,	Versar Somple	4 Pl Sample	4 Sangle heaten 1000	242 Record
Dec 14	TB-17 SP-1 SD-2 SD-4 TC-16 SWD-18 SWD-18 SWD-18 SW-10 SR-10 SR-10 SR-13 SR-14 SB-6 BB-5 B-19 B-20	MA 58-1-1-1 58-3-1-1 58-4-1-1 58-5-1-1 5W-3-0-1 5W-17-0-1 5W-4-0-3 5D-8-0-1 5D-8-0-1 5D-8-0-1 5D-9-0-3 MA MA	Rep Blow C Soil pile No I Soil drowage # 3: 0-6" # 5; 15-18" TRIP Blanc Surface water, locations 1.7 Field blank, Surface water, Sediment, location 8 Daphcate of SR-11 Sedimentation basin Sediment Egup. blank, Sediment Lip blank Lip blank	1111 111111111
Jen: 18	DP-7 DP-8 DP-9 DP-10 DF-11 TB-23 TB-24	BZ-1-0-1 SS-3-1-1 SS-13-1-1 SS-13-1-1 SS-16-2-1 SS-17-2-1 SS-6-1-3 N/A N/A SS-33-2-1 SS-38-1-1 Dup of DP-10 N/A N/A N/A	Sedimentation Busin Mantaning Zone Seill Pathway Spill Pathway 11 Equipment Blank Louis, ERY BIK Spill Pathway 11 TRIP BIK trip BIK trip BIK	

Vers	sar the RP Sample	st location	Received
(WS- WS- WS-	-2 55-T-25-1-1 3 55-T-25-1-1	"	
ws- ws- mar 1 ws-	55-P-14-1-1 -6 55-R-17-1-1 -7 56-W-12-1-		i
Zal TB- CB- CB-	26 N/A 1 5B-3-7-1 2 5B-4-5-1	Catch basin bring	:
(-	DT NIA	ERIP BKNK	Cree L.
Apr 18 \ F-3	(FINES) F-1 (Swink body) (FINES) F-2 (4 whole body) F-3 (5 whole	ind) Down stream "	
			; ;

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION III
CENTRAL REGIONAL LABORATORY
839 BESTGATE ROAD
ANNAPOLIS, MARŸLAND 21401
(301) 256-9180

DATE : May 3, 1990

SUBJECT: Data Review of Case R3-2 for Sample 45808 Re-extract

Site: Standard Chlorine

FROM : Cynthia E. Kennedy, Environmental Scientist

Program Support Section (3ES23)

TO : Robert Guarni, Project Manager

DE/MD Section (3HW25)

THRU : Cindy Metzger, Chief Com

Program Support Section (3ES23)

Overview

Case R3-2 contained seven (7) low concentration water samples and twenty (20) low concentration soil samples for analysis of the following eight extractable compounds:

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,2,3,4-Tetrachlorobenzene

1,2,4,5-Tetrachlorobenzene

Pentachlorobenzene Hexachlorobenzene

1-Chloro-3-nitrobenzene

Ni trobenzene

This data review is for the re-extract of sample 45808 which was not included in the original data review report dated April 2, 1990. Analysis was performed by Versar, Inc. following Contract Laboratory Program (CLP) Statement of Work for the above parameters only.

Summary

All requested parameters were successfully analyzed for sample 45808 RE. Several compounds coeluted and therefore, had to be quantitated together. 1,2,3-Trichlorobenzene coeluted with 1,3,5-trichlorobenzene. Although 1,3,5trichlorobenzene was not in the parameter list, the laboratory calculated 1,2,3-trichlorobenzene based response factor 1,2,4on the for trichlorobenzene. The reported value for 1,2,3-trichlorobenzene is the combined value for both the 1,2,3- and 1,3,5-trichlorobenzene isomers. 1,2,4,5-Tetrachlorobenzene and 1,2,3,5-tetrachlorobenzene reported value for 1,2,4,5-tetrachlorobenzene is the combi isomers.

The initial calibration consisted of only three standard concentrations compared to the five required by the CLP SOW. Tentatively identified compounds were not determined.

Minor Problems

- * Sample 45808 had all surrogate recovery values below 10% as mentioned in the orginal data review report. Re-extraction data was submitted to CRL on April 12, 1990. All surrogate recoveries for 45808RE were within the required recovery limits.
- * Since a re-extraction was required, the analysis exceeded the technical holding time of fourteen (14) days by more than three (3) months. Sample results are qualified as biased low, "L", and detection limits are qualified as unreliable, "R".
- * Two compounds failed precision criteria for the continuing calibration standards, pentachlorobenzene and hexachlorobenzene. Therefore the sample result for pentachlorobenzene was qualified as estimated, "J". The detection limit for hexachlorobenzene was previously qualified as unreliable, "R",

All data were reviewed using the National Functional Guidelines as modified for use by Region III. The text of this report has been formulated to address only those problem areas affecting data usability.

- 1. Appendix A Glossary of data qualifier codes.
- 2. Appendix B Data Summary Forms.
- 3. Appendix C Results as reported by the laboratory.
- 4. Appendix D Support Documentation.

APPENDIX A

Glossary of Data Qualifiers Codes

GLOSSARY OF DATA QUALIFIER CODES (ORGANIC)

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

U -Not detected. The associated number indicates approximate sample concentration necessary to be detected.

(NO CODE) - Confirmed identification.

- Not detected substantially above the level reported in laboratory or field blanks.
- R -Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.
- Tentative identification. Consider present. Special methods may be needed N to confirm its presence or absence in future sampling efforts.

CODES RELATED TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J -Analyte present. Reported value may not be accurate or precise.
- K -Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- Analyte present. Reported value may be biased low. Actual value is L = expected to be higher.
- UJ Not detected, quantitation limit may be inaccurate or imprecise.
- UL Not detected, quantitation limit is probably higher.

OTHER CODES

Q - No analytical result.

Fevised 01/90 AR300579

APPENDIX B

Data Summary Forms

DATA SUMMARY FORM: Semi-volatiles

lorine
Standand Chi
Name:
SHe

Date(s): Case #: R3-2 Sampling

SOIL SAMPLES (ug/Kg)

+ Result from diluted analysis To calculate sample quantitation finit: (CHGL * Diffution Factor) / ((100 - % moisture)/100)

	Sample No.	45808 RE	1														
	Dilution Factor	1/5															
ارست	% Moisture	51. Z															
	Location																
		58-14															
CROL	COMPOUND		:														
330	1,2,3- Trichlordensene **	7 00191					-										L
330	1,2,4- Trichlorchenzene	34000 F L		_					_		_						_
330	1,2,3,4-fletrachlorcherzene	32000t L	·								Ц						
330	1,2,4,5-Tetrachloroberzene**	3500					_										
330	_	2906			-												
330	\vdash								Ц								
8	1-Chlow-3-nitrobenzene	8									_			-			_
န္တ	-	R															
											Ц						
													_				
													-		_		_
									_		4		-		_		_
									4		4		_				4
													_				_
									_				_		_		
A											_		_				4
H							-		-		4		4		1		-
3	-						-		_		_		4		_		4
d	-								_		_		_				4
0	7										Ц						
์ 58	CT CROL = tract Required Quantitation Limit	Auantitation	Limit							SEE	N H	ARRATIV	Æ FC	NARRATIVE FOR CODE DEFINITIONS	E DE	FINITIO	NS
1	1,1	nd 1,3,5- m	richlorden		lute.	coelute. Results presented are for	resente	xdare fo	¥					_	revised	revised 12/88	

for both isomers.

*** 12,3,5- Tetrachlorderges and 1,2,4,5-Tetrachlorderges coelute. Results presented

APPENDIX C

Results as reported by the laboratory for all target analytes

	1 B			
SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

	E7.6-1-3	۵r	43.14.	 . 1913.	
į				 	,
į	45808	5	Œ		
_ j				 	
	him	7	ಶ್ವ		

no Name: VERSAR	Contract:i	
ab Code: VERSAR Case No.: 420.1	SAS No.: SDG No	3.7 3 RE
atrix: (soil/water)SOIL (g/ml)G	Lab Sample ID:	89911RE
ample wt/vol: 30.19	Lab File ID:	Z3995 ⁻
evel:(low/med) LOW	Date Received:	11/30/69
Moisture: not dec dec	Date Extracted:	01/10/90
xtraction: (SepF/Cont/Sonc) SG	C Date Analyzed:	02/20/90
PC Cleanup: (Y/N) Y pH:	Dilution Factor	·= _
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)_ug/Kg	
98-95-3Nitrobenzene 120-82-11,2,4-Trich 87-61-61,2,3-Trich 121-73-31-Chloro-3- 634-66-21,2,3,4-Tetr 95-94-3	lorobenzene lorobenzene litrobenzene rachlorobenzene rachlorobenzene benzene	1400 U E 16700 E 1400 U E 3500 2900
: Tfo-\4-f	# 1	7444 C 1

- 1) 1,2,3-Trichlorobenzene and 1,3,5-Trichlorobenzene coelute and cannot be quantified separately.
- 2) 1,2,3,5-Tetrachlorobenzene and 1,2,4,5-Tetrachlorobenzene coelute and cannot be quantified separately.

SEMIVOLATILE ORGANICS ANALYSIS DATA	4 SHEET
Lab Name: VERSAR Contract:	145808 RE DL 1
Lab Code: VERSAR Case No.: 420.1 SAS No.:	: SDG No.: 3 RE
Matrix: (soil/water)SOIL (g/ml)G	Lab Sample ID:89911REDL
Sample wt/vol: 30.19	Lab File ID:Z4018
Level:(low/med) LOW	Date Received:11/30/89
Moisture: not dec dec	Date Extracted: 01/10/90
Extraction: (SepF/Cont/Sonc) SONC	Date Analyzed: 02/22/90
3PC Cleanup: (Y/N) Y pH:	Dilution Factor: _ 5
· · · · · · · · · · · · · · · ·	TRATION UNITS: or ug/Kg)_ug/Kg
98-95-3Nitrobenzene	ne 54000 D
1 i18-74-iHexachlorobenzene	1 6800 1 U 1

- 1) 1,2,3-Trichlorobenzene and 1,3,5-Trichlorobenzene coelute and cannot be quantified separately.
- 2) 1,2,3,5-Tetrachlorobenzene and 1,2,4,5-Tetrachlorobenzene coelute and cannot be quantified separately.

AR300584

APPENDIX D

Support Documentation

CALIBRATION CHECK - SEMIVOLATILE HSL COMPOUNDS

CONTRACT NO.

CONTRACT LAB: VERSAR

INSTRUMENT IDENTIFIER: Z

CALIBRATION DATE: 12/28/89

STANDARD FILE: Z4017

PATE: 2/22/90 TIME: 18:39 MINIMUM RF FOR SPCC IS .0500 MAXIMUM % D FOR CCC IS 25%

	COMPOUND	MEAN RF(I)	RF(0)	z p
C445 C C C	NITROBENZENE 1, 2, 4-TRICHLOROBENZENE 1-CHLORO-3-NITROBENZENE 1235/1245 TETRACHLOROBE 1234-TETRACHLOROBENZENE PENTACHLOROBENZENE HEXACHLOROBENZENE	0. 430 0. 450 0. 284 0. 738 0. 695 0. 760 0. 315	0. 518 0. 438 0. 273 0. 604 0. 598 0. 529 0. 202	-20, 590 2, 635 3, 831 18, 130 13, 985 30, 374 35, 632

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION III
CENTRAL REGIONAL LABORATORY
839 BESTGATE ROAD
ANNAPOLIS, MARYLAND 21401
(301) 266-9180

DATE : January 4, 1990

SUBJECT: TSS and Alkalinity Report of Standard Chlorine

FROM : Daniel K. Donnelly (3ES21)

Chief, Laboratory Branch

TO :Bob Guarni (3HW25)

Enclosed is a report for TSS and Alkalinity of the Standard Chlorine site. This report includes samples which were received at CRL on November 28 & 30, 1989. If you have any questions regarding this report, you may contact Ron Altman directly.

DKD:jr

Enclosure a/s

cc: Virginia Pohlman Versar

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION III CENTRAL REGIONAL LABORATORY 839 BESTGATE ROAD ANNAPOLIS, MARYLAND 21401 (301) 266-9180

DATE : January 3, 1990

SUBJECT: TSS and Alkalinity Analyses of Standard Chlorine Samples

Superfund-Enforcement TGB03NPH6, (12/1/89 - 12/18/89), 891128-01 - 03,

891130-01

FROM : Ronald H.Altman R C.

Chemist

TO : Daniel K. Donnelly

Chief, Laboratory Branch

THRU: Norman Fritsche ##

Team Leader, Inorganic Analysis Section

The results of the TSS and Alkalinity of the Standard Chlorine samples

are presented below.

Additional quality control results are available upon request.

Sample Description:

<u>Lab</u>	No.		Description

891128-01 Standard Chloride, Surface Water DO MS/MSD, Field Sample No. SWT-9

-02 Standard Chloride, Duplicate of SWT-9, Field Sample No. SWD-18

-03 Standard Chloride, Field Blank, Field Sample Number BB-10

891130-01 Standard Chloride, Surface Water Trib, Field Sample No. SWR-8

Results:

Sample Number	TSS(mg/l)	Alkalinity(mg/l)
891128-01	9 <u>+</u> 1	18
-02	6	22.6 ± 0 (99%)
-03	<4	<2
891130-01	9 ± 1	29.3 ± 0 (99%)

RHA:ad

cc: Peggy Zawodny

\sim
닖
뜻
\mathcal{L}
\mathbf{c}
3
>
ā
4
7
ပ
ഥ
$\bar{\sigma}$
\equiv
≤
₹
7
云

PROJECT	PROFE	PROJECT NAME	<u>_</u>							
5303,8	W	STANDARD	* * * * * * * * * * * * * * * * * * *		CHLORINE	5	PAI	PARAMETERS	INDUSTRIAL HYGIENE SAMPLE	> { 2
SAMPLERS. (Signagura)	2				(Printed))AUID SENCER	MANIVER	1			
FIELD SAMPLE NUMBER	DATE	TIME	COMP.	BARD	STATI	0.00.0W	INSTANCE OF THE PROPERTY OF TH		REMARKS	
SwT-9	W12/1	5051 Hez/		X	Sufface water DO ms/msD	1 2 x 2	89443614			T
Sw D. 18	11/23/19	1505		×		- 2	89 14 traffic			3
6B-10	600 m	1715		×		2 1 1	601122672		195901 5 5575901-	3
										T
, P										
Matinguished by: (Signature)	neture)	1/1	1/2) //99 19:30	Date / Time) (89 19.3		Relinquished by: (Signature)	: (Signatura)	Date / Time	Received by: (Signature)	
Printed Sec.	1	-			(Printed)	(Printed)			(Printed)	
Relinquished by:	'nue)		Date	Date / Time	ime Received for Laboratory by: (Signature)	Date / Time ////28 0909	Remarks		VIA Federal Express NO. 4575149471	T
(Printed)					(Printed)		-1			
		\dashv		1	MORPHAIN / NIJOCITES					

Distribution: Original Plus One Accompanies Shipment (white and yallow); Copy to Coordinator Field Files (pink),

2	ن <u>د</u>
)

CHAIN OF CUSTODY RECORD

	PROJECT NO.	PROJ	PROJECT NAME	IME					1	1		20 40			-	INDUSTRIAL	>
	5303	\v	STAMDARD	OAR		(HLarine	NE		Se	1	-	E	r An Ameleks		_	HYGIENE SAMPLE	Z
	SAMPLERS: (Signatura)	erure)	\			(Printed)	o speniera	*NO.	YENINE !							6 6 4 4 4	
	FIECT D SAMPLE NUMBER	DATE	TIME	COMP.	SARD		STATION LOCATION	20.08 20.08 20.08	ST JUNE STATE	12				1/2	TAL NOS.	LEMANKS	
	SwR-8	1/61/84	Shhi	10	×	SURFACE WINEA	when this	2	=	1	89			3-1	0632E	3-1063215 3-1063216	
											-	<u> </u>				2000	
										-							
										-	-	_					
												-					
AR:	A																
300	R 3	,															
590	Relinglished by: (Signieture)	Sjorieture)		1/21/19 1930	T 2/		Received by: (Signature)	Refinquished by: (Signature)	shed by	r: (Signa	ture)		Date	Date / Time	Received	Received by: (Signature)	
) -	O J					(Printed)	{Pe	(Printed)							(Printed)		
	.	(Signature) †		å	Date / Time		Received for Laboratory by: (Signycure)	Date / Time 11/30/89 0908	Date / Time 0/89 0908	 	Remarks	Stipus Airoil	_ `	No. 4	deal 6	Federal Express	
	(Printed)					(Printed)	(Printed) NORMAIN FRITSCHE										
		0 2.10		10. Ch. 10.	1 :					-							7

Distribution: Grannel Plus One Accompanies Shipment (white and yellow); Copy to Coordinator Field Files (pink).

SENCE COLORED TO THE PROPERTY OF THE PROPERTY

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION III

841 Chestnut Building Philadelphia, Pennsylvania 19107

JUN 0 7 1090

Mr. Robert Touhey Standard Chlorine of Delaware, Inc. Governor Lea Road P.O. Box 319 Delaware City, Delaware 19706

Re: Analytical Results of Split Samples

Dear Mr. Touhey:

Enclosed please find the latest sampling results provided to EPA. Although results are the most recent, they are not complete. I will forward the completed results when they become available to EPA.

Sincerely,

Robert Guarni

Remedial Project Manager

DE/MD Section

cc: Diane Wehner i

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION III CENTRAL REGIONAL LABORATORY 839 BESTGATE ROAD ANNAPOLIS, MARYLAND 21401 (301) 266-9180

DATE

May 24, 1990

SUBJECT:

Organic Data Validation for the Standard Chlorine Site

de la cual de Santonio de la composición dela composición de la co

SAS 5165C Tasks I, II

FROM

Theresa A. Simpson IW

Region III ESAT DPO (3ES23)

TO

Robert Guarni

Regional Project Manager (3HW25)

THRU: Patricia J. Krantz, Chief (MWV)
Quality Assurance Branch (3ES23)

Attached is the organic data review for the Standard Chlorine Site (SAS 5165C Tasks I, II) completed by the Region III Environmental Services Assistance Team (ESAT) contractor under the direction of Region III ESD.

If you have any questions regarding this review, please call

Attachment

Dave Basko, Versar

Elaine Spiewak (3HW14) (w/o attachment)

TID File: 03900413 Task 1309

DAIN SUMMARY FORM: NITRO BENEENES

CHLOKENE Site Name: STH-DARD Case #: 51654-71 Sampling Date: 01/04-01/10/93

SOIL SAMPLES (ug/Kg)

To calculate sample quantil

(CROL * Dilution Factor) /

1 * 4'6 CB-2 6 molsture/100) <3300d 00/1/1/ 37400 0.98 * 011 4-59 0059/> 0.91 # 12-6 <3300 40. 90 416. < 800m 50,4 0110 2.54 Ь 0 0.92 * 200 18,0 (3300) 0,923 29.0 WS-3 0 (30-00) * 00 * 0 2 WS-2 20,6 (DUP OF) A. 6.0 28.9 E 5-1 0 33 CONTENSIONE NITO BENEEDE % Moisture Location Dilution Factor 51656- TASKI - Sample No. COMPOUND AR30 AR 300593

AL = Contract Required Quantitation Limit

EFFECTIVE DILUTTON FACTON * DUE TO HINDUNG OF SAMPLY AMPLYED AND FINAL EXTINAL VOLUME, ITHE

Appendix B

Data Summary Forms

GLOSSARY OF DATA QUALIFIER CODES (ORGANIC)

CODES RELATING TO IDENTIFICATION (confidence concerning presence or absence of compounds):

- U = Not detected. The associated number indicates
 approximate sample concentration necessary to be __
 detected.
- (NO CODE) = Confirmed identification.:
- B = Not detected substantially above the level reported in laboratory or field blanks.
- R = Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.
- N = Tentative identification. Consider present. Special methods may be needed to confirm its presence or absence in future sampling efforts.

CODES RELATED TO OUANTITATION (can be used for both positive results and sample quantitation limits):

- J = Analyte present. Reported value may not be accurate
 or precise.
- K = Analyte present. Reported value may be biased high.
 Actual value is expected to be lower.
- L = Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- ___UJ = Not detected, quantitation limit may be inaccurate or imprecise.
 - UL = Not detected, quantitation limit is probably higher.

- OTHER CODES

Q = No analytical result.

Appendix A
Glossary of Data Qualifiers

WEJEN.

Page 6 of 6

All data for SAS 5165C-Task I and II were reviewed in accordance with the Functional Guidelines for Evaluating Organic Analyses with Modifications for use within Region III, and criteria set by the SAS contract. The text of this report addresses only those problems affecting usability.

ATTACHMENTS

- 1) Appendix A Glossary of Data Qualifiers
- 2) Appendix B Data Summary. These include:
 - (a) All positive results for target compounds with qualifier codes where applicable.
 - (b) All unusable detection limits (qualified "R").
- 3) Appendix C Results as Reported by the Laboratory for All Target Compounds - Task I
- 4) Appendix D Results as Reported by the Laboratory for All Target Compounds - Task II
- 5) Appendix E Organic Regional Data Assessment Summary Task I
- 6) Appendix F Organic Regional Data Assessment Summary Task II
- 7) Appendix G Support Documentation Task I
- 8) Appendix H Support Documentation Task II

DCN - DM005A12

- o One pair of field duplicate samples were analyzed, but had no reported results for any of the multi-chlorinated-benzene target compounds. No useful comparison of the data can be made. One pair of analytical duplicate analyses were also performed on sample 5165C-Task II-09. The results of these analyses have been summarized in a form included in the Task II support documentation (Appendix H). All relative percent difference (RPD) values were within the QC limits set by the SAS contract. (See Appendix H).
- o Due to the surrogate problem noted above, a matrix spike and matrix spike duplicate (MS/MSD) re-extraction was required. Since insufficient sample remained of the original sample chosen for the MS/MSD analyses, a different sample was chosen, without first being screened. Due to the high concentrations of the target analytes in the re-extracted MS and MSD samples, the MS and MSD spiking concentrations were insignificant. No spike recoveries (% R) or relative percent differences (%RPD's) have been reported for these analyses. No reported results were qualified based on this problem. (See Appendix H).
- o The quantitation column external calibration check standard (the QC check standard) run for samples analyzed between 01/23 and 01/24/90 exceeded the QC limits set by the SAS contract for the compounds 1,2,3,5-tetrachlorobenzene and 1,2,3,4-tetrachlorobenzene. Since the QC limits are advisory, no results were qualified. (See Appendix H).
- o The confirmation column external calibration check standard (the QC check standard) run for samples analyzed between 02/06 and 02/08/90 exceeded the QC limits set by the SAS contract for the compounds 1,2,4-trichlorobenzene, 1,2,3,5-tetrachlorobenzene, pentachlorobenzene and hexachlorobenzene. Since the QC limits are advisory, no results were qualified. (See Appendix H).
- o The confirmation column continuing calibration run 02/08/90 at 04:36 had percent difference (%D) values for 1,2,3,4-tetra-chlorobenzene and hexachlorobenzene greater than twenty percent (>20%), exceeding the QC limit set by the SAS contract. Since this column was used only for confirmation no reported results have been qualified. (See Appendix H).

Page 4 of 6

Due to the number of different dilution factors required to determine the various multi-chlorinated-benzene target compounds in some of the soil samples, the space set aside for the dilution factor(s) for each sample on the data summary forms was not large enough to include all the dilution factors used. Also, no indication of which dilution was used for which analyte can be made without extensive footnotes. dilution factor(s) noted on the data summary forms represent only the dilutions performed on target compounds for which non-detect results were reported, or the lowest dilution used to determine a target compound if there were no non-detects. (See Appendix H). The analytical laboratory reported only one (1) Form I for each sample, regardless of the number of dilutions performed on that sample. Quantitation sheets for each dilution performed for each sample were included in the raw data for the case. Following is a table summarizing the dilution factor associated with each analyte for each sample:

		MUI	<u> TI-CHLC</u>	RINATED	-BENZENE	ISOMER	
SAMP.	123	124	135	1235	PENTA-	1234	HEXA-
-01	5X	5X	1X	1X	5X	5X	1X
-02	, 1X	1X	1X	1X	1X	1X	1X
-03	5X	100X	100X	5X	100X	100X	5X
-04	5X	100X	100X	5X	100X	100X	5X
-05	100X	4000X	4000X-	100X	1000X	2000X	100X
-06	1X	100X	10X	1X	10X	100X	1X
-07	50X	5000X	250X	50X	250X	250X	50X
-08	1X	1X	1X	1X	1X	1X	1X
-09	1X	30000X	300X	600X	50X	600X	50 <u>X</u>
-10	1X	1X	1X	1X	1X	1X	1X
-11	600X	6000X	1500X	1500X	600X	1500X	600X

WEJTEN.

Page 3 of 6

- o The QC-check sample had no positive result for metachloronitrobenzene. Since the control limits for recovery of this compound in the QC-check sample are advisory no corrective action was required. No reported results were qualified based on this problem. (See Appendix G).
- o One pair of field duplicate samples, and one pair of analytical duplicate samples were analyzed, but had no reported results for nitrobenzene and metachloronitrobenzene. No useful comparison of the data can be made. (See Appendix G).
- o The matrix spike/matrix spike duplicate (MS/MSD) analyses for Task I had all four (4) spike recoveries (%R) within the QC limit set by the SAS contract. Both of the relative percent difference (RPD) values were slightly outside the QC limit. Since the MSD extraction was performed two days after the MS extraction, and the MSD results are lower than the MS results, it is possible that the difference between the MS and MSD results is due to holding time related analyte loss from the sample.

On the MS/MSD QC summary form the outliers are reported as "2 out of 6 outside limits". A more accurate representation of the data would be "zero (0) of four (4) spike recoveries, and two (2) out of two (2) RPD values outside limits". (See Appendix G).

Task II

o Due to low or no recovery of the surrogate compound 2fluorobiphenyl chosen by the SAS contract, the soil samples
were re-extracted. The re-extractions were performed using a
different compound, 2-chloronaphthalene, for the surrogate
spike. "Since there was no sample volume remaining for the
aqueous blanks associated with these samples, the blanks could
not be re-extracted. No surrogate recoveries have been
reported for the blanks. The extraction efficiency for these
samples cannot be evaluated. (See Appendix H).

The surrogate recoveries for the re-extractions of samples 5165C-Task II-09 dup and 5165C-Task II-11MS were below the QC limits set by the SAS contract. No reported result qualified based on this problem. (See Appendix H).

Page 2 of 6

Task II

- o Several of the soil samples were extracted eleven (11) to twelve (12) days from the date of sample collection, exceeding the ten (10) day holding time set by the SAS contract by one (1) to two (2) days. All samples were analyzed within the holding times set by the SAS contract. The reported results and quantitation limits for samples 5165C-Task II-01 through 07 were qualified "J" and "UJ", respectively. (See Appendix H).
- o As noted in the report summary, the quantitation limit set for these samples was greater than the calibration range of the instrument used to analyze the samples. The calibration range of the instrument was 25 to 400 μ g/L or about 8 to 133 μ g/Kg. The CRQL set for the soil samples was 330 μ g/Kg, about three (3) times the upper limit of the calibration range. Because of this, all reported results are less than the adjusted CRQL needed to represent dilutions performed on the sample extracts to meet the linear calibration range of the instrument. (e.g., a soil sample concentration of 1000 μ g/Kg would require an eight fold (8X) dilution to fall within the calibration range of the instrument. The adjusted CRQL for a eight fold (8X) dilution is 330 μ g/Kg X 8 or 2640 μ g/Kg.)

Based on this problem all soil sample reported results have been qualified "J", as an estimated result between the instrument detection limit and the CRQL. Although there may be some bias imposed on the results by the dilutions performed on the extracts (five to five thousand fold (5X - 5000X)), the data is more defensible than the qualification suggests. Most of the dilutions were performed by a serial dilution scheme, which would help to reduce the bias imposed by a large dilution. (See Appendix H).

NOTES

Task I

200

o The surrogate recoveries for sample 5165C-Task I-08 and the QC check sample (aqueous analyses) were slightly higher than the advisory QC limits set by the SAS contract. Also, most of the soil samples surrogate recoveries were affected by matrix interference, and were either not reported or greater than the advisory QC limits set by the SAS contract. Sin limits are advisory, no corrective action was required data has been qualified. (See Appendix G).

And the control of th

2568A RIVA ROAD SUITE 300 ANNAPOLIS, MD 21401 PHONE. 301-266-9887

DATE: 23 MAY 1990

SUBJECT: ORGANIC DATA VALIDATION FOR SAS 5165C-TASK I and II

Site: Standard Chlorine

FROM: DOUG MCINNES DIM DON O'BRIEN DO

ORGANIC DATA REVIEWER ORGANIC DATA REVIEWER

TO: TERRY SIMPSON

ESAT DEPUTY PROJECT OFFICER

RICHARD DRESSER (L

OVERVIEW

THRU:

SAS 5165C-TASK I and II consisted of two (2) water samples and nine (9) soil samples per task, submitted to PACE for nitrobenzene and metachloronitrobenzene (Task I), and selected multi-chlorinated-benzene (Task II) analyses. The water samples included in this case were two (2) equipment blanks for each of the tasks. The samples were analyzed as a Contract Laboratory Program (CLP) Special Analytical Service (SAS).

SUMMARY

All samples were successfully analyzed for all target compounds for all samples. All instrument and method sensitivities for the nitrobenzene task (Task I) were according to the Contract Laboratory Program (CLP) Special Analytical Service (SAS) protocol. The quantitation limits set for the multi-chlorinated-benzene task (Task II) were above the calibration range of the instrument used. The instrument sensitivity was better than the required limits for Task II.

MINOR PROBLEMS

Task I

o Due to matrix interference, the quantitation limits for metachloronitrobenzene for several samples were estimated, based on the apparent concentration of the interference in each sample. Metachloronitrobenzene results for samples 5165C-Task I- 04, 05, 06, 07, and 11 were qualified J, denoting an estimated quantitation limit greater than the contract required detection limit (CRDL). The presence or absence of metachloronitrobenzene cannot be confident these samples. (See the analytical laboratory cannot perform the presence of appendix G).

CROL = Contract R														330 HEXALHLOND BENEFINE	÷	_	330 1235-TETENCHIONOBENSENE	330 13 S.TAICHLOROBENEEINE	530 12.11- TILL CHING 18 115 110 6	330 12,3- TRICHIONO EEVEEVE							. Case #: 5165C-TIL Sampling	Site Name: STA-DAKE	DATA SUMMARY FORM:
Beautred On														()						<u>Lh</u>	(Pur. 01)	Ws-1"	00.0	X 6 11/66'0	10	ļ		CHLORINE	
03													-							<u>UN</u>	(Dup of)	WS-2	28.0	1,00 *	02	1 1	Dale: 0//oʻl - 0/	INE	CHLORO BENZENES
					1									1.17	14000	2300	940	8400	12	r 085 F		W5-3	19.3	# +6.11	03		01/10/90		S 30
								-							13000	3/100	750	<u> </u>	13000			15 M	28,2	<u> </u>	1,0				
_											<u> </u>		78/		320000	3.110000	0059		_	00511 [1]		1N2-5	50.3	499	50		· (ug/Kg)	SOIL SAN	
											i		*	1,2	1600			1100	4400	ن		9-5M	43,0	* 1/	06			SAMPLES	
		<u> </u> 	 		1			<u> </u>		1				1	4	-	1	-	4	- 				¥ 0		(CROL • [To solution		
													X		£2 000	1000	1900	1	1	2700 5				*	40	(CROL • Dilution Factor) / ((1) 		·
		<u> </u>												X	_1_	2000	1 000 T	 -	7 0000	iu z	· · ·	CB-1	7		o l) / ((1	, ,		, •
												-	1900		72.00	6,50	15000	93000	寸	13,00	30	94-27		F9900	=	moisture/100	. <u> </u>		.03

+ DUE TO THE number of DILLUTTONS Per SAMPLE THE DEL * DUE TO ALMOUNT OF SAMILLE MINALYTED AND FINAL EXTRACT VOLUME, THE ESTECTIVE DILUTION FA EWHOT (i.e. 30,003/30,329: 0,789 x The lancate last on The

DATA SUMMARY FORM: NITKO BENEEN! S

Sile Name: STANDAKD CHCORTINE

Case #: 5/654-TI Sampling Date: 01/04-01/10/90

WATER SAMPLES (ug/L)

To e

To calculate sample quantit, limit: (CRQL * Dilution Factor)

			(Cital - Divison Factor)	
51656-THSEI- Sample No.	10			
	1.00	*		
10000	E93-2 E08-3) 4
CROL COMPOUND	(Eu.) (Eu.)		 	,:
20				
20				
			-	
		,		
CHO! -				
CHQL =	Contract Required Quantitation Limit		•	
A JUC TO AMOUNT OF SAME	ロニュランロイン	3 F. G. ((G.)		

