later on

Anchor

- Can ancior with plywood and dirt

Name Tom Liebert	Project No. F-1536
Company Schlegel Lining Systems	Date 2/24/88 Time 4:00
Address	[X] Telephone Conversation
	[] Office Conversation
Telephone No. 409-273-3066	Re: Expansion of Cap Membrane
Recorded By Ed Harris	Heleva Landfill

Project No. F-1536

Date 2/24/88 Time 4:00
[x] Telephone Conversation
[] Office Conversation
Re: Expansion of Cap Membrane
Heleva Landfill

Mr. Liebert has studied the problems associated with the landfill cap and the possible subsidence due to various factors. He recommends that the membrane not be folded. Folds would cause localized stress cracking when the material unfolds. He recommends that the integrity of the material be depended upon to allow for as much as 15 percent elongation without overstressing the material (HDPE). Mr. Liebert has determined that 7 feet of subsidence could cocur over a 1 acre area without overstressing the HDPE membrane.

Name Elon Tompson, Jr.	Project No. F-1536
Company Gundle Lining	Date 3/7/88 Time 11:00
Address Houston, TX	[X] Telephone Conversation
	[] Office Conversation
Telephone No. 800-435-2008	Re: Folding HDPE - Also Had
Recorded By Jon Caime	Comments on Specs

* Don Hildebrant will be handling the project *

Folding is a bad idea; it creates stress points. Minimum 700 percent expansion.

Comments on Spec of HDPE
13450-2
part 3.0
Based on National Sanitation Foundation Standard 54:
Nominal Gauge $60 \pm 10 \%$
Sp. Gravity 0.94 min .
Minimm Tensile Prop.
Min. Tensile Yield
2,400 psi
Break
4,000
Elon at Break
Mod. Elasticity
*
Tear Resistance
Low Temp. Brittleness
Envirormental Stress Crack
Carbon Disp.
Melt Index
Puncture Resistance *FIMS101B*
Bonded Seam Strength
Peel
700
80,000
45 pounds min.
$112{ }^{\circ} \mathrm{F}$
2,000
Better Worst
$\mathrm{A}-1, \mathrm{~A}-2$ or $\mathrm{A}-3$
0.3-0.5

270\#
90\% of Sheet Strength
50% of Sheet Strength

Preliminary Cost Comparison Cap Alternatives

DESCRIPTION OF SYNTHETIC CAP ALTERNATIVE

Prior to beginning cap construction the landfill must be prepared in four respects. First, the onsite pond must be pumped dry to permit the placement of common fill. It has been assumed that this surface water is uncontaminated and can be pumped to the existing pond at the northeast corner of the landfill site. Also, the existing monitoring wells within the area of work must be removed and filled per State guidelines. Third, an existing power line must be relocated to not interfere with the construction operation. Lastly, erosion control measures must be in place before earthwork construction begins. It is estimated that a system of silt fences will be installed perpendicular to surface flow paths that direct stormwater offsite to serve as erosion protection. Following this preparation the area to receive the cap will be rough graded as shown on the drawings. Common fill will be used at this stage for fill material.

The cap will be constructed in layers beginning with a select fill layer placed and compacted over the rough graded fill and existing landfill surfaces. This layer will provide a cushion for the synthetic membrane and will be devoid of large stones and other material that would damage the membrane. A heavy geotextile fabric will be placed on top of the select fill course to AR301496
further protect the membrane. Next the membrane will be placed over the landfill surface. This high density polyethylene material and the geotextile below will be lapped or folded 3 feet every 100 feet of landfill face in the east - west direction. These folds will provide slack in the two sheets to allow them to adjust to future settlement as it may occur. A clean sand drainage layer will be placed over the membrane. This sand layer will be 6 inches thick and have a light weight geotextile fabric placed on top. This geotextile will separate the drainage layer from the one foot layer of overburden and topsoil. A six inch layer of common fill will be placed on top of the geotextile and followed by a six inch layer of topsoil. For these estimates topsoil is estimated as being a mixture of select fill and compost from a nearby sanitary treatment facility. The constructed landfill surface will then be seeded by hydro-seeder.

Gas vents are provided over most of the cap surface to collect methane gas from under the membrane and dissipate it into the air. These vents are spaced at 50 feet
center-to-center over the landfill.

The drawings detail the method of constructing ditches on the landfill. The ditches will be lined with rip rap. A gravel roadway and truck turnaround area are
provided for use during the construction operation. An equipment washdown area is included in the roadway. This area consists of a drained wash area that directs flow to an underground tank. A pipe and valve system prevents stormwater from entering the tank. This system will be removed by the contractor at the end of the capping operation. All of the facilities will be contained inside a chain link fence. The estimate includes a 7 foot high fence topped by three strands of barbed wire.

```
IN PROGRESS ESTIMATE \(30 \%\) DESIGN STAGE
HELEVA LANDFILL
LEHIGH COUNTY, PENNSYLVANIA
SYNTHETIC MEMBRANE CAP ALTERNATIVE
```

Exc. - Cut to Fill	\$64,100
Common fill	\$1,032,000
Select fill	\$306,600
Sand drainage layer	\$409,000
Geotextile sep.	\$374,600
Synthetic Membrane	\$814,300
Topsoil	\$204,600
Fine Grading	\$182,800
Seeding	\$33,700
Fencing	\$70,400
Rip Rap	\$15,900
Gravel Paving	\$35,300
Equip. Wash Station	\$5,900
Settlement Markers	\$300
Gas Vents	\$153,300
Pump Onsite Pond	\$1,400
Erosion Control	\$8,200
Remove Monitor Wells	\$14,800
Reloc. Ohd. Power line	\$7,500
Estimated Current Contract Costs	\$3,735,000
Contingencies - 25\%	\$933,800
Subtotal	\$4,669,000
S \& A - 5.5\%	\$256,800
TOTAL ESTIMATED PROJECT COST --CWE--	\$4,926,000

