

GE 159 Plastics Avenue Pittsfield, MA 01201 USA

Transmitted via Overnight Courier

October 7, 2010

Mr. Dean Tagliaferro U.S. Environmental Protection Agency Region I – New England 10 Lyman Street, Suite 2 Pittsfield, MA 01201 Mr. Michael Gorski Regional Director Western Regional Office Department of Environmental Protection 436 Dwight Street Springfield, MA 01103

Re: GE-Pittsfield/Housatonic River Site Monthly Status Report Pursuant to Consent Decree for September 2010 (GECD900)

Dear Mr. Tagliaferro and Mr. Gorski:

Enclosed are copies of General Electric's (GE's) monthly progress report for September2010 activities conducted by GE at the GE-Pittsfield/Housatonic River Site. This monthly report is submitted pursuant to Paragraph 67 of the Consent Decree (CD) for this Site, which was entered by the U.S. District Court on October 27, 2000.

The enclosed monthly report includes not only the activities conducted by GE under the CD, but also other activities conducted by GE at the GE-Pittsfield/Housatonic River Site (as defined in the CD). The report is formatted to apply to the various areas of the Site as defined in the CD, and to provide for each area, the information specified in Paragraph 67 of the CD. The activities conducted specifically pursuant to or in connection with the CD are marked with an asterisk. GE is submitting a separate monthly report to the Massachusetts Department of Environmental Protection (MDEP), with a copy to the United States Environmental Protection Agency (EPA), describing the activities conducted by GE at properties outside the CD Site pursuant to GE's November 2000 Administrative Consent Order from MDEP.

The enclosed monthly report includes, where applicable, tables that list the samples collected during the subject month, summarize the analytical results received during that month from sampling or other testing activities, and summarize other groundwater monitoring and oil recovery information obtained during that month. Also, enclosed for each of you (and for Weston) is a CD-ROM that contains these same tables of the analytical data and monitoring information in electronic form.

Please call me if you have any questions.

Sincerely,

Richard W. gete/we Richard W. Gates

Richard W. Gates Remediation Project Manager

Enclosure

Richard Fisher, EPA cc: Robert Cianciarulo, EPA (cover letter only) Tim Conway, EPA (cover letter only) Rose Howell, EPA (cover letter and CD-ROM of report) Holly Inglis, EPA (hard copy and CD-ROM of report) Susan Svirsky, EPA (Items 7, 15, and 20 only) M. Otis, USACE (CD-ROM of report) John Ziegler, MDEP (hard copy and CD-ROM of report) Eva Tor, MDEP (cover letter and CD-ROM of report) Karen Pelto, MDEP Nancy E. Harper, MA AG Susan Peterson, CT DEP Field Supervisor, US FWS, DOI Kenneth Finkelstein, Ph.D., NOAA (Items 13, 14, and 15 only) Mayor James Ruberto, City of Pittsfield William Hines, Director, Pittsfield Economic Development Authority Linda Palmieri, Weston Jack Yablonsky, Berkshire Gas (CD-ROM of report) Richard Nasman, P.E., Berkshire Gas (cover letter only) Michael Carroll GE (CD-ROM of report) Andrew Silfer, GE (cover letter only) Rod McLaren, GE (CD-ROM of report) James Nuss, ARCADIS James Bieke, Goodwin Procter Kevin Russell, Anchor QEA (narrative only) Teresa Bowers, Gradient Public Information Repositories (1 hard copy, 5 copies of CD-ROM) GE Internal Repository (1 hard copy)

(w/o separate CD-ROM, except where noted)

September 2010

MONTHLY STATUS REPORT

PURSUANT TO CONSENT DECREE FOR GE-PITTSFIELD/HOUSATONIC RIVER SITE

GENERAL ELECTRIC COMPANY

 $G: GE \ Ge \ Berry \ CD \ Monthly \ Background. \ Ge \ Berry \ CD \ Monthly \ Background. \ Ge \ Berry \ Background. \ Ge \ Ba$

Background

The General Electric Company (GE), the United States Environmental Protection Agency (EPA), the Massachusetts Department of Environmental Protection (MDEP), and other governmental entities have entered into a Consent Decree (CD) for the GE-Pittsfield/Housatonic River Site, which was entered by the U.S. Court on October 27, 2000. In accordance with Paragraph 67 of the CD, GE is submitting this monthly report, prepared on GE's behalf by ARCADIS (formerly Blasland, Bouck & Lee, Inc.), which summarizes the status of activities conducted by GE at the GE-Pittsfield/Housatonic River Site ("Site") (as defined in the CD).

This report covers activities in the areas listed below (as defined in the CD and/or the accompanying Statement of Work for Removal Actions Outside the River [SOW]). Only those areas that have had work activities for the month subject to reporting are included. The specific activities conducted pursuant to or in connection with the CD are noted with an asterisk.

General Activities (GECD900)

GE Plant Area (non-groundwater)

- 1. 20s, 30s, 40s Complexes (GECD120)
- 2. East Street Area 2 South (GECD150)
- 3. East Street Area 2 North (GECD140)
- 4. East Street Area 1 North (GECD130)
- 5. Hill 78 and Building 71 Consolidation Areas (GECD210/220)
- 6. Hill 78 Area Remainder (GECD160)
- 7. Unkamet Brook Area (GECD170)

Former Oxbow Areas (non-groundwater)

- 8. Former Oxbow Areas A & C (GECD410)
- 9. Lyman Street Area (GECD430)
- 10. Newell Street Area I (GECD440)
- 11. Newell Street Area II (GECD450)
- 12. Former Oxbow Areas J & K (GECD420)

Housatonic River

- 13. Upper ¹/₂-Mile Reach (GECD800)
- 14. 1¹/₂-Mile Reach (only for activities, if any, conducted by GE) (GECD820)
- 15. Rest of the River (GECD850)

Housatonic River Floodplain

- Current Residential Properties Adjacent to 1¹/₂-Mile Reach (Actual/Potential Lawns) (GECD710)
- 17. Non-Residential Properties Adjacent to 1¹/₂-Mile Reach (excluding banks) (GECD720)
- 18. Current Residential Properties Downstream of Confluence (Actual/Potential Lawns) (GECD730)

Other Areas

- 19. Allendale School Property (GECD500)
- 20. Silver Lake Area (GECD600)

Groundwater Management Areas (GMAs)

- 21. Plant Site 1 (GECD310)
- 22. Former Oxbows J & K (GECD320)
- 23. Plant Site 2 (GECD330)
- 24. Plant Site 3 (GECD340)
- 25. Former Oxbows A&C (GECD350)

GENERAL ACTIVITIES GE-PITTSFIELD/HOUSATONIC RIVER SITE (GECD900) SEPTEMBER 2010

a. Activities Undertaken/Completed

- Continued GE-EPA electronic data exchanges for the Housatonic River Watershed.*
- Attended Citizens Coordinating Council (CCC) meeting on September 29, 2010.*

b. <u>Sampling/Test Results Received</u>

- Sample results were received for routine sampling conducted pursuant to GE's NPDES Permit for the GE facility. Sampling records and results are provided in Attachment A to this report.
- NPDES Discharge Monitoring Reports (DMRs) for the period of August 1 through August 31, 2010, are provided in Attachment B to this report.

c. Work Plans/Reports/Documents Submitted

Submitted Hazardous Waste Facility License renewal application to MDEP in draft license format (September 20, 2010).

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Continue NPDES Permit-related sampling and monitoring activities.
- Attend public and CCC meetings, as appropriate.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

GE's August 3, 2010 follow-up plan relating to the finding in October 2009 of residual oil in certain pipes located north of Building OP-2 is under EPA review.

f. <u>Proposed/Approved Work Plan Modifications</u>

None

ITEM 1 PLANT AREA 20s, 30s, 40s COMPLEXES (GECD120) SEPTEMBER 2010

a. <u>Activities Undertaken/Completed</u>

- Continued discussions with the Pittsfield Economic Development Authority (PEDA) relating to activities associated with future transfer of the former 40s Complex to PEDA.
- In coordination with PEDA, revised draft Grant of Environmental Restriction and Easement (ERE) for the former 40s Complex in light of comments from EPA and MDEP.*
- Sent letter to CSX requesting subordinations of its easements to ERE for former 40s Complex (September 7, 2010).*

b. <u>Sampling/Test Results Received</u>

None

c. Work Plans/Reports/Documents Submitted

- Provided revised draft of ERE for the former 40s Complex and associated survey plans and title commitment to EPA and MDEP for review (September 3 and 21, 2010).*
- Sent letter to CSX requesting subordinations of its easements to ERE for former 40s Complex (September 7, 2010).*
- Submitted revised draft Final Completion Report (FCR) for the 40s Complex Removal Action to EPA for review (September 16, 2010).*
- Submitted report summarizing the annual ERE inspections performed at the former 20s and 30s Complexes on August 31, 2010 (September 24, 2010).*
- Submitted report summarizing the annual temporary stockpile inspection performed at the former 40s Complex on August 31, 2010 (September 24, 2010).*

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue discussions with PEDA relating to activities associated with future transfer of the former 40s Complex to PEDA.
- Re-submit the FCR for the former 40s Complex Removal Action to EPA following receipt of EPA comments on the above-referenced draft FCR.*

ITEM 1 (cont'd) PLANT AREA 20s, 30s, 40s COMPLEXES (GECD120) SEPTEMBER 2010

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues.

f. <u>Proposed/Approved Work Plan Modifications</u>

None

ITEM 2 PLANT AREA EAST STREET AREA 2-SOUTH (GECD150) SEPTEMBER 2010

a. <u>Activities Undertaken/Completed</u>

- Continued remediation actions in accordance with Final Removal Design/Removal Action (RD/RA) Work Plan and Supplemental Information Package (SIP).*
- Performed ambient air monitoring for PCBs and particulate matter in conjunction with ongoing remediation actions, as indicated in Table 2-1.*
- Provided verbal notification to EPA of ambient air PCB sampling result exceeding notification level (September 21, 2010).*
- Continued to ship certain materials excavated during remediation actions and subject to regulation under the Toxic Substances Control Act (TSCA) and the Resource Conservation and Recovery Act (RCRA) to Waste Management facility in Port Arthur, Texas for incineration.*
- Received letter from EPA concerning drum discovery and excavation procedures (September 23, 2010).*
- Performed annual post-remediation inspection of cover at City Recreational Area (September 14, 2010).*
- Continued relocation of above-ground pipeline adjacent to Averaging Area 4E.
- Collected and transferred approximately 350 gallons of water generated during remediation activities to Building 64G Groundwater Treatment Facility for treatment.
- Continued water sampling as part of the NPDES Permit-related Optimization Study, as indicated in Table 2-1.
- Performed September 2010 dry weather flow inspection activities associated with Drainage Basins 005 and 006 under GE's NPDES Permit-related Baseline Monitoring Plan.
- Performed the third and final "baseline" effectiveness sampling event at Oil/Water Separator (OWS) 64W, pursuant to GE's NPDES Permit Modification, as indicated in Table 2-1.
- Performed PCB wipe sampling of rail tracks, as indicated in Table 2-1.
- Conducted Liquid Phase Carbon Absorption (LPCA) sampling at Building 64G Groundwater Treatment Plant, as indicated in Table 2-1.

ITEM 2 (cont'd) PLANT AREA EAST STREET AREA 2-SOUTH (GECD150) SEPTEMBER 2010

b. <u>Sampling/Test Results Received</u>

See attached tables.

c. <u>Work Plans/Reports/Documents Submitted</u>

- Submitted revised planting plan with plant list (September 2, 2010).*
- Submitted letter to EPA requesting storage of TSCA/RCRA materials in Building 65 for more than 90 days (September 13, 2010).*
- Submitted follow-up letter to verbal notification of ambient air PCB sampling result exceeding notification level (September 23, 2010).*
- Submitted OWS 64Z Pilot Study Report pursuant to GE's NPDES Permit Modification (September 29, 2010).

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Continue remediation actions and associated air monitoring in accordance with Final RD/RA Work Plan and SIP.*
- Continue shipments of TSCA/RCRA materials generated during remediation actions to Waste Management facility in Port Arthur, Texas for incineration.*
- Submit response to EPA letter concerning drum discovery and excavation procedures.*
- Submit report on annual post-remediation inspection of cover at City Recreational Area.*
- Implement revised planting plan following EPA approval.*
- Continue sampling as part of NPDES Permit-related Building 64G Treatment Optimization Study.
- Perform October 2010 dry weather flow inspection activities in East Street Area 2-South associated with Drainage Basins 005 and 006 under GE's NPDES Permit-related Baseline Monitoring Plan.

ITEM 2 (cont'd) PLANT AREA EAST STREET AREA 2-SOUTH (GECD150) SEPTEMBER 2010

d. Upcoming Scheduled and Anticipated Activities (next six weeks) (cont'd)

- Perform "baseline" effectiveness sampling for OWS 64X pursuant to GE's NPDES Permit Modification.
- Perform Wet Weather Ambient Monitoring Plan sampling activities in the fourth quarter pursuant to GE's NPDES Permit Modification.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues.

f. <u>Proposed/Approved Work Plan Modifications</u>

Received EPA conditional approval of request to store TSCA/RCRA materials in Building 65 for more than 90 days (September 30, 2010).*

						Date Received by
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	GE or ARCADIS
Building 64G LPCA Monitoring	I10-64G-01	9/21/10	Water	Columbia	VOC	9/30/10
Building 64G LPCA Monitoring	I10-64G-02	9/21/10	Water	Columbia	VOC	9/30/10
Building 64G LPCA Monitoring	I10-64G-03	9/21/10	Water	Columbia	VOC	9/30/10
Building 64G LPCA Monitoring	I10-64G-04	9/21/10	Water	Columbia	VOC	9/30/10
Building 64G LPCA Monitoring	I10-64G-05	9/21/10	Water	Columbia	SVOC	9/30/10
Building 64G LPCA Monitoring	I10-64G-06	9/21/10	Water	Columbia	SVOC	9/30/10
Building 64G LPCA Monitoring	I10-64G-07	9/21/10	Water	Columbia	SVOC	9/30/10
Building 64G LPCA Monitoring	I10-64G-08	9/21/10	Water	Columbia	SVOC	9/30/10
Building 64G LPCA Monitoring	I10-64G-09	9/21/10	Water	Columbia	VOC	Cancelled
Building 64G LPCA Monitoring	I10-64G-10	9/21/10	Water	Columbia	VOC	Cancelled
Building 64G LPCA Monitoring	I10-64G-11	9/21/10	Water	Columbia	VOC	Cancelled
Building 64G LPCA Monitoring	I10-64G-12	9/21/10	Water	Columbia	VOC	Cancelled
Optimization Study	OPT-A-081810	8/18/10	Water	Columbia	TSS, TSS (f)	9/15/10
Optimization Study	OPT-A-082310	8/23/10	Water	Columbia	TSS, TSS (f)	9/15/10
Optimization Study	OPT-A-090210	9/2/10	Water	Columbia	TSS, TSS (f)	9/27/10
Optimization Study	OPT-A-090210	9/2/10	Water	SGS	PCB	9/13/10
Optimization Study	OPT-A-090610	9/6/10	Water	Columbia	TSS, TSS (f)	9/27/10
Optimization Study	OPT-A-090610	9/6/10	Water	SGS	PCB	9/14/10
Optimization Study	OPT-A-091210	9/12/10	Water	Columbia	TSS, TSS (f)	
Optimization Study	OPT-A-091210	9/12/10	Water	SGS	PCB	9/20/10
Optimization Study	OPT-A-092310	9/23/10	Water	Columbia	TSS, TSS (f)	
Optimization Study	OPT-A-092310	9/23/10	Water	SGS	PCB, PCB (f)	
Optimization Study	OPT-B-090210	9/2/10	Water	SGS	PCB	9/13/10
Optimization Study	OPT-B-090610	9/6/10	Water	SGS	PCB	9/14/10
Optimization Study	OPT-B-091210	9/12/10	Water	SGS	PCB	9/20/10
Optimization Study	OPT-B-092310	9/23/10	Water	SGS	PCB	
Optimization Study	OPT-C-090210	9/2/10	Water	SGS	PCB	9/13/10
Optimization Study	OPT-C-090610	9/6/10	Water	SGS	PCB	9/14/10
Optimization Study	OPT-C-091210	9/12/10	Water	SGS	PCB	9/20/10
Optimization Study	OPT-C-092310	9/23/10	Water	SGS	PCB	
Optimization Study	OPT-CO-1-090210	9/2/10	Water	SGS	PCB	9/13/10
Optimization Study	OPT-CO-1-090610	9/6/10	Water	SGS	PCB	9/14/10
Optimization Study	OPT-CO-2-091210	9/12/10	Water	SGS	PCB	9/20/10
Optimization Study	OPT-CO-2-092310	9/23/10	Water	SGS	PCB	
Optimization Study	OPT-D-081810	8/18/10	Water	Columbia	TSS, TSS (f)	9/15/10

						Date Received by
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	GE or ARCADIS
Optimization Study	OPT-D-082310	8/23/10	Water	Columbia	TSS, TSS (f)	9/15/10
Optimization Study	OPT-D-090210	9/2/10	Water	Columbia	TSS, TSS (f)	9/27/10
Optimization Study	OPT-D-090210	9/2/10	Water	SGS	PCB	9/13/10
Optimization Study	OPT-D-090610	9/6/10	Water	Columbia	TSS, TSS (f)	9/27/10
Optimization Study	OPT-D-090610	9/6/10	Water	SGS	PCB	9/14/10
Optimization Study	OPT-D-091210	9/12/10	Water	Columbia	TSS, TSS (f)	
Optimization Study	OPT-D-091210	9/12/10	Water	SGS	PCB	9/20/10
Optimization Study	OPT-D-092310	9/23/10	Water	Columbia	TSS, TSS (f)	
Optimization Study	OPT-D-092310	9/23/10	Water	SGS	PCB, PCB (f)	
Optimization Study	OPT-DUP-23 (OPT-D-082310)	8/23/10	Water	Columbia	TSS	9/15/10
Optimization Study	OPT-DUP-24 (OPT-D-082310)	8/23/10	Water	Columbia	TSS (f)	9/15/10
Optimization Study	OPT-DUP-26 (OPT-A-091210)	9/12/10	Water	Columbia	TSS	
Optimization Study	OPT-DUP-27 (OPT-A-091210)	9/12/10	Water	Columbia	TSS (f)	
Optimization Study	OPT-DUP-28 (OPT-IT-091210)	9/12/10	Water	SGS	PCB	9/20/10
Optimization Study	OPT-DUP-29 (OPT-D-092310)	9/23/10	Water	SGS	PCB (f)	
Optimization Study	OPT-IT-090210	9/2/10	Water	SGS	PCB	9/13/10
Optimization Study	OPT-IT-090610	9/6/10	Water	SGS	PCB	9/14/10
Optimization Study	OPT-IT-091210	9/12/10	Water	SGS	PCB	9/20/10
Optimization Study	OPT-IT-092310	9/23/10	Water	SGS	PCB	
OWS-64W Baseline Sampling	OWS-64W-EFF.	8/22/10	Water	Columbia	TSS	9/10/10
OWS-64W Baseline Sampling	OWS-64W-EFF.	9/16/10	Water	Columbia	TSS	
OWS-64W Baseline Sampling	OWS-64W-EFF.	9/16/10	Water	SGS	PCB	9/27/10
OWS-64W Baseline Sampling	OWS-64W-INF.	8/22/10	Water	Columbia	TSS	9/10/10
OWS-64W Baseline Sampling	OWS-64W-INF.	9/16/10	Water	Columbia	TSS	
OWS-64W Baseline Sampling	OWS-64W-INF.	9/16/10	Water	SGS	PCB	9/27/10
OWS-64W Baseline Sampling	OWS-64X-EFF.	8/22/10	Water	Columbia	TSS	9/10/10
OWS-64W Baseline Sampling	OWS-64X-INF.	8/22/10	Water	Columbia	TSS	9/10/10
OWS-64X Baseline Sampling	OWS-64X-EFF.	9/28/10	Water	Columbia	TSS	
OWS-64X Baseline Sampling	OWS-64X-EFF.	9/28/10	Water	SGS	PCB	
OWS-64X Baseline Sampling	OWS-64X-INF.	9/28/10	Water	Columbia	TSS	
OWS-64X Baseline Sampling	OWS-64X-INF.	9/28/10	Water	SGS	PCB	
Rail Tracks Sampling	W-1	9/1/10	Wipe	SGS	PCB	9/8/10
Rail Tracks Sampling	W-2	9/1/10	Wipe	SGS	PCB	9/8/10
Rail Tracks Sampling	W-3	9/1/10	Wipe	SGS	PCB	9/8/10

						Date Received by
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	GE or ARCADIS
Ambient Air Particulate Matter Sampling	ES2S-1	9/1/2010	Air	Berkshire Environmental	Particulate Matter	9/7/2010
Ambient Air Particulate Matter Sampling	ES2S-2	9/1/2010	Air	Berkshire Environmental	Particulate Matter	9/7/2010
Ambient Air Particulate Matter Sampling	ES2S-8	9/1/2010	Air	Berkshire Environmental	Particulate Matter	9/7/2010
Ambient Air Particulate Matter Sampling	ES2S-9	9/1/2010	Air	Berkshire Environmental	Particulate Matter	9/7/2010
Ambient Air Particulate Matter Sampling	Background Location	9/1/2010	Air	Berkshire Environmental	Particulate Matter	9/7/2010
Ambient Air Particulate Matter Sampling	ES2S-1	9/2/2010	Air	Berkshire Environmental	Particulate Matter	9/7/2010
Ambient Air Particulate Matter Sampling	ES2S-2	9/2/2010	Air	Berkshire Environmental	Particulate Matter	9/7/2010
Ambient Air Particulate Matter Sampling	ES2S-8	9/2/2010	Air	Berkshire Environmental	Particulate Matter	9/7/2010
Ambient Air Particulate Matter Sampling	ES2S-9	9/2/2010	Air	Berkshire Environmental	Particulate Matter	9/7/2010
Ambient Air Particulate Matter Sampling	Background Location	9/2/2010	Air	Berkshire Environmental	Particulate Matter	9/7/2010
Ambient Air Particulate Matter Sampling	ES2S-1	9/3/2010	Air	Berkshire Environmental	Particulate Matter	9/7/2010
Ambient Air Particulate Matter Sampling	ES2S-2	9/3/2010	Air	Berkshire Environmental	Particulate Matter	9/7/2010
Ambient Air Particulate Matter Sampling	ES2S-7	9/3/2010	Air	Berkshire Environmental	Particulate Matter	9/7/2010
Ambient Air Particulate Matter Sampling	ES2S-8	9/3/2010	Air	Berkshire Environmental	Particulate Matter	9/7/2010
Ambient Air Particulate Matter Sampling	ES2S-9	9/3/2010	Air	Berkshire Environmental	Particulate Matter	9/7/2010
Ambient Air Particulate Matter Sampling	Background Location	9/3/2010	Air	Berkshire Environmental	Particulate Matter	9/7/2010
Ambient Air Particulate Matter Sampling	ES2S-1	9/7/2010	Air	Berkshire Environmental	Particulate Matter	9/13/2010
Ambient Air Particulate Matter Sampling	ES2S-2	9/7/2010	Air	Berkshire Environmental	Particulate Matter	9/13/2010
Ambient Air Particulate Matter Sampling	ES2S-7	9/7/2010	Air	Berkshire Environmental	Particulate Matter	9/13/2010
Ambient Air Particulate Matter Sampling	ES2S-8	9/7/2010	Air	Berkshire Environmental	Particulate Matter	9/13/2010
Ambient Air Particulate Matter Sampling	ES2S-9	9/7/2010	Air	Berkshire Environmental	Particulate Matter	9/13/2010
Ambient Air Particulate Matter Sampling	Background Location	9/7/2010	Air	Berkshire Environmental	Particulate Matter	9/13/2010
Ambient Air Particulate Matter Sampling	ES2S-1	9/8/2010	Air	Berkshire Environmental	Particulate Matter	9/13/2010
Ambient Air Particulate Matter Sampling	ES2S-2	9/8/2010	Air	Berkshire Environmental	Particulate Matter	9/13/2010
Ambient Air Particulate Matter Sampling	ES2S-7	9/8/2010	Air	Berkshire Environmental	Particulate Matter	9/13/2010
Ambient Air Particulate Matter Sampling	ES2S-8	9/8/2010	Air	Berkshire Environmental	Particulate Matter	9/13/2010
Ambient Air Particulate Matter Sampling	ES2S-9	9/8/2010	Air	Berkshire Environmental	Particulate Matter	9/13/2010
Ambient Air Particulate Matter Sampling	Background Location	9/8/2010	Air	Berkshire Environmental	Particulate Matter	9/13/2010
Ambient Air Particulate Matter Sampling	ES2S-1	9/9/2010	Air	Berkshire Environmental	Particulate Matter	9/13/2010
Ambient Air Particulate Matter Sampling	ES2S-2	9/9/2010	Air	Berkshire Environmental	Particulate Matter	9/13/2010
Ambient Air Particulate Matter Sampling	ES2S-7	9/9/2010	Air	Berkshire Environmental	Particulate Matter	9/13/2010
Ambient Air Particulate Matter Sampling	ES2S-8	9/9/2010	Air	Berkshire Environmental	Particulate Matter	9/13/2010
Ambient Air Particulate Matter Sampling	ES2S-9	9/9/2010	Air	Berkshire Environmental	Particulate Matter	9/13/2010
Ambient Air Particulate Matter Sampling	Background Location	9/9/2010	Air	Berkshire Environmental	Particulate Matter	9/13/2010
Ambient Air Particulate Matter Sampling	ES2S-1	9/10/2010	Air	Berkshire Environmental	Particulate Matter	9/13/2010

						Date Received by
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	GE or ARCADIS
Ambient Air Particulate Matter Sampling	ES2S-2R	9/10/2010	Air	Berkshire Environmental	Particulate Matter	9/13/2010
Ambient Air Particulate Matter Sampling	ES2S-7	9/10/2010	Air	Berkshire Environmental	Particulate Matter	9/13/2010
Ambient Air Particulate Matter Sampling	ES2S-8	9/10/2010	Air	Berkshire Environmental	Particulate Matter	9/13/2010
Ambient Air Particulate Matter Sampling	ES2S-9	9/10/2010	Air	Berkshire Environmental	Particulate Matter	9/13/2010
Ambient Air Particulate Matter Sampling	Background Location	9/10/2010	Air	Berkshire Environmental	Particulate Matter	9/13/2010
Ambient Air Particulate Matter Sampling	ES2S-1	9/13/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	ES2S-2R	9/13/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	ES2S-7	9/13/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	ES2S-8	9/13/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	ES2S-9	9/13/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	Background Location	9/13/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	ES2S-1	9/14/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	ES2S-2R	9/14/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	ES2S-7	9/14/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	ES2S-8	9/14/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	ES2S-9	9/14/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	Background Location	9/14/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	ES2S-1	9/15/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	ES2S-2R	9/15/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	ES2S-7	9/15/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	ES2S-8	9/15/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	ES2S-9	9/15/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	Background Location	9/15/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	ES2S-1	9/16/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	ES2S-2R	9/16/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	ES2S-7	9/16/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	ES2S-8	9/16/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	ES2S-9	9/16/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	Background Location	9/16/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	ES2S-1	9/17/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	ES2S-2R	9/17/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	ES2S-7	9/17/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	ES2S-8	9/17/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	ES2S-9	9/17/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010
Ambient Air Particulate Matter Sampling	Background Location	9/17/2010	Air	Berkshire Environmental	Particulate Matter	9/20/2010

						Date Received by
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	GE or ARCADIS
Ambient Air Particulate Matter Sampling	ES2S-1	9/20/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	ES2S-2R	9/20/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	ES2S-7	9/20/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	ES2S-8	9/20/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	ES2S-9	9/20/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	Background Location	9/20/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	ES2S-1	9/21/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	ES2S-2R	9/21/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	ES2S-7	9/21/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	ES2S-8	9/21/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	ES2S-9	9/21/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	Background Location	9/21/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	ES2S-1	9/22/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	ES2S-2R	9/22/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	ES2S-7	9/22/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	ES2S-8	9/22/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	ES2S-9	9/22/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	Background Location	9/22/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	ES2S-1	9/23/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	ES2S-2R	9/23/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	ES2S-7	9/23/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	ES2S-8	9/23/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	ES2S-9	9/23/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	Background Location	9/23/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	ES2S-1	9/24/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	ES2S-2R	9/24/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	ES2S-7	9/24/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	ES2S-8	9/24/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	ES2S-9	9/24/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	Background Location	9/24/2010	Air	Berkshire Environmental	Particulate Matter	9/27/2010
Ambient Air Particulate Matter Sampling	ES2S-2R	9/27/2010	Air	Berkshire Environmental	Particulate Matter	10/1/2010
Ambient Air Particulate Matter Sampling	ES2S-7	9/27/2010	Air	Berkshire Environmental	Particulate Matter	10/1/2010
Ambient Air Particulate Matter Sampling	ES2S-8	9/27/2010	Air	Berkshire Environmental	Particulate Matter	10/1/2010
Ambient Air Particulate Matter Sampling	ES2S-9	9/27/2010	Air	Berkshire Environmental	Particulate Matter	10/1/2010
Ambient Air Particulate Matter Sampling	Background Location	9/27/2010	Air	Berkshire Environmental	Particulate Matter	10/1/2010

EAST STREET AREA 2 - SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received by GE or ARCADIS
Ambient Air Particulate Matter Sampling	ES2S-2R	9/28/2010	Air	Berkshire Environmental	Particulate Matter	10/1/2010
Ambient Air Particulate Matter Sampling	ES2S-7	9/28/2010	Air	Berkshire Environmental	Particulate Matter	10/1/2010
Ambient Air Particulate Matter Sampling	ES2S-8	9/28/2010	Air	Berkshire Environmental	Particulate Matter	10/1/2010
Ambient Air Particulate Matter Sampling	ES2S-9	9/28/2010	Air	Berkshire Environmental	Particulate Matter	10/1/2010
Ambient Air Particulate Matter Sampling	Background Location	9/28/2010	Air	Berkshire Environmental	Particulate Matter	10/1/2010
Ambient Air Particulate Matter Sampling	ES2S-2R	9/29/2010	Air	Berkshire Environmental	Particulate Matter	10/1/2010
Ambient Air Particulate Matter Sampling	ES2S-7	9/29/2010	Air	Berkshire Environmental	Particulate Matter	10/1/2010
Ambient Air Particulate Matter Sampling	ES2S-8	9/29/2010	Air	Berkshire Environmental	Particulate Matter	10/1/2010
Ambient Air Particulate Matter Sampling	ES2S-9	9/29/2010	Air	Berkshire Environmental	Particulate Matter	10/1/2010
Ambient Air Particulate Matter Sampling	Background Location	9/29/2010	Air	Berkshire Environmental	Particulate Matter	10/1/2010
Ambient Air Particulate Matter Sampling	ES2S-2R	9/30/2010	Air	Berkshire Environmental	Particulate Matter	10/1/2010
Ambient Air Particulate Matter Sampling	ES2S-7	9/30/2010	Air	Berkshire Environmental	Particulate Matter	10/1/2010
Ambient Air Particulate Matter Sampling	ES2S-8	9/30/2010	Air	Berkshire Environmental	Particulate Matter	10/1/2010
Ambient Air Particulate Matter Sampling	ES2S-9	9/30/2010	Air	Berkshire Environmental	Particulate Matter	10/1/2010
Ambient Air Particulate Matter Sampling	Background Location	9/30/2010	Air	Berkshire Environmental	Particulate Matter	10/1/2010
PCB Ambient Air Sampling	ES2S-2R	09/14/10-09/15/10	Air	NEA	PCB	9/23/2010
PCB Ambient Air Sampling	ES2S-2RCO (colocated)	09/14/10-09/15/10	Air	NEA	PCB	9/23/2010
PCB Ambient Air Sampling	ES2S-7	09/14/10-09/15/10	Air	NEA	PCB	9/23/2010
PCB Ambient Air Sampling	ES2S-8	09/14/10-09/15/10	Air	NEA	PCB	9/23/2010
PCB Ambient Air Sampling	Background - East of Building 9B	09/14/10-09/15/10	Air	NEA	PCB	9/23/2010

Notes:

1. The parent sample location associated with the field duplicate is presented in parenthesis.

2. (f) - Indicates filtered analysis requested.

TABLE 2-2 DATA RECEIVED DURING SEPTEMBER 2010

OWS-64W AND OWS-64X BASELINE SAMPLING EAST STREET AREA 2-SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Sample ID	: OWS-64W-EFF.	OWS-64W-EFF.	OWS-64W-INF.	OWS-64W-INF.	OWS-64X-EFF.	OWS-64X-INF.
Parameter Date Collected	: 08/22/10	09/16/10	08/22/10	09/16/10	08/22/10	08/22/10
PCBs-Unfiltered						
Aroclor-1254	NA	0.00075	NA	0.0011	NA	NA
Aroclor-1260	NA	0.0017	NA	0.0021	NA	NA
Total PCBs	NA	0.00245	NA	0.0032	NA	NA
Conventional						
Total Suspended Solids	19.0	NA	22.5	NA	22.9	34.8

Notes:

1. Samples were collected by ARCADIS and submitted to Columbia Analytical Services, Inc. and SGS Environmental Services, Inc. for analysis of PCBs and total suspended solids.

2. NA - Not Analyzed.

TABLE 2-3 PCB DATA RECEIVED DURING SEPTEMBER 2010

RAIL TRACKS SAMPLING EAST STREET AREA 2-SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in μg/100cm²)

Sample ID	Date Collected	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
W-1	9/1/2010	ND(1.0)	ND(1.0)						
W-2	9/1/2010	ND(1.0)	ND(1.0)						
W-3	9/1/2010	ND(1.0)	ND(1.0)						

Notes:

1. Samples were collected by Veolia ES Technical Solutions, L.L.C. and submitted to SGS Environmental Services, Inc. for analysis of PCBs constituents.

2. ND - Analyte was not detected. The number in parenthesis is the associated detection limit.

TABLE 2-4 DATA RECEIVED DURING SEPTEMBER 2010

OPTIMIZATION STUDY EAST STREET AREA 2-SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Sample ID:	OPT-A-081810	OPT-A-082310	OPT-A-090210	OPT-A-090610	OPT-A-091210	OPT-B-090210	OPT-B-090610	OPT-B-091210
Parameter Date Collected:	08/18/10	08/23/10	09/02/10	09/06/10	09/12/10	09/02/10	09/06/10	09/12/10
PCBs-Unfiltered								
Aroclor-1248	NA	NA	ND(0.000015)	0.00013	0.00010	ND(0.000015)	ND(0.000015)	0.000030
Aroclor-1254	NA	NA	ND(0.000015)	0.000096	0.00011	ND(0.000015)	0.000015 J	0.000018
Aroclor-1260	NA	NA	ND(0.000015)	ND(0.000015)	0.000075	ND(0.000015)	ND(0.000015)	0.0000078 J
Total PCBs	NA	NA	ND(0.000015)	0.000226	0.000285	ND(0.000015)	0.000015 J	0.0000558
Conventional-Unfiltered								
Total Suspended Solids	8.40	2.40	2.00	1.30	NA	NA	NA	NA
Conventional-Filtered								
Total Suspended Solids	6.60	1.80	1.00	ND(1.00)	NA	NA	NA	NA

TABLE 2-4 DATA RECEIVED DURING SEPTEMBER 2010

OPTIMIZATION STUDY EAST STREET AREA 2-SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Sample ID:	OPT-C-090210	OPT-C-090610	OPT-C-091210	OPT-CO-1-090210	OPT-CO-1-090610	OPT-CO-2-091210	OPT-D-081810
Parameter Date Collected:	09/02/10	09/06/10	09/12/10	09/02/10	09/06/10	09/12/10	08/18/10
PCBs-Unfiltered							
Aroclor-1248	ND(0.000015)	ND(0.000015)	ND(0.000015)	ND(0.000015)	0.00013	0.00012	NA
Aroclor-1254	ND(0.000015)	ND(0.000015)	ND(0.000015)	ND(0.000015)	0.000067	0.000050	NA
Aroclor-1260	ND(0.000015)	ND(0.000015)	ND(0.000015)	ND(0.000015)	0.000038	ND(0.000015)	NA
Total PCBs	ND(0.000015)	ND(0.000015)	ND(0.000015)	ND(0.000015)	0.000235	0.00017	NA
Conventional-Unfiltered							
Total Suspended Solids	NA	NA	NA	NA	NA	NA	ND(1.00)
Conventional-Filtered							
Total Suspended Solids	NA	NA	NA	NA	NA	NA	ND(1.00)

TABLE 2-4 DATA RECEIVED DURING SEPTEMBER 2010

OPTIMIZATION STUDY EAST STREET AREA 2-SOUTH GENERAL ELECTRIC COMPANY -P ITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Sample ID: Parameter Date Collected:		OPT-D-090210 09/02/10	OPT-D-090610 09/06/10	OPT-D-091210 09/12/10	OPT-IT-090210 09/02/10	OPT-IT-090610 09/06/10	OPT-IT-091210 09/12/10
PCBs-Unfiltered	00/20/10	03/02/10	00/00/10	03/12/10	03/02/10	00/00/10	00/12/10
Aroclor-1248	NA	ND(0.000015)	ND(0.000015)	ND(0.000015)	0.0018	0.00076	0.011 [0.00088]
Aroclor-1254	NA	ND(0.000015)	ND(0.000015)	ND(0.000015)	0.0063	0.0022	0.020 [0.0030]
Aroclor-1260	NA	ND(0.000015)	ND(0.000015)	ND(0.000015)	0.0069	0.0031	0.012 [0.0027]
Total PCBs	NA	ND(0.000015)	ND(0.000015)	ND(0.000015)	0.015	0.00606	0.043 [0.00658]
Conventional-Unfiltered	•						
Total Suspended Solids	ND(1.00) [ND(1.00)]	ND(1.00)	ND(1.00)	NA	NA	NA	NA
Conventional-Filtered	•						
Total Suspended Solids	ND(1.00) [ND(1.00)]	ND(1.00)	ND(1.00)	NA	NA	NA	NA

Notes:

1. Samples were collected by ARCADIS and submitted to Columbia Analytical Services, Inc. and SGS Environmental Services, Inc. for analysis of PCBs and total suspended solids (TSS).

2. NA - Not Analyzed.

3. ND - Analyte was not detected. The number in parenthesis is the associated detection limit.

Only those constituents detected in one or more samples are summarized.
 Field duplicate sample results are presented in brackets.

Data Qualifiers:

Organics (PCBs)

J.- Indicates an estimated value less than the practical quantitation limit (PQL).

TABLE 2-5 DATA RECEIVED DURING SEPTEMBER 2010

BUILDING 64G LPCA MONITORING EAST STREET AREA 2 - SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Sample ID:	I10-64G-01	I10-64G-02	I10-64G-03	I10-64G-04	I10-64G-05	I10-64G-06	I10-64G-07	I10-64G-08
Parameter Date Collected:	09/21/10	09/21/10	09/21/10	09/21/10	09/21/10	09/21/10	09/21/10	09/21/10
Volatile Organics			•	•	•			
1,1,1-Trichloroethane	0.00093 J	0.00090 J	0.0011	0.00080 J	NA	NA	NA	NA
1,1-Dichloroethane	0.0018	0.0018	0.0020	0.0015	NA	NA	NA	NA
1,2-Dichlorobenzene	0.00060 J	ND(0.0010)	ND(0.0010)	ND(0.0010)	NA	NA	NA	NA
1,3-Dichlorobenzene	0.0051	0.0012	ND(0.0010)	ND(0.0010)	NA	NA	NA	NA
1,4-Dichlorobenzene	0.015	ND(0.0010)	ND(0.0010)	ND(0.0010)	NA	NA	NA	NA
Benzene	0.039	ND(0.0010)	ND(0.0010)	ND(0.0010)	NA	NA	NA	NA
Chlorobenzene	0.12	0.00044 J	ND(0.0010)	ND(0.0010)	NA	NA	NA	NA
Chloroethane	0.00076 J	0.00066 J	0.00055 J	0.00061 J	NA	NA	NA	NA
Ethylbenzene	0.043	ND(0.0010)	ND(0.0010)	ND(0.0010)	NA	NA	NA	NA
Toluene	0.0012	ND(0.0010)	ND(0.0010)	ND(0.0010)	NA	NA	NA	NA
trans-1,2-Dichloroethene	0.00027 J	ND(0.0010)	ND(0.0010)	ND(0.0010)	NA	NA	NA	NA
Trichloroethene	0.00034 J	ND(0.0010)	ND(0.0010)	ND(0.0010)	NA	NA	NA	NA
Vinyl Chloride	0.0015	0.00059 J	ND(0.0010)	ND(0.0010)	NA	NA	NA	NA
Semivolatile Organics								
1,2,4-Trichlorobenzene	NA	NA	NA	NA	0.0023 J	ND(0.0047)	ND(0.0047)	ND(0.0047)
Acenaphthene	NA	NA	NA	NA	0.044	ND(0.0047)	ND(0.0047)	ND(0.0047)
Acenaphthylene	NA	NA	NA	NA	0.0015 J	ND(0.0047)	ND(0.0047)	ND(0.0047)
Anthracene	NA	NA	NA	NA	0.0015 J	ND(0.0047)	ND(0.0047)	ND(0.0047)
Fluoranthene	NA	NA	NA	NA	0.0017 J	ND(0.0047)	ND(0.0047)	ND(0.0047)
Fluorene	NA	NA	NA	NA	0.011	ND(0.0047)	ND(0.0047)	ND(0.0047)
Naphthalene	NA	NA	NA	NA	0.11	ND(0.0047)	ND(0.0047)	ND(0.0047)
Phenanthrene	NA	NA	NA	NA	0.0061	ND(0.0047)	ND(0.0047)	ND(0.0047)
Phenol	NA	NA	NA	NA	0.0017 J	ND(0.0047)	ND(0.0047)	ND(0.0047)
Pyrene	NA	NA	NA	NA	0.0019 J	ND(0.0047)	ND(0.0047)	ND(0.0047)

Notes:

1. Samples were collected by General Electric Company and submitted to Columbia Analytical Services, Inc. for analysis of volatiles and semivolatiles.

2. NA - Not Analyzed.

3. ND - Analyte was not detected. The number in parenthesis is the associated detection limit.

4. Only those constituents detected in one or more samples are summarized.

Data Qualifiers:

Organics (volatiles, semivolatiles)

TABLE 2-6 AMBIENT AIR PCB DATA RECEIVED DURING SEPTEMBER 2010

PCB AMBIENT AIR CONCENTRATIONS EAST STREET AREA 2-SOUTH **GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS**

Sampling Event Period	Date Analytical Results Received by Berkshire Environmental Consultants, Inc.	Field Blank (µg/PUF)	ES2S-2R ¹ (µg/m ³)	ES2S-2RCO ¹ (colocated) (μg/m ³)	ES2S-7 (µg/m³)	ES2S-8 (μg/m³)	Background - East of Building 9B (µg/m³)
09/14/10-09/15/10	09/21/10	ND (<0.10)	0.0472	0.0426	0.0708 ²	0.0405	0.0005
Notification Level		0.05	0.05	0.05	0.05	0.05	
Action Level			0.10	0.10	0.10	0.10	0.10

<u>Notes:</u> ND - Non-Detect

¹ Sampling location ES2S-2 was relocated at the end of the day on September 9, 2010 to a location approximately 40 feet west and renamed ES2S-2R. This location was moved to maintain an adequate distance from on-site earth moving activities which had migrated

² Represents an exceedance of the notification level.

³ (μ g/m³) = micrograms per cubic meter.