TO AMOUNT OR SAMPLE AMALYZED, THE EFFECTIVE DILUTION FACTOR VARYS SLIGHTLY (i.e. - 1000-1/987-11: 1.013)

DATH SUMMARY FORM: CHLORO BENZENES

Sile Name: STANDARD CHLOKINE

Case #: 51656-711 Sampling Date: 0//04- 01/10/90

WATER SAMPLES

To calculate sample quantita (CROL * Dilution Factor)

<u>||</u>

POUND (Eq. 1))_	1	tons lower	1000			
Control Fig. Control Fig. Control	5/656- 7#5k II - Sample No.	0	01				\vdash		\vdash		\vdash]		Γ
CHOI. COMPOUND (FQ1-1) (FQ2-2) CHOI. COMPOUND (FQ1-1) (FQ1-1) CHOI. THE WHAT A FEBRUARE CHOI. STATE CHORAC FEBRUARE CHOI. STATE CHORAC FEBRUARE CHOI. STATE CHORAC FEBRUARE CHOI. STATE CHORAC FEBRUARE CHO. STATE CHORAC F	Dilution Factor	1.04	* 001				 				-			
COMPOUND (Eq. 1) (Eq	Location		E 08-3						<u> </u>		<u> </u>			
COMPOUND (Ed., L.) (E.G., L.) 10. 14.1. Triculate levitare 10. 14.2. Triculate levitare 10. 14.2. Triculate levitare 10. 14.3. Triculate levitare 10. 1				 				٠						
		(Ea.)	(EW.)										· · · · · · · · · · · · · · · · · · ·	
10 124-Tatelleto Bertine 10 124-Tatelleto Bert				_	H		T		+		$\frac{1}{1}$	-		I
10 135 - Interduces general 20 1235 - Interduces general 20 1235 - Interduces general 20 145 35 - Interduces general 20 14	1			<u> </u>		-	†		<u> </u> 		<u> </u> 			
10 12.35-16fraellos stratege 10 12.35-16fraellos stratege 10 15.35-16fraellos stratege 10 15.35-16fraellos stratege 10 16.35-16fraellos stratege					<u> </u>		1	İ	<u> </u> 		<u> </u>		-	1
10. Tentatilato Tenteria 10. 1.3.41 - first gives Barkere 10. Idaacultana karkere 10. Idaa	\neg						$\dot{\parallel}$		<u> </u>		<u> </u>			T
10 1:34-Trisdellione Beree-C	Ī				<u> </u> 		 		<u> </u> 	<u> </u>	<u> </u>	<u> </u> 		1
	\neg			 	<u> </u> 		†		<u> </u>		<u> </u>			
	Ī						†		 			-		
							Ť		+		<u> </u>	1		1
							<u> </u>		<u> </u> 		<u> </u>	-		Ī
				<u> </u>	<u> </u> 		-		<u> </u>		<u> </u>			Ţ
					<u> </u> 	-	<u> </u>		<u> </u> 	Ì	1			Ţ
	P-F				<u> </u>		†		<u> </u> 		<u> </u> 			
					<u> </u> 		İ	1	<u> </u> 		<u> </u> 	1		
	Co		-	1	1		Ť	j	$\frac{1}{1}$		1	_		
				<u> </u>	<u> </u>		$\frac{1}{1}$		 		_			
				1			$\frac{1}{1}$		 		<u> </u>	_		1
	6			<u> </u>			<u> </u>		_		1			
			-	 	1		<u> </u>		_		-			
	b				1									
			<u> </u>				-							
		-			1		<u> </u>				·			
	1,				1									
					_									
											<u> </u>			
									<u> </u> 		<u> </u>			

Chal = Contract Required Quantitation Limit

Doe to amount of SAMILE Hunlyzed THE EFFECTIVE DELUTED FALTON VARYS SLECHTLY

(i.c. 1000 m/ 910 ml = 1.042)

Appendix C

Results as Reported by the Laboratory for all Target Compounds - Task I

Organics Analysis Data Sheet

EPA Sample No. 51650-01-TASKI

Lab Name: PACE Laboratories, Inc.

Lab Code: LANGST

Matrix Soil

Sample Wt./Vol. 31.01 9

Level (Ht./Wat.) Low

% Moisture ____ 28.9 %

Extraction (SepF/Cont/Sonc) Sonc

Cleanup: Type None

Dilution Factor 31.01g / 2 ml Concentration

Contract: 68-W8-0042

SAS No.: 5165 C - Task 1

PACE Sample No. 58192

PACE File No. N/A

Date received _1/8/90

Date Extracted 1/13/90

Date Primary Anal. 1/16/90

Date Confirm. Anal. 1/19/90

CAS No.	Compound	Concentration	Units
	N: tro Benzena	< 330	18/k
	Meta Chlorow. trobeszeve	< 330	hy/ks

Organics Analysis Data Sheet

EPA Sample No. 5/65C-02-TASKI

Lab Name: PACE Laboratories, Inc.

Lab Code: LANGST

Matrix Soil

Sample Wt./Vol. 30.11 5

Level (Wt./Vol.) Low

% Moisture 30.6

Extraction (SepF/Cont/Sonc) Sonc

Cleanup: Type None

Dilution Factor 30.115 / 2 2

المالية المالية

Contract: 68-W8-0042

SAS No.: 5165 C - Task 1

PACE Sample No. 58193

PACE File No. N/A

Date received 1/8/90

Date Extracted 1/3/90

Date Primary Anal. 1/16/90

Date Confirm. Anal. 1/19/90

CAS No.	Compound	Concentration	Units
	N: tro Ben Zone	< 330	My/ks
	Meta Chloro N. tro buzza	< 330	My/K

Surrogate:	2- Fluoro bioles. 1	
Amount Found:	4200 4/2 (in Solution)	

Organics Analysis Data Sheet

EPA Sample No. 51650-03-TASKI

Lab Name: PACE Laboratories, Inc.

Lab Code: LANGST

Matrix Soil

Sample Wt./Vol. 32.77 c

Level (Wt.7Vol.) Low

% Moisture _____29.0 %

Extraction (SepF/Cont/Sonc) Sonc

Cleanup: Type NoNe

Dilution Factor 32.77 / 2ml Concertation

SAS No.: 5165 C - Task 1 PACE Sample No. 58194 PACE File No. N/A

Contract: 68-W8-0042

Date received 1/8/90

Date Extracted 1/13/90

Date Primary Anal. 1/16/90

Date Confirm. Anal. 1/9/90

CAS No.	Compound	Concentration	Units
	N: tro Benzene	< 330	14/k.
	Meta Chlonow. too Besserve	< 330	W/ks

Surrogate: 2- Fluono Biphenyl Amount Found: TNter Perence

EPA Sample No. 5165-04-TASKI

Lab Name: PACE Laboratories, Inc. Contract: 68-W8-0042 Lab Code: LANGST SAS No.: 5165 C - Task 1 Matrix _ Soil PACE Sample No. 58195 Sample Wt./Vol. 32.59 q PACE File No. _ N/A Date received 1/8/90 Level (Wt./Wall) Low Date Extracted 1/13/90 % Moisture ___ 28.0 Date Primary Anal. 1/16/90 Extraction (SepF/Cont/Sonc) 5016 Date Confirm. Anal. 1/25/90 Cleanup: Type None Dilution Factor 32.59 / 2 2

CAS No.	Compound	Concentration	Units
	N: too Benzane	< 330	48/ks
	Meta Chloro N. tro Berzere	< 3300	16/ks

Amount Found: Tater Fenences Present

EPA Sample No. 5/65C-05-TASE

Lab Name: PACE Laboratories, Inc. Lab Code: LANGST

Matrix So:1

Sample Wt./Vol. 30.815

Level (Ht./Vol.) Low

% Moisture 50.4 %

Extraction (SepF/Cont/Sone) Sone

Cleanup: Type None

Dilution Factor 30.81, 20ml

Concentration

SAS No.: 5165 C - Task 1
PACE Sample No. 58/96

PACE File No. N/A

Contract: 68-W8-0042

Date received 1/8/90

Date Extracted 1/13/90

Date Primary Anal. 1/17/90

Date Confirm. Anal. 1/25/90

CAS No.	Compound	Concentration	Units
	Nitro beszeve	6470	lig/k
	Meta Chlono N. tro beverox	< 80000	المرايند

EPA Sample No. SIGSC-OG-TASKI

Lab Name: PACE Laboratories, Inc.

Lab Code: LANGST

Matrix Soil

Sample Wt./Vol. 32.86 c

Level (Wt./Yol.) Low

% Moisture <u>40,1</u>

Extraction (SepF/Cont/Sonc) Sonc

Cleanup: Type None

Dilution Factor 32.86 / 2 ml

Contract: 68-W8-0042

SAS No.: 5165 C - Task 1

PACE Sample No. 58197

PACE File No. N/A

Date Extracted 1/13/90

Date Primary Anal. 17/90

Date Confirm. Anal. 1/35/90

CAS No.	Compound	Concentration	Units
	N: tro Banzone	< 330	suf ks
	Metachlow N. tru Benzeve	< 3300	14/ks

Surrogate: 2- Fluoro B. phenyl

EPA Sample No. | Si65C-07-Taski

Lab Name: PACE Laboratories, Inc.	Contract: 68-W8-0042
Lab Code: LANGST	SAS No.: 5165 C - Task 1
Matrix Soil	PACE Sample No. 58198
Sample Wt./Vol. 30.75 c	PACE File No. N/A
Level (Wt. /Vol.) Low	Date received 1/8/90
% Moisture	Date Extracted 1/13/90
Extraction (SepF/Cont/Sonc) <u>Sonc</u>	Date Primary Anal. 1/19/9
Cleanup: Type <u>None</u>	Date Confirm. Anal. 25/
Dilution Factor 30.75 / 2 ml	

CAS No.	Compound	Concentration	Units
	Nitro Benzone	< 330	1.8/k
	Meta Chloni N. tro Benzana	< 16500	14/4

Surrogate:	2- Fluoro.b:	oheryl
Amount Found:	Interference	

EPA Sample No. | 5/650-08-Taskl

Lab Name: PACE Laboratories, Inc.			
Lab Code: LANGST			
Matrix WATER			
Sample Wt./Vol. 987 ml			
Level (Wt./Voi.) Low			
% Moisture N/A			
Extraction (SepF/Cont/Sonc) Se,F			
Cleanup: Type None			
Dilution Factor 10ml /987 ml			

Cover trating

SAS No.: 5165 C - Task 1

PACE Sample No. 58303

PACE File No. N/A

Date received 1/8/90

Date Extracted 1/12/90

Date Primary Anal. 1/15/90

Date Confirm. Anal. N/A

CAS No.	Compound	Concentration	Units
	Nitro Boszese	< 20	48/2
	Meta Close Notre Boszeva	< 30	18/2

Surrogate:	2-Flue.	rob. pho			_
Amount Found:	. 2382	40/2	J(in	Solution	\sum

EPA Sample No. | SICSC-09-TA; k1

Lab Name: PACE Laboratories, Inc.	
Lab Code: LANGST	SAS No.: 5165 C - Task 1
Matrix Soil	PACE Sample No. 58259
Sample Wt./Vol. 32.76 ;	PACE File No. N/A
Level (\(\frac{1}{100}\) \(\lambda \)	Date received 1/11/90
% Moisture	Date Extracted 1/13/90
Extraction (SepF/Cont/Sonc) Sonc	Date Primary Anal. <u>1/17/</u>
Cleanup: Type None	Date Confirm. Anal. 1/05
Dilution Factor 32.76, 20 ml	

CAS No.	Compound	Concentration	Units
	Nitro Benzana	37400	18/ks
	Meta Chlown: too Berzere	14400	14/k

Surrogate:	2- Fluoro Bi	ohen 1
Amount Found:	Inter Fenera	e ProBlems

EPA Sample No. | 5/65C-10-TASKI

Lab Name: PACE Laboratories, Inc.

Lab Code: LANGST

Matrix Water

Sample Wt./Vol. 1000 ml

Level (Ht./Wall) Low

% Moisture N/A

Extraction (SepF/Cont/Sonc) <u>SepF</u>

Cleanup: Type None

Dilution Factor 10ml /100 ml

Concertantial

Contract: 68-W8-0042

SAS No.: 5165 C - Task 1

PACE Sample No. 58260

PACE File No. N/A

Date received 1/11/90

Date Extracted 1/12/90

Date Primary Anal. 1/15/90

Date Confirm. Anal. N/A

CAS No.	Compound	Concentration	Units
	N: tro benzene	< 20 4/2	4/2
	Metachlonow. taoberzene	T 20	4/2

Surrogate:	2- Fluoro biphonyl	
Amount Found:	1988 m/le	(in Solution)
	0	

EPA Sample No.

Lab Name: PACE Laboratories, Inc.
Lab Code: LANGST
Matrix Soil
Sample Wt./Vol. 31.845
Level (Wt./Vol.) Low
% Moisture 11.4
Extraction (SepF/Cont/Sonc) SonC
Cleanup: Type None
Dilution Factor 31.84, 20 ml
aucestratia

Contract: 68-W8-0042

SAS No.: 5165 C - Task 1

PACE Sample No. 58261

PACE File No. 1/A

Date received 1/11/90

Date Extracted 1/13/90

Date Primary Anal. 1/18/90

Date Confirm. Anal. 1/25/90

CAS No.	Compound	Concentration	Units
	N: trobenzene	< 3300	suf /k
	Meta Chloro N. tro bevzene	< 33000	Light,

Surrogate: 2- Floore Biphayl
Amount Found: Twier Ferrice Problems

EPA Sample No. 51650-11 oup-Taski

Lab Name: PACE Laboratories, Inc.

Lab Code: LANGST

Matrix Soil

Sample Wt./Vol. 30.22

Level (Wt./Woi.) Low

Extraction (SepF/Cont/Sonc) Sonc

Cleanup: Type None

Dilution Factor 30.22, 20 mg

Concertanton

Contract: 68-W8-0042

SAS No.: 5165 C - Task 1

PACE Sample No. 58199

FACE File No. N/A

Date received 1/11/90

Date Extracted 1/13/90

Date Primary Anal. 1/18/9

Date Confirm. Anal. 1/25/

CAS No.	Compound		
		Concentration	Units
	Mitro Buzere	< 3300	w/
	Metachlord N. too Berzen	< 33000	My /

WESTERN.

Appendix D

Results as Reported by the Laboratory for all Target Compounds - Task II

1 - 5135 - 51	٠	
EFA Sample #	;	
<u> </u>		
	٠;	

Pace Laboratories, Inc.	SAS # 5165-C
Matrix:	Lab Sample ID _ ceqss
Sample wilvol: 30.330	Date Received
Level: Taro	Date Extracted 5000090
% Moisture: 133%	Dry Weight
Extraction Type	PH
Instrument ID:	GC Column ID: (3)/42/

compound	Concentratio Units (ug/L or ug/Kg)	Final Extract Volume
123 trichlorobenzene	۲ <i>۹۹</i> ۲ سودون	56.06
124 trichlorobenzene.	5486 egiza	
135 trichlorobenzene	.490 ûci Kr	10m2
1235 tetrachlorobenzene	<u> </u>	/ CAÚ
pentachlorobenzene	4497 be;Ku	50mi
1234 tetrachlorobenzene	Lygrueika	50ns
hexachlorobenzene	1492 baira	10 mg

	51076-52	
		i
1	EPA Sample #	1
1	1 1	•
;		;

Pace Laboratories, Inc.	SAS # 5165-C
Matrix: Sit	Lab Sample ID 10954
Sample wt/vol: 2009a	Date Received
Level: Loca	Date Extracted <u>company</u>
% Moisture: 75%	Dry Weight 16.6a
Extraction Type	PH <u>5.3</u>
Instrument ID: A	GC Column ID: <u>(7817c)</u>

compound	Concentratio Units (ug/L or ug/Kg)	Final Extract Volume
123 trichlorobenzene	KUIFO WALKI	l line
124 trichlorobenzene	5.461 00.54	i inc
135 trichlorobenzene	<u>: 44C vai5e</u>	13.46
1235 tetrachlorobenzene	1460 miles	15w0
pentachlorobenzene	<u> </u>	
1234 tetrachlorobenzene	< 4100 rd/kā	
hexachlorobenzene	√ 41:0 usiKa	/ Oml

AR300621

00002

	5145C-03	
i		í
;	EFA Sample #	•
į		1
i		:

Pace Laboratories, Inc.	SAS # 5165-0
Matrix:l	Lab Sample IID _ 50965
Sample wt/vol: 3:19 a	Date Received
Level: iww	Date Extracted _c:1/6/90
% Moisture: 193%	Dry Weight 103
Extraction Type	PH <u>1.1</u>
Instrument ID:a	GC Column ID: <u>C31701</u>

compound	Concentratio Units (ug/L or ug/Kg) سعرادم	Final Extract Volume
123 trichlorobenzene	530uni <a< td=""><td>5°C mis</td></a<>	5°C mis
124 trichlorobenzene	<u> </u>	1000mg
135 trichlorobenzene	SABOretka	racewi :
1235 tetrachlorobenzene	74 Ougica	<u> 50 me</u>
pentachlorobenzene		/econû
1234 tetrachlorobenzene	14,000 yelka	/icemb
hexachlorobenzene	<400mlkg	50ml

	9:45C-44	_
i		;
;	EFA Sample #	;
;	way u	;
ï		;

Pace Laboratories, Inc.	SAS # 5165-0
Matrix: 501	Lab Sample ID <u>(096)</u>
Sample wt/vol: 30 154	Date Received
Level:	Date Extracted on 11/148
% Moisture: <u>10.3%</u>	Dry Weight
Extraction Type Soc.	PH 3 4
Instrument ID: 1	GC Column ID: <u>CBi∓()</u>

compound	Concentratio Units (ug/L or ug/Kg)	Final Extract Volume
123 trichlorobenzene	خ ۲۰۱۵ ر <u>یما دیر</u>	55 m
124 trichlorobenzene.	اع <u>کری بیم</u> ناحیه	
135 trichlorobenzene	ښکو <i>د سو الا</i> ن	<u>'200mi</u>
1235 tetrachlorobenzene	750 401Kg	sons
pentachlorobenzene	34100 uq1«q	i o comi
1234 tetrachlorobenzene	13000 unjka	100000
hexachlorobenzene	< 465 401Kg	Somb

	51650-05	
i		į
i	EPA Sample #	;
;	1855	ŧ
:		:

Pace Laboratories, Inc.	SAS # 5165-C
Matrix: <u>Sil</u>	Lab Sample ID <u>60962</u>
Sample & Vol: 30 30	Date Received <u>0.104190</u>
Level: !sw	Date Extracted cillules
% Moisture: 50.3%	Dry Weight
Extraction Type _Soc.	FH
Instrument ID: A	GC Column ID: <u>OB/701</u>

compound	Concentratio Units (ug/L or ug/Kg)	Final Extract Volume
	ug1K4	
123 trichlorobenzene .	4500 whee	/000nê
124 trichlorobenzene	1.100,000 ualka	uc.pcomp
135 trichlorobenzene	.37C, coo walka	40,000 ml
1235 tetrachlorobenzene	656Cuglka	/cocmt
pentachlorobenzene	34,660 uelkg	10.000mf
1234 tetrachlorobenzene	336,005,uglkg	20,000ns
hexachlorobenzene;	750ualka	1000 ns

;	<i>5!</i>	<u>646-64</u>		
ł	EFA	Sample	#	
;		3.57.		1
ï				

Pace Laboratories, Inc.	SAS # 5165-C
Matrix: <u>60.1</u>	Lab Sample ID <u>c.0963</u>
Sample wt/vol: 30.04	Date Received
Level:	Date Extracted
% Moisture: <u>13.6°/:</u>	Dry Weight :: 14
Extraction Type	PH
Instrument ID:	GC Column ID: Parter

compound	Concentratio Units (ug/L or ug/Kg) سيرادي	Final Extract Volume
123 trichlorobenzene	< 550 ug 1kg	11 oni
124 trichlorobenzene	civift maki	27.00 gel
135 trichlorobenzene	1/coupika	10 times
1235 tetrachlorobenzene	< 58Gugika	10 mg
pentachlorobenzene	< 580 uaira	10CMG
1234 tetrachlorobenzene	2600 walka	1000 mg
hexachlorobenzene	< 58C uqika	العرن/

11 11 11 11	EPA Sample # 5165c-c7	1 4 5 6 7 7
٠	ws-7	i

Pace Laboratories, Inc.	SAS # 5165-C
Matrix: <u>Sil</u>	Lab Sample ID <u>CC964</u>
Sample wt/vol: 30.04	Date Received <u>r./m.a.</u>
Level: /wi	Date Extracted 2001600
% Moisture: <u>55.5%</u>	Dry Weight : 94
Extraction Type	PH <u>6-24</u>
Instrument ID: A	60 Column ID: <u>//8/7/</u>

compound	Concentratio Units (ug/L or ug/Kg) ug Fg	Final Extract Volume
123 trichlorobenzene .	.٦٢٥ رىيوندى	5COmi
124 trichlorobenzene	/50,000 ua Ka	450,600,116
135 trichlorobenzene	41,000 041 14	.7500mV
1235 tetrachlorobenzene	190041kg	500nl
pentachlorobenzene ::	11,000 aalke	.7sccnl
1234 tetrachlorobenzene	57.CCOvalki	<u> </u>
hexachlorobenzene	420 uq lKq	SOM

51650-08	
EPA Sample #	:
EQ3-2	;
	:

Pace Laboratories, Inc.	SAS # 5165-C
Matrix: <u>(circ</u>	Lab Sample ID <u>C0965</u>
Sample wt Vol: 460mi	Date Received <u>Cilc9190</u>
Level: w	Date Extracted Cirilgo
% Moisture:	Dry Weight
Extraction Type	PH (;.5
Instrument ID: _ A	GC Column ID: <u>DB/701</u>

compound	Concentratio Units (ug/L or ug/Kg) سعرانا	Final Extract Volume
123 trichlorobenzene	21pu P.P>	
124 trichlorobenzene	< 4.9 wals	
135 trichlorobenzene	. Risu P.P.>	
1235 tetrachlorobenzene	59.4 uqis	10ml
pentachlorobenzene .	< 9.9 uglf	10m0
1234 tetrachlorobenzene	<9.9mg 4	10ml
hexachlorobenzene	< 9.9 ug/l	10 ml

	<u> 5!6</u>	<u>ت - ر: د</u>		
•		Sample	ít.	
		a · L	TF	
:				

Pace Laboratories, Inc.	SAS # 5165-0
Matrix:	Lab Sample ID <u>5.401</u>
Sample wf/vol:	Date Received
Level:	Date Extracted consider
% Moisture: <u>CPC</u>	Dry Weight _7:5
Extraction Type <u>low</u>	PH
Instrument ID: 2	GC Column ID: <u>Parter</u>

compound	Concentratio Units (ug/L or ug/Kg) ugkkg	Final Extract Volume
.123 trichlorobenzene	د ځادن سي درړ	∕ (. મુ ર્
124 trichlorobenzene.	₹ 76.600.ue+4a	ficologo inc
135 trichlorobenzene	21.044 waika	<u>in 22:52</u>
1235 tetrachlorobenzene	55,000 ualka	<u> ૯૦૦ તા</u>
pentachlorobenzene :	3600 a a 1 Ka	
1234 tetrachlorobenzene	35.0cc unica	<u>Goccari</u>
hexachlorobenzene	<36c vs !ka	5cons

TO THE PROPERTY OF THE PROPERT

AR300628

00009

5145c-19 11, whee	it
CDA C	; `
<u> </u>	:
	:

Pace Laboratories, Inc.	SAS # 5165-0
Matrix:	Lab Sample ID cide Suppose
Sample Of/vol: 19965	Date Received <u>Frame</u>
Level: 'ww	Date Extracted 200395
% Moisture: <u>07%</u>	Dry Weight 2:39
Extraction Type	PH
Instrument ID: 6	GC Column ID: <u>DB/FO</u>

compound	Concentratio Units (ug/L or ug/Kg) سم/لاب	Final Extract Volume
123 trichlorobenzene	< 360 natea	10 rd
124 trichlorobenzene	Tic, 200 ng/kg	<u> </u>
135 trichlorobenzene	.14 è ce ma ic.a	3500 M
1235 tetrachlorobenzene	53:एइए कबार्ड	<u>6500.4</u>
pentachlorobenzene	3400 ne 1ra	500AL
1234 tetrachlorobenzene	31 600441K4	(Locomb
hexachlorobenzene	< 360 ualka	10m4

	51656-10			
i				
į	EFA Sample #			
į	<u> </u>	1		
1				

Pace Laboratories, Inc.	SAS # 5165-C
Matrix: <u>linte</u>	Lab Sample ID <u>01493</u>
Sample wt/vol:	Date Received <u>columns</u>
Level: 'wo	Date Extracted <u>Column</u>
% Moisture:	Dry Weight
Extraction Type	FH <u>4.5</u>
Instrument ID: A	GC Column ID: <u>08176)</u>

compound	Concentratio Units (ug/L or ug/Kg) ugis	Final Extract Volume
123 trichlorobenzene	ر9.9 موره	/CnC
124 trichlorobenzene	<9.9 walk	/Cml
135 trichlorobenzene	49.1 uel£	10m0
1235 tetrachlorobenzene	<u> </u>	10ml
pentachlorobenzene	<9.9 ug)₽	/One
1234 tetrachlorobenzene	79.9 ugll	10al
nexachlorobenzene	لا وسه ۹۰۹	10mb

	51656-11	
i		i
;	EPA Sample #	:
•	<u>د - ۱۵ - ۱</u>	;
:		į

Pace Laboratories, Inc.	SAS # 5165-0
Matrix: <u>Soil</u>	Lab Sample ID <u>//493</u>
Sample @#/vol: 20.034	Date Received <u>6:16919</u> 0
,	Date Extracted <u>Gillo195</u>
% Moisture: <u>9.8%</u>	Dry Weight
Extraction Type Smc	PH 76%
Instrument ID:	GC Column ID: <u>DB/7</u> cl

compound	Concentratio Units (ug/L or ug/Kg) ug(Kg	Final Extract Volume
123 trichlorobenzene	.)700 waika	Je CCC 11C
124 trichlorobenzene	690,000 unika	is to cace int
135 trichlorobenzene	93.000uglKa	15,000,00
1235 tetrachlorobenzene	/510CC ualka	15.000 ml
pentachlorobenzene	\$200 ug ika	6100ns
1234 tetrachlorobenzene	59,000ualka	15000ml
hexachlorobenzene	19coualka	6ccom/

Appendix E

Organic Regional Data Assessment Summary Task I

aR300632

Page 1 of 5

DPO: [] ACTION [X] FYI

Region III

ORGANIC REGIONAL DATA ASSESSMENT SUMMARY

	SE NO: 5165C-TASK I	LABORA:			: :HURILLA		
SOW		REVIEW	COMPL	ETION	DATE: 0	4/25/90	
NO.	OF SAMPLES: 2	MATRIX				<u> </u>	
REV	TIEWER: ESAT				:		
	•		VOA		BNA	PEST	OTHER :
1.	HOLDING TIMES		-	 .			
2.	GC-MS TUNE/GC PERFORMANCE		·				0
3.	INITIAL CALIBRATIONS			_			0
4.	CONTINUING CALIBRATION			_			o
5.	FIELD BLANKS (F=NOT APPLICABLE)	•	-	_			_ 0
. 6.	LABORATORY BLANKS						
-	SURROGATES			- -			0
8.	MATRIX SPIKE/DUPLICATES						0
9.	REGIONAL QC (F=NOT APPLICABLE)			 .			<u> </u>
10.	INTERNAL STANDARDS		 	,			F
11.	COMPOUND IDENTIFICATION		<u> ~</u>				0
12.	COMPOUND QUANTITATION		· 				
13.	SYSTEM PERFORMANCE						
14.	OVERALL ASSESSMENT			-	<u></u>		
	O = No problems or minor problems the X = No more than about 5% of the data estimated or unusable. M = More than about 5% of the data por X = More than about 5% of the data por X = DPO action requested; use in continuous	a points oints are oints are	are qu quali quali	alifie fied a fied a	d as eith s estimat s unusab	ner ted. le.	
DPO	ACTION ITEMS:		· · · · · · · · · · · · · · · · · · ·			ere i jar	
						· · · ·	
	AS OF CONCERN: * Other - The Tanchloronitrobenzene	sk I ta	rget	analy	tes are	nitroben	zene and

DOCUMENTATION ATTACHED (See Following Pages)

Page 4 of 5

ORGANIC REGIONAL DATA ASSESSMENT SUMMARY NOTES SAS 5165C-TASK I (soil samples)

- The surrogate recoveries for sample 5165C-Task I-08 and the QC check sample (aqueous analyses) were slightly higher than the advisory QC limits set by the SAS contract. Also, most of the soil samples surrogate recoveries were affected by matrix interference, and were either not reported or greater than the advisory QC limits set by the SAS contract. Since the QC limits are advisory, no corrective action was required. (See Appendix G).
- The matrix spike/matrix spike duplicate (MS/MSD) analyses for Task I had all four (4) spike recoveries (%R) within the QC limit set by the SAS contract. Both of the relative percent difference (RPD) values were slightly outside the QC limit. Since the MSD extraction was performed two days after the MS extraction, and the MSD results are lower than the MS results, it is possible that the difference between the MS and MSD results is due to holding time related analyte loss from the sample.

On the MS/MSD QC summary form the outliers are reported as "2 out of 6 outside limits". A more accurate representation of the data would be "zero (0) of four (4) spike recoveries, and two (2) out of two (2) RPD values outside limits". (See Appendix G).

Item 12A -Due to matrix interference, the quantitation limits for metachloronitrobenzene for several samples were war estimated, based on the apparent concentration of . the interference in each → Metachloronitrobenzene results for samples 5165C-Task I- 04, 05, 06, 07, and 11 were reported as estimated quantitation limits greater than the contract required detection limit (CRDL). presence or absence of metachloronitrobenzene cannot be confirmed for these samples. (See the analytical laboratory case narrative in Appendix G).

Page 5 of 5

ORGANIC REGIONAL DATA ASSESSMENT SUMMARY NOTES SAS 5165C-TASK I (soil samples)

- Them 13A The QC-check sample had no positive result for metachloronitrobenzene. Since the control limits for recovery of this compound in the QC-check sample are advisory no corrective action was required. No reported results were qualified based on this problem. (See Appendix G).
- One pair of field duplicate samples, and one pair of analytical duplicate samples were analyzed, but had no reported results for nitrobenzene and metachloronitrobenzene. No useful comparison of the data can be made. (See Appendix G).