DESCRIPTION	Direct Cost	Indirect Cost 11.7\%	Total Cost	No. Units	Unit Meas.	Unit Cost
Exc. - Cut to Fill	\$52,159	\$6,097	558,256	19,390	cy	53.00
Common fill	\$839,819	\$98,164	5937,984	92,900	cy	\$10.10
Select fill	\$249,550	\$29,169	\$278,719	16,505	cy	\$16.89
Sand drainage layer	\$332,898	\$38,912	\$371,810	16,505	cy	\$22.53
Geotextile sep.	\$304,928	\$35,642	\$340,570	1	LS	\$340,570
Synthetic Membrane	\$662,789	\$77,472	\$740,261	835,800	sf	\$0.89
Topsoil	\$166,532	\$19,465	\$185,997	16,505	cy	\$11.27
Fine Grading	\$148,800	\$17,393	\$166,193	310,000	$3 y$	\$0.54
Seeding	\$27,444	\$3,208	\$30,652	930	msf	\$32.96
Fencing	\$57,284	\$6,696	563,980	1	LS	563,980
Rip Rap	\$12,929	\$1,511	514,440	700	cy	\$20.63
Gravel Paving	\$28,706	53,355	\$32,061	4,828	sy	\$6.64
Equip. Wash Station	\$4,800	\$561	\$5,361	1	ea	\$5,361
Set:lement Markers	\$233	\$27	- \$260	3	ea	\$86.56
Gas Vents	\$124,748	\$14,582	\$139,330	221	ea	\$630
Pump Onsite Pond	\$1,140	\$133	51,273	1	LS	\$1,273
Erosion Control	\$6,640	\$776	\$7,416	1	LS	\$7,416
Remove Monitor Wells	\$12,016	\$1.405	\$13,421	1	LS	\$13,421
Reloc. Ohd. Power Line	86,100	\$713	\$6,813	1	LS	\$6,813

デㅇㅇㅇ

$\$ 63,873$
$\$ 146,891$

0
0
0

 $\$ 192,931$
$\$ 111,997$
\＄662，789
 $\$ 148,800$

0
0
0
0
0

0 | 8 |
| :--- |
| - | \circ

$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{\circ}$
$\$ 9 \cdot 0$
00.1
$\$ 2 \cdot 1$
$29^{\circ} 0$
0.57
6.00
1.00
0.54
0.57
66
1.00
0.56

$\begin{aligned} & 0.7 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \text { UNO } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		＋8080	下～NO のがN －	－	\％
05			ジャッジ	$\underset{\sim}{\vec{j}}$	$\underset{\substack{\infty \\ \infty \\ \infty}}{\infty}$	ジきロシ	io	8
	O¢000		앙요융	0%	\because		\pm	F
00°	－－ 0°	$\bigcirc 0^{\circ}$	$\therefore \stackrel{\circ}{\circ}$	$\therefore 0$	0	$\bigcirc-0^{\circ}$	0	$\dot{\sim}$

$089 \cdot \varepsilon 8 \$ 1 \cdot 0$ \qquad N
N
N
0
0
0
$0.18 \$ 55,800$
융웅
0

AL

$\$ 14,800$
$\$ 9,200$
$\$ 1,120$
$\$ 440$
$\$ 6,750$
$\$ 2,070$
$\$ 1,000$
$\$ 120$
$\$ 15,655$
$\$ 2,120$
$\$ 292$
$\$ 350$
$\$ 22,796$
$\$ 7,599$
$\$ 60,790$

BOND
based on total directs plus
ovhd less bond amount
$\begin{array}{lr}\text { Total contract amount } & \$ 3,364,233 \\ \text { less bond } \\ & \\ 14.4 / 1000 \text { first } 500,000 & 7200 \\ 8.7 / 1000 \text { next } 2 \text { mill } & 17400 \\ 6.9 / 1000 \text { next } 2.5 & \\ \text { TOTAL BOND EXPENSE } & 5963 \\ & \end{array}$
AR301504

DESCRIPTION OF THE RCRA CAP ALTERNATIVE

The difference between the RCRA Cap and the Synthetic Cap is the cap construction itself. The estimated item takeoffs are identical in all other respects. For the RCRA Cap, the site will be rough graded and filled with common fill to the same elevations as the Synthetic Cap. Clay will be brought in from a borrow source and placed in a two foot thick layer over the landfill subgrade. The clay will be placed in lifts and compacted to achieve a low permeability. A synthetic membrane will be placed on top of the clay cap. This membrane will not be lapped as with the Synthetic Cap. A one foot thick layer of clean sand will be placed over the high density polyethylene sheet. The sand drainage layer will be topped with a light weight geotextile to separate the sand from the topsoil and overburden above. An eighteen inch layer of common fill will be place over the geotextile fabric. Lastly, a six inch layer of topsoil will be placed over the common fill. Again it is estimated that the topsoil is a mixture of select fill and compost from a sanitary treatment facility nearby. The site will be seeded using a hydro-seeder.

All other components of the RCRA Cap alternative are the same as the Synthetic Cap alternative. The site requires the same preparation and will be provided with the same fencing and erosion control.