TABLE 2-7 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING SEPTEMBER 2010¹

PARTICULATE AMBIENT AIR CONCENTRATIONS EAST STREET AREA 2 - SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sampling Date ²	Sampler Location	Average Site Concentration (mg/m ³)	Background Site Concentration (mg/m ³)	Average Period (Hours:Min)	Predominant Wind Direction
09/01/10	ES2S-1	0.033	0.031	10:45	Variable
	ES2S-2	0.030		10:45	
	ES2S-8	0.028		10:30	
	ES2S-9	0.031		10:45	
09/02/10	ES2S-1	0.032	0.029	10:45	SSW
	ES2S-2	0.031		10:45	
	ES2S-8	0.028		10:30	
	ES2S-9	0.029		10:45	
09/03/10	ES2S-1	0.036	0.030	10:45	Calm
	ES2S-2	0.034		10:45	
	ES2S-7 ³	0.045 **		8:00 ⁴	
	ES2S-8	0.027		10:30	
	ES2S-9	0.032		10:45	
09/07/10	ES2S-1	0.025	0.013	10:45	SSW
	ES2S-2	0.017		10:45	
	ES2S-7	0.012 **		10:45	
	ES2S-8	0.020		10:30	
	ES2S-9	0.016		10:45	
09/08/10	ES2S-1	0.015	0.016	10:45	WNW
	ES2S-2	0.024		10:45	
	ES2S-7	0.021 **		11:00	
	ES2S-8	0.019		10:30	
	ES2S-9	0.014		10:45	
09/09/10	ES2S-1	0.008	0.005	10:45	WNW
	ES2S-2	0.009		10:45	
	ES2S-7	0.007 **		11:15	
	ES2S-8	0.018		10:30	
	ES2S-9	0.005		10:45	
09/10/10	ES2S-1	0.007	0.004	10:45	NNW
	ES2S-2R⁵	0.011		10:15	
	ES2S-7	0.002 **		11:00	
	ES2S-8	0.019		10:30	
	ES2S-9	0.008		10:45	
09/13/10	ES2S-1	0.006	0.005	10:45	SSW
	ES2S-2R	0.008		10:45	
	ES2S-7	0.006 **		11:15	
	ES2S-8	0.009		10:30	
	ES2S-9	0.006		10:45	

TABLE 2-7 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING SEPTEMBER 2010¹

PARTICULATE AMBIENT AIR CONCENTRATIONS EAST STREET AREA 2 - SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sampling Date ²	Sampler Location	Average Site Concentration (mg/m ³)	Background Site Concentration (mg/m ³)	Average Period (Hours:Min)	Predominant Wind Direction
09/14/10	ES2S-1	0.011	0.007	10:45	WNW
	ES2S-2R	0.019		10:45	
	ES2S-7	0.012 **		11:15	
	ES2S-8	0.034		9:45 ⁶	
	ES2S-9	0.020		10:45	
09/15/10	ES2S-1	0.007	0.004	10:45	WNW
	ES2S-2R	0.018		10:45	
	ES2S-7	0.005 **		11:45	
	ES2S-8	0.018		10:45	
	ES2S-9	0.006		10:45	
09/16/10	ES2S-1	0.012	0.007	10:45	Variable
	ES2S-2R	0.009		10:45	
	ES2S-7	0.008 **		11:30	
	ES2S-8	0.011		10:45	
	ES2S-9	0.009		10:45	
09/17/10	ES2S-1	0.007	0.006	10:45	NNW
	ES2S-2R	0.007		10:45	
	ES2S-7	0.003 **		10:45	
	ES2S-8	0.008		10:45	
	ES2S-9	0.004		10:45	
09/20/10	ES2S-1	0.014	0.006	10:45	NNW
	ES2S-2R	0.010		10:45	
	ES2S-7	0.004 **		10:30	
	ES2S-8	0.036		10:45	
	ES2S-9	0.007		10:45	
09/21/10	ES2S-1	0.008	0.005	10:45	SSW
	ES2S-2R	0.009		10:45	
	ES2S-7	0.005 **		11:15	
	ES2S-8	0.007		10:45	
	ES2S-9	0.009		10:45	
09/22/10	ES2S-1	0.016	0.012	10:45	WSW
	ES2S-2R	0.016		10:45	
	ES2S-7	0.014 **		11:00	
	ES2S-8	0.013		10:45	
	ES2S-9	0.017		10:45	
09/23/10	ES2S-1	0.011	0.009	10:45	WSW
	ES2S-2R	0.011		10:45	
	ES2S-7	0.011 **		11:15	
	ES2S-8	0.007		10:45	
	ES2S-9	0.010		10:45	

TABLE 2-7 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING SEPTEMBER 2010¹

PARTICULATE AMBIENT AIR CONCENTRATIONS EAST STREET AREA 2 - SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sampling Date ²	Sampler Location	Average Site Concentration (mg/m ³)	Background Site Concentration (mg/m ³)	Average Period (Hours:Min)	Predominant Wind Direction
09/24/10	ES2S-1 ⁷	0.027	0.022	10:45	SSW
	ES2S-2R	0.021		10:45	
	ES2S-7	0.031 **		11:30	
	ES2S-8	0.017		10:45	
	ES2S-9	0.020		10:45	
09/27/10	ES2S-2R	0.003	0.005	10:45	Variable
	ES2S-7	0.002 **		11:00	
	ES2S-8	0.004		10:45	
	ES2S-9	0.002		10:45	
09/28/10	ES2S-2R	0.005	0.009	10:45	SSW
	ES2S-7	0.007 **		11:00	
	ES2S-8	0.007		10:45	
	ES2S-9	0.007		10:45	
09/29/10	ES2S-2R	0.010	0.006	10:45	Variable
	ES2S-7	0.009 **		11:00	
	ES2S-8	0.004		10:45	
	ES2S-9	0.006		10:45	
09/30/10	ES2S-2R	0.004	0.006	10:45	Calm
	ES2S-7	0.011 **		11:15	
	ES2S-8	0.011		10:45	
	ES2S-9	0.007		10:45	
Notific	ation Level	0.120			

Notes:

All concentrations measured with an EBAM unless otherwise noted.

** Measured with a DR-4000.

Background monitoring station is located east of Building 9B, between Building 9B and New York Avenue (BK-3).

Predominant wind direction determined using hourly wind direction data from the Pittsfield Municipal Airport Weather Station.

¹ Monitoring was performed only on days when site activities occurred.

² The particulate monitors obtain real-time data. The sampling data were obtained by Berkshire Environmental Consultants, Inc. on the sampling

³ Sampling location added to reflect progression of site activities.

⁴ Reading reflects average concentration and averaging period manually recorded at the end of the day. Unable to download data due to data

⁵ Sampling location ES2S-2 was relocated at the end of the day on September 9, 2010 to a location approximately 40 feet west and renamed

ES2S-2R. This location was moved to maintain an adequate distance from on-site earth moving activities which had migrated to the vicinity of ⁶ Shortened sampling period due to power interruption.

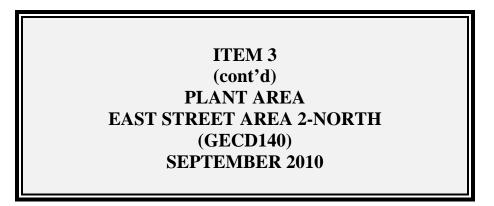
⁷ This represents the final day of sampling at this location due to the progression of site activities.

ITEM 3 PLANT AREA EAST STREET AREA 2-NORTH (GECD140) SEPTEMBER 2010

a. <u>Activities Undertaken/Completed</u>

- Performed September 2010 dry weather flow inspection activities in East Street Area 2-North associated with Drainage Basin 005 under GE's NPDES Permit-related Baseline Monitoring Plan.
- Continued pavement repairs in the former 19s Complex pursuant to EPA's conditional approval letter dated August 20, 2007.
- Performed necessary repairs to vegetated embankments in the 19s Complex pursuant to observations made during the August 31, 2010 semi-annual inspection.*
- Conducted waste characterization PCB sampling of road sweepings, as indicated in Table 3-1.

b. <u>Sampling/Test Results Received</u>


See attached tables.

c. Work Plans/Reports/Documents Submitted

- Submitted report on August/September 2010 inspection of vegetated areas (September 28, 2010).*
- Submitted report on first semi-annual (August/September 2010) inspection of vegetated embankments constructed in the former 19s Complex (September 24, 2010).*

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Perform October 2010 dry weather flow inspection activities in East Street Area 2-North associated with Drainage Basin 005 under GE's NPDES Permit-related Baseline Monitoring Plan.
- Complete pavement repairs in the former 19s Complex.
- Work on drafting and surveys for EREs for portions of East Street Area 2-North.*

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

On December 21, 2006, GE submitted a proposal for the remaining at-grade concrete slabs of certain buildings in the 19s Complex. GE is currently planning to revise that proposal based on discussions with PEDA.*

f. <u>Proposed/Approved Work Plan Modifications</u>

None

						Date Received by
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	GE or ARCADIS
Road Sweepings Waste Characterization	Sweep East-re	9/21/10	Soil	SGS	PCB	9/23/10
Road Sweepings Waste Characterization	Sweep West-re	9/21/10	Soil	SGS	PCB	9/23/10
Road Sweepings Waste Characterization	Sweep-East	9/14/10	Soil	SGS	PCB	9/20/10
Road Sweepings Waste Characterization	Sweep-West	9/14/10	Soil	SGS	PCB	9/20/10

TABLE 3-2 PCB DATA RECEIVED DURING SEPTEMBER 2010

ROAD SWEEPINGS WASTE CHARACTERIZATION EAST STREET AREA 2-NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Date	Aroclor-1016, 1221,			
Sample ID	Collected	-1232, -1242, -1248	Aroclor-1254	Aroclor-1260	Total PCBs
Sweep-East	9/14/2010	ND(16)	8.9 J	50	58.9
Sweep-East-Re	9/21/2010	ND(1.6)	4.3	15	19.3
Sweep-West	9/14/2010	ND(1.5)	2.8	6.2	9.0
Sweep-West-Re	9/21/2010	ND(0.31)	0.81	2.8	3.61

Notes:

1. Samples were collected by Veolia ES Technical Solutions, L.L.C. and submitted to SGS Environmental Services, Inc. for analysis of PCBs.

2. ND - Analyte was not detected. The number in parenthesis is the associated detection limit.

Data Qualifiers:

J - Indicates an estimated value less than the practical quantitation limit (PQL).

ITEM 5 PLANT AREA HILL 78 & BUILDING 71 CONSOLIDATION AREAS (GECD210/220) SEPTEMBER 2010

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. <u>Activities Undertaken/Completed</u>

- Performed interim ambient air monitoring for PCBs, at EPA's request, in accordance with the Post-Removal Site Control Plan for the OPCAs, as indicated in Table 5-1.
- Transferred 6,000 gallons of leachate from Building 71 On-Plant Consolidation Area (OPCA) to Building 64G Groundwater Treatment Facility for treatment (see Table 5-2).
- Continued work on draft Final Completion Report for the OPCAs.
- Conducted preliminary data review (PDR) of PCB analytical data for ambient air samples collected from the OPCA air monitors on September 14-15, 2010. The PDR was conducted based on the following data quality indicators associated with the tabulated data set sampling collection time, sampling calibration check, temperature receipt, associated blanks, laboratory control samples, recoveries and surrogate recoveries in accordance with Validation Annex F in GE's revised Field Sampling Plan/Quality Assurance Project Plan (FSP/QAPP) and the Region I Data Validation Functional Guidelines referenced therein. This PDR resulted in no qualifications of the data. Tier I and Tier II data validation of all PCB analytical data for ambient air samples collected from the OPCA air monitors during this event will be conducted after receiving the full data packages from the laboratory.
- Conducted Tier I and Tier II data validation of PCB analytical data for ambient air samples collected from the OPCA air monitors on July 15-16, 2010. The Tier I and Tier II data validation consisted of a review of all data package summary forms for identification of quality assurance/quality control (QA/QC) deviations, as well as qualification of the data, in accordance with Validation Annex F in GE's revised FSP/QAPP and the Region I Data Validation Functional Guidelines referenced therein. The Tier I/II review resulted in minor qualifications of some data, mostly related to the tentative identification of PCB Aroclor 1248, as shown in Table 5-4. The PCB analytical data from these samples have an overall usability of 100%. The validated data from this event are included in Table 5-5 (the annual summary PCB table for 2010).

b. <u>Sampling/Test Results Received</u>

See attached tables.

ITEM 5 (cont'd) PLANT AREA HILL 78 & BUILDING 71 CONSOLIDATION AREAS (GECD210/220) SEPTEMBER 2010

c. Work Plans/Reports/Documents Submitted

- Submitted to EPA, via electronic mail, the PCB analytical results for ambient air samples collected from the OPCA monitors along with Tier II validated results for the data from the July 15-16, 2010 air monitoring event (September 15, 2010).
- Submitted report on August/September 2010 post-closure inspection of Building 71 OPCA and Hill 78 OPCA (including trees planted as part of restoration activities) (September 23, 2010).
- Submitted report on summer 2010 inspection of natural resource restoration/enhancement (NRRE) measures at Hill 78 OPCA (September 23, 2010).

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Continue communications with EPA regarding GE's Post-Removal Site Control Plan for the OPCAs.
- Continue work on draft Final Completion Report for OPCAs and, once completed, submit it to EPA for review.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

GE's Post-Removal Site Control Plan for the OPCAs is under discussion with EPA.

f. <u>Proposed/Approved Work Plan Modifications</u>

None

HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received by
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	GE or ARCADIS
PCB Ambient Air Sampling	Northwest of OPCAs	09/14-09/15/10	Air	NEA	PCB	9/23/2010
PCB Ambient Air Sampling	West of OPCAs	09/14-09/15/10	Air	NEA	PCB	9/23/2010
PCB Ambient Air Sampling	West of OPCAs colocated	09/14-09/15/10	Air	NEA	PCB	9/23/2010
PCB Ambient Air Sampling	North of OPCAs	09/14-09/15/10	Air	NEA	PCB	9/23/2010
PCB Ambient Air Sampling	Southeast of OPCAs	09/14-09/15/10	Air	NEA	PCB	9/23/2010
PCB Ambient Air Sampling	Pittsfield Generating (PGE)	09/14-09/15/10	Air	NEA	PCB	9/23/2010
PCB Ambient Air Sampling	Background East of Building 9B	09/14-09/15/10	Air	NEA	PCB	9/23/2010

TABLE 5-2 BUILDING 71 CONSOLIDATION AREA LEACHATE TRANSFER SUMMARY PLANT AREA - HILL 78 & BUILDING 71 CONSOLIDATION AREAS

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2010

Month / Year	Total Volume of Leachate Transferred (Gallons)
September 2009	8,698
October 2009	0
November 2009	9,231
December 2009	6,000
January 2010	5,000
February 2010	6,000
March 2010	0
April 2010	7,100
May 2010	4,000
June 2010	0
July 2010	6,000
August 2010	6,000
September 2010	6,000

Note:

1. Leachate is transferred from the Building 71 On-Plant Consolidation Area to Building 64G for treatment.

TABLE 5-3 SUMMARY OF 2010 PCB AMBIENT AIR SAMPLING RESULTS - SEPTEMBER 2010

HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS (all results are ug/m³)

Exceedances of Result Sample ID Notification Level Data Validated Sample Location Sample Date(s) Aroclor ID (ug/m³) (0.05 ug/m³) Aroclor 1254 0.00031 AF NW-091510-008 Northwest of OPCAs 09/14-09/15/10 Total PCB 0.0003 No 0.00050 AF Aroclor 1254 West of OPCAs W-091510-302 09/14-09/15/10 Total PCB 0.0005 No Aroclor 1254 0.00046 AF West of OPCAs, colocated WCo-091510-301 09/14-09/15/10 Total PCB 0.0005 No PDR¹ North of OPCAs N-091510-303 09/14-09/15/10 Total PCB ND (0.0003) No Aroclor 1254 0.00050 AF ---Southeast of OPCAs SE-091510-200 09/14-09/15/10 Total PCB 0.0005 No Pittsfield Generating (PGE) PGE-091510-202 09/14-09/15/10 Total PCB ND (0.0003) No Background Sample Location - East of Building 9B Aroclor 1254 0.00046 AF -BK3-091510-001 09/14-09/15/10 Total PCB 0.0005 No

Notes:

All sampling activities performed by Berkshire Environmental Consultants, Inc. All analytical activities performed by Northeast Analytical, Inc. Only results for detected Aroclors, as well as Total PCBs, are presented.

PDR - Preliminary Data Review AF - Aroclor 1254 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.

ND - Non-Detect

Qualification Notes:

¹PDR was conducted based on the following data quality indicators associated with the tabulated data set above: sampling collection time, sampling calibration check, temperature receipt, associated blanks, laboratory control samples recoveries, and surrogate recoveries.

TABLE 5-4 ANALYTICAL DATA VALIDATION SUMMARY AMBIENT AIR DATA FROM HILL 78/BUILDING 71 ON-PLANT CONSOLIDATION AREA (OPCA) MONITORS FOR WHICH DATA VALIDATION WAS PERFORMED IN SEPTEMBER 2010

Sample Delivery Group No.	Sample Location	Sample ID	Lab Sample ID	Date Collected		Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result (ug/PUF)	Qualified Result (ug/m ³)	Notes
EPA TO-4/														
07010065	Northwest of OPCAs	NW-071610-008	AN09449	7/16/2010	Air	Tier II	Yes	Aroclor-1248	Aroclor-1248 Tentatively Identified	0.240(ug/PUF)	-	0.240 J	0.0007 J	
								Total PCBs	Aroclor-1248 Tentatively Identified	0.351(ug/PUF)	-	0.565 J	0.0017 J	
07010065	West of OPCAs	W-071610-302	AN09450	7/16/2010	Air	Tier II	Yes	Aroclor-1248	Aroclor-1248 Tentatively Identified	0.162(ug/PUF)	-	0.162 J	0.0005 J	
								Total PCBs	Aroclor-1248 Tentatively Identified	0.759(ug/PUF)	-	0.759 J	0.0024 J	
07010065	West of OPCAs colocated	WCO-071610-301	AN09451	7/16/2010	Air	Tier II	Yes	Aroclor-1248	Aroclor-1248 Tentatively Identified	0.156(ug/PUF)	-	0.156 J	0.0005 J	
								Total PCBs	Aroclor-1248 Tentatively Identified	0.782(ug/PUF)	-	0.782 J	0.0024 J	
07010065	North of OPCAs	N-071610-303	AN09452	7/16/2010	Air	Tier II	Yes	Aroclor-1248	Aroclor-1248 Tentatively Identified	0.135(ug/PUF)	-	0.135 J	0.0004 J	
								Total PCBs	Aroclor-1248 Tentatively Identified	0.325(ug/PUF)	-	0.325 J	0.0010 J	
07010065	Southeast of OPCAs	SE-071610-009	AN09453	7/16/2010	Air	Tier II	Yes	Aroclor-1248	Aroclor-1248 Tentatively Identified	0.343(ug/PUF)	-	0.343 J	0.0010 J	
								Total PCBs	Aroclor-1248 Tentatively Identified	0.716(ug/PUF)	-	0.716 J	0.0022 J	
07010065	Pittsfield Generating (PGE)	PGE-071610-202	AN09454	7/16/2010	Air	Tier II	No							
07010065	Background Sample Location - I	BK3-071610-001	AN09455	7/16/2010	Air	Tier II	Yes	Aroclor-1016	Surrogate Recovery	26.1%, 19.0%	60.0% to 120%	ND(0.100) J	ND(0.0003) J	
								Aroclor-1221	Surrogate Recovery	26.1%, 19.0%	60.0% to 120%	ND(0.100) J	ND(0.0003) J	
								Aroclor-1232	Surrogate Recovery	26.1%, 19.0%	60.0% to 120%	ND(0.100) J	ND(0.0003) J	
								Aroclor-1242	Surrogate Recovery	26.1%, 19.0%	60.0% to 120%	ND(0.100) J	ND(0.0003) J	
								Aroclor-1248	Surrogate Recovery	26.1%, 19.0%	60.0% to 120%	ND(0.100) J	ND(0.0003) J	
								Aroclor-1254	Surrogate Recovery	26.1%, 19.0%	60.0% to 120%	0.157 J	0.005 J	
								Aroclor-1260	Surrogate Recovery	26.1%, 19.0%	60.0% to 120%	ND(0.100) J	ND(0.0003) J	
								Total PCBs	Surrogate Recovery	26.1%, 19.0%	60.0% to 120%	0.157 J	0.005 J	

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in micrograms per PUF, ug/PUF)

TABLE 5-5 PCB AMBIENT AIR SAMPLING RESULTS HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS **GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS** (all results are ug/m3)

Date	Northwest of OPCAs	West of OPCAs	West of OPCAs colocated	North of OPCAs	Southeast of OPCAs	Pittsfield Generating (PGE)	Background Sample Location (BK-3) - East of Building 9B	Data Validated?
07/15/10 - 07/16/10	0.0017 J ²	0.0024 J ²	0.0024 J ²	0.0010 J ²	0.0022 J ²	0.0011	0.0005 J ¹	Tier I/II
09/14/10 - 09/15/10	0.0003	0.0005	0.0005	ND	0.0005	ND	0.0005	PDR ³
Exceedances of Notification Level (0.05 µg/m ³)	None	None	None	None	None	None	None	

Notes:

All sampling activities performed by Berkshire Environmental Consultants, Inc. All analytical activities performed by Northeast Analytical, Inc.

PDR - Preliminary Data Review

ND - Non-Detect

¹ Sample result qualified as estimate (J) due to surrogate recoveries below the control limits.
² Sampling data that did not match the Aroclor pattern established through analysis of the target Aroclor standard (which consisted of data for Aroclor 1248) were qualified as estimated ("J").

³ PDR was conducted based on the following data quality indicators associated with the tabulated data set above: sampling collection time, sampling calibration check, temperature receipt, associated blanks, laboratory control samples recoveries, and surrogate recoveries.

ITEM 6 HILL 78 AREA - REMAINDER (GECD160) SEPTEMBER 2010

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. <u>Activities Undertaken/Completed</u>

- Continued work on Final Completion Report.
- Conducted August/September 2010 inspection of backfilled/restored and re-vegetated areas (September 21, 2010).

b. <u>Sampling/Test Results Received</u>

None

c. Work Plans/Reports/Documents Submitted

Submitted draft of Final Completion Report to EPA for review (September 30, 2010).

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

Submit report on August/September 2010 inspection of backfilled/restored and re-vegetated areas.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues.

f. <u>Proposed/Approved Work Plan Modifications</u>

ITEM 7 PLANT AREA UNKAMET BROOK AREA (GECD170) SEPTEMBER 2010

a. <u>Activities Undertaken/Completed</u>

- Performed September 2010 dry weather flow inspection activities associated with Drainage Basin 009 under GE's NPDES Permit-related Baseline Monitoring Plan.
- Performed the third "baseline" effectiveness sampling event at Oil/Water Separator (OWS) 119W, pursuant to GE's NPDES Permit Modification, as indicated in Table 7-1.
- Continued development of Final RD/RA Work Plan for Unkamet Brook Area-Remainder.*

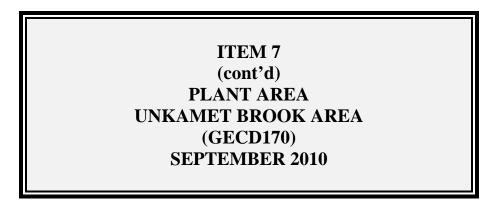
b. <u>Sampling/Test Results Received</u>

See attached tables.

c. <u>Work Plans/Reports/Documents Submitted</u>

None

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>


- Perform October 2010 dry weather flow inspection activities associated with Drainage Basin 009 under GE's NPDES Permit-related Baseline Monitoring Plan.
- Perform sensitivity analyses related to flow modeling at Unkamet Brook.*
- Continue to develop Final RD/RA Work Plan for Unkamet Brook Area-Remainder (due by November 19, 2010 – see Item 7.f below).*

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues.

f. <u>Proposed/Approved Work Plan Modifications</u>

- Received EPA's approval of the Second Addendum to Conceptual RD/RA Work Plan for Unkamet Brook Area-Remainder (September 29, 2010).*

f. <u>Proposed/Approved Work Plan Modifications (cont'd)</u>

- The submittal date for the Final RD/RA Work Plan for Unkamet Brook Area-Remainder was October 19, 2010. However, based on discussions with EPA, the submittal date has been modified to November 19, 2010.

TABLE 7-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2010

UNKAMET BROOK AREA GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received by
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	GE or ARCADIS
OWS-119W Baseline Sampling	OWS-119W-EFF.	8/22/10	Water	Columbia	TSS	9/10/10
OWS-119W Baseline Sampling	OWS-119W-INF.	8/22/10	Water	Columbia	TSS	9/10/10

TABLE 7-2 DATA RECEIVED DURING SEPTEMBER 2010

OWS-119W BASELINE SAMPLING UNKAMET BROOK AREA GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Parameter	Sample ID: Date Collected:	OWS-119W-EFF. 08/22/10	OWS-119W-INF. 08/22/10
Conventiona	I		
Total Suspend	ded Solids	3.40	1.60

Note:

1. Samples were collected by ARCADIS and submitted to Columbia Analytical Services, Inc. for analysis of total suspended solids.

ITEM 8 FORMER OXBOW AREAS A&C (GECD410) SEPTEMBER 2010

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

Performed August/September 2010 inspection of backfilled/restored and re-vegetated areas (September 8, 2010).

b. <u>Sampling/Test Results Received</u>

None

c. <u>Work Plans/Reports/Documents Submitted</u>

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Submit report on August/September 2010 inspection of backfilled/restored and re-vegetated areas.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues.

f. <u>Proposed/Approved Work Plan Modifications</u>

ITEM 9 LYMAN STREET AREA (GECD430) SEPTEMBER 2010

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

Performed August/September 2010 inspection of backfilled/restored, re-vegetated, and engineered barrier areas (September 7, 2010).

b. <u>Sampling/Test Results Received</u>

None

c. Work Plans/Reports/Documents Submitted

Submitted report on summer 2010 inspection of NRRE areas (September 23, 2010).

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

Submit report on August/September 2010 inspection of backfilled/restored, re-vegetated, and engineered barrier areas.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

None

f. <u>Proposed/Approved Work Plan Modifications</u>

ITEM 10 NEWELL STREET AREA I (GECD440) SEPTEMBER 2010

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

Performed August/September 2010 inspection of backfilled/restored area, engineered barriers, and certain paved areas (September 21, 2010).

b. <u>Sampling/Test Results Received</u>

None

c. Work Plans/Reports/Documents Submitted

None

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

Submit report on August/September 2010 inspection of backfilled/restored area, engineered barriers, and certain paved areas.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues.

f. <u>Proposed/Approved Work Plan Modifications</u>

ITEM 11 NEWELL STREET AREA II (GECD450) SEPTEMBER 2010

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

- Performed August/September 2010 inspection of backfilled/restored areas, engineered barriers, and re-vegetated areas (September 1 and 2, 2010).
- Repaired damage caused by WMECo to the engineered barrier on Parcel J9-23-8.

b. <u>Sampling/Test Results Received</u>

None

c. Work Plans/Reports/Documents Submitted

Submitted report on summer 2010 inspection of NRRE areas (September 23, 2010).

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Submit report on August/September 2010 inspection of backfilled/restored areas, engineered barriers, and re-vegetated areas.
- In coordination with Western Massachusetts Electric Company (WMECo), replant trees/shrubs damaged during WMECo's high-tension line tower removal activities.
- Provide notification to MDEP and EPA of repaired damage caused by WMECo to the engineered barrier on Parcel J9-23-8.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

None

f. <u>Proposed/Approved Work Plan Modifications</u>

ITEM 12 FORMER OXBOW AREAS J & K (GECD420) SEPTEMBER 2010

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

Performed August/September 2010 inspections of backfilled/restored and re-vegetated areas (September 9, 2010).

b. <u>Sampling/Test Results Received</u>

None

c. <u>Work Plans/Reports/Documents Submitted</u>

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Submit report on August/September 2010 inspections of backfilled/restored and re-vegetated areas.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

GE has received permission from the owner of Parcel K10-11-5 for access to that property to perform inspections to date. GE still needs a long-term access agreement for that property, and will continue efforts to obtain such an agreement.

f. <u>Proposed/Approved Work Plan Modifications</u>

ITEM 13 HOUSATONIC RIVER AREA UPPER ½ MILE REACH (GECD800) SEPTEMBER 2010

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. <u>Activities Undertaken/Completed</u>

None

b. <u>Sampling/Test Results Received</u>

None

c. Work Plans/Reports/Documents Submitted

Submitted trip report on 2010 monitoring of re-vegetated bank areas and aquatic habitat enhancement structures (September 16, 2010).

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

None

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

GE submitted a report evaluating the total organic carbon (TOC) content and effectiveness of the isolation layer on the river sediments on March 14, 2007. The Final Completion Report for the Upper ¹/₂-Mile Reach Removal Action will be submitted following EPA review and approval of that report.

f. <u>Proposed/Approved Work Plan Modifications</u>

ITEM 14 HOUSATONIC RIVER AREA 1½ MILE REACH (GECD820) SEPTEMBER 2010

a. <u>Activities Undertaken/Completed</u>

On GE's behalf, ARCADIS performed one round of water column monitoring at 10 locations along the Housatonic River between Coltsville and Great Barrington, MA, on September 22, 2010. Two of these locations are situated in the 1½ Mile Reach: Lyman Street Bridge (Location 4) and Pomeroy Avenue Bridge (Location 6A). A composite grab sample was collected at each location and submitted to Northeast Analytical for analysis of PCBs (total), TSS, POC, and chlorophyll-a, as identified in Table 14-1. The sample collected at Pomeroy Avenue Bridge was also analyzed for volatile suspended solids (VSS). (The other eight locations are discussed under Items 15 and 20 below.)

b. <u>Sampling/Test Results Received</u>

See attached tables.

c. <u>Work Plans/Reports/Documents Submitted</u>

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks) Documents

Continue Housatonic River water column monitoring.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

None

f. Proposed/Approved Work Plan Modifications

Received EPA's conditional approval of the Summer 2010 Re-Vegetation Monitoring Report (September 20, 2010).

TABLE 14-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2010

HOUSATONIC RIVER - 1 1/2 MILE REACH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received by GE or ARCADIS
Monthly Water Column Sampling	Location-4	8/26/10	Water	NEA	PCB, TSS, POC, Chlorophyll-A	9/13/10
Monthly Water Column Sampling	Location-4	9/22/10	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-6A	9/22/10	Water	NEA	PCB, TSS, VSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-6A	8/26/10	Water	NEA	PCB, TSS, VSS, POC, Chlorophyll-A	9/13/10

TABLE 14-2 SAMPLE DATA RECEIVED DURING SEPTEMBER 2010

MONTHLY WATER COLUMN SAMPLING HOUSATONIC RIVER -1 1/2 MILE REACH GENERAL ELECTRIC COMPANY -P ITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Sample ID	Location	Date Collected	Aroclor-1016, -1232, -1242, -1260	Aroclor 1221	Aroclor 1248	Aroclor 1254	Total PCBs	POC	TSS	Chlorophyll (a)	VSS
LOCATION-4	Lyman Street Bridge	08/26/10	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	0.51	3.60	0.00360	NA
LOCATION-6A	Pomeroy Ave. Bridge	08/26/10	ND(0.00000550)	0.0000180 PB	0.00000610 PE	0.00000620 AF	0.0000303	0.52	4.27	0.00390	2.14

Notes:

1. Samples were collected by ARCADIS, and submitted to Northeast Analytical, Inc. for analysis of PCBs (unfiltered), total suspended solids (TSS), particulate organic carbon (POC), chlorophyll (a) and volatile suspended solids (VSS).

2. Sampling methods involved the collection of composite grab samples at each location, representative of three stations (25, 50, and 75 percent of the total river width at each location) at 50 percent of the total river depth at each station.

3. NA - Not Analyzed.

4. ND - Analyte was not detected. The number in parenthesis is the associated detection limit.

Data Qualifiers:

AF - Aroclor 1254 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.

PB - Aroclor 1221 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1221 is not present in the sample, but is reported to more accurately quantify PCBs present in a sample that has undergone environmental alteration.

PE - Aroclor 1248 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1248 is not present in the sample, but is reported to more accurately quantify PCBs present in a sample that has undergone environmental alteration.

ITEM 15 HOUSATONIC RIVER AREA REST OF THE RIVER (GECD850) SEPTEMBER 2010

a. <u>Activities Undertaken/Completed</u>

- On GE's behalf, ARCADIS performed one round of water column monitoring at 10 locations along the Housatonic River between Coltsville and Great Barrington, MA, on September 22, 2010. Two locations are situated in the 1½ Mile Reach of the Housatonic River and were discussed in Item 14. One location is at the outlet of Silver Lake and is discussed in Item 20 below. Of the remaining seven locations, two are located upstream of the 1½ Mile Reach: Hubbard Avenue Bridge (Location 1) and Newell Street Bridge (Location 2). The five remaining locations are situated in the Rest of the River: Holmes Road Bridge (Location 7); New Lenox Road Bridge (Location 9); Woods Pond Headwaters (Location 10); Schweitzer Bridge (Location 12); and Division Street Bridge (Location 13). Sampling activities were performed at these locations on September 22, 2010, from downstream to upstream, from Division Street Bridge (Location 13) to Hubbard Avenue Bridge (Location 1). Composite grab samples were collected at each location sampled and submitted to Northeast Analytical for analysis of PCBs (total), TSS, POC, and chlorophyll-a, as identified in Table 15-1.
- GE continued work on Revised Corrective Measures Study (CMS) Report.*

b. <u>Sampling/Test Results</u>

See attached tables.

c. <u>Work Plans/Reports/Documents Submitted</u>

None

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Continue Housatonic River monthly water column monitoring.
- Conduct young-of-year fish sampling in the Massachusetts portion of the River.
- Submit Revised CMS Report to EPA (due by October 12, 2010).*

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

None

f. <u>Proposed/Approved Work Plan Modifications</u>

TABLE 15-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2010

HOUSATONIC RIVER - REST OF RIVER GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received by GE or ARCADIS
Monthly Water Column Sampling	HR-D1 (Location-12)	8/26/10	Water	NEA	PCB, TSS, POC, Chlorophyll-A	9/13/10
Monthly Water Column Sampling	HR-D1 (Location-12)	9/22/10	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-1	9/22/10	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-1	8/26/10	Water	NEA	PCB, TSS, POC, Chlorophyll-A	9/13/10
Monthly Water Column Sampling	Location-10	8/26/10	Water	NEA	PCB, TSS, POC, Chlorophyll-A	9/13/10
Monthly Water Column Sampling	Location-10	9/22/10	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-12	9/22/10	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-12	8/26/10	Water	NEA	PCB, TSS, POC, Chlorophyll-A	9/13/10
Monthly Water Column Sampling	Location-13	9/22/10	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-13	8/26/10	Water	NEA	PCB, TSS, POC, Chlorophyll-A	9/13/10
Monthly Water Column Sampling	Location-2	9/22/10	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-2	8/26/10	Water	NEA	PCB, TSS, POC, Chlorophyll-A	9/13/10
Monthly Water Column Sampling	Location-7	9/22/10	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-7	8/26/10	Water	NEA	PCB, TSS, POC, Chlorophyll-A	9/13/10
Monthly Water Column Sampling	Location-9	9/22/10	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-9	8/26/10	Water	NEA	PCB, TSS, POC, Chlorophyll-A	9/13/10

Note:

1. The parent sample location associated with the field duplicate is presented in parenthesis.

TABLE 15-2 SAMPLE DATA RECEIVED DURING SEPTEMBER 2010

MONTHLY WATER COLUMN SAMPLING HOUSATONIC RIVER -_{RE} ST OF RIVER GENERAL ELECTRIC COMPANY -_P ITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

		Date	Aroclor-1016							
Sample ID	Location	Collected	-1221, -1232, -1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Total PCBs	POC	TSS	Chlorophyll (a)
LOCATION-1	Hubbard Avenue Bridge	08/26/10	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	0.90	5.00	0.00270
LOCATION-2	Newell Street Bridge	08/26/10	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	0.46	3.88	0.00350
LOCATION-7	Holmes Road Bridge	08/26/10	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	0.43	3.50	0.00300
LOCATION-9	New Lenox Road Bridge	08/26/10	ND(0.0000220)	ND(0.0000220)	0.0000430 AF	0.0000520 AG	0.0000950	0.50	4.75	0.00360
LOCATION-10	Headwaters of Woods Pond	08/26/10	ND(0.0000220)	0.0000320 PE	0.0000380 AF	0.0000610 AG	0.000131	0.45	4.16	0.00430
LOCATION-12	Schweitzer Bridge	08/26/10	ND(0.0000220)	0.0000290 PE	0.0000330 AF	0.0000510 AG	0.000113	0.48	4.32	0.00510
		08/26/10	[ND(0.0000220)]	[0.0000330 PE]	[0.0000420 AF]	o.0000710 AG] آ	[0.000146]	[0.43]	[5.35]	[0.00520]
LOCATION-13	Division Street Bridge	08/26/10	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	0.29	3.20	0.00110

Notes:

1. Samples were collected by ARCADIS, and submitted to Northeast Analytical, Inc. for analysis of unfiltered PCBs, total suspended solids (TSS), particulate organic carbon (POC), and chlorophyll (a).

2. Sampling methods involved the collection of composite grab samples at each location, representative of three stations (25, 50, and 75 percent of the total river width at each location) at 50 percent of the total river depth at each station.

3. ND - Analyte was not detected. The number in parenthesis is the associated detection limit.

4. Field duplicate sample results are presented in brackets.

Data Qualifiers:

AF - Aroclor 1254 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.

AG - Aroclor 1260 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.

PE - Aroclor 1248 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1248 is not present in the sample, but is reported to more accurately quantify PCBs present in a sample that has undergone environmental alteration.

ITEMS 16 & 17 HOUSATONIC RIVER FLOODPLAIN RESIDENTIAL AND NON-RESIDENTIAL PROPERTIES ADJACENT TO 1½-MILE REACH (GECD710 AND GECD720) SEPTEMBER 2010

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

- Performed August/September 2010 inspection of backfilled/restored and re-vegetated areas at the Phase 2 Floodplain Properties (September 13, 2010).
- Performed August/September 2010 inspection of backfilled/restored and re-vegetated areas at the Phase 3 Floodplain Properties (September 13, 2010).
- Performed annual invasive species inspection at the Phase 4C Floodplain Properties (September 14, 2010).
- Performed August/September 2010 inspection of backfilled/restored and re-vegetated areas at the Phase 4C Floodplain Properties (September 15, 2010).

b. <u>Sampling/Test Results Received</u>

None

c. Work Plans/Reports/Documents Submitted

- Submit report on August/September 2010 inspection of backfilled/restored and re-vegetated areas at the Phase 2 Floodplain Properties.
- Submit report on August/September 2010 inspection of backfilled/restored and re-vegetated areas at the Phase 3 Floodplain Properties.
- Submit report on August/September 2010 inspection of backfilled/restored and re-vegetated areas and invasive species inspection at the Phase 4C Floodplain Properties.

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

ITEMS 16 & 17 (cont'd) HOUSATONIC RIVER FLOODPLAIN RESIDENTIAL AND NON-RESIDENTIAL PROPERTIES ADJACENT TO 1½-MILE REACH (GECD710 AND GECD720) SEPTEMBER 2010

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

None

f. <u>Proposed/Approved Work Plan Modifications</u>

ITEM 20 OTHER AREAS SILVER LAKE AREA (GECD600) SEPTEMBER 2010

a. Activities Undertaken/Completed

- On GE's behalf, ARCADIS performed one round of water column monitoring from the Silver Lake Outfall on September 22, 2010, as noted in Table 20-1, and obtained a gauge reading (see Item 21.a).
- Continued efforts to obtain access permission for remediation activities in September

b. <u>Sampling/Test Results Received</u>

See attached tables.

c. Work Plans/Reports/Documents Submitted

Submitted a revised Interim Silver Lake Bank Planting Plan (September 2, 2010).*

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Continue discussions regarding transfer to PEDA of bank property owned by GE between Silver Lake Boulevard and the Lake on the western and a portion of the northern side of the Lake.*
- Continue survey work for ERE for the GE-owned bank property on the western and a portion of the northern side of the Lake.*
- Continue efforts to obtain access permission for performance of remediation activities.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

None

f. Proposed/Approved Work Plan Modifications

TABLE 20-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2010

SILVER LAKE AREA GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received by
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	GE or ARCADIS
Monthly Water Column Sampling	Location-4A	8/26/10	Water	NEA	PCB, TSS	9/13/10
Monthly Water Column Sampling	Location-4A	9/22/10	Water	NEA	PCB, TSS	

TABLE 20-2 SAMPLE DATA RECEIVED DURING SEPTEMBER 2010

MONTHLY WATER COLUMN SAMPLING SILVER LAKE AREA GENERAL ELECTRIC COMPANY -p ITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Sample ID	Location	Date Collected	Aroclor-1016, -1232, -1242	Aroclor 1221	Aroclor 1248	Aroclor 1254	Aroclor 1260	Total PCBs	TSS
LOCATION-4A	Silver Lake Outlet	8/26/2010	ND(0.0000220)	0.000210 PB	0.0000920 PE	0.0000360 AF	0.0000340 AG	0.000372	8.51

Notes:

1. Sample was collected by ARCADIS, and submitted to Northeast Analytical, Inc. for analysis of unfiltered PCBs and total suspended solids (TSS).

2. Sampling methods involved the collection of single grab 50 percent of the total river width, and 50 percent of the total river depth.

3. ND - Analyte was not detected. The number in parenthesis is the associated detection limit.

Data Qualifiers:

AF - Aroclor 1254 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.

AG - Aroclor 1260 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.

PB - Aroclor 1221 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1221 is not present in the sample, but is reported to more accurately quantify PCBs present in a sample that has undergone environmental alteration.

PE - Aroclor 1248 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1248 is not present in the sample, but is reported to more accurately quantify PCBs present in a sample that has undergone environmental alteration.

ITEM 21 GROUNDWATER MANAGEMENT AREAS PLANT SITE 1 (GMA 1) (GECD310) SEPTEMBER 2010

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. <u>Activities Undertaken/Completed</u>

General:

- Conducted routine groundwater elevation and NAPL monitoring/recovery activities.

East Street Area 1-North and South:

- Continued automated groundwater and NAPL pumping at North Side and South Side Caissons. No LNAPL was removed from the North Side Caisson in September. No LNAPL was removed from the South Side Caisson in September.
- Continued routine well monitoring and manual NAPL removal activities. Approximately 0.018 liter (0.012 gallon) of LNAPL was removed from this area during September.

East Street Area 2-South:

- Continued automated groundwater and LNAPL removal activities. A total of approximately 3,182,287 gallons of groundwater was recovered from pumping systems 64R, 64S, 64V, 64X, RW-1(S), RW-1(X), and RW-2(X). In addition, approximately 723 gallons of LNAPL were removed from pumping systems 64R, 64V, GMA1-17W, RW-1(S), RW-2(X), RW-4, 64X, and 64S Caisson.
- Continued automated DNAPL removal activities. Approximately 55 gallons of DNAPL were removed from pumping system RW-3(X) during September.
- Continued routine well monitoring and manual NAPL removal activities. Approximately 23.032 liters (6.077 gallons) of LNAPL were removed from wells in this area during September. Approximately 1.950 liters (0.515 gallons) of DNAPL were removed from wells in this area during September.
- Treated/discharged approximately 2,737,102 gallons of water through Building 64G Groundwater Treatment Facility.
- Installed replacement wells 3-6C-EB-14R, 18R, 19R, 95-1R, GMA1-23R, GMA1-24R, and new well GMA1-30 (see Item 21.f below).
- Installed piezometers ESA2S-PZ-1, ESA2S-PZ-2, ESA2S-PZ-3, and ESA2S-PZ-6 near recovery well RW-4.

ITEM 21 (cont'd) GROUNDWATER MANAGEMENT AREAS PLANT SITE 1 (GMA 1) (GECD310) SEPTEMBER 2010

a. <u>Activities Undertaken/Completed</u> (cont'd)

East Street Area 2-North:

- Continued well monitoring and NAPL removal activities. No LNAPL was removed from wells in this area in September.

20s, 30s, and 40s Complexes:

- Continued well monitoring and NAPL removal activities. No LNAPL was recovered from this area during September.

Lyman Street Area:

- Continued automated groundwater and NAPL removal activities. Approximately 94,815 gallons of groundwater were recovered from pumping systems RW-1R, RW-2, and RW-3. No LNAPL was removed from the automated recovery systems during September.
- Continued routine well monitoring and NAPL removal activities. No LNAPL was removed from wells in this area during September. Approximately 0.821 liter (0.217 gallon) of DNAPL was removed from wells in this area during September.

Newell Street Area II:

- Continued automated DNAPL removal activities. Approximately 16 gallons of DNAPL were removed by System 2 in September.
- Continued routine well monitoring and NAPL removal activities. No LNAPL was removed from this area during September. Approximately 0.925 liter (0.244 gallon) of DNAPL was recovered from wells in this area during September.

Newell Street Area I:

- No activities.

ITEM 21 (cont'd) GROUNDWATER MANAGEMENT AREAS PLANT SITE 1 (GMA 1) (GECD310) SEPTEMBER 2010

a. <u>Activities Undertaken/Completed</u> (cont'd)

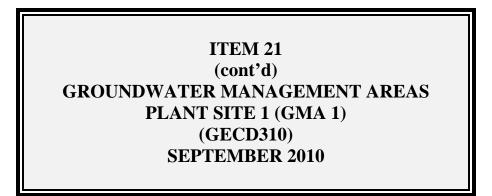
Silver Lake Area:

- Continued routine monitoring of lake level.
- Obtained gauge reading for flow calculation.

b. <u>Sampling/Test Results Received</u>

See attached tables.

c. Work Plans/Reports/Documents Submitted


None

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Continue routine groundwater and NAPL monitoring/recovery activities.
- Develop replacement wells CC-R and O-RR in the former 20s Complex and all new/replacement wells at East Street Area 2-South.
- Install remaining replacements for selected wells removed during soil remediation at East Street Area 2-South.
- Install remainder of piezometer network around recovery well RW-4.
- Conduct maintenance activities at selected monitoring wells.
- Conduct Fall 2010 semi-annual NAPL bailing round, groundwater elevation/NAPL monitoring, and groundwater sampling events.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

The decommissioning of well ESA1N-52, located in East Street, has been postponed pending discussions with the City of Pittsfield to confirm the proper procedures needed to remove this well.

f. <u>Proposed/Approved Work Plan Modifications</u>

- At EPA's request, GE has installed monitoring well GMA1-30 in East Street Area 2-South. This well, along with monitoring wells GMA1-24R and HR-G3-MW-2, will be sampled on a semi-annual basis for PCBs plus Appendix IX constituents (not including pesticides and herbicides) as part of the GMA 1 interim monitoring program. Wells GMA1-30 and HR-G3-MW-2 will be designated as GW-3 perimeter compliance wells, while well GMA1-24R will be designated as a source area sentinel well in the GMA 1 interim monitoring program.
- As requested by EPA, well 18R will be monitored on a weekly basis as part of the GMA 1 NAPL monitoring program. Monitoring will resume at the other replacement wells being at East Street Area 2-South under the previously approved schedules following their installation.
- Additional GMA 1 groundwater quality monitoring program modifications proposed in the July 30, 2010 Groundwater Quality Monitoring Interim Report for Spring 2010 are awaiting EPA approval.

