Superfund SITE: 1	Records Center
BREAK:	813
OTHER:	572990

POST-CLOSURE SITE MONITORING REPORT

LANDFILL AND RESOURCE RECOVERY SUPERFUND SITE NORTH SMITHFIELD, RHODE ISLAND

Prepared on Behalf of:

LANDFILL AND RESOURCE RECOVERY SITE GROUP

Prepared by:

O & M, Inc. 450 Montbrook Lane Knoxville, Tennessee 37919

DECEMBER 2000

SDMS DocID

572990

de maximis. inc.

Superfund Re	cords Center
Superfund Re	RR
BREAK:	8-3
OTHER:	

450 Montbrook Lane Knoxville, TN 37919 (865) 691-5052 FAX (865) 691-6485 Acct. FAX (865) 691-9835

December 11, 2000

Ms. Anna Krasko US EPA Mail Code: HBO One Congress Street Boston, MA 02114

RE: Transmittal of December 2000 Post-Closure Site Monitoring Report L & RR Superfund Site, North Smithfield, Rhode Island

Dear Ms. Krasko:

Attached is one copy of the Post-Closure Site Monitoring Report for December 2000. This report includes the results from the July 2000 groundwater sampling event. The disk containing the groundwater quality data in Excel-compatible format will be forwarded under separate cover.

Please do not hesitate to call me at (908)735-9315 should you have any questions.

Sincerely, *de maximis, inc.*

milisoa Williams

John P. McBurney Project Coordinator

DFG/mw

cc: D. Moreira - Waste Management, Inc. (w/o disk)
D. Peters - Metcalf & Eddy (w/o disk)
M. DiStefano, RIDEM (w/o disk)
T. Helgason - *de maximis, inc.* (w/o disk)

F:\om\353\1999\coverlet 1200.wpd

TABLE OF CONTENTS

.

1.0	INTRODUCTION
2.0	LANDFILL INSPECTION AND MAINTENANCE
3.0	LANDFILL GAS WELL AND PROBE MONITORING
4.0	DATA VALIDATION
5.0	GROUNDWATER MONITORING55.1Sample Collection5.2Quality Control Samples5.3Groundwater Analytical Results5.4Split Sample Comparability Results6
6.0	SURFACE WATER MONITORING
7.0	PROBLEMS ENCOUNTERED
8.0	STATISTICAL ANALYSIS 8
9.0	ACTIVITIES PLANNED FOR NEXT REPORTING PERIOD

TABLES

- Table 1Groundwater Monitoring Parameters and Methods Summary
- Table 2Definitions of Sample Data Qualifier Codes
- Table 3Water Level Monitoring Data
- Table 4
 Field Water Quality Measurements Conducted During Well Purging
- Table 5Groundwater Chemistry Data
- Table 6Groundwater Chemistry Split Sample Comparisons
- Table 7Surface Water Chemistry Data
- Table 8Ambient Air Sampling Data
- Table 9Flare Inlet Sampling Data

FIGURES

Figure 1 Sample Location Plan

APPENDICES

Appendix A	Inspection Reports
------------	--------------------

- Appendix B Gas Monitoring Data And Flare Maintenance Reports
- Appendix C Groundwater Data Validation Reports Severn Trent Laboratories
- Appendix D Groundwater Data Validation Reports Compuchem Environmental Laboratories
- Appendix E Surface Water Data Validation Reports Severn Trent Laboratories
- Appendix F Ambient Air Laboratory Data AirRecon, LLc
- Appendix G Method 18 Flare Inlet Gas Testing Report AirRecon, LLC

1.0 INTRODUCTION

This Post-Closure Site Monitoring Report documents the Post-Closure Operation and Maintenance activities performed at the Landfill and Resource Recovery (L&RR) Superfund site from February 2000 through November 2000. During this period, *de maximis, inc.* coordinated all post-closure site monitoring and maintenance activities. Activities performed during the referenced period were conducted in accordance with the *Post-Closure Operation and Maintenance Plan*; *de maximis, inc.*; September 1996 ("Plan").

Groundwater and surface water sampling was performed April 4 through 7, 2000. The groundwater samples collected during the April groundwater sampling event were rejected due to the fact the field indicator parameters had not stabilized before the groundwater samples were collected. The groundwater sampling event was repeated from July 13 through 15, 2000. Sampling parameters for groundwater and surface water are presented in **Table 1** of this report.

Ambient air samples were collected June 8 and 9, 2000 from four locations at the landfill perimeter for TO-14 analysis. On August 14, 2000, a four hour composite sample was collected of the flare inlet gas using Method 18 sampling protocols and TO-14 analysis. Data from all the sampling programs conducted during the referenced period are presented in this report.

This report has been prepared in accordance with the requirements of the Consent Decree and Remedial Design/Remedial Action Statement of Work. This report addresses those requirements as indicated below:

REP IN T	ST-CLOSURE SITE MONITORING PORT REQUIREMENTS, SPECIFIED HE CONSENT DECREE AND RD/RA TEMENT OF WORK	SECTION OF THIS REPORT WHERE THE REQUIREMENT IS ADDRESSED				
a.	map of the Site showing sample locations	Figure 1 Sample Location Plan				
b.	tabular representation of laboratory results by each media including comparison with any standard levels, with exceedances of maximum contaminant levels (MCLs) and other performance standards.highlighted	5.0 Groundwater Monitoring 6.0 Surface Water Monitoring				

REPO	F-CLOSURE SITE MONITORING ORT REQUIREMENTS, SPECIFIED IE CONSENT DECREE AND RD/RA TEMENT OF WORK (Cont'd)	SECTION OF THIS REPORT WHERE THE REQUIREMENT IS ADDRESSE (Cont'd)				
C.	laboratory results on a computer disc in a spreadsheet file such as Lotus 1-2-3 or D-Base	5.0	Groundwater Monitoring			
d.	data validation packages	4.0	Data Validation			
e.	results of statistical analysis of data	8.0	Statistical Analysis			
f.	interpretation of any trends	5.0	Groundwater Monitoring			
g.	inspection reports	2.0	Landfill Inspection and Maintenance			
h.	description of maintenance activities completed	2.0	Landfill Inspection and Maintenance			
i.	explanation of problems encountered in the field and measures taken to mitigate the problems	7.0	Problems Encountered			
j.	activities planned for the next reporting period	9.0	Activities Planned for Next Reporting Period			

2.0 LANDFILL INSPECTION AND MAINTENANCE

The landfill cover, drainage structures, gas system and groundwater monitoring wells were inspected monthly, with the results provided, on a monthly basis, to EPA and RIDEM. Overall, the components are in good condition. The following maintenance measures were performed:

- A timer was installed on the condensate pump to the injection system on February 7, 2000.
- The vegetative areas of the landfill cover were treated with slow-release fertilizer and grub control on May 25, 2000.
- Four small burrow holes, near gas wells 6 and 8, were filled in on March 3, 2000.
- Three small areas of sloughing were repaired on May 25, 2000
- The flexhose on gas well 7, which became hyperextended, was replaced on June 1, 2000.
- The flexhose on well 13 was removed and reconnected to avoid crimping on June 1, 2000.

- A louvre control switch on the flare was replaced the week of August 28, 2000.
- Monitoring wells MW-102A; MW-104A; and CW-6B were redeveloped on October 19 and 20, 2000.
- The flexhoses on wells 12, 14, and 18 were adjusted to avoid crimping and hyperextension on October 20, 2000.
- The landfill cover was mowed on November 9, 2000.

Copies of the landfill inspection reports are in Appendix A.

The annual settlement monument elevation survey was performed on October 31, 2000. Incremental settlement from the last settlement survey event (November, 1999), as well as total settlement are presented in the following table:

Settlement Monument	Elevation (ft.) Following Installation*	Elevation (ft.) November, 1999	Elevation (ft.) October, 2000	Incremental Settlement (ft.) From November, 1999 to October, 2000	Total Settlement (ft.) From Date of Installation
SM-1	311.96	309.55	309.58	+0.03	2.38
SM-2	298.42	297.67	297.78	+0.11	0.64
SM-3	329.29	326.32	326.56	+0.24	2.73
SM-4	306.05	304.82	305.30	+0.48	0.75
SM-5	287.25	287.26	287.81	+0.55	+0.56
SM-6	321.86	320.70	321.00	+0.30	0.86
SM-7	300.76	299.97	299.62	0.35	1.14
SM-8	365.33	361.09	360.70	0.39	4.63
SM-9	354.67	350.67	349.94	0.73	4.73
SM-10	357.29	355.59	355.35	0.24	1.94
SM-11	321.83	321.39	321.35	0.04	0.48
SM-12	321.07	320.56	319.53	1.03	1.54
SM-13**	361.03	359.67	No pipe	Not available	Not available
SM-14**	360.20	358.54	No pipe	Not available	Not available

Settlement Monitoring Data

*All settlement monuments were installed in December, 1994 except for SM-13 and SM-14, which were installed on August 15, 1997.

**Settlement monuments SM-13 and SM-14 were inadvertently knocked over during a maintenance event and will be replaced and resurveyed.

3.0 LANDFILL GAS WELL AND PROBE MONITORING

The landfill gas extraction wells and methane migration probes were monitored periodically from February through November 2000. During this period, the results of the monitoring were provided on a monthly basis to EPA and RIDEM. Overall, the system continues to operate under negative pressure while controlling methane migration. Methane migration data appear below:

Date		Methane Content (%)							
	Probe GP-1	Probe GP-4	Probe GP-8						
2/15/00	0.0	0.0	0.0						
3/16/00	0.0	0.0	0.0						
4/18/00	0.0	0.0	0.0						
5/25/00	0.0	0.0	0.0						
6/8/00	0.0	0.0	0.0						
7/24/00	0.1	0.3	0.0						
8/14/00	1.4	5.6	0.0						
9/21/00	0.8	0.9	0.0						
10/19/00	23.3	17.4	0.0						
11/16/00	5.3	1.4	0.0						

There were occasions where the methane level in a particular probe temporarily exceeded the action level of 1.25%. This was primarily due to a temporary flare shutdown or a gas well becoming temporarily inoperative due to a hyper-extended or crimped flex hose. In each case, the methane levels returned to lower levels in a few weeks following flare restart or adjustment/replacement of the well flexhose. The methane levels in the probes will continue to be monitored on a monthly basis.

Gas well monitoring data is in Appendix B.

The condensate injection system, installed in December 1998, continued to treat about 1000 gallons of condensate every six to seven days.

On February 7, 2000, a timer was installed on the condensate pump to the injection system. That timer, set for a 10-hour injection cycle, effectively replaces the low level float switch in the condensate tank. An inspection of the flare was also made at that time, and the system was functioning properly. On August 4, 1999, the semi-annual flare inspection was performed by a representative of John Zink Co., the manufacturer of the flare. The results of that inspection indicate that the flare is in good condition and continues to

function properly. On August 28, 2000, a louvre control switch was replaced on the flare. Flare inspection reports and maintenance documentation is in **Appendix B**.

4.0 DATA VALIDATION

Analytical data for groundwater and surface water presented in this report were validated by Trillium, Inc. of Knoxville, Tennessee using the most current revision of the EPA Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics and Inorganic Analysis (December 1996) as appropriate for each analysis. For analyses which do not have specific recommended guidelines for data review, results were evaluated based on the supporting data submitted with the data packages and on the professional judgement of the validator. Data qualifier codes by sample matrix applied by the Data Validator are presented in **Table 2**.

Analytical data for the Quality Assurance / Quality Control (QA/QC) samples were submitted as part of the analytical data package provided to Trillium, Inc. for data validation. The complete data validation reports are included in **Appendix C** (original field samples), **Appendix D** (split sample) and **Appendix E** (surface water samples).

5.0 GROUNDWATER MONITORING

Groundwater samples were collected on July 13 through 15, 2000, in accordance with the Plan. Prior to sample collection, groundwater elevations were measured at the monitoring wells. The water level monitoring data are presented in **Table 3**. Figure 1 presents a groundwater sampling location plan.

Samples were collected from the seven monitoring wells in the groundwater monitoring network (MW-201, MW-202, MW-102A, MW-103A, MW-104A, CW-5B and CW-7A). The samples, along with the required QA/QC samples, were submitted to Severn Trent Laboratories (STL), formerly IEA Laboratories, in Monroe, Connecticut, for analysis. The specific parameters for groundwater samples and analytical methods are presented in **Table 1**.

5.1 Sample Collection

The monitoring wells were purged and sampled using the EPA Region I Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells, Revision 2. Purging and sampling of the monitoring wells was performed using dedicated, nitrogen-driven bladder pumps.

Field measurements (eH, pH, temperature, dissolved oxygen, turbidity and specific conductance) were collected using a YSI Model 6920 Closed Cell Water Quality Monitoring System as purging progressed. The field data collected during purging are presented in **Table 4**. The final reading for each location in **Table 4** is the reading collected immediately before sample collection.

Groundwater samples were shipped each day via Federal Express next day delivery to STL of Monroe, Connecticut, for analysis. A split sample from a single location (MW-104A) was provided to CompuChem Environmental Corporation (Compuchem) of Durham, North Carolina for the same suite of parameters as the original sample.

5.2 Quality Control Samples

All groundwater QA/QC samples for analysis, matrix spike and matrix spike duplicate analysis were collected from monitoring well CW-5B. A duplicate sample was collected from monitoring location MW-102A. A split sample was collected during the sampling event from monitoring location MW-104A for analysis of the same suite of parameters as the original sample. The split sample was shipped via overnight express mail to Compuchem. Trip blanks accompanied sample containers during shipment and were submitted for volatile organic analysis.

5.3 Groundwater Analytical Results

Analytical data packages provided by STL were submitted to Trillium, Inc. of Knoxville, Tennessee for validation. Data validation reports of the STL analyses for the July 2000 sampling event for groundwater are included in **Appendix C** of this report. Data qualifier code definitions are presented in **Table 2** and in the Attachments to each data validation report.

A summary of the validated groundwater analytical data for the July 2000, and previous sampling events under the Plan are presented in **Table 5**.

5.4 Split Sample Comparability Results

In accordance with the Plan, a split sample from monitoring location MW-104A was analyzed by the primary laboratory, STL, and by a secondary laboratory, Compuchem. The data from the primary and secondary laboratories were evaluated for comparability using the procedure outlined in the Plan. **Table 6** provides a comparison of the analytical results from both laboratories.

The data for all the analytes except for five are considered comparable using the criteria considered in the Plan. The five analytes for which the data are not considered comparable are: m, p xylene, Styrene, total lead, ammonia, and COD. The following presents potential causes for the non-comparable results.

5.4.1 m, p-xylene

The analytical data from Severn Trent Laboratories (STL) and Compuchem Laboratories both detected the compound, however, the Relative percent Difference (RPD) was 91.7 %. STL's higher concentration was qualified as "estimated" due to unacceptably high blank spike recoveries that may have result in a biased high result, therefore resulting in a high RPD.

5.4.2 Styrene

The result reported for styrene by STL was greater than twice the reporting limit of the non-detected result reported by Compuchem. The reported result for styrene by STL is very near the reporting limit. The detected estimated concentration of 2.1 μ g/L (from STL) is greater than two-times (2x) the nondetected result's reporting limit of 0.5 μ g/L.

5.4.3 Total Lead

The reported concentrations of lead for both laboratories were estimated to be near the detection limits. The 91.6 % RPD between the reported results was outside the comparability criteria.

5.4.4 Ammonia and COD

The reported concentrations of ammonia and COD were outside the comparability criteria. The criteria for comparability is 30 %. Ammonia was calculated at 35.4 % RPD and COD was calculated at 60.4% RPD and therefore the results are not considered comparable.

6.0 SURFACE WATER MONITORING

Surface water samples were collected on April 7, 2000 from six surface water monitoring locations. Samples were not collected at locations LCH-2 or LCH-3, as those locations were dry.

Surface water samples were submitted to STL for analysis. Data from the surface water samples are presented in **Table 7**. Data validation reports for the surface water samples are presented in **Appendix E**.

7.0 PROBLEMS ENCOUNTERED

Groundwater samples collected during the April 2000 sampling event were rejected. After reviewing the field data, it was noted that at four wells, several field indicator parameters collected during the purging process had not stabilized as required by Low Flow sampling protocols. Therefore, a second groundwater sampling event was conducted during July 2000.

Except for a problem with the dissolved oxygen display at well MW-104A, no problems were encountered during the July sampling event. During the sampling of well MW-104A, the dissolved oxygen display on the YSI Model 6920 exhibited erratic behavior, the cause of which could not be readily determined at the time of sampling. Because all other parameters had stabilized, the sample was collected, recognizing the erratic dissolved oxygen reading.

8.0 STATISTICAL ANALYSIS

The DUMPSTAT statistical analysis, incorporating all of the groundwater quality data from October 1996 through October 1999, was submitted in February 2000. The next statistical analysis report will be submitted during the first quarter of the year 2001. That report will include the analysis of groundwater quality data from October 1996 through November 2000.

9.0 ACTIVITIES PLANNED FOR NEXT REPORTING PERIOD

The next reporting period will include the following activities from November 2000 through March 2001:

Activity Landfill inspection Gas Treatment System operation Extraction System monitoring Methane migration monitoring Semi-annual Groundwater Monitoring Schedule Quarterly Continuous Monthly Monthly November 2000

F:\om\353\rpttext102000.wpd

Tables

.

.

.

.

.

TABLE 1 POST-CLOSURE MONITORING/SAMPLING

SAMPLING MEDIUM	PARAMETE	PARAMETER AND METHOD					
GROUNDWATER	VOCs Arsenic (Total) Arsenic (Dissolved) Lead (Total) Lead (Dissolved) Chloride Iron Ammonia COD BOD	8260B 7060A 7060A 7421 352(.1, .2, .3) 6010B 350.2 410 (.1, .2) 405.1					
FIELD PARAMETERS for Surfacewater & Groundwater	eH pH DO Specific Conductance						
SURFACE WATER	VOCs Arsenic (Total) Arsenic (Dissolved) Chloride	8260B 7060A 7060A 325(.1, .2, .3)					
AMBIENT AIR/FLARE INLET	VOCs	TO-14					
FLARE INLET	VOCs	Method 18/TO-14					

f:\om\353\qpro\table1.wb2

.

TABLE 2DATA QUALIFIER DEFINITIONS BY MATRIX

GROUNDWATER AND SURFACE WATER

Volatile Organics in Groundwater and Surface Waters STL Job Nos. 7000-1470A

EPA Region | Qualifier Definitions:

- The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit. The sample quantitation limit accounts for the sample-specific dilution factors and percent solids corrections or sample sizes that deviate from those required by the method.
- J The associated numerical value is an estimated quantity.
- R The data are unusable (analyte may or may not be present). Resampling and reanalysis is necessary for verification. The R replaces the numerical value or sample quantitation limit.
- UJ The material was analyzed for, but was not detected. The sample quantitation limit is an estimated quantity.

TOTAL AND DISSOLVED METALS IN GROUNDWATER AND SURFACE WATERS STL Case No. 1470A, Lot No. 9A08G369; Lot No 9A04G680

EPA Region | Qualifier Definitions:

- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- J The associated value is an estimated quantity.
- R The data are unusable (Note: Analyte may or may not be present).
- UJ The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

AMMONIA, CHLORIDE, BOD AND COD IN GROUNDWATER AND SURFACE WATERS STL Laboratory Case No. 1470A;; Lot No 9A04G680

EPA Region I Qualifier Definitions:

- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- J The associated numerical value is an estimated quantity.
- R The data are unusable (Note: Analyte may or may not be present).
- UJ The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

TABLE 2 Continued DATA QUALIFIER DEFINITIONS BY MATRIX

<u>GROUNDWATER</u> Compuchem Laboratories Laboratory Case No. Q1458, SDG R1458 Volatile Organics in Groundwater

EPA Region I Qualifier Definitions:

- The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit. The sample quantitation limit accounts for the sample-specific dilution factors and percent solids corrections or sample sizes that deviate from those required by the method.
- J The associated numerical value is an estimated quantity.
- R The data are unusable (compound may or may not be present). Resampling and reanalysis is necessary for verification. The R replaces the numerical value or the sample quantitation limit.
- UJ The material was analyzed for, but was not detected. The sample quantitation limit is an estimated quantity.

TOTAL AND DISSOLVED METALS IN GROUNDWATER Compuchem Laboratories Laboratory Case No. Q1458, SDG R1458 and S1458 Inorganic Analysis in Groundwater

EPA Region I Qualifier Definitions:

- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- J The associated numerical value is an estimated quantity.
- R The data are unusable (Note: Analyte may or may not be present).
- UJ The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise

CHLORIDE, BOD, COD AND AMMONIA IN GROUNDWATER Compuchem Laboratories Wet Chemistry In Groundwater Laboratory Case No. r1458; Test America Project No. 200001

EPA Region I Qualifier Definitions:

- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- J The associated numerical value is an estimated quantity.
- R The data are unusable (Note: Analyte may or may not be present).
- UJ The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

Monitoring Location		Top of Casing Elevation (ftamsl)	Ground Surface Elevation (ftamsl)	Pump Intake Depth (fbtoc)	Total Depth ** (fbtoc)	Screened Interval (fbtoc)	Water Level (fbtoc)	Water Elevatior (ftams!)
MW -101		329.07	326.40	78	82.60	74.2 - 79.5	74.54	254.53
MW - 102A		258.03	255.90	69	78,12	62.7 - 73.3	11.45	246.58
MW - 1028	*	253.74	251.10	35	42.05	28.9 - 39.4	7.41	246.33
MW - 1028		268.48	265.48	54	63.11	39.2 - 55.1	16.23	252 25
MW - 103A	•	268.57	265.50	20	30 06	120-21.8	16.08	252.49
MW - 104A		263.54	260.54	52	55.63	43.5 - 54.0	16.46	247.08
MW - 104B	•	263.77	260.77	22	25.72	14.5 - 24.0	12.51	251.26
CW - 5A		304.31	302.00	134	136.11	125.0 - 135.0	54 05	250.26
CW - 5B	*	303.92	302.00	98	103.53	92.0 - 102.0	54.43	249.49
CW - 5D CW - 5C		303.98	302.40	62	69.41	48.5 - 68.5	53.45	250.53
CW - 6A		264 06	262.30	89	93.53	82.0 - 92.0	18.16	245.90
CW - 6B	*	261.74	261.50	59	62.96	51.0 - 61.0	15.81	245.93
CW - 6C		263.98	261.30	25	34.61	13.0 - 33.0	15.18	248.80
CW - 7A	*	255.59	254.90	46	57.96	37.0 - 47.0	7.81	247.78
CW - 7B		255.50	253.00	None	53.00	43.0 - 53.0	8 24	247.26
CW - 7C		255.05	254.50	26	36.55	7.0 - 27 0	8 63	246.42
MW-201		320.25	318.04	79	89.00	69.0 - 89.0	66.32	253.93
MW-202	٠	253.26	251.43	28 5	36.00	21.0 - <u>36.0</u>	<u>11.21</u>	242.05

TABLE 3: WATER LEVEL MONITORING DATA, L&RR SUPERFUND SITE, JULY 11, 2000

Notes:

ftamsi - feet above mean sea level

.

.

ftbtoc - feet below top of casing
 a Denotes unconsolidated aquifer monitoring locations.
 a As presented in well boring logs.

TABLE 4

WELL PURGING

FIELD WATER QUALITY MEASUREMENTS

July 2000

Page 1 of 1

PUMP INTAKE AT (FT. BELOW MP) - 46'

PURGING DEVICE - Geotech/Bladder

L&RR SUPERFUND SITE

DEPTH TO TOP & BOTTOM OF SCREEN - TOP 37'/BOTTOM 47'

July 12, 2000

WELL NUMBER - CW-7A

FIELD PERSONNEL - TK/SS

SAMPLING ORGANIZATION - STL

CLOCK TIME	WATER DEPTH BELOW MP (FT)	PURGE RATE SPECIFY	CUM. VOLUME PURGED (SPECIFY <u>UNITS) (ML)</u>	TEMP (DEGREES C)	SPEC. COND. millimhos/cm AT 25 DEGREES C	рН	Eh mv	DO mg/l	TURBIDITY (NTU)	COMMENTS
1325	7.81	400		16.22	311	6.45	207.5	2.55	<u>34 73</u>	
1330	7.81	400	2,000	<u>16.11</u>	349	6.3	111.1	2.1	31.78	
1335	7.81	400	4,000	15.58	333	6,13	21.6	1.1	12.42	
1340	7.81	400	6,000	15.99	332	6.06	-25 1	0.7	8.52	
1345	7.81	400	8,000	15.77	334	6.08	-47 1	0.8	7,55	
1350	7.81	400	10,000	15.30	334	6.06	<u>-6</u> 8 1	0.4	7.96	
1355	7.81	400	12,000	15.10	338	6.07	-76.0	0.4	7.64	
1400	7.81	400	14,000	15.24	342	6 07	-78 1	0.4	1.85	
1405	7.81	400	16,000	15.33	343	6.07	-79.3	0.4	2.27	
1410	7 81	400	18,000	15.46	342	6 09	-84.7	0.4	2 12	
1415	7.81	400	20,000	15.52	342	6.09	-88.6	0.4	2.07	

f:\om\353\qpro\july2000WEL.WB2 tab:CW7A

WELL PURGING

FIELD WATER QUALITY MEASUREMENTS

July 2000

Page 1 of 1

LARR SUPERFUND SITE

WELL NUMBER - MW-102A

FIELD PERSONNEL - TK/SS

DEPTH TO TOP & BOTTOM OF SCREEN - TOP 62.9'/BOTTOM 73.3'

PUMP INTAKE AT (FT. BELOW MP) - 69'

PURGING DEVICE - Geotech/Bladder

SAMPLING ORGANIZATION - STL

CLOCK TIME	WATER DEPTH BELOW MP (FT)	PURGE RATE SPECIFY	CUM. VOLUME PURGED (SPECIFY UNITS) (ML)	TEMP (DEGREES C)	SPEC. COND. millimhos/cm AT 25 DEGREES C	рН	Eh mv	DO mg/l	TURBIDITY (NTU)	COMMENTS
1330	11.45	400	<u> </u>	14.76	476	5.92	13.4	3.45	<u>11 57</u>	
1335	11.75	400	2,000	14.13	441	5.83	29.3	2.76	9 44	· · · · · · · · · · · · · · · · · · ·
1340	11.63	400	4,000	14.28	434	5.85	28.2	3.34	10.9	
1345	11 61	400	6,000	13.78	434	5.73	38.0	1.39	10.64	
1350	11 61	400	8,000	13.72	433	5.86		1 08	12 78	
1355	11.61	400	10,000	13 28	433	5 84	<u>26</u> 4	0.69	10.12	
1400	11.61	400	12,000	13.55	433	5.76	<u>35.9</u>	0.92	20.33	
1405	11.61	400	14,000	13.66	435	5.84	26 6	0.97	13.84	
1410	11.61	400	16,000	13.80	434	5.87	27 3	0.73	11.35	
1415	11.61	400	18,000	13,78	436	5.85	20.7	0.36	17.63	
1420	11.61	400	20,000	13.55	438	5.87	22 0	0.45	17.33	
1425	11.61	400	22,000	13.72	439	5,93	18.7	0 82	17.37	

E

f:\om\353\qpro\july2000WEL.wb2 tab:mw'102A

July 13, 2000

WELL PURGING

FIELD WATER QUALITY MEASUREMENTS

July 2000

Page 1 of 1

PUMP INTAKE AT (FT. BELOW MP) - 79'

PURGING DEVICE - Geotech/Bladder

L&RR SUPERFUND SITE

DEPTH TO TOP & BOTTOM OF SCREEN - TOP 69'/BOTTOM 89'

July 12, 2000

WELL NUMBER - MW-201

FIELD PERSONNEL - TK/SS

SAMPLING ORGANIZATION - STL

TURBIDITY COMMENTS TEMP SPEC. COND. pН Eh DO CLOCK TIME WATER DEPTH PURGE RATE CUM. VOLUME (NTU) BELOW MP (FT) SPECIFY PURGED (DEGREES C) millimhos/cm mv ma/l At 25 Degrees C UNITS (ML/MIN) (SPECIFY UNITS) (ML) 7.96 185.5 9 93 115.10 10.86 61 845 66.32 400 -2,000 11 02 62 7.55 187.9 8.04 146.00 400 850 66.40 7.77 144.00 61 6.98 201.9 855 66.93 400 4,000 10.70 6.72 208.6 8 53 103.00 62 400 6,000 10.89 900 66.35 6.62 214.5 7 74 78.00 66.35 400 8,000 10.92 62 905 47.02 6.54 2197 7 72 10,000 10.91 60 910 66.35 400 7.79 33.15 400 12,000 11.02 60 6.49 223.1 915 66.35 60 643 226.1 783 31.61 14,000 11.04 920 66.35 400 60 6.37 233.1 7.80 22 47 16,000 11.16 925 66,35 400 6.32 233.6 7 49 21.70 930 400 18,000 11.26 60 66.35 7.80 17.34 6.30 234.8 66.35 400 20,000 11.48 59 935 235.9 7.70 16.97 940 66.35 400 22,000 11.59 59 6.28 6.26 11.96 59 236 1 7.71 15 72 -24,000 945 66.35 400 400 26,000 12.04 59 6.23 237.7 7.35 14.88 950 66.35 59 6.23 237.7 7.35 14.88 12.21 955 66.35 400 28,000

F:\om\353\qpro\July2006WEL.wb2 tab:mw'201

WELL PURGING

FIELD WATER QUALITY MEASUREMENTS

July 2000

Page 1 of 1

PUMP INTAKE AT (FT. BELOW MP) - 54"

PURGING DEVICE - Geotech/Bladder

L&RR SUPERFUND SITE

DEPTH TO TOP & BOTTOM OF SCREEN - TOP 39.2'/BOTTOM 55.1

July 12, 2000

WELL NUMBER - MW-103A

FIELD PERSONNEL - TK/SS

SAMPLING ORGANIZATION - STL

TURBIDITY COMMENTS TEMP SPEC. COND. Eh DO CLOCK TIME WATER DEPTH PURGE RATE CUM. VOLUME pН (NTU) **BELOW MP (FT)** SPECIFY PURGED (DEGREES C) millimhos/cm mg/l mν UNITS (ML/MIN) (SPECIFY UNITS) (ML) AT 25 DEGREES C 280.5 6.75 0.0 -174 6.21 1215 16.23 300 11.38 174 6.46 266.1 5.81 0.0 1,500 12.27 1220 20.05 300 265.1 5.10 0.0 1225 20.05 300 3,000 12.67 175 6.64 4,500 12.59 175 6.77 250.0 5.30 0.0 1230 20.05 300 175 6.81 248.4 4.60 0.0 1235 20.05 300 6,000 12.55 4.62 0.0 300 7,500 12.80 175 6.89 243.8 1240 20.05 6.95 239.9 4.41 00 20.05 300 9,000 13.01 175 1245 10,500 13.12 176 6.98 239.3 4.42 0.0 1250 20.05 300

f:\om\353\qpro\july2000wel.wb2 tab:mw'103A

TABLE 4 (Continued) WELL PURGING

FIELD WATER QUALITY MEASUREMENTS

July 2000

Page 1 of 1

DEPTH TO TOP & BOTTOM OF SCREEN - TOP92'/BOTTOM 102'

PUMP INTAKE AT (FT. BELOW MP) - 98'

PURGING DEVICE - Geotech/Bladder

SAMPLING ORG	SANIZATION - STL									
	WATER DEPTH BELOW MP (FT)	PURGE RATE SPECIFY UNITS (ML/MIN)	CUM. VOLUME PURGED (SPECIFY UNITS) (ML)	TEMP (DEGREES C)	SPEC. COND. millimhos/cm AT 25 DEGREES C	рН	Eh mv	DO mg/l	TURBIDITY (NTU)	COMMENTS
920	54.43	400		13.94	180	<u>5 78</u>	42. <u>0</u>	6.95	0.01	<u></u>
925	54.51	400	2,000	11.36	170	5.60	18.8	4.32	3.27	
930	54.51	400	4,000	11.58	169	5.66	18 7	3.35	0.00	· · · · · · · · · · · · · · · · · · ·
935	54.51	400	6,000	11.66	168	5.63	1.0	1.86	0.00	·
940	54.51	400	8,000	11.60	165	5.69	22.5	2.24	0.00	
945	54.51	400	10,000	11.52	162	5.66	21.0	1.1	0.29	
950	54.51	400	12,000	11.44	161	<u>5.69</u>	28.0	1 34	0 00	
955	54,51	400	14,000	11.53	161	5 65	29.3	1.33	0.08	
1000	54.51	400	16,000	11,61	159	5,65	30 2	1.35	0.00	
1005	54.51	400	18,000	11 62	159	5.62	28.6	1.39	0 00	
1010	54.51	400	20,000	11.63	159	5.69	31.0	1.41	0.00	

f:\om\353\qpro\july2000wELI.wb2 tab:CW5B

٠

L&RR SUPERFUND SITE

July 13, 2000

WELL NUMBER - CW-58

FIELD PERSONNEL - TK/SS

WELL PURGING

FIELD WATER QUALITY MEASUREMENTS

July 2000

Page 1 of 1

L&RR SUPERFUND SITE

DEPTH TO TOP & BOTTOM OF SCREEN - TOP 44'/BOTTOM 54'

July 13, 2000

WELL NUMBER - MW-104A

FIELD PERSONNEL - TK/SS

SAMPLING ORGANIZATION - STL

CLOCK TIME	WATER DEPTH BELOW MP (FT)	PURGE RATE SPECIFY UNITS (ML/MIN)	CUM. VOLUME PURGED (SPECIFY UNITS) (ML)	TEMP (DEGREES C)	SPEC. COND. millimhos/cm AT 25 DEGREES C	рН	Eh mv	DO mg/l	TURBIDITY (NTU)	COMMENTS
1115	16.56	400		1 <u>7 52</u>	2303	6.42	-86.7	0.67	343	
1120	16.72	400	2,000	15.91	2256	6.32	-78.1	0.44	754	
1125	16.72	400	4,000	15 88	2197	6.32	-80.3	0.52	1000	Cleaned Cell
1130	16.72	400	6,000	15 70	2227	6.32	-81.4	0.41		
1135	16.72	400	8,000	15.62	2214	6.32	-88.2	0.38		
1140	16.72	400	10,000	15 56	2204	6.32	-92.1	0.28	3260	
1145	16.72	400	12,000	15.52	2184	6.32	-94.8	0.28	1370	
1150	16.72	400	14,000	15.31	2161	6.33	- <u>98.5</u>	0.21	1665	Cleaned Cell
1155	16.72	400	16,000	15.07	2281	6.34	-89.2	0.42	2360	
1200	16.72	400	18,000	15.83	2280	6.33	-88.6	0.33	920	
1205	16.72	400	20,000	15.95	2267	6 33	-93.1	0.20	835	Cleaned Cell
1210	16.72	400	22,000	15 82	2284	6.34	-91.2	0.13	1425	
1215	16.72	400	- 24,000	15.97	2285	6.33	-90 4	0.62	1515	Cleaned Cell
1220	16 72	400	26,000	15.52	2300	6.37	-91.4	0.54	2015	
1225	16.72	400	28,000	15.68	2260	6 35 _	-94.3	0.34	550	
1230	16.72	400	30,000	15.48	2226	6.34	-100.2	0.31	995	
1235	16.72	400	32,000	15.32	2210	6.32	-104.1	0.19	1020	
1240	16.72	400	34,000	15.59	2167	6.32	-108.1	0.24	925	
1245	16.72	400	36,000	15.52	2150	6.33	-109.8	0 26	1005	

f:\om\353\qpro\july2000wELI.wb2 tab:104A

PUMP INTAKE AT (FT. BELOW MP) - 49'

PURGING DEVICE - Geotech/Bladder

TABLE 4 (Continued) WELL PURGING FIELD WATER QUALITY MEASUREMENTS

July 2000

L&RR SUPERFUND SITE

DEPTH TO TOP & BOTTOM OF SCREEN - TOP 21.6'/BOTTOM 38.6'

Page 1 of 1

PUMP INTAKE AT (FT. BELOW MP) - 28.6

PURGING DEVICE - Geotech/Bladder

July 12, 2000

WELL NUMBER - MW-202

FIELD PERSONNEL - TK/SS

SAMPLING ORGANIZATION - STL

CLOCK TIME	WATER DEPTH BELOW MP (FT)	PURGE RATE SPECIFY UNITS (ML/MIN)	CUM. VOLUME PURGED (SPECIFY UNITS) (ML)	TEMP (DEGREES C)	SPEC. COND. millimhos/cm AT 25 DEGREES C	pН	Eh mv	DO mg/l	TURBIDITY (NTU)	COMMENTS
1030		400		11.23	102	5.41	28 <u>7.8</u>	9.51	209	
1035	11.40	400	2,000	10.50	101	5.21	303.7	8.90	113	
1040	11.32	400	4,000	11.49	101	5.18	310 1	8.61	71	
1045	11.32	400	6,000	11.55	103	5.16	315 2	8.62	104	i
1050	11.32	400	8,000	12.34	102	5.14	320.7	9.10	47	·
1055	11.32	400	10,000	12.27	103	5.12	324.7	8.24	100	
1100	11.32	400	12,000	12.31	103	5.12	328.2	8.40	120	
1105	11.32	400	14,000	12.39	103	5.10	330.5	8.42	105	
1110	11.32	400	16,000	12.83	102	5 10	332.7	8.22	111	
1115	11.32	400	18,000	12.87	102	5 10	334.2	8.13	113	·
1120	11.32	400	20,000	13.04	102	5 09	331.0	7.98	_107	
1125	11.32	400	22,000	11.26	102	5.11	336.4	8.77	84	
1130	11.32	400 -	24,000	11.63	102	5.06	340.2	8.29	92	
1135	11.32	400	26,000	11.92	102	5.08	341.3	8,38	66	
1140	11.32	400	28,000	12.05	101	5.07	342.1	8.26	67	
1145	11.32	400	30,000	12.15	101	5.09	341.9	8.42	71	

f:\om\353\qpro\july2000WEL.wb2 tab:mw'202

MONITORING WELL	MCL (2)						MW-102A					Duplicate
WELL		October 1996	February 1997	June 1997	October 1997	February 1998	June 1998	October 1998	March 1999		July 2000	July 2000
									i I			
TCL VOLATILES (ug/L)					_	_			R	R	100 U J	69 U J
Acetone		<u> </u>	5 U J	<u>5 U</u>	<u>R</u>	R	<u>2 UJ</u>	20	<u> </u>	7.6	100 0 3	10
Benzene	5	12	10	9	8	7	<u>6 J</u>	<u>7</u> 1 U	10	1U	0.5 U	<u>5</u> U
Bromobenzene		<u> </u>	5 U	<u> </u>	10	10	<u>1U</u>	34	25 J	10	28	27
Chloroethane		100	58	56	53	47	32	<u>34</u> 12	<u></u>	11	11	11
Chlorobenzene	100	24	21	21	16	16	14 J		1 UJ	1 U	5 U	50
Chloromethane		5 U	2	<u>1 U</u>	<u> </u>	2 U	<u>1 UJ</u>	<u>10</u>	103	10	50	50
2-Chlorotoluene		<u>5U</u>	10	1 U	10	2 U	<u>1 U</u>	10	2 UJ	46 J	27	27
Dichlorodifiuoromethane		35 J	22	32	<u> </u>	26	28	20			<u>2/</u> 5 U	1.7 U
Trichlorofluoromethane		5 U	<u>1 U</u>	10	10	1 J	10	10	<u>1U</u>	2		160
1,1 - Dichloroethane		180	130	110 J_	110	120 J	70	100	130	109	160	
1.1 - Dichloroethene	7	<u>t U</u>	1 <u>U</u>	10	10	2 U	<u>t</u> U	_0.6 J	10	<u> </u>	<u>5</u> U	<u>5</u> U
1.2 - Dichloroethane	5	18	16	13	13	12	11	10	12	<u>1 U</u>	15	16
1, 2 - Dichloropropane	5	4	3	4	3	<u>2</u> U	3	3	4	4.1	6.4	6.6
cis-1.2-Dichloroethene	70	46	43	10	100	110 J	<u> </u>	130	180	170	230	240
trans-1,2-Dichloroethene	100	5 U	2	2	1 U	2	<u>1 U</u>	2	3	2.4	<u>3.6 J</u>	38 J
1,2-dichlorobenzene	600	5 U	2	2	1	1 រ	1 U	1	10	10	0.93 J	<u> </u>
1.3-Dichlorobenzene		10	10	10	10	1.0	10	10	10	<u>1U</u>	<u>5U</u>	5.0
1.4-Dichlorobenzene	75	8	6	6	5	5	4	4	1 U	4.2	5.5	5.7
Ethylbenzene	700	5 U	1	10	1 U	2 U	10	10	10_	<u> </u>	5 Ų	<u> </u>
Isopropylbenzene		5	5	10	4	4	3	3	10	35	4.1 J_	4.2 J
p-isopropyltoluene		5 U	0.8 J	0.7 J	10	2 U	1 U	1 U	1 U	5 U	<u>5 U</u>	<u>5 U</u>
Methylene Chloride	5		2 U J	2 J	4 J	2 U	2 U	2 Ü J	2 U	1.5 J	32 U J	<u>31 U J</u>
Naphthalene	<u>~</u>	50	2 J	6	10	1 1	2 UJ	0.8 J	2 UJ	<u> </u>	<u>5 U</u>	5 U
n-Propylbenzene		50	<u>1</u>	<u> </u>	1 1 0	20	1 U	1 0	10	<u>1 U</u>	<u>5 U</u>	<u>5 U</u>
Tetrachloroethene	5		15	25	35	34 J	34	46	70	53	55 J	54 J
Trichloroethene	5		18	25	31	31	33	38	52	50	77	79
Toluene	1000	50			10	2 U	1 U	10	10	10	0.95 J	0.89 J
	(4)	50		1 U	1 U	2 U	1 U	06 J	1 U	1 U	5 U	5 U
	(4)	50	3	2	10	2 U	1 U	10	10	10	10 U	10 U
M,P Xylenes 1. 2. 3 - Trichlorobenzene	<u> </u>	10	10	<u> </u>	1 10	<u>1</u> 0	1 Ū	10	t UJ	1 UJ	5 U	5 U
	200	50	1	1	1 10	2 0	10	10	1 U	1 U	5 U	5 Ü
1, 1, 1 - Trichloroethane	200	<u> </u>	2		10	2 Ŭ	10	10	1 U	1 U	5 U	5 U
1,2,4-Trimethylbenzene	J	<u> </u>	5 J		1 10	2 U	10	1 U	10	1 U	5 U	5 U
1,3,5-Trimethylbenzene	·	5 U	10	1 U		2 U	10	10	1 U	1 U	50	<u>5 U</u>
Styrene	·	<u>50</u>	- <u></u>	1 U	1 1 0	2 U	<u> </u>	10	10	10	R	R
2-Butanone		20	20	- 24	26	30	18	21	40	26	46	45
Vinyl Chloride	2				40			<u> </u>				····
					1							ł
DISSOLVED TAL METALS (ug/L)	50	18.6 J	18.4	14.5	15.0	15.5	16.6	14.2	144 J	18.6	17.6 J	11.8 J
Arsenic			1.41 U	1.42 U	1.42 U	142 U	1.42 U	0.464 U	0.464 UJ	1.30	3.0 U J	0.60 U J
Lead	15	<u>1.0 U</u>	<u>1.41 U</u>	1.42 Ų	1.42 0	142.0	1.42 0	. 0.404 0	0.404 00		0.000	
					1			1				
TOTAL TAL METALS (ug/L)		1001	470	14.7	15.6	15.9	16.1	16.0	15.9 J	18.0	18.5	14.2
Arsenic	50		17.9	<u>14.7</u> 49.400	44,500	48,400	49.000	43,100	49.000	35,400	37,200	36.600
Iron	300 (1)		57,600				1 42 U	3.53	49,000 R	3.47	3,0 U J	0.60 U J
Lead	15	100	<u>1.41 U</u>	174 J	1.42 U	<u>142 U</u>	- 142 U	3.03	<u> </u>	<u> </u>	<u> </u>	<u> </u>
INDICATOR PARAMETERS (mg/L)								1 40	0.554	0.406	0.409	0.403
Ammonia		0 824	0.87	0.60	0.68	0.62	0.58 J	1.3	0 564 J	0.496	0.409 5 U	<u>0.403</u> 5 U
COD		26.9	12.2	14	<10	10 U	17	23	18	<5		
BOD		4.2	91	10	<u>7 J</u>	12	17	9	13	10	14.6	11.6
Chloride	250(1)	6.00 J	13.00	2	8.0	<u>8</u> J	7	<5	5	373	7.41	7.02

Notes

(1) - Secondary standards are as noted.

(2) - Source: Drinking Water Regulations and Health Advisories, Office of Water, USEPA Document Number EPA 822-B-96-002, October 1996

(4) - Concentrations for o-xylene and m, p - xylenes should be added for total xylene concentration. Total Xylene MCL is 10,000 ug/L.

F.\om\353\qpro\tabs1099.wb2 tab gwdata

MONITORING WELL	MCL (2)					MW-10	3A			<u> </u>	
WELL		October 1996	February 1997	June 1997	October 1997	February 1998	June 1998	October 1998	March 1999	October 1999	July 2000
TCL VOLATILES (ug/L)									_		-
Acetone		5 U_	<u>5 U J</u>	1 U	R	R	<u>2 U J</u>	10	R	R	R
Benzene	5	5 U	10	<u>1 U</u>	1.0_	2 UJ	1 U	2 U	<u> </u>	<u>10</u>	0.5 U
Bromobenzene	1	<u>5 U</u>	1 U	<u>1 U</u>	10	<u>2 U</u>	<u> 1 U _</u>	10	<u>1 U</u>	10	05 U
Chloroethane		5 U	10	1 U	10	2 UJ	<u> </u>	10	<u>1 UJ</u>	10	05 U
Chlorobenzene	100	5 U	1 U	1 U	10	2 UJ	<u> </u>	10	10	1 U 1 U	0.5 U 0 5 U
Chloromethane		<u>5 U</u>	<u>1U</u>	1 U	<u>1 U</u>	2 UJ	<u> </u>	10	<u>1 UJ</u>		
2-Chlorotoluene		5 U	1 U	<u> </u>	<u>1 U</u>	2 UJ	10	10	<u>1 U</u>	10	0.5 U
Dichlorodifluoromethane		<u>5U</u>	1 U	1 U	<u>2 U</u>	2 UJ	2.0	2 U	2 UJ	2 UJ	0.5 U
Trichlorofluoromethane	. L	<u>5 U</u>	<u>1</u> U	1.0	1 U	2 UJ	10	10	10	<u> 1 Ü</u>	
1,1 - Dichloroethane		<u>5 U</u>	10	1 U	10	2 UJ	<u> </u>	10	10	<u>1U</u>	0.1 J
1,1 - Dichloroethene	7	<u> </u>	10	<u>1 U</u>	10	2 UJ	<u>1 U</u>	10	10	<u>1 U</u>	0.5 U
1,2 - Dichloroethane	5	<u>5 U</u>	<u>1 U</u>	<u>1 Ü</u>	<u>1 U</u>	2 UJ	<u>1U</u>	10	10	10	0.5 U
1, 2 - Dichloropropane	5	<u>5U</u>	10	<u>1U</u>	10	2 UJ	<u> </u>	10	10	<u>1U</u>	0.5 U
cis-1,2-Dichloroethene	70	<u> </u>	<u>1U</u>	<u> </u>	<u>1 U</u>	2 UJ	10	<u>1U</u>	10	10	0.5 U
trans-1,2-Dichloroethene	100	50	1 U	10	10	2 UJ	<u> </u>	10	10	10	0.5 U
1,2-dichlorobenzene	600	<u>5U</u>	10	<u>1 U</u>	10_	2 UJ	10	<u>1 U</u>	10	10	0.5 U
1,3-Dichlorobenzene		10	10	1 U	10	<u>1 U</u>	1 U	<u> </u>	10	<u>1 U</u>	0.5 U
1,4-Dichlorobenzene	75	<u> </u>	<u> </u>	1 U	10	2 UJ	<u> </u>	10	10	10	0.5 U
Ethylbenzene	700	<u> </u>	10	1 Ų	10	2 UJ	<u> </u>	10	10	10	0.5 U 0.5 U
Isopropylbenzene		5 Ų	10	1 U	10	2 UJ	10	10	<u>1U</u>	1 U 5 U	0.5 U
p-Isopropyltoluene		<u>5U</u>	10	10	10	2 UJ	<u>1 U</u>	10	10		<u>0.50</u> 10J
Methylene Chloride	5	<u>5 U</u>	2 U J	20	10_	2 UJ	2 U	<u>2 U J</u>	20	2 <u>U</u>	0.5 U
Naphthalene		<u>5U</u>	2 U J	2 U	1 U	2 UJ	2 U J	<u>2 U</u>	<u>2 UJ</u>	2 UJ 1 U	0.5 U
n-Propylbenzene		<u>5 U</u>	10	10	10	2 UJ	<u> </u>	10	10		0.5 U
Tetrachloroethene	5	<u>5 U</u>	<u>1U</u>	<u>1 U</u>	10	2 UJ	<u> </u>	<u>1U</u> 1U	<u>10</u> 10	<u>1U</u> 1U	0.5 U
Trichloroethene	5	<u>5 U</u>	10	10	<u>1 U</u>	2 UJ		10	10	1 U	0.5 U
Toluene	1000	<u>5 U</u>	10	10	10	2 UJ 2 UJ	<u>1 U</u>	10	10	10	0.5 U
o-Xylene	(4)	<u>5 U</u>	10	<u>1U</u> 1U	<u>1U</u> 1U	2 UJ 2 UJ	<u>10</u> 10	1 U	10	10	1 U
M,P Xylenes	(4)	<u>5 Ü</u>	10		1		10	10	1 UJ	1 UJ	0.5 U
1, 2, 3 - Trichlorobenzene		<u>1</u> U	10	10	10	2 U J	10	10	1 U	1 U	0.5 U
1, 1, 1 - Trichloroethane	200	<u>5 U</u>	<u>1U</u>	<u> </u>	<u>1U</u> 1U	2 UJ 2 UJ	10	10	10	10	0.5 U
1,2,4-Trimethylbenzene		<u>· 5U</u>	10	10				10	10	1 U	0.5 U
1,3,5-Trimethylbenzene		<u>5 U</u>	10	<u>1 U</u> 1 U	10	2 UJ 2 UJ	<u> </u>	10	10	10	0.5 U
Styrene		<u>5 U</u>	1 U 1 U	<u>10</u> 10	10	2 UJ 2 U	10	10	1 U	10	<u>050</u> R
2-Butanone		<u>5 U</u>	10	10	10	2 UJ	10		10	10	0.5 U
Vinyl Chloride	2	<u> </u>		10		2 UJ	<u> </u>		<u>-</u>	· · · · ·	0.0 0
DISSOLVED TAL METALS (ug/L)				_				_			0.75.11
Arsenic	<u>50</u>	<u>1.4 J</u> 1.0 U	3.31 U 1.41 U	<u>3.32 U</u> 1.42 U	3.32 U 1.42 U	3.32 U 1.42 U	<u>3.32 U</u> 1 42 U	0.464 U	1.08 U 0.464 UJ	2.87 U 0.464 U	0.75 U 0.60 U J
		1.0 0	1.41.0	1.42 0	1.42 0	1.42 0		0.404 0	0.104 00	0.1010	
TOTAL TAL METALS (ug/L)											
Arsenic	50	1.2 J	3.31 U	3.32 U	3.32 U	3.32 U	3.32 U	R	1.08 <u>U</u>	2.31 U	0.80 J
iron	300 (1)	55.3	162	106 U	29.8 J	104 U	24.4 U J	116	126	68.2 J	13.8 J
Lead	15	· 1.0 U	1.41 U	1.42 U	1.42 U	1.42 U	<u>1.42 U</u>	0.690 J	0.464 UJ	0.490 J	0.60 <u>U J</u>
INDICATOR PARAMETERS (mg/L)		0.000	0.040.11	0.040.11		0.05 11 1	0.28	0.313	0.0400 U	0.0400 U
Ammonia		0.04 U	0.040 U	0.040 U	0 040 U	0.040 U	0.05 U J	0.28	<10	<u>0.0400 U</u> <5	<u>0.0400 0</u> 5 U
COD		10.0 UJ	<10.0	<u>10 U</u>	10	10 U	<10			<5 96	2.0 U J
BOD		<u>2 U</u>	<2.0	2 U	2 UJ	<2	<2	<2	<2	3.65	3.58
Chloride	250(1)	3.00	13	7	5	5	3	<5	3	3.00	3.30

Notes:

(1) - Secondary standards are as noted

(2) - Source. Drinking Water Regulations and Health Advisories, Office of Water, USEPA Document Number EPA 822-B-96-002, October 1996

MONITORING WELL	MCL (2)						MW-104A					Split Sample
WELL		October 1996	February 1997	June 1997	October 1997	February 1998	June 1998	October 1998	March 1999	October 1999	July 2000	July 2000
TCL VOLATILES (ug/L)						_			_	_		16 U J
Acetone		<u>5</u> U	<u> </u>	5 U	R	R	<u>12 J</u>	2.0	R	R	<u>160 U J</u>	
Benzene	5	18	14	15	16	17	18	12	16 J	<u>12</u>	24	<u>25 J</u>
Bromobenzene		<u> </u>	10	<u>1U</u>	10	2 U	10	10	<u>1 U</u>	10	<u>5U</u>	<u>0.4 J</u>
Chloroethane		110	58	62	45	48	44	24	40 J	10	49	<u>44 J</u>
Chlorobenzene	100	7	5	7	8	9	10	8	9 J	7.0	10	10
Chloromethane		<u> </u>	10	0.9 J	1 U	20	1 U J	10	1 UJ	1 U	<u>5 U</u>	<u>05 U</u>
2-Chlorotoluene	1 1	5 U	10	4	10	2 U	1 U	10	1 U	10	<u> </u>	0.5 U
Dichlorodifluoromethane		5 U	<u>1 U</u>	10	2 U	2 U	2 Ü	2.0	2 UJ	11 J	<u>5 U</u>	0.2 J
Trichlorofluoromethane		5 U	10	1 U	10	2 U	1 U	1 U	1.0	10	<u>5 U</u>	0.5 U
1,1 - Dichloroethane		45	36	38	32	36	41	27	42	27	40	41 J
1.1 - Dichloroethene	7	5 U	10	1 U	1	2 U	1 U	1 J	1	10	<u>5 U</u>	0.5 U
1,2 - Dichloroethane	5	13	11	10	9	9	12	8	11	1 U	9	9
1, 2 - Dichloropropane	5	9	9	10	9	2 U	10	7	10	10	10	10
cis-1,2-Dichloroethene	70	5	1 U	1 U	1 U	2 U	1 U	1	10	<u>1U</u>	5 U	09
trans-1.2-Dichloroethene	100	5	10	2	1 U	1 J	1	0.9 J	1	1.1	1.8 J	2
1.2-dichlorobenzene	600	5 U	4	5	6	6	6	6	5	5.6	6.6	6 J
1,3-Dichlorobenzene		1 U	10	1 U	1 U	1 U	10	1 J	10_	10	0.88 J	<u>0.9 U J</u>
1.4-Dichlorobenzene	75	18	15	17	20	22	26	24	<u>1 U</u>	21	33	<u>27 J</u>
Ethylbenzene	700	150	120	150 J	140	130 J	150	130	120	104	140	110 J
Isopropyibenzene		38	28	31	24	27	22	17	15	17	23	24
p-isopropyltoluene		10 J	10	9	12	13	12	9	6	5 U	<u>5 U</u>	12
Methylene Chloride	5	5 U	7 J	7 J	4 J	4 J	2 U	1 J	· 20	2.2 J	<u>18 U J</u>	4 U J
Naphthalene		46	2 U J	48	35	25 J	53	41	25 J	36 J	59	58 J
n-Propylbenzene		5 U	3	4	5	5	4	3	4	7.1	4.8 J	5
Tetrachloroethene	5	5 Ü	10	1 U	10	2 U	1 U	1 U	1 U	10	5 U	0.5 U
Trichloroethene	5	5 Ü	0.7 J	1 U	10	2 U	1 U	1 Ü	1 U	10	5 U	_0.5 U
Toluene	1000	13	10	10	9	9	8	8	11 J	91	11	12
o-Xylene	(4)	60	1 U	62 J	59	51 J	62	43	46	44	63	60 J
M.P.Xvienes	(4)	140	120 J	150 J	150	130 J	150	100	120	120	350 J	130 J
1, 2, 3 - Trichlorobenzene	1	10	10	1 U	10	1 U	1 U J	0.5 J	1 UJ	1 UJ	5 U	0.5 U J
1, 1, 1 - Trichloroethane	200	5 0	10	1 Ü	10	2 Ŭ	10	10	10	1 U	5 U	0.5 U
1,2,4-Trimethylbenzene	<u>-</u>	27	24	26	32	35	34	28	26	1 U	42	40 J
1,3,5-Trimethylbenzene		8	25	9	22	10	9	8	1 U	24 J	12	13
Styrene		<u>5 U</u>	1 U	1 U	10	2 U	10	1 U	10	10	2,1 J	0.5 U
2-Butanone		5 U	10		1 1 1	2 0	10	10	1 U	1 U	5 U	10 J
Vinyl Chloride	2	<u> </u>	2	10	1 1 0	2 U	1 1	1 Ŭ	1 U	10	5 U	1
							<u>`</u>	· · · · · · · · · · · · · · · · · · ·		<u> </u>		}_
DISSOLVED TAL METALS (ug/L)	1						1			í l		
	50	82.0	96.8 J	79.5	106 J	82.5 J	79.7 J	68.5	116 J	98.9 J	86.9	113.0
Arsenic	15	1.0 U	1.41 U	1.42 U	1.42 U	1.42 U	1.42 U	0.464 U	0.464 U	0.464 U	3.0 U J	2.3 J
Lead	10	1.00	1.41 0	1.42 0	1.42 0	1.42 0	1.42 0	0.404 0	0.707 0	0.101 0	0.0 0 0	
					1							
TOTAL TAL METALS (ug/L)		l				CO 7 1	71.2 J	81.7	107 J	72.3 J	94.7	113
Arsenic	50	92.9	76.4 J	85.0	92.9 J	62.7 J	104.000	126,000	136.000	102.000	89,100	99200
Iron	300 (1)	115,000	98,400	117,000	86,400	104,000				<u> </u>	4.2 J	11.3 J
Lead	15	8.6	6.92	16.5	5.79	10.6	10 0	42.3	16.1 J	10.2	<u>4.2 J</u>	<u>11.3 J</u>
I		l				1		1				8
INDICATOR PARAMETERS (mg/L)								1		1		45.0
Ammonia		22.8	20 5	19.0	18.8	18.3	20 J	87	21.5	21.7	22.6	15.8
COD	ļ	222	200	300	190	73	190	250	<u>190 J</u>	151	220	118
BOD		24 J	42 J	51 J	<u>30 J</u>	23	20	28	24	<u>257 J</u>	22.3	27.0 J
Chloride	250(1)	344	320	380	370	360	250	330	340	374	<u>419</u>	386

Notes:

(1) - Secondary standards are as noted.

(2) - Source: Drinking Water Regulations and Health Advisories, Office of Water, USEPA Document Number EPA 822-B-98-002, October 1996

TABLE 5: GROUNDWATER	CHEMISTRY DATA,	L&RR SUPERFUND SITE	, JULY 2000 (CONTINUED)
----------------------	-----------------	---------------------	-------------------------

MONITORING WELL	MCL (2)						MW-20	1			
WELL		October 1996	February 1997	June 1997	October 1997	February 199	<u>June 1998</u>	October 1998	March 1999	October 1999	July 2000
TCL VOLATILES (ug/L)					1		:				
Acetone	l li	5 U	5 U J	5 U	R	R	2 U J	2 U J	R	R	<u>R</u>
Benzena	5	5 U	10	1 U	1 U	2 U	10	10	1 U	10	<u>0.5 U</u>
Bromobenzene		5 U	1 U	1 Ü	10	2 U	1 1 0	10	1 U	10	05 U
Chloroethane		5 Ü	10	1 U	10	2 U	1 1 U	1 U J	1 UJ	10	0.5 U
Chlorobenzene	100	5 U	10	1 U	10	2 U	1 U	1 U	1 U	10	0.5 U
Chloromethane		5 U	10	10	1 1 0	2 U	1 Ū J	101	1 UJ	1 U	0.5 U
2-Chlorotoluene		5 U	10	10	10	2 Ü	10	10	10	10	05 U
Dichlorodifluoromethane		5 U	10	10	3	3	3	4 J	2 UJ	2 UJ	4.6
Trichlorofluoromethane		50	10	10	10	2 U	10	1 Ü	1 U	1 U	0.5 U
1,1 - Dichloroethane		50	10	10	10	2 0	1 U	10	10	10	0.5 U
1.1 - Dichloroethene	7	50	1 1 1	10	1 <u>1Ŭ</u>	2 0	<u>t iŭ</u>	1 Ŭ	10	10	0.5 U
	5	50		10		20		1 0	10	1 U	0.5 U
1,2 - Dichloroethane	5	<u>50</u>	1 U	10		2 0	1 1	10	1 0	10	0.5 U
1, 2 - Dichloropropane		50	1 0	10	10	20	10	1 U	10	10	0.5 U
cis-1,2-Dichloroethene	100	<u>50</u> 50	10	<u>10</u> 10	10	20	10	10	10	10	0.5 U
trans-1,2-Dichloroethene	600	<u> </u>	1 0	10		20		1 Ŭ	10	1 U	0.5 U
1,2-dichlorobenzene						1 U	10	1 U	10	10	0.5 U
1,3-Dichlorobenzene		10	10	<u> </u>		20		<u> </u>	1 U	<u>iŭ</u>	0.5 U
1,4-Dichlorobenzene	75	<u>5 U</u>	1 U	10	1 -		10	10	10	10	0.5 U
Ethylbenzene	700	<u> </u>	1 U	10	10	20			10	10	0.5 U
Isopropylbenzene		<u>5 U</u>	<u> </u>	1 U	10	2 U	10	<u>1 U</u>	10	5 0	0.5 U
p-Isopropyltoluene		5 U	1 U	1 U	10	2 U	10	<u>1 U</u> 2 U J	2 U	2 Ü	<u> </u>
Methylene Chloride	5	_5 U	2 U J	2 U	10	2 U	2 U			2 UJ	0.5 U
Naphthalene		<u>5 U</u>	16 J	2 U	<u>1 U</u>	<u> </u>	2 U J	<u>1 U</u>	<u>2 UJ</u>		
n-Propylbenzene		<u> </u>	10	10	10	2 U	10	<u>1UJ</u>	10	<u>1U</u>	0.5 U
Tetrachloroethene	5	50	<u>1 U</u>	10	<u>1 U</u>	2.0	10	<u>1UJ</u>	10	10	050
Trichloroethene	5	5 U	10	1 U	10	2 U	10	<u>1 U</u>	<u>1 U</u>	10	0.5 U 0.5 U
Toluene	1000	5 U	10	1 U	10	2 U	10	10	10		
o-Xylene	(4)	<u>5 U</u>	10	1 U	10	2 U	10	<u>1 U</u>	10	10	0.5 0
M,P Xylenes	(4)	5 U	10_	<u>1 U</u>	10	2 U	10	10	<u>1 U</u>	1 U	
1, 2, 3 - Trichlorobenzene		<u> </u>	<u>1 U</u>	1 U	10	<u>1 U</u>	10	<u>1 U</u>	<u>1 UJ</u>	1 UJ	0.5 U
1, 1, 1 - Trichloroethane	200	<u>5 U</u>	1.0	1 U	1.0	2 U	10	<u>1 U</u>	1.0	<u>1 U</u>	0.5 U
1,2,4-Trimethylbenzene		<u>5 U</u>	1 <u>U</u>	10	1 U	2 Ü	10	1.0	10	10	0.5 U
1,3,5-Trimethylbenzene		5 U	10	<u>1,0</u>	10	2 U	10	10	<u>1 U</u>	10	0.5 U
Styrene		5.0	10	1 U	10	2 U	10	<u>1</u>	<u>1 U</u>	10	0.5 U
2-Butanone		5 U	10	1 U	10	2 U	10	10	<u> </u>	1.0	<u></u> R
Vinyl Chloride	2	5 U	10	10	10	2 U	<u>1U</u>	1 U	1 U	<u>1</u> U	05 U
DISSOLVED TAL METALS (ug/L)											
Arsenic	50	1.2 U	<u>3.31 U</u>	3.32 U	3.32 U	3.32 U	33 U	1.70 U	1.08 UJ	<u>1.08 U</u>	0.75 U
Lead	15	1.0 U	<u>1.41 U</u>	1.42 U	1.42 U	1 42 U	1.4 U	0.464 U	0.4 <u>64 U</u>	0.464 U	0.60 U J
TOTAL TAL METALS (ug/L)								108 U	1.08 UJ	1.08 U	075 U
Arsenic	50	<u>1.2 U</u>	3.31 U	3.32 U	3.32 U	3,32 U	3.3 U				
Iron	300 (1)	353	51.1	332 J	100	324	221	261	395	1,190	1,530
Lead	15	1.0 U	1.41 U	1.42 U	1.42 U	<u>1.42 U</u>	1.4 U	0.464 U	<u>0.464 UJ</u>	0.464 U	2.5 J
INDICATOR PARAMETERS (mg/L)						0.040.11	0.5 U J	0,13	0 0970	0.0400 U	0 0400 U
Ammonia		0.04 U	0.040 U	0.040 U	0.040 U	0040 U				<5	5 U
COD	ļ	10.0 U	<10.0	<u>10 U</u>	<10	7	<10	<5	<10	_	<u>5 U</u> 2 U J
BOD		2.0 U	<2.0	4 U J	2 UJ	<2	<2	<2	<2	<2	
Chloride	250(1)	6.00 J	20	4	2	7	<2	<5	<2	3.00 U	3.00 U

Notes

(1) - Secondary standards are as noted.

(2) - Source: Drinking Water Regulations and Health Advisories, Office of Water, USEPA Document Number EPA 822-B-96-002, October 1996

MONITORING WELL	MCL (2)				MW-202						
WELL		October 1996	February 1997	June 1997	October 199	ebruary 199	June 1998	October 1998	March 1999	October 1999	July 2000
TCL VOLATILES (ug/L)											
Acetone		5 U	503	5 U	R	R	4 J	2 U J	<u>R</u>	R	R
Benzene	5	5 Ü	101	1 U	10	2 U	1 U	10	1 Ų	10	0.5 U
Bromobenzene		<u>5 Ü</u>	10	1 Ü	10	2 U	10	10	10	1.0	0.5 U
Chloroethane		5 U	10	1 Ú	10	2 U	1.0	1 <u>U</u> J	1 UJ	10_	0.5 U
Chlorobenzene	100	5 U	10		10	2 U	1.0	10	<u>1 U</u>	10	0.5 U
Chloromethane		5 U	1 U	1 U	1 U	2 U	<u>1 U J</u>	101	1 UJ	10	0.5 U
2-Chlorotoluene		5 U	10	1 <u>Ü</u>	10	2 U	<u>1U</u>	<u> </u>	<u> </u>	10	0.5 U
Dichlorodifluoromethane		5.0	<u>1</u> <u>1</u> <u>1</u>	1 U	2 U	2 U	2 U	<u>2 U J</u>	<u>2 UJ</u>	2 U	0.5 U
Trichlorofluoromethane		5 U	10	1U	1 U	2 U	<u> </u>	<u>1UJ</u>	10	1 UJ	0.5 U
1,1 - Dichloroethane		5.0	10	<u>1 U</u>	1 U	<u>2 U</u>	1 U	10	1 U	10	<u>05 U</u>
1,1 - Dichloroethene	7	50	10	1 U	<u>1 U</u>	20	<u>1 U</u>	<u>1U</u>	10	10	<u>0.5 U</u>
1,2 - Dichloroethane	5	<u>5 U</u>	10	1 U	1 U	20	<u>1 U</u>	10	10	10	050
1, 2 - Dichloropropane	5	5 U	<u> </u>	10	10	20	10	<u> </u>	10	10	0.5 U
cis-1,2-Dichloroethene	70	5 U	10	1 U	1 U	2 U	10	<u> </u>	10	10	0.5 U
trans-1,2-Dichloroethene	100	5 U	1 U	1 U	<u>1 U</u>	2 U	<u> </u>	<u>1U</u>	10	10	0.5 U
1,2-dichlorobenzene	600	5 U	<u>1 U</u>	1 U	<u>1 U</u>	20	1 U	<u>1 U</u>	10	1 🕖	050
1,3-Dichlorobenzene		10	<u>1U</u>	<u>1 U</u>	10	10	10	10	10	<u>1_UJ</u>	0.5 U
1,4-Dichlorobenzene	75	<u> </u>	10	<u>1 U</u>	10	2 U	<u> </u>	<u>1U</u>	<u>10</u> 10	<u>1 UJ</u> 1 U	0.5 U
Ethylbenzene	700	<u> </u>	10	<u>1 U</u>	10	<u>2 U</u>	<u>1U</u>	<u>1U</u> 1U	<u>10</u> 10		0.5 0
Isopropyibenzene		<u>5 U</u>	10	<u> </u>	10	20	<u>1 U</u>		10	5 1	0.5 U
p-Isopropyltoluene		<u>5 U</u>	10	<u>1 U</u>	10	20	<u>1 U</u> 2 U	<u>1 U</u> 2 U J	2 U	2 U	<u> </u>
Methylene Chloride	5	<u>5 U</u>	2 U J	2 U	1 U 1 U	2 U 2 U	<u>2 U</u> 2 U J	10	2 1	2 0	05 U
Naphthalene		<u>5 U</u>	2 U J	<u>2 U</u>		20	10	101	10	1 03	0.5 U
n-Propylbenzene		<u>5 U</u>	10	<u><u>1U</u></u>	<u>1U</u> 1U	20	10	103	10	10	0.5 U
Tetrachioroethene	5	<u>5U</u>	<u>1U</u>	<u> </u>	10	20	10	10	10		0.5 U
Trichloroethene	5	<u>5 U</u>	1 U 1 U	10	10	20	10	10	1 U		0.5 U
Toluene	1000	<u>50</u> 50		10	10	20	10	101	1 0	1 10	0.5 U
o-Xylene	(4) (4)	<u> </u>		10		2 U	10		1 U	1 1 0	<u> </u>
M,P Xylenes	(4)	<u>50</u> 50	10	10	10	20	1 U		1 UJ	t iŭ l	0.5 U
1, 2, 3 - Trichlorobenzene	200	<u> </u>	10	10	10	2 U	1 U		1 U	1 1 0	0.5 U
1, 1, 1 - Trichloroethane	200	- <u>5</u> U	10	10	10	20	10	<u> - </u>	1 0	1 10	0.5 U
1,2,4-Trimethylbenzene		50	10	10	10	2 U	1 0		1 U	1 01	0.5 U
Styrene		<u>50</u>	10	10	10	2 U	1 U	10	- <u>iŭ</u> -	10	0.5 U
2-Butanone		5 U		1 U	1 0	2 0	1 U	10	1 0	1 1 0	Ř
Z-Butanone	2	50			1 0	2 0	1 Ŭ	10	<u>1 U</u>		0.5 U
DISSOLVED TAL METALS (ug/L)						3.32 U	3.32 U	1.80 U	1.08 U	1.20 U	0.75 U
Arsenic	50	<u>1.2 U</u>	<u>3.31 U</u> 1.41 U	3.32 U	3.32 U 1.42 U	3.32 U 1.42 U	<u> </u>	0.464 U	0.464 UJ	0.464 U	0.82 J
Lead	15	1.0 U_	1.41 U	1.42 U	<u>1.42 U</u>	1.42 U	1.42 U	0.464_0	0.404 UJ	0.404 U	<u> </u>
TOTAL TAL METALS (ug/L) Arsenic	50	2.1 J	3.31 U	3.32 U	3.32 U	3.32 U	3.32 U	108 J	1.08 U	1.52 U	0.75 U
Iron	300 (1)	14,900	7,080	1,940	1,490	4,310	4,150	3,220	1,610	2,040	7,790
Lead	15		11.4	2.95	2.12 J	2.97	2.3 J	1.96 U	0.910 J	1.27	0.6 U J
NDICATOR PARAMETERS (mg/L)		0.04 U	0.040 U	0.040 U	0.040 U	0.040 U	0 05 UJ	0.30	0.292	0.765	0.0400 U
COD		10.0 U	<10.0	10 U	<10	10 U	<10	<5	<10	_<5	5 U
BOD		2.0 U	<20	2 U	2 UJ	<2	<2	<2	~2	<2	2.0 U
Chloride	250(1)	12.0 J	8.0	12	9	11	9	14	10	12.3	14.9

Notes:

(1) - Secondary standards are as noted.

(2) - Source' Drinking Water Regulations and Health Advisories, Office of Water, USEPA Document Number EPA 822-B-96-002, October 1996

MONITORING WELL	MCL (2)						CW-SB		<u> </u>		
WELL		October 1996	February 1997	June 1997	October 1997	February 1998	<u>June 1998</u>	October 1998	<u>March 1999</u>)ctober 199	July 2000
TCL VOLATILES (ug/L)											
Acetone	1 1	8 J	5 U J	5 U	R	R	2 U J	2 U	<u>R</u> _	R	R
Benzene	5	5 U	1 <u>U</u>	1 U	10	2 UJ	10	0 <u>.6 J</u>	<u>1</u> Ų	10	0.55
Bromobenzene		5 U	10	1 U	10	2 U J	1 U	10	<u> </u>	10	0.5 U
Chloroethane		5 U	1 U	10	10	2 UJ	3	3	<u>1 UJ</u>	<u>1 U</u>	18
Chlorobenzene	100	<u>5 U</u>	10	1 U	10	2 UJ	10	1 U	10	<u> </u>	<u>0.5 U</u>
Chloromethane	i — i	5 U	1 U	1 U	1 U	2 UJ	10	<u>1 U</u>	<u>1 UJ</u>	10	0.5 U
2-Chlorotoluene		5 U	10	10	1.0	2 UJ	10	<u>1 U</u>	<u>1 UJ</u>	<u> </u>	05 U
Dichlorodifluoromethane		80 J	44	45	26	19 J	22	13	<u>1 j</u>	6.2 J	8.7
Trichlorofluoromethane		5 U	10	7	3	2 J	1 U	10	<u> </u>	10	<u>0.5 U</u>
1,1 - Dichloroethane		5 U	18	16	22	19 J	24	24	30	15	19
1.1 - Dichloroethene	7	5 U	0.6 J	0.8 J	1 U	2 UJ	<u>1</u> U	0.5 J	10	10	0.35 J
1.2 - Dichloroethane	5	5 U	1 U	10	<u>1 U</u>	2 UJ	<u> </u>	10	10	<u>1 U</u>	0.5 U
1, 2 - Dichloropropane	5	5 Ú	<u>1</u> U	1 U	10	2 UJ	10	<u> </u>	<u>1 U</u>	10	0.5 U
cis-1,2-Dichloroethene	70	5 U	9	1 U	11	2 UJ	10	12	14	6.6	11
trans-1,2-Dichloroethene	100	5 U	10	0,8 J	10	2 UJ	10	0.6 J	10	<u>1U</u>	0.44 J
1,2-dichlorobenzene	600	5 U	1 U	1 U	<u>10</u>	<u>2 ÜJ</u>	10	10	1 U	<u>1</u> U	0.5 U
1.3-Dichlorobenzene		1 U	1 U	1 U	10	2 U	10	<u> </u>	<u>1 U</u>	10	0.5 U
1.4-Dichlorobenzene	75	<u> </u>	1 U	1 U	1 <u>U</u>	2 UJ	10	<u>1 U</u>	1 U	10	0.5 U
Ethylbenzene	700	<u>5 Ū</u>	<u>1 U</u>	1 U	10	2 UJ	10	0.8 J	0.9 J	<u> </u>	0.12 J
Isopropylbenzene		5 U	1 ប	- 1 U	10	2_UJ	1 U	10	<u>1 U</u>	10	0.11 J
p-Isopropyltoluene		<u>5 U</u>	10	<u>1 U</u>	10	2 UJ	10	10	<u>1 U</u>	<u>5 U</u>	0,5 U
Methylene Chloride	5	5 U	_ <u>19 J</u>	15 J	10	<u>6 J</u>	2 U	2 U J	<u>7 U</u>	1.8 J	<u>3.8 U J</u>
Naphthalene		<u> </u>	2 U J	2 <u>U</u> _	10	2 UJ	201	0.5 J	<u>2 UJ</u>	2 UJ	0.5 U
n-Propylbenzene	L	<u>5 U</u>	10	<u>1 U</u>	10	2 UJ	10	10	10	<u>1 U</u>	0.5 U 24 J
Tetrachloroethene	5	18	25	28	40	26 J	36	35	47	29 7.5	9.4
Trichloroethene	5	<u>5 U</u>	11	11	14	10 J	14	09 J	10	1 U	0.5 U
Toluene	1000	<u>5 U</u>	1	<u>1 J</u>	<u>10</u> 10	2 UJ 2 UJ	<u>1 U</u> 1 U	1093	10		0.32 J
o-Xylene	(4)	<u>5U</u>	10	<u>1 U</u>		<u>2 UJ</u> 2 UJ	2	2	2	10	3.7 J
M,P Xylenes	(4)	<u>5U</u> 5U	<u>0.6 J</u> 1 U	<u>0.8 J</u> 1 U	1 1U	2 0 1	10	10	1 UJ	1 1	50
1, 2, 3 - Trichlorobenzene			5	5	4	3 J	3	2	1 U	1 U	1
1, 1, 1 - Trichloroethane	200	<u>6</u> 5 U	1 U J		10	2 UJ	10	10	10	10	0.5 U
1,2,4-Trimethylbenzene	· · · -	<u>5U</u>	105	10	10	2 UJ	10	10	10	10	0.5 U
1,3,5-Trimethylbenzene	h	<u>50</u> 50	10	10	10	2 UJ	10	10	10	10	05 U
Styrene 2-Butanone	₽	<u> </u>	10	10	10	2 U	10	10	10	10	R
Vinyl Chloride	2	<u> </u>	4	4	8	7 J	6	6	12	4.4	6.8
	<u> </u>	50			°		- - -				
DISSOLVED TAL METALS (ug/L)											
Arsenic	50	1.20 U	<u>3.31 U</u>	3.32 U	3.32 U	<u>3 32 U</u>	3.32 U	2.18	<u>1.08 U</u>	1.95 U	075 U
Lead	15	<u>1.0 U</u>	1.41 U	1,42 U	1.42 U	<u>1.42 U</u>	1,42 U	0.464 U	0.870 U	0.464 U	0.6 U J
TOTAL TAL METALS (ug/L)											
Arsenic	50	1.20 U	3.31 U	3.32 U	3 32 U	3.32 U	3.32 U	4.94	1.08 UJ	1.61 U	0.75 U
Iron	300 (1)	233	521	620	1,770	4,790	4070	4,340	3,560	2,330	3,010
Lead	15	1.0 U	1.41 U	2 91	1.42 U	1.42 U	1.42 U	0 590 J	0.464 UJ	0.464 U	0.60 U J
	· · · · ·		<u> </u>		1		····= =	1			
INDICATOR PARAMETERS (mg/L)			· · ·								
Ammonia	1	21.1	0.040 U	0.040 U	0.052	0.040 U	0.05 U J	0.13	0.0980	0 0400 U	0.0400 U
COD		10 0 U	<10.0	10 U	<10	10 U	13	10	<10	<5	<u>5 U</u>
BOD		2.0 U	<2.0	2 J	2 J	5	3 J	7	7	12	4.6
Chloride	250(1)	3.00	3.0	4	2	4	2	<5	<2	3.00 U	3 00 U

Notes

(1) - Secondary standards are as noted.