> IN PROGRESS ESTIMATE 30% DESIGN STAGE
> HELEVA LANDFILL
> LEHIGH COUNTY, PENNSYLVANIA RCRA CAP ALTERNATIVE
Exc. - Cut to Fill \$63,800
Common fill \$1,415,000
Clay cap $2^{\prime \prime}$ thick \$1,415,000
Sand drainage layer 1° \$814,000
Geotextile sep. \$127,300
Synthetic Membrane \$753,500
Topsoil \$203,700
Fine Grading \$182,000
Seeding \$33,600
Fencing \$70,100
Rip Rap \$15,800
Gravel Paving $\$ 35,100$
Equip: Wash Station $\$ 5,900$
Settlement Markers $\$ 300$
Gas Vents \$141,300
Pump Onsite Pond \$1,400
Erosion Control \$8,100
Remove Monitor Wells \$14,700
Relo. ohd. power line $\$ 7,500$
Estimated Current Contract Costs \$5,308,000
Contingencies - 25\% $\$ 1,327,000$
Subtotal
S \& A - 5.5\%\$6,635,000
\$364,900
TOTAL ESTIMATED PROJECT COST
9

$$
-
$$

$$
\begin{aligned}
& \text { No. } \\
& \text { Units }
\end{aligned}
$$

--…

$$
r
$$

AR301510

${ }^{\text {wroa }}$	

DSSCRIPYTON	QUANT. No. Units

BOND
based on total directs plus
ovhd less bond arount
Total contract amount $\$ 4,784,613$
less bond
$\begin{array}{lrr}14.4 / 1000 \text { eirat } 500,000 & 7200 \\ 8.7 / 1000 \text { next } 2 & 1711 & 15764 \\ 6.9 / 1000 \text { next } 2.5 \text { mil1 } & \$ 40.364\end{array}$

IV. GRADING EVALILATICN AND DRATNAGE DESIGN

The following information presents a summary of the general grading options evaluated and the recommended option. Although four options were considered, Option 4 was rejected early in the process and consequently a final concept layout drawing was not procuced. For informational purposes, a layout drawing for the other three options and some general sections have been included with this design memo.

A. OPTION NO. 1

Option No. 1 involves filling the landfill site to form a dome allowing rainfall to run across the cap to either Todd Lake or the northeast pond. A ridge will be made at the high point of the landfill near Todd Lake. This ridge will essentially divide the runoff flow into two directions. The majority of the runoff will collect in Todd Lake and in the northeast pond with minor amounts reaching other areas. The effect of Option No. 1 is to shed water off of the landfill cap.

A great deal of fill will be required to elevate this area to an allowable slope. It is estimated that 128,700 cubic yards of fill will be required to implement this option. The ridge between the landfill and the northeast Pond will have to be removed and some of the landfill near Todd Lake will have to be leveled to create a sheet flow. This cut is approximately 5200 cubic yards and if this material proves suitable, it can be used for make-up fill material.

This option should not require any engineered ditches within the landfill. Should it be selected for final design, some ditches outside the limits of the cap may be required. In addition to the large amount of fill, this option has the disadvantage that runoff is allowed to run across the cap for long distances. The nunoff has a greater chance to percolate through the cap and into the landfill underneath.

4.2 OPIION NO. 2

This option consists of creating a ridge in the center of the landfill so that the runoff will flow away from the centers of the landfill and towards the sides of the cap. Engineered trenches will be provided at the sides of the cap to collect the runoff and channel it towards the northeast pond.

The creation of a ridge together with the fill required to bring the collection pond and other low areas up to the designed elevation will require an estimated 220,592 cubic yards of fill. The ridge that divides the landfill and the northeast pond will have to be removed in this option. This ridge will amount to about 8120 cubic yards of cut material. If this material proves suitable, it can be used in the fill operation.

Approximately 2,000 linear feet of engineered trenching will be required for this option. In addition to the expense of providing trenches, another disadvantage to this option is that a large amount of fill is required. An advantage to this option is the fact that the runoff will be directed away from the center of the cap which will minimize the amount of time runoff will be on the cap. This reduction of time that the runoff will be on the cap will result in less possibility for runoff to seep through the cap into the landfill below.

4.3 OPIION NO. 3

In this option limited changes will be made to the existing contour layout. A north-south ridge will be graded to direct runoff toward either Todd Lake or to the northeast pond. The flow that will be directed towards the northeast pond will be chamneled into engineered ditches that will be lined with rip rap and tied into the landfill cap by an impermeable liner. The ditches will discharge the runoff to the northeast pond.

The approximate fill quantity for this option is estimated at 25,000 cubic yards. This fill is required to form the ridge and for filling the collection pond and general low spots. The existing ridge that divides the landfill and the northeast pond will have to be removed. It is assumed that some high spots can be lowered and that same cutting into the existing landfill material can occur. This cut amounts to 8037 cubic yards and can be used as fill if it proves suitable.

The primary advantage to this option is that less change is required in the existing topography resulting in a smaller amount of fill required than the other three options. Also, runoff will exit fram the cap quickly and enter the ditches which will minimize the chance of runoff getting through the cap and into the landfill below.

This option has the disadvantage that runoff is directed towards the center of the cap instead of away from the center. Engineered ditches will also have to be designed and constructed which add same cost but should control any infiltration associated with the center ditch.

4.4 OPIION NO. 4

In this option, a large amount of fill will need to be placed so that a dame will be created to shed runoff to the nearest cap edge. Any runoff will flow off the cap relatively rapidly. The area of the landfill near Todd Lake will be sloped so that runoff will flow towards Todd Lake in that area. The runoff near the northeast pond will flow towards the northeast pond. Therefore, the ridge between the northeast pond and the landfill will have to be removed. Rumoff near the center of the landfill will flow north towards Hill Street or south to the opposite side of the landfill. This option will require 505,555 cubic yards of fill to create the dome. The cut is very minimal. No engineered ditches should be required for this option on the cap.

Runoff will flow off the landfill rapidly and have less of a chance to percolate through the landfill cap. The primary disadvantage to this option is the fact that the large amount of fill will require a great deal of time and money to place and increase the anticipated settlement.