TABLE 21-1 AUTOMATED LNAPL & GROUNDWATER RECOVERY SYSTEMS MONTHLY SUMMARY EAST STREET AREA 1 - NORTH & SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2010

Caisson	Month	Vol. LNAPL Collected (gallon)	Vol. Water Recovered (gallon)	Percent Downtime
Northside	September 2009	0.0	33,595	
	October 2009	0.0	16,576	0.5
	November 2009	0.0	12,980	10.34
	December 2009	0.0	30,066	
	January 2010	0.0	11,050	
	February 2010	0.0	7,550	
	March 2010	0.0	33,300	14.58
	April 2010	0.0	36,950	10.71
	May 2010	0.0	13,600	
	June 2010	0.0	14,950	0.83
	July 2010	0.0	9,600	
	August 2010	0.0	10,450	
	September 2010	0.0	6,650	
Southside	September 2009	0.0	88,770	
	October 2009	7.7	93,810	0.50
	November 2009	2.0	79,630	
	December 2009	0.5	93,900	
	January 2010	0.0	66,580	
	February 2010	0.0	60,940	
	March 2010	3.0	77,270	9.03
	April 2010	0.0	68,430	10.71
	May 2010	0.0	53,620	11.11
	June 2010	0.0	84,250	0.83
	July 2010	0.0	60,650	
	August 2010	0.0	57,480	
	September 2010	0.0	68,070	

Page 1 of 1

Note:

1. Northside Caisson flow meter replaced and intialized in January 2010.

TABLE 21-2 MEASUREMENT AND REMOVAL OF RECOVERABLE LNAPL EAST STREET AREA 1 - NORTH & SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2010

Well Name	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	LNAPL Removed (liters)	September 2010 Removal (liters)
GMA 1 - East St	reet Area 1 -	South				
34	9/29/2010	7.74	7.73	0.01	0.006	0.006
72	9/29/2010	8.70	8.68	0.02	0.012	0.012

Total Manual LNAPL Removal for September 2010: 0.018 liters 0.005 gallons

Note:

1. ft BMP - feet Below Measuring Point.

TABLE 21-3 ROUTINE WELL MONITORING EAST STREET AREA 1 - NORTH & SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2010

Well	Measuring Point Elev.	Date	Depth to Water	Depth to LNAPL	LNAPL Thickness	Depth to DNAPL	Total Depth	DNAPL Thickness	Corrected Water Elev.	
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)	
GMA 1 - East Street Area 1 - North										
North Caisson	997.84	9/1/2010	19.05	19.04	0.01		19.80	0.00	978.80	
North Caisson	997.84	9/8/2010	19.35	19.34	0.01		19.80	0.00	978.50	
North Caisson	997.84	9/15/2010	19.20	19.18	0.02		19.80	0.00	978.66	
North Caisson	997.84	9/23/2010	19.24	19.22	0.02		19.80	0.00	978.62	
North Caisson	997.84	9/28/2010	19.17	19.16	0.01		19.80	0.00	978.68	
GMA 1 - East S	GMA 1 - East Street Area 1 - South									
31R	1,000.23	9/13/2010	10.58		0.00		14.91	0.00	989.65	
33	999.50	9/29/2010	7.90		0.00		21.20	0.00	991.60	
34	999.90	9/29/2010	7.74	7.73	0.01		21.80	0.00	992.17	
72	1,000.62	9/29/2010	8.70	8.68	0.02		22.61	0.00	991.94	
72R	1,000.75	9/13/2010	8.15		0.00		13.05	0.00	992.60	
South Caisson	1,001.11	9/1/2010	13.70	13.69	0.01		15.00	0.00	987.42	
South Caisson	1,001.11	9/8/2010	13.62	13.61	0.01		15.00	0.00	987.50	
South Caisson	1,001.11	9/15/2010	13.66	13.64	0.02		15.00	0.00	987.47	
South Caisson	1,001.11	9/23/2010	13.72	13.70	0.02		15.00	0.00	987.41	
South Caisson	1,001.11	9/28/2010	13.65	13.63	0.02		15.00	0.00	987.48	

Notes:

1. ft BMP - feet Below Measuring Point.

2. --- indicates NAPL was not present in a measurable quantity.

TABLE 21-4 AUTOMATED LNAPL/DNAPL & GROUNDWATER RECOVERY SYSTEMS EAST STREET AREA 2 - SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS September 2010

Recovery System Location	Month	Oil Collected (gallon)	Water Recovered (gallon)	Percent Downtime
17W	September 2009 October 2009 November 2009 December 2009 January 2010	0 2 1 4 4		0.50 20.69
	February 2010 March 2010 April 2010 May 2010 June 2010 July 2010 August 2010 September 2010	8 29 0 0 1 1 2		0.69
64R	September 2009 October 2009 November 2009 December 2009 January 2010	288 150 68 63 28	1,048,993 721,066 299,558 482,506 324,800	0.50
	February 2010 March 2010 April 2010 May 2010 June 2010	10 63 13 38 50	207,185 315,088 409,804 315,515 108,507	0.69
	July 2010 August 2010 September 2010	13 0 0	2,449 234 78	
64S System	September 2009 October 2009 November 2009 December 2009 January 2010	738 575 280 302 331	1,225,005 859,442 687,847 867,002 617,910	0.50
	February 2010 March 2010 April 2010	175 125 388	562,253 1,173,097 1,174,787 751,018	0.69
	May 2010 June 2010 July 2010 August 2010 September 2010	217 275 13 0 25	751,918 595,798 192,941 125,196 135,731	1.67
64V	September 2009 October 2009 November 2009 December 2009 January 2010	461 251 627 665 484	985,700 1,002,500 770,100 916,300 831,500	3.09 6.00
	February 2010 March 2010 April 2010 May 2010	494 864 605 320	814,400 1,198,000 1,013,400 842,300	0.69
	June 2010 July 2010 August 2010 September 2010	349 473 308 452	977,200 729,500 635,100 710,000	0.83

TABLE 21-4 AUTOMATED LNAPL/DNAPL & GROUNDWATER RECOVERY SYSTEMS EAST STREET AREA 2 - SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS September 2010

Recovery System Location	Month	Oil Collected (gallon)	Water Recovered (gallon)	Percent Downtime
64X	September 2009 October 2009 November 2009 December 2009	10 59 12 16	388,800 504,000 417,600 489,600	0.50
	January 2010 February 2010 March 2010 April 2010 May 2010	23 12 50 5 14	403,200 388,800 518,400 403,200 388,800	3.47
	June 2010 July 2010 August 2010 September 2010	12 123 244 80	504,000 417,600 403,200 489,600	0.83
RW-2(X)	September 2009 October 2009 November 2009 December 2009	0 0 0 0	929,339 1,101,472 771,940 810,061	0.50
	January 2010 February 2010 March 2010 April 2010 May 2010	0 0 0 0	568,504 529,773 638,070 940,150 790,610	0.69
	June 2010 July 2010 August 2010 September 2010	0 0 18 0	1,009,556 836,449 597,042 650,874	0.83
RW-1(S) ¹	September 2009 October 2009 November 2009 December 2009 January 2010	50 45 60 69 50	713,005 673,856 559,420 624,919 495,015	0.50
	February 2010 March 2010 April 2010	32 46 35 40	454,396 747,418 747,264 542,031	0.69
	May 2010 June 2010 July 2010 August 2010 September 2010	40 45 43 66 116	596,864 424,571 354,852 359,626	0.83
RW-1(X)	September 2009 October 2009 November 2009 December 2009	4.5 18 0 0	325,513 380,238 280,351 318,690	4.76
	January 2010 February 2010 March 2010 April 2010 May 2010	0 0 5 5 0	353,734 266,084 477,074 325,230 245,637	0.69
	June 2010 July 2010 July 2010 August 2010 September 2010	0 0 0 0	243,637 307,238 267,373 238,247 265,356	0.83

TABLE 21-4 AUTOMATED LNAPL/DNAPL & GROUNDWATER RECOVERY SYSTEMS EAST STREET AREA 2 - SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS September 2010

Recovery System Location	Month	Oil Collected (gallon)	Water Recovered (gallon)	Percent Downtime
RW-4	September 2009 October 2009 November 2009 December 2009 January 2010 February 2010 March 2010 April 2010 May 2010 June 2010 July 2010 August 2010	0 0 0 0 0 6.2 2.1 0 0 18.7 43.8	931,479 1,239,302 1,042,797 1,202,356 945,594 941,780 1,239,425 1,031,121 955,661 1,209,207 951,492 940,327	0.50 0.69 0.83
RW-3(X)	September 2010 September 2009 October 2009 November 2009 December 2009 January 2010 February 2010 March 2010 April 2010 May 2010 July 2010 August 2010 September 2010	48 15 21 20 94 35 21 39 27 40 34 36 32 55	571,022	0.50 0.69

Summary of Total Automated Removal							
Water: 3,182,287 Gallons							
LNAPL:	723	Gallons					
DNAPL:	55	Gallons					

Notes:

1. The flow meter at recovery well RW-1(S) was reset in July 2009.

TABLE 21-5 WELL MONITORING AND RECOVERY OF LNAPL EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES **GROUNDWATER MANAGEMENT AREA 1**

CONSENT DECREE MONTHLY STATUS REPORT **GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS** September 2010

Well Name	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	LNAPL Removed (liters)	September 2010 Removal (liters)		
East Street Area 2 - South								
13	9/27/2010	17.55	17.18	0.37	0.228	0.228		
14	9/27/2010	20.01	19.2	0.81	0.500	0.500		
	9/1/2010	22.78	22.68	0.10	0.062			
	9/8/2010	22.95	22.94	0.01	0.006			
25R	9/15/2010	23.35	23.34	0.01	0.006	0.099		
	9/22/2010	23.46	23.45	0.01	0.006			
	9/27/2010	23.49	23.46	0.03	0.019			
	9/1/2010	19.50	19.35	0.15	0.093			
	9/8/2010	19.46	19.45	0.01	0.006	Ī		
29	9/15/2010	19.67	19.56	0.11	0.068	0.328		
	9/22/2010	19.74	19.57	0.17	0.105			
	9/27/2010	19.70	19.61	0.09	0.056			
30	9/27/2010	15.60	14.80	0.80	0.494	0.494		
48	9/27/2010	19.28	17.03	2.25	1.388	1.388		
55	9/27/2010	15.70	14.2	1.50	0.925	0.925		
	9/1/2010	17.74	13.32	4.42	2.727			
	9/8/2010	17.90	13.40	4.50	2.776			
ES2-15R	9/15/2010	17.65	13.48	4.17	2.579	13.331		
	9/22/2010	17.55	13.50	4.05	2.622	I		
	9/27/2010	18.85	14.60	4.25	2.627	I		
	9/15/2010	21.55	21.54	0.01	0.006			
GMA1-14	9/22/2010	21.85	21.81	0.04	0.025	0.056		
	9/27/2010	22.00	21.96	0.04	0.025	I		
	9/1/2010	17.51	16.36	1.15	0.709			
	9/8/2010	17.58	16.49	1.09	0.672	I		
GMA1-15	9/15/2010	17.60	16.49	1.11	0.686	3.110		
	9/22/2010	17.30	16.62	0.68	0.420	I		
	9/27/2010	17.55	16.54	1.01	0.623			
GMA1-16	9/27/2010	14.12	14.00	0.12	0.074	0.074		
	9/1/2010	12.89	12.24	0.65	0.401			
	9/8/2010	13.16	12.35	0.81	0.500	İ		
GMA1-19	9/15/2010	13.08	12.44	0.64	0.395	2.499		
	9/22/2010	13.60	12.45	1.15	0.709	İ		
	9/27/2010	13.11	12.31	0.80	0.494	1		

Total LNAPL Removal East Street Area 2 - South for September 2010: 23.032 liters 6.077 gallons

> Total LNAPL Removal for September 2010: 23.032 liters 6.077 gallons

Note: 1. ft BMP - feet Below Measuring Point.

TABLE 21-6 WELL MONITORING AND RECOVERY OF DNAPL EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2010

Well Name East Street Area	Date a 2 - South	Depth to Water (ft BMP)	Depth to DNAPL (ft BMP)	DNAPL Thickness (feet)	DNAPL Removed (liters)	September 2010 Removal (liters)
E2SC-03I*	9/27/2010	10.60	39.04	3.16	1.950	1.950

Total DNAPL Removal East Street Area 2 - South for September 2010: 1.950 liters 0.515 gallons

> Total DNAPL Removal for September 2010: 1.950 liters 0.515 gallons

Note:

1. ft BMP - feet Below Measuring Point

TABLE 21-7 64G TREATMENT PLANT DISCHARGE DATA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2010

Date	Housatonic River Discharge (gallons)	Recharge Pond Discharge (gallons)	Total Discharge (gallons)
September 2009	6,599,690	205,121	6,804,811
October 2009	5,169,470	198,300	5,367,770
November 2009	4,591,770	154,772	4,746,772
December 2009	4,961,770	140,375	5,102,145
January 2010	4,664,840	114,621	4,799,461
February 2010	3,765,500	104,457	3,869,957
March 2010	5,497,600	40,836	5,538,436
April 2010	6,086,710	178,635	6,271,755
May 2010	5,012,180	211,489	5,223,669
June 2010	3,792,660	263,780	4,236,440
July 2010	3,613,250	299,406	3,912,656
August 2010	2,960,320	301,621	3,261,941
September 2010	2,431,150	305,952	2,737,102

After treatment, the majority of the water processed at GE's Building 64G groundwater treatment facility is discharged to the Housatonic River through NPDES permitted Outfall 005. However, as part of GE's overall efforts to contain NAPL within the site and to optimize NAPL recovery operations, a portion of the treated water discharged from the 64G facility is routed to GE's on-site recharge pond located in East Street Area 2-South.

Page 1 of 1

TABLE 21-8 ROUTINE WELL MONITORING EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES **GROUNDWATER MANAGEMENT AREA 1**

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

September 2010

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)
East Street Area	a 2 - South								
13	990.88	9/27/2010	17.55	17.18	0.37		27.60	0.00	973.67
14	991.61	9/27/2010	20.01	19.2	0.81		23.25	0.00	972.35
25R	997.47	9/1/2010	22.78	22.68	0.10		30.58	0.00	974.78
25R	997.47	9/8/2010	22.95	22.94	0.01		30.59	0.00	974.53
25R	997.47	9/15/2010	23.35	23.34	0.01		30.58	0.00	974.13
25R	997.47	9/22/2010	23.46	23.45	0.01		30.58	0.00	974.02
25R	997.47	9/27/2010	23.49	23.46	0.03		30.58	0.00	974.01
26RR	1,000.58	9/27/2010	25.27	25.26	0.01		28.30	0.00	975.32
29	991.59	9/1/2010	19.50	19.35	0.15		21.59	0.00	972.23
29	991.59	9/8/2010	19.46	19.45	0.01		21.61	0.00	972.14
29	991.59	9/15/2010	19.67	19.56	0.11		21.58	0.00	972.02
29	991.59	9/22/2010	19.74	19.57	0.17		21.61	0.00	972.01
29	991.59	9/27/2010	19.70	19.61	0.09		21.58	0.00	971.97
30	989.34	9/27/2010	15.60	14.80	0.80		22.50	0.00	974.48
40R	991.60	9/27/2010	Dry at 12.53			1	NA	NA	NA
48	992.39	9/27/2010	19.28	17.03	2.25		22.50	0.00	975.20
49R	988.71	9/27/2010	16.87		0.00		24.88	0.00	971.84
49RR	989.80	9/27/2010	17.98		0.00		23.01	0.00	971.82
55	985.97	9/27/2010	15.70	14.2	1.50		26.54	0.00	971.67
64R	993.37	9/1/2010	17.45	17.44	0.01		20.50	0.00	975.93
64R	993.37	9/8/2010	17.60	17.59	0.01		20.50	0.00	975.78
64R	993.37	9/15/2010	17.82	17.80	0.02		20.50	0.00	975.57
64R	993.37	9/23/2010	18.10	18.08	0.02		20.50	0.00	975.29
64R	993.37	9/28/2010	18.00	17.98	0.02		20.50	0.00	975.39
64S	984.48	9/1/2010	19.09		0.00		28.70	0.00	965.39
64S	984.48	9/8/2010	19.09		0.00		28.70	0.00	965.39
64S	984.48	9/15/2010	19.05		0.00		28.70	0.00	965.43
64S	984.48	9/23/2010	19.05		0.00		28.70	0.00	965.43
64S	984.48	9/28/2010	19.02		0.00		28.70	0.00	965.46
64S-Caisson	NA	9/1/2010	10.78	10.76	0.02		14.55	0.00	NA
64S-Caisson	NA	9/8/2010	10.97	10.95	0.02		14.55	0.00	NA
64S-Caisson	NA	9/15/2010	10.09	10.07	0.02		14.55	0.00	NA
64S-Caisson	NA	9/23/2010	11.42	11.39	0.03		14.55	0.00	NA
64S-Caisson	NA	9/28/2010	11.53	11.50	0.03		14.55	0.00	NA
64V	987.29	9/1/2010	20.97	20.78	0.19	Р	29.60	< 0.01	966.50
64V	987.29	9/8/2010	20.85	20.70	0.15	P	29.60	< 0.01	966.58
64V	987.29	9/15/2010	20.76	20.55	0.21	P	29.60	< 0.01	966.73
64V	987.29	9/23/2010	20.96	20.72	0.24	Р	29.60	< 0.01	966.55
64V	987.29	9/28/2010	20.88	20.72	0.16	P	29.60	< 0.01	966.56
64X(N)	984.83	9/1/2010	12.97	12.95	0.02		15.85	0.00	971.88
64X(N)	984.83	9/8/2010	13.01	12.98	0.03		15.85	0.00	971.85
64X(N)	984.83	9/15/2010	13.39	13.38	0.01		15.85	0.00	971.45
64X(N)	984.83	9/23/2010	13.46	13.44	0.02		15.85	0.00	971.39
64X(N)	984.83	9/28/2010	13.39	13.37	0.02		15.85	0.00	971.46
64X(S)	981.56	9/1/2010	16.58	16.40	0.18		23.82	0.00	965.15
64X(S)	981.56	9/8/2010	16.57	16.45	0.12		23.82	0.00	965.10
64X(S)	981.56	9/15/2010	16.53	16.40	0.13		23.82	0.00	965.15
64X(S)	981.56	9/23/2010	16.64	16.53	0.11		23.82	0.00	965.02
64X(S)	981.56	9/28/2010	16.60	16.48	0.12		23.82	0.00	965.07
64X(W)	984.87	9/1/2010	19.70	19.65	0.05		24.35	0.00	965.22
64X(W)	984.87	9/8/2010	19.73	19.68	0.05		24.35	0.00	965.19
64X(W)	984.87	9/15/2010	19.65	19.63	0.02		24.35	0.00	965.24
64X(W)	984.87	9/23/2010	19.82	19.78	0.04		24.35	0.00	965.09
64X(W)	984.87	9/28/2010	19.95	19.90	0.05		24.35	0.00	964.97
3-6C-EB-22	986.94	9/27/2010	14.32		0.00		19.39	0.00	972.62
E2SC-03I*	982.12	9/27/2010	10.60		0.00	39.04	42.20	3.16	971.52
E2SC-06	986.00	9/27/2010	13.30		0.00		20.02	0.00	972.70
E2SC-23	992.07	9/27/2010	19.87		0.00		21.15	0.00	972.20
E2SC-24	987.90	9/27/2010	16.61		0.00		21.61	0.00	971.29
ES2-15R	986.20	9/1/2010	17.74	13.32	4.42		19.48	0.00	972.57
ES2-15R	986.20	9/8/2010	17.90	13.40	4.50		19.48	0.00	972.49
ES2-15R	986.20	9/15/2010	17.65	13.48	4.17		19.47	0.00	972.43
ES2-15R	986.20	9/22/2010	17.55	13.50	4.05		19.48	0.00	972.42
ES2-15R	986.20	9/27/2010	18.85	14.60	4.25		19.47	0.00	971.30
GMA1-14	997.43	9/1/2010	21.18		0.00		22.50	0.00	976.25

Page 1 of 3

TABLE 21-8 ROUTINE WELL MONITORING EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES **GROUNDWATER MANAGEMENT AREA 1**

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2010

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)
GMA1-14	997.43	9/8/2010	21.45		0.00		22.50	0.00	975.98
GMA1-14 GMA1-14	997.43	9/15/2010	21.45	21.54	0.00		22.50	0.00	975.89
GMA1-14 GMA1-14	997.43	9/22/2010	21.35	21.81	0.01		22.50	0.00	975.62
GMA1-14 GMA1-14	997.43	9/27/2010	21.00	21.96	0.04		22.50	0.00	975.47
GMA1-14 GMA1-15	988.59	9/1/2010	17.51	16.36	1.15		17.79	0.00	972.15
GMA1-15 GMA1-15	988.59	9/8/2010	17.58	16.49	1.09		17.78	0.00	972.02
GMA1-15	988.59	9/15/2010	17.60	16.49	1.11		17.78	0.00	972.02
GMA1-15	988.59	9/22/2010	17.30	16.62	0.68		17.78	0.00	971.92
GMA1-15	988.59	9/27/2010	17.55	16.54	1.01		17.78	0.00	971.98
GMA1-16	986.82	9/27/2010	14.12	14.00	0.12		19.90	0.00	972.81
GMA1-17E	993.03	9/27/2010	17.01	16.99	0.02		17.30	0.00	976.04
GMA1-17W	992.63	9/1/2010	21.70	21.59	0.11		NM	0.00	971.03
GMA1-17W	992.63	9/8/2010	NM	NM	NM	NM	NM	NM	NM
GMA1-17W	992.63	9/15/2010	NM	NM	NM	NM	NM	NM	NM
GMA1-17W	992.63	9/23/2010	NM	NM	NM	NM	NM	NM	NM
GMA1-17W	992.63	9/28/2010	NM	NM	NM	NM	NM	NM	NM
GMA1-19	984.28	9/1/2010	12.89	12.24	0.65		17.14	0.00	971.99
GMA1-19 GMA1-19	984.28	9/8/2010	13.16	12.35	0.81		17.14	0.00	971.87
GMA1-19 GMA1-19	984.28	9/15/2010	13.08	12.33	0.64		17.14	0.00	971.80
GMA1-19 GMA1-19	984.28	9/22/2010	13.60	12.44	1.15		17.13	0.00	971.75
GMA1-19 GMA1-19	984.28	9/22/2010	13.00	12.45	0.80		17.14	0.00	971.91
GMA1-19 GMA1-21	984.28 985.68	9/27/2010	13.11	12.31	0.80		17.15	0.00	971.91
GMA1-21 GMA1-21	985.68	9/1/2010	13.75		0.00		19.58	0.00	971.93
GMA1-21 GMA1-21	985.68	9/15/2010	13.97		0.00		19.58	0.00	971.71
GMA1-21 GMA1-21	985.68	9/22/2010	14.05		0.00		19.58	0.00	971.63
GMA1-21 GMA1-21	985.68	9/27/2010	13.90		0.00		19.58	0.00	971.78
GMA1-21 GMA1-22	988.45	9/1/2010	16.11		0.00		19.56	0.00	971.78
GMA1-22 GMA1-22	988.45	9/8/2010	16.11		0.00		19.16	0.00	972.34
GMA1-22 GMA1-22	988.45	9/15/2010	16.30		0.00		19.10	0.00	972.15
GMA1-22 GMA1-22	988.45	9/22/2010	16.30		0.00		19.15	0.00	972.15
GMA1-22 GMA1-22	988.45	9/27/2010	16.35		0.00		19.10	0.00	972.10
HR-G2-MW-1	982.60	9/27/2010	11.87		0.00		18.24	0.00	970.73
HR-G2-MW-2	981.39	9/27/2010	10.34		0.00		17.67	0.00	971.05
HR-G2-MW-3	987.14	9/27/2010	15.81		0.00		21.98	0.00	971.33
HR-G2-RW-1	976.88	9/27/2010	7.56		0.00		18.68	0.00	971.23
RW-1(S)	987.23	9/1/2010	18.55	18.00	0.55		28.60	0.00	969.19
RW-1(S)	987.23	9/8/2010	19.81	17.85	1.96		28.60	0.00	969.24
RW-1(S)	987.23	9/15/2010	19.57	19.06	0.51		28.60	0.00	968.13
RW-1(S)	987.23	9/23/2010	17.85	17.09	0.76		28.60	0.00	970.09
RW-1(S)	987.23	9/23/2010	17.85	17.09	0.76		28.60	0.00	968.81
RW-1(S) RW-1(X)	987.23	9/28/2010	13.55	13.50	0.49		28.60	0.00	968.81
RW-1(X)	982.68	9/8/2010	13.49	13.42	0.05		20.80	0.00	969.26
RW-1(X)	982.68	9/15/2010	13.64	13.60	0.07		20.80	0.00	969.08
RW-1(X)	982.68	9/23/2010	14.05	14.02	0.04		20.80	0.00	968.66
RW-1(X)	982.68	9/28/2010	14.03	13.96	0.03		20.80	0.00	968.72
RW-1(X) RW-2(X)	985.96	9/28/2010	14.02		0.00		20.80	0.00	971.42
		0/0/0010	1 = 0 1						
RW-2(X) RW-2(X)	985.96 985.96	9/8/2010 9/15/2010	15.61 21.02		0.00		22.80 22.80	0.00	<u>970.35</u> 964.94
RW-2(X)	985.96	9/23/2010	19.16		0.00		22.80	0.00	966.80
RW-2(X)	985.96	9/28/2010	15.14		0.00		22.80	0.00	970.82
RW-3(X)	980.28	9/1/2010	8.74		0.00	43.79	44.40	0.60	971.54
RW-3(X)	980.28	9/8/2010	9.64		0.00	41.00	44.40	3.40	970.64
RW-3(X)	980.28	9/15/2010	9.57		0.00	42.62	44.40	1.78	970.71
RW-3(X)	980.28	9/23/2010	9.61		0.00	43.82	44.40	0.58	970.67
RW-3(X)	980.28	9/28/2010	9.59		0.00	44.11	44.40	0.29	970.69
RW-4	987.44	9/1/2010	19.85	19.61	0.00		29.05	0.00	967.81
RW-4	987.44	9/8/2010	19.68	19.24	0.44		29.05	0.00	968.17
RW-4	987.44	9/15/2010	18.45	18.32	0.13		29.05	0.00	969.11
1.1.1.1									
RW-4	987.44	9/23/2010	19.06	18.94	0.12		29.05	0.00	968.49

Page 2 of 3

TABLE 21-8 ROUTINE WELL MONITORING EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

September 2010

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)
Housatonic Riv	er								
SG-HR-1	990.73	9/2/2010	20.09	See Note 7 reg	garding depth	to water			970.64
SG-HR-1	990.73	9/7/2010	20.18	See Note 7 reg	garding depth	to water			970.55
SG-HR-1	990.73	9/14/2010	20.18	See Note 7 reg	garding depth	to water			970.55
SG-HR-1	990.73	9/22/2010	20.14	See Note 7 reg	garding depth	to water			970.59
SG-HR-1	990.73	9/28/2010	19.98	See Note 7 re	garding depth	to water			970.75

Notes:

1. ft BMP - feet Below Measuring Point.

2. --- indicates NAPL was not present in a measurable quantity.

3. NA indicates information not available.

4. NM indicates information not measured.

5. P indicates that NAPL is present at a thickness that is < 0.01 feet, the corresponding thickness is recorded as such.

Page 3 of 3

6. Well HR-G2-RW-1 is constructed at an angle of 41.67 degrees from vertical. Depth to water data reflect measurements collected along the angled well casing. Groundwater elevations are corrected to account for the angle of the well casing.

7. A survey reference point (SG-HR-1) was established on the Newell Street Bridge. The "Depth to Water" value(s) provided in the above table refer to the vertical distance from the surveyed reference point to the water surface.

8. * - A weighted bailer has been installed at this location to remove accumulations of DNAPL. The DNAPL thickness reported is that measured within the bailer upon the initial retrieval.

TABLE 21-9 ACTIVE RECOVERY SYSTEMS MONTHLY SUMMARY LYMAN STREET AREA **GROUNDWATER MANAGEMENT AREA 1** CONSENT DECREE MONTHLY STATUS REPORT **GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS**

September 2010

Month / Year	Volume Water Pumped (gallon)	RW-1R LNAPL Recovered (gallon)	RW-3 LNAPL Recovered (gallon)
September 2008	143,958		
October 2008	169,967		
November 2008	170,210		
December 2008	296,823		
January 2009	210,215		2
February 2009	157,613		
March 2009	239,619		
April 2009	224,069		
May 2009	169,454		
June 2009	177,905		5
July 2009	235,443		
August 2009	226,534		
September 2009	167,725		
October 2009	175,748		
November 2009	181,566		
December 2009	206,089		5
January 2010	149,663		
February 2010	141,012		
March 2010	276,342		
April 2010	239,752		
May 2010	151,460		
June 2010	162,222		
July 2010	113,949		9
August 2010	96,697		
September 2010	94,815		

Notes: 1. Volume of water pumped is total from Wells RW-1R, RW-2, and RW-3.

2. -- indicates LNAPL was not recovered by the system.

3. LNAPL removal volumes at RW-3 for January and June 2009 were revised based on a review of the Veolia data.

Page 1 of 1

TABLE 21-10 MEASUREMENT AND REMOVAL OF RECOVERABLE DNAPL LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2010

Well Name	Date	Depth to Water (ft BMP)	Depth to DNAPL (ft BMP)	DNAPL Thickness (feet)	DNAPL Removed (liters)	September 2010 Removal (liters)
	9/1/2010	11.90	24.90	0.18	0.111	
	9/7/2010	11.90	24.90	0.18	0.111	
LSSC-07	9/14/2010	11.90	24.90	0.18	0.111	0.721
L33C-07	9/21/2010	11.90	24.85	0.23	0.142	0.721
	9/28/2010	11.90	24.88	0.20	0.123	
	9/29/2010	11.90	24.88	0.20	0.123	
	9/1/2010	13.18	23.22	0.03	0.019	
LSSC-08I	9/7/2010	13.21	23.19	0.05	0.031	0.081
	9/21/2010	13.35	23.20	0.05	0.031	
LSSC-16I	9/29/2010	10.14	28.50	0.03	0.019	0.019

Total Manual DNAPL Removal for September 2010: 0.821 liters 0.217 gallons

Note:

1. ft BMP - feet Below Measuring Point.

TABLE 21-11 ROUTINE WELL MONITORING LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2010

Measuring LNAPL Depth to DNAPL Depth Depth to Corrected Total Well Point Elev. Date to Water LNAPL Thickness DNAPL Depth Thickness Water Elev. Name (feet) (ft BMP) (ft BMP) (ft BMP) (ft BMP) (feet) (feet) (feet) EPA-01 983.04 9/29/2010 13.11 0.00 22.64 0.00 969.93 LS-24 986.58 9/29/2010 18.85 0.00 19.40 0.00 967.73 ---23.60 23.95 970.07 LS-30 986.44 9/29/2010 16.37 ---0.00 0.35 LS-31 987.09 25.45 0.47 9/29/2010 16.90 ----0.00 24.98 970.19 986.95 9/29/2010 LS-38 17.25 26.05 0.00 969.70 ---0.00 ---LS-38S 987.82 9/29/2010 17.48 0.00 ----18.10 0.00 970.34 ---LS-44 980.78 9/29/2010 11.33 0.00 19.48 0.00 969.45 24.90 LSSC-07 982.48 9/1/2010 11.90 ----0.00 25.08 0.18 970.58 LSSC-07 24.90 982.48 9/7/2010 11.90 0.00 25.08 0.18 970.58 ---LSSC-07 9/14/2010 11.90 24.90 25.08 0.18 970.58 982.48 0.00 ---LSSC-07 982.48 9/21/2010 11.90 ----0.00 24.85 25.08 0.23 970.58 LSSC-07 982.48 9/28/2010 11.90 0.00 24.88 25.08 0.20 970.58 ---25.08 LSSC-07 982.48 9/29/2010 11.90 0.00 24.88 0.20 970.58 LSSC-08I 23.25 983.13 9/1/2010 13.18 0.00 23.22 0.03 969.95 LSSC-08I 969.92 983.13 9/7/2010 13.21 0.00 23.19 23.24 0.05 ---LSSC-08I 983.13 9/14/2010 13.13 23.24 0.00 970.00 ----0.00 23.25 LSSC-08I 983.13 9/21/2010 13.35 0.00 23.20 0.05 969.78 ---LSSC-08I 983.13 9/28/2010 13.10 0.00 23.24 0.00 970.03 ------LSSC-08I 983.13 9/29/2010 13.10 0.00 ---23.24 0.00 970.03 ---14.66 LSSC-08S 983.11 9/29/2010 13.30 ---0.00 ---0.00 969.81 LSSC-16I 980.88 9/29/2010 10.14 28.50 28.53 970.74 ----0.00 0.03 LSSC-18 987.32 9/29/2010 19.25 0.00 22.49 0.00 968.07 ------LSSC-32 980.68 9/29/2010 10.22 0.00 ----35.24 0.00 970.46 LSSC-33 980.49 9/29/2010 10.11 0.00 29.01 0.00 970.38 ------RW-1 (R) 985.07 9/1/2010 17.44 ---0.00 ---21.65 0.00 967.63 RW-1 (R) 985.07 9/8/2010 17.68 0.00 21.65 0.00 967.39 ------RW-1 (R) 21.65 985.07 9/15/2010 17.52 0.00 0.00 967.55 ------RW-1 (R) 985.07 9/23/2010 17.50 0.00 ----21.65 0.00 967.57 ----RW-1 (R) 17.62 985.07 9/28/2010 0.00 21.65 0.00 967.45 ------24.70 **RW-2** 985.92 9/1/2010 18.10 ----0.00 ----0.00 967.82 RW-2 985.92 9/8/2010 19.18 ----0.00 ----24.70 0.00 966.74 RW-2 9/15/2010 19.75 24.70 966.17 985.92 0.00 0.00 ------RW-2 985.92 9/23/2010 18.29 ----0.00 ----24.70 0.00 967.63 RW-2 985.92 9/28/2010 18.86 24.70 967.06 0.00 ---0.00 14.94 RW-3 984.08 9/1/2010 14.98 0.04 22.70 0.00 969.14 ---RW-3 984.08 9/8/2010 14.94 14.88 0.06 22.70 0.00 969.20 ---RW-3 22.70 984.08 9/15/2010 14 91 14.84 969.24 0.07 ---0.00 RW-3 984.08 9/23/2010 14.91 14.83 0.08 ----22.70 0.00 969.24 RW-3 984.08 9/28/2010 14.89 14.79 0.10 22.70 0.00 969.28 Housatonic River (Lyman Street Bridge) See Note 3 regarding depth to water BM-2A 9/2/2010 16.68 969.64 986.32 BM-2A 986.32 9/7/2010 16.73 See Note 3 regarding depth to water 969.59 See Note 3 regarding depth to water BM-2A 986.32 9/14/2010 16.71 969.61 See Note 3 regarding depth to water BM-2A 986.32 9/22/2010 16.68 969.64 BM-2A 9/28/2010 16.61 See Note 3 regarding depth to water 986.32 969.71

Notes:

1. ft BMP - feet Below Measuring Point.

2. --- indicates NAPL was not present in a measurable quantity.

3. A survey reference point (BM-2A) was established on the Lyman Street Bridge. The "Depth to Water" value(s) provided in the above table refer to the vertical distance from the surveyed reference point to the water surface.

TABLE 21-12 ACTIVE DNAPL RECOVERY SYSTEMS MONTHLY SUMMARY NEWELL STREET AREA II GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2010

Recovery System	Date	Total Gallons Recovered
System 2(1)	September 2009	0.0
	October 2009	0.0
	November 2009	0.0
	December 2009	0.0
	January 2010	0.0
	February 2010	0.0
	March 2010	0.0
	April 2010	0.0
	May 2010	8.0
	June 2010	20.0
	July 2010	16.2
	August 2010	20.0
	September 2010	16.0
Total Automated DNA	PL Removal for September 2010:	16.0

Note:

1. System 2 wells are N2SC-01I(R), N2SC-03I(R), and N2SC-14.

TABLE 21-13 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

CONSENT DECREE MONTHLY STATUS REPORT GROUNDWATER MANAGEMENT AREA 1 - NEWELL STREET AREA II MEASUREMENT AND REMOVAL OF RECOVERABLE DNAPL September 2010

Well	Date	Depth to Water	Depth to DNAPL	DNAPL Thickness	DNAPL Removed	September 2010 Removal
Name	Date	(ft BMP)	(ft BMP)	(feet)	(liters)	(liters)
N2SC-07	9/29/2010	11.10	35.70	0.15	0.925	0.925

Page 1 of 1

Total DNAPL Removal for September 2010: 0.925 liters 0.244 gallons

Note:

1. ft BMP - feet Below Measuring Point.

TABLE 21-14 ROUTINE WELL MONITORING NEWELL STREET AREA II GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

September 2010

Well	Measuring Point Elev.	Date	Depth to Water	Depth to LNAPL	LNAPL Thickness	Depth to DNAPL	Total Depth	DNAPL Thickness	Corrected Water Elev.
Name	(feet)	Duto	(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
N2SC-01I	984.99	9/29/2010	12.90		0.00	36.90	40.28	3.38	972.09
N2SC-01I(R)	984.34	9/1/2010	16.44	NM	NM	41.47	42.60	1.13	967.90
N2SC-01I(R)	984.34	9/8/2010	16.51	NM	NM	41.45	42.60	1.15	967.83
N2SC-01I(R)	984.34	9/15/2010	16.48	NM	NM	41.48	42.60	1.12	967.86
N2SC-01I(R)	984.34	9/23/2010	16.50	NM	NM	41.68	42.60	0.92	967.84
N2SC-01I(R)	984.34	9/28/2010	16.47	NM	NM	41.66	42.60	0.94	967.87
N2SC-02	983.18	9/29/2010	11.90		0.00		38.16	0.00	971.28
N2SC-03I	982.97	9/29/2010	11.43		0.00	36.85	37.64	0.79	971.54
N2SC-03I(R)	985.86	9/1/2010	14.61	NM	NM	38.61	41.10	2.49	971.25
N2SC-03I(R)	985.86	9/8/2010	14.64	NM	NM	38.60	41.10	2.50	971.22
N2SC-03I(R)	985.86	9/15/2010	14.58	NM	NM	38.65	41.10	2.45	971.28
N2SC-03I(R)	985.86	9/23/2010	14.56	NM	NM	38.81	41.10	2.29	971.30
N2SC-03I(R)	985.86	9/28/2010	14.50	NM	NM	38.80	41.10	2.30	971.36
N2SC-07	984.61	9/29/2010	11.10		0.00	35.70	35.85	0.15	973.51
N2SC-08	986.07	9/29/2010	12.33		0.00	39.20	40.80	1.60	973.74
N2SC-14	986.66	9/1/2010	15.23	NM	NM	39.27	40.00	0.73	971.43
N2SC-14	986.66	9/8/2010	15.27	NM	NM	39.30	40.00	0.70	971.39
N2SC-14	986.66	9/15/2010	15.31	NM	NM	39.32	40.00	0.68	971.35
N2SC-14	986.66	9/23/2010	15.36	NM	NM	39.29	40.00	0.71	971.30
N2SC-14	986.66	9/28/2010	15.34	NM	NM	39.26	40.00	0.74	971.32

Page 1 of 1

Notes:

1. ft BMP - feet Below Measuring Point.

2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.

TABLE 21-15 ROUTINE WELL MONITORING SILVER LAKE AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2010

Measuring Depth LNAPL DNAPL Corrected Depth to Depth to Total Well Point Elev. Date to Water LNAPL DNAPL Water Elev. Thickness Depth Thickness (ft BMP) (ft BMP) Name (feet) (ft BMP) (feet) (ft BMP) (feet) (feet) Staff Gauge within Silver Lake See Note 3 regarding depth to water BM-SL-5 980.30 9/2/2010 975.67 4.63 BM-SL-5 980.30 9/7/2010 4.67 See Note 3 regarding depth to water 975.63 4.67 See Note 3 regarding depth to water BM-SL-5 980.30 9/14/2010 975.63 9/22/2010 See Note 3 regarding depth to water 975.67 BM-SL-5 980.30 4.63 9/28/2010 See Note 3 regarding depth to water BM-SL-5 980.30 4.49 975.81

Notes:

1. ft BMP - feet Below Measuring Point.

2. NA = information not available.

 Survey reference point BM-SL-5 was established on the former Silver Lake staff gauge support structure following destruction of the gauge due to ice. The "Depth to Water" value(s) provided in the above table refer to the vertical distance as measured down from the surveyed reference point to the water surface.

4. Additional groundwater elevation data may also be collected from wells near Silver Lake that are located in the 30s Complex and at the Lyman Street Area. If available, those results are presented in the monitoring tables for those Removal Action Areas.

TABLE 21-16 SILVER LAKE OUTLET CALCULATED DISCHARGE SILVER LAKE AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2010

Date	Gauge Measurement (ft)	Calculated Flow (cfs)
9/22/2010	3.35	0.75

Page 1 of 1

Notes:

- 1. Calculated flow estimated using rating curves developed based on measurements taken at the outfall from March 2007 through May 2007 and September 2007.
- 2. Beginning December 2007, the grate reading is collected as the primary gauge measurement.

ITEM 22 GROUNDWATER MANAGEMENT AREAS FORMER OXBOWS J & K (GMA 2) (GECD320) SEPTEMBER 2010

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. <u>Activities Undertaken/Completed</u>

Continued routine river elevation monitoring.

b. <u>Sampling/Test Results Received</u>

See attached table.

c. Work Plans/Reports/Documents Submitted

None

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Continue routine river elevation monitoring.
- Conduct Fall 2010 semi-annual groundwater elevation monitoring and sampling event.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

GE has received permission from the owner of Parcel K10-11-5 for access to that property to perform the groundwater sampling events to date. GE still needs a long-term access agreement for that property and will continue efforts to obtain such an agreement.

f. <u>Proposed/Approved Work Plan Modifications</u>

None

TABLE 22-1 ROUTINE WELL MONITORING GROUNDWATER MANAGEMENT AREA 2

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2010

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)
Housatonic Rin GMA2-SG-1		d ge) 9/28/2010	((regarding de	(** = ***)		(ieet)	972.64

Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates NAPL was not present in a measurable quantity.

7. A survey reference point was established on the Oxbow J & K foot bridge. The "Depth to Water" value(s) provided in the above table refer to the vertical distance from the surveyed reference point to the water surface.

ITEM 23 GROUNDWATER MANAGEMENT AREAS PLANT SITE 2 (GMA 3) (GECD330) SEPTEMBER 2010

* All activities described below for this item were conducted pursuant to the Consent Decree.

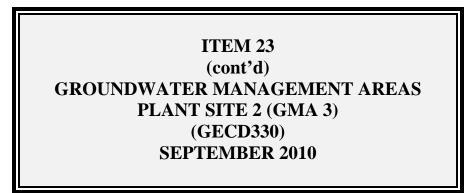
a. Activities Undertaken/Completed

Conducted routine groundwater elevation and NAPL monitoring activities. Approximately 74.5 gallons of LNAPL were removed by the automatic skimmer located in well 51-21, no LNAPL was removed by the automatic skimmer located in well GMA3-17 (see Table 23-1). An additional 15.571 liters (4.108 gallons) of LNAPL were manually removed from the wells in this area during September (see Table 23-2).

b. <u>Sampling/Test Results Received</u>

See attached tables.

c. Work Plans/Reports/Documents Submitted


None

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Continue routine groundwater and NAPL monitoring/recovery activities.
- Conduct maintenance activities at selected monitoring wells.
- Conduct Fall 2010 semi-annual NAPL bailing round, groundwater elevation/NAPL monitoring, and groundwater sampling events.
- Conduct Fall 2010 annual inventory of materials and/or products within Buildings 51 and 59 that could contain volatile constituents similar to those that have been previously detected in the indoor air samples and are common to the target constituents in the LNAPL or groundwater.
- Conduct Fall 2010 annual sampling and analysis of soil gas beneath, and indoor air within, Buildings 51 and 59 at or near the same locations that were sampled in Fall 2009.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

None

f. <u>Proposed/Approved Work Plan Modifications</u>

Proposed modifications to the GMA 3 monitoring program included in the Spring 2010 Groundwater Quality and NAPL Monitoring Interim Report are awaiting EPA approval.