(2) - Source. Drinking Water Regulations and Health Advisories, Office of Water, USEPA Document Number EPA 822-8-96-002, October 1996

MONITORING WELL	MCL (2)						CW-7A				
WELL		October 1996	February 1997	June 1997	October	February 1	June 1998	October 1998	March 1999	October 199	July 2000
TCL VOLATILES (ug/L)											_
Acetone		<u> </u>	5UJ	5Ų_	R	R	2 UJ	2 U J	R	R	R
Benzene	5	<u>5U</u>	1	1	2	<u> </u>	1	1	1 J	1 U 1 U	026 J
Bromobenzene		<u> </u>	<u>1 U</u>	<u><u>1</u>U</u>	10	10	<u>1 U</u> 1 U	<u> </u>	<u>1 U</u>		0.5 U 0.15 J
Chloroethane		<u>5 U</u>	0.7 J	<u> </u>	1	2 U 5	4	4	3	2	0.15 3
Chlorobenzene	100	<u>5 U</u>	2	4 1U	1 U	2 U	4 1 UJ	<u> </u>	<u> </u>	10	0.5 U
Chloromethane		5_U	<u> </u>	<u> </u>		20	1 0	10	1 U	1 1 0	0.5 U
2-Chlorotoluene	I	5 U 5 U	10	1 4	2 U	20	2 U	2 1 1	2 ÜJ	2 1	0.5 U
Dichlorodifluoromethane	[<u> </u>	10	10	10	2 0	10	10	10	1 1	0.5 U
Trichlorofluoromethane	.	<u>5 U</u>	0.8 J	0.9 J	1	20	10	0.6 J	1 U	10	0.35 J
1,1 - Dichloroethane 1,1 - Dichloroethene	7	<u>5 U</u>	1 U	10	10	20	1 U	<u>0.00</u>	1 U	10	0.5 U
1,1 - Dichloroethene	5	<u> </u>	10	10	10	2 U	10	1 Ŭ	10	10	0.5 U
1,2 - Dichloropropane	5	<u> </u>	10	<u> </u>	10	2 0	10	1 Ŭ	10	10	0.5 U
cis-1,2-Dichloroethene	70	5 U	1 0	1 Ŭ	0.9 J	2 0	1 Ŭ	0.7 J	10	10	0.12 J
trans-1.2-Dichloroethene	100	5 U	10	1 U	1 U	20	10	1 Ü	10	<u>1 U</u>	05 U
1,2-dichlorobenzene	600	5 Ü	10	<u> </u>	10	2 Ü	10	1 U	10	10	0.5 U
1.3-Dichlorobenzene		10	10	1 U	10	10	1 U	1 U	1 U	1 U	05 U
1.4-Dichlorobenzene	75	50	2	3	6	6	4	4	1 U	2.0	0.83
Ethylbenzene	700	<u>5 Ū</u>	<u> </u>	1 U	1 U	2 U	1 U	1 0	1 U	1 U	0.5 U
Isopropylbenzene		<u> </u>	2	1 U	3	3	2	2	1 U	1 U	<u>0.24</u> J
p-Isopropyltoluene		5 U	10	1 U	1 U	20	1 U	1 U	1 U	<u>5 U</u>	0.5 U
Methylene Chloride	5	5 U	2 U J	2 U	10	20	2 U	2 U J	20	20	1 Ų J
Nachthalene		5 U	2 U J	2 J	10	2	2 UJ	<u> </u>	2 UJ	3.9 J	0.5 U
n-Propylbenzene		5 U	10	10	10	2 U	1 U	<u>1 Ų J</u>	1 U	10	0.5 U
Tetrachloroethene	5	<u>5 U</u>	10	10	10	2 U	10	101	10	<u>1 U</u>	0.5 U
Trichloroethene	5	<u> </u>	1 U	1.0	10	2.0	10	10	10	10	0.5 U
Toluene	1000	<u>5</u> U	10_	10	10	2 U	10	<u>1U</u>	10	10	0.5 U
o-Xylene	(4)	50	<u> </u>	10	10	<u>2U</u>	10	10	<u> </u>	<u>10</u> 10	0.5 U 1 U
M,P Xylenes	(4)	<u>5U</u>	1 U	10	10	2 U	<u>1 U</u>	10	<u>1 U</u> 1 UJ		0.5 U
1, 2, 3 - Trichlorobenzene		<u>5 U</u>	10	10	<u>1U</u>	2 U	10	<u>1U</u>	<u> </u>	1 01	0.5 U
1, 1, 1 - Trichloroethane	200	<u> </u>	<u>1 U</u>	<u>1 U</u>		2 U	10	<u> </u>	10		0.5 U
1,2,4-Trimethylbenzene	<u> </u>	<u>5U</u>	<u>1 U</u>	10	10	<u>2 U</u>	10	0,7 J	1 0	10	0.5 U
1,3,5-Trimethylbenzene		<u>5U</u>	0.6 J	10	<u>1U</u>	20	<u>1 U</u> 1 U	<u> </u>	10	10	0.5 U
Styrene		50	<u>1 U</u>	<u>1 U</u> 1 U	10	20	10	1 U	10	10	0.5 0 R
2-Butanone		<u> </u>	10	10	0.9 J	20	10	10	1 U	10	0.5 U
Vinyl Chloride	2	50	1 U		0.9 J	20		1.9		<u>+</u>	0.0 0
DISSOLVED TAL METALS (ug/L)					i i						
	50	10.0	9.36	8.76	8.3	10.9	11.5	R	9.51 J	9 37	9.1
Arsenic Lead	<u>50</u> 15	1.0 U	1.41 U	1.42 U	1.4 U	1.42 U	1.42 U	0.464 U	0 464 U	0.464 U	3.0 Ū J
TOTAL TAL METALS (ug/L)											
Arsenic	50	10.0	9.47	8.39	9	10.3	11.9	R	10.3 J	8.98	94
iron	300 (1)	25,400	31,500	35,900	36,100	29,200	31,700	30,800	24,900	18,000	15,200
Lead	15	1.0 U	1.41 U	R	1.4 U	1.42 U	1.42 U	0.464 U	0.464 UJ	0.464 U	3.0 U J
INDICATOR PARAMETERS (mg/L)					[
		0.04 U	0 55	0.62	0.0	0.77	0.6 J	18	0.934	0.681	0.260
Ammonia COD		33.9 J	28.3	42	30	13	24		14	5	5 U
BOD		4	6.9	8	<u>6</u> J	7	8 J	6	7	9	26 J
Chloride	250(1)	26 0	32	17	33		18	22	12	11.2	7.05

Notes:

(1) - Secondary standards are as noted

(2) - Source. Drinking Water Regulations and Health Advisories, Office of Water, USEPA Document Number EPA 822-B-96-002, October 1998

MONITORING WELL	MW-104A	MW - 104A	RPD %	Orig./Split	
WELL	Course Tranklak	SPLIT	Orig./Split	Comparable	
TCL VOLATILES (ug/L)	Severn Trent Lab.	Compuchem Environmental		Yes/No (1)	
Acetone	160 U J	16 U J		Yes	
Benzene	24	25 J	41	Yes	
Bromobenzene	5 U	<u>25 5</u>	*	Yes	
Chloroethane	49	44 J	10.8	Yes	
Chlorobenzene	10	10	0.0	Yes	
Chloromethane	5 U	0.5 U	0.0	Yes	
2-Chlorotoluene	50	0.5 U		Yes	
Dichlorodifluoromethane	5 Ŭ	0.2 J		Yes	
Trichlorofluoromethane	5 U	0.5 U		Yes	
1.1 - Dichloroethane	40	41 J	2.5	Yes	
1.1 - Dichloroethene	5 U	0.5 U		Yes	
1.2 - Dichloroethane	9	9	00	Yes	
1, 2 - Dichloropropane	10	10	0.0	Yes	
cis-1.2-Dichloroethene	<u>5</u> U	0.9		Yes	
trans-1,2-Dichloroethene	1.8 J	2	10.5	Yes	
1,2-dichlorobenzene	6.6	ē J	9.5	Yes	
1,3-Dichlorobenzene	088 J	0.9 U J		Yes	
1,4-Dichlorobenzene	33	27 J	20.0	Yes	
Ethylbenzene	140	110 J	24.0	Yes	
sopropylbenzene	23	24	4.3	Yes	
p-isopropyltoluene	13	12	8.0	Yes	
Methylene Chloride	5 U	12	1	Yes	
Naphthalene	18 U J	4 U J		Yes	
n-Propylbenzene	59	58 J	1.7	Yes	
Tetrachloroethene	48 J	5	4.1	Yes	
Trichloroethene	5 U	0.5 U		Yes	
Toluene	5 U	05 U	·	Yes	
o-Xylene	11	12	8.7	Yes	
M,P Xylenes	63	60 J	4.9	Yes	
1, 2, 3 - Trichlorobenzene	350 J	130 J	917	No	
1, 1, 1 - Trichloroethane	5 U	0.5 U J		Yes	
1,2,4-Trimethylbenzene	5 U	0.5 Ü		Yes	
1,3,5-Trimethylbenzene	42	40 J	4,9	Yes	
Styrene	12	13	8.0	Yes	
2-Butanone	2.1 J	0.5 U		No	
Vinyl Chloride	5 U	10 J		Yes	
	5 U -	1		Yes	
DISSOLVED TAL METALS (ug/L)					
Arsenic					
Lead	86.9	113.0	26.1	Yes	
, <u>, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	3.0 U J	2.3 J		Yes	
TOTAL TAL METALS (ug/L)					
Arsenic					
ron	94.7	113	17.6	Yes	
_ead	89,100	99.200	10.7	Yes	
	4.2 J	11.3 J	91.6	No	
NDICATOR PARAMETERS (mg/L)					
Ammonia					
COD	22.6	15.8	35.4	No	
BOD	220	118	60,4	No	
Chloride	22.3	27.0 J	19.1	Yes	
	419	386	8.2	Yes	

TABLE 6: GROUNDWATER CHEMISTRY SPLIT SAMPLE COMPARISONS, L&RR SUPERFUND SITE, JULY 2000

Notes:

.

TABLE 7: SURFACE WATER CHEMISTRY DATA, L&RR SUPERFUND SITE, APRIL 2000

MONITORING LOCATION	Fresh Wa	ater Criteria Iter (ug/L) erion	SW-5	SW-8	SW-10	SW-16	LCH-4	Duplicate Sample of LCH-4	LCH-5
	Maximum	Continuous							
Sample Designation									
TCL VOLATILES (ug/L)									
1.1-Dichloroethane			0.5 U	0.8	0.5 U	0.5 U	23	24	0.5 U
Chloroethane			0.5 U	1	0.8	0.8	17	19	0.5 U
p-Isopropyltoluene			0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.6	0.5 U
1,2-Dichlorobenzene			0.5 U	0.5 U	0.5 U	0.5 U	0.7	0.8	0.5 U
1.4-Dichlorobenzene			0.5 U	3	0.5 U	0.5 U	2	2	0.5 U
Toluene			0.5 U	0.5 U	0.5 U	0.5 U	0.7	0.8	0.5 U
m,p Xylene			0.5 U	0.5 U	0.5 U	0.5 U	3	3	0.5 U
o-Xylene			0.5 U	0.5 U	0.5 U	0.5 U	4	5	0.5 U
Isopropylbenzene			0.5 U	2	0.5 U	0.5 U	12	14	0.5 U
Ethylbenzene			0.5 U	0.5 U	0.5 U	0.5 U	9	10	0.5 U
Vinyl Chloride			0.5 U	0.5 U	0.5 U	0.5 U	3	3	0.5 U
Acetone			R	R	R	R	2 J	2 J	R
Methylene Chloride			0.5 U	0.5 U	0.5 U	0.5 U	0.7	0.8	0.5 U
trans-1,2-Dichloroethene			0.5 U	0.5 U	0.5 U	0.5 U	0.7	0.7	0.5 U
cis-1,2-Dichloroethene			0.5 U	0.5 U	0.5 U	0.5 U	8	8	0.5 U
Benzene			0.5 U	0.7	0.5 U	0.5 U	3	3	0.5 U
1,2-Dichloroethane			0.5 U	0.5 U	0.5 U	0.5 U	0.9	1	0.5 U
Trichloroethene			0.5 U	0.5 U	0.5 U	0.5 U	1	1	0.5 U
1,2-Dichloropropane			0.5 U	0.5 U	0.5 U	0.5 U	5	6	0.5 U
Chlorobenzene			0.5 U	2	0.5 U	0.5 U	3	3	0.5 U
1,3,5-Trimethylbenzene			0.5 U	0.5 U	0.5 U	0.5 U	0.8	1.0	0.5 U
1,2,4-Trimethylbenzene			0.5 U	0.5 U	0.5 U	0.5 U	2	2	0.5 U
Naphthalene			0.5 U	0.5 U	0.5 U	0.5 U	7	7	0.5 U
n-Propylbenzene	• •		0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 J	0.5 U
TOTAL METALS (ug/L)									
Arsenic	360	190	0.85 UJ	23.2	0.85 U	0.85 U	6.6 J	3.2 J	4.4
DISSOLVED METALS (ug/L)									
Arsenic	360	190	1.1 J	11.0	0.85 U	0.85 U	5.6 J	8.8 J	0.85 U
	000	,00	1.1 0	1	0.00 0	0.00 0		0.0 0	0.00 0
WET CHEMISTRY PARAMETERS			I						
Chlorides			10.5	58.3	30.2	29.4	81 J	49.6 J	16.3
Chionaco			10.5	00.0	50.2	23.7		-3.0 5	10.0
FIELD PARAMETERS				[
pH (Standard units)			5.7	6.39	6.93	6.79	6.1	6.07	6.56
Temperature (C)			8.29	12.0	9.4	10.6	11	10.64	12.4
Conductivity (mhos/cm)			443	631	270	259	372	372	83.7
			440	031	210	203	312	312	03.7

Notes:

(1) - Concentrations reference Federal Register Vol. 57, No. 246, December 22, 1992, Rules and Regulations 60911

TABLE 8: AMBIENT AIR SAMPLING DATA, L&RR SUPERFUND SITE, JUNE 8 AND JUNE 9, 2000

Sampling Location Start date Start time (1) Canister start pressure(Field) End date End time (2) Canister end pressure (Field)	AS - 1 Upwind 6-8-00 11:20 -30.00 6-9-00 9:20 -7.50	AS - 1 DUPLICATE Upwind 6-8-00 11:20 -30.00 6-9-00 9:20 -7.25	AS - 2 Upwind 6-8-00 11:24 -30.00 6-9-00 9:24 -7.00	AS - 3 Downwind 6-8-00 11:29 -30.00 6-9-00 9:29 -7.00	AS - 4 Downwind 6-8-00 11:33 -29.90 6-9-00 9:33 -6.90
TO - 14 Compounds Detected (ppbv) *					
Chloromethane	1.5	0.86 U	0.80 U	0.78 U	<u>0.84 U</u>
Freon 12	1.0	0.86 U	0.82	0.78 U	0.91
Methylene Chloride	1.4	1.4	0.89	<u>1.4 B</u>	0.90
Toluene	0.86 U	4.9	0.80 U	0.78 U	0.84 U
Ethyl Benzene	0.86 U	3.3	0.80 U	0.78 U	<u>0.84 U</u>
m, p - xlylene	0.86 U	23	0.80 U	0.78 U	0.84 U
o-Xylene	0.86 U	3.8	0.80 U	0.78 U	0.84 U
1,3,5-Trimethylbenzene	0.86 U	2.1	0.80 U	0.78 U	0.84_U
1,2,4-Trimethylbenzene	0.86 U	1.0	0.80 U	0.78 U	0.84_U
1,4-Dichlorobenzene	0.86 U	0.99	0.80 U	0.78 U	0.84_U
1,2-Dichlorobenzene	0.86 U	0.94	0.80 U	0.78 U	<u>0.84 U</u>
Chloroform	0.86 U	0.84 U	0.80 U	0.78 U	0.84 U
Carbon Tetrachloride	0.86 U	0. <u>84 U</u>	0.80 U	0.78 U	<u>0.84 U</u>
Acetone	16	36	23	6.8	7.5
Carbon Disulfide	3.4 U	4.1	3.2 U	3.1 U	3.4 U
2-Butanone(MEK)	3.4 U	5.9	3.3	3.1 U	3.4 U

Notes:

•

* - Parts per billion by volume.

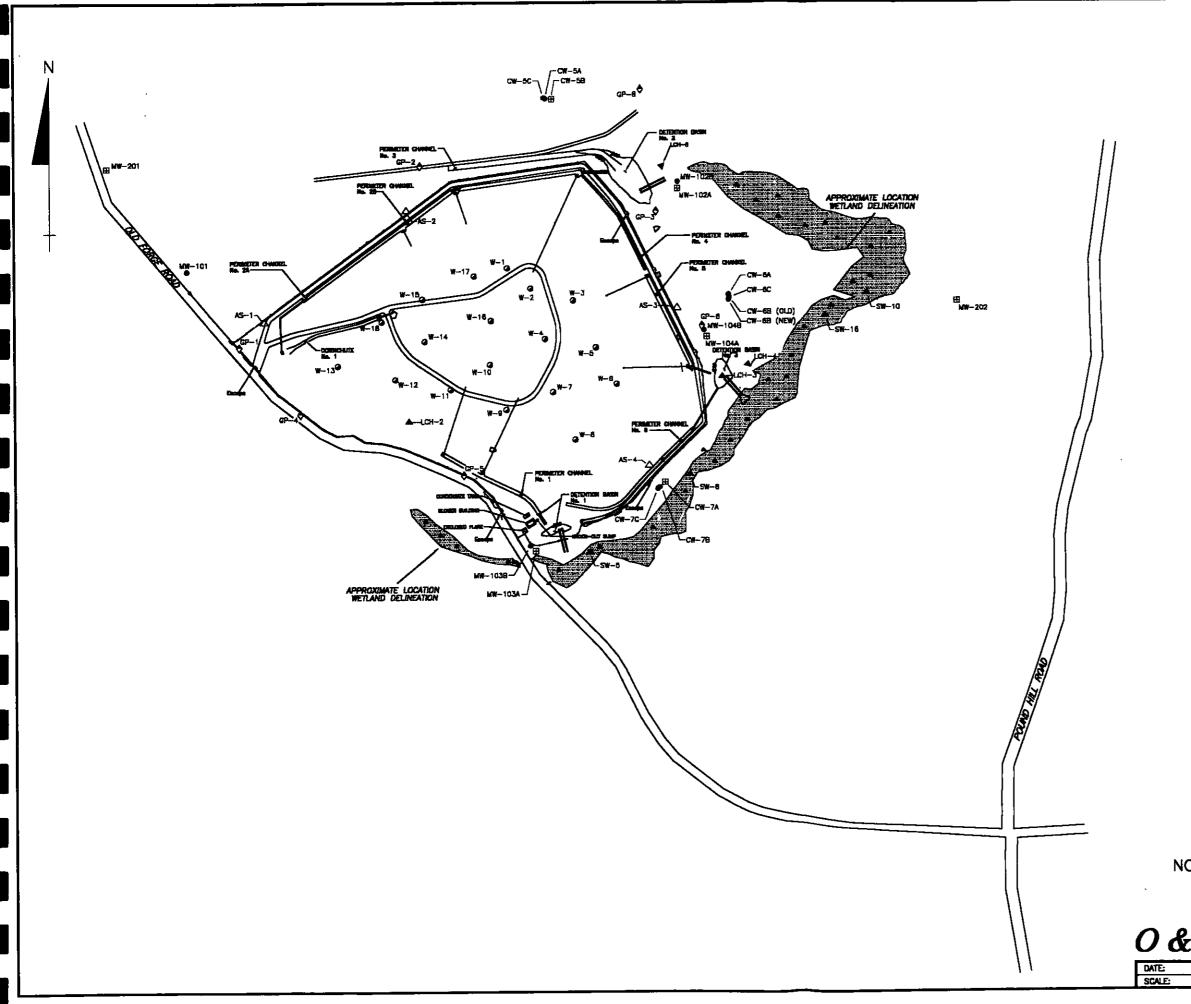
(1) - Start time weather information: 75-80 degrees F,, Wind speed 0-4mph; Barometric pressure 30.13 inches.

(2) - End time weather information: 75-80 degrees F, Wind speed 0-9 mph; Barometric pressure 29.97 inches.

f:\om\353\qpro\tabs7200.wb2 TAB: AIR

TABLE 9: FLARE INLET SAMPLING DATA, L&RR SUPERFUND SITE, AUGUST 15 2000

Sampling Location Start date End date	Flare Inlet August 15, 2000 August 15, 2000		
TO - 14 Compounds			
Detected (ppbv) *			
Freon 12	220		
Freon 114	156		
Methylene Chloride	1337		
Vynyl Chloride	1680		
Ethyl Chloride	205		
Dichloromethane	682		
1,1-Dichloroethane	504		
cis, 1,2-Dichloroethylene	34		
Benzene	267		
Trichloroethylene	349		
Toluene	56300		
Trans-1,3-Dichloropropene	22		
Tetrachloroethylene	488		
Chlorobenzene	47		
Ethyl Benzene	3730		
1,3-Xylene+1,4-Xylene	7030		
1,2-Xylene			
4-Ethyltoluene	251		
Non-target Compouds Detected			
Trans-1,2-Dichloroethylene	1080		


Figure

,

.

.

.

LEGEND:

a^{w_1}	GAS WELL
¢ ⁶⁷⁻⁸	GAS PROBE
● ^{₩₩-104B}	GROUNDWATER MONITORING WELL
æ	POST-CLOSURE GROUNDWATER MONITORING WELL
▲ 5₩—5	SURFACE WATER SAMPLING
∆ AS -1	AMBIENT AIR MONITORING LOCATION

NOTE:

- 1) TOPOGRAPHIC DATA, LOCATIONS, AND PROPERTY BOUNDARIES SURVEYED BY DANSON SURVEYING AND ENGINEERING COMPANY, NOVEMBER 1994, SEPTEMBER 1995 AND SEPTEMBER 1998,
- 2) ftamal Feet above mean see level.

SAMPLE LOCATION PLAN

L&RR SUPERFUND SITE NORTH SMITHFIELD, RHODE ISLAND PREPARED FOR THE L&RR GROUP **O & M, Inc.** Environmental Operations and Maintenance Management

, -		
1-25-00	FIGURE 1	DRAWING NAME
AS SHOWN	FIGURE I	SAMPLE LOCATION PLAN

Appendix A

Inspection Reports

٠

٠

Inspector Name: <u>Clayton Smith</u> Date: <u>2/15/2000</u> Time On Site: <u>11:00 AM</u>

Weather: Clear Signature: Cleyton Smith

Feature	CORRECTIVE / Trouble Signs	Status	Problem	Description of	Action	Date
r cann c	Trounc Signs	Status	Location	Problem	Action	1/atc
1. Security System		Good Condition		· · · · ·		
a. Gate	Inoperative]			
h. Fence	Holes					
c. Locks	Inoperative					
d. Signs	Missing, Unreadable					!
2. Cover Integrity		Good Condition	Surface Feature	Sloughing	Document and	2/15/00
a Surface Features	Animal Burrows, Other Holes, Cracks	(Except where	(see note)	(see note)	Observe area	
b Slopes	Washouts and Sloughing	noted)		•		
c. Vegetation	Brushes/Free Growth, Bare Spots				:	ļ
d Breakouts	Washonts and Discoloration					
3. Stormwater Management System		Good Condition				
a Diversion Swales	Ponding Water, Filling and Sediment					
b. Catch Basins	Filling with Sediment, Blocked by Debris					
c. Stilling Wells	Filling with Sediment				1	
d. Perimeter Channels	Filling with Sedunent, Riprap Lining Disturbed					
e, Culverts	Blocked, Damaged, Riprap Outlets Disturbed	•				
f Detention Basins	Filling with Sediment, Riprap Outlets Disturbed					
4. Groundwater Monitoring Wells		Good Condition				
a Locking Cap	Broken, No Lock					
h Protective Casing	Cracked, Missing					
e Concrete Collar	Cracked, Missing					
d-Local Erosian	Ponding, Water Channels					
5. Landfill Gas Monitoring and	· · · · · · · · · · · · · · · · · · ·	Good Condition	·	·		
Collection System						
a LFG Extraction Wells	Physical Damage to Casing, Wellhead, Sampling Port					
b. LFG Migration Probes	Physical Damage to Casing					
c. Control Panel	Recording Paper and Pens Empty					
6. Permanent Monuments		Good Condition				
a. Bench Marks	Tilting/Heaving					
b. Settlement Monuments	Filting / Icaviog					

COMMENTS:

A small area of sloughing, approximately 10' X 10' and one foot deep was observed near gas well #8. The area maintains positive drainage and was not ponding water. The area will be observed for any further sloughing.

Inspector Name: <u>Clayton Smith</u> Date: <u>3/15/2000</u> Time On Site: <u>8:00-AM</u>

Weather: Clear Signature: Clear Sur

V	CORRECTIVE	MEASURES				
Feature	Trouble Signs	Status	Problem Location	Description of Problem	Action	Date
1. Security System		Good Condition				
a. Gate	Inoperative			1		
b. Fence	Holes					
c. Locks	Inoperative					
d. Signs	Missing, Unreadable					
2. Cover Integrity		Good Condition	Surface Feature	Animal	Filled burrow	3/15/00
a. Surface Features	Animal Burrows, Other Holes, Cracks	(Except where	(see note)	Burrows	holes	
b. Slopes	Washouts and Sloughing	noted)	1	(see note)		1
e. Vegetation	Brushes/Tree Growth, Bare Spots					
d. Breakouts	Washouts and Discoloration					1
3. Stormwater Management System		Good Condition				
a. Diversion Swales	Ponding Water, Filling and Sediment					
b. Catch Basins	Filling with Sediment, Blocked by Debris					
c. Stilling Wells	Filling with Sediment				ł	
d Perimeter Channels	Filling with Sediment, Riprap Lining Disturbed					
e Culverts	Blocked, Damaged, Riprap Outlets Disturbed					
f. Detention Basins	Filling with Sediment, Riprap Outlets Disturbed					
4. Groundwater Monitoring Wells		Good Condition				1
a. Locking Cap	Broken, No Lock					
b. Protective Casing	Cracked, Missing			•		
c. Concrete Collar	Cracked, Missing					
d. Local Erosian	Ponding, Water Channels					
r I	Fonding, water Chamiers	Good Condition	Į			1.
5. Landfill Gas Monitoring and		Cool Culture]	
Collection System a. LFG Extraction Wells	Physical Damage to Casing, Wellhead, Sampling Port					
	Physical Damage to Casing, Weineau, Samphing Fort					1
b. LFG Migration Probes c. Control Panel	Recording Paper and Pens Empty					
	Recording Laber and Lens Childry	Good Condition	· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>	1
6. Permanent Monuments	Titing/Henring					
a. Bench Marks	Tilting/Heaving			1		
b. Settlement Monuments	Tilting /Heaving		I	ļ	ļ	

COMMENTS:

Four small burrow holes were noted on the landfill surface. Corrective action was to fill each hole and apply grass seed to the area. The small area of sloughing, noted during the Febuary Inspection (3/15/2000), near gas well #8 was repaired (filled with topsoil and seeded) on 3/3/2000. Routine maintenace to Blower Number 2 was completed this period.

Inspector Name: <u>Clayton Smith</u> Date: <u>4/20/2000</u> Time On Site: <u>8:00_AM</u>

Weather: <u>Clear</u> Thile On She. <u>a.out.iv</u>

Signature:

· · · · · · · · · · · · · · · · · · ·	CORRECTIVE	<u>MEASURES</u>				
Feature	Trouble Signs	Status	Problem Location	Description of Problem	Action	Date
1. Security System		Good Condition				
a. Gate	Inoperative					
b. Fence	Holes					
c, Locks	Inoperative					
d. Signs	Missing, Unreadable					_
2. Cover Integrity		Good Condition	Surface Feature	Sloughing	Scheduled	4/20/00
a. Surface Features	Animal Burrows, Other Holes, Cracks	(Except where	(see note)	(see note)	corrective action	
b. Slopes	Washouts and Sloughing	noted)				
c. Vegetation	Brushes/ free Growth, Bare Spots					
d. Breakouts	Washouts and Discoloration				•	
3. Stormwater Management System		Good Condition		[· · ·		
a. Diversion Swales	Ponding Water, Filling and Sediment					
b. Catch Basins	Filling with Sediment, Blocked by Debris					
c. Stilling Wells	Filling with Sediment					
d. Perimeter Channels	Filling with Sediment, Riprap Lining Disturbed					
e. Culverts	Blocked, Damaged, Riprap Outlets Disturbed					•
f. Detention Basins	Filling with Sediment, Riprap Outlets Disturbed					
4. Groundwater Monitoring Wells		Good Condition				
a. Locking Cap						
b. Protective Casing	Broken, No Lock					
c. Concrete Collar	Cracked, Missing					
d. Local Erosian	Cracked, Missing					
	Ponding, Water Channels	Good Condition	<u> </u>			
5. Landfill Gas Monitoring and	· ·	Cloba Catalalat				
Collection System	The State of Contraction Base					
a. LFG Extraction Wells	Physical Damage to Casing, Wellhead, Sampling Port					
b. LFG Migration Probes	Physical Damage to Casing					
c. Control Panel	Recording Paper and Pens Empty	Good Condition				
6. Permanent Monuments	emptile to etc.	Good Condition				
a. Beach Marks	Titting/Heaving					
b. Settlement Monuments	Tilting /Heaving		L	<u> </u>		

COMMENTS: Three small areas of sloughing were noted on the landfill surface. The areas are approximatly 20 LF apart from each other and located on a fairly level area approximatly 50 LF northeast of gas probe #4. The first area noted is approximatly 12 feet in diameter and 1.5 feet deep, the second area is approximatly 8 feet in diameter and .5 feet deep and the third area is approximatly 5 feet in diameter and .5 foot deep. Corrective action will be to fill each area with topsoil and apply grass seed to any disturbed areas.

nature: <u>Qayth JTA (</u>	CORRECTIVE	MEASURES				
Feature	Trouble Signs	Status	Problem Location	Description of Problem	Action	Date
1. Security System a. Gate b. Fence c. Locks	Inoperative Holes inoperative	Good Condition				
d. Signs 2. Cover Integrity a. Surface Features b. Slopes c. Vegetation d. Breakouts	Missing, Unreadable Animal Burrows, Other Holes, Cracks Washouts and Sloughing Brushes/Tree Growth, Bare Spots Washouts and Discoloration	Good Condition			· · ·	
a. Stormwater Management System a. Diversion Swales b. Catch Basins c. Stilling Wells d Perimeter Channels e. Culverts f. Detention Basins	Ponding Water, Filling and Sediment Filling with Sediment, Blocked by Debris Filling with Sediment Filling with Sediment, Riprap Lining Disturbed Blocked, Damaged, Riprap Outlets Disturbed Filling with Sediment, Riprap Outlets Disturbed	Good Condition				
4. Groundwater Monitoring Wells a. Locking Cap b. Protective Casing c. Concrete Collar d. Local Erosian	Broken, No Lock Cracked, Missing Cracked, Missing Ponding, Water Channels	Good Condition				
5. Landfill Gas Monitoring and Collection System a. LFG Extraction Wells b. LFG Migration Probes c. Control Panel	Physical Damage to Casing, Wellhead, Sampling Port Physical Damage to Casing Recording Paper and Pens Empty	Good Condition (Except where noted)	LFG Extraction Well (see note)	Weli Head & Flex Coupler (see note)	Closed Well #13 and Scheduled corrective action	5/25/000
6. Permanent Monuments a. Bench Marks b. Settlement Monuments	Tilting/Heaving Tilting /Heaving	Good Condition			-	

content and was closed on 5/25/00. The flex coupler on extraction well #7 apeared to be overstressed. Extension of the flex coupler on extraction well #7 was scheduled for 5/1/00. The extent of any necessary corrective action repair to extracton Well #13 will be determined on 5/1/00 and the well will remain closed until determination of further corrective action can be made.

Inspector Name: <u>Clayton Smith</u> Date: <u>6/30/2000</u> Time On Site: <u>8:00 AM</u>

Weather: Clear, Signature: Clay in Small

Feature	Trouble Signs	Status	Problem Location	Description of Problem	Action	Date
1. Security System		Good				1
a. Gate	Inoperative	Condition				
b. Fence	Holes					
c. Loeks	Inoperative					
d. Signs	Missing, Unreadable					
2. Cover Integrity		Good				
a. Surface Features	Animal Burrows, Other Holes, Cracks	Condition				
b. Slopes	Washouts and Sloughing					
c. Vegetation	Brushes/Tree Growth, Bare Spots					
d. Breakouts	Washouts and Discoloration		1			
3. Stormwater Management System		Good	1			
a. Diversion Swales	Ponding Water, Filling and Sediment	Condition				
b. Catch Basins	Filling with Sediment, Blocked by Debris					
c. Stilling Wells	Filling with Sediment					
d. Perimeter Channels	Filling with Sediment, Riprap Lining Disturbed					
e. Culverts	Blocked, Damaged, Riprap Outlets Disturbed					
f. Detention Basins	Filling with Sediment, Riprap Outlets Disturbed					
4. Groundwater Monitoring Wells		Good		+		1
a. Locking Cap	Broken, No Lock	Condition				
b. Protective Casing	Cracked, Missing	ł				
c. Concrete Collar	Cracked, Missing		1			
d. Local Erosion	Ponding, Water Channels					
5. Landfill Gas Monitoring and	Tonume, water channels	Good				
Collection System		Condition				
a. LFG Extraction Wells	Physical Damage to Casing, Wellhead, Sampling Port	Condition				
b. LFG Migration Probes	Physical Damage to Casing					
c. Control Panel	Recording Paper and Pens Empty					
6. Permanent Monuments	recoverable when and t can campty	Good		<u> </u>		<u> </u>
a. Bench Marks	Tilling/Heaving	Condition				
b. Settlement Monuments	Tilting /Heaving					Ì
		<u> </u>	1 5/05/00 1		•	l
	ded flex coupler and corrective action repair insp	pection noted on	the 5/25/00-ins	spection log concei	ning gas exin	action we
#7 and # 13 were completed on 5	/1/00.					

- •

.

Inspector Name: <u>Clayton Smith</u> Date: <u>7/24/00</u> Time On Site: <u>8:30 AM</u> Weather: <u>Clear</u> Signature: <u>Couple</u>

4	CORRECTIVE	MEASURES				
Festure	Trouble Signs	Status	Problem Location	Description of Problem	Action	Dute
1. Security System		Good Condition				
a. Gate	Inoperative					
b. Fence	Holes					
c. Locks	Inoperative					
d Signs	Missing, Unreadable					
2. Cover Integrity		Good Condition				
a. Surface Features	Animal Burrows, Other Holes, Cracks					
b. Slopes	Washouts and Sloughing					
c. Vegetation	Brushes/Tree Growth, Bare Spots					
d Breakouts	Washouts and Discoloration				-	
3. Stormwater Management System a. Diversion Swales	Ponding Water, Filling and Sediment	Good Condition				
b. Catch Basins	Filling with Sediment, Blocked by Debris					
e. Stilling Wells	Filling with Sediment					
d. Perimeter Channels	Filling with Sediment, Riprap Lining Disturbed					
e Culverts	Blocked, Damaged, Riprap Outlets Disturbed					
f. Detention Basins	Filling with Sediment, Riprap Outlets Disturbed					
4. Groundwater Monitoring Wells		Good Condition				
a. Locking Cap	Broken, No Lock					
b. Protective Casing	Cracked, Missing					
c. Concrete Collar	Cracked, Missing					
d. Local Erosion	Ponding, Water Channels	1 1			•	
5. Landfill Gas Monitoring and		Good Condition				
Collection System						
a. LFG Extraction Wells	Physical Damage to Casing, Wellhead, Sampling Port					
b. LFG Migration Probes	Physical Damage to Casing					
e. Control Panel	Recording Paper and Pens Empty					
6. Permanent Monuments		Good Condition				
a. Bench Marks	Tilting/Heaving					
b. Settlement Monuments	Tilting /Heaving					
COMMENTS:						
None						

ature: Clayh SM	CORRECTIVE	MEASURES				
Feature	Trouble Signs	Status	Problem Location	Description of Problem	Action	Da
. Security System . Gate . Fence . Locks	Inoperative Holes Inoperative Missing, Unreadable	Good Condition				
I. Signs 2. Cover Integrity 3. Surface Features 5. Slopes 5. Vegetation 6. Breakouta	Animal Burrows, Other Holes, Cracks Washouts and Sloughing Brushes/Tree Growth, Bare Spots Washouts and Discoloration	Good Condition				
 Stormwater Management System Diversion Swales Catch Basins Stilling Wells Perimeter Channels Culverts Detention Basins 	Ponding Water, Filling and Sediment Filling with Sediment, Blocked by Debris Filling with Sediment Filling with Sediment, Riprap Lining Disturbed Blocket, Damaged, Riprap Outlets Disturbed Filling with Sediment, Riprap Outlets Disturbed	Good Condition				
I. Groundwater Monitoring Wells a. Locking Cap b. Protective Casing c. Concrete Collar b. Local Erosion	Broken, No Lock Cracked, Missing Cracked, Missing Ponding, Water Channels	Good Condition				
5. Landfill Gas Monitoring and Collection System 6. LFG Extraction Wells 9. LFG Migration Probes 7. Control Panel	Physical Damage to Casing, Wellhead, Sampling Port Physical Damage to Casing Recording Paper and Pens Empty	Good Condition (Except where noted)	Flare	Intermittent flare shutdowns	Scheduled John Zink Technician	
5. Permanent Monuments	Tilting/Heaving Tilting /Heaving	Good Condition				

.

٠

.

•

T. •

,

-- * .

Inspector Name: Clayton Smith Date: <u>9/12/00</u> Time On Site: <u>8:30 AM</u>

Weather: <u>Clear</u> Signature: <u>C. Smrr</u>

	CORRECTIVE			D	Action	Date
Feature	Trouble Signs	Status	Problem Location	Description of Problem	Асцон	Date
. Security System		Good Condition				
, Gate	Inoperative					
). Fence	Holes					
: Locks	Inoperative					
d. Signs	Missing, Unreadable		<u>.</u>		<u> </u>	
2. Cover Integrity		Good Condition		1		
a. Surface Features	Animal Burrows, Other Holes, Cracks					
b, Slopes	Washouts and Sloughing					
c. Vegetation	Brushes/Tree Growth, Bare Spots					
d. Breakouts	Washouts and Discoloration			<u>_</u> <u></u>		
3. Stormwater Management System		Good Condition				
a. Diversion Swales	Ponding Water, Filling and Sediment					
b. Catch Basins	Filling with Sediment, Blocked by Debris					
c. Stilling Wells	Filling with Sediment					
d. Perimeter Channels	Filling with Sediment, Riprap Lining Disturbed					
e. Cuiverts	Blocked, Damaged, Riprap Outlets Disturbed					
f. Detention Basins	Filling with Sediment, Riprap Outlets Disturbed			┼────┼		
4. Groundwater Monitoring Wells		Good Condition				
a. Locking Cap	Broken, No Lock					
b. Protective Casing	Cracked, Missing					
c. Concrete Collar	Cracked, Missing					
d. Local Erosion	Ponding, Water Channels					
5. Landfill Gas Monitoring and		Good Condition				
Collection System						
a. LFG Extraction Wells	Physical Damage to Casing, Wellhead, Sampling Port					
b. LFG Migration Probes	Physical Damage to Casing					
c. Control Panel	Recording Paper and Pens Empty			_ <u></u>		
6. Permanent Monuments		Good Condition				1
a. Bench Marks	Tilting/Heaving					
b. Settlement Monuments	Tilting /Heaving			downs and a John		

COMMENTS: As noted in the August 14, 2000 inspection report, the flare was experiencing intermittent shutdowns and a John Zink Co. technician was scheduled to investigate the problem. The John Zink technician determined that the cause for the intermittent shutdowns was a faulty louvre control. The louvre control automatically regulates the air intake to the flare which in turn controls the flare temperature. At times, the faulty louver did not allow enough air to the flare causing a low temperature flare shutdown. The louvre control was replaced during the week of August 28, 2000. The flare has been in continuous operation following replacement of the louver control.

.

ature: <u>(Vayta 37</u>	CORRECTIVE	MEASURES				
Feature	Trouble Signs	Status	Problem Location	Description of Problem	Action	Dute
. Security System Gate . Fence . Locks	Inoperative Holes Inoperative Missing, Unreadable	Good Condition				
L Signs Cover Integrity Surface Features Slopes Vegetation Breakouts	Animal Burrows, Other Holes, Cracks Washouts and Sloughing Brushes/Tree Growth, Bare Spots Washouts and Discoloration	Good Condition				
 Stormwater Management System Diversion Swales Catch Basins Stilling Wells Perimeter Channels Culvents Detention Basins 	Ponding Water, Filling and Sediment Filling with Sediment, Blocked by Debris Filling with Sediment Filling with Sediment, Riprap Lining Disturbed Blocked, Danaged, Riprap Outlets Disturbed Filling with Sediment, Riprap Outlets Disturbed	Good Condition				
Groundwater Monitoring Wells Locking Cap Protective Casing Concrete Collar Local Erosion	Broken, No Lock Cracked, Missing Cracked, Missing Ponding, Water Channels	Good Condition				
5. Landfill Gas Monitoring and Collection System 1. LFG Extraction Wells 5. LFG Migration Probes 5. Control Panel	Physical Damage to Casing, Wellhead, Sampling Port Physical Damage to Casing Recording Paper and Pens Empty	Good Condition (Except where noted)	LFG Extraction Wells	Strained Flex Coupler	Schedule Maintenance	Target Maint, Dat 10/20/00
5. Permanent Monuments 6. Bench Marks 9. Settlement Monuments	Tilting/Heaving Tilting /Heaving	Good Condition				

٠

÷

L&RR SUPERFUND SITE INSPECTION LOG

ature: <u> </u>				
	CORRECTIVE			
Feature	Trouble Signs	Status	Problem Location	Description Problem
L. Security System		Good		
. Gate	a. Inoperative	Condition		
. Fence	b. Holes	CANALLING TO THE		
. Locks	e, Inoperative			
i. Signs	d. Mussing, Unreadable			
2. Cover Integrity		Great		
. Surface Features	a. Animal Burrows, Other Holes, Cracks	Condition		
b. Stopes	b. Washouts and Stoughing	CONDITION		1
c. Vegetation	c. Brushes/Tree Growth, Bare Spots			
d. Breakous	d. Washouts and Discoloration			<u></u>
3. Stormwater Management System		Good		
a. Diversion Swales	a. Ponding Water, Filling and Sediment	Condition		
b Catch Basins	b. Filling with Sediment, Blacked by Debris	COMONION		
c. Stilling Wells	c. Filling with Sediment			
d. Perimeter Channels	d. Filling with Sediment, Riprap Lining Disturbed	1		
e. Culverts	e. Blocked, Damaged, Riprap Outlets Disturbed	1 1		
f. Desention Basins	f. Filling with Sediment, Riprap Outlets Disturbed			ļ
4. Groundwater Monitoring Wells		Good		1
a. Locking Cap	a. Broken, No Lock	Condition-		1
b. Protective Casing	b. Cracked, Missing			{
c. Concrete Collar	c. Cracked, Missing	1		
I. Local Brosion	d. Ponding, Water Channels	l	·	
5. Landfill Gas Monitoring and		Grood		
Collection System		Condillon		1
LFG Extraction Wells	a. Physical Damage to Casing, Weilhead, Sampling			1
b. LFG Migration Probes	Port	1		1
c. Control Panel	b. Physical Damage to Casing	1		1
·····	c. Recording Paper and Pens Empty			L
6. Permanent Monuments		Goog		
a. Bench Macks	s. Tiking/Heaving	Conditions		
b. Settlement Maximents	b. Tilting /Heaving	Contra 1		

COMMENTS:

Action

.

Date

.

Appendix B

Gas Monitoring Data

LANDFILL & RESOURCE RECOVERY SUPERFUND SITE FIELD GAS WELL MONITORING DATA SHEET

Date:	2	115/00				•.	By: <u>C. Smith</u>
Weather	Conditi	ons:	Clean		Τε	emp: 46 °	Barometric Pressure: 29.9
System (Conditio	ns: <u>Ca</u>	d Con	trol Tem	P (TIC201);	1603 FI	ame Temp (тізн101): <u>1589</u> Ficw (cfm): <u>426</u>
Well No.	Time	CH₄ (%)	CO ₂ (%)	O ₂ (%)	Temp (°F)	Pressure (in H ₋ O)	Comments
1	11:00	r.52.7	43.1	0.2	78°	-12.1	
2		53.7	4(.0	0.1	(0)	-5.1	
3		48.6	41.5		88.	-7.8	
4		50.5	78.2	0.1	90	- 5.8	
5		35.6	40.2	0.0	38	- 5.0	
6		3.0	11.5	11.2		- 0.3	Well Closed
7		54.2	42.1	0.0	40	- 7.1	
8	ļ	0.5	16.7	19.5	40	-1.2	well closed
<u>ę</u>		40.1	37.1	0.0	ଟ୍ରତ	~ 7.1	
10		50.1	38.2	0.1	82	-6.0	
11	<u> </u>		38.5	0.0	70	-7.2	
12		53.3	36.2	0.0	88	-5.8	
13	<u> </u>	50.5	43.2	0.0	80	-1.3	
14		52.5		0.0	90	-5.7	· · · · ·
15		50.5	40.6	0.1	80	-6.5	
16	<u> </u>	0.5	0.3	16.7	35	-0.4	wel class
17	<u> </u>	55.4	42.0	6.1	90 1	-7.2	
18	12:30	57.8	40.2	0.0	76	-6.8	
Probe	<u> </u>						
1		0.0	3.4	17.8			
2	<u> </u>						
3	<u> </u>				[
4		0.0	5.4	14.9			
5					1		
6							
7	<u> </u>	<u> </u>					
8	<u> </u>	0.0	1.)	15.4	[•	· · · · · · · · · · · · · · · · · · ·
Flare			42.7	6.0			
- Elower		50.8	41.8	0.2			

ŝ

de maximis, inc LANDFILL & RESOURCE RECOVERY SUPERFUND SITE FIELD GAS WELL MONITORING DATA SHEET 3/16/00 Date: Ey: <u>CIAYton Smith</u> Weather Conditions: <u>Clean</u> Temp: <u>52</u> Barometric Pressure: <u>29.9</u> Bystem Conditions: <u>Cod</u> Control Temp (TIC201): <u>1688</u> Flame Temp (TISH101): <u>1580</u> Flow (cfm): <u>435</u> Well Time CH CO, 02 Temp Pressure Comments No. (%) (%) (%) (°F) (in H₂O) 1030 53.5 42.9 0.0 84° 1 -10.4 50.6 41.2 0.3 2 -8.0 106 36.6 33.8 3 1.2 92 -1.1 4 46.7 36.5 0.4 70 -9.0 5 38.2 28.4 42 5.4 -0.5 6 0.7 8.5 15.5 50 Well Closed 0.0 7 41.9 32.3 0.0 ି ଚ ଚ -1.3 0.0 19.0 50 8 0.0 well Cloved -2.3 9 42.6 34.6 0.0 92 -4.2 48.7 38.9 6.0 -1.6 10 ୫୫ 41.3 34.5 0.0 11 90 -2.3 12 32.7 30.9 0.0 98 ~ 0.3 13 45.7 38.3 0.0 62 -0.6 14 છે4 SS. D 40.8 0.1 -0.2 15 51.1 41.9 0.0 82 - 3.5 Well Closed 16 3.6 19.2 86 -(.4)52.8 41.5 0.0 17 71 - 7.6 18 54.2 41.0 0.0 80 -2.Y Frebe 0.0 3.6 16.6 (1)<u>-2</u>-÷ $\overline{(A)}$ 18.7 0.01 1.4 <u>.</u>. -2-3-0.0 2.7 9.101 (ટ) Flare 46.0 36.9 1.0 Bicwer 1330 46.9 38.7 0.2

1

•	_						de maximis, inc.			
	L						ERY SUPERFUND SITE			
				AS W	ELL N	IONITOR	ING DATA SHEET			
Date:	4	18/20	00	<u>_</u>			By: C. Smith			
Weather	eather Conditions: <u>Cloudy</u> Temp: <u>50°</u> Barometric Pressure: <u>30. 1</u>									
System C	Condition	ns: 600	L Cont	J trol Tem	D (TIC201):	160, F	lame Temp (TISH101): 1537 Flow (cfm): 420			
• ·										
Well No.	Time CH₄ (%)		* 1 - 1 -		Temp (°F)	Pressure (in H ₂ O)	Comments			
1	0830	51.7			82	-7.2				
2	1	í	38.9		108	-4.2				
3		50.1	39.1	0.1	90	-2.1				
4		53.4	36,1		90	-3.1				
5		55.7	464		40	-0.8				
6		3.0	7.2		50	-0.1	Well closed			
7		55.5		Ĩ	100	-0.5				
8		53.9	40.4	12.0	40	-0.2	Well closed			
9		47.6	35.4	0.2	•	-10				
10		41.8	31.8	0.0	<u>85</u>	-1.4				
11		55.2	32.4	0.4	78	-6.7				
12		53,8	4(.3	0.0	90	-1.6				
13		55.1	41.1	6.0	50	-2.1				
14		49,7	387	0.0	80	-2:4				
15		50.7	38.1	0.0	84	~2.1				
, 16	<u> </u>	55.3		15.8	40	-19	Well Closed			
17		1	367		92	-2.7	·			
18		51.8	38.9	0,0	80	-2.3				
Probe		1								
\mathcal{O}		0.0) ر ه)							
2										
*			7	1						
4		0.0	4,3							
+										
<u>ره</u> ا	$\left - \right $									
7			2 2							
Flare		0.0	2.0 40.8	15.8						
Blower	1045									
L LICHYCI	<u></u>		O - 1	I I		•				

1 1

É

de maximis, inc LANDFILL & RESOURCE RECOVERY SUPERFUND SITE FIELD GAS WELL MONITORING DATA SHEET

				ASW	ELL N	NONITOR	ING DATA SHEET		
Date: 5/25/20 By: C. Smith									
Weather	Conditio	ns:	landy		Τe	emp: <u>64</u>	Barometric Pressure:		
Svstem (Condition	15: 600	4			11.02 5	lame Temp (TISH101): 1684 Flow (cfm): 450		
					µ (aczoł): _	F			
Well	Time	CH₄	CO2	O ₂	Temp	Pressure	Comments		
No.		(%)	(%)	(%)	(°F)	(in H ₂ O)	1		
	0800		39.6		92°	-16.1			
23	<u>├</u>	36.6		6.0	110	-12.6	1		
4	<u> </u>	21.4	26.2	0.0	90	-2.1			
5	 	33.0	31.2	0.0	90	-12.8			
6	¦	45.7	40.1	0.4	52	-1.2			
7	+ -	0.4	9.1	15.1	60	-0.6	Well Closed		
، ع		i "1	36.2	1.7	100	- 4.8	Flex Couples Higid		
9	+	0.(0.0	18.6	60	-3.6	Well Cloud		
10	 	22.1	26.5		92	-8.5			
11		38.5		0.0	-	-7.7			
12	<u>.</u>	32.1	29.8		80	-7.3	[
13	<u></u>	29.4	32.1	0.0	9 8	-6.7			
14		0.3	0.2 39.5	18.8		-2.6	Closed Usel This Anspection		
15		43.6	1	0.0	50	-6.3			
16		38.0			80	-7.			
17	├──- \	39.2	36.5			-6.5	Well Closed		
18				0.3		-6.7	I		
Probe		42.6	37.5	0.0	00	-5.3			
	 	0.0	6.11	10.3					
2	<u> -</u>		6.4	10.3		 	· · · · · · · · · · · · · · · · · · ·		
3			1			<u> </u>			
4	<u>- </u>	0.0	3.0	15.5					
5			<u>ي. د</u>	12,3		 			
6	└ ── ┟──		1			 	1		
7		<u> </u>			<u> </u>				
8		0.0	7.8	14.6					
Flare		38.5		0.2		<u> </u>			
Blower	130					<u> </u>			
	1130		Jarre			I			

i

-								de maximis, inc
		L	ANDH		RESC	URCE	RECOV	ERY SUPERFUND SITE
-				ELD G	AS W	ELL N	IONITOR	ING DATA SHEET
ate: _		619	8100				. .	By: <u>C. Smrth</u>
Weather	Con	ditio	ns:(lear/	Calm	1 Te	emp:	Barometric Pressure: <u>30.</u>
								lame Temp (TISH101): 1655 Flow (cfm): 435
						р (лезот).		Tame Femp (hshid): 7033 Flow (cfm): 925
Well No.	Tir	ne	CH₄ (%)	CO ₂ (%)	0 ₂ (%)	Temp (°F)	Pressure (in H ₂ O)	Comments
1	08	00	47.5	39.9	0.8	92	-14.2	
2	1		41.2			110	-11.2	
3			30.8	29.9		(00	-9.2	
4			32.8	29.0	1.3	90	- ((.)	
5			40.7	31.8	4.0	60	-5.5	
6			0.7	14.7	14.5	40	-0.6	Well Closed
7			49.1	40.6	0.6	100	-10.2	
8			_0.3	0.1	19.9	60	- 3.9	Well closed
9			22.71	26.7	0.2	90	-7.8	
10			38.7	34.4	0.(90	-7.0	
11			<u>33.a</u>	30.1	0.(85	-6.8	
12			34.8	32.7	0.0	100	-6.3	
13			38.2	18.8	7.9	90	-2.2	Well Clased
14			45.1	37.4	0.2	92	-5.3	
15			40.5	32.9	0.8	90	-6.0	
16			0.5	0.1	20.0	60	-6.1	Well Cloud
17			43.2	34.4	0.81	100	-6.7	
18			45.1	32.7	0.	85	-4.9	
Probe			_					
1			0.0	4.8	12.8			
2								
3		<u> </u>						
4			0.0	3.6	16.1			
5	<u> </u>							
6								
7				[
8			0.0	7.8	15.2		•	
Flare			44.5					
Blower		30	43.2	33.3	0.3	_		

ŝ

•							
							de maximia i
-	ļ		1121	2ESU			de maximis, inc. ERY SUPERFUND SITE
	•						ING DATA SHEET
-							
Pate:		24/02					By: C. Smith
Weather	Conditi	ions:	Cleo	A	Te	mp: 65	Barometric Pressure: 30.1
							lame Temp (тізнісі): <u>1716</u> Flow (cfm): <u>410</u>
	r	- <u> </u>		·	·		,
Well No.	Time	CH₄ (%)	CO ₂ (%)	O ₂ (%)	Temp (°F)	Pressure (in H ₂ O)	Comments
	084			1.5	98	-((.4	
2	1	43.7	37.2	1.0	110	-9.0	
3		39.6	35.4		98	-1.6	
4		37.6	30.2		90	-9.4	
5		33.3	26.0	8.5	60	-4.4	
6		2.2	13.2	13.1	60	-0.1	Well Closed
7		50.2	40.8	0.3	100	-8.3	
8		0.2	0.0	20.6	60	- 3.3	. wal closed
9		29.2	28.4	0.5	94	- 6.9	
10		44.9	35.6	0.2	92	-4.3	
11		36.1	33.3	0.4	90	·~ le. 1	
12		35.7	37.2	0.1	98	- 5.1	
13		22.5	12.7	13.1	89	-2.0	web closed
14		47.2	40.6	0.(89	-3.4	
15		43.6	34.1	0.4	90	- 8.6	
16		0.5	0.0	20.3	75	- 5.7	Well Closed
17		46.9		0.5	100	-6.0	
18		51.4	41.2	0.1	82	- 4.8	
Probe		_			•		
	<u> </u>	0.1	4.1	15.8			
2						 	
3	╎/_						
		0.3	9,3	9.1			
5						1	
6							
7	├ 		A //			 	
<u>(3)</u>	<u> </u>	0.0	8.4	15,1	<u>.</u>	<u> </u>	
Flare	+	46.4				<u> </u>	· · · · · · · · · · · · · · · · · · ·
Blower	1330	0 44.2	36.7	0.3		<u> </u>	

de maximis, inc

LANDFILL & RESOURCE RECOVERY SUPERFUND SITE FIELD GAS WELL MONITORING DATA SHEET Date: 8 4 00 By: <u>C. Sm. th</u> Weather Conditions: <u>Clouby 147. Rain</u> Temp: <u>67</u> Barometric Pressure: <u>29.95</u> Bystem Conditions: Thin _____ Control Temp (TIC201): 1502 Flame Temp (TISH101): 1615 Flow (cfm): 440 Well Time CH₄ CO, 02 Temp Pressure Comments (%) No. (%) (%) (°F) $(in H_2O)$ 44.0 0.7 0900 55.2 98 -4.5 1 2 0.2 5a.7 40.71 110 -(.8 3 ዥራ. 3 40.2 0. 2 99 -ລ.(39,8 0.9 91 ~ 3.3 4 42.6 5 36.6 428 D.0 65 -0.1 Well Close of 6 43.8 0 11. 62 - 4.77 - O.Y <2.3 42.4 0.3 100 well closed 8 20.1 -0.7 100 9 7.4 95 -3.4 0. 0 92 10 10 37.6 ~ 0.2 (-3.4 11 38.5 <u>କ</u>0 A 12 75.60 98 0 ~3.(well closed 20.5 4.7 112.2 90 -1.8 13 14 40.6 90 -2.6 \mathcal{O} 15 42.8 0. 90 - 2.4 426 well Closed 16 12.6 -3.5 0.1 2.8 70 17 48.1 446 0.2 100 -3.7 18 41.8 43.7 0.1 82 -24 Probe 17.8 6.9 1 1.4 2 3 4 5.6 15.4 4.8 5 6 7 0.0 6.8 15.4 8 52.1 43.2 Flare 0.6 47.2 38.7 0.3 Blower 1050

Ľ

de maximis, inc. LANDFILL & RESOURCE RECOVERY SUPERFUND SITE FIELD GAS WELL MONITORING DATA SHEET Date: 9/21/00 By: C. Smith Weather Conditions: Cloudy Temp: 75° Barometric Pressure: 29.67 ystem Conditions: <u>Good</u> Control Temp (TIC201): <u>1587</u> Flame Temp (TISH101): <u>1543</u> Flow (cfm): <u>435</u> Well Time CH₄ CO, Ο, Temp Pressure Comments (%) (%) No. (%) (°F) (in H-O) 1030 53.8 41.2 0.2 100 1-6.8 1 54.2 42.1 0.4 110 -6-2 2 55.1 43.0 0.2 109 -4.3 3 54.2 40.3 0.4 92 4 1-5.4 52.3 42.4 0.1 60 5 |-(.3)4.7 | 14.9 | 14.1 | 70 1-0.8 Well closed 6 7 55.6 41.3 0.0 100 -3.4 41.1 72.8 64 | -1.38 **b**.(Well closed 9 46.6 3399 0.0 -3.9 92 52.4 37.6 O.1 BG 10 1-1.5 11 39.6 48.7 0.0182 1-2.7 47.6 38.6 10.2 98 12 30.4 17.6 0.2 84 13 -0.9 192 14 524 426 0.1 -2.8 50.1 44.5 0.4 90 -3.2 15 48.6 33.0 18.5 72 -0.7 16 Well cloud 50.1 40.6 0.5 98 -2.5 17 48.0 42.6 0.4 88 -2.9 18 Probe 0.8 6.4 15.6 1 2

Ľ

16.7

3

4

5 6 7

8 Flare 0.9

Blower 1245 49.1 37.6 1.3

1.8

00 6.4 16.2

52.2 39.7 1.2

-						
	•••					
_				·		
				•		ie maximis, inc
-	LANDF	ILL & RE	SOURCE	ERECOV	ERY SUPERFUND SITE	· · · · · · · · · · · · · · · · · · ·
	FI	ELD GAS	WELL	MONITOR	ING DATA SHEET	
Date:	10/19/00				$\rho \subset u$	
_		<u></u>		•	EV: <u>C. Sunting</u>	
eather		Vear	Te	∍mp:	Earometric Pressure: 2	9.89
System C	conditions: <u>Cæ</u>		Temp (Terat):	(1004 F	Tame Temp (INSHICE): 1627 Ficw	(m. 1/2)
	1	· · · · · · · · · · · · · · · · · · ·				(Cirri): <u>702</u>
Well No.	Time CH ₄			Pressure	Comments	
		(%) (?		(in H ₋ O)		
	0955155.4	43.2 0.			1	
2	(476	37.3 0,		- 9.40		•
3	466	34.4 10.		1-7.2	1	-
	53,2	40.6 0.		<u> -7,5</u>		····
5	51,3	39.6 2.		-3,1	Was Class	·
<u>e</u>		17.213	158	1-2.6	······································	
/	55.1	4110		1-5.60		
8	0.8	5,9 17			· Well Closed	
9	33.6		5 80	1-4.20	· · · · · · · · · · · · · · · · · · ·	
10	1 1521	40, (0,		-4.50		
	1 39.7	3450.4	1.180	60		
			<u> </u>	<u> - 4, 5</u>	Flex Coupler Strained	
12	39.8		71/2	1-0.7		<u> </u>
		4.60		- 2.6	Flex Coupler Strack	nsd
15		39,20 0,		1-68		
		33,6 15 0		1-3.5	Well Closed	
		38,4 1.0		- 4.3		
1 3	1 55,6	<u>4) 5 0,</u>	<u> </u>	- 3, 0	Flex Caupler Strai	and
				:		
		24.7 C	.5	1		
2						
3		<u> </u>	· · · · · · · · · · · · · · · · · · ·	i		
4	17.4	21.3 4	.(0	۱ 	· · · · · · · · · · · · · · · · · · ·	
<u> </u>		ļ į	;	l	Į	
<u> </u>			!	; 	1	
	} .		I			
(8)	1 0.0			,	1	
FLara	48.0	34.3 1	4	, · · ·	, 1 3	
<u>Bicwier</u>	1200 45.4	36.22	0		i	
		ž				ין <i>צ</i>

		L							PERFUND S	de maximis, inc.
Date:	(licl	<u></u>					Bv:	JHUHZ	
		•				 Τε				e
Weather Conditions: System Conditions: System Conditions: Support of the sector										
bystem C			5. <u>Vers ()</u>	Con		p (TIC201):	<u>1517</u> F	lame Temp	(TISH101): 1 7	Flow (cfm): Hee
Well No.	Ti	me	CH₄ _(%)	CO₂ (%)	O₂ (%)	Temp _(°F)	Pressure (in H ₂ O)		Commen	ts
1	00	න	55.5	46.1	<u>8.4</u>	102°	-9.00			(2
2		L;	45.5	365	F .0	110-	- 8,70			
3			37.5	34.6	0,4	1040	-6,90		· ·	49
4			48.2	39.4	0,4	922	-7,0		• • • • • •	
5			45.6	34,7	4,4	40°	-2,50			
6			3,60	12,7	137	<u>52°</u>	+1.0		1.: X [*]	- :
7			55,8	41,3	1.0	940	-5,50			
8			0	0]	19,4	380t	-1,2			
9			29,1	30,5	8,0	70°	-4,30			-
10		i	51.0	39.1	8,4	800	-3.50	-4.0	-	
11			36,4	32,4	0,4	.620	- 3.70	* +		• •
12			39,5	35.3	8,0	88 o	-3,10 .			
13			18,4	15.1	13,3	50°	-0,80			
14			52,8	39.5	0,6	800	-3,0.			·
15			48.7	36.9	0,4	82.	-5,70		,	•••*
16			43.4	27.8	7,0	38.	-3.30			12
17			48,4	38,8	1.0	850	-4,0		· · · ·	N.
18			571	41,4	0,4	760	-2.80			
Probe										
1			5.3	19,5	2,70	_	+2,30			-
-2-										
-3-							+2.30			
4			1,4	11,0	10.6		+2,70			
-5-										
-6-										<u>.</u>
8			0,0	1.5	[17.0		+1.30			
.are	<u> </u>		44.1	5,75	1.1	-	+6,40			
Blower	110	50	41,4	33.3	2.4		- 15 40			

i

				/						
		USTRIES (COMPANY	Orig	ginal SO #		_	New	SO #	925757
East 234-7	Adache Tulsa, I 1900 FAX 916/3	34ahoma 741 234-1968	121-1220	Cust	tomer	de	maximis	P.O.	#	LR+R Lundfill
				Invo	ice Address	5			Address	
•				Invo	ice City	Wa	Ithan	Site	City	N. Smith field
Field S	ield Service Engineer: State, Zip				m		State	, Zip	2T	
Tim	Tim Levanduski Requested by					1	Site	Contact &		
		_	-				uyten Sn	with Phon	e Number	
Are 1&0	•						gri KJZ T&C's pi Blanket Contract		t of ANY work te) 🛛 Warrar	
ype of							TOSG		ection	D PM
(Check	t 🗷 at least	one in e	each secti	on)	☐ Internal ☐ External	ł	Burners	G Call		Sales Call
						L	U Vapor			□ Non-JZ Equip
	Time		geable H		Warranty	Non				
Date	Interval	Reg.	Wknd	OT	Hours_	Rev	T + 1		ion of Work P	
*/ .	12100	7			<u> </u>		Install Injecti		stem.	an Condensate
				<u>_</u> _	<u> </u>		Timer	70 Ke	place	low level Floct.
							High le	4/ <	arts :	oump. Timer
							stops	Pump	system "	after 10 hrs
p	·-·· .				l		of 'apr	retion.		
							Checke	d oper	atin -	ok.
-								7		
F					l			<u>-</u>		
 										
					L					
•										
F							<u> </u>			
Sub-To	tal Hours	7				<u> </u>	RATE INFORM	<u></u>		
Total H	ours					<u>}</u>	Regular Days @		·· weeken	d Days @ \$
Worked		<u>4</u>			-TF · 1		Reg OT Hours (@\$	Wknd O	
	l Parts and S its or Recon		ce <u>/</u> tions _	- 7	TC TI	<u>met -</u>	and B	ase	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	rified By:_				lable		·	2/7/0	0	· · · · · · · · · · · · · · · · · · ·
Work Su	bmitted By		ustomer Re	presenu	ative	had		Date 7/n		Phone (Fax)
· · · ·			ohn Zink Re	present	ative	"man have a fe		Date	·	🗅 Add'l Info. Attached
rip Exp Air Far		,		<u> </u>	-,	-	Leave Oper		٦ .	Refer to Code List for Valid Codes
Mileage	:			<u> </u>	Miles (Clos		Failure Co	
Tolls/T						· · ·			Repair Co	
Car Rer Hotel:	ntal:	<u></u>	Me	- H	Date	Amount	Date	Amount	ļ	
Phone/	Tips:]	Ľ			· · ·		1	
Fuel/Pa			-	F	·				Labor T	
Meals: Misc.:				<u>.</u>		· ·			Expenses T	
Sub-To		i i i i i i i -				<u>.</u>	· · · · · ·	· · ·	Parts T Grand T	
	and the state of the	<u> 38282</u>	1/10091	1012	: Tradition and	S. 1. 5. 1. 1.	1995 - 1995 -			140W

;

SYSTEM. Cheaned Flame arrester To Flame Cheaned Flame arrester To Flame Cheaned Blowers, greased all Bearings, Cleaned Condensate gun and All Strainers / Checked Full operation of Flame Unit running propenty. Unit running propenty. Rate Informations Regular Days @ \$ Worked: Reg OT Hours @ \$ Work Verified By: John Zink Representative John Zink Representative			<u> </u>	· LL(<u>In</u>	Ini	~		والمركز	
Determine with the address Customer de movie Cistomer Site Address Field Service Engineer: Tomice City Wattham Site City Site Address Field Service Engineer: Site City Site City Site City Site City Field Service Engineer: Site City Na Site City Site City Provice City Diversity Nave the Customer sign X/2 T&C's prior to the star of ANY work. If Yes, what type of The Diversity and the Customer's Site City Diversity Diversity Diversity Three Chargeable Flours Crace Diversity Diversity Diversity Diversity Diversity Diversity Diversity Date Interval Reg. Warranty Non Diversity Diversity <td></td> <td>A KOCH IND</td> <td>USTRIES C</td> <td>OMPANY</td> <td>Orig</td> <td>inal SO #</td> <td>· - · · · ·</td> <td></td> <td>NewS</td> <td>5<u>0</u> #</td> <td>910749</td>		A KOCH IND	USTRIES C	OMPANY	Orig	inal SO #	· - · · · ·		NewS	5 <u>0</u> #	910749
Invoice Address Site Address Invoice City Waltham Site City Trin Letknauski Requested by Site City Requested by Clayton State, Zip Phone Number Technial Asia Agent DM Contract @ City City City City City City City City	1920 East Ap 18/234-1900	achg Tulsa, (D'FAX 918/	Okiahoma 741 234-1968	21-1220 - "	Cust	omer	de	maximis	⁻ P.O. #		······································
ield Service Engineer: State, Zip MA State, Zip 7/m. Lettenducki Requested by Clayton Swith Site Contact & Promote Signature Dispersion Site Contact & Site Contact & Promote Signature Dispersion Chayton Swith Site Contact & Promote Signature Dispersion Dispersion Dispersion Dispersion Check B al least one in each section Dispersion				,. <i>.</i>	Invo	ice Address		· · · ·	Site A	ddress	· · ·
ield Service Engineer: State, Zip Mk State, Zip Zin Letknauska Requested by Clayton Swith State, Zip Prof. Start, Dep Contact & Chayton Swith Prof. Number Prof. Start, Dep Contact & (rate) State, Zip Prof. Start, Dep Contact & (rate) Display to the start of ANY work. If Yes, what type of To technical Ask Agent Dep Contact & pe of Work: (rate) Display to the start of ANY work. If Yes, what type of To technical Ask Agent Dep Contact & Display to the start of ANY work. If Yes, what type of To technical Ask Agent Dep Contact & pe of Work: Display to the start of ANY work. If Yes, what type of To technical Ask Agent Dep Contact & Display to the start of ANY work. If Yes, what type of To technical Ask Agent Dep Contact & Date Interval Reg. Wind OT Hours Point Prof. Display to the start of ANY work. If Yes, what type of To technical Ask Agent Dep Contact & Jate Interval Reg. Wind OT Hours Rev Description of Work Performed Jate Tateval Reg. Wind OT Hours Rev Description of Work Performed Jate Advin Hours Starter Agent Dep Contact & Starter Agent Dep Contact & Description of Work Performed Jate Chackee Blowe				· · · · ·	Invo	ice City	11/	atthom	Site C	ity .	
Zint Lettenduski Requested by Clayton Spitth Site Contact & Site Ander * TaC's in place? Yes IN I'No, have the Customer sign KUZ TaC's prior to the start of ANY work. If Yes, what type of Te Technical Asst Agent IPM Contract @ (rate) Impection * TaC's in place? Yes IN I'No, have the Customer sign KUZ TaC's prior to the start of ANY work. If Yes, what type of Te Technical Asst Agent IPM Contract @ (rate) Impection Impection * Clack B of lease one in each section Impection Impection Impection Impection * Chargeable Hours Impection Impection Impection Impection Impection at Interval Chargeable Hours Warranty Non Age Wind OT Hours Rev Description of Work Performed YI 73:0 Impection Start Advance Impection Impection Impection YI 73:0 Impection Checked Blowers Creased all Checked Slowers Creased all YI 73:0 Impection Checked Full operation Start Advance Phone Nave Interval Impection Checked Full operation Start Advance Phone Nave Interval Impe	ield Sei	rvice En	gineer:		State	, Zip			. State,	Zip	
Chargeable Hours Control (Control (Cont	Tim	Leve	indus	k 🦾	Requ	ested by			Site C	ontact &	
Technical Asis Agmi D PM Contract @	· · · · · · · · · · · · · · · · · · ·		1		2.2		C	ayton Smit	L Phone	Number	
pe of Work: Dispection DTOSC Dispection DTM Check B at least one in each section) DTUscall DTUscall DStartup D Startup D Non-3Z Equip Date Interval Reg. Waranty Waranty Non Description of Work Performed D Training D Training D Training D ToSC D Training D ToSC D ToSC D ToSC D ToSC D Startup D Non-3Z Equip D Startup Non-3Z Equip D ToSC D ToSC D ToSC D ToSC D ToSC D ToSC D Startup D Non-3Z Equip D Startup D Non-3Z Equip D Startup	e T&C's Technic	s in place al Asst A	?□Yes .gmt □	PM Con	If No, tract @	have the Cus	tomer si ite) 🛛	gn KJZ T&C's prior Blanket Contract @	to the start (of ANY work.	If Yes, what type of T&C
Image: Chargeable Hours Warranty Non Description of Work Performed Jain Timeral Reg. Wknd OT Hours Rev Description of Work Performed Jain Timeral Reg. Wknd OT Hours Rev Description of Work Performed Jain Timeral Reg. Wknd OT Hours Rev Description of Work Performed Jain Timeral Reg. Wknd OT Hours Rev Description of Work Performed Jain Timeral Reg. Checked Blamera Arrester To Flat Jain Timeral Checked Blamera Greaced all Greaced all Jain Timera Checked Blamera Greaced all Greaced all Jain Timera Checked Full Operation of Flat Jain Timera Unit Checked Full Operation of Fla										ction	· · · · · · · · · · · · · · · · · · ·
Date Time Chargeable Hours Warranty Non Description of Work Performed Jane Interval Reg. Wind OT Hours Rev Discription of Work Performed Jane Interval Reg. Wind OT Hours Rev Discription of Work Performed Jane Interval Reg. Wind OT Hours Rev Discription of Work Performed Jane Interval Reg. Wind OT Hours Systematic Systematic Flame Image: Interval Image: Interval Checked Blowers , greased all Systematics , greased all Image: Interval Image: Interval Image: Interval Image: Interval Image: Interval Image: Interval Image: Interval Image: Interval Image: Interval Image: Interval Image: Interval Image: Interval Image: Interval Image: Interval Image: Interval Image: Interval Image: Interval Image: Interval Image: Interval Image: Interval Image: Interval Image: Interval Image: Interval Image: Interval Image: Interval Image: Interval Image: Interval Image: Interval Image: Interval Image:	Check B	at least	one in e	ach sech	on) ::		1997 - 1997 - 1997 1997 -	Burners Salar	Starti	ıp şazır sin sin L mtC	I Sales Call
Jate Interval. Reg. Wkad OT Hours Rev Description of Work Performed Jate Interval. Rev BI - AMUAL INSPECTION OF Flat SYSTERA. SYSTERA. Checked Blowers, greesed all Greards, Greaned Condensate gun and Gleaned Condensate <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4- 64 (* 4. 1. 1</td> <td></td> <td></td> <td>ing</td> <td></td>							4- 64 (* 4. 1 . 1			ing	
19 7:30 10 BI-AMUAL INSPECTION OF Flat SYSTEM. Cheaned Flame arrester To Flat System. Cheaned Elowers, greased all Bearings, Bearings, Cheaned Condensate gun and All Strainers, Strainers, Checked Full operation of Flat Checked Full operation of Flat Checked Full operation of Flat Unit running Propenty. Distance Regular Days @ S Weekend Days @ S Weekend Days @ S Intermediations Regular Days @ S rk Verified By: Strainer John Zink Representative Strainer Meals: Date Meals: Date Meals: Date Amount Date Labor Total: Expenses Total:								and a start of the second s			لوان المسترين المحمد المحمد والمحرور المرا موان المحمد ا
SYSTEM. SystEM. Cheaned Flame arrester To Flame Checked Blowers, greased all Bearizs, Cleaned Cleaned Condensate sun and All Strainers / Checked Full operation of Flame All Checked Strainers / Checked			+	Wknd		Hours	Kev	BT-DANI	Descripti	on of Work Per	ormed DN OF Flare
Chequed Flame arrester To Flame Checked Blowers, greased all Bearings, Cleaned Condensate Cleaned Condensate Cleaned Condensate Cleaned Condensate Cleaned Condensate Cleaned Condensate Cleaned Condensate Cleaned Condensate Cleaned Condensate Cleaned Condensate Cleaned Condensate Cleaned Condensate Cleaned Condensate Cleaned Condensate Cleaned Condensate Cleaned Condensate Cleaned Condensate Cleaned Condensate Checked Full Cleaned Checked Cleaned Checked	ᡟᢩ᠃┼╴			, · · · ·				STSTEM.	1		
Checked Blowers, Greased all Bearings, Cleaned Condensate sun and Checked Full operation of Flag Unit running propenty. b-Total Hours Identity Rate Informations Regular Days @ S wired Parts and Sales Price Interventions Reg OT Hours @ S Wind OT Hours @ S Interventions Phone (Fax) Date Ideage: Interventions Ideage:	·		•.								1
Bearings, Cleaned Condensate gun and all Straikers, all Ont Straikers, all Ont Trunckers, b-Total Hours b-Total Hours all Ont Truckers, B-Total Hours John Zink Representative John Zink Representative Date Bate Add'I Info. Attact Bate Add'I Info. Attact Bate Amount Date Amount Bate Amount Bate Amount Bate		• •	 		 			Cheaned	Flan	e arres	ter To Flan
Bearings, Cleaned Condensate gun and all straikers, b-total Hours context is an Sales Price aments or Recommendations better John Zink Representative bate John Zink Representative Date Bate Add'I Info. Attact Bate Add'I Info. Attact cone (Tips: el/Parking all all bate <	<u> </u>			• •		<u> </u>		Checked	Blow	15 . 6.1	and all
Cleaned Condensate gun and Checked Full operation of Fla Unit running propenty Unit running propenty b-Total Hours b-Total Hours V b-Total Hours V b-Total Hours Voit Regular Days @ \$ Regular Days @ \$ Weekend Days @ \$ Wknd OT Hours @ \$ Date Date Close Ils/Taxi: r Rental: Meals: Date Date Close Repair Codes: Repair Codes: Repair Codes: Repair Codes: Repair Codes: Labor Total: Expenses Total:			·								
All Strainers / All Strainers / All Strainers / Checked Full operation of Flag Unit running Propenty: Unit running Propenty: b-Total Hours constant Hours B-Total Hours constant Hours B-Total Hours constant Hours B-Total Hours Constant Hours B-Total Hours B-		-	,					<u> </u>			
b. Total Hours 10 b. Total Hours 10 b. Total Hours 10 a		• •	<u> </u>		ļ.					ensate	gun and
b-Total Hours 10 call Hours 10 <td></td> <td>·</td> <td></td> <td>1 -</td> <td></td> <td></td> <td>1</td> <td>Call Sila</td> <td>INAND /</td> <td><u>_</u></td> <td>• </td>		·		1 -			1	Call Sila	INAND /	<u>_</u>	•
b-Total Hours 10 context 10 <td< td=""><td></td><td>·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		·									
b-Total Hours 10 RATE INFORMATION: tal Hours 10 Regular Days @ \$								Checked	. Full	operat	in of Flar
b-Total Hours 10 RATE INFORMATION: tal Hours 10 Regular Days @ \$	···							1/n+	K(1000)	, 	7001.
total Hours orked: orked: quired Parts and Sales Price numents or Recommendations rk Verified By: rk Submitted By: John Zink Representative Date Phone (Fax) Ideals: Meals: Date Part Amount Date Part Codes: Regular Days @ \$ Weekend Days @ \$ Phone (Fax) Phone (Fax) Phone (Fax) Date Particle Codes: Refer to Code List for Valid Repair Codes: Repair Codes: Labor Total: Expenses Total: Expenses Total:									10////	J / 10	
total Hours orked: orked: quired Parts and Sales Price numents or Recommendations rk Verified By: rk Submitted By: John Zink Representative Date Phone (Fax) Ideals: Meals: Date Part Amount Date Part Codes: Regular Days @ \$ Weekend Days @ \$ Phone (Fax) Phone (Fax) Phone (Fax) Date Particle Codes: Refer to Code List for Valid Repair Codes: Repair Codes: Labor Total: Expenses Total: Expenses Total:						İ	[Ŧ
bal Hours Regular Days @ \$ forked: // puired Parts and Sales Price nments or Recommendations rk Verified By:					<u> </u>				<u> </u>		
bal Hours Regular Days @ \$ forked: // puired Parts and Sales Price nments or Recommendations rk Verified By:		· · · <u></u>			 			<u> </u>			<u></u>
forked: P puired Parts and Sales Price nments or Recommendations rk Verified By: Customer Representative rk Submitted By: John Zink Representative Date Phone (Fax) Phone (Fax) Phone (Fax) Date Phone (Fax)	ib-Tota	l Hours	10				<u> </u>	RATE INFORMA	TION:		
uired Parts and Sales Price nments or Recommendations rk Verified By: rk Verified By: rk Submitted By: John Zink Representative John Zink Representative John Zink Representative Date Phone (Fax) John Zink Representative Date Parts and Sales Price Phone (Fax) John Zink Representative Date Parts and Sales Price Ideage:		urs	19								
nments or Recommendations rk Verified By: rk Submitted By: John Zink Representative Miles @_/mile) Leave Open Leave Open Close Failure Codes: Repair Codes: Repair Codes: Repair Codes: Labor Total: Expenses Total: Expenses Total:		Darte and	JU Salar Dri					Reg OT Hours @	\$	Wknd OT	Hours @ \$
rk Verified By:											
Customer Representative John Zink Representative John Zink Representative Date Phone (Fax) John Zink Representative Date I Add'I Info. Attack Date Close I Refer to Code List for Valid Close Close <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td></td><td></td></t<>									,		
In the second secon	rk Veri	ified By:_								<u> </u>	•
John Zink Representative John Zink Representative Date Date Date Add'I Info. Attack Refer to Code List for Valid Refer to Code List for Valid Image: Meals: Date Meals: Date Date Close Failure Codes: Repair Codes: Repair Codes: Labor Total: Expenses Total:	rk Subr	mitted By		USIONET R	epresent	ative].	Ś	79/00		Phone (Fax)
ir Fare: ileage: ileage: Miles @_/mile) Leave Open Close Failure Codes: Repair Codes: Repair Codes: Repair Codes: Leave Open Close Failure Codes: Repair Codes: Labor Total: Labor Total: Expenses Total:		-		ohn Zink R	epresen	ative			Date	<u> </u>	🗅 Add'l Info. Attached
If Fare: Miles @_/mile) Leave Open Image: ileage: (-				Lagra Onen		1	Refer to Code List for Valid Cod
Meals: Date Amount Date Amount one/Tips:			•	-		Miles @	/mile)		ġ 🖌	Failure Code	
one/Tips:			:								
one/Tips:		ai:		Mea	ls: [Date	Amount	t Date	Amount	1	`
el/Parking Labor Total: eals: Expenses Total:			<u>-</u>	-	-					4	
eals: Expenses Total:					-					Labor Tot	al:
isc.: Parts Total:					E					Expenses Tot	al:
				7	F						
ub-Total: Grand Total:	10-Tota	մ։ լ			L					Grand Tot	ai:

		•		• • • • • •		هجري سند با الد ديوانير وهد		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	÷
Ā.	JOH			Orig	inal SO #			New SO #	9202000
11920 200	Anacita Tulum I	USTRIES C Didahoma 741		Cust	omer			P.O. #	120281
918/234.1	1802 FAX 918/	234-1968	· · • ·		ice Address	de	Maximis	Site Address	
*	٠.			<u> </u>	ice City		111 - 212 - 240		LK+R Land +11
Field Service Engineer:				e, Zip	- Wa	1+ham		N. Bmithfield	
Tim Levanduski				· · _			A	State, Zip	RI
					uested by	C	Hen Smith	Site Contact & Phone Number	
Tech	nical Asst A	gmt 🖸	S INO PM Con	li No, tract (nave the Cus	ate)	an KJZ T&C's prior to Blanket Contract @	the start of ANY we (rate) U Wan	ork. If Yes, what type of T&C's?
Type of		•	•						D PM
(Cneci	ķ 🗷 at least	'one in e	ach sech	ion)	 Internal External 	·	Burners Flares	Callout	Sales Call
		•	-	•		•	□ Vapor		
	Time		geable H		Warranty	Non	. 2		1
Date	Interval \$:30	Reg.	Wknd		Hours	Rev	Flare Shut	Description of Work	1 -1
gao	13:50		· ····································	<u> </u>			TEMD.	<u>jevoun</u>	on Low Flare
	<u> </u>						<u></u>	.	· · · · · · · · · · · · · · · · ·
	<u> </u>							,1	
							Checked al	11 Flame	Scanner operation
	+			<u> </u>			-ok	5	
							Found Sich	nal Board	inside Dampel
	<u> </u>	1	<u> </u>	<u> </u>					Fective.
-	<u> </u>			ŀ				otor would	& SO Full open
	<u> </u>	<u>.</u>			·		with 1035		
*						-			· · · · · · · · · · · · · · · · · · ·
			•				Replaced	Danger	motor with
					,		splive at	<u>sitte</u> ,	-
	<u> </u>						<u> </u>		
	ĥ.						Unit opera	the prop	erky.
	×		,				7)//	· · ·
				<u> </u>				7	• • • • • • • • • • • • • • • • • • •
Sub To	 otal Hours	3		ļ			PATE DIEODMATIC	· · ·	
Total H				l]]	RATE INFORMATIC Regular Days @ \$_		end Days @ \$
Worked		· B	•	· · ·	·	· · · .	Reg OT Hours @ \$		OT Hours @ \$
	d Parts and			· ·			.		
Commen	nts or Recor	nmendat	tions _					. .	
Work V	erified By:_	Nos	ŁΔ	Jeant	la		8/	28/00	•
	critica Dy		bstomer Re			1	Date		Phone (Fax)
Work Su	ibmitted By		$\mathcal{D}_{\mathbf{x}}$		In	11	<u> </u>	8/00	
TT OLA DU	-	Jo	ohn Zink R	epresent	ative		. Date		Add'l Info. Attached
	enses:		7				Leave Open		Refer to Code List for Valid Codes
frip Exp						mile)	Close 🖻	Failure	Codee
	re:	,	B	<u>50</u>	Miles @				Coues:
Frip Exp Air Far Mileage Tolls/T	re: e: Taxi:		13	<u>8</u>	Miles @		· · ·	Repair	
Frip Exp Air Far Mileage Tolls/T Car Res	re: e: Taxi:		<u>]</u> Meal			Amount	Date Ar		
Frip Exp Air Far Mileag Tolls/T Car Ren Hotel:	re: re: Taxi: ntal:	•					Date Ar	Repair	
Frip Exp Air Far Mileage Tolls/T Car Ren Hotel: Phone/	e: e: axi: ntal: Tips:						Date Ar	Repair	Codes:
Trip Exp Air Far Mileage Tolls/T Car Rei Hotel: Phone/ Fuel/Pa	e: axi: ntal: Tips: arking						Date Ar	Repair mount Labo	r Total: _
Trip Exp Air Far Mileage Tolls/T Car Rea Hotel: Phone/ Fuel/Pa Meals:	re: re: Taxi: ntal: Tips: arking	•					Date Ar	Repair mount Labo	Codes:
Trip Exp Air Far Mileag Tolls/T Car Res Hotel: Phone/ Fuel/Pa Meals: Misc.:	e: axi: ntal: Tips: arking						Date Ar	Repair mount Labo Expense: Part:	Codes: r Total: _ s Total: _ s Total: _
Trip Exp Air Far Mileag Tolls/T Car Rea Hotel: Phone/ Fuel/Pa Meals:	e: axi: ntal: Tips: arking						Date Ar	Repair mount Labo Expense: Part:	Codes:

.