Appendix F

Organic Regional Data Assessment Summary Task II

DPO: [] ACTION [X] FYI

Page 1 of 6
Region III

ORGANIC REGIONAL DATA ASSESSMENT SUMMARY

SDG NO		LABORATORY: DATA USER: REVIEW COMP MATRIX: WAT	PAT CHU LETION I		<u></u>
REVIEW	ER: ESAT		:		
		VOA	BNA	PEST	OTHER *
1. HO	LDING TIMES		45040		
2. GC	-MS TUNE/GC PERFORMANCE		*************		
3. IN	ITIAL CALIBRATIONS				
4. CO	NTINUING CALIBRATION				
5. FI	ELD BLANKS (F=NOT APPLICABLE)			***********************************	
6. LAI	BORATORY BLANKS				
7. SUI	RROGATES	-			_ •
8. MA	TRIX SPIKE/DUPLICATES			all the state of the later transport	0
9. REC	GIONAL QC (F=NOT APPLICABLE)				F
10. IN	TERNAL STANDARDS				F
11. CON	APOUND IDENTIFICATION	•	***************************************		
12. CON	IPOUND QUANTITATION				
13. SYS	STEM PERFORMANCE				
14. OVE	ERALL ASSESSMENT	·	_ 		
X M Z	 No problems or minor problems that do No more than about 5% of the data poin estimated or unusable. More than about 5% of the data points More than about 5% of the data points DPO action requested; use in conjunctions 	ts are qualifi are qualified are qualified	ied as eit as estima as unusab	ted. ole.	
DPO ACI	CION ITEMS:				
AREAS C	OF CONCERN: * Other - The Task II	target and	lytes a	re select	ed multi-
DOCUMEN	TATION ATTACHED (See Following Page	ges)	सिर्दा	III 6 3 9	

Page 2 of 6

DPO: [] ACTION [X] FYI

Region III

ORGANIC REGIONAL DATA ASSESSMENT SUMMARY

CASE NO: 5165C-TASK II SDG NO: SOW: NO. OF SAMPLES: 9	LABORATORY DATA USER REVIEW COM MATRIX: SO	PAT CHI		5/90
REVIEWER: ESAT		:		
· .	VOA	BNA	PEST	OTHER *
1. HOLDING TIMES				<u> </u>
2. GC-MS TUNE/GC PERFORMANCE	-			0
3. INITIAL CALIBRATIONS	***************************************	***********		
4. CONTINUING CALIBRATION		-	·	0
5. FIELD BLANKS (F=NOT APPLICABLE)				
6. LABORATORY BLANKS				
I. SURROGATES				0
8. MATRIX SPIKE/DUPLICATES				0
9. REGIONAL QC (F=NOT APPLICABLE)				<u> </u>
10. INTERNAL STANDARDS				<u> </u>
11. COMPOUND IDENTIFICATION		4'' '.		0
12. COMPOUND QUANTITATION	•			<u>M</u>
13. SYSTEM PERFORMANCE				0
14. OVERALL ASSESSMENT			•	<u>M</u>
O = No problems or minor problems that X = No more than about 5% of the data pestimated or unusable. M = More than about 5% of the data poin Z = More than about 5% of the data poin A = DPO action requested; use in conjun	coints are quali nts are qualifie nts are qualifie	fied as eit d as estima d as unusab	ted. le.	
DPO ACTION ITEMS:			<u> </u>	<u>:</u>
AREAS OF CONCERN: * Other - The Task		nalvtes a	re select	ed multi-
chlorinated-benzene isomers	II CALVEL AL		re serect	ea marer
DOCUMENTATION ATTACHED (See Following	Pages)	ARSON	51.0	

Page 3 of 6

ORGANIC REGIONAL DATA ASSESSMENT SUMMARY NOTES SAS 5165C-TASK II (water samples)

- The confirmation column continuing calibration run 02/08/90 at 04:36 had percent difference (%D) values for 1,2,3,4-tetrachlorobenzene and hexachlorobenzene greater than twenty percent (>20%), exceeding the QC limit set by the SAS contract. Since this column was used only for confirmation no reported results have been qualified. (See Appendix H).
- Ttem 7A Due to low or no recovery of the surrogate compound 2-fluorobiphenyl chosen by the SAS contract, the soil samples were re-extracted. The re-extractions were performed using a different compound, 2-chloronaphthalene, for the surrogate spike. Since there was no sample volume remaining for the aqueous blanks associated with these samples, the blanks could not be re-extracted. No surrogate recoveries have been reported for the blanks. The extraction efficiency for these samples cannot be evaluated. (See Appendix H).
- The quantitation column external calibration check standard (the QC check standard) run for samples analyzed between 01/23 and 01/24/90 exceeded the QC limits set by the SAS contract for the compounds 1,2,3,5-tetrachlorobenzene and 1,2,3,4-tetrachlorobenzene. Since the QC limits are advisory, no results were qualified. (See Appendix H).
- The confirmation column external calibration check standard (the QC check standard) run for samples analyzed between 02/06 and 02/08/90 exceeded the QC limits set by the SAS contract for the compounds 1,2,4-trichlorobenzene,1,2,3,5-tetrachlorobenzene, pentachlorobenzene and hexachlorobenzene. Since the QC limits are advisory, no results were qualified. (See Appendix H).

Page 4 of 6

ORGANIC REGIONAL DATA ASSESSMENT SUMMARY NOTES SAS 5165C-TASK II (soil samples)

- Item 1A Several of the soil samples were extracted eleven (11) to twelve (12) days from the date of sample collection, exceeding the ten (10) day holding time set by the SAS contract by one (1) to two (2) days. All samples were analyzed within the holding times set by the SAS contract. (See Appendix H).
- The confirmation column continuing calibration run 02/08/90 at 04:36 had percent difference (%D) values for 1,2,3,4-tetrachlorobenzene and hexachlorobenzene greater than twenty percent (>20%), exceeding the QC limit set by the SAS contract. Since this column was used only for confirmation no reported results have been qualified. (See Appendix H).
- Due to the surrogate problem noted above, a matrix spike and matrix spike duplicate (MS/MSD) reextraction was required. Since insufficient sample remained of the original sample chosen for the MS/MSD analyses, a different sample was chosen, without first being screened. Due to the high concentrations of the target analytes in the reextracted MS and MSD samples, the MS and MSD spiking concentrations were insignificant. No spike recoveries (% R) or relative percent differences (%RPD's) have been reported for these analyses. (See Appendix H).
- Item 12A -As noted in the report summary, the quantitation limit set for these samples was greater than the calibration range of the instrument used to analyze the samples. the samples. The calibration range of the instrument was 25 to 400 $\mu g/L$ or about 8 to 133 The CRQL set for the soil samples was 330 μ g/Kg, about three (3) times the upper limit of the calibration range. Because of this, all reported results are less than the adjusted CRQL needed to represent dilutions performed on the extracts to meet the linear calibration range of the instrument. (e.g., a soil sample concentration of 1000 μ g/Kg would require an eight fold (8X) dilution to fall within the calibration range of the instrument. The adjusted CRQL (8X) dilution is 330 μg/Kg X 8 or 2000 is

WESTEN.

Page 5 of 6

ORGANIC REGIONAL DATA ASSESSMENT SUMMARY NOTES SAS 5165C-TASK II (soil samples)

The surrogate recoveries for the re-extractions of samples 5165C-Task II-09 dup and 5165C-Task II-11MS were below the QC limits set by the SAS contract. (See Appendix H).

- Item 13A The quantitation column external calibration check standard (the QC check standard) run for samples analyzed between 01/23 and 01/24/90 exceeded the QC limits set by the SAS contract for the compounds 1,2,3,5-tetrachlorobenzene and 1,2,3,4-tetrachlorobenzene. Since the QC limits are advisory, no results were qualified. (See Appendix H).
- The confirmation column external calibration check standard (the QC check standard) run for samples analyzed between 02/06 and 02/08/90 exceeded the QC limits set by the SAS contract for the compounds 1,2,4-trichlorobenzene,1,2,3,5-tetrachlorobenzene, pentachlorobenzene and hexachlorobenzene. Since the QC limits are advisory, no results were qualified. (See Appendix H).
- Item 14A -Due to the number of different dilution factors required to determine the various chlorinated-benzene target compounds in some of the soil samples, the space set aside for the dilution factor(s) for each sample on the data summary forms was not large enough to include all the dilution factors used. Also, no indication of which dilution was used for which analyte can be made without extensive footnotes. The dilution factor(s) noted on the data summary forms represent only the dilutions performed on target compounds for which non-detect results were reported, or the lowest dilution used to determine a target compound if there were no non-detects. (See Appendix H).

The analytical laboratory reported only one (1) Form I for each sample, regardless of the number of dilutions performed on that sample. Quantitation sheets for each dilution performed for each sample were included in the raw data for the case. Following is a table summariz factor associated with each analyte ror each sample:

Page 6 of 6

ORGANIC REGIONAL DATA ASSESSMENT SUMMARY NOTES
SAS 5165C-TASK II (soil samples)

		MUI	TI-CHLC	RINATED	-BENZENE	ISOMER :	
SAMP.	123		135	1235	PENTA-	1234	HEXA-
-01	5X	5X	1X	1X	5X	5X	1X
-02	1X	1X	1X	1X	1X	1X	1X
-03	5X	100X	100X	5X	100X	100X	5X
-04	5X	100X	100X	5X	100X	100X	5X
-05 '	ıoox	4000X	4000X	100X	1000X	2000X	100X
-06	1X	100X	10X	1X	10X	100X	1X
-07	50X	5000X	250X	50X	250X	250X	50X
-09	1X	30000X	300X	600X	50X	600X	50X
-11	. 600X	6000X	1500X	1500X	600X	1500X	600X

Item 14B - One pair of field duplicate samples were analyzed, but had no reported results for any of the multichlorinated-benzene target compounds. No useful comparison of the data can be made. One pair of analytical duplicate analyses were also performed on sample 5165C-Task II-09. The results of these analyses have been summarized in a form included in the Task II support documentation (Appendix H).

All relative percent difference (RPD) values were within the QC limits set by the SAS contract. (See Appendix H).

DCN - DM005A13

Appendix G

Support Documentation - Task I

PACE Laboratories, Inc.

Surrogate Recovery Form

Catrix Water		_	Project <u>S</u>	165C	- Tosk 1
Component 2-F1	vono bipha)			
Sample	Amount Spiked	Amount Found	Percent Recovery		Limits Recovery
5165C-RBİKW-TASKI 5165C-08-TASKI 5165C-10-TASKI	3000 m/3	2385 mg/s	119% 99.4%		30-115 30-115 30-115
5165C- GCClek-TASK1	2000 1/2	2359 1/4	(118 %)		30-115
<u></u>					
Visites was from the street areas of the street				Ĵ	
				• 	
Comments <u>No</u>	orrective	Act:2	+Akw.	· · ·	