Although the dame construction of option No. 4 meets all the requirements for a RCRA landfill closure, the expense involved with providing such a large quantity of fill is prohibitive. For this reason Option No. 4 is not included in the conceptual drawing package and is removed from further consideration.

4.5

COHCIUSION

All four of the options described above provide a technically acceptable landfill closure and capping system. The severe relief on the Heleva site makes the more normal dome closures prohibitively expensive and difficult to canstruct. Large quantities of fill would be required for this type of closure and this fill material is does not appear to be available either on-site or nearby the site. The two major cost itens that differ in the options are the fill and the engineered ditches on the cap. These are summarized in Table 2. A comparison of the alternative options shows that option No. 3 involves the least amount of fill and should be the easiest to construct and least expensive. It also will limit the additional loading on the base.

This option does have the negative aspect that storm runoff is directed toward the center of the cap instead of shedding the runoff to the sides. This negative aspect can be overcome by constructing a high quality cap along with well planned and designed ditches to carry the flow on the cap interior. For these reasons option No. 3 is reconmended for selection as the subgrade grading option.

TABLE 2
HETEVA IANDFIIL SUPERFUND SITE

OPIION NO. FIIU CUI FIIL COST ENGINEERED DITCH
(CY) (CY)
(\$)
(\$)

1	128,700	5,200	$1,512,225$	0
2	220,592	8,120	$2,600,749$	20,000
3	25,000	8,037	302,590	20,000
4	505,555	Minimal	$5,940,271$	0

HELEVA LANDFILL SUPERFUND SITE - Cut $\&$ Fill

\qquad

$$
\begin{aligned}
& 101=.1 \\
& 105=.1
\end{aligned}
$$

$$
\begin{aligned}
& 101=1: 31205: 103+10 n \\
& 05=1: \text { apo puoz!ay }
\end{aligned}
$$

T\# 谓TJ्S

$$
F_{i l}=3290 \mathrm{ft}^{2} \quad 1 \quad 430
$$

\qquad

CALCULATION SHEET
zLent Helen Landfill Superl \qquad LOCATION LehignCunt. ${ }^{\text {O }}$ \qquad JOB NO. F. 1536 subject $D_{1}+\pi \# 1$ sizing ir \qquad Jon Caine date \qquad $12 / 7 / 87$ CHECKED BY \qquad DATE $3 / 1 / 88$

From Desire p. 18.01 fig C. :
Ruiriall expected once in 50 years a 2.90 inches
Height of, most remote point above outlet: 48 ft.
Maximum Length it travel: 560 ft .
From figure t attached $T_{c}=2.6 \mathrm{~min}$.
C
So use as minimum: 10 min
From Airfield Drainage Figure attached: $i=6.85$
From Design pi ols-02 Table B:
Earth Surface - loam-1ightvegation $c=0.10-0.45$ use $C=0.35$

$$
\begin{aligned}
Q= & A c i \\
A & =11.0 \mathrm{Ac} \\
& =0.35 \\
& i=6.85 \\
Q & =(11.6)(0.3-9(6 \times)=26.4 \mathrm{cts}
\end{aligned}
$$

CALCULATION SHEET
client \qquad LOCATION \qquad Chian Covet, Pa лов No. F-15:96 subject Ditch Sizing $3 Y$ \qquad IC DATE \qquad $12 / 8 / 87$ CHECKED BY \qquad DATE $3 / 1 / \mathrm{BE}$

With a computer program developed by SEC that utilizes manning equation:

$$
Q=\frac{1.49}{n} A R^{2 / 3} S^{1 / 2}
$$

the above value for Q (flow), n (0.035 for $R_{i p} R a p$), S (Slope of varying degrees as shown below) A (Are a-by using various sizings below), R (hydraulic radius determined by using the various sizings below were analyzed to determine the up timum ditch characteristics. VARIABLES

Side slope in all triads: 3:1
Number of iterations of eachtrial 820
\qquad
trial \#1 trial \#2 trial \#3

Bottomwidth: $\frac{5 f t}{8 g}$
Bottom slope: 8\%
$\frac{s f t}{5 \%} \quad \frac{5 \mathrm{ft}}{49}$

Results:

$$
A R 301535
$$

velocity: $\quad 6.96{ }^{\text {rt } / \mathrm{sec}}$
6 phot flow: 0.64 ft

$$
\frac{6 \mathrm{ft} / \mathrm{sec}}{0.6 \mathrm{ft}} \mathrm{AR} 3015.5 \mathrm{ft} / \mathrm{sec}
$$

CALCULATION SHEET
cLIENT \qquad LOCATION \qquad JOB No. \qquad 1536

SUBJECT Di, A sizing
\qquad DATE $12 / 8 / 87$ CHECKED BY \qquad DATE $3 / 1$ $3 Y$ C DATE
\qquad .
 DAT \square

\qquad
(Trial $\neq 7$ was selected for large ditch.
This ditch will have a 4 ft wide bottom and the bottom slope will vary due to design constraints. \qquad

CALCULATION SHEET
\qquad Helena lade fils wivite.e location \qquad Lehigh Ce Da. JOB No \qquad $=-156$ \qquad sUbJect Ditch 2 sizing $3 Y$ \qquad J. Caine date \qquad $12 / 7 / 87$ CHECKED BY \qquad EAtaluis DATE $3 / 1 / 88$

From Design p.18.01 Fig.C. 8
Rainfall expected once in 50 year ${ }^{\circ}$ a. 90 incher
Height of most remote point above outlet: 26 ft .
Maximum length of travel: 360 Ft
From fig. 1 attached: $T_{c}=20 \mathrm{~mm}$
so use ar minimum : 10 min
From Airfield Drainage figure attached: $=6.85$
From Design p. 1802 Table 18 :

$$
\begin{aligned}
& \text { Earth surface - loam-light vegetation } Q=0.10-0.45 \\
& \text { use } c=0.35 \\
& Q=C A i \\
& A=2.11 A C \\
& C=0.35 \\
& c=6.85 \\
& Q=(2.11)(0.35)(6.85)=5.1 \mathrm{c} . f 5
\end{aligned}
$$