Appendix C

Groundwater Data Validation Reports Severn Trent Laboratories

1

September 11, 2000

Mr. Dan Garrigan O&M, Inc. 450 Montbrook Lane Knoxville, TN 37919

RE: <u>Data Package Review Report - STL Report No. 7000-1470A - VOAs in Ground</u> Waters

Dear Dan:

I have completed my evaluation of the volatile organics analysis data prepared by the Severn Trent Laboratory (STL) in Monroe, Connecticut, for eight ground water (GW) samples and two trip blanks (TB) from the L&RR Site, which were reported in a single data package under Report No. 7000-1470A. The data package was received by Trillium for review on August 28, 2000, with additional requested information received on September 1-2, 2000 and again on September 6, 2000. The following samples were reported:

MW-201	MW-202
MW-103A	CW-7A
TBL+RR071200	CW-5B
MW-104A	MW-102A
DUP-L+RR	TBL+RR071300

Sample identifications for both trip blanks were shortened by the laboratory throughout the data package by removing "L+RR" from the identifications found on the chain of custody records. The chain of custody identifications are listed above and are used throughout this evaluation report for all samples.

Analyses were performed according to EPA Method 8260B (SW-846, Third Edition, Update III); my evaluation was based on the specifications of the project-specific Quality Assurance Project Plan (QAPP, 9/96), the referenced method, and the *Region I, EPA-New England Data Validation Functional Guidelines for Evaluating Environmental Analyses* (12/96). Qualifiers consistent with those defined in the Region I document were applied as necessary and appropriate.

Home Office: 28 grace's drive • Coatesville, Pa19320 • (610) 383-7233 • Fax (610) 383-7907 Offices in: Louisiana • Maryland • New Jersey • North Carolina • Pennsylvania • Tennessee • Texas

No volatiles analysis raw data were provided in the data package. As specified by the QAPP, my review was limited to a Level III evaluation of the summary forms as presented.

Based on the evaluation, the following qualifiers were applied:

- Results for 2-butanone in all samples in this data set and for acetone in MW-201, MW-202, MW-103A, CW-7A, and CW-5B were rejected (R) as unreliable based on very low relative response factors in the associated calibration standards. Results for 2-butanone also warranted qualification as estimated due to unacceptably low recoveries in the associated blank spike, but the "R" qualifiers take precedence.
- Results for acetone in TBL+RR071200, TBL+RR071300, MW-104A, MW-102A, and DUP-L+RR were qualified as estimated (J) based on low relative response factors in the associated calibration standards.
- Results for tetrachloroethene in CW-5B, MW-102A, and DUP-L+RR were qualified as estimated (J) based on high percent relative standard deviations in the associated initial calibration.
- Results for methylene chloride in all samples were qualified as less than the reported values or less than the sample-specific reporting limit (RL), whichever was greater, based on associated method blank contamination and as estimated based on high percent relative standard deviations in the associated initial calibration and unacceptably high blank spike recoveries (UJ).
- Results for acetone in MW-102A, MW-104A, and DUP-L+RR were qualified as less than the reported values or less than the sample-specific RL, whichever was greater, based on associated method and trip blank contamination (U).
- Results for trichlorofluoromethane in MW-102A and DUP-L+RR were qualified as less than the reported values or less than the sample-specific RL, whichever was greater, based on associated method blank contamination (U).
- Results for m/p-xylenes in CW-5B and MW-104A were qualified as estimated (J) based on the unacceptably high blank spike recoveries; these results may be biased high.
- Results for 4-methyl-2-pentanone in all samples were qualified as estimated (UJ) based on unacceptably low recoveries in the associated blank spike.

> Reporting limits for vinyl chloride and methylene chloride were corrected to $0.5 \,\mu g/L$ and $1 \,\mu g/L$, respectively (from $0.2 \,\mu g/L$ and $0.3 \,\mu g/L$, respectively), to reflect the lowest concentration calibration standards run in association with these analyses.

All qualifiers are reflected on the Organic Analysis Data Sheets (Form I) included as Attachment A to this report. Region I qualifier definitions are also provided in this attachment.

At the discretion of the data user, the following points may warrant consideration by laboratory and field personnel prior to future sampling efforts:

- Documentation of sample preservation in the field on all chain of custody records.
- Documentation of complete cooler temperatures and sample pHs on receipt at the laboratory directly on the chain of custody records or, as a minimum, documentation of cooler temperatures directly on the applicable chain of custody records and inclusion of copies of run logs or other laboratory documentation containing sample pH measurements at the time of analysis.
- Use of linear (or higher order) regressions for calibration of target analytes for which the %RSD from initial calibration exceeds 15%, in accordance with the requirements of the referenced method.
- Use of reporting limits for non-detected analytes that reflect, at best, the lowest concentration initial calibration standard run for each target analyte.
- Documentation of applicable method detection limits (MDLs) in the data package.

Specific details regarding the review and evaluation of these data are discussed below:

Holding Times, Preservation, Sample Integrity: Copies of the two applicable chain of custody (COC) records were included in the data package, documenting sample collection dates of 7/12/00 and 7/13/00. An acceptable temperature (4°C) on laboratory receipt was documented on the COC for the samples collected on 7/12/00. On the COC for samples collected 7/13/00, "7°" was documented by the laboratory. It was assumed that this was also a centigrade measurement. Although slightly above the generally accepted temperature range of $4^{\circ}C\pm 2^{\circ}C$, the exceedance is very minor and no action was taken on this basis.

Acidification of the samples for volatiles analysis with hydrochloric acid was recorded by the sampler on only one of the COCs and documentation of sample pHs on laboratory receipt or at the time of

analysis was not included in the data package. At the request of the evaluator, the laboratory provided their sample receiving preservative records for all samples. However, these records contained pH measurements for only those sample containers preserved with sulfuric acid or nitric acid; they offered no information regarding verification of preservation for the sample containers intended for volatile organics analysis. The laboratory was contacted again by the evaluator, on 9/5/00. On 9/6/00, copies of the laboratory's "GC/MS Volatiles Injection Logs" were received from STL/Connecticut via facsimile. Sample pHs were documented on these records and were verified to be <2 in all cases. No further action was taken with regard to this issue.

All volatiles analyses were performed on 7/21/00 and 7/24/00. Both dates are within the required 14day holding time for chemically preserved water samples.

GC/MS Instrument Performance Check: Summary forms (Form V) were included for four bromofluorobenzene (BFB) instrument performance checks on instrument "HP5971L," reflecting each 12-hour period during which samples, associated standards, and associated quality control samples were analyzed. Reported relative abundances for all four performance checks were acceptable.

Calibration: Summary results (Form VI) for an initial calibration (IC) performed on instrument HP5971L on 7/20/00 were reported in support of the sample analyses. Results for five standards were reported, at concentrations of 0.5, 2, 10, 20, and 30 μ g/L for most target analytes, establishing a calibration range of 0.5 μ g/L to 30 μ g/L for most target analytes. There was no indication in the data package that any target analytes were included in the standards at higher concentrations, however the laboratory was asked for clarification of the individual analyte concentrations and responded (memorandum dated 9/1/00) that the ketones (acetone, 2-butanone, 4-methyl-2-pentanone, and 2-hexanone) were present at five times the concentration of most target analytes (i.e., 2.5 μ g/L to 150 μ g/L to 60 μ g/L).

For the relevant target analytes, reported average relative response factors (RRFs) were acceptable (greater than 0.05) in the IC except for acetone (0.019) and 2-butanone (0.037). Results for acetone in MW-201, MW-202, MW-103A, CW-7A, and CW-5B and for 2-butanone in all 10 samples were rejected (R) as unreliable on this basis. Acetone was detected in TBL+RR071200, TBL+RR071300, MW-104A, MW-102A, and DUP-L+RR, therefore these results were qualified as estimated (J) based on the low responses in the associated calibration standards.

Percent relative standard deviations (%RSDs) were below the method-specified maximum acceptance criterion of 15% for all target analytes except bromomethane (21.8%), acetone (21.7%), methylene chloride (34.6%), 2-butanone (18.5%), bromochloromethane (26.1%), tetrachloroethene (25.4%),

1,2-dibromo-3-chloropropane (25.6%), and 1,2-dichloroethane-d₄ (24.1%). No evidence that linear (or higher order) regressions were performed was provided in the data package. No positive results were reported for bromomethane, bromochloromethane, or 1,2-dibromo-3-chloropropane in any of the samples and the %RSDs for these compounds did not exceed the less restrictive validation criterion of 30%, therefore no action was taken with respect to the results for these analytes. Results for 2-butanone in all samples were previously rejected and results for acetone in all samples were rejected or estimated based on unacceptably low average RRFs; no further action was warranted with respect to these analytes. 1,2-Dichloroethane-d₄ is a system monitoring compound and recoveries were not adversely affected in any of the samples, therefore no action was warranted based on the high %RSD for this compound. Results for methylene chloride in all samples and for tetrachloroethene in CW-5B, MW-102A, and DUP-L+RR were qualified as estimated (J) based on the high %RSDs; tetrachloroethene was not detected in any other samples and the %RSD did not exceed the less restrictive validation criterion of 30%, therefore no further action was warranted.

Form VII-equivalents were provided for three continuing calibration (CC) standards, run on 7/21/00 at 08:56, on 7/21/00 at 22:31, and on 7/24/00 at 07:56. Reported RRFs were acceptable (greater than 0.05) except for acetone (0.016, 0.016, and 0.018) and 2-butanone (0.034, 0.035, and 0.032) in all three CCs. All sample results for acetone and 2-butanone were previously qualified based on similar responses in the ICs and no additional action was taken based on the CC results.

Reported percent differences (%Ds) from the IC were less than the method-specified acceptance criterion (20%) in each of the CCs with the following exceptions:

7/21/00-08:56:	1,2-dibromo-3-chloropropane - 22.4%
7/21/00-22:31:	2,2-dichloropropane - 21.0%
7/24/00-07:56:	1,2-dibromo-3-chloropropane - 20.8%

All of the %Ds listed above are below the maximum acceptance limit specified by the validation guidelines (25%). Therefore, no sample results were qualified based on these responses.

Blanks: Results for three method blanks (MBs) associated with the site sample analyses were provided in the data package. Methylene chloride was detected in all three MBs, at concentrations ranging from 1.1 μ g/L to 1.4 μ g/L. In addition, acetone (6.1 μ g/L) and trichlorofluoromethane (0.14 μ g/L) were reported in the MB run on 7/24/00. Results for methylene chloride in all samples, for acetone in MW-102A, MW-104A, and DUP-L+RR, and for trichlorofluoromethane in MW-102A and DUP-L+RR were qualified as less than the reported values or less than the sample-specific reporting limit (RL), whichever was greater, based on the associated MB contamination (U). In all

cases, the qualified sample results were less than ten times (methylene chloride and acetone) or five times (trichlorofluoromethane) the concentration found in the associated MB. All comparisons were made based on sample results prior to adjustment for the applicable dilution factor.

Two trip blanks (TBs) were submitted with this data set. After qualifications based on MB contamination, chloroform $(0.72 \mu g/L)$, toluene $(0.1 \mu g/L)$, and acetone $(12 \mu g/L)$ were reported in TBL+RR071200 and chloroform $(0.72 \mu g/L)$ and acetone $(4.7 \mu g/L)$ were reported in TBL+RR071300. Results for acetone in MW-102A, MW-104A, and DUP-L+RR warranted qualification as less than the reported values or less than the sample-specific RL, whichever was greater based on the TB results; however, these results were similarly qualified based on associated MB contamination and no additional action was taken. Chloroform was not detected in any of the site samples and toluene was not detected in any of the samples associated with TBL+RR071200, therefore no further action was warranted on this basis.

Surrogates: Reported recoveries (Form II) were acceptable for all site samples and quality control (QC) analyses.

Matrix Spike/Matrix Spike Duplicate (MS/MSD): Percent recovery (%R) and relative percent difference (RPD) results for MS/MSD analyses performed on sample CW-5B were reported on Form III. Percent recoveries (100-106%) for the five reported spiked target analytes (1,1-dichloroethene, trichloroethene, benzene, toluene, and chlorobenzene at 10 μ g/L each) were within the specified acceptance limits in both spiked analyses. In addition, relative percent differences (RPDs) were below the laboratory-specified maximum acceptance limits for all five reported spiked analytes.

Based on the Form I results provided for the MS and the MSD analyses, it is apparent that most, if not all, of the target analytes were actually included in the spiking solution. However, true values were provided only for the five compounds listed above and no further evaluation of these data could be made.

Blank Spikes: Recoveries for 36 analytes in a blank spike analysis performed in association with the site sample analyses were also reported in the data package. The 36 analytes were included in the spiking solution at 10 μ g/L or 50 μ g/L. Percent recoveries were within the laboratory-specified acceptance limits (QC 60-140%) in all cases except carbon disulfide (0%), methylene chloride (200%), 2-butanone (40%), 4-methyl-2-pentanone (42%), 2-hexanone (42%), and m/p-xylenes (205%). Carbon disulfide and 2-hexanone are not project-specific target analytes, therefore no action was warranted with respect to these two analytes. Results for methylene chloride in all samples and for m/p-xylenes in CW-5B and MW-104A were qualified as estimated (J) based on the unacceptably high recoveries; these results may be biased high. Results for 2-butanone and 4-methyl-2-pentanone

in all samples were qualified as estimated (UJ) based on the unacceptably low recoveries in the blank spike.

Field Duplicate: Sample DUP-L+RR was identified as a field duplicate of MW-102A based on information provided by the client. Positive paired results for benzene (0 RPD), chlorobenzene (0 RPD), chlorobenzene (3.6 RPD), 1,2-dichlorobenzene (7.3 RPD), 1,4-dichlorobenzene (3.6 RPD), dichlorodifluoromethane (0 RPD), 1,1-dichloroethane (0 RPD), 1,2-dichloroethane (6.5 RPD), cis-1,2-dichloroethene (4.3 RPD), trans-1,2-dichloroethene (5.4 RPD), 1,2-dichloropropane (3.1 RPD), isopropylbenzene (2.4 RPD), tetrachloroethene (1.8 RPD), toluene (6.5 RPD), trichloroethene (2.6 RPD), and vinyl chloride (2.2 RPD) showed excellent reproducibility.

Internal Standard Responses: Internal standard areas and retention times (RTs) were reported on Form VIII for all site samples reported in this data set and the related quality control analyses; all areas and RTs were within acceptable limits as reported on the forms.

Sample Results: Results for all GW samples and both TBs were reported on Form Is, all of which indicated a sample analysis volume of 25 mL. Samples MW-102A, MW-104A, and DUPL+RR were run at 1:10 dilutions, and only the diluted analysis results were reported. Reporting limits for target analytes that were not detected were appropriately adjusted to reflect the dilution factor in these three sample analyses.

Target analytes that were not detected in the samples were reported by the laboratory as less than 0.5 μ g/L (0.5 U) except for acetone (12 U), 2-butanone (6 U), 4-methyl-2-pentanone (5 U), 1,2-dibromo-3-chloropropane (2 U), vinyl chloride (0.2 U), and methylene chloride (0.3 U).

No MDL study results were provided in the data package. With the exceptions of vinyl chloride and methylene chloride, all RLs reported by the laboratory were equivalent to or above the lowest concentration IC standard associated with these analyses and no positive sample results less than the RLs were reported. Therefore, the reported results for all target analytes except vinyl chloride and methylene chloride are fully supported by the available data and are acceptable as reported.

Vinyl chloride was present at 0.5 μ g/L in the lowest concentration calibration standard and methylene chloride was present in this standard at 1.0 μ g/L. In the absence of MDL data for these two analytes, the RLs reported by the laboratory for these two analytes are not supportable. Therefore, RLs for vinyl chloride and methylene chloride were corrected to 0.5 μ g/L and 1 μ g/L, respectively, to reflect the lowest concentration calibration standards run in association with these analyses.

Documentation: Data package documentation was consistent with the specifications of the QAPP; specifically, a Level III data package (summary forms only - no supporting raw data) was provided for review.

COC records provided in the data package included all reported samples and were properly completed except that sample preservation was recorded on only one of the COCs and improper corrections were noted on both documents. In the future, all corrections should be made by drawing a single line through the incorrect information, inserting the correct information, and initialing and dating the change. "Write-overs" are not legally defensible.

Documentation of sample pHs on laboratory receipt (or at the time of analysis) was not provided in the data package as received for review. This information was verbally requested by the validator on 8/30/00; sample receiving preservation logs were received from the laboratory via facsimile on 9/2/00. These records were inserted into the data package by the evaluator as pages 55a and 55b, but did not address the samples intended for volatile organics analyses. The laboratory was contacted by the evaluator again on 9/5/00, and copies of the laboratory's GC/MS injection logs were provided via facsimile on 9/6/00. These logs are included in Attachment B.

Sample identifications for both trip blanks were shortened by the laboratory throughout the data package by removing "L+RR" from the identifications found on the COC records. The chain of custody identifications are used throughout this evaluation report for all samples, and the Form Is for the trip blanks were corrected by the evaluator to reflect the COC identifications.

On Form II, the identification of SMC2 at the bottom of the page was corrected to dibromofluoromethane (from 1,2-dichloroethane-d4) by the evaluator. A copy of the corrected form is included in Attachment B to this report.

On Form III, a result of 0.03 μ g/L was reported for toluene in the unspiked analysis of CW-5B. On the Form I for this sample, toluene is reported as not detected (0.5 U). Therefore, the Form III result is incorrect. However, it is so low that it does not affect the calculated recovery, and no action was taken by the evaluator.

Form VII was not included in the data package for two of the three CCs associated with the sample analyses. The missing forms were requested from the laboratory on 8/30/00, and were received via facsimile on 9/1/00. They were inserted into the data package by the evaluator as pages 74a-74f.

Please let me know if you have any questions regarding this data package review report.

Sincerely,

Carol A. Erikson Quality Assessment Manager

CAE/ekd 95406\Apr00\GWVoa

ATTACHMENT A

ORGANIC ANALYSIS DATA SHEETS (Form I) STL/Connecticut Case No. 1470A

EPA Region I Qualifier Definitions:

- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit. The sample quantitation limit accounts for sample-specific dilution factors and percent solids corrections or sample sizes that deviate from those required by the method.
- J- The associated numerical value is an estimated quantity.
- R The data are unusable (analyte may or may not be present). Resampling and reanalysis is necessary for verification. The R replaces the numerical value or sample quantitation limit.
- UJ The analyte was analyzed for, but was not detected. The sample quantitation limit is an estimated quantity.

		000 LA S ANALYSIS DATA SHEET	CLIENT ID
Lab Name: STL/CT		Contract:	MW-201
	Case No.: 1470A	SAS No.: SDG N	0.: A1470
Matrix: (soil/water)	WATER	Lab Sample ID	: 001470A-01
Sample wt/vol:	25 (g/mL)ML	Lab File ID:	>L2009
Level: (low/med)	LOW	Date Received	: 07/13/00
% Moisture: not dec.	·	Date Analyzed	: 07/21/00
GC Column: 007-624	ID: 0.53 (mm)	Dilution Fact	or: 1.0
Soil Extract Volume:	:(uL)	Soil Aliquot	Volume:(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

CAS NO.	COMPOUND	(ug/L or ug/Kg)UG/L		Q
71-43-2	Benzene		.5	<u> </u>
108-86-1	Bromobenzene		.5	Ū
74-97-5	Bromochloromethane		.5	U
75-27-4	Bromodichloromethane		.5	U
75-25-2	Bromoform		.5	U
74-83-9	Bromomethane		.5	<u> </u>
104-51-8	n-Butylbenzene		.5	U
135-98-8	Sec-Butylbenzene	· ·	.5	U
98-06-6	Tert-Butylbenzene		.5	U
56-23-5	Carbon Tetrachloride		.5	U
108-90-7	Chlorobenzene		.5	Ŭ
124-48-1	Dibromochloromethane		.5	Ŭ
75-00-3	Chloroethane		.5	<u>U</u>
67-66-3	Chloroform		.5	<u> </u>
74-87-3	Chloromethane		.5	U
95-49-8	2-Chlorotoluene		.5	U
106-43-4	4-Chlorotoluene		.5	U
96-12-8	1,2-Dibromo-3-Chloropro	pane	2	<u> </u>
106-93-4	1,2-Dibromoethane		.5	
74-95-3	Dibromomethane		.5	<u> </u>
95-50-1	1,2-Dichlorobenzene		.5	U
541-73-1	1,3-Dichlorobenzene	×	.5	U
106-46-7	1,4-Dichlorobenzene		.5	<u> </u>
75-71-8	Dichlorodifluoromethane	2	4.6	
75-34-3	1,1-Dichloroethane		.5	<u> </u>
107-06-2	1,2-Dichloroethane		.5	Ū
75-35-4	1,1-Dichloroethene		.5	U
156-59-2	cis-1,2-Dichloroethene		.5	U
156-60-5	trans-1,2-Dichloroether	ne	.5	<u> </u>
78-87-5	1,2-Dichloropropane		.5	U
142-28-9	1,3-Dichloropropane		.5	<u> </u>
544-20-7	2,2-Dichloropropane		.5	U
563-58-6	1,1-Dichloropropene		.5	<u> </u>
100-41-4	Ethylbenzene		. 5	U
87-68-3	Hexachlorobutadiene		. 5	U

1

Г

CLIENT ID

Q

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

	MW-201
Lab Name: STL/CT	Contract:
Lab Code: IEACT Case No.: 1470A	SAS No.: SDG No.: A1470
Matrix: (soil/water)WATER	Lab Sample ID: 001470A-01
Sample wt/vol: 25 (g/mL)ML	Lab File ID: >L2009
Level: (low/med) LOW	Date Received: 07/13/00
<pre>% Moisture: not dec</pre>	Date Analyzed: 07/21/00
GC Column: 007-624 ID: 0.53 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

~

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

98-82-8	Isopropylbenzene	.5	υ
99-87-6	4-Isopropyltoluene	.5	U
75-09-2	Methylene Chloride	1 -6	JB U
91-20-3	Naphthalene	.5	U CAR
103-65-1	N-Propylbenzene	.5	U a
100-42-5	Styrene	.5	υg
630-20-6	1,1,1,2-Tetrachloroethane	.5	U
79-34-5	1,1,2,2-Tetrachloroethane	.5	<u> </u>
127-18-4	Tetrachloroethene	.5	U
108-88-3	Toluene	.5	U
87-61-6	1,2,3-Trichlorobenzene	.5	U
120-82-1	1,2,4-Trichlorobenzene	.5	U
71-55-6	1,1,1-Trichloroethane	.5	U
79-00-5	1,1,2-Trichloroethane	.5	U
79-01-6	Trichloroethene	.5	U
75-69-4	Trichlorofluoromethane	.23	J
96-18-4	1,2,3-Trichloropropane	.5	U
95-63-6	1,2,4-Trimethylbenzene	.5	Ū
108-67-8	1,3,5-Trimethylbenzene	.5	U
75-01-4	Vinyl Chloride	0.5 -2	U
NO CAS	mp-Xylene	1	U
95-47-6	o-xylene	.5	U
67-64-1	Acetone	R 12	_
78-93-3	2-Butanone	R -6+	- U -
108-10-1	4-Methyl-2-Pentanone	5	TUN

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: STL/CT	Contract:
Lab Mame: 51D/CI	Concract
Lab Code: IEACT Case No.: 1470A	SAS No.: SDG No.: A1470
Matrix: (soil/water)WATER	Lab Sample ID: 001470A-02
Sample wt/vol: 25 (g/mL)ML	Lab File ID: >L2010
Level: (low/med) LOW	Date Received: 07/13/00
<pre>% Moisture: not dec</pre>	Date Analyzed: 07/21/00
GC Column: 007-624 ID: 0.53 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

CLIENT ID

CAS NO.	COMPOUND	(ug/L or ug/Kg)UG/L		Q
71-43-2	Benzene		5	U
108-86-1	Bromobenzene	•	5	Ū
74-97-5	Bromochloromethane		5	U
75-27-4	Bromodichloromethane		5	U
75-25-2	Bromoform		5	U
74-83-9	Bromomethane		5	U
104-51-8	n-Butylbenzene		5	U
135-98-8	Sec-Butylbenzene		5	U
98-06-6	Tert-Butylbenzene		5	U
56-23-5	Carbon Tetrachloride		5	<u> </u>
108-90-7	Chlorobenzene	•	5	Ŭ
124-48-1	Dibromochloromethane		5	Ű
75-00-3	Chloroethane		5	U
67-66-3	Chloroform		5	Ŭ
74-87-3	Chloromethane		5	Ŭ
95-49-8	2-Chlorotoluene		.5	<u> </u>
106-43-4	4-Chlorotoluene		.5	U
96-12-8	1,2-Dibromo-3-Chloroprop	bane	2	U
106-93-4	1,2-Dibromoethane		.5	U
74-95-3	Dibromomethane		.5	U
95-50-1	1,2-Dichlorobenzene		.5	U
541-73-1	1,3-Dichlorobenzene	<u> </u>	.5	ប្រី
106-46-7	1,4-Dichlorobenzene		.5	Ŭ
75-71-8	Dichlorodifluoromethane		.5	ប
75-34-3	1,1-Dichloroethane		.5	<u> </u>
107-06-2	1,2-Dichloroethane		.5	Ŭ
75-35-4	1,1-Dichloroethene		.5	U
156-59-2	cis-1,2-Dichloroethene		.5	U
156-60-5	trans-1,2-Dichloroethen		.5	U
78-87-5	1,2-Dichloropropane		.5	U
142-28-9	1,3-Dichloropropane		.5	Ŭ
544-20-7	2,2-Dichloropropane		.5	U
563-58-6	1,1-Dichloropropene		.5	<u> </u>
100-41-4	Ethylbenzene		.5	ប
87-68-3	Hexachlorobutadiene		.5	U

		000 S ANALYSIS DATA SHEET _	5 CLIENT ID
	V0201122 00012020		MW-202
Lab Name: STL/CT		Contract:	·
Lab Code: IEACT	Case No.: 1470A	SAS No.: SDG No	D.: A1470
Matrix: (soil/water))WATER	Lab Sample ID	: 001470A-02
Sample wt/vol:	25 (g/mL)ML	Lab File ID:	>L2010
Level: (low/med)	LOW	Date Received	: 07/13/00
<pre>% Moisture: not dec</pre>	•	Date Analyzed	: 07/21/00
GC Column: 007-624	ID: 0.53 (mm)	Dilution Facto	or: 1.0
Soil Extract Volume	:(uL)	Soil Aliquot	Volume:(uL)

CAS	NO.	COMPOUND

CONCEN	ITR.	TION	UNITS:
(ug/L	or	ug/Kg	J)UG/L

98-82-8	Isopropylbenzene	.5	U	
99-87-6	4-Isopropyltoluene	.5	U	
75-09-2	Methylene Chloride	1 -5	포	CAE 9/8/0
91-20-3	Naphthalene	.5	Ŭ	alola
103-65-1	N-Propylbenzene	.5	U	1 1 1 1 0
100-42-5	Styrene	.5	Ũ	
630-20-6	1,1,1,2-Tetrachloroethane	.5	U	
79-34-5	1,1,2,2-Tetrachloroethane	.5	U	
127-18-4	Tetrachloroethene	.5	U	
108-88-3	Toluene	.5	U	
87-61-6	1,2,3-Trichlorobenzene	.5	U	
120-82-1	1,2,4-Trichlorobenzene	.5	Ū	
71-55-6	1,1,1-Trichloroethane	.5	<u> </u>	
79-00-5	1,1,2-Trichloroethane	.5	Ú	
79-01-6	Trichloroethene	.5	U	
75-69-4	Trichlorofluoromethane	.5	U	
96-18-4	1,2,3-Trichloropropane	.5	U	
95-63-6	1,2,4-Trimethylbenzene	.5	ប្រា	
108-67-8	1,3,5-Trimethylbenzene	.5	0	
75-01-4	Vinyl Chloride	0.5-2	U	Cat
NO CAS	mp-Xylene	1	Ŭ	CRE 1/8/00
95-47-6	o-xylene	.5	Ų	4
67-64-1	Acetone	R 12	<u> </u>	CaE,
78-93-3	2-Butanone	R -6		
108-10-1	4-Methyl-2-Pentanone	5	_VUJ	1 9/8/ oc

÷

Q

000₀

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: STL/CT Lab Code: IEACT Case No.: 1470A SAS No.: _____ SDG No.: A1470 Matrix: (soil/water)WATER Sample wt/vol: 25 (g/mL)ML Level: (low/med) LOW % Moisture: not dec. _____ GC Column: 007-624 ID: 0.53 (mm)

Soil Extract Volume: _____(uL)

MW-103A Contract: _____ Lab Sample ID: 001470A-03 Lab File ID: >L2011 Date Received: 07/13/00 Date Analyzed: 07/21/00 Dilution Factor: 1.0 Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CLIENT ID

CAS NO.	COMPOUND	(ug/L or ug/Kg)UG/L	Q
71-43-2	Benzene	.5	U
108-86-1	Bromobenzene	.5	U
74-97-5	Bromochloromethane	.5	U
75-27-4	Bromodichloromethane	.5	U
75-25-2	Bromoform	.5	Ū
74-83-9	Bromomethane	.5	U
104-51-8	n-Butylbenzene	.5	0
135-98-8	Sec-Butylbenzene	• .5	U
98-06-6	Tert-Butylbenzene	.5	U
56-23-5	Carbon Tetrachloride	.5	U
108-90-7	Chlorobenzene	.5	· U
124-48-1	Dibromochloromethane	.5	U
75-00-3	Chloroethane	.5	
67-66-3	Chloroform	.5	Ŭ
74-87-3	Chloromethane	.5	
95-49-8	2-Chlorotoluene	.5	U
106-43-4	4-Chlorotoluene	.5	U
96-12-8	1,2-Dibromo-3-Chloroprop	ane 2	
106-93-4	1,2-Dibromoethane	.5	<u> </u>
74-95-3	Dibromomethane	.5	Ú Ú
95-50-1	1,2-Dichlorobenzene	.5	Ŭ
541-73-1	1,3-Dichlorobenzene	.5	Ū
106-46-7	1,4-Dichlorobenzene	.5	Ŭ
75-71-8	Dichlorodifluoromethane	.5	U
75-34-3	1,1-Dichloroethane	.1	J
107-06-2	1,2-Dichloroethane	.5	Ū
75-35-4	1,1-Dichloroethene	.5	U
156-59-2	cis-1,2-Dichloroethene	.5	U
156-60-5	trans-1,2-Dichloroethene	.5	U
78-87-5	1,2-Dichloropropane	.5	Ŭ
142-28-9	1,3-Dichloropropane	.5	-
544-20-7	2,2-Dichloropropane	.5	T T
563-58-6	1,1-Dichloropropene	.5	U
100-41-4	Ethylbenzene	.5	Ū
87-68-3	Hexachlorobutadiene	.5	U

CLIENT ID

Q

٦

IA CLIEN VOLATILE ORGANICS ANALYSIS DATA SHEET

	MW-103A
Lab Name: STL/CT	Contract:
Lab Code: IEACT Case No.: 1470A	SAS No.: SDG No.: A1470
Matrix: (soil/water)WATER	Lab Sample ID: 001470A-03
Sample wt/vol: 25 (g/mL)ML	Lab File ID: >L2011
Level: (low/med) LOW	Date Received: 07/13/00
% Moisture: not dec.	Date Analyzed: 07/21/00
GC Column: 007-624 ID: 0.53 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CAS	NO.	

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

98-82-8	Isopropylbenzene	.5 U	
99-87-6	4-Isopropyltoluene	.5 U	
75-09-2	Methylene Chloride	1 - 38 - JB - V	TANG
91-20-3	Naphthalene	.5 7	Cae 9/8/00
103-65-1	N-Propylbenzene	.5 _ U	11000
100-42-5	Styrene	.5 0	
630-20-6	1,1,1,2-Tetrachloroethane	.5 0	
79-34-5	1,1,2,2-Tetrachloroethane	.5 _ U	
127-18-4	Tetrachloroethene	.5 U	
108-88-3	Toluene	.5 0	
87-61-6	1.2.3-Trichlorobenzene	.5 Ŭ	
120-82-1	1,2,4-Trichlorobenzene	.5 U	
71-55-6	1,1,1-Trichloroethane	.5 U]
79-00-5	1,1,2-Trichloroethane	.5 U	
79-01-6	Trichloroethene	.5 U	
75-69-4	Trichlorofluoromethane	.5 U	
96-18-4	1,2,3-Trichloropropane	.5 U	
95-63-6	1,2,4-Trimethylbenzene	.5 U	
108-67-8	1,3,5-Trimethylbenzene	.5 0	
75-01-4	Vinyl Chloride	0.5+2 U	Ca E a / 8/ 00
NO CAS	mp-Xylene	1 0	
95-47-6	o-xylene	.5 0	
67-64-1	Acetone	R +2 -0-	- CAR,
78-93-3	2-Butanone	R G U	a(d 50)
108-10-1	4-Methyl-2-Pentanone	<u>5</u> Øu	<u></u> 9/8/ 00

.

.

CLIENT ID

Q

1A VOLATILE ORGANICS ANALYSIS DATA SHEET _

Lab Name: STL/CT	CW-7A
LaD Name: SIL/CI	contract.
Lab Code: IEACT Case No.: 1470A	SAS No.: SDG No.: A1470
Matrix: (soil/water)WATER	Lab Sample ID: 001470A-04
Sample wt/vol: 25 (g/mL)ML	Lab File ID: >L2012
Level: (low/med) LOW	Date Received: 07/13/00
<pre>% Moisture: not dec</pre>	Date Analyzed: 07/21/00
GC Column: 007-624 ID: 0.53 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

CAS NO. COMPOUND J .26 71-43-2 Benzene .5 Ū 108-86-1 Bromobenzene .5 U Bromochloromethane 74-97-5 .5 Ū 75-27-4 Bromodichloromethane .5 Ũ 75-25-2 Bromoform .5 Ū 74-83-9 Bromomethane .5 Ū 104-51-8 n-Butylbenzene 135-98-8 .5 Ū Sec-Butylbenzene .5 Ū Tert-Butylbenzene 98-06-6 Ū Carbon Tetrachloride 56-23-5 75 108-90-7 Chlorobenzene Ū 5 124-48-1 Dibromochloromethane 15 Ĵ 75-00-3 Chloroethane . 5 Ũ Chloroform 67-66-3 .5 Ü 74-87-3 Chloromethane .5 Ũ 95-49-8 2-Chlorotoluene .5 Ū 106-43-4 4-Chlorotoluene 1,2-Dibromo-3-Chloropropane 2 U 96-12-8 .5 Ũ 1,2-Dibromoethane 106-93-4 .5 U 74-95-3 Dibromomethane .5 1,2-Dichlorobenzene U 95-50-1 .5 1,3-Dichlorobenzene υ 541-73-1 1,4-Dichlorobenzene .83 106-46-7 Ū .5 Dichlorodifluoromethane 75-71-8 1,1-Dichloroethane 35 J 75-34-3 . 5 1,2-Dichloroethane Ū 107-06-2 न ΙĨ 75-35-4 1,1-Dichloroethene 12 J cis-1,2-Dichloroethene 156-59-2 ťΪ .5 trans-1,2-Dichloroethene 156-60-5 1,2-Dichloropropane .5 Ū 78-87-5 . 5 U 1,3-Dichloropropane 142-28-9 .5 2,2-Dichloropropane Ũ 544-20-7 .5 Ū 563-58-6 1,1-Dichloropropene .5 Ū 100-41-4 Ethylbenzene U Hexachlorobutadiene 5 87-68-3

Q

1A CLIENT VOLATILE ORGANICS ANALYSIS DATA SHEET

	VOLATILE ORGANICS	5 ANALYSIS DATA SHEET
Lab Name: STL/CT		CW-7A
Lab Code: IEACT	Case No.: 1470A	SAS No.: SDG No.: A1470
Matrix: (soil/water)	WATER	Lab Sample ID: 001470A-04
Sample wt/vol:	25 (g/mL)ML	Lab File ID: >L2012
Level: (low/med)	LOW	Date Received: 07/13/00
% Moisture: not dec.	·	Date Analyzed: 07/21/00
GC Column: 007-624	ID: 0.53 (mm)	Dilution Factor: 1.0
Soil Extract Volume	:(uL)	Soil Aliquot Volume:(uL)

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

98-82-8	Isopropylbenzene	.24 J	
99-87-6	4-Isopropyltoluene	.5 U	
75-09-2	Methylene Chloride		
91-20-3	Naphthalene	.5 U	Cae 9/8/00
103-65-1	N-Propylbenzene	.5 U	9/8/00
100-42-5	Styrene	.5 U	
630-20-6	1,1,1,2-Tetrachloroethane	.5 0	
79-34-5	1,1,2,2-Tetrachloroethane	.5 0	
127-18-4	Tetrachloroethene	.5 0	
108-88-3	Toluene	.5 U	
87-61-6	1,2,3-Trichlorobenzene	.5 0	
120-82-1	1,2,4-Trichlorobenzene	.5 0	
71-55-6	1,1,1-Trichloroethane	.5 U	
79-00-5	1,1,2-Trichloroethane	.5 0	
79-01-6	Trichloroethene	.5 Ŭ	
75-69-4	Trichlorofluoromethane	.5 U	
96-18-4	1,2,3-Trichloropropane	.5 0	
95-63-6	1,2,4-Trimethylbenzene	.5 0	
108-67-8	1,3,5-Trimethylbenzene	.5 0	
75-01-4	Vinyl Chloride	0.5-2 0	Cata/8/0
NO CAS	mp-Xylene	1 0	740
95-47-6	o-xylene	.5 U	
67-64-1	Acetone	<u> </u>	
78-93-3	2-Butanone	R -6 - 0	Cae
108-10-1	4-Methyl-2-Pentanone	5 24	<u>I</u> 9/8/00

		0010 LA 5 ANALYSIS DATA SHEET .	CLIENT ID
			TBL+2R071200 TB071200
Lab Name: STL/CT		Contract:	CAEA/8/00
Lab Code: IEACT	Case No.: 1470A	SAS No.: SDG No	
Matrix: (soil/water))WATER	Lab Sample ID	: 001470A-05
Sample wt/vol:	25 (g/mL)ML	Lab File ID:	>L2008
Level: (low/med)	LOW	Date Received	: 07/13/00
<pre>% Moisture: not dec</pre>	•	Date Analyzed	: 07/21/00
GC Column: 007-624	ID: 0.53 (mm)	Dilution Fact	or: 1.0
Soil Extract Volume	:(uL)	Soil Aliquot	Volume:(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

Q

71-43-2	Benzene	.5	U
108-86-1	Bromobenzene	.5	U
74-97-5	Bromochloromethane	.5	U
75-27-4	Bromodichloromethane	.5	Ū
75-25-2	Bromoform	.5	Ū
74-83-9	Bromomethane	.5	U
104-51-8	n-Butylbenzene	.5	Ū
135-98-8	Sec-Butylbenzene ,	.5	Ŭ
98-06-6	Tert-Butylbenzene	.5	Ŭ
56-23-5	Carbon Tetrachloride	.5	ΰ
108-90-7	Chlorobenzene	.5	Ū
124-48-1	Dibromochloromethane	.5	Ŭ
75-00-3	Chloroethane	.5	<u> </u>
67-66-3	Chloroform	.72	
74-87-3	Chloromethane	.5	U
95-49-8	2-Chlorotoluene	.5	Ŭ
106-43-4	4-Chlorotoluene	.5	U
96-12-8	1,2-Dibromo-3-Chloropropane	2	U
106-93-4	1,2-Dibromoethane	.5	U
74-95-3	Dibromomethane	.5	U
95-50-1	1,2-Dichlorobenzene	.5	<u> </u>
541-73-1	1,3-Dichlorobenzene	.5	U
106-46-7	1,4-Dichlorobenzene	.5	<u> </u>
75-71-8	Dichlorodifluoromethane	.5	ប
75-34-3	1,1-Dichloroethane	.5	U
107-06-2	1,2-Dichloroethane	.5	U
75-35-4	1,1-Dichloroethene	.5	U
156-59-2	cis-1,2-Dichloroethene	.5	U
156-60-5	trans-1,2-Dichloroethene	.5	Ŭ
78-87-5	1,2-Dichloropropane	5	U
142-28-9	1,3-Dichloropropane	.5	U
544-20-7	2,2-Dichloropropane	.5	U
563-58-6	1,1-Dichloropropene	.5	U
100-41-4	Ethylbenzene	.5	U
87-68-3	Hexachlorobutadiene	.5	U

CAS NO. COMPOUND

Q

		A	CLIENT ID
	VOLATILE ORGANICS	S ANALYSIS DATA SHEET	TBL+RR071200
Lab Name: STL/CT		Contract:	TB071200
Lab Code: IEACT	Case No.: 1470A	SAS No.: SDG No	4 - 1
Matrix: (soil/water)	WATER	Lab Sample ID:	001470A-05
Sample wt/vol:	25 (g/mL)ML	Lab File ID:	>L2008
Level: (low/med)	LOW	Date Received:	: 07/13/00
% Moisture: not dec.	•	Date Analyzed:	: 07/21/00
GC Column: 007-624	ID: 0.53 (mm)	Dilution Facto	or: 1.0
Soil Extract Volume	:(uL)	Soil Aliquot V	/olume:(uL)

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

				1
98-82-8	Isopropylbenzene	. 5	U	
99-87-6	4-Isopropyltoluene	.5	Ū	
75-09-2	Methylene Chloride	3.4	₹W]	CAE 9/8/00
91-20-3	Naphthalene	.5	Ū	91000
103-65-1	N-Propylbenzene	.5	-	./9-
100-42-5	Styrene	.5	Ŭ	
630-20-6	1,1,1,2-Tetrachloroethane	.5	U	
79-34-5	1,1,2,2-Tetrachloroethane,	.5	Ŭ	
127-18-4	Tetrachloroethene	.5	Ŭ	
108-88-3	Toluene	.1	J	
87-61-6	1,2,3-Trichlorobenzene	.5	U	
120-82-1	1,2,4-Trichlorobenzene	.5	U	
71-55-6	1,1,1-Trichloroethane	.5	U	
79-00-5	1,1,2-Trichloroethane	.5	U	
79-01-6	Trichloroethene	.5	U	
75-69-4	Trichlorofluoromethane	.5	U]]
96-18-4	1,2,3-Trichloropropane	.5	U	
95-63-6	1,2,4-Trimethylbenzene	.5	U	
108-67-8	1,3,5-Trimethylbenzene	.5	U]
75-01-4	Vinyl Chloride	0.5-2	U	CRE 9/8/00
NO CAS	mp-Xylene	1	<u> </u>	18/00
95-47-6	o-xylene	.5	U	1
67-64-1	Acetone	12	Ĵ	1000
78-93-3	2-Butanone	R-6	U	Cae
108-10-1	4-Methyl-2-Pentanone	5_	E N N	9/8/00

÷

CLIENT ID

Q

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: STL/CT		Contract:	CW-5B
Lab Code: IEACT Case	No.: 1470A	SAS No.: SDG No	.: A1470
Matrix: (soil/water)WATER	ર	Lab Sample ID:	001470A-06
Sample wt/vol: 25	(g/mL)ML	Lab File ID:	>L2006
Level: (low/med) LOW		Date Received:	07/14/00
<pre>% Moisture: not dec</pre>		Date Analyzed:	07/21/00
GC Column: 007-624 ID:	0.53 (mm)	Dilution Facto	r: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot V	olume:(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

			-
71 42 0	Densene		
71-43-2	Benzene	.55	
108-86-1	Bromobenzene	.5	U
74-97-5	Bromochloromethane	.5	<u> </u>
75-27-4	Bromodichloromethane	.5	U
75-25-2	Bromoform	.5	U
74-83-9	Bromomethane	.5	Ŭ
104-51-8	n-Butylbenzene	.5	U
135-98-8	Sec-Butylbenzene	.5	Ŭ
98-06-6	Tert-Butylbenzene	.5	υ
56-23-5	C a rbon Tetrachloride	.5	U
108-90-7	Chlorobenzene	.5	U
124-48-1	Dibromochloromethane	.5	Ŭ
75-00-3	Chloroethane	1.8	
67-66-3	Chloroform	.5	U
74-87-3	Chloromethane	.5	U
95-49-8	2-Chlorotoluene	.5	Ŭ
106-43-4	4-Chlorotoluene	.5	U
96-12-8	1,2-Dibromo-3-Chloropropane	2	U
106-93-4	1,2-Dibromoethane	.5	υ
74-95-3	Dibromomethane	.5	U
95-50-1	1,2-Dichlorobenzene	.5	Ŭ
541-73-1	1,3-Dichlorobenzene	.5	ប
106-46-7	1,4-Dichlorobenzene	.5	υ
75-71-8	Dichlorodifluoromethane	8.7	
75-34-3	1,1-Dichloroethane	19_	
107-06-2	1,2-Dichloroethane	.5	U
75-35-4	1,1-Dichloroethene	.35	Ĵ
156-59-2	cis-1,2-Dichloroethene	11	
156-60-5	trans-1,2-Dichloroethene	.44	J
78-87-5	1,2-Dichloropropane	.5	U
142-28-9	1,3-Dichloropropane	.5	U
544-20-7	2,2-Dichloropropane	.5	Ŭ
563-58-6	1,1-Dichloropropene	.5	Ŭ
100-41-4	Ethylbenzene	.12	J
87-68-3	Hexachlorobutadiene	.5	U

CAS NO. COMPOUND

	VOLATILE	1A ORGANICS	ANALYSIS E	ATA SHEET _	CLIENT ID
· · · · · · · · · · · · · · · · · · ·					CW-5B
Lab Name: STL/CT		Ĺ	Contract: _	<u></u>	
Lab Code: IEACT	Case No.:	1470A S	SAS No.:	SDG No	.: A1470
Matrix: (soil/water)) WATER		Lab	Sample ID:	001470A-06
Sample wt/vol:	25 (g/i	mL)ML	Lab	File ID:	>L2006
Level: (low/med)	LOW		Dat	e Received:	07/14/00
% Moisture: not dec	. <u> </u>		Dat	e Analyzed:	07/21/00

Soil Extract Volume: _____(uL)

CAS NO. COMPOUND

GC Column: 007-624 ID: 0.53 (mm)

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

Dilution Factor: 1.0

Soil Aliquot Volume: ____(uL)

Q

98-82-8	Isopropylbenzene	11 J
99-87-6	4-Isopropyltoluene	.15 J,
75-09-2	Methylene Chloride	3.8 ZUJ .5 U
91-20-3	Naphthalene	
103-65-1	N-Propylbenzene	.5 U
100-42-5	Styrene	.5 U
630-20-6	1,1,1,2-Tetrachloroethane	.5 0
79-34-5	1,1,2,2-Tetrachloroethane	.5 0
127-18-4	Tetrachloroethene	24 J
108-88-3	Toluene	.5 U
87-61-6	1,2,3-Trichlorobenzene	.5 U
120-82-1	1,2,4-Trichlorobenzene	.5 U
71-55-6	1,1,1-Trichloroethane	1
79-00-5	1,1,2-Trichloroethane	.5 U
79-01-6	Trichloroethene	9.4
75-69-4	Trichlorofluoromethane	.5 U
96-18-4	1,2,3-Trichloropropane	.5 U
95-63-6	1,2,4-Trimethylbenzene	.5 0
108-67-8	1,3,5-Trimethylbenzene	.5 0
75-01-4	Vinyl Chloride	6.8
NO CAS	mp-Xylene	<u>3.7</u> J
95-47-6	o-xylene	
67-64-1	Acetone	
78-93-3	2-Butanone	<u>R</u> <u>-6</u> <u>-0</u>
108-10-1	4-Methyl-2-Pentanone	5 12 11 3

CLIENT ID

	12	ł		
VOLATILE	ORGANICS	ANALYSIS	DATA	SHEE

		A ANALYSIS DATA SHEET .	
Lab Name: STL/CT		Contract:	MW-104A
Lab Code: IEACT C	Case No.: 1470A	SAS No.: SDG No	o.: A1470
Matrix: (soil/water)W	VATER	Lab Sample ID	: 001470A-07
Sample wt/vol: 2	25 (g/mL)ML	Lab File ID:	>L2032
Level: (low/med) L	WOL	Date Received	: 07/14/00
% Moisture: not dec.		Date Analyzed	: 07/24/00
GC Column: 007-624	ID: 0.53 (mm)	Dilution Facto	or: 10.0
Soil Extract Volume:	(uL)	Soil Aliquot '	Volume:(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

Q

71-43-2	Benzene	24	
108-86-1	Bromobenzene	5	<u> </u>
74-97-5	Bromochloromethane	5	Ŭ
75-27-4	Bromodichloromethane	5	Ū
75-25-2	Bromoform	5	U
74-83-9	Bromomethane	5	Ū
104-51-8	n-Butylbenzene	5	Ū
135-98-8	Sec-ButyIbenzene	5	U
98-06-6	Tert-Butylbenzene	5	0
56-23-5	Carbon Tetrachloride		0
108-90-7	Chlorobenzene	10	•
124-48-1	Dibromochloromethane	5	ΰ
75-00-3	Chloroethane	49	
67-66-3	Chloroform	5	Ŭ
74-87-3	Chloromethane	5	υ
95-49-8	2-Chlorotoluene	5	Ū
106-43-4	4-Chlorotoluene	5	U
96-12-8	1,2-Dibromo-3-Chloropropane	20	Ŭ
106-93-4	1,2-Dibromoethane	5	- U
74-95-3	Dibromomethane	5	<u> </u>
95-50-1	1,2-Dichlorobenzene	6.6	
541-73-1	1,3-Dichlorobenzene	.88	J
106-46-7	1,4-Dichlorobenzene	33	
75-71-8	Dichlorodifluoromethane	5	U
75-34-3	1,1-Dichloroethane	40	
107-06-2	1,2-Dichloroethane		
75-35-4	1,1-Dichloroethene	5	U
156-59-2	cis-1,2-Dichloroethene		Ū
156-60-5	trans-1,2-Dichloroethene	1.8	J
78-87-5	1,2-Dichloropropane	10	
142-28-9	1,3-Dichloropropane	5	<u> </u>
544-20-7	2,2-Dichloropropane	5	
563-58-6	1,1-Dichloropropene	5	U
100-41-4	Ethylbenzene	140	
87-68-3	Hexachlorobutadiene	5	Ŭ

CAS NO. COMPOUND

ID

Q

VOLATILE ORGAN	1A CLIENT ID VICS ANALYSIS DATA SHEET
	MW-104A
Lab Name: STL/CT	Contract:
Lab Code: IEACT Case No.: 1470	A SAS No.: SDG No.: A1470
Matrix: (soil/water)WATER	Lab Sample ID: 001470A-07
Sample wt/vol: 25 (g/mL)MI	Lab File ID: >L2032
Level: (low/med) LOW	Date Received: 07/14/00
% Moisture: not dec.	Date Analyzed: 07/24/00
GC Column: 007-624 ID: 0.53 (mr	n) Dilution Factor: 10.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

98-82-8	Isopropylbenzene	23	
99-87-6	4-Isopropyltoluene	13	
75-09-2	Methylene Chloride	1.8	_≱uj
91-20-3	Naphthalene	59	
103-65-1	N-Propylbenzene	4.8	<u>J</u>
100-42-5	Styrene	2.1	J
630-20-6	1,1,1,2-Tetrachloroethane	5	U
79-34-5	1,1,2,2-Tetrachloroethane,	5	Ŭ
127-18-4	Tetrachloroethene	5	U
108-88-3	Toluene	11	
87-61-6	1,2,3-Trichlorobenzene	5	U
120-82-1	1,2,4-Trichlorobenzene	5	<u> </u>
71-55-6	1,1,1-Trichloroethane	5	U
79-00-5	1,1,2-Trichloroethane	5	U
79-01-6	Trichloroethene	5	U
75-69-4	Trichlorofluoromethane	5	Ŭ
96-18-4	1,2,3-Trichloropropane	5	U
95-63-6	1,2,4-Trimethylbenzene	42	
108-67-8	1,3,5-Trimethylbenzene	12	
75-01-4	Vinyl Chloride	52	<u> </u>
NO CAS	mp-Xylene		J
95-47-6	o-xylene	63	
67-64-1	Acetone	160 /	TĂ
78-93-3	2-Butanone	R -60	<u> </u>
108-10-1	4-Methyl-2-Pentanone	50	- Vu-

0016 CLIENT ID

VOLATILE ORGANICS ANALYSIS DATA SHEET

	Contract: MW-102A
Lab Name: STL/CT	
Lab Code: IEACT Case No.: 1470A	SAS No.: SDG No.: A1470
Matrix: (soil/water)WATER	Lab Sample ID: 001470A-08
Sample wt/vol: 25 (g/mL)ML	Lab File ID: >L2030
Level: (low/med) LOW	Date Received: 07/14/00
<pre>% Moisture: not dec</pre>	Date Analyzed: 07/24/00
GC Column: 007-624 ID: 0.53 (mm)	Dilution Factor: 10.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

Q

71-43-2	Benzene	10	
108-86-1	Bromobenzene	5	
74-97-5	Bromochloromethane	5	Ŭ
75-27-4	Bromodichloromethane	5	`
75-25-2	Bromoform	5	
74-83-9	Bromomethane	5	Ŭ
104-51-8	n-Butylbenzene	5	υ
135-98-8	Sec-Butylbenzene	5	<u> </u>
98-06-6	Tert-Butylbenzene	5	Ŭ
56-23-5	Carbon Tetrachloride	5	0
108-90-7	Chlorobenzene	-11	
124-48-1	Dibromochloromethane	5	Ŭ
75-00-3	Chloroethane	28	
67-66-3	Chloroform	5	U
74-87-3	Chloromethane	5	U
95-49-8	2-Chlorotoluene	5	Ū
106-43-4	4-Chlorotoluene	5	Ŭ
96-12-8	1,2-Dibromo-3-Chloropropane	20	U
106-93-4	1,2-Dibromoethane	5	<u> </u>
74-95-3	Dibromomethane	5	U
95-50-1	1,2-Dichlorobenzene	.93	J
541-73-1	1,3-Dichlorobenzene		. U
106-46-7	1,4-Dichlorobenzene	5.5	
75-71-8	Dichlorodifluoromethane	27	
75-34-3	1,1-Dichloroethane	160	
107-06-2	1,2-Dichloroethane	15	
75-35-4	1,1-Dichloroethene	5	<u> </u>
156-59-2	cis-1,2-Dichloroethene	230	
156-60-5	trans-1,2-Dichloroethene	3.6	J
78-87-5	1,2-Dichloropropane	6.4	
142-28-9	1,3-Dichloropropane	5	U
544-20-7	2,2-Dichloropropane	5	Ŭ.
563-58-6	1,1-Dichloropropene	5	U
100-41-4	Ethylbenzene	5	U
87-68-3	Hexachlorobutadiene	5	Ŭ

Q

VOLATILE ORGANICS ANALYSIS DATA SHEET

	MW-102A
Lab Name: STL/CT	Contract:
Lab Code: IEACT Case No.: 1470A	SAS No.: SDG No.: A1470
Matrix: (soil/water)WATER	Lab Sample ID: 001470A-08
Sample wt/vol: 25 (g/mL)ML	Lab File ID: >L2030
Level: (low/med) LOW	Date Received: 07/14/00
% Moisture: not dec.	Date Analyzed: 07/24/00
GC Column: 007-624 ID: 0.53 (mm)	Dilution Factor: 10.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

98-82-8	Isopropylbenzene	4.1	J
99-87-6	4-Isopropyltoluene	5	Ŭ,
75-09-2	Methylene Chloride	32	LNA
91-20-3	Naphthalene	5	Ū,
103-65-1	N-Propylbenzene	5	<u> </u>
100-42-5	Styrene	5	
630-20-6	1,1,1,2-Tetrachloroethane	5	υ
79-34-5	1,1,2,2-Tetrachloroethane.	5	Ū,
127-18-4	Tetrachloroethene	55	5
108-88-3	Toluene	.95	J
87-61-6	1,2,3-Trichlorobenzene	5	· Ŭ .
120-82-1	1,2,4-Trichlorobenzene	5	Ŭ
71-55-6	1,1,1-Trichloroethane	5	<u> </u>
79-00-5	1,1,2-Trichloroethane	5	U
79-01-6	Trichloroethene	77	
75-69-4	Trichlorofluoromethane	1.7	1 the second sec
96-18-4	1,2,3-Trichloropropane	5	Ű
95-63-6	1,2,4-Trimethylbenzene	5	Ŭ
108-67-8	1,3,5-Trimethylbenzene	5	
75-01-4	Vinyl Chloride	46	
NO CAS	mp-Xylene	10	U
95-47-6	o-xylene	5	U
67-64-1	Acetone	100	TLU TE
78-93-3	2-Butanone	R -60 -	
108-10-1	4-Methyl-2-Pentanone	50	TUN

CAS NO. COMPOUND

CLIENT ID

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

.

CAS NO. COMPOUND

Lab Name: STL/CT		Contract:	DUP-L+RR
·			
Lab Code: IEACT Cas	3e NO.: 1470A	SAS NO.: SDG NO).: M1470
Matrix: (soil/water)WAT	ER	Lab Sample ID:	: 001470A-09
Sample wt/vol: 25	(g/mL)ML	Lab File ID:	>L2031
Level: (low/med) LOW	1	Date Received	: 07/14/00
<pre>% Moisture: not dec</pre>	<u></u>	Date Analyzed:	: 07/24/00
GC Column: 007-624 ID): 0.53 (mm)	Dilution Facto	or: 10.0
Soil Extract Volume:	(uL)	Soil Aliquot V	Volume:(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

Q

71-43-2	Benzene	10	
108-86-1	Bromobenzene	5	U
74-97-5	Bromochloromethane	5	υ
75-27-4	Bromodichloromethane	5	Ŭ
75-25-2	Bromoform	5	Ū
74-83-9	Bromomethane	- 5	U
104-51-8	n-Butylbenzene	- 5	U
135-98-8	Sec-Butylbenzene ,	5	υ
98-06-6	Tert-Butylbenzene	5	Ū
56-23-5	Carbon Tetrachloride	5	Ű
108-90-7	Chlorobenzene	11	
124-48-1	Dibromochloromethane	5	υ
75-00-3	Chloroethane	27	
67-66-3	Chloroform	5	U
74-87-3	Chloromethane	5	U
95-49-8	2-Chlorotoluene	5	Ŭ
106-43-4	4-Chlorotoluene	5	<u> </u>
96-12-8	1,2-Dibromo-3-Chloropropane	20	ប
106-93-4	1,2-Dibromoethane	5	Ŭ
74-95-3	Dibromomethane	5	U
95-50-1	1,2-Dichlorobenzene	1	J
541-73-1	1,3-Dichlorobenzene	5	U
106-46-7	1,4-Dichlorobenzene	5.7	
75-71-8	Dichlorodifluoromethane	27	
75-34-3	1,1-Dichloroethane	160	<u> </u>
107-06-2	1,2-Dichloroethane	16	
75-35-4	1,1-Dichloroethene	5	Ū
156-59-2	cis-1,2-Dichloroethene	240	
156-60-5	trans-1,2-Dichloroethene	3.8	J
78-87-5	1,2-Dichloropropane	6.6	
142-28-9	1,3-Dichloropropane	5	U
544-20-7	2,2-Dichloropropane	5	Ŭ
563-58-6	1,1-Dichloropropene	5	U
100-41-4	Ethylbenzene	5	U
87-68-3	Hexachlorobutadiene		U

Q

1A C VOLATILE ORGANICS ANALYSIS DATA SHEET

	DUP-L+RR
Lab Name: STL/CT	Contract:
Lab Code: IEACT Case No.: 1470A	SAS No.: SDG No.: A1470
Matrix: (soil/water)WATER	Lab Sample ID: 001470A-09
Sample wt/vol: 25 (g/mL)ML	Lab File ID: >L2031
Level: (low/med) LOW	Date Received: 07/14/00
<pre>% Moisture: not dec</pre>	Date Analyzed: 07/24/00
GC Column: 007-624 ID: 0.53 (mm)	Dilution Factor: 10.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CAS NO. COMPOUND

.

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

98-82-8	Isopropylbenzene	4.2	J
99-87-6	4-Isopropyltoluene	5	Ū,
75-09-2	Methylene Chloride	31	<u> </u>
91-20-3	Naphthalene	5	
103-65-1	N-Propylbenzene	5	υ
100-42-5	Styrene	5	Ũ
630-20-6	1,1,1,2-Tetrachloroethane	5	υ.
79-34-5	1,1,2,2-Tetrachloroethane	5	Ŭ
127-18-4	Tetrachloroethene	54	J
108-88-3	Toluene	.89	J
87-61-6	1,2,3-Trichlorobenzene	5	υ
120-82-1	1,2,4-Trichlorobenzene	5	U
71-55-6	1,1,1-Trichloroethane	5	Ŭ
79-00-5	1,1,2-Trichloroethane	5	U
79-01-6	Trichloroethene	79	
75-69-4	Trichlorofluoromethane	1.7	ਮ ਬ ਾ
96-18-4	1,2,3-Trichloropropane	5	Ŭ
95-63-6	1,2,4-Trimethylbenzene	5	U
108-67-8	1,3,5-Trimethylbenzene	5	Ū
75-01-4	Vinyl Chloride	45	
NO CAS	mp-Xylene	10	Ŭ
95-47-6	o-xylene	5	Ŭ
67-64-1	Acetone	69	TU TE
78-93-3	2-Butanone	<u> </u>	- 0
108-10-1	4-Methyl-2-Pentanone	50	LUN

CLIENT ID

		LA 5 ANALYSIS DATA SHEET .	CLIENT ID
	VOLATILE ORGANIC.		TBL+22071300 TB071300
Lab Name: STL/CT		Contract:	(aE4/8/00
Lab Code: IEACT	Case No.: 1470A	SAS No.: SDG N	o.: A1470
Matrix: (soil/water))WATER	Lab Sample ID	: 001470A-10
Sample wt/vol:	25 (g/mL)ML	Lab File ID:	>L2007
Level: (low/med)	LOW	Date Received	: 07/14/00
% Moisture: not dec	•	Date Analyzed	: 07/21/00
GC Column: 007-624	ID: 0.53 (mm)	Dilution Fact	or: 1.0
Soil Extract Volume	:(uL)	Soil Aliquot	Volume:(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

CAS NO.	COMPOUND	(ug/L or ug/Kg)UG/L	Q
71 42-2	Benzene	.5	υ
71-43-2	Bromobenzene		- <u></u><u></u><u></u>
74-97-5	Bromochloromethane		
75-27-4	Bromodichloromethane	.5	Ū
75-25-2	Bromoform	.5	
74-83-9	Bromomethane	.5	<u> </u>
104-51-8	n-Butylbenzene	.5	0
135-98-8	Sec-Butylbenzene		U
98-06-6	Tert-Butylbenzene	.5	U
56-23-5	Carbon Tetrachloride	.5	Ŭ
108-90-7	Chlorobenzene	.5	. 0
124-48-1	Dibromochloromethane	.5	Ū
75-00-3	Chloroethane	.5	U
67-66-3	Chloroform	.72	
74-87-3	Chloromethane	.5	U
95-49-8	2-Chlorotoluene	.5	Ŭ
106-43-4	4-Chlorotoluene	.5	U
96-12-8	1,2-Dibromo-3-Chloropropar	1e 2	U
106-93-4	1,2-Dibromoethane	.5	U
74-95-3	Dibromomethane	.5	U
95-50-1	1,2-Dichlorobenzene	.5	Ŭ
541-73-1	1,3-Dichlorobenzene	.5	· <u> </u>
106-46-7	1,4-Dichlorobenzene	.5	Ŭ
75-71-8	Dichlorodifluoromethane	.5	U
75-34-3	1,1-Dichloroethane	.5	
107-06-2	1,2-Dichloroethane	.5	
75-35-4	1,1-Dichloroethene	.5	
156-59-2	cis-1,2-Dichloroethene	.5	U U
156-60-5	trans-1,2-Dichloroethene		<u> </u>
78-87-5	1,2-Dichloropropane	.5	
142-28-9	1,3-Dichloropropane	.5	
544-20-7	2,2-Dichloropropane	.5	
563-58-6	1,1-Dichloropropene	.5	
100-41-4	Ethylbenzene	.5	
87-68-3	Hexachlorobutadiene	5	

		la S ANALYSIS DATA SHEET .	CLIENT ID
Lab Name: STL/CT	VOLATILE ORGANIC.	Contract:	TBL+RR071300 TB071300 Caea/s/00
	Case No.: 1470A	SAS No.: SDG N	o.: A1470
Matrix: (soil/water)	WATER	Lab Sample ID	: 001470A-10
Sample wt/vol:	25 (g/mL)ML	Lab File ID:	>L2007
Level: (low/med)	LOW	Date Received	: 07/14/00
% Moisture: not dec.		Date Analyzed	: 07/21/00
GC Column: 007-624	ID: 0.53 (mm)	Dilution Fact	or: 1.0
Soil Extract Volume	:(uL)	Soil Aliquot	Volume:(uL)

1 - 1

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L	Q	
98-82-8	Isopropylbenzene	•	5 U	
99-87-6	4-Isopropyltoluene	· · · · · · · · · · · · · · · · · · ·		-[]
75-09-2	Methylene Chloride			┫
91-20-3	Naphthalene			CAR
103-65-1	N-Propylbenzene		5 0	a 8 00
100-42-5	Styrene		<u>š v</u>	-12
630-20-6	1,1,1,2-Tetrachloroethane		s v	1 .
79-34-5	1,1,2,2-Tetrachloroethane		<u>s </u>	-1
127-18-4	Tetrachloroethene		<u>5 </u>	-
108-88-3	Toluene		5 0	-1,
87-61-6	1,2,3-Trichlorobenzene		5 0	
120-82-1	1,2,4-Trichlorobenzene		5 U	1
71-55-6	1,1,1-Trichloroethane	•	5 U	
79-00-5	1,1,2-Trichloroethane		5 0	
79-01-6	Trichloroethene		5 U	7
75-69-4	Trichlorofluoromethane	· · · · · · · · ·	<u>5 </u>	7
96-18-4	1,2,3-Trichloropropane	•	5 U	71
95-63-6	1,2,4-Trimethylbenzene		5 0	
108-67-8	1,3,5-Trimethylbenzene		5 U]
75-01-4	Vinyl Chloride	0.5 -	2 0	CAR .
NO CAS	mp-Xylene		1 U	Cae 9/8/00
95-47-6	o-xylene	· · ·	5 0_	·/*
67-64-1	Acetone	4.		
78-93-3	2-Butanone	R	6 U	
108-10-1	4-Methyl-2-Pentanone		5 ØUJ	J al
				9/9/00

.

ATTACHMENT B

CORRECTED FORM II GC/MS Volatiles Injection Logs STL/Connecticut Case No. 1470A

,

•

.

2A

WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: STL/CT

Contract: ____

Lab Code: IEACT Case No.: 1470A

SAS No.: _____ SDG No.: A1470

ľ	EPA	SMC1	SMC2	SMC3	SMC4	TOT
	SAMPLE NO.		(DBFM) #		(BFB) #	OUT
	SAMPLE NO.	(DCA) #	DBEM)#	(TOL) #	(BEB)#	
~ 1		100	107	100	106	o
01	VBLKLN	100 93	107 102	106 99	95	-ŏ
02	CW-5BFMS		91	85	85	- ŏ
03	CW-5BFMSD	88			122	ŏ
04	VBLKLO	115	123	121	108	
05	MW-102A	113	115	107		
06	DUP-L+RR	114	115	107	108	0
07	MW-104A	105	109	104	100	0
08	VBLKLM	89	90	88	91	0
09	CW-5B	109	110	105	110	Ō
10	TB071300	111	108	105	108	0
11	TB071200	110	110	106	110_	0
12	MW-201	112	110	106	108	0
13	MW-202	111	110	107	111	0
14	MW-103A	110	109	106	109	0
15	CW-7A	110	110	104	107	0
16						
17			ļ	[
18						
19						
20						1
21		· · · · · ·				
22			f ,			
23	·		1	<u> </u>	<u> </u>	
24						
25		e	<u>+</u>	<u> </u>		
26	·		<u> </u>	· · · · · ·	<u>+</u>	
27		ł	<u> · · - · · · · · · · · · · · · · · · · </u>	 	+	
28						+
20 29		<u> </u>	 		<u> </u>	<u> </u>
	l		· · ·	·	+	+
30		L	<u> </u>	<u> </u>	<u> </u>	1

QC LIMITS ·Dibromofluoro-SMC1 (DCA) = 1,2-Dichloroethane-d4 (83-143) SMC2 (DBFM) = 1,2-Dichloroethane-d4 (75 - 125)methane SMC3 (TOL) = Toluene-d8 (75 - 125)COE 8 30 00 (75 - 125)= Bromofluorobenzene SMC4 (BFB) # Column to be used to flag recovery values

* Values outside of contract required QC limits

page <u>1</u> of <u>1</u>

FORM II VOA-1

8260

Stendards Co		B:MSZ\$P	loutine Maint	:83/	Performe f: MST	id: B	Date: QC Bat	<u>H</u>	2100	
V 0. o. V Se	<u>v 1</u>	ec ↓ P	1:07190	2,83	CV		IDfile:	15	248440/182	Ul CB2
V.01181	<u>W: 82</u>	B I					Calib fi	le:	1-1-1-20	~~~~~~
<u>p:</u>	<u> 82</u>	AVI					Method	file:		
	e foilowing P() 524.2 ((please check):] () Other()	Protocol = SW	845() (CLP() N	YSDEC	C() 524,	2 K Other	\$ 8740B25	
Dana file	CLP Data file	Client/Job#	Sample ID	inj. Time	ALS	DF	QF	Analys	Comments	pH/WT
10199			255.00	2	NA	1	11	Zp	NG	+
USID		ļ		73		Ī	IL	U,	lok	
<u>U447</u>		<u> </u>	ISTOIDU	n_		1	$\Box I$		R-low: Nel	I stile
11448			NOT DOID	n.					ak	4-2142
1999			KE lo	-	1		1		DR	†
1100D			BULL	1	2	1	1		actore	1
1,2001		- OAV	Billin	n	1	1	11		OK	1
12003		<u>M's</u>	Lipph		2	1				
1 2 mil		WI42A	<u>A-09</u>		3		\square		Dm-2	5
La005			H-10		4	1			Dm-1	5
12006		001470A	H-1		5	1			TBODOFIS	5
i pmi		UUIY-TUH	<u> </u>	(AP)	<u> </u>			- 6	TBL+RR OTI	2001
12008			H-10	-44	7	1	┝!		TB LHRR 071	3001
12009			A = 0	┣	<u>g</u>		┝╩┽		640-58	1.6
62010			╺╇┫╼╾┥	-+					mw-201	1.6
12011			A-2		10				mw-202	lile
12012			<u>A-4</u>	+			┝┻╌┝		MW-103A	1.6
12013.	. 0		A-7		12 13		-4		$6\omega - 7A$	1.6
1:2011		12100						<u> </u>	& mw TOTA	1.9
			+	F				¥_		
		∇		-+						
				•						
			X		$t \Re t$					
		-7X	789	111	₩+					
			2/11	XV			-+-			
							-+		·	[
		L					-+-	-		
itnessed by:		DAM			-			122		

ogboold/ MS19.9

Standards Co			outine Mainte				ate:	72	00		
<u> 2:042-</u>	0:51P	insz.8	2.041800):85	Aim	26	C Bate		0835		
P: 0705	101年		P;		B	1 I)file:		00845		
p:	V H	0, 1	b:	82	3C 1	/ 6	dib fil				
P: MUA	an: 83	2,0,0	Y	•			ethod				
1_0719		(please check): 1		.10	d -						
Calibrated for the List = Talk P	he following (P() 524.2 ((please check): 1) Other()	Protocol = SW	Kath IC	EP() N1	SDEC()) 524.:	2 () Other())		
Data file	CLP Data file	Client/Job#	Sample ID	Inj. Tune	ALS	DF	QF	Anaiyh	Comments	pH/WT	
16201			35, 8,40		15	1		28			
LB202		 	1	 	10		1				
1.15200			+		17		1				
LBACY	·		Venoisi	414	18	$\left \begin{array}{c} \\ \\ \\ \end{array} \right $	<u> </u>	┞─┼──		ļ	
12015	17	· · ·	KSDOOL		19			┝──┟───	ok	l	
LADILE	<u>,</u>		NSTODIO		20		1		l		
12017	1		PLE P		21	<u> </u>			· · · · · · · · · · · · · · · · · · ·		
12019			VBIKIN	/ //	22) }		ok		
1 2019	2	Res		h	24			<u>├──</u>	or	 	
1.202	1	20 NTOA	A-lefin		25		1		GW-0B	1.6	
Lana			A 1600	7	20		1				
Lapa	1	J.			27	1	1		blk, Clo	-	_
12023			A-8		28	. ,			MU TODA	1.9	√ 00€ √ 9[8
12024			A-9	6	29				Jup-ure	1.6	מןר <i>א</i>
12035			Atom		30		1		PTBLERO77	1.9-	\bigcirc
12026			1-1-		St			V			
12027					132			ļ			
<u> </u>		<u>_</u>	+/							 	
	+		+/		<u> </u>	<u> </u>		<u> </u>			
	<u> </u>		₩	+				╞────			
	┨────		\hbar	$+\lambda$	<u></u>	in			+		
	+	/		1 Q		alu	· · ·	 	<u>+</u>		
	1		+ 1	-11	†÷₩9	⊢ ∖		<u>†</u>	†	 	
	1		+		1	<u> </u>		<u> </u> -	1		
		/			1 -	 		t			I
											1
		~	m			1		Hate			1

Form# MSF00904.CT

Logbook# MS19.9

356 FARRAGUT CROSSING DR. KNOXVILLE, TN 37922 (423) 966-8880

FAX (423) 966-8885 cerikson@trilliuminc.com

August 31, 2000

Mr. Dan Garrigan O&M, Inc. 450 Montbrook Lane Knoxville, TN 37919

RE: <u>Data Package Review Report - STL/Illinois Lot No. 9A08G369, STL/Connecticut</u> Case No. 1470A - Total and Dissolved Metals in Ground Water

Dear Dan:

I have completed my evaluation of the inorganics analysis data prepared by the Severn Trent Laboratory (STL) in University Park, Illinois (under subcontract to STL/Connecticut), for eight ground water (GW) samples from the L&RR Site. These data were reported in a single data package under STL/Illinois Lot No. 9A08G369 (STL/Connecticut Case No. 1470A) which was received by Trillium for review on August 28, 2000. The following GW samples were reported:

MW-201	MW-202
MW-103A	CW-7A
CW-5B	MW-104A
MW-102A	DUP-L+RR

Analyses were performed according to EPA Methods 7060A (total and dissolved arsenic) and 7421A (total and dissolved lead); both methods are found in the Third Edition of SW-846, Update III. My evaluation was based on the specifications of the project-specific Quality Assurance Project Plan (QAPP, 9/96), the referenced methods, and the USEPA Region I Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses (6/88; Rev. 2/89). Qualifiers consistent with those defined in the Region I document were applied as necessary and appropriate.