Surrogate Recovery Form

Otrix Soil		um «m»	Project 5161	TC-TASKI
Component 2- K	luonobi ph	<u>₃</u> 47 /		
Sample	Amount Spiked	Amount Found	Percent Recovery	Limits Recovery
1650-RBIKS-Taski	2000 1/2		49.5%	·
1 <u>650- RBI</u> K51-TASKI 51 <u>650- OI</u> - TASKI	2000 hd/2	1570 1/3	36.4 % 78.5 %	
165C-01MS-TASKI	2000 6/3	2016 2/2	101 %	
1650-01 MSO-TASKI	2000 1/2 2000 1/2	1132 % 4200 m/	56.6% (210%)	
1655-03-TASKI	<u>X</u>	1230 /	Q 10 707	
1650-04- TASKI 10-05-TASKI	<u>*</u>	*		1986 1980 1880 1880 1880 1880 1880 1880 1880
165C-06-TASKI	<u> </u>			
1650-07-TASKI	<u>*</u>			
165C-11 - TASKI	<u></u>			
1650-11 Oup-Task 1	<u>*</u>			· ·
			A CONTRACTOR OF THE CONTRACTOR	
			ese Samples Pa	coestad
Quantitation	s of Sue	nogate O	21/4	
~~~~~~~				-

PACE LADO	.essincs.		•	. GC Sectio	361	•	
		ix Spike	Duplicate	<u>_</u>		0	046
Test	(090		•	Project #	5001	09.503	
Analyst _	()40	<del></del>		Reference		<del></del>	_ (
Date Anal	Azsq 1/1	9/90		•			<del></del>
	ر ہے راسے	n	. /		_ ::/	·	_
Sample #	7/6/6-0	21 - TASKI	1/516	5c-01M5-	TASKI/	51650-01	mso-Ta
Matrix Sp	ike					•	
Component	Amount in sample	Amount Soiked	Amount in spika		% Recovery	Limits	
1. to Bergene	-		16.28	ref to		6-118	
eta Chiona N. tre Buizare			1561	- 15 .		6-118	<b></b>
. We amy was				"5			
شخة شهده وأنظ فست زبيبت النجب ينضر فسك تهران					~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	,	
	مية حقد بيين فقد جيد بينه فيد <u>بينه فينه</u>			<u>-</u>		· •	
الا جب بين حد جب بحد حد	مہ سے بہت کے بھے اس		-, <del></del>	<b>3</b> -WP			
				<b></b> .		·	
- Matrix Spi	ike Duplic	at 2	•	-		· · · :	
•			•	:	•	· • •	
.Component	Amount in sample		Amount in MSD	% Recovery	Limits -	RPD	RPD Limit
	•	•		•		(270)	^
Nitro Bes France		_	•		6-118	(31.7)	<u> </u>
eta Ch kao <u>N. tau Berzera</u>	< 330	3331	. 1082 1/5	48.7	6-118	(34.9)	2
* , , , , , , , , , , , , , , , , , , ,					<u>.</u>		
		<del>_</del> - • •	···	,			
, ,					. <u> </u>		
		-					
	•		•		-		
2 put	6	outside	limits	•	• • • • • • • • • • • • • • • • • • •	-	
. Comments:	, ; ; n				,		· · · · · · · · · · · · · · · · · · ·
	himits fo	and M.	·Method	80,50 P.	on Nitro	Berzanz	
ه ۱۰۰۰ م م مد د د د د د د د د د د د د د د د د							

EPA Sample No. SIGSC-Raikw-Toski

Lab Name: PACE Laboratories, Inc.	Contract: 68-W8-0042
Lab Code: LANGST	SAS No.: 5165 C - Task 1
Matrix WATER	PACE Sample No. 58204
Sample Wt./Vol. 1000 mQ	PACE File No. NA
Level (Wt./Wel.) Low	Date received N/A
% Moisture <u>N/A</u>	Date Extracted 1/12/90
Extraction (SepF/Cont/Sone) SepF	Date Primary Anal. 1/15/90
Cleanup: Type Nowe	Date Confirm. Anal. 1/19/90
Dilution Factor 10 2 / 1000 ml	

CAS No.	Compound	Concentration	Units
	Nitro berzene	< 50	48/2
	Metachlas Nitroberzenia	·< 20	Ng/Q

Surrogate:	2-Fluczo	bioher	<u> </u>	
Amount Found:	2283	18/2		Solution)

EPA Sample No. 51650 - RBIK5-Taski

Lab Name: PACE Laboratories, Inc.	Contract: 68-W8-0042
Lab Code: LANGST	SAS No.: 5165 C - Task 1
Matrix So: 1	PACE Sample No. 58201
Sample Wt./Vol. 30.00	PACE File No. N/A
Level (Wt./Vol.) Low	Date received N/A
% MoistureO	Date Extracted 1/13/90
Extraction (SepF/Cont/Sonc) Sonc	Date Primary Anal. 1/16/90
Cleanup: Type None	Date Confirm. Anal. 1/24/9
Dilution Factor 30.00 - 2 ml	

CAS No.	Compound	Concentration	: . Units
	N: trobuzona	< 330	My/kg
	Meta Chloro N. tro berzeva	< 330	18/ks

Surroga	ate:	2- Flo	sono B:	ohen	1	
Amount						Solution)
	, was	res.				

EPA Sample No. SIG5-RBIKSI-TASKI

Lab Name: PACE Laboratories, Inc.	Contract: 68-W8-0042
Lab Code: LANGST	SAS No.: 5165 C - Task 1
Matrix Soil	PACE Sample No. 59987
Sample Wt./Vol. 30.00	PACE File No. N/A
Level (Wt./Voi.) Low	Date received N/A
% Moisture O	Date Extracted 1/15/90
Extraction (SepF/Cont/Sonc) Sonc	Date Primary Anal. 1/17/90
Cleanup: Type None	Date Confirm. Anal. 1/9/70
Dilution Factor 30.00 / 2 mg	
acontental	

CAS No.	Compound	Concentration	Units
	N: tro Benzare	< 330	Jus/ks
	Meta Chlore N. too Berzeve	< 330	My/ks

Surrogate:	2- Fluoro Oiphen	
Amount Found:	728 mg/g. (in	Solution)

EPA Sample No. | 5/650-01ms-7651

Lab Name: PACE Laboratories, Inc.

Lab Code: LANGST

Matrix So: |

Sample Wt./vol. 31.33

Level (Wt./vol.) Low

% Moisture 28.9

Extraction (SepF/Cont/Sonc) Sonc

Cleanup: Type Now

Dilution Factor 31.33 /2 ml

SAS No.: 5165 C - Task 1

PACE Sample No. 58200

PACE File No. N/A

Date received 1/8/90

Date Extracted 1/3/90

Date Primary Anal. 1/17/90

Date Confirm. Anal. 1/19/90

Contract: 68-W8-0042

CAS No. Compound Concentration Units

Nitro Benzene <330 //kg

Metachlow N. tro benzene <330 //kg

Surrogate: 3- Fluorobiphy (in Solution)

EPA Sample No. SIGSC-OIMSO-TASKI

Lab Name: PACE Laboratories, Inc.	Contract: 68-W8-0042
Lab Code: LANGST	SAS No.: 5165 C - Task 1
Matrix Soil	PACE Sample No. 59761
Sample Wt./Vol. 31.76 s	PACE File No. N/A
Level (Wt./Vol.) Low	Date received 1/8/90
% Moisture 28.9	Date Extracted 1/15/90
Extraction (SepF/Cont/Sonc) Sonc	Date Primary Anal. 1/17/90
Cleanup: Type None	Date Confirm. Anal. 1/19/50
Dilution Factor 31.76. / 2ml	·

CAS No.	Compound	Concentration	Units
	Nitro Benzene		
	Meta Chloro N. too Benzene		

Surrogate:	2 - Fluoro Biphony	
Amount Found:	3188 mg/kg	

EPA Sample No. 51650-Occhet-Taski

	*
Lab Name: PACE Laboratories, Inc.	Contract: 68-W8-0042
Lab Code: LANGST	SAS No.: 5165 C - Task 1
Matrix Water	PACE Sample No. 58202
Sample Wt./Vol. /ogc	PACE File No. N/A
Level (Wt./Vol.) Low	Date received 11/3/88
% Moisture <u>N/A</u>	Date Extracted 1/12/96
Extraction (SepF/Cont/Sonc) <u>SepF</u>	Date Primary Anal. 1/15/90
Cleanup: Type None	Date Confirm. Anal. 1/19/90
Dilution Factor 101 /10001	
Careartantia	

CAS No.	Compound	Concentration	Units
	Nitro Ben Zene	31.3	14/8
	Metachlono Nitro Berzeve	< 20.	

Surrogate:	2- Floreo Bioher, 1	
Amount Found:	2359 4	(is Solution)

EPA SAMPLE SHIPPING LOG FOR ALL SAMPLES SENT THROUGH THE CONTRACT LAB PROGRAM (\$12/85 verston) 140'd2-27 REC'D 65189707 11SAS REQUEST: (detalls (regulred) metachlerantrobouters SHIPPED 1/5/20 Owitobentene, (itemize) REQUEST 0 LAB NAME 1AMST12 SHIPPED VOA BNA PEST TCDD | METALS CN EPA Project Officer: Rob Cuardi DATA RECEIVED DRGANICS OR INORGANICS STAMOARD CITLORING LAB SASASIESCITASK! SITE HAME: 5165Cc1 TM4 - co QC SAMPLE (104/ PHASE REQUEST TRAFFIC INFO med/ (44/ org.410 REPORT NUMBER ζ. £.3-70, ١٩ 50 .... Site Leader: DAUTD SPEWIER TYPE fnor. SAS SAS 5 or 124-147 (los þψ bage L of (S) 3 Phone: (215) CASE COMMENTS AND/OR 19. 757/5 to da ED BIMIK no miso 9

*

TUS/UEXSAR

प्टाय ३ अ REC'D EPA SAMPLE SHIPPING LOG FOR ALL SAMPLES SENT THROUGH THE CONTRACT WAS PROGRAM INN (12/85 verston) ||SAS REQUEST:(details required) metablocovitic binzene SHIPPED 1/10/90 Witto benzene, (itemize) REQUEST 0 LANGST LAB NAME SHIPPED VOA BNA PEST TCDD | METALS CN EPA Project Officer: Bob GUARNI DATA RECEIVED STAMOARD CHLORINE DRGANICS OR INORGANICS LAB KANE SASI STIBSK-TASK I SITE NAME: 5K5C-09 745K REQUEST TRAFFIC OF 9. 410 REPORT SAMPLE NUMBER 9 == > Site Leader: DAUTO Spewcere Phone: (215) 741-4211 3 3 fnor, SAS SAS QC SAMPLE (10M/) PHASE RE 741-421 50] Sol Sol AQ Page of 1 h(gh) CASE COMMENTS AND/OR ED. BIANK 0656 AR3 Ò

OTHER	UTIICE OF ENTORCEMENT	emen			CHAIN OF CU				941 Chestaut St.\	_
	PROJECT NAME	NAN	1E				11/1			
ट <b>०उ०या</b> उत्तर्भर	Set					NO.		<u></u>		
SAMPLERS: (Signature)	( , O	-			,		\ \ \	\		Jan 200
young	Dell	2			3		<i> </i>	_	REMARKS	
8TA. NO. DATE	TIME	COMP.	8ARD	STATION	TAI STATION LOCATION	TAINERS (2)		/ JAST SIGSC-TASK!	ic- Task I	
। यिक	E IO		X us-	gentativ _e			1	3- 101.39-1	The Meliner	7
31-36-42 114/90	M10		X ur-a	<b>2</b> ≠*			1	3-104-89-15-	1	1
5145C-03 114/90	oler		X ws3				ń	3-1043921		<del></del>
5145C-04 1/4/90	1110		X 125-4				1	L 66701-E		$\overline{T}$
5165C-03 115190	1918		X 105-5				, t	3-1100875		1
51682-06 115/90	C/701		X UX-14				, r.	9-1100879		T
5765C-07 1/5/10	1350		X ws-7				} ;	3-11 Ma 24 3		T-
144	9930			رہ			1	3- 1100gr ]	2.4.9	Т
_								555	SW CAMPIA	T
å R										T
3(										Т
0 0										· T
ō <b>5</b>										Т
7	,									1
										<del></del>
Relinquished by: (	(ein		Date / Time	E .	Received by: (Signature)	Relinquished by: (Signature)	gnature)	Date / Time	Received by: (Signature)	<b>T</b>
Jack Car			1/8/40 11		Comme C. Stack	7			•	·····
Belinquisted by:	farre)		Date / Time		Received by: (Signature)	Relinquished by: (Signature)	gnaturej	Date / Time	Received by: (Signature)	1
Relinquished by:	ture	·	Date / Time		Received for Laboratory by:	. Date / Time	Remarks SKI PPED	¥:>	Express	1
	ă	Putto	1: Original Accomp	panies Ship	Distribution: Original Accompanies Shipment; Copy to Coordinator Field Files	ald Files	Solve To see		ر مورم مروم	

Philiadeliphia, Pennsylvania 19107 841 Chestnut St. Date / Time | Received by: (Signature) Received by: (Signature) REGION 3 JAS No. 51050-TASKI REMARKS shipped via Federal Express Last Sampl Date / Time 3-1100912 3-1102430 3- 110090 Remarks. Relinquished by: (Signature) Relinquished by: (Signature) CHAIN OF CUSTODY RECORD Date /Time 06/11/1 Distribution: Original Accompanies Shipment; Copy to Coordinator Field File TAINERS loos Ç O S Š P Received for Laboratory by: ISigneture) Received by: (Signature) Received by: (Signature) 42-42 301 STATION LOCATION انامخ 1/10/90 | 1530 Date / Time Date / Time Date / Time EGA-3 CB-BJ 1-00 . PROTECTION AGENCY KROJECT NAME f Enforcement COMP 1020 0:: TIME 3 AMPLERS: (Signature) Inquished by: 15/gn fillnquished by: 15/gr telinquished by: 15i cHall 11:19 - TANKI 1/7/90 OO OTHER DATE OF TAKE 65 r. No. LYSKI 3 0 • 8

25 to 5-5 DATA Rec'd EPA SAMPLE SHIPPING LOG FOR ALL SAMPLES SENT THROUGH THE CONTRACT LAB PROGRAM (12/85 version) SC-TASK 2 SITE NAME: STANDARD CHIROLIC SHIPPED 1/10/90 Hexagiloro benfore 1 The chlore - thru (itemize) REQUEST 6 LAB NAME TES/VERSAR PACE SHIPPED VOA BNA PEST TCOD | METALS CN BOB GUARNI DATA RECEIVED ORGANICS OR INORGANICS SAS# 5165C-TASK 2 SITE NAME: STANDARD CHLORINE EPA Project Officer: Kg Kg 5166-09 THE org.dio REPORT inor, NUMBER SAS REQUEST TRAFFIC SAMPLE ٥ ÷ → Site Leader: DAVITO SPENCER 10 545 1124-146 CONC. SAMPLE (sol) 200 3 AQ page of L H.g. (G)(Z) 3 Phone: OC SAMPLE AND/OR COMMENTS CASEJ ED. OIANK AR300659

المتأثنات 14. 25 - 10 || SAS REQUEST: (details required) C.L. (12/85 yerston) REC 'D SHIPPED 16/90 HEXACHIOTO DEWZENE (temize) REQUEST EPA SAMPLE SHIPPING LOG FOR ALL SAMPLES SENT THROUGH THE CONTRACT LAB PROGRAM **6** LAB NAME PACE TES/VERSAR SHIPPED | VOA | BNA | PEST | TCDD | METALS | CM Bob GUARMI . DATA RECETVED DRGANICS OR, INDRGANICS SASI SUSC-TASKS SITE HAME: STANDARD CHLORINE EPA Project Officer: LAB SILSK-ON THER J SAMPLE TRAFFIC **→ ୧**∘org, dio REPORT NUMBER · or 90--07 6 70-6 Site Leader: DATED Stewich TYPE OF OF REQUEST Inor. SAS Š 1981-198 SAMPLE ) ( ( os ) 8 \$ CONC. 18 B /po 30 Phone: (215) prog Tot OC SAMPLE CASE COMMENTS AND/OR ED BIANK Dr 51656-01 15/m5D 6 6 0

5165C Tush I

SAS 613

U.S. Environmental Protection Agency CLP Sample Management Office 209 Madison Street, Alexandria, VA 22313 PHONE: (703) 557-2490 or FTS 557-2490

SAS Number

200 12-22-29

# SPECIAL ANALYTICAL SERVICES Regional Request

Regional Transmittal Telephone Request

A. EPA Region and Client: EPA Region III

B. Regional Representative: Colleen K. Walling

C. Telephone Number: (301) 266-9180

D. Date of Request: December 15, 1989

E. Site Name: Standard Chlorine of Delaware, Delaware City, Delaware

Please provide below a description of your request for Special Analytical Services under the Contract Laboratory Program. In order to most efficiently obtain aboratory capability for your request, please address the following considerations, if applicable. Incomplete or erroneous information may result in delay in the processing of your request. Please continue response on additional sheets, or attach supplementary information as needed.

1. General description of analytical service requested:

Analysis of 10 low concentration soil/sediment samples for nitrobenzene and metachloro nitrobenzene using SW-846 extraction method 3550 and SW-846 analysis method 8090 (both methods are attached)

2. Definition and number of work units involved (specify whether whole samples or fractions; whether organics or inorganics; whether aqueous or soil and sediments; and whether low, medium, or high concentration):

Analysis of 10 low concentration Soil/sediment samples for the above includes 8 soil/sediment samples, 1 field duplicate, and 1 equipment blank. The equipment blank will be an aqueous sample.

AR300661

3. Program (specify whether Superfund (Remedial or Enforcement), RCRA, NPDES, etc.), Justification for analysis and Site Account Number:

Superfund Enforcement: RP RI/FS Oversight
OTGB03NP#6

SAS Approved By:

- 4. Estimated date(s) of collection: January 2 through February Z, 1990
- 5. Estimated date(s) and method of shipment: January 2 through February Z, 1990
  Federal Express Overnight delivery
- 6. Approximate number of days results required after lab receipt of samples:

  Analysis must occur within 14 days of Sample Collection. Data package must be submitted within 45 days of laboratory receipt of the last Sample.
- 7. Analytical protocol required (attach copy if other than a protocol currently used in this program):

  Test Methods for Evaluating Solid Waste (SW-846), Third Edition, 1986

  Methods 3550 (Smication Extraction) and 8090 (Nitro aromatics and Cyclic Ketones)

  Using GC/FID,
- 8. Special technical instructions (if outside protocol requirements, specify compound names, CAS numbers, detection limits, etc.):

  See Attachment 1.
- 9. Analytical results required (if known, specify format for data sheets, QA/QC reports, Chain-of-Custody documentation, etc.). If not completed, format of results will be laft to program discretion.

See Attachment Z.

10. Other (use additional sheets or attach supplementary information, as needed):
None,

11. Name of sampling/shipping contact: David A. Basko

Phone:

(215) 741-4211

Data Requirements

Parameter

Detection Limit

Precision Desired (+ or - Concentration)

Nitrobenzene

33049/kg

+/- 25%

Metachloronitro benzene

330 Mg/kg

+1- 25%

- * Advisory limits only, not mandatory (corrective action not required).
- 13. QC Requirements

Audits Required

Duplicates Method Blanks

Matrix Spike

2-Fluorobiphenyl (surrogate) QC Check Standard

Frequency of Audits 1/20 or 1/batch 1/20 or 1/batch 1/20 or 1/batch

Every sample 1/20 or I /batch Limits

(Percent or Concentration)

+/- 25% RPD

2 330 Mg/kg

+/- 15% (Nitrobenzene)*

+/- 30 % (Metachlorenitrobenze)

30-115% Recovery * 85-115% (Nitrober Zene) *

70 - 1303 Metachicronitrobense

- Continuing Calibration Standard 1/10 or at end of batch -
- *Advisory limits only: not mandatory (corrective action not required).

  Action Required if Limits are Exceeded

  Duplicates: Reanalyze sample/duplicate pair and report both sets of data. (Reanalyze 1 time only) Method Blanks: Reanalyze all associated samples after corrective action to reduce blanks contanion Continuing Calibration Standard: Perform initial calibration and reanalyze all samples since the last acceptable continuing calibration standard.
- 15. Request prepared by: David A. Basko

Date: December 15, 1989

16. Request reviewed by: Namie 1.A. Brown

Date: 12-21-89

Please return this request to the Sample Management Office as soon as possible to expedite processing of your request for special analytical services. Should you have any questions or need any assistance, please contact your Regional representative at the Sample Management Office.

#### METHOD 3550

## SONICATION EXTRACTION

#### 1.0 SCOPE AND APPLICATION

- 1.1 Method 3550 is a procedure for extracting nonvolatile and semi-volatile organic compounds from solids such as soils, sludges, and wastes. The sonication process ensures intimate contact of the sample matrix with the extraction solvent.
- 1.2 The method is divided into two sections, based on the expected concentration of organics in the sample. The low concentration method (individual organic components of  $\langle 20~\text{mg/kg} \rangle$  uses a larger sample size and a more rigorous extraction procedure (lower concentrations are more difficult to extract). The high concentration method (individual organic components of  $\rangle 20~\text{mg/kg}$ ) is much simpler and therefore faster.
- 1.3 It is highly recommended that the extracts be cleaned up prior to analysis. See Cleanup, Section 4.2.2 of Chapter Four, for applicable methods.

#### Z.O SUMMARY OF METHOD

- 2.1 Low concentration method: A 30-g sample is mixed with anhydrous sodium sulfate to form a free-flowing powder. This is solvent extracted three times using sonication. The extract is separated from the sample by vacuum filtration or centrifugation. The extract is ready for cleanup and/or analysis following concentration.
- Z.2 <u>High concentration method</u>: A 2-g sample is mixed with anhydrous sodium sulfate to form a free-flowing powder. This is solvent extracted once using sonication. A portion of the extract is removed for cleanup and/or analysis.

### 3.0 INTERFERENCES

3.1 Refer to Method 3500.

# 4.0 APPARATUS AND MATERIALS

4.1 Apparatus for grinding: If the sample will not pass through a 1-mm standard sieve or cannot be extruded through a 1-mm opening, it should be processed into a homogeneous sample that meets these requirements. Fisher Mortar Model 155 Grinder, Fisher Scientific Co., Catalogue Number 8-323, or an equivalent brand and model, is recommended for sample processing. This grinder should handle most solid samples, except gummy, 1 missing or oily materials.

3550 - 1

#### ATTACHMENT 1

Standardize instruments according to manufacturer's instructions. Analytical procedures, as described in the attached method, <u>MUST</u> be followed even if the text just indicates that those procedures should be followed. Report all holding times on the data sheets.

The instrumentation must be calibrated daily using five calibration standards and a calibration blank. The calibration standards must contain all target analytes at concentrations which bracket the anticipated range of measurement, and these standards must be prepared fresh daily from the stock solution. One of the calibration standards must be near, but above, the method detection limit. Continuing calibration must be performed by analyzing one calibration standard (containing all target analytes) at the mid-range of the initial calibration curve after each ten samples. The property of this continuing calibration standard must be +/- 20 percent of the property pater of the with calibration, or else initial calibration must be repeated, and all samples analyzed since the last acceptable continuing calibration standard must be reanalyzed.

All samples must be spiked with 2-fluorobiphenyl as a surrogate compound at a nominal Final concentration of 100 us/kg. All initial and continuing calibration standards must contain 2: Fluorobiphenyl at the same concentration as the standard analyses. The average response Factor of 2-Fluorobiphenyl from the initial Calibration must be suit to Calculate Samples urrogate recoveries.

A matrix spike must be analyzed at a frequency of 1/20 samples or 1/batch, whichever is more frequent. The spike concentration must be 1 to 5 times the background sample concentration and must be determined by screening.

A QC check standard must also be analyzed at a frequency of 1/20 samples or 1/batch, whichever is more frequent. This check standard must be prepared from an independent source material of that used to prepare that calibration standards.

A method blank must also be analyzed at a frequency of 1/20 samples or 1/batch, whichever is more frequent.

4.2 <u>Somication</u>: A horn-type somicator equipped with a titanium tip should be used. The following somicator, or an equivalent brand and model, is recommended:

Ultrasonic cell disrupter: Heat Systems - Ultrasonics, Inc., Model W-385 (475 watt) sonicator or equivalent (Power wattage must be a minimum of 375 with pulsing capability and No. 200 1/2" Tapped Disrupter Horn) plus No. 207 3/4" Tapped Disrupter Horn, and No. 419 1/8" Standard Tapered microtip probe.

- 4.3 Sonabox: Recommended with above disrupters for decreasing cavitation sound (Heat Systems Ultrasonics, Inc., Model 432B or equivalent).
- 4.4 Apparatus for determining percent moisture:
  - 4.4.1 Oven: Orying.
  - 4.4.2 Desiccator.
  - 4.4.3 Crucibles: Porcelain.
- 4.5 Pasteur glass pipets: Disposable, 1-mL.
- 4.5 Beakers: 400-mL.
- 4.7 Vacuum filtration apparatus:
  - 4.7.1 Buchner funnel.
  - 4.7.2 Filter paper: Whatman No. 41 or equivalent.
- 4.8 <u>Kuderna-Danish (K-D) apparatus</u>:
- 4.8.1 Concentrator tube: 10-mL graduated (Kontes K-570050-1025 or equivalent).
- 4.8.2 Evaporator flask: 500-mL (Kontes K-570001-0500 or equivalent).
- 4.8.3 Snyder column: Three-ball macro (Kontes K-503000-0121 or equivalent).
- 4.8.4 Snyder column: Two-ball micro (Kontes K-569001-0219 or equivalent).
- 4.9 <u>Boiling chios</u>: Solvent extracted, approximately 10/40 mesh (silicon carbide or equivalent).
- 4.10 <u>Water bath</u>: Heated, with concentric ring cover, capable of temperature control (+5°C). The bath should be used in a hood.

3550 - 2

# ATTACHMENT 2

Data package must include: all raw data, all instrument and/or equipment calibration results, calculations, blank results, duplicate results, chain of custody forms, SAS request forms, SAS packing list(s) or traffic report(s), copy of airbill(s), and copies of analyst's logbooks(signed by analyst) with date and time of sample preparation and analysis.

The cover page and all sample report forms MUST be labled with the complete EPA sample number as it appears on chain of custody and CLP paperwork.

The case narrative must document all problems encountered and the subsequent resolutions. List instrumentation and methods employed for analysis. Also, note whether samples were preserved or not and the procedure utilized in preservation. EPA QC reference samples, or equivalent reference samples must be identified as to source and lot number. Documentation of "true" value and associated 95 % confidence limits must be provided for any reference samples used.

- 4.11 Balance: Top-loading, capable of accurately weighing 0.01 g.
- 4.12 Vials and caps: 2-mL for GC auto-sampler.
- 4.13 Glass scintillation vials: At least 20-mL, with screw-cap and Teflon or aluminum foil liner.
  - 4.14 Spatula: Stainless steel or Teflon.
- 4.15 Drving column: 20-mm I.D. Pyrex chromatographic column with Pyrex glass wool at bottom and a Teflon stopcock.

  NOTE: Fritted glass discs are difficult to decontaminate after highly contaminated extracts have been passed through. Columns without frits may be purchased. Use a small pad of Pyrex glass wool to retain the adsorbent. Prewash the glass wool pad with 50 mL of acetone followed by 50 mL of elution solvent prior to packing the column with adsorbent.
  - 4.16 Syringe: 5-mL.

#### 5.0 REAGENTS

- 5.1 Sodium sulfate: Anhydrous and reagent grade, heated at 400°C for 4 hr, cooled in a desiccator, and stored in a glass bottle. Baker anhydrous powder, catalog #73898, or equivalent.
- methylene chloride, hexane (pesticide quality or equivalent).
- 5.3 Exchange solvents: Hexane, 2-propanol, cyclohexane, acetonitrile (pesticide quality or equivalent).
- 6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING
- 6.1 See the introductory material to this chapter, Organic Analytes, Section 4.1.

## 7.0 PROCEDURE

# 7.1 Sample handling:

- 7.1.1 Sediment/soil samples: Decant and discard any water layer on a sediment sample. Mix sample thoroughly, especially composited samples. Discard any foreign objects such as sticks, leaves, and rocks.
- 7.1.2 Waste samples: Samples consisting of multiphases must be prepared by the phase separation method in Chapter Two before extraction. This procedure is for solids only.

3550 - 3

- 7.1.3 Dry waste samples amenable to grinding: Grind or otherwise subdivide the waste so that it either passes through a 1-mm sieve or can be extruded through a 1-mm hole. Introduce sufficient sample into the grinding apparatus to yield at least 10 g after grinding.
- 7.2 Determination of percent moisture: In certain cases, sample results are desired based on a dry-weight basis. When such data is desired, a portion of sample for moisture determination should be weighed out at the same time as the portion used for analytical determination.
  - 7.2.1 Immediately after weighing the sample for extraction, weigh 5-10 g of the sample into a tared crucible. Determine the percent moisture by drying overnight at 105°C. Allow to cool in a desiccator before weighing:

# g of sample - g of dry sample x 100 = % moisture

- 7.3 Determination of pH (if required): Transfer 50 g of sample to a 100-mL beaker. Add 50 mL of water and stir for 1 hr. Determine the pH of sample with glass electrode and pH meter while stirring. Discard this portion of sample.
- 7.4 Extraction method for samples expected to contain low concentrations of organics and desticides (<20 mg/kg):
  - 7.4.1 The following step should be performed rapidly to avoid loss of the more volatile extractables. Weigh approximately 30 g of sample into a 400-mi beaker. Record the weight to the nearest 0.1 g. Non-porous or wet samples (gummy or clay type) that do not have a free-flowing sandy texture must be mixed with 60 g of anhydrous sodium sulfate using a spatula. The sample should be free-flowing at this point. Add I mL of surrogate standards to all samples, spikes, and blanks (see Method 3500 for details on the surrogate standard solution and the matrix spike solution). For the sample in each analytical batch selected for spiking, add 1.0 mL of the matrix spiking standard. For base/neutral-acid analysis, the amount added of the surrogates and matrix spiking compounds should result in a final concentration of 100 ng/uL of each base/neutral analyte and 200 ng/uL of each acid analyte in the extract to be analyzed (assuming a 1 uL injection). If Method 3640, Gel-permeation cleanup, is to be used, add twice the volume of surrogates and matrix spiking compounds since half of the extract is lost due to loading of the GPC column. Immediately add 100 mL of 1:1 methylene chloride:acetone.
  - 7.4.2 Place the bottom surface of the tip of the #207 3/4 in. disruptor horn about 1/2 in. below the surface of the solvent, but above the sediment layer.
  - 7.4.3 Sonicate for 3 min, with output control knob set at 10 and with mode switch on Pulse and percent-duty cycle knob set -- 50%. Do NOT use microtip probe.

3550 - 4

- 7.4.4 Decant and filter extracts through Whatman Ho. 41 filter paper using vacuum filtration or centrifuge and decant extraction solvent.
- 7.4.5 Repeat the extraction two or more times with two additional 100-mL portions of solvent. Decant off the extraction solvent after each sonication. On the final sonication, pour the entire sample into the Buchner funnel and rinse with extraction solvent.
- 7.4.6 Assemble a Kuderna-Danish (K-D) concentrator by attaching a 10-mL concentrator tube to a 500-mL evaporative flask.
- 7.4.7 Dry the extract by passing it through a drying column containing about 10 cm of anhydrous sodium sulfate. Collect the dried extract in a K-D concentrator. Wash the extractor flask and sodium sulfate column with 100-125 mL of extraction solvent to complete the quantitative transfer.
- 7.4.8 Add one or two clean boiling chips to the evaporative flask and attach a three-ball Snyder column. Prewet the Snyder column by adding about 1 mL methylene chloride to the top. Place the K-D apparatus on a hot water bath (80-90°C) so that the concentrator tube is partially immersed in the hot water and the entire lower rounded surface of the flask is bathed with hot vapor. Adjust the vertical position of the apparatus and the water temperature, as required, to complete the concentration in 10-15 min. At the proper rate of distillation the balls of the column will actively chatter, but the chambers will not flood with condensed solvent. When the apparent volume of liquid reaches 1 mL, remove the K-D apparatus and allow it to drain and cool for at least 10 min.
- 7.4.9 If a solvent exchange is required (as indicated in Table 1), momentarily remove the Snyder column, add 50 mL of the exchange solvent and a new boiling chip, and re-attach the Snyder column. Concentrate the extract as described in Paragraph 7.4.8, raising the temperature of the water bath, if necessary, to maintain proper distillation.
- 7.4.10 Remove the Snyder column and rinse the flask and its lower joints into the concentrator tube with 1-2 mL of methylene chloride or exchange solvent. If sulfur crystals are a problem, proceed to Method 3660 for cleanup. The extract may be further concentrated by using the technique outlined in Paragraph 7.4.11 or adjusted to 10.0 mL with the solvent last used.
- 7.4.11 Add a clean boiling chip and attach a two-ball micro-Snyder column to the concentrator tube. Prewet the column by adding approximately 0.5 mL of methylene chloride or exchange solvent through the top. Place the apparatus in the hot water bath. Adjust the vertical position and the water temperature, as required, to complete the concentration in 5-10 min. At the proper rate of distillation, the balls of the column will actively chatter, but the chambers will not flood. When the liquid

3550 - 5

TABLE 1. SPECIFIC EXTRACTION CONDITIONS FOR VARIOUS DETERMINATIVE METHODS

Deceminacive method	Extraction pii	Enchange solvent required for enalysis	Exchange solvent required for cleanup	Volume of extract required for cleans (mi)	Final extract volume for analysis (ml)
නුග ^a				1-0	1.0. 10.0 ^b
	as Tacaived	2-properal	hecane	2.0	- 10.0
<b>8060</b>	as received	parcarse	hipusod	<del>-</del>	
නසා	as tackived	THE CASE OF	<b>INCOME</b>	10-5	10-0
8090	as teceived	parame .	haptane	2.0	1.0
87.00	as tecsived	DODE	ರ್ಧಲಿಂಗಾರವಾಜ	2.0	1.0
81,20	as received	hexane	hipoine	2.0	1.0
81.40	as received	becare	piscine	10-20	10.0
<b>2</b> 20	as recruived	DOME	-	• •	12
82.50 ³ , c 82.70 ³ , c	as received	none	-	•	1.0
8310	as received	ececonicrile	-	-	ı.a

To obtain separate acid and base/neutral antracts, Mathod 3650 should be performed following exponentiation of the attract to 10.0 min

3550 - 6

Priemls may be analyzed, by Marthal 8040, using a 1.4 mL 2-proposal extract by GC/FID. Mathad 8040 also contains an optional derivativation procedure for phenois which results in a 10 mL hacma extract to be analyzed by GC/FID.

The specificity of CC'MS may make cleanum of the extracts unnecessary. Refer to Mathod 3600 for guidance on the cleanum procedures available if required.

reaches an apparent volume of approximately 0.5 mL, remove the apparatus from the water bath and allow to drain and cool for at least 10 min. Remove the micro-Snyder column and rinse its lower joint into the concentrator tube with approximately 0.2 mL of appropriate solvent. Adjust the final volume to the volume required for cleanup or for the determinative method (see Table 1).

- 7.4.12 Transfer the concentrated extract to a clean-screw-cap vial. Seal the vial with a Teflon-lined lid and mark the level on the vial. Label with the sample number and fraction and store in the dark at 4°C until ready for analysis or cleanup.
- 7.5 Extraction method for samples expected to contain high concentrations of organics ()20 mg/kg):
  - 7.5.1 Transfer approximately Z g (record weight to the nearest 0.1 g) of sample to a 20-mL vial. Wipe the mouth of the vial with a tissue to remove any sample material. Record the exact weight of sample taken. Cap the vial before proceeding with the next sample to avoid any cross contamination.