CALCULATION SHEET

CLIENT \qquad Ho os location \qquad Job No. $15 ? \%$
subject jiff. sizing
${ }^{3}$ \qquad SC dATE \qquad $12 / 8 / 87$ CHECKED BY \qquad E. Hans DATE $3 / 1 / 88$

Again by using the computer program developed oxSEC that utilizes mannings equation:

$$
Q=\frac{1.49}{n} A R^{2 / 3} S^{1 / 2}
$$

with $Q=5.1 \mathrm{cfs}$
$n=0.035$ for Rip Rap
$A=$ Area by trial sizing
$R=$ hydraulic radius by trial sizing
$s=$ slope by trial sizing
we determined the optimum ditch characteristics.

$$
\text { Trial }=1
$$

1)V-bottom ditch with sides sloped at $3: 1$
2) 20 iterations
\Rightarrow bottom slope of 490
Results:
velocity: $3.4 \mathrm{ft} / \mathrm{sec}$
lepth of flow: 0.66 ft

$$
\text { Trial \# } 1 \text { ir sufficient thy adequate. }
$$

\qquad

DRAINAGE-RUNOFF-I

FIG. A. - ONE-HOUR RAINFALL, IN INCHES, TO $\overline{B E}$ EXPECTED ONCE IN 2 YEARS.
 IG. D. ONE-HOUR RAINFALL, IN INCMES,
$\because O$ EE EXPECTED ONCE IN 5 YEARS.

FIG. B. - ONE-HOUR RAINFALL, IN INCHES. TO BE EXPECTED ONCE IN 10 YEARS.

FIG. E. - ONE-HOUR RAINFALL, IN INCHES, TO BE EXPECTEO ONCE IN 25 YEARS.

FIG. C. - ONE-HOUR RAINFALL, IN INCHES,

FIG. F. - ONE-HOUR RAINFALL, IN INCHES, TO EE EXPECTED ONCE IN 100 YEARS.

COMPUTATION OF i IN RATIONAL FORMULA.
\angle AMMPLE: Assume expectancy period $=5$ years, see fig. D. ossume locality. find I hour intensity=t75 in. per hour.
FIG.G-INTENSITY EXPECTATION FOR ONE-HOUR RAINFALL:

4R3प1539

1. U.S. Dept. of A griculture, by David 6. Yarnell.
t, topred from Engineering manwal of the war Deportment Part MII. Chop.1, Dec. 45 .

DRAINAGE - KUNUIF
$\mathrm{Q}=\mathrm{Aci}$ RATIONAL FORMULA (Logical approach).
$\widehat{Q}=$ RUNOFF m peak discharge of watershed in cubic feet per second (c.fis.) due to: maximum storm assumed. See Figs. Ato F, Pg. 18-ol (Usually 10-25 years).
A =Area of watershed in acres.
$C=$ coefficient of runoff, Table B betow(Meusure or losses due to infiltration, etc.).
$i=$ Intensity of rainfall in'inches per hour based on concentration time. See Pg. 18-01 Concentration time $=$ time required for rain falling of most remote point to reach discharge:. point. Concentration time may include overland flow time, fig. H, Pg. 18.01, and Channel flow time, Pg. 18-05, 18-06, 18-69 and 18-71.
TABLE A-COMPUTATION FORM FOR RATIONAL FORMULA.

* Note that the sequence of design as in example, fig. J, Pg.l8-Olimvalves trial ossurpptions in determining i. t Foll ir manhole.

NoTE: Values of "c "for earth surfaces are further varied by degree of saturation, compaction, surface irregularity and slope, by character of subsoil, and by presence of frost or glazed snow on ice.
(1) Bryant \& kuichling, Report, Bock Bay Sewerage District, Boston, 1909.
(2) Metcolf and Eddy, American Sewerage practice, 1928. MG Graw-Hill.
(3) Used by City of Boston. reported by Metcalf Eddy.
(4) Used by City of Detroit, reported by Metcolf \& Eddy.
(5) L. C. Urquhart, Civil Engineering Handbook, 1940. Me Graw-Hill. AnSol540

U.S. ARMY

USS. ARMY | | | A | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | $230 \quad 240$ $\square-\quad . \quad$ 最 $100^{130} 100^{100^{100}} 10$ c ices

tc

$$
\begin{aligned}
& \text { AIRFIELD DRAINAGE } \\
& \text { STANDARD RAINFALL INTENSITY- } \\
& \text { DURATION CURVES } \\
& \text { OR: } \\
& \text { STANDARD SUPPLY CURVES }
\end{aligned}
$$

APPRNDIX A

PERMIITITNG BACKUP

AR301543

North Whitehall Township
 Zoning Office

R.R. \#1, Coplay, PA 18037

January 25, 1988

; RECESYID

JAN 291988

William Cannon
Sirrine Environmental Consultants
P.O. Box 5229

Greenville, S.C. 29606
Dear Mr. Cannon:
In response to your telephone inquiry regarding the proposed construction at the Heleva Landfill, please be advised of the following:

1. Permit is required.
2. The permit fee will be 50 cents per thousand, or part thereof, cost of construction.
3. The permit will be valid for one year.
4. Application should be made at least two weeks prior to the construction starting date.
Enclosed you will find an application for the permit; please note that Sections E \& F do not need to be filled out.

Should you have any questions feel free to call at 799-3411.