TABLE 23-1 AUTOMATED LNAPL RECOVERY SYSTEMS MONTHLY SUMMARY GROUNDWATER MANAGEMENT AREA 3

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2010

Recovery Well	Month	Vol. LNAPL Collected (gallons)		
51-21	September 2009	1.9		
	October 2009	0.9		
	November 2009	1.7		
	December 2009	2.6		
	January 2010	3		
	February 2010	1.9		
	March 2010	2.9		
	April 2010	2.0		
	May 2010	0.6		
	June 2010	7.8		
	July 2010	23.1		
	August 2010	35.2		
	September 2010	74.5		
GMA3-17	September 2009	1.2		
	October 2009	2.6		
	November 2009	4.8		
	December 2009	4.2		
	January 2010	2.8		
	February 2010	5.3		
	March 2010	2.5		
	April 2010	1.1		
	May 2010	1.4		
	June 2010	4.0		
	July 2010	0.2		
	August 2010	0.5		
	September 2010	0.0		

TABLE 23-2 MEASUREMENT AND REMOVAL OF RECOVERABLE LNAPL GROUNDWATER MANAGEMENT AREA 3

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2010

Well Name	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	LNAPL Removed (liters)	September 2010 Removal (liters)
	9/1/2010	13.25	12.04	1.21	0.747	
	9/7/2010	13.30	12.12	1.18	0.728	
51-08	9/14/2010	13.60	12.30	1.30	0.802	3.671
	9/21/2010	13.24	12.24	1.00	0.617	
	9/28/2010	13.50	12.24	1.26	0.777	
51-15	9/28/2010	12.40	11.70	0.70	0.432	0.432
51-16R	9/28/2010	12.51	11.51	1.00	0.617	0.617
51-17	9/28/2010	12.73	11.40	1.33	0.821	0.821
51-19	9/28/2010	12.80	11.78	1.02	0.629	0.629
59-03R	9/28/2010	13.65	12.81	0.84	0.518	0.518
59-07	9/28/2010	13.50	13.04	0.46	0.284	0.284
GMA3-10	9/28/2010	12.88	12.68	0.20	0.123	0.123
	9/1/2010	13.31	12.73	0.58	1.434	
	9/7/2010	13.38	12.79	0.59	1.458	
GMA3-12	9/14/2010	13.65	12.90	0.75	1.854	8.380
	9/21/2010	13.68	12.93	0.75	1.854	
	9/28/2010	13.70	12.98	0.72	1.780	
	9/1/2010	12.62	12.60	0.02	0.012	
GMA3-13	9/7/2010	12.65	12.60	0.05	0.031	0.093
GIVIAS-13	9/21/2010	12.86	12.81	0.05	0.031	0.093
	9/28/2010	12.89	12.86	0.03	0.019	
UB-PZ-3	9/28/2010	13.41	13.40	0.01	0.003	0.003

Page 1 of 1

Total LNAPL Removed for September 2010: 15.571 liters 4.108 gallons

Notes:

1. ft BMP - feet Below Measuring Point.

TABLE 23-3 ROUTINE WELL MONITORING GROUNDWATER MANAGEMENT AREA 3

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2010

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
51-05	996.36	9/28/2010	Dry at 10.44 feet				NA	NA	NÁ
51-06	997.29	9/28/2010	12.14		0.00		14.25	0.00	985.15
51-07	997.08	9/28/2010	12.23		0.00		13.05	0.00	984.85
51-08	997.08	9/1/2010	13.25	12.04	1.21		14.60	0.00	984.96
51-08	997.08	9/7/2010	13.30	12.12	1.18		14.60	0.00	984.88
51-08	997.08	9/14/2010	13.60	12.30	1.30		14.60	0.00	984.69
51-08	997.08	9/21/2010	13.24	12.24	1.00		14.60	0.00	984.77
51-08	997.08	9/28/2010	13.50	12.24	1.26		14.60	0.00	984.75
51-09	997.66	9/28/2010	12.58		0.00		14.64	0.00	985.08
51-11	994.37	9/28/2010	11.10		0.00		13.55	0.00	983.27
51-12	996.55	9/28/2010	7.80		0.00		13.36	0.00	988.75
51-12	997.28	9/28/2010	12.55		0.00		13.74	0.00	984.73
51-13	996.64	9/28/2010	11.90		0.00		14.48	0.00	984.73
51-14	996.43	9/28/2010	12.40	11.70	0.00		14.40	0.00	984.68
					1.00			0.00	
51-16R	996.39	9/28/2010	12.51	11.51			14.50		984.81
51-17	996.43	9/28/2010	12.73	11.40	1.33		14.50	0.00	984.94
51-18	997.12	9/28/2010	12.35		0.00		12.58	0.00	984.77
51-19	996.43	9/28/2010	12.80	11.78	1.02		14.05	0.00	984.58
51-21	1,001.49	9/1/2010	16.69	16.67	0.02		NM	0.00	984.82
51-21	1,001.49	9/8/2010	16.75	16.73	0.02		NM	0.00	984.76
51-21	1,001.49	9/15/2010	16.84	16.81	0.03		NM	0.00	984.68
51-21	1,001.49	9/23/2010	16.91	16.90	0.01		NM	0.00	984.59
51-21	1,001.49	9/28/2010	16.93	16.91	0.02		NM	0.00	984.58
59-01	997.52	9/28/2010	12.92	12.70	0.22		18.09	0.00	984.80
59-03R	997.64	9/28/2010	13.65	12.81	0.84		17.03	0.00	984.77
59-07	997.96	9/28/2010	13.50	13.04	0.46		23.45	0.00	984.89
078B-R	988.83	9/28/2010	2.78		0.00		11.74	0.00	986.05
GMA3-10	997.54	8/31/2010	12.44	12.38	0.06		17.67	0.00	985.16
GMA3-10	997.54	9/1/2010	12.46	12.42	0.04		17.67	0.00	985.12
GMA3-10	997.54	9/7/2010	12.52	12.50	0.02		17.68	0.00	985.04
GMA3-10	997.54	9/8/2010	12.53	12.51	0.02		17.66	0.00	985.03
GMA3-10	997.54	9/14/2010	12.75	12.23	0.52		17.67	0.00	985.27
GMA3-10	997.54	9/15/2010	12.77	12.24	0.53		17.67	0.00	985.26
GMA3-10	997.54	9/21/2010	12.75	12.63	0.12		17.66	0.00	984.90
GMA3-10	997.54	9/22/2010	12.79	12.65	0.14		17.66	0.00	984.88
GMA3-10	997.54	9/28/2010	12.88	12.68	0.20		17.66	0.00	984.85
GMA3-10	997.54	9/29/2010	12.90	12.69	0.21		17.66	0.00	984.84
GMA3-11	997.25	9/28/2010	12.30		0.00		17.90	0.00	984.95
GMA3-12	997.84	9/1/2010	13.31	12.73	0.58		21.18	0.00	985.07
GMA3-12	997.84	9/7/2010	13.38	12.79	0.59		21.18	0.00	985.01
GMA3-12	997.84	9/14/2010	13.65	12.90	0.75		21.16	0.00	984.89
GMA3-12 GMA3-12	997.84	9/21/2010	13.68	12.93	0.75		21.10	0.00	984.86
GMA3-12 GMA3-12	997.84	9/28/2010	13.70	12.93	0.73		21.10	0.00	984.81
GMA3-12 GMA3-13	997.73	9/28/2010	12.62	12.90	0.72		17.38	0.00	985.13
	997.73	9/7/2010		12.60	0.02		17.38	0.00	985.13
GMA3-13			12.65 12.85	12.60					
GMA3-13	997.73	9/14/2010			0.00		17.38	0.00	984.88
GMA3-13	997.73 997.73	9/21/2010 9/28/2010	12.86	12.81 12.86	0.05 0.03		17.35	0.00	<u>984.92</u> 984.87
GMA3-13	997.73		12.89	12.86	0.03		17.35	0.00	<u>984.87</u> 985.37
GMA3-14	997.42	9/28/2010 9/28/2010	12.05 2.97		0.00		<u>16.33</u> 12.22	0.00	985.37

TABLE 23-3 ROUTINE WELL MONITORING GROUNDWATER MANAGEMENT AREA 3

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2010

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)
GMA3-17	1,002.00	9/1/2010	18.54	Р	< 0.01		NM	0.00	983.46
GMA3-17	1,002.00	9/8/2010	18.63	Р	< 0.01		NM	0.00	983.37
GMA3-17	1,002.00	9/15/2010	18.71	Р	< 0.01		NM	0.00	983.29
GMA3-17	1,002.00	9/23/2010	18.76	Р	< 0.01		NM	0.00	983.24
GMA3-17	1,002.00	9/28/2010	18.74	Р	< 0.01		NM	0.00	983.26
UB-MW-10	995.99	09/28/.2010	11.10		0.00		14.10	0.00	984.89
UB-PZ-3	998.15	9/28/2010	13.41	13.40	0.01		13.42	0.00	984.75

Notes:

1. ft BMP - feet Below Measuring Point.

2. --- indicates NAPL was not present in a measurable quantit

3. NA indicates information not available

4. NM indicates information not measurec

5. P indicates that NAPL is present at a thickness that is < 0.01 feet, the corresponding thickness is recorded as suc

6. Survey reference points were established on the GMA 3 staff gauges. The "Depth to Water" value(s) provided in the above table refer to the vertical distance from the surveyed reference point to the water surface.

ITEM 24 GROUNDWATER MANAGEMENT AREAS PLANT SITE 3 (GMA 4) (GECD340) SEPTEMBER 2010

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. <u>Activities Undertaken/Completed</u>

None

b. <u>Sampling/Test Results Received</u>

None

c. <u>Work Plans/Reports/Documents Submitted</u>

Submitted an addendum to the Spring 2010 Groundwater Quality Monitoring Interim Report to correct a discrepancy between portions of that report (September 9, 2010).

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Conduct maintenance activities at selected monitoring wells.
- Conduct Fall 2010 semi-annual groundwater elevation monitoring and sampling events.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

None

f. <u>Proposed/Approved Work Plan Modifications</u>

Proposed modifications to the GMA 4 monitoring program included in the Spring 2010 Groundwater Quality Monitoring Interim Report are awaiting EPA approval.

ITEM 25 GROUNDWATER MANAGEMENT AREAS FORMER OXBOWS A & C (GMA 5) (GECD350) SEPTEMBER 2010

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

None

b. <u>Sampling/Test Results Received</u>

None

c. Work Plans/Reports/Documents Submitted

Submitted Spring 2010 Long-Term Trend Evaluation Report (September 14, 2010).

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

None

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

None

f. <u>Proposed/Approved Work Plan Modifications</u>

Due to the presence of tetrachloroethene (PCE) documented during the GMA 5 sampling activities, MDEP has issued a Notice of Responsibility to the owner of an upgradient property where a dry cleaning facility was operated. In the Spring 2010 Long-Term Trend Evaluation Report, GE proposed to suspend additional activities at GMA 5 until such time as the work plan to be submitted by that property owner is approved by MDEP, the associated testing program is completed, and the regulatory status of the PCE release from the upgradient property is further clarified by MDEP.

ARCADIS

Attachment A

NPDES Sampling Records and Results – September 2010

TABLE A-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2010

NPDES PERMIT MONITORING GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received by GE or ARCADIS
NPDES Sampling	005-3Q3M-1X-CP	9/7/10	Water	SGS	PCB	9/13/10
NPDES Sampling	005-3Q3M-1X-CT	9/7/10	Water	Columbia	TSS	9/16/10
NPDES Sampling	005-3Q3M-1X-GO	9/7/10	Water	Columbia	Oil & Grease	9/16/10
NPDES Sampling	005-3Q3M-2X-CP	9/13/10	Water	SGS	PCB	9/20/10
NPDES Sampling	005-3Q3M-2X-CT	9/13/10	Water	Columbia	TSS	9/23/10
NPDES Sampling	005-3Q3M-2X-GO	9/13/10	Water	Columbia	Oil & Grease	9/23/10
NPDES Sampling	09B-3Q-3X-CP	9/8/10	Water	SGS	PCB	9/14/10
NPDES Sampling	09B-3Q-3X-CT	9/8/10	Water	Columbia	TSS	9/17/10
NPDES Sampling	64G-3Q3M-1X-CP	9/7/10	Water	SGS	PCB	9/13/10
NPDES Sampling	64G-3Q3M-1X-CT	9/7/10	Water	Columbia	TSS	9/16/10
NPDES Sampling	64G-3Q3M-1X-GO	9/7/10	Water	Columbia	Oil & Grease	9/16/10
NPDES Sampling	64G-3Q3M-1X-GS	9/7/10	Water	Columbia	SVOC	9/17/10
NPDES Sampling	64G-3Q3M-1X-GV	9/7/10	Water	Columbia	VOC	9/17/10
NPDES Sampling	64G-3Q3M-2X-CP	9/13/10	Water	SGS	PCB	9/20/10
NPDES Sampling	64G-3Q3M-2X-CT	9/13/10	Water	Columbia	TSS	9/23/10
NPDES Sampling	64G-3Q3M-2X-GO	9/13/10	Water	Columbia	Oil & Grease	9/23/10
NPDES Sampling	64G-3Q3M-2X-GS	9/13/10	Water	Columbia	SVOC	9/21/10
NPDES Sampling	64G-3Q3M-2X-GV	9/13/10	Water	Columbia	VOC	9/21/10
NPDES Sampling	64G-A10161	9/13/10	Water	Aquatec	Chronic Toxicity Test	
NPDES Sampling	64G-A10161	9/13/10	Water	Columbia	TOC, Alkalinity, Ammonia, Total Solids	9/27/10
NPDES Sampling	64G-A10161	9/13/10	Water	Columbia	Total Dissolved Solids	9/27/10
NPDES Sampling	64G-A10161TM	9/13/10	Water	Columbia	Metals (6)	9/27/10
NPDES Sampling	64G-A10163	9/15/10	Water	Aquatec	Chronic Toxicity Test	
NPDES Sampling	64G-A10163	9/15/10	Water	Columbia	TOC, Alkalinity, Ammonia, Total Solids	
NPDES Sampling	64G-A10163	9/15/10	Water	Columbia	Total Dissolved Solids	
NPDES Sampling	64G-A10163TM	9/15/10	Water	Columbia	Metals (6)	
NPDES Sampling	64G-A10165	9/17/10	Water	Aquatec	Chronic Toxicity Test	
NPDES Sampling	64G-A10165	9/17/10	Water	Columbia	TOC, Alkalinity, Ammonia, Total Solids	
NPDES Sampling	64G-A10165	9/17/10	Water	Columbia	Total Dissolved Solids	
NPDES Sampling	64G-A10165TM	9/17/10	Water	Columbia	Metals (6)	
NPDES Sampling	A10162R	9/13/10	Water	Columbia	TOC, Alkalinity, Ammonia, Total Solids	9/27/10
NPDES Sampling	A10162R	9/13/10	Water	Columbia	Total Dissolved Solids	9/27/10
NPDES Sampling	A10162RTM	9/13/10	Water	Columbia	Metals (6)	9/27/10
NPDES Sampling	A10164R	9/15/10	Water	Columbia	TOC, Alkalinity, Ammonia, Total Solids	

TABLE A-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2010

NPDES PERMIT MONITORING GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received by GE or ARCADIS
NPDES Sampling	A10164R	9/15/10	Water	Columbia	Total Dissolved Solids	
NPDES Sampling	A10164RTM	9/15/10	Water	Columbia	Metals (6)	
NPDES Sampling	A10166R	9/17/10	Water	Columbia	TOC, Alkalinity, Ammonia, Total Solids	
NPDES Sampling	A10166R	9/17/10	Water	Columbia	Total Dissolved Solids	
NPDES Sampling	A10166RTM	9/17/10	Water	Columbia	Metals (6)	

TABLE A-2 DATA RECEIVED DURING SEPTEMBER 2010

NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Sample ID: Parameter Date Collected:	005-3Q3M-1X-CP 09/07/10	005-3Q3M-1X-CT 09/07/10	005-3Q3M-1X-GO 09/07/10	005-3Q3M-2X-CP 09/13/10	005-3Q3M-2X-CT 09/13/10	005-3Q3M-2X-GO 09/13/10	09B-3Q-3X-CP 09/08/10												
Volatile Organics	00/01/10	00/01/10	00/01/10	00/10/10	00/10/10	00/10/10	00,00,10												
1,1,1-Trichloroethane	NA	1,1-Dichloroethane	NA	Chloroethane	NA	PCBs-Unfiltered		•	•										
Aroclor-1254	ND(0.000015)	NA	NA	0.0000079 J	NA	NA	0.0000083 J												
Aroclor-1260	ND(0.000015)	NA	NA	0.0000092 J	NA	NA	0.0000091 J												
Total PCBs	ND(0.000015)	NA	NA	0.0000171 J	NA	NA	0.0000174 J												
Semivolatile Organics																			
None Detected	NA	Inorganics-Unfiltered		•	•														
Aluminum	NA	Cadmium	NA	Copper	NA	Lead	NA	Nickel	NA	Zinc	NA	Conventional							
Alkalinity	NA	Ammonia Nitrogen	NA	Oil & Grease	NA	NA	ND(4.1)	NA	NA	ND(4.1)	NA								
Total Dissolved Solids	NA	Total Organic Carbon	NA	Total Solids	NA	Total Suspended Solids	NA	ND(1.00)	NA	NA	ND(1.00)	NA	NA						

TABLE A-2 DATA RECEIVED DURING SEPTEMBER 2010

NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Sample ID: Parameter Date Collected:	09B-3Q-3X-CT 09/08/10	64G-3Q3M-1X-CP 09/07/10	64G-3Q3M-1X-CT 09/07/10	64G-3Q3M-1X-GO 09/07/10	64G-3Q3M-1X-GS 09/07/10	64G-3Q3M-1X-GV 09/07/10	64G-3Q3M-2X-CP 09/13/10
Volatile Organics							
1,1,1-Trichloroethane	NA	NA	NA	NA	NA	0.00033 J	NA
1,1-Dichloroethane	NA	NA	NA	NA	NA	0.00086 J	NA
Chloroethane	NA	NA	NA	NA	NA	0.00073 J	NA
PCBs-Unfiltered					•		
Aroclor-1254	NA	ND(0.000016)	NA	NA	NA	NA	ND(0.000016)
Aroclor-1260	NA	ND(0.000016)	NA	NA	NA	NA	ND(0.000016)
Total PCBs	NA	ND(0.000016)	NA	NA	NA	NA	ND(0.000016)
Semivolatile Organics					•		
None Detected	NA	NA	NA	NA		NA	NA
Inorganics-Unfiltered		•					
Aluminum	NA	NA	NA	NA	NA	NA	NA
Cadmium	NA	NA	NA	NA	NA	NA	NA
Copper	NA	NA	NA	NA	NA	NA	NA
Lead	NA	NA	NA	NA	NA	NA	NA
Nickel	NA	NA	NA	NA	NA	NA	NA
Zinc	NA	NA	NA	NA	NA	NA	NA
Conventional							
Alkalinity	NA	NA	NA	NA	NA	NA	NA
Ammonia Nitrogen	NA	NA	NA	NA	NA	NA	NA
Oil & Grease	NA	NA	NA	ND(4.2)	NA	NA	NA
Total Dissolved Solids	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon	NA	NA	NA	NA	NA	NA	NA
Total Solids	NA	NA	NA	NA	NA	NA	NA
Total Suspended Solids	1.80	NA	ND(1.00)	NA	NA	NA	NA

TABLE A-2DATA RECEIVED DURING SEPTEMBER 2010

NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Sample ID: Parameter Date Collected:	64G-3Q3M-2X-CT 09/13/10	64G-3Q3M-2X-GO 09/13/10	64G-3Q3M-2X-GS 09/13/10	64G-3Q3M-2X-GV 09/13/10	64G-A10161 09/13/10	64G-A10161TM 09/13/10	A10162R 09/13/10	A10162RTM 09/13/10
Volatile Organics								
1,1,1-Trichloroethane	NA	NA	NA	0.00042 J	NA	NA	NA	NA
1,1-Dichloroethane	NA	NA	NA	0.00074 J	NA	NA	NA	NA
Chloroethane	NA	NA	NA	ND(0.0010)	NA	NA	NA	NA
PCBs-Unfiltered		•			·			
Aroclor-1254	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1260	NA	NA	NA	NA	NA	NA	NA	NA
Total PCBs	NA	NA	NA	NA	NA	NA	NA	NA
Semivolatile Organics		•			·			
None Detected	NA	NA		NA	NA	NA	NA	NA
Inorganics-Unfiltered		•			•			
Aluminum	NA	NA	NA	NA	NA	ND(0.0200)	NA	0.0400
Cadmium	NA	NA	NA	NA	NA	ND(0.000500)	NA	ND(0.000500)
Copper	NA	NA	NA	NA	NA	ND(0.00100)	NA	ND(0.00100)
Lead	NA	NA	NA	NA	NA	ND(0.000500)	NA	ND(0.000500)
Nickel	NA	NA	NA	NA	NA	0.00230	NA	0.00150
Zinc	NA	NA	NA	NA	NA	0.00680	NA	ND(0.00500)
Conventional								
Alkalinity	NA	NA	NA	NA	367	NA	206	NA
Ammonia Nitrogen	NA	NA	NA	NA	ND(0.0500)	NA	ND(0.0500)	NA
Oil & Grease	NA	ND(4.1)	NA	NA	NA	NA	NA	NA
Total Dissolved Solids	NA	NA	NA	NA	672	NA	246	NA
Total Organic Carbon	NA	NA	NA	NA	6.6	NA	3.7	NA
Total Solids	NA	NA	NA	NA	690	NA	279	NA
Total Suspended Solids	ND(1.00)	NA	NA	NA	NA	NA	NA	NA

Notes:

1. Samples were collected by General Electric Company, and were submitted to Columbia Analytical Services, Inc. and SGS Environmental Services, Inc. for analysis of volatiles, PCBs, semivolatiles, metals, alkalinity, ammonia, oil & grease, total dissolved solids, total organic carbon, total solids and total suspended solids.

2. NA - Not Analyzed.

3 ND - Analyte was not detected. The number in parentheses is the associated detection limit.

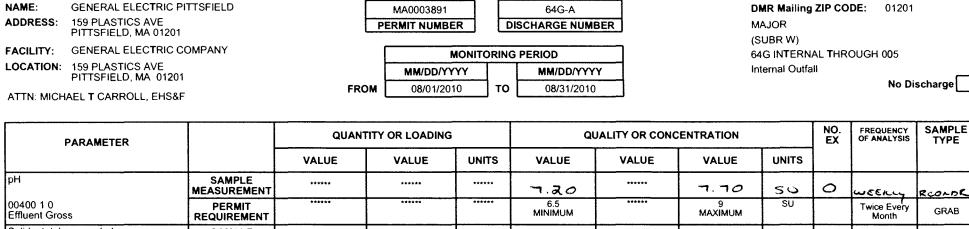
4. With the exception of inorganics and conventional parameters, only those constituents detected in one or more samples are summarized.

5. -- Indicates that all constituents for the parameter group were not detected.

Data Qualifiers:

Organics (volatiles, PCBs, semivolatiles)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

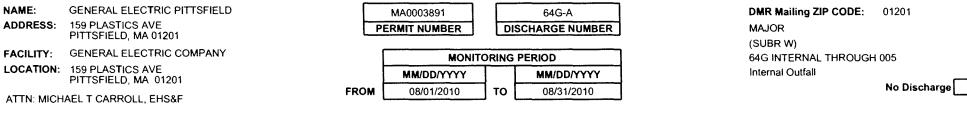

ARCADIS

Attachment B

NPDES Discharge Monitoring Reports August 2010

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)


рН	SAMPLE MEASUREMENT	******		******	7.20		01.70	su	0	WEEKLY	RCONDE
00400 1 0 Effluent Gross	PERMIT REQUIREMENT	******	*****	******	6.5 MINIMUM	*****	9 MAXIMUM	SU		Twice Every Month	GRAB
Solids, total suspended	SAMPLE MEASUREMENT	*****	*****		0	*****	0	male	0	Z/MO	COMPTH
00530 1 0 Effluent Gross	PERMIT REQUIREMENT	*****	*****	******	Req. Mon. MO AVG	*****	Req. Mon. DAILY MX	mg/L		Twice Every Month	COMP24
Oil & grease	SAMPLE MEASUREMENT	*****	•••••	*****	0	******	0	mgic	0	z/mo	GRAB
00556 1 0 Effluent Gross	PERMIT REQUIREMENT	******	*****	*****	Req. Mon. MO AVG	******	Req. Mon. DAILY MX	mg/L		Twice Every Month	GRAB
Polychlorinated biphenyls (PCBs)	SAMPLE MEASUREMENT	******	******	*****	0	*****	0	ugic	0	2/20	COMPUT
39516 1 0 Effluent Gross	PERMIT REQUIREMENT	*****	******	*****	Req. Mon. MO AVG	*****	Req. Mon. DAILY MX	ug/L		Twice Every Month	COMP24
Flow, in conduit or thru treatment plant	SAMPLE MEASUREMENT	0.0955	0.1238	MGD	*****	******	*****		0	CONT	RONDR
50050 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	Mgal/d	*****	*****	*****	*****		Continuous	RCORDR
Volatile Organic Compound (VOC)	SAMPLE MEASUREMENT	******	*****	*****	0	*****	0	4916	0	z/mo	GRAB
51415 1 0 Effluent Gross	PERMIT REQUIREMENT	******	******	*****	Req. Mon. MO AVG	******	Req. Mon. DAILY MX	ug/L		Twice Every Month	GRAB
Volatile fraction organics (EPA 624)	SAMPLE MEASUREMENT	*****	*****	•••••	2.010	*****	2.020	4916	0	z/mo	GAAB
78733 1 0 Effluent Gross	PERMIT REQUIREMENT	******	******	*****	Req. Mon. MO AVG	******	Req. Mon. DAILY MX	ug/L		Twice Every Month	GRAB

NAME/IIILE PRINCIPAL EXECUTIVE OFFICER	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel property gather and	Dia i i la i	TELEPHONE	DATE
MICHAEL T. CARAOLL	evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for galabering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete 1 am aware that there are significant penalities for submitting fails information, including the possibility of fine and improvement for knowing	Michael . Canoll	(413)448-5902	04/22/2010
TYPED OR PRINTED	penances to substituting tasse anonualion, tochaung the positionity of the and imprisonment for knowing violations	SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT	AREA Code NUMBER	MM/DD/YYYY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE 64GT FOR TOXICITY; FLOW TOTAL SEE FOOTNOTE 4; 51415 IS REPORT SEMI-VOLITILES.

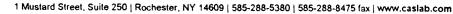
NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

PARAMETER		QUANTITY OR LOADING		Q	UALITY OR CON	CENTRATION		NO. EX	FREQUENCY OF ANALYSIS	SAMPLE TYPE	
		VALUE	VALUE	UNITS	VALUE	VALUE	VALUE	UNITS			
Flow, total	SAMPLE MEASUREMENT	0.1078	0.1238	MGD	*****	*****	*****	******	0	CONT	RCONDN
82220 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	Mgal/d	*****	*****	*****	*****		Continuous	RCORDR

NAME/TITLE PRINCIPAL EXECUTIVE OFFICER	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel property gather and		10	TEL	EPHONE	D,	ATĘ
MICHAELT, CANOLL	evaluate the information submitted Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information the information submitted us, to the best of my knowledge and belief, nuc, accurate, and complete. I am aware that there are significant penalties (or submitting fails information, including the possibility of fine and imposoment for knowing			(413) 44	78-5902	09/22	-/2010
	penances for submitting rate informativit, neurang the positionity of the and imprisonment for knowing violations.	SIGNATURE OF PRINCIPAL EXECUTIVE OF AUTHORIZED AGENT	FICER OR	AREA Code	NUMBER	/ MM/E	ייייאס

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE 64GT FOR TOXICITY; FLOW TOTAL SEE FOOTNOTE 4; 51415 IS REPORT SEMI-VOLITILES.


Attachment E - 64G

	Weekly	Weekly	Oil & Grease	FN	TSS	FN	PCB	FN	VOC	FN	SVOC	FN	Metered	Rainfall	Rainfall
Date	Min - pH	Max - pH	MG/L		MG/L		UG/L						Flow - MGD	Total - In	Peak - In
08/01/10	7.20	7.30											0.0919	0.00	0.00
08/02/10			U4.20	1,G	U1.00	1,C	c	С	2.000	G	0.000	G	0.1238	0.00	0.00
08/03/10													0.1219	0.00	0.00
08/04/10													0.0703	0.00	0.00
08/05/10]]												0.1094	0.00	0.00
08/06/10													0.1121	0.02	0.02
08/07/10													0.0873	0.00	0.00
08/08/10	7.20	7.30											0.1133	0.00	0.00
08/09/10			U4.10	1,G	U1.00	1,C	c	С	2.020	G	0.000	G	0.0919	0.00	0.00
08/10/10													0.1118	0.01	0.01
08/11/10													0.1123	0.00	0.00
08/12/10	1 1												0.0777	0.00	0.00
08/13/10													0.1044	0.00	0. 00
08/14/10													0.1141	0.00	0.00
08/15/10	7.20	7.70											0.0796	0.00	0.00
08/16/10													0.1131	0.15	0.09
08/17/10													0.1109	0.29	0.29
08/18/10									:				0.0795	0.00	0.00
08/19/10	1 1												0.0814	0.00	0.00
08/20/10													0.1031	0.06	0.06
08/21/10													0.0781	0.00	0.00
08/22/10	7.30	7.60											0.1136	0.00	0.00
08/23/10													0.1101	0.30	0.08
08/24/10													0.0853	0.00	0.00
08/25/10													0.1091	0.02	0.02
08/26/10													0.1105	0.00	0.00
08/27/10													0.0766	0.00	0.00
08/28/10													0.0714	0.00	0.00
08/29/10	7.50	7.60											0.0731	0.00	0.00
08/30/10													0.0483	0.00	0.00
08/31/10													0.0747	0.00	0.00

FN 1 - (U) Indicates compound analyzed but not detected

C - Composite sample

G - Grab sample

August 18, 2010

Service Request No: R1004313

Mr. Sean Coyle Veolia Water North America 1000 East Street Pittsfield, MA 01201

Laboratory Results for: GE -Pittsfield NPDES

Dear Mr. Coyle:

Enclosed are the results of the sample(s) submitted to our laboratory on August 11, 2010. For your reference, these analyses have been assigned our service request number **R1004313**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 131. You may also contact me via email at DPatton@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

on Bunker for

Deb Patton Project Manager

Page 1 of 25

COLUMBIA ANALYTICAL SERVICES, INC.

Client: Project: Sample Matrix:	GE-Pittsfield NPDES 8/2010 Water	Service Request No.: Date Received:	R1004313 8/11/10				
	LAB ID	CLIENT ID					
	R1004313-001	64G-3Q2M-2X-GV					
	R1004313-003	64G-3Q2M-2X-GS					
	R1004313-004	TRIP BLANK					

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Two water samples and one Trip Blank were received for analysis at Columbia Analytical Services on 8/11/10. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator between 1°C and 6°C upon receipt at the laboratory.

Volatile Organics

Two preserved VOA samples were archived and only the unpreserved portions were analyzed.

The Laboratory Control Sample was outside of the control limits high for Dichlorodifluoromethane and has been flagged with a "*". There were no hits in the sample for this compound and no data was affected.

The Method Blank contained a hit for Methylene Chloride. The Trip Blank required a "B" flag for this compound since the hit in the sample was within 5 times the level in the blank.

No other analytical or quality control problems were encountered during analysis.

Extractable Organics

Benzidine was outside of the control limits low in the Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD) and the RPD was outside of the limits high. The compound Hexachloroethane was outside limits low for both the LCS and LCSD recoveries. The compound 2-Chloronaphthalene was outside limits low, for the LCSD. These have been flagged with a "*". There were no hits in the sample and no data was affected.

No other analytical or quality control problems were encountered during analysis.

Haven Berle Date K Approved by

Columbia Analytical Services^{**}

REPORT QUALIFIERS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits.
- # Spike was diluted out.
- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% (25% for CLP) difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.

CAS/Rochester Lab ID # for Massachusetts Certification M-NY032

Analyses were conducted in accordance with Massachusetts Department of Environmental Protection certification standards, except as noted in the laboratory case narrative provided. A copy of the current Department issued parameter list is included in this report.

The Commonwealth of Massachusetts

Department of Environmental Protection

Division of Environmental Analysis Senator William X. Wall Experiment Station

certifies

M-NY032

COLUMBIA ANALYTICAL SERVICES 1 MUSTARD ST SUITE 250 ROCHESTER, NY 14609-0000

Laboratory Director: Michael K. Perry

for the analysis of NON POTABLE WATER (CHEMISTRY)

pursuant to 310 CMR 42.00

This certificate supersedes all previous Massachusetts certificates issued to this laboratory. The laboratory is regulated by and shall be responsible for being in compliance with Massachusetts regulations at 310 CMR 42.00.

This certificate is valid only when accompanied by the latest dated Certified Parameter List as issued by the Massachusetts D.E.P. Contact the Division of Environmental Analysis to verify the current certification status of the laboratory.

Certification is no guarantee of the validity of the data. This certification is subject to unannounced laboratory inspections.

CO.

Director, Division of Environmental Analysis

Issued: 01 JUL 2010 Expires: 30 JUN 2011

COMMONWEALTH OF MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION

Certified Parameter List as of:

Date

01 JUL 2010

M-NY032 COLUMBIA ANALYTICAL SERVICES ROCHESTER NY

NON POTABLE	WATER	(CHEMISTRY)

Analytes

Effective 01 JUL 2010

Expiration 30 JUN 2011 Date Methods

June 29, 2010	*= Provisional Certification	Page 1	of 2
POTASSIUM		EPA 200.7	
SODIUM		EPA 200.7	
MAGNESIUM		EPA 200.7	
CALCIUM		EPA 200.7	
HARDNESS (CACO3), TOTAL		SM 2340C	
TOTAL DISSOLVED SOLIDS		SM 2540C	
SPECIFIC CONDUCTIVITY		EPA 120.1	
РН		SM 4500-H-B	
ZINC		EPA 200.8	
ZINC		EPA 200.7	
VANADIUM		ÉPA 200.8	
VANADIUM		EPA 200.7	
THALLIUM		EPA 200.8	
THALLIUM		EPA 200.7	
SILVER		EPA 200.8	
SILVER		EPA 200.7	
SELENIUM		EPA 200.8	
SELENIUM		EPA 200.7	
NICKEL		EPA 200.8	
NICKEL		EPA 200.7	
MOLYBDENUM		EPA 200.8	
MOLYBDENUM		EPA 200.7	
MERCURY		EPA 245.1	
MANGANESE		EPA 200.8	
MANGANESE		EPA 200.7	
LEAD		EPA 200.8	
LEAD		EPA 200.7	
IRON		EPA 200.7	
COPPER		EPA 200.8	
COPPER		EPA 200.7	
COBALT		EPA 200.8	
COBALT		EPA 200.7	
CHROMIUM		EPA 200.8	
CHROMIUM		EPA 200.7	
CADMIUM		EPA 200.8	
CADMIUM		EPA 200.7	
BERYLLIUM		EPA 200.8	
BERYLLIUM		EPA 200.7	
ARSENIC		EPA 200.8	
ARSENIC		EPA 200.7	
ANTIMONY		EPA 200.8	
ANTIMONY		EPA 200.7	
ALUMINUM		EPA 200.7	
	•		

,

COMMONWEALTH OF MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION

Certified Parameter List as of: 01 JUL 2010

Date

.

M-NY032 COLUMBIA ANALYTICAL SERVICES ROCHESTER NY

NON POTABLE WATER (CHEMISTRY)

Effective 01 JUL 2010

Expiration 30 JUN 2011 Date

,

	Part	Dute
Analytes		Methods
ALKALINITY, TOTAL		SM 2320B
CHLORIDE		SM 4500-CL-E
CHLORIDE	· · · · ·	EPA 300.0
FLUORIDE		EPA 300.0
SULFATE		EPA 300.0
AMMONIA-N		EPA 350.1
NITRATE-N		EPA 300.0
NITRATE-N		EPA 353.2
KJELDAHL-N		EPA 351.2
ORTHOPHOSPHATE		EPA 365.1
PHOSPHORUS, TOTAL		EPA 365.1
CHEMICAL OXYGEN DEMAND		EPA 410.4
BIOCHEMICAL OXYGEN DEMAND		SM 52108
TOTAL ORGANIC CARBON		SM 5310C
CYANIDE, TOTAL		EPA 335.4
NON-FILTERABLE RESIDUE		SM 2540D
OIL AND GREASE		EPA 1664
PHENOLICS, TOTAL		EPA 420.4
VOLATILE HALOCARBONS		EPA 601
VOLATILE HALOCARBONS		EPA 624
VOLATILE AROMATICS		EPA 602
VOLATILE AROMATICS		EPA 624
SVOC-ACID EXTRACTABLES		EPA 625
SVOC-BASE/NEUTRAL EXTRACTABLES		EPA 625

Analytical Report

Client:	General Electric Company	Service Request: R1004313
Project:	GE -Pittsfield NPDES	Date Collected: 8/ 9/10 0705
Sample Matrix:	Water	Date Received: 8/11/10
Sample Name:	64G-3Q2M-2X-GV	Units: µg/L
Lab Code:	R1004313-001	Basis: NA

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

					Dilution	Date	Date	Extraction	Analysis
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Lot
1,1,1-Trichloroethane (TCA)	0.37		1.0	0.23	1	NA	8/11/10 19:29)	212081
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.27	1	NA	8/11/10 19:29		212081
1,1,2-Trichloroethane	1.0	U	1.0	0.25	1	NA	8/11/10 19:29)	212081
1,1-Dichloroethane (1,1-DCA)	0.80	J	1.0	0.28	1	NA	8/11/10 19:29)	212081
1,1-Dichloroethene (1,1-DCE)	1.0		1.0	0.23	1	NA	8/11/10 19:29)	212081
1,2-Dichlorobenzene	1.0	U	1.0	0.23	1	NA	8/11/10 19:29)	212081
1,2-Dichloroethane	1.0	U	1.0	0.24	1	NA	8/11/10 19:29)	212081
1,2-Dichloropropane	1.0	U	1.0	0.34	1	NA	8/11/10 19:29)	212081
1,3-Dichlorobenzene	1.0	U	1.0	0.20	1	NA	8/11/10 19:29)	212081
1,4-Dichlorobenzene	1.0	U	1.0	0.20	1	NA	8/11/10 19:29)	212081
2-Chloroethyl Vinyl Ether	10	U	10	0.78	1	NA	8/11/10 19:29)	212081
Acrolein	10	U	10	2.0	1	NA	8/11/10 19:29	1	212081
Acrylonitrile	10	U	10	1.8	1	NA	8/11/10 19:29)	212081
Benzene	1.0	U	1.0	0.22	1	NA	8/11/10 19:29)	212081
Bromodichloromethane	1.0	U	1.0	0.20	1	NA	8/11/10 19:29		212081
Bromoform	1.0	U	1.0	0.17	1	NA	8/11/10 19:29	· · · · · · · · · · · · · · · · · · ·	212081
Bromomethane	1.0	U	1.0	0.37	1	NA	8/11/10 19:29		212081
Carbon Tetrachloride	1.0	U	1.0	0.16	1	NA	8/11/10 19:29		212081
Chlorobenzene	1.0	U	1.0	0.19	1	NA	8/11/10 19:29		212081
Chloroethane	0.85	J	1.0	0.35	1	NA	8/11/10 19:29		212081
Chloroform	1.0	U	1.0	0.20	1	NA	8/11/10 19:29		212081
Chloromethane	1.0	U	1.0	0.53	1	NA	8/11/10 19:29		212081
Chlorodibromomethane	1.0	U	1.0	0.20	1	NA	8/11/10 19:29		212081
Dichlorodifluoromethane (CFC 12)	1.0	U	1.0	0.29	1	NA	8/11/10 19:29		212081
Methylene Chloride	1.0	U	1.0	0.22	1	NA	8/11/10 19:29		212081
Ethylbenzene	1.0		1.0	0.18	1	NA	8/11/10 19:29		212081
Tetrachloroethene (PCE)	1.0	U	1.0	0.25	1	NA	8/11/10 19:29		212081
Toluene	1.0	U	1.0	0.25	1	NA	8/11/10 19:29		212081
Trichloroethene (TCE)	1.0	U	1.0	0.22	1	NA	8/11/10 19:29		212081
Trichlorofluoromethane (CFC 11)	1.0	U	1.0	0.87	1	NA	8/11/10 19:29		212081
Vinyl Chloride	1.0	U	1.0	0.33	1	NA	8/11/10 19:29		212081
cis-1,3-Dichloropropene	1.0	U	1.0	0.20	1	NA	8/11/10 19:29		212081
trans-1,2-Dichloroethene	1.0	U	1.0	0.20	I	NA	8/11/10 19:29		212081
trans-1,3-Dichloropropene	1.0	U	1.0	0.23	1	NA	8/11/10 19:29	······································	212081
· • •									

Analytical Report

Client:	General Electric Company
Project:	GE -Pittsfield NPDES
Sample Matrix:	Water
Sample Name:	64G-3Q2M-2X-GV
Lab Code:	R1004313-001

 Service Request:
 R1004313

 Date Collected:
 8/ 9/10 0705

 Date Received:
 8/11/10

Units: Percent Basis: NA

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	95	79-123	8/11/10 19:29	
4-Bromofluorobenzene	107	79-119	8/11/10 19:29	
Toluene-d8	111	83-120	8/11/10 19:29	

Analytical Report

Client: Project: Sample Matrix:	General Electric Comp GE -Pittsfield NPDES : Water	any		Service Request: Date Collected: Date Received:	8/9/10
				Date Analyzed:	8/11/10 1929
		Tentatively Iden	tified Compounds (TIC)		
	Volatile Organic Compou	inds by GC/MS w	ith 3 Day Holding Time for A	Acrolein, Unpreserved	
Sample Name:	64G-3Q2M-2X-GV			Units:	μg/L
Lab Code:	R1004313-001			Basis:	NA
Analytical Met	hod: 624				
CAS #	Analyte Name	RT	Result Q		
<u></u>	No Tentatively Id	entified Compounds	Detected.	 	