Although the QAPP specifies that Level III data packages are required for all analyses except the 5-year sampling events, full raw data deliverables (i.e., GFAA instrument print-outs) were provided for all of the metals analyses. *Unless otherwise noted, these raw data were not reviewed by Trillium as part of this evaluation.* As specified in Section 9.2 of the QAPP (page 23), a Level III evaluation, limited to an overview of the information provided on the summary forms, was performed.

Home Office: 28 grace's Drive • Coatesville, Pa19320 • (610) 383-7233 • Fax (610) 383-7907 Offices IN: LOUISIANA • MARYLAND • NEW JERSEY • NORTH CAROLINA • PENNSYLVANIA • TENNESSEE • TEXAS

Results from analysis of the dissolved metals sample fractions were distinguished by the laboratory from analysis results for the total metals fractions by the addition of the suffix "S" (for "soluble") to the client sample identification (CW-5BS, for example). The word "Dissolved" was also added by the evaluator to the results forms for the dissolved sample analyses in Attachment A to emphasize the distinction, as well as for consistency with previous data sets generated in support of this project.

Based on the evaluation, the following qualifiers were applied:

- Results for total lead in MW-201 and for dissolved lead in MW-202S were qualified as estimated (J) based on an unacceptably high recovery in the associated CRDL standard.
- Results for lead in MW-201, MW-201S, MW-202, MW-202S, MW-103A, MW-103AS, CW-5B, CW-5BS, CW-7A, CW-7AS, MW-102A, MW-102AS, DUP-L+RR, DUP-L+RRS, and MW-104AS were qualified as estimated (J, UJ) due to negative responses in the associated calibration blanks.
- Results for total and dissolved lead in all samples were qualified as estimated (J, UJ) based on unacceptably low recoveries in the matrix spike analyses.
- The result for total arsenic in MW-103A was qualified as estimated (J) due to an unacceptably high post-digestion spike recovery.
- Results for total lead in MW-202, CW-5B, CW-7A, MW-104A, MW-102A, and DUP-L+RR, and for dissolved lead in MW-202S, CW-5BS, CW-7AS, MW-102AS, and DUP-L+RRS were qualified as estimated (J, UJ) due to unacceptably low postdigestion spike recoveries.
- Results for dissolved arsenic in MW-102AS and DUP-L+RRS were qualified as estimated (J) based on poor reproducibility in the field duplicate analyses.
- Results for total and dissolved lead in MW-202 were qualified as estimated (J) due to discrepancies between the measured total and dissolved concentrations.

All "B," "N," and "W" qualifiers applied by the laboratory were removed by the evaluator.

These qualifiers are reflected on the Inorganic Analysis Data Sheets (Form Is) included as Attachment A to this report. Region I qualifier definitions are also provided in this attachment. Where a sample result was qualified as estimated for more than one reason (as listed above), the qualifier was applied once and no further action was taken.

At the discretion of the data user, the following points may warrant attention by laboratory and field personnel with regard to this data package and/or prior to future sampling events at this site:

- Documentation of sample preservation in the field on all chain of custody records.
- Documentation of cooler temperatures and sample pHs on laboratory receipt on all chain of custody records.

Specific details regarding the review and evaluation of these data are discussed below:

Holding Times, Preservation and Sample Integrity: Copies of the two applicable field chain of custody (COC) records were not included in this data package. A "Subcontracting Requisition Form" was provided and apparently serves as the COC for the shipment of the samples from STL/Connecticut to STL/Illinois. The samples were shipped on 8/9/00 and received on 8/10/00. No shipping information is recorded on the Requisition Form, and no copy of a courier airbill is included in the data package.

No physical preservation or cooler temperature information was recorded by either laboratory on the Requisition Form. An acceptable temperature (4°C) on laboratory receipt was documented on the field COC for the samples collected on 7/12/00 (as reviewed in associated data packages). On the field COC for samples collected 7/13/00, "7°" was documented by the laboratory. It was assumed that this was also a centigrade measurement. Although slightly above the generally accepted temperature range of 4°C±2°C, the exceedance is very minor and no action was taken on this basis.

Acidification of the samples for dissolved metals analysis with nitric acid was not recorded by the sampler on either of the field COCs and was not recorded by either laboratory on the Requisition Form. Documentation of sample pHs was, however, present on the STL/Illinois digestion logs. All samples were verified to be at pH<2 at the time of preparation for analysis, confirming appropriate preservation.

Field filtration of the samples for dissolved metals analysis was documented on both field COC records.

Total and dissolved metals analyses were performed 8/11/00 through 8/18/00, well within the 6month holding time specified by the QAPP.

Calibrations: Based on the Analysis Run Logs for each instrument and analysis date (Contract Laboratory Program [CLP] Form XIV), initial and continuing calibration verification (ICV/CCV) standards were run at appropriate frequencies throughout all reported GFAA (graphite furnace atomic absorption) analysis series. All ICV/CCV recoveries documented on the accompanying Initial and Continuing Calibration Verification Reports (CLP Form II) were acceptable (QC 90-110%).

Linearity check results (i.e., correlation coefficients for the initial multipoint calibrations) for arsenic and lead by GFAA were found in the raw data provided in the data package and were acceptable (>0.995) at the start of each analysis series.

Contract required detection limit (CRDL) standards were run at the beginning of each analysis series. Recoveries were acceptable (80-120%) with the exception of lead (152%) in the 8/11/00 CRDL standard. The high recovery suggests that low measurements of lead may be biased high or represent false positives. Results for total lead in MW-201 and for dissolved lead in MW-202S were qualified as estimated (J) on this basis.

Blanks: Based on the run logs, initial and continuing calibration blanks (ICB/CCBs) were run at appropriate frequencies throughout the reported sample analysis series. No arsenic or lead was reported above the applicable instrument detection limit (IDL) in any of the ICB/CCBs run by GFAA. Lead (-1.8 to -1.2 μ g/L) was reported below the negative IDL in many of the CCBs run during all three analysis series, and arsenic was reported below the negative IDL (-1.6 and -1.9 μ g/L) in two of the CCBs run during the 8/15/00 GFAA series. Results for lead in MW-201, MW-201S, MW-202, MW-202S, MW-103A, MW-103AS, CW-5B, CW-5BS, CW-7A, CW-7AS, MW-102A, MW-102AS, DUP-L+RR, DUP-L+RRS, and MW-104AS were qualified as estimated (J, UJ) on this basis. Results for arsenic in the sample analyses associated with the affected CCBs on 8/15/00 were greater than the action limit for qualification (two times the absolute value of the associated blank response), therefore no action was taken on this basis.

A water matrix preparation blank (PBW) was digested with the samples (per the preparation logs, CLP Form XIII, and the laboratory's digestion logs); no arsenic or lead contamination was reported in the PBW.

Laboratory Control Samples: Laboratory control sample results were reported in the data package. Acceptable (QC 80-120%) recoveries were reported for both arsenic and lead.

Duplicate Analysis: Sample CW-5B was analyzed in duplicate for total arsenic, total lead, dissolved arsenic, and dissolved lead. No total or dissolved lead or arsenic was detected above the IDL in any of the paired sample analyses, therefore no quantitative evaluation of precision could be made for these analytes using these data.

Matrix Spike Analysis: Sample CW-5B was prepared and analyzed as a matrix spike for total arsenic, total lead, dissolved arsenic, and dissolved lead. Reported percent recoveries for total and dissolved arsenic (98.0% and 104.4%) were acceptable (QC 75-125%). Recoveries for total and dissolved lead, however, were unacceptably low (70.4% and 44.0%). Results for total and dissolved lead in all samples were qualified as estimated (J, UJ) on this basis. The "N" qualifiers applied by the laboratory to all sample results for lead were removed by the evaluator.

Graphite Furnace Atomic Absorption (GFAA) QC: Post-digestion spike (PDS) recoveries for arsenic and lead were reported on the analysis run logs and were acceptable (QC 85-115%) with the exception of total arsenic in MW-103A (127.9%), CW-5B (124.6%), MW-104A (115.6%), and DUP-L+RR (115.9%), for dissolved arsenic in MW-103AS (138.2%), CW-5BS (121.5%), and DUP-L+RRS (118.1%), for total lead in MW-202 (66.5%), CW-5B (49.5%), CW-7A (75.6%), MW-104A (63.1%), MW-102A (71.7%), and DUP-L+RR (72.8%), and for dissolved lead in MW-202S (81.5%), CW-5BS (41.2%), CW-7AS (77.6%), MW-102AS (72.2%), and DUP-L+RRS (64.0%).

MW-104A, DUP-L+RR and DUP-L+RRS were rerun at five- or ten-fold dilutions for arsenic. The diluted analyses gave acceptable PDS recoveries and the diluted analysis results were reported, therefore no further action was warranted with respect to these sample results.

The positive result for arsenic in MW-103A was qualified as estimated (J) based on the unacceptably high PDS recovery. Arsenic was not detected above the IDL in MW-103S, CW-5B, and CW-5BS and the PDS recoveries were too high; therefore, no qualifiers were applied on this basis.

Results for total lead in MW-202, CW-5B, CW-7A, MW-104A, MW-102A, and DUP-L+RR and for dissolved lead in MW-202S, CW-5BS, CW-7AS, MW-102AS, and DUP-L+RRS were qualified as estimated (J, UJ) because the PDS recoveries were all unacceptably low.

Analysis by the Method of Standard Additions (MSA) was not required for any of the above samples. All "W" qualifiers applied by the laboratory were removed by the validator.

Sample Results: Results greater than or equal to the laboratory-specified IDLs were appropriately reported on the Inorganic Analysis Data Sheets for both analytes in each sample.

All undetected sample results for arsenic and lead were correctly adjusted (multiplied by 0.5) to reflect the concentration factor resulting from processing 100 mL of sample to a final volume of 50 mL, which was clearly documented on the laboratory's digestion logs. Positive sample results were not similarly verified as part of this evaluation.

IDLs for undetected analytes were also appropriately adjusted to reflect sample dilutions, where applicable. Positive sample results were not similarly verified as part of this evaluation.

Form X documentation of laboratory-specified IDLs established on 7/15/00 for arsenic (1.5 μ g/L) and lead (1.2 μ g/L) on AA4, for arsenic (1.3 μ g/L) on AA3, and for lead (1.2 μ g/L) on AA6 was provided in the data package. An IDL of 1.5 μ g/L was reported by the laboratory for arsenic in all samples; this is acceptable, as it represents the higher of the two IDLs established on the two instruments used for these analyses.

Field Duplicates: Sample DUP-L+RR was identified as a field duplicate of MW-102A based on information provided by the client. Paired results for total arsenic (26.3 RPD) were acceptable. No total or dissolved lead was reported in either sample, therefore no quantitative evaluation of precision could be performed for this analyte using these data. An unacceptably high RPD was obtained for dissolved arsenic (39.5%; Region I Validation QC \leq 30%). Results for dissolved arsenic in MW-102AS and DUP-L+RRS were qualified as estimated (J) based on this poor reproducibility.

Total versus Dissolved Concentrations: Comparison of total versus dissolved results for lead and arsenic in the ground water samples revealed one case where the dissolved concentration was higher than the total concentration: in MW-202, a low concentration of dissolved lead (0.82 μ g/L) was reported while total lead was not detected above the IDL (0.60 U). Since the positive result was less than twice the sample-specific IDL, this discrepancy most likely reflects the increased variability typically observed at concentrations near the detection limit of the method. Results for total and dissolved lead in MW-202 were qualified as estimated (J, UJ) on this basis.

Documentation: Data package documentation was inconsistent with the specifications of the QAPP; specifically, a Level IV package was provided when a Level III package was required. The presence of the raw data documentation does not adversely affect the reported sample results, but, pursuant to the validation specifications for this project, it was not reviewed by Trillium as part of this evaluation except where otherwise noted above.

Client-assigned sample identifications were modified by the laboratory. Hyphens were eliminated from MW-201, MW-202, CW-5B, and CW-7A; both hyphens and the "A" suffix were eliminated from MW-102A, MW-103A, and MW-104A; and DUP-L+RR was shortened to DUPLR. The laboratory-abbreviated identifications were used consistently throughout the data package. The correct identifications, as found on the COC records, are used throughout this report and have been added to the attached Form Is by the validator.

Please let me know if you have any questions regarding this data package review report.

Sincerely,

Carol A. Erikson Quality Assessment Manager

CAE/psn July 2000\GWMetals (95406)

ATTACHMENT A

INORGANIC ANALYSIS DATA SHEETS STL/Illinois Lot No. 9A08G369, STL/Connecticut Case No.1470A

EPA Region I Qualifier Definitions:

- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- J The associated numerical value is an estimated quantity.
- **R** The data are unusable (Note: Analyte may or may not be present).
- UJ The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

U.S.	EPA	-	CLP
------	-----	---	-----

1 INORGANIC ANALYSES DATA SHEET

MW-201 MW201 Lab Name: STL_CHICAGO_____ Contract: COE 8/31 00 Lab Code: STL____ Case No.: ____ SAS No.: ____ SDG No.: U08369 Matrix (soil/water): WATER Lab Sample ID: 9A08G369-001 Level (low/med): LOW Date Received: 08/10/00 % Solids: 0.0 Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No. Analyte Concentration C 0 Μ 7429-90-5 Aluminum NR 7440-36-0 Antimony NR Arsenic___ 7440-38-2 0.75 Ū F 7440-39-3 Barium NR 7440-41-7 Beryllium NR 7440-43-9 Cadmium NR 7440-70-2 Calcium NR 7440-47-3 Chromium NR 7440-48-4 Cobalt NR 7440-50-8 Copper NR 7439-89-6 Iron NR CaErikson 8 31 00 7439-92-1 Lead 2.5 F NR 7439-95-4 Magnesium 7439-96-5 Manganese NR 7439-97-6 Mercury_ NR Nickel 7440-02-0 NR 7440-09-7 Potassium NR 7782-49-2 Selenium NR 7440-22-4 Silver NR 7440-23-5 Sodium NR 7440-28-0 Thallium NR 7440-62-2 Vanadium NR 7440-66-6 Zinc NR Cyanide NR Color Before: COLORLESS Clarity Before: CLEAR Texture: Color After: COLORLESS Clarity After: CLEAR Artifacts: Comments: MW-201

FORM I - IN

ILM03.0

EPA SAMPLE NO.

U		S		EPA	-	CLP
---	--	---	--	-----	---	-----

Concentration C Μ CAS No. Analyte Q NR 7429-90-5 Aluminum Antimony_ NR 7440-36-0 0.75 0 F Arsenic___ 7440-38-2 NR Barium 7440-39-3 NR Beryllium 7440-41-7 NR Cadmium 7440-43-9 NR 7440-70-2 Calcium NR 7440-47-3 Chromium NR Cobalt____ Copper___ 7440-48-4 NR 7440-50-8 NR Iron 7439-89-6 Cae 8/31/00 X UJ 0.60 F Lead 7439-92-1 NR 7439-95-4 Magnesium NR 7439-96-5 Manganese Mercury___ NR 7439-97-6 NR 7440-02-0 Nickel NR Potassium 7440-09-7 NR Selenium_ 7782-49-2 NR Silver 7440-22-4 NR 7440-23-5 Sodium NR Thallium 7440-28-0 _ NR Vanadium 7440-62-2 NR Zinc 7440-66-6 _ NR Cyanide Color Before: COLORLESS Clarity Before: CLEAR_ Texture: Color After: COLORLESS Clarity After: CLEAR Artifacts: _____ Comments: MW-201 SOLUBLE ILM03.0 FORM I - IN

32

	1 INORGANIC ANALYSES DATA SHEET			EI	PA SAMPLE NO.		
		INORGANIC A	MALISES DATA	A SHI	551		IW-202-
Lab Name: STL_CHICAGO Contract:						MW202	
ab Code: STL						- ' <i>-</i> פו	CAE 8/3 DG NO.: U0836
an code: stil_	Ca	se no.:	OAG N	J.: _	<u> </u>	51	JG NO 00030
atrix (soil/w	ater): WATE	R		Ĺа	ab Sam <u>r</u>	ple]	ID: 9A08G369-
evel (low/med): LOW_	_		Da	ate Red	ceive	ed: 08/10/00
Solids:	0.	0			-		
Co	ncentration	Units (ug/	L or mg/kg	dry v	veight)	: UC	5/L_
	CAS No.	Analyte	Concentratio	on C	Q	M	
	7429-90-5	Aluminum					
	7440-36-0	Antimony				NR	
	7440-38-2	Arsenic		75 U		_ F_	
	7440-39-3	Barium				_ NR	
		Beryllium Cadmium		<u> </u>		NR NR	
		Calcium					
		Chromium		- -			
		Cobalt	· · · · ·				
	7440-50-8	Copper	,			NR	
·	7439-89-6	Iron	· · · · · · · · · · · · · · · · · · ·			NR	
		Lead	0.	60 Ø	UJM_	- F NR	CaE 8/31/00
		Magnesium		[_			
		Manganese				NR NR	
	7439-97-6	Mercury Nickel]- <u></u>				
	7440-09-7	Potassium		— -	\		
	7782-49-2	Selenium				NR	
	7440-22-4	Silver	· · · · · · · · · · · · · · · · · · ·			- NR	
	7440-23-5	Sodium				NR	
	7440-28-0	Thallium_				_NR	ł .
	7440-62-2	Vanadium_			·	- NR	
	7440-66-6	Zinc		_		- NR	
		Cyanide				$- ^{NR}$	
olor Before:	COLORLESS	Clari	ty Before: C	LEAR	1,	Te:	xture:
Color After:	COLORLESS		-	LEAR		Ar	tifacts:
			• ····· •				
omments: MW-202						-	

	U.S. EPA - CLP 1 INORGANIC ANALYSES DATA SHEET						EPA SAMPLE NO. MW-202 Dresd Ved MW202S	
Lab Name: STL_	CHICAGO		Contract:		<u> </u>	I		
Lab Code: STL Case No.: SAS No.:						SI	(ДЕВ/Э) DG NO.: U08359	
Matrix (soil/wa	ater): WATE	R		La	ab Samp	le I	ID: 9A08G369-00	
Level (low/med): LOW_	_		Da	ate Rece	eive	ed: 08/10/00	
% Solids:	0.	0						
Co	ncentration	Units (ug,	L or mg/kg dry	y v	veight)	: UC	\$/L_	
	7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-97-6	Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium	0.75 		Q	M RR FRRRRR RR FRRRR RR RR RR RR R	QE 8/31/00	
Color Before:	COLORLESS		ty Before: CLE		_		xture:	
Color After: Comments: MW-202_SOLU	COLORLESS	Clari	ty After: CLE	AR 		Ar	tifacts:	

ILM03.0

U	. S		EPA	-	CLP
---	-----	--	-----	---	-----

EPA SAMPLE NO. 1 INORGANIC ANALYSES DATA SHEET MW-103A MW103 Lab Name: STL_CHICAGO_____ Contract: _____ Car83100 Lab Code: STL____ Case No.: ____ SAS No.: ____ SDG No.: 008369 Matrix (soil/water): WATER Lab Sample ID: 9A08G369-005 Level (low/med): LOW Date Received: 08/10/00 % Solids: 0.0 Concentration Units (ug/L or mg/kg dry weight): UG/L CAS No. Analyte Concentration C 0 М 7429-90-5 Aluminum NR 7440-36-0 Antimony_ NR 7440-38-2 Arsenic___ 0.80 F M J F ORE 8/31/00 7440-39-3 Barium 7440-41-7 Beryllium NR 7440-43-9 Cadmium NR 7440-70-2 Calcium NR 7440-47-3 Chromium NR 7440-48-4 Cobalt NR 7440-50-8 Copper NR 7439-89-6 Iron NR 0.60 1 F CaE8/31/00 NUJ 7439-92-1 Lead 7439-95-4 Magnesium 7439-96-5 Manganese NR Mercury_ 7439-97-6 NR 7440-02-0 Nickel NR 7440-09-7 Potassium NR Selenium 7782-49-2 NR 7440-22-4 Silver NR 7440-23-5 Sodium NR Thallium 7440-28-0 NR 7440-62-2 Vanadium NR 7440-66-6 Zinc NR Cyanide NR Color Before: COLORLESS Clarity Before: CLEAR_ Texture: Color After: COLORLESS Clarity After: CLEAR Artifacts: Comments: MW-103A

FORM I - IN

ILM03.0

			ANALYSES DATA S			M	W-103A Dissolved
Lab Name: STL	Contract:				MW103S		
			SAS No.			s	CAE 8/31 DG NO.: U08369
Matrix (soil/w	ater): WATE	R		La	ab Sampl		ID: 9A08G369-006
Level (low/med	l): LOW_	_		Da	ate Rece	ive	ed: 08/10/00
: Solids:	0.	0					
Co	ncentration	Units (ug/	L or mg/kg dry	7 V	veight):	U	g/L_
	CAS No.	Analyte	Concentration	с	Q	M	
			·	-			
	7429-90-5	Aluminum_		-		NR	
	7440-36-0	Antimony_ Arsenic	0.75	ថ		NR F	
	7440-38-2	Barium	0.75		/"	F NR	CAE 8/31/00
•	7440-41-7	·	<u> </u>	—		NR	
	7440-43-9			-		NR	
	7440-70-2		·	-		NR	
	7440-47-3	Chromium	·	-		NR	
	7440-48-4		·····	-		NR	
	7440-50-8	Copper		-		NR	1
	7439-89-6	Iron	<u> </u>	- ا		NR	
	7439-92-1	Lead	0.60	Ø	JUY I	F	MAG of 1
	7439-95-4	Magnesium		ľ		NR	CAE 8/31/00
	7439-96-5	Manganese				NR	
	7439-97-6	Mercury		1		NR	
	7440-02-0	Nickel				NR	
	7440-09-7	Potassium		_		NR	
	7782-49-2					NR	
	7440-22-4	Silver		_		NR	
	7440-23-5	Sodium		1-	·	NR	
	7440-28-0	Thallium_		-		NR	
	7440-62-2	Vanadium_		-		NR	
	7440-66-6	Zinc		_		NR	
		Cyanide		_	·	NR	
Color Before:	COLORLESS	Clari	ty Before: CLE	AR	-	Те	xture:
Color After:	COLORLESS	Clari	ty After: CLE	AR	-	Ar	tifacts:
Comments: MW-103A_SOI	יש. דפודו. ש						•

•

FORM I - IN

.

ILM03.0

		U.S.	EPA - CLP			
		INORGANIC	1 ANALYSES DATA :	SHEET	EPA SAMPLE NO.	
				CW-7A- CW7A		
ab Name: STL	_CHICAGO		Contract: _	_		
ab Code: STL	Ca	se No.:	SAS No.	:	CAES/31 SDG No.: U08359	
atrix (soil/w	water): WATE	R		Lab Samp	ple ID: 9A08G369-0	
evel (low/med	d): LOW_	_		Date Rec	ceived: 08/10/00	
Solids:	0.	0				
Co	oncentration	Units (ug	/L or mg/kg dry	y weight)	: UG/L_	
	CAS No.	Analyte	Concentration	c Q	M	
			· · · · · · · · · · · · · · · · · · ·	_	-	
	7429-90-5	ALUMINUM_			NR	
	7440-36-0 7440-38-2	Antimony_ Arsenic	9.4			
		Barium	9.4	-		
	7440-41-7					
	7440-43-9	Cadmium				
	7440-70-2	Calcium				
		Chromium	· _ · · _ · - · _ · - · _ · - · - · _ · - · -	-		
	7440-48-4					
	7440-50-8	Copper	· [-		
	7439-89-6	Iron	· [
	7439-92-1	Lead	· 3.0	JUJ MA_	-1_ 1	
	7439-95-4	Magnesium	· · · · · · · · · · · · · · · · · · ·	11	F CaE8/31/50	
	7439-96-5			1-1		
	7439-97-6			-		
	7440-02-0	Nickel				
	7440-09-7	Potassium				
	7782-49-2					
	7440-22-4	Silver			NR	
	7440-23-5	Sodium			NR	
	7440-28-0	Thallium_		. _		
	7440-62-2	Vanadium_		. _	NR	
	7440-66-6	Zinc		. _	NR	
	l	Cyanide	-	·		
olor Before:	COLORLESS	Clari	ty Before: CLE	AR_	Texture:	
olor After:	COLORLESS	Clari	ty After: CLE	AR_	Artifacts:	
omments:						
CW-7A						
		 4	FORM I - TN		ILM03.	
		F	FORM I - IN		ILMO	

.

		INORGANIC 2	1 ANALYSES DATA S	5H]	EET		PA SAMPLE NO.
						C	W-7A Dissolved CW7AS
ab Name: STL_	CHICAGO		Contract:				
			SAS No.	: _		SI	(لو 8/4) G No.: U08369
atrix (soil/w	ater): WATE	R		La	ab Samp	le 1	LD: 9A08G369-00
evel (low/med): LOW_	_		Da	ate Rece	eive	ed: 08/10/00
Solids:	0.	0					
Co	ncentration	Units (ug,	/L or mg/kg dry	7 1	weight)	: UC	G/L_
	CAS No.	Analyte	Concentration	с	Q	м	
	7429-90-5	Aluminum		-		NR	
	7440-36-0	Antimony	<u></u>	-		NR	
	7440-38-2	Arsenic	9.1			F_	
	7440-39-3			_		NR	
	7440-41-7		, <u> </u>	-		NR	
	7440-43-9			—		NR	
	7440-70-2		<u> </u>	-		NR	
	7440-47-3		<u> </u>	-	·	NR	
	7440-48-4			-		NR	
	7440-50-8	Copper Iron		-		NR NR	
	7439-92-1	Lead	· · · · · · · · · · · · · · · · · · ·	, , /	workter-		
	7439-92-1		3.0	19	<u>140_</u>	F NR	CAE8/31/00
	7439-96-5			-		NR	
	7439-97-6	Mercury				NR	
	7440-02-0			-		NR	
		Potassium				NR	
	7782-49-2	Selenium		-		NR	
	7440-22-4	Silver		\—		NR	
	7440-23-5	Sodium		-		NR	
* •	7440-28-0	Thallium		-		NR	
	7440-62-2	Vanadium	<u> </u>	1-		NR	
	7440-66-6	Zinc	·····	-		NR.	
		Cyanide		-	\ <u>`</u>	NR	
olor Before:	COLORLESS	Clari	ty Before: CLE	AR	_	Te	' xture:
olor After:	COLORLESS	Clari	ty After: CLE	AR	_	Ar	tifacts:
omments:							
CW-7A_SOLUB							·
• • • • • • • • • • • • • • • • • • •						_	
<u></u>		· .					

U.S .	EPA	-	CLP
--------------	-----	---	-----

FORM I - IN

ILM03.0

ab Name: STL_CHICAGOContract:	ab Names STL	THICAGO		Contract:				CW5BS
Latrix (soil/water): WATER Lab Sample ID: 9A080369-010 Level (low/med): LOW Date Received: 08/10/00 solids:0.0 Concentration Units (ug/L or mg/kg dry weight): UG/L_ CAS No. Analyte Concentration C Q M 7429-90-50 7440-38-2 7440-38-2 7440-39-3 Barium0.75 U / F 7440-43-9 7440-43-9 Cadmium NR 7440-43-9 Cadcium NR 7440-40-2 Calcium NR 7440-40-2 Calcium NR 7440-40-2 Calcium NR 7440-40-2 Calcium NR 7440-40-2 Calcium NR 7440-40-4 7439-99-6 1ron NR 7439-99-6 1ron NR 7439-92-1 1 Lead O.660 V M/M NR 7439-92-1 7439-92-1 Maganesium NR 7439-92-1 NR 7440-20-0 Nickel NR 7430-20-0 Nickel NR 7440-22-0 7440-22-0 7440-22-0 7440-22-0 7440-22-0 Color Before: COLORLESS Clarity Before: CLEAR_ Texture: Color After: COLORLESS Clarity After: CLEAR_ Artifacts:	_						ــــــ (CAESISI
<pre>mevel (low/med): LOW</pre>	ab Code: STL	Cas	se No.:	SAS No.:	-	. <u></u>	SI	DG No.: U08369 '
solids:0.0 Concentration Units (ug/L or mg/kg dry weight): UG/L_ $\begin{array}{c c c c c c c c c c c c c c c c c c c $	latrix (soil/wa	ater): WATE	ર		La	ab Sampl	e :	ID: 9A08G369-010
Concentration Units (ug/L or mg/kg dry weight): UG/L_ CAS NO. Analyte Concentration C Q M 7429-90-5 Aluminum 7440-36-0 Antimony 7440-39-3 Barium 7440-39-3 Barium 7440-39-3 Barium 7440-41-7 Beryllium 7440-47-2 Calcium 7440-47-3 Chromium 7440-47-3 Chromium 7440-48-8 Copper 7439-89-6 Iron 7439-92-1 Lead 0.60 $\overrightarrow{\mu}$ $\overrightarrow{\mu}$ $\overrightarrow{\mu}$ $\overrightarrow{\mu}$ $\overrightarrow{\mu}$ $\overrightarrow{\mu}$ $\overrightarrow{\mu}$ $\overrightarrow{\mu}$ $\overrightarrow{\mu}$ $\overrightarrow{\mu}$ $\overrightarrow{\mu}$ $\overrightarrow{\mu}$ $\overrightarrow{\mu}$ $\overrightarrow{\mu}$ $\overrightarrow{\mu}$ br>$\overrightarrow{\mu}$ $\overrightarrow{\mu}$	evel (low/med)): LOW_	-		Da	ate Rece	eive	ed: 08/10/00
CAS No.AnalyteConcentrationCQM $7429-90-5$ Aluminum	Solids:	0.0	0					
CAS No.AnalyteConcentrationCQM $7429-90-5$ Aluminum	Coi	ncentration	Units (ug/	L or mg/kg dry	7 V	veight):	: U	G/L_
7429-90-5 Aluminum		l 	-			-		-
$7440-36-0$ Antimony 0.75 W F $Cd\ell g/3/\sigma O$ $7440-39-3$ Barium WR WR WR WR $7440-39-3$ Barium WR WR WR WR $7440-39-3$ Barium WR WR WR WR $7440-39-3$ Cadmium WR WR WR WR $7440-41-7$ Calcium WR WR WR WR $7440-7-3$ Choronium WR WR NR NR $7440-48-4$ Cobalt WR NR NR NR $7439-92-1$ Lead 0.60 WR NR NR $7439-92-1$ Lead 0.60 WR NR NR $7439-92-1$ Lead 0.60 WR NR NR $7439-92-3$ Magnesium NR NR NR NR $7440-22-0$ Nickel NR NR NR NR $7440-22-4$ Silver NR NR		CAS No.	Analyte	Concentration	c	Q	м	
7440-36-0 Antimony 0.75 V K K $7440-38-2$ Barium 0.75 V K K $7440-38-3$ Barium 0.75 V K K $7440-39-3$ Barium 0.75 V NR NR $7440-39-3$ Cadmium NR NR NR NR $7440-41-7$ Cadmium NR NR NR NR $7440-70-2$ Calcium NR NR NR $7440-73$ Choronium NR NR NR $7440-48-4$ Cobalt NR NR NR $7439-92-1$ Lead 0.60 V NR NR $7439-92-3$ Magnesium NR NR NR NR $7440-02-0$ Nickel NR NR NR NR $7440-02-3$ Selenium NR NR NR NR $7440-22-4$ Silver NR NR NR NR		7429-90-5	Aluminum					
7440-38-2 Arsenic					[-	·		
7440-41-7 Beryllium				0.75	1			
7440-41-7 Beryllium		Ł		0.75	١Ŭ	/`	NR	431/00
7440-43-9 Cadmium					-			
7440-70-2 Calcium					-		L	
7440-47-3 Chromium			a statute of the stat		-			
7440-48-4 Cobalt					-			
7440-50-8 Copper			_		[-]			4
7439-89-6 Iron					1-			
7439-92-1 Lead 0.60					-			
7439-95-4 Magnesium // NR 7439-96-5 Manganese // NR 7439-97-6 Mercury // NR 7440-02-0 Nickel // NR 7440-02-7 Potassium // NR 7440-22-4 Silver NR NR 7440-22-4 Silver NR NR 7440-22-4 Silver NR NR 7440-23-5 Sodium NR NR 7440-28-0 Thallium NR NR 7440-66-6 Zinc NR NR 7440-66-6 Zinc NR NR Color Before: COLORLESS Clarity Before: CLEAR Texture: Color After: COLORLESS Clarity After: CLEAR Artifacts:				0.60	17	UTWN		
7439-96-5 Manganese					17		NR	Cat 8/01/00
7439-97-6 Mercury NR 7440-02-0 Nickel NR 7440-09-7 Potassium NR 7782-49-2 Selenium NR 7440-22-4 Silver NR 7440-23-5 Sodium NR 7440-23-5 Sodium NR 7440-28-0 Thallium NR 7440-62-2 Vanadium NR 7440-66-6 Zinc NR 7440-66-6 Zinc NR 7440-66-6 Zinc NR 7440-66-6 Zinc NR Color Before: COLORLESS Clarity Before: CLEAR Color After: COLORLESS Clarity After: CLEAR					-			
7440-02-0 Nickel]	-		F	
7440-09-7 Potassium					-			
7782-49-2 Selenium NR 7440-22-4 Silver NR 7440-23-5 Sodium NR 7440-28-0 Thallium NR 7440-62-2 Vanadium NR 7440-66-6 Zinc NR Cyanide NR NR NR Color Before: COLORLESS Clarity Before: CLEAR Color After: COLORLESS Clarity After: CLEAR Artifacts:					-	1		
7440-22-4 Silver NR 7440-23-5 Sodium NR 7440-28-0 Thallium NR 7440-62-2 Vanadium NR 7440-66-6 Zinc NR 7440-66-6 Zinc					-			
7440-23-5 Sodium		1 C			-	l	NR	
7440-28-0 Thallium 7440-62-2 Vanadium 7440-66-6 Zinc Cyanide NR NR NR Color Before: COLORLESS Clarity Before: CLEAR Color After: COLORLESS Clarity After: CLEAR Artifacts:					1			
7440-62-2 Vanadium					1-			
Cyanide			Vanadium		' -		NR	
Color Before: COLORLESS Clarity Before: CLEAR Texture: Color After: COLORLESS Clarity After: CLEAR Artifacts:		7440-66-6	Zinc		' _		NR	2
Color After: COLORLESS Clarity After: CLEAR_ Artifacts:		1	Cyanide				NR	
Color After: COLORLESS Clarity After: CLEAR_ Artifacts:							.	_]
	Color Before:	COLORLESS	Clari	ty Before: CLE	AR		Te	exture:
	Color After:	COLORLESS	Clari	ty After: CLE	AR	<u> </u>	Ar	tifacts:
	Comments:							

		U.S.	EPA - CLP		
		INORGANIC :	1 ANALYSES DATA S	SHEET	EPA SAMPLE NO.
1	ATT AT AA				MW104
b Name: STL_	CHICAGO		Contract:	···	
b Code: STL	Са	se No.:	SAS No.	•	SDG No.: U08369
trix (soil/w					Le ID: 9A08G369-01
vel (low/med				-	eived: 08/10/00
		—		Date Rece	sived: 08/10/00
Solids:	0.	U			
Co	ncentration	Units (ug,	/L or mg/kg dry	y weight):	: UG/L_
	CAS No.	Analyte	Concentration	c Q	м
	7429-90-5		[NR
	7440-36-0	Antimony			NR
		Arsenic	94.7		F_
		Barium		_	NR
		Beryllium	<u> </u>	_	NR
		Cadmium			NR
		Calcium	+- <u></u> -		NR
	7440-47-3	Chromium_			NR
	7440-48-4	Cobalt			NR
	7440-50-8	Copper			NR
	7439-89-6	Iron			NR
		Lead	4.2	FIJM_	F CAE 8/31/00
	7439-95-4	Magnesium			
		Manganese		_	NR
	7439-97-6	Mercury			NR
		Nickel			NR
		Potassium	<u> </u>	_	NR
	7782-49-2				NR
		Silver	}	_	NR
		Sodium			NR
		Thallium_		_	NR
		Vanadium_	ļ	_	NR
	7440-66-6	Zinc	·	_	NR
		Cyanide		- 	NR .
lor Before:	BROWN	Clari	ty Before: CLO	UDY	Texture:
lor After:			• ty After: CLE		Artifacts:
	-				
mments: MW-104A					
				· ••• · •	
<u> </u>		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		<u> </u>
		T	'ORM I - IN		ILM03.
		E	OVG1 T - TH		TTR/03 *

FORM I ----ΞN

Lab Name: STL_	CHICAGO		Contract:				MW104S
Lab Code: STL_	Ca	se No.:	SAS No.	: _		SI	CAE 8/2 DG NO.: U08369
Matrix (soil/w	ater): WATE	ર		La	b Samp]	le]	ID: 9A08G369-012
Level (low/med				Da	te Rece	eive	ed: 08/10/00
& Solids:	0.1	0					
Co	ncentration	Units (ug,	/L or mg/kg dry	y w	eight)	UC	3/L_
	CAS No.	Analyte	Concentration	с	Q	м	
	7420 00 5	<u>NI son é marm</u>		_		110	
	7429-90-5 7440-36-0	Aluminum_	<u> </u>	-		NR NR	
		Arsenic	86.9	-		NR F	
		Barium	00.5	-		NR	
	7440-41-7			-		NR	
	7440-43-9			-		NR	
	7440-70-2			1-1		NR	
	7440-47-3	Chromium_				NR	
	7440-48-4	Cobalt				NR	
		Copper				NR	
	7439-89-6	Iron		_/		NR	
	7439-92-1	Lead		$\overline{\mathbf{y}}$	×uj	F NR	Cae8/31/00
		Magnesium		<u> </u>			
	7439-96-5	Manganese				NR NR	
	7439-97-6 7440-02-0	Nickel				NR	
	7440-02-0	Potassium		-	<u> </u>	NR	
	7782-49-2	Selenium		-		NR	
	7440-22-4	Silver				NR	
	7440-23-5	Sodium		-	·	NR	
· ·	7440-28-0	Thallium	· · · · · · · · · · · · · · · · · · ·	-		NR	
	7440-62-2	Vanadium_		-		NR	1
	7440-66-6	Zinc				NR	
		Cyanide		[-]	·	NR	
Color Before:	COLORLESS	Clari	ty Before: CLE	AR_	_	Te	xture:
Color After:	COLORLESS	Clari	ty After: CLE	AR	_	Ar	tifacts:
Comments				_			
Comments: MW-104A_SOI	JTRI F						

.

U	. s		EPA	-	CLP
---	-----	--	-----	---	-----

•

1

EPA SAMPLE NO.

		INORGANIC I	ANALYSES DATA S	SHEET		
					M	W-102A- MW102
Lab Name: STL	CHICAGO		Contract: _		I	
Lab Code: STL_	Ca	se No.:	SAS No.	:		CAE 531 DG NO.: U0836
Matrix (soil/w	ater): WATE	R		Lab Sa	ample 3	ID: 9A08G369-0
Level (low/med	l): LOW_	_		Date F	Receive	ed: 08/10/00
% Solids:	0.	0				
Co	ncentration	Units (ug,	/L or mg/kg dry	y weigh	nt): U(g/L_
	CAS No.	Analyte	Concentration	C Q	м	
	7420 00 5	71				
	7429-90-5	Aluminum_	<u> </u>		NR	
	7440-38-0	Antimony_ Arsenic	18.5		- NR F	
	7440-39-3	Barium	10.5		$- _{NR}^{F}$	
	7440-41-7					
	7440-43-9		<u> </u>	-		
		Calcium		-		
	7440-47-3	Chromium				
	7440-48-4	Cobalt		-	NR	
	7440-50-8	Copper			NR	
	7439-89-6	Iron			NR	
	7439-92-1	Lead	3.0	10 11/19		CAE 8/31/00
		Magnesium				ac 8/31/00
		Manganese			NR	
		Mercury			NR	
		Nickel			NR	
		Potassium		_	NR	
		Selenium_		_	NR	
		Silver		_	NR	
	7440-23-5	Sodium		_	NR	
	7440-28-0	Thallium_				
	7440-62-2	Vanadium_ Zinc		İI		
	/440-00-0	Cyanide		! ⊦		
	<u></u>			_		
Color Before:	COLORLESS	Clari	ty Before: CLEA	AR_	Te	xture:
Color After:	COLORLESS	Clari	ty After: CLE	AR_	Ar	tifacts:
Comments: MW-102A						

FORM I - IN

ILM03.0

	· · · ·		Contract: _		<u></u>		W-102A Dissolved MW1025 CAE 8/31/ DG NO.: U08369
ab Code: STL_	Cas	se No.:	SAS No.	: _		SI	DG NO.: U08369
atrix (soil/wa	ater): WATE	ર		La	ab Sampl	le]	ID: 9A08G369-014
evel (low/med)): LOW_	_		Da	ate Rece	eive	ed: 08/10/00
Solids:	0.0)					
Cor	ncentration	Units (ug/	/L or mg/kg dr	y v	veight)	: UC	3/L_
	CAS No.	Analyte	Concentration	с	Q	м	
	7420 00 5	21.000		_·		NR	
	7429-90-5	Aluminum_		-		NR	
	7440-38-0	Antimony_ Arsenic	17.6	-	- 		madi
		Barium	^{17.0}	-	<u> </u>	F NR	CAE 8/31/00
	7440-41-7				<u> </u>	NR	-
	7440-43-9		·			NR	
		Calcium		-		NR	
		Chromium		1		NR	
		Cobalt -		1-	_	NR	
	7440-50-8	Copper	· · · · ·	_		NR	
	7439-89-6	Iron				NR	
•		Lead	3.0	Ø	<u>11</u> 711	F NR	CAE8/31/00
		Magnesium		<u>/_</u>		NR	
		Manganese		_		NR	
		Mercury		_		NR	
		Nickel		. _		NR	
		Potassium	·			NR	
	7782-49-2			·		NR NR	
	7440-22-4	Silver Sodium		· -		NR	
· ·		Thallium		·]	NR	
	7440-62-2	Vanadium		· -		NR	
	7440-66-6	Zinc		· -		NR	
	17440 00 0	Cyanide		· -		NR	
					<u> </u>		
olor Before:	COLORLESS	Clari	ty Before: CLE	AR	-	Te	xture:
olor After:	COLORLESS	Clari	ty After: CLE	AR	_	Ar	tifacts:
comments:	UBLE						· ·

.

43

.

ΰ.	S.	EPA	-	CLP
----	----	-----	---	-----

EPA SAMPLE NO. 1 INORGANIC ANALYSES DATA SHEET DUP-L+RR DUPLR Lab Name: STL_CHICAGO_____ Contract: CAE 831/00 Lab Code: STL Case No.: _____ SAS No.: SDG No.: U08369 Matrix (soil/water): WATER Lab Sample ID: 9A08G369-015 Level (low/med): LOW Date Received: 08/10/00 % Solids: 0.0 Concentration Units (ug/L or mg/kg dry weight): UG/L CAS No. Analyte Concentration C 0 Μ 7429-90-5 Aluminum NR Antimony_ 7440-36-0 NR Arsenic___ 7440-38-2 14.2 F 7440-39-3 Barium NR 7440-41-7 Beryllium NR 7440-43-9 Cadmium NR 7440-70-2 Calcium NR 7440-47-3 Chromium NR 7440-48-4 Cobalt NR 7440-50-8 Copper NR 7439-89-6 Iron NR 0.60 10 10 10 CAE \$31/00 7439-92-1 Lead F 7439-95-4 Magnesium NR 7439-96-5 Manganese NR 7439-97-6 Mercury NR 7440-02-0 Nickel NR 7440-09-7 Potassium NR 7782-49-2 Selenium NR _ 7440-22-4 Silver NR Sodium 7440-23-5 NR 7440-28-0 Thallium NR Vanadium 7440-62-2 NR 7440-66-6 Zinc NR Cyanide NR Color Before: COLORLESS Clarity Before: CLEAR Texture: Color After: COLORLESS Clarity After: CLEAR Artifacts: Comments: DUP-LRR

FORM I - IN

ILM03.0

		U.S.	EPA - CLP				
		INORGANIC 1	l Analyses data s	SHE	EET		PA SAMPLE NO.
ah Mana - CTT	aut ar co		Company				DUPLRS
ab Name: STL_	CHICAGO		Contract:			1	Cat 8/31/0
ab Code: STL_	Ca	se No.:	SAS No.	• - ·	<u> </u>	SI	OG No.: U08369
atrix (soil/w	ater): WATE	R		Lá	ab Samp	le 1	ID: 9A08G369-016
evel (low/med): LOW_	-		Da	ate Rec	eive	ed: 08/10/00
Solids:	0.	0					
Co	ncentration	Units (ug	/L or mg/kg dry	y v	weight)	: UC	3/L_
	CAS No.	Analyte	Concentration	С	Q	м	
	7429-90-5	Aluminum		-	i <u> </u>	NR	
	7440-36-0	Antimony_		-		NR	
	7440-38-2	Arsenic	11.8	-	<u> </u>		
	7440-39-3	Barium		-	<u> </u>	F_ NR	CAE 8/31/00
	7440-41-7	Beryllium		-		NR	
	7440-43-9	Cadmium		[-		NR	
	7440-70-2	Calcium		-		NR	
	7440-47-3	Chromium		-		NR	
	7440-48-4	Cobalt		-	I	NR	
	7440-50-8	Copper		-		NR	
	7439-89-6	Iron				NR	
,	7439-92-1	Lead	0.60	ป	UT MY_	F	ales/31/00
	7439-95-4	Magnesium		1		NR	0008/3/100
	7439-96-5	Manganese		-		NR	
	7439-97-6	Mercury		1-		NR	· ·
	7440-02-0	Nickel		- -		NR	1
	7440-09-7	Potassium				NR	
	7782-49-2	Selenium_				NR	
	7440-22-4	Silver				NR	
	7440-23-5	Sodium				NR	
	7440-28-0	Thallium_		. _	.	NR	
	7440-62-2	Vanadium_		.	.	NR	
	7440-66-6	Zinc		. _		NR	1
		Cyanide	·	- -	· [`	$- ^{NR}$	
olor Before:	COLORLESS	Clari	ty Before: CLE		· ·	Te	xture:
olor After:	COLORLESS	Clari	ty After: CLE	EAR	<u>t</u>	Ar	tifacts:
			-		-		<u></u>
omments: DUP-LRR_SOI	LUBLE						:
			· · · · · · · · · · · · · · · · · · ·	_			
·			······································				· · · · · · · · · · · · · · · · · · ·
		I	FORM I - IN				ILM03.0

į

356 FARRAGUT CROSSING DR. KNOXVILLE, TN 37922 [423] 966-8880 FAX [423] 966-8885 cerikson@trilliuminc.com

October 5, 2000

Mr. Dan Garrigan O&M, Inc. 450 Montbrook Lane Knoxville, TN 37919

RE: Data Package Review Report - STL Case No. 1470A - Total Iron in Ground Water

Dear Dan:

I have completed my evaluation of the inorganics analysis data prepared by the Severn Trent Laboratory (STL) in Monroe, Connecticut, for eight ground water (GW) samples from the L&RR Site. These data were reported in a single data package, under Case No. 1470A, which was received by Trillium for review on October 5, 2000. The following GW samples were reported:

MW-201	MW-202
MW-103A	CW-7A
CW-5B	MW-104A
MW-102A	DUP-L+RR

This data package includes re-analysis data for all eight samples. A data package received on August 28, 2000, presented the original analysis results. Review of the original data revealed an excessively large discrepancy between the results for the field duplicate pair (MW-102A and DUP-L+RR). Historically, the field duplicate pair has shown very good reproducibility, and paired results for all other analyzed parameters did match quite well. At the request of the evaluator, the laboratory rechecked their calculations and verified that the correct values were reported based on the raw data. Subsequently, the laboratory ran "quick and dirty" reruns of the field duplicate samples, and found the paired results to be very consistent. Therefore, re-analysis of all eight samples for total iron was requested by the evaluator, due to the possibility that one or more additional sample results could be wrong if two samples had been switched at some point during the original preparations. This did, in fact, turn out to be the case. The following table summarizes the original and re-analysis results for total iron:

Home Office: 28 Grace's Drive • Coatesville, Pa19320 • (610) 383-7233 • Fax (610) 383-7907 Offices in: Louisiana • Maryland • New Jersey • North Carolina • Pennsylvania • Tennessee • Texas

Sample	Original Result (µg/L)	Re-Analysis Result (µg/L)
MW-201	351	1530
MW-202	321	7790
MW-103A	47700	13.8
CW-7A	15800	15200
CW-5B	3780	3010
MW-104A	82600	89100
MW-102A	33.8	37200
DUP-L+RR	43900	36600

From these data, it appears that samples MW-103A and MW-102A were switched at some point in the original preparation and analysis process for total iron. The re-analysis results are also consistent with results obtained for total iron in the April 2000 samples collected from this site. Therefore, only the re-analysis results were reviewed and discussed in the remainder of this report. The original analysis results (pages 78-105 of the August 25, 2000 data package) have been clipped separately and marked "Do Not Use" for clarity.

Analyses were performed according to EPA Method 6010B, which is found in the Third Edition of SW-846, Update III. My evaluation was based on the specifications of the project-specific Quality Assurance Project Plan (QAPP, 9/96), the referenced method, and the USEPA Region I Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses (6/88; Rev. 2/89). Qualifiers consistent with those defined in the Region I document were applied as necessary and appropriate.

No metals analysis raw data were provided in the data package; a Level III evaluation of the summary forms as presented was performed, as required by the QAPP.

Based on the evaluation, the following action was taken:

• The result for total iron in MW-103A was qualified as estimated (J) because it was less than twice the instrument detection limit. The "B" qualifier applied by the laboratory was removed by the evaluator.

This action is reflected on the Inorganic Analysis Data Sheet (Form I) for MW-103A included in Attachment A to this report. Region I qualifier definitions are also provided in this attachment.

At the discretion of the data user, the following points may warrant attention by laboratory and field personnel with regard to this data package and/or prior to future sampling events at this site:

- Documentation of sample preservation in the field on all chain of custody records.
- Documentation of complete cooler temperatures and sample pHs on laboratory receipt directly on all chain of custody records.
- Use of updated (within three months of sample analyses) instrument detection limits in association with every data package.

Specific details regarding the review and evaluation of these data are discussed below:

Holding Times, Preservation and Sample Integrity: Copies of the applicable chain of custody (COC) records were not included in the 10/4/00 data package, however these records were available in the 8/25/00 data package (which also included results for other analysis parameters). The following discussion refers to review of those documents.

The two applicable COC records documented sample collection dates of 7/12/00 and 7/13/00. An acceptable temperature (4°C) on laboratory receipt was documented on the COC for the samples collected on 7/12/00. On the COC for samples collected 7/13/00, "7°" was documented by the laboratory; it was assumed that this was also a centigrade measurement. Although slightly above the generally accepted temperature range of 4°C±2°C, the exceedance is very minor and no action was taken on this basis.

Acidification of the samples for total iron analysis with nitric acid was not recorded by the sampler on either of the COCs and documentation of sample pHs on laboratory receipt or at the time of preparation for analysis was also not included in the data package. At the evaluator's request, the laboratory provided their sample receiving preservative records for all samples, which verified that the sample containers preserved with nitric acid were at pH<2 on receipt from the field in all cases. No further action was taken on this basis.

The re-analyses for total iron were performed on 9/25/00, well within the 6-month holding time specified by the QAPP.

Calibrations: Based on the Analysis Run Log (Contract Laboratory Program [CLP] Form XIV), initial and continuing calibration verification (ICV/CCV) standards were run at appropriate frequencies throughout the ICP (inductively coupled plasma) analysis series. All ICV/CCV

recoveries documented on the accompanying Initial and Continuing Calibration Verification Reports (CLP Form II) were acceptable (QC 90-110%).

Blanks: Based on the run log, initial and continuing calibration blanks (ICB/CCBs) were run at appropriate frequencies throughout the reported sample analysis series. Iron was not detected above the instrument detection limit (IDL) in any of the ICB/CCBs run during the ICP analysis series.

A water matrix preparation blank (PBW) was digested with the samples (per the preparation log, CLP Form XIII). Iron was not detected in the PBW.

ICP Interference Check Sample: No interference check sample results were reported in the data package, although entries for these analyses were found on the run log.

Laboratory Control Samples: Laboratory control sample results were reported in the data package. An acceptable (QC 80-120%) recovery was reported for iron (91.0%).

Duplicate Analysis: Sample CW-5B was analyzed in duplicate for total iron, and excellent reproducibility was demonstrated (2.9 relative percent difference [RPD]).

Matrix Spike Analysis: Sample CW-5B was prepared and analyzed as a matrix spike for total iron. The reported percent recovery (80.9%) was acceptable (QC 75-125%).

ICP Serial Dilution: An acceptable serial dilution analysis result (QC $\leq 15\%$ difference, per Region I validation guidance) for iron in MW-104A (11.9%) was reported in the data package.

Sample Results: Results greater than or equal to the laboratory-specified IDL were appropriately reported on the Inorganic Analysis Data Sheets for total iron in each sample.

Form X documentation of the laboratory-specified IDL established for iron on 4/15/00 (7.2 µg/L) was provided in the data package. IDLs should be established quarterly and this is much more than three months prior to the sample analyses. The laboratory should be instructed to establish and provide documentation of updated IDLs in association with every data package.

The result for total iron in MW-103A was greater than the applicable IDL but below the laboratoryspecified reporting limit (RL) and was correctly reported by the laboratory with a "B" qualifier. As concentrations approach the IDL the accuracy of the measurement decreases; values closer to the RL, however, are probably quite accurate. Therefore, a guideline of 2xIDL was used to determine whether the reported result warranted qualification; specifically, sample results below the respective RL, less than 2xIDL and not otherwise qualified warrant qualification as estimated. The result for total iron in MW-103A was qualified as estimated (J) on this basis, and the "B" qualifier applied by the laboratory was removed by the validator.

Field Duplicates: Sample DUP-L+RR was identified as a field duplicate of MW-102A based on information provided by the client. Paired results for total iron showed excellent reproducibility, with an RPD of 1.6%.

Documentation: Data package documentation was consistent with the specifications of the QAPP; specifically, a Level III package containing summary forms only with no supporting raw data was provided.

Documentation of sample pHs on laboratory receipt was not provided in the data package as received for review. This information was verbally requested by the evaluator on 8/30/00 (in association with the original data package); sample receiving preservation logs were received from the laboratory via facsimile on 9/2/00. These records were inserted into the 8/25/00 data package by the evaluator as pages 55a and 55b.

The narrative included in the 10/4/00 data package is identical to the narrative in the 8/25/00 data package. The statement, "Iron failed the controls for spike recovery analysis of sample CW-5B resulting in one 'N' flag." is not applicable to the 10/4/00 data package and was deleted by the evaluator.

No interference check sample results were reported, although the run log indicates that these quality control analyses were performed.

The preparation and analysis summary form on pages 10-11 of the 10/4/00 data package implies that samples were prepared and analyzed on 9/25/00 for total and dissolved arsenic and lead as well as for total iron. Only total iron reruns were requested, and only total iron data were reported in the data package, although it is certainly possible that the additional preparations were unnecessarily performed by the laboratory.

Please let me know if you have any questions regarding this data package review report.

Sincerely,

Carol A. Erikson Quality Assessment Manager

CAE/esc July 2000\GWTotalFe (95406)

ATTACHMENT A

INORGANIC ANALYSIS DATA SHEETS Laboratory Case No. 1470A

EPA Region I Qualifier Definitions:

- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- J The associated numerical value is an estimated quantity.
- **R** The data are unusable (Note: Analyte may or may not be present).
- UJ The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

0013

	INORGANIC ANAL	1 LYSES DATA SHEET	EPA SAMPLE NO.
Lab Name: <u>STL</u>		Contract:	MW-201
	Case No.: <u>1470A</u>		SDG No.: <u>A1470</u>
Matrix (soil/water):	WATER	Lab Sample ID:	<u>T001470A-01</u>
Level (low/med):	LOW	Date Received:	07/13/00
<pre>% Solids:</pre>	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	c	Q	м
7429-90-5	Aluminum		┝━╶┼		NR
7440-36-0	Antimony				NR
7440-38-2	Arsenic				NR
7440-39-3	Barium				NR
7440-41-7	Beryllium				NR
7440-43-9	Cadmium				NR
7440-70-2	Calcium				NR
7440-47-3	Chromium				NR
7440-48-4	Cobalt			-	NR
7440-50-8	Copper				NR
7439-89-6	Iron	1530			P
7439-92-1	Lead				NR
7439-95-4	Magnesium				NR
7439-96-5	Manganese				NR
7439-97-6	Mercury				NR
7440-02-0	Nickel				NR
7440-09-7	Potassium				NE
7782-49-2	Selenium				NE
7440-22-4	Silver				NF
7440-23-5	Sodium				- NF
7440-28-0	Thallium			-	NĒ
7440-62-2	Vanadium				NF
7440-66-6	Zinc				-NF
57-12-5	Cyanide		1		NI
<u> </u>			1 1		

Color Before:COLORLESSClarity Before:CLEARTexture:Color After:COLORLESSClarity After:CLEARArtifacts:

•

Comments:

3

Total Metals

.

U.	S		EPA	-	CLP
----	---	--	-----	---	-----

C014

EPA SAMPLE NO.

Г

	1		
INORGANIC	ANALYSES	DATA	SHEET

Lab Name: <u>STL</u>		Contract:	MW-202
	Case No.: <u>1470A</u>	SAS No.:	SDG No.: <u>A1470</u>
Matrix (soil/water):	<u>WATER</u>	Lab Sample ID:	<u>T001470A-02</u>
Level (low/med):	LOW	Date Received:	07/13/00
¥ Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	м
7429-90-5	Aluminum				NR
7440-36-0	Antimony				NR
7440-38-2	Arsenic				NR
7440-39-3	Barium				NR
7440-41-7	Beryllium			_	NR
7440-43-9	Cadmium	· · · · · · · · · · · · · · · · · · ·			NR
7440-70-2	Calcium		T I		NR
7440-47-3	Chromium				NR
7440-48-4	Cobalt				NR
7440-50-8	Copper				NR
7439-89-6	Iron	7790			P
7439-92-1	Lead				NR
7439-95-4	Magnesium				NR
7439-96-5	Manganese				NR
7439-97-6	Mercury				NR
7440-02-0	Nickel				NR
7440-09-7	Potassium				NR
7782-49-2	Selenium	1			NR
7440-22-4	Silver				NR
7440-23-5	Sodium				NR
7440-28-0	Thallium				NR
7440-62-2	Vanadium				NR
7440-66-6	Zinc	l			NR
57-12-5	Cyanide				NR

Color	Before:	COLORLESS	Clarity	Before:	<u>CLEAR</u>	Texture:	
Color	After:	COLORLESS	Clarity	After:	<u>CLEAR</u>	Artifacts:	

Comments:

.

;

Total Metals

EPA SAMPLE NO.

U.S. EPA - CLP

.

	1		
INORGANIC	ANALYSES	DATA	SHEET

Lab Name: <u>STL</u>	Contra	MW-103A
		.: SDG No.: <u>A1470</u>
Lab Code: <u>STL</u> Case N		
Matrix (soil/water): <u>WATER</u>	:	Lab Sample ID: <u>T001470A-03</u>
Level (low/med): LOW		Date Received: <u>07/13/00</u>
% Solids: 0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L

	М	Q	С	Concentration	Analyte	CAS No.	
7440-38-2 Arsenic 7440-39-3 Barium 7440-41-7 Beryllium 7440-43-9 Cadmium 7440-43-9 Cadmium 7440-43-9 Cadmium 7440-43-9 Cadmium 7440-43-9 Calcium 7440-43-9 Calcium 7440-47-3 Chromium 7440-48-4 Cobalt 7440-50-8 Copper 7439-89-6 Iron 13.8 J 7439-92-1 Lead 7439-95-4 Magnesium 7439-95-5 Manganese 7439-96-5 Manganese 7439-97-6 Mercury 7440-02-0 Nickel 7440-09-7 Potassium 7440-22-4 Silver 7440-23-5 Sodium 7440-23-5 Sodium 7440-28-0 Thallium 7440-28-0 Thallium	NR				Aluminum	7429-90-5	
7440-39-3 Barium	NR				Antimony	7440-36-0	
7440-41-7 Beryllium	NR				Arsenic	7440-38-2	
7440-43-9 Cadmium 7440-70-2 Calcium 7440-47-3 Chromium 7440-48-4 Cobalt 7440-50-8 Copper 7439-89-6 Iron 7439-92-1 Lead 7439-95-4 Magnesium 7439-95-5 Manganese 7440-02-0 Nickel 7440-02-1 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium	NR					7440-39-3	
7440-70-2 Calcium 7440-47-3 Chromium 7440-48-4 Cobalt 7440-50-8 Copper 7439-89-6 Iron 13.8 J 7439-92-1 Lead 7439-95-4 Magnesium 7439-96-5 Manganese 7440-02-0 Nickel 7440-02-0 Nickel 7440-22-4 Silver 7440-23-5 Sodium 7440-23-5 Sodium 7440-28-0 Thallium	NR				Beryllium	7440-41-7	
7440-47-3 Chromium 7440-48-4 Cobalt 7440-50-8 Copper 7439-89-6 Iron 13.8 J 7439-92-1 Lead 7439-95-4 Magnesium 7439-96-5 Manganese 7440-02-0 Nickel 7440-09-7 Potassium 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-62-2 Vanadium	NR				Cadmium	7440-43-9	
7440-48-4 Cobalt	NR				Calcium	7440-70-2	
7440-50-8 Copper 1 7439-89-6 Iron 13.8 J 7439-92-1 Lead / (Moulson 7439-95-4 Magnesium ////////////////////////////////////	NR				Chromium	7440-47-3	
7439-89-6 Iron 13.8 B J 7439-92-1 Lead / (ApuKsor 7439-95-4 Magnesium ////////////////////////////////////	NR				Cobalt	7440-48-4	
7439-89-6 Iron 13.8 B J 7439-92-1 Lead / CApulson ////////////////////////////////////	NR			· · · · · · · · · · · · · · · · · · ·	Copper	7440-50-8	
7439-92-1 Lead 1 CMpulson 7439-95-4 Magnesium 1050 7439-96-5 Manganese 1050 7439-97-6 Mercury 1050 7440-02-0 Nickel 1050 7440-09-7 Potassium 1050 7782-49-2 Selenium 1050 7440-22-4 Silver 1050 7440-23-5 Sodium 1050 7440-28-0 Thallium 1050 7440-62-2 Vanadium 1050	P		₿	13.8			
7439-95-4 Magnesium Idd d 7439-96-5 Manganese	NR	CASSISSON			Lead		
7439-96-5 Manganese 7439-97-6 Mercury 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-62-2 Vanadium	NR	10500				7439-95-4	
7439-97-6 Mercury 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-62-2 Vanadium	NR						
7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-62-2 Vanadium	NR						
7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-62-2 Vanadium	NR						
7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-62-2 Vanadium	NR						
7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-62-2 Vanadium	NF					7782-49-2	
7440-23-5 Sodium 7440-28-0 Thallium 7440-62-2 Vanadium	NF						
7440-62-2 Vanadium	NF						
7440-62-2 Vanadium	NF		Ť _	1	Thallium	7440-28-0	
	NF			1			
	NÏ						
57-12-5 Cyanide	NI						

Color	Before:	COLORLESS	Clarity	Before:	<u>CLEAR</u>	Texture:	
Color	After:	COLORLESS	Clarity	After:	<u>CLEAR</u>	Artifacts:	<u> </u>
Commer To	nts: Stal Meta	als					
· · ·	•	<u> </u>	-	•			

0016

EPA SAMPLE NO.

1 INORGANIC ANALYSES DATA SHEET

_____ Contract: _____ Lab Name: STL Lab Code: STL ____ Case No.: 1470A SAS No.: ____ SDG No.: A1470 Matrix (soil/water): WATER Level (low/med): LOW 0.0 % Solids:

ı

CW-7A

Lab Sample ID: T001470A-04

Date Received: 07/13/00

Concentration Units (ug/L or mg/kg dry weight): UG/L

	····			T T	<u> </u>	
	CAS No.	Analyte	Concentration	с	Q	м
	7429-90-5	Aluminum	·			NR
	7440-36-0	Antimony		† †		NR
	7440-38-2	Arsenic				NR
	7440-39-3	Barium				NR
	7440-41-7	Beryllium				NR
	7440-43-9	Cadmium				NR
	7440-70-2	Calcium				NR
· ·	7440-47-3	Chromium				NR
	7440-48-4	Cobalt	,			NR
	7440-50-8	Copper	· · ·			NR
	7439-89-6	Iron	15200			P NR
	7439-92-1	Lead				NR
-	7439-95-4	Magnesium	•			NR
·	7439-96-5	Manganese				NR
	7439-97-6	Mercury				NR
	7440-02-0	Nickel				NR
	7440-09-7	Potassium				NR
	7782-49-2	Selenium				NR
	7440-22-4	Silver				NR NR
	7440-23-5	Sodium				NR
	7440-28-0	Thallium				NR
•	7440-62-2	Vanadium				NR
	7440-66-6	Zinc				NR
• • • •	57-12-5	Cyanide				NR
t e e e e e e e e e e e e e e e e e e e						
•			, <u> </u>	-	m i	
olor Before:	COLORLESS		y Before: <u>CLEA</u>			
olor After:	COLORLESS	Clarit	ty After: <u>CLEA</u>	R_	Arti	facts
ULUL ALUCLI	A CALL AND A CALL AND A CALL					
omments:						
<u>Total Meta</u>	ls					
IULAI MELC	<u>.</u>					
	•					
• • •						
· · · · · · · · · · · · · · · · · · ·			······································			

۰.,

FORM I - IN

ILM04.0

Г

EPA SAMPLE NO.

U.S. EPA - CLP

	1			
INORGANIC	ANALYSES	DATA	SHEET	

Lab Name: STL	CW-5B Contract:
Lab Code: STL Case No.: 1470A	SAS No.: SDG No.: A1470_
Matrix (soil/water): <u>WATER</u>	Lab Sample ID: T001470A-06
Level (low/med): LOW	Date Received: 07/14/00
* Solids: 0.0	

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	c	Q	м
7429-90-5	Aluminum				NR
7440-36-0	Antimony				NR
7440-38-2	Arsenic				NR
7440-39-3	Barium				NR
7440-41-7	Beryllium				NR
7440-43-9	Cadmium			_	NR
7440-70-2	Calcium				NR
7440-47-3	Chromium				NR
7440-48-4	Cobalt				NR
7440-50-8	Copper				NR
7439-89-6	Iron	3010			P
7439-92-1	Lead				NR
7439-95-4	Magnesium				NR
7439-96-5	Manganese				NR
7439-97-6	Mercury				NR
7440-02-0	Nickel				NR
7440-09-7	Potassium				NR
7782-49-2	Selenium				NR
7440-22-4	Silver				NR
7440-23-5	Sodium				NR
7440-28-0	Thallium				NR
7440-62-2	Vanadium				NR
7440-66-6	Zinc				NR
57-12-5	Cyanide				NF

	Clarity Before:	<u>CLEAR</u>	Texture:	
Color After: <u>COLORLESS</u> Comments:	Clarity After:	CLEAR	Artifacts:	<u></u>
Total Metals				

•

0018

EPA SAMPLE NO.

1 INORGANIC ANALYSES DATA SHEET

Lab Name: STL	Contract: MW-104A
Lab Code: <u>STL</u> Case No.: <u>1470A</u>	SAS No.: SDG No.: <u>A1470</u>
Matrix (soil/water): <u>WATER</u>	Lab Sample ID: T001470A-07
Level (low/med): LOW	Date Received: <u>07/14/00</u>
% Solids: 0.0	

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	с	Q	м
7429-90-5	Aluminum				NR
7440-36-0	Antimony				NR
7440-38-2	Arsenic				NR
7440-39-3	Barium				NR
7440-41-7	Beryllium				NR
7440-43-9	Cadmium				NR
7440-70-2	Calcium				NR
7440-47-3	Chromium				NR
7440-48-4	Cobalt				NR
7440-50-8	Copper				NR
7439-89-6	Iron	89100			P
7439-92-1	Lead				NR
7439-95-4	Magnesium				NR
7439-96-5	Manganese				NR
7439-97-6	Mercury				NR
7440-02-0	Nickel				NR
7440-09-7	Potassium				NR
7782-49-2	Selenium				NR
7440-22-4	Silver				NR
7440-23-5	Sodium				NR
7440-28-0	Thallium				NR
7440-62-2	Vanadium_			<u> </u>	NR
7440-66-6	Zinc				NR
57-12-5	Cyanide				NR

Color Before: <u>COLORLESS</u> Clarity Before: <u>CLEAR</u> Texture: _____ Color After: <u>COLORLESS</u> Clarity After: <u>CLEAR</u> Artifacts: _____ Comments:

Total Metals

.

FORM I - IN

ILM04.0

1

•

0019

INORG	1 GANIC ANALYSES DATA SHEET	EPA SAMPLE NO.
Lab Name: STL	Contract:	MW-102A
Lab Code: <u>STL</u> Case No.:		SDG No.: A1470
Matrix (soil/water): <u>WATER</u>		D: <u>T001470A-08</u>
Level (low/med): LOW	Date Received	1: <u>07/14/00</u>
% Solids: 0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	c	Q	м
7429-90-5	Aluminum				NR
7440-36-0	Antimony				NR
7440-38-2	Arsenic				NR
7440-39-3	Barium				NR
7440-41-7	Beryllium				NR
7440-43-9	Cadmium				NR
7440-70-2	Calcium				NR
7440-47-3	Chromium				NR
7440-48-4	Cobalt				NR
7440-50-8	Copper				NR
7439-89-6	Iron	37200			P
7439-92-1	Lead				NR
7439-95-4	Magnesium				NR
7439-96-5	Manganese				NR
7439-97-6	Mercury				NR
7440-02-0	Nickel				NR
7440-09-7	Potassium				NR
7782-49-2	Selenium				NR
7440-22-4	Silver				NR
7440-23-5	Sodium				NR
7440-28-0	Thallium				NR
7440-62-2	Vanadium				NR
7440-66-6	Zinc				NR
57-12-5	Cyanide				NR

Color	Before:	COLORLESS	Clarity	Before:	<u>CLEAR</u>	Texture:	
Color	After:	COLORLESS	Clarity	After:	<u>CLEAR</u>	Artifacts:	
Comme	atg.						

•

<u>Total Metals</u>

0	0	20	

EPA SAMPLE NO.

Г

1 INORGANIC ANALYSES DATA SHEET

Lab Name: STL	Contract: DUP-L+RR
Lab Code: <u>STL</u> Case No.: <u>1470A</u>	SAS No.: SDG No.: <u>A1470</u>
Matrix (soil/water): <u>WATER</u>	Lab Sample ID: T001470A-09
Level (low/med): LOW	Date Received: 07/14/00
% Solids: 0.0	

Concentration Units (ug/L or mg/kg dry weight): UG/L

м	Q	с	Concentration	Analyte	CAS NO.
NR				Aluminum	7429-90-5
NR				Antimony	7440-36-0
NR				Arsenic	7440-38-2
NR				Barium	7440-39-3
NR				Beryllium	7440-41-7
NR				Cadmium	7440-43-9
NR				Calcium	7440-70-2
NŔ				Chromium	7440-47-3
NR				Cobalt	7440-48-4
NR				Copper	7440-50-8
P			36600	Iron	7439-89-6
NR				Lead	7439-92-1
NR		T		Magnesium	7439-95-4
NR				Manganese	7439-96-5
NR				Mercury	7439-97-6
NR				Nickel	7440-02-0
NR			ļ	Potassium	7440-09-7
NR				Selenium	7782-49-2
NR	[Silver	7440-22-4
NR				Sodium	7440-23-5
NR				Thallium	7440-28-0
NR				Vanadium	7440-62-2
NR					7440-66-6
NR				Cyanide	57-12-5
-				Zinc Cyanide	7440-66-6

. . .

.*

 Color Before: COLORLESS
 Clarity Before: CLEAR
 Texture:

 Color After: COLORLESS
 Clarity After: CLEAR
 Artifacts:

 Comments:
 Total Metals
 Total Metals

356 FARRAGUT CROSSING DR. KNOXVILLE, TN 37922 (423) 966-8880 FAX (423) 966-8885 cerikson@trilliuminc.com

September 14, 2000

Mr. Dan Garrigan O&M, Inc. 450 Montbrook Lane Knoxville, TN 37919

RE: <u>Data Package Review Report - STL/Connecticut Case No. 1470A - Ammonia</u> Chloride, and BOD in Ground Water

Dear Dan:

I have completed my evaluation of the wet chemistry analysis data prepared by the Severn Trent Laboratory in Shelton, Connecticut (STL/Connecticut), for eight ground water samples from the L&RR Site, which were reported in a single data package under STL Case No. 1470A. The data package was received by Trillium for review on August 28, 2000, with additional requested documentation provided on September 2 and 11, 2000. The following samples were reported:

MW-201	MW-202
MW-103A	CW-7A
CW-5B	MW-104A
MW-102A	DUP-L+RR

Analyses were performed according to EPA Methods 325.2 (chloride), 350.1 (ammonia), and 405.1 (BOD); these three methods are found in *Methods for Chemical Analysis of Water and Wastes* (EPA-600/4-79-020, 3/83). My evaluation was based on the specifications of the project-specific Quality Assurance Project Plan (QAPP, 9/96), the referenced methods, and, to the extent applicable, the USEPA Region I *Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses* (6/88; Rev. 2/89). Qualifiers consistent with those defined in the Region I document were applied as necessary and appropriate.

No raw data were provided in the data package as initially submitted for review. As specified by the QAPP, only a Level III evaluation of the summary results was required. However, for these parameters, the raw data pages also serve as analysis run logs and are necessary to verify calibrations when spectrophotometric methods are used as well as generally helpful for verifying that all samples were analyzed. Raw data documentation has also been provided in previous data packages generated

Home Office: 28 grace's drive • Coatesville, Pa19320 • (610) 383-7233 • Fax (610) 383-7907 Offices in: Louisiana • Maryland • New Jersey • North Carolina • Pennsylvania • Tennessee • Texas

Mr. Dan Garrigan Evaluation of STL/Connecticut Case No. 1470A (Wet Chemistry Parameters in GW) September 14, 2000 Page 2 of 5

in support of this project. Additional documentation was therefore requested from and received by the laboratory as discussed throughout this report.

Based on the evaluation, results for BOD in all samples collected on 7/12/00 (MW-201, MW-202, MW-103A, and CW-7A) were qualified as estimated (J, UJ) because incubation was started after the 48 hour holding time for this parameter had expired. All other sample results were determined to be valid as reported; no qualifiers were applied.

At the discretion of the data user, the following points may warrant attention by field and laboratory personnel with regard to this data package and prior to future sampling events at this site:

- Documentation of sample preservation performed in the field on all chain of custody records.
- Documentation of complete cooler temperatures and sample pHs at the time of laboratory receipt on all chain of custody records.
- Inclusion of raw data as needed to document calibrations and analysis of all samples.

Specific details regarding the review and evaluation of these data are discussed below:

Holding Times, Preservation and Sample Integrity: Copies of the two applicable chain of custody (COC) records were included in the data package, documenting sample collection dates of 7/12/00 and 7/13/00. An acceptable temperature (4°C) on laboratory receipt was documented on the COC for the samples collected on 7/12/00. On the COC for samples collected 7/13/00, "7°" was documented by the laboratory. It was assumed that this was also a centigrade measurement. Although slightly above the generally accepted temperature range of $4^{\circ}C \pm 2^{\circ}C$, the exceedance is very minor and no action was taken on this basis.

Acidification of the samples for ammonia analysis with sulfuric acid was recorded by the sampler on only one of the COCs and documentation of sample pHs on laboratory receipt or at the time of analysis was not included in the data package. At the evaluator's request, STL/Connecticut provided their sample receiving preservative records for all samples, which verified that the sample containers preserved with sulfuric acid were at pH<2 on receipt from the field in all cases. No further action was taken on this basis.

Mr. Dan Garrigan Evaluation of STL/Connecticut Case No. 1470A (Wet Chemistry Parameters in GW) September 14, 2000 Page 3 of 5

All sample analyses for chloride and ammonia were performed within the 28-day holding time specified by the QAPP for these two parameters. BOD incubation was initiated on 7/15/00 for all samples; this is within the required 48-hour holding time for those samples collected on 7/13/00 but exceeds the holding time for those samples collected on 7/12/00. Results for BOD in the four samples collected on 7/12/00 (MW-201, MW-202, MW-103A, and CW-7A) were qualified as estimated (J, UJ) on this basis.

Calibrations: Chloride analyses were performed according to EPA 325.2. No documentation of an initial calibration for chloride was provided in the package initially received for review. At the request of the evaluator, copies of the applicable instrument print-outs, including the initial calibration for chloride, were provided by the laboratory via FedEx on 9/11/00. Based on this documentation, an initial calibration (3.0-75 mg/L) was run for chloride on 7/23/00 (immediately prior to sample analyses) and acceptable correlation coefficients (>0.995) were reported for two segments of that curve. Initial and continuing calibration verification standards were run at appropriate frequencies throughout the chloride analysis series, and all recoveries were acceptable (QC 85-115%) as reported on the summary forms provided for review.

Ammonia analyses were performed according to EPA 350.1. No documentation of an initial calibration for ammonia was provided in the package initially received for review. At the request of the evaluator, copies of the applicable instrument print-outs, including the initial calibration for ammonia, were provided by the laboratory via FedEx on 9/11/00. Based on this documentation, an initial calibration (0.04-4.0 mg/L) was run for ammonia on 7/20/00 (immediately prior to sample analyses) and acceptable correlation coefficients (>0.995) were reported for two segments of that curve. Initial and continuing calibration verification standards were run at appropriate frequencies throughout the ammonia analysis series, and all recoveries were acceptable (QC 85-115%) as reported on the summary forms provided for review.

Initial calibration is not applicable to the BOD analyses, which were performed by titration.

Blanks: Method blank results were reported for ammonia, chloride, and BOD on summary forms in the data package; no contamination was reported above the applicable reporting limit in any of these blanks.

Initial and continuing calibration blanks (ICB/CCBs) were run at the appropriate frequencies for both chloride and ammonia and no contamination was detected in any of these blanks, based on the summary forms provided for review.

Mr. Dan Garrigan Evaluation of STL/Connecticut Case No. 1470A (Wet Chemistry Parameters in GW) September 14, 2000 Page 4 of 5

Laboratory Control Samples: Laboratory control samples (LCSs) were analyzed in association with the sample analyses for ammonia and chloride. Acceptable recoveries (87.1% and103.7%) were reported in both cases.

Duplicate Analysis: Unspiked duplicate analyses of CW-5B were performed for chloride and ammonia. Neither chloride nor ammonia was detected above the reporting limit in either sample analysis; therefore, no evaluation of precision could be made using these data.

Results for an unspiked duplicate analysis of a non-project sample were reported for BOD. These data have no relevance to the site samples included in this data set and were not further reviewed.