Marie Dean Zoning officer

MD: jw
Enclosure

APPLICATION FOR A ZONING AND BUILDING OR ALTERATION PERMIT

Note: If no setbacks are affected answer only questions in Red.

 Township.

CERTIFICATE OF OCCUPANCY

When Construction is Complete Notify Zoning Officer and Request Certificate of Occupancy This is to certify that the building or structure has been inspected and found to be in compliance with The North Whitehall Zoning Ordinance of 1969" as amended and the above stated occupancy is hereby authorized.

Name Ms. Marie Dean	Project No. F-1536
Company North White Hall Township	Date $1 / 19 / 88$ Time
Address	[X] Telephone Conversation
	[] Office Conversation
Telephone No. 215-799-3411	Re: Heleva Landfill
Recorded BY Bill Cannon	Permits

Ms. Dean, Zoning Officer, stated that North White Hall Township requires anly a zaning permit. Processing time is two days. If a goverrment agency is requesting the permit, the fee is waived.

Ms. Dean will send us a letter confinming this information.
SIRRINE ENVIIRCNMENIAL CONSUITIANIS

Name Doug Lester
Company Pennsylvania - Dept of Hic Quality
Address \qquad
Telephone No. 717-787-9702
Recorded By Bill Cannon

Project No. F- 1536
Date $2 / 2 / 88$ Time
© Telephone Conversation

- Office Conversation

Re: Helena landfill. Permits

Data:
Mr. lester is sending a form which will allow the Separtmact of Air Quality to determine whathon a permit is needed. Af a permit is required, 90 dry should be allowed Peccessañg. There is no the of this time for air permits.
\qquad
\qquad
\qquad
\qquad
ci fill Mauser
Gordon peterson Tiff timpeas File

PERMIT APPLICATIONS SHOULD BE SUBMITTED DIRECTLY TO THE APPROPRIATE REGIONAL OR LOCAL AGENCY OFFICE AS INDICATED BELOW:

REGION I
Mr. Thonas McGinley
Enqinetring Services Chief
1875 Hew Hope Street
Morristom, PA 19401
Telephone: (215) 270-1920
Counties: Berks, Bucks, Chester, Dolawars, Lehigh, Montgonery, Northanpton

REGIOM II
If. Babu Pate!
Engineering Seryices Chisf
90 East Union Streat
Wilkes-Barre, PA 18703
Telephones (717) 826-2551
Counties: Carbon, Lackamanna, Luzerne, Monroe, Pike, Schuyikill, susquehanna, Mayne, Hyouing

REGIOM Y

Hr. Charles McCann
Engineering Servicas Chisf
121 S. Highland Avenue
Pittsourgh, PA 15206
Telephone: (412) 645-7100
Counties: Arnstrong, Beaver, Cambria, Fayette, Greme, Indiana, Somerset, Mashington, Mestmoreland Sullivan, Tioga, Union

ALLESHENY COUNTY
(Obtain local agency's forns)
Mr. J. D. Grahan, Engineer
Plan Review Section
Allegheny County Heal th Departeent
Bursau of Air Pollution Control
301 39th Street
Pittsburgh, PA 15201
Telephone: (412) 681-6900
philladelphia county
(Ohtain local agency's forss)
Mr. Thosas Elliat
Departaent of Public Health
Air Managenent Services
500 5. Broad Street
Philadelpria, Pa 19146
Telephone: (215) 875-5624

FOR IWPDRYATION DM AIR OUALITY HODELS
Mr. Robert Siansson
Chief Meteorologist
Buratu of Air Ruality Control
P.O. Box 2063

Harrisburg, PA 17120

Telephone: (717) 787-4310

REGIOM III
Mr. Hartwin Weiss
Engineering Services Chief
3555 N. Proqress Ave: (I Ararat Blvd.)
Harrisburg, PA 17110
Telephone: (717) 657-4587
Counties: Adans, Bedford, Blair, Cunberland, Dauphin, Franklin, Fulton, Huntingdon, Junista, Lancaster,

REGIOM UI
h. Nillian Charlton

Engineering Services Chiaf
1012 Hater Streat
Meadville, PA 16335
Telephone: (814) 724-8530
Counties: Butler, Clarion, Crauford, Elk, Erie, Forest, Jefferson, Lawence, Mekean, Hercer, Venango, Marren
for general perhit imformation
Mr. Douglas L. Lesher
Chisf, Enqineering Services Section
Bureau of Air Cuality Control
P.O. Box 2063

Harrisburq, PA 17120
Telephone: (717) 787-4324
for imporhation ow angient honitoring
Mr. Frederick P. Oskan
Chisf, Air Ruality Section
Bureau of Air Puality Control
P.O. Box 2063

Harrisburg, Pa 17120
Telephone: (717) 787-6548

COMMONWEALTH OF PENNSYLVANIA
DEPARTMENT OF ENVIRONMENTAL RESOURCES
BUREAU OF AIR QUALITY CONTROL

Request for Determination of Requirement

 for Plan Approval/Operating Permit Application (Submit In Triplicate)- ype of Source: \qquad
\qquad
Mailing Address:
;intact Person: \qquad
'.cation of Sources):
Street Address: \qquad
istimated Emissions:

| Pollutant |
| :---: | :--- | :--- | :--- | :--- |\quad| Quantity
 Ibs/hr | | | |
| :--- | :--- | :--- | :--- |
| Quantity
 Ibs/yr | | | |

Date of Installation:
Employer I.D. No.: \qquad

Telephone: \qquad

Municipality: \qquad
County:

Signature

Title

Date

OFFICIAL USE ONLY

Sate Received: \qquad
ursuant to the authority contained in 25 PA Code $5127.14(8)$ the sourca(s) is exempted from the plan approval and permitting requirements. This determination does not exempt the sources) from ompliance with all other applicable air quality regulations.