  - 7.5.2 Add 2 g of anhydrous sodium sulfate to sample in the 20-mL vial and mix well.
  - 7.5.3 Surrogate standards are added to all samples, spikes, and blanks (see Method 3500 for details on the surrogate standard solution and on the matrix spike solution). Add 2.0 mL of surrogate spiking solution to sample mixture. For the sample in each analytical batch selected for spiking, add 2.0 mL of the matrix spiking standard. For base/neutral-acid analysis, the amount added of the surrogates and matrix spiking compounds should result in a final concentration of 200 ng/uL of each base/neutral analyte and 400 ng/uL of each acid analyte in the extract to be analyzed (assuming a 1 uL injection). If Method 3640, Gelpermeation cleanup, is to be used, add twice the volume of surrogates and matrix spiking compounds since half the extract is lost due to loading of the GPC column.
  - 7.5.4 Immediately add whatever volume of solvent is necessary to bring the final volume to 10.0 mL considering the added volume of surrogates and matrix spikes. Disrupt the sample with the 1/8-in. tapered microtip ultrasonic probe for 2 min at output control setting 5 and with-mode switch on pulse and percent duty cycle of 50%. Extraction solvents are:
    - Nonpolar compounds, i.e., organochlorine pesticides and PCBs: hexane.
    - 2. Extractable priority pollutants: methylene chloride.
  - 7.5.5 Loosely pack disposable Pasteur pipets with 2- to 3-cm Pyrex glass-wool plugs. Filter the extract through the glass wool and collect

3550 - 7

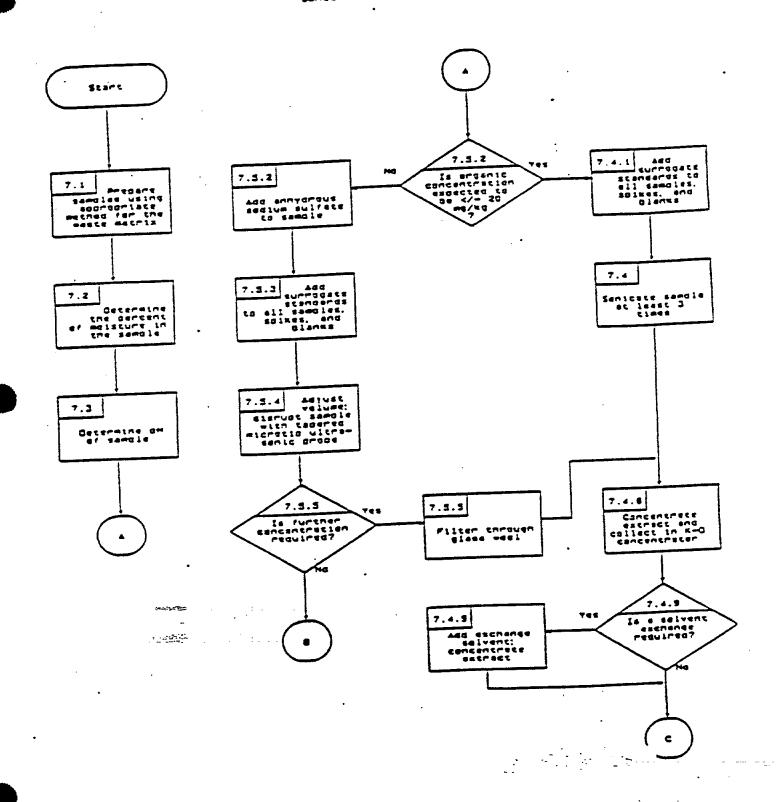
- 5.0 mL in a concentrator tube if further concentration is required. Follow Paragraphs 7.4.6 through 7.4.12 for details on concentration. Normally, the 5.0 mL extract is concentrated to 1.0 mL.
- 7.5.6 The extract is ready for cleanup or analysis, depending on the extent of interfering co-extractives.

# 8.0 QUALITY CONTROL

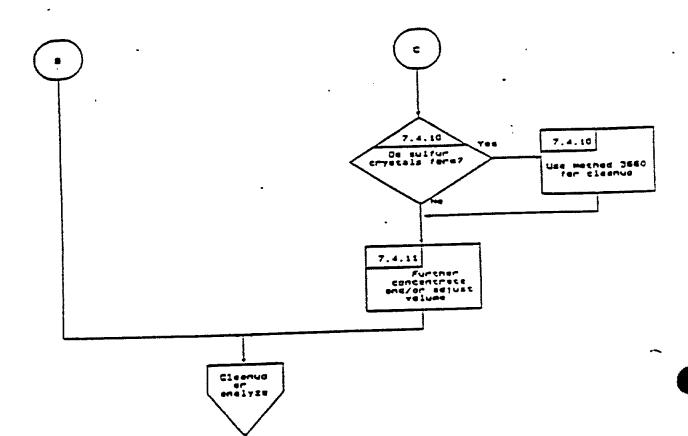
- 8.1 Any reagent blanks or matrix spike samples should be subject to exactly the same analytical procedures as those used on actual samples.
- 8.2 Refer to Chapter One for specific quality control procedures and Method 3500 for extraction and sample preparation procedures.

## 9.0 METHOD PERFORMANCE

---


9.1 Refer to the determinative methods for performance data.

## 10.0 REFERENCES


- 1. U.S. EPA 40 CFR Part 136, "Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act; Final Rule and Interim Final Rule and Proposed Rule," October 26, 1984.
- 2. U.S. EPA, Interlaboratory Comparison Study: Methods for Volatile and Semi-Volatile Compounds, Environmental Monitoring Systems Laboratory, Office of Research and Development, Las Vegas, NV, EPA 600/4-84-027, 1984.

3550 - 8

DEEE DONTEM MOITDARIES MOITAZIMOS



3550 - 9



3940024002

- چېښونو

3550 - 10

#### METHOD 8090

## NITROAROMATICS AND CYCLIC KETONES

## 1.0 SCOPE AND APPLICATION

1.1 Method 8090 is used to determine the concentration of various nitroaromatic and cyclic ketone compounds. Table 1 indicates compounds that may be determined by this method and lists the method detection limit for each compound in reagent water. Table 2 lists the practical quantitation limit (POL) for other matrices.

#### 2.0 SUMMARY OF METHOD

- 2.1 Method 8090 provides gas chromatographic conditions for the detection of ppb levels of nitroaromatic and cyclic ketone compounds. Prior to use of this method, appropriate sample extraction techniques must be used. Both neat and diluted organic liquids (Method 3580, Waste Dilution) may be analyzed by direct injection. A 2- to 5-uL aliquot of the extract is injected into a gas chromatograph (GC) using the solvent flush technique, and compounds in the GC effluent are detected by an electron capture detector (ECD) or a flame ionization detector (FID). The dinitrotoluenes are determined using ECD, whereas the other compounds amenable to this method are determined using FID.
- 2.2 If interferences prevent proper detection of the analytes, the method may also be performed on extracts that have undergone cleanup.

#### 3.0 INTERFERENCES

- 3.1 Refer to Method 3500, 3600, and 8000.
- 3.2 Solvents, reagents, glassware, and other sample-processing hardware may yield discrete artifacts and/or elevated baselines causing misinterpretation of gas chromatograms. All of these materials must be demonstrated to be free from interferences, under the conditions of the analysis, by analyzing method blanks. Specific selection of reagents and purification of solvents by distillation in all-glass systems may be required.
- 3.3 Interferences coextracted from samples will vary considerably from source to source, depending upon the waste being sampled. Although general cleanup techniques are recommended as part of this method, unique samples may require additional cleanup.

8090 - 1 AR300675

TABLE 1. GAS CHROMATCGRAPHY OF NITROAROMATICS AND ISOPHORONE

٠	Retention	time (min)	Method detection limit (ug/L)	
Compound	Col. 1ª	Col. 2 ^b	ECD	FID
Isophorone Nitrobenzene 2,4-0initrotoluene 2.6-0initrotoluene Dinitrobenzene Naphthoquinone	4.49 3.31 5.35 3.52	5.72 4.31 6.54 4.75	15.7 13.7 0.02: 0.01	5.7 3.6

aColumn 1: Gas-Chrom Q (80/100 mesh) coated with 1.95% QF-1/1.5% OV-17 packed in a 1.2-m x 2-mm or 4-mm I.D. glass column. A 2-mm I.D. column and nitrogen gas at 44 mL/min flow rate were used when determining isophorone and nitrobenzene by GC/FID. The column temperature was held isothermal at 85°C. A 4-mm I.D. column and 10% methane/90% argon carrier gas at 44 mL/min flow rate were used when determining the dinitrotoluenes by GC/ECD. The column temperature was held isothermal at 145°C.

bColumn 2: Gas-Chrom Q (80/100 mesh) coated with 3% OV-101 packed in a 3.0-mm x 2-mm or 4-mm I.D. glass column. A 2-mm I.D. column and nitrogen carrier gas at 44 mL/min flow rate were used when determining isophorone and nitrobenzene by GC/FID. The column temperature was held isothermal at 100°C. A 4-mm I.D. column and 10% methane/90% argon carrier gas at 44 mL/min flow rate were used to determine the dinitrotoluenes by GC/ECD. The column temperature was held isothermal at 150°C.

TABLE 2. DETERMINATION OF PRACTICAL QUANTITATION LIMITS (PQL) FOR VARIOUS MATRICES^a

Matrix		- Factorb	
a mycereter.			
Ground water	•	10	
Low-level soil by sonication w	rith GPC cleanup	670	
High-level soil and sludges by	sonication	10.000	
Non-water miscible waste		100,000	

*Sample PQLs are highly matrix-dependent. The PQLs listed herein are provided for guidance and may not always be achievable.

bMultiply the Method Detection Limits in Table of determine the PQL for each analyte in the matrix to the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

8090 - 2

#### 4.0 APPARATUS AND MATERIALS

## 4.1 Gas chromatograph:

4.1.1 Gas chromatograph: Analytical system complete with gas chromatograph suitable for on-column injections and all required accessories, including detectors, column supplies, recorder, gases, and syringes. A data system for measuring peak areas and/or peak heights is recommended.

# 4.1.2 Columns:

- 4.1.2.1 Column 1: 1.2-m x 2- or 4-mm I.D. glass column packed with 1.95% QF-1/1.5% QV-17 on Gas-Chrom Q (80/100 mesh) or equivalent.
- 4.1.2.2 Column 2: 3.0-m x 2- or 4-mm I.D. glass column packed with 3% OV-101 on Gas-Chrom Q (80/100 mesh) or equivalent.
- 4.1.3 Detectors: Flame ionization (FID) or electron capture (ECD).

## 4.2 Kuderna-Danish (K-D) apparatus:

- 4.2.1 Concentrator tube: 10-mL, graduated (Kontes K-570050-1025 or equivalent). Ground-glass stopper is used to prevent evaporation of extracts
- 4.2.2 Evaporation flask: 500-mL (Kontes K-570001-500 or equivalent). Attach to concentrator tube with springs.
- 4.2.3 Snyder column: Three-ball macro (Kontes K-503000-0121 or equivalent).
- 4.2.4 Snyder column: Two-ball micro (Kontes K-569001-0219 or equivalent).
- 4.3 <u>Boiling chios</u>: Solvent extracted, approximately 10/40 mesh (silicon carbide or equivalent).
- 4.4 <u>Water bath</u>: Heated, with concentric ring cover, capable of temperature control (±5°C). The bath should be used in a hood.
  - 4.5 Volumetric flasks: 10-, 50-, and 100-mL, ground-glass stopper.
  - 4.6 Microsyringe: 10-uL.
  - 4.7 Syringe: 5-mL.
- 4.8 <u>Vials</u>: Glass, 2-, 10-, and 20-mL capacity with Teflon-lined screw cap.

8090 - 3

#### 5.0 REAGENTS

- 5.1 Solvents: hexane, acetone (pesticide quality or equivalent.)
- 5.2 Stock standard solutions:
- 5.2.1 Prepare stock standard solutions at a concentration of 1.00 ug/uL by dissolving 0.0100 g of assayed reference material in hexane and diluting to volume in a 10-mL volumetric flask. Larger volumes can be used at the convenience of the analyst. When compound purity is assayed to be 96% or greater, the weight can be used without correction to calculate the concentration of the stock standard. Commercially prepared stock standards can be used at any concentration if they are certified by the manufacturer or by an independent source.
- 5.2.2 Transfer the stock standard solutions into Teflon-sealed screw-cap bottles. Store at 4°C and protect from light. Stock standards should be checked frequently for signs of degradation or evaporation, especially just prior to preparing calibration standards from them.
- 5.2.3 Stock standard solutions must be replaced after one year, or sooner if comparison with check standards indicates a problem.
- 5.3 <u>Calibration standards</u>: Calibration standards at a minimum of five concentration levels are prepared through dilution of the stock standards with hexane. One of the concentration levels should be at a concentration near, but above, the method detection limit. The remaining concentration levels should correspond to the expected range of concentrations found in real samples or should define the working range of the GC. Calibration solutions must be replaced after six months, or sooner if comparison with a check standard indicates a problem.
- 5.4 <u>Internal standards (if internal standard calibration is used)</u>: To use this approach, the analyst must select one or more internal standards that are similar in analytical behavior to the compounds of interest. The analyst must further demonstrate that the measurement of the internal standard is not affected by method or matrix interferences. Because of these limitations, no internal standard can be suggested that is applicable to all samples.
  - 5.4.1 Prepare calibration standards at a minimum of five concentration levels for each parameter of interest as described in Paragraph 5.3.
  - 5.4.2 To each calibration standard, add a known constant amount of one or more internal standards, and dilute to volume with hexane.
    - 5.4.3 Analyze each calibration standard according to Section 7.0.
- 5.5 <u>Surrogate standards</u>: The analyst should monitor the performance of the extraction, cleanup (when used), and analytical system and the effectiveness of the method in dealing with each sample matrix by spiking each

sample, standard, and reagent water blank with one or two surrogates (e.g., 2-fluorobiphenyl) recommended to encompass the range of the temperature program used in this method. Method 3500, Section 5.3.1.1, details instructions on the preparation of base/neutral surrogates. Deuterated analogs of analytes should not be used as surrogates for gas chromatographic analysis due to coelution problems.

## 6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 See the introductory material to this chapter, Organic Analytes, Section 4.1. Extracts must be stored under refrigeration and analyzed within 40 days of extraction.

#### 7.0 PROCEDURE

### 7.1 Extraction:

- 7.1.1 Refer to Chapter Two for guidance on choosing the appropriate extraction procedure. In general, water samples are extracted at a pH between 5 to 9 with methylene chloride, using either Method 3510 or 3520. Solid samples are extracted using either Method 3540 or 3550.
- 7.1.2 Prior to gas chromatographic analysis, the extraction solvent must be exchanged to hexane. The exchange is performed during the K-O procedures listed in all of the extraction methods. The exchange may be performed in one of two ways, depending on the data requirements. If the detection limits cited in Table 1 must be achieved, the exchange should be performed as described starting in Section 7.1.4. If these detection limits are not necessary, solvent exchange is performed as outlined in Section 7.1.3.
- 7.1.3 Solvent exchange when detection limits in Table 1 are not required:
  - 7.1.3.1 Following K-D of the methylene chloride extract to, 1 mL using the macro-Snyder column, allow the apparatus to cool and drain for at least 10 min.

at this point, depending on whether or not cleanup is needed. If cleanup is not required, proceed to Paragraph 7.1.3.3. If cleanup is needed, proceed to Paragraph 7.1.3.4.

- 7.1.3.3 If cleanup of the extract is not required, remove the Snyder column and rinse the flask and its lower joint into the concentrator tube with 1-2 mL of hexane. A .5-mL syringe is recommended for this operation. Adjust the extract volume to 10.0 mL. Stopper the concentrator tube and store refrigerated at 4°C if further processing will not be performed immediately. If the extract will be stored longer than two days, it should be transferred to a Teflon-sealed screw-cap vial. Proceed with gas chromatographic analysis.
- 7.1.3.4 If cleanup of the extract is required, remove the Snyder column and rinse the flask and its lower joint into the concentrator tabe with a minimum amount of hexane. A 5-mL syringe is recommended for this operation. Add a clean boiling chip to the concentrator tube and attach a two-ball micro-Snyder column. Prewet the column by adding about 0.5 mL of hexane to the top. Place the micro-K-D apparatus on the water bath (80°C) so that the concentrator tube is partially immersed in the hot water. Adjust the vertical position of the apparatus and the water temperature, as required, to complete concentration in 5-10 min. At the proper rate of distillation the balls of the column will actively chatter, but the chambers will not flood. When the apparent volume of liquid reaches 0.5 mL, remove the K-D apparatus and allow it to drain and cool for at least 10 min.
- 7.1.3.5 Remove the micro-Snyder column and rinse the flask and its lower joint into the concentrator tube with 0.2 mL of hexane. Adjust the extract volume to 2.0 mL and proceed with Method 3620.
- 7.1.4 Solvent exchange when detection limits listed in Table 1 must be achieved:
  - 7.1.4.1 Following K-O of the methylene chloride extract to 1 mL using the macro-Snyder column, allow the apparatus to cool and drain for at least 10 min.
  - 7.1.4.2 Remove the Snyder column and rinse the flask and its lower-joint into the concentrator tube with 1-2 mL of methylene chloride. A 5-mL syringe is recommended for this operation. Add 1-2 mL of hexane, a clean boiling chip, and attach a two-ball micro-Snyder column. Prewet the column by adding 0.5 mL of hexane to the top. Place the micro-K-O apparatus on the water bath (60-65°C) so that the concentrator tube is partially immersed in the hot water. Adjust the vertical position of the apparatus and the water temperature, as required, to complete concentration in 5-10 min. At the proper rate of distillation the balls of the actively chatter, but the chambers will not flood. apparent volume of liquid reaches 0.5 mL, remove the K-O apparatus and allow it to drain and cool for at least 10 min.

- 7.1.4.3 Remove the micro-Snyder column and rinse the flask and its lower joint into the concentrator tube with a minimum amount of hexane. The volume of the extract should be adjusted to 1.0 mL if the extract will be analyzed without cleanup. If the extract will require cleanup, adjust the volume to 2.0 mL with hexane. Stopper the concentrator tube and store refrigerated at 4°C if further processing will not be performed immediately. If the extract will be stored longer than two days, it should be transferred to a Teflon-sealed screw-cap vial. Proceed with either gas chromatographic analysis or with cleanup, as necessary.
- 7.2 <u>Gas chromatography conditions (Recommended)</u>: The determination of dinitrotoluenes should be performed using GC/ECD. All other compounds amenable to this method are to be analyzed by GC/FID.
  - 7.2.1 Column 1: Set 10% methane/90% argon carrier gas flow at 44 mL/min flow rate. For a 2-mm I.D. column, set the temperature at 85°C isothermal. For a 4-mm I.D. column, set the temperature at 145°C isothermal.
  - 7.2.2 Column 2: Set 10% methane/90% argon carrier gas flow at 44 mL/min flow rate. For a 2-mm I.D. column, set the temperature at 100°C isothermal. For a 4-mm I.D. column, set the temperature at 150°C isothermal.
- 7.3 <u>Calibration</u>: Refer to Method 8000 for proper calibration techniques. Use Table 1 and especially Table 2 for guidance on selecting the lowest point on the calibration curve.
  - 7.3.1 The procedure for internal or external standard calibration may be used. Refer to Method 8000 for a description of each of these procedures.
  - 7.3.4 If cleanup is performed on the samples, the analyst should process a series of standards through the cleanup procedure and then analyze the samples by GC. This will confirm elution patterns and the absence of interferents from the reagents.

# 7.4 Gas chromatographic analysis:

- 7.4.1 Refer to Method 8000. If the internal standard calibration technique is used, add 10 uL of internal standard to the sample prior to injection.
- 7.4.2 Follow Section 7.6 in Method 8000 for instructions on the analysis sequence, appropriate dilutions, establishing daily retention time windows, and identification criteria. Include a mid-level standard after each group of 10 samples in the analysis sequence when using FID and after each group of 5 samples in the analysis.

AR300681

- 7.4.3 An example of a GC/FID chromatogram for nitrobenzene and isophorone is shown in Figure 1. Figure 2 is an example of a GC/ECD chromatogram of the dinitrotoluenes.
- 7.4.4 Record the sample volume injected and the resulting peak sizes (in area units or peak heights).
- 7.4.5 Using either the internal or external calibration procedure (Method 8000), determine the identity and quantity of each analyte peak in the sample chromatogram. See Section 7.8 of Method 8000 for calculation equations.
- 7.4.6 If peak detection and identification are prevented due to interferences, the hexane extract may undergo cleanup using Method 3620.

## 7.5 Cleanup:

- 7.5.1 Proceed with Method 3620, using the 2-mL hexane extracts obtained from either Paragraph 7.1.3.5 or 7.1.4.3.
- 7.5.2 Following cleanup, the extracts should be analyzed by GC, as described in the previous paragraphs and in Method 8000.

#### 8.0 QUALITY CONTROL

- 8.1 Refer to Chapter One for specific quality control procedures. Quality control to validate sample extraction is covered in Method 3500 and in the extraction method utilized. If extract cleanup was performed, follow the QC in Method 3600 and in the specific cleanup method.
- 8.2 Procedures to check the GC system operation are found in Method 8000, Section 8.6.
  - 8.2.1 The quality control check sample concentrate (Method 8000, Section 8.6) should contain each parameter of interest in acetone at a concentration of 20 ug/mL for each dimitrotoluene and 100 ug/mL for isophorone and nitrobenzene.
  - 8.202 Table 3 indicates the calibration and QC acceptance criteria for this method. Table 4 gives method accuracy and precision as functions of concentration for the analytes of interest. The contents of both Tables should be used to evaluate a laboratory's ability to perform and generate acceptable data by this method.
- 8.3 Calculate surrogate standard recovery on all samples, blanks, and spikes. Determine if the recovery is within limits (limits established by performing QC procedures outlined in Method 8000, Section 8.10).

COLUMN: 1.5% 0Y-17 +1.35% CF-1 ON CAS CHROM C

TEMPERATURE: 85°C.

DETECTOR: FLAME IONIZATION

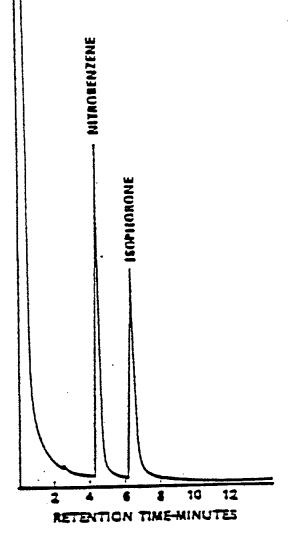



Figure 1. Gas chromatogram of nitrobenzene and isophorone.

AR300683

Revision 0 Date September 1986

COLUMN: 1.5% OV-17 +1.35% CF-1 ON GAS CHROM Q TEMPERATURE 145°C. DETECTOR: ELECTRON CAPTURE RETENTION TIME-MINUTES

Figure 2. Gas chromatogram of diniurotoluenes.

8090 - 10

AR300684

Revision 0 Date September 1986

- 8.3.1 If recovery is not within limits, the following is required.
  - Check to be sure there are no errors in calculations, surrogate solutions and internal standards. Also, check instrument performance.
  - Recalculate the data and/or reanalyze the extract if any of the above checks reveal a problem.
  - Reextract and reanalyze the sample if none of the above are a problem or flag the data as "estimated concentration."

#### 9.0 METHOD PERFORMANCE

- 9.1 The method was tested by 18 laboratories using reagent water, drinking water, surface water, and three industrial wastewaters spiked at six concentrations over the range 1.0 to 515 ug/L. Single operator precision, overall precision, and method accuracy were found to be directly related to the concentration of the parameter and essentially independent of the sample matrix. Linear equations to describe these relationships for a flame ionization detector are presented in Table 4.
- 9.2 The accuracy and precision obtained will be determined by the sample matrix, sample-preparation technique, and calibration procedures used.

#### 10.0 REFERENCES

- 1. *Development and Application of Test Procedures for Specific Organic Toxic Substances in Wastewaters. Category 4 Nitroaromatics and Isophorone, Report for EPA Contract 68-03-2524 (in preparation).
- 2. *Determination of Nitroaromatics and Isophorone in Industrial and Municipal Wastewaters,* EPA-600/4-82-024, U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268, June 1982. —
- 3. Burke, J.A..... "Gas Chromatography for Pesticide Residue Analysis: Some Practical Aspects," Journal of the Association of Official Analytical Chemists, 48, 1037, 1965.
- 4. "EPA Method Validation Study 19, Method 609 (Nitroaromatics and Isophorone)," Report for EPA Contract 68-03-2624 (in preparation).
- 5. U.S. EPA 40 CFR Part 136, "Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act; Final Rule and Interim Final Rule and Proposed Rule," October 26, 1984.
- 6. Provost, L.P. and R.S. Elder. "Interpretation of Percent Re American Laboratory, <u>15</u>, pp. 58-63, 1983.

TABLE 3. QC ACCEPTANCE CRITERIAª

Test conc. (ug/L)	Limit for s (ug/L)	Range for X	Range P, Ps (%)
20 20 100 100	5.1 4.8 32.3 33.3	3.6-22.8 3.8-23.0 8.0-100.0	6-125 8-125 0-117
	conc. (ug/L) 20 20	cone. (ug/L) for s (ug/L)  20 5.1 20 4.8 100 32.3	conc. for s for X (ug/L) (ug/L)  20 5.1 3.6-22.8 20 4.8 3.8-23.0 100 32.3 8 0-100.0

- s = Standard deviation of four recovery measurements, in ug/L.
- X = Average recovery for four recovery measurements, in ug/L.
- P, Ps = Percent recovery measured...
- D = Detected; result must be greater than zero.

aCriteria from 40 CFR Part 136 for Method 609. These criteria are based directly upon the method performance data in Table 4. Where necessary, the limits for recovery have been broadened to assure applicability of the limits to concentrations below those used to develop Table 4.

8090 - 12

Revision Date September

AR300686

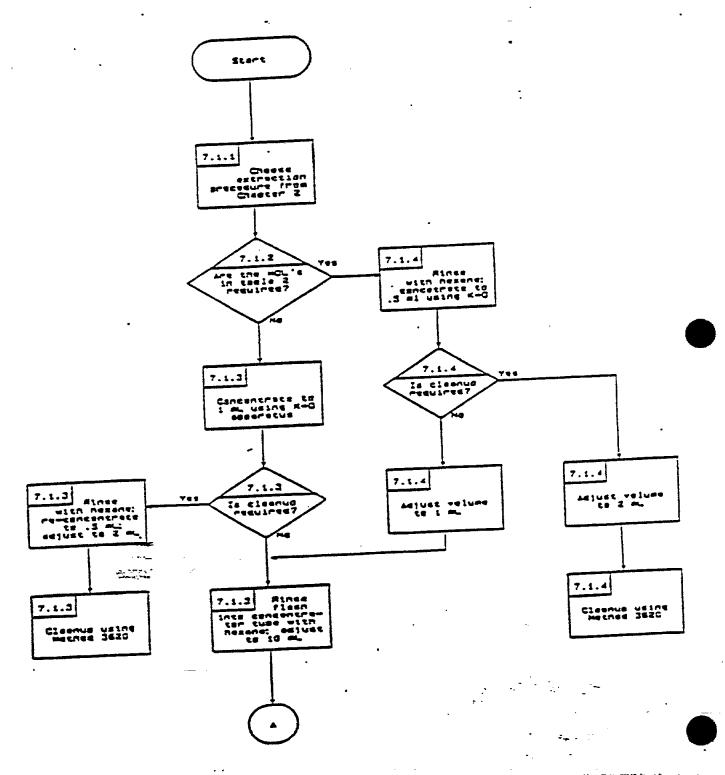
TABLE 4. METHOD ACCURACY AND PRECISION AS FUNCTIONS OF CONCENTRATION

Parameter	Accuracy, as recovery, x' (ug/L)	Single analyst precision, sr' (ug/L)	Overall precision, S' (ug/L)
2.4-Dinitrotoluene	0.65C+0.22	0.20x+0.08	0.37x-0.07
2.4-Dinitrotoluene	0.66C+0.20	0.19X+0.06	0.36X-0.00
Isophorene	0.49C+2.93	0.28X+2.77	0.46x + 0.31
Ni trobenzene	0.60C+2.00	0.25X+2.53	0.37x - 0.78

x' = Expected recovery for one or more measurements of a sample containing a concentration of C, in ug/L.

8090 - 13

Revision 0
Date September 1986


 $s_r' = \text{Expected single analyst standard deviation of measurements at an average concentration of X, in ug/L.}$ 

S' = Expected interlaboratory standard deviation of measurements at an average concentration found of X, in ug/L.

C * True value for the concentration, in ug/L.

Average recovery found for measurements of samples containing a concentration of C, in ug/L.

# METHOD GODD HETHOLOGICAL KETOHES



8090 - 14 AR300688

Revision 0 Date September 1986

#### METHOD BOSO MITROARDHATICS AND CYCLIC METOMES (CARLINGS)



8090 - 15

AR300689

Revision 0 Date September 1986

#### CASE NARRATIVE

**FOR** 

U.S. EPA SAS 5165-C-01 TASK I

PROJECT # 500109.503

#### SEMI-VOLATILES

SAS 5165-Task I was received in two shipments. The first was received on 1/9/90, and it consisted of seven soil samples and one water sample. The second shipment was received on 1/11/90, and it consisted of two soil samples and one water sample. These samples were assigned a PACE project number (500109.503). Each sample was assigned a unique PACE sample number for laboratory tracking purposes. After these samples were logged in they were immediately refrigerated in the PACE refrigerator R4. The samples remained there until sample extraction was started.

These samples were submitted for the analysis of nitrobenzene and metachloronitrobenzene. This analysis was to be performed utilizing EPA Method 8090 with the flame ionization detector. A surrogate standard of 2-fluorobiphenyl was to be added to all standards and samples. Standards for this analysis were obtained by PACE from reputable vendors. These vendors were the EPA Repository, Kodak, and Chem Service. Stock standards were prepared on 1/10/90. From these stock standards, working standards were prepared, as were the surrogate spiking solution, and the matrix spike solutions. These standards were evaluated on the GC before the samples were extracted.

The water samples were extracted on 1/12/90. The methodology for the water extraction was EPA Method 3510. A reagent blank, and a QC check sample were extracted along with the two water samples submitted for analysis. One liter of water was extracted, and concentrated to a ten milliliter final volume. Sample 5165-C-08-Task I contained only 987 milliliters of sample. This volume was used for the 3510 extraction.

The soil samples were extracted on 1/13/90. The methodology used for the soil extractions was EPA Method 3550, sonication of solid samples. A reagent blank, a sample duplicate, and a matrix spike were extracted along with the other soil samples. After reviewing the chain of custody form, it was noticed that a matrix spike duplicate was to be analyzed. The matrix spike duplicate, along with another soil reagent blank was extracted on 1/15/90. Sample concentration was performed using the K/D apparatus, followed by a micro-Snyder column, as is specified in EPA Method 8090. A moisture determination was performed simultaneously with the soil sample extractions. Thirty grams of soil was extracted, and concentrated to a final volume of two milliliters.

Gas chromatographic analysis was performed with a Perkin Elmer Sigma 2000 gas chromatograph, and quantitation was performed with a flame ionization detector. The GC column used for the primary analysis was a 1.5% SP-2250 & 1.95% SP-2401 on 100/120 Supelcoport. The column dimensions were 6 foot by 4mm I.D., glass. The carrier gas was helium, and the flow was 50 ml/minute. The GC oven was set at 110 degrees Centigrade for twenty minutes. For the soil samples, a temperature program was employed to ensure the passage of heavier components through the column. This program was not started until after 2-fluorobiphenyl (the last peak of interest) had eluted from the column.

Two primary analyses were required for this project. The first was the primary analysis for the water samples. This analysis was performed on 1/15/90. The second was the primary analysis for the soils. This analysis was performed from 1/16/90 to 1/18/90. Daily five point calibration were ran during each twenty-four hour period included in the run. A calibration standard was analyzed after ten sample injections. This standard was the mid-level standard. In all instances, the initial five point calibration was used for quantitation. Other daily calibrations were compared to the initial, and if the average calibration factor was within twenty percent difference of the initial, the initial was used for quantitation. There were no problems with the water primary analysis. The two water samples submitted for analysis did not require confirmation.

The primary analyses of the soil samples were not so smooth. Many of the samples showed positive hits for nitrobenzene and metachloronitrobenzene. Some of these hits were extremely high and required dilutions. These samples included: 5165-C-04, 5165-C-05, 5165-C-07, 5165-C-09, and 5165-C-11. The primary analysis were within the retention time windows developed for that day. Another problem with the primary analysis was that the amount of 2-fluorobiphenyl in some of the samples was 5 to 50 times higher than the amount added. This could be explained by an interfering peak. Sample cleanup was considered at this point, but it was not done. There were two reasons why cleanup was not done. One was that if there were high amounts of nitrobenzene in the samples, the surrogate data would be useless due to sample dilution. The second reason was that a fourteen day analysis time had been specified in the contract agreement. Most of the samples had been collected on 1/4/90. The soil primary run was not complete until 1/18/90, fourteen days from sample collection for most of the samples. At this point it was decided that sample cleanup would not be done. It was decided to go ahead and confirm the samples. The primary analysis of all samples was completed within fourteen days of the sample collection date.

The confirmation analysis was completed using the same GC (Perkin Elmer Sigma 2000). The GC column used for the confirmation run was a 3% SP-2100 on 100/120 Supelcoport. The column dimensions were 6 foot by 2mm I.D.. The carrier was helium, and the flow was 30 ml/minute. The oven temperature was 115 degrees Centigrade, and it was held isothermal for twenty-two minutes. A temperature program was included for the analysis of the soils to eliminate the chance of heavier components interfering with the next chromatograph. Two confirmation runs were required for the samples. The first confirm run included the water samples, and some of the cleaner soil samples. The second confirm analysis was for the soils with high amounts of nitrobenzene. Most of the samples did not confirm for nitrobenzene.

The samples which had high peaks in the primary, also had similiar peaks in the confirm analysis. A comparison of the primary analyses to the confirm analysis revealed that the large peaks found in the primary analyses were also in the confirm analysis. The retention times were different then those of the components of interest. Some of the samples had to be analyzed at a 1/10 dilution. This was due to the high amounts of interferences found in the samples. Two samples were positive for nitrobenzene, sample 5165-C-05, and 5165-C-09. The retention time window had to be opened for 5165-C-05, but only by 0.004 minutes. Sample 5165-C-07 showed a positive value for nitrobenzene, but it was falsely high due to a bunching factor. This sample is a less than, and is reported as such.