Matrix Spike Analysis: Sample CW-5B was prepared and analyzed as a matrix spike for ammonia and chloride. Reported percent recoveries (86.4% and 112.1%) were acceptable (QC 75-125%) for both spikes.

Spiked sample results for a non-project sample were reported for BOD. These data have no relevance to the site samples included in this data set and were not further reviewed.

Sample Results: Sample results greater than or equal to the laboratory-specified reporting limits (RLs) for ammonia, chloride, and BOD were reported on "Wet Chem Analysis Data Sheets" for all samples. Non-detected analytes were reported as less than the applicable RL in all cases. Based on the raw data/run logs provided by the laboratory, some samples were appropriately re-analyzed at dilutions for some parameters.

Field Duplicates: Sample DUP-L+RR was identified as a field duplicate of MW-102A. Positive paired results for chloride (5.4 RPD), ammonia (1.5 RPD), and BOD (22.9 RPD) showed acceptable reproducibility (QC \leq 30%).

Documentation: Data package documentation was consistent with the specifications of the QAPP; specifically, a Level III package containing summary forms only was provided. However, no documentation of initial or continuing calibration standards for chloride and ammonia was provided, although this information has been provided in previous data packages generated in support of this project. For wet chemistry parameters in general, the raw data pages serve as run logs and are helpful for verifying that all samples were, in fact, analyzed. For those parameters run by spectrophotometric methods, the raw data pages are necessary to evaluate calibrations and calibration blanks, which are not routinely summarized elsewhere. Additional documentation for chloride, ammonia, and BOD was therefore requested from and provided by the laboratory on 9/11/00, as discussed previously in this report. The BOD documentation was added to the end of the data package as pages 125-127; the

Mr. Dan Garrigan Evaluation of STL/Connecticut Case No. 1470A (Wet Chemistry Parameters in GW) September 14, 2000 Page 5 of 5

ammonia documentation was added as pages 128-142; and the chloride documentation was added as pages 143-150.

COC records provided in the data package included all reported samples and were properly completed except that sample preservation was recorded on only one of the COCs and improper corrections were noted on both documents. In the future, all corrections should be made by drawing a single line through the incorrect information, inserting the correct information, and initialing and dating the change. "Write-overs" are not legally defensible.

Documentation of sample pHs on laboratory receipt (or at the time of analysis) was not provided in the data package as received for review. This information was verbally requested by the validator on 8/30/00; sample receiving preservation logs were received from the laboratory via facsimile on 9/2/00. These records were inserted into the data package by the evaluator as pages 55a and 55b.

Please let me know if you have any questions regarding this data package review report.

Sincerely,

Carol A. Erikson Quality Assessment Manager

CAE/esc July 2000\GWWetChem (95406)

ATTACHMENT A

WET CHEM ANALYSIS DATA SHEETS (Form I) STL/Connecticut Case No. 1470A

EPA Region I Qualifier Definitions:

- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- J The associated numerical value is an estimated quantity.
- R- The data are unusable (Note: Analyte may or may not be present).
- UJ The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

.

1 WET CHEM ANALYSIS DATA SHEET

SAMPLE	NO.
·	

	MW-201
Lab Name: <u>STL</u>	Contract:
Lab Code: <u>STL</u> Case No.: <u>1470A</u>	SAS No.: SDG No.: <u>A1470</u>
Matrix (soil/water): <u>WATER</u>	Lab Sample ID: <u>001470A-01</u>
<pre>% Solids: 0</pre>	Date Received: 07/13/00

CAS No.	Analyte	Concentration	С	Units	Q	м
7727-37-9	Ammonia	0.0400	U.	mg/L		L
	BOD5	2.0	V	UJ mg/L		P
16887-00-6	Chloride	3.00	U	T mg/L		L
				CR511400		
				4113 00		┟╼╼┥
				<u> </u>		┝──┤
					-	
······································					ļ	<u> </u>
				<u> </u>	-	+
						┼──┤
				<u> </u>		+
			<u> </u>		1	+
			<u> </u>			<u> </u>
			Ι.			<u> </u>
			ļ		—	∔—
						+
			┼──		+	+
			+		1	+
			1			1
					<u> </u>	Ţ

Comments:

-

.

FORM I - WC

.

.

,

.

•

SAMPLE NO.

1 WET CHEM ANALYSIS DATA SHEET

	MW-202
Lab Name: <u>STL</u>	Contract:
Lab Code: <u>STL</u> Case No.: <u>1470A</u>	SAS No.: SDG No.: <u>A1470</u>
Matrix (soil/water): <u>WATER</u>	Lab Sample ID: 001470A-02
<pre>% Solids: 0</pre>	Date Received: 07/13/00

CAS No.	Analyte	Concentration	C	Units	Q	
7727-37-9	Ammonia	0.0400	U	mg/L		
16887-00-6	BOD5 Chloride	2.0	¥	LJ mg/L mg/L		
				Car 9/13 00		┨
						-
				·		
						-
		,				-
	· · · · · · · · · · · · · · · · · · ·					
						_
				<u> </u>	┟───	
						_
				<u> </u>	┼╼╌	-
				<u> </u>		_
			 		_	_

Comments:

•

FORM I - WC

÷

0.142

SAMPLE NO.

.

1 WET CHEM ANALYSIS DATA SHEET

. .

			MW-103A
Lab Name: <u>STL</u>		Contract:	
Lab Code: <u>STL</u>	Case No.: <u>1470A</u>	SAS No.:	SDG No.: <u>A1470</u>
Matrix (soil/water):	WATER	Lab Sample ID:	<u>001470A-03</u>
<pre>% Solids:</pre>	0	Date Received:	07/13/00

CAS No.	Analyte	Concentration	с	Units	Q	N
7727-37-9	Ammonia	0.0400	Ū,	mg/L		ļ
16887-00-6	BOD5 Chloride	2.0	7	UT mg/L mg/L		I
				RAE 9/13/00		Ē
			<u></u>			┢
		·				┢
						╀
						+
						F
						┢
	·····					Ţ
						┢
						Ţ
		<u></u>				╀
·	· · · · · · · · · · · · · · · · · · ·				-	\pm
						T

Comments:

FORM I - WC

``

.

1 WET CHEM ANALYSIS DATA SHEET

CW-7A

SAMPLE NO.

Lab Name: <u>STL</u>		Contrac	t:	
Lab Code: <u>STL</u> (Case No.: <u>1470A</u>	SAS No.	:	SDG No.: <u>A1470</u>
Matrix (soil/water):	WATER	:	Lab Sample ID	: <u>001470A-04</u>
<pre>% Solids:</pre>	0	1	Date Received	: 07/13/00

Analyte	Concentration	C	Units	Q	м
Ammonia	0.260				Г
BOD5	2.6	5			Ρ
Chloride	7.05		mg/L		L
		CBE	9130		\square
					┝┥
					\vdash
			·		t1
					\vdash
		 			+
					┼╾╾┤
		<u> </u>	<u> </u>		┼╍╍┥
		-		<u> </u>	╆──┦
· · · · · · · · · · · · · · · · · · ·			···		
· · · · · · · · · · · · · · · · · · ·		1			
		<u> </u>			
		 	<u> </u>	 	↓
		—	┼		+
			<u> </u>	+	+
		╉───	<u>↓</u>	+	+
		+	<u> </u>	+	+
	Analyte Ammonia BOD5 Chloride	Ammonia 0.260 BOD5 2.6 Chloride 7.05	Ammonia 0.260 BOD5 2.6 J Chloride 7.05 Correction Chloride 7.05 Correction Correction Correction Correction Correction Correction <t< td=""><td>Ammonia 0.260 mg/L BOD5 2.6 J mg/L Chloride 7.05 mg/L CAE all 3 00</td><td>Ammonia 0.260 mg/L BOD5 2.6 J mg/L Chloride 7.05 mg/L (A£9)3 00</td></t<>	Ammonia 0.260 mg/L BOD5 2.6 J mg/L Chloride 7.05 mg/L CAE all 3 00	Ammonia 0.260 mg/L BOD5 2.6 J mg/L Chloride 7.05 mg/L (A£9)3 00

Comments:

.

٠

\$

WET CHEM ANALYSIS DATA SHEET

SAMPLE NO.

.

	CW-5B
Lab Name: <u>STL</u>	Contract:
Lab Code: <u>STL</u> Case No.: <u>1470A</u>	SAS No.: SDG No.: <u>A1470</u>
Matrix (soil/water): <u>WATER</u>	Lab Sample ID: <u>001470A-06</u>
% Solids: <u>0</u>	Date Received: <u>07/14/00</u>

CAS No.	Analyte	Concentration	С	Units	Q	м
7727-37-9	Ammonia	0.0400	U	mg/L		L P
	BOD5	4.6		mg/L		P
16887-00-6	Chloride	3.00	U	mg/L		L
			_			
· · · · · · · · · · · · · · · · · · ·						
						
	<u> </u>					
				· · · · · · · · · · · · · · · · · · ·		

Comments:

.

0045

-

1 WET CHEM ANALYSIS DATA SHEET SAMPLE NO.

	MW-104A
Lab Name: STL	Contract:
Lab Code: <u>STL</u> Case No.: <u>1470A</u>	SAS No.: SDG No.: <u>A1470</u>
Matrix (soil/water): <u>WATER</u>	Lab Sample ID: <u>001470A-07</u>
<pre>% Solids:</pre>	Date Received: 07/14/00

CAS No.	Analyte	Concentration	С	Units	Q	м
7727-37-9	Ammonia	22.6		mg/L		L
1121 21 2	BOD5	22.3		mg/L		P
16887-00-6	Chloride	41.9.		mg/L		L
					L	
						\vdash
					}	╀──┥
						\vdash
				<u>-</u>		
				<u> </u>	┼──	┢╼╾┥
	l	- }			<u>†-</u>	<u> </u>
			† – – †	·		
				<u> </u>		
	· · · · · · · · · · · · · · · · · · ·			,		
			1 -			
			T			
						<u> </u>
				<u> </u>	1	
			_	ļ		┿╼╼
			I	<u> </u>	+	
			-	<u> </u>		+
			+		+	
			1	<u> </u>		_ _

Comments:

.

ς.

0046

SAMPLE NO.

1 WET CHEM ANALYSIS DATA SHEET

	MW-102A
Lab Name: <u>STL</u>	Contract:
Lab Code: <u>STL</u> Case No.: <u>1470A</u>	SAS No.: SDG No.: <u>A1470</u>
Matrix (soil/water): <u>WATER</u>	Lab Sample ID: <u>001470A-08</u>
% Solids: 0	Date Received: 07/14/00

CAS No.	Analyte	Concentration	С	Units	Q	м
7727-37-9	Ammonia	0.409		mg/L		Ĺ
	BOD5	14.6		mg/L		Р
16887-00-6	Chloride	7.41		mg/L		L.
· · · · · · · · · · · · · · · · · · ·						
						├
<u> </u>						
				<u> </u>		—
						<u>├</u> ──
						<u> </u>
						┼──
	· · · · · · · · · · · · · · · · · · ·				+	
						—
	· · · · · · · · · · · · · · · · · · ·					╉──
	· · · · · · · · · · · · · · · · · · ·	·····		┼─────	<u>†</u>	1
					1	

Comments:

•

-

004,

1 WET CHEM ANALYSIS DATA SHEET

DUP-L+RR

-

.

SAMPLE NO.

Lab Name: <u>STL</u>	Contract:
Lab Code: <u>STL</u> Case No.: <u>1470A</u>	SAS No.: SDG No.: <u>A1470</u>
Matrix (soil/water): <u>WATER</u>	Lab Sample ID: <u>001470A-09</u>
% Solids: 0	Date Received: 07/14/00

CAS No.	Analyte	Concentration	С	Units	Q	м
7727-37-9	Ammonia	0.403		mg/L		L_
	BOD5	11.6		mg/L		P
16887-00-6	Chloride	7.02		mg/L		Ŀ
					<u> </u>	
					Ļ	
					<u> </u>	┝
					—	
					<u> </u>	┝╼╌┥
				······	┣──	
		- <u></u>		<u> </u>		+ - 1
	· · · · · · · · · · · · · · · · · · ·		<u> </u>			
			<u> </u>	· · · · · · · · · · · · · · · · · · ·		┼╌╌┤
<u>_</u> _			<u> </u>	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		<u> </u>			
			t			
			T			
					<u> </u>	_
				<u> </u>	 	∔
			 	· · · · · · · · · · · · · · · · · · ·	1	┼
•			_		-	+
			ļ	·	–−	∔—
			∔	↓	+	
		. <u> </u>				

Comments:

FORM I - WC

ς.

356 FARRAGUT CROSSING DR. KNOXVILLE, TN 37922 (423) 966-8880 FAX (423) 966-8885 cerikson@trilliuminc.com

September 11, 2000

Mr. Dan Garrigan O&M, Inc. 450 Montbrook Lane Knoxville, TN 37919

RE: <u>Data Package Review - STL/Illinois Lot No. 9A07G171, STL/Connecticut Case</u> No. 1470A - COD in Ground Waters

Dear Dan:

I have completed my evaluation of the chemical oxygen demand (COD) analysis data prepared by the Severn Trent Laboratory (STL) in University Park, Illinois (under subcontract to STL/Connecticut), for eight ground water samples from the L&RR site. The data were reported in a single data package under STL/Illinois Lot No. 9A07G171, STL/Connecticut Case No. 1470A, which was received by Trillium for review on August 28, 2000 and included the following samples:

MW-201	MW-202
MW-103A	CW-7A
CW-5B	MW-104A
MW-102A	DUP-L+RR

Analyses were performed according to Hach Method 8000, which is a closed reflux digestion with titration assay, as referenced by the laboratory. My evaluation was based on the specifications of the project-specific Quality Assurance Project Plan (QAPP, 9/96), the referenced method, and, to the extent applicable, the USEPA Region I Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses (6/88; Rev. 2/89).

Based on the evaluation, all sample results for COD were determined to be valid as reported. No qualifiers were applied.

At the discretion of the data user, the following points may warrant attention by field and laboratory personnel with regard to this data package and prior to future sampling events at this site:

Home Office: 28 grace's drive • Coatesville, Pa19320 • (610) 383-7233 • Fax (610) 383-7907 Offices in: Louisiana • Maryland • New Jersey • North Carolina • Pennsylvania • Tennessee • Texas

Mr. Dan Garrigan Evaluation of STL/Illinois Lot No. 9A07G171, STL/Connecticut Case No. 1470A (COD in GW) September 11, 2000 Page 2

- Documentation of sample preservation performed in the field on all chain of custody records.
- Documentation of complete cooler temperatures and sample pHs at the time of laboratory receipt on all applicable chain of custody records.

Specific details regarding the review and evaluation of these data are discussed below:

Holding Times, Preservation, Sample Integrity: Copies of the two applicable field chain of custody (COC) records were not included in the data package. A "Subcontracting Requisition Form" was provided, which apparently serves as the COC for the shipment of samples from STL/Connecticut to STL/Illinois. The samples were shipped on 7/19/00 and received on 7/20/00; a copy of a FedEx label is also provided in the data package, however the airbill number is not recorded on the Requisition Form and the airbill is not dated. Therefore, the airbill cannot be reliably linked to the shipment of these samples.

The notation "Temp 2.2" is present in the "Special Instructions" portion of the Requisition Form, but it is not clear when this entry was made or who made it. For the purposes of this evaluation, it was assumed that this was recorded by STL/Illinois on receipt of the samples and that it means that the cooler was at the acceptable temperature of 2.2°C when it arrived.

Acidification of the samples for COD analysis with sulfuric acid was recorded by the sampler on only one of the field COCs (as reviewed in associated data packages) and was not recorded by STL/Connecticut at all on the Requisition Form. Documentation of sample pHs was also not documented by either laboratory anywhere else in this data package. At the request of the validator, STL/Connecticut provided their sample receiving preservative records for all samples, which verified that the sample containers preserved with sulfuric acid were at pH<2 on receipt from the field in all cases. For the purposes of this evaluation, it was assumed that the pHs of the samples for COD analysis did not change during transport from STL/Connecticut to STL/Illinois and no further action was taken on this basis.

All sample analyses for COD were performed within the 28-day holding time specified by the QAPP for this parameter.

Calibrations: Calibration is not applicable to the titrimetric method used for these analyses.

Blanks: Low- and high-level method blanks (MBs) containing no COD above the reporting limit were reported in the data package.

Laboratory Control Samples: Low- and high-level laboratory control samples (LCSs) were analyzed in association with the sample analyses for COD. Acceptable recoveries (114% and 94.0%) were reported in both cases.

Mr. Dan Garrigan Evaluation of STL/Illinois Lot No. 9A07G171, STL/Connecticut Case No. 1470A (COD in GW) September 11, 2000 Page 3

Duplicate Analysis: No unspiked laboratory duplicate analysis was performed on any of the samples in this data package.

Matrix Spike Analysis: Sample CW-5B was prepared and analyzed as a matrix spike/matrix spike duplicate (MS/MSD) pair. Reported COD recoveries were acceptable (113% and 102%) and reproducible (relative percent difference, RPD, 9.8%).

Sample Results: Sample results greater than or equal to the laboratory-specified reporting limit (5 mg/L) for COD were reported on summary forms for all samples. MW-104A was analyzed as a high-level sample; all remaining samples were analyzed as low-level samples.

Field Duplicates: Sample DUP-L+RR was identified as a field duplicate of MW-102A. COD was not detected above the RL in either sample, therefore no quantitative evaluation of precision could be performed using these data.

Documentation: Data package documentation was inconsistent with the specifications of the QAPP, in that full raw data documentation was provided when a Level III package containing summary forms only was required. However, for wet chemistry parameters in general, the raw data pages serve as run logs and are helpful for verifying that all samples were, in fact, analyzed. Therefore, the data package documentation was appropriate as provided.

Field COC records were not provided in the data package, and documentation of sample pHs on receipt at STL/Illinois was not found in the data package as received for review. The field COC records were available for review in other data packages associated with this data set, and no action was taken on this basis. Chemical preservation of the samples for COD analysis was verified based on the preservative logs provided by STL/Connecticut, which verified that they were at pH<2 on arrival at that laboratory. It was assumed that the pHs did not change during shipment to STL/Illinois, and no further action was taken on this basis.

Sample results were reported by STL/Illinois using the STL/Connecticut identifications. COC identifications were added to the results forms in Attachment A for the sake of clarity.

Please let me know if you have any questions regarding this data package review report.

Sincerely,

Carol A. Erikson Quality Assessment Manager

CAE/psn 95406\July 2000\GWCOD

ATTACHMENT A

COD in Ground Waters STL/Illinois Lot No. 9A07G171, STL/Connecticut Case No. 1470A

EPA Region I Qualifier Definitions:

- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- J The associated value is an estimated quantity.
- R The data are unusable. (Note: Analyte may or may not be present).
- UJ The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

Attn: Paul Hobart

Date: Friday July 28th, 2000

RE: 1470A-01 MW-201 CAEs 3000 Project # 00000-000-000000 Lab ID: 9A07G171-001 Sample Date: 07/12/00 Date Received: 07/20/00

Inorganic Data Report

Parameters	Result		Units	Reporting Limit
COD	5	u	mg/L	5

.

Attn: Paul Hobart

Date: Friday July 28th, 2000

RE: 1470A-02 MW-202 CAE Project # 00000-000-000-0000 8|30|00 Lab ID: 9A07G171-002 Sample Date: 07/12/00 Date Received: 07/20/00

Inorganic Data Report

Parameters	Result	Units	Reporting
COD	5 u	ı mg/L	5

Attn: Paul Hobart

.

Date: Friday July 28th, 2000

RE: 1470A-03 MW-103A CAを 83000 Project # 00000-000-000-0000 Lab ID: 9A07G171-003 Sample Date: 07/12/00 Date Received: 07/20/00

Inorganic Data Report

Parameters	Result	Unit	s Reporting
COD	5	u mg/L	5

,

- To: STL Connecticut Severn Trent Laboratories 128 Long Hill Cross Road Shelton, CT 06484
- Attn: Paul Hobart

Date: Friday July 28th, 2000

RE: 1470A-04 CW-7A CAE 8 30 00 Project # 00000-000-000-0000 Lab ID: 9A07G171-004 Sample Date: 07/12/00 Date Received: 07/20/00

Inorganic Data Report

Parameters	Result	Units	Reporting Limit
COD	5 ι	u mg/L	5

Attn: Paul Hobart

Date: Friday July 28th, 2000

RE: 1470A-06 CW-513 CAE 8 30 0 Project # 00000-000-000-0000 Lab ID: 9A07G171-005 Sample Date: 07/13/00 Date Received: 07/20/00

Inorganic Data Report

Parameters	Result		Units	Reporting Limit
COD	5	u	mg/L	5

ľ

Attn: Paul Hobart

Date: Friday July 28th, 2000

RE: 1470A-07 MW -104A CAE 8 30 0 Project # 00000-000-0000 Lab ID: 9A07G171-006 Sample Date: 07/13/00 Date Received: 07/20/00

۰.

Inorganic Data Report

Parameters	Result	Units	Reporting Limit
COD	220	mg/L	50

,

Attn: Paul Hobart

.

Date: Friday July 28th, 2000

RE: 1470A-08 MW-102A CAE8 30 50 Project # 00000-000-0000-0000 Lab ID: 9A07G171-007 Sample Date: 07/13/00 Date Received: 07/20/00

Inorganic Data Report

Parameters	Result	Units	Reporting Limit
COD	5	u mg/L	5

Attn: Paul Hobart

Date: Friday July 28th, 2000

RE: 1470A-09 DUP-L+RR CAE8/30/00 Project # 00000-000-0000 Lab ID: 9A07G171-008 Sample Date: 07/13/00 Date Received: 07/20/00

Inorganic Data Report

Parameters	Result		Units	Reporting Limit
COD	5	u	mg/L	5

,

15

Appendix D

Groundwater Data Validation Reports Compuchem Environmental Laboratories

356 FARRAGUT CROSSING DR. KNOXVILLE, TN 37922 (423) 966-8880 FAX (423) 966-8885 cerikson@trilliuminc.com

August 31, 2000

Mr. Dan Garrigan O&M, Inc. 450 Montbrook Lane Knoxville, TN 37919

RE: Data Package Review Report - CompuChem Case No. Q1458, SDG R1458, VOAs in Ground Water

Dear Dan:

I have completed my evaluation of the volatile organics analysis data prepared by CompuChem Environmental (CompuChem) for one ground water (GW) sample and one trip blank (TB) from the L&RR Site, which were reported in a single data package under Case No. Q1458, SDG R1458. The data package was received by Trillium for review on August 11, 2000, and includes results for the following samples:

TB

MW-104A

Analyses were performed according to EPA Method 8260B (SW-846, Third Edition, Update III). My evaluation was based on the specifications of the project-specific Quality Assurance Project Plan (QAPP, 9/96), the referenced method, and the *Region I, EPA-New England Data Validation Functional Guidelines for Evaluating Environmental Analyses* (12/96). Qualifiers consistent with those defined in the Region I document were applied as necessary and appropriate.

Although the QAPP specifies that Level III data packages are required for all analyses except the 5-year sampling events, full raw data deliverables (i.e., quantitation reports, chromatograms, mass spectra, etc.) were provided for the samples, calibration standards, blanks, spikes and instrument performance checks. *These raw data were not reviewed by Trillium as part of this evaluation*. As specified in Section 9.2 of the QAPP (page 23), a Level III evaluation, limited to an overview of the information provided on the summary forms, was performed.

Based on the evaluation, the following qualifiers were applied:

• The result for 2-butanone in TB was rejected (R) based on unacceptably low relative response factors (RRFs) in the associated calibration standards.

Home Office: 28 Grace's Drive • Coatesville, Pa19320 • (610) 383-7233 • Fax (610) 383-7907 Offices IN: Louisiana • Maryland • New Jersey • North Carolina • Pennsylvania • Tennessee • Texas

Mr. Dan Garrigan Evaluation of CompuChem Case No. Q1458, R1458 (VOCs in GW) August 31, 2000 Page 2 of 6

- Results for acetone in MW-104A and TB and for 2-butanone in MW-104A were qualified as estimated (J) based on unacceptably low RRFs in the associated calibration standards.
- Results for dichlorodifluoromethane, acetone, 2-butanone, 1,3-dichlorobenzene, 1,4dichlorobenzene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, naphthalene, and 1,2,3-trichlorobenzene in MW-104A were qualified as estimated (J, UJ) based on unacceptable percent relative standard deviation (%RSD) values in the associated initial calibration.
- Results for acetone, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 1,2-dibromo-3-chloropropane, 1,2,4-trichlorobenzene, naphthalene, and 1,2,3-trichlorobenzene in TB were qualified as estimated (J, UJ) based on unacceptable %RSD values in the associated initial calibration.
- Results for acetone in MW-104A and TB were qualified as less than the reported value or less than the sample-specific reporting limit, whichever was greater (U), based on associated method blank contamination.
- Results for methylene chloride, 1,3-dichlorobenzene, and 1,2,4-trichlorobenzene in MW-104A were qualified as less than the reported value or less than the sample-specific RL, whichever was greater (U), based on associated TB contamination.
- Results for all detected target analytes in TB were qualified as estimated (J) due to unacceptably high recoveries for three of four system monitoring compounds in the reported analysis.
- Results for chloroethane, 1,1-dichloroethane, benzene, ethylbenzene, m/p-xylenes, o-xylene, 1,2,4-trimethylbenzene, 1,4-dichlorobenzene, naphthalene, and total xylenes in MW-104A were qualified as estimated (J) because they exceeded the upper limit of the established calibration range. No quantitatively accurate analysis results are available for these compounds, and the data user is cautioned that the accuracy of the reported values for these compounds cannot be verified. In particular, those results exceeding the upper limit of the calibration range by more than 20% (i.e., values greater than 30 µg/L) should be considered minimum concentrations.
- All "B" and "E" qualifiers appropriately applied by the laboratory were removed by the validator.

Mr. Dan Garrigan Evaluation of CompuChem Case No. Q1458, R1458 (VOCs in GW) August 31, 2000 Page 3 of 6

These qualifiers are reflected on the affected Organic Analysis Data Sheets (Form I) included as Attachment A to this report. Region I qualifier definitions are also provided in this attachment. Where a sample result was qualified as estimated for more than one reason (as listed above), the qualifier was applied once and no further action was taken.

Specific details regarding the review and evaluation of these data are discussed below:

Holding Times, Preservation, Sample Integrity: A copy of the field chain of custody (COC) record was included in the data package, documenting a sample collection date of 7/13/00 for both samples. Volatile organics analyses were performed on 7/27/00, just within the required 14-day holding time. An acceptable (4°C ±2°C) cooler temperature (3°C) on laboratory receipt was recorded on the COC. Acidification of the samples for volatiles analysis with hydrochloric acid was documented by the sampler on the COC; although sample pHs on laboratory receipt were not documented on the COC, verification of successful acidification of both samples (pH=1) was confirmed on the Water Batch Sheet prepared by the laboratory and included in the data package.

GC/MS Instrument Performance Check: Form V was provided for the single bromofluorobenzene (BFB) performance check run on instrument F50051 in association with the reported sample analyses. Reported mass abundances were acceptable for this performance check.

Calibration: Form VI was provided for the initial calibration (IC) performed on 7/27/00 which established a calibration range of 0.5-25 µg/L for most target analytes (acetone, 2-butanone, and 4-methyl-2-pentanone were in the standards at five times these concentrations). Reported average relative response factors (RRFs) were below the minimum acceptable value (0.05) for acetone (0.014), 2-butanone (0.004), and 1,2,3-trichloropropane (0.046). The result for 2-butanone in TB was rejected (R) on this basis. Acetone was detected in both samples and 2-butanone was detected in MW-104A; therefore, results for acetone in MW-104A and TB and for 2-butanone in MW-104A were qualified as estimated (J) based on the low average RRFs.

The average RRF for 1,2,3-trichloropropane was only slightly below the minimum acceptable value and an acceptable RRF was reported for this compound in the continuing calibration standard. Therefore, based on professional judgment, results for 1,2,3-trichloropropane were not qualified on this basis.

Percent relative standard deviations (%RSDs) were less than the maximum method-specified acceptance limit (15%) except for dichlorodifluoromethane (16.9%), chloromethane (18.7%), acetone (33.1%), 2-butanone (17.9%), 4-methyl-2-pentanone (18.4%), bromoform (18.5%), 1,2,3-trichloropropane (18.7%), 1,3-dichlorobenzene (20.7%), 1,4-dichlorobenzene (20.1%), 1,2-dichlorobenzene (19.7%), 1,2-dibromo-3-chloropropane (19.9%), 1,2,4-trichlorobenzene (25.7%), hexachlorobutadiene (24.6%), naphthalene (30.9%), and 1,2,3-trichlorobenzene (33.9%).

Mr. Dan Garrigan Evaluation of CompuChem Case No. Q1458, R1458 (VOCs in GW) August 31, 2000 Page 4 of 6

In evaluating this IC, the laboratory exercised an option included in Method 8000B (which contains calibration requirements for Method 8260B) that allows calculation of the mean %RSD value for all of the analytes in the calibration standards. If the mean %RSD is less than 15%, then (1) the IC may still be considered acceptable even if one or more individual %RSDs exceeds 15% and (2) the mean RRFs from IC may be used for calculation of all sample results, rather than having to use regression analyses to generate calibration curves for individual target analytes with %RSDs greater than 15%. This calculation was documented in the data package, and a mean %RSD of 14.5% was reported by the laboratory. This is, however, a contractual/method compliance issue; since the evaluation effort focuses on the individual analyte responses in determining whether or not associated sample results require qualification, the use of the mean %RSD by the laboratory to evaluate the IC has no direct bearing on the data evaluation effort.

For chloromethane, 4-methyl-2-pentanone, bromoform, 1,2,3-trichloropropane, and hexachlorobutadiene, no positive results were reported in the two samples and the %RSDs did not exceed the less-restrictive validation criterion of 30%. Therefore, no qualifiers were applied to the sample results for these compounds on this basis. Results for dichlorodifluoromethane, acetone, 2-butanone, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 1,2-dichlorobenzene, 1,2-dichlorobenzene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, 1,4-dichlorobenzene, 1,2-dibromo-3-chloropropane, 1,2,4-trichlorobenzene, naphthalene, and 1,2,3-trichlorobenzene in TB were qualified as estimated (J, UJ) based on the unacceptable %RSD values.

Form VII was provided for one continuing calibration (CC) standard run in association with these samples. In fact, the samples were run immediately following the IC and this "CC" was the mid-level standard from the IC. RRFs were acceptable (greater than 0.05) in the CC except for acetone (0.012) and 2-butanone (0.004). Results for acetone and 2-butanone were previously qualified based on similar responses in the IC; no additional action was taken based on the CC results.

All reported percent differences (%Ds) from the IC were less than the maximum method-specified acceptance criterion of 20%.

Blanks: Results for one method blank (MB) associated with the site sample analyses were provided in the data report. Acetone $(2 \mu g/L)$ was reported in this MB. Results for acetone in MW-104A and TB were qualified as less than the reported value or less than the sample-specific reporting limit, whichever was greater (U), based on the associated MB contamination. In both cases, the sample result was less than ten times the MB concentration. All "B" qualifiers appropriately applied by the laboratory were removed by the validator.

One trip blank was submitted with this data set; after qualifications based on MB contamination, methylene chloride (2 μ g/L), toluene (0.2 μ g/L), 1,3-dichlorobenzene (0.2 μ g/L), 1,4-

Mr. Dan Garrigan Evaluation of CompuChem Case No. Q1458, R1458 (VOCs in GW) August 31, 2000 Page 5 of 6

dichlorobenzene (0.2 μ g/L), 1,2-dichlorobenzene (0.3 μ g/L), n-butylbenzene (0.2 μ g/L), 1,2-dibromo-3-chloropropane (0.2 μ g/L), 1,2,4-trichlorobenzene (0.4 μ g/L), and naphthalene (0.5 μ g/L) were reported in the TB. Results for methylene chloride, 1,3-dichlorobenzene, and 1,2,4-trichlorobenzene in MW-104A were qualified as less than the reported value or less than the sample-specific RL, whichever was greater (U), based on the associated TB contamination. The remaining compounds listed above were either not detected in MW-104A or the result was greater than the action limit for qualification (five or ten times the TB concentration) and no further action was warranted on this basis.

System Monitoring Compounds: Reported recoveries (Form II) of the four system monitoring compounds (SMCs) were acceptable for MW-104A, the MB, and the laboratory control sample. Recoveries for three of the four SMCs in TB were too high (131-142%). Results for all detected target analytes in TB were qualified as estimated (J) on this basis.

Matrix Spike/Matrix Spike Duplicate: No matrix spike analysis was performed on MW-104A.

Laboratory Control Sample: Results for a laboratory control sample were reported on a Form IIIequivalent in the data package. Acceptable recoveries (102-120%) were reported for the five spiked target analytes listed on this form (1,1-dichloroethene, benzene, trichloroethene, toluene, and chlorobenzene).

Field Duplicate: No field duplicate pair was included in this data package.

Internal Standard Responses: Internal standard (IS) areas and retention times (RTs) were reported on Form VIII for both site samples reported in this data set and the related QC analyses; all areas and RTs were within acceptable limits.

Sample Results: Results for MW-104A and TB were appropriately reported on Form Is, each of which indicated the appropriate analysis date and a sample analysis volume of 25 mL.

Results for chloroethane, 1,1-dichloroethane, benzene, ethylbenzene, m/p-xylenes, o-xylene, 1,2,4trimethylbenzene, 1,4-dichlorobenzene, naphthalene, and total xylenes in the undiluted analysis of MW-104A exceeded the upper limit of the calibration range and were therefore qualified as estimated (J); the "E" qualifiers appropriately applied by the laboratory to these results were removed by the evaluator. According to the narrative, a diluted rerun analysis was performed by the laboratory but was lost due to an instrument failure. No further analyses were performed because the holding time had expired. Therefore, only the undiluted analysis results are available for MW-104A. The data user is cautioned that the accuracy of the reported values for those compounds exceeding the calibration range cannot be verified. In particular, those results exceeding the upper limit of the calibration range by more than 20% (i.e., values greater than 30 μ g/L) should be considered minimum concentrations.

Mr. Dan Garrigan Evaluation of CompuChem Case No. Q1458, R1458 (VOCs in GW) August 31, 2000 Page 6 of 6

Reporting limits for target analytes that were not detected were correctly reported as equivalent to the lowest concentration IC standard analyzed.

Documentation: Data package documentation was inconsistent with the specifications of the QAPP; specifically, a Level IV package was provided when a Level III package was required. The fact that the additional raw data documentation was included certainly does not adversely affect the reported sample results, but, pursuant to the validation specifications for this project, it was not reviewed by Trillium as part of this evaluation.

On the field COC, the date accompanying the laboratory receipt signature was incomplete (no year was included). This COC documentation issue does not directly affect the validity of the reported sample results, but it could be problematic if the data were used in litigation.

Please let me know if you have any questions regarding this data package review report.

Sincerely,

Carol A. Erikson Quality Assessment Manager

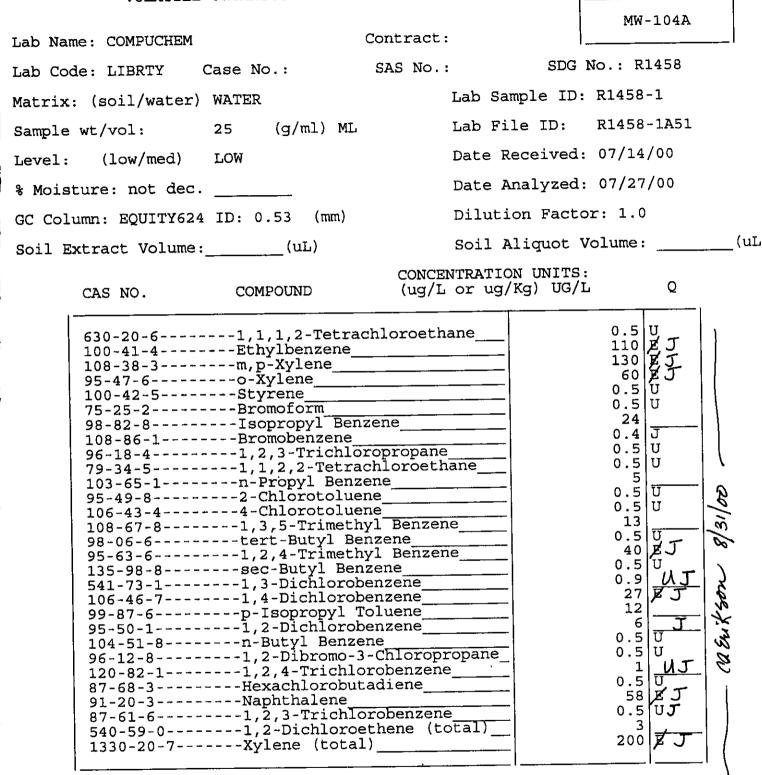
CAE/ekd July 2000/voace (95406)

ATTACHMENT A

ORGANIC ANALYSIS DATA SHEETS (Form I) Case No. Q1458, SDG R1458 Volatiles in Water

EPA Region I Qualifier Definitions:

- U- The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit. The sample quantitation limit accounts for sample-specific dilution factors and percent solids corrections or sample sizes that deviate from those required by the method.
- J- The associated numerical value is an estimated quantity.
- R The data are unusable (analyte may or may not be present). Resampling and reanalysis is necessary for verification. The R replaces the numerical value or sample quantitation limit.
- UJ The analyte was analyzed for, but was not detected. The sample quantitation limit is an estimated quantity.


CLIENT SAMPLE NO. FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET MW-104A Contract: Lab Name: COMPUCHEM SDG No.: R1458 SAS No.: Lab Code: LIBRTY Case No.: Lab Sample ID: R1458-1 Matrix: (soil/water) WATER Lab File ID: R1458-1A51 (g/ml) ML 25 Sample wt/vol: Date Received: 07/14/00 Level: (low/med) LOW Date Analyzed: 07/27/00 % Moisture: not dec. Dilution Factor: 1.0 GC Column: EQUITY624 ID: 0.53 (mm) Soil Aliquot Volume: _____(uL Soil Extract Volume: (uL) CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q CAS NO. COMPOUND 0.2 J 75-71-8-----Dichlorodifluoromethane 0.5 U 74-87-3-----Chloromethane 75-01-4-----Vinyl Chloride 0.5 0 74-83-9-----Bromomethane 44 Z J 0.5 U 75-00-3-----Chloroethane 75-69-4-----Trichlorofluoromethane 0.5 U 75-35-4-----1,1-Dichloroethene 16 BUJ 67-64-1----Acetone 4 75-09-2-----Methylene Chloride U 2 156-60-5-----trans-1,2-Dichloroethene 41 Ē 75-34-3-----1,1-Dichloroethane 0.5 0 594-20-7-----2,2-Dichloropropane 0.9 156-59-2----cis-1,2-Dichloroethene 10 78-93-3-----2-butanone 0.5 74-97-5-----Bromochloromethane 0.5 U 67-66-3-----Chloroform 0.5 U 71-55-6-----1,1,1-Trichloroethane____ 0.5 U 56-23-5-----Carbon Tetrachloride .5 U 25 Z J 0.5 563-58-6-----1,1-dichloropropene____ 71-43-2----Benzene 9 107-06-2-----1,2-Dichloroethane 0.5 0 79-01-6----Trichloroethene 10 78-87-5-----1,2-Dichloropropane 0.5 0 74-95-3-----Dibromomethane 0.5 U 75-27-4-----Bromodichloromethane 3 U 108-10-1-----4-Methyl-2-pentanone__ 12 108-88-3-----Toluene 0.5 0 79-00-5-----1,1,2-Trichloroethane 0.5 0 127-18-4----Tetrachloroethene 0.5 0 142-28-9-----1,3-Dichloropropane 0.5 U 124-48-1-----Dibromochloromethane 0.5 U 106-93-4-----1,2-Dibromoethane_____ 10 108-90-7-----Chlorobenzene

FORM I VOA

FORM 1

VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

FORM I VOA

ŀ

FORM 1 VOLATILE ORGANICS ANALYSIS	S DATA SHEET	CLIEN	r sample	NO.
			TB	
Lab Name: COMPUCHEM	Contract:			
Lab Code: LIBRTY Case No.:	SAS No.:	SDG No.	: R1458	
Matrix: (soil/water) WATER	Lab San	mple ID: Rl	458-2	
Sample wt/vol: 25 (g/ml) ML	Lab Fil	le ID: R1	458-2A51	
Level: (low/med) LOW		eceived: 07		
<pre>% Moisture: not dec</pre>		nalyzed: 07		
GC Column: EQUITY624 ID: 0.53 (mm)	Dilutio	on Factor:	1.0	
Soil Extract Volume:(uL)	Soil A	liquot Volu	me:	(uL
CAS NO. COMPOUND	CONCENTRATION (ug/L or ug/l		Q	
75-71-8Dichlorodifluo 74-87-3Chloromethane 75-01-4Vinyl Chloride 74-83-9Bromomethane 75-00-3Chloroethane 75-69-4Chloroethane 75-69-4	omethane hene hene bride loroethene hane ropane broethene hane ropane broethene hane ropane broethene hane roethane horide ropene hane ropene hane hethane hethane hene ropane hethane hene ropane hethane hene hene <td>R</td> <td>.5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5</td> <td>00/13/200 (3/31/00</td>	R	.5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	00/13/200 (3/31/00

FORM I VOA

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

l

Ĩ

CLIENT SAMPLE NO.

VOLATILE ORGANICS ANALYSI	S DATA SHEET
Lab Marca COMDUCUEM	Contract:
Lab Code: LIBRTY Case No.:	SAS No.: SDG No.: R1458
Matrix: (soil/water) WATER	Lab Sample ID: R1458-2
Sample wt/vol: 25 (g/ml) ML	Lab File ID: R1458-2A51
Level: (low/med) LOW	Date Received: 07/14/00
<pre>% Moisture: not dec</pre>	Date Analyzed: 07/27/00
GC Column: EQUITY624 ID: 0.53 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q
630-20-61,1,1,2-Tetrac 100-41-4Ethylbenzene_ 108-38-3Btylene	0.5 U 1 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U copropane 0.5 U parene 0.2 J poluene 0.5 U parene 0.5 U parene 0.5 U

FORM I VOA

356 FARRAGUT CROSSING DR. KNOXVILLE, TN 37922 (423) 966-8880 FAX (423) 966-8885 cerikson@trilliuminc.com

September 11, 2000

Mr. Dan Garrigan O&M, Inc. 450 Montbrook Lane Knoxville, TN 37919

RE: <u>Data Package Review Report - CompuChem Case No. Q1458, SDGs R1458 and</u> S1458 - Total and Dissolved Arsenic and Lead and Total Iron in Ground Water

Dear Dan:

I have completed my evaluation of the inorganics analysis data prepared by CompuChem Environmental for one ground water (GW) sample from the L&RR Site, which was reported in two data packages under Case No. Q1458, SDGs R1458 and S1458. The packages were received by Trillium for review on August 11, 2000 and September 6, 2000, respectively. Total and dissolved metals analysis results for sample MW-104A were reported.

Analyses were performed according to EPA SW-846 (Third Edition)-Update III Methods for total and dissolved arsenic, total and dissolved lead, and total iron; all elements were analyzed using trace inductively coupled plasma (ICP) instrumentation (EPA 6010B). My evaluation was based on the specifications of the project-specific Quality Assurance Project Plan (QAPP, 9/96), the referenced methods, and the USEPA Region I Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses (6/88; Rev. 2/89). Qualifiers consistent with those defined in the Region I document were applied as necessary and appropriate.

Although the QAPP specifies that Level III data packages are required for all analyses except the 5-year sampling events, full raw data deliverables (i.e., ICP instrument print-outs) were provided for all of the metals analyses. *These raw data were not reviewed by Trillium as part of this evaluation.* As specified in Section 9.2 of the QAPP (page 23), a Level III evaluation, limited to an overview of the information provided on the summary forms, was performed.

Based on the evaluation, results for total and dissolved lead in MW-104A were qualified as estimated (J) based on an unacceptably high recovery in the associated low range standard. All results for arsenic and iron were determined to be valid as reported; no other qualifiers were applied.

Home Office: 28 Grace's Drive • Coatesville, Pa19320 • (610) 383-7233 • Fax (610) 383-7907 Offices IN: Louisiana • Maryland • New Jersey • North Carolina • Pennsylvania • Tennessee • Texas

Mr. Dan Garrigan Evaluation of CompuChem Case No. Q1458, SDGs R1458 and S1458 (Metals) September 11, 2000 Page 2

These qualifiers are noted on the Inorganic Analysis Data Sheets (Form I) for the reported sample analyses in Attachment A to this report; Region I qualifier definitions are also provided in this attachment.

Specific details regarding the review and evaluation of these data are discussed below:

Holding Times, Preservation and Sample Integrity: A copy of the applicable field chain of custody (COC) record was included in the data package for SDG R1458 but was not found in the data package for SDG S1458; a copy of the COC from R1458 was made by the evaluator and inserted into S1458 as page 175a to ensure that complete documentation is available for future reference.

The site sample was collected on 7/13/00. Total and dissolved metals analyses were performed on 7/29/00, well within the 6-month holding time specified by the QAPP.

An acceptable $(4^{\circ}C \pm 2^{\circ}C)$ cooler temperature $(3^{\circ}C)$ on laboratory receipt was recorded on the COC. The "Filtered/Unfiltered" column on the COC indicated that both filtered and unfiltered sample containers were provided for analysis, and acidification with nitric acid was also noted by the sampler on the COC. Verification of successful acidification was not recorded by the laboratory on the COC, but was found (pH<2) for both the total and dissolved metals samples on the laboratory receiving log and on the laboratory preparation logs.

Results from analysis of the dissolved metals sample fraction were distinguished from analysis results for the total metals fraction only by reporting the samples in separate SDGs and data packages. The word "Dissolved" was added by the evaluator to the dissolved metals analysis results form (Form I) attached to this report to clarify the distinction; similarly, the word "Total" was added to the total metals analysis results form.

Calibrations: Based on the Analytical Run Logs (Contract Laboratory Program, CLP, Form XIV) in both data packages, initial and continuing calibration verification (ICV/CCV) standards were run at the appropriate frequencies throughout the single analysis series during which MW-104A was run for both total and dissolved constituents. All ICV/CCV recoveries documented on the accompanying CLP Form IIAs were acceptable (QC 90-110%).

Results for a "low range standard (LRS)," containing arsenic at 10 μ g/L and lead at 3 μ g/L, were reported on Form IIB in each data package; iron (at 100 μ g/L) was also reported in SDG R1458. Recoveries for arsenic (82.5%) and iron (99.9%) were acceptable (QC 80-120%), but an unacceptably high recovery was reported for lead (125.0%). Since the recovery for lead was too high, suggesting a high bias at low concentrations, and the detected total and dissolved lead concentrations were less than four times the reporting limit (RL) of 3 μ g/L, the results for total and dissolved lead in MW-104A were qualified as estimated (J).

Mr. Dan Garrigan Evaluation of CompuChem Case No. Q1458, SDGs R1458 and S1458 (Metals) September 11, 2000 Page 3

Blanks: Initial and continuing calibration blanks (ICB/CCBs) were run at the appropriate frequencies throughout the sample analysis series. Arsenic, iron, and lead were not reported above the applicable IDLs or below the negative IDLs in any of the ICB/CCBs.

Two water matrix preparation blanks (PBW) were analyzed with the site sample (CLP Form XIII), one each with the total and dissolved fractions; no arsenic or lead was reported above the applicable IDLs (or below the negative IDLs) in either PBW, but iron (47.510 μ g/L) was reported in the PBW associated with SDG R1458. The sample result for iron was much greater than the action limit for qualification based on the blank contamination (five times the blank concentration), therefore no action was warranted on this basis.

Interference Check Sample: Recoveries reported on CLP Form IV in each data package for all target elements in the interference check sample analyses performed at the start of the analytical series were acceptable (QC 80-120%).

Laboratory Control Samples (LCS): Acceptable recoveries (QC 80-120%) for total arsenic, iron, and lead were reported on the Laboratory Control Sample Report (CLP Form VII) in the data package for SDG R1458 (101.8-104.2%). Acceptable recoveries for dissolved arsenic and lead were reported on the LCS Report in the data package for SDG S1458 (100.8% and 102.3%).

Duplicate Analysis: MW-104A was run as an unspiked duplicate pair for dissolved arsenic and lead. Excellent reproducibility was demonstrated for arsenic (0.2 relative percent difference [RPD]). The RPD for lead (21.3%) slightly exceeded the method-specified acceptance criterion of 20%, and the result was qualified "N" by the laboratory. Since the concentration of dissolved lead in the sample was less than the CRDL and the paired results agreed within \pm CRDL, no qualifiers were warranted on this basis and the "N" qualifier was removed.

Matrix Spike Analysis: MW-104A was prepared and analyzed as a matrix spike/matrix spike duplicate pair for dissolved arsenic and lead. Recoveries (93.5-103.7%) were acceptable (QC 75-125%) and reproducible (RPDs 1.5% and 2.6%).

ICP Serial Dilution: Serial dilution analysis was performed on MW-104A for dissolved arsenic and lead. Both target analytes were less than 50xIDL in the undiluted sample analysis, therefore no meaningful information was obtained from this quality control analysis and no further evaluation was made.

Sample Results: Results greater than or equal to the laboratory-specified IDLs were appropriately reported on the Inorganic Analysis Data Sheets (Form I) for the individual sample analytes.

Form X was provided in both data packages, documenting IDLs established on 7/15/00. All nondetected blank results were reported to the appropriate IDLs, and all sample analyses were documented on the run logs (Form XIV) in the two data packages.

Mr. Dan Garrigan Evaluation of CompuChem Case No. Q1458, SDGs R1458 and S1458 (Metals) September 11, 2000 Page 4

Field Duplicates: No field duplicate sample was submitted with this data set.

Total versus Dissolved Concentrations: Comparison of total versus dissolved results for arsenic and lead in MW-102A revealed no cases where the dissolved concentration was greater than the total concentration.

Documentation: Data package documentation was inconsistent with the specifications of the QAPP; specifically, a Level IV package was provided when a Level III package was required. The presence of this additional raw data documentation certainly does not adversely affect the reported sample results, but, pursuant to the validation specifications for this project, it was not reviewed by Trillium as part of this evaluation.

The field COC record was not included in the data package for SDG S1458. A copy of the COC record found in SDG R1458 was made by the evaluator and inserted into S1458 as page 175a to ensure that complete documentation is available for future reference.

On the field COC record, the date accompanying the laboratory receipt signature is incomplete; no year is included. In addition, sample pHs on laboratory receipt were not recorded on the COC and the project-specific analytes for analysis were not specified by the sampler on the COC.

Total iron results were not reported in the data package for SDG R1458 as originally received for review. At the request of the evaluator, the laboratory provided revised summary forms (Forms I, IIA, III, IV, VII, X, XII, and XIV and the LRS Summary Form) on 9/6/00 via FedEx. These forms were page-numbered and inserted into the R1458 data package by the evaluator, *replacing* the pages originally provided by the laboratory.

Although the laboratory was sure they had sent it, the data package for SDG S1458 was not received by Trillium with the rest of the data packages associated with this data set. At the evaluator's request, a second copy of this data package (which was, in fact, dated August 4, 2000) was received by Trillium on September 6, 2000.

Please let me know if you have any questions regarding this report.

Sincerely,

Cound

Carol A. Erikson Quality Assessment Manager

CAE/esc July 2000/Metalsoc (95406)

ATTACHMENT A

INORGANIC ANALYSIS DATA SHEETS CompuChem Case No. Q1458, SDGs R1458 and S1458

EPA Region I Qualifier Definitions:

- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- J- The associated numerical value is an estimated quantity.
- R The data are unusable (Note: Analyte may or may not be present).
- UJ The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

SW-846 METALS

l

INORGANIC ANALYSIS DATA SHEET

						EPA	SAMPLE	NO.
Lab Name: Con	puChem	Cont:	ract:			MW-	104A TOTAI	
Lab Code: LIB	RTY Case No.: Q	1458	SAS No.:		SDG	No.:	<u>R1458</u>	CAE a 18 00
Matrix (soil/	water): <u>WATER</u>		Lab Sample	ID: R14	458-1		<u> </u>	
Level (low/med	i): LOW		Date Receive	ed: <u>07/</u>	14/00			
Solids: 0.0	. <u></u>							
8	Concentration	Units (ug/	L or mg/kg dry v	weight)	: <u>UG</u>	/L		
	CAS No.	Analyte	Concentration	C C	2 М			
1	7440-38-2	Arsenic	113		P	<u> </u>		
-	7439-89-6	Iron	99200	1	P	1		

7439-92-1

Lead

1J P COE9/8/00

11.3

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:		
Color After:	BROWN	Clarity After:	CLOUDY	Artifacts:		
Comments:						
		FORM I	- IN		8 02E als 00	SW-846

SW-846 METALS

1

INORGANIC ANALYSIS DATA SHEET

		EPA SAMPLE NO.
Lab Name: CompuChem	Contract:	MW-104A DISCOLVED COE9/8/00
Lab Code: LIBRTY Case No.: 01458	SAS No.: SDG	No.: <u>\$1458</u>
Matrix (soil/water): WATER	Lab Sample ID: S1458-1	
Level (low/med): LOW	Date Received: 07/14/00	
<pre>% Solids: 0.0</pre>		

Concentration Units (ug/L or mg/kg dry weight): UG/L____

CAS No.	Analyte	Concentration	С	Q	м
7440-38-2	Arsenic	113			P
7439-92-1	Lead	2.3	18	XJ	¶₽

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	<u></u>
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	<u></u>
Comments:					
·······	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			

356 FARRAGUT CROSSING DR. KNOXVILLE, TN 37922 (423) 966-8880 FAX (423) 966-8885 cerikson@trilliuminc.com

September 1, 2000

Mr. Dan Garrigan O&M, Inc. 450 Montbrook Lane Knoxville, TN 37919

RE: <u>Data Package Review Report - CompuChem Case No. R1458 - Chloride and Ammonia in</u> Ground Water and TestAmerica Project No. 200001 - BOD and COD in Ground Water

Dear Dan:

I have completed my evaluation of the wet chemistry analysis data prepared by CompuChem Environmental (chloride and ammonia) and TestAmerica (BOD and COD) for one ground water (GW) sample from the L&RR Site. These data were reported in two data packages under CompuChem Case R1458 and TestAmerica Project No. 200001, which were received by Trillium for review on August 11, 2000. Results for sample MW-104A were reported in both data packages.

Analyses were performed according to EPA Methods 325.2 (chloride), 410.4 (COD), 350.1 (ammonia), and 405.1 (BOD); all four methods are found in *Methods for Chemical Analysis of Water and Wastes* (EPA-600/4-79-020, 3/83). My evaluation was based on the specifications of the project-specific Quality Assurance Project Plan (QAPP, 9/96), the referenced methods, and, to the extent applicable, the USEPA Region I *Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses* (6/88; Rev. 2/89). Qualifiers consistent with those defined in the Region I document were applied as necessary and appropriate.

Based on the evaluation, the result for BOD in MW-104A was qualified as estimated (J) because incubation was initiated past the specified holding time. No additional qualifiers were applied; the remaining sample results were determined to be valid as reported based on the available data reports.

This qualifier is reflected on the affected laboratory reporting form included as Attachment A to this report. Region I qualifier definitions are also provided in this attachment.

Specific details regarding the review and evaluation of these data are discussed below:

Holding Times, Preservation and Sample Integrity: A copy of the field chain of custody (COC) record was included in the CompuChem data package and a copy of the COC record transferring the BOD and COD samples to TestAmerica was included in the TestAmerica report. Both COCs documented a sample collection date of 7/13/00. An acceptable cooler temperature (3°C) was documented on the field COC by CompuChem on receipt of the samples. No cooler temperature was recorded by TestAmerica on the subcontract COC,

Home Office: 28 grace's drive • Coatesville, Pa19320 • (610) 383-7233 • Fax (610) 383-7907 Offices IN: Louisiana • Maryland • New Jersey • North Carolina • Pennsylvania • Tennessee • Texas

Mr. Dan Garrigan Evaluation CompuChem Case No. R1458 and TestAmerica Project No. 200001 (Wet Chemistry) September 1, 2000 Page 2 of 3

however an acceptable temperature of 2°C was recorded on their cooler receipt form, which was also provided for review.

Chemical preservation of the sample containers for ammonia and COD analysis using sulfuric acid was documented on both COC records. Sample pH on laboratory receipt was not recorded on the COCs by either laboratory, but CompuChem's receiving log indicated that both sample containers were at pH<2 and TestAmerica's cooler receipt form noted that "correct preservatives" were used. It was therefore assumed that the sample was properly preserved at the time of collection.

Analyses for chloride were performed on 8/3/00, ammonia analyses were performed on 7/29/00, and COD analyses were run on 7/19/00; these are all within the 28-day holding time specified by the QAPP. BOD incubation was initiated on 7/15/00 at 22:00, which is 10 hours past the required 48-hour holding time. The reported result for BOD in MW-104A was qualified as estimated (J) on this basis. Five-day BOD readings were appropriately taken on 7/20/00.

Calibrations: Based on the run log provided in the CompuChem data package, initial and continuing calibration verification (ICV/CCV) standards were run at the appropriate frequencies throughout the analysis series for ammonia. All ICV/CCV recoveries for this analysis parameter were acceptable (QC 85-115%). Summary results for an eight-point calibration curve run on 7/29/00 were also found in the data package; an acceptable correlation coefficient of 0.9998 (QC ≥ 0.995) was reported for the best-fit quadratic equation.

Based on the run log provided in the CompuChem data package, ICV/CCV standards were run at the appropriate frequencies throughout the analysis series for chloride. All ICV/CCV recoveries for this analysis parameter were acceptable (QC 85-115%). Summary results for a nine-point calibration curve run on 8/3/00 were also found in the data package; an acceptable correlation coefficient of 0.9991 was reported for the best-fit quadratic equation.

Based on the run log provided in the TestAmerica data package, ICV/CCV standards were run at the appropriate frequencies throughout the analysis series for COD. All ICV/CCV recoveries for this analysis parameter were acceptable (QC 85-115%). Summary results for a six-point calibration curve run on 7/19/00 were also found in the data package; an acceptable correlation coefficient of 0.9997 was reported for the best-fit linear regression.

Calibration, per se, is not applicable to BOD measurements.

Blanks: Initial and continuing calibration blanks (ICB/CCBs) were run at the appropriate frequencies throughout the ammonia, chloride, and COD analysis series; no target analytes were detected above the reporting limit (RL) in any of these blanks.

A water matrix preparation blank (PBW) was also prepared with the sample for each parameter; no ammonia, chloride, BOD, or COD was reported in the PBW analyses.

Mr. Dan Garrigan Evaluation CompuChem Case No. R1458 and TestAmerica Project No. 200001 (Wet Chemistry) September 1, 2000 Page 3 of 3

Laboratory Control Samples: Acceptable recoveries (90.6-103%) for all four analysis parameters were reported for the laboratory control samples run in association with the site sample.

Duplicate Analysis: MW-104A was run in duplicate for COD, and excellent reproducibility (relative percent difference 1.7%) was demonstrated.

No laboratory duplicate analyses were reported for ammonia or chloride. Duplicate analysis results using a non-project sample were reported for BOD, but these data are not relevant to MW-104A and were not reviewed.

Matrix Spike Analysis: MW-104A was not prepared and analyzed as a matrix spike for any of the four wet chemistry analysis parameters.

Spike recovery results for a non-project sample were reported for COD, but these data are not relevant to MW-104A and were not reviewed.

Sample Results: Sample results for each analysis parameter were correctly transcribed from the laboratory run logs and appropriately reported on summary forms.

Field Duplicates: No field duplicate was submitted with this site sample.

Documentation: Data package documentation was complete and acceptable for all four analysis parameters. On the field COC, the date accompanying the laboratory receipt signature was incomplete (no year was included). On the subcontract COC, the dates accompanying both "Relinquished by" signatures are incomplete (no year is included for either date) and there is no signature indicating receipt at TestAmerica in Nashville, TN, where the analyses were performed. These COC documentation issues do not directly affect the validity of the reported sample results, but they could be problematic if the data were used in litigation.

Please let me know if you have any questions regarding this data package review report.

Sincerely,

Carol A. Erikson Quality Assessment Manager

CAE/das July 2000/wchemcc (95406)

ATTACHMENT A

LABORATORY REPORTING FORMS CompuChem Case No. R1458 and TestAmerica Project No. 200001

EPA Region I Qualifier Definitions:

- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- J The associated numerical value is an estimated quantity.
- R The data are unusable (Note: Analyte may or may not be present).
- UJ The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

AMMONIA ANALYSIS

SUMMARY REPORT

ITEM	SAMPLE	COMPUCHEM	RESULT	REPORTING LIMIT
NO.	IDENTIFIER	NUMBER	(mg/L)	(mg/L)
1.	MW-104A	R1458-1	15.8	0.1

BRL = BELOW REPORTING LIMIT

12405 Date: 8/3/00 Reviewed by/ID#:_ eore . 'æ -n

CHLORIDE ANALYSIS

SUMMARY REPORT

ITEM	SAMPLE	 COMPUCHEM	RESULT	REPORTING LIMIT
NO.	IDENTIFIER	NUMBER	(mg/L)	(mg/L)
1.	MW-104A	R1458-1	386	3

BRL = BELOW REPORTING LIMIT

.

Reviewed by/ID#: Pulsenge 12405 Date: 8/3/00

.

.

1

.

ANALYTICAL REPORT

COMPUCHEM 2303 DIANE BYRD 501 MADISON AVENUE CARY, NC 27513 Lab Number: 00-A99172 Sample ID: MW-104A Sample Type: Water Site ID:

Project: Project Name: L&RR Sampler: Date Collected: 7/13/00 Time Collected: 12:50 Date Received: 7/15/00 Time Received: 9:00

.

Analyte	Res	ult	Units	Report Limit	Quan Limit	Dil Factor	Analysis Date	Analysis Time	Analyst	Method	Batch
BOD Set Up							7/15/00	22:00		•••••	•
BOD 5 Day	27.0	J	mg/l	2.0	2.0	1	7/20/00	20:30	M.Shockley	405.1	65 71
MISCELLANEOUS CHEMISTRY		CPE	91100								
pH	6.50		pH Units			1	7/18/00	11:40	K. Stewart	150.1	6405
Chemical Oxygen Demand	118.		mg∕l	15.0	3.00	5	7/19/00 7/23/00	15:32	K.Kenney	410.4	8294

2

BOD: Analyzed out of hold

ND - Not detected at the report limit.

TABLE 2 DATA QUALIFIER DEFINITIONS BY MATRIX

GROUNDWATER AND SURFACE WATER

Volatile Organics in Groundwater and Surface Waters STL Job Nos. 20980-84697, 84717 and 84719

EPA Region I Qualifier Definitions:

- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit. The sample quantitation limit accounts for the sample-specific dilution factors and percent solids corrections or sample sizes that deviate from those required by the method.
- J The associated numerical value is an estimated quantity.
- R The data are unusable (analyte may or may not be present). Resampling and reanalysis is necessary for verification. The R replaces the numerical value or sample quantitation limit.
- UJ The material was analyzed for, but was not detected. The sample quantitation limit is an estimated quantity.

TOTAL AND DISSOLVED METALS IN GROUNDWATER AND SURFACE WATERS STL Job Nos. 20980-84697,84717 and 84719

EPA Region I Qualifier Definitions:

- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- J The associated value is an estimated quantity.
- R The data are unusable (Note: Analyte may or may not be present).
- UJ The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

AMMONIA, CHLORIDE, BOD AND COD IN GROUNDWATER AND SURFACE WATERS Laboratory Job No. 083967-10

EPA Region I Qualifier Definitions:

- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- J The associated numerical value is an estimated quantity.
- R The data are unusable (Note: Analyte may or may not be present).
- UJ The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

TABLE 2 Continued DATA QUALIFIER DEFINITIONS BY MATRIX

<u>GROUNDWATER</u> Compuchem Laboratories Laboratory Job No. 33003 Volatile Organics in Groundwater

EPA Region I Qualifier Definitions:

- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit. The sample quantitiation limit accounts for the sample-specific dilution factors and percent solids corrections or sample sizes that deviate from those required by the method.
- J The associated numerical value is an estimated quantity.
- R The data are unusable (compound may or may not be present). Resampling and reanalysis is necessary for verification. The R replaces the numerical value or the sample quantitation limit.
- UJ The material was analyzed for, but was not detected. The sample quantitation limit is an estimated quantity.

TOTAL AND DISSOLVED METALS IN GROUNDWATER Compuchem Laboratories Laboratory Job No. 33003 Inorganic Analysis in Groundwater

EPA Region I Qualifier Definitions:

- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- J The associated numerical value is an estimated quantity.
- R The data are unusable (Note: Analyte may or may not be present).
- UJ The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise

CHLORIDE, BOD, COD AND AMMONIA IN GROUNDWATER Compuchem Laboratories Wet Chemistry In Groundwater Laboratory Job No. 33003/00017

EPA Region I Qualifier Definitions:

- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- J The associated numerical value is an estimated quantity.
- R The data are unusable (Note: Analyte may or may not be present).
- UJ The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

Appendix E

Surface Water Data Validation Reports Severn Trent Laboratories

356 FARRAGUT CROSSING DR. KNOXVILLE, TN 37922 (423) 966-8880 FAX (423) 966-8885 cerikson@trilliuminc.com

June 13, 2000

Mr. Dan Garrigan O&M, Inc. 450 Montbrook Lane Knoxville, TN 37919

RE: Data Package Review Report - STL Lot No. 9A04G680 - Total and Dissolved Arsenic in Surface Water

Dear Dan:

I have completed my evaluation of the inorganics analysis data prepared by the Severn Trent Laboratory (STL) in University Park, Illinois, for seven surface water (SW) samples from the L&RR Site, which were reported in a single data package under Lot No. 9A04G680. The data package was received by Trillium for review on April 28, 2000, and the following samples were reported:

LCH-5	LCH-4	SW-16
SW-10	SW-8	SW-5
DUP		

Analyses were performed according to EPA Method 7060A (total and dissolved arsenic), which is found in the Third Edition of SW-846. My evaluation was based on the specifications of the project-specific Quality Assurance Project Plan (QAPP, 9/96), the referenced method, and the USEPA Region I Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses (6/88; Rev. 2/89); professional judgment was applied as necessary. Qualifiers consistent with those defined in the Region I document were applied where appropriate.

As required by the QAPP, a Level III data package was provided for these metals analyses. As specified in Section 9.2 of the QAPP (page 23), a Level III evaluation, limited to an overview of the information provided on the summary forms, was performed.

Results from analysis of the dissolved metals sample fractions were distinguished from analysis results for the total metals fractions by the addition of the suffix "S" (for "soluble") to the client sample identification (SW-8S, for example). The word "Dissolved" was also added by the evaluator

Home Office: 28 Grace's Drive • Coatesville, Pa19320 • (610) 383-7233 • Fax (610) 383-7907 Offices in: Louisiana • Maryland • New Jersey • North Carolina • Pennsylvania • Tennessee • Texas

to the results forms for the dissolved sample analyses to emphasize the distinction, and for consistency with previous data sets generated in support of this project.

Based on the evaluation, the following qualifiers were applied:

- Results for total and dissolved arsenic in LCH-4 and DUP were qualified as estimated (J) due to poor reproducibility in the field duplicate analyses. Total and dissolved arsenic in DUP were similarly qualified due to a severe discrepancy between the measured total and dissolved concentrations and professional judgment. The result for dissolved arsenic in DUP was also estimated based on an unacceptably low post-digestion spike recovery.
- Results for total and dissolved arsenic in SW-5 were qualified as estimated (J, UJ) due to a minor discrepancy between the measured total and dissolved concentrations.

These qualifiers are reflected on the Inorganic Analysis Data Sheets (Form Is) included as Attachment A to this report. Region I qualifier definitions are also provided in this attachment.

At the discretion of the data user, the following points may warrant attention by laboratory personnel with regard to this data package and/or prior to future sampling events at this site:

- Documentation of sample preservation performed in the field on the chain of custody record.
- Documentation of field filtration for dissolved metals analysis on the chain of custody record.
- Documentation of cooler temperatures and sample pHs at the time of laboratory receipt on the chain of custody record.
- Documentation of linearity check data (correlation coefficient, at a minimum) for all analytes run by GFAA techniques.

Specific details regarding the review and evaluation of these data are discussed below:

Holding Times, Preservation and Sample Integrity: A copy of the field chain of custody (COC) record was included in the data package, documenting a sample collection date of 4/7/00 for the surface waters. Acceptable cooler temperatures (3.6°C and 2.6°C) on laboratory receipt were

recorded on the COC. Acidification of the samples with nitric acid, however, was not noted by the sampler on the COC and no verification of acidification was documented in the data package by the laboratory. At the request of the evaluator, the laboratory provided a revised COC for the surface water samples, with a checkmark in the "Preserved" space added. In addition, "pH<2" was noted for all samples on the laboratory digestion logs for arsenic, which were also provided by the laboratory at the request of the evaluator. These records verify successful preservation of the samples for metals analysis.

The revised COC was inserted into the data package for G680 as page 199a and the laboratory digestion logs were inserted as pages 82a and 82b by the evaluator.

Field-filtration of the samples intended for dissolved metals analysis was also not recorded on the COC. For the purposes of this review, it was assumed that the samples *were* field-filtered for dissolved metals analyses (prior to acidification) based on procedures followed during previous sampling events.

Metals analyses were performed 4/14/00 through 4/24/00, well within the 6-month holding time specified by the QAPP.

Calibrations: Based on the run logs (Form XIV), initial and continuing calibration verification (ICV/CCV) standards were run at the appropriate frequencies throughout the three reported GFAA (graphite furnace atomic absorption) analysis series. All ICV/CCV recoveries documented on the accompanying Form II were acceptable (QC 90-110%).

Analysis of linearity check standards for arsenic was evident from the run log entries, however linearity results were not documented in the data package. Therefore, no evaluation of this portion of the data could be made. At the discretion of the data user, the laboratory should be requested to provide this information (at a minimum, the applicable correlation coefficients) for inclusion in the data package, to ensure that complete documentation is available for future reference. For the purposes of this validation effort, it was assumed that acceptable correlation coefficients (>0.995) were achieved for arsenic prior to the reported sample analyses in each series.

Contract required detection limit (CRDL) standards, containing arsenic at 10 μ g/L, were also run at the start of each analysis series. Acceptable (QC 80-120%) recoveries were reported for all three reported CRDL standards (100.7-115.7%).

Blanks: Initial and continuing calibration blanks (ICB/CCBs) were also run at the appropriate frequencies throughout each sample analysis series. Per Form III, no arsenic was detected above the instrument detection limit (IDL) in any of the ICB/CCBs. Arsenic was reported at a concentration

below the negative IDL in one CCB (-1.9 μ g/L) run on 4/24/00. No sample results were affected by this negative response.

A water matrix preparation blank (PBW) was digested with the samples (per the preparation log); no arsenic was detected in the PBW.

Laboratory Control Samples: An acceptable recovery for arsenic (97.5%) was reported on Form $\nabla \Pi$ in the data package.

Duplicate Analysis: Sample LCH-5 was analyzed in duplicate for total arsenic. A slightly high relative percent difference (RPD) of 20.2% (QC $\leq 20\%$) was reported on Form VI for the paired results, but the arsenic concentrations in both analyses were less than five times the CRDL specified on Form X and the paired values were well within ±CRDL. Therefore, no action was warranted on this basis.

Matrix Spike Analysis: Sample LCH-5 was prepared and analyzed as a matrix spike/matrix spike duplicate (MS/MSD) pair for total arsenic. Acceptable percent recoveries (96.4% and 94.2%) were reported on Form V for these analyses (QC 75-125%), which also demonstrated excellent reproducibility (2.3 RPD).

No separate spiked analysis was done for dissolved arsenic.

Graphite Furnace Atomic Absorption (GFAA) QC: Post-digestion spike (PDS) recoveries for arsenic were reported on the analysis run logs and were acceptable (QC 85-115%) with the exception of arsenic in DUPS (51.3%), despite a 1:4 dilution performed by the laboratory. The result for arsenic in DUPS was qualified as estimated (J) on this basis.

Unacceptable PDS recoveries were also obtained for several samples that were re-analyzed at various dilutions. In these cases, the diluted analyses gave acceptable PDS recoveries and the diluted analysis results were reported, therefore no further action was warranted on this basis.

Sample Results: Results greater than or equal to the laboratory-specified IDL were appropriately reported on the Inorganic Analysis Data Sheets (Form Is) for total and dissolved arsenic in each sample.

CLP Form X was provided in the data package, indicating an IDL of 1.7 μ g/L established for arsenic on 4/15/00.

All undetected sample results for arsenic were correctly adjusted (multiplied by 0.5) to reflect the concentration factor resulting from processing 100 mL of sample to a final volume of 50 mL, which was clearly documented on the laboratory digestion logs. Positive sample results cannot be similarly verified without the supporting raw data.

IDLs for undetected analytes were also appropriately adjusted to reflect sample dilutions, where applicable. Positive sample results cannot be similarly verified without the supporting raw data.

Field Duplicates: Sample DUP was identified as a field duplicate of LCH-4 based on information provided by the laboratory. Paired results for total arsenic (69.3 RPD) and dissolved arsenic (44.4 RPD) exceeded the QAPP-specified acceptance limit of 30%. Although the arsenic concentrations in both samples were less than five times the CRDL specified on Form X, the paired values were also outside the alternate criterion for low concentrations (\pm CRDL). Therefore, results for total and dissolved arsenic in LCH-4 and DUP were qualified as estimated (J) on this basis.

Total versus Dissolved Concentrations: Comparison of validated total versus validated dissolved results for arsenic in the seven surface water samples revealed the following cases where the dissolved concentration was higher than the total concentration:

		u	i	
Sample		Total	Dissolved	%D
SW-5	As	0.85 U	1.1	
DUP	As	3.2 J	8.8 J	175%

For SW-5, the positive dissolved arsenic result is only slightly greater than the reporting limit, and these results most likely reflect the increased variability inherent at concentrations at or near the lower measurement limit. Therefore, results for total and dissolved arsenic in SW-5 were qualified as estimated (J, UJ) on this basis.

For DUP, the percent difference (%D) is unusually high. Validation guidelines recommend that results for which the %D exceeds 50% be rejected, however several additional pieces of data are available in this case that allow a less drastic conclusion. DUP is a field duplicate of LCH-4. Although the paired results for total and dissolved arsenic in these two samples showed poor reproducibility, the total versus dissolved comparison for LCH-4 was acceptable. In addition, post-digestion spike recoveries were acceptable for analyses of total and dissolved arsenic in LCH-4 and for total arsenic in DUP; only the post-digestion spike recovery for (dissolved) arsenic in DUPS was unacceptable (too low). Finally, all four of the arsenic results for these two samples are less than ten times the

CRDL reported on Form X in the data package. It may be that the discrepancies simply reflect the increased variability typically observed at low concentrations. Or, the low post-digestion spike recovery may suggest that the reported concentration for dissolved arsenic in DUPS is incorrectly biased high. Or, it is possible that one or more of the results is incorrectly reported, which cannot be evaluated in this level review. Therefore, based on the generally low analyte concentrations, review of all the available data, and professional judgment, results for total and dissolved arsenic in DUP were not rejected but were qualified as estimated (J).

Documentation: Data package documentation was consistent with the specifications of the QAPP; specifically, a Level III package was provided, as required. However, summary forms documenting linearity checks (initial multipoint calibration correlation coefficients) for GFAA analytes were missing from the data packages provided for review. At the discretion of the data user, the laboratory may be requested to provide the missing linearity information to ensure that accurate and complete documentation is available for future reference.

Documentation of sample pHs on laboratory receipt was incomplete in the data package as received for review. Clarifications and corrections, as appropriate, were verbally requested by the validator on 6/6/00; responses were received from the laboratory via FedEx on 6/9/00. Corrected documents (revised COC and digestion logs) were inserted into the data package as previously discussed.

A revised COC for the surface water samples, with a checkmark in the "Preserved" space added, was provided by the laboratory, but this new entry was not initialed or dated. While this has no direct effect on the technical validity of the reported sample data, it could be problematic if the data are used for litigation.

Please let me know if you have any questions regarding this data package review report.

Sincerely,

Carol Erikson

Carol A. Erikson Quality Assessment Manager

CAE/ekd 95406\Apr00\swmetals

ATTACHMENT A

INORGANIC ANALYSIS DATA SHEETS (FORM Is) Laboratory Lot No. 9A04G680

EPA Region I Qualifier Definitions:

- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- J The associated numerical value is an estimated quantity.
- **R** The data are unusable (Note: Analyte may or may not be present).
- UJ The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO.

LCH-5

Lab Sample ID: 9A04G680-001

Date Received: 04/08/00

lab	Name:	STL	CHICA
		-	-

Lab Code: STL___

GO_____ Contract: _____

Case No.: _____ SAS No.: _____ SDG No.: U04680

atrix (soil/water): WATER

0.0

Level (low/med): LOW____

Solids:

Concentration Units (ug/L or mg/kg dry weight): UG/L_

			······································			
	CAS No.	Analyte	Concentration	с	Q	М
	7429-90-5	Aluminum	·	-		NR
	7440-36-0	Antimony		-		NR
	7440-38-2	Arsenic	4.4	-	·	F
	7440-39-3	Barium		-		NR
	7440-41-7	Beryllium		-		NR
	7440-43-9	Cadmium		-		NR
	7440-70-2	Calcium		-		NR
	7440-47-3	Chromium			·	NR
	7440-48-4	Cobalt -		-		NR
	7440-50-8	Copper		-		NR
	7439-89-6	Iron		-		NR
	7439-92-1	Lead		-		NR
	7439-95-4	Magnesium		-		NR
	7439-96-5	Manganese		-		NR
	7439-97-6	Mercury		-		NR
	7440-02-0	Nickel		-		NR
	7440-09-7	Potassium		-		NR
	7782-49-2	Selenium		-	<u> </u>	NR
	7440-22-4	Silver		-		NR
	7440-23-5	Sodium				NR
	7440-28-0	Thallium				NR
	7440-62-2	Vanadium				NR
	7440-66-6	Zinc -		-		NR
		Cyanide			1	NR
Before:	YELLOW	Clari	ty Before: CLEA	AR_	-	Texture:
or After:	COLORLESS	Clari	ty After: CLEA	AR_	-	Artifacts:
ents:						
		. . .				
		·····				
		F	OPM T - TN			I

U.S.	EPA -	CLP
------	-------	-----

1

EPA SAMPLE NO.

.