Comments:

Analytical Report

Client:	General Electric Company
Project:	GE -Pittsfield NPDES
Sample Matrix:	Water

Service Request: R1004313 Date Collected: 8/ 9/10 0705 Date Received: 8/11/10

> Units: µg/L Basis: NA

 Sample Name:
 64G-3Q2M-2X-GS

 Lab Code:
 R1004313-003

Semivolatile Organic Compounds by GC/MS

Analytical Method:625Prep Method:EPA 3510C

		~			Dilution	Date	Date	Extraction	•
Analyte Name	Result	_	MRL	MDL	Factor	Extracted	Analyzed	Lot	Lot
1,2,4-Trichlorobenzene	4.7		4.7	0.73	1	8/13/10	8/16/10 16:55		212872
1,2-Diphenylhydrazine	4.7		4.7	0.71	1	8/13/10	8/16/10 16:55		212872
2,4,6-Trichlorophenol	4.7		4.7	1.1	1	8/13/10	8/16/10 16:55		212872
2,4-Dichlorophenol	4.7		4.7	0.91	1	8/13/10	8/16/10 16:55		212872
2,4-Dimethylphenol	4.7		4.7	1.6	1	8/13/10	8/16/10 16:55		212872
2,4-Dinitrophenol	47	U	47	34	1	8/13/10	8/16/10 16:55		212872
2,4-Dinitrotoluene	4.7	-	4.7	1.2	1	8/13/10	8/16/10 16:55		212872
2,6-Dinitrotoluene			4.7	1.3	1	8/13/10	8/16/10 16:55		212872
2-Chloronaphthalene	4.7	U	4.7	0.97	1	8/13/10	8/16/10 16:55	117303	212872
2-Chlorophenol	4.7		4.7	1.3	1	8/13/10	8/16/10 16:55		212872
2-Nitrophenol	4.7		4.7	1.2	1	8/13/10	8/16/10 16:55		212872
3,3'-Dichlorobenzidine	4.7	U	4.7	1.5	1	8/13/10	8/16/10 16:55	117303	212872
4,6-Dinitro-o-cresol	47	U	47	22	1	8/13/10	8/16/10 16:55	117303	212872
4-Bromophenyl Phenyl Ether	4.7	U	4.7	0.84	1	8/13/10	8/16/10 16:55	117303	212872
4-Chloro-m-cresol	4.7	U	4.7	0.76	1	8/13/10	8/16/10 16:55	117303	212872
4-Chlorophenyl Phenyl Ether	4.7	U	4.7	0.73	1	8/13/10	8/16/10 16:55	117303	212872
4-Nitrophenol	47	U	47	9.4	1	8/13/10	8/16/10 16:55	117303	212872
Acenaphthene	4.7	U	4.7	1.2	1	8/13/10	8/16/10 16:55	117303	212872
Acenaphthylene	4.7	U	4.7	0.97	1	8/13/10	8/16/10 16:55	117303	212872
Anthracene	4.7	U	4.7	0.60	1	8/13/10	8/16/10 16:55	117303	212872
Benz(a)anthracene	4.7	U	4.7	0.73	1	8/13/10	8/16/10 16:55	117303	212872
Benzidine	94	U	94	53	1	8/13/10	8/16/10 16:55	117303	212872
Benzo(a)pyrene	4.7	U	4.7	0.50	1	8/13/10	8/16/10 16:55	117303	212872
3,4-Benzofluoranthene	4.7	U	4.7	0.75	1	8/13/10	8/16/10 16:55	117303	212872
Benzo(g,h,i)perylene	4.7	U	4,7	0.79	1	8/13/10	8/16/10 16:55	117303	212872
Benzo(k)fluoranthene	4.7	U	4.7	1.1	1	8/13/10	8/16/10 16:55	117303	212872
Bis(1-chloroisopropyl) Ether	4.7	U	4.7	1.4	1	8/13/10	8/16/10 16:55	117303	212872
Bis(2-chloroethoxy)methane	4.7	U	4.7	1.3	1	8/13/10	8/16/10 16:55	117303	212872
Bis(2-chloroethyl) Ether	4.7		4.7	1.0	1		8/16/10 16:55		212872
Bis(2-ethylhexyl) Phthalate	4.7	U	4.7	1.2	1	8/13/10	8/16/10 16:55	117303	212872
Butyl Benzyl Phthalate	4.7	U	4.7	0.87	1	8/13/10	8/16/10 16:55	117303	212872
Chrysene	4.7		4.7	1.2	1		8/16/10 16:55		212872
Di-n-butyl Phthalate	4.7		4.7	0.91	1		8/16/10 16:55		212872
Di-n-octyl Phthalate	4.7	U	4.7	1.1	1	8/13/10	8/16/10 16:55	117303	212872
Dibenz(a,h)anthracene	4.7		4.7	0.82	1		8/16/10 16:55		212872
Diethyl Phthalate	4.7		4.7	0.89	1		8/16/10 16:55		212872
······································		-			-				

Analytical Report

Client:General Electric CompanyProject:GE -Pittsfield NPDESSample Matrix:WaterSample Name:64G-3Q2M-2X-GSLab Code:R1004313-003

Service Request: R1004313 Date Collected: 8/ 9/10 0705 Date Received: 8/11/10

> Units: µg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 625 Prep Method: EPA 3510C

				Dilution	Date	Date	Extraction	. •
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Lot
Dimethyl Phthalate	4.7 U	4.7	0.65	1	8/13/10	8/16/10 16:55	5 117303	212872
Fluoranthene	4.7 U	4.7	0.98	1	8/13/10	8/16/10 16:55	5 117303	212872
Fluorene	4.7 U	4.7	1.1	1	8/13/10	8/16/10 16:55	5 117303	212872
Hexachlorobenzene	4.7 U	4.7	1.1	1	8/13/10	8/16/10 16:55	117303	212872
Hexachlorobutadiene	4.7 U	4.7	1.3	1	8/13/10	8/16/10 16:55	117303	212872
Hexachlorocyclopentadiene	4.7 U	4.7	2.0	1	8/13/10	8/16/10 16:55	117303	212872
Hexachloroethane	4,7 U	4.7	1.3	1	8/13/10	8/16/10 16:55	117303	212872
Indeno(1,2,3-cd)pyrene	4.7 U	4.7	0.77	1	8/13/10	8/16/10 16:55	117303	212872
Isophorone	4.7 U	4.7	1.4	1	8/13/10	8/16/10 16:55	117303	212872
N-Nitrosodi-n-propylamine	4.7 U	4.7	1.6	1	8/13/10	8/16/10 16:55	117303	212872
N-Nitrosodimethylamine	4.7 U	4.7	0.88	1	8/13/10	8/16/10 16:55	117303	212872
N-Nitrosodiphenylamine	4.7 U	4.7	1.2	1	8/13/10	8/16/10 16:55	117303	212872
Naphthalene	4.7 U	4.7	1.1	1	8/13/10	8/16/10 16:55	117303	212872
Nitrobenzene	4.7 U	4.7	1.3	1	8/13/10	8/16/10 16:55	117303	212872
Pentachlorophenol (PCP)	47 U	47	23	1	8/13/10	8/16/10 16:55	117303	212872
Phenanthrene	4.7 U	4.7	0.85	1	8/13/10	8/16/10 16:55	117303	212872
Phenol	4.7 U	4.7	0.40	1	8/13/10	8/16/10 16:55	117303	212872
Pyrene	4.7 U	4.7	0.85	1	8/13/10	8/16/10 16:55	117303	212872

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	85	28-157	8/16/10 16:55	
2-Fluorobiphenyl	68	37-118	8/16/10 16:55	
2-Fluorophenol	39	12-84	8/16/10 16:55	
Nitrobenzene-d5	66	38-120	8/16/10 16:55	
Phenol-d6	26	10-74	8/16/10 16:55	
p-Terphenyl-d14	88	40-133	8/16/10 16:55	

Analytical Report

Client:	General Electric Company	Service Request:	
Project:	GE -Pittsfield NPDES	Date Collected:	
Sample Matrix:	Water	Date Received:	
Sample Name:	TRIP BLANK	Units:	
Lab Code:	R1004313-004	Basis:	

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

					Dilution	Date		Extraction Analysis
Analyte Name	Result		MRL	MDL	Factor	Extracted	Analyzed	Lot Lot
1,1,1-Trichloroethane (TCA)	1.0		1.0	0.23	1	NA	8/11/10 18:52	
1,1,2,2-Tetrachloroethane	1.0		1.0	0.27	1	NA	8/11/10 18:52	
1,1,2-Trichloroethane	1.0	U	1.0	0.25	1	NA	8/11/10 18:52	212081
I, I-Dichloroethane (1, I-DCA)	1.0	U	1.0	0.28	1	NA	8/11/10 18:52	212081
I, 1-Dichloroethene (1, 1-DCE)	1.0	U	1.0	0.23	1	NA	8/11/10 18:52	212081
1,2-Dichlorobenzene	1.0	U	1.0	0.23	1	NA	8/11/10 18:52	212081
1,2-Dichloroethane	1.0	U	1.0	0.24	1	NA	8/11/10 18:52	212081
1,2-Dichloropropane	1.0	U	1.0	0.34	1	NA	8/11/10 18:52	212081
1,3-Dichlorobenzene	1.0	U	1.0	0.20	1	NA	8/11/10 18:52	212081
1,4-Dichlorobenzene	1.0	U	1.0	0.20	1	NA	8/11/10 18:52	212081
2-Chloroethyl Vinyl Ether	10	U	10	0.78	1	NA	8/11/10 18:52	212081
Acrolein	10	U	10	2.0	1	NA	8/11/10 18:52	212081
Acrylonitrile	10	U	10	1.8	1	NA	8/11/10 18:52	212081
Benzene	1.0	U	1.0	0.22	1	NA	8/11/10 18:52	212081
Bromodichloromethane	1.0	U	1.0	0.20	1	NA	8/11/10 18:52	212081
Bromoform	1.0	U	1.0	0.17	1	NA	8/11/10 18:52	212081
Bromomethane	1.0	U	1.0	0.37	1	NA	8/11/10 18:52	212081
Carbon Tetrachloride	1.0	U	1.0	0.16	1	NA	8/11/10 18:52	212081
Chlorobenzene	1.0	U	1.0	0.19	1	NA	8/11/10 18:52	212081
Chloroethane	1.0	U	1.0	0.35	1	NA	8/11/10 18:52	212081
Chloroform	1.0	U	1.0	0.20	1	NA	8/11/10 18:52	212081
Chloromethane	1.0	U	1.0	0.53	1	NA	8/11/10 18:52	212081
Chlorodibromomethane	1.0	U	1.0	0.20	1	NA	8/11/10 18:52	212081
Dichlorodifluoromethane (CFC 12)	1.0	U	1.0	0.29	1	NA	8/11/10 18:52	212081
Methylene Chloride	0.50	BJ	1.0	0.22	1	NA	8/11/10 18:52	212081
Ethylbenzene	1.0	U	1.0	0.18	1	NA	8/11/10 18:52	212081
Tetrachloroethene (PCE)	1.0	U	1.0	0.25	1	NA	8/11/10 18:52	212081
Toluene	1.0	U	1.0	0.25	1	NA	8/11/10 18:52	212081
Trichloroethene (TCE)	1.0	U	1.0	0.22	1	NA	8/11/10 18:52	212081
Trichlorofluoromethane (CFC 11)	1.0	U	1.0	0.87	1	NA	8/11/10 18:52	212081
Vinyl Chloride	1.0	U	1.0	0.33	1	NA	8/11/10 18:52	212081
cis-1,3-Dichloropropene	1.0	U	1.0	0.20	1	NA	8/11/10 18:52	212081
trans-1,2-Dichloroethene	1.0	U	1.0	0.20	1	NA	8/11/10 18:52	212081
trans-1,3-Dichloropropene	1.0	U	1.0	0.23	1	NA	8/11/10 18:52	212081

Analytical Report

Client:	General Electric Company	Service Request: R1004313	
Project:	GE -Pittsfield NPDES	Date Collected: 8/ 9/10 0730	
Sample Matrix:	Water	Date Received: 8/11/10	
Sample Name:	TRIP BLANK	Units: Percent	
Lab Code:	R1004313-004	Basis: NA	

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

		Control	Date	
Surrogate Name	%Rec	Limits	Analyzed	Q
1,2-Dichloroethane-d4	98	79-123	8/11/10 18:52	
4-Bromofluorobenzene	107	79-119	8/11/10 18:52	
Toluene-d8	116	83-120	8/11/10 18:52	

Analytical Report

Client:	General Electric Comp	any		Service Request:	R1004313
Project:	GE -Pittsfield NPDES			Date Collected:	8/9/10
Sample Matrix	k: Water			Date Received:	8/11/10
				Date Analyzed:	8/11/10 1852
		Tentatively Ide	ntified Compounds (TIC)		
	Volatile Organic Compou	inds by GC/MS v	with 3 Day Holding Time for A	crolein, Unpreserved	
Sample Name:	TRIP BLANK			Units:	μg/L
Lab Code:	R1004313-004			Basis:	NA
Analytical Met	thod: 624				
CAS #	Analyte Name	RT	Result Q		
	No Tentatively Id	entified Compounds	s Detected.		

Comments:

Analytical Report

Client:	General Electric Company	Service Request: R1004313
Project:	GE -Pittsfield NPDES	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name: Lab Code:	Method Blank RQ1006586-03	Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

					Dilution	Date		Extraction Analysis
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot Lot
1,1,1-Trichloroethane (TCA)	1.0		1.0	0.23	1	NA	8/11/10 12:26	
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.27	1	NA	8/11/10 12:26	
1,1,2-Trichloroethane	1.0	U	1.0	0.25	1	NA	8/11/10 12:26	212081
1,1-Dichloroethane (1,1-DCA)	1.0	U	1.0	0.28	1	NA	8/11/10 12:26	212081
1,1-Dichloroethene (1,1-DCE)	1.0	U	1.0	0.23	1	NA	8/11/10 12:26	
1,2-Dichlorobenzene	1.0	U	1.0	0.23	1	NA	8/11/10 12:26	212081
1,2-Dichloroethane	1,0	U	1.0	0.24	1	NA	8/11/10 12:26	212081
1,2-Dichloropropane	1.0	U	1.0	0.34	1	NA	8/11/10 12:26	212081
1,3-Dichlorobenzene	1.0	U	1.0	0.20	1	NA	8/11/10 12:26	212081
1,4-Dichlorobenzene	1.0	U	1.0	0.20	1	NA	8/11/10 12:26	212081
2-Chloroethyl Vinyl Ether	10	U	10	0.78	1	NA	8/11/10 12:26	212081
Acrolein	10	U	10	2.0	1	NA	8/11/10 12;26	212081
Acrylonitrile	10	U	10	1.8	1	NA	8/11/10 12:26	212081
Benzene	1.0	U	1.0	0.22	1	NA	8/11/10 12:26	212081
Bromodichloromethane	1.0	U	1.0	0.20	1	NA	8/11/10 12:26	212081
Bromoform	1.0	U	1.0	0.17	1	NA	8/11/10 12:26	212081
Bromomethane	1.0	U	1.0	0.37	1	NA	8/11/10 12:26	212081
Carbon Tetrachloride	1.0	U	1.0	0.16	1	NA	8/11/10 12:26	212081
Chlorobenzene	1.0	U	1.0	0.19	1	NA	8/11/10 12:26	212081
Chloroethane	1.0		1.0	0.35	1		8/11/10 12:26	212081
Chloroform	1.0	U	1.0	0.20	1	NA	8/11/10 12:26	212081
Chloromethane	1.0	U	1.0	0.53	1		8/11/10 12:26	212081
Chlorodibromomethane	1.0		1.0	0.20	1		8/11/10 12:26	212081
Dichlorodifluoromethane (CFC 12)	1.0	U	1.0	0.29	1	NA	8/11/10 12:26	212081
Methylene Chloride	0.25	J	1.0	0.22	1	NA	8/11/10 12:26	212081
Ethylbenzene	1.0		1.0	0.18	1		8/11/10 12:26	212081
Tetrachloroethene (PCE)	1.0	U	1.0	0.25	1	NA	8/11/10 12:26	212081
Toluene	1.0	U	1.0	0.25	1	NA	8/11/10 12:26	212081
Trichloroethene (TCE)	1.0	U	1.0	0.22	1	NA	8/11/10 12:26	212081
Trichlorofluoromethane (CFC 11)	1.0	U	1.0	0.87	1	NA	8/11/10 12:26	212081
Vinyl Chloride	1.0	U	1.0	0.33	1	NA	8/11/10 12:26	212081
cis-1,3-Dichloropropene	1.0		1.0	0.20	1	NA	8/11/10 12:26	212081
trans-1,2-Dichloroethene	1.0	U	1.0	0.20	1	NA	8/11/10 12:26	212081
trans-1,3-Dichloropropene	1.0	U	1.0	0.23	1	NA	8/11/10 12:26	212081

Analytical Report

Client:	General Electric Company	Service Request:	NA
Project:	GE -Pittsfield NPDES	Date Collected:	
Sample Matrix:	Water	Date Received:	
Sample Name:	Method Blank	Units:	Percent
Lab Code:	RQ1006586-03	Basis:	NA

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

		Control	Date	
Surrogate Name	%Rec	Limits	Analyzed	Q
1,2-Dichloroethane-d4	94	79-123	8/11/10 12:26	
4-Bromofluorobenzene	104	79-119	8/11/10 12:26	
Toluene-d8	112	83-120	8/11/10 12:26	

Analytical Report

Client: Project: Sample Matrix:	General Electric Comp GE -Pittsfield NPDES Water	any		Service Request: Date Collected: Date Received: Date Analyzed:	NA NA		
Date Analyzed: 8/11/10 1226 Tentatively Identified Compounds (TIC) Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved							
Sample Name: Lab Code:	Method Blank RQ1006586-03			Units: Basis:			
Analytical Meth	od: 624						
CAS#	Analyte Name	RT	Result Q				
	No Tentatively Id	entified Compounds	Detected.				

Comments:

Analytical Report

Client:General Electric CompanyProject:GE -Pittsfield NPDESSample Matrix:Water

Service Request: R1004313 Date Collected: NA Date Received: NA

Sample Name:Method BlankLab Code:RQ1006681-01

Semivolatile Organic Compounds by GC/MS

Analytical Method: 625 Prep Method: EPA 3510C

Analyte Name	Result	0	MRL	MDL	Dilution Factor	Date Extracted		Extraction Lot	Analysis Lot
1,2,4-Trichlorobenzene	5.0	-	5.0	0.73	1	8/13/10	8/16/10 11:28		212872
1,2-Diphenylhydrazine	5.0		5.0	0.71	1	8/13/10	8/16/10 11:28		212872
2,4,6-Trichlorophenol	5.0		5.0	1.1	1	8/13/10	8/16/10 11:28		212872
2,4-Dichlorophenol	5.0	U	5.0	0.91	1	8/13/10	8/16/10 11:28	117303	212872
2,4-Dimethylphenol	5.0	U	5.0	1.6	1	8/13/10	8/16/10 11:28	117303	212872
2,4-Dinitrophenol	50	U	50	34	1	8/13/10	8/16/10 11:28	117303	212872
2,4-Dinitrotoluene	5.0		5.0	1.2	1	8/13/10	8/16/10 11:28		212872
2,6-Dinitrotoluene	5.0		5.0	1.3	1	8/13/10	8/16/10 11:28		212872
2-Chloronaphthalene	5.0	U	5.0	0.97	1	8/13/10	8/16/10 11:28	117303	212872
2-Chlorophenol	5.0		5.0	1.3	1	8/13/10	8/16/10 11:28		212872
2-Nitrophenol	5.0		5.0	1.2	1	8/13/10	8/16/10 11:28		212872
3,3'-Dichlorobenzidine	5.0	U	5.0	1.5	1	8/13/10	8/16/10 11:28	117303	212872
4,6-Dinitro-o-cresol	50	U	50	22	1	8/13/10	8/16/10 11:28	117303	212872
4-Bromophenyl Phenyl Ether	5.0		5.0	0.84	1	8/13/10	8/16/10 11:28		212872
4-Chloro-m-cresol	5.0	U	5.0	0.76	1	8/13/10	8/16/10 11:28	117303	212872
4-Chlorophenyl Phenyl Ether	5.0		5.0	0.73	1	8/13/10	8/16/10 11:28		212872
4-Nitrophenol	50		50	9.4	1	8/13/10	8/16/10 11:28	117303	212872
Acenaphthene	5.0	U	5.0	1.2	1	8/13/10	8/16/10 11:28	117303	212872
Acenaphthylene	5.0		5.0	0.97	1	8/13/10	8/16/10 11:28		212872
Anthracene	5.0		5.0	0.60	1	8/13/10	8/16/10 11:28	117303	212872
Benz(a)anthracene	5.0	U	5.0	0.73	1	8/13/10	8/16/10 11:28	117303	212872
Benzidine	100		100	53	1	8/13/10	8/16/10 11:28		212872
Benzo(a)pyrene	5.0		5.0	0.50	1	8/13/10	8/16/10 11:28		212872
3,4-Benzofluoranthene	5.0		5.0	0.75	1	8/13/10	8/16/10 11:28	117303	212872
Benzo(g,h,i)perylene	5.0		5.0	0.79	1		8/16/10 11:28		212872
Benzo(k)fluoranthene	5.0		5.0	1.1	1		8/16/10 11:28		212872
Bis(1-chloroisopropyl) Ether	5.0	U	5.0	1.4	1	8/13/10	8/16/10 11:28	117303	212872
Bis(2-chloroethoxy)methane	5.0		5.0	1.3	1		8/16/10 11:28		212872
Bis(2-chloroethyl) Ether	5.0		5.0	1.0	1		8/16/10 11:28		212872
Bis(2-ethylhexyl) Phthalate	5.0	U	5.0	1.2	1	8/13/10	8/16/10 11:28	117303	212872
Butyl Benzyl Phthalate	5.0		5.0	0.87	1		8/16/10 11:28		212872
Chrysene	5.0		5.0	1.2	1		8/16/10 11:28		212872
Di-n-butyl Phthalate	5.0	U	5.0	0.91	1	8/13/10	8/16/10 11:28	117303	212872
Di-n-octyl Phthalate	5.0		5.0	1.1	1		8/16/10 11:28		212872
Dibenz(a,h)anthracene	5.0		5.0	0.82	1		8/16/10 11:28		212872
Diethyl Phthalate	5.0	U	5.0	0.89	1	8/13/10	8/16/10 11:28	117303	212872

Analytical Report

Client:	General Electric Company
Project:	GE -Pittsfield NPDES
Sample Matrix:	Water
Sample Name:	Method Blank
Lab Code:	RQ1006681-01

Service Request: R1004313 Date Collected: NA Date Received: NA

> Units: µg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 625 Prep Method: EPA 3510C

Analyte Name	Result	Q M	IRL	MDL	Dilution Factor	Date Extracted		Extraction Lot	Analysis Lot
Dimethyl Phthalate	5.0	U :	5.0	0.65	1	8/13/10	8/16/10 11:28	117303	212872
Fluoranthene	5.0	U :	5,0	0.98	1	8/13/10	8/16/10 11:28	117303	212872
Fluorene	5.0	U :	5.0	1.1	1	8/13/10	8/16/10 11:28	117303	212872
Hexachlorobenzene	5.0	U Ś	5.0	1.1	1	8/13/10	8/16/10 11:28	117303	212872
Hexachlorobutadiene	5.0	U f	5.0	1.3	1	8/13/10	8/16/10 11:28	117303	212872
Hexachlorocyclopentadiene	5.0	U s	5.0	2.0	1	8/13/10	8/16/10 11:28	117303	212872
Hexachloroethane	5.0	U S	5.0	1.3	1	8/13/10	8/16/10 11:28	117303	212872
Indeno(1,2,3-cd)pyrene	5.0	U s	5.0	0.77	1	8/13/10	8/16/10 11:28	117303	212872
Isophorone	5.0	U s	5.0	1.4	1	8/13/10	8/16/10 11:28	117303	212872
N-Nitrosodi-n-propylamine	5.0	U S	5.0	1.6	1	8/13/10	8/16/10 11:28	117303	212872
N-Nitrosodimethylamine	5.0	U s	5.0	0.88	1	8/13/10	8/16/10 11:28	117303	212872
N-Nitrosodiphenylamine	5.0	U s	5.0	1.2	1	8/13/10	8/16/10 11:28	117303	212872
Naphthalene	5.0	U 5	5.0	1.1	1	8/13/10	8/16/10 11:28	117303	212872
Nitrobenzene	5.0	U 5	5.0	1.3	1	8/13/10	8/16/10 11:28	117303	212872
Pentachlorophenol (PCP)	50	U :	50	23	1	8/13/10	8/16/10 11:28	117303	212872
Phenanthrene	5.0	U 5	5.0	0.85	1	8/13/10	8/16/10 11:28	117303	212872
Phenol	5.0	U 5	5.0	0.40	1	8/13/10	8/16/10 11:28	117303	212872
Pyrene	5.0	U 5	5.0	0.85	1	8/13/10	8/16/10 11:28	117303	212872

Surrogate Name	%Rec	Control Limits	Date Analyzed	0
2,4,6-Tribromophenol	73	28-157	8/16/10 11:28	×
2-Fluorobiphenyl	64	37-118	8/16/10 11:28	
2-Fluorophenol	41	12-84	8/16/10 11:28	
Nitrobenzene-d5	67	38-120	8/16/10 11:28	
Phenol-d6	28	10-74	8/16/10 11:28	
p-Terphenyl-d14	92	40-133	8/16/10 11:28	

QA/QC Report

Client:General Electric CompanyProject:GE -Pittsfield NPDESSample Matrix:Water

Service Request: R1004313 Date Analyzed: 8/11/10

Lab Control Sample Summary Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Analytical Method: 624

Units: µg/L Basis: NA

Analysis Lot: 212081

		Control San Q1006586-0		% Rec
Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
1,1,1-Trichloroethane (TCA)	19.0	20.0	95	52 - 162
1,1,2,2-Tetrachloroethane	20.4	20.0	102	46 - 157
1,1,2-Trichloroethane	20.5	20.0	103	52 - 150
1,1-Dichloroethane (1,1-DCA)	24.3	20.0	121	59 - 155
1,1-Dichloroethene (1,1-DCE)	22.1	20.0	110	0 - 234
1,2-Dichlorobenzene	17.9	20.0	90	18 - 190
1,2-Dichloroethane	18.8	20.0	94	49 - 155
1,2-Dichloropropane	23.6	20.0	118	0 - 210
1,3-Dichlorobenzene	18.8	20.0	94	59 - 156
1,4-Dichlorobenzene	19.0	20.0	95	18 - 190
2-Chloroethyl Vinyl Ether	20,4	20.0	102	0 - 305
Acrolein	81.3	100	81	10 - 174
Acrylonitrile	124	100	124	61 - 141
Benzene	21. 7	20.0	108	37 - 151
Bromodichloromethane	18.4	20.0	92	35 - 155
Bromoform	15.9	20.0	79	45 - 169
Bromomethane	28.6	20.0	143	0 - 242
Carbon Tetrachloride	17.4	20.0	87	70 - 140
Chlorobenzene	19.9	20.0	100	37 - 160
Chloroethane	28.6	20.0	143	14 - 230
Chloroform	20.7	20.0	104	51 - 138
Chloromethane	31.4	20.0	157	0 - 273
Chlorodibromomethane	16.9	20.0	85	53 - 149
Dichlorodifluoromethane (CFC 12)	31.8	20.0	159 *	47 - 148
Methylene Chloride	22.3	20.0	112	0 - 221
Ethylbenzene	19.3	20.0	97	37 - 162
Tetrachloroethene (PCE)	19.2	20.0	96	64 - 148
Toluene	21.2	20.0	106	47 - 150
Trichloroethene (TCE)	20.9	20.0	105	71 - 157
Trichlorofluoromethane (CFC 11)	20.7	20.0	104	17 - 181
Vinyl Chloride	27.9	20.0	139	0 - 251
cis-1,3-Dichloropropene	19. 7	20.0	98	0 - 227

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:General Electric CompanyProject:GE -Pittsfield NPDESSample Matrix:Water

Lab Control Sample Summary Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Analytical Method: 624

Units: µg/L

Service Request: R1004313

Date Analyzed: 8/11/10

Basis: NA

Analysis Lot: 212081

		Control Sa Q1006586-(•		
Analyte Name	Result	Spike Amount	% Rec	% Rec Limits	
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	22.2 18.2	20.0 20.0	111 91	54 - 156 17 - 183	

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:General Electric CompanyProject:GE -Pittsfield NPDESSample Matrix:Water

Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS

Analytical Method:625Prep Method:EPA 3510C

Service Request: R1004313 Date Analyzed: 8/16/10

> Units: µg/L Basis: NA

Extraction Lot: 117303

		Control Sa Q1006681-0			e Lab Contr Q1006681-0	% Rec		RPD	
Analyte Name	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	[%] Rec Limits	RPD	Limit
1,2,4-Trichlorobenzene	44.7	100	45	42.7	100	43	29 - 85	5	30
1,2-Diphenylhydrazine	80.9	100	81	84.9	100	85	64 - 114	5	30
2,4,6-Trichlorophenol	83.8	100	84	87.4	100	87	37 - 144	4	30
2,4-Dichlorophenol	83,4	100	83	8 7.7	100	88	39 - 135	5	30
2,4-Dimethylphenol	53,2	100	53	58.4	100	58	32 - 119	9	30
2,4-Dinitrophenol	108	100	108	120	100	120	0 - 191	10	30
2,4-Dinitrotoluene	93.0	100	93	99,3	100	99	39 - 139	7	30
2,6-Dinitrotoluene	93,5	100	93	98.8	100	99	50 - 158	6	30
2-Chloronaphthalene	60.9	100	61	58.0	100	58 *	60 - 118	5	30
2-Chlorophenol	71.6	100	72	75,5	100	76	23 - 134	5	30
2-Nitrophenol	76.5	100	76	85,2	100	85	29 - 182	11	30
3,3'-Dichlorobenzidinc	76.3	100	76	77,3	100	77	0 - 262	1	30
4,6-Dinitro-o-cresol	102	100	102	114	100	114	0 - 181	11	30
4-Bromophenyl Phenyl Ether	87.1	100	87	91.4	100	91	53 - 127	5	30
4-Chloro-m-cresol	93.1	100	93	96.4	100	96	22 - 147	3	30
4-Chlorophenyl Phenyl Ether	80.8	100	81	81.5	100	81	25 - 158	1	30
4-Nitrophenol	46.3	100	46	52.6	100	53	0 - 132	13	30
Acenaphthene	69.9	100	70	69.1	100	69	47 - 145	1	30
Acenaphthylene	73.7	100	74	73.2	100	73	33 - 145	1	30
Anthracene	82.3	100	82	86.8	100	87	27 - 133	5	30
Benz(a)anthracene	92.2	100	92	95.4	100	95	33 - 143	3	30
Benzidine	4.97	99.5	5 *	2.04	99.5	2 *	10 - 78	84 *	30
Benzo(a)pyrene	89.7	100	90	95.1	100	95	17 - 163	6	30
3,4-Benzofluoranthene	95.3	100	95	100	100	100	24 - 159	5	30
Benzo(g,h,i)perylene	95.0	100	95	98.7	100	99	0 - 219	4	30
Benzo(k)fluoranthene	94.3	100	94	96.0	100	96	11 - 162	2	30
Bis(1-chloroisopropyl) Ether	62.5	100	62	62.9	100	63	36 - 166	1	30
Bis(2-chloroethoxy)methane	97.2	100	97	101	100	101	33 - 184	4	30
Bis(2-chloroethyl) Ether	69.0	100	69	72.3	100	72	12 - 158	5	30
Bis(2-ethylhexyl) Phthalate	107	100	107	111	100	111	8 - 158	4	30
Butyl Benzyl Phthalate	96.2	100	96	99.7	100	100	0 - 152	4	30
Chrysene	90.0	100	90	93.0	100	93	17 - 168	3	30
-									

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:General Electric CompanyProject:GE -Pittsfield NPDESSample Matrix:Water

Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS

Analytical Method:625Prep Method:EPA 3510C

Units: µg/L Basis: NA

Service Request: R1004313

Date Analyzed: 8/16/10

Extraction Lot: 117303

		Control Sa Q1006681-(Spike	•		e Lab Contr Q1006681-(Spike		% Rec		RPD
Analyte Name	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Di-n-butyl Phthalate	95.5	100	95	100	100	100	1 - 118	5	30
Di-n-octyl Phthalate	99.5	100	99	104	100	104	4 - 146	4	30
Dibenz(a,h)anthracene	95.4	100	95	101	100	101	0 - 227	5	30
Diethyl Phthalate	90.5	100	90	94,6	100	95	0 - 114	4	30
Dimethyl Phthalate	88.9	100	89	91.8	100	92	0 - 112	3	30
Fluoranthene	87.3	100	87	90,8	100	91	26 - 137	4	30
Fluorene	80.2	100	80	81.6	100	82	59 - 121	2	30
Hexachlorobenzene	86.8	100	87	90.3	100	90	0 - 152	4	30
Hexachlorobutadiene	40.4	100	40	38.6	100	39	24 - 116	5	30
Hexachlorocyclopentadiene	34.3	100	34	35.2	100	35	10 - 79	2	30
Hexachloroethane	38.7	100	39 *	36.6	100	37 *	40 - 113	5	30
Indeno(1,2,3-cd)pyrene	95.3	100	95	100	100	100	0 - 171	5	30
Isophorone	79.7	100	80	83.5	100	83	21 - 196	5	30
N-Nitrosodi-n-propylamine	72.1	100	72	74. 7	100	75	0 - 230	4	30
N-Nitrosodimethylamine	42.3	100	42	46.3	100	46	34 - 130	9	30
N-Nitrosodiphenylamine	86.1	100	86	91.2	100	91	50 - 117	6	30
Naphthalene	52.1	100	52	50.8	100	51	21 - 133	2	30
Nitrobenzene	71.3	100	71	77.1	100	77	35 - 180	8	30
Pentachlorophenol (PCP)	98.1	100	98	110	100	110	14 - 176	11	30
Phenanthrene	83.6	100	84	87.1	100	87	54 - 120	4	30
Phenol	36.9	100	37	38.9	100	39	5 - 112	5	30
Pyrene	90.2	100	90	93.6	100	94	52 - 115	4	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Analytical Service	ces- CHAIN C	F CU	STOD	Y/LA	BOF	RAT	ORY /	ANA	LYS	SIS F	REQ	UES	ST F	ORI	M	SR #		
150	e 250, Rochester, NY 146									PAG		1	OF	1		CAS	Contac	<i>t</i>
roject Name: NPDES	S Permit				Γ		4	NALYS	SIS REC	UESTE	D (Incl	ude Mei	hod Nu	mber a	nd Co	ntaine	r Pres	ervative)
roject Number:			07		005			1	T T				T .	г т				
eport CC:			19		PRE	SERVA	O INF	0					1					
roject Manager: Sea	n Coyle							/ /	7	1	1	1	1	7	7	1	1	Preservative Key 0. NONE
company/Address:			15		8		/ /	/	/	/	/		\checkmark	/	/	/	/	0. NONE 1. HCL 2. HNO3
eolia Water (GE CEP)				AINE		/ 。/	./	/	1 .	A A) A	E	/	/	/	/	2. HNO3 3. H2SO4 4. NãOH
000 East Street					CONTAINERS		13			5	Per	A Per		/ /	/		' /	5. Zn. Acetate 6. MeOH
ittsfield, MA 01201			03		6		24.40	1 19	9	2 E	SSO SS	E Po	1 1	' /	/	/	/	7. NaHSO4 8. Other
hone: (413) 494-670	9 Fax: (413) 494 Sampler's Printed Nam	-7052			NUMBER	1/3	333	.00	E B	200	E		' /	/	/	/	/	
here and		ve	mor	Ø	NON	SN	2 22/3	52/2	51 5	ALS	TALS I	. 0	/	/	/	/	/	/
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID	DATE	PLING TIME	MATRIX		0	30,200	8	a 2 a	ME	NE NE	2/	/	/	/		$\left \right\rangle$	REMARKS/ ALTERNATE DESCRIPTION
16-302m-2X-GV	7-001	8-9-10	1 45	420	3	X	COMS SVOA'S COMS SVOA'S COMS SVOA'S COMO RESS	1	1	7	7	1	1				-1	
5-302n-2x-6V	S-00 - Misto	8-9-10		H+0	1-			1			- 5	2	+				-	
16-3Q2m-24-65		8-9-10		420			X	1				1	+				1	
FIP BLANK	- 003	8-9-10	730	U.O	3	X		1				-	1					
TIP BLANK	~~~~	8-7-10	720	H.O	3	~						<	1				-	
		u	1 RG	HAD-	1×						-	1	1					
			1		1			1			-	-	1				-	
	1 8 2 N 8 2 3 2 5 5											-	1					
								1				1.0	1					
	1. The second second second second second second second second second second second second second second second			1				1										
CIAL INSTRUCTIONS/COMMENTS			1				TURNA	ROUND	REQUI	REMENT	rs	RE	PORT R	EQUIRE	MENT	s	T	INVOICE INFORMATION
1. EPA 624 Acrolein 8	& Acrylonitrite (unp	reserve	ed)				RU	12.1		SAPPLY)		I. Re	suits Only					
2. Full EPA 624 list ex	kluding Acrolein & A	Acryloni	trite				24 hr		48 hr	X 5 da	y .		esults + Q				PO	
(preserved) 3. Full EPA 625 list								NDARD				10000	S, DUP, MS				BILL	TO:
- EPA 624 & 625 list i	incl with COCs						REQUESTE	D FAX DA	ATE				lesults + C maries	ic and ca	Horabor	1		
- Samples packed in							REQUESTE					XIV.C	ata Valida	tion Repo	rt with F	Raw Data		
	21220 -						negoeste.	o ner or	II DAIL			V. S	pecialized	Forms / C	Sustom F	Report		
APLE RECEIPT: CONDITION/COO	LER TEMP: 3,2 "C		CU	STODY SE	ALC:	N				-		Ed	ata X	Yes			SERA	VICE REQUEST #
RELINQUISHED BY	A RECEIVED BY	T		LINQUISHED		214		REC	EIVED B	Y	+		RELIN	DUISHE	B	R1 (004	4313
	Danul Word															GE -Pitts		orth America IPDES
an mu	Signature War	s	ignature				Signature				1	Signature			_			
oname Dave Moro	Printed Name	P	rinted Name				Printed Nam	e			1	rinted Na	ne				Printe	ad Name
	8711/10/0937	F	îm				Firm					irm					Firm	
10 200 pm	Date/Time	C	ate/Time				Date/Time					Date/Time					Date/	Time

ution: White - Return to Originator; Yellow - Lab Copy

. .

.

ŧ

				Cooler R	eceipt	And Pres	servat	ion Ch	ect Farm		
Pro	ject/Client_	<u>65 fi</u>	Hsfie		-	Submiss			R1004 Veolia Water No GE -Pittafield NF	rth America PDES	18 (1281 1) 0 0 0 2111 (0 0)
Cod	ler receive	d on s	8/11/1	by: <u>Dhu</u>		JRIER:	CAS	UPS	REDEX	VELC	CITY CL
1. 2. 3. 4. 5. 6. 7.	Were c Did all Did any Were K Where c	ustod bottle VO Por l lid th	y paj s arr A via (ce p e bot	als on outside of co pers properly filled ive in good condit ls have significant acks present? tles originate? poler(s) upon recei	l out (in ion (un * air bu	broken)?		?	YES YES YES YES CASTRI	NO NO NO NO QC, CI	N/A LIENT
	Is the ter	npera	ature	within 0° - 6° C?:		Yes	Yes	5	Yes	Yes	Yes
	If No, E	xplai	n Be	low		No	No		No	No	No
				ratures Taken: <u>8/</u>	110/0	945					
				IR GUN#3 / IR			ling Fr	·om· T	`emp Blank	/ Salar	
Coole 1. 2. 3. 4.	r Breakdow Were all b Did all bo Were corr	n: E oottle ttle la ect co es:)ate : labe bels ontai Cass	ls complete (<i>i.e.</i> as and tags agree wi ners used for the t ettes / Tubes Intac	nalysis, th custo ests ind	ody pape licated?	rs?	etc.)?	YES YES Tedlar®		flated N/A
a –	Reagent	YES	NO	Lot Received	Ехр	Sample	ID	Vol. Added	Lot Added	Final pH	Yes = All samples OK
12	NaOH					Į				-	
2	HNO3					_			<u></u>		No = Samples
sidual lorine	H_2SO_4 For TCN and Phenol			If present, contact add ascorbic acid	PM to						were preserved at lab as listed
	$Na_2S_2O_3$	-	-			1			e analysis – pl VOAs or Gen		PM OK to
	Zn Aceta HCl	*	*	4109100	<u> </u>	on a sep	arate w	vorksheet	t		Adjust:
r Con	numbers:			172-02 07221			<u></u>			<u></u>	
لب ا	For the second	4La 4	f. legik	ole. By proce	ss of	the m	latel the stra	:	the s locations	eng li were	ID determine.

	110	1. A.
condary Review:	NB	\$1810

.

*significant air bubbles are greater than 5-6 mm

)DOCS\Cooler Receipt 2.doc

00025

August 10, 2010

Service Request No: R1004105

Mr. Sean Covle Veolia Water North America 1000 East Street Pittsfield, MA 01201

Laboratory Results for: GE -Pittsfield NPDES

Dear Mr. Coyle:

Enclosed are the results of the sample(s) submitted to our laboratory on August 3, 2010. For your reference, these analyses have been assigned our service request number R1004105.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 131. You may also contact me via email at DPatton@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Deb Patton Project Manager

Page 1 of _26

Client:GE-PittsfieldProject:NPDES 8/2010Sample Matrix:Water

Service Request No.: R1004105 Date Received: 8/3/10

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier 11. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Two water samples and one Trip Blank were received for analysis at Columbia Analytical Services on 8/3/10. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator between 1°C and 6°C upon receipt at the laboratory.

Volatile Organics

Two preserved VOA samples were archived and only the unpreserved portions were analyzed.

The Laboratory Control Sample was outside of the control limits high for Dichlorodifluoromethane and has been flagged with a "*". There were no hits in the sample for this compound and no data was affected.

No other analytical or quality control problems were encountered during analysis.

Extractable Organics

~

Benzidine was outside of the control limits low in the Laboratory Control Sample and Laboratory Control Sample Duplicate and the RPD was outside of the limits high. These have been flagged with a "*". There were no hits in the sample and no data was affected.

No other analytical or quality control problems were encountered during analysis.

Approved by 12	tten	Date	8/10/10
----------------	------	------	---------

CASE NARRATIVE

This report contains analytical results for the following samples: Service Request Number: R1004105

> Lab ID R1004105-001 R1004105-003 R1004105-004

Client ID 64G-3Q2M-1X-GV 64G-3Q2M-1X-GS TRIP BLANK

REPORT QUALIFIERS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits.
- # Spike was diluted out.
- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% (25% for CLP) difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.

CAS/Rochester Lab ID # for Massachusetts Certification M-NY032

Analyses were conducted in accordance with Massachusetts Department of Environmental Protection certification standards, except as noted in the laboratory case narrative provided. A copy of the current Department issued parameter list is included in this report.

The Commonwealth of Massachusetts

Department of Environmental Protection Division of Environmental Analysis Senator William X. Wall Experiment Station

certifies

M-NY032

COLUMBIA ANALYTICAL SERVICES 1 MUSTARD ST SUITE 250 ROCHESTER, NY 14609-0000

Laboratory Director: Michael K. Perry

for the analysis of NON POTABLE WATER (CHEMISTRY)

pursuant to 310 CMR 42.00

This certificate supersedes all previous Massachusetts certificates issued to this laboratory. The laboratory is regulated by and shall be responsible for being in compliance with Massachusetts regulations at 310 CMR 42.00.

This certificate is valid only when accompanied by the latest dated Certified Parameter List as issued by the Massachusetts D.E.P. Contact the Division of Environmental Analysis to verify the current certification status of the laboratory.

Certification is no guarantee of the validity of the data. This certification is subject to unannounced laboratory inspections.

Director, Division of Environmental Analysis

Issued:	01 JUL 2010
Expires:	30 JUN 2011

6000 - *111*69

COMMONWEALTH OF MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION

Certified Parameter List as of: 01 JUL 2010

M-NY032 COLUMBIA ANALYTICAL SERVICES ROCHESTER NY

NON POTABLE WATER (CHEMISTRY)	Effective Date	01 JUL 2010	Expiration 30 JUN 20 Date	11
Analytes			Methods	
ALUMINUM			EPA 200.7	
ANTIMONY			EPA 200.7	
ANTIMONY			EPA 200.8	
ARSENIC			EPA 200.7	
ARSENIC			EPA 200.8	
BERYLLIUM			EPA 200.7	
BERYLLIUM			EPA 200.8	
CADMIUM			EPA 200.7	
CADMIUM			EPA 200.8	
CHROMIUM			EPA 200.7	
CHROMIUM			EPA 200.8	
COBALT			EPA 200.7	
COBALT			EPA 200.8	
COPPER			EPA 200.7	
COPPER			EPA 200.8	
IRON			EPA 200.7	
LEAD			EPA 200.7	
LEAD			EPA 200.8	
MANGANESE			EPA 200.7	
MANGANESE			EPA 200.8	
MERCURY			EPA 245.1	
MOLYBDENUM			EPA 200.7	
MOLYBDENUM			EPA 200.8	
NIČKEL			EPA 200.7	
NICKEL			EPA 200.8	
SELENIUM			EPA 200.7	
SELENIUM			EPA 200.8	
SILVER			EPA 200.7	
SILVER			EPA 200.8	
THALLIUM			EPA 200.7	
THALLIUM		•	EPA 200.8	
VANADIUM		•	EPA 200.7	
VANADIUM			ÉPA 200.8	
ZINC			EPA 200.7	
ZINC			EPA 200.8	
РН			SM 4500-H-B	
SPECIFIC CONDUCTIVITY			EPA 120.1	
TOTAL DISSOLVED SOLIDS			SM 2540C	
HARDNESS (CACO3), TOTAL			SM 2340C	
CALCIUM			EPA 200.7	
MAGNESIUM			EPA 200.7	
SODIUM			EPA 200.7	
POTASSIUM			EPA 200.7	
June 29, 2010	*= Provisional Certi	fication	Page 1 of 2	

.