Metachloronitrobenzene is a problem component in this analysis. Most of the samples showed positive for it during the primary analysis. However, the confirmation for metachloronitrobenzene did not agree with the primary analysis. It appears as if the primary analysis had an interference, and that this peak shifted away from metachloronitrobenzene in the confirmation analysis. Another peak took it's place in the confirmation analysis, but it eluted before metachloronitrobenzene. This peak is just outside the retention time window for metachloronitrobenzene in the confirm run. The interference peak is large, and interferes with the identification of metachloronitrobenzene. Samples 5165-C-04, 5165-C-05, 5165-C-06, and 5165-C-07 are all affected by this interference. The PQL for these samples was figured by calculating the amount found in the primary analysis, and adjusting the PQL slightly above this value, assuming that metachloronitrobenzene was the peak in question. The contaminant in the primary is of a lower concentration than the contaminant in the confirm analysis. Once again, a cleanup might have solved this problem, but there was no time to conduct a cleanup, and meet the fourteen day analysis requirement stated in the contract. Another factor was the primary analysis indicated high levels of nitrobenzene.

No surrogate data was available for a number of the soil samples. This was because a peak interfered with 2-fluorobiphenyl in the primary and in the confirm analytical runs. These were noted on the Surrogate Recovery Form. I might add that the surrogate spike level for this contract was extremely low compared to other methods. The value of the surrogate spike was three times lower than the CRQL. This low surrogate spike forced the elution of nitrobenzene to occur on the solvent front. Also included in this report were the Method Blank Summary, the MS/MSD Summary, and the results of the QC Check sample required for this contract.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee as verified by the following signature."

Don Wright

Project Officer February 26, 1990

DCW14/et



## Appendix H

Support Documentation - Task II

# External Callb Check

Page Laboratories, Inc. (

Instrument. ID: A

SAS # 5185-0.

GC Column ID: <u>DB1701</u>

Dates of Analyses: 00-33-40 to

01-24-40

ರಂಗಾರಂಭಗರ	Average Initial Calib	Calib Factor Referance	מא
123 trichlorocenzene	334.3		<u>ن.۶۷</u> و
124 tricalorcosaceae	347.0	347.6	0%
135 trichlorobenzone	यया.७	451.6	3.3%
1235 tetrachlorocenzene	737.9	<u> 525.3</u>	(44,4)
pentachlorobenzena	1037.4	<u> 1314.9</u>	1440
1234 tetrachloredenzene	<u> 551.5</u>	934.1	(5/1/2)
hexachlorobenzene	15744	j~31.4	9.5%

## External Calib Check

Paco Laboratories, Inc.

SAS # 5185-0

Instrument. ID: A

GC: Column ID: <u>DB</u>218

Dates of Analyses: 12-08-40 to

C3-08~0

1
nce %D
5!69_
٢ (41.99)
9 19.2%
3 (799)
(32%)
5.6%
9 53%

## Standards Summary

Pace Laboratories, Inc	P	ac	2	٠	ab	or	a	t	or	i	es.	•	In	,=	
------------------------	---	----	---	---	----	----	---	---	----	---	-----	---	----	----	--

SAS # 5165-C

Instrument ID: 🔔 💮 😁

GC Column ID: PR 210

	Analy	sis s) of	To _ From _	12-66-40 12-36	Date Time			1-0 <b>\$</b> -90 4-27-	
compound	RT	From	lindow   To	Calib. Factor	RT	Calib. Factor	QNT	1	
123 trichloropensene	13 42	1 5 43	12,312	553.1	13.91	(41.0	N	14.4%	
124 trichlorobenzene	ي اين.وا	.8,52	95	4433	14.00	5.28.9	7	13.0%	
135 trichlorobenzene	12 63	12 63	1216	=9.3.1	17.62	390.3	l N	12.3%	
2-chloronaphthalene	73.4	33.34	23.44	24.25	-23.39	27,94	17	16.276	
1235 tetrachlorobenzene	- ∹कसर्	19.57	·4.0.3	12027	19:91	1=424	~	11.3%	
pentachlorobenzene .	]u .5 <i>5</i>	.34.51	74.94	3262.7	74.85	3 <b>5</b> ₹3,4	19	14:676	
1234 tetrachlorobenzene	21-33	11.93	31.43	9.71s.C	21.36	1.135.9		(22.75)	
hexachlorobenzene	. ५ <u>५ १</u> ५	29.01	29.17 19	3354. <b>5</b>	29.05	471,50		33.6%	

Lab Name: Page falmating, in Contract: 68-48-0019

Lab Code: PACE Case No.: ____ SAS No.: 5165-C SDG No.:

Level: (low/med) / ww

•			·
•.	EPA	S1	OTHER
	SAMPLE NO.		· • • • • • • • • • • • • • • • • • • •
	SAMPLE NO.	(2CN) #	
• • •			
51656-01 01	しじかる	93.8%	
51650-05 02	1:5-5	45 640	
<del>=</del> 163 =		83.3%	
5-185 C - 0 / U4 1	105-3	107.9Wo	
~,, << -09 U21	(2-1	470	1
5165 C-09 Dup. 06	C7 - 1 ULS.	(72.4 +	
5163 ( 07 ) 07	Cs - 3	10.3	
-, Lac - 11 ma 001	C3-2745	16.3 -4)	!
51656-11m5009	CB-7 MSD	£3. 4	[
101	231K	52.3	
-115-C-07 111	25-3	31.2	
7 1 4 2 '			
5-1650-03 12	1~ S - ?	75:3	
5456-04 131	W5-0	70.4	
. 141	1		i
15	·		<del></del> }
16	<del></del>		:
•	!	!	!
. 171		].	
18	1		
191		i	j
201	;		;
, 21	i.		!
· · · · · · · · · · · · · · · · · · ·		!.	
22 _			
23 [.		· · · · · · · · · · · · · · · · · · ·	1
241	i -	i-	
. 25		<del></del> ¦-	·
	!-	!-	!
27 _			
		i .	
291		; -	i
30!	i -		
	I _		

51 (2CN) = 2-CHLORONAPHTHALENE

30-115

- # Column to be used to flag recovery values
- * Values outside of QC limits
- D Surrogates diluted out

1) ac limit which was listed in 2-fluero bipheny/ in the SAS.

2-chloronaphthalene used instead.

ORM II PEST-2 See Case Warrative. 1/87 Rev

page 1 of 1

AR300698

## 3F . SOIL PESTICIDE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

ab Name: /2 a hijorati	rus	Contract: 1,3 (1)3 core
ab Code: <u>P.s.</u>	Case No.:	SAS No.: 5-65-C SDG No.:
atrim Spike - EPA	Sample No.: <u>5/6</u> 5	Level: (Yoy/med)

COMPOUND	SPIKE   ADDED   (ug/Kg)	SAMPLE  CONCENTRATION   (UG/KG)	MS   CONCENTRATION   (Ug/Kg)	MS % REC #	QC  LIMITS   REC.
123 trichlorocenzene	17/4a/Ka	2300 nelku	1800 un Ka	=====	=====   46-127
124 trichloropenzene	124 walka	ar occurr	عدم وعد مع الان		35-130
135 trichloropenzone	172.01.0	97 NO	"To.cocunita		34 \132
1235 terrachiorabentaña	LI giz.	· 5 300 uni (2	= 200 H2154		31-134
dentachierebenzene .	174,000	23ccmien	7,00 .4123		142-139
1234 tetrachloropentene	. = 712.44	== 000 ng 15 1	EDIDOCUALSA		123-134
hexachloropensene	7: 4 ne 1 kg	.000 cais.	=VOUGIT 4		<u> </u>

1) Should be 70% - 130% as stated in scape of work. ARC 3-8-90

COMPOUND	SPIKE   ADDED   (ug/Kg)	MSD  CONCENTRATION   (ug/Kg)	MSD * REC #	\	QC LIMITS   RPD   REC.
123 trichlorobenzene	17thate	3300 ualka			≈ <del>53</del>   16-127
124 trichloropenzene	/ Tugciku	110.000 W4 1Kg			135-130
105 trichloropenzene	1734a4Kj	· 30,000 usika			34 7132
1235 tetrachlorobenzene	1744 40 143	· 3.MOyelka			20 <del>33</del>   31-134
pentachiorobenzene	17449 71	1400 marka	·		25 45   42-1\09
1234 tetrachiorobenzene	17344Ki	155,000 walka			25 50  23-134
hexachlorobenzene ·	11.444150	a 20 ua l Ka			ii\
					100 3-9-90

# Column to be used- to flag recovery and RPD values with an asterisk

			1 1 2 4 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		*
*	Values	outside	of	QC	limits

1) should be 70%-130%.

Stated in scape of

Work. ARC 2-8-90

RPD: __out of __outside limits
Spike Recovery: __out of __outside limits

COMMENTS: 12 Commissione sol coloredated since the amounts or their witer insignificant solor compounts to the amounts already for

AR300699

FORM III PEST-2

#### DUPLICATE SUMMARY

			•
: compound	Concentratio Units ug/Kg cb-1 (5165C-09)	Concentratio Units ug/Kg	RPO
123 trichlorobenzene	< 360 ualka	: <360 u a   Ko	11:40 - CT-CT-CT-CT-CT-CT-CT-CT-CT-CT-CT-CT-CT-C
124 trichlorobenzene	+ 10.000 walke	730,000401kg	1.4%
135 trichlorobenzene	21.cccua Ka	24.000 ug/kg	13%
1235 tetrachlorobenzene	55. Coualty	=. 53.000 yalka	3,1%
pentachlorobenzene	3000 unlkg	24/00 ug/Kij	12.5%
1234 tetrachlorobenzene	95,500un/kg -	si,000 ualta	14.5%
hexachlorobenzene	. <u>4360 ualka</u> :	: <360ug1k4	İ
	·		

EFA Sample #	
DBLK I	,

Pace Laboratories, Inc.	SAS # 5165-C
Matrix: ich	Lab Sample ID mak Hoc or HI190
Sample wt/vol: rooms	Date Received
Level: Lau	Date Extracted country
% Moisture:	Dry Weight
Extraction Type	PH
Instrument ID: A	GC Column ID: <u>D6/701</u>

compound	Concentratio Units (ug/L or ug/Kg) uguk	Final Extract Volume
.123 trichlorobenzene .	<u> ۷.۹. ، ۹.۹</u>	/C14l
124 trichlorobenzene	< 9.9 ugis	17 M
135 trichlorobenzene	< 9.9 wall	/öms
1235 tetrachlorobenzene	< 9.9 valo	
pentachlorobenzene	عام <u>نما</u> ه	
1234 tetrachlorobenzene	<u> </u>	
hexachlorobenzene	ر <u>۹.۹ پيها</u>	

			;
EPA	Sample	#	1
<u> </u>	BLK 2		;
			:

Pace Laboratories, Inc.	SAS # 5165-C
Matrix: Sail	Lab Sample ID mark sell oil 1619
Sample wtyvol: 19.943	Date Received
Level: <u>low</u>	Date Extracted ochogo
% Moisture:	Dry Weight
Extraction Type _ Sixe.	PH/ɔ-l
Instrument ID:	GC Column ID: <u>DB/∓01</u>

combonuá	Concentratio Units (ug/L or ug/Kg)  wg/Kq	Final Extract Volume
123 trichlorobenzene	<330 usika	/Cn(
124 trichlorobenzene.	<330ug1Kg	/C)#{
135 trichlorobenzene	≤330.0gikg	10m0
1235 tetrachlorobenzene	< 330 ug 1kg	1000
pentachlorobenzene	<330 ug/Kg	
1234 tetrachlorobenzene	<330ugi Ka	10 ml
hexachlorobenzene	<330uq Kq	

-5143c-11M3	:
EPA Sample #	:
<u> </u>	;
	į

Pace Laboratories, Inc.	SAS # 5165-C
Matrix: <u>C.1</u>	Lab Sample ID rivosms
Sample wt/vol: 30.49	Date Received <u>Sympso</u>
Level:	Date Extracted
% Moisture: 23%	Dry Weight 177.5
Extraction Type	PH _ 710
Instrument ID: A	GC Column ID: <u>JB:461</u>

compound	Concentratio Units (ug/L or ug/Kg)	Final Extract Volume
	wylky	
123 trichlorobenzene .	5850 + m758	3000 AC
124 trichlorobenzene	330.ccc naten	120,000,00
135 trichlorobenzene		/3.cco.ni
1235 tetrachloropenzene		3000 no
pentachlorobenzene	- 3400 nesty	3000 00
1234 tetrachlorobenzene		12,00010
hexachlorobenzene	<u></u>	3000 mg

51554-11m20	:
EPA Sample #	:
<u> </u>	;
	ı

Pace Laboratories, Inc.	SAS # 5165-C
Matrix: Sil	Lab Sample ID <u>61493 m50</u>
Sample wt/vol: 19.94	Date Received 6.11119D
Level: wo	Date Extracted college
% Moisture: 9.8%	Dry Weight
Extraction Type <u>5.4.</u>	PH _ 16
Instrument ID: A	GC Column ID: <u></u>

compound	Concentratio Units (ug/L or ug/Kg) <i>ug</i>  Kg	Final Extract Volume
123 trichlorobenzene	3300 malk	3000 m²
124 trichlorobenzene	110,000 ug 1kg	120,000 mg
135 trichlorobenzene	130,000 ug (Kg	13,000mg
1235 tetrachlorobenzene	13000 ug   Kg	3000 ms
pentachlorobenzene	4800 nd 1Ka	3000 ml
1234 tetrachlorobenzene	65:000 ug1Kq	12.00ml
hexachlorobenzene	230 us   Ka	300nP

<b>1</b>
Pay debuglación are
P35 01-73-70
-3-90 CI-32-90 LAS 5165-6 Standards dilutina
SAS Standard athirtions
13.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Tracheroteszere Trachlocolonyes Trachlocolonyes Tetrachlocolonyese Tetrachlocolonyese Tetrachlocolonyese Hage
stockione 7-91 mg in 8.01 mg 8.00 mg 8.00 mg 8.05 mg ins 8.05 mg ins
All qual SH 12 SW
12 14 14 2 25 up
3 50 ab
First St 44 1000
Studies of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the s
the surregard 2 culmonopitables
13 dant 4.0 no
me 54 1 247 ugls 250 ugle 250 ugle 250 ugle 50.3 ugle 1 550 3 ugle 1.18
Cae SHET 198 mile 20 mile 20 mile 100 mile 101 mile 101 mile 12.4.
creed's 376 mas 401 mas 1 400 mais 1 400 mals 1 403 mais 1 403 mais 49.5
constitution at the outport in 'all should be 300 up 2
- I will be the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the st
SAS BLICKICE Standardo I I I I I I I I I I I I I I I I I I I
Supilea nivi :   conc. Alliquat : silution: conc
124 tudinolergeno 20,000 12500 = 1,000 = 25 0018 !
1,43,4 Wheeledway of the land to keep the second
1,2,3 & debugelifuntenzens
fenta chladenzma
hera elitorotienzeno
1,3,5 Tucklyovengen
14630uglnex.017ne70nlux = 27.247uglne 10u0 1.34.7uglne
1,2,3 Tuellustengue =
5000 right + 005ml=10 mblux = 25.0 mg/no 10 me V 25.0 mg/o
Me al won
11 01-23-90 5A5 5165-C. Standarda deleta:
made la standaida as on o 192-90 da samale analysio
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
ARBOU105 RUS-01-03-90
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

								002
			Para	اماسر ملا	م رمعت	mt. I li li	1 小小	
體	01-24-90	SAS 5169	5-0				, "33	
	Santo	ste ailusein	! : :		.		1711	
		انوما نه-٦	: 10 nd sate	0.0	2 nd to 11	one = Iscon	Markact	
\$ [			10 ns July	act 0.00	Sal to 1	52 = 3000	nd extract	: .   <u> </u>
	c	الماعا من الماداء الماداء الماداء الماداء الماداء الماداء الماداء الماداء الماداء الماداء الماداء الماداء الماد	up 10 m2 2	KHAL OI	03-11-61	10n1 = 500 n	u netoct	1 .
			10 me 21	toet n.c	Sarto 1	5 no = 3 coc	nie oktoret	
		1493 60-2	:10 m 24	eact los	01 me 30.1	1.5 m) = 15 3c	me extract	
		1493 ms - ce-2 ms	1000 24	ract po	05 zl0 +b-1.	.5md=3000m	1extoct	
<b>を表現</b>		<u> </u>	10'no ext		5 mul to 17:	snd = 3000 r	<u>il extract</u>	
ACCUPATION OF	1 - 00	79( <u>0) WS-13 .</u>	·/Oalevf	10.1	1 me to	1 1 1 1	il extract	
	1 1 1 1		10 Al ext	oct o.a	mul to i.o	1. 1	Perstact	:
362 E		2961 (15-31)	1/0/1/2 21/1	iact o.o.	1 1	1 1 1	o extenct	
		17 0000	YORU DAY	incr a. In		1 = 500 mg.	1 1 1/1	
		5-1 00958; 5-5 00962;	: 10 ml evt	tact bodi		d = 150.0 m	4 1 4 1- 1	-
		> -3' 00960 !	100000	4 oct pul			1. 1.	
	man upic			1-34:40		1 2 m 2 2	1 1 000	1124190
	1 .			i				Liadi.
	01-26-90	SAS 5165-C	; <u> </u>		;			
138	-the se	in horani ai	1-24-90 6	ied not n	inota tee	daid roome	mexts.	
	1 1000	in the Literatine	delikin	الم	1 1	1 . 1		
	ع ع	DILLE BING	ne intert	لمام	لمملود		uting.	:   ! :
	CB-21	75 01493/15 3m	ho bythoct	0.5~4	10 8.8 m	0 = 1/3,000 P82 0 = 750/00	weight !	: <u>       </u>
	CB-am		professive	10.2 ng	to Orking	13:500 950	react	<u> </u>
	ws-5	. : ; ; f. :	mentiact.	Olumb to		1= 10000 xe		
	1 1105-10		Jul extruct	0,101	to V.Oml	F rodona	exteact	<del>i</del>
							400 m	=
	Ran 4	1 1 247 34 1 1 1 1	Ing with		to Hilitia	1 1	1 1 1 1 1 1 1	<del>:                                     </del>
	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Aument Mar	o up cali	المالجمدا	ofond o	do do an	01-22-90	( 1/2 /0-
	30-00	SAS 5165-C						5 811,26/90
	01-28-90				- - :			
		الم الماليال الماليات الماليات الماليات الماليات الماليات الماليات الماليات الماليات الماليات الماليات الماليات		OOM + to	1000 = 3	200,000 ml su "		
		93 MINTO 300	1 1	0,500 +0		CORINI ext	.: - arti 1   I	
	<u> 1 -2 ع</u>	10 444 gra	ما حملاتك	above		M40128130.		
	1 c6-2!		react o	3.0 0.8	me = 6000	nontract.	1 3 3 2	
图		1 1 1 1		· Ine to 10		00/10	· · · · · · · · · · · · · · · · · · ·	
	ca-amec	Lane dilution	as alter			ARROO	106	
腔门		1 00000	1	0   - 1 .	חשום בו חת	thailua H		00025

	Pac Lating Avies, anc 10028
1	01-29-901 5A5 515-9165-C CM
五 1	WS-5 00962 1000000 extract 0.5 ml to 1.0 ml = 30 000 ml extract.
	Deluted up calibration of moderns as m 01-32-90 Ban diluter on 1 al.
-41.	
手门	1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
15	01-20 SAS 5165-C
<u> </u>	madi up the following Bluthers
型:	ws-1 cogs 8 your extract or and to lone = sonder fact
	ws-3 coquo journeliact ordal to lond = so al extract
A	ws-4 ocque Vandex tact odne to land = sand entact
5 7 1	CB-2ms C1493ms 10m2xtroct = 6-3-1 to 1.5nd = 750 nd attract
	(3-20050 01493050 10ml cytact 0.02ml to 1.5ml = 750ml orkact.   5   5   5   5   5   5   5   5   5
	1 1 1 5-7 00964 10 nd extract 10.0 me to 10 nd = 500 nd extract 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1 105-6: 00963 10ml extent 0.1ml to lone = 100ml extent.
<u>[2]</u>	CO-2 01493 10 Next cont 0.00 5 nd to 1.5 md = 100 nd extract
R.	CB-2 01493 600 alientiact 0.1 ml to 10 ml = 6000 alentiact.
	105 = 00064 1001 extenct   000408 to 1006 = 2500 Martiact   1111
	WS-7 coaley 2500 al extract a osal to none = 50,000 al extract.
	ws= 1 00964 50000 alextract o last to lone = 50000 alextract.
	552 - 01493 1011: 2xtinet gs 1/120/90
1	ws-5 00942 none extract closs no to 10 rd = 400 months of
1	WS-5: coques: 400me extract a orang to 110 as = 40000 mil extract
;	
-	made up calludion stop as on 17 22-90 dean caluling on the 195
	white the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the cont
	0130 013190 SAS 5165-C
	un per 01-30-90 his die det mut otandard requirements. mais up collitation
	standards as or ordered a war on the multiple on the instrument.
	0/13/190
	01-01-90 SAS 5165 C
	un lim of 1 40 talked because of instrument birthms. m
-4	phaten standarias as on 01-23-40 d whan his dilutions on the fifth the
	molulment!
	3/0/20 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
-	A #300 / D7
1-1-	

00	) 2
Pace Fabolatories une	
07-02-90 5165-CSAS	•
Jun um 102-01-90. Jailed Heaves of injecti pat perlens Marie up	<u>:</u>
Edition comanda as on 01-22-90. was delitered from 01-30	<u></u>
- in instrument	<u> </u>
PJS 0000	190
	<u>:</u>
	<u>!</u>
5 100 5 100 5 100 5 10 5 10 5 10 5 10 5	. i
The forthing was and comided:	<u> </u>
	1
Ca-I and 10rd extract 0.02 m to 10rd = 500 rd extract 0/49/000	<u> </u>
100 100 100 100 100 100 100 100 100 100	<del>i</del>
10 mg settent ( ) mg = 10 mg extent ( ) 00963	<u>:</u>
1000 event 1000 event 1000 to 1000 extract 100900	:
The state of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the stack of the s	-
1 + 651 - 1000 expect   c.d. to 1000 = 5000 extenct   cog 58	
1 10 12 1 1 10 nd extract   0.025 to 1.5 nd = 160 nd ay tract   0.1493	1
6 5m5 10 he extract 10.05 -2 4 15m1 = 300 m extract 1 01493/15	1
1 - CB-1750 10m0 = Hart 0.05 no + 1.5ml = 300 no entract 0.493 msp	
PHS 62 05-90	<u> </u>
秦 混译 隐树 建	1
60 c6 act 5165-	<del> </del>
22 3 distribution the following on modes	<u> </u>
CAI - 1 - 500 - 0 - 25 - 0 - 15 - 300 - 300 - 0 - 0 - 0 - 0 - 0 - 0 - 0	
coli = 3000 ortant 0 5ml to lone = GOOD oxtand 01491	
300 m oxkart 0.1ml to 10ml = 3000 m oxkart 0/491	1
attitudenti-some 3 dilutions co above	1
Construct dime to long = 1000 nd extract 00.963	
3 2 The stand stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stand of the stan	
TO THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE POST OF THE	<u> </u>
the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	<del>-</del> - :
100 3 = 100 ochail ordens to com to com ochail och Bos 00708	1:-;
	0.2
	- <del></del>

			<del></del>						_		_																			
				   	!	-				-	.   .	.		-			  -  -			.						· .	(	10	2	9
经定	i .	2			Q.	15	N/	2/0		Kil	٠١٠													1					:	
		4	76-	90	<u> </u>	51	105	-ز اے۔	SA	ζ	٠   ٠	mle	KILL	d				.  -		<u> </u>	1:					-			1	
	i	1.	النا	ير	رجان	ړ	٤,,	- ] - m c	his.		-	į	Ĺ					1		· ·	1.	1	T .	·   i	1.		1.	·	! ;	
				i		10	-	;		j	:	Į.	1.	ŀ			İ			<b> </b> .	1		1	1		1.	-	-		:
	رو	1-a	· ()	-CO	إلم	oų.	ىمە	ر ل	I O	Jai	1 40	1.4	= فير	001	200	و الله	Jety.	oct	İ	01	493	1	1	·l					į	
	CB	l _a		j CCI	فملك	. u 43	Hal	c <del>ù</del>	0	4,	9	c l	dre	= 1	1500	مه ل <del>م</del>	lex	-lac	1	014	193		1.							
50	٠.	y-2n	15	30	i Can		<u>د ا</u> د	it	6	25	3	10 1	da	0=	lac	com	d 24	Ha	1	014	1 1837	75	3	1			-			
	ت	4-94	ns	12	<u>,∞</u>	عبا	by.	Hae	ا او	4	_دام	+	·Ón	0=	1120	400	لملا	24	اربد	1 5	1493	15	<u> </u>	1:		*		. [	:	······································
	ر (	3-a	MSI	_ذ	<u> </u>	<u>.</u>	414	مأط	لىلا	عند	ع أد	_طٰد	<u>حرك</u>	<u> </u>	<u> </u>	KI4	93	MS	<u>p_</u>	<u> </u>	<u> </u>	1	<u> </u>		1.	1	-		:	
	£	-		<u> </u>	1.	<u> </u>	İ	1	 		_	<u> </u>	<u> </u>	<u> </u>		!	<u> </u>	<u> </u>			<u> </u>		<u> </u>	1:3	33			, :	<u> </u>	<u> </u>
					1	<u>:</u>	·  	.	1	i	-	<u> </u>	!	1	<u> </u>	1	-	1		1	100	1	<u>  .·</u>	P	35 4	210	6/90	<u> </u>	!	!
		<u>                                     </u>		<u> </u>	1	! -	1.	<u> ļ</u>	· [	·	<del> </del>	<u> </u>	<u>i</u> _	<u> </u>	1	1	<u> </u>	<u> </u>	ļ. -	}	<u> </u>	<u> </u>	<u> -</u>	10.	1	1	<u> </u>	. 1		
	<u>:</u>		<u>i</u>		<del>:</del> —	<u>}                                    </u>	1	<u> </u>	1	1	1	1	i	1	1	1	<u> </u>	1 .	<u> </u>	· ·	F - :	<u> </u>	1.	i	1	<u>}</u>			<u>.</u>	;
	· [				<u>i</u>		<u>!-</u>		1	+	-	<u>. </u>	<del> </del>	-{	<u> </u>	<u>l</u>		1 .			1.	1	<u> </u>	<u>}</u>	1.	<u>[:</u>		!		
			;		1		ļ. 1	1 .	1:	<del>,</del>	<del>- </del>	1	1	1	1	1 -		<u> . ·</u>		!	<u> </u>	<u>                                       </u>	<u>;</u>	1	-	`{		. !		;
					: 	1	1	1-	ļ .	1	1			1	1	<u> </u>	1	1	-	<u> </u>	1	<b>-</b>	1	1 1	<u> </u>	<u> </u>	17.5		<u>-</u>	
10 PM	مد عبد:		1		:	<u>!</u>	! -	<u> </u>	;	1	<u>• </u>	1	1	<u> </u>	1	<u> </u>	1	<u> </u>	*e+ **		<u> </u>	<u> </u>		1:.	<u> -</u>	1000			<u>i</u> _	<u>;</u> 
	1	- 1	1		<u>:</u>		1.	<u>.</u>	i	1.	<del> </del>	<del> </del>	1	1	<del>!</del>	1	1	<u> -</u>	•	•**	<del>}</del>	1	1:.			3		• • •	<u> </u>	
4	-					: :	<u>i · · · · · · · · · · · · · · · · · · ·</u>	· <u> </u> 	<u>'</u>		1.	<del> </del> -	<del> </del>	<del>                                     </del>		<u> </u>	<u>'                                     </u>		•			<u> </u>				; °,=			<del></del>	- 1
	+	+	<u></u> ;		 :	<del></del>	!  -  -	<u>:</u>		1	Ì	<del> </del>	<del> </del>	<del> </del>							<u> </u>		<u> -</u>  :					1	<del>-                                    </del>	 i
	1	 	1					i .	ī	<del>`</del>	†	<del>: -</del>	<del>i -</del>	<del>i</del>	Ì					,	•	<u> </u>			,	<u> </u>		1		· <u>:</u>
	Ī	1	Ţ					1.	!	1	Ì	1.	<del>i -</del>	İ	i														1	1
	=	i	-1		,		Ì			1	1:	Ī	.	1.								- 1		11					1	Ì
12	-	·	!	.				·   · -	] .		•	i					٠.				• -	-		7			ŀ			į
								1	١.,	·	1		1.							,								-	į	
							<u> </u>				.	<u> </u>							.	٠.	·						Ī	-	!	į
		<u> </u>	_		-	==		· ·		ļ .	<u> </u>		<u>}                                    </u>						·										<u>:</u>	
	_ -	· <u>!</u>	!	·	<u>i</u>	22.5		<del>}</del>	<u>:</u>	1	<u> </u>						<i>.</i> ·											!	;_	
	_ _	· !	; ;	· · 	·			4 .	<u> </u> ;	1	<u> </u>	!	<u> </u>							- }		••					:- ]			
	_		-	<u>i</u>					-	<u>! ··</u>	<u>  ·</u>	<u> </u>	1										<u> </u>				}	-	<del> </del>	_[
	+	+	+	_				· ·	[.	-	1	-	-				- 2		-	·:	- 1		:-	-3		5.	. *-	• • [	1	_!
<b>T</b>	+	1	+		- !	<u>'</u>		<u>.</u> · .	l :	<u> </u>	<u>!</u>	<u> </u>						1		: 1			·.	ا ' تـــــــــــــــــــــــــــــــــــ		-			+	<del>-</del> ‡
	+		<u>: </u> -	<del>-  </del>	<u>:</u> T		:	<u>                                     </u>	<u> </u>	1	<u>i</u>	<u>:</u>				1			·						-			-	<u> </u>	<u>:</u>
	1			<u> </u>			<del>.</del>	1	ļ ·	<del> </del>	<u> -</u>	<u> </u>									7	<del>-</del>		,	•	-		٠		<del>-</del>
	<del>-</del>		_	<del>-  </del>	<u>;</u>		÷	<u>:</u>		<u>į.</u>	1	· ·				-	_		_	$\dashv$	<del>:                                    </del>							-+	<del>-</del>	
<u>के जि</u>	╬				: - †		•			<u>                                      </u>	<u> </u>			·			_		$\frac{1}{1}$								+	+	<del> -</del>	$\dot{+}$
(원~) 조 강.	1	- 1	+				· · · · · · · · · · · · · · · · · · ·			-	1						<u>.  </u>	- ; [				~ . ~ .		**			<u>ا حر</u>		+	+
	+			<u>· j</u>					 V					.	-	4	2.3	0	17	o ¢		+			्र स्य				<u> </u>	1
===			[_		_ <u>-</u> ;	<u>;</u>		!		<u>.                                    </u>		• • •	. !		. 1						<u>····</u>		!	•1	1				ፓሆር	<u> </u>

EPA SAMPLE NO.

Lab Name: Proce deliviolation (IKC.	Contract: 169-128-0019 1135-ユ						
Lab Code: Para Case No.:	SAS No.: 5165-C SDG No.:						
GC Column ID (1): <u>081201</u> GC Column ID (2): <u>08310</u>							
Instrument ID (1): A Instrument ID (2): A							
Lab Sample ID: 00958							
Lab File ID: (on	nly if confirmed by GC/MS)						
PESTICIDE/PCB RETENTION TI	ME RT WINDOW QUANT? GC/MS? OF STANDARD (Y/N) (Y/N) FROM TO						
011.3.3 L. Cliudynux Column 1 34.	71. 34.44V						
S	97 13.88 12.06 N						
03 pandachlardunare Column 1 3.	9- 36.85 37.09 <u>v</u>						
04 Column 2 34							
05,7,3,4 bharlithdengen Column 1 33.							
06 Column 2 <u>21-</u>	85 <u>31.83 71.93</u> IY						
07 Column 1							
08 Column 2							
09 Column 1							
10 Column 2							
11 Column 1							
12 Column 2							
Comments:							

page _

FORM X PEST

EPA SAMPLE NO. 51656-03

Lab Name: 2 - dalmain	was inc	Contract: /eg-ccs-8619	<u> </u>	5-3				
ab Code: Deca C	ase No.:	SAS No.: 5165-C	SDG No.:					
GC Column ID (1): ORIFOI GC Column ID (2): ORBIC								
Instrument ID (1): A Instrument ID (2): A								
Lab Sample ID: <u>cc46c</u>								
Lab File ID: (only if confirmed by GC/MS)								
**************************************								
PESTICIDE/PCB	RETENTION TIME	RT WINDOW OF STANDARD FROM TO	(A\n) Gnynls					
01 <u>: 7,3 = 21122223</u> 00	Column 1 <u>34.36</u>	24.25 <u>24.49</u>	Ä	***				
02 :	Column 2 13.92	13.88 13.96	<u> </u>	-				
. 03 <u> एउ.च मार्पातमसम्बद्धार</u>	Column 1 26.68	26.58 26.82	<u>"</u>	galinte.				
04	Column 2 16.01	15.97 16.05	<u> 4:</u>	-				
05 1. 3 4 TUCHTAGENSINE	Column 1 _28.36	<u> </u>	<u>y</u> .	<del></del>				
06	Column 2 17.63	17.58 17.68	H					
071.2.2 = Livochlastryen	Column 1 31.15	31.01. 31.31	7	-				
08 ,	Column 2 /9.90	19.87 19.97	. <u>u</u>					
<u>अरस्ट्रंश्वमधिवल्यक</u> e0	Column 1 <u>31.06</u>	36.94 37.18	<u>Y</u>					
10	Column 2 <u>14.95</u>	24 82 24.44	. 7					
11 1.2.3.4 bhacklasterjem	Column 1 <u>3344</u>	33.32 33.56	<u>Y</u>	-				
12	Column 2	21.83 21.93	ū					
Comments:		•						

page __ of __

FORM X PEST

EPA SAMPLE NO. 5165C-03

Lab Name: Pare Value	in Luici. Onc	contract: 68.08.0019 W5-3							
Lab Code: Par	Case No.:	SAS No.: 5165-C	SDG No.:						
GC Column ID (1): _	12:21	GC Column ID (	(2): <u>DBJ10</u>						
Instrument ID (1): _	9	Instrument ID	(2): A .						
Lab Sample ID: CARG	· ·	• •	== · · · · · · · · · · · · · · · · · ·						
Lab File ID:	(only	if confirmed by Go	/MS)						
		· · · · · · · · · · · · · · · · · · ·							
PESTICIDE/PCB	RETENTION TIME	RT WINDOW OF STANDARD FROM TO	QUANT? GC/MS? (Y/N) (Y/N)						
01 haraci Inglesing	Column 1 43.50	41.87 43.17	<u> 7</u> _						
02	Column 2 29.65	<u> 19.01 29.17</u>	ੁੱ <b>ਨ</b> . –						
03	Column 1								
04	Column 2								
05	Column 1								
06 	Column 2	· · · · · · · · · · · · · · · · · · ·	= -						
07	Column 1	· ————————————————————————————————————							
08	Column 2								
09	-Column 1		_						
10	Column 2								
11	Column 1								
12	Column 2		· · · · · · · · · · · · · · · · · · ·						
Comments:	•								

page __ of __

FORM X PEST AR300712

1/87 Rev.

00031

EPA SAMPLE NO. 51656-04

b Name: The Habera	مرس، رزاد	Contract: //s-w'S-cc/9	1 105-4						
Lab Code: Phos	lase No.:	SAS No.: 5/65-C	SDG No.: _						
GC Column ID (1):	112:201	GC Column ID (2	): <u>DB2-IC</u>						
Instrument ID (1): A Instrument ID (2): A									
Lab Sample ID: _: :: :: :: :: :: :: :: : :: :: :: ::									
Lab File ID:	(only	if confirmed by GC/	MS) 						
PESTICIDE/PCB	RETENTION TIME	RT WINDOW OF STANDARD FROM TO	QUANT? (Y/N)	;c/ms? (Y/N)					
01 <u>1,2,4 biclibelerzere</u>	Column 1 <u>26.68</u>	24.58 26.81	<del>_</del>						
02 :	Column 2 16.00	15.97 16.05	_	-					
. 03 1, 3 5 4, all 4 plans 19 x6	Column 1 <u>38.35</u>	28.26 28.50	-	_					
04	Column 2 17.62	17.58 17.65	<del>-</del>						
051,2,3,50400 (me)+2genc	Column 1 _2.15	3101 31.31	_ ·						
06	Column 2 19.91	19.51 19.97	_						
07 pontaction cherry	Column 1 3 + 05	36.94 37.18	-	_					
08	Column 2 14.85	34.87 34.44	· <del>-</del>	<del></del>					
091.234 totachia durym	Column 1 33.43	33.30 33.66	_	-					
10	Column 2 2185	<u> 31.83</u> <u> 31.93</u>	. <del>-</del>	_					
11	Column 1		_	***					
12	Column 2		<b>-</b> -	_					
Comments:		•							

page __ of __

FORM X PEST AR300713

EPA SAMPLE NO. 51656-05

Lab Name: Rica dela	alair, inc.	Contract: 65.68-0019	WSS
Lab Code: face C	Case No.:	SAS No.: 5165-C S	DG No.:
GC Column ID (1): 1	51-61	GC Column ID (2)	: <u>00210</u>
Instrument ID (1): n		Instrument ID (2	): <u>A</u>
Lab Sample ID:			•
Lab File ID:	(only	if confirmed by GC/MS	5)
PESTICIDE/PCB	RETENTION TIME	RT WINDOW OF STANDARD FROM TO	QUANT? GC/MS?
01 1.2.3 <u>ل، والما ما مع به</u>	Column 1 <u>14.46</u>	J4.35 J4.50	<u> </u>
02	Column 2 13.93	<u>'13.89</u> :3.96	<u>n</u>
. 03 1.3.4 11.01.14 4 4 7 7 20	Column 1 <u>16.95</u>	16.45 16.72	Υ _
04	Column 2 _/5.01	15.97 16.05	<u> </u>
05 1.315 Lichter agre	Column 1 28.27	28.15 28.39	<u>v</u>
06	Column 2 1762	17.58 17.68	<u>u</u> _
07 <u>1.3.3.5 اديد مولية بياخد ك</u> ي بـ	Column 131.26	31.11 31.41	<u> 4</u>
08	Column 2 19.91	· <u>19.87 19.94</u>	<u>4</u>
09 Panla di Iridénja ro	Column 1 3706	36.94 37.15	<u>y</u>
1.0	Column 2 34.55	24.83 24.94	<u>н</u>
11,2,3,4 Tolon chlackeryin	Column 1 33.43	33 31 33.55	<u> </u>
12	Column 2 11.55	21.83 21.43	α _
Comments:		•	
<del></del>			

page __ of __

FORM X PEST AR300714

.1/87 Rev.

EPA SAMPLE NO.

ab Name:	· ρ- co Hai-	unduics. Inc	Contract: 1,9-W8-00	19 105-5
Lab Code:	Pace	Case No.:	SAS No.: 5165-C	SDG No.:
GC Column	ID (1): 1	<u> </u>	GC Column ID (2	:): <u>06210</u>
Instrument	: ID (1): _	A ·	Instrument ID (	2): <u>A</u>
	ID: <u>609</u>	•		
			if confirmed by GC/	Ms)
PESTIC	IDE/PCB	RETENTION TIME	RT WINDOW OF STANDARD FROM TO	QUANT? GC/MS? (Y/N) (Y/N)
01 haxaci	<u>Jani referel</u>	Column 1 4.7.13	41.97 42.27	
02			29.01 29.17	<u>~</u>
03	<u> </u>	Column 1		<u> </u>
04 ·		Column 2		
05		Column 1		
06		Column 2		
07	·	Column 1		
08		Column 2		
09		Column 1		
. 10	is the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	Column 2		
•				e en en en en en en en en en en en en en
11		Column 1		_
12		Column 2		
Comments:		· · · · · · · · · · · · · · · · · · ·		
				····

page __ of _

FORM X PEST

AR300715

1/87 Rev.

00034

EPA SAMPLE NO. 51652-06

Lab Name: The tolar	atriconone.	Contract: (:3-W9-CO	19 W5-6.
Lab Code: Pau	Case No.:	SAS No.: 5165-C	SDG No.:
GC Column ID (1):	DRIENI	GC Column ID (	2): <u>DR210</u>
Instrument ID (1):	Α .	Instrument ID	(2): <u>A</u>
Lab Sample ID: 1709(			-
Lab File ID:		if confirmed by GC/	' <u>'</u> '''
PESTICIDE/PCB	RETENTION TIME	RT WINDOW OF STANDARD FROM TO	QUANT? GC/MS? (Y/N) (Y/N)
01 12,4 Trichloralenzen	. Column 1 <u>16.71</u>	26.53 26.82	<u>y</u>
02 :	Column 2 110-01	15.97 115.05	
03 1, 3 STacklam Huggy	Column 1 <u>08.27</u>	. 28.15 28:39	<u> </u>
04	Column 2 17.62	17.58 17.69	<u>-</u>
05 Pontachlitoliture	Column 1 31.39	<u> 26.85 37.69</u>	<u>v</u>
06	Column 2 <u>24.9%</u>	24.83 34.94	···
07 hd, 3 4 Tz Laculardenje	•		<u> 4</u> _
	Column 2 21.96	21.83 21.93	.,
09	.Column 1		
10	Column 2		
7			
11	Column 1		·. ···
12	Column 2		
Comments:			
	:=		

FORM X PEST

EPA SAMPLE NO. 5/654-07

ab Name: Lin tolunta	the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	Contract: / ?-uig-col	9. (15.7.
Lab Code: Daic Case No.:		SAS No.: 5165-C	SDG No.:
GC Column ID (1): ORNECT		GC Column ID (2): NBBIN.  Instrument ID (2): A	
Lab File ID:	(only	if confirmed by GC/	MS)
<b></b>			
PESTICIDE/PCB :	RETENTION TIME	OF STANDARD	QUANT? GC/MS? (Y/N) (Y/N)
•		FROM TO	
011.1.37 - runhameis	Column 1 24.37	24.25 7449	<u>4</u>
02	Column 2 1393	13.88 13.96	~
031347 milydysse	Column 1 <u>2005</u>	26.48 26.72	<u> </u>
04	Column 2 11.62	15.97 11:05	<u>~</u>
05 1.3 5 T. MINNIVATORE	Column 1 .33.23	28.15 79.39	<u> </u>
06	Column 2 17.65	17.55 17.68	<b>~</b>
071325 EAR OIL NEEDLE	column 1 3:17	31.01. 31.31	
08	Column 2 19.91	19.87 19.97	<u>~</u>
09 Pontori Waltayn:	Column 1 36.96	36.85 37,49	<u> </u>
10	Column 2 <u>24.89</u>	24.83 24.94	<u> </u>
111.3.3.4 + backbrokenye	Column 1 33.34	33.22 33.46	<u> Y</u>
12	Column 2 21.89	21.53 31.93	<u> </u>
Comments:			

page ___ of

FORM X PEST

Lab Name: 010. dalacatura, car Contract: (-9-11-9-1-19 105-7			
Lab Code: Pro Case No.:	SAS No.: 5105-C SDG No.:		
GC Column ID (1): Delegi	GC Column ID (2): DB310		
Instrument ID (1):	Instrument ID (2): A		
Lab Sample ID: ADGGU	<del></del>		
Lab File ID: (only if confirmed by GC/MS)			
PESTICIDE/PCB RETENTION TIME	RT WINDOW QUANT? GC/MS? OF STANDARD (Y/N) (Y/N) FROM TO		
OI harnchtmederzene Column I Willow			
$\mathcal{O}$ .	<u> 39.01 39.17 N</u>		
•	•		
O3 Column 1			
O4 Column 2			
05 Column 1			
06 Column 2			
. 07 Column 1			
•			
08 Column 2			
09Column 1			
10 Column 2			
11Column 1			
· 12 Column 2			
Comments:			

page __of

FORM X PEST

AR300718

EPA SAMPLE NO. 51650-09

Lab Name: Pace dala	inturantar.	Contract: <u>((3-6)9-001</u>	9 1 <u>C</u>	3-1
Tab Code: Doca	ase No.:	SAS No.: 5165-C	SDG No.:	
GC Column ID (1):	121701	GC Column ID (2	): <u>0871</u>	<u></u>
Instrument ID (1): _A	1	Instrument ID (	2): <u>A</u>	
Lab Sample ID: 01401				
Lab File ID:	(only i	f confirmed by GC/	MS) : =======	
PESTICIDE/PCB	RETENTION TIME	RT WINDOW OF STANDARD FROM TO	QUANT? (Y/N)	GC/MS? (Y/N)
01 1.34 4.04 (44) 123620	Column 1 <u>21,70</u>	26.58 26.92	Ā	· <del>-</del>
02 :	Column 2 He Cl	15.97 /15.05	ū	_
0312 - 4, chly Marzone	Column 1 28.37	29.36 28.50	Ā	· · · · · · · · · · · · · · · · · · ·
04	Column 2 11.63	17.58 17.68	ū	_
05 1.2.3.5 bunchladeryes	Column 1 31.35	31.11 31.41	<u>,</u> .	_ ·
06	Column 2 19.91	<u>19.87</u> <u>19.97</u>	ц	_