	EFA SAMPLE	т	HEE	ANALYSES DATA S	NORGANIC A		
	LCH-5S						
	DISSOLVE			Contract: _		CHICAGO	Name: STL_C
CAE 6/13/1 : U04680				SAS No.	e No.:	Cas	Code: STL
04G680-00	e ID: 9A040	Sample	Lab		ર	ater): WATE	rix (soil/wa
/08/00	ived: 04/08	e Rece	Dat		-): LOW_	vel (low/med)
					ט	0.0	Solids:
	UG/L_	ight):	/ we	/L or mg/kg dr	Units (ug,	ncentration	Cor
	м	Q	с	Concentration	Analyte	CAS No.	
	NR		- -		Aluminum	7429-90-5	
	NR		- -		Antimony_		
	F_		<u></u> ד	0.85	Arsenic	7440-38-2	
	NR				Barium —	7440-39-3	
	NR				Beryllium		
	NR				Cadmium	7440-43-9	
	NR				Calcium	7440-70-2	
	NR				Chromium_		
	NR		_ -		Cobalt		
	NR				Copper		
	NR		i i		Iron	7439-89-6	
	NR		_		Lead	7439-92-1	
	NR NR		_ -		Magnesium		
	NR		- -		Manganese		
	NR		- -	ļ	Mercury		
	NR		- -		Nickel	7440-02-0	
	NR		- -	│ <u>───</u>	Selenium	7782-49-2	
	NR		- -		Silver	7440-22-4	
	NR				Sodium	7440-23-5	
	NR		- -	· · · · · · · · · · · · · · · · · · ·	Thallium	7440-28-0	
	NR		- -		Vanadium	7440-62-2	
	NR .		- -		Zinc	7440-66-6	
	NR		_ -		Cyanide		
:	Texture:		AR_	ty Before: CLE	Clari	COLORLESS	lor Before:
.s:	Artifacts:		AR_	ty After: CLE	Clari	COLORLESS	lor After:
							nments: SOLUBLE
					· · · · · · · · · · · · · · · · · · ·		
 ILM03.							
				ORM I - IN	F		SOLUBLE

		U.S.	EPA - CLP				
			1			EF	A SAMPLE NO.
		INORGANIC A	ANALYSES DATA S	SHE	ET.	1	
Name: STL_CHICAGO			Contract:				LCH-4
Code: STL_	Ca	se No.:	SAS No.:	: _		SI	OG No.: U04680
rix (soil/wa	ater): WATE	ર		La	ib Sampl	le I	D: 9A04G680-003
el (low/med): LOW				Da	ate Rece	eiv∈	ed: 04/08/00
olids:	0.0	C					
Coi	ncentration	Units (ug,	/L or mg/kg dry	γv	veight)	: UC	3/L_
	CAS No.	Analyte	Concentration	с	Q	м	
	7429-90-5 7440-36-0 7440-38-2	Antimony_ Arsenic	6.6		 J	NR NR F	(ae u/13/00)
	7440-39-3	iBarium				INR	

Barium

Cadmium

Calcium

Cobalt

Copper

Iron

Lead

Chromium

Magnesium

Manganese

Potassium

Selenium

Thallium

Vanadium Zinc

Cyanide

Mercury

Nickel

Silver

Sodium

Beryllium

7440-39-3

7440-41-7

7440-43-9

7440-70-2

7440-47-3

7440-48-4

7440-50-8

7439-89-6

7439-92-1

7439-95-4

7439-96-5

7439-97-6

7440-02-0

7440-09-7

7782-49-2

7440-22-4

7440-23-5

7440-28-0

7440-62-2

7440-66-6

COLORLESS

COLORLESS

lor Before:

plor After:

Comments:

Lab

FORM I - IN

Clarity Before: CLEAR_

Clarity After:

ILM03.0

NR

Texture:

Artifacts: _

CLEAR

Lab Code: STLCase No.:SAS No.:SDG No.: U04680 atrix (soil/water): WATER Lab Sample ID: 9A04G680-004 Level (low/med): LOWDate Received: 04/08/00 Solids: 0.0 Concentration Units (ug/L or mg/kg dry weight): UG/L CAS No. Analyte Concentration Units (ug/L or mg/kg dry weight): UG/L_ CAS No. Analyte Concentration Units (ug/L or mg/kg dry weight): UG/L_ CAS No. Analyte 7440-38-2 Arsenic 7440-38-2 Arsenic 7440-41-7 Beryllium 7440-41-7 Beryllium 7440-47-3 Chromium 7440-47-3 Chromium 7440-47-3 Chromium 7440-47-3 Chromium 7440-47-3 Chromium 7439-92-1 Lead 7439-92-1 Lead 7439-92-1 Manganese 7439-95-6 Manganese 7439-97-6 Mercury NR NR		0.0			
ab Name: STL_CHICAGO Contract:DF50(NED_0242 6/[3]07 Lab Code: STL Case No.: SAS No.: SDG No.: U04680 atrix (soil/water): WATER Lab Sample ID: 9A04G680-004 Level (low/med): LOW Date Received: 04/08/00 Solids:0.0 Concentration Units (ug/L or mg/kg dry weight): UG/L_ CAS No. Analyte Concentration C Q M 7440-36-0 Antimony 7440-39-3 7440-39-3 Partum 7440-41-7 Beryllium 7440-41-7 Beryllium 7440-43-9 Cadamium 7440-43-9 Cadamium 7440-43-9 Cadamium 7440-43-9 Cadamium 7440-47-3 Chromium 7440-47-3 Chromium 7440-47-3 Chromium 7439-95-6 Iron 7439-95-6 Iron 7439-95-74 Magnesium 7439-97-6 Marcury NR		INORGANIC	—	SHEET	EPA SAMPLE NO.
Lab Code: STLCase No.:SAS No.:SDG No.: U04680 atrix (soil/water): WATER Lab Sample ID: 9A04G680-004 Level (low/med): LOWDate Received: 04/08/00 Solids: 0.0 Concentration Units (ug/L or mg/kg dry weight): UG/L CAS No. Analyte Concentration Units (ug/L or mg/kg dry weight): UG/L CAS No. Analyte Concentration Units (ug/L or mg/kg dry weight): UG/L CAS No. Analyte Concentration C Q MR NR 7440-36-0 Antimony 7440-39-3 Barium 7440-39-3 Barium 7440-41-7 Beryllium 7440-47-3 Chromium 7440-47-3 Chromium 7440-48-4 Cobalt 7439-92-1 Lead 7439-92-1 Lead 7439-95-4 Manganese 7439-95-5 Manganese 7439-95-6 Manganese 7439-97-6 Mercury NR NR	ab Name - STL CHICA	AGO	Contract:		
harring code: Shil Gale horring Lab Sample ID: 9A04G680-004 atrix (soil/water): WATER Lab Sample ID: 9A04G680-004 Level (low/med): LOW Date Received: 04/08/00 Solids: 0.0 Concentration Units (ug/L or mg/kg dry weight): UG/L CAS No. Analyte Concentration 7429-90-5 Aluminum					Car 6/13/00
Level (low/med): LOW Date Received: $04/08/00$ Solids:0.0 Concentration Units (ug/L or mg/kg dry weight): UG/L CAS No. Analyte Concentration C Q M 7429-90-5 Aluminum 7440-36-0 Antimony 5.6 J MR 7440-38-2 Arsenic5.6 J MR 7440-39-3 Barium 7440-41-7 Beryllium 7440-41-7 Beryllium 7440-43-9 Cadmium 7440-43-9 Cadmium 7440-43-9 Calcium 7440-48-4 Cobalt 7440-50-8 Copper 7440-50-8 Copper 7439-92-1 Lead 7439-95-5 Manganese 7439-97-6 Marganese	Lab Code: STL	Case No.:	SAS NO).:	SDG No.: U04680
Solids: Solids: Cas No. Analyte Concentration C Q M 7429-90-5 Aluminum 7440-36-0 Antimony 7440-38-2 Arsenic NR 7440-38-2 Arsenic NR 7440-39-3 Barium 7440-41-7 Beryllium 7440-41-7 Beryllium 7440-43-9 Cadmium 7440-43-9 Cadmium 7440-47-3 Chromium 7440-47-3 Chromium 7440-48-4 Cobalt NR 7440-48-4 Cobalt NR 7440-50-8 Copper NR 7439-96-6 Iron 7439-95-5 Manganese 7439-97-6 Mercury NR	atrix (soil/water)	: WATER		Lab Sampl	le ID: 9A04G680-004
Concentration Units (ug/L or mg/kg dry weight): UG/L_ CAS No. Analyte Concentration C Q M 7429-90-5 Aluminum 7440-36-0 Antimony 7440-38-2 Arsenic 5.6 J NR 7440-39-3 Barium 7440-41-7 Beryllium 7440-43-9 Cadmium 7440-47-3 Chromium 7440-47-3 Chromium 7440-48-4 Cobalt NR 7440-50-8 Copper 7439-92-1 Lead NR 7439-95-4 Magnesium 7439-97-6 Mercury NR	Level (low/med):	LOW		Date Rece	eived: 04/08/00
CAS NO.AnalyteConcentrationCQM $7429-90-5$ Aluminum	Solids:	0.0			
7429-90-5 Aluminum	Concent	ration Units (ug	g/L or mg/kg d	lry weight)	: UG/L_
7429-90-5 Aluminum	∎ _i	<u> </u>			
$7440-36-0$ Antimony_	CAS	No. Analyte	Concentratio	on C Q	M
$7440-36-0$ Antimony_	74.26				NR
7440-38-2 Arsenic5.6 F NR 7440-39-3 Barium NR NR 7440-41-7 Beryllium NR NR 7440-43-9 Cadmium NR NR 7440-70-2 Calcium NR NR 7440-47-3 Chromium NR NR 7440-50-8 Copper NR NR 7439-89-6 Iron NR NR 7439-92-1 Lead NR NR 7439-95-4 Magnesium NR NR 7439-97-6 Mercury NR NR					
7440-41-7 Beryllium				6	1 1
7440-41-7 Beryllium					NR (476/13/00)
7440-43-9 Cadmium					NR
7440-70-2 Calcium NR 7440-47-3 Chromium NR 7440-48-4 Cobalt NR 7440-50-8 Copper NR 7439-89-6 Iron NR 7439-92-1 Lead NR 7439-95-4 Magnesium					
7440-47-3 Chromium					1 1
7440-48-4 Cobalt					
7440-50-8 Copper	1				
7439-89-6 Iron NR 7439-92-1 Lead NR 7439-95-4 Magnesium NR 7439-96-5 Manganese NR 7439-97-6 Mercury NR			_		4 1
7439-92-1 Lead NR 7439-95-4 Magnesium NR 7439-96-5 Manganese NR 7439-97-6 Mercury NR					4 1
7439-95-4 Magnesium NR 7439-96-5 Manganese NR 7439-97-6 Mercury NR	1				4 4
7439-96-5 Manganese NR 7439-97-6 Mercury NR					
7439-97-6 Mercury NR				_ -	
	—				
			- 		NR
7440-09-7 Potassium NR			m		NR
7782-49-2 Selenium NR					NR
7440-22-4 Silver NR					NR
7440-23-5 Sodium NR					NR
7440-28-0 Thallium NR					NR
7440-62-2 Vanadium NR					NR
7440-66-6 Zinc NR	7440)-66-6 Zinc			NR
Cyanide					NR
■	■		I	_	
olor Before: COLORLESS Clarity Before: CLEAR_ Texture:	olor Before: COLC	DRLESS Clar	ity Before: Cl	LEAR_	Texture:
Color After: COLORLESS Clarity After: CLEAR_ Artifacts:	Color After: COLO	ORLESS Clar	ity After: C	LEAR_	Artifacts:
SOLUBLE					

FORM I - IN

.

1

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

1

1

ab Name: STL	CHICAGO		Contract: _		SW-16
				:	SDG No.: U04680
atrix (soil/w	vater): WATE	R		Lab Samp	ole ID: 9A04G680-005
Level (low/med	l): LOW_	_		Date Rec	eived: 04/08/00
Solids:	0.	0			
Co	oncentration	Units (ug	/L or mg/kg dry	y weight)	: UG/L_
1	CAS No.	Analyte	Concentration	C Q	M
	7429-90-5	Aluminum			NR
-		Antimony			NR
		Arsenic	0.85		F
		Barium		-	NR
		Beryllium		—	NR
		Cadmium			NR
		Calcium			NR
_		Chromium	·		NR
a		Cobalt		-	NR
		Copper			NR
	7439-89-6	Iron			NR
-	7439-92-1	Lead			NR
	7439-95-4	Magnesium			NR NR
	7439-96-5	Manganese			NR
	7439-97-6	Mercury		-	NR
	7440-02-0	Nickel		<u> </u>	NR
		Potassium			NR
_	1	Selenium	·		NR
		Silver		·	NR
	7440-23-5	Sodium			NR
		Thallium	<u></u>		NR
	7440-62-2	Vanadium	·		NR
	7440-66-6	Zinc			NR
4		Cyanide		-	NR
		······			
lor Before:	COLORLESS	Clarit	y Before: CLEA	<u></u>	Texture:
olor After:	COLORLESS	Clarit	y After: CLEA	AR_	Artifacts:
Comments:					
					
					-
······································					
_					<u> </u>
		FC	DRM I - IN		ILM03.0
					クビ
					35

8	INORGANIC	l ANALYSES DATA SHEET	EPA SAMPLE NO.
ab Name: STL_CHICAG	30	Contract:	SW-16S DIMOUVED CAE 6/13/00
Lab Code: STL	Case No.: _	SAS No.:	SDG No.: U04680
atrix (soil/water)	: WATER	Lab Samp	le ID: 9A04G680-006
Level (low/med):	LOW	Date Rec	eived: 04/08/00
Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L_

	CAS No.	Analyte	Concentration	C	Q	М
	7429-90-5	Aluminum	·	<u>-</u>		
	7440-36-0	Antimony				NR
	7440-38-2	Arsenic	0.85	ד		_ F_
	7440-39-3	Barium				
	7440-41-7	Beryllium				NR
	7440-43-9	Cadmium				NR
	7440-70-2	Calcium				NR
	7440-47-3	Chromium_				NR
	7440-48-4	Cobalt				NR
	7440-50-8	Copper				NR
	7439-89-6	Iron		_ .		NR
	7439-92-1	Lead		_ .		NR
	7439-95-4	Magnesium		_		NR
	7439-96-5	Manganese				NR .
	7439-97-6	Mercury				NR
	7440-02-0	Nickel		 		NR
	7440-09-7	Potassium		_		NR
	7782-49-2	Selenium_				
	7440-22-4	Silver	<u> </u>			
	7440-23-5	Sodium		_		
	7440-28-0	Thallium_		_		
	7440-62-2	Vanadium_		_		
	7440-66-6	Zinc		_`		NR .
		Cyanide		_		NR
	l	.	Í	_	<u> </u>	!I
olor Before:	COLORLESS	Clari	ty Before: CLE	AR_		Texture:
olor After:	COLORLESS	Clari	ty After: CLE	AR_		Artifacts: _
omments: SOLUBLE						
		<u></u>				
<u></u>						

FORM I - IN

.

1		U.S.	EPA - CLP		
	:	INORGANIC A	1 NALYSES DATA S	SHEET	EPA SAMPLE NO.
ab Name: STL_(CHICAGO		Contract:		SW-10
Lab Code: STL_					SDG No.: U04680
atrix (soil/wa	ater): WATE	ર		Lab Samp.	le ID: 9A04G680-007
Level (low/med)				Date Rec	eived: 04/08/00
Solids:	0.0	C			
Cor	ncentration	Units (ug,	L or mg/kg dry	y weight)	: UG/L_
•	CAS No.	Analyte	Concentration	C Q	м
	7429-90-5	<u>Aluminum</u>		-	NR
	7440-36-0		_	-	NR
1	7440-38-2	Arsenic	0.85		F
	7440-39-3	Barium			NR
	7440-41-7	Beryllium			NR
	7440-43-9				NR
	7440-70-2	Calcium		_ <u></u>	NR
-	7440-47-3				NR
	7440-48-4			_	NR
	7440-50-8		<u> </u>	_	NR
	7439-89-6				NR
•	7439-92-1		<u></u>	_	NR
	7439-95-4			_	NR
	7439-96-5	. –			NR NR
-	7439-97-6			_	NR
	7440-02-0	Nickel Potassium	<u></u>		NR
	7782-49-2	Selenium		·]]	NR
-	7440-22-4	Silver	· · · · · · · · · · · · · · · · · · ·		NR
	7440-23-5	Sodium		-	NR
•	7440-28-0	Thallium			NR
	7440-62-2	Vanadium			NR
	7440-66-6	Zinc -			NR
3		Cyanide			NR
				.	. ł
color Before:	COLORLESS	Clari	ty Before: CLE	AR_	Texture:
Color After:	COLORLESS	Clari	ty After: CLE	AR_	Artifacts:
Comments:					
_					·

1	INORGANIC A	1 NALYSES DATA	SHEET	EPA SAMPLE NO.
ab Name: STL_CHICAG	Case No.:	Contract:	:	SW-10S DISCOLNED CAE 6/13 00 SDG No.: U04680
latrix (soil/water):			Lab Sample	e ID: 9A04G680-008
Level (low/med):	LOW		Date Rece	ived: 04/08/00
Solids:	0.0			

Concentration Units (ug/L or mg/kg dry weight): UG/L_

•	CAS No.	Analyte	Concentration	C	Q	М
	7429-90-5	Aluminum	·	-		NR
	7440-36-0	Antimony		-		NR
	7440-38-2	Arsenic	0.85	ច		- F
	7440-39-3	Barium				
	7440-41-7	Beryllium	<u>_</u>			NR
	7440-43-9	Cadmium				NR
	7440-70-2	Calcium				NR
	7440-47-3	Chromium_		_		NR
	7440-48-4	Cobalt				NR
	7440-50-8	Copper		_		
	7439-89-6	Iron				NR
	7439-92-1	Lead		_	<u> </u>	
	7439-95-4	Magnesium				
	7439-96-5	Manganese				
	7439-97-6	Mercury		_	<u> </u>	NR
	7440-02-0	Nickel				NR NR
	7440-09-7	Potassium		-	<u> </u>	
	7782-49-2	Selenium_		-		- NR
	7440-22-4	Silver Sodium	<u> </u>	-		
	7440-23-5	Thallium		-		
	7440-28-0	Vanadium]	-		
	7440-62-2	Zinc		-		
	7440-66-6	Cyanide	·	-		
		Cyanitue		-		- ****
			I	II	<u> </u>	!!
olor Before:	COLORLESS	Clari	ty Before: CLE	AR_	-	Texture:
olor After:	COLORLESS	Clari	ty After: CLE	AR_	-	Artifacts:
		-				
omments:						
SOLUBLE			· · · · · · ·	-		;
	<u> </u>					

FORM I - IN

EPA SAMPLE NO.

.

		INORGANIC A	1 ANALYSES DATA S	SHEET	EPA SAMPLE NO.
					SW-8
ab Name: STL_	CHICAGO		Contract:		
Lab Code: STL	Ca:	se No.:	SAS No.	:	SDG No.: U04680
atrix (soil/w	ater): WATE	R		Lab Sam	ple ID: 9A04G680-00
Level (low/med): LOW	-		Date Re	ceived: 04/08/00
Solids:	0.	0			
Co	ncentration	Units (ug,	/L or mg/kg dry	y weight): UG/L_
• •	CAS No.	Analyte	Concentration	C Q	M
	7429-90-5	Aluminum	·		
	7440-36-0	Antimony_		- -	
1	7440-38-2	Arsenic	23.2		F
Í	7440-39-3				NR
	7440-41-7				NR
	7440-43-9				
	7440-70-2				NR
	7440-47-3			<u> </u>	
t	7440-48-4		<u> </u>		
	7440-50-8				NR NP
	7439-89-6			-	
	7439-92-1				
	7439-95-4				
-	7439-97-6		ļ	-	
	7440-02-0			-	
	7440-09-7]-	NR
	7782-49-2	Selenium			
•	7440-22-4	Silver -			
n.	7440-23-5	Sodium			NR
•	7440-28-0	Thallium			
-	7440-62-2	Vanadium_		_	
	7440-66-6	Zinc		_ <u></u> `	
		Cyanide			
plor Before:	YELLOW	Clari	ty Before: CLE	AR_	Texture:
olor After:	COLORLESS	Clari	ty After: CLE	AR_	Artifacts:
omments:					
ļ					
	··· ·			······································	
1		F	ORM I - IN		ILM03.
		_			

.

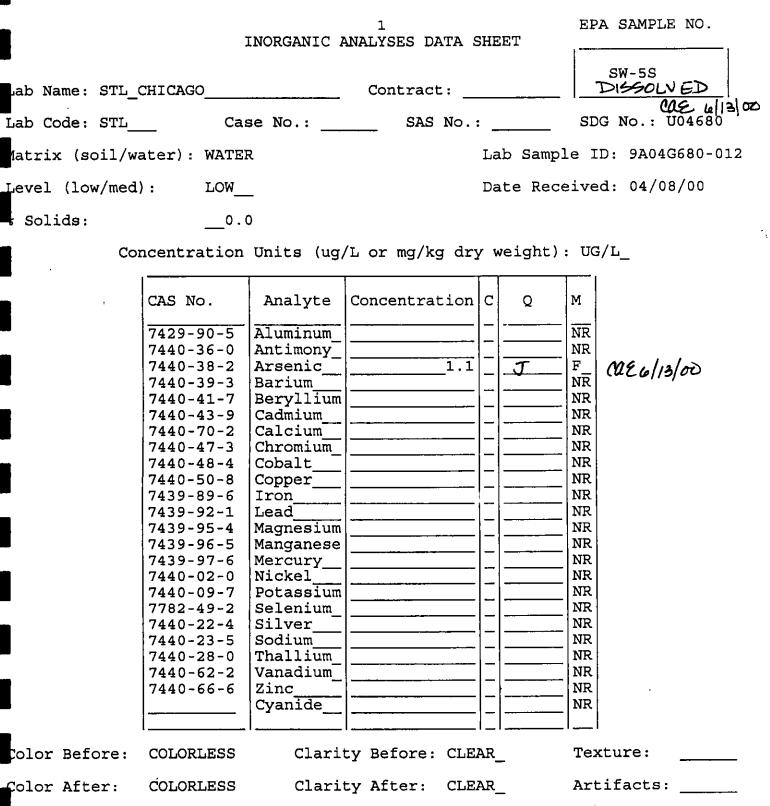
EPA SAMPLE NO.

.

-	INORGANIC	1 ANALYSES DATA SHEET	EPA SAMPLE NO.
Lab Name: STL_CHICAG	0	Contract:	SW-85 DISSOLNED CAE 6 13 00
Lab Code: STL	Case No.: _	SAS No.:	
Matrix (soil/water):	WATER	Lab Sa	mple ID: 9A04G680-010
Level (low/med):	LOW	Date R	eceived: 04/08/00
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L_

•	CAS No.	Analyte	Concentration	С	Q	M
	7429-90-5	Aluminum		-		
	7440-36-0	Antimony		-		NR
	7440-38-2	Arsenic	11.0		·	F
	7440-39-3	Barium		-		NR
	7440-41-7	Beryllium				NR
	7440-43-9	Cadmium				NR
	7440-70-2	Calcium				NR
	7440-47-3	Chromium_				NR
	7440-48-4	Cobalt				NR
	7440-50-8	Copper				NR
	7439-89-6	Iron		!	;;	NR
	7439-92-1	Lead		_		NR
	7439-95-4	Magnesium				NR
	7439-96-5	Manganese				NR
	7439-97-6	Mercury		_	<u></u>	NR
	7440-02-0	Nickel		_		NR
	7440-09-7	Potassium	·	_		
	7782-49-2	Selenium_		_		
	7440-22-4	Silver		_		NR
	7440-23-5	Sodium		_		NR
	7440-28-0	Thallium_		_	<u> </u>	NR NR
	7440-62-2	Vanadium_				
	7440-66-6	Zinc			<u></u>	
		Cyanide				
	l	.	l	_		!!
Color Before:	COLORLESS	Clari	ty Before: CLE	AR_	_ ·	Texture:
Color After:	COLORLESS	Clari	ty After: CLE	AR		Artifacts: _
	••		•	-	-	
Comments:						
SOLUBLE						
				-		
]


FORM I - IN

.

EPA SAMPLE NO.

		INORGANIC	1 Analyses data s	SHEET	EI	PA SAMPLE NO.
-						SW-5
ab Name: STL	_CHICAGO		Contract:		_ _	
Lab Code: STL	Ca	se No.:	SAS No.	:	_ SI	DG No.: U04680
atrix (soil/	water): WATE	R		Lab Sar	mple]	ID: 9A04G680-01
evel (low/me	d): LOW_	_		Date Re	eceive	ed: 04/08/00
Solids:	0.	0				
C	oncentration	Units (ug	/L or mg/kg dry	y weight	t): U(g/L_
	CAS No.	Analyte	Concentration	c Q	м	
8					$- _{\overline{NR}}$	
-	7429-90-5	Aluminum			$- _{NR}^{NR}$	
	7440-36-0	Antimony_ Arsenic	0.85	11 -11-1-		Macili
	7440-38-2 7440-39-3	Barium		FUI	$- _{\overline{NR}}^{F}$	QE0/13/00
		Beryllium				• •
1		Cadmium			- NR	
l l	7440-70-2	Calcium			- NR	
	7440-47-3	Chromium				
1	7440-48-4	Cobalt			- NR	
	7440-50-8	Copper		[- NR	
•	7439-89-6	Iron		-[- NR	
	7439-92-1	Lead		-	- NR	ĺ
r	7439-95-4	Magnesium			- NR	
	7439-96-5	Manganese			NR	
_	7439-97-6	Mercury			NR	
		Nickel			- NR	
	7440-09-7	Potassium		- -	- NR	
	7782-49-2			-	- NR	
	7440-22-4	Silver	· · · · · · · · · · · · · · · · · · ·		- NR	
	7440-23-5	Sodium			- NR	
_	7440-28-0	Thallium		· · · · · · · · · · · · · · · · · · ·	- NR	
		Vanadium]	- NR	
	7440-66-6	Zinc		- -	NR	•
-		Cyanide			NR	
						l
olor Before:	COLORLESS	Clari	ty Before: CLEA	AR_	Tez	xture:
olor After:	COLORLESS	Clari	ty After: CLE	AR_	Art	tifacts:
comments:						
						<u> </u>
·			<u> </u>		·	
			······································			
	1	F	ORM I - IN			ILM03.(

0.3. BFA - VII	υ	J.S.	EPA		CLF
----------------	---	------	-----	--	-----

Comments:

SOLUBLE_____

FORM I - IN

.

U	.s	EPA	-	CLP
۰.	• •			

EPA SAMPLE NO.

17

_____I

1 INORGANIC ANALYSES DATA SHEET

•							DUP	
L y b Name: STL_C	HICAGO		Contract:]	
Lab Code: STL	Cas	se No.:	SAS No.:	-		SD	G No.: U04680	
M t rix (soil/wa	ter): WATER	ર		La	b Sampl	e I	D: 9A04G680-01	.3
Level (low/med)	: LOW	-		Da	ite Rece	ive	d: 04/08/00	
% Solids:	0.0)						
Con	centration	Units (ug,	/L or mg/kg dry	r w	eight):	ŪG	/L_	
•		-	Concentration	c		M		
	7440-36-0 7440-38-2 7440-39-3	Aluminum Antimony_ Arsenic_ Barium Beryllium	3.2		<u> </u>	NR NR F_ NR NR	CQE0/13/00	

	CAS No.	Analyte	Concentration	С	Q	м	
	7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-43-9 7440-48-4 7440-48-4 7440-50-8 7439-92-1 7439-92-1 7439-95-4 7439-95-4 7439-95-5 7439-95-6 7439-95-6 7439-97-6 7440-02-0 7440-02-0 7440-22-4 7440-23-5 7440-28-0 7440-66-6	Aluminum_ Antimony_ Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide				NR F NR R R R R R R R R R R R R R R R R	CAE 6/13/00
Clor Before:	COLORLESS	Clarit	ty Before: CLE	AR		Tez	
Color After:	COLORLESS	Clarit	ty After: CLEA	AR_	_	Art	tifacts:
Comments:							
_							

|

•

ILM03.0

.

.

0.0. DEM - CHE	U	.s		EPA	-	CLF
----------------	---	----	--	-----	---	-----

bb Code: STL			U.S.	EPA - CLP		
db Name: STL_CHICAGO Contract: DUPS bb Code: STLCase No.: SAS No.: Cd2 6 15 km cd2 clistor SDG No.: U04660 Atrix (soil/water): WATER Lab Sample ID: 9A04G680-01 wel (low/med): LOWDate Received: 04/08/00 Solids: 0.0 Concentration Units (ug/L or mg/kg dry weight): UG/L_ CAS No. Analyte Concentration C 7440-36-0 Antimony 7440-38-2 Arsenic 8.8 TM 7440-39-3 Barium 7440-41-7 Berlium 7440-41-7 Colum 7440-41-7 Berlium 7440-41-7 Berlium 7440-41-7 Berlium 7440-41-7 Berlium 7440-41-7 Berlium 7440-41-7 Berlium 7440-20-8 Copper 7439-95-6 Manganese 7439-95-6 Manganese 7439-97-6 Mercury NR NR 7440-22-0 Nickel 7440-23-5 Sodium 7440-23-5 NR <th>8</th> <th></th> <th>INORGANIC A</th> <th></th> <th>HEET</th> <th>EPA SAMPLE NO.</th>	8		INORGANIC A		HEET	EPA SAMPLE NO.
Case No.:						
bb Code: STLCase No.:SAS No.:SDG No.:SDG No.: U04680 htrix (soil/water): WATER Lab Sample ID: 9A04G680-01 htrix (soil/water): LOWDate Received: 04/08/00 Date Received: 04/08/00 Solids:0.0 Analyte Concentration C Q M 7440-36-0 Animony Bate Received: 04/08/00 7440-38-2 Arsenic 8.8 TM 7440-41-7 Beryllium NR NR 7440-41-7 Beryllium NR NR 7440-41-7 Corper NR NR 7440-41-7 Corper NR NR 7440-41-7 Corper NR NR 7440-48-4 Cobalt NR NR 7440-41-7 Chromium NR NR 7440-42-1 Cobalt NR NR 7440-42-3 Cobalt NR NR 7440-22-4 Siloen NR NR </td <td>ab Name: STL</td> <td>CHICAGO</td> <td></td> <td>Contract:</td> <td></td> <td></td>	ab Name: STL	CHICAGO		Contract:		
Atrix (soil/water): WATER Lab Sample ID: 9A04G680-01 Atrix (soil/water): WATER Lab Sample ID: 9A04G680-01 Date Received: 04/08/00 Solids:0.0 Concentration Units (ug/L or mg/kg dry weight): UG/L_ CAS NO. Analyte Concentration C Q M 7429-90-5 Aluminum, 8.8 NR 7440-38-2 Arsenic8.8 NR 7440-39-3 Barium NR 7440-41-7 BeryllJum NR 7440-41-7 BeryllJum NR 7440-43-9 Cadnium NR 7440-41-7 Calcium NR 7440-41-7 Chromium NR 7440-42-3 Chromium NR 7440-42-6 Cobalt NR 7439-92-1 Lead NR 7439-95-4 Magnesium NR 7439-96-5 Magnese NR 7439-96-5 Magnese NR 7440-02-0 Nickel NR 7440-02-0 Nickel NR 7440-02-0 Sodium NR 7440-22-4 Silver NR 7440-66-6 Zinc NR 7440-66-6 Zinc NR 7440-66-6 Zinc NR 7440-66-6 Zinc NR 7440-66-6 Zinc NR 7440-66-6 Zinc NR 7440-66-7 Zinc NR 7440-66-7 Zinc NR 7440-66-7 Zinc NR 7440-66-7 Zinc NR 7440-66-8 Clarity Before: CLEAR Texture: Solor Before: COLORLESS Clarity After: CLEAR Artifacts: Solor Before: COLORLESS Clarity After: CLEAR Artifacts:						Cae 6/13/00
<pre>nvel (low/med): LOW</pre>	ab Code: STL	Ca:	se No.:	SAS No.:	·	SDG No.: U04680
Solids:	atrix (soil/w	ater): WATE	R		Lab Samp	le ID: 9A04G680-014
Concentration Units (ug/L or mg/kg dry weight): UG/L_ CAS No. Analyte Concentration C Q M 7429-90-5 Aluminum 7440-36-0 Antimony 7440-38-2 Arsenic 8.8 TF F 7440-39-3 Barium 7440-41-7 Beryllium 7440-41-7 Beryllium 7440-47-3 Ccadmium 7440-47-3 Chromium 7440-48-4 Cobalt NNR 7440-50-8 Copper 7439-95-4 Magnesium 7439-95-4 Magnesium 7439-95-4 Magnesium 7439-95-4 Magnesium 7439-97-6 Mercury 7439-97-6 Mercury 7439-97-6 Mercury 7440-02-0 Nickel NNR 7440-22-4 Silver 7440-22-4 Silver 7440-22-4 Solum 7440-62-6 Cyanide NNR 7440-66-6 Cyanide	evel (low/med	l): LOW_	-		Date Rece	eived: 04/08/00
CAS No. Analyte Concentration C Q M 7429-90-5 Aluminum	Solids:	_0.	0			
Image: constraint of the second se	Co	ncentration	Units (ug,	/L or mg/kg dry	y weight)	: UG/L_
7440-36-0 Antimony		CAS No.	Analyte	Concentration	C Q	M
7440-36-0 Antimony				<u>_</u>		375
7440-38-2 Arsenic	•				_	
7440-39-3 Barium	_					D MG (lig)
7440-41-7 Beryllium				8.8	_ <i>I</i> /'	F 4261300
7440-43-9 Cadmium		7440-39-3	Barium			
7440-70-2 Calcium		7440-41-7	Beryllium			
7440-47-3 Chromium					!	
7440-48-4 Cobalt					_	1 1
7440-50-8 Copper				·		
7439-89-6 Iron	8					
7439-92-1 Lead						
7439-95-4 Magnesium	-				_	
7439-96-5 Manganese						
7439-97-6 Mercury	1				_	
7440-02-0 Nickel						1 I
7440-09-7 Potassium NR 7782-49-2 Selenium NR 7440-22-4 Silver NR 7440-23-5 Sodium NR 7440-28-0 Thallium NR 7440-62-2 Vanadium NR 7440-66-6 Zinc NR 7440-66-6 Zinc NR 7440-66-6 Zinc NR Olor Before: COLORLESS Clarity Before: CLEAR Dolor After: COLORLESS Clarity After: CLEAR SOLUBLE	_				_	
7782-49-2 Selenium						
7440-22-4 Silver		1		·		
7440-23-5 Sodium					— ———	
7440-28-0 Thallium	· ·					
7440-62-2 Vanadium_Zinc_Cinc_Cyanide_ NR Olor Before: COLORLESS Clarity Before: CLEAR_ Texture:						
7440-66-6 Zinc NR Cyanide NR Olor Before: COLORLESS Clarity Before: CLEAR_ Texture: Olor After: COLORLESS Clarity After: CLEAR_ Artifacts: Omments: SOLUBLE		1			-	· · ·
Cyanide						
Olor Before: COLORLESS Clarity Before: CLEAR_ Texture: Olor After: COLORLESS Clarity After: CLEAR_ Artifacts: Omments: SOLUBLE		/330-00-0			·	
Dior After: COLORLESS Clarity After: CLEAR_ Artifacts:	•					
Domments: SOLUBLE	olor Before:	COLORLESS	Clari	ty Before: CLE	AR_	Texture:
SOLUBLE	olor After:	COLORLESS	Clari	ty After: CLEA	AR_	Artifacts:
	omments:				`	
	SOLUBLE					·····
				<u> </u>	<u> </u>	
				OPM T - TN		 ILM03.0

.

356 FARRAGUT CROSSING DR. KNOXVILLE, TN 37922 (423) 966-8880 FAX (423) 966-8885 cerikson@trilliuminc.com

June 13, 2000

Mr. Dan Garrigan O&M, Inc. 450 Montbrook Lane Knoxville, TN 37919

RE: Data Package Review - STL Lot No. 9A04G680 - Chloride in Surface Waters

Dear Dan:

I have completed my evaluation of the chloride analysis data prepared by the Severn Trent Laboratory (STL) in University Park, Illinois, for seven surface water samples from the L&RR site. The data were reported in a single data package under Lot No. 9A04G680, which was received by Trillium for review on April 28, 2000 and included the following samples:

LCH-5	LCH-4	SW-16
SW-10	SW-8	SW-5
DUP		

Analyses were performed according to EPA Method 325.2 (EPA-600/4-79-020, March 1983). My evaluation was based on the specifications of the project-specific Quality Assurance Project Plan (QAPP, 9/96), the referenced method, and, to the extent applicable, the USEPA Region I Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses (6/88; Rev. 2/89).

Based on the evaluation, the following qualifiers were applied:

• Results for chloride in LCH-5 and DUP were qualified as estimated (J) due to poor reproducibility in the field duplicate analyses.

These qualifiers are reflected on the laboratory's Inorganic Data Reports included as Attachment A to this report. Region I qualifier definitions are also provided in this attachment.

At the discretion of the data user, the following points may warrant attention by field and laboratory personnel with regard to this data package and prior to future sampling events at this site:

Home Office: 28 grace's drive • Coatesville, Pa19320 • (610) 383-7233 • Fax (610) 383-7907 Offices in: Louisiana • Maryland • New Jersey • North Carolina • Pennsylvania • Tennessee • Texas

Mr. Dan Garrigan Evaluation of STL Lot No. 9A04G680 (Chloride in SW) June 13, 2000 Page 2

- Documentation of sample preservation performed in the field on all applicable chain of custody records.
- Documentation of cooler temperatures and sample pHs at the time of laboratory receipt on all applicable chain of custody records.
- Inclusion of raw data as needed to document calibrations and analysis of all samples.

Specific details regarding the review and evaluation of these data are discussed below:

Holding Times, Preservation, Sample Integrity: A copy of the field chain of custody (COC) record was included in the data package, documenting a sample collection date of 4/7/00 for the surface waters. Acceptable cooler temperatures (3.6°C and 2.6°C) on laboratory receipt were recorded on the COC. Acidification of the samples for chloride analysis, however, was not noted by the sampler on the COC and no verification of acidification was documented in the data package by the laboratory. At the request of the evaluator, the laboratory provided a revised COC for the surface water samples, with a checkmark in the "Preserved" space added.

The revised COC was inserted into the data package for G680 as page 199a.

Sample pHs were still not found on the additional documentation provided by the laboratory. For the purposes of this evaluation, it was assumed that samples for chloride analyses were properly preserved at the time of collection, and no further action was taken on this basis.

All sample analyses for chloride were performed within the 28-day holding time specified by the QAPP for this parameter.

Calibrations: Although a spectrophotometric method was referenced for chloride, no documentation of an initial calibration curve or calibration verification standards was provided in the data package. A statement in the narrative says, "The initial and continuing calibration verification standards and blanks were in control," but is not specific as to which method is referred to. At the request of the evaluator, copies of the applicable instrument print-outs and analyst log book pages as well as a summary data table for chloride were provided by the laboratory via FedEx on 6/9/00. Based on this documentation, an initial calibration (1.0-30 mg/L) was run for chloride on 4/12/00 (immediately prior to sample analyses) and an acceptable correlation coefficient (>0.995) was reported for that curve. Initial and continuing calibration verification standards were run at appropriate frequencies throughout the chloride analysis series, and all recoveries were acceptable (QC 85-115%).

The chloride raw data documentation was inserted into the data package for G680 as pages 12a through 12i by the evaluator.

Mr. Dan Garrigan Evaluation of STL Lot No. 9A04G680 (Chloride in SW) June 13, 2000 Page 3_____

Blanks: A method blank (MB) containing no chloride above the reporting limit was reported in the data package.

Calibration blanks were also run at the appropriate frequencies throughout the analysis series, based on the raw data documentation provided by the laboratory as discussed above. No chloride was detected above the reporting limit in any of the calibration blanks.

Laboratory Control Samples: A laboratory control sample (LCS) was analyzed in association with the sample analyses for chloride, and an acceptable recovery (103%) was reported.

Duplicate Analysis: No laboratory duplicate analysis was performed on any of the samples in this data package.

Matrix Spike Analysis: No matrix spike analysis was performed on any of the samples in this data package.

Sample Results: Sample results greater than or equal to the laboratory-specified reporting limits for chloride were reported on summary forms for all samples. Based on the raw data provided by the laboratory, some samples were appropriately re-analyzed at dilutions for some parameters

Field Duplicates: Sample DUP was identified as a field duplicate of LCH-4. Paired results for chloride showed poor reproducibility, with a relative percent difference of 47.7%. Results for chloride in LCH-4 and DUP were qualified as estimated (J) on this basis.

Documentation: Data package documentation was consistent with the specifications of the QAPP; specifically, a Level III package containing summary forms only was provided. However, no documentation of initial or continuing calibration standards for chloride was provided, although this information has been provided in previous data packages generated in support of this project. For wet chemistry parameters in general, the raw data pages serve as run logs and are helpful for verifying that all samples were, in fact, analyzed. For those parameters run by spectrophotometric methods, the raw data pages are necessary to evaluate calibrations and calibration blanks, which are not routinely summarized elsewhere. Additional documentation for chloride was therefore requested from and provided by the laboratory as discussed previously in this report.

Documentation of sample pHs and cooler temperatures on laboratory receipt was also incomplete in the data packages as received for review. Clarifications and corrections, as appropriate, were verbally requested by the validator on 6/6/00; responses were received from the laboratory via FedEx on 6/9/00. Corrected documents were inserted into the applicable data packages as discussed previously in this report.

Mr. Dan Garrigan Evaluation of STL Lot No. 9A04G680 (Chloride in SW) June 13, 2000 Page 4

A revised COC for the surface water samples, with a checkmark in the "Preserved" space added, was provided by the laboratory, but this new entry was not initialed or dated. While this has no direct effect on the technical validity of the reported sample data, it could be problematic if the data are used for litigation.

Please let me know if you have any questions regarding this data package review report.

Sincerely,

Carel Eriksor

Carol A. Erikson Quality Assessment Manager

CAE/hrs 95406\Apr00\swchloride

ATTACHMENT A

Chloride in Surface Waters STL Lot No. 9A04G680

EPA Region I Qualifier Definitions:

- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- J The associated value is an estimated quantity.
- R- The data are unusable. (Note: Analyte may or may not be present).
- UJ The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

To: O&M-L&RR Landfill 301 Gallaher View Road Suite 230 Knoxville, TN 37919

Attn: Mr. Daniel Garrigan

• •

:

.

Date: Thursday April 20th. 2000

RE: LCH-5 Project # 00000-000-000-0000 Lab ID: 9A04G680-001 Sample Date: 04/07/00 Date Received: 04/08/00

Inorganic Data Report

Parameters	Result	Units	Reporting Limit
Chloride	16.3	mg/L	1.0

4

• •

To: 0&M-L&RR Landfill 301 Gallaher View Road Suite 230 Knoxville, TN 37919

Attn: Mr. Daniel Garrigan

Date: Thursday April 20th, 2000

RE: LCH-4 Project # 00000-000-000-0000 Lab ID: 9A04G680-003 Sample Date: 04/07/00 Date Received: 04/08/00

Inorganic Data Report

Reporting Limit Result Units Parameters 5.0 80.7 J mg/L Casuikson 6/13/00

Chloride

5

To: O&M-L&RR Landfill 301 Gallaher View Road

Date: Thursday April 20th, 2000

RE: SW-16 Project # 00000-000-000-0000 Lab ID: 9A04G680-005 Sample Date: 04/07/00 Date Received: 04/08/00

Inorganic Data Report

Parameters	Result	Units	Reporting Limit
Chloride	29.4	mg/L	1.0

•5

Suite 230 Knoxville, TN 37919

Attn: Mr. Daniel Garrigan

.

6

**** .

...

Attn: Mr. Daniel Garrigan

•

Date: Thursday April 20th, 2000

RE: SW-10 Project # 00000-000-000-0000 Lab ID: 9A04G680-007 Sample Date: 04/07/00 Date Received: 04/08/00

Inorganic Data Report

Parameters	Result	Units	Reporting Limit
Chloride	30.2	mg/L	2.0

Attn: Mr. Daniel Garrigan

•--- `

.

Date: Thursday April 20th, 2000

RE: SW-8 Project # 00000-000-000-0000 Lab ID: 9A04G680-009 Sample Date: 04/07/00 Date Received: 04/08/00

Inorganic Data Report

Parameters	Result	Units	Reporting Limit
Chloride	58.3	mg/L	5.0

8

Attn: Mr. Daniel Garrigan

Date: Thursday April 20th, 2000

RE: SW-5 Project # 00000-000-000-0000 Lab ID: 9A04G680-011 Sample Date: 04/07/00 Date Received: 04/08/00

Inorganic Data Report

Parameters	Result	Units	Reporting Limit
Chloride	10.5	mg/L	1.0

Attn: Mr. Daniel Garrigan

:

Date: Thursday April 20th, 2000

RE: DUP Project # 00000-000-000-0000 Lab ID: 9A04G680-013 Sample Date: 04/07/00 Date Received: 04/08/00

Inorganic Data Report

Parameters	Result	Units	Reporting Limit
Chloride	49.6 J	mg/L	2.0
	Cae	6/13/00	

Appendix F

Ambient Air Sampling Report AirRecon, Inc.

.

-

· .

July 11, 2000

Mr. Dan Garrigan Operations and Maintenance, Inc. 301 Gallaher View Rd. Suite 230 Knoxville, TN 37919

RE: L&RR Landfill North Smithfield, RI AirRECON Project 311-00105-00-000

Dear Mr. Garrigan:

Enclosed, please find copies of the laboratory results from the test program performed at the L&RR landfill located in North Smithfield RI, and associated data from the test program.

Five TO-14 samples were collected around the perimeter of the landfill. The sampling duration was twentytwo (22) hours. The shortened sampling duration was used to insure samples did not go "ambient" and that enough pressure was left in the samples during shipment back to the laboratory.

In addition, one (1) USEPA Method 18 grab sample was also collected at the header to the flare. This sample was collected over a four-hour period.

All sampling was performed without incident, and by USEPA methodologies.

If you have any questions or require additional information, please do not hesitate to contact me at (860) 721-7728.

It was a pleasure being of service to you. Should you require additional work please feel free to contact me.

Sincerely, Janmie

John S. Gammie Sr. Environmental Specialist AirRECON a division of LFR

Cc. Andrew McNeel/ AirRECON/ NJ Thor Helgasin/ DeMaximus, Inc.

Sampling Data on June 8-9 2000 at the Smithfield, RI Landfill TO 14 Samples

Weather Conditions June 8, 2000 Barometric Pressure 30.13, dewpoint 11, west wind (0-4) mph, temp 75-80F

Location		start time	date	finish time	date	tank# or	rifice#
AS-1	near gate entrance	1120am	6/8/00	0920am	6/9/00	332	05967 (1)
AS-1 dup		1120am	6/8/00	0920am (6/9/00	271	05033 (95-03)
AS-2		1124am	6/8/00	0924am	6/9/00	2701	05483 (98-17)
AS-3		1129am	6/8/00	0929am	6/9/00	2507	05995 (97-03)
AS-4	closest to flare	1133am	6/8/00	0933am	6/9/00	913	05493 (96-06)

Weather Conditions 6-9-2000 Barometric Pressure 29.97, dew point 17, west wind (0-9) mph temp 75-80F

Method 18 Sampling data

Start time	date	finish time	date
0953am	6/8/00	1353pm	6/8/00

1

WORK ORDER #: 0006175

Work Order Summary

CLIENT:	Tom Brown LFR Levine-Fricke 5 Johnson Drive P.O. Box 130 Raritan, NJ 08869	BILL TO:	Tom Brown LFR Levine-Fricke 5 Johnson Drive P.O. Box 130 Raritan, NJ 08869
PHONE:	908-526-1000	P.O. #	
FAX: DATE RECEIVED: DATE COMPLETED:	908-526-7886 6/12/00 6/22/00	PROJECT #	311-00105 OIM

FRACTION #	NAME	TEST	RECEIPT <u>VAC./PRES.</u>
01A	AS-1	TO-14	· 6.5 "Hg
02A	AS-1 Dup	TO-14	6.0 "Hg
03A	AS-2	TO-14	5.0 "Hg
04A	AS-3	TO-14	6.0 "Hg
05A	AS-4	TO-14	6.0 "Hg
06A	BLANK	TO-14	28.5 "Hg
07A	Lab Blank	TO-14	NA
07B	Lab Blank	TO-14	NA

CERTIFIED BY:

R Laborator Director L

DATE: 6/29/00

Certification numbers: CA ELAP - 1149, NY ELAP - 11291, UT ELAP - E-217, AZ ELAP - AZ0567

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE TO-14 LFR Levine-Fricke Workorder# 0006175

Six 6 Liter Summa Canister samples were received on June 12, 2000. The laboratory performed analysis via EPA Method TO-14 using GC/MS in the full scan mode. The method involves concentrating up to 0.5 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis. See the data sheets for the reporting limits for each compound.

During the five point calibration, two low-level standards are used. The low-level standard for TO-14 compounds is spiked at 0.5 ppbv and represents the reporting limit for these compounds. The low-level standard for the non-TO-14 compounds is spiked at 2.0 ppbv and represents the reporting limit for these compounds. The TO-14 compounds are present in both standards but are excluded from reporting in the 2.0 ppbv standard since a lower level is already included in the curve.

Requirement	TO-14	ATL Modifications
Internal standard retention times.	Not specified.	Within 0.50 minutes of most recent daily CCV internal standards
Internal standard recoveries.	Not specified.	Within 40% of the daily CCV internal standard area for blanks and samples.
Internal standard retention times.	Not specified.	Within 0.50 minutes of most recent daily CCV internal standards
Internal calibration criteria.	Not specified.	RSD of 30% or less for standard compounds, 40% or less for non-standard and polar compounds
Continuing calibration verification criteria	Not specified.	70 - 130% for at least 90% of standard compounds, 60 - 140% for at least 80% of non-standard and polar compounds
Response factor for quantitation.	Average response factor (ICAL).	Average response factor (ICAL).

Method modifications taken to run these samples include:

Receiving Notes

The chain of custody information for sample BLANK did not match the entry on the sample tag. The client was notified and the information on the chain of custody was used to process and report the sample.

Analytical Notes

Methylene Chloride was detected in the laboratory blank analyzed on 06/20/00 at less than 5X the reporting limit. Associated sample results are reported as qualified.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit(background subtraction not performed).

J - Estimated value.

- E Exceeds instrument calibration range.
- S Saturated peak.

.

- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- N The identification is based on presumptive evidence.

SAMPLE NAME : AS-1

ID#: 0006175-01A

1.74

EPA METHOD TO-14 GC/MS Full Scan

File Name: Dil. Factor: C061919 1.71 Date of Collection: 6/8/00 Date of Analysis: 6/19/00 Date of Analysis: 6/19/00

Compound	Det. Limit (ppbv)	Det. Limit (uG/m3)	Amount (ppbv)	Amount (uG/m3)
Freon 12	0.86	4.3	1.0	5.3
Freon 114	0.86	6.1	Not Detected	Not Detected
Chioromethane	0.86	1.8	1.5	3.1
Vinyl Chloride	0.86	2.2	Not Detected	Not Detected
Bromomethane	0.86	3.4	Not Detected	Not Detected
Chloroethane	0.86	2.3	Not Detected	Not Detected
Freon 11	0.86	4.9	Not Detected	Not Detected
1,1-Dichloroethene	0.86	3.4	Not Detected	Not Detected
Freon 113	0.86	6.7	Not Detected	Not Detected
Methylene Chloride	0.86	3.0	1.4	5.0
1,1-Dichloroethane	0.86	3.5	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.86	3.4	Not Detected	Not Detected
Chloroform	0.86	4.2	Not Detected	Not Detected
1,1,1-Trichloroethane	0.86	4.2	Not Detected	Not Detected
Carbon Tetrachloride	0.86	5.5	Not Detected	Not Detected
	0.86	2.8	Not Detected	Not Detected
Benzene		3.5	Not Detected	Not Detected
1,2-Dichloroethane	0.86	4.7	Not Detected	Not Detected
	0.86	4.7	Not Detected	Not Detected
1,2-Dichloropropane	0.86	3.9	Not Detected	Not Detected
cis-1,3-Dichloropropene	0.86	3.3	Not Detected	Not Detected
	0.86	3.9	Not Detected	Not Detected
trans-1,3-Dichloropropene	0.86	3. 9 4.7	Not Detected	Not Detected
1,1,2-Trichloroethane	0.86		Not Detected	Not Detected
Tetrachloroethene	0.86	5.9 6.7		Not Detected
Ethylene Dibromide	0.86		Not Detected	Not Detected
Chlorobenzene	0.86	4.0		
Ethyl Benzene	0.86	3.8	Not Detected	Not Detected
m,p-Xylene	0.86	3.8	Not Detected	Not Detected
o-Xylene	0.86	3.8	Not Detected	Not Detected
Styrene	0.86	3.7	Not Detected	Not Detected
1,1,2,2-Tetrachloroethane	0.86	6.0	Not Detected	Not Detected
1,3,5-Trimethylbenzene	0.86	4.3	Not Detected	Not Detected
1,2,4-Trimethylbenzene	0.86	4.3	Not Detected	Not Detected
1,3-Dichlorobenzene	0.86	5.2	Not Detected	Not Detected
1,4-Dichlorobenzene	0.86	5.2	Not Detected	Not Detected
Chlorotoluene	0.86	4.5	Not Detected	Not Detected
1,2-Dichlorobenzene	0.86	5.2	Not Detected	Not Detected
1,2,4-Trichlorobenzene	0.86	6.4	Not Detected	Not Detected
Hexachlorobutadiene	0.86	9.3	Not Detected	Not Detected
Propylene	3.4	6.0	Not Detected	Not Detected
1,3-Butadiene	3.4	7.7	Not Detected	Not Detected
Acetone	3.4	8.2	16	39

SAMPLE NAME : AS-1

ID#: 0006175-01A

EPA METHOD TO-14 GC/MS Full Scan

File Name:

Date of Collection: 6/8/001 17/1 Date of Analysis: 6/19/00

Compound	Det. Limit (ppbv)	Det. Limit (uG/m3)	Amount (ppbv)	Amount (uG/m3)
Carbon Disulfide	3.4	11	Not Detected	Not Detected
2-Propanol	3.4	8.5	Not Detected	Not Detected
trans-1,2-Dichloroethene	3.4	14	Not Detected	Not Detected
Vinyl Acetate	3.4	12	Not Detected	Not Detected
2-Butanone (Methyl Ethyl Ketone)	3.4	10	Not Detected	Not Detected
Hexane	3.4	12	Not Detected	Not Detected
Tetrahydrofuran	3.4	10	Not Detected	Not Detected
Cyclohexane	3.4	12	Not Detected	Not Detected
1,4-Dioxane	3.4	12	Not Detected	Not Detected
Bromodichloromethane	3.4	23	Not Detected	Not Detected
4-Methyl-2-pentanone	3.4	14	Not Detected	Not Detected
2-Hexanone	3.4	14	Not Detected	Not Detected
Dibromochloromethane	3.4	30	Not Detected	Not Detected
Bromoform	3.4	36	Not Detected	Not Detected
4-Ethyltoluene	3.4	17	Not Detected	Not Detected
Ethanol	3.4	6.5	Not Detected	Not Detected
Methyl tert-Butyl Ether	3.4	12	Not Detected	Not Detected
Heptane	3.4	14	Not Detected	Not Detected

Container Type: 6 Liter Summa Canister

Surrogates	% Recovery	Method Limits
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	105	70-130
4-Bromofluorobenzene	94	70-130

SAMPLE NAME : AS-1 Dup

ID#: 0006175-02A

EPA METHOD TO-14 GC/MS Full Scan

FileName: Dil: Factor:

.

C06 1920 Date of Collection: 6/8/00 1:68

Compound	Det. Limit (ppbv)	Det. Limit (uG/m3)	Amount (ppbv)	Amount (uG/m3)
Freon 12	0.84	4.2	Not Detected	Not Detected
Freon 114	0.84	6.0	Not Detected	Not Detected
Chloromethane	0.84	1.8	Not Detected	Not Detected
Vinyl Chloride	0.84	2.2	Not Detected	Not Detected
Bromomethane	0.84	3.3	Not Detected	Not Detected
Chloroethane	0.84	2.2	Not Detected	Not Detected
Freon 11	0.84	4.8	Not Detected	Not Detected
1.1-Dichloroethene	0.84	3.4	Not Detected	Not Detected
Freon 113	0.84	6.5	Not Detected	Not Detected
Methylene Chloride	0.84	3.0	1.4	5.1
1,1-Dichloroethane	0.84	3.4	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.84	3.4	Not Detected	Not Detected
Chloroform	0.84	4.2	Not Detected	Not Detected
1,1,1-Trichloroethane	0.84	4.6	Not Detected	Not Detected
Carbon Tetrachloride	0.84	5.4	Not Detected	Not Detected
Benzene	0.84	2.7	Not Detected	Not Detected
1,2-Dichloroethane	0.84	3.4	Not Detected	Not Detected
Trichloroethene	0.84	4.6	Not Detected	Not Detected
1,2-Dichloropropane	0.84	3.9	Not Detected	Not Detected
cis-1,3-Dichloropropene	0.84	3.9	Not Detected	Not Detected
Toluene	0.84	3.2	4.9	19
trans-1,3-Dichloropropene	0.84	3.9	Not Detected	Not Detected
1,1,2-Trichloroethane	0.84	4.6	Not Detected	Not Detected
Tetrachioroethene	0.84	5.8	Not Detected	Not Detected
Ethylene Dibromide	0.84	6.6	Not Detected	Not Detected
Chlorobenzene	0.84	3.9	Not Detected	Not Detected
Ethyl Benzene	0.84	3.7	3.3	15
m,p-Xylene	0.84	3.7	23	100
· -	0.84	3.7	3.8	16
o-Xylene Styrene	0.84	3.6	Not Detected	Not Detected
1,1,2,2-Tetrachloroethane	0.84	5.9	Not Detected	Not Detected
1,3,5-Trimethylbenzene	0.84	4.2	2.1	10
•		4.2	1.0	5.2
1,2,4-Trimethylbenzene	0.84	5.1	Not Detected	Not Detected
1,3-Dichlorobenzene	0.84		0.99	6.0
1,4-Dichlorobenzene	0.84	5.1	Not Detected	Not Detected
Chiorotoluene	0.84	4.4		5.8
1,2-Dichlorobenzene	0.84	5.1	0.94 Not Detected	
1,2,4-Trichlorobenzene	0.84	6.3	Not Detected	Not Detected
Hexachlorobutadiene	0.84	9.1	Not Detected	Not Detected
Propylene	3.4	5.9	Not Detected	Not Detected
1,3-Butadiene	3.4	7.6	Not Detected	Not Detected
Acetone	3.4	8.1	36	87

SAMPLE NAME : AS-1 Dup

ID#: 0006175-02A

1.68

EPA METHOD TO-14 GC/MS Full Scan

File/Name:

Date of Collection: 6/8/00 Date of Analysis: 5/19/00

Compound	Det. Limit (ppbv)	Det. Limit (uG/m3)	Amount (ppbv)	Amount (uG/m3)
Carbon Disulfide	3.4	11	4.1	13
2-Propanol	3.4	8.4	Not Detected	Not Detected
trans-1,2-Dichloroethene	3.4	14	Not Detected	Not Detected
Vinyl Acetate	3.4	12	Not Detected	Not Detected
2-Butanone (Methyl Ethyl Ketone)	3.4	10	5.9	18
Hexane	3.4	12	Not Detected	Not Detected
Tetrahydrofuran	3.4	10	Not Detected	Not Detected
Cyclohexane	3.4	12	Not Detected	Not Detected
1,4-Dioxane	3.4	12	Not Detected	Not Detected
Bromodichloromethane	3.4	23	Not Detected	Not Detected
4-Methyl-2-pentanone	3.4	14	Not Detected	Not Detected
2-Hexanone	3.4	14	Not Detected	Not Detected
Dibromochloromethane	3.4	29	Not Detected	Not Detected
Bromoform	3.4	35	Not Detected	Not Detected
4-Ethyltoluene	3.4	17	Not Detected	Not Detected
Ethanol	3.4	6.4	Not Detected	Not Detected
Methyl tert-Butyl Ether	3.4	12	Not Detected	Not Detected
Heptane	3.4	14	Not Detected	Not Detected

Container Type: 6 Liter Summa Canister

Surrogates	% Recovery	Method Limits
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	102	70-130
4-Bromoftuorobenzene	94	70-130

SAMPLE NAME : AS-2

ID#: 0006175-03A

EPA METHOD TO-14 GC/MS Full Scan

File Name: 35

Content of Collection: 6/8/00 4:05 The second second second second second second second second second second second second second second second sec

Compound	Det. Limit (ppbv)	Det. Limit (uG/m3)	Amount (ppbv)	Amount (uG/m3)
Freon 12	0.80	4.0	0.82	4.1
Freon 114	0.80	5.7	Not Detected	Not Detected
Chioromethane	0.80	1.7	Not Detected	Not Detected
,	0.80	2.1	Not Detected	Not Detected
Vinyl Chloride	0.80	3.2	Not Detected	Not Detected
Bromomethane	0.80	2.2	Not Detected	Not Detected
		4.6	Not Detected	Not Detected
Freon 11	0.80	3.2	Not Detected	Not Detected
1,1-Dichloroethene	0.80	5.2 6.3		Not Detected
Freon 113	0.80		Not Detected	3.1
Methylene Chloride	0.80	2.8	0.89	
1,1-Dichloroethane	0.80	3.3	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.80	3.2	Not Detected	Not Detected
Chloroform	0.80	4.0	Not Detected	Not Detected
1,1,1-Trichloroethane	0.80	4.5	Not Detected	Not Detected
Carbon Tetrachloride	0.80	5.1	Not Detected	Not Detected
Benzene	0.80	2.6	Not Detected	Not Detected
1,2-Dichloroethane	0.80	3.3	Not Detected	Not Detected
Trichloroethene	0.80	4.4	Not Detected	Not Detected
1,2-Dichloropropane	0.80	3.8	Not Detected	Not Detected
cis-1,3-Dichloropropene	0.80	3.7	Not Detected	Not Detected
Toluene	0.80	3.1	Not Detected	Not Detected
trans-1,3-Dichloropropene	0.80	3.7	Not Detected	Not Detected
1,1,2-Trichloroethane	0.80	4.5	Not Detected	Not Detected
Tetrachloroethene	0.80	5.6	Not Detected	Not Detected
Ethylene Dibromide	0.80	6.3	Not Detected	Not Detected
Chlorobenzene	0.80	3.8	Not Detected	Not Detected
Ethyl Benzene	0.80	3.6	Not Detected	Not Detected
m,p-Xylene	0.80	3.6	Not Detected	Not Detected
o-Xylene	0.80	3.6	Not Detected	Not Detected
Styrene	0.80	3.5	Not Detected	Not Detected
1,1,2,2-Tetrachloroethane	0.80	5.6	Not Detected	Not Detected
1,3,5-Trimethylbenzene	0.80	4.0	Not Detected	Not Detected
1,2,4-Trimethylbenzene	0.80	4.0	Not Detected	Not Detected
1,3-Dichlorobenzene	0.80	4.9	Not Detected	Not Detected
1,4-Dichlorobenzene	0.80	4.9	Not Detected	Not Detected
Chlorotoluene	0.80	4.2	Not Detected	Not Detected
1,2-Dichlorobenzene	0.80	4.9	Not Detected	Not Detected
-	0.80	6.1	Not Detected	Not Detected
1,2,4-Trichlorobenzene		8.7	Not Detected	Not Detected
Hexachlorobutadiene	0.80	5.6	Not Detected	Not Detected
Propylene	3.2	7.2	Not Detected	Not Detected
1,3-Butadiene	3.2			55
Acetone	3.2	7.8	23	

SAMPLE NAME : AS-2

ID#: 0006175-03A

EPA METHOD TO-14 GC/MS Full Scan

File Name: Dil: Factor: C061921a Hort Collection: 6/8/00 # 1/619 Date of Analysis: 16/19/00 #

Compound	Det. Limit (ppbv)	Det. Limit (uG/m3)	Amount (ppbv)	Amount (uG/m3)
Carbon Disulfide	3.2	10	Not Detected	Not Detected
2-Propanol	3.2	8.0	Not Detected	Not Detected
trans-1,2-Dichloroethene	3.2	13	Not Detected	Not Detected
Vinyl Acetate	3.2	12	Not Detected	Not Detected
2-Butanone (Methyl Ethyl Ketone)	3.2	9.6	3.3	9.9
Hexane	3.2	12	Not Detected	Not Detected
Tetrahydrofuran	3.2	9.6	Not Detected	Not Detected
Cyclohexane	3.2	11	Not Detected	Not Detected
1,4-Dioxane	3.2	12	Not Detected	Not Detected
Bromodichioromethane	3.2	22	Not Detected	Not Detected
4-Methyl-2-pentanone	3.2	13	Not Detected	Not Detected
2-Hexanone	3.2	13	Not Detected	Not Detected
Dibromochloromethane	3.2	28	Not Detected	Not Detected
Bromoform	3.2	34	Not Detected	Not Detected
4-Ethyltoluene	3.2	16	Not Detected	Not Detected
Ethanol	3.2	6.2	Not Detected	Not Detected
Methyl tert-Butyl Ether	3.2	12	Not Detected	Not Detected
Heptane	3.2	13	Not Detected	Not Detected

Container Type: 6 Liter Summa Canister

Surrogates	% Recovery	Method Limits
1,2-Dichloroethane-d4	108	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	87	70-130

SAMPLE NAME : AS-3

ID#: 0006175-04A

1455

EPA METHOD TO-14 GC/MS Full Scan

File Name: Dil. Factor: g062019 Date of Collection: 6/8/00 1/55 Date of Analysis: 6/20/00

Compound	Det. Limit	Det. Limit	Amount	Amount
Compound Freon 12	(ppbv)	(uG/m3) 3.9	(ppbv) Not Detected	(uG/m3) Not Detected
	0.78		· · · · · · · · · · · · · · · ·	
Freon 114	0.78	5.5	Not Detected	Not Detected
Chloromethane	0.78	1.6	Not Detected	Not Detected
Vinyl Chloride	0.78	2.0	Not Detected	Not Detected
Bromomethane	0.78	3.0	Not Detected	Not Detected
Chloroethane	0.78	2.1	Not Detected	Not Detected
Freon 11	0.78	4.4	Not Detected	Not Detected
1,1-Dichloroethene	0.78	3.1	Not Detected	Not Detected
Freon 113	0.78	6.0	Not Detected	Not Detected
Methylene Chloride	0.78	2.7	1.4 B	4.9 B
,1-Dichloroethane	0.78	3.2	Not Detected	Not Detected
is-1,2-Dichloroethene	0.78	3.1	Not Detected	Not Detected
Chloroform	0.78	3.8	Not Detected	Not Detected
,1,1-Trichloroethane	0.78	4.3	Not Detected	Not Detected
Carbon Tetrachloride	0.78	5.0	Not Detected	Not Detected
Benzene	0.78	2.5	Not Detected	Not Detected
,2-Dichloroethane	0.78	3.2	Not Detected	Not Detected
richloroethene	0.78	4.2	Not Detected	Not Detected
,2-Dichloropropane	0.78	3.6	Not Detected	Not Detected
is-1,3-Dichloropropene	0.78	3.6	Not Detected	Not Detected
oluene	0.78	3.0	Not Detected	Not Detected
rans-1,3-Dichloropropene	0.78	3.6	Not Detected	Not Detected
1,2-Trichioroethane	0.78	4.3	Not Detected	Not Detected
etrachioroethene	0.78	5.3	Not Detected	Not Detected
Ethylene Dibromide	0.78	6.0	Not Detected	Not Detected
Chlorobenzene	0.78	3.6	Not Detected	Not Detected
Ethyl Benzene	0.78	3.4	Not Detected	Not Detected
n,p-Xylene	0.78	3.4	Not Detected	Not Detected
-Xylene	0.78	3.4	Not Detected	Not Detected
Styrene	0.78	3.4	Not Detected	Not Detected
,1,2,2-Tetrachloroethane	0.78	5.4	Not Detected	Not Detected
,3,5-Trimethylbenzene	0.78	3.9	Not Detected	Not Detected
,2,4-Trimethylbenzene	0.78	3.9	Not Detected	Not Detected
,3-Dichlorobenzene	0.78	4.7	Not Detected	Not Detected
,4-Dichlorobenzene		4.7	Not Detected	Not Detected
**	0.78	4.1	Not Detected	
Chlorotoluene	0.78			Not Detected
,2-Dichlorobenzene	0.78	4.7	Not Detected	Not Detected
,2,4-Trichlorobenzene	0.78	5.8	Not Detected	Not Detected
lexachlorobutadiene	0.78	8.4	Not Detected	Not Detected
Propylene	3.1	5.4	Not Detected	Not Detected
,3-Butadiene	3.1	7.0	Not Detected	Not Detected
cetone	3.1	7.5	6.8	16

SAMPLE NAME : AS-3

ID#: 0006175-04A

EPA METHOD TO-14 GC/MS Full Scan

TElle Name: Date of Collection: 6/8/00. Dil Factor: Date of Analysis: 6/20/00

Compound	Det. Limit (ppbv)	Det. Limit (uG/m3)	Amount (ppbv)	Amount (uG/m3)
Carbon Disulfide	3.1	9.8	Not Detected	Not Detected
2-Propanol	3.1	7.7	Not Detected	Not Detected
trans-1,2-Dichloroethene	3.1	12	Not Detected	Not Detected
Vinyl Acetate	3.1	11	Not Detected	Not Detected
2-Butanone (Methyl Ethyl Ketone)	3.1	9.3	Not Detected	Not Detected
Hexane	3.1	· · · · · · · · · · · · · · · · · · ·	Not Detected	Not Detected
Tetrahydrofuran	3.1	9.3	Not Detected	Not Detected
Cyclohexane	3.1	11	Not Detected	Not Detected
1,4-Dioxane	3.1	11	Not Detected	Not Detected
Bromodichloromethane	3.1	21	Not Detected	Not Detected
4-Methyl-2-pentanone	3.1	13	Not Detected	Not Detected
2-Hexanone	3.1 [·]	13	Not Detected	Not Detected
Dibromochloromethane	3.1	27	Not Detected	Not Detected
Bromoform	3.1	32	Not Detected	Not Detected
4-Ethyltoluene	3.1	15	Not Detected	Not Detected
Ethanol	3.1	5.9	Not Detected	Not Detected
Methyl tert-Butyl Ether	3.1	11	Not Detected	Not Detected
Heptane	3.1	13	Not Detected	Not Detected

 ${\sf B}={\sf Compound}\ {\sf present}\ {\sf in}\ {\sf laboratory}\ {\sf blank},\ {\sf background}\ {\sf subtraction}\ {\sf not}\ {\sf performed}.$

Container Type: 6 Liter Summa Canister

		Method
Surrogates	% Recovery	Limits
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	93	70-130

SAMPLE NAME : AS-4

ID#: 0006175-05A

EPA METHOD TO-14 GC/MS Full Scan

File Name:

Compound	(ppbv)	(uG/m3)	(ppbv)	(uG/m3)
Freon 12	0.84	4.2	0.91	4.6
Freon 114	0.84	4.2 6.0	Not Detected	Not Detected
Chloromethane	0.84	1.8	Not Detected	Not Detected
/inyl Chloride	0.84	2.2	Not Detected	Not Detected
-		3.3	Not Detected	Not Detected
Bromomethane	0.84	2.2	Not Detected	Not Detected
	0.84	4.8	Not Detected	
	0.84			Not Detected
,1-Dichloroethene	0.84	3.4	Not Detected	Not Detected
Freon 113	0.84	6.5	Not Detected	Not Detected
Aethylene Chloride	0.84	3.0	0.90	3.2
,1-Dichloroethane	0.84	3.4	Not Detected	Not Detected
is-1,2-Dichloroethene	0.84	3.4	Not Detected	Not Detected
Chloroform	0.84	4.2	Not Detected	Not Detected
,1,1-Trichloroethane	0.84	4.6	Not Detected	Not Detected
Carbon Tetrachloride	0.84	5.4	Not Detected	Not Detected
Benzene	0.84	2.7	Not Detected	Not Detected
,2-Dichloroethane	0.84	3.4	Not Detected	Not Detected
richloroethene	0.84	4.6	Not Detected	Not Detected
,2-Dichloropropane	0.84	3.9	Not Detected	Not Detected
is-1,3-Dichloropropene	0.84	3.9	Not Detected	Not Detected
oluene	0.84	3.2	Not Detected	Not Detected
rans-1,3-Dichloropropene	0.84	3.9	Not Detected	Not Detected
,1,2-Trichloroethane	0.84	4.6	Not Detected	Not Detected
etrachloroethene	0.84	5.8	Not Detected	Not Detected
thylene Dibromide	0.84	6.6	Not Detected	Not Detected
Chlorobenzene	0.84	3.9	Not Detected	Not Detected
thyl Benzene	0.84	3.7	Not Detected	Not Detected
n,p-Xylene	0.84	3.7	Not Detected	Not Detected
-Xylene	0.84	3.7	Not Detected	Not Detected
ityrene	0.84	3.6	Not Detected	Not Detected
,1,2,2-Tetrachloroethane	0.84	5.9	Not Detected	Not Detected
,3,5-Trimethylbenzene	0.84	4.2	Not Detected	Not Detected
,2,4-Trimethylbenzene	0.84	4.2	Not Detected	Not Detected
,3-Dichlorobenzene	0.84	5.1	Not Detected	Not Detected
,4-Dichlorobenzene	0.84	5.1	Not Detected	Not Detected
Chlorotoluene	0.84	4.4	Not Detected	Not Detected
,2-Dichlorobenzene	0.84	5.1	Not Detected	Not Detected
,2,4-Trichlorobenzene	0.84	6.3	Not Detected	Not Detected
exachlorobutadiene	0.84	9.1	Not Detected	Not Detected
		5.9	Not Detected	Not Detected
ropylene	3.4	7.6	Not Detected	Not Detected
,3-Butadiene .cetone	3.4 3.4	7.6 8.1	7.5	18

SAMPLE NAME : AS-4

ID#: 0006175-05A

EPA METHOD TO-14 GC/MS Full Scan

Elle Name; Dit Eactor; Dit Eactor;

Compound	Det. Limit (ppbv)	Det. Limit (uG/m3)	Amount (ppbv)	Amount (uG/m3)
Carbon Disulfide	3.4	11	Not Detected	Not Detected
2-Propanol	3.4	8.4	Not Detected	Not Detected
trans-1,2-Dichloroethene	3.4	14	Not Detected	Not Detected
Vinyl Acetate	3.4	12	Not Detected	Not Detected
2-Butanone (Methyl Ethyl Ketone)	3.4	10	Not Detected	Not Detected
Hexane	3.4	12	Not Detected	Not Detected
Tetrahydrofuran	3.4	10	Not Detected	Not Detected
Cyclohexane	3.4	12	Not Detected	Not Detected
1,4-Dioxane	3.4	12	Not Detected	Not Detected
Bromodichloromethane	3.4	23	Not Detected	Not Detected
4-Methyl-2-pentanone	3.4	14	Not Detected	Not Detected
2-Hexanone	3.4	14	Not Detected	Not Detected
Dibromochloromethane	3.4	29	Not Detected	Not Detected
Bromoform	3.4	35	Not Detected	Not Detected
4-Ethyltoluene	3.4	17	Not Detected	Not Detected
Ethanol	3.4	6.4	Not Detected	Not Detected
Aethyl tert-Butyl Ether	3.4	12	Not Detected	Not Detected
Heptane	3.4	14	Not Detected	Not Detected

Container Type: 6 Liter Summa Canister

Surrogates	% Recovery	Method Limits
1,2-Dichloroethane-d4	107	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	92	70-130

.