COMMONWEALTH OF MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION

Certified Parameter List as of: 01 JUL 2010

M-NY032 COLUMBIA ANALYTICAL SERVICES ROCHESTER NY

NON POTABLE WATER (CHEMISTRY)	Effective Date	01 JUL 2010	Expiration 30 JUN 2011 Date
Analytes			Methods
ALKALINITY, TOTAL			SM 2320B
CHLORIDE			SM 4500-CL-E
CHLORIDE		· .	EPA 300.0
FLUORIDE			EPA 300.0
SULFATE			EPA 300.0
AMMONIA-N			EPA 350.1
NITRATE-N			EPA 300.0
NITRATE-N			EPA 353.2
KJELDAHL-N			EPA 351.2
ORTHOPHOSPHATE			EPA 365.1
PHOSPHORUS, TOTAL			EPA 365.1
CHEMICAL OXYGEN DEMAND			EPA 410.4
BIOCHEMICAL OXYGEN DEMAND			SM 5210B
TOTAL ORGANIC CARBON			SM 5310C
CYANIDE, TOTAL			EPA 335.4
NON-FILTERABLE RESIDUE			SM 2540D
OIL AND GREASE			EPA 1664
PHENOLICS, TOTAL			EPA 420.4
VOLATILE HALOCARBONS			EPA 601
VOLATILE HALOCARBONS			EPA 624
VOLATILE AROMATICS			EPA 602
VOLATILE AROMATICS			EPA 624
SVOC-ACID EXTRACTABLES			EPA 625
SVOC-BASE/NEUTRAL EXTRACTABLES			EPA 625

June 29, 2010

*= Provisional Certification

Page 2 of 2

Analytical Report

Client:	General Electric Company
Project:	GE -Pittsfield NPDES
Sample Matrix:	Water
Sample Name	64G-302M-1X-GV

Service Request: R1004105 Date Collected: 8/ 2/10 0705 Date Received: 8/3/10

 Sample Name:
 64G-3Q2M-1X-GV

 Lab Code:
 R1004105-001

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Analytical Method: 624

1,1,2,2-Tetrachloroethane 1 0 U 1.0 0.25 1 NA 8/3/10 14:44 211053 1,12-Trichloroethane 1.0 U 1.0 0.25 1 NA 8/3/10 14:44 211053 1,12-Trichloroethane (1,1-DCA) 0.85 J 1.0 0.23 1 NA 8/3/10 14:44 211053 1,2-Dichloroethane 1.0 U 1.0 0.23 1 NA 8/3/10 14:44 211053 2.2-Dichloropopane 1.0 U 1.0 0.24 1 NA 8/3/10 14:44 211053 3.2-Dichloropopane 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 2Dichloropopane 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 2Dichlorophenzene 1.0 U 1.0 0.78 1 NA 8/3/10 14:44 211053	Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,2-Trichloroethane 1.0 U 1.0 0.25 1 NA 8/3/10 14:44 211053 1,1-Dichloroethane (1,1-DCA) 0.85 J 1.0 0.23 1 NA 8/3/10 14:44 211053 2,1-Dichloroethane (1,1-DCE) 1.0 U 1.0 0.23 1 NA 8/3/10 14:44 211053 2,2-Dichloroethane 1.0 U 1.0 0.24 1 NA 8/3/10 14:44 211053 2,2-Dichloroethane 1.0 U 1.0 0.24 1 NA 8/3/10 14:44 211053 3,2-Dichlorobenzene 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 4-Dichlorobenzene 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 4-Dichlorobenzene 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 4-Dichloromethane 1.0 U 1.0 0.21 NA 8/3/10 14:44 <td>1,1,1-Trichloroethane (TCA)</td> <td>0.32</td> <td>J</td> <td>1.0</td> <td>0.23</td> <td>1</td> <td>NA</td> <td>8/3/10 14:44</td> <td>211053</td>	1,1,1-Trichloroethane (TCA)	0.32	J	1.0	0.23	1	NA	8/3/10 14:44	211053
I.1-Dichloroethane (1,1-DCA) 0.85 J 1.0 0.28 1 NA 8/3/10 14:44 211053 J.2-Dichloroethene (1,1-DCE) 1.0 U 1.0 0.23 1 NA 8/3/10 14:44 211053 J.2-Dichloroethane 1.0 U 1.0 0.23 1 NA 8/3/10 14:44 211053 J.2-Dichloroptopane 1.0 U 1.0 0.24 1 NA 8/3/10 14:44 211053 J.2-Dichloroptopane 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 J.2-Dichlorobenzene 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 Croloroethyl Vinyl Ether 10 U 10 0.20 1 NA 8/3/10 14:44 211053 Acrolonitrile 10 U 1.0 0.22 1 NA 8/3/10 14:44 211053 Acrolonitrile <td>1,1,2,2-Tetrachloroethane</td> <td>1.0</td> <td>U</td> <td>1.0</td> <td>0.27</td> <td>1</td> <td>NA</td> <td>8/3/10 14:44</td> <td>211053</td>	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.27	1	NA	8/3/10 14:44	211053
1,1-Dichloroethene (1,1-DCE) 1.0 U 1.0 0.23 1 NA 8/3/10 14:44 211053 2,2-Dichloropenane 1.0 U 1.0 0.23 1 NA 8/3/10 14:44 211053 2,2-Dichloropropane 1.0 U 1.0 0.24 1 NA 8/3/10 14:44 211053 3,2-Dichloropropane 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 3,4-Dichlorobenzene 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 4-Dichlorobenzene 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 4-Dichlorobenzene 1.0 U 1.0 2.0 1 NA 8/3/10 14:44 211053 Veroleni 10 U 1.0 0.22 1 NA 8/3/10 14:44 211053 Somodichloromethane 1.0 U 1.0 0.37 1 NA 8/3/10 14:44 2110	1,1,2-Trichloroethane	1.0	U	1.0	0.25	1	NA	8/3/10 14:44	211053
2-Dichlorobenzene 1.0 U 1.0 0.23 1 NA 8/3/10 14:44 211053 ,2-Dichloroethane 1.0 U 1.0 0.24 1 NA 8/3/10 14:44 211053 ,2-Dichloroperane 1.0 U 1.0 0.34 1 NA 8/3/10 14:44 211053 ,3-Dichlorobenzene 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 ,4-Dichlorobenzene 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 Arbichlorobenzene 1.0 U 1.0 0.78 1 NA 8/3/10 14:44 211053 kcrolein 1.0 U 1.0 0.22 1 NA 8/3/10 14:44 211053 kerylonitrile 1.0 U 1.0 0.22 1 NA 8/3/10 14:44 211053 kerylonitrile 1.0 U	1,1-Dichloroethane (1,1-DCA)	0.85	J	1.0	0.28	1	NA	8/3/10 14:44	211053
2-Dichloroethane 1.0 U 1.0 0.24 1 NA 8/3/10 14:44 211053 2-Dichloropropane 1.0 U 1.0 0.34 1 NA 8/3/10 14:44 211053 3-Dichlorobenzene 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 4-Dichlorobenzene 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 C-Choroethyl Vinyl Ether 10 U 10 2.0 1 NA 8/3/10 14:44 211053 Acrolein 10 U 10 1.8 1 NA 8/3/10 14:44 211053 Storoethirle 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 Storooform 1.0 U 1.0 0.17 1 NA 8/3/10 14:44 211053 Storonoform 1.0 U <td< td=""><td>1,1-Dichloroethene (1,1-DCE)</td><td>1.0</td><td>U</td><td>1.0</td><td>0.23</td><td>1</td><td>NA</td><td>8/3/10 14:44</td><td>211053</td></td<>	1,1-Dichloroethene (1,1-DCE)	1.0	U	1.0	0.23	1	NA	8/3/10 14:44	211053
2-Dichloropropane 1.0 U 1.0 0.34 1 NA 8/3/10 14:44 211053 3-Dichlorobenzene 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 4-Dichlorobenzene 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 6-Choroethyl Vinyl Ether 10 U 10 0.78 1 NA 8/3/10 14:44 211053 Acrolein 10 U 10 2.0 1 NA 8/3/10 14:44 211053 Storolein 1.0 U 1.0 0.22 1 NA 8/3/10 14:44 211053 Storomotichloromethane 1.0 U 1.0 0.22 1 NA 8/3/10 14:44 211053 Storomotichloromethane 1.0 U 1.0 0.27 1 NA 8/3/10 14:44 211053 Toromotethane 1.0	1,2-Dichlorobenzene	1.0	U	1.0	0.23	1	NA	8/3/10 14:44	211053
3-Dichlorobenzene 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 4-Dichlorobenzene 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 4-Dichlorobenzene 10 U 10 0.78 1 NA 8/3/10 14:44 211053 Acrolein 10 U 10 2.0 1 NA 8/3/10 14:44 211053 Acrylonitrile 10 U 10 2.0 1 NA 8/3/10 14:44 211053 Benzene 1.0 U 1.0 0.22 1 NA 8/3/10 14:44 211053 Bromodichloromethane 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 Bromoform 1.0 U 1.0 0.37 1 NA 8/3/10 14:44 211053 Chlorobenzene 1.0 U 1.0	I,2-Dichloroethane	1.0	U	1.0	0.24	1	NA	8/3/10 14:44	211053
4-Dichlorobenzene 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 4-Chloroethyl Vinyl Ether 10 U 10 2.0 1 NA 8/3/10 14:44 211053 Acrolein 10 U 10 2.0 1 NA 8/3/10 14:44 211053 Acrolonitrile 10 U 10 1.8 1 NA 8/3/10 14:44 211053 Benzene 1.0 U 1.0 0.22 1 NA 8/3/10 14:44 211053 Bromodichloromethane 1.0 U 1.0 0.22 1 NA 8/3/10 14:44 211053 Bromodichloromethane 1.0 U 1.0 0.37 1 NA 8/3/10 14:44 211053 Chloroethane 0.83 J 1.0 0.35 1 NA 8/3/10 14:44 211053 Chlorodibronomethane 0.83 J	1,2-Dichloropropane	1.0	U	1.0	0.34	1	NA	8/3/10 14:44	211053
D-Chloroethyl Vinyl Ether 10 U 10 0.78 1 NA 8/3/10 14:44 211053 Acrolein 10 U 10 2.0 1 NA 8/3/10 14:44 211053 Acrolein 10 U 10 1.8 1 NA 8/3/10 14:44 211053 Acrylonitrile 10 U 1.0 0.22 1 NA 8/3/10 14:44 211053 Bromodichloromethane 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 Bromoform 1.0 U 1.0 0.17 1 NA 8/3/10 14:44 211053 Stromomethane 1.0 U 1.0 0.16 1 NA 8/3/10 14:44 211053 Chlorobenzene 1.0 U 1.0 0.19 1 NA 8/3/10 14:44 211053 Chlorobform 1.0 U 1.0	1,3-Dichlorobenzene	1.0	U	1.0	0.20	1	NA	8/3/10 14:44	211053
Acrolein10U102.01NA8/3/1014:44211053Acrylonitrile10U101.81NA8/3/1014:44211053Benzene1.0U1.00.221NA8/3/1014:44211053Bromodichloromethane1.0U1.00.201NA8/3/1014:44211053Bromoform1.0U1.00.171NA8/3/1014:44211053Bromoform1.0U1.00.371NA8/3/1014:44211053Carbon Tetrachloride1.0U1.00.161NA8/3/1014:44211053Chlorobenzene1.0U1.00.191NA8/3/1014:44211053Chlorobethane0.83J1.00.351NA8/3/1014:44211053Chlorobethane0.83J1.00.351NA8/3/1014:44211053Chlorobethane1.0U1.00.201NA8/3/1014:44211053Chlorobethane1.0U1.00.201NA8/3/1014:44211053Chlorobethane1.0U1.00.201NA8/3/1014:44211053Chlorobethane1.0U1.00.221NA8/3/1014:44211053Chlorobethene1.0U </td <td>1,4-Dichlorobenzene</td> <td>1.0</td> <td>U</td> <td>1.0</td> <td>0.20</td> <td>1</td> <td>NA</td> <td>8/3/10 14:44</td> <td>211053</td>	1,4-Dichlorobenzene	1.0	U	1.0	0.20	1	NA	8/3/10 14:44	211053
Acrylonitrile10U101.81NA8/3/1014:44211053Benzene1.0U1.00.221NA8/3/1014:44211053Bromodichloromethane1.0U1.00.201NA8/3/1014:44211053Bromodichloromethane1.0U1.00.171NA8/3/1014:44211053Bromomethane1.0U1.00.371NA8/3/1014:44211053Carbon Tetrachloride1.0U1.00.161NA8/3/1014:44211053Chlorobenzene1.0U1.00.351NA8/3/1014:44211053Chlorobethane0.83J1.00.351NA8/3/1014:44211053Chlorobethane0.83J1.00.201NA8/3/1014:44211053Chlorobethane1.0U1.00.201NA8/3/1014:44211053Chlorodithromomethane1.0U1.00.201NA8/3/1014:44211053Chlorodithromomethane1.0U1.00.201NA8/3/1014:44211053Chlorodithromomethane1.0U1.00.221NA8/3/1014:44211053Chlorodithromomethane1.0U1.00.221NA8/3/1014:44211053<	2-Chloroethyl Vinyl Ether	10	U	10	0.78	1	NA	8/3/10 14:44	211053
Benzene 1.0 U 1.0 0.22 1 NA 8/3/10 1/24 211053 Bromodichloromethane 1.0 U 1.0 0.20 1 NA 8/3/10 1/244 211053 Bromoform 1.0 U 1.0 0.17 1 NA 8/3/10 1/244 211053 Bromomethane 1.0 U 1.0 0.37 1 NA 8/3/10 1/244 211053 Chlorobenzene 1.0 U 1.0 0.16 1 NA 8/3/10 1/244 211053 Chlorobenzene 1.0 U 1.0 0.19 1 NA 8/3/10 1/244 211053 Chlorobenzene 1.0 U 1.0 0.35 1 NA 8/3/10 1/244 211053 Chlorodibromethane 1.0 U 1.0 0.20 1 NA 8/3/10 1/244 211053 Chlorodibromethane (CFC 12) 1.0 U	Acrolein	10	U	10	2.0	1	NA	8/3/10 14:44	211053
Bromodichloromethane 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 Bromoform 1.0 U 1.0 0.17 1 NA 8/3/10 14:44 211053 Bromoform 1.0 U 1.0 0.37 1 NA 8/3/10 14:44 211053 Bromomethane 1.0 U 1.0 0.16 1 NA 8/3/10 14:44 211053 Chlorobenzene 1.0 U 1.0 0.19 1 NA 8/3/10 14:44 211053 Chlorobenzene 1.0 U 1.0 0.35 1 NA 8/3/10 14:44 211053 Chloromethane 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 Schlorodifluoromethane 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 Schlorodifluoromethane 1.0 U 1.0 0.29 1 NA 8/3/10 14:44 211053	Acrylonitrile	10	U	10	1.8	1	NA	8/3/10 14:44	211053
Bromoform 1.0 U 1.0 0.17 1 NA 8/3/10 14:44 211053 Bromomethane 1.0 U 1.0 0.37 1 NA 8/3/10 14:44 211053 Carbon Tetrachloride 1.0 U 1.0 0.16 1 NA 8/3/10 14:44 211053 Chlorobenzene 1.0 U 1.0 0.19 1 NA 8/3/10 14:44 211053 Chlorobenzene 0.83 J 1.0 0.35 1 NA 8/3/10 14:44 211053 Chloroffm 1.0 U 1.0 0.53 1 NA 8/3/10 14:44 211053 Chlorodibromomethane 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 Chlorodibromomethane 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 Chlorodibromomethane 1.0 U	Benzene	1.0	U	1.0	0.22	1	NA	8/3/10 14:44	211053
Bromomethane1.0U1.00.371NA $8/3/10$ $14:44$ 211053 Carbon Tetrachloride1.0U1.00.161NA $8/3/10$ $14:44$ 211053 Chlorobenzene1.0U1.00.191NA $8/3/10$ $14:44$ 211053 Chloroethane 0.83 J1.00.351NA $8/3/10$ $14:44$ 211053 Chloroform1.0U1.00.201NA $8/3/10$ $14:44$ 211053 Chloromethane1.0U1.00.201NA $8/3/10$ $14:44$ 211053 Chlorodibromomethane1.0U1.00.201NA $8/3/10$ $14:44$ 211053 Chlorodifluoromethane1.0U1.00.201NA $8/3/10$ $14:44$ 211053 Chlorodifluoromethane1.0U1.00.291NA $8/3/10$ $14:44$ 211053 Chlorodifluoromethane1.0U1.00.221NA $8/3/10$ $14:44$ 211053 Chlorodethene (PCE)1.0U1.00.251NA $8/3/10$ $14:44$ 211053 Coluene1.0U1.00.221NA $8/3/10$ $14:44$ 211053 Coluene1.0U1.00.221NA $8/3/10$ $14:44$ 211053 Chlorofluoromethane (CFC 11)1.0U1.0	Bromodichloromethane	1.0	U	1.0	0.20	1	NA	8/3/10 14:44	211053
Carbon Tetrachloride1.0U1.00.161NA8/3/1014:44211053Chlorobenzene1.0U1.00.191NA8/3/1014:44211053Chloroethane0.83J1.00.351NA8/3/1014:44211053Chloroethane1.0U1.00.201NA8/3/1014:44211053Chloroform1.0U1.00.201NA8/3/1014:44211053Chlorodibromethane1.0U1.00.201NA8/3/1014:44211053Chlorodifluoromethane (CFC 12)1.0U1.00.291NA8/3/1014:44211053Chethylene Chloride1.0U1.00.221NA8/3/1014:44211053Chethylene Chloride1.0U1.00.251NA8/3/1014:44211053Coluene1.0U1.00.251NA8/3/1014:44211053Coluene1.0U1.00.251NA8/3/1014:44211053Coluene1.0U1.00.221NA8/3/1014:44211053Coluene1.0U1.00.251NA8/3/1014:44211053Coluene1.0U1.00.221NA8/3/1014:44211053Coluene1.0 </td <td>Bromoform</td> <td>1.0</td> <td>U</td> <td>1.0</td> <td>0.17</td> <td>1</td> <td>NA</td> <td>8/3/10 14:44</td> <td>211053</td>	Bromoform	1.0	U	1.0	0.17	1	NA	8/3/10 14:44	211053
Chlorobenzene1.0U1.00.191NA8/3/1014:44211053Chloroethane0.83J1.00.351NA8/3/1014:44211053Chloroform1.0U1.00.201NA8/3/1014:44211053Chloroethane1.0U1.00.531NA8/3/1014:44211053Chlorodibromomethane1.0U1.00.531NA8/3/1014:44211053Chlorodifluoromethane (CFC 12)1.0U1.00.201NA8/3/1014:44211053Methylene Chloride1.0U1.00.221NA8/3/1014:44211053Methylenzene1.0U1.00.221NA8/3/1014:44211053Vetrachloroethene (PCE)1.0U1.00.251NA8/3/1014:44211053Foluene1.0U1.00.251NA8/3/1014:44211053Foluene1.0U1.00.251NA8/3/1014:44211053Foluene1.0U1.00.251NA8/3/1014:44211053Foluene1.0U1.00.221NA8/3/1014:44211053Foluene1.0U1.00.221NA8/3/1014:44211053Foluene1.0	Bromomethane	1.0	U	1.0	0.37	1	NA	8/3/10 14:44	211053
Chloroethane0.83J1.00.351NA8/3/1014:44211053Chloroform1.0U1.00.201NA8/3/1014:44211053Chlorodibromomethane1.0U1.00.531NA8/3/1014:44211053Chlorodibromomethane1.0U1.00.201NA8/3/1014:44211053Chlorodibromomethane1.0U1.00.291NA8/3/1014:44211053Sichlorodifluoromethane (CFC 12)1.0U1.00.221NA8/3/1014:44211053Methylene Chloride1.0U1.00.221NA8/3/1014:44211053Athylbenzene1.0U1.00.251NA8/3/1014:44211053cetrachloroethene (PCE)1.0U1.00.251NA8/3/1014:44211053richloroethene (TCE)1.0U1.00.251NA8/3/1014:44211053richloroethene (TCE)1.0U1.00.221NA8/3/1014:44211053richloroethene (CFC 11)1.0U1.00.331NA8/3/1014:44211053richlorofluoromethane (CFC 11)1.0U1.00.331NA8/3/1014:44211053richlorofluoromethane1.0U1.00.201<	Carbon Tetrachloride	1.0	U	1.0	0.16	1	NA	8/3/10 14:44	211053
Chloroform1.0U1.00.201NA8/3/1014:44211053Chlorodibromomethane1.0U1.00.531NA8/3/1014:44211053Chlorodibromomethane1.0U1.00.201NA8/3/1014:44211053Chlorodifluoromethane (CFC 12)1.0U1.00.291NA8/3/1014:44211053Methylene Chloride1.0U1.00.221NA8/3/1014:44211053Athylbenzene1.0U1.00.251NA8/3/1014:44211053Coluene1.0U1.00.251NA8/3/1014:44211053Foluene1.0U1.00.221NA8/3/1014:44211053Frichloroethene (TCE)1.0U1.00.221NA8/3/1014:44211053Frichloroethene (TCE)1.0U1.00.221NA8/3/1014:44211053Frichlorofluoromethane (CFC 11)1.0U1.00.871NA8/3/1014:44211053Finyl Chloride1.0U1.00.331NA8/3/1014:44211053finyl Chloride1.0U1.00.201NA8/3/1014:44211053finyl Chloride1.0U1.00.201NA8/3/1014:44 <td>Chlorobenzene</td> <td>1.0</td> <td>U</td> <td>1.0</td> <td>0.19</td> <td>1</td> <td>NA</td> <td>8/3/10 14:44</td> <td>211053</td>	Chlorobenzene	1.0	U	1.0	0.19	1	NA	8/3/10 14:44	211053
Chloromethane1.0U1.00.531NA $8/3/10$ $14:44$ 211053 Chlorodibromomethane1.0U1.00.201NA $8/3/10$ $14:44$ 211053 Dichlorodifluoromethane (CFC 12)1.0U1.00.291NA $8/3/10$ $14:44$ 211053 Methylene Chloride1.0U1.00.221NA $8/3/10$ $14:44$ 211053 Methylene Chloride1.0U1.00.221NA $8/3/10$ $14:44$ 211053 Sthylbenzene1.0U1.00.181NA $8/3/10$ $14:44$ 211053 Soluene1.0U1.00.251NA $8/3/10$ $14:44$ 211053 Soluene1.0U1.00.221NA $8/3/10$ $14:44$ 211053 Soluene1.0U1.00.221NA $8/3/10$ $14:44$ 211053 Soluene1.0U1.00.221NA $8/3/10$ $14:44$ 211053 Srichloroethene (TCE)1.0U1.00.871NA $8/3/10$ $14:44$ 211053 Srichlorofluoromethane (CFC 11)1.0U1.00.331NA $8/3/10$ $14:44$ 211053 Sis-1,3-Dichloropropene1.0U1.00.201NA $8/3/10$ $14:44$ 211053 ans-1,2-Dichloroethene1.0U<	Chloroethane	0.83	J	1.0	0.35	1	NA	8/3/10 14:44	211053
Chlorodibromomethane1.0U1.00.201NA $8/3/10$ $14:44$ 211053 Dichlorodifluoromethane (CFC 12)1.0U1.00.291NA $8/3/10$ $14:44$ 211053 Methylene Chloride1.0U1.00.221NA $8/3/10$ $14:44$ 211053 Methylene Chloride1.0U1.00.221NA $8/3/10$ $14:44$ 211053 Chylbenzene1.0U1.00.181NA $8/3/10$ $14:44$ 211053 Cetrachloroethene (PCE)1.0U1.00.251NA $8/3/10$ $14:44$ 211053 Foluene1.0U1.00.221NA $8/3/10$ $14:44$ 211053 Frichloroethene (TCE)1.0U1.00.221NA $8/3/10$ $14:44$ 211053 Frichlorofluoromethane (CFC 11)1.0U1.00.871NA $8/3/10$ $14:44$ 211053 Finyl Chloride1.0U1.00.331NA $8/3/10$ $14:44$ 211053 Finyl Chlorode1.0U1.00.201NA $8/3/10$ $14:44$ 211053 Finyl Chloride1.0U1.00.201NA $8/3/10$ $14:44$ 211053 Finyl Chlorodethene1.0U1.00.201NA $8/3/10$ $14:44$ 211053 Finyl Chlorodethene	Chloroform	1.0	U	1.0	0.20	1	NA	8/3/10 14:44	211053
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Chloromethane		-	1.0		1		8/3/10 14:44	211053
Methylene Chloride1.0U1.00.221NA $8/3/10$ $14:44$ 211053 Sthylbenzene1.0U1.00.181NA $8/3/10$ $14:44$ 211053 Setrachloroethene (PCE)1.0U1.00.251NA $8/3/10$ $14:44$ 211053 Soluene1.0U1.00.251NA $8/3/10$ $14:44$ 211053 Soluene1.0U1.00.251NA $8/3/10$ $14:44$ 211053 Soluene1.0U1.00.221NA $8/3/10$ $14:44$ 211053 Srichloroethene (TCE)1.0U1.00.871NA $8/3/10$ $14:44$ 211053 Srichlorofluoromethane (CFC 11)1.0U1.00.331NA $8/3/10$ $14:44$ 211053 Sis-1,3-Dichloropropene1.0U1.00.201NA $8/3/10$ $14:44$ 211053 ans-1,2-Dichloroethene1.0U1.00.201NA $8/3/10$ $14:44$ 211053	Chlorodibromomethane	1.0	U	1.0	0.20	1	NA	8/3/10 14:44	211053
ithylbenzene1.0U1.00.181NA $8/3/10$ $14:44$ 211053 retrachloroethene (PCE)1.0U1.00.251NA $8/3/10$ $14:44$ 211053 roluene1.0U1.00.251NA $8/3/10$ $14:44$ 211053 richloroethene (TCE)1.0U1.00.221NA $8/3/10$ $14:44$ 211053 richlorofluoromethane (CFC 11)1.0U1.00.871NA $8/3/10$ $14:44$ 211053 Vinyl Chloride1.0U1.00.331NA $8/3/10$ $14:44$ 211053 ans-1,2-Dichloroethene1.0U1.00.201NA $8/3/10$ $14:44$ 211053	Dichlorodifluoromethane (CFC 12)	1.0	U	1.0	0.29	1	NA	8/3/10 14:44	211053
Yetrachloroethene (PCE)1.0U1.00.251NA $8/3/10$ $14:44$ 211053 Yoluene1.0U1.00.251NA $8/3/10$ $14:44$ 211053 Yichloroethene (TCE)1.0U1.00.221NA $8/3/10$ $14:44$ 211053 Yichlorofluoromethane (CFC 11)1.0U1.00.871NA $8/3/10$ $14:44$ 211053 Yinyl Chloride1.0U1.00.331NA $8/3/10$ $14:44$ 211053 is-1,3-Dichloropropene1.0U1.00.201NA $8/3/10$ $14:44$ 211053 ans-1,2-Dichloroethene1.0U1.00.201NA $8/3/10$ $14:44$ 211053	Methylene Chloride		-	1.0		1		8/3/10 14:44	211053
Soluene 1.0 U 1.0 0.25 1 NA 8/3/10 14:44 211053 Strichloroethene (TCE) 1.0 U 1.0 0.22 1 NA 8/3/10 14:44 211053 Strichloroethene (TCE) 1.0 U 1.0 0.22 1 NA 8/3/10 14:44 211053 Strichlorofluoromethane (CFC 11) 1.0 U 1.0 0.87 1 NA 8/3/10 14:44 211053 Vinyl Chloride 1.0 U 1.0 0.33 1 NA 8/3/10 14:44 211053 Sis-1,3-Dichloropropene 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053 ans-1,2-Dichloroethene 1.0 U 1.0 0.20 1 NA 8/3/10 14:44 211053	Ethylbenzene	1.0	U	1.0	0.18	1	NA	8/3/10 14:44	211053
Trichloroethene (TCE)1.0U1.00.221NA8/3/1014:44211053Trichlorofluoromethane (CFC 11)1.0U1.00.871NA8/3/1014:44211053Vinyl Chloride1.0U1.00.331NA8/3/1014:44211053is-1,3-Dichloropropene1.0U1.00.201NA8/3/1014:44211053ans-1,2-Dichloroethene1.0U1.00.201NA8/3/1014:44211053	Tetrachloroethene (PCE)	1.0	U	1.0	0.25	1	NA	8/3/10 14:44	211053
richlorofluoromethane (CFC 11)1.0U1.00.871NA8/3/10 14:44211053/inyl Chloride1.0U1.00.331NA8/3/10 14:44211053is-1,3-Dichloropropene1.0U1.00.201NA8/3/10 14:44211053ans-1,2-Dichloroethene1.0U1.00.201NA8/3/10 14:44211053	Foluene					1		8/3/10 14:44	211053
Vinyl Chloride1.0U1.00.331NA8/3/1014:44211053is-1,3-Dichloropropene1.0U1.00.201NA8/3/1014:44211053ans-1,2-Dichloroethene1.0U1.00.201NA8/3/1014:44211053	Frichloroethene (TCE)	1.0	U	1.0	0.22	1	NA	8/3/10 14:44	211053
is-1,3-Dichloropropene1.0U1.00.201NA8/3/1014:44211053ans-1,2-Dichloroethene1.0U1.00.201NA8/3/1014:44211053	Trichlorofluoromethane (CFC 11)	1.0	U	1.0	0.87	1	NA	8/3/10 14:44	211053
is-1,3-Dichloropropene1.0U1.00.201NA8/3/1014:44211053ans-1,2-Dichloroethene1.0U1.00.201NA8/3/1014:44211053	Vinyl Chloride					1	NA	8/3/10 14:44	211053
	cis-1,3-Dichloropropene			1.0	0.20	1	NA	8/3/10 14:44	211053
ans-1,3-Dichloropropene 1.0 U 1.0 0.23 1 NA 8/3/10 14:44 211053	rans-1,2-Dichloroethene	1.0	U	1.0	0.20	1	NA	8/3/10 14:44	211053
	rans-1,3-Dichloropropene	1.0	U	1.0	0.23	1	NA	8/3/10 14:44	211053

SuperSet Reference: 10-0000150851 rev 00

CULUMDIA AMALT HUAL SERVICES, INC.

Analytical Report

Client:	General Electric Company
Project:	GE -Pittsfield NPDES
Sample Matrix:	Water
Sample Name:	64G-3Q2M-1X-GV
Lab Code:	R1004105-001

Service Request: R1004105 Date Collected: 8/ 2/10 0705 Date Received: 8/ 3/10

> Units: Percent Basis: NA

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

		Control	Date	
Surrogate Name	%Rec	Limits	Analyzed	Q
1,2-Dichloroethane-d4	94	79-123	8/3/10 14:44	
4-Bromofluorobenzene	101	79-119	8/3/10 14:44	
Toluene-d8	108	83-120	8/3/10 14:44	

Analytical Report

Client:	General Electric Com	pany		Service Request:	R1004105
Project:	GE -Pittsfield NPDES	* *		Date Collected:	
Sample Matrix	x: Water			Date Received:	8/3/10
-				Date Analyzed:	8/3/10 1444
		Tentatively Ider	ntified Compoun	ds (TIC)	
	Volatile Organic Compo	unds by GC/MS v	ith 3 Day Holdi	ng Time for Acrolein, Unpreserved	
Sample Name:	64G-3Q2M-1X-GV			Units:	μg/L
Lab Code:	R1004105-001			Basis:	NA
Analytical Met	thod: 624				
CAS #	Analyte Name	RT	Result Q		
	No Tentatively I	dentified Compounds	Detected.		

Comments:

SuperSet Reference: 10-0000150851 rev 00

Analytical Report

Client:	General Electric Company
Project:	GE -Pittsfield NPDES
Sample Matrix:	Water

 Sample Name:
 64G-3Q2M-1X-GS

 Lab Code:
 R1004105-003

Service Request: R1004105 Date Collected: 8/ 2/10 0705 Date Received: 8/ 3/10

Units: µg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method:	625
Prep Method:	EPA 3510C

				Dilution	Date	Date	Extraction	Analysis
Analyte Name	Result Q) MRL	MDL	Factor	Extracted	Analyzed	Lot	Lot
1,2,4-Trichlorobenzene	4.7 L		0.73	1	8/ 4/10	8/6/10 22:07		211637
1,2-Diphenylhydrazine	4.7 L		0.71	1	8/ 4/10	8/6/10 22:07		211637
2,4,6-Trichlorophenol	4.7 L	J 4.7	1.1	1	8/4/10	8/6/10 22:07	116745	211637
2,4-Dichlorophenol	4.7 U	J 4.7	0.91	1	8/4/10	8/6/10 22:07	116745	211637
2,4-Dimethylphenol	47 U	4.7	1.6	1	8/4/10	8/6/10 22:07	116745	211637
2,4-Dinitrophenol	47 U	i 47	34	1	8/ 4/10	8/6/10 22:07	116745	211637
2,4-Dinitrotoluene	4.7 U	4.7	1.2	1	8/4/10	8/6/10 22:07	116745	211637
2,6-Dinitrotoluene	4.7 U	4.7	1.3	1	8/4/10	8/6/10 22:07	116745	211637
2-Chloronaphthalene	4.7 U	4.7	0.97	1	8/4/10	8/6/10 22:07	116745	211637
2-Chlorophenol	4.7 U	4.7	1.3	1	8/4/10	8/6/10 22:07	116745	211637
2-Nitrophenol	4.7 U	4.7	1.2	1	8/ 4/10	8/6/10 22:07	116745	211637
3,3'-Dichlorobenzidine	4.7 U	4.7	1.5	1	8/ 4/10	8/6/10 22:07	116745	211637
4,6-Dinitro-2-methylphenol	47 U	47	22	1	8/ 4/10	8/6/10 22:07	116745	211637
4-Bromophenyl Phenyl Ether	4.7 U	4.7	0.84	1	8/4/10	8/6/10 22:07	116745	211637
4-Chloro-3-methylphenol	4.7 U	4.7	0.76	1	8/4/10	8/6/10 22:07	116745	211637
4-Chlorophenyl Phenyl Ether	4.7 U	4.7	0.73	1	8/ 4/10	8/6/10 22:07	116745	211637
4-Nitrophenol	47 U		9.4	1	8/ 4/10	8/6/10 22:07	116745	211637
Acenaphthene	4.7 U	4.7	1.2	1	8/ 4/10	8/6/10 22:07	116745	211637
Acenaphthylene	4.7 U	4.7	0.97	1	8/ 4/10	8/6/10 22:07	116745	211637
Anthracene	4.7 U	4.7	0.60	1	8/ 4/10	8/6/10 22:07	116745	211637
Benz(a)anthracene	4.7 U	4.7	0.73	1	8/ 4/10	8/6/10 22:07	116745	211637
Benzidine	94 U	94	53	1	8/ 4/10	8/6/10 22:07	116745	211637
Benzo(a)pyrene	4.7 U		0.50	1	8/ 4/10	8/6/10 22:07	116745	211637
Benzo(b)fluoranthene	4.7 U	4.7	0.75	1	8/ 4/10	8/6/10 22:07	116745	211637
Benzo(g,h,i)perylene	4.7 U	4.7	0.79	1	8/ 4/10	8/6/10 22:07	116745	211637
Benzo(k)fluoranthene	4.7 U		1.1	1	8/ 4/10	8/6/10 22:07	116745	211637
2,2'-Oxybis(1-chloropropane)	4.7 U	4.7	1.4	1	8/ 4/10	8/6/10 22:07	116745	211637
Bis(2-chloroethoxy)methane	4.7 U	4.7	1.3	1	8/ 4/10	8/6/10 22:07	116745	211637
Bis(2-chloroethyl) Ether	4.7 U	4.7	1.0	1	8/ 4/10	8/6/10 22:07	116745	211637
Bis(2-ethylhexyl) Phthalate	4.7 U	4.7	1.2	1	8/ 4/10	8/6/10 22:07	116745	211637
Butyl Benzyl Phthalate	4.7 U	4.7	0.87	1	8/4/10	8/6/10 22:07	116745	211637
Chrysene	4.7 U	4.7	1.2	1	8/4/10	8/6/10 22:07	116745	211637
Di-n-butyl Phthalate	4.7 U	4.7	0.91	1	8/4/10	8/6/10 22:07	116745	211637
Di-n-octyl Phthalate	4.7 U	4.7	1.1	1	8/4/10	8/6/10 22:07	116745	211637
Dibenz(a,h)anthracene	4.7 U	4.7	0.82	1	8/4/10	8/6/10 22:07	116745	211637

Form 1A

SuperSet Reference:

10-0000150851 rev 00

00011

Analytical Report

Client:	General Electric Company
Project:	GE -Pittsfield NPDES
Sample Matrix:	Water

 Sample Name:
 64G-3Q2M-1X-GS

 Lab Code:
 R1004105-003

Service Request: R1004105 Date Collected: 8/ 2/10 0705 Date Received: 8/ 3/10

Units: µg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method:	625
Prep Method:	EPA 3510C

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot
		4.7	0.89	1	8/ 4/10	8/6/10 22:07		
Diethyl Phthalate	4.7 U			1				211637
Dimethyl Phthalate	4.7 U	4.7	0.65	l	8/4/10	8/6/10 22:07	116745	211637
Fluoranthene	4.7 U	4.7	0.98	1	8/ 4/10	8/6/10 22:07	116745	211637
Fluorene	4.7 U	4.7	1.1	1	8/4/10	8/6/10 22:07	116745	211637
Hexachlorobenzene	4.7 U	4.7	1.1	1	8/ 4/10	8/6/10 22:07	116745	211637
Hexachlorobutadiene	4.7 U	4.7	1.3	1	8/4/10	8/6/10 22:07	116745	211637
Hexachlorocyclopentadiene	4.7 U	4.7	2.0	1	8/4/10	8/6/10 22:07	116745	211637
Hexachloroethane	4.7 U	4.7	1.3	1	8/4/10	8/6/10 22:07	116745	211637
Indeno(1,2,3-cd)pyrene	4.7 U	4.7	0.77	1	8/ 4/10	8/6/10 22:07	116745	211637
Isophorone	4.7 U	4.7	1.4	1	8/ 4/10	8/6/10 22:07	116745	211637
N-Nitrosodi-n-propylamine	4.7 U	4.7	1.6	1	8/4/10	8/6/10 22:07	116745	211637
N-Nitrosodimethylamine	4.7 U	4.7	0.88	1	8/ 4/10	8/6/10 22:07	116745	211637
N-Nitrosodiphenylamine	4.7 U	4.7	1.2	1	8/4/10	8/6/10 22:07	116745	211637
Naphthalene	4.7 U	4.7	1.1	1	8/4/10	8/6/10 22:07	116745	211637
Nitrobenzene	4.7 U	4.7	1,3	1	8/ 4/10	8/6/10 22:07	116745	211637
Pentachlorophenol (PCP)	47 U	47	23	1	8/4/10	8/6/10 22:07	116745	211637
Phenanthrene	4.7 U	4.7	0.85	1	8/ 4/10	8/6/10 22:07	116745	211637
Phenol	4.7 U	4.7	0.40	1	8/ 4/10	8/6/10 22:07	116745	211637
Pyrene	4.7 U	4.7	0.85	1	8/ 4/10	8/6/10 22:07	116745	211637

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	97	28-157	8/6/10 22:07	
2-Fluorobiphenyl	79	37-118	8/6/10 22:07	
2-Fluorophenol	41	12-84	8/6/10 22:07	
Nitrobenzene-d5	74	38-120	8/6/10 22:07	
Phenol-d6	26	10-74	8/6/10 22:07	
p-Terphenyl-d14	95	40-133	8/6/10 22:07	

Analytical Report

Client:	General Electric Company
Project:	GE -Pittsfield NPDES
Sample Matrix:	Water

 Service Request:
 R1004105

 Date Collected:
 8/ 2/10 0730

 Date Received:
 8/ 3/10

Sample Name:TRIP BLANKLab Code:R1004105-004

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Analytical Method: 624

A - slada Nama	Bende O	MDI	MDI	Dilution	Date	Date	Extraction Analysis
Analyte Name	Result Q	MRL	MDL		Extracted	Analyzed	Lot Lot
I,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.23	1	NA	8/3/10 14:07	
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.27	1	NA	8/3/10 14:07	
1,1,2-Trichloroethane	1.0 U	1.0	0.25	1	NA	8/3/10 14:07	211053
1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	0.28	1	NA	8/3/10 14:07	211053
1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.23	1	NA	8/3/10 14:07	211053
1,2-Dichlorobenzene	1.0 U	1.0	0.23	1	NA	8/3/10 14:07	211053
1,2-Dichloroethane	1.0 U	1.0	0.24	1	NA	8/3/10 14:07	211053
1,2-Dichloropropane	1.0 U	1.0	0.34	1	NA	8/3/10 14:07	211053
1,3-Dichlorobenzene	1.0 U	1.0	0.20	1	NA	8/3/10 14:07	211053
1,4-Dichlorobenzene	1.0 U	1.0	0.20	1	NA	8/3/10 14:07	211053
2-Chloroethyl Vinyl Ether	10 U	10	0.78	1	NA	8/3/10 14:07	211053
Acrolein	10 U	10	2.0	1	NA	8/3/10 14:07	211053
Acrylonitrile	10 U	10	1.8	1	NA	8/3/10 14:07	211053
Benzene	1.0 U	1.0	0.22	1	NA	8/3/10 14:07	211053
Bromodichloromethane	1.0 U	1.0	0.20	1	NA	8/3/10 14:07	211053
Bromoform	1.0 U	1.0	0.17	1	NA	8/3/10 14:07	211053
Bromomethane	1.0 U	1.0	0.37	1	NA	8/3/10 14:07	211053
Carbon Tetrachloride	1.0 U	1.0	0.16	1	NA	8/3/10 14:07	211053
Chlorobenzene	1.0 U	1,0	0.19	1	NA	8/3/10 14:07	211053
Chloroethane	1.0 U	1.0	0.35	1	NA	8/3/10 14:07	211053
Chloroform	1.0 U	1.0	0.20	1	NA	8/3/10 14:07	211053
Chloromethane	1.0 U	1.0	0.53	1	NA	8/3/10 14:07	211053
Chlorodibromomethane	1.0 U	1.0	0.20	1	NA	8/3/10 14:07	211053
Dichlorodifluoromethane (CFC 12)	1.0 U	1.0	0.29	1	NA	8/3/10 14:07	211053
Methylene Chloride	0.51 J	1.0	0.22	1	NA	8/3/10 14:07	211053
Ethylbenzene	1.0 U	1.0	0.18	1	NA	8/3/10 14:07	211053
Tetrachloroethene (PCE)	1.0 U	1.0	0.25	1	NA	8/3/10 14:07	211053
oluene	1.0 U	1.0	0.25	1	NA	8/3/10 14:07	211053
Trichloroethene (TCE)	1.0 U	1.0	0.22	1	NA	8/3/10 14:07	211053
richlorofluoromethane (CFC 11)	1.0 U	1.0	0,87	1	NA	8/3/10 14:07	211053
/inyl Chloride	1.0 U	1.0	0.33	1	NA	8/3/10 14:07	211053
is-1,3-Dichloropropene	1.0 U	1.0	0.20	1	NA	8/3/10 14:07	211053
rans-1,2-Dichloroethene	1.0 U	1.0	0.20	1	NA	8/3/10 14:07	211053
rans-1,3-Dichloropropene	1.0 U	1.0	0.23	1	NA	8/3/10 14:07	211053

ce: 10-0000150851 rev 00

CULUMDIA ANALT HUAL SERVICES, INC.

Analytical Report

Client:	General Electric Company
Project:	GE -Pittsfield NPDES
Sample Matrix:	Water
Sample Name:	TRIP BLANK
Lab Code:	R1004105-004

Service Request: R1004105 Date Collected: 8/ 2/10 0730 Date Received: 8/ 3/10

> Units: Percent Basis: NA

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	98	79-123	8/3/10 14:07	
4-Bromofluorobenzene	102	79-119	8/3/10 14:07	
Toluene-d8	111	83-120	8/3/10 14:07	

Analytical Report

Client:	General Electric Compa	any			Service Request:	R1004105
Project:	GE -Pittsfield NPDES				Date Collected:	8/2/10
Sample Matrix:	Water				Date Received:	8/3/10
					Date Analyzed:	8/3/10 1407
		Tentatively Ider	ntified Com	pounds (TIC)	
	Volatile Organic Compou	nds by GC/MS w	ith 3 Day	Holding Time	for Acrolein, Unpreserved	
Sample Name:	TRIP BLANK				Units:	μg/L
Lab Code:	R1004105-004				Basis:	NA
Analytical Metho	d: 624					
CAS # A	nalyte Name	RT	Result	Q		
	No Tentatively Ide	entified Compounds	Detected.			