07 Pentachhariero	Column 1 31.06	36.94 37.18	ス ス	****
08	Column 2 24.85 .	24.83 24.94	ц	_
09 12.3.4 640 chitisheryn	Column 1 33.43	33.31 33.55	<u> Y</u>	· —
10	Column 2 21.86	21.83 21.93	<u>H</u>	_
11	Column 1			_
12	Column 2	·	_	
Comments:				
	, -			<del>.</del>

page __ of __

FORM X PEST

EPA SAMPLE NO. 51650-09 Destrute

Lab Name: Pac: Jalm	otries, inc.	Contract: 108-019-0019	<u>CB-1</u>	Ousciente	
Lab Code: Face C	ase No.:	SAS No.: 5165-C S	DG No.:		
GC Column ID (1): 13	1351	GC Column ID (2)	: OBAIC	_	
Instrument ID (1):	_	Instrument ID (2	): <u>A</u>		
Lab Sample ID: 61463	<u>Apricate</u>				
Lab File ID:	(only	if confirmed by GC/M	(S _. )		
PESTICIDE/PCB	RETENTION TIME	RT WINDOW OF STANDARD FROM TO	QUANT? (Y/N)	•	
01 1.2.4 tuchle siezzeze	Column 1 <u>36.48</u>	2658 2682	<u>Y</u>	_	
•		15.97 /6.05		<del>-</del>	
03 <u>। उद मण्डामिन्स्</u> योप्र	Column 1 _29.37	35.26 25.50	<u> 7</u>	_	
04	Column 2 17.63	17.58 17.68	ū	-	4
05 1, 7, 3, 5 2 2 2 0 0 1 Lyde 242	Column 1 _31.35	31.11 31.41	<u>y</u> .	-	
06	Column 2 19.41	70.97 19.97	<u>भ</u>		
07 Pontochladinina	Column 1 <u>37.06</u>	36.94 37.18	. <u>Ā</u>	-	
08	Column 2 34.87	. 34.83 34.94 .	Й		
09 1, 3, 3, 4 क्षेत्र त्रीतर्वश्च द्वा	Column 1 3343	33.31 33.55	<u>y</u>		
	Column 2 21.86		ŭ		
11	Column 1		- · · · · · · · · · · · · · · · · · · ·	-	
12	Column 2		. <del>-</del>		
Comments:		•	·		
<u> </u>				_	

page __ of __

FORM X PEST

EPA SAMPLE NO.

Lab Name: The driver	Levis SAC.	Contract: 64-68-cold	_ ic	3-2
Lab Code: Page C	ase No.:	SAS No.: <u>=145-</u>	SDG No.:	
GC Column ID (1): 1	B1201	GC Column ID (2)	): <u>DB71</u>	<u>U</u>
Instrument ID (1):	<u> </u>	Instrument ID (	2): <u>A</u>	
Lab Sample ID: 01403				
Lab File ID:	(only	if confirmed by GC/N	(S) :	
PESTICIDE/PCB	RETENTION TIME	RT WINDOW OF STANDARD FROM TO	(N/N) GUANT?	GC/MS? (Y/N)
01 1.23 4. older els mine	Column 1 24.36	24.75 34.40	<u>y</u>	_
02 :	Column 2 <u>1393</u>	13.98 13.96	ū	-
03 1.3.44.01/14/14/12/12/12/	Column 1 71:49	26.58 14.57	<u>y</u> .	· _
04	Column 2 15.00	15.97 16.05	<u>u</u>	_
05 <u>1,3,5 Lichthelizzone</u>	Column 1 <u>1938</u>	<u> </u>	<u>Y</u> .	_
_. 06	Column 2 17.62	17.58 17.68	<u> </u>	-
07/3,3 = to ten chinchezymi	Column 1 3:39	31.11 - 31.41	<u>Y</u>	_
<b>0</b> 8	Column 2 19.91	<u>i987 19.44</u>	<u> </u>	_
09 pertachlitation	Column 1 36.96	36.85 31.09	<u>y</u>	-
10	Column 2 <u>34.95</u>	24.82 24.94	7	-
11 1.2.3.4 b book le Menger	Column 1 <u>.33.45</u>	33 37 33 56	<u>Y</u>	-
12	Column 2 <u>31.86</u>	21.83 21.93	¥	_
Comments:				
				,

page __ of __

FORM X PEST

EPA SAMPLE NO.

Lab Name: O.c. 30	رايعام كيورن ويعد	Contract: /69-618-00	219 LB-2
Lab Code: Oxcs	Case No.:	SAS No.: 5165-C	SDG No.:
GC Column ID (1):	DRIZOI	GC Column ID	(2): <u>DBAIO</u>
Instrument ID (1):	<u>n</u>	Instrument ID	(2): <u>A</u>
Lab Sample ID:	<u>-1</u>		•
Lab File ID:	(only	if confirmed by Go	C/MS)
PESTICIDE/PCB	RETENTION TIME	RT WINDOW OF STANDARD FROM TO	QUANT? GC/MS? (Y/N) (Y/N)
01 <u>مدين و او ما و بر و ب</u>	Column 1 4 99	41.57 42.17	- N
02	Column 2 <u>3-69</u>	= 4 ·	
. 03	Column 1		
04	Column 2	-	use to T.
. 05	Column 1	•	
06	Column 2		
07	Column 1		
08			
. 09	Column 1		
10	Column 2		• • • • • • • • • • • • • • • • • • •
11	Column 1		
12	Column 2		· · · · · · · · · · · · · · · · · · ·
Comments:			
*		Company of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the s	•

page __ of _

FORM X PEST AR300722

Jew Jew

5A5 Standard Chlouc In Reference to Case No(s): 5/65-C

# Contract Laboratory Program REGIONAL/LABORATORY COMMUNICATION SYSTEM

Telephone Record Log

Date of Call:	116/90			
Laboratory Name: Lab Contact:	PACE Laboration	orday, Inc	Mp/s/m 671181920	)  2122
Region: Regional Contact:	TIL Stevie	Wildreg	JAN 199 JAN 199 JAN 199 JAN 199	15 262 S
Call Initiated By:	<u>X</u> Laboratory	Region	Port Hilli	
In reference to data for $US-1 \rightarrow WS-$			123456	-1E0E/
Summary of Questions/Is  2-Fluorobipha  ECD and 3-Fu  LOGI	_	t have a level (100 u	response	in the
				<del></del>
,				<u> </u>
Summary of Resolution:  1) USE 2-Chl 2) SPIKE at 1	loonaphthalex 1000 uplkg	Le as su sansle	J	
t) The water	sample (	EQB-2 and	EQ8-3)	<del>-</del>
as the sur	de extracter	cad Not	- Flucrobie be re-e	12Hyl Xtacked
we will run	Dir & Dan	s Note the	problems ix	L Harmin
Signa	ture	·	<b>Date</b> *+	

Distribution: (1) Lab Copy, (2) Region Copy, (3) SMO Copy

Standard Chlorine In Reference to Case No(s): 5165C Tacke

# Contract Laboratory Program REGIONAL/LABORATORY COMMUNICATION SYSTEM

## Telephone Record Log

Date of Call: $1-8-90 \text{ m}$	onday
Laboratory Name: Pare, Sat	
Lab Contact: Ine Max	
Region:	
Regional Contact: Collum K (n)	alling
Call Initiated By:Laboratory	Region
In reference to data for the following sample number(s)	:
	low sil fre
1,2 4 trichlosolienzel; 123 Trichlosolien	nen 1,3,5 thishbroldmen,
1, a, 4 ( Charlowelly), 1, a, 5, 4 charte	holdente peracherthenie
Summary of Questions/Issues Discussed:	
lat did not receive any somelle	
3) Did camples ship it so me	of to track.
Summary of Resolution:	1. ) 1' 0 ) Bo lo
Called D. Backs M VERSAR TO BULL D	and lucause lab assignment
was stand intend of the	1 Olientoday 1-8-90. Samola
were collected but muse (Friday ??).	The Latasignments
in time for sampling could have	
Contracted had submitted SAS reque	to earlier with
proficent leastine to process.	
( a)	2 - + 2 -
R 300724 Signature Signature	Date Date
APC - Diane Simo (9) Collan Walling	copy (4) Bot Duarni (3HW25)
an Badol VERSAR/PA) (6) Elaine Spriwak	(3HW ) (7) trouble file
AFC - Diane Simo (9) Collandollin	(40) intility

In Reference to Case No(s): 5165-C Task 2 Standard Chlorine, TES/VERSAR

# Contract Laboratory Program REGIONAL/LABORATORY COMMUNICATION SYSTEM Telephone Record Log

Date of Call:

12 January 1990

Laboratory Name:

**PACE** 

Lab Contact:

Bill Scruden

Region:

Ш

Regional Contact:

Colleen Walling

Call Initiated By:

X Laboratory

Region

In Reference to data for the following sample number(s):

Two aqueous samples sent under this case.

Summary of Questions/Issues Discussed:

The lab received an "extra" aqueous sample with these soils. It was not labeled as a rinsate. Is it actually a rinsate which was not included in the SAS original request or is it additional volume?

Summary of Resolution:

4 74

Per the sampler(VERSAR): these were two separate rinsates not additional volume and they want both samples analyzed. Per Terri Shaughnessy of SMO the lab must analyze both samples.

Meen Millery 1Signature M. Brown 9 AT Da

Distribution: (1) Lab Copy, (2) Region Copy, (3) SMO Copy, (4) Dave Basko,

VERSAR, Langhorne, (5) Colleen Walling, (6) Diann Sims, (7) Bob Guarni

(3HW17), (8) Elaine Spiewak(3HW17), (9) trouble file, (40) after the

In Reference to Case No(s): 5165-C Task 2, Standard Chlorine, TES/VERSAR

# Contract Laboratory Program REGIONAL/LABORATORY COMMUNICATION SYSTEM Telephone Record Log

Date of Call:

16 January 1990

Laboratory Name:

**PACE** 

Lab Contact:

Bill Scruden

Region:

Ш

Regional Contact:

Colleen Walling/Stevie Wilding

Call Initiated By:

X Laboratory

Region

In Reference to data for the following sample number(s): All samples sent under this case.

Summary of Questions/Issues Discussed:

The lab suggests that the concentration requested for the surrogates is too low. Additionally, their detector does not discern 2-fluorobiphenyl, even at higher concentrations.

Summary of Resolution:

Per Stevie Wilding: the surrogate concentration should be increased to 1000 ug/Kg. The surrogate 2-chioronaphthalene may be used instead of 2-fluorobiphenyl. All samples must be re-prepared with 2-chloronapthalene and re-extracted. The re-extraction will not be penalized for not meeting the 10 day technical holding time.

Signature Diloting

1-78-90

Date

Distribution: (1) Lab Copy, (2) Region Copy, (3) SMO Copy, (4) Dave Basko, VERSAR, Langhorne. (5) Colleen Walling, (6) Diann Sims, (7) Bob Guardi 33HWA 70.5 (8) Stevie Wilding, (9) Elaine Spiewak (3HW17), (10) trouble file,

# 5165C HARIT

SAS 612

U.S. Environmental Protection Agency LP Sample Management Office 209 Madison Street, Alexandria, VA 22313 PHONE: (703) 557-2490 or FTS 557-2490

SAS Number

and to Shounga

## SPECIAL ANALYTICAL SERVICES Regional Request

Regional Transmittal Telephone Request

- A. EPA Region and Client: EPA Region III
- B. Regional Representative: Colleen K. Walling
- C. Telephone Number: (301) 266-9180
- D. Date of Request: December 15, 1969
- E. Site Name: Standard Chlorine of Delaware, Delaware City, Delaware
- lease provide below a description of your request for Special Analytical Services ider the Contract Laboratory Program. In order to most efficiently obtain laboratory capability for your request, please address the following considerations, if applicable. Incomplete or erroneous information may result in delay in the processing of your request. Please continue response on additional sheets, or attach supplementary information as needed.
  - 1. General description of analytical service requested:

    Analysis of 10 low concentration soil/sediment samples for 1,2,4-trichlorobenzene
    1,2,3-trichlorobenzene; 1,3,5-trichlorobenzene; 1,2,4,5-tetrachlorobenzene;
    1,2,3,4-tetrachlorobenzene; pentachlorobenzene; and hexachlorobenzene using
    5W-846 extraction method 3550 and SW-846 analysis method 8120 (both
    methods are attached).

3. Program (specify whether Superfund (Remedial or Enforcement), RCRA, NPDES, etc.), Justification for analysis and Site Account Number:

Superfund Enforcement: RP RI/FS Oversight OTGBO3NPH6

SAS Approved By:

- 4. Estimated date(s) of collection: January 2 through February 2, 1990
- 5. Estimated date(s) and method of shipment: January 2 through February 2, 1990 Federal Express Overnight delivery
- 6. Approximate number of days results required after lab receipt of samples:

  Extraction must be performed within 10 days of sample collection, and analysis must be performed within 40 days of extraction. Data package within 30 day of analysis of last sample.
- 7. Analytical protocol required (attach copy if other than a protocol currently used in this program):

  Test Methods for Evaluating Solid Wastes (SW-846), Third Edition, 1986

  Methods 3550 (Scnication Extraction) and 8120 (Chlorinated Hydrocarbons-GC)

  Both Methods are attached.
- 8. Special technical instructions (if outside protocol requirements, specify compound names, CAS numbers, detection limits, etc.):
  See Attachment 1.
- 9. Analytical results required (if known, specify format for data sheets, QA/QC reports, Chain-of-Custody documentation, etc.). If not completed, format of results will be-left to program discretion.

See Attachment Z.

10. Other (use additional sheets or attach supplementary information, as needed):
None.

11. Name of sampling/shipping contact: David A. Basko

Phone:

(215) 741-4211

#### Data Requirements

		Precision Desired "
Parameter	Detection Limit	(+ or - Concentration)
1, Z, 4-trichlorobenzene	330 ug /kg	+/- 20%
1,2,3-trichlorobenzene	330 ug/kg	+/- 20%
1,3,5-trichlombenzene	330 rug/kg	+/- 20%
1, 2, 4, 5 - tetrachlorobenzene	330 Ng/kg	+1- 20 %
1,2,3,4 - tetrachlorobenzene	330 ug/kg	+1- 20%
pentachloro benzene hexachlorobenzene	330 ing/kg	+/- 25%
Jera Chi Groom Ze Ne	330 ug/kg	+/- 25%

QC Requirements only, not mandatory (corrective action not required).

•		Limits
Audits Required	Frequency of Audits	(Percent or Concentration)
LAB Duplicates	1/20 or 1/batch	+/- 25% RPD
Method Blanks	1/20 or 1/batch	< 330 ug/Kg/AN +ANGE
Matrix Spikes	1/20 or 1/batch	< 330 ug /kg/AN +ANG +/- 30% Recovery*
2-fluorobipheny/ (surrogate)	Every sample	38-115% Recovery*
QC check standard	1/20 or 1/batch	
Continuing Calibration Standard	1/10 or at end of batch	+/- 2090 & RF EACH target
ا بر داد داد ا		t annied threat

* Advisory limits only, not mandatory (corrective action not required).
Action Required if Limits, are Exceeded Duolicates: Remalyze sample/duplicate pair and report both sets of data. (Reanalyze 1 time only) Method Black: Reanalyze all associated samples after corrective action has been taken to reduce black contamination to them 370 mg/kg and reanalyze all samples since la acceptable continuing Calibration Standard:

Request prepared her. Della Rechange Calibration Standard.

15. Request prepared by: David A. Basko

> December 15, 1989 Date:

16. Request reviewed by: dauric P.A. Draw

Date: 12-21-89

Please return this request to the Sample Management Office as soon as possible to expedite processing of your request for special analytical services. Should you have any questions or need any assistance, please contact your party presentative at the Sample Management Office.

#### ATTACHMENT 1

Standardize instruments according to manufacturer's instructions. Analytical procedures, as described in the attached method, <u>MUST</u> be followed even if the text just indicates that those procedures should be followed. Report all holding times on the data sheets.

The instrumentation must be calibrated daily using five calibration standards and a calibration blank. The calibration standards must contain all target analytes at concentrations which bracket the anticipated range of measurement, and these standards must be prepared fresh daily from the stock solution. One of the calibration standards must be near, but above, the method detection limit. Continuing calibration must be performed by analyzing one calibration standard (containing all target analytes) at the mid-range of the initial calibration curve after each ten samples. The response factor of this continuing calibration standard must be +/- 20 percent of the autrags response factor of the initial calibration, or else initial calibration must be repeated, and all samples analyzed since the last acceptable continuing calibration standard must be reanalyzed.

All samples must be spiked with 2-fluorobiphenyl as a surrogate compound at a nominal final concentration of 100 mg/kg. Allinial and continuing calibration standards must contain 2-fluorists at the same concentrations as the standard analytes. The average response factor of 2-fluorobiphenyl from the initial calibration must be used to calculate sample surrogate reporties.

A matrix spike must be analyzed at a frequency of 1/20 samples or 1/batch, whichever is more frequent. The spike concentration must be 1 to 5 times the background sample concentration and must be determined by screening.

A QC check standard must also be analyzed at a frequency of 1/20 samples or 1/batch, whichever is more frequent. This check standard must be prepared from an independent source material of that used to prepare that calibration standards.

A method blank must also be analyzed at a frequency of 1/20 samples or 1/batch, whichever is more frequent.

## ATTACHMENT 2

Data package must include: all raw data, all instrument and/or equipment calibration results, calculations, blank results, duplicate results, chain of custody forms, SAS request forms, SAS packing list(s) or traffic report(s), copy of airbill(s), and copies of analyst's logbooks(signed by analyst) with date and time of sample preparation and analysis.

The cover page and all sample report forms MUST be labled with the complete EPA sample number as it appears on chain of custody and CLP paperwork.

The case narrative must document all problems encountered and the subsequent resolutions. List instrumentation and methods employed for analysis. Also, note whether samples were preserved or not and the procedure utilized in preservation. EPA QC reference samples, or equivalent reference samples must be identified as to source and lot number. Documentation of "true" value and associated 75 % confidence limits must be provided for any reference samples used.

#### METHOD 3550

#### SONICATION EXTRACTION

#### 1.0 SCCPE AND APPLICATION

- 1.1 Method 3550 is a procedure for extracting nonvolatile and semi-volatile organic compounds from solids such as soils, sludges, and wastes. The sonication process ensures intimate contact of the sample matrix with the extraction solvent.
- 1.2 The method is divided into two sections, based on the expected concentration of organics in the sample. The low concentration method (individual organic components of (20 mg/kg) uses a larger sample size and a more rigorous extraction procedure (lower concentrations are more difficult to extract). The high concentration method (individual organic components of (20 mg/kg)) is much simpler and therefore faster.
- 1.3 It is highly recommended that the extracts be cleaned up prior to analysis. See Cleanup, Section 4.2.2 of Chapter Four, for applicable methods.

#### 2.0 SUMMARY OF METHOD

- 2.1 Low concentration method: A 30-g sample is mixed with anhydrous sodium sulfate to form a free-flowing powder. This is solvent extracted three times using sonication. The extract is separated from the sample by vacuum filtration or centrifugation. The extract is ready for cleanup and/or analysis following concentration.
- 2.2 <u>High concentration method</u>: A 2-g sample is mixed with anhydrous sodium sulfate to form a free-flowing powder. This is solvent extracted once using sonication. A portion of the extract is removed for cleanup and/or analysis.

#### 3.0 INTERFERENCES

3.1 Refer to Method 3500.

#### 4.0 APPARATUS_AND MATERIALS

4.1 <u>Apparatus for grinding</u>: If the sample will not pass through a 1-mm standard sieve or cannot be extruded through a 1-mm opening, it should be processed into a homogeneous sample that meets these requirements. Fisher Mortar Model 155 Grinder, Fisher Scientific Co., Catalogue Number 8-323, or an equivalent brand and model, is recommended for sample processing. This grinder should handle most solid samples, except gummy, fibrous, or oily materials.

3550 - 1

4.2 <u>Sonication</u>: A horn-type sonicator equipped with a titanium tip should be used. The following sonicator, or an equivalent brand and model, is recommended:

Ultrasonic cell disrupter: Heat Systems - Ultrasonics, Inc., Model W-385 (475 watt) sonicator or equivalent (Power wattage must be a minimum of 375 with pulsing capability and No. 200 1/2" Tapped Disrupter Horn, plus No. 207 3/4" Tapped Disrupter Horn, and No. 419 1/8" Standard Tapered microtip probe.

- 4.3 <u>Sonabox</u>: Recommended with above disrupters for decreasing cavitation sound (Heat Systems Ultrasonics, Inc., Model 4328 or equivalent).
- 4.4 Apparatus for determining percent moisture:
  - 4.4.1 Oven: Drying.
  - 4.4.2 Desiccator.
  - 4.4.3 Crucibles: Porcelain.
- 4.5 Pasteur glass pipets: Disposable, 1-mL.
- 4.5 Beakers: 400-mL.
- 4.7 Vacuum filtration apparatus:
  - 4.7.1 Buchner funnel.
  - 4.7.2 Filter paper: Whatman No. 41 or equivalent.
- 4.8 Kuderna-Oanish (K-O) apparatus:
- 4.8.1 Concentrator tube: 10-mL graduated (Kontes K-570050-1025 or equivalent).
- 4.8.2 Evaporator flask: 500-mL (Kontes K-570001-0500 or equivalent).
- 4.8.3 Snyder column: Three-ball macro (Kontes K-503000-0121 or equivalent).
- 4.8.4 Snyder column: Two-ball micro (Kontes K-569001-0219 or equivalent).
- 4.9 Boiling chips: Solvent extracted, approximately 10/40 mesh (silicon carbide or equivalent).
- 4.10 Water bath: Heated, with concentric ring cover, capable of temperature control (±5°C). The bath should be used in a hood.

3550 - 2

- 4.11 Balance: Top-loading, capable of accurately weighing 0.01 g.
- 4.12 Yials and caps: 2-mL for GC auto-sampler.
- 4.13 Glass scintillation vials: At least 20-mL, with screw-cap and Teflon or aluminum foil liner.
  - 4.14 Soatula: Stainless steel or Teflon.
- 4.15 Orving column: 20-mm I.D. Pyrex chromatographic column with Pyrex glass wool at bottom and a Teflon stopcock.

  NOTE: Fritted glass discs are difficult to decontaminate after highly contaminated extracts have been passed through. Columns without frits may be purchased. Use a small pad of Pyrex glass wool to retain the adsorbent. Prewash the glass wool pad with 50 mL of acetone followed by 50 mL of elution solvent prior to packing the column with adsorbent.
  - 4.16 Syrince: 5-mL.

#### 5.0 REAGENTS

- 5.1 Sodium suifate: Anhydrous and reagent grade, heated at 400°C for 4 hr, cooled in a desiccator, and stored in a glass bottle. Baker anhydrous powder, catalog #73898, or equivalent.
- 5.2 Extraction solvents: Methylene chloride:acetone (1:1, v:v), methylene chloride, nexane (pesticide quality or equivalent).
- 5.3 Exchange solvents: Hexane, 2-propanol, cyclohexane, acetonitrile (pesticide quality or equivalent).
- 6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING
- 6.1 See the introductory material to this chapter, Organic Analytes, Section 4.1.

#### 7.0 PROCEDURE

## 7.1 Samole handling:

- 7.I.I Sediment/soil samples: Decant and discard any water layer on a sediment sample. Mix sample thoroughly, especially composited samples. Discard any foreign objects such as sticks, leaves, and rocks.
- 7.1.2 Waste samples: Samples consisting of multiphases must be prepared by the phase separation method in Chapter Two before extraction. This procedure is for solids only.

3550 - 3

- 7.1.3 Dry waste samples amenable to grinding: Grind or otherwise subdivide the waste so that it either passes through a 1-mm sieve or can be extruded through a 1-mm hole. Introduce sufficient sample into the grinding apparatus to yield at least 10 g after grinding.
- 7.2 Determination of percent moisture: In certain cases, sample results are desired based on a dry-weight basis. When such data is desired, a portion of sample for moisture determination should be weighed out at the same time as the portion used for analytical determination.
  - 7.2.1 Immediately after weighing the sample for extraction, weigh 5-10 g of the sample into a tared crucible. Determine the percent moisture by drying overnight at 105°C. Allow to cool in a desiccator before weighing:

# 

- 7.3 Determination of pH (if required): Transfer 50 g of sample to a 100-mL beaker. Add 50 mL of water and stir for 1 hr. Determine the pH of sample with glass electrode and pH meter while stirring. Discard this portion of sample.
- 7.4 Extraction method for samples expected to contain low concentrations of organics and pesticides (<20 mg/kg):
  - 7.4.1 The following step should be performed rapidly to avoid loss of the more volatile extractables. Weigh approximately 30 g of sample into a 400-mL beaker. Record the weight to the nearest 0.1 g. Non-porous or wet samples (gummy or clay type) that do not have a free-flowing sandy texture must be mixed with 60 g of anhydrous sodium sulfate using a spatula. The sample should be free-flowing at this point. Add 1 mL of surrogate standards to all samples, spikes, and blanks (see Method 3500 for details on the surrogate standard solution and the matrix spike solution). For the sample in each analytical batch selected for spiking, add 1.0 mL of the matrix spiking standard. For base/neutral-acid analysis, the amount added of the surrogates and matrix spiking compounds should result in a final concentration of 100 ng/uL of each base/neutral analyte and 200 ng/uL of each acid analyte in the extract to be analyzed (assuming a 1 uL injection). If Method 3640, Gel-permeation cleanup, is to be used, add twice the volume of surrogates and matrix spiking compounds since half of the extract is lost due to loading of the GPC column. Immediately add 100 mL of 1:1 methylene chloride:acetone.
  - 7.4.2 Place the bottom surface of the tip of the  $\pm 207$  3/4 in. disruptor horn about 1/2 in. below the surface of the solvent, but above the sediment layer.
  - 7.4.3 Sonicate for 3 min, with output control knob set at 10 and with mode switch on Pulse and percent-duty cycle knob set at 50%. Do NOT use microtip probe.

3550 - 4

- 7.4.4 Decant and filter extracts through Whatman No. 41 filter paper using vacuum filtration or centrifuge and decant extraction solvent.
- 7.4.5 Repeat the extraction two or more times with two additional 100-mL portions of solvent. Decant off the extraction solvent after each sonication. On the final sonication, pour the entire sample into the Buchner funnel and rinse with extraction solvent.
- 7.4.6 Assemble a Kuderna-Danish (K-D) concentrator by attaching a 10-mL concentrator tube to a 500-mL evaporative flask.
- 7.4.7 Dry the extract by passing it through a drying column containing about 10 cm of annydrous sodium sulfate. Collect the dried extract in a X-O concentrator. Wash the extractor flask and sodium sulfate column with 100-125 mL of extraction solvent to complete the quantitative transfer.
- 7.4.8 Add one or two clean boiling chips to the evaporative flask and attach a three-ball Snyder column. Prewet the Snyder column by adding about 1 mL methylene chloride to the top. Place the K-D apparatus on a hot water bath (80-90°C) so that the concentrator tube is partially immersed in the hot water and the entire lower rounded surface of the flask is bathed with hot vapor. Adjust the vertical position of the apparatus and the water temperature, as required, to complete the concentration in 10-15 min. At the proper rate of distillation the balls of the column will actively chatter, but the chambers will not flood with condensed solvent. When the apparent volume of liquid reaches 1 mL, remove the K-D apparatus and allow it to drain and cool for at least 10 min.
- 7.4.9 If a solvent exchange is required (as indicated in Table 1), momentarily remove the Snyder column, add 50 mL of the exchange solvent and a new boiling chip, and re-attach the Snyder column. Concentrate the extract as described in Paragraph 7.4.8, raising the temperature of the water bath, if necessary, to maintain proper distillation.
- 7.4.10 Remove the Snyder column and rinse the flask and its lower joints into the concentrator tube with 1-2 mL of methylene chloride or exchange solvent. If sulfur crystals are a problem, proceed to Method 3660 for cleanup. The extract may be further concentrated by using the technique outlined in Paragraph 7.4.11 or adjusted to 10.0 mL with the solvent last used.
- 7.4.11 Add a clean boiling chip and attach a two-ball micro-Snyder column to the concentrator tube. Prewet the column by adding approximately 0.5 mL of methylene chloride or exchange solvent through the top. Place the apparatus in the hot water bath. Adjust the vertical position and the water temperature, as required, to complete the concentration in 5-10 min. At the proper rate of distillation, the balls of the column will actively chatter, but the chambers will not flood. When the liquid

TABLE 1. SPECIFIC EXTRACTION CONDITIONS FOR VARIOUS DETERMINATIVE METHODS

Deceminative sector	Excession pii	Euromage and want required for analysis	Exchange solvent required for cleanup	Volume of extract required for clessup (mi)	Final extract volume for enalysis (mL)
8040 ²	as raceived	2-properal	haane	1.40	La, 102 ^b
<b>2060</b>	as received	paren	house	2.0	10-0
නහ	as received	) and the	) mounte	10-0	10.0
<b>£0</b> 90	as received	harace '	hexane	2.0	1.0
8100	as received	DOTAL	<u>ರ್ಥಾಯಗಳ</u>	2.0	i 🔊
<b>51.29</b>	as received	hecene	hipsine	2.0	1.2
840	as raceived	becare	passage	10~0	10.2
8250ª.C	as received	DEC:	-		ı.a
<u>ಪ್ರಬ</u> ್ತಿ, ² ಪ್ರಸ್ತಾ, ²	as received	none	-	•	່ ເລ
8310	as received	ecetonizzile	-		1.2

To obtain separate acid and base/neutral extracts, Mathod 3650 should be performed following expositivation of the extract to 10.0 min

Phenols may be enalyzed, by Herhod 8040, using a 1.0 mL 2-properol extract by GC/FID. Herhod 8040 also contains an optional derivativation procedure for phenols which results in a 10 mL having extract to be enalyzed by GC/FID.

The specificity of CD/M may make cleanup of the extracts unnecessary. Refer to Method 3600 for guidance on the cleanup procedures available if required.

reaches an apparent volume of approximately 0.5 mL, remove the apparatus from the water bath and allow to drain and cool for at least 10 min. Remove the micro-Snyder column and rinse its lower joint into the concentrator tube with approximately 0.2 mL of appropriate solvent. Adjust the final volume to the volume required for cleanup or for the determinative method (see Table 1).

- 7.4.12 Transfer the concentrated extract to a clean-screw-cap vial. Seal the vial with a Teflon-lined lid and mark the level on the vial. Label with the sample number and fraction and store in the dark at 4°C until ready for analysis or cleanup.
- 7.5 Extraction method for samples expected to contain high concentrations of organics ()20 mg/kg):
  - 7.5.1 Transfer approximately 2 g (record weight to the nearest 0.1 g) of sample to a 20-mL vial. Wipe the mouth of the vial with a tissue to remove any sample material. Record the exact weight of sample taken. Cap the vial before proceeding with the next sample to avoid any cross contamination.
  - 7.5.2 Add 2 g of anhydrous sodium sulfate to sample in the 20-mL vial and mix well.
  - 7.5.3 Surrogate standards are added to all samples, spikes, and blanks (see Method 3500 for details on the surrogate standard solution and on the matrix spike solution). Add 2.0 mL of surrogate spiking solution to sample mixture. For the sample in each analytical batch selected for spiking, add 2.0 mL of the matrix spiking standard. For base/neutral-acid analysis, the amount added of the surrogates and matrix spiking compounds should result in a final concentration of 200 ng/uL of each base/neutral analyte and 400 ng/uL of each acid analyte in the extract to be analyzed (assuming a 1 uL injection). If Method 3640, Gelpermeation cleanup, is to be used, add twice the volume of surrogates and matrix spiking compounds since half the extract is lost due to loading of the GPC column.
  - 7.5.4 Immediately add whatever volume of solvent is necessary to bring the final volume to 10.0 mL considering the added volume of surrogates and matrix spikes. Disrupt the sample with the 1/8-in. tapered_microtip ultrasonic probe for 2 min at output control setting 5 and with mode switch on pulse and percent duty cycle of 50%. Extraction solvents—are:
    - Nonpolar compounds, i.e., organochlorine pesticides and PCBs: hexane.
    - 2. Extractable priority pollutants: methylene chloride.
  - 7.5.5 Loosely pack disposable Pasteur pipets with 2- to 3-cm Pyrex glass-wool plugs. Filter the extract through the glass wool and collect

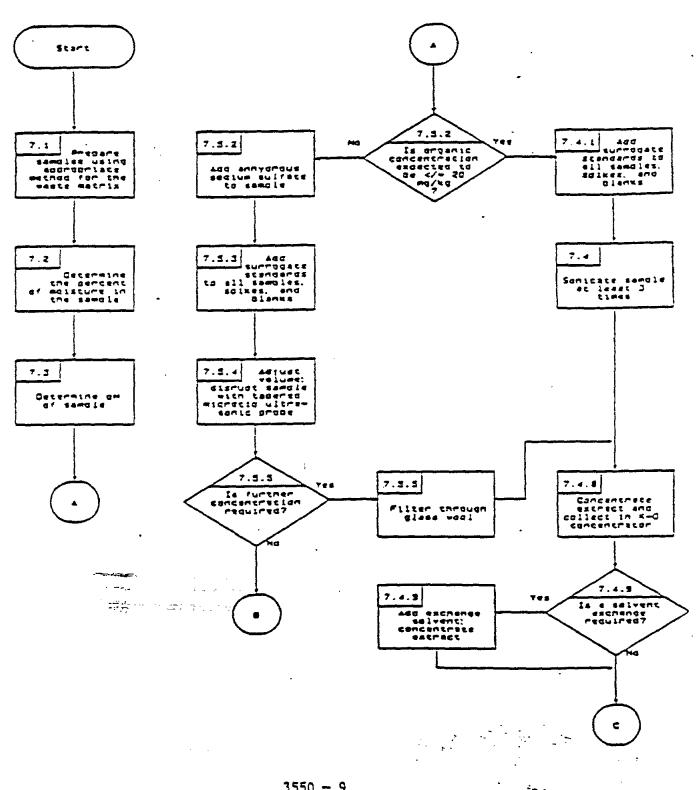
- 5.0 mL in a concentrator tube if further concentration is required. Follow Paragraphs 7.4.6 through 7.4.12 for details on concentration. Normally, the 5.0 mL extract is concentrated to 1.0 mL.
- 7.5.6 The extract is ready for cleanup or analysis, depending on the extent of interfering co-extractives.

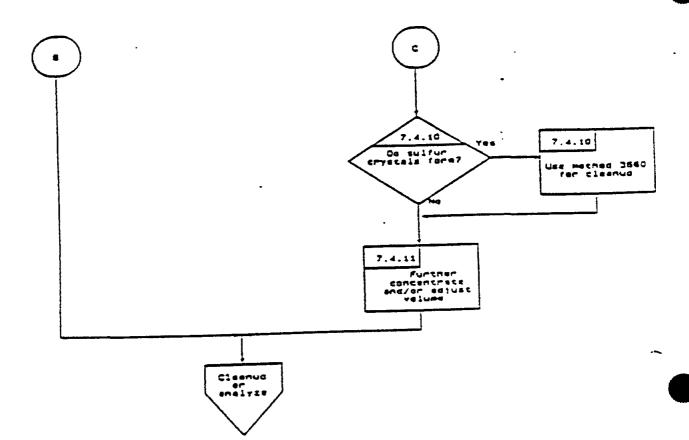
#### 8.0 QUALITY CONTROL

- 8.1 Any reagent blanks or matrix spike samples should be subject to exactly the same analytical procedures as those used on actual samples.
- 8.2 Refer to Chapter One for specific quality control procedures and Method 3500 for extraction and sample preparation procedures.

#### 9.0 METHOD PERFORMANCE

9.1 Refer to the determinative methods for performance data.


#### 10.0 REFERENCES


- 1. U.S. EPA 40 CFR Part 136, "Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act; Final Rule and Interim Final Rule and Proposed Rule," October 26, 1984.
- 2. U.S. EPA, Interlaboratory Comparison Study: Methods for Volatile and Semi-Volatile Compounds. Environmental Monitoring Systems Laboratory, Office of Research and Development, Las Vegas, NV, EPA 600/4-84-027, 1984.

3550 - 8

Revision 0 Date <u>Septemper 1986</u>

DEER CONTSK SONICATION EXTRACTION