SAMPLE NAME : Blank

ID#: 0006175-06A

EPA METHOD TO-14 GC/MS Full Scan

Date of Analysis: 6/20/00 File Name: Dil. Factor:

Compound	Det. Limit (ppbv)	Det. Limit (uG/m3)	Amount (ppbv)	Amount (uG/m3)
Freon 12	0.50	2.5	Not Detected	Not Detected
Freon 114	0.50	3.6	Not Detected	Not Detected
Chloromethane	0.50	1.0	Not Detected	Not Detected
Vinyl Chloride	0.50	1.3	Not Detected	Not Detected
Bromomethane	0.50	2.0	Not Detected	Not Detected
Chloroethane	0.50	1.3	Not Detected	Not Detected
Freon 11	0.50	2.8	Not Detected	Not Detected
I,1-Dichloroethene	0.50	2.0	Not Detected	Not Detected
Freon 113	0.50	3.9	Not Detected	Not Detected
Methylene Chloride	0.50	1.8	Not Detected	Not Detected
I,1-Dichloroethane	0.50	2.0	Not Detected	Not Detected
sis-1,2-Dichloroethene	0.50	2.0	Not Detected	Not Detected
Chloroform	0.50	2.5	Not Detected	Not Detected
,1,1-Trichloroethane	0.50	2.8	Not Detected	Not Detected
Carbon Tetrachloride	0.50	3.2	Not Detected	Not Detected
Benzene	0.50	1.6	Not Detected	Not Detected
,2-Dichloroethane	0.50	2.0	Not Detected	Not Detected
Frichloroethene	0.50	2.7	Not Detected	Not Detected
,2-Dichloropropane	0.50	2.3	Not Detected	Not Detected
is-1,3-Dichloropropene	0.50	2.3	Not Detected	Not Detected
oluene	0.50	1.9	Not Detected	Not Detected
rans-1,3-Dichloropropene	0.50	2.3	Not Detected	Not Detected
,1,2-Trichloroethane	0.50	2.8	Not Detected	Not Detected
etrachloroethene	0.50	3.4	Not Detected	Not Detected
Ethylene Dibromide	0.50	3.9	Not Detected	Not Detected
Chlorobenzene	0.50	2.3	Not Detected	Not Detected
Ethyl Benzene	0.50	2.2	Not Detected	Not Detected
n,p-Xylene	0.50	2.2	Not Detected	Not Detected
-Xylene	0.50	2.2	Not Detected	Not Detected
Styrene	0.50	2.2	Not Detected	Not Detected
,1,2,2-Tetrachloroethane	0.50	3.5	Not Detected	Not Detected
,3,5-Trimethylbenzene	0.50	2.5	Not Detected	Not Detected
,2,4-Trimethylbenzene	0.50	2.5	Not Detected	Not Detected
.3-Dichlorobenzene	0.50	3.0	Not Detected	Not Detected
,4-Dichlorobenzene	0.50	3.0	Not Detected	Not Detected
chlorotoluene	0.50	2.6	Not Detected	Not Detected
,2-Dichlorobenzene	0.50	3.0	Not Detected	Not Detected
,2,4-Trichlorobenzene	0.50	3.8	Not Detected	Not Detected
lexachlorobutadiene	0.50	5.4	Not Detected	Not Detected
ropylene	2.0	3.5	Not Detected	Not Detected
,3-Butadiene	2.0	4.5	Not Detected	Not Detected
cetone	2.0	4.8	Not Detected	Not Detected

SAMPLE NAME : Blank

ID#: 0006175-06A

EPA METHOD TO-14 GC/MS Full Scan

IFILE Name: Control Collection: /6/8/00 / 10/20 / 10/20 / 20/2

Compound	Det. Limit (ppbv)	Det. Limit (uG/m3)	Amount (ppbv)	Amount (uG/m3)
Carbon Disulfide	2.0	6.3	Not Detected	Not Detected
2-Propanol	2.0	5.0	Not Detected	Not Detected
trans-1,2-Dichloroethene	2.0	8.0	Not Detected	Not Detected
Vinyl Acetate	2.0	7.2	Not Detected	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	6.0	Not Detected	Not Detected
Hexane	2.0	7.2	Not Detected	Not Detected
Tetrahydrofuran	2.0	6.0	Not Detected	Not Detected
Cyclohexane	2.0	7.0	Not Detected	Not Detected
1.4-Dioxane	2.0	7.3	Not Detected	Not Detected
Bromodichloromethane	2.0	14	Not Detected	Not Detected
4-Methyl-2-pentanone	2.0	8.3	Not Detected	Not Detected
2-Hexanone	2.0	8.3	Not Detected	Not Detected
Dibromochloromethane	2.0	17	Not Detected	Not Detected
Bromoform	2.0	21	Not Detected	Not Detected
4-Ethyltoiuene	2.0	10	Not Detected	Not Detected
Ethanol	2.0	3.8	Not Detected	Not Detected
Methyl tert-Butyl Ether	2.0	7.3	Not Detected	Not Detected
Heptane	2.0	8.3	Not Detected	Not Detected

Container Type: 6 Liter Summa Canister

Surrogates	% Recovery	Method Limits
1,2-Dichloroethane-d4	105	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	91	70-130

SAMPLE NAME : Lab Blank

ID#: 0006175-07A

EPA METHOD TO-14 GC/MS Full Scan

Date of Collection: NA 1.00 2012 Collection: NA Date of Analysis: 6/19/00

Compound	Det. Limit (ppbv)	Det. Limit (uG/m3)	Amount (ppbv)	Amount (uG/m3)
Freon 12	0.50	2.5	Not Detected	Not Detected
Freon 114	0.50	3.6	Not Detected	Not Detected
Chloromethane	0.50	1.0	Not Detected	Not Detected
Vinyi Chloride	0.50	1.3	Not Detected	Not Detected
Bromomethane	0.50	2.0	Not Detected	Not Detected
Chloroethane	0.50	1.3	Not Detected	Not Detected
Freon 11	0.50	2.8	Not Detected	Not Detected
1,1-Dichloroethene	0.50	2.0	Not Detected	Not Detected
Freon 113	0.50	3.9	Not Detected	Not Detected
Methylene Chloride	0.50	1.8	Not Detected	Not Detected
	0.50	2.0	Not Detected	Not Detected
1,1-Dichloroethane	0.50	2.0	Not Detected	Not Detected
cis-1,2-Dichloroethene	0.50	2.5	Not Detected	Not Detected
Chloroform	0.50	2.8	Not Detected	Not Detected
1,1,1-Trichloroethane	0.50	3.2	Not Detected	Not Detected
Carbon Tetrachloride		1.6	Not Detected	Not Detected
Benzene	0.50	2.0	Not Detected	Not Detected
1,2-Dichloroethane	0.50	2.0	Not Detected	Not Detected
Trichloroethene	0.50	2.7	Not Detected	Not Detected
1,2-Dichloropropane	0.50		Not Detected	Not Detected
cis-1,3-Dichloropropene	0.50	2.3	Not Detected	Not Detected
Toluene	0.50		Not Detected	Not Detected
trans-1,3-Dichloropropene	0.50	2.3		Not Detected
1,1,2-Trichloroethane	0.50	2.8	Not Detected	Not Detected
Tetrachloroethene	0.50	3.4	Not Detected	Not Detected
Ethylene Dibromide	0.50	3.9	Not Detected	Not Detected
Chlorobenzene	0.50	2.3	Not Detected	
Ethyl Benzene	0.50	2.2	Not Detected	Not Detected
m,p-Xylene	0.50	2.2	Not Detected	Not Detected
o-Xylene	0.50	2.2	Not Detected	Not Detected
Styrene	0.50	2.2	Not Detected	Not Detected
1,1,2,2-Tetrachloroethane	0.50	3.5	Not Detected	Not Detected
1,3,5-Trimethylbenzene	0.50	2.5	Not Detected	Not Detected
1,2,4-Trimethyibenzene	0.50	2.5	Not Detected	Not Detected
1,3-Dichlorobenzene	0.50	3.0	Not Detected	Not Detected
1,4-Dichlorobenzene	0.50	3.0	Not Detected	Not Detected
Chlorotoluene	0.50	2.6	Not Detected	Not Detected
1,2-Dichlorobenzene	0.50	3.0	Not Detected	Not Detected
1,2,4-Trichlorobenzene	0.50	3.8	Not Detected	Not Detected
Hexachlorobutadiene	0.50	5.4	Not Detected	Not Detected
Propylene	2.0	3.5	Not Detected	Not Detected
1,3-Butadiene	2.0	4.5	Not Detected	Not Detected
Acetone	2.0	4.8	Not Detected	Not Detected

SAMPLE NAME : Lab Blank

ID#: 0006175-07A

EPA METHOD TO-14 GC/MS Full Scan

File Name: Dil. Factor:

Compound	Det. Limit (ppbv)	Det. Limit (uG/m3)	Amount (ppbv)	Amount (uG/m3)
Carbon Disulfide	2.0	6.3	Not Detected	Not Detected
2-Propanol	2.0	5.0	Not Detected	Not Detected
trans-1,2-Dichloroethene	2.0	8.0	Not Detected	Not Detected
Vinyl Acetate	2.0	7.2	Not Detected	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	6.0	Not Detected	Not Detected
Hexane	2.0	7.2	Not Detected	Not Detected
Tetrahydrofuran	2.0	6.0	Not Detected	Not Detected
Cyclohexane	2.0	7.0	Not Detected	Not Detected
1,4-Dioxane	2.0	7.3	Not Detected	Not Detected
Bromodichloromethane	2.0	14	Not Detected	Not Detected
4-Methyl-2-pentanone	2.0	8.3	Not Detected	Not Detected
2-Hexanone	2.0	8.3	Not Detected	Not Detected
Dibromochloromethane	2.0	17	Not Detected	Not Detected
Bromoform	2.0	21	Not Detected	Not Detected
4-Ethyltoluene	2.0	10	Not Detected	Not Detected
Ethanol	2.0	3.8	Not Detected	Not Detected
Methyl tert-Butyl Ether	2.0	7.3	Not Detected	Not Detected
Heptane	2.0	8.3	Not Detected	Not Detected

Container Type: NA

		Method
Surrogates	% Recovery	Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	85	70-130

SAMPLE NAME : Lab Blank

820-ST18000 :#CI

DILFERCIOLS EPA METHOD TO-14 GC/MS Full Scan

Out O.S.O O.S.O O.S.O Mol Detectation Aniorocim 0.5.O 5.5. Noi Detectation
Occurrence O.S.O S.O.Dichlocoeffnence O.S.O Not Detected Not Detected 0.5.O S.S.Dichlocoeffnence Not Detected N
O.S.O. O.S.O. O.S.O. O.S.O. Not Detected chlorotorm Chlorotorm O.S.O. O.S.O. Not Detected chlorotorm Not Detected chlorotorm
O.S.O. O.S.O. O.S.O. O.S.O. Not Detected to be a protection Chlorotorm 0.5.0 5.5. Not Detected to be a protection Not Detected Chlorotorm 0.5.0 0.5.0 S.S. Not Detected Chlorotorm 0.5.0 5.5. Not Detected Not Detected Control 0.5.0 3.5. Not Detected Not Detected Not Detected Control 0.5.0 3.5. Not Detected No
Output O.S.O Not Detected Chlorotofm 0.5.O S.O Not Detected Control S.S. Not Detected Not Detected Control S.C.O Not Detected Not Detected Control S.S. Not Detected Not Detected Chloroproprome O.S.O S.S. Not Detected Chloroproprome O.S.O S.S. Not Detected Chloroproprome O.S.O S.S. Not Detected Chloroproprome O.S.O
Out O.S.O S.O. Not Detected Chloroform 0.5.0 5.0 Not Detected Chloroform 0.5.0 5.0 Not Detected Chloroform 0.5.0 5.0 Not Detected Chloroform 2.5 0.5.0 Not Detected Chloroform 2.5 0.5.0 Not Detected Cohoroform 2.5 0.5.0 Not Detected Cohoroform 2.5 0.5.0 Not Detected Server 0.5.0 3.5 Not Detected Detected 0.5.0 3.5 Not Detected Server 0.5.0 2.0 Not Detected Server 0.5.0 2.0 Not Detected Server 0.5.0 2.0 Not Detected Server 0.5.0 3.5 Not Detected Server
Circhioroethane 0.50 Sol Detected Chloroform 0.50 2.5 Not Detected Chloroform 0.50 2.5 Not Detected Chloroform 0.50 2.5 Not Detected Control 2.5 0.50 2.5 Not Detected Control 2.5 0.50 2.5 Not Detected Not Deto
Occupation O.S.O S.O. Not Detected Chloroform 0.5.O 5.5. Not Detected Chloroform 0.5.O 5.5. Not Detected Chloroform 0.5.O 5.5. Not Detected Corbor 7.1. ¹ .
Occupation O.S.O Solution Solution Chloroform 0.5.0 5.5 Not Detected Chloroform 0.5.0 5.5 Not Detected Chloroform 0.5.0 5.5 Not Detected Corbor 2.5 0.5.0 5.5 Not Detected Carbor 7.1 7.1 7.1 7.1 7.1 7.1 Carbor 2.5 0.5.0 3.5 Not Detected 0.5.0 Not Detected 7.5 <
Occ O.S.O S.O. Not Detected Anot Detected 0.5.0 5.5. Not Detected Chlochorm 0.5.0 5.5. Not Detected Chlochorm 0.5.0 5.5. Not Detected Chlochorm 0.5.0 5.5. Not Detected Carbon Tetrachonolde 0.5.0 3.5. Not Detected Carbon Tetrachonolde 0.5.0 3.5. Not Detected Detected 0.5.0 3.5. Not Detected Strachonoperoe 0.5.0 3.5. Not Detected Tichloroptopane 0.5.0 2.3. Not Detected Totichoroptopane 0.5.0 3.5. Not Detected Totichoroptopane 0.5.0 3.4. Not Detected Totichoroptopane 0.5.0 3.5. Not Detected Totichoroptopan
Action O.S.O O.S.O Not Detected Action Not Detected Not Detected Not Detected Action Not Detected Not Detected Not Detected Action S.S.O Not Detected Not Detected
Action O.S.O Solution
Action O.S.O S.O. Not Detecte Chloroform 0.50 2.5 Not Detecte Chloroform 0.50 3.5 Not Detecte Chloroform 0.50 3.5 Not Detecte Chloroform 0.50 3.5 Not Detecte Berzene 0.50 3.5 Not Detecte Chloropropene 0.50 2.3 Not Detecte Tichloropropene 0.50 3.4 Not Detecte Toluene 0.50 3.4 Not Detecte Chloropropene 0.50 3.4 Not Detecte Chloropro
Occupation O.50 S.0 Not Detecte Chlorotorm 0.50 S.0 Not Detecte Chlorotorm 0.50 S.5 Not Detecte Chlorotorm 0.50 S.5 Not Detecte Controlocorm 0.50 S.5 Not Detecte Carbon Tetrachloride 0.50 S.2 Not Detecte Barzene 0.50 S.2 Not Detecte Inchloroptopane 0.50 S.3 Not Detecte Internorethane 0.50 S.3 Not Detecte Internorethane 0.50 S.3 Not Detecte
Other O.S.O S.O. Not Detected Chloroform 0.50 2.5 Not Detected Chloroform 0.50 2.5 Not Detected Chloroform 0.50 2.5 Not Detected Chloroform 8.2 0.50 2.5 Not Detected Chloroform 8.2 0.50 3.5 Not Detected Control 3.5 0.50 3.5 Not Detected Bernzene 0.50 3.5 Not Detected 1.5 Detected 0.50 2.5 Not Detected 1.5 Chloroproprome 0.50 2.5 Not Detected 1.5 Trichloroefthene 0.50 2.3 Not Detected 1.5 Totuene 0.50 2.3 Not Detected 1.5 1.5 Totuene 0.50 2.3 Not Detected 1.5 1.5 Totuene 0.50 3.4 Not Detected 1.5 1.5 Totuene 0.50 0.50 3.4
Answer O.S. O.S. <tho.s.< th=""> O.S. O.S. <t< td=""></t<></tho.s.<>
Action Construction Construction <thconstruction< th=""> Construction</thconstruction<>
Action Construction Construction <thconstruction< th=""> Construction</thconstruction<>
Algorithm O.S.O Not Detected Chlorotorm 0.50 Not Detected Chlorotorm 0.50 0.50 Not Detected Chlorotorm 0.50 0.50 Not Detected Not Detected 0.50 0.50 Not Detected Not Detected 0.50 0.50 Not Detected Detected 0.50 0.50 Not Detected Detected 0.50 0.50 Not Detected Berzene 0.50 0.50 Not Detected Detected 0.50 2.3 Not Detected Trichloroethane 0.50 3.3 Not Detected Totuene 0.50 3.3 Not Detected Totuene 0.50 3.3 Not Detected Dich
Action Construction O.S.
Action Contorent O.S.O Solution Solution <th< td=""></th<>
Action Construction Construction <thconstruction< th=""> Construction</thconstruction<>
Action O.S. <
Action Control O.S O.S <tho< td=""></tho<>
Action Control O.S.
citation0.50Not DetectedChloroform0.502.5Not DetectedChloroform0.502.5Not DetectedChloroform0.503.5Not DetectedCarbon Tetrachloride0.503.2Not DetectedCarbon Tetrachloride0.503.2Not DetectedCarbon Tetrachloride0.503.2Not DetectedCarbon Tetrachloride0.503.2Not DetectedCarbon Tetrachloride0.501.6Not DetectedBenzene0.501.6Not Detec
Action Construction O.S.
Action Construction O.S.
cis-1,2-Dichloroethene 0.50 2.0 Not Detecte Chloroform 0.50 2.5 Not Detecte
cis-1,2-Dichloroethene 0.50 2.0 Not Detecte
cis-1,2-Dichloroethene 0.50 2.0 Not Detecte
0.50 2.0 Not Detecte
66.0 8.1 0.50 1.65 0.65
Freon 113 0.50 3.9 Not Detecte
1,1-Dichloroethene 0.50 2.0 Not Detecte
Freon 11 0.50 2.8 Not Detecte
Chloroethane 0.50 1.3 Not Detecte
Bromomethane 0.50 2.0 Not Detecte
Vinyl Chloride Not Detecte
Chloromethane 0.1 0.0.0 Not Detecte
Freen 114 0.50 3.6 Not Detecte
Freend to M 2.2 0.50 St Treend
(vdqq) (bpv) (vdqq) bringing (vdqq)
Det. Limit Det. Limit Annum Det. Limit Annum (viden)

SAMPLE NAME : Lab Blank

ID#: 0006175-07B

EPA METHOD TO-14 GC/MS Full Scan

File Name: Date of Collection-NA Dill Factor Date of Analysis: 6/20/00

Compound	Det. Limit (ppbv)	Det. Limit (uG/m3)	Amount (ppbv)	Amount (uG/m3)
Carbon Disulfide	2.0	6.3	Not Detected	Not Detected
2-Propanol	2.0	5.0	Not Detected	Not Detected
trans-1,2-Dichloroethene	2.0	8.0	Not Detected	Not Detected
Vinyl Acetate	2.0	7.2	Not Detected	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	6.0	Not Detected	Not Detected
Hexane	2.0	7.2	Not Detected	Not Detected
Tetrahydrofuran	2.0	6.0	Not Detected	Not Detected
Cyclohexane	2.0	7.0	Not Detected	Not Detected
1.4-Dioxane	2.0	7.3 .	Not Detected	Not Detected
Bromodichloromethane	2.0	14	Not Detected	Not Detected
4-Methyl-2-pentanone	2.0	8.3	Not Detected	Not Detected
2-Hexanone	2.0	8.3	Not Detected	Not Detected
Dibromochloromethane	2.0	17	Not Detected	Not Detected
Bromoform	2.0	21	Not Detected	Not Detected
4-Ethyltoluene	2.0	10	Not Detected	Not Detected
Ethanol	2.0	3.8	Not Detected	Not Detected
Methyl tert-Butyl Ether	2.0	7.3	Not Detected	Not Detected
Heptane	2.0	8.3	Not Detected	Not Detected

Container Type: NA

:

		Method
Surrogates	% Recovery	Limits
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	91	70-130

(AIR TOXI	YTICAL LABORATORY	-CUSTO	DY RECO	FOLS (916) N	OM, CA 9	FAX: (916) § 5 95	
Company Address Phone 8	5 JOHNSON BR (F Dity <u>RIAFITHU</u> State AX <u>960 721-7</u> Anne		Project info: P.O. # Project # <u>3/1.0010</u> Project Name		Turn Arou Norma Rush		у
Lab I.D.	Field Sample I.D.	Date & Time	Analy	ses Requested	,	Canister	Pressure /	Vacuum Receipt
0332	AS-1	61800 IDYZam	TO-14 list			30,00	7.5	· · · · · ·
0271	AS-1 Oup	618/50 104200	t ;			<u> </u>	7.25	
2701	HS-2	6/19/00 1023 am	· · · ·			>30,00	7.0	
5<0 1	AS-3	6/8/00 1048 am	1			30.00	7.0	
0913	AS-4	6800 10549-	14			29.90	6.9	
1034	Blank	6 8/20 /100 00	٩u			30 W	3U.W	
			•	,				5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -
							•	
		-						
Jokn Relinquished B	ed By: (Signature) Date/Time / Amme 6/5/00 / Y/Okus by: (Signature) Date/Time by: (Signature) Date/Time	Print Name North Orthogram Received By: (Signature) Date/	Time	Notes: please fax 1 send report to 94 Bank Wether	results me e eberry Lo			721-7665
Lab Use Only	Shipper Name	Bill #	y: Date/TimeT	emp: (°C) Condition		Intact?		der #

•

Company Address	Suson JOHN GRAMMY LFR SJOHNSON RR	City RulliTion Sta	te NT Zp OFT	Project # 3/1-00/05		wid Time: al	lof_
1	By: Signature	FAX 160 721- Janume	7665	Project Name 01M		Spec	:ity
646 10	Field Sample I.D.	Date & Time	Anaiy	ses Requested	Caniste	r Pressure Final	1.5 410.5
0332	AS-1	LISED INYZGA	TOTY hist	······	30,00		
<u>6271</u>	AS-1 Qup	6/1/00 10420-	t i		3000	7.25	
270	HS-2	4/1/10 1023 m	·,		>30,00	7.0	5.0
2507.	HS-3	6 Pto Northing	14		30.00	7.0	C.o.i
SIL	AS-4	6/8/00 10540-	l l l		29.90	6.9	
	Blank	6900 1100 20	16		· 30-00	30.00	28.5
		·					
				en de la companya de la companya de la companya de la companya de la companya de la companya de la companya de		·	
Petinquished B	(Signature) Date/Time	Print Memos Surgerida Byr (Signature) - Date Antonida Byr (Signature) - Date Herferved Byr (Signature) - Date	/Time	Please Pax resul send report to me e 94 Gareberry Weshers Hel	-		R1-3 4

and the second second second second second second second second second second second second second second second

Form 1293 and Di

.

٠

H

ANALYTICAL RESEARCH & TESTING, INC. SOMERVILLE, NJ Fax 968-725-8848

🗆 Urge	pt 🛛 For Review	🛛 Please Co	mment	🗆 Please Reply	🗇 Please Recycle
Res	311-00105-00, TNMHC	S as Heptane	CC1		······
Phonet	908-419-5968		Pagesi	.2	
Fax	860-721-7865	,	Data	June 27, 2000	,
To:	John Gammie , L-F-R.		From	Tom Sabatino	

•Commente:

Attached are the results for the analysis of total non-methane hydrocarbons as n-heptane in gas samples, collected on 6/8/2000. If you have any questions, please call me.

.

. .

Thank You,

.

Tom Sabatino

AR06082000, C-7 TNMHCS

. .

SUMMARY ANALYTICAL RESULTS AND CALIBRATION FOR THE ANALYSIS OF NON-METHANE HYDROCARBONS AS HEPTANE IN GAS SAMPLES RECEIVED 6/9/00, RUN 6/9/00, PROJECT # AR 311-00105-00-000

SAMPLE IDENTIFICATION	COMPOUND	CONCENTRATION	UNITS
INLET TO FLARE	NON-METHANE HC	6280	PPMV

'M Thomas Sabatino, Chemist ----

Page 4

										1				DUE Draft	DATE Final
AirReco	าท	R	Chai	n of C	ustody l	Record		Page _1	of ency F	 Lush	< 5 B	us Da		Dian	())) ())
	/		Unai		usiouy	Necolu		Rush <					.,	} −−−−	
Johnson Drive, P O. Box 130								Norma				_			
S Jonnson Drive, P. O. Box 130 Raritan, NJ 08869					Container T		Sample Type		Requ	este	d Ana	lysis	/ Meti	nod	
908) 526-1000 / FAX (908) 526-788	6				B. Gas Bag D. Petri Dis		1. Liquid 2. Gas		J			·			ĺ
irRecon Job #: <u>311-00/05-</u>	J				E. Method :	25, Tank	3. Filter		ç						
ity/State:					F. Method 2 G. Glass	25 u rap	4. Charcoal 5. Resin		40						
roject Manager: JSG-		ext.		-	N. NIOSH 1 P. Plastic 8		6. Other	-2	4						
		GAL.		•	S. Summa	Canister		10/	5						1
P. O. Number:					T. VOST Tu V. VOC Via			4	J						
amples Submitted to:	\square	AirRecon Other	Lab		X. XAD-2 T O. Other	rap		2 A	20					-	
ample Identification	لک Filter #		Conta	ainer		Information	Reagents and	l/or	TNM						Ιι
·		Туре	Туре	Size	Date	Tech	Preservative		F	_					<u> </u>
m18-1 Inter to Flore		Z	ß		6/8/40	-752-		$-\mathbf{r}$						\vdash	
										\uparrow		. 0	tet-		
									/	1 1	170	1	ASAR	345	
	 	ļ	 		· · · · · · · · · · · · · · · · · · ·		 		<u> </u>	$+\epsilon$	25-1	ג ד 26	<u>p</u>		
				 						n n	e C	80			
	 -		-			· · ·				Ť					-
······································															
<u> </u>					<u> </u>	İ									╞──
						<u>+</u>			╞──┤─					++	<u>}</u>
special Instructions:		• 	•••••	·				····			• • • • • •			· · · ·	
Submitted By: Date:		Received	ceived By:			Date: QA/QC Repo									
Reinquished By: Date: Date:		CU	Receiver	Received By:			Compliance Date: NJDEP			No	on-compli Methoo	_			
												Normal			
Relinquished By:		Date:		Received	l By:			Date:	1						- Ľ

Appendix G

Method 18 Flare Inlet Gas Testing Report AirRecon, Inc.

•

ANALYTICAL RESULTS AND SUPPORTING DOCUMENTS FOR THE ANALYSIS OF TO-14 VOLATILE ORGANIC COMPOUNDS IN TEDLAR GAS SAMPLING BAGS, USING GAS CHROMATOGRAPHY/ MASS SPECTROSCOPY DETECTION

SUBMITTED BY: L-F-R, INC. 5 JOHNSON DRIVE RARITAN, NEW JERSEY 08869 COLLECTED ON 8/14/2000 SUBMITTED ON 8/15/2000 PROJECT # 311-00142-00-000

ANALYTICAL RESEARCH AND TESTING, INC. 19 ROSS STREET SOMERVILLE, N.J. 08876

Thomas Sabatino, Director

SEPTEMBER 30, 2000

TABLE OF CONTENTS

•

.

.

SECTION	CONTENTS
1	ANALYTICAL RESULTS AND SUPPORTING DOCUMENTS FOR THE ANALYSIS OF TO-14 VOLATILE ORGANIC COMPOUNDS IN TEDLAR GAS SAMPLING BAGS USING GAS CHROMA- TOGRAPHY/ MASS SPECTROSCOPY
2	TARGET COMPOUND RETENTION TIME TABLES FOR THE ANALYSIS OF TO-14 VOLATILE ORGANIC COMPOUNDS IN GAS SAMPLES
3	GC/ MS OPERATING CONDITIONS FOR THE ANALYSIS OF TO-14 VOLATILE ORGANIC COMPOUNDS IN GAS SAMPLES
4	GC/ MS RAW DATA REPORTS FOR THE ANALYSIS OF TO-14 VOLATILE ORGANIC COMPOUNDS IN GAS SAMPLES
5	GC/ MS TOTAL ION CHROMATOGRAMS FOR THE ANALYSIS OF TO-14 VOLATILE ORGANIC COMPOUNDS IN GAS SAMPLES
6	4-BROMOFLUOROBENZENE TUNING CHARACTERISTICS FOR THE ANALYSIS OF TO-14 VOLATILE ORGANIC COMPOUNDS IN GAS SAMPLES
7	INITIAL CALIBRATION CHARTS AND TABLES FOR THE ANALYSIS OF TO-14 VOLATILE ORGANIC COMPOUNDS IN GAS SAMPLES
8	CHAIN OF CUSTODY AND FIELD SAMPLING FORMS

1

SECTION 1.0 ANALYTICAL RESULTS AND SUPPORTING DOCUMENTS FOR THE ANALYSIS OF TO-14 VOLATILE ORGANIC COMPOUNDS IN TEDLAR GAS SAMPLING BAGS, USING GAS CHROMATOGRAPHY/ MASS SPECTROSCOPY DETECTION ANALYTICAL RESEARCH AND TESTING, INC. 19 ROSS STREET SOMVEVILLE, NJ 08876 TELEPHONE # 1-908-725-0101 FAX # 1-908-725-8848

ANALYSIS OF VOLATILE ORGANIC COMPOUNDS COLLECTED IN TEDLAR SAMPLING BAGS, USING USEPA ANALYTICAL METHOD TO-14. MODIFIED, CAPILLARY COLUMN GAS CHROMATOGRAPHY/ MASS SPECTROSCOPY, VFRMT14H

CLIENT SAMPLE # COLLECTED ARTI # DATE RECEIVED INITIAL FLOW RATE FINAL FLOW RATE SAMPLING TIME	L-F-R LAB AIR BLANK 8/15/00 00-464B 8/15/00 1.00 1.00 60	L/ MIN L/ MIN MIN	TOTAL VOLUME MATRIX GC/ MS # CC ON COLUMN DATE ANALYZED ANALYST REPORT DATE	TEDLAR GB VOC30-35	LITERS	
TARGET COMPOUND		NANOGRAN FOUND	IS/ SAMPLE CORR(2)	ANALY MGS/M3	TE VALUE PPBV (3	3)
FREON 12 METHYLCHLORIDE FREON 114 VINYLCHLORIDE METHYLBROMIDE ETHYLCHLORIDE FREON 11 VINYLDIENE CHLORIDI DICHLOROMETHANE FREON 113 CARBON DISULFIDE 1,1-DICHLOROETHANE FREON 113 CARBON DISULFIDE 1,1-DICHLOROETHANE CIS-1,2-DICHLOROETHANE CIS-1,2-DICHLOROETHANE METHYL CHLOROFORM BENZENE CARBON TETRACHLOR 1,2-DICHLOROPROPAN TRICHLOROETHYLENE CIS-1,3-DICHLOROPRO TRANS-1,3-DICHLORO 1,1,2-TRICHLOROETHY TOLUENE 1,2-DIBROMOETHANE TETRACHLOROETHYLE CHLOROBENZENE ETHYLBENZENE 1,3-XYLENE + 1,4-XYLI STYRENE	E HYLENE E M RIDE NE E DPENE PROPENE ANE ENE	$\begin{array}{l} ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0.05\\ ND < 0$	0.00 0.00	$\begin{array}{l} \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \text{ND} < 0.05\\ \$ {ND} < 0.05\\ \text{ND} < 0.05\\ \{ND} < 0.	N.D. < N.D. 20 48 14 32 6 38 25 25 25 25 25 18 16 29 22 8 7 13 22 32 23 23 24	
1,1,2,2·TETRACHLORC 1,2·XYLENE	DETHANE	ND < 0.05 ND < 0.05		ND < 0.05 ND < 0.05	N.D. < N.D. <	15 23

	ANALYTE VALUE				
	NANOGRAMS/ SAMPLE		ANALYTE VALUE		
TARGET COMPOUND	FOUND	CORR	MGS/M3	PPBV	
					·
4-ETHYLTOLUENE	ND < 0.05	0.00	ND < 0.05	N.D. <	20
1,3,5-TRIMETHYLBENZENE	ND < 0.05	0.00	ND < 0.05	N.D. <	17
1,2,4 TRIMETHYLBENZENE	ND < 0.05	0.00	ND < 0.05	N.D. <	19
1,3-DICHLOROBENZENE	ND < 0.05	0.00	ND < 0.05	N.D. <	17
BENZYLCHLORIDE	ND < 0.05	0.00	ND < 0.05	N.D. <	19
1,4-DICHLOROBENZENE	ND < 0.05	0.00	ND < 0.05	N.D. <	17
1,2-DICHLOROBENZENE	ND < 0.05	0.00	ND < 0.05	N.D <	17
1,2,4 TRICHLOROBENZENE	ND < 0.05	0.00	ND < 0.05	N.D <	13
NAPHTHALENE	ND < 0.05	0.00	ND < 0.05	N.D. <	19
HEXACHLOROBUTADIENE	ND < 0.05	0.00	ND < 0.05	N.D. <	9
NON-TARGET COMPOUNDS FOUND					
TRANS-1,2-DICHLOROETHYLENE	ND < 0.05	0.00	ND < 0.05	N.D. <	25

SURROGATE COMPOUND RESPONSE							
COMPOUND	% RECOVERY	ANAL	YTE VALUE				
	N	ANOGRAMS	NLS (1)			
	F	DUND ADDE	D				
4-BROMOFLUOROBENZENE	98	5.90	6.00	0.82			

(1) Milligrams/ M-3 = Milligrams per Cubic Meter Found in Sample. Corrected for Analyte Concentration in Trip Blank

(2) PPBV = Microliters/ cubic meter, Parts per Billion by Volume at 25.0 C Corrected for Blank Value.

(3) N.D. = Non-Detectable, Less Than Concentration Indicated.

(4) A "J" Indicates an Estimated Value. This Flag is Used Either When E+A19stimating a Concentration for a Tentatively Identified Compound or When a Given Compound is Suspected of Breakthrough and the Reported Value May be Biased Low.

(5) A "B" Indicates When the Analyte is Found in the Field Control as Well as the Sample. It Indicates Probable Contamination and Warns the Data User to Use This Result Cautiously.

TRIP BLANK CORRECTION VALUES

TARGET COMPOUND

ANALYTE VALUE MILLIGRAMS/ M-3 FOUND

FREON 12	0.00
METHYLCHLORIDE	0.00
FREON 114	0.00
VINYLCHLORIDE	0.00
METHYLBROMIDE	0.00
ETHYLCHLORIDE	0.00
FREON 11	0.00
ETHYL ETHER	0.00
VINYLDIENE CHLORIDE	0.00
DICHLOROMETHANE	0.00
FREON 113	0.00
CARBONDISULFIDE	0.00
1,1-DICHLOROETHANE	0.00
CIS-1,2-DICHLOROETHYLENE	0.00
CHLOROFORM	0.00
1.2-DICHLOROETHANE	0.00
METHYL CHLOROFORM	0.00
BENZENE	0.00
CARBON TETRACHLORIDE	0.00
1.2-DICHLOROPROPANE	0.00
TRICHLOROETHYLENE	0.00
CIS-1,3-DICHLOROPROPENE	0.00
	0.00
1,1,2·TRICHLOROETHANE	0 00
TOLUENE	0 00
1,2-DIBROMOETHANE	0.00
TETRACHLOROETHYLENE	0.00
CHLOROBENZENE	0.00
ETHYLBENZENE	0.00
1,3-XYLENE +	
1,4-XYLENE	0,00
STYRENE	0.00
1,1,2,2-TETRACHLOROETHANE	0.00
1.2-XYLENE	0.00
4-ETHYLTOLUENE	0 00
1,3,5-TRIMETHYLBENZENE	0 00
1,2,4-TRIMETHYLBENZENE	0.00
1.3 DICHLOROBENZENE	0.00
BENZYLCHLORIDE	0.00
1,4-DICHLOROBENZENE	0.00
	0.00
1,2,4-TRICHLOROBENZENE	0 00
NAPHTHALENE	0 00
HEXACHLOROBUTADIENE	0 00

Thomas Sabatino, Chemist

VFRMT14H

ANALYSIS OF VOLATILE ORGANIC COMPOUNDS COLLECTED IN TEDLAR SAMPLING BAGS, USING USEPA ANALYTICAL METHOD TO-14, MODIFIED, CAPILLARY COLUMN GAS CHROMATOGRAPHY/ MASS SPECTROSCOPY, VFRMT14H

CLIENT SAMPLE # COLLECTED ARTI # DATE RECEIVED INITIAL FLOW RATE FINAL FLOW RATE SAMPLING TIME	L-F-R BAG # 1, LANDFILL GA 8/15/00 00-464 8/15/00 1.00 1.00 60		TOTAL VOLUM MATRIX GC/ MS # CC ON COLUM DATE ANALYZE ANALYST REPORT DATE	TEDLAR GB VOC30-36 N 0.50	LITERS	
		NANOGRAM	IS/ SAMPLE	ANALY	TE VALU	E
TARGET COMPOUND		FOUND	CORR(2)	MGS/M3	PPBV	
FREON 12		0.55	0.55	1.09		220
METHYLCHLORIDE		1.38		2.76		1337
FREON 114		0.55		1.09		156
VINYLCHLORIDE		2.15		4.29		1680
METHYLBROMIDE		ND < 0.05		ND < 0.05	N.D. <	26
ETHYLCHLORIDE		0 27		0.54		205
FREON 11	_	ND < 0.05		ND < 0.05	N.D <	18
VINYLDIENE CHLORIDE	Ē	ND < 0.05		ND < 0.05	N.D. <	25
DICHLOROMETHANE		1.19		2.37		682
FREON 113		ND < 0.05		ND < 0.05	N.D. <	13
CARBON DISULFIDE		ND < 0.05		ND < 0.05	N D. <	32
1,1-DICHLOROETHANE		1.02		2.04		504
CIS-1,2-DICHLOROETH	YLENE	0.07		0.14		34
CHLOROFORM		ND < 0.05		ND < 0.05	N.D. <	20 25
1,2-DICHLOROETHANE		ND < 0.05		ND < 0.05	N.D <	
METHYL CHLOROFORM	Ą	ND < 0.05		ND < 0.05	N.D <	18
BENZENE		0.43		0.85	N.D. <	267 16
CARBON TETRACHLOR		ND < 0.05		ND < 0.05		22
1,2-DICHLOROPROPAN		ND < 0.05		ND < 0.05	N.D <	22 349
TRICHLOROETHYLENE		0.94		1 88 ND < 0.05	N.D. <	22
CIS-1,3-DICHLOROPRO		ND < 0.05		0.10	N.D. <	22
TRANS-1,3-DICHLORO		0.05		ND < 0.05	N.D <	18
1,1,2-TRICHLOROETHA	ANE	ND < 0.05		212	N.U <	56300
TOLUENE		106 ND < 0.05		ND < 0.05	N D. <	13
1,2-DIBROMOETHANE				3.75	ND. S	488
TETRACHLOROETHYLE	INC	188 0.11		0.22		400
		8.09		`		3730
		8.09		30,49		7030
1,3-XYLENE + 1,4-XYLE		ND < 0.05		ND < 0.05		24
STYRENE		ND < 0.05		ND < 0.05	N.D. <	15
1,1,2,2 TETRACHLORC	I HANE	ND < 0.05 3.49		6.99	1N.D. N	1610
1,2-XYLENE		3 4 9	/ 3.49	0.99		1010

ANALYTE VALUE					
	NANOGRAMS/ SAMPLE		ANALY	ANALYTE VALUE	
TARGET COMPOUND	FOUND	CORR	MGS/M3	PPB	V
4-ETHYLTOLUENE	0.62	0.62	1.23		251
1,3,5 TRIMETHYLBENZENE	ND < 0.05	0.00	ND < 0.05	N.D <	17
1,2,4-TRIMETHYLBENZENE	ND < 0.05	0.00	ND < 0.05	N.D. <	19
1,3-DICHLOROBENZENE	ND < 0.05	0.00	ND < 0.05	N.D. <	17
BENZYLCHLORIDE	ND < 0.05	0.00	ND < 0.05	N.D. <	19
1,4-DICHLOROBENZENE	ND < 0.05	0.00	ND < 0.05	N.D. <	17
1,2 DICHLOROBENZENE	ND < 0.05	0.00	ND < 0.05	N.D. <	17
1,2,4-TRICHLOROBENZENE	ND < 0.05	0.00	ND < 0.05	N.D. <	13
NAPHTHALENE	ND < 0.05	0.00	ND < 0.05	N.D. <	19
HEXACHLOROBUTADIENE	ND < 0.05	0.00	ND < 0.05	N.D <	9
NON-TARGET COMPOUNDS FOUND					
TRANS-1,2-DICHLOROETHYLENE	2 15	2.15	4.30		1080

SURROGATE COMPOUND RESPONS	ND RESPONSE % RECOVERY ANALYTE VALUE					
		NANOGRAMS FOUND ADD	NLS DED	(1)		
4-BROMOFLUOROBENZENE	94	5.66	6.00	0.79		

(1) Milligrams/ M-3 = Milligrams per Cubic Meter Found in Sample. Corrected for Analyte Concentration in Trip Blank

(2) PPBV = Microliters/ cubic meter, Parts per Billion by Volume at 25.0 C Corrected for Blank Value.

(3) N.D. = Non-Detectable, Less Than Concentration Indicated.

(4) A "J" Indicates an Estimated Value. This Flag is Used Either When E+A19stimating a Concentration for a Tentatively Identified Compound or When a Given Compound is Suspected of Breakthrough and the Reported Value May be Biased Low.

(5) A "B" Indicates When the Analyte is Found in the Field Control as Well as the Sample. It Indicates Probable Contamination and Warns the Data User to Use This Result Cautiously.

ANALYTE VALUE MILLIGRAMS/ M-3 FOUND

TRIP BLANK CORRECTION VALUES

TARGET COMPOUND
FREON 12
METHYLCHLORIDE
FREON 114
METHYLBROMIDE ETHYLCHLORIDE
FREON 11
ETHYLETHER
VINYLDIENE CHLORIDE
DICHLOROMETHANE
FREON 113
CARBONDISULFIDE
1,1-DICHLOROETHANE
CIS-1,2-DICHLOROETHYLENE
CHLOROFORM
1,2-DICHLOROETHANE
METHYL CHLOROFORM
BENZENE
1,2-DICHLOROPROPANE TRICHLOROETHYLENE
CIS-1,3-DICHLOROPROPENE
TRANS-1,3-DICHLOROPROPENE
1,1,2.TRICHLOROETHANE
TOLUENE
1.2-DIBROMOETHANE
TETRACHLOROETHYLENE
CHLOROBENZENE
ETHYLBENZENE
1,3-XYLENE +
1.4-XYLENE
STYRENE
1,1,2,2-TETRACHLOROETHANE
1,2-XYLENE
1,3,5-TRIMETHYLBENZENE 1,2,4-TRIMETHYLBENZENE
1,3-DICHLOROBENZENE
BENZYLCHLORIDE

0.00 0.00	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	

Thomas Sabatino, Chemist

1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,2,4-TRICHLOROBENZENE

HEXACHLOROBUTADIENE

NAPHTHALENE

ANALYTICAL RESEARCH AND TESTING, INC. 19 ROSS STREET SOMVEVILLE, NJ 08876 TELEPHONE # 1-908-725-0101 FAX # 1-908-725-8848

ANALYSIS OF VOLATILE ORGANIC COMPOUNDS COLLECTED IN TEDLAR SAMPLING BAGS, USING USEPA ANALYTICAL METHOD TO-14, MODIFIED, CAPILLARY COLUMN GAS CHROMATOGRAPHY/ MASS SPECTROSCOPY, VFRMT14H

CLIENT SAMPLE # COLLECTED ARTI # DATE RECEIVED INITIAL FLOW RATE FINAL FLOW RATE SAMPLING TIME	L-F-R DUPLICAT BAG # 1, LANDFILL G/ 8/15/00 00-464D 8/15/00 1.00 1.00 60	AS	TOTAL VOLUME MATRIX GC/ MS # CC ON COLUMN DATE ANALYZET ANALYST REPORT DATE	TEDLAR GB VOC30-37 1 0.50 (LITERS	
		NANOGRAN	IS/ SAMPLE	ANALY	TE VALU	E
TARGET COMPOUND		FOUND	CORR(2)	MGS/M3	PPBV	
FREON 12 METHYLCHLORIDE FREON 114 VINYLCHLORIDE METHYLBROMIDE ETHYLCHLORIDE FREON 11 VINYLDIENE CHLORIDI DICHLOROMETHANE FREON 113 CARBON DISULFIDE 1,1-DICHLOROETHANE CIS-1,2-DICHLOROETHANE CIS-1,2-DICHLOROETHANE METHYL CHLOROFORM 1,2-DICHLOROFORM BENZENE CARBON TETRACHLOF 1,2-DICHLOROPROPAN TRICHLOROETHYLENE CIS-1,3-DICHLOROPRO TRANS-1,3-DICHLORO 1,1,2-TRICHLOROETHANE 1,2-DIBROMOETHANE	E HYLENE M RIDE NE DPENE PROPENE ANE	0.57 1.45 0 57 2.03 ND < 0.05 0 22 ND < 0.05 ND < 0.05	$ \begin{array}{r} 1.45 \\ 0.57 \\ 2.03 \\ 0.00 \\ 0 22 \\ 0.00 \\ 0.00 \\ 1.12 \\ 0.00 \\ 0.00 \\ 0.98 \\ 0 06 \\ 0.00 \\ 0$	1.14 2 90 1.14 4.05 ND < 0.05 0.43 ND < 0.05 ND < 0.05	N.D. < N.D. <	230 1400 163 1590 26 165 18 25 642 13 32 482 31 20 25 18 240 16 22 19 22 21 18 51300 13
TETRACHLOROETHYLE CHLOROBENZENE ETHYLBENZENE 1,3-XYLENE + 1,4-XYLI STYRENE 1,1,2,2-TETRACHLORO 1,2-XYLENE	ENE	1.72 0 10 8.56 15.78 ND < 0.05 ND < 0.05 3.68	1 72 0.10 8.56 15.78 0.00 0.00	3.44 0.20 17.13 31.56 ND < 0.05 ND < 0.05 7.36	N.D < N.D <	448 44 3950 7280 24 15 1700

.

1

	ANALYTE VALUE				
	NANOGRAMS	5/ SAMPLE	ANALY	TE VALUE	•
TARGET COMPOUND	FOUND	CORR	MGS/M3	PPB	V
4-ETHYLTOLUENE	0.82	0.82	1.64		335
1,3,5-TRIMETHYLBENZENE	ND < 0 05	0.00	ND < 0,05	N.D. <	17
1,2,4-TRIMETHYLBENZENE	ND < 0.05	0.00	ND < 0.05	N.D. <	19
1.3-DICHLOROBENZENE	ND < 0.05	0.00	ND < 0.05	N.D. <	17
BENZYLCHLORIDE	ND < 0.05	0.00	ND < 0.05	N.D. <	19
1,4-DICHLOROBENZENE	ND < 0.05	0.00	ND < 0.05	N.D <	17
1,2-DICHLOROBENZENE	ND < 0.05	0.00	ND < 0.05	N.D. <	17
1,2,4-TRICHLOROBENZENE	ND < 0.05	0.00	ND < 0 05	N.D. <	13
NAPHTHALENE	ND < 0.05	0.00	ND < 0.05	N.D. <	19
HEXACHLOROBUTADIENE	ND < 0 05	0.00	ND < 0.05	N.D. <	9
NON-TARGET COMPOUNDS FOUND					
TRANS-1,2-DICHLOROETHYLENE	2.02	2.02	4 04		1020

SURROGATE COMPOUND RESPON COMPOUND	SE % RECOVERY	ECOVERY ANALYTE VALUE				
		NANOGRAMS FOUND ADI	DED	S(1)		
4-BROMOFLUOROBENZENE	101	6.05	6.00	0 85		

(1) Milligrams/ M-3 = Milligrams per Cubic Meter Found in Sample. Corrected for Analyte Concentration in Trip Blank

(2) PPBV = Microliters/ cubic meter, Parts per Billion by Volume at 25.0 C Corrected for Blank Value.

(3) N.D. = Non-Detectable, Less Than Concentration Indicated

(4) A "J" Indicates an Estimated Value. This Flag is Used Either When E+A19stimating a Concentration for a Tentatively Identified Compound or When a Given Compound is Suspected of Breakthrough and the Reported Value May be Biased Low.

(5) A "B" Indicates When the Analyte is Found in the Field Control as Well as the Sample. It Indicates Probable Contamination and Warns the Data User to Use This Result Cautiously.

VFRMT14H

TRIP BLANK CORRECTION VALUES

TARGET COMPOUND

ANALYTE VALUE MILLIGRAMS/ M-3 FOUND

FREON 12	0.00
METHYLCHLORIDE	0.00
FREON 114	0.00
VINYLCHLORIDE	0.00
METHYLBROMIDE	0.00
ETHYLCHLORIDE	0.00
FREON 11	0.00
ETHYL ETHER	0.00
VINYLDIENE CHLORIDE	0.00
DICHLOROMETHANE	0.00
FREON 113	0.00
CARBONDISULFIDE	0.00
1,1-DICHLOROETHANE	0.00
CIS-1,2-DICHLOROETHYLENE	0.00
CHLOROFORM	0.00
1,2-DICHLOROETHANE	0.00
METHYL CHLOROFORM	0.00
BENZENE	0.00
CARBON TETRACHLORIDE	0 00
1,2-DICHLOROPROPANE	0 00
TRICHLOROETHYLENE	0.00
CIS-1,3-DICHLOROPROPENE	0.00 0.00
TRANS-1,3-DICHLOROPROPENE	0.00
1,1,2-TRICHLOROETHANE	0.00
TOLUENE	0.00
	0.00
	0.00
	0.00
	0.00
1.3-XYLENE + 1.4-XYLENE	0.00
STYRENE	0.00
1,1,2,2-TETRACHLOROETHANE	0.00
1.2-XYLENE	0 00
4-ETHYLTOLUENE	0.00
1,3,5-TRIMETHYLBENZENE	0.00
1,2,4·TRIMETHYLBENZENE	0.00
1,3-DICHLOROBENZENE	0.00
BENZYLCHLORIDE	0.00
1.4-DICHLOROBENZENE	` 0.00
1.2-DICHLOROBENZENE	0 00
1,2,4-TRICHLOROBENZENE	0.00
NAPHTHALENE	0.00
HEXACHLOROBUTADIENE	0.00

Thomas Sabatino, Chemist

PAGE # 3

SECTION 2.0 TARGET COMPOUND RETENTION TIME TABLES FOR THE ANALYSIS OF TO-14 VOLATILE ORGANIC COMPOUNDS IN GAS SAMPLES

.

Quantitation Report Quanfile: VOC30-29 Comment: TO-14 VOC STANDARD 1.5 NGSQ + 4-BFB Sorted via: Entry Number 1 Quan Entries: 45

Cal	Name of Compound	S	Scan#	R Time	Me	Calc Amt(A)	Units
1	Freon 12	E	88	1:32	BB	1.403	NANOS
2	Methyl Chloride	Ē	94	1:39		1.709	NANOS
3	Freon 114	Ē	88	1:32	BB	1.403	NANOS
	Vinyl Chloride	Ē	102	1:47	BB	1.394	NANOS
5	Methyl Bromide	E	117	2:03	BB	1.390	NANOS
6	Ethyl Chloride	E	123	2:09	BB	1.392	NANOS
7	Freon 11	E	151	2:39	BB	1.393	NANOS
8	Ethyl Ether	E	165	2:53	BB	1.397	NANOS
9	1,1-Dichloroethene	E	178	3:07	BB	1.388	NANOS
10	Methylene Chloride	E	182	3:11	BV	1.394	NANOS
11	Freon 113	E	195	3:25	BB	1.395	NANOS
12	Carbon Disulfide	E	198	3:28	BB	1.399	NANOS
13	Cis-1,2-Dichloroethene	E	229	4:00	BV	1.396	NANOS
14	1,1-Dichloroethane	E	240	4:12	VB	1.395	NANOS
15	Trans-1,2-Dichloroethe	E	287	5:01	BB	1.393	NANOS
16	Chloroform	E	305	5:20	BB	1.394	NANOS
17	1,2-Dichloroethane	E	350	6:07	BV	1.397	NANOS
18	1,1,1-Trichloroethane	E	366	6:24	BB	1.390	NANOS
19	Benzene	E	395	6:55	BB	1.393	NANOS
20	Carbontetrachloride	E	405	7:05	BB	1.392	NANOS
21	1,2-Dichloropropane	E	450	7:52	BB	1.393	NANOS
22	Trichloroethene	E	466	8:09	BB	1.397	NANOS
23	Cis-1,3-Dichloropropen	E	527	9:13	BB	1.396	NANOS
24	Trans-1,3-Dichloroprop	E	566	9:54	BB	1.397	NANOS
25	1,1,2-Trichloroethane	E	578	10:07	BB	1.390	NANOS
26	Toluene	E	599	10:29	BB	1.398	NANOS

(S) = Standard

٠

Quantitation Report Quanfile: VOC30-29 Comment: TO-14 VOC STANDARD 1.5 NGSQ + 4-BFB Sorted via: Entry Number 1

.

Quan Entries: 45

(S) = Standard

Cal	Name of Compound	S	Scan#	R Time	Me	Calc Amt(A)	Units
Cal 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	Name of Compound 1,2-Dibromoethane Tetrachloroethene Chlorobenzene Ethylbenzene 1,3+1,4-Xylenes Styrene 1,1,2,2-Tetrachloroeth 1,2-Xylene 4-Bromofluorobenzene Benzylchloride 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene Naphthalene Hexachlorobutadiene	S EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	Scan# 649 687 742 775 790 822 830 831 872 930 950 959 1001 1015 1023 1060 1276 1289 1341	R Time 11:21 12:01 12:59 13:34 13:49 14:23 14:31 14:32 15:16 16:16 16:38 16:47 17:31 17:46 17:54 18:33 22:20 22:33 23:28	Me BB BB BB BB BV BB BB BB BV VV BB BV VV BB BV MM BB BB BB BB BB	Calc Amt(A) 1.400 1.397 1.406 1.406 2.828 1.412 1.406 1.412 1.406 1.412 1.405 1.451 1.422 1.488 1.584 1.375 1.823 1.591 1.676 1.545	Units NANOS

æ

SECTION 3.0 GC/ MS OPERATING CONDITIONS FOR THE ANALYSIS OF TO-14 VOLATILE ORGANIC COMPOUNDS IN GAS SAMPLES

Log Information Comment: TO-14 VOC STANDARD 1.5 NGS@ + 4-BFB Comment: T. SABATINO

File: D:\V0C30-29 VOLATILE ORGANIC COMPOUND ANALYSIS

٠

Date: Aug-15-2000 14:00:29

Acquisition	Method Tab	le
Instrument set points		
Multiplier set voltage	1700	volts
Manifold set temperature	220	°C
Emmision set current	10	micro amps
A/M amplitude set voltage	4.0	volts
User cancelled acquisition	no	
End instrument set points		
Acquire segment #	1	
Target value	10000	
Low mass	49	amu
High mass	300	amu
Scan rate	1050	milli seconds
Segment acquire time	28	minutes
Threshold	1	counts
Filament delay	10	seconds
Mass defect	50	milli mass/100 amu
Background mass	48	amu
Calibration gas	no	
Scan mode	EI	
Ionization control	automatic	
End Acquire segment #	, 1	1
't-Prev seg 1-Next seg	Esi	c to continue

¢

Comment	ormation : TO-14 VOC STAND : T. SABATINO	ARD 1.5 NGSO	D:\VOC30-29 + 4-BFB ORGANIC COMPO	•	14:00
[Title	Saturn Log F	ile		
	Analysis list f Acquisition met GC method file Autosampler met	hod file name name	T014G		
ſ		Col	umn Table 🚃		
	Column tables				
	Start temp °C	End temp ['] °C	ràte °C⁄minute	time minutes	
	40	40	0.0	4.00	
	40 180	180 180	7.0 0.0	20.00 4.00	11
	End column tab		0.0	4,00	
		······································	Esc	: to continue	
L	F8 -		ransfer line t alve parameter error table		
·			es and comment	ts editor	
	? - H Esc -	lelp · Exit			

ł.

Date: Aug-15-2000 14:00:29

Analysis list file name V0C30 Acquisition method file name T014FG GC method file name T014G Autosampler method file name Injector tables Start temp End temp rate time °C °C °C °C/minute minutes 150 150 0.0 28.00 End injector tables F6 - Display GC injector table	sition method file name thod file name ampler method file name Inje	e T014FG T014G ;	
Injector tables Start temp End temp rate time °C °C °C/minute minutes 150 150 0.0 28.00 End injector tables Esc to continue F6 - Display GC injector table	ector tables	ector Table 🚃	
Start tempEnd tempratetime°C°C°C/minuteminutes1501500.028.00End injector tablesEsc to continueF6 - Display GC injector table			
F6 - Display GC injector table	°C °C 150 150	°C/minute	minutes
		Esc	to continue
F7 — Display GC transfer line table F8 — Display GC valve parameters F9 — Display GC error table	F7 - Display GC t F8 - Display GC v	ransfer line ta valve parameters	able
F10 - User log notes and comments editor	F10 – User log not	es and comments	s editor

Comment: TO-14 VOC STANDARD 1.5 NGSQ + 4-BFB Comment: T. SABATINO VOLATILE ORGANIC COMPOUND ANALYSIS Saturn Log File Title V0C30 Analysis list file name Acquisition method file name **T014FG** GC method file name T014G Autosampler method file name Transfer Line Table Transfer line tables 1 Start temp End temp time rate °C °C °C/minute minutes 200 200 0.0 4.00End transfer line tables Esc to continue F6 - Display GC injector table F7 - Display GC transfer line table F8 - Display GC value parameters F9 - Display GC error table F10 - User log notes and comments editor ? - Help Esc - Exit

×

File: D:\V0C30-29

Date: Aug-15-2000 14:00:29

Log Information

SECTION 4.0 GC/ MS RAW DATA REPORTS FOR THE ANALYSIS OF TO-14 VOLATILE ORGANIC COMPOUNDS IN GAS SAMPLES

.

•

)

.

Quantitation ReportQuanfile: VOC30-35Comment: LAB AIR BLANK 0.50 CC + 4-BFBSorted via: Entry Number 1

•

Quan Entries: 15

(S) = Standard

Cal Name of Com	pound S	Scan#	R Time	Me	Calc Amt(A)	Units
CalName of Com2Methyl Chloridd10Methylene Chloridd11Freon 11312Carbon Disulfid16Chloroform19Benzene26Toluene30Ethylbenzene311,3+1,4-Xylene354-Bromofluorobd374-Ethyltoluene381,3,5-Trimethy391,2,4-Trichlord44Naphthalene	e E ride E de E E E E E E E E E E E E E E E E E E E	Scan# 105 182 196 198 306 394 599 778 778 872 951 951 1001 1278 1291	R Time 1:50 3:11 3:26 3:28 5:21 6:54 10:29 13:37 13:37 15:16 16:39 16:39 17:31 22:22 22:35	Me BV BB BB BB BB BB BB BB BB BB BB BB BB	Calc Amt(A) 8.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Units NANOS NANOS NANOS NANOS NANOS NANOS NANOS NANOS NANOS NANOS NANOS NANOS NANOS NANOS NANOS NANOS

*

Quantitation Report Quanfile: VOC30-36 Comment: LFR GB 8/14/2000 DM LF 0.10 CC + 4-BFB Sorted via: Entry Number 1 Quan Entries: 34

(S) = Standard

Cal	Name of Compound	S	Scan#	R Time	Me	Calc Amt(A)	Units
1	Freon 12	E	87	1:31	BV	0.545	NANOS
2	Methyl Chloride	Ē	105	1:50		1.381	NANOS
3	Freon 114	Ē	87	1:31	BV	0.545	NANOS
	Vinyl Chloride	E	101	1:46	BB	2.147	NANOS
6	Ethyl Chloride	E	125	2:11	BB	0.270	NANOS
8	Ethyl Ether	E	176	3:05	BB	3.361	NANOS
10	Methylene Chloride	E	182	3:11	VB	1.185	NANOS
11	Freon 113	E	195	3:25	BB	0.000	NANOS
12	Carbon Disulfide	E	198	3:28	BB	0.000	NANOS
13	Cis-1,2-Dichloroethene	E	229	4:00	BV	0.068	NANOS
14	1,1-Dichloroethane	E	240	4:12	VB	1.020	NANOS
15	Trans-1,2-Dichloroethe	E	287	5:01	VV	2.149	NANOS
18	1,1,1-Trichloroethane	E	366	6:24	BB	0.000	NANOS
19	Benzene	E	395	6:55	BB	0.426	NANOS
21	1,2-Dichloropropane	E	449	7:51	VB	0.000	NANOS
22	Trichloroethene	E	466	8:09	BB	0.938	NANOS
24	Trans-1,3-Dichloroprop	E	565	9:53	BB	0.050	NANOS
25	1,1,2-Trichloroethane	E	574	10:03	BB	0.000	NANOS
26	Toluene	E	599	10:29	BB	106.101	NANOS
28	Tetrachloroethene	E	687	12:01	BB	1.876	NANOS
29	Chlorobenzene	E	742	12:59	BB	0.108	NANOS
30	Ethylbenzene	E	774	13:33	BB	8.089	NANOS
31	1,3+1,4-Xylenes	E	789	13:48	BB	15.247	NANOS
33	1,1,2,2-Tetrachloroeth	E	814	14:15	VV	0.000	NANOS
34	1,2-Xylene	E	831	14:33	BV	3.494	NANOS
35	4-Bromof luorobenzene	E	871	15:15	BV	5.659	NANOS

4

•

Quantitation Report Quanfile: VOC30-36 Comment: LFR GB 8/14/2000 DM LF 0.10 CC + 4-BFB Sorted via: Entry Number 1

Quan Entries: 34

(S) = Standard

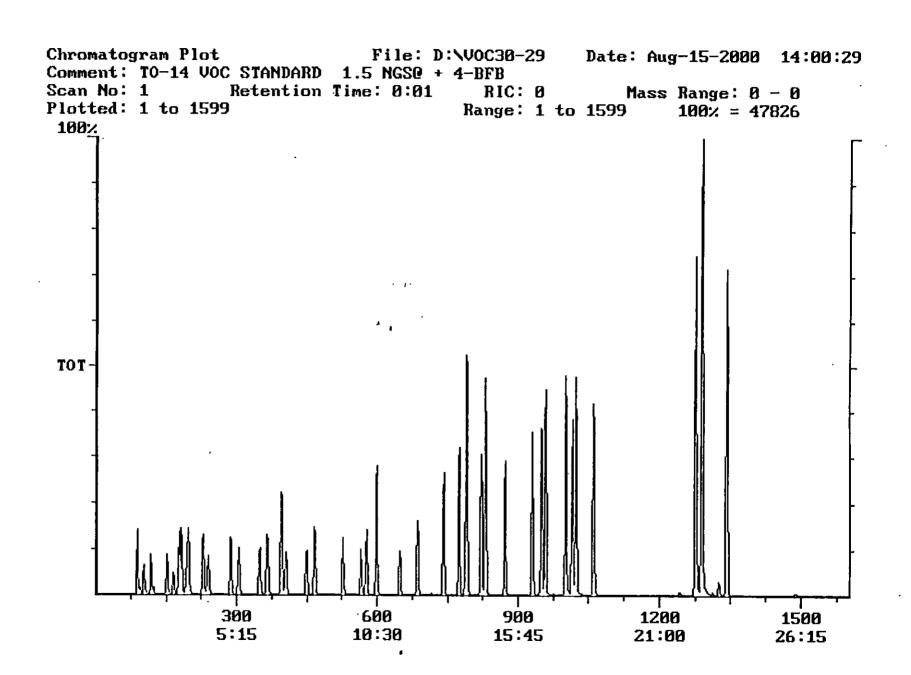
Cal	Name of Compound	S	Scan#	R Time	Me	Calc Amt(A)	Units
36 37 38 39 40 41 43 44	Benzylchloride 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2,4-Trichlorobenzene Naphthalene	E E E E E E E E E E E E E E E E E E E	935 946 959 1001 1023 1023 1275 1289	16:22 16:33 16:47 17:31 17:54 17:54 22:19 22:33	VV VV VB BB BB BB BB BB	0.000 0.617 0.000 0.000 0.000 0.000 0.000	NANOS NANOS NANOS NANOS NANOS NANOS NANOS

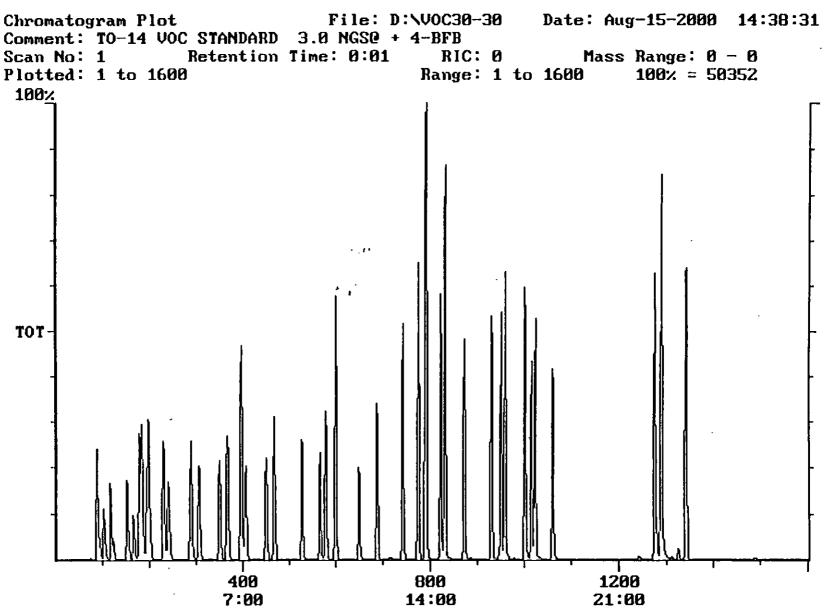
Quantitation ReportQuanfile: V0C30-37Quan Entries: 34Comment: LFR GB 8/14/2000 DM LF 0.10 CC + 4-BFB DUPLICATESorted via: Entry Number 1(S) = Standard

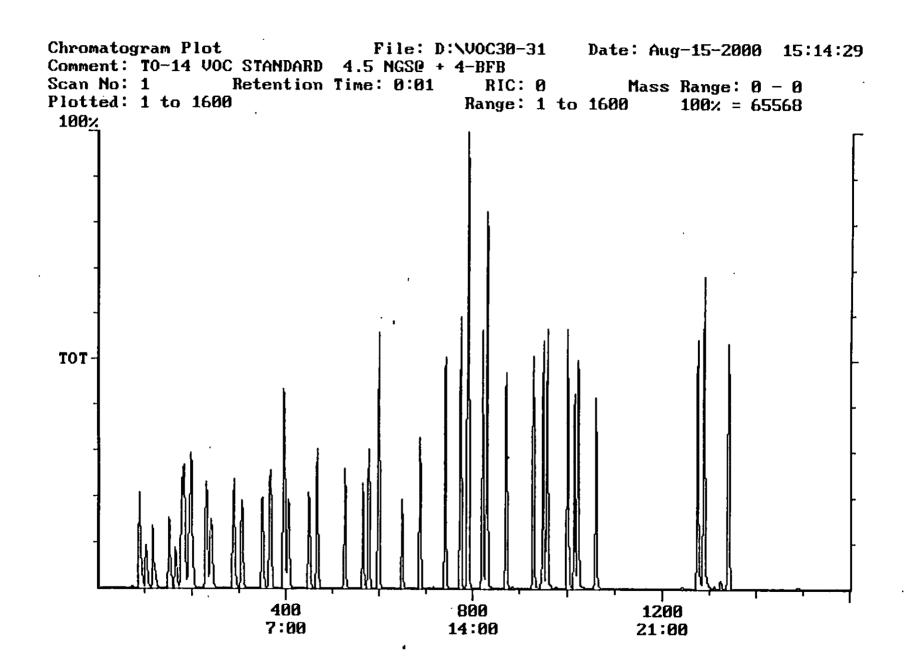
Cal	Name of Compound	S	Scan#	R Time	Me	Calc Amt(A)	Units
1	Freon 12	E	87	1:31	BV	0.570	NANOS
2 Z	Methyl Chloride	E	105	1:50	ŪŪ	1.452	NANOS
3	Freon 114	E	87	1:31	BV	0.570	NANOS
4	Vinyl Chloride	E	101	1:46	BB	2.026	NANOS
6	Ethyl Chloride	E	124	2:10	BB	8.217	NANOS
7	Freon 11	E	151	2:39	BB	0.001	NANOS
8	Ethyl Ether	E	176	3:05	BB	3.151	NANOS
10	Methylene Chloride	E	182	3:11	VB	1.115	NANOS
11	Freon 113	E	193	3:23	BB	0.000	NANOS
12	Carbon Disulfide	E	197	3:27	BB	0.000	NANOS
13	Cis-1,2-Dichloroethene	E	228	3:59	BV	0.062	NANOS
14	1,1-Dichloroethane	E	239	4:11	BB	0.976	NANOS
15	Trans-1,2-Dichloroethe	E	287	5:01	UV	2.022	NANOS
18	1,1,1-Trichloroethane	E	366	6:24	BB	0.000	NANOS
19	Benzene	E	395	6:55	BB	0.383	NANOS
21	1,2-Dichloropropane	E	449	7:51	BB	0.000	NANOS
24	Trans-1,3-Dichloroprop	E	565	9:53	BB	0.048	NANOS
25	1,1,2-Trichloroethane	E	574	10:03	BB	0.000	NANOS
26	Toluene	E	599	10:29	BB	96.529	NANOS
28	Tetrachloroethene	E	687	12:01	BB	1.722	NANOS
29	Chlorobenzene	E	742	12:59	BB	0.102	NANOS
30	Ethylbenzene	E	775	13:34	BB	8.563	NANOS
31	1,3+1,4-Xylenes	E	790	13:49	VV	15.779	NANOS
33	1,1,2,2-Tetrachloroeth	E	837	14:39	BV	0.000	NANOS
34	1,2-Xylene	E	831	14:33	BB	3.679	NANOS
35	4-Bromofluorobenzene	E	872	15:16	BV	6.054	NANOS

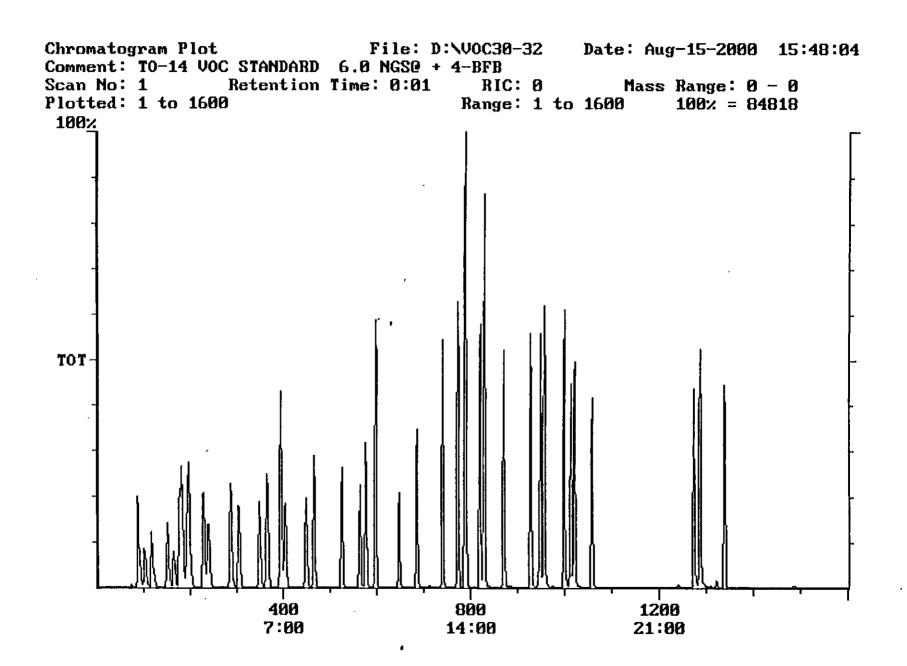
4

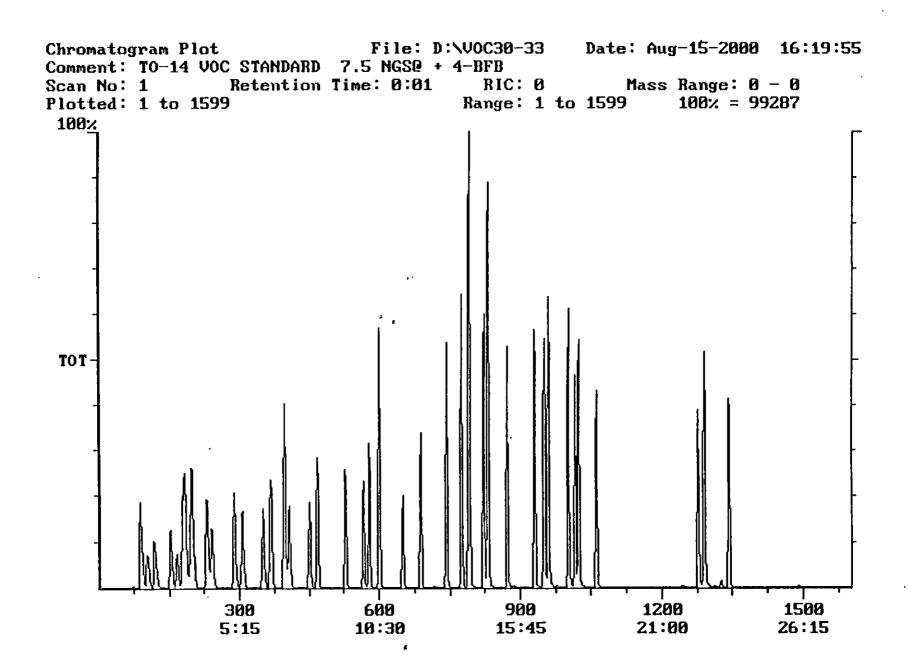
Quantitation ReportQuanfile: VOC30-37Quan Entries: 34Comment: LFR GB 8/14/2000 DM LF 0.10 CC + 4-BFB DUPLICATESorted via: Entry Number 1(S) = Standard

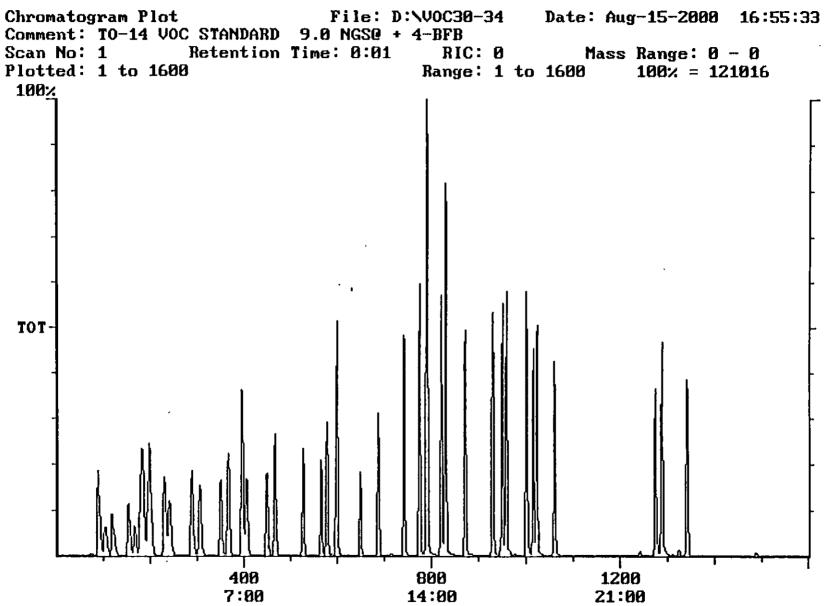

Cal	Name of Compound	S	Scan#	R Time	Me	Calc Amt(A)	Units
36 37 38 39 40 41 43 44	Benzylchloride 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,4-Dichlorobenzene 1,2,4-Trichlorobenzene Naphthalene	EEEEEE	935 947 959 1001 1023 1023 1276 1289	16:22 16:34 16:47 17:31 17:54 17:54 22:20 22:33	VB BV VB BB BB BB BB	8.090 9.822 9.000 9.000 9.000 9.000 9.000 9.000	NANOS NANOS NANOS NANOS NANOS NANOS NANOS

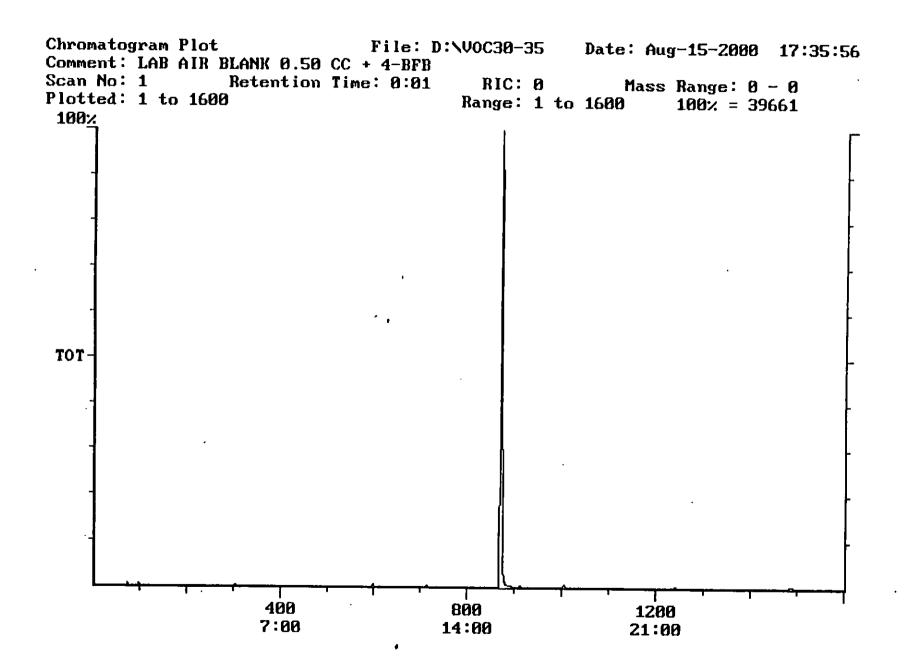

.

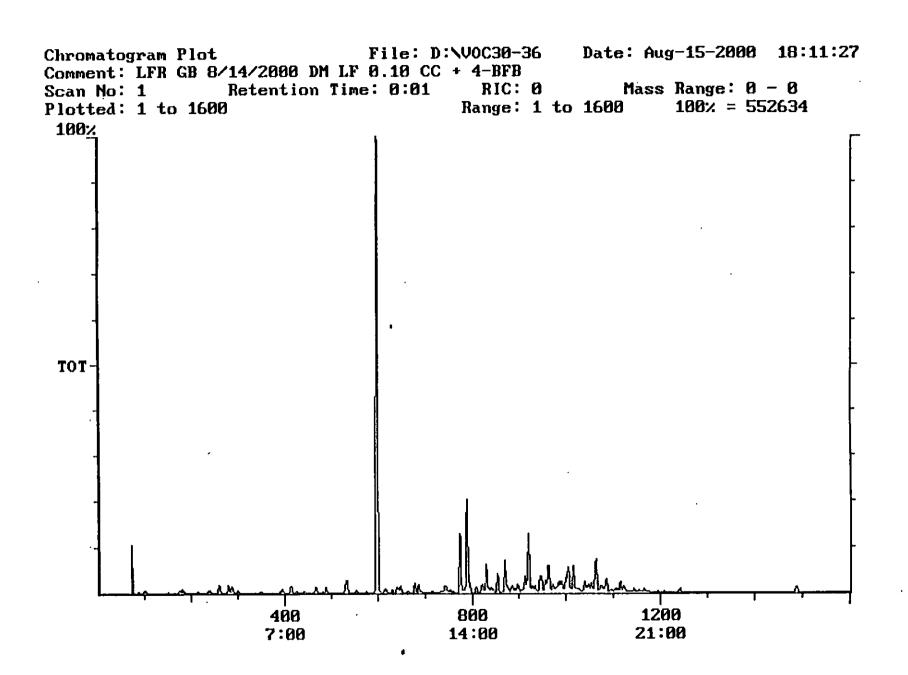

•

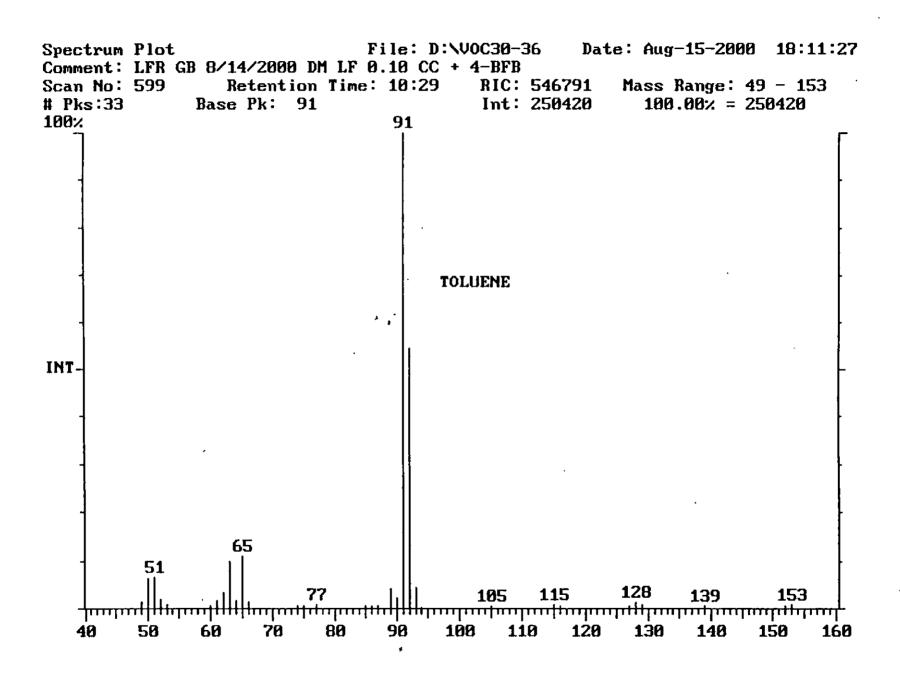

SECTION 5.0 GC/ MS ION CHROMATOGRAMS FOR THE ANALYSIS OF TO-14 VOLATILE ORGANIC COMPOUNDS IN GAS SAMPLES

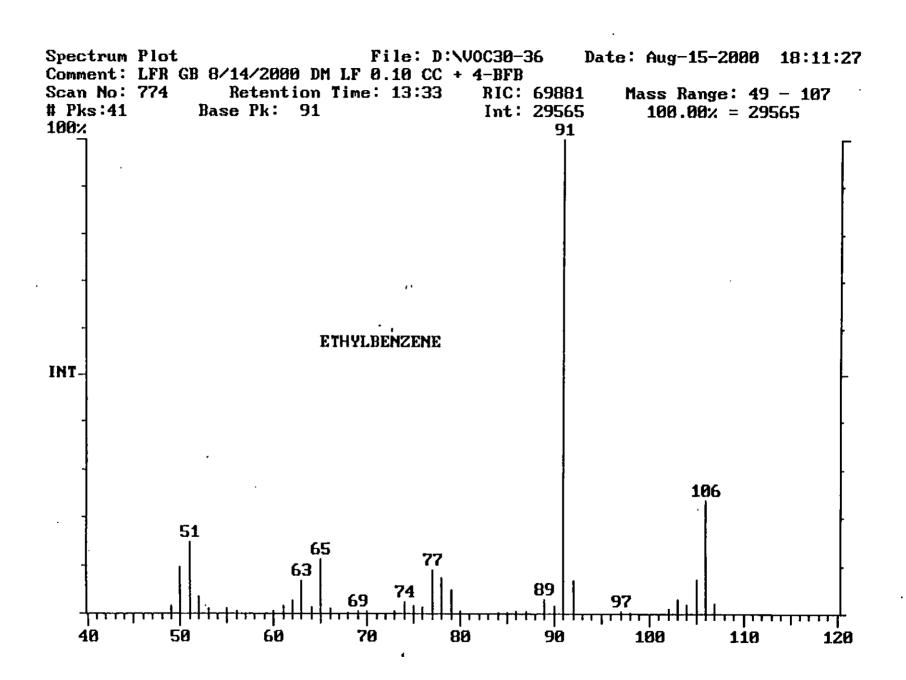

.