Comments:

SuperSet Reference: 10-0000150851 rev 00

00015

Analytical Report

Client:	General Electric Company
Project:	GE -Pittsfield NPDES
Sample Matrix:	Water
Sample Name:	Method Blank
Lab Code:	RQ1006358-01

Service Request: R1004105 Date Collected: NA Date Received: NA

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Analytical Method: 624

Analyte Name	Result	0	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1-Trichloroethane (TCA)	1.0	_	1.0	0.23	1	NA	8/3/10 13:12	211053
1,1,2,2-Tetrachloroethane	1.0		1.0	0.27	1	NA	8/3/10 13:12	211053
1,1,2-Trichloroethane	1.0		1.0	0.25	1	NA	8/3/10 13:12	211053
1,1-Dichloroethane (1,1-DCA)	1.0	U	1.0	0.28	1	NA	8/3/10 13:12	211053
1,1-Dichloroethene (1,1-DCE)	1.0	U	1.0	0.23	1	NA	8/3/10 13:12	211053
1,2-Dichlorobenzene	1.0	U	1.0	0.23	1	NA	8/3/10 13:12	211053
1,2-Dichloroethane	1.0	υ	1.0	0.24	1	NA	8/3/10 13:12	211053
1,2-Dichloropropane	1.0	U	1.0	0.34	1	NA	8/3/10 13:12	211053
1,3-Dichlorobenzene	1.0	U	1.0	0.20	1	NA	8/3/10 13:12	211053
1,4-Dichlorobenzene	1.0	U	1.0	0.20	1	NA	8/3/10 13:12	211053
2-Chloroethyl Vinyl Ether	10	U	10	0.78	1	NA	8/3/10 13:12	211053
Acrolein	10	U	10	2.0	1	NA	8/3/10 13:12	211053
Acrylonitrile	10	U	10	1.8	1	NA	8/3/10 13:12	211053
Benzene	1.0	U	1.0	0.22	1	NA	8/3/10 13:12	211053
Bromodichloromethane	1.0	U	1.0	0,20	1	NA	8/3/10 13:12	211053
Bromoform	1.0		1,0	0.17	1	NA	8/3/10 13:12	211053
Bromomethane	1.0	U	1.0	0.37	1	NA	8/3/10 13:12	211053
Carbon Tetrachloride	1.0	U	1.0	0,16	1	NA	8/3/10 13:12	211053
Chlorobenzene	1.0		1.0	0.19	1	NA	8/3/10 13;12	211053
Chloroethane	1.0	U	1.0	0.35	1	NA	8/3/10 13:12	211053
Chloroform	1.0	U	1.0	0.20	1	NA	8/3/10 13:12	211053
Chloromethane	1.0		1.0	0.53	1	NA	8/3/10 13:12	211053
Chlorodibromomethane	1.0		1.0	0.20	1	NA	8/3/10 13:12	211053
Dichlorodifluoromethane (CFC 12)	1.0	U	1.0	0.29	1	NA	8/3/10 13:12	211053
Methylene Chloride	1.0		1.0	0.22	1	NA	8/3/10 13:12	211053
Ethylbenzene	1.0		1.0	0.18	1	NA	8/3/10 13:12	211053
Tetrachloroethene (PCE)	1.0	U	1.0	0.25	1	NA	8/3/10 13:12	211053
Toluene	1.0		1.0	0.25	1	NA	8/3/10 13:12	211053
Trichloroethene (TCE)	1.0		1.0	0.22	1	NA	8/3/10 13:12	211053
Trichlorofluoromethane (CFC 11)	1.0	U	1.0	0.87	1	NA	8/3/10 13:12	211053
Vinyl Chloride	1.0	-	1.0	0.33	1		8/3/10 13:12	211053
cis-1,3-Dichloropropene	1.0		1.0	0.20	1		8/3/10 13:12	211053
trans-1,2-Dichloroethene	1.0	U	1.0	0.20	1	NA	8/3/10 13:12	211053
rans-1,3-Dichloropropene	1.0	U	1.0	0.23	1	NA	8/3/10 13:12	211053
• •								

Analytical Report

Client:	General Electric Company
Project:	GE -Pittsfield NPDES
Sample Matrix:	Water
Sample Name:	Method Blank
Lab Code:	RQ1006358-01

Service Request: R1004105 Date Collected: NA Date Received: NA

> Units: Percent Basis: NA

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Analytical Method: 624

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	97	79-123	8/3/10 13:12	
4-Bromofluorobenzene	103	79-119	8/3/10 13:12	
Toluene-d8	110	83-120	8/3/10 13:12	

10-0000150851 rev 00

CULUMBIA ANALY HUAL SERVICES, INC.

Analytical Report

		1 111	ijtiour reepor	-		
Client:	General Electric Company				Service Request:	R1004105
Project:	GE -Pittsfield NPDES				Date Collected:	NA
Sample Matrix:	Water				Date Received:	NA
-					Date Analyzed:	8/3/10 1312
	Те	entatively Iden	tified Com	pounds (TIC)		
V	olatile Organic Compounds	s by GC/MS w	ith 3 Day H	Holding Time for A	Acrolein, Unpreserved	
Sample Name:	Method Blank				Units:	µg/L
Lab Code:	RQ1006358-01				Basis:	NA
Analytical Method:	624					
CAS # Analy	yte Name	RT	Result	Q		
	No Tentatively Identif	ied Compounds	Detected.			<u></u>

Comments:

......

SuperSet Reference: 10-0000150851 rev 00

Analytical Report

Client:	General Electric Company
Project:	GE -Pittsfield NPDES
Sample Matrix:	Water

Sample Name:Method BlankLab Code:RQ1006367-01

Service Request: R1004105 Date Collected: NA Date Received: NA

Units: μg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 625 Prep Method: EPA 3510C

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot
1,2,4-Trichlorobenzene	5.0	U	5.0	0.73	1	8/ 4/10	8/6/10 20:03	116745	211637
1,2-Diphenylhydrazine	5.0		5.0	0.71	1	8/4/10	8/6/10 20:03	116745	211637
2,4,6-Trichlorophenol	5.0	U	5.0	1.1	1	8/4/10	8/6/10 20:03	116745	211637
2,4-Dichlorophenol	5.0		5.0	0.91	1	8/ 4/10	8/6/10 20:03	116745	211637
2,4-Dimethylphenol	5.0	U	5.0	1.6	1	8/4/10	8/6/10 20:03	116745	211637
2,4-Dinitrophenol	50	U	50	34	1	8/ 4/10	8/6/10 20:03	116745	211637
2,4-Dinitrotoluene	5.0	U	5.0	1.2	1	8/4/10	8/6/10 20:03	116745	211637
2,6-Dinitrotoluene	5.0	U	5.0	1.3	1	8/ 4/10	8/6/10 20:03	116745	211637
2-Chloronaphthalene	5.0	U	5.0	0.97	1	8/ 4/10	8/6/10 20:03	116745	211637
2-Chlorophenol	5.0	U	5.0	1.3	1	8/4/10	8/6/10 20:03	116745	211637
2-Nitrophenol	5.0		5.0	1.2	1	8/ 4/10	8/6/10 20:03	116745	211637
3,3'-Dichlorobenzidine	5.0	U	5.0	1.5	1	8/ 4/10	8/6/10 20:03	116745	211637
4,6-Dinitro-2-methylphenol	50	U	50	22	1	8/4/10	8/6/10 20:03	116745	211637
4-Bromophenyl Phenyl Ether	5.0	U	5.0	0.84	1	8/ 4/10	8/6/10 20:03	116745	211637
4-Chloro-3-methylphenol	5.0	U	5.0	0.76	1	8/ 4/10	8/6/10 20:03	116745	211637
-Chlorophenyl Phenyl Ether	5.0	U	5.0	0.73	1	8/4/10	8/6/10 20:03	116745	211637
I-Nitrophenol	50	U	50	9.4	1	8/ 4/10	8/6/10 20:03	116745	211637
Acenaphthene	5.0	U	5.0	1.2	1	8/ 4/10	8/6/10 20:03	116745	211637
Acenaphthylene	5.0	U	5.0	0.97	1	8/4/10	8/6/10 20:03	116745	211637
Anthracene	5.0	U	5.0	0.60	1	8/ 4/10	8/6/10 20:03	116745	211637
Benz(a)anthracene	5.0	U	5.0	0.73	1	8/ 4/10	8/6/10 20:03	116745	211637
Benzidine	100	U	100	53	1	8/ 4/10	8/6/10 20:03	116745	211637
Benzo(a)pyrene	5.0	U	5.0	0.50	1	8/ 4/10	8/6/10 20:03	116745	211637
Benzo(b)fluoranthene	5.0	U	5.0	0.75	1	8/ 4/10	8/6/10 20:03	116745	211637
Benzo(g,h,i)perylene	5.0	U	5.0	0.79	1	8/4/10	8/6/10 20:03	116745	211637
Benzo(k)fluoranthene	5.0	U	5.0	1.1	1	8/ 4/10	8/6/10 20:03	116745	211637
2,2'-Oxybis(1-chloropropane)	5.0	U	5.0	1.4	1	8/ 4/10	8/6/10 20:03	116745	211637
Bis(2-chloroethoxy)methane	5.0	U	5.0	1.3	1	8/ 4/10	8/6/10 20:03	116745	211637
Bis(2-chloroethyl) Ether	5.0	U	5.0	1.0	1	8/ 4/10	8/6/10 20:03	116745	211637
Bis(2-ethylhexyl) Phthalate	5.0	U	5.0	1.2	1	8/ 4/10	8/6/10 20:03	116745	211637
Butyl Benzyl Phthalate	5.0	U	5.0	0.87	1	8/ 4/10	8/6/10 20:03	116745	211637
Chrysene	5.0		5.0	1.2	1	8/4/10	8/6/10 20:03	116745	211637
Di-n-butyl Phthalate	5.0		5.0	0.91	1		8/6/10 20:03		211637
Di-n-octyl Phthalate	5.0	U	5.0	1.1	1	8/4/10	8/6/10 20:03	116745	211637
Dibenz(a,h)anthracene	5.0		5.0	0.82	1		8/6/10 20:03		211637

SuperSet Reference:

10-0000150851 rev 00

Analytical Report

Client:	General Electric Company
Project:	GE -Pittsfield NPDES
Sample Matrix:	Water

Sample Name:Method BlankLab Code:RQ1006367-01

Service Request: R1004105 Date Collected: NA Date Received: NA

Units: µg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method:	625
Prep Method:	EPA 3510C

A share Maria		MDI	MDI	Dilution	Date	Date	Extraction	•
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Lot
Diethyl Phthalate	5.0 U	5.0	0.89	1	8/4/10	8/6/10 20:03	116745	211637
Dimethyl Phthalate	5.0 U	5.0	0.65	1	8/ 4/10	8/6/10 20:03	116745	211637
Fluoranthene	5.0 U	5.0	0.98	1	8/ 4/10	8/6/10 20:03	116745	211637
Fluorene	5.0 U	5.0	1.1	1	8/ 4/10	8/6/10 20:03	116745	211637
Hexachlorobenzene	5.0 U	5.0	1.1	1	8/4/10	8/6/10 20:03	116745	211637
Hexachlorobutadiene	5.0 U	5.0	1.3	1	8/4/10	8/6/10 20:03	116745	211637
Hexachlorocyclopentadiene	5.0 U	5.0	2.0	1	8/4/10	8/6/10 20:03	116745	211637
Hexachloroethane	5.0 U	5.0	1.3	1	8/ 4/10	8/6/10 20:03	116745	211637
Indeno(1,2,3-cd)pyrene	5.0 U	5.0	0.77	1	8/ 4/10	8/6/10 20:03	116745	211637
Isophorone	5.0 U	5.0	1.4	1	8/ 4/10	8/6/10 20:03	116745	211637
N-Nitrosodi-n-propylamine	5.0 U	5.0	1.6	1	8/ 4/10	8/6/10 20:03	116745	211637
N-Nitrosodimethylamine	5.0 U	5.0	0.88	1	8/ 4/10	8/6/10 20:03	116745	211637
N-Nitrosodiphenylamine	5.0 U	5.0	1.2	1	8/ 4/10	8/6/10 20:03	116745	211637
Naphthalene	5.0 U	5.0	1,1	1	8/ 4/10	8/6/10 20:03	116745	211637
Nitrobenzene	5.0 U	5.0	1.3	1	8/4/10	8/6/10 20:03	116745	211637
Pentachlorophenol (PCP)	50 U	50	23	l	8/4/10	8/6/10 20:03	116745	211637
Phenanthrene	5.0 U	5.0	0.85	1	8/4/10	8/6/10 20:03	116745	211637
Phenol	5.0 U	5.0	0.40	1	8/ 4/10	8/6/10 20:03	116745	211637
Pyrene	5.0 U	5.0	0.85	1	8/4/10	8/6/10 20:03	116745	211637

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	89	28-157	8/6/10 20:03	
2-Fluorobiphenyl	72	37-118	8/6/10 20:03	
2-Fluorophenol	46	12-84	8/6/10 20:03	
Nitrobenzene-d5	75	38-120	8/6/10 20:03	
Phenol-d6	30	10-74	8/6/10 20:03	
p-Terphenyl-d14	103	40-133	8/6/10 20:03	

SuperSet Reference:

10-0000150851 rev 00

QA/QC Report

Client:General Electric CompanyProject:GE -Pittsfield NPDESSample Matrix:Water

Lab Control Sample Summary

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Analytical Method: 624

Units: µg/L Basis: NA

Service Request: R1004105

Date Analyzed: 8/ 3/10

Analysis Lot: 211053

		Control Sa Q1006358-(
Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
1,1,1-Trichloroethane (TCA)	19.8	20.0	99	52 - 162
1,1,2,2-Tetrachloroethane	21.3	20.0	106	46 - 157
1,1,2-Trichloroethane	21.3	20.0	106	52 - 150
1,1-Dichloroethane (1,1-DCA)	24.6	20.0	123	59 - 155
1,1-Dichloroethene (1,1-DCE)	23.2	20.0	116	0 - 234
1,2-Dichlorobenzene	19.5	20.0	98	18 - 190
1,2-Dichloroethane	19.7	20.0	99	49 - 155
1,2-Dichloropropane	24.9	20.0	124	0 - 210
1,3-Dichlorobenzene	19.8	20.0	99	59 - 156
1,4-Dichlorobenzene	20.0	20.0	100	18 - 190
2-Chloroethyl Vinyl Ether	21.7	20.0	109	0 - 305
Acrolein	82.3	100	82	10 - 174
Acrylonitrile	129	100	129	61 - 141
Benzene	22.4	20.0	112	37 - 151
Bromodichloromethane	19.4	20.0	97	35 - 155
Bromoform	16.4	20,0	82	45 - 169
Bromomethane	28.6	20.0	143	0 - 242
Carbon Tetrachloride	19.2	20.0	96	70 - 140
Chlorobenzene	21.1	20.0	105	37 - 160
Chloroethane	31.1	20.0	155	14 - 230
Chloroform	21.6	20.0	108	51 - 138
Chloromethane	32.4	20.0	162	0 - 273
Chlorodibromomethane	18.2	20.0	91	53 - 149
Dichlorodifluoromethane (CFC 12)	33.0	20.0	165 *	47 - 148
Methylene Chloride	22.0	20.0	110	0 - 221
Ethylbenzene	20.9	20.0	104	37 - 162
Tetrachloroethene (PCE)	20.3	20.0	102	64 - 148
Toluene	22.3	20.0	111	47 - 150
Trichloroethene (TCE)	21.6	20.0	108	71 - 157
Trichlorofluoromethane (CFC 11)	21.8	20.0	109	17 - 181
Vinyl Chloride	30.0	20.0	150	0 - 251
cis-1,3-Dichloropropene	20.6	20.0	103	0 - 227

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Lab Control Sample Summary

QA/QC Report

Client:General Electric CompanyProject:GE -Pittsfield NPDESSample Matrix:Water

Service Request: R1004105 Date Analyzed: 8/ 3/10

Date Analyzeu:

Lab Control Sample Summary

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Analytical Method: 624

Units: μg/L Basis: NA

Analysis Lot: 211053

		Control Sa Q1006358-(•		
Analyte Name	Result	Spike Amount	% Rec	% Rec Limits	
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	23.1 18.8	20.0 20.0	115 94	54 - 156 17 - 183	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Lab Control Sample Summary

QA/QC Report

Client:General Electric CompanyProject:GE -Pittsfield NPDESSample Matrix:Water

Service Request: R1004105 Date Analyzed: 8/6/10

Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS

Analytical Method:	625
Prep Method:	EPA 3510C

Units:	μg/L
Basis :	NA

Extraction Lot: 116745

		Control Sa Q1006367-(e Lab Contro Q1006367-0	64 D		RPD		
Analyte Name	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
1,2,4-Trichlorobenzene	61.9	100	62	64.7	100	65	29 - 85	5	30
1,2-Diphenylhydrazine	96.6	100	97	96.6	100	97	64 - 114	0	30
2,4,6-Trichlorophenol	87.0	100	87	91.5	100	92	37 - 144	5	30
2,4-Dichlorophenol	84.5	100	84	89.4	100	89	39 - 135	6	30
2,4-Dimethylphenol	62.6	100	63	62.6	100	63	32 - 119	0	30
2,4-Dinitrophenol	85.4	100	85	98.6	100	99	0 - 191	14	30
2,4-Dinitrotoluene	103	100	103	109	100	109	39 - 139	6	30
2,6-Dinitrotoluene	101	100	101	100	100	100	50 - 158	1	30
2-Chloronaphthalene	76.0	100	76	77.5	100	78	60 - 118	2	30
2-Chlorophenol	76,4	100	76	85.2	100	85	23 - 134	11	30
2-Nitrophenol	84.0	100	84	93,1	100	93	29 - 182	10	30
3,3'-Dichlorobenzidine	62.5	100	62	62.3	100	62	0 - 262	0	30
4,6-Dinitro-2-methylphenol	98.3	100	98	101	100	101	0 - 181	3	30
4-Bromophenyl Phenyl Ether	92.2	100	92	92.6	100	93	53 - 127	0	30
4-Chloro-3-methylphenol	90.9	100	91	89.2	100	89	22 - 147	2	30
4-Chlorophenyl Phenyl Ether	89.6	100	90	90.5	100	91	25 - 158	1	30
4-Nitrophenol	34.2	100	34	39.5	100	40	0 - 132	14	30
Acenaphthene	83.7	100	84	87.5	100	87	47 - 145	4	30
Acenaphthylene	86.2	100	86	88.8	100	89	33 - 145	3	30
Anthracene	96.2	100	96	94.4	100	94	27 - 133	2	30
Benz(a)anthracene	105	100	105	104	100	104	33 - 143	2	30
Benzidine	2.37	99.5	2 *	100 U	99.5	0 *	10 - 78	200 *	30
Benzo(a)pyrene	96.6	100	97	99.5	100	100	17 - 163	3	30
Benzo(b)fluoranthene	102	100	102	104	100	104	24 - 159	3	30
Benzo(g,h,i)perylene	107	100	107	107	100	107	0 - 219	0	30
Benzo(k)fluoranthene	101	100	101	105	100	105	11 - 162	4	30
2,2'-Oxybis(1-chloropropane)	68.8	100	69	75.6	100	76	36 - 166	9	30
Bis(2-chloroethoxy)methane	88.1	100	88	86.2	100	86	33 - 184	2	30
Bis(2-chloroethyl) Ether	79.1	100	79	84.5	100	85	12 - 158	7	30
Bis(2-ethylhexyl) Phthalate	115	100	115	115	100	115	8 - 158	0	30
Butyl Benzyl Phthalate	116	100	116	115	100	115	0 - 152	0	30
Chrysene	107	100	107	107	100	107	17 - 168	1	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

10-0000150851 rev 00

QA/QC Report

Client:General Electric CompanyProject:GE -Pittsfield NPDESSample Matrix:Water

Service Request: R1004105 Date Analyzed: 8/ 6/10

Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS

Analytical Method:625Prep Method:EPA 3510C

Units: $\mu g/L$

Basis: NA

Extraction Lot: 116745

		Control Sa Q1006367-(Spike		e Lab Contr Q1006367-(Spike	% Rec		RPD		
Analyte Name	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Di-n-butyl Phthalate	108	100	108	109	100	109	1 - 118	2	30
Di-n-octyl Phthalate	110	100	110	114	100	114	4 - 146	4	30
Dibenz(a,h)anthracene	107	100	107	110	100	110	0 - 227	3	30
Diethyl Phthalate	100	100	100	103	100	103	0 - 114	3	30
Dimethyl Phthalate	97.6	100	98	101	100	101	0 - 112	3	30
Fluoranthene	102	100	102	104	100	104	26 - 137	2	30
Fluorene	90.2	100	90	92.7	100	93	59 - 121	3	30
Hexachlorobenzene	95.4	100	95	93.7	100	94	0 - 152	2	30
Hexachlorobutadiene	61.0	100	61	64.4	100	64	24 - 116	5	30
Hexachlorocyclopentadiene	31.8	100	32	38.0	100	38	10 - 79	18	30
Hexachloroethane	55.9	100	56	60.4	100	60	40 - 113	8	30
Indeno(1,2,3-cd)pyrene	108	100	108	107	100	107	0 - 171	0	30
Isophorone	92.4	100	92	94.2	100	94	21 - 196	2	30
N-Nitrosodi-n-propylamine	72.2	100	72	81.2	100	81	0 - 230	12	30
N-Nitrosodimethylamine	46,9	100	47	50.4	100	50	34 - 130	7	30
N-Nitrosodiphenylamine	96,3	100	96	94.4	100	94	50 - 117	2	30
Naphthalene	66.2	100	66	68.1	100	68	21 - 133	3	30
Nitrobenzene	78.8	100	79	80.9	100	81	35 - 180	3	30
Pentachlorophenol (PCP)	99.9	100	100	97.1	100	97	14 - 176	3	30
Phenanthrene	99.7	100	100	99.5	100	99	54 - 120	0	30
Phenol	32.5	100	33	35.2	100	35	5 - 112	8	30
Pyrene	108	100	108	105	100	105	52 - 115	3	30

Results flagged with an asterisk (*) indicate values outside control criteria.

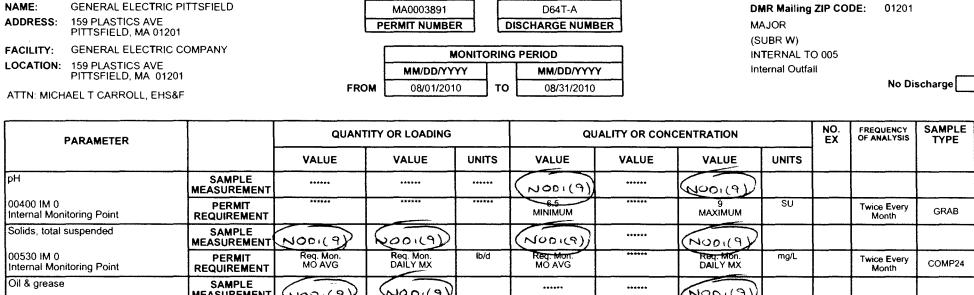
Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Lab Control Sample Summary

SuperSet Reference:

Columbia Analytical Servi											UES		OR	M	SR #	Contact			
1 Mustard Street, Suit	e 250, Rochester, NY 1460 S Permit	9 585.288.5	380 I 800.	695.72	22 5	585.288.	7		PAG			OF_	s and the second	and Co			rvative)		
Project Number: Report CC:				PRES	ERVATI		a		1			TI				1030			
Project Manager: Sea Company/Address: Veolia Water (GE CEP 1000 East Street Pittsfield, MA 01201 Phone: (413) 494-670	2)	-7052		ER OF CONTAINERS	A's	11	1	alle	08 D CLP	METALS DISOUTED	Contraction (Contraction)			/			1	Preservat 0. NONE 1. HCL 2. HNO3 3. H2SO 4. NAOH 5. Zn. Ac 6. MeOH 7. NaHS 8. Other	4 cetate 1 O4
Sampler's Signature Mu CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID		LOCO E MATRIX	NUMBER OF	GCMS VOA'S	GCMS SV	PESTICIDA	PCB'S D 8085	METALS, T	METALS L LUST IN COM	20/2				/ /	/ /	ALTERN	REMARKS/	
64G-3Q2M-IX-GV	35 W 1 8 1 19 1 1 1 1 1 1	8-2-10 7-	× H20	3	X														
646-3Q2M-1X-6V	A		Z HLO	3	2						<								
646-3Q2M-18-65		8.2-10 79		1		\times				-									
Trip BLANK		8.2.10 73			\times														
Trip BLANK		8-2-10 73	£ H₂C	3															
SPECIAL INSTRUCTIONS/COMMENTS 1. EPA 624 Acrolein 8 2. Full EPA 624 list ex (preserved) 3. Full EPA 625 list - EPA 624 & 625 list i - Samples packed in	duding Acrolein & A	eserved) crylonitrite	F			RUS		HARGES 18 hr _ TE _	APPLY)			PORT R Isults Only esults + C S, DUP, M Results + (Immaries Data Validi pecialized	C Summ S/MSD at QC and C ation Rep	aries s required alibration ort with F	d) h Ranw Data	PO# BILL Y		INFORMAT	
			CUSTODY SE	ALS: V							Ec	ata	Yes	}		04	105		
RELINQUISHED BY	Simil Want		RELINQUISHE	CONTROL 1			RECE	IVED BY	<i>,</i>			RELIN	QUISHE	DBY	GE -Pitts	ater Nor field NP	rth America DES		
Signature On mm	Saniel Work	Signature Drietod No.				Signature					Signature							4 8 8 1 11 6 11 6 11	IT USED HEL
	Printed Name CAS	Printed Na				Printed Nam	e 				Printed Na	me					d Name		
CANA	Firm 8/3/10/0940 Date/Time	Firm				Firm					irm					Firm			
Date/Time 8/2/10 2:000		Date/Time				Date/Time					Date/Time					Date/T	ime		

Distribution: White - Return to Originator: Yellow - Lab Copy


				Cooler Reco	eipt An	d Pres	ervatio	on Chee	ck Form	K1004 Veolia Weter No GE -Pittefield NF	T 105 th America Dea Marine Marine M Marine Marine Mari
Project	Client GE-	P:Hz	field	1	Su	bmissi	on Nu	nber	Ric-1	1105.	
Cooler	received or	8/3	5/10	by: <u>Dfn</u>	COUR	IER:	CAS	UPS	FEDEX	VELOC	TITY CLIENT
1. 2. 3. 4. 5. 6. 7.	Were custo Did all bot Did any V Were tre Where did	ody pa tles a OA v or Ice the b	apers rrive ials l pac l ottle	on outside of cool s properly filled o in good condition have significant* ks present? s originate? er(s) upon receipt	ut (ink, n (unbro air bubl	oken)? oles?		,	VES VES VES VES VES CASA	NO NO NO NO OC, CH	N/A ENT
	Is the temp	eratu	re w	ithin 0° - 6° C?:	Ý	es	Yes	5	Yes	Yes	Yes
	If No, Exp	lain	Belo	w	N	0	No		No	No	No
	Date/Time	Tem	perat	tures Taken: 8/3	10/0	150					
	Thermome	ter II): IR	GUN#3 / IR-G	UN#4	Rea	ding F	rom: T	emp Blank	c / Samo	le Bottle
PC Second 1. 2. 3. 4.	ondary Rev Breakdown Were all bo Did all both Were corre	riew: 1: Da 1:	ate :_ abels pels a ntain	e packing/ice con 21 21 21 21 21 21 21 21 21 21	3/1c palysis, th custo ests indi	preserv dy pap icated?	by vation, vers?	: etc.)?	M ~ VES VES	NO NO NO B Bags Int	flated N/A
рН	Reagent	<u> </u>		Lot Received	Exp	Samp	le ID	Vol.	Lot Added	1	Yes = All
≥12	NaOH	YES	NO		<u> </u>	1		Added		рН	samples OK
≤2	HNO ₃	<u> </u>			1	1					No =
≤2	H ₂ SO ₄					1					Samples were
Residual Chlorine (-)	For TCN and Phenol			If present, contact add ascorbic acid	PM to						preserved at lab as listed
	$Na_2S_2O_3$	-	•						re analysis –		PM OK to
	Zn Aceta	-	-					orded by workshe	VOAs or G	enChem	Adjust:
	HCI	*	*	4109120			eparate	WULKSHE			
Bottle lot Other Cor			C	1-122-002	0322	10 - 12	-				

Davo

*significant air bubbles are greater than 5-6 mm

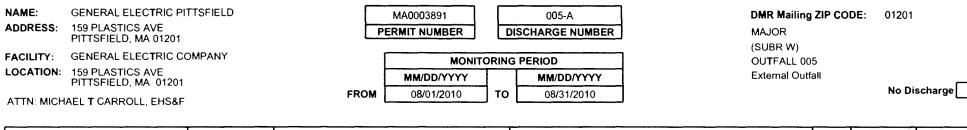
PC Secondary Review: ______ H:\SMODOCS\Cooler Receipt 2.doc

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

Oil & grease	SAMPLE MEASUREMENT	209,(9)	WOD(9)			******	(NODIG)				
00556 IM 0 Internal Monitoring Point	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	lb/d	******	*****	15 DAILY MX	mg/L		Twice Every Month	GRAB
Polychlorinated biphenyls (PCBs)	SAMPLE MEASUREMENT	(NODIG)	(NODI(9)		NODICA	*****	NODIG				
39516 IM 0 Internal Monitoring Point	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	lb/d	Req. Mon. MO AVG	*****	Req. Mon. DAILY MX	ug/L		Twice Every Month	COMP24
Flow, in conduit or thru treatment plant	SAMPLE MEASUREMENT	0.0012	0.0022	MLD	******	*****	*****	******	0	WEEKLY	ESTIMA
50050 IM 0 Internal Monitoring Point	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	Mgal/d	*****	******	******	*****		Weekly	ESTIMA
Flow, total	SAMPLE MEASUREMENT	NODI(9)	(NODICA)		******	******	*****	*****			
82220 IM 0 Internal Monitoring Point	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	Mgal/d	******	*****	******	******		Weekly	ESTIMA

NAME/TITLE PRINCIPAL EXECUTIVE OFFICER	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision m accordance with a system designed to assure that qualified personnel property gather and		TEL	EPHONE	DATE
MICHAEL IT CANADLE	evaluate the information submitted. Based or my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, twe, accurate, and complete 1 am aware that there are significant in the submitted is a submitted in the submitted in the submitted is a submitted in the submitted in th	Whichael Caroll	(413) 44	8-5902	04/22/2010
TYPED OR PRINTED	penatites for submitting false information, including the possibility of fine and imprisonment for knowing violations	SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT	AREA Code	NUMBER	MM/DD/YYYY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)


FLOW TOTAL SEE FOOTNOTE 4.

Attachment E - Outfall 64T

	Estimated	Rainfall	Rainfall
Date	Flow - MGD	Total - In	Peak - In
08/01/10	0.0007	0.00	0.00
08/02/10		0.00	0.00
08/03/10		0.00	0.00
08/04/10		0.00	0.00
08/05/10		0.00	0.00
08/06/10		0.02	0.02
08/07/10		0.00	0.00
08/08/10	0.0022	0.00	0.00
08/09/10		0.00	0.00
08/10/10		0.01	0.01
08/11/10		0.00	0.00
08/12/10		0.00	0.00
08/13/10		0.00	0.00
08/14/10		0.00	0.00
08/15/10	0.0004	0.00	0.00
08/16/10		0.15	0.09
08/17/10		0.29	0.29
08/18/10		0.00	0.00
08/19/ 10		0.00	0.00
08/20/10		0.06	0.06
08/21/10		0.00	0.00
08/22/10	0.0022	0.00	0.00
08/23/10		0.30	0.08
08/24/10		0.00	0.00
08/25/10		0.02	0.02
08/26/10		0.00	0.00
08/27/10		0.00	0.00
08/28/10		0.00	0.00
08/29/10	0.0007	0.00	0.00
08/30/10		0.00	0.00
08/31/10		0.00	0.00

.

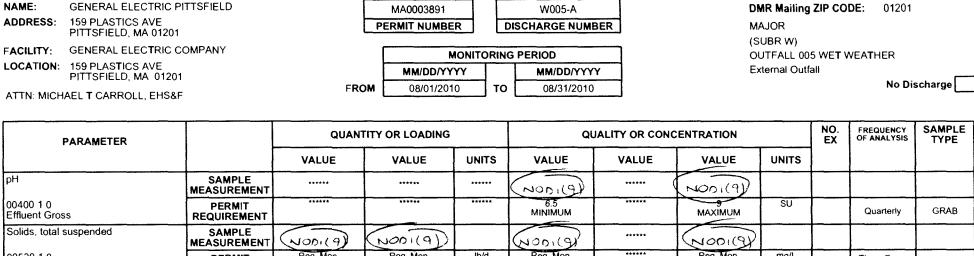
PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

PARAMETER		QUAN	TITY OR LOADING		QL	JALITY OR CON	CENTRATION		NO. EX	FREQUENCY OF ANALYSIS	SAMPLE TYPE
		VALUE	VALUE	UNITS	VALUE	VALUE	VALUE	UNITS			
рН	SAMPLE MEASUREMENT	*****	*****	******	7.66	*****	7.68	50	0	ZIMO	GAAB
00400 1 0 Effluent Gross	PERMIT REQUIREMENT	*****	*****	******	6.5 MINIMUM	*****	9 MUMIXAM	SU		Twice Per Month	GRAB
Solids, total suspended	SAMPLE MEASUREMENT	0	Ø	165/d	0	*****	0	Mg/L	0	zImo	comoz4
00530 1 0 Effluent Gross	PERMIT REQUIREMENT	188 MO AVG	270 DAILY MX	lb/d	Req. Mon. MO AVG	*****	Req. Mon. DAILY MX	mg/L		Twice Per Month	COMP24
Oil & grease	SAMPLE MEASUREMENT	*****	0	165/d	*****	*****	0	MglL	0	z/mo	GLAB
00556 1 0 Effluent Gross	PERMIT REQUIREMENT	*****	135 DAILY MX	Ib/d	*****	*****	15 DAILY MX	mg/L		Twice Per Month	GRAB
Polychlorinated biphenyls (PCBs)	SAMPLE MEASUREMENT	0.00000 8	0.000011	1bs/d	8800,0	*****	0.0103	usic	0	z/mo	COMPOZY
39516 1 0 Effluent Gross	PERMIT REQUIREMENT	.01 MO AVG	.03 DAILY MX	lb/d	Req. Mon. MO AVG	*****	Req. Mon. DAILY MX	ug/L		Twice Per Month	COMP24
Rainfall	SAMPLE MEASUREMENT	0.00	0.00	11	*****	*****		•••••	0	CONT	RECORDI
46529 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	in	******	*****	*****	*****		Continuous	RCORDR
Flow, in conduit or thru treatment plant	SAMPLE MEASUREMENT	0.1128	0.2990	MCD	******				0	CONT	RECORD
50050 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	Mgal/d	*****	*****	*****	*****		Continuous	RECORD
Flow, total	SAMPLE MEASUREMENT	0.1120	0.1304	MGD	*****	*****			0	CONT	RCONDR
82220 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	Mgal/d	*****	*****	*****	*****		Continuous	RECORD

	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and	-M. II	TELEPHONE	DATE
	evaluate the information submitted Based on my inquiry of the person or persons who manage the system; or those persons durely responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and somplete. I am aware that there are significant		(413)448-5902	04/22/2010
TYPED OR PRINTED	penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations	SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT	AREA Code NUMBER	MM/DD/YYYY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE PAGE 4 OF PERMIT, FLOW TOTAL SEE FOOTNOTE 4.

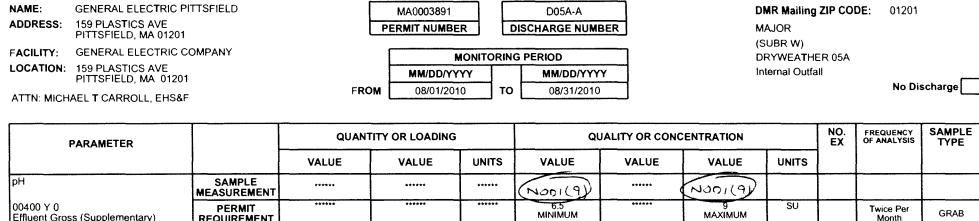

Attachment E - Outfall 005

		TSS	FN	Oil & Grease	FN	PCB	FN	Metered	Flooded	Rainfall	Rainfall
Date	pН	MG/L		MG/L		UG/L		Flow - MGD	Condition	Total - In	Peak - In
08/01/10								0.0975	NO	0.00	0.00
08/02/10	7.66	U1.00	1,C	U4.20	1,G	0.0103	с	0.1304	NO	0.00	0.00
08/03/10	1							0.1331	NO	0.00	0.00
08/04/10								0.0963	NO	0.00	0.00
08/05/10								0.1206	NO	0.00	0.00
08/06/10							ļ	0.1196	NO	0.02	0.02
08/07/10								0.1039	NO	0.00	0.00
08/08/10								0.1186	NO	0.00	0.00
08/09/10	7.68	U1.00	1,C	U4.10	1,G	0.0072	С	0.0936	NO	0.00	0.00
08/10/10								0.1240	NO	0.01	0.01
08/11/10								0.1212	NO	0.00	0.00
08/12/10								0.0782	NO	0.00	0.00
08/13/10							(0.1149	NO	0.00	0.00
08/14/10								0.1271	NO	0.00	0.00
08/15/10							1	0.0806	NO	0.00	0.00
08/16/10								0.1663	NO	0.15	0.09
08/17/10							1	0.1826	NO	0.29	0.29
08/18/10								0.0771	NO	0.00	0.00
08/19/10								0.0888	NO	0.00	0.00
08/20/10								0.1385	NO	0.06	0.06
08/21/10							1	0.0821	NO	0.00	0.00
08/22/10								0.1160	NO	0.00	0.00
08/23/10							1	0.2990	NO	0.30	0.08
08/24/10								0.0965	NO	0.00	0.00
08/25/10								0.1149	NO	0.02	0.02
08/26/10								0.1220	NO	0.00	0.00
08/27/10								0.0797	NO	0.00	0.00
08/28/10							[0.0773	NO	0.00	0.00
08/29/10								0.0742	NO	0.00	0.00
08/30/10								0.0490	NO	0.00	0.00
08/31/10								0.0728	NO	0.00	0.00

FN 1 - (U) Indicates compound analyzed but not detected

C - Composite sample

G - Grab sample


Solids, total suspended	SAMPLE MEASUREMENT	NODI(9)	(NODI(9)		(NODI(9)	*****	RDIOON			
00530 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	lb/d	Req. Mon. MO AVG	*****	Req. Mon. DAILY MX	mg/L	Three Every Quarter	COMPOS
Oil & grease	SAMPLE MEASUREMENT		******	*****		*****	NOD (9)			
00556 1 0 Effluent Gross	PERMIT REQUIREMENT	*****	****	*****		*****	15 DAILY MX	mg/L	Quarterly	GRAB
Polychlorinated biphenyls (PCBs)	SAMPLE MEASUREMENT	WODI(9)	(NODIL9)		NODIG	*****	(P) IOON			
39516 1 0 Effluent Gross	PERMIT REQUIREMENT	Reg. Mon. MO AVG	Req. Mon. DAILY MX	lb/d	Req. Mon. MO AVG	*****	Req. Mon. DAILY MX	ug/L	Three Every Quarter	COMPOS
Rainfall	SAMPLE MEASUREMENT	NODI(9)	(P)1001		******	*****		*****		
46529 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	in	*****	*****	*****	******	Continuous	RCORDR
Flow, total	SAMPLE MEASUREMENT	(NODI(9)	(P)IDCM			*****		******		
82220 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	Mgal/d	*****	*****	*****	*****	Continuous	RCORDR

NAME/TITLE PRINCIPAL EXECUTIVE OFFICER	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and	50 1 A	TELEPHONE	DATE
MICHAEL T. CALLOLL	evaluate the information submitted Based on my inquiry of the person or persons who manage the system; or those persons directly responsible for gathering the uniformation, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalities for submitting faste momentation, including the possibility of fine and impressonment for knowing.		(413)448-5902	09/22/2010
	performers for automotion grade information, including the positionity of the and improvement for knowing violations	SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR	AREA Code NUMBER	MM/DD/YYYY

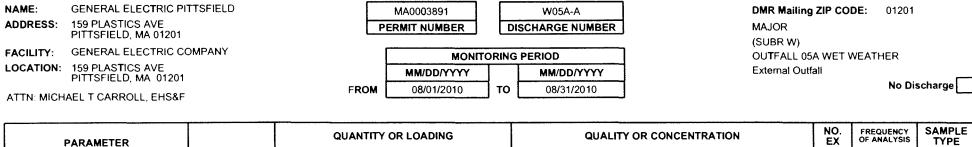
COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE PAGE 5 OF PERMIT. FLOW TOTAL SEE FOOTNOTE 4.

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

00400 Y 0 Effluent Gross (Supplementary)	PERMIT REQUIREMENT	******	******	*****	6.5 MINIMUM	*****	9 MAXIMUM	S∪	Twice Per Month	GRAB
Solids, total suspended	SAMPLE MEASUREMENT	NODICA	(NODIG)		NODION	*****	NOOI(9)			
00530 Y 0 Effluent Gross (Supplementary)	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	lb/d	Req. Mon. MO AVG	****	Req. Mon. DAILY MX	mg/L	Twice Per Month	COMP24
Oil & grease	SAMPLE MEASUREMENT		*****	*****	NUDIG	*****	(2001(9)			
00556 1 0 Effluent Gross	PERMIT REQUIREMENT	*****	*****	*****	Req. Mon. MO AVG	******	15 DAILY MX	mg/L	Quarterly	GRAB
Polychlorinated biphenyls (PCBs)	SAMPLE MEASUREMENT	NODIG	(NODI (9)		(NODI (9)	******	MODICA			
39516 Y 0 Effluent Gross (Supplementary)	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	ib/d	Req. Mon. MO AVG	*****	Req. Mon. DAILY MX	ug/L	Twice Per Month	COMP24
Flow, in conduit or thru treatment plant	SAMPLE MEASUREMENT	NODIGY	(NOD.(9)		*****	******	*****	•••••		
50050 Y 0 Effluent Gross (Supplementary)	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	Mgal/d	******	*****	*****	*****	Weekly	ESTIMA

NAME/TITLE PRINCIPAL EXECUTIVE OFFICER	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and	-1. 70.0	TEL	EPHONE	DATE
MICHAEL T. CAMOLL	evaluate the information submitted Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, rose, accurate, and complete. I am aware that there are significant	Which and I anold	(413)~	148-5907	04/22/2010
MGA. ATTSFIELD REMEDIATION PACE.	penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations	SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR	<u> </u>	///////////////////////////////////////	
TYPED OR PRINTED		AUTHORIZED AGENT	AREA Code	NUMBER	MM/DD/YYYY


COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

TOTAL FLOW SEE FOOTNOTE 4.

Attachment E - Outfall 05A Dry

	Estimated	Rainfall	Rainfall	Flooded
Date	Flow - MGD	Total - In	Peak - In	Condition
08/01/10		0.00	0.00	NO
08/02/10		0.00	0.00	NO
08/03/10		0.00	0.00	NO
08/04/10		0.00	0.00	NO
08/05/10		0.00	0.00	NO
08/06/10		0.02	0.02	NO
08/07/10		0.00	0.00	NO
08/08/10		0.00	0.00	NO
08/09/10		0.00	0.00	NO
08/10/10		0.01	0.01	NO
08/11/10		0.00	0.00	NO
08/12/10		0.00	0.00	NO
08/13/10		0.00	0.00	NO
08/14/10		0.00	0.00	NO
08/15/10		0.00	0.00	NO
08/16/10		0.15	0.09	NO
08/17/10		0.29	0.29	NO
08/18/10		0.00	0.00	NO
08/19/10		0.00	0.00	NO
08/20/10		0.06	0.06	NO
08/21/10		0.00	0.00	NO
08/22/10		0.00	0.00	NO
08/23/10		0.30	0.08	NO
08/24/10		0.00	0.00	NO
08/25/10		0.02	0.02	NO
08/26/10		0.00	0.00	NO
08/27/10		0.00	0.00	NO
08/28/10		0.00	0.00	NO
08/29/10		0.00	0.00	NO
08/30/10		0.00	0.00	NO
08/31/10		0.00	0.00	NO

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

PARAMETER									EX	OF ANALYSIS	TYPE
		VALUE	VALUE	UNITS	VALUE	VALUE	VALUE	UNITS			
рН	SAMPLE MEASUREMENT	******	*****	******	(NODILA)	****	NOD1(9))				
00400 1 0 Effluent Gross	PERMIT REQUIREMENT	******	*****	******	6.5 MINIMUM	*****	MAXIMUM	SU		Quarterly	GRAB
Solids, total suspended	SAMPLE MEASUREMENT	(P)IOON	(P) 100M		(P), OUN	*****	(2001(9)				
00530 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	lb/d	Req. Mon. MO AVG	*****	Req. Mon. DAILY MX	mg/L		Three Every Quarter	COMPOS
Oil & grease	SAMPLE MEASUREMENT	(NODI(9)	AUDILAN		******	*****	NODICA				
00556 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	lb/d		*****	15 DAILY MX	mg/L		Quarterly	GRAB
Polychlorinated biphenyls (PCBs)	SAMPLE MEASUREMENT	(NODI(9))	(NOOI(9)	(N001(9)	******	(NODI(9))				
39516 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	lb/d	Req. Mon. MO AVG	*****	Req. Mon. DAILY MX	ug/L		Three Every Quarter	COMPOS
Rainfall	SAMPLE MEASUREMENT	(1001(9)	(NODI(9)		******	******	*****	*****			
46529 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req: Mon. DAILY MX	in	******	******	******	******		Daily When Discharging	TOTALZ
Flow, in conduit or thru treatment plant	SAMPLE MEASUREMENT	0.0589	0.1198	MGO	*****		******	*****	0	CONT	RCONDN
50050 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO A VG	Req. Mon. DAILY MX	Mgal/d	*****	******	*****	*****		Continuous	RCORDR
Number of Events	SAMPLE MEASUREMENT	24	*****	#	*****	*****	*****	*****	0	DAILY WHEN PISHANWHU	VISUAL
51484 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. TOTAL	*****	#	*****	*****	*****	*****		Daily When Discharging	VISUAL

NAME/TITLE PRINCIPAL EXECUTIVE OFFICER	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted Based on my inquiry of the person or persons who manage the		TELEPHONE	DATE
MICHAN TT CARAULE	system, or those persons directly responsible (or gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and improvement for knowling.		(4.3)-47-5902	09/22/2010
TYPED OR PRINTED	violations	SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT	AREA Code NUMBER	MM/DD/YYYY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE PAGE 7 OF PERMIT. FLOW TOTAL SEE FOOTNOTE 4.