The sources) does not qualify for exemption from plan approvai/perminting requirements under PA Code $5127.14(8)$ and plan approval applications) must be submitted. The Department is prohibited from acting on an application until 30 days after the municipality and county have received notification by the company. Pertinerit forms are attached.

COMmONWEALTH Of Pennsylvania Department Of environmental Resources

Post Office Box 2357

Harrisburg, Pennsyivania 17120

Mr. William Cannon
Sirrine Environmental Consultants
P.O. Box 5229

Greenville, SC 29606

Dear Mr. Cannon:

This letter is in response to your request for written verification on water well drilling and well permitting under the Pennsylvania Water Well Drillers Licensing Act 610 of 1956.

Under Act 610 a water well is defined as "any excavation that is drilled, bored, cored, washed, driven, dug, jetted or otherwise constructed, when the intended use of such excavation is for the location, diversion or acquisition of groundwater..." "...No person shall drill a water well within the Commonwealth unless he has first secured from the department a license..." There are no well permitting or abandonment requirements under this Act. Public supply vater wells are permitted and regulated under the Safe Drinking Water Act under the jurisdiction of the Bureau of Commaity Environmental Control of this Department. Monitoring wells constructed under superfund or RCRA would come under standards set by those programs.

I hope this letter has answered your questions concerning water well drilling, construction, well permitting, and abandonment in Pennsylvania.

If you have any questions, please do not hesitate to contact me:

Program Coordinator
Water Well Drillers Licensing Program

DMS: 1r
RECETVED

JAN 251988

Name Ms. Donna Snyder	Project No. F-1536
Company Pemnsylvania Dept. of	Date $1 / 19 / 88$ Time
Address Envirormental Resources	[X] Teleqhone Conversation
	[] Office Conversation
Telephone No. 717-787-2169	Re: Heleva Iandfill
Recorded By Bill Camon	Permits

Ms. Doma Snyder, Coordinator, Water Well Drillers Licensing, stated that there are no permits, regulations, or procedures required for abandoning a water well in the State of Pennsylvania, that are issued by her department. Since this is a superfund site, RCRA and other regulations will apply.

Ms. Snyder will send us a letter confirming this information.
SIRRINE ENVIRONMENIAL CONSULTANIS
Brel GumonBill cannon
bf
CC: Mr. Bill Hauser
Mr. Gordon Peterson Project File
\qquad

Name Mike Sherman
Company Bureau of Sal i Whiter Consorvection. Address Harrisburg, PA

Telephone No. 717-783-7578
Recorded By Bill Cannon

Project No. F-1536
Date $1 / 25 / 88$ Time
T- Telephone Conversation
\square Office Conversation
Re: Heteva landfill
Permits

Data:

- berth disturbance permits are applied for, through the count. Conservation
- District. The procedure calls for a letter to be sent to both the Townships Supervisor, and tho Cont ry Commisioners, stating "... in accordance - with Act '14, we are mating an application to tho Department of
- Emirenmental Resources for au earth disturbance permit." The letter is also supposed to describe the project. This letter is to he sent
- In certified mail-

The package submittal to tho County Conservecteon District is to include - three notarized application forms; three copies is of the erosion plan, proof that copies of letters to the Townships Supervisor and County

- wumisnoners were sent nub received; a check for $1200^{\circ \circ}$; and a Tocation (topographical) map showing boundaries -of the site.
- The package is then turned over to a Regional reviewing engineer, who is racpohis.ble for notifiging other bureaus, arch as Bineau of - Waste Mamazemant, Bureau of Water Quality Mamapement, Bureau of - Dams and Ohterway Management, and possibly others. These trareaus mill seed the in conumbects hack to reviewing engineer, who will - en inform the party mating the application of the modifications required This process normal takes, 60-90 days.
is Cehigh County, the reviewing engined is Mr. Toe Blyer. He will be the contact person once the apistication has been sent, and is boated Patsville, tee phone 717-621-3118.
Permit application forms can be obtained from
lehigh County Consorvection District
5100 Tilghman st.
Commerce Plaza, Rm 10
AR301552
Allentown, PA 18104
Cc. sherman also suggested. I contact the Bureau of ubste management, to see if then have special reguiemants or permits for a landefill assure. Time could he sued lo addressing those requirements now, rather than after the permit application has hon made.
: C the earth-mouring activity disturbs loss than 25 acres, a permit is not rquisel.
$-$
-

—
$-$
ce: Bill Abuser
Gordon Peterson.
Project file
\qquad
\qquad
\qquad
\qquad
\qquad

- \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Earth disturbance permits are required under the authority of the Erosion Conirol Regulations, 25 Ps. Code Chapter 102 of the Department of Environmental Reiourcoi' AdminIstratlve Code. These permits are roquired for all earth-moving acilvitlos within the boundarlez of Pennsyivanda where over 29 acres of land are disturbed in a coniguous project. Agrlcultural actlvities for plowing and tlling and projects requiring certaln other DER permits are exempt.

The following steps are to be taken to process an Earth Dlaturbance Permit.