#### METHOD 8120

#### CHLORINATED HYDROCARBONS

#### 1.0 SCOPE AND APPLICATION

1.1 Method 8120 is used to determine the concentration of certain chlorinated hydrocarbons. Table 1 indicates compounds that may be determined by this method and lists the method detection limit for each compound in reagent water. Table 2 lists the practical quantitation limit (PQL) for other matrices.

#### 2.0 SUMMARY OF METHOD

- Z.1 Method 8120 provides gas chromatographic conditions for the detection of ppb levels of certain chlorinated hydrocarbons. Prior to use of this method, appropriate sample extraction techniques must be used. Both neat and diluted organic liquids (Method 3580, Waste Dilution) may be analyzed by direct injection. A Z- to 5-uL aliquot of the extract is injected into a gas chromatograph (GC) using the solvent flush technique, and compounds in the GC effluent are detected by an electron capture detector (ECD).
- 2.2 If interferences are encountered in the analysis, Method 8120 may also be performed on extracts that have undergone cleanup using Method 3620.

#### 3.0 INTERFERENCES

- 3.1 Refer to Methods 3500, 3600, and 8000.
- 3.2 Solvents, reagents, glassware, and other sample processing hardware may yield discrete artifacts and/or elevated baselines causing misinterpretation of gas chromatograms. All of these materials must be demonstrated to be free from interferences, under the conditions of the analysis, by analyzing method blanks. Specific selection of reagents and purification of solvents by distillation in all-glass systems may be required.
- 3.3 Interferences coextracted from samples will vary considerably from source to source, depending upon the waste being sampled. Although general cleanup techniques are recommended as part of this method, unique samples may require additional cleanup.

#### 4.0 APPARATUS AND MATERIALS

#### 4.1 Gas chromatograph:

4.1.1 Gas chromatograph: Analytical system complete with gas chromatograph suitable for on-column injections

8120 - 1

TABLE 1. GAS CHROMATOGRAPHY OF CHLORINATED HYDROCARBONS

	Retention	time (min)	Method
Compound	Col. 1	Col. 2	\$ Detection limit (ug/L)
Benzal chloride			
Benzotrichloride			
Benzyl chloride		1.	
2-Chloronaphthalene	2.78	3.6 ^b	0.94
1,2-Dichlorobenzene	6.6	9.3	1.14
1.3-01chlorobenzene	4.5	6.8	1.19
1.4-Dichlorobenzene	5.2	7.5	1.34
Hexachlorobenzene	5.6ª	10.1 ⁵	0.05
Hexachlorobutadiene	7.7	20.0	0.34
Hexachlorocyclohexane	• ••		
Hexachlorocyclopentadiene	nd	16.5°	0.40
Hexach loroethane	4,9	8.3	0.03
Tetrachlorobenzenes	• • •		0.03
1,2,4-Trichlorobenzene	15.5	22.3	0.05
Pentachlorohexane	2-0-0	E-6- + -J	0.03

nd = not determined.

8120 - 2

^{4150°}C column temperature.

b₁₆₅°C column temperature.

C100°C column temperature.

TABLE 2. DETERMINATION OF PRACTICAL QUANTITATION LIMITS (PQL) FOR VARIOUS -MATRICES^a

Matrix	Factorb
Ground water	10
Low-level soil by sonication with GPC cleanup	670
High-level soil and sludges by sonication	10,000
Non-water miscible waste	100,000

^aSample PQLs are highly matrix-dependent. The PQLs listed herein are provided for guidance and may not always be achievable.

bPQL = [Method detection limit (Table 1)] X [Factor (Table 2)]. For non-aqueous samples, the factor is on a wet-weight basis.

accessories, including detectors, column supplies, recorder, gases, and syringes. A data system for measuring peak areas and/or peak heights is recommended.

### 4.1.2 Columns:

- 4.1.2.1 Column 1: 1.8-m x 2-mm I.D. glass column packed with 1% SP-1000 on Supelcoport (100/120 mesh) or equivalent.
- 4.1.2.2 Column 2: 1.8-m x 2-mm I.D. glass column packed with 1.5% OY-1/2.4% OY-225 on Supelcoport (80/100 mesh) or equivalent.
- 4.1.3 Detector: Electron capture (ECD).

### 4.2 Kuderna-Danish (X-D) apparatus:

- 4.2.1 Concentrator tube: 10-mL, graduated (Kontes K-570050-1025 or equivalent). Ground-glass stopper is used to prevent evaporation of extracts
- 4.2.2 Evaporation flask: 500-mL (Kontes K-570001-500 or equivalent). Attach to concentrator tube with springs.
- 4.2.3 Snyder column: Three-ball macro (Kontes K-503000-0121 or equivalent).
- 4.2.4 Snyder column: Two-ball micro (Kontes K-569001-0219 or equivalent).
- 4.3 <u>Boiling chips</u>: Solvent extracted, approximately 10/40 mesh (silicon carbide or equivalent).
- 4.4 Water bath: Heated, with concentric ring cover, capable of temperature control ( $\pm 5^{\circ}$ C). The bath should be used in a hood.
  - 4.5 Volumetric flasks: 10-, 50-, and 100-mL, ground-glass stopper.
  - 4.6 Microsyringe: 10-uL.
  - 4.7 Syringe: 5-mL.
- 4.8 <u>VIATS</u>: Glass, 2-, 10-, and 20-mL capacity with Teflon-lined screw cap.

#### 5.0 REAGENTS

5.1 Solvents: hexame, isooctame, acetome (pesticide quality or equivalent).

8120 - 4

## 5.2 Stock standard solutions:

- 5.2.1 Prepare stock standard solutions at a concentration of 1.00 ug/uL by dissolving 0.0100 g of assayed reference material in isopotane and diluting to volume in a 10-mL volumetric flask. Larger volumes can be used at the convenience of the analyst. When compound purity is assayed to be 96% or greater, the weight can-be used without correction to calculate the concentration of the stock standard. Commercially prepared stock standards can be used at any concentration if they are certified by the manufacturer or by an independent source.
- 5.2.2 Transfer the stock standard solutions into Teflon-sealed screw-cap bottles. Store at 4°C and protect from light. Stock standards should be checked frequently for signs of degradation or evaporation, especially just prior to preparing calibration standards from them.
- 5.2.3 Stock standard solutions must be replaced after one year, or sooner if comparison with check standards indicates a problem.
- 5.3 <u>Calibration standards</u>: Calibration standards at a minimum of five concentration levels should be prepared through dilution of the stock standards with isooctane. One of the concentration levels should be at a concentration near, but above, the method detection limit. The remaining concentration levels should correspond to the expected range of concentrations found in real samples or should define the working range of the GC. Calibration solutions must be replaced after six months, or sooner if comparison with check standards indicates a problem.
- 5.4 Internal standards (if internal standard calibration is used): To use this approach, the analyst must select one or more internal standards that are similar in analytical behavior to the compounds of interest. The analyst must further demonstrate that the measurement of the internal standard is not affected by method or matrix interferences. Because of these limitations, no internal standard can be suggested that is applicable to all samples.
  - 5.4.1 Prepare calibration standards at a minimum of five concentration levels for each analyte of interest as described in Paragraph 5.3.
  - 5.4.2 To each calibration standard, add a known constant amount of one or more internal standards, and dilute to volume with isooctane.
    - 5.4.3 Analyze each calibration standard according to Section 7.0.
- 5.5 <u>Surrogate standards</u>: The analyst should monitor the performance of the extraction, cleanup (when used), and analytical system and the effectiveness of the method in dealing with each sample matrix by spiking each sample, standard, and reagent water blank with one or two surrogates (e.g., chlorinated hydrocarbons that are not expected to be in the sample) recommended to encompass the range of the temperature program used in this method. Hethod 3500, Section 5.3.1.1, details instructions on the preparation of base/neutral sufficiently Deuterated analogs of analytes as surrogates for gas chromatographic analysis due to coelut

AR 300 746

## 6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 See the introductory material to this chapter, Organic Analytes, Section 4.1. Extracts must be stored under refrigeration and analyzed within 40 days of extraction.

#### 7.0 PROCEDURE

#### 7.1 Extraction:

- 7.1.1 Refer to Chapter Two for guidance on choosing the appropriate extraction procedure. In general, water samples are extracted at a neutral, or as is, pH with methylene chloride, using either Method 3510 or 3520. Solid samples are extracted using either Method 3540 or 3550.
- 7.1.2 Prior to gas chromatographic analysis, the extraction solvent must be exchanged to hexane. The exchange is performed during the K-D procedures listed in all of the extraction methods. The exchange is performed as follows.
  - 7.1.2.1 Following K-D of the methylene chloride extract to 1-mL using the macro-Snyder column, allow the apparatus to cool and drain for at least 10 min.
  - 7.1.2.2 Momentarily remove the Snyder column, add 50 mL of hexane, a new boiling chip, and reattach the macro-Snyder column. Concentrate the extract using 1 mL of hexane to prewet the Snyder column. Place the K-O apparatus on the water bath so that the concentrator tube is partially immersed in the hot water. Adjust the vertical position of the apparatus and the water temperature, as required, to complete concentration in 5-10 min. At the proper rate of distillation the balls of the column will actively chatter, but the chambers will not flood. When the apparent volume of liquid reaches 1 mL, remove the K-O apparatus and allow it to drain and cool for at least 10 min. The extract will be handled differently at this point, depending on whether or not cleanup is needed. If cleanup is not required, proceed to Paragraph 7.1.2.3. If cleanup is needed, proceed to Paragraph 7.1.2.4.
  - 7.1.2.3 If cleanup of the extract is not required, remove the Snyder column and rinse the flask and its lower joint into the concentrator tube with 1-2 mL of hexane. A 5-mL syringe is recommended for this operation. Adjust the extract volume to 10.0 mL. Stopper the concentrator tube and store refrigerated at 4°C if further processing will not be performed immediately. If the extract will be stored longer than two days, it should be transferred to a Teflon-sealed screw-cap vial. Proceed with gas chromatographic analysis.

AR300427

8120 - 6

- 7.1.2.4 If cleanup of the extract is required, remove the Snyder column and rinse the flask and its lower joint into the concentrator tube with a minimum amount of hexane. A 5-mL syringe is recommended for this operation. Add a clean boiling chip to the concentrator tube and attach a two-ball micro-Snyder column. Prewet the column by adding about 0.5 mL of hexane to the top. Place the micro-K-D apparatus on the water bath (80°C) so that the concentrator tube is partially immersed in the hot water. Adjust the vertical position of the apparatus and the water temperature, as required, to complete concentration in 5-10 min. At the proper rate of distillation the balls of the column will actively chatter, but the chambers will not flood. When the apparent volume of liquid reaches 0.5 mL, remove the K-D apparatus and allow it to drain and cool for at least 10 min.
- 7.1.2.5 Remove the micro-Snyder column and rinse the flask and its lower joint into the concentrator tube with 0.2 mL of hexane. Adjust the extract volume to 2.0 mL and proceed with Method 3620.

## 7.2 Gas chromatography conditions (Recommended):

- 7.2.1 Column 1: Set 5% methane/95% argon carrier gas flow at 25 mL/min flow rate. Set column temperature at 65°C isothermal, unless otherwise specified (see Table 1).
- 7.2.2 Column 2: Set 5% methane/95% argon carrier gas flow at 25 mL/min flow rate. Set column temperature at 75°C isothermal, unless otherwise specified (see Table 1).
- 7.3 <u>Calibration</u>: Refer to Method 8000 for proper calibration techniques. Use Table 1 and especially Table 2 for guidance on selecting the lowest point on the calibration curve.
  - 7.3.1 The procedure for internal or external calibration may be used. Refer to Method 8000 for a description of each of these procedures.
  - 7.3.2 If cleanup is performed on the samples, the analyst should process a series of standards through the cleanup procedure and then analyze the samples by GC. This will validate elution patterns and the absence of interferents from the reagents.

### 7.4 Gas chromatographic analysis:

- 7.4.1 Refer to Method 8000. If the internal standard calibration technique is used, add 10 uL of internal standard to the sample prior to injecting.
- 7.4.2 Follow Section 7.6 in Method 8000 for instructions on the analysis sequence, appropriate dilutions, establishing daily retention time windows, and identification criteria. Include a mid-level standard after each group of 10 samples in the analysis sequence.

- 7.4.3 Examples of GC/ECD chromatograms for certain chlorinated hydrocarbons are shown in Figures 1 and 2.
- 7.4.4 Record the sample volume injected and the resulting peak sizes (in area units or peak heights).
- 7.4.4 Using either the internal or external calibration procedure (Method 8000), determine the identity and quantity of each component peak in the sample chromatogram which corresponds to the compounds used for calibration purposes. See Section 7.8 of Method 8000 for calculation equations.
- 7.4.5 If peak detection and identification are prevented due to interferences, the hexane extract may undergo cleanup using Method 3620.

#### 7.5 Cleanup:

- 7.5.1 Proceed with Method 3620 using the 2-mL hexane extracts obtained from Paragraph 7.1.2.5.
- 7.5.2 Following cleanup, the extracts should be analyzed by GC, as described in the previous paragraphs and in Method 8000.

#### 8.0 QUALITY CONTROL

- 8.1 Refer to Chapter One for specific quality control procedures. Quality control to validate sample extraction is covered in Method 3500 and in the extraction method utilized. If extract cleanup was performed, follow the QC in Method 3600 and in the specific cleanup method.
- 8.2 Procedures to check the GC system operation are found in Method 8000, Section 8.6.
  - 8.2.1 The quality control check sample concentrate (Method 8000, Section 8.6) should contain each parameter of interest at the following concentrations in acetone: hexachloro-substituted hydrocarbon, 10 ug/mL; and any other chlorinated hydrocarbon, 100 ug/mL.
  - 8.2.2 Table 3 indicates the calibration and QC acceptance criteria for this method. Table 4 gives method accuracy and precision as functions of concentration for the analytes of interest. The contents of both Tables should be used to evaluate a laboratory's ability to perform and generate acceptable data by this method.
- 8.3 Calculate surrogate standard recovery on all samples, blanks, and spikes. Determine if the recovery is within limits (limits established by performing QC procedures outlined in Method 8000, Section 8.10).

8120 - 8

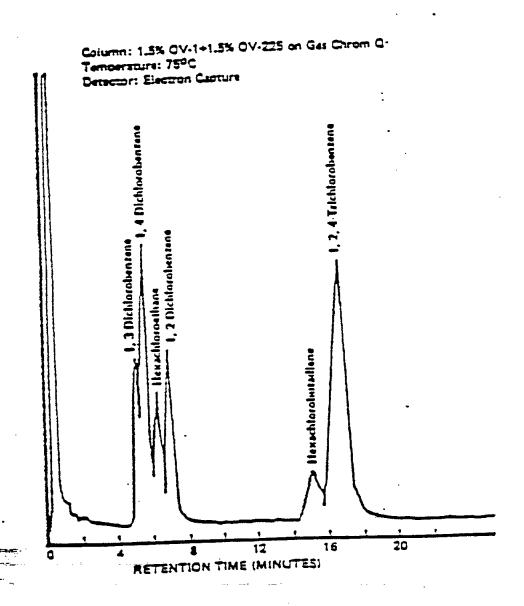



Figure 1. Gas chromatogram of chlorinated hydrocarbons (low molecular weight compounds).

AR300750

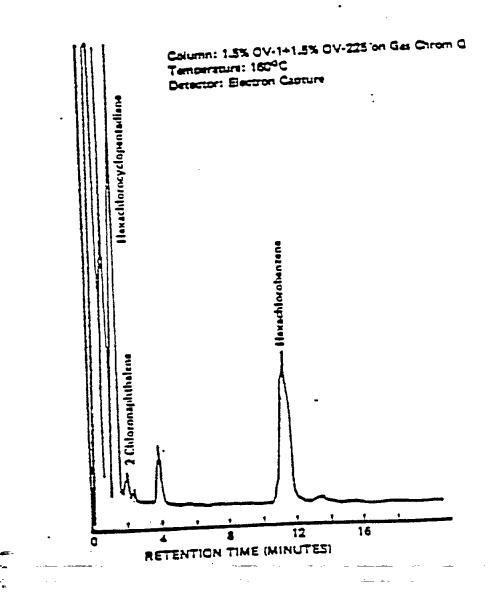



Figure 2. Gas chromatogram of chlorinated hydrocarbons (high molecular weight compounds).

- 8.3.1 If recovery is not within limits, the following procedures are required.
  - Check to be sure there are no errors in calculations, surrogate solutions and internal standards. Also, check instrument performance.
  - Recalculate the data and/or reanalyze the extract if any of the above checks reveal a problem.
  - Reextract and reanalyze the sample if none of the above are a problem or flag the data as "estimated concentration."

#### 9.0 METHOD PERFORMANCE

- g.1 The method was tested by 20 laboratories using reagent water, drinking water, surface water, and three industrial wastewaters spiked at six concentrations over the range 1.0 to 356 ug/L. Single operator precision, overall precision, and method accuracy were found to be directly related to the concentration of the parameter and essentially independent of the sample matrix. Linear equations to describe these relationships for a flame ionization detector are presented in Table 4.
- 9.2 The accuracy and precision obtained will be determined by the sample matrix, sample-preparation technique, and calibration procedures used.

#### 10.0 REFERENCES

- 1. "Development and Application of Test Procedures for Specific Organic Toxic Substances in Wastewaters. Category 3 Chlorinated Hydrocarbons, and Category 8 Phenols," Report for EPA Contract 68-03-2525 (in preparation).
- 2. Burke, J.A. "Gas Chromatography for Pesticide Residue Analysis; Some Practical Aspects," Journal of the Association of Official Analytical Chemists, 48, 1037, 1965.
- 3. "EPA Method Validation Study 22, Method 612 (Chlorinated Hydrocarbons)," Report for EPA Contract 68-03-2625 (in preparation).
- 4. "Method—Performance for Hexachlorocyclopentadiene by Method 612," Memorandum from-R. Slater, U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268, December 7, 1983.
- 5. U.S. EPA 40 CFR Part 136, "Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act; Final Rule and Interim Final Rule and Proposed Rule," October 26, 1984.
- 6. Provost, L.P. and R.S. Elder, "Interpretation of Percent Recovery Data," American Laboratory, 15, pp. 58-63, 1983.
- 7. "Determination of Chlorinated Hydrocarbons in Indust: Wastewaters," Report for EPA Contract 68-03-2625 (in preparat

8120 - 11

TABLE 3. QC ACCEPTANCE CRITERIAª

Parameter .	Test conc. (ug/L)	Limit for s (ug/L)	Range for X (ug/L)	Range P, Ps (%)
Z-Chioronaphthalene	100	37.3	29.5-126.9	9-148
1.2-Dichlorobenzene	100	28.3	23.5-145.1	9-160
1.3-Dichlorobenzene	100	25.4	7.2-138.6	0-150
1.4-Dichlorobenzene	100	20.8	22.7-125.9	13-137
Hexachlorobenzene	10	2.4	2.6-14.8	15-159
Hexachlorobutadiene	10	2.2	D-12.7	0-139
Hexachlorocyclopentadiene	10	2.5	0-10.4	0-111
Hexachloroethane	10	3.3	2.4-12.3	8-139
1,2,4-Trichlorobenzene	100	31.6	20.2-133.7	5-149

s = Standard deviation of four recovery measurements, in ug/L.

aCriteria from 40 CFR Part 136 for Method 612. These criteria are based directly upon the method performance data in Table 4. Where necessary, the limits for recovery have been broadened to assure applicability of the limits to concentrations below those used to develop Table 4.

8120 - 12

X = Average recovery for four recovery measurements, in ug/L.

P, Ps = Percent recovery measured.

D = Detected; result must be greater than zero.

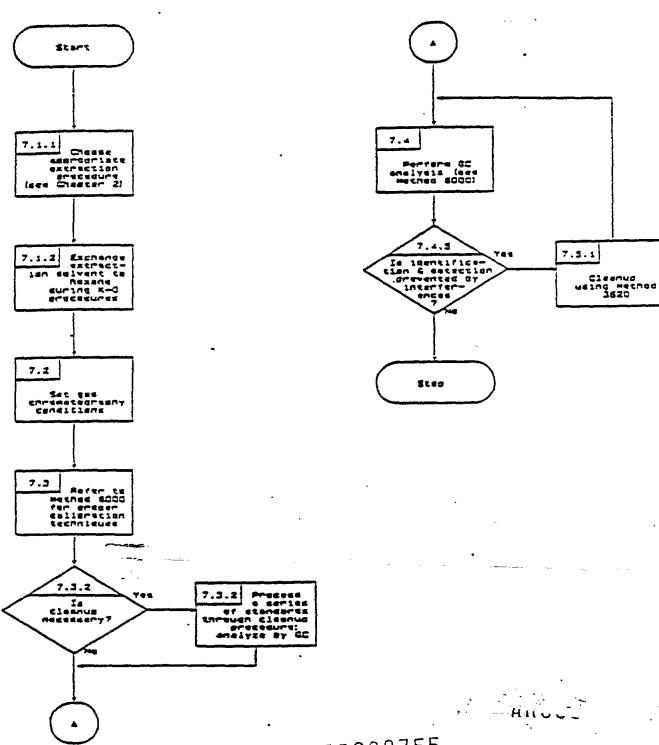
Table 4. METHOD ACCURACY AND PRECISION AS FUNCTIONS OF CONCENTRATIONA

Parameter	Accuracy, as recovery, x' (ug/L)	Single analyst precision, sr' (ug/L)	Overall precision, S' (ug/L)
Chloronaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane 1,2,4-Trichlorobenzene	0.75C+3.21	0.28X-1.17	0.38x-1.39
	0.85C-0.70	0.22X-2.95	0.41x-3.92
	0.72C+0.87	0.21X-1.03	0.49x-3.98
	0.72C+2.80	0.16X-0.48	0.35x-0.57
	0.87C-0.02	0.14X+0.07	0.36x-0.19
	0.51C+0.03	0.18X+0.08	0.53x-0.12
	0.47C	0.24X	0.50x
	0.74C-0.02	0.23X+0.07	0.36x-0.00
	0.76C+0.98	0.23X-0.44	0.40x-1.37

x' = Expected recovery for one or more measurements of a sample containing a concentration of C, in ug/L.

AR300754

 $s_r'$  = Expected single analyst standard deviation of measurements at an average concentration of X, in ug/L.


S' = Expected interlaboratory standard deviation of measurements at an average concentration found of X, in ug/L.

C * True value for the concentration, in ug/L.

Average recovery found for measurements of samples containing a concentration of C, in ug/L.

aEstimates based upon the performance in a single laboratory.

## METHOD B120 D4LORINATED HYDROCLARIONS



AR300755

8120 - 14

Revision 0
Date September 1986

Case Narrative

PACE Laboratories, Inc. Contract No.: 68-W8-0019 SDG No.: 5165C-01, Task II

EPA Sample Nos.: 5165C-01 through

5165C-11

Enclosed is the data package representing the analysis of 9 soil and 2 water samples received under SAS 5165C. Task II. The samples were received January 9 and 11, 1990, and analyzed for chlorinated benzenes (EPA Method 612) by GC-ECD. Table 1 (attached) contains source and purity information for the calibration and QC check standards utilized in this SAS.

Please note the following summary comments regarding quality control:

Surrogate Recoveries All samples were initially extracted within the 10-day holding time (from sample collection) using the surrogate 2-fluorobiphenyl, as required in the SAS scope of work. However, there was no response for this compound on the GC-ECD. In a 1/16/90 phone conversation between Bill Scruton (PACE) and Stevie Wilding (Region III), Bill suggested that the samples be re-extracted (beyond the holding time) using 2-chloronaphthalene as an alternate surrogate. Additionally, since the requested soil detection limit was 330 ug/kg, he suggested that the surrogate be spiked at 1000 ug/kg rather than the 100 ug/kg stated in the scope of work. Stevie approved both requests and said there would be no penalties for the missed holding times.

The nine soils were re-extracted using 2-chloronaphthalene as the surrogate. Except for 5165C-09 Dup. and 5165C-11MS, all surrogate recoveries were within the QC Advisory Limits of 30-115%, as given for 2-fluorobiphenyl in the SAS. Only the seven soils received on 1-9-90 were beyond the holding time.

Insufficient sample remained to re-extract the two rinsates using 2-chloronaphthalene. Surrogate recoveries for these two samples were not calculated since little or no response was achieved for 2-fluorobiphenyl.

<u>Instrumental Calibrations</u> All initial and continuing calibration standards met the criteria required by the SAS scope of work.

For the confirmation run, the GC was only calibrated once for the 33 hour run. The % D for 1,2,3,4-tetrachlorobenzene's exceeded 20% in the check—standard analyzed at the end of the run. Since this run was used for confirmation purposes only, corrective action was not taken.

### Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Initially, sample 5165C-01 was screened to determine spiking levels. For the re-extractions, 5165C-11 was used for the MS/MSD analyses because there was insufficient sample available to do another QC set using 5165C-01. In order to preserve the holding time of 5165C-11, this sample was not screened to determine spiking levels. Spiking was performed using levels determined in the screening of levels proved to be insignificant when compared to the unspiked analysis of 5165C-11. Meaningful recoveries of the spiking compounds could not be calculated.

Case Narrative

PACE Laboratories, Inc. Contract No.: 68-W8-0019 SDG No.: 5165C-01, Task II

EPA Sample Nos.: 5165C-01 through

5165C-11

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Clarence L. Haile, Ph.D.

Director of Sampling and Analytical Services

9 Feb-90

## TABLE 1

Calibration Standards		WARRANIA	
<u>Analyte</u>	<u>Supplier</u>	Lot #	% Purity
1,2,3-Trichlorobenzene	Aldrich	JT02308PK :	99
1,2,4-Trichlorobenzene	Supelco	LA 12157	99
1,3,5-Trichlorobenzene	EPA	17603	5000 ± 250 ug/ml
1,2,3,5-Tetrachlorobenzene	Riedel de Haen	8288	99
1,2,3,4-Tetrachlorobenzene	Aldrich	00330LM	90
Pentachlorobenzene	Riedel de Haen	5350	99
Hexachlorobenzene	Riedel de Haen	90790	99
OC Check Standards	÷		
OC Check Standards Analyte	<u>Supplie</u> r	Lot #	% Purity
	<u>Supplie</u> r EPA	Lot # 17503	<pre>% Purity 5000 ± 250 ug/ml</pre>
Analyte			<del>-</del> -
Analyte 1,2,3-Trichlorobenzene	EPA	17503	5000 ± 250 ug/ml
Analyte 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	EPA Supelco	17503 LA23023	5000 ± 250 ug/ml 20 ug/ml
Analyte 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,3,5-Trichlorobenzene	EPA Supelco Aldrich	17503 LA23023 HW00718EV	5000 ± 250 ug/ml 20 ug/ml 99%
Analyte  1,2,3-Trichlorobenzene  1,2,4-Trichlorobenzene  1,3,5-Trichlorobenzene  1,2,3,5-Tetrachlorobenzene	EPA Supelco Aldrich Supelco	17503 LA23023 HW00718EV LA23023	5000 ± 250 ug/ml 20 ug/ml 99% 20 ug/ml

# SAMPLE DELIVERY GROUP (SDG) TRAFFIC REPORT (TR) COVER SHEET

Lab Name: PACE Laboratoria Inc.	· Contract No.: 68-01-10%-
- ·	sas no.: <u>5165</u> - С
Full Sample Analysis Price in Contract:	
SDG No./First Sample in SDG: 51656-01-TASK (Lowest EPA Sample Number in first shipment of samples received under SDG)	Sample Receipt Date: 01/09/90 (MM/DD/YY)
Last Sample in SDG: 5165011-TAS  (Highest EPA Sample Number in last shipment of samples received under SDG)	KZ Sample Receipt Date: <u>61/11/90</u> (MM/DD/YY
EPA Sample Numbers in the SDG (listed in	alphanumeric order):
1 5165C-01-Task2	5165 E-11- TrskZ -
2 5/165C-02-Task2	
; 5165C-03 TXK2	
, 5/16C-04 THSK2	
s 5165C-05 TASK2 15	
6 5/65C-06 TASK 2 16	
, 5165C-07 TASK2 17	•
8 5165C-08 TASK2 18	
, 5165C-09 TXK2 19	
10 5165C=10 TASKZ 20	
Note: There are a maximum of 20	field samples in an SDG.
Attach Traffic Reports to this f (i.e., the order listed	orm in alphanumeric order on this form).
Lisa Skiriher	01/11/90
Sample Custodian	Date

AR300759

3		CHAIN OF CUE DY RECORD	HEGIUN 3 841 Ches St. Philadelphia Penas Aria 10107
COBOY/	•••		
5303.8 JUD		NO.	
SAMITLE HS. (Signatura)			REMARKS
STA. NO. DATE TIME OMP.	STATION LOCATION		No. 51
1/10/40 10.20	X CB-11 1 14G1		7-1:00003 ,
5145C 10-TASKA 1/9/90 1110 X	(1017)	3-	3-110cg/11
1/10/60 144	X CB-3- 1019.3/	3-	3-1100419
F	10-7511/5 = #OQS	1ASK 2-	
R 3			
000	Final SD6#= 5/1050	-11-TASK2	
) 76			
60			
F			
Sarages Sign	Date / Time Received by: (Signature)	Relinquished by: (Signature)	Date / Time Received by: (Signature)
Refinquished by: (Sig., )	Date / Time Received by: (Signature)	Relinquished by: (Signature)	Date / Time Received by: (Signature)
Relinquished by: (Si 1)	Date / Time Received for Laboratory by:	Date / Time	Remarks Shippiel VIa Federal Express
Distribution:	Distribution: Original Accompanies Shipment; Copy to Coordinator Field Files	1-11-( [C][O:00a/	1 No. 157549324

ENVIRONMENTAL PROTECTION AGENCY	Office of Enforcement
ENVIRO	

841 Chestrut St.

REGION 3

Philadelphia, Pennsylvania 19107 Doms/msD AX BILL NO. 4575150543 Received by: (Signature) Received by: (Signature) BIAMK JAS # 5165C -TASKD Remarks Shippen UN Federal Express REMARKS EG Date / Time Date / Time 3-1100886 3-1063986 3-1063970 7-1063984 3-1063974 3-1063940 3-11co 882 3-1100876 Relinquished by: (Signature) Relinquished by: (Signature) CHAIN OF CUSTODY RECORD Date /Time 1GD) Final SDG · 5/1056-0 8 TASK/2 TAINERS ĊŌŚ Š P 5010 # = 5165C-01 TASK 3-Received for Laboratory by: Received by: (Signature) Received by: (Signature) 463 Aps STATION LOCATION לנסרא 2 18/90 1630 Date / Time Date / Time EGB-2 205.60 5.50 W5-7 125cm 165-3 X 8AA5 PROJECT NAME SCD COMP 51656-03 14190 1310 51656-04 14190 1310 77382 14190 1310 51455.07 1/5 190 1350 TIME 5/656-01 14190 1410 SUSC.06 15/10 1042 TASK2 14/90 1410 5165-6-05 14/90 0930 1145K2 19190 1218 (Signature) Relinquished by: (Sig. Relinquished by: (Sign Relinquished by; (S/g DATE PROJ. NO. SAMPLERS 5303.8 STA. NO. 300761 AR

Distribution: Original Accompanies Shipment; Copy to Coordinator Field 6

0000

## U.S. ENVIRONMENTAL PROTECTION AGENCY

Sampling Date(s):

CLP Sample Management Office

Sampling Office:

P.O. Box 818 - Alexandria, Virginia 22313 None: 703/557-2490 - FTS/557-2490 SAS Number 5/350 - フィンギ

For Lab Use Only

## SPECIAL ANALYTICAL SERVICE PACKING LIST

Ship To:

Sampling Contact:  Oxyro 5.200 application (name)  (name)  (phone)	Date Shipped:  // / / / /  Site Name/Code:	PACE LAGINGE OF 1710 Double: Print Minneapolic 1911 House Attn: 21 of 2012	ro Nor-1	Date Samples Rec's	±: 
Sample Numbers  1. = =		ple Description , Matrix, Concentration		Sample Condition or Receipt at Lab	\ 
5. 6. 7. 8.		5/65C-01 TASK # = 5165C-11 1			
10					
15					
20.					··

White - SMO Copy, Yellow - Region Copy, Pink - Lab Copy for return to SMO, Gold - Lab Copy

AR300762

## U.S. ENVIRONMENTAL PROTECTION AGENCY

CLP Sample Management Office

P.O. Box 818 - Alexandria, Virginia 22313

Phone: 703/557-2490 - FTS/557-2490

SAS Number 5/65C - TASK 2

## SPECIAL ANALYTICAL SERVICE PACKING LIST

Sampling Office:	Sampling Date(s):	Ship To:	For Lab Use Only
Versar Sampling Contact: DAVID SPENCER	1 6 10	PACE Laboratories, INC. 1710 Douglas Deine North Minneapolis, MN 55422	Date Šamples Rec'd:
(name) (218) 741- 4211 (phone)	Site Name/Code:	Attn: Lisa Leither	Received By: Micmodly

Sample Numbers		Description atrix, Concentration	Sample Condition on Receipt at Lab
1. 5165(-01 TASK 2	TRi-7, 194 Har . (4). 1	reasons soil Low	agad
2. 5165C-CZ TASKI			
3.51656-63 TASK Z			
4.511-56-64 725K :			
5. 516-56-05 TASK =			
6. 5165 ( -01, TASK ]			
7. <u>5165 C -07 TASK 2</u>			
8. 5165C-0? TASK 2		· · · · · · · · · · · · · · · · · · ·	
9.			
10.			
11.	SDG = 5165C		
12.	Final SDG = 514	5C-08 TASKZ	-
13.		· · · · · · · · · · · · · · · · · · ·	
14.		·	· -
15.		±. ==-	
16.			
17.			
18.			
19.			
20.			

For Lab Use Only

White - SMO Copy, Yellow - Region Copy, Pink - Lab Copy for return to SMO, Gold - Lab Copy



Appendix A
Glossary of Data Qualifiers

### GLOSSARY OF DATA QUALIFIER CODES (ORGANIC)

### CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

U = Not detected. The associated number indicates approximate sample concentration necessary to be detected.

(NO CODE) = Confirmed identification.

- B = Not detected substantially above the level reported in laboratory or field blanks.
- R = Unreliable result. Analyte may or may not be present in the sample.
  Supporting data necessary to confirm result.
- N = Tentative identification. Consider present. Special methods may be needed to confirm its presence or absence in future sampling efforts.

### CODES RELATED TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = Analyte present. Reported value may not be accurate or precise.
- K = Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L = Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- UJ = Not detected, quantitation limit may be inaccurate or imprecise.
- UL = Not detected, quantitation limit is probably higher.

### OTHER CODES

Q = No analytical result.

DATA SUMMARY FORM: V O L A T 1 L E

Site Name: Standard Chlorine

Case #: 505 5256C Sampling Date(s):

FISH SAMPLES (ug/Kg)

SAMPLES (g)

To calculate sample quantitation first: (CROL, * Dilution Factor) / ((100 - % moisture)/100)

	Sample No. 5256C-01 5254C-02	52566-0	1525	0-5%	7		_		L			L		ľ	
	Dilution Factor	1.0	-	1.0			<u> </u>								
	% Moisture	18	80	0											
	Location	11	۲.	ત	<u> </u>										
CHOL	COMPOUND														
2	Chloromethane			3		$\mid$	1	-	ŀ	F	-		F		
0	Bromometiane				<u> </u>	<u> </u> 		<u> </u>		<u> </u>	<u> </u>			T	1
0	Vinyl Chloride					<u> </u>		<u> </u> 		<u> </u>	<u> </u>				1
0	Chloroethans			<del>&gt;</del>						<u> </u>	<u> </u>			İ	
S	Methylene Chloride	5/ B		65 R						<u> </u>	<u> </u>				1
0	Acelone	ayo B	00	1		<u> </u> 		<u> </u>		<u> </u>					1
S	Carbon Disulfide	34	/3	⊬			<u> </u>	<u> </u>		<u> </u>					1
2	1,1-Dichloroethene	10.5	<u> </u>	<del> </del>	113	<u> </u>	<u> </u>			<u> </u>	1				1
ç	1,1-Dichloroethane			<u>                                     </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>				1
2	Total-1,2-Dichloroethene					<u>                                     </u>				<u> </u>	<u> </u>			1	
2	Chloroform					<u> </u> 	<u> </u>  -	<u> </u> 						1	1
2	1,2-Dichloroethane	7	•	<del>-</del>		<u> </u>				<u> </u>	<u> </u>				1
9	2-Bulanone	R		<u> ≃</u>	_			<u> </u>		<u> </u>	<u> </u>				1
2	1,1,1-Trichloroethane	(1)	10	3	UJ			<u> </u> 		<u> </u>	<u> </u>			1	_
2	Carbon Tetrachibitde					<u> </u>		<u> </u>		<u> </u>	<u> </u>			1	1
2	Viny/ Acetate					<u>                                     </u>	_				<u> </u>				$\perp$
5	Bromodichloromethane			<del>  )</del>	_	<u> </u>	<u> </u>	<u> </u> 		<u> </u>	<u> </u>		<u> </u>	<u> </u>	1
											-				

CRDL * Contract Required Detection Limit

SEE NARRATIVE FOR CODE DEFINITIONS

revised 12/88

AR300766