Form Approved OMB No. 2040-0004

Form Approved OMB No, 2040-0004

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

NAME:GENERAL ELECTRIC PITTSFIELDADDRESS:159 PLASTICS AVE PITTSFIELD, MA 01201	MA0003891 W05A-A PERMIT NUMBER DISCHARGE NUMBER	DMR Mailing ZIP CODE: 01201 MAJOR (SUBR W)
FACILITY: GENERAL ELECTRIC COMPANY	MONITORING PERIOD	OUTFALL 05A WET WEATHER
LOCATION: 159 PLASTICS AVE PITTSFIELD. MA 01201	MM/DD/YYYY MM/DD/YYYY	External Outfall
ATTN: MICHAEL T CARROLL, EHS&F	F ROM 08/01/2010 TO 08/31/2010	No Discharge

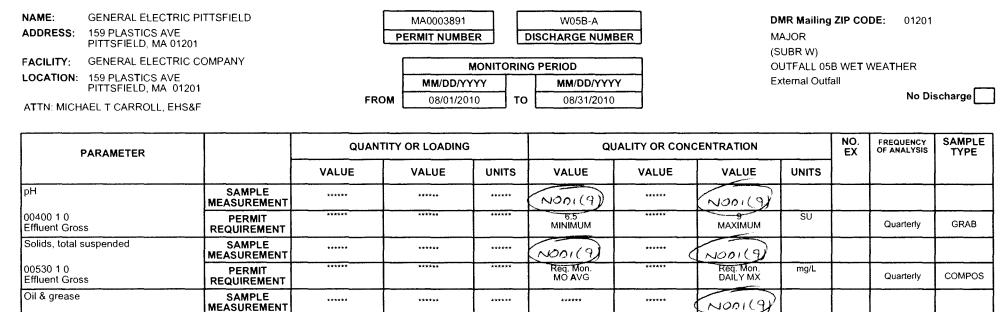
PARAMETER		QUANTITY OR LOADING			QUALITY OR CONCENTRATION					FREQUENCY OF ANALYSIS	SAMPLE TYPE
		VALUE	VALUE	UNITS	VALUE	VALUE	VALUE	UNITS			
Flow, total	SAMPLE MEASUREMENT	NOOILA	(P) 190		******	*****	*****	*****			
82220 1 0 Effluent Gross		Req. Mon. MO AVG	Req. Mon. DAILY MX	Mgal/d	*****	*****	*****	*****		Continuous	RCORDR

NAME/TITLE PRINCIPAL EXECUTIVE OFFICER	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel property gather and "	$\nabla 2i$, $\neg 1$	TELE	EPHONE	DATE
MICHAEL T. CALLOLL	evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, rule, accurate, and complete 1 am aware that there are significant		(413)4	48-5502	04/22/2010
	penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.	SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT	AREA Code	NUMBER	MM/DD/YYYY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE PAGE 7 OF PERMIT. FLOW TOTAL SEE FOOTNOTE 4.

Attachment E - Outfall 05A Wet


		TSS	FN	Oil & Grease	FN	PCB	FN	Metered	Calculated	Flooded	Rainfall	Rainfall
Date	рН	MG/L		MG/L		UG/L		Flow - MGD	Flow - MGD	Condition	Total - In	Peak - In
08/01/10										NÖ	0.00	0.00
08/02/10]									NO	0.00	0.00
08/03/10	ļ									NO	0.00	0.00
08/04/10				1						NO	0.00	0.00
08/05/10			l l							NO	0.00	0.00
08/06/10		1								NO	0.02	0.02
08/07/10										NO	0.00	0.00
08/08/10										NO	0.00	0.00
08/09/10		ł								NO	0.00	0.00
08/10/10										NO	0.01	0.01
08/11/10										NO	0.00	0.00
08/12/10		1								NO	0.00	0.00
08/13/10		1								NO	0.00	0.00
08/14/10]								NO	0.00	0. 00
08/15/10]								NO	0.00	0.00
08/16/10]							0.0001		NO	0.15	0.09
08/17/10								0,1081		NO	0.29	0.29
08/18/10	1		1							NO	0.00	0.00
08/19/10			1							NO	0.00	0.00
08/20/10	1							0.0075		NO	0. 06	0.06
08/21/10										NO	0.00	0.00
08/22/10										NO	0.00	0. 00
08/23/10	ł	1						0.1198		NO	0.30	0.08
08/24/10			1							NO	0.00	0.00
08/25/10	1		1							NO	0.02	0.02
08/26/10			1							NO	0.00	0.00
08/27/10	1									NO	0.00	0.00
08/28/10	1		1	J I						NO	0.00	0.00
08/29/10]									NO	0.00	0.00
08/30/10	ļ		Í							NO	0.00	0.00
08/31/10			1							NO	0.00	0.00

FN 1 - (U) Indicates compound analyzed but not detected

C - Composite sample

G - Grab sample

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

in

MGD

#

Mgal/d

Ħ

NODICA

Reg. Mon.

MO AVG

mg/L

ug/L

 \mathcal{O}

 \mathcal{O}

DAILY MX

NOOIGH

Reg. Mon.

DAILY MX

NAME/TITLE PRINCIPAL EXECUTIVE OFFICER	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and	n' TO	TEL	EPHONE	DATE	· /
MICONEL T. CALLOLL	evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, twe, accurate, and complete. J am aware that there are significant		(413)4	148-5902	09/22	12010
TYPED OR PRINTED	penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.	SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT	AREA Code	NUMBER	MM/DD/YY	YY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

NODIGY

Reo. Mon

MO AVG

Reg. Mon.

MO AVG

Reg. Mon.

TOTAL

0.0169

PERMIT

REQUIREMENT

SAMPLE

MEASUREMENT

PERMIT

REQUIREMENT

SAMPLE

MEASUREMENT

PERMIT

REQUIREMENT

SAMPLE

MEASUREMENT

PERMIT

REQUIREMENT

SAMPLE

MEASUREMENT

PERMIT

REQUIREMENT

NOD1(9)

Req. Mon.

DAILY MX

Req. Mon.

DAILY MX

0.0169

SEE PAGE 8 OF PERMIT. FLOW TOTAL SEE FOOTNOTE 4.

00556 1 0

3951610

46529 1 0

50050 1 0

51484 1 0

Effluent Gross

Effluent Gross

Effluent Gross

Number of Events

Rainfall

Effluent Gross

Effluent Gross

Polychlorinated biphenyls (PCBs)

Flow, in conduit or thru treatment plant

GRAB

COMPOS

TOTALZ

RCONDN

RCORDR

VISUAL

VISUAL

Quarterly

Quarterly

Daily When

Discharging

Continuous

DISCHALLA

Daily When

Discharging

co~~~

and J

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)

DISCHARGE MONITORING REPORT (DMR)

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

NAME: GENERAL ELECTRIC PITTSFIELD ADDRESS: 159 PLASTICS AVE PITTSFIELD, MA 01201	MA0003891 W05B-A PERMIT NUMBER DISCHARGE NUMBER	DMR Mailing ZIP CODE: 01201 MAJOR (SUBR W)
FACILITY: GENERAL ELECTRIC COMPANY	MONITORING PERIOD	OUTFALL 05B WET WEATHER
LOCATION: 159 PLASTICS AVE PITTSFIELD, MA 01201	MM/DD/YYYY MM/DD/YYYY	External Outfall
ATTN: MICHAEL T CARROLL, EHS&F	FROM 08/01/2010 TO 08/31/2010	No Discharge
[

PARAMETER		QUANT	TTY OR LOADING		QI	JALITY OR CONC	ENTRATION		NO. EX	FREQUENCY OF ANALYSIS	SAMPLE TYPE
		VALUE	VALUE	UNITS	VALUE	VALUE	VALUE	UNITS			
Flow, total	SAMPLE MEASUREMENT	(NIODIG)	NOD1(9)	>		******		*****			
82220 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	Mgal/d	*****	44***	*****	*****		Continuous	RCORDR

NAME/TITLE PRINCIPAL EXECUTIVE OFFICER	I certify under penalty of law that this document and will attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and		TELEPHONE	DATE /
Michael T. Cornsi MGR. Pittof. eld Remedication Pric TYPED OR PRINTED	evaluate the information submitted Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete 1 am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.	SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT		09/22/2010 MM/00/1999

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE PAGE 8 OF PERMIT. FLOW TOTAL SEE FOOTNOTE 4.

Attachment E - Outfall 05B Wet

ſ	1	TSS	FN	Oil & Grease	FN	PCB	FN	Metered	Calculated	Rainfall	Rainfall
Date	рН	MG/L		MG/L		UG/L		Flow - MGD	Flow - MGD	Total - In	Peak - In
08/01/10										0.00	0.00
08/02/10										0.00	0.00
08/03/10										0.00	0.00
08/04/10										0.00	0.00
08/05/10										0.00	0.00
08/06/10										0.02	0.02
08/07/10										0.00	0.00
08/08/10										0.00	0.00
08/09/10		:								0.00	0.00
08/10/10										0.01	0.01
08/11/10										0.00	0.00
08/12/10	1									0.00	0.00
08/13/10]									0.00	0.00
08/14/10										0.00	0.00
08/15/10										0.00	0.00
08/16/10										0.15	0.09
08/17/10						-		0.0169		0.29	0.29
08/18/10										0.00	0.00
08/19/10										0.00	0.00
08/20/10	1									0.06	0.06
08/21/10)									0.00	0.00
08/22/10										0.00	0.00
08/23/10										0.30	0.08
08/24/10	1									0.00	0.00
08/25/10]									0.02	0.02
08/26/10										0.00	0.00
08/27/10										0.00	0.00
08/28/10										0.00	0.00
08/29/10]									0.00	0.00
08/30/10	1									0.00	0.00
08/31/10										0.00	0.00

1 - (U) Indicates compound analyzed but not detected

C - Composite sample

G - Grab sample

FN

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

NAME:GENERAL ELECTRIC PIADDRESS:159 PLASTICS AVE PITTSFIELD, MA 01201	TTSFIELD		MA0003891 PERMIT NUMBE	R	D006-A DISCHARGE NUMI	BER	DMR Mailing ZIP CODE: 01201 MAJOR (SUBR W)				
FACILITY: GENERAL ELECTRIC CO	OMPANY		N	ONITORIN	G PERIOD		(/		WEATHER	
LOCATION: 159 PLASTICS AVE PITTSFIELD, MA 01201			MM/DD/YY	YY	MM/DD/YYY	Y	E	kternal Out	fall		
ATTN: MICHAEL T CARROLL, EHS&F		FRC	08/01/201	10 т о	08/31/2010					No Di	scharge
PARAMETER		QUANT	TITY OR LOADING						NO. EX	FREQUENCY OF ANALYSIS	SAMPLE TYPE
		VALUE	VALUE	UNITS	VALUE	VALUE	VALUE	UNITS]		
рН	SAMPLE MEASUREMENT	*****	*****		NODIG	******	PILOON				
00400 1 0 Effluent Gross	PERMIT REQUIREMENT	*****	*****	*****	6.9 MINIMUM	****	9 MAXIMUM	SU		Twice Every Month	GRAB
Solids, total suspended	SAMPLE MEASUREMENT	NODICA	NODICA		NODIGY	*****	RODI (3)				
00530 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	lb/d	Req. Mon. MO AVG	****	Req. Mon. DAILY MX	mg/L		Twice Every Month	COMP24
Oil & grease	SAMPLE MEASUREMENT	*****	*****	*****	*****	******	N00, (9)				
00556 1 0 Effluent Gross	PERMIT REQUIREMENT	*****	*****	*****	*****	*****	15 DAILY MX	mg/L		Twice Every Month	GRAB
Polychlorinated biphenyls (PCBs)	SAMPLE MEASUREMENT	NODICA	NODILAY		NODICA	*****	NUDI(9)				
39516 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	lb/d	Req. Mon. MO AVG	****	Req. Mon. DAILY MX	ug/L		Twice Every Month	COMP24
Flow, in conduit or thru treatment plant	SAMPLE MEASUREMENT	0	0	MUD	*****	*****	******	*****	0	UBEKLY	ESTIMA
50050 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	Mgal/d	*****	±****	*****	*****		Węekly	ESTIMA
Volatile Organic Compound (VOC)	SAMPLE MEASUREMENT	*****	*****	****** (RELIDON	*****	NUD1(3)				
51415 1 0 Effluent Gross	PERMIT REQUIREMENT	*****	******	*****	Req. Mon. MO AVG	*****	Req. Mon. DAILY MX	ug/L		Twice Every Month	GRAB
Volatile fraction organics (EPA 624)	SAMPLE MEASUREMENT	*****	*****	(NODICAD	******	NODILS				

Reg. Mon

MO AVG

Req. Mon. DAILY MX ug/L

Twice Every

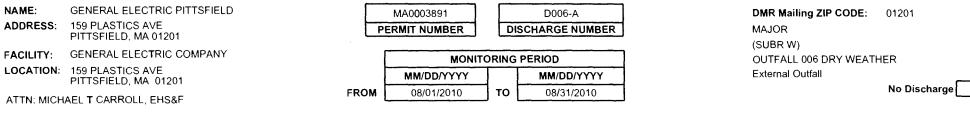
Month

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

PERMIT

REQUIREMENT

SEE PAGE 9 OF PERMIT; FLOW TOTAL SEE FOOTNOTE 4. SEMIVOLATILES UNDER 51415.


78733 1 0

Effluent Gross

Page 1

GRAB

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

PARAMETER		QUAN	TITY OR LOADING		QUALITY OR CONCENTRATION				NO. EX	FREQUENCY OF ANALYSIS	SAMPLE TYPE
		VALUE	VALUE	UNITS	VALUE	VALUE	VALUE	UNITS			
Flow, total		NODILA	(NODIG)		*****	*****	****	*****			
82220 1 0 Effluent Gross	PERMIT REQUIREMENT	Req: Mon. MO AVG	Req. Mon. DAILY MX	Mgal/d	*****	*****	*****	*****		Weekly	ESTIMA

NAME/TITLE PRINCIPAL EXECUTIVE OFFICER	I certify under penalty of taw that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information pubmitted. Based on my inquiry of the person or persons who manage the		TEL	EPHONE	DATE	
ALICHAEL TT CANADLE	evaluate the information submittice, based on my induity of the person of persons who manage the system, of those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I an aware that there are significant penalities for submitting false information, including the possibility of fine and improsonment for knowing.		(413) -	148-5902	09/22/201	c
MUL. PILISFIELD KELMENIATION PLUE.	violations.	SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR	AREA Code	NUMBER	MM/DD/YYYY	T
TYPED OR PRINTED		AUTHORIZED AGENT		HOMBER		

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE PAGE 9 OF PERMIT; FLOW TOTAL SEE FOOTNOTE 4. SEMIVOLATILES UNDER 51415.

Attachment E - Outfall 006 Dry

	Estimated	Rainfall	Rainfall
Date	Flow - MGD	Total - In	Peak - In
08/01/10	0	0.00	0.00
08/02/10		0.00	0.00
08/03/10		0.00	0.00
08/04/10		0.00	0.00
08/05/10		0.00	0.00
08/06/10		0.02	0.02
08/07/10		0.00	0.00
08/08/10	0	0.00	0.00
08/09/10		0.00	0.00
08/10/10		0.01	0.01
08/11/10		0.00	0.00
08/12/10		0.00	0.00
08/13/10		0.00	0.00
08/14/10		0.00	0.00
08/15/10	0	0.00	0.00
08/16/10		0.15	0.09
08/17/10		0.29	0.29
08/18/10		0.00	0.00
08/19/10		0.00	0.00
08/20/10		0.06	0.06
08/21/10		0.00	0.00
08/22/10	0	0.00	0.00
08/23/10		0.30	0.08
08/24/10		0.00	0.00
08/25/10		0.02	0.02
08/26/10		0.00	0.00
08/27/10		0.00	0.00
08/28/10		0.00	0.00
08/29/10	0	0.00	0.00
08/30/10		0.00	0.00
08/31/10		0.00	0.00

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

NAME: ADDRESS:	GENERAL ELECTRIC P 159 PLASTICS AVE PITTSFIELD, MA 01201	ITTSFIELD		MA0003891 PERMIT NUMBI	ER	W006-A DISCHARGE NUM				DE: 01201				
FACILITY:	GENERAL ELECTRIC C	OMPANY		1	MONITORIN	IG PERIOD		OUTFALL 006 WET WEATHER						
LOCATION:	159 PLASTICS AVE PITTSFIELD, MA 01201			MM/DD/YY	m I	MM/DD/YYY	Y		xternal Outf					
ATTN: MICH	HAEL T CARROLL, EHS&F		FRO	M 08/01/20	10 тс	08/31/2010					No Dis	scharge		
PARAMETER			QUANTI	TY OR LOADING	Y OR LOADING QUALITY OR CONCENTRATION						FREQUENCY OF ANALYSIS	SAMPLE TYPE		
			VALUE	VALUE	UNITS	VALUE	VALUE	VALUE	UNITS					
рН		SAMPLE MEASUREMENT	*****	*****	******	(NODI(9)	*****	NODICAL						
00400 1 0 Effluent Gros	055	PERMIT REQUIREMENT	******	*****	*****	6.5 MINIMUM	*****	9 MAXIMUM	SU		Quarterly	GRAB		
Solids, total	suspended	SAMPLE MEASUREMENT	(P),00M	NODICAD		NODICAL	*****	ROULAN						
00530 1 0 Effluent Gros	055	PERMIT REQUIREMENT	Reg. Mon. MO AVG	Req. Mon. D AI LY MX	lb/d	Req. Mon. MO AVG	*****	Req. Mon. DAILY MX	mg/L		Three Every Quarter	COMPOS		
Oil & grease	e		*****	*****	******	******	*****	(NONIA)						

Effluent Gross	REQUIREMENT	MUAVG			MU AVG		DAILYMX		Quarter	COMPOS
Oil & grease	SAMPLE MEASUREMENT	*****	******	******	*****	*****	(NOD, G)			
00556 1 0 Effluent Gross	PERMIT REQUIREMENT	*****	*****	*****	*****	*****	15 DAILY MX	mg/L	Quarterly	GRAB
Polychlorinated biphenyls (PCBs)	SAMPLE MEASUREMENT		(PIOON)		NOOLAY	*****	WONLDY			
39516 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	lb/d	Req. Mon. MO AVG	*****	Req. Mon. DAILY MX	ug/L	Three Every Quarter	COMPOS
Rainfall	SAMPLE MEASUREMENT	NODILAY	Relinon		*****	*****	******	*****		
46529 1 0 Effluent Gross	PERMIT REQUIREMENT	Reg. Mon. MO AVG	Req. Mon. DAILY MX	in	*****	*****	****	*****	Daily When Discharging	TOTALZ
Flow, total	SAMPLE MEASUREMENT	NODILA	(NODI (9)		*****	*****	*****	*****		
82220 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	Mgal/d	****	*****	*****	******	Continuous	RCORDR

NAME/TITLE PRINCIPAL EXECUTIVE OFFICER	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and	Sil. TA	TEL	EPHONE	DATE
MICHNEL T. CANDOLL	evaluate the information submitted. Based on my inquity of the person or persons who manage the system, or those persons directly responsible for gathering the information the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are symficant penalities for submitting fails enformation, including the possibility of fine and improsomment for knowing.	Withard I land	(413)4	5802	09/22/2010
TYPED OR PRINTED	periodes for recomming recementation, mercanging personality of the and improvingent to Anowing Violations.	SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR I	AREA Code	NUMBER	MM/DD/YYYY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE PAGE 10 OF PERMIT. FLOW TOTAL SEE FOOTNOTE 4.

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

PITTSFIELD, MA 01201 MM/DD/TTTT MM/DD/TTTT ATTN: MICHAEL T CARROLL, EHS&F FROM 08/01/2010 TO 08/31/2010	all	WEATHER No Di	scharge
PARAMETER QUANTITY OR LOADING QUALITY OR CONCENTRATION	NO. EX	FREQUENCY OF ANALYSIS	SAMPLE
VALUE VALUE UNITS VALUE VALUE UNITS			
PH SAMPLE NODI(9) NODI(9)			
00400 1 0 PERMIT		Quarterly	GRAB
Solids, total suspended SAMPLE NODI(9) NODI(9) NODI(9) NODI(9)			
00530 1 0 PERMIT Reg. Mon. Reg. Mon. Ib/d Reg. Mon. Reg. Mon. mg/L Effluent Gross REQUIREMENT MO AVG DAILY MX MO AVG DAILY MX		Quarterly	COMPOS
Oil & grease SAMPLE MEASUREMENT NOp((9))			
00556 1 0 PERMIT TALE AND THE T	[Quarterly	GRAB
Polychlorinated biphenyls (PCBs) SAMPLE MEASUREMENT (NODICA) (NODICA) (NODICA) (NODICA)			[
39516 1 0 PERMIT Reg. Mon. Reg. Mon. Ib/d Reg. Mon. mon. ug/L Effluent Gross REQUIREMENT MO AVG DAILY MX MO AVG DAILY MX DAILY MX		Quarterly	COMPOS
Rainfall SAMPLE NODI(9) NODI(9)			
46529 1 0 PERMIT Reg. Mon. Red. Mon. in		Daily When Discharging	TOTALZ
Flow, in conduit or thru treatment plant SAMPLE MEASUREMENT 0.0103 0.0103 MG-D	0	CONT	F.CORPA
50050 1 0 PERMIT Reg. Mon. Reg. Mon. Mgal/d ****** ****** Effluent Gross REQUIREMENT MO AVG DAILY MX Mgal/d ****** ******		Continuous	RCORDR

NAME/III LE PRINCIPAL EXECUTIVE OFFICER	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and	- 1'	TEL	EPHONE	DATE
MICHARL TO CARADIL	evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete 1 am aware that there are significant penalties for submitting fails enformation, reluting the possibility of fine and impressment for knowing the submitting fails enformation.		(413)	444-5502	09/12/2010
TYPED OR PRINTED	violations	SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR	AREA Code	NUMBER	MM/DD/YYYY

#

#

0

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SAMPLE MEASUREMENT

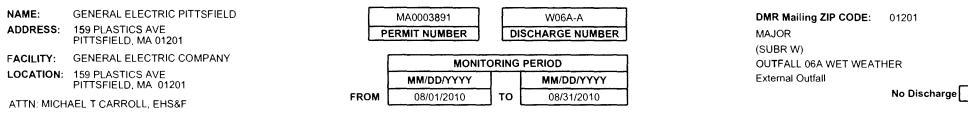
PERMIT REQUIREMENT Req. Mon. TOTAL

SEE PAGE 11 OF PERMIT. FLOW TOTAL SEE FOOTNOTE 4.

Number of Events

51484 1 0 Effluent Gross VISUNC

VISUAL


DAILY WON DISCHALANG

Daily When Discharging

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)

DISCHARGE MONITORING REPORT (DMR)

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

PARAMETER		QUANT	TITY OR LOADING		Q	UALITY OR CONC	ENTRATION		NO. EX	FREQUENCY OF ANALYSIS	SAMPLE TYPE
		VALUE	VALUE	UNITS	VALUE	VALUE	VALUE	UNITS			
Flow, total	SAMPLE MEASUREMENT	NODI (9)	(P) IOON		*****	*****	*****	*****			
82220 1 0 Effluent Gross	PERMIT REQUIREMENT	Reg. Mon. MO AVG	Req. Mon. DAILY MX	Mgal/d	*****	*****	****	******		Continuous	RCORDR

NAME/ITLE PRINCIPAL EXECUTIVE OFFICER supervision in accordance with a system designed to assure that qualified personnel		IE DATE
MICHACL T, CAAAOLL evaluate the information submitted. Based on my inquiry of the person or persons y system, or those persons directly responsible for gathering the information, the info to the best of my knowledge and belief, rue, accurate, and complete I am aware the penalties for submitting false information, including the possibility of fine and imp	ration submitted is Mitchard Carrowed (413)448-3	5902 09/22/2010
TYPED OR PRINTED	I SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR I	MBER MM/DD/YYYY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

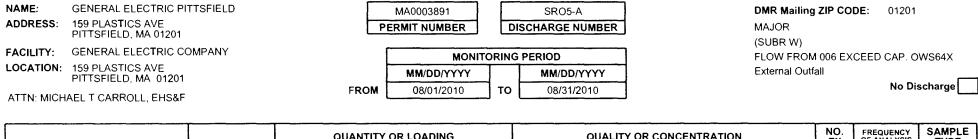
SEE PAGE 11 OF PERMIT. FLOW TOTAL SEE FOOTNOTE 4.

Attachment E - Outfall 06A Wet

		TSS	FN	Oil & Grease	FN	PCB	FN	Metered	Calculated	FN	Rainfall	Rainfall
Date	рН	MG/L		MG/L		UG/L		Flow - MGD	Flow - MGD		Total - In	Peak - In
08/01/10											0.00	0.00
08/02/10											0.00	0.00
08/03/10											0.00	0.00
08/04/10			[[0.00	0.00
08/05/10											0.00	0.00
08/06/10											0.02	0.02
08/07/10			[[0.00	0.00
08/08/10											0.00	0.00
08/09/10											0.00	0.00
08/10/10	[1								0.01	0.01
08/11/10											0.00	0.00
08/12/10											0.00	0.00
08/13/10				1			1				0.00	0.00
08/14/10											0.00	0.00
08/15/10											0.00	0.00
08/16/10			Î .								0.15	0.09
08/17/10								0.0103			0.29	0.29
08/18/10											0.00	0.00
08/19/10			1								0.00	0.00
08/20/10											0.06	0.06
08/21/10											0.00	0.00
08/22/10											0.00	0.00
08/23/10											0.30	0.08
08/24/10											0.00	0.00
08/25/10	1						1				0.02	0.02
08/26/10		1									0.00	0.00
08/27/10										-	0.00	0.00
08/28/10			1								0.00	0.00
08/29/10	1]								0.00	0.00
08/30/10		1									0.00	0.00
08/31/10											0.00	0.00

1 - (U) Indicates compound analyzed but not detected

C - Composite sample


G - Grab sample

FN

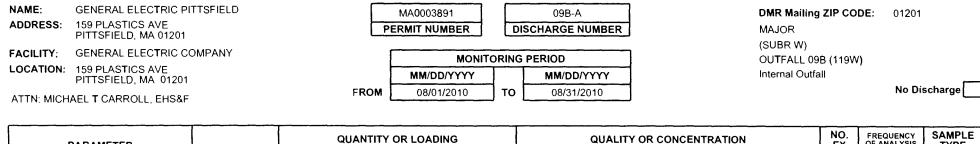
NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)

DISCHARGE MONITORING REPORT (DMR)

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

PARAMETER		QUAN	TITY OR LOADING		Q	UALITY OR CONC	ENTRATION		NO. EX	FREQUENCY OF ANALYSIS	SAMPLE TYPE
		VALUE	VALUE	UNITS	VALUE	VALUE	VALUE	UNITS			
Rainfall	SAMPLE MEASUREMENT	0.29	0.29	IN	*****	*****	******	******	σ	DAILY WHEN DISCURRENT	TOTALZ
46529 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	in	****	*****	*****	*****		Daily When Discharging	TOTALZ
Number of Events	SAMPLE MEASUREMENT	1	*****	#	*****	*****	*****	*****	0	DAILY WILD DISCULUNC	VISUAL
51484 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. TOTAL	*****	#	****	*****	*****	*****		Daily When Discharging	VISUAL
Flow, total	SAMPLE MEASUREMENT	0.0792	0,0792	MGD	*****	*****	*****	*****	0	DAILY WIEN DISCUAUNC	RCOADN
82220 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	Mgal/d	*****	*****	*****	******		Daily When Discharging	RCORDR

NAME/TITLE PRINCIPAL EXECUTIVE OFFICER	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and	-11 70	TEL	EPHONE	DATE
MICHAN TO CAMPUL	evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am awate that there are significant	Michael 1. Canoll	(-13)-	448 - 5507	07/22/2010
TYPED OR PRINTED	penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.	SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT	AREA Code	NUMBER	MM/DD/YYYY


COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

TOTAL FLOW SEE FOOTNOTE 3.

Attachment E - Outfall SR05A

	Metered	Rainfall	Rainfall
Date	Flow - MGD	Total - In	Peak - In
08/01/10		0.00	0.00
08/02/10		0.00	0.00
08/03/10		0.00	0.00
08/04/10		0.00	0.00
08/05/10		0.00	0.00
08/06/10		0.02	0.02
08/07/10		0.00	0.00
08/08/10		0.00	0.00
08/09/10		0.00	0.00
08/10/10		0.01	0.01
08/11/10		0.00	0.00
08/12/10		0.00	0.00
08/13/10		0.00	0.00
08/14/10		0.00	0.00
08/15/10		0.00	0.00
08/16/10		0.15	0.09
08/17/10	0.0792	0.29	0.29
08/18/10		0.00	0.00
08/19/10		0.00	0.00
08/20/10		0.06	0.06
08/21/10		0.00	0.00
08/22/10		0.00	0.00
08/23/10		0.30	0.08
08/24/10		0.00	0.00
08/25/10		0.02	0.02
08/26/10		0.00	0.00
08/27/10		0.00	0.00
08/28/10		0.00	0.00
08/29/10		0.00	0.00
08/30/10		0.00	0.00
08/31/10		0.00	0.00

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

PARAMETER		QUANT	TITY OR LOADING		QU	ALITY OR CON	CENTRATION		NO. EX	FREQUENCY OF ANALYSIS	SAMPLE TYPE
		VALUE	VALUE	UNITS	VALUE	VALUE	VALUE	UNITS			
рН	SAMPLE MEASUREMENT	*****	*****	******	(NODIG)	******	NODIG				
00400 1 0 Effluent Gross	PERMIT REQUIREMENT	*****	*****	*****	6.5 MINIMUM	*****	9 MAXIMUM	SU		Quarterly	GRAB
Solids, total suspended	SAMPLE MEASUREMENT	NODIG	(P) DON		NODILA	*****	(PIODIG)				
00530 1 0 Effluent Gross	PERMIT REQUIREMENT	213 MO AVG	876 DAILY MX	lb/d	Req. Mon. MO AVG	*****	Req. Mon. DAILY MX	mg/L		Three Every Quarter	COMP24
Oil & grease	SAMPLE MEASUREMENT	*****			******	*****	NODIG				
00556 1 0 Effluent Gross	PERMIT REQUIREMENT	*****	438 DAILY MX	lb/d	*****	*****	15 DAILY MX	mg/L		Quarterly	GRAB
Polychlorinated biphenyls (PCBs)	SAMPLE MEASUREMENT	(NODI (9)	NUDICAD		NUDICAD	*****	NODIG				
39516 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Reg. Mon. DAILY MX	lb/d	Req. Mon. MO AVG	******	Req. Mon. DAILY MX	ug/L		Three Every Quarter	COMP24
Rainfall	SAMPLE MEASUREMENT	0.15	0.15	IN	******	*****	*****	*****	0	CONT	RCONDR
46529 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	in	*****	*****	*****	*****		Continuous	RCORDR
Flow, in conduit or thru treatment plant	SAMPLE MEASUREMENT	0.0057	0.0704	MUD		*****	*****	******	0	CONT	RECONDE
50050 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	Mgal/d	*****	*****	*****	*****		Continuous	RCORDR
Flow, total	SAMPLE MEASUREMENT	0.0178	0.0178	mun	*****	*****	*****	*****	0	CONT	RCO-DK'
82220 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	Mgal/d	*****	*****	*****	****		Continuous	RCORDR

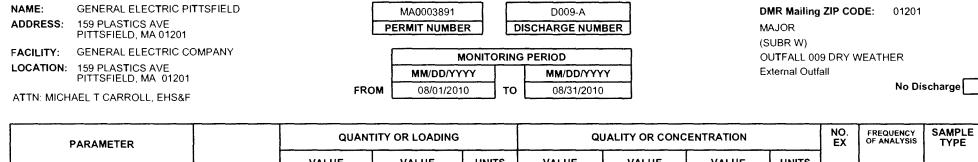
NAME/TITLE PRINCIPAL EXECUTIVE OFFICER	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and	-M. 11 10	TELEPHONE	DATE /
NICHARL TI CAMO'L	evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant		(413)448-5	902 09/22/2010
MUN. PITTERED PENEDIATION PAOL. TYPED OR PRINTED	penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations	SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT	AREA Code NUME	SER MM/DD/YYYY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE PAGE 12 OF PERMIT; FLOW TOTAL SEE FOOTNOTE 4.

Attachment E - Outfall 09B

		TSS	FN	Oil & Grease	FN	PCB	FN	Metered	Calculated	FN	Rainfall	Rainfall
Date	рН	MG/L		MG/L		UG/L		Flow - MGD	Flow - MGD		Total - In	Peak - In
08/01/10											0.00	0.00
08/02/10											0.00	0.00
08/03/10											0.00	0.00
08/04/10	1										0.00	0.00
08/05/10											0.00	0.00
08/06/10											0.02	0.02
08/07/10											0.00	0.00
08/08/10											0.00	0.00
08/09/10								0.0016			0.00	0.00
08/10/10								0.0018			0.01	0.01
08/11/10											0.00	0.00
08/12/10	[0.0005			0.00	0.00
08/13/10											0.00	0.00
08/14/10								0.0001			0.00	0.00
08/15/10								0.0033			0.00	0.00
08/16/10	[7.30	С			0.0207	С	0.0178			0.15	0.09
08/17/10	[0.0704			0.29	0.29
08/18/10											0.00	0.00
08/19/10				l I				0.0002			0.00	0.00
08/20/10				1				0.0142			0.06	0.06
08/21/10								0.0026			0.00	0.00
08/22/10								0.0005			0.00	0.00
08/23/10				[0.0570			0.3 0	0.08
08/24/10											0.00	0.00
08/25/10								0.0077			0.02	0.02
08/26/10											0.00	0.00
08/27/10	1										0.00	0.00
08/28/10											0.00	0.00
08/29/10								0.00003			0.00	0.00
08/30/10	1							0.00002			0.00	0.00
08/31/10	1										0.00	0.00


1 - (U) Indicates compound analyzed but not detected

C - Composite sample

G - Grab sample

FN

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

		VALUE	VALUE	UNITS	VALUE	VALUE	VALUE	UNITS			
рН	SAMPLE MEASUREMENT	*****	*****	******	NOOI(9)	******	NODIG	· · · · · · · · · · · · · · · · · · ·			
00400 1 0 Effluent Gross	PERMIT REQUIREMENT	*****	*****	*****	0.5 MINIMUM	***	9 MAXIMUM	SU		Twice Every Month	GRAB
Solids, total suspended	SAMPLE MEASUREMENT	NORIGA	(NODIL9)	(NODILAT	*****	NODICA				
00530 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	lb/d	Reg. Mon. MO AVG	****	Req. Mon. DAILY MX	mg/L		Twice Every Month	COMP24
Oil & grease	SAMPLE MEASUREMENT	*****	******	(NO01(9)		NODIG				
00556 1 0 Effluent Gross	PERMIT REQUIREMENT	*****	******	*****	Reg. Mon. MO AVG	*****	15 DAILY MX	mg/L		Twice Every Month	GRAB
Polychlorinated biphenyls (PCBs)	SAMPLE MEASUREMENT	NODI(9)	NODI(9)		NODILAD	******	NODILAD				
39516 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	lb/d	Req. Mon. MO AVG	******	Req: Mon. DAILY MX	ug/L		Twice Every Month	СОМ Р 24
Flow, in conduit or thru treatment plant	SAMPLE MEASUREMENT	Ø	σ	MGD	*****	*****	*****	******	0	WEEKLY	ESTIMA
50050 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	Mgal/d	****	*****	*****	*****		Weekly	ESTIMA
Flow, total	SAMPLE MEASUREMENT	NUDIG	NODICAD		*****	*****	*****	*****			
82220 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	Mgal/d	*****	*****	*****	******		Twice Every Month	ESTIMA

NAME/TITLE PRINCIPAL EXECUTIVE OFFICER	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and	$F_{ab} = 1$	TEL	EPHONE	D	ATE
MICHAEL TE CALLOLL	evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, rule, accurate, and compiler 1 an aware that there are significant	Whichard / facole	(4)7)4	42.5007	09/2	2/2010
MUR. PITTSFILLD RENGAINT.ON PADE.	penalties for submitting false information, including the possibility of line and improvement for knowing			11-3700		1
TYPED OR PRINTED		AUTHORIZED AGENT	AREA Code	NUMBER	/ MM/D	10mm

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE PAGE 13 OF PERMIT. FLOW TOTAL SEE FOOTNOTE 4.

Attachment E - Outfall 009 Dry

[Estimated	Rainfall	Rainfall
Date	Flow - MGD	Total - In	Peak - In
08/01/10	0	0.00	0.00
08/02/10		0.00	0.00
08/03/10		0.00	0.00
08/04/10		0.00	0.00
08/05/10		0.00	0.00
08/06/10		0.02	0.02
08/07/10		0.00	0.00
08/08/10	0	0.00	0.00
08/09/10		0.00	0.00
08/10/10		0.01	0.01
08/11/10		0.00	0.00
08/12/10		0.00	0.00
08/13/10		0.00	0.00
08/14/10		0.00	0.00
08/15/10	0	0.00	0.00
08/16/10		0.15	0.09
08/17/10		0.29	0.29
08/18/10		0.00	0.00
08/19/10		0.00	0.00
08/20/10		0.06	0.06
08/21/10		0.00	0.00
08/22/10	0	0.00	0.00
08/23/10		0.30	0.08
08/24/10		0.00	0.00
08/25/10		0.02	0.02
08/26/10		0.00	0.00
08/27/10		0.00	0.00
08/28/10		0.00	0.00
08/29/10	0	0.00	0.00
08/30/10		0.00	0.00
08/31/10		0.00	0.00

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

NAME: ADDRESS:	GENERAL ELECTRIC PI 159 PLASTICS AVE PITTSFIELD, MA 01201	TTSFIELD		MA0003891 PERMIT NUMBE	R	W009-A DISCHARGE NUM	BER	М	MR Mailing AJOR	ZIP CO	DE : 01201	
FACILITY:	GENERAL ELECTRIC CO	OMPANY			MONITORIN	G PERIOD		O	UBR W) UTFALL 00		VEATHER	
	PITTSFIELD, MA 01201		FRC	MM/DD/YY 08/01/201		08/31/2010		Ex	kternal Outf	all	No Di	scharge
ATTN: MICHAEL T CARROLL, EHS&F		· · · · · · · · · · · · · · · · · · ·		TITY OR LOADING	Y OR LOADING QUALITY (JALITY OR CON	TY OR CONCENTRATION			FREQUENCY OF ANALYSIS	SAMPLE TYPE
								T	1	1		i i
			VALUE	VALUE	UNITS	VALUE	VALUE	VALUE	UNITS			
рН		SAMPLE MEASUREMENT	••••••	******	UNITS	NODI(9)	•••••• (NODI(7)	UNITS			

00400 1 0 Effluent Gross	PERMIT REQUIREMENT	*****	******	*****	6.5 MINIMUM	*****	9 MAXIMUM	SU		Quarterly	GRAB
Solids, total suspended	SAMPLE MEASUREMENT	NODICAD	NODILAN		NODIGY	*****	NODIA				
00530 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	lb/d	Req. Mon. MO AVG	*****	Req. Mon. DAILY MX	mg/L	1	Three Every Quarter	COMPOS
Oil & grease	SAMPLE MEASUREMENT	*****	*****	*****	*****	******	(NODI(3)				
00556 1 0 Effluent Gross	PERMIT REQUIREMENT	***	***	*****	*****	*****	15 DAILY MX	mg/L		Quarterly	GRAB
Polychlorinated biphenyls (PCBs)	SAMPLE MEASUREMENT	NODIG	NUDILA		NODIGD	*****	NONIG				
39516 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	lb/d	Req. Mon. MO AVG	*****	Req. Mon. DAILY MX	ug/L	-	Three Every Quarter	COMPOS
Flow, total	SAMPLE MEASUREMENT	NODILA	(NODI (9)		*****	*****	******	*****			
82220 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon. MO AVG	Req. Mon. DAILY MX	Mgal/d	****	*****	*****	******		Continuous	RCORDR

NAME/TITLE PRINCIPAL EXECUTIVE OFFICER	I certify under penalty of law that this document and all attachments were prepared under my direction or, supervision in accordance with a system designed to assure that qualified personnel properly gather and	Dali. The	TEL	EPHONE	DATE	
MICHAGE TT CAMPLE	evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, use, accurate, and complete 1 am aware that there are significant.	Muchael (anold	(413)4	148-5902	09/22/20	10
TYPED OR PRINTED	penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.	SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT	AREA Code	NUMBER	MM/DD/YYYY	

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE PAGE 14 OF PERMIT TOTAL FLOW SEE FOOTNOTE 4

GE C	EP Internal Chain of Custody Fo	orm	COC#_01-		Dave More (Sun)
	eld, MA Grab Samples	ذ	Date:	13/10 Sampler	" Jason Wabster JU
NPDE	S Permit Number: MA0003891				
64G	Time 7:00AM	05A Wet		009 Wat	Time
	Initials DM			Wet	Initials
l	Eff. Flow (gpm) <u>91 GPM</u>	1	Eff. Flow (gpm)_		Eff. Flow (gpm)
	0&G EPA 1664 646-3Q3M-2X-60	l	pH / Temp_		рН / Тетр
	0&G EPA 1664 (A) 64 6 - 303-M-2X-60A		O&G EPA 1664_		O&G EPA 1664
	VOC 624646-303m-2X-6V	<u> </u>	O&G EPA 1664 (A)	80	&G EPA 1664 (A)
	SVOC 625646-3Q3M-2X-65	05B	Time_	09B	Time
005	Time 70A~	Wet	Initials_		Initials
	Initials	1	Eff. Flow (gpm)_		Eff. Flow (gpm)
l	005 Eff. Flow (gpm) 9ユ	1	pH / Temp_		рН / Тетр
	рН / Тетр <u>7, 82 © /6.1°L</u>	1	O&G EPA 1664_		O&G EPA 1664
	0&G EPA 166405-3Q3M-2X-GO	O&G EPA 1664 (A)		08	&G EPA 1664 (A)
ļ	08G EPA 1664 (A) 005-3031-2x-60A			Comme	nts:
be	64G Eff. Flow (gpm)	Wet	Initials		
Flooded	64T Eff. Flow (gpm)		Eff. Flow (gpm)		
	64G O&G EPA 1664	1	pH / Temp		
<u>=</u>	64G O&G EPA 1664 (A)		O&G EPA 1664		
005	Time	-	O&G EPA 1664 (A)		
Wet	Initials				
	005 Eff. Flow (gpm)	06A	1 1110		
	pH / Temp	Wet	Initials_		
	O&G EPA 1664		Eff. Flow (gpm)		
	O&G EPA 1664 (A)		pH / Temp		
7	64G Eff. Flow (gpm)		O&G EPA 1664		
Elonded	64T Eff. Flow (gpm)		O&G EPA 1664 (A)		
Ĩ	0 64G O&G EPA 1664	1	-		
2	64G O&G EPA 1664 (A)	1	-		

÷

GE Ç	EP Internal Chain of Custody Fe	orm	coc#_ <i>ði</i> -	9-7-10	Sample	Dave	moro Dig	
Pittsfie	ld, MA Grab Samples		Date:	7/7/10	Sample	r: Jaseph C. 1	tanling Jek	
NPDE	S Permit Number: MA0003891	an de la companya		, 				
64G	Time 7:00 AM	05A	Time		009	Time		
<u> </u>	Initials	Wet	Initials		Wet	Initials	<u></u>	
	Eff. Flow (gpm)		Eff. Flow (gpm)			Eff. Flow (gpm)		
	0&G EPA 166 546 - 223 M -1x - 60		pH / Temp		4	pH / Temp		
	0&G EPA 1664 (ACC - 323M-/X-Cox	L .	O&G EPA 1664			O&G EPA 1664		
	VOC 62 CHG - 323M-1K-GV	0	&G EPA 1664 (A)		0	&G EPA 1664 (A)		
	SVOC 62676 - 333M-1K-69	05B	Time_		- 09B	Time		
005	Time 7 3 m	Wet	Initials_			Initials		
	Initials		Eff. Flow (gpm)_	و و هم ما کرد او او او او او او او او او او او او او	_	Eff. Flow (gpm))	
	005 Eff. Flow (gpm)		pH / Temp_		4	pH / Temp		
	pH/Temp7.56 @ 16.1 c		O&G EPA 1664		O&G EPA 1664			
	0&G EPA 1664 005-363 m-1K- 60	O&G EPA 1664 (A)		O&G EPA 1664 (A)				
 	0&G EPA 1664 (A)005-3Q35-1K-GOA	006	Time_		Comme	ents:		
ed	64G Eff. Flow (gpm)	Wet	Initials_		-			
Flooded	64T Eff. Flow (gpm)		Eff. Flow (gpm)_			······		
IF FI	64G O&G EPA 1664		pH / Temp_					
	64G O&G EPA 1664 (A)		O&G EPA 1664_					
005	Time	, c	0&G EPA 1664 (A)_					
Wet	Initials		N	an an an an an an an an an an an an an a	_			
	005 Eff. Flow (gpm)	06A Wet	Time_					
	рН / Тетр		Initials_					
	O&G EPA 1664		Eff. Flow (gpm)					
 	O&G EPA 1664 (A)		pH / Temp -		_			
Pa	64G Eff. Flow (gpm)		O&G EPA 1664		-			
Elooded	64T Eff. Flow (gpm)	(D&G EPA 1664 (A)					
	64G O&G EPA 1664							
2	64G O&G EPA 1664 (A)	<u>]</u>						