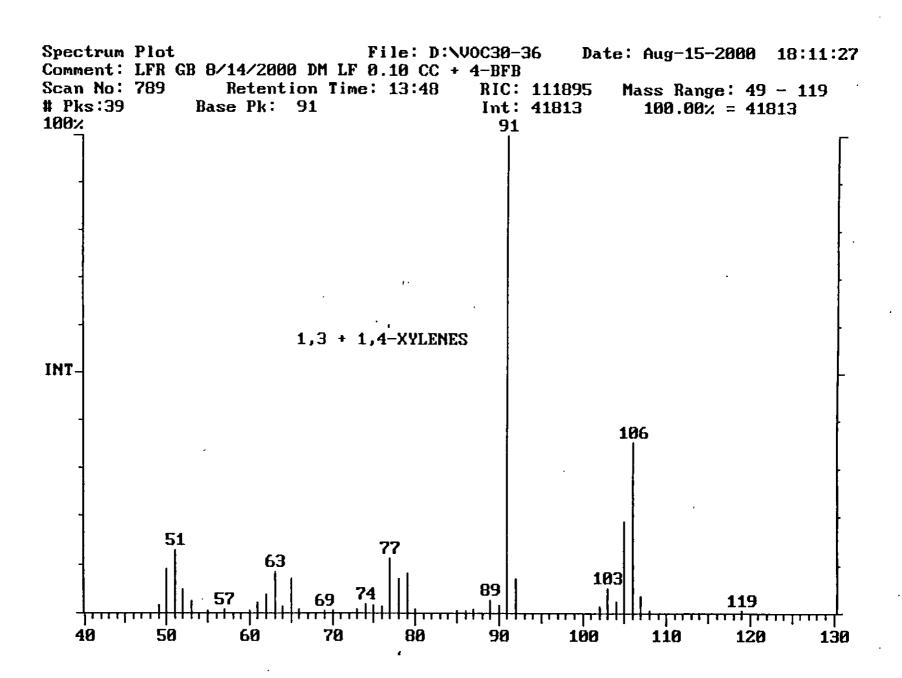


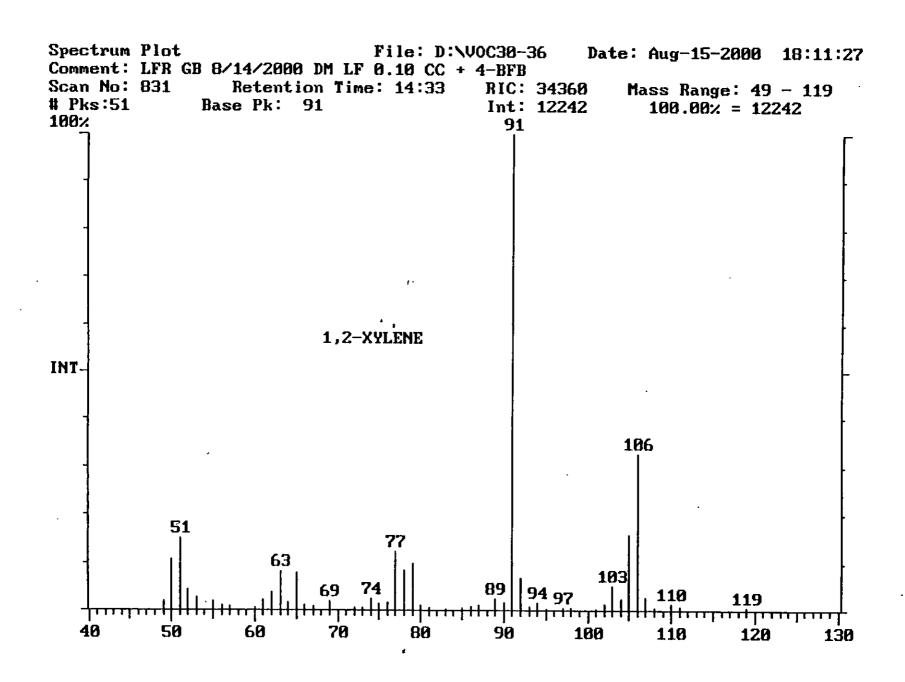


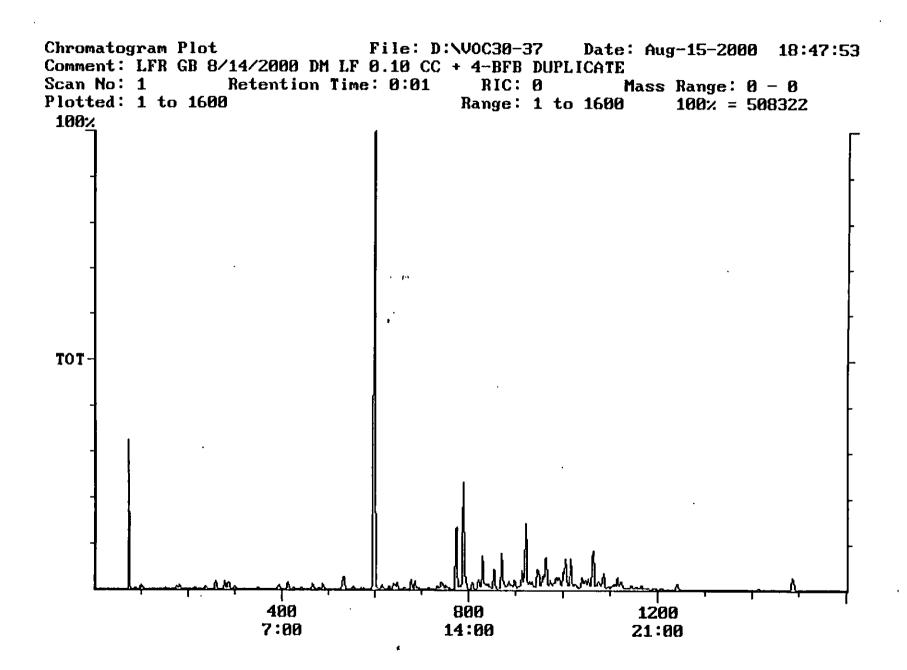


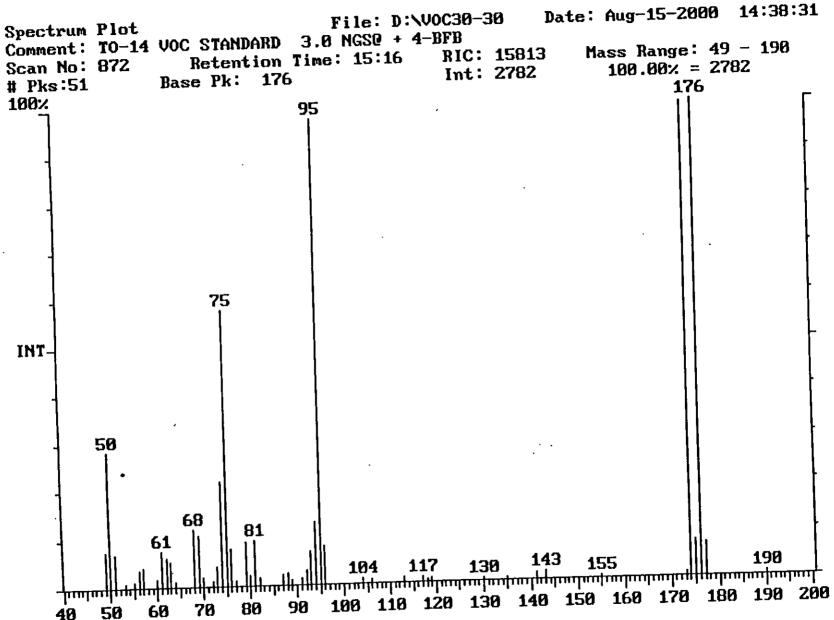

-


#

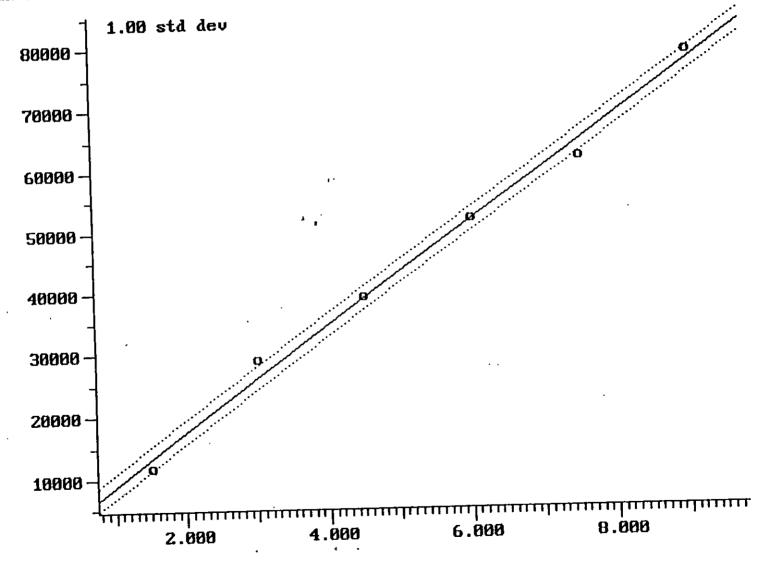


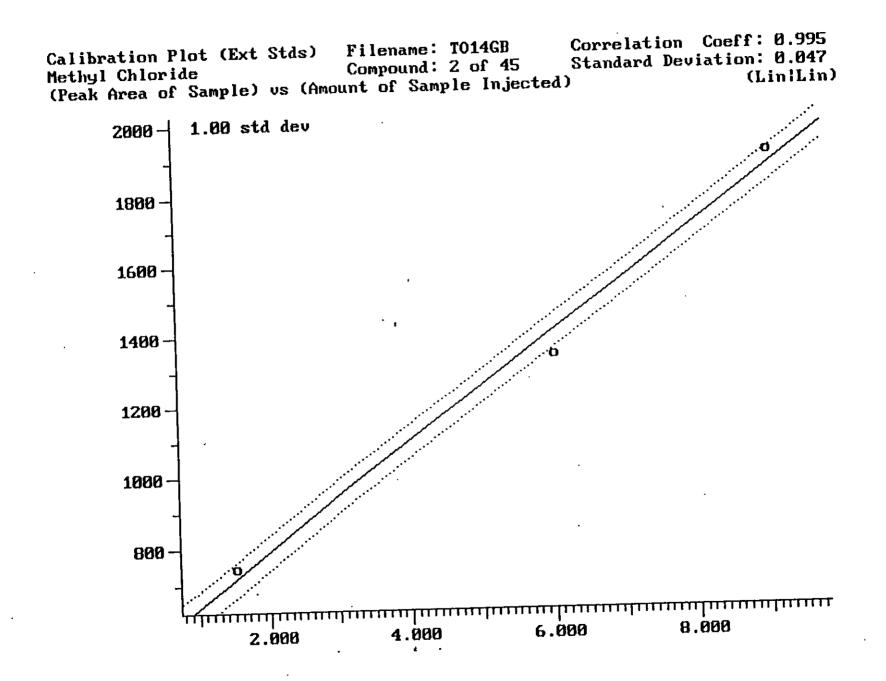

•

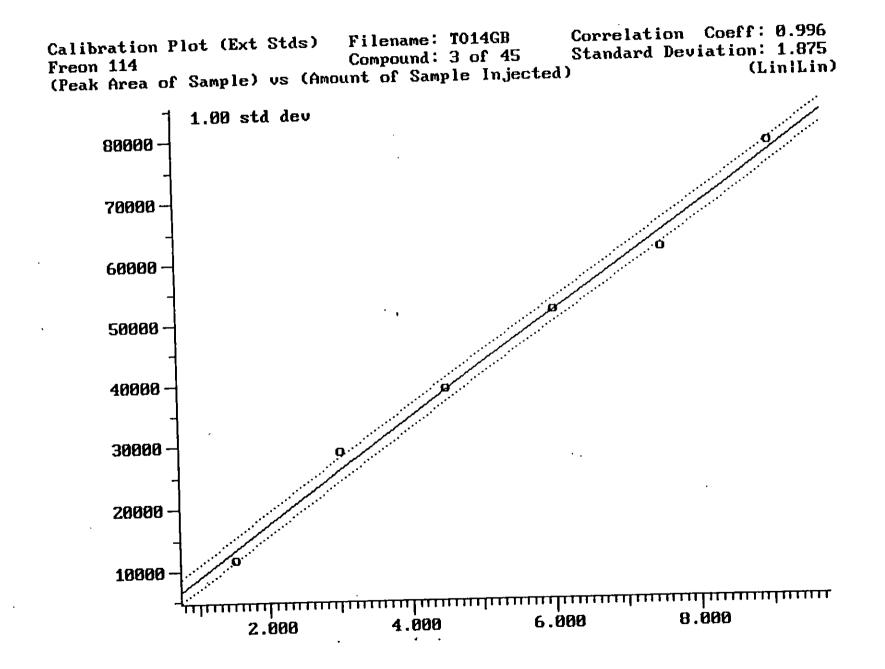


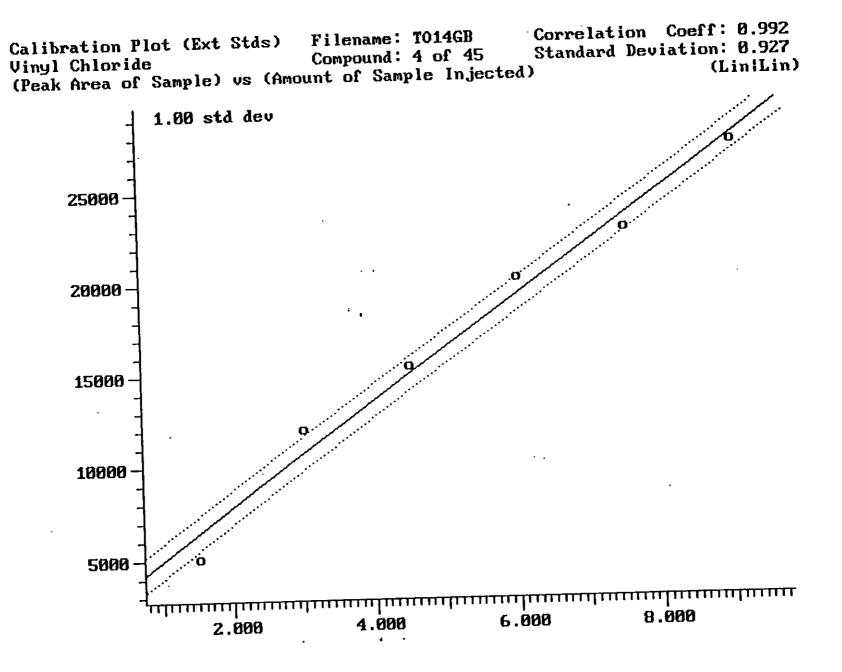


SECTION 6.0 4-BROMOFLUOROBENZENE TUNING CHARACTERISTICS AND RUN LOGS FOR THE ANALYSIS OF TO-14 VOLATILE ORGANIC COMPOUNDS IN GAS SAMPLES

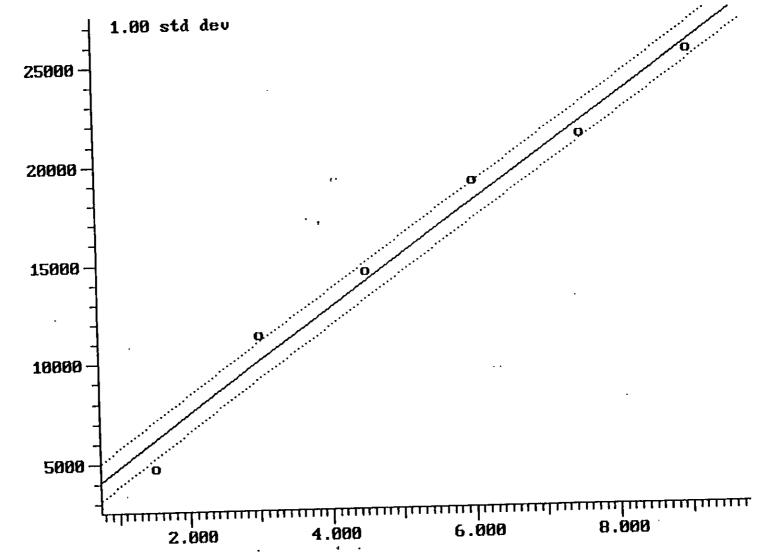

0

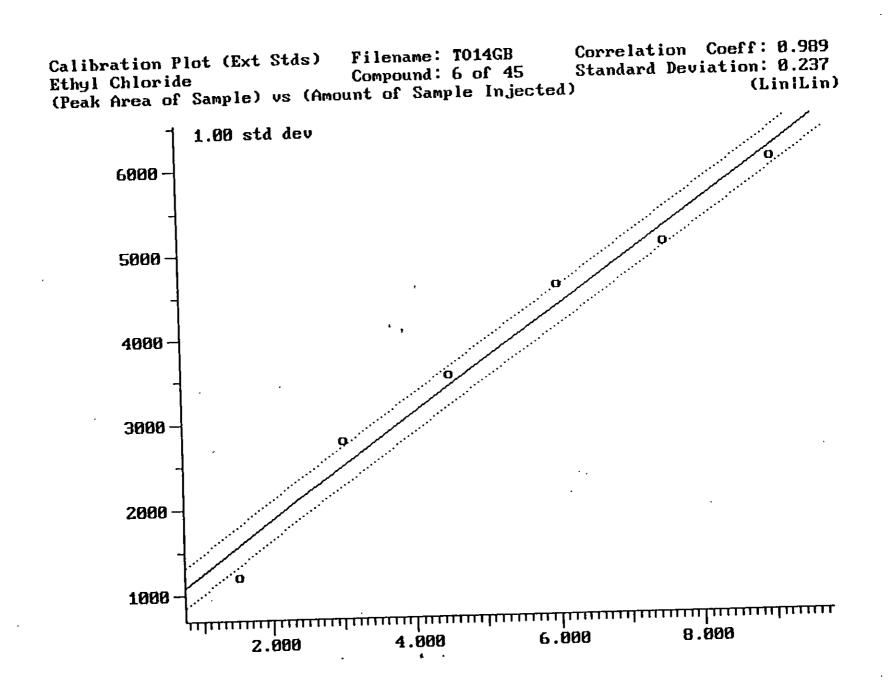


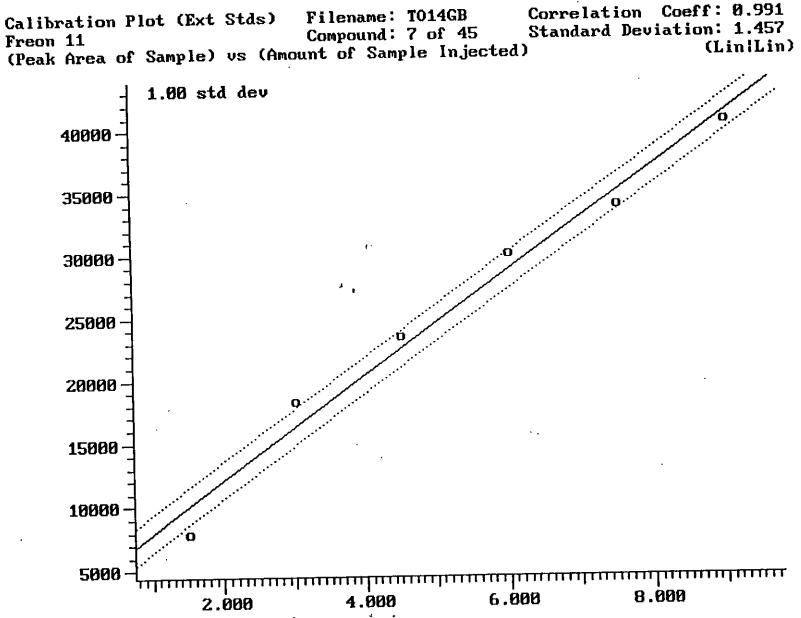

Date: Aug-15-2000 14:38:31 File: D:\V0C30-30 Mass List Comment: TO-14 VOC STANDARD 3.0 NGSO + 4-BFB Mass Range: 49 - 190 RIC: 15813 Retention Time: 15:16 Threshold: 1.00% Scan No: 872 Int: 2782 Mass of Base Peak: 176 # Peaks: 51

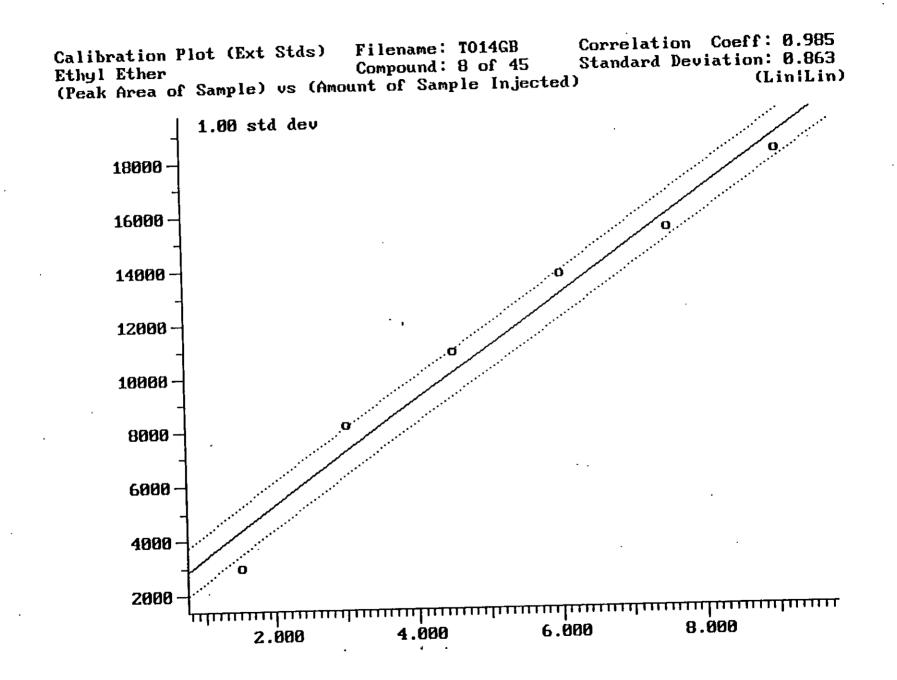

Mass	Intensity	% Base	Mass	Intensity	<u>% Base</u>	Mass	Intensity	<u>% Base</u>
Hass 49 50 51 56 57 60 61 62 63 68 69 70 73 74 75 76 79 80 81 82 87 88 91 92 93	200 782 190 95 110 42 203 167 143 328 287 52 113 603 1,602 212 252 58 255 45 57 68 32 83	$\begin{array}{c} 7.19\\ 28.11\\ 6.83\\ 3.41\\ 3.95\\ 1.51\\ 7.30\\ 6.00\\ 5.14\\ 11.79\\ 10.32\\ 1.87\\ 4.06\\ 21.68\\ 57.58\\ 7.62\\ 9.06\\ 2.08\\ 9.17\\ 1.62\\ 2.05\\ 2.44\\ 1.15\\ 2.98\end{array}$	94 95 ⁻ 96 104 141 143 174 175 176 177	358 2,716 217 30 35 45 2,769 200 2,782 185	12.87 97.63 7.80 1.08 1.26 1.62 99.53 7.19 100.00 6.65			

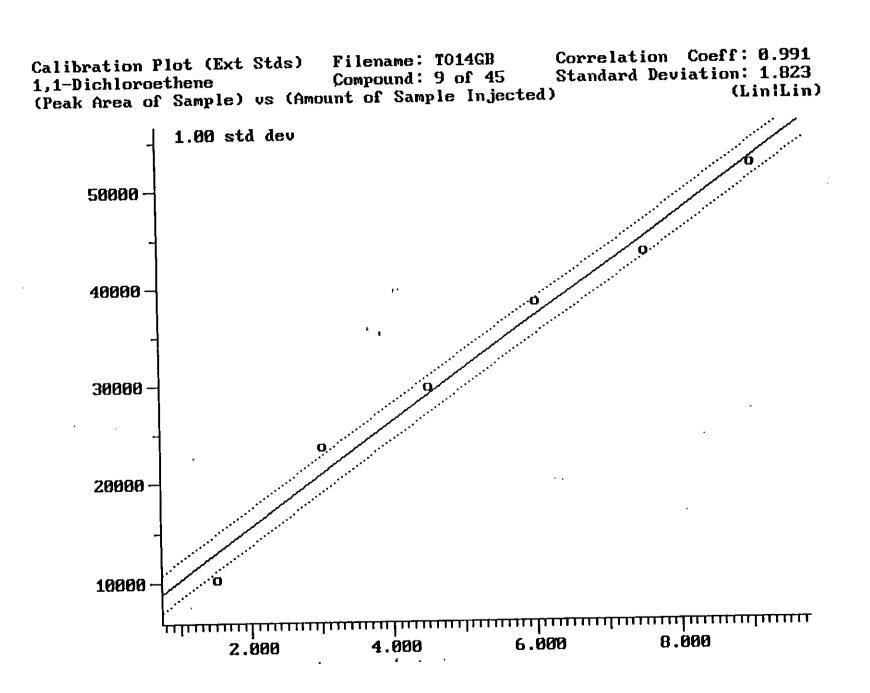
SECTION 7.0 INITIAL CALIBRATION CHARTS AND TABLES FOR THE ANALYSIS OF TO-14 VOLATILE ORGANIC COMPOUNDS IN GAS SAMPLES Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.996 Freon 12 Compound: 1 of 45 Standard Deviation: 1.875 (Peak Area of Sample) vs (Amount of Sample Injected) (LiniLin)

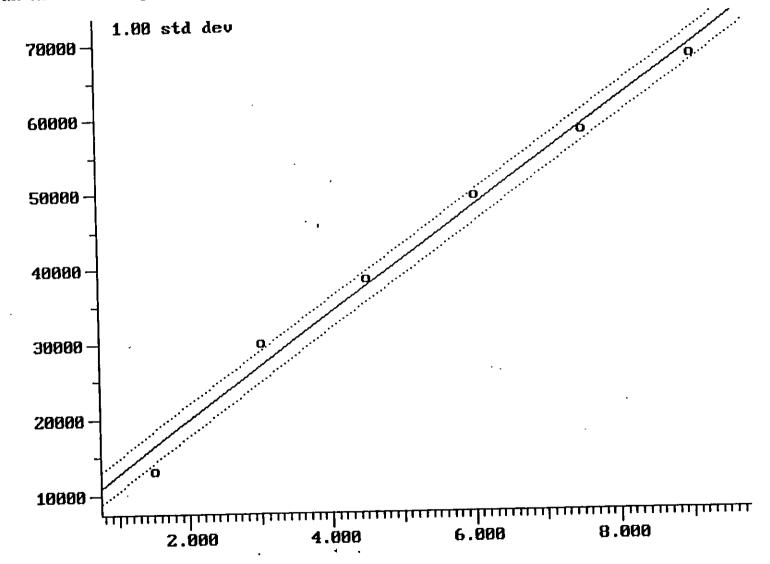




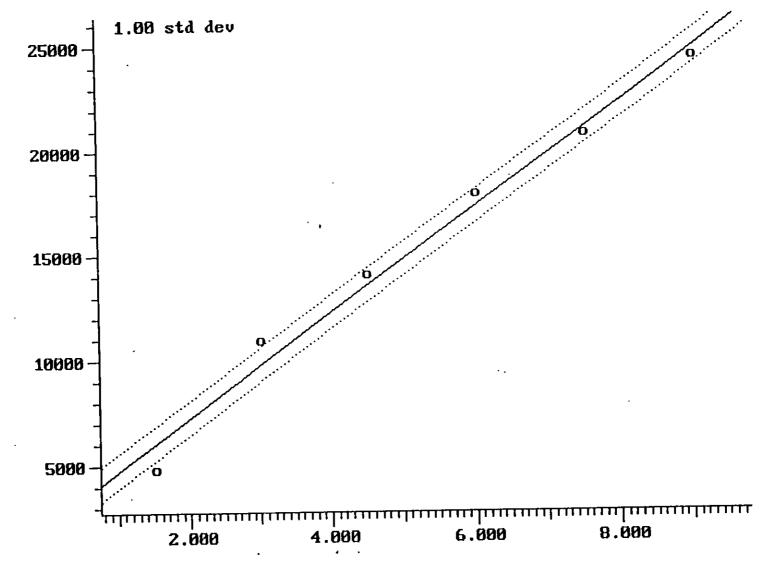


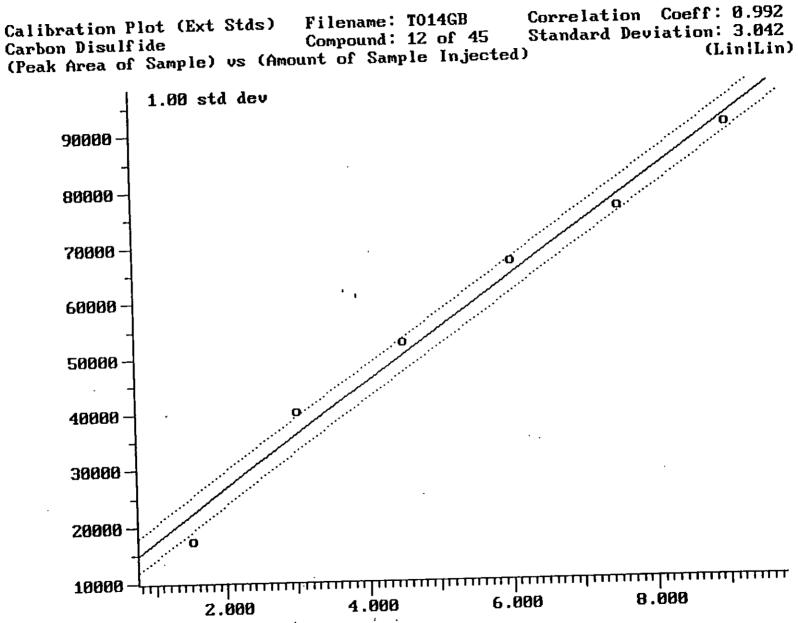

Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.990 Methyl Bromide Compound: 5 of 45 Standard Deviation: 0.943 (Peak Area of Sample) vs (Amount of Sample Injected) (LiniLin)



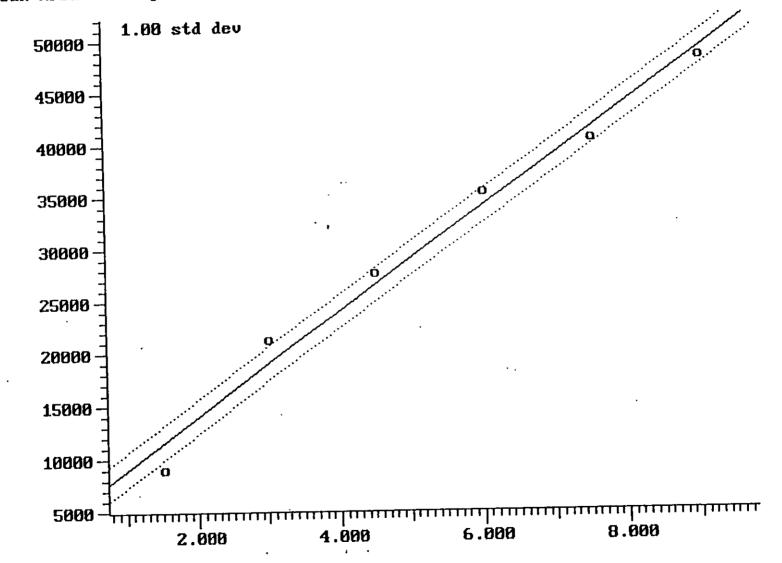


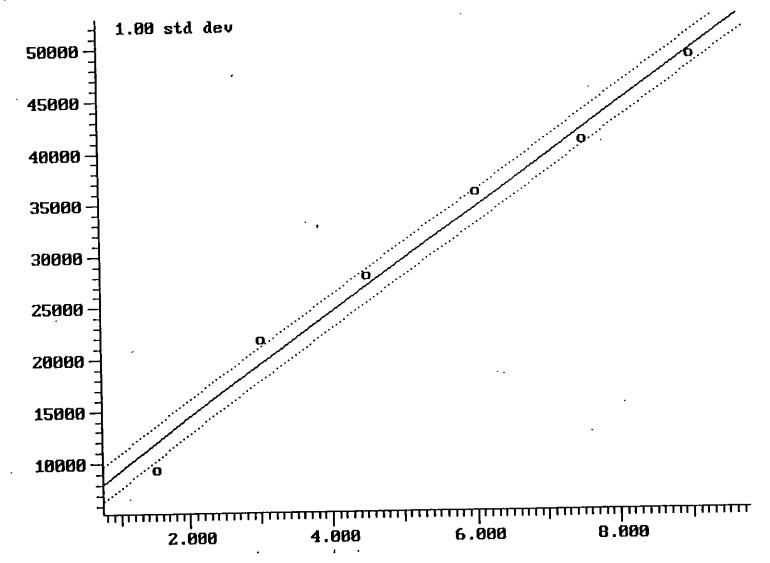
Freon 11



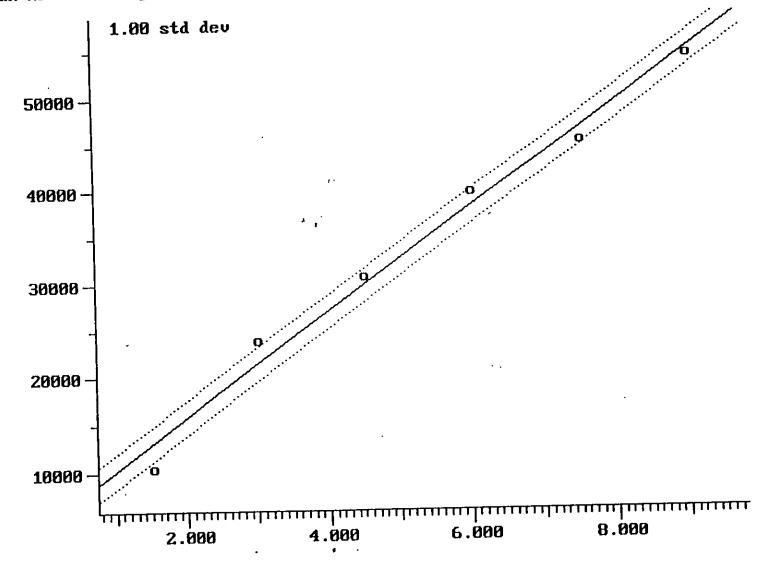


Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.994 Methylene Chloride Compound: 10 of 45 Standard Deviation: 2.024 (Peak Area of Sample) vs (Amount of Sample Injected) (Lin!Lin)

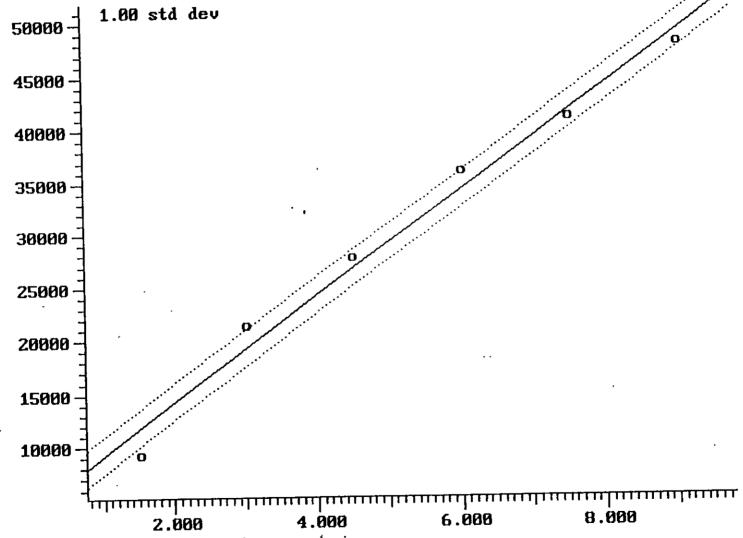

Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.993 Freon 113 Compound: 11 of 45 Standard Deviation: 0.783 (Peak Area of Sample) vs (Amount of Sample Injected) (LiniLin)

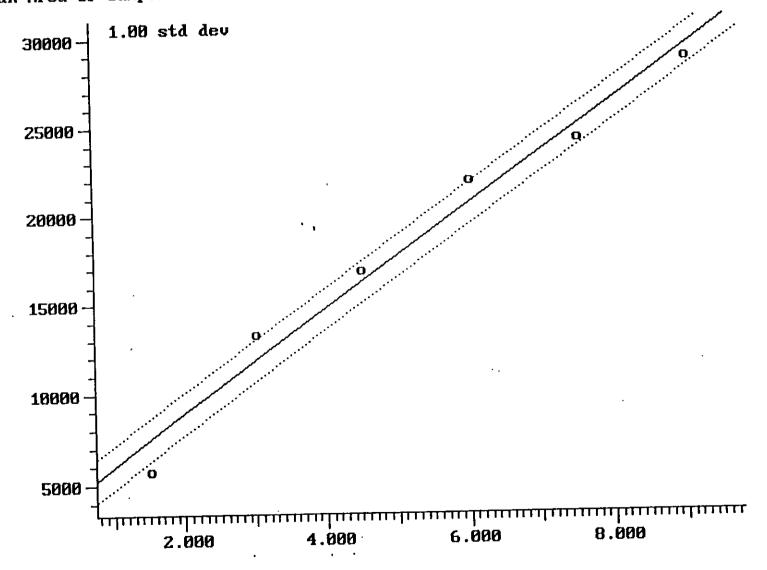

Carbon Disulfide

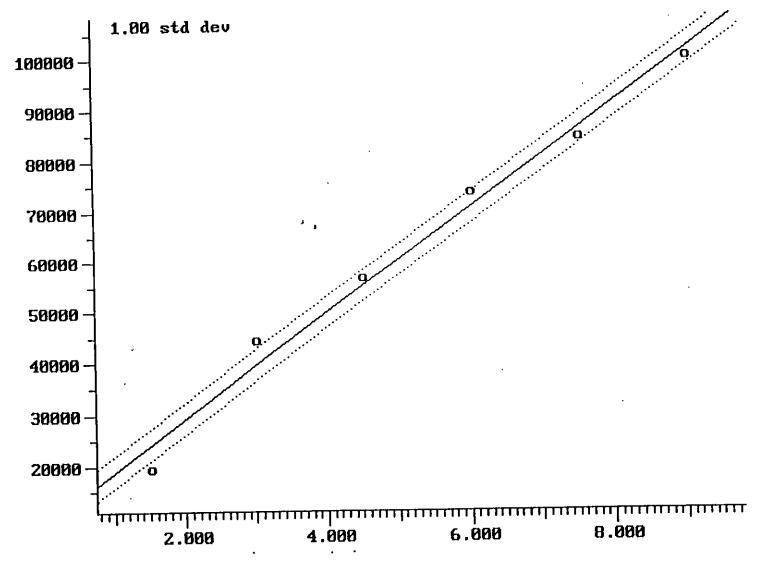
Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.992 Cis-1,2-Dichloroethene Compound: 13 of 45 Standard Deviation: 1.621 (Peak Area of Sample) vs (Amount of Sample Injected) (LiniLin)

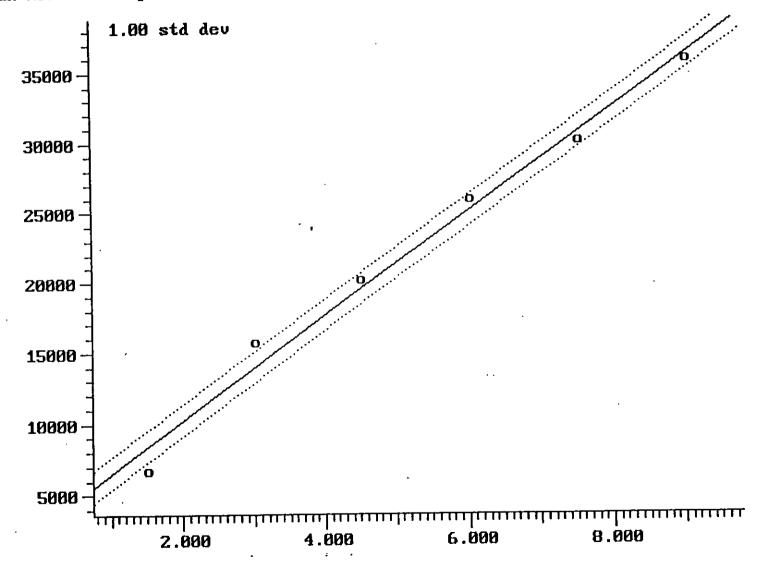


Correlation Coeff: 0.992 Filename: TO14GB Calibration Plot (Ext Stds) Standard Deviation: 1.622 Compound: 14 of 45 1,1-Dichloroethane (Lin!Lin) (Peak Area of Sample) vs (Amount of Sample Injected) 1.00 std dev 50000 45000 40000 35000 30000 25000 20000 15000 10000 8.000 6.000 4.000 2,000 ÷ .

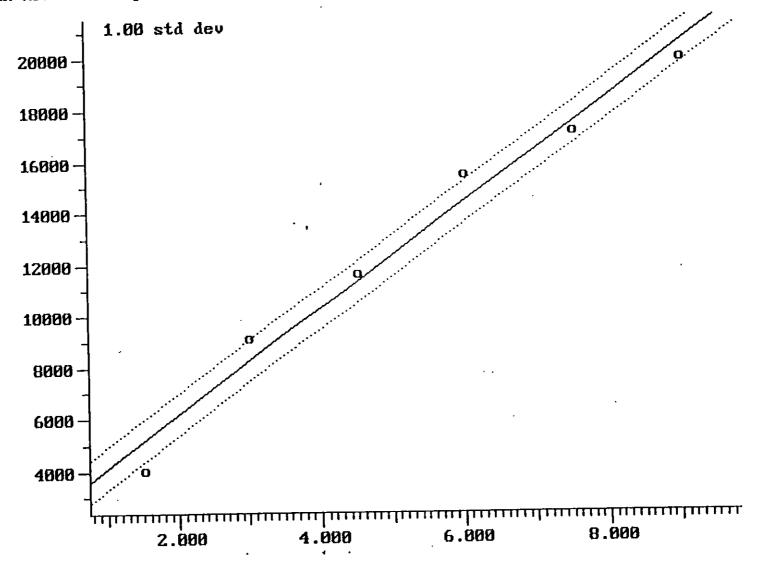

Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.992 Trans-1,2-Dichloroethene Compound: 15 of 45 Standard Deviation: 1.651 (Peak Area of Sample) vs (Amount of Sample Injected) (LiniLin)


Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.992 Chloroform Compound: 16 of 45 Standard Deviation: 1.762 (Peak Area of Sample) vs (Amount of Sample Injected) (LiniLin)

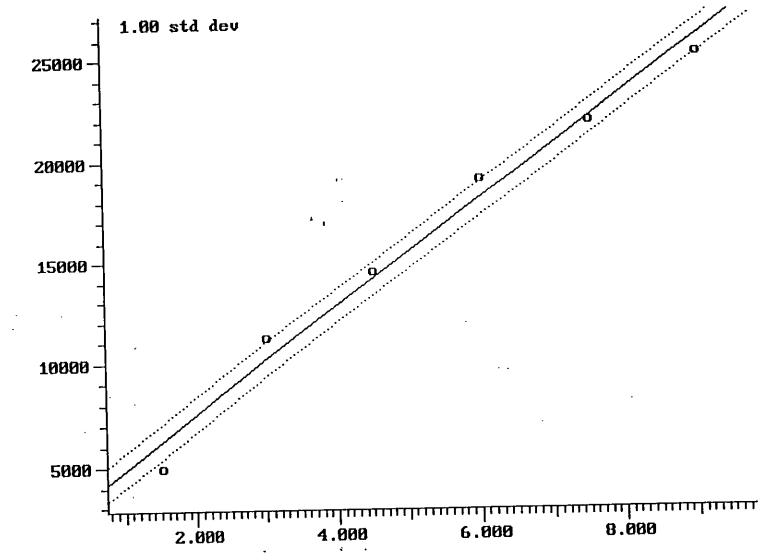

Correlation Coeff: 0.992 Filename: T014GB Calibration Plot (Ext Stds) Standard Deviation: 1.675 Compound: 17 of 45 1,2-Dichloroethane (Lin¦Lin) (Peak Area of Sample) vs (Amount of Sample Injected)

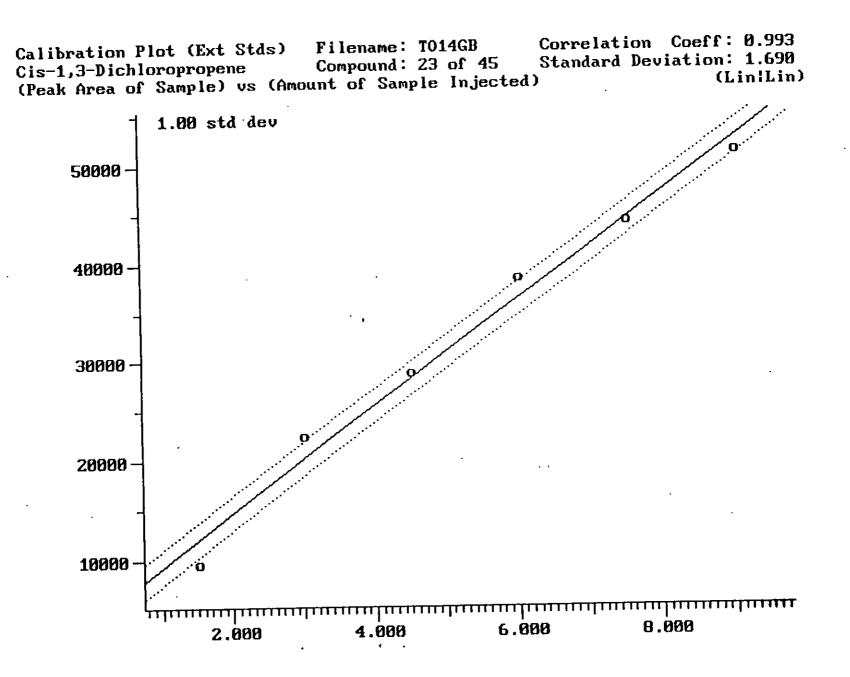

Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.988 1,1,1-Trichloroethane Compound: 18 of 45 Standard Deviation: 1.163 (Peak Area of Sample) vs (Amount of Sample Injected) (LiniLin)

Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.993 Benzene Compound: 19 of 45 Standard Deviation: 3.199 (Peak Area of Sample) vs (Amount of Sample Injected) (LiniLin)

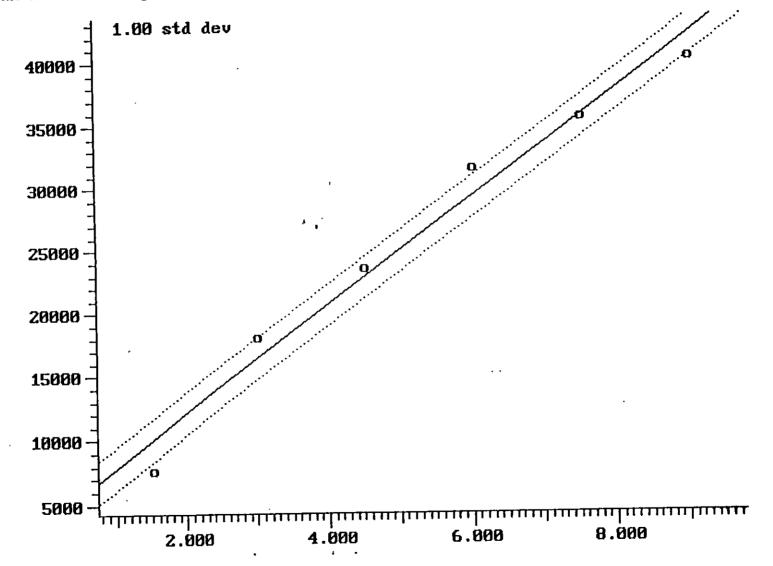


Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.993 Carbontetrachloride Compound: 20 of 45 Standard Deviation: 1.122 (Peak Area of Sample) vs (Amount of Sample Injected) (Lin!Lin)

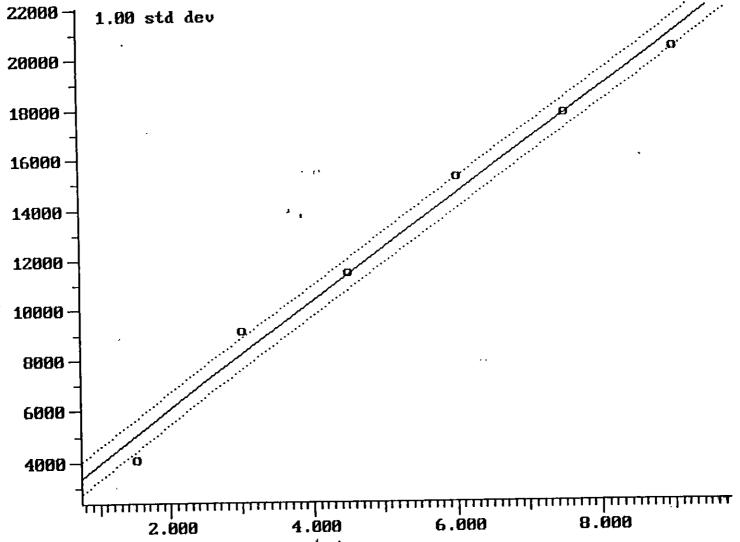



- `

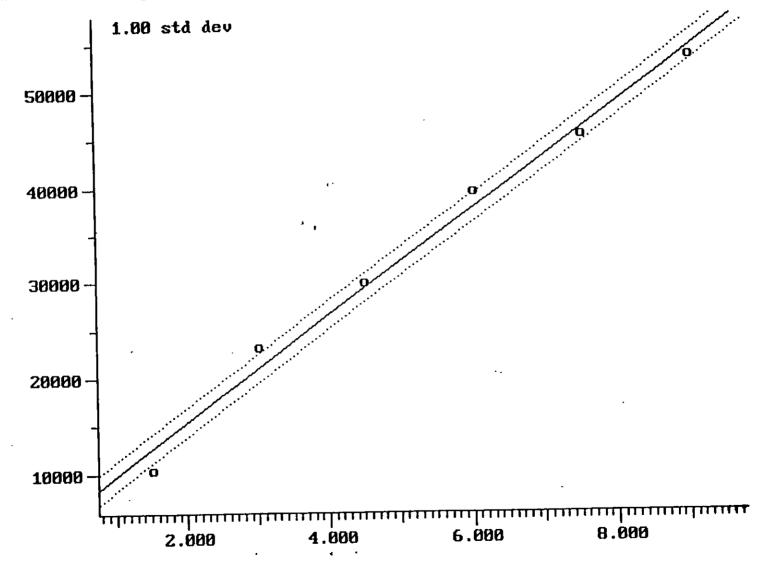
Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.989 1,2-Dichloropropane Compound: 21 of 45 Standard Deviation: 0.798 (Peak Area of Sample) vs (Amount of Sample Injected) (LiniLin)



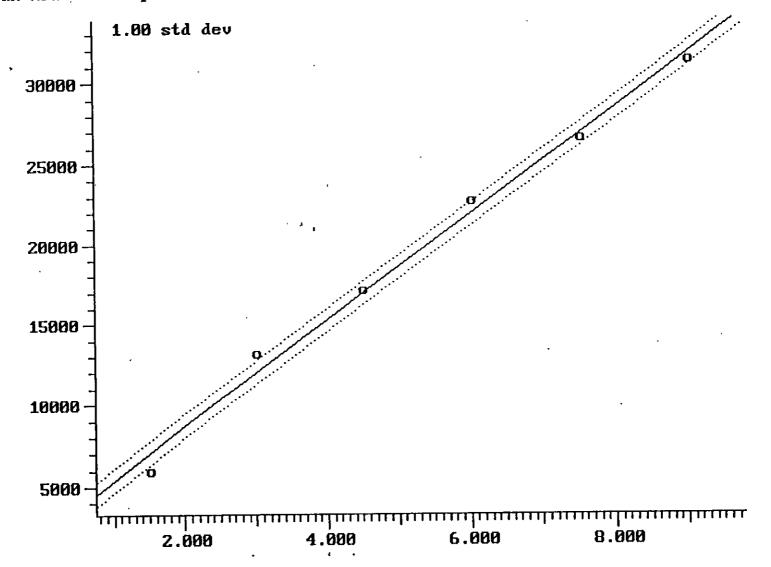
Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.992 Trichloroethene Compound: 22 of 45 Standard Deviation: 0.863 (Peak Area of Sample) vs (Amount of Sample Injected) (Lin!Lin)

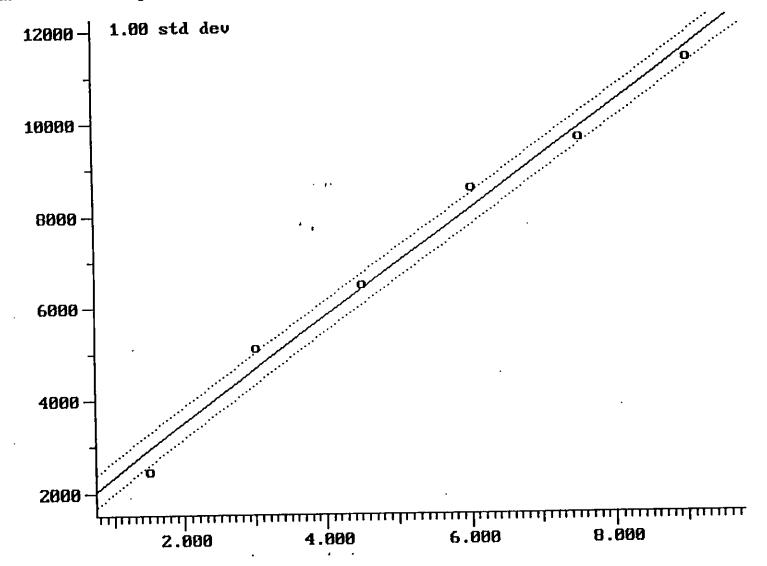


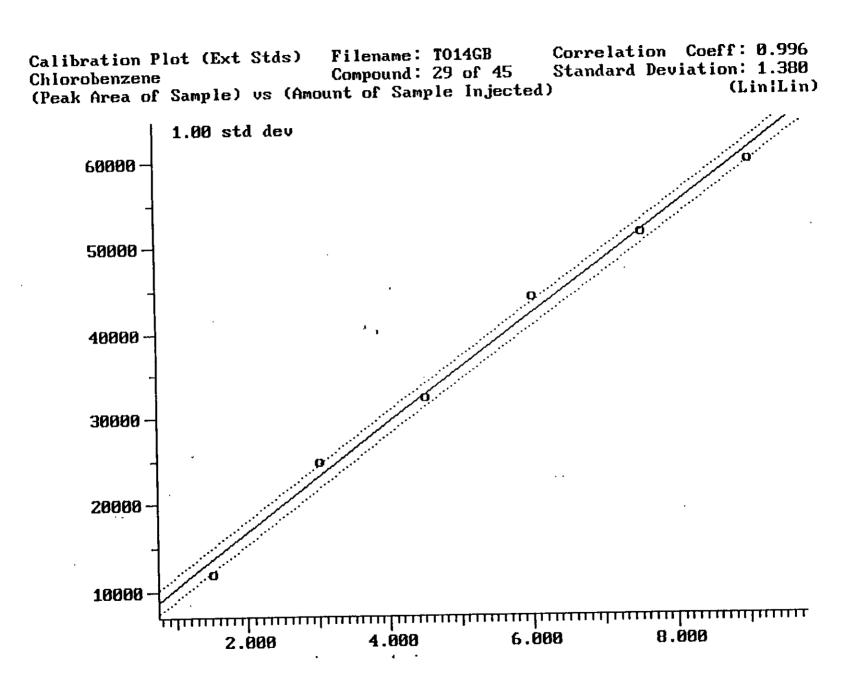
Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.988 Trans-1,3-Dichloropropene Compound: 24 of 45 Standard Deviation: 1.680 (Peak Area of Sample) vs (Amount of Sample Injected) (LiniLin)



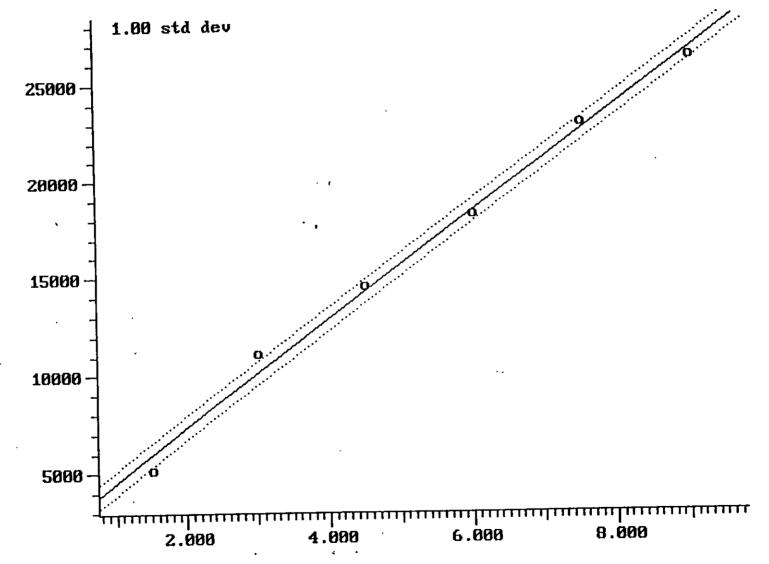
;

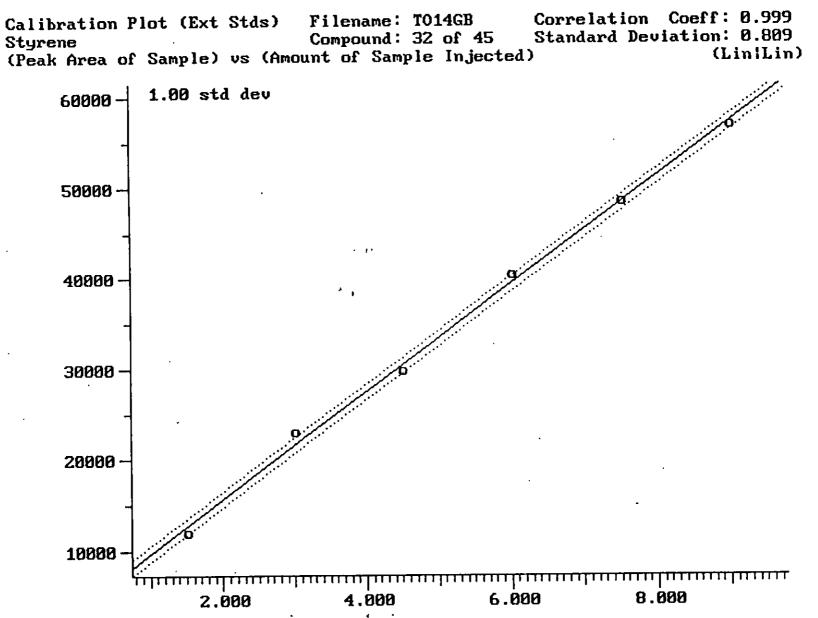

Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.993 1,1,2-Trichloroethane Compound: 25 of 45 Standard Deviation: 0.642 (Peak Area of Sample) vs (Amount of Sample Injected) (Lin!Lin)


Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.994 Toluene Compound: 26 of 45 Standard Deviation: 1.547 (Peak Area of Sample) vs (Amount of Sample Injected) (LiniLin)



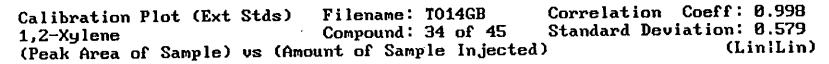
Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.996 1,2-Dibromoethane Compound: 27 of 45 Standard Deviation: 0.768 (Peak Area of Sample) vs (Amount of Sample Injected) (LiniLin)

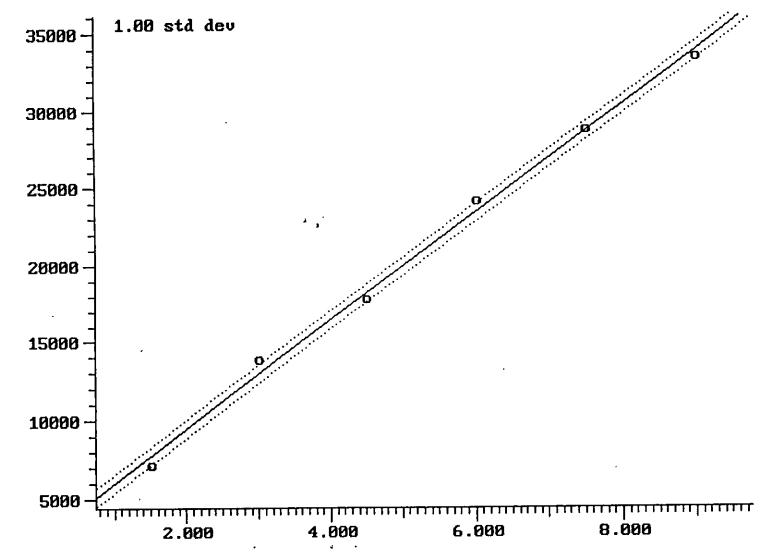



Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.993 Tetrachloroethene Compound: 28 of 45 Standard Deviation: 0.342 (Peak Area of Sample) vs (Amount of Sample Injected) (LiniLin)

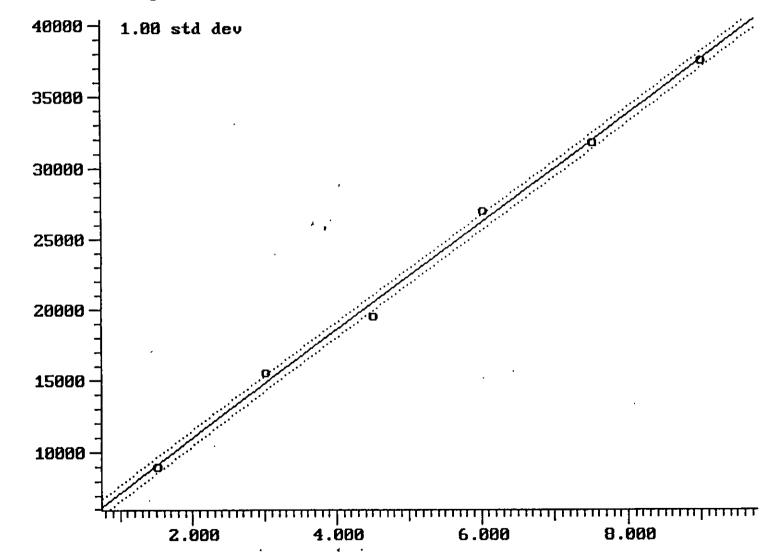


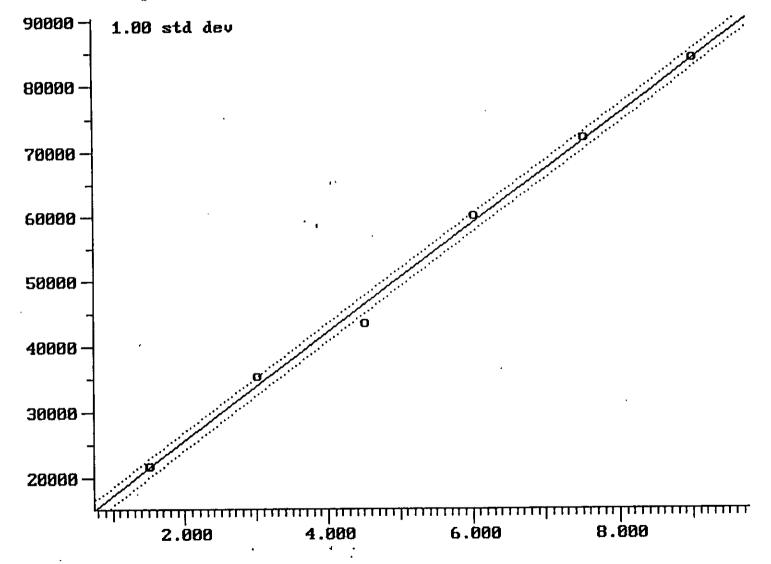
Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.997 Ethylbenzene Compound: 30 of 45 Standard Deviation: 0.577 (Peak Area of Sample) vs (Amount of Sample Injected) (Lin!Lin)

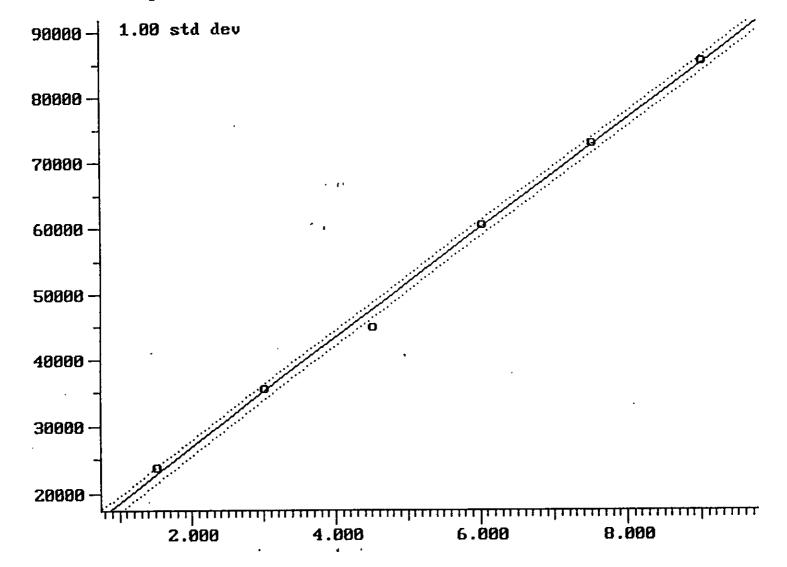


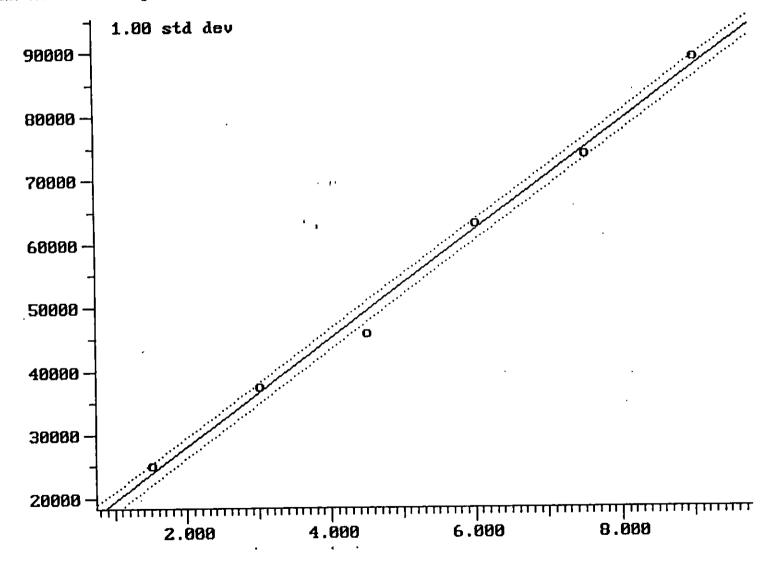


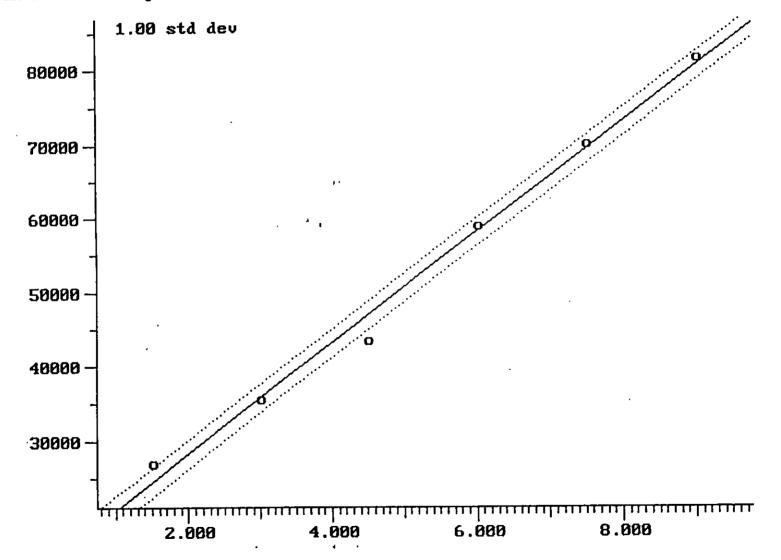
Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.996 1,1,2,2-Tetrachloroethane Compound: 33 of 45 Standard Deviation: 0.786 (Peak Area of Sample) vs (Amount of Sample Injected) (Lin!Lin)

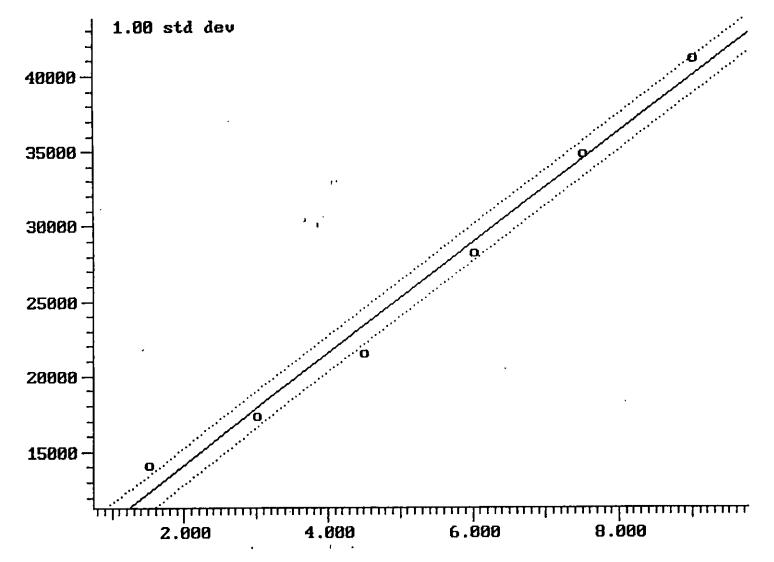


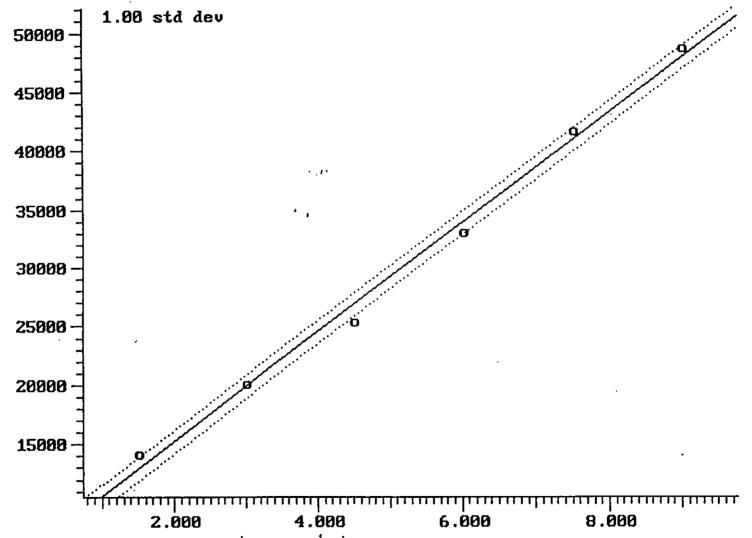


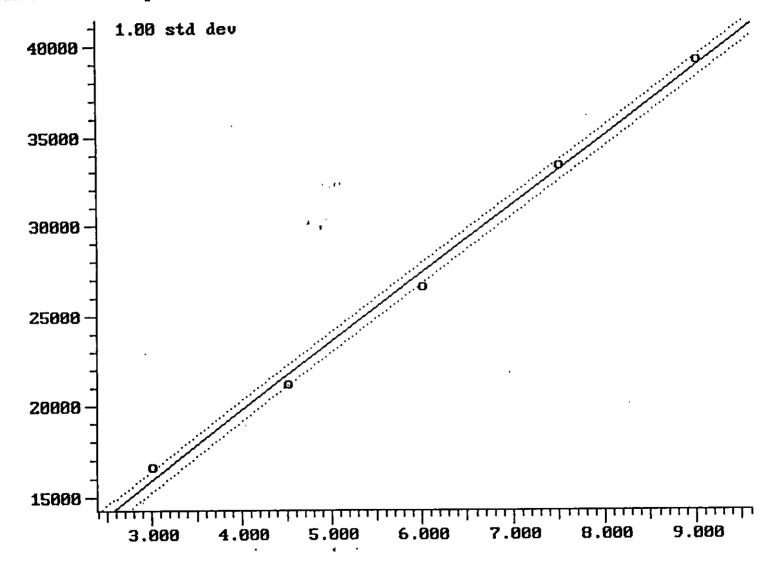

Calibration Plot (Ext Stds)Filename: T014GBCorrelationCoeff: 0.9984-BromofluorobenzeneCompound: 35 of 45Standard Deviation: 0.585(Peak Area of Sample) vs (Amount of Sample Injected)(Lin!Lin)

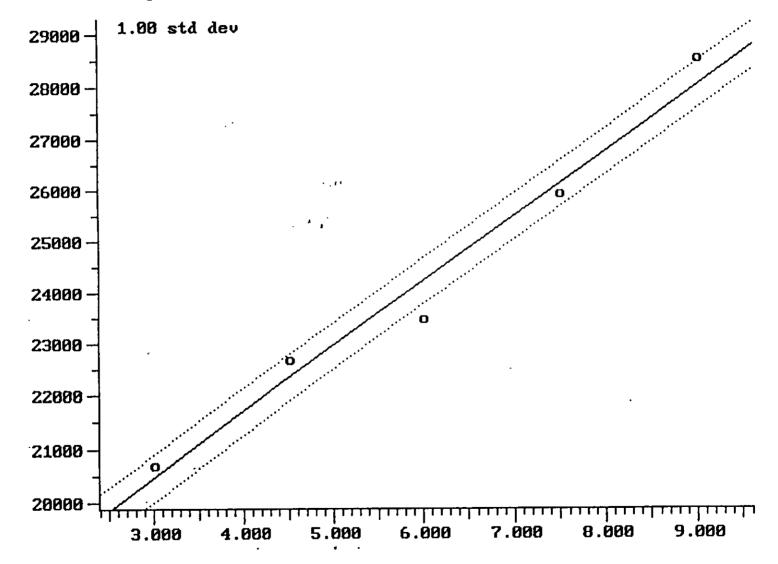

Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.998 Benzylchloride Compound: 36 of 45 Standard Deviation: 1.452 (Peak Area of Sample) vs (Amount of Sample Injected) (Lin!Lin)


Calibration Plot (Ext Stds)Filename: T014GBCorrelationCoeff: 0.9984-EthyltolueneCompound: 37 of 45Standard Deviation: 1.225(Peak Area of Sample) vs (Amount of Sample Injected)(Lin:Lin)

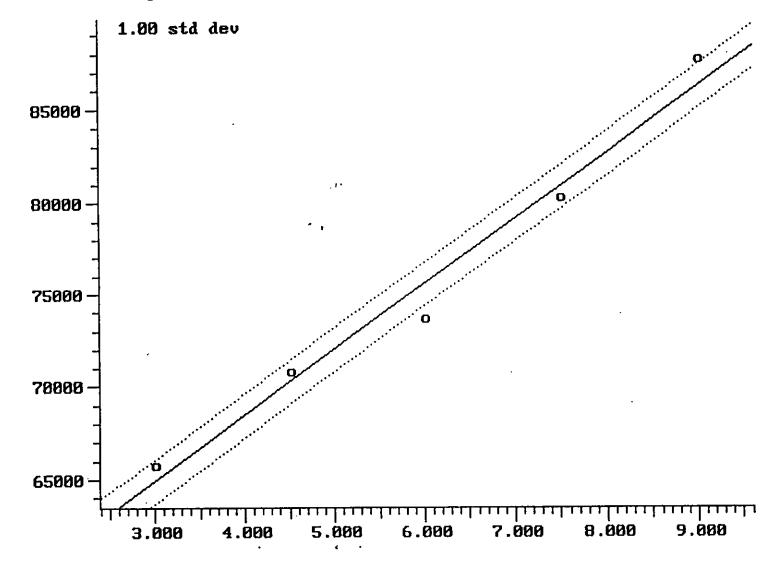

Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.997 1,3,5-Trimethylbenzene Compound: 38 of 45 Standard Deviation: 1.725 (Peak Area of Sample) vs (Amount of Sample Injected) (LiniLin)


Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.995 1,2,4-Trimethylbenzene Compound: 39 of 45 Standard Deviation: 1.830 (Peak Area of Sample) vs (Amount of Sample Injected) (LiniLin)

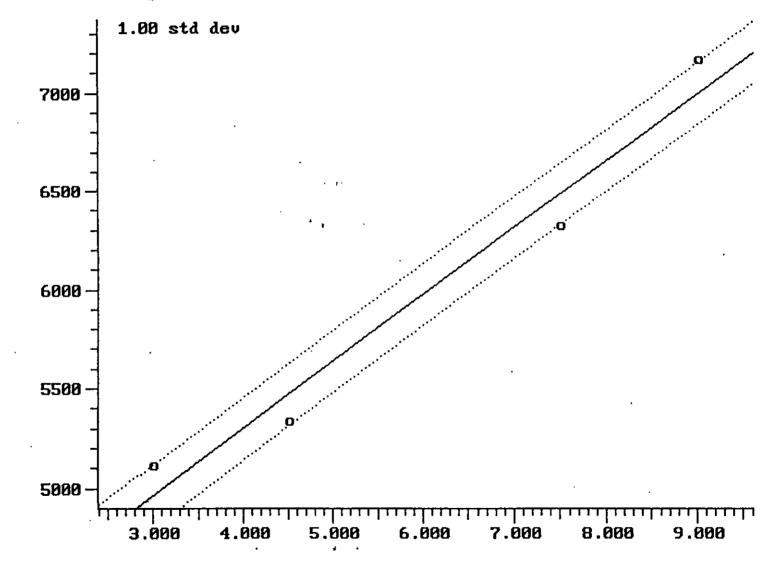

Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.992 1,3-Dichlorobenzene Compound: 40 of 45 Standard Deviation: 1.216 (Peak Area of Sample) vs (Amount of Sample Injected) (Lin!Lin)


Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.997 Standard Deviation: 0.982 Compound: 41 of 45 1,4-Dichlorobenzene (LinlLin) (Peak Area of Sample) vs (Amount of Sample Injected)

Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.998 1,2-Dichlorobenzene Compound: 42 of 45 Standard Deviation: 0.546 (Peak Area of Sample) vs (Amount of Sample Injected) (Lin!Lin)



Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.986 1,2,4-Trichlorobenzene Compound: 43 of 45 Standard Deviation: 0.458 (Peak Area of Sample) vs (Amount of Sample Injected) (Lin!Lin)



Calibration Plot (Ext Stds) Filename: T014GB Correlation Coeff: 0.987 Naphthalene Compound: 44 of 45 Standard Deviation: 1.213 (Peak Area of Sample) vs (Amount of Sample Injected) (Lin!Lin)

• .

Calibration Plot (Ext Stds)Filename: T014GBCorrelationCoeff: 0.982HexachlorobutadieneCompound: 45 of 45Standard Deviation: 0.156(Peak Area of Sample) vs (Amount of Sample Injected)(Lin!Lin)

SECTION 8.0 CHAIN OF CUSTODY AND FIELD SAMPLING FORMS

AirReco	- n	R						Page		of						DUE Draft	Final	
	ノロ	Ŭ	Chaiı	n of C	ustody F	Record		Emer							<u>s</u>			
					,					Rush <u>≤</u> 10 Business Days							 	
5 Johnson Drive, P.O. Box 130							Norn	Normal <u><</u> 15 Business Days								<u> </u>		
Raritan, NJ 08869 (908) 526-1000 / FAX (908) 526-7886 AirRecon Job #: 311-00[42-00-000] City/State: Project Manager: ISG- ext. P. O. Number:					Container Type B. Gas Bag D. Petri Dish E. Method 25 Tank F. Method 25 Trap G. Glass N. NIOSH Tube P Plastic Bottle S. Summa Canister T. VOST Tube V. VOC Vial		Sample Type 1. Liquid 2. Gas 3. Filter 4. Charcoal 5. Resin	Γ	R		quested A				Metho			
									T YC	5								
							6. Other	— d	ふく	1								
				•						Ś								
Samples Submitted to:	AirRecon Lab Other			<u>_</u>	 V. VOC Viai X. XAD-2 Trap O. Other 		<u> </u>		mig list				ļ					
Sample Identification	Filter #	Sample Type	Conta Type	ainer Size	Sampling Date	nformation Tech	Reagents and Preservativ	d/or es	5	3							Lat ID #	
Bag #1		ュ	ß	POL	8/14/00	-755-		-	×	1				-				
			<u> </u>						-	-								
			<u> </u>			·····											ļ	
· · · · · · · · · · · · · · · · · · ·									ţ		İ							
· · · · · · · · · · · · · · · · · · ·		· ·							-	1					-			
								<u> </u>	Ì	 ; '	1			-	••			
		<u> </u>							ļ	1	Ì							
										ļ			, ,					
· · · · · · · · · · · · · · · · · · ·		<u> </u>	 															
Special Instructions:	<u> </u>	<u>ا</u> ــــــــــــــــــــــــــــــــــــ			<u> </u>	.	- I					-		<u>`</u> _				
Submitted By: Jehn Jemmu:		Date:		Received By:				Date:								Non-compliance		
Relinquished by	Date:		Received By				Date.			ŊJ	DEP	-			Metho Norma			
Relinquished By;	Date:		Regenter	han hant				Date S/15/CJ					. <u> </u>		_ [