1. The Bureau of Soll and Water Conservation (BSWC), DER prepares and provides approved permit applleation forms (ERSWC-20). Conservation districts are expected to maintain a supply of forms for applicants. Conservation districts will provide four (4) copies of the application forms to each applicant, who is required to secure an Earth Disturbance Permit.
2. The appllcant secures four (4) coples of the forms ER-SWC-20 and pfeparas an applleation conslating of three (3) coples of the appllcatlon form, all properly notarlzed, and three (3) coples of an erosion and sedimentation control plan consisting of a mep, a narrative and a check for iwo hundred dollars (\$200).
3. The applicant must notify the munlcipallty wherein the proposed permitted project In loceted. Such notitlcailon may be by return recelpt (certilled mell) as prool of notlce. The Earth Disturbance Permit may not be lssued without the 30 -day notice to the municipality. (According to Legislative Act 14 of 1984). Applicant must provide BSWC a copy of receipt of notification.
4. The epplication is then submitted to the conservation district.
5. The conservation district checks the application for completeness... (three forms, three plans, and one \$200 check).
6. The conservation district assigns a number to the appllcatlon. The first two digits are the county number, the next two are the current year, the next is "g" Identifying an Earth Disturbance Permit, and the lest two are the number of appllcations for the current year (example: 01-83-8-01). The district then notilles the appllcant that his applleation has been received and is complete. The use of Form ER-SWC-22 revised 2/85 is recommended.
7. When the appllcation is accepted as complete, the conservation distrlet completes one tracking form no. DER-SWC-990, with appropriate actions to date, and forwards one copy of the tracking form, and one notarlzed appllcation, and the $\$ 200$ check tor the application tee to the State Otilice of the Bureau of Soll and Water Conservation within five (3) days of receipt.
8. The conservation district retains one tracking form to be kept on file and up-to-dete, one notarized application and pertinent information from she check (copy of the check, If possible).
9. Within the five (5) acceptance review days, the conservation distrlct sends one up-to-date copy of the tracking form, one notarized appllcation, and one eroslon and sedimentation control plan (one map and one narrative) to the reglonal solls

10. The conservation district submits one erosion and sedimentation control plan to Its technical stalf or the Soll Conservetion Service for review and comment. The conservation district notilies the Peinaylvania. Fish Commisalon that an applleation has been recelved and sollcits their review and comments. This
11. The Bureau of Soll and Water Conservation's State Ollice forwards the $\$ 200$ check to the Comptroller's Ofilco within one busineas day.
12. The Bureau of Soll and Water Conservation's State Ofilice supplies the appllcation informetion to the Pennsylvania Bulleifn within one business dey.
13. The Bureau of Soll and Water Conservatlon's State Office prepares and forwards the "Form No. 1" notices to the reglonal DER office and the Bureaw of Dams and Waterways Management.
14. The conservetion district comments on the adequacy of the plan end forwerda their comments, and the two plans whlch they revlewed, to the Bureau of Soll and Water Conserviston reglonal solls englneer within 35 days.
15. The BSWC reglonal solls engineer cvalutas the erosion and sedimentation control plan, considers the conservation districts' and other recommendations and determines the adequey of the plas. If the plan is inadequate, the solls engineer prepares and sends a correction letter to the applieant with a copy to the district. The applicant is given 10 days to respord to the letter and/or 30 days to provide a corrected plan.
16. The BSWC regional solls, engineer forwards his final recommendation on permit issuance along with two plans (maps and narratives) stamped with his approval and a copy of the tracking form which he has updated to the BSWC State Office within 10 days of receiving the conservation district comments. Time used by the applleant to correct the plan is not included in the process time and should be shown on the tracking form. Use an X in Column 20 for appllcants time with dates in the "STARTM, "END" and "DUE" Columns.
17. The conservation districts forward their district bospd recommendations and a copy of the updsted tracking form to the BSWC State Offlce within 35 days of scepting complete appllcetion.
18. The BSWC State Otfice compares the solls engineer's recommendation with the conservation district comments.
19. The BSWC State Office checks with the status of "Form in replles to learn if the appropriate DER regional office.
20. If another permit for the project is In process, the BSWC State Office prepares the Permit and forwerds it to the DER regional office for coordination. If no other Permit for the project is in process or if it has been cleared, the BSWC State Oiflice lisues the Permit directly to the appllcant. When the DER regional ofilice coordinates the permit process and all permits are cleared, it will send the Earth Disturbance Permit directly to the appllcant and notliy the State Ofilce of the BSWC.
21. When the Earth Disturbenca Permit is lasued, a notlce la forwarded to the Pennalvanle Bulletin by the BSWC Stats Oifice.
22. The ofiginal Earth Dlaturbance Parmit is sent to the applicant, a copy to the BSWC fleld representatlve, the BSWC solls engineer, the local munlclpallty \backslash wherein the project ls located, the appropriate DER regional ofilce, and the

Name Sines Rajkotia
Company Burem of Solid Waste Manaypment
Address Norristown, PA
\qquad
Telephone No. 215-270-1900
Recorded By Bill Gunon

Project No. F- 1536
Date 1/26/88 Time \qquad
\square Telephone Conversation

- Office Conversation

Re: \qquad
\qquad

Data:
For landfill closures which are less than 25 acres, the bureau of Solid waste Management requires a lefter of apporoval to be issued. This cam bel obtained by sending a proposal to
lawrence $1 t$. Lunsk. I

1875 Now tope St.
morristown, $P A 19401$
The proposal should indene downer, pooceeduren for cooing,

- catcontes specifications, caluifationts, and schedules. Chaption
is of the Rennsylvanin solich nest Regulations arectain the - applicable regulations. These regulations are in the process of seining revised, with the hew issue being in March 1988.
I the land disturbance is greater than 25 acres, tho Sail and Whites louserraction is the is suing authority; less then 25 acres, ' 'o solid white memarpenent is the issuing authority. the area under a caps doses not count as a disturbed area.
14, Rajkatic would not sand a letter confirming this information.
\therefore Pill Hawser
Search. Peterson
Project file
—— An गिण 1556

[^0]: - Provide long-term minimization of migration of liquids through the closed waste site,
 - Function with minimum maintenance,
 - Promote drainage and minimize erosion or abrasion of the cover,
 - Accomnodate settling and subsidence so that the cover's integrity is maintained, and
 - Have a permeability less than or equal to the permeability of any bottom liner system or natural subsoils